GEOTECHNICAL DATA REPORT

SAN Signs FY 2026
PID 117268
US 6, SR 19, SR 53, and SR 412/US 20 Interchange
Sandusky County, Ohio

Submitted to ODOT District 2

Date August 5, 2025

SAN Signs FY 2026

PID 117268 Sandusky County, Ohio

Geotechnical Data Report

ODOT District 2 Bowling Green, Ohio

August 5, 2025

Project No. 242420

a verdantas company

CT Consultants, Inc. 1915 North 12th Street Toledo, OH 43604-5305 419-324-2222 www.ctconsultants.com

CT Project No. 242420

August 5, 2025

Ms. Jorey Summersett, P.E. Contract Manager, District 2 ODOT District 2 317 East Poe Road Bowling Green, Ohio 43402

> FINAL Geotechnical Data Report SAN Signs FY 2026 PID 117268 Sandusky County, Ohio

Dear Ms. Summersett,

CT Consultants, Inc. – a Verdantas Company (CT), has prepared the geotechnical data report of our exploration at the site of the referenced project. This exploration was performed in general accordance with CT Proposal No. P242420 V3 dated December 9, 2024, and authorized by you via an email sent on December 13, 2024, referencing Encumbrance number 743746.

A draft version of this report was provided on May 6, 2025. A request to review the plan set and provide a final version of the report was provided from you to Verdantas via email on July 28, 2025. This final report contains the results of our study, our engineering interpretation of the results with respect to the project characteristics, our evaluation of the potential need for special foundation design for sign foundations, as well as average soil strength for consideration of various embedment depths for drilled shaft foundations. Drilled shaft embedment evaluations were completed by ODOT Office of Geotechnical Engineering.

Should you have any questions regarding this report or require additional information, please contact our office.

Sincerely,

CT Consultants, Inc.

Cole R. Olson Geotechnical Staff Christopher P. lott, P.E. Chief Geotechnical Engineer

Z:\Project Files\OA-PZ\ODOTD2\42420 - ODOT D2 SAN Signfy:2026 117268 Fremont OH\Final Documents And Submittals\242420 CT FINAL Geotech Data Report - SAN Signs FY2026 PID 117268.Docx

FINAL GEOTECHNICAL DATA REPORT SAN SIGNS FY 2026 PID 117268 SANDUSKY COUNTY, OHIO

FOR

ODOT DISTRICT 2 317 EAST POE ROAD BOWLING GREEN, OHIO 43402

SUBMITTED

AUGUST 5, 2025 PROJECT NO. 242420

CT CONSULTANTS, INC. 1915 NORTH 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222

EXECUTIVE SUMMARY

This geotechnical data report has been prepared for the addition or replacement of existing overhead signage along US 6, SR 19, SR 53, and SR 412/ US 20 Interchange as part of the SAN Signs FY 2026 project in Sandusky County, Ohio, designated as PID 117268. This exploration included drilling eleven (11) Type E5 borings, laboratory testing, evaluation of the potential need for special design of overhead sign foundations, as well as evaluations for average soil strengths for various embedment depths of drilled shaft foundations.

- 1. The surface materials encountered in the borings consisted of topsoil or pavement materials. Borings B-003, B-004, B-005, and B-007 encountered predominantly granular existing fill and/or embankment fill materials with varying amounts of crushed stone, which were generally slightly organic. Fill materials encountered in Boring B-001 were cohesive soils with trace crushed stone.
- 2. The subsoils encountered in the borings underlying the surface materials can be generally described as predominantly cohesive soils varying in strength characteristics. However, granular zones were also encountered at overhead sign locations 20-66 (B-005), 53-11 and 53-6 (B-008), 412-13 (B-010), and 412-5 (B-011).
- 3. Only Sign 20-15 may be designed using a typical foundation, based on the conditions encountered in Boring B-002. All other borings performed for this exploration indicated that a special foundation design will be required.
- 4. Due to the presence of granular fill materials and granular zones within native cohesive soils, soft cohesive soils, as well as potential for groundwater encountered within the depth of drilled shaft installation, it should be anticipated that casing will be required for foundation installations.

This executive summary highlights our evaluations and recommendations and should only be utilized in conjunction with the accompanying report, including the detailed findings, conclusions, and qualifications presented herein.

TABLE OF CONTENTS

1.0	Introduction	1
1.1	Purpose and Scope of Exploration	1
1.2	Proposed Construction	2
2.0	GEOLOGY AND OBSERVATIONS OF THE PROJECT	3
2.1	General Geology and Hydrogeology	3
2.2	Site Reconnaissance	3
3.0	EXPLORATION	4
3.1	Historic Borings	4
3.2	Project Exploration Program	5
3.3	Boring Methods	6
3.4	Laboratory Testing Program	7
4.0	FINDINGS	8
4.1	General Site Conditions	8
4.2	General Soil Conditions	8
4	.2.1 Overhead Signs 20R-2, 19-15, 19-5, 412-13, and 412-5	9
4	.2.2 Overhead Signs 20-15, 19-12, and 19-8	9
4	.2.3 Overhead Sign 20-102	9
4	.2.4 Overhead Signs 20-76, 20-66, 53-11, 53-6, 53-13, and 53-3	9
4.3	Groundwater Conditions	10
4.4	Remedial Measures	11
5.0	ANALYSES AND RECOMMENDATIONS	
5.1	Sign-Support Foundation Special Design Considerations	12
6.0	QUALIFICATION OF RECOMMENDATIONS	15

PLATES

Plate 1.0 Site Location Map
Plates 2.01 through 2.11 Test Boring Location Plans

FIGURES

Logs of Test Borings Key of Symbols Grain Size Distribution UU Triaxial Compressive Strength Results

TABLE OF CONTENTS (Cont.)

APPENDICES

Appendix A: Engineering Calculations

Appendix B: Geotechnical Engineering Design Checklists

Appendix C: Historic Borings

1.0 INTRODUCTION

This geotechnical data report has been prepared for the addition or replacement of existing overhead sign-support along US 6, SR 19, SR 53, and SR 412/ US 20 Interchange in Sandusky County, Ohio. The project is designated as SAN Signs FY 2026, PID 117268. This exploration included drilling eleven (11) Type E5 borings, laboratory testing, our evaluation of the potential need for special design of overhead sign foundations, as well as evaluations of average soil strengths for various embedment depths for drilled shafts. The general location of the site is shown on the attached Site Location Map (Plate 1.0).

This exploration was performed in general accordance with CT Proposal No. P242420 (V3) dated December 9, 2024, and authorized by Ms. Jorey Summersett of ODOT District 2 via an email sent December 13, 2024, which referenced Encumbrance No. 743746.

1.1 **Purpose and Scope of Exploration**

The purpose of this exploration was to evaluate the subsurface conditions relative to proposed addition or replacement of sign-support foundations. To accomplish this, eleven (11) ODOT Type E5 borings, field and laboratory soil testing, and review of available geologic and soils data for the project area were performed.

This report summarizes our understanding of the proposed construction, describes the investigative and testing procedures utilized to evaluate the subsurface conditions at the site, and presents our findings from the field and laboratory testing.

This report includes a description of the existing surface cover, as well as the subsurface soiland groundwater-conditions encountered in the borings.

Appendix B includes pertinent ODOT Geotechnical Engineering Design Checklists that apply to the scope of this report.

The CT scope of work did not include preparation of special foundation designs. Additionally, the scope of this study did not include an environmental assessment of the surface or subsurface materials at this site.

1.2 **Proposed Construction**

It is our understanding that the project will include fifteen (15) new overhead signs. The structures are proposed to be supported on structure foundation types summarized in the following table. Eleven (11) of the signs are planned to be cantilevered, supported on a single foundation. The remaining four (4) are planned to be trusses supported by a foundation at either end. The table below also includes the reference number that is used to identify each sign throughout this report, the boring associated with each sign, as well as the location of each sign.

Table 1.2: General Information for the Proposed Signs					
Boring Number	Sign Reference Number	Structure Type	Location	Structure Foundation Type	Standard Foundation Depth (ft)
B-001-0-24	20R-2	Truss	Exit 98 (State St.) WB	TC-15.116 Design 1	12
B-002-0-24	20-15	Truss	SAN-6-16.15 EB	TC-15.116 Design 1	12
B-003-0-24	20-102	Truss	SAN-6-16.34 WB	TC-15.116 Design 2	14
B-004-0-24	20-76	Cantilever	SAN-20-19.10 WB	TC-12.31 Design 12	18
B-005-0-24 B-005-1-24	20-66	Truss	SAN-20-19.90 WB	TC-15.116 Design 1	12
D 006 0 24	19-12	Cantilever	SAN-19-10.91 SB	TC-12.31 Design 6	12
B-006-0-24	19-8	Cantilever	SAN-19-10.91 NB	TC-12.31 Design 6	12
B-007-0-24	19-15	Cantilever	Oak Harbor Rd. SB	TC-12.31 Design 6	12
B-007-0-24	19-5	Cantilever	Oak Harbor Rd. NB	TC-12.31 Design 6	12
D 000 0 24	53-11	Cantilever	SAN-53-10.84 SB	TC-12.31 Design 6	12
B-008-0-24	53-6	Cantilever	SAN-53-10.84 NB	TC-12.31 Design 6	12
D 000 0 24	53-13	Cantilever	Rawson Ave. SB	TC-12.31 Design 6	12
B-009-0-24	53-3	Cantilever	Rawson Ave. NB	TC-12.31 Design 6	12
B-010-0-24	412-13	Cantilever	SAN-412-0.34 WB	TC-12.31 Design 6	12
B-011-0-24	412-5	Cantilever	SAN-412-0.17 EB	TC-12.31 Design 6	12

The scope of this project included determination whether or not a special foundation will be required at each foundation location. It was indicated that a special foundation design will be required for subsurface profiles over the standard drilled shaft embedment depth with an average strength less than minimum design values used for standard design. Standard design is based on cohesive soils exhibiting an undrained shear strength (s_u , c) of 2,000 pounds per square foot (psf) or for granular soils with an angle of internal friction (ϕ) of 30 degrees and a wet density of 120 pounds per cubic foot (pcf).

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 **General Geology and Hydrogeology**

Published geologic maps from the Ohio Department of Natural Resources (ODNR) indicate that the project corridor is located in the Maumee Lake Plains Region of the Huron-Erie Lake Plains section. Within this region, Pleistocene-age silt, clay, and wave-planed clayey till are present overlying Silurian-and Devonian-age carbonate rocks and shales.

Bedrock in the project area is broadly mapped on the "Geologic Map of Ohio" as Lockport Dolomite (Upper and Lower Silurian). Based on a published local well log, bedrock in the project vicinity is mapped on the order of Elevs. 600± to 520± which is generally approximately 25 to 100 feet or greater below existing grades of the project roadways. Bedrock was not encountered in the test borings performed for this exploration.

Review of the Ohio Department of Natural Resources (ODNR) Map of Mines indicated no areas of mining activity in the general location of the sign sites.

Review of the ODNR "Ohio Karst Areas" map indicated that the site is not located in an indicated area of probable karst.

2.2 Site Reconnaissance

CT performed site reconnaissance on January 9, 2025. The project areas were generally interchanges in rural or rural residential areas, although some industrial areas were also present. The pavements around Borings B-001 through B-009 and were in good condition. The pavement conditions in the areas of Borings B-010 and B-011 included shoulders that were in poor condition with a frequent unsealed transverse cracks observed.

3.0 EXPLORATION

3.1 <u>Historic Borings</u>

Along the approximately 11 mile stretch that is planned to receive new overhead signs, review of ODOT records from the Transportation Information Mapping System (TIMS) indicated that hundreds of borings had been drilled along US 20 (US 20) and intersecting roads as part of four projects associated with the construction (reconstruction) of US 20 preformed in 1943, 1955, 1956, and 1966. Only the closest borings to each overhead sign location is referenced herein. The boring and (if available) laboratory data for the historic projects are included in Appendix C of this report. Additionally, the approximate locations of the historic borings are shown on the Test Boring Location Plans (Plates 2.01 through 2.11).

The historic borings were not enumerated. For designation within this report, these borings were numerated as B-CCC-D-EE as follows:

- B = Boring.
- CCC = Whole historic station number (040 for Sta. 40+75, etc.).
- D = Utilized to identify multiple borings within the same 100 feet station.
- EE = Date which the borings were performed (61 for 1961).

A summary of the historic borings in closest proximity to the overhead sign locations is provided in the following table.

Table 3.1 General Historic Boring Information					
Overhead Sign Reference Number(s)	Historic Project ID (Year)	Closest Historic Boring Designation			
20R-2	SAN-20-(11.44-15.56) (1943)	B-252-0-43			
20-15	SAN-19-10.89 (1966)	B-099-1-66			
20-102	SAN-20-14.60 (1955)	B-876-0-55			
20-76	SAN-20-14.60 (1955)	B-1010-0-55			
20-66	SAN-20-14.60 (1955)	B-1050-0-55			
19-12 19-8	SAN-19-10.89 (1966)	B-104-0-66			
19-15 19-5	SAN-19-10.89 (1966)	B-094-0-66			

Table 3.1 General Historic Boring Information				
Overhead Sign Reference Number(s)	Historic Project ID (Year)	Closest Historic Boring Designation		
53-11 53-6	SAN-53-7.67 (1956)	B-448-0-56		
53-13	SAN-53-7.67 (1956)	B-426-0-56		
53-3	SAN-53-7.67 (1956)	B-426-0-56		
412-13	SAN-20-14.60 (1955)	B-1038-0-55		
412-5	SAN-20-14.60 (1955)	B-1038-0-55		

We have assumed that the information provided in the historic borings was accurate and correct, at the time of those respective explorations, but cannot guarantee as such. Additionally, subgrade soil conditions may have changed or may have been modified due to construction performed following completion of the historic subsurface explorations.

3.2 **Project Exploration Program**

Eleven (11) test borings, designated as Borings B-001-0-24 through B-011-0-24 were performed for this exploration. Boring B-005-1-24 was performed as an offset to Boring B-005-0-24 to obtain a Shelby tube sample. The borings were drilled by TTL Engineering Services under the guidance of CT from January 13, 2025 through March 13, 2025. These borings are fully designated in accordance with ODOT protocol, but the "-0-24" or "-24" portion of the nomenclature is generally omitted in the discussions within this report. The approximate locations of the borings are presented on the Test Boring Location Plans (Plates 2.01 through 2.11).

Stationing and offsets were not available at the time of preparing this final report. Stations and offsets were not included in the plan set and it was indicated by ODOT that it would be sufficient to include only latitude and longitude on the logs of test borings for this project. Latitude, Longitude, and ground surface elevations were surveyed by CT via a hand-held GPS. The accuracy from the handheld GPS device was generally found to be approximately 2 to 6 inches horizontal, and approximately 4 to 12 inches vertical. These are presented on the Logs of Test Borings.

The borings were performed as ODOT Type E5 structure borings per geotechnical investigative procedures outlined in Ohio Department of Transportation (ODOT) "Specifications for Geotechnical Explorations" (SGE). All but one of the borings were terminated at the target depth of 25 feet in accordance with ODOT criteria for Type E5 borings. Due to particularly soft cohesive soils encountered in Boring B-005-0-24, this boring was extended to a depth of 40 feet where medium stiff cohesive soils were encountered. Additionally, an offset Boring B-005-1-24 was performed adjacent to Boring B-005-0-24 and extended to termination at a depth of 18 feet after obtaining a Shelby tube sample.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations. Therefore, it is essential that a geotechnical engineer be retained to provide soil engineering services during the site preparation, excavation, and foundation phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.3 **Boring Methods**

The test borings performed during this exploration were drilled with a track-mounted GeoProbe® 7822DT with drilling capabilities utilizing 3¼-inch inside diameter hollow-stem augers. During auger advancement, split-spoon drive samples were taken at 2½-foot intervals to termination. The samples were sealed in jars and transported to our laboratory for further classification and testing.

Split-spoon (SS) soil samples were obtained by the Standard Penetration Test Method (ASTM D 1586). The Standard Penetration Test (SPT) consists of driving a 2-inch outside diameter split-spoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch increments, with the number of blows per increment being recorded. The number of blows per increment was recorded at each depth interval, and these data are presented under the "SPT" column on the Logs of Test Borings attached to this report. The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or N_m -value, and is typically reported in blows per foot (bpf). The N_m -values were corrected to an equivalent rod energy ratio of 60 percent, N_{60} . The calibrated hammer/rod

energy ratio for the track-mounted GeoProbe® 7822DT utilized in this project was 89.3 percent, based on calibration performed on June 11, 2024. The N_{60} -values are presented on the attached Logs of Test Borings.

In offset Boring B-005-1-24, a Shelby tube push sample, designated ST on the Log of Test Boring, was obtained from 16 to 18 feet below existing grade. The Shelby tube sample was obtained by hydraulically advancing a 3-inch diameter, thin-walled sampler approximately 24 inches beyond the hollow-stem auger into relatively undisturbed soil in accordance with ASTM D 1587. The Shelby tube was then extracted from the subsoils, and the ends were capped and sealed. The sample was transported to our laboratory where it was extruded, classified, and tested.

Soil conditions encountered in the test borings are presented in the Logs of Test Borings, along with information related to sample data, SPT results, water conditions observed in the borings, and laboratory test data. In conjunction with published data and typical correlations, the N_{60} -values can be evaluated as a measure of soil compactness/consistency as well as shear strength.

Field and laboratory data were incorporated into $gINT^{m}$ software for presentation purposes. It should be noted that these logs have been prepared on the basis of laboratory classification and testing as well as field logs of the encountered soils and rock.

3.4 <u>Laboratory Testing Program</u>

All samples were visually or manually classified in accordance with the ODOT Soil Classification System. All samples of the subsoils were also tested in our laboratory for moisture content (ASTM D 2216). Unconfined compressive strength estimates were obtained for the intact cohesive samples using a calibrated hand penetrometer. An unconsolidated-undrained (UU) triaxial compressive strength test (ASTM D 2850) was performed on an intact specimen from the Shelby tube sample obtained from Boring B-005-1-24. The test was performed using a confining pressure approximately equal to the overburden pressure at the sample depth. Atterberg limits tests (ASTM D 4318) and particle size analyses (ASTM D 6913 and D 7928) were performed on approximately half of the samples to determine soil classification and index properties. These test results are presented on the Logs of Test Borings, and Grain Size Distribution sheets.

4.0 FINDINGS

4.1 **General Site Conditions**

The majority of the borings were performed in grass areas beyond the extent of the roadway. Boring B-002 encountered aggregate base underlying the topsoil. Borings B-010 and B-011 were performed along the roadway due to guardrail and slopes. Boring B-010 was performed in the roadway and encountered broken asphalt underlain by aggregate base. Boring B-011 encountered surface materials consisting of aggregate shoulder material with asphalt fragments. A summary of the encountered surface materials in each boring is provided in the table below.

Table 4.1 Summary of Encountered Surface Materials					
Boring Number	Topsoil Thickness (in)	Broken Asphalt Thickness (in)	Aggregate Base Thickness (in)	Aggregate Shoulder Material w/Asphalt Fragments Thickness (in)	
B-001-0-24	7	-	-	-	
B-002-0-24	8	-	14	-	
B-003-0-24	7	-	-	-	
B-004-0-24	6	1	-	-	
B-005-0-24	4	1	-	-	
B-006-0-24	6	-	-	-	
B-007-0-24	7	-	-	-	
B-008-0-24	8	-	-	-	
B-009-0-24	7	-	-	-	
B-010-0-24	-	17	19	-	
B-011-0-24	-	-	-	15	

"-" = Not Encountered

Borings B-003, B-004, B-005, and B-007 encountered predominantly granular existing fill and/or embankment fill materials with varying amounts of crushed stone, which were generally slightly organic. Fill materials encountered in Boring B-001 were cohesive soils with trace crushed stone. Embankment fill consisting of cohesive soils similar to the native soils may have been present in the borings as well. However, similar re-graded cohesive site soils for fill were not discernible from the native cohesive soils.

4.2 **General Soil Conditions**

Based on the results of our field and laboratory tests, the subsoils encountered in the borings underlying the surface materials can be generally described as predominantly cohesive soils varying in strength characteristics. However, granular zones were also

encountered at overhead sign locations 20-66 (B-005), 53-11 and 53-6 (B-008), 412-13 (B-010), and 412-5 (B-011).

A generalized description of the encountered soils at each sign location is provided in each of the following subsections.

Additional descriptions of the stratigraphy encountered in the borings are presented on the Logs of Test Borings.

4.2.1 Overhead Signs 20R-2, 19-15, 19-5, 412-13, and 412-5

Borings B-001, B-007, B-010, and B-011 encountered predominantly stiff to very stiff cohesive soils to depths ranging from 18½ feet below existing grade to termination at a depth of 25 feet. In each of the borings, except Boring B-001, the upper-profile stiff to very stiff cohesive soils were underlain by **very soft** to medium stiff cohesive soils to termination at a depth of 25 feet. Approximately 1-foot thick granular zones were encountered in Borings B-010 and B-011 at depths of approximately 17½ feet and 12 feet, respectively.

4.2.2 Overhead Signs 20-15, 19-12, and 19-8

Borings B-002 and B-006 encountered predominantly stiff to hard cohesive soils to termination at a depth of 25 feet. However, zones of medium stiff to stiff cohesive soils were encountered in Boring B-002 from 18 to 24 feet, as well as in Boring B-006 from 23 to 25 feet.

4.2.3 Overhead Sign 20-102

Boring B-003 encountered predominantly medium stiff to stiff cohesive soils to termination at a depth of 25 feet.

4.2.4 Overhead Signs 20-76, 20-66, 53-11, 53-6, 53-13, and 53-3

Borings B-004, B-005-0, B-008, and B-009 encountered predominantly medium stiff to stiff cohesive soils underlain by **very soft** to medium stiff cohesive soils to termination generally at a depth of 25 feet. Boring B-005-0 was extended to termination at a depth of 40 feet due to particularly soft soils encountered at the planned termination depth of 25 feet. The upper-profile medium stiff to stiff cohesive soils extended to depths ranging from approximately 3 to 8½ feet.

4.3 **Groundwater Conditions**

During this exploration, groundwater was initially encountered during drilling in eight of the eleven borings and was observed upon completion of drilling in three borings. A summary of the groundwater encountered in each boring is provided in the following table. It should be noted that test borings were drilled and sealed within the same day. Therefore, stabilized water conditions may not have occurred over the limited period of time during drilling operations. In any case, instrumentation was not installed to observe long-term groundwater levels.

Table 4.3 Summary of Groundwater in Borings					
Boring	Approximate Depth (Elev.) of Groundwater (Feet)				
Number	Initially Encountered	Observed Upon Completion			
B-003	6.7 (616.3)	-			
B-004	4 (615.8)	-			
B-005-0	8.8 (611.7)	-			
B-007	14 (619.0)	16.3 (616.7)			
B-008	3 (614.4)	-			
B-009	7 (617.8)	-			
B-010	17.6 (612.9)	17.1 (613.4)			
B-011	20.5 (610.4)	16.3 (614.6)			

[&]quot; - " = Not Encountered

Based on the limited data available, such as the soil characteristics and the groundwater conditions encountered in the borings, it is our opinion that the "normal" groundwater level may generally be encountered at depths ranging from 8 to 18½ feet below existing grades. However, this exploration did not include research of possible hydrological influences at the project site. It should be noted that groundwater elevations can fluctuate with seasonal and climatic influences. In particular, "perched" water may be encountered in existing fill materials or granular soils that are underlain by relatively impermeable native cohesive soils.

In any case, based on guidance provided in Section 1201 of the Geotechnical Design Manual (GDM), it shall be assumed that the groundwater will be at a depth of 3 feet below the proposed top of the foundation at the deepest regardless of encountered conditions.

4.4 Remedial Measures

Only Sign 20-15 may be designed using a typical foundation, based on the conditions encountered in Boring B-002. All other borings performed for this exploration indicated that a special foundation design will be required. Due to the presence of granular fill materials and granular zones within native cohesive soils, soft cohesive soils, as well as potential for groundwater encountered within the depth of drilled shaft installation, it should be anticipated that casing will be required for foundation installations.

5.0 ANALYSES AND RECOMMENDATIONS

The following analysis and recommendations are based on our understanding of the proposed construction and upon the data obtained during our field exploration. If the project information or location as outlined is incorrect or should change significantly, a review of these recommendations should be made by CT.

5.1 <u>Sign-Support Foundation Special Design Considerations</u>

It was indicated that a special foundation design will be required for cohesive soils with an undrained shear strength (s_u , c) of less than 2,000 pounds per square foot (psf) or for granular soils with an angle of internal friction (ϕ ') less than 30 degrees and/or a wet density of less than 120 pounds per cubic foot (pcf).

Based on guidance provided in Section 1201 of the Geotechnical Design Manual (GDM), the upper 3 feet of the drilled shaft embedment depth is modeled as soft clay with undrained shear strength of 250 psf, regardless of the conditions encountered in the boring, due to potential for frost action. Additionally, it is prescribed that the groundwater be modeled at a depth of 3 feet below the proposed top of the foundation.

The test borings encountered predominantly cohesive soils. Granular soil seams were encountered in Borings B-005, B-008, B-010, and B-011. The granular soil seams were on the order of 1 to 1½ feet in thickness. Due to the predominantly cohesive soil profile, the undrained shear strength evaluation was used for all borings with respect to need for special foundations.

Below is a summary table of the test borings performed for this exploration, the associated structure(s), the proposed foundation depth for the indicated standard foundation, the average undrained shear strength for the soils within the proposed foundation depth, and an indication of whether or not a special foundation is needed based on minimum undrained shear strength of 2,000 psf.

Table 5.1.A Summary of Soil Data and Special Design Requirements					
Boring Number	Sign Reference Number	Proposed Foundation Depth (Feet)	Average Undrained Shear Strength, Su (psf)	Special Foundation Needed?	
B-001-0-24	20R-2	12	1,025	Yes	
B-002-0-24	20-15	12	2,120	No	
B-003-0-24	20-102	14	790	Yes	
B-004-0-24	20-76	18	515	Yes	
B-005-0-24	20-66	12	850	Yes	
B-006-0-24	19-12	12	1,870	Yes	
B-000-0-24	19-8	12	1,870	Yes	
B-007-0-24	19-15	12	1,605	Yes	
B-007-0-24	19-5	12	1,005	Yes	
B-008-0-24	53-11	12	385	Yes	
D-000-0-24	53-6	12		Yes	
B-009-0-24	53-13	12	345	Yes	
D-009-0-24	53-3	12	343	Yes	
B-010-0-24	412-13	12	1,780	Yes	
B-011-0-24	412-5	12	1,075	Yes	

Only one boring (B-002) contained soils that were suitable for a standard foundation. All other borings indicated the need for a special foundation. A summary table is provided below that includes evaluations at 5-foot intervals for average undrained shear strength at depths greater than the depths for standard foundations. For Boring B-006, an undrained shear strength of 2,000 psf was achieved at the analyzed depth of 20 feet. For all other borings beside Borings B-002 and B-006, undrained shear strength of 2,000 psf was not achieved at any of the 5 feet intervals evaluated within a depth of 25 feet.

Table 5.1.B Summary of Average Shear Strength for Special Design				
	Sign	Average Undrained Shear Strength, Su (psf)		
Boring Number	Reference Number	15 Feet Embedment Depth	20 Feet Embedment Depth	25 Feet Embedment Depth
B-001-0-24	20R-2	1,220	1,140	1,105
B-003-0-24	20-102	810	845	825
B-004-0-24	20-76	N/A	475	405
B-005-0-24	20-66	770	665	600
B-006-0-24	19-12 19-8	1,995	2,145	2,085
B-007-0-24	19-15 19-5	1,845	1,630	1,435
B-008-0-24	53-11 53-6	335	655	585
B-009-0-24	53-13 53-3	350	340	295
B-010-0-24	412-13	1,800	1,605	1,305
B-011-0-24	412-5	1,000	940	825

"N/A" = Not Applicable. Standard foundation depth is deeper.

Due to the presence of granular fill materials and granular zones within native cohesive soils, soft cohesive soils, as well as potential for groundwater encountered within the depth of drilled shaft installation, it should be anticipated that casing will be required for foundation installations.

The CT scope of work did not include preparation of special foundation designs.

6.0 QUALIFICATION OF RECOMMENDATIONS

Our evaluation of the need for special design sign-support foundations has been based on our understanding of the site and project information and the data obtained during our field exploration. The general subsurface conditions were based on interpretation of the data obtained at specific boring locations. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. This potential is increased for previously developed sites. Therefore, experienced geotechnical engineers should observe earthwork and foundation construction to confirm that the conditions anticipated in design are noted. Otherwise, CT assumes no responsibility for construction compliance with the design concepts or specifications.

The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate the recommendations of this report after on-site observations of the conditions.

Our professional services have been performed, our findings derived, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. CT is not responsible for the conclusions, opinions, or recommendations of others based on this data.

PLATES

PLATE 1.0 SITE LOCATION MAP
PLATES 2.01 – 2.11 TEST BORING LOCAITON PLANS

B-001-0-24

APPROXIMATE TEST BORING LOCATION

B-252-0-43

APPROXIMATE HISTORIC TEST BORING LOCATION

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420 PLATE 2.01 A Verdantas Company

B-003-0-24

APPROXIMATE TEST BORING LOCATION

B-876-0-55

APPROXIMATE HISTORIC TEST **BORING LOCATION**

FREMONT, SANDUSKY COUNTY, OHIO

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420 PLATE 2.03 A Verdantas Company

B-006-0-24

APPROXIMATE TEST BORING LOCATION

B-104-0-66

APPROXIMATE HISTORIC TEST **BORING LOCATION**

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420 PLATE 2.06 A Verdantas Company

B-007-0-24

APPROXIMATE TEST BORING LOCATION

B-094-0-66

APPROXIMATE HISTORIC TEST **BORING LOCATION**

FREMONT, SANDUSKY COUNTY, OHIO

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420 PLATE 2.07 A Verdantas Company

B-008-0-24

APPROXIMATE TEST BORING LOCATION

B-448-0-56

APPROXIMATE HISTORIC TEST **BORING LOCATION**

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420 PLATE 2.08 A Verdantas Company

LEGEND:

B-009-0-24

APPROXIMATE TEST BORING LOCATION

B-426-0-56

APPROXIMATE HISTORIC TEST **BORING LOCATION**

SAN SIGN FY 2026 FREMONT, SANDUSKY COUNTY, OHIO

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420

consultants engineers · architects · planners PLATE 2.09 A Verdantas Company

B-010-0-24

APPROXIMATE TEST BORING LOCATION

B-1038-0-55

APPROXIMATE HISTORIC TEST BORING LOCATION

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25

REVISED: --
PROJECT No: 242420

PLATE 2.10 A Verdantas Company

B-011-0-24

APPROXIMATE TEST BORING LOCATION

B-1038-0-55

APPROXIMATE HISTORIC TEST **BORING LOCATION**

FREMONT, SANDUSKY COUNTY, OHIO

PREPARED FOR

ODOT DISTRICT 2 BOWLING GREEN,OHIO

DRAWN: CO / 31/25 REVISED: ---PROJECT No: 242420 **PLATE 2.11**

FIGURES

LOGS OF TEST BORINGS KEY TO SYMBOLS GRAIN SIZE DISTRIBUTION UU TRIAXIAL TEST RESULTS

	PROJE		SAN SIGN		DRILLING FIRM / C	PERA	TOR:	TTL / C		DRIL	L RIG	: _GE	OPROBE	7822D	T_	STAT	ION	OFF	SET:					EXPLOR/	
				UNDATION	SAMPLING FIRM /		ER:	TTL / C	W	_			OMATIC F			ALIG		_						B-001	-0-24 PAGE
	_	117268	SFN:		DRILLING METHOL			HSA		- 1				/11/24		ELEV		_			_			5.0 ft.	1 OF 1
ŀ	START	: <u>1/13/2</u>		1/13/25	SAMPLING METHO	DD:		SPT			RGY F	OITAS	. ,	89.3		LAT /							.1620	69	1
				IAL DESCRIPT	TON		ELEV.	DEPT	HS	SPT/ RQD	N ₆₀		SAMPLE	HP (tsf)		GRAD cs		ON (% sı	CL	LL	ERB PL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
ŀ	TODS	OIL - 7 INC		AND NOTES		$\overline{}$	629.0 628.4		1	NQD		(%)	ID	(ISI)	GR	CS	FS	31	CL	LL	PL	PI	WC		SLALLL
ŀ				WN/GRAY, SIL	T AND CLAY		020.4	1	1 7																
	LITTLE	E SAND, T	RACE GRAV	/EL (CRUSHED	STONE) (FILL),				F ']	4			00.45	0.05											
-	TRACI	E IRON OX	(IDE STAIN,	SLIGHTLY OF	RGANIC, MOIST				_ 2 -	3 3	9	89	SS-1 B	3.25	-	-	-	-	-	-	-	-	28	A-6a (V)	
							626.0		'						<u> </u>										
	SOFT	TO MEDIL	JM STIFF, B	ROWN/GRAY,	SILTY CLAY,				- 3 -																
		E SAND, 11 I, MOIST	RACE GRAV	EL, TRACE IR	ON OXIDE STAIN				- 4 -	1 ₁	3	100	SS-2	1.25	5	1	12	27	55	38	18	20	25	A-6b (12)	
-	OL, 1111	,							_ 5]	1					Ľ	,								7.02(12)	
							623.0		ļ .	4															
ŀ	MEDIL	JM STIFF	TO STIFF B	ROWN/GRAY,	SILTY CLAY		023.0	1	 6 7	2															
	LITTLE	E SAND, T			ON OXIDE STAIN				L 7 -	2	7	100	SS-3	2.25	-	-	-	-	-	-	-	-	28	A-6b (V)	
	SEAM	I, MOIST							- '	3															
							620.5		8 -	1															
٦				SOME SILT. TF	RACE SAND,				[g -	5 _	40			T	1		_							()	
GP.	TRACI	E GRAVEL	, MOIST						-	5 6	16	100	SS-4	>4.5	4	2	3	21	70	47	18	29	26	A-7-6 (17)	
2420									_ 10 -																
S\24	0441	D							<u></u> 11 ¬						-										
ECT	@11':	Damp							F	8 9	27	100	SS-5	3.25	۱ ـ	_	_	_	١.	l _	_	l _	18	A-7-6 (V)	
ROJ									_ 12 -	9				0.20										711 0 (1)	
X:\PI							615.5		- 13 -	-															
- 8/5/25 07:54 - X:\PROJECTS\242420.GPJ	MEDIL	JM STIFF	TO STIFF. G	RAY. SILT AN I	D CLAY, SOME		013.3	1	ا 🖈 ا	2					<u> </u>										
5 07:			RAVEL, MO		, -				<u> </u>	2	6	100	SS-6	1.50	5	7	17	25	46	28	13	15	18	A-6a (9)	
/5/5									- 15 ⁻	2															
							613.0		- - 16 -																
I.GD				AY , LITTLE SAI	ND, TRACE				10	4	12	100	CC 7	1 50									17	A 6h () ()	
00	GRAV	EL, MOIST							- 17 -	4 5	13	100	SS-7	1.50	-	-	-	-	-	-	-	-	17	A-6b (V)	
Э							611.0		- - 18 -						l										
11)	VERY	SOFT, GR EL. MOIST	AY, SILT AN	ND CLAY, LITTI	LE SAND, LITTLE				"																
5 X	GRAV	EL, MOIS							- 19 -	0 0	1	100	SS-8	1.00	11	6	12	24	47	28	14	14	20	A-6a (9)	
G (8									_ 20]	1														, ,	
9 0										-															
NS NS	@21':	SOFT. TR	ACE SAND						_ 21 _	0															
BOI	O	,							_ 22 -		4	100	SS-9	1.00	-	-	-	-	-	-	-	-	19	A-6a (V)	
SOIL							606.0		- '	2					<u> </u>							-			
Ď	STIFF	TO VERY	STIFF, GRA	Y, SILTY CLAY	, LITTLE SAND,		000.0	1	_ 23 -																
00	TRACI	E ROCK F	RAGMÉNTS	, DAMP	•				- 24 -	2	15	100	00.40		_		10	22	40	20	11	10	10	A Ch (40)	
ARE							604.0	FOR		4 6	15	100	SS-10	>4.5	9	6	13	23	49	30	14	16	12	A-6b (10)	
STANDARD ODOT SOIL BORING LOG (8:5 X 11) - OH DOT.GDT								EOB—	 ∠5													-			
S	NOTE	S: NONE																							
}				MATERIALS	OLIANTITIES: DLIME	DED 7	CE CEM	NT_RENT	ONITE C	ROUT															
L		:S: NONE IDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 7 CF CEMENT-BENTONITE (

PROJECT:	SAN SIGN F		DRILLING FIRM / (TTL / CV					OPROBE			STATI	ON /	OFF	SET:					EXPLOR/	
	HEAD SIGN FOL	UNDATION	SAMPLING FIRM /		ER:	TTL / CW	/	HAM	MER:	AUT	OMATIC H	AMME	R_	ALIGN	ME	NT: _						B-002	
PID:117268		N/A	DRILLING METHO			HSA						/11/24		ELEV			23.8 (NAVE	088) E	OB:	25	5.0 ft.	PAGE
START:3/1	<u>13/25</u> END: _	3/13/25	SAMPLING METHO	DD:		SPT		ENE	RGY R	ATIO	(%):	89.3		LAT /	LON	G: _		41.3	6807	7, -83	.13506	88	1 OF 1
	MATER	IAL DESCRIPT	TON		ELEV.	DEPTH	10	SPT/	N ₆₀		SAMPLE	HP	(GRAD,	ATIO	N (%)	ATT	ERBI	ERG		ODOT	HOLE
	<i>_</i>	AND NOTES			623.8	DEFII	13	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
TOPSOIL - 8	INCHES				623.1																		
AGGREGATE	BASE - 14 INC	HES]	— 1 _—	3															_
				\longrightarrow	622.0			3	9	83	SS-1 A	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
STIFF, BROW	VN, SILTY CLAY	r , LITTLE SANI	D, TRACE				_ 2 _	3	_		SS-1 B	2.50	-	-	-	-	-	-	-	-	14	A-6b (V)	
GRAVEL, MO					620.8	[— 3 —																
	RY STIFF, GRA	Y, SILTY CLAY	, SOME SAND,				- ັ 🛭																-
MOIST							- 4 -	3 4	13	83	SS-2	2.50	0	5	24	28	43	40	21	19	22	A-6b (11)	
							_ 5 _	. 5			002	2.00	Ů									7.02(1.)	
							- 5 - 																
						-	— 6 _—	3															_
@6.2': BROW	/N/GRAY						_	3	13	83	SS-3	1.75	_	_	_	_	_	l _	١.	_	25	A-6b (V)	
					1		- 7 	. 5		00		10										7100(1)	
					615.8	. [- 8 -																
HARD, BROV GRAVEL. DAI	VN, SILT AND C	CLAY , SOME SA	AND, TRACE					0															-
	MP				1		− 9 +	12	42	100	SS-4	>4.5	1	8	20	26	45	32	17	15	15	A-6a (9)	
<u>0</u>	,				1		- 10	16		100	00 4	7.0	'			20	10	02	''	.0	10	/ (oa (o)	
242					1		— 10 -																
8/24							— 11 _—	_															
@11.5': BRO\	WN/CPAV				1	-	- 1	6 9	33	100	SS-5	4.50	_		_	_	_	۱.	١.	_	15	A-6a (V)	
	WINGIVAI				1		— 12 	1 3		100		7.00									10	/ (OG (V)	
. X:\PROJECTS\2420.6PU (ON H : .5 . T. T					1		 13																-
× VEDV OTIES	00 A) / 01 T) / 0	N AV 00145 0	AND 1 1771 F	_///	610.3		- ' -	_															-
	, GRAY, SILTY C .MP TO MOIST	LAY, SOME S	AND, LITTLE				— 14 -	4 5	18	89	SS-6	3.75	_		_	_	_	۱ ـ	١.		15	A-6b (V)	
SI GIVAVEL, DAI	IVII TO IVIOIST						- 45	7		00		0.70									10	/ (OD (V)	
8/2/						[— 15 -																
-F							— 16 _—	_															-
9.1						-	- 1	6 7	22	100	SS-7	2.25	16	6	17	23	38	32	16	16	17	A-6b (8)	
8							— 17 	, 8		100	007	2.20	'0		''	20		02	'	'0	.,	71 05 (0)	
					605.8] [_ — 18 —																
MEDIUM STI	FF TO STIFF, GI	RAY, SILTY CL	.AY, LITTLE					_															
SAND, IRAC	E GRAVEL, MOI	151			1		— 19 	2	9	100	SS-8	1.00	_	_		_	_	_	_		20	A-6b (V)	
8)							- 00	4	, j	100	00-0	1.00	_		_	-	_				20	74-0D (V)	
Ö							— 20 -																-
MEDIUM STII SAND, TRAC					1	[— 21 —																
<u>R</u>							-	3 3	10	100	SS-9	0.75									21	A-6b (V)	
							— 22 —	3 4	10	100	33-9	0.73	_	-	-	-	_	-	-	-	21	A-00 (V)	
S					1		 — 23 —																
[2]					500.0						00.101								_			A OL O.C.	
Ö HARD CRAV	/ CANDY OIL T	LITTLE CLAV	TDACE DOCK	11111	599.8	-	— 24 —	12 20	68	100	SS-10A	-	-	-	-	-	-		-	-	-	A-6b (V)	
FRAGMENTS	/, SANDY SILT , I S, MOIST TO DA		INACE ROCK		598.8	EOB_		26	00	100	SS-10 B	>4.5	5	12	20	45	18	16	9	7	10	A-4a (6)	
HARD, GRAY FRAGMENTS																						,	
NOTES: NO		MATERIALC	OLIANITITIES D')ED =	05.051	NIT DEVITO	NUTE OF	20117															
ARANDONME	<u>=nimethods,</u>	MATERIALS, (QUANTITIES: PUM	-∟∪ 7	CF CEME	<u>-и і-в Ги і О</u>	NHE G	KUUT															

PROJECT: SAN SIGN FY2026	DRILLING FIRM / OPERA	TTL / CW	-			OPROBE		_	STAT			SET:	:				EXPLOR		
TYPE: OVERHEAD SIGN FOUNDATION	SAMPLING FIRM / LOGG	BER:	TTL / CW				OMATIC H			ALIG		_						B-003	
PID: <u>117268</u> <u>SFN: N/A</u>	DRILLING METHOD:		HSA	- 1				/11/24	_	ELEV		_	22.0 (_			5.0 ft.	PAGE 1 OF 1
START: 3/13/25 END: 3/13/25	SAMPLING METHOD:	<u> </u>	SPT		RGY R			89.3		LAT /							.1315	12	TOFT
MATERIAL DESCRIPT	TION	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			GRAD				_	ERB	_		ODOT CLASS (GI)	HOLE
AND NOTES		622.0	326	RQD	. •60	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
TOPSOIL - 7 INCHES		621.4																	
STIFF, TAN/DARK BROWN, SILTY CLAY , LITTLE GRAVEL (CRUSHED STONE), SLIG			1 7	2			00.4.4	0.00									45	A OL () ()	-
DAMP (FILL)		620.0	_ 2 -	3	12	67	SS-1 A	3.00	-	-	-	-	-	-	-	-	15	A-6b (V)	
MEDIUM DENSE, LIGHT BROWN, GRAVEL	AND STONE	619.2		5			SS-1 B	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
FRAGMENTS WITH SAND, (CRUSHED STO	ONE) (FILL),		3 -	1															
DAMP				2															-
MEDIUM STIFF TO STIFF, BROWN, SILTY SAND, MOIST	CLAY, SOME		_ 4 -	2	6	72	SS-2	1.25	0	4	28	25	43	38	21	17	26	A-6b (9)	
JAND, MOIST			<u></u> 5	2					-					<u> </u>					-
		616.0		1															
MEDIUM STIFF, BROWN, SANDY SILT, "AN	ND" CLAY, MOIST	615.3	w 615.3	2			SS-3A	0.50	0	2	17	42	39	34	25	9	29	A-4a (8)	-
MEDIUM STIFF TO STIFF, BROWN, SILTY	CLAY, TRACE	010.0	- 7 -	2 2	6	89	SS-3B	1.25		 	_	† -		T -	-		30	A-6b (V)	1
SAND, MOIST		614.0					00 02	0									"	1102(1)	1
MEDIUM STIFF TO STIFF, GRAY, SILTY CI	LAY, TRACE		- 8 -																
SAND, MOIST			— 9 -	2 2	9	100	SS-4	1 50									22	A 6h () ()	
				4	9	100	33-4	1.50	-	-	-	-	-	-	-	-	22	A-6b (V)	
			_ 10 -																1
OAAL LITTLE OANID			- 11 7											<u> </u>					-
@11': LITTLE SAND			-	4 3	10	100	SS-5	0.75	0	3	10	26	61	33	16	17	26	A-6b (11)	
			_ 12 -	4		100	000	0.70	Ľ									1 05 (11)	
			- 13 -																
@13.5': TRACE GRAVEL				2															-
W13.3. HAGE GIVAVEE			_ 14 _	2	9	100	SS-6	1.25	-	-	-	-	-	-	-	-	18	A-6b (V)	
			_ 15 _	4														<u> </u>	
				-															
			<u></u> 16 ¬	5															1
			_ 17 -	4	13	100	SS-7	1.00	-	-	-	-	-	-	-	-	18	A-6b (V)	
			''	5														<u> </u>	-
			<u> </u>	1															
			19	2															1
			19	3 3	9	100	SS-8	0.75	9	6	17	24	44	31	15	16	19	A-6b (9)	
			<u></u> 20 [⊥]	3															-
			- 21 - 21 -																
				3	40	400	00.0												
			- 22 -	4 4	12	100	SS-9	0.75	-	-	-	-	-	-	-	-	20	A-6b (V)	
		1												1					
		1	<u> </u>											<u> </u>				<u> </u>	
		1	- 24 -	1 2	7	100	SS-10	0.50	l _	_	_	_	_	_	_		20	A-6b (V)	
		597.0	EOB - 25	3		100	00-10	0.50						Ĺ				7-00 (v)	
			-LODZ0 																
NOTES: NONE																			
	QUANTITIES: PLIMPED 7	CF CFMF	NT-BENTONITE G	ROUT															
	DONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 7 CF CEMENT-BENTONITE																		

PROJECT: SA	AN SIGN FY2026	DRILLING FIRM / OPER	ATOR:	TTL / C	:W	DRIL	L RIG	GE	OPROBE	7822D	<u>T_</u>	STAT	ION /	OFF	SET:					EXPLORA	
	SIGN FOUNDATION	SAMPLING FIRM / LOG	GER:	TTL / C\	N				OMATIC H	AMME	_	ALIG		_						B-004	
PID: <u>117268</u>	SFN: N/A	DRILLING METHOD:		HSA		-				/11/24		ELEV								5.0 ft.	PAGE
START: 1/13/25	END:1/13/25	SAMPLING METHOD: _		SPT		ENE	RGY R	ATIO (89.3		LAT /				41.3	6204	2, -83	.08423	33	1 OF 1
	MATERIAL DESCRIPT	TON	ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE			GRAD		_				ERG		ODOT	HOLE
	AND NOTES		619.8	J	· · · · · · · · · · · · · · · · · · ·	RQD	• •60	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
TOPSOIL - 6 INCHE			619.3	_	-	-															
	RAY/BROWN, GRAVEL		3		<u></u> 1 ⊤	4															
MOIST (FILL)	SAND, TRACE SILT, TR	VACE CLAY,			_ 2	4	13	78	SS-1	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
		<u>.</u> Q	1		[²]	5															
MEDILIM STIEF TO	STIFF, BROWN, SILT A	ND CLAY "AND"	d 616.8	-	- 3 -	-															
SAND, MOIST	STIFF, DROWN, SILT A	IND CLAT, AND		w 615.8	† , r	2															
, -		\// _/		••	<u> </u>	2	6	100	SS-2	2.00	0	2	46	28	24	29	18	11	23	A-6a (4)	
		\// _/			<u></u> 5 ⊥	2															
			613.8		-	1															
STIFF, BROWN, SA	NDY SILT, TRACE CLA	Y, TRACE	1 - 1 - 1 - 1	1		3															
GRAVEL, MOIST					L 7 -	4	12	100	SS-3	2.00	1	1	43	47	8	21	17	4	18	A-4a (4)	
					F . I	4										-					
			611.3		8 -																
SOFT TO MEDIUM	STIFF, GRAY, SILTY CL	.AY, TRACE			[g]	1	_														
SAND, MOIST					-	1 1	3	100	SS-4	2.50	-	-	-	-	-	-	-	-	26	A-6b (V)	
7420					10	· ·															
1/242					11 7																
$^{\circ}_{\circ}$ @11': LITTLE SAND	, TRACE GRAVEL, WET				⊦ ''	2	4	400	CC F	0.50	١			04	C7	۱ , ,	10	40	20	A Ch (44)	
OJE			1		12	1 2	4	100	SS-5	0.50	2	2	8	21	67	34	16	18	32	A-6b (11)	
SAND, MOIST @11': LITTLE SAND @13': VERY SOFT, @13': VERY SOFT,					- 13 -																
@13': VERY SOFT, I	MOIST																				
7:57					<u> </u>	0	0	100	SS-6	0.25	_	_	_	_		l _	_		29	A-6b (V)	
25 0					1	0		100	33-0	0.23	-	-	-	_	_	-	-	-	23	A-00 (V)	
8/5/					15																
	ET CDAY OUT AND O	AV TDACE	603.8	_	− 16 −																
SAND, WET	FT, GRAY, SILT AND CI	LAY, IRACE				0 0	0	100	SS-7	0.50	0	2	6	24	68	29	18	11	30	A-6a (8)	
97 112, 112		\// _/			<u> 17 </u>	0														- (-)	
о́.					- 18 -																
					- I	_															
× 5:		\// _/			19	0	0	100	SS-8	0.25	-	-	-	-	_	-	-	-	30	A-6a (V)	
8) 9		\//			_ ₂₀ _	0															
OT		\// _!	1		-	-															
@21': TRACE GRAV	/FI				21 7	0															
BO 21111102 01111		\//			_ 22 _	o .	1	100	SS-9	0.25	1	2	5	24	68	28	17	11	28	A-6a (8)	
등		\// _!	1		L 22 [1															
STO		\// _/		— 23 —	1																
Ö					_ 24 _	0															
4RD			594.8		27	0 2	3	100	SS-10	0.25	-	-	-	-	-	-	-	-	30	A-6a (V)	
VERY SOFT TO SOI SAND, WET VERY SOFT TO SOI SAND, WET @21': TRACE GRAV		V//	A 034.0	EOB—	25							ш				<u> </u>					
	NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 7 CF CEMENT-BENTONITE GROUT																				
_ ABANDONMENT ME	<u>ETHODS, MATERIALS, (</u>	<u> DNITE G</u>	ROUT																		

TY	PE: OVERHEAD	AN SIGN FY2026 SIGN FOUNDATION	DRILLING FIRM / C	LOGGER:	TTL / CW	_ _ HAM	IMER:	AUT	OPROBE	IAMME	R	STAT	NME	NT: _			200) 5			EXPLOR B-005	
	D: <u>117268</u> ART: 3/13/25	SFN: N/A END: 3/13/25	DRILLING METHOD SAMPLING METHO		HSA SPT			RATIO		89.3	_	LAT /							.0739		1 OF 2
31	AITT	MATERIAL DESCRIPT	·	ELEV.		SPT/			SAMPLE			GRAD				_	ERBI		1.07.33	ODOT	HOLE
		AND NOTES		620.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)			FS	$\overline{}$	CL	LL		_	wc	CLASS (GI)	SEALED
	OPSOIL - 4 INCHE			620.5	/ _	_															
G		COARSE AND FINE SAN D STONE), LITTLE CLAY IC, DAMP (FILL)		617.8	- 1 - 2 -	3 2 3	7	100	SS-1	-	-	-	-	-	-	-	-	-	15	A-3a (V)	-
	TIFF TO VERY ST IOIST	TIFF, GRAY, SILTY CLA Y	, TRACE SAND,	017.0	- 3 - 4 - 5	2 3 4	10	100	SS-2	2.50	-	-	-	-	-	-	-	-	27	A-6b (V)	_
@)6.2': GRAY/BROV	VN			- 6 - 7	5 5 7	18	100	SS-3	1.50	0	4	18	25	53	39	22	17	29	A-6b (11)	_
		STIFF, BROWN, SILTY	CLAY, TRACE	612.0	W 612.0 - 9	1 2	4	100	SS-4	2.00	_	_	_	_		_	_	_	27	A-6b (V)	-
	AND, MOIST				- 10 - 11	1														,	-
ر	011': MEDIUM STI			609.1	_	3 4	12	100	SS-5A	1.25	-	-	-	-	-	-	-	-	29	A-6b (V)	
S N	OME SILT, TRACE /ATER NOTED)	BROWN, COARSE AND F E GRAVEL, TRACE CLA	Y, WET (FREE	607.8	- 12 - 13	4		100	SS-5B	-	5	22	39	29	5	NP	NP	NP	27	A-3a (0)	-
	OFT TO MEDIUM AND, MOIST	STIFF, GRAY, SILTY CL	AY, TRACE		- - - - 15	1 1	3	100	SS-6	0.50	0	2	6	24	68	39	22	17	29	A-6b (11)	-
	IEDIUM STIFF. GF	RAY, SILT , "AND" CLAY,	TRACE SAND.	604.8	16	1															-
	/ET	,- , - ,	,	++++ ++++ +++++ 602.8	17	1 2	4	100	SS-7	0.50	-	-	-	-	-	-	-	-	29	A-4b (V)	-
S	OFT TO MEDIUM AND, MOIST	STIFF, GRAY, SILTY CL	AY, TRACE	002.0	- 18 - 19 - 19	1 1	3	100	SS-8	0.50	-	-	-	-	-	-	-	-	33	A-6b (V)	_
					- 20 - - 21																-
					- 22	1 1	3	100	SS-9	0.75	-	-	-	-	-	-	-	-	34	A-6b (V)	-
					- 23 - - 24		1	100	SS-10	0.50	_	_		_	_	_	_	_	27	A-6b (V)	-
				594.8	- - 25	1														(*)	-

	PROJE	OVERHEAD SIGN FOUNDATION SAMPLING				PERA	TOR:						OPROBE			STAT	TION	/ OFF	SET					EXPLOR/	
	TYPE:	OVERHE	AD SIGN FO	UNDATION	SAMPLING FIRM / L	.OGG	ER:	TTL / CV	V	HAM	MER:	AUT	OMATIC	HAMMI	ER_	ALIG	NME	NT: _						B-005	
	PID: _	117268	SFN	: N/A	DRILLING METHOD			HSA		CALI	BRATI	ON DA	ATE:	6/11/24	<u>. </u>	ELE\	/ATIC	DN: 62	20.8 (NAVE	088) E	EOB:	18	3.0 ft.	PAGE
	START	: 3/13/2	5 END: _	3/13/25	SAMPLING METHO	D:		SPT		ENE	RGY R	ATIO ((%):	89.3		LAT	/ LON	IG: _		41.3	5336	4, -83	.0739	16	1 OF 1
Ī			MATER	IAL DESCRIPT	ION		ELEV.	DEDTI	IC	SPT/	NI		SAMPLI	E HP			DATIC		(o)	ATT	ERBI	ERG		ODOT	HOLE
				AND NOTES			620.8	DEPT	10	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 8/5/25 07:54 - X\PROJECTS\242420.GPJ	MEDII	UM STIFF, UU TRIAXI.	GRAY, SILT			+++++++++++++++++++++++++++++++++++++++		₩ 612.0		SPT/ RQD	N ₆₀	54		0.50	GR				CL			PI	32		SEALED
Į	NOTE	S: OFFSI	T 3 FEET S	OUTH TO OBT	AIN A SHELBY TUBE	SAME	PLE																		
		ES: OFFSET 3 FEET SOUTH TO OBTAIN A SHELBY TUBE NDONMENT METHODS, MATERIALS, QUANTITIES: PUMPI						NT-BENTO	NITE GF	ROUT															

PROJECT: SAN SIGN FY2026 DRILLING FIRM / OPER	ATOR:	TTL / CW	DRIL	L RIG:	GE	OPROBE	7822D	<u>T_</u>	STAT	ION	OFF	SET:					EXPLORA	
TYPE: OVERHEAD SIGN FOUNDATION SAMPLING FIRM / LOG	GER:	TTL / CW				OMATIC H		_	ALIG								B-006	-0-24 PAGE
PID: 117268 SFN: N/A DRILLING METHOD:		HSA	- 1				/11/24		ELEV		_			_			5.0 ft.	1 OF 1
START:1/14/25 END:1/14/25 SAMPLING METHOD: _	T	SPT	_	RGY R	RATIO	· <i>-</i> —	89.3		LAT /							.13448	38	
MATERIAL DESCRIPTION AND NOTES	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs		N (% sı) CL	LL	ERB PL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
TOPSOIL - 6 INCHES	640.0		TIQD		(70)	טו	(tSI)	GIX	0.5	10	- 51	OL		I L	F 1	WC	. ,	OLALLD
STIFF TO VERY STIFF, BROWN/GRAY, SILT AND CLAY,	3] [- 1 -																
LITTLE SAND, TRACE GRAVEL, TRACE IRON OXIDE STAIN			6 5	15	89	SS-1	>4.5		_		_		_			15	A-6a (V)	
SEAM, MOIST		- 2 -	5	10	03	30-1	74.5		-	-	_	_	-	-	-	13	A-0a (V)	
	637.0	- 3 -																
STIFF TO VERY STIFF, GRAY, SILTY CLAY, "AND" GRAVEL, TRACE SAND, MOIST			3															
THE GLEST WOLLD		_ 4 _	3	12	89	SS-2	>4.5	36	2	6	15	41	38	18	20	16	A-6b (8)	
		<u></u> 5 ⊥	5															
	634.0	-	-															
VERY STIFF TO HARD, BROWN/GRAY, CLAY, LITTLE		6 1	9	00	400	00.0				_	4-	-00	40		0.5	0.5	A 7 0 (40)	
GRAVEL, LITTLE SILT, TRACE SAND, MOIST		- 7 -	10 10	30	100	SS-3	>4.5	16	1	6	15	62	48	23	25	25	A-7-6 (16)	
		8 -																
@8.5': DAMP			1															
E CONTRACTOR OF THE CONTRACTOR		9 1	4	15	100	SS-4	>4.5	-	-	-	_	_	-	-	-	17	A-7-6 (V)	
500		_ ₁₀ _	6															
52424																		
@11': VERY STIFF, GRAY	Ħ		10															
		- 12 -	9 8	25	100	SS-5	4.00	-	-	-	-	-	-	-	-	22	A-7-6 (V)	
		- 13 -																
<u>`</u>		- 13																
м Н	H	<u> </u>	14 5	15	100	SS-6	4.00	_	_	_	_	_	_	_	-	20	A-7-6 (V)	
922		_ 15 _	5														- ()	

		<u> </u>	9			SS-7 A		_								_	A-7-6 (V)	
@11': VERY STIFF, GRAY HARD, BROWN/GRAY, SILTY CLAY, LITTLE SAND, LITTLE GRAVEL, MOIST STIFF TO VERY STIFF, GRAY/DARK GRAY, SILTY CLAY, SOME SAND, TRACE GRAVEL, TRACE ORGANICS, MOIST VERY STIFF TO HARD, GRAY/BROWN, SILT AND CLAY, LITTLE SAND, TRACE GRAVEL,, MOIST	623.0	— 17 —	9 30	58	100		-		-	-	-	-	-	-	-		. ,	
HARD, BROWN/GRAY, SILTY CLAY , LITTLE SAND, LITTLE GRAVEL, MOIST			30			SS-7 B	>4.5	11	4	10	20	55	36	16	20	15	A-6b (12)	
	621.5	- 18 -																
X STIFF TO VERY STIFF, GRAY/DARK GRAY, SILTY CLAY, SOME SAND, TRACE GRAVEL, TRACE ORGANICS, MOIST		- 19 -	3 4	13	100	SS-8	>4.5	3	2	25	26	44	36	20	16	21	A-6b (9)	
SOME SAND, TRACE GRAVEL, TRACE ORGANICS, MOIST		_ 20 _	5	10	100	00-0	7 4.5			20	20	77		20	10	21	A-05 (5)	
Ŏ	619.5																	
인 VERY STIFF TO HARD, GRAY/BROWN, SILT AND CLAY , 없 LITLTE SAND, TRACE GRAVEL,, MOIST		- 21	11															
		_ 22 -		33	100	SS-9	2.75	-	-	-	-	-	-	-	-	23	A-6a (V)	
	617.0		11															
MEDIUM STIFF, GRAY/BROWN, SANDY SILT , "AND" CLAY,	017.0	_ 23 _						L						L				
TRACE SAND, MOIST		— 24 —	1	(400	00.40	0.00			•	44		00	10		0.5	A 4 - (0)	
	615.0	-	1 3	6	100	SS-10	2.00	0	1	6	41	52	28	19	9	25	A-4a (8)	
MEDIUM STIFF, GRAY/BROWN, SANDY SILT, "AND" CLAY, TRACE SAND, MOIST		EOB25-											•	•				
NOTES: NONE																		
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED	7 CF CFMI	ENT-BENTONITE GE	ROUT															

		117268 SFN: N/A DRILLING METH				PERA	TOR:	TTL / C		DRIL	L RIG:	GE	OPROBE	7822D	т_	STAT	ION	OFF	SET	:				EXPLOR	
							ER:	TTL / C	W				OMATIC F		_	ALIG		_						B-007	
								HSA		- 1				/11/24	_	ELEV		_	33.0 (_			5.0 ft.	PAGE 1 OF 1
SI	ARI:	1/15/2		1/15/25	SAMPLING METHO	D:		SPT			RGY R	ATIO		89.3		LAT /							.13449	97	
				RIAL DESCRIPT AND NOTES	TON		ELEV.	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs			CL	LL	PL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
┝	OPSC	OIL - 7 INC		AND NOTES		$\overline{\mathcal{N}}$	633.0 632.4			TTQD		(70)	ID.	(131)	OI.	00	10	Oi.	OL.		1		WO	, ,	OL/ (LLD
				LACK, COARS	E AND FINE		552		_ 1 ¬											<u> </u>					-
				SILT, TRACE (GRAVEL,				F .	4 4	15	89	SS-1	_	_	_	_	_		_		_	16	A-3a (V)	
S	LIGH	ILY ORG	ANIC, MOIS	I (FILL)			000.0		_ 2 -	6	13	03	33-1	-	-	-	_	_	-	-	-	-	10	A-3a (V)	
	IFDIU	IM STIFE	TO STIFE B	ROWN/GRAY,	SII TY CI AY		630.2		_ 3 -																
			RACE GRAV		 ,				+ , 1	3															-
									_ 4 -	3 2	7	100	SS-2	4.00	9	4	17	25	45	28	12	16	15	A-6b (9)	
									<u> </u>	2										-					
							627.0		6 -																
				, SILTY CLAY,	LITTLE SAND,				- 0	7	24	400	00.0										40	A Ch () ()	
'	RACE	E GRAVEL	., MOIST						- 7 -	8 8	24	100	SS-3	>4.5	-	-	-	-	-	-	-	-	13	A-6b (V)	
									8 -																
)8 5'·	GRAY							-	3															_
3PJ	,0.0.	Orti							9 -	4	15	100	SS-4	>4.5	6	3	14	22	55	29	13	16	13	A-6b (10)	
120.0			DICAT						10	6															-
/242									11																
CTS									_ 11 ¬	10	20	400	00.5	4.00									0.1	A OL () ()	
OJE									- 12 -	10 10	30	100	SS-5	4.00	-	-	-	-	-	-	-	-	21	A-6b (V)	
PR									_ 13 -																
4 ×							619.0	w 619.0	1	2										1					
07:5 N	EDIU	IM STIFF	TO STIFF, B	ROWN/GRAY,	SILTY CLAY,		010.0	W 019.0	14 -	3 3	7	100	SS-6	1.50	0	4	28	26	42	38	20	18	24	A-6b (10)	
S 2/52	OME	SAND, M	OIST				617.5		— 15 –	2										<u> </u>					
[∞] S	TIFF.	GRAY/BF	ROWN. SAN	DY SILT. SOME	CLAY, MOIST	+	017.5	1_	10	1															
.GD:	,							Y	16 -	3	40	400	00.7	4.00			-00	40	00				07	A 4 (0)	
0									- 17 -	3 4	10	100	SS-7	1.00	0	3	22	42	33	29	21	8	27	A-4a (8)	
ᆼ									18 -																
€ @)18': E	BROWN/0	GRAY						- 10	4															-
,5 X									- 19 -	4 3	9	100	SS-8	1.00	-	-	-	_	_	-	-	-	26	A-4a (V)	
90									_ 20 _	3										<u> </u>					
O FC									L .	-															
Ž (0)21': N	MEDIUM S	STIFF, WET	(FREE WATER	R NOTED IN JAR)				_ 21 -	2															
L BC									_ 22 -	3 4	10	100	SS-9	0.75	-	-	-	-	-	-	-	-	26	A-4a (V)	
SOI							610.0		_ 22 _																
DO V			SOFT, BRO	WN/GRAY, SAI	NDY SILT, "AND"				- 23 -																-
0	LAY,	MOIST							_ 24 -	0 0	1	100	SS-10	1.00	0	1	9	38	52	29	22	7	26	A-4a (8)	
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 8/5/25 07:54 - X:\PROJECTS\\ 2420.GPJ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							608.0	L_EOB_	₂₅	1					<u> </u>									. ,	
STAN																									
	NOTES: NONE																								
Α	BAND	OONMENT	METHODS	CF CEMI	ENT-BENT	ONITE G	ROUT																		

PROJECT: SAN SIGN FY2026 DRILLING FIRM / OPERA	TOR:	TTL / C	N	DRIL	L RIG:	_GE	OPROBE	7822D	<u>T_</u>	STAT	ION /	OFF	SET:					EXPLOR/	ATION ID
TYPE: OVERHEAD SIGN FOUNDATION SAMPLING FIRM / LOGG	ER:	TTL / CV	V				DMATIC H		_	ALIG								B-008	
PID: 117268 SFN: N/A DRILLING METHOD:		HSA		- 1				/11/24	_	ELEV		_			_			5.0 ft.	PAGE
START:1/15/25 END:1/15/25 SAMPLING METHOD:		SPT		ENEF	RGY R	ATIO (,	89.3		LAT /							.11673	35	1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV.	DEPTH	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs		N (%) CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
TOPSOIL - 8 INCHES	617.4 616.7			TIGE		(70)	ID	(131)	OIX	00	10	OI .	OL		'-	<u> </u>	WO	, ,	OL/ (LLD
MEDIUM STIFF, GRAY/BROWN, SILT AND CLAY, LITTLE	010.7	1	_ 1 _																
SAND, TRACE GRAVEL, SLIGHTLY ORGANIC, MOIST				3	7	100	SS-1	3.25	_	_	_	_	_	l _	_	_	20	A-6a (V)	
			_ 2 +	2	·			0.20										7, 04 (1)	
MEDIUM STIFF, BROWN/GRAY, SANDY SILT , LITTLE CLAY,	614.4	W 614.4	— з —																
SLIGHTLY ORGANIC, MOIST			▎▗▗	1															
			_ 4	1	6	100	SS-2	1.00	0	0	41	46	13	28	20	8	24	A-4a (5)	
			<u> </u>	3															
	611.4		- - 6 -																
SOFT TO MEDIUM STIFF, BROWN/GRAY, SANDY SILT,			-	7 8	25	100	SS-3	0.25	0	0	50	45	5	28	20	8	22	A-4a (3)	
TRACE CLAY, WET (FREE WATER NOTED)			- 7 +	° 9	23	100	33-3	0.23	U	0	50	45	5	20	20	0	22	A-4a (3)	
			_ 8 _																
@8': GRAY				3															
<u> </u>			_ 9 +	3	6	100	SS-4	0.25	-	-	-	-	-	-	-	-	27	A-4a (V)	
			_ ₁₀	1															
242	606.4			•															
VERY LOOSE, GRAY, COARSE AND FINE SAND, SOME]	_ 11 _	0	0	400	00.5		_									A 0 (0)	
SILT, TRACE CLAY, MOIST	604.9		— 12 —	0 2	3	100	SS-5	-	0	7	59	30	4	NP	NP	NP	23	A-3a (0)	
VERY LOOSE, GRAY, COARSE AND FINE SAND, SOME SILT, TRACE CLAY, MOIST SOFT TO MEDIUM STIFF, GRAY, SILT AND CLAY, LITTLE SAND, MOIST			- 13 -																
SAND, MOIST			├ [.] .	0															
9///			14	0	1	100	SS-6	3.00	-	-	-	-	-	-	-	-	23	A-6a (V)	
22/5			_ ₁₅ _	1															
	601.4																		
STIFF TO VERY STIFF, GRAY, SILT AND CLAY, LITTLE SAND, MOIST VERY STIFF, GRAY, SANDY SILT, "AND" CLAY, MOIST SOFT TO MEDIUM STIFF, GRAY, SILT AND CLAY, TRACE			- 16 T	2		400		4.00											
SAND, MOIST			<u> </u>	3 4	10	100	SS-7	4.00	-	-	-	-	-	-	-	-	21	A-6a (V)	
₹ 1			- 18 -																
T VEDVOTIEE ODAY CANDYOUT HANDII OLAY MOIOT	598.9		- '0	_															
VERY STIFF, GRAY, SANDY SILT , "AND" CLAY, MOIST			— 19 -	5 5	16	100	SS-8	3.00	0	2	6	40	52	25	16	9	18	A-4a (8)	
8 0			_ ₂₀ _	6														. ,	
	596.4																		
SOFT TO MEDIUM STIFF, GRAY, SILT AND CLAY, TRACE	000.4	1	— 21 T	3															
SAND, WET			- 22	2 2	6	100	SS-9	0.25	0	2	7	23	68	35	20	15	33	A-6a (10)	
	1		— 23 —																
@23.5': VERY SOFT, LITTLE SAND			<u> </u>	0	1	100	SS-10	0.25	_	_	_	_	_	۱ ـ	_		34	A-6a (V)	
AAG	592.4	EOB—	25	1	•	100	55-10	0.20						$oxedsymbol{oxedsymbol{oxed}}$, (oa (v)	
SAND, WET @23.5': VERY SOFT, LITTLE SAND		200	20																
NOTES: NONE																			
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 7	CF CEME	ENT-BENTO	NITE GI	ROUT															

PROJECT: SAN SIGN FY2026 DRILLING FIRM / OPERA	TOR:	TTL / C	W	DRIL	L RIG:	GE	OPROBE	7822D	<u>T</u>	STAT	ION /	OFF	SET:					EXPLOR/	
TYPE: OVERHEAD SIGN FOUNDATION SAMPLING FIRM / LOGG	ER:	TTL / C\	N				DMATIC H			ALIG		_						B-009	
PID: 117268 SFN: N/A DRILLING METHOD:		HSA						/11/24		ELEV								5.0 ft.	PAGE
START: <u>1/15/25</u> END: <u>1/16/25</u> SAMPLING METHOD:		SPT		ENE	RGY R	ATIO (89.3		LAT /				_			.11674	3	1 OF 1
MATERIAL DESCRIPTION	ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE	HP		GRAD				_	ERBI			ODOT	HOLE
AND NOTES	624.8	<u> </u>	1.0	RQD	• •60	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
TOPSOIL - 7 INCHES	624.2		-	-															
MEDIUM STIFF TO STIFF, BROWN/GRAY, SILT AND CLAY,			<u></u> 1 ₁	2															
LITTLE SAND, TRACE GRAVEL, SLIGHTLY ORGANIC, MOIST	1		_ 2 _	2	6	89	SS-1	2.50	-	-	-	-	-	-	-	-	19	A-6a (V)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1			2															
SOFT TO MEDIUM STIFF, BROWN, SANDY SILT, TRACE	621.8	-	- 3 -	-															
CLAY, MOIST			┞	3															
			L 4 T	1	4	100	SS-2	0.50	0	0	55	41	4	26	19	7	23	A-4a (2)	
			L 5 ⊥	2															
			-	1															
			⊢ 6 ⊤	4															
		W 617.8	<u> </u>	4	13	100	SS-3	0.25	0	2	48	44	6	29	21	8	26	A-4a (3)	
			<u></u>	5															
	616.3		8 -	1															
SOFT TO MEDIUM STIFF, GRAY, SILT AND CLAY, LITTLE		1	_ 9 _	1															
SAND, MOIST	1			1 1	3	100	SS-4	1.00	0	2	9	22	67	32	19	13	26	A-6a (9)	
0.	1		10	<u>'</u>															
57///			- 44	1															
[5]	1			1															
\\\\\\\	3		12	1 1	3	100	SS-5	0.50	-	-	-	-	-	-	-	-	28	A-6a (V)	
<u>K</u>				<u> </u>															
× ///	1		13																
@13.5': TRACE SAND			14	0	•	400	00.0	0.50			_	00			10	4.5	00	A O = (40)	
0 93	1			1 1	3	100	SS-6	0.50	0	2	7	23	68	34	19	15	30	A-6a (10)	
X///	1		<u> </u>	·															
<u>{///</u>			16																
	1			1 1	3	100	SS-7	0.50	_	_					_		29	A-6a (V)	
	1		17	1 1	3	100	33-1	0.50	_	-	-	-	-	-	-	-	29	A-0a (V)	
티			18 -																
	1		10																
@18.5': VERY SOFT	1		19	0	1	100	SS-8	0.25	_	_	_	_	_	١.	١.	l _ l	31	A-6a (V)	
			- a	1 1		100	00-0	0.23		-	_		_				01	74-0a (V)	
\mathbb{Z}	1		20																
	3		21 7																
<u>[8]</u>				0	0	100	SS-9	0.25	0	2	6	24	68	34	20	14	28	A-6a (10)	
] \\\//	1		22	0														(,	
<u>[8]</u>			_ 23 _																
	1		L -	0											-				
Q	1		- 24 -	0	1	100	SS-10	0.25	_	-	-	-	-	-	-	-	29	A-6a (V)	
SAND, MOIST SAND, MOIST @13.5': TRACE SAND @18.5': VERY SOFT @18.5': VERY SOFT	599.8	L_EOB_		1						Ш								. ,	
STAN																			
NOTES: NONE																			
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 7	CF CEME	ENT-BENT	ONITE GI	ROUT															

	RILLING FIRM / OPER	ATOR:	TTL / CW	_ DRIL	L RIG	: _GE	OPROBE	7822D	T_	STAT	ION .	/ OFF	SET:					EXPLOR	ATION ID
	AMPLING FIRM / LOGO	GER:	TTL / CW				OMATIC F			ALIG								B-010	
	RILLING METHOD:		HSA	_				6/11/24		ELEV		_	30.5 (_			5.0 ft.	PAGE
	AMPLING METHOD: $_$		SPT	_ ENE	RGY F	RATIO	. ,	89.3	-	LAT /							.07503	33	1 OF 1
MATERIAL DESCRIPTION	N	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE		_	GRAD					ERBI	_	ļ	ODOT	HOLE
AND NOTES	N A	630.5	DEI IIIG	RQD	1 160	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
BROKEN ASPHALT - 17 INCHES	X	}		4															
	\bowtie	629.1	<u> </u>	9															₩
AGGRETATE BASE - 19 INCHES	X	3	1	5	12	89	SS-1	-	-	-	-	-	-	-	_	-	16	A-2-4 (V)	********
	\bowtie	\$	_ 2 -	3														` ′	
OTIFE TO VEDY OTIFE ODAY/DADY ODAY	U T AND OL AV	627.5	<u></u>	-															
STIFF TO VERY STIFF, GRAY/DARK GRAY, SI SOME SAND, MOIST	ILT AND CLAY,			1					1										_
CONE OF WEST	\// _/	1	_ 4 -	5	15	100	SS-2	>4.5	0	1	29	22	48	30	17	13	18	A-6a (8)	
	(//		_ 5 -	5															
				-															
@6': VERY STIFF, DARK GRAY	\// _/	1	 6 -	8															_
BO. VERT OTHER, BARTE GIVE			_ 7 -	8	24	100	SS-3	>4.5	-	-	-	-	-	-	-	-	19	A-6a (V)	
		200 -		8														` ,	
STIFF CDAY SILTY CLAY LITTLE SAND MO	NCT ///	622.5	- 8 -	-															
STIFF, GRAY, SILTY CLAY , LITTLE SAND, MC	1010			5															_
			_ 9 -	6	18	100	SS-4	4.00	0	1	14	21	64	38	19	19	21	A-6b (12)	
			<u> </u>	6					<u> </u>										
t		1	-	-															
			11 -	7															_
		1	12 -	6	18	100	SS-5	3.50	-	-	-	-	-	-	-	-	19	A-6a (V)	
				6															
,		617.0	- 13 -	-															
MEDIUM STIFF, GRAY/BROWN, CLAY, SOME	SILT. LITTLE	017.0	† † ,,	4															_
SAND, MOIST	, <u> </u>		_ 14 -	4	12	100	SS-6	3.00	0	2	9	21	68	44	22	22	22	A-7-6 (14)	
			<u> </u>	4															
		614.5	-	-															
STIFF TO VERY STIFF, BROWN/GRAY, SILT	AND CLAY.	014.0	16 -	6															-
SOME SAND, MOIST			17 -	6	16	100	SS-7	1.00	0	1	26	22	51	30	16	14	24	A-6a (9)	
		612.9	W 612.9	5															
GRAY, FINE SAND, WET (BASED ON DRILLIN		612.0	- 18 -	┨															
RESISTANCE ENCOUNTÈRED AND AUGER C		012.0	1 10	1															-
SOFT TO MEDIUM STIFF, GRAY, SILT AND C SAND, MOIST	LAY, TRACE		_ 19 -	1 1	3	100	SS-8	1.00	0	2	7	23	68	33	19	14	27	A-6a (10)	
S, LAB, MOIOT			- 20 -	1															_
	\//.		-	-															
@21': VERY SOFT	\// <i>/</i>	3	<u> </u>	0					t										
	\//		_ 22 -		1	100	SS-9	0.25	-	-	-	-	-	-	-	-	31	A-6a (V)	
5	\// _!	1		1					1					_					
2	\// _/	1	- 23 -	-															
@23.5': SOME SAND	<i>\(\/)</i>			0					t										
	\// _!	1	<u> </u>	0	1	100	SS-10	0.25	-	-	-	-	-	-	-	-	29	A-6a (V)	
		605.5	EOB 25-	1			<u> </u>		<u> </u>					<u> </u>	<u> </u>		<u> </u>		
NOTES: NONE																			
ABANDONMENT METHODS, MATERIALS, QU.	ANTITIES: PLACED 0	.25 BAG A	SPHALT PATCH: F	UMPED	7 CF	CEME	NT-BENT	ONITE	GRO	DUT									

PROJECT: SAN SIGN FY2026 DRILLING FIRM / OPE		TTL / CW	-			OPROBE		_	STAT			SET:	:				EXPLOR	
TYPE: OVERHEAD SIGN FOUNDATION SAMPLING FIRM / LO		TTL / CW	- 1			OMATIC H			-							-0-24 PAGE		
PID: 117268 SFN: N/A DRILLING METHOD: ON A DRILLING METHOD:		HSA	-				/11/24	_			_			_			5.0 ft.	1 OF 1
START:		SPT					89.3									3.0781		_
MATERIAL DESCRIPTION AND NOTES	630.9	DEPTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE	HP (tsf)					CL	LL	FERB PL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
AGGREGATE BASE WITH ASPHALT FRAGMENTS - 15	X						,											
INCHES	629.6	<u> </u>	9			SS-1A		_	_		_	<u> </u>	_	<u> </u>	 -		A-1-b (V)	
MEDIUM STIFF TO STIFF, BROWN, SANDY SILT , LITTLE CLAY, TRACE GRAVEL, DAMP		_ 2 -	5 5	15	78	SS-1B	0.50	9	9	29	41	12	18	16	2	15	A-4a (4)	
		- 3 -																-
MEDILINA CTIFE TO CTIFE CDAV/DDOMAL CILT AND CLAY	627.4		0										<u> </u>		-			-
MEDIUM STIFF TO STIFF, GRAY/BROWN, SILT AND CLAY, LITTLE SAND, MOIST		_ 4 -	2	6	94	SS-2	4.00	-	-	-	-	-	-	-	-	17	A-6a (V)	
	//	_ 5 _	2															-
STIFF TO VERY STIFF, GRAY/BROWN, SILT AND CLAY,	625.3	 - 6 -																
SOME SAND, MOIST			5 5	15	100	SS-3	>4.5	0	2	22	25	51	27	15	12	18	A-6a (9)	
		7 +	5	10	100	33-3	74.5	Ů			23	31	2'	13	12	10	A-0a (3)	
		- 8 -	1															
@8.5': BROWN/GRAY LITTLE SAND, TRACE GRAVEL		_ 9 4	4															-
		-	4 3	10	100	SS-4	>4.5	-	-	-	-	-	-	-	-	24	A-6a (V)	
		_ 10 -																-
@11': SOME SAND		— 11 _—	5															-
	618.8	12	6	21	100	SS-5A	3.00	7	11	15	22	45	29	16	13	19	A-6a (8)	
MEDIUM DENSE, GRAY, FINE SAND , TRACE SILT, TRACE CLAY, MOIST	617.9		8			SS-5B	-	-	-	-	-	-	-	-	+-	-	A-3a (V)	-
SOFT TO MEDIUM STIFF, BROWN/DARK GRAY, SILT AND		- 13 -																_
CLAY, LITTLE SAND, TRACE GRAVEL, MOIST		- 14 -	2	4	100	SS-6	2.50	_	_	_	_	_	_	_	_	19	A-6a (V)	
		_ 15 _	2			-											- ()	
	614.9	-	1															
STIFF, BROWN/GRAY, SILT AND CLAY, SOME SAND,		16 7	3	_	400	00.7	4 50			05	00	45		40	1,,	00	A 0 - (0)	
MOIST		- 17 -	3 3	9	100	SS-7	1.50	0	4	25	26	45	32	18	14	22	A-6a (9)	
	C40.4	- 18 -																
SOFT TO MEDIUM STIFF, GRAY, SILT AND CLAY, TRACE	612.4	+ + ₄₀ [1															-
SAND, MOIST		— 19 — —	1	3	100	SS-8	1.50	-	-	-	-	-	-	-	-	25	A-6a (V)	
		w 610.4 - 20 -																_
		- 21 -													-			-
		- - 22 -		3	100	SS-9	0.25	0	2	7	23	68	33	19	14	28	A-6a (10)	
			1															-
		_ 23 _																
		- 24 -	0 1	3	100	SS-10	0.50	_	_	_	_	_		_		28	A-6a (V)	
	605.9	EOB - 25	1		100	00-10	0.50						$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$				A-0a (V)	
NOTES: NONE				_	_													
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED	0.25 BAG A	SPHALT PATCH; P	UMPED	7 CF	CEME	NT-BENT	ONITE	GRO	UT									

KEY TO SYMBOLS

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

PROJECT SAN SIGN FY2026

PID 117268

OGE NUMBER N/A

PROJECT TYPE STRUCTURE FOUNDATION

LITHOLOGIC SYMBOLS (Unified Soil Classification System)

A-1-B: Ohio DOT: A-1-b, gravel and/or stone fragments with sand

A-3: Ohio DOT: A-3, fine sand

A-3A: Ohio DOT: A-3a, coarse and fine

sand

A-4A: Ohio DOT: A-4a, sandy silt

A-4B: Ohio DOT: A-4b, silt

A-6A: Ohio DOT: A-6a, silt and clay

A-6B: Ohio DOT: A-6b, silty clay

A-7-6: Ohio DOT: A-7-6, clay

PAVEMENT OR BASE: Ohio DOT: Pavement or Aggregate base

TOPSOIL: Ohio DOT: Sod and Topsoil

SAMPLER SYMBOLS

Thin Walled Undisturbed Sample

WELL CONSTRUCTION SYMBOLS

Bentonite: Bottom of hole

Asphalt or Concrete Pavement Patch

ABBREVIATIONS

LL - LIQUID LIMIT (%)

PI - PLASTIC INDEX (%)

W - MOISTURE CONTENT (%)

DD - DRY DENSITY (PCF)

NP - NON PLASTIC

-200 - PERCENT PASSING NO. 200 SIEVE

PP - POCKET PENETROMETER (TSF)

TV - TORVANE

PID - PHOTOIONIZATION DETECTOR

UC - UNCONFINED COMPRESSION

ppm - PARTS PER MILLION

, Water Level at Time

Drilling, or as Shown

, Water Level at End of

Drilling, or as Shown
Water Level After 24

Hours, or as Shown

PROJECT SAN SIGN FY2026

PID 117268

9

13

6

23

49

•

B-001-0-24

23.5

1.577

PROJECT SAN SIGN FY2026

B-002-0-24

B-003-0-24

•

24.0

3.5

1.015

0.161

0.019

0.008

0.008

5

0

12

4

20

28

45

25

18

43

PID 117268

PROJECT SAN SIGN FY2026

PID 117268

•

B-004-0-24

B-004-0-24

3.5

6.0

0.279

0.239

0.062

0.045

0.007

0.011

2

1

46

43

0

0.005

28

47

24

8

0.28 15.75

PROJECT SAN SIGN FY2026

PID 117268

4

22

0

5

0.016

18

39

25

29

53

5

0.46 16.72

OH DOT

•

B-005-0-24

B-005-0-24

6.0

11.7

0.147

1.455

0.004

0.194

PROJECT SAN SIGN FY2026

PID 117268

36

16

2

1

6

6

15

15

41

62

•

B-006-0-24

B-006-0-24

3.5

6.0

4.708

2.94

PROJECT SAN SIGN FY2026

B-007-0-24

B-007-0-24

•

3.5

8.5

1.386

0.348

0.007

PID 117268

9

6

4

3

17

14

25

22

45

55

PROJECT SAN SIGN FY2026

B-008-0-24

B-008-0-24

•

3.5

6.0

0.135

0.141

0.023

0.076

0.009

0.013

PID 117268

0.005

0.006

0

0

41

50

0

0

13

5

46

45

0.23

0.32

17.02

PROJECT SAN SIGN FY2026

B-009-0-24

B-009-0-24

•

3.5

6.0

0.307

0.138

0.087

0.07

0.018

0.012

PID 117268

0.008

0.006

0

2

55

48

0

0

41

44

4

6

0.34

0.30

14.74

0

1

14

21

64

•

B-010-0-24

8.5

PROJECT SAN SIGN FY2026

PID 117268

•

B-011-0-24

B-011-0-24

1.3

6.0

1.537

0.244

0.044

0.005

0.01

0.005

9

0

9

2

29

22

41

25

12

51

0.21

PROJECT SAN SIGN FY2026

PID 117268

GRAIN SIZE

UNCONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 2850)

Project: SAN Signs FY 2026 Date: 3/16/2025

Client: ODOT File: 242420B-005-2-24ST-1

Sample ID: B-005-2-24 ST-1 Depth: 16.0 - 18.0'

Project No.: 242420 Specimen ID: "B" (16.5 - 17.0 Feet)

SAMPLE PROPERTIES

Visual Description: Gray SILT, "and" Clay, Trace Sand A-4b (8)

Diameter: 2.88 in. Initial Dry Unit Weight of Sample: 91.6 pcf Area: 6.514 in^2 Initial Moisture Content: 31.6 % 2.75 Length: 6.00 in. Specific Gravity (assumed): Initial Void Ratio: Initial Degree of Saturation: 99 % 0.87 Chamber Pressure: 12 psi Proving Ring Number: 1155-12-13322

STRESS-STRAIN DATA

Speciman	Vertical	Proving	Piston	Corrected	Deviator
Deformation	Strain	Ring	Load	Area	Stress
(in)		Reading	(lbs)	(in^2)	(psi)
0.000	0.000	0.0	0.0	6.514	0.0
0.010	0.002	1.5	1.0	6.525	0.2
0.020	0.003	3.5	2.4	6.536	0.4
0.030	0.005	5.0	3.4	6.547	0.5
0.040	0.007	7.0	4.8	6.558	0.7
0.050	0.008	9.0	6.2	6.569	0.9
0.075	0.013	14.5	9.9	6.597	1.5
0.100	0.017	19.5	13.4	6.625	2.0
0.125	0.021	25.5	17.5	6.653	2.6
0.150	0.025	30.5	20.9	6.681	3.1
0.175	0.029	36.0	24.7	6.710	3.7
0.200	0.033	40.0	27.4	6.739	4.1
0.250	0.042	48.0	32.9	6.798	4.8
0.300	0.050	54.5	37.4	6.857	5.5
0.350	0.058	60.0	41.2	6.918	5.9
0.400	0.067	64.5	44.2	6.980	6.3
0.450	0.075	68.5	47.0	7.043	6.7
0.500	0.083	71.5	49.0	7.107	6.9
0.550	0.092	74.0	50.8	7.172	7.1
0.600	0.100	76.0	52.1	7.238	7.2
0.650	0.108	77.5	53.2	7.306	7.3
0.700	0.117	78.5	53.9	7.375	7.3
0.750	0.125	79.5	54.5	7.445	7.3
0.800	0.133	80.5	55.2	7.517	7.3
0.850	0.142	81.0	55.6	7.590	7.3
0.900	0.150	81.5	55.9	7.664	7.3
			·		

Sketch of Tested Specimen

RESULTS

	ASTM D 2850											
	General Sample Data	Triax	ial Specimen D	ata								
Project No.:	242420	Symbol	*	•	•							
Project:	SAN Signs FY 2026	Init. Specimen Height (in.)	6.00	-	-							
Sample ID:	B-005-2-24 ST-1	Init. Specimen Diameter (in.)	2.88	-	-							
Sample Interval:	16.0 - 18.0'	Init. Moisture Content* (%)	31.6	-	-							
		Init. Dry Unit Weight (pcf)	91.6	-	-							
Soil Description:	Gray SILT, "and" Clay, Trace Sand A-4b (8)											
Liquid Limit:	27	Init. Void Ratio	0.87	-	-							
Plastic Limit:	19	Init. Degree of Saturation (%)	99	-	-							
Plasticity Index:	8	Minor Principal Stress (psi)	12.0	-	-							
Specific Gravity:	2.75 (Assumed)	Deviator Stress at Failure (psi)	7.3	-	-							
Rate of Strain:	0.03 Inches per Minute	Major Principal Stress (psi)	19.3	-	-							
Failure Criteria:	Peak Deviator Stress or Deviator Stress at 15% Axial S	Strain Axial Strain at Failure (%)	13.3	_	_							

APPENDIX A ENGINEERING CALCULATIONS

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 12 ft deep drilled shaft for potential special foundation

						[Recommended	1
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	1
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
Boring No.:	B-001-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	3	375	1.25	1250	375	
6	8.5	2.5	7	875	2.25	2250	875	
8.5	11	2.5	16	2000	4.5	4500	2000	
11	12	1	27	3375	3.25	3250	3250	
							1026	Say 1,025 psf
Boring No.:	B-002-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	8	5	13	1625	2.5	2500	1625	
8	11.5	3	41	5125	4.5	4500	4500	
11.5	12	0.5	32	4000	4.5	4500	4000	
							2120	Say 2,120 psf
Boring No.:	B-005-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6.2	1.5	10	1250	2.5	2500	1250	
6.2	8.8	2.6	17	2125	1.5	1500	1500	
8.8	11	2.2	4	500	2.0	2000	500	
11	11.7	0.7	12	1500	1.25	1250	1250	
11.7	12	0.3						Granular seam
							850	Say 850 psf
Boring No.:	B-006-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	12	1500	4.5	4500	1500	
6	8.5	2.5	30	3750	4.5	4500	3750	
8.5	11	2.5	15	1875	4.5	4500	1900	
11	12	1	25	3125	4.0	4000	3100	
							1873	Say 1,870 psf
Boring No.:	B-007-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	7	875	4.0	4000	875	
6	8.5	2.5	24	3000	4.5	4500	3000	
8.5	11	2.5	15	1875	4.5	4500	1875	
11	12	1	30	3750	4.0	4000	3750	
							1609	Say 1,605 psf
	B-008-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.0	1000	750	
6	8	2	25	3125	0.25	250	250	
8	11	3	6	750	0.25	250	250	
11	12	1						Granular seam
							386	Say 385 psf
Barata 181	D 000 0 5 f	-						
	B-009-0-24						052	De maine de la CODM
0	3	3		-	-	-	250	Required per GDM
3	6	3	4	500	0.5	500	500	
6	8.5	2.5	13	1625	0.25	250	250	
8.5	11	2.5	3	375	1.0	1000	375	
11	12	1	3	375	0.5	500	375	
							349	Say 345 psf

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 12 ft deep drilled shaft for potential special foundation

							Recommended	7
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	НР	Su=HP*1000	Su	1
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
Boring No.:	B-010-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	15	1875	4.5	4500	1875	
6	8	2	24	3000	4.5	4500	3000	
8	11	3	18	2250	4.0	4000	2250	
11	12	1	18	2250	3.5	3500	2250	
							1781	Say 1,780 psf
Boring No.:	B-011-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	3.5	0.5	15	1875	0.5	500	500	
3.5	6	2.5	6	750	4.0	4000	750	
6	8.5	2.5	15	1875	4.5	4500	1875	
8.5	11	2.5	10	1250	4.5	4500	1250	
11	12	1	18	2250	3.0	3000	2250	
							1078	Say 1,075 psf

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 14 ft deep drilled shaft for potential special foundation

							Recommended	
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
Boring No.:	B-003-0-24							
0	3	3	-	=	ı	ı	250	Required per GDM
3	6	3	6	750	1.25	1250	750	
6	6.7	0.7	6	750	0.5	500	500	
6.7	8	1.3	6	750	1.25	1250	750	
8	14	6	9	1125	1.25	1250	1125	
			•				791	Say 790 psf

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 15 ft deep drilled shaft for potential special foundation

	1	-1		1			Recommended	4
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
	B-001-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	3	375	1.25	1250	375	
6	8.5	2.5	7	875	2.25	2250	875	
8.5	11	2.5	16	2000	4.5	4500	2000	
11	13.5	2.5	27	3375	3.25	3250	3250	
13.5	15	1.5	6	750	1.5	1500	750	
							1221	Say 1,220 psf
Boring No.:	B-002-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	8	5	13	1625	2.5	2500	1625	
8	11.5	3	41	5125	4.5	4500	4500	
11.5	13.5	2	32	4000	4.5	4500	4000	
13.5	15	1.5	17	2125	3.75	3750	2125	
							2315	Say 2,315 psf
	B-003-0-24						252	Deguised new CDM
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.25	1250	750	
6	6.7	0.7	6	750	0.5	500	500	
6.7	8	1.3	6	750	1.25	1250	750	
8	15	7	9	1125	1.25	1250	1125	0.040 /
							813	Say 810 psf
Boring No.:	B-005-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6.2	1.5	10	1250	2.5	2500	1250	
6.2	8.8	2.6	17	2125	1.5	1500	1500	
8.8	11	2.2	4	500	2.0	2000	500	
11	11.7	0.7	12	1500	1.25	1250	1250	
11.7	13	1.3						Granular seam
13	15	2	3	375	0.5	500	375	
							771	Say 770 psf
Boring No.:	B-006-0-24							
0	3	3	_	-		-	250	Required per GDM
3	6	3	12	1500	4.5	4500	1500	
6	8.5	2.5	30	3750	4.5	4500	3750	
8.5	11	2.5	15	1875	4.5	4500	1900	
11	13.5	2.5	25	3125	4.0	4000	3100	
13.5	15	1.5	15	1875	4.0	4000	1900	
				20.0			1998	Say 1,995 psf
					•			
Boring No.:	B-007-0-24	3	-	-	-	-	250	Required per GDM
3		+	7	875		4000	875	nequired per GDI'I
6	6 8.5	3 2.5	24	3000	4.0	4500	3000	
	8.5 11	2.5	15	3000 1875	4.5	4500 4500	1875	
8.5		3						
11 14	14 15	1	30 7	3750 875	4.0 1.5	4000 1500	3750 875	
14	15	1	/	0/0	1.5	1000	1846	Sou 1 945 nof
		1		ļ		+	1640	Say 1,845 psf

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 15 ft deep drilled shaft for potential special foundation

							Recommended	1
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	1
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
Boring No.:	B-008-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.0	1000	750	
6	8	2	25	3125	0.25	250	250	
8	11	3	6	750	0.25	250	250	
11	12.5	1.5						Granular seam
12.5	15	2.5	1	125	3.0	3000	125	
							338	Say 335 psf
Boring No.:	B-009-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	4	500	0.5	500	500	
6	8.5	2.5	13	1625	0.25	250	250	
8.5	11	2.5	3	375	1.0	1000	375	
11	13.5	2.5	3	375	0.5	500	375	
13.5	15	1.5	3	375	0.5	500	375	
							354	Say 350 psf
	B-010-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	15	1875	4.5	4500	1875	
6	8	2	24	3000	4.5	4500	3000	
8	11	3	18	2250	4.0	4000	2250	
11	13.5	2.5	18	2250	3.5	3500	2250	
13.5	15	1.5	12	1500	3.0	3000	1500	
							1800	Say 1,800 psf
	B-011-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	3.5	0.5	15	1875	0.5	500	500	
3.5	6	2.5	6	750	4.0	4000	750	
6	8.5	2.5	15	1875	4.5	4500	1875	
8.5	11	2.5	10	1250	4.5	4500	1250	
11	12.1	1.1	18	2250	3.0	3000	2250	
12.1	13	0.9						Granular seam
13	15	2	4	500	2.5	2500	500	
							1004	Say 1,000 psf

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 18 ft deep drilled shaft for potential special foundation

							Recommended	
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
Boring No.:	B-004-0-24							
0	3	3	-		-	-	250	Required per GDM
3	6	3	6	750	2.0	2000	750	
6	8.5	2.5	12	1500	2.0	2000	1500	
8.5	11	2.5	3	375	2.5	2500	375	
11	13	2	4	500	0.5	500	500	
13	16	3	0	0	0.25	250	125	Using value from below.
16	18	2	1	125	0.31	313	125	
							517	Say 515 psf

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 20 ft deep drilled shaft for potential special foundation

							Recommended	
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
								Highlight below indicates Su(N60) by alternate method Stroud (1974, 1989 for N60>52.
Boring No.:	B-001-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	3	375	1.25	1250	375	
6	8.5	2.5	7	875	2.25	2250	875	
8.5	11	2.5	16	2000	4.5	4500	2000	
11	13.5	2.5	27	3375	3.25	3250	3250	
13.5	16	2.5	6	750	1.5	1500	750	
16	18	2	13	1625	1.5	1500	1500	
18	20	2	3	375	1.0	1000	375	
							1141	Say 1,140 psf
Boring No :	B-002-0-24							
0	3	3	_	-	_	-	250	Required per GDM
3	8	5	13	1625	2.5	2500	1625	Thequired per OBTT
8	11.5	3	41	5125	4.5	4500	4500	
11.5	13.5	2	32	4000	4.5	4500	4000	
13.5	16.5	2.5	17	2125	3.75	3750	2125	
16	18	2	22	2750	2.25	2250	2250	
18	20	2	9	1125	1.0	1000	1000	
				1123	2.0	1000	2163	Say 2,160 psf
Boring No.:	B-003-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.25	1250	750	
6	6.7	0.7	6	750	0.5	500	500	
6.7	8	1.3	6	750	1.25	1250	750	
8	16	8	9	1125	1.25	1250	1125	
16	18.5	2.5	13	1625	1.0	1000	1000	
18.5	20	1.5	9	1125	0.75	750	750	
							848	Say 845 psf
Boring No ·	B-004-0-24							
0	3	3	-	_		-	250	Required per GDM
3	6	3	6	750	2.0	2000	750	
6	8.5	2.5	12	1500	2.0	2000	1500	
8.5	11	2.5	3	375	2.5	2500	375	
11	13	2.5	4	500	0.5	500	500	
13	16	3	0	0	0.25	250	125	Using value from below.
16	20	4	1	125	0.31	313	125	John State Holli Botow.
					0.01	313	478	Say 475 psf
		+		+		+	.,,	, po.

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 20 ft deep drilled shaft for potential special foundation

							Recommended	1
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	1
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
								Highlight below indicates Su(N60) by
								alternate method Stroud (1974, 1989
								for N60>52.
Boring No.:	B-005-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6.2	1.5	10	1250	2.5	2500	1250	
6.2	8.8	2.6	17	2125	1.5	1500	1500	
8.8	11	2.2	4	500	2.0	2000	500	
11	11.7	0.7	12	1500	1.25	1250	1250	
11.7	13	1.3						Granular seam
13	16	3	3	375	0.5	500	375	
16	18	2	4	500	0.5	500	500	Using UU results for B-005-1-24
18	20	2	3	375	0.5	500	375	
							669	Say 665 psf
Boring No.:	B-006-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	12	1500	4.5	4500	1500	
6	8.5	2.5	30	3750	4.5	4500	3750	
8.5	11	2.5	15	1875	4.5	4500	1900	
11	13.5	2.5	25	3125	4.0	4000	3100	
13.5	17	3.5	15	1875	4.0	4000	1900	
								Su(N60) by Stroud (1974, 1989),
17	18.5	1.5	58	6629	4.5	4500	4500	f1=5.4 for PI=20
18.5	20	1.5	13	1625	4.5	4500	1625	
							2148	Say 2,145 psf
Boring No.:	B-007-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	7	875	4.0	4000	875	
6	8.5	2.5	24	3000	4.5	4500	3000	
8.5	11	2.5	15	1875	4.5	4500	1875	
11	14	3	30	3750	4.0	4000	3750	
14	15.5	1.5	7	875	1.5	1500	875	
15.5	20	4.5	10	1250	1.0	1000	1000	
							1631	Say 1,630 psf
							-	
Boring No.:	B-008-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.0	1000	750	
6	8	2	25	3125	0.25	250	250	
8	11	3	6	750	0.25	250	250	
11	12.5	1.5		1.50	-,		_00	Granular seam
12.5	16	3.5	1	125	3.0	3000	125	
16	18.5	2.5	10	1250	4.0	4000	1250	
18.5	21	2.5	16	2000	3.0	3000	2000	
10.0		2.0		2000	0.0	3000	657	Say 655 psf
		+				+	337	22, 200 poi

 CT No.: 242420
 CRO
 Prepared
 3/20/2025

 Project: San Signs FY2026
 CPI
 Reviewed
 3/21/2025

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 20 ft deep drilled shaft for potential special foundation

							Recommended]
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	1
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
								Highlight below indicates Su(N60) by
								alternate method Stroud (1974, 1989)
								for N60>52.
Boring No.:	B-009-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	4	500	0.5	500	500	
6	8.5	2.5	13	1625	0.25	250	250	
8.5	11	2.5	3	375	1.0	1000	375	
11	13.5	2.5	3	375	0.5	500	375	
13.5	16	2.5	3	375	0.5	500	375	
16	18.5	2.5	3	375	0.5	500	375	
18.5	20	1.5	1	125	0.25	250	125	
							341	Say 340 psf
Boring No.:	B-010-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	15	1875	4.5	4500	1875	
6	8	2	24	3000	4.5	4500	3000	
8	11	3	18	2250	4.0	4000	2250	
11	13.5	2.5	18	2250	3.5	3500	2250	
13.5	16	2.5	12	1500	3.0	3000	1500	
16	17.6	1.6	16	2000	1.0	1000	1000	
17.6	18.5	0.9						Granular seam
18.5	20	1.5	3	375	1.0	1000	375	
							1605	Say 1,605 psf
Boring No.:	B-011-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	3.5	0.5	15	1875	0.5	500	500	
3.5	6	2.5	6	750	4.0	4000	750	
6	8.5	2.5	15	1875	4.5	4500	1875	
8.5	11	2.5	10	1250	4.5	4500	1250	
11	12.1	1.1	18	2250	3.0	3000	2250	
12.1	13	0.9						Granular seam
13	16	3	4	500	2.5	2500	500	
16	18.5	2.5	9	1125	1.5	1500	1125	
18.5	20	1.5	3	375	1.5	1500	375	
							944	Say 940 psf

 CT No.: 242420
 CRO
 Prepared
 3/17/2025

 Project: San Signs FY2026
 CPI
 Reviewed
 3/20/2025

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 25 ft deep drilled shaft for potential special foundation

							Recommended	
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
								Highlight below indicates Su(N60) by
								alternate method Stroud (1974, 1989
								for N60>52.
Boring No.:	B-001-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	3	375	1.25	1250	375	
6	8.5	2.5	7	875	2.25	2250	875	
8.5	11	2.5	16	2000	4.5	4500	2000	
11	13.5	2.5	27	3375	3.25	3250	3250	
13.5	16	2.5	6	750	1.5	1500	750	
16	18	2	13	1625	1.5	1500	1500	
18	23	5	3	375	1.0	1000	375	
23	25	2	15	1875	4.5	4500	1875	
							1108	Say 1,105 psf
Boring No.:	B-002-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	8	5	13	1625	2.5	2500	1625	
8	11.5	3	41	5125	4.5	4500	4500	
11.5	13.5	2	32	4000	4.5	4500	4000	
13.5	16	2.5	17	2125	3.75	3750	2125	
16	18	2	22	2750	2.25	2250	2250	
18	24	6	9	1125	1.0	1000	1000	
								Su(N60) by Stroud (1974, 1989),
24	25	1	68	8060	4.5	4500	4500	f1=5.6 for PI=7
							2069	Say 2,065 psf
								оц 2,000 ре.
Boring No.:	B-003-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.25	1250	750	Theyanica per GBTT
6	6.7	0.7	6	750	0.5	500	500	
6.7	8	1.3	6	750	1.25	1250	750	
8	16	8	9	1125	1.25	1250	1125	
16	18.5	2.5	13	1625	1.0	1000	1000	
18.5	25	6.5	9	1125	0.75	750	750	
10.0	20	0.0		1125	0.70	730	828	Say 825 psf
							020	3dy 023 psi
Boring No.:	R-004-0-24	+				+		
0	3	3		-		_	250	Required per GDM
3	6	3	6	750	2.0	2000	750	Troquired per ODI I
6	8.5	2.5	12	1500	2.0	2000	1500	
8.5	11	2.5	3	375	2.5	2500	375	
11	13	2.5	4	500	0.5	500	500	
						_		Llaing value from halan
13	16	3	0	0	0.25	250	125	Using value from below.
16	25	9	1	125	0.31	313	125	Carr 405 mass
		1					408	Say 405 psf

 CT No.: 242420
 CRO
 Prepared
 3/17/2025

 Project: San Signs FY2026
 CPI
 Reviewed
 3/20/2025

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 25 ft deep drilled shaft for potential special foundation

							Recommended	
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
								Highlight below indicates Su(N60) by
								alternate method Stroud (1974, 1989)
								for N60>52.
Boring No.:								
0	3	3	-	-	-	-	250	Required per GDM
3	6.2	1.5	10	1250	2.5	2500	1250	
6.2	8.8	2.6	17	2125	1.5	1500	1500	
8.8	11	2.2	4	500	2.0	2000	500	
11	11.7	0.7	12	1500	1.25	1250	1250	
11.7	13	1.3						Granular seam
13	16	3	3	375	0.5	500	375	
16	18	2	4	500	0.5	500	500	Using UU results for B-005-1-24
18	25	7	3	375	0.5	500	375	
							602	Say 600 psf
						1		
Boring No.:						1	_	
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	12	1500	4.5	4500	1500	
6	8.5	2.5	30	3750	4.5	4500	3750	
8.5	11	2.5	15	1875	4.5	4500	1900	
11	13.5	2.5	25	3125	4.0	4000	3100	
13.5	17	3.5	15	1875	4.0	4000	1900	
17	18.5	1.5	58	6629	4.5	4500	4500	Su(N60) by Stroud (1974, 1989), f1=5.4 for PI=20
18.5	20.5	2	13	1625	4.5	4500	1625	
20.5	23	2.5	33	4125	2.75	2750	2750	
23	25	2	6	750	2	2000	750	
							2086	Say 2085 psf
Boring No.:	B-007-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	7	875	4.0	4000	875	
6	8.5	2.5	24	3000	4.5	4500	3000	
8.5	11	2.5	15	1875	4.5	4500	1875	
11	14	3	30	3750	4.0	4000	3750	
14	15.5	1.5	7	875	1.5	1500	875	
15.5	23	7.5	10	1250	1.0	1000	1000	
23	25	2	1	125	1.0	1000	125	
							1435	Say 1,435 psf
Boring No.:								
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	6	750	1.0	1000	750	
6	8	2	25	3125	0.25	250	250	
8	11	3	6	750	0.25	250	250	
11	12.5	1.5						Granular seam
12.5	16	3.5	1	125	3.0	3000	125	
16	18.5	2.5	10	1250	4.0	4000	1250	
18.5	21	2.5	16	2000	3.0	3000	2000	
21	25	4	4	500	0.25	250	250	
							588	Say 585 psf

 CT No.: 242420
 CRO
 Prepared
 3/17/2025

 Project: San Signs FY2026
 CPI
 Reviewed
 3/20/2025

PID: 117268

Subject: Sign-Support Foundation Average Shear Strength Evaluations

Special Foundation Requirement Evaluation for

approximately 25 ft deep drilled shaft for potential special foundation

							Recommended]
Top Depth	Bottom Depth	Thickness	N60	Su=N60*125	HP	Su=HP*1000	Su	1
(ft)	(ft)	(ft)	(bpf)	(psf)	(tsf)	(psf)	(psf)	Notes
, ,	` ,	, ,			•			Highlight below indicates Su(N60) by
								alternate method Stroud (1974, 1989)
								for N60>52.
Boring No.:	B-009-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	4	500	0.5	500	500	
6	8.5	2.5	13	1625	0.25	250	250	
8.5	11	2.5	3	375	1.0	1000	375	
11	13.5	2.5	3	375	0.5	500	375	
13.5	16	2.5	3	375	0.5	500	375	
16	18.5	2.5	3	375	0.5	500	375	
18.5	25	6.5	1	125	0.25	250	125	
							298	Say 295psf
Boring No.:	B-010-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	6	3	15	1875	4.5	4500	1875	
6	8	2	24	3000	4.5	4500	3000	
8	11	3	18	2250	4.0	4000	2250	
11	13.5	2.5	18	2250	3.5	3500	2250	
13.5	16	2.5	12	1500	3.0	3000	1500	
16	17.6	1.6	16	2000	1.0	1000	1000	
17.6	18.5	0.9						Granular seam
18.5	21	2.5	3	375	1.0	1000	375	
21	25	4	1	125	0.25	250	125	
							1309	Say 1,305 psf
Boring No.:	B-011-0-24							
0	3	3	-	-	-	-	250	Required per GDM
3	3.5	0.5	15	1875	0.5	500	500	
3.5	6	2.5	6	750	4.0	4000	750	
6	8.5	2.5	15	1875	4.5	4500	1875	
8.5	11	2.5	10	1250	4.5	4500	1250	
11	12.1	1.1	18	2250	3.0	3000	2250	
12.1	13	0.9						Granular seam
13	16	3	4	500	2.5	2500	500	
16	18.5	2.5	9	1125	1.5	1500	1125	
18.5	25	6.5	3	375	1.5	1500	375	
							826	Say 825 psf

APPENDIX B GEOTECHNICAL ENGINEERING DESIGN CHECKLISTS

I. Geotechnical Design Checklists					
Project: SAN Signs FY 2026	PDP Path:				
PID: 117268	Review Stage:				

Checklist	Included in This Submission
II. Reconnaissance and Planning	✓
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	
IV. A. Foundations of Structures	✓
IV. B. Retaining Wall	
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Geotechnical Profile	
VI. D. Geotechnical Reports	✓

II. Reconnaissance and Planning Checklist

C-R-S:	SAN Signs FY 2026 PID: 117268	Reviewer	: CPI	Date:	4/29/2025
Reconn	naissance	(Y/N/X)	Notes:		
1	Based on Section 302.1 in the SGE, have the necessary plans been developed in the following areas prior to the commencement of the subsurface exploration reconnaissance:		List of reference provided.	sign numbe	r and SLM was
	Roadway plans				
	Structures plans				
	Geohazards plans				
2	Have the resources listed in Section 302.2.1 of the SGE been reviewed as part of the office reconnaissance?	Υ			
3	Have all the features listed in Section 302.3 of the SGE been observed and evaluated during the field reconnaissance?	Y			
4	If notable features were discovered in the field reconnaissance, were the GPS coordinates of these features recorded?	Х			
Plannir	ng - General	(Y/N/X)	Notes:		
5	In planning the geotechnical exploration program for the project, have the specific geologic conditions, the proposed work, and historic subsurface exploration work been considered?	Υ			
6	Has the ODOT Transportation Information Mapping System (TIMS) been accessed to find al available historic boring information and inventoried geohazards?	Y			
7	Have the borings been located to develop the maximum subsurface information while using a minimum number of borings, utilizing historic geotechnical explorations to the fullest extent possible?	Y			
8	Have the topography, geologic origin of materials, surface manifestation of soil conditions, and any other special design considerations been utilized in determining the spacing and depth of borings?	Y			
9	Have the borings been located so as to provide adequate overhead clearance for the equipment, clearance of underground utilities, minimize damage to private property, and minimize disruption of traffic, without compromising the quality of the exploration?	Υ			

II. Reconnaissance and Planning Checklist

Planni	ng - General ✓	(Y/N/X)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	Υ	
	The schedule of borings should present the follow information for each boring:	ving	
а	. exploration identification number	Υ	
b	. location by station and offset	N	Station and offset not provided.
С	estimated amount of rock and soil, including the total for each for the entire program.	Υ	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, soundings, test pits, etc.) been identified?	N	Station and offset not provided.
12	Has each exploration been assigned a unique identification number, in the following format X-ZZZ-W-YY, as per Section 303.2 of the SGE?	Υ	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned	Υ	

II. Reconnaissance and Planning Checklist

Planni	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,		
	have the location, depth, and sampling		
	requirements for the following boring types		
	been determined for the project?		
	Check all boring types utilized for this project:		
	Existing Subgrades (Type A)		
	Roadway Borings (Type B)		
	Embankment Foundations (Type B1)		
	Cut Sections (Type B2)		
	Sidehill Cut Sections (Type B3)		
	Sidehill Cut-Fill Sections (Type B4)		
	Sidehill Fill Sections on Unstable Slopes (Type		
	B5)		_
	Geohazard Borings (Type C)		_
	Lakes, Ponds, and Low-Lying Areas (Type C1)		
			_
	Peat Deposits, Compressible Soils, and Low		
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and Reclaimed		
	Surface Mines (Type C3)		
	Underground Mines (C4)		_
	Landslides (Type C5)		_
	Rock Slope (Type C6)		_
	Karst (Type C7)		_
	Proposed Underground Utilities (Type D)		_
	Structure Borings (Type E)		
	Bridges (Type E1)		
	Culverts (Type E2 a,b,c)		
	Retaining Walls (Type E3 a and b)]
	Noise Barrier (Type E4)]
	CCTV & High Mast Lighting Towers	✓	
	(Type E5)	v]
	Buildings and Salt Domes (Type E6)		

C-R-S:	SAN Signs FY 2026 PID: 1172	68	Reviewer:	CPI		Date:	4/29/2025
	Use this Checklist in conjunction with the	bridge	e foundation	n design gui	idance i	n GDM Se	ction 1300
If	fyou do not have such a foundation or struc	ture c	on the projec	ct, you do n	ot have	to fill out	this checklist.
Soil and	d Bedrock Strength Data		(Y/N/X)	Notes:			
1	Has the shear strength of the foundation soi	ls	Υ				
	been determined?		'				
	Check method used:						
	laboratory shear tests						
	estimation from SPT or field tests		✓				
2	Have sufficient soil shear strength,						
	consolidation, and other parameters been						
	determined so that the required allowable lo		Υ				
	for the foundation/structure can be designe	d?					
_							
3	Has the shear strength of the foundation		Χ				
,	bedrock been determined?						
	Check method used:						
	laboratory shear tests						
	other (describe other methods)		6.45.00				
	Footings		(Y/N/X)	Notes:			
4	Are there spread footings on the project?		N				
	If no, go to Question 11						
5	Have the recommended bottom of footing						
	elevation and reason for this recommendati	on					
	been provided?						
a.	· ·						
	elevation taken scour from streams or oth	er					
	water flow into account?						
6	Were representative sections analyzed for the						
	entire length of the structure for the following	ng:					
a.	factored bearing resistance?						
b.	factored sliding resistance?						
C.	eccentric load limitations (overturning)?						
d.	predicted settlement?						
e.	overall (global) stability?						
7	Has the need for a shear key been evaluated	1 ?					
a.	If needed, have the details been included i	n					
	the plans?						
8	If special conditions exist (e.g. geometry, slo	ping					
	rock, varying soil conditions), was the bottor	n of					
	footing "stepped" to accommodate them?						
9	Have the Service I and Maximum Strength Li	mit					
	States for bearing pressure on soil or rock be	een					
	provided?						

Spread	Footings	(Y/N/X)	Notes:
10	If weak soil is present at the proposed		
	foundation level, has the removal / treatment of		
	this soil been developed and included in the		
	plans?		
a.	Have the procedure and quantities related to		
	this removal / treatment been included in the		
	plans?		
Pile Str	uctures	(Y/N/X)	Notes:
11	Are there piles on the project?	N	
	If no, go to Question 17	IV	
12	Has an appropriate pile type been selected?		
	Check the type selected:		
	H-pile (driven)		
	H-pile (prebored)		
	Cast In-place Reinforced Concrete Pipe		
	Micropile		
	Continuous Flight Auger (CFA)		
	other (describe other types)		
13	Have the estimated pile length or tip elevation		
	and section (diameter) based on either the		
	Ultimate Bearing Value (UBV) or the depth to		
	top of bedrock been specified? Indicate method		
	used.		
14	If scour is predicted, has pile resistance in the		
	scour zone been neglected?		
15	Has a wave equation drivability analysis been		
	performed as per BDM 305.3.1.2 to determine		
	whether the pile can be driven to either the		
	UBV, the pile tip elevation, or refusal on bedrock		
	without overstressing the pile?		
	ů .		
16	If required for design, have sufficient soil		
	parameters been provided and calculations		
	performed to evaluate the:		
a.	Nominal unit tip resistance and maximum		
	settlement of the piles?		
b.	Nominal unit side resistance for each		
	contributing soil layer and maximum deflection		
	of the piles?		
C.	Downdrag load on piles driven through new		
	embankment or compressible soil layers, as		
	per BDM 305.3.2.2?		
d.	Potential for and impact of lateral squeeze		
	from soft foundation soils?		

Pile St	ructures	(Y/N/X)	Notes:
17	If piles are to be driven to strong bedrock (Q _u >7.5 ksi) or through very dense granular soils or overburden containing boulders, have "pile points" been recommended in order to protect the tips of the steel piling, as per BDM 305.3.5.6?		
18	If subsurface obstacles exist, has preboring been recommended to avoid these obstructions?		
19	If piles will be driven through 15 feet or more of new embankment, has preboring been specified as per BDM 305.3.5.7?		

Drilled Shafts	(Y/N/X)	Notes:
20 Are there drilled shafts on the project? If no, go to the next checklist.	Υ	
21 Have the drilled shaft diameter and embedment length been specified?	Х	Provided indication of whether a special foundation is needed.
22 Have the recommended drilled shaft diameter and embedment been developed based on the nominal unit side resistance and nominal unit tip resistance for vertical loading situations?	Х	Provided indication of whether a special foundation is needed.
23 For shafts undergoing lateral loading, have the following been determined:	Х	Provided indication of whether a special foundation is needed.
a. total factored lateral shear?		
b. total factored bending moment?		
c. maximum deflection? d. reinforcement design?		
 d. reinforcement design? 24 If a bedrock socket is required, has a minimum rock socket length equal to 1.5 times the rock socket diameter been used, as per BDM 305.4.2? 	Х	
25 Generally, bedrock sockets are 6" smaller in diameter than the soil embedment section of the drilled shaft. Has this factor been accounted for in the drilled shaft design?	Х	
26 If scour is predicted, has shaft resistance in the scour zone been neglected?	Х	
27 Has the site been assessed for groundwater influence?	Υ	Design is based on groundwater at 3 feet deep regardless of encountered conditions.
a. If yes, and if artesian flow is a potential concern, does the design address control of groundwater flow during construction?	Х	
28 Have all the proper items been included in the plans for integrity testing?	Х	Provided indication of whether a special foundation is needed.
29 If special construction features (e.g., slurry, casing, load tests) are required, have all the proper items been included in the plans?	Х	Indicated in the report the need for casing.
30 If necessary, have wet construction methods been specified?	Х	
General	(Y/N/X)	Notes:
31 Has the need for load testing of the foundations been evaluated?	Х	
a. If needed, have details and plan notes for load testing been included in the plans?	Х	

VI.B. Geotechnical Reports

C-R-S	SAN Signs FY 2026 PID: 117268	Reviewer:	CPI	Date: 8/5/2025
Genera		(Y/N/X)	Notes:	
1	Has an electronic copy of all geotechnical			
	submissions been provided to the District	Υ		
	Geotechnical Engineer (DGE)?			
2	Has the first complete version of a geotechnical			
	report being submitted been labeled as 'Draft'?	Y		
3	Subsequent to ODOT's review and approval, has			
	the complete version of the revised geotechnical	Υ		
	report being submitted been labeled 'Final'?	'		
4	Has the boring data been submitted in a native		The gINT project	file is being submitted with this
	format that is DIGGS (Data Interchange for		final report.	
	Geotechnical and Geoenvironmental)	Υ		
	compatable? gINT files meet this demand?			
5	Does the report cover format follow ODOT's			
	Brand and Identity Guidelines Report Standards	Υ		
	found at http://www.dot.state.	ī		
	oh.us/brand/Pages/default.aspx?			
6	Have all geotechnical reports being submitted			
	been titled correctly as prescribed in Section	Υ		
	706.1 of the SGE?			
Report	Body	(Y/N/X)	Notes:	
7	Do all geotechnical reports being submitted			
	contain the following:			
a	an Executive Summary as described in Section	Υ		
	706.2 of the SGE?	ı		
b		Υ		
	of the SGE?	'		
С	63			
	the Project," as described in Section 706.4 of	Υ		
	the SGE?			
d	•	Υ		
	Section 706.5 of the SGE?	•		
е	3 ·	Υ		
	Section 706.6 of the SGE?	•		
f	,			
1	Recommendations," as described in Section	Υ		
	70/7 (11 0050			
	706.7 of the SGE?	A		
Appen	dices	(Y/N/X)	Notes:	
Appen 8	dices Do all geotechnical reports being submitted		Notes:	
	dices Do all geotechnical reports being submitted contain all applicable Appendices as described in	(Y/N/X) Y	Notes:	
8	dices Do all geotechnical reports being submitted contain all applicable Appendices as described in Section 706.8 of the SGE?		Notes:	
	Do all geotechnical reports being submitted contain all applicable Appendices as described in Section 706.8 of the SGE? Do the Appendices present a site Boring Plan	Y	Notes:	
8	dices Do all geotechnical reports being submitted contain all applicable Appendices as described in Section 706.8 of the SGE?		Notes:	

VI.B. Geotechnical Reports

Apper	dices	(Y/N/X)	Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 706.8.2 of the SGE?	Υ	
11	Do the Appendices include reports of undisturbed test data as described in Section 706.8.3 of the SGE?	Х	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 706.8.4 of the SGE?	Υ	

APPENDIX C HISTORIC BORINGS

1943 Year File	Cha	No			ounty <u>S</u> ject <u>SA</u> ntification <u>SA</u>	ANDUS N-20-(1 N-275-K	
Begin	Sta	End S	ra	_ Length 	/3Miles	Draft	ing By
	RECON	AUGER	CORE	DRIVE ROD	RESISTIVITY		RAL ERR
Ву		F.R.R.				Comple	TON DUIC
Dates		8-20-41				Draftin	g Hours
No. of H or Sour	oles odinos					Торо	Sheet
Footage		403.5					Sheet
Sample	s Tested	82	<u> </u>	Sample	- es Accounted Fo	r	
Transm	ittal Date <u>//</u>	30-43	No. of Trac	cings	Filed with	year <u>4</u>	-M-36
Revision	ns	·					
Refer t	o						
		DC	NOT WRITE	IN THIS SPA	(CE		
		Auger Data		Core Data	Drive R	od Data	Resistivity
Lengi	No. of Holes	Footage Sam	No. of Holes	Footage San	No. of Soundings	Footage	No. of Locations
4.12	3	403,5 8	2 -	- -	- - '	 	
		*	See Reverse	Side			

SUMMERY OF TESTS ON SUBGREDE SAMPLES

Sandusky Co.

S. H. 275

Sec. K(Pt), E-2, E-1, N(Pt).

Ro. Sample Station No. Septe					Mec	hanic	al Ar	alysi	s	Physical	Charact	eristics		<u> </u>
No. Semple Station No. sents 1gg Sand Sand Silt Clay Liquid City Water Class Cla						C.	F.							B.P.R.
34824			Station No.		Agg.	Sand	Sand	Silt	Clay	Liquid :		Water		
34925 4/ 185 +00, 67 0.5 +5 2.3 7.5 10.9 405 38.8 47.7 18.4 30.9 15 13.4 14.7 252 +60.2 x 8 30.5 0 1/1 74 6.7 24.0 60.8 40.7 18.0 23.6 (Cont. 9). 34915 48 273 +00.0 0. 10.2 +0.3 5.5 5.6 4.5 71.7 34.7 35.5 15.5 21.0 (Cont. 9). 34915 5/ 173 +00.0 0. 82.0 1.5 72.2 5.7 +23.3 76.3 36.2 15.0 20.2 34926 5/ 252 +00.0 0.8 +0.7 1.8 78.8 34.5 70.3 36.2 15.0 20.2 34926 5/ 252 +00.0 0.8 +0.5 15.0 4.9 1.7 3.3 +1.7 32.5 38.3 18.7 17.9 34.9 5/ 252 +00.0 0.8 +0.5 15.0 4.9 1.7 3.3 +1.7 32.5 38.3 18.7 17.9 34.9 5/ 252 +00.0 0.8 +0.5 15.0 4.9 1.7 3.3 +1.7 32.5 38.3 18.7 17.9 34.9 34.9 73 12.3 +00.0 0.8 +0.5 20.3 0.9 1.16 10.7 32.3 40.3 18.9 13.1 34.9 13.1 34.9 17.7 21.3 +00.0 0.8 +0.5 20.3 0.9 11.6 10.7 32.3 40.3 18.9 13.1 34.9 13.1 34.9 13.1 32.9 40.3 18.9 13.1 32.9 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.9 13.1 34.	So.	No.		(Feet)	%	1%	%	1 %	%	Limit		Content		
34825 4/ 185 400 6/8 2550 2.3 75 10.9 405 88.8 47.7 18.4 30.9 15.4 14.4 47.7 28.400.28 30.50 1/ 74 6.7 24.0 60.8 40.7 18.0 23.6 (CON'G) 34915 48 279400, D. 10.30 3.5 5.6 45.5 17.7 34.7 35.5 15.5 21.0 (CON'G) 34915 5/ 173400, D. 10.30 1.5 19.2 5.7 43.3 26.3 16.0 20.2 34.92 5.4 27.100, R. 60.70	34824			4.0-5.0	9.2	6.7	9.6	3/2	43.3	38. T	19.1	22.0		
34914 47 252400.258 385.0 1.7 74 67 24.0 6.8 40.7 10.0 23.6 (CON') 34915 51 2.73400.2 10.320 35 5.6 4.5 31.7 38.7 35.5 20.0 (CON') 34915 51 2.73400.2 10.320 1.5 72.2 5.7 42.3 20.3 36.2 15.0 20.2 34921 54 2.70400.2 6.0.0 - 1.8 7.8 34.5 54.0 40.3 18.7 38.1 34921 54 2.70400.2 6.0.5 1.5 0.4 9.1 10.3 41.7 22.5 38.3 11.1 17.9 34934 67 231400.2 2.5 50 - 0.6 8.2 50.4 21.8 38.4 18.9 20.1 34938 77 22.5 40.2 2.0.5 0.3 0.0 11.6 10.7 32.3 51.4 34.7 17.5 15.2 34940 73 12.3 40.2 15.5 20.2 6 10.3 12.4 23.4 41.3 38.0 12.1 21.4 34948 81 277450.2 15.5 0.2 6 10.3 12.4 23.4 41.3 38.0 12.1 21.4 34948 81 277450.2 15.5 0.4 15.3 12.4 23.4 41.3 38.0 12.1 21.4 3498 81 277450.2 15.5 0.4 15.3 14.0 12.3 12.4 23.4 41.3 38.0 12.1 21.4 3498 81 277450.2 15.5 0.4 15.3 14.0 12.3 12.4 12.3 38.6 17.2 21.6 34802 18 106.40.2 15.5 0.2 10.4 11.4 40.2 41.3 38.6 17.2 21.6 34802 18 106.40.2 15.5 0.2 8 1.9 15.4 37.0 16.6 19.9 15.2 16.9 34802 18 106.40.2 15.5 0.2 8 1.9 15.4 37.0 16.6 19.9 15.2 16.7 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 15.4 37.0 16.6 19.9 15.2 16.7 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 15.4 37.0 16.6 16.9 12.2 12.3 12.7 17.2 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 15.4 37.0 16.6 16.9 12.2 12.3 12.7 17.2 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 15.4 37.0 16.6 16.9 12.2 12.3 12.7 17.2 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 15.4 37.0 16.6 16.9 12.2 12.3 12.7 17.2 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 15.4 37.0 16.6 16.9 12.2 12.3 12.7 17.2 34804 20 10.9 10.0 2 15.5 0.2 8 1.9 16.8 37.2 57.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16	34825		185 400, 6 TR	0.5-15	2.3	7.5	10.9	405	38.8	47.7	18.4		15	#-7
34915 48 279400, Q 10.310 35 5.6 4.5 31.7 34.7 35.5 73.5 21.0 (CON 9.) 34916 51 273400, Q 0.8.20 1.5 7.2 2.3 2.3 36.2 75.0 20.2 34921 54 2.70400, Q 6.0.70 — 1.8 7.8 3.4 5.40, 40.3 18.7 38.7 34926 59 25.2400, Q 0.5 15 0.4 9.1 10.3 47.7 22.5 38.3 16.1 72.9 34926 59 25.2400, Q 0.5 15 0.4 9.1 10.3 47.7 22.5 38.3 16.1 72.9 34938 67 23.3 10.0 Q 2.5 50 — 0.6 2.50.4 29.8 38.4 18.9 20.1 34938 71 22.5 40.2 2.5 50 — 0.6 10.7 32.3 41.4 34.7 17.5 15.2 34940 73 12.3 40.0 Q 15.50 3.0 11.6 10.7 32.3 41.4 33.4 7 17.5 15.2 34948 81 277450, Q 15.40 4 0.5 31.2 6 10.3 12.4 21.4 13.3 38.0 17.1 21.4 34948 81 277450, Q 15.40 4 0.5 25 1.7 10.3 41.8 38.9 42.7 15.0 26.2 34827 1 Garos, Q 0.5 25 1.7 7.6 10.3 41.8 38.9 42.7 15.0 26.2 3486 2 GANO, Q 15.50 — 0.1 16.6 4.4 37.8 25.6 16.5 27.8 34707 7 78 100 Q 2.5 50 — 20 76 26.6 13.8 42.7 20.3 17.9 24717 7 78 100 Q 2.5 50 — 20 76 26.6 13.8 42.7 27.6 24.1 1 34802 18 106403 Q 15.50 — 20 76 26.6 13.8 42.7 27.6 24.1 1 34802 18 106403 Q 15.50 Q 2.8 1.9 1.8 32.2 57.3 44.3 12.7 17.2 34802 18 106403 Q 15.50 Q 2.8 1.9 1.8 32.2 57.3 44.3 12.7 17.2 34802 18 106403 Q 15.50 Q 2.8 1.9 1.8 32.2 57.3 44.3 12.7 17.2 34804 20 109400 Q 15.50 Q 3.8 1.9 1.8 32.2 57.3 44.3 12.7 17.2 34804 20 109400 Q 15.50 Q 3.8 1.9 1.8 32.2 57.3 44.3 12.7 17.2 34804 20 109400 Q 15.50 Q 3.8 1.9 1.8 32.2 57.3 44.3 12.7 17.2 34804 20 109400 Q 15.50 Q 3.7 5.9 40.5 50.0 46.1 12.5 2.5 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	349/4	47	25240,25R	30-5.0	1.1	7.4	6.7	24.0	60.8	40,7			10	41.7
3498 5/ 173700.		48	279400, 1	10-20	3.5	5.6	4.5	31.7	54.7	35.5	13.5	210	[Con	(d)
3492/ 54 270100 & 6.0-20 - 1.3 7.8 3.4 590 40.3 12.7 38.7 34926 59 252700 & 0.5-15 0.4 9.1 10.3 47.7 32.5 38.3 11.1 17.9 34938 71 225700 & 0.5-50 3.0 - 0.6 8.2 50.4 32.8 38.4 1.8 9 20.1 34938 71 225700 & 10-20 3.0 11.6 10.7 32.3 42.4 34.7 17.5 15.2 34940 73 123700 & 10-20 3.1 16.6 16.7 32.3 42.4 34.7 17.5 15.2 34940 81 277450 & 15-20 2.6 10.3 12.4 33.4 41.3 38.0 17.1 21.4 34940 81 277450 & 15-40 4 0.1 16.60 4 32.8 35.6 16.5 22.8 34827 1 6970 8 0.5 25 1/4 76 10.3 41.8 38.9 42.7 15.0 20.2 7070 5 1/4 11.4 40.2 41.3 38.6 17.2 21.6 34786 2 6940 6 25.55 - 2.0 76 34.6 63.8 40.7 20.3 17.9 34721 7 78 +00.2 45550 - 10 15.4 37.0 46.6 10.4 19.9 15.2 16 34721 7 78 +00.2 45550 - 10 15.4 37.0 46.6 40.4 19.9 15.2 16 34802 18 10 +00.2 1555.0 28 1.9 6.8 32.2 5/1 44.3 12.7 17.2 34505 21 115 +00.2 15.5 5.0 28 1.9 6.8 32.2 5/1 44.3 12.7 17.2 34505 22 12 12 +00.2 15.5 5.0 28 1.9 6.8 32.2 5/1 44.3 12.7 17.2 34505 22 12 15.5 0.2 15.5 45 0.8 3.4 7.7 32.1 56.0 45.8 23.5 12.8 34505 21 15.5 0.2 1.5 5.0 28 1.9 6.8 32.2 5/1 44.3 12.7 17.2 34505 22 12 1400 2 15.5 5.0 28 1.9 6.8 32.2 5/1 44.3 12.7 17.2 34524 42 18940018 1.5 45 0.8 3.4 7.7 32.1 56.0 45.8 23.5 12.8 34722 3 12 1400 2 15.5 0.3 3.0 7.3 32.3 57.1 41.9 20.0 - 34824 42.2 18940018 1.5 40.4 5.8 24.7 32.8 38.0 5/10 96.1 20.3 22.2 34.9 23.5 24.7 34.9 35.5 24.7 34.9 32.5 35.7 24.7 34.9 35.5 24			273+00,€	0.8-20	1.5	19.2	5.7	473	24.3	36,2	15.0	20.2		7
34726 59 252400 Q 0.5 650 4 9.1 0.3 47.7 32.5 38.3 1.1 7.9 34738 67 2-31400, Q 2.5-50 - 0.6 6.2 504 328 38.4 18.9 20.1 34738 77 225400 Q 20-50 3.0 116 6.7 32.3 424 34.7 17.5 15.2 34 940 73 123 400 Q 1052,0 3.7 2.5 14.6 39.7 33.1 40.3 14.9 13.1 34 947 77 213 + 00 Q 155-30 2.6 10.3 12.4 32.4 41.3 38.0 17.1 21.4 34 948 81 2.77+50 Q 1.5-40 40 0.1 16.4 37.8 35.6 16.5 27.8 34 827 1			270+00, R	6.0-7.0	_	1,8	7.8	36.4	590	40.3	18.7	38./		
34-34			252+00 B	0.5-45	0.4	9.1	10.3	47.7	22.5	38.3	16.1			
## 77		67	231400, Q	2.5- 50		0.6	9.2	50.4	39.8	38.4				
34 44 77 213+00, & 10-2, 0 3.1 9.5 14.6 39.7 33.1 40.3 14.9 13.1 34.44 77 213+00.2 15-3.0 16.0 10.3 12.4 23.4 41.3 38.0 17.1 21.4 34.827 1 29.40.2 25.5 1.4 0.1 16.0 4 378 35.6 16.5 278 278 24827 1 29.40.2 25.5 1.4 0.1 16.0 4 378 35.6 16.5 278 278 24827 1 29.40.2 25.5 16.0 4 0.1 16.0 4 378 35.6 16.5 278 278 24827 1 29.40.2 24.1 17.5 18.0 21.5 18		7/	225+00.2	3.0-5.0	3.0	11.6	10.7	32.3	424	34.4	17.5	15.2	1	
34 947 77 213+00 & 15-3.0 2.6 10.3 12.4 23.4 41.3 38.0 17.1 21.4 34.48 81 277+50, & 15-4.0 \$\frac{1}{2}\$ 0.5 1.6 60.4 378 35.6 16.5 27.8 34.827 1 69.0 \$\frac{1}{2}\$ 0.5 2.5 1.4 7.6 10.3 41.8 38.9 \$\frac{1}{2}\$ 2.7 1.5 0.5 2.5 1.4 7.6 10.3 41.8 38.9 \$\frac{1}{2}\$ 2.7 1.5 0.5 2.5 1.4 1.4 40.2 41.3 38.6 17.2 21.6 1.5 1.5 1.4 1.4 40.2 41.3 38.6 17.2 21.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	34 940	_ 23	123+00,0	10-2,0	3./	9.5	14.6	39.7	33./	40.3	14.9			
34 948 81 277+50, & 15-40 4 0.1 1.6 60.4 328 35.6 16.5 27.8 34827 1 Gargo, a 0.5:23 1.4 7.6 10.3 41.8 38.9 42.3 15.0 26.5 70 to 15 N. 12-4, 26 1.3 140, 275.1/146.2072 1003.8 447.5 541.1 3486 2 6940. & 25.45 - 3.2 10.4 34.6 51.8 40.7 20.3 27.9 34787 5 25+00.2 25.50 - 2.0 76 26.6 63.8 42.1 27.6 24.1 1/2 34721 7 78 to 0.6 45.50 - 1.0 15.4 37.0 4.6 40.4 19.9 15.2 1/6 34802 1.8 106+00.2 15.50 2.8 1.9 6.8 322.5 1.3 44.3 12.7 17.2 34505 21 115 to 0.6 15-45 0.8 3.4 7.7 32.1 56.0 45.8 23.5 23.8 24807 23 127400.6 0.5-20 28.8 38.0 51.0 46.1 21.5 21.8 24807 23 127400.6 0.5-20 28.8 38.0 51.0 46.1 21.5 21.8 24807 23 127400.6 0.5-20 28.8 38.0 51.0 46.1 21.5 21.8 24807 23 127400.6 0.5-20 28.8 38.0 51.0 46.1 21.5 21.8 24807 23 127400.6 0.5-20 28.8 38.0 51.0 46.1 21.5 20.9 34922 535 26.26400.6 15-40.3 3.0 7.3 32.35.7 41.9 20.0 - 2.2 34923 55 26.26400.6 10.5-0 0.4 65.8 6.9 40.2 34.4 40.8 21.4 20.9 34923 55 26.26400.6 10.5-0 0.4 6.5 8.0 40.7 21.5 22.5 24.7 34923 56 26.460.6 10.50.0 0.6 50.0 0.4 66.5 21.6 51.8 21.5 22.5 24.7 34923 56 26.460.6 10.50.0 0.6 50.0 0.4 66.5 21.6 51.8 21.5 22.5 24.7 34923 56 26.460.6 10.50.0 0.6 50.0 0.4 66.5 21.6 51.0 28.0 32.5 20.9 13.4 34923 56 26.460.6 10.50.0 0.6 50.0 0.4 66.5 21.6 51.0 28.0 32.5 20.9 13.4 34925 58 26.560.0 0.6 50.0 0.6 66.5 0.0 0.6 66.5 21.6 65.5 0.0 0.6 66.5 21	34 949	77	213+00 L	1.5- 3.0	2.6	10.3	12.4	334	44.3	38.0		214	<u> </u>	
34827 G9+00, a		81	277+50 2	15-90	-	0.1	1.6	60.4	378	35.6	16.5			
70 to 1/5	34827		G9+00, a	0.5-2.5	1.4	7.6	10.3	1418	1.38.91	42.3	150	26.2		
1.			Totals	VI	45.3	140.2	295.1	10462	107.22	1003.8	4475	5411		
3486 2 6940, 6 2.5 45 - 3.2 10.4 34.6 518 40.7 20.3 27.9 3487 5 25.400, 2 2.5 50 - 2.0 76 26.6 63.8 49.1 27.6 24.1 // 3477/ 7 78 400.2 4.5 50 - 1.0 15.4 37.0 46.6 40.4 19.9 1.5 2 // 34802 18 10.4 40.2 1.5 5.0 2.8 1.9 1.8 37.2 5/.3 44.3 12.7 17.2 // 34804 20 109100, 2 25.50 0.6 1.7 5.9 40.5 5/.3 41.1 20.7 17.3 34805 21 1/5 400.2 15.2 0.8 3.4 7.7 32.1 56.0 45.8 23.5 13.8 14805 21 1/5 400.2 15.2 0.8 3.4 7.7 32.1 56.0 45.8 23.5 13.8 14807 23 127400, 2 2.5 5.0 0.3 3.0 7.3 32.3 5/.0 46.1 20.5 2/.5 2/.5 2/.5 2/.5 2/.5 2/.5 2/.5 2/		,	No. Det	26		l '	1			, · ·	•		1	
3477/ 7 78 +00, 2 25 5.0 - 2.0 76 26.6 63.8 49.1 27.6 24.1 /6 3477/ 7 78 +00, 6 45.50 - 10 15.4 37.0 46.6 40.4 19.9 1.52 16 17 34802 18 106 +0.9 1.55.0 2.8 1.9 6.8 37.2 57.1 44.3 12.7 17.2 17 34804 20 109 +00, 6 15.50 0.6 1.7 5.9 +00.5 57.3 44.1 20.7 17.2 17.3 34805 21 115 +00, 6 15.4 50.8 3.4 7.7 32.1 56.0 45.8 23.5 13.8 14806 22 12/400 6 15.20 = 22 8.8 38.0 57.0 46.1 27.5 17.8 28807 23 127400 6 15.50 03 3.0 7.3 32.3 57.1 41.9 20.0 = 28807 23 127400 6 15.5 +0 3.7 8.5 10.2 34.9 43.2 40.4 20.3 22.2 34.9 32.2 40.4 20.3 22.2 34.9 32.5 57.1 41.9 20.0 = 34.9 22.5 50.0 46.1 27.5 27.8 34.9 43.2 40.8 27.4 20.9 34.9 32.3 57.1 41.9 20.0 = 34.9 22.5 50.0 3.0 7.3 32.3 57.1 41.9 20.0 = 34.9 22.5 50.0 3.0 7.3 32.3 57.1 41.9 20.0 = 34.9 22.5 50.0 3.0 7.3 32.3 57.1 41.9 20.0 = 34.9 32.5 50.0 32.5 20.9 32.5 20.9 34.9 32.5 32.5 20.9 32.5 20.9 34.9 32.5 32.5 20.9 32.5 20.9 32.5 20.9 32.4 57.5 26.8 20.7 40.5 20.5 0 = 0.4 8.6 53.0 38.0 39.5 20.9 33.4 57.1 41.5 58 20.7 40.0 2 10.5 50.0 = 0.4 8.6 53.0 38.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 32.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 32.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.5 32.5 20.9 3					1.7	5,4	11.4	40,2	443	38.6	17.2	216		
3477/ 7 78 +00, 2 25 5.0 - 2.0 76 26.6 63.8 49.1 27.6 24.1 /6 3477/ 7 78 +00, 6 45.50 - 10 15.4 37.0 46.6 40.4 19.9 1.52 16 17 34802 18 106 +0.9 1.55.0 2.8 1.9 6.8 37.2 57.1 44.3 12.7 17.2 17 34804 20 109 +00, 6 15.50 0.6 1.7 5.9 +00.5 57.3 44.1 20.7 17.2 17.3 34805 21 115 +00, 6 15.4 50.8 3.4 7.7 32.1 56.0 45.8 23.5 13.8 14806 22 12/400 6 15.20 = 22 8.8 38.0 57.0 46.1 27.5 17.8 28807 23 127400 6 15.50 03 3.0 7.3 32.3 57.1 41.9 20.0 = 28807 23 127400 6 15.5 +0 3.7 8.5 10.2 34.9 43.2 40.4 20.3 22.2 34.9 32.2 40.4 20.3 22.2 34.9 32.5 57.1 41.9 20.0 = 34.9 22.5 50.0 46.1 27.5 27.8 34.9 43.2 40.8 27.4 20.9 34.9 32.3 57.1 41.9 20.0 = 34.9 22.5 50.0 3.0 7.3 32.3 57.1 41.9 20.0 = 34.9 22.5 50.0 3.0 7.3 32.3 57.1 41.9 20.0 = 34.9 22.5 50.0 3.0 7.3 32.3 57.1 41.9 20.0 = 34.9 32.5 50.0 32.5 20.9 32.5 20.9 34.9 32.5 32.5 20.9 32.5 20.9 34.9 32.5 32.5 20.9 32.5 20.9 32.5 20.9 32.4 57.5 26.8 20.7 40.5 20.5 0 = 0.4 8.6 53.0 38.0 39.5 20.9 33.4 57.1 41.5 58 20.7 40.0 2 10.5 50.0 = 0.4 8.6 53.0 38.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 39.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 32.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.0 32.5 20.9 33.4 57.1 41.5 58 20.5 40.0 2 10.5 50.0 = 0.6 11.2 32.5 32.5 20.9 3	24786	2_	19400 6	25-45	- -	3.2	10.4	24./	~ =	40.7	303			
3477/ 7 78 +00, & 4550 - 1.0 15.7 37.0 4.6 +0.7 19.9 \$5.2 16 17 34802 18 106 +00, & 1.55.0 2.8 1.9 6.8 37.2 5/3 44.3 12.7 17.2 17 24804 20 109 +00, & 255.0 0.6 1.7 5.9 40.5 5/3 41.1 20.7 13.3 34805 21 1/5 +00, & 1.5 +20 0.8 3.4 7.7 32.1 56.0 45.8 23.5 13.8 2+806 22 1/400, & 0.5 +20 3.8 3.4 7.7 32.1 56.0 45.8 23.5 13.8 2+807 23 127 +00, & 2.55.0 0.3 3.0 7.3 32.3 5/1 41.9 20.0 - 3 34826 42 188 +00/1 (15-40) 3.7 8.5 11.2 34.9 43.2 40.7 20.3 22.2 34917 50 276 +00.4 10-5.0 2.6 5.8 6.9 40.3 34.7 40.8 2/.7 20.9 34923 53 167 +00.4 10-5.0 2.6 5.8 6.9 40.3 34.7 40.8 2/.7 20.9 34923 55 26 167 +00.4 10-5.0 2.6 5.8 5.8 38.0 5/1.5 22.5 24.7 34923 55 26 167 +00.4 10-5.0 2.6 5.8 5.8 38.0 5/1.5 22.5 24.7 34923 55 26 167 +00.4 10-5.0 2.6 5.8 5.8 38.0 5/1.5 22.5 24.7 34923 56 26 16 16 16 16 16 16 16 16 16 16 16 16 16	34789					2.0	52	27.6	17 0	201			77	
34807 20		5		45-50		10	154	270	4//	404	100		16	1-
34807 20		18		15.50	28	1 / 0	/ 2	220	20/9	1 <i>14</i> > 1	117			14-1
3+923 55 26 7400 & 6-50 - 02 6.0 55.838.0 76.5 22.5 24.7 3+923 56 26 1400 & 6-50 - 04 8.653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.50 - 0.6 653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.550 - 0.6 653.038.0 39.5 20.9 23.4 24.25 58 255400.2 20.0-60 - 0.2 7.8 580.340 37.5 20.1 19.7	34804	20		25-50	0.6	75	10	41.5	5/3	411		1773		£
3+923 55 26 7400 & 6-50 - 02 6.0 55.838.0 76.5 22.5 24.7 3+923 56 26 1400 & 6-50 - 04 8.653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.50 - 0.6 653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.550 - 0.6 653.038.0 39.5 20.9 23.4 24.25 58 255400.2 20.0-60 - 0.2 7.8 580.340 37.5 20.1 19.7	34805	2/	115+00 L	1.5-45	0.8	3.4	7.7	32./	52.0	2-5	23.5		†	
3+923 55 26 7400 & 6-50 - 02 6.0 55.838.0 76.5 22.5 24.7 3+923 56 26 1400 & 6-50 - 04 8.653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.50 - 0.6 653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.550 - 0.6 653.038.0 39.5 20.9 23.4 24.25 58 255400.2 20.0-60 - 0.2 7.8 580.340 37.5 20.1 19.7	34806		121400, 2	0.5-2.01	<u> </u>	2.2	88	380	5/0	46.1	3.1.5			
3+923 55 26 7400 & 6-50 - 02 6.0 55.838.0 76.5 22.5 24.7 3+923 56 26 1400 & 6-50 - 04 8.653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.50 - 0.6 653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.550 - 0.6 653.038.0 39.5 20.9 23.4 24.25 58 255400.2 20.0-60 - 0.2 7.8 580.340 37.5 20.1 19.7			127400,0	2.5-5.0	23	3.0	7.3	32 3	327	4/9	300		1	
3+923 55 26 7400 & 6-50 - 02 6.0 55.838.0 76.5 22.5 24.7 3+923 56 26 1400 & 6-50 - 04 8.653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.50 - 0.6 653.038.0 39.5 20.9 23.4 24.24 57 258400.2 6.550 - 0.6 653.038.0 39.5 20.9 23.4 24.25 58 255400.2 20.0-60 - 0.2 7.8 580.340 37.5 20.1 19.7	34826		1884101118	115-40	3.7	25	10.2	34.4	432	40.4	20.3	22.2.		P. N. a. I.
34723 53 26 7400 4 10-40 - 0.2 6.0 55.8380 41.5 22.5 24.7 34723 56 26 1400 6 40-50 - 0.4 8.6320 38.5 20.9 23.4 34724 57 258700, 2. 18-50 - 0.6 11.2 22.4 41.5 22.1 19.7 14725 58 255400, 4. 2.0-40 - 0.2 7.8 580 340 37.9 26.2 01.7	34911		276+00 a	10-5.0	2.6	15.8	6.9	40.3	74.4	40.8	2/4	20.9		
34923 56 26/400, 6 40-5:0 - 0.4 8.653.038 0 39.5 20.9 \$3.4 24924 57 258+00, 2. 18-5:0 - 0.6 11.2 42.2 460 41.5 22.1 19.7 14925 58 255+00, 8. 2.0-4:0 - 0.2 7.8 580340 37.9 20.2 01.1	34922	-55	267400 d	2.0-4.0	_	0.2	6.0	55.8	38.0	41.5	22.5	247		
14924 57 258+00, Q. 18-5.0 - 0.6 11.2 42.2 46.4 4/5 22.1 19.7 14925 58 255+00, R. 2.0-4.0 - 0.2 7.8 58.0 340 37.9 20.2 01.1		56	26/400,0	40-50			86	53.0	38	39.5				
19925 58 255+00, 2. b.o-f.d - 6.2 7.8 580 340 37.9 20.2 21.1			258+00, 2.	1.8-5.0			11.2	12.2	16	4/5				
134927 40 252700, \$ 255.9 - 0.8 94 44.8 430 404 200 2/15		58			_	0.2	7.8	30.0	340	37.9		21/		*****
	34927		252100,4	2.5-5.4	_	0.8					200	2/15		

ta t	Char F <i>E</i> No. <i>SA-0</i> 3	No	Proj. No.			SA.		4,60
	RECON	AUGER	CORE	DRIVE F	ROD RES	SISTIVITY	Completi	<i>C, B.P.H.</i> Ion Date
Ву		T.G.W, N.P.L.						0-55
Dates		2/1-15/55					Drafting	Hours
No of I or Sou							Topo S	Sheet
Footage		2255,5					<u> </u>	
Sample	s Tested	345				counted For		
Transm	ittal Date <u>3 ·</u>	- <i>15-55</i> _	No. of Tra	cings <i>&</i>	Fi	led with	year <u>4-1</u>	u-36
	ns		Remarks				F	ET 36
Refer	lo	<u> </u>						
		DO	NOT WRITE	IN THIS	SPACE		· ····	
		Auger Data		Core Data		Drive Ro	d Data	Resistivity
Leng	th No. of Holes	Footage Sam	No. of Holes	Footage	Samples	No. of Soundings	Footage	No. of Locations
6,9	5	2255,5 34	5 -	_				
		*	See Reverse	Side				

Topsoil o Brown sie 199 % -10 Brown clay & some siet Sta 1056+55 Brown + Gray 180 10-1 Water at 70 kest

SUMMARY OF TESTS OF SOIL PROFILE SUBGRADE SAMPLES

County, Rt. No., Section

SANDUSKY COUNTY
SAN-20-14.60
Fote Pook Fo. 5.6

Lab.		1	Repre-	e	chanic		lysis		Physi	cal O	aract	Dens	tv D	ata	Cla	s. Fo.
No. So.	field No.	Station No.	Repre- sents Feet	aes.	C Sand	F Sand	Silt %	Clay %	L.L.	P.I.	Water Cont.		Opt.	Max. Dry Wt.	SHTL	HRB
9597	127	998+00	5,510	0	0	2	48 54	50	-23	12	29		21. 2		Alex	A-6/9
2550	130	100/100	6-10	0	0	1	54	42	30	73	25				1	11 017
2533	133	1009100	6.0	0	0	3	56	41	30	14	25 24		Ĺ		1	Control of the contro
200	138	1010 +00	1-2.5		3	49	27	2/	24	//	25		1	1	1	
9560	140_	1010100	5-12	0	0	2	35	43	3/	14	25 26		<u>L</u>			
2562.	192	1013 FOO 12K	3-5	9	0	-/,-	يرد	#2 32	34	14	<i>29</i> 33	† †	<u> </u>		<u> </u>	
2569	135	1013 400 13,50	8-12	10	8	1	24	<u>ے</u> وں تک	12	15	23		 	 	} -	ļ
27	151	1024100	7-12	18	8	5	53	<i>4</i> Z	-34 -35	155	26	ļ	 	 -	}	
9573	153	1027100	1-45	0		de	22	29	26	H-57	20	}	ļ	ļ	 	
9565	165	1035 100	7-12.5		6	13	de	23	125	1	13		-		ļ	
19386	166	1038 100	7-3	0	0	28	3	72	حرک ا	12	22		 		1	
2002		1047100	60.10		5	6	37	3/4	200		177		1		<u> </u>	
9596	176	1050 400	65-10	0	/	1	32	12/	.30	14	27					
2590	179	1053100	2/0	0	0	7	35	20	.30	/3	29			1	ļ.	T
9601	181	105618	65.10	0	0		51	49	32	∕5	3/	1	Ť	Ì	1	
2603	183	1059 400	55.10		0	/	49	50	82	13	28		1	-	l	
9605	185	1062 400	15-10	0	0	1	33	36	30	12	27		ļ	-	1	
9608	187	1065-100	3-10	0	0	1	59	86	3/	12	26	I	1		1	
9609	189	1068 too	3-10	10	0	1	.51	\$2	1 30	15	30		1		1	
2614		1014700	5.5-10	10	0	Z	52	46	30	15	30		1			
9616	196	1057 +00	254	.0		47	35	12	29	! 15	3/				1	
96/7	197	1077 100	4-7	<u> </u>	0	/	56	43	29 3/	13	127					
26/8		1027 +00	7-10	0	0	_	56	23	.30	12	26	1	<u> </u>		# # #	
26/0		1080+00	1-2.5	0	3	50	25	22	25	12	20		1	<u> </u>	1	
9620		1080 400	25-11	. 0	0	1	59	00	30	12	128	ļ	l	L		·
2621,	201	1080 700	11-13	C	0	/_	66	133	29	12	3.	<u> </u>				
2624	204	1082 150	25.2	0		12	34	3/3	29 39 32	13	3	<u></u>	ļ		 	
2626	207	1084750	19:72	10	<u> </u>	3,	24	143,	30	1	2/5		<u>ļ</u>		 	ļ
1000	400	1034450	17/6	8	8	14	33	35	1-20	14	[<u>Z</u> 3	<u>]</u>	ļ		 	
20//	215	1093+00	95-85	10	ļģ_	1-6	62		3/	114	24	 	ļ	 	/ }	1
2022	22/	1102700	55-10	12	0_	0	97	53	32	19	122	ļ <u>. </u>		L	 	
19880	224	1105 100	7-10	0	10	1/_	52	147	32	<u> کا کا</u>	26	ļ <u>i</u>	1	<u></u>	il	i

SUMMARY OF TESTS ON SOIL PROFILE SUBGRADE SAMPLES

County, Rt. No., Section

SANDUSTY COUNTY
SAN-20-19.60
Note Book No. File

	-	· · · · · · · · · · · · · · · · · · ·			er er er er	.9778117.			escare.				TT - 140			
Lab. No. So.	Field No.	Station No.	Repre- sents Feet	Agg.	C Send	F	Silt	Clay	L.L.	1		Densi Comp.	Opt.	Max. Dry	SHTL	HRB
9598	178	1053700	5-7	0	į	\$ 8 2	50	21	25	6	28	- 1 T.	T	Wt.	1.46	A-4/8)
067	161	107/400	6-10	Ö	0	Ž	39 32	46	27	9	28		1		ii	21 2729
9611 2668	191	1090,400	85-85	0	0	10	60	30 i	26	9	23		1		1	
9969	2/3	1090700	65-/Z	0	8	1	65	34	26	7	25					
9869 9873	2/3	1096 too	4.5.10	0	0	1	23	46	25	10	28		1			
		(46) TOTAL	ļ	11	18	350	3/55	1045	1806	213	1000		ļ]	
Ĭ.		AMERIZGE		0	0	8	69	23	25	3	24					
9//7		774700	2-3	0	-	10,	37	32	36	11	22				4-6a	A-6(9)
9102 9104	13	224400	6.5		1'/	1	70 55 64	23 33 30	36	13	22 26	i			1	1. 613
9/05	· Z	279790	7-8	12	202	9	1.35	1.35	30 35 33		22		1	h	1	
19/06	₹	1 2/17 400	25-6	8	0	17/	36	1.53	35	135	26		I]	
3195 3106 3103	5	777400	75-5		12	4	64	1.30	33	75	12/		1		li Juni: Note in	
19///	19	781 +00	275-72	10		12	6/	26	30	12	30	į				<u> </u>
9//ō 9/38 9/35	12	786/00 832/00	25-8	1302	2		49	1:52	.33	13	25	<u> </u>			1	4==
9/38	3/	832+00	25-6.5	1 3	2	2	129	35/35	3/25/3/3/3/3/20	13	22		<u> </u>	<u> </u>	j	
9/35	34	835700	25-63	10	1	12	1/2/	37	25	1 //	25		ļ -	ļ	-	
19/36	35	835 too	6.5-11	2		8 12 14	36	1-51	3/	19	12	I	ļ			
2/37 2/39 3/48	36 38	835400	11-12.5	5 5	15	19	46	35	<u> 3/</u>	15	19	}	<u> </u>		<u> </u>	
9/39	38	838100	6-12	و	E	12	136.	25	20	14	! //	!	ļ		 	
2/48	40	84/100	Z5-70 Z5-55	Ę	レス	19	140	ككت	36	//	12	 	<u> </u>		. 	
9/57	47	1823200	2.5.5	<u>ي ک</u>	12	1/62	40	· 32	30	12	121		ļ	ļ		
943	45	852 700	25-3	12	ح ا	LZ.	47	29	30	14	12	<u> </u>	<u> </u>		4	-
9/57	19	R58+00	25-85		6	12	29	.36	29	1//	10	<u> </u>	1	L	<u> </u>	<u> </u>
2/62	54	860 100	1210	3	18	5	37	3	32	13	18	<u> </u>	1	<u></u>	1	-
9/63	37	867700	17-10	0	0	17	ত্র	144	J.ZZ	13	26	1	<u></u>	<u> </u>	<u> </u>	
9/68	60	B10+00	65-9		3	LZ	34	SE	29	/3	17	<u></u>	<u></u>	ļ	4	
9/69	6/	873 400	7-10	10	10	1	12	57	33	1/3	126	1	Ļ		 	
9/7/	6.3	1876+00	9-0		10	3	5/	142	35	15	125]		ļ	 	<u> </u>
9/74	66	1882+00	15 BS	0	0	<u> ح</u> ا	10	57	29	1/2	26	<u> </u>	L	ļ	J	ļ
9279	23A	918 100	0-1			100	20	3/	129	114	12	J	4	1		
1992/		806+00	8-11	3	14	8	43	42	30	12	122	1		<u> </u>	<u></u>	1

SUMMARY OF TESTS ON SOIL PROFILE SUBGRADE SAMPLES

SANDUSKY COUNTY SAN-20-14.60

County, Rt. No., Section

Note Book No. File

echanical Analysis Physical Charact Density Data Class. Fo. Repre-Lab. Field sents Agg. Silt Clay L.L. P.I. cont. Comp. No. Station No. Opt. Dry Sand Sand SHTL No. HRB So. A66 A-6(11) ادے-کہ 843 100 14/129/24/17/6/22/34/10/2017/2014 9/49 9/5/ 9/54 9/55 9/59 843 400 855 too 855 +00 86/+00 2/6/ 864 400 867400 0 867 400 876 400 888+00 888 400 894 400 200 400 204 (5-10) 1-35 7-12 7-13 7-13 7-13 7-13 10-0 8-11/1 803 +00 6/9 +00 38338 3836 24 X 822 +00 825 +00 829+00 29 829 700 29 39 940 783 25 401 940 740 67 534 955 700 196 76 903 700 99 79 909 700 28 26 17 31 31 2 00 39 36 203400 4035 303 27 34 100 933400 3/2 3/2 2/3 2/3 2/3 3/3 974+00 977 +00 980 +00 983 700 1001+00 1018 700 9565 145 1024 400

<u>ر</u> ـ

SUMMARY OF TESTS ON SOIL PROFILE SUBGRADE SAMPLES

County, Rt. No., Section

SANDUSKY COUNTY SAN-20-1960

Fote Book No. File

Sechanical Analysis Physical Charact Density Data | Class. No. Lab. Tater Comp. Field No. sents Agg. Silt Clay Station No. Sand Sand Opt. Dry HRB SHTL No. Feet So. 1099 +00

B

Changes		KY	ANDUS	S	ounty	Co					No.	Job		195
File No. 5A-030/4C-64 Proj. No		7.67	/-53-7	SAA ation	ject ntifico	Proj Iden	4715	01					r	Year
RECON AUGER CORE DRIVE ROD RESISTIVITY Completion Dot								Proj. No.		64			No.	File
RECON AUGER CORE DRIVE ROD RESISTIVITY By N.R.L. Dates 7-25-55 To 2-3-55 To 2-3-55 No. of Holes or Soundings -3 Footage 629,5-19 Samples Tested /68-9 Samples Accounted For Transmittal Date 3-4-55 Revisions 6-1-56 Remarks Filed with year 4-M-3 Refer to				Miles	7_	2.7	_ Length	7+5	. <u>. 5</u> :	nd Sto	00E	. <u>4/6</u> + (in St	Begi
By N.RL				SISTIVITY	RES	ROD	DRIVE	CORE		R	AUGE	RECON		
Dates		ion ban	Compion								N.R.L			Ву
Footage 629,5-19 Samples Tested 168-9 Transmittal Date 3-4-55 No. of Tracings Filed with year Revisions 6-1-56 Refer to	rs	g Hours	Drafting										<u> </u>	
Samples Tested 168-9 Samples Accounted For Transmittal Date 3-4-55 No. of Tracings Filed with year 4-M-3 Revisions 6-1-56 Remarks FET-3 Refer to		Sheet	Topo S							-3		ıs	Holes undin	No. of or So
Transmittal Date 3-4-55 No. of Tracings Filed with year 4-M-3 Revisions 6-1-56 Remarks FET -3 Refer to			L		1									
Revisions 6-1-56 Remarks FET - 3 Refer to														
Refer to	<u>7</u>	M-37	year <u>4-</u>	led with	Fi		ings	o. of Trac	N					
	<u>37</u>	7-3	FE	•				emarks	R	_	6	6-1-5	ions _	Revisi
DO NOT WOLFE IN THIS COLOR									_				to _	Refer
DO NOT WRITE IN THIS SPACE					CE	SPA	IN THIS	WRITE	NO	DO				
	ivity	Resistivi	od Data				Core Data				Auger Date			
		No. of Locatio	Footage		ples	Sam	Footage		oles	Sam	Footage		igin	Len
2.77 638.5 177	-]	_	_		-	-			7	17:	638.5		77	2.
* See Reverse Side							Side	Reverse	See	*				

/ 36 Sta 423+0 X 0.0-1.0 Tipsoil 10-40 Brown sett clay some AK 10 24 4.0-60 Brown fire grained sand 600 11. 27 60-80 Brown + any sett + group fine sand 37 Sta 426+0 B 6812 19 10-45 Brown siet clay & sand Arong 22 4.5-65 Brown fine gramed panel 60,4 25 65-80 Gray self fine sand 38 Sta 429+0 0 00-0.5 Topsoil 60,5 16 25-25 Brown suit clay + 1.6 16 33 25-6.0 Brown sit clay 6.0-8.0 aran sand water at 20 feet

SUMMARY OF TESTS OF SOIL PROFILE SUBGRADE SAMPLES

County, Rt. No., Section

SANDOSKY COUNTY

Fote Book No.

Lab.		}	Repre-	l e	chanic	al Ana	lysis		Physi	cal Cl	aract	Dens	ty D	ata	Clas	s. No.
No. So.	Field No.	Station No.	sents Feet	Aeg.	C Sead	F	SILE						Opt.	Max. Dry	SHTL	HRB
8754	>	419480,06.	7585	0	0		\$ <i>\$</i>	79	79 32	12	24		=:	1.55 A	A 6a	A-6019
&ZSS	9	\$23+00, ic.	1/-5	0	Z_{-}	32	تحق	34	32	125	20		İ	l		17 Gat
タンマラ	//	FRAM CC.		1	0	13	62	3	「マノ	14	フフ		_		1	
8/60.	14	926+00, CC.	<u>65</u> 8,	0	0	S	55	40	30	14	ZS		<u> </u>			
8 26 7	27	448400, CL.			3	38	26	33	É\$	14	22		<u> </u>	<u> </u>		
2770			85%	i (2		-	5.3	38	2 2	12	25		ļ 1		 	
8786	40	460+50, cl	7-8	10	0	2	7/	27	34	1.3	25				!	·
8799	उद	518+00 CC	00-10	0	ج ا	Ž	\$3	99	36	13	ZZ				1	
8806	60	52/400,56.	7-8	0	0		56 70 87 49 58	43	उड	14	22		1		Ī	<u> </u>
8822	76	535740,CC	3-55	0	0	/	70	43 29	3/	1//	22	j		· · · · · · · · · · · · · · · · · · ·	1	
9185	80	593+00,0c	35-55	10		2	5/	49 59	トマッ	17/	34					
7/70	85	546+00,00, 549+00,00,			0	10	49	5/	3/	12/					1	
71.70 9192 9195	16/	1547100,00,	19-25	10			S8.	12/	3-	12	125		L		ļ	
7/12	70	SSZ+OGCL	4570			/_	5/	47	<u>133</u>	12	26		ļ	ļ	ļ	
11.78	25/ ا	554100 CC	4,7	0	_	/	50	15	34	15	127				1	<u> </u>
720 1,	60	938+00	00.5	2		28	4/	30	31	1/5	20		<u></u>			
246	37a	1505+00,	00.5 00-8.	12		<i></i> Z	192	32	32	12	ZS		ļ 	<u> </u>	<u> </u>	
1646	530	\$1400,00,	00-8.		0_	21	4/ 42 42 36	<u> </u>	28	13	23]			
7.245.	54a	\$4/+000c_		15	6	12	76		26	//_	18		ļ	ļ	ļ	
	ļ	(20) 70	THE	<i> </i>	20	2/0	976	177	622	25/	916		ļ		 	}
	ļ	HIER	USE.	0		11	49	39	3/	/3	24		ļ		}	
8747		4/6+00 a	1/-3,	0		3/	35	33	37	2/	25				12-6	K-A-6+1
8749	3	\$16+00,00	65.75	-0	0	5	46	49 45	36	18	126	[Ī	[1	
875/	is	4/9-80,CL	1.35	10	3	5 18	34	45	36 36	1/9	26 22	-		1		
7753		\$19+80,cL	6575		0	1	10		137		22				1	
8756	12	1426+00.CL	1/2-90		/	25	2.8			17	1/8				1	
164	, 28	132+00, CL.	054	50		33	35	3/	33	18	19		<u> </u>			
XZZ/	\ <u>25</u>	45/+00,c0 453+90,∝.	059c	10	//	32	<u>20</u>	<i>37</i>	<u>26</u>	120	izo	ļ 	ļ	ļ	<u> </u>	<u> </u>
Z7./5		1453+40, C.	25-35	10	1/	34	24	14/	32 39	16	25			L	<u> </u>	<u> </u>
8 783	137	460+50,0CL	4525	70		13	48	38	132	20	25	<u> </u>	<u> </u>	L	11	i

SUMMARY OF TESTS ON SOIL PROFILE SUBGRADE SAMPLES

County, Rt. No., Section

Sandusky County San. -53-7.67 É

Repre- echanical Analysis Physical Charact Density Data | Class. No. Lab. Field Silt | Clay No. sents Agg. Station No. Sand Opt. Dry SHTL HAB No. So.

1966	Job	No. 02557	v	C	ounty SA	NDUSKY 🗸
Year	<u> </u>	P- 192.	014	702 Ide	oject <u>SA</u> ntification	N-19-10.89
		J-06				
Begir	Sta77	+81 End Sta			·	Drafting By
	RECON	AUGER	CORE	DRIVE ROD	RESISTIVITY	Completion Date
Ву	J.S.M.	F.D.C.				10-10-66
Dates	9/13/66 to 9/15/66	9/20/66 to 9/22/66				Drafting Hours
No. of I	loles Indinas	38 √				Topo Sheet
Footag		402.0'v				541-5-SWand 541-5-NN
Sample	s Tested	113 4		⊠ Sample	es Accounted For	
Transn	nittal Date <u>10</u>	-11-66.	No. of Trac	cings \underline{g}	Filed with	vear <u>F = 7 - 2 / 2</u>
	ons		Remarks			5-1-95
Refer	to				····	
		DO	NOT WRITE	IN THIS SPA	ACE	
		Auger Data		Core Data	Drive Ro	
Leng	th No. of Holes	Footage Sam	ples No. of Holes	Footage Sar	nples No. of Soundings	Footage No. of Locations
3.5	4 38	402.0 11	3 -			
. —		*	See Reverse	Side		

		FIELD BORING LOG 622.5	Ľ
County,	Route N		F
Station_	947	Offset Elev.	┞
Date	9/2	2/6 6 Water Elev	┝
Crew	E [3]	EN-BURKE Equipment HA	├
	(u	lector Drafting 9	Γ
Depth	Field	Description	Τ
Feet	Number	Description	L
0.0-	100	011111111111111111111111111111111111111	-
	109	CLAY SILT DRY BR	H
66	18 H	PINSE	╁
	104	RESUSAL (H.A)	\vdash
_ 5 _	'		
<u> </u>		76	_
⊢ ⊣	\ \		H
+ -			-
L 10			
<u> </u>	ļ .		L
			L
15			⊢
L 13 -			Н
<u> </u>			L
J	ا چېنې نو		-
_ 20 _			-
7 7			-
		*	
1		The state of the s	
25			├-
\vdash \dashv			\vdash
			-
30			
	u	se reverse side of this sheet for additional notes.	1

8	4125	, マダ [†] B+	FIELD BORING LOG 621.	١,
	County,	Route N	lo., Section SAN - 19 - 10, 89	
			+15 Offset P Elev. Z	L
	Date	2/20	3/66 Water Elev. 19	
	Crew 4	1322	N-BURKE Equipment NA	Т
_		uld	proteing /	F
_	Depth Feet	Field Number	Description	+
D	00-	,,,,,,,,,,,,	+ 1	+
		7	SILT CLAY BR. MOIST	1
	- /	20		I
	7-6	0		
	<u> </u>	230		\perp
_	- 5 -		SILTYPLAY SO MOBEMO:	1_
	45	8	SILTYCLAY 58 MOBEMO	97
	├ [`] ¬		CLAY SIST GRAY	+-
	Ga-	9 -	LITTLE MOIST	+
	10	9,6	7//	13
				T
	L .			150
	⊢ -	10	SILTY CLAY GRAY	\perp
	60	19	MIRE MOST	+
_	15	′′		+-
J			· · · · · · · · · · · · · · · · · · ·	+-
		17	GRAY SLAY SULT	+
	60		Little mist	1
W	20	- // - [
	-, -	12	GRAY CLAY SILT	100
	ba-	12	MORE NOIST	+-
			REKNELL DUD	+
	_ 25 _	ļ	BEFUSAL 24.0	+-
ı		- 1		+
ĺ	_]	[1
	_]			
L	30			
		U	se reverse side of this sheet for additional notes.	1

County .	Route N	FIELD BORING LOG 622.5
Station2	101+	Offset Elev. 9
Date	9/-	20/6 6 Water Elev. 18. 8
Crew_2	5812	N-BUBKE Equipment NA
	ill	- / · · · ·
Depth	Field	Drafting 1+2
	Number	Description
0.0-		
	13	SILT CLAY BB. MOIST
66	16	
		Cursi allu pa
	14	SIXTY CLAY BR
- 5 -	26	MORE MOIST
Ga	280	
		Magazina da
	15-	GRAY SILT MOIST
_ 10	,	
46	270	
		GRAY SILT YERY MOIST
⁻ ౣౖ ┤	260	014/ 3/2) 12/1/1/8/3/
4a	16	The state of the s
_ []		
_]		
- 4	17	GRAY CLAY SILT
_ 20 _	11	PRYER MORE DENSE
6a	′′	
		COMP
- 1		
_ 25 _	Ì	
	ĺ	
- 7	[
	1	
_30		se reverse side of this sheet for additional notes.

Ramb	oc: 96 p 863	FIELD BORING LOG
County,	Route N	lo., Section SAN -19- 10-89
Station.	10.	4 + 50 Offset 9 Elev. 9
Date		
Crew ,	PL	EN-BURKE Equipment WA
(Perton Drafting 7
Depth Feet	Field Number	Description
o	111	
	84	SILT CLAY ER MOIST
-,-		
46-	16	
_ 5 _	1	
		SANDY CLAY SILT
-, -	85	MORE MOST BR
ba-	26	
_ 10 _	1	
_ ~ _		SANDY SILT GRAY
_ · _	86	WET
-Ca	280	
U 15		
_ 10 _		Com
_ 20 _		
_ 20 _		
	} }	
25		
	[
30		

SUPPLARY OF TESTS ON SOIL PROFILE SAIPLES

County, Rt. No., & Section SAN-19-10.89 (COLBERSON)

			i l		Mecha	nical A	nalysi	s	Phys	ical (haract	. De	nsity	1	
Lab. No. So	Sample No.	Station	Depth in Feet	Agg.	C Sand	F Sand	Silt	Clay %	L.L.	P.I.	Water Cont.		Max. Dry Wt.	SHTL Class	Remarks
27287	1	83+0 €	0'-3'	0	3	13	40	44	34	16	J. J.	#77.00EVV	ance de la constante de la cons	Deb	MC BLEA -[
8	2	11	3-8	0	4	4	48	47	36	16	28			peb	,, , , , , , , , , , , , , , , , , , ,
9	3	11	8 10	9	5	13	26	47	29	//	15			pha	11 GR= V
27290	4	873+50 Ruy A	0-4	Ō	<i></i>	20	34	45	35	16	14			26.6	" 8c V
	5	4	4-8	0	0	4	59	37	26	7	24			046	OMCBRT
	6	11	8-10	0,	Q	/	62	37	25	5	27			246	o " or t
3	7	99+15 £	0-4	Ó	0	5	41	54.	46	23	20			a-7-6	11 Brz
+	8	- 11	4-7	0	0	1	.58	4/	26	6	23			246	o +
	9	1.1	7-12	0	6	14	31	49	29	//	16			sba	smc-an= 1
	10	1)	12-17	0	6.	14	33	47	28	13.	19			Dea	
7]	L.L	17-21	0	6	14	33	47	26	11	17			Abai	" +1
8	2	VI.	21-24	7	9	13	25	46	28	11	17			Aba	" +1
9	3	101+0 ±	0-3	10	1,	16	33	50	40	21	16	<u>t </u>		Aleb	MCBr-V

SUMMARY OF TESTS ON SOIL PROFILE SAIPLES

County, Rt. No., & Section SAN - 19 - 10.89

Lab-			Depth		Mechai	nical A	nalysi	.s	Phys	ical (haract		nsity		
No.	Sample No.	Station	in Feet	Agg.	C Sayd	F Sand	Silt	Clay	L.L.	P.I.	Water Cont.	}	Max. Dry Wt.	SHTL Class	Remarks
27300	14	101+0	€ 3'-8'	0.	O	2	5/	42.	23	/2	28			sea	OM.C-Br 1
	5	1.)	8-13	0	0	1	57	42	28	9	27			246	O " 62-
2	6	p1	13-18	0	7	14	30	49	27	10	26		-	pya	B. mc. 60
3	- Z	11	/8-22	0	7	/3	38	52	28	//	17			Desa	
4	8	126+50	t 0'-3	0	/	7	<i>3</i> 8	s.+	37	/5	20			pta	MCBr =
5	9	į. l	3 - 8	10	/	6	5/	42	30	/2.	21			sea	11 +
6	20	11	8-13	0	2_	4	54	42	25	8	25			pyb	0 // +
7	1	. !	/3-18	0	0	4	65	3/	25	S	25			046	Ø '' +
8	ュ	п	18:23	o		3	51	45	26	9	26			pyb	0 ugnt
	3	I.I	23-27	0	_0	4	50	46	27	9	24			045	0 11 6a
27310	4	14	27-30	0	1	4	50	45	28	//_	26			oba	0 " 52
	5	130+0 7	PRT 0-3	0	ی	18	40	37	24	8	24			040	05.mc+
2	6		3-8	0	Z	13	28	37	38	18	2/			266	MCOr=

SUMMARY OF TESTS ON SOIL PROFILE SAIPLES

County, Rt. No., & Section

9

ab.			Depth		Mecha	nical A	nalysi	.s	Phys	ical (Charact		nsity	OVER T	
-	Sample No.	Station	in Feet	Agg.	C Sand	F Sand	Silt	Clay	L.L.	P.I.	Cont.		Max. Dry Wt.	SHTL	Remarks
27377	106	90+50 €	1'-4'	0	2	21	32	45	33	15	15			oba	S-MCBr=
3	7	L3	4-9	0	Ιο	4	64	32	24	4	25			046	OMC on +
4	8	L (9-12	0	0	7	63	36	26	5	27			D4b	0 11 ac+
5	9	94+00 €	0 -3	0	2	20	33	45	36	16	18		o kilotoskoski i rogo idi	seb	# s-mc & =
6	11:0	869+05 Rug" A"B"	0-3	0	6	/5	32	47	39	/7_	19	e-transpoprage.	dadi Min Mada a i Maga a Maga a ng ma a a a a a a a a a a a a a a a a a a	P6 b	11 GR=
	1	78+00 15 Vicus	0 2	0	33	20	70	37	3,2	/3	20			pla	S.C.Bn =
8	2	(/	2-5	Q	1	7	44	48	39	19	22		an toward.	p6 b	MCBn +
7 <i>39</i> 9	11:3	()	5 -/0	0	0	2	62	36	25	5	26			Dof b	OMER +
									 				an apara and and and approximate		
						-			#					_	
										ļ			naturasaka erketen		

			†		 	 	 		#	 				#	1

8

SOIL PROFILE

SANDUSKY COUNTY SAN - 19 - 10.98

OHIO STATE HIGHWAY TESTING LAECRATORY 9

SUMMARY OF SOIL TEST DATA

NOTE NO SHOWN IN LIQUID LIMIT AND PLASTICITY INDEX COLUMNS INDICATES THAT THE MATERIAL IS NON-PLASTIC.

STATION &	OFFSET	DEP FROM	⊓ TO:	¶ AGO‡	7. C.S.	% F.\$.	silt.	% CŁAŸ	E.L.	P.T.	% W.C.	SHTE CLASS
	i			The second second	SI	4 1 4					100	
78+00	15!44	000		8	33	50	10	37 48 36	3 3 3 9 2 5	19	20 20 20 20	A-64. A-66. A-45
83+00	S CL	000	3.0 8.0 10.0	8	3	13	40 40 26	447 47	36	18		A-00
90+50	- CL	0.00	1 .0 4 .8	8	1 8	- 15 - 15		35 45 45 45	33 24 25	13	20 5 30 5 25 25 25	A-7-6 A-6a A-48
93+00	Ċ	# 0.0	3.0		5	20	33	3 6 4 5	2 6 3 6	10	18	A-66
99+[5	10		3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 000000	00000	5 2 2 3 3	1500000	54 49 47 47 40	10000000000000000000000000000000000000	230	0000 000 000 000 000 000 000 000 000 0	A-7-0 A-7-0 A-7-0 A-6-0 A-6-0 A-6-0
(0)+00	CI		000 0000 00000	00000	10077	107-13	300000	57225	#88888 48888 #88888 48888	21 120 10	- www	A-00 A-00 A-44 A-00
(04+00	cu	0.00 0.00 0.00	5.0 0.0 5.0	000	ļ	3 6 50	950 a	143 54	300	(8 13	100 100	A-64 A-64 A-64
1 (a+oa	СЦ	0.00 0.00	1.d 6.0 10.0	000	257	S S S S S S S S S S S S S S S S S S S	23 23	33 53 29	3000	58 1	23	A-6a A-7-6 A-7-6
18+00	CL	0.0 3.0 0.0	3.0 6.0 8.0	03	5		33	55 46 48	383	1	20	A-6a A-6a A-6a
15a+0a	CL	0.0- 5.0- 8.0-	1.0 5.0 8.0 10.0	0	FRIN	101	46 50 44 34	37 33 50 53	SCHOOL STAN	1 1 14	- www 	A-6a A-46 A-6a A-6a
126+50	cu	0.0- 3.0- 8.0- 18.0- 23.0- 27.0- 0.0- 8.0- 8.0-	3.0 8.0 13.0 18.0 27.0 30.0	000000		7 6 4 3 4 4	39 51 50 50	15 15 15 15 15 15 15 15 15 15 15 15 15 1	37 30 25 25 26 27 28	5000000	0-000000000000000000000000000000000000	A-6a A-6a A-4b A-4b A-4b A-4b A-4b
130+00	7 Rt	0.0- 3.0- 8.0-	9.0 8.0 10.0	0	520	18 13	40 28 47	37 57 50	24 33 27	8 (8	221	A-4a • A-6b A-6a

STATION	OFFSET	DEP TH	TO AGG.	% C.S.	% F.S.	% SIET	% CLAY	L.B.	P5 13	W. Q.	SHITE. CLASS.
134.43	(OŽRt	0.00		3	15	33 20 55	1998	36 27 26	O CHANGE	80 S	4-65 4-64 4-45
140+00	25'Rt	9.0-4	- 1	3	44	39	48 37 43	31	11	200	A-64 A-64 A-46
143+00	200'Lt	0.0-3	.0 0	31	46	3	(5	NP	NP	26	A-3a
144+00	CL	0.0-4	.o o	0	18	50	32	NP	NP	ία	A-46
144+00	HOLL	0.0-3	.0 0	ø	33	38	29	29	15	14	A-6a
148+00	CL	0.0-3	.0 0	ŧ	43	31	25	NP	NP	ía.	A-4a
149+00	150'Lt	0.0-3	.o o	٥	37	37	26	29	10	14	A-4a
150+00	20'Rt	0.0-3 3.0-8 8.0-1	.0 13	1001	15 42 4	23	21	26 NP 38	18 18	50 10 10	A-4a A-4a A-65
156+85	20'Rt	0.0-3 3.0-8 8.0-1	.0 0 0.0 0	558	20 25 17	3381	ESC.	25	9 6	N Ora	A-4a A-4a A-4a
161+50	15'Rt	0.0-5 5.0-1 10.0-1 14.0-1	0.0 Q	3	11 29 20 9	19 29 41 33	10 39 38 56	NP 27 31 33	NO ON O	- 2003 - 2003	A-2-4 A-4a A-6a A-6a
167+00	15'Rt	0.0-5 5.0-8 3.0-1	.O O.	200	29 27 23	30 61 68	39	28 NP NP	NP NP	N23	A-6a A-4b A-4b
172+50	15!Rt	0.0-3 3.0-7 7.0-1	0 0	3	23 60	32 26 76	14	34 NP NP	NP NP	17 27 24	A-6a A-4a A-4b
177+00	15'Rt	0.0-2 2.0-7 7.0-10	.0 16 .0 0	5	19 33 18	46 50 68	18	31	NP NP	18	A-40 A-40 A-46
182+00	151Rt	0.0-3 3.0-8 8.0-1	0 11	0	22 15 12	37 74 76	26 11 12	27 NP NP	NP NP	23	A-4a. A-4b. A-4b
187+00	15! Rt	0.0-3 3.0-8 8.0-10	0 0	- (17 9	46 41 77	36 49 22	32 36 NP	16	S 885	A-6a. A-6b. A-4b
192+50	12' Rt	0.0-3 3.0-8 3.0-10		2	92	53 83 90	38 13	36 NP NP	160	199	A-45. A-45.
198+00	loist	9.0-4 4.0-8 8.0-10		ļ	530	43 88 85	51 9 14	N6 15 15	35.50 30.00	S CONTRACTOR OF	A-7-6 A-46 A-46

STATION &	OFFSET	DEPTH FROM TO	% AGG.		S. SILT	% CLAY	L.L.	P.1.	% W.C.	SHTL CLAS S .
203+00	10181	0.0-2 2.0-5 5.0-10	8	8	5 54 6 802	50 22 10	113	NP 31	2230	A-7-8:
208+00	10 'Rt	9:0-5,0 5:0-10	a o	Í	2 48	50 113	ИЬ ЛЯ	NP 22	23 23	A-7-8 - A-46
213+50	10 'Rt	0.0-3 3.0-6 6.0-10	0 0	8	9 46	\$8 88 11	40 529	26 26 7	2000 2000 2000	A-66. A-7-6. A-46
\$13+00	12'Rt	9.0-3.0 3.0-5.0 5.0-10		8	50 50 60	35 68 30	381	18 34 NP	330	4-da 4-2-d. 4-40
\$54+00	TRIBE	9:0-3:0 5:0-10:	8	3	93 84 84 84 84 84 84 84 84 84 84 84 84 84	30	37 64 27	400	30 28	A-9ad. A-46
869+00	3 L	0.0-3.0	: 	RAMPS	A33 3 32	47	39	17	(e)	A-db
			•	RAMP		7,	. 99	:	13	4-00
873+50	8 L	9.9-4.0 4.0-4.0 8.0-10.	ā 8	0	9598	457	N.V.C.	18	127	A-60 A-40 A-40
	*			RAME	.1.				1	
863+00	8L	0.0-1.0	000	3	NEWE TO THE PERSON OF THE PERS	1575 1575 1575	02000 02000	OCH	CHONON-	A- da A- 7- d A- 6 d A- 6 d
				RAMA						I I I I
869+50	. 8L	0.0-3.0 3.0-8.0 8.0-10.		2 2	3550	10000	100	S	2000 2000 2000	A-7-6 A-6a A-6a A-7-6
			DRIVE	SAMPLE	SOIL TES	ST DAT	A			
			- ;	SR	ľď	1 111				
99+29	38'Lt	2.5-3.5 5.0-6.6 7.5-8.5 0.0-13:	0 0 8			50 53 46	37 35 29	7420	20 17 16	A-6b A-6a A-6a
	i i i i i i i i i i i i i i i i i i i	350-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Octobro NECONICO	3000 NO	SO WHO DO	30777	75978778	Ō	276706117	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
		20.0-21.	U 24	44	3 10	e /-	50			THE.

