PROJECT DESCRIPTION

THIS EXPLORATION WAS PERFORMED FOR THE ADDITION OR REPLACEMENT OF OVERHEAD TRAFFIC SIGNAL SUPPORTS AT THE INTERSECTIONS OF SR 163 AND SR 269 AS WELL AS SR 163 AND N. BUCK ROAD IN DANBURY TOWNSHIP AND LAKESIDE, OTTAWA COUNTY, OHIO. THE PROJECT IS DESIGNATED AS DO2 TSG FY2025. PID 110100.

HISTORIC RECORDS

A REVIEW OF ODOT RECORDS FOR THE PROJECT AREAS INDICATED THAT HISTORIC BORINGS HAVE BEEN PERFORMED WITHIN THE PROJECT AREAS. THE HISTORIC BORINGS INCLUDE THOSE THAT WERE PERFORMED AS PART OF THE FOLLOWING PROJECTS:

- OTT-53&163-(8.54-29.67) IN 1951.
- OTT-163-31.84 IN 1955.
- OTT-240-0.00 IN 1958. AT THAT TIME. SR 269 WAS IDENTIFIED AS SR 240.
- OTT-163-(31.07)(35.71)(36.08) IN 1962.

BORING NUMBERS WERE NOT ASSIGNED TO THE BORINGS, RATHER THEY WERE IDENTIFIED BY STATION AND OFFSET. THEREFORE, THE HISTORIC BORINGS ARE IDENTIFIED IN THIS DISCUSSION WITH A BORING NUMBER EQUAL TO THE HISTORIC STATION. THE BORINGS DID NOT INCLUDE SPT SAMPLING. RATHER THE BORINGS WERE AUGER PROBES THAT INCLUDED COLLECTED SAMPLES AT VARYING DEPTHS.

THE 1951 EXPLORATION INCLUDED BORINGS PERFORMED IN THE PROJECT AREAS ALONG 163, WHICH ARE IDENTIFIED AS B-253-0-51, B-255-0-51, AND B-256-0-51 NEAR THE SR 269 INTERSECTION, AS WELL AS B-277-0-51 IN THE VICINITY OF THE NORTH BUCK ROAD INTERSECTION. THESE BORINGS WERE EXTENDED TO DEPTH OF 8 FEET. VISUAL CLASSIFICATION WAS INCLUDED FOR EACH SAMPLE. HOWEVER, THE NOTES FOR THE BORINGS AT THE SR 269 INTERSECTION WERE ILLEGIBLE. THE SOIL PROFILE INCLUDED AN A-7-6 HATCH FOR THESE BORINGS. FOR BORING B-277-0-51, A SAMPLE FROM 3 TO 4 FEET WAS TESTED FOR MECHANICAL CLASSIFICATION (INDICATED AS A-6B). IN THE SOIL PROFILE, THE HATCH ABOVE AND BELOW THIS INTERVAL WAS SHOWN AS A-7-6.

THE 1955 EXPLORATION INCLUDED A BORINGS PERFORMED IN THE VICINITY OF THE NORTH BUCK ROAD INTERSECTION ALONG 163, IDENTIFIED AS B-277-0-55. THE BORING WAS EXTENDED TO A DEPTH OF 8 FEET. THE SOILS ENCOUNTERED IN THE BORING CONSISTED OF A-4A MATERIAL UNDERLYING THE TOPSOIL TO A DEPTH OF 0.8 FEET. CAUTION FOR THE A-4A SOILS IN THE SOIL PROFILE INCLUDED A NOTE INDICATING THIS MATERIAL WOULD BE "RUBBERY AND UNSTABLE" AT WATER CONTENTS WHICH EXCEED THE OPTIMUM. THE SOILS ENCOUNTERED UNDERLYING THE A-4A SOILS CONSISTED OF A-6B.

THE 1958 EXPLORATION INCLUDED BORINGS PERFORMED ALONG SR 269 IDENTIFIED AS B-118-0-58 AT THE SR 269 INTERSECTION, AS WELL AS B-143-0-58, B-143-1-58, B-143-2-58, AND B-143-3-58 AT THE NORTH BUCK ROAD INTERSECTION. BORINGS B-143-0-58 AND THE BORING B-143 OFFSET 12 FEET LEFT WERE EXTENDED TO A DEPTH OF 8 FEET. THE BORINGS B-143 AT CENTERLINE, OFFSET 5 FEET LEFT, AND OFFSET 5 FEET RIGHT WERE INDICATED TO BE FOR A PAVEMENT SURVEY OF THE EXISTING ROADWAY CONDITIONS AND SUBGRADE SOILS EXTENDING ONLY TO A DEPTH OF 3.5 FEET. THE SOILS ENCOUNTERED IN THE BORINGS INCLUDED A-6A AND A-7-6.

THE 1962 EXPLORATION INCLUDED A BORING PERFORMED ALONG SR 163 NEAR THE INTERSECTION WITH SR 269, WHICH IS IDENTIFIED AS B-255-0-62. THE BORING WAS TERMINATED AT A DEPTH OF 7 FEET WITH AN INDICATION OF REFUSAL ON "BOULDERS". THE SOILS ENCOUNTERED IN THE BORING CONSISTED OF A-7-6 MATERIAL EXTENDING TO A DEPTH OF 3 FEET UNDERLAIN BY A-6A MATERIAL.

GEOLOGY

PUBLISHED GEOLOGIC MAPS FROM THE OHIO DEPARTMENT OF NATURAL RESOURCES (ODNR) INDICATE THAT THE PROJECT SITE IS LOCATED WITHIN THE HURON-ERIE LAKE PLAINS SECTION. IN THE MAUMEE LAKE PLAINS REGION. WITHIN THIS REGION, THE GEOLOGIC DEPOSITS CONSIST OF LATE WISCONSINAN LACUSTRINE CLAY DEPOSITED IN CALM WATER OR GLACIAL LAKES, WHICH IS MOSTLY LAMINATED AND COVERED IN PLACES WITH THIN ORGANIC DEPOSITS. THE CLAY IS UNDERLINED WITH WAVE-PLANED CLAYEY TILL OVER SILURIAN AND DEVONIAN-AGE CARBONATE BEDROCK DOMINATED BY DOLOMITE WITH OCCASIONAL LIMESTONE.

THE LACUSTRINE SOILS CONSIST OF HISTORIC LAKE DEPOSITS. THE GLACIAL TILL, ALSO REFERRED TO AS MORAINE, WAS DEPOSITED BY THE ADVANCE AND RETREAT OF GLACIERS. THE TILL MAY CONTAIN COBBLES AND/OR BOULDERS LEFT IN THE SOIL MATRIX. ADDITIONALLY, SEAMS OF GRANULAR SOILS MAY ALSO BE ENCOUNTERED WITHIN THE PREDOMINANTLY CLAYEY TILLS. THESE GRANULAR SEAMS MAY OR MAY NOT BE WATER BEARING.

THE BEDROCK IN THE PROJECT AREA IS BROADLY MAPPED ON THE "GEOLOGIC MAP OF OHIO" AS MONROE LIMESTONE. THE BEDROCK UNDERLYING THIS AREA IS PRIMARILY BASS ISLAND DOLOMITE FROM THE SILURIAN AND DEVONIAN PERIODS. THE BEDROCK IS RELATIVELY CLOSE TO THE SURFACE IN SOME AREAS, WHICH CAN INFLUENCE CONSTRUCTION PRACTICES.

REVIEW OF THE ODNR "INTERACTIVE KARST MAP" WEBSITE INDICATED THAT THE SITE IS IN AN AREA OF PROBABLE KARST, WITH THE CLOSEST MAPPED LOCATION OF KNOWN KARST IS APPROXIMATELY ONE MILE NORTHEAST.

NO MINES ARE MAPPED IN THE PROJECT AREAS. THE CLOSEST MINES ARE MAPPED APPROXIMATELY 2¹/₂ MILES EAST AND ARE INDICATED AS A SURFACE MINE.

THE USDA WEB SOIL SURVEY INDICATES THAT THE NEAR-SURFACE SOILS IN THE PROJECT AREA ARE MAPPED AS NAPPANEE SILTY CLAY LOAM (NPA). THE NPA SOILS ARE COMPRISED OF TILL FORMED ON LAKE PLAINS AND ARE CONSIDERED TO BE SOMEWHAT POORLY DRAINED WITH A MODERATELY LOW TO HIGH PERMEABILITY.

CONT. TO SHEET 2.

LE	GEND	0007		
	DESCRIPTION	CLASS	MECH	./VISUAL
	SANDY SILT	A-4A	1	1
	SILT AND CLAY	A-6A	6	3
	SILTY CLAY	A-6B	1	2
	CLAY	A-7-6	2	1
		TOTAL	10	7
	DOLOMITE	VISUAL		
XXXX	PAVEMENT OR BASE = X = APPROXIMATE THICKNESS	VISUAL		
	SOD AND TOPSOIL = X = APPROXIMATE THICKNESS	VISUAL		
•	BORING LOCATION - PLAN VIEW.			
(-+-) -	HISTORIC BORING LOCATION - PLAN VIEW.			
WC	INDICATES WATER CONTENT IN PERCENT.			
Ν	INDICATES STANDARD PENETRATION RESISTANCE (NO DRILL RO	D CALIBRATIOI	N CORRE	CTION)
N 60	INDICATES STANDARD PENETRATION RESISTANCE NORMALIZED TO 60% DRILL ROD ENERGY RATIO.			
X/D"	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST (SPT): X/D" = NUMBER OF BLOWS (UNCORRECTED) FOR D" OF PENET	RATION AT REI	FUSAL	
X/Y/Z/D	"NUMBER OF BLOWS FOR STANDARD PENETRATION TEST (SPT): X = NUMBER OF BLOWS FOR FIRST 6 INCHES (UNCORRECTED) Y = NUMBER OF BLOWS FOR SECOND 6 INCHES (UNCORRECTED Z/D" = NUMBER OF BLOWS (UNCORRECTED) FOR D" OF PENET	D) RATION AT REF	- USAL	
SS	INDICATES A NON-PLASTIC SAMPLE.			
QU	UNCONFINED COMPRESSIVE STRENGTH (ASTM D 7012, METHO	od c for roc	ΪK)	

BEDROCK TEST SUMMARY												
BORING ID.	SAMPLE	SAMPLE		LITHOLOGY								
	ELEVATION	DEPTH	QU (PSI)									
<i>B-001-0-24</i>	556.3′ – 551.3′	24' – 29'	11,210	DOLOMITE								
B-002-0-24	556.3′ – 551.3′	21' – 26'	9,777	DOLOMITE								
B-003-2-24	565.2′ – 560.2′	12'-17'	9,490	DOLOMITE								

ORGANIC CONTENT BY LOSS ON IGNITION TEST											
BORING ID	SAMPLE	SAMPLE	SAMPLE	LOI (%)							
	ID	ELEVATION	DEPTH								
<i>B-001-0-24</i>	SS - 2	576.8′ – 574.3′	3.5′ – 6′	5.5							
<i>B-002-0-24</i>	SS - 1	576.9′ – 573.8′	0.5′ – 3.5′	4.3							

RECONNAISSANCE

CT PERFORMED SITE RECONNAISSANCE ON NOVEMBER 13, 2024. OVERHEAD POWERLINES AND UNDERGROUND UTILITY MARKINGS WERE PRESENT NEARBY THE PROPOSED FOUNDATION LOCATIONS.

ROADWAY PAVEMENTS IN THE PROJECT AREAS APPEARED TO BE IN GOOD CONDITION. EXPOSED DRAIN TILE WAS PRESENT NEARBY BORING B-002-0-24.

SUBSURFACE EXPLORATION

THE BORINGS WERE DRILLED BY DLZ UNDER THE DIRECTION OF CT ON NOVEMBER 22 AND 23, 2024. THE BORINGS WERE PERFORMED AS ODOT TYPE E5 STRUCTURE BORINGS PER GEOTECHNICAL INVESTIGATIVE PROCEDURES OUTLINED IN OHIO DEPARTMENT OF TRANSPORTATION (ODOT) "SPECIFICATIONS FOR GEOTECHNICAL EXPLORATIONS" (SGE). ALL BORINGS WERE EXTENDED TO AUGER REFUSAL ON BEDROCK AND INCLUDED A 5 FEET ROCK CORE RUN. THREE (3) TEST BORINGS, DESIGNATED AS BORINGS B-001-0-24 THROUGH B-003-0-24 WERE PERFORMED FOR THIS EXPLORATION. OFFSET BORINGS B-003-1-24 AND B-003-2-24 WERE PERFORMED APPROXIMATELY 3 FEET AND 6 FEET SOUTHWEST, RESPECTIVELY, OF B-003-0-24. THE OFFSET BORINGS WERE PERFORMED SINCE IT WAS UNSURE WHETHER REFUSAL IN B-003-0-24 WAS ON UNDERGROUND STRUCTURES/UTILITIES, OR BEDROCK. AFTER CONFIRMING THE PRESENCE OF BEDROCK ALSO AT THE REFUSAL DEPTH IN B-003-1-24 AND B-003-2-24, BORING B-003-2-24 INCLUDED ROCK CORING. THESE BORINGS ARE FULLY DESIGNATED IN ACCORDANCE WITH ODOT PROTOCOL, BUT THE "-0-24" OR "-24" PORTION OF THE NOMENCLATURE IS GENERALLY OMITTED IN THE DISCUSSIONS BELOW.

THE TEST BORINGS PERFORMED DURING THIS EXPLORATION WERE DRILLED WITH A TRUCK-MOUNTED CME 75 DRILL RIG UTILIZING 3¼-INCH INSIDE DIAMETER HOLLOW-STEM AUGERS. DURING AUGER ADVANCEMENT OF THE TEST BORINGS, SPLIT-SPOON DRIVE SAMPLES WERE GENERALLY TAKEN AT 2½-FOOT INTERVALS TO AUGER REFUSAL. THE CALIBRATED HAMMER/ROD ENERGY RATIO FOR THE TRUCK-MOUNTED CME 75 DRILL RIG UTILIZED IN THIS PROJECT IS 76.7 PERCENT, BASED ON CALIBRATION PERFORMED ON JANUARY 12, 2025. ROCK CORING WAS PERFORMED USING AN NQ CORE BARREL.

EXPLORATION FINDINGS

BASED ON THE RESULTS OF OUR FIELD AND LABORATORY TESTS, THE SUBSOILS ENCOUNTERED IN THE BORINGS UNDERLYING THE SURFACE MATERIALS CAN BE GENERALLY DESCRIBED AS COHESIVE SOILS TRANSITIONING FROM MEDIUM STIFF TO STIFF IN THE UPPER PROFILE, TO STIFF TO VERY STIFF CONSISTENCY, AND THEN TO VERY STIFF TO HARD CONSISTENCY WITH INCREASED DEPTH EXTENDING TO THE UNDERLYING BEDROCK. THE COHESIVE SOILS CONSISTED OF A-4A, A-6A, A-6B, AND A-7-6.

UNDERLYING THE COHESIVE SOILS, DOLOMITE BEDROCK WAS ENCOUNTERED. TOP OF ROCK WAS ENCOUNTERD IN BORINGS B-001, B-002, AND B-003 (ORIGINAL AND OFFSETS) AT DEPTHS OF 16 FEET, 18½ FEET, AND 11 FEET, RESPECTIVELY.

DURING THIS EXPLORATION, GROUNDWATER WAS INITIALLY ENCOUNTERED DURING DRILLING IN BORINGS B-001 AND B-002 AT THE TOP OF BEDROCK AT DEPTHS OF 16 FEET BELOW EXISTING GRADE (ELEV. 564.3) AND 18½ FEET (ELEV. 558.8), RESPECTIVELY. GROUNDWATER WAS NOT OBSERVED IN ANY OF THE BORINGS PRIOR TO CORING OPERATIONS. WATER WAS INTRODUCED AS PART OF THE CORING OPERATIONS.

SPECIFICATIONS

THIS GEOTECHNICAL EXPLORATION WAS PERFORMED IN ACCORDANCE WITH THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, OFFICE OF GEOTECHNICAL ENGINEERING, SPECIFICATIONS FOR GEOTECHNICAL EXPLORATIONS (SGE), DATED JANUARY 2025.

AVAILABLE INFORMATION

THE SOIL, BEDROCK, AND GROUNDWATER INFORMATION COLLECTED FOR THIS SUBSURFACE EXPLORATION THAT CAN BE CONVENIENTLY DISPLAYED ON THE SOIL PROFILE SHEETS HAS BEEN PRESENTED. GEOTECHNICAL REPORTS, IF PREPARED, ARE AVAILABLE FOR REVIEW ON THE OFFICE OF CONTRACT SALES WEBSITE.

MODEL: Sheet PAPERSIZE: 34x22 (in.) DATE: 3/21/2025 TIME: 8:58:24 AM USER: some

D02-TSG-FY2025

MODEL: Sheet PAPERSIZE: 34x22 (in.) DATE: 3/21/2025 TIME: 8:59:12 AM USER: somogyi H:\2024\242165\110100\400-Engineering\Geotechnical\Sheets\110100_ID001.dgn

	01-0-24	PAGE		3I) HOLE		5		1)		(2)		5	(6		<u>~</u>		5	
	EXPLC B-0	9.5 ft.	33) SSY10 LODOL		A-6b (\		A-6b (1		A-6a (6		A-6a (\	A-6a (9		A-6a (\		Rock ('	- - (
		5	.82978	лс		24		24		14		12	15		Ø		5	
	38, 43 ¹ 3	OB:	0, -82.	ERG		I		18		11		ı	14		I		ı	
	<u>554+8</u> SR 16	388) E	3140(1		20		17		ı	19		I			
	<u></u>	NAVI	41.5	ЧЦ		-		38		28		1	33		ı			
	FSET	80.3		сг %)		1		52		43		'	47		ı		•	
	I / OF ENT:	ON: 5	' DU	ON (9		1		28		22		1	24		I		1	
	ATION GNME	VATI		DATI FS		1		∞		15		1	18		ı		1	
	ST/ ALI		LAI	GRA cs		1				0		1	6		I		1	
	X 78 VER	25		er Gr		- 2		5		5 12		2	5 2		2			
	<u>TRUC</u> HAMN	1/12/2	76.7	⊟ HF (tsf		2.7		1.7		× 4.		×4.	>4.		>4.		'	
	CME 75 OMATIC	ATE:	(%):	ID SAMPLE		SS-1		SS-2		SS-3		SS-4	SS-5		SS-6		SS-7	
	<u>DLZ</u> AUT		ATIO	REC (%)		50		22		83		100	72		100		28	
	LER: MER:	RATI	GY R	N_{60}		6		23		35		47	40		51		47	
	DRILL HAMN	CALIB	ENER	SPT/ RQD		6 6 4		6		11		3 16 21	11 20		3 16 24		21 21 16	. 4
							(၂၂ က				, 		- <u>-</u>	က် က			0	
		σ		THS												, ო ო		
	DLZ / /	A/N	Ø V	DEP												а 1 2 4	¥	
		25" HS	SPT													3		
	LOR: LAR:	() () () () () () () () () () () () () (ELEV 580.3	579.5	579.0	576.8		574.3							564.3		
	DGGE				\bigotimes													
	M / OI 8M / L	THOD	IHO I															
	g fir Ig fif	U ME	G ME			 ш		CLAY : 1,37(Щ								
	UPLIN MPLIN	ILLING				E		PSI =		Ë								
	SAN	DR	SA	NOII		LAY,		AY, S - 9.5	(0)	AND,							ED.	
	RT		24	CRIP		TY C		N/GR ST Qu	,0. 0. 11	OME S					PSF		THER	
	025 JPPO	A/	1/22/	. DES		, , , , SIL		MON	Ĺ	Υ , SC					9,000		WEA	
i	<u>3 FY2</u> AL-SL			ERIAL		CHES GRA		ARK B AVEL,	JINK) CLA) = S		RELY	
	2 TSC 3IGN/		END.	MATE	ပ္ပ	- 5 IN(TIFF, EI M	≥ L		סאט	r ane			H		32.5 F		EVEF	Z
		SFN	54		NCHE	TO S		' STIF TRACI		, SIL1			RAVE		Qu - ƙ		AY, S	KOW
			22		0				A A A A A	DWN AMF			С О		Α		GR	AY/F
	TRAF	100	<u> </u>		 ` ¯	エアン	ζ	>スさ	ר				Q		Ŕ		ΙW	n de la constante de la consta
	ECT: TRAF	110100	T: 11/		HALT - (IUM ST	ב בי	E TO V E SAN	nun)	D, BRG VEL, D			: TRAC		.5': GR		OMITE	5'. GR

S CORE GROI CEMENT-BENTONITE O $\overline{}$, V V 100/ 98 HALT PATCH; PUMPED 8 CF တ္ခု 82 -23PLACED 0.25 BAG ASP ∞ က O DOLOMITE, GRAY, MODERATELY TO HIGHLY WEATHERED, STRONG, JOINTED-SLIGHTLY FRACTURED, NARROW, RQD = 82%, REC = 98%. @26': Qu - 11,210 PSI NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES

TION ID 0-24	PAGE 1 OF 1	HOLE						
EXPLORA B-002-	5.0 ft.	ODOT CLASS (GI)	A-6b (V)	A-7-6 (15)	A-6a (9)	A-6a (V)	A-6a (9)	A-4a (V)
RT.	26 83015	AC VC	23	24	14	15	17	6
3, 52'	82. 8,-82.	D B L L L	ı	24	12	1	13	I
55+9 SR 16:	31668	ERBE	I	24	17	1	19	1
	NAVE 41.5	HT		48	50	-	32	
FSET	77.3 (CL ()		68	20		60	
, OFI	יסי NO: מפי	NC (%	1	53	25	1	23	
		DATIC		و	16	-	ത	-
STA ALIC	ELE	GRA CS	1	<i>с</i> р	~	1	2 2	-
K 78 FR	2	GR		0	1 2	· ·	м 10	
AMN	1/12/2 76.7	(tsf	2.25	4.25	>4.5	>4.5	>4.!	>4.5
CME 75 1 MATIC F	VTE: 1 %):	SAMPLE	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6
DLZ		REC (%)	72	80	100	100	100	100
RIG:	RATIC GY RV	N ₆₀	ത	4	24	37	60	35
DRILL	CALIB	PT/ COD	2	2 2	7	11	15 32	10
DLZ / MG	HSA / NQ PT / NQ	DEPTHS						13 15 16 16 17 13
TOR:	3.25" S	ELEV. 577.3	576.9	573.8	571.3			563.8
DRILLING FIRM / OPERA SAMPI ING FIRM / I OGGI	DRILLING METHOD: SAMPLING METHOD:	TON	AY, LITTLE SAND,	-, TRACE SAND,) CLAY , SOME PSI = 16,200 PSF			IRACE GRAVEL,
PROJECT: D02 TSG FY2025 TYPE: TRAFFIC SIGNAI -SUPPORT	PID: 110100 SFN: N/A START: 11/23/24 END: 11/23/24	MATERIAL DESCRIPT AND NOTES	TOPSOIL - 5 INCHES STIFF TO VERY STIFF, BROWN, SILTY CL MOIST (MODERATELY ORGANIC, LOI = 4.	STIFF TO HARD, GRAY, CLAY , SOME SILT MOIST	VERY STIFF TO HARD, BROWN, SILT AND SAND, TRACE GRAVEL, DAMP Qu = 112.5	@9.5': HARD	@11': LITTLE SAND	HARD, GRAY, SANDY SILT , SOME CLAY, 7 DAMP

(11 X 3.8) ODOT SOIL BORING LOG (8.5 X 11)

- X:/PROJECTS/2421650D0T.GPJ

9 15:23	@16': Qu = 68.2 PSI = 9,820 PSF	- 16 8 - 17 - 12 35 100 SS-7 > 4.5 7 9 19 42 23 25 16 9 12 A-4a (6)
2\E <u>113</u>	DOLOMITE, GRAY, SEVERELY WEATHERED.	558.8 K Fr8.8 18 - 13 Rock (V)
гое (8.5 X 11) - ОН DC	DOLOMITE , GRAY, MODERATELY TO HIGHLY WEATHERED, STRONG, JOINTED-SLIGHTLY FRACTURED, NARROW, RQD = 97%, REC = 97%. @21.3': Qu - 9777 PSI	556.3
D ODOT SOIL BORING		
IAAUNAT2	NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 7 C	F CEMENT-BENTONITE GROUT
PROJECT ID 110100 SUBSET TOTAL 5 9 SHEET TOTAL P.23 27	DESIGN AGENCY DESIGNER TLS REVIEWER CPI 03/19/25	GEOTECHNICAL PROFILE - TRAFFIC SIGNALS BORING LOGS B-001-0-24 & B-002-0-24

D02-TSG-FY2025

DEL: Sheet PAPERSIZE: 34x22 (in.) DATE: 3/21/2025 TIME: 8:59:43 AM USER: somogyi 2024/245145/110100/400-Fngineering/Geotechnical/Sheets/110100 ID002 dgn

Σ

-0-24 PAGE	1 OF 1	HOLE											
EXPLOR/ B-003	0.	ODOT CLASS (GI)		A-7-6 (V)		A-7-6 (15)		A-6a (8)		A-6a (3)		Rock (V)	
LT.	82207	WC		10		19		19		I		-	
)4, 32' 33 EOB:	1, -82.	ERG		1		24		11		12		-	
677+(SR 16 D88)E	53139	TERBI PL		, ,		25		17		17			
(NAVI	41.5	AT		' 		49		28		29			
FSE1		(%)		I		68		50		27		 	
N / OF ENT: ION: E	NG:			I		54		5 26		3 21		 	
ATIOI IGNM EVAT	T/LC	ADAT S FS				0		7 15		9 1(
E AL	_ LA	GR SR C						2		1			
JCK 78 IMER /25	7	HP sf)	·	 		20		25		00			
5 TRL 2 HAN 1/12	76.	LE F	·			4		4.		4.			
CME 7	%):	SAMPI		SS-1		SS-2		SS-SS		SS-4		SS-5	
DLZ (AUTC ON DA	ATIO (REC (%)		28		100		39		83		33	
- RIG: MER: 3RATI	RGY R	N_{60}		13		14		32		18		-	
DRILI HAMIN CALIE	ENEF	SPT/ ROD		4 6		4 7		10 15		9 5		0/3"	
DLZ / MG DLZ / AM 3.25" HSA	SPT	DEPTHS		∽ ~ 	ო 	- -		0 2	8	ο (EOB	
ÖR: R: 3):3.2	ELEV. 577.2	576.9				571.2				566.2	565.2	
DGGE					Í								
DRILLING FIRM / OF SAMPLING FIRM / L(DRILLING METHOD:	SAMPLING METHOD	TION		E SAND,) CLAY , SOME PSI = 7,100 PSF		GRAVEL		'EATHERED.	
PROJECT: D02 TSG FY2025 TYPE: TRAFFIC SIGNAL-SUPPORT PID: 110100 SFN: N/A	START: 11/22/24 END: 11/22/24	MATERIAL DESCRIPT. AND NOTES	TOPSOIL - 4 INCHES	STIFF, BROWN, CLAY , SOME SILT, TRACE MODERATELY ORGANIC, DAMP		@3.5': STIFF TO HARD		VERY STIFF TO HARD, BROWN, SILT AND SAND, TRACE GRAVEL, MOIST Qu = 49.3 F		@8.5': VERY STIFF, "AND" SAND, LITTLE G		DOLOMITE, BROWN/GRAY, SEVERELY WE	

STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 3/13/25 12:23 - X:/PROJECTS/2421650DOT.GPJ

ATION ID 3-1-24	PAGE	1 OF 1	HOLE SEALED	
EXPLOR B-003	2.0 ft.	76	CLASS (GI)	
1, LT.	1	2.82207	wc	
+03, 31) EOB:	385, -82	BERG L PI	
1677 SR	IAVD88	41.5313		
FSET:	77.2 (N		%) CL	
NN / OF		ONG:	TION (9	
STATIC AI IGNN	ELEVA:	LAT / L	SRADA' cs F	
1FR	22) GR	
5 TRUC	1/12/2	76.7	LE HF (tsf	
CME 7	VTE:	%): 	SAMPI ID	
ALITO		RATIO (REC (%)	
ILL RIG	LIBRAT	ERGY F	/ N ₆₀	
DR HA			SPT RQI	
DV Z			SH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	HSA		DEP1	- TR - EOB
	3.25'		≡V. 7.2	N N N
RATOR:			277 577	26
	HOD:	HOD:		
G FIRM	G METH	IG MET		
RILLINC		AMPLIN	~	
		ک ا	RIPTION S	
)25 2PORT		1/22/24	DESCH	
<u>ig FY2(</u> Al -SU). 1		
DO2 TS	SFN:	EN	MA	
RAFFIC	00	1/22/24		-0-24
JECT:	1101	RT: 1		B-003
PRO. TYPF	PID:	STAF		В К

NATED TO CONSIDER WHETHER MATERI QUANTITIES: PUMPED 5 CF CEMENT-B

> <u>NOTES: AUGER REFUSAL @12'. TERMI</u> <u>ABANDONMENT METHODS, MATERIALS,</u>

> > 2:23 - X:/PROJECTS/2421650D0T.GPJ

	CONSIDER WHETHER MATERIAL WAS ROCK OR CONCRETE UTILITY. ROUT	CHNICAL PROFILE - TRAFFIC SIGNALS NG LOGS B-003-0-24 & B-003-1-24
S1 85/61/6 - TQĐ.TOQ HO - (11 X 8.8) ĐOJ ĐNIROB JIOZ TOGO GRAGNATS	NOTES: AUGER REFUSAL @12'. OFFSET 3 FT SW OF B-003-0-24. TERMINATED TO F ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 5 CF CEMENT-BENT	DESIGN AGENCY DESIGNER TLS REVIEWER CPI 03/19/25 PROJECT ID 110100 SUBSET TOTAL 6 9 SHEET TOTAL 6 9

6-FY2025
D02-TS

MODEL: Sheet PAPERSIZE: 34x22 (in.) DATE: 3/21/2025 TIME: 9:00:10 AM USER: somogyi H:\2024\242165\110100\400-Engineering\Geotechnical\Sheets\110100 ID003.dgn

VTION ID -2-24	PAGE 1 OF 1	HOLE			
EXPLOR ^A B-003	.0 ft. 2	ODOT CLASS (GI)		CORE	
LI.	17 82208	мс			
02, 30' 33	EOB: 9, -82.	ERG			
1677+ SR 1(<u>vD88)</u> 53137				
	2 (NA) 41				
OFFS UT:	N: 577	N (%) SI			
TION /	/ LON(
STA ALIG	ELE	GRAI cs			
CK 78 MER	7	if) GF			
5 TRU	1/12/ 76.7	LE H (ts			
CME 7		SAMP		ŎZ	
DLZ (ON DA	REC (%)		94	
L RIG: MER:	BRATIC 3GY R	N ₆₀			
DRIL HAM	CALI	SPT/ RQD		94	
DLZ / MG DLZ / AM	HSA / NQ NQ	DEPTHS	H H H H H H H H H H H H H H H H H H H	EOB	
	3.25'	ELEV.	1997 1997 1997 1997 1997 1997 1997 199	60.2	
ERATO			(J	$\frac{1}{1}$	
DRILLING FIRM / OPE SAMPLING FIRM / LO	DRILLING METHOD: SAMPLING METHOD:	NOI		HLY LY FRACTURED,	
AFFIC SIGNAL-SUPPORT	100 SFN: N/A 1/22/24 END: 11/22/24	MATERIAL DESCRIPTI AND NOTES	-0-24	E, GRAY, MODERATELY TO HIGH RED, STRONG, JOINTED-SLIGHTL RQD = 94%, REC = 94%. 9490 PSI	
DJECT: T	RT: 110		B-00	ALOMIT EATHEI VRROW 12°: Qu	
PR.	PIC ST/		000001 000001 000000	© ≤ ≤ © 12:23 - X:/PROJECTS/242	<u> </u>

STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GD

NOTES: OFFSET 6 FT SW OF B-003-0-24. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 5 CF CEMENT-BENTONITE GROUT

Figure Ground Surface Elevation: 580.3' Elevation ROD ROD 556.3' 550.8' 65/66 98% 54/66 82% D02 TSG FY2025, PID 110100 P10100 P10100 P10100 P10100 P10100	CT Project No.: 242165	Office of Geotechnical Engineering B-002-0-24		the second se	Ground Surface Elevation: 577.3' Elevation Rcovery RQD 556.3' 551.3' 58/60 97% 58/60 97% D02 TSG FY2025, PID 110100 D02 TSG FY2025, PID 110100 TSG FY2025, PID 110100 TSG FY2025, PID 110100	CT Project No.: 242165	GEOTECHNICAL PROFILE - TRAFFIC SIGNALS ROCK CORE PHOTO LOGS B-001-0-24 & B-002-0-24
Core Date: November 22, 2024Run #:DepthNQ-124'29.5'	Brepared by:	OHIO DEPARTMENT OF TRANSPORTATION DIVISION OF ENGINEERING	time time time time time time time time		Core Date: November 23, 2024 Run #: Depth NQ-1 21' 26'	Prepared by:	DESIGN AGENCY DESIGNER TLS REVIEWER CPI 03/19/25 PROJECT ID 110100 SUBSET TOTAL 8 9 SHEET TOTAL 8 27

MODEL: Sheet

Ground Surface Elevation: 577.2'	RQD	56.5/60 94%	0/ 12 00/00	CT Project No.: 242165		
	Recovery	56.5/60 94%	PID 110100			
November 22, 2024	Elevation	565.2' 560.2'	D02 TSG FY2025,			
	Depth	12' 17'				
Core Date:	Run #:	NQ-1		Prepared by:		

