

How much it will reduce uplift by

Eccen_Check := if (Ecc_Limit1 < Centorid_Location < Ecc_Limit2, "Okay", "No Good") = "Okay"

11.6.3.3—Eccentricity Limits

For foundations on soil, the location of the resultant of the reaction forces shall be within the middle twothirds of the base width.

For foundations on rock, the location of the resultant of the reaction forces shall be within the middle ninetenths of the base width.

11.6.3—Bearing Resistance and Stability at the Strength Limit State

RIGHT PIER CAP -1.61

Neg_Press_R := -.75-klf greatest service negative value @ corners 1 and 2 Pos_Press_R := 6.98-klf 6.11 least service positive value @ corners 3 and 4 Inflection_Point := $\left| \text{Footing}_{\text{length}} \cdot \frac{\text{Neg}_{\text{Press}_R}}{(\text{Pos}_{\text{Press}_R} - \text{Neg}_{\text{Press}_R})} \right| = 0.776 \cdot \text{ft}$ Centorid_Dist_Past_Inflection := $\frac{2}{3} \cdot (\text{Footing}_{\text{length}} - \text{Inflection}_{\text{Point}}) = 4.816 \cdot \text{ft}$ AASHTO 11.6.3.3 For Foundation on rock, the location of the resultant reaction forces shall be with the middle 9/10th of base Ecc_Limit_1 := 0.05 \cdot \text{Footing}_{\text{length}} = 0.400 \cdot \text{ft} Ecc_Limit_2 := 0.95 \cdot \text{Footing}_{\text{length}} = 7.600 \cdot \text{ft} Eccent limit is based on distance from edge of footing Centorid_Location := Inflection_Point + Centorid_Dist_Past_Inflection = 5.592 \cdot \text{ft}

remove pages after this

.oads: Load data

Footing

Vertical	soil	pressur	'e -
			-

1	Footh	łr	Load Type	Dir	Mag1	Z1/L	Mag2
	1	-	UDL	Y	-3.6000	0.0000	-3.6000
	1	-	UDL	Y	-1.8000	0.3130	-1.8000
	1	•	UDL	Y	-3.6000	0.6880	-3.6000
	_						

LL19

Passive Resistance

Resist_Ht := **Soil_Depth** - $2 \cdot ft = \mathbf{I} \cdot in$

 $k_p := 6.5$ From AASHTO Figure 3.11.5.4.1 -
 $\delta = 0^\circ$ as wall is not sloped, so no reduction needs to be made. $\Theta = 90^\circ$

 $R_k_p := 0.467$

t

t

soil cohesion := 0

conservatively assume 0

 $p_p := k_p \cdot \gamma_{soil} + 2 \cdot soil_cohesion \cdot \sqrt{k_p} = 0.78 \cdot \frac{kip}{ft^3}$

 $Col_Dia := 3 \cdot ft$

Pass_Force :=
$$\frac{1}{2} \cdot p_p \cdot \text{Resist}_H t^2 \cdot \left(\frac{1}{2} \cdot \pi \text{ Col}_D ia\right) = \mathbf{I} \cdot \text{kip}$$

 $Pass_Mom := \frac{1}{2} \cdot \frac{\text{Resist}_Ht}{2} \cdot \text{Pass}_Force = \bullet \cdot \text{kip} \cdot \text{ft}$

Z2/L	Units
0.3130	klf
0.6880	klf
1.0000	klf