FX

Draft Structure Foundation Exploration Report

MOE-TR183-0.13

Monroe County, OH December 2, 2022

Prepared for: Office of the Monroe County Engineer 47134 Moore Ridge Road Woodsfield, OH 43793

By:

HDR 9999 Carver Road, Suite 210 Blue Ash, OH 45242

Contents

EXEC	CUTIV	E SUMMARY	1
1	INTR	ODUCTION	2
2	GEO	LOGY AND OBSERVATIONS	2
	2.1	Project Setting	2
	2.2	Soil and Geologic Setting	3
		2.2.1 Project Soils2.2.2 Bedrock Geology	3 3
3	EXPL	ORATION	4
	3.1	Site Reconnaissance	4
	3.2	Subsurface Exploration	5
	3.3	Laboratory Testing	5
4	FIND	INGS	6
5	ANAL	YSES AND RECOMMENDATIONS	7
	5.1	Determination of Soil Parameters	7
	5.2	Bridge Foundations	7
	5.3	Scour Evaluation Parameters	8
	5.4	Recommendations	8
		5.4.1 Site Preparation	8 9
6	LIMIT	TATIONS	9
7	REFE	ERENCES	0

Tables

Table 3-1. Summary of Pavement Subgrade Borings	5
Table 4-1. Summary of Groundwater Levels	6
Table 5-1. Recommended Design Soil Strength Parameters	7
Table 5-2. Recommended Axial and Lateral Pile Design Parameters	8
Table 5-3: Scour Analysis Parameters	8

Appendices

Appendix A. Exhibits
xhibit No. 1: Site Vicinity and Topographic Map
Exhibit No. 2: Physiographic Regions of Ohio
Exhibit No. 3: Surficial Geology
Exhibit No. 4a: Soil Survey Map - Soil Types
Exhibit No. 4b: Soil Survey Map - Corrosion of Concrete
Exhibit No. 4c: Soil Survey Map - Corrosion of Steel
Exhibit No. 4d: Soil Survey Map - pH Levels
Exhibit No. 5: Bedrock Geology Map
Exhibit No. 6: Bedrock Topography Map
Exhibit No. 7: Mines of Ohio Map
Exhibit No. 8: Boring Location Plan
Appendix B. Boring Logs and Rock Core PhotosB-1
Appendix C. Laboratory Testing C-1
Appendix D. Analyses

This page is intentionally left blank.

EXECUTIVE SUMMARY

This report summarizes the results of the structure foundation exploration program performed in support of the replacement of Bridge No. MOE-TR183-0.13 (SFN 5634504) carrying Paines Run Road, Township Road 183 (TR 183), over Paines Run in Salem Township in eastern Monroe County, just to the northeast of the unincorporated community of Cameron, Ohio.

The report includes the geotechnical information obtained from borings and laboratory testing performed under this study. The exploration, along with the laboratory test results are presented in more detail in Section 3 and Appendices B and C of this report.

Based on HDR's assessment of the borings, the generalized soil profile consists of alluvial sand and gravel deposits overlying shale, claystone, and sandstone bedrock. Further discussion on the encountered subsurface conditions is located in Section 4.

Given the relatively shallow depth to bedrock (approximately 25 feet), it is anticipated that deep foundations will be utilized to support the new bridge structure. The selected design build team will determine the appropriate foundation type. However, given the proximity of Paines Run, the shallow groundwater, and interbedded loose to medium dense sands and gravel deposits within the soil profile, pile foundations are anticipated to be the preferred foundation option. The recommended design parameters for the foundation analyses to be performed by the design build team are provided in Section 5 and in Appendix D.

1 INTRODUCTION

FJS

This report summarizes the results of the structure foundation exploration program performed in support of the replacement of Bridge No. MOE-TR183-0.13 (SFN 5634504) carrying Paines Run Road (TR 183) over Paines Run. The MOE-TR183-0.13 project is located in Salem Township in eastern Monroe County, just to the northeast of the unincorporated community of Cameron, Ohio as shown on the Site Vicinity Map (Exhibit No. 1) in Appendix A. The work includes the removal of the existing 49-foot bridge structure and its replacement with a presumed single span box beam structure using the design-build contracting method. Minimal approach work is expected, with a total project length of 200 feet, starting at Straight Line Mileage (SLM) 0.13 and extending to approximate SLM 0.17.

This geotechnical study was authorized by the Ohio Department of Transportation (ODOT) on October 12, 2022, under the VAR-STW Geotechnical Engineering Services CEAO 2023-2 contract. The geotechnical services performed under this task order were carried out in general accordance with ODOT's *Specifications for Geotechnical Explorations* (SGE) *Geotechnical Design Manual* (GDM), *Bridge Design Manual* (BDM), and the *Location and Design Manual*, *Volume 2*. All four documents are dated July 2022. The scope of work relative to this exploration report included:

- a visual reconnaissance of the project site,
- review of available soil and geologic information within the project area,
- the development and performance of a subsurface exploration program to evaluate the existing subsurface conditions at the bridge location,
- laboratory testing on selected soil and rock samples in accordance with the requirements of the SGE,
- characterization of a generalized soil profile along with recommended design strength parameters, and
- preparation of this Structure Foundation Exploration report.

This report presents the descriptions and interpretations of the encountered subsurface conditions at the site and provides general geotechnical recommendations to assist in the design of the replacement bridge structure by the selected design build team.

2 GEOLOGY AND OBSERVATIONS

2.1 Project Setting

This project is located within a valley flood plain the northeast portion of Monroe County, Ohio. The rural setting surrounded by wooded hillsides and agricultural parcels. A residential structure, as well as an existing farm equipment supplier and boneyard are located adjacent to the project site. Elevations along the project site range from about El. 690 outside the bridge limits to approximately El. 680 at the stream crossing itself.

2.2 Soil and Geologic Setting

A review of the Physiographic Regions of Ohio map (Ohio Division of Geological Survey, 1998) indicates that the project site is located within the Little Switzerland Plateau region of the Allegheny Plateaus section of the Appalachian Plateaus province (Exhibit No. 2 in Appendix A). The Little Switzerland Plateau region is characterized by highly dissected, high relief valleys of generally 450 ft to 750 feet along the Ohio River. Elevations in this region generally range from 450 to 1,400 feet above sea level. Soils in the Little Switzerland Plateau typically consist of red and brown silty-clay loam colluvium over Pennsylvanian-age upper Conemaugh group through Permian-age Dunkard group cyclic sequences of red and gray shales, and siltstones, sandstones, limestones, and coals.

The project site is directly drained by Paines Run, with the confluence of Paines Run and Sunfish Creek located approximately 900 feet downstream of the project site. Sunfish Creek and its tributaries drain much of the northern part of Monroe County, and eventually drains into the Ohio River, approximately 5 miles east of the project site.

According to the Surficial Geology data from the Ohio Department of Natural Resources (ODNR) Division of Geological Survey (Exhibit No. 3 in Appendix A), surficial soils at the site consist of primarily Holocene-aged alluvial deposits (a) with underlying Wisconsinan-aged sand and gravel (SG). These surficial deposits are underlain by Pennsylvanian bedrock including sandstone, shale, siltstone, clay, limestone, and coal (P). The alluvium develops in floodplains of modern streams with soils ranging from silt to clay to boulders, commonly including organic materials. The sand and gravel deposits consist of intermixed and interbedded sand and gravel, commonly containing thin, discontinuous layers of silt and clay. The deposits may be finely stratified to massive, as well as cross bedded. The thickness of the sand and gravel deposits at the project site is approximately 25 feet.

2.2.1 Project Soils

The USDA Soil Survey of Monroe County indicates the most prevalent surficial soil types within the project limits are the Chagrin (Chg1AF) and Hartshorn (He) silt loams as shown in Exhibit No. 4a.

Soils of the Chagrin silt loam (0 to 3 percent slopes) consist of 95 percent Chagrin soils, and 5 percent minor components. The Chagrin soils generally consist of silt loam and loam overlying stratified gravelly fine sandy loam to silt loam derived from fine loamy alluvium. The well drained soils are typically located in flood plains with a moderately high to high water capacity.

Soils of the Hartshorn silt loam (0 to 2 percent slopes) consist of 100 percent Hartshorn and similar soils. Hartshorn soils generally consist of silt loam, gravelly silt loam, sand and gravel overlying unweathered bedrock derived from alluvium. The well drained soils are typically located in floodplains with a very low to moderately high water capacity.

As shown on Exhibit Nos. 4b through 4d in Appendix A, the soil survey indicates the soils within the project area are considered to have low to moderate risk of corrosion to concrete, high risk of corrosion to steel, and have pH levels of 6.1 to 6.5.

2.2.2 Bedrock Geology

As shown on Exhibit No. 5 (Bedrock Geology Map), the bedrock geology mapped within the project area is the Pennsylvanian age Monongahela Group (IPm). The Permian-Pennsylvanian age Dunkard Group (PIPd) is located at higher elevations on the valley walls and ridges outside of the project area. Bedrock elevations in the project area are less than 700 feet within the Sunfish Creek valley as shown

on Exhibit No. 6 (Bedrock Topography Map), and quickly climbs upon the valley walls to El 750 or higher.

The Upper Pennsylvanian-age Monongahela Group generally consists of shale, siltstone, limestone, sandstone, and coal with laterally extensive nonmarine limestone and coal beds. General features include lenticular, planar, nodular, irregular, and cross bedding, with thin to massive bedding. The sandstones are described as fine to coarse grained, locally calcareous and conglomeratic, thin to massive to cross bedded, and micaceous. Limestone is described as micritic to coarse grained, thin to medium bedding including nodular to irregular bedding. Coals are banded, bituminous, thin to thick bedded with local to regional distribution.

No previous surface or deep mining was mapped at the project site itself. However as shown on the ODNR Mines of Ohio Map (Exhibit No. 7), significant deep mining of the Pittsburgh No. 8 coal seam of the Monongahela group has been performed approximately 0.75 mile northeast of the project site. Additional information provided by ODNR indicates this coal seam to be near El. 450 to El. 500. Several abandoned mine entrances are also located within approximately 0.75 mile to 1.0 mile south and west of the project site. These mine openings are associated with the Meigs Creek No. 9 and Uniontown No. 10 coal seams, also of the Monongahela group. These seams ranged from roughly El. 700 to El. 755 based on available historic mining information provided by the ODNR.

3 EXPLORATION

3.1 Site Reconnaissance

A visual reconnaissance of the project site and surrounding area was performed by an HDR geotechnical engineer during the drilling activities on October 17 and 18, 2022. The project site is located within a relatively wide valley containing Sunfish Creek, near the toe of the valley wall. The existing bridge is a one lane structure carrying TR 183 over Paines Run. This single span structure is supported by two approximately 23-inch deep by 9-inch wide, steel sections spanning between the two bridge abutments. The abutments appear to have been previously constructed of 15-inch by 15-inch by 36-inch stacked stone blocks, which have since been braced and strengthened with a soldier pile and lagging wall along the face of the masonry abutment. The lagging consists of corrugated steel sheeting at the north abutment, and guardrail at the south abutment. Measured from the creek bed to the bridge deck surface, the abutment walls are approximately 9 feet in height along the south abutment and approximately 4.5 feet at the north abutment.

The existing bridge deck consists of approximately 2.5-inch by 3.5-inch wood planks, placed perpendicular to the alignment, supported on six evenly spaced 3-inch wide by 5-inch deep steel sections positioned parallel to the alignment. Multiple gaps and holes were noted near the middle bridge span from apparent rot and decay of the planks. The bridge deck is supported by 10 approximately 6.5-inch wide and 8-inch deep steel sections spanning perpendicular to the alignment and connected to the two 23-inch deep by 9-inch wide steel sections running along the sides of the bridge. The exceptions are the southern and northern most 6.5-inch by 8-inch steel sections. As the bridge is set slightly askew to the creek, these steel sections do not span the entire width of the bridge, but rather intersect their respective abutment. Multiple 6.5-inch by 8-inch steel sections exhibited severe rust and corrosion resulting in section loss of the webbing at several locations.

An approximately 12-inch diameter rubber pipe with a 24-inch diameter corrugated plastic pipe serving as outer casing was observed to be traversing beneath the bridge structure along the south abutment wall. No details on this overland pipe were available at the time of the reconnaissance.

3.2 Subsurface Exploration

Two borings were drilled as part of the geotechnical exploration program to assess the subsurface conditions within the MOE-TR183-0.13 project limits. The locations of the test borings, are shown on the Boring Location Plan (Exhibit No. 8) in Appendix A. These as-drilled locations are reflected on the boring plan, boring logs and Table 3-1.

Boring Number	Boring Type ¹	Alignment	Station	Offset	Surface (El., feet)	Bottom of Borehole (El., feet)
B-001-0-22	E1	TR 183	9+85	12 LT	687.1	647.1
B-002-0-22	E1	TR 183	10+30	7 RT	688.7	648.8

Table 3-1. Summary of Bridge Structure Borings

¹ ODOT Boring Designations: Bridge Structure (E1)

The borings were drilled by Central Star Drilling under the supervision of an HDR geotechnical engineer between October 17 and October 18, 2022, with a Diedrich D-50 track rig. The rig was calibrated on March 7, 2022, with an energy ratio of 86.8%. All borings were drilled in general accordance with the *Specifications for Geotechnical Explorations* (ODOT revised July 2022) utilizing 3.25-inch internal diameter hollow stem augers to advance the borings to the top of bedrock. The sampling of the soils was accomplished in accordance with the *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*, ASTM D 1586. In the split-barrel sampling procedure, a standard 2-inch outside diameter split-barrel sampling spoon is driven into the ground with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a typical 18-inch penetration is recorded as the standard penetration test (SPT) resistance or N_{SPT}-value. The N_{SPT}-value is then corrected to an energy ratio of 60%, termed N₆₀, which is used for design. Sampling of the underlying bedrock was performed in accordance with the *Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation*, ASTM D 2113, using an NQ2-size double tube-swivel barrel with a diamond bit. Boring logs and photographs of the recovered rock core samples are provided in Appendix B.

3.3 Laboratory Testing

The obtained soil and rock samples were visually examined by an HDR geotechnical engineer, and representative soil samples selected for laboratory testing to confirm the field classification and to assess the various engineering properties of the soils. Soil index testing performed by HDR included 25 natural moisture content tests (per ASTM D 2216), 13 Atterberg limit determinations (per ASTM D 4318), and 13 grain size analyses (per ASTM D 422). The results of the soil index tests are presented on the final boring logs located in Appendix B. In addition to the soil index testing, 1 unconfined compression test (ASTM D 7012 – Method C) and 3 Point Load Strength Index of Rock (ASTM D 5731) tests were performed on bedrock samples. Results of these tests are presented on the individual laboratory sheets included in Appendix C.

4 FINDINGS

FJS

The generalized soil profile as encountered in the borings consists of alluvial sand and gravel deposits overlying shale, claystone, and sandstone bedrock. The upper layers of the granular deposits consisted primarily of loose to medium dense Sandy Silt (A-4a), Gravel with Sand, Silt, and Clay (A-2-6), and Gravel with Sand and Silt (A-2-4). These soils were encountered to a depth of 16 feet below ground surface (bgs) (El. 671.1) in Boring B-001-0-22 and 20 feet bgs (El. 668.7) in Boring B-002-0-22. A thin layer of medium dense Gravel with Sand (A-1-b) was also encountered in Boring B-002-0-22, from 11.5 to 13 feet bgs. The N₆₀-values in the upper soil layers ranged from 4 to 23 blows per foot (bpf).

A significant increase in the relative density of the granular deposits was noted beneath these upper layers, with dense to very dense Gravel and Stone Fragments with Sand (A-1-b) and very dense Gravel and Stone Fragments with Sand, Silt and Clay (A-2-6) encountered. This layer extended to the top of rock at 23.5 feet bgs (El 663.6) in Boring B-001-0-22 and to a very dense Sandy Silt (A-4a) exhibiting relic rock structure at 22.5 feet bgs (El. 666.2) in Boring B-002-0-22. This residual soil extended to the top of rock at 25 feet bgs (El. 663.7). The N₆₀-values in these lower layers ranged from 35 to 91 bpf.

Shale, claystone, and sandstone bedrock was encountered underlying the sand and gravel deposits to the boring termination depths of approximately 40 feet. Shale was encountered from a depth of 23.5 to 29.5 feet bgs (EI. 663.6 to EI. 657.6) in Boring B-001-0-22 and 25 to 28 feet bgs (EI. 663.7 to EI. 660.7) in Boring B-002-0-22. The shale was characterized as slightly weathered, very weak to slightly strong with a stratum rock quality designation (SRQD) of 52% to 67%. Claystone was encountered underlying the shale from a depth of 29.5 feet (EI 657.6) to 34.7 feet bgs (EI. 652.4) in Boring B-001-0-22 and 28 feet bgs (EI 660.7) to 36.9 feet bgs (EI. 651.8) in Boring B-002-0-22. The claystone was characterized as moderately to slightly weathered and weak to very weak with a SRQD ranging from 49% to 73%. Sandstone was encountered underlying the claystone at depths of 34.7 feet bgs (EI 652.4) and 36.9 feet bgs (EI 651.8) in Borings B-001-0-22 and B-002-0-22, respectively, to termination. The sandstone was characterized as unweathered to slightly weathered and slightly to moderately strong with a SRQD of 97% to 100%.

Groundwater was encountered in both borings during drilling. As water was introduced during drilling activities to perform rock coring, water levels upon completion were not obtained. Furthermore, the borings were sealed immediately upon completion as the borings were performed in close proximity to the traveled lane, and delayed water readings were not obtained. Groundwater depths and elevations encountered in the borings are tabulated in Table 4-1 and included on the boring logs in Appendix B.

Boring	Depth/Elevation During (ft)	Notes
B-001-0-22	12/675.1	Water added at 25.0 feet. Boring completed the same day
B-002-1-22	10/678.7	Water added at 25.5 feet. Boring completed the same day

Table	4-1.	Summary	of	Groundwater	Levels

5 ANALYSES AND RECOMMENDATIONS

5.1 Determination of Soil Parameters

Soil parameters were developed primarily from laboratory tests, supplemented by published correlations with SPT data and plasticity indices and our engineering experience and judgement. A summary of the recommended strength parameters and design profile elevations are provided in Table 5-1. Details of the parameter development are located in Appendix D.

Recommended Design Profile			Unit Undrained Shear Wt. ¹ Strength		Drained Shear Strength		
Top Elevation (ft)	Bottom Elevation (ft)	Material	үт (pcf)	S _u (psf)	φ' (°)	c' (psf)	φ' (°)
688	686	Medium Dense	125	0	31	0	31
686	682	Loose Granular	120	0	28	0	28
682	676	Medium Dense	125	0	31	0	31
676	669	Medium Dense (submerged)	125	0	31	0	31
669	635.5	Dense to Very Dense Granular	135	0	37	0	37

Table 5-1. Recommended Soil Strength Parameters

1. Effective unit weights to be used below groundwater (assumed at El 676 in recommended design soil profile).

5.2 Bridge Foundations

The project involves the replacement of an existing single-span structure carrying Paines Run Road (TR 183) over Paines Run. As this will be a design-build project, providing a recommended foundation type is outside the scope of this study. However, given the interbedded layers of loose and medium dense granular soils overlying the site, and the relatively shallow depth to competent bedrock (approximately 25 feet bgs), it is anticipated that deep foundations will be utilized to support the bridge abutments. With the adjacent creek, shallow groundwater, and granular soil encountered within the soil profile, driven or cast-in-place pile foundations rather than drilled shafts are anticipated to be the preferred foundation type to avoid potential complications related to seepage and potential caving of the shaft walls during excavation. As such, Table 5-2 below provides a summary of recommended design parameters for use by the selected design build team for axial and lateral pile analyses using both APILE and LPILE software programs by Ensoft. Any piles spaced closer than five (5) pile widths must also consider group effects.

Recommended Design Profile			Unit Wt. ¹			k
Top Elevation (ft)	Bottom Elevation (ft)	Material	үт (pcf)	γ _{Eff} (pcf)	E50	(pci)
688	686	Medium Dense	125	125	-	90
686	682	Loose Granular	120	120	-	25
682	676	Medium Dense	125	125	-	90
676	669	Medium Dense (submerged)	125	62.6	-	60
669	635.5	Dense to Very Dense Granular	135	72.6	-	125
¹ Effec	ctive unit weights	s to be used below groundwater (assumed at E	l 676 in the re	commended d	lesian soil pro	ofile).

Table 5-2. Recommended Axial and Lateral Pile Design Parameters

5.3 Scour Evaluation Parameters

Continuous sampling of the soils was conducted within each boring for a length of 6 feet beginning from the approximate elevation of the stream bed for Paines Run to assist with the determination of the scour analysis parameters per Section 1302 of the GDM. Table 5-3 below summarizes the sampling depths and respective scour analysis parameters to be utilized by the selected design build team in determining the predicted scour depth.

Boring	Sample	Top Elevation (ft)	D50 Value (mm)	Critical Shear Stress, Tc (psf)	Erosion Category, EC (dim)
	SS-5	677.6	4.8348	0.101	3.02
5	SS-6	676.1	3.0327	0.063	2.78
B-001-0-22	SS-7	674.6	2.4802	0.052	2.67
	SS-8	673.1	5.3393	0.112	3.07
	SS-5	678.7	4.2471	0.089	2.95
B-002-0-22	SS-6	677.2	1.3939	0.029	2.37
	SS-7	675.7	2.6654	0.056	2.71
	SS-8	674.2	3.0839	0.064	2.79

Table 5-3: Scour Analysis Parameters

5.4 Recommendations

5.4.1 Site Preparation

• Site preparation activities at the bridge should be performed in accordance with Item 201 and Item 202 of the current edition of the CMS. These activities are anticipated to include removal of the existing bridge structure and possible relocation of existing utilities.

5.4.2 Settlement

• Modifications to the vertical roadway alignment within the project area are expected to be minor and as such, minimal settlement is anticipated to occur. This settlement, within the predominantly granular profile, is anticipated to be immediate and to occur during construction. In addition, any settlement of the bridge structure itself would be limited should the vertical alignment of TR 183 be raised as it is anticipated that the bridge foundations will bear on the underlying competent bedrock encountered at approximately 25 feet below the existing ground surface. However, analyses may need to be conducted if the roadway profile is raised to estimate the magnitude of any drag forces acting on the piles as outlined in section 305.3.2.2 of the ODOT BDM using the neutral plane method considering 100% tip resistance mobilization.

6 LIMITATIONS

This report documents the preliminary findings and conclusions of HDR Engineering, Inc., for the geotechnical aspects related to the planning and design of the MOE-TR183-0.13 project in Monroe County, Ohio. The report has been prepared for the use of the Office of the Monroe County Engineer for specific application to this project, in accordance with generally accepted engineering practice. No warranty, expressed or implied, is made. Any analyses or recommendations submitted are based on the field explorations performed at the locations indicated, on specific laboratory tests on individual samples taken during this exploration, and information obtained from outside sources. The report and analyses do not reflect variation that could occur between borings or at other points in time. Variations in conditions, if any, may become evident during the construction period, at which time, a re-evaluation of the recommendations may become necessary. In the event of such changes, the recommendations and changes should be reviewed by HDR's geotechnical staff.

7 REFERENCES

State of Ohio Department of Transportation (Updated July 2022); "Specifications for Geotechnical Explorations."

State of Ohio Department of Transportation (Updated July 2022); "Geotechnical Design Manual."

State of Ohio Department of Transportation (Updated July 2022); "Bridge Design Manual."

State of Ohio Department of Transportation (July 2022); "*Location and Design Manual, Volume 2 – Drainage Design.*"

United States Department of Agriculture: Natural Resources Conservation Service (2022); "Web Soil Survey". <u>http://websoilsurvey.nrcs.usda.gov/app/</u>"

Ohio Department of Natural Resources, Division of Geologic Survey (2022); "Ohio Geology Interactive Map". <u>https://ohiodnr.gov/business-and-industry/services-to-business-industry/gis-mapping-services/ohio-geology-interactive-map</u>

Ohio Division of Geological Survey (1998); *Physiographic regions of Ohio: Ohio Department of National Resources*, Division of Geological Survey, scale 1:2,100,000.

Ohio Department of Natural Resources Division of Geological Survey (2013); "Ohio's Geology in Core and Outcrop: A Field Guide for Citizens and Environmental and Geotechnical Investigators", Information circular 63.

United States Geological Survey Topographic Map, (2019); "Cameron Quadrangle, Ohio."

Ohio Department of Natural Resources, Division of Geologic Survey and Division of Mineral Resources (2022); *"Mines of Ohio"*. <u>https://gis.ohiodnr.gov/MapViewer/?config=OhioMines#</u>

Appendix A. Exhibits

Till Plains	7	HS ≯
ill Plain		
hio Clayey Till Plain		fed
ea Headlands of the Till	Plain	ack
Ohio Loamy Till Plain		che
on City-Bloomer Transit	ional Terrain	Ca l
itewater Interlobate Plan	in	100
l River Interlobate Plair		
by Plain		1.000
umbus Lowland		
ïll Plain		0
Illinoian Till Plain		Ē
aciated Low Plateau		Ō
Huron-Erie Lake Plain	s	of
Laka Plaine		S
Iding Clay Basin		L L
umee Sand Plains		ic.
odville Lake-Plain Reel	fs	D.
dlay Embayment		Ř
toria Lake-Plain Shoals	3	
d 7.6b. Bellevue-Castali	a Karst Plain	i i
Plain		5
ea Headlands of the Eri	e Lake Plain	ra
Bluegrass Section		og
uegrass Region		S.
laciated Allegheny Pl	ateaus	hy
ck-Glaciated Pittsburg	h Plateau	
-Canton Interlobate Pl	ateau	N
an Glaciated Allegheny	Plateau	i
River Low Plateau		Ž
Grand River Finger-Lal	ke Plain	+
Allegheny Plateau	s	idi
noum-Pittsburgh Plat	8311	L Y Y
Mississippian Plat	0.211	<u>ш</u>
n Platoau	cau	
n i lateau		3
Little Switzerland Plat	eau	-0.1
al boundary		183
n/deposits outside Hu	ron-Erie Lake Plains	L H
		MOI 574
logical Survey, 1998		14 14
ns of Ohio,		jec
Resources, Division of Geo	ological Survey	2 0

Map Unit Legend Chg1AF - Chagrin silt loam, 0 to 3 percent slopes, frequently flooded He - Hartshorn silt loam	Calculated: LSH Checked: DMV
MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Waming: Soil Map may not be valid at this scale	r Map
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	il Survey Des
Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	4a: Soi Soil Typ
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	ibit No.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	Exh
Soil Survey Area Data: Version 19, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales	
1:50,000 or larger. Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020	
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	E-TR183-0.13
Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx	Project: MOE PID: 117574

Corrosion of Concrete Map Unit Legend Chg1AF - Chagrin silt loam, 0 to 3 percent slopes, frequently flooded, Low rating He - Hartshorn silt loam, Moderate rating	Calculated: LSH Checked: DMV
MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800.	ap
Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	survey Manurate
Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020	Exhibit No. 4b: Soil S Corrosion of Co
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	Project: MOE-TR183-0.13 PID: 117574

Corrosion of Steel Map Unit Legend Chg1AF - Chagrin silt Ioam, O to 3 percent slopes, frequently flooded, High rating He - Hartshorn silt Ioam, High rating	Calculated: LSH Checked: DMV
MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800.	r Map
Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	il Survey of Steel
Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020	Exhibit No. 4c: So Corrosion (
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	Project: MOE-TR183-0.13 PID: 117574

 pH (1 to 1 Water) Map Unit Legend Chg1AF - Chagrin silt loam, 0 to 3 percent slopes, frequently flooded, pH rating 6.5 He - Hartshorn silt loam, pH rating 6.4 	Calculated: LSH Checked: DMV
MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Warning: Soil Map may not be valid at this scale.	ey Map
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	oil Surv vels
Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	o. 4d: S pH Le
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	chibit N
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Perry County Ohio	Ш́
Soil map units are labeled (as space allows) for map scales	
Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020	
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	0E-TR183-0.13 4
ource: Web Soil Survey 11/2022 ttps://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx	Project: M(PID: 11757

G:\OHIO\ODOT\ODT-OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00 10354468 ARCGIS RO\7.2_WIP\MAP_DOCS\HDR_PROJECT.APRX DATE: 12/1/2022

Appendix B. Boring Logs and Rock Core Photos

	PROJECT: MOE-TR183-00.13 DRILLING FIRM / OPERATOR: CENTRAL S							TAR / TS	R/TS DRILL RIG: DIEDRICH D-50 TRACK ST					STATION / OFFSET: 9+85, 12' LT.						EXPLOR	ATION ID				
	TYPE:	117574	BRID	DGE	SAMPLING FIRM /	LOGG	ER:				MER:				<u>R</u>			NT:	607 /	1 / 1 /	TR18	3 - OB:		D-00	PAGE
	START	<u> </u>	3FN 7/22 FNI	D [·] 10/17/22	SAMPLING METHO	ט סכ [.]	2.23	<u></u> SPT / NQ2	2		RGY F		۲۱E (%) [.]	86.8		LLEV		את . וGי	007.	39.7	<u>, 1</u> 7580	=ОБ. 3-80	93795	53	1 OF 2
ŀ	017411	<u> </u>	<u>ΜΔ΄</u>	TERIAL DESCRIE		<u> </u>	FLEV					REC		HP		GRAD)N (%	5)		FRB	FRG			HOLE
GРJ				AND NOTES			687.1	DEPT	THS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	si	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
LOGS.	Medi Damf	UM DEN	SE, BROW	N, GRAVEL WITI	H SAND AND SILT,		685.6		- 1 -	4	13	17	SS-1	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	
DRING	LOOS			NSE, BROWN, SA	NDY SILT, SOME		0.000	-	- 2 -	5															-
-0.13_BC	GRAV	/EL, IKA	CE CLAY,	DAMP					- 3 -	3 2 2	6	67	SS-2	-	-	-	-	-	-	-	-	-	15	A-4a (V)	
-TR183									- 4 -																
4_MOE									_ 6 -	2 7 7	20	78	SS-3	-	25	21	16	28	10	23	16	7	15	A-4a (1)	
2022111	MEDI	UM DEN	SE, BROW	N, GRAVEL WITI	H SAND AND SILT,		679.6	-	- 7 -																
962262\	TRAC	E CLAY,	MOIST				,		- 9 -	10 6	23	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	
ST01/D2							676.1		- 10 -	5 4 6	14	78	SS-5	-	63	7	20	2	8	31	24	7	16	A-2-4 (0)	
ING/EA	LOOS SAND	BE TO ME D, Silt, A	EDIUM DEN ND CLAY,	NSE, BROWN, GF , MOIST TO WET	RAVEL WITH			₩ 675.1	- 12 -	4 2 3	7	100	SS-6	-	60	11	8	9	12	40	22	18	27	A-2-6 (0)	
WORK									- 13 -	2 2 7	13	39	SS-7	-	54	16	11	10	9	29	17	12	20	A-2-6 (0)	
52 - C:\P\									- 15 -	5 4 4	12	50	SS-8	-	62	12	11	7	8	27	13	14	15	A-2-6 (0)	
1/22 14:5	DENS	SE TO VE	RY DENSE	E, BROWN, GRAN	/EL AND STONE		671.1	-	- 16	10 11	35	67	SS-9	-	-	-	-	_	-	-	-	-	15	A-1-b (V)	-
r - 11/2	MOIS	T							_ ''	13															-
OT.GD1									- 19 -	7 9 17	38	78	SS-10	-	59	12	12	9	8	19	15	4	12	A-1-b (0)	
) - OH E						$\beta \beta$			- 20 -	- 1/-															
8.5 X 11									22 -	9 15 21	52	44	SS-11	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	
3) 00						o t	663.6	тр	- 23 -																
RINGL	SHAL	.E , GRAY	, MODERA	ATELY WEATHER	ED, VERY WEAK.		662.1		- 24	50/6"	-	100	<u>SS-12</u>	-	-	-	-	-	-	-	-	-	11	Rock (V)	-
SOIL BO	SHAL WEA	.E , GRAY K, MEDIL	TO DARK	GRAY, SLIGHTL D, ARENACEOUS	Y WEATHERED, 5, PYRITIC, JOINT				- 25 -																
ODOT 5	AND I MODE	Beddin(Eratel) Hti y ro	DISCONT	FINUITIES, FRAC RED, NARROW A SSIVE TO BLOCK	TURED TO PERTURE, Y FAIR SURFACE				_ 27 -	75		100	NQ2-1											CORE	
DARD	CONE @ 27	DITIONS,	RQD 67%	, REC 100%.	.,.,				- 28 - -																
STAN	(Point	t Load Te	st)	io poi			657.6		29 - -																

ſ	PID: <u>117574</u>	SFN:	5634504	PROJECT:	MOE-TR183-00.1	3	STATION /	OFFSE	T:	9+85	i, 12' LT.	S ⁻	TART	: 10/1	17/22	EN	1D: _	10/1	7/22	_ P(G 2 OF	2 B-00	1-0-22
Ī	MATERIAL DESCRIPTION EI			ELEV.			SPT/	N	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	HOLE	
			AND NOTES		657.1		1113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	SEALED
INGLOGS.GPJ	@ 28.3' - 29.3' Bedding. CLAYSTONE, WEATHERED, BEDDING DISC FRACTURED, TLAMINATED, F	: Interbed DARK GF VERY W CONTINU IGHT AP OOR SU	ded Limestone Nor RAY TO GRAY, MC EAK, THIN BEDDE ITIES, SLIGHTLY ERTURE, SLICKE RFACE CONDITIC	dules. Irregular DDERATELY ED, FRIABLE, TO MODERATELY NSIDED, DNS; RQD 73%, RE	, ec		- 31 - - 32 - - 33 -	75		100	NQ2-2											CORE	
20221114_MOE-TR183-0.13_BOR	100%. (continu @ 32.5' - 33.4' (Point Load Tes @ 33.0' - 34.0' SANDSTONE, WEATHERED, TO MEDIUM G JOINT DISCON APERTURE, SI CONDITIONS;	ed) : Qu = 26 st) : Light Gr GRAY, UI SLIGHTL RAINED, ITINUITIE LIGHTLY RQD 100	6 psi ay NWEATHERED T(Y TO MODERATE THICK BEDDED, S, SLIGHTLY FR/ ROUGH, MASSIV %, REC 100%.	D SLIGHTLY ELY STRONG, FINI BEDDING AND ACTURED, TIGHT E, GOOD SURFAC	E 652.4 E 647.1	EOB	- 35 - - 36 - - 37 - - 38 - - 38 - - 39 - 3 - 40	89		100	NQ2-3											CORE	
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 11/21/22 14:52 - C:\PWWORKING\EAST01\D29622621																							

B-001-0-22 2 3 5 69 7 8 9 10 11 22 13 14 15 16 17 3 19 20 21 22 23 24 4 25 2 BR: NQ2-1 25.0' BR: NQ2-2 29.0' ER: NQ2-1 34.0' ER: NQ2-2 6.

Run #	Dept	h (ft)	Reco	very	RQ	D						
NQ2-1	25	29	48 in. / 48 in.	100%	36 in. / 48 in.	75%						
NQ2-2	29	34	60 in. / 60 in.	100%	45 in. / 60 in.	75%						
	MOE-TR183-0.13, PID 117574											

			B-001-0-	-22		
BR: NQ2-3 34.0'			10 11 2 13	3 14 oc 15 AL 1 Earn 1 7		23 694 25
					C c. 6 C Oc	000
				40.0° ER: NQ2-3	TOM	
#	Dont	h /ft)				
. π 100.0		11 (11)	Г 72 in /72 in	1000/		,

MOE-TR183-0.13, PID 117574

		MOE-TR183-00.13	DRILLING FIRM / OPER/	AR / TS	/ TS DRILL RIG: DIEDRICH D-50 TRACK HAMMER: AUTOMATIC HAMMER					K STATION / OFFSET: <u>10+30, 7' RT.</u>						EXPLORA B-002	ATION ID					
		BRIDGE	SAMPLING FIRM / LOGO	3ER:		CM		MER:				<u>:R</u>			NI: _	<u> </u>	7 / 1 4 0	IR18	3			PAGE
	PID: 11/5/ START: 10/	4 SFN: <u>5634504</u> (18/22 END: 10/18/22	SAMPLING METHOD:	2.25		2				(TE: <u>3</u>	9///ZZ				ля: С·	088.7	20.7	L) E	20B: 0 90	02796	<u>.9 π.</u>	1 OF 2
H	START. 10/											<u> </u>			G)	39.7		9, -00 -PC	.93700		
G		AND NOTES	ION	600 7	DEPT	HS	ROD	N ₆₀			(tsf)	GR		FS	IN (70				PI	wc	CLASS (GI)	SFALED
D.S.	LOOSE TO N	MEDIUM DENSE, BROWN, GR	AVEL WITH	000.7		L	3		(70)	10	((0))											******
ΓO	SAND, SILT,	AND CLAY, DAMP	•			- 1 -	6 7	19	67	SS-1	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)	*******
SING				Ъ Н		- 2 -																
BOF							5															
.13						- 3 -	4	10	67	SS-2	-	57	16	12	- 1	5 -	-	-	-	8	A-2-6 (V)	
83-0						- 4 -	3															
Ĕ				683.7		- 5 -	0															
10E	LOOSE, BRO	DWN, GRAVEL WITH SAND AN	ID SILT, TRACE	q		-	3	7	67	SS-3	-	69	14	8	5	4	24	17	7	8	A-2-4 (0)	
14	OLAT, DAM			2			3														()	
211				3		- 7 -																
2\202				680.2		- 8 -	2	4	83	SS-4A	-	-	-	-	-	-	-	-	-	17	A-2-4 (V)	
2262	VERY LOOS	e, dark gray, Sandy Silt , '	TRACE CLAY,			L 9 L	1			SS-4B	-	-	-	-	-	-	-	-	-	53	A-4a (V)	
2296	WET	Einal SS 4 hammar blow drava	complex 1 feet (to	678.7	W 678.7	- 10 -																
101	9.5 feet)	. Final 33-4 hammer blow drove	sampler r toot (to	d			2	0	22	88 F		60	14	12	0	6	20	10	10	22	A 2 4 (0)	
EAST	@ 9.0' - 10.0	' : auger drilled	<u>b</u> +	677.2		- 11 -	3	9	33	55-5	-	00	14	12	0	0	29	19	10	22	A-2-4 (0)	
NG/E	LOOSE, BRO	DWN, Gravel with Sand An	I D SILT , TRACE / 🏷	q		- 12 -	2	13	78	8-22	_	46	20	16	a	a	23	17	6	10	Δ_1_b (0)	
NK.				675.7		- 13 -	7	10	10	00-0			20	10	<u> </u>	<u> </u>	20	<u>''</u>	Ŭ	10	A-1-0 (0)	
MO	SILT, TRACE	E CLAY, WET	SAND, TRACE	q			7	19	50	SS-7	-	54	15	15	9	7	28	20	8	18	A-2-4 (0)	
NPV	MEDIUM DE	NSE, BROWN, GRAVEL WITH	SAND AND SILT,	k.		- 14 -	5								-				-			
5 - 0	TRACE CLA	Y, WET	e Qu	7		- 15 -	5 6	17	56	SS-8	-	56	15	12	11	6	25	17	8	14	A-2-4 (0)	
14:5	@ 14.5 - 10.	0 . Damp	D II			- 16	6														. ,	
1/22			6	T T		- 17																
11/2				9			6															
Ч			49	Ś		- 18 -	6	20	17	SS-9	-	-	-	-	-	-	-	-	-	20	A-2-4 (V)	
D.T.				q		- 19 -	8															
Ĕ				668.7		- 20 -	11															
ō	WITH SAND.	, SILT. AND CLAY. MOIST		a		- 21 -	24	54	67	SS-10	-	62	14	9	9	6	29	18	11	16	A-2-6 (0)	
(11)	- ,	, , , ,	0	<u>i</u>			13															
8.5)				666.2		- 22 -	1.4															
) 00	VERY DENS	E, GRAY TO LIGHT GRAY, SA I 2 (Relic Rock Structure)	NDY SILT, LITTLE			- 23 -	14 30	91	89	SS-11	-	-	-	-	-	-	-	-	-	15	A-4a (V)	
Ъ	@ 23.0' - 23.	2' : gray stone fragments				- ₂₄	33														()	
NNN NNN	_			663.7	тр	- 25 -																
IL B(SHALE, GRA	AY, MODERATELY TO SLIGHTI		663.2			<u>\$0/1"</u> /	<u> </u>	100/	SS-12	<u> </u>	9	<u> 17 </u>	/	<u> 34 </u>	26 /	29	<u> 14</u>	15 /	12	Rock (V)	
SO		ע. ע דה הגפג נפגע פו וניודי ע		1		26																
DO	WEAK TO SL	LIGHTLY STRONG, THIN TO M		1		- 27 -																
200	JOINT AND E	BEDDING DISCONTINUITIES, F		660.7		- 28 -	64		100	NQ2-1											CORE	
IDAF		LY FRACTURED, TIGHT TO NA SLIGHTLY ROUGH VERY BLO	OCKY, FAIR	1		- 20 -																
STAN	SURFACE C	ONDITION; RQD 52%, REC 10	0%.			- 29																

Γ	PID: 117	′574	SFN:	5634504	PROJECT:	MOE-TF	183-00.13	5	STATION	OFFSE	T:	10+3	0, 7' RT.	S [.]	TART	: 10/	18/22	ENI	D: _1	0/18	3/22	PC	G 2 OF	2 B-00	2-0-22
Γ			MA	TERIAL DESCRIF	TION		ELEV.	DE	PTHS	SPT/	N	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	A	TT	ERBĘ	RG		ODOT	HOLE
╞				AND NOTES			658.7			RQD	••60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	L	PL	ΡI	WC	CLASS (GI)	SEALED
BORINGLOGS.GPJ	CLAYSIC WEATHE AND BED SLICKEN RQD 50% CLAYSIC WEATHE BEDDING	DNE, G RED, V DING I ISIDED 6, REC ONE, G RED, V G DISCO	RAY TO /ERY WE DISCONT , LAMINA 100%. (c RAY TO VEAK, TH DNTINUI	DARK GRAY, MC EAK, THIN BEDDE INUITIES, FRAC TED, POOR SUR ontinued) LIGHT GRAY, SL HIN TO MEDIUM I TIES, SLIGHT TO EDTUDE SUCKE	DERATELY D, FRIABLE, JOIN TURED, FACE CONDITION IGHTLY BEDDED, JOINT A MODERATELY NEIDED BLOCK	1T Ν; ND	657.1		- 	- 58		100	NQ2-2											CORE	
2\20221114_MOE-TR183-0.13	FAIR TO @ 33.2' - (Point Loa SANDSTO WEATHE TO MEDIU DISCONT APERTUF SURFACE	POOR 34.0' : ad Testj ONE, G ERED, S UM GR FINUITI RE, SLI E CON	SURFAC Qu = 282) RAY, UN SLIGHTLY AINED, N ES, MOD GHTLY F DITIONS	ECONDITION; R si weathered to do moderate medium to thic erately frac rough, blocky ; RQD 94%, REC	D SLIGHTLY D SLIGHTLY LY STRONG, FINI K BEDDED, JOIN FURED, TIGHT , FAIR TO GOOD 100%.)%.	651.8 648.8	EOB	- 36 - - 37 - - 38 - - 38 - - 39 - -	57		100	NQ2-3											CORE	
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 11/21/22 14:52 - C:\PWWORKING\EAST01/D2962262	@ 38.3' -	39.3' :	Qu = 10,	068 psi																					

NOTES: QUICKRETE CONCRETE USED TO PATCH PAVEMENT. SAMPLE SS-2 (2.5' - 4.0'): INSUFFICIENT AMOUNT OF SAMPLE TO PERFORM HYDROMETER TEST ABANDONMENT METHODS, MATERIALS, QUANTITIES: TREMIED 25 LB. BENTONITE POWDER; 94 LB. CEMENT; 50 GAL. WATER

B-002-0-22 A A REAL PROPERTY AND A CONTRACTOR Sec. M. BR: NQ2-1 25.5 のないとないでは、「ないない」 BR: NQ2-2 29.9' ER: NQ2-1 34.9' ER: NQ2-4 0 (SAMPLE PULLED FOR POTENTIAL TESTING) 22 23 24 25 21 13 14 a 15 at 16 art 17 13 19 20 9 10 11 5 2 3 4 5 8 E 200

Run #	Dept	h (ft)	Reco	overy	RC	ζD							
NQ2-1	25.5	29.9	53 in. / 53 in.	100%	34 in. / 53 in.	64%							
NQ2-2	29.9	34.9	60 in. / 60 in.	100%	35 in. / 60 in.	58%							
	MOE-TR183-0.13, PID 117574												

B-002-0-22 19 20 21 22 23 24 25 10 11 **2** 13 14 • 15 • • • 16 JOINTS 17 13 8 9 4 5 ului . 2 З E BR: NQ2-3 34.9' 靈 1 North North 39.9' ER: NQ2-3 No. 00 Ò 0 3

Run #	Dept	:h (ft)	Reco	overy	RC),D					
NQ2-3	34.9	39.9	60 in. / 60 in.	100%	34 in. / 60 in.	57%					
	MOE-TR183-0.13, PID 117574										

Appendix C. Laboratory Testing

Unconfined Compressive Strength of Rock (ASTM D7012)

FC

ASTM: D7012-Method C

UNCONFINED COMPRESSION TEST (ROCK CORE)

PROJECT NAME : I PROJECT NO. : ' PROJECT COUNTY : I PROJECT STATE : (LABORATORY NO. : '	MOE-TR183-0.13 10336687 Monroe Ohio 10336687	SAM SAMF SAMPLI DATE	IPLE NO. : B-002-0-22 PLE LOC. : RC-1 E DEPTH : 38.3' to 39.3' TESTED : 11/9/2022
SUBMITTED BY : I	HDR	DATE RE	PORTED : 11/11/2022
ROCK DESCRIPTION : 1 Machine Used : 1 Diameter : Height :	NA ELE CT-7250 1.98 in 4.04 in		Area : 3.08 in ² Volume : 0.0072 ft ³
RESULTS : Air Dry Moisture: Air-Dry Density :	0.6 158.1	% Ibs/ft.³	3-313
Maximum Stress : Elapsed Time : Rate of Loading :	10,068 6:23 90	psi min. Ib/sec	U.

Comments :

Approved By : Kein E. Walk

Point Load Strength Index of Rock (ASTM D 5731)

Project Name: MOE-TR183-0.13 Project No.: 10356687 Project County: Monroe Project State: Ohio Laboratory No.: 10356687 Sample Loc.: B-001-0-22

ASTM D5731 Point Load Strength Index of Rock

 Sample No.:
 27.3' to 29.0'

 Date Sampled:
 11/9/2022

 Date Tested:
 11/14/2022

 Date Reported:
 11/15/2022

 Sample Details:
 11/15/2022

Sample Depth	Core Size	Test Type	Orientation	Width (w), in	Diameter (d), in	Length (L), in	Load (P), kip	Load (P), kN
27.3	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.126	0.56
27.4	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.148	0.66
27.5	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.182	0.81
27.6	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.229	1.02
27.7	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.382	1.7
27.8	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.292	1.3
27.9	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.209	0.93
28	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.191	0.85
28.1	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.225	1
28.2	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.247	1.1
33	.5		•	•		•		
Note: min 10 samples requir	ed							

Testing Machine Serial Number: HDR 1003

Uniaxial Compressive Strength (Bx)

Average Uniaxial Compressive Strength:

1,313 psi

1,313 psi

Point Load Strengt	h Index
Mean I _{s(50)} ⊥	
Mean I _{s(50)} //	57.11
I _{s(50)}	54.73
I _{a(50)}	1.00

Sampled By:

Tested By:

Don Schmidt

Approved By:

Ken El.) Ib

Note: ASTM D5731 applies to medium strength rock having a compresive strength over 2175 psi

Project Name: MOE-TR183-0.13 Project No.: 10356687 Project County: Monroe Project State: Ohio Laboratory No.: 10356687 Sample Loc.: B-001-0-22

ASTM D5731 Point Load Strength Index of Rock

Sample No.:	32.5' to 33.4
Date Sampled:	11/9/2022
Date Tested:	11/14/2022
Date Reported:	11/15/2022
Sample Details:	

Sample Depth	Core Size	Test Type	Orientation	Width (w), in	Diameter (d), in	Length (L), in	Load (P), kip	Load (P), kN
32.5	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.038	0.17
32.6	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.029	0.13
32.7	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.020	0.09
32.8	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.070	0.31
32.9	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.054	0.24
33	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.047	0.21
33.1	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.040	0.18
33.2	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.058	0.26
33.3	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.049	0.22
33.4	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.045	0.2
33.5	5	-					-	

Note: min 10 samples required

Testing Machine Serial Number: HDR 1003

Uniaxial Compressive Strength (Bx)

Average Uniaxial Compressive Strength:

266 psi

266 psi

Point Load Strengt	h Index
Mean I _{s(50)} ⊥	
Mean I _{s(50)} //	11.56
I _{s(50)}	11.69
I _{a(50)}	1.00

Sampled By:

Tested By:

Don Schmidt

Approved By:

Ken E Will

Note: ASTM D5731 applies to medium strength rock having a compresive strength over 2175 psi

Project Name: MOE-TR183-0.13 Project No.: 10356687 Project County: Monroe Project State: Ohio Laboratory No.: 10356687 Sample Loc.: B-002-0-22

ASTM D5731 Point Load Strength Index of Rock

 Sample No.:
 33.2' to 34.0'

 Date Sampled:
 11/9/2022

 Date Tested:
 11/14/2022

 Date Reported:
 11/15/2022

 Sample Details:
 11/15/2022

Sample Depth	Core Size	Test Type	Orientation	Width (w), in	Diameter (d), in	Length (L), in	Load (P), kip	Load (P), kN
33.2	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.031	0.14
33.3	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.029	0.13
33.4	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.040	0.18
33.5	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.045	0.2
33.6	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.038	0.17
33.7	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.054	0.24
33.8	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.063	0.28
33.9	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.063	0.28
34	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.065	0.29
34.1	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.049	0.22
33.5	•		•	•				
Note: min 10 samples required	1							

Testing Machine Serial Number: HDR 1003

Uniaxial Compressive Strength (Bx)

Average Uniaxial Compressive Strength:

282 psi

282 psi

Point Load Strengt	h Index
Mean I _{s(50)} ⊥	
Mean I _{s(50)} //	12.25
I _{s(50)}	12.36
I _{a(50)}	1.00

Sampled By:

Tested By:

Don Schmidt

Approved By:

Ken El Walk

Note: ASTM D5731 applies to medium strength rock having a compresive strength over 2175 psi

Appendix D. Analyses

Soil Strength Parameter Determination

SUBSURFACE DIAGRAM

ſ	PROJECT: MOE-TR183-00.13 TYPE: BRIDGE DID: 117E74 SEN: E624504	DRILLING FIRM / OPER	ATOR GER:	: <u>Cl</u>	ENTRAL ST HDR / DC	AR / TS	DRIL	L RIG: MER:		ORICH D-5	0 TRA AMME	CK R	STAT ALIG			SET:	(MS)	9+85, [R18;	, 12' L 3	.T.	EXPLOR B-001	ATION ID 1-0-22 PAGE
	START: <u>10/17/22</u> END: <u>10/17/22</u>	SAMPLING METHOD:		2.25 S	BPT / NQ2			RGY R	ATIO ((%):	86.8		LAT /	LON	G:	587.1	39.7	L) E 75803	:ОВ: 3, -80	.93795	<u>.0 п.</u> 53	1 OF 2
_	MATERIAL DESCRIPT	ION	EL	EV.	DEPTI	HS	SPT/	Nco	REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERBE	ERG		ODOT	HOLE
5	AND NOTES		68	7.1			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
	DAMP 2 - Medium Dense	Granular	а 1 68	5.6		- 1 -	4	13	17	SS-1	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	
	LOOSE TO MEDIUM DENSE, BROWN, SAN	IDY SILT, SOME				- 2 -																
2						- 3 -	3	6	67	SS-2	-	-	-	-	-	-	-	-	-	15	A-4a (V)	
02-0			68	21		- 4 -	2															-
ے ا						- 5 -	2															
₽ E						- 6 -	77	20	78	SS-3	-	25	21	16	28	10	23	16	7	15	A-4a (1)	
			67	9.6		- 7 -																
	MEDIUM DENSE, BROWN, GRAVEL WITH	SAND AND SILT,	d			- 8 -	7															-
0770			ġ			- 9 -	¹⁰ 6	23	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	
1/1/28	2 - Medium Dense Grant					- 10 -	5	14	78	SS-5	_	63	7	20	2	8	31	24	7	16	A-2-4 (0)	
20 E	LOOSE TO MEDILIM DENSE BROWN CP		67	6.1	-	- 11 -	6							20	-	Ŭ	0.	- ·				-
U S N	SAND, SILT, AND CLAY, MOIST TO WET		ng ka		W 675.1	- 12 -	⁷ 2 ₃	7	100	SS-6	-	60	11	8	9	12	40	22	18	27	A-2-6 (0)	
			D T			- 13 -	2 2	13	30	SS-7	_	54	16	11	10	۹	29	17	12	20	A-2-6 (0)	1
~~~			a A A A			- 14 -	5		00	00-7	_	54			10	5	25		12	20	7-2-0 (0)	-
<u>ج</u>			D H			- 15 -	۲ 4	12	50	SS-8	-	62	12	11	7	8	27	13	14	15	A-2-6 (0)	
14:52			67	1.1		- 16 -	4															
77117	FRAGMENTS WITH SAND, TRACE SILT, TF	RACE CLAY,	d			- 17 -	11	35	67	SS-9	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	
-	MOIST		D T			- 18 -	- 13															-
פר			,d			- 19 -	7	20	70	SS 10		50	10	10	0	0	10	15	4	12	A 1 h (0)	-
S	3 - Dense to Very Dense Gran	ular oʻ	U T			- 20 -	9 17	30	10	33-10	-	59	12	12	9	0	19	15	4	12	A-1-D (0)	-
5			,d			- 21 -																-
<			1			- 22 -	⁹ 15	52	44	SS-11	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	
0			d N 66	26		- 23 -	21															-
3	SHALE, GRAY, MODERATELY WEATHERE	D, VERY WEAK.	<u> </u>	5.0	TR	- 24 -	50/6"	-	100	SS-12	-	-	-	-	-	-	-	-	-	11	Rock (V)	
			66	2.1	4	- 25 -															ļ	
	SHALE, GRAY TO DARK GRAY, SLIGHTLY WEAK, MEDIUM BEDDED, ARENACEOUS,	WEATHERED, PYRITIC, JOINT				- 26 -																
2	AND BEDDING DISCONTINUITIES, FRACTI MODERATELY FRACTURED NARROW AP					- 27 -	75		100	NQ2-1											CORF	
	SLIGHTLY ROUGH, MASSIVE TO BLOCKY,	FAIR SURFACE				- - 28 -																
NUAR	@ 27.3' - 29.0' : Qu = 1,313 psi			7.0		- 29 -															ļ	
₹ 0	│ (Point Load Test)		1 65 /	1.0	-	- 20																

ſ	PID: <u>117574</u>	SFN:	5634504	PROJECT:	MOE-TR183-00.1	3	STATION /	OFFSE	T:	9+85	i, 12' LT.	S ⁻	TART	: 10/1	17/22	EN	1D: _	10/1	7/22	_ P(	G 2 OF	2 B-00	1-0-22
Ī		M/	TERIAL DESCRII	PTION	ELEV.			SPT/	N	REC	SAMPLE	HP	(	GRAD	ATIO	N (%	)	ATT	ERBE	RG		ODOT	HOLE
			AND NOTES		657.1		1113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	SEALED
INGLOGS.GPJ	@ 28.3' - 29.3' Bedding. CLAYSTONE, WEATHERED, BEDDING DISC FRACTURED, TLAMINATED, F	: Interbed DARK GF VERY W CONTINU IGHT AP OOR SU	ded Limestone Nor RAY TO GRAY, MC EAK, THIN BEDDE ITIES, SLIGHTLY ERTURE, SLICKE RFACE CONDITIC	dules. Irregular DDERATELY ED, FRIABLE, TO MODERATELY NSIDED, DNS; RQD 73%, RE	, ec		- 31 - - 32 - - 33 -	75		100	NQ2-2											CORE	
20221114_MOE-TR183-0.13_BOR	100%. (continu @ 32.5' - 33.4' (Point Load Tes @ 33.0' - 34.0' SANDSTONE, WEATHERED, TO MEDIUM G JOINT DISCON APERTURE, SI CONDITIONS;	ed) : Qu = 26 st) : Light Gr GRAY, UI SLIGHTL RAINED, ITINUITIE LIGHTLY RQD 100	6 psi ay NWEATHERED T( Y TO MODERATE THICK BEDDED, S, SLIGHTLY FR/ ROUGH, MASSIV %, REC 100%.	D SLIGHTLY ELY STRONG, FINI BEDDING AND ACTURED, TIGHT E, GOOD SURFAC	E 652.4 E 647.1	EOB	- 35 - - 36 - - 37 - - 38 - - 38 - - 39 - 3 - 40	89		100	NQ2-3											CORE	
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 11/21/22 14:52 - C:\PWWORKING\EAST01\D29622621																							

	PROJECT: MOE-TR183-00.13 TYPE: BRIDGE DD: 117574 SEN: 5634504	DRILLING FIRM / OPE SAMPLING FIRM / LO	ERAT )GGE	FOR: <u>Ce</u> ER: 2 25"	ENTRAL ST HDR / DC	AR / TS	DRIL	L RIG: MER: BRATI		ORICH D-5 OMATIC H	0 TRA AMME	<u>CK</u> R	STAT ALIG	TON / NME	/ OFF NT:	SET:		10+30 FR183	), 7' F 3 =∩B∙	RT. 30	EXPLORA B-002	ATION ID -0-22 PAGE
	START: 10/18/22 END: 10/18/22	SAMPLING METHOD:		S	PT / NQ2			RGY R	ATIO	(%): 3	86.8	-	LAT /	LON	IG:	000.7	39.7	<u>L)</u> 75919	-00. 9, -80	.93786	50	1 OF 2
Ĺ	MATERIAL DESCRIP	TION		ELEV.	DEPTI	-19	SPT/	N	REC	SAMPLE	HP		GRAD	ATIC	)N (%	)	ATT	ERBE	ERG		ODOT	HOLE
n D	AND NOTES			688.7			RQD	• 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
2 C C C	SAND, SILT, AND CLAY, DAMP		S			- 1 -	6	19	67	SS-1	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)	
	2 - Medium Dense Grar	ular é		686.2		- 2 -	- '															
6 						- 3 -	5	10	67	SS-2	-	57	16	12	- 1	5 -	-	-	-	8	A-2-6 (V)	
1-001				683 7		- 4 - I 																
	LOOSE, BROWN, <b>GRAVEL WITH SAND A</b> CLAY, DAMP	ND SILT, TRACE		003.7		- 5 - - 6 -	3 2 3	7	67	SS-3	-	69	14	8	5	4	24	17	7	8	A-2-4 (0)	
711177	1 - Loose Granular		٩Ĭ			- 7 -																-
02/20				680.2		- 8 -	2	4	83	SS-4A	-	-	-	-	-	-	-	-	-	17	A-2-4 (V)	-
77067	VERY LOOSE, DARK GRAY, SANDY SILT, WET	IRACE CLAY,		678 7	₩ 6787	- 9 -				<u>55-4B</u>	-	-	-	-	-	-	-	-	-	3	<u>A-4a (V)</u>	
1110101	@ 8.5' - 9.5' : Final SS-4 hammer blow drove 9.5 feet) @ 9.0' - 10.0' : auger drilled	sampler 1 foot (to	K	677.2		10 - 11	2 3 2	9	33	SS-5	-	60	14	12	8	6	29	19	10	22	A-2-4 (0)	
	LOOSE, BROWN, GRAVEL WITH SAND A	ND SILT, TRACE	90 09	077.2		- 12 -	2 2 2	13	78	SS-6	-	46	20	16	9	9	23	17	6	19	A-1-b (0)	
	MEDIUM DENSE, BROWN, <b>GRAVEL WITH</b>	SAND, TRACE	XÌ	675.7		- 13 -	7 7 8	19	50	SS-7	_	54	15	15	9	7	28	20	8	18	A-2-4 (0)	
- C. P	MEDIUM DENSE, BROWN, <b>GRAVEL WITH</b> TRACE CLAY, WET	SAND AND SILT,				- 14 - - - 15 -	5	17	56	SS-8		56	15	12	11	6	25	17	8	14	A-2-4 (0)	
ZC:41.22	@ 14.5' - 16.0' : Damp 2 - Medium Dense Granular					- 16 -	6	17	50		-	50	15	12		0	20	17	0	14	7-2-4 (0)	-
7/1.7/1.1			R			- 17 -	6															-
י פחו.						- 18 - - 19 -	6	20	17	SS-9	-	-	-	-	-	-	-	-	-	20	A-2-4 (V)	-
S		6	Щq	668.7		- 20 -																
LD - (	VERY DENSE, BROWN, GRAVEL AND ST WITH SAND, SILT, AND CLAY, MOIST					- 21 -	24 13	54	67	SS-10	-	62	14	9	9	6	29	18	11	16	A-2-6 (0)	-
× c.o)				666.2		- 22 -	14															-
פרספ	CLAY, DAMP (Relic Rock Structure)	NDY SILT, LITTLE				- 23 - - 24 -	30 33	91	89	SS-11	-	-	-	-	-	-	-	-	-	15	A-4a (V)	
Ę				663.7	T <u>R</u>	- 25																
	SHALE, GRAY, MODERATELY TO SLIGHT	LY WEATHERED,		663.2		25-	<u>\$0/1"</u> /	<u> </u>	\ <u>100</u> /	<u>SS-12</u>	\ <u>-</u> /	9	<u>177</u>	14	<u>34</u> /	26	<u>29</u> /	147	15	12 /	<u>Rock (V)</u>	-
	SHALE, GRAY TO DARK GRAY, SLIGHTLY WEAK TO SLIGHTLY STRONG, THIN TO N JOINT AND BEDDING DISCONTINUITIES, MODERATELY FRACTURED, TIGHT TO N APERTURE, SLIGHTLY ROUGH, VERY BL SURFACE CONDITION; RQD 52%, REC 10	WEATHERED, IEDIUM BEDDED, FRACTURED TO ARROW OCKY, FAIR 0%.		660.7		27 - 27 - 28 - 29 -	64		100	NQ2-1											CORE	

Γ	PID: 117	′574	SFN:	5634504	PROJECT:	MOE-TF	183-00.13	5	STATION	OFFSE	T:	10+3	0, 7' RT.	S [.]	TART	: 10/	18/22	ENI	D: _1	0/18	3/22	PC	G 2 OF	2 B-00	2-0-22
Γ			MA	TERIAL DESCRIF	TION		ELEV.	DE	PTHS	SPT/	N	REC	SAMPLE	HP	(	GRAD	ATIO	N (%)	A	<b>TT</b>	ERBĘ	RG		ODOT	HOLE
╞				AND NOTES			658.7			RQD	••60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	L	PL	ΡI	WC	CLASS (GI)	SEALED
BORINGLOGS.GPJ	CLAYSIC WEATHE AND BED SLICKEN RQD 50% CLAYSIC WEATHE BEDDING	DNE, G RED, V DING I ISIDED 6, REC ONE, G RED, V G DISCO	RAY TO /ERY WE DISCONT , LAMINA 100%. (c RAY TO VEAK, TH DNTINUI	DARK GRAY, MC EAK, THIN BEDDE INUITIES, FRAC TED, POOR SUR ontinued) LIGHT GRAY, SL HIN TO MEDIUM I TIES, SLIGHT TO EDTUDE SUCKE	DERATELY D, FRIABLE, JOIN TURED, FACE CONDITION IGHTLY BEDDED, JOINT A MODERATELY NEIDED BLOCK	1T Ν; ND	657.1		- 	- 58		100	NQ2-2											CORE	
2\20221114_MOE-TR183-0.13	FAIR TO @ 33.2' - (Point Loa SANDSTO WEATHE TO MEDIU DISCONT APERTUF SURFACE	POOR 34.0' : ad Testj ONE, G ERED, S UM GR FINUITI RE, SLI E CON	SURFAC Qu = 282 ) RAY, UN SLIGHTLY AINED, N ES, MOD GHTLY F DITIONS	ECONDITION; R si weathered to do moderate medium to thic erately frac rough, blocky ; RQD 94%, REC	D SLIGHTLY D SLIGHTLY LY STRONG, FINI K BEDDED, JOIN FURED, TIGHT , FAIR TO GOOD 100%.	)%.	651.8 648.8	EOB	- 36 - - 37 - - 38 - - 38 - - 39 - -	57		100	NQ2-3											CORE	
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 11/21/22 14:52 - C:\PWWORKING\EAST01/D2962262	@ 38.3' -	39.3' :	Qu = 10,	068 psi																					

NOTES: QUICKRETE CONCRETE USED TO PATCH PAVEMENT. SAMPLE SS-2 (2.5' - 4.0'): INSUFFICIENT AMOUNT OF SAMPLE TO PERFORM HYDROMETER TEST ABANDONMENT METHODS, MATERIALS, QUANTITIES: TREMIED 25 LB. BENTONITE POWDER; 94 LB. CEMENT; 50 GAL. WATER Monroe County Engineer MOE-TR183-0.13 Soil Strength Parameter Determination

		11	in a d Oh a an G	24	(m = <b>f</b> )							Long-Term	Strength Values		Adopted Long Term Strength
L ever		Undra	ained Shear a	Strength (Su)	(pst)	Dry Unit We	ight (pcf)	Moist Unit	Wt. (pcf)	Adopted Short Term Parameters		-		rrolationa	Parameters
Layer		PPR	N-Va	T and D	Veluee	Correlation	Teefed	Correlation	Tested			N ₆₀ Value	ODOT GB-7 CC	nrelations	(Pack Calculated from SlopeW)
			Sowers	I and P	values	Correlation	lested	Correlation	lested			10	Conesion (pst)	phi (deg)	(Back-Calculated from Slopew)
	Max	N/A	N/A	N/A		120		125			Max	10	N/A	30	
	Min	N/A	N/A	N/A		95		115		S _u = <b>0</b> psf	Min	4	N/A	28	c' = <b>0</b> psf
Layer 1	Average	N/A	N/A	N/A		102		119		Φ = <b>28</b> deg	Average	7	N/A	29	Φ' = <b>28</b> deg
	Std Dev	N/A	N/A	N/A		9		5			Std Dev	2	N/A	1	
LOOSE GRANULAR										Y _{dry} = 100 pcf					Y _{dry} = 100 pcf
	Avg + Std	N/A	N/A	N/A		111		124		Y _{moist} = <b>120</b> pcf	Avg + Std	9	N/A	30	Y _{moist} = <b>120</b> pcf
	Avg - Std	N/A	N/A	N/A		93		114			Avg - Std	5	N/A	28	
	Max	N/A	N/A	N/A		110		130			Max	23	N/A	33	
	Min	N/A	N/A	N/A		100		120		S _u = <b>0</b> psf	Min	12	N/A	30	c' = <b>0</b> psf
Layer 2	Average	N/A	N/A	N/A		107		127		Φ = <b>31</b> deg	Average	17	N/A	31	Φ' = <b>31</b> deg
	Std Dev	N/A	N/A	N/A		4		4			Std Dev	4	N/A	1	
MEDIUM DENSE GRANULAR										Y _{dry} = 105 pcf					Y _{dry} = 105 pcf
	Avg + Std	N/A	N/A	N/A		111		131		Y _{moist} = <b>125</b> pcf	Avg + Std	20	N/A	32	Y _{moist} = <b>125</b> pcf
	Avg - Std	N/A	N/A	N/A		103		123			Avg - Std	13	N/A	31	
	Max	N/A	N/A	N/A		125		140			Max	91	N/A	40	
	Min	N/A	N/A	N/A		120		135		S _u = <b>0</b> psf	Min	35	N/A	35	c' = <b>0</b> psf
Layer 3	Average	N/A	N/A	N/A		123		138		Φ = <b>37</b> deg	Average	54	N/A	37	Φ' = <b>37</b> deg
	Std Dev	N/A	N/A	N/A		3		3			Std Dev	22	N/A	3	
DENSE TO VERY DENSE										Y _{dry} = 125 pcf					Y _{dry} = 125 pcf
	Avg + Std	N/A	N/A	N/A		126		141		Y _{moist} = <b>135</b> pcf	Avg + Std	76	N/A	40	Y _{moist} = <b>135</b> pcf
	Avg - Std	N/A	N/A	N/A		120		135			Avg - Std	32	N/A	35	

Computed By = DCM Checked By = DMV

																									Correlated				Correlated	Correlated			
						Layer 1															-	Sho	rt-Term Cohe	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
								%		%	%	%	%	%				%					N-values	i	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
							N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC				PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s )	Ratio (e)
V	alues for Soil Strength	Correlation			F	Max	10	100	N/A	69	16	12	9	12	40	22	18	53			Max	N/A	N/A	N/A	N/A	30	12.0	685.7	120	125	0.270	2.72	0.787
R	eference	Value				Min	4	33	N/A	57	11	8	5	4	24	17	7	8			Min	N/A	N/A	N/A	N/A	28	3.0	675.1	95	115	0.126	2.71	0.414
HL	I (Sowers)	0.25				Average	7	70	N/A	62	14	10	7	7	31	19	12	21			Average	N/A	N/A	N/A	N/A	29	7.4	680.8	102	119	0.189	2.71	0.668
MD	PI (Sowers)	0.175				Std Dev	2	22	N/A	5	2	2	2	4	8	3	6	16			Std Dev	N/A	N/A	N/A	N/A	1	3.6	3.7	9	5	0.074	0.00	0.136
LO	PI (Sowers)	0.075																															
	T&P	0.133				Avg + Std	9	92	N/A	67	16	12	9	11	39	22	17	37			Avg + Std	N/A	N/A	N/A	N/A	30	11.0	684.5	111	124	0.263	2.72	0.803
						Avg - Std	5	47	N/A	56	12	8	5	3	23	17	6	6			Avg - Std	N/A	N/A	N/A	N/A	28	3.8	677.1	93	114	0.115	2.71	0.532
																									Correlated				Correlated	Correlated			
																						Sho	rt-Term Cohe	sion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT		Г	Sho	rt-Term Cohe N-values	sion (psf)	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void
Alianment	Surface Elevation	Exploration ID	From		To	Sample	Neo	% Rec	НР	% Gr	% CS	% FS	% Silt	% Clav		Ы	Ы	% WC	ODOT Class	Soil Type	l aver	Sho	rt-Term Cohe N-values Sowers	sion (psf) ; T & P	Correlated LT Cohesion (psf) per GB-7	phi (deg)	Midpoint Sample Depth (ff.)	Midpoint Sample Elevation (ft.)	Correlated Dry Unit Wt. (pcf) per GB-7	Correlated Moist Unit Wt. (pcf) per GB-7	Correlated C.	Assumed Specific Gravity (G.)	Computed Void Ratio (e)
Alignment	Surface Elevation	Exploration ID	From		То	Sample ID	N ₆₀	% Rec	HP	% Gr	% CS	% FS	% Silt	% Clay	ш	PL	PI	% WC	ODOT Class.	Soil Type	Layer	Sho PPR	rt-Term Cohe N-values Sowers	sion (psf) ; T & P	Correlated LT Cohesion (psf) per GB-7	phi (deg)	Midpoint Sample Depth (ft.)	Midpoint Sample Elevation (ft.)	Correlated Dry Unit Wt. (pcf) per GB-7	Correlated Moist Unit Wt. (pcf) per GB-7	Correlated C _c	Assumed Specific Gravity (G _s )	Computed Void Ratio (e)
Alignment TR 183	Surface Elevation 687.1	Exploration ID B-001-0-22 D-001-0-22	From 2.5	-	To 4	Sample ID SS-2	N ₆₀ 6	% <b>Rec</b> 67	HP -	% Gr -	% CS -	% FS -	% Silt	% Clay	LL -	PL -	PI -	% WC 15	ODOT Class. A-4a	<b>Soil Type</b> Granular	Layer	Sho PPR N/A	rt-Term Cohe N-values Sowers	sion (psf) ; T & P	Correlated LT Cohesion (psf) per GB-7	<b>phi</b> (deg) 29	Midpoint Sample Depth (ft.) 3.0	Midpoint Sample Elevation (ft.) 684.1	Correlated Dry Unit Wt. (pcf) 95	Correlated Moist Unit Wt. (pcf) per GB-7 115 125	Correlated C _c	Assumed Specific Gravity (G _s ) 2.72	Computed Void Ratio (e) 0.787
<b>Alignment</b> TR 183 TR 183	Surface Elevation 687.1 687.2	Exploration ID B-001-0-22 B-001-0-22	From 2.5 11	-	<b>To</b> 4 12.5	Sample ID SS-2 SS-6	N₀₀ 6 7	% Rec 67 100	HP - -	% Gr - 60	% CS - 11	% FS - 8	% Silt 9	% Clay - 12	LL - 40	<b>PL</b> - 22	<b>PI</b> - 18	% WC 15 27	<b>ODOT</b> <b>Class.</b> A-4a A-2-6	<b>Soil Type</b> Granular Granular	Layer 1 1	Sho PPR N/A N/A	rt-Term Cohe N-values Sowers	sion (psf) ; T & P	Correlated LT Cohesion (psf) per GB-7	<b>phi</b> (deg) 29 29	Midpoint Sample Depth (ft.) 3.0 12.0	Midpoint Sample Elevation (ft.) 684.1 675.1	Correlated Dry Unit Wt. (pcf) per GB-7 95 105	Correlated Moist Unit Wt. (pcf) per GB-7 115 125	Correlated C _c 0.27	Assumed Specific Gravity (G _s ) 2.72 2.71	Computed Void Ratio (e) 0.787 0.611
<b>Alignment</b> TR 183 TR 183 TR 183 TR 183	Surface Elevation 687.1 688.7 688.7	Exploration ID B-001-0-22 B-001-0-22 B-002-0-22	From 2.5 11 2.5	- -	<b>To</b> 4 12.5 4	Sample ID SS-2 SS-6 SS-2	N ₆₀ 6 7 10	% Rec 67 100 67	HP - - -	% Gr - 60 57	% <b>CS</b> - 11 16	% FS - 8 12	% Silt - 9	% Clay - 12 -	LL - 40 -	PL - 22 -	<b>PI</b> - 18 -	% WC 15 27 8	ODOT Class. A-4a A-2-6 A-2-6	Soil Type Granular Granular Granular	Layer 1 1 1	Sho PPR N/A N/A N/A	rt-Term Cohe N-values Sowers	sion (psf) 5 T & P	Correlated LT Cohesion (psf) per GB-7	<b>phi</b> ( <b>deg</b> ) 29 20 30	Midpoint Sample Depth (ft.) 3.0 12.0 3.0	Midpoint Sample Elevation (ft.) 684.1 675.1 685.7	Correlated Dry Unit Wt. (pcf) per GB-7 95 105 95	Correlated Moist Unit Wt. (pcf) per GB-7 115 125 115	Correlated C _c 0.27	Assumed Specific Gravity (G _s ) 2.72 2.71 2.71	Computed Void Ratio (e) 0.787 0.611 0.780
<b>Alignment</b> TR 183 TR 183 TR 183 TR 183 TR 183	Surface Elevation 687.1 687.1 688.7 688.7	Exploration ID B-001-0-22 B-001-0-22 B-002-0-22 B-002-0-22 D-002-0-22	<b>From</b> 2.5 11 2.5 5	- - -	<b>To</b> 4 12.5 4 6.5	Sample ID SS-2 SS-6 SS-2 SS-3 SS-3	N ₆₀ 6 7 10 7	% Rec 67 100 67 67	HP - - -	% Gr - 60 57 69	% <b>CS</b> - 11 16 14	% FS - 8 12 8	% Silt - 9 - 5	% Clay - 12 - 4	LL - 40 - 24	PL - 22 - 17	<b>PI</b> - 18 - 7	% WC 15 27 8 8	ODOT Class. A-4a A-2-6 A-2-6 A-2-4	Soil Type Granular Granular Granular Granular	Layer 1 1 1	Sho PPR N/A N/A N/A N/A	rt-Term Cohe N-values Sowers	sion (psf) ; T & P	Correlated LT Cohesion (psf) per GB-7	<b>phi</b> ( <b>deg</b> ) 29 30 29	Midpoint Sample Depth (ft.) 3.0 12.0 3.0 6.0	Midpoint Sample Elevation (ft.) 684.1 675.1 685.7 682.7	Correlated Dry Unit Wt. (pcf) 95 105 95 100	Correlated Moist Unit Wt. (pcf) per GB-7 115 125 115 120	Correlated C _c 0.27 0.126	Assumed Specific Gravity (G _s ) 2.72 2.71 2.71 2.71	Computed Void Ratio (e) 0.787 0.611 0.780 0.691
Alignment TR 183 TR 183 TR 183 TR 183 TR 183 TR 183	Surface Elevation 687.1 688.7 688.7 688.7	Exploration ID B-001-0-22 B-001-0-22 B-002-0-22 B-002-0-22 B-002-0-22 B-002-0-22	From 2.5 11 2.5 5 7.5	- - -	<b>To</b> 4 12.5 4 6.5 8.5	Sample ID SS-2 SS-6 SS-2 SS-3 SS-4A	N ₆₀ 6 7 10 7 4	% Rec 67 100 67 67 83	HP - - - -	% Gr 60 57 69	% - 11 16 14 -	% F <b>S</b> 8 12 8 -	% Silt - 9 - 5 -	% Clay - 12 - 4 -	LL - 40 - 24 -	<b>PL</b> - 22 - 17 -	<b>PI</b> - 18 - 7 -	% WC 15 27 8 8 17	ODOT Class. A-4a A-2-6 A-2-6 A-2-6 A-2-4 A-2-4	Soil Type Granular Granular Granular Granular Granular	Layer 1 1 1 1 1	Sho PPR N/A N/A N/A N/A N/A	rt-Term Cohe N-values Sowers	sion (psf) T & P	Correlated LT Cohesion (psf) per GB-7	<b>phi</b> ( <b>deg</b> ) 29 29 30 29 29 28	Midpoint Sample Depth (ft.) 3.0 12.0 3.0 6.0 8.0	Midpoint Sample Elevation (ft.) 684.1 675.1 685.7 682.7 680.7	Correlated Dry Unit Wt. (pcf) 95 105 95 100 95	Correlated Moist Unit Wt. (pcf) per GB-7 115 125 115 120 115	<b>Correlated</b> <b>C</b> _c 0.27 0.126	Assumed Specific Gravity (G _s ) 2.72 2.71 2.71 2.71 2.71 2.71	Computed Void Ratio (e) 0.787 0.611 0.780 0.691 0.780
<b>Alignment</b> TR 183 TR 183 TR 183 TR 183 TR 183 TR 183 TR 183	Surface Elevation 687.1 688.7 688.7 688.7 688.7 688.7	Exploration ID B-001-0-22 B-001-0-22 B-002-0-22 B-002-0-22 B-002-0-22 B-002-0-22 B-002-0-22	From 2.5 11 2.5 5 7.5 8.5		<b>To</b> 4 12.5 4 6.5 8.5 9	Sample ID SS-2 SS-6 SS-2 SS-3 SS-4A SS-4A SS-4B	N ₆₀ 6 7 10 7 4 -	% Rec 67 100 67 67 83	HP - - - - -	% Gr - 60 57 69 - -	% <b>CS</b> 11 16 14 -	% FS - 8 12 8 - -	% Silt - 9 - 5 -	% Clay - 12 - 4 -	LL - 40 - 24 -	PL - 22 - 17 -	<b>PI</b> - 18 - 7 -	% WC 15 27 8 8 17 53	ODOT Class. A-4a A-2-6 A-2-6 A-2-6 A-2-4 A-2-4 A-2-4	Soil Type Granular Granular Granular Granular Granular Granular	Layer 1 1 1 1 1 1	Sho PPR N/A N/A N/A N/A N/A N/A N/A	rt-Term Cohe N-values Sowers	sion (psf) ; T & P	Correlated LT Cohesion (psf) per GB-7	phi (deg) 29 29 30 29 28	Midpoint Sample Depth (ft.) 3.0 12.0 3.0 6.0 8.0 9.0	Midpoint Sample Elevation (ft.) 684.1 675.1 685.7 682.7 680.7 680.7 679.7	Correlated Dry Unit Wt. (pcf) 95 105 95 100 95 120	Correlated Moist Unit Wt. (pcf) per GB-7 115 125 115 120 115	<b>Correlated</b> <b>C</b> _c 0.27 0.126	Assumed Specific Gravity (G _s ) 2.72 2.71 2.71 2.71 2.71 2.71 2.72	Computed Void Ratio (e) 0.787 0.611 0.780 0.691 0.780 0.414

									-																	Correlated				Correlated	Correlated			
						Layer 2		21			•		•					•				SI	ort-Term Co	hesion (pst)	f)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
								%		%	%	%	%	%				%					N-val	Jes		(pst)	phi	Sample	Sample	(pct)	(pct)	Correlated	Specific	Void
			-				N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC				PPR	Sower	s T&	٤P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	U _c	Gravity (G _s )	Ratio (e)
Valu	es for Soil Strength C	Correlation				Max	23	100	N/A	63	21	20	28	10	31	24	14	20			Max	N/A	N/A	N/A	/A	N/A	33	18.0	687.7	110	130	0.189	2.72	0.691
Refe	rence	Value				Min	12	17	N/A	25	7	11	2	6	23	13	6	9			Min	N/A	N/A	N/A	/A	N/A	30	1.0	670.7	100	120	0.117	2.71	0.537
HI PI (S	Sowers)	0.25				Average	17	57	N/A	51	15	14	11	8	27	18	9	16			Average	N/A	N/A	N/A	/A	N/A	31	10.4	677.5	107	127	0.149	2.71	0.586
MD PI (	(Sowers)	0.175				Std Dev	4	26	N/A	13	5	3	8	1	3	3	3	4			Std Dev	N/A	N/A	N/A	/A	N/A	1	5.7	5.5	4	4	0.027	0.00	0.062
LO PI (	Sowers)	0.075																																
Te	&P	0.133				Avg + Std	20	84	N/A	64	20	18	19	9	30	21	12	19			Avg + Std	N/A	N/A	N/A	/A	N/A	32	16.0	683.0	111	131	0.177	2.71	0.648
					L	Avg - Std	13	31	N/A	38	10	11	3	7	24	14	6	12			Avg - Std	N/A	N/A	N//	/A	N/A	31	4.7	672.0	103	123	0.122	2.71	0.524
																										<b>a</b>								
																										Correlated				Correlated	Correlated			• • •
						<b>.</b> .																51	ort-Term Co	nesion (pst)	T)	LI Conesion		Midpoint	wiapoint	Dry Unit Wt.	Moist Unit wt.		Assumed	Computed
	Sumface Elevetion		_		_	Sample		%		%	%	%	%	%				%	ODOT				N-val	les		(pst)	phi	Sample	Sample	(pct)	(pct)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sower	S T&	έΡ	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s )	Ratio (e)
TR 183	687.1	B-001-0-22	0	-	1.5	SS-1	13	17	-	-	-	-	-	-	-	-	-	13	A-2-4	Granular	2	N/A					31	1.0	686.1	100	120		2.71	0.691
TR 183	687.1	B-001-0-22	5	-	6.5	SS-3	20	78	-	25	21	16	28	10	23	16	7	15	A-4a	Granular	2	N/A					32	6.0	681.1	105	125	0.117	2.72	0.616
TR 183	687.1	B-001-0-22	8	-	9.5	SS-4	23	100	-	-	-	-	-	-	-	-	-	12	A-2-4	Granular	2	N/A					33	9.0	678.1	105	125		2.71	0.611
TR 183	687.1	B-001-0-22	9.5	-	11	SS-5	14	78	-	63	7	20	2	8	31	24	7	16	A-2-4	Granular	2	N/A					31	10.0	677.1	105	125	0.189	2.71	0.611
TR 183	687.1	B-001-0-22	12.5	-	14	SS-7	13	39	-	54	16	11	10	9	29	17	12	20	A-2-6	Granular	2	N/A					31	13.0	674.1	110	130	0.171	2.71	0.537
TR 183	687.1	B-001-0-22	14	-	15.5	SS-8	12	50	-	62	12	11	7	8	27	13	14	15	A-2-6	Granular	2	N/A					30	15.0	672.1	110	130	0.153	2.71	0.537
TR 183	688.7	B-002-0-22	0	-	1.5	SS-1	19	67	-	-	-	-	-	-	-	-	-	9	A-2-6	Granular	2	N/A					32	1.0	687.7	100	120		2.71	0.691
IR 183	688.7	B-002-0-22	11.5	-	13	SS-6	13	78	-	46	20	16	9	9	23	17	6	19	A-1-b	Granular	2	N/A					31	12.0	6/6.7	110	130	0.117	2.71	0.537
IR 183	688.7	B-002-0-22	13	-	14.5	SS-7	19	50	-	54	15	15	9	7	28	20	8	18	A-2-4	Granular	2	N/A					32	14.0	6/4.7	110	130	0.162	2.71	0.537
IR 183	688.7	B-002-0-22	14.5	-	16	SS-8	17	56	-	56	15	12	11	6	25	17	8	14	A-2-4	Granular	2	N/A					31	15.0	6/3.7	110	130	0.135	2.71	0.537
IR 183	688.7	B-002-0-22	17.5	-	19	SS-9	20	17	-	-	-	-	-	-	-	-	-	20	A-2-4	Granular	2	N/A					32	18.0	670.7	110	130		2.71	0.537

									_																Correlated				Correlated	Correlated			
					Lay	yer 3																Sho	rt-Term Cohe	sion (psf)	LT Cohesio	n	Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
								%		%	%	%	%	%				%					N-values	5	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
							N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC				PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s )	Ratio (e)
Val	ues for Soil Strength C	Correlation				Max	91	89	N/A	62	14	12	9	8	29	18	11	18			Max	N/A	N/A	N/A	N/A	40	23.0	670.1	125	140	0.171	2.72	0.409
Refe	ference	Value				Min	35	44	N/A	59	12	9	9	6	19	15	4	12			Min	N/A	N/A	N/A	N/A	35	17.0	665.1	120	135	0.081	2.71	0.353
HI PI	(Sowers)	0.25				Average	54	69	N/A	61	13	11	9	7	24	17	8	15			Average	N/A	N/A	N/A	N/A	37	20.4	667.3	123	138	0.126	2.71	0.376
MD PI	(Sowers)	0.175				Std Dev	22	17	N/A	2	1	2	0	1	7	2	5	2			Std Dev	N/A	N/A	N/A	N/A	3	2.4	2.0	3	3	0.064	0.00	0.030
LO PI	(Sowers)	0.075																															
1	T&P	0.133				Avg + Std	76	86	N/A	63	14	13	9	8	31	19	12	17			Avg + Std	N/A	N/A	N/A	N/A	40	22.8	669.3	126	141	0.190	2.72	0.406
						Avg - Std	32	52	N/A	58	12	8	9	6	17	14	3	13			Avg - Std	N/A	N/A	N/A	N/A	35	18.0	665.3	120	135	0.062	2.71	0.346
																									Correlated				Correlated	Correlated			
																						Sho	rt-Term Cohe	sion (psf)	LT Cohesio	n	Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values	S	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		То	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	wc	Class.	Soil Type	e Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	Cc	Gravity (G _s )	Ratio (e)
TR 183	687.1	B-001-0-22	16	-	17.5	SS-9	35	67	-	-	-	-	-	-	-	-	-	15	A-1-b	Granular	3	N/A			_	35	17.0	670.1	120	135		2.71	0.409
TR 183	687.1	B-001-0-22	18.5	-	20	SS-10	38	78	-	59	12	12	9	8	19	15	4	12	A-1-b	Granular	3	N/A				35	19.0	668.1	120	135	0.081	2.71	0.409
TR 183	687.1	B-001-0-22	21	-	22.5	SS-11	52	44	-	-	-	-	-	-	-	-	-	18	A-1-b	Granular	3	N/A				39	22.0	665.1	125	140		2.71	0.353
TR 183	688.7	B-002-0-22	20	-	21.5	SS-10	54	67	-	62	14	9	9	6	29	18	11	16	A-2-6	Granular	3	N/A				39	21.0	667.7	125	140	0.171	2.71	0.353
TR 183	688.7	B-002-0-22	22.5	-	24	SS-11	91	89	-	-	-	-	-	-	-	-	-	15	A-4a	Granular	3	N/A				40	23.0	665.7	125	140		2.72	0.358

#### BEDROCK TESTING

						Moist	Compr	essive	Er				Em (Hoek & F	Brown)	Lesser of
Project	Exploration ID	Sample	Sample	Rock	Color	Unit	Strei	ngth	Modu	ulus	GS	I	Modulu	IS	Er vs Em
		Depth (ft)	ID	Туре		Weight (pcf)	(psi)	(MPa)	(psi)	(MPa)	Range	USE	(GPa)	(psi)	(psi)
MOE-TR183-0.13	B-001-0-22	27.3		Shale	Gray		1,313	9.1	NA	-	15-25	20	0.5	77602	77602
				Shale	Maximum	-	1313		NA = Not A	vailable			Shale	Maximum	77602
					Minimum	-	1313							Minimum	77602
					Average	-	1313							Average	77602
					Std Dev	-	-	1						Std Dev	-
				Recom	mended Value:	150	1300						Recomme	ended Value:	77500

			Depth	Range (ft.)	Thickness	Layer RQD	Weighted
Project	Exploration ID	Rock Type	From	То	(ft)	(%)	RQD*( ^{Length} / _{Total Length} )
MOE-TR183-0.13	B-001-0-22	Claystone	29.5	34.7	5.2	73	26.9
MOE-TR183-0.13	B-002-0-22	Claystone	28	31.6	3.6	50	12.8
MOE-TR183-0.13	B-002-0-22	Claystone	31.6	36.9	5.3	49	18.4
	-	-		Claystone	14.1	RQD SUM	58
				Maximum	5.3	73	
				Minimum	3.6	49	
				Average	4.7	57.3	1
					Recomm	ended Value:	58

	_		Depth	Range (ft.)	Thickness	Laver RQD	Weighted
Project	Exploration ID	Rock Type	From	То	(ft)	(%)	RQD*( ^{Length} / _{Total Length} )
MOE-TR183-0.13	B-001-0-22	Sandstone	34.7	40	5.3	100	63.9
MOE-TR183-0.13	B-002-0-22	Sandstone	36.9	39.9	3	94	34.0
				Sandstone	8.3	RQD SUM	98
				Maximum	5.3	100	
				Minimum	3	94	1
				Average	4.2	97.0	1
					Recomm	ended Value:	98

						<b>1</b> oist	Compr	essive	Er				Em (Hoek &	Brown)	Lesser of
Project	Exploration ID	Sample	Sample	Rock	Color	Unit	Strei	ngth	Modu	ılus	GS		Modulu	IS	Er vs Em
		Depth (ft)	ID	Туре		Weight (pcf)	(psi)	(MPa)	(psi)	(MPa)	Range	USE	(GPa)	(psi)	(psi)
MOE-TR183-0.13	B-001-0-22	32.5		Claystone	Gray		266	1.8	NA	-	10-20	15	0.2	26193	26193
MOE-TR183-0.13	B-002-0-22	33.2		Claystone	Gray		282	1.9	NA	-	10-20	15	0.2	26969	26969
				Claystone	Maximum	-	282		NA = Not A	vailable			Claystone	Maximum	26969
					Minimum	-	266							Minimum	26193
					Average	-	274							Average	26581
					Std Dev	-	11							Std Dev	549
				Recom	mended Value:	150	275						Recomm	ended Value:	26000

					Moist	Compre	essive	E	r			Em (Hoek &	Brown)	Lesser of	l l		
Project Exploration	ID Sample	Sample	Rock	Color	Unit	Stren	gth	Mod	ulus	GS	I	Modul	us	Er vs Em		Project	Exploratio
	Depth (ft)	ID	Туре		Weight (pcf)	(psi)	(MPa)	(psi)	(MPa)	Range	USE	(GPa)	(psi)	(psi)			ID
MOE-TR183-0.13 B-002-0-7	2 38.3		Sandstone	Gray	159.0	10,068	69.4	NA	-	45-55	50	8.3	1208404	1208404		MOE-TR183-0.1	3 B-001-0-2
																MOE-TR183-0.1	3 B-002-0-2
			Sandstone	Maximum	159.0	10068		NA = Not A	vailable			Sandstone	Maximum	1208404			
				Minimum	159.0	10068							Minimum	1208404			
				Average	159	10068							Average	1208404	-		
				Std Dev	-	-							Std Dev	-			
			Recor	nmended Value:	160	10000						Recomm	ended Value:	1208000			
GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCKS (Hoek and Marinos, 20         From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Cuoding a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not where weak planar structural planes are present in an unfavourable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced is water is present. Where yeads a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. STRUCTURE         Image: Structure of the second structure of the second structure is dealt with by effective stress analysis.         STRUCTURE         Image: Structure of the second structure of discontinuities         Structure of the second structure of the stress discontinuities         Image: Structure of the structure of the structure of discontinuity sets         Structure of the structure of the structure of the structure of discontinuity sets. Presistencing discontinuity sets. Presi	B     0     0       C     DECREASING INTERLOCKING OF ROCK PIECES     SUFFACE CONDITIONS     0       C     DECREASING INTERLOCKING OF ROCK PIECES     SUFFACE CONDITIONS     0       D     D     D     VERY GOOD     0       D     D     D     D     VERY GOOD       D     D     D     D     VERY GOOD       D     D     D     D     D       D     D     D     D     D       D     D     D     D     D       D     D     D     D     D       D     D     D     D     D       D     D     D     D     D       D     D     D     D       D     D </th <th>20 20 20 20 20 20 20 20 20 20 20 20 20 2</th> <th>ETV POOR Sickensided, highly weathered surfaces with soft clay coadings or fillings</th> <th>GSI FOR HETEROG (Marinos.P and Hoek Form a description of 1 of the bedding planes), that corresponds to the value of GSI from the c from 33 to 37 is more t the behaviour of the roc the presence of grounc rol change the value of COMPOSITION AND S A thick bed the effect of controlled in A thick bed the effect of controlled in B. Sand- stone with layers of sitistone C,D, E and G - may ber Eas folded than lustrate this does not change the tess folded than lustrate this does not change the loss of continuity moves categories to F and H. G. Undisturb or without a this sandstou</th> <th>ENEOUS ROCK M. E. E. 2000) the lithology, structure choose a box in the c condition of the disco- notours. Do not attern realistic than giving G3 y to structurely contra- tar, poor and very pr GS1 and it is dealt with water and this can by GS1 and it is dealt with rRucTURE ded, very blocky sand pelitic coatings on the inized by the confine- s. In shallow tunnels c g planes may cause s stability. C. Sand- statistone ind similar amounts C. Sand- similar amounts C. Sand- similar amounts configure ed sity the wery the layers this of the confine- stability. C. Sand- similar amounts C. Sand- similar amounts C. Sand- similar amounts configure the wery the layers this of the confine- tion after tectonic distations the configure the second the confine- stability. C. Sand- similar amounts C. Sand- similar C. Sand- similar amounts C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- S</th> <th>ASSES SUCH and surface con hart. Locate the ntinuities and et it to be too preci SI = 35. Note th to be too preci SI = 35. Note th es allowed for by or conditions. W h by using effect store tracturally D. Sil or silpopes tructurally D. Sil or silpopes tructurally D. Sil or silpopes tructurally D. Sil or silpopes tructurally The folde or silpopes tructurally H. 1. clay stru tran</th> <th>AS FLYSCH aditions (parti position in thistimate the area e. Quoting as tat the Hoek- Where unface these will do asses is redu as sight shift dater pressum tive stress and dater pressum</th> <th>Cularly he box services of the services o</th> <th>is the distribution of the</th> <th><ul> <li>Φ</li> <li>Φ</li> <li>Φ</li> <li>GOOD - Rough, slightly weathered surfaces</li> </ul></th> <th>0 C C C C C C C C C C C C C C C C C C C</th> <th>H B automoto Burnaco B</th> <th></th> <th>Table 1$E_m(C)$$E_m(C)$$E_m =$Notes: $A$strength</th> <th>$0.4.6.5-1 - E$ $EPa) = \sqrt{\frac{q_u}{100}}$ $EPa) = 10$ $\frac{GS}{EPa} = 10$ $\frac{E_R}{100} e^{GSI/21}$ $E_r = \text{modulus}$ $E_r = \text{modulus}$</th> <th>stimation of $E_m$? Expression $-\frac{GSI-10}{40}$ fo $\frac{SI-10}{40}$ fo 1.7 of intact rock, $E_m$ = 2.09 ksf.</th> <th>Based on GSI or $q_u \le 100 \text{ M}$ r $q_u \le 100 \text{ M}$ = equivalent r</th>	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ETV POOR Sickensided, highly weathered surfaces with soft clay coadings or fillings	GSI FOR HETEROG (Marinos.P and Hoek Form a description of 1 of the bedding planes), that corresponds to the value of GSI from the c from 33 to 37 is more t the behaviour of the roc the presence of grounc rol change the value of COMPOSITION AND S A thick bed the effect of controlled in A thick bed the effect of controlled in B. Sand- stone with layers of sitistone C,D, E and G - may ber Eas folded than lustrate this does not change the tess folded than lustrate this does not change the loss of continuity moves categories to F and H. G. Undisturb or without a this sandstou	ENEOUS ROCK M. E. E. 2000) the lithology, structure choose a box in the c condition of the disco- notours. Do not attern realistic than giving G3 y to structurely contra- tar, poor and very pr GS1 and it is dealt with water and this can by GS1 and it is dealt with rRucTURE ded, very blocky sand pelitic coatings on the inized by the confine- s. In shallow tunnels c g planes may cause s stability. C. Sand- statistone ind similar amounts C. Sand- similar amounts C. Sand- similar amounts configure ed sity the wery the layers this of the confine- stability. C. Sand- similar amounts C. Sand- similar amounts C. Sand- similar amounts configure the wery the layers this of the confine- tion after tectonic distations the configure the second the confine- stability. C. Sand- similar amounts C. Sand- similar C. Sand- similar amounts C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar C. Sand- similar Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- Sand- S	ASSES SUCH and surface con hart. Locate the ntinuities and et it to be too preci SI = 35. Note th to be too preci SI = 35. Note th es allowed for by or conditions. W h by using effect store tracturally D. Sil or silpopes tructurally D. Sil or silpopes tructurally D. Sil or silpopes tructurally D. Sil or silpopes tructurally The folde or silpopes tructurally H. 1. clay stru tran	AS FLYSCH aditions (parti position in thistimate the area e. Quoting as tat the Hoek- Where unface these will do asses is redu as sight shift dater pressum tive stress and dater pressum	Cularly he box services of the services o	is the distribution of the	<ul> <li>Φ</li> <li>Φ</li> <li>Φ</li> <li>GOOD - Rough, slightly weathered surfaces</li> </ul>	0 C C C C C C C C C C C C C C C C C C C	H B automoto Burnaco B		Table 1 $E_m(C)$ $E_m(C)$ $E_m =$ Notes: $A$ strength	$0.4.6.5-1 - E$ $EPa) = \sqrt{\frac{q_u}{100}}$ $EPa) = 10$ $\frac{GS}{EPa} = 10$ $\frac{E_R}{100} e^{GSI/21}$ $E_r = \text{modulus}$ $E_r = \text{modulus}$	stimation of $E_m$ ? Expression $-\frac{GSI-10}{40}$ fo $\frac{SI-10}{40}$ fo 1.7 of intact rock, $E_m$ = 2.09 ksf.	Based on GSI or $q_u \le 100 \text{ M}$ r $q_u \le 100 \text{ M}$ = equivalent r

Figure 10.4.6.4-1—Determination of GSI for Jointed Rock Mass (Hoek and Marinos, 2000)

Figure 10.4.6.4-2—Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek 2000)

#### BEDROCK QUALITY

Project

MOE-TR183-0.13 B-001-0-2 MOE-TR183-0.13 B-002-0-2

Exploration ID	Rock Type	Depth From	Range (ft.) To	Thickness (ft)	Layer RQD (%)	Weighted RQD*( ^{Length} / Total Length)
B-001-0-22	Shale	25	29	4	67	41.2
B-002-0-22	Shale	25.5	28	2.5	52	20.0
			Shale	6.5	RQD SUM	<mark>61</mark>
		ŀ	Maximum	4	67	
		ľ	Minimum	2.5	52	
		I	Average	3.3	59.5	
				Recomm	ended Value:	61

sion	Notes/Remarks	Reference
)	Accounts for rocks with	Hoek and Brown (1997);
for $q_u \leq 100$ MPa	$q_u < 100$ MPa; notes $q_u$ in MPa	Hoek et al. (2002)
for $q_u \leq 100$ MPa		
	Reduction factor on intact modulus, based on <i>GSI</i>	Yang (2006)
k, $E_m$ = equivalent rock n	hass modulus, GSI = geological strengt	th index, $q_u$ = uniaxial compressive



Scour Analysis Parameters

SC	Project: Client: Task:	MOE-TR183-0.13 Monroe County Engineer Scour Analysis	Calculated By: Checked By:	DCM DMV	Date: Date:	11/25/2022 12/1/2022
<u>Reference</u> ODOT Geotechnical Desig	gn Manual (GDM)		Reference Location and De	sign Manual - Volun	ne 2 : Drainage Design (LDv2	2)
Critical Shear Stress (Tc)			Erosion Categor	y (EC)		
Cohesive Soils (GDM 130	2.1)		Cohesive Soils (L	Dv2 C1008.10.4)		
$Tc = -2.0 (PI/100)^{1}$	^{.3} (qu) ^{0.4}					
Tc (Pa)	<ul> <li>Critical Shear Stress</li> </ul>	5	EC =	4.5 - (3 / 1.07 ^{PI} )	where 1.5 <u>&lt;</u> EC <	<u>4.5</u>
w (dim) :	<ul> <li>Water Content</li> </ul>				PI = Plasticity ind	lex (dim)
F (dim) :	<ul> <li>Fraction of Fine Par</li> </ul>	ticles (< 75 um)				
PI (dim)	<ul> <li>Plasticity Index (use</li> </ul>	e min PI = 4)	Granular Soils (L	Dv2 C1008.10.4)		
qu (psf)	<ul> <li>Unconfined Compr</li> </ul>	essiive Test	EC =	1.2 [1.83333+log (D	950)]	
	c (psf) = 1/2 qu	cohesion			where 1 <u>&lt;</u> EC <u>&lt;</u> 6	
a =	. 0.01	unit conversion				
		0.01 = U.S. Customary units				
		0.1 = S.I.				
Granular Soils (GDM1302	2.2)					

Tc (Pa) = D50 (mm)

Tc (psf) = Critical Shear Stress (Pa)

D50 mean particle grain size (mm), > or = 0.2 mm

Boring No.	Sample	Eleva	tio	n (ft)	D50	Moisture	Fines (< 75um)	Plasticiy	Unconfined Streng	Compressive th, Qu	Unit conversion	Tc (Pa)	Tc (psf)	EC (dim)
		Тор		Bottom	(mm)	w (dim)	F (dim)	PI (dim)	Qu (psf) ¹	Qu (Pa)	a (dim)			
B-001-0-22	SS-5	677.56	-	676.06	4.8348	16	10	7	GRANULAR	Granular	0.1	4.835	0.101	3.02
	SS-6	676.06	-	674.56	3.0327	27	21	18	GRANULAR	Granular	0.1	3.033	0.063	2.78
	SS-7	674.56	-	673.06	2.4802	20	19	12	GRANULAR	Granular	0.1	2.480	0.052	2.67
	SS-8	673.06	-	671.56	5.3393	15	15	14	GRANULAR	Granular	0.1	5.339	0.112	3.07
B-002-0-22	SS-5	678.66	-	677.16	4.2471	22	14	10	GRANULAR	Granular	0.1	4.247	0.089	2.95
	SS-6	677.16	-	675.66	1.3939	19	18	6	GRANULAR	Granular	0.1	1.394	0.029	2.37
	SS-7	675.66	-	674.16	2.6654	18	16	8	GRANULAR	Granular	0.1	2.665	0.056	2.71
	SS-8	674.16	-	672.66	3.0839	14	17	8	GRANULAR	Granular	0.1	3.084	0.064	2.79

1. See soil parameter determination sheet summary

2. 1 Pa = 0.0208854 psf

3. dim = dimensionless

 Project:	MOE-TR183-0.13	Calculated By:	DCM	Date:	11/25/2022
Client:	ODOT	Checked By:	DMV	Date:	12/1/2022
Task:	Scour Analysis				

abutments to scour.

then it must be considered cohesive for determination of critical shear stress, regardless of the tested plasticity. For soils tested as non-plastic (NP) or with PI < 4, assume PI = 4 for use in the cohesive soil critical shear stress equation.

#### 1302.1 Cohesive Soils

Determine scour critical shear stress of a cohesive soil through publication FHWA-HRT-15-033, Figure 54, "Equation. Predictive relation for critical shear stress,"

$$\tau_c = \alpha \left(\frac{w}{F}\right)^{-2.0} \left(\frac{PI}{100}\right)^{1.3} q_u^{0.4}$$

Where:

 $\tau_c = Critical shear stress, psf (Pa)$ 

- w = Water content, dimensionless
- F = Fraction of fine particles (< 75µm) by mass, dimensionless
- PI = Plasticity index, dimensionless
- q_u = Unconfined compressive strength, psf (Pa)
- $\alpha$  = Unit conversion constant, 0.01 in U.S. customary units and 0.1 in S.I.

For example, if w = 11, F = 60, PI = 7, and  $q_u = 6500 \text{ psf} = 311,200 \text{ Pa}$ , then:

$$\tau_c = 0.1 \times \left(\frac{11}{60}\right)^{-2.0} \times \left(\frac{7}{100}\right)^{1.3} \times (311,200)^{0.4} = 14.77 \ Pa = 0.308 \ psf.$$

#### 1302.2 Granular Soils

Determine scour critical shear stress of a granular soil as a function of the mean particle grain size using the equation in HEC 18 Figure 4.6, "Critical shear stress vs. particle grain size (Briaud et al. 2011)."

 $\tau_c (Pa) = D_{50} (mm)$ 

Where:

 $\tau_c = Critical shear stress (Pa)$ 

 $D_{50}$  = mean particle grain size (mm),  $\ge 0.2$  mm

#### 1302.3 Bedrock

Determine scour critical shear stress of a non-scour resistant bedrock by rearranging HEC 18 Equations 7.38 for 'Critical Stream Power' and 7.39 'Approach Flow Stream Power' to derive the critical shear stress for non-scour resistant bedrock as follows:

$$\tau_c = \rho \left( \frac{1000 \ K^{0.75}}{7.853 \ \rho} \right)^{2/3}$$

July 2022 Page 13-2 OHIO DEPARTMENT OF TRANSPORTATION Geotechnical Design Manual

.D2 – 1000 Drainage Design Criteria	July 2022
dimensionless, where $1 \le EC \le 6$ Where:	soil with $D_{50}$ = 23 mm, with a bed shear stress of 53.18 Pa:
C = Erosion Category, dimensionless	EC = 1.2 (1.83333 + log(23)) = 3.83
for cohesive soils:	$\alpha = 13/3.83^{0.309} - 7.1363 = 1.45$
$C = 4.5 - \frac{3}{1.07^{P1}}$ , where $1.5 \le EC \le 4.5$ ,	$ \beta = 7.377777 \cdot [(1 - (3.83 - 4.5)^2/3.57^2) 10.377777^2]^{0.5} \\ = -2.82 $
PI= Plasticity Index, dimensionless For granular soils:	Erosion Rate, $\dot{z} = 10^{(1.45 \log(53.18) - 2.82)} = 10^{-0.3177} = 0.48 \text{ mm/hr} = 0.019 \text{ in/hr}$
$EC = 1.2 [1.83333 + log(D_{50})]$ , where $1 \le EC \le 6$ , $D_{50} =$ mean particle grain size (mm), $\ge 0.1$ mm	
To estimate the erosion rate of a bedrock material, reat it as a cohesionless soil. Divide the spacing between horizontal discontinuities by a value of 2.5 to develop an equivalent $D_{50}$ value.	For example; if a material has a spacing between horizontal discontinuities of 9 inches, divide by 2.5 = $3.6$ inches = 91 mm; use 91 mm as the equivalent $D_{50}$ value.
Consider scour depth in the design of the substructures and the location of the bottom of ootings and minimum tip elevations for piles and drilled shafts.	
All major rehabilitation work requires a scour evaluation.	For existing bridges, the scour evaluation may consist of determining what the bridge is founded on For example with bridge rebabilitation poting
Provide hand calculations and/or software output along with a narrative of findings and recommended scour countermeasures in the STS. gnore scour countermeasures in the prediction of scour depths. Include a statement regarding the suscentibility of the stream banks and flow line to	that the bridge is founded on spread footings on scour resistant bedrock would constitute the scour evaluation.



Axial and Lateral Pile Design Parameter Determination

#### Project: MOE-TR183-0.13 Client: Monroe County Engineer Task: Generalized LPILE Parameters

#### Soil Lateral Design Profile

	Elevation				Unit V	Vt (pcf)		
Soil Type	Top (ft)	Bottom (ft)	Cohesion (psf)	Phi (deg)	Total	Effective1	ε50	k (pci)
2 - Medium Dense	688	686	0	31	125	125	N/A	90
1 - Loose Granular	686	682	0	28	120	120	N/A	25
2 - Medium Dense	682	676	0	31	125	125	N/A	90
2 - Medium Dense (submerged)	676	669	0	31	125	62.6	N/A	60
3 - Dense to Very Dense Granular	669	635.5	0	37	135	72.6	N/A	125
1. Effective unit weights to be applied below groundwater table (assumed at El 676 in recommended design profile)								

#### ε50 tables from LPile Technical Manual

Table 3-2 Representative	Values of \$50	for Soft to Stiff Clays
--------------------------	----------------	-------------------------

Consistency of Clay	\$50
Soft	0.020
Medium	0.010
Stiff	0.005

<b>Fable 3-4</b> Representative	Values of	Sto for Stiff I	o Hard Clays

Average Undrained Shear Strength	<i>B</i> 50	
50-100 kPa (1,000-2,000 psf)	0.007	
100-200 kPa (2,000-4,000 psf)	0.005	
200-400 kPa (4,000-6,000 psf)	0.004	

#### k tables from LPile Technical Manual

 Table 3-6 Representative Values of k for Fine Sand Below the Water Table for Static and Cyclic Loading

B	Relative Density			
Recommended k	Loose	Medium	Dense	
MN/m ³	5.4	16.3	34	
(pci)	(20.0)	(60.0)	(125.0)	

 Table 3-7 Representative Values of k for Fine Sand Above Water Table for Static and Cyclic

 Loading

Recommended k	F	Relative Densi			
	Loose	Medium	Dense		
MN/m ³	6.8	24.4	61.0		
(pci)	(25.0)	(90.0)	(225.0		