
ROADWAY EXPLORATION

Proposed Intersection Improvements LUC-023-11.75, PID 105889

US Route 23 at State Route 51 Sylvania, Lucas County, Ohio

Submitted to ARCADIS U.S., Inc. DRAFT REPORT Date *July 2023*

Prepared by

ARCADIS U.S., Inc. Cleveland, Ohio

DRAFT Report Roadway Exploration LUC-023-11.75, PID 105889 Interchange Improvements US Route 23 at State Route 51 Sylvania, Lucas County, Ohio

July 2023

1915 North 12th Street Toledo, OH 43604-5305 T 419-324-2222 F 419-241-1808 www.ttlassoc.com

July 1, 2023

TTL Project No. 2065201

Mr. Craig Hebebrand, P.E. ARCADIS U.S., Inc. 1100 Superior Avenue, Suite 1250 Cleveland, Ohio 44114

> DRAFT Report Roadway Exploration LUC-023-11.75, PID 105889 Interchange Improvements US Route 23 at State Route 51 Sylvania, Lucas County, Ohio

Dear Mr. Hebebrand:

Following is the report of our roadway exploration performed by TTL Associates, Inc. (TTL) for the referenced site. This study was performed in accordance with TTL Proposal No. 2065201R3, dated April 14, 2021, and was authorized via ARCADIS U.S., Inc. (ARCADIS) Agreement for Subcontractor Services, dated May 28, 2021 and fully executed on July 17, 2021. This study was also performed in accordance with Modification No. 1 (TTL Proposal No. 2065201R6), dated September 19, 2022, which was authorized with a modified subconsultant agreement received by TTL on December 20, 2022, which was fully executed on January 11, 2023.

Previous preliminary memorandum submittals were provided containing design recommendations for various portions of the project. Those recommendations have been incorporated into this report. This report also contains the results of our study, our engineering interpretation of the results with respect to the project characteristics, bridge foundation and pavement design recommendations, recommended soil nail wall design soil parameters, embankment settlement evaluations, as well as special benching and sidehill embankment fill evaluations. This report is considered complete and comprehensive with respect to the requested scope of work. However, in accordance with ODOT protocol, the report is being submitted "DRAFT" for review and comment by ARCADIS and/or ODOT District 2.

Should you have any questions regarding this report or require additional information, please contact our office.

Sincerely, TTL Associates, Inc.

f.f

Christopher P. Iott, P.E. Chief Geotechnical Engineer

273

Curtis E. Roupe, P.E. Vice President

T:\Projects\2065201...\Deliverables\2065201 TTL Geotech DRAFT Report LUC-023-11.75 Interchange.doc

DRAFT REPORT ROADWAY EXPLORATION LUC-023-11.75, PID 105889 INTERCHANGE IMPROVEMENTS US ROUTE 23 AT STATE ROUTE 51 SYLVANIA, LUCAS COUNTY, OHIO

FOR

ARCADIS U.S., INC. 1100 SUPERIOR AVENUE, SUITE 1250 CLEVELAND, OHIO 44114

SUBMITTED

JULY 1, 2023 TTL PROJECT NO. 2065201

TTL ASSOCIATES, INC. 1915 NORTH 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222 (419) 321-6257 FAX

EXECUTIVE SUMMARY

This roadway exploration report has been prepared for the proposed interchange improvements for US Route 23 (US 23) at State Route 51 (SR 51, Monroe Street) in Sylvania, Ohio, designated as LUC-023-11.75, PID 105889. This exploration included performance of 41 test borings, 8 of which included pavement cores. A summary of the findings, conclusions, and recommendations of this study are as follows:

- 1. Borings were performed in roadway areas and grass areas beyond existing roadways. Existing pavements typically consisted of asphalt overlying aggregate base or a composite section that also included concrete underlying the asphalt.
- 2. Fill or embankment fill was encountered in 15 of the borings. Based on the borings performed for this exploration, random or rubble fill materials were not encountered. The embankment fill / backfill consisted of both cohesive soils and granular soils. The native soils encountered underlying the surface materials and existing fill materials consisted of predominantly cohesive soils (approximately ³/₄ of the recovered soil samples) with interbedded zones of granular soils. Relatively shallow bedrock is present at the site. As such, structure borings typically encountered bedrock and many borings included rock coring. Top of bedrock was encountered at Elevs. 626± to 605±.
- 3. Based on the limited data available, such as the soil characteristics and the groundwater conditions encountered in the borings, it is our opinion that the "normal" groundwater level may be encountered at elevations on the order of Elev. 623 in the vicinity of the SR51 bridge over US 23, and on the order of Elev. 612 in the proximity of Ottawa River.
- 4. This project includes new embankment fill to be placed on slopes generally graded at 2 horizontal to 1 vertical (2H:1V). As such, it is anticipated that some of the embankment fill placement would fall under the specifications of ODOT Geotechnical Bulletin GB-2, "Special Benching and Sidehill Embankment Fills," (now ODOT GDM Section 800). Isolated areas will include fill placement along slopes that are steeper than 4H:1V, and may include sliver fills with design fill widths based on "neat" lines and plateaus of less than 8 feet. Where sidehill fills are planned on the face of an existing slope which is steeper than 4H:1V, ODOT Office of Geotechnical Engineering (OGE) recommends special benching to assure that the new fill section and existing embankment are "knitted" together.
- 5. Total settlement was calculated to be on the order of 1 to 3 inches for the maximum fill heights of approximately 7 to 19 feet indicated for this project. Some of this settlement will be occurring during construction so that post-contraction settlement will be less than the calculated theoretical values.
- 6. For SR 51 over US 23, the widened substructures of the four-span structure will include abutments supported by driven piles end-bearing on bedrock (Section 5.2.1) and three piers supported by footings bearing on bedrock (Section 5.2.2).
- 7. Consideration was given to support of the new Ramp A and Ramp B bridges over Ottawa River using footings bearing on bedrock. However, the rock was evaluated to be scourable

and drilled shafts socketed into bedrock are now planned. Recommendations are provided in Section 5.2.3.

- 8. A soil nail retaining wall is planned immediately west of the SR 51 over US 23 bridge rear abutment to facilitate re-routing of Ramp B south (instead of north) from SR 51 and then between Pier 3 and the rear abutment. Recommendations for this wall are provided in Section 5.3.
- 9. Where embankments are constructed for the project, the new embankment fill is anticipated to be suitable for pavement subgrade support. For portions of the project where pavement subgrade borings were performed for new roadway and ramp alignment that will approximate existing roadway alignment without significant grade change, an evaluation of the subgrade soils was completed in general accordance with ODOT Geotechnical Bulletin GB-1 "Plan Subgrades" (Now ODOT GDM Section 600). Recommendations are provided in Section 5.4. Recommended design CBR and k-values are provided in Sections 5.5 and 5.6, respectively, for asphalt and concrete pavement design, respectively.
- 10. Groundwater seepage, perched water, and surface water runoff into shallow excavations in predominantly cohesive soils should be controllable by pumping from prepared sumps. If excavations extend below the groundwater level in granular soils, installation of multiple well points may be required in addition to pumping from prepared sumps. Installation of the intermediate piers in Ottawa River may require temporary cofferdams to divert streamflow to manage groundwater in addition to pumping from prepared sumps. Otherwise, steel casing may also be used to help facilitate groundwater control. In any case, as mentioned in Section 5.2.3, it is likely that temporary steel casing will be required to support the walls of the drilled shafts, in addition to facilitating control groundwater seepage.

This executive summary highlights our evaluations and recommendations and should only be utilized in conjunction with the accompanying report, including the detailed findings, analysis and recommendations, and qualifications presented herein.

TABLE OF CONTENTS

1.0	Introd	uction	1					
	1.1	Purpose and Scope of Exploration	2					
	1.2	Proposed Construction						
2.0	Ceolo	gy and Observations of the Project	5					
2.0	2.1	General Geology and Hydrogeology						
	2.1	Observations of the Project						
	2.2	observations of the Project	0					
3.0	Explo	ration	8					
	3.1	Historic Borings	8					
	3.2	Project Exploration Program	8					
	3.3	Boring Methods	10					
	3.4	Laboratory Testing Program	12					
4.0		igs						
	4.1	General Site Conditions						
	4.2	General Soil and Bedrock Conditions						
		4.2.1 Existing Fill and Embankment Fill						
		4.2.2 Native Soils						
		4.2.3 Bedrock						
	4.3	Groundwater Conditions						
	4.4	Remedial Measures	19					
5.0	Analy	ses and Recommendations	23					
2.0	5.1	New Embankment Fill						
	011	5.1.1 Special Benching and Sidehill Embankment Fills						
		5.1.2 Global Stability						
		5.1.2 Stobar Stability						
	5.2	Bridge Foundations						
	5.2	5.2.1 SR 51 Bridge Widening – Pile-Supported Abutments						
		5.2.2 SR 51 Bridge Widening – Footing-Supported Piers						
		5.2.3 Ramp A & Ramp B over Ottawa River – Socketed Drilled Shafts						
	5.3	Soil Nail Wall Design Soil Parameters						
		5.3.1 Retaining Wall Design Soil Parameters						
		5.3.2 Lateral Earth Pressures						
	5.4	GB-1 "Plan Subgrades" Evaluation	44					
	5.5	Flexible (Asphalt) Pavement Design						
	5.6	Rigid (Concrete) Pavement Design						
	5.7	Construction Dewatering and Groundwater Control						
	5.8	Construction						
		5.8.1 Sediment and Erosion Control						
		5.8.2 Site and Subgrade Preparation						

TABLE OF CONTENTS (CONTINUED)

Page No.

	Fill Excavations and Slopes	
6.0 Qualification	of Recommendations	

PLATES

- 1.0 Site Location Map
- 2.1 Test Boring Location Plan West
- $2.2 \ \ Test \ Boring \ Location \ Plan-East$
- 2.3 Test Boring Location Plan South

FIGURES

Logs of Test Borings Legend Key

APPENDICES

- Appendix A: Embankment Evaluations (Including GB-2 Special Benching Diagrams)
- Appendix B: State Route 51 Bridge Foundation Evaluations
- Appendix C: Ramp A Bridge Foundation Evaluations
- Appendix D: Ramp D Bridge Foundation Evaluations
- Appendix E: Ramp B Soil Nail Retaining Wall Evaluations
- Appendix F: Subgrade Evaluations (Including GB-1 Spreadsheet)
- Appendix G: Soils Laboratory Test Data
- Appendix H: Pavement Core Photographic Logs
- Appendix I: Rock Core Photographic Logs
- Appendix J: Rock Core Laboratory Test Data
- Appendix K: Historic Borings
- Appendix L: ODOT Design Checklists

1.0 INTRODUCTION

This roadway exploration report has been prepared for the proposed interchange improvements for US Route 23 (US 23) at State Route 51 (SR 51, Monroe Street) in Sylvania, Ohio, designated as LUC-023-11.75, PID 105889. Maximum extents for this project are shown on the attached Site Location Map (Plate 1.0), and are summarized as follows:

- Along SR 51, approximately 500 feet west of Harroun Road to 300 feet east of the Sylvania River Trail,
- Along State Route 184 (SR 184, Alexis Road), from the western extent to 300 feet east of Acres Road (may be extended in the future to Elliot Road to incorporate a U-turn with loon),
- Along the northbound US 23 entrance ramp (current Ramp B, to be abandoned and rerouted beneath the SR 51 overpass bridge between Pier 3 and the Forward Abutment), extending 1,000 feet north,
- Along the southbound US 23 exit ramp (Ramp C), starting 550 feet north of the SR51 overpass of US 23,
- Along Harroun Road, 100 feet south of SR 51,
- Along Glasgow Road, 100 feet north of SR 51,
- Along Acres Road, 200 feet north of Alexis Road, and
- Along US 23/Ramp A/Ramp D, extending 500 feet south of the current ramp bridge crossings of Ottawa River.

This study was performed in accordance with TTL Proposal No. 2065201R3, dated April 14, 2021, and was authorized via ARCADIS U.S., Inc. (ARCADIS) Agreement for Subcontractor Services, dated May 28, 2021 and fully executed on July 17, 2021. This study was also performed in accordance with Modification No. 1 (TTL Proposal No. 2065201R6), dated September 19, 2022, which was authorized with a modified subconsultant agreement received by TTL on December 20, 2022, which was fully executed on January 11, 2023.

TTL provided a Modification 2 proposal (Proposal No. 2065201 Mod2 Rev0), dated February 20, 2023 for sign-support foundation borings, laboratory testing, and evaluations. As part of the drilling services that were in progress at that time, already planned borings nearby proposed sign-support foundation locations were extended deeper to meet ODOT Type E5 boring requirements. However, it was indicated by ODOT that it was preferred to delay this portion of the exploration until final sign-support foundation locations had been determined. Authorization has not been provided at the time of this draft report preparation. As such, the additional field

exploration that was performed for the sign-support foundations has not been invoiced, laboratory testing has not been performed, and evaluations have not been made for these structures. Additionally, test borings that were planned in Modification 2 only for sign-support foundations were not performed.

It should be noted that the ODOT Geotechnical Design Manual (GDM) (July 15, 2022) was utilized for evaluation of soil and rock parameters as part of our exploration. However, this document was not available at the time of the original contract for this exploration. Therefore, references are made throughout the report to the historic Geotechnical Bulletin designations that have since been retired and incorporated into the GDM, but reference is also made to the new GDM section in which the Geotechnical Bulletins now reside.

1.1 <u>Purpose and Scope of Exploration</u>

The purpose of this exploration was to obtain soils data to evaluate the following:

- Magnitude and rate of potential settlement associated with the construction of the proposed realigned ramps and widened embankments for the widened SR 51 bridge over US 23,
- Special benching and sidehill embankment fill for the new embankment construction per ODOT Geotechnical Bulletin GB-2,
- Bridge foundations for widening of the SR 51 four-span bridge to the south, the new northbound US 23 exit ramp bridge over Ottawa River (Ramp A), as well as the new southbound US 23 entrance ramp bridge over Ottawa River (Ramp D),
- Recommended design soil parameters for a soil nail retaining wall planned for realignment of Ramp B just to the west of the Forward Abutment for SR 51 overpass of US 23, as well as
- Subgrade conditions for the realigned ramps, SR 51, Alexis Road, Acres Road, Harroun Road, and Glasgow Road, including completion of the ODOT Geotechnical Bulletin GB-1 spreadsheet with associated subgrade modification and CBR design value recommendations.

To accomplish this, TTL performed 41 test borings, 8 of which included pavement cores, field and laboratory soil testing, a geotechnical engineering evaluation of the test results, and review of available geologic and soils data for the project area.

This report summarizes our understanding of the proposed construction, describes the investigative and testing procedures utilized to evaluate the subsurface conditions at the site, and presents our findings from the field and laboratory testing. This report also presents our evaluations and conclusions in accordance with ODOT GB-1 "Plan Subgrades" (Now ODOT GDM 600) and ODOT GB-2 "Special Benching and Sidehill Embankment Fills" (Now ODOT GDM Section 800). This report also provides design and construction recommendations for new roadway embankments, pavements, bridge foundations, and a retaining wall associated with the proposed interchange modification.

This report includes:

- A description of the type and thickness of surface cover at the boring locations.
- A description of the subsurface soil, rock, and groundwater conditions encountered in the borings.
- Design recommendations for bridge foundations, a retaining wall, and pavements.
- Recommendations concerning soil and groundwater-related construction procedures such as site preparation, earthwork (including embankment construction), foundation and pavement construction, as well as related field testing.

ODOT Design Checklists have been completed and are included in Appendix L.

The scope of this study did not include an environmental assessment of the surface or subsurface materials at this site.

1.2 <u>Proposed Construction</u>

It is our understanding that the project consists of intersection improvements for US 23 at SR 51 in Sylvania, Ohio. An approximate depiction of the planned intersection improvements is shown on the Test Boring Location Plans (Plates 2.1 through 2.3). It should be noted that the ramp alignments have been shifted slightly from what is depicted as design has progressed.

The existing four-span SR 51 bridge over US 23 will be widened to the right (south). As such, new widened embankment approaches will be required. The northbound exit ramp (Ramp A) will include new alignment to the west which will require a new three-span bridge over Ottawa

River, as well as embankment fill. The existing Ramp A bridge over Ottawa River will be razed. The northbound entrance ramp (Ramp B) will be completely re-routed to extend south of the intersection and then loop under the SR 51 overpass of US 23 immediately west of the Forward (East) Abutment. New embankment fill and a retaining wall beneath the SR 51 bridge will be required for the new Ramp B alignment. The southbound exit ramp (Ramp C) will have little change, with the exception of some embankment widening. The southbound entrance ramp (Ramp D) will be re-routed to the west which will require a new three-span bridge over Ottawa River is integrally connected to the southbound US 23 bridge over Ottawa River, so it will remain.

It is assumed that the embankment fill will consist of cohesive soils similar to the native soils encountered at the site. Specific embankment information, bridge foundation and loading information, and retaining wall information are provided in the recommendations Section 5 of this report.

Pavements are anticipated to consist of predominantly flexible (asphalt) sections, but rigid (concrete) sections may be used for the ramps.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 General Geology and Hydrogeology

Published geologic maps from the Ohio Department of Natural Resources (ODNR) Division of Geological Survey indicate that the project site is located within the Maumee Sand Plains District of the Maumee Lake Plains Physiographic Region of the Huron-Erie Lake Plains Section. Within this district, the geologic deposits consist of late Wisconsinan-age sand overlying clay till and lacustrine deposits, which are underlain by Silurian-age carbonate rock and shale that is generally present relatively deep in the subsurface profile (although portions of the project area contained relatively shallow bedrock).

The USDA Natural Resource Conservation Service (NRCS) Web Soil Survey indicates that upper-profile soils in the project area are mapped as predominantly Sloan loam, Ottokee-Urban land complex, Sisson loam, St. Clair silty clay loam, and Udorthents/Urban land. The Sloan loam soils consist of alluvium formed on flood plains, and are considered very poorly drained. The Ottokee soils consist of eolian (wind-blown) deposits formed on beach ridges and dunes on lake plains, and are considered moderately well drained. The Sisson soils consist of lacustrine (lake-laid) deposits formed on lake plains or on deltas on lake plains, and are considered well drained. The St. Clair silty clay loam soils consist of till formed on lake plains, end moraines, and ground moraines. The "Urban land complex" notation, "Udorthents", and "Urban land" soil types indicate that the soils may have been altered by past cutting-and-filling construction operations.

Sandy beach lacustrine deposits are typically encountered overlying lacustrine silts and clays. The cohesive lacustrine soils are generally characterized as mostly soft to medium stiff silts and clays, often with a desiccated stiffer layer within the upper portion of the profile. The lacustrine deposits generally do not exhibit significant overconsolidation, although the desiccation effects induce some apparent overconsolidation within the near-surface soils.

The glacial till, also referred to as moraine, was deposited by the advance and retreat of glacial ice. Due to the weight of the ice mass, the till deposits are moderately to highly over-consolidated, that is, the existing soil deposits have experienced a previous vertical stress significantly higher than the present effective vertical stress due to the remaining overlying soil strata in the profile. The till may contain cobbles and/or boulders left in the till soil matrix. Additionally, seams of granular soils may also be encountered within glacial tills.

Bedrock in the project area is broadly mapped on the "Geologic Map of Ohio" as Silurian-age Monroe limestone. Specific to the project site, the uppermost carbonate rock formation is mapped as Tymochtee dolomite. Based on available bedrock maps, the top of bedrock was mapped generally at depths of 40 feet or less below existing grades. Structure borings performed for this exploration typically encountered bedrock and many borings included rock coring. Top of bedrock was encountered at Elevs. $626 \pm$ to $605 \pm$. The depths and elevations at which bedrock was encountered in specific borings during this exploration are summarized in Section 4.2.3.

Based on the ODNR mining maps, no mining is indicated in the project area. The closest mining is indicated to be bedrock mining from the surface for aggregate production, approximately $3\frac{1}{2}$ miles west of the site. Based on the ODNR Ohio Karst Areas map, the site is not located in an area of probable karst.

2.2 Observations of the Project

TTL performed site reconnaissance on October 13, 2021 as part of the initial boring layout at the extents of the project area, and then throughout the project corridor on January 20, 2023 and February 10, 2023.

The western and eastern portions of the site include mostly commercial development. The northern portion of the site includes mostly residential development. Ottawa River traverses through the southern portion of the project site. A multi-use path with subgrade-supported portions in the east and raised/boardwalk portions in the west traverses north of Ottawa River beneath existing ramp and mainline overpass bridges over the river. Relatively short retaining walls were present north of the multi-use path as it traversed between the northern piers and the north abutments for the US 23 mainline bridges over Ottawa River. A hospital is present to the southwest and a golf course is present to the southeast. Noise walls were being installed along the eastern right-or-way, north of the interchange, at the time of our exploration.

Historic embankment fill was placed for the SR 51 approaches to the US 23 overpass bridge, as well as for ramp construction at the interchange. Existing embankment slopes throughout the site were graded at approximately 2 horizontal to 1 vertical (2H:1V) or flatter. The ramp infields to the west of mainline are generally grassy. The ramp infield east of mainline includes rolling topography with woods and drainageways. Cattails were present in the low-lying areas. The Ottawa River was flooded during portions of the spring. Evidence of slope instability was not observed. However, is rock slope protection along a portion of the Ramp C embankment. It is

not apparent whether it is present due to slope instability due to grade or possibly as part of a recent apparent repair to a drainage structure in the area.

Each of the bridges appeared to have some areas of spalling concrete. Steel girders were present for the existing SR 51 bridge over US 23, whereas the bridges over the Ottawa River had concrete spans. A cylindrical vault extending above grade with a steel manhole was present just north of the multi-use path, between US 24 northbound and Ramp A.

Roadway pavements consisting of flexible (asphalt) surfaces were observed throughout the project area. The pavements appeared to be in generally good to fair condition with some areas of cracking. Some of the side streets appeared to have relatively new pavement or a relatively recent overlay. Based on the borings performed in the pavements, some areas include composite sections with asphalt overlying concrete. Other borings were performed in grass areas.

3.0 EXPLORATION

3.1 <u>Historic Borings</u>

Review of ODOT records for the project area indicated many historic test borings had been performed. Moisture content and soil type were generally available in the historic boring logs and Soil Profile drawings. It should be noted that Standard Penetration Test (SPT) blow counts or N-values were not provided for the majority of the historic borings. Additionally, detailed rock core data was not typically available. As such, they were not included in the analyses and reporting for this project.

Borings that did include classification, moisture content, SPT results, and hand penetrometer results were reviewed for a project performed along the north side of SR 51, between Harroun Road and the US 23 interchange. The project was designated LUC-CR4-9.77, PID 109598. Two test borings, identified as B-003-0-19 and B-005-0-19, were performed for this exploration. The boring location plan and logs of test borings for this project are attached in Appendix K.

The borings encountered predominantly medium stiff to very stiff cohesive soils consisting of A-4a, A-6a, and A-6b soils. Boring B-005-0-19 encountered granular fill (A-3a with crushed stone) in the upper approximately 3 feet. Boring B-003-0-19 encountered augerable weathered bedrock at Elev. 629 (15¹/₂ feet below grade), extending to termination at a depth of approximately 19 feet.

3.2 <u>Project Exploration Program</u>

Forty one (41) test borings were drilled for this exploration by TTL during the period from November 1, 2021 through April 19, 2023. The borings are numerated B-001-0-21 through B-043-0-21, but some boring numbers are skipped and others include an offset designation due to changes in alignments and scope during the exploration. The borings have been designated in general accordance with ODOT protocol, but the "-21" portion of the nomenclature is generally omitted in the discussions within this report.

Upon initial authorization in 2021, prior to final decisions regarding alignment for the ramps, select borings were authorized for performance during November 2021, since they were at the extents of the project area where changes in ramp alignment would not affect the need or location for these borings. Those borings included:

- Roadway borings designated as B-001-0 and B-015-0 (SR 51), B-002-0 (Harroun Road), B-016-0 (Glasgow Road), B-032-0 and B-033-0 (SR 184) and B-034-0 (Acres Road). The roadway borings included a core of the existing pavement.
- Bridge Borings B-006-0 and B-006-1 at the SR 51 rear abutment as well as B-010-0 at the SR 51 forward abutment.

After Modification 1 was authorized in December 2022, drilling operations commenced again in January 2023 for borings along SR 51, outside of ODOT right-of-way pending receipt of an ODOT Permit. Once the ODOT permit was received February 9, 2023, field boring operations commenced again within ODOT right-of-way. The remaining boring scope included:

- Roadway borings along SR 51: B-003-0, B-004-0 (deeper for sign pole), B-011-0, B-012-0, and B-013-0 (deeper for sign pole).
- Roadway boring along SR 184: B-031 (deeper for sign pole).
- Roadway/embankment borings along Ramp A: B-026-0/B-026-1 (deeper for sign pole), B-027-0, B-029-1 (deeper for sign pole), and B-030-0.
- Roadway/embankment/retaining wall borings for Ramp B: B-14-0/B-014-1, B-039-0/B-039-1, B-040-0, B-041-0, and B-043-0.
- Roadway/embankment borings for Ramp C and Ramp D: B-017-0 (deeper for sign pole), B-021-0, and B-024-0.
- SR 51 intermediate pier bridge Boring B-008-0.
- Ramp A over Ottawa River bridge Borings B-028-0, B-028-1, B-028-2 (through bridge deck), and B-029-0.
- Ramp D over Ottawa River bridge Borings B-022-0, B-022-1, B-022-2/B-022-3, and B-023-0.

The locations of the borings were established in the field by TTL by pacing and taping methods from existing site features, as well as by using the Google Earth mobile application. Coordinates and ground surface elevations were obtained by TTL using a handheld GPS unit. These data are presented on the logs of test borings. Station and offset was not available at the time of preparing this proposal. As such, the borings are left as "DRAFT" pending inclusion of this information. The existing and (approximate) proposed roadway and ramp alignments, as well as approximate locations of the borings are presented on the Test Boring Location Plans (Plates 2.1, 2.2, and 2.3).

Pavement cores were obtained at selected boring locations using a nominal 4-inch diameter single-wall, diamond-tipped core barrel. Pavement core photographic logs are provided in

Appendix H. The test borings were completed in accordance with geotechnical investigative procedures outlined in ODOT "Specifications for Geotechnical Explorations" (SGE). Due to relatively shallow bedrock at the site, many of the structure borings included rock coring as described in the following section.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations. Therefore, it is essential that a geotechnical engineer be retained to provide soil and rock engineering and inspection services during the site preparation, excavation, and foundation phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.3 Boring Methods

The test borings performed during this exploration were drilled with a CME 550 ATV-mounted drilling rig, a Diedrich D70 track-mounted drill rig, a CME 75 truck-mounted drilling rig, as well as a track-mounted GeoProbe® 7822DT with drilling capabilities. The borings were extended utilizing 3¹/₄-inch and 4¹/₄-inch inside diameter hollow-stem augers, as well as 3¹/₂-inch diameter solid-stem augers. During auger advancement in the ODOT Type A borings, split-spoon drive samples were taken continuously utilizing an 18-inch sample drive. In the ODOT Type B, Type B1, and Type E1 borings, split-spoon drive samples were generally taken at 2¹/₂-foot intervals in the upper soil profile, and at 5-foot intervals thereafter.

Split-spoon (SS) soil samples were obtained by the Standard Penetration Test Method (ASTM D 1586), and were sealed in jars and transported to our laboratory for further classification and testing. The Standard Penetration Test (SPT) consists of driving a 2-inch outside diameter split-spoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch increments, with the number of blows per increment being recorded. The number of blows per increment was recorded at each depth interval, and these data are presented under the "SPT" column on the Logs of Test Borings attached to this report. The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or N_m-value, and is typically reported in blows per foot (bpf). The N_m-values were corrected to an equivalent rod energy ratio of 60 percent, N₆₀. The calibrated hammer/rod energy ratio for the various drill rigs utilized for this exploration is summarized in the following table. The N₆₀-values are presented on the attached Logs of Test Borings.

Table 3.3 Drill Rig Calibrated Hammer/Rod Ratio Information				
Drill Rig	Energy Ratio	Calibration Date		
CME 75 Truck 844 (2021 Borings)	66.0	3/15/2021		
CME 75 Truck 844 (2023 Borings)	72.9	2/20/2023		
CME 550 ATV-Mounted Rig	75.2	2/20/2023		
Diedrich D70 Track-Mounted Rig	90.0	4/13/2022		
GeoProbe® 7822DT Track-Mounted Rig	Limited to 90	3/16/2022		

Shelby tube samples, designated ST on the Logs of Test Borings, were obtained at varying depths from selected embankment and retaining wall borings as shown on the attached Logs of Test Borings. The Shelby tube samples were obtained by hydraulically advancing a 3-inch diameter, thin-walled sampler approximately 24 inches beyond the hollow-stem auger into relatively undisturbed soil in accordance with ASTM D 1587. The Shelby tubes were then extracted from the subsoils, and the ends were capped and sealed. The samples were transported to our laboratory where they were extruded, classified, and tested.

Upon encountering auger refusal in structure borings, rock coring was performed in general accordance with ASTM D 2113 using a diamond-bit core barrel. Cores were generally obtained in 5-foot rock core runs. Recovery of the core is expressed as the percentage ratio of the recovered rock length to the total length of the core run. The Rock Quality Designation (RQD) is the percentage ratio of the summed length of rock pieces 4 inches in length and greater to the total length of the run. The rock core samples are shown on the Logs of Test Borings. Photographic logs of the rock cores are provided in Appendix I.

Soil and bedrock conditions encountered in the test borings are presented in the Logs of Test Borings along with information related to sample data, SPT results, water conditions observed in the borings, and laboratory test data. In conjunction with published data and typical correlations, the N_{60} -values can be evaluated as a measure of soil compactness/consistency as well as shear strength and bearing capacity.

Field and laboratory data were incorporated into gINT[™] software for presentation purposes. It should be noted that these logs have been prepared on the basis of laboratory classification and testing as well as field logs of the encountered soils and bedrock.

3.4 Laboratory Testing Program

All soil samples were visually or manually classified in accordance with the ODOT Soil Classification System. Atterberg limits tests (ASTM D 4318) and particle size analyses (ASTM D 422) were performed on selected samples to determine soil classification and index properties. All samples of the subsoils were also tested in our laboratory for moisture content (ASTM D 2216). Dry density determinations and unconfined compressive strength tests by the constant rate of strain method (ASTM D 2166) were performed on selected intact cohesive samples. Unconfined compressive strength estimates were obtained for the remaining intact cohesive samples using a calibrated hand penetrometer. These test results are presented on the Logs of Test Borings attached to this report. Additionally, graphical depictions of the grain size distributions are included in Appendix G.

Sulfate content determinations (ODOT Supplement 1122) were performed on one sample from each roadway boring, within 3 feet of the proposed subgrade. These test results are presented on the Logs of Test Borings.

Organic content determinations by the loss-on-ignition (LOI) method (ASTM D 2974) were performed on selected samples. These test results are presented on the Logs of Test Borings attached to this report.

Additionally, a one-point unconsolidated-undrained (UU) triaxial compressive strength test (ASTM D 2850) was performed on a sample from Boring B-039-1 (ST-1). The UU test was performed on a specimen tested at confining pressure approximately equal to the existing overburden pressure at the sample depth. The results of this test are attached to this report in Appendix G.

A consolidated-undrained (CU') triaxial compressive strength test with pore water pressure measurements (ASTM D 4767) was performed on a sample from Boring B-014-1 (ST-2). The CU' test was performed on specimens tested at confining pressures approximately equal to the existing overburden pressure at the sample depth, as well as half and double this pressure. The results of this test are attached to this report in Appendix G.

One-dimensional consolidation tests (ASTM D 2435) were performed on samples from Borings B-028-0 (ST-3) and B-039-1 (ST-1). The results of these tests are presented in Appendix G.

Unconfined compressive strength tests for rock specimens (ASTM D 7012, Method C) were performed, and the results are presented on the Logs of Test Borings. Additionally, the results are presented in Appendix J.

For scour consideration of foundations bearing on or in rock, for the Ramp A and Ramp D bridges over Ottawa River, slake durability tests (ASTM D 4644) were performed on selected rock specimens. Results of these tests are presented on the Logs of Test Borings.

4.0 FINDINGS

4.1 General Site Conditions

The site is located at the US 23 interchange with SR 53 in Sylvania, Lucas County, Ohio. Observations of the site conditions were provided in Section 2.2.

Boring were performed in roadway areas and grass areas beyond the roadways. The encountered surface materials and subgrade soils in the borings are summarized in the following table.

	Table 4.1. Encounter	ed Surface	Materials a	nd Subgrade S	Soils	
Boring	Location	S	urface Cover	r Thickness (ii	n)	Subgrade
Number	Location	Asphalt	Concrete	Aggregate	Topsoil	Soil
B-001-0	Monroe St (SR51)	3.75	9.75	5.5	-	A-4a
B-002-0	Harroun Rd	7.75	-	8.25	-	A-4a
B-003-0	Monroe St (SR51)	6	10	-	-	A-3
B-004-0	Monroe St (SR51)	6.5	9.5	-	-	A-3a
B-006-0	Monroe St (SR51)	2	13.5	5.5	-	A-4a
B-006-1			See B-006	-0		
B-008-0	US23	-	-	-	5	A-4a
B-010-0	Monroe St (SR51)	2.5	9	9	-	A-4a
B-011-0	Monroe St (SR51)	6	-	11	-	A-4a
B-012-0	Monroe St (SR51)	6	-	11	-	A-4a
B-013-0	Monroe St (SR51)	3	-	-	-	A-4a
B-014-0	New Ramp B	-	-	-	5	A-4b
B-014-1	•		See B-014	-0	•	
B-015-0	Monroe St (SR51)	3.5	9	5.5	-	A-4a
B-016-0	Glasgow Rd	4.5	-	-	-	А-ба
B-017-0	New/Existing Ramps C/D	8	-	17 ⁽¹⁾	-	A-4a
B-021-0	New Ramp D	-	-	-	5	A-4a
B-022-0	•	-	-	-	8	A-6a
B-022-1	New Ramp D	-	-	-	3	A-4a
B-022-2	Bridge over Ottawa	-	-	18	-	A-4a
B-022-3	River	See B-022-2				
B-023-0		-	-	6(2)	-	A-2-4
B-024-0	New/Existing Ramp D @ US23	11	-	8	-	A-3
B-026-0	New Ramp A	-	-	-	10	A-4a
B-026-1		•	See B-026	-0		
B-027-0	New Ramp A	-	-	-	10	A-6b
B-028-0		-	-	-	2	A-3a
B-028-1	New Ramp A	-	-	-	3	A-4b
B-028-2	Bridge over Ottawa	-	22(3)	-	-	N/A ⁽³⁾
B-029-0	River	-	-	-	5	A-3a
B-029-1	New/Existing Ramp A @ US23	16	-	5	-	A-3
B-030-0	New/Existing Ramp A @ US23	10	-	8	-	A-3a

	Table 4.1. Encounter	ed Surface	Materials a	nd Subgrade S	Soils		
Boring	Location	S	Surface Cover Thickness (in)				
Number	Location	Asphalt	Concrete	Aggregate	Topsoil	Soil	
	New Alexis Rd						
B-031-0	(SR184)/ Monroe St	-	-	-	10	A-4a	
	(SR51) Intersection						
B-032-0	Acres Rd @ Alexis	10.75		9.25		A-4b	
D-032-0	Rd (SR184)	10.75	-	9.25	-	A-40	
B-033-0	Alexis Rd (SR184)	2.5	9	-	-	A-4a	
B-034-0	Acres Rd	9.5	-	6.5	-	A-4a	
B-039-0	B-039-0 US23		-	11.5	-	A-3	
B-039-1			See B-039	-0			
B-040-0	US23	8	-	9	-	A-3a	
B-041-0	US23	10	_	7	-	A-3a	
B-043-0	Existing Ramp B	9	_	7	-	A-3a	

⁽¹⁾This layer consists of 7 inches of aggregate underlain by 2 inches of sand underlain by 8 inches of aggregate. ⁽²⁾Aggregate underlain by 8 inches of mulch.

⁽³⁾Boring extended through bridge deck.

Photographic logs of the pavement cores obtained at selected boring locations are provided in Appendix H.

4.2 General Soil and Bedrock Conditions

4.2.1 Existing Fill and Embankment Fill

Based on the borings performed for this exploration, random or rubble fill materials were not encountered. However, we reviewed historic plans with respect to grading for the existing interchange to help identify "embankment fill" that was placed to achieve design grades for the existing development. It was often difficult to differentiate embankment fill from the original native soils, possibly since nearby borrow sources of similar materials may have been used for the embankment fill. In some cases, trace organics (typically root hairs) were noted in samples near the expected original grade elevation. This may be an indication of the bottom of historic topsoil stripping which left trace organics that would not be detrimental to embankment or subgrade support.

There were other areas where embankment fill was not anticipated from historic grading research, but there were soils with presence of non-soil materials (typically crushed stone or trace organics), or that exhibited an unusual texture, for which a fill designation was provided on the boring logs. These may be areas of backfill associated with subgrade modification in roadways, backfill for utility installations, or other previous construction activities.

The encountered fill materials consisted of both cohesive soils and granular soils. The depths and elevations at which embankment fill was encountered in the borings is summarized in the following table.

	Table 4.2.1. Encountered Fill Materials					
Boring	T t ¹	Bottom of Emb	ankment Fill			
Number	Location	Depth (ft)	Elevation	Soil Type(s)		
B-003-0	Monroe St (SR51)	4	637.7	A-3 ⁽¹⁾		
B-004-0	Monroe St (SR51)	4.5	639.1	A-3a ⁽¹⁾		
B-006-0	Monroe St (SR51)	8	644	A-4a		
B-010-0	Monroe St (SR51)	11	640	A-4a, A-3a		
B-011-0	Monroe St (SR51)	5.5	642.6	A-4a		
B-012-0	Monroe St (SR51)	5	640.4	A-4a		
B-016-0	Glasgow Rd	2.3	643.6	A-6a ⁽¹⁾		
B-017-0	New/Existing Ramps C/D	4.5	633.5	A-4a		
B-023-0	New Ramp D Bridge over Ottawa River	3.5	620.7	A-2-4		
B-024-0	New/Existing Ramp D @ US23	To Termination at 7.5 ft	621.8 or deeper	A-3, A-3a, A-4a		
B-028-0	New Ramp A	6	614.3	A-3a, A-4a		
B-029-0	Bridge over Ottawa River	9	611.5	A-3a, A-4a		
B-029-1	New/Existing Ramp A @ US23	14	616.7	A-3a		
B-030-0	New/Existing Ramp A @ US23	To Termination at 7.5 ft	625.8 or deeper	A-3a, A-4a		
B-031-0	New Alexis Rd (SR184)/ Monroe St (SR51) Intersection	4.5	642	A-4a		
B-032-0	Acres Rd @ Alexis Rd (SR184)	To Termination at 8.5 ft	636.8 or deeper	$\begin{array}{c c} A-4b^{(1)}, A-2-6^{(1)}, \\ A-4a^{(1)} \end{array}$		

⁽¹⁾Possible backfill

The embankment soils are considered generally conducive for the proposed development. Due to the presence of granular soils in the existing embankments, flatter layback will be required as part of special benching operations as discussed in Section 5.1.1.

4.2.2 Native Soils

The native soils encountered underlying the surface materials and existing fill materials consisted of predominantly cohesive soils (approximately ³/₄ of the recovered soil samples) with interbedded zones of granular soils.

The cohesive soils consisted of predominantly A-4a soils, but A-6a, A-6b, and a few A-4b soil zones were also present. The cohesive soils generally exhibited medium stiff to very stiff consistency.

The granular soil zones typically included A-3a soils, but A-3, A-2 series, and A-1 series soils were also encountered. The granular soil zones generally exhibited loose to medium dense compactness.

Soil properties associated with the cohesive and granular soils were evaluated for particular subgrade support and foundation support applications and results of these evaluations are provided in Appendices A through F, with soil lab test results also provided on the logs of test borings and in Appendix G.

4.2.3 Bedrock

Relatively shallow bedrock is present at the site. As such, structure borings typically encountered bedrock and many borings included rock coring. Top of bedrock was encountered at Elevs. $626\pm$ to $605\pm$. The following table includes a summary of the depths and elevations at which weathered (augerable) bedrock and more intact bedrock (based on auger refusal) were encountered in the borings.

	Table 4.2.3. Encountered Bedrock Conditions					
Boring	CEE	Top of Weathered Rock		Top of Cored Ro	ock / Auger Refusal	
Number	GSE	Depth (ft)	Elev.	Depth (ft)	Elev.	
B-004-0	643.6	17.5	626.1	18.8	624.8	
B-006-1	652.0	29.0	623.0	38.0	614.0	
B-008-0	630.8	13.5	617.3	14.0	616.8	
B-010-0	651.0	N.E.	N.E.	35.4	615.6	
B-021-0	615.9	6.0	609.9	6.4	609.5	
B-022-0	615.1	N.E.	N.E.	8.0	607.1	
B-022-1	616.1	7.0	609.1	8.6	607.5	
B-022-2	616.1	6.0	610.1	6.7	609.4	
B-022-3	616.0	6.0	610.0	9.3	606.7	
B-023-0	624.2	16.0	608.2	16.5	607.7	
B-026-0	622.7	N.E.	N.E.	8.3	614.4	
B-026-1	623.1	N.E.	N.E.	11.0	612.1	
B-027-0	622.9	N.E.	N.E.	2.7	620.2	
B-028-0	620.3	11.0	609.3	13.0	607.3	
B-028-1	616.6	11.0	605.6	11.1	605.5	

	Table 4.2.3. Encountered Bedrock Conditions				
Boring	CSE	Top of Weathered Rock		Top of Cored Ro	ck / Auger Refusal
Number	GSE	Depth (ft)	Elev.	Depth (ft)	Elev.
B-028-2	609.0	0.9	608.1	1.5	607.5
B-029-0	620.5	11.5	609.0	16.0	604.5
B-029-1	630.7	20.3	610.4	22.5	608.2
B-039-0	636.2	N.E.	N.E.	15.0	621.2
B-043-0 647.6 N.E. N.E. 27.7 619.9					
N.E. = Not Encou	N.E. = Not Encountered.				

Detailed descriptions as well as laboratory test results for the rock are provided on the logs of test borings, as well in Appendix J. Additionally, rock core photographs are provided in Appendix I.

4.3 Groundwater Conditions

For the borings that encountered groundwater, the groundwater conditions encountered in the borings are summarized in the following table.

	Table 4.3. Encountered Groundwater Conditions						
Boring	ring CSF Encountered D		ater Initially During Drilling	0-	Groundwater Observed at Completion of Boring		
Number		Depth (ft)	Elev.	Depth (ft)	Elev.	Notes	
B-004-0	643.6	10.4	633.2	N.E.	N.E.		
B-006-1	652.0	38	614.0	12.7	639.3	(1)	
B-008-0	630.8	14	616.8	3.8	627.0	(1)	
B-010-0	651.0	16	635.0	17.4	633.6	(1)	
B-015-0	648.2	2.8	645.4		648.2		
B-016-0	645.9	5	640.9		645.9		
B-017-0	638.0	21	617.0	23.4	614.6		
B-021-0	615.9	3.4	612.5	2.8	613.1		
B-022-0	615.1	3.5	611.6	3.4	611.7	(1)	
B-022-1	616.1	4.5	611.6	3.8	612.3	(1)	
B-022-2	616.1	3.3	612.8	N.E.	N.E.		
B-022-3	616.0	8	608.0	5.2	610.8	(1)	
B-023-0	624.2	11	613.2	10.3	613.9	(1)	
B-026-1	623.1	N.E.	N.E.	9.7	613.4	(1)	
B-028-0	620.3	6	614.3	8.8	611.5	(1)	
B-028-1	616.6	8	608.6	5.2	611.4	(1)	
B-028-2	609.0	0	609.0	0	609.0	(2)	

	Table 4.3. Encountered Groundwater Conditions							
Boring	GSE		ater Initially During Drilling	Groundwater at Completion	0.00000			
Number		Depth (ft)	Elev.	Depth (ft)	Elev.	Notes		
B-029-1	630.7	20.3	610.4	14.5	616.2	(1)		
B-031-0	646.5	12	634.5	N.E.	N.E.			
B-032-0	645.3	4.2	641.1	N.E.	N.E.			
B-033-0	646.4	3	643.4	N.E.	N.E.			
B-034-0	649.0	7	642.0	N.E.	N.E.			
B-039-0	636.2	15	621.2	17.4	618.8	(1)		
B-041-0	646.8	4.7	642.1	6.5	640.3			
B-043-0	647.6	20.6	627.0	11.3	636.3	(1)		
N.E. = Not E	ncountere	d.			•	•		

(1): Water level after coring completed. Water was used for coring so presence of water indicates water return, **not groundwater level**.

(2): Boring extended through bridge deck into Ottawa River then to mudline. Ottawa River Level Elev. 611.5.

It should be noted that the boreholes were generally drilled and backfilled/sealed within the same day, and stabilized water levels may not have occurred over this limited time period.

Based on the limited data available, such as the soil characteristics and the groundwater conditions encountered in the borings, it is our opinion that the "normal" groundwater level may be encountered at elevations on the order of Elev. 623 in the vicinity of the SR51 bridge over US 23, and on the order of Elev. 612 in the proximity of Ottawa River. However, this investigation did not include research of possible hydrological influences at the project site. It should be noted that groundwater elevations can fluctuate with seasonal and climatic influences. In particular, groundwater levels may be affected by the water levels in the ditches within the project area, as well as in Ottawa River. Additionally, perched water may be encountered in granular soils that are underlain by relatively impermeable cohesive soils. Therefore, the groundwater conditions may vary at different times of the year from those encountered during this exploration.

4.4 <u>Remedial Measures</u>

New Embankment Fill

This project includes new embankment fill to be placed on slopes generally graded at 2 horizontal to 1 vertical (2H:1V). As such, it is anticipated that some of the embankment fill placement would fall under the specifications of ODOT Geotechnical Bulletin GB-2, "Special

Benching and Sidehill Embankment Fills," (now ODOT GDM Section 800). Isolated areas will include fill placement along slopes that are steeper than 4H:1V, and may include sliver fills with design fill widths based on "neat" lines and plateaus of less than 8 feet. Where sidehill fills are planned on the face of an existing slope which is steeper than 4H:1V, ODOT Office of Geotechnical Engineering (OGE) recommends special benching to assure that the new fill section and existing embankment are "knitted" together. Additional discussion regarding special benching is provided in Section 5.1.1.

Regardless of overall global slope stability, slopes graded steeper than 3H:1V may be prone to shallow surface sloughing. This type of shallow sliding is generally <u>not</u> problematic (by itself), but left unchecked, it can lead to progressive slope movements that eventually impact overall performance of the embankment. In addition to slope protection, such as well-established vegetative cover and rock-lined channels in surface run-off collection ditches and swales, we recommend that surface drainage from pavement areas on the crest of the embankment should be directed to catch basins or storm drains and not allowed to sheet flow over the slope. Global stability evaluations for the new embankments were beyond the scope of this exploration. However, additional general discussion regarding stability of the proposed embankment slopes is provided in Section 5.1.2.

The calculated settlements on the order of 1 to 3 inches for the maximum fill heights of approximately 7 to 19 feet indicated for this project are not anticipated to be problematic. Some of the embankment settlement will occur during placement of the fill. For a typical limit of 1 inch or less of post-construction foundation/embankment settlement, the settlement period is anticipated to be on the order of 1 to 2 weeks after completion of fill placement. Additional discussion regarding embankment settlement is provided in Section 5.1.3.

SR 51 Bridge Foundations

The SR 51 bridge widening abutments will bear on piles driven to bedrock. Additionally, the SR 51 bridge widening piers will bear on spread foundations bearing on bedrock. As such, remedial measures related to soft embankment foundation soils, stability problems, and settlement are not anticipated. Augerable weathered bedrock is anticipated at the bearing elevation for the west pier (Pier 1), for which a lower factored bearing resistance is recommended compared to the other two piers bearing on bedrock beyond the depth of auger refusal in the borings. In any case, the factored bearing resistance is anticipated to be suitable for support of the Pier 1. Additional discussion regarding the SR 51 bridge abutments and piers is provided in Sections 5.2.1 and 5.2.2, respectively.

Ramp A and Ramp B over Ottawa River Bridge Foundations

Consideration was given to spread foundations bearing on bedrock for the Ramp A and Ramp D bridges over Ottawa River. However, Based on our evaluations, none of the samples of the upper potential bearing rock met all of the criterion required to be considered scour-resistant rock in accordance with ODOT Bridge Design Manual (BDM) Section 305.2.1.2.b. The RQD values, RMR values, and GSI values were lower than the minimum requirements. These structures are now planned to be supported by drilled shafts socketed into bedrock.

The sockets are typically planned to extend 10 feet below the scour elevation. However, for the Ramp D Pier 1 location, the end-bearing elevation associated with the extension of the shaft/socket 10 feet below the scour elevation was just above a highly fractured zone with open fractures at Elev. 592.7. At this elevation, the driller noted loss of water during coring. Due to suspect end-bearing of this material, we recommend the shaft/socket extend 1-foot deeper, to an elevation where the driller noted 50% water return and we encountered more intact rock at Elev. 591.7.

Consideration was given to downdrag at the Ramp A and Ramp D bridge abutment locations due to the embankment fill that will be placed. No downdrag load needs to be incorporated into design for the Ramp A forward abutment or the Ramp D rear abutment. However, recommendations are provided in Section 5.2.3 for downdrag for the other two abutment substructures for these two ramp bridges over Ottawa River.

In addition to the downdrag loads on the drilled shaft foundations, the embankment fill placed behind the abutment walls and drilled shaft caps will experience settlement that could cause downdrag loads on the walls. We recommend coating these portions of the abutment substructures that are above existing grade with low viscosity bituminous asphalt and then covering or wrapping those components with a durable thick plastic visqueen to avoid additional downdrag loads on these exposed elements. Otherwise, alternative methods to avoid downdrag on the walls and footings could be considered.

Roadway Subgrades

Where embankments are constructed for the project, the new embankment fill is anticipated to be suitable for pavement subgrade support. For portions of the project where pavement subgrade borings were performed for new roadway and ramp alignment that will approximate existing

roadway alignment without significant grade change, an evaluation of the subgrade soils was completed in general accordance with ODOT Geotechnical Bulletin GB-1 "Plan Subgrades" (Now ODOT GDM Section 600).

Based on GB-1 criteria, subgrade soils with moisture contents greater than 3 percent above optimum likely indicate the presence of unstable subgrade that may require some form of subgrade modification. Approximately half of the evaluated samples exhibited moisture contents greater than 3 percent above the optimum as determined using GB-1 criteria. It should be noted that approximately 80 percent of the samples with moisture contents greater than 3 percent above optimum had moisture contents greater than or equal to 5 percent above optimum. Thus, where moisture contents were wet of optimum, they were appreciably wet of optimum. These data indicate that scarification and aeration methods may not be feasible to achieve satisfactory proof rolling and stabilization of the predominantly cohesive subgrades. However, scarification and aeration methods may be utilized in areas where granular subgrades wet of optimum are present, provided weather conditions and construction schedule will allow such soil modification.

Based on the GB-1 analysis results, subgrade modification may consider global chemical stabilization using cement to a depth of 12 inches, or over-excavation and replacement with new granular engineered fill. With more than 30 percent of the project indicating likely need for modification, ODOT GB-1 indicates that global chemical stabilization will likely be the more economical method of modification. However, consideration should be given to construction phases that may require multiple mobilizations of the chemical stabilization equipment that may negatively affect the economical nature of this method of subgrade modification.

Construction Dewatering and Groundwater Control

Groundwater seepage, perched water, and surface water runoff into shallow excavations in predominantly cohesive soils should be controllable by pumping from prepared sumps. If excavations extend below the groundwater level in granular soils, installation of multiple well points may be required in addition to pumping from prepared sumps. Installation of the intermediate piers in Ottawa River may require temporary cofferdams to divert streamflow to manage groundwater in addition to pumping from prepared sumps. Otherwise, steel casing may also be used to help facilitate groundwater control. In any case, as mentioned in Section 5.2.3, it is likely that temporary steel casing will be required to support the walls of the drilled shafts, in addition to facilitating control groundwater seepage.

5.0 ANALYSES AND RECOMMENDATIONS

The following analyses and recommendations are based on our understanding of the proposed construction and upon the data obtained during our field exploration. If the project information or location as outlined is incorrect or should change significantly, a review of these recommendations should be made by TTL.

5.1 <u>New Embankment Fill</u>

Fill will be placed for widening to the south of SR 51 for the widened bridge overpass of US 23, as well as for re-alignment of Ramps A, B, C, and D for the interchange. Maximum fill heights are generally estimated to be on the order of 7 to 13 feet. However, maximum fill of approximately 18 to 20 feet is planned for the re-alignment of Ramp D. We have assumed that the new fill will consist of cohesive soils from a nearby borrow source.

5.1.1 Special Benching and Sidehill Embankment Fills

Where fill will be placed along slopes that are flatter than 4 horizontal to 1 vertical (4H:1V) but steeper than 8H:1V, ODOT Construction and Materials Specifications (CMS) Item 203.05, which describes "standard specification" benching, should be followed. This project includes new embankment fill to be placed on slopes generally at 2 horizontal to 1 vertical (2H:1V). As such, it is anticipated that some of the embankment fill placement would fall under the specifications of ODOT Geotechnical Bulletin GB-2, "Special Benching and Sidehill Embankment Fills" (now ODOT GDM Section 800).

Special benching is to be used whenever there will be a stability problem with new fill and/or there are weak soils in an existing slope. Special benching is utilized to improve stability in a sidehill fill placed on an existing slope, or to remediate an unstable existing slope. Based on our site reconnaissance, the existing slopes in the project area appear to be performing satisfactorily, and are not in need of remediation due to instability.

Based on the project cross-section drawings, the areas of widening and/or new ramp alignment will generally include fill in areas with relatively flat grades, fill in areas of previous cut such that the fill will be "buttressed" between existing slopes, or fill along slopes which include more than 8 feet of plateau at the toe of the new fill. For these areas, only "standard specification" benching would be required.

However, there are some areas that will include fill placement along slopes that are steeper than 4H:1V, and may include sliver fills with design fill widths based on "neat" lines and plateaus of less than 8 feet. Where sidehill fills are planned on the face of an existing slope which is steeper than 4H:1V, ODOT Office of Geotechnical Engineering (OGE) recommends special benching to assure that the new fill section and existing embankment are "knitted" together. Fill placement along slopes steeper than 4H:1V are anticipated to require special benching in the following areas:

- US 23 in the vicinity of Stations 931+00 to 932+00,
- US 23 in the vicinity of Stations 933+00 to 936+00,
- US 23 in the vicinity of Stations 938+00 to 939+50,
- Ramp B in the vicinity of Station 27+00,
- Ramp C-D in the vicinity of Station 14+00,
- Ramp C-D in the vicinity of Stations 15+89 to 16+60, and
- Ramp D in the vicinity of Stations 26+50 to 29+50.

Examples of special benching for these sections are included in Appendix A, "Embankment Evaluations."

In general, one bench is prescribed for fill height of 10 feet or less. Where there is more than 10 feet of embankment fill requiring special benching, two to three benches are prescribed for the existing slopes. Although not anticipated to be prevalent, if there are locations where benches intercept existing roadways, special measures for maintenance of traffic (MOT) will be required.

The soils in the project area where benching will be performed consist of predominantly interbedded granular and cohesive soils. Where granular soils are present, GB-2 indicates that a 1.75H:1V backslope (assuming an effective friction angle of approximately 30 degrees) should be planned. As such, much of the project has been designated for use of 1.75H:1V backslope. Portions of Ramp C sliver fills are located where cohesive soils are anticipated (based on Boring B-017-0), for which GB-2 indicates a 1H:1V backslope may be planned. Based on the conditions encountered in the boring B-017-0, a 1H:1V backslope should be generally achievable for short-term excavations in this area.

5.1.2 Global Stability

Global stability evaluations for the new embankments were beyond the scope of this exploration. New embankment slopes are generally planned at 2 horizontal to 1 vertical (2H:1V) or flatter, which are generally the same as the existing embankment slopes. Based on our site reconnaissance, the existing slopes in the project area appear to be performing satisfactorily, and are not in need of remediation due to instability.

Regardless of overall global slope stability, slopes graded steeper than 3H:1V may be prone to shallow surface sloughing. This type of shallow sliding is generally <u>not</u> problematic (by itself), but left unchecked, it can lead to progressive slope movements that eventually impact overall performance of the embankment.

In addition to slope protection, such as well-established vegetative cover and rock-lined channels in surface run-off collection ditches and swales, we recommend that surface drainage from pavement areas on the crest of the embankment should be directed to catch basins or storm drains and not allowed to sheet flow over the slope.

5.1.3 <u>Settlement</u>

For each of the encountered soil strata, soil compressibility parameters were evaluated for use in embankment settlement calculations. The compressibility parameters of the cohesive soils were evaluated using one-dimensional consolidation test results, as well as correlations with moisture contents and Atterberg limits test results. Results of the one-dimensional consolidation tests are provided in Appendix D. Granular soil compressibility parameters were evaluated based on SPT N₆₀-values and overburden pressure at the sample depth.

Based on the provided cross-section drawings for the project, settlement was evaluated based on maximum embankment fill heights and widths, along with corresponding thickest overburden soils overlying bedrock. Total embankment settlement calculations include consolidation of the foundation soils as well as settlement of the embankment fill under its own weight. Calculated total settlement at the analyzed sections, and the corresponding maximum fill heights, are summarized in the following table.

	Table 5.1.3. Embankment Settlement						
Boring Number	Relative Location	Approximate Station	Estimated Fill Height (feet)	Calculated Total Embankment Settlement (inches)			
B-010-0	SR 51 Forward Abutment	SR 51 Sta 183+00	7	1 to 1¼			
B-028-0 & B-028-1	Ramp A Rear Abutment	Ramp A Sta 31+45	13	1½ to 1¾			
B-029-0	Ramp A Forward Abutment	Ramp A Sta 32+75	10	1 to 1¼			
B-022-1	Ramp D Rear Abutment	Ramp D Sta 22+97	18(1)	2 to 2 ¹ /4 ⁽²⁾			
B-023-0	Ramp D Forward Abutment	Ramp D Sta 24+87	19	2¼ to 2¾ ⁽²⁾			

⁽¹⁾Approximately 20 feet of fill at Sta 21+50, but less overburden soils overlying bedrock than at Sta. 22+97.
 ⁽²⁾Approximately half of settlement is associated with self-weight settlement of embankment soils. Depending on schedule, post-construction settlement may be less.

The calculated settlements for the fill heights indicated above are not anticipated to be problematic for the proposed project. It should be noted that settlement of the embankment soils under their own weight was on the order of ¹/₄ to ¹/₂ of the total calculated settlement indicated in the above table. Some of this embankment settlement will occur during placement of the fill. Additionally, field observations of actual settlement generally tend to be less in magnitude than the theoretical calculated settlement.

Based on consolidation test results and correlations with soil index properties, as well as the indicated fill heights and range of compressible cohesive soil layer thicknesses, the time required to achieve 90 percent consolidation was calculated to be generally on the order of 1 to 2weeks. It should be noted for the embankment heights and settlement magnitudes indicated above, after 90 percent consolidation, the remaining foundation/embankment settlement would be less than ½ inch for even the higher embankment fills. For portions of the project where waiting periods are being considered, settlement platforms can be installed to evaluate the magnitude and rate of settlement to facilitate decisions regarding completion of the waiting period.

5.2 Bridge Foundations

This project includes foundation evaluations and recommendations for three bridges, as described in the following sections. The first two sections include recommendations for widening of the SR 51 bridge over US 23 to the right (south). The widened substructures of the four-span structure will include abutments supported by driven piles end-bearing on bedrock (Section 5.2.1) and three piers supported by footings bearing on bedrock (Section 5.2.2). The following section (Section 5.2.3) includes recommendations for re-alignment of Ramp A over

Ottawa River and Ramp D over Ottawa River. These bridges will be three-span structures with abutments and pier wall footings supported by drilled shafts socketed into bedrock.

5.2.1 <u>SR 51 Bridge Widening – Pile-Supported Abutments</u>

The proposed widened abutments for the SR 51 bridge over US 23 are planned to be supported by driven piles end-bearing on bedrock. The existing bridge is supported by HP 12x53 piles. However, depending on design loads, an alternate pile size may be utilized. The bottoms of the abutments are planned at approximate Elev. 640 for both abutments. Preliminary plans indicated that there will be 1 foot of stickup into the abutments.

For piles end-bearing on bedrock, the ODOT Bridge Design Manual (BDM) indicates that piles should be specified as H-piles. We understand that the bridge will be designed using LRFD specifications. The factored resistance for piles driven to refusal on bedrock is typically governed by structural resistance. The total factored load for any single pile shall not exceed the maximum factored structural resistance (Pr). The ODOT prescribed maximum Pr for common pile sizes is presented in the following table.

Table 5.2.1.A. ODOT Prescribed Maximum Factored Structural Resistance (Pr) for Common Pile Sizes		
Pile Type/Size	Maximum Pr (kips)	
HP 10x42 H-pile	310	
HP 12x53 H-pile	380	
HP 14x73 H-pile	530	

The Pr values assume:

- an axially loaded pile with negligible moment;
- no appreciable loss of section due to deterioration throughout the life of the structure;
- a steel yield strength of 50 kips per square inch (ksi);
- a structural resistance factor for H-piles subject to damage due to severe driving conditions (AASHTO LRFD Bridge Design Specifications 6.5.4.2: $\phi_c = 0.50$); and
- a pile fully braced along its length.

The indicated Pr values should not be used for piles that are subjected to significant bending moments or are not supported by soil for their entire length. Examples of the latter condition include piles for capped pile piers and piles in soils subject to scour. For the abutments associated with the proposed roadway overpass bridge, these would not be design constraints.

Consideration should be given to downdrag load on piles due to the settlement associated with the new embankment fill at the abutments. As indicated in Section 5.1.3, the time required for 90 percent consolidation may be on the order of 1 to 2 weeks. If a waiting period is allotted prior to driving piles, downdrag loads do not need to be incorporated into design (reduction in available bridge structure factored load per pile). If a waiting period is not allotted, TTL should be consulted to evaluate downdrag associated with consolidation/settlement of the existing overburden soils present prior to placement of embankment fill. In this case, we assume sleeves would be provided for the embankment portion of the pile installation to avoid downdrag associated with the embankment fill itself.

Each pile must be driven to refusal as defined by ODOT as being met during driving when the pile penetration is 1 inch or less after receiving at least 20 blows from the pile hammer. ODOT indicates that, when estimating pile length, the depth to refusal shall be assumed as the elevation where the rock core begins in the nearest test boring.

The following table includes the estimated pile length and order length for each substructure. The estimated pile length includes the calculated length from anticipated pile cut-off elevation (including embedment into pile cap) to pile tip elevation, rounded up to the nearest 5 feet. If rounding up to the nearest 5 foot for estimated length adds less than one foot, increase to the nearest 5 foot interval. The order length is the estimated length plus 5 feet. These lengths will be valid regardless of which type of H-pile is selected.

Table. 5.2.1.B. H-Pile Estimated Lengths and Order Lengths						
Location	Boring Number	Bottom of Pile Cap Elevation (feet)	Pile Cut-Off Elevation (feet)	Anticipated Pile Tip Elevation (feet)	Estimated Pile Length (feet)	Order Pile Length (feet)
Rear (West) Abutment	B-006-1	640	641	614 ⁽¹⁾	30	35
Forward (East) Abutment	B-010-0	640	641	615	30	35

⁽¹⁾Note that augerable weathered bedrock was encountered at Elev. 623.

The maximum center-to-center spacing of driven piles should be 8 feet for capped pile abutments and the front row of stub abutments per ODOT BDM specifications. The maximum center-to-center spacing of driven piles should be 7 feet for the front row of wall-type abutments and retaining walls.

Cobbles or boulders were not encountered in the borings. However, it should be noted that the existence of cobbles or boulders within the glacial till subsoils is not unusual for this region. These conditions, if encountered, could hamper pile-driving operations and possibly damage some piles. If some piles are observed to meet refusal at depths markedly less than those indicated by the borings, boulder obstruction or pre-mature "fetching" may be indicated. If these conditions are indicated, a pile load test should be performed to evaluate the capacity of the pile. Alternately, for a modest-sized project such as this, one or more replacement piles could be driven, probably at less expense than the cost of a load test.

Based on the bedrock depth and strength, steel pile points should be utilized for this project to protect the tips of the piles. Additionally, if piles will be driven through 15 feet or more of embankment fill (should pile sleeves not be included), pre-boring should be performed per ODOT BDM 305.3.5.7.

5.2.2 <u>SR 51 Bridge Widening – Footing-Supported Piers</u>

For the SR 51 bridge widening, it is planned to support the piers using footings bearing on bedrock. Preliminary plans indicate a footing size of 8 feet by 8 feet. For footings located outside the limits of 100 year flood plain (such as this structure) that are founded on rock, the bottom of footing must be keyed at least 3 inches into rock.

Based on the conditions encountered in the borings, the foundation bearing information is summarized in the following table.

Table 5.2.2.A. Pier Foundations Bearing Conditions									
Substructure	Boring Number	Rock Bearing Conditions	Top of Bedrock Elevation (feet)	Auger Refusal Elevation (feet)	Anticipated Bearing Elevation (feet)				
West Pier (Pier 1)	B-006-1-21	Weathered/Fractured Augerable Rock	623	614	622.7				
Intermediate Pier (Pier 2)	B-008-0-21	Cored Dolomite Bedrock	617.5	617	617 ⁽¹⁾				
East Pier (Pier 3)	B-010-0-21	Core Dolomite Bedrock	615.6	615.6	615.3				

⁽¹⁾Recommend extending slightly more than the minimum 3 inches to extend to auger refusal elevation.

We understand that the headwall foundations will be designed using LRFD specifications. At the service limit state and strength limit state, the resistance factor (ϕ_b) values are 1.0 and 0.45, respectively. The recommended nominal and factored bearing resistance at the service limit state and strength limit state for each substructure are summarized in the following table.

	Table 5.2.2.B. Pier Foundations Bearing Resistance									
Substructure	Boring	Service Limit Resist	8	Strength Limit State Bearing Resistance						
Substructure	Number	Nominal, qn Factored, (ksf) (ksf)		Nominal, qn (ksf)	Factored, qr (ksf)					
West Pier (Pier 1)	B-006-1-21	20	20	41	18					
Intermediate Pier (Pier 2)	B-008-0-21	20	20	1013	456					
East Pier (Pier 3)	B-010-0-21	20	20	1138	512					

The structural engineer should verify suitable stress associated with the concrete when considering the factored bearing resistance to be utilized for design. Settlement of foundations bearing on cored rock is expected to be negligible, with settlement on the order of ¹/₂ inch or less calculated for foundations bearing on weathered bedrock with pressures at the service limit state factored bearing resistance of 20 ksf.

Headwall footings should also be checked for sliding stability. We recommend that passive pressure be considered negligible at the toe of the wall due to the potential for erosion and/or freeze-thaw behavior that would significantly reduce reliance on passive earth pressure. As such, the LRFD nominal sliding resistance (R_R) is determined by $\phi_T R_T$, where R_T is the nominal sliding resistance on the base of the footing. Nominal sliding resistance R_T is calculated as V tan δ , where V is the vertical axial load acting on the foundation, and tan δ is the friction factor on the base. For cast-in-place concrete footings bearing on dolomite bedrock, ODOT GDM 1303.3.5 indicates use of 35 degrees for δ , such that tan δ is 0.7. For sliding resistance on rock, the resistance factor ϕ_T should be taken as 0.9 for the weathered rock at the West Pier (Pier 1), and 1.0 for the cored rock bearing material at the Intermediate Pier (Pier 2) and East Pier (Pier 3).

5.2.3 Ramp A and Ramp B Bridges over Ottawa River – Socketed Drilled Shafts

Consideration was given to spread foundations bearing on bedrock for the Ramp A and Ramp D bridges over Ottawa River. However, Based on our evaluations, none of the samples of the upper

potential bearing rock met all of the criterion required to be considered scour-resistant rock in accordance with ODOT Bridge Design Manual (BDM) Section 305.2.1.2.b. The RQD values, RMR values, and GSI values were lower than the minimum requirements. Results of these evaluations are presented in Appendices C and D for Ramp A and Ramp D, respectively. These structures are now planned to be supported by drilled shafts socketed into bedrock. Preliminary recommendations for vertical resistance and lateral load-deflection soil and rock parameters have been provided to the structural engineer. While the vertical resistance was suitable for a design using three drilled shafts per substructure, it was found that four drilled shafts per substructure were required for suitable lateral resistance while maintaining a relatively shallow socket. The bottom of footing / pier cap elevations, relevant borings and encountered bedrock conditions for the substructures, as well as indicated maximum vertical and lateral loads considering four drilled shafts per substructure are summarized in the following table.

	Table	5.2.3.A. Su	bstructure Loa	d, Footing,	Scour, and	Rock Data	
Bridge	Substructure	Footing Elev.	Boring	Top of Rock Elev. (feet)	Provided Scour Elev. (feet)	Maximum Factored Vertical Load (kips)	Maximum Factored Moment (ft-kips)
	Rear Abutment	613.5	B-028-0	609.3	598.3	203.05	923.76
Domn A	Pier 1	610.0	B-028-1	605.6	603.02	315.21	702.52
Ramp A	Pier 2	608.0	B-028-2	608.1	605.72	315.21	702.52
	Forward Abutment	615.0	B-029-0	609.0	607.7	203.05	923.76
	Rear Abutment	612.5	B-022-0	607.1	610.21	322.35	-595.38
Bomn D	Pier 1	610.79	B-022-1	609.1	605.61	460.86	551.86
Ramp D	Pier 2	605.14	B-022-3	610.0	605.67	464.72	512.59
	Forward Abutment	614.0	B-023-0	608.2	604.42	290.03	1082.13

Drilled Shaft Rock Socket Vertical Resistance

We understand that the bridge foundations will be designed using LRFD methods. The minimum diameter for drilled shafts that support pier columns is 42 inches. However, the piers for these structures are planned to be supported on strip footings. Therefore, the minimum diameter of 30 inches for drilled shafts was initially considered for both the abutment and pier shafts. The diameter of bedrock sockets for drilled shafts is generally 6 inches less than the diameter of the shaft above the bedrock elevation. Regardless of shaft diameter, reinforcing steel cages should be based on the bedrock socket diameter.

For the abutments and piers, initial considerations are based on the minimum 36-inch diameter shafts above bedrock and a socket diameter of 30 inches. It was then found that 42-inch diameter shafts with 36-inch diameter sockets were found to be required for lateral load resistance based on the factored loads presented in Table 5.2.3.A and the design soil/rock parameters in the following section. Finally, the structural engineer planned for 42-inch straight shafts in soil and bedrock based on scour considerations.

For end-bearing evaluation considerations, the minimum prescribed rock socket length is 1.5B, where B is the socket diameter. However, per ODOT BDM 305.4.4.4, a minimum 5-foot socket is prescribed with footings or ground surface within 10 feet of bedrock. All of the footings/bottom of pier caps for The Ramp A and Ramp D bridges are within 10 feet of bedrock. As such, the minimum rock socket length is then considered 5 feet. Furthermore, the minimum rock socket length is also governed by the scour elevation. Per ODOT BDM 305.4.1.1, for non-friction drilled shafts, they must penetrate a minimum of 10 feet below the controlling scour elevation. Based on the provided scour elevations in Table 5.2.3.A of this report, this was found to be the governing criteria for minimum rock socket tip elevation (pending suitable resistance also for lateral load-deflection evaluations described below). Depending on final design considerations, the initially planned 42-inch straight shafts may be utilized, or a 6-inch reduction in diameter for sockets may be used below top of rock (or below scour elevation), as appropriate.

Evaluations for factored unit tip resistance presented below are based on bearing in competent rock that does not contain adverse jointing, open solution cavities, or joints that are filled with weathered material that would affect the bearing resistance of the rock, within a distance equal to two socket diameters below the tip of the drilled shaft rock socket. In any case, any structural requirement for the drilled shaft foundations to resist lateral loads or moments may increase the socket depth or diameter and should be evaluated on an individual shaft basis by the structural engineer along with TTL.

Based on the rock conditions encountered at each substructure location in the borings summarized in Table 5.2.3.A, an unfactored unit tip resistance (q_p) was calculated. Based on the design methodologies utilized to evaluate unfactored unit tip resistance and AASHTO LRFD Table 10.5.5.2.4-1, a resistance factor of 0.50 should be utilized for design for tip resistance. The calculated unfactored tip resistance and factored unit tip resistance values are summarized in the following table.

	Table 5.2.3.B. Unfactored and Factored Unit Tip Resistance										
Bridge	Substructure	Boring	Unfactored Unit Tip Resistance, qp (ksf)	Factored Unit Tip Resistance (ksf)	Maximum Factored Vertical Load (kips)	Calculated Factored Vertical Resistance ⁽¹⁾ (kips)					
	Rear Abutment	B-028-0	6,150	3,075	203.05	29,585					
Doma A	Pier 1	B-028-1	6,995	3,495	315.21	33,626					
Ramp A	Pier 2	B-028-2	6,340	3,170	315.21	30,499					
	Forward Abutment	B-029-0	4,575	2,285	203.05	21,984					
	Rear Abutment	B-022-0	3,605	1,800	322.35	17,318					
Dama D	Pier 1	B-022-1	4,285	2,140	460.86	20,589					
Ramp D	Pier 2	B-022-3	8,595	4,295	464.72	41,323					
	Forward Abutment	В-023-0	5,455	2,725	290.03	26,218					

⁽¹⁾For 3.5 feet diameter straight shaft in soil and end-bearing in rock.

Based on the planned shaft diameter of 42 inches and the factored unit tip resistance indicated above for each substructure, the resistance is suitable for the indicated factored loads when using the planned 4 drilled shafts per substructure. Even if a 6-inch reduction in diameter was considered for the rock socket portion of the drilled shaft foundation, the end-bearing resistance would be suitable for the provided factored loads.

A summary of the recommended rock socket lengths based on vertical resistance evaluations is provided in the following table.

	Table 5.2.3.C. Minimum Rock Socket Length Based on Vertical Load Considerations									
Bridge	Sub- structure	Boring	Footing Elev. (feet)	Scour Elev. (feet)	Bottom of Rock Socket Elev. (feet)	Top of Rock Elev. (feet)	Calculated Rock Socket Length (feet)	Recommended Minimum Rock Socket Length ⁽¹⁾⁽²⁾		
	Rear Abutment	B-028-0	613.5	605.9	595.9	609.3	13.4	13.5		
Ramp	Pier 1	B-028-1	610.0	603.02	591.7 ⁽⁴⁾	605.6	13.9	14		
A	Pier 2	B-028-2	608.0	605.72	595.72	608.1	12.28	12.5		
	Forward Abutment	B-029-0	615.0	607.7	597.7	609.0	11.3	11.5		
	Rear Abutment	B-022-0	612.5	610.21	600.21	607.1	6.89	7		
Ramp	Pier 1	B-022-1	610.79	605.61	595.61	609.1	13.49	13.5		
D	Pier 2	B-022-3	605.14	605.67	595.67	610.0	9.47 ⁽³⁾	9.5		
	Forward Abutment	B-023-0	614.0	604.42	594.42	608.2	13.78	14		

- ⁽¹⁾ Based on minimum 5-ft requirement for rock present within 10 feet of bottom of footing, as well as further governing extending at least 10 feet below scour elevation.
- ⁽²⁾ Rock socket length may need to be increased if lateral load considerations govern design.
- ⁽³⁾ Footing elevation is below top of rock, so of socket length is based on bottom of footing instead of top of rock.
- ⁽⁴⁾ The end-bearing elevation associated with the extension of the shaft/socket 10 feet below the scour elevation was just above a highly fractured zone with open fractures at Elev. 592.7. At this elevation, the driller noted loss of water during coring. Due to suspect end-bearing of this material, we recommend the shaft/socket extend deeper. The driller noted 50% water return and we encountered more intact rock at Elev. 591.7. Therefore, use a tip elevation of Elev. 591.7.

The factored unit tip resistance was based on rock conditions. We recommend the structural engineer also consider any limiting conditions associated with the stress limitations of the concrete.

It should be noted that the provided factored unit bearing resistance reflects end-bearing conditions only. Typically, design based on end-bearing alone is considered when sound bedrock underlies highly weathered rock. Conversely, design based on side shear resistance alone is considered when the drilled shaft cannot be adequately cleaned, or where large movement of the shaft would be required to mobilize the end bearing. For this project, significant movement is not expected to be required to mobilize the end bearing (for shafts installed beyond the less competent upper bedrock profile), and it is assumed that due diligence will be exercised to install the shafts in a cleaned drill hole.

Consideration was given to downdrag on the drilled shafts due to the embankment fill that will be placed at the abutment locations. Based on the settlement calculations included in Appendix A, the settlement calculated for the soil portion below the footing elevation at the Ramp A forward abutment and Ramp D rear abutment was 0.4 inches or less. For foundations extending to bedrock, the neutral plane is considered the bedrock elevation, and downdrag is considered for the portion of the soil above the elevation where 0.4 inches of settlement is calculated immediately above the bedrock. As such, no downdrag loads are required for these two substructures. Settlement of more than 0.4 inch was calculated for the portion below the footing at the other two abutment locations. Side friction was evaluated for the portions of the foundations below the footing to the elevation where 0.4 inches of settlement was calculated immediately above the bedrock. Those results are provided in Appendices C and D, and are summarized in the following table.

		Table 5	.2.3.D. Dov	wndrag Load Co	onsiderations		
Bridge	Sub- structure	Borings	Footing Elev. (feet)	Downdrag Zone	Downdrag Zone Thickness (feet)	Adhesion (ksf)	Calculated <u>Unfactored</u> Downdrag Load ⁽¹⁾ (kips)
Ramp	Rear Abutment	B-028-0/ B-028-1	613.5	613.5-612.6	0.9	0.75	7
A	Forward Abutment	B-029-0	615.0	None	-	-	-
D	Rear Abutment	B-022-0	612.5	None	-	-	-
Ramp D	Forward			614.0-613.2	0.8	0.62	5.5
	Abutment	B-023-0	614.0	613.2-611	2.2	1.3	31
	Abuilleni					Total:	37

⁽¹⁾ Based on 3.5-ft diameter drilled shaft in soil.

In addition to the downdrag loads on the drilled shaft foundations, the embankment fill placed behind the abutment walls and drilled shaft caps will experience settlement that could cause downdrag loads on the walls. We recommend coating these portions of the abutment substructures that are above existing grade with low viscosity bituminous asphalt and then covering or wrapping those components with a durable thick plastic visqueen to avoid additional downdrag loads on these exposed elements. Otherwise, alternative methods to avoid downdrag on the walls and footings could be considered. To reduce potential downdrag, embankment should be constructed to as close as possible to the structure location and a waiting period could be utilized to allow for settlement under that embankment load. As discussed in Section 5.1.3, this period may be on the order of 1 to 2 weeks for 90 percent consolidation to occur.

Drilled shafts should be constructed in accordance with ODOT Construction and Material Specifications (CMS) Item 524. It is also recommended that the center-to-center spacing between adjacent shafts be no less than 2 shaft diameters. However, as discussed below, group effects within the soil would need to be considered for lateral load evaluations with a center-to-center spacing of drilled shafts of less than 3.75 shaft diameters.

Due to the presence of groundwater, as well as the granular soils encountered in the borings, it is likely that temporary steel casing will be required to support the walls of the shaft and to control groundwater seepage. If significant seepage is encountered and cannot be suitably pumped to dewater the drilled shaft, concrete will require placement by tremie methods. As the steel casing is withdrawn during concreting, sufficient concrete should be maintained above the bottom of the casing to counteract any hydrostatic head. Care must be taken during concreting and removal

of any temporary liner so as to avoid the possibility of soil intrusions. The contractor should submit procedures for installation prior to the start of work.

Although cobbles or boulders were not noted in the borings performed for this exploration, they may be encountered at this site. Therefore, provisions should be made by the contractor to remove any obstructions, including cobbles or boulders, if they are encountered during the drilling operations.

Drilled shafts should be clean and free of all loose material prior to the placement of concrete. A TTL representative should verify that shafts are bearing on competent materials and that installation procedures meet specifications.

Lateral Load Soil and Rock Design Parameters

For lateral load-deflection evaluations using software, such as LPILE, recommended design parameters are summarized in the following tables based on the conditions encountered in the borings. It was indicated that the center-to-center spacing for a single row of 3.5 feet diameter drilled shafts was 8 feet. With the spacing of less than 3.75 shaft diameters, a p-multiplier of 0.85 was calculated per ODOT BDM Section 305.1.2, for consideration of group effects. The p-multiplier should be applied only for the soil portion of the shaft, not the socket in rock.

Per ODOT BDM Section 305.4.1.1 "Scour", structural capacity of the shaft should be evaluated considering the depth of scour as an unbraced length since the drilled shaft will lose support along the scour depth. Additionally, a p-y analysis on the drilled shaft would need to be performed according to BDM Section 305.1.2 to demonstrate lateral stability against overturning at various design states and excessive deflection at the Service Limit State.

Initial LPILE files were setup using the provided factored vertical loads and moments, along with the parameters in the following tables. The files were then provided to the structural engineer to confirm that the steel reinforcement and drilled shafts (length and diameter) were suitable for the resulting shear, moment, and deflection from the LPILE evaluations. Otherwise, modification may include increased steel reinforcement, deeper sockets, or larger diameter drilled shafts/sockets. If larger diameter shafts are utilized, the p-multiplier would need to be modified accordingly.

	Table 5	.2.3.E. Subsurface Cond				ection Paramete	ers –	
Depth Below Existing Grade (feet)	Elevation (feet)	Ramp Generalized Layer Description	A Rear Abutme Approximate Total Unit Weight ¹ (pcf)	nt (Boring B-0: Average Undrained Shear Strength, Su (psf)	28-0-21) Strain at 50% Maximum Stress, 650	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 4	620.3 to 616.3	Medium Dense A-3a	125	φ=37.5°	k=25 pci	_	—	_
4 to 6	616.3 to 614.3	Very Stiff A-4a	120	2,250	0.005	_	_	_
6 to 8	614.3 to 612.3	Stiff to Very Stiff A-6a	125	940	0.010	_	-	_
8 to 11	612.3 to 609.3	Loose A-3a	120	φ=32°	k=5 pci	_	—	
11 to 13	609.3 to 607.3	Weathered Dolomite	160	—	_	18,000	95.8	0.000027
13 to 14.4	607.3 to 605.9	Dolomite Bedrock RQD = 65%	160	_	_	900,000	10,750	0.000060
14.4 to 21	605.9 to 599.3	Dolomite Bedrock RQD = 72%	160	_	_	1,800,000	21,100	0.000059
21 to 23.9	599.3 to 596.4	Dolomite Bedrock RQD = 34%	160	_	_	1,800,000	20,200	0.000056
23.9 to 25	596.4 to 595.3	Dolomite Bedrock RQD = 38%	160	-	_	680,000	7,500	0.000055
25 to 26.8	595.3 to 593.5	Dolomite Bedrock RQD = 77%	160	_	_	1,400,000	17,090	0.000061
26.8 to 31	593.5 to 589.3	Dolomite Bedrock RQD = 0%	160	_	_	900,000	12,700	0.000071
31 to 33	589.5 to 587.3	Dolomite Bedrock RQD = 24%	160	-	_	900,000	12,700	0.000071

<u>Ramp A Lateral Load – Deflection Parameters</u>

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water -62.4 pcf).

	Table 5	.2.3.F. Subsurface Cond R	itions and Recon amp A Pier 1 (B			ection Paramete	ers –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, 650	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 3	616.6 to 613.6	Very Stiff A-4b	125	2625	0.005	_	_	_
3 to 6	613.6 to 610.6	Medium Stiff to Stiff A-4a	115	1000	0.007	_	_	_
6 to 8	610.6 to 608.6	Medium Dense A-2-4	125	φ=36°	k=23 pci	_	_	-
8 to 11	608.6 to 605.6	Very Dense A-2-4	140	φ=41°	k=64 pci	_	_	-
11 to 11.4	605.6 to 605.2	Dolomite Bedrock RQD = 0%	160	_	_	900,000	10,750	0.000060
11.4 to 21.1	605.2 to 595.5	Dolomite Bedrock RQD = 43%	160	_	_	1,400,000	17,330	0.000062
21.1 to 21.9	595.5 to 594.7	Dolomite Bedrock RQD = 0%	160	_	_	680,000	7,500	0.000055
21.9 to 23.9	594.7 to 592.7	Dolomite Bedrock RQD = 17%	160	_	_	680,000	7,500	0.000055
23.9 to 24.9	592.7 to 591.7	Dolomite Bedrock RQD = 0%	160	_	_	680,000	7,500	0.000055
24.9 to 31.1	591.7 to 585.5	Dolomite Bedrock RQD = 28%	165	_	_	1,800,000	19,440	0.000054

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water -62.4 pcf).

	Table 5.	2.3.G. Subsurface Cond R	litions and Recor amp A Pier 2 (B			ection Paramete	ers –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, 850	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 0.9	609.0 to 608.1	Very Dense A-1-b	130	φ=42°	k=64 pci	-	—	-
0.9 to 1.5	608.1 to 607.5	Weathered Dolomite	160	_	-	18,000	127.8	0.000035
1.5 to 8.5	607.5 to 600.5	Dolomite Bedrock RQD = 60%	165	_	-	1,400,000	14,990	0.000054
8.5 to 12.6	600.5 to 596.4	Dolomite Bedrock RQD = 0%	160	_	_	1,400,000	14,990	0.000054
12.6 to 20	596.4 to 589	Dolomite Bedrock RQD = 4%	165	_	-	1,400,000	17,610	0.000063
20 to 22	589 to 587	Dolomite Bedrock RQD = 0%	160	-	_	680,000	7,500	0.000055

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water -62.4 pcf).

	Table 5.	2.3.H. Subsurface Cond Ramp A	litions and Recor Forward Abutn			ection Paramete	ers –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, 850	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 3	620.5 to 617.5	Medium Dense A-3a	125	φ=39°	k=31 pci	_	_	_
3 to 9	617.5 to 611.5	Very Stiff A-4a	125	3,125	0.005	_	_	-
9 to 11.5	611.5 to 609	Loose A-3a	120	φ=32°	k=6 pci	-	_	_
11.5 to 13.5	609 to 607	Weathered Dolomite	160	_	-	18,000	25.6	0.000007
13.5 to 16	607 to 604.5	Weathered Dolomite	160	_	-	18,000	76.7	0.000021
16 to 17.7	604.5 to 602.8	Dolomite Bedrock RQD = 43%	160	_	_	1,400,000	17,720	0.000063
17.7 to 23	602.5 to 597.5	Dolomite Bedrock RQD = 81%	160	_	_	1,400,000	17,720	0.000063
23 to 26	597.5 to 594.5	Dolomite Bedrock RQD = 28%	160	_	_	900,000	12,710	0.000071
26 to 26.6	594.5 to 593.9	Dolomite Bedrock RQD = 0%	160	_	_	680,000	7,500	0.000055
26.6 to 36	593.9 to 584.5	Dolomite Bedrock RQD = 25%	160	_	_	1,400,000	14,980	0.000054

¹ Effe	ctive unit weight	should be used below a	depth of 16 feet (re	educe by unit we	ight of water -	- 62.4 pcf).

	Table 5	.2.3.I. Subsurface Cond Ramp	itions and Recon D Rear Abutme			ection Paramete	rs –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, 850	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 3.5	615.1 to 611.6	Medium Stiff A-6a	120	1,000	0.005	-	—	_
3.5 to 6	611.6 to 609.1	Medium Dense A-2-4	125	φ=39.5°	k=23 pci	—	—	_
6 to 8	609.1 to 607.1	Very Dense A-3a	140	φ=40°	k=64 pci	-	—	-
8 to 10.3	607.1 to 604.8	Dolomite Bedrock RQD = 29%	160	-	_	450,000	6,250	0.000069
10.3 to 16.5	604.8 to 598.6	Dolomite Bedrock RQD = 42%	160	_	_	900,000	10,020	0.000056
16.5 to 18	598.6 to 597.1	Dolomite Bedrock RQD = 24%	160	-	-	900,000	10,020	0.000056
18 to 21	597.1 to 594.1	Dolomite Bedrock RQD = 0%	160	-	_	900,000	10,020	0.000056
21 to 28	594.1 to 587.1	Dolomite Bedrock RQD = 31%	160	_	_	1,400,000	15,030	0.000054

<u>Ramp D Lateral Load – Deflection Parameters</u>

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water – 62.4 pcf).

	Table 5	.2.3.J. Subsurface Cond R	itions and Recon Camp D Pier 1 (B			ection Paramete	ers –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, 850	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	k _{rm}
0 to 4.5	616.1 to 611.6	Stiff A-4a	120	1,750	0.007	_	_	-
4.5 to 6	611.6 to 610.1	Medium Stiff A-4a	120	1,000	0.007	_	_	-
6 to 7	610.1 to 609.1	Loose A-3a	120	φ=32.5°	k=5 pci	-	-	-
7 to 8.6	609.1 to 607.5	Weathered Dolomite	160	_	-	18,000	128	0.000035
8.6 to 18.5	607.5 to 597.6	Dolomite Bedrock RQD = 17%	160	_	_	1,400,000	19,275	0.000069
18.5 to 23.6	597.6 to 592.5	Dolomite Bedrock RQD = 12%	160	_	_	680,000	7,350	0.000054
23.6 to 28.6	592.5 to 587.5	Dolomite Bedrock RQD = 22%	165	_	_	1,400,000	16,420	0.000059

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water -62.4 pcf).

	Table 5.	2.3.K. Subsurface Cond Ramp D I	litions and Recor Pier 2 (Borings B			ection Paramete	ers –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, 850	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 6	616 to 610	Very Stiff A-4a	120	2,125	0.005	_	-	-
6 to 8.5	610 to 607.5	Weathered Dolomite	160	-	-	18,000	96	0.000027
8.5 to 9.3	607.5 to 606.7	Weathered Dolomite	160	_	-	18,000	192	0.000053
9.3 to 14.3	606.7 to 601.7	Dolomite Bedrock RQD = 45%	160	_	_	1,400,000	17,840	0.000064
14.3 to 19.3	601.7 to 596.7	Dolomite Bedrock RQD = 0%	160	_	_	1,400,000	17,840	0.000064
19.3 to 23.2	596.7 to 592.8	Dolomite Bedrock RQD = 65%	165	_	_	1,800,000	23,820	0.000066
23.2 to 26.3	592.8 to 589.7	Dolomite Bedrock RQD = 18%	165	_	-	1,800,000	23,930	0.000066
26.3 to 29.3	589.7 to 586.7	Dolomite Bedrock RQD = 36%	165	_	_	1,800,000	23,930	0.000066

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water -62.4 pcf).

	Table 5	.2.3.L. Subsurface Cond Ramp D	itions and Recor Forward Abutn			ection Paramete	rs –	
Depth Below Existing Grade (feet)	Elevation (feet)	Generalized Layer Description	Approximate Total Unit Weight ¹ (pcf)	Average Undrained Shear Strength, Su (psf)	Strain at 50% Maximum Stress, ɛ₅₀	Young's Modulus, Er (psi)	Rock Uniaxial Compressive Strength (psi)	krm
0 to 3.5	624.2 to 620.7	Medium Dense A-2-4	120	φ=35.5°	k=14 pci	-	—	_
3.5 to 8	620.7 to 616.2	Medium Dense A-3a	125	φ=34.5°	k=19 pci	-	_	-
8 to 11	616.2 to 613.2	Medium Stiff A-6b	115	750	0.010	-	—	-
11 to 16	613.2 to 608.2	Hard A-4a	130	4,250	0.004	—	_	-
16 to 16.5	608.2 to 607.7	Weathered Dolomite	160	_	-	32,000	383	0.000060
16.5 to 24.3	607.7 to 599.9	Dolomite Bedrock RQD = 70%	160	-	-	1,400,000	16,490	0.000059
24.3 to 25.3	599.9 to 598.9	Dolomite Bedrock RQD = 50%	160	_	_	900,000	12,130	0.000067
25.3 to 29.5	598.9 to 594.7	Dolomite Bedrock RQD = 24%	160	_	_	900,000	12,130	0.000067
29.5 to 36.5	594.7 to 587.7	Dolomite Bedrock RQD = 15%	160	_	_	1,400,000	15,160	0.000054

¹Effective unit weight should be used below a depth of 16 feet (reduce by unit weight of water – 62.4 pcf).

5.3 Soil Nail Wall Design Soil Parameters

A new retaining wall is planned to facilitate routing of Ramp B immediately west of the forward (East) abutment for the SR 51 Bridge over US 23. The planned retaining wall will wrap around the forward (East) abutment, and will be on the order of 240 lineal feet in length. Top of coping along the highest portion of the wall will generally range from approximate Elevs. 642 to 640, with toe elevations on the order of Elevs. 632 to 630, resulting in maximum exposed height of approximately 10 feet.

The wall is preliminarily planned as a soil nail wall with shotcrete facing covered by a cast-inplace concrete facing. A soil nail inclination of 15% from horizontal is being considered. The leveling pad elevation is indicated at Elev. 626. For the maximum top of coping elevation of Elev. $642\pm$, this results in a maximum height of wall of approximately 16 feet. A perforated drain pipe is planned in front of the face of the wall, just above leveling pad elevation, to be fed by weep holes in the wall that are connected to a geocomposite strip drain along the back of the wall.

A paved gutter is planned behind the top of the wall for drainage. Grades above the top of wall will be on the order of 2 horizontal to 1 vertical (2H:1V) beneath the bridge overpass, and 4H:1V beyond the extents of the overpass.

5.3.1 <u>Retaining Wall Design Soil Parameters</u>

Based on the proposed location of the wall, nearby Borings B-010-0-21 behind the wall and B-008-0-21 in front of the wall were considered for design soil parameters. Based on these borings, the retained soils, soils in the sloped portion above the wall, and underlying soils are anticipated to be predominantly cohesive soils. A granular soil zone may be present near the maximum top of coping elevation/in the lower portion of the sloped portion above the wall. The soil properties associated with these soils are summarized in the following table.

		Table 5.3.1. Retaining Wall	Design Paramet	ters	
Approximate Elevation (ft)	Layer No.	Soil Type	Total Unit Weight (pcf)	Undrained Shear Strength, Su (ksf)	Internal Angle of Friction, ø (degrees)
651 - 646	1	Stiff to Very Stiff Cohesive Embankment Fill	120	1.5	-
646 - 643	2	Very Stiff Cohesive Embankment Fill	130	2.6	-
643 - 640	3	Medium Dense Granular Embankment Fill	130	-	37.5
640 - 625	4	Stiff to Very Stiff Cohesive	125	1.4	-
625 - 623	5	Very Stiff Cohesive	135	2.9	-
623 - 616	6	Hard Cohesive	140	7.5	-
616-	7	Bedrock	Soil nails not a	nticipated to exten	d into bedrock.

For design considerations, the "normal" groundwater level may be considered at Elev. 623±.

5.3.2 Lateral Earth Pressures

If needed for design, recommended lateral earth pressure values are provided in this section. Retaining structures and walls that are restrained from rotation and are considered rigid and non-yielding should be designed for "at-rest" earth pressure conditions. Based on the elevation range for the exposed wall height, it is anticipated that the retained soils will predominantly consist of Layer No. 4 soils presented in Table 5.3.1. Based on the properties for Layer No. 4 soils, an at-rest earth pressure coefficient (k_0) of 0.5 may be used for design, along with a soil unit weight of 125 pounds per cubic foot (pcf). Alternatively, an equivalent fluid weight of 65 pcf may be used for the at-rest case design.

If the retaining structure is not considered restrained at the top of the wall, design may be based on active lateral earth pressure conditions. Based on the properties for Layer No. 4 soils, an active earth pressure coefficient (k_a) of 0.33 may be used for design, along with a soil unit weight of 125 pcf. Alternatively, an equivalent fluid weight of 45 pcf may be used for the active case design.

It should be noted that some wall/foundation movement or horizontal displacement is needed to mobilize the full passive pressure of the soil. Additionally, passive pressure is typically ignored within the depth of potential frost penetration (3½ feet below toe grade for this site). Because of these considerations, and depending on the design methodology used for the soil nail wall, passive pressure is expected to be neglected for soil nail wall design.

It should also be noted that the earth pressures presented above do not include hydrostatic pressures that may result from elevated groundwater conditions. For this reason, the use of the currently planned geocomposite strip drain and overlying paved gutter should remain to alleviate hydrostatic conditions on the wall. In addition, the earth pressures indicated above are based on a level backfill condition behind the retaining wall. For the planned areas of appreciable sloping backfill near the top of the wall, surcharge loading or equivalent higher earth pressure coefficients should be evaluated, based on backfill material, backfill slope, and proximity to the wall. In general, 50 percent of the vertical surcharge load should be used for lateral loading in the design of the wall. Additionally, depending on the proximity of the wall, traffic surcharge may need to be incorporated into design.

5.4 GB-1 "Plan Subgrades" Evaluation

Where embankments are constructed for the project, the new embankment fill is anticipated to be suitable for pavement subgrade support. For portions of the project where pavement subgrade borings were performed for new roadway and ramp alignment that will approximate existing roadway alignment without significant grade change, an evaluation of the subgrade soils was completed in general accordance with ODOT Geotechnical Bulletin GB-1 "Plan Subgrades" (Now ODOT GDM Section 600). As part of this evaluation, ODOT a "Subgrade Analysis" worksheet (V14.6, 02/11/22) was completed for the entire project area, and it is attached in Appendix F.

Based on "Typical Sections" sheets for the project provided with the Stage 1 Submittal, our evaluations considered pavement cross-sections of approximately 18 inches to determine subgrade elevation below planned finished grades. Anticipated cut and fill to achieve subgrade elevation at the boring locations is presented in the "Subgrade Analysis" worksheet.

Based on GB-1, soils classified as ODOT A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, or rock have been designated as being problematic with respect to pavement subgrade support. Of these soil types, only one sample classified as A-4b (Boring B-032-0) was encountered at planned subgrade elevation in the borings performed for this exploration. Where A-4b soils are encountered within the upper 3 feet of the subgrade, ODOT generally requires that these soils be undercut to 36 inches or chemically stabilized to a depth of 14 inches.

The subgrade soils encountered during this exploration consisted of predominantly A-4a soils, but also included granular soils (generally consisting of A-3a soils) for approximately ¹/₄ of the evaluated subgrade samples and cohesive A-6a soils for approximately 1/8 of the samples.

Based on GB-1 criteria, subgrade soils with moisture contents greater than 3 percent above optimum likely indicate the presence of unstable subgrade that may require some form of subgrade modification. Approximately half of the evaluated samples exhibited moisture contents greater than 3 percent above the optimum as determined using GB-1 criteria. It should be noted that approximately 80 percent of the samples with moisture contents greater than 3 percent above optimum had moisture contents greater than or equal to 5 percent above optimum. Thus, where moisture contents were wet of optimum, they were appreciably wet of optimum. These data indicate that scarification and aeration methods may not be feasible to achieve satisfactory proof rolling and stabilization of the predominantly cohesive subgrades. However, scarification and aeration methods may be utilized in areas where granular subgrades wet of optimum are present, provided weather conditions and construction schedule will allow such soil modification.

The type and thickness of subgrade modification is determined by GB-1 criteria based on the average, low SPT N_{60} -value (N_{60L}) and hand penetrometer results for the subgrade soils, soil type, and moisture content. Based on these criteria, 1 boring each along Harroun Road, Ramp B, Ramp C, and SR 184 contained cohesive subgrade soils which indicated subgrade modification is likely to be required. Granular soils with potential need for recompaction were encountered in three borings performed along SR 51 and two borings along Ramp B.

Based on the GB-1 analysis results, subgrade modification may consider global chemical stabilization using cement to a depth of 12 inches, or over-excavation and replacement with new granular engineered fill. With more than 30 percent of the project indicating likely need for modification, ODOT GB-1 indicates that global chemical stabilization will likely be the more economical method of modification. However, consideration should be given to construction phases that may require multiple mobilizations of the chemical stabilization equipment that may negatively affect the economical nature of this method of subgrade modification.

As required by GB-1, sulfate content tests (ODOT Supplement 1122) were performed on a sample within the upper 3 feet of anticipated subgrade elevation. The sulfate content test results ranged from 350 parts per million (ppm) to less than 100 ppm. The results are summarized on the Logs of Test Borings and in the GB-1 Subgrade Analysis spreadsheet.

GB-1 indicates that chemical stabilization cannot be utilized when sulfate contents for the majority of the samples exceed 3,000 parts per million (ppm), or individual soil samples exhibit sulfate contents of greater than 5,000 ppm. All tested samples had a sulfate content on the order

of 350 ppm or less. Based on GB-1 criteria, sulfate content would not be restrictive to considering global chemical stabilization.

If it is instead desired that subgrade modification consist of excavation and replacement with new granular engineered fill, a summary of the depths of undercut indicated by GB-1 analyses is presented in the following tables.

Boring Number	GB-1 Recommended Depth of Undercut and Replacement with Granular Engineered Fill (inches)	Recommended Subgrade Modification Extents	Approximate Project Segment Length (feet)
		Harroun Road	
B-002-0	12	Southern Project Extent to Northern Project Extent of Harroun Road	100
		SR 51	
B-004-0	None (Re-Compact In-Place)	Half Way Between B-003-0 and B-004-0 to Half Way Between B-004-0 and B-006-0	600
B-010-0 & B-011-0	None (Re-Compact In-Place)	West extent of approach to SR 51 over US 23 to Half Way Between B-011-0 and B-012-0	350
		Ramp B	
B-014-0	12	Half Way Between B-012-0 and B-014-0 to Half Way Between B-014-0 and B-039-0	700
B-040-0 & B-041-0	None (Re-Compact In-Place)	Half Way Between B-039-0 and B-040-0 to Northern Project Extent of Ramp B	550
		Ramp C	
B-017-0	15	Entire Ramp C alignment 10+63 to 16+60	600
		SR 184	
B-032-0	22	Half Way Between B-031-0 and B-032-0 to Half Way Between B-032-0 and B-033-0	250

It should be noted that, in the above tables, transitions were based on the location approximately half way between borings indicating areas of recommended treatment and borings indicating no treatment or varying undercut depth was required by GB-1 analyses.

Where undercut and replacement is utilized, all fill should consist of ODOT Item 304 Aggregate Base or Item 703.16C, Granular Material Type B or Type C. It is recommended that geotextile fabric (referenced in ODOT Item 204, and specified as ODOT Item 712.09, Type D) be utilized

on the subgrade at the bottom of the undercut zone. If particularly unstable subgrades are encountered during construction, or undercuts are on the order of 18 inches or greater, a geogrid could be used to reduce the total undercut and replacement of the unsuitable soils by 6 inches.

It should be noted that GB-1 analyses are used as a pre-construction tool to plan subgrade modification alternatives. Actual subgrade modification will depend on field observations of proof-rolling conditions at the time of construction. Changes in soil moisture content could create more or less favorable subgrade conditions that may result in adjustments to subgrade modification or soil stabilization requirements at the time of construction.

5.5 Flexible (Asphalt) Pavement Design

The ODOT "Subgrade Analysis" worksheet for the entire project site resulted in a CBR value of 8 percent. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an average Group Index (GI) of all the evaluated samples. The indicated average GI of 6 would correlate with a CBR of 7 percent, so the worksheet indicated CBR of 8 percent may be based on a slightly lower average GI that was rounded up to 6. With the average GI calculation resulting in correlation approximately half way between a CBR of 7 and 8 on the correlation chart above, **we recommend use of a CBR value of 7 percent for design.**

If global chemical stabilization is planned, a higher CBR value could be considered for design. However, we anticipate that the various phases of the project may not be conducive for global chemical stabilization. In this case, multiple mobilizations of the stabilization equipment would be required which could reduce the economic benefit of this method of modification. As such, design based on the CBR value of 7 percent should be utilized, considering subgrade modification may consist of over-excavation and replacement with new engineered fill.

It should also be noted that the design CBR value is based on subgrades compacted to at least 100 percent of the maximum dry density as determined by ASTM D 698 (Standard Proctor) or verified as stable through proof-rolling in accordance with Section 5.8.2 of this report.

All pavement design and paving operations should conform to ODOT specifications. The pavement and subgrade preparation procedures outlined in this report should result in a reasonably workable and satisfactory pavement. It should be recognized, however, that all pavements need repairs or overlays over time as a result of progressive yielding under repeated loading for a prolonged period.

It is recommended that proof rolling, placement of aggregate base, and placement of asphalt be performed within as short a time period as possible. Exposure of the aggregate base to rain, snow, or freezing conditions may lead to deterioration of the subgrade and/or base materials due to excessive moisture conditions and to difficulties in achieving the required compaction.

5.6 <u>Rigid (Concrete) Pavement</u>

We understand that rigid concrete pavement may be considered for ramps. For properly prepared subgrade soils, a modulus of subgrade reaction (k) of 165 pounds per cubic inch (pci) may be used for rigid pavement design (equivalent to the recommended design CBR of 7 presented in Section 5.5). This section should consist of a minimum of 6 inches of reinforced, air-entrained concrete with a minimum compressive strength of 4,000 pounds per square inch (psi) underlain by a minimum of 6 inches of a dense-graded aggregate base (ODOT Item 304). The pavement section should be supported on subgrade compacted to at least 100 percent of the maximum dry density as determined by ASTM D 698 (Standard Proctor) or verified as stable through proof rolling.

5.7 <u>Construction Dewatering and Groundwater Control</u>

Groundwater conditions encountered in the borings were summarized in Section 4.4. Based on the soil characteristics and moisture conditions encountered in the borings, it is our opinion that "normal" groundwater levels in the vicinity of Ottawa River will generally occur at Elevs. 612±, corresponding to depths at or slightly above the "normal" flow levels in Ottawa River. Transitioning to the northern portion of the site, near the SR 51 overpass of US 23, "normal" groundwater levels may be on the order of Elev. 623±. It should be noted that groundwater elevations can also fluctuate with seasonal and climatic influences, as well as streamflow conditions in the river. Additionally, perched water may be present in granular soils that are underlain by relatively impermeable cohesive soils.

Groundwater seepage, perched water, and surface water runoff into shallow excavations in predominantly cohesive soils should be controllable by pumping from prepared sumps. If excavations extend below the groundwater level in granular soils, installation of multiple well points may be required in addition to pumping from prepared sumps. Installation of the intermediate piers in Ottawa River may require temporary cofferdams to divert streamflow to manage groundwater in addition to pumping from prepared sumps. Otherwise, steel casing may also be used to help facilitate groundwater control. In any case, as mentioned in Section 5.2.3, it is likely that temporary steel casing will be required to support the walls of the drilled shafts, in

addition to facilitating control groundwater seepage. In the event excessive seepage is encountered during construction, TTL should be notified to evaluate whether other dewatering methods are required.

5.8 <u>Construction</u>

5.8.1 Sediment and Erosion Control

In planning the implementation of earthwork operations, special consideration should be given to provide measures to prevent or reduce soil erosion and the subsequent sedimentation into nearby waterways. These measures may include some or all of the following:

- 1. Scheduling of earthwork operations such that erodible areas are kept as small as possible and are exposed for the shortest possible time.
- 2. Using special grading practices, along with diversion or interceptor structures, to reduce the amount of run-off water from an erodible area.
- 3. Providing vegetative buffer zones, filter berms, or sedimentation basins to trap sediment from surface run-off water.

A specific and detailed soil erosion and sedimentation control program and permits may be required by local, state, or federal regulatory agencies.

5.8.2 Site and Subgrade Preparation

Site and subgrade preparation activities should conform to ODOT CMS Item 204 specifications. Prior to proceeding with construction operations, all structures, pavements, topsoil, root systems, vegetation, and other deleterious non-soil materials should be removed from the proposed construction areas.

Upon completion of the clearing and undercutting activities, all areas that are to receive fill, or that have been excavated to proposed final subgrade elevation, should be inspected by a geotechnical engineer.

Pavement subgrades should be proof rolled in accordance with ODOT CMS 204.06. The GB-1 analysis for areas where new roadway and ramp alignment approximate existing roadway alignment without significant grade change indicates that modification should be anticipated to be required. GB-1 evaluations indicate areas of re-compaction of granular soils as well as areas

of undercuts generally on the order of 12 to 15 inches, and replacement with new granular engineered fill. Based on encountered A-4b soils at subgrade elevation in Boring B-032-0, deeper over-excavation should be planned in this area. Alternatively, global chemical stabilization using cement and extending to a depth of 12 inches may be an economical alternative.

With more than 30 percent of the project indicating likely need for modification, ODOT GB-1 indicates that global chemical stabilization will likely be the more economical method of modification. However, consideration should be given to construction phases that may require multiple mobilizations of the chemical stabilization equipment that may negatively affect the economical nature of this method of subgrade modification.

Where new embankment fill is placed to achieve pavement subgrade elevations, the subgrade soils should be suitable for support of the new pavements unless they are disturbed by weather or construction traffic.

5.8.3 <u>Fill</u>

Material for engineered fill or backfill required to achieve design grades should meet ODOT Item 203 "Embankment Fill" placement and compaction requirements. Borrow materials used for fill at subgrade elevations should be similar to the encountered existing subgrade soils to maintain the subgrade support properties associated with the recommended design CBR value and k-value for pavement design.

The upper profile on-site soils predominantly consist of cohesive soils, although granular soils were also encountered at pavement subgrade elevations. For the cohesive soils, a sheepsfoot roller should provide the most effective soil compaction. Where granular soils are encountered or new dense-graded aggregate pavement base materials are placed, a vibratory smooth-drum roller would be required to provide effective compaction.

5.8.4 Excavations and Slopes

The sides of temporary excavations for utility installations and other construction should be adequately sloped to provide stable sides and safe working conditions. Otherwise, the excavation must be properly braced against lateral movements. In any case, applicable Occupational Safety and Health Administration (OSHA) safety standards must be followed.

Based on the encountered soils, excavation may encounter the following OSHA type soils:

- Type A soils (native cohesive soils with unconfined compressive strengths of 3,000 pounds per square foot (psf) or greater),
- Type B soils (native cohesive soils with unconfined compressive strengths greater than 1,000 psf but less than 3,000 psf, cohesive embankment fill, as well as dry rock that is not stable), and
- Type C soils (granular soils, submerged soil, as well as submerged rock).

For temporary excavations in Type A, B, and C soils, side slopes must be no steeper than ³/₄ horizontal to 1 vertical (³/₄H:1V), 1H:1V, and 1¹/₂H:1V, respectively. For situations where a higher strength soil is underlain by a lower strength soil and the excavation extends into the lower strength soil, the slope of the entire excavation is governed by that required by the lower strength soil. In all cases, flatter slopes may be required if lower strength soils or adverse seepage conditions are encountered during construction.

For permanent excavations and slopes, we recommend that grades generally be no steeper than 3H:1V. Based on the provided plans, embankment slopes are generally planned to be 2H:1V. It should be noted that ODOT routinely uses 2H:1V slopes for roadway embankments. While these steeper slopes may used, it should be noted that the embankment faces are more prone to erosion and sloughing. Additional discussions regarding GB-2 "Special Benching" and slope stability were presented in Sections 5.1.1 and 5.1.2, respectively.

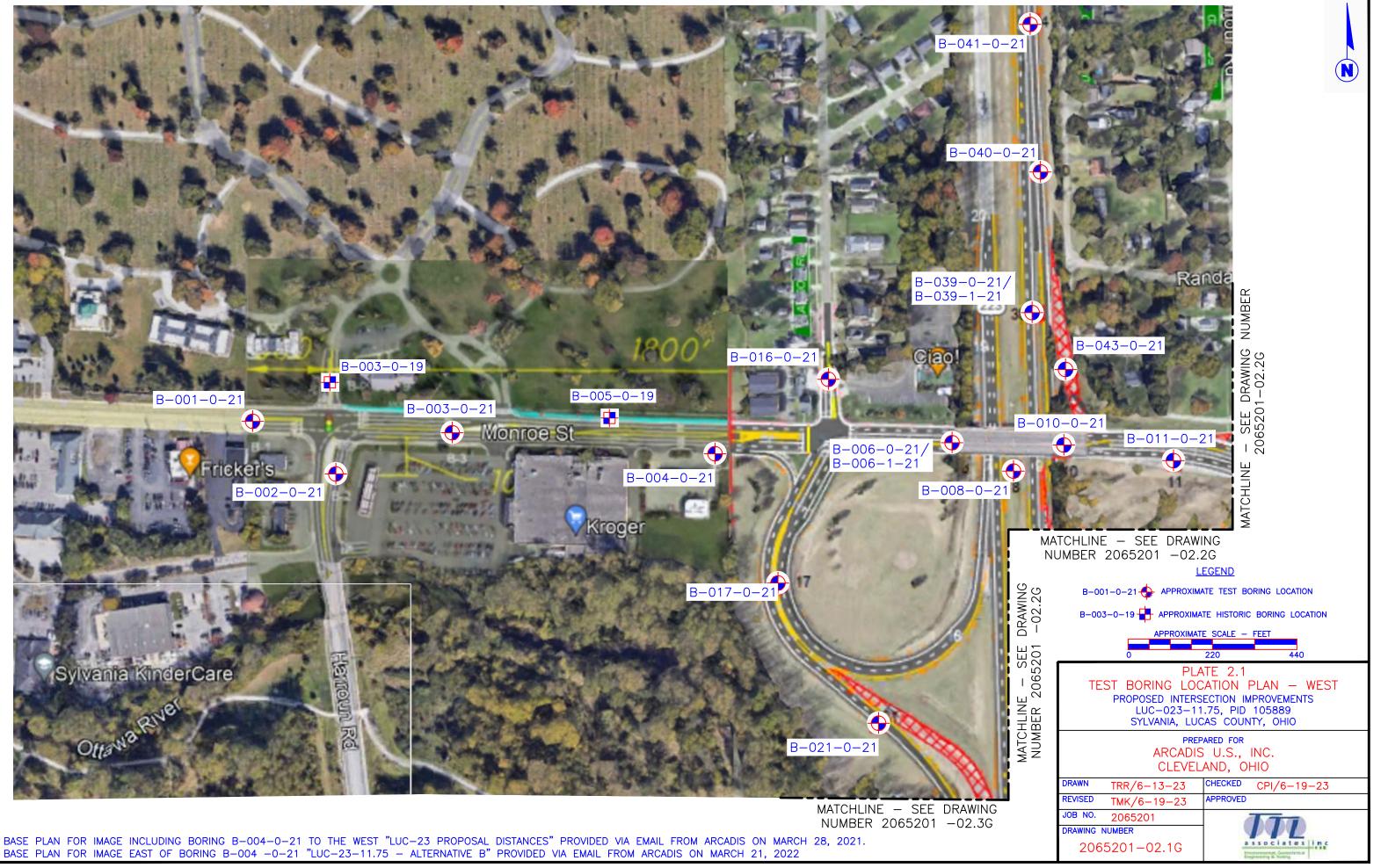
6.0 QUALIFICATION OF RECOMMENDATIONS

Our evaluation of the embankment fill, foundation, retaining wall, and pavement design and construction conditions has been based on the data obtained during our field investigation, criteria in ODOT Geotechnical Bulletins GB-1 "Plan Subgrades" and GB-2 "Special Benching and Sidehill Embankment Fills," as well as furnished information about the proposed project. The general subsurface conditions were based on interpretation of the data obtained at specific boring locations. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. This potential is increased for previously developed sites. Therefore, experienced geotechnical engineers should observe earthwork and foundation construction to confirm that the conditions anticipated in design are noted. Otherwise, TTL assumes no responsibility for construction compliance with the design concepts, specifications, or recommendations.

The design recommendations in this report have been developed on the basis of the previously described project characteristics and subsurface conditions. If project criteria or locations change, a qualified geotechnical engineer should be permitted to determine whether the recommendations must be modified. The findings of such a review will be presented in a supplemental report.

The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate the recommendations of this report after on-site observations of the conditions.

Our professional services have been performed, our findings derived, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TTL is not responsible for the conclusions, opinions, or recommendations of others based on this data.



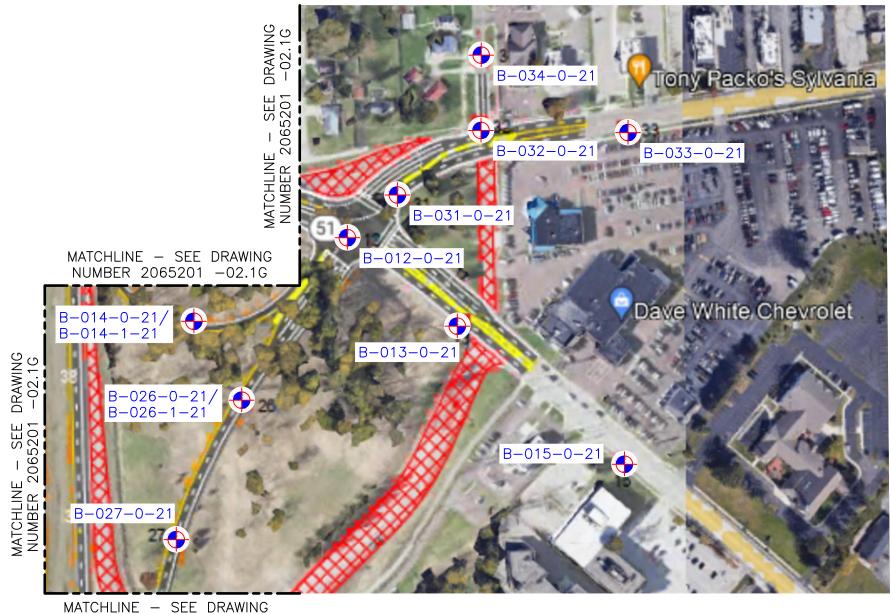
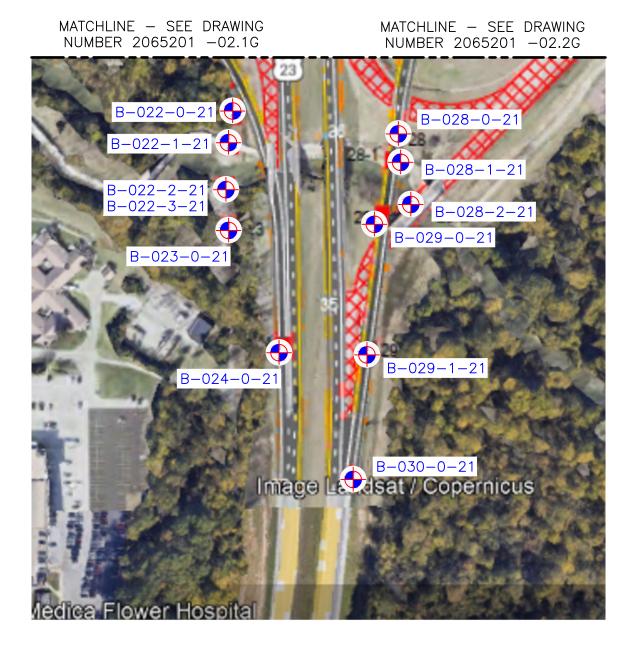

Plates

Plate 1.0	Site Location Map
Plate 2.1	Test Boring Location Plan - West
Plate 2.2	Test Boring Location Plan - East
Plate 2.3	Test Boring Location Plan - South



MATCHLINE – SEE DRAWING NUMBER 2065201 –02.3G

LEGEND B-012-0-21 - APPROXIMATE TEST BORING LOCATION ROXIMATE SCALE FEET 220 440 PLATE 2.2 TEST BORING LOCATION PLAN - EAST PROPOSED INTERSECTION IMPROVEMENTS LUC-023-11.75, PID 105889 SYLVANIA, LUCAS COUNTY, OHIO PREPARED FOR ARCADIS U.S., INC. CLEVELAND, OHIO СНЕСКЕР СРІ/6-19-23 TRR/6-13-23 DRAWN REVISED TMK/6-19-23 APPROVED JOB NO. 2065201 TL DRAWING NUMBER associates inc 2065201-02.2G

LEGEND B-022-0-21 - APPROXIMATE TEST BORING LOCATION PROXIMATE SCALE -FEET 220 440 PLATE 2.3 TEST BORING LOCATION PLAN - SOUTH PROPOSED INTERSECTION IMPROVEMENTS LUC-023-11.75, PID 105889 SYLVANIA, LUCAS COUNTY, OHIO PREPARED FOR ARCADIS U.S., INC. CLEVELAND, OHIO CHECKED CPI/6-19-23 DRAWN TMK/6-19-23 REVISED APPROVED JOB NO. 2065201 TI DRAWING NUMBER associates inc 2065201-02.3G

Figures

Logs of Test Borings Legend Key

PROJECT: LUC-23-11.75 TYPE: ROADWAY	DRILLING FIRM / C SAMPLING FIRM /		TTL / CW			L RIG: MER:					STAT ALIG				:	SR5	1	EX	PLORA B-001-	ATION ID -0-21
PID: <u>105889</u> SFN: <u>N/A</u> START: <u>11/1/21</u> END: <u>11/1/21</u>	DRILLING METHOD SAMPLING METHO	D:	3.5" SSA SPT		CALI	BRATI	ON DATE: ATIO (%):	3/	15/21 66			ΆΤΙΟ	ON: 6	44.1	`		EOB: 16420	8.5 ft. 099.9360 E		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	V	ELEV. 644.1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS	ATIOI FS	N (% SI) CL	ATT LL	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
ASPHALT - 3.75 INCHES CONCRETE - 9.75 INCHES AGGREGATE BASE - 5.5 INCHES VERY STIFF, BROWN, SANDY SILT , "AND" TRACE IRON OXIDE STAIN SEAM, DAMP @2.5': LITTLE CLAY @4': BROWN/GRAY, "AND" CLAY, MOIST	CLAY,	643.8 643.0 642.5	- 1 - - 2 - - 3 - - 4 -	6 6 10 16 14	21 37 37	89 100	SS-1 SS-2 SS-3	2.00 - 3.50	0	2	-	44 - ,38	44 - 54	25 - 27	23 - 20	2	20 18 21	A-4a (8) A-4a (V) A-4a (8)	350	
VERY STIFF, GRAY, SILT AND CLAY , LITTL MOIST HARD, GRAY, SILT AND CLAY , LITTLE SAN		638.8 636.9	5 6 7	16 18 7 8 12 11	22	100	SS-4	2.50 4.25	$\left\{ \right\}$	-	-	-	-	-	-	-	20	A-4a (0) A-6a (V) A-6a (V)	-	

PROJECT TYPE:	-	_UC-23- OADWA		DRILLING FIRM / SAMPLING FIRM			L / CW				CME 7				STATI				RROL	JN RD		KPLORA B-002	ATION ID -0-21
PID: 10 START:			N/A 11/1/21	DRILLING METHO		3.5" SS SP1					ON DATE: ATIO (%):		/15/21 66		ELEV/ COOF		-				8.5 ft 323.6210 E		PAGE 1 OF 1
	M		. DESCRIPTIO D NOTES	v	ELEV. 638.1	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE	HP (tsf)	GR	GRAD CS	ATION FS	(%) SI CI	-	TERBI	-	wc	ODOT CLASS (GI)	SO4 ppm	
	Г - 7.75 INC ATE BASE		ICHES		637.5 636.8			6															
	ROWN, SA I IDE STAIN		T, WITH CLAY	TRACE	635.1		- 2 -	7	33	100	SS-1	1.50	0	3	9 4	4 4	1 27	24	3	21	A-4a (8)	-	430000 K 4400 AUTO 1
			CLAY, TRACE S		055.1		- 3 - - - 4 -	9 12 15	30	100	SS-2	>4.5	1	×	5 2	4 68	3 31	20	11	20	A-6a (8)	310	
DAMP	,						- 5 -	7 15	35	100	SS-3	>4.5	-	\wedge	- \	- -	-	-	-	14	A-6a (V)	-	
							- 6 -	12 15 16	34	100	SS-4	×4.5	>-	-	-		-	-	-	14	A-6a (V)	-	V LV T LV T Z
					629.6	-FOB	- 8 -	10 12 12	33	100	SS-5	≯4.5	-^	-	-		}-	-	-	14	A-6a (V)	-	
						LOD					$\langle \rangle$	\checkmark											
									<u> </u>			, 	\langle										

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; AUGER CUTTINGS MIXED WITH 0.5 BAG BENTONITE CHIPS

	LUC-23-11.75 ROADWAY	DRILLING FIRM						CME 7				STAT ALIGI		OFFS		SF	251	E	EXPLORA B-003-	
PID: 105889 SF		DRILLING MET		3.5" SSA				ON DATE:		20/23						AVD8		3: 7.5		PAG
START: 1/27/23	END: 1/27/23	SAMPLING ME	THOD:	SPT		ENE	RGY R	ATIO (%):		72.9		COOF	RD: _	74	3576	6.6860	N, 164	2613.9040	E	1 OF
M	ATERIAL DESCRIPTIC)N	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE				ATION	~ /			RBERC		ODOT CLASS (C	SO4 SI) ppm	B/
	AND NOTES		641.7		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL L		PL P	WC	; 01400 (0	51) ppili	
ASPHALT - 6 INCHE CONCRETE - 10 INC			641.2	⊢ 1 -	_															× V
	Rown, Fine Sand , Tr	RACE SILT.		-	7															- 44
TRACE CLAY, DAM			FS	- 2 -	13 11	29	100	SS-1	-	0	7	83	8	2 N	P	NP NF	b 5	A-3 (0)) <100)
			637.7	- 3 -	11	15	89	SS-2A	-	-	/-		-				-	A-3 (V) -	NA N
VERY STIFF. BROW	N, SANDY SILT, LITTL		637.2	_ 4 -	6	15	89	SS-2B	2.75	8	/ 12	33	12	5 2	0 '	15 5			·	
(CRUSHED STONE)), TRACE CLAY, DAMP	<u>' (FILL) / </u>		- 5 -	4 5	16	100	SS-3	_		\land	、-		_ .			18	A-3a (V	0 -	and the
	ROWN, COARSE AND	FINE SAND,	635.2	- 6 -	<u> </u>		100		\neg	\searrow		\searrow	\rightarrow						·	÷
	ECLAY, MOIST (FILL) ACK/BROWN, SILTY C			- 7 -	5 5	10	100	SS-4A SS-4B	- 0.75⁄	>-	-	-		X			11 21			A X L
ASPHALT FRAGMEI	NTS, LITTLE SAND, TF		634.2	—EOB—	<u>∎</u> 3_			00-40		-	-	_	X	<u> </u>		_	21	7-00(1) -	đ
CRUSHED STONE)	, MOIST (FILL)							$\langle \langle \rangle$. /		>			$\mathbf{\vee}$						
									\bigvee											
									\sim											
								\backslash	<	<										
						~														
									\mathbf{i}											
						<					<hr/>									
						\backslash	~				\geq									
							\sim			\sim										
								\geq		>										
						\setminus		$/ \sim$	< /	/										
					\frown	`	\setminus \checkmark	/ /	\sim											
							\backslash													
					1	١														
) /	1														
					1 1		_ \													
				\land			\rightarrow													
				\setminus \checkmark	\frown															
				\ \																
				\sim	\langle		\sim													
				/	\langle															
)													
					$\langle \rangle$															
					\bigtriangledown															
					\bigcirc															
			\langle		\searrow															
		·			$\langle \rangle$															
		·			\searrow															
					\searrow)													
					\searrow)													
					\searrow)													
					\searrow]													
]													
]													
]													
NOTES: NONE																				

PROJECT: LUC-23-11.75 TYPE: LIGHT TOWER	DRILLING FIRM / O SAMPLING FIRM / I		-				CME 7					TION SNME			Г:	SR5	1	E	KPLORA B-004	
PID: 105889 SFN: N/A	DRILLING METHOD		3.5" SSA				ON DATE:		/20/23				-		(ΝΔ\/		EOB:	 18.81	t I	PAG
START: 1/27/23 END: 1/27/23	SAMPLING METHO	-	<u> </u>				ATIO (%):		72.9	<u> </u>	COC		-		•			263.3670		1 OF
				ODT			SAMPLE		-		ATIO			_	ERB		, 10 4 0	1		
MATERIAL DESCRIPTION AND NOTES	v	ELEV. 643.6	DEPTHS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)		CS		IN (%) SI	<i>,</i>		PL	PI	wc	ODOT CLASS (GI	SO4	
ASPHALT - 6.5 INCHES	XXX	643.1		T QD		(70)				00	10	01	02							
CONCRETE - 9.5 INCHES	\longrightarrow	642.3	- 1																	× V
MEDIUM DENSE, GRAY/BROWN, COARSE	AND FINE			3							~									- 49 X
SAND, LITTLE SILT, TRACE GRAVEL (CRU	SHED		- 2 -	4	12	100	SS-1	-	6	8	<i>ø</i> 5)	19	2	NP	NP	NP	10	A-3a (0)	-	
STONE), TRACE CLAY, DAMP (FILL)	• • • • • • • • • • • •		- 3 -	3			00.04										40	A 2= () ()		
		639.6	- 4 -	12	30	100	SS-2A SS-2B	-	-	<u> </u>	10	- 37	-	-	-	-	10	A-3a (V)		70
STIFF, BROWN/GRAY, SANDY SILT , SOME (CRUSHED STONE), LITTLE CLAY, DAMP (639.1_		<u>13</u>						5	10	$\langle $				6	14	A-4a (3)	290	
STIFF, BROWN, SANDY SILT, AND CLAY, 1			- 5 -	12	29	100	SS-3	3.00	(2 <i>,</i>	1	3	44	50	25	18	7	20	A-4a (8)	-	80 V
GRAVEL, MOIST			- 6 -	<u>12</u> 12				$\vdash \frown$	\mathbf{b}		$\overline{}$									4 N
@6': WET			- 7 -	10	23	100	SS-4 /	1.50	Í -	-	-	~	-\	-	-	-	22	A-4a (V)	-	1
				9								\rightarrow		\geq						1
				5			\leftarrow	r	\swarrow	\rightarrow			\sim						_	4
@8.5': BROWN/GRAY			- 9 -	6	16	100	SS-5	1,25] -/	-	-	-	-	-	-	-	23	A-4a (V)	-	
		633.2	₩ 633.2 - 10	7			\rightarrow		\swarrow									. ,	_	- No
STIFF, GRAY, SANDY SILT, "AND" CLAY, M	IOIST							K	\land											S.
				6	17	100	SS-6	1.50	0	2	4	37	57	26	18	8	22	A-4a (8)		
			- 12 -	7			0-06	1.50	\backslash	2	4	57	57	20	10	0	22	A-4a (0)	-	No.
			- 13			$\overline{)}$, ,	\backslash	$\langle \rangle$											5
@13': VERY STIFF, TRACE GRAVEL, DAMF	,			4	\vdash	\vdash			\geq											2
			- 14 -	5,	15 \	∖ 100\	ss <i>i</i> t	2:50	-	-	-	-	-	-	-	-	14	A-4a (V)	-	
			15	\rightarrow		\land	/													
		627.6	- 16 -	13		\vdash													_	
HARD, GRAY, SILT AND CLAY , LITTLE GRALITTLE SAND, DAMP	AVEL,	000 4	<i>↓ ↓</i> 17 -	/15 /	57	100	\$5-8	4.50	-	-	-	-	-	-	-	-	11	A-6a (V)	-	az Alto
		626.1		32		\rightarrow	/													
GRAY, WEATHERED DOLOMITE		624.8	<u> </u>	\sim													-			10
		024.0		\$50/1"		<u>₹100</u> /	SS-9	A	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	3	Rock (V)	<u> </u>	
				>																
IOTES: AUGER REFUSAL AT 18.8 FT. BANDONMENT METHODS, MATERIALS, (ED 0 25 F		CH: ALL	GER		JGS MIXE		H 1 R	AGB	ENTC		CHI	PS						

	DRILLING FIRM / OPERATOF SAMPLING FIRM / LOGGER: DRILLING METHOD:	TTL / KKC 3.25" HSA	HAN CAL	IMER:	: <u>CME 7</u> <u>CME 7</u> ION DATE:	AUTON :3/	IATIC 15/21		STATIO ALIGNM ELEVAT	ENT: ION: 6	50.9	(NAV	SR5 (D88)	EOB:	4.5 ft.		
START: <u>11/10/21</u> END: <u>11/10/21</u>	SAMPLING METHOD:	SPT	ENE		RATIO (%):		66		COORD	_					889.3010 E		TOF
MATERIAL DESCRIPTION		DEPTHS	SPT/ N ₆₀		SAMPLE				ATION (9	/		ERBE			ODOT CLASS (GI)	SO4	BAC FIL
AND NOTES	650.9		RQD N ₆₀	(%)	ID	(tsf)	GR	CS	FS SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
ASPHALT - 2 INCHES	<u>649.6</u> 649.1																
CONCRETE - 13.5 INCHES	649.6	- 1 -	10														- 1
AGGREGATE BASE - 5.5 INCHES	/	- 2 -	10 7 15	83	SS-1	1.00	-	-		_	-	_	-	17	A-4a (V)	_	9 L 83
STIFF, BROWN/GRAY, SANDY SILT, "AND" (CLAY,	- 3 -	7	00		1.00									// 14(1)		
DAMP (EMBANKMENT FILL)			4 14	100	SS-2	2.00	0	3	11 42	44	24	20	4	19	A-4a (8)	320	1 1 1 1 1 1
	646.4	EOB	6 14	100	00-2	2.00		5	42	44	24	20	4	13	7-4a (0)	520	11
								>			>						

PROJECT: LUC-23-11.75 TYPE: BRIDGE	DRILLING F			-				CME 7					TION		FSET	ſ:	SR5	51	E>	PLORA B-006-	
PID: 105889 SFN: N//				3.25" HSA / NQ2				ON DATE:							52.0	(NAV	-	EOB:	 58.8 f	t.	PAGE
START:	10/21 SAMPLING	METHO	DD:	SPT / ST / NQ2				ATIO (%):		66		coc		-		•			880.0160 I		1 OF 2
MATERIAL DES	CRIPTION		ELEV.	DEPTHS	SPT/	N		SAMPLE				DATIO	N (%)	ATT	ERBI	ERG		ODOT	SO4	HOLE
AND NOT	TES		652.0	DEFINS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	SEALE
SEE B-006-0-21					-																
					1																*****
				- 2	_																
				- 3	_																
			0.47.5		_							$ \langle $									
VERY STIFF, GRAY, SANDY SILT			647.5		10					\vdash		$ \rightarrow $									-
DAMP (EMBANKMENT FILL)	, LITTLE GLAT,		646.0	- 5	18	44	89	SS-1	2.00	K-,	/-`	k-	\searrow	-	-	-	-	15	A-4a (V)	-	
VERY STIFF, GRAY, SANDY SILT			040.0	- 6	7 22				$\vdash \land$	\vdash		$\left \right\rangle$									-
(EMBANKMENT FILL)				- 7	7 ,	23	89	SS-2	3.50	ſo	2	7	44	47	25	21	4	16	A-4a (8)	-	
· · · ·			644.0	- 8	<u> </u>										\rightarrow						-
HARD, GRAY, SANDY SILT, "AND	" CLAY, DAMP				8			$\vdash \longleftarrow$	[\swarrow	\rightarrow			\sim							_
			0.40.0	_ 9 ·	15	29	100	SS-3	×4.5	-/	1 -	-	-	-	-	-	-	18	A-4a (V)	-	
			642.0	- 10	<u> </u>			\vdash		\swarrow											-
MEDIUM STIFF TO STIFF, GRAY, CLAY. TRACE GRAVEL. DAMP	SANDI SILI, AND				1					\square											
@11': Qu = 8.5 PSI = 0.61 TSF					8	8	100	SS-4	1.25		Κ_	_	-	-	-	_	_	19	A-4a (V)	-	
			000.0			Ľ			1.20	\land	\geq							10	// +u (V)		_
STIFF, BROWN, SANDY SILT, "AN			639.0	- 13	_	$ \rangle$	$ \rangle^{-}$			$^{\prime}$	1										
IRON OXIDE STAIN SEAM, DAMP					11				-	1							_				-
,					19	44	∖ 100\	SS-5	1.50	0	2	6	40	52	26	23	3	16	A-4a (8)	-	
			636.0	15	<u> </u>		\square														-
HARD, GRAY, SANDY SILT, "AND	CLAY DAMP		030.0	- 16	6	}	+	$\left \right\rangle$													-
					/12 /	26	100	\$S-6	>4.5	-	-	-	-	-	-	-	-	18	A-4a (V)	-	
			634.0		<u> </u>		\rightarrow														-
VERY STIFF, GRAY, CLAY, SOME	E SILT, TRACE SAND,				6		\downarrow														-
TRACE GRAVEL, MOIST				<u>19</u>	6	10	100	SS-7	2.50	1	1	4	21	73	51	26	25	31	A-7-6 (16) -	
					I <u>3</u>																-
			631.0	A21		,															_
STIFF, GRAY, SILT AND CLAY, LI	TTLE SAND, TRACE			$ \setminus \setminus$		8	100	SS-8	1.75	l _	_		_	_	_	_	_	17	A-6a (V)	_	
GRAVEL, MOIST					4		100	00.0	1.70										// 04 (1)		_
@23': VERY STIFF, SOME SAND,				/-23																	-
TSF	Qu = 35.01 51 = 2.45			24			96	ST-9	3.50	9	6	14	27	44	25	14	11	14	A-6a (8)	-	
			$1 \setminus$							ľ	ľ								/ 04 (0)		
		\///	626.0		_																
HARD, GRAY, SILT AND CLAY, LI	ITTLE SAND TRACE	-\///	020.0	26	8																-
GRAVEL, MOIST		\///		- 27	18	55	89	SS-10	>4.5	-	-	-	-	-	-	-	-	11	A-6a (V)	-	
			1	- 28	32																-
			623.0		11																_
GRAY, WEATHERED DOLOMITE	WITH SAND, SILT,	64	<u>020.0</u>	TR-29	50/5"	-	36	SS-11	-	-	-	-	-	-	-	-	-	10	A-2-6 (V)	-	
HARD, GRAY, SILT AND CLAY , LI GRAVEL, MOIST GRAY, WEATHERED DOLOMITE AND CLAY	, - ,			- 30	-																
			<u> </u>		1																

	PID: <u>105889</u> SFN: <u>N/A</u> PROJECT: _		2-23-11.7	10	- 01/1		FFSE				_10	17 0 01	Г: <u>11/</u>	10/2		ND:		10/2	<u> </u>	G 2 OF 2	B-006	
CRAY: WATHERED DOLOMITE WITH SAND, SILT, AND CLAY (continued) DOL ON TE ONLOWING (CONTINUED) DOL ONLOWING (CONTINUED) DOL ONLOWING		EL	LEV.	DEDTH	s		N							~ /			· · · · ·	1				но
DoLowire_GRAY, HighLy To SLIGHTLY 614.0			21.0		5	RQD	IN60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	SEA
DOLOMITE, GRAY, HIGHLY TO SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN; ROD 0%, REC 100%, DOLOMITE, GRAY, SEVERELY TO HIGHLY FRACTURED, ODEN; ROD 14%, REC 51%, 0939; 7: 0u = 11800 PSI DOLOMITE, GRAY, SEVERELY WEATHERED, FRACTURED, OPEN TO NARROW; RAD 0%, REC 20%, FRACTURED, OPEN TO NARROW; RAD 0%, REC 20%, DOLOMITE, GRAY, MODERATELY WEATHERED, FRACTURED, OPEN TO NARROW; RAD 0%, REC 20%, DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RAD 0%, REC 61%, DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO RCALTURED, OPEN TO NARROW; RAD 0%, REC 61%, G015 G016.15 G017 G018 G019 G019 G014 G014 G014 G014 G015 G014 G015 G015 G016 G015 G016 G016 G017 G016				-	- 33 - - 34 - - 35 -	38 50/5"	-	36	SS-12	-	-	-	-	-	-	-	-	-	5	A-2-6 (V)	-	-
@39.7: Qu = 11920 PSI DOLOMITE. GRAY, MODERATELY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RQD 0%, REC 20%. 604.6 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 601.5 602.9 603.9	WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN; RQD 0%, REC 100%. DOLOMITE, GRAY, SEVERELY TO HIGHLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED,	6	12.6	N 614.0	- 38 - - 39 - - 40 - - 41 -	9		65	NQ-1							>				CORE		-
STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RQD 0%, REC 61%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO TIGHT; RQD 42%, REC 100%. @50.9' Qu = 14280 PSI DOLOMITE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED AND SLIGHTLY FRACTURED, OPEN TO TIGHT; RQD 31%, REC 33%. @51.6' Qu = 11110 PSI DOLOMITE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - SLIGHTLY FRACTURED, TIGHT; RQD 100%, REC 100%. LIMESTONE, GRAY, HIGHLY WEATHERED TO SLIGHTLY VUGGY, JOINTED - HIGHLY FRACTURED, OPEN, RQD 19%, REC	@39.7': Qu = 11920 PSI DOLOMITE, GRAY, MODERATELY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RQD 0%, REC 20%.		04.6	- - - - - - - - - - - - 	- 44 - - 45 - - 46 -	0		20	NQ-2			>								CORE		
STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO TIGHT; RQD 42%, REC 100%. @50.9' Qu = 14280 PSI DOLOMITE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY FRACTURED AND SLIGHTLY FRACTURED, OPEN TO TIGHT; RQD 31%, REC 33%. @51.6' Qu = 11110 PSI DOLOMITE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - SLIGHTLY FRACTURED TIGHT; RQD 100%, REC 100%. LIMESTONE, GRAY, HIGHLY WEATHERED TO MODERATELY FRACTURED TO MODERATELY FRACTURED, OPEN; RQD 19%, REC	STRONG, JOINTED - HIGHLY FRACTURED TO	60	01.5		- 49	0		61	NQ-3											CORE		
TIGHT; RQD 31%, REC 33%. @51.6' Qu = 11110 PSI DOLOMITE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - SLIGHTLY FRACTURED, TIGHT; RQD 100%, REC 100%. LIMESTONE, GRAY, HIGHLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN; RQD 19%, REC	STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO TIGHT; RQD 42%, REC 100%. (@50.9' Qu = 14280 PSI DOLOMITE , GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, JOINTED - HIGHLY				- 52 - - 53 - - 54 -	33		48	NQ-4											CORE		
VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN; RQD 19%, REC	TIGHT; RQD 31%, REC 33%. @51.6' Qu = 11110 PSI DOLOMITE , GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - SLIGHTLY FRACTURED, TIGHT; RQD 100%, REC 100%.		$\overline{\}$	EOB	57 -	62		100	NQ-5											CORE		
	VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN; RQD 19%, REC																					

PROJECT: LUC-23-11.75 TYPE: BRIDGE	DRILLING FIRM /			TTL / JW TL / KKC				CME CME A				ATION GNMI			T:	SR5	51	EX	PLORA B-008-	TION ID 0-21
PID: 105889 SFN: N/A	DRILLING METHC	D:	3.25" HS	A / NQ		CALI	IBRATI	ON DATE:	2	/20/23			ON: 6	630.8	-	(D88)	EOB:	30.8 f		PAGE
START: <u>4/12/23</u> END: <u>4/12/23</u>	SAMPLING METH	OD:	SPT	/ NQ		ENE		ATIO (%):		75.2	_	ORD:	-				<u>, 1644</u>	052.5540 E		1 OF 2
MATERIAL DESCRIPTION	1	ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE							TERB			ODOT CLASS (GI)	SO4 ppm	HOLE
		630.8		1	RQD	00	(%)	ID	(tsf)	GR C	s FS	SI	CL		PL	PI	WC	OLAGO (GI)	ppin	
_TOPSOIL - 5 INCHES VERY STIFF, BROWN, SANDY SILT , LITTLE TRACE GRAVEL, TRACE ORGANICS, MOIS		630.4		- 1 - - 2 -	3	9	78	SS-1	2.50			-	-	-	-	-	18	A-4a (V)	-	
		627.3	_	- 3 -							X_{i}	\geq								-
STIFF, BROWN, SANDY SILT, "AND" CLAY,	MOIST		♥		2 2 2	5	100	SS-2	1.75	0 3	12	44	41	21	18	3	22	A-4a (8)	-	
		624.3		- 6 -						\square	\square									_
HARD, BROWN, SANDY SILT, LITTLE CLAY	, TRACE	024.3	-	- 7 -	2 10 21	39	89	SS-3A SS-3B	<u>-</u> 4.50		<u> </u>	-	-	-	-	-	- 12	A-4a (V) A-4a (V)	-	-
GRAVEL, DAMP HARD, GRAY, SILT AND CLAY , LITTLE SAN		622.8	-	- 8 -								\square	\bigtriangledown	┦──						-
GRAVEL, DAMP	ND, TRACE			- 9 -	7 19 20	49	89	SS-4	4,50	1 7	12	22	58	26	15	11	10	A-6a (8)	-	_
		619.3		- 10 - 	17			SS-54				-	-	-	-	_	-	A-6a (V)	-	
VERY DENSE, GRAY, COARSE AND FINE S SOME SILT, LITTLE DOLOMITE FRAGMENT CLAY, DAMP		617.3	-	- 12 - - 13 -	50	-	83	SS-5A SS-5B	-		-	-	-	-			7	A-3a (V)		
		616.8	₩ ^{TR} 6.8	+ 14 -	50/5"	-\	100	<u>/\$S-6</u> ~	-	2	-	-	-	-	-	-	4	A-2-4 (V)	-	
SILT DOLOMITE, GRAY, MODERATELY TO HIGH WEATHERED, VERY STRONG, JOINTED - H FRACTURED TO FRACTURED, NARROW T RQD 0%, REC 100%. @16.8': Qu = 18780 PSI @17' TO 17.8': VUGGY	HIGHLY 🗹			15 - 16 - 17 - 17 - 18	0		100	NQ-1										CORE		
DOLOMITE , GRAY, MODERATELY WEATHE VERY STRONG, JOINTED - HIGHLY FRACT MODERATELY FRACTURED, NARROW TO 22%, REC 76%. @18.9': Qu = 19980 PSI	URED TO	611.9		19 - 20 - 21 - 22 	18		80	NQ-2										CORE		
DOLOMITE , GRAY, MODERATELY WEATHE VERY STRONG, JOINTED - HIGHLY FRACT FRACTURED, NARROW TO TIGHT; RQD 14 49%.	URED TO	604.9		23 - 24 - - 25 -	15		52	NQ-3										CORE		
DOLOMITE, GRAY, HIGHLY WEATHERED, MODERATELY STRONG TO STRONG, JOIN HIGHLY FRACTURED, NARROW TO TIGHT \REC 100%. DOLOMITE, GRAY, SLIGHTLY WEATHERED	; RQD 0%,	602.9 601.6		- 26 - - 27 - - 28 -	20		90	NQ-4										CORE		
STRONG, JOINTED - FRACTURED TO MOD FRACTURED, NARROW TO TIGHT; RQD 80 100%.		<u>599.9</u>	EOB	- 29 - - 30 -																

PID: 105889 S	FN:	N/A	PROJECT:	LUC-23-11.	75 .	STATION / (OFFSE	T:				2 <u>3</u> EN	ND:4/	/12/23	PG 2 OF 2	B-008	8-0-21
•		L DESCRIPTIC	DN	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE		GRADATION (%		ATTERE		ODOT	SO4	HOLE
@28': Qu = 17720		D NOTES		599.8		RQD	60	(%)	ID	(tsf)	GR CS FS SI	CL	LL PL	PI V	VC CLASS (G	I) ppm	SEALE
Dolomite, Gra Weathered, Mo Jointed - Highl Rec 75%.	Y, MODER DDERATEL	Y STRONG TO	O STRONG,														
)		$\left\langle \right\rangle$	\checkmark	>						
							,										
					\checkmark												
NOTES: NONE																	

PROJECT: LUC-23-11.75 TYPE: BRIDGE	DRILLING FIRM / (SAMPLING FIRM /		-				CME 7					TION GNME		FSET	Г:	SR5	51	E	XPLOR B-010	ATION I)-0-21
PID: 105889 SFN: N/A	DRILLING METHO		3.25" HSA / NQ				ON DATE:						-					55.2		PAGE
START: <u>11/11/21</u> END: <u>11/11/21</u>	SAMPLING METHO		SPT / ST / NQ		ENE		ATIO (%):		66			ORD:	_				<u>, 1644</u>	265.8640	<u>E</u>	1 OF 2
MATERIAL DESCRIPTION AND NOTES	V	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD	FS				ERB	ERG PI	wc	ODOT CLASS (G	I) ppm	
ASPHALT - 2.5 INCHES	/ XX	651.0	L			(70)			Giv	0.5	13	51	UL		FL.	F1	we	,	/	
CONCRETE - 9 INCHES	/ 💥	<u></u> √ <u>650.1</u> ∕	- 1																	
AGGREGATE BASE - 9 INCHES	/	649.3	- 2	3	10	70	00.4	4 50		4	\sim	40	50		04	_		A 4= (0		
STIFF, BROWN/GRAY, SANDY SILT, "AND"	CLAY,			5	12	78	SS-1	1.50	0	1	6	× ⁴³	50	23	21	2	20	A-4a (8) 320	
MOIST (EMBANKMENT FILL) @3': VERY STIFF, GRAY, SOME CLAY, DAM	ир				13	83	SS-2	3.00	-	/_		-	-	_	_	_	14	A-4a (V) -	
-			4	11				0.00		1									/	_
@4.5': "AND" CLAY, TRACE GRAVEL			_ 5	15	41	100	SS-3	2.50	K1.	0	7	41	51	24	21	3	14	A-4a (8) -	
			- 6	19				$\vdash \land$	\vdash		\rightarrow								·	-
			- 7	1 4	30	100	SS-4	2.75	ľ -	-	-	~	-\	-	-	-	13	A-4a (V) -	
		643.0		13				\checkmark						\geq						-
MEDIUM DENSE, BROWN, COARSE AND F SOME SILT, MOIST (EMBANKMENT FILL)	INE SAND,	•	- 9	5			\mid		\vdash	\geq			~							-
		•	- "		29	100	\$ S -5		- /] -	-	-	-	-	-	-	11	A-3a (V) -	
	•••••	640.0	10)					K											
VERY STIFF, BROWN, SANDY SILT, "AND"	CLAY.	• 040.0	- 11	2	\vdash			\land	\vdash											-
TRACE ORGANICS, DAMP			- 12	2 4 4	12	83	<u>\$\$-6</u>	3.00	0	2	15	39	44	26	22	4	20	A-4a (8) -	
		638.0	- 13	3	\uparrow	$\left \right\rangle$			$\left \right\rangle$											
STIFF, BROWN, SILT AND CLAY , LITTLE S TRACE GRAVEL, DAMP Qu = 15.0 PSI = 1.0			- 14	1	\vdash	+			\triangleright										_	-
				<u> </u>	6	∖ 94 ∖	SS-7	1.25	-	-	-	-	-	-	-	-	20	A-6a (V) -	
@14.8': GRAY		635.0	W 635.0			$\left \right\rangle$														
MEDIUM STIFF, BROWN/GRAY, SANDY SI		033.0)															
CLAY, MOIST			▼ / 17	′ - ∕ ⁴ 4	12	100	\$S-8	0.50	-	-	-	-	-	-	-	-	22	A-4a (V) -	
OTHER ODAY ON TAND OLAY LITTLE OAA		633.0		,A		\square														
STIFF, GRAY, SILT AND CLAY, LITTLE SAM			19	6																
					10	100	SS-9	1.50	-	-	-	-	-	-	-	-	26	A-6a (V) -	
		630.0		$ \forall $																
STIFF, GRAY, CLAY, SOME SILT, TRACE S	AND,			2	6	100	00.40	4.50				01	70		00	10	00	A 7 0 (4)	2	
TRACE GRAVEL, MOIST				2 2 3	6	100	SS-10	1.50	1	1	4	21	73	41	22	19	30	A-7-6 (12	2) -	
				3 – [
@23.5': VERY STIFF, DAMP			24	2 3	8	100	CC 11	2.50									17	A 7 6 ()	^	
			-25	A	°	100	SS-11	2.50	-	-	-	-	-	-	-	-	17	A-7-6 (V	') -	
		625.0																		
VERY STIFF, BROWN/GRAY, SILT AND CL				H																
SAND, LITTLE GRAVEL, MOIST Qu = 36.1 F TSF	'SI = 2.60	600.0	- 27	1		88	ST-12	3.25	10	6	18	25	41	25	13	12	13	A-6a (7) -	
HARD, GRAY, SILT AND CLAY, LITTLE SAM		623.0	- 28	3 -																_
GRAVEL, DAMP		2	- 29	16	70	100	SS-13	>4.5				-					10	A-6a (V	\ \	
			- 30			100	33-13	-4.5	<u> </u>	-	-	-	-	<u> </u>	<u> </u>	<u> </u>	10	A-0a (V	, -	
			"	´ -																

AND ONTES EQD UP / HS PKD No (%) D (eff) Git / Ca Fe B L <thl< th=""> L L</thl<>		SF			N/A		- 1	OJEC	T:		_UC-23	-	5		TION /	-		1				T: <u>11</u>			ND:				PG 2 OF 2	B-010	-0-21
3000 CRV: SILTAND CLV: UTTLE SNO, TRACE 600.0 FRUE (i) 10 (ii) 10 (iii) 10 <td></td> <td>Λ</td> <td>IATE</td> <td></td> <td></td> <td></td> <td>ION</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DFP</td> <td>THS</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td></td> <td>1</td> <td>1</td> <td>_</td> <td></td> <td></td> <td>HOL</td>		Λ	IATE				ION						DFP	THS				1						/		1	1	_			HOL
GRAVEL DAMP (continued) 33.07 89 88-14 +4.5 - - - 7 A-6a (V) g8/4* SOME SAND. TRACE DOLOMITE FRAGMENTS 51.6 TR 35.07 89 88-14 +4.5 - - - 7 A-6a (V) DOLOMITE GRAV, UNIVEATHERED TO SLIGHTLY WEATHERED, VERY STRONG, SUNKED - INGRUTY WEATHERED, VERY STRONG, SUNKED - INGRUTY PRACTURED TO MODERATELY FRACTURED. 616.8 - - - 7 A-6a (V) DOLOMITE GRAV, UNIVEATHERED TO SLIGHTLY WEATHERED, VERY STRONG, SUNKED - INGRUTY PRACTURED TO MODERATELY FRACTURED. OPEN DOLOMITE GRAV, UNIVEATHERED TO SLIGHTLY PRACTURED TO MODERATELY FRACTURED. OPEN DOLOMITE GRAV, UNIVEATHERED TO SLIGHTLY PRACTURED TO MODERATELY FRACTURED. OPEN DOLOMITE GRAV, UNIVEATHERED TO SLIGHTLY PRACTURED OPEN TO TIGHT. ROD 67%, REG 10%, B05.8 603.2 -					-	-				17777	620.0		DEI		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	SEAL
Decomme GAAV. UNVEXTHERED DOCUMENT OF SUGATURY WEATHERED, VERY STRONG, JOINTED - FRACTURED TO MODERATELY FRACTURED, NARROW TO TIGHT; DOCOMME GAAV, UNVEXTHERED TO SUGATURY WEATHERED, VERY STRONG, JOINTED - HIGHLY MEATHERED, MEATHERED, MEATHERED, STRONG, JUGGY, JOINTED - HIGHLY MEATHERED, STRONG, JUGGY, JOINTED - HIGHLY MEATHERED, STRONG, JUGGY, JOINTED - HIGHLY MEATHERED, STRONG, JUGGY, JOINTED - H					ay, Li	TTLE	SAND,	TRAC	E					- 33 -																	_
DOLOMITE GRAY. LUWEATHERED TO SLICHTLY WEATHERED. VERY STRONG, JOINTED - HRACTURED TO MODERATELY FRACTURED, NARROW TO TIGHT. DOLOMITE GRAY. LUWEATHERED TO SLICHTLY WEATHERED. VERY STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO TIGHT. ROD 67%, REC 100%, Bigs: Gu - 1020 PSI DOLOMITE GRAY. HUWEATHERED, OS LIGHTLY WEATHERED. VERY STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO TIGHT. ROD 67%, REC 100%, Bigs: Gu - 1020 PSI DOLOMITE GRAY. HUWEATHERED, OS LIGHTLY WEATHERED. VERY STRONG, JOINTED - HIGHLY FRACTURED, OPEN TO TIGHT. ROD 67%, REC 100%, Bigs: Gu - 1020 PSI DOLOMITE GRAY. HUWEATHERED TO SLIGHTLY WEATHERED. VERY STRONG, JOINTED - HIGHLY FRACTURED. OPEN TO TIGHT. ROD 67%, REC 100%, Bigs: Gu - 1020 PSI DOLOMITE GRAY. SLIGHTLY WEATHERED, OPEN DOLOMITE GRAY. SLIGHTLY WEATHERED, OPEN TO MODERATELY FRACTURED, OPEN TO TOMODERATELY FRACTURED, OPEN TO NARGOWNO TO GRAFTLEY WEATHERED, VERY STRONG, JOINTED - HIGHLY REATHERED, VERY STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO NARGOWNO TO GRAFTLEY WEATHERED, VERY STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO NARGOWNO TO MODERATELY FRACTURED, OPEN TO NARGOWNO TO MODERATELY FRACTURED, TO REALEY FRACTURED TO MODERATELY FRACTURED, TO REAL TO MODERATELY FRACTURED, TO REAL TO MODERATELY FRACTURED, TO NARGOWNO TO MEAN THROW TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO REAL TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO NARGOWNO TO MODERATELY FRACTURED, TO NARG	@34': SOME SA	ANE	, TRA	ACE I	DOLC	MITE	FRAG	MENTS	S		615.6	;	тр	-	50/3"	-	89	SS-14	>4.5	-	-	-	-	-	-	-	-	7	A-6a (V)	-	
WEATHERED VERY STEONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN DOLOMITE, GRAY, MODERATELY TO SLIGHTLY WEATHERED, VERY STEONG, SHALEY LAMINAE, JOINTED - HIGHLY FRACTURED, OPEN TO HIGHT, ROD 1978, REC 40%. Core Bool 24%, REC 100%. Core Strong, Subject 198 P3 DOLOMITE, GRAY, SLIGHTLY WEATHERED, VERY FRACTURED TO MODERATELY FRACTURED, OPEN, ROD 24%, REC 100%. Core Strong, Subject 198 P3 DOLOMITE, GRAY, SLIGHTLY WEATHERED, VERY FRACTURED J IN MODERATELY FRACTURED, OPEN, ROD 24%, REC 100%. Core Strong, Subject 198 P3 DOLOMITE, GRAY, SLIGHTLY WEATHERED, VERY FRACTURED, OREN, SLIGHTLY WEATHERED, VERY FRACTURED J IN MODERATELY FRACTURED, VERY STRONG, JOINTED - HIGHLY FRACTURED, VERY STRONG, SHALEY LAMINAE, JOUNTED - HIGHLY FRACTURED, VERY STRONG, SHALEY LAMINAE, JOUNTED - HIGHLY FRACTURED, VERY STRONG, SHALEY LAMINAE, JOUNTE - HIGHLY FRACTURED, VERY STRONG, SHALEY LAMINAE, JOUNTE - HIGHLY FRACTURED, NARROW TO IGHT, ROU STRONG, VIGEN JONNER STRONG, SHALEY LAMINAE, JOUNTE - HIGHLY FRACTURED, NARROW TO IGHT, ROU STRONG, VIGEN JONNER STRONG, SHALEY LAMINAE, JOUNTE - HIGHLY FRACTURED, NARROW TO IGHT, ROU STRONG, VIGEN JONNER STRONG, SHALEY LAMINAE, JOUNTE - HIGHLY FRACTURED, NARROW TO IGHT, ROU STRONG, VIGEN JONNER STRONG, SHALEY LAMINAE, JOUNTE - HIGHLY FRACTURED, NARROW TO IGHT, ROU	WEATHERED, TO MODERATE RQD 52%, REC	VEF ELY C 10	Y ST FRA()%.	RON	g, jo Red, i	NARR	D - FRA DW TO	TIGH			614.7	·	-1K	- 37 -	36		69	NQ-1					$\left \right\rangle$						CORE		
DOLOMITE GRAY. SLIGHTLY WEATHERED. OPEN IN DIGHT. ROD GRATELY WEATHERED. VERY STRONG, SHALEY LAMINAE, JOINTEO - HIGHLY FRACTURED, OPEN NO TIGHT. ROD GRATELY WEATHERED. VERY STRONG, JOINTEO - HIGHLY FRACTURED TO MODERATELY WEATHERED. VERY STRONG, JOINTEO - HIGHLY FRACTURED TO MODERATELY WEATHERED. VERY STRONG, JOINTEO - HIGHLY FRACTURED TO DOLOMITE, GRAY, SLIGHTLY WEATHERED, DEN: BOLAGY, LOUPEN TO TIGHT, ROD GRA, REC 10%. BOLAGY, REC 10%. BOLOMITE, GRAY, SLIGHTLY WEATHERED, DEN: BOLOMITE, GRAY, SLIGHTLY TO MODERATELY BOLOMITE, GRAY, SLIGHTLY TO MODERATELY BOLOMITE, GRAY, SLIGHTLY WEATHERED, DEN: BOLOMITE, GRAY, SLIGHTLY WEATHERED, DEN: BOLOMITE, GRAY, SLIGHTLY TO MODERATELY BOLOMITE, GRAY, SLIGHTLY TO MODERATELY BOLOMITE, GRAY, SLIGHTLY TO MODERATELY BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, DO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FOR TO NARROW: RO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FOR TO NARROW: RO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO MODERATELY FOR TO NARROW: RO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO MODERATELY FOR TO NARROW: RO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO MODERATELY FOR TO NARROW: RO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO MODERATELY FOR TO NARROW: RO TIGHT, ROD BOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO STRONG, VUGGY,	WEATHERED, FRACTURED T NARROW TO T @36.9': Qu = 18	VEF ON FIGH 8020	Y ST ODE T; R(PSI	RON RATI QD 6	g, JC Ely F 7%, F	DINTEI RACT EC 10	D - HIG URED, 0%.	HLY						- 40 -									$\overline{\langle}$								-
WEATHERED, VERY STRONG, SHALEY LAWINAE, WEATHERED, VERY STRONG, SHALEY LAWINAE, WEATHERED, VERY STRONG, SHALEY FACTURED, OPEN, ROD 24%, REC 100%, WEATHERED, VERY STRONG, SHALEY FACTURED, OPEN, ROD 24%, REC 100%, WEATHERED, VERY STRONG, SHALEY LAWINAE, UNITED - HIGHLY FRACTURED TO MODERATELY FRACTURED TO MODERATELY WEATHERED, VERY STRONG, SHALEY LAWINAE, UNITED - HIGHLY FRACTURED TO MODERATELY FRACTURED TO MODERATELY WEATHERED, VERY STRONG, SHALEY LAWINAE, UNITED - HIGHLY FRACTURED TO MODERATELY FRACTURED TO MODERATELY FRACTURED TO MODERATELY WEATHERED, VERY STRONG, SHALEY LAWINAE, UNITED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO NARROW TO THE GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY WEATHERED C 100%, WODERATELY TRACTURED, OPEN TO NARROW; ROJ 29%, REC 100%, MODERATELY TRACTURED, MARROW TO TIGHT; ROD STRONG, VUGGY, JOINTED - HIGHLY WEATHERED C 100%, RUGGY, JOINTED - HIGHLY WEATHERED C 100%, DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO FRACTURED, MERCH STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO FRACTURED, MERCH STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TO FRACTURED, MERCH STRONG, VUGGY, JOINTED - HIGHLY STRONG, VUGGY, JOI	WEATHERÉD, FRACTURED T TO TIGHT; RQI	VEF 70 M D 19	Y ST ODE %, R	RON RATI EC 4	g, Jo Ely F 5%.	DINTEI RACT) - Hig Ured,	HLY OPEN	١		609.3	<u>.</u>		- - - - 43 -			82	NQ-2						\checkmark					CORE		
WEATHERED, VERY STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN; ROD 24%, REC 74%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, VERY STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN AND TIGHT; RQD 55%, Rec 100%. @205.31; Qu = 12710 PSI DOLOMITE, GRAY, SLIGHTLY TO MODERATELY FRACTURED, OPEN TO NARROW; ROD DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO NARROW; ROD 20%, REC 100%. @205.31; Qu = 12710 PSI DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TIGHT; RQD 58%, REC 58%.	WEATHERED, JOINTED - HIG FRACTURED, (@40.4': Qu = 19	VEF iHLY OPE 919(Y ST FRA N TO PSI	RON CTU TIG	G, SH RED / HT; R	HALEY AND I QD 67	LAMIN NODEF %, RE(NAE, RATEL C 1009			605.8			- 45 -																	-
STRONG, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN AND TIGHT; RQD 55%, REC 100%. @45.4°: Qu = 17/10 PSI DOLOMITE, GRAY, SLIGHTLY TO MODERATELY WEATHERED, VERY STRONG, SHALEY LAMINAE, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO NARROW; RQD 31%, REC 79%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, NARROW TO TIGHT; RQD 48%, REC 100%. @50.3°: Qu = 12270 PSI DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED, TIGHT; RQD 58%, REC 58%.	WEATHERÉD, FRACTURED T RQD 24%, REC	VEF TO M C 74	Y ST ODE %.	RON RATI	g, jo Ely f	DINTEI RACT) - Hig Ured,	HLY OPEN	٨;		603.2	2		48-	48		90	NQ-3											CORE		
DOLOMITE, GRAY, SLIGHTLY TO MODERATELY WEATHERED, VERY STRONG, SHALEY LAMINAE, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, OPEN TO NARROW; RQD 31%, REC 79%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, NARROW TO TIGHT; RQD 459, REC 100%. DOLOMITE, GRAY, MODERATELY TO HIGHLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RQD 29%, REC 100%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - MODERATELY FRACTURED, TIGHT; RQD 58%, REC 58%.	STRONG, JOIN MODERATELY 65%, REC 1009	NTED FR/ %.) - HI ACTU	GHĽ	r FRA	CTUF	ED TO)	D					51/																	-
DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO MODERATELY FRACTURED, NARROW TO TIGHT; RQD 48%, REC 100%. @50.3': Qu = 12270 PSI DOLOMITE, GRAY, MODERATELY TO HIGHLY WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RQD 29%, REC 100%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - MODERATELY FRACTURED, TIGHT; RQD 58%, REC 58%.	WEATHERED, JOINTED - HIG	VEF HLY	Y ST FRA	RON CTU	g, Si Red	HALEY TO MO	í Lamin Deraí	IAE, TELY			597.4		FOR	- 53 - 54 -	48	>	87	NQ-4											CORE		
WEATHERED, STRONG, VUGGY, JOINTED - HIGHLY FRACTURED TO FRACTURED, OPEN TO NARROW; RQD 29%, REC 100%. DOLOMITE, GRAY, SLIGHTLY WEATHERED, STRONG, VUGGY, JOINTED - MODERATELY FRACTURED, TIGHT; RQD 58%, REC 58%.	STRONG, VUG MODERATELY 48%, REC 1009 @50.3': Qu = 12	GY, FR/ %. 227(JOIN CTU PSI	ITED RED	- Hig , Naf	HLY F Row	RACTI TO TIC	GHT; R	- 1																						
STRONG, VUGGY, JOINTED - MODERATELY FRACTURED, TIGHT; RQD 58%, REC 58%.	WEATHERED, FRACTURED T RQD 29%, REC	STF 70 F 2 10	ONG RAC)%.	, VU TUR	GGY, ED, C	JOIN PEN 1	ed - H O Naf	IIGHL																							
NOTES NONE	STRONG, VUG	GY,	JOIN	ITED	- MC	DER/	TELY																								
	NOTES: NON	E																													

PROJECT: TYPE:	LUC-23-11. ROADWAY	.75	DRILLING SAMPLING			-				CME 7						I / OF ENT:			SR5	51	EX	PLORA B-011-	
PID: 105889		N/A	DRILLING			3.5" SSA				ON DATE:										EOB:	6.4 ft.		PAC
START: 2/1/2		2/1/23	SAMPLING			SPT				ATIO (%):		72.9	<u> </u>	COC		-		-			465.8300 E		1 OI
<u></u>	MATERIAL D				ELEV.		SPT/		DEC	SAMPLE								ERB					
		NOTES			648.1	DEPTHS	RQD		(%)	ID	(tsf)		CS	FS	SI	<u> </u>		PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	B
ASPHALT - 6 IN		10.20			647.6				(,,,)														
AGGREGATE B		ES		- 🕅	646.7	- 1	_																× V V
HARD, GRAY, S			RACE			- 2	9																- # *
GRAVEL, DAMP	(EMBANKMEN	NT FILL)				-		33	100	SS-1	-	1	2	10	× ⁴³	44	23	19	4	15	A-4a (8)	200	A A
Hard, Brown/ Moist @3': Bro		' SILT , "AND"	CLAY,			- 3	13 15	39	100	SS-2	-	0	4	14	41	41	23	19	4	14	A-4a (8)	-	N48
					642.6	- 5	17	52	100	SS-3A	-	/-		-	-	-	-	-	-	14	A-4a (V)	-	
VERY DENSE, E	ROWN, FINE S	SAND, TRACE	E GRAVEL	.F.S		- 6		<u>ا</u>		SS-3B SS-4		\searrow	-		-	-	-	-	-	-	A-3 (V) A-3 (V)	-	- 47 - 17
AND ROCK FRA MOIST				<u>г</u>	041.7	EOB	50/5"	<u>-</u> ــــــــــــــــــــــــــــــــــــ	_100_	<u></u>		<u><u></u>}</u>	L			لكحيا	<u> </u>	L		12	<u> </u>		<u> </u>
							\frown		\setminus \vee		\sim												
				_							\sim												
											\rightarrow												
)			\rightarrow												
NOTES: NONE											\rightarrow												

MATERIAL DESCRIPTION AND NOTES ELEV. 645.4 DEPTHS SPT/ RQD N ₆₀ REC (%) SAMPLE ID HP GRADATION (%) ATTERBERG ODOT CLASS (GI) SOM ppm BACK FILL ASPHALT - 6 INCHES 644.9 644.0 644.0 -	PROJECT: LUC-23-11.75 TYPE: ROADWAY PID: 105889 SFN: N/A START: 2/1/23 END: 2/1/23	DRILLING FIRM / OPERATOR: SAMPLING FIRM / LOGGER: _ DRILLING METHOD: SAMPLING METHOD:		HAMI	MER: BRATI	CME 7 CME A ON DATE:	UTON 2		2	STAT ALIGN ELEV	NMEI ATIC	NT: DN: <u>64</u>	5.4 (N	SR NAVD88) EOB:	L	B-012-0	TION ID D-21 PAGE 1 OF 1
ABPHALT 6 INCLES BS43 BS43 BS44 BS4			er		REC	, ,	HP	(_				÷.	ODOT		BACK
VERY STIFF: BROWN GRAY, SANDY SLT, "AND" CUX, TRACE SAND, WOIST B8.5: STIFF 00155. NOME CLAY, TRACE SAND, MOIST 00155. NOME 00155. NOME NOME NOME NOME NOME NOME NOME NOM					(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL PI	WC	CLASS (GI)	ppm	
VERY STIFF. BROWNERAY, SANDY SLT, AND' CALV, TRACE BRANCE LAW, TRACE SAND, MOIST @8.5: STIFF NOTES. NOME NOTES. NOME																		A C
03:5: STIFF 640.4 03:5: STIFF 640.4 03:5: STIFF 635.4 00:5: NONE 0:1	VERY STIFF, BROWN/GRAY, SANDY SILT,	"AND"		9 27	100	SS-1	-	8	1	9	41	41	23	18 5	15	A-4a (8)	190	S Spins
(ORGANIC CONTENT = 2.0%) WERY STIFF BROWN, SILT AND CLAY, TRACE SAND MOIST @8.5: STIFF 635.4 COB 0 0 0 0 0 0 0 0 0 0 0 0 0	CLAY, TRACE GRAVEL, DAMP (EMBANKMI		- 3 -							\neq	,							
VERY STIFF, BROWN, SLT AND CLAY, TRACE SAND, (C)ST		640.4		11 29	100	SS-2	-	1/	3	18	43	35	22	18 4	17	A-4a (8)	-	
@8.5: STIFF @8.5: STIFF		ACE SAND,	3					\bigwedge		\mathbf{N}	\nearrow							
@8.5: STIFF 635.4 EOB 0 5 4 10 100 SE4 125					100	/	/-)	- \	-	- \	-		-				-	T T
@8.5: STIFF 635.4 9 6 4 10 100 \$8.4 1.25 · </td <td></td> <td></td> <td></td> <td>12</td> <td></td> <td>SS-3B</td> <td>2.00</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-}</td> <td>-</td> <td></td> <td>22</td> <td>A-6a (V)</td> <td>-</td> <td></td>				12		SS-3B	2.00	-	-	-	-	-}	-		22	A-6a (V)	-	
	@8.5': STIFF		5			\leftarrow		\vdash	\geq									
		635.4		4 10 4	100	SS-4	1,25	-/	-	-	-	-	-		24	A-6a (V)	-	X X X

PROJECT: TYPE:	LUC-23-1 LIGHT TOWI		DRILLING F SAMPLING I			-				CME 7					TION GNME			T:	SR5	51	EX	PLORA B-013-	
PID: 105889) SFN:	N/A	DRILLING M	1ETHO	D:	3.5" SSA				ON DATE:		/20/23		ELE	VATI					EOB:			PAG
START: <u>2/1</u>	/23 END:	2/1/23	SAMPLING I	METH	DD:	SPT		ENE		ATIO (%):		72.9		COC	ORD:		7482	56.31	60 N	, 1644	964.6350 E		1 OF
		DESCRIPTION NOTES	I		ELEV. 643.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		-	FS	N (% si	/	ATT LL	FERBI PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BA F
ASPHALT - 3				/ 🕅	643.0 642.3		-																
CONCRETE - VERY STIFF, TRACE GRAV	GRAY, SANDY	SILT, "AND" CL	_AY,		042.3	- 1 - - 2 -	4 6	17	100	SS-1	_	4	1	10	42	43	23	18	5	14	A-4a (8)	_	10 X 10
@3': LITTLE C	,					- 3 -	7 9	28	100	SS-2	-	7	4	28	43	18		15	2	13	A-4a (5)	240	
DENSE, GRA	Y, FINE SAND, L	ITTLE ROCK			638.3	5 -	14 17 20	43	94	SS-3		-	<u> </u>	-		-	-	-	-	12	A-3 (V)	_	N. R. W. R.
LOOSE, GRA	, TRACE SILT, T Y, COARSE ANI	D FINE SAND,	LITTLE		637.3	- 6 -	2 2 3	9	100	SS-4 /	-	-	-	-		-	-	-	-	19	A-3a (V)	-	A L B
SILT, TRACE	GRAVEL, TRAC	E CLAY, MOIS	I		634.3	- 8 -	4									\searrow							17 K
STIFF, BROW GRAVEL, WE	/n, sandy silt T	, SOME CLAY,	TRACE		004.0	- 9 - - - 10 -	3 4 4	10	100	SS-5		1	3	25	47	24	20	18	2	24	A-4a (7)	-	ANK ANK
@11': VERY S	STIFF					- 11 - - 12 -	5 7 10	23	100	<u>\$</u> \$-6	-	-	5-	-	-	-	-	-	-	20	A-4a (V)	-	うできょう
	WN, COARSE A	ND FINE SAND	D, SOME		630.3	_ 13 _ _	12		$\left \right\rangle$														14
SILT, TRACE	CLAY, MOIST				007.0	- 14 -	11 17 17	41	100	ss.1		-	-	-	-	-	-	-	-	18	A-3a (V)	-	\$ \$ \$
	, SILT AND CLA IST Qu = 14.6 P		ID, TRACE		627.3	16	344	10	100	\$ \$-8	1.25	4	3	8	20	65	30	16	14	22	A-6a (10)	-	1 2 2 4
@18.5': DAMF	D					- 18	2 2	7	100	SS-9	1.25	_	_	_	-	-	_	_	_	15	A-6a (V)	_	ALS AL
					622.3	- 20 -	4																L BANK
STIFF, GRAY, GRAVEL, DAN	, SILTY CLAY , L MP	ITTLE SAND, 1	TRACE		620.3			24	100	SS-10	1.75	-	-	-	-	-	-	-	-	15	A-6b (V)	-	AN R AN
HARD, GRAY, GRAVEL, DAN	, SILT AND CLA MP	Y, LITTLE SAN	ID, TRACE		618.3	= 23 - 24 - EOB	20 40 50	109	100	SS-11	-	5	6	12	20	57	25	14	11	9	A-6a (8)	-	A AND

ſ	PROJECT:	LUC-23-11.75	DRILLING FIRM / O	PERATOR:	TTL/	JW	DRIL	L RIG:	CME	550X	ATV	ST	ATION	I / OF	FSET	:				LORAT	
	TYPE:		SAMPLING FIRM / I			KC		-	CME A					ENT:			RAMP		L	B-014-0	-21 PAGE
	PID: 10588		DRILLING METHOD	-	3.25" HSA				ON DATE:		/20/23					(NAVI			<u>15.0 ft.</u>		OF 1
ŀ	START:4/				SPT		ENE		ATIO (%):	_	75.2		ORD:	_		ERBE		1644	385.4150 E		
		MATERIAL DESCRIPTIO AND NOTES	N	ELEV. 634.8	DEPTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	(tsf)	GR C			ŕ		PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
F	TOPSOIL - 5			<u>634.4</u>	_	_				(/											
		IFF, BROWN, SANDY SILT , "AI	ND" CLAY,		- 1	3											_				-
	MOIST				- 2	4	11	78	SS-1	0.75	0 2	6	48	44	24	19	5	21	A-4a (8)	-	
					- 3							Χ	7								
	@3.5': VER\	' STIFF			- 4	4 7	18	89	SS-2	2.25								19	A-4a (V)		
					- 5		, 10	09	55-2	2.25			<u>_</u>	_	-	-	_	19	A-4a (V)	-	
					- 6	-															
				628.1	- 7		11	83	SS-3A	/-		-	<u>}-</u>	<u> </u>	-	-	-	-	A-4a (V)	-	-
		ERY STIFF, BROWN, SILTY CL ST Qu = 16.0 PSI = 1.15 TSF		626.8	-	- <u></u>			SS-3B	2.50	0 5	3	24	68	40	19	21	24	A-6b (12)	250	-
	HARD, BRO	WN, SILT AND CLAY, LITTLE S	SAND,		- 8	2			\leftarrow	[\lor			\vdash							-
	TRACE GRA	VEL, MOIST			- 9	7	21	100	SS-4	4.25	4/7	11	22	56	31	16	15	17	A-6a (10)	-	
2					- 10) _ 10	1		\rightarrow		\leftarrow										-
01.GF					- 1 ⁻	1 5	$\vdash \frown$			\land											-
652(@11.8': STIF	F, GRAY, DAMP, Qu = 18.0 PS	6I = 1.30 TSF		- 12	$\frac{2}{2}$ 6	18	100	SS-5	2.00	k - D-	-	-	-	-	-	-	14	A-6a (V)	-	
TS\20	0					3-		\square													
JEC		Y, SANDY SILT, LITTLE CLAY,	TRACE	621.0	- 14	4 - ⁶ 24	90		8S-6A~		2- 1 -		↓ -		/	- 1			A-6a (V)		
PRC	GRAVEL, DA			619.8			90	89\	SS-6B	4.50		-	-	-	-	-	-	8	A-4a (V)	-	
;;						\frown	\		\langle												
13:54)														
9/23					$\langle \langle \rangle$		\frown	\rightarrow													
- 6/2																					
GDT					\sim	\langle		~													
DOT.					$\langle \rangle \rangle$	$ \setminus $															
НО						$\langle \rangle$	>														
11) -			\langle	\langle		\sim															
.5 X			\backslash	$\langle \rangle$))																
ES (8																					
FAT					\sim /																
/SUL																					
у С					•																
тго																					
ODO																					
ARD																					
STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 6/29/23 13:54 - S:PROJECTS/2065201.GPJ																					
ST					ורו מע דו ומר מ																
┢		<u>EE LOG FOR B-014-1-21 FOR (</u> IENT METHODS, MATERIALS,					ROUT														

PROJECT: LUC-23-11.75 TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / I	OGGER:	TTL / KKC		HAMI		CME A		ΛΑΤΙΟ	2	ALIC	GNME	I / OF ENT:			RAMI			XPLORA B-014	-1-21
PID: <u>105889</u> SFN: <u>N/A</u> START: 4/19/23 END: 4/19/23	DRILLING METHOE SAMPLING METHO		3.25" HSA ST				ON DATE: ATIO (%):		<u>/20/2:</u> 75.2	3		VATI ORD:			-		EOB:	<u>12.0 1</u> 382.0930		PAGE 1 OF
MATERIAL DESCRIPTION		ELEV.		SDT/			SAMPLE	_	_	GRAD					FERBE		, 1044	ODOT	S04	BAC
AND NOTES		635.5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI) ppm	FIL
SEE LOG FOR B-014-0-21		631.5																		A V A A A A A
MEDIUM STIFF, BROWN, SANDY SILT , "AN MOIST			- 4 - - 5 - - 6 -			92	ST-1	-	-		-	-	-	-	-	-	-	A-4a (V)	-	
STIFF TO VERY STIFF, BROWN, SANDY SI "AND"CLAY, MOIST @6': CU: c' = 0 PSI, PHI DEGREES			- 7 -			100	ST-2	-	0	3	11	45	41	26	24	2	18	A-4a (8)	-	X 1 X X X X X X X X X X X X X X X X X X
		625.5	_ 9 _ _ 9 _ _ 10 _																	
HARD, GRAY, SILT AND CLAY , LITTLE SAN GRAVEL, MOIST @10' HARD, DAMP	ND, TRACE	623.5	– 11 – – 11 –		\square	100	ST-3	-	-	-	-	-	-	-	-	-	-	A-6b (V)	-	
NOTES: OFFSET BORING TO OBTAIN SH ABANDONMENT METHODS, MATERIALS, C) 5 BAC	BENIT															

PROJECT: LUC-23-11.75 TYPE: ROADWAY	DRILLING FIRM / C SAMPLING FIRM /			TL / CW 'L / KKC			L RIG: MER:	CME 7					FION /		SET:		SR5	1	E>	(PLORA B-015	TION ID -0-21
PID: <u>105889</u> SFN: <u>N/A</u> START: <u>11/1/21</u> END: <u>11/1/21</u>	DRILLING METHOD SAMPLING METHO	D:	3.5" S SP			CALI	BRATI	ON DATE: ATIO (%):	3/	15/21 66		ELE\ COO						EOB: 1645:	8.5 ft 346.6020 l		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	V	ELEV. 648.2	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE CS	ATIO FS	<u> </u>	CL		ERBEI	RG PI	wc	ODOT CLASS (GI	SO4 ppm	BACK FILL
ASPHALT - 3.5 INCHES	/ 💥	<u>647.9</u> 647.2∠		 - 1 -	-																
AGGREGATE BASE - 5.5 INCHES	/ ĬĬĬĬ	646.7		- 2 -	577	15	100	SS-1	2.00	0	2	23	45	30	28	25	3	21	A-4a (8)	330	< 100 < 9 L - 100 (3 Start)
STIFF, BROWN, SANDY SILT , SOME CLAY @2.8': 2-INCH BROWN SAND SEAM, WET @3': BROWN/GRAY, "AND" CLAY, MOIST	·	644.0	₩ 645.4	- 3 -	9 10 14	26	100	SS-2	1.00	0	3	15	43	39	21	19	2	21	A-4a (8)	-	
LOOSE, BROWN, COARSE AND FINE SAN SILT, MOIST	D, SOME			- 5 -	2 4 4	9	100	SS-3	-	-	\wedge	-	~	-	-	-	-	16	A-3a (V)	-	
VERY STIFF, GRAY, SANDY SILT , SOME C MOIST	- FUTFUT	0.2.0		6 -	6 6 10	18	100	SS-4	3.50	>-	-	-	-	-	-	-	-	19	A-4a (V)	-	
		639.7	FOR	- 8 -	11 12 13	28	100	SS-5	4 .00	-^	-	-	-	->	-	-	-	18	A-4a (V)	-	
			LOD-		~			$\langle \rangle$	\backslash												

NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; AUGER CUTTINGS MIXED WITH 0.5 BAG BENTONITE CHIPS

PID: 105889 SFN: N/A DRILLING METHOD: 3.5" SSA CALIBRATION DATE: 3/15/21 ELEVATION: 645.9 (NAVD88) EOB: 8.5 ft. PAC START: 11/1/21 END: 11/1/21 SAMPLING METHOD: SPT ENERGY RATIO (%): 66 COORD: 748695.9950 N, 1643574.6360 E 1 OF MATERIAL DESCRIPTION ELEV. DEDTUS SPT/ N REC SAMPLE HP GRADATION (%) ATTERBERG ODOT S04 B/	PROJECT: <u>LUC-23-11.75</u> TYPE: ROADWAY	DRILLING FIRM / C SAMPLING FIRM /						CME 7				STAT ALIG					SGO	W RD		XPLORA B-016	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-								ELEV	ATIC	-						ft.	PAG
AND NOTES 645.9 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (GI) ppm F ASPHALT - 4.5 INCHES 645.5 645.5 645.5 645.5 1	START: <u>11/1/21</u> END: <u>11/1/21</u>	SAMPLING METHO	D:	SPT									_					1643	574.6360	E	1 OF
CRUSHED STONE, DAMP (FILL) 643.6 2 10 20 10 26 40 89 SS-1A > 4.5 $ -$	AND NOTES	N		DEPTHS		N ₆₀												WC			F
CRUSHED STONE, DAMP (FILL) 643.6 -2 10 20 40 89 SS-1A >4.5 $ -$			645.5		-																×
TRACE IRON OXIDE STAIN SEAM, DAMP 3 124 45 89 SS-2 3.25 0 2 6 40 52 24 21 3 16 A-4a (8) 340 7 SANDY SILT @5': MEDIUM STIFF 4 17 18 40 100 SS-3 3.00 0 3 11 42 24 26 23 3 20 A-4a (8) 340 7 SANDY SILT @5': MEDIUM STIFF 6 5 18 40 100 SS-3 3.00 0 3 11 42 44 26 23 3 20 $A-4a (8)$ $-4a (8)$		JD, LITTLE	643.6		7 10		89		>4.5	-	-	-~	-	-	-	-	-	9			44
SANDY SILT @5": MEDIUM STIFF		CLAY,		- 3 -	42 24	45	89			 0		6	> 40	- 52	^				· ·	'	787
SANDT SILT (25. MEDIOW STIPP 637.4 $6 + 5 + 6 + 5 + 6 + 5 + 6 + 7 + 6 + 7 + 6 + 7 + 7 + 7 + 7 + 7$				W 640 9	18	40	100	SS-3	3.00	0	3	11	42	44	26	23	3	20	A-4a (8) -	- Clark
$\begin{bmatrix} -8 \end{bmatrix}^7 7$ 15 100 SS 5 22 A-4a (V) - $\begin{bmatrix} -8 \end{bmatrix}^7$	SANDY SILT @5" MEDIUM STIFF			6 -	5		100	SS-4	1.00	>-	-	-	-	~	-	-	-	22	A-4a (V	′) -	- 14V
			637.4		7	15	100	SS-5	/-	-^	-	-	-	-	`-	-	-	22	A-4a (V	') -	AN R A

TYPE:	LUC-23-11.75 LIGHT TOWER	_ DRILLING FI SAMPLING F							: <u>CME 7</u> CME <i>F</i>					TION GNME		FSET		RAM	° C	EX	PLORA B-017-	
PID: 105889		DRILLING M							ON DATE							-			EOB:	24.8 f		PAC
START: 2/23		SAMPLING N	METH	OD:	SPT				ATIO (%):		72.9			ORD:						455.7860 E		1 OI
	MATERIAL DESCRIPTI	ON		ELEV.		SPT/		REC	SAMPLE	HP		GRAD	ATIC)N (%))	ATT	ERB	ERG		ODOT	S04	В
	AND NOTES			638.0	DEPTHS	RQD		(%)	ID	(tsf)				SI		LL	PL	PI	wc	a		F
ASPHALT - 8 II	NCHES		\otimes	637.3	_	_																8
AGGREGATE	BASE - 7 INCHES		X	636.7	- 1	4																-Â
WET SAND - 2	INCHES		/ 🕅	<u>636.5</u>		2	7	56	SS-1A	-	-	-	-~	-	-	-	-	-	-	A-1-b (V)	-	-
AGGREGATE	BASE - 8 INCHES		/1111	<u>635.8</u>	-	44			SS-1B	<u>1.00</u> -	25	7	<u>⁄16</u>	29	_23_	18	13	5	. 14	A-4a (3)	- 1	
MEDIUM STIFF	F, BROWN, SANDY SILT , S	SOME			_ 3									ſ								T K
GRAVEL, SOM	E CLAY, MOIST (EMBANK	MENT FILL)		633.5	- 4	5	18	78	SS-2A	-	- /	/ -	\langle	-	-	-	-	-	-	A-4a (V)	220	TR
STIFF TO VER	Y STIFF, BROWN, SANDY	SILT. "AND"		000.0	- 5	L ^o g		10	SS-2B	3.50	/-		-	-	-	-	-	-	18	A-4a (V)	-	R.
	GRAVEL, DAMP Qu = 19.8				- 5	-					KJ	K 1										et
@6'· VERY ST	FF, GRAY/BROWN				- 6	8				$\downarrow \frown$	$\mathbf{b}^{\mathbf{x}}$		\prec		\land							T.
011111	. ,				- 7	9	26	89	SS-3	3.75	2	0	6	41	51	24	19	5	17	A-4a (8)	-	XL
					- 8		+			\checkmark						∤──						- B - B
					- 0				$\vdash \longleftarrow$	1	\vee	\rightarrow			$ $ \sim							4
@8.5': BROWN	I/GRAY				- 9	9	27	89	SS-4	2.75	3	5	15	42	35	25	18	7	16	A-4a (8)	-	POV R
					- 10	13	ii				\square									. ,		K
					- - 11.	_					\land											200
				626.0		8 10	32	78	SS-5A	-	_	-	-	-	-	-	-	-	-	A-4a (V)	-	-
VERY STIFF. (GRAY/BROWN, SILT AND	CLAY. LITTLE		020.0	- 12			10	SS-5B	4.00	-	∕-	-	-	-	-	-	-	18	A-6a (V)	-	- F
SAND, TRACE	GRAVEL, MOIST				- 13			$ \setminus \rangle$	\sim	\setminus	$[\ \square$	Í										
@13.5' HARD	GRAY, SOME SAND, DAM	1P			- 14	26	$\vdash $	\vdash			\mathbb{P}^{+}											4
@10.011##18,				1		38	, - `	∫ 94∖	SS-6	\sim	2	7	13	21	57	25	14	11	11	A-6a (8)	-	1
					15			\uparrow	/													\$
					- 16	16	\	\vdash	$ \rangle$													-9
@16': LITTLE (JRAVEL			1			77	89	\$5-7	4.50	-	-	-	-	-	-	-	-	11	A-6a (V)	-	\$ X \$
					$ \langle K'' \rangle$	¥ 35		\vdash												. ,		- 7
					└ <u></u> `18∕	1			1													NT R
				618,5		50/4"	<u>↓ </u>	100	<u>SS-8</u>	<u> </u>		-		-			<u>↓ -</u> .		7	<u>A-6a (V)</u>		R
HARD, GRAY,	SANDY SILT, SOME ROCK	<	- <u>fíííí</u>																			W TA -
	TRACE CLAY, DAMP	-			W 617.0	4 /																
					W 817.0 21	33	/															- 4
			1 N I		22	29 16	55	78	SS-9	-	24	24	11	33	8	16	14	2	11	A-4a (1)	-	X H
				$ \land \land$																		- A F
				$\ \setminus \rangle$	23	26																7
				613.2	EOB 24	26 26 50/3'	-	93	SS-10	-	-	-	-	-	-	-	-	-	12	A-4a (V)	-	N N

START: 3/22/23 END: 3/22/23	DRILLING FIRM / OPEF SAMPLING FIRM / LOG DRILLING METHOD: SAMPLING METHOD:	-	_ HAM _ CALI	IMER: IBRATI	DIEDRIC DIEDRICI ON DATE: ATIO (%):	H AUTO 4/*	DMAT		STAT ALIG ELE\ COO	NME	ENT: DN: 61	15.9 (F NAV		EOB:			
MATERIAL DESCRIPTIO		LEV. DEPTHS SP	T /	DEC	SAMPLE				ATIO				ERBE			ODOT	SO4	BAC
AND NOTES		15.9 DEPTHS RG		(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	ppm	FIL
TOPSOIL - 5 INCHES VERY STIFF, BROWN, SANDY SILT , "ANE TRACE ORGANICS, MOIST (ORGANIC CO 1.7%)	" CLAY,	$ \begin{array}{c} 15.5 \\ - 1 \\ - 2 \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	12	89	SS-1	2.50	0	3	32	28	37	25	15	10	17	A-4a (6)	-	
@3.5': SOME DOLOMITE FRAGMENTS, L DAMP		$-4 + \frac{5}{3}$	4 11	78	SS-2	-	30	16	Ĩ,	30	13	19	14	5	13	A-4a (2)	-	
GRAY, WEATHERED DOLOMITE, LITTLE		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	<u> </u>	SS-3		\leq				<u>_</u>	-			12	Rock (V)	-	12
							>											

PROJECT: TYPE:	LUC-23-1 BRIDGE	1.75	DRILLING FI SAMPLING F			-	TTL / TB TL / KKC				DIEDRIC				STAT ALIG					RAM	> D	E>	(PLORA) B-022-()-21
PID: <u>105889</u>		N/A	DRILLING M			3.25" HS					ON DATE:	4/		2			_				EOB:		·	PAGE 1 OF 1
START: <u>3/22/2</u>	MATERIAL	3/22/23 DESCRIPTION	SAMPLING N	METHO	ELEV.	SPT / DEPT		SPT/	ENE	REC	ATIO (%): SAMPLE					N (%))	ATT	ERB	ERG	Í	ODOT CLASS (GI)	 	
TOPSOIL - 8 INC		NOTES			615.1 614.4			RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	JLAL
MEDIUM STIFF, TRACE GRAVEL	BROWN, SIL					611.6		2 1 2	5	100	SS-1	1.00	1	8	27	27	37	25	14	11	22	A-6a (6)	-	
MEDIUM DENSE FRAGMENTS W WET					609.1	<u> 011.0</u>	4	5 11 6	26	100	SS-2	-	23	12	35	27	3	17	13	4	22	A-2-4 (0)	-	
VERY DENSE, G SOME CLAY, LIT	TLE ROCK F	RAGMENTS, N	MOIST		607.1	—TR		50	-	100	SS-3	/-	-	-	-	-	-	-	-	-	14	A-3a (V)	-	
DOLOMITE, GRA WEATHERED, M HIGHLY FRACTU RQD 29%, REC	IODERATELY JRED TO FI 100%.	Y STRONG, JO RACTURED, N	INTED - ARROW;		604.8		- 9 - - 10 -	28		73	NQ-1			>			\checkmark					CORE		
DOLOMITE, GRA WEATHERED, M LAMINAE, JOINT MODERATELY F RQD 42%, REC	IODERATELY TED - HIGHLY TRACTURED, 78%.	Y STRONG, SH Y FRACTURED NARROW TC	ALEY TO				- 11 - - 12 - - 13 -							>										
@12.3': VERTICA @14.5': Qu = 137		I = 6250 PSI			598.6	/	- 14 - - 15 - - 16 -	45		92	NQ-2											CORE		
DOLOMITE, GRA WEATHERED, S HIGHLY FRACTU NARROW TO TIO	TRONG, SHA JRED TO MC	ALEY LAMINAE DERATELY FF	, JOINTED -		597.1 595.9		17 - 18 19 -																	-
DOLOMITE , GRA WEATHERED, S JOINTED - HIGH NARROW; RQD	TRONG, VEF LY FRACTUR 0%, REC 100	RTICAL FRACT RED TO FRAC)%.	URES, CTURED,		594.1		20 - 21 -	12		67	NQ-3											CORE		
DOLOMITE, GRA STRONG, JOINT TO OPEN; RQD DOLOMITE, GRA	ED - HIGHLY 0%, REC 100	/ FRACTURED 1%.	, NARROW				- 22 - -) - 23 -																	-
WEATHERED, V FRACTURED TC RQD 31%, REC 9 @21': Qu = 1503	ERY STRON MODERATE 93%.	G, JOINTED - H	HIGHLY			\checkmark	24 - - 25 - - 26 -	32		95	NQ-4											CORE		
				\square	587.1	—EOB—	- 27 - - - 28																	
NOTES: NONE																								
	METHODS	MATERIALS, C	QUANTITIES.	PUMP	ED 2 CF	CEMENT-	BENTON	ITE GR	OUT															

PROJECT: TYPE:	LUC-23-11.75 BRIDGE	DRILLING F	FIRM /	LOGGER	а:т	TTL / TB TL / KKC		HAM	MER:		H AUT	OMA	TIC	ALIG	NME	INT:			RAM			XPLORA B-022-	
PID: <u>105889</u> START: 3/21/		_ DRILLING M SAMPLING			3.25" HS SPT					ON DATE: ATIO (%):		<u>/13/22</u> 90	<u> </u>	ELE\ COO		-				EOB:	<u>28.6 1</u> 912.2880		1 OF 1
<u> </u>	MATERIAL DESCRIPTIC AND NOTES	-		ELEV. 616.1	1		SPT/ RQD	N ₆₀		SAMPLE ID		0		DATIO		_	-	ERBI	ERG	í	ODOT CLASS (GI	SO4	HOLE SEALE
	ICHES I, SANDY SILT , TRACE CL/ CE ORGANICS, MOIST	AY, TRACE		615.8/	_	- 1 - - 2 - - 3 -	1 3 6	14	89	SS-1	-	1	8	47	40 >	4	22	14	8	17	A-4a (2)	-	-
MEDIUM STIFF	, GRAY/BROWN, SANDY S	SILT, TRACE		611.6	W 611.6	- 4 - - 5 -	2 2 3	8	100	SS-2	-	6	14	31	42	7	20	11	9	19	A-4a (3)	-	
LOOSE, GRAY ROCK FRAGMI TRACE CLAY, @6.0' TO 7.0': (ROCK FRAGMENTS, WET , COARSE AND FINE SANE ENTS, SOME SILT, LITTLE WET ORGANIC CONTENT = 10.1	ÓRGANICS,		610.1 609.1 607.5	TR		3 3 50/3"	-	93	SS-3A SS-3B	-	24	20	32	20	x -	NP	NP	NP	68	A-3a (0) A-2-4 (V		-
LITTLE SILT, TI DOLOMITE, GF STRONG, JOIN FRACTURED, ⁻ @9.2' TO 10.1': @10.1' TO 10.3 @11.6': MODEF @11.8' TO 12.3	RAY, SLIGHTLY WEATHER ITED - HIGHLY FRACTURE TIGHT; RQD 17.5%, REC 78 SDI = 99.2%	ED, VERY ED TO 8%.				9 - 10 10	22		85	NQ-1											CORE		
	': Qu = 22,920 PSI			597.5		- 15 - 16 - 17 - 17 - 18	13		72	NQ-2											CORE		
MODERATELY FRACTURED T 80%.	ROWN, MODERATELY WEA STRONG, JOINTED - HIGH O FRACTURED, TIGHT; RO ': MODERATELY FRACTUR = 7,350 PSI	HLY QD 12%, REC		592.5		19 - - 20 - - 21 - - 22 - 	12		80	NQ-3											CORE		
STRONG, JOIN FRACTURED, 1	RAY, SLIGHTLY WEATHER ITED - FRACTURED TO MC TIGHT; RQD 22%, REC 100 I': Qu = 16,470 PSI	DDERATELY		587.5		24 - - 25 - - 26 - - 27 - - 28 -	22		100	NQ-4											CORE		

PID: 105889 SFN: N/A DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 3/16/22 ELEVATION: 616.1 (NAVD88) EOB: 6.7 ft. PAG START: 3/11/23 END: 3/11/23 SAMPLING METHOD: SPT ENERGY RATIO (%): 90* COORD: 747347.2390 N, 1643885.7520 E 1 O	PROJECT: TYPE:		1.75			OPERATO / LOGGER					<u>GEOPF</u>						I / OF ENT:	FSET		RAMP	D	EX	PLORAT B-022-2	
MATERIA DESCRIPTION AND NOTES ELEV. 616.1 DEPTHS SPT/ RQD N ₆₀ REC (%) SAMPLE HP GRADATION (%) ATTERBERG ATTERBERG ODEOT CLASS (GI) SOUL (ISF) SUCH II PL			N/A				3.25" HSA															6.7 ft.		PAGE
AND NOTES 616.1 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (GI) ppm SE AGGREGATE - 18 INCHES 614.6 614.6 614.6 1 3 17 44 SS-1A - </td <td>START: <u>3/11/</u></td> <td>/23 END:</td> <td>3/11/23</td> <td>SAMPLI</td> <td>NG METH</td> <td>OD:</td> <td>SPT</td> <td></td> <td>ENEF</td> <td>RGY R</td> <td>ATIO (%):</td> <td></td> <td>90*</td> <td></td> <td>COC</td> <td>ORD:</td> <td></td> <td>74734</td> <td>17.23</td> <td>890 N,</td> <td>1643</td> <td>885.7520 E</td> <td> 1</td> <td>1 OF 1</td>	START: <u>3/11/</u>	/23 END:	3/11/23	SAMPLI	NG METH	OD:	SPT		ENEF	RGY R	ATIO (%):		90*		COC	ORD:		74734	17.23	890 N,	1643	885.7520 E	1	1 OF 1
AGGREGATE - 18 INCHES 616.1 INCL				v		ELEV.	DEPTHS		N.,													ODOT		HOL
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			NOTES			616.1		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	SEAL
VERY STIFF, BROWN, SANDY SILT, TRACE CLAY, TRACE GRAVEL, MOIST 2 4 7 17 44 $SS-1B$ $ -$ <	AGGREGATE -	18 INCHES																						
TRACE GRAVEL, MOIST w 612.8 3 - - - - - - 16 A-4a (V) - @3.5': BROWN/GRAY w 612.8 3 - - - - - 16 A-4a (V) - GRAY, WEATHERED DOLOMITE, LITTLE SAND, 609.4 FOR 609.4 FOR 609.4 FOR 772 8 $61 \times 14 \times NP NP NP / 7$ $A-1-a (0)$ -						614.6			17	11		-		-	-	-	-	-	-	-		. ,	-	-
(a) 3.5: BROWN/GRAY $(a) 3.5: BROWN/GRAY$ $(a) 4 - 5 - 6 - 17 - 56 - 58-2 - 3 - 14 - 38 - 4 - 5 - 6 - 54 - 54 - 54 - 54 - 54 -$			I SILI, TRACE	E CLAT,			2 -	7		44	SS-1B	-	-	-	\square		-	-	-	-	16	A-4a (V)	-	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							W 612.8 - 3 -																	
GRAY, WEATHERED DOLOMITE, LITTLE SAND,	@3.5': BROWN	I/GRAY					- 4 -		17	56	55-2	_	3	14	33	11	6	24	15	٩	10	$A_{-12}(3)$	_	
GRAY, WEATHERED DOLOMITE, LITTLE SAND,										50	00-2	-	Ž		22	44 \	0	24	10	3	13	A-4a (3)	_	_
						610.1		-							\mathbb{N}	\backslash								
			IITE , LITTLE S	AND,		609.4		<u>50/2"</u> /	\ <u>-</u> /	∖100 ∕-	SS-3	y-)	7Ž./	8	6	<u>+</u> 1	4 .	NP /	NP./	<u>NP</u>	_7_	A-1-a (0)		

		CT:		23-11.7	5	DRILLING FI				TTL / TE				DIEDRI							ET: _					
		405000	BRID	-	· •	SAMPLING F				TL / KKC	;							ALIGN			0 (1)	RAN			B-022-3	PAGE
		105889	_ SFN: 23 END		/A /20/23	DRILLING M SAMPLING N			<u>3.25" HS</u> SPT					ON DATE ATIO (%):		/13/22 90	2	ELEV/) EOB:	29.3 ft. 885.2250 E		1 OF 1
ł	START			_	SCRIPTION			ELEV.		/ NQ		-		SAMPLE		-		ATION	_			BERG	-	1		1
				AND NC		1		616.0	DEPT	THS	SPT/ RQD		(%)		(tsf)		CS	FS			_	-	_	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
Ī	AGGR	EGATE -	18 INCHE	S			\otimes	0.0.0		_	_															
								614.5		- 1 -	1															
			dy silt , tf Dg for B-			E GRAVEL,				- 2 -	-							\land								
	WOID			-022-2-2	- ')					- 3 -	-															
										- 4 -	1							$\langle $								
									V	- 5 -	_															
								610.0	TR-		-					\bigwedge		\setminus	\backslash							
				LOMITE	WITH SAM	ID AND	Z			- ° -	13 31	-	100	SS-1	/-	44	13	12	- 31	-\ N	P N		9	A-2-4 (0)	-	
	SILT,	TRACE C	LAY								50/4"	'			\vdash				Ă.	\rightarrow						-
									₩ 608.0	<u>/</u> 8 -					/					4						
							\square	606.7	-	- 9 -	- <u>5</u> 0/2" /	∱∕		<u>(\$S-2</u>)	<u>∖</u>	K -∕	<u> </u>			-	- 1 -			<u>A-2-4 (V)</u>	-	
					EATHERE					- 10 -					ľ	\bigvee										
GPJ					REC 100%					- - 11 -					\land											
5201	@10.0)' TO 11.0	': SDI = 99	.7%						-	45		100	NQ-1										CORE		
\206							$ \geq $			- 12 -	-	$ \rangle$			$\left \right $	\bigtriangledown										
CTS	@12.4	U TO 42 C	. Ou - 17	040 00			\vdash			- 13 -		$ \setminus$		\supset		>`										
S:\PROJECTS\2065201.GPJ	0		': Qu = 17,				$ \vdash $	601.7	-	- 14 -				\checkmark	\succ	1					_	_				-
S:\PR					Y WEATHE	ERED, , NARROW;				- 15 -			\backslash													
)%, REC				,,	$ \vdash $			16-		Y	$ \rangle$													
3 13:							\square			17 -)0/	1	33	NQ-2										CORE		
29/23													\rightarrow													
SULFATES (8.5 X 11) - OH DOT.GDT - 6/29/23 13:54 -																										
GD.					'EATHEREI		-	596.7		19 -									_		_	_				-
DOT	STRO	NG, JOIN	ITED - FRA	ACTURE	ED TO MOD	ÉRATELY	\vdash			20 -																
P			ГІGHT; RQ ": Qu = 23,		REC 100%					21 -	\mathbb{N}															
11)	@19.3	5 10 19.7	. Qu – 23,	020 F 3	I		K			(- 22 -	50		87	NQ-3										CORE		
.5 X							\square	592.8) - 1 - 23 -																
S (8					EATHERE		2		\land /																	
EATE					NTED - HI					\bigwedge																-
SULF	REC 1	00%.		,	,		É		\land	- 25 -																
	@23.2 \@24_3	2' TO 23.4 8' TO 24 0	': HIGHLY I': Qu = 23,	WEATH 030 PS	HERED		¥۲	589.7		_ 26 -																
ГОG					' EATHEREI					- 27 -	33		80	NQ-4										CORE		
DOT	STRO	NG, JOIN	ITED - FRA	ACTURE	ED TO MOD					- 28 -																
STANDARD ODOT LOG W/	FRAC	IUKED,	IIGHI; RQ	U 36%,	REC 67%.		$ \subset $	586.7		- 29 -													1			
IDAF									EOB-		=												•			
STAD																										
	NOTE	S: OFF	SET 15 FEI	ET SOL	TH OF B-0	22-2-21 TO C	ONTIN	UE BORI	NG BELOV	V A DEP	TH OF 6	6 FEET														
L	ABAN	DONMEN	IT METHO	DS, MA	TERIALS, C	QUANTITIES:	PUMF	PED 3 CF	CEMENT-	BENTO	NITE GR	ROUT														

PROJECT: LUC-23-11.75	DRILLING FIRM /										STA					RAM		EX	PLORA B-023-	
TYPE: BRIDGE	SAMPLING FIRM /		::	,			DIEDRIC						ENT:					 36.5 ft		PAGE
PID: <u>105889</u> SFN: <u>N/A</u> START: <u>4/4/23</u> END: <u>4/4/23</u>	DRILLING METHO	-	SPT / ST / NQ				ATIO (%):		90	Ζ		DRD:	_		-) EOB:	<u> </u>	· · · · · · · · · · · · · · · · · · ·	1 OF
			3P1/31/NQ		EINE		()						_	-			<u> </u>	T	<u> </u>	-
MATERIAL DESCRIPTION AND NOTES	V	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE	HP (tsf)			DATIC FS	<u>`</u>	<u>/</u>			BERG	wc	ODOT CLASS (GI)	SO4 ppm	HOI SEAL
		624.2		RQD		(%)	ID	(tsr)	GR	CS	F5	51	CL		PL	PI	wc	02/100 (01)	PP	02/1
AGGREGATE - 6 INCHES	^ 	623.7 623.0		-																
MULCH - 8 INCHES		023.0		5	10	07	00.4		20	44	36	45	_			NP	<u> </u>	A 0 4 (0)		
MEDIUM DENSE, BROWN, GRAVEL AND S FRAGMENTS WITH SAND AND SILT. TRAC		a	- 2 -	4	12	67	SS-1	-	36	11	30	15	2		INP	INP	6	A-2-4 (0)	-	
DAMP (EMBANKMENT FILL)		000 7	- 3 -	 ;																
MEDIUM DENSE. BROWN. COARSE AND F		620.7		5							\vdash									-
LITTLE SILT, TRACE GRAVEL, TRACE CLA	- /		_ 4 -	7	18	67	SS-2	-	-/	1 -	- \	-	-	-	-	-	8	A-3a (V)	-	
			- 5 -	5					\swarrow	$ \land$. ,		_
				-					\land	ľ										
			- 6 -	4	40		00.0	∇	٠ آ											
@6.8': TRACE ORGANICS			- 7 -		12	89	SS-3	1 -/	-	-	-	1	-\	l -	-	-	15	A-3a (V)	-	
		616.2		<u> </u>	1			\checkmark		\mathbf{t}				ľ	1	1		1		
PEAT	Р	615.3		2			6 11	1	\checkmark	\rightarrow								Peat (V)		-
MEDIUM STIFF. DARK BROWN. SILTY CLA			- 9 -	2 2	6	100	<u>\$S-4A</u> \$\$. 4B	0.75	/	<u> </u>	-	 _	-	-	-	<u> </u>	- 25	A-6b (V)	-	-1
SAND, TRACE GRAVEL, TRACE PEAT, MO	,		▼ - 10 -	2			SS-4C ST-5	2.25	/-	-	-	-	-	-	-	-	23	A-6b (V) A-6b (12)	-	
@9.5': VERY STIFF, BROWN		613.2	W 613.2	-	.		SI-5 \		3	6		27	_49_	39	19	20	27	A-60 (12)	-	-
@10': BROWN/GRAY, SOME SAND	/ أأأأأ		11 -			21		$\left \right\rangle$	\backslash											
VERY STIFF, GRAY, SANDY SILT, AND CLA	AY, MOIST		- 12 -		<u> </u> {					\square										
				-	$ \rangle$				$\left \right\rangle$	Y										
			- 13 -]	$ \downarrow $		\geq													_
			- 14 -	5	36	89	SS-6	4.25	0	2	8	38	52	25	17	8	23	A-4a (8)	_	
			- 15 -	16		09 0	33-0	4.20	0	2	0	30	52	25	17	0	23	A-4a (0)	-	
		608.2				$\left \right\rangle$	\langle													
GRAY, WEATHERED DOLOMITE WITH SAM		607.7	TR	50/1"	╢-ノ	100/	SS-7	h - /	- /	k - /	/	\	k - /	-	- ۸	1 -	7	Rock (V)	k -	
SILT, TRACE CLAY		T	/ / 17-				$\left \right\rangle$													
DOLOMITE, GRAY, SLIGHTLY TO MODERA				\neq \sim		\rightarrow														
WEATHERED, VERY STRONG, JOINTED - I	FRACTURED	3	<u> </u>																	
TO MODERATELY FRACTURED, NARROW			19 -	65		92	NQ-1											CORE		
RQD 70%, REC 94%. @16.5': 5-INCH VERT																				
FRACTURE ZONE @18.4': Qu = 20850 PSI				\square																
@10.4. Qu - 200001 01			21 -	\mathbb{N}	°															
	×		22 -																	
	Ż)⊢)	-																
@22 2': Ou = 12120 PSI	\sim	-∕F	23 -																	
@23.2': Qu = 12130 PSI		599,9	24 -	53		90	NQ-2											CORE		
DOLOMITE, GRAY, SLIGHTLY TO MODERA		598.9													1		1			
WEATHERED, STRONG, JOINTED - HIGHL		090.9	25 -																	
	eu, / 🚬	_	26 -	H											1		1			
NARROW; RQD 50%, REC 100%.		_	- 27 -							1					1					
DOLOMITE , GRAY, MODERATELY WEATH STRONG, VUGGY, JOINTED - HIGHLY FRA																				
FRACTURED, OPEN TO NARROW; RQD 10			- 28 -	1											1		1			
90%.		E04 7	- 29 -	8		83	NQ-3								1		1	CORE		
		594.7	4 -																	
		-	30 -												1		1			
	Z,	-															1			

	PID: 105889 S	SFN:N/A	PROJECT:	L	_UC-23-11	1.75	STAT	ION / C	FFSE	T:			5	STAR	T: _4	/4/23	E	ND:	4/4	/23	_ P	G 2 OF 2	B-023-	-0-21
		MATERIAL DESCRIPTIO	N		ELEV.	DEPTHS		SPT/	N ₆₀	REC	SAMPLE				DATIO				ERBĘ		-	ODOT	SO4	HOLE
		AND NOTES			593.2		, 	RQD	IN60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	ppm	SEALED
	WEATHERED, ST JOINTED - FRAC FRACTURED, NA 87%. (continued)	Y, SLIGHTLY TO MODER IRONG, VERTICAL FRAC TURED TO MODERATEL RROW TO TIGHT; RQD 1 RONG, Qu = 15160 PSI	TURES, Y		587.7	- - - - - - - 	- 32 - 33 - 34 - 35 - 36	22		98	NQ-4					>						CORE		
21 MADAND 2001 FOG W 30CH ATES (8:3 A 11) - 011 DOT. GDT - 928/23 13:34 - 3.14 NOJECT 9 2007201.01 3	NOTES: NONE	METHODS, MATERIALS,																>						

PROJECT:	LUC-23-1 ROADWA		DRILLING F SAMPLING	FIRM / L	OGGER:	TTL / Kł		HAM	IMER:	: <u>CME 7</u> CME <i>F</i>	AUTON	MATIC)	ALIG	TION SNME	NT:		F	Ramf			(PLORA B-024-	0-21
PID: <u>105889</u>		N/A	DRILLING N		-	3.25" HSA		-				/20/23	3			_		•		EOB:		·	PAG 1 OF
START: <u>2/24</u>		2/24/23	SAMPLING	METHO		SPT	0.007		-	RATIO (%):		72.9		COC						1643	999.0880 I	<u> </u>	
		. DESCRIPTIOI D NOTES	V		ELEV. 629.3	DEPTHS	SPT/ RQD		(%)	SAMPLE ID	(tsf)		GRAD		IN (%) SI			ERBE PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	BA F
ASPHALT - 11		NOTES		\times		L			(70)			OR	00	10	01	0L							*
AGGREGATE I		IFS			628.4 627.7	- 1																	
MEDIUM DENS TRACE CLAY,	SE, BROWN, F	INE SAND, TR		- F.S	626.3	- 2	- °.	16	72	SS-1	-	0	4	86	>8	2	NP	NP	NP	11	A-3 (0)	<100	44
MEDIUM DENS SAND, SOME S	SILT, TRACE C		AND FINE			— 3 — 4	99	26	83	SS-2	-	0	12	59	27	2	NP	NP	NP	10	A-3a (0)	-	24 A & F
(EMBANKMEN	,				624.1	- 5	11	27	100	SS-3A	-	/-	\wedge	-	<u>-</u>	-	-	-	-	-	A-3a (V)		- A
VERY STIFF, O TRACE GRAVE					622.8	- 6	9		100	SS-3B	4.00	\sim	-	<u>\-</u>	-	-	-	-	-	14	A-4a (V)		14 × 15
VERY DENSE,			,		622.4	- 7	15 - 26	66	89	SS-4A SS-4B SS-4Ø	/- /-/	2-	-	-	-	-	-	-	-	- 12	A-4a (V) A-3a (V)		1
SAND, SOME	SILT, TRACE C	GRAVEL, TRAC			<u>621.8</u>	EOB		3L		<u>SS-40</u>	<u> </u>	-	-	-	-\	<u> </u>	>-	-	-	-	A-4a (V)	-	Ř
MOIST (EMBAI HARD. GRAY/E	,			4									\geq			\sim							
TRACE GRAVE			E CLAY,	1							\searrow	. /											
	`	,		2						\backslash													
								~			\backslash	\backslash											
								\backslash	~			\backslash	\geq										
												$^{\sim}$											
										7~		7											
							\frown	`	\setminus \setminus		\searrow												
								`															
							\frown																
)	/															
						$\langle \langle \rangle$																	
										, v													
							\bigcap		\checkmark														
							$\langle \langle \rangle$																
								>															
					\langle		\sim																
					\backslash																		
					$\langle \rangle$																		
					$\langle \rangle$	\setminus / /																	
						\sim /																	
					\backslash																		
						\searrow																	
NOTES: NON	IF																						

PROJECT TYPE:	-	LUC-23- IGHT TOW		DRILLING FIR SAMPLING FI				TTL / JP `L / KKC				GEOPF AUTOMA				STAT ALIG					Ramf	PA	E	XPLOR/ B-026	-
PID: <u>10</u> START:	05889 8 3/8/23		N/A 3/8/23	DRILLING ME		-	HS/ SP					ON DATE: ATIO (%):	-	/16/22 90*	2	ELE\ COO						EOB: , 1644	<u>8.3 f</u> 510.8720		PAGE 1 OF 1
			. DESCRIPTIO D NOTES	v		ELEV. 622.7	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE	HP (tsf)	GR (-	ATIO	N (%) SI) CL	ATT LL	ERBE	ERG PI	wc	ODOT CLASS (G	I) SO4	
	L - 10 INC				\sum	621.9			-																~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	BROWN, S ICS, WET		T, LITTLE CLA	Y, TRACE				2	2 3 3	9	100	SS-1	-	0	4	48	37	11	NP	NP	NP	25	A-4a (3)	-	
						618.7		- 3 - - 4 -	10	68	400	SS-2A	-	-	/-		-	-	-	-	-	-	A-4a (V)) –	
HARD, G GRAVEL		T AND CL	AY , LITTLE SAI	ND, TRACE				_ <u>5</u> _	20 		100	SS-2B	4.50	7	6	10	20	57	25	14	11	9	A-6a (8)	-	
@6': Qu	= 159 PSI	l = 11.45 TS	SF					- 6 - - 7 -	15 25 35	90	100	SS-3	4.50	2	3	7	21	67	26	14	12	10	A-6a (9)	-	
						614.4	—ETR3—	<u> </u>						\square				\searrow							- Fat € #
													\checkmark		/										

ſ	PROJECT:	LUC-23-11.75	DRILLING FIR	M / OPERATO	R: TTL / TB		DRIL	L RIG:	DIEDRIC	CH D70) TRAC	ĸ	STATIC	N / OI	FSE	Г:					ION ID
		LIGHT TOWER	SAMPLING FI						DIEDRIC				ALIGN				RAMF	ΡA		B-026-1	
	PID: <u>105889</u>				4.25" HSA				ON DATE:		/13/22		ELEVA								PAGE
Ļ	START: <u>3/20</u>		0/23 SAMPLING MI		SPT / NQ				ATIO (%):		90		COORI	_				1644	511.8220 E	1	OF 1
		MATERIAL DESC AND NOT		ELEV. 623.1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			TION (%) I CL			ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 6/29/23 13:54 - S:/PROJECTS/2065201.GPJ	GRAVEL, DAM @9.3': SOME F DOLOMITE, GI STRONG, JOIN RQD 100%, RE DOLOMITE, GI STRONG, JOIN	AND NOT B-026-0-21 SILT AND CLAY, LIT P ROCK FRAGMENTS RAY, SLIGHTLY WE ITED-SLIGHTLY FR/ IC 100%. RAY, MODERATELY FRACTURED, NAR	ES		DEPTHS		N ₆₀								-		-	wc	A-6a (V)		HOLE
NDARD OD(
STA																					
Ĩ		SET BORING FOR R																			
	ABANDONMEN	IT METHODS MATE	RIALS QUANTITIES:	PLIMPED 1 CE	CEMENT-BENTON	ITE GR															

rype: Pid: 105889	LUC-23-11 ROADWAY SFN:		DRILLING FII SAMPLING F DRILLING ME	IRM / I	LOGGER:			HAM	MER:	<u>GEOPF</u> AUTOMA ON DATE:	ATIC H	AMM	ER	STAT ALIGI ELEV	NME	INT:		R	AMF (88)	P A EOB:			0-21 PAGE
START: 3/8/2		3/8/23	SAMPLING M			SPT				ATIO (%):		90*		COOF									1 OF 1
		DESCRIPTION			ELEV.					SAMPLE	_	-		DATION				ERBE		,	r		
			1			DEPTHS	SPT/	N ₆₀	(%)	ID	(tsf)								PI	wc	ODOT CLASS (GI)	SO4 ppm	BAC
TODOO!!		NOTES			622.9		RQD		(%)	U	(ISI)	GR	US	FO	51	UL	LL	PL	PI	WC	•=(•-)	P.P	
TOPSOIL - 10 IN					622.1	- 1 -	-																4°C 88
STIFF TO VERY	Y STIFF, BROW	N, SILTY CLA	AY, TRACE				3	10		00.4	0.00		_		~~	07	~ 1	40					RX,
SAND, TRACE 0 = 14.1 PSI = 1.0		E ORGANICS	s, MOIST QU		620.2	- 2 -	4 g	18	89	SS-1	3.00	1	3	6	23	67	34	16	18	20	A-6b (11)	-	
						ETR3							_/							-			
													>				>						
												7											
NOTES: AUGE)				7											

PROJECT: LUC-23-11.75 TYPE: BRIDGE	DRILLING FIRM / (SAMPLING FIRM /										STA ALIO			FSET		RAMF	ΡΑ	E	KPLORA B-028-0	
PID: <u>105889</u> SFN: <u>N/A</u>	DRILLING METHO						ON DATE:			2			_					33.01	ι	PAGE
START: <u>4/10/23</u> END: <u>4/10/23</u>	SAMPLING METHO	-	SPT / ST / NQ				ATIO (%):		90			ORD:	_				, 1644	274.2750	<u> </u>	1 OF 2
MATERIAL DESCRIPTION AND NOTES	V	ELEV.	DEPTHS	SPT/ RQD		REC (%)	SAMPLE ID	HP (tsf)		GRAD			/	ATT	ERBI	ERG	wc	ODOT CLASS (GI	SO4	HOLE
TOPSOIL - 2 INCHES	/ 1	620.3		RQD		(70)			GI	03	13	51	UL	LL	FL.	FI	we	,		
MEDIUM DENSE, BROWN, COARSE AND F LITTLE SILT, TRACE CLAY, MOIST (EMBAN FILL)			- 1 - 2 - 3	8 7 6	20	100	SS-1	-	0	8	72	18	2	NP	NP	NP	12	A-3a (0)	<100	-
VERY STIFF, GRAY, SANDY SILT , SOME C MOIST (EMBANKMENT FILL)	LAY,	616.3	w 614.3		18	72	SS-2	-	Ø	10	38	29	23	19	13	6	13	A-4a (3)	-	
STIFF TO VERY STIFF, GRAY, SILT AND C SAND, MOIST @7': TRACE ORGANICS, Qu: 13.0 PSI = 0.9 CONSOLIDATION: Cc = 0.23, Cr = 0.034, eo	94 TSF,	612.3	W 014.3 6 - 7 - 8			92	ST-3	3.25	0	5	27	25	43	> ³⁴	21	13	27	A-6a (8)	-	
2.7 TSF LOOSE, GRAY, COARSE AND FINE SAND, SILT, LITTLE ROCK FRAGMENTS, TRACE (SOME		▼ 9 − 10	2 2 3	8	89	SS-4		13	15	39	26	7	NP	NP	NP	21	A-3a (0)	-	
GRAY, WEATHERED DOLOMITE WITH SAM SILT, TRACE CLAY	ND AND	609.3 607.3	TR 11	11 50/4"	$\left \right $	80	SS-5			-	-	-	-	-	-	-	10	A-2-4 (V) -	-
DOLOMITE, LIGHT GRAY, SLIGHTLY TO MODERATELY WEATHERED, STRONG, VL JOINTED - FRACTURED TO MODERATELY FRACTURED, NARROW TO TIGHT; RQD 65 100%. DOLOMITE, GRAY, SLIGHTLY WEATHEREI STRONG, JOINTED - FRACTURED TO MOD	5%, REC D, VERY DERATELY	605.9	- 13 - 14 - 15 - 16' - 17	68		95	NQ-1		>									CORE		
FRACTURED, NARROW TO TIGHT; RQD 72 96%. @17': Qu = 22000 PSI	2%, REC		- 18/ - 19				Y													-
@20.2': Qu = 20200 PSI DOLOMITE , GRAY, SLIGHTLY WEATHERED STRONG, JOINTED - HIGHLY FRACTURED MODERATELY FRACTURED, NARROW TO 2400 JEC 40000	oto 🏷	599.3	- 20, 21 - 22 - 23	53	×	100	NQ-2											CORE		
34%, REC 100%. DOLOMITE , GRAY, MODERATELY WEATHI MODERATELY STRONG TO STRONG, VUG JOINTED - HIGHLY FRACTURED TO MODE FRACTURED, NARROW TO TIGHT; RQD 38 100%. DOLOMITE , GRAY, SLIGHTLY TO MODERA	GGY, ERATELY 8%, REC	596.4 595.3 593.5	23 24 25 26 27	45		97	NQ-3											CORE		
WEATHERED, VERY STRONG, JOINTED - I TO MODERATELY FRACTURED, NARROW RQD 77%, REC 100%. @26.1': Qu = 17090 PSI DOLOMITE , GRAY, MODERATELY WEATHI		590.8	- 28 - 29 - 30	-		98	NQ-4											CORE		

	SFN:	N/A	PROJECT:	L	UC-23-1	1.75	STA	FION / C	OFFSE	:T:			_	STAF	T: _4	/10/23	_ E	ND:	4/10	0/23	_ P	G 2 OF 2	B-028	-0-21
		DESCRIPTIC	N		ELEV.	DEPTHS		SPT/	N ₆₀		SAMPLE					DN (%)		ATT				ODOT	SO4	HOL
Strong, Join Fractured, M Dolomite , GR Weathered, J Fractured T Narrow to T	TED - HIGHLY VARROW TO RAY, SLIGHTL STRONG, JOI O MODERATE	TIGHT; RQD (Y TO MODER NTED - HIGH ELY FRACTUR	0%, REC 94%. ATELY LY RED.		589.3 587.3	EOB	- 32 - -33-	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	ppm	SEAL
															\langle	>								
													>`` /	>				>						
									$\left\langle \right\rangle$				$\langle \rangle$	>										
				/				\mathbf{i}																
						\bigvee		~																
NOTES: NON																								

PROJECT: LUC-23-11.75 TYPE: BRIDGE	DRILLING FIRM / (SAMPLING FIRM /			TTL / TB TL / KKC										I / OF ENT:	FSEI		RAME	⊃ A	E	XPLORA B-028	
PID: 105889 SFN: N/A	DRILLING METHO	D:	3.25" HS					ON DATE:			2			-					31.1		PAGE
START: <u>3/21/23</u> END: <u>3/21/23</u>	SAMPLING METHO		SPT	' NQ		ENE	-	ATIO (%):		90		COC		_				<u>, 1644</u>	288.8740	<u>E</u>	1 OF 2
MATERIAL DESCRIPTION AND NOTES	V	ELEV.	DEPT	ΉS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID			GRAD cs		· ·	/		PL	-	wc	ODOT CLASS (G) SO4	HOLE
TOPSOIL - 3 INCHES		616.6			RQD		(70)	U		GR	03	гэ	31	UL	LL	FL	FI	wc	- (-	/ 11	
VERY STIFF, GRAY, SILT , LITTLE CLAY, TF SAND, MOIST	RACE	613.6		- 1 -	8 8 6	21	89	SS-1	-	-	-	-	-	-	-	-	-	19	A-4b (V	-	
MEDIUM STIFF TO STIFF, GRAY, SANDY S CLAY, WET	ILT, TRACE	010.0	V		2 2 2	6	100	SS-2	1.00	9	21	25	46	8	21	16	5	22	A-4a (4)	-	
		610.6		- 6 -						\searrow			\backslash								
MEDIUM DENSE, GRAY, GRAVEL AND/OR FRAGMENTS WITH SAND AND SILT, TRAC DAMP		608.6	W 608.6	- 7 -	4 6 6	18	100	SS-3	-/	48	0	27	23	2	22	16	6	11	A-2-4 (0) -	_
VERY DENSE, GRAY, GRAVEL AND/OR ST		000.0	000.0	- 8 -	45			$ \longrightarrow $	<u> </u>	\square	\rightarrow			\sim							_
FRAGMENTS WITH SAND AND SILT, TRAC DAMP	E CLAY,			- 9 - - - 10 -	15 18 <u>42</u>	90	89	SS-4		45	12	12	28	3	21	17	4	12	A-2-4 (0) -	_
		605.6		+ 11 -	<u>\$0/1"</u> /		A 100 C	SS-5		20	17	24		1					A A-2-4 (0		_
WEATHERED DOLOMITE WITH SAND AND	SILT,	605.5 \605.2/		- 12 -	<u>vu/1_</u> /		TOUL		$\square \prec$	20	\mathbb{N}	4_/	<u>+</u> 3	<i></i>					<u>/ A-2-4 (U</u>		_
DOLOMITE, GRAY, MODERATELY WEATH STRONG, FAULTED - HIGHLY FRACTURED RQD 0%, REC 100%.				- 12 - 13 - - 14 -	77	$ \setminus$	80	NQ-1											CORE		
DOLOMITE , GRAY, SLIGHTLY WEATHEREI STRONG, VUGGY, JOINTED - FRACTURED MODERATELY FRACTURED, TIGHT; RQD 4	то 🖂			- 15 -																	
89%. @11.4' TO 12.4': SDI = 99.6% @12.4' TO 13.1': Qu = 21,510 PSI				17 - 18) [\square														
@17.2' TO 17.5': Qu = 13,150 PSI @17.2': STRONG				- 19 -	57		-98	NQ-2											CORE		
				20																	
DOLOMITE , GRAY, HIGHLY WEATHERED, FAULTED - HIGHLY FRACTURED, OPEN; R 100%.		595.5 594.7		- 21 - - 22 -																	
DOLOMITE, GRAY, SLIGHTLY WEATHEREI STRONG, JOINTED - HIGHLY FRACTURED FRACTURED, TIGHT; RQD 17%, REC 100%	TO /	592.7 591.7		- 23 - - 24 -	7		72	NQ-3											CORE		
DOLOMITE, GRAY, MODERATELY WEATH STRONG, FAULTED - HIGHLY FRACTURED RQD 0%. REC 33%.	ERED,			- 25 - - 26 -																	
@23.9: DRILLERS NOTED LOSS OF RETUI DURING CORING OPERATIONS DOLOMITE, GRAY, SLIGHTLY WEATHEREI				- 27 - - 28 -																	
STRONG, JOINTED - FRACTURED TO MOE FRACTURED, TIGHT; RQD 28%, REC 85%. @24.9': DRILLERS NOTED 50% RETURN W DURING CORING OPERATIONS				- 29 30 -	35		95	NQ-4											CORE		

D: <u>105889</u>	SFN: N	I/A	PROJECT:	L	UC-23-1	1.75	STAT	ION / OI	FFSET	Г:			S	TAR	T: <u>3/</u>	21/23	3_ E	ND:	3/21	1/23	PG	2 OF 2	B-028	8-1-2
	MATERIAL DI		ON		ELEV.	DEPTHS		SPT/ RQD	N	REC	SAMPLE			RAD	ATIO	N (%)		ATT	ERBEI			ODOT CLASS (GI)	SO4	н
	AND N				585.6	EOB		RQD	N ₆₀	(%)	ID	(tsf)		CS	FS	SI	CL	LL			wc C	CLASS (GI)	ppm	SEA
027.0' TO 27.4	': Qu = 19,440 P	SI			\ <u>585.5</u>	_LOD																		
															\wedge									
														/	/ /	/								
													/		\langle									
														~	\backslash									
													$\langle \ \rangle$	/	\backslash	$\overline{\ }$								
												\wedge	\bigvee		\backslash									
											/	/ /			Ň	\backslash	\backslash							
													~			\backslash		>						
													/`	>			\sim							
												\searrow	/	/										
											\backslash													
									\sim				$\overline{\ }$											
												\backslash												
									\backslash	\sim		_ `	\backslash	\geq										
										\backslash	\searrow		$^{\checkmark}$											
												<u> </u>												
									\	\backslash		\sim												
						/	/			\backslash	\langle													
))																
							,	1 L	~		/													
						$\langle \rangle$	\checkmark			\rightarrow	/													
						\backslash	• (
						_ /	$\langle \rangle$	\backslash																
				/	/ /	\sim	\backslash	\backslash																
								$\langle \rangle$																
				\langle	\langle			\checkmark																
))																	
					$\langle \rangle$	\setminus /	/																	
						\sim /																		
					\backslash																			
						\searrow																		
OTES: NON	-																							

Indexession DRILLING METHOD: 3.25" HSA / NQ CALIBRATION DATE: 4/13/22 ELEVATION: 609.0 (NAVD88) EOB: 22.0 ft. PA NRT: 3/23/23 END: 3/24/23 SAMPLING METHOD: SPT / NQ ENERGY RATIO (%): 90 COCRD: 7/47306.1340 N. 1644304.9880 E 10 MATERIAL DESCRIPTION AND NOTES 0 DEPTHS SPT / NQ ENERGY RATIO (%): 90 ATTEREERG COCRD: 7/47306.1340 N. 1644304.9880 E SO 10 MATERIAL DESCRIPTION BELEV. DEPTHS SPT / NQ REC SAMPLE Hts GRADATION (%) ATTEREERG COCRD: CALIBRATION (%) ATTEREERG GO SO No YEMSAND, UTLES LIT, TRACE CLAY 609.0 1 4 26 67 SS-1 62 10 8 -20 NP NP A - 4-1-b (0) - YEMSAND, VUGCY, JOINTED - FRACUTRED, TIGHT; RAD 60%, REC 607.5 -3 67 98 NQ-1 CORE CORE CORE YEMSAND, SUGGHTLY WEATHERED, TO DDDOMITE, CLAY -4 -5 -6 -7 -7 -7 -7 -7	PROJECT: TYPE:	LUC-23-1 BRIDGE	1.75		G FIRM / C IG FIRM /			TTL / TB TL / KKC								STATIC					Ramf	ÞΑ		PLORAT B-028-2	
District District <thdistrict< th=""> District <thd< td=""><td>-</td><td></td><td>N/A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>22.0 ft.</td><td></td><td>PAGE</td></thd<></thdistrict<>	-		N/A															-					22.0 ft.		PAGE
AND NOTES EDD (No Web (No) Rod (%) ID (tef) OR (s)	START: <u>3/23</u>	<u>3/23</u> END:	3/24/23	SAMPLIN	IG METHC	D:	SPT	/ NQ		ENE		. ,		90		COOR	D: _	7	4730	06.13	40 N	, 1644	304.9880 E	1	OF 1
NOMICES		MATERIAL	DESCRIPTION	1			DEPT	ъ		N		SAMPLE								ERBE	ERG				HOLE
In SMUD, LITLE SL1, TRACE CLAY 607.5 98 NQ-1 CORE 607.5 67.98 98 NQ-1 67.98 98 NQ-1 67.98 98 NQ-1 67.98 98 NQ-1 67.98 99 99 90 NQ-2 67.98 99 90 NQ-2 67.98 99 101 112 10 114 12 114 12 114 12 114									RQD	• •60	(%)	ID	(tsf)	GR	CS	FS S	1	CL	LL	PL	ΡI	WC	CLASS (GI)	ppm	SEALE
TLÉ SILT, TRACE CLAY 2 COMITE, GRAY, SLIGHTLY WEATHERED, 67 DERATELY FRACTURED, TIGHT, ROD 60%, REC 67 Marker Strands 67 Strands 66 Strands 600.5 Strands 60.5 <td>WITH SAND, I</td> <td>LITTLE SILT, TR</td> <td>RACE CLAY</td> <td></td> <td></td> <td>608.1 607.5</td> <td></td> <td></td> <td>26 </td> <td>-</td> <td>67</td> <td>SS-1</td> <td>-</td> <td>62</td> <td>10</td> <td>8 -</td> <td>20</td> <td>-</td> <td>NP</td> <td>NP</td> <td>NP</td> <td>-</td> <td>A-1-b (0)</td> <td>-</td> <td></td>	WITH SAND, I	LITTLE SILT, TR	RACE CLAY			608.1 607.5			26 	-	67	SS-1	-	62	10	8 -	20	-	NP	NP	NP	-	A-1-b (0)	-	
RONG, VUGGY, JOINTED - FRACTURED TO DDERATELY FRACTURED, TIGHT; RQD 60%, REC % 0 98 NQ-1 CORE % 5 6 -	LITTLÉ SILT, "	TRACE CLAY	,	,												\land									
22 10 27: 00 = 10, 50 PSI 31 TO 7.0: 00 = 19, 230 PSI 31 TO 7.0: 00 = 10, 230 PSI 51 TO 7.0: 00 = 10, 230 PSI 51 TO 7.0: 00 = 10, 230 PSI 600.5 600.5 9 90 NO-Z CORE 600.5 90 NO-Z 10 11 12 0 99 10 11 12 13 14 12 14 12 14 12 13 14 14 15 16.8' TO 17.1': Qu = 17,610 PSI 16.8' TO 17.1': Qu = 17,610 PSI 19 20 0 21 0 67 0 188.0 0 19 20	STRONG, VUO MODERATELY 99%.	GGY, JOINTED Y FRACTURED,	- FRACUTRED TIGHT; RQD 6	ŤO				- 4 -	67		98	NQ-1			$\langle \rangle$								CORE		
DLOMITE, GRAY, MODERATELY WEATHERED, RY STRONG, JOINTED - HIGHLY FRACTURED, YEN; RQD 0%, REC 88%. 9 9 JLOMITE, GRAY, SLIGHTLY WEATHERED, VERY RONG, JOINTED - FRACTURED, TIGHT, RQD 4%, IC 76%. 596.4 10 10 11 12 0 98 14 12 0 78 NQ-3 16.8' TO 17.1': Qu = 17,610 PSI 16 17 7 92 NQ-4 16.8' TO 17.1': Qu = 17,610 PSI 589.0 20 67 NQ-5 CORE	@3.7' TO 4.7': @6.1' TO 7.0':	SDI = 99.6% Qu = 19,230 PS				000 F		- - 6 - - 7 -	37		90	NQ-2							>				CORE		
DLOMITE, GRAY, SLIGHTLY WEATHERED, VERY RONG, JOINTED - FRACTURED, TIGHT; RQD 4%, ic 76%. 12 - 0 0 03 NQ-3 CORE 16.8' TO 17.1': Qu = 17,610 PSI 16 17 - 7 97 NQ-4 CORE 16.8' TO 17.1': Qu = 17,610 PSI 589.0 20 67 NQ-5 CORE	VERY STRON	G, JÓINTED - H		,		600.5		- 9 -							>			~							
RONG, JOINTED - FRACTURED, TIGHT; RQD 4%, ic: 76%. 16.8' TO 17.1': Qu = 17,610 PSI DLOMITE, BROWN/GRAY, MODERATELY EATHERED, STRONG, JOINTED - HIGHLY ACTURED, OPEN: RQD 0%, REC 67%.		PAY SUCHTIN				596.4		- 12 -			763	NQ-3			>								CORE		
16.8' TO 17.1': Qu = 17,610 PSI CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE CORE								- 14 -				\sum													
DLOMITE, BROWN/GRAY, MODERATELY EATHERED, STRONG, JOINTED - HIGHLY ACTURED, OPEN: ROD 0%, REC 67%,	@16.8' TO 17.	.1': Qu = 17,610	PSI					17 -			97	NQ-4											CORE		
	WEATHERED	, STRONG, JOI	NTED - HIGHL				FOR	K N			67	NQ-5											CORE		
DTES: BRIDGE DECK WAS 22 INCHES, BRIDGE SURFACE ELEV. 629.5, WATER SURFACE ELEV. 611.5.	NOTES: BRI	DGE DECK WAS	<u>S 22 INCHES, I</u>	BRIDGE S	URFACE E	ELEV. 629	9.5, WATE	R SURFA	ACE ELE	EV. 61	1.5.														

PROJECT: LUC-23-11.75 TYPE: BRIDGE	DRILLING FIRM / C SAMPLING FIRM /										STAT ALIGI					RAMF	۶A	E	XPLORA B-029-	
PID: 105889 SFN: N/A	DRILLING METHO						ON DATE:				ELEV		-					36.0		PAGE
START: <u>4/7/23</u> END: <u>4/7/23</u>	SAMPLING METHO	DD:	SPT / NQ		ENE		ATIO (%):		90		C00	-					, 1644	227.5050	E	1 OF 2
MATERIAL DESCRIPTION AND NOTES	I	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATION FS			ATT	ERB	ERG PI	wc	ODOT CLASS (G	SO4	HOLE
TOPSOIL - 5 INCHES		620.5 620.1		TROED		(70)		((3))	OIX	00	10								,	
MEDIUM DENSE, BROWN, COARSE AND F SOME SILT, TRACE CLAY, DAMP (EMBANK			- 1 - 2 -	5 7 9	24	100	SS-1	-	0	16	59	23	2	NP	NP	NP	10	A-3a (0)	120	
VERY STIFF, GRAY, SANDY SILT , SOME CI (EMBANKMENT FILL)	LAY, DAMP	617.5	- 3 - - 4 -	5 9	27	100	SS-2	-	0	5	40	28	27	17	14	3	11	A-4a (4)) _	-
@6': MOIST			5 6	<u>9</u> - 8						\wedge		\triangleleft								
			- 7 -	8	23	100	SS-3	-/	0	6	31	29	34	21	16	5	17	A-4a (6)	-	-
		611.5	- ī	1			SS-4A	-	<u> </u>	\geq -	-	-	-	-	-	-	-	A-4a (V) -	-
LOOSE, GRAY, COARSE AND FINE SAND , SILT, TRACE ROCK FRAGMENTS, TRACE C			- 9 - - 10 -	3	9	100	SS-4B	V	8	21	48	21	2	NP	NP		24	A-3a (0)		
TRACE ORGANICS, WET		000.0																		
GRAY, WEATHERED DOLOMITE WITH SAN		609.0	TR	20 15	60	83	SS-5A SS-5B		-	-	-	-	-	-	-	-	- 10	A-3a (V A-2-4 (V		-
SILT, TRACE CLAY		•	_ ¹² _ 13 -	25	\vdash	$\left \right\rangle$	33-20		$\overline{\mathbf{N}}$	\square	-	-	-	-	-	-	10	74-2-4 (V	, -	-
				50/5"	-\	100	<u></u>	-	2-	_	-	-	-		-	-	8	A-2-4 (V) -	
		604.5	- 15 -																	
DOLOMITE, GRAY, SLIGHTLY TO MODERA WEATHERED, VERY STRONG, JOINTED - H FRACTURED TO MODERATELY FRACTURE	HIGHLY 🔁	602.8	- 16																	
NARROW TO TIGHT; RQD 43%, REC 100%. @16.9': Qu = 17720 PSI			- 18-	70		98	NQ-1											CORE		
DOLOMITE , GRAY, SLIGHTLY TO MODERA WEATHERED, VERY STRONG, JOINTED - F TO MODERATELY FRACTURED, TIGHT; RC 92%.	RACTURED		20 - 20 - 21 -	\bigcirc																
@18.9' to 20': SLIGHTLY FRACTURED SEG			- 22 -																	
 @22.6': 4-INCH VERTICAL FRACTURE ZON DOLOMITE, GRAY, SLIGHTLY WEATHEREL STRONG, JOINTED - FRACTURED, NARRO TIGHT; RQD 28%, REC 97%. @24': Qu = 12710 PSI 	D,	597.5	- 23 - 24 - 25 -	50		98	NQ-2											CORE		
LIMESTONE, GRAY, MODERATELY WEATH MODERATELY STRONG TO STRONG, VUG LAMINAE, JOINTED - HIGHLY FRACTURED FRACTURED, OPEN TO NARROW; RQD 0% 100%.	GY, SHALEY	594.5 593.9	- 26 - - 27 - - 28 -	18		95	NQ-3											CORE		
FRACTURED, OPEN TO NARROW; RQD 0%		-	- 29 - - - 30 - -																	

PID: <u>105889</u>	SFN: N	N/A	PROJECT:	.UC-23-11.7	75 STA	TION / C	DFFSE	T:			ST/	ART:	4/7/2	23	END:	4/	7/23	F	PG 2 OF 2	B-029	-0-21
	MATERIAL DI		N	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE	HP (tsf)		ADA	ATION (FS SI			FERBI		wc	ODOT CLASS (GI)	SO4 ppm	HOLE
WEATHERED, FRACTURED T RQD 25%, REC @32.3': Qu = 14	AND N RAY, SLIGHTLY 1 STRONG, JOINT O FRACTURED, O FRACTURED, O FRACTURED, 297%. (continued 4980 PSI /ERTICAL FRAC	TO MODER/ FED - HIGHL , OPEN TO N d)	_Y NARROW;	589.5 584.5	- 32 - - 33 - - 34 - - 35 - 36-			100	ID NQ-4			,3				<u>FL</u>	FI	wc	CORE		
					-EOB30						\langle										
						\checkmark															

PROJECT:	LUC-23-11.75	DRILLING FIRM / C			TTL / TB				CME 7				STAT			SET:				E	EXPLORA B-029-	
TYPE:	LIGHT TOWER	SAMPLING FIRM /			L / KKC				CME A				ALIG					RAMF		L		
PID: <u>10588</u>		DRILLING METHOD		3.25" HSA					ON DATE:		/20/23	3							EOB:			PAGE
START:2/2	23/23 END: 2/23/23	SAMPLING METHC	D:	SPT /	NQ2		ENE	RGY R	ATIO (%):		72.9		COO	RD: _	7	4697	5.532	20 N,	1644	188.2630	<u>, E</u>	1 OF 1
	MATERIAL DESCRIPTION	N	ELEV.	DEPT		SPT/	NI	REC	SAMPLE	HP	(GRAD	ATION	l (%)		ATTE	ERBE	RG		ODOT	SO4	HOLE
I	AND NOTES		630.7	DEPT	п о	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (G	GI) ppm	SEALED
ASPHALT - 1	16 INCHES	\times																				
			629.4		- 1 -																	
	E BASE - 5 INCHES	•••••	628.9	-	- 2 -	50/2"_/	`- ⁄	100/	SS-1	₼/	┧/	└/	└╌╷ᠰ						_2_/	<u>λ A-1-b (</u> λ	∠)↓	-1
	AY, COARSE AND FINE SAND,													>								
SILT, TRACE	E CLAY, MOIST (EMBANKMEN	T FILL)			- 3 -								X									
I						7																-
I						12 14	32	89	SS-2	-	9	9	59	28	4	NP	NP	NP	11	A-3a (0	0) <100	1
I					5 -						\mathbf{K}	\nearrow										-
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			6	40		 		$ \vdash \land$	$\vdash \!$		\rightarrow	\rightarrow	_							_
I					-	13 13	38	100	SS-3 /	Κ.,	Po	7	58	31	\mathbf{A}	NP	NP	NP	11	A-3a (0)) -	
						18					Ľ			<u> </u>	<u> </u>					// 04 (0	/	
		• • • • • • • • • • • • •			- 8 -					\vee					\checkmark							
I					- 9 -	11		-	\leftarrow		\checkmark	\succ		_	-							-
					9	11	36	100	SS-4		9	8	58	- 34	-	NP	NP	NP	11	A-3a (0	り -	
		• • • • • •			- 10 -	19		<u> </u>	\vdash		\leftarrow				_							-
							\sim		``````````````````````````````````````	\square	\square											_
@11': BROW	VN/GRAY, TRACE WOOD	• • • • • • • • • • • • • • • • • • •				16 14	38	100	SS-5			$k \downarrow $			_		_	-	10	A-3a (V	n -	
					- 12 -	17	00	100		- \	Υ	\sum	-	-	-	-	_	-	10	7-3a (v	, -	
		• • • • • • • • • • • • • • • • • • •			- 13 -			$ \rangle$		\sim	$ $ \sim	ÍI										
			616.7			2	\rightarrow	\vdash	,8S-6A~	-	₽-	-	-	-	-	-	-	-	-	A-3a (V	/) -	-
MEDIUM STI	IFF TO STIFF, BROWN, SILTY	CLAY,			- 14 -	_ 4	13 \	100	SS-6B	3.50	2	5	15	28	50	34		17	20	A-6b (11	,	-
	D, TRACE GRAVEL, MOIST Qu	= 7.9 PSI =	615.4			$\overline{7}$		\wedge		0.00	-	Ŭ				•			20	1100(1)	.,	-
\0.57 TSF		/			16																	
	INSE, GRAY, COARSE AND FIN	NE SAND,				7)6	17	100	\$5-7	- I	0	4	61	31	4	21	15	6	17	A 20/0		
SOME SILT,	TRACE CLAY, MOIST					/° 4		100	33-1	-		4	01	51	4	21	15	0	17	A-3a (0)) -	
l					P_{18}			\square														-
I					⊢ ⊯	5	~	\vdash												<u> </u>	_	-
I					19 - 1	7	21	78	SS-8	-	-	-	-	-	-	-	-	-	16	A-3a (V	/) -	
@19.7': LITTI	LE DOLOMITE FRAGMENTS		ø10.4	W f20.4	- 20, -	$\underline{10}$		<u> </u>												· · ·	·	_
<u> </u>	THERED DOLOMITE WITH SAI				\mathcal{H}																	
SILT, TRACE					21	₩ <u>_</u>																-
I			608,2		- 22 -	19 34	64	67	SS-9	-	35	11	20	- 34	-	NP	NP	NP	10	A-2-4 (0	- (C	
DOLOMITE.	GRAY, SLIGHTLY TO MODERA	ATELY		1)	- 23 -																	-
	D, STRONG, JOINTED - HIGHL			\land																		
	D TO FRACTURED, NARROW 1	TO TIGHT;			→ 24 →																	
RQD 7%, RE	.C 67%.				- 25 -	7		67	NQ-1											CORE		
I				$\left \right\rangle$		•		0.												00.1		
I					- 26 -																	
			603.2		- 27 -			1														
			505.2	EOB-				L	1			<u> </u>			_					<u> </u>		
l																						
NOTES: NO)NF																					
	IENT METHODS, MATERIALS, (QUANTITIES PLAC	FD 0 25 F	BAG ASPH		H. DI I	MPFD	6 CF		BENT		GRO	лл									
		GO, MATTILO. I LAU				, i, i Ul		5.01														

ROJECT: YPE:	LUC-23-11.75 ROADWAY			PERATOR: LOGGER:					CME 7						/ OFF ENT:	SET		RAMF		EX	PLORAT B-030-0	
-	SFN: N/A	DRILLING			3.5" SSA				ON DATE:		20/23				ON: 63	3.3				7.5 ft.	F	PA
TART: 2/21/23					SPT				ATIO (%):		72.9		COO							164.4750 E		1 0
	MATERIAL DESCRI			ELEV.		SP		DEC	SAMPLE	-		_	ATIO				ERBE			ODOT	 SO4	в
	AND NOTES	non		633.3	DEPTHS	RG		(%)	ID	(tsf)			FS	SI	/	LL	PL	PI	wc	CLASS (GI)	ppm	
ASPHALT - 10 IN			\sim	632.5				(/0)		((0.))	-	-			-				_		1	\otimes
AGGREGATE BA			$ \times$	631.8	·	1 —																XX M
	, BROWN, COARSE A		- 🔛			2 5							~								-	A
	ACE CLAY, DAMP (EN		L)			² 5		100	SS-1	-	0	8	71	13	2	NP	NP	NP	8	A-3a (0)	<100	
				629.9	- :	3 - 8	_5		SS-2A	-	-		-/	-	-	-	-	-	-	A-3a (V)	-	1
	, BROWN/GRAY, SAN				Ę,	4 - 1		100	SS-2B	3.50	0	11	46	39	4	NP	NP	NP	12	A-4a (2)	-	NTR
TRACE CLAY, MO @4.5': DENSE	OIST (EMBANKMENT	FILL)			-	5 18	14					~	\rightarrow				-			. ,	+	ZBZ
<u> </u>				627.8	- !	5 1 10	6 36	100	SS-3A	3.25	(-)	<u> </u>	-	-	-	-	-	-	10	A-4a (V)		- 28
					- 6	6	14		SS-3B			-	<u> </u>	- \	-	-	-	-	11	A-3a (V)		VX L MA
SILT, TRACE CLA	AY, MOIST (EMBANKI	MENT FILL)		005.0	<u> </u>	7 - 14	8 46	100	SS-4 /	/ - /	-	-	-]	~	-	-	-	-	18	A-3a (V)	-	26
				625.8	-EOB	<u></u>	<u>20</u>			\square					\rightarrow					. ,		5
										, ,		\rangle			\sim							
									$\langle \rangle$	\setminus /	. /	/										
										\sim												
									\sim		/											
									\sim	、 <												
							/															
							<			\setminus												
								7		. `	\setminus ,											
								$\langle \rangle$			\sim											
							\		7.		>											
							``	\setminus	$/ \frown$	\diagdown												
						\frown		$\langle \rangle$. /	~												
							\backslash	\backslash	/													
						\frown		\	\backslash													
								\	\backslash													
						/	1	\	>													
					$\langle \rangle$				\checkmark													
					$\langle \rangle$	\checkmark _	_															
					\sim																	
					\sim \land	\langle																
					$ \frown $	$\langle \langle$																
						$\langle \langle$																
			/			\langle																
			\langle	\langle																		
			\langle																			
			\langle	$\left\langle \right\rangle$																		
			\langle																			
			\langle		\bigcirc																	
			\langle																			
			\langle																			
			\langle																			
IOTES: NONE																						

PROJEC TYPE:			DRILLING SAMPLING					TTL / JW TL / KKC				CME CME A						I / OF ENT:			SR1	84	E)	PLORA B-031-	0-21
	105889 SFN: 4/11/23END:	N/A 4/11/23	DRILLING SAMPLING				3.25" SF	HSA PT				ON DATE: ATIO (%):		/20/2: 75.2	3		VATI DRD:	_				EOB: , 1644	25.0 f 847.7740 l	L	PAG 1 OF
		DESCRIPTION NOTES	V		ELE 646		DEPT	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAE cs		N (% si		ATT LL	PL		wc	ODOT CLASS (GI	SO4 ppm	HC SEA
VERY S	DIL - 10 INCHES STIFF, GRAY/BROWN, TRACE GRAVEL, DAM				645	5.7		- 1 - 2 -	5 9 10	24	89	SS-1	2.75	2	2	16	40	40	22	18	4	13	A-4a (8)	140	-
	STIFF. BROWN/GRAY.		"AND"		642	2.0		- 4 -	6 5 5	13	89	SS-2A SS-2B	-	-/	- 3	16	-	-	- 21	- 17	- 4	- 17	A-4a (V) A-4a (8)		
CLAY, T	TRACE GRAVEL, TRA	CE ORGANICS	6, MOIST		640	0.0			2	6	100	SS-3A	-	-	-	-	-	-	-	-	-	-	A-4a (V)	-	
	M STIFF, BROWN/GR TRACE GRAVEL, MOIS RAY		LI, "AND"					- 7 -	32		100	SS-3B	-/	1	2	9	40	48	21	18	3	19	A-4a (8)	-	
								- 9 - 10	3 1 2	4	100	SS-4	0.75	-	-	-	-	-	-	-	-	22	A-4a (V)	-	_
SOFT F	BROWN, SILT , SOME		SAND	+++	634		634.5	- 11 - - 12 -	1 1 2	4	100	SS-5A SS-5B	-	-		-	-	-	-	-	-	- 24	A-4a (V) A-4b (V)		
MOIST	M STIFF, GRAY, SILT GRAVEL, DAMP	-	-		<u>11 633</u>	5.5		- 13 -	2 3	8	33	SS-6		-	-	-	-	-	-	-	-	13	A-6b (V)	_	-
@16'. 5	STIFF, TRACE GRAVE	MOIST					/	- 15 - - 16 -	2		\square														
							\langle	17	3 4	9	100	\$S-7	1.25	-	-	-	-	-	-	-	-	22	A-6b (V)	-	-
								19 20	2 3 4	9	100	SS-8	2.00	-	-	-	-	-	-	-	-	20	A-6b (V)	-	
								21 - 22 -		13	100	SS-9	1.50	-	-	-	-	-	-	-	-	16	A-6b (V)	-	
@23.5':	VERY STIFF				621	5	-EOB	23 - 24 - 25 -	3 5 6	14	100	SS-10	2.50	-	-	-	-	-	-	-	-	15	A-6b (V)	-	

PROJECT: LUC-23-11.75	DRILLING FIRM / C			TL / CW L / KKC			L RIG	CME 7					TION	/ OF	FSET		SR18	84	EX	PLORA B-032-	ATION ID -0-21
PID: <u>105889</u> SFN: <u>N/A</u> START: <u>11/1/21</u> END: <u>11/1/21</u>	DRILLING METHO	D:	3.5" S SP	SA		CALI	BRATI	ON DATE: ATIO (%):	3/	/15/21 66		ELE		ON: 6		(NAV	′D88)	EOB:	8.5 ft. 013.5690 E		PAGE 1 OF 1
MATERIAL DESCRIPT AND NOTES	N	ELEV. 645.3	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs	ATIO FS	N (% si) CL	ATT LL	ERB	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
ASPHALT - 10.75 INCHES	X	644.4	-	 1	0																
AGGREGATE BASE - 9.25 INCHES MEDIUM STIFF, BROWN, SILT , SOME S			-	- 2 -	23	6	100	SS-1	0.50	2	5	27	58	8	26	24	2	24	A-4b (6)	340	A L ma
CLAY, TRACE CRUSHED STONE, TRACI	RON OXIDE +++	642.0	-	- 3 -	4	15	100	SS-2A SS-2B	-	-	-/	-	/_	-	-	-	-	- 9	A-4b (V) A-2-6 (V)	-	
MEDIUM DENSE, BROWN/GRAY, STON FRAGMENTS WITH SAND, SILT, AND CI (CRUSHED STONE FILL)		a 641.1	₩ 641.1	- 4 - - - 5 -	10 8 8 14	24	100	SS-3	4.00	_	\wedge	-	-	-	-	-	-	17	A-4a (V)	-	
VERY STIFF, GRAY, SANDY SILT , SOME (FILL)				- 6 -	13	10	100	SS-4	×4.5	27	4	4	33	32	25	23	2	17	A-4a (6)	-	
@5.3': HARD, SOME GRAVEL (CRUSHEI @6': GRAY/BROWN _@7.3': VERY STIFF	STONE)	636.8		- 7 - - 8 -	20 22 22 24	51	100	SS-5	4 .00		_	-	-	->	-	-	-	16	A-4a (V)	-	

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; AUGER CUTTINGS MIXED WITH 0.5 BAG BENTONITE CHIPS

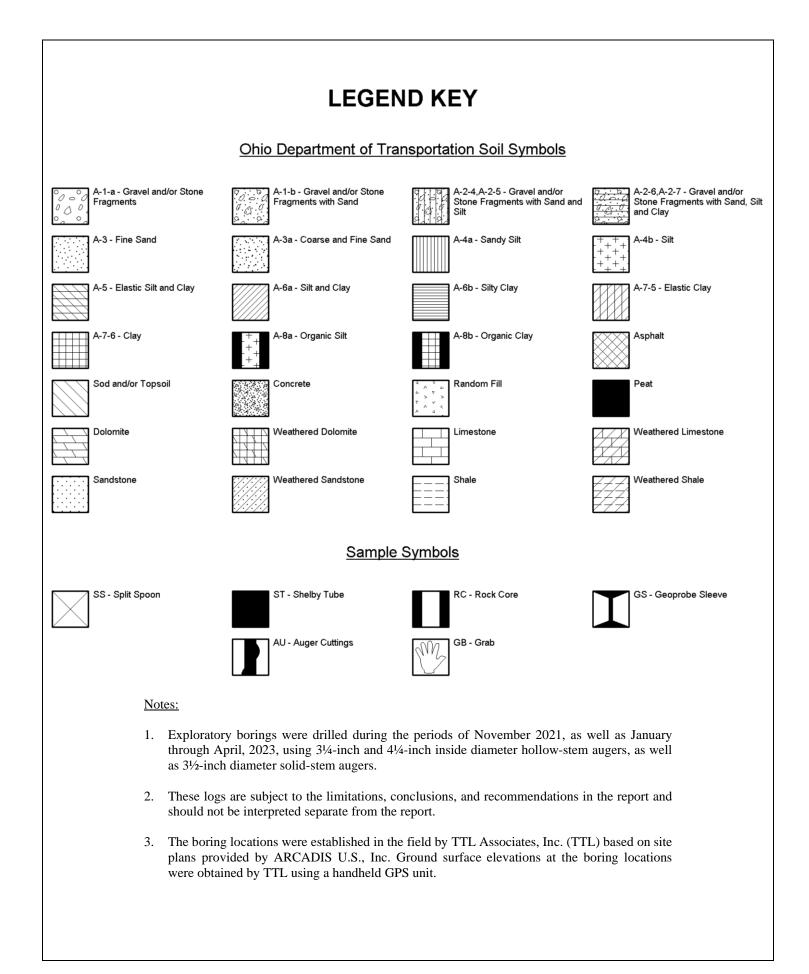
PROJECT: LUC-23-11 TYPE: ROADWAY	.75	DRILLING FIRM			TL / CW L / KKC			L RIG: MER:	CME 7				STATI			T:	SR18	34		PLORA B-033-	TION ID -0-21
PID: <u>105889</u> SFN: START: <u>11/1/21</u> END:	N/A 11/1/21	DRILLING METH		3.5" SS SP1			-		ON DATE: ATIO (%):		15/21 66		ELEVA COOR		-				8.5 ft. 349.2310 E		PAGE 1 OF 1
MATERIAL D AND N	DESCRIPTIOI NOTES	N	ELEV. 646.4	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		ATION FS S	(%) I C		TERB	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
		/】	646.2/ 645.4			_															
CONCRETE - 9 INCHES HARD, BROWN, SANDY SILT, IRON OXIDE STAIN SEAM, DA		TRACE			_ 2 _	9 8 9	19	94	SS-1	>4.5	0	1	15 4	3 4	1 26	22	4	16	A-4a (8)	-	432001 432001
@3': WET				₩ 643.4	- 3 -	11 13 13	29	100	SS-2	-	0	2	6 4	0 5	2 28	25	3	26	A-4a (8)	350	
HARD, BROWN/GRAY, SILT A	ND CLAY, LI	TTLE SAND,	641.7	-	- 4 - - 5 -	10 12 14	29	100	SS-3	4.25		\land		. -	-	-	-	18	A-6a (V)	-	
DAMP			639.9		- 6 -	6	20	100	SS-4A	4.25	\sum	-	-	. _	-	-	-	19	A-6a (V)	-	AND I A LV CON
VERY STIFF, BROWN/GRAY,	SANDY SILT,	SOME			- 7 -	10			SS-4B	1 - /	-	-	-		¥-	-	-	-	A-4a (V)	-	
CLAY, DAMP			637.9	EOB-	- 8 -	⁸ 10	22	100	SS-5	2.50			-	• \	/-	-	-	18	A-4a (V)	-	

NOTES: NONE
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; AUGER CUTTINGS MIXED WITH 0.5 BAG BENTONITE CHIPS

TYPE: ROADWA	- <u>11.75</u>	DRILLING FI							CME 7				STATI				CRES	RD	EX	PLORA B-034-0	
PID: 105889 SFN:	N/A	DRILLING M			3.5" SSA				ON DATE:				ELEV		-				8.5 ft.		PAG
START: <u>11/1/21</u> END: _	11/1/21	SAMPLING N	METHO	DD:	SPT		ENE	RGY R	ATIO (%):		66		COOF	D:	7488	351.18	370 N,	, 1645	042.3370 E	· · · · ·	10
	L DESCRIPTION D NOTES	N		ELEV. 649.0	DEPTHS	SPT/ RQD		REC (%)	SAMPLE ID	HP (tsf)			ATION FS			FERBI		wc	ODOT CLASS (GI)	SO4 ppm	B
ASPHALT - 9.5 INCHES				648.2	_	-															× M
AGGREGATE BASE - 6.5 IN				647.7		9	10		00.4		_	_	45	- 4	0.5		_			050	- M
VERY STIFF, BROWN, SAN MOIST	DY SILT, TRACI	E CLAY,			_ 2 -	9	. 18	89	SS-1	-	0	6	45 4	5 4	25	23	2	23	A-4a (3)	350	Ø Ø
@2.8': STIFF, "AND" CLAY, ⁻	TRACE IRON O	XIDE STAIN			- 3 -	6 10	22	100	SS-2	1.50	0	2	7	1 50	24	22	2	19	A-4a (8)	-	N. Q. D
					- 4 -	10							$ \leftarrow $		_				(-)		N 1 N
@4.1': VERY STIFF, BROWI	N/GRAY				- 5 -	14	31	100	SS-3	3.00	/-	\wedge	- \	- -	-	-	-	18	A-4a (V)	-	0
					6 -	11^{14}	10	400	00.4		\bigvee	/	\mathbf{i}	\mathbf{n}				47			 ■ ■
					W 642.0 7	15 21	40	100	SS-4	4.00	> -	-	- \	- \-	-	-	-	17	A-4a (V)	-	\
@7': GRAY					- 8 -	6	37	100	SŞ-5	8.50	-~	-	-	- \ -	₽-	-	-	18	A-4a (V)	-	R OI N
				640.5	EOB	<u> </u>	<u> </u>		\leftarrow		Ζľ	≥ 1							,		2
									\sum		>~										
			\langle			\sum)				>										

PROJECT: LUC-23-11.75 TYPE: RETAINING WALL	DRILLING FIRM / (SAMPLING FIRM /			TL / TB _ / KKC				CME 7				STA ALIO			FSET		RAMI	РB	E	KPLORA B-039-	-0-21
PID: 105889 SFN: N/A	DRILLING METHO	-	3.25" HSA					ON DATE:		20/23	3			_					35.0		PAGE
START: <u>2/24/23</u> END: <u>2/24/23</u> MATERIAL DESCRIPTION	SAMPLING METHO	ELEV.	SPT / ST		SPT/			ATIO (%): SAMPLE		72.9		COC		_	-	05.26 ERBI		, 1644 	118.7100 ODOT	<u> </u>	-
AND NOTES		636.2	DEPTH	IS	RQD	N ₆₀	(%)	ID	(tsf)			FS) CL			PI	wc	CLASS (GI		
ASPHALT - 5.5 INCHES		635.7																			- XXXX
AGGREGATE BASE - 11.5 INCHES		634.8		- 1 -	6															_	_
MEDIUM DENSE, BROWN, FINE SAND, TRA	ACE SILT,			- 2 -	9 8	21	78	SS-1	-	-	-		-	-	-	-	-	12	A-3 (V)	-	
TRACE CLAY, MOIST	FS			- 3 -									\rightarrow								
		632.0	-	- , ,	4						\frown	\square								-	-
STIFF, BROWN, SANDY SILT, LITTLE CLAY	/ WET	. 032.0		_ 4 _	ີ 3ຸ	9	100	SS-2	1.50	-/	-	-\	-	-	-	-	-	23	A-6b (V)	-	
	,		-	- 5 -	4					$\left\langle -\right\rangle$	\wedge		$\overline{}$								-
				- 6 -	5				$\vdash \land$	\mathbb{N}		\rightarrow								_	_
				- 7 -	5	15	100	SS-3 /	2.25⁄	o	6	31	44	19	20	14	6	24	A-4a (6)	-	
@7': VERY STIFF			-	- ' 4	7_				\vdash				\rightarrow		\succ						_
		627.8		- 8 -				$ \longrightarrow$	ľ	\square	\rightarrow			\sim						_	_
VERY STIFF, GRAY, SILT AND CLAY , LITTL TRACE GRAVEL, MOIST	E SAND,		-	- 9 -	4 5	13	100	SS-4	2,50	-/	-	-	-	-	-	-	_	15	A-6a (V)	- 1	
				— 10 –	6			\rightarrow											, ,		_
										\setminus											
@11': BROWN/GRAY, DAMP, Qu = 32.5 PSI	= 2.34 TSF	1																			
				- 12 -		$ \rangle$	29	ST-5	2.75	6	>8	10	26	50	26	15	11	13	A-6a (8)	-	
		622.7	-	- 13 -		\vdash	\rightarrow	$\overline{}$		ĻΜ										-	-
HARD, GRAY, SANDY SILT, LITTLE CLAY, 1	IRACE	1	1 [- 14 -	46	- \	25	/ss-6/~	- /	-	-	-	-	-	-	-	-	8	A-4a (V)	-	
ROCK FRAGMENTS, DAMP		621.2	W <u>f</u> 21.2	- /			V Y														
DOLOMITE, GRAY, MODERATELY TO HIGH		-					\setminus	\langle													
WEATHERED, MODERATELY STRONG, VE FRACTURES, JOINTED - HIGHLY FRACTUR		619.5		- 16 -				\backslash													
FRACTURED, NARROW TO TIGHT; RQD 09		_		∠ 17 -	48														00055		
100%.		4		\geq_{18}	48		-100	/NQ2-1											CORE		
DOLOMITE , GRAY, SLIGHTLY WEATHEREI STRONG, JOINTED - FRACTURED TO MOD		-		- ~ 19 -		<u> </u>	/														
FRACTURED, NARROW TO TIGHT; RQD 81				-\	\backslash																
100%. @16.7': Qu - 16,730 PSI				_ 20	$\overline{}$																
@20': Qu - 15,670 PSI	\square	614.7		-\21 -	$\langle \rangle$																
DOLOMITE, GRAY, MODERATELY WEATH			$1 \setminus [$	- 12 -	\checkmark																
STRONG, JOINTED - HIGHLY FRACTURED FRACTURED, NARROW TO TIGHT; RQD 09		613.4	-) E	-) 23	47		90	NQ2-2											CORE		
100%.		1\ `		-/ 📕																	
DOLOMITE, GRAY, MODERATELY WEATH		\perp	$ \vee $	<u> /</u> 24 –																	
VERY STRONG, JOINTED - FRACTURED TO		1 `		- 25 -																	
MODERATELY FRACTURED, NARROW TO 59%, REC 93%.		-	$ \vee $	- 26 -																	
	\square																				
@27': Qu - 19,820 PSI		1		- 27 -	58		100	NQ2-3											CORE		
		607.7		- 28 -																	
DOLOMITE, GRAY, MODERATELY WEATH		1		- 29 -																	
STRONG, JOINTED - HIGHLY FRACTURED FRACTURED. NARROT TO TIGHT: RQD 28		606.2	1 1	- 30 -																	_
100%.		1		- ~ -														1			

PID: 105889	SFN: N/A	PROJECT:	L	UC-23-11	1.75	STAT	ION / C	FFSE	T:			_	STAR	T: <u>2/24</u> /	23	END:	2/2	24/23	6F	G 2 OF 2	B-039-	-0-21
	MATERIAL DESCRIPTIO	ON		ELEV.	DEPTHS		SPT/ RQD	N ₆₀	REC (%)	SAMPLE				ATION (FERBE	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
STRONG, JOIN	AND NOTES RAY, SLIGHTLY WEATHER ITED - FRACTURED TO MO NARROT TO TIGHT; RQD 5 7,910 PSI	ODERATELY		605.2 601.2		32 - 33 - 34 -	58		85	ID NQ2-4	(tsf)	GR	CS	FS SI	CL	LL		Ы	wc	CORE	ppm	
NOTES: NON	Ε																					


ID: I	PROJECT: TYPE:	LUC-23-2 RETAINING V		DRILLING FIF							CME 7				STATIO ALIGNM				Ramf	РВ	EX	PLORA B-039-1	1-21
MATERIAL DESCRIPTION AND NOTES ELEV. (36.4 DEPTHS SPUE ID IE COUNC. ATTERBERG (BR CS FS SI CL LL PL PI WC CLASS (G) SO4 SPM HD SEE LOG FOR B-039-0-21 636.4 1 1 -														3				-				·	
SEE LOG FOR B-039-0-21 -1 - <td>START: <u>2/24</u></td> <td>MATERIAL</td> <td>DESCRIPTION</td> <td></td> <td>ETHO</td> <td>ELEV.</td> <td></td> <td>SPT/</td> <td>N</td> <td>REC</td> <td>SAMPLE</td> <td>HP</td> <td>G</td> <td></td> <td>DATION (9</td> <td>%)</td> <td>AT</td> <td>TERBI</td> <td>ERG</td> <td></td> <td>ODOT</td> <td> </td> <td>HOLI</td>	START: <u>2/24</u>	MATERIAL	DESCRIPTION		ETHO	ELEV.		SPT/	N	REC	SAMPLE	HP	G		DATION (9	%)	AT	TERBI	ERG		ODOT	 	HOLI
VERY STIFF, GRAY, SILT AND CLAY , LITTLE SAND, TRACE GRAVEL, MOIST @10.0-10.5': UU TRIAXIAL: C = 18.5 PSI = 1.33 TSF @10.5-11.0': CONSOLIDATION: Cc = 0.09, Cr = 0.018, eo	SEE LOG FOF					000.4																	
@10.5-11.0': CONSOLIDATION: Cc = 0.09, Cr = 0.018, eo $10.5-11.0$			ID CLAY, LITTL	LE SAND,		628.0	- 9 -	-						\geq									_
						625.4	-			92	ST-1	3.50	4	5	12 22	57	26	14	12	14	A-6a (9)	-	
)														
NOTES: OFFSET 5 FT NORTH OF B-039-0-21 TO OBTAIN A SHELBY TUBE SAMPLE.							AG ASPHALT PA	TCH; PL	IMPED) 3 CF	CEMENT-I	BENT	ONITE	GRO	JUT								

SAMPLING FIRM / L DRILLING METHOD SAMPLING METHOI V D, LITTLE): D: ELEV 641.1 640.4 639.7		РΤ	SPT/ RQD	CALI ENEF	BRATI	CME A ON DATE: ATIO (%): SAMPLE ID	/: 7	20/23 72.9 G		ELEV COOF	ATION RD:	AT	(NA\ 267.25 TERB	530 N ERG	EOB: , 1644	7.5 ft. 133.1040 E ODOT CLASS (GI)	— I .	PAGI 1 OF BAG
SAMPLING METHOI	D: ELEV. 641.1 640.4 639.7	SF		RQD	ENEF	RGY R	ATIO (%): SAMPLE	HP	72.9 G	GRAD.	COOF ATION	RD:	7492 AT	267.25 TERB	530 N ERG	<u>, 1644</u>	133.1040 E	 SO4	ВА
V D, LITTLE	ELEV. 641.1 640.4 639.7		rhs 1	RQD		REC	SAMPLE	HP	Ģ	RAD	ATION	(%)	AT	TERB	ERG		ODOT	 SO4	BA
D, LITTLE	641.1 640.4 639.7	DEPT	- 1 -	RQD	N ₆₀			L F				<u> </u>					ODOT CLASS (GI)		BA
	640.4 639.7					(%)	U	(tst)	GR	CS	FS	SI C		PL	Ы	WC		ppin	
	639.7																		
				<u> </u>															×
			- 2 -																N N N
/ [][[[[3	10	89	SS-1	-	0	6	76	6 2	2 NP	NP	NP	18	A-3a (0)	<100	
/ [][[[[- 3 -	4					-			-					- (-)		- 7
/ [][[[[5	17	100	SS-2	-	-	/-		- -	. _	-	-	8	A-3a (V)	-	VTR
/ [][[[[636.4			7					_4										- 10
			- 5 -	7 7	22	100	SS-3A SS-3B	1.50	21	8		- <u> </u>		18	<u>↓ -</u> 3	18	<u>A-3a (V)</u> A-4a (6)	^	A B A
-, -, -, , , , , , , , , , , , , , , ,			6	L '11		100	33-30	1.50	41	0	<u> </u>		/ 21	10	3	10	A-4a (0)	-	
				9	11	100	SS-4	2.50	>	-	_ \			_	-	22	A-4a (V)	_	47 X 4
	633.6	—ЕОВ—	- 7 -	4 5		100	00-4	2.50	-	-	-		<u> </u>	-	-	22	7-4a (V)	-	X
									7										

105889 SFN: N/A DRILLING METHOD: 3.5" SSA CALIBRATION DATE: 2/20/23 ELEVATION: 646.8 (NAVD88) EOB: 7.5 ft. PA RT: 2/21/23 END: 2/21/23 DRILLING METHOD: SPT ENERGY RATIO (%): 72.9 ELEVATION: 646.8 (NAVD88) EOB: 7.5 ft. PA MATERIAL DESCRIPTION AND NOTES ELEV. DEPTHS SPT/ RQD N ₆₀ REC (%) SAMPLE HP GRADATION (%) ATTERBERG ODOT SOUTH		ROADWA	11.75 Y						<u>TTL / TE</u> TL / KK0				CME 7				STAT				RAM	PR		PLORA ⁻ B-041-0	
T. 22/123 SMMELLING METHOD SPT ENERGY RATIO (%); 72.0 COORD: 74680.2750.H164H17.8202E 1 MAIN ANDES HALL DESCRIPTION AND NOTES HELV DEPTHS RVT No (%) D 1 GR ANDRONN (%) LL V. PR PR GR ANDRONN (%) LL V. PR PR GR ANDRONN (%) LL V. PR PR GR ANDRONN (%) LL V. A	105889									<u> </u>									-				7.5 ft.		PA
MATERIAL DESCRIPTION AND NOTES ELV. 566.8 DEPTHS SPT 60.9 N RCC SMIP LE (N) IP ORADINO (%) ATTERBENC ALL TO INCHES MALT. TO INCHES 440.0 1																			-						10
AND NOTES Bd.8 DEP INS ROD No (%) ID (%) (%) ID (%)				N			ELEV.			SPT/		DEC				GRAD	ATION	(%)				-			В
HALT-10 INCHES BECORVIN; COARSE AND FINE SAND, ISE, CIRAV/ORC/VIN, COARSE AND FINE SAND, ISE, CIRAV/ORC/VINC/SAN/ ISE, CIRAV/								DEP	THS		N ₆₀							<u> </u>							Ĩ
SREGAT BASE - / INCHES 0 <td>HALT - 10 IN</td> <td>ICHES</td> <td></td> <td></td> <td></td> <td>\times</td> <td></td> <td></td> <td>L</td> <td>_</td> <td></td> <td>\otimes</td>	HALT - 10 IN	ICHES				\times			L	_															\otimes
SE GRAVERCIVN, COARSE AND FINE SAND, 13: MEDIUM DENSE, BROWN, TRACE GRAVEL 4: 3INCH GRAVEL SEAM Y THF, GRAV, SANDY SLT, SOME GRAVEL, EROWNUGRAY COB COB COB COB COB COB COB COB	REGATE BA	ASE - 7 INCH	IES			- XX			- 1 -	_															× v
LE SILT TRACE CLAY, MOIST 3: MEDIUM DENSE, BROWN, TRACE GRAVEL 4: 3MCH CRAYS, SANDY SILT, SOME GRAVEL 4: 00 633 351 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	SE, GRAY/B	BROWN, CO	ARSE AND FIN	IE SAN	ID,				 2 -		10	00	00.4									10	A 0 - (1.0		S.
3: MEDIUM DENSE, BROWN, TRACE GRAVEL 4: 3-INCH GRAVEL SEAM YSTIFF, GRAV, SANDY SILT, SOME GRAVEL, E CLAY, MOIST B ROWNIGRAY H CLAY, MOIST B ROWNIGRAY H CLAY, MOIST B ROWNIGRAY H CLAY, MOIST B ROWNIGRAY H CLAY, MOIST H C	E SILT, TR	ACE CLAY, I	MOIST						F	4 4	10	83	55-1	-	-	-		-	- -	-	-	13	A-3a (V)	-	A.
4: 3-INCH GRAVEL SEAM # CLAY, MOIST BROWNIGRAY BROWNIGRAY 		DENSE BRO	WN TRACE	GRAV/F	-1				F	6	10	100	66.2		1	6	56		2 NE			10	A 20 (0)	170	AB
A: JHICH GRAVEL SAME WITH GRAVEL SAME SALE ECONVINGRAY 639.3 CONVINGRAY 5 6 6 7 6 6 9 15 15 15 15 15 15 15 15 15 15							642 1	W 642	1 - 4			100		-		/22	20	19 .				10	. ,		R
EROWINGRAY BROWIN						_/ hinii	012.1	W 072.			27	70	<u>SS-3A</u>	<u>∧</u> ∕	/	X	- >	-		<u> </u>					N.M.
			SILT , SOME G	GRAVEL	L,			_				12	SS-3B	2.00	33	//	4	26 3	30 23	19	4	20	A-4a (4)	-	
									+ °	15		04	561	2 50			X					22	A 40 (V)		107
		011					639.3	EOB-	- 7 -	14 14	54	94	33-4	3.50	-	-	- `		- / -	-	-	22	A-4a (V)	-	R
E. NOME								200							\wedge				\checkmark						
E: NOME													$\langle \langle \langle$	< /	/ ,	/									
E: NOME														\sim											
E: NOME														~											
E: NOME															/										
E: NOME													\backslash	•	<										
E: NME													\backslash	、 · ·	$\langle \rangle$										
E: NOME														<u>`</u>											
ES: NONE											\frown			\mathbf{i}											
ES: NOME													<												
ES: NOME											\langle					\backslash									
ES: NONE												~		```	\backslash	>									
E: NME												\sim			\backslash										
ES: NOME															\sim										
ES: NONE													/ ~		7										
ES: NONE											\	$\langle \rangle$		\diagdown /											
ES: NONE									/	\frown		\setminus \vee	· /	~											
ES: NONE												\backslash													
ES: NONE									/	\sim '	١		\langle												
ES: NONE									/ /)		\backslash												
ES: NONE)	/		\backslash												
ES: NONE																									
ES: NONE										/ -		$ \rightarrow $	\checkmark												
ES: NONE								\backslash	\sim																
ES: NONE								```				\checkmark													
ES: NONE							/	\frown	\backslash	\langle															
ES: NONE								\sim	\backslash	\backslash															
ES: NONE							/	_	$\langle \rangle$	\backslash															
ES: NONE						/	/ /		$\langle \rangle$	$\langle \rangle$	、														
ES: NONE								\backslash	\backslash	\setminus /	/														
ES: NONE						/	\langle	\backslash		\sim															
ES: NONE							\backslash	```																	
ES: NONE						\backslash																			
ES: NONE							$\langle \rangle$	`																	
ES: NONE							\backslash	\setminus /	<pre>/</pre>																
ES: NONE							\backslash	\backslash																	
ES: NONE							\backslash	\sim	/																
ES: NONE								< /	/																
ES: NONE								\setminus /																	
ES: NONE								\sim																	
ES: NONE																									
ES: NONE																									
ES: NONE																									
ES: NONE																									
ES: NONE																									
ES: NONE																									
ES: NONE																									
ES: NONE																									
ES: NONE																									
TES: NONE																									
	-S NONE																								_
NDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.25 BAG ASPHALT PATCH; AUGER CUTTINGS MIXED WITH 0.5 BAG BENTONITE CHIPS			MATERIAL	<u></u>						TOL: 1:			100.0			D / 2									

PROJECT: LUC-23-11.75 TYPE: RETAINING WALL	DRILLING FIRM / (SAMPLING FIRM /			L / CW / KKC	- 1	L RIG: 1MER:	CME 7				STA [®] ALIG			FSET		Ramf	РB	E	XPLORA B-043	-0-21
PID: 105889 SFN: N/A	DRILLING METHO		3.25" HSA /		- 1		ON DATE		20/2				-					37.7		PAGE 1 OF 2
START: <u>3/9/23</u> END: <u>3/9/23</u> MATERIAL DESCRIPTION	SAMPLING METH	OD:	SPT / ST /		-	-	ATIO (%): SAMPLE		72.9	GRAD			_	-	ERBI		, 1644 I	211.9050		-
AND NOTES	v	647.6	DEPTH	S SPT RQE		(%)	ID	(tsf)			FS	SI	/		-	PI	wc	ODOT CLASS (G) SO4	
ASPHALT - 9 INCHES	\otimes	646.8																		
AGGREGATE BASE - 7 INCHES		646.3	1 1	- 1 _5	-														-	
MEDIUM DENSE, GRAY/BROWN, COARSE SAND , LITTLE SILT, TRACE CLAY, MOIST	AND FINE	644.6	-	- 2 - 5	6 6	100	SS-1	-	-	-		-	-	-	-	-	14	A-3a (V)	-	_
HARD, GRAY/BROWN, SANDY SILT , "AND" DAMP	CLAY,			$-4 - \frac{12}{22}$	53	100	SS-2	-	0⁄	1	5	38	52	22	17	5	11	A-4a (8)		-
		641.6		- 5 - 2	2				$\left\langle \right\rangle$		$\overline{}$	$\overline{\}$								-
VERY STIFF, BROWN/GRAY, SILT , SOME S LITTLE CLAY, TRACE GRAVEL, DAMP	SAND, +++ +++ +++	+ + +		- 6 - 8 - 7 - 10	8 22	100	SS-3	-	1	2	19	59	19	21	18	3	16	A-4b (8)	-	
	+ + + + + + + + + + + + + + + + + + + +	639.1		- 8 -				\backslash					\searrow							
MEDIUM STIFF, GRAY, SANDY SILT , "AND" WET	"CLAY,			- 9 - ¹ - 10	2 4	100	SS-4	0,50	9	2	10	44	44	29	21	8	27	A-4a (8)	-	
		636.6	_ ⊦																	
DENSE, GRAY/BROWN, COARSE AND FINE LITTLE SILT, TRACE GRAVEL, TRACE CLA ^Y		004.0		- 11 - 9 - 12 - 12 _ 12	5 33	94	SS-5	-	-	>-	-	-	-	-	-	-	20	A-3a (V	-	
VERY STIFF, BROWN, SANDY SILT , "AND" MOIST	CLAY,	634.6		- 13 - 14 ⁷	+		\geq													-
				15	4 30 \	100	SS-6	3:50	0	2	6	40	52	25	19	6	19	A-4a (8)	-	_
MEDIUM STIFF, GRAY, SANDY SILT, "AND"	" CLAY	631.6		16 6)	+	$ \land $													-
MOIST Qu = 7.7 PSI = 0.55 TSF		629.6		- 17 - 6 - 18 -	/ 13 5	100	\$S-7	0.75	0	2	6	40	52	24	18	6	21	A-4a (8)	-	-
STIFF, GRAY, SILT AND CLAY, LITTLE SAN	ND, MOIST		1 \F	6	+	\vdash														_
			F	- 19 - 4	6 12	100	SS-8	1.75	0	4	12	28	56	30	19	11	22	A-6a (8)	-	
		626.9	627.0																	
GRAY, SANDY SILT , SOME CLAY, TRACE C \WET	/ 1//1		4 🔨 É		4		ST-9A		-		-	-	-	-	-	-	23	A-4a (V	-	
VERY STIFF, GRAY, CLAY , SOME SILT, TR. TRACE GRAVEL, MOIST	ACE SAND,	624.1		- 22) - 23		100	ST-9B	3.00	1	2	5	24	68	42	22	20	30	A-7-6 (12	2) -	
HARD, GRAY, SILT AND CLAY , SOME SAN GRAVEL, DAMP	D, TRACE	024.1		24 - 9 22	67	100	SS-10	4.50	4	6	15	26	49	32	19	13	12	A-6a (9)	-	
		1	\mathbb{N} /F	- 25 - 3	y															
		619.9		- 26 - 11 - 27 - 27 - 50/2	-	100	SS-11	4.50	-	-	-	-	-	-	-	-	11	A-6a (V	-	
DOLOMITE, GRAY, MODERATELY TO HIGH WEATHERED, STRONG, VUGGY, JOINTED) - HIGHLY 🛛 📈			- 28 - - 29 -																
FRACTURED TO FRACTURED, NARROW T RQD 27%, REC 100%. @30.3': Qu - 21,350 PSI		618.1		- 30 - 30		75	NQ2-1											CORE		

PID: 105889 SFN:N/A	PROJECT:	LL	JC-23-11.7	75	STAT	ION / C	FFSE	T:		 s	TAR	T:3/	9/23	E	END:	3/	9/23	P	PG 2 OF 2	B-043	-0-21
MATERIAL DESCRIPT AND NOTES	ION		ELEV.	DEPTH	S	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GRAD	ATION FS) CL		ERBE	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALE
DOLOMITE, GRAY, SLIGHTLY WEATHEI STRONG, JOINTED - FRACTURED TO M FRACTURED, NARROW TO TIGHT; RQE (61%. (continued) DOLOMITE, GRAY, SLIGHTLY TO MODE WEATHERED, VERY STRONG, SHALEY JOINTED - FRACTURED TO MODERATL (WITH HIGHLY FRACTURED ZONES), N TIGHT; RQD 28%, REC 55%. @32.7': Qu	Ioderately 32%, REC Erately Laminae, Ey Fracted Arrow To		616.6 614.9 609.9	- - - - - - - - - - - - - - - - - - -	- 32 - - 33 - - 34 - - 35 - - 36 - - 37 -	28		55	NQ2-2	GI			>						CORE		-
NOTES: NONE																					

APPENDIX A

Embankment Evaluations

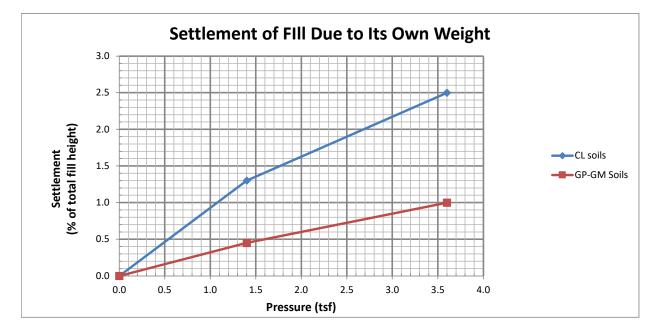
(Including GB-2 Special Benching Diagrams)

TTL Project No	. 2065201						
LUC-23-11.75							
Max New Emb	ankment Heights						
CPI - 5/8/23							
Algnment	Approximate Station	Nearest Boring(s)	Fill Height (ft)	Notes	GSE (ft)	Rock Elev. (ft)	Depth to Rock (ft)
		B-006-0/B-006-1 Crest					
Monroe St	178+00	B-008-0 Toe	7	Rear Abut: Embankment widening/sidehill fill. New 4:1 Slopes	640	617.5	22.5
		B-010 Crest					
		B-008-0/ B-014-0/					
Monroe St	183+00	B-014-1 Toe	7	Fwd Abut: Embankment widening/sidehill fill. New 4:1 Slopes	644	615.5	28.5
		B-013-0/B-026-0/					
Monroe St	190+00	B-026-1	10	Max Fill: Embankment widening/sidehill fill. New 4:1 Slopes	626	613	13
		B-026-0/B-026-1/		Max Fill: Full Width Embankment with 4:1 Slopes to left and 2:1 Slopes			
Ramp A	24+00	B-014-0/B-014-1	16	to right	621	613	8
				Rear Abut: Full Width Embankment with 6:1 Slopes to left and 2:1			
Ramp A	31+45	B-028-0/B-028-1	13	slopes to right	618	608	10
Ramp A	32+75	B-029-0	10	Fwd Abut: Full Width Embankment with 2:1 slopes to left and right	620	609.5	10.5
	02170	B-026-0/B-026-1/		Max Fill: Full Width Embankment with 2:1 Slopes to left and 6:1 Slopes	020		20.0
Ramp B	23+00	B-014-0/B-014-1	8	to right	630	613	17
		B-017-0 Crest		Sliver fill left side. Embankment widening/sidehill fill to right with 2:1			
Ramp C/D	15+00	B-021-0 Toe	12	slope	624	612	12
• •				Max Fill: Full Width Embankment with 8:1 slope to left and 2:1 slope to			
Ramp D	21+50	B-021-0 and B-022-0	20	right	615	608	7
				Rear Abut: Full Width Embankment with flat slopes to left and 2:1			
Ramp D	22+97	B-022-0 and B-022-1	18	slopes to right	618	608	10
		B-022-2/B-022-3 and		Fwd Abut: Widen of Mainline/Ramp D to Right with flat slope to left to			
Ramp D	24+87	B-023-0	19	upper elevation and then 2:1 Slope to right	615	603	12

IENT OJE	-	IUMBER_10	5889			-)	67 from	GPMTOS	sh 420-4				N/A	****		
				AHAIPS	7											
		0 <u>5</u> 0) 10	00 15	50	200	250	30	0 3:	50	400	450	500 :	550	600 :	1
6	55		_		B-010-0-											655
6	50		PI 2	NGO HP	MC	21 			MUNI							650
			3	13 3.0	14	Er	abcalant E.11		5)~.1 E.Y. 6.5E	83700						
6	45			302.75	13	F	643	5 87	= 128 87125	And the owner of the owner						645
6	40		4	29-	70	Fr	FILL 640	y 7)	1	12): 120	Tishe (24)					640
6	35		1	6 1.25	Zo	7	635 (QV=).08	3)-70=1	080pst	c= c	003 7 B-014	-1-21 		PI	0.05
0	35	B-008-0	D-21	12 0.5		Z	633)	87=12	4): 118-759	= 865		11 0,	75-21-	5	635
6	30	12:5/18	1.275	101.5			630 (3	(HP) C=	500 7.92	= 0320		300	1B.2.	25 19		630
1 1 6	25	\$1.7522	627.3	8 2.15	17		625 (Ð	81/260=	8/=115	54	2.6.8	712.50	24 000111	541	625
11		394.512		2 57 3.25			A	2,60	2 90		R=16840	621.0	1B 2.	0 14 QU=		020
	20	SR- 7	619.3				E) Na	:73 (527)		·		1909,9 Term 15'	Б		620
6	15	SR - 4	⊻	55R 74.5	7	<u> </u>	615.6		C=45	2-12.fr	om ayer eb	0 500	101111			615
									Pc	29,14	5					
6	10															610
6	05															605
6	00		4									· <u>·</u> ·····				600
50	95				- 4	1										595

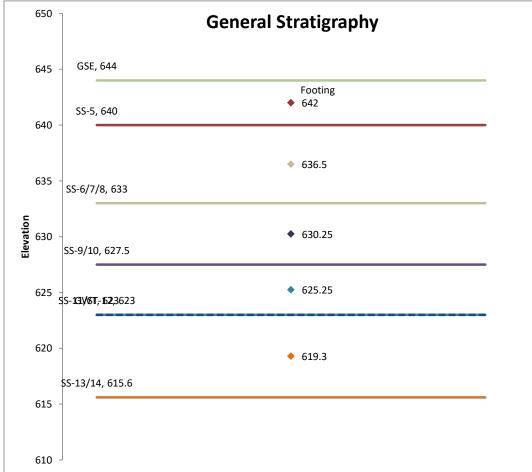
TTL Project No. 2065201 LUC-23-11.75 Monroe St 183+00 (Forward Abutment) Settlement due to Self Weight CPI - 6/28/23

Fill Ht (ft):	7
Clay Fill Unit Wt (pcf):	130
Average pressure (at center of fill height) (psf):	455
Average pressure (at center of fill height) (tsf):	0.23
Settlement (% of original Height):	0.21
Settlement (fraction of original height):	0.002113
Settlement (inches):	0.18


clays of low to medium plasticity (CL)

pressure typical value of compression - (percent of total fill height)

0	0
1.4	1.3
3.6	2.5


Poorly Graded Gravel with sand and silt (GP-GM)

0	0
1.4	0.45
3.6	1

	Project Nan Project Nur Calculated I	nber:	2065201 LUC-023-1 CPI	1 75	-	ng Number nalysis Type		onsol Resu		For pc, see subsurface diagram and hand calcs.						
Layer	H	C _r	e _o	sigma v	Z (faat)	b (feet)	<u>(z-Df)</u>	I _z	delta p@	910	psf	(check) sigma v+ΔP	delta H (inches)	C'	delta H	

-	(feet)	-	-	(pst)	(feet)	(feet)	b	_	-	-	Sigilia VTOP	(inches)		w/C
SS-5	4	0.011	0.50	250	2	0	#DIV/0!	1	910		1160		250	0.13
SS-6/7/8	7	0.022	0.67	934	7.5	0	#DIV/0!	1	910	pc=8300 psf	1844	0.33	0	#DIV/0!
SS-9/10	5.5	0.028	0.81	1698	13.75	0	#DIV/0!	1	910	pc=8300 psf	2608	0.19	0	#DIV/0!
SS-11/ST-12	4.5	0.015	0.42	2336	18.75	0	#DIV/0!	1	910	pc=16,800 psf	3246	0.08	0	#DIV/0!
SS-13/14	7.4	0.009	0.32	2932	24.7	0	#DIV/0!	1	910	pc=29,000 psf	3842	0.07	0	#DIV/0!

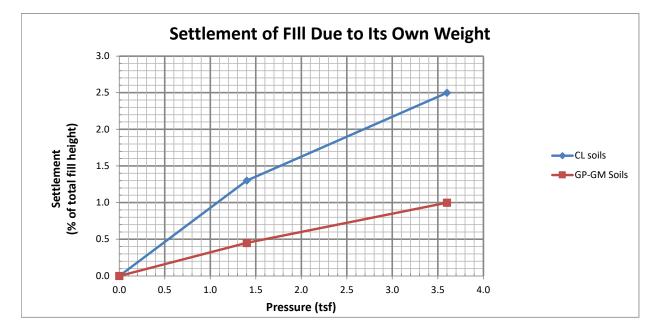
		-	/
3842	0.07	0	#DIV/0!
Total delta H			
(in.)	0.80		#DIV/0!
+15%	0.92		#DIV/0!
-15%	0.68		#DIV/0!
	OKAY		

Total Settlement 3/4 to 1 inch

Project Number:	2065201			Bori	ng Number	B-010-0-21												
Project Name:	LUC-023-11	75		An	alysis Type													
Calculated by:	CPI	6/18/20)23			Embankme	nt Fill	-										
T:\Projects\2065201 - Arcadis	- LUC-023-11 75 -	Sylvania Ohio\E	aluations	\Embankment S	Settlement\[04	2065201 Monro	e Street 183+00) B-010-0.xl	sx]output									
G (assumed)	2.7																	
GSE	644																	
GWT	623																	
Bearing Elev	644		Embar	nkment fill "	Bearing" or	existing GS	Ε											
D _f		130	pcf Ma	iterial														
		7	ft Fill															
Р	910	psf				γ _T (pcf)	γ _d (pcf)]										
Rig	ER 66						0											
						0		4										
									w at C (%)		Depth of							1
		Centroid		z below	z below				(or		Influence							1
	Bot. Elev.	(C) Elev.	H (ft)	footing	GSE	γ _⊤ (pcf)	γ _d (pcf)	H _{GWT-C}	C _r x1000)	eo	$= (z-D_f)/B$	Ιz	σ_{v}' (psf)	N'/N	N _m	N60	N'	C'
SS-5	640	642	4	2	2	125	113	-19	11	0.50	#DIV/0!	1	250	2.57	26	29	75	250
SS-6/7/8	633	636.5	7	7.5	7.5	124	102	-13.5	22	0.67	#DIV/0!	1	934	1.39			0	
SS-9/10	627.5	630.25	5.5	13.75	13.75	120	94	-7.25	28	0.81	#DIV/0!	1	1698	0.97			0	
SS-11/ST-12	623	625.25	4.5	18.75	18.75	137	119	-2.25	15	0.42	#DIV/0!	1	2336	0.89			0	
SS-13/14	615.6	619.3	7.4	24.7	24.7	140	128	3.7	9	0.32	#DIV/0!	1	2932	0.82			0	

TTL Project No. 2065201 LUC-23-11.75 Ramp A Rear Abutment Settlement due to Self Weight CPI - 6/25/23

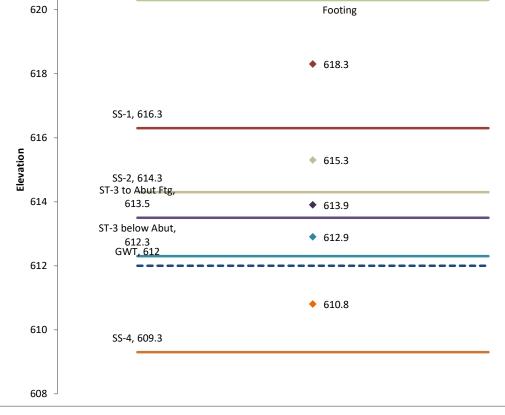
Fill Ht (ft):	13
Clay Fill Unit Wt (pcf):	130
Average pressure (at center of fill height) (psf):	845
Average pressure (at center of fill height) (tsf):	0.42
Settlement (% of original Height):	0.39
Settlement (fraction of original height):	0.003923
Settlement (inches):	0.61


clays of low to medium plasticity (CL)

pressure typical value of compression - (percent of total fill height)

0	0
1.4	1.3
3.6	2.5

Poorly Graded Gravel with sand and silt (GP-GM)


0	0
1.4	0.45
3.6	1

Project Name:	2065201	Boring Number B-028-0-21
Project Number:	LUC-023-11 75	Analysis Type 0
Calculated by:	CPI	C <mark>onsol Results</mark>

Layer	H (feet)	C _r	e _o	sigma v (psf)	z (feet)	b (feet)	<u>(z-Df)</u> b	I _z	delta p@	1690 psf	(check) sigma v+∆P	delta H (inches)	C'	delta H w/C'
SS-1	4	0.012	0.52	250	2	0	#DIV/0!	1	1690		1940	0.34	156	0.27
SS-2	2	0.013	0.59	620	5	0	#DIV/0!	1	1690		2310	0.11	0	#DIV/0!
-3 to Abut I	0.8	0.034	0.85	790	6.4	0	#DIV/0!	1	1690	pc=5400 psf	2480	0.09	0	#DIV/0!
-3 below At	1.2	0.034	0.85	915	7.4	0	#DIV/0!	1	1690	pc=5400 psf	2605	0.12	0	#DIV/0!
SS-4	3	0.021	0.70	1095	9.5	0	#DIV/0!	1	1690		2785	0.18	46	0.32
	622 General Stratigraphy GSE, 620.3										Total delta H (in.) +15%	0.91		#DIV/0! #DIV/0!
	620 -					Footing	-		-15%	<mark>0.77</mark> Okay		#DIV/0!		
	618 -					♦ 618.3				Total Settleme 3/4 to 1 inch	ent			

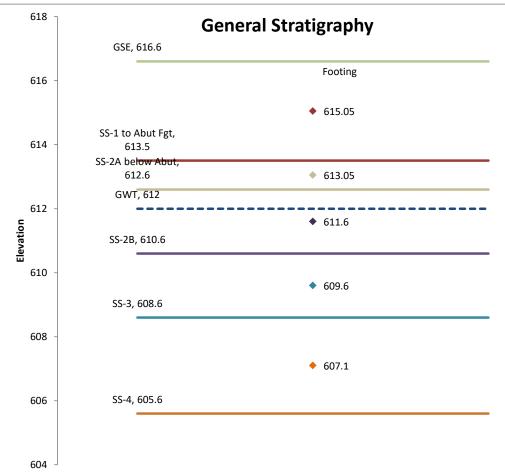
no downdrag	
r	no downdrag

Project Number:	2065201		Bori	ng Number	B-028-0-21													
Project Name:	LUC-023-11	75		An	alysis Type													
Calculated by:	CPI	5/30/20)23			Embankme	ent Fill											
T:\Projects\2065201 - Arcadis	- LUC-023-11 75 -	Sylvania Ohio\E	valuations	Embankment S	Settlement\[06	2065201 Ramp	A Rear Abutmer	it B-028-0.x	lsx]output									
G (assumed)	2.7																	
GSE	620.3																	
GWT	612																	
Bearing Elev	620.3		Embar	nkment fill "	Bearing" or	n existing GS	SE											
D _f		130	pcf Ma	aterial														
		13	ft Fill						Consol Tes	t Resul	ts							
Ρ	1690	psf				γ _T (pcf)	γ _d (pcf)											
Rig			ER	90			0											
						0												
									w at C (%)		Depth of							
		Centroid		z below	z below				(or		Influence							
	Bot. Elev.	(C) Elev.	H (ft)	footing	GSE	γ _T (pcf)	γ _d (pcf)	H _{GWT-C}	C _r x1000)	eo	$= (z-D_f)/B$	Ιz	σ _v ' (psf)	N'/N	N _m	N60	N'	C'
SS-1	616.3	618.3	4	2	2	125	112	-6.3	12	0.52	#DIV/0!	1	250	2.57	13	20	50	156
SS-2	614.3	615.3	2	5	5	120	106	-3.3	13	0.59	#DIV/0!	1	620	1.76			0	
ST-3 to Abut Ftg	613.5	613.9	0.8	6.4	6.4	125	98	-1.9	27	0.85	#DIV/0!	1	790	1.54			0	
ST-3 below Abut	612.3	612.9	1.2	7.4	7.4	125	98	-0.9	27	0.85	#DIV/0!	1	915	1.41			0	
SS-4	609.3	610.8	3	9.5	9.5	120	99	1.2	21	0.70	#DIV/0!	1	1095	1.25	5	8	9.4	46

Project Name:	2065201
Project Number:	LUC-023-11 75
Calculated by:	CPI

Boring Number <u>B-028-1-21</u> Analysis Type 0

Layer	H (feet)	C _r	e _o	sigma v (psf)	z (feet)	b (feet)	<u>(z-Df)</u> b	I _z	delta p@	1690 psf	(check) sigma v+∆P	delta H (inches)	C'	delta H w/C'
-1 to Abut I	3.1	0.019	0.60	194	1.55	0	#DIV/0!	1	1690		1884	0.44	0	#DIV/0!
2A below A	0.9	0.022	0.79	439	3.55	0	#DIV/0!	1	1690		2129	0.09	0	#DIV/0!
SS-2B	2	0.034	0.79	581	5	0	#DIV/0!	1	1690		2271	0.27	0	#DIV/0!
SS-3	2	0.034	0.50	696	7	0	#DIV/0!	1	1690		2386	0.29	92	0.14
SS-4	3	0.012	0.36	875	9.5	0	#DIV/0!	1	1690		2565	0.15	###	0.01
	⁶¹⁸ General Stratigraphy								1	Total delta H				
	GSE, 616.6										(in.)	0.94		#DIV/0!
	Footing								+15%	1.08		#DIV/0!		
	616 -								-15%	0.80		#DIV/0!		


OKAY

Total Settlement 3/4 to 1 inch

Below Abutment Footing 0.50 in. 0.58 +15% 0.43 -15%

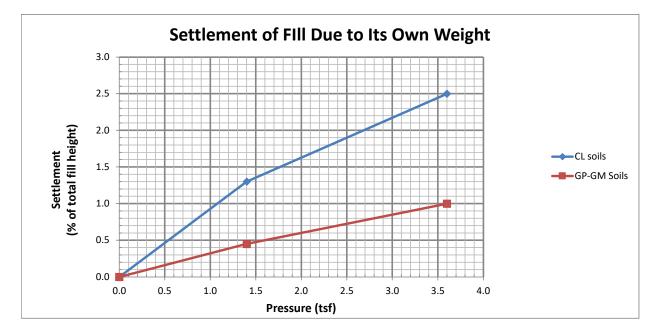
Downdrag for soil above settlement of 0.4" coming up from bedrock: Downdrag for Layer SS-2A Below Footing Elevs 613.5 to 612.6 - 1 ft Zone

From LPILE Analysis, c = 1 ksf NAVFAC Figure 2 (pg 7.2-196) Adhesion (cA) = 750 psf = 0.75 ksf

Project Number:	2065201 Boring Num				ng Number	B-028-1-21												
Project Name:	LUC-023-11	75		An	alysis Type													
Calculated by:	CPI	5/30/20)23			Embankme	ent Fill	-										
T:\Projects\2065201 - Arcadis	:\Projects\2065201 - Arcadis - LUC-023-11 75 - Sylvania Ohio\Evaluations\Embankment Settlement\[07 2065201 Ramp A Rear Abutment B-028-1.xlsx]output																	
G (assumed)	2.7																	
GSE	616.6																	
GWT	612																	
Bearing Elev	616.6		Embar	ıkment fill "	Bearing" or	existing GS	SE											
D _f		130	pcf Ma	iterial														
	13 ft Fill																	
Р	1690	1690 psf				γ _T (pcf)	γ _d (pcf)											
Rig			ER	90			0											
						0												
									w at C (%)		Depth of							
		Centroid		z below	z below				(or		Influence							
	Bot. Elev.	(C) Elev.	H (ft)	footing	GSE	γ _⊤ (pcf)	γ _d (pcf)	H_{GWT-C}	C _r x1000)	eo	$= (z-D_f)/B$	Ι _z	σ _v ' (psf)	N'/N	N _m	N60	N'	C'
SS-1 to Abut Fgt	613.5	615.05	3.1	1.55	1.55	125	105	-3.05	19	0.60	#DIV/0!	1	194	2.8		0	0	
SS-2A below Abut	612.6	613.05	0.9	3.55	3.55	115	94	-1.05	22	0.79	#DIV/0!	1	439	2.07			0	
SS-2B	610.6	611.6	2	5	5	115	94	0.4	22	0.79	#DIV/0!	1	581	1.82			0	
SS-3	608.6	609.6	2	7	7	125	113	2.4	11	0.50	#DIV/0!	1	696	1.66	12	18	20	92
SS-4	605.6	607.1	3	9.5	9.5	140	125	4.9	12	0.36	#DIV/0!	1	875	1.45	60	90	131	###

TTL Project No. 2065201 LUC-23-11.75 Ramp A Forward Abutment Settlement due to Self Weight CPI - 6/25/23

Fill Ht (ft):	10
Clay Fill Unit Wt (pcf):	130
Average pressure (at center of fill height) (psf):	650
Average pressure (at center of fill height) (tsf):	0.33
Settlement (% of original Height):	0.30
Settlement (fraction of original height):	0.003018
Settlement (inches):	0.36


clays of low to medium plasticity (CL)

pressure typical value of compression - (percent of total fill height)

0	0
1.4	1.3
3.6	2.5

Poorly Graded Gravel with sand and silt (GP-GM)

0	0
1.4	0.45
3.6	1

Project Name:	2065201						
Project Number:	LUC-023-11 75						
Calculated by:	CPI						

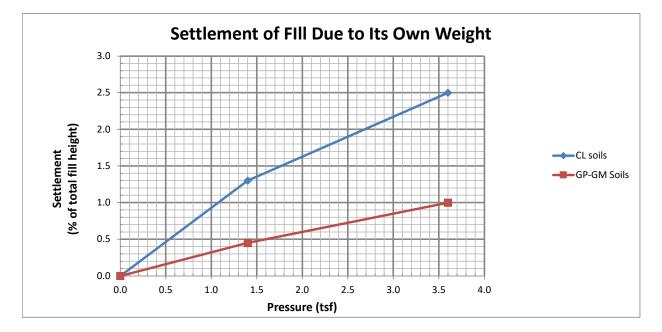
Boring Number <u>B-029-0-21</u> Analysis Type 0

Layer	H (feet)	C _r	e _o	sigma v (psf)	z (feet)	b (feet)	<u>(z-Df)</u> b	I _z	delta p@	1300	psf	(check) sigma v+∆P	delta H (inches)	C'	delta H w/C'	
SS-1	3	0.01	0.49	188	1.5	0	#DIV/0!	1	1300			1488	0.22	221	0.15	
2 to Abut I	2.5	0.011	0.50	531	4.25	0	#DIV/0!	1	1300			1831	0.12	0	#DIV/0!	
3 below At	3.5	0.017	0.59	906	7.25	0	#DIV/0!	1	1300			2206	0.17	0	#DIV/0!	
SS-4B	2.5	0.024	0.76	1166	10.25	0	#DIV/0!	1	1300			2466		49	0.20	
SS-5B	2	0.01	0.20	1335	12.5	0	#DIV/0!	1	1300			2635	0.06	206	0.03	
	622 7			Conor	al Strat	iaranh										
		GSE	, 620.5	Gener	al Strat	Igraph	У					Total delta H (in.)	0.67		#DIV/0!	
									_			+15%	0.77		#DIV/0!	
	620 -					Footing						-15%	0.57		#DIV/0!	
					•	619							OKAY			
	618 -	SS-1, 617.5										Total Settleme 1/2 to 3/4 incl				
	616 -	SS-2 to A	but Ftg, 615		•	616.25				Below Abutment Footing 0.41 in. 0.47 +15%						
	Elevation					C12.25						0.35	-15%	no dow	vndrag	
	612 -		Tovor142but, 1—1-5−−−−			613.25					NAVFA					
	610 -				•	610.25			_		pc SS-2 c (ksf)= PI=					
		SS-4	B, 609						-		pc (ksf) pc SS-3		>1.8 ksf so Cr			
	608 -	SS-5	B, 607		•	608			_		c (ksf)= PI= pc (ksf)	5				
	606															

Project Number:	2065201 Boring Numl				ng Number	B-029-0-21												
Project Name:	LUC-023-11	75		An	alysis Type													
Calculated by:	CPI	6/25/20)23			Embankme	nt Fill	-										
T:\Projects\2065201 - Arcadis	:\Projects\2065201 - Arcadis - LUC-023-11 75 - Sylvania Ohio\Evaluations\Embankment Settlement\[09 2065201 Ramp A Fwd Abutment B-029-0.xlsx]output																	
G (assumed)	2.7																	
GSE	620.5																	
GWT	612	2																
Bearing Elev	620.5	620.5 Embankment fill "Bearing" on existing GSE																
D _f		130	pcf Ma	iterial														
	10 ft Fill																	
Р	1300	psf				γ _T (pcf)	γ _d (pcf)											
Rig			ER	90			0											
						0												
		I							w at C (%)		Depth of							
		Centroid		z below	z below				(or		Influence							
	Bot. Elev.	(C) Elev.	H (ft)	footing	GSE	γ _T (pcf)	γ _d (pcf)	H _{GWT-C}	C _r x1000)	eo	$= (z-D_f)/B$	Ιz	σ _v ' (psf)	N'/N	N _m	N60	N'	C'
SS-1	617.5	619	3	1.5	1.5	125	114	-7	10	0.49	#DIV/0!	1	188	2.83	16	24	68	221
SS-2 to Abut Ftg	615	616.25	2.5	4.25	4.25	125	113	-4.25	11	0.50	#DIV/0!	1	531	1.9			0	
SS-3 below Abut	611.5	613.25	3.5	7.25	7.25	125	107	-1.25	17	0.59	#DIV/0!	1	906	1.42			0	
SS-4B	609	610.25	2.5	10.25	10.25	120	97	1.75	24	0.76	#DIV/0!	1	1166	1.19	6	9	11	49
SS-5B	607	608	2	12.5	12.5	160	145	4	10	0.20	#DIV/0!	1	1335	1.07	40	60	64	206

TTL Project No. 2065201 LUC-23-11.75 Ramp D Rear Abutment Settlement due to Self Weight CPI - 6/25/23

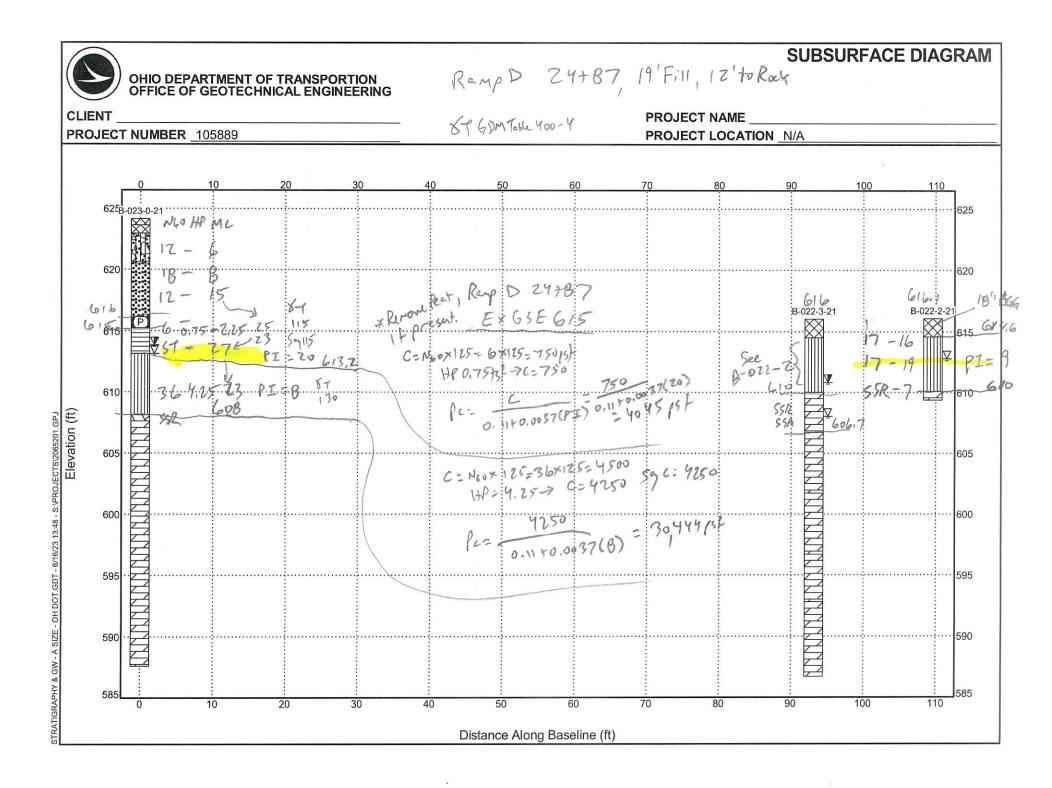
Fill Ht (ft):	18
Clay Fill Unit Wt (pcf):	130
Average pressure (at center of fill height) (psf):	1170
Average pressure (at center of fill height) (tsf):	0.59
Settlement (% of original Height):	0.54
Settlement (fraction of original height):	0.005432
Settlement (inches):	1.17


clays of low to medium plasticity (CL)

pressure typical value of compression - (percent of total fill height)

0	0
1.4	1.3
3.6	2.5

Poorly Graded Gravel with sand and silt (GP-GM)


0	0
1.4	0.45
3.6	1

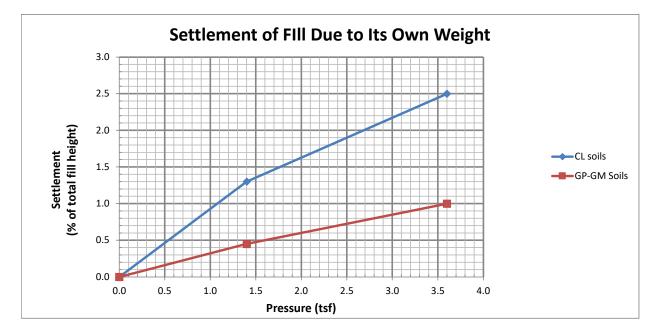
Project Name:	2065201	Boring Number B-022-1-21
Project Number:	LUC-023-11 75	Analysis Type 0
Calculated by:	CPI	Consol Results

Layer	H (feet)	C _r	e _o	sigma v (psf)	z (feet)	b (feet)	<u>(z-Df)</u> b	I _z	delta p@	2340	psf	(check) sigma v+∆P	delta H (inches)	C'	delta H w/C'
S-1 above f	3.5	0.017	0.65	210	1.75	0	#DIV/0!	1	2340			2550	0.47	0	#DIV/0!
S-1 below f	0.9	0.017	0.65	474	3.95	0	#DIV/0!	1	2340			2814	0.09	0	#DIV/0!
SS-2	1.5	0.019	0.68	546	5.15	0	#DIV/0!	1	2340			2886	0.15	0	#DIV/0!
SS-3	1	0.068	1.37	618	6.4	0	#DIV/0!	1	2340			2958	0.23	60	0.14
eathered R	d 1.6	0	0.20	725	7.7	0	#DIV/0!	1	2340			3065		0	#DIV/0!
	617		GSE, 616		al Strat	igraph	y					Total delta H (in.)	0.84		#DIV/0!
	616 -								•			+15%	0.96		#DIV/0!
						Footing						-15%	0.71		#DIV/0!
	615 -												OKAY		
	614 -					614.25						Total Settleme 3/4 to 1 inch	ent		
												Below Abutme	ent Footing		
	613 -	SS-	1 above ftg,	612.5								0.37 0.42	in. +15%		
	Elevation -	SS-	GWT, 612 1 below ftg,			612.05			•			0.31	-15%		
	Ele								•				low the footing o	of	
	611 -					610.85						approximately so no downdra			
			SS-2, 610.2	1							NAVFA	c			
	610 -		SS-3, 609.:	1		♦ 609.6).11+(0.0037PI))		
	609 -								•		c (ksf)= PI=	= 1.75 8			
	608 -	M	Veathered R 607.5	ock,		♦ 608.3					pc (ksf) pc SS-2 c (ksf)=	= 12.5	>2.8 ksf so Cr		
	607										PI= pc (ksf)	9 = 7.0	>2.9 ksf so Cr		

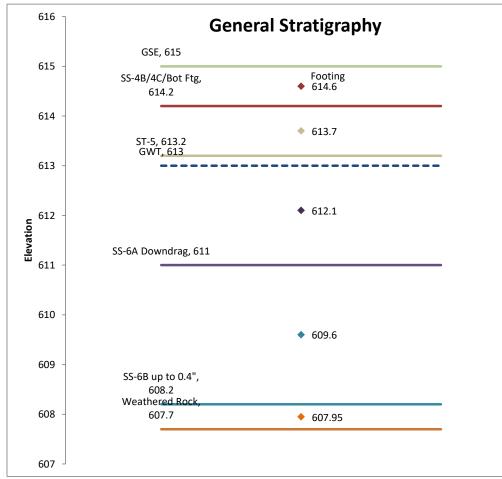
Project Number:	2065201			Bori	ng Number	B-022-1-21												
Project Name:	LUC-023-11	75		An	alysis Type													
Calculated by:	CPI	6/26/20)23			Embankme	ent Fill	-										
T:\Projects\2065201 - Arcadis	- LUC-023-11 75 -	Sylvania Ohio\E	valuations	Embankment	Settlement\[11	2065201 Ramp I	D Rear Abutmer	nt B-022-1.x	dsx]output									
G (assumed)	(assumed) 2.7																	
GSE	616																	
GWT	612																	
Bearing Elev	616		Embar	nkment fill "	Bearing" or	existing GS	SE											
D _f		130	pcf Ma	aterial														
		18	ft Fill															
Р	2340	psf				γ _T (pcf)	γ _d (pcf)											
Rig			ER	90	I		0											
						0												
									- (
		Contradid							w at C (%)		Depth of							
		Centroid		z below	z below	(0	(0		(or		Influence				• •			
	Bot. Elev.	(C) Elev.	H (ft)		GSE	γ _T (pcf)	γ _d (pcf)	H _{GWT-C}	C _r x1000)	eo	$= (z-D_f)/B$	Ι _z	σ_{v}' (psf)		N _m	N60	Ν'	C'
SS-1 above ftg	612.5	614.25	3.5	1.75	1.75	120	103	-2.25	17	0.65	#DIV/0!	1	210	2.73			0	
SS-1 below ftg	611.6	612.05	0.9	3.95	3.95	120	103	-0.05	17	0.65	#DIV/0!	1	474	2			0	
SS-2	610.1	610.85	1.5	5.15	5.15	120	101	1.15	19	0.68	#DIV/0!	1	546	1.87			0	
SS-3	609.1	609.6	1	6.4	6.4	120	71	2.4	68	1.37	#DIV/0!	1	618	1.76	6	9	16	60
Weathered Rock	607.5	608.3	1.6	7.7	7.7	160	160	3.7	0	0.20	#DIV/0!	1	725	1.62			0	

TTL Project No. 2065201 LUC-23-11.75 Ramp D Forward Abutment Settlement due to Self Weight CPI - 6/25/23

Fill Ht (ft):	19
Clay Fill Unit Wt (pcf):	130
Average pressure (at center of fill height) (psf):	1235
Average pressure (at center of fill height) (tsf):	0.62
Settlement (% of original Height):	0.57
Settlement (fraction of original height):	0.005734
Settlement (inches):	1.31


clays of low to medium plasticity (CL)

pressure typical value of compression - (percent of total fill height)


0	0
1.4	1.3
3.6	2.5

Poorly Graded Gravel with sand and silt (GP-GM)

0	0
1.4	0.45
3.6	1

	Project Nar Project Nur Calculated I	nber:	2065201 LUC-023-1 CPI	1 75		ng Number alysis Type		For pc, see subsurface diagram and hand calcs. Consol Results						
Layer	H (feet)	C _r	e _o	sigma v (psf)	z (feet)	b (feet)	<u>(z-Df)</u> b	I _z	delta p@	2470 psf	(check) sigma v+∆P	delta H (inches)	C'	delta H w/C'
4B/4C/Bot	0.8	0.025	0.83	46	0.4	0	#DIV/0!	1	2470	pc=4045 psf	2516	0.23	0	#DIV/0!
ST-5	1	0.027	0.87	149	1.3	0	#DIV/0!	1	2470	pc=4045 psf	2619	0.22	0	#DIV/0!
-6A Downdi	2.2	0.023	0.60	294	2.9	0	#DIV/0!	1	2470	pc=30,000 psf	2764	0.37	0	#DIV/0!
-6B up to 0.	2.8	0.023	0.60	463	5.4	0	#DIV/0!	1	2470	pc=30,000 psf	2933	0.39	0	#DIV/0!
eathered Ro	0.5	0	0.20	582	7.05	0	#DIV/0!	1	2470	Rock	3052		0	#DIV/0!
			1	1	1	1			L	1	1			

		U	#DIV/0
Total delta H			
(in.)	1.20		#DIV/0!
+15%	1.38		#DIV/0!
-15%	1.02		#DIV/0!
	OKAY		
Total Settleme	ent		
1 to 1-1/2 incl	า		
Below Abutme	ent Footing		
0.97	in.		
0.07			
1.12	+15%		
1.12	+15% -15%		
1.12 0.82	-15%	ement	of 0.4"
1.12 0.82 Downdrag for	-15% soil above settl	ement	of 0.4"
1.12 0.82 Downdrag for coming up fro	-15% soil above settl m bedrock:		of 0.4"
1.12 0.82 Downdrag for coming up fro	-15% soil above settl		of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/	-15% soil above settl m bedrock:		of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5	-15% soil above settl m bedrock:	Ş	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to	-15% soil above settl m bedrock: A Below Footing	; one	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Zo	s one ksf	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An NAVFAC Figur	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Zo alysis, c = 0.75	s one ksf	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An NAVFAC Figur Adhesion (cA)	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Zo alysis, c = 0.75 e 2 (pg 7.2-196)	s one ksf	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An NAVFAC Figur Adhesion (cA) Layer SS-6A	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Zo alysis, c = 0.75 e 2 (pg 7.2-196) = 615 psf = 0.62	g one ksf 2 ksf	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An NAVFAC Figur Adhesion (cA) Layer SS-6A Elevs 613.2 to	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Ze alysis, c = 0.75 e 2 (pg 7.2-196) = 615 psf = 0.62 611 - 2.2 ft Zon	g one ksf 2 ksf e	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An NAVFAC Figur Adhesion (cA) Layer SS-6A Elevs 613.2 to	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Zo alysis, c = 0.75 e 2 (pg 7.2-196) = 615 psf = 0.62	g one ksf 2 ksf e	of 0.4"
1.12 0.82 Downdrag for coming up fro ST-5 and SS-6/ Layer ST-5 Elevs 614.0 to From LPILE An NAVFAC Figur Adhesion (cA) Layer SS-6A Elevs 613.2 to From LPILE An NAVFAC Figur	-15% soil above settl m bedrock: A Below Footing 613.2 - 0.8 ft Ze alysis, c = 0.75 e 2 (pg 7.2-196) = 615 psf = 0.62 611 - 2.2 ft Zon	g one ksf 2 ksf e ksf	of 0.4"

Project Number:	2065201			Bori	ng Number	B-023-0-21												
Project Name:	LUC-023-11	LUC-023-11 75 Analysis Ty																
Calculated by:	CPI	6/18/20)23			Embankme	ent Fill	-										
T:\Projects\2065201 - Arcadis	- LUC-023-11 75 -	Sylvania Ohio\E	valuations	\Embankment S	Settlement\[14	2065201 Ramp I	D Fwd Abutmen	t B-023-0.x	lsx]output									
G (assumed)	2.7																	
GSE	615																	
GWT	613																	
Bearing Elev	615		Embar	nkment fill "	Bearing" or	n existing GS	SE											
D _f		130	pcf Ma	aterial														
		19	ft Fill															
Р	2470	psf				γ _T (pcf)	γ _d (pcf)											
Rig			ER	90			0											
						0												
									w at C (%)		Depth of						'	
		Centroid		z below	z below				(or		Influence						'	
	Bot. Elev.	(C) Elev.	H (ft)	footing	GSE	γ _T (pcf)	γ _d (pcf)	${\rm H}_{\rm GWT-C}$	C _r x1000)	eo	$= (z-D_f)/B$	١ _z	σ _v ' (psf)	N'/N	N _m	N60	N'	C'
SS-4B/4C/Bot Ftg	614.2	614.6	0.8	0.4	0.4	115	92	-1.6	25	0.83	#DIV/0!	1	46	4.08			0	
ST-5	613.2	613.7	1	1.3	1.3	115	91	-0.7	27	0.87	#DIV/0!	1	149	3.03			0	
SS-6A Downdrag	611	612.1	2.2	2.9	2.9	130	106	0.9	23	0.60	#DIV/0!	1	294	2.43			0	
SS-6B up to 0.4"	608.2	609.6	2.8	5.4	5.4	130	106	3.4	23	0.60	#DIV/0!	1	463	2.02			0	
Weathered Rock	607.7	607.95	0.5	7.05	7.05	160	160	5.05	0	0.20	#DIV/0!	1	582	1.82			0	

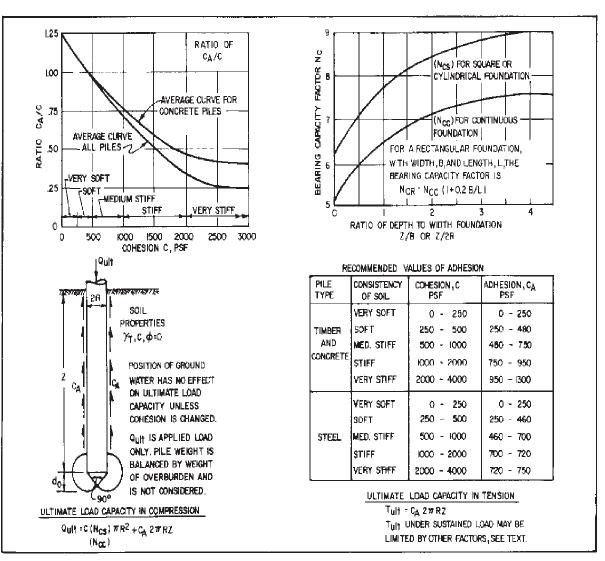


FIGURE 2 Oltimate Load Canacity of Single File or Pier in Cohesive Soils

are usually maintain bearing diameter (3) Drilled Piers. For drilled piers greater than 24 in r settlement rather than bearing capacity may control. A resistance may result from entrapment of bentonite slurry an not open excavation to the stable in granular soils. pier's tip. Bells, or enlarged bases, 24 inches A reduced if used ц. end († 0

pullout load usually is limited by the tendency for the pile to move gradually while mobilizing an adhesion less than the failure value. Λq Figure 2). mass which is available adhesion Ultimate Geology, driving. strength regaining adhesion approximately equal to original surface adhesion of clays having a shear strength Table lie Departments of Army and Air Force, for determining side friction. ω. (4) Procedures for acting resistance to pullout cannot exceed for point-bearing resistance is essentially unchanged by For Experience demonstrates that In softer clays the Piles and Drilled Piers in Cohesive Soils. drilled piers, over the pile surface or the effective to react against pullout. Foundation Design of Buildings and use Table remolded material pile driving permanently ω from the total resistance of Reference 4, greater than 500 p consolidates with The allowable sustained strength. weight of See Figure Other Structures, Soils Shear 500 psf (see alters the and pile \sim time, upward soil reduced and

Available data suggests overconsolidated clays, effective overburden. evaluating piles driven Adhesion factors in the into stiff but that for piles side piles driven into normally friction is about 0.25 to (Figure 2 may be very conservative for normally consolidated clays. 0.4 times the to slightly

penetrate several united layers, except where a source on be capacity of the individual layers, except where a source on be and relieve load or cause drag on the pile. For further guidance on be when a nile penetrates layered soil and terminates in granular for a source of Foundations on Lay and for ultimate Soils Under Inclined Loads, by the (5) bearing case Piles Penetrating Multi-layered capacity of a of a sand bear sand bearing deep member Meyer off and Hanna, which consides the stratum overlying a weak a simple approach is to add supporting in sand underlying Soil further guidance on bearing Profile. clay Where piles a clay layer consolidate layer Layered

not Reference or greater than 4T, a problem. (6) 6, Pile Design For or a fully the critical load for buckling of Pile Foundations, embedded, For fully free embedded piles, Лq headed pile with length equal ouckling is as follows (after Vesic): buckling usually Ч S t 0

P+crit, II 0.78 T.3-f for L>/= 4 T

where: P+crit ٠ Ш critical load for buckling

н Ш coefficient 0 Ħ variation 0 Fi lateral subgrade

reaction (see Figure 10)

Figure

10)

н relative stiffness factor (see

Ш

Н Ш length 0 Fi pile

Page 1 of 2

Project Name:	LUC-023-11.75, Ramp A Rear Abutment
Project Number:	2065201
Calculated by:	CPI 06/18/2023

Embankment Parameters

Look at B-028-0

Height	Pressure	@ 125 pcf
13 feet	1625 psf	0.8125 tsf

Coefficient of Consolidation from NAVFAC Figure 4 (7.1-144)

Stratum	LL	Virgin Con	npression	Recomp	ression
Stratum	LL	C _v (cm ² /sec)	C _v (ft ² /day)	C _v (cm ² /sec)	C _v (ft ² /day)
2	19	>0.005	>0.5	>0.03	>2.79
3	34	0.004	0.37	0.028	2.56

Virgin				
Average				
Average C _v (ft ² /day)				
0.50				
0.37				

Coefficient of Consolidation from Tested Values

ſ		Pressure	Virgin Con	npression	Recomp	ression
	Sample	(tsf)	C _v (cm ² /sec)	C _v (ft ² /day)	C _v (cm ² /sec)	C _v (ft ² /day)
I	B-028-0 ST-3	0.5	-		-	0.28
l		1.0	-		-	0.60

Interpolate			
Cv for			
0.8125 tsf			
0.48			

Page 2 of 2

H (feet)

2

2

H_{dr} (feet)

1

Project Nar LUC-023-11.75, Ramp A Rear Abutment Project Nui 2065201 Calculated CPI 06/18/2023

Encountered Conditions

Stratum 2 Layer Thickness Stratum 3 Layer Thickness

Assume double drainage between strata layers

Time for 90% Consolidation

$$t = \frac{T (H_{dr})^2}{C_v}$$

where T = 0.848 for 90% consolidation

Results Based on H_{dr}

Stratum	From	From NAVFAC Cv Values			From Lab Cv Values		
Suatum	t (days)	t (weeks)	t (months)	t (days)	t (weeks)	t (months)	
2	1.7	0.24	0.1				
3	2.3	0.33	0.1	2	0.3	0.1	

Final Conclusions

Time for 90 % Consolicatoin may be on the order of a week or less.

Project Name:	LUC-023-11.75, Ramp D Fwd Abutment
Project Number:	2065201
Calculated by:	CPI 06/21/2023

Embankment Parameters

Look at B-023-0 (Clay and Silt underlyng Gravel and Sand)

Height	Pressure @ 125 pcf		
19 feet	2375 psf	1.1875 tsf	

Coefficient of Consolidation from NAVFAC Figure 4 (7.1-144)

Stratum	ш	Virgin Compression		Recompression	
		C _v (cm ² /sec)	C _v (ft ² /day)	C _v (cm ² /sec)	C _v (ft ² /day)
3	39	0.003	0.28	0.018	1.63
4	25	>0.005	>0.5	>0.03	>2.79

Virgin				
Average				
C _v (ft ² /day)				
0.28				
0.50				

Coefficient of Consolidation from Tested Values

	Pressure	Virgin Con	npression	Recompression	
Sample	(tsf)	C _v (cm ² /sec)	C _v (ft ² /day)	C _v (cm ² /sec)	C _v (ft ² /day)
Across US-23, B-	1.0	-		-	0.60
028-0 ST-3	2.0	-		-	0.25

Interpolate				
Cv for				
1.1875 tsf				
0.53				

Page 2 of 2

H (feet)

2

5

H_{dr} (feet)

2.5

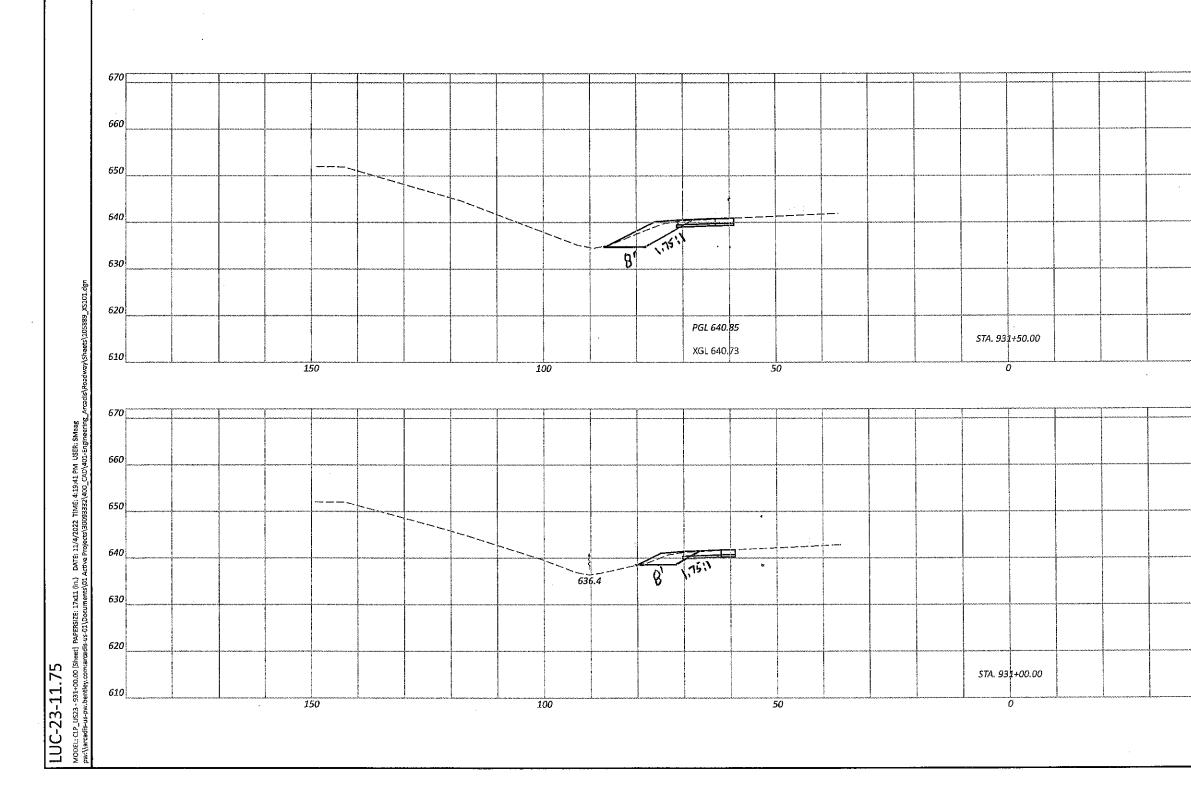
Project Nar LUC-023-11.75, Ramp D Fwd Abutment Project Nur 2065201 Calculated CPI 06/21/2023

Encountered Conditions

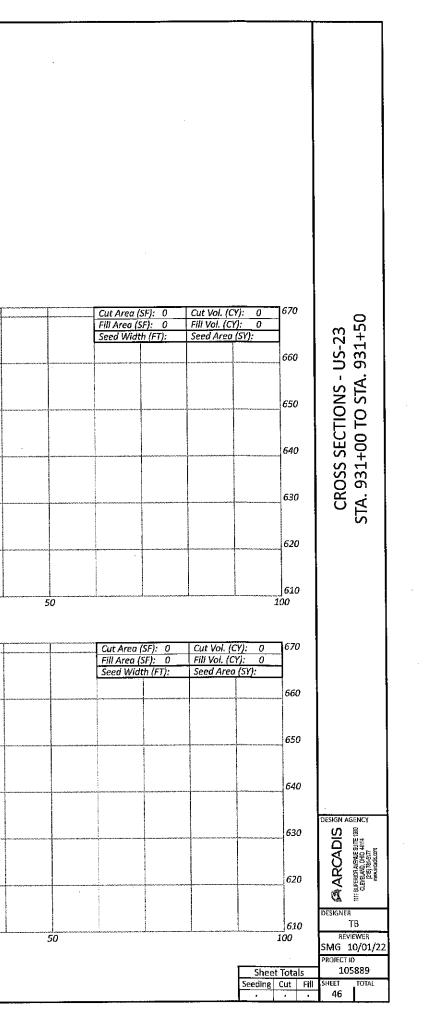
Stratum 2 Layer Thickness Stratum 3 Layer Thickness

Assume double drainage between strata layers

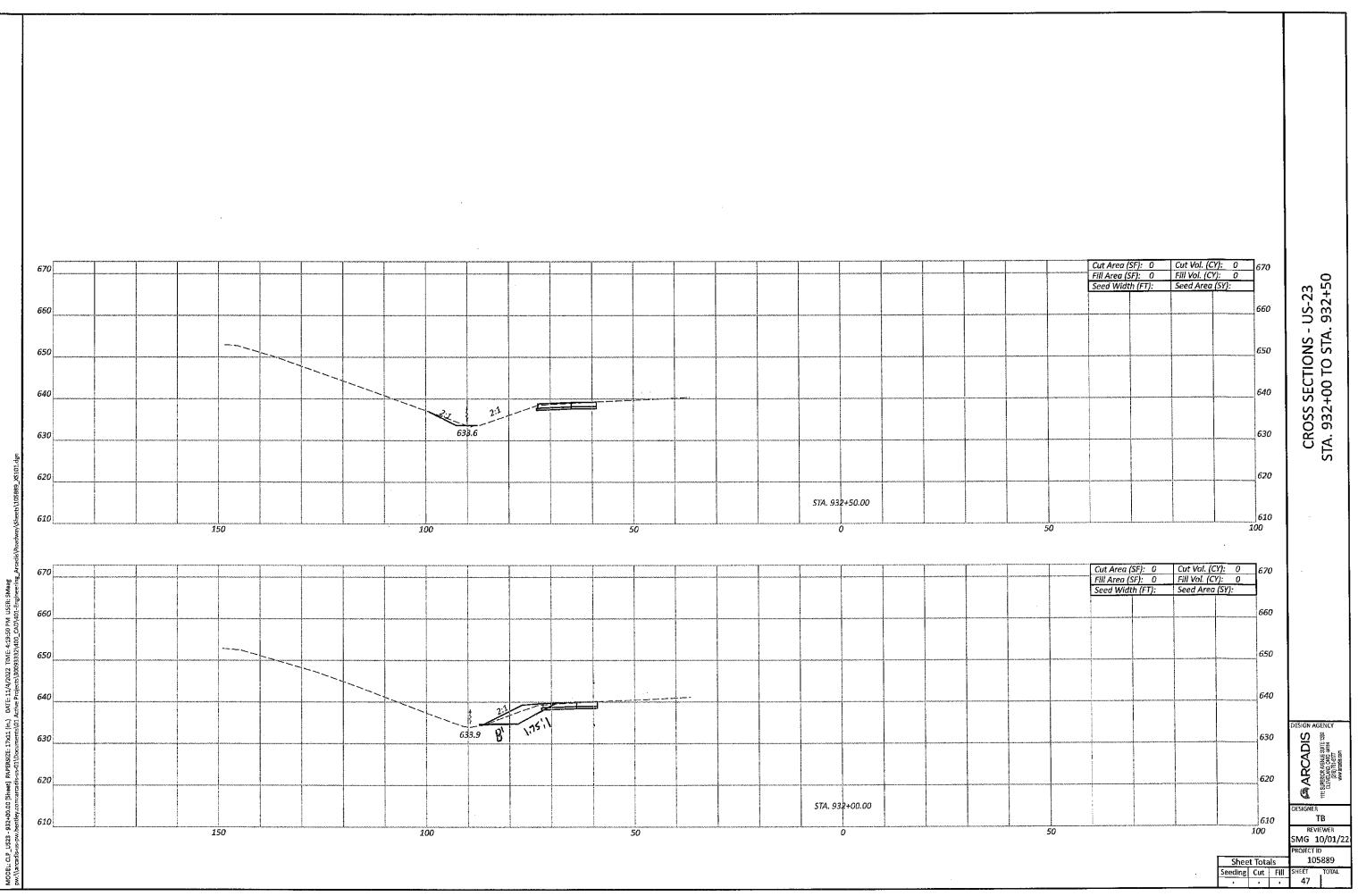
Time for 90% Consolidation

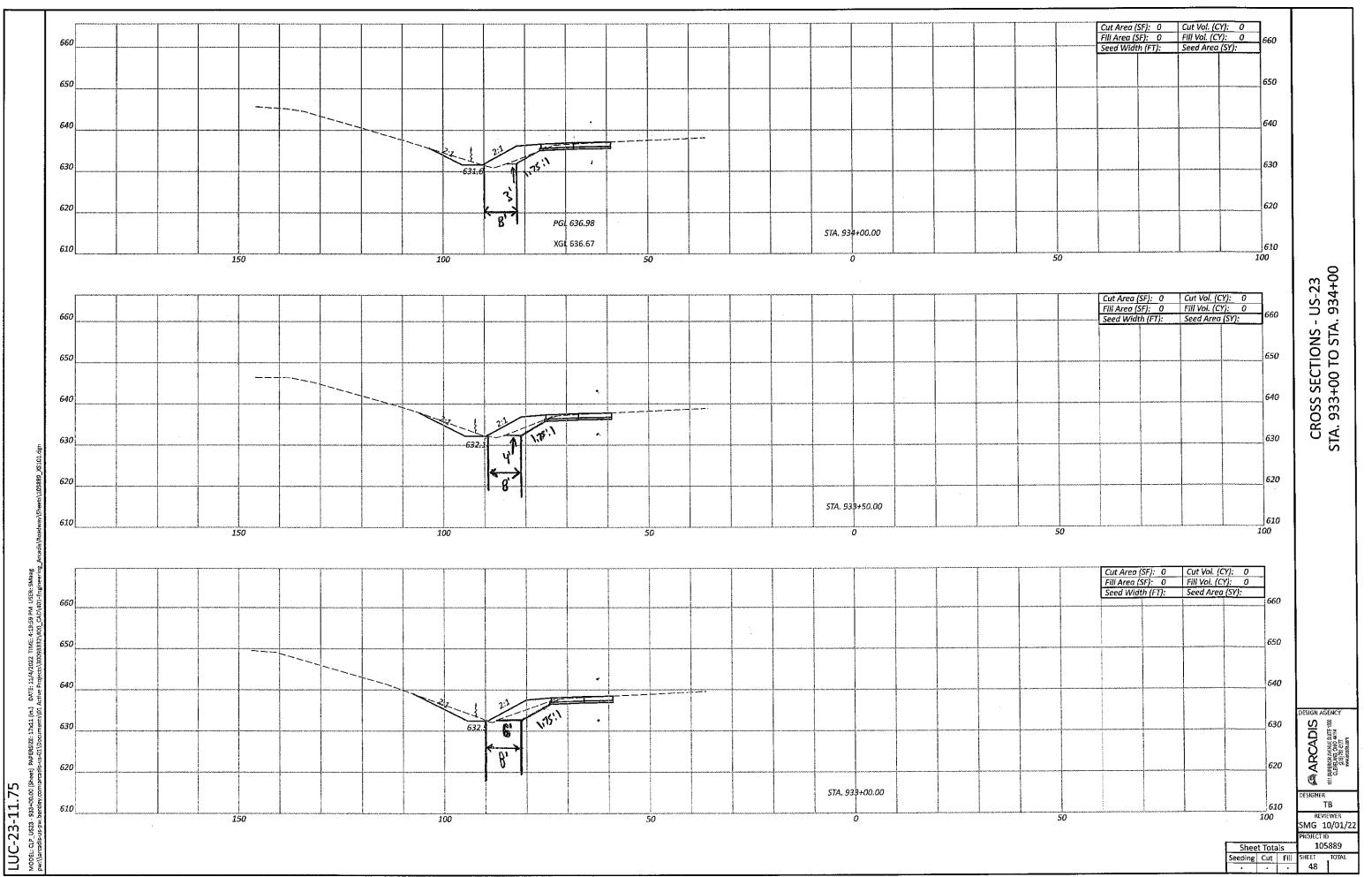

$$t = \frac{T (H_{dr})^2}{C_v}$$

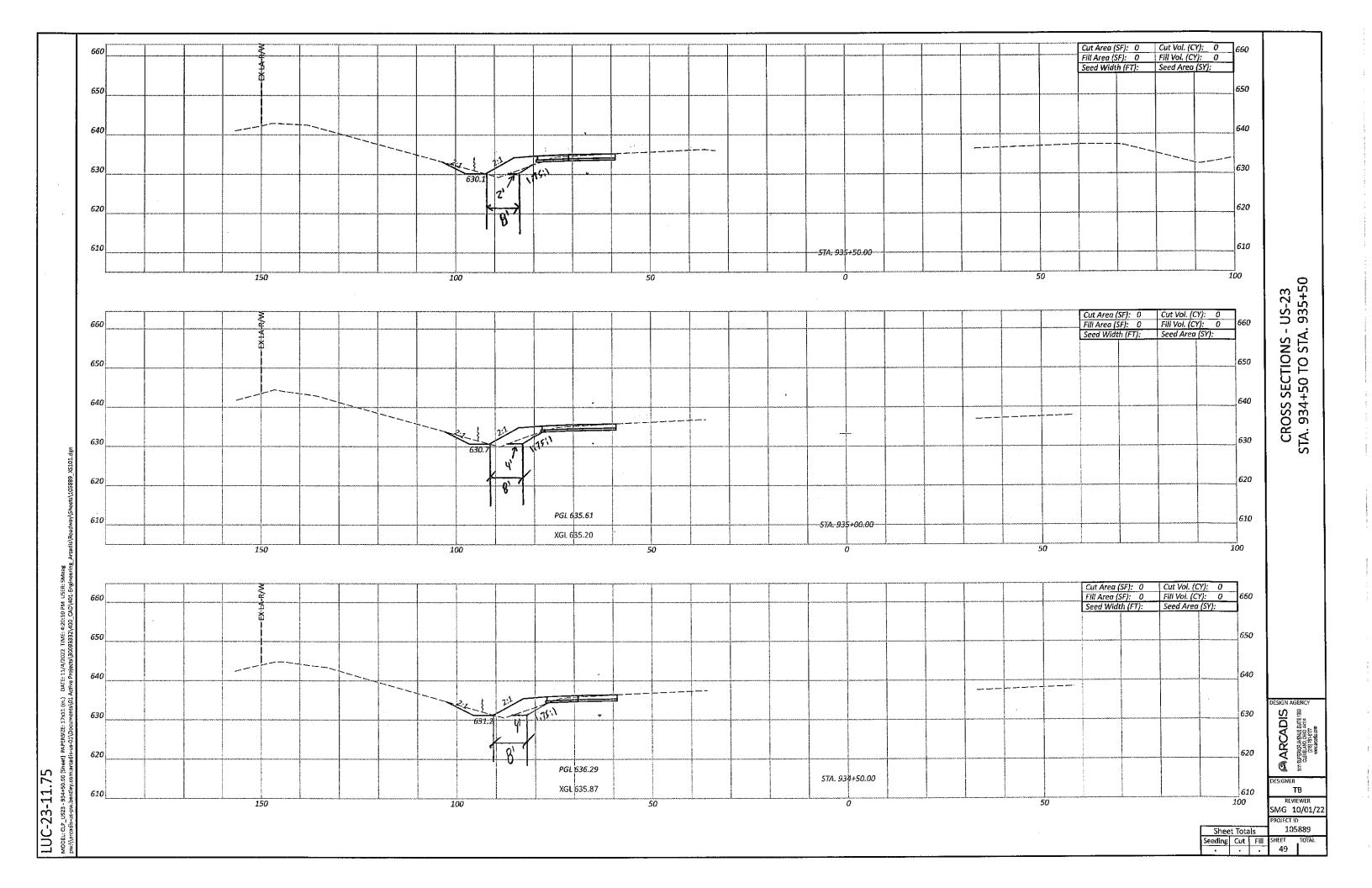
where T = 0.848 for 90% consolidation

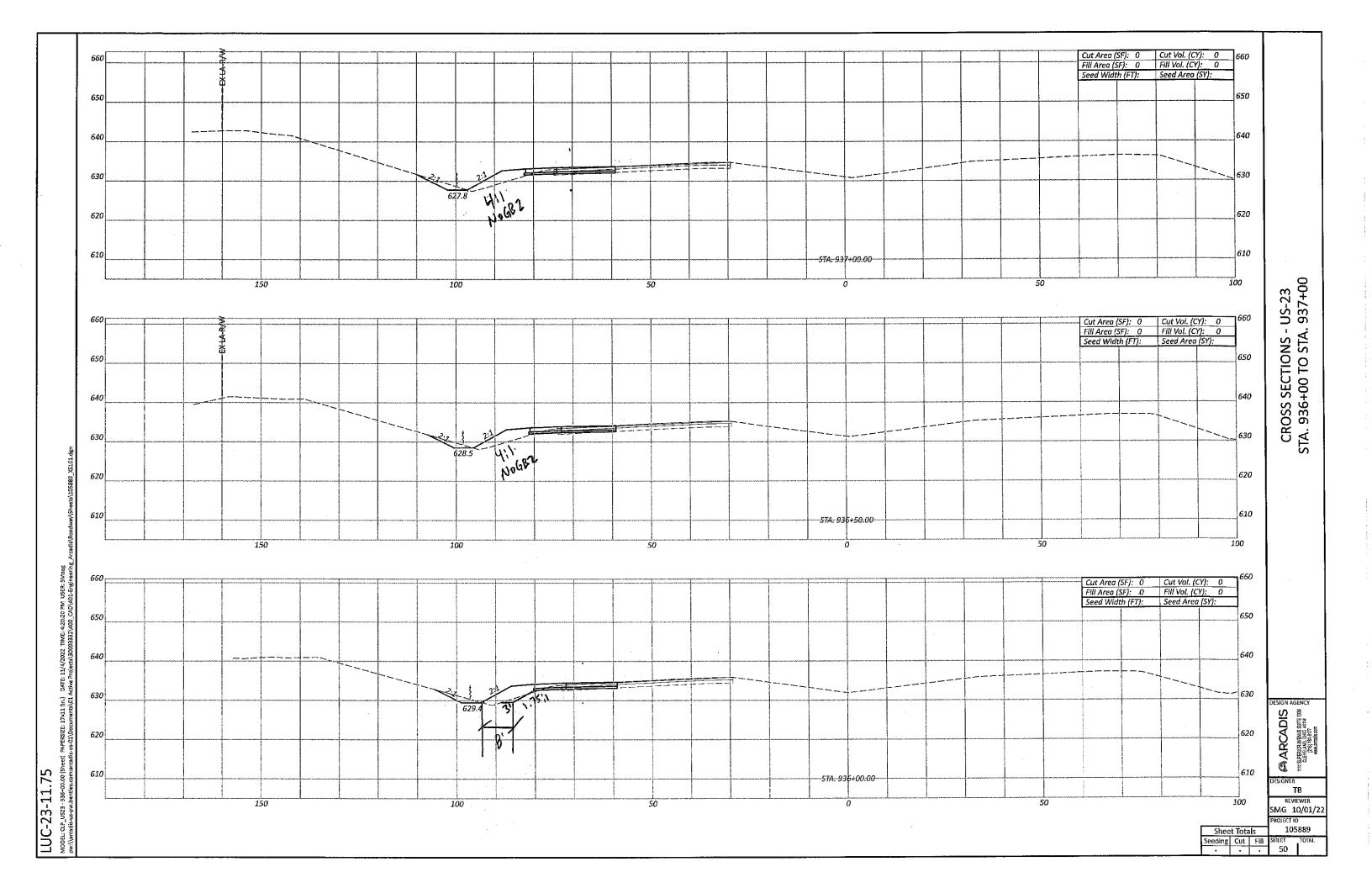

Results Based on H_{dr}

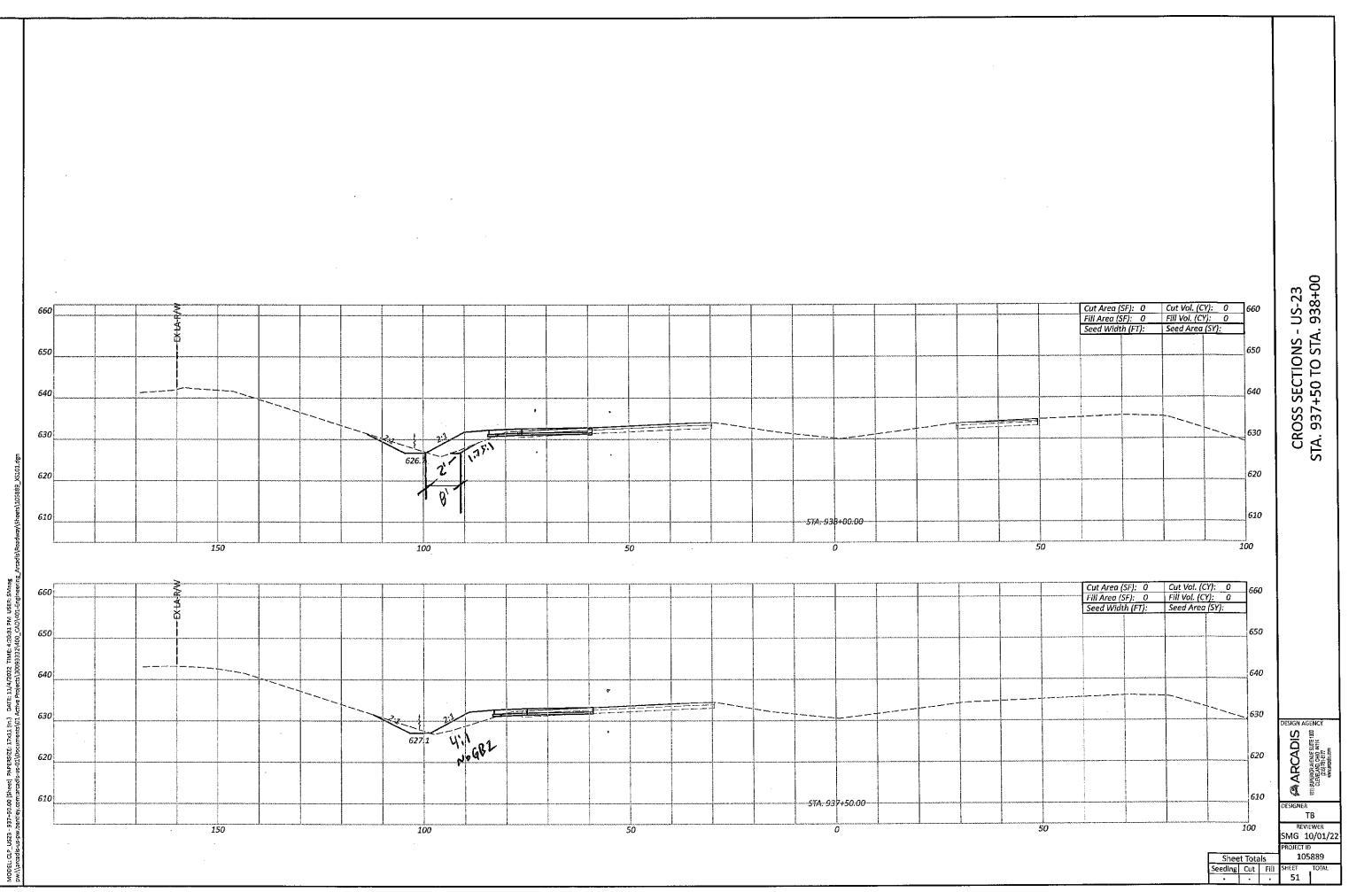
Stratum	From	NAVFAC Cv	Values	From Lab Cv Values		
Stratum	t (days)	t (weeks)	t (months)	t (days)	t (weeks)	t (months)
2	3.0	0.43	0.1	2	0.2	0.1
3	10.6	1.51	0.4	10	1.4	0.3

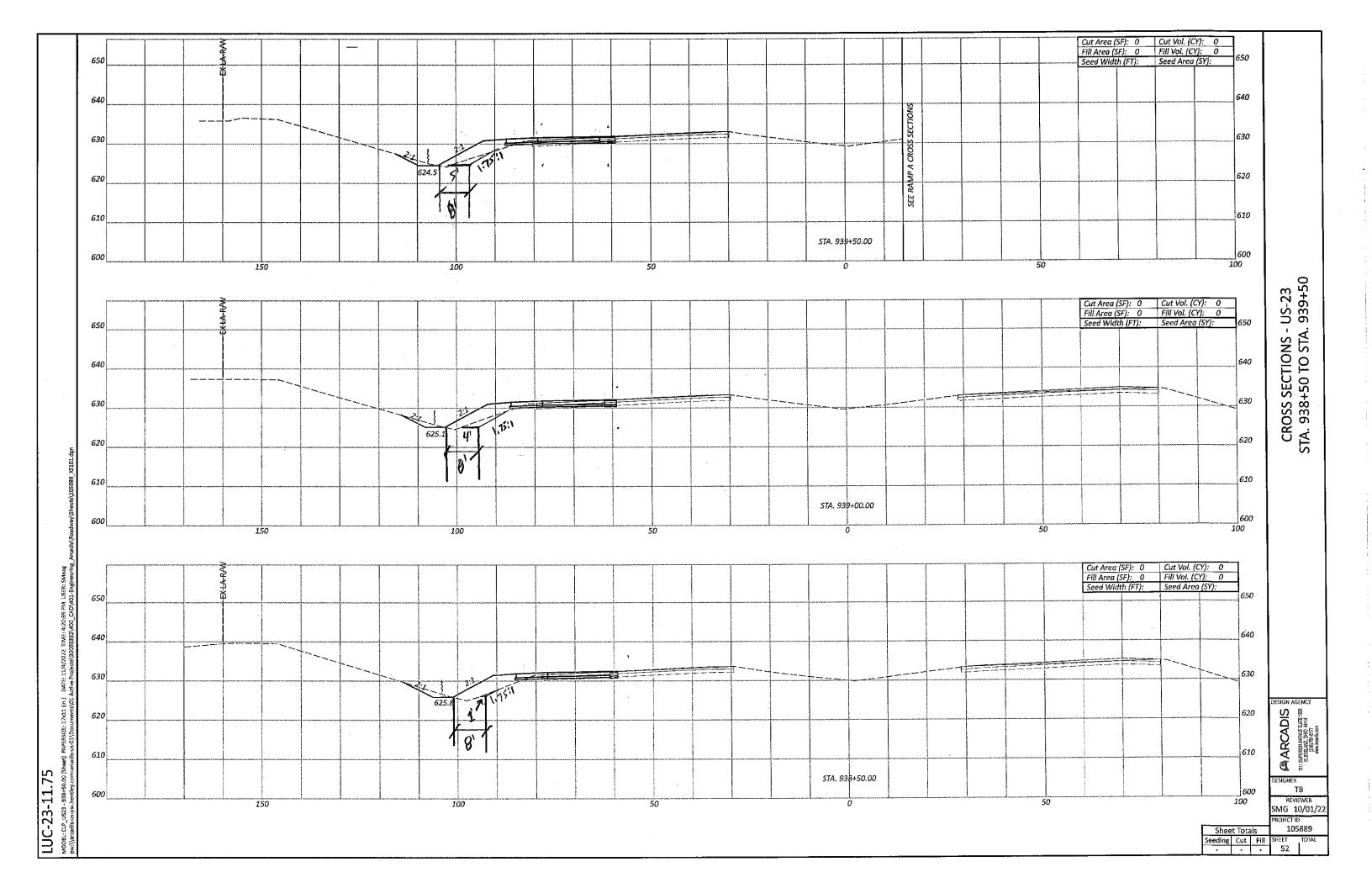

Final Conclusions

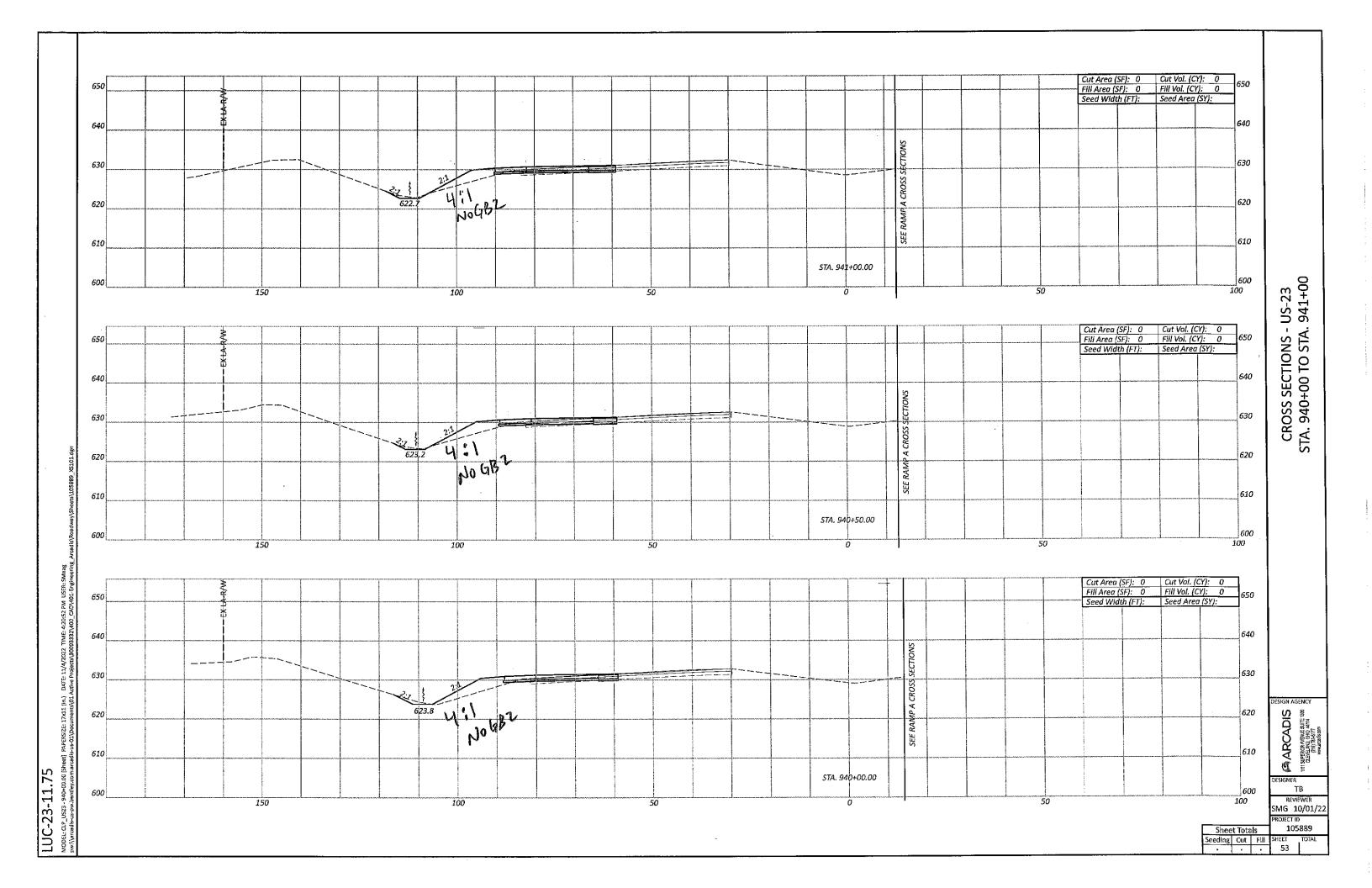

Time for 90 % Consolicatoin may be on the order of 2 weeks or less.

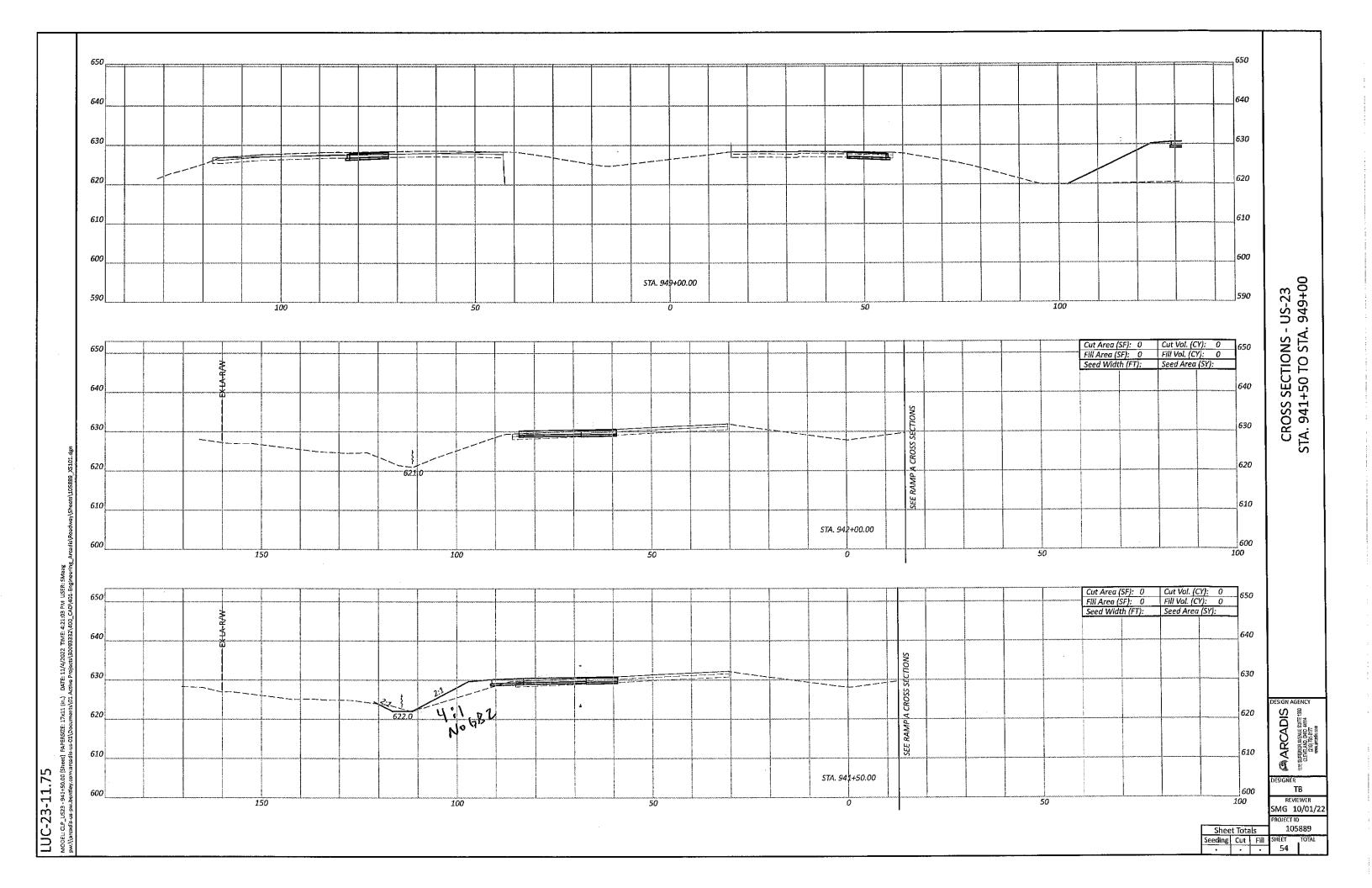


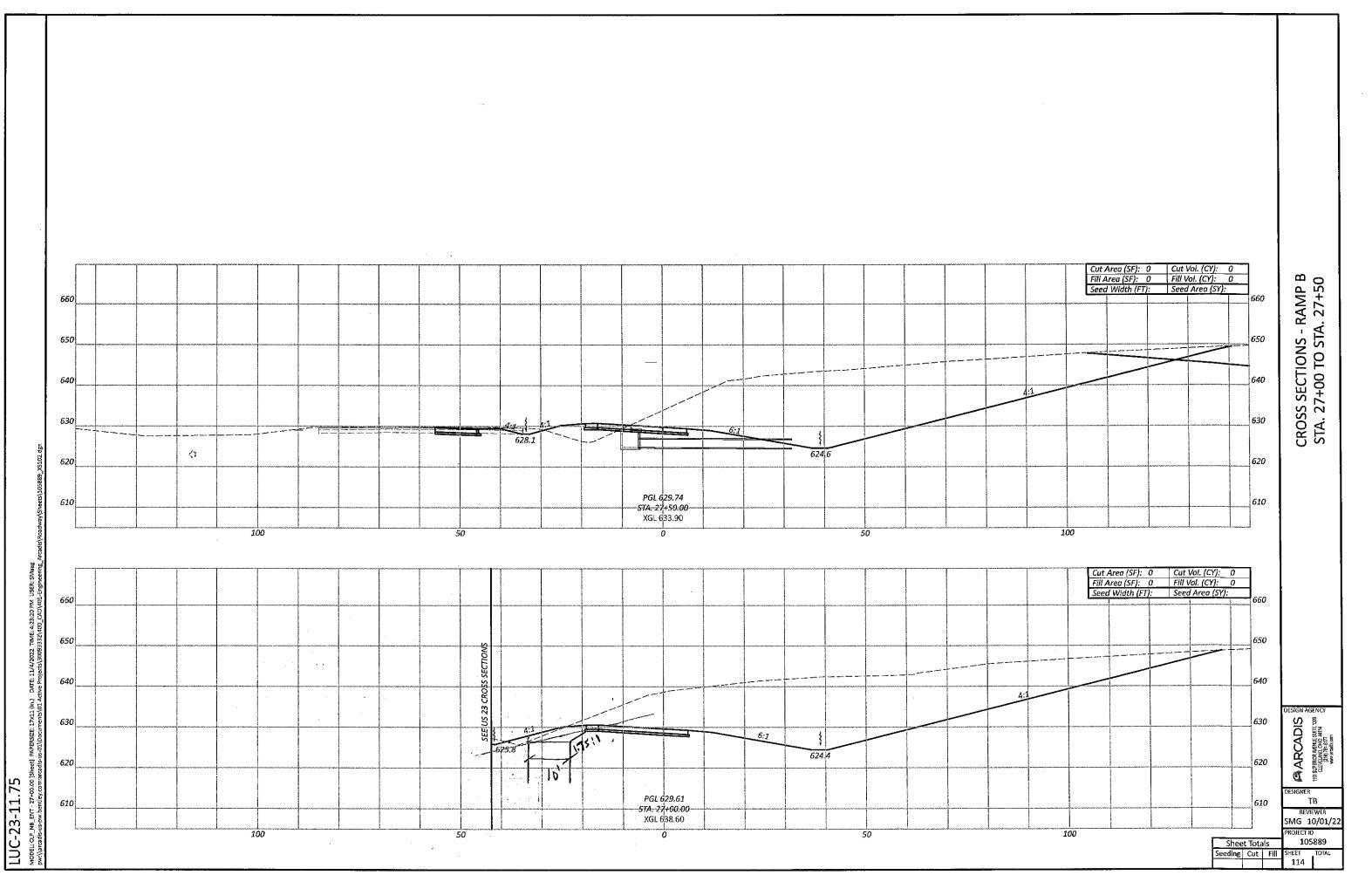


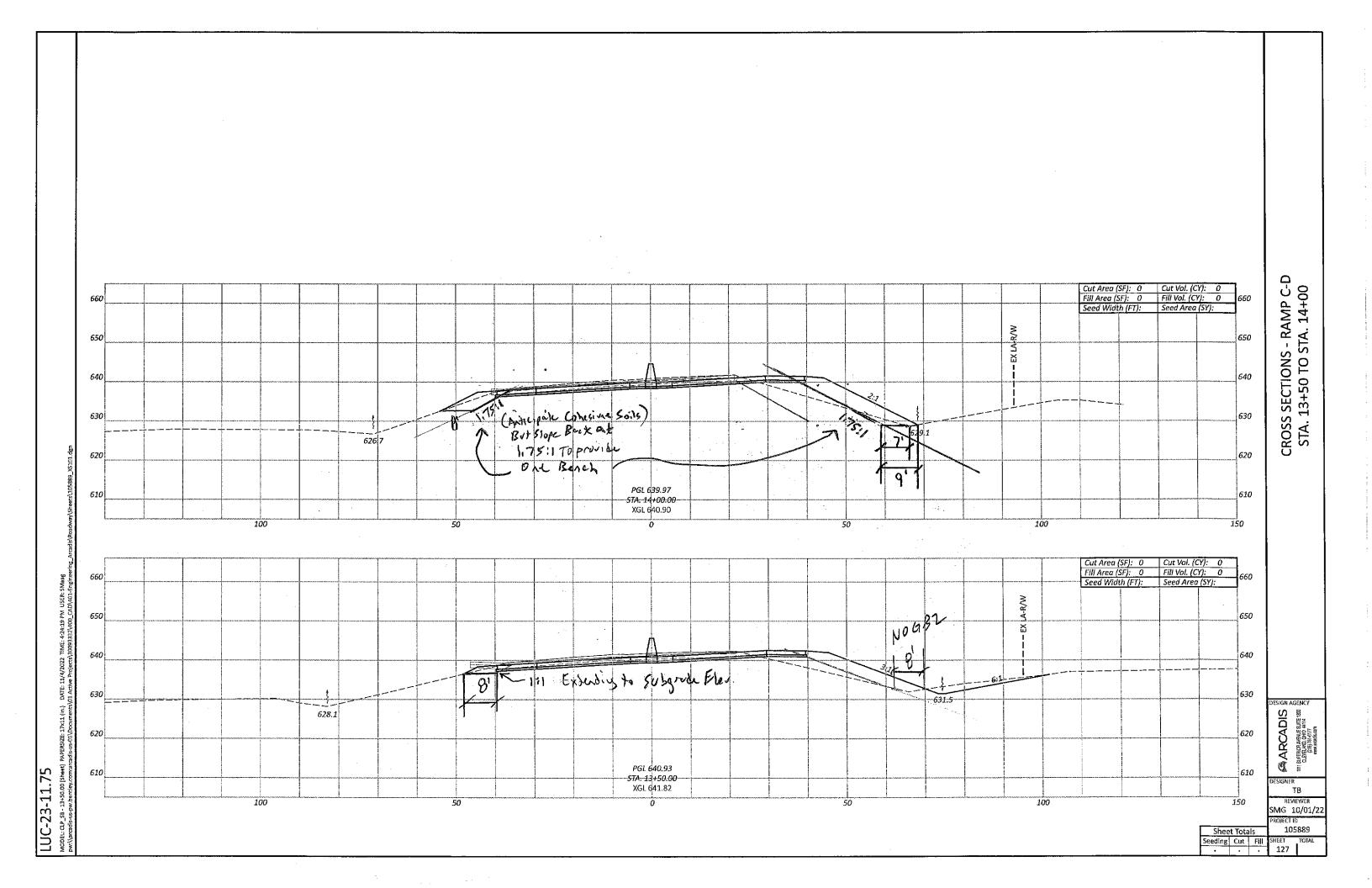

LUC-23-11.75 MODEL: CLP. US23 - 932+00.00 [She pw://arcadis-us-pw.benitey.commarc

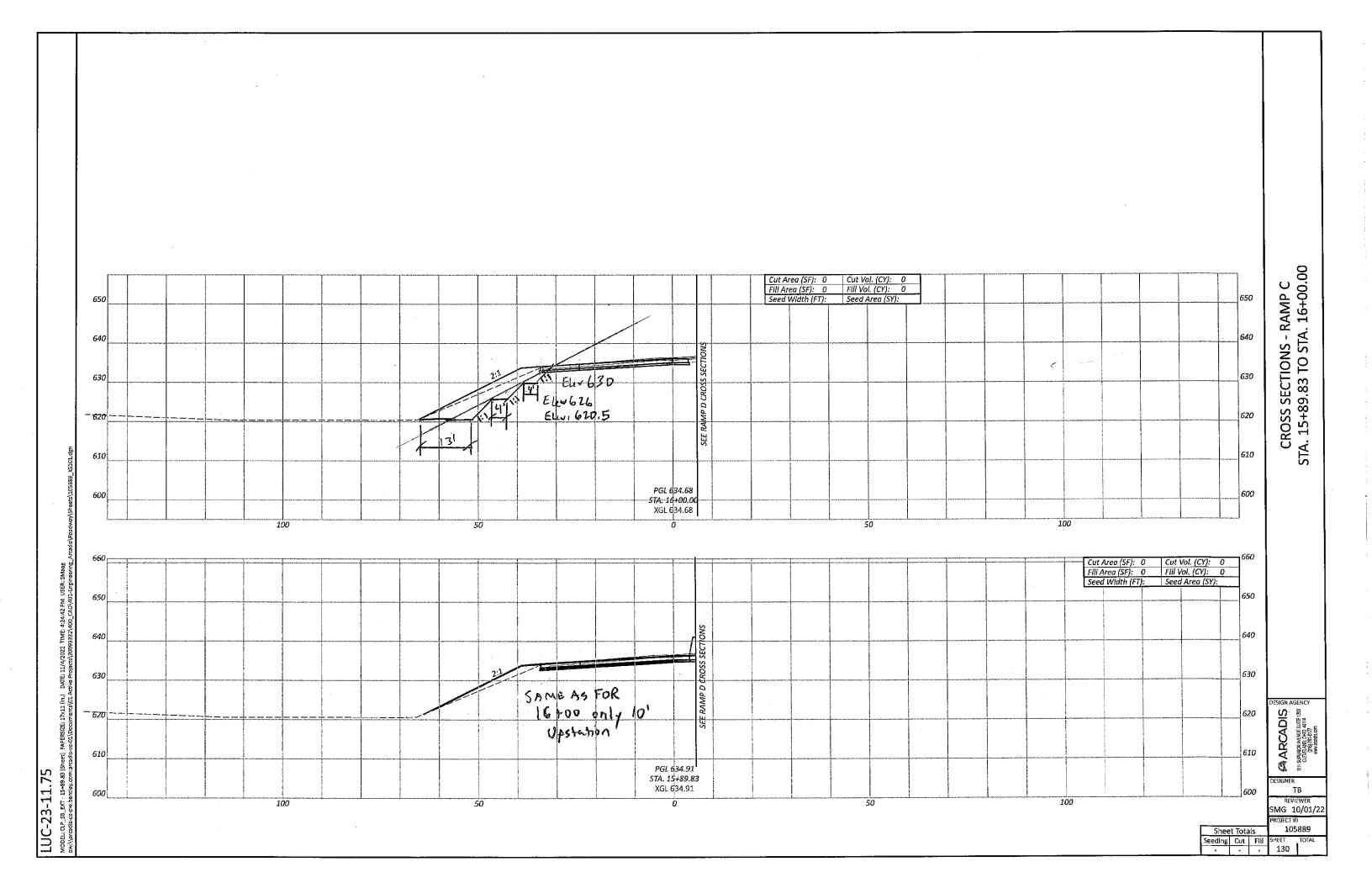


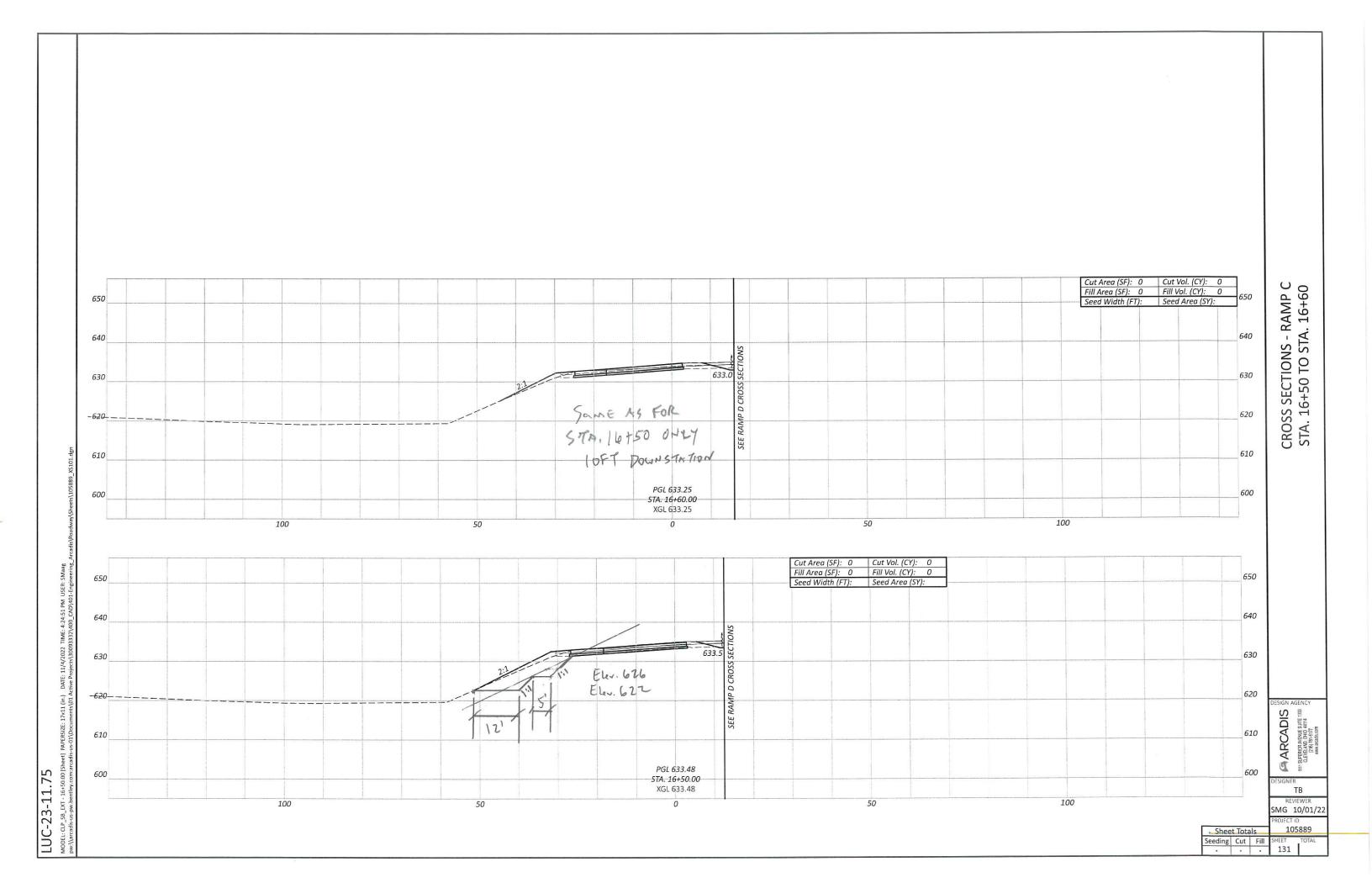


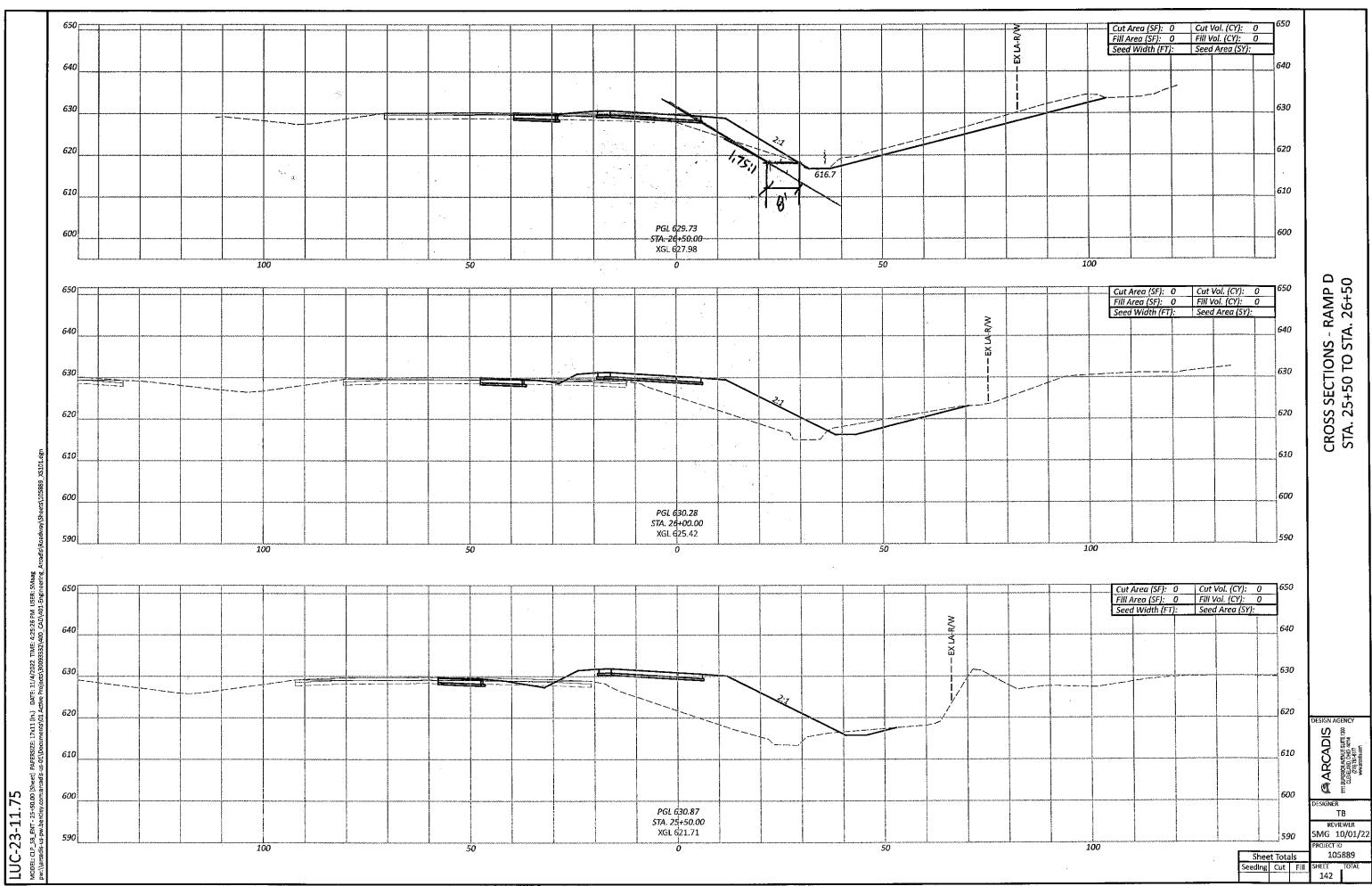


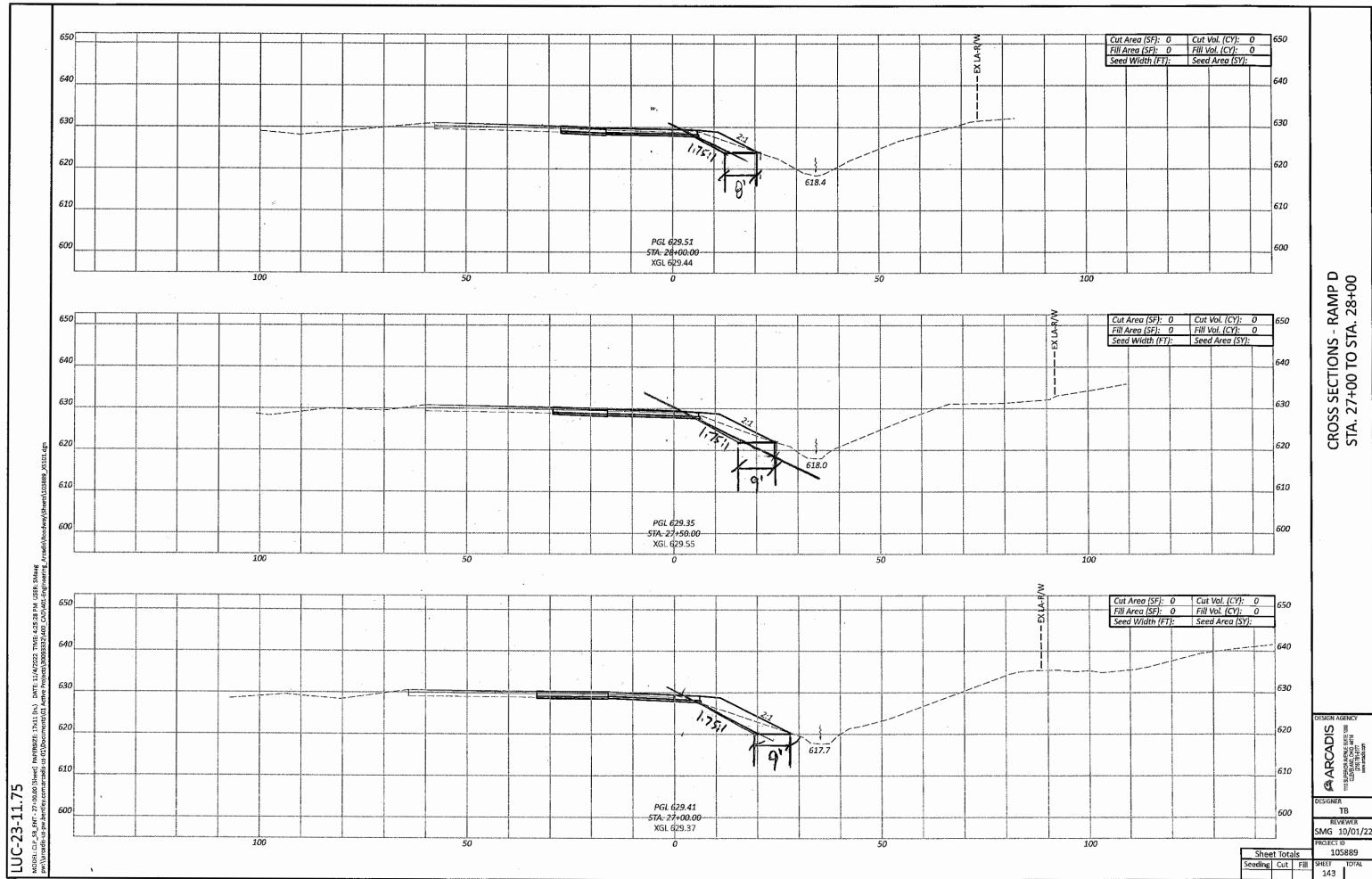


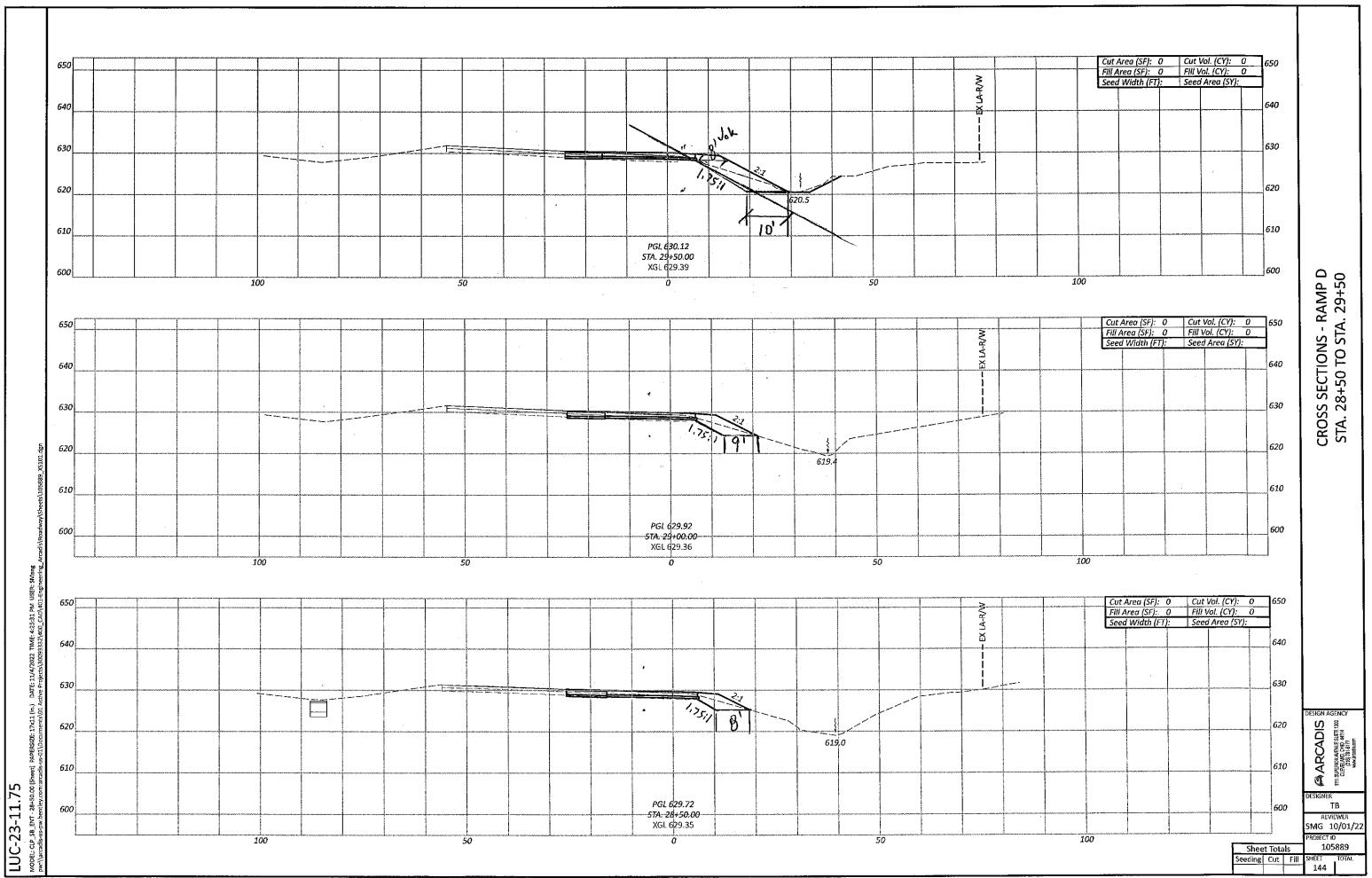

LUC-23-11.75











APPENDIX B

State Route 51 Bridge Foundation Evaluations

TTL Project No.:	2065201
Project:	LUC-23-11.75
Calcs by:	СРІ
	6/1/2023
Calcs:	Abutment Driven Piles to Bedrock
Location:	SR 51 Rear and Forward Abutments
Substructure:	Rear Abutment
Boring:	B-006-1-21
Bottom of Pile Cap Elev. (ft):	640
Pile Stickup (ft):	1
Pile Cut-Off Elev. (ft):	641
Auger Refusal/Top of Coring Elev. (ft):	614
Calculated Length (ft):	27
Estimated Length (ft):	30
Order Length (ft):	35
Substructure:	Forward Abutment
Boring:	B-010-0-21
Bottom of Pile Cap Elev. (ft):	640
Pile Stickup (ft):	1
Pile Cut-Off Elev. (ft):	641
Auger Refusal/Top of Coring Elev. (ft):	615.6
Calculated Length (ft):	25.4
Estimated Length (ft):	30
Order Length (ft):	35

	1				1
TTL Project No.:					
	LUC-23-11.75				
Calcs by:					
Date:	5/23/2023				
Calcs:	Footings on Rock				
Location:	SR 51 over US 23				
Substructure:	Western Pier (Pier	r 1)			
Boring:	B-006-1-21				
GSE (ft):					
Long-Term GWT (ft):					
Top of Weathered Rock Depth (ft):	29				
Top of Weathered Rock Elev. (ft):					
Footing keyed 3" into Rock at					
Bearing Elev. (ft):	622.7				
	02207				
Auger Refusal Depth (ft):	38				
Auger Refusal Elev. (ft):					
Prelim Footing Size:	l (ft)=	8			
	B (ft)=	8			
	5 (11)-	8			
Service Limit State					
Service Limit State					
	F 4 4				
AASHTO LRFD Bridge Design Spec Table C10.6.2	.5.1-1	Deering	De sister es (lesf)		
		-	Resistance (ksf)		
		Ordinary	Recommended		
1 <u> </u>		-			
Type of Bearing Material	Consistency	Range	Value		
	Medium Hard	Range	Value		
Type of Bearing Material Weathered / Broken Rock (except shale)		-			
Weathered / Broken Rock (except shale)	Medium Hard Rock	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor:	Medium Hard Rock 1.0	Range	Value		
Weathered / Broken Rock (except shale)	Medium Hard Rock 1.0	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor:	Medium Hard Rock 1.0	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor:	Medium Hard Rock 1.0	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement	Medium Hard Rock 1.0 20	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf):	Medium Hard Rock 1.0 20	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2	Medium Hard Rock 1.0 20	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings,	Medium Hard Rock 1.0 20 2.4.4	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2	Medium Hard Rock 1.0 20 2.4.4	Range	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings,	Medium Hard Rock 1.0 20 2.4.4 0.56	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*lp)/(144Em))=	Medium Hard Rock 1.0 20 2.4.4 0.56	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*1p)/(144Em))= qo (ksf)=	Medium Hard Rock 1.0 20 2.4.4 0.56 20	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*1p)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2	Medium Hard Rock 1.0 20 2.4.4 0.56 20	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*Ip)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone:	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft):	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*Ip)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): Ip=(pi^(1/2))/Bz =	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*Ip)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): Ip=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B:	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*1p)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing):	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*1p)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*1p)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*Ip)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08 18	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*Ip)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): Ip=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08 18 386	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or Em=(Em/Ei)*Ei	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08 18 386 386	Range 16-24	Value		
Weathered / Broken Rock (except shale) Resistance Factor: Factored Resistance (ksf): Settlement AASHTO LRFD Bridge Design Specification 10.6.2 For Circular or Square Footings, Delta=qo(1-v^2)*((r*Ip)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): Ip=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or	Medium Hard Rock 1.0 20 2.4.4 0.56 20 0.29 4 1.64 1 1.08 18 386 386	Range 16-24	Value		

Calcs:	Footings on Rock						
	SR 51 over US 23						
	Western Pier (Pier	1)					
		1)					
Ei From GDM Table 400-6							
From Below for							
Strength Limit State, Qu (psi)=							
Very Weak Qu of 200 psi or less							
Ei(psi)=							
Ei(ksi)=	18						
RMR Calculations							
Parameter	Value	Note	See ODOT GDM	1303.3.3 fo	r guidance o	on RMR Pa	rameters
1	0	Qu =8 ksf					
2	3	RQD=0%					
3	5	<2" spacing	g of joints, Highly	Fractured			
4	12		igh, Separateion <		Joint Wall		
5	7	Moist Only					
RMR =	27						
Strength Limit State							
Augerable Weathered Bedrock							
Rock Type	SPT Results						
Weathered Dolomite	11-50/5"	38-50/5"					
Total Unit Wt (pcf):		GDM Table		Use	160	pcf	
	162	Average of	Tested Values for	the project			
Qu based on SPT Results per GDM 404.3							
Qu (ksf)=0.092x(Nrate)90 (bpf)							
ER(%)=							
N66=50/5" x 12" =		bpf					
N90 = 66/90 x 120 bpf =	88	bpf					
Qu (ksf) =		=Co					
Qu (psi) =	56.2	=Co					
Due to weathered nature of rock at bearing ele		e following	method of analy	<u>sis:</u>			
Per ODOT GDM 1303.3.3, Rock meets all three		in anno f-:	a ali at this site				
1. Bedrock under footing not steeply sloping (2H		1	OCK at this site.				
2. RMR \leq 70 2. Moderately Strong or loss (Our 7500 pci)	RMR =						
3. Moderately Strong or less (Qu≤7500 psi)	Qu (psi)=	סכ					
c' (ksf)= 0.104*RMR=	2 808						
φ' (deg)=(RMR/2)+5 =							
φ (αεβ)-(ΝνΝγ2)+3 -	10.0						
Table 10.6.3.1.2a-1							
For \\(\) (deg) of	18						
	13.1						
	5.3						
Ngamma							
i i gallilla	··-	1	l	1	1		1

Calcs:	Footings on Rock				
	SR 51 over US 23				
	Western Pier (Pier	1)			
AASHTO LRFD Eqn.: 10.6.3.1.2a-1					
qn=CNc+Gamma*Df*Nq*Cwq+0.5 Gamma B Ng	amma Cwgamma				
c' (psf)=	2808				
Dw = 0 (above Df) so Cwq=	0.5				
Cwgamma=	0.5				
Gamma Df based on Grade at Toe of existing over	erpass embankmen	t, not GSE a	t B-006-1		
Toe Elev	631				
Bearing Elev	622.7				
Df (ft):	8.3				
Overburden Average Gamma (pcf):	129				
Bearing Gamma (pcf):	160				
Term 1	36785	psf			
Term 2	2837	psf			
Term 3	1312	psf			
qn (psf)=	40934				
qn (ksf)=	41				
Table 10.5.5.2.2-1 Resistance Factor (Sand SPT of					
Bearing on rock, ϕ b=	0.45				
qr (ksf)=	18				

	2065201						
TTL Project No.:				Deviewe d b			
	LUC-23-11.75			Reviewed b	y:		
Calcs by:			c /2 /2022	KCH			
Date:	5/25/2023	to	6/2/2023	6/2/2023			
	Footings on Ro						
	SR 51 over US						
Substructure:	Intermediate F	vier (Pier Z)					
Daviasu	B-008-0-21						
		Deced on C	Secolo Foutb				
GSE (ft):		Based on G	oogle Earth.	ing with Llon			
Long-Term GWT (ft):	023		Will be re-survey	ing with Hand	uneid GPS.		
Top of Weathered Rock Depth (ft):	10 E						
Top of Weathered Rock Elev. (ft):							
Footing keyed 3" into Rock at	017.5						
	617.2	Caa nata h	elow regarding sli	abtly doopor	haaring		
Bearing Elev. (ft):	017.2	See note D	eiuw regarung si	Billing deeper	uearing.		
Auger Refusal Depth (ft):	14						
Auger Refusal Elev. (ft):	017						
Extend Feeting to AD Flow (ft)	617						
Extend Footing to AR Elev. (ft):	617						
Dealine Factions Cines	1 (6.)	0					
Prelim Footing Size:		8					
	B (ft)=	8					
Service Limit State							
Service Limit State							
AASHTO LRFD Bridge Design Spec Table C10	62511						
AASITTO EKED BITUge Design spec Table CIO	.0.2.3.1-1	Bearing	Resistance (ksf)				
		Ordinary	Recommended				
Type of Bearing Material	Consistency	Range	Value				
	Medium Hard	Nalige	Value				
Weathered / Broken Rock (except shale)	Rock	16-24	20				
	Rock	10-24	20				
Resistance Factor:	1.0						
Factored Resistance (ksf):	20	1					
	20						
Settlement	<u> </u>						
Settlement							
AASHTO LRFD Bridge Design Specification 10	6244						
For Circular or Square Footings,							
Delta=qo(1-v^2)*((r*Ip)/(144Em))=	0.14	inch					
do (ksf)=							
v from AASHTO LRFD Table C10.4.6.5-2	20						
v, Mean Value for Dolostone:	0.29						
r = raidus for circular or B/2 for square	0.23						
r (ft):	1						
Ip=(pi^(1/2))/Bz =							
Bz per Table 10.6.2.4.2-1	1.04						
L/B:	1						
Bz (Rigid Footing):							
	1.00	1					

Calcs:	Footings on Ro	ock					
	SR 51 over US						
	Intermediate I						
Substructure.	internediate						
Em per AASHTO LRFD 10.4.6.5							
Em = lesser of							
	1400						
Em=145*(10^((RMR-10)/40)) or							
Em=(Em/Ei)*Ei							
Em/Ei		AASHTO LE	RFD Table C10.4.6	.5-1			
Em (ksi)=	70						
Ei From GDM Table 400-6 based on Qu							
Qu (psi) within ~2B=	18780	19980	17720				
Average Qu (psi)=	18827	=	2711	ksf			
for Very Strong Qu=15000 psi	(Not quite up t	o Qu=20,00	0 psi)				
Ei(psi)=	1400000						
Ei(ksi)=	1400						
RMR Calculations							
Parameter	Value	Note	See ODOT GDM	1303.3.3 for	guidance o	on RMR Par	ameters
1	12	Qu =2711	<sf< td=""><td></td><td></td><td></td><td></td></sf<>				
2	3	RQD=0%					
3	10		cing of joints, High			ed	
4	20		igh, Separateion <	0.05in, hard	joint wall		
5	7	Moist Only	, 1	1	1	1	
RMR =	52						
Strength Limit State							
Look at ODOT GDM 1303.3.3					C l'h'	NA-+2	
Meeting any of the following three conditio		.1)/			Condition	wet?	
1. Bedrock Surface under the footing lopes s	steeper than 2H	1	52		No		
2. Foundaiton Bedrock Has RMR >70		RMR=		10077	No		
3. Foundation Bedrock is Strong or greater (Qu>7,500 psi)		Qu (psi)=	10071	Yes		
qn=(sqrt(s)+((m*sqrt(s))+s)^0.5)*Qu =	7032	psi					
qn=	1013	ksf					
qii=	1013	NJI					
	1.26						
For dolomite, mi =							
s=exp((RMR-100)/9)=	0.0048						
	-						
From Table 10.5.5.2.2-1,							
For footings on rock,							
	0.45						
· · · · · ·	+	1	1		+	1	

			1			
TTL Project No.:						
	LUC-23-11.75					
Calcs by:	CPI					
Date:	5/25/2023	to	6/2/2023			
Calcs:	Footings on Ro	ock				
	SR 51 over US					
Substructure:	East Pier (Pier	3)				
Boring:	B-010-0-21					
GSE (ft):						
Long-Term GWT (ft):						
	020					
No encountered weathered rock						
Auger Refusal Top of Rock Depth (ft):	25.4					
Top of Weathered Rock Elev. (ft):						
	012.0					
Footing keyed 3" into Rock at	C1F 2					
Bearing Elev. (ft):	5.3					
		_				
Prelim Footing Size:		8				
	B (ft)=	8				
Service Limit State						
AASHTO LRFD Bridge Design Spec Table C10	.6.2.5.1-1					
		Bearing	Resistance (ksf)			
		Ordinary	Recommended			
Type of Bearing Material	Consistency	Range	Value			
	Medium Hard					
Weathered / Broken Rock (except shale)	Rock	16-24	20			
Resistance Factor:	1.0					
Factored Resistance (ksf):	20	1				
Settlement						
AASHTO LRFD Bridge Design Specification 10	16244					
in the start of the bridge besign specification it						
For Circular or Square Footings						
For Circular or Square Footings,	0.14	inch				
Delta=qo(1-v^2)*((r*Ip)/(144Em))=	0.14	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)=		inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2	20	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone:	20	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square	20 0.29	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft):	20 0.29 4	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz =	20 0.29 4 1.64	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1	20 0.29 4 1.64	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B:	20 0.29 4 1.64 1	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing):	20 0.29 4 1.64 1	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5	20 0.29 4 1.64 1 1.08	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of	20 0.29 4 1.64 1 1.08	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or	20 0.29 4 1.64 1 1.08 1400	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or	20 0.29 4 1.64 1 1.08 1400 2170	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or	20 0.29 4 1.64 1 1.08 1400 2170	inch				
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or	20 0.29 4 1.64 1 1.08 1400 2170 70		RFD Table C10.4.6.	5-1		
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or Em=(Em/Ei)*Ei	20 0.29 4 1.64 1 1.08 1400 2170 70 0.05		RFD Table C10.4.6.	5-1		
Delta=qo(1-v^2)*((r*lp)/(144Em))= qo (ksf)= v from AASHTO LRFD Table C10.4.6.5-2 v, Mean Value for Dolostone: r = raidus for circular or B/2 for square r (ft): lp=(pi^(1/2))/Bz = Bz per Table 10.6.2.4.2-1 L/B: Bz (Rigid Footing): Em per AASHTO LRFD 10.4.6.5 Em = lesser of Ei or Em=145*(10^((RMR-10)/40)) or Em=(Em/Ei)*Ei	20 0.29 4 1.64 1 1.08 1400 2170 70 0.05		FD Table C10.4.6.	5-1		

Calcs:	Footings on Re	ock					
	SR 51 over US						
	East Pier (Pier						
Substructure.		5,					
Ei From GDM Table 400-6 based on Qu							
Qu (psi) within ~2B=	18020	19190	17110	12270			
Average Qu (psi)=		=	2397	ksf			
for Very Strong Qu=15000 psi		:o Qu=20,00	0 psi)	-			
	1400000						
Ei(ksi)=							
RMR Calculations							
Parameter	Value	Note	See ODOT GDM	1303.3.3 fo	r guidance o	on RMR Pa	rameters
1	12	Qu =2397 l	<sf< td=""><td></td><td></td><td></td><td></td></sf<>				
2	8	RQD=36%					
3	10		cing of joints, High			ately Fractu	ired
4	20		igh, Separateion <	0.05in, har	d joint wall		
5	7	Moist Only					
RMR =	57						
Strength Limit State							
Look at ODOT GDM 1303.3.3							
Meeting any of the following three condition					Condition I	Met?	
1. Bedrock Surface under the footing lopes s	teeper than 2				No		
2. Foundaiton Bedrock Has RMR >70		RMR=	-		No		
3. Foundation Bedrock is Strong or greater (Qu>7,500 psi)		Qu (psi)=	16648	Yes		
qn=(sqrt(s)+((m*sqrt(s))+s)^0.5)*Qu =	7903	psi					
qn=	1138	ksf					
m_m:*//DMD 400\/20\	1 5 1						
m=mi*exp((RMR-100)/28)=							
For dolomite, mi =	/						
s=exp((RMR-100)/9)=	0.0084						
S-exp((niviR-100)/9)=	0.0064						
From Table 10.5.5.2.2-1,							
For footings on rock,							
	0.45						
ψυ-	0.75						
qR=øb*qn (ksf)=	512						
	312]					

APPENDIX C

Ramp A Bridge Foundation Evaluations

Project Name:	LUC-023-11.75, PID 105889
Project Numbe	2065201
Calculated by:	КСН 04/11/2023
Reviewed By:	CPI 04/17/2023

Scour Determination - Ramp A

Upper Elevation Limit for Analysis = Lower Elevation Limit for Analysis = 621.79feet, based on 100-year floodplain602.40feet, based on 6 feet below bottom of river

	Table 3. Scour Parameters for Soils - Ramp A											
Boring Number	Sample Number	Sample Depth (feet)	Sample Approximate Elevation (feet)	ODOT Soil Class	Fines (<75 μm) (percent)	Pl (percent)	w (percent)	qu ¹ (psf)	D₅₀ (mm)	D ₉₅ (mm)	Critical Shear Stress, τ _c (psf)	Critical Shear Stress, τ _c (Pa)
B-028-1-21	SS-2	3.5 - 5.0	613.5 - 612.0	A-4a (4)	54	5	22	2,000	0.0452	1.3659	0.026	1.21
B-028-1-21	SS-3	6.0 - 7.5	611.0 - 609.5	A-2-4 (0)	25	6	11	-	0.3939	23.785	0.008	0.39
B-028-1-21	SS-4	8.5 - 10	608.5 - 607.0	A-2-4 (0)	31	4	12	-	1.0692	23.894	0.022	1.07
B-028-1-21	SS-5	11 - 11.1	606.0 - 605.9	A-2-4 (0)	31	0	-	-	0.3334	9.9839	0.007	0.33
B-028-2-21	SS-1	0.0 - 0.9	609.5 - 608.6	A-1-b (0)	20	0	-	-	6.3707	23.5121	0.133	6.37

¹ For cohesive samples which were not intact for an unconfined compressive strength test or a hand penetrometer value, q_u was estimated by $N_{60}x250$.

	Table 4. Scour Parameters for Rock - Ramp A											
								Rock				
						Rock		Mass				
			Sample	Unconfined	Slake	Quality		Rating,	Geologic			Critical
		Sample	Approximate	Compressive	Durability	Designation,	Unit	RMR	Strength		Critical Shear	Shear
Boring	Sample	Depth	Elevation	Strength, Q _u	Index, S _{DI}	RQD	Weight	(Superseded	Index,	Erodibility	Stress, τ _c	Stress, τ _c
Number	Number	(feet)	(feet)	(psi)	(percent)	(percent)	(pcf)	by GSI)	GSI	Index, K	(psf)	(Pa)
B-028-1-21	NQ-1	11.2 - 16.2	606.0 - 601.0	12,510	99.6	77	160.5	38	30 to 45	266	86.16	4,125.5
B-028-2-21	NQ-1	1.5 - 5.0	608.0 - 604.5	10,750	99.6	67	164.6	57	45 to 65	298	91.25	4,369.0
B-028-2-21	NQ-2	5.0 - 10.0	604.5 - 599.5	19,230	-	37	164.2	57	45 to 65	294	90.69	4,342.5

TTL Project No.:	2065201			
	LUC-23-11.75			
Calcs by:				
	6/27/2023			
Calcs:	Drilled Shaft Roc	k Socket Fact	ored Loads	
Location:	Ramp A over Ott	awa River		
Provided Factore	ed Loads - Per Sha	ift (4 shafts p	er footing)	
	Bottom of			
	Footing Elev.	Provided P	Provided M (k	
Substructure	(ft)	(kips)	ft)	
Rear Abutment	613.5	203.05	923.76	
Pier 1	610.0	315.21	702.52	
Pier 2	608.0	315.21	702.52	
Forward Abutment	615.0	203.05	923.76	
Unit Conversion for ir	put into LPILE			
				_
Provided Factore	ed Loads - Per Sha	ift (4 shafts p	er footing)	
	Bottom of			
	Footing Elev.	Provided P	Provided M	
Substructure	(ft)	(lbs)	(in-lb)	
Rear Abutment	613.5	203,050	11,085,120	
Pier 1	610.0	315,210	8,430,240	
Pier 2	608.0	315,210	8,430,240	
Forward Abutment	615.0	203,050	11,085,120	
Indicated of	center-to-center s	pacing, S (ft):	8	
I	ndicated shaft dia	meter, B (ft):	3.5	
		Spacing (S/B):	2.29	
ODOT BDM 305.1.2 G	roup Effects for si	ngle row with	C-C <3.75 diam	eters
Pm = 0.64 (S/B)^0.34	for 1.0≤ S/B ≤ 3.7	5		
		Pm =	0.85	

TTL Drojost No.	2065201
TTL Project No.:	LUC-23-11.75
Calcs by:	
-	5/10/2023, 6/26&30/2023
Date.	5/10/2025, 0/20850/2025
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp A over Ottawa River
Substructure:	Rear Abutment
Boring(s):	B-028-0-21
Ground Surface Elevation (ft):	620.3
Bottom of Pier Cap Elev (ft):	613.5
Top of Rock Elevation (ft):	609.3
Length of Shaft in Soil (ft):	4.2
Shaft in Soil Diameter (in):	36
(Minimum 42" j	for Pier Columns, and 36" for others.)
Shaft in Rock Diameter (in):	30
Shaft in Rock Diameter (ft):	2.5
End-Bearing at 1.5 x B	
Length of Socket (ft):	3.75
May increase Shaft in soil to 3.5 ft and sock	et to 3 ft diameter for lateral resistance
Shaft in Rock Diameter (ft):	3
In this case, 1.5 x B	
Length of Socket (ft):	4.5
	vithin 10 ft of ground surface or bottom of shaft cap.
As noted above, shaft in soil (ft):	
Governing Length of Socket (ft):	
End-Bearing Elev. (ft):	604.3
Structural indicates Scour to Elev:	
BDM 305.4.1.1, for end-bearing shafts/sock	
extend socket to penetrate a minimum of 1	
Therefore, end-bearing elevation is 10 ft be	
End-Bearing Elev. (ft):	
This is deeper than that determined with th	
End-Bearing Elev. (ft):	
Calculated Socket Length (ft):	13.4
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	
Qu (psi):	17090
Use Average Qu (psi):	
Average Qu (ksf):	2461

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp A over Ottawa River
Substructure:	Rear Abutment
End-Bearing Resistance (AASHTO LRFD 10.8	3.5.4c-1)
qp=2.5qu	
(Unfactored) qp (ksf):	6152
Resistance Factor (AASHTO LRFD Table 10.5.5.2.4-1)	
φ=	0.5
Factored Bearing Resistance (ksf)=	3076
Say, Factored Bearing Resistance (ksf)=	3075
For 2.5 ft diameter socket,	
Available Resistance (kips)=	15094
For 4 Shafts in Footing,	
Indicated Total Factored Load (kips)=	203.05
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	
For consideration of 3.5 ft dia shaft continue	ed without 6" reduction,
Available Resistance (kips)=	29585
	boring. If need to extend deeper for lateral purposes,
would use same Qu. So still ok for vertical.	
Note there is downdrag at this location.	
Per settlement calc sheet,	
Adhesion (ksf)=	
Top downdrag Elev / Footing Elev:	613.5
Elev of 0.4" settlement below to	
top of rock is Elev:	
Downdrag Length of Shaft (ft)	0.9
For 3.5 ft shaft in soil,	
unfactored DD (kips)=	
For factored DD, still pleanty of resistance a	
If load is carried by additional shafts, should lateral loading govern,	
there would be even less vertical load and vertical resistance would be suitable.	
Use other methods to avoid downdrag on footing and abutment walls.	

TTL Project No.:	2065201	
	LUC-23-11.75	
Calcs by:		
	5/10/2023, 6/26&30/2023	
	5/ 10/ 2020, 0/ 20000/ 2020	
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance	
Location:	Ramp A over Ottawa River	
Substructure:		
Boring(s):	B-028-1-21	
Ground Surface Elevation (ft):	616.6	
Bottom of Pier Cap Elev (ft):	610	
Top of Rock Elevation (ft):	605.6	
Length of Shaft in Soil (ft):		
Shaft in Soil Diameter (in):		
	Columns, and 36" for others.)	
Using footing instead of columns		
Shaft in Rock Diameter (in):		
Shaft in Rock Diameter (ft):	2.5	
End-Bearing at 1.5 x B		
Length of Socket (ft):	3.75	
May increase Shaft in soil to 3.5 ft and socket	to 3 ft diameter for lateral resistance	
Shaft in Rock Diameter (ft):	3	
In this case, 1.5 x B		
Length of Socket (ft):	4.5	
BDM 305.4.4.4, minimum 5' socket if rock with	hin 10 ft of ground surface or bottom of shaft cap.	
As noted above, shaft in soil (ft):	4.4	
Governing Length of Socket (ft):	5	
End-Bearing Elev. (ft):	600.6	
Structural indicates Scour to Elev:	603.02	
BDM 305.4.1.1, for end-bearing shafts/socket	s in non-scour resistant bedrock,	
extend socket to penetrate a minimum of 10 f	eet below scour elevation.	
Therefore, end-bearing elevation is 10 ft below	v scour elevation.	
End-Bearing Elev. (ft):		
This is deeper than that determined with the s		
End-Bearing Elev. (ft):		
This is just above highly fractured zone with o		
noted loss of water during coring. Due to susp		
deeper. Water 50% return and more intact ro	ck at Elev. 591.7. Therefore, extend socket	
to end-bearing at this elevation.		
End-Bearing Elev. (ft):		
Calculated Socket Length (ft):	13.9	

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp A over Ottawa River
Substructure:	Pier 1
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	587.02
Qu (psi):	19440
Use Average Qu (psi):	19440
Average Qu (ksf):	2799
End-Bearing Resistance (AASHTO LRFD 10.8.3.	5.4c-1)
qp=2.5qu	
(Unfactored) qp (ksf):	
Resistance Factor (AASHTO LRFD Table 10.5.5	2.4-1)
φ=	0.5
Factored Bearing Resistance (ksf)=	3499
Say, Factored Bearing Resistance (ksf)=	3495
For 2.5 ft diameter socket,	
Available Resistance (kips)=	17156
For 4 Shafts in Footing,	
Indicated Total Factored Load (kips)=	315.21
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	
For consideration of 3.5 ft dia shaft continued without 6" reduction,	
Available Resistance (kips)=	33626
This is deepest cored rock layer in the boring, so deeper shaft for lateral, if needed,	
would be designed using same Qu.	

TTL Project No.:	2065201	
	LUC-23-11.75	
Calcs by:		
	5/10/2023, 6/26&30/2023	
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance	
Location:	Ramp A over Ottawa River	
Substructure:	Pier 2	
Boring(s):	B-028-2-21	
Ground Surface Elevation (ft):	609	
Bottom of Pier Cap Elev (ft):	608	
Note, Bottom of Pier Cap below Top of Rock		
Top of Rock Elevation (ft):	608.1	
Length of Shaft in Soil (ft):	0	
Shaft in Soil Diameter (in):		
	Columns, and 36" for others.)	
Using footing instead of columns.		
Shaft in Rock Diameter (in):	30	
Shaft in Rock Diameter (ft):	2.5	
End-Bearing at 1.5 x B		
Length of Socket (ft):	3.75	
Note, Length below pier cap, not top of rock.		
May increase Shaft in soil to 3.5 ft and socket to	3 ft diameter for lateral resistance	
Shaft in Rock Diameter (ft):	3	
In this case, 1.5 x B		
Length of Socket (ft):	4.5	
Note, Length below pier cap, not top of rock.		
BDM 305.4.4.4, minimum 5' socket if rock within	10 ft of ground surface or bottom of shaft cap.	
As noted above, shaft in soil (ft):	0	
Governing Length of Socket (ft):	5	
Note, Length below pier cap, not top of rock.		
End-Bearing Elev. (ft):	603	
Structural indicates Scour to Elev:	605.72	
BDM 305.4.1.1, for end-bearing shafts/sockets in		
extend socket to penetrate a minimum of 10 fee	t below scour elevation.	
Therefore, end-bearing elevation is 10 ft below s		
End-Bearing Elev. (ft):		
This is deeper than that determined with the 5 f		
End-Bearing Elev. (ft):	595.72	
Note, Length below pier cap, not top of rock.		
Calculated Socket Length (ft):	12.28	

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp A over Ottawa River
Substructure:	Pier 2
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	589.72
Qu (psi):	17610
Use Average Qu (psi):	17610
Average Qu (ksf):	2536
End-Bearing Resistance (AASHTO LRFD 10.8.3.5.4	lc-1)
qp=2.5qu	
(Unfactored) qp (ksf):	6340
Resistance Factor (AASHTO LRFD Table 10.5.5.2.4-1)	
φ=	0.5
Factored Bearing Resistance (ksf)=	3170
Say, Factored Bearing Resistance (ksf)=	3170
For 2.5 ft diameter socket,	
Available Resistance (kips)=	15561
For 4 Shafts in Footing,	
Indicated Total Factored Load (kips)=	
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	
For consideration of 3.5 ft dia shaft continued wi	thout 6" reduction,
Available Resistance (kips)=	30499
This is deepest cored rock layer in the boring, so	deeper shaft for lateral, if needed,
would be designed using same Qu.	

TTL Project No.:	2065201	
	LUC-23-11.75	
Calcs by:		
	5/10/2023, 6/26&30/2023	
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance	
Location:	Ramp A over Ottawa River	
Substructure:	Forward Abutment	
Boring(s):	B-029-0-21	
Ground Surface Elevation (ft):	620.5	
Bottom of Pier Cap Elev (ft):	615	
Top of Rock Elevation (ft):	609	
Length of Shaft in Soil (ft):	6	
Shaft in Soil Diameter (in):	36	
(Minimum 42" for Pie	r Columns, and 36" for others.)	
Shaft in Rock Diameter (in):	30	
Shaft in Rock Diameter (ft):	2.5	
End-Bearing at 1.5 x B		
Length of Socket (ft):	3.75	
End-Bearing Elev. (ft):	605.25	
Note that Auger Refusal at Elev. (ft):	604.5	
Extend End-Bearing to Elev. (ft):	604.5	
Minimum Socket Length (ft):		
May increase Shaft in soil to 3.5 ft and socket	to 3 ft diameter for lateral resistance	
Shaft in Rock Diameter (ft):	3	
In this case, 1.5 x B		
Length of Socket (ft):	4.5	
This meets minimum above to get into cored	rock.	
	hin 10 ft of ground surface or bottom of shaft cap.	
As noted above, shaft in soil (ft):		
Governing Length of Socket (ft):		
End-Bearing Elev. (ft):	604	
Structural indicates Scour to Elev:		
BDM 305.4.1.1, for end-bearing shafts/socket		
extend socket to penetrate a minimum of 10		
Therefore, end-bearing elevation is 10 ft below scour elevation.		
End-Bearing Elev. (ft):		
This is deeper than that determined with the		
End-Bearing Elev. (ft):		
Calculated Socket Length (ft):	11.3	

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance	
	Ramp A over Ottawa River	
	Forward Abutment	
Look at RC Qu at bearing to		
2B below bearing:		
2B below bearing Elev.:	591.7	
Qu (psi):	12710	
No other tests within 2B		
Use Average Qu (psi):	12710	
Average Qu (ksf):	1830	
End-Bearing Resistance (AASHTO LRFD 10.8.3	.5.4c-1)	
qp=2.5qu		
(Unfactored) qp (ksf):	4576	
Resistance Factor (AASHTO LRFD Table 10.5.5	.2.4-1)	
φ=	0.5	
Factored Bearing Resistance (ksf)=	2288	
Say, Factored Bearing Resistance (ksf)=	2285	
For 2.5 ft diameter socket,		
Available Resistance (kips)=	11216	
For 4 Shafts in Footing,		
Indicated Total Factored Load (kips)=	203.05	
Suitable Vertical Resistance?	YES	
For 3 ft diameter socket,		
Available Resistance (kips)=		
For consideration of 3.5 ft dia shaft continued	without 6" reduction,	
Available Resistance (kips)=	21984	
If extend deeper for lateral load consideration		
than the value used for design. As such, vertical would still be suitable.		
No downdrag for this location with approximately 0.4 inch or less settlement		
calculated for soil zone from footing elevation to top of rock.		
Use other methods to avoid downdrag on footing and abutment walls.		

TTL Project No.:	2065201								
Project:	LUC-23-11.75								
Calcs by:									
	5/15/2023								
	5/ - 5/ - 5 - 5								
Calce	Drilled Shaft Rock Sockets - Lateral Re	rictanco							
	Ramp A over Ottawa River	sistance							
Substructure:	Rear Abutment								
	B-028-0-21								
GSE (ft):									
Long-Term GWT (ft):		Approx. N	ormal River El	ev.					
Bottom of Pier Cap Elev. (ft):	613.5								
Soil									
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 1	Medium Dense A-3a	0	4	620.3	616.3	20	-	-	
			n of Pier Cap:	-6.8	-2.8	20			
Total Unit Wt (pcf):	-	GDM Tabl		Use	125	pcf			
			E 400-4	USE	125	рсі			
Internal Angle of Friction Determination									
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4								
CN=0.77log(40/sigma-v'), with CN<2.0									
CN at	2	ft							
sigma-v' (ksf):	0.25	1							
CN=	1.7	<2.0, use	1.7						
N160 (bpf)=	34								
AASHTO LRFD Table 10.4.6.2.4-1									
N160	Mid-Range Phi (deg)	1							
30	37.5								
50	40.5								
N160	Phi (deg)								
34	38.09	use	38	deg					
GDM Table 400-3 phi Adjustment	00.00	450	55	468					
A-3a	-0.5								
Phi (deg) =	37.5								
Pill (deg) –	57.5								
k Evaluation From LPILE 2018 Technical N									
Parameters:	Medium Dense, Dry to Moist Sand								
Range of k-value (pci) =	13.0 - 40.0								
Med Dense range of N60	k (pci)								
11	13								
30	40								
Interpolate for 20 bpf for this layer:	25.8								
Say k (pci) =	25								
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 2	Very Stiff A-4a	4	6	616.3	614.3	18	(c31)	Qu (131)	
Layer 2			n of Pier Cap:	-2.8	-0.8	10	_	_	
Total Unit Wt (pcf):	-	GDM Tabl		-2.8 Use	-0.8 120	nof			
			e 400-4	ose	120	pcf			
Su = N60 x 125 (N60<= 52 bpf) per GDM									
Su (ksf)=	2.25	1							
		1							
Evaluation of Strain at half stress (epsilor									
Su = <u>2-4</u> ksf, epsilon 50 =	0.005								
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 3	Stiff to Very Stiff A-6a	6	8	614.3	612.3	ST	3.25	0.94	
			n of Pier Cap:	-0.8	1.2	5.	5.25	0.04	
Total Unit Wt (pcf):	-	Qu Specim		Use	125	pcf			
		Qu specifi					r A An alt -		
Su = N60 x 125 (N60<= 52 bpf) per GDM		Decid	Du hart of the	baseu ON	soil type and	UNIL WE TO	n A-4a abo	we.	
Su (ksf)=	0.94	Based on (Qu test result.						
		1							
		1	1	1					
Evaluation of Strain at half stress (epsilor									
epsilon 50 for Su = 1-2 ksf: 0.007, Mediur	n Stiff: 0.010, Soft: 0.020								
	n Stiff: 0.010, Soft: 0.020								
epsilon 50 for Su = 1-2 ksf: 0.007, Mediur	n Stiff: 0.010, Soft: 0.020	1							

			1	1 1		r			 1
	Drilled Shaft Rock Sockets - Lateral Re	sistance							
	Ramp A over Ottawa River								
Substructure:	Rear Abutment	1							
		<u> </u>							
		Top Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 4	Loose A-3a	8	11	612.3	609.3	8	-	-	
	Depth be	elow bottor	n of Pier Cap:	1.2	4.2				
Total Unit Wt (pcf):	120	GDM Table	e 400-4	Use	120	pcf			
Internal Angle of Friction Determination	(GDM 404.2):								
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4								
CN=0.77log(40/sigma-v'), with CN<2.0									
CN at	9.5	ft							
sigma-v' (ksf):	1.14								
CN=	1.2	<2.0, use	1.2						
N160 (bpf)=	10								
AASHTO LRFD Table 10.4.6.2.4-1									
N160	Mid-Range Phi (deg)								
10	32.5	use	32.5	deg					
GDM Table 400-3 phi Adjustment									
A-3a	-0.5								
Phi (deg) =	32	1							
k Evaluation From LPILE 2018 Technical N	Ianual	1							
Parameters:	Loose, Submerged Sand								
Range of k-value (pci) =	2.1 - 6.4	1							
Med Dense range of N60	k (pci)	1							
5	2.1	1							
10	6.4								
Interpolate for 8 bpf for this layer:	4.7								
Say k (pci) =	5	1							
Augerable Weathered Bedrock									
lavar	Rock Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev.	Bottom Elev. (ft)	SPT Result			
Layer Layer 5	Weathered Dolomite	(ft) 11	13	(ft) 609.3	607.3	Result 11-50/4"			
Layer 5			n of Pier Cap:		6.2	11-30/4			
Total Unit Wt (pcf):		GDM Table		4.2 Use	160	pcf			
rotar onic we (per).	162		f Tested Value			pei			
Qu based on SPT Results per GDM 404.3	102	Average 0	i resteu value	is for the pl	ojeci.				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf)		1							
ER(%)=	90	1							
N90=50/4" x 12" =	150	bpf							
N90=50/4 x 12 = N90 = 90/90 x 150 bpf =	150	bpi							
Qu (ksf) =	13.8	nhi							
Qu (ksi) = Qu (psi) =	95.8	1							
Qu (psi) =	33.8	Į							
Estimate Elected on CDNA Table 100 C									
Estimate E based on GDM Table 400-6									
Lowest Qu = 200 psi, indicated as E = 18,0		1							
Use E (psi) =	12000	1							
	half man stores (long) is sale in the	-							
If Strain at <u>18,000</u> psi is 1%, then strain at									
Half max stress = $Qu/2 =$		psi							
krm = 1% x (<u>47.9</u> psi / <u>18,000</u> psi) =	0.0027	%							
krm (decimal format) =	0.000027	1							
1									

location	Drilled Shaft Rock Sockets - Lateral Re Ramp A over Ottawa River	sistance								
	Rear Abutment									
Substructure.		-								
Cored Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 6	Dolomite - Strong, Vuggy	13	14.4	607.3	605.9	65	100	No Test		
	Frac. To Mod Frac.									
	•		n of Pier Cap:		7.6					
Total Unit Wt (pcf):		GDM Table		Use	160	pcf				
	162	Average of	f Tested Value	es for the p	roject.					
Qu (m)	40750	Circilian da		- 6	n n n n n n n n n	020.2.24 -	a d Charan			
Qu (psi)=	10750	Similar dep	pth below top	OT FOCK TFO	m nearby B-	028-2-21, a	na strong			
From GDM Table 400-6, say E (psi) =	900000									
	300000	┩────┘								
If Strain at <u>900,000</u> psi is 1%, then strain a	at half may stress (krm) is calculated by									
Half max stress = $Qu/2$ =		psi								
krm = 1% x (<u>5375</u> psi / <u>900,000</u> psi) =		%								
krm (decimal format) =		1								
	1	Тор		Ì		Î I				
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 7	Dolomite - Very Strong	14.4	21	605.9	599.3	72	96	22000	164	at 17 ft
	Frac. To Mod Frac.							20200	161	at 20.2 ft
			m of Pier Cap:		14.2		_			
Total Unit Wt (pcf):	165-175	GDM Table		Use	160	pcf				
	162.5	Average of	f tested value	s within zoi	ne.					
- /										
Qu (psi)=	21100	Average of	f tested value	s within zoi	ne.					
	1800000									
From GDM Table 400-6, say E (psi) =	1800000	Į!								
If Strain at <u>1,800,000</u> psi is 1%, then strai	n at half may stross (krm) is calculated k									
Half max stress = $Qu/2$ =		psi								
$krm = 1\% \times (10,550 \text{ psi} / 1,800,000 \text{ psi}) =$		%								
krm (decimal format) =										
		4								
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 8	Dolomite - Very Strong	21	23.9	599.3	596.4	34	100	No Test		
	Highly Frac. To Mod Frac.									
	•		m of Pier Cap:	14.2	17.1					
Total Unit Wt (pcf):		GDM Table	e 400-5	Use	160	pcf				
	162			0.50						
	1	Average of	f Tested Value		roject.					
				es for the p						
Qu (psi)=	20200		f Tested Value und strength f	es for the p						
				es for the p						
Qu (psi)= From GDM Table 400-6, say E (psi) =	20200 1800000			es for the p						
From GDM Table 400-6, say E (psi) =	1800000	Lower-bou		es for the p						
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then strai	1800000 n at half max stress (krm) is calculated b	Lower-bou		es for the p						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strai Half max stress = Qu/2 =	1800000 n at half max stress (krm) is calculated b 10100	Lower-bou py: psi		es for the p						
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) =	1800000 n at half max stress (krm) is calculated b 10100 0.0056	Lower-bou		es for the p						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strai Half max stress = Qu/2 =	1800000 n at half max stress (krm) is calculated b 10100 0.0056	Lower-bou py: psi		es for the p						
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) =	1800000 n at half max stress (krm) is calculated b 10100 0.0056	Lower-bou py: psi %		es for the p						
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) =	1800000 n at half max stress (krm) is calculated b 10100 0.0056	Lower-bou	und strength f	s for the p	ove.					
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) =	1800000 n at half max stress (krm) is calculated b 10100 0.0056	Lower-bou py: psi % Top Depth	Bottom	s for the p or layer abo	Bottom	RQD (%)	Rec (%)	Qu (psi)		
From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1,800,000</u> psi) = krm (decimal format) =	1800000 n at half max stress (krm) is calculated b 10100 0.0056 0.00056	Lower-bou	und strength f	s for the p	ove.	RQD (%) 38	Rec (%) 100	Qu (psi) No Test		
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	1800000 n at half max stress (krm) is calculated b 10100 0.0056 0.000056 Soil Type	Lower-bou py: psi % Top Depth (ft)	Bottom Depth (ft)	s for the p or layer abi	Bottom Elev. (ft)					
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	1800000 n at half max stress (krm) is calculated b 10100 0.0056 0.000056 Soil Type Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac.	Lower-bou	Bottom Depth (ft)	s for the p or layer about the part of the	Bottom Elev. (ft)					
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	1800000 n at half max stress (krm) is calculated t 10100 0.0056 0.000056 Soil Type Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be	Lower-bou	Bottom Depth (ft) 25 n of Pier Cap:	s for the p or layer about the part of the	Bottom Elev. (ft) 595.3					
From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1,800,000</u> psi) = krm (decimal format) = Layer Layer 9	1800000 n at half max stress (krm) is calculated t 10100 0.0056 0.000056 Soil Type Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be	Lower-bou py: psi % Top Depth (ft) 23.9 Elow bottor GDM Table	Bottom Depth (ft) 25 n of Pier Cap:	s for the p or layer about the p or layer about the p for the p fo	Bottom Elev. (ft) 595.3 18.2 160	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf):	1800000 n at half max stress (krm) is calculated to 10100 0.0056 0.000056 0.000056 0.000056 0.000056 0.000056 0.000056 0.000056 0.0005	Lower-bou psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1,800,000</u> psi) = krm (decimal format) = Layer Layer 9	1800000 n at half max stress (krm) is calculated to 10100 0.0056 0.000056 0.000056 0.000056 0.000056 0.000056 0.000056 0.000056 0.0005	Lower-bou psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of	Bottom Depth (ft) 25 m of Pier Cap: e 400-5	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Qu (psi)= Qu (psi)=	1800000 n at half max stress (krm) is calculated b 10100 0.0056 0.000056 Soil Type Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be 165-175 162 7500	Lower-bou psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1,800,000</u> psi) = krm (decimal format) = Layer Layer Total Unit Wt (pcf):	1800000 n at half max stress (krm) is calculated to 10100 0.0056 0.000056 0.000056 0.000056 0.000056 0.000056 0.000056 0.000056 0.0005	Lower-bou psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	1800000 n at half max stress (krm) is calculated b 10100 0.0056 0.000056 Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be 165-175 162 7500 680000	Lower-bou py: psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of Transition	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain	1800000 n at half max stress (krm) is calculated t 10100 0.0056 0.000056 0.000056 Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by	Lower-bou py: psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of Transition	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain Half max stress = Qu/2 =	1800000 In at half max stress (krm) is calculated to 10100 0.0056 0.000056 Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750	Lower-bou psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of Transition	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain. Half max stress = Qu/2 krm = 1% x (<u>3.750</u> psi / <u>680,000</u> psi) =	1800000 In at half max stress (krm) is calculated to 10100 0.0056 0.000056 Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055	Lower-bou py: psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of Transition	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then strai Half max stress = Qu/2 krm = 1% x (<u>10,100</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain Half max stress = Qu/2 =	1800000 In at half max stress (krm) is calculated to 10100 0.0056 0.000056 Dolomite - Mod. Strong to Strong Vuggy, Highly Frac. To Mod Frac. Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055	Lower-bou psi % Top Depth (ft) 23.9 Elow bottor GDM Table Average of Transition	Bottom Depth (ft) 25 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 596.4 17.1 Use s for the p	Bottom Elev. (ft) 595.3 18.2 160 roject.	38				

			1	1		1			1	
	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp A over Ottawa River									
Substructure:	Rear Abutment									
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 10	Dolomite - Very Strong	25	26.8	595.3	593.5	77	100	17090	161	at 26.1 ft
	Frac. To Mod Frac.									
	Depth be	low bottor	m of Pier Cap:	18.2	20					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	161	Average o	f tested value	s within zoı	ne.					
Qu (psi)=	17090	Tested val	ue within zon	e.						
From GDM Table 400-6, say E (psi) =	1400000									
				1						
If Strain at <u>1,400,000</u> psi is 1%, then strair	at half max stress (krm) is calculated b	ov:		1						
Half max stress = $Qu/2$ =	8545	psi		+		1				
krm = 1% x (<u>8545</u> psi / <u>1,400,000</u> psi) =		%		1		1				
krm (decimal format) =		1								
	0.000001									
		Тор							1	
		Depth	Bottom	Top Elev.	Bottom					
Lover	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)		Rec (%)	Qu (psi)		
Layer Layer 11	Dolomite - Strong	26.8	31	593.5	589.3	RQD (%)	94	No Test		
Layer II		20.0	51	595.5	209.5	0	94	NO TEST		
	Highly Frac. To Frac.		n of Dian Com	20	24.2					
			m of Pier Cap:		24.2					
Total Unit Wt (pcf):	165-175	GDM Tabl		Use	160	pcf				
	162	Average o	f Tested Value	es for the p	roject.					
Qu (psi)=	12700	Average o	f Qu for speci	mens withi	n strong rang	ge for the p	roject.			
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900,000 psi is 1%, then strain a		:								
Half max stress = Qu/2 =	6350	psi								
krm = 1% x (<u>6,350</u> psi / <u>900,000</u> psi) =	0.0071	%								
krm (decimal format) =	0.000071									
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 12	Dolomite - Strong	31	33	589.3	587.3	24	98	No Test		
	Highly Frac. To Mod. Frac.									
	÷ ;	low bottor	n of Pier Cap:	24.2	26.2	1				
Total Unit Wt (pcf):	165-175	GDM Tabl		Use	160	pcf				
	162		f Tested Value	s for the n	roiect.	· · ·				
					,					
Qu (psi)=	12700	Average of	f Qu for speciı	nens withi	n strong rang	ge for the n	roject.			
						,	,			
From GDM Table 400-6, say E (psi) =	900000									
		4		+						
If Strain at 900,000 psi is 1%, then strain a	ht half may stross (krm) is calculated her									
Half max stress = $Qu/2$ =	6350			+						
Half max stress = Qu/2 = krm = 1% x (6,350 psi / 900,000 psi) =	0.0071	psi %								
		70								
krm (decimal format) =	0.000071	I								

TTL Project No.: 2065201 Image: constraint of the second		
Cales by: CPI Image: S/15/2023 Ima		
Cales by: CPI Image: S/15/2023 Ima		
Date: 5/15/2023 Image: Signature of the second sec		
Calcs: Drilled Shaft Rock Sockets - Lateral Resistance Image: Calcs of the calculation of		
Location: Ramp A over Ottawa River Image: Constructure: Pier 1 Image: Constructure: Image: Constructur		
Location: Ramp A over Ottawa River Image: Constructure: Pier 1 Image: Constructure: Image: Constructur		
Substructure: Pier 1 Image: Construct of the second secon		
Boring(s): B-028-1-21 Image: Constraint of the second sec		
GSE (ft): 616.6 Approx. Normal River Elev. Image: Constraint of the second		
GSE (ft): 616.6 Approx. Normal River Elev. Image: Constraint of the second		
GSE (ft): 616.6 Approx. Normal River Elev. Image: Constraint of the second		
Long-Term GWT (ft): 612 Approx. Normal River Elev. Image: Constraint of Pier Cap Elev. (ft): 610 I		
Bottom of Pier Cap Elev. (ft): 610 Image: Cap Elev. (ft): Mode		
Soil Top Depth Bottom (ft) Top Elev. Depth (ft) Bottom Elev. (ft) N60 HP (tsf) Qu (tsf) Layer 1 Very Stiff A-4b 0 3 616.6 613.6 21 - - Depth below bottom of Pier Cap: -6.6 -3.6 - - - - Su = N60 x 125 (N60 52 bpf) per GDM 404.1 - <td></td> <td></td>		
Layer Soil Type Top Depth (ft) Bottom Depth (ft) Top Elev. (ft) Bottom Elev. (ft) N60 HP (tsf) Qu (tsf) Layer 1 Very Stiff A-4b 0 3 616.6 613.6 21 - - Depth below bottom of Pier Cap: -6.6 -3.6 - - - Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1		
Layer Soil Type Top Depth (ft) Bottom Depth (ft) Top Elev. (ft) Bottom Elev. (ft) N60 HP (tsf) Qu (tsf) Layer 1 Very Stiff A-4b 0 3 616.6 613.6 21 - - Depth below bottom of Pier Cap: -6.6 -3.6 - - - Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
Layer Soil Type (ft) Depth (ft) (ft) Elev. (ft) N60 HP (tsf) Qu (tsf) Layer 1 Very Stiff A-4b 0 3 616.6 613.6 21 - - ////////////////////////////////////		
Layer 1 Very Stiff A-4b 0 3 616.6 613.6 21 - - Depth below bottom of Pier Cap: -6.6 -3.6 - - - Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf - Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1 - - - - - - Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1 -		
Depth below bottom of Pier Cap: -6.6 -3.6 -6.6 -3.6 Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1		
Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1		
Su (ksf)= 2.625 Image: Constraint of the stress (epsilon 50) from LPILE 2018 Technical Manual Image: Constraint of the stress (epsilon 50 = 0.005)		
Su (ksf)= 2.625 Image: Constraint of the stress (epsilon 50) from LPILE 2018 Technical Manual Image: Constraint of the stress (epsilon 50 = 0.005)		
Evaluation of Strain at half stress (epsilon 50) from LPILE 2018 Technical Manual Image: Comparison of the stress of the stres		
Su = 2-4 ksf, epsilon 50 = 0.005 Top Bottom Top Elev. Bottom		
Su = 2-4 ksf, epsilon 50 = 0.005 Top Bottom Top Elev. Bottom		
Top Depth Bottom Top Elev. Bottom	1	
Depth Bottom Top Elev. Bottom	1	
Depth Bottom Top Elev. Bottom		
Depth Bottom Top Elev. Bottom		
Layer Soll Type (π) Depth (π) (π) Elev. (π) NoU HP (τst) QU (τst)		h-0
Layer 2 Medium Stiff to Stiff A-4a 3 6 613.6 610.6 6 1.00 No Test		Test
Depth below bottom of Pier Cap: -3.6 -0.6		
Total Unit Wt (pcf): 115 GDM Table 400-4 Use 115 pcf		
Su = N60 x 125 (N60<= 52 bpf) per GDM 404.1 Based on soil type and Unit Wt for A-4a above.		
Su (ksf)= 750 Based on N60 value.		
Say Su (ksf)= 1.00		
Evaluation of Strain at half stress (epsilon 50) from LPILE 2018 Technical Manual		
epsilon 50 for Su = 1-2 ksf: 0.007, Medium Stiff: 0.010, Soft: 0.020		
Say epsilon 50 = 0.007		
Тор		
Depth Bottom Top Elev. Bottom		
Layer Soil Type (ft) Depth (ft) (ft) Elev. (ft) N60 HP (tsf) Qu (tsf)		
Layer 3 Medium Dense A-2-4 6 8 610.6 608.6 18		(tsf)
Depth below bottom of Pier Cap: -0.6 1.4		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2): Internal Angle of Friction Determination (GDM 404.2): Image: Comparison of the state of th		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Image: constraint of the state of t		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2): Internation (GD		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2): Internal Angle of Friction Determinating angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2): Internal Angle of Friction Determinating angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2): Internal Angle of Friction Determinating angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2): Internal Angle of Friction Determinating angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		
Total Unit Wt (pcf): 125 GDM Table 400-4 Use 125 pcf Internal Angle of Friction Determination (GDM 404.2):		

				1		1			1	1
	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp A over Ottawa River									
Substructure:	Pier 1									
		_								
		Тор		T	B					
	6-11 7 -11-1	Depth	Bottom	Top Elev.	Bottom		115 (1-6)	0		
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60		Qu (tsf)		
Layer 4	Very Dense A-2-4	8	11	608.6	605.6	90	-	-		
			n of Pier Cap:	-	4.4					
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	140	pcf				
Internal Angle of Friction Determination N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4									
	AASHTO LRFD 10.4.6.2.4									
CN=0.77log(40/sigma-v'), with CN<2.0 CN at	9.5	ft								
sigma-v' (ksf):	9.5	11								
CN=	1.024	<2.0, use	1.2							
N160 (bpf)=	112	<2.0, use	1.2							
AASHTO LRFD Table 10.4.6.2.4-1	110									
N160	Mid-Range Phi (deg)									
Highest is 50 bpf	40.5									
Tignest is 50 bpi	40.5									
N160	Phi (deg)									
110	40.5	use	40.5	deg					<u> </u>	
GDM Table 400-3 phi Adjustment	-0.5	use	-0.5	ucg						
A-2-4	+0.5									
Phi (deg) =	41									
rin (deg) -	41	4		-						
k Evaluation From LPILE 2018 Technical N	 /anual	+		-						
Parameters:	Dense, Submerged									
Range of k-value (pci) =	32.0-64.0									
For N60 of 90 bpf, V. Dense, use highest										
Say k (pci) =										
Suy k (per) -										
Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 5	Dolomite - Strong	11	11.4	605.6	605.2	0	100	No Test		
	Highly Frac.			00010	00012		100	110 1050		
		low bottor	n of Pier Cap:	4.4	4.8					
Total Unit Wt (pcf):	-	GDM Tabl	•	Use	160	pcf				
iotal officier (per).	165 175		f Tested Value			pei				
	102	Average 0	Testeu value		ojeci.					
Qu (psi)=	10750	Similar do	oth below top	of rock fro	m noarby P	029 2 21 2	nd Strong			
	10/30	Similar ue		OFFICERING	III IIEal Dy D-	020-2-21, a	nu strong			
From CDM Table 400 6 cay E (nci) -	900000									
From GDM Table 400-6, say E (psi) =	90000									
If Strain at 900,000 pci is 10/ there sturing	half may stross (krm) is sale date the									
If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 =				1		1				
nail fildx stress – Qu/2 =										
krm = 1% x (5375 nsi / 900 000 nci) -		psi %								
krm = 1% x (<u>5375</u> psi / <u>900,000</u> psi) =	0.0060	%								
krm = 1% x (<u>5375</u> psi / <u>900,000</u> psi) = krm (decimal format) =	0.0060	•								
	0.0060	%								
	0.0060	Тор	Bottom	Ton Flou	Pottom				Totol Unit	
krm (decimal format) =	0.0060	% Top Depth	Bottom	Top Elev.	Bottom		Poc (%)	Ou (nsi)	Total Unit	
krm (decimal format) = Layer	0.0060 0.000060 Soil Type	% Top Depth (ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
krm (decimal format) =	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong	% Top Depth		-		RQD (%) 43	Rec (%) 89	21510	Wt (pcf) 160	at 12.4 ft
krm (decimal format) = Layer	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac.	% Top Depth (ft) 11.4	Depth (ft) 21.1	(ft) 605.2	Elev. (ft) 595.5				Wt (pcf)	at 12.4 ft at 17.2 ft
krm (decimal format) = Layer Layer 6	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be	% Top Depth (ft) 11.4	Depth (ft) 21.1 n of Pier Cap:	(ft) 605.2 4.8	Elev. (ft) 595.5 14.5	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175	% Depth (ft) 11.4 elow bottor	Depth (ft) 21.1 n of Pier Cap: e 400-5	(ft) 605.2 4.8 Use	Elev. (ft) 595.5 14.5 160			21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be	% Depth (ft) 11.4 elow bottor	Depth (ft) 21.1 n of Pier Cap:	(ft) 605.2 4.8 Use	Elev. (ft) 595.5 14.5 160	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf):	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162	% Top Depth (ft) 11.4 elow bottor GDM Tabl Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162	% Top Depth (ft) 11.4 elow bottor GDM Tabl Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)=	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162 17330	% Top Depth (ft) 11.4 elow bottor GDM Tabl Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf):	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162	% Top Depth (ft) 11.4 elow bottor GDM Tabl Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162 17330 1400000	% Top Depth (ft) 11.4 How bottor GDM Tabl Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	0.0060 0.000060 Soil Type Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162 17330 1400000 n at half max stress (krm) is calculated b	% Top Depth (ft) 11.4 How bottor GDM Tabl Average o Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 =	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162 17330 1400000 n at half max stress (krm) is calculated to 8665	% Top Depth (ft) 11.4 Noverage o Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 1,400,000 psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (8,665 psi / 1,400,000 psi) =	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162 17330 1400000 n at half max stress (krm) is calculated b 8665 0.0062	% Top Depth (ft) 11.4 How bottor GDM Tabl Average o Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	
krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 =	0.0060 0.000060 Dolomite - Very Strong to Strong Vuggy, Frac. To Mod Frac. Depth be 165-175 162 17330 1400000 n at half max stress (krm) is calculated b 8665 0.0062	% Top Depth (ft) 11.4 Noverage o Average o	Depth (ft) 21.1 n of Pier Cap: e 400-5 f tested values	(ft) 605.2 4.8 Use s within zor	Elev. (ft) 595.5 14.5 160 ne.	43		21510	Wt (pcf) 160	

Calaci										
Calcs:	Drilled Shaft Rock Sockets - Lateral Re	sistance								
Location:	Ramp A over Ottawa River									
Substructure:	Pier 1									
		Тор				1				
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 7	Dolomite - Strong	21.1	21.9	595.5	594.7	0	100	No Test		
	Highly Frac.		2210	555.5	55 117		100			
		low hotto	n of Pier Cap:	14.5	15.3					
T - 4 - 1 1 - 14 14 (4 6).	-									
Total Unit Wt (pcf):		GDM Tabl		Use	160	pcf				
	162	Average of	f Tested Value	s for the p	roject.					
			-							
Qu (psi)=	7500	Transition	from Modera	tely Strong	to Strong					
From GDM Table 400-6, say E (psi) =	680000									
		Ĩ								
If Strain at 680,000 psi is 1%, then strain a	at half max stress (krm) is calculated by									
Half max stress = Qu/2 =	3750	psi								
krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) =	0.0055	%								
krm (decimal format) =	0.000055									
		1								
		Tor				1				
		Top	Detter	Ten Flor	Dettern					
		Depth	Bottom	Top Elev.	Bottom	BG5 /5/	B. 6-0	a		
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 8	Dolomite - Strong	21.9	23.9	594.7	592.7	17	100	No Test		
	Highly Frac. To Frac.									
	Depth be	low bottor	n of Pier Cap:	15.3	17.3					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162	Average of	f Tested Value	s for the n	roject.	1		1		
					,	1		1		
Qu (psi)=	7500	Transition	from Modera	telv Strong	to Strong					
	7500	manatuon			to Sti Olig					
From GDM Table 400-6, say E (psi) =	680000									
If Strain at 680,000 psi is 1%, then strain a										
Half max stress = Qu/2 =		psi								
krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) =	0.0055	%								
krm (decimal format) =	0.000055									
· · · · ·										
		Top								
		Top Denth	Bottom	Ton Fley	Bottom					
lavar	Soil Turo	Depth	Bottom	Top Elev.	Bottom	BOD (%)	Dec (%)	Qu (nai)		
Layer	Soil Type	Depth (ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)			
Layer Layer 9	Dolomite - Strong	Depth (ft) 23.9	Depth (ft) 24.9			RQD (%) 0	Rec (%) 33	Qu (psi) No Test		
	Dolomite - Strong Highly Frac. Driller noted loss of wate	Depth (ft) 23.9 r return du	Depth (ft) 24.9 ring coring.	(ft) 592.7	Elev. (ft) 591.7					
Layer 9	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be	Depth (ft) 23.9 r return du low bottor	Depth (ft) 24.9 ring coring. n of Pier Cap:	(ft) 592.7 17.3	Elev. (ft) 591.7 18.3	0				
	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be	Depth (ft) 23.9 r return du	Depth (ft) 24.9 ring coring. n of Pier Cap:	(ft) 592.7	Elev. (ft) 591.7					
Layer 9	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be	Depth (ft) 23.9 r return du low bottor GDM Tabl	Depth (ft) 24.9 ring coring. n of Pier Cap:	(ft) 592.7 17.3 Use	Elev. (ft) 591.7 18.3 160	0				
Layer 9	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175	Depth (ft) 23.9 r return du low bottor GDM Tabl	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5	(ft) 592.7 17.3 Use	Elev. (ft) 591.7 18.3 160	0				
Layer 9	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf):	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)=	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf):	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 et half max stress (krm) is calculated by	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680.000</u> psi is 1%, then strain a	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi %	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value	(ft) 592.7 17.3 Use s for the p	Elev. (ft) 591.7 18.3 160 roject.	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition psi % Top	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera	(ft) 592.7 17.3 Use s for the p tely Strong	Elev. (ft) 591.7 18.3 160 roject. to Strong	0				
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain ; Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition % % Top Depth	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera	(ft) 592.7 17.3 Use s for the p tely Strong	Elev. (ft) 591.7 18.3 160 roject. to Strong Bottom	0 pcf	33	No Test	Total Unit Wt (ncf)	
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain is Half max stress = Qu/2 = krm = 1% x (<u>3,750 psi / 680,000 psi</u>) = krm (decimal format) = Layer	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.00055 Soil Type	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition % % Top Depth (ft)	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera	(ft) 592.7 17.3 Use s for the p tely Strong Top Elev. (ft)	Elev. (ft) 591.7 18.3 160 roject. to Strong Bottom Elev. (ft)	0 pcf	33	No Test	Wt (pcf)	21 77 @
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain ; Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.000055 0.000055 Soil Type Dolomite - Very Strong	Depth (ft) 23.9 return du low bottor GDM Tabl. Average o Transition Transition % 5 5 7 8 8 7 7 0 9 8 7 7 0 9 7 7 9 7 7 9 7 7 9 7 7 7 7 7 7 7	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1	(ft) 592.7 17.3 Use s for the p tely Strong Top Elev. (ft) 591.7	Elev. (ft) 591.7 18.3 160 roject. to Strong to Strong Bottom Elev. (ft) 585.5	0 pcf	33	No Test		at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750 psi / 680,000 psi</u>) = krm (decimal format) = Layer	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.000055 0.000055 0.000055 Frac. To Mod Frac. Driller noted 50% f	Depth (ft) 23.9 r return du iow bottor GDM Tabl Average o Transition Transition psi % Top Depth (ft) 24.9	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during coring	(ft) 592.7 17.3 592.7 17.3 592.7 tely Strong tely Strong	Elev. (ft) 591.7 18.3 160 roject. 	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer Layer 10	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.000055 0.000055 0.000055 Frac. To Mod Frac. Driller noted 50% of Depth be	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition psi % Top Depth (ft) 24.9 eturn wate	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera bettom Depth (ft) 31.1 r during corin n of Pier Cap:	(ft) 592.7 17.3 Use s for the p tely Strong tely Strong (ft) 591.7 g in this zc 18.3	Elev. (ft) 591.7 18.3 160 roject. to Strong to Strong Bottom Elev. (ft) 585.5 pne. 24.5	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750 psi / 680,000 psi</u>) = krm (decimal format) = Layer	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.00055 0.00055 0.000055 0.000055 Frac. To Mod Frac. Driller noted 50% f Depth be 165-175	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition psi % Top Depth (ft) 24.9 eturn wate low bottor GDM Tabl	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera bettom Depth (ft) 31.1 r during corir n of Pier Cap: e 400-5	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong Bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer Layer 10	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.000055 0.000055 0.000055 Frac. To Mod Frac. Driller noted 50% of Depth be	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition psi % Top Depth (ft) 24.9 eturn wate low bottor GDM Tabl	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera bettom Depth (ft) 31.1 r during corin n of Pier Cap:	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong Bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer Layer 10	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.00055 0.00055 0.000055 0.000055 Frac. To Mod Frac. Driller noted 50% f Depth be 165-175	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition psi % Top Depth (ft) 24.9 eturn wate low bottor GDM Tabl	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera bettom Depth (ft) 31.1 r during corir n of Pier Cap: e 400-5	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer Layer 10	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 Soil Type Dolomite - Very Strong Frac. To Mod Frac. Driller noted 50% r Depth be 165-175 164	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition psi % Top Depth (ft) 24.9 eturn wate low bottor GDM Tabl	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain , Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer 10 Total Unit Wt (pcf):	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 Soil Type Dolomite - Very Strong Frac. To Mod Frac. Driller noted 50% r Depth be 165-175 164	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition Psi % Top Depth (ft) 24.9 eturn wate GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain 7 Half max stress = Qu/2 = krm = 1% x (<u>3,750 psi / 680,000 psi</u>) = krm (decimal format) = Layer Layer Layer 10 Qu (psi)=	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.000055 Soil Type Dolomite - Very Strong Frac. To Mod Frac. Driller noted 50% r Depth be 165-175 164 19440	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition Psi % Top Depth (ft) 24.9 eturn wate GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain , Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer 10 Total Unit Wt (pcf):	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 Soil Type Dolomite - Very Strong Frac. To Mod Frac. Driller noted 50% r Depth be 165-175 164	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition Transition Psi % Top Depth (ft) 24.9 eturn wate GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer Layer 10 Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.0055 0.000055 0.000055 0.000055 Frac. To Mod Frac. Driller noted 50% f Depth be 165-175 164 19440 19440	Depth (ft) 23.9 rreturn du Joow bottor GDM Tabl Average o Transition psi % 7 Depth (ft) 24.9 eturn wate Jow bottor GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain i Half max stress = Qu/2 = krm = 1% x (<u>3,750 psi / 680,000 psi</u>) = krm (decimal format) = Layer Layer Layer 10 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.00055 0.000055 0.000055 0.000055 0.000055 165-175 164 19440 1800000 n at half max stress (krm) is calculated b	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi % Top Depth (ft) 24.9 eturn wate low bottor GDM Tabl Average o Tested val	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer 10 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 0.000055 0.000055 0.000055 165-175 164 19440 1800000 at half max stress (krm) is calculated b 9720	Depth (ft) 23.9 rreturn du Joow bottor GDM Tabl Average o Transition psi % 7 Depth (ft) 24.9 eturn wate Jow bottor GDM Tabl Average o	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain i Half max stress = Qu/2 = krm = 1% x (<u>3,750 psi / 680,000 psi</u>) = krm (decimal format) = Layer Layer Layer 10 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 0.000055 0.000055 0.000055 165-175 164 19440 1800000 at half max stress (krm) is calculated b 9720	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi % Top Depth (ft) 24.9 eturn wate low bottor GDM Tabl Average o Tested val	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>9,720</u> psi / <u>1,800,000</u> psi) =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 0.000055 0.000055 0.000055 165-175 164 19440 1800000 at half max stress (krm) is calculated b 9720 0.0054	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi % Top Depth (ft) 24.9 Eturn wate low bottor GDM Tabl Average o Tested val	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft
Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) = krm (decimal format) = Layer Layer 10 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,800,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Dolomite - Strong Highly Frac. Driller noted loss of wate Depth be 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750 0.00055 0.000055 0.000055 0.000055 0.000055 0.000055 165-175 164 19440 1800000 at half max stress (krm) is calculated b 9720 0.0054	Depth (ft) 23.9 r return du low bottor GDM Tabl Average o Transition psi % Top Depth (ft) 24.9 Eturn wate low bottor GDM Tabl Average o Tested val	Depth (ft) 24.9 ring coring. n of Pier Cap: e 400-5 f Tested Value from Modera from Modera Bottom Depth (ft) 31.1 er during corir n of Pier Cap: e 400-5 f tested value	(ft) 592.7 17.3 Use for the p tely Strong Top Elev. (ft) 591.7 g in this zo 18.3 Use	Elev. (ft) 591.7 18.3 160 roject. to Strong bottom Elev. (ft) 585.5 one. 24.5 165	0 pcf	33	No Test	Wt (pcf)	at 27 ft

TTL Project No.:	2065201								
Project:	LUC-23-11.75								
Calcs by:									
	5/15/2023								
Calce	Drilled Shaft Rock Sockets - Lateral Re	sistance							
	Ramp A over Ottawa River	Sistance							
Substructure:	Pier 2								
	B-028-2-21								
GSE (ft):			d from Bridge		Ottawa River				
Long-Term GWT (ft):		Approx. N	ormal River El	ev.					
Bottom of Pier Cap Elev. (ft):	608								
Soil									
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
	Very Dense A-1-b	0	0.9	609	608.1	52	-	-	
Layer 1						52	-	-	
	-		m of Pier Cap:	-1	-0.1	-			
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	130	pcf	ļ		
Internal Angle of Friction Determination	(GDM 404.2):								
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4								
CN=0.77log(40/sigma-v'), with CN<2.0		[1		
CN at	0.45	ft							
sigma-v' (ksf):	0.03042						1		
CN=	2.4	>2.0, use	2.0	1					
N160 (bpf)=	104	× 2.0, use	2.0				-		
AASHTO LRFD Table 10.4.6.2.4-1	104								
N160	Mid-Range Phi (deg)								
Highest is 50 bpf	40.5								
N160	Phi (deg)								
104	40.5	use	40.5	deg					
GDM Table 400-3 phi Adjustment									
A-1-b	+1.5								
Phi (deg) =	42.0	1							
r in (deg) -	42.0								
L Evolution Franciscus I DUE 2040 Taskatasla	A								
k Evaluation From LPILE 2018 Technical N									
Parameters:	Dense, Submerged								
Range of k-value (pci) =	32.0-64.0								
For N60 of 52 bpf, V. Dense, use highest	k (pci)								
Say k (pci) =	64								
Augerable Weathered Bedrock									
		Тор							
			Bottom	Top Elev.	Bottom	SPT			
	Deal Trans	Depth							
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Result			
Layer 2	Weathered Dolomite	0.9	1.5	608.1	607.5	50/3"			
			m of Pier Cap:		0.5				
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf			
	162	Average o	f Tested Value	s for the p	roject.		1		
Qu based on SPT Results per GDM 404.3									
Qu (ksf)=0.092x(Nrate)90 (bpf)							1		
ER(%)=	90	<u> </u>		t			1		
N90=50/3" x 12" =		bpf					-		
N90=50/3 x 12 = N90 = 90/90 x 200 bpf =									
	200	bpf							
Qu (ksf) =	18.4								
Qu (psi) =	127.8								
Estimate E based on GDM Table 400-6									
Lowest Qu = 200 psi, indicated as E = 18,0	000 psi								
Use E (psi) =	18000	1							
If Strain at <u>18,000</u> psi is 1%, then strain at	half max stress (krm) is calculated by:	-		-					
		nci							
Half max stress = $Qu/2 =$		psi 0/							
krm = 1% x (<u>63.9</u> psi / <u>18,000</u> psi) =	0.0035	%							
krm (decimal format) =	0.000035								

LOLAMON	Drilled Shaft Rock Sockets - Lateral Re	sistance								
Substructure:	Ramp A over Ottawa River									
Substructure.										
Cored Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 3	Dolomite - Strong to Very Strong	1.5	8.5	607.5	600.5	60	99	10750	165	at 2.2 ft
	Frac. To Mod Frac.							19230	164	at 6.1 ft
	Depth be	low bottor	n of Pier Cap:	0.5	7.5					
Total Unit Wt (pcf):	165-175	GDM Table	e 400-5	Use	165	pcf				
	164.5	Average of	f tested value	s within zoi	ne.					
Qu (psi)=	14990	Average of	f tested value	s within zoi	ne.					
From GDM Table 400-6, say E (psi) =	1400000									
If Strain at <u>1,400,000</u> psi is 1%, then strai		-								
Half max stress = $Qu/2 =$		psi								
krm = 1% x (<u>7,495</u> psi / <u>1,400,000</u> psi) =		%								
krm (decimal format) =	0.000054									
	+	Ter		1						
		Top	Bottom	Tor Flow	Bottom					
Lavor	Soil Type	Depth (ft)	Bottom	Top Elev.	Bottom	POD (%/)	Rec (9/)	0		
Layer Layer 4	Soil Type Dolomite - Strong	(ft) 8.5	Depth (ft) 12.6	(ft) 600.5	Elev. (ft) 596.4	RQD (%)	Rec (%) 88	Qu (psi) No Test		
Layer 4		0.5	12.0	000.5	590.4	0	00	NO TEST		
	Highly Fractured	low bottor	n of Pier Cap:	7.5	11.6					
Total Unit Wt (pcf):	-	GDM Table		Use	160	pcf				
	163-173		f Tested Value			pei				
	162	Average 0	Testeu value	s for the p	ojeci.					
Qu (psi)=	14990	Conservati	ively same as	laver above	2					
Qu (psi)-	14550	conscivat	very sume us							
From GDM Table 400-6, say E (psi) =	1400000									
If Strain at <u>1,400,000</u> psi is 1%, then strai	n at half max stress (krm) is calculated t	ov:								
Half max stress = $Qu/2$ =		psi								
krm = 1% x (7,495 psi / 1,400,000 psi) =		%								
krm (decimal format) =	0.000054									
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 5	Dolomite - Very Strong	12.6	20	596.4	589	4	76	17610	166	at 16.8 ft
	Fractured									
	Danih ha									
	Depth be	low bottor	n of Pier Cap:	11.6	19					
Total Unit Wt (pcf):		GDM Table		11.6 Use	19 165	pcf				
Total Unit Wt (pcf):		GDM Table		Use	165	pcf				
Total Unit Wt (pcf):	165-175	GDM Table	e 400-5	Use	165	pcf				
Total Unit Wt (pcf): Qu (psi)=	165-175 166	GDM Table	e 400-5 f tested value	Use	165	pcf				
	165-175 166	GDM Table Average of	e 400-5 f tested value	Use	165	pcf				
	165-175 166	GDM Table Average of	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) =	165-175 166 17610 1400000	GDM Table Average of Tested val	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai	165-175 166 17610 1400000 n at half max stress (krm) is calculated b	GDM Table Average of Tested val	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805	GDM Table Average of Tested val	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063	GDM Table Average of Tested val	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063	GDM Table Average of Tested val	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063	GDM Table Average of Tested val	e 400-5 f tested value	Use	165	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063	GDM Table Average of Tested val psi % Top	e 400-5 f tested value: ue.	Use s within zor	165 ne.	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1.400,000</u> psi) = krm (decimal format) =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.00063	GDM Tabl. Average of Tested val psi % Top Depth	e 400-5 f tested value: ue. Bottom	Use s within zor	165 ne. Bottom					
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 Soil Type	GDM Table Average of Tested val	e 400-5 f tested value: ue. Bottom Depth (ft)	Use swithin zor	165 ne. Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1.400,000</u> psi) = krm (decimal format) =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.00063 Soil Type Dolomite - Strong	GDM Tabl. Average of Tested val psi % Top Depth	e 400-5 f tested value: ue. Bottom	Use s within zor	165 ne. Bottom		Rec (%) 67	Qu (psi) No Test		
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.00063 0.00063 0.000063 50il Type Dolomite - Strong Highly Frac.	GDM Table Average of Tested val	e 400-5 f tested value: ue. Bottom Depth (ft) 22	Use swithin 200	165 ne. Bottom Elev. (ft) 587	RQD (%)				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.00063 0.00063 0.000063 Soil Type Dolomite - Strong Highly Frac. Depth be	GDM Table Average of Tested val	e 400-5 f tested value: ue. Bottom Depth (ft) 22 m of Pier Cap:	Use swithin 200 Top Elev. (ft) 589 19	165 ne. Bottom Elev. (ft) 587 21	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.00063 0.000063 Soil Type Dolomite - Strong Highly Frac. Depth be 165-175	GDM Tabl. Average of Tested val py: psi % Top Depth (ft) GDM Tabl.	Bottom Depth (ft) 22 n of Pier Cap: e 400-5	Use swithin zon Top Elev. (ft) 589 19 Use	165 ne. Bottom Elev. (ft) 587 21 160	RQD (%)				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.00063 0.00063 0.000063 Soil Type Dolomite - Strong Highly Frac. Depth be	GDM Tabl. Average of Tested val py: psi % Top Depth (ft) GDM Tabl.	e 400-5 f tested value: ue. Bottom Depth (ft) 22 m of Pier Cap:	Use swithin zon Top Elev. (ft) 589 19 Use	165 ne. Bottom Elev. (ft) 587 21 160	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1.400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf):	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 Dolomite - Strong Highly Frac. Depth be 165-175 162	GDM Table Average of Tested val psi % Top Depth (ft) 20 GDM Table Average of	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 Dolomite - Strong Highly Frac. Depth be 165-175 162	GDM Table Average of Tested val psi % Top Depth (ft) 20 GDM Table Average of	Bottom Depth (ft) 22 n of Pier Cap: e 400-5	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Qu (psi)=	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 Dolomite - Strong Highly Frac. Depth be 165-175 162	GDM Table Average of Tested val psi % Top Depth (ft) 20 GDM Table Average of	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1.400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf):	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 Dolomite - Strong Highly Frac. Depth be 165-175 162	GDM Table Average of Tested val psi % Top Depth (ft) 20 GDM Table Average of	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Qu (psi)= From GDM Table 400-6, say E (psi) =	165-175 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 Dolomite - Strong Highly Frac. Depth be 165-175 162 7500 680000	GDM Table Average of Tested val	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain	165-175 17610 1400000 n at half max stress (krm) is calculated by 0.0063 0.000063 0.000063 165-175 165 165 17610 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 11000000 11000000 11000000 11000000 11000000 11000000 11000000 110000000 1100000000000000000000000000000000000	GDM Table Average of Tested val	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680.000</u> psi is 1%, then strain Half max stress = Qu/2 =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 0.000063 165-175 165-175 162 7500 680000 at half max stress (krm) is calculated by 3750	GDM Table Average of Tested val psi % Top Depth (ft) 20 GDM Table Average of Transition	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8,805</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 G G G G G G G G G G G G G G G G G G G	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 0.000063 165-175 165-175 162 7500 680000 at half max stress (krm) is calculated by: 3750 0.0055	GDM Table Average of Tested val	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.805</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680.000</u> psi is 1%, then strain . Half max stress = Qu/2 =	165-175 166 17610 1400000 n at half max stress (krm) is calculated b 8805 0.0063 0.000063 0.000063 165-175 165-175 162 7500 680000 at half max stress (krm) is calculated by: 3750 0.0055	GDM Table Average of Tested val psi % Top Depth (ft) 20 GDM Table Average of Transition	Bottom Depth (ft) 22 n of Pier Cap: F Tested Value	Use swithin zon Top Elev. (ft) 589 19 Use s for the p	165 ne. Bottom Elev. (ft) 587 21 160 roject.	RQD (%) 0				

									1	
TTL Project No.:										
Project:	LUC-23-11.75									
Calcs by:	СРІ									
Date:	5/16/2023									
Calcs:	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp A over Ottawa River									
	Forward Abutment									
Boring(s):	B-029-0-21									
GSE (ft):										
Long-Term GWT (ft):	620.5	Approx N	ormal River El	01/						
Bottom of Pier Cap Elev. (ft):		Approx. N		ev.						
Bottom of Pier Cap Elev. (it):	612									
Soil										
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 1	Medium Dense A-3a	0	3	620.5	617.5	24	-	-		
			n of Pier Cap:	-5.5	-2.5					
Total Unit Wt (pcf):	125	GDM Tabl	e 400-4	Use	125	pcf]	1		
Internal Angle of Friction Determination	(GDM 404.2):						-	1		
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4									
CN=0.77log(40/sigma-v'), with CN<2.0		1		1				1		
CN at	1.5	ft						1		
sigma-v' (ksf):	0.1875									
CN=	1.8	<2.0, use	1.8							
N160 (bpf)=	43	<2.0, use	1.0							
AASHTO LRFD Table 10.4.6.2.4-1	45									
	Mid Dange Dhi (dag)									
N160	Mid-Range Phi (deg)									
30	37.5									
50	40.5									
N160	Phi (deg)									
43	39.46	use	39.5	deg						
GDM Table 400-3 phi Adjustment										
A-3a	-0.5									
Phi (deg) =	39									
k Evaluation From LPILE 2018 Technical N	lanual									
Parameters:	Medium Dense, Dry to Moist Sand									
Range of k-value (pci) =	13.0 - 40.0							1		
Med Dense range of N60	k (pci)									
11	13	1		1				1		
30	40									
Interpolate for 24 bpf for this layer:	31.5									
Say k (pci) =		1						-		
Say k (pc) -	-	4		+				+		
		Ter								
		Top	Detterr	Tan Flai	Detter:					
	c-11=	Depth	Bottom	Top Elev.	Bottom		115 / 0	0.4.5		
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 2	Very Stiff A-4a	3	9	617.5	611.5	27	-	-		
	Depth be	low botto	n of Pier Cap:	-2.5	3.5	23				
					verage N60:	25				
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	125	pcf				
Su = N60 x 125 (N60<= 52 bpf) per GDM 4	404.1									
Su (ksf)=	3.125									
		Ī								
Evaluation of Strain at half stress (epsilon	50) from LPILE 2018 Technical Manual	1		1				1		
Su = 2-4 ksf, epsilon 50 =		1								
		1						1		
	1	L		L			1	1		1

Location: Substructure: Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	122	Top Depth (ft) 9	Bottom Depth (ft) 11.5 n of Pier Cap: e 400-4	Top Elev. (ft) 611.5 3.5 Use	Bottom Elev. (ft) 609 6 120	N60 9 pcf	HP (tsf)	Qu (tsf) -		
Substructure: Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Forward Abutment Soil Type Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	Depth (ft) 9 elow botton GDM Table	Depth (ft) 11.5 n of Pier Cap:	(ft) 611.5 3.5	Elev. (ft) 609 6	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Soil Type Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	Depth (ft) 9 elow botton GDM Table	Depth (ft) 11.5 n of Pier Cap:	(ft) 611.5 3.5	Elev. (ft) 609 6	9				
Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	Depth (ft) 9 elow botton GDM Table	Depth (ft) 11.5 n of Pier Cap:	(ft) 611.5 3.5	Elev. (ft) 609 6	9				
Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	Depth (ft) 9 elow botton GDM Table	Depth (ft) 11.5 n of Pier Cap:	(ft) 611.5 3.5	Elev. (ft) 609 6	9				
Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	(ft) 9 elow botton GDM Table	Depth (ft) 11.5 n of Pier Cap:	(ft) 611.5 3.5	Elev. (ft) 609 6	9				
Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	9 elow botton GDM Table	11.5 n of Pier Cap:	611.5 3.5	609 6	9				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	elow botton GDM Table	n of Pier Cap:	3.5	6	-	-	-		
Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	GDM Table				ncf				
Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	(GDM 404.2): AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2		e 400-4	Use	120	ncf				
N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	AASHTO LRFD 10.4.6.2.4 10.25 1.197 1.2	ft				pe.	4			
CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	10.25 1.197 1.2	ft								
CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	1.197 1.2	ft								
sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	1.197 1.2	ft								
CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	1.2									
N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160										
AASHTO LRFD Table 10.4.6.2.4-1 N160	11	<2.0, use	1.2							
N160										
	Mid-Range Phi (deg)									
10	32.5									
30	37.5									
N160	Phi (deg)									
11	32.64	use	32.5	deg						
GDM Table 400-3 phi Adjustment										
A-3a	-0.5									
Phi (deg) =	32									
k Evaluation From LPILE 2018 Technical N	Nanual									
Parameters:	Loose, Saturated Sand									
Range of k-value (pci) =	2.1 to 6.4									
Med Dense range of N60	k (pci)									
1	2.1									
10	6.4									
Interpolate for 9 bpf for this layer:	5.9									
Say k (pci) =	6									
Augerable Weathered Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom		Uncorrected			
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	N			
Layer 4A	Weathered Dolomite	11.5	13.5	609	607	60	40			
Edyci HA			n of Pier Cap:	6	8	00				
Total Unit Wt (pcf):		GDM Table		Use	160	pcf				
	162		f Tested Value			per	_			-
Qu based on SPT Results per GDM 404.3	102	Avei age O	i resteu value	s ior the p	ojeci.					
Qu (ksf)=0.092x(Nrate)90 (bpf)										
Qu (ksi)=0.092x(Wrate)90 (bpi) ER(%)=	90									
ER(%)= N90=		bof								
	3.68	bpf								
Qu (ksf) =										+
Qu (psi) =	25.6	┩──┤							-	
Estimate Elected on CDMAT-LL 400-0									-	
Estimate E based on GDM Table 400-6	200 mei								-	
Lowest Qu = 200 psi, indicated as E = 18,0										<u> </u>
Use E (psi) =	18000	-								<u> </u>
										<u> </u>
If Strain at <u>18,000</u> psi is 1%, then strain at										
Half max stress = Qu/2 =		psi								L
krm = 1% x (<u>12.8</u> psi / <u>18,000</u> psi) =		%								L
krm (decimal format) =	0.000007									

Calcs:			1	1		1		1		
	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp A over Ottawa River									
Substructure:	Forward Abutment									
		Тор								
		Depth	Bottom	Top Elev.	Bottom	SPT				
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Result				
Layer 4B	Weathered Dolomite	13.5	16	607	604.5	50/5"				
	Depth be	low botto	m of Pier Cap:	8	10.5					
Total Unit Wt (pcf):	165-175	GDM Tabl		Use	160	pcf				
	162		f Tested Value							
Qu based on SPT Results per GDM 404.3	102	/weruge o			lojeet.					
Qu (ksf)=0.092x(Nrate)90 (bpf)										
ER(%)=	90									
N90=50/5" x 12" =	120	hof								
		bpf								
N90 = 90/90 x 120 bpf =	120	bpf								
Qu (ksf) =	11.04									
Qu (psi) =	76.7									
Estimate E based on GDM Table 400-6										
Lowest Qu = 200 psi, indicated as E = 18,	000 psi									
Use E (psi) =	18000									
If Strain at 18,000 psi is 1%, then strain a	half max stress (krm) is calculated by:									
Half max stress = Qu/2 =		psi								
krm = 1% x (<u>38.3</u> psi / <u>18,000</u> psi) =	0.0021	%								
krm (decimal format) =		70								
krm (decimal format) =	0.000021									
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 5	Dolomite - Very Strong	16	17.7	604.5	602.8	43	100	17720	162	at 16.9 ft
	Highly Frac. To Mod Frac.									
	Depth be	low botto	m of Pier Cap:	10.5	12.2					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162	Tested va	lue							
Qu (psi)=	17720									
		Tested va	lue within zone							
	17720	Tested va	lue within zone	e.						
		Tested va	lue within zone	e.						
From GDM Table 400-6, say E (psi) =	1400000	Tested va	lue within zone	2.						
From GDM Table 400-6, say E (psi) =	1400000		ue within zone	2.						
From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai	1400000 n at half max stress (krm) is calculated b	by:	lue within zone	2.						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 =	1400000 n at half max stress (krm) is calculated b 8860	py: psi	lue within zone	2.						
From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai	1400000 n at half max stress (krm) is calculated b	by:	lue within zone	2.						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 =	1400000 n at half max stress (krm) is calculated b 8860 0.0063	py: psi	lue within zone	2. 						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) =	1400000 n at half max stress (krm) is calculated b 8860 0.0063	py: psi	lue within zone	2. 						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) =	1400000 n at half max stress (krm) is calculated b 8860 0.0063	py: psi	lue within zone	2.						
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) =	1400000 n at half max stress (krm) is calculated b 8860 0.0063	y: psi % Top			Bottom					
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) =	1400000 n at half max stress (krm) is calculated b 8860 0.0063 0.000063	py: psi % Top Depth	Bottom	Top Elev.	Bottom Elev. (ft)	ROD (%)	Rec (%)	Оц (psi)		
From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer	1400000 n at half max stress (krm) is calculated b 8860 0.0063 0.000063 Soil Type	py: psi % Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) =	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 Soil Type Dolomite - Very Strong	py: psi % Top Depth	Bottom	Top Elev.		RQD (%) 81	Rec (%) 92	Qu (psi) No Test		
From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer	1400000 n at half max stress (krm) is calculated b 8860 0.0063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac.	y: psi % Top Depth (ft) 17.7	Bottom Depth (ft) 23	Top Elev. (ft) 602.8	Elev. (ft) 597.5					
From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer Layer Layer 6	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be	y: psi % Top Depth (ft) 17.7	Bottom Depth (ft) 23 m of Pier Cap:	Top Elev. (ft) 602.8 12.2	Elev. (ft) 597.5 17.5	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1.400.000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1.400.000</u> psi) = krm (decimal format) = Layer	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175	y: psi % Depth (ft) 17.7 Slow botto	Bottom Depth (ft) 23 m of Pier Cap: e 400-5	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160					
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be	y: psi % Depth (ft) 17.7 Slow botto	Bottom Depth (ft) 23 m of Pier Cap:	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf):	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162	y: psi % Top Depth (ft) 17.7 Iow botto GDM Tabl Average o	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162	y: psi % Top Depth (ft) 17.7 Iow botto GDM Tabl Average o	Bottom Depth (ft) 23 m of Pier Cap: e 400-5	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf):	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162	y: psi % Top Depth (ft) 17.7 Iow botto GDM Tabl Average o	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf):	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162	y: psi % Top Depth (ft) 17.7 Iow botto GDM Tabl Average o	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Output Qu (psi)= Qu (psi)=	1400000 n at half max stress (krm) is calculated to 8860 0.0063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162 17720	y: psi % Top Depth (ft) 17.7 Iow botto GDM Tabl Average o	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Output Qu (psi)= Qu (psi)=	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 0.000063 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162 17720 1400000	y: psi % Top Depth (ft) 17.7 Solow botto GDM Tabl Average o Same as la	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 1,400,000 psi is 1%, then strai	1400000 n at half max stress (krm) is calculated t 8860 0.0063 0.000063 0.000063 Frac. To Moderately Frac. Depth be 165-175 162 17720 1400000 n at half max stress (krm) is calculated t	y: psi % Top Depth (ft) 17.7 Solow botto GDM Tabl Average o Same as la	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 1,4 <u>00,000</u> psi is 1%, then strai Half max stress = Qu/2 =	1400000 n at half max stress (krm) is calculated to 8860 0.0063 0.000063 0.000063 Colomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162 17720 1400000 n at half max stress (krm) is calculated to 8860	y: psi % Top Depth (ft) 17.7 How botto GDM Tabl Average o Same as la	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 1,4 <u>00,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8.860</u> psi / <u>1,400,000</u> psi) =	1400000 n at half max stress (krm) is calculated to 8860 0.0063 0.000063 0.000063 0.000063 0.000063 0.000010 165-175 162 17720 1400000 n at half max stress (krm) is calculated to 8860 0.0063	y: psi % Top Depth (ft) 17.7 Solow botto GDM Tabl Average o Same as la	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				
From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strai Half max stress = Qu/2 = krm = 1% x (<u>8860</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 1,4 <u>00,000</u> psi is 1%, then strai Half max stress = Qu/2 =	1400000 n at half max stress (krm) is calculated to 8860 0.0063 0.000063 0.000063 0.000063 0.000063 0.000010 165-175 162 17720 1400000 n at half max stress (krm) is calculated to 8860 0.0063	y: psi % Top Depth (ft) 17.7 How botto GDM Tabl Average o Same as la	Bottom Depth (ft) 23 m of Pier Cap: e 400-5 f Tested Value	Top Elev. (ft) 602.8 12.2 Use	Elev. (ft) 597.5 17.5 160	81				

				1		1 1		1		1
	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp A over Ottawa River									
Substructure:	Forward Abutment									
Layer	Soil Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 7	Dolomite - Strong	23	26	597.5	594.5	28	97	12710	159	at 24 ft
	Fractured									
	Depth be		m of Pier Cap:	17.5	20.5					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	159	Tested va	lue							
Qu (psi)=	12710	Tested va	lue within zone	e.						
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900,000 psi is 1%, then strain										
Half max stress = Qu/2 =		psi						-		
krm = 1% x (<u>6355</u> psi / <u>900,000</u> psi) =		%								
krm (decimal format) =	0.000071	1								
		Top Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 8	Limestone - Mod Strong to Strong	26	26.6	594.5	593.9	0	100	No Test		
	Highly Frac.									
			m of Pier Cap:	20.5	21.1					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162	Average o	f Tested Value	s for the p	roject.					
Qu (psi)=	7500	Transition	from Modera	tely Strong	to Strong					
From GDM Table 400-6, say E (psi) =	680000									
If Strain at <u>680,000</u> psi is 1%, then strain										
Half max stress = Qu/2 =		psi								
krm = 1% x (<u>3,750</u> psi / <u>680,000</u> psi) =		%								
krm (decimal format) =	0.000055									
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 9	Dolomite - Strong	26.6	36	593.9	584.5	25	97	14980	161	at 32.3 ft
	Highly Frac. To Frac.									
	-		m of Pier Cap:	21.1	30.5		-			
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	161	Tested va	lue							
Qu (psi)=	14980	Tested va	lue within zone	e.						
From GDM Table 400-6, say E (psi) =	1400000	1								
11011 3DIVI Table 400-0, say c (psl) =	1400000	Į						-		
If Strain at <u>1,400,000</u> psi is 1%, then strai	n at half may stross (krm) is calculated b	21/1						-		
Half max stress = Qu/2 =								-		
Half max stress = Qu/2 = krm = 1% x (<u>7490</u> psi / <u>1,400,000</u> psi) =		psi %						-		
krm (decimal format) =		/0								
kiin (decimai format) =	0.000004	4						+		
i de la constante de la constan	1	1	1	1		1		1	1	1

APPENDIX D

Ramp D Bridge Foundation Evaluations

Project Name:	LUC-023-11.75, PID 105889
Project Numbe	2065201
Calculated by:	КСН 04/11/2023
Reviewed By:	CPI 04/17/2023

Scour Determination - Ramp D

Upper Elevation Limit for Analysis = Lower Elevation Limit for Analysis =
 623.88
 feet, based on 100-year floodplain

 602.46
 feet, based on 6 feet below bottom of river

	Table 1. Scour Parameters for Soils - Ramp D											
Boring Number	Sample Number	Sample Depth (feet)	Sample Approximate Elevation (feet)	ODOT Soil Class	Fines (<75 μm) (percent)	Pl (percent)	w (percent)	qu ¹ (psf)	D ₅₀ (mm)	D ₉₅ (mm)	Critical Shear Stress, τ _c (psf)	Critical Shear Stress, τ _c (Pa)
B-022-1-21	SS-1	1.0 - 2.5	615.0 - 613.5	A-4a (2)	44	8	17	3,500	0.0940	0.9801	0.066	3.09
B-022-1-21	SS-2	3.5 - 5.0	612.5 - 611.0	A-4a (3)	49	9	19	2,000	0.0791	9.7229	0.061	2.86
B-022-1-21	SS-3	6.0 - 7.3	610.0 - 608.7	A-3 (0)	24	0	68	-	0.2838	17.0339	0.006	0.28
B-022-2-21	SS-2	3.5 - 5.0	612.5 - 611.0	A-4a (3)	50	9	19	4,250	0.0707	1.4922	0.086	4.02
B-022-2-21	SS-3	6.0 - 6.2	610.0 - 609.8	A-1-a (0)	0	0	7	-	9.1626	17.9364	0.191	9.16
B-022-3-21	SS-1	6.0 - 7.3	610.0 - 608.7	A-2-4 (0)	0	0	9	-	1.0398	22.3951	0.022	1.04

¹ For cohesive samples which were not intact for an unconfined compressive strength test or a hand penetrometer value, q_u was estimated by $N_{60}x250$.

	Table 2. Scour Parameters for Rock - Ramp D											
								Rock				
						Rock		Mass				
			Sample	Unconfined	Slake	Quality		Rating,	Geologic			Critical
		Sample	Approximate	Compressive	Durability	Designation,	Unit	RMR	Strength		Critical Shear	Shear
Boring	Sample	Depth	Elevation	Strength, Q _u	Index, S _{DI}	RQD	Weight	(Superseded	Index,	Erodibility	Stress, τ _c	Stress, τ _c
Number	Number	(feet)	(feet)	(psi)	(percent)	(percent)	(pcf)	by GSI)	GSI	Index, K	(psf)	(Pa)
B-022-1-21	NQ-1	8.6 - 13.6	607.4 - 602.4	15,630	99.2	22	163.5	47	35 to 55	142	63.05	3,018.8
B-022-3-21	NQ-1	9.3 - 14.3	606.7 - 601.7	17,840	99.7	45	159.5	57	45 to 65	332	96.34	4,612.6

TTL Project No.:	2065201						
-	LUC-23-11.75						
Calcs by:	СРІ						
Date:	6/27/2023						
Calcs:	Drilled Shaft Roc	k Socket Facto	ored Loads				
Location:	Ramp D over Ott	awa River					
Provided Factore	ed Loads - Per Sha	ift (4 shafts pe	er footing)				
	Bottom of						
	Footing Elev.	Provided P	Provided M (k-				
Substructure	(ft)	(kips)	ft)				
Rear Abutment	612.50	322.35	-595.38				
Pier 1	610.79	460.86	551.86				
Pier 2	605.14	464.72	512.59				
Forward Abutment	614.00	290.03	1082.13				
Unit Conversion for in	put into LPILE						
Provided Factore	ed Loads - Per Sha	ift (4 shafts pe	er footing)				
	Bottom of						
	Footing Elev.	Provided P	Provided M				
Substructure	(ft)	(lbs)	(in-lb)				
Rear Abutment	613.5	322,350	-7,144,560				
Pier 1	610.0	460,860	6,622,320				
Pier 2	608.0	464,720	6,151,080				
Forward Abutment	615.0	290,030	12,985,560				
Indicated	center-to-center s	pacing, S (ft):	8				
	ndicated shaft dia	ameter, B (ft):	3.5				
		Spacing (S/B):	2.29				
ODOT BDM 305.1.2 G		-	C-C <3.75 diame	eters			
Pm = 0.64 (S/B)^0.34 1	for $1.0 \le S/B \le 3.75$	1					
		Pm =	0.85				

TTL Project No.:	2065201
	LUC-23-11.75
Calcs by:	
	5/9/2023, 6/26&29/2023
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Rear Abutment
Boring(s):	B-022-0-21 and B-022-1-21
	B-022-0-21 Governs
Ground Surface Elevation (ft):	615.1
Bottom of Pier Cap Elev (ft):	612.5
Top of Rock Elevation (ft):	607.1
Length of Shaft in Soil (ft):	5.4
Shaft in Soil Diameter (in):	36
(Minimum 42" for Pie	r Columns, and 36" for others.)
Shaft in Rock Diameter (in):	30
Shaft in Rock Diameter (ft):	2.5
End-Bearing at 1.5 x B	
Length of Socket (ft):	3.75
May increase Shaft in soil to 3.5 ft and socket	to 3 ft diameter for lateral resistance
Shaft in Rock Diameter (ft):	3
In this case, 1.5 x B	
Length of Socket (ft):	
BDM 305.4.4.4, minimum 5' socket if rock wit	hin 10 ft of ground surface or bottom of shaft cap.
As noted above, shaft in soil (ft):	5.4
Governing Length of Socket (ft):	
End-Bearing Elev. (ft):	602.1
Structural indicates Scour to Elev:	
BDM 305.4.1.1, for end-bearing shafts/socket	
extend socket to penetrate a minimum of 10	
Therefore, end-bearing elevation is 10 ft belo	T Contraction of the second seco
End-Bearing Elev. (ft):	
This is deeper than that determined with the	
End-Bearing Elev. (ft):	
Calculated Socket Length (ft):	6.89

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Rear Abutment
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	594.21
Qu (psi):	6250
	13790
Use Average Qu (psi):	10020
Average Qu (ksf):	1443
End-Bearing Resistance (AASHTO LRFD 10.8.3	.5.4c-1)
qp=2.5qu	
(Unfactored) qp (ksf):	3607
Resistance Factor (AASHTO LRFD Table 10.5.5	
φ=	0.5
Factored Bearing Resistance (ksf)=	1804
Say, Factored Bearing Resistance (ksf)=	1800
For 2.5 ft diameter socket,	
Available Resistance (kips)=	8836
For 4 Shafts in Footing,	
Indicated Total Factored Load (kips)=	
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	
For consideration of 3.5 ft dia shaft continued	
Available Resistance (kips)=	17318
If deeper socket for lateral, look at Qu only fo	
At Elev. 594 +/-, Qu (psi):	
At Elev. 594 +/-, Qu (ksf):	
	ed above. As such, the analysis above governs.
No downdrag for this location with approxima	•
calculated for soil zone from footing elevation	
Use other methods to avoid downdrag on foo	ting and abutment walls.

TTL Project No.:	2065201
Project:	LUC-23-11.75
Calcs by:	СРІ
Date:	5/10/2023, 6/26&29/2023
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Pier 1
Boring(s):	B-022-1-21
Ground Surface Elevation (ft):	616.1
Bottom of Pier Cap Elev (ft):	610.79
Top of Rock Elevation (ft):	609.1
Length of Shaft in Soil (ft):	1.69
Shaft in Soil Diameter (in):	36
(Minimum 42" for Pier	Columns, and 36" for others.)
Using footin	g instead of columns
Shaft in Rock Diameter (in):	30
Shaft in Rock Diameter (ft):	2.5
End-Bearing at 1.5 x B	
Length of Socket (ft):	3.75
May increase Shaft in soil to 3.5 ft and socket	to 3 ft diameter for lateral resistance
Shaft in Rock Diameter (ft):	3
In this case, 1.5 x B	
Length of Socket (ft):	4.5
BDM 305.4.4.4, minimum 5' socket if rock wit	hin 10 ft of ground surface or bottom of shaft cap.
As noted above, shaft in soil (ft):	1.69
Governing Length of Socket (ft):	5
End-Bearing Elev. (ft):	604.1
Structural indicates Scour to Elev:	605.61
BDM 305.4.1.1, for end-bearing shafts/socket	s in non-scour resistant bedrock,
extend socket to penetrate a minimum of 10 f	eet below scour elevation.
Therefore, end-bearing elevation is 10 ft below	
End-Bearing Elev. (ft):	
This is deeper than that determined with the s	
End-Bearing Elev. (ft):	
Calculated Socket Length (ft):	13.49

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Pier 1
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	589.61
Qu (psi):	7350
	16470
	11010
Use Average Qu (psi): Average Qu (ksf):	
Average QU (KSI).	1/15
End-Bearing Resistance (AASHTO LRFD 10.8.3.	5.4c-1)
qp=2.5qu	
(Unfactored) qp (ksf):	4288
Resistance Factor (AASHTO LRFD Table 10.5.5.	2.4-1)
φ=	0.5
Factored Bearing Resistance (ksf)=	2144
Say, Factored Bearing Resistance (ksf)=	2140
For 2.5 ft diameter socket,	
Available Resistance (kips)=	10505
For 4 Shafts in Footing,	
Indicated Total Factored Load (kips)=	460.86
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	
For consideration of 3.5 ft dia shaft continued	without 6" reduction,
Available Resistance (kips)=	20589
This analysis incorporates lowest UCS for Rock	in this boring. Therefore, if socket
is required to extend deeper for lateral load co	onsideraions, would still be ok for vertical.

TTL Project No.:	2065201
	LUC-23-11.75
Calcs by:	
	5/10/2023, 6/26&29/2023
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Pier 2
Boring(s):	B-022-3-21
Ground Surface Elevation (ft):	616.0
Bottom of Pier Cap Elev (ft):	605.14
Top of Rock Elevation (ft):	610
Length of Shaft in Soil (ft):	0
Shaft in Soil Diameter (in):	36
(Minimum 42" for Pier C	Columns, and 36" for others.)
Using footing	instead of columns
Shaft in Rock Diameter (in):	30
Shaft in Rock Diameter (ft):	2.5
End-Bearing at 1.5 x B	
Length of Socket (ft):	3.75
Note, Length below pier cap, not top of rock.	
May increase Shaft in soil to 3.5 ft and socket to	
Shaft in Rock Diameter (ft):	
In this case, 1.5 x B	
Length of Socket (ft):	4.5
Note, Length below pier cap, not top of rock.	
BDM 305.4.4.4, minimum 5' socket if rock withir	10 ft of ground surface or bottom of shaft cap.
As noted above, shaft in soil (ft):	
Governing Length of Socket (ft):	
Note, Length below pier cap, not top of rock.	
End-Bearing Elev. (ft):	600.14
Structural indicates Scour to Elev:	605.67
BDM 305.4.1.1, for end-bearing shafts/sockets in	n non-scour resistant bedrock,
extend socket to penetrate a minimum of 10 fee	t below scour elevation.
Therefore, end-bearing elevation is 10 ft below s	scour elevation.
End-Bearing Elev. (ft):	595.67
This is deeper than that determined with the 5 f	t below top of rock requirement.
End-Bearing Elev. (ft):	595.67
Calculated Socket Length (ft):	9.47

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Pier 2
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	589.67
Qu (psi):	23820
	23930
	22075
Use Average Qu (psi): Average Qu (ksf):	
Average QU (KSI):	3430
End-Bearing Resistance (AASHTO LRFD 10.8.3.5.4	4c-1)
qp=2.5qu	
(Unfactored) qp (ksf):	8595
Resistance Factor (AASHTO LRFD Table 10.5.5.2.	4-1)
φ=	0.5
Factored Bearing Resistance (ksf)=	4298
Say, Factored Bearing Resistance (ksf)=	4295
For 2.5 ft diameter socket,	
Available Resistance (kips)=	21083
For 4 Shafts in Footing,	
Indicated Total Factored Load (kips)=	464.72
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	
For consideration of 3.5 ft dia shaft continued w	ithout 6" reduction,
Available Resistance (kips)=	41323
Compressive strength of rock is higher as extend	deeper. If this is suitable for
vertical load, then we are ok should shafts exten	

TTL Project No.:	2065201
Project:	LUC-23-11.75
Calcs by:	СРІ
Date:	5/10/2023, 6/26&29/2023
Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Forward Abutment
Boring(s):	B-023-0-21
Ground Surface Elevation (ft):	624.2
Bottom of Pier Cap Elev (ft):	614.0
Top of Rock Elevation (ft):	608.2
Length of Shaft in Soil (ft):	5.8
Shaft in Soil Diameter (in):	36
(Minimum 42" for Pier	Columns, and 36" for others.)
Shaft in Rock Diameter (in):	30
Shaft in Rock Diameter (ft):	2.5
End-Bearing at 1.5 x B	
Length of Socket (ft):	3.75
May increase Shaft in soil to 3.5 ft and socket	to 3 ft diameter for lateral resistance
Shaft in Rock Diameter (ft):	3
In this case, 1.5 x B	
Length of Socket (ft):	4.5
BDM 305.4.4.4, minimum 5' socket if rock wit	thin 10 ft of ground surface or bottom of shaft cap.
As noted above, shaft in soil (ft):	5.8
Governing Length of Socket (ft):	5
End-Bearing Elev. (ft):	603.2
Structural indicates Scour to Elev:	604.42
BDM 305.4.1.1, for end-bearing shafts/socket	
extend socket to penetrate a minimum of 10	feet below scour elevation.
Therefore, end-bearing elevation is 10 ft belo	w scour elevation.
End-Bearing Elev. (ft):	
This is deeper than that determined with the	
End-Bearing Elev. (ft):	
Calculated Socket Length (ft):	13.78

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Forward Abutment
Look at RC Qu at bearing to	
2B below bearing:	
2B below bearing Elev.:	588.42
Qu (psi):	15160
Use Average Qu (psi):	15160
Average Qu (ksf):	2183
End-Bearing Resistance (AASHTO LRFD 10.8.3	5.4c-1)
qp=2.5qu	
(Unfactored) qp (ksf):	5458
Resistance Factor (AASHTO LRFD Table 10.5.5	5.2.4-1)
φ=	0.5
Factored Bearing Resistance (ksf)=	2729
Say, Factored Bearing Resistance (ksf)=	2725
For 2.5 ft diameter socket,	
Available Resistance (kips)=	13376
For 4 shafts in substructure,	
Indicated Total Factored Load (kips)=	290.03
Suitable Vertical Resistance?	YES
For 3 ft diameter socket,	
Available Resistance (kips)=	19262
For consideration of 3.5 ft dia shaft continued	
Available Resistance (kips)=	26218
This analysis incorporates deepest rock cored	for this location.
If need to extend deeper for lateral load cons	iderations, would also be ok for vertical.

Calcs:	Drilled Shaft Rock Sockets - Vertical Resistance
Location:	Ramp D over Ottawa River
Substructure:	Forward Abutment
Note there is downdrag at this location.	
Per settlement calc sheet,	
Top downdrag Elev / Footing Elev:	614.0
Elev of 0.4" settlement below to	
top of rock is Elev:	611
Downdrag Length of Shaft (ft)	3
For zone from Elev.	614.0
to Elev.	613.2
Length (ft):	0.8
Adhesion (ksf):	0.62
For zone from Elev.	613.2
to Elev.	611
Length (ft):	2.2
Adhesion (ksf):	1.3
For 3.5 ft shaft in soil,	
<u>Upper</u> zone <u>unfactored</u> DD (kips)=	5.5
Lower zone unfactored DD (kips)=	31
Total unfactored DD (kips)=	37
For factored DD, still pleanty of resistance ava	ailable.
If load is carried by additional shafts, should I	ateral loading govern,
there would be even less vertical load and ve	
Use other methods to avoid downdrag on foc	oting and abutment walls.

Calcs by:	2065201								
Calcs by:									
Calcs by:	LUC-23-11.75								
	CPI								
Date:	6/21/2023 & 6/26/2023								
Dute	0/11/1010 (0.0/10/1010								
Calco	Drilled Shaft Rock Sockets - Lateral Re	rictanco							
		sistance							
	Ramp D over Ottawa River								
Substructure:	Rear Abutment								
	B-022-0-21								
GSE (ft):	615.1								
Long-Term GWT (ft):	612	Approx. N	ormal River El	ev.					
Bottom of Pier Cap Elev. (ft):	612.5								
Soil									
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Lavar	Coll Turne					N60		0 (4.45)	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)		HP (tsf)		
Layer 1	Medium Stiff A-6a	0	3.5	615.1	611.6	5	1.00	-	
			m of Pier Cap:	-2.6	0.9	L	1		
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	120	pcf			
Su = N60 x 125 (N60<= 52 bpf) per GDM 4	404.1								
Su via N60 (ksf)=	0.625								
Su via HP (ksf)=									
Su (ksf)=	1.0								
50 (131)-	1.0								
Evaluation of Strain at half stress (epsilon	50) from LDUE 2010 To shallor Monuel								
Su = <u>1-2</u> ksf, epsilon 50 =	0.007								
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Laver 2	Medium Dense A-2-4	3.5				26	-	-	
Layer 2	Medium Dense A-2-4 Denth bu	3.5 Now botto	6	611.6	609.1	26	-	-	
	Depth be	elow botto	6 m of Pier Cap:	611.6 0.9	609.1 3.4		-	-	
Total Unit Wt (pcf):	Depth be 128		6 m of Pier Cap:	611.6	609.1	26 pcf	-	-	
Total Unit Wt (pcf): Internal Angle of Friction Determination	Depth bo 128 (GDM 404.2):	elow botto	6 m of Pier Cap:	611.6 0.9	609.1 3.4		-	-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60	Depth be 128	elow botto	6 m of Pier Cap:	611.6 0.9	609.1 3.4		-	-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth b 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4	GDM Tabl	6 m of Pier Cap:	611.6 0.9	609.1 3.4		-	-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60	Depth bo 128 (GDM 404.2):	elow botto	6 m of Pier Cap:	611.6 0.9	609.1 3.4			-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth b 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4	GDM Tabl	6 m of Pier Cap:	611.6 0.9	609.1 3.4			-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v), with CN<2.0 CN at	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75	GDM Tabl	6 m of Pier Cap:	611.6 0.9	609.1 3.4			-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN=	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4			-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)=	Depth b 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4			-	
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg)	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 30	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg)	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5	GDM Tabl	6 m of Pier Cap: e 400-4	611.6 0.9	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 30 50 N160 39 GDM Table 400-3 phi Adjustment A-2-4	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 30 50 N160 39 GDM Table 400-3 phi Adjustment A-2-4	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 30 50 N160 39 GDM Table 400-3 phi Adjustment A-2-4	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77/log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 10.5 1	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at Sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 30 50 N160 39 GDM Table 400-3 phi Adjustment A-2-4 Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) =	Depth bit 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 40.5 9.3 40.5 9.3 38.79 +0.5 39.5 40.5 20.5 39.5 40.1 40.2 40.5 9.5 40.5 9.5 38.79 4.0.5 39.5 4.0.5 39.5 4.0.5 30.5 4.0.5 30.5 4.0.5 30.5	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bit 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 // Anual Medium Dense, Submerged 8.0 - 27.0 k (pci)	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77/log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 40.5 Phi (deg) 38.79 40.5 Phi (deg) 38.79 40.5 Phi (deg) 38.79 40.5 Phi (deg) 8.0 - 27.0 k (pci) 8	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 40.5 Nanual Medium Dense, Submerged 8.0 - 27.0 k (pci) 8 27	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 40.5 Phi (deg) 38.79 40.5 27 23	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				
Total Unit Wt (pcf): Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Depth bi 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 4.75 0.47 1.5 39 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.79 +0.5 39.5 40.5 Phi (deg) 38.79 40.5 27 23	CDM Tabl	6 m of Pier Cap: e 400-4 1.5	611.6 0.9 Use	609.1 3.4				

			1	r		1				
	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp D over Ottawa River									
Substructure:	Rear Abutment									
		_								
		Top	Dettern		D - 44					
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)			
Layer 3	Very Dense A-3a	6	8	609.1	607.1	50/6"	-	-		
	· · · · ·		m of Pier Cap:	3.4	5.4					
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	140	pcf				
Internal Angle of Friction Determination										
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4									
CN=0.77log(40/sigma-v'), with CN<2.0										
CN at	7	ft								
sigma-v' (ksf):	0.63	12.0	1.4							
CN=	1.4	<2.0, use	1.4							
N160 (bpf)=	>50 (max in Table 10.4.6.2.4-1									
AASHTO LRFD Table 10.4.6.2.4-1										
N160	Mid-Range Phi (deg)		10.5							
50	40.5	use	40.5	deg						
GDM Table 400-3 phi Adjustment	0.5									
A-3a	-0.5									
Phi (deg) =	40								l	
k Evaluation From LPILE 2018 Technical N						-				
Parameters:	Very Dense, Submerged									
Range of k-value (pci) =	32.0 - 64.0					-				
Dense range of N60	k (pci)									
31	32									
50	64									
Interpolate for 50/6" bpf for this layer:	64									
Say k (pci) =	64									
Cored Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	-	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer Layer 4	Soil Type Dolomite - Moderately Strong	Depth		-		RQD (%) 29	Rec (%) 100	Qu (psi) No Test		
· · · · · · · · · · · · · · · · · · ·	Dolomite - Moderately Strong Highly Frac. To Frac.	Depth (ft) 8	Depth (ft) 10.3	(ft)	Elev. (ft)					
· · · · · · · · · · · · · · · · · · ·	Dolomite - Moderately Strong Highly Frac. To Frac.	Depth (ft) 8	Depth (ft)	(ft)	Elev. (ft)					
· · · · · · · · · · · · · · · · · · ·	Dolomite - Moderately Strong Highly Frac. To Frac.	Depth (ft) 8	Depth (ft) 10.3 m of Pier Cap:	(ft) 607.1	Elev. (ft) 604.8					
Layer 4	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be	Depth (ft) 8 How botton GDM Table	Depth (ft) 10.3 m of Pier Cap:	(ft) 607.1 5.4 Use	Elev. (ft) 604.8 7.7 160	29				
Layer 4	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175	Depth (ft) 8 How botton GDM Table	Depth (ft) 10.3 m of Pier Cap: e 400-5	(ft) 607.1 5.4 Use	Elev. (ft) 604.8 7.7 160	29				
Layer 4	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162	Depth (ft) 8 low botton GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf):	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162	Depth (ft) 8 low botton GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf):	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162	Depth (ft) 8 low botton GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)=	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250	Depth (ft) 8 low botton GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)=	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000	Depth (ft) 8 GDM Tabl Average o Based on 1	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000	Depth (ft) 8 GDM Tabl Average o Based on 1	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by	Depth (ft) 8 low bottoo GDM Tabl Average o Based on t	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069	Depth (ft) 8 elow bottoo GDM Tabl Average o Based on t	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 450,000 psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (3125 psi / 450,000 psi) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069	Depth (ft) 8 elow bottoo GDM Tabl Average o Based on t	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 450,000 psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (3125 psi / 450,000 psi) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069	Depth (ft) 8 elow bottoo GDM Tabl Average o Based on 1 %	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value	(ft) 607.1 5.4 Use s for the pr	Elev. (ft) 604.8 7.7 160 roject.	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 450,000 psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (3125 psi / 450,000 psi) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069	Depth (ft) 8 low bottoo GDM Tabl Average o Based on 1 Based on 1 %	Depth (ft) 10.3 nof Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pu underlying	Elev. (ft) 604.8 7.7 160 roject. moderately	29 pcf	100			
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi/ <u>450,000</u> psi) = krm (decimal format) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069	Depth (ft) 8 How bottoo GDM Tabil Average o Based on t Based on t S S Based on t D D D D D D D D D D D D D D D D	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value rest result for the set of th	(ft) 607.1 5.4 Use s for the pr underlying	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom	29 pcf strong laye	100 r.	No Test	Total Unit	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 Soil Type	Depth (ft) 8 Now botton GDM Tabl Average o Based on 1 Based on 1 Solution Based on 1 Depth (ft)	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value test result for the Bottom Depth (ft)	(ft) 607.1 5.4 Use s for the pr underlying Top Elev. (ft)	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft)	29 pcf strong laye	100 r. Rec (%)	No Test	Wt (pcf)	at 12.3'
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi/ <u>450,000</u> psi) = krm (decimal format) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 Soil Type Dolomite - Moderately Strong	Depth (ft) 8 How bottoo GDM Tabil Average o Based on t Based on t S S Based on t D D D D D D D D D D D D D D D D	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value rest result for the set of th	(ft) 607.1 5.4 Use s for the pr underlying	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom	29 pcf strong laye	100 r.	No Test	Wt (pcf) 159	at 12.3' at 14.5'
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac.	Depth (ft) 8 low bottoo GDM Tabl Average o Based on f Based on f Based on f S Based on f Cop Depth (ft) 10.3	Depth (ft) 10.3 nof Pier Cap: e 400-5 f Tested Value est result for the Bottom Depth (ft) 16.5	(ft) 607.1 5.4 Use s for the pi underlying Top Elev. (ft) 604.8	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6	29 pcf strong laye	100 r. Rec (%)	No Test	Wt (pcf)	at 12.3' at 14.5'
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 450,000 psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (3125 psi / 450,000 psi) = krm (decimal format) = Layer Layer 5	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be	Depth (ft) 8 Solve bottoo GDM Table Average o Based on 1 Based on 1 Solve and Solve M Top Depth (ft) 10.3 Solve bottoo	Depth (ft) 10.3 nof Pier Cap: e 400-5 f Tested Value est result for the Bottom Depth (ft) 16.5 n of Pier Cap:	(ft) 607.1 5.4 Use s for the pr underlying Top Elev. (ft) 604.8 7.7	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be 165-175	Depth (ft) 8 Now botton GDM Tabl Average o Based on 1 Based on 1 Based on 1 Depth (ft) 10.3 Cop Depth (ft) 10.3 Cop Depth (ft) 10.3	Depth (ft) 10.3 n of Pier Cap: e 400-5 f Tested Value est result for t Bottom Depth (ft) 16.5 n of Pier Cap: e 400-5	(ft) 607.1 5.4 Use s for the pr underlying Top Elev. (ft) 604.8 7.7 Use	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160	29 pcf strong laye	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer Layer Layer 5	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be	Depth (ft) 8 Now botton GDM Tabl Average o Based on 1 Based on 1 Based on 1 Depth (ft) 10.3 Cop Depth (ft) 10.3 Cop Depth (ft) 10.3	Depth (ft) 10.3 nof Pier Cap: e 400-5 f Tested Value est result for the Bottom Depth (ft) 16.5 n of Pier Cap:	(ft) 607.1 5.4 Use s for the pr underlying Top Elev. (ft) 604.8 7.7 Use	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer Layer Layer 5 Total Unit Wt (pcf):	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be 165-175 159	Depth (ft) 8 low bottoo GDM Tabl Average o Based on 1 Based on 1 Solution Solution GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer Layer Layer 5	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be 165-175 159	Depth (ft) 8 low bottoo GDM Tabl Average o Based on 1 Based on 1 Solution Solution GDM Tabl Average o	Depth (ft) 10.3 n of Pier Cap: e 400-5 f Tested Value est result for t Bottom Depth (ft) 16.5 n of Pier Cap: e 400-5	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 450,000 psi is 1%, then strain Half max stress = Qu/2 = krm (450,000 psi) = krm (decimal format) = Layer Layer Layer 5 Total Unit Wt (pcf): Qu (psi)=	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be 165-175 159	Depth (ft) 8 low bottoo GDM Tabl Average o Based on 1 Based on 1 Solution Solution GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (<u>3125</u> psi / <u>450,000</u> psi) = krm (decimal format) = Layer Layer Layer 5 Total Unit Wt (pcf):	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be 165-175 159	Depth (ft) 8 low bottoo GDM Tabl Average o Based on 1 Based on 1 Solution Solution GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 450,000 psi is 1%, then strain Half max stress = Qu/2 = krm (1325 psi / 450,000 psi) = krm (decimal format) = Layer Layer Layer 5 Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Mod Frac. Depth be 165-175 159 10020	Depth (ft) 8 Iow botton GDM Tabl Average o Based on 1 Based on 1 Solution Based on 1 Posi % Top Depth (ft) 10.3 Iow botton GDM Tabl Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm (decimal format) = krm (decimal format) = Layer Layer Layer 5 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 4t half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 0.000069 105-175 159 10020 900000 at half max stress (krm) is calculated by	Depth (ft) 8 low bottor GDM Tabl Average o Based on 1 Based on 1 Solution S	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm (decimal format) = krm (decimal format) = Layer Layer 5 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 162 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.00000 0.000069 0.00000 0.000069 0.00000 0.00000 0.00000 0.000000 0.000000	Depth (ft) 8 elow bottoo GDM Tabl Average o Based on 1 Based on 1 Based on 1 Composition % Top Depth (ft) 10.3 Com Tabl Average o Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm (450,000 psi) = krm (decimal format) = Layer Layer 5 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 0.000069 0.000069 105-175 159 10020 900000 at half max stress (krm) is calculated by 5010 0.00056	Depth (ft) 8 low bottor GDM Tabl Average o Based on 1 Based on 1 Solution S	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	
Layer 4 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>450,000</u> psi is 1%, then strain Half max stress = Qu/2 = krm (decimal format) = krm (decimal format) = Layer Layer 5 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 6250 450000 at half max stress (krm) is calculated by 3125 0.0069 0.000069 0.000069 0.000069 0.000069 105-175 159 10020 900000 at half max stress (krm) is calculated by 5010 0.00056	Depth (ft) 8 elow bottoo GDM Tabl Average o Based on 1 Based on 1 Based on 1 Composition % Top Depth (ft) 10.3 Com Tabl Average o Average o	Depth (ft) 10.3 m of Pier Cap: e 400-5 f Tested Value 	(ft) 607.1 5.4 Use s for the pi underlying 	Elev. (ft) 604.8 7.7 160 roject. moderately Bottom Elev. (ft) 598.6 13.9 160 re	29 pcf strong laye RQD (%) 42	100 r. Rec (%)	No Test	Wt (pcf) 159	

	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp D over Ottawa River									
Substructure:	Rear Abutment									
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 6	Dolomite - Strong	16.5	18	598.6	597.1	24	69	No Test		
	Highly Frac. To Mod Frac.									
		low botto	m of Pier Cap:	13.9	15.4					
Total Unit Wt (pcf):	165-175	GDM Tabl		Use	160	pcf				
	162		f Tested Value			pei				
	102	Average 0	i iesteu value	s ioi the p	ojeci.					
Qu (psi)=	10030									
Qu (psi)=	10020	value use	d for layer abo	ve.						
		-								
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900,000 psi is 1%, then strain a	at half max stress (krm) is calculated by	:								
Half max stress = Qu/2 =	5010	psi								
krm = 1% x (<u>5010</u> psi / <u>900,000</u> psi) =	0.0056	%								
krm (decimal format) =	0.000056	1								
· · · · · ·										
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
1	6 - 11 True -	-				DOD (9/)	D = = (0/)	0		
Layer	Soil Type Dolomite - Strong	(ft) 18	Depth (ft) 19.2	(ft) 597.1	Elev. (ft) 595.9	RQD (%)	Rec (%) 100	Qu (psi) No Test		
Layer 7		18	19.2	597.1	595.9	0	100	NO Test		
	Highly Frac. To Mod Frac.	<u> </u>				-				
	-		m of Pier Cap:	15.4	16.6					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162	Average o	f Tested Value	s for the p	roject.					
Qu (psi)=	10020	Value use	d for layer abo	ve.						
			-							
From GDM Table 400-6, say E (psi) =	900000	1								
If Strain at <u>900,000</u> psi is 1%, then strain a	at half may stress (krm) is calculated by									
Half max stress = $Qu/2$ =	5010	psi								
krm = 1% x (<u>5010</u> psi / <u>900,000</u> psi) =	0.0056									
		%								
krm (decimal format) =										
(acciniar format) =	0.000030									
	0.000030									
		Тор								
		Top Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	-	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
		Depth				RQD (%) 0	Rec (%) 100	Qu (psi) No Test		
Layer	Soil Type	Depth (ft)	Depth (ft)	(ft)	Elev. (ft)					
Layer	Soil Type Dolomite - Strong Highly Frac.	Depth (ft) 19.2	Depth (ft) 21	(ft)	Elev. (ft)					
Layer Layer 8	Soil Type Dolomite - Strong Highly Frac. Depth be	Depth (ft) 19.2 elow botto	Depth (ft) 21 m of Pier Cap:	(ft) 595.9 16.6	Elev. (ft) 594.1 18.4	0				
Layer	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175	Depth (ft) 19.2 elow botto GDM Tabl	Depth (ft) 21 m of Pier Cap: e 400-5	(ft) 595.9 16.6 Use	Elev. (ft) 594.1 18.4 160					
Layer Layer 8	Soil Type Dolomite - Strong Highly Frac. Depth be	Depth (ft) 19.2 elow botto GDM Tabl	Depth (ft) 21 m of Pier Cap:	(ft) 595.9 16.6 Use	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf):	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162	Depth (ft) 19.2 elow botto GDM Tabl Average o	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162	Depth (ft) 19.2 elow botto GDM Tabl Average o	Depth (ft) 21 m of Pier Cap: e 400-5	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)=	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020	Depth (ft) 19.2 elow botto GDM Tabl Average o	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf):	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162	Depth (ft) 19.2 elow botto GDM Tabl Average o	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)=	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain <i>i</i> Half max stress = Qu/2 =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by	Depth (ft) 19.2 COM botto GDM Tabl Average o Value use	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>5010 psi / 900,000 psi</u>) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use psi	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain <i>i</i> Half max stress = Qu/2 =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use psi	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>5010 psi / 900,000 psi</u>) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056	Depth (ft) 19.2 Blow botto GDM Tabl Average o Value use Value use psi %	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value	(ft) 595.9 16.6 Use s for the p	Elev. (ft) 594.1 18.4 160	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>5010 psi / 900,000 psi</u>) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056	Depth (ft) 19.2 Normal Sector GDM Tabl Average o Value use Value use Sector % %	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo	(ft) 595.9 16.6 Use s for the p ve.	Elev. (ft) 594.1 18.4 160 roject.	0				
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>5010</u> psi / <u>900,000</u> psi) = krm (decimal format) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.000056	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use Value use psi % Top Depth	Depth (ft) 21 of Pier Cap: e 400-5 f Tested Value d for layer abo	(ft) 595.9 16.6 Use s for the p ve.	Elev. (ft) 594.1 18.4 160 roject.	0 pcf		No Test	Total Unit	
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 900,000 psi is 1%, then strain at Half max stress = Qu/2 = krm = 1% x (5010 psi / 900,000 psi) = krm (decimal format) = Layer	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 wit half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use psi % Top Depth (ft)	Depth (ft) 21 of Pier Cap: e 400-5 f Tested Value d for layer abo	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft)	Elev. (ft) 594.1 18.4 160 roject.	0 pcf	100	No Test	Wt (pcf)	
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (<u>5010</u> psi / <u>900,000</u> psi) = krm (decimal format) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 it half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong	Depth (ft) 19.2 elow botto GDM Tabl Average o Value use Value use psi % Top Depth	Depth (ft) 21 of Pier Cap: e 400-5 f Tested Value d for layer abo	(ft) 595.9 16.6 Use s for the p ve.	Elev. (ft) 594.1 18.4 160 roject.	0 pcf		No Test		at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 900,000 psi is 1%, then strain at Half max stress = Qu/2 = krm = 1% x (5010 psi / 900,000 psi) = krm (decimal format) = Layer	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 it half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac.	Depth (ft) 19.2 Bow botto GDM Tabil Average o Value use Value use Value use Top Depth (ft) 21	Depth (ft) 21 mof Pier Cap: e 400-5 f Tested Value d for layer abo	(ft) 595.9 16.6 Use s for the p ve. 	Elev. (ft) 594.1 18.4 160 roject.	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) = krm (decimal format) = Layer Layer Layer 9	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be	Depth (ft) 19.2 Normal Sector GDM Tabl Average o Value use Value use Value use Top Depth (ft) 21	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap:	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 900,000 psi is 1%, then strain at Half max stress = Qu/2 = krm = 1% x (5010 psi / 900,000 psi) = krm (decimal format) = Layer	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.00056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac.	Depth (ft) 19.2 How botto GDM Tabl Average o Value use Value use Value use Top Depth (ft) 21 Elow botto GDM Tabl	Depth (ft) 21 of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject.	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) = krm (decimal format) = Layer Layer Layer 9	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be	Depth (ft) 19.2 How botto GDM Tabl Average o Value use Value use Value use Top Depth (ft) 21 Elow botto GDM Tabl	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap:	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) = krm (decimal format) = Layer Layer Layer 9	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 et half max stress (krm) is calculated by 5010 0.0056 0.000056 0.000056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175	Depth (ft) 19.2 How botto GDM Tabl Average o Value use Value use Value use Top Depth (ft) 21 Elow botto GDM Tabl	Depth (ft) 21 of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 900,000 psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / 900,000 psi) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf):	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) = krm (decimal format) = Layer Layer Layer 9	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use Psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val	Depth (ft) 21 of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Cotal Unit Wt (pcf): Qu (psi)=	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.000056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use Psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain at Half max stress = Qu/2 = krm = 1% x (5010 psi / <u>900,000</u> psi) = krm (decimal format) = Layer Layer Layer 9 Cotal Unit Wt (pcf): Qu (psi)=	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 st half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use Psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 900,000 psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / 900,000 psi) = krm (decimal format) = Layer Layer Layer 9 Cotal Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 it half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164 15030	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use Value use psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at 900,000 psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (5010 psi / 900,000 psi) = krm (decimal format) = Layer Layer Layer 9 	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 it half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164 15030 1400000	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain at Half max stress = Qu/2 = krm (decimal format) = krm (decimal format) = Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164 15030 1400000 h at half max stress (krm) is calculated b 7515	Depth (ft) 19.2 BOW botto GDM Tabl Average o Value use Value use Value use Top Depth (ft) 21 Com botto GDM Tabl Tested val Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain at Half max stress = Qu/2 = krm (decimal format) = krm (decimal format) = Layer Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then straii Half max stress = Qu/2 = krm = 1% x (7515 psi / <u>1,400,000</u> psi) =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.00056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164 15030 1400000 n at half max stress (krm) is calculated to 7515 0.0054	Depth (ft) 19.2 Bow botto GDM Tabl Average o Value use psi % Top Depth (ft) 21 Bow botto GDM Tabl Tested val Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf	100	No Test	Wt (pcf)	at 21'
Layer Layer 8 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>900,000</u> psi is 1%, then strain at Half max stress = Qu/2 = krm (decimal format) = krm (decimal format) = Layer Layer 9 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then strain Half max stress = Qu/2 =	Soil Type Dolomite - Strong Highly Frac. Depth be 165-175 162 10020 900000 at half max stress (krm) is calculated by 5010 0.0056 0.00056 0.000056 Soil Type Dolomite - Very Strong Highly Frac. To Mod Frac. Depth be 165-175 164 15030 1400000 n at half max stress (krm) is calculated to 7515 0.0054	Depth (ft) 19.2 BOW botto GDM Tabl Average o Value use Value use Value use Top Depth (ft) 21 Com botto GDM Tabl Tested val Tested val	Depth (ft) 21 m of Pier Cap: e 400-5 f Tested Value d for layer abo d for layer abo Bottom Depth (ft) 28 m of Pier Cap: e 400-5 ue in this zone	(ft) 595.9 16.6 Use s for the p ve. Top Elev. (ft) 594.1 18.4 Use	Elev. (ft) 594.1 18.4 160 roject. 0 580 Elev. (ft) 587.1 25.4	0 pcf 	100	No Test	Wt (pcf)	at 21'

TTL Project No.:										
	LUC-23-11.75									
Calcs by:	СРІ									
Date:	6/21/2023 & 6/26/23									
Calcs:	Drilled Shaft Rock Sockets - Lateral Re	sistance								
Location:	Ramp D over Ottawa River									
Substructure:	Pier 1									
Boring(s):	B-022-1-21									
GSE (ft):										
Long-Term GWT (ft):		Approx. N	ormal River El	ev.	-					
Bottom of Pier Cap Elev. (ft):	610.79									
Soil									1	
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 1	Stiff A-4a	0	4.5	616.1	611.6	14	-	-		
Layer 1						14	-	-		
	-		n of Pier Cap:		-0.81	-				
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	120	pcf				
Su = N60 x 125 (N60<= 52 bpf) per GDM 4	404.1									
Su (ksf)=	1.75]								
Evaluation of Strain at half stress (epsilon	50) from LPILE 2018 Technical Manual					1				
Su = 1-2 ksf, epsilon 50 =		1	1			-				
<u></u>		-								
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 2	Medium Stiff A-4a	4.5	6	611.6	610.1	8	-	-		
	Depth be	low bottor	n of Pier Cap:		0.69					
Total Unit Wt (pcf):	118	GDM Tabl	e 400-4	Use	120	pcf				
Su = N60 x 125 (N60<= 52 bpf) per GDM 4		00.00.000	- 100 1		soil type and	•	r A da abo	NO.		
Say Su (ksf)=	1.0			Daseu on	son type and			wc.	l	
Say Su (KSI)-	1.0									
Evaluation of Strain at half stress (epsilon										
Su = <u>1-2</u> ksf, epsilon 50 =	0.007									
	0.000									
		Тор								
		Top Depth	Bottom	Top Elev.	Bottom					
		Depth	Bottom	Top Elev.	Bottom	N60	HP (tcf)	Ou (tsf)		
Layer	Soil Type	Depth (ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
	Soil Type Loose A-3a	Depth (ft) 6	Depth (ft) 7	(ft) 610.1	Elev. (ft) 609.1	N60 9	HP (tsf)	Qu (tsf) -		
Layer Layer 3	Soil Type Loose A-3a Depth be	Depth (ft) 6 elow bottor	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf):	Soil Type Loose A-3a Depth be 122	Depth (ft) 6	Depth (ft) 7 n of Pier Cap:	(ft) 610.1	Elev. (ft) 609.1					
Layer Layer 3	Soil Type Loose A-3a Depth be 122	Depth (ft) 6 elow bottor	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf):	Soil Type Loose A-3a Depth be 122	Depth (ft) 6 elow bottor	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60	Soil Type Loose A-3a Depth bo 122 (GDM 404.2):	Depth (ft) 6 elow bottor	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	Soil Type Loose A-3a Depth be 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4	Depth (ft) 6 elow bottor GDM Tabl	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5	Depth (ft) 6 elow bottor	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf):	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN=	Soil Type Loose A-3a Depth be 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4	Depth (ft) 6 elow bottor GDM Tabl	Depth (ft) 7 n of Pier Cap:	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)=	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1	Soil Type Loose A-3a Depth be 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg)	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 12 Mid-Range Phi (deg) 32.5	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30	Soil Type Loose A-3a Depth b 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg)	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5	Depth (ft) 6 elow bottor GDM Tabl ft	Depth (ft) 7 n of Pier Cap: e 400-4	(ft) 610.1 0.69	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 1.2 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN=0.77log(40/sigma-v'), with CN<2.0 CN=0.77lo	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 1.2 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) =	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical N	Soil Type Loose A-3a Depth ba 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 10.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) =	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical N	Soil Type Loose A-3a Depth bu 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 Manual	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters:	Soil Type Loose A-3a Depth bo 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 4anual Loose, submerged	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) = Loose range of N60	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 Manual Loose, submerged 2.1 - 6.4 k (pci)	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) = Loose range of N60 5	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRED 10.4.6.2.4 6.5 0.66 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 4anual Loose, submerged 2.1 - 6.4 k (pci) 2.1	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) = Loose range of N60 5 10	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 6.5 0.66 1.4 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 4 anual Loose, submerged 2.1 - 6.4 k (pci) 2.1 6.4	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) = Loose range of N60 5 10 Interpolate for 9 bpf for this layer:	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRED 10.4.6.2.4 6.5 0.66 1.4 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 10 -0.5 32.5 10 -0.5 20 -0.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) = Loose range of N60 5 10	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRED 10.4.6.2.4 6.5 0.66 1.4 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 10 -0.5 32.5 10 -0.5 20 -0.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1 N160 10 30 N160 12 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical M Parameters: Range of k-value (pci) = Loose range of N60 5 10 Interpolate for 9 bpf for this layer:	Soil Type Loose A-3a Depth bd 122 (GDM 404.2): AASHTO LRED 10.4.6.2.4 6.5 0.66 1.4 1.4 12 Mid-Range Phi (deg) 32.5 37.5 Phi (deg) 33.1 -0.5 32.5 10 -0.5 32.5 10 -0.5 20 -0.5	Depth (ft) 6 elow bottor GDM Tabl ft <2.0, use	Depth (ft) 7 n of Pier Cap: e 400-4 1.4	(ft) 610.1 0.69 Use	Elev. (ft) 609.1 1.69	9				

						1				
	Drilled Shaft Rock Sockets - Lateral Re	sistance								
	Ramp D over Ottawa River									
Substructure:	Pier 1									
Augerable Weathered Bedrock										
Augerable Weathered Dearber		Тор								
		Depth	Bottom	Top Elev.	Bottom	SPT				
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Result				
Layer 4	Weathered Dolomite	7	8.6	609.1	607.5	50/3"				
Layer 4			m of Pier Cap:	1.69	3.29	30/3				
Total Unit \8/4 (nof)	165-175	GDM Tabl		Use	160					
Total Unit Wt (pcf):						pcf				
Outbased as CDT Desults are CDM 404.2	162	Average of	f Tested Value	s for the p	roject.					
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf)										
	00									
ER(%)=	90	haf								
N90=50/3" x 12" =	200	bpf								
$N90 = 90/90 \times 200 \text{ bpf} =$	200	bpf								
Qu (ksf) =	18.4									
Qu (psi) =	127.8	ļ								
	<u> </u>	 								
Estimate E based on GDM Table 400-6	L	<u> </u>								
Lowest Qu = 200 psi, indicated as E = 18,0		<u> </u>								
Use E (psi) =	18000	I								
		ļ								
If Strain at <u>18,000</u> psi is 1%, then strain at	half max stress (krm) is calculated by:									
Half max stress = Qu/2 =	63.9	psi								
krm = 1% x (<u>63.9</u> psi / <u>18,000</u> psi) =	0.0035	%								
krm (decimal format) =	0.000035									
Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 5	Dolomite - Very Strong	8.6	18.5	607.5	597.6	17	78	15630	163	at 11.8 ft
-	Highly Frac. To Frac.							22920	161	at 13.8 ft
		low bottor	m of Pier Cap:	3.29	13.19					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162		f tested values							
Qu (psi)=	19275	Similar de	pth below top	of rock fro	m nearby B-	028-2-21. a	nd Strong			
		onnar ac		0110000100	in near by b	020 2 21,0				
From GDM Table 400-6, say E (psi) =										
	1 400 000									
	1,400,000]								
If Strain at 1,400,000 pci is 1% than strain										
If Strain at <u>1,400,000</u> psi is 1%, then strain	n at half max stress (krm) is calculated b	1								
Half max stress = Qu/2 =	n at half max stress (krm) is calculated b 9638	psi								
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) =	n at half max stress (krm) is calculated b 9638 0.0069	1								
Half max stress = Qu/2 =	n at half max stress (krm) is calculated b 9638 0.0069	psi								
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) =	n at half max stress (krm) is calculated b 9638 0.0069	psi %								
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) =	n at half max stress (krm) is calculated b 9638 0.0069	psi % Top								
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) =	n at half max stress (krm) is calculated b 9638 0.0069 0.000069	psi % Top Depth	Bottom	Top Elev.	Bottom				Total Unit	
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	n at half max stress (krm) is calculated b 9638 0.0069 0.000069 Soil Type	psi % Top Depth (ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)		Qu (psi)	Wt (pcf)	
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) =	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Soil Type Dolomite - Moderately Strong	psi % Top Depth				RQD (%) 12	Rec (%) 80	Qu (psi) 7350		at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Frac.	psi % Top Depth (ft) 18.5	Depth (ft) 23.6	(ft) 597.6	Elev. (ft) 592.5				Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Frac. Depth be	psi % Top Depth (ft) 18.5 elow bottor	Depth (ft) 23.6 m of Pier Cap:	(ft) 597.6 13.19	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175	psi % Top Depth (ft) 18.5 elow bottor GDM Tabl	Depth (ft) 23.6 m of Pier Cap: e 400-5	(ft) 597.6 13.19 Use	Elev. (ft) 592.5				Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Soil Type Dolomite - Moderately Strong Highly Frac. To Frac. Depth be	psi % Top Depth (ft) 18.5 elow bottor GDM Tabl	Depth (ft) 23.6 m of Pier Cap:	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf):	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer Layer 6	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf):	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf):	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)=	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161 7350	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161 7350 680000 at half max stress (krm) is calculated by:	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 =	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161 7350 680000 at half max stress (krm) is calculated by:	psi % Top Depth (ft) 18.5 Elow bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a	a at half max stress (krm) is calculated b 9638 0.0069 0.000069 Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161 7350 680000 at half max stress (krm) is calculated by:	psi % Top Depth (ft) 18.5 CDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft
Half max stress = Qu/2 = krm = 1% x (<u>9638</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>680,000</u> psi is 1%, then strain a Half max stress = Qu/2 =	soil Type Soil Type Dolomite - Moderately Strong Highly Frac. To Frac. Depth be 165-175 161 7350 680000 it half max stress (krm) is calculated by 3675 0.0054	psi % Top Depth (ft) 18.5 Com bottor GDM Tabl Tested val	Depth (ft) 23.6 m of Pier Cap: e 400-5 ue within zone	(ft) 597.6 13.19 Use	Elev. (ft) 592.5 18.29	12			Wt (pcf)	at 18.6 ft

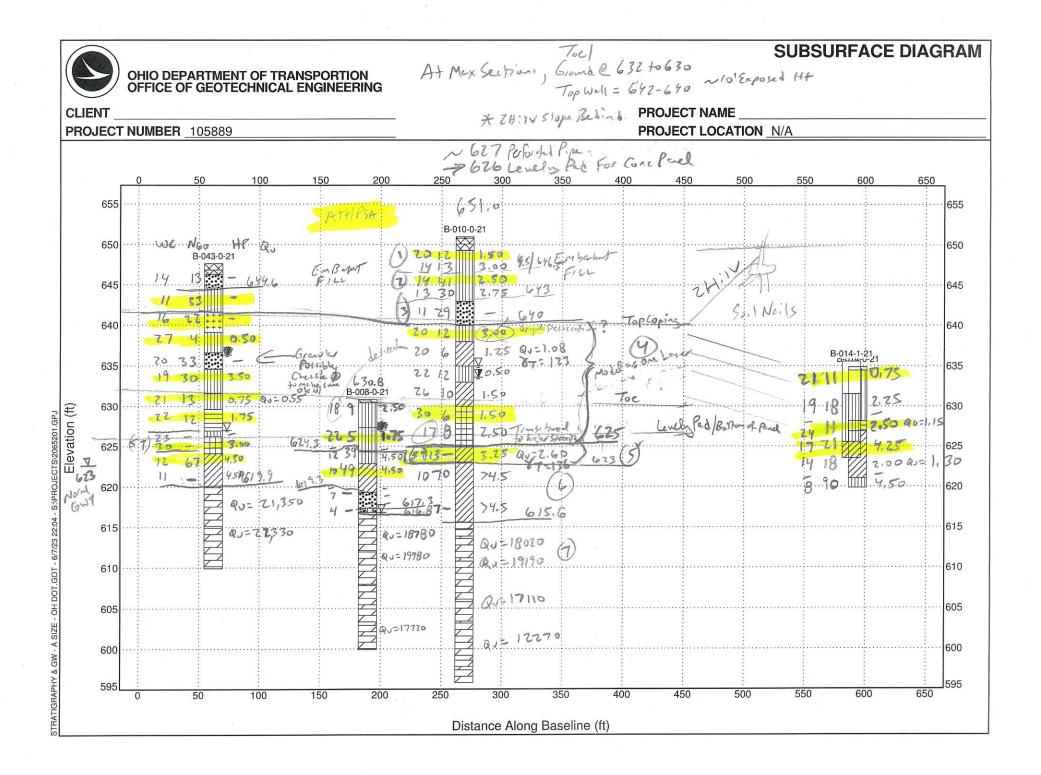
Calcs:	Drilled Shaft Rock Sockets - Lateral R	esistance								
	Ramp D over Ottawa River									
Substructure:										
Layer	Soil Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Total Unit Wt (pcf)	
Layer 7	Dolomite - Very Strong	23.6	28.6	592.5	587.5	22	100	16420	166	at 23.6 ft
	Frac. To Moderately Frac.									
	Depth b	elow bottor	m of Pier Cap:	18.29	23.29					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	165	pcf				
	166	Tested val	ue within zone	2.						
Qu (psi)=	16420	Tested val	ue within zone	2.						
From GDM Table 400-6, say E (psi) =	1400000									
If Strain at <u>1,400,000</u> psi is 1%, then strai	 n at half max stress (krm) is calculated	by:								
Half max stress = Qu/2 =	8210	psi								
krm = 1% x (<u>8,210</u> psi / <u>1,400,000</u> psi) =	0.0059	%								
krm (decimal format) =	0.000059									

TTL Project No.:	2065201								
· · · · · · · · · · · · · · · · · · ·	LUC-23-11.75								
Calcs by:									
Date:	6/21/2023 &6/26/2023								
Calco	Drilled Shaft Rock Sockets - Lateral Ro	ocictanco							
	Ramp D over Ottawa River	esistance							
Substructure:									
Boring(s)	B-022-2-21 & B-022-3-21								
GSE (ft):	616.0								
Long-Term GWT (ft)		Approx. N	ormal River E	ev.					
Bottom of Pier Cap Elev. (ft)	605.14								
6 -1									
Soil		Ten							
		Top Depth	Bottom	Тор	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 1	Very Stiff A-4a	0	6	616	610	17	-	-	
		-	n of Pier Cap:	-10.86	-4.86				
Total Unit Wt (pcf):		GDM Tabl		Use	120	pcf			
Su = N60 x 125 (N60<= 52 bpf) per GDM									
Su (ksf)=	2.125	1							
Evaluation of Strain at half stress (epsilo									
Su = <u>2-4</u> ksf, epsilon 50 =	0.005								
Augerable Weathered Bedrock									
		Тор							
		Depth	Bottom	Тор	Bottom	SPT			
Layer	Rock Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	Result			
Layer 2	Weathered Dolomite	6	8.5 n of Pier Cap:	610 -4.86	607.5 -2.36	50/4"			
Total Unit Wt (pcf):		GDM Tabl		-4.86 Use	-2.36 160	nof			
Total Onit wt (pcr):	165-175		e 400-5 f Tested Value			pcf			
Qu based on SPT Results per GDM 404.3		Average 0		es for the p	rojeci.				
Qu (ksf)=0.092x(Nrate)90 (bpf)									
ER(%)=	90								
N90=50/4" x 12" =	150	bpf							
N90 = 90/90 x 150 bpf =	150	bpf							
Qu (ksf) =	13.8								
Qu (psi) =	95.8								
Estimate E based on GDM Table 400-6									
Lowest Qu = 200 psi, indicated as E = 18									
Use E (psi) =	18000								
If Strain at <u>18,000</u> psi is 1%, then strain a									
Half max stress = Qu/2 = krm = 1% x (<u>47.9</u> psi / <u>18,000</u> psi) =		psi %							
$krm = 1\% \times (\frac{47.9}{18,000} psi) = krm (decimal format) = krm (dec$		/0							
kini (decimai iormat) =	0.00027	4							
		Тор							
		Depth	Bottom	Тор	Bottom	SPT			
Layer		(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	Result			
Layer 3	Rock Type			Elev. (IL)				1	
· · · · · · · · · · · · · · · · · · ·	Rock Type Weathered Dolomite	8.5	9.3	607.5	606.7	50/2"			
	Weathered Dolomite	8.5		607.5		50/2"			
Total Unit Wt (pcf):	Weathered Dolomite Depth be	8.5	9.3 n of Pier Cap:	607.5	606.7	50/2" pcf			
Total Unit Wt (pcf):	Weathered Dolomite Depth be	8.5 Iow bottor GDM Tabl	9.3 n of Pier Cap:	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3	Weathered Dolomite Depth be 165-175 162	8.5 Iow bottor GDM Tabl	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf)	Weathered Dolomite Depth be 165-175 162	8.5 Iow bottor GDM Tabl	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)=	Weathered Dolomite Depth be 165-175 162 90	8.5 low bottor GDM Tabl Average o	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" =	Weathered Dolomite Depth be 165-175 162 90 300	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf =	Weathered Dolomite Depth be 165-175 162 90 300 300	8.5 low bottor GDM Tabl Average o	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) =	Weathered Dolomite Depth be 165-175 162 90 300 300 27.6	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf =	Weathered Dolomite Depth be 165-175 162 90 300 300	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (psi) =	Weathered Dolomite Depth be 165-175 162 90 300 300 27.6	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (psi) = Estimate E based on GDM Table 400-6	Weathered Dolomite Depth be 165-175 162 90 300 300 27.6 191.7	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (ksf) = Estimate E based on GDM Table 400-6 Lowest Qu = 200 psi, indicated as E = 18	Weathered Dolomite Depth be 165-175 162 90 300 300 27.6 191.7 000 ps	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (psi) = Estimate E based on GDM Table 400-6	Weathered Dolomite Depth be 165-175 162 90 300 300 27.6 191.7 000 ps	8.5 Iow bottor GDM Tabl Average o bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (ksf) = Estimate E based on GDM Table 400-6 Lowest Qu = 200 psi, indicated as E = 18 Use E (psi) =	Weathered Dolomite Depth be 165-175 162 90 300 27.6 191.7 000 ps 18000	8.5 low botton GDM Tabl Average o bpf bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (psi) = Estimate E based on GDM Table 400-6 Lowest Qu = 200 psi, indicated as E = 18 Use E (psi) = If Strain at <u>18,000</u> psi is 1%, then strain a	Weathered Dolomite Depth be 165-175 162 90 300 27.6 191.7 000 ps 18000 t half max stress (krm) is calculated by	8.5 low botton GDM Tabl Average o bpf bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf)	Weathered Dolomite Depth be 165-175 162 90 300 27.6 191.7 000 ps 18000 t half max stress (krm) is calculated by	8.5 low botton GDM Tabl Average o bpf bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				
Qu based on SPT Results per GDM 404.3 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= N90=50/2" x 12" = N90 = 90/90 x 300 bpf = Qu (ksf) = Qu (ksf) = Estimate E based on GDM Table 400-6 Lowest Qu = 200 psi, indicated as E = 18 Use E (psi) = If Strain at <u>18.000</u> psi is 1%, then strain a Half max stress = Qu/2 =	Weathered Dolomite Depth be 165-175 162 90 300 27.6 191.7	8.5 low botton GDM Tabl Average o bpf bpf	9.3 n of Pier Cap : e 400-5	607.5 -2.36 Use	606.7 -1.56 160				

						-				
Calcs:	Drilled Shaft Rock Sockets - Lateral R	esistance								
	Ramp D over Ottawa River									
Substructure:	Pier 2									
Bedrock										
		Тор				1				
		Depth	Bottom	Тор	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 4	Dolomite - Very Strong	9.3	14.3	606.7	601.7	45	100	17840	159	at 13.4 f
	Frac. To Moderately Frac.	5.5	110	000.7	0010	15	100	1/0/10	100	41 10111
			n of Pier Cap:	-1.56	3.44					
T - 4 - 1 1 1 - 15 14/5 (6)	-									
Total Unit Wt (pcf):	165-175	GDM Tabl		Use	160	pcf				
	159	Tested val	ue within zon	e.						
Qu (psi)=	17840	Tested val	ue within zon	e.						
		Ĩ								
From GDM Table 400-6, say E (psi) =	1,400,000									
If Strain at <u>1,400,000</u> psi is 1%, then stra	n at half may stress (krm) is calculated	hv:								
Half max stress = $Qu/2$ =	8920	psi								
krm = 1% x (<u>8920</u> psi / <u>1,400,000</u> psi) =	0.0064	%								
		70								
krm (decimal format) =	0.000064									
		Тор				1				1
		Depth	Bottom	Тор	Bottom	1				
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)		Qu (psi)		
Layer 5	Dolomite - Strong	14.3	19.3	601.7	596.7	0	33	-		
	Highly Frac.									
	Depth be	low bottor	n of Pier Cap:	3.44	8.44	1				
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162	Average o	f Tested Value	es for the r	roiect.					
Qu (psi)=	17840	Tested Va	ue for Layer a	hove						
		rested va								
From GDM Table 400-6, say E (psi) =	1400000									
FIOIN GDIVI Table 400-6, say E (psi) =	1400000									
If Strain at <u>1,400,000</u> psi is 1%, then stra		T	-							
Half max stress = Qu/2 =	8920	psi								
krm = 1% x (<u>8,920</u> psi / <u>1,400,000</u> psi) =	0.0064	%								
krm (decimal format) =	0.000064									
		Ĩ								
		Тор								
		-	Bottom	Тор	Bottom				Total Unit	
Laver	Soil Type	Depth	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	ROD (%)	Rec (%)	Ou (psi)	Total Unit Wt (pcf)	
Layer	Soil Type Dolomite - Very Strong	Depth (ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)		Qu (psi)	Wt (pcf)	at 19 3 ft
Layer Layer 6	Dolomite - Very Strong	Depth		•		RQD (%) 65	Rec (%) 100	Qu (psi) 23820		at 19.3 ft
	Dolomite - Very Strong Frac. To Moderately Frac.	Depth (ft) 19.3	Depth (ft) 23.2	Elev. (ft) 596.7	Elev. (ft) 592.8				Wt (pcf)	at 19.3 ft
Layer 6	Dolomite - Very Strong Frac. To Moderately Frac. Depth be	Depth (ft) 19.3 low bottor	Depth (ft) 23.2 n of Pier Cap:	Elev. (ft) 596.7 8.44	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 fi
	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175	Depth (ft) 19.3 low bottor GDM Table	Depth (ft) 23.2 n of Pier Cap: e 400-5	Elev. (ft) 596.7 8.44 Use	Elev. (ft) 592.8				Wt (pcf)	at 19.3 f
Layer 6	Dolomite - Very Strong Frac. To Moderately Frac. Depth be	Depth (ft) 19.3 low bottor GDM Table	Depth (ft) 23.2 n of Pier Cap:	Elev. (ft) 596.7 8.44 Use	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf):	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164	Depth (ft) 19.3 low bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164	Depth (ft) 19.3 low bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf):	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164	Depth (ft) 19.3 low bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf):	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164	Depth (ft) 19.3 low bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf): Qu (psi)=	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820	Depth (ft) 19.3 low bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000	Depth (ft) 19.3 low bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then stra	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated	Depth (ft) 19.3 low bottor GDM Tabl Tested val Tested val by:	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 ft
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then stra Half max stress = Qu/2 =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val by: psi	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 f
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066	Depth (ft) 19.3 low bottor GDM Tabl Tested val Tested val by:	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 ft
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800.000</u> psi is 1%, then stra Half max stress = Qu/2 =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val by: psi	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 ft
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066	Depth (ft) 19.3 low bottor GDM Tabl Tested val Tested val by: psi %	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e.	Elev. (ft) 592.8 12.34	65			Wt (pcf)	at 19.3 ft
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066	Depth (ft) 19.3 iow bottor GDM Tabl Tested val Tested val by: psi %	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon	Elev. (ft) 596.7 8.44 Use e. e. e.	Elev. (ft) 592.8 12.34 165	65			Wt (pcf) 164	at 19.3 fi
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.00066	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val by: psi % Yop Depth	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon Bottom	Elev. (ft) 596.7 8.44 Use e. e. e. Top	Elev. (ft) 592.8 12.34 165	65		23820	Wt (pcf) 164	at 19.3 f1
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11.920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val tested val by: psi % % Top Depth (ft)	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon Bottom Depth (ft)	Elev. (ft) 596.7 8.44 Use e. e. e. Elev. (ft)	Elev. (ft) 592.8 12.34 165	65	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val by: psi % Yop Depth	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon Bottom	Elev. (ft) 596.7 8.44 Use e. e. e. Top	Elev. (ft) 592.8 12.34 165	65		23820	Wt (pcf) 164	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11.920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac.	Depth (ft) 19.3 Jow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon Bottom Depth (ft) 26.3	Elev. (ft) 596.7 8.44 Use e. e. e. E. D D D Elev. (ft) 592.8	Elev. (ft) 592.8 12.34 165 	65	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11.920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac.	Depth (ft) 19.3 Jow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon Bottom Depth (ft)	Elev. (ft) 596.7 8.44 Use e. e. e. Elev. (ft)	Elev. (ft) 592.8 12.34 165	65	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11.920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac.	Depth (ft) 19.3 Jow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon bethin zon ue within zon ue within zon ue within zon ue within zon ue of Pier Cap:	Elev. (ft) 596.7 8.44 Use e. e. e. E. D D D Elev. (ft) 592.8	Elev. (ft) 592.8 12.34 165 	65	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer 7	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.00066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be	Depth (ft) 19.3 iow bottor GDM Tabl Tested val Tested val by: psi % 7 V Depth (ft) 23.2 V Ow bottor GDM Tabl	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon bethin zon ue within zon ue within zon ue within zon ue within zon ue of Pier Cap:	Elev. (ft) 596.7 8.44 Use e. e. e. Elev. (ft) 592.8 12.34 Use	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer 7	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.00066 0.000066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175	Depth (ft) 19.3 iow bottor GDM Tabl Tested val Tested val by: psi % 7 V Depth (ft) 23.2 V Ow bottor GDM Tabl	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon ue within zon 2 5 8 8 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Elev. (ft) 596.7 8.44 Use e. e. e. Elev. (ft) 592.8 12.34 Use	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11.920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Total Unit Wt (pcf):	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val by: psi % S Depth (ft) 23.2 Iow bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer 7	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val by: psi % S Depth (ft) 23.2 Iow bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon ue within zon 2 5 8 8 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Qu (psi)= Qu (psi)=	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val by: psi % S Depth (ft) 23.2 Iow bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11.920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Total Unit Wt (pcf):	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val by: psi % S Depth (ft) 23.2 Iow bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.00066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165 23930	Depth (ft) 19.3 iow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2 iow bottor GDM Tabl Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165 23930 1800000 n at half max stress (krm) is calculated	Depth (ft) 19.3 iow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2 iow bottor GDM Tabl Tested val Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.000066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165 23930 1800000 n at half max stress (krm) is calculated 11965	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2 Iow bottor GDM Tabl Tested val Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,965</u> psi / <u>1.800,000</u> psi) =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.00066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165 23930 1800000 n at half max stress (krm) is calculated 11965 0.0066	Depth (ft) 19.3 iow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2 iow bottor GDM Tabl Tested val Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	
Layer 6 Total Unit Wt (pcf): Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>11,920</u> psi / <u>1.800,000</u> psi) = krm (decimal format) = Layer Layer Layer 7 Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1.800,000</u> psi is 1%, then stra Half max stress = Qu/2 =	Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 164 23820 1800000 n at half max stress (krm) is calculated 11910 0.0066 0.00066 Soil Type Dolomite - Very Strong Highly Frac. To Frac. Depth be 165-175 165 23930 1800000 n at half max stress (krm) is calculated 11965 0.0066	Depth (ft) 19.3 Iow bottor GDM Tabl Tested val Tested val by: psi % Top Depth (ft) 23.2 Iow bottor GDM Tabl Tested val Tested val	Depth (ft) 23.2 n of Pier Cap: e 400-5 ue within zon ue within zon ue within zon beth (ft) 26.3 n of Pier Cap: e 400-5 ue within zon	Elev. (ft) 596.7 8.44 Use e. e. Elev. (ft) 592.8 12.34 Use e.	Elev. (ft) 592.8 12.34 165 	65 pcf 	100	23820	Wt (pcf) 164 	at 19.3 ft

Duillard Chafe Dards Cardense									
	esistance								
Pier 2									
	Тор								
	Depth	Bottom	Тор	Bottom					
Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Dolomite - Very Strong	26.3	29.3	589.7	586.7	36	67	-		
Frac. To Moderately Frac.									
Depth be	low bottor	n of Pier Cap:	15.44	18.44					
165-175	GDM Tabl	e 400-5	Use	165	pcf				
162	Average o	f Tested Value	es for the p	roject.					
23930	Tested val	ue from layer	above.						
	Ī								
1800000									
n at half max stress (krm) is calculated	by:								
11965	psi								
0.0066	%								
0.000066									
	Ramp D over Ottawa River Pier 2 Soil Type Dolomite - Very Strong Frac. To Moderately Frac. Depth be 165-175 162 23930 1800000 n at half max stress (krm) is calculated 11965 0.0066	Pier 2 Top Depth Soil Type (ft) Dolomite - Very Strong 26.3 Frac. To Moderately Frac. Depth below bottor 165-175 GDM Tabl 162 Average o 23930 Tested val 1800000 a at half max stress (krm) is calculated by: 11965 psi 0.0066 %	Ramp D over Ottawa River Top Pier 2 Top Soil Type (ft) Dolomite - Very Strong 26.3 Frac. To Moderately Frac. Depth below bottom of Pier Cap: 165-175 GDM Table 400-5 162 Average of Tested Value 23930 Tested value from layer 1800000 Image: Stress (krm) is calculated by: 11965 psi 0.0066 %	Ramp D over Ottawa River Image: Constraint of the second	Ramp D over Ottawa River Image: Constraint of the project in the p	Ramp D over Ottawa River Image: Constraint of the sector	Top Bottom Top Bottom RQD (%) Rec (%) Soil Type (ft) Depth Bottom Elev. (ft) Elev. (ft) RQD (%) Rec (%) Dolomite - Very Strong 26.3 29.3 589.7 586.7 36 67 Frac. To Moderately Frac. Depth below bottom of Pier Cap: 15.44 18.44 <	Ramp D over Ottawa RiverImage: constraint of the sector of th	Top Depth Bottom Depth (ft) Top Depth (ft) Bottom Elev. (ft) RQD (%) Elev. (ft) Rec (%) Rec (%) Qu (psi) Dolomite - Very Strong 26.3 29.3 589.7 586.7 36 67 - Frac. To Moderately Frac.

TTL Project No.:	2065201									
Project:	LUC-23-11.75									
Calcs by:										
Date:	6/21/2023 & 6/26/2023									
Calcs:	Drilled Shaft Rock Sockets - Lateral Re	esistance								
Location:	Ramp D over Ottawa River									
Substructure:	Forward Abutment									
Boring(s):	B-023-0-21									
GSE (ft):	624.2									
Long-Term GWT (ft):	612	Approx. N	ormal River El	ev.						
Bottom of Pier Cap Elev. (ft):	614.0									
Soil										
		Тор								
		Depth	Bottom	Тор	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 1	Medium Dense A-2-4	0	3.5	624.2	620.7	12	-	-		
		low botton	n of Pier Cap:	-10.2	-6.7					
Total Unit Wt (pcf):		GDM Tabl		Use	120	pcf				
Internal Angle of Friction Determination						P 41				
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4					1				
CN=0.77log(40/sigma-v'), with CN<2.0				t		1			1	
CN at	1.75	ft		1		1				
sigma-v' (ksf):	0.21					-				
CN=	1.8	<2.0, use	1.8			1				
N160 (bpf)=	21	~∠.∪, use	1.0	<u> </u>		1				
AASHTO LRFD Table 10.4.6.2.4-1	21					1				
N160	Mid-Range Phi (deg)			<u> </u>		+				
10	32.5					1				
30	37.5					-				
N160	Phi (deg)					1				
21	35.3		35	dog						
GDM Table 400-3 phi Adjustment	55.5	use		deg						
A-2-4	+0.5									
	35.5									
Phi (deg) =	33.3									
k Evaluation From LPILE 2018 Technical I										
Parameters:	Medium Dense, Dry or Moist									
Range of k-value (pci) =	13.0 - 40.0									
Med Dense range of N60	k (pci)									
11	13									
30	40									
Interpolate for 12 bpf for this layer:	14									
Say k (pci) =	14									
		Тор								
		Depth	Bottom	Тор	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	Avg. N60	HP (tsf)	Qu (tsf)		
Layer 2	Medium Dense A-3a	3.5	8	620.7	616.2	15	-	-		
	Depth be	low botton	n of Pier Cap:	-6.7	-2.2					
Total Unit Wt (pcf):	125	GDM Tabl	e 400-4	Use	125	pcf				
Internal Angle of Friction Determination	n (GDM 404.2):						Ī			
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4							l		
CN=0.77log(40/sigma-v'), with CN<2.0						1				
CN at	5.75	ft						l		
sigma-v' (ksf):	0.70					1			1	
CN=	1.4	<2.0, use	1.4			1			1	
N160 (bpf)=	20	.,	· · · ·	1		1	1	1	1	
AASHTO LRFD Table 10.4.6.2.4-1	-								1	
N160	Mid-Range Phi (deg)					1				
10	32.5					1				
30									1	
	37.5					1	1			
	37.5 Phi (deg)									
N160	Phi (deg)	use	35	deg						
N160 20		use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment	Phi (deg) 35.1	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a	Phi (deg) 35.1 -0.5	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment	Phi (deg) 35.1	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) =	Phi (deg) 35.1 -0.5 34.5	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I	Phi (deg) 35.1 -0.5 34.5 Manual	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters:	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) =	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) = Dense range of N60	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0 k (pci)	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) = Dense range of N60 11	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0 k (pci) 13	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) = Dense range of N60 11 30	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0 k (pci) 13 40	use	35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) = Dense range of N60 11 30 Interpolate for 15 bpf for this layer:	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0 k (pci) 13 40 19		35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) = Dense range of N60 11 30	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0 k (pci) 13 40 19		35	deg						
N160 20 GDM Table 400-3 phi Adjustment A-3a Phi (deg) = k Evaluation From LPILE 2018 Technical I Parameters: Range of k-value (pci) = Dense range of N60 11 30 Interpolate for 15 bpf for this layer:	Phi (deg) 35.1 -0.5 34.5 Manual Medium Dense, Dry to Moist 13.0 - 40.0 k (pci) 13 40 19		35	deg						


	Drilled Shaft Rock Sockets - Lateral R	esistance								
	Ramp D over Ottawa River									
Substructure:	Forward Abutment									
		Тор								
		Depth	Bottom	Тор	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 3	Medium Stiff A-6b w/Peat	8	11	616.2	613.2	6	0.75	-		
•		low botton	n of Pier Cap:	-2.2	0.8					
Total Unit Wt (pcf):	115	GDM Table	e 400-4	Use	115	pcf				
Su = N60 x 125 (N60<= 52 bpf) per GDM	404.1									
Su via N60 (ksf)=										
Su via HP (ksf)=	0.75									
Su (ksf)=	0.75									
Evaluation of Strain at half stress (epsilo		al								
Medium Stiff, epsilon 50 =	0.010									
		Terr								
		Top	Bottom	Tom	Bottom					
Layer	Soil Type	Depth (ft)	Depth (ft)	Top Elev. (ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)		
Layer 4	Hard A-4a	11	16	613.2	608.2	36	4.25			
Layer 4			n of Pier Cap:	013.2	5.8	50	4.23	-		
Total Unit Wt (pcf):	-	GDM Table		Use	130	pcf				
Su = N60 x 125 (N60<= 52 bpf) per GDM										
Su via N60 (ksf)=										
Su via HP (ksf)=										
Su (ksf)=	4.25									
Evaluation of Strain at half stress (epsilo		al								
Su = <u>4-6</u> ksf, epsilon 50 =	0.004									
Augerable Weathered Bedrock		-								
		Тор		_						
		Depth	Bottom	Top	Bottom	SPT				
Layer	Rock Type Weathered Dolomite	(ft) 16	Depth (ft)	Elev. (ft) 608.2	Elev. (ft) 607.7	Result				
Layer 5		-	16.5 n of Pier Cap:		6.3	50/1"				
Total Unit Wt (pcf):		GDM Table		Use	160	pcf				
Total Olit Wt (pci).	162		f Tested Value			per				
Qu based on SPT Results per GDM 404.3		Average o	rested value		lojeet.					
Qu (ksf)=0.092x(Nrate)90 (bpf)										
ER(%)=	90									
N90=50/1" x 12" =		bpf								
N90 = 90/90 x 600 bpf =	600	bpf								
Qu (ksf) =	55.2									
Qu (psi) =	383.3									
Estimate E based on GDM Table 400-6										
For Qu = 360 psi, indicated as E = 32,000										
Use E (psi) =	32000									
-										
If Strain at <u>32,000</u> psi is 1%, then strain a				-						
Half max stress = Qu/2 =		psi v		-						
krm = 1% x (<u>191.7</u> psi / <u>32,000</u> psi) = krm (decimal format) =		%		-						
kiin (decimai format) =	0.00000									
Cored Bedrock										
		Тор				1			<u></u>	
		Depth	Bottom	Тор	Bottom			1	Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 6	Dolomite - Very Strong to Strong	16.5	24.3	607.7	599.9	70	94	20850	162	at 18.4'
-								12130	158	at 23.2'
1	Frac. To Moderately Frac.			1	14.1	1	1			
	Frac. To Moderately Frac.	low botton	n of Pier Cap:	6.3	1.111					
Total Unit Wt (pcf):	Frac. To Moderately Frac. Depth be	low botton GDM Table		6.3 Use	160	pcf				
Total Unit Wt (pcf):	Frac. To Moderately Frac. Depth be	GDM Table		Use	160	pcf				
	Frac. To Moderately Frac. Depth be 165-175 159	GDM Table Average o	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Total Unit Wt (pcf):	Frac. To Moderately Frac. Depth be 165-175 159	GDM Table Average o	e 400-5	Use s in this zo	160 ne	pcf				
Qu (psi)=	Frac. To Moderately Frac. Depth be 165-175 159 16490	GDM Table Average o	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
	Frac. To Moderately Frac. Depth be 165-175 159	GDM Table Average o	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000	GDM Table Average o Average o	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated	GDM Table Average o Average o by:	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245	GDM Table Average of Average of by: psi	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>8245</u> psi / <u>1,400,000</u> psi) =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059	GDM Table Average o Average o by:	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059	GDM Table Average of Average of by: psi	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>8245</u> psi / <u>1,400,000</u> psi) =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059	GDM Tabl Average o Average o by: psi %	e 400-5 f tested value	Use s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>8245</u> psi / <u>1,400,000</u> psi) =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059	GDM Tabl Average o Average o by: psi % Top	e 400-5 f tested value f tested value	Use s in this zo s in this zo	160 ne	pcf				
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>8245</u> psi / <u>1,400,000</u> psi) = krm (decimal format) =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059	GDM Tabl. Average o Average o by: psi % Top Depth	e 400-5 f tested value f tested value Bottom	Use s in this zo s in this zo s in this zo Top	160 ne ne Bottom		Rec (%)	Qu (psi)		
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>8245</u> psi / <u>1,400,000</u> psi) =	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059 0.000059	GDM Tabl Average o Average o by: psi % Top	e 400-5 f tested value f tested value	Use s in this zo s in this zo	160 ne	pcf	Rec (%)	Qu (psi)		
Qu (psi)= From GDM Table 400-6, say E (psi) = If Strain at <u>1,400,000</u> psi is 1%, then stra Half max stress = Qu/2 = krm = 1% x (<u>8245</u> psi / <u>1,400,000</u> psi) = krm (decimal format) = Layer	Frac. To Moderately Frac. Depth be 165-175 159 16490 1,400,000 in at half max stress (krm) is calculated 8245 0.0059 0.000059 Soil Type	GDM Table Average o Average o by: psi % Top Depth (ft)	e 400-5 f tested value f tested value Bottom Depth (ft)	Use s in this zo s in this zo s in this zo Top Elev. (ft)	160 ne ne Bottom Elev. (ft)	RQD (%)		Qu (psi)		

								r		1
	Drilled Shaft Rock Sockets - Lateral Re	esistance								
Location:	Ramp D over Ottawa River									
Substructure:	Forward Abutment									
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	160	pcf				
	162	Average o	f Tested Value	es for the p	roject.					
Qu (psi)=	12130	Tested va	lue at 23.2', ju	st above th	nis layer					
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900,000 psi is 1%, then strain	at half max stress (krm) is calculated by	v:								
Half max stress = Qu/2 =		psi								
krm = 1% x (6065 psi / 900,000 psi) =		%								
krm (decimal format) =		-								
		Тор								
		Depth	Bottom	Тор	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)	Boc (%)	Qu (psi)		
Layer 8	Dolomite - Strong, Vuggy	25.3	29.5	598.9	594.7	24	69	No Test		
Layer o		23.3	29.3	398.9	394.7	24	09	NU TESL		
	Highly Frac. To Frac.	ou hottor	n of Pier Cap:	15.1	19.3					
T . 10										
Total Unit Wt (pcf):		GDM Tabl		Use	160	pcf				
	162	Average o	f Tested Value	es for the p	roject.					
Qu (psi)=	12130	Value use	d for layer abo	ove.						
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900,000 psi is 1%, then strain		y:								
Half max stress = Qu/2 =	6065	psi								
krm = 1% x (<u>6065</u> psi / <u>900,000</u> psi) =	0.0067	%								
krm (decimal format) =	0.000067									
						-				
		Тор								
		Depth	Bottom	Тор	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	Elev. (ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 9	Dolomite - Strong	29.5	36.5	594.7	587.7	15	87	15160	164	at 33.3'
•	Frac. To Mod Frac.									
	Depth be	low bottor	n of Pier Cap:	19.3	26.3					
Total Unit Wt (pcf):		GDM Tabl		Use	160	pcf				
	164		lue for this lay			P.e.				
	104	. csteu va								
Qu (psi)=	15160	Tested vo	lue for this lay	er						
cu (psi)=	13100	resteu Va	ac for this idy	ci.						
	1 400 000									
From GDM Table 400-6, say E (psi) =	1,400,000									
If Strain at <u>1,400,000</u> psi is 1%, then stra										
Half max stress = Qu/2 =		psi								
krm = 1% x (<u>7580</u> psi / <u>1,400,000</u> psi) =		%								
krm (decimal format) =	0.000054									
1	1	1	1	1		1		1	1	

APPENDIX E

Ramp B Soil Nail Retaining Wall Evaluations

· · · · · · · · · · · · · · · · · · ·				1				
TTL Project No.:								
	LUC-23-11.75							
Calcs by:								
Date:	6/7/2023							
	Ramp B Retaining Wall Design Soil Pr Ramp B Underpass of SR 51	operties						
Location:	Kamp B Underpass of SK 51							
Boring(c)	B-010-0-21 (also reviewed B-008-0-21	1						
GSE (ft):		.)						
Long-Term GWT (ft):								
Long-Term GwT (It).	023							
Soil generally above top of wall in 2H:1V	slone back zone							
Son generally above top of wait in 211.1V		Тор						
		Depth	Bottom	Top Elev.	Bottom			
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Avg. N60	HP (tsf)	Qu (tsf)
Layer 1	Stiff to Very Stiff A-4a	0	4.5	651	646.5	13	1.5	Qu (131)
Edyci I	Still to very Still A-40		7.5	031	040.5	15	1.5	
Total Unit Wt (pcf):	120	GDM Tabl	e 400-4	Use	120	pcf		-
	120		e 400-4	036	120	pei		
Su (ksf) from HP Results:	15							
	1.0							
Su = N60 x 125 (N60<= 52 bpf) per GDM 4	.04.1	1						
Su = 100 x 123 (100< - 32 bpi) per GDM 4 Su (ksf)=		1						
		1						
Hand Pen or Qu values typically govern o	ver estimation from N60	1						
Say Su (ksf) =		1						
	1.5							-
		Тор						
		Depth	Bottom	Top Elev.	Bottom		Avg. HP	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Avg. N60	-	Qu (tsf)
Layer 2	Very Stiff A-4a	4.5	8	646.5	643	36	2.63	
Edyci 2	Very Still A-40	4.5	0	040.5	045	50	2.05	
Total Unit Wt (pcf):	130	GDM Tabl	e 400-4	Use	130	pcf		
	100			0.50	100	pei		-
Su (ksf) from HP Results:	2.63							
	2.05							
Su = N60 x 125 (N60<= 52 bpf) per GDM 4	.04.1							
Su (ksf)=								
IHand Pen or Qu values typically govern o	ver estimation from N60							
Hand Pen or Qu values typically govern c Say Su (ksf) =								
		Ton						
		Top	Bottom	Top Fley.	Bottom			
Say Su (ksf) = 	2.6	Depth	Bottom Depth (ft)	Top Elev. (ft)	Bottom Eley. (ft)	N60	HP (tsf)	Ou (tsf)
Say Su (ksf) = Layer	2.6 Soil Type	Depth (ft)	Depth (ft)	(ft)	Elev. (ft)	N60 29	HP (tsf)	Qu (tsf)
Say Su (ksf) =	2.6	Depth				N60 29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3	2.6 Soil Type Medium Dense A-3a	Depth (ft)	Depth (ft) 11	(ft)	Elev. (ft)			Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf):	2.6 Soil Type Medium Dense A-3a 128	Depth (ft) 8	Depth (ft) 11	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf):	2.6 Soil Type Medium Dense A-3a 128	Depth (ft) 8	Depth (ft) 11	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2):	Depth (ft) 8	Depth (ft) 11	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2):	Depth (ft) 8	Depth (ft) 11	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4	Depth (ft) 8 GDM Tabl	Depth (ft) 11	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5	Depth (ft) 8 GDM Tabl	Depth (ft) 11	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf):	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN=	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf)
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)=	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf) -
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN at sigma-v' (ksf): CN= N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf)
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0 CN=0.77log(40/sigma-v'), with C	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34 Mid-Range Phi (deg)	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34 Mid-Range Phi (deg) 37.5	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34 Mid-Range Phi (deg) 37.5 40.5	Depth (ft) 8 GDM Tabl	Depth (ft) 11 e 400-4	(ft) 643	Elev. (ft) 640	29		Qu (tsf
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34 Mid-Range Phi (deg) 37.5 40.5 Phi (deg)	Depth (ft) 8 GDM Tabl ft <2.0, use	Depth (ft) 11 e 400-4 	(ft) 643 Use	Elev. (ft) 640	29		Qu (tsf
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34 Mid-Range Phi (deg) 37.5 40.5 Phi (deg)	Depth (ft) 8 GDM Tabl ft <2.0, use	Depth (ft) 11 e 400-4 	(ft) 643 Use	Elev. (ft) 640	29		Qu (tsf)
Say Su (ksf) = Layer Layer 3 Total Unit Wt (pcf): Internal Angle of Friction Determination N160 (bpf)=CN*N60 CN=0.77log(40/sigma-v'), with CN<2.0	2.6 Soil Type Medium Dense A-3a 128 (GDM 404.2): AASHTO LRFD 10.4.6.2.4 9.5 1.19 1.2 34 Mid-Range Phi (deg) 37.5 40.5 Phi (deg) 38.1	Depth (ft) 8 GDM Tabl ft <2.0, use	Depth (ft) 11 e 400-4 	(ft) 643 Use	Elev. (ft) 640	29		Qu (tsf)

Calcs:	Ramp B Retaining Wall Design Soil P	ronerties						
	Ramp B Underpass of SR 51	Toperties						
Predominantly retained soil zone and exte	ending below toe elevations.							
Layer	Soil Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	Avg. N60	Avg. HP (tsf)	Qu (tsf)
Layer 4	Stiff to Very Stiff A-4a & A-6a	11	26	640	625	9	1.7	1.08
(Also consider B-008-0-21 from Elevs. 630								
Total Unit Wt (pcf):		GDM Tabl	e 400-4	Use	125	pcf		
Tested ST Sample Total Unit Wt (pcf):	123							
Su (ksf) from Qu Results:	1.08							
Su (ksf) from HP Results:								
Su = N60 x 125 (N60<= 52 bpf) per GDM 4	04.1							
Su = 100 x 125 (100 x - 52 5pt) per Gbin 4 Su (ksf)=								
Hand Pen or Qu values typically govern o	ver estimation from N60					1		
Use average of Su from Qu and HP. Note		than, Su est	imated using	N60.				
Say Su (ksf) =	1.4							
Soil generally below toe elevations.								
Layer	Soil Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	Avg. N60	HP (tsf)	Qu (tsf)
	Stiff to Very Stiff A-4a, A-6a, &							
Layer 5	A-7-6	26	28	625	623	N/A ST	3.25	2.60
(Also consider B-008-0-21 from Elevs. 630).8 to 624.3]							
Tested ST Sample Total Unit Wt (pcf):	136			Use	135	pcf		
Su (ksf) from Qu Results:	2.60							
Cu (lief) from UD Docultor	2.25							
Su (ksf) from HP Results:	3.25							
Use average of Su from Qu and HP.								
Say Su (ksf) =	2.9							
		Тор						
	Sail Trees	Depth	Bottom	Top Elev.	Bottom	Aug NCC	Avg. HP	0
Layer	Soil Type Hard A-4a & A-6a	(ft) 28	Depth (ft) 35.4	(ft) 623	Elev. (ft) 615.6	Avg. N60 65	(tsf) 4.50	Qu (tsf)
Layer 6 (Also consider B-008-0-21 from Elevs. 624		28	35.4	023	012.0	20	4.50	-
Total Unit Wt (pcf):	-	GDM Tabl	e 400-4	Use	140	pcf		
		0.5.77 10.01		0,0	170	201		
Su (ksf) from HP Results:	4.50	or greater	with max of I	Hand Pen				
Su = f1 x N60 x pa/100 (N60> 52 bpf) per 0	GDM 404.1							
pa(psf) is given as:								
For PI of 12 for ST-12 in this zone, f1=	5.5							
Su (psf)=								
Su (ksf)=	7.5					<u> </u>		
With limitation of max of HP, use N60 est		_						
Say Su (ksf) =	7.5							

APPENDIX F

Subgrade Evaluations (Including GB-1 Spreadsheet)

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Design Manual Section 600

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

> LUC-023-11.75 105889

US Route 23 at State Route 51 (Monroe St) Interchange Improvements, Sylvania, OH

TTL Associates, Inc.

Prepared By: Christopher P. lott, P.E. Date prepared: Monday, May 1, 2023

> Christopher P. lott, P.E. TTL Associates, Inc. 1915 N. 12th Street Toledo, Ohio 43604 419-214-5020 ciott@ttlassoc.com

NO. OF BORINGS:

22

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-21	SR51				CME 75 Truck 844 \03	66	644.1	642.6	1.5 C
2	B-002-0-21	Harroun Rd				CME 75 Truck 844 \03	66	638.1	636.6	1.5 C
3	B-003-0-21	SR51				CME 75 Truck 844 \04	72.9	641.7	640.2	1.5 C
4	B-004-0-21	SR51				CME 75 Truck 844 \04	72.9	643.6	642.1	1.5 C
5	B-006-0-21	SR51				CME 75 Truck 844 \03	66	650.9	650.4	0.5 C
6	B-010-0-21	SR51				CME 75 Truck 844 \03	66	651	650.5	0.5 C
7	B-011-0-21	SR51				CME 75 Truck 844 \04	72.9	648.1	647.6	0.5 C
8	B-012-0-21	SR51				CME 75 Truck 844 \04	72.9	645.4	643.9	1.5 C
9	B-013-0-21	SR51				CME 75 Truck 844 \04	72.9	643.3	641.8	1.5 C
10	B-014-0-21	Ramp B				CME 550x ATV \08	75.2	634.8	628.3	6.5 C
11	B-015-0-21	SR51				CME 75 Truck 844 \03	66	648.2	646.7	1.5 C
12	B-016-0-21	Glasgow Rd				CME 75 Truck 844 \03	66	645.9	644.4	1.5 C
13	B-017-0-21	Ramp C				CME 75 Truck 844 \04	72.9	638	635.5	2.5 C
14	B-024-0-21	Ramp D				CME 75 Truck 844 \04	72.9	629.3	627.8	1.5 C
15	B-029-1-21	Ramp A				CME 75 Truck 844 \04	72.9	630.7	629.2	1.5 C
16	B-030-0-21	Ramp A				CME 75 Truck 844 \04	72.9	633.3	631.8	1.5 C
17	B-031-0-21	SR184				CME 550x ATV \08	75.2	646.5	647.0	0.5 F
18	B-032-0-21	SR184				CME 75 Truck 844 \03	66	645.3	643.8	1.5 C
19	B-033-0-21	SR184				CME 75 Truck 844 \03	66	646.4	644.9	1.5 C
20	B-034-0-21	Acres Rd				CME 75 Truck 844 \03	66	649	647.5	1.5 C
21	B-040-0-21	Ramp B				CME 75 Truck 844 \04	72.9	641.1	639.6	1.5 C
22	B-041-0-21	Ramp B				CME 75 Truck 844 \04	72.9	646.8	645.3	1.5 C

Subgrade Analysis

V. 14.6 2/11/2022

#	Boring	Sample	Sam De	•	Subg De	rade pth	Stan Penet		НР		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	=	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.6	2.5	0.1	1.0	21		2	25	23	2	44	44	88	20	18	A-4a	8	350					None
	001-0	SS-2	2.5	4.0	1.0	2.5	37									18	10	A-4a	8			Mc			
	21	SS-3	4.0	5.3	2.5	3.8	37		3.5	27	20	7	38	54	92	21	15	A-4a	8						
		SS-4	5.3	7.2	3.8	5.7	22	21	2.5							20	14	A-6a	10						
2	В	SS-1	1.3	3.0	-0.2	1.5	33		1.5	27	24	3	44	44	88	21	19	A-4a	8			HP		12"	12"
	002-0	SS-2	3.0	4.0	1.5	2.5	30		4.5	31	20	11	24	68	92	20	15	A-6a	8	310		Mc			204 Geotextile
	21	SS-3	4.0	5.5	2.5	4.0	35		4.5							14	14	A-6a	10						
		SS-4	5.5	7.0	4.0	5.5	34	30	4.5							14	14	A-6a	10						
3	В	SS-1	1.3	3.0	-0.2	1.5	29			NP	NP	NP	8	2	10	5	8	A-3	0	100					None
	003-0	SS-2A	3.0	4.0	1.5	2.5	15										8	A-3	0						
	21	SS-2B	4.0	4.5	2.5	3.0	15		2.75	20	15	5	42	5	47	15	10	A-4a	2			Mc			
		SS-3/4A	4.5	6.5	3.0	5.0	16	15								18	8	A-3a	0						
4	В	SS-1	1.3	3.0	-0.2	1.5	12			NP	NP	NP	19	2	21	10	8	A-3a	0						Recompact
	004-0	SS-2A	3.0	4.0	1.5	2.5	30									10	8	A-3a	0						
	21	SS-2B	4.0	4.5	2.5	3.0	30		1.75	24	18	6	37	14	51	14	13	A-4a	3	290					
		SS-3	4.5	6.0	3.0	4.5	29	12	3	25	18	7	44	50	94	20	13	A-4a	8						
5	В	SS-1	1.8	3.0	1.3	2.5	15		1							17	10	A-4a	8			HP & Mc			None
	006-0	SS-2	3.0	4.5	2.5	4.0	14		2	24	20	4	42	44	86	19	15	A-4a	8	320					
	21	6-1: SS-1	4.5	6.0	4.0	5.5	44	1	2							15	10	A-4a	8						
		6-1: SS-2	6.0	8.0	5.5	7.5	23	14	3.5	25	21	4	44	47	91	16	16	A-4a							
6	В		0.9	1.7	0.4	1.2											6	A-1-b	0						Recompact if need
	010-0	SS-1	1.7	3.0	1.2	2.5	12	1	1.5	23	21	2	43	50	93	20	16	A-4a	8	320		HP & Mc			
	21	SS-2	3.0	4.5	2.5	4.0	13	1	3							14	10	A-4a	8						
		SS-3	4.5	6.0	4.0	5.5	41	12	2.5	24	21	3	41	51	92	14	16	A-4a	8						
7	В		0.5	1.4	0.0	0.9											6	A-1-b	0						Recompact if need
	011-0	SS-1	1.4	3.0	0.9	2.5	33]		23	19	4	43	44	87	15	14	A-4a	8	200					
	21	SS-2	3.0	4.5	2.5	4.0	39	1		23	19	4	41	41	82	14	14	A-4a	8						
		SS-3A	4.5	5.5	4.0	5.0	52	30				· ·				14	10	A-4a	8						
8	В	SS-1	1.4	3.5	-0.1	2.0	27	-		23	18	5	41	41	82	15	13	A-4a	8	190					None
	012-0	SS-2	3.5	5.0	2.0	3.5	29	1		22	18	4	43	35	78	17	13	A-4a	8			Mc			
		SS-3A/3B		8.5	3.5	7.0	29		2						-	24	14	A-6a	10						
	~ ~	SS-4		8.5 10.0	7.0	8.5	10	27	2	-						24	14	A-6a							
9	В	SS-1	1.0	3.0	-0.5	1.5	17	27	1.25	23	18	5	42	43	85	14	13	A-4a	8						None
-	013-0	SS-2	3.0	5.0	1.5	3.5	28				15	2	43	18	61	13	10	A-4a	5	240		Mc			
			5.0	6.0	3.5		43			1/	15	~	45	10	01	12	8		0	240		IVIC			
	21	SS-3 SS-4	5.0 6.0	9.0	3.5 4.5	4.5 7.5	43 9	9								12	8	A-3 A-3a							
		33-4	0.0	9.0	4.5	7.5	9	9								19	õ	A-3d	0						

Subgrade Analysis

V. 14.6 2/11/2022

#	Boring	Sample	Sam Dej	nple pth	Subg Dej		Stan Penet		НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1/2/3A	3.5	6.7	-3.0	0.2	18		2.25	24	19	5	44	24	68	19	14	A-4a	7			Mc			12"
	014-0	SS-3B	6.7	8.0	0.2	1.5	11		2.5	40	19	21	24	68	92	24	16	A-6b	12	250		N ₆₀ & Mc		12"	204 Geotextile
	21	SS-4	8.0	11.8	1.5	5.3	21		4.25	31	16	15	22	56	78	17	14	A-6a	10						
		SS-5	11.8	13.5	5.3	7.0	18	11	2							14	14	A-6a							
11	В	SS-1	1.5	3.0	0.0	1.5	15		2	28	25	3	45	30	75	21	20	A-4a	8	330					None
	015-0	SS-2	3.0	4.0	1.5	2.5	26		1	21	19	2	43	39	82	21	14	A-4a	8			HP & Mc			
	21	SS-3	4.0	5.7	2.5	4.2	9									16	8	A-3a	0						
		SS-4	5.7	7.0	4.2	5.5	18	9	3.5							19	10	A-4a	8						
12	В	SS-1A	0.4	2.3	-1.1	0.8	40		4.5							9	14	A-6a	10						None
	016-0	SS-2	2.3	4.0	0.8	2.5	45		3.25	24	21	3	40	52	92	16	16	A-4a	8	340					
	21	SS-3	4.0	5.0	2.5	3.5	40		3	26	23	3	42	44	86	20	18	A-4a	8						
		SS-4	5.0	8.2	3.5	6.7	13	13	1							22	10	A-4a	8						
13	В	SS-1B/2A	2.2	4.5	-0.3	2.0	7		1	18	13	5	29	23	52	14	10	A-4a	3	220		HP & Mc		15"	15"
	017-0	SS-2B	4.5	6.0	2.0	3.5	18		3.5							18	10	A-4a	8			Мс			204 Geotextile
	21	SS-3	6.0	8.5	3.5	6.0	26		3.75	24	19	5	41	51	92	17	14	A-4a	8						
		SS-4/5A	8.5	12.0	6.0	9.5	27	7	2.75	25	18	7	42	35	77	16	13	A-4a							
14	В	SS-1	1.6	3.0	0.1	1.5	16			NP	NP	NP	8	2	10	11	8	A-3	0	100					None
	024-0	SS-2/3A	3.0	5.2	1.5	3.7	26			NP	NP	NP	27	2	29	10	8	A-3a	0						
	21	SS-3B/4A	5.2	6.5	3.7	5.0	27		4							14	10	A-4a	8						
		SS-4B	6.5	6.9	5.0	5.4	66	16								12	8	A-3a	0						
15	В	SS-2	1.8	6.0	0.3	4.5	32			NP	NP	NP	28	4	32	11	8	A-3a	0	100					None
	029-1	SS-3	6.0	8.5	4.5	7.0	38			NP	NP	NP	31	4	35	11	8	A-3a	0						
	21	SS-4	8.5	11.0	7.0	9.5	36			NP	NP	NP	30	4	34	11	8	A-3a							
		SS-5	11.0	14.0	9.5	12.5	38	30								10	8	A-3a							
16	В	SS-1/2A	1.5	3.4	0.0	1.9	12			NP	NP	NP	13	2	15	8	8	A-3a	0	100					None
	030-0	SS-2B	3.4	4.5	1.9	3.0	29		3.5	NP	NP	NP	39	4	43	12	11	A-4a	2						
	21	SS-3A	4.5	5.5	3.0	4.0	36		3.25							10	10	A-4a	8						
		SS-3B/4	5.5	7.5	4.0	6.0	46	12								18	8	A-3a	0						
17	В	SS-1/2A	0.8	4.5	1.3	5.0	24		2.75	22	18	4	40	40	80	13	13	A-4a	8	140					None
	031-0	SS-2B/3A	4.5	6.5	5.0	7.0	13		2.25	21	17	4	45	35	80	17	12	A-4a	8						
	21	SS-3B	6.5	8.0	7.0	8.5	6			21	18	3	40	48	88	19	13	A-4a							
		SS-4		12.0	8.5	12.5	4	13	0.75							22	10	A-4a							
18	В	SS-1/2A	1.7	3.3	0.2	1.8	6		0.5	26	24	2	58	8	66	24	19	A-4b	6	340	A-4b	HP & Mc	22"	24''	22''
	032-0	SS-2B	3.3	4.2	1.8	2.7	15									9	10	A-2-6	4						204 Geotextile
	21	SS-3	4.2	5.3	2.7	3.8	24		4							17	10	A-4a	8						
		SS-4	5.3	7.3	3.8	5.8	10	6	4.5	25	23	2	33	32	65	17	18	A-4a	6						

Subgrade Analysis

V. 14.6 2/11/2022

#	Boring	Sample	Sam Dep	•		rade pth	Stan Penet		HP		P	hysica	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
19	В	SS-1	1.0	3.0	-0.5	1.5	19		4.5	26	22	4	43	41	84	16	17	A-4a	8						None
	033-0	SS-2	3.0	4.7	1.5	3.2	29			28	25	3	40	52	92	26	20	A-4a	8	350		Мс			
	21	SS-3/4A	4.7	6.5	3.2	5.0	29		4.25							19	14	A-6a	10						
		SS-4B/5	6.5	8.5	5.0	7.0	20	19	2.5							18	10	A-4a	8						
20	В	SS-1	1.3	2.8	-0.2	1.3	18			25	23	2	45	4	49	23	18	A-4a	3	350		Мс			None
	034-0	SS-2	2.8	4.1	1.3	2.6	22		1.5	24	22	2	41	50	91	19	17	A-4a	8			HP			
	21	SS-3	4.1	5.5	2.6	4.0	31		3							18	10	A-4a	8						
		SS-4	5.5	7.0	4.0	5.5	40	18	4							17	10	A-4a	8						
21	В	SS-1	1.4	3.5	-0.1	2.0	10			NP	NP	NP	16	2	18	18	8	A-3a	0	100					Recompact
	040-0	SS-2/3A	3.5	4.7	2.0	3.2	17									8	8	A-3a	0						
	21	SS-3B	4.7	6.0	3.2	4.5	22		1.5	21	18	3	46	17	63	18	13	A-4a	6						
		SS-4	6.0	7.5	4.5	6.0	11	10	2.5							22	10	A-4a	8						
22	В	SS-1	1.4	3.3	-0.1	1.8	10									13	8	A-3a	0						Recompact
	041-0	SS-2/3A	3.3	4.7	1.8	3.2	12			NP	NP	NP	19	2	21	10	8	A-3a	0	170					
	21	SS-3B	4.7	6.0	3.2	4.5	27		2	23	19	4	26	30	56	20	14	A-4a	4						
		SS-4	6.0	7.5	4.5	6.0	34	10	3.5							22	10	A-4a	8						

PID: 105889

County-Route-Section: LUC-023-11.75 No. of Borings: 22

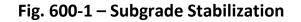
Geotechnical Consultant:TTL Associates, Inc.Prepared By:Christopher P. lott, P.E.Date prepared:5/1/2023

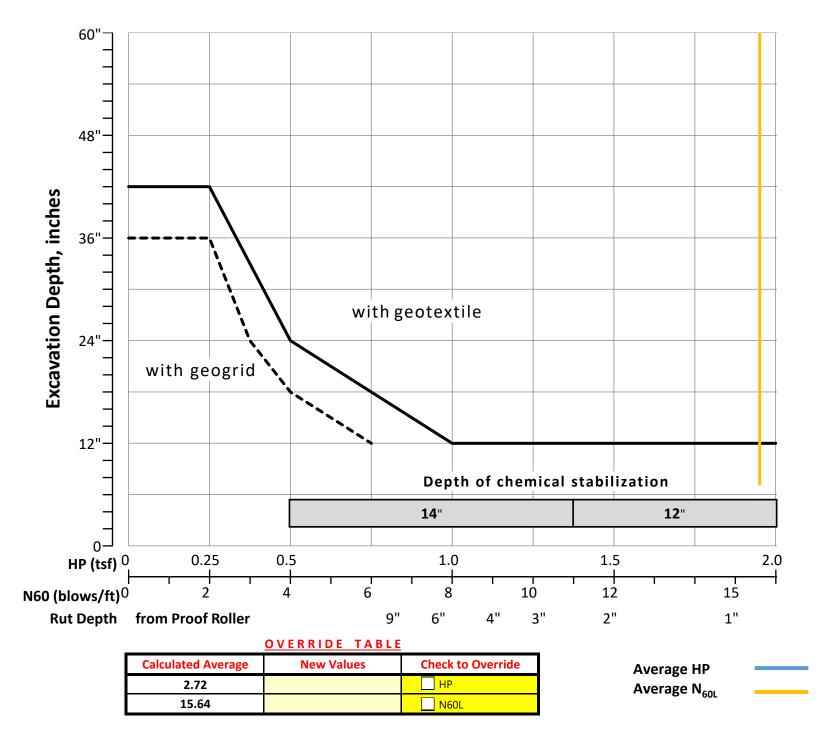
C	Chemical Stabilization Options									
320	Rubblize & Roll	Option								
206	Cement Stabilization	Option								
	Lime Stabilization	No								
206 Depth 12"										

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0"

Design CBR	8
---------------	---

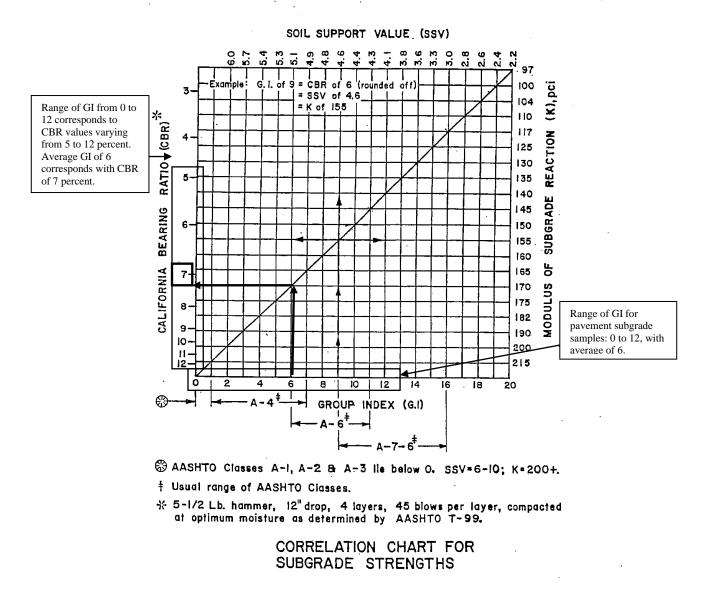
% Samples within 6 feet of subgrade								
N ₆₀ ≤ 5	0%	HP ≤ 0.5	1%					
N ₆₀ < 12	11%	0.5 < HP ≤ 1	5%					
12 ≤ N ₆₀ < 15	10%	1 < HP ≤ 2	14%					
N ₆₀ ≥ 20	59%	HP > 2	41%					
M+	18%							
Rock	0%							
Unsuitable	1%							


Excavate and Repla at Surface	ace
Average	15"
Maximum	22"
Minimum	12"


% Proposed Subgrade Su	irface
Unstable & Unsuitable	34%
Unstable	32%
Unsuitable	2%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	25	16	2.72	24	20	5	36	31	67	16	12	6
Maximum	66	30	4.50	40	25	21	58	68	94	26	20	12
Minimum	4	6	0.50	17	13	2	8	2	10	5	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	2	0	0	1	0	4	17	52	1	0	10	1	0	0	0	0	88
Percent	0%	0%	2%	0%	0%	1%	0%	5%	19%	59%	1%	0%	11%	1%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					86%								14	1%				100%
Surface Class Count	0	0	2	0	0	1	0	3	10	31	1	0	4	1	0	0	0	0	53
Surface Class Percent	0%	0%	4%	0%	0%	2%	0%	6%	19%	58%	2%	0%	8%	2%	0%	0%	0%	0%	100%



LUC-023-11.75 PID No. 105889

Fig.1301-3 Feb.1978

The ODOT "Subgrade Analysis" worksheet for the entire project site resulted in a CBR value of 8 percent. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an average Group Index (GI) of all the evaluated samples. The indicated average GI of 6 would correlate with a CBR of 7 percent, so the worksheet indicated CBR of 8 percent may be based on a slightly lower average GI that was rounded up to 6. With the average GI calculation resulting in correlation approximately half way between a CBR of 7 and 8 on the correlation chart above, we recommend use of a CBR value of 7 percent for design.

If global chemical stabilization is planned, a higher CBR value could be considered for design. However, we anticipate that the various phases of the project may not be conducive for global chemical stabilization. In this case, multiple mobilizations of the stabilization equipment would be required which could reduce the economic benefit of this method of modification. As such, design based on the CBR value of 7 percent should be utilized, considering subgrade modification may consist of over-excavation and replacement with new engineered fill.

APPENDIX G

Soils Laboratory Test Data

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY HYDROMETER U.S. SIEVE NUMBERS U.S. SIEVE OPENING IN INCHES 1/2348 3 4 810 14 16 20 30 40 50 60 100 140 200 4 3 2 1.5 1 3/4 6 6 100 95 Ò 90 85 . 80 75 70 65 PERCENT FINER BY WEIGHT X ★ 60 55 50 45 40 35 30 ٢ 25 20 15 10 h 5 \odot Ð 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT fine coarse LL PL Ы Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification

A-4a ~ SILT(ML)

A-4a ~ SILTY CLAY(CL-ML)

A-4a ~ SILT(ML)

A-6a ~ LEAN CLAY(CL)

A-3 ~ POORLY GRADED SAND with SILT(SP-SM)

D10

0.076

%G

0

0

0

1

0

D30

0.158

GRAIN SIZE DISTRIBUTION

25

27

27

31

NP

%C

44

54

44

68

2

%M

44

38

44

24

8

%CS %FS

10

7

9

5

83

2

1

3

2

7

23

20

24

20

NP

Cc

1.29

2

7

3

11

NP

Cu

3.33

IECTS\2065201.GP Cad ŝ 2:42 6/23 - 6/1 GDT - OH DOT **GRAIN SIZE** \odot

•

*

 \odot

*

B-001-0-21

B-001-0-21

B-002-0-21

B-002-0-21

B-003-0-21

B-001-0-21

B-001-0-21

B-002-0-21

B-002-0-21

B-003-0-21

Specimen Identification

1.0

4.0

1.0

2.5

1.5

1.0

4.0

1.0

2.5

1.5

D90

0.093

0.054

0.097

0.052

0.407

D50

0.006

0.004

0.006

GRAIN SIZE DISTRIBUTION OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING PROJECT _LUC-23-11.75 PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY HYDROMETER U.S. SIEVE NUMBERS U.S. SIEVE OPENING IN INCHES Ţ 3 4 810 14 16 20 30 40 50 60 100 140 200 4 3 2 1 1/23/8 6 6 100 * 9 6 95 Ð 90 ÷ X 85 80 À 75 70 * 65 PERCENT FINER BY WEIGHT 60 ø 55 ¥ 50 Æ Ŀ 45 40 35 X 30 25 X 20 15 X 10 X 5 X × 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT coarse fine LL PL Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification ΡI • B-003-0-21 4.0 A-4a ~ SILTY, CLAYEY SAND(SC-SM) 20 15 5 NP NP NP B-004-0-21 1.5 A-3a ~ SILTY SAND(SM) B-004-0-21 4.0 A-4a ~ GRAVELLY SILTY CLAY with SAND(CL-ML) 24 18 6 * B-004-0-21 4.5 A-4a ~ SILTY CLAY(CL-ML) 25 18 7 \odot B-004-0-21 A-4a ~ LEAN CLAY(CL) 26 11.0 18 8 Cu Specimen Identification D90 D50 D30 D10 %G %CS %FS %M %C Сс 23.22 0.21 B-003-0-21 4.0 1.617 0.088 0.013 0.006 8 12 33 42 5 B-004-0-21 1.5 0.97 6 8 2 2.01 8.94 0.206 0.12 0.028 65 19 B-004-0-21 4.0 30.912 0.068 0.011 28 5 16 37 14 **GRAIN SIZE**

1

2

3

4

2

0

44

37

50

57

IECTS\2065201.GP Cad ò 2:42 6/23 6/1 GDT - OH DOT

*

 \odot

B-004-0-21

B-004-0-21

4.5

11.0

0.051

0.045

0.005

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY HYDROMETER U.S. SIEVE NUMBERS U.S. SIEVE OPENING IN INCHES <u>10 14 16 20 30 40 50 60 100 140 200</u> <u>1/23</u>/8 4 3 2 1.5 1 3/4 3 6 100 \odot 斑 95 90 ÷ 85 X X 80 Ò 75 X. 70 ٭ 65 0 rog PERCENT FINER BY WEIGHT 60 Ø 55 50 Þ 45 40 35 30 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT fine coarse ODOT (Modified AASHTO) ~ USCS Classification LL PL Ы Specimen Identification • B-006-0-21 3.0 A-4a ~ SILTY CLAY(CL-ML) 24 20 4 25 21 B-006-1-21 6.0 A-4a ~ SILTY CLAY(CL-ML) 4

A-4a ~ SILT(ML)

A-7-6 ~ FAT CLAY(CH)

A-6a ~ LEAN CLAY with SAND(CL)

D10

%G

0

0

0

1

9

%CS

3

2

2

1

6

%FS

11

7

6

4

14

D30

GRAIN SIZE DISTRIBUTION

3

25

11

Cu

26

51

25

%C

44

47

52

73

44

%M

42

44

40

21

27

23

26

14

Сс

*

 \odot

*

 \odot

B-006-1-21

B-006-1-21

B-006-1-21

B-006-0-21

B-006-1-21

B-006-1-21

B-006-1-21

B-006-1-21

Specimen Identification

13.5

18.5

23.0

3.0

6.0

13.5

18.5

23.0

D90

0.108

0.068

0.05

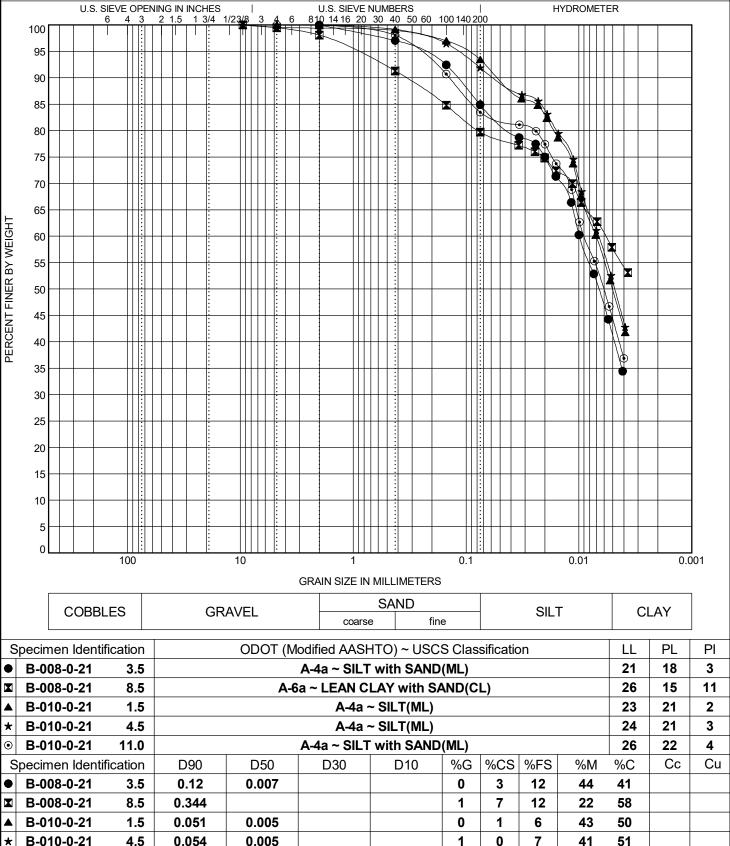
0.042

1.331

D50

0.006

0.005


0.005

PROJECT <u>LUC-23-11.75</u>

OGE NUMBER N/A

PID 105889 PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | HYDROMETER 3/8 3 4 6 810.14.16 20.30.40 50.60 100.140.200

GRAIN SIZE DISTRIBUTION

0

2

15

44

39

3RAIN SIZE - OH DOT.GDT - 6/16/23 12:42 - S:\PROJECTS\2065201.GP.

 \odot

B-010-0-21

11.0

0.14

B-011-0-21

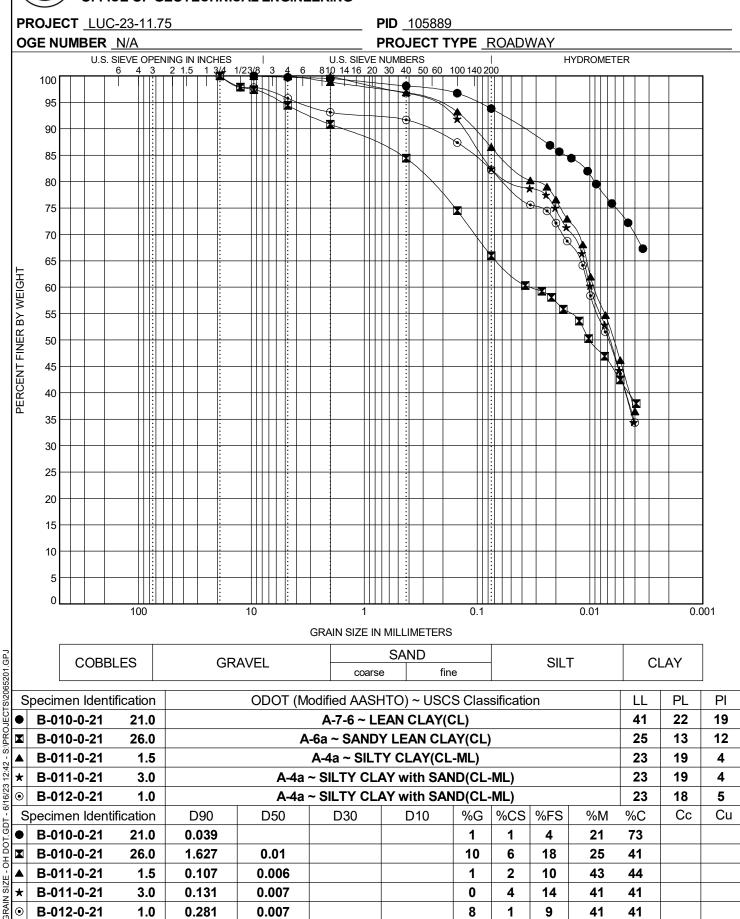
B-012-0-21

*

 \odot

3.0

1.0


0.131

0.281

0.007

0.007

GRAIN SIZE DISTRIBUTION

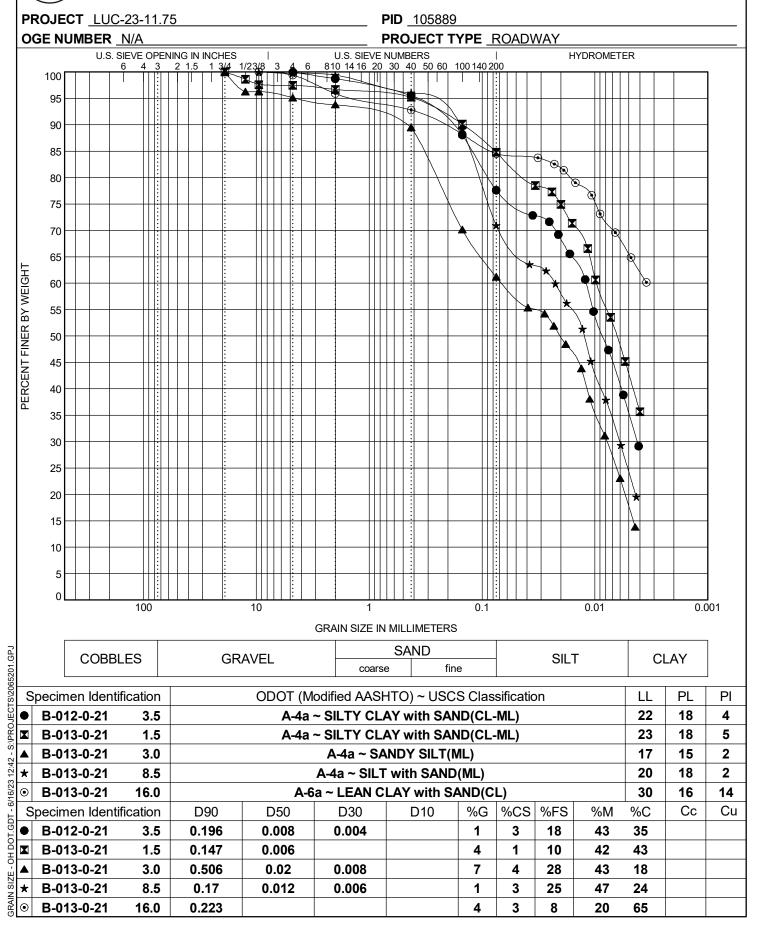
4

1

0

8

14


9

41

41

41

41

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS HYDROMETER U.S. SIEVE OPENING IN INCHES 1/23/8 3 810 14 16 20 30 40 50 60 100 140 200 4 3 2 1.5 1 3/4 6 6 100 8 9 95 X H 90 b 85 × 80 \odot 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 Ì 45 Ð 40 V 35 đ 30 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT coarse fine ODOT (Modified AASHTO) ~ USCS Classification LL PL ΡI Specimen Identification • B-013-0-21 23.5 A-6a ~ LEAN CLAY with SAND(CL) 25 14 11 24 19 5 B-014-0-21 1.0 A-4a ~ SILTY CLAY(CL-ML) B-014-0-21 6.7 A-6b ~ LEAN CLAY(CL) 40 19 21 * B-014-0-21 8.5 A-6a ~ LEAN CLAY with SAND(CL) 31 16 15 \odot B-014-1-21 6.0 A-4a ~ SILT(ML) 26 2 24 Сс Cu Specimen Identification D90 D50 D30 D10 %G %CS %FS %M %C

5

0

0

4

0

6

2

5

7

3

12

6

3

11

11

20

48

24

22

45

57

44

68

56

41

GRAIN SIZE DISTRIBUTION

IECTS\2065201.GP Cad ò 2:43 6/23 6/1 GDT - OH DOT **GRAIN SIZE** *

 \odot

B-013-0-21

B-014-0-21

B-014-0-21

B-014-0-21

B-014-1-21

23.5

1.0

6.7

8.5

6.0

0.685

0.065

0.054

0.558

0.111

0.006

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY HYDROMETER U.S. SIEVE NUMBERS U.S. SIEVE OPENING IN INCHES 810 14 16 20 30 40 50 60 100 140 200 1/23/8 3 4 4 3 2 1.5 1 3/4 6 6 100 Ж 2 95 90 85 80 ł X 75 X X 70 Ø 65 PERCENT FINER BY WEIGHT 60 Ò X 55 ÷ 6-10 50 Ø ð 45 þ X 40 35 30 25 20 ୬ 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT fine coarse LL PL Ы Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification • B-015-0-21 1.0 A-4a ~ SILT with SAND(ML) 28 25 3 21 19 2 B-015-0-21 2.5 A-4a ~ SILT with SAND(ML) 24 B-016-0-21 2.5 A-4a ~ SILT(ML) 21 3 * B-016-0-21 4.0 A-4a ~ SILT(ML) 26 23 3

A-4a ~ SANDY SILTY CLAY with GRAVEL(CL-ML)

D10

%G

0

0

0

0

25

D30

0.005

0.007

GRAIN SIZE DISTRIBUTION

18

%C

30

39

52

44

23

%M

45

43

40

42

29

%CS %FS

23

15

6

11

16

2

3

2

3

7

5

Cu

13

Сс

IECTS\2065201.GP Cad ò 2:43 6/23 6/1 GDT - OH DOT **GRAIN SIZE**

 \odot

*

 \odot

B-017-0-21

B-015-0-21

B-015-0-21

B-016-0-21

B-016-0-21

B-017-0-21

Specimen Identification

2.2

1.0

2.5

2.5

4.0

2.2

D90

0.135

0.123

0.054

0.11

6.98

D50

0.01

0.007

0.005

0.006

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER L 4 3 2 1.5 6 1 3/4 100 ė Ó ā 95 ė ÿ 90 85 X) 80 Ò 75 : X 70 Ġ 65 D, : . 60 X : 55 Å × 50 45 * 40 * 35 30 × 25 ÷ 20 15 ¥ 10 -5

GRAIN SIZE IN MILLIMETERS

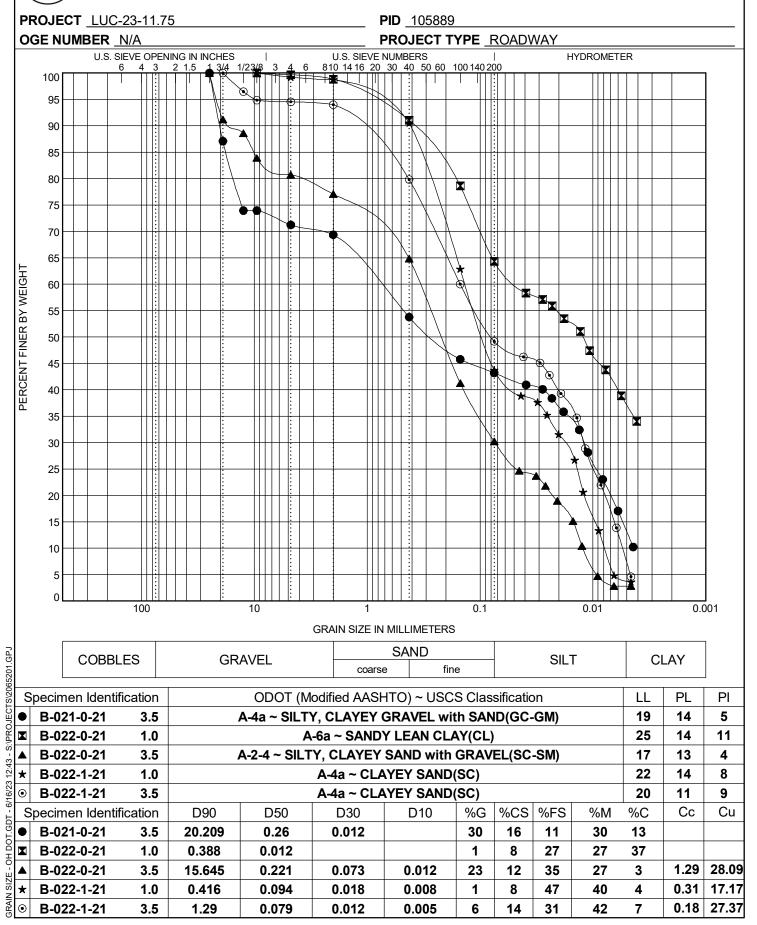
1

0.1

0.01

0.001

Γď		COBBL	ES	CP	AVEL		SAND				г		LAY			
201.0		COBBL	.E3	GR	AVEL	coarse	e fin	е		SILI			LAT			
\$\2065	Sner	cimen Identif	ication			dified AASH	ITO) ~ USC	S Clas	sificatio	n		LL	PL	PI		
ECTS		-017-0-21	6.0		· · ·		Y CLAY(CL		omoute			24	19	5		
S:\PROJECTS\2065201.GPJ		-017-0-21	8.5				AY with SAN	,	ML)			25	18	7		
	_	-017-0-21	13.5		A-6a	a ~ LEAN C	LAY with S	AND(C	L)			25	14	11		
	* В	-017-0-21	21.0 A-4a ~ SILTY SAND(SM)							16	14	2				
6/16/23	• B	-021-0-21	1.0		A-	4a ~ SAND`	Y LEAN CL	AY(CL)				25	15	10		
	Spee	ecimen Identification				D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Cc	Cu
DT.GDT	• В	-017-0-21	6.0	0.054	0.005			2	0	6	41	51				
OH DOT.	X B	-017-0-21	8.5	0.314	0.009	0.004		3	5	15	42	35				
	▲ B	-017-0-21	13.5	0.396				2	7	13	21	57				
GRAIN SIZE	* B-017-0-21 21.0		21.0	6.464	0.295	0.014	0.005	24	24	11	33	8	0.05	131.05		
GRAI	• B	-021-0-21	1.0	0.291	0.009			0	3	32	28	37				


0

100

10

GRAIN SIZE DISTRIBUTION

PERCENT FINER BY WEIGHT

5

0

100

10

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 3 4 1/23/8 6 6 4 3 2 1.5 3/4 4 100 95 90 • Q 85 X . Þ 80 75 i. : × 70 65 À : PERCENT FINER BY WEIGHT × . 60 Q 55 6 50 KI . × 45 阗 •••• ¥ 40 35 Ì 30 À 25 à : ···· K 20 4 : Ò 15 : 10 : Ò

GRAIN SIZE IN MILLIMETERS

1

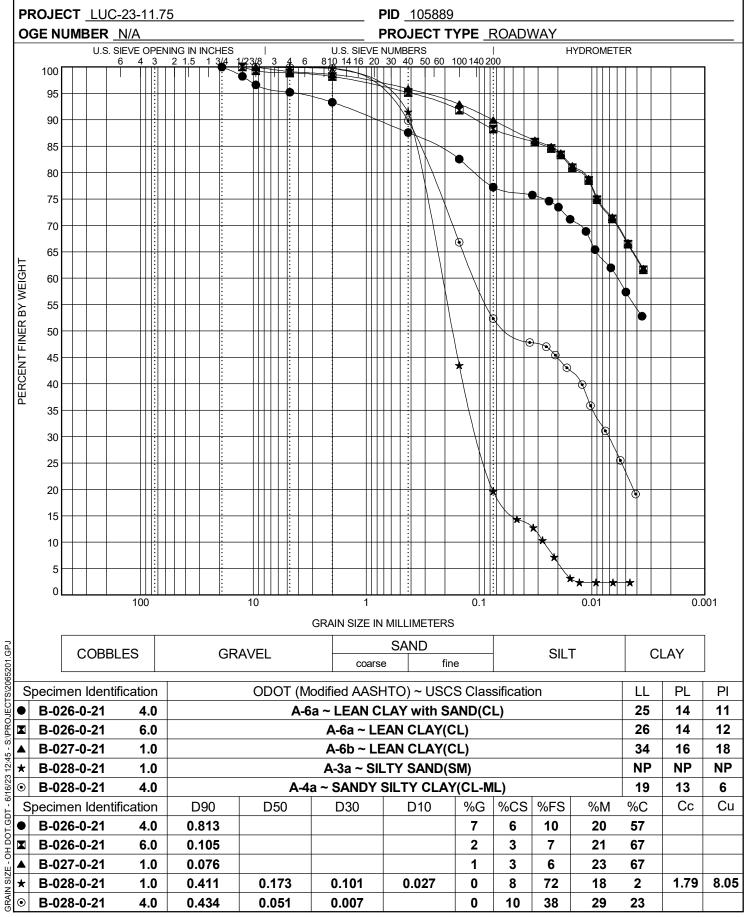
:

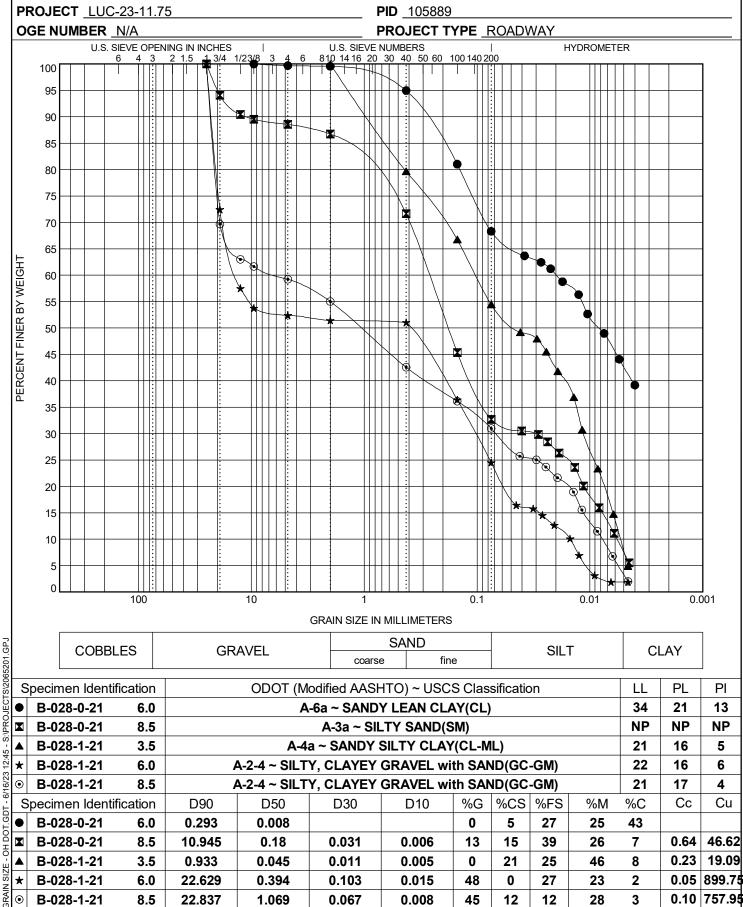
0.1

.GPJ		COPPI	ES	CP			SAND		SILT		r		_AY	
201.0		B-022-1-21 6.0 A- B-022-2-21 3.5 B-022-2-21 6.0 A-1				coarse	e fin	е		SIL			_A1	
\2065	Sr	ecimen Identifi	cation			dified AASH	ITO) ~ USC	S Clas	sificatio	n		LL	PL	PI
ECTS					· · ·		,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		NP	NP	NP
S:\PROJECTS\2065201						Ba ~ SILTY SAND with GRAVEL(SM) A-4a ~ SANDY LEAN CLAY(CL)							15	9
		B-022-2-21	6.0		A-1-a	a ~ SILTY GRAVEL with SAND(GM)						NP	NP	NP
	*	B-022-3-21	6.0		A-2-4	~ SILTY GR	AVEL with	SAND(GM)			NP	NP	
6/16/23	•	B-023-0-21	1.0		A-2-4	~ SILTY SA	ND with GR	AVEL	(SM)			NP	NP	NP
GDT - 6	Sp	ecimen Identifi	cation	D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Сс	Cu
	•	B-022-1-21	6.0	15.271	0.284	0.096	0.023	24	20	32	20	4	0.69	24.26
OH DOT.		B-022-2-21	3.5	0.862	0.071	0.013	0.006	3	14	33	44	6	0.23	19.99
- 1		B-022-2-21	6.0	16.932	9.163	2.437		72	8	6	14	4		
N SIZE	*	R B-022-3-21 6.0		20.062	1.04			44	13	12	3 [,]	1		
GRAIN	•	B-023-0-21	1.0	17.129	0.391	0.188	0.019	36	11	36	15	2	1.52	64.60

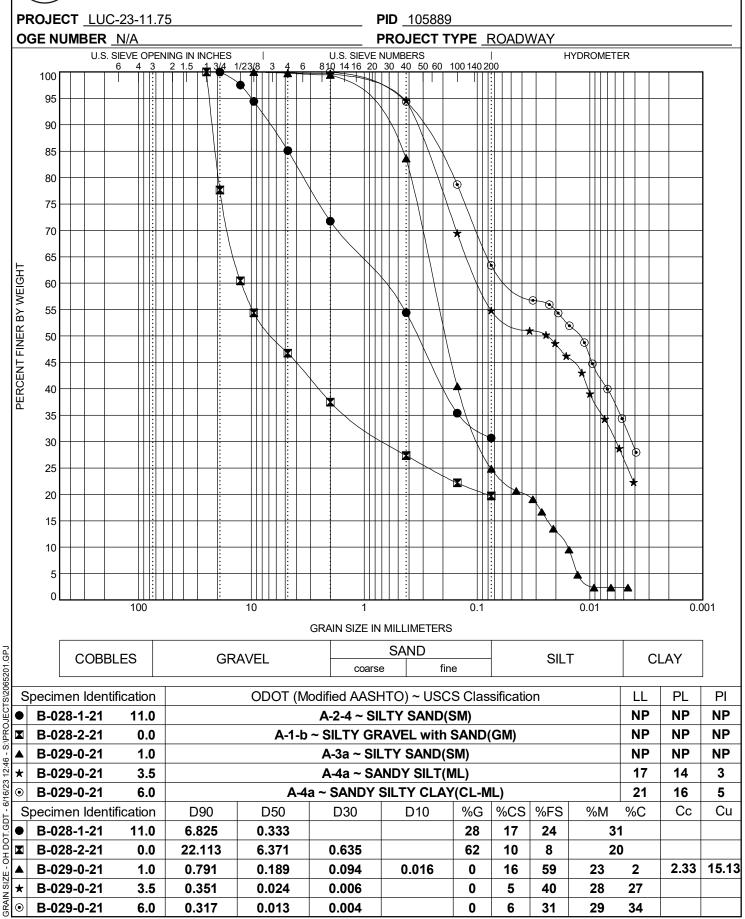
GRAIN SIZE DISTRIBUTION

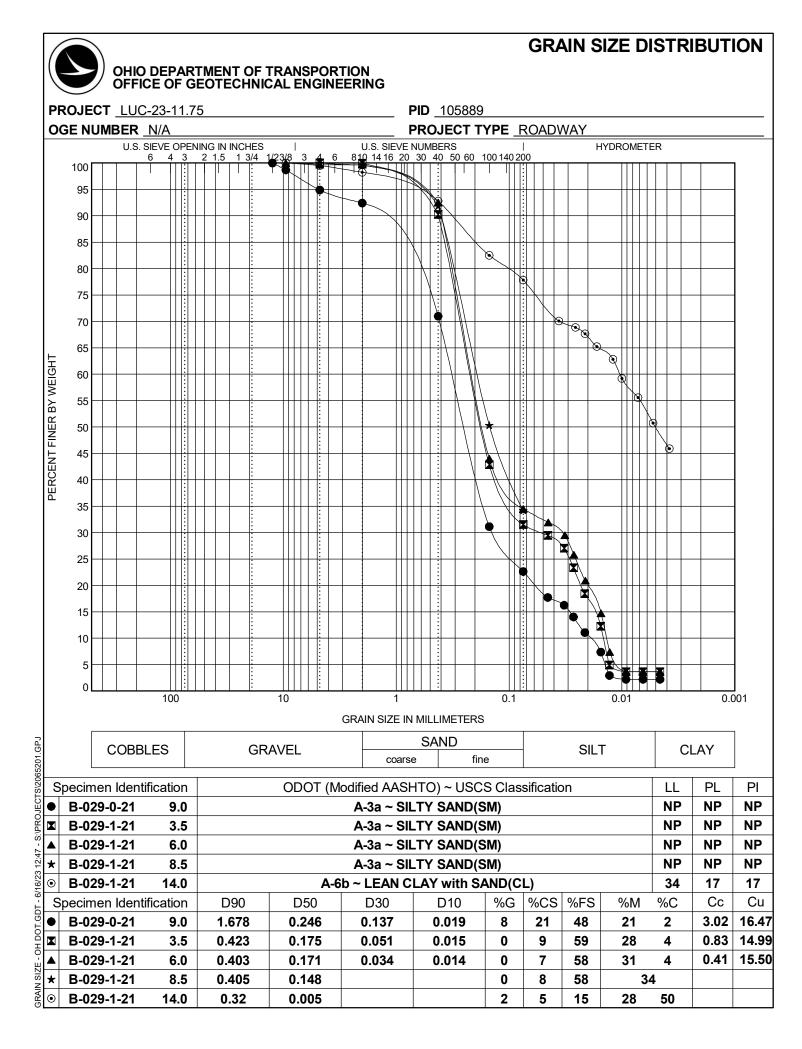
0.001


PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 1/23/8 3 2 1.5 4 6 6 4 3 1 3/4 100 95 90 Ż ¥ 85 Ì۵ ð : 80 75 : 70 • X ٢ 65 60 55 ر 🛱 50 Ó ÷ 45 Þ Q 40 35 Ò 30 \odot 25 ★ Þ


20 15 10 ୭ 5 0 T 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL SILT CLAY fine coarse II PI Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification PI

S)	З	pecimen identii	ication		ODOT (Modified AASHTO) ~ USUS Classification								PL	PI
		B-023-0-21	10.0		A-6	6b ~ LEAN C	LAY with S	AND(C	L)			39	19	20
S:\PRO	X	B-023-0-21	13.5			A-4a ~ Ll	EAN CLAY	CL)				25	17	8
		B-024-0-21	1.5		A-3 ~ POO	RLY GRAD	ED SAND w	vith SIL	T(SP-S	SM)		NP	NP	NP
12:44	*	B-024-0-21	3.0			A-3a ~ SI	LTY SAND	SM)				NP	NP	NP
6/16/23	•	B-026-0-21	1.0		A-4a ~ SILTY SAND(SM)									NP
	S	pecimen Identif	ication	D90						%M	%C	Cc	Cu	
9.		B-023-0-21	10.0	0.362	0.005			3	6	15	27	49		
	X	B-023-0-21	13.5	0.077	0.005			0	2	8	38	52		
		B-024-0-21	1.5	0.395	0.233	0.179	0.079	0	4	86	8	2	1.53	3.37
N SIZ	*	B-024-0-21	3.0	0.579	0.19	0.08	0.012	0	12	59	27	2	2.38	20.49
GRAIN SIZE	•	B-026-0-21	1.0	0.342	0.342 0.08 0.012 0.005 0 4 48 37						11	0.27	24.18	


\2065201.GPJ


PERCENT FINER BY WEIGHT

Cad ò 2:45 6/23 6/1 GDT TOH DOT

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 1/23/8 3 4 v 2 1.5 1 3/4 6 4 3 100 : 1 95 90 Ò 85 T 80 **(**) ... tolog : 75 ×. : 70 . 65 E. (Th) : PERCENT FINER BY WEIGHT 60 ¢ 55 Ż : Ø 50 --45 * **** þ : 40 35 9 : 30 6 × 25 : 20 15 ⊁ ۲ ≱ $\mathbf{\lambda}$ 10 -5 X ┢ 0 T

GRAIN SIZE IN MILLIMETERS

1

0.1

0.01

0.001

.GPJ		COBBL	ES	CP	AVEL		SAND			SILT	-		AY			
201.0		COBBL	.53	GR	AVEL	coarse	e fin	е		SILI			_A1			
JECTS\2065201	Sne	cimen Identif	ication			odified AASH	ITO) ~ USC	S Clas	sificatio	n		LL	PL	PI		
JECTS	<u>·</u> _	3-029-1-21	16.0			~ SILTY, CL	,					21	15	6		
		3-029-1-21	21.0			~ SILTY SA		•	,			NP	NP	NP		
	▲ E	3-030-0-21	1.5		A-3a ~ SILTY SAND(SM)							NP	NP	NP		
	* E	3-030-0-21	3.4			A-4a ~ SIL	TY SAND(S	6M)				NP	NP	NP		
6/16/23	• E	3-031-0-21	1.0		A-4a	~ SILTY CLA	AY with SAM	ND(CL	ML)			22	18	4		
GDT - 6	Spe	ecimen Identification		cimen Identification		D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Сс	Cu
DT.GI	• E	3-029-1-21	16.0	0.376	0.157	0.03	0.011	0	4	61	31	4	0.43	18.16		
OH DOT.	XE	3-029-1-21	21.0	15.768	0.285			35	11	20	34	4				
	▲ E	B-030-0-21 1.5		0.41	0.203	0.134	0.031	0	8	77	13	2	2.41	7.85		
N SIZE	* E	3-030-0-21	3.4	0.5	0.115	0.018	0.008	0	11	46	39	4	0.23	22.58		
GRAIN	• E	8-031-0-21	1.0	0.212	0.007			2	2	16	40	40				

100

10

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY HYDROMETER U.S. SIEVE NUMBERS U.S. SIEVE OPENING IN INCHES 810 14 16 20 30 40 50 60 100 140 200 1<u>/23/8</u> 3 4 3 2 1.5 1 3/4 6 6 100 95 X 2 ত 90 Ż E 85 0 Я 80 \odot Ò 75 ×. Ò 70 Å Ò**¤** 65 PERCENT FINER BY WEIGHT 60 X 55 50 45 40 35 30 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT coarse fine ODOT (Modified AASHTO) ~ USCS Classification LL PL Ы Specimen Identification • B-031-0-21 4.5 A-4a ~ SILTY CLAY with SAND(CL-ML) 21 17 4 21 18 3 B-031-0-21 6.5 A-4a ~ SILT(ML) B-032-0-21 1.0 A-4b ~ SANDY SILT(ML) 26 24 2 * A-4a ~ GRAVELLY SILT(ML) 2 B-032-0-21 5.5 25 23 \odot B-033-0-21 A-4a ~ SILT with SAND(ML) 26 1.0 22 4 Cu Specimen Identification D90 D50 D30 D10 %G %CS %FS %M %C Сс B-031-0-21 4.5 0.167 0.009 0.004 1 3 16 45 35

1

2

27

0

0.005

2

5

4

1

9

27

4

15

40

58

33

43

48

8

32

41

0.41

8.58

GRAIN SIZE DISTRIBUTION

IECTS\2065201.GP Cad ò 2:49 6/23 6/1 GDT - OH DOT **GRAIN SIZE**

*

 \odot

B-031-0-21

B-032-0-21

B-032-0-21

B-033-0-21

0.089

0.291

13.663

0.122

0.005

0.021

0.012

0.007

0.01

0.005

6.5

1.0

5.5

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 3 2 1.5 1 3/4 1/23/8 4 6 6 43 100 T . 95 K II 灢 90 Ó 85 Ì . : 80 8 : 75 Ķ 70 ••• X 65 ì : PERCENT FINER BY WEIGHT Ò 2 60 + 55 V 50 ∖\∕⊳ 45 •••• 2 40 Þ 35 X 30 : À 25 ÷ 20 × 15 ╈ X 10 : 5 : XX 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** Г Τ CAND T

GPJ		COBBL	ES	CP	AVEL		SAND			SILT	г		LAY	
5201.0		COBBL		01		coarse	e fir	ne		UL I				
<u>ଞା</u> –	Specir	nen Identi	fication		ODOT (M	odified AASH	HTO) ~ USC	S Clas	sificatio	on		LL	PL	PI
	B-0	33-0-21	2.5			A-4a ·	~ SILT(ML)					28	25	3
PRO	В-0	34-0-21	1.0			A-4a ~ SIL	TY SAND	SM)				25	23	2
S - 0	B-0	34-0-21	2.5			A-4a [,]	~ SILT(ML)					24	22	2
3 12:5	r B-0	39-0-21	6.0		A-4	a ~ SANDY :	SILTY CLA	Y(CL-N	IL)			20	14	6
/16/23) B-0	39-0-21	11.0		A-6	a ~ LEAN C	LAY with S	AND(C	L)			26	15	11
GDT - 6	Specir	nen Identi	fication	D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Cc	Cu
	B-0	33-0-21	2.5	0.051	0.005			0	2	6	40	52		
	B-0	34-0-21	1.0	0.294	0.077	0.017	0.009	0	6	45	45	4	0.36	11.04
/ A	В-0	34-0-21	2.5	0.064	0.005			0	2	7	41	50		
	ч В-0	39-0-21	6.0	0.362	0.017	0.007		0	6	31	44	19		
GRAIN) B-0	39-0-21	11.0	0.913	0.005			6	8	10	26	50		

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 1/23/8 3 3 4 6 6 4 3 2 1.5 1 3/4 100 1 : 95 X j 90 85 : 80 Ŕ ¥ . 75 :|\ 70 65 PERCENT FINER BY WEIGHT 60 ۲ • 55 50 Ò 45 ø 40 35 ★ 30 25 ÷ 20 15 $\mathbf{\lambda}$ 10 -5 * : -* 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** 201.GPJ SAND COBBLES CLAY GRAVEL SILT fine coarse

200								1					_
	Specimen Identif	ication		ODOT (M	odified AASH	HTO) ~ USC	S Clas	sificatio	on		LL	PL	ΡI
• IEC	B-039-1-21	9.0		A-6	a ~ LEAN C	LAY with SA	AND(C	L)			26	14	12
	B-040-0-21	1.5			A-3a ~ SIL	TY SAND(S	SM)				NP	NP	NP
ï 🔺	B-040-0-21	4.7	7 A-4a ~ SANDY SILT(ML)								21	18	3
10:71 ★	B-041-0-21	3.0			A-3a ~ SIL	TY SAND(S	SM)				NP	NP	NP
0/16/23	B-041-0-21	4.7		A-4a ~ SAN	NDY SILTY (CLAY with G	RAVE	L(CL-N	/L)		23	19	4
	Specimen Identif	ication	D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Cc	Cu
9.	B-039-1-21	9.0	0.356				4	5	12	22	57		
	B-040-0-21	1.5	0.389	0.185	0.111	0.024	0	6	76	16	2	2.35	9.38
° 	B-040-0-21	4.7	6.422	0.02	0.008		21	8	8	46	17		
	B-041-0-21	3.0	1.004	0.226	0.132	0.027	1	22	56	19	2	2.28	10.56
	B-041-0-21	4.7	7.585	0.017	0.005		33	7	4	26	30		

PERCENT FINER BY WEIGHT

20

15

10

5 0

100

10

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 U.S. SIEVE OPENING IN INCHES HYDROMETER 1/23/8 :3/8[′] 3 4 3 2 1.5 1 3/4 4 6 6 100 Ŀ 95 90 X 1 85 1 80 ¥ X 75 70 ۸ 65 . : 60 : X 55 -Ì 50 45 Ř •••• 40 35 : 30 : X 25 :

GRAIN SIZE DISTRIBUTION

X

0.001

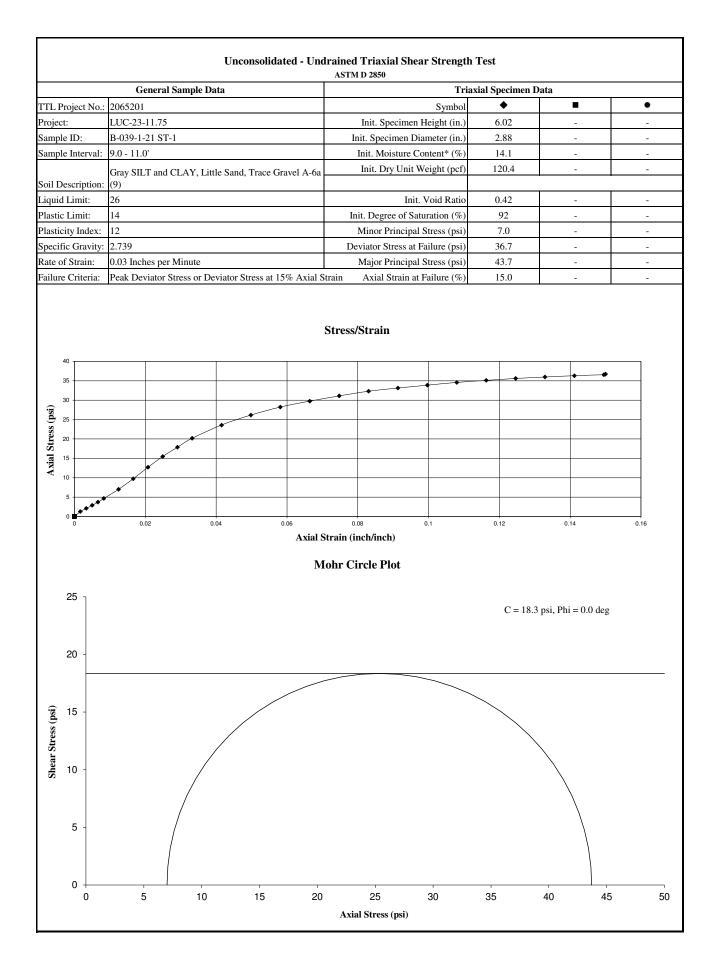
0.01

1 **GRAIN SIZE IN MILLIMETERS**

÷

÷

-


Γď		B-043-0-21 3.5 B-043-0-21 6.0 B-043-0-21 8.5				SAND SILT					-	CLA		
5201.0		COBBL	cimen Identification ODOT (N 3-043-0-21 3.5 3-043-0-21 6.0 3-043-0-21 8.5			coarse	e fir	ne		SILI			_A î	
S:\PROJECTS\2065201.GPJ	S	pecimen Identif	odified AASH	ITO) ~ USC	S Clas	sificatio	n		LL	PL	PI			
JECT	•	Decimen Identification ODOT (Mo B-043-0-21 3.5 B-043-0-21 6.0 B-043-0-21 8.5 B-043-0-21 13.5 B-043-0-21 13.5 B-043-0-21 13.5 B-043-0-21 16.0 Decimen Identification D90 D50 B-043-0-21 B-043-0-21 6.0 0.075 0.005 B-043-0-21 8.5 0.092 0.006 B-043-0-21 13.5 0.052 0.005				A-4a ~ SILT	,					22	17	5
\PRO		B-043-0-21	6.0			A-4b ~ SILT	with SANE	D(ML)				21	18	3
÷.		B-043-0-21	8.5			A-4a ~ LE	AN CLAY	CL)				29	21	8
3 12:53	*	pecimen Identification ODOT (M B-043-0-21 3.5 B-043-0-21 6.0 B-043-0-21 8.5 B-043-0-21 13.5 B-043-0-21 13.5 B-043-0-21 16.0 pecimen Identification D90 D50 B-043-0-21 B-043-0-21 3.5 0.075 0.005 B-043-0-21 6.0 0.171 0.013 B-043-0-21 8.5 0.092 0.006 B-043-0-21 13.5				A-4a ~ SILT	Y CLAY(CI	ML)				25	19	6
6/16/23	\odot	B-043-0-21	A-4a ~ SILT	Y CLAY(CI	ML)				24	18	6			
	S	pecimen Identif	ication	D90	D30	D10	%G	%CS	%FS	%M	%C	Cc	Cu	
DT.G	•	B-043-0-21	3.5	0.075	0.005			0	1	9	38	52		
OH DOT.GDT		B-043-0-21	6.0	0.171	0.013	0.007		1	2	19	59	19		
				0.092	0.006			0	2	10	44	44		
IN SIZE	*	B-043-0-21	13.5	0.052	0.005			0	2	6	40	52		
GRAIN	۲	B-043-0-21	16.0	0.05	0.005			0	2	6	40	52		

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

PROJECT <u>LUC-23-11.75</u> PID 105889 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 810 14 16 20 30 40 50 60 100 140 200 1/23/8 3 4 3 2 1.5 1 3/4 4 6 6 100 X X 95 1: . × 90 ÷ 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 . 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND GPJ. COBBLES GRAVEL CLAY SILT fine coarse ODOT (Modified AASHTO) ~ USCS Classification LL PL ΡI Specimen Identification • B-043-0-21 18.5 A-6a ~ LEAN CLAY with SAND(CL) 30 19 11 B-043-0-21 21.4 A-7-6 ~ LEAN CLAY(CL) 42 22 20 A-6a ~ LEAN CLAY with SAND(CL) 32 B-043-0-21 23.5 19 13 Specimen Identification %CS Cu D90 D50 D30 D10 %G %FS %M %C Сс B-043-0-21 18.5 0.121 0 4 12 28 56 B-043-0-21 21.4 0.055 1 2 5 24 68 B-043-0-21 23.5 0.466 0.005 4 6 15 26 49

GRAIN SIZE DISTRIBUTION

IECTS\2065201 PRO, ŝ 12:54 16/23 - 6/1 - TOD. OH DOT **GRAIN SIZE**

UNCONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 2850)

Project:	LUC-23-11.	75	
Client:	ODOT		
Sample ID:	B-039-1-21		ST-1
TTL Project No	p.: _	2065201	

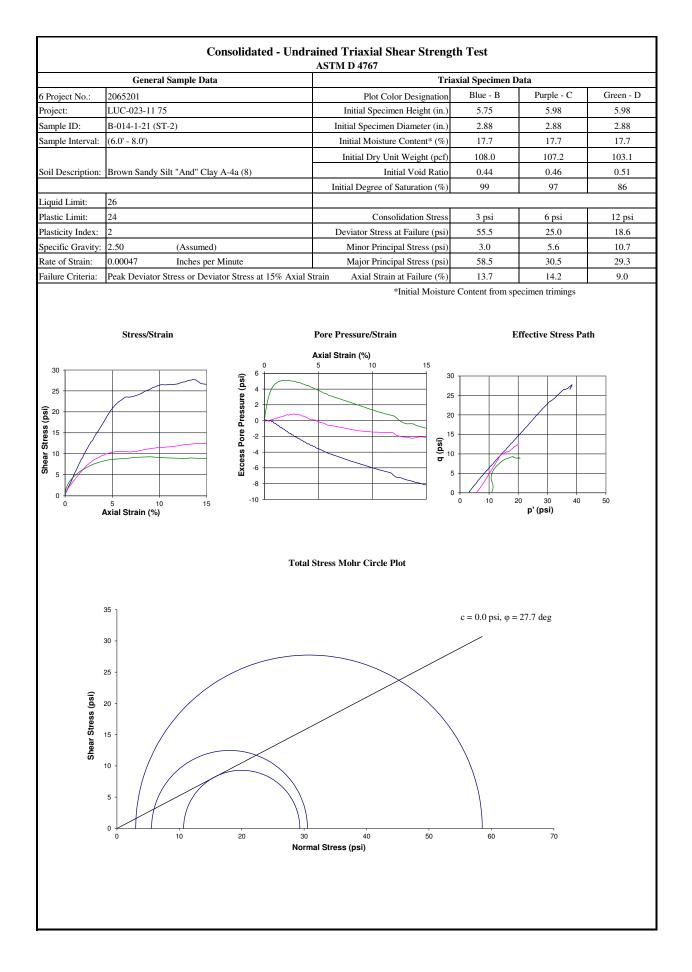
Date: <u>2/28/2023</u> File: <u>2065201B-039-1-21ST</u>-1 Depth: <u>9.0 - 11.0'</u> Specimen ID: <u>"C" (10.0 - 10.5 Feet)</u>

SAMPLE PROPERTIES

Visual Description:	Gray SILT and CLAY	Y, Little Sand, Trace Gravel A-6a (9)	
Diameter:	2.88 in.	Initial Dry Unit Weight of Sample:	120.4 pcf
Area:	6.514 in^2	Initial Moisture Content:	<u>14.1</u> %
Length:	6.02 in.	Specific Gravity:	2.739
Initial Void Ratio:	0.42	Initial Degree of Saturation:	92 %
Chamber Pressure:	<u>7</u> psi	Proving Ring Number: 1155-12-13	322

STRESS-STRAIN DATA

Speciman	Vertical	Proving	Piston	Corrected	Deviator	
Deformation	Strain	Ring	Load	Area	Stress	
(in)		Reading	(lbs)	(in^2)	(psi)	
0.000	0.000	0.0	0.0	6.514	0.0	
0.010	0.002	12.0	8.2	6.525	1.3	
0.020	0.003	20.0	13.7	6.536	2.1	
0.030	0.005	27.5	18.9	6.547	2.9	
0.040	0.007	35.5	24.4	6.558	3.7	
0.050	0.008	44.5	30.5	6.569	4.6	
0.075	0.012	67.5	46.3	6.597	7.0	
0.100	0.017	94.0	64.5	6.624	9.7	
0.125	0.021	123.0	84.4	6.653	12.7	
0.150	0.025	150.5	103.2	6.681	15.5	
0.175	0.029	174.5	119.7	6.709	17.8	
0.200	0.033	198.0	135.8	6.738	20.2	
0.250	0.042	233.5	160.2	6.797	23.6	
0.300	0.050	261.5	179.4	6.856	26.2	
0.350	0.058	284.5	195.2	6.917	28.2	
0.400	0.066	302.5	207.5	6.978	29.7	
0.450	0.075	319.0	218.8	7.041	31.1	
0.500	0.083	334.5	229.5	7.104	32.3	
0.550	0.091	346.0	237.4	7.169	33.1	
0.600	0.100	357.0	244.9	7.236	33.8	
0.650	0.108	368.0	252.4	7.303	34.6	
0.700	0.116	377.0	258.6	7.372	35.1	
0.750	0.125	386.0	264.8	7.441	35.6	
0.800	0.133	394.0	270.3	7.513	36.0	
0.850	0.141	401.5	275.4	7.585	36.3	Sketch of Tested Specimen
0.900	0.150	408.0	279.9	7.660	36.5	
0.903	0.150	410.0	281.3	7.664	36.7	
						J
				RESULTS		


Maximum Deviator Stress

<u>36.7</u> psi

CONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 4767)

Project:	LUC-023-11 75	Date: <u>5/8/2023</u>
Client:	Arcadis	File: <u>2065201_B-014-1_ST-2_CU</u>
Sample ID:	B-014-1-21 (ST-2)	Sample Depth: (6.0' - 8.0') (Portion from 6.5' to 7.0')
6 Project No.:	2065201	Specimen ID: <u>B-014-1-21 (ST-2 - B)</u>
		SAMPLE PROPERTIES
Visual Descrip	tion: Brown Sandy Sil	It "And" Clay A-4a (8)
Visual Descrip Diameter:	tion: <u>Brown Sandy Sil</u> 2.88 in.	
		It "And" Clay A-4a (8)
Diameter:	<u>2.88</u> in.	It "And" Clay A-4a (8) Initial Dry Unit Weight of Sample:108.0 pcf
Diameter: Area:	<u>2.88</u> in. <u>6.51</u> in ² <u>5.75</u> in.	It "And" Clay A-4a (8) Initial Dry Unit Weight of Sample: <u>108.0</u> pcf Initial Moisture Content: <u>17.7</u> %

STRESS-STRAIN DATA

Elapsed Time	Vertical Load	DCDT	Pore Pressure	Cell Pressure	Axial Strain	σ1'	σ3'	Obliquity	q	p'	Excess Pore Pr.
(min.)	(lbs)	(inch)	(psi)	(psi)	(%)	(psi)	(psi)	Obliquity	q (psi)	p (psi)	(psi)
0.0	56.52	0.0000	20.13	23.14	0.00	3.71	3.01	1.23	0.35	3.36	0.00
3.0	55.05	0.0000	20.18	23.14	0.03	3.43	2.96	1.16	0.33	3.19	0.05
6.0	57.56	0.0014	20.10	23.14	0.05	3.80	2.94	1.29	0.43	3.37	0.08
9.0	59.73	0.0027	20.21	23.15	0.05	4.12	2.94	1.29	0.60	3.52	0.08
12.0	61.85	0.0043	20.22	23.15	0.10	4.12	2.93	1.52	0.00	3.69	0.09
12.0	63.83	0.0059	20.23	23.15	0.10	4.45	2.93	1.52	0.76	3.85	0.09
18.0		0.0085									
	65.72		20.21	23.15	0.15	5.05	2.94	1.72	1.06	3.99	0.08
21.0	67.64	0.0101	20.21	23.15	0.17	5.35	2.94	1.82	1.20	4.15	0.08
24.0	69.50	0.0114	20.20	23.16	0.20	5.65	2.96	1.91	1.34	4.30	0.07
27.0	71.25	0.0130	20.19	23.16	0.23	5.93	2.97	1.99	1.48	4.45	0.06
30.0	72.89	0.0140	20.18	23.17	0.24	6.19	2.98	2.07	1.60	4.59	0.05
33.0	74.59	0.0154	20.17	23.17	0.27	6.46	3.00	2.16	1.73	4.73	0.04
36.0	76.32	0.0171	20.16	23.18	0.30	6.75	3.02	2.24	1.87	4.88	0.02
39.0	77.97	0.0183	20.14	23.16	0.32	7.00	3.02	2.32	1.99	5.01	0.01
42.0	79.77	0.0200	20.13	23.16	0.35	7.29	3.03	2.40	2.13	5.16	0.00
45.0	81.40	0.0212	20.11	23.17	0.37	7.56	3.06	2.47	2.25	5.31	-0.02
48.1	82.73	0.0225	20.10	23.17	0.39	7.78	3.08	2.53	2.35	5.43	-0.03
51.1	83.63	0.0239	20.08	23.18	0.42	7.94	3.10	2.56	2.42	5.52	-0.05
54.1	85.12	0.0253	20.08	23.17	0.44	8.16	3.09	2.64	2.53	5.62	-0.05
57.1	86.81	0.0269	20.09	23.16	0.47	8.40	3.08	2.73	2.66	5.74	-0.04
60.1	88.56	0.0288	20.10	23.16	0.50	8.66	3.07	2.82	2.80	5.86	-0.03
63.1	90.20	0.0306	20.11	23.17	0.53	8.89	3.05	2.91	2.92	5.97	-0.02
66.1	91.83	0.0321	20.13	23.17	0.56	9.12	3.03	3.01	3.04	6.08	0.00
69.1	93.41	0.0333	20.14	23.17	0.58	9.36	3.03	3.09	3.16	6.20	0.01
72.1	94.77	0.0349	20.12	23.18	0.61	9.59	3.05	3.14	3.27	6.32	-0.01
75.1	96.48	0.0362	20.08	23.16	0.63	9.87	3.08	3.21	3.40	6.47	-0.05
78.1	98.13	0.0374	20.05	23.16	0.65	10.16	3.11	3.26	3.52	6.63	-0.09
81.1	99.80	0.0384	20.03	23.16	0.67	10.43	3.13	3.33	3.65	6.78	-0.10
84.1	101.44	0.0405	20.03	23.17	0.70	10.68	3.14	3.40	3.77	6.91	-0.11
87.1	103.06	0.0421	20.03	23.17	0.73	10.93	3.14	3.48	3.89	7.04	-0.11
90.1	104.74	0.0439	20.03	23.17	0.76	11.18	3.14	3.56	4.02	7.16	-0.11
93.1	106.13	0.0449	20.02	23.15	0.78	11.38	3.13	3.64	4.13	7.26	-0.11
96.1	107.73	0.0463	19.99	23.15	0.81	11.66	3.16	3.68	4.25	7.41	-0.14
99.1	109.79	0.0475	19.95	23.16	0.83	12.02	3.21	3.74	4.40	7.61	-0.18
102.1	112.03	0.0486	19.90	23.16	0.84	12.40	3.26	3.81	4.57	7.83	-0.23
105.1	114.50	0.0501	19.86	23.16	0.87	12.82	3.30	3.88	4.76	8.06	-0.27
108.1	116.67	0.0513	19.83	23.17	0.89	13.19	3.34	3.95	4.92	8.26	-0.30
111.1	118.45	0.0528	19.82	23.17	0.92	13.47	3.35	4.02	5.06	8.41	-0.31
114.1	119.67	0.0546	19.81	23.15	0.95	13.64	3.34	4.08	5.15	8.49	-0.32
117.1	120.70	0.0560	19.81	23.15	0.97	13.79	3.34	4.13	5.23	8.57	-0.32
120.1	122.31	0.0577	19.81	23.16	1.00	14.04	3.35	4.19	5.35	8.70	-0.33
132.1	128.32	0.0631	19.70	23.14	1.10	15.04	3.44	4.37	5.80	9.24	-0.43
144.1	134.58	0.0685	19.56	23.16	1.19	16.13	3.60	4.48	6.27	9.87	-0.57
156.1	140.60	0.0750	19.55	23.15	1.30	17.03	3.60	4.73	6.72	10.31	-0.58
168.1	146.73	0.0796	19.38	23.15	1.38	18.11	3.77	4.81	7.17	10.94	-0.75
180.1	153.35	0.0858	19.29	23.16	1.49	19.20	3.87	4.96	7.67	11.53	-0.84
192.1	159.52	0.0915	19.28	23.14	1.59	20.11	3.86	5.21	8.12	11.98	-0.85
	165.79	0.0971	19.12	23.16	1.69	21.22	4.04	5.25	8.59	12.63	-1.02

Elapsed Time	Vertical Load	DCDT	Pore Pressure	Cell Pressure	Axial Strain	σ ₁ '	σ ₃ '	Obliquity	q	p'	Excess Pore Pr.
(min.) 216.1	(lbs) 169.66	(inch) 0.1029	(psi) 19.06	(psi) 23.15	(%) 1.79	(psi) 21.83	(psi) 4.09	5.34	(psi) 8.87	(psi) 12.96	(psi) -1.07
218.1	175.73	0.1029	18.98	23.15	1.79	21.83	4.09	5.34	0.07 9.32	12.96	-1.15
240.1	181.79	0.1140	18.84	23.15	1.98	23.84	4.31	5.54	9.77	14.08	-1.29
252.1	187.54	0.1199	18.82	23.14	2.09	24.71	4.33	5.71	10.19	14.52	-1.32
264.1	193.48	0.1254	18.68	23.13	2.18	25.70	4.45	5.78	10.63	15.08	-1.45
276.1	198.85	0.1308	18.55	23.15	2.27	26.63	4.60	5.79	11.02	15.62	-1.58
288.1	204.45	0.1370	18.54	23.14	2.38	27.45	4.60	5.97	11.43	16.02	-1.59
300.1 312.1	209.84 215.14	0.1422 0.1482	18.46 18.33	23.14 23.14	2.47 2.58	28.32 29.21	4.68 4.81	6.05 6.08	11.82 12.20	16.50 17.01	-1.68 -1.80
324.1	220.29	0.1482	18.33	23.14	2.58	29.21	4.81	6.22	12.20	17.40	-1.82
336.1	225.75	0.1592	18.16	23.14	2.77	30.93	4.98	6.20	12.97	17.95	-1.97
348.1	228.02	0.1653	18.08	23.14	2.88	31.30	5.05	6.19	13.13	18.18	-2.05
360.1	233.83	0.1715	18.05	23.12	2.98	32.16	5.07	6.34	13.54	18.61	-2.08
372.2	239.69	0.1765	17.90	23.14	3.07	33.17	5.23	6.34	13.97	19.20	-2.23
384.2	244.85	0.1823	17.88	23.13	3.17	33.92	5.25	6.46	14.34	19.58	-2.25
396.2 408.2	250.46 255.85	0.1880 0.1937	17.80 17.68	23.13 23.14	3.27 3.37	34.80 35.71	5.32 5.46	6.54 6.54	14.74 15.12	20.06 20.58	-2.33 -2.46
408.2	258.32	0.1937	17.66	23.14	3.47	36.05	5.40	6.59	15.12	20.58	-2.48
432.2	264.10	0.2056	17.56	23.14	3.58	36.98	5.57	6.63	15.70	21.27	-2.57
444.2	268.88	0.2108	17.45	23.13	3.67	37.77	5.69	6.64	16.04	21.73	-2.69
456.2	273.87	0.2165	17.43	23.12	3.77	38.47	5.68	6.77	16.39	22.08	-2.70
468.2	279.08	0.2219	17.34	23.13	3.86	39.31	5.79	6.79	16.76	22.55	-2.80
480.2	284.49	0.2276	17.20	23.13	3.96	40.21	5.93	6.78	17.14	23.07	-2.93
492.2 504.2	289.98 295.36	0.2340 0.2400	17.19 17.16	23.12 23.12	4.07 4.17	40.98 41.77	5.93 5.97	6.92 7.00	17.53 17.90	23.45 23.87	-2.94 -2.98
516.2	300.92	0.2400	17.10	23.12	4.17	41.77	6.10	7.00	18.29	23.87	-3.12
528.2	306.50	0.2510	17.00	23.13	4.37	43.50	6.13	7.09	18.68	24.82	-3.14
540.2	311.80	0.2564	16.94	23.12	4.46	44.29	6.18	7.17	19.06	25.24	-3.19
552.2	316.96	0.2621	16.84	23.11	4.56	45.09	6.27	7.19	19.41	25.68	-3.29
564.2	322.02	0.2687	16.82	23.12	4.67	45.82	6.30	7.28	19.76	26.06	-3.31
576.2	326.88	0.2740	16.69	23.12	4.76	46.62	6.43	7.26	20.10	26.52	-3.44
588.2 600.2	331.86 336.23	0.2794 0.2850	16.65 16.61	23.11 23.12	4.86 4.96	47.34 47.98	6.46 6.50	7.33 7.38	20.44 20.74	26.90 27.24	-3.49 -3.52
630.2	346.44	0.2850	16.61	23.12	4.96 5.22	47.98	6.65	7.38	20.74 21.42	27.24	-3.68
660.2	355.26	0.3143	16.29	23.11	5.47	50.84	6.83	7.45	22.01	28.83	-3.85
690.2	362.59	0.3286	16.11	23.11	5.71	51.96	7.00	7.43	22.48	29.48	-4.02
720.2	368.54	0.3426	15.97	23.10	5.96	52.83	7.13	7.41	22.85	29.98	-4.16
750.2	375.04	0.3569	15.87	23.09	6.21	53.74	7.23	7.44	23.26	30.48	-4.27
780.2	380.28	0.3718	15.74	23.08	6.47	54.48	7.34	7.42	23.57	30.91	-4.39
810.2 840.2	380.89 382.29	0.3858 0.4001	15.62 15.51	23.08 23.08	6.71 6.96	54.57 54.75	7.46 7.57	7.32 7.23	23.55 23.59	31.01 31.16	-4.51 -4.63
870.2	385.05	0.4001	15.31	23.08	7.21	54.75	7.57	7.23	23.59	31.16	-4.83
900.2	388.07	0.4289	15.27	23.08	7.46	55.56	7.81	7.11	23.87	31.69	-4.86
930.2	391.84	0.4436	15.14	23.08	7.72	56.09	7.94	7.07	24.07	32.01	-4.99
960.2	396.03	0.4577	15.03	23.09	7.96	56.67	8.06	7.03	24.31	32.37	-5.11
990.2	400.87	0.4720	14.92	23.08	8.21	57.33	8.16	7.02	24.58	32.75	-5.22
1020.2	406.81	0.4864	14.82	23.09	8.46	58.13	8.27	7.03	24.93	33.20	-5.31
1050.2 1080.2	411.12 415.01	0.5010 0.5153	14.71 14.60	23.08 23.09	8.71 8.96	58.70 59.22	8.37 8.48	7.01 6.98	25.17 25.37	33.54 33.85	-5.42 -5.53
1110.2	421.20	0.5155	14.00	23.09	9.21	60.06	8.60	6.99	25.73	34.33	-5.64
1140.2	424.76	0.5446	14.38	23.08	9.47	60.51	8.70	6.96	25.90	34.60	-5.75
1170.2	429.60	0.5585	14.27	23.09	9.71	61.16	8.82	6.94	26.17	34.99	-5.86
1200.2	433.43	0.5727	14.17	23.08	9.96	61.64	8.91	6.91	26.36	35.28	-5.96
1230.2	436.55	0.5867	14.07	23.10	10.20	62.04	9.03	6.87	26.51	35.53	-6.06
1260.2	437.30	0.6017	13.98	23.09	10.47	62.08	9.11	6.81	26.48	35.60	-6.16
1290.2 1320.2	438.01 441.17	0.6159 0.6306	13.87 13.78	23.09 23.09	10.71 10.97	62.14 62.51	9.22 9.32	6.74 6.71	26.46 26.60	35.68 35.91	-6.27 -6.36
1320.2 1350.2	441.17 441.66	0.6306	13.78	23.09 23.09	10.97	62.51 62.52	9.32 9.40	6.71	26.60 26.56	35.91 35.96	-6.36 -6.45
1380.3	441.88	0.6596	13.60	23.09	11.22	62.61	9.40	6.60	26.56	36.05	-6.53
1410.3	444.95	0.6735	13.51	23.10	11.71	62.85	9.59	6.55	26.63	36.22	-6.63
1440.3	447.24	0.6870	13.22	23.11	11.95	63.32	9.89	6.40	26.71	36.60	-6.91
1470.3	451.70	0.7014	12.96	23.14	12.20	64.06	10.18	6.29	26.94	37.12	-7.17
1500.3	455.53	0.7164	12.93	23.13	12.46	64.44	10.20	6.32	27.12	37.32	-7.20
1530.3	457.95	0.7308	12.86	23.12	12.71	64.67	10.27	6.30	27.20	37.47	-7.28
1560.3 1590.3	462.66 465.75	0.7450 0.7586	12.70 12.61	23.14 23.13	12.96 13.19	65.32 65.66	10.44 10.52	6.26 6.24	27.44 27.57	37.88 38.09	-7.43 -7.52
1620.3	468.60	0.7586	12.61	23.13	13.19	65.94	10.52	6.24	27.68	38.09	-7.60
1650.3	470.98	0.7879	12.45	23.12	13.70	66.18	10.67	6.20	27.75	38.42	-7.68
1680.3	468.25	0.8018	12.32	23.13	13.94	65.80	10.80	6.09	27.50	38.30	-7.81
1710.3	462.91	0.8168	12.26	23.12	14.21	64.98	10.86	5.99	27.06	37.92	-7.87
1740.3	459.60	0.8311	12.17	23.11	14.45	64.48	10.94	5.89	26.77	37.71	-7.96
1770.3	459.30	0.8453	12.05	23.11	14.70	64.40	11.07	5.82	26.67	37.73	-8.08
1800.3	459.59	0.8595	11.98	23.10 23.10	14.95	64.34 64.33	11.12	5.79 5.79	26.61	37.73	-8.15
1800.3	459.48	0.8595	11.98	23.10	14.95	64.33	11.12	5.79	26.60	37.72	-8.15

CONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 4767)

Project:	LUC-023-11 75	Date: 5/10/2023
Client:	Arcadis	File: 2065201_B-014-1_ST-2_CU
Sample ID:	B-014-1-21 (ST-2)	Sample Depth: (6.0' - 8.0') (Portion from 7.0' to 7.5')
6 Project No.:	2065201	Specimen ID: B-014-1-21 (ST-2 - C)

SAMPLE PROPERTIES

Visual Description:	Brown Sandy Silt "A	And" Clay A-4a (8)	
Diameter:	2.88 in.	Initial Dry Unit Weight of Sample:	<u>107.2</u> pcf
Area:	6.51 in ²	Initial Moisture Content:	<u> </u>
Length:	<u>5.98</u> in.	Specific Gravity (Assumed):	2.50
Initial Void Ratio:	0.46	Initial Degree of Saturation:	<u> </u>
Consolidation Stres	s: <u>6 psi</u>	External Load Cell: 72685	6 (200 lbs.)

STRESS-STRAIN DATA

Elapsed Time	Vertical Load	DCDT	Pore Pressure	Cell Pressure	Axial Strain	σ1'	σ3'	Obliquity	q	p'	Excess Pore Pr.
(min.)	(lbs)	(inch)	(psi)	(psi)	(%)	(psi)	(psi)		(psi)	(psi)	(psi)
0.0	5.70	0.0000	20.48	26.04	0.00	5.85	5.56	1.05	0.14	5.70	0.00
3.0	7.02	0.0009	20.44	26.05	0.02	6.10	5.61	1.09	0.25	5.85	-0.04
6.0	8.78	0.0023	20.42	26.03	0.04	6.37	5.61	1.14	0.38	5.99	-0.06
9.0	11.15	0.0034	20.43	26.04	0.06	6.73	5.61	1.20	0.56	6.17	-0.05
12.0	13.19	0.0046	20.43	26.05	0.08	7.06	5.62	1.26	0.72	6.34	-0.05
15.0	15.03	0.0061	20.43	26.06	0.10	7.35	5.63	1.31	0.86	6.49	-0.05
18.0	16.73	0.0076	20.43	26.05	0.13	7.59	5.61	1.35	0.99	6.60	-0.05
21.0	18.36	0.0088	20.44	26.06	0.15	7.84	5.61	1.40	1.11	6.73	-0.04
24.0	19.84	0.0105	20.44	26.06	0.18	8.08	5.62	1.44	1.23	6.85	-0.04
27.0	21.22	0.0120	20.45	26.08	0.20	8.29	5.63	1.47	1.33	6.96	-0.03
30.0	22.49	0.0134	20.45	26.06	0.22	8.47	5.61	1.51	1.43	7.04	-0.03
33.0	23.74	0.0150	20.46	26.06	0.25	8.65	5.60	1.54	1.53	7.12	-0.02
36.0	24.93	0.0161	20.47	26.07	0.27	8.84	5.61	1.58	1.62	7.22	-0.02
39.0	26.13	0.0176	20.47	26.08	0.29	9.02	5.61	1.61	1.71	7.31	-0.01
42.0	27.33	0.0193	20.48	26.08	0.32	9.20	5.61	1.64	1.80	7.40	0.00
45.0	28.46	0.0208	20.48	26.07	0.35	9.35	5.58	1.68	1.88	7.47	0.00
48.0	29.60	0.0224	20.49	26.07	0.37	9.53	5.58	1.71	1.97	7.55	0.01
51.0	30.64	0.0239	20.50	26.08	0.40	9.68	5.58	1.73	2.05	7.63	0.02
54.0	31.72	0.0251	20.51	26.09	0.42	9.84	5.58	1.76	2.13	7.71	0.02
57.0	32.76	0.0265	20.52	26.07	0.44	9.98	5.56	1.80	2.21	7.77	0.03
60.0	33.86	0.0282	20.52	26.07	0.47	10.14	5.55	1.83	2.29	7.84	0.04
63.0	34.89	0.0202	20.52	26.07	0.50	10.14	5.54	1.86	2.23	7.91	0.05
66.1	35.83	0.0230	20.54	26.08	0.53	10.23	5.54	1.88	2.37	7.98	0.06
69.1	36.80	0.0332	20.55	26.09	0.55	10.43	5.54	1.91	2.52	8.06	0.06
72.1	37.78	0.0332	20.55	26.09	0.58	10.58	5.54	1.91	2.52	8.00	0.08
75.1	38.69	0.0344	20.50	26.07	0.60	10.70	5.50	1.94	2.59	8.16	0.08
78.1	39.69	0.0359	20.57	26.07	0.62	10.82	5.49	2.00	2.00	8.22	0.10
81.1	40.69	0.0374	20.58	26.08	0.62	11.11	5.49	2.00	2.74	8.30	0.10
84.1	40.69	0.0389	20.59	26.09	0.65	11.26	5.49	2.02	2.81	8.30	0.12
87.1	41.69	0.0402	20.60	26.09	0.67	11.20	5.49	2.05	2.89	8.43	0.12
90.1		0.0417	20.61	26.08	0.70		5.47		2.96	8.49	
	43.64					11.52		2.11			0.13
93.1 96.1	44.56 45.48	0.0450 0.0465	20.63 20.64	26.07	0.75 0.78	11.65 11.79	5.44 5.44	2.14	3.10	8.54	0.15
				26.08				2.17	3.17	8.61	0.16
99.1	46.48	0.0478	20.65	26.08	0.80	11.92	5.43	2.20	3.25	8.67	0.17
102.1	47.46	0.0494	20.66	26.09	0.83	12.07	5.42	2.22	3.32	8.75	0.18
105.1	48.42	0.0506	20.67	26.07	0.85	12.18	5.40	2.26	3.39	8.79	0.19
108.1	49.41	0.0522	20.68	26.07	0.87	12.32	5.38	2.29	3.47	8.85	0.20
111.1	50.32	0.0535	20.70	26.07	0.89	12.44	5.37	2.32	3.54	8.91	0.22
114.1	51.23	0.0550	20.71	26.07	0.92	12.57	5.36	2.34	3.61	8.97	0.23
117.1	52.17	0.0567	20.72	26.08	0.95	12.71	5.36	2.37	3.68	9.03	0.24
120.1	53.12	0.0581	20.74	26.07	0.97	12.82	5.33	2.41	3.75	9.08	0.26
132.1	56.99	0.0642	20.78	26.08	1.07	13.37	5.29	2.53	4.04	9.33	0.30
144.1	60.83	0.0699	20.83	26.06	1.17	13.89	5.24	2.65	4.33	9.56	0.34
156.1	64.54	0.0762	20.86	26.05	1.27	14.39	5.19	2.77	4.60	9.79	0.38
168.1	68.32	0.0815	20.91	26.05	1.36	14.90	5.14	2.90	4.88	10.02	0.43
180.1	71.89	0.0877	20.95	26.05	1.47	15.40	5.10	3.02	5.15	10.25	0.47
192.1	75.67	0.0934	20.98	26.04	1.56	15.91	5.05	3.15	5.43	10.48	0.50
204.1	79.18	0.0999	21.02	26.02	1.67	16.38	5.00	3.27	5.69	10.69	0.54
216.1	82.73	0.1057	21.06	26.01	1.77	16.85	4.95	3.40	5.95	10.90	0.57

Elapsed Time	Vertical Load	DCDT	Pore Pressure	Cell Pressure	Axial Strain	σ1'	σ3'	Obliquity	q	p'	Excess Pore Pr.
(min.)	(lbs)	(inch)	(psi)	(psi)	(%)	(psi)	(psi)		(psi)	(psi)	(psi)
228.1	86.31	0.1117	21.09	26.01	1.87	17.35	4.92	3.53	6.21	11.13	0.61
240.1	89.54	0.1172	21.14	25.99	1.96	17.75	4.85	3.66	6.45	11.30	0.66
252.1 264.1	92.82 95.87	0.1238 0.1292	21.23 21.24	25.96 25.96	2.07 2.16	18.11 18.55	4.73 4.72	3.83 3.93	6.69 6.91	11.42 11.64	0.75 0.76
276.1	99.16	0.1292	21.24	25.95	2.16	19.08	4.72	4.00	7.15	11.92	0.70
288.1	101.91	0.1417	21.27	25.92	2.37	19.36	4.66	4.16	7.35	12.01	0.78
300.1	104.61	0.1478	21.32	25.90	2.47	19.67	4.58	4.30	7.55	12.12	0.84
312.1	107.33	0.1530	21.29	25.89	2.56	20.08	4.60	4.37	7.74	12.34	0.81
324.1	109.83	0.1589	21.31	25.89	2.66	20.42	4.58	4.46	7.92	12.50	0.82
336.1	112.25	0.1650	21.35	25.86	2.76	20.70	4.51	4.59	8.09	12.61	0.87
348.1	114.57	0.1708	21.29	25.88	2.86	21.11	4.60	4.59	8.26	12.86	0.80
360.1 372.1	116.92 118.78	0.1769 0.1827	21.29 21.32	25.88 25.86	2.96 3.06	21.44 21.65	4.59 4.54	4.67 4.77	8.42 8.55	13.02 13.09	0.81 0.84
384.1	120.66	0.1886	21.24	25.84	3.15	21.00	4.60	4.78	8.68	13.28	0.76
396.1	122.44	0.1947	21.20	25.68	3.26	22.10	4.49	4.93	8.81	13.29	0.71
408.1	123.88	0.2007	21.21	25.63	3.36	22.23	4.41	5.04	8.91	13.32	0.73
420.1	125.38	0.2068	21.13	25.40	3.46	22.29	4.27	5.22	9.01	13.28	0.64
432.1	127.31	0.2121	21.04	25.40	3.55	22.64	4.36	5.20	9.14	13.50	0.56
444.1	129.29	0.2185	21.07	25.36	3.65	22.85	4.29	5.33	9.28	13.57	0.59
456.1 468.1	131.01 132.77	0.2241 0.2300	21.03 20.92	25.29 25.15	3.75 3.85	23.05 23.27	4.25 4.24	5.42 5.49	9.40 9.52	13.65 13.75	0.55 0.43
480.2	134.21	0.2365	20.85	25.04	3.96	23.42	4.20	5.58	9.61	13.81	0.36
492.2	135.60	0.2431	20.79	24.97	4.07	23.59	4.18	5.64	9.70	13.89	0.30
504.2	136.96	0.2484	20.71	24.99	4.15	23.87	4.28	5.58	9.79	14.08	0.23
516.2	138.23	0.2542	20.63	25.11	4.25	24.24	4.48	5.41	9.88	14.36	0.15
528.2	139.70	0.2605	20.66	25.27	4.36	24.56	4.61	5.32	9.97	14.59	0.17
540.2	140.89	0.2671	20.66	25.47	4.47	24.91	4.81	5.18	10.05	14.86	0.18
552.2	141.94	0.2722	20.57	25.57	4.55	25.24	5.01	5.04	10.12	15.13	0.08
564.2 576.2	142.96 144.06	0.2784 0.2845	20.57 20.53	25.55 25.55	4.65 4.76	25.34 25.52	4.98 5.01	5.09 5.09	10.18 10.25	15.16 15.26	0.09 0.05
588.2	145.14	0.2897	20.33	25.56	4.85	25.77	5.12	5.03	10.23	15.45	-0.05
600.2	145.84	0.2961	20.41	25.55	4.95	25.87	5.14	5.03	10.36	15.51	-0.08
630.2	147.66	0.3109	20.25	25.56	5.20	26.25	5.31	4.94	10.47	15.78	-0.24
660.2	149.11	0.3262	20.19	25.55	5.45	26.45	5.36	4.93	10.54	15.91	-0.30
690.2	150.06	0.3411	20.02	25.55	5.70	26.70	5.53	4.83	10.58	16.11	-0.46
720.2	149.87	0.3556	19.87	25.55	5.95	26.76	5.67	4.72	10.54	16.22	-0.61
750.2 780.2	150.09 150.32	0.3716 0.3865	19.85 19.80	25.53 25.52	6.21 6.46	26.74 26.75	5.68 5.72	4.71 4.68	10.53 10.52	16.21 16.24	-0.63 -0.68
810.2	150.32	0.3865	19.80	25.52 25.51	6.46	26.75	5.72	4.63	10.52	16.24	-0.88
840.2	150.36	0.4164	19.67	25.49	6.96	26.75	5.82	4.59	10.46	16.29	-0.82
870.2	151.78	0.4312	19.59	25.52	7.21	27.00	5.93	4.56	10.54	16.47	-0.89
900.2	153.02	0.4463	19.53	25.67	7.46	27.34	6.14	4.45	10.60	16.74	-0.95
930.2	154.64	0.4611	19.46	25.67	7.71	27.57	6.20	4.44	10.68	16.89	-1.02
960.2	156.76	0.4764	19.39	25.66	7.97	27.88	6.27	4.44	10.80	17.08	-1.09
990.2 1020.2	159.06 161.07	0.4911 0.5063	19.32 19.27	25.66 25.67	8.21 8.47	28.21 28.49	6.34 6.40	4.45 4.45	10.94 11.05	17.27 17.44	-1.16 -1.21
1020.2	162.99	0.5003	19.27	25.66	8.72	28.75	6.45	4.45	11.15	17.60	-1.27
1080.2	164.74	0.5361	19.18	25.68	8.97	28.99	6.50	4.46	11.24	17.75	-1.31
1110.2	166.64	0.5513	19.14	25.68	9.22	29.23	6.54	4.47	11.34	17.89	-1.34
1140.2	167.43	0.5662	19.11	25.69	9.47	29.32	6.58	4.45	11.37	17.95	-1.38
1170.2	169.32	0.5809	19.08	25.70	9.71	29.56	6.62	4.47	11.47	18.09	-1.40
1200.2	169.90	0.5960	19.05	25.67	9.97	29.57	6.61	4.47	11.48	18.09	-1.43
1230.2	170.73	0.6112	19.03	25.70	10.22	29.67	6.67	4.45	11.50	18.17	-1.45
1260.2 1290.2	172.21 173.47	0.6257 0.6409	19.02 19.01	25.69 25.72	10.46 10.72	29.82 29.96	6.67 6.71	4.47 4.47	11.57 11.63	18.25 18.33	-1.46 -1.47
1320.2	174.61	0.6564	19.00	25.72	10.98	30.05	6.71	4.48	11.67	18.38	-1.48
1350.3	175.70	0.6709	19.00	25.70	11.22	30.13	6.71	4.49	11.71	18.42	-1.49
1380.3	177.24	0.6857	18.99	25.72	11.47	30.29	6.72	4.51	11.78	18.51	-1.49
1410.3	178.60	0.7004	18.99	25.71	11.71	30.41	6.73	4.52	11.84	18.57	-1.50
1440.3	180.20	0.7154	18.91	25.71	11.96	30.63	6.80	4.51	11.92	18.71	-1.57
1470.3	182.03	0.7295	18.64	25.75	12.20	31.13	7.11	4.38	12.01	19.12	-1.84
1500.3 1530.3	184.40 185.88	0.7444 0.7594	18.55 18.46	25.78 25.78	12.45 12.70	31.51 31.71	7.24 7.31	4.35 4.34	12.14 12.20	19.37 19.51	-1.94 -2.02
1560.3	187.86	0.7594	18.40	25.78	12.70	31.95	7.36	4.34	12.20	19.66	-2.02
1590.3	188.45	0.7894	18.35	25.77	13.20	32.02	7.42	4.32	12.30	19.72	-2.13
1620.3	190.06	0.8039	18.31	25.77	13.44	32.21	7.46	4.32	12.37	19.83	-2.17
1650.3	191.49	0.8191	18.25	25.78	13.70	32.39	7.53	4.30	12.43	19.96	-2.23
1680.3	192.50	0.8342	18.32	25.76	13.95	32.37	7.44	4.35	12.46	19.91	-2.17
1710.3	193.35	0.8497	18.40	25.76	14.21	32.32	7.36	4.39	12.48	19.84	-2.08
1740.3	193.72	0.8648	18.42	25.75	14.46	32.26	7.33	4.40	12.47	19.80	-2.06
1770.3	194.07	0.8791	18.41	25.76	14.70	32.26	7.35	4.39	12.46	19.80	-2.07
1800.3 1800.7	194.14 194.11	0.8935 0.8936	18.33 18.33	25.74 25.74	14.94 14.94	32.26 32.26	7.41 7.41	4.35 4.35	12.43 12.42	19.84 19.84	-2.15 -2.15
1000.7	107.11	0.0000	10.00	20.74	14.04	02.20	7.41	4.55	12.72	10.04	2.10

CONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 4767)

Project:	LUC-023-11 75	Date:	5/12/2023
Client:	Arcadis	File:	2065201_B-014-1_ST-2_CU
Sample ID:	B-014-1-21 (ST-2)	Sample Depth:	(6.0' - 8.0') (Portion from 7.5' to 8.0')
6 Project No	2065201	Specimen ID:	в-014-1-21 (ST-2 - D)
		_	
	SAM	PLE PROPERTIES	

SAMPLE PROPERTIES

Visual Descrip	otion: Brown Sandy	Silt "And" Clay A-4a (8)	
Diameter:	<u>2.88</u> in.	Initial Dry Unit Weight of Sample:	<u>103.1</u> pcf
Area:	6.51 in ²	Initial Moisture Content:	<u>17.7</u> %
Length:	<u>5.98</u> in.	Specific Gravity (Assumed):	2.50
Initial Void Rat	tio: 0.51	Initial Degree of Saturation:	<u>86</u> %
Consolidation	Stress: <u>12 psi</u>	External Load Cell: 726856	(200 lbs.)

STRESS-STRAIN DATA

Elapsed Time	Vertical Load	DCDT	Pore Pressure	Cell Pressure	Axial Strain	σ,'	σ3'	Obliquity	q	p'	Excess Pore Pr.
(min.)	(lbs)	(inch)	(psi)	(psi)	(%)	(psi)	(psi)	obliquity	(psi)	(psi)	(psi)
0.0	9.8	0.0	21.26	31.95	0.00	11.08	10.69	1.04	0.19	10.89	0.00
3.0	14.5	0.0	21.43	31.94	0.02	11.63	10.51	1.11	0.56	11.07	0.17
6.0	19.3	0.0	21.63	31.95	0.03	12.16	10.32	1.18	0.92	11.24	0.37
9.0	23.2	0.0	21.85	31.96	0.05	12.56	10.11	1.24	1.22	11.34	0.60
12.0	26.5	0.0	22.08	31.97	0.08	12.83	9.88	1.30	1.48	11.36	0.83
15.0	29.3	0.0	22.31	31.97	0.10	13.04	9.66	1.35	1.69	11.35	1.05
18.0	31.7	0.0	22.52	31.97	0.13	13.20	9.45	1.40	1.87	11.32	1.27
21.0	33.8	0.0	22.74	31.98	0.16	13.31	9.24	1.44	2.04	11.28	1.48
24.0	35.8	0.0	22.93	31.98	0.18	13.42	9.05	1.48	2.18	11.23	1.67
27.0	37.6	0.0	23.13	31.98	0.20	13.50	8.85	1.53	2.33	11.18	1.87
30.0	39.4	0.0	23.31	31.99	0.23	13.60	8.68	1.57	2.46	11.14	2.05
33.0	41.0	0.0	23.49	31.99	0.26	13.67	8.51	1.61	2.58	11.09	2.23
36.0	42.5	0.0	23.66	31.99	0.28	13.72	8.33	1.65	2.69	11.03	2.40
39.0	43.9	0.0	23.81	31.99	0.30	13.78	8.18	1.68	2.80	10.98	2.56
42.1	45.3	0.0	23.96	31.99	0.34	13.85	8.03	1.72	2.00	10.94	2.70
45.1	46.5	0.0	24.10	31.99	0.36	13.89	7.90	1.76	3.00	10.34	2.84
48.1	47.8	0.0	24.23	32.00	0.39	13.96	7.30	1.80	3.10	10.87	2.98
51.1	48.9	0.0	24.36	32.00	0.41	14.01	7.64	1.83	3.18	10.82	3.10
54.1	50.1	0.0	24.48	32.00	0.44	14.06	7.52	1.87	3.27	10.02	3.22
57.1	51.1	0.0	24.59	32.00	0.45	14.11	7.42	1.90	3.35	10.73	3.33
60.1	52.1	0.0	24.59	32.00	0.48	14.17	7.42	1.90	3.43	10.77	3.43
63.1	53.2	0.0	24.09	32.00	0.50	14.17	7.22	1.94	3.43	10.74	3.53
66.1	54.2	0.0	24.78	32.00	0.53	14.29	7.13	2.00	3.58	10.72	3.62
69.1	55.2	0.0	24.07	32.00	0.56	14.25	7.04	2.00	3.66	10.71	3.71
72.1	56.2	0.0	24.90	32.00	0.58	14.30	6.96	2.04	3.00	10.70	3.79
75.1	57.1	0.0	25.12	32.01	0.61	14.42	6.89	2.10	3.80	10.69	3.87
78.1	58.0	0.0	25.12	32.00	0.63	14.55	6.81	2.14	3.87	10.68	3.94
81.1	58.9	0.0	25.26	32.00	0.65	14.61	6.74	2.17	3.93	10.68	4.00
84.1	59.7	0.0	25.33	32.00	0.68	14.68	6.68	2.20	4.00	10.68	4.00
87.1	60.6	0.0	25.38	32.01	0.71	14.75	6.62	2.23	4.06	10.69	4.13
90.1	61.5	0.0	25.45	32.01	0.73	14.82	6.56	2.26	4.13	10.69	4.19
93.1	62.3	0.0	25.50	32.01	0.76	14.90	6.51	2.20	4.13	10.09	4.19
96.1	63.1	0.0	25.56	32.02	0.78	14.90	6.46	2.32	4.19	10.71	4.20
99.1	63.9	0.0	25.61	32.02	0.81	14.97	6.41	2.32	4.23	10.71	4.35
102.1	64.7	0.0	25.65	32.02	0.83	15.10	6.37	2.34	4.37	10.72	4.39
105.1	65.4	0.0	25.69	32.01	0.87	15.16	6.32	2.40	4.42	10.73	4.43
108.1	66.1	0.1	25.73	32.01	0.89	15.23	6.28	2.40	4.42	10.74	4.48
111.1	66.9	0.1	25.73	32.01	0.91	15.31	6.24	2.45	4.40	10.78	4.48
114.1	67.7	0.1	25.82	32.01	0.94	15.39	6.24	2.43	4.59	10.78	4.56
117.1	68.4	0.1	25.85	32.02	0.96	15.46	6.17	2.40	4.65	10.80	4.60
120.1	69.1	0.1	25.88	32.02	0.97	15.53	6.14	2.53	4.00	10.81	4.63
132.1	71.9	0.1	26.00	32.02	1.08	15.84	6.03	2.63	4.70	10.83	4.03
132.1	74.5	0.1	26.00	32.03	1.18	16.13	5.94	2.63	5.10	11.03	4.73
156.1	74.5	0.1	26.20	32.02	1.18	16.13	5.82	2.72	5.29	11.03	4.83
168.1	79.5	0.1	26.20	32.02	1.29	16.41	5.82 5.75	2.82	5.29 5.46	11.21	4.94 5.00
168.1	79.5 81.9	0.1	26.26	32.00	1.38		5.75 5.73	2.90 2.97	5.46 5.64	11.21	5.00
180.1	81.9 84.1	0.1	26.28	32.01		17.01 17.27	5.73 5.67	2.97 3.05	5.64 5.80		5.03
	84.1 86.1	0.1	26.33	32.00	1.58	17.27	5.67	3.05	5.80	11.47	5.08
204.1	88.2				1.68 1.77		5.63	3.12		11.56	
216.1		0.1	26.36	31.99		17.84			6.10	11.73	5.11
228.1	90.1	0.1	26.36	32.00	1.87	18.12	5.64	3.21	6.24	11.88	5.10

Elapsed Time	Vertical Load	DCDT	Pore Pressure	Cell Pressure	Axial Strain	σ1'	σ3'	Obliquity	q	p'	Excess Pore Pr.
(min.)	(lbs)	(inch)	(psi)	(psi)	(%)	(psi)	(psi)	quity	q (psi)	(psi)	(psi)
240.1	92.1	0.1	26.39	31.98	1.99	18.35	5.60	3.28	6.38	11.97	5.13
252.1	93.8	0.1	26.38	31.99	2.07	18.62	5.61	3.32	6.51	12.12	5.12
264.1	95.5	0.1	26.37	31.98	2.18	18.86	5.61	3.36	6.63	12.24	5.11
276.1	97.3	0.1	26.36	31.98	2.27	19.13	5.62	3.40	6.75	12.38	5.10
288.1	99.0	0.1	26.33	31.97	2.37	19.39	5.64	3.44	6.87	12.51	5.07
300.2 312.2	100.7 102.3	0.1 0.2	26.30 26.28	31.97 32.08	2.48 2.57	19.66 20.01	5.67 5.80	3.47 3.45	6.99 7.10	12.66 12.90	5.05 5.02
312.2	102.3	0.2	26.28	32.08	2.66	20.01	5.80	3.45	7.10	12.90	5.02
336.2	105.3	0.2	26.28	32.07	2.78	20.20	5.79	3.53	7.31	13.11	5.02
348.2	106.7	0.2	26.24	32.06	2.88	20.65	5.82	3.55	7.41	13.24	4.98
360.2	108.1	0.2	26.17	32.07	2.97	20.92	5.90	3.55	7.51	13.41	4.92
372.2	109.4	0.2	26.12	32.07	3.07	21.14	5.95	3.55	7.60	13.54	4.87
384.2	110.6	0.2	26.09	32.07	3.17	21.34	5.98	3.57	7.68	13.66	4.84
396.2	111.8	0.2	26.09	32.07	3.27	21.50	5.98	3.59	7.76	13.74	4.83
408.2	112.9	0.2	26.04	32.05	3.36	21.68	6.02	3.60	7.83	13.85	4.78
420.2	114.0	0.2	25.96	32.06	3.46	21.92	6.10	3.59	7.91	14.01	4.71
432.2	115.3	0.2	25.91	32.05	3.57	22.13	6.15	3.60	7.99	14.14	4.65
444.2 456.2	116.3 117.2	0.2 0.2	25.89 25.83	32.05 32.03	3.68 3.77	22.28 22.43	6.16 6.20	3.62	8.06 8.12	14.22 14.32	4.64 4.57
456.2	117.2	0.2	25.65	32.05	3.87	22.43	6.20	3.62 3.60	8.18	14.32	4.50
480.2	119.1	0.2	25.75	32.05	3.87	22.80	6.29	3.60	8.24	14.47	4.50
492.2	120.0	0.2	25.70	32.04	4.08	22.93	6.34	3.62	8.30	14.63	4.44
504.2	120.8	0.2	25.62	32.02	4.17	23.10	6.40	3.61	8.35	14.75	4.37
516.2	121.6	0.3	25.55	32.04	4.27	23.29	6.49	3.59	8.40	14.89	4.29
528.2	122.4	0.3	25.51	32.02	4.37	23.42	6.52	3.59	8.45	14.97	4.25
540.2	123.1	0.3	25.46	32.02	4.47	23.55	6.56	3.59	8.49	15.05	4.20
552.2	123.9	0.3	25.36	32.01	4.57	23.72	6.65	3.57	8.54	15.19	4.11
564.2	124.6	0.3	25.30	32.03	4.67	23.89	6.73	3.55	8.58	15.31	4.04
576.2	125.1	0.3	25.27	32.01	4.78	23.96	6.73	3.56	8.61	15.34	4.02
588.2	125.5	0.3	25.20	32.01	4.87	24.08	6.81	3.54	8.63	15.44	3.94
600.2	125.9	0.3	25.12	32.01	4.97	24.19	6.89	3.51	8.65	15.54	3.87
630.2	127.1	0.3	24.98	32.01	5.22	24.46	7.03	3.48	8.72	15.75	3.72
660.2	128.1	0.3	24.78	32.01	5.45	24.77	7.23	3.43	8.77	16.00	3.52
690.2	129.2	0.3	24.67	31.99	5.73	24.97	7.32	3.41	8.82	16.14	3.42
720.2	130.3	0.4	24.45	32.01	5.97	25.31	7.55	3.35	8.88	16.43	3.20
750.2	131.0	0.4	24.38	31.97	6.22	25.40	7.60	3.34	8.90	16.50	3.12
780.2	131.7	0.4	24.25	31.95	6.48	25.56	7.69	3.32	8.93	16.63	3.00
810.2	132.7	0.4	24.13	31.95	6.73	25.78	7.82	3.30	8.98	16.80	2.87
840.2	134.1	0.4	24.02	31.94	6.98	26.04	7.93	3.28	9.05	16.98	2.76
870.2	135.1	0.4	23.90	31.94	7.23	26.23	8.03	3.26	9.10	17.13	2.65
900.2	136.0	0.4	23.79	31.96	7.48	26.45	8.17	3.24	9.14	17.31	2.54
930.2	137.0	0.5	23.68	31.95	7.72	26.63	8.26	3.22	9.18	17.45	2.43
960.2	137.9	0.5	23.57	31.94	7.98	26.82	8.37	3.20	9.23	17.60	2.32
990.2	138.6	0.5	23.45	31.94	8.23	26.99	8.49	3.18	9.25	17.74	2.20
1020.2 1050.2	139.1	0.5	23.33 23.21	31.95 31.94	8.48 8.73	27.13	8.61 8.72	3.15	9.26	17.87	2.08
1050.2	139.9 140.4	0.5 0.5	23.21	31.94	8.98	27.30 27.44	8.84	3.13 3.11	9.29 9.30	18.01 18.14	1.96 1.84
1110.2	140.4	0.6	22.98	31.95	9.23	27.52	8.97	3.07	9.28	18.24	1.73
1140.2	140.1	0.6	22.86	31.96	9.47	27.55	9.09	3.03	9.23	18.32	1.61
1170.2	139.4	0.6	22.74	31.96	9.73	27.53	9.22	2.99	9.16	18.37	1.49
1200.2	139.8	0.6	22.63	31.98	9.98	27.66	9.35	2.96	9.16	18.51	1.38
1230.2	139.6	0.6	22.52	31.98	10.23	27.70	9.46	2.93	9.12	18.58	1.26
1260.2	139.6	0.6	22.41	31.98	10.49	27.74	9.57	2.90	9.09	18.65	1.16
1290.2	139.3	0.6	22.31	32.00	10.74	27.78	9.69	2.87	9.05	18.74	1.06
1320.2	139.5	0.7	22.21	31.99	10.99	27.85	9.78	2.85	9.04	18.82	0.96
1350.2	139.4	0.7	22.12	31.99	11.23	27.88	9.87	2.82	9.01	18.88	0.86
1380.2	139.6	0.7	22.03	32.00	11.49	27.95	9.97	2.80	8.99	18.96	0.77
1410.3	139.7	0.7	21.94	32.01	11.73	28.01	10.06	2.78	8.97	19.04	0.69
1440.3	139.9	0.7	21.85	32.02	11.99	28.08	10.16	2.76	8.96	19.12	0.60
1470.3	139.9	0.7	21.62	32.02	12.22	28.26	10.39	2.72	8.93	19.33	0.37
1500.3	140.1	0.7	21.29	32.04	12.47	28.59	10.74	2.66	8.92	19.67	0.04
1530.3	140.3	0.8	21.10	32.06	12.72	28.79	10.96	2.63	8.91	19.87	-0.15
1560.3	141.0	0.8	20.93	32.07	12.97	29.00	11.13	2.60	8.93	20.07	-0.32
1590.3	142.7	0.8	20.85	32.06	13.22	29.24	11.20	2.61	9.02	20.22	-0.40
1620.3	143.0	0.8	20.87	32.03	13.49	29.18	11.16	2.62	9.01	20.17	-0.39
1650.3	142.8	0.8	20.86	32.01	13.74	29.10	11.15	2.61	8.98	20.13	-0.40
1680.3	142.9	0.8	20.69	32.02	13.98	29.23	11.33	2.58	8.95	20.28	-0.56
1710.3	143.0	0.9	20.59	32.03	14.23	29.32	11.44	2.56	8.94	20.38	-0.67
1740.3	143.1	0.9	20.49	32.03	14.47	29.37	11.54	2.54	8.91	20.46	-0.77
1770.3	143.2	0.9	20.40	32.03	14.73	29.42	11.63	2.53	8.89	20.53	-0.86
1800.3 1800.6	143.2 143.2	0.9 0.9	20.28 20.28	32.04 32.04	14.98 14.98	29.50 29.50	11.76 11.76	2.51 2.51	8.87 8.87	20.63 20.63	-0.98 -0.98
0.000	143.2	0.9	20.20	32.04	14.30	29.00	11.70	2.01	0.07	20.03	-0.90

Consolidation Laboratory Calculations

·····,····			
Consolidometer:	1		
Method: Project No. : Client: Project: Location: Boring No. : Sample No.: Depth: Date of Test:	ASTM D 2435 Method B 2065201 Arcadis LUC-23-11.75 Sylvania, OH B-028-0-21 ST-3 6.0 - 8.0' 4/13/2023	Visual Description: Liquid Limit: Plastic Limit: Plasticity Index:	Gray SILT and CLAY, Some Sand A-6a (8) 34 % 21 % 13 %
<i>Initial Sample Data</i> Initial Height Ring Dia. Area of Ring Initial Volume Specific Gravity		<i>Final Sample Data</i> Final Height Ring Dia. Area of Ring Final Volume	$\begin{array}{c c} 0.892 \text{ in.} \\ \hline 2.493 \text{ in.} \\ \hline 4.8813 \text{ in}^2 \\ \hline 4.3539 \text{ in}^3 \\ \hline 0.00252 \text{ ft}^3 \end{array}$
Initial wet mass soil & ring Mass of ring Initial wet mass soil	<u>295.3 g</u> <u>146.3 g</u> <u>149 g</u> 0.32849 lb	Final wet mass soil, pan & ring Wt of Pan Final wet mass soil & ring Mass of ring Final dry mass of soil, pan & ring Final wet mass soil Weight of water	345.7 g 52.2 g 293.5 146.3 g 317.1 g 147.2 g 0.32452 lb 28.6 g 0.06305 lb
Initial Water Content Mass can & wet soil Mass can & dry soil Mass of can Mass of water Mass of soil Initial water content	242.9 g 191.8 g 50.9 g 51.1 g 140.9 g 36.27 % (trimmings)		
Initial water content	25.63 % (based on final dry weight)	Final water content	24.11 % (based on final dry weight)
Initial dry density Initial void ratio (eo)	<u>92.6 p</u> cf 0.850	Final weight of solids (Md) Final dry density Final volume of solids (Vs) Final height of solids (Hs) Final void ratio (ef)	$ \begin{array}{c c} 118.6 \text{ g} & 0.26147 \text{ lb} \\ \hline 103.8 \text{ pcf} & \\ \hline 2.6384 \text{ in}^3 & 0.00153 \text{ ft}^3 \\ \hline 0.5405 \text{ in.} & \\ \hline 0.650 & \\ \end{array} $
Initial volume of voids (Vvo) Initial volume of water (Vwo) Initial degree of saturation (So)	$\begin{array}{c c} \hline 0.850 \\ \hline 2.2429 \text{ in}^3 \\ \hline 1.8551 \text{ in}^3 \\ \hline 82.71 \% \end{array} \begin{array}{c} 0.00130 \text{ ft}^3 \\ \hline 0.00107 \text{ ft}^3 \\ \hline \end{array}$	Final Vold Fault (el) Final volume of voids (Vvf) Final volume of water (Vwf) Final degree of saturation (Sf)	$\begin{array}{c c} \hline 0.650 \\ \hline 1.7154 & \text{in}^3 \\ \hline 1.7452 & \text{in}^3 \\ \hline 101.74 & \% \end{array} \begin{array}{c} 0.00099 & \text{ft}^3 \\ \hline 0.00101 & \text{ft}^3 \\ \hline \end{array}$
		Checks: Final DD >= Initial DD	TRUE

Project No.: Date: Client: Project: Boring No.: Sample No.: Depth:	4/13/2023 Arcadis LUC-23-11.75 Sylvania, OH B-028-0-21								
Initial H=	1	inches							
Pressure tsf 0.125 0.25 0.5 1 2 4 8 16 4 1 0.25	Final Height (in) 1.00000 0.99215 0.98755 0.95955 0.93375 0.89625 0.85905 0.86405 0.87505 0.89195	Initial Height (in) 1.00000 0.99215 0.98755 0.97385 0.95955 0.93375 0.89625 0.85905 0.86405 0.87505	DH 0.0000 0.00785 0.01245 0.02615 0.04045 0.06625 0.10375 0.14095 0.13595 0.12495 0.10805	Average H (in) 1.0000 0.9961 0.9899 0.9807 0.9667 0.9467 0.9150 0.8777 0.8616 0.8696 0.8835	e 0.850 0.836 0.827 0.802 0.775 0.728 0.658 0.589 0.599 0.619 0.650	t50 (min) 0.9 1.7 0.8 1.8 0.8 1.3 1.7	Ave P (tsf) 0.125 0.375 1.5 3 6 12 10 2.5 0.625	Cv (in2/s) 0.000892 0.000463 0.000998 0.000416 0.000949 0.000527 0.000380	Cv (ft2/d) 0.535 0.278 0.599 0.249 0.569 0.316 0.228
Estimated C Estimated C		0.229 0.034							
Soil Descrip Specific Gra Liquid Limit: Plastic Limit Plasticity Inc	ivity: :	Gray SILT an 2.743 34 21 13	d CLAY, Sor	ne Sand A-6a	(8)				
Initial Water	Content:	25.6	%	Final Water C	Content:	24.1	%		

Estimated Preconsolidation Pressure: 2.7 tsf

92.6 pcf

82.7 %

0.850

Inital Dry Density:

Initial Void Ratio:

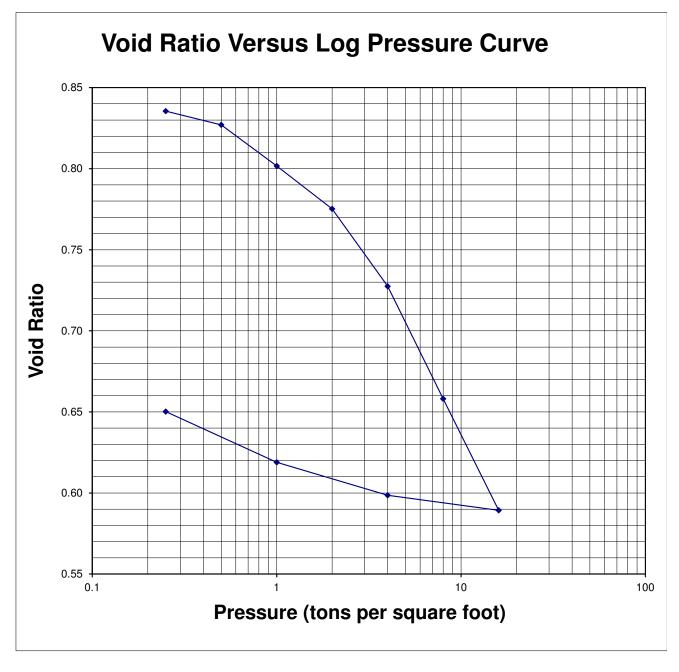
Initial Degree of Saturation:

The sample for the test was trimmed from a Shelby tube sample using a cutting shoe. Test Method B was used with the specimen inundated during testing. Coefficients of consolidation were computed by log of time method.

Final Degree of Saturation

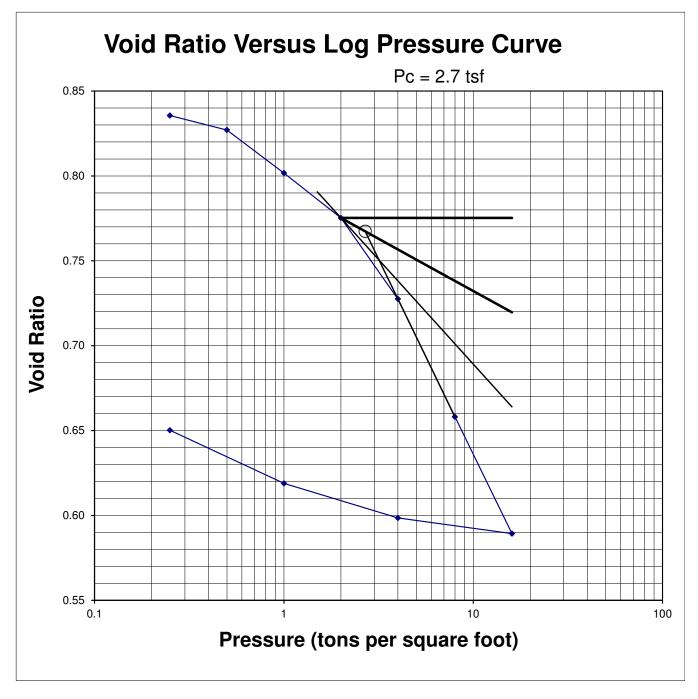
Final Dry Density:

Final Void Ratio:


103.8 pcf

101.7 %

0.650



Project No.:	2065201
Date:	4/13/2023
Client:	Arcadis
Project:	LUC-23-11.75
	Sylvania, OH
Boring No.:	B-028-0-21
Sample No.:	ST-3
Depth:	6.0 - 8.0'

Project No.:	2065201
Date:	4/13/2023
Client:	Arcadis
Project:	LUC-23-11.75
	Sylvania, OH
Boring No.:	B-028-0-21
Sample No.:	ST-3
Depth:	6.0 - 8.0'

Sample No.: ST-3 Depth: 6.0 - 8.0'

0.25 tsf Load

Dial

Reading

0.39485

0.38960

0.38885

0.38820

0.38775

0.38730

0.38660

0.38610

0.38590

0.38580

0.38540

0.38490

0.38465

Interval

Minutes

0

0.25

0.5

1

2

4

9

16

25

30

60

120

180

initial height=

1 inches

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

0.00430

ΔH

0.00525

0.00600

0.00665

0.00710

0.00755

0.00825

0.00875

0.00895

0.00905

0.00945

0.00995

0.01020

Deformation TRUE Height of Constant Sample ΔН

0.00095

0.00170

0.00235

0.00280

0.00325

0.00395

0.00445

0.00465

0.00475

0.00515

0.00565

0.00590

0.99905

0.99830

0.99765

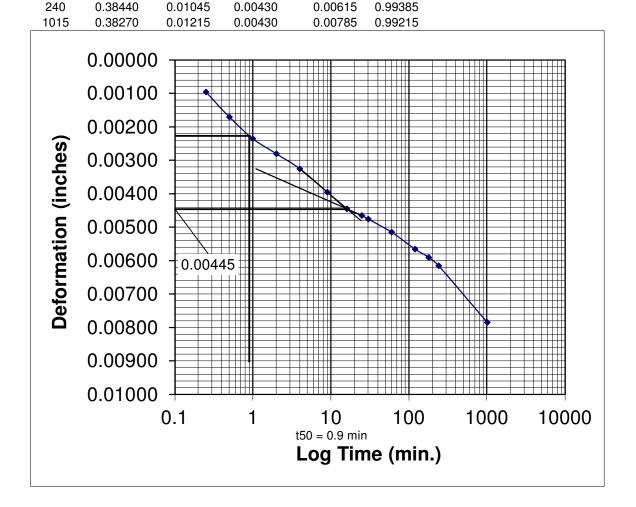
0.99720

0.99675

0.99605

0.99555

0.99535


0.99525

0.99485

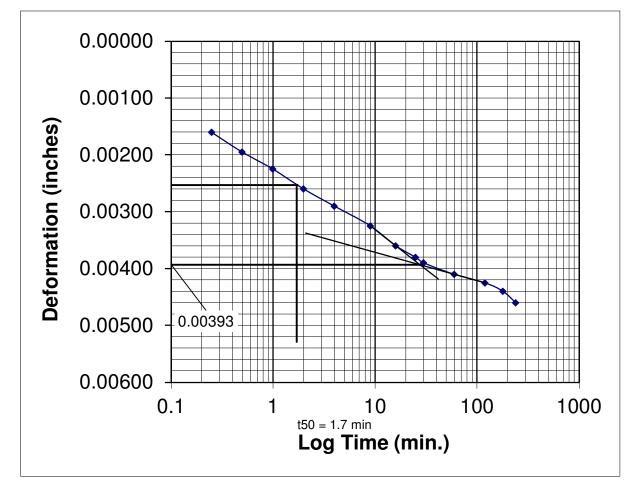
0.99435

0.99410

Do= D1-(D2-D1) 1) 0.25 to 1.0: -0.00045 2) 0.5 to 2.0: 0.00060 3) 1.0 to 4.0: 0.00145 Do Avg 1&2: 0.00007 Do Avg 1-3: 0.00053 Use Do= 0.00007 D100= 0.00445 D50= D100+0.5(Do-D100) D50= 0.00226 t50 = 0.9 min.

Sample No.: ST-3 Depth: 6.0 - 8.0'

Do= D1-(D2-D1)

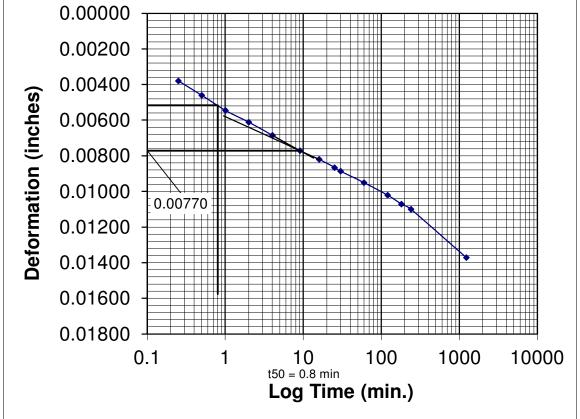

1) 0.25 to 1.0: 0.00095 2) 0.5 to 2.0: 0.00130

3) 1.0 to 4.0: 0.00160

0.5 tsf Load

initial height= 0.99215 inches

						Do	Avg 1&	2: 0.00113
Interval	Dial		Deformation	TRUE	Height of	Do	Do Avg 1-3: 0.00128	
Minutes	Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.0011	3
0	0.38270					D100=	0.0039	93
0.25	0.38110	0.00160	0.00000	0.00160	0.99055	D50= [0100+0.	5(Do-D100)
0.5	0.38075	0.00195	0.00000	0.00195	0.99020	D50=	0.0025	53
1	0.38045	0.00225	0.00000	0.00225	0.98990			
2	0.38010	0.00260	0.00000	0.00260	0.98955	t50 =	1.7	min.
4	0.37980	0.00290	0.00000	0.00290	0.98925			
9	0.37945	0.00325	0.00000	0.00325	0.98890			
16	0.37910	0.00360	0.00000	0.00360	0.98855			
25	0.37890	0.00380	0.00000	0.00380	0.98835			
30	0.37880	0.00390	0.00000	0.00390	0.98825			
60	0.37860	0.00410	0.00000	0.00410	0.98805			
120	0.37845	0.00425	0.00000	0.00425	0.98790			
180	0.37830	0.00440	0.00000	0.00440	0.98775			
240	0.37810	0.00460	0.00000	0.00460	0.98755			



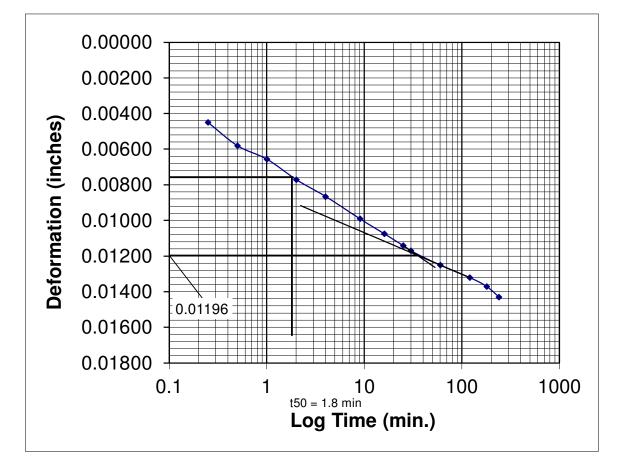
Do= D1-(D2-D1)

1) 0.25 to 1.0: 0.00215 2) 0.5 to 2.0: 0.00310

1.0 tsf Load

ini	tial height=	0.98755	inches			3)	1.0 to 4.0	: 0.00405
						Do	Avg 1&2	: 0.00262
Interval	Dial		Deformation	TRUE	Height of	De	o Avg 1-3	: 0.00310
Minutes	Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.00262	2
0	0.37810					D100=	0.00770)
0.25	0.37180	0.00630	0.00250	0.00380	0.98375	D50= I	D100+0.5	(Do-D100)
0.5	0.37100	0.00710	0.00250	0.00460	0.98295	D50=	0.00516	6
1	0.37015	0.00795	0.00250	0.00545	0.98210			
2	0.36950	0.00860	0.00250	0.00610	0.98145	t50 =	0.8	min.
4	0.36875	0.00935	0.00250	0.00685	0.98070			
9	0.36790	0.01020	0.00250	0.00770	0.97985			
16	0.36740	0.01070	0.00250	0.00820	0.97935			
25	0.36695	0.01115	0.00250	0.00865	0.97890			
30	0.36675	0.01135	0.00250	0.00885	0.97870			
60	0.36610	0.01200	0.00250	0.00950	0.97805			
120	0.36540	0.01270	0.00250	0.01020	0.97735			
180	0.36490	0.01320	0.00250	0.01070	0.97685			
240	0.36460	0.01350	0.00250	0.01100	0.97655			
1225	0.36190	0.01620	0.00250	0.01370	0.97385			

Do= D1-(D2-D1)


1) 0.25 to 1.0: 0.00245

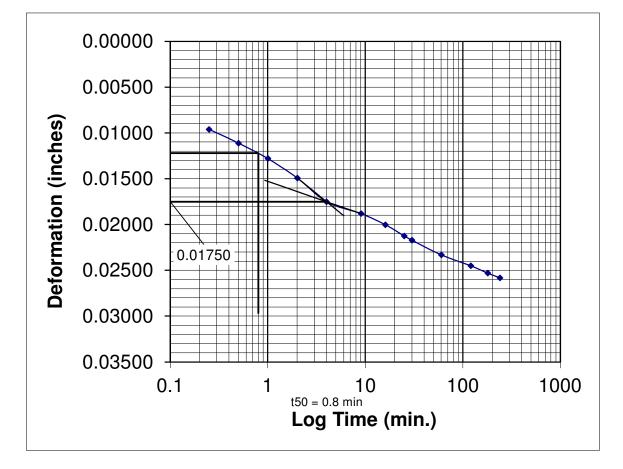
2) 0.5 to 2.0: 0.00390

2.0 tsf Load

initial height= 0.97385 inche

tial height=	0.97385	inches			3)	1.0 to 4.0	: 0.00445	
					Do	Avg 1&2	: 0.00318	
Dial	Deformation		TRUE	Height of	Do	Do Avg 1-3: 0.00360		
Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.00318	3	
0.36190					D100=	0.01196	6	
0.35450	0.00740	0.00290	0.00450	0.96935	D50= [D100+0.5	(Do-D100)	
0.35320	0.00870	0.00290	0.00580	0.96805	D50=	0.00757	7	
0.35245	0.00945	0.00290	0.00655	0.96730				
0.35130	0.01060	0.00290	0.00770	0.96615	t50 =	1.8	min.	
0.35035	0.01155	0.00290	0.00865	0.96520				
0.34910	0.01280	0.00290	0.00990	0.96395				
0.34825	0.01365	0.00290	0.01075	0.96310				
0.34760	0.01430	0.00290	0.01140	0.96245				
0.34730	0.01460	0.00290	0.01170	0.96215				
0.34650	0.01540	0.00290	0.01250	0.96135				
0.34580	0.01610	0.00290	0.01320	0.96065				
0.34530	0.01660	0.00290	0.01370	0.96015				
0.34470	0.01720	0.00290	0.01430	0.95955				
	Dial Reading 0.36190 0.35450 0.35320 0.35245 0.35130 0.35035 0.34910 0.34825 0.34760 0.34730 0.34650 0.34580 0.34580	Dial ΔH 0.36190 0.00740 0.35450 0.00740 0.35245 0.00945 0.35130 0.01060 0.35035 0.01155 0.34910 0.01280 0.34760 0.01430 0.34730 0.01460 0.34550 0.01540 0.34530 0.01610 0.34530 0.01660	Dial Deformation Reading ΔH Constant 0.36190 0.00740 0.00290 0.35450 0.00870 0.00290 0.35245 0.00945 0.00290 0.35130 0.01060 0.00290 0.35035 0.01155 0.00290 0.35450 0.01460 0.00290 0.35130 0.01460 0.00290 0.34910 0.01280 0.00290 0.34760 0.01430 0.00290 0.34730 0.01460 0.00290 0.34650 0.01540 0.00290 0.34580 0.01610 0.00290	Dial Deformation TRUE Reading ΔH Constant ΔH 0.36190 0.00740 0.00290 0.00450 0.35450 0.00740 0.00290 0.00450 0.35245 0.00945 0.00290 0.00655 0.35130 0.01060 0.00290 0.00770 0.35035 0.01155 0.00290 0.00770 0.35035 0.01155 0.00290 0.00865 0.34910 0.01280 0.00290 0.00990 0.34825 0.01365 0.00290 0.01075 0.34760 0.01430 0.00290 0.01140 0.34730 0.01460 0.00290 0.01170 0.34650 0.01540 0.00290 0.01250 0.34580 0.01610 0.00290 0.01320 0.34530 0.01660 0.00290 0.01370	Reading 0.36190ΔHConstant ConstantΔHSample0.354500.007400.002900.004500.969350.353200.008700.002900.005800.968050.352450.009450.002900.006550.967300.351300.010600.002900.007700.966150.350350.011550.002900.008650.965200.349100.012800.002900.009900.963950.347600.014300.002900.011750.963100.347300.014600.002900.011700.962150.346500.015400.002900.012500.961350.345800.016100.002900.013200.960650.345300.016600.002900.013700.96015	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Project	No.	:	2065201
Boring	No.	÷	B-028-0-21

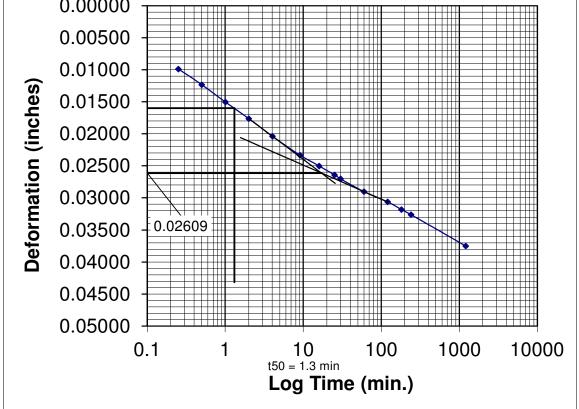

Do= D1-(D2-D1)

1) 0.25 to 1.0: 0.00640

2) 0.5 to 2.0: 0.00730

4.0 tsf Load

ini	tial height=	0.95955	inches			,): 0.00810
Intonial	Dial		Deformation	TDUE	Llaight of		-	2: 0.00685
Interval	Dial		Deformation	TRUE	Height of		0	3: 0.00727
Minutes	Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.0068	5
0	0.34470					D100=	0.0175	0
0.25	0.33250	0.01220	0.00260	0.00960	0.94995	D50= I	D100+0.5	5(Do-D100)
0.5	0.33100	0.01370	0.00260	0.01110	0.94845	D50=	0.0121	8
1	0.32930	0.01540	0.00260	0.01280	0.94675			
2	0.32720	0.01750	0.00260	0.01490	0.94465	t50 =	0.8	min.
4	0.32460	0.02010	0.00260	0.01750	0.94205			
9	0.32330	0.02140	0.00260	0.01880	0.94075			
16	0.32210	0.02260	0.00260	0.02000	0.93955			
25	0.32085	0.02385	0.00260	0.02125	0.93830			
30	0.32040	0.02430	0.00260	0.02170	0.93785			
60	0.31880	0.02590	0.00260	0.02330	0.93625			
120	0.31760	0.02710	0.00260	0.02450	0.93505			
180	0.31680	0.02790	0.00260	0.02530	0.93425			
240	0.31630	0.02840	0.00260	0.02580	0.93375			

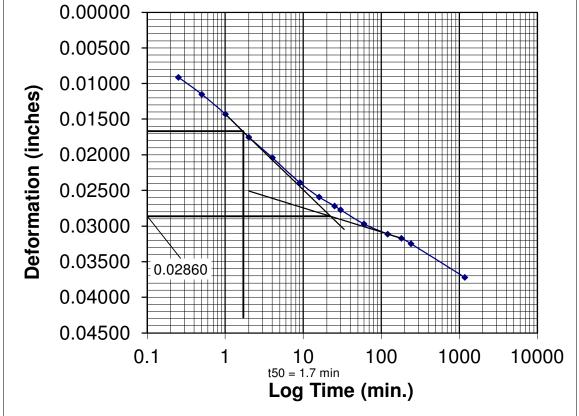


Do= D1-(D2-D1)

1) 0.25 to 1.0: 0.00480

8.0 tsf Load

2) 0.5 to 2.0: 0.00700 initial height= 0.93375 inches 3) 1.0 to 4.0: 0.00965 Do Avg 1&2: 0.00590 Interval Dial Deformation TRUE Height of Do Avg 1-3: 0.00715 0.00590 Minutes Reading ΔH Constant ΔH Sample Use Do= 0.31630 D100= 0.02609 0 0.25 0.30420 0.00220 0.00990 0.92385 D50= D100+0.5(Do-D100) 0.01210 0.5 D50= 0.30180 0.01450 0.01230 0.92145 0.01599 0.00220 1 0.29910 0.01720 0.00220 0.01500 0.91875 t50 = 1.3 2 0.29650 0.01980 0.00220 0.01760 0.91615 min. 4 0.02255 0.00220 0.29375 0.02035 0.91340 9 0.29080 0.02550 0.00220 0.02330 0.91045 16 0.28910 0.02720 0.00220 0.02500 0.90875 25 0.28770 0.02860 0.00220 0.02640 0.90735 30 0.28710 0.02920 0.00220 0.02700 0.90675 60 0.28510 0.03120 0.00220 0.02900 0.90475 120 0.28350 0.03280 0.00220 0.03060 0.90315 180 0.28230 0.03400 0.00220 0.90195 0.03180 240 0.28150 0.03480 0.00220 0.03260 0.90115 0.27660 1205 0.03970 0.00220 0.03750 0.89625 0.00000

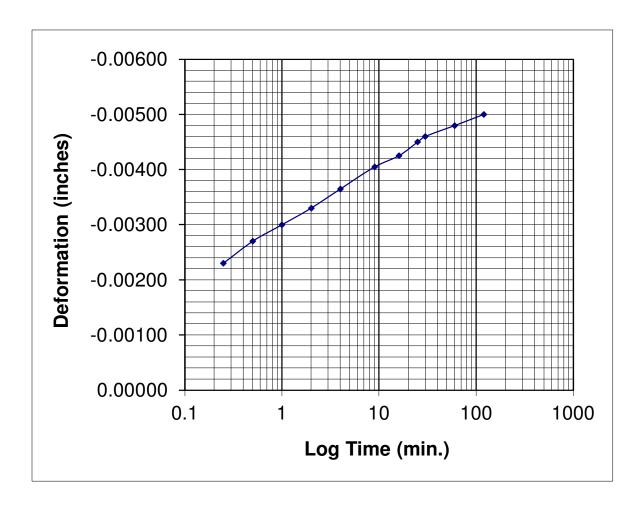


Do= D1-(D2-D1)

1) 0.25 to 1.0: 0.00390

16 tsf Load

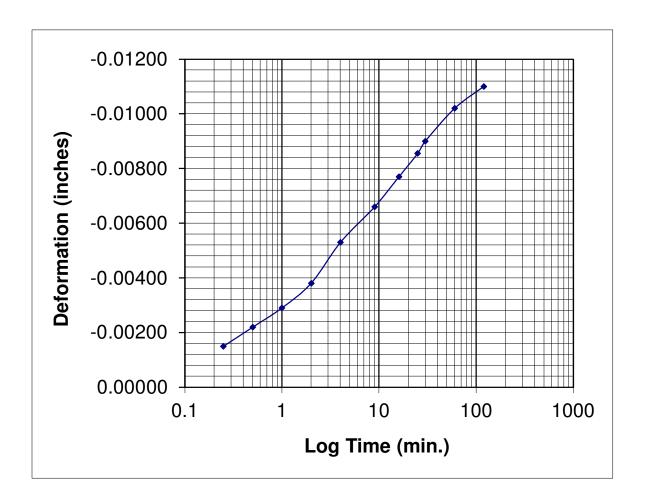
2) 0.5 to 2.0: 0.00550 initial height= 0.89625 inches 3) 1.0 to 4.0: 0.00820 Do Avg 1&2: 0.00470 Interval Dial Deformation TRUE Height of Do Avg 1-3: 0.00587 0.00470 Minutes Reading ΔH Constant ΔH Sample Use Do= 0.27660 D100= 0.02860 0 0.25 0.26560 0.00190 0.00910 0.88715 D50= D100+0.5(Do-D100) 0.01100 0.5 D50= 0.26320 0.01340 0.01150 0.88475 0.01665 0.00190 1 0.26040 0.01620 0.00190 0.01430 0.88195 t50 = 1.7 2 0.25720 0.01940 0.00190 0.01750 0.87875 min. 4 0.25430 0.02230 0.00190 0.02040 0.87585 9 0.25080 0.02580 0.00190 0.02390 0.87235 16 0.24880 0.02780 0.00190 0.02590 0.87035 25 0.24755 0.02905 0.00190 0.02715 0.86910 30 0.24700 0.02960 0.00190 0.02770 0.86855 60 0.24500 0.03160 0.00190 0.02970 0.86655 120 0.24360 0.03300 0.00190 0.86515 0.03110 180 0.24300 0.03360 0.00190 0.03170 0.86455 240 0.24225 0.03435 0.00190 0.03245 0.86380 0.23750 1170 0.03910 0.00190 0.03720 0.85905



4.0 tsf Unload

initial height= 0.85905 inches

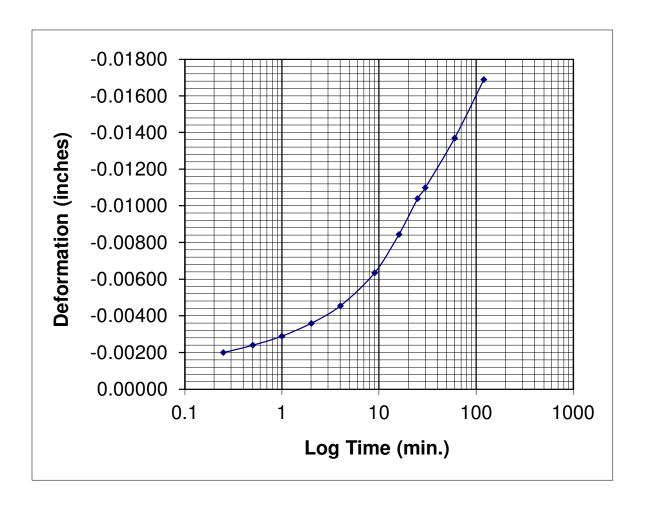
Interval Minutes	Dial Reading	ΔН	Deformation Constant	TRUE ∆H	Height of Sample
0	0.23750				
0.25	0.24110	-0.00360	-0.00130	-0.00230	0.86135
0.5	0.24150	-0.00400	-0.00130	-0.00270	0.86175
1	0.24180	-0.00430	-0.00130	-0.00300	0.86205
2	0.24210	-0.00460	-0.00130	-0.00330	0.86235
4	0.24245	-0.00495	-0.00130	-0.00365	0.86270
9	0.24285	-0.00535	-0.00130	-0.00405	0.86310
16	0.24305	-0.00555	-0.00130	-0.00425	0.86330
25	0.24330	-0.00580	-0.00130	-0.00450	0.86355
30	0.24340	-0.00590	-0.00130	-0.00460	0.86365
60	0.24360	-0.00610	-0.00130	-0.00480	0.86385
120	0.24380	-0.00630	-0.00130	-0.00500	0.86405



1.0 tsf Unload

initial height= 0.86405 inches

Interval Minutes	Dial Reading	ΔН	Deformation Constant	TRUE ∆H	Height of Sample
0	0.24380				
0.25	0.24720	-0.00340	-0.00190	-0.00150	0.86555
0.5	0.24790	-0.00410	-0.00190	-0.00220	0.86625
1	0.24860	-0.00480	-0.00190	-0.00290	0.86695
2	0.24950	-0.00570	-0.00190	-0.00380	0.86785
4	0.25100	-0.00720	-0.00190	-0.00530	0.86935
9	0.25230	-0.00850	-0.00190	-0.00660	0.87065
16	0.25340	-0.00960	-0.00190	-0.00770	0.87175
25	0.25425	-0.01045	-0.00190	-0.00855	0.87260
30	0.25470	-0.01090	-0.00190	-0.00900	0.87305
60	0.25590	-0.01210	-0.00190	-0.01020	0.87425
120	0.25670	-0.01290	-0.00190	-0.01100	0.87505



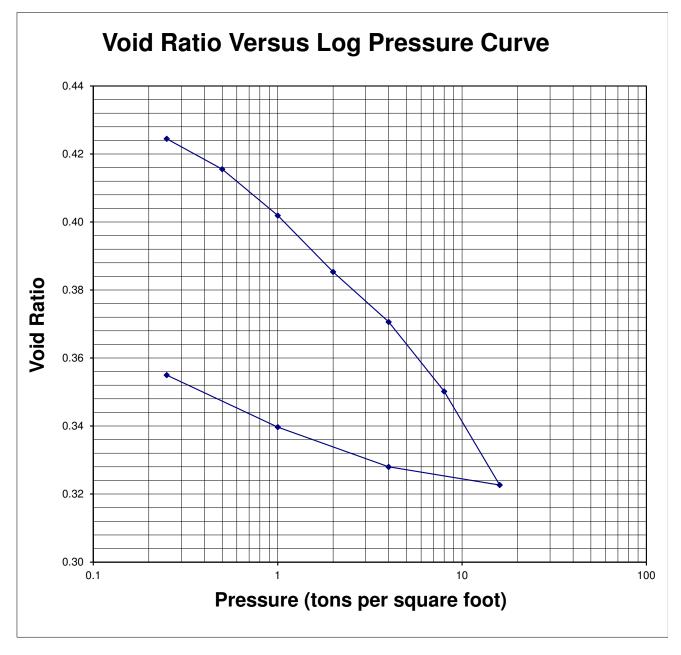
0.25 tsf Unload

initial height= 0.87505 inches

Interval Minutes	Dial Reading	ΔН	Deformation Constant	TRUE ∆H	Height of Sample
0	0.25670				
0.25	0.25870	-0.00200	0.00000	-0.00200	0.87705
0.5	0.25910	-0.00240	0.00000	-0.00240	0.87745
1	0.25960	-0.00290	0.00000	-0.00290	0.87795
2	0.26030	-0.00360	0.00000	-0.00360	0.87865
4	0.26125	-0.00455	0.00000	-0.00455	0.87960
9	0.26305	-0.00635	0.00000	-0.00635	0.88140
16	0.26515	-0.00845	0.00000	-0.00845	0.88350
25	0.26710	-0.01040	0.00000	-0.01040	0.88545
30	0.26770	-0.01100	0.00000	-0.01100	0.88605
60	0.27040	-0.01370	0.00000	-0.01370	0.88875
120	0.27360	-0.01690	0.00000	-0.01690	0.89195

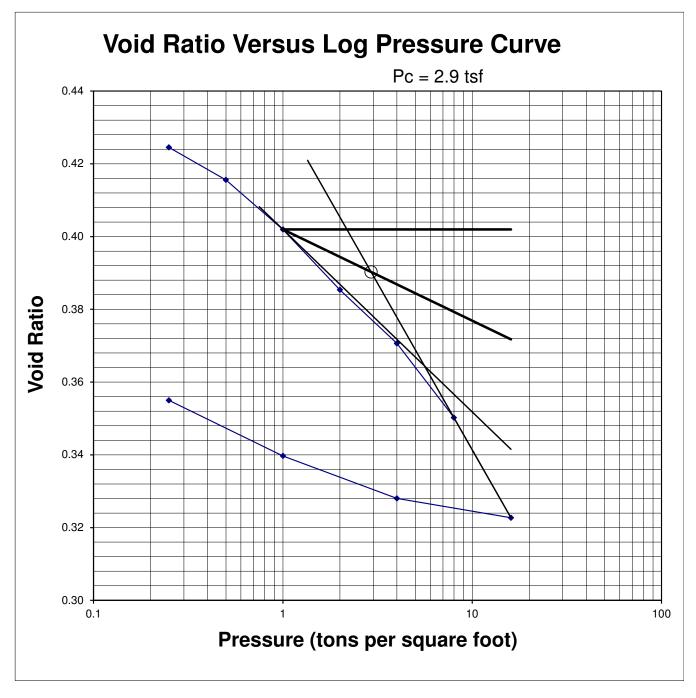
Consolidation Laboratory Calculations

Consolidometer:	2		
Method: Project No. : Client: Project: Location: Boring No. : Sample No.: Depth: Date of Test:	ASTM D 2435 Method B 2065201 ARCADIS LUC-23-11.75 Sylvania, OH B-039-1-21 ST-1 9.0 - 11.0' 2/27/2023	Visual Description: Liquid Limit: Plastic Limit: Plasticity Index:	Brown/Gray SILT and CLAY,Little Sand, Trace Gravel A-6a (9) 26 % 14 % 12 %
<i>Initial Sample Data</i> Initial Height Ring Dia. Area of Ring Initial Volume Specific Gravity	$ \begin{array}{c c} 1.000 \text{ in.} \\ \hline 2.493 \text{ in.} \\ \hline 4.8813 \text{ in}^2 \\ \hline 4.8813 \text{ in}^3 \\ \hline 2.739 \\ \end{array} $	<i>Final Sample Data</i> Final Height Ring Dia. Area of Ring Final Volume	$\begin{array}{c c} 0.939 \text{ in.} \\ \hline 2.493 \text{ in.} \\ \hline 4.8813 \text{ in}^2 \\ \hline 4.5855 \text{ in}^3 \\ \hline 0.00265 \text{ ft}^3 \end{array}$
Initial wet mass soil & ring Mass of ring Initial wet mass soil	<u>320.4 g</u> <u>146.3 g</u> <u>174.1 g</u> <u>0.38383</u> lb	Final wet mass soil, pan & ring Wt of Pan Final wet mass soil & ring Mass of ring Final dry mass of soil, pan & ring Final wet mass soil Weight of water	370.3 g 50.8 g 319.5 146.3 g 349.0 g 173.2 g 0.38184 lb 21.3 g 0.04696 lb
Initial Water Content Mass can & wet soil Mass can & dry soil Mass of can Mass of water Mass of soil Initial water content	543.6 g 480.5 g 52.7 g 63.1 g 427.8 g 14.75 % (trimmings)		
Initial water content	14.61 % (based on final dry weight)	Final water content	14.02 % (based on final dry weight)
Initial dry density	118.6 pcf	Final weight of solids (Md) Final dry density Final volume of solids (Vs) Final height of solids (Hs)	151.9 g 0.33488 lb 126.2 pcf
Initial void ratio (eo) Initial volume of voids (Vvo) Initial volume of water (Vwo) Initial degree of saturation (So)		Final volume of volds (NV) Final volume of volds (Vvf) Final volume of water (Vwf) Final degree of saturation (Sf)	$\begin{array}{c c} \hline 0.0353 \\ \hline 0.355 \\ \hline 1.2013 \\ in^3 \\ \hline 1.2998 \\ in^3 \\ \hline 108.20 \\ \% \end{array} \qquad \qquad$
		Checks: Final DD >= Initial DD	TRUE


Project No.: Date: Client: Project: Boring No.: Sample No. Depth:	2/27/2023 ARCADIS LUC-23-11.75 Sylvania, OH B-039-1-21								
Initial H=	1	inches							
Pressure tsf 0.25 0.5 1 2 4 8 16 4 1 0.25	Final Height (in) 0.98760 0.98140 0.97195 0.96045 0.95025 0.93610 0.91700 0.92070 0.92880 0.93940	Initial Height (in) 1.00000 0.98760 0.98140 0.97195 0.96045 0.95025 0.93610 0.91700 0.92070 0.92880	DH 0.01240 0.01860 0.02805 0.03955 0.04975 0.06390 0.08300 0.07930 0.07120 0.06060	Average H (in) 0.9938 0.9845 0.9767 0.9662 0.9554 0.9432 0.9266 0.9189 0.9248 0.9341	e 0.425 0.416 0.402 0.385 0.371 0.350 0.323 0.328 0.340 0.355	t50 (min) 7.8 1.6 1.8 1.7 2.8 1.8 1.6	Ave P (tsf) 0.125 0.375 1.5 3 6 12 10 2.5 0.625	Cv (in2/s) 0.000104 0.000489 0.000439 0.000449 0.000268 0.000409 0.000428	Cv (ft2/d) 0.062 0.293 0.264 0.269 0.161 0.245 0.257
Estimated C Estimated C	-	0.092 0.018							
Soil Descrip	tion:	Brown/Gray S	ILT and CLA	Y,Little Sand,	Trace Grave	el A-6a (9)			

Specific Gravity:	2.739			04 (0)
Liquid Limit:	26			
Plastic Limit:	14			
Plasticity Index:	12			
Initial Water Content:	14.6 %		Final Water Content:	14.0 %
Inital Dry Density:	118.6 pcf		Final Dry Density:	126.2 pcf
Initial Void Ratio:	0.442		Final Void Ratio:	0.355
Initial Degree of Saturation:	90.5 %		Final Degree of Saturation	108.2 %
Estimated Preconsolidation	Pressure:	2.9	tsf	

The sample for the test was trimmed from a Shelby tube sample using a cutting shoe. Test Method B was used with the specimen inundated during testing. Coefficients of consolidation were computed by log of time method.



Project No.:	2065201
Date:	2/27/2023
Client:	ARCADIS
Project:	LUC-23-11.75
	Sylvania, OH
Boring No.:	B-039-1-21
Sample No.:	ST-1
Depth:	9.0 - 11.0'

Project No.:	2065201
Date:	2/27/2023
Client:	ARCADIS
Project:	LUC-23-11.75
	Sylvania, OH
Boring No.:	B-039-1-21
Sample No .:	ST-1
Depth:	9.0 - 11.0'
Client: Project: Boring No.: Sample No.:	ARCADIS LUC-23-11.75 Sylvania, OH B-039-1-21 ST-1

Project	No.	:	2065201
Boring	No.	:	B-039-1-21

Sample No.: ST-1 Depth: 9.0 - 11.0'

TRUE

ΔН

0.25 tsf Load

Dial

Reading

0.39680

0.38980

Interval

Minutes

0

0.25

initial height=

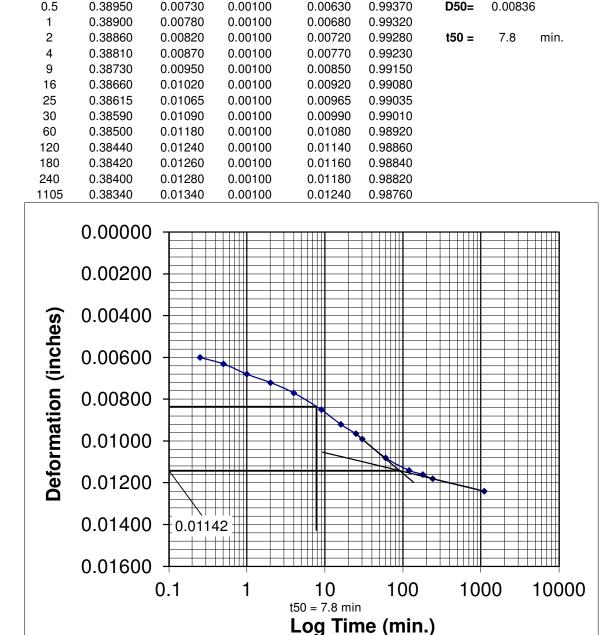
ΔH

0.00700

1 inches

Deformation

Constant


0.00100

1) 0.25 to 1.0: 0.00520 2) 0.5 to 2.0: 0.00540 3) 1.0 to 4.0: 0.00590 Do Avg 1&2: 0.00530 Height of Do Avg 1-3: 0.00550 Sample Use Do= D100= 0.00600 D50= D100+0.5(Do-D100) 0.99400 D50= 0.99370

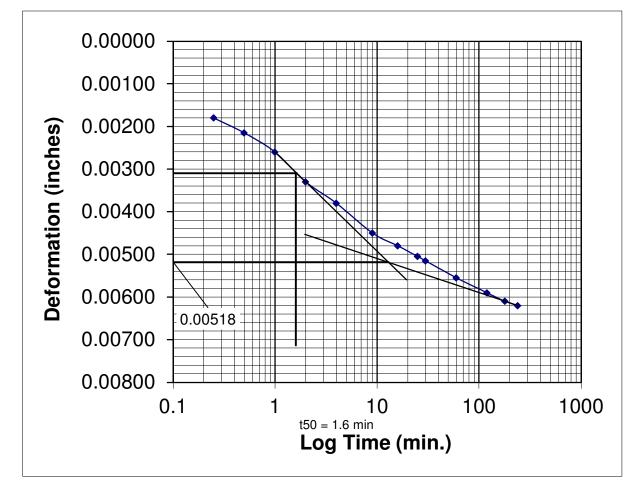
Do= D1-(D2-D1)

0.00530

0.01142

Sample No.: ST-1 Depth: 9.0 - 11.0'

Do= D1-(D2-D1)


1) 0.25 to 1.0: 0.00100 2) 0.5 to 2.0: 0.00100

3) 1.0 to 4.0: 0.00140

0.5 tsf Load

initial height= 0.9876 inches

	0					,		
						Do	Avg 1&	2: 0.00100
Interval	Dial		Deformation	TRUE	Height of	D	o Avg 1-	3: 0.00113
Minutes	Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.0010	00
0	0.38340					D100=	0.0051	8
0.25	0.38020	0.00320	0.00140	0.00180	0.98580	D50= I	D100+0.	5(Do-D100)
0.5	0.37985	0.00355	0.00140	0.00215	0.98545	D50=	0.0030)9
1	0.37940	0.00400	0.00140	0.00260	0.98500			
2	0.37870	0.00470	0.00140	0.00330	0.98430	t50 =	1.6	min.
4	0.37820	0.00520	0.00140	0.00380	0.98380			
9	0.37750	0.00590	0.00140	0.00450	0.98310			
16	0.37720	0.00620	0.00140	0.00480	0.98280			
25	0.37695	0.00645	0.00140	0.00505	0.98255			
30	0.37685	0.00655	0.00140	0.00515	0.98245			
60	0.37645	0.00695	0.00140	0.00555	0.98205			
120	0.37610	0.00730	0.00140	0.00590	0.98170			
180	0.37590	0.00750	0.00140	0.00610	0.98150			
240	0.37580	0.00760	0.00140	0.00620	0.98140			

Sample No.: ST-1 Depth: 9.0 - 11.0'

Height of

Sample

0.97405

0.97380

0.97355

0.97320

0.97290

TRUE

ΔH

0.00260

0.00340

0.00410

0.00470

0.00540

0.00635

0.00690

0.00735

0.00760

0.00785

0.00820

0.00850

Deformation

Constant

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

0.00170

1.0 tsf Load

Dial

Reading

0.37580

0.37150

0.37070

0.37000

0.36940

0.36870

0.36775

0.36720

0.36675

0.36650

0.36625

0.36590

0.36560

Interval

Minutes

0 0.25

0.5

1

2

4

9

16

25

30

60

120

180

initial height= 0.9814 inches

ΔH

0.00430

0.00510

0.00580

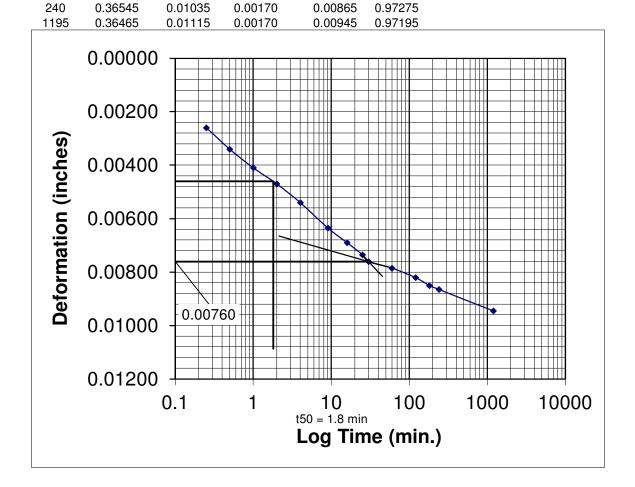
0.00640

0.00710

0.00805

0.00860

0.00905


0.00930

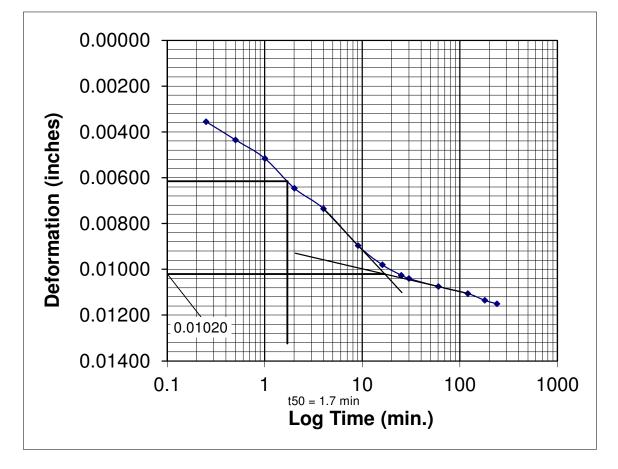
0.00955

0.00990

0.01020

Do= D1-(D2-D1) 1) 0.25 to 1.0: 0.00110 2) 0.5 to 2.0: 0.00210 3) 1.0 to 4.0: 0.00280 Do Avg 1&2: 0.00160 Do Avg 1-3: 0.00200 Use Do= 0.00160 D100= 0.00760 0.97880 D50= D100+0.5(Do-D100) D50= 0.97800 0.00460 0.97730 t50 = 1.8 0.97670 min. 0.97600 0.97505 0.97450

Project	No.	:	2065201
Boring	No.	:	B-039-1-21


Do= D1-(D2-D1)

1) 0.25 to 1.0: 0.00195

2) 0.5 to 2.0: 0.00225

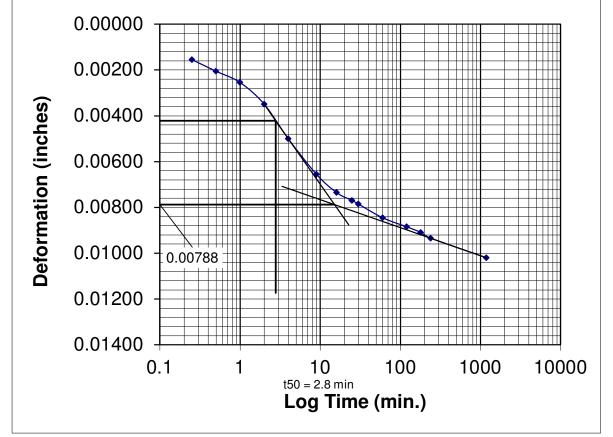
2.0 tsf Load

						,		J. 0.00220
ini	tial height=	0.97195	inches			3)	1.0 to 4.0	0: 0.00295
						Do	Avg 1&2	2: 0.00210
Interval	Dial		Deformation	TRUE	Height of	Do	5 Avg 1-3	3: 0.00238
Minutes	Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.0021	0
0	0.36465					D100=	0.0102	0
0.25	0.35840	0.00625	0.00270	0.00355	0.96840	D50= [D100+0.5	5(Do-D100)
0.5	0.35760	0.00705	0.00270	0.00435	0.96760	D50=	0.0061	5
1	0.35680	0.00785	0.00270	0.00515	0.96680			
2	0.35550	0.00915	0.00270	0.00645	0.96550	t50 =	1.7	min.
4	0.35460	0.01005	0.00270	0.00735	0.96460			
9	0.35300	0.01165	0.00270	0.00895	0.96300			
16	0.35215	0.01250	0.00270	0.00980	0.96215			
25	0.35170	0.01295	0.00270	0.01025	0.96170			
30	0.35155	0.01310	0.00270	0.01040	0.96155			
60	0.35120	0.01345	0.00270	0.01075	0.96120			
120	0.35090	0.01375	0.00270	0.01105	0.96090			
180	0.35060	0.01405	0.00270	0.01135	0.96060			
240	0.35045	0.01420	0.00270	0.01150	0.96045			

Sample No.: ST-1 Depth: 9.0 - 11.0'

Do= D1-(D2-D1)

1) 0.25 to 1.0: 0.00055 2) 0.5 to 2.0: 0.00060


3) 1.0 to 4.0: 0.00010

4.0 tsf Load

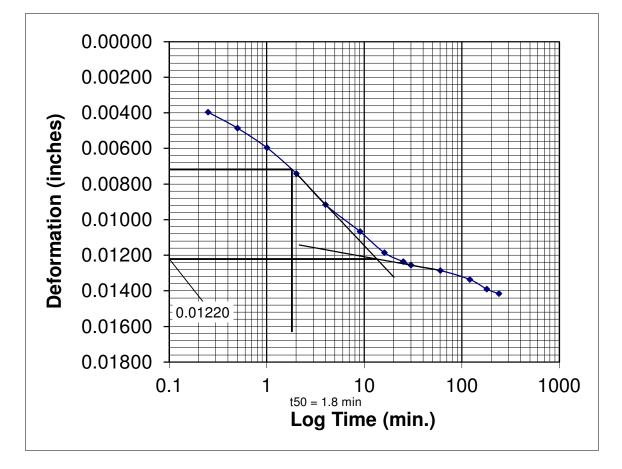
initial height=

height= 0.96045 inches

						Do	Avg 1&2: 0.00057
Interval	Dial		Deformation	TRUE	Height of	D	o Avg 1-3: 0.00042
Minutes	Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.00057
0	0.35045					D100=	0.00788
0.25	0.34740	0.00305	0.00150	0.00155	0.95890	D50=	D100+0.5(Do-D100)
0.5	0.34690	0.00355	0.00150	0.00205	0.95840	D50=	0.00423
1	0.34640	0.00405	0.00150	0.00255	0.95790		
2	0.34545	0.00500	0.00150	0.00350	0.95695	t50 =	2.8 min.
4	0.34395	0.00650	0.00150	0.00500	0.95545		
9	0.34240	0.00805	0.00150	0.00655	0.95390		
16	0.34160	0.00885	0.00150	0.00735	0.95310		
25	0.34125	0.00920	0.00150	0.00770	0.95275		
30	0.34110	0.00935	0.00150	0.00785	0.95260		
60	0.34050	0.00995	0.00150	0.00845	0.95200		
120	0.34010	0.01035	0.00150	0.00885	0.95160		
180	0.33985	0.01060	0.00150	0.00910	0.95135		
240	0.33960	0.01085	0.00150	0.00935	0.95110		
1185	0.33875	0.01170	0.00150	0.01020	0.95025		

Project	No.	:	2065201
Boring	No.	÷	B-039-1-21

Do= D1-(D2-D1)


1) 0.25 to 1.0: 0.00195

2) 0.5 to 2.0: 0.00230

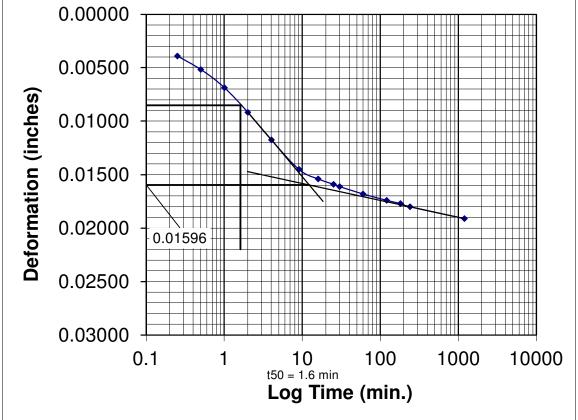
8.0 tsf Load

initial height= 0.95025 inch

initial height= 0.95025 inches			3) 1.0 to 4.0: 0.00275				
					Do	Avg 1&2	2: 0.00212
Dial		Deformation	TRUE	Height of	Do	o Avg 1-3	3: 0.00233
Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.00212	2
0.33875					D100=	0.0122	0
0.33300	0.00575	0.00180	0.00395	0.94630	D50= [D100+0.5	(Do-D100)
0.33210	0.00665	0.00180	0.00485	0.94540	D50=	0.0071	6
0.33100	0.00775	0.00180	0.00595	0.94430			
0.32955	0.00920	0.00180	0.00740	0.94285	t50 =	1.8	min.
0.32780	0.01095	0.00180	0.00915	0.94110			
0.32630	0.01245	0.00180	0.01065	0.93960			
0.32510	0.01365	0.00180	0.01185	0.93840			
0.32460	0.01415	0.00180	0.01235	0.93790			
0.32440	0.01435	0.00180	0.01255	0.93770			
0.32410	0.01465	0.00180	0.01285	0.93740			
0.32360	0.01515	0.00180	0.01335	0.93690			
0.32305	0.01570	0.00180	0.01390	0.93635			
0.32280	0.01595	0.00180	0.01415	0.93610			
	Dial Reading 0.33875 0.33300 0.33210 0.32955 0.32780 0.32630 0.32510 0.32460 0.32440 0.32440 0.32410 0.32360 0.32305	Dial ΔH 0.33875 0.30575 0.33210 0.00575 0.33210 0.00665 0.33100 0.00775 0.32955 0.00920 0.32780 0.01095 0.32510 0.01365 0.32460 0.01415 0.32440 0.01435 0.32410 0.01465 0.32363 0.01515	DialDeformationReading 0.33875ΔHConstant0.338750.005750.001800.332100.006650.001800.331000.007750.001800.329550.009200.001800.327800.010950.001800.325100.013650.001800.324600.014150.001800.324400.014350.001800.324100.014650.001800.323600.015150.00180	Dial Deformation TRUE Reading ΔH Constant ΔH 0.33875 0.33300 0.00575 0.00180 0.00395 0.33210 0.00665 0.00180 0.00485 0.33100 0.00775 0.00180 0.00595 0.32955 0.00920 0.00180 0.00740 0.32780 0.01095 0.00180 0.00915 0.32630 0.01245 0.00180 0.01065 0.32510 0.01365 0.00180 0.01185 0.32460 0.01415 0.00180 0.01235 0.32440 0.01465 0.00180 0.01285 0.32410 0.01465 0.00180 0.01285 0.32360 0.01515 0.00180 0.01335 0.32305 0.01570 0.00180 0.01395	Dial Reading 0.33875ΔHDeformation ConstantTRUE ΔHHeight of Sample0.338750.005750.001800.003950.946300.332100.006650.001800.004850.945400.331000.007750.001800.005950.944300.329550.009200.001800.007400.942850.327800.010950.001800.009150.941100.326300.012450.001800.010650.939600.325100.013650.001800.012350.937900.324400.014150.001800.012550.937700.324100.014650.001800.012850.937400.323600.015150.001800.013350.936900.323050.015700.001800.013900.93635	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Sample No.: ST-1 Depth: 9.0 - 11.0'

Interval

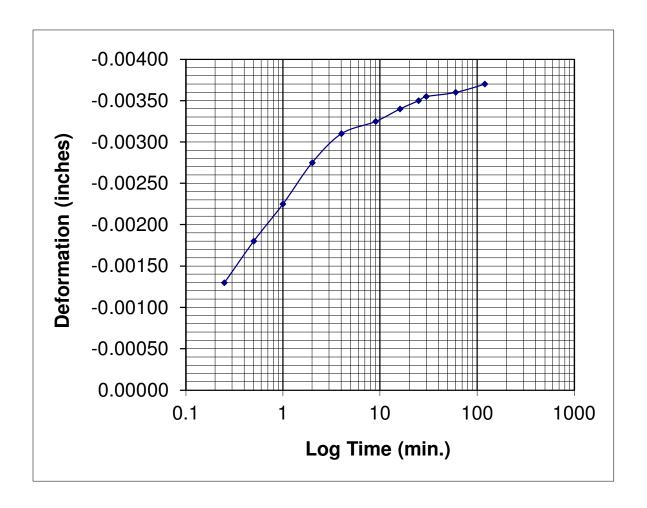

Minutes

0.25

0.5

initial

oning 1101 1 B	000 1 21		Boptin	0.0 11.0			
					Do= [D1-(D2-D	01)
16 tsf Load					1) 0.	.25 to 1.0	0: 0.00095
					,		0: 0.00115
tial height=	0.9361	inches			,		0: 0.00195
						•	2: 0.00105
Dial		Deformation	TRUE	Height of		•	3: 0.00135
Reading	ΔH	Constant	ΔH	Sample	Use Do=	0.0010	5
0.32280					D100=	0.0159	6
0.31710	0.00570	0.00180	0.00390	0.93220	D50= [0100+0.	5(Do-D100)
0.31585	0.00695	0.00180	0.00515	0.93095	D50=	0.0085	0
0.31415	0.00865	0.00180	0.00685	0.92925			
0.31185	0.01095	0.00180	0.00915	0.92695	t50 =	1.6	min.
0.30925	0.01355	0.00180	0.01175	0.92435			
0.30650	0.01630	0.00180	0.01450	0.92160			
0.30560	0.01720	0.00180	0.01540	0.92070			
0.30510	0.01770	0.00180	0.01590	0.92020			
0.30490	0.01790	0.00180	0.01610	0.92000			
0.30420	0.01860	0.00180	0.01680	0.91930			
0.30360	0.01920	0.00180	0.01740	0.91870			
0.30330	0.01950	0.00180	0.01770	0.91840			
0.30300	0.01980	0.00180	0.01800	0.91810			
0.30190	0.02090	0.00180	0.01910	0.91700			

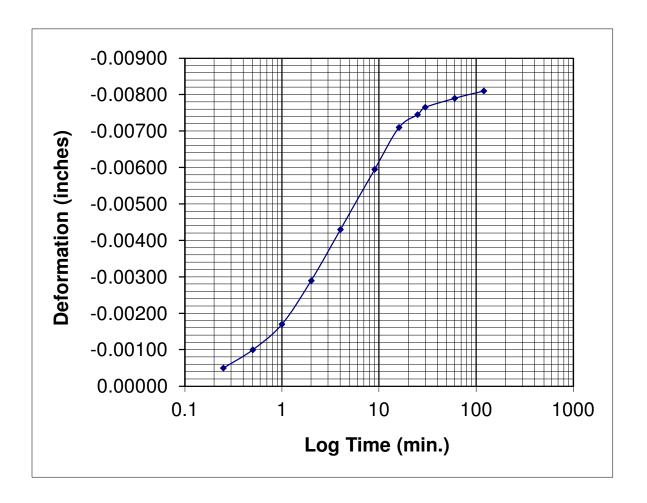


Project No. : 2065201 Boring No. : B-039-1-21 Sample No.: ST-1 Depth: 9.0 - 11.0'

4.0 tsf Unload

initial height= 0.917 inches

Interval Minutes	Dial Reading	ΔН	Deformation Constant	TRUE ∆H	Height of Sample
0	0.30190				
0.25	0.30430	-0.00240	-0.00110	-0.00130	0.91830
0.5	0.30480	-0.00290	-0.00110	-0.00180	0.91880
1	0.30525	-0.00335	-0.00110	-0.00225	0.91925
2	0.30575	-0.00385	-0.00110	-0.00275	0.91975
4	0.30610	-0.00420	-0.00110	-0.00310	0.92010
9	0.30625	-0.00435	-0.00110	-0.00325	0.92025
16	0.30640	-0.00450	-0.00110	-0.00340	0.92040
25	0.30650	-0.00460	-0.00110	-0.00350	0.92050
30	0.30655	-0.00465	-0.00110	-0.00355	0.92055
60	0.30660	-0.00470	-0.00110	-0.00360	0.92060
120	0.30670	-0.00480	-0.00110	-0.00370	0.92070

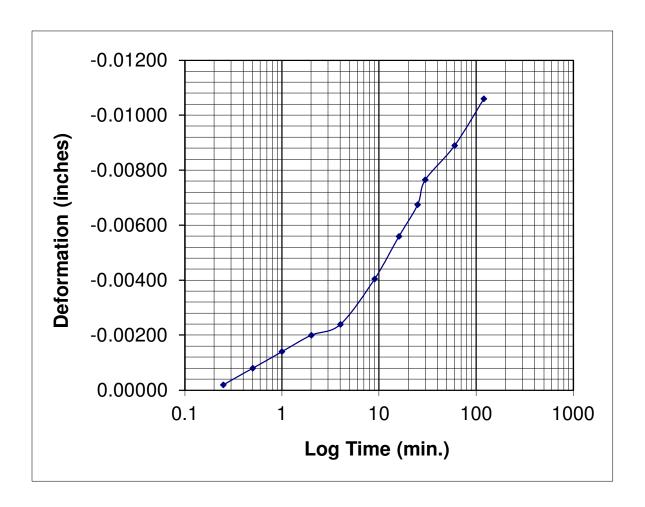


Project No. : 2065201 Boring No. : B-039-1-21 Sample No.: ST-1 Depth: 9.0 - 11.0'

1.0 tsf Unload

initial height= 0.9207 inches

Interval Minutes	Dial Reading	ΔН	Deformation Constant	TRUE ∆H	Height of Sample
0	0.30670				
0.25	0.30880	-0.00210	-0.00160	-0.00050	0.92120
0.5	0.30930	-0.00260	-0.00160	-0.00100	0.92170
1	0.31000	-0.00330	-0.00160	-0.00170	0.92240
2	0.31120	-0.00450	-0.00160	-0.00290	0.92360
4	0.31260	-0.00590	-0.00160	-0.00430	0.92500
9	0.31425	-0.00755	-0.00160	-0.00595	0.92665
16	0.31540	-0.00870	-0.00160	-0.00710	0.92780
25	0.31575	-0.00905	-0.00160	-0.00745	0.92815
30	0.31595	-0.00925	-0.00160	-0.00765	0.92835
60	0.31620	-0.00950	-0.00160	-0.00790	0.92860
120	0.31640	-0.00970	-0.00160	-0.00810	0.92880



Project No. : 2065201 Boring No. : B-039-1-21 Sample No.: ST-1 Depth: 9.0 - 11.0'

0.25 tsf Unload

initial height= 0.9288 inches

Interval Minutes	Dial Reading	ΔН	Deformation Constant	TRUE ∆H	Height of Sample
0	0.31640				
0.25	0.31800	-0.00160	-0.00140	-0.00020	0.92900
0.5	0.31860	-0.00220	-0.00140	-0.00080	0.92960
1	0.31920	-0.00280	-0.00140	-0.00140	0.93020
2	0.31980	-0.00340	-0.00140	-0.00200	0.93080
4	0.32020	-0.00380	-0.00140	-0.00240	0.93120
9	0.32185	-0.00545	-0.00140	-0.00405	0.93285
16	0.32340	-0.00700	-0.00140	-0.00560	0.93440
25	0.32455	-0.00815	-0.00140	-0.00675	0.93555
30	0.32545	-0.00905	-0.00140	-0.00765	0.93645
60	0.32670	-0.01030	-0.00140	-0.00890	0.93770
120	0.32840	-0.01200	-0.00140	-0.01060	0.93940

APPENDIX H

Pavement Core Photographic Logs

Core Log For B-001-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	3.75
CONCRETE THICKNES (in.)	=	9.75
AGGREGATE BASE THICKNESS (in.)	=	5.5
CORE BARREL DIAMETER (in.)	=	4

VISUAL DESCRIPTION:

Pavement core appeared in good condition.

Apparent asphalt coarse or overlay change at approximately 1.25 inches below top of pavement.

Core Log For B-002-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	7.75
AGGREGATE BASE THICKNESS (in.)	=	8.25
CORE BARREL DIAMETER (in.)	=	4

VISUAL DESCRIPTION:

Core Log For B-010-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 11, 2021

ASPHALT THICKNESS (in.)	=	2.5
CONCRETE THICKNESS (in.)	=	9
AGGREGATE BASE THICKNESS (in.)	=	9
CORE BARREL DIAMETER (in.)	=	4

VISUAL DESCRIPTION:

Pavement core appeared in good condition. Rebar present at 5 inches below top of concrete

Core Log For B-015-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	3.5
CONCRETE THICKNESS (in.)	=	9
AGGREGATE BASE THICKNESS (in.)	=	5.5
CORE BARREL DIAMETER (in.)	=	4

VISUAL DESCRIPTION:

Core Log For B-016-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	4.5
CORE BARRELL DIAMETER (in.)	=	4

VISUAL DESCRIPTION:

Pavement core appeared in good condition.

No encountered aggregate base.

Core Log For B-032-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	10.75
AGGREGATE BASE THICKNESS (in.)	=	9.25
CORE BARRELL DIAMETER (in.)	=	4

VISUAL DESCRIPTION:

Core Log For B-033-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	2.5
CONCRETE THICKNESS (in.)	=	9
CORE BARRELL DIAMETER (in.)	=	4

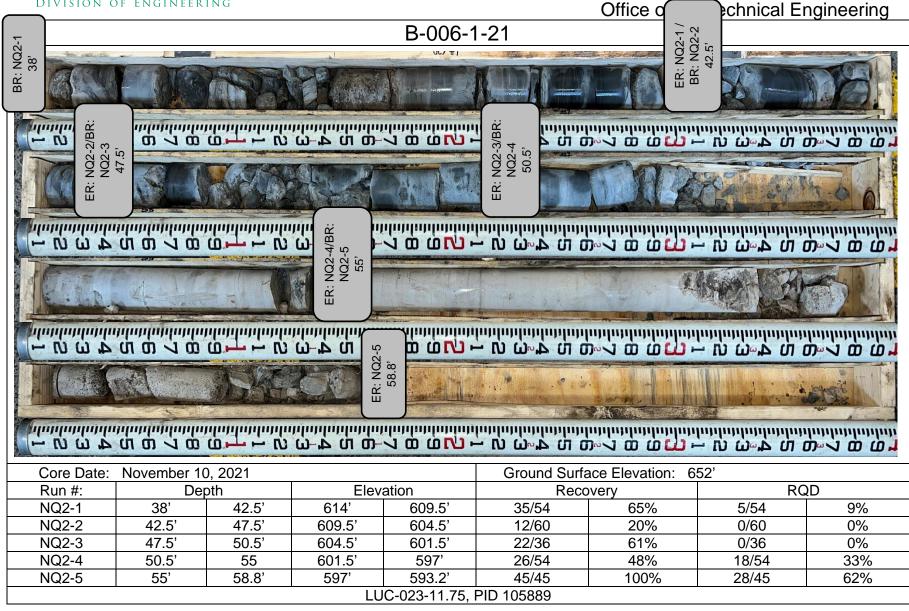
VISUAL DESCRIPTION:

Pavement core appeared in good condition. No encountered aggregate base.

Core Log For B-034-0-21

Project : LUC-023-11.75, PID 105889 Interchange Improvements Project Location : Sylvania, Lucas County, Ohio TTL Project No. 2065201 Core Date: November 1, 2021

ASPHALT THICKNESS (in.)	=	9.5
AGGREGATE BASE THICKNESS (in.)	=	6.5
CORE BARRELL DIAMETER (in.)	=	4


VISUAL DESCRIPTION:

APPENDIX I

Rock Core Photographic Logs

Office of Geotechnical Engineering

	22
Core Date: April 12, 2023 Ground Surface Elevation: 630.8'	N
Run #:DepthElevationRecoveryRQD	n b
	0%
	0% 18%
NQ2-4 25.8' 30.8' 605' 600' 54/60 90% 12/60 2 LUC-023-11.75, PID 105889	0% 18% 8%

				B-008-0)-21		2	0 0
23' 23'						ER: NQ2-3	90 90	191
	ω. 4. ω					-, <u>></u> U L		
25.8' 25.8'		YA				R. N	Re la	
			ER: NQ2-4					
			2 00 100100	UUU UUU				И И И И И И И И И И И И И И И И И И И
Run #:	April 12, 202	3 pth	Elay	ation	Ground Suna Reco	ace Elevation: 6	30.8 RC	
NQ2-1	14'	18'	616.8'	612.8'	48/48	100	0/48	0%
NQ2-2	18'	23'	612.8'	607.8'	48/60	80%	11/60	18%
NQ2-3	23'	25.8'	607.8'	605'	17/33	52%	5/60	8%
NQ2-4	25.8'	30.8'	605'	600'	54/60	90%	12/60	20%
				C-023-11.75,	PID 105889	L		

Office of Geotechnical Engineering

-	6	9 °		B-010-0)-21			
BR: NQ2-1 35.3'							No.	ER: NQ2-1 40.2'
	4.6		500					
BR: NQ2-2 40.2'								ER: NQ2-2 45.2'
	4.6	an as	1 00					
BR: NQ2-3 45.2'				R				ER: N02-3
BR: NQ2-4 50.2'		J.	A		A CONTRACT OF			ER: NQ2-4
- La propriate	4.62							
Core Date:	November 12	The second			Ground Surfa	ce Elevation: 65	50.98'	14.557.747.7543.832477.245.8329.+18527
Run #:	Dep			ation	Reco		RC	
NQ2-1	35.3'	40.2'	615.7'	610.9'	40/58	69%	21/40	53%
NQ2-2	40.2'	45.2'	610.9'	605.9'	49/60	82%	22/49	45%
NQ2-3	45.2'	50.2'	605.9'	600.9'	54/60	90%	29/54	54%
NQ2-4	50.2'	55.2'	600.9'	595.9'	52/60	87%	29/52	56%
			LU	C-023-11.75,	PID 105889			

Office of Geotechnical Engineering

				B-022-0)-21			<u> </u>
BR: NQ2-1 8'								ER: Na2-1 13'
	μ μ μ μ							
BR: NQ2-2 13'						(10)		
	a sour west	1	ETTER					
Jon -	we to an and							ER: NQ2-2
Core Date:	March 22, 20)23	, Adventer novel of ALTERN		Ground Surfa	ce Elevation: 6'	15.11'	
Run #:	De	pth		ation	Reco	very	RC	
NQ2-1	8'	13'	607.1'	602.1'	44/60	73%	17/44	39%
NQ2-2	13'	18'	602.1'	597.1'	55/60	92%	27/55	49%
NQ2-3	18'	23'	597.1'	592.1'	40/60	67%	7/40	18%
NQ2-4	23'	28'	592.1'	587.1'	57/60	95%	19/57	33%
			LU	C-023-11.75,	PID 105889			

Office of Geotechnical Engineering

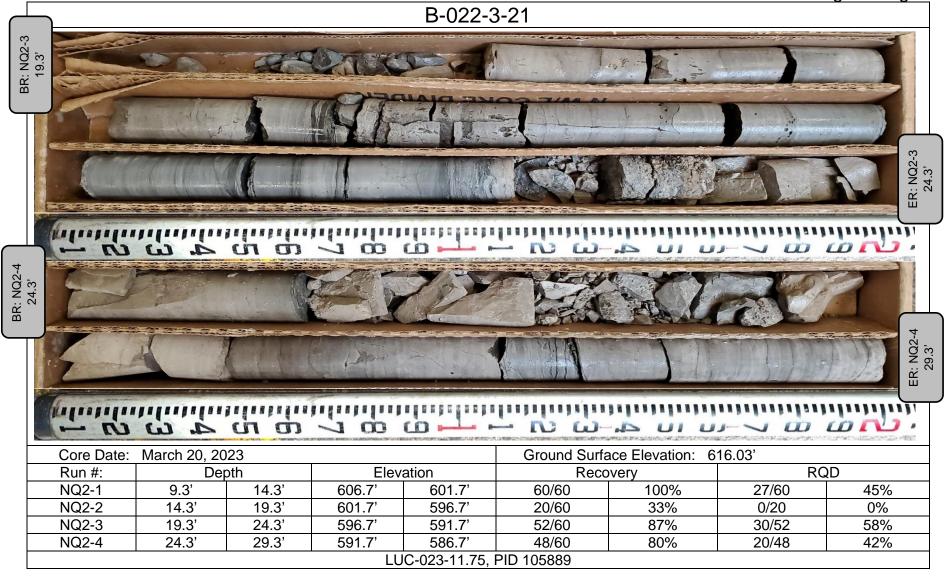
				B-022-0)-21			0 0
ún - n								
BR: NQ2-4					530			
							ER: NQ2-4	
Core Date: Run #:	March 22, 20 Der		Flev	ation	Reco	ace Elevation: 6	RQ	D
NQ2-1	8'	13'	607.1'	602.1'	44/60	73%	17/44	39%
NQ2-2	13'	18'	602.1'	597.1'	55/60	92%	27/55	49%
NQ2-3	18'	23'	597.1'	592.1'	40/60	67%	7/40	18%
NQ2-4	23'	28'	592.1'	587.1'	57/60	95%	19/57	33%
				C-023-11.75,	PID 105889			

Office of Geotechnical Engineering

				B-022-7	1-21			
BR: NQ2-1 8.6'		ER: NQ2-1	13.6'					
BR: NQ2-2 13.6'								
							ALEN BU	ER: NQ2-2 18.6'
	and the second s	A REAL PROPERTY AND A REAL	7 00					
Core Date	· · · · · · · · · · · · · · · · · · ·					ace Elevation: 67		
Run #:	De			ation		overy	RQ	
NQ2-1	8.6'	13.6'	607.5'	602.5'	51/60	85%	13/51	26%
NQ2-2	13.6'	18.6'	602.5'	597.5'	43/60	72%	8/43	19%
NQ2-3	18.6'	23.6'	597.5'	592.5'	48/60	80%	7/48	15%
NQ2-4	23.6'	28.6'	592.5'	587.5'	60/60	100%	13/60	22%
			LL	IC-023-11.75,	PID 105889			

Office of Geotechnical Engineering

				B-022-	1-21			0 0
19.67				<u>Ré</u>		-		
				A				ER: NQ2-3
23.6	<u>с</u>	<u></u>						
		71						
								ER: NQ2-4
	بابین 4 ک							
Core Date:				etie e		ace Elevation: 6		
Run #: NQ2-1	De 8.6'	oth 13.6'	607.5'	ation 602.5'	Reco 51/60	85%	RG 13/51	26%
NQ2-1 NQ2-2	13.6'	13.6	607.5 602.5'	602.5 597.5'	43/60	85% 72%	8/43	
NQ2-2 NQ2-3	18.6'	23.6'	597.5'	597.5	48/60	80%	7/48	15%
INGZ-U		23.6'	592.5'	587.5'	60/60	100%	13/60	22%
NQ2-4	23.6'	20.0	JJJZ.J					ZZ /0

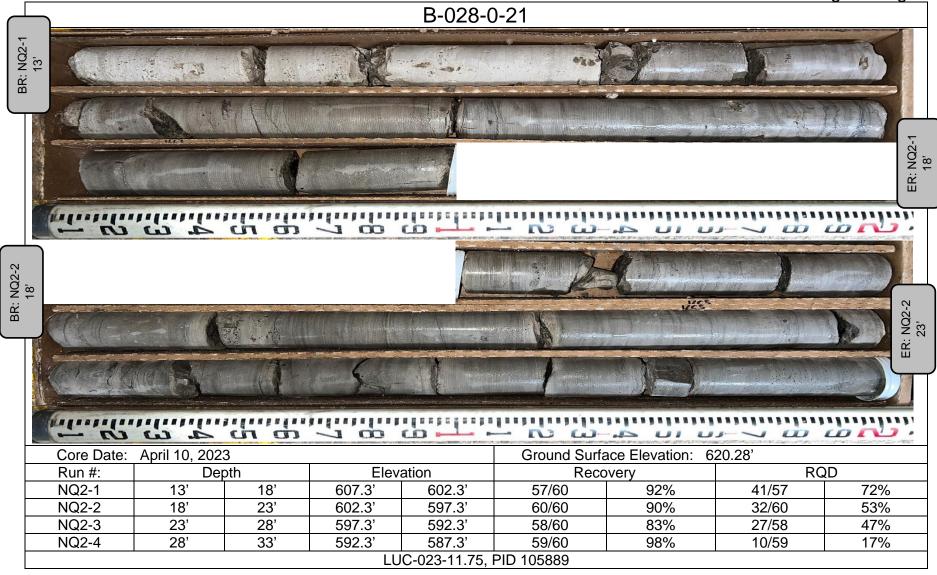

Office of Geotechnical Engineering

				B-022-3				
9.3"	All			P	R			
						lun el anna	Die	
				D		-53-		ER: NQ2-1
	4.63							
		CALL STREET, SHORE THE PARTY OF AND				and which the state of the state of the		10000
14.3°	SA				EXT	LD		ER: NQ2-2 19.3'
								ER: N02-2
Core Date	March 20, 20)23			Ground Surfa	ace Elevation: 6	316.03'	
Core Date Run #:	March 20, 20	023 pth	Elev	vation	Ground Surfa Reco	very	616.03' RC	
Core Date Run #: NQ2-1	March 20, 20 De 9.3'	023 pth 14.3'	Elev 606.7'	ration 601.7'	Ground Surfa Reco 60/60	very 100%	16.03' RC 27/60	2D 45%
Core Date Run #: NQ2-1 NQ2-2	March 20, 20 De 9.3' 14.3'	023 pth 14.3' 19.3'	Elev 606.7' 601.7'	ration 601.7' 596.7'	Ground Surfa Reco 60/60 20/60	very 100% 33%	316.03' RC 27/60 0/20	2D 45% 0%
Core Date Run #: NQ2-1	March 20, 20 De 9.3'	023 pth 14.3'	Elev 606.7'	ration 601.7'	Ground Surfa Reco 60/60	very 100%	16.03' RC 27/60	2D 45%

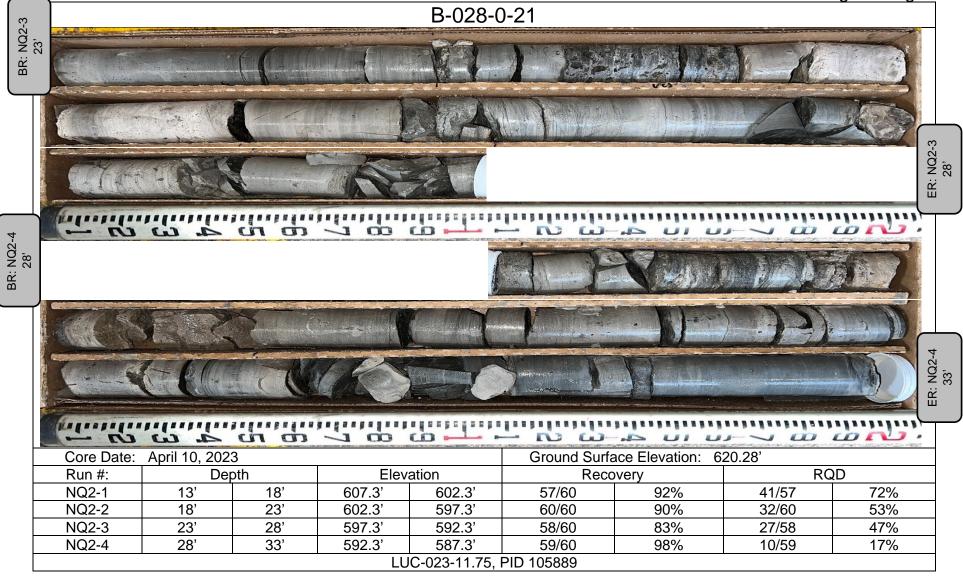
Office of Geotechnical Engineering

Office of Geotechnical Engineering

				B-023-0)-21			U U
BR: NQ2-1 16.5'								ER: NQ2-1
BR: NQ2-2 21.5'								
W.								ER: NQ2-2
	4. 60		7 00					
	April 04, 202					ace Elevation: 6		
Run #:	De			ation		overy	RC	
NQ2-1	16.5'	21.5'	607.7	602.7'	55/60	92%	39/55	71%
NQ2-2	21.5'	26.5'	602.7'	597.7'	54/60	90%	32/54	59%
NQ2-3	26.5'	31.5'	597.7'	592.7'	50/60	83%	5/50	10%
NQ2-4	31.5'	36.5'	592.7'	587.7'	59/60	98%	13/59	22%
			LU	IC-023-11.75,	PID 105889			



<u> </u>				B-023-0)-21			
29.5°						1 M		
P	AS!	· A					Se	
						一九		ER: NQ2-3
	4.63	a a	100	CL.				
31.5'							AD	0
		1		1.1.	1		US2	ER: NQ2-4
	A CONTRACTOR OF THE OWNER					Second construction of the		
		unin. a a						
Core Date:	April 04, 2023				L LA MARIEN LE CONSTRUIENTE A LE CONSTRUIENT LA LE CONSTRUIENT LE MARIENTE DE MARIENTE DE MARIENTE DE MARIENTE	ace Elevation: 62	24.15'	allan 1969 (Problem Charles Charles P. Presson)
Core Date: Run #:	April 04, 202 Dep	3 oth	Elev	vation	Ground Surfa	ace Elevation: 62 overy	24.15' RQ	D
Core Date: Run #: NQ2-1	April 04, 2023 Dep 16.5'	3 oth 21.5'	Elev 607.7	vation 602.7'	Ground Surf Reco 55/60	ace Elevation: 62 overy 92%	24.15' RQ 39/55	D 71%
Core Date: Run #: NQ2-1 NQ2-2	April 04, 2023 Dep 16.5' 21.5'	3 oth 21.5' 26.5'	Elev 607.7 602.7'	vation 602.7' 597.7'	Ground Surfa Reco 55/60 54/60	ace Elevation: 62 overy 92% 90%	24.15' RQ 39/55 32/54	D 71% 59%
Core Date: Run #: NQ2-1	April 04, 2023 Dep 16.5'	3 oth 21.5'	Elev 607.7	vation 602.7'	Ground Surf Reco 55/60	ace Elevation: 62 overy 92%	24.15' RQ 39/55	D 71%


Office of Geotechnical Engineering

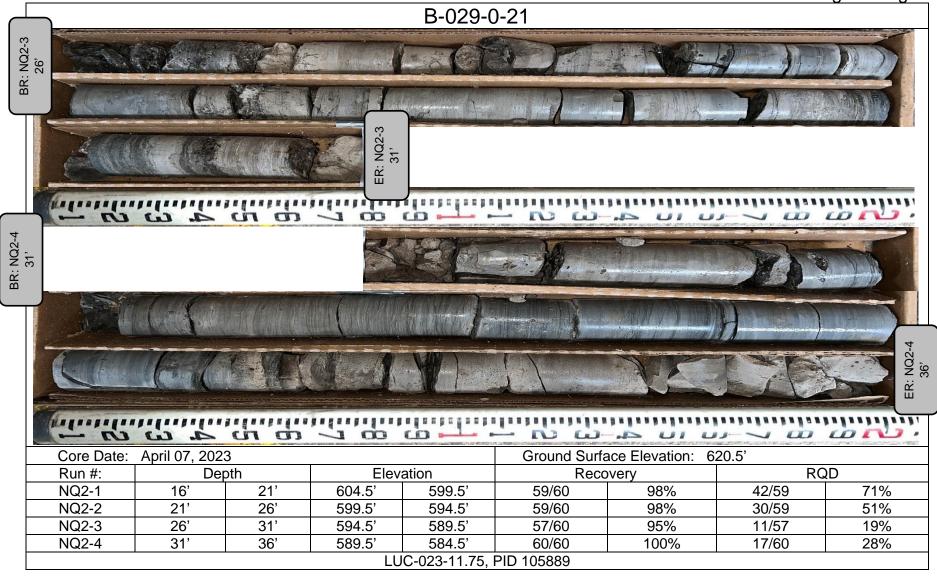
Office of Geotechnical Engineering

Office of Geotechnical Engineering

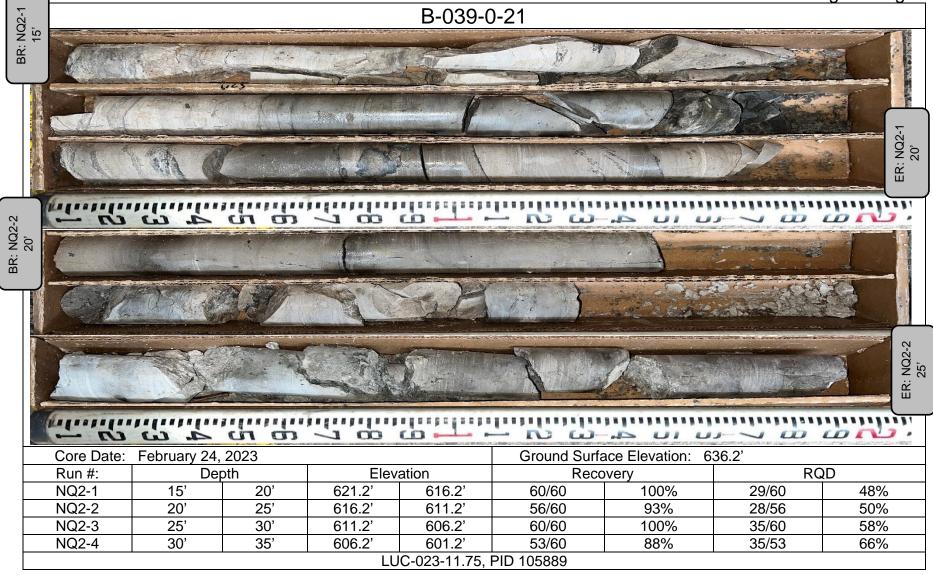
				B-028-1	-21			
BR: NQ2-1 11.1'								
								ER: N02-1
	4. 63		100					
BR: NQ2-2 16.1'		1						
		A.C.A.	VI A	A. J.				
1						na provincia a se se	A.	ER: N02-2
(1.1. P)	ω.ω	a a						
Core Date:	March 21, 20					ace Elevation: 6		
Run #:	De			ation		overy	RC	
NQ2-1	11.1'	16.1'	605.5'	600.5'	48/60	80%	46/48	96%
NQ2-2	16.1'	21.1'	600.5'	595.5'	59/60	98%	34/59	58%
NQ2-3	21.1'	26.1'	595.5'	590.5'	43/60	72%	4/43	9%
NQ2-4	26.1'	31.1'	590.5'	585.5'	57/60	95%	21/57	37%
			LU	C-023-11.75,	105889			

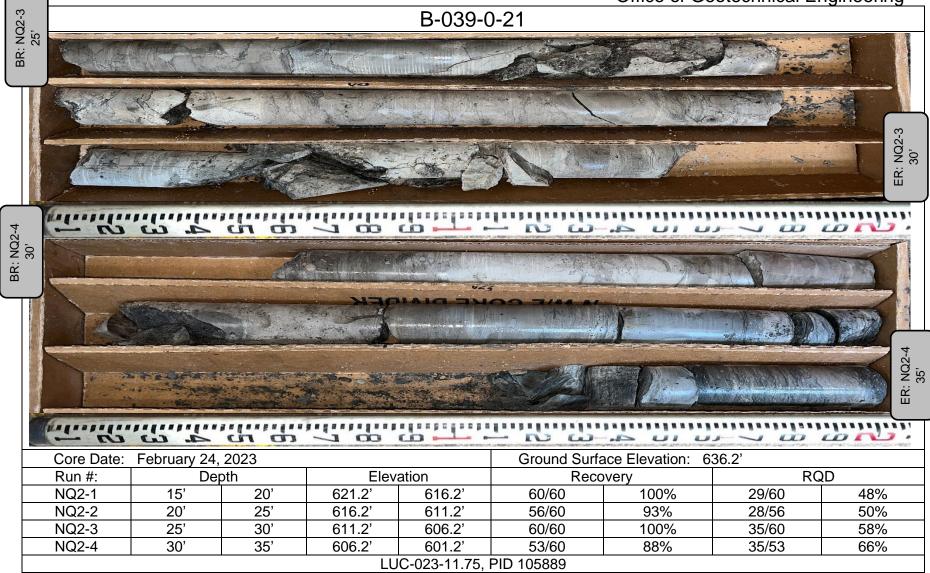
Office of Geotechnical Engineering

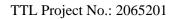
				B-028-	1-21			0 0
21.1'		336		-1				^{1, 2-3}
			H	12				ER: NQ2-3 26.1'
	- CD	di di	5 00					and.
BR: NQ2-4 26.1'					5			
H			1	Sire-V				4
					1			ER: NQ2-4
- Min								
	: March 21, 20					ace Elevation: 6		
Core Date:	, ,	Depth		ation	Recovery		RC	ĺD
Run #:	Dep				40/00			000/
Run #: NQ2-1	Dep 11.1'	16.1'	605.5'	600.5'	48/60	80%	46/48	96%
Run #: NQ2-1 NQ2-2	Dep 11.1' 16.1'	16.1' 21.1'	605.5' 600.5'	600.5' 595.5'	59/60	98%	34/59	58%
Run #: NQ2-1	Dep 11.1'	16.1'	605.5'	600.5'				



Office of Geotechnical Engineering







Office of Geotechnical Engineering

_				B-043-0)-21			
BR: NQ2-1 27.7'								
	X						3000	ER: N02-1
	ω ω <u>μ</u>	di a		Correspondence				
BR: NQ2-2 32.7'		Ball						
		100		ER: N02-2 37.7	3		F	·
	4. 6. 0.	un a		Contrar Contrar				
Core Da	ate: March 09, 20	23			Ground Surfa	ace Elevation: 6	47.6'	
Run #:	De			ation	Reco		RQ	
NQ2-1	27.7'	32.7'	619.9'	614.9'	48/60	80%	18/48	38%
NQ2-2	32.7'	37.7'	614.9'	609.9'	34/60	57%	17/34	50%
			LU	IC-023-11.75, I	105889			

APPENDIX J

Rock Core Laboratory Test Data

Compressive Strength of Rock ASTM D 7012, Method C

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-006-1-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	38–42.5 (NQ2-1)	SPECIMEN DEPTH (FEET)	39.7-40.1	

Rock DESCRIPTION	L (Natural vertical seam)
---------------------	---------------------------

LENGTH (INCHES)	4.1
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.06
CORRECTION FACTOR	1.0
AREA (SQ. IN.)	3.11

Mass (grams)	549.7
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	37,070
COMPRESSIVE STRENGTH (PSI)	11,920

TEST SPECIMEN PHOTO

TEST SPECIMEN PHOTO

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-006-1-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	50.5–55 (NQ2-4)	SPECIMEN DEPTH (FEET)	50.5-50.9	

Rock
DESCRIPTION

LENGTH (INCHES)	4.05
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.04
CORRECTION FACTOR	1.0
AREA (SQ. IN.)	3.11

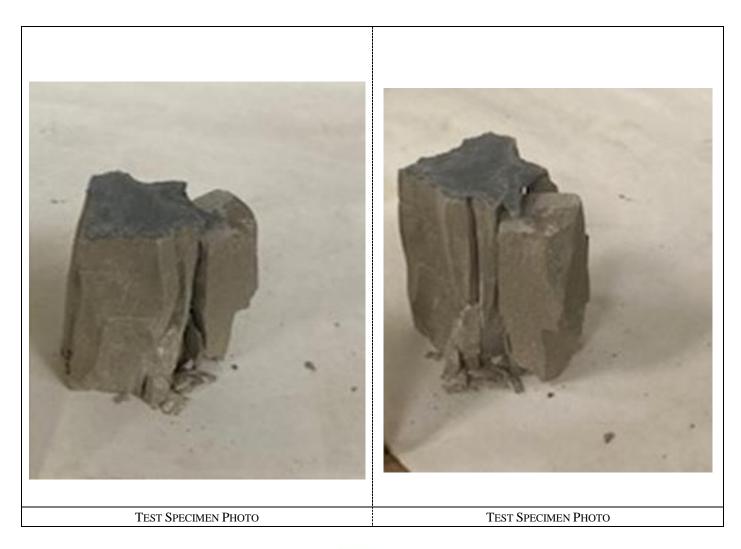
Mass (grams)	532.8
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	44,400
COMPRESSIVE STRENGTH (PSI)	14,280

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-006-1-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	50.5–55 (NQ2-4)	SPECIMEN DEPTH (FEET)	51.5-52.6	

ROCK
DESCRIPTION

LENGTH (INCHES)	4.1
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.06
CORRECTION FACTOR	1.0
AREA (SQ. IN.)	3.11

Mass (grams)	530.5
UNIT WEIGHT (LBS/CU. FT.)	158
MAXIMUM LOAD (LBS)	34,540
COMPRESSIVE STRENGTH (PSI)	11,110



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-008-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	14–18 (NQ2-1)	SPECIMEN DEPTH (FEET)	16.8-17	

LENGTH (INCHES)	2.24
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.13
CORRECTION FACTOR	0.9
AREA (SQ. IN.)	3.11

Mass (grams)	300.6
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	64,900
COMPRESSIVE STRENGTH (PSI)	18,780

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-008-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	18-23 (NQ2-2)	SPECIMEN DEPTH (FEET)	18.9-19.4	

Rock
DESCRIPTION

LENGTH (INCHES)	3.88
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.95
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	508.1
UNIT WEIGHT (LBS/CU. FT.)	160
MAXIMUM LOAD (LBS)	62,150
COMPRESSIVE STRENGTH (PSI)	19,980

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-008-0-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	25.8-30.8 (NQ2-4)	SPECIMEN DEPTH (FEET)	28-28.5	

LENGTH (INCHES)	4.01
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.02
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	526.3
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	55,100
COMPRESSIVE STRENGTH (PSI)	17,720

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-010-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	35.3-40.2 (NQ2-1)	SPECIMEN DEPTH (FEET)	37.1-37.5	

LENGTH (INCHES)	3.43
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.72
CORRECTION FACTOR	0.98
AREA (SQ. IN.)	3.11

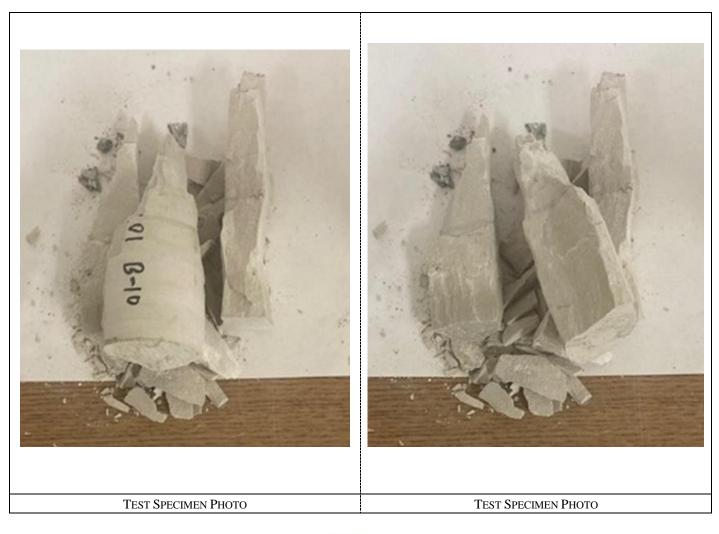
Mass (grams)	459.7
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	57,190
COMPRESSIVE STRENGTH (PSI)	18,020



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-010-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	40.2-45.2 (NQ2-2)	SPECIMEN DEPTH (FEET)	40.4-40.8	

LENGTH (INCHES)	4.12
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.07
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	545.1
UNIT WEIGHT (LBS/CU. FT.)	162
MAXIMUM LOAD (LBS)	59,690
COMPRESSIVE STRENGTH (PSI)	19,190



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-010-0-21	SAMPLE NUMBER	NQ2-3	
SAMPLE DEPTH (FEET)	45.2-50.2 (NQ2-3)	SPECIMEN DEPTH (FEET)	45.5-45.9	

Rock
DESCRIPTION

LENGTH (INCHES)	4.16
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.09
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	546.9
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	53,200
COMPRESSIVE STRENGTH (PSI)	17,110

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-010-0-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	50.2-55.2 (NQ2-4)	SPECIMEN DEPTH (FEET)	50.2-50.6	

LENGTH (INCHES)	4.05
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.04
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	513.1
UNIT WEIGHT (LBS/CU. FT.)	155
MAXIMUM LOAD (LBS)	38,150
COMPRESSIVE STRENGTH (PSI)	12,270

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	8-13 (NQ2-1)	SPECIMEN DEPTH (FEET)	12.3-13	

Rock	(Natural Vertical Seam)
DESCRIPTION	

LENGTH (INCHES)	3.95
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.98
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	511.9
UNIT WEIGHT (LBS/CU. FT.)	159
MAXIMUM LOAD (LBS)	19,450
COMPRESSIVE STRENGTH (PSI)	6,250

associates inc Environmental, Geotechnical Engineering & Testing

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	13-18 (NQ2-2)	SPECIMEN DEPTH (FEET)	14.6-15	

LENGTH (INCHES)	4.02
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.02
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	521.5
UNIT WEIGHT (LBS/CU. FT.)	159
MAXIMUM LOAD (LBS)	42,880
COMPRESSIVE STRENGTH (PSI)	13,790

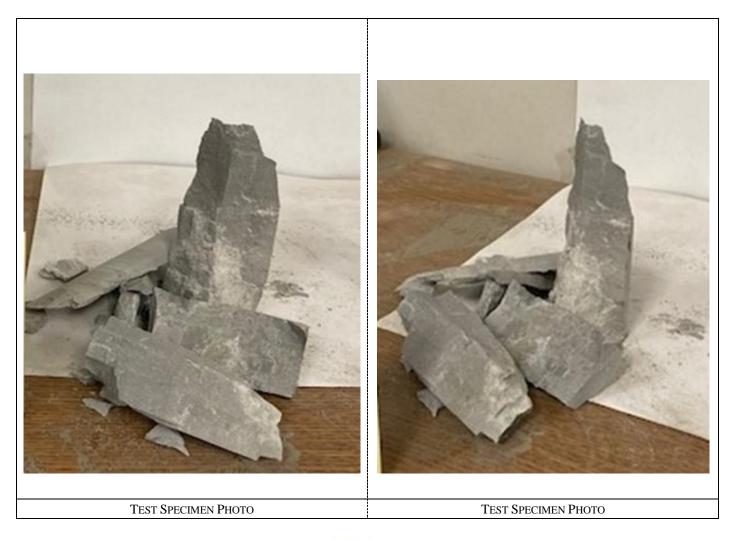
TEST SPECIMEN PHOTO

TEST SPECIMEN PHOTO

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-0-21	SAMPLE NUMBER	NQ2-3	
SAMPLE DEPTH (FEET)	18-23 (NQ2-3)	SPECIMEN DEPTH (FEET)	21-21.6	

LENGTH (INCHES)	3.99
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.01
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	533.9
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	46,740
COMPRESSIVE STRENGTH (PSI)	15,030

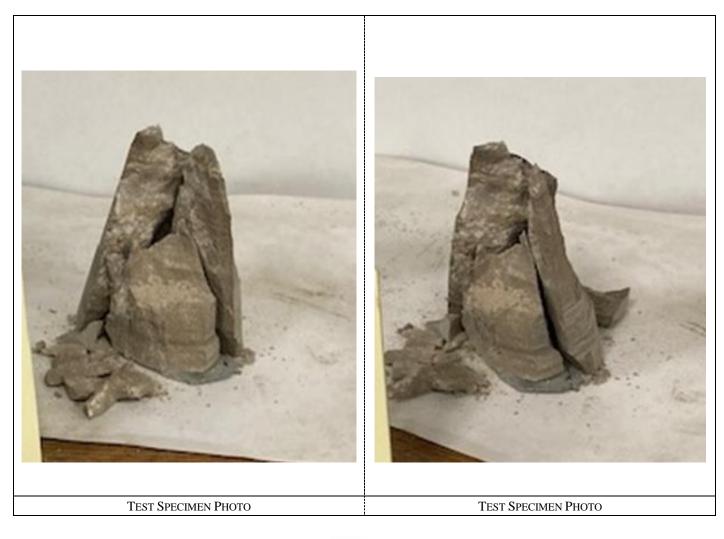


PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-1-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	8.6-13.6 (NQ2-1)	SPECIMEN DEPTH (FEET)	11.8-12.3	

Rock
DESCRIPTION

LENGTH (INCHES)	4.04
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.03
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	538.1
UNIT WEIGHT (LBS/CU. FT.)	163
MAXIMUM LOAD (LBS)	48,610
COMPRESSIVE STRENGTH (PSI)	15,630



PROJECT	LUC-023-11.75, PID 105889 TTL PROJECT NUMBER 206520			2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-1-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	13.6-18.6 (NQ2-2)	SPECIMEN DEPTH (FEET)	13.8-14.2	

LENGTH (INCHES)	3.37
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.69
CORRECTION FACTOR	0.98
AREA (SQ. IN.)	3.11

Mass (grams)	444.3
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	72,750
COMPRESSIVE STRENGTH (PSI)	22,920

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-1-21	SAMPLE NUMBER	NQ2-3	
SAMPLE DEPTH (FEET)	18.6-23.6 (NQ2-3)	SPECIMEN DEPTH (FEET)	18.6-19.2	

Rock
DESCRIPTION

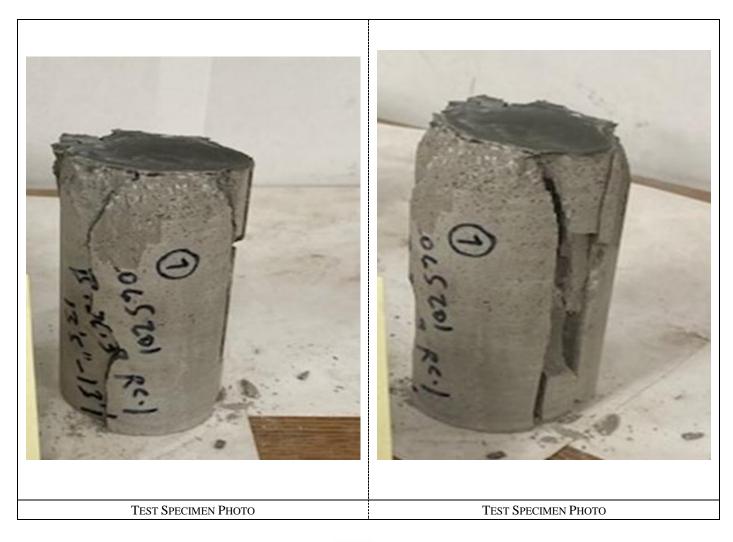
LENGTH (INCHES)	3.68
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.85
CORRECTION FACTOR	0.99
AREA (SQ. IN.)	3.11

Mass (grams)	482.5
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	23,080
COMPRESSIVE STRENGTH (PSI)	7,350

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-1-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	23.6-28.6 (NQ2-4)	SPECIMEN DEPTH (FEET)	23.6-24.3	

LENGTH (INCHES)	3.96
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.99
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	538
UNIT WEIGHT (LBS/CU. FT.)	166
MAXIMUM LOAD (LBS)	51,210
COMPRESSIVE STRENGTH (PSI)	16,470



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-3-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	9.3-14.3 (NQ2-1)	SPECIMEN DEPTH (FEET)	13.4-13.9	

LENGTH (INCHES)	3.97
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.99
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

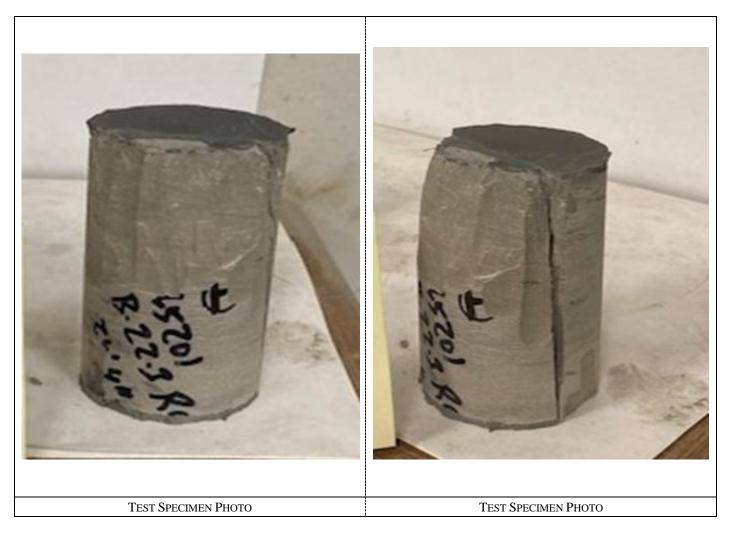
Mass (grams)	515.9
UNIT WEIGHT (LBS/CU. FT.)	159
MAXIMUM LOAD (LBS)	55,490
COMPRESSIVE STRENGTH (PSI)	17,840

PROJECT	LUC-023-11.75, PID 105889 TTL PROJECT NUMBER 2065201		2065201	
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-3-21	SAMPLE NUMBER	NQ2-3	
SAMPLE DEPTH (FEET)	19.3-24.3 (NQ2-3)	SPECIMEN DEPTH (FEET)	19.3-19.7	

Rock
DESCRIPTION

LENGTH (INCHES)	3.75
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.88
CORRECTION FACTOR	0.99
AREA (SQ. IN.)	3.11

Mass (grams)	500.9
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	74,820
COMPRESSIVE STRENGTH (PSI)	23,820



PROJECT	LUC-023-11.75, PID	TTL PROJECT NUMBER	2065201	
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-022-3-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	24.3-29.3 (NQ2-4)	SPECIMEN DEPTH (FEET)	24.3-24.9	

Rock
DESCRIPTION

LENGTH (INCHES)	3.48
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.75
CORRECTION FACTOR	0.98
AREA (SQ. IN.)	3.11

Mass (grams)	469.7
UNIT WEIGHT (LBS/CU. FT.)	165
MAXIMUM LOAD (LBS)	75,940
COMPRESSIVE STRENGTH (PSI)	23,930

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-023-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	16.5-21.5 (NQ2-1)	SPECIMEN DEPTH (FEET)	18.3-18.7	

Rock
DESCRIPTION

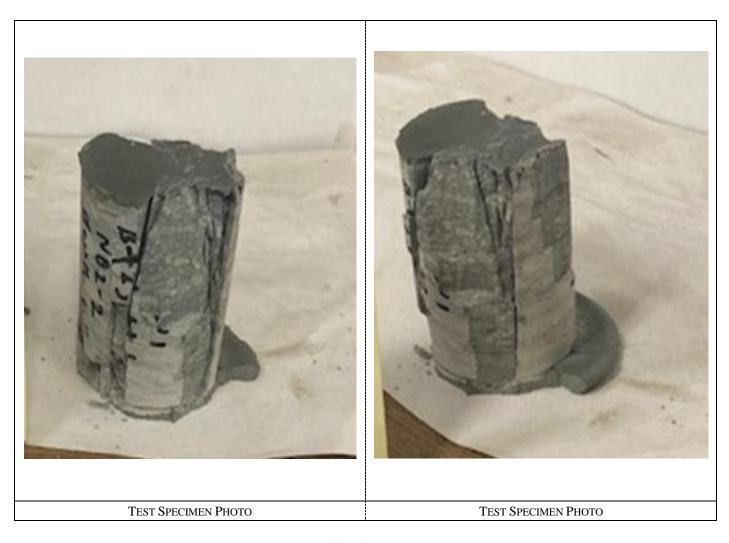
LENGTH (INCHES)	4.05
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.04
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	536
UNIT WEIGHT (LBS/CU. FT.)	162
MAXIMUM LOAD (LBS)	64,840
COMPRESSIVE STRENGTH (PSI)	20,850

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-023-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	21.5-26.5 (NQ2-2)	SPECIMEN DEPTH (FEET)	23.2-23.8	

LENGTH (INCHES)	4.0
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.01
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	516.4
UNIT WEIGHT (LBS/CU. FT.)	158
MAXIMUM LOAD (LBS)	37,730
COMPRESSIVE STRENGTH (PSI)	12,130



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-023-0-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	31.5-36.5 (NQ2-4)	SPECIMEN DEPTH (FEET)	33.3-33.6	

LENGTH (INCHES)	2.79
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	1.40
CORRECTION FACTOR	0.95
AREA (SQ. IN.)	3.11

Mass (grams)	374.5
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	49,630
COMPRESSIVE STRENGTH (PSI)	15,160



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	13-18 (NQ2-1)	SPECIMEN DEPTH (FEET)	17-17.5	

Rock
DESCRIPTION

LENGTH (INCHES)	4.06
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.04
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	543.6
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	68,410
COMPRESSIVE STRENGTH (PSI)	22,000

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	18-23 (NQ2-2)	SPECIMEN DEPTH (FEET)	20.2-20.9	

LENGTH (INCHES)	4.01
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.02
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	528.4
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	62,880
COMPRESSIVE STRENGTH (PSI)	20,200

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-0-21	SAMPLE NUMBER	NQ2-3	
SAMPLE DEPTH (FEET)	23-28 (NQ2-3)	SPECIMEN DEPTH (FEET)	26.1-26.7	

LENGTH (INCHES)	4.0
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.01
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	524.8
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	53,160
COMPRESSIVE STRENGTH (PSI)	17,090

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-1-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	11.1-16.1 (NQ2-1)	SPECIMEN DEPTH (FEET)	12.4-13.1	

LENGTH (INCHES)	4.04
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.04
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	522.7
UNIT WEIGHT (LBS/CU. FT.)	160
MAXIMUM LOAD (LBS)	66,250
COMPRESSIVE STRENGTH (PSI)	21,510

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-1-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	16.1-21.1 (NQ2-2)	SPECIMEN DEPTH (FEET)	17.2-17.5	

LENGTH (INCHES)	3.25
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	1.64
CORRECTION FACTOR	0.97
AREA (SQ. IN.)	3.08

Mass (grams)	430
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	41,750
COMPRESSIVE STRENGTH (PSI)	13,150



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-1-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	26.1-31.1 (NQ2-4)	SPECIMEN DEPTH (FEET)	27.0-27.3	

ROCK
DESCRIPTION

LENGTH (INCHES)	3.67
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	1.85
CORRECTION FACTOR	0.99
AREA (SQ. IN.)	3.08

Mass (grams)	485.2
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	60,490
COMPRESSIVE STRENGTH (PSI)	19,440

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-2-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	1.5-5 (NQ2-1)	SPECIMEN DEPTH (FEET)	2.2-2.7	

Rock
DESCRIPTION

LENGTH (INCHES)	3.99
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.02
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	530.8
UNIT WEIGHT (LBS/CU. FT.)	165
MAXIMUM LOAD (LBS)	33,120
COMPRESSIVE STRENGTH (PSI)	10,750

TEST SPECIMEN PHOTO

TEST SPECIMEN PHOTO

PROJECT	LUC-023-11.75, PID	TTL PROJECT NUMBER	2065201	
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-2-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	5-10 (NQ2-2)	SPECIMEN DEPTH (FEET)	6.1-7	

Rock
DESCRIPTION

LENGTH (INCHES)	4.01
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.03
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	532.6
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	59,220
COMPRESSIVE STRENGTH (PSI)	19,230

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-028-2-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	15-20 (NQ2-4)	SPECIMEN DEPTH (FEET)	16.8-17.1	

Rock
DESCRIPTION

LENGTH (INCHES)	3.09
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	1.56
CORRECTION FACTOR	0.97
AREA (SQ. IN.)	3.08

Mass (grams)	414.2
UNIT WEIGHT (LBS/CU. FT.)	166
MAXIMUM LOAD (LBS)	55,910
COMPRESSIVE STRENGTH (PSI)	17,610

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-029-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	16-21 (NQ2-1)	SPECIMEN DEPTH (FEET)	16.9-17.3	

Rock
DESCRIPTION

LENGTH (INCHES)	3.99
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.01
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	528.1
UNIT WEIGHT (LBS/CU. FT.)	162
MAXIMUM LOAD (LBS)	55,110
COMPRESSIVE STRENGTH (PSI)	17,720

PROJECT	LUC-023-11.75, PID	TTL PROJECT NUMBER	2065201	
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-029-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	21-26 (NQ2-2)	SPECIMEN DEPTH (FEET)	24-24.5	

Rock
DESCRIPTION

LENGTH (INCHES)	4.04
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.03
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	523.1
UNIT WEIGHT (LBS/CU. FT.)	159
MAXIMUM LOAD (LBS)	39,540
COMPRESSIVE STRENGTH (PSI)	12,710

PROJECT	LUC-023-11.75, PID 105889 TTL PROJECT NUMBER 2065			2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-029-0-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	31-36 (NQ2-4)	SPECIMEN DEPTH (FEET)	32.3-32.6	

LENGTH (INCHES)	4.0
DIAMETER (INCHES)	1.99
LENGTH / DIAMETER	2.01
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.11

Mass (grams)	524.7
UNIT WEIGHT (LBS/CU. FT.)	161
MAXIMUM LOAD (LBS)	46,580
COMPRESSIVE STRENGTH (PSI)	14,980

PROJECT	LUC-023-11.75, PID 105889 TTL PROJECT NUMBER 2065201			2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-039-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	15-20 (NQ2-1)	SPECIMEN DEPTH (FEET)	16.7-17.6	

LENGTH (INCHES)	4.01
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.03
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	532.5
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	51,520
COMPRESSIVE STRENGTH (PSI)	16,730

PROJECT	LUC-023-11.75, PID 105889 TTL PROJECT NUMBER		2065201	
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-039-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	20-25 (NQ2-2)	SPECIMEN DEPTH (FEET)	20.0-20.7	

Rock
DESCRIPTION

LENGTH (INCHES)	3.97
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.01
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	521.2
UNIT WEIGHT (LBS/CU. FT.)	162
MAXIMUM LOAD (LBS)	48,250
COMPRESSIVE STRENGTH (PSI)	15,670

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-039-0-21	SAMPLE NUMBER	NQ2-3	
SAMPLE DEPTH (FEET)	25-30 (NQ2-3)	SPECIMEN DEPTH (FEET)	27.0-27.9	

Rock
DESCRIPTION

LENGTH (INCHES)	4.01
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.03
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

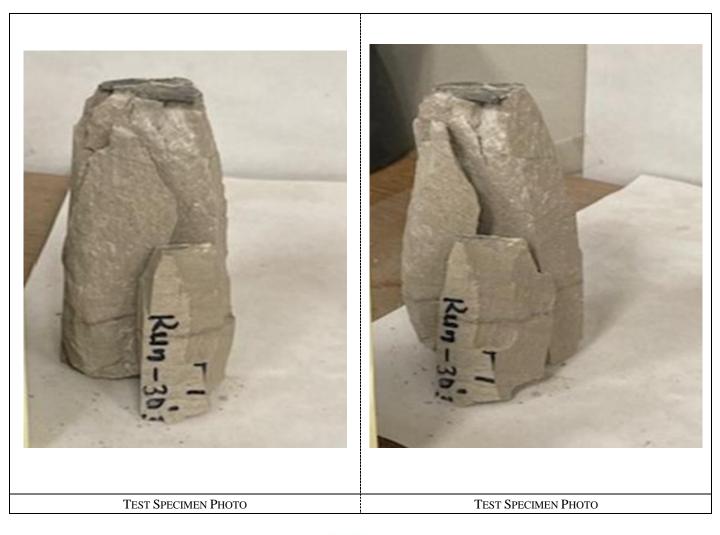
Mass (grams)	531.9
UNIT WEIGHT (LBS/CU. FT.)	164
MAXIMUM LOAD (LBS)	61,020
COMPRESSIVE STRENGTH (PSI)	19,820

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-039-0-21	SAMPLE NUMBER	NQ2-4	
SAMPLE DEPTH (FEET)	30-35 (NQ2-4)	SPECIMEN DEPTH (FEET)	32.2-32.7	

Rock
DESCRIPTION

LENGTH (INCHES)	3.96
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.00
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	535.4
UNIT WEIGHT (LBS/CU. FT.)	167
MAXIMUM LOAD (LBS)	55,140
COMPRESSIVE STRENGTH (PSI)	17,910



PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas County, Ohio			
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-043-0-21	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH (FEET)	27.7-32.7 (NQ2-1)	SPECIMEN DEPTH (FEET)	30.3-30.7	

LENGTH (INCHES)	3.99
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.02
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

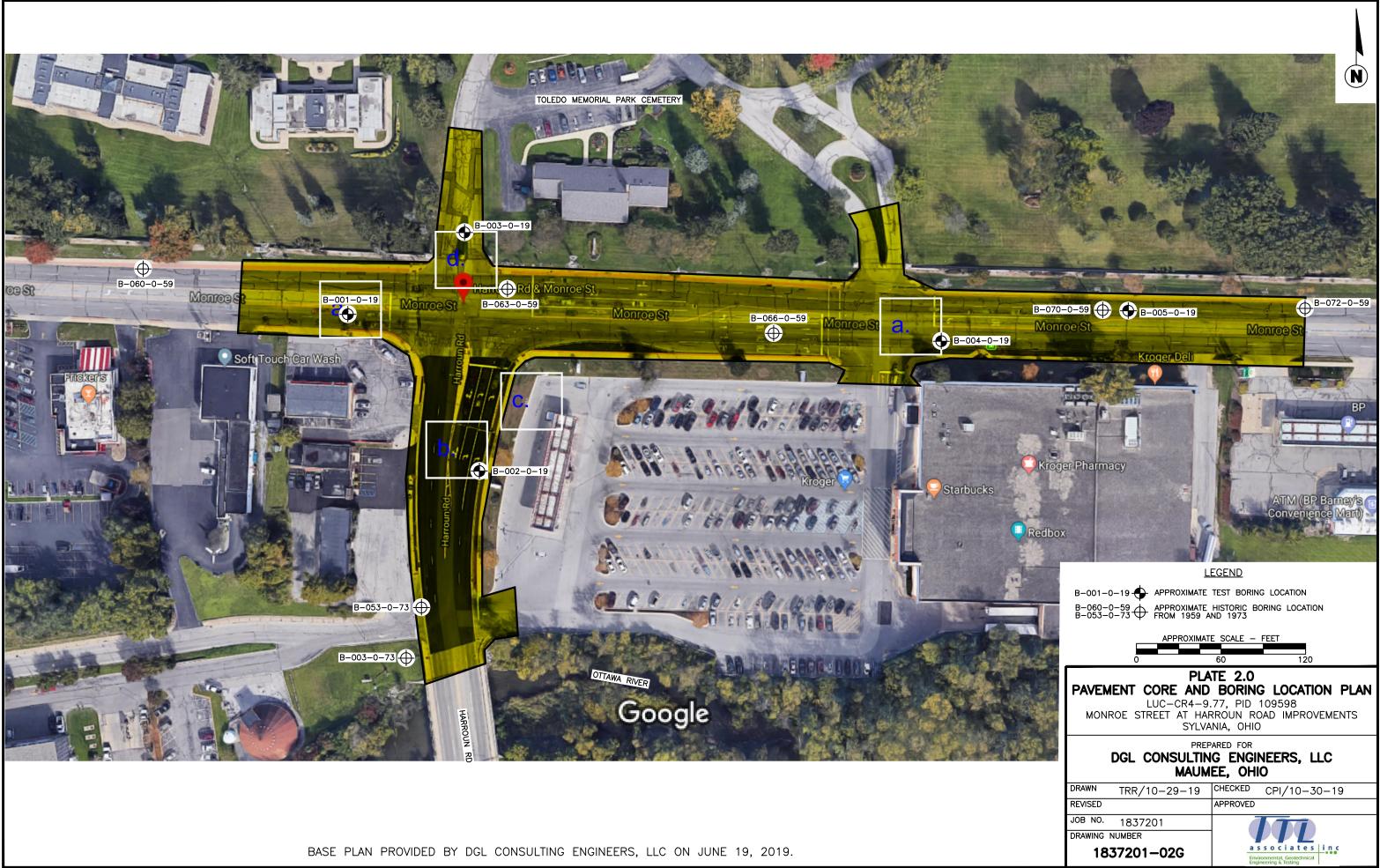
Mass (grams)	514.3
UNIT WEIGHT (LBS/CU. FT.)	159
MAXIMUM LOAD (LBS)	65,730
COMPRESSIVE STRENGTH (PSI)	21,350

PROJECT	LUC-023-11.75, PID	105889	TTL PROJECT NUMBER	2065201
LOCATION	Sylvania, Lucas Cour	nty, Ohio		
CLIENT	ARCADIS U.S., Inc.			
BORING NUMBER	B-043-0-21	SAMPLE NUMBER	NQ2-2	
SAMPLE DEPTH (FEET)	32.7-37.7 (NQ2-2)	SPECIMEN DEPTH (FEET)	32.7-33.1	

Rock
DESCRIPTION

LENGTH (INCHES)	4
DIAMETER (INCHES)	1.98
LENGTH / DIAMETER	2.02
CORRECTION FACTOR	1
AREA (SQ. IN.)	3.08

Mass (grams)	524.9
UNIT WEIGHT (LBS/CU. FT.)	162
MAXIMUM LOAD (LBS)	68,770
COMPRESSIVE STRENGTH (PSI)	22,330



APPENDIX K

Historic Borings

PROJECT: LUC-CR4-09.77 TYPE: ROADWAY	_ DRILLING FIRM / OPE SAMPLING FIRM / LO			TTL / TTL / KH		_			<u>ME 75 TRU</u> ME AUTON		_	STAT ALIG					63+50 ONR(LT.	EXPLOR B-003	3-0-19
PID: 109598 SFN: N/A	DRILLING METHOD:			25" HSA					ATE:1	/10/17		ELEV							-	3.8 ft.	PA
START: <u>9/27/19</u> END: <u>9/27/19</u>	_ SAMPLING METHOD:			SPT / ST		_ ENE	RGY R			70.4		LAT /							.6948	11	10
MATERIAL DESCRIF AND NOTES	PTION		_EV. 44.5	DEPT	ΉS	SPT/ RQD		REC (%)	SAMPLE ID			GRAD cs					PL	-	wc	ODOT CLASS (GI)	BA F
TOPSOIL - 6 INCHES		64	44.0			_															g C
MEDIUM STIFF, BROWN, SANDY SILT , "/ GRAVEL, ORGANICS, DAMP TO MOIST	AND" CLAY, TRACE				- 1 - - - 2 -	2 3 3	7	33	SS-1	2.00	1	5	14	43	37	27	20	7	20	A-4a (8)	V - V - V - V - V - V - V - V - V - V -
STIFF TO VERY STIFF, BROWN, SANDY	SILT, "AND" CLAY,	64	41.5		- 3 -	-															
DAMP					- - 4 - - - 5 -	4 4 6	12	78	SS-2	2.50	0	3	7	40	50	25	23	2	20	A-4a (8)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STIFF TO VERY STIFF, BROWN, SILT AN	ID CLAY, LITTLE	63	38.5		6 -	4															T VV T
SAND, MOIST					7 -	5 6	13	100	SS-3	2.25	-	-	-	-	-	-	-	-	25	A-6a (V)	
STIFF TO VERY STIFF, BROWN/GRAY, S SAND AND TRACE GRAVEL, MOIST	ILTY CLAY, LITTLE	63	36.5		- 8 -																4-4 29 29
					- 9 - - - 10 -	4 5 5	12	100	SS-4	3.25	-	-	-	-	-	-	-	-	21	A-6b (V)	1 8 1 8 V
					- 11 -																
@12': VERY STIFF, GRAY, DAMP					- 12 - -			100	ST-5	2.71*	-	-	-	-	-	-	-	-	14	A-6b (V)	20101 01
					- 13 -	5															
					- 14 - - - 15 -	10 10	23	100	SS-6	>4.5	-	-	-	-	-	-	-	-	12	A-6b (V)	A R R X
GRAY, Weathered Rock with Sand	Z		29.0	—TR		-															MAN AVE
	z z z	\angle			- 18 -	-															N N N
	7	─────────── 62	25.7	—EOB—	F	50/3"	L	67	SS-7	NP	- 1	-	-	- 1	- 1	- 1	<u> </u>	-	5	Rock (V)	- Space

ROJECT:LUC-CR4-09.77YPE:ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		TTL / IC TTL / KKC	_			IE 75 TRU 1E AUTON			STAT ALIG				-	70+54 ONR(LT.	EXPLOF B-00	RATIC 5-0-1
PID: 109598 SFN: N/A	DRILLING METHOD:	LIX	SSA					/10/17		ELEV		_					1(0.0 ft.	PA
TART: 9/27/19 END: 9/27/19	SAMPLING METHOD:		SPT			ATIO (70.4		LAT /			`				.69224		10
		ELEV.	DEDTUO	SPT/		DEC	SAMPLE	HP		GRAD	ATIO)N (%)	ATT	ERB	ERG		ODOT	BA
AND NOTES		642.7	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) F
ASPHALT - 4.5 INCHES		_ 642.3		_															
CONCRETE - 6.5 INCHES		641.8	- 1 -	_															
MEDIUM DENSE, BROWN, COARSE AND I LITTLE SILT, CRUSHED STONE, TRACE CI ORGANICS, MOIST FILL		640.4	- 2 -	-5 6 5	13	78	SS-1	NP	10	10	63	15	2	NP	NP	NP	6	A-3a (0)	
CRUSHED STONE FILL		639.9	1 –																1>
MEDIUM STIFF, BROWN, SANDY SILT , SC TRACE GRAVEL, MOIST	ME CLAY AND		- 3 -	2 2 2	5	100	SS-2	0.75	1	5	30	31	33	25	20	5	22	A-4a (6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
@4': VERY SOFT, BROWN/DARK BROWN			- 4 - - - 5 -	1	2	67	SS-3	0.25	-	-	-	-	-	-	-	-	22	A-4a (V)	
@6': BROWN. WET			- 6 -	1	2	100	SS-4	0.15*	_	_	-		_	_	_		27	A-4a (V)	AN K W
		635.5	- 7 -	1				0.10	<u> </u>		_	_	-				<i>L</i> 1		- 200 - 200
/ERY STIFF, GRAY/BROWN, SILTY CLAY , IRACE GRAVEL, AND CALCITE STAIN SE/			634.2 − 8 −	4 6 10	19	100	SS-5	3.00	-	-	-	-	-	-	-	-	27	A-6b (V)	VA-B
@8.5': BROWN, WET SAND SEAMS		632.7	9 - 	5 6 8	16	100	SS-6	3.50	-	-	-	-	-	-	-	-	23	A-6b (V)	
NOTES: UNCONFINED STRENGTH D ABANDONMENT METHODS, MATERIALS, 1																			

APPENDIX L

ODOT Design Checklists

I. Geotechnical Design Checklists

Project: LUC-023-11.75

PID: 105889

PDP Path: Review Stage:

Checklist	Included in This Submission
II. Reconnaissance and Planning	\checkmark
III. A. Centerline Cuts	
III. B. Embankments	\checkmark
III. C. Subgrade	\checkmark
IV. A. Foundations of Structures	\checkmark
IV. B. Retaining Wall	\checkmark
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Geotechnical Profile	
VI. D. Geotechnical Reports	\checkmark

II. Reconnaissance and Planning Checklist

C-R-S	: LUC-023-11.75	PID:	105889	Reviewer	CPI	Date:	7/1/2023
Pacar	naissance			(V/N/V)	Notoci		
				(Y/N/X)	Notes:		
1	Based on Section 302.1 in the necessary plans been develored areas prior to the comment subsurface exploration reco	oped in th cement of	e following the	Y			
	Roadway plans			\checkmark	-		
	Structures plans			\checkmark]		
	Geohazards plans						
2	Have the resources listed in the SGE been reviewed as p reconnaissance?			Y			
3	Have all the features listed the SGE been observed and field reconnaissance?			Y			
4	If notable features were dis reconnaissance, were the G these features recorded?			х			
Danni	ing - General			(Y/N/X)	Notes:		
5	In planning the geotechnica program for the project, ha geologic conditions, the pro historic subsurface explorat considered?	ve the spe posed wo	cific rk, and	Y			
6	Has the ODOT Transportation Mapping System (TIMS) been available historic boring info inventoried geohazards?	en accesse	d to find all	Y			
7	Have the borings been locat maximum subsurface inforr minimum number of boring geotechnical explorations to possible?	nation wh s, utilizing	ile using a historic	Y			
8	Have the topography, geolo materials, surface manifesta conditions, and any other s considerations been utilized spacing and depth of boring	ation of so pecial desi d in detern	oil gn	Y			
9	Have the borings been locat adequate overhead clearan equipment, clearance of un minimize damage to private minimize disruption of traff compromising the quality o	ce for the dergrounc property, ic, without	d utilities, , and t	Y			

II. Reconnaissance and Planning Checklist

Planni	ng - General	(Y/N/X)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	Y	Scaled plan is provided with project borings and appropriate historic borings that were included in the report.
	The schedule of borings should present the follow information for each boring:	ving	
a		Y	
b	location by station and offset	Ν	Station and offset not available at time of DRAFT report submittal.
C.	estimated amount of rock and soil, including the total for each for the entire program.	Y	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, soundings, test pits, etc.) been identified?	Ν	Station and offset not available at time of DRAFT report submittal.
12	Has each exploration been assigned a unique identification number, in the following format X-ZZZ-W-YY, as per Section 303.2 of the SGE?	Y	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned identification numbers according to Section 303.2 of the SGE?	Y	

II. Reconnaissance and Planning Checklist

Planni	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,		
	have the location, depth, and sampling	Y	
	requirements for the following boring types		
	been determined for the project?		
	Check all boring types utilized for this project:		
	Existing Subgrades (Type A)	\checkmark	
	Roadway Borings (Type B)	\checkmark	
	Embankment Foundations (Type B1)	\checkmark	
	Cut Sections (Type B2)		
	Sidehill Cut Sections (Type B3)		
	Sidehill Cut-Fill Sections (Type B4)		
	Sidehill Fill Sections on Unstable Slopes (Type		
	B5)		
	Geohazard Borings (Type C)		
	Lakes, Ponds, and Low-Lying Areas (Type C1)		
	Peat Deposits, Compressible Soils, and Low		1
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and Reclaimed		
	Surface Mines (Type C3)		
	Underground Mines (C4)		
	Landslides (Type C5)		
	Rock Slope (Type C6)		
	Karst (Type C7)		
	Proposed Underground Utilities (Type D)		
	Structure Borings (Type E)	\checkmark	
	Bridges (Type E1)	\checkmark	
	Culverts (Type E2 a,b,c)		
	Retaining Walls (Type E3 a and b)	\checkmark	
	Noise Barrier (Type E4)		
	CCTV & High Mast Lighting Towers		
	(Type E5)		
	Buildings and Salt Domes (Type E6)]

C-R-S:	LUC-023-11.75	PID:	105889	Reviewer:	CPI	Date:	7/1/2023
	Use this checklist in conju				-		
	If you do not have an en	nbankn	nent on the p	project, you	do not have to fil	l out this ch	ecklist.
Settlen	nent			(Y/N/X)	Notes:		
1	If soil conditions and project r	equirer	nents				
	warrant, have settlement issu	es beer	า	Y			
	addressed?						
	If not applicable (X), go to						
2	Have consolidation properties	of the	foundation	Ŷ	C' method for gr	anular soils	using N60 values.
	soils been determined?			-			
	Check methods used:						
	laboratory consolidation to						
	empirical correlations with	n moisti	ure content	\checkmark			
	and Atterberg values			-	4		
	other (describe other met			\checkmark		1 1 1 1	
3	Have calculations been perfor				Consolidation an	d correlatio	n with LL.
	the total expected embankme			Y			
	the time of consolidation? Ind	icate m	nethod				
	used.	1/	.P				
4	If differing foundation soil and		-				
	-	ditions occur throughout the embankment					
	area, have sufficient analyses		ompleted to	Y			
	evaluate consolidation at loca						
	representative of the most cri	tical co	naitions?				
5	Have the total settlement and	the tin	ne of				
	consolidation analyses indicat						
	values at all locations for the		-	Y			
	embankment work?						
6	If total settlement or time of o	consolio	dation is				
	unacceptable, have the statio						
	extent of the problem areas b			Y			
	-						
7	Has a method been chosen as	a solut	ion to the	Y	Downdrag consid	derations ad	ldressed for
	settlement issues?			T	embankment fill	at rear and	forward abutments
	Check the method(s) used				for Ramp A and I	Ramp B ove	r Ottawa River.
	waiting periods with monit	toring		\checkmark	ļ		
	drainage blanket and wick	drains					
	surcharge (preloading)				1		
	removal and replacement						
	lowering proposed grade /	change	e alignment				
	lightweight fill						
	other (describe other met	nods)		\checkmark			

Settlen	nent	(Y/N/X)	Notes:
8	Based on accepted design practices, and where applicable, adhering to published guidelines and design recommendations from FHWA, have calculations been performed to evaluate the effectiveness of the chosen solution(s)?	Υ	
9	Has an economic analysis been performed to evaluate the cost benefits of the recommended solution compared to others?	x	
10	Have all necessary notes, specifications, and details for the chosen solution been determined?	х	Plans to be prepared by others.
11	Have the need, locations, type, plan notes, and reading schedule for settlement platforms or cells been determined?	х	Plans to be prepared by others.
12	Have the effects of the predicted settlement and the chosen solution been determined and accounted for on the construction schedule?	х	To be evaluated by others.
13	Has the effect of any foundation soil consolidation (including differential settlement) been evaluated with regard to adjacent structures (e.g., bridges, buildings, culverts, utilities) which will also undergo settlement and be subject to stresses induced by the consolidation of the surrounding soil?	х	
Stabilit	τ γ	(Y/N/X)	Notes:
14	If soil conditions and project requirements warrant, have stability issues been addressed? If not applicable (X), go to Question 29	х	
15	Has the total (short term) and effective (long term) shear strength of the foundation soils been determined? Check method used: laboratory shear tests		
16	estimation from SPT or field tests Have the values of shear strength for proposed embankment fill material, as determined from GDM Section 500, been used in the stability analyses?		

Stabilit	y I	(Y/N/X)	Notes:
17	Have calculations been performed to determine the F.S. for stability? Indicate which program and which analysis method (Spencer, Bishop, etc) was used.	х	
18	Have the following F.S. been met or exceeded, as determined by the calculations, for the given stability conditions:		
a.	1.30 for short term (undrained) condition		
b.	1.30 for long term (drained) condition		
c.	1.10 for rapid drawdown, flood condition		
d.	1.50 for embankment containing or supporting a structural element		
19	When differing soil or loading conditions occur throughout the embankment area, have sufficient analyses been completed to evaluate the stability at locations representative of the most critical conditions?		
20	If the F.S. was not met or exceeded, have the stations and lateral extent of the problem areas been defined?		
21	Has a method been chosen as a solution to the stability issues? Check the method(s) used:		-
	flattening slopes		
	counterberm		4
	lightweight embankment		4
	reinforced soil slope		
	soil nailing		
	drainage blanket and wick drains		1
	removal of soft soil, adding shear key		1
	reduced grade / change alignment		1
	staged construction]
	controlled rate of fill placement]
	drilled shaft slope stabilization		
	other (describe other methods)		
22	Based on accepted design practices, and where applicable, adhering to published guidelines and design recommendations from FHWA, have calculations been performed to evaluate the effectiveness of the chosen solution(s)?		
23	Has an economic analysis been performed to evaluate the cost benefits of the recommended solution compared to others?		

Stabili		(Y/N/X)	Notes:
24	Have all necessary notes, specifications, and	(1/11///)	Notes.
24	details for the chosen solution been	х	
	determined?	^	
25	Have the need, location, type, plan notes, and		
25	reading schedule for piezometers and	х	
	inclinometers been determined?	^	
26			
20	If piezometers will be used, has the critical pressure value been determined and the		
	appropriate information included in the plans?	Х	
	appropriate information included in the plans?		
27	Have the effects of the stability solution been		
	determined and accounted for on the	Х	
	construction schedule?		
28	Has the effect of the stability solution been		
	evaluated with regard to structures (e.g.,		
	bridges, buildings, culverts, utilities) which may	Х	
	be subject to unusual stresses or require special		
	construction considerations?		
Sidehi	ll Fills	(Y/N/X)	Notes:
29	If soil conditions and project requirements		
	warrant, have sidehill fill issues been addressed?	Y	
	If not applicable (X), go to Question 34		
30	In accordance with GDM Section 800, have		
	sidehill fills been evaluated to determine if	Y	
	special benching or shear keys are needed?		
31	In accordance with GDM Section 800, if special	х	
	benching or shear keys are required,	Λ	
a	. has Plan Note G109 from L&D3 been included		
	in the General Notes?		
b	. have quantities for both excavation and		
	embankment been calculated for the benched		
	areas and added to the plan General		
	Quantities?		
С	have the special benching or shear keys been		
	indicated on the appropriate cross sections?		
22	Have water bearing zones been identified and		
32	Have water bearing zones been identified and	Х	
33	their impact addressed?		
33	Have subsurface drainage controls been	Х	
	adequately addressed?		

Specia		(Y/N/X)	Notes:
34	Have all of the environmental factors, including wetlands, stream mitigation, and landfills, been considered and incorporated prior to design and analysis of embankment settlement and stability, including EPA or other government agencies' involvement, mitigation, or special design or construction considerations?	X	To be evaluated by others.
35	If an embankment is to be placed through standing water or over weak, wet soils (with or without a fabric separator), the fill should be placed by the method of end dumping to a given height above the standing water or until compaction is achievable over the soft soil. If end dumping is to be specified,	х	
a.	has the material type for the fill to be end dumped been specified?	х	
b.	has the need for a fabric separator or filter layer been determined?	х	
C.	has the height of fill to be end dumped been determined?	х	
d.	have all notes and specifications for end dumping been developed?	х	

C-R-S:	LUC-023-11.75 PID	: 105889	Reviewer	: Date:
	lf you do not have a retainin	a wall on the r	roject you	do not have to fill out this checklist.
Soil Dat	ta and Preliminary Calculations	g wan on the p	(Y/N/X)	Notes:
	Has a justification study been perfe	ormod to	(1/11//)	Evaluation by others. In existing ROW.
T	determine the necessity of a wall a			Evaluation by others. In existing NOW.
	ROW purchase or other project alt	• •	Х	
	Now purchase of other project all	ernatives:		
2	Have the necessary soil strength p	arameters and		
	unit weights been determined?		Y	
	Check method used:			
	laboratory shear tests		\checkmark	
	estimation from SPT or field tes	sts	\checkmark	
3	Has the groundwater elevation be			
	determined?		Y	
4	Have the proper loading condition	s been	V	
	determined?		Y	
a.	If yes, check which loading	g conditions ap	ply:	7
	Backfill (Active Earth Pressure L	_oading):	\checkmark	
	Backfill (Apparent Earth Pressu	re (AEP)		1
	Loading for Ground Anchors):			
	Backfill (At-Rest Earth Pressure	Loading):		
	Backfill (Flat, No Slope):			
	Backfill (Infinite Slope):			
	Backfill (Broken Back Slope):		\checkmark	
	Earth Surcharge:		\checkmark	
	Live Load Surcharge:		\checkmark	
	Other (describe):			
5	Have the correct Load Factors, Loa	ıd		Load factors by others.
	Combinations, and Limit States be	en considered,	х	
	per AASHTO LRFD 9th Ed. Articles	3.4.1, 10.5,	A	
	and 11.5?			
6	Are earth pressure loads inclined a			By others.
	structure interaction friction angle		Х	
	been determined per BDM 307.1.1			
	Have the correct Resistance Factor			Soil properties provided for soil nail wall.
	considered, per AASHTO LRFD 9th	Ed. Articles	Х	
	10.5 and 11.5?			
8	If applicable, has the influence of g			
	been taken into account with rega	rds to soil unit	Y	
	weights and active pressures?			
9	Has the Coulomb method been uti	lized to		
Э			Y	
	determine the lateral earth pressu	165		

Design		(Y/N/X)	Notes:
10	For preliminary wall design, have the design		Design by others.
	criteria and wall type selection process been		
	followed as instructed in BDM 201.1.2.5?	Х	
11	Was an economic analysis performed to		By others
	evaluate the cost benefits of the chosen wall	Х	
	type compared to others?		
12	Were representative sections analyzed for the		Soil nail wall design properties provided
	entire length of the retaining wall for the	Х	
	following:		
a.	bearing resistance?		
b.	sliding resistance?		
c.	limiting eccentricity and overturning		
	resistance? Analyze moment equilibrium about		
	toe for non-gravity cantilever walls.		
d.	total and differential settlement?		
e.	overall (global) stability?		
13	If poor foundation soils are present, has a		
	solution been determined with respect to the	Х	
	following:		
a.			
b.	inadequate bearing resistance?		
с.			
d.			
14	For non-proprietary walls, each wall type has		By others
	design recommendations which need to be		
	determined. For the wall type being evaluated,		
	have the following design recommendations	Х	
	been determined by accepted design methods		
	or, where applicable, FHWA design guidelines:		
a.	Rigid Gravity and Semigravity footing width		
	and elevation, maximum factored Service and		
	Strength Limit State bearing pressures,		
	factored bearing resistance (BDM 307.1.5 &		
	307.2)		
b.	Drilled Shafts - diameter, spacing, embedment,		
	arrangement and percent reinforcement,		
	maximum moment and lateral shear,		
	maximum deflection (see BDM 307.6)		
с.	Soldier Pile -pile size and type, drilled hole		
	diameter, embedment, spacing, lagging design,		
	facing, maximum moment and lateral shear,		
	section modulus, maximum deflection		
	,		
<u>ا</u> ــــــــــ			

Design	(Y/N/X)	Notes:
d. Sheet Pile - pile size, embedment, maximum	(1)10/70	
moment and lateral shear, section modulus,		
maximum deflection (BDM 307.7.1)		
e. Cellular - type, maximum factored Service and		
Strength Limit State bearing pressures,		
factored bearing resistance, fill material (BDM		
307.7.2)		
f. Soil Anchor - load per anchor, number of rows,		
wale design, anchor inclination and minimum		
length, type of anchor, pile size, type, spacing,		
and embedment, maximum moment and		
lateral shear, section modulus, lagging design,		
facing (BDM 307.8)		
g. Soil Nail - nail size, spacing, inclination, and	<u> </u>	Design by others.
length, loading per nail, facing (BDM 307.9)	х	
	~	
15 Has the need for load testing of the retaining		Design by others.
wall elements been evaluated?	Х	besign by others.
a. If needed, have details and plan notes for load		
testing been included in the plans?		
16 Proprietary wall designs require a special		Design by others.
		Design by others.
process for detail design, as outlined in BDM	Х	
307.3 and 307.4. Has this procedure been		
followed for this project?		
17 Temporary walls - have the same design		
requirements as permanent walls of the same		
type been followed, except the design service	Х	
life is no more than three years (BDM 307.10)?		
18 The presence and quality of water behind the		Design by others.
wall structure and in the backfill can be a major	Х	
source of overloading and failure.		
a. Has the quality / chemistry of the groundwater		
been accounted for in the drainage system?		
b. Has an adequate drainage system been		
included in the detail wall design?		
c. If there is a water source behind the wall, has	<u> </u>	
additional drainage been added to control the		
effect of this water source on the wall?		
encer of this water source of the wait:		
19 Have the effects of the wall design and		
construction procedure been determined and		
accounted for on the construction schedule?		
accounted for on the construction schedule?		

Design		(Y/N/X)	Notes:
20	Has the effect of the wall design and construction been evaluated with regard to structures (e.g., bridges, culverts, buildings, utilities), which may be subject to unusual stresses or require special design or construction considerations?	х	Design by others
Plans a	and Contract Documents	(Y/N/X)	Notes:
21	Have all the necessary notes, specifications, special provisions, and details for the construction of the wall system been included in the plans?	х	Plans by others
22	Have the need, location, type, plan notes, and reading schedule for any instrumentation been determined and included in the plans?	х	
	Check the types of instrumentation specified:		
	settlement cells		
	settlement platforms		
	inclinometers		
	monitoring wells / piezometers		
	load cells		4
	strain gages		4
	other (describe other types)		

III.C. Subgrade Checklist

C-R-S: LUC-023-11.75	PID: 105889	Reviewer:	CPI	Date:	7/1/2023
Use this Checklist i	n conjunction with the S	ubgrade de	sign guidance	e in GDM Sectio	n 600
If you do not have an	y subgrade work on the	project, you		to fill out this a	checklist.
Subgrade		(Y/N/X)	Notes:		
1 Has the subsurface exploit characterized the soil or r Section 600?		Y			
 a. Has each sample been with the present of the present moisture content been sample? 	nce of gypsum? Has a	Y			
 b. Has mechanical classific Liquid Limit (LL), and gradom done on at least two sa within six feet of the pro- 	adation testing) been mples from each boring	Y			
 c. Has the sulfate content from each boring withir subgrade been determi 1122, Determining Sulfa 	a 3 feet of the proposed ned, per Supplement	Y			
d. Has the sulfate content exhibit gypsum crystals	been determined?	Х			
e. Have A-2-5, A-4b, A-5, A within the top 3 feet of been mechanically class		Y			
2 If soils classified as A-2-5, or A-8b, or having a LL>6! proposed subgrade (geot plans specify that these n removed and replaced or	5, are present at the echnical profile), do the naterials need to be	х	Plans to be p geotechnical		ers. Noted in the
 a. If these materials are to replaced, have the stati lateral limits for the pla provided? 	on limits, depth, and	х	_		me of DRAFT report th of roadway/ramp
 If there is any rock, shale, proposed subgrade (C&N specify the removal of the 	IS 204.05), do the plans	Х			
 a. If removal of any rock, s required, have the stati lateral limits for the pla material at proposed su 	on limits, depth, and nned removal of the	х			

III.C. Subgrade Checklist

Subgra	de	(Y/N/X)	Notes:
4	In accordance with GDM Section 600, do the SPT $(N_{60})/HP$ values and existing moisture contents for the proposed subgrade soils indicate the need for subgrade stabilization?	Y	
a.	If removal and replacement is applicable, has the detail of subgrade removal been shown on the plans, including depth of removal, station limits, lateral extent, replacement material, and plan notes (Item 204 - Subgrade Compaction and Proof Rolling)?	x	Plans to be prepared by others. Noted in the geotechnical report.
b.	If chemical stabilization is applicable, has the detail of this treatment been shown on the plans, including depth, percentage of chemical, station limits, lateral extent, and plan notes?	X	Plans to be prepared by others. Noted in the geotechnical report.
	Indicate type of chemcial stabilization specified:		
	cement stabilization	\checkmark	
	lime stabilization		-
5	If removal and replacement has been specified, do the plans include Plan Note G121 from L&D3?	х	Plans to be prepared by others. Noted in the geotechnical report.
6	If drainage or groundwater is an issue with the proposed subgrade, has an appropriate drainage system (e.g., pipe, underdrains) been provided?	х	
7	Has an appropriate quantity of Proof Rolling (C&MS 204.06) and has Plan Note G111 from L&D3 been included in the plans?	х	Plans to be prepared by others. Noted in the geotechnical report.
8	Has a design CBR value been provided?	Y	

C-R-S:	LUC-023-11.75 PID:	105889	Reviewer	CPI	Date: 7/1/2023
	Use this Checklist in conjunction w	vith the bridge	e foundatio	n design guidan	nce in GDM Section 1300
lj	f you do not have such a foundation	or structure o	on the proje	ct, you do not h	ave to fill out this checklist.
Soil an	d Bedrock Strength Data		(Y/N/X)	Notes:	
1	Has the shear strength of the found	lation soils	V		
	been determined?		Y		
	Check method used:				
	laboratory shear tests		\checkmark		
	estimation from SPT or field test	ts	\checkmark		
2	Have sufficient soil shear strength,				
	consolidation, and other parameter	rs been			
	determined so that the required all	owable loads	Y		
	for the foundation/structure can be	e designed?			
3	Has the shear strength of the found	lation	Y		
	bedrock been determined?		I		
	Check method used:				
	laboratory shear tests		\checkmark		
	other (describe other methods)				
Spread	Footings		(Y/N/X)	Notes:	
4	Are there spread footings on the pr	oject?	Y		
	If no, go to Question 11				
5	Have the recommended bottom of	footing			
	elevation and reason for this recom	mendation	Y		
	been provided?				
a.		-			
	elevation taken scour from strean	ns or other	Х		
	water flow into account?				
6	Were representative sections analy				
	entire length of the structure for th	e following:	Y		
a.	0		Y		
b.	factored sliding resistance?		х	Recommendat others	tions provided for evaluation by
c.	eccentric load limitations (overtur	rning)?	Х		
d.	· · · · ·	-	Y		
e.	overall (global) stability?		Х		
7	Has the need for a shear key been e	evaluated?	х		
a.	If needed, have the details been in	ncluded in		1	
	the plans?				
8	If special conditions exist (e.g. geon	netry, sloping			
-	rock, varying soil conditions), was th				
	footing "stepped" to accommodate		Х		
9	Have the Service I and Maximum St	rength Limit			
	States for bearing pressure on soil of	-	Y		
	provided?				

Spread	Footings	(Y/N/X)	Notes:
10	If weak soil is present at the proposed foundation level, has the removal / treatment of this soil been developed and included in the plans?	х	Bearing on rock.
a.	Have the procedure and quantities related to this removal / treatment been included in the plans?		
Pile Str	ructures	(Y/N/X)	Notes:
11	Are there piles on the project? If no, go to Question 17	Y	
12	Has an appropriate pile type been selected?		
	Check the type selected:		
	H-pile (driven)	\checkmark	
	H-pile (prebored)		
	Cast In-place Reinforced Concrete Pipe		
	Micropile		
	Continuous Flight Auger (CFA)		
	other (describe other types)		
13	Have the estimated pile length or tip elevation and section (diameter) based on either the Ultimate Bearing Value (UBV) or the depth to top of bedrock been specified? Indicate method used.	Y	Top of rock for end-bearing piles
14	If scour is predicted, has pile resistance in the scour zone been neglected?		Not near waterway
15	Has a wave equation drivability analysis been performed as per BDM 305.3.1.2 to determine whether the pile can be driven to either the UBV, the pile tip elevation, or refusal on bedrock without overstressing the pile?	х	Not at this time
16	If required for design, have sufficient soil parameters been provided and calculations performed to evaluate the:		Rock-bearing piles.
a.	Nominal unit tip resistance and maximum settlement of the piles?		
b.	•		
C.		х	Prescribed waiting period.
d.	Potential for and impact of lateral squeeze from soft foundation soils?		

Pile St	ructures	(Y/N/X)	Notes:
17	If piles are to be driven to strong bedrock (Q _u >7.5 ksi) or through very dense granular soils or overburden containing boulders, have "pile points" been recommended in order to protect the tips of the steel piling, as per BDM 305.3.5.6?	Y	
18	If subsurface obstacles exist, has preboring been recommended to avoid these obstructions?	х	
19	If piles will be driven through 15 feet or more of new embankment, has preboring been specified as per BDM 305.3.5.7?	Y	

Drilled Shafts		(Y/N/X)	Notes:
20	Are there drilled shafts on the project?		
	If no, go to the next checklist.	Y	
21	Have the drilled shaft diameter and embedment		
	length been specified?	Y	
22	Have the recommended drilled shaft diameter		
	and embedment been developed based on the		
	nominal unit side resistance and nominal unit tip	Y	
	resistance for vertical loading situations?		
23	For shafts undergoing lateral loading, have the	Y	Lateral load-deflection parameters provided to
	following been determined:	I	structural engineer.
a.	total factored lateral shear?		
b.			
C.	. maximum deflection?		
d.	5		
24	If a bedrock socket is required, has a minimum		Yes, then deeper embedment required for scour
	rock socket length equal to 1.5 times the rock	Y	considerations.
	socket diameter been used, as per BDM 305.4.2?	I	
25	Generally, bedrock sockets are 6" smaller in		Initially considered, but now structural engineer
	diameter than the soil embedment section of	Y	is prescribing straight shafts through soil and
	the drilled shaft. Has this factor been accounted		rock.
	for in the drilled shaft design?		
26	If scour is predicted, has shaft resistance in the	\checkmark	
	scour zone been neglected?	•	
27	Has the site been assessed for groundwater	Y	
	influence?		
a.			
	concern, does the design address control of	Х	
	groundwater flow during construction?		
28	Have all the proper items been included in the	х	Plans to be prepared by others.
- 20	plans for integrity testing?		Diana to be prepared by athene Dravidad
29	If special construction features (e.g., slurry,	V	Plans to be prepared by others. Provided
	casing, load tests) are required, have all the	Х	recommendations in geotechnical report.
20	proper items been included in the plans?		
30	If necessary, have wet construction methods been specified?	Y	
General		(V/N/V)	Notes:
31	Has the need for load testing of the foundations	(Y/N/X)	
51	been evaluated?	Х	
a.	testing been included in the plans?		
	testing been included in the pidlis!		

VI.B. Geotechnical Reports

C-R-S:	LUC-023-11.75 PID: 105889	Reviewer	СРІ	Date:	7/1/2023
Genera		(V/N/V)	Notes:		
1	Has an electronic copy of all geotechnical	(Y/N/X)	This report is being	nrovidad ala	ctropically
1		v	This report is being	provided ele	ctronically.
	submissions been provided to the District	Y			
	Geotechnical Engineer (DGE)?		This is the DDAFT re	nort cubmic	ion
2	Has the first complete version of a geotechnical	V	This is the DRAFT re	port submiss	sion
	report being submitted been labeled as 'Draft'?	Y			
3	Subsequent to ODOT's review and approval, has		This is the DRAFT re	port submise	sion
-	the complete version of the revised geotechnica	1			
	report being submitted been labeled 'Final'?	X			
	· · · · · · · · · · · · · · · · · · ·				
4	Has the boring data been submitted in a native		The gINT Project file	e will be prov	vided with the
	format that is DIGGS (Data Interchange for		final report.		
	Geotechnical and Geoenvironmental)	Х			
	compatable? gINT files meet this demand?				
5	Does the report cover format follow ODOT's				
	Brand and Identity Guidelines Report Standards	Y			
	found at http://www.dot.state.				
	oh.us/brand/Pages/default.aspx ?				
6	Have all geotechnical reports being submitted				
	been titled correctly as prescribed in Section	Y			
	706.1 of the SGE?				
Report	-	(Y/N/X)	Notes:		
7	Do all geotechnical reports being submitted	Y			
	contain the following:	· ·			
a.	,	Y			
	706.2 of the SGE?				
b.		Y			
	of the SGE?	-			
C.	6,				
	the Project," as described in Section 706.4 of	Y			
	the SGE?				
d.		Y			
	Section 706.5 of the SGE?				
e.	a section titled "Findings," as described in Section 706.6 of the SGE?	Y			
f	a section titled "Analyses and				
···	Recommendations," as described in Section	Y			
	706.7 of the SGE?				
Appen	Appendices		Notes:		
8	Do all geotechnical reports being submitted	(Y/N/X)			
Ŭ	contain all applicable Appendices as described in	Y			
	Section 706.8 of the SGE?				
9	Do the Appendices present a site Boring Plan	1			
,	showing all boring locations as described in	Y			
	Section 706.8.1 of the SGE?	'			
	Section 706.8.1 of the SGE?				

VI.B. Geotechnical Reports

Appendices		(Y/N/X)	Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 706.8.2 of the SGE?	Y	
11	Do the Appendices include reports of undisturbed test data as described in Section 706.8.3 of the SGE?	Y	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 706.8.4 of the SGE?	Y	