

July 16, 2020 (Revised August 6, 2020) Mr. Michael Thomas, PE GPD Group 100 Federal Plaza East Suite 200 Youngstown, OH 44503

Re: Geotechnical Engineering Services Report

Western Reserve Greenway Bikeway

Phase 4

Trumbull County Metro Parks

ODOT PID# 99804 Niles/Warren, Ohio PSI Project No. 01393219

Dear Mr. Thomas:

In compliance with your instructions, we have conducted a geotechnical subsurface exploration for the above-referenced project. The results of this exploration, together with our recommendations, are to be found in the accompanying report.

After the plans and specifications are complete, PSI should review the final design drawings and specifications in order to verify that the recommendations are properly interpreted and implemented. It is also considered imperative that the geotechnical engineer or its representative be present during earthwork operations to observe field conditions with respect to the design assumptions and specifications.

Should you have any questions regarding the contents of this submittal, please do not hesitate to contact us at 330-759-0288.

Respectfully submitted,

PROFESSIONAL SERVICE INDUSTRIES, Inc.

Scott Hynes Branch Manager

Deal H

A. Veeramani, PE Director

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	Page 1
2.0 INTRODUCTION	Page 2
2.1 Project Authorization	Page 2
2.2 Project Description & Geotechnical Scope of Service	Page 2
2.3 Site Location	Page 3
2.4Site Geology	Page 3
3.0 EXPLORATION	Page 4
3.1 Subsurface Exploration	Page 4
3.2 Laboratory Testing	Page 4
4.0 FINDINGS	Page 5
4.1 Subsurface Conditions	Page 5
4.2 Groundwater Conditions	•
5.0 EVALUATION AND RECOMMENDATIONS	Page 7
5.1 Site Preparation and Earthwork Operations	Page 7
5.2 Bikeway Recommendations	Page 9
5.3 Excavations	Page 10
5.4 Weather Considerations	Page 10
6.0 GEOTECHNICAL RISK	Page 11
7.0 REPORT LIMITATIONS	Page 12
TABLES	
Table 1 – Topsoil Thickness	
Table 2 – Fill Thickness	
Table 3 – Groundwater Depth	
Table 4 – GB1 Summary	
APPENDIX	
Site Vicinity Plan (2)	
Boring Location Plans (16)	
ODOT Boring Logs (B-001-0-20 thru B-030-0-20) (30)	
Soil Investigation Summary (GB-1 Analysis)	
ODOT Quick Reference for Visual Descriptions of Soils	
ODOT Classification of Soils	

1.0 EXECUTIVE SUMMARY

The project involves construction of approximately 4 miles of new asphalt pavement bikeway through the Cities of Niles and Warren, and Howland and Weathersfield Townships, in Trumbull County, Ohio. The new Bikeway will extend from the north end of the existing Niles Greenway at the southeast corner of the intersection of Robbins Avenue and East State Street, in Niles, Ohio (where the existing bikeway currently ends) and extend it in a northwesterly direction, terminating at the intersection of Burton Street SE and Thomas Road SE at the Warren Bikeway, In Warren, Ohio.

- Fill materials consisting of slag, cinders, sand, gravel, and/or fill soils consisting of sandy silt, silt and clay with organic matter, wood and porcelain fragments were encountered at or near the surface in soil boring locations B-001-0-20, B-002-0-20, B-003-0-20, B-004-0-20, B-005-0-20, B-006-0-20, B-007-0-20, B-024-0-020, B-025-0-020, B-026-0-20, B-027-0-20, B-028-0-20, B-029-0-20, and B-030-0-20.
- The subgrade soils consisted of Stone Fragments with Sand, Silt and Clay (A-2-6), Sandy Silt (A4a), Silt (A4b), Silt and Clay (A6a), Silty Clay (A6b), and Clay (A-7-6. The natural soils exhibited moisture contents of about 6 to 31 percent. The subgrade cohesive soils exhibited a soft to hard consistency based on the Standard Penetration tests. The subgrade granular soils exhibited a loose to dense relative compactness, based on the Standard Penetration tests.
- Free water was observed in test six (6) boring locations, B-009-0-20, B-020-0-20, B-024-0-20, B-026-0-20, B-027-0-20, and B-028-0-20 at depths ranging from 1 to 4.5 feet below the existing surface grades during field drilling operations. At the completion of field drilling activities, water was recorded at depths of about 1 to 4 feet below the existing surface grades in test boring locations B-009-0-20, B-020-0-20, B-024-0-20, B-027-0-20, and B-028-0-20. No free water was encountered at the remaining test boring locations
- An average CBR value of 7 was established for the existing subgrade according to GB-1 analysis.

The summary should be used in conjunction with the entire Subsurface Exploration Report since the summary sheet cannot include all details of the investigation's findings.

2.0 INTRODUCTION

2.1 Project Authorization

This report presents the subsurface exploration results of thirty (30) borings, laboratory testing, and soil parameter estimates for the proposed continuation of the Greenway Bikeway. The services were performed in accordance with PSI Proposal No. 0139-182055 dated November 8, 2019, and the Subconsultant Agreement for Professional Services, dated April 24, 2020. Authorization to perform this exploration was provided by Mr. Jeffrey Evans PE, Vice President with GPD Group.

2.2 Project Description and Geotechnical Scope of Services

PSI understands that the project will consist of the construction of approximately 4.0 miles of new asphalt pavement bikeway through the Cities of Niles and Warren, and Howland and Weathersfield Townships, in Trumbull County, Ohio. The new Bikeway will extend from the north end of the existing Niles Greenway at the southeast corner of the intersection of Robbins Avenue and East State Street, in Niles, Ohio (where the existing bikeway currently ends) and continue it in a northwesterly direction, terminating at the intersection of Burton Street SE and Thomas Road SE at the Warren Bikeway, In Warren, Ohio.

Based on the grading plans provided at the time of this report, the bikeway generally follows the existing site grades, with cut/fill of less than 1-foot required throughout the proposed bikeway route. However, there is one area (STA No.: 139+00) where fill operations of approximately 12 feet will be required for the proposed bikeway construction.

No other information was available at the time of this report. If any of the information noted above has changed or is incorrect, please inform PSI so that the recommendations presented in this report can be reviewed and amended, if appropriate.

The thirty (30) borings were completed between May 12 and May 24, 2020. Boring locations were selected, and stationing, GPS, and elevation data provided by GPD Group. The borings were field staked by PSI. Borings were advanced to depths of approximately 5.66 to 10 feet below existing surface grades.

The purpose of this exploration was to evaluate the soil, rock and groundwater conditions at the site to provide recommendations, from a geotechnical engineering viewpoint, for foundation design and construction, site preparation and other construction considerations. The scope included a reconnaissance of the project site, drilling thirty (30) test borings to depths of about 5.66 to 10 feet each below the existing surface grades, a laboratory testing program, and an engineering analysis and evaluation of the subsurface materials.

The scope of services did not include an environmental assessment for the presence or absence of wetlands or hazardous or toxic materials in the soil, surface water, groundwater, or air, on or below or around this site.

Any statements in this report or on the boring logs regarding odors, colors or unusual or suspicious items or conditions are strictly for the information of the client.

2.3 Site Location

The project site for the proposed bikeway is located within the Cities of Niles and Warren, and Howland and Weathersfield Townships, Ohio. The Bikeway starts at the existing Niles Trailhead, and generally travels in a northwesterly direction, following city street, and former railways, ending near Burton Street, in the City of Warren. Specifically, the bikeway resumes at the Niles Trailhead, near the intersection of Robbins Avenue and East State Street, in the City of Niles, Ohio, and continues northwest through a heavily wooded area along the former railway. The bikeway then follows city streets, crossing North Main Street, to Williams Street SE, north on North Chestnut Avenue, then west along Smith Street SE to the intersection with Hunter Avenue. From the intersection of Smith Street SE and Hunter Avenue, the bikeway continues northwest through a heavily wooded section, with several low-lying areas, behind an industrial development, and connecting with Warren Avenue. The bikeway continues north along Warren Avenue, crossing Deforest Road SE, continuing north through a former industrial area, along former industrial haul roads and rail spurs, parallel to and then rejoining Warren Avenue. Finally Phase 4 for the Western Reserve Greenway bike trail turns east and then north along a former haul road, ending at Burton Street SE in the City of Warren, Ohio.

2.4 Site Geology

Based on a published Ohio Department of Natural Resources (ODNR) map reference, the project site lies within the Glaciated Allegheny Plateau in northeast Ohio (Ohio Division of Geological Survey, Map SG-2). The soils in the area are predominately Wisconsinan age Clay to Loamy Till, with low carbonate content. The till contains silt, sand, and gravel lenses. The areas bedrock consists of Mississippian-age Sandstone and Shale bedrock of the Logan and Cuyahoga Formations.

3.0 EXPLORATION

3.1 Subsurface Exploration

The subsurface conditions at the site were explored with a total of thirty (30) soil test borings for the proposed multi-purpose trail and drilled to depths of about 5.66 to 10 feet each below the existing surface grades. The approximate boring locations are shown on the Boring Location Plans presented in the *Appendix* of this report. The locations of test borings were selected by GPD Group and field located by a representative of PSI prior to field drilling operations.

The borings were advanced utilizing 3½ inch inside diameter, hollow-stem auger drilling methods. Soil samples were routinely obtained during the drilling process. Select soil samples were later tested in the laboratory to obtain soil material properties for the foundation and pavement recommendations. The split spoon sampling procedures used during this exploration are in basic accordance with Ohio Department of Transportation Specifications for Subsurface Exploration section 303.7.

3.2 Laboratory Testing

The soil samples obtained during the field exploration were transported to the laboratory and visually examined. The soil samples obtained from the drilling operation were tested for moisture content (AASHTO T-265), liquid limits (AASHTO T-89), plastic limits (AASHTO T-90), grain size analyses (AASHTO T-88), and organic content in soils (AASHTO T 267). The samples were classified in general accordance with the ODOT Specifications for Subsurface Investigations, Classification of Soil. Descriptions and lab test data of the soils encountered in the test boring is provided on the Boring Log included in the Appendix. Groundwater conditions, standard penetration resistances, and other pertinent information are also included. The remaining soil samples will be retained at our office for 60 days from the date of this report and then discarded.

4.0 FINDINGS

4.1 Subsurface Conditions

<u>SURFACE:</u> Topsoil surface cover was encountered at eighteen (18) of the test boring locations. The boring locations and respective topsoil thicknesses are listed below.

TABLE 1 – TOPSOIL THICKNESS

Boring ID	Topsoil Thickness (in)	Boring ID	Topsoil Thickness (in)
B-002-0-20	12	B-015-0-20	8
B-006-0-20	9	B-016-0-20	13
B-007-0-20	9	B-017-0-20	7
B-008-0-20	12	B-018-0-20	8
B-010-0-20	6	B-019-0-20	6
B-011-0-20	13	B-020-0-20	12
B-012-0-20	7	B-021-0-20	10
B-013-0-20	8	B-022-0-20	9
B-014-0-20	6	B-023-0-20	11

<u>FILL:</u> Slag, cinders, sand, gravel, and/or fill soils consisting of sandy silt, silt and clay with organic matter, wood and porcelain fragments were encountered at or near the surface in the following boring locations:

TABLE 2 – FILL THICKNESS

	THICKINESS	
Boring ID	Approximate Strata Depth (ft)	Material
B-001-0-20	0 to 1	Slag
B-001-0-20	1 to 6	Sandy Silt with Slag Cinders and Organics
B-002-0-20	1 to 3	Slag and Cinders
B-003-0-20	0 to 1.5	Slag
B-003-0-20	1.5 to 6	Sand
B-004-0-20	0 to 2.5	Clay with Wood and Porcelain Fragments
B-005-0-20	0 to 2.5	Slag and Cinders
B-008-0-20	1 to 4	Stone Fragments with Sand and Silt
B-008-0-20	4 to 6	Silt and Clay with Petroleum Odor
B-009-0-20	0 to 1.5	Slag
B-009-0-20	1.5 to 2.5	Sandy Silt
B-024-0-20	0 to 2.5	Slag
B-024-0-20	2.5 to 4	Gravel and Sand
B-025-0-20	0 to 1	Slag
B-025-0-20	1 to 4	Clay with Stone Fragments and Slag
B-026-0-20	0 to 1.5	Slag
B-027-0-20	0 to 2.5	Slag
B-028-0-20	0 to 1	Slag
B-029-0-20	0 to 1	Slag
B-030-0-20	0 to 1	Slag
B-030-0-20	1 to 2.5	Gravel with Sand and Silt

<u>NATURAL SOILS:</u> Underlying the topsoil and fill materials, natural soils were encountered extending to depths of about 5 to 10 feet below existing site grades. The natural soils consisted of Stone Fragments with Sand, Silt and Clay (A-2-6), Sandy Silt (A4a), Silt (A4b), Silty and Clay (A6a), Silty Clay (A6b), and Clay (A-7-6). The natural soils exhibited moisture contents of about 6 to 31 percent. The subgrade cohesive soils exhibited a soft to hard consistency based on the Standard Penetration tests. The subgrade granular soils exhibited a loose to dense relative compactness, based on the Standard Penetration tests.

<u>BEDROCK:</u> At test boring location B-020-0-20, and B-023-0-20, the bottommost formation encountered consisted of weathered sandstone and siltstone, respectively.

The preceding subsurface descriptions are generalized to highlight the major soil strata encountered during the exploration. The boring logs included in the Attachments should be reviewed for specific information at individual boring locations. The strata shown on the logs represent the conditions only at the actual boring locations. Variations may occur and should be expected between boring locations. The strata represent the approximate boundaries between subsurface materials, and the actual transition may be gradual.

4.2 Groundwater Conditions

At the time of the site fieldwork (May 12 thru May 24, 2020), groundwater was encountered at the following boring locations.:

Free/Seepage Water Depth **Water Depth at Completion Drilling Boring ID During Drilling (ft)** (ft) B-009-0-20 2 2.5 4.5 B-020-0-20 4 2.5 B-024-0-20 2 1.5 B-026-0-20 --B-027-0-20 1.5 1.5 B-028-0-20 1 1

TABLE 3 – GROUNDWATER DEPTH

No groundwater was encountered at the remaining boring locations. Please note that the free groundwater levels fluctuate seasonally as a function of rainfall and the infiltration rate of the soil. Therefore, at a time of year different from the time of drilling, there is the possibility of a considerable change in the water table, or the occurrence of water where not previously encountered. Accordingly, we recommend that the contractor measure the actual groundwater levels (if encountered) at the time of construction to assess groundwater impact on the construction procedures.

5.0 EVALUATION AND RECOMMENDATIONS

5.1 Site Preparation and Earthwork Operations

Prior to the initiation of any earthwork operations, general site area clearing should be carried out. The site work should follow the general guidelines outlined in the ODOT CMS "Clearing and Grubbing".

Areas of the site where the new pavement will be located, shall have any and all existing topsoil, highly organic soils, excessively soft/loose or wet soils, and all other deleterious materials, completely removed from the proposed construction areas. Additionally, the existing unsuitable fill materials will have to be partially removed or stabilized as described in the following text.

In areas of the site where the bikeway will be constructed on the former railway, and in areas where fill materials were encountered, the aggregate/slag base and fill materials consisted primarily of inorganic materials. These materials may remain in place, and/or be reused, provided the areas are critically proof-rolled and meet the intent of ODOT CMS 204.

Careful visual control of clearing and stripping operations should be maintained to assure that all deleterious materials are removed. The extent to which deleterious materials are to be removed should be determined in the field following visual observation of the exposed subgrades. Subsequent to the site area clearing and stripping, all structural subgrade sectors should be subjected to critical proof-rolling operations and careful observation of subgrade reactions. Any sectors that exhibit instability are to be undercut or stabilized to such depths as may be necessary to assure satisfactory supporting properties. The undercut areas shall be backfilled with approved fill materials, placed and compacted under carefully controlled procedures as described below.

All areas that are to receive structural fill should be filled on a critically controlled, lift-by-lift basis, employing select, clean, non-organic materials. All structural fill should be verified and approved by the project's geotechnical engineer prior to placement. Individual fill lifts are to be of maximum 8-inch loose measure thickness and each individual lift is to be adjusted in moisture content to within plus or minus two 2 percent of the optimum moisture content, as determined in accordance with ASTM Standard Proctor Method D-698. However, for granular fill materials, the moisture-density compaction curve for the fill will not be sensitive to placement moisture. Accordingly, the density defined for an energy corresponding to ASTM D-698 should be used for control of fill placement. The fill materials are to be systematically compacted such that an in-place density of at least 98 percent of the maximum laboratory density as determined in accordance with the above-referenced ASTM method is achieved. Specifications should require that the resulting subgrade and fill materials' densities be verified by test measurements conducted by the geotechnical engineer.

Careful attention will be required in fine grading the subgrade surfaces in order to eliminate undulations and depressions that would tend to collect water. The pavement subgrade surface should be graded in a manner such that positive drainage towards the pavement edges and/or drainage systems will be insured.

Throughout the course of the earthwork operations, surface grades are to be maintained to facilitate positive drainage within the construction area and to prevent inundation of either the existing subgrade or new fill material. No water should be allowed to impound on the subgrade surfaces during this time.

ODOT's guidelines for geotechnical engineering titled GB1: Plan Subgrades dated August 7, 2013 and GB1: Subgrade Analysis Spreadsheet has been utilized as a guideline for development of the recommendations included in this report. Per ODOT requirements stated above, typically materials with in-place moisture contents (Mc) exceeding the optimum moisture content by 3 percent or more, or materials exhibiting low SPT N-Values ("blow counts") (HP), require subgrade undercutting or stabilization to obtain adequate pavement support.

Based on ODOT's GB1, the approximate stations along the proposed project that will likely require undercutting and replacement with geotextile are as shown in the following table:

TABLE 4 - GB1 SUMMARY

	TABLE 4	blem	Recommended Minimum	
Boring ID	Station	Unsuitable	Unstable	Undercut (in) Subgrade
				Only
B-001-0-20	10+50 to 21+00		HP & Mc	12
B-002-0-20				
B-003-0-20	17+00 to 63+50			
B-004-0-20	17+00 to 03+30		Mc	
B-005-0-20				
B-006-0-20	63+50 to 80+75	A-4b	Mc	30
B-007-0-20	03130 to 80173		HP & Mc	33
B-008-0-20	80+75 to 90+75			
B-009-0-20	90+75 to 99+50		HP & MC	
B-010-0-20	30173 to 33130		Mc	
B-011-0-20			HP	12
B-012-0-20	99+50 to 111+50		HP & Mc	12
B-013-0-20			HP & Mc	12
B-014-0-20	111+50 to 117+50		HP & Mc	24
B-015-0-20	117+50 to 123+50		HP	12
B-016-0-20	123+50 to 127+50		HP & Mc	33
B-017-0-20			HP & Mc	12
B-018-0-20	127+50 to 138+25		HP	12
B-019-0-20			HP & Mc	12
B-020-0-20	138+25 to 141+00			
B-021-0-20	141+00 to 145+00		HP & Mc	24
B-022-0-20	145+00 to 149+00		HP & Mc	12
B-023-0-20				
B-024-0-20				
B-025-0-20	149+00 to 177+00			
B-026-0-20				
B-027-0-20				
B-028-0-20	177+00 to 189+00		HP & Mc	12
B-029-0-20	189+00 to 219+00		HP & Mc	
B-030-0-20	103.00 to 213.00			

Utilizing the test borings, laboratory results, ODOT guidelines and our analysis, it is anticipated that, within the project limits outlined, removal and replacement of the unsuitable/unstable soils to depths of about 12 to 30 inches below the subgrade with geotextile, will be required for the proposed project. Please refer to the Appendix, table titled Subgrade Analysis, for the exact recommended depths and limits of the undercutting.

ODOT 712.09 Geotextile Fabric Type D should be utilized at the bottom of the undercut areas for the undercut/replacement option. The undercut areas can be replaced with compacted 703.16.C granular Type B fill materials.

Careful attention will be required in fine grading the subgrade surfaces in order to eliminate undulations and depressions that would tend to collect water. The pavement subgrade surface should be graded in a manner such, that positive drainage towards the pavement edges and/or drainage systems will be insured.

Throughout the course of the earthwork operations, surface grades are to be maintained to facilitate positive drainage within the construction area and to prevent inundation of either the existing subgrade or new fill material. No water should be allowed to impound on the subgrade surfaces during this time.

5.2 Bikeway Recommendations

Pavement design for the bikeway will include proper preparation of subgrade sectors, employing procedures outlined in the previous section titled *Site Preparation and Earthwork Construction*, careful design of the pavement area drainage systems and utilization of an aggregate base course with an asphalt concrete or concrete surface course.

Based on the subsurface formations encountered at the test boring locations, an average CBR value of seven (7) can be used for the design of the proposed pavement structures, provided that the subgrade materials consist ODOT CMS for item 203.

Inclusion of adequate surface and subsurface drainage systems along and below the trail is considered imperative in order to maintain the compacted subgrades as close to optimum moisture conditions as possible. A subsurface drainage system consisting of perforated drainpipes bedded in and backfilled with suitable filter materials should be installed along either side of the trail at an elevation, such that groundwater will be maintained a minimum of 18-inches below the subgrade. The filter around the drainage members is to terminate in direct contact with the aggregate base course for the pavements. All subgrade sectors should be graded to direct water by gravity toward the drainage lines. At all low points and at regular intervals, lateral underdrain lines connected to suitably located outlet points are to be provided.

Site surface grades should be, such that no pavement sectors are allowed to impound water. All surface and subsurface water is to be directed to drainage ditches.

5.3 Excavations

In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, Part 1926, Subpart P." This document was issued to better ensure the safety of workers entering trenches or excavations. It is mandated by this federal regulation that all excavations, whether they be utility trenches, basement excavations or foundation excavations, be constructed in accordance with the new OSHA guidelines. It is our understanding that these regulations are being strictly enforced. If they are not followed closely, the owner and the contractor could be liable for substantial penalties.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person" as defined in "CFR Part 1926," should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations.

We are providing this information solely as a service to our client. PSI is not assuming responsibility for construction site safety or the contractor's activities; such responsibility is not being implied and should not be inferred. If the excavations are left open and exposed to the elements for a significant length of time, desiccation of the clays may create minute shrinkage cracks which could allow large pieces of clay to collapse or slide into the excavation.

Materials removed from the excavation should not be stockpiled immediately adjacent to the excavation, inasmuch as this load may cause a sudden collapse of the embankment.

5.4 Weather Considerations

The soils encountered at this site are known to be sensitive to disturbances caused by construction traffic and to changes in moisture content. During wet weather periods, increases in the moisture content of the soil can cause significant reduction in the soil strength and support capabilities. Care should be exercised during the grading operations at the site. Due to the fine-grained nature of the surficial soils, the traffic of heavy equipment, including heavy compaction equipment, may very well create pumping and a general deterioration of those soils in the presence of water. Therefore, the grading should, if at all possible, be performed during a dry season. A layer of crushed stone may be required to allow the movement of construction traffic over the site during the rainy season. The contractor should maintain positive site drainage and if wet/pumping conditions occur, the contractor will be responsible to over excavate the wet soils and replace them with a properly compacted engineered fill. During wet seasons, limestone stabilization may be required to place engineer fill.

6.0 GEOTECHNICAL RISK

The concept of risk is an important aspect of the geotechnical evaluation. The primary reason for this is that the analytical methods used to develop geotechnical recommendations do not comprise an exact science. Site exploration identifies actual subsurface conditions only at those points where samples are taken. A geotechnical report is based on conditions that existed at the time of the subsurface exploration. The analytical tools which geotechnical engineers use are generally empirical and must be used in conjunction with engineering judgment and experience. Therefore, the solutions and recommendations presented in the geotechnical evaluation should not be considered risk-free and, more importantly, are not a guarantee that the interaction between the soils and the proposed structure will perform as planned. The engineering recommendations presented in the preceding sections constitute PSI's professional estimate of those measures that are necessary for the proposed structure to perform according to the proposed design based on the information generated and referenced during this evaluation, and PSI's experience in working with these conditions.

7.0 REPORT LIMITATIONS

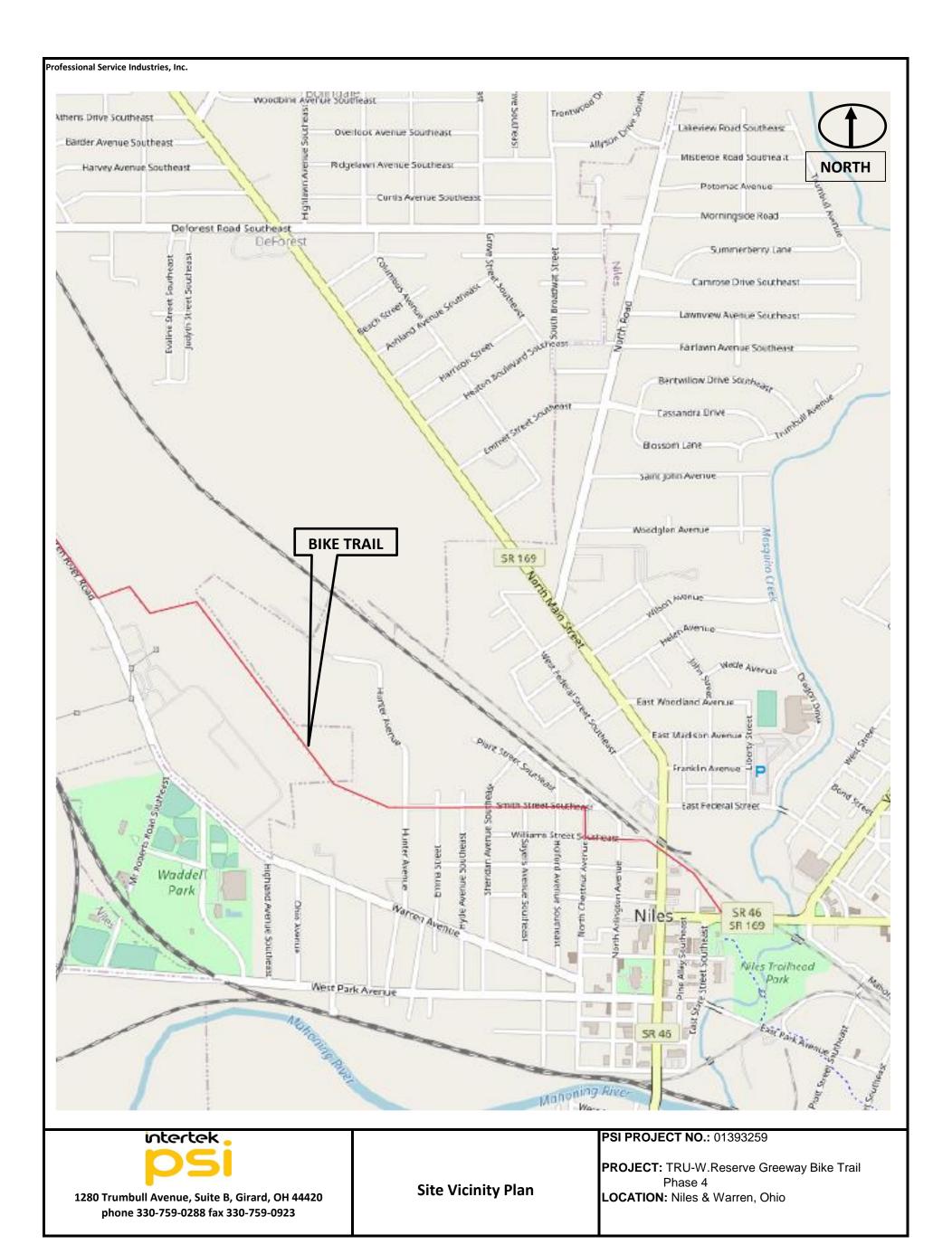
The recommendations submitted in this report are based on the available subsurface information developed by PSI and on the design, information furnished by GPD Group for the proposed project. If there are any revisions to the plans for the proposed project, or if deviations from the subsurface conditions noted in this report are encountered during construction, PSI should be retained to determine if changes in the recommendations are required. If PSI is not retained to perform these functions, PSI will not be responsible for the impact of those conditions on the geotechnical recommendations for the project.

The Geotechnical Engineer warrants that the findings, recommendations, specifications, or professional advice contained herein, have been presented after being prepared in accordance with generally accepted professional engineering practice in the fields of foundation engineering, soil mechanics and engineering geology. No other warranties are implied or expressed.

After the plans and specifications are complete, it is recommended that PSI be provided the opportunity to review the final design drawings and specifications, in order to verify that the earthwork and foundation recommendations are properly interpreted and implemented. At that time, it may be necessary to submit supplementary recommendations. This report has been prepared for the exclusive use of GPD Group for the specific application to Phase 4 of the Western reserve Greenway, in the Cities of Niles and Warren, Trumbull County, Ohio.

APPENDIX

Site Vicinity Plan (2)

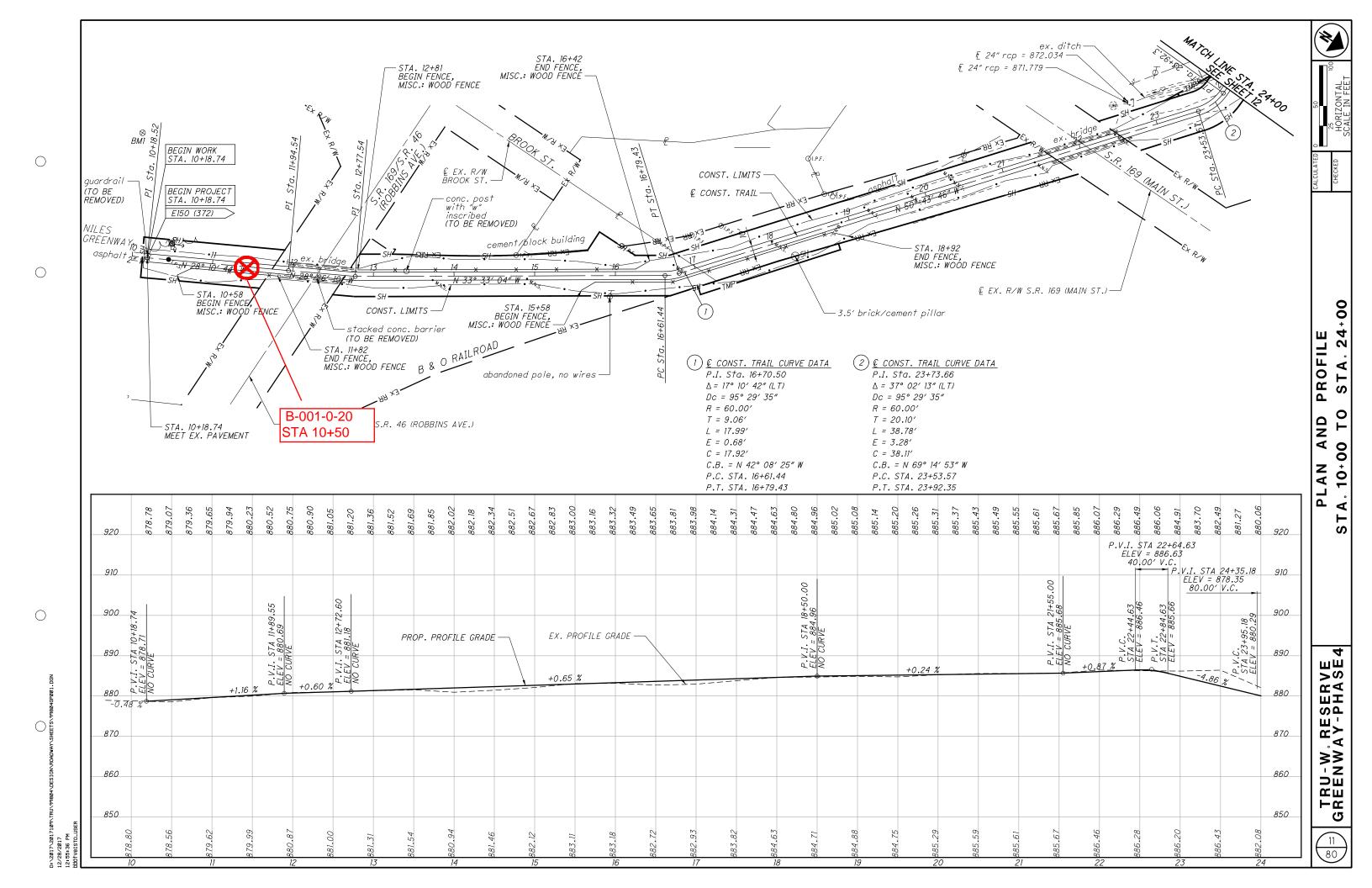

Boring Location Plans (16)

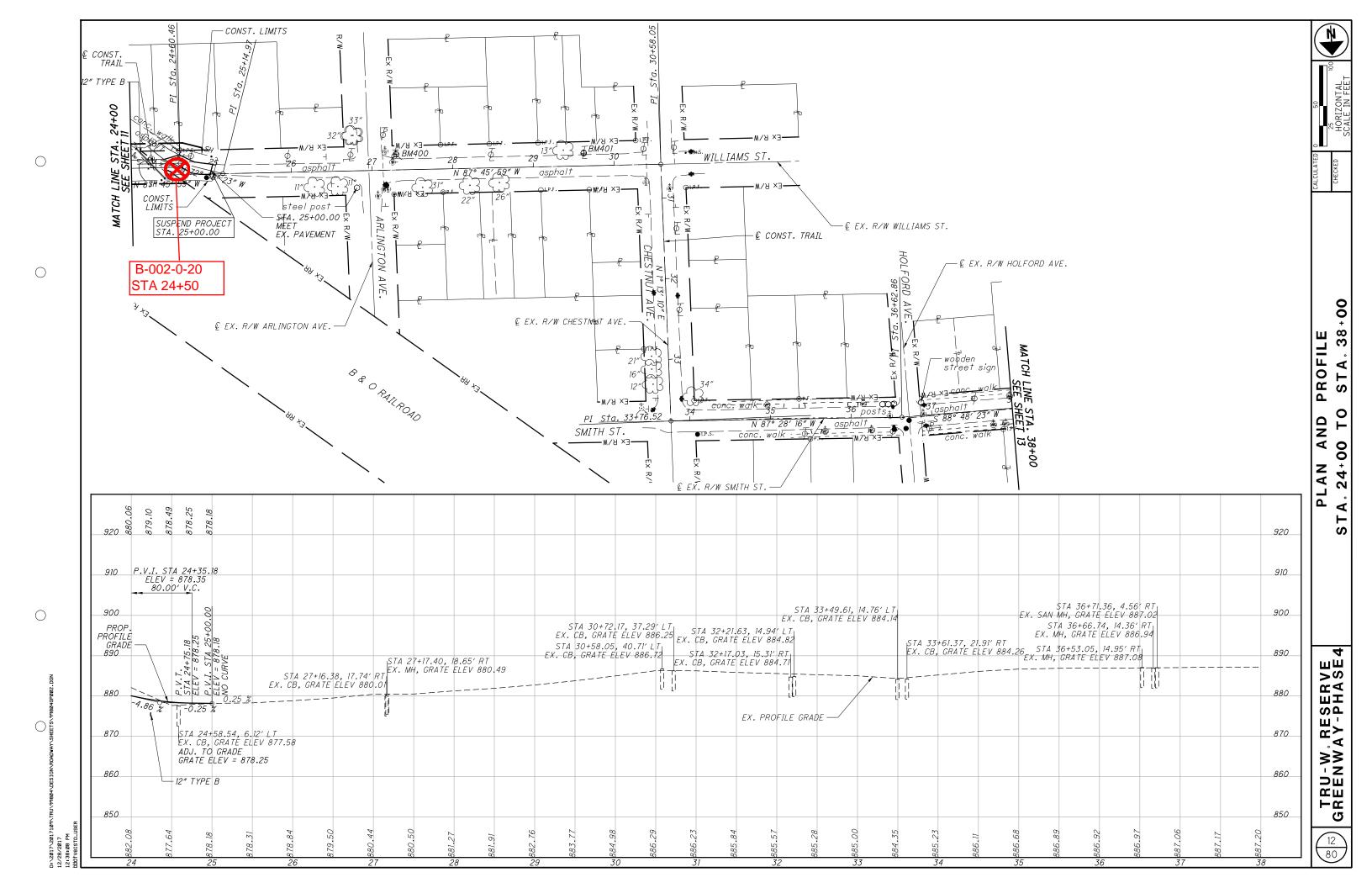
ODOT Boring Logs (B-001-0-20 thru B-030-0-20) (30)

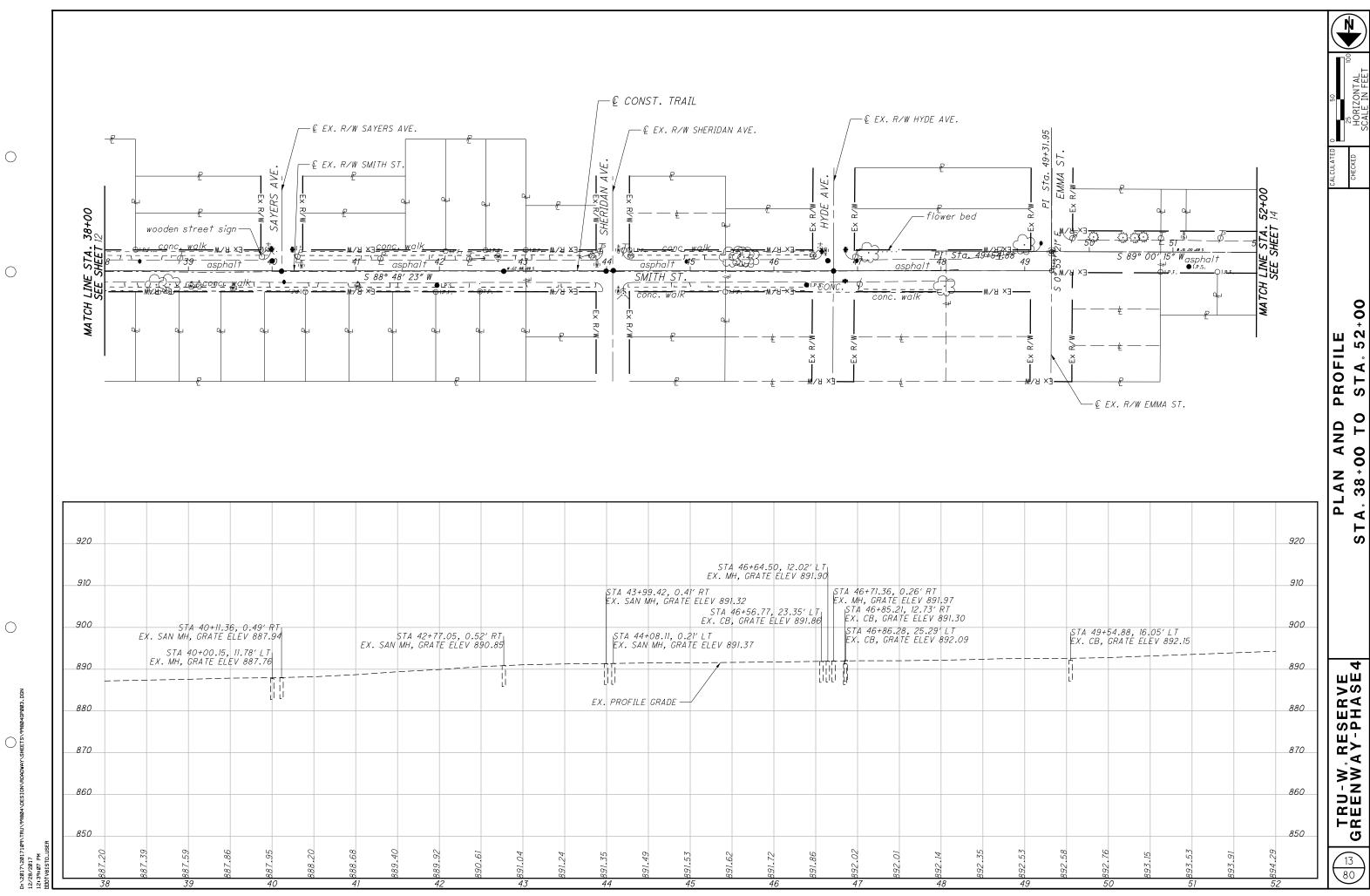
Soil Investigation Summary (GB-1 Analysis)

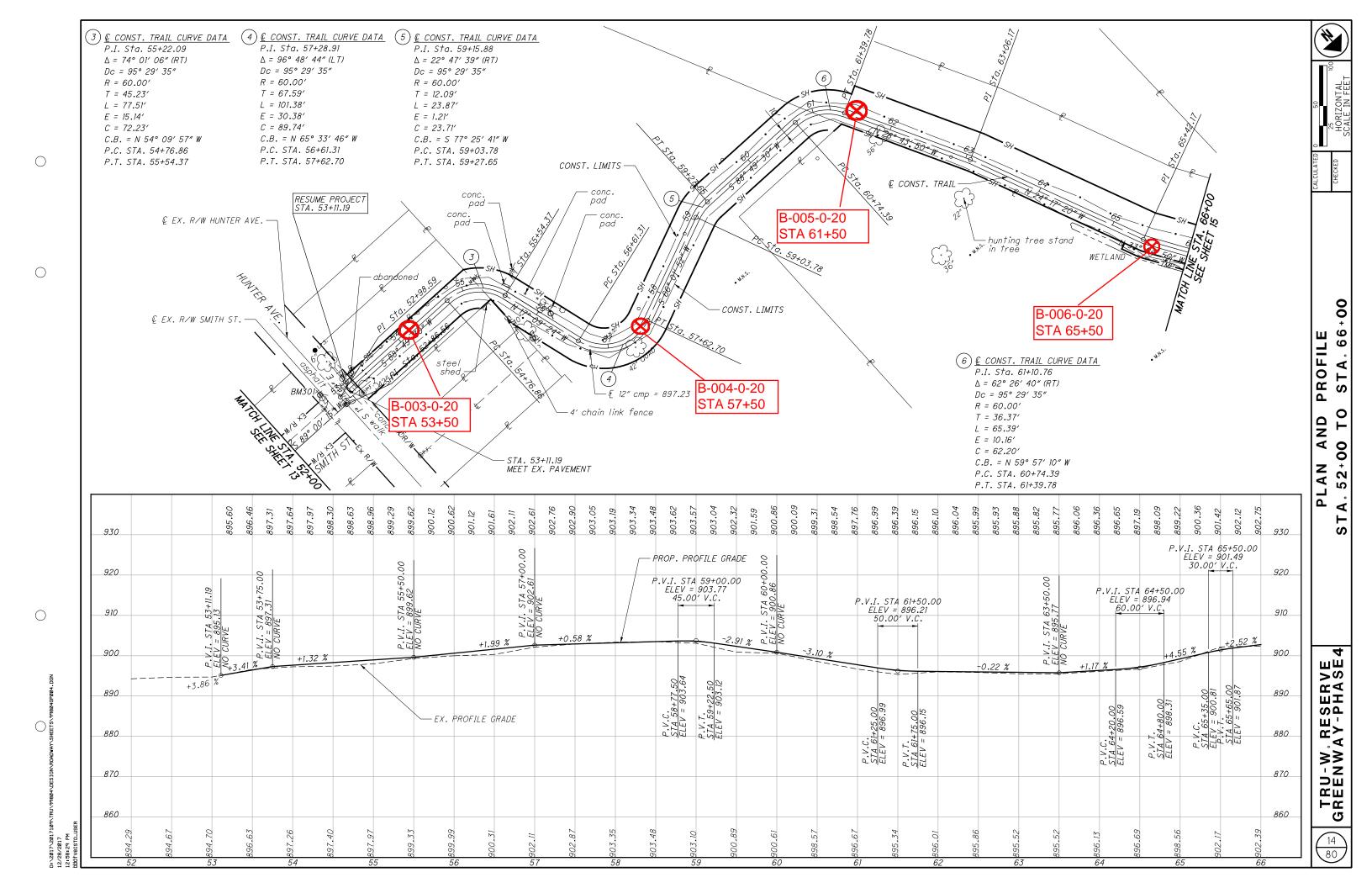
ODOT Quick Reference for Visual Descriptions of Soils

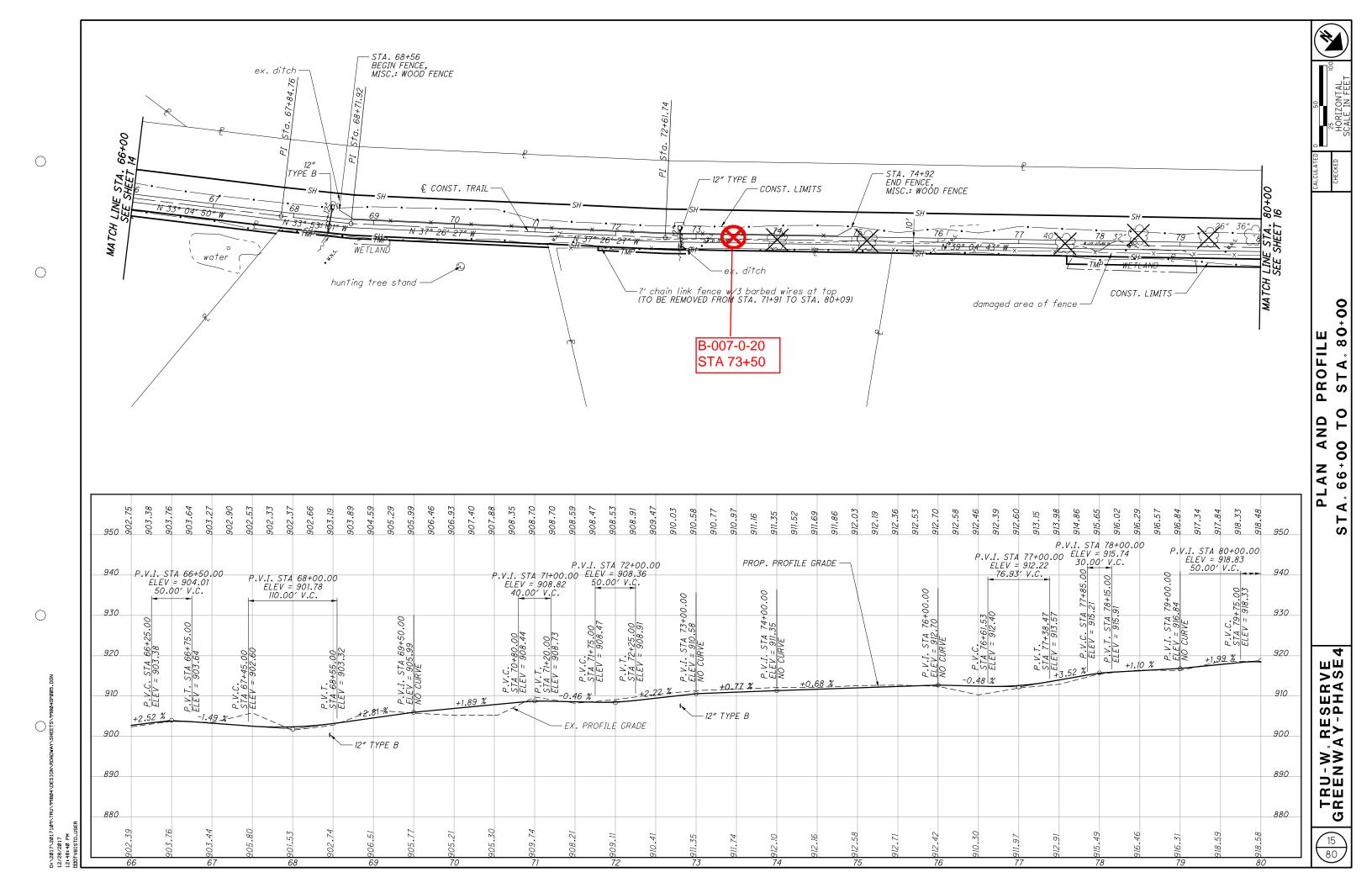
ODOT Classification of Soils

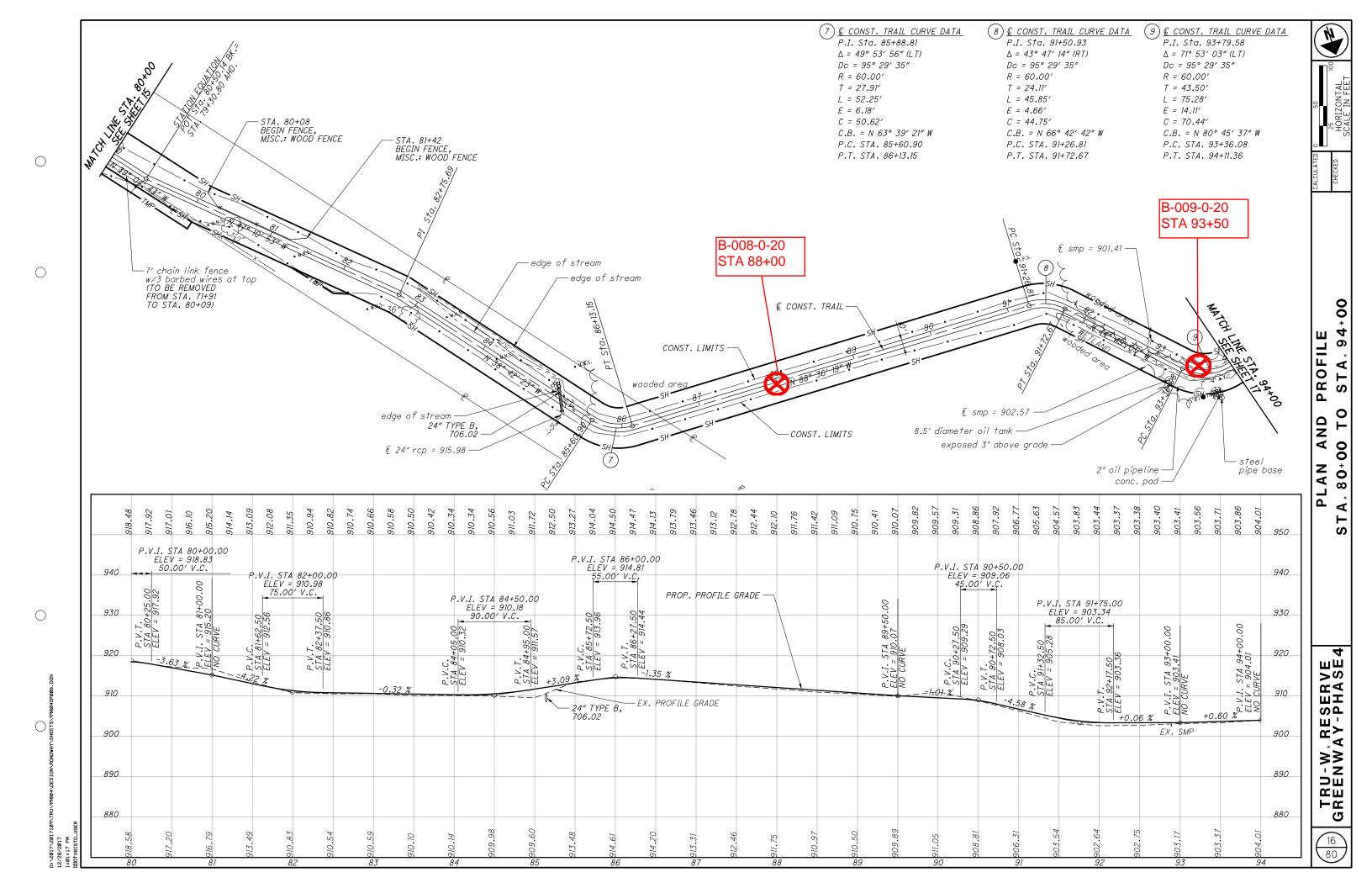


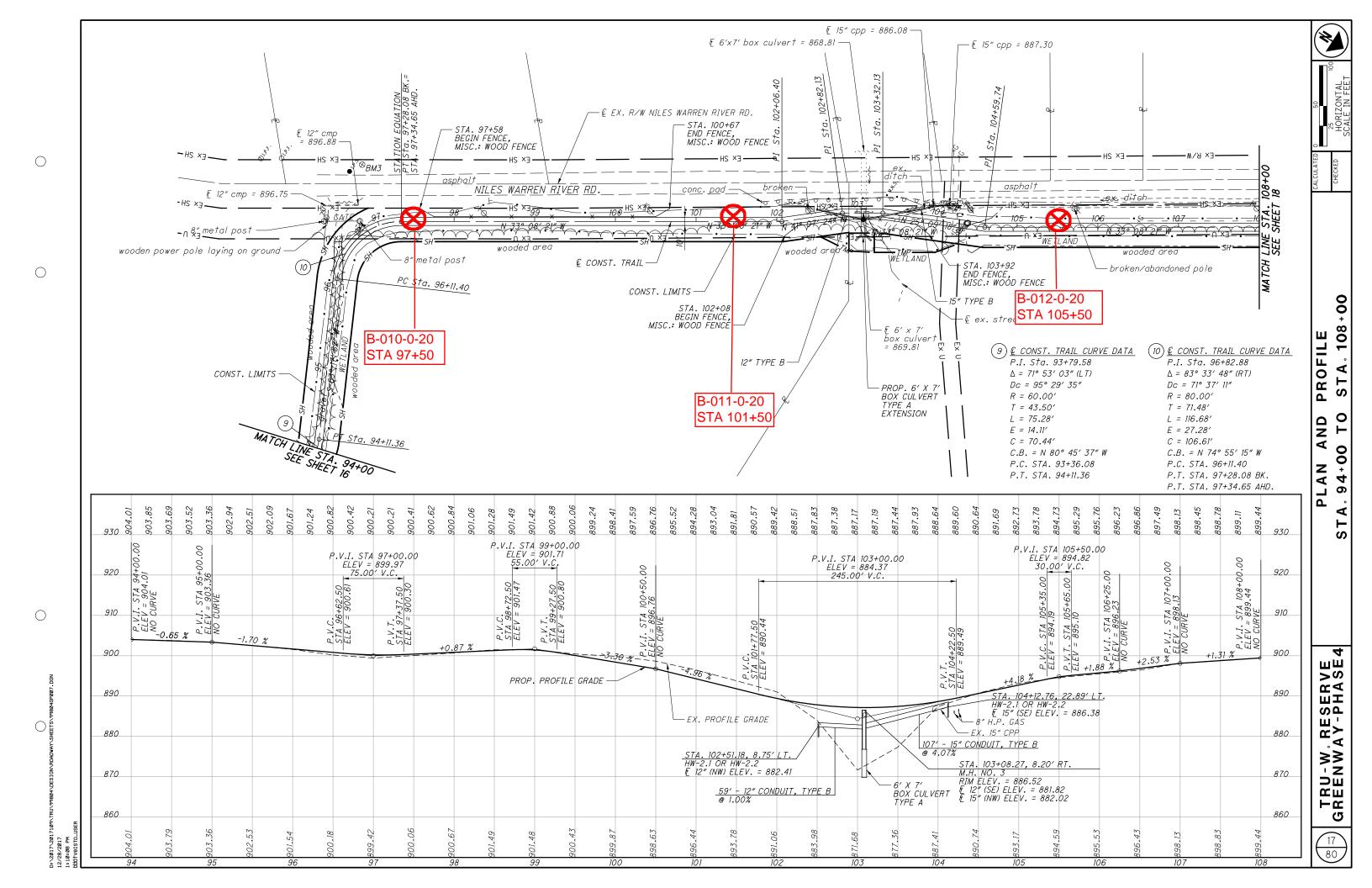

1280 Trumbull Avenue, Suite B, Girard, OH 44420 phone 330-759-0288 fax 330-759-0923

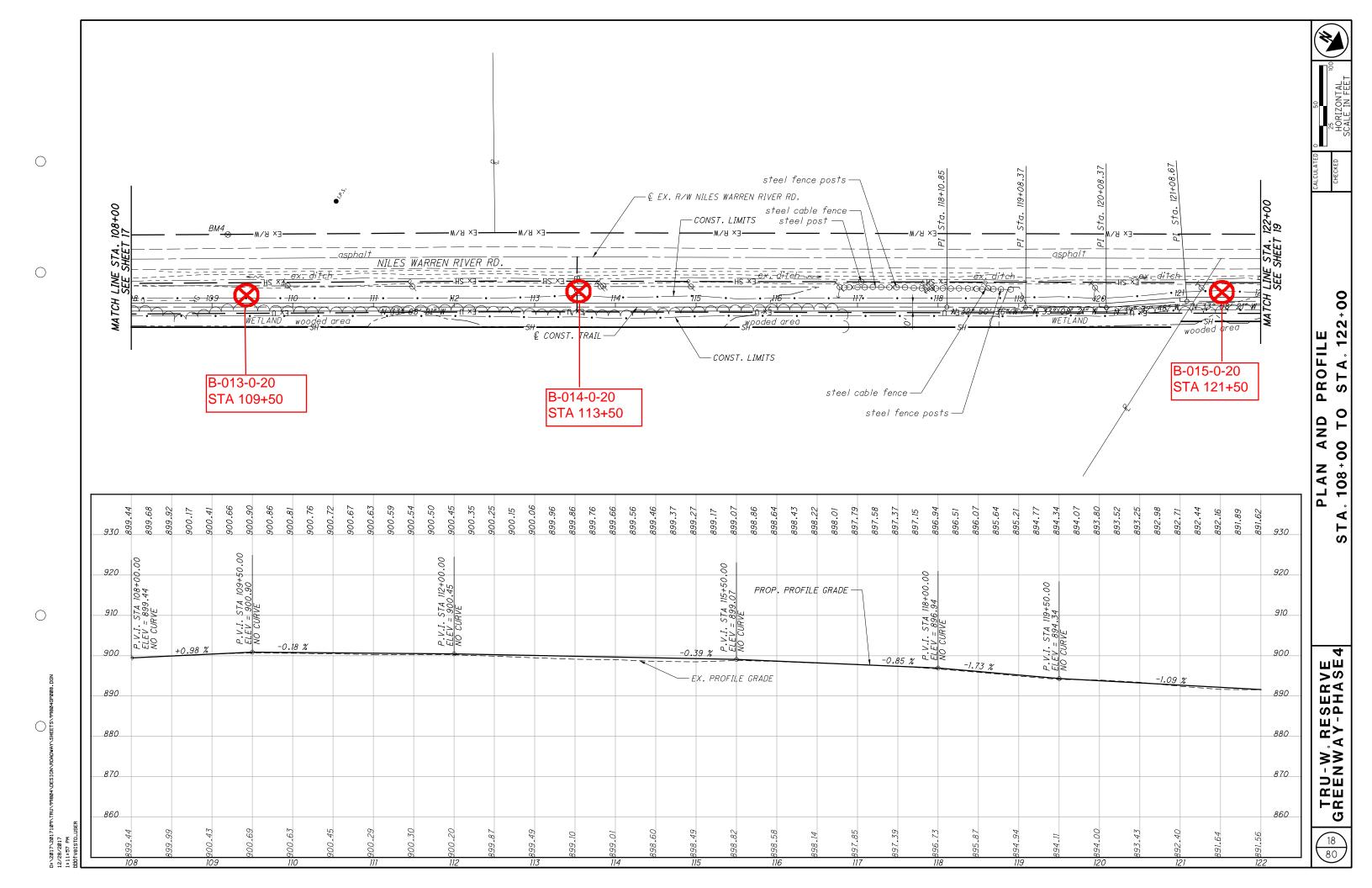

Site Vicinity Plan

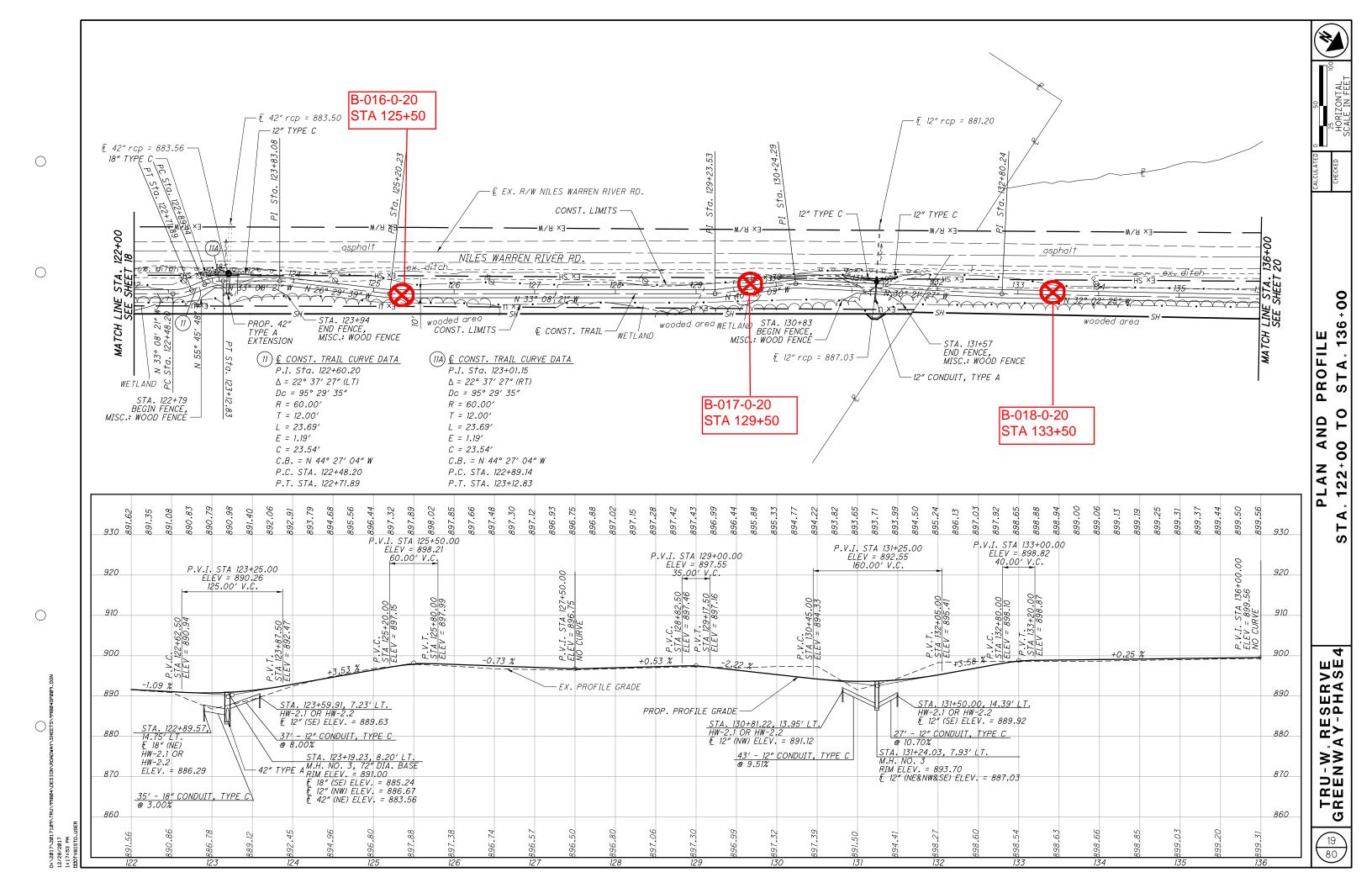

Phase 4

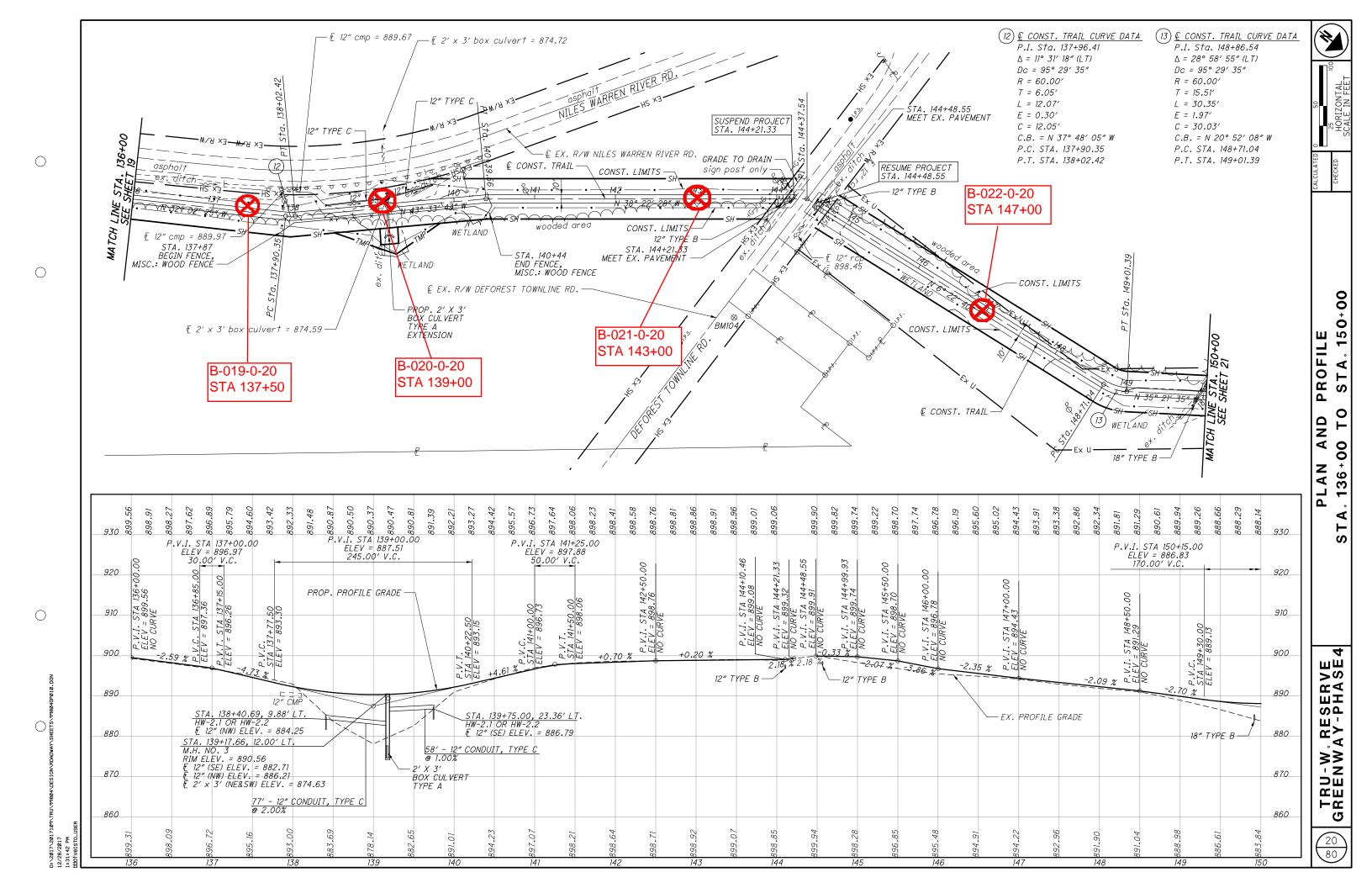

LOCATION: Niles & Warren, Ohio

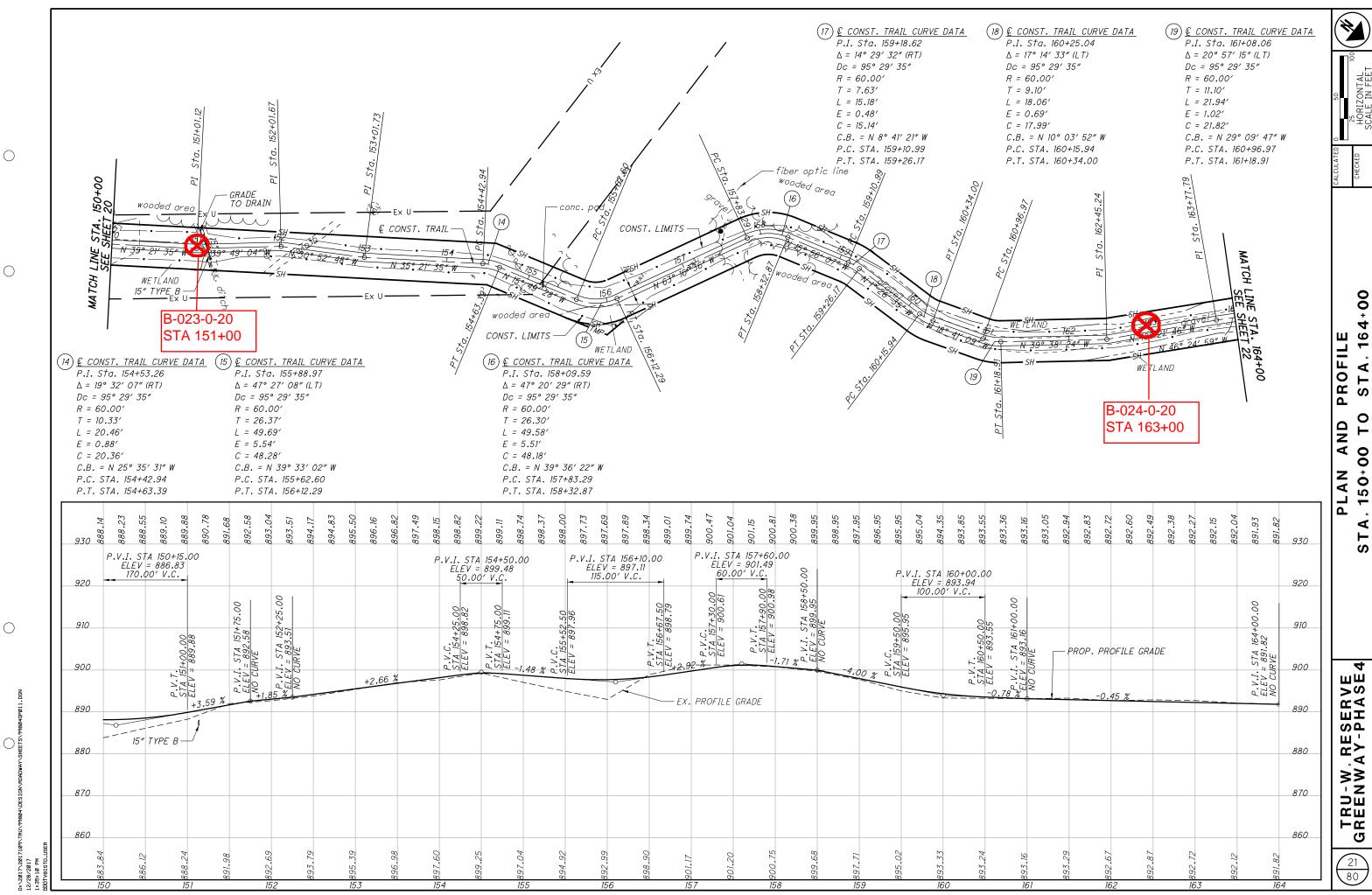


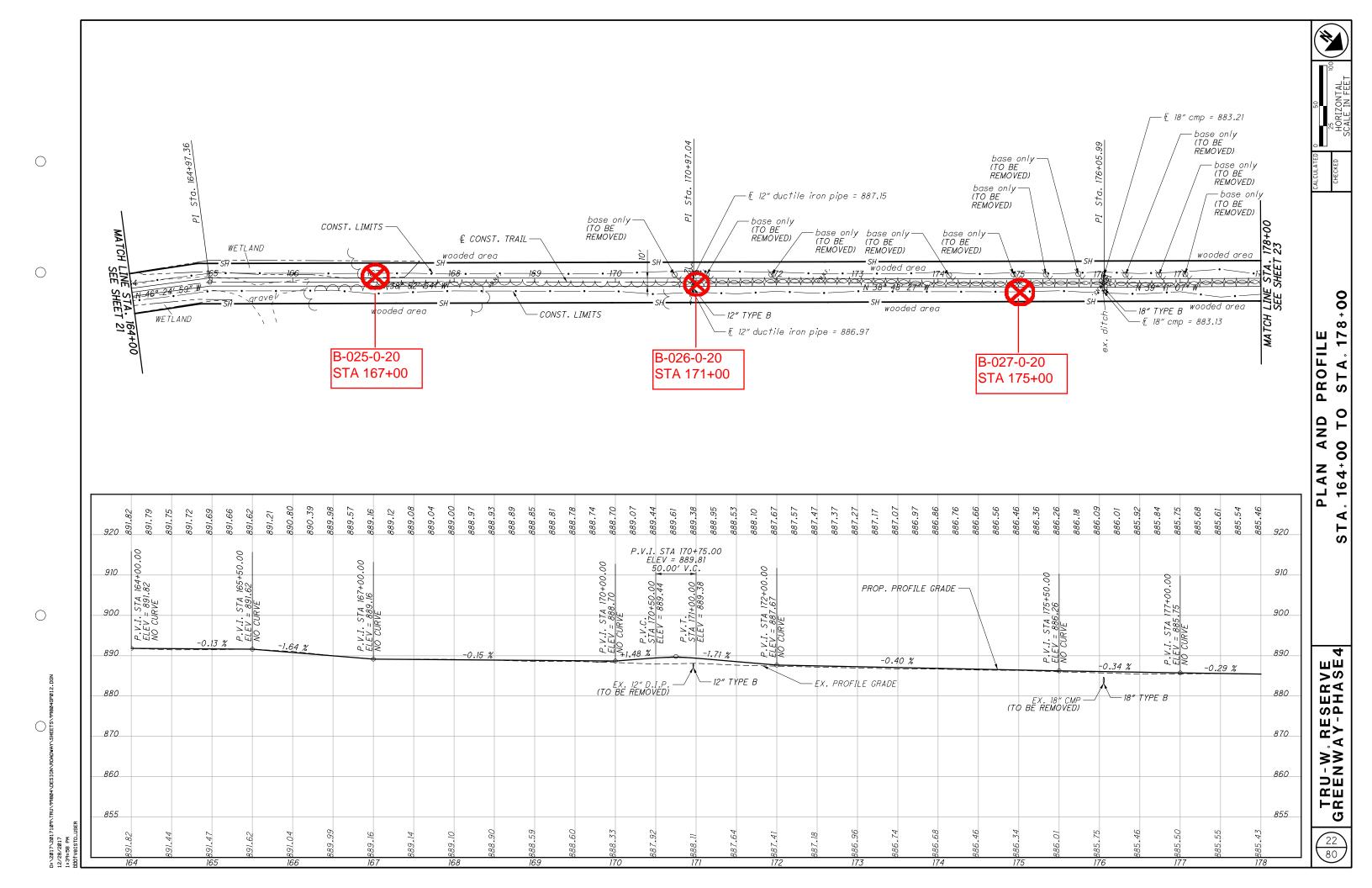


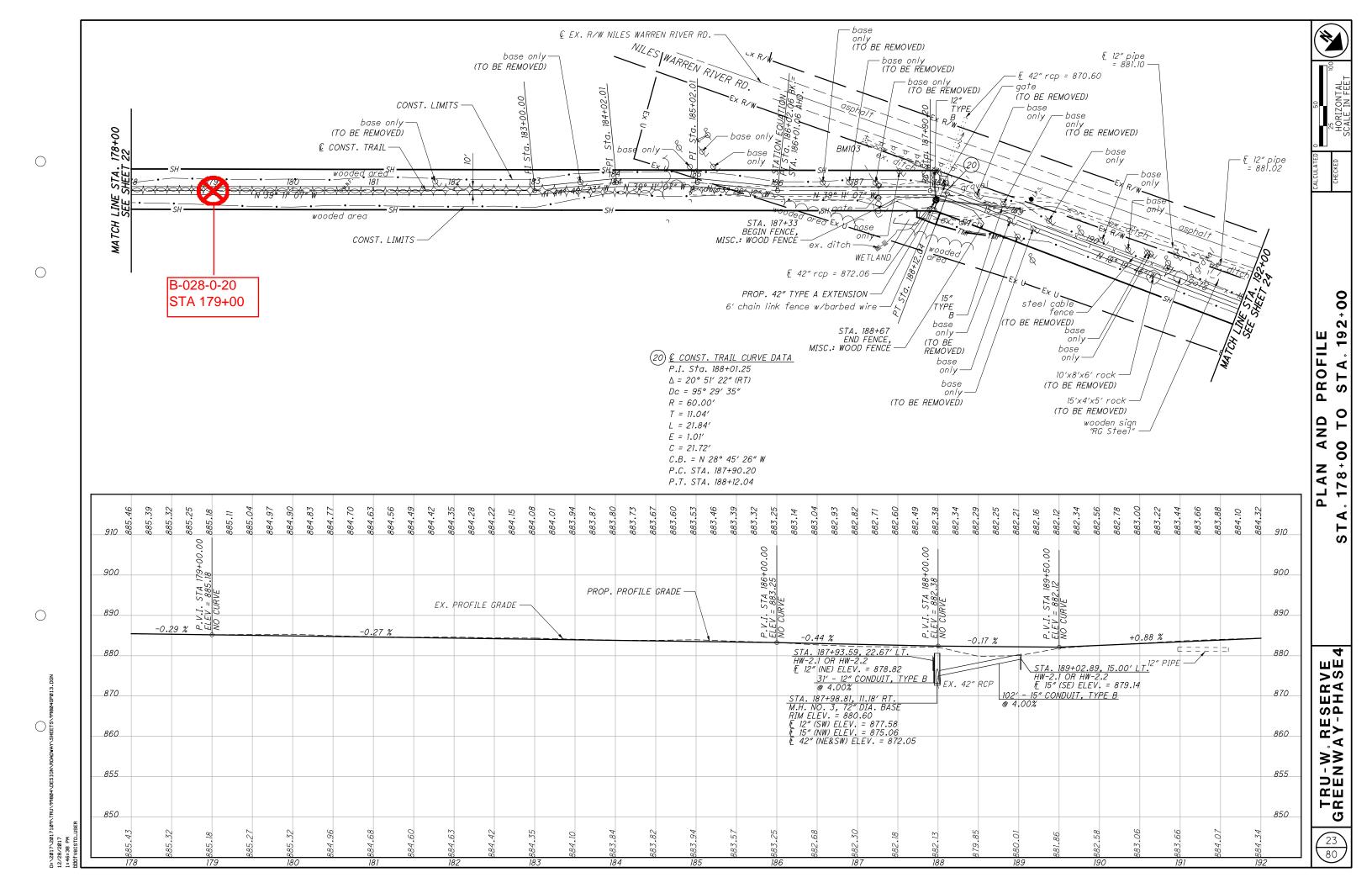


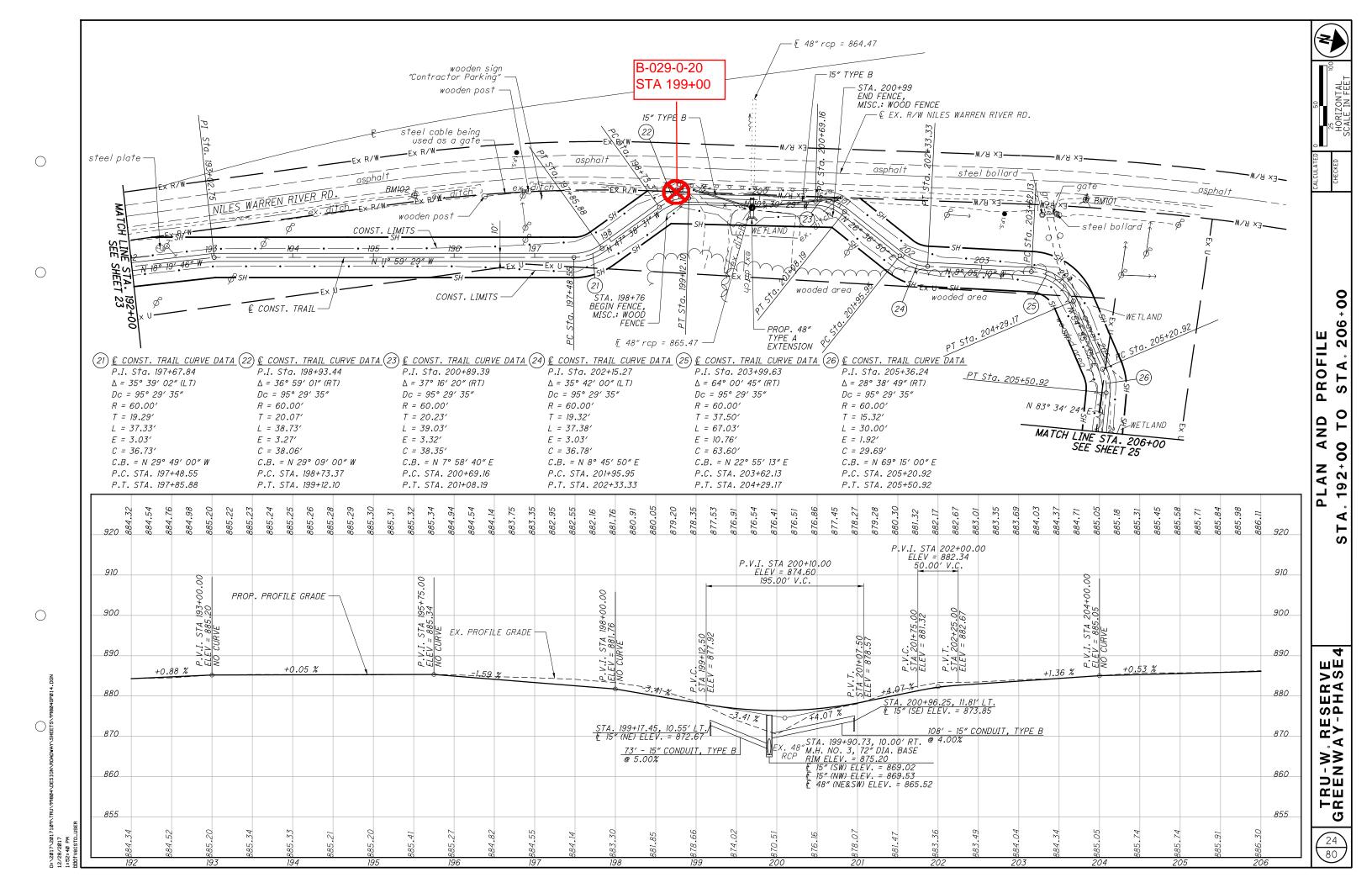


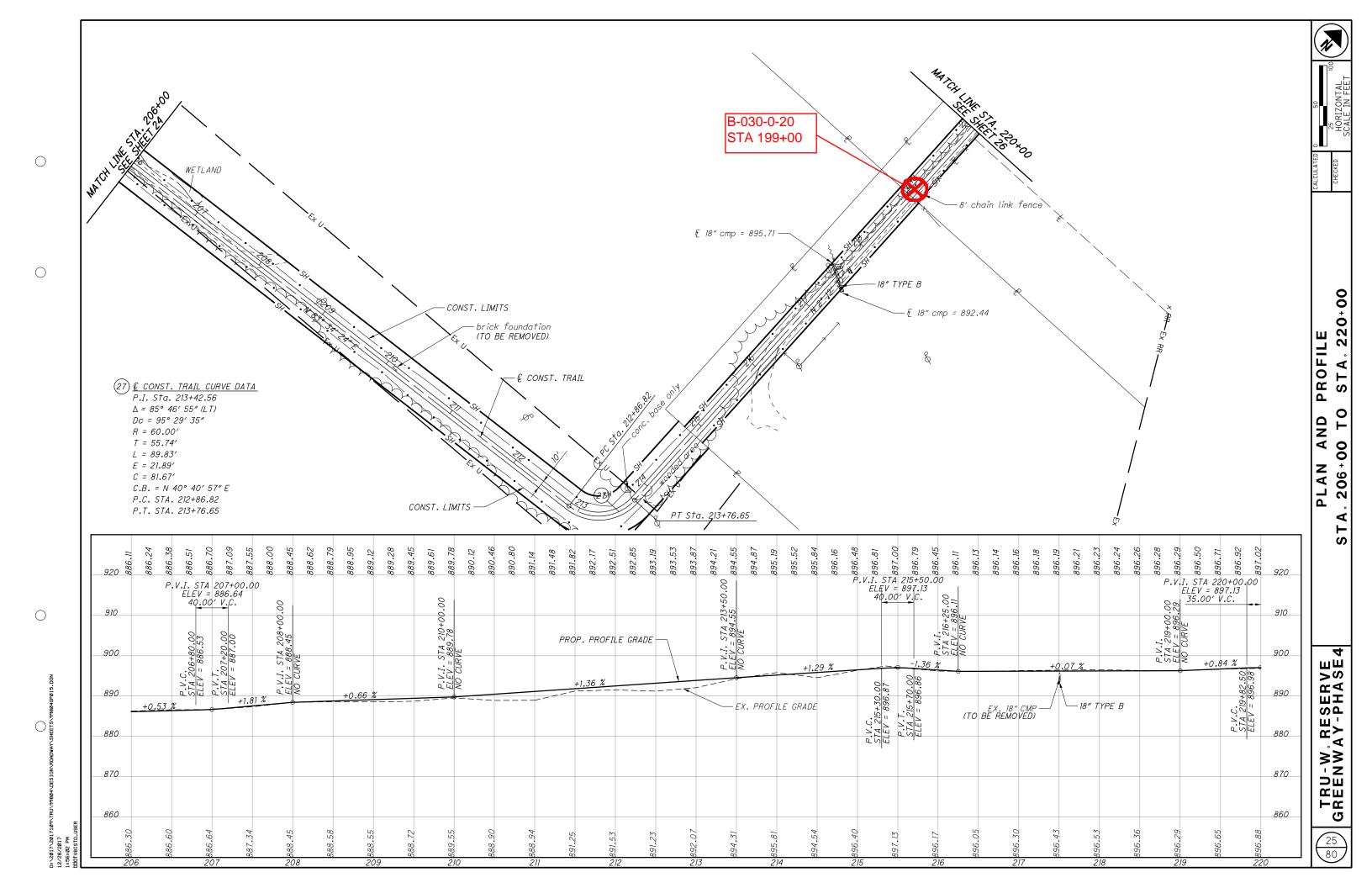


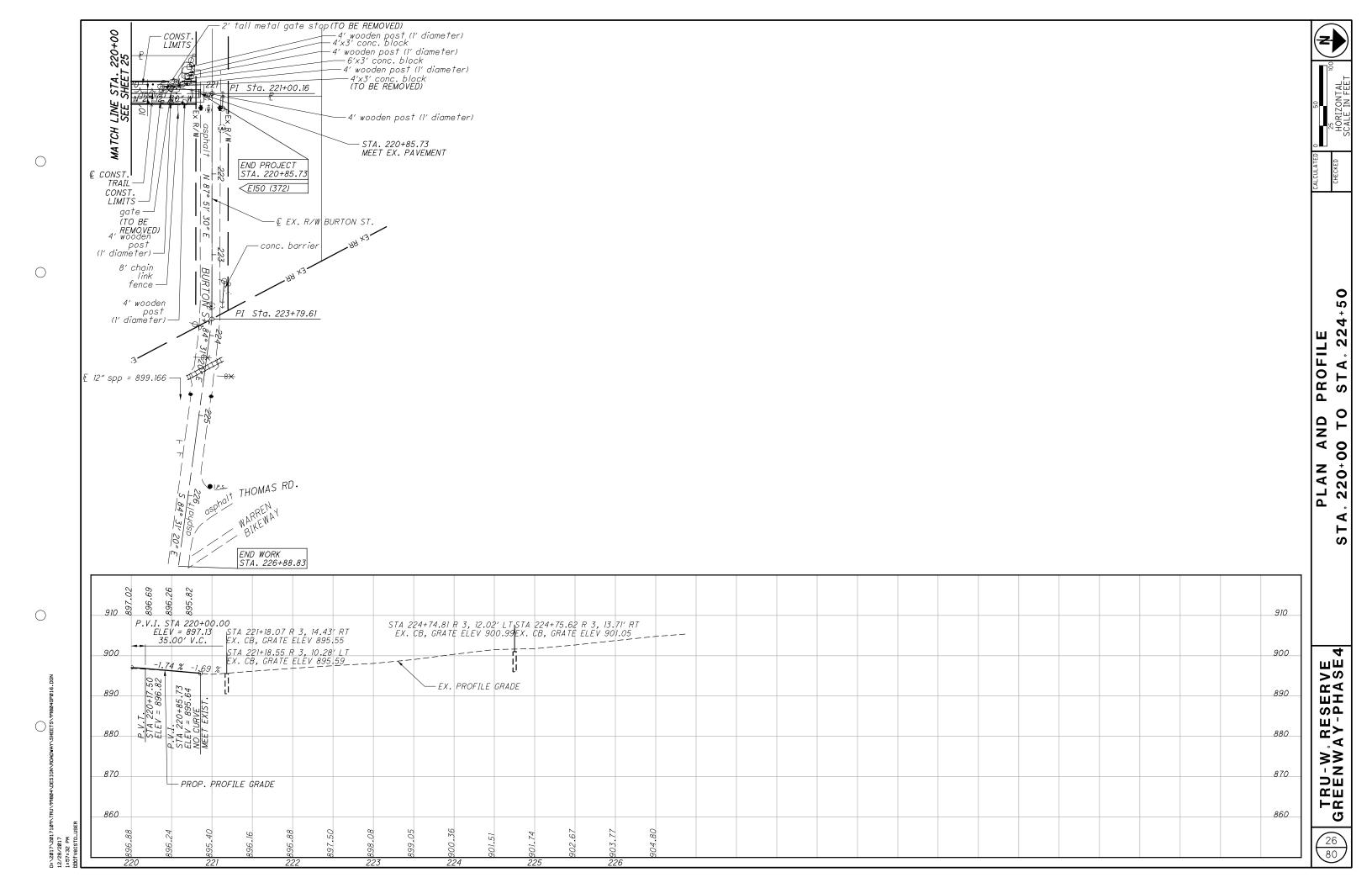












PROJECT: <u>GREENWAY BIKE TRAIL (PH4)</u> TYPE: ROADWAY	I -	ORILLING FIRM / OPERATORRI <u>DGEWAY / SIMPSO</u> SAMPLING FIRM / LOGGER: PSI / J. MELLINGER					NDRILL RIG: <u>CME 550 ATV</u> HAMMER: CME AUTOMATIC						I / OF ENT:	_	T: _	1	0+50		PLORA B-001-	TION ID 0-20
PID: SFN: START: 5/12/20 END: 5/12/20	DRILLING METHO SAMPLING METH	D:	3.25" HSA SPT		CAL	IBRAT	ION DATE RATIO (%)	:7	/29/1 81.9	9		VATI	ON:				EOB: 27, -80	6.0 ft. 0.762427		PAGE 1 OF 1
MATERIAL DESCRIPTION	V	ELEV.	DEPTHS	SPT/	N ₆₀	_	SAMPLE		_		DATION (%)			ATTERBERO				ODOT CLASS (GI)	SO4	BACK FILL
AND NOTES 12" SLAG RAILROAD BED FILL	1 L N	878.6		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ррпп	1 LV 1
STIFF, BROWN, SANDY SILT , SOME SAN GRAVEL, LITTLE ORGANICS, MOIST <i>FIL</i>			- 1 - 2 -	5 4 4	11	67	SS-1	1.50	25	8	19	28	20	25	17	8	15	A-4a (3)	-	1 × × 1
			- 3 -	4 4	11	56	SS-2	1.50	1	ı	-	-	-	1	-	-	19	A-4a (V)	<100	1777 1777
		873.6	E #]	8 16	44	75	SS-3T		ı	ı	-	-	-	ı	-	-	-	A-4a (V)	-	1>1/
DENSE, BLACK SLAG AND CINDERS, MC	DIST FILL	872.6	EOB6	16 11		73	SS-3B		32	33	21	11	3	NP	NP	NP	25	A-1-b (0)	-	1>N

End of Boring @ 6'

No Free Water Encountered Caved @ 3.5'

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 72 IN. SOIL CUTTINGS

	DRILLING FIRM / OPERATORRIDGEWAY / SIMPSONE SAMPLING FIRM / LOGGER: PSI / J. MELLINGER F											TION MME	I / OF	FSE	T: _	2	24+50	E	EXPLORATION B-002-0-20	
PID: SFN: [DRILLING METHOL SAMPLING METHO	3.25" HSA CALIBRATION DATE: 7/29/19 E							ELE\	/ATI	ON:	877.			EOB: 57, -80	ft.	PAGE 1 OF 1			
MATERIAL DESCRIPTION AND NOTES			DEPTHS	SPT/ RQD	N ₆₀							ATION (%)			ERBI PL	ERG	WC	ODOT CLASS (G	SO4	
12" TOPSOIL MEDIUM DENSE 24" SLAG AND CINDERS I	FILL 0.09	877.7 876.7 874.7	- - 1 - - 2 -	6 9 5	19	100	SS-1	(tsf)	42	18		16	5	NP		NP		A-1-b (()) -	V
LOOSE, BROWN TO GRAY, SANDY SILT , MOIST TO WET		014.1	- 3 - - 4 -	2 3	7	100	SS-2B		3	9	34	41	13	NP	NP	NP	20	A-4a (4		7 × × × × × × × × × × × × × × × × × × ×
		871.7	- 5 - EOB6	3 2 3 2	7	83	SS-3		-	-	-	-	-	-	-	-	19	A-4a (V	′) <10	1 × × × × × × × × × × × × × × × × × × ×

End of Boring @ 6'

No Free Water Encountered Caved @ 2'

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 72 IN. SOIL CUTTINGS

PROJECT: GREENWAY BIKE TRAIL (PH4) TYPE: ROADWAY		DRILLING FIRM / OPERATORRIDGEWAY / SIMPSONI SAMPLING FIRM / LOGGER: PSI / J. MELLINGER I					LL RIG: CME 550 ATV MMER: CME AUTOMATIC						I / OF ENT:	FSE	T: _	5	53+50			ation id 3-0-20
PID:SFN:	DRILLING METHOD SAMPLING METHO	D:	3.25" HSA SPT		CALI	BRAT	ION DATE	:7	/29/1 81.9	9		VATI	ON:	896			EOB: 20, -80	6.0 0.774984		PAGE 1 OF 1
MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/	N ₆₀	_	SAMPLE		_		ATIO	- (,		_	ERG		ODOT CLASS (C		
VERY LOOSE 18" SLAG WITH CINDERS PORCELAIN FRAGMENTS LOOSE TO MEDIUM DENSE, BROWN, CAND FINE SAND, SOME SILT AND CLAY, POSSIBLE FILL	DARSE	896.6	- 1 T - 1 T - 2 - - 3 - - 4 -	RQD 3 1 5 4 4 3	3 11	100	SS-1T SS-1B SS-2	 	58 - 0		15 - 68	13 - 15	-	-	-	NP - NP	-	A-1-b (0 A-3a (0	0) -	V 1 1 × 1 × 1 1 ×
	**************************************	890.6	EOB 6	3 4 5	10	75	SS-3		-	-	-	-	-	-	-	-	17	A-3a (\	/) -	1> \ 1 \ 1 \ 1

End of Boring @ 6'

No Free Water Encountered Caved @ 2'

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 72 IN. SOIL CUTTINGS

IRM / OPERAT	ORRI <u>DGEWAY / SIM</u>	<u>PSO</u> NDRIL	L RIG	: <u>CM</u> I	E 550	ATV		STAT	ΓΙΟΝ	/ OFF	SET	:	5	7+50			
FIRM / LOGGE	R: PSI / J. MELLING	ER HAM	MER:	CME A	NOTU	ЛАТІС		ALIG	NME	NT:							
IETHOD:	3.25" HSA	CAL	IBRAT	ION DATE	: 7	/29/1	9	ELEV	/ATIC	ON: 9	02.8	(MS	SL) I	EOB:	6.0 ft.		PAGE
METHOD:	SPT	ENE	RGY F	RATIO (%)	:	81.9		LAT /	LON	IG: _		41.1	8653	87, -80	776012		1 OF 1
ELEV.	DEDTUS S	SPT/ N	REC	SAMPLE	HP	G	RAD	OITA	V (%)	Α	TTE	RBE	RG		ODOT	SO4	BACK
902.8	DEPTHS R	RQD IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL L	L	PL	PI	WC	CLASS (GI)	ppm	FILL
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																	12V 1
12 y 900.3	_ 2 _ 7	5 7 16	100	SS-1	2.00	10	4	6	29	51 4	2	24	18	25	A-7-6 (12)	-	1 × × 1
	3 - 3	3 4 10	100	SS-2	1.50	0	2	7	38	53 4	1	18	23	19	A-7-6 (13)	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
896.8	5 - 5 - 6	4 7 15	75	SS-3	1.50	-	-	-	-	-	-	-	-	19	A-7-6 (V)	<100	1>1
	FIRM / LOGGE METHOD: METHOD: ELEV. 902.8	FIRM / LOGGER: PSI / J. MELLING 3.25" HSA METHOD: SPT ELEV. DEPTHS FILE ST ST ST ST ST ST ST ST	FIRM / LOGGER: PSI / J. MELLINGER METHOD: 3.25" HSA METHOD: SPT ELEV. DEPTHS SPT RQD N ₆₀ SYLV SYLV SYLV SYLV SYLV SYLV SYLV SYLV	FIRM / LOGGER: PSI / J. MELLINGER AMMER: 3.25" HSA CALIBRAT ENERGY FOR SPT ENERGY FOR SPT	FIRM / LOGGER: PSI / J. MELLINGER	FIRM / LOGGER: PSI / J. MELLINGER HAMMER: CME AUTON CALIBRATION DATE: 7 ENERGY RATIO (%): ELEV. 902.8 DEPTHS SPT RQD N ₆₀ REC SAMPLE HP (tsf) $\frac{1}{7} \frac{1}{7} \frac{1}{$	FIRM / LOGGER: PSI / J. MELLINGER / METHOD: 3.25" HSA	FIRM / LOGGER: PSI / J. MELLINGER / HAMMER: CME AUTOMATIC CALIBRATION DATE: 7/29/19 ENERGY RATIO (%): 81.9 ELEV. 902.8 DEPTHS SPT / RQD N ₆₀ REC SAMPLE HP GRAD (%) SAMPLE HP	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA CALIBRATION DATE: 7/29/19 ELEV // SPT ENERGY RATIO (%): 81.9 LAT // SPT // SPT // RQD ROW REC SAMPLE // SPT // RQD ROW ROW ROW REC SAMPLE // SPT // RQD ROW REC SAMPLE // SPT // RQD ROW ROW ROW REC SAMPLE // SPT // RQD ROW REC SAMPLE // SPT // RQD ROW REC SAMPLE // RQD ROW	FIRM / LOGGER: PSI / J. MELLINGER 3.25" HSA	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA CALIBRATION DATE: 7/29/19 ELEVATION: 9 METHOD: SPT ENERGY RATIO (%): 81.9 LAT / LONG: 9 ELEV. 902.8 DEPTHS SPT/ RQD Noo (%) ID (tsf) GR CS FS SI CL L 1	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA CALIBRATION DATE: 7/29/19 ELEVATION: 902.8 (MS ENERGY RATIO (%): 81.9 LAT / LONG: 41.1 PL	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA	FIRM / LOGGER: PSI / J. MELLINGER HAMMER: CME AUTOMATIC ALIGNMENT: ELEVATION: 902.8 (MSL) EOB: 6.0 ft.	FIRM / LOGGER: PSI / J. MELLINGER //ETHOD: 3.25" HSA

No Free Water Encountered Caved @ 3.5'

NOTES: NONE

START: 5/22/20 END: 5/22/20 SAMPLING METHOD: SPT ENERGY RATIO (%): 80 LAT / LONG: 41.186477, -80.777356 1 OF MATERIAL DESCRIPTION AND NOTES MEDIUM DENSE, BROWN 30" SLAG WITH CINDERS RAILROAD BED, MOIST FILL STIFF, BROWN TO GRAY, CLAY, MOIST START: 5/22/20 END: 5/22/20 SAMPLING METHOD: SPT ENERGY RATIO (%): 80 LAT / LONG: 41.186477, -80.777356 1 OF GRADATION (%) ATTERBERG (DD) ODOT CLASS (GI) PPM FIL AND NOTES STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST AND NOTES SAMPLING METHOD: SPT ENERGY RATIO (%): 80 LAT / LONG: 41.186477, -80.777356 1 OF GRADATION (%) ATTERBERG (DD) ODOT CLASS (GI) PPM FIL AND NOTES STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST TO SUBJECT TO THE CLAY TO THE CLA	PROJECT: GREENWAY E	BIKE TRAIL (PH4)	DRILLING FIRM	I / OPERATO	OR: <u>RIDGEWA</u>	Y / LITTLE	DRIL	L RIG	: DIEDR	ICH D	-50 A	TV_	STA	1OIT	N / OI	FFSE	T: _	(31+50	E		ATION IE
START: 5/22/20 END: 5/22/20 SAMPLING METHOD: SPT ENERGY RATIO (%): 80 LAT / LONG: 41.186477, -80.777356 1 OF MATERIAL DESCRIPTION AND NOTES MEDIUM DENSE, BROWN 30" SLAG WITH CINDERS RAILROAD BED, MOIST FILL STIFF, BROWN TO GRAY, CLAY, MOIST START: 5/22/20 END: 5/22/20 SAMPLING METHOD: SPT ENERGY RATIO (%): 80 LAT / LONG: 41.186477, -80.777356 1 OF GRADATION (%) ATTERBERG (DD) ODOT CLASS (GI) PPM FIL AND NOTES STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST AND NOTES SAMPLING METHOD: SPT ENERGY RATIO (%): 80 LAT / LONG: 41.186477, -80.777356 1 OF GRADATION (%) ATTERBERG (DD) ODOT CLASS (GI) PPM FIL AND NOTES STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST TO SUBJECT TO THE CLAY TO THE CLA	TYPE: ROAD	WAY	SAMPLING FIRM	M / LOGGEF	R: PSI/J.ME	LLINGER	HAM	MER:	DIEDRIC	H AUT	TOM/	ATIC	ALIC	GNM	ENT:						B-005	-0-20
MATERIAL DESCRIPTION SPT No No No No No No No N	PID: SFN:		DRILLING METH	HOD:	3.25" HSA		CAL	IBRAT	ION DATE	: 7	7/29/1	9	ELE	VAT	ION:	895	.3 (M	SL)	EOB:	6.0	ft.	PAGE
AND NOTES 895.3 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (GI) Ppm FI RAILROAD BED, MOIST FILL 1 1 6 12 100 SS-1 67 13 10 8 2 NP NP NP NP 20 A-1-a (0) - 1/2 STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST STIFF, BROWN TO GRAY, CLAY, MOIST AND NOTES RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (GI) Ppm FI A 1 1 1 1 6 1 12 100 SS-1 67 13 10 8 2 NP NP NP NP 20 A-1-a (0) - 1/2 A 1 2 100 SS-2 1.50 0 0 0 18 82 52 26 26 26 A-7-6 (17) - 1/2 A 1 2 1 100 SS-2 1.50 0 0 0 0 18 82 52 26 26 26 A-7-6 (17) - 1/2 A 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	START: <u>5/22/20</u> END	D: <u>5/22/20</u>	SAMPLING MET	THOD:	SPT		ENE	RGY F	RATIO (%)	:	80		LAT	/LO	NG:		41.	1864	77, -80	777356		1 OF 1
MEDIUM DENSE, BROWN 30" SLAG WITH CINDERS RAILROAD BED, MOIST FILL STIFF, BROWN TO GRAY, CLAY, MOIST	MATER	IAL DESCRIPTIO	V	ELEV.	DEDTUG	SPT/	N	REC	SAMPLE	HP	(SRAD	ATIO	N (%	6)	ATT	ERB	ERG		ODOT	SO4	BACK
RAILROAD BED, MOIST FILL 3 5 5 5 5 5 5 5 5 5	A	AND NOTES		895.3	DEFINS	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G	GI) ppm	FILL
STIFF, BROWN TO GRAY, CLAY , MOIST The state of the sta	,		/	· . I		_																- 12 N
4 12 100 SS-2 1.50 0 0 0 18 82 52 26 26 26 A-7-6 (17) - 4 2 5 2 5 2 5 2 5 2 6 2 6 2 6 2 6 2 6 2 6	TO VICTORIE BEB, INICIOT	7 722	V 7 7	LV	<u>-</u> :	1 16 2 6 3	12	100	SS-1		67	13	10	8	2	NP	NP	NP	20	A-1-a (0	0) -	1>1 × 1
	STIFF, BROWN TO GRA	AY, CLAY , MOIST			<u>-</u> :	$\frac{3}{4} + \frac{2}{4} + \frac{2}{5}$	12	100	SS-2	1.50	0	0	0	18	82	52	26	26	26	A-7-6 (1	7) -	
				889.3	EOB	5 5 6	15	83	SS-3	1.50	-	-	-	-	-	-	-	-	28	A-7-6 (\	/) <10	1>1/

No Free Water Encountered Caved @ 3.5'

NOTES: NONE

PROJECT		'AY BIKE	TRAIL (PH4)	1		/ OPERAT						: <u>DIEDR</u>				STA			FSE	T: _	6	55+60			RATION 6-0-20	
PID:	SFI		5/22/20	DRILLI	ING METH LING MET	HOD:	3.25	" HSA BPT		CALI	BRAT	TION DATE RATIO (%)	E:7				VATI	ON:	902			EOB: 70, -80	6.0 0.777971		PAG 1 OF	
	MA	TERIAL	DESCRIPTIO	N		ELEV.	DEP	THS	SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	sc		
		AND	NOTES			902.2	DLI	1110	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G	SI) pp	m FII	LL
9" TOPS VERY S		VN, SILT	, LITTLE SAN	D, MOIS	ST	++		- 1 - 1 - 2	5 7	16	100	SS-1	2.00	5	3	8	57	27	24	15	9	15	A-4b (8	3) -		. N . Y . Y
					+++++++++++++++++++++++++++++++++++++++	*** 898.2		3 -	4 5 7	16	100	SS-2	2.00	-	1	-	-	-	-	ı	-	14	A-4b (\	/) 59	00 4>	. 1
STIFF, B	BROWN, SA	NDY SIL	T , MOIST			896.2	FOR-	- 5 - 5	4 4 6 7	13	83	SS-3	1.50	5	7	16	47	25	24	14	10	16	A-4a (7	')	7 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	. N . Y . Y
							LOD	U																		

No Free Water Encountered Caved @ 5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / C						: <u>DIEDRI</u>				STA			FSE	T: _	7	73+50	E		ation id 7-0-20
PID: SFN: START: _5/22/20 END:5/22/20	DRILLING METHO SAMPLING METHO	D:	3.25" HSA SPT		CALI	BRAT	TION DATE	:7	/29/1 80		_	VATI	ION:	909.			EOB: 71, -80	6.0		PAGE 1 OF 1
MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	_	SAMPLE				ATIO	(,			ERG	WC	ODOT CLASS (G	SO ₄	
9" TOPSOIL SOFT, GRAY BROWN, SANDY SILT, LITT GRAVEL, WET	LE	909.4 908.7 905.4	- 1 - - 2 - - 3 -	2 1 1 2	3	33	SS-1	0.50 0.50	1	-	-	- 44	- 12	- 19	- 16	- 3	20	A-4a (V A-4a (4	7) 73	
VERY STIFF, BROWN, SILT AND CLAY , SSAND, MOIST	SOME	903.4	- 4 - - 5 - EOB - 6	2 5 7 6	16	79	SS-3	2.00	4	6	19	45	26	27	16	11	16	A-6a (8) -	1 / / / / / / / / / / / / / / / / / / /

No Free Water Encountered Caved @ 4'

NOTES: NONE

PROJECT: GREENWAY BIKE TI	RAIL (PH4)	DRILLING FIRM /	OPERATO	DRRIDGEWAY / S	MPSO!	NDRIL	L RIG	:CMI	E 550	ATV		STA	TION	N / OF	FFSE	T: _	3	38+00	E	EXPLO		
TYPE: ROADWAY		SAMPLING FIRM.	/LOGGER	R: PSI/J. MELLIN	NGER	HAM	MER:	CME A	NOTU	JATI	С	ALIC	BNM	ENT:					L	B-00	08-0-20	
PID: SFN:		DRILLING METHO	D:	3.25" HSA		CALI	BRAT	ION DATE	: 7	/29/1	9	ELE	VATI	ION:	911	.8 (M	SL)	EOB:	6.0	ft.	PAG	
START: <u>5/21/20</u> END: <u>5</u>	5/21/20	SAMPLING METH	OD:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.	1921	51, -80	.783570)	1 OF	: 1
MATERIAL DE	ESCRIPTIO	N	ELEV.	DEPTHS	SPT/	NI.	REC	SAMPLE	HP	G	RAD	ATIO	N (%	(o)	ATT	ERB	ERG		ODOT	S	04 BA	ACK
AND NO	OTES		911.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) pp	m FI	ILL
12" TOPSOIL			910.8																			V 1
MEDIUM DENSE, BROWN, ST (WITH SAND AND SILT , MOIST		MENTS		_ 2 -	8 11 11	30	67	SS-1	ı	39	10	18	23	10	25	19	6	12	A-2-4 (0)	- 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	LV 7
			907.8	- 3 -	8 5 4	12	100	SS-2	-	-	-	-	-	-	-	-	-	15	A-2-4 (V) <1	00 1 >	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
STIFF, GRAY, SILT AND CLAY , PETROLEUM ODOR <i>POSSIBLE</i>			905.8	_ 4 _ _ 5 _	7 5 5	14	75	SS-3	1.50	20	10	19	30	21	29	18	11	18	A-6a (4)	- 1 × 1 × 1	
		*///	1 000.0	—ЕОВ ——6 —											Ь							_

No Free Water Encountered Caved @ 4'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4) DRII TYPE: ROADWAY SAM	ILLING FIRM / OPERATO MPLING FIRM / LOGGER				L RIG MER:		E 550			STAT			FSE	T: _	g	93+50	E	XPLOR. B-009	ATION IE 1-0-20
PID: SFN: DRII	ILLING METHOD:	3.25" HSA SPT		CALI	BRAT	TION DATE	:7	/29/1 81.9	9		/ATI	ON:				EOB: 39, -80	6.0		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 903.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_		ATIOI	() CL	ATTE	ERBE PL	ERG PI	wc	ODOT CLASS (G	SO4	
18" SLAG FILL	903.4 	 - 1 -			(70)		(101)	CIT	00	10	O.	OL.				****	A 1 = 0	0	1 LV 1
HARD, MOTTLED BLACK AND GRAY, SANDY S MOIST <i>POSSIBLE FILL</i>	1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩ 901.4 ⁻ √ 900.9 2 -	30 29 5	46	100	SS-1T SS-1B	1.50	3	8	24	42	23	20	16	4	20	A-1-a (\ A-4a (6	<i>'</i>	727
STIFF, BROWN, SILT AND CLAY , SOME SAND LITTLE GRAVEL, MOIST	D,	- 3 -	2 4 7	15	100	SS-2	1.50	16	7	16	33	28	26	14	12	17	A-6a (6	-	
	897.4	- 4 5 6 - 6	4 4 5 6	12	58	SS-3	1.50	-	-	-	-	-	-	-	-	14	A-6a (V	′) <10	1>1

Water Encountered @ 2' Water at Completion @ 2.5' Caved @ 3.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / C SAMPLING FIRM /				l .	L RIG		E 550		STA			FSE	T: _	9	97+50	E		ATION ID 0-0-20
PID: SFN: START: 5/12/20 END: 5/12/20	DRILLING METHO SAMPLING METHO	D:	3.25" HSA SPT	IVOLIX	CALI	IBRAT	ION DATE RATIO (%)	:7	9		VATI	ION:	900.			EOB:	6.0		PAGE 1 OF 1
MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE			ATIO	(,			ERG		ODOT CLASS (G	SO-	
6" TOPSOIL STIFF, BROWN, SILT AND CLAY, SOME TRACE GRAVEL, MOIST		900.0 899.5 897.5	- - 1 - - - 2 -	2 5 6	15	78	SS-1	2.50	8 8		40	29	30	15	15	17	A-6a (9		V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1
VERY STIFF, MOTTLED BROWN AND G CLAY, LITTLE SAND, TRACE GRAVEL, N	, -		- 3 - - 4 - - 5 -	4 6 7 3 5 9	18 19	100		2.50	-	13	34	40	39	16	-	25	A-6b (13		00 < LV
		894.0	—ЕОВ——6—	12															1>1,1

No Free Water Encountered Caved @ 4.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / I				l .	L RIG		E 550			STA			FSE	T: _	1	01+50	EX	PLORA B-011-	TION IE -0-20
PID: SFN: START: _5/12/20 END:5/12/20	DRILLING METHOD SAMPLING METHO	D:	3.25" HSA SPT		CALI	BRAT	TION DATE	:7	/29/1 81.9	9	ELE		ON:	893.			EOB: 11, -80	6.0 ft 0.787393		PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	N	ELEV. 893.8	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS	, · ·	CL	ATTI	ERBE PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
13" TOPSOIL MEDIUM STIFF TO STIFF, BROWN, SILT CLAY, SOME SAND, TRACE GRAVEL, M		892.7	- 1 7 - 2 - - 3 - - 4 - - 5 -	1 2 4 5 8 8 4 7 9	8 22 15	89 94 100	SS-1	1.50 2.50 1.50	5	7	14	38	36	32	18	14	10 15 13	A-6a (9) A-6a (8) A-6a (V)	-	V V V V V V V V V V V V V V V V V V V

No Free Water Encountered Caved @ 5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4) TYPE: ROADWAY	DRILLING FIRM / C						: CMI	550		STA ¹			FSE	T: _	1	05+50)E		ation id 2-0-20
PID: SFN: START: 5/12/20 END: 5/12/20	DRILLING METHO SAMPLING METHO	D:	3.25" HSA SPT		CALI	BRAT	ION DATE RATIO (%)	:7	9	_	VATI	ON:	894.			EOB: 18, -80	6.0		PAGE 1 OF 1
MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/	N ₆₀	_	SAMPLE			ATIO	(,			ERG		ODOT CLASS (G	SO ₂	
7" TOPSOIL STIFF, MOTTLED BROWN AND GRAY, C LITTLE SAND, MOIST	,	894.6 894.0 892.1	- 1 - - 1 - - 2 -	RQD 1 3 5	11	6	SS-1	1.50	4		31	47	44	PL 20	PI 24	26	A-7-6 (1	/	V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1
VERY STIFF, BROWN, SILT AND CLAY , N	//UIST	888.6	- 3 - - 4 - - 5 - - 5 -	7 7 8 9	23	11		3.00 2.50	0	0	49	- 51	32	21	11	18 27	A-6a (V A-6a (8	,	1

No Free Water Encountered Caved @ 5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4) TYPE: ROADWAY	DRILLING FIRM / C					L RIG MER:		E 550			STA ¹			_	T: _	1	09+50) E		ATION ID 3-0-20
PID: SFN:	DRILLING METHOD SAMPLING METHOD	D:	3.25" HSA SPT		CALI	BRAT	ION DATE RATIO (%)	:7		9	_	VATI	ON:				EOB: 79, -80	6.01		PAGE 1 OF 1
MATERIAL DESCRIPTION	I	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	so	
AND NOTES		900.7	DEI IIIO	RQD	1 160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G	I) ppr	n FILL
8" TOPSOIL MEDIUM STIFF, BROWN, SILT AND CLAY.	LITTLE	900.0	1 -	-																
SAND, TRACE GRAVEL, MOIST	, LITTLE	898.2	- 2 -	WOH 2 4	8	78	SS-1	1.50	8	6	14	35	37	32	19	13	18	A-6a (9) -	1 × 1 × 1
STIFF, BROWN, CLAY , MOIST			3 -	3 4 6	14	100	SS-2	1.50	-	-	-	-	-	-	-	-	21	A-6a (V) 90	0 1 × 1 × 1
		894.7	- 5 - - 5 -	3 4 6 7	14	83	SS-3	1.50	3	0	0	15	82	52	27	25	28	A-7-6 (16	6) -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

No Free Water Encountered Caved @ 5.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4) TYPE: ROADWAY	DRILLING FIRM / OPERAT			L RIG		E 550			STA			FSE	T: _	1	13+50)EX	PLORA B-014-	TION IE -0-20
PID: SFN:	DRILLING METHOD: SAMPLING METHOD:	3.25" HSA SPT	CAL	IBRAT	TION DATE	:7	/29/1 81.9	9		VATI	ON:	899.			EOB: 09, -80	6.0 ft 0.789679		PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	N ELEV. 899.1		PT/ QD N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_	_	ATIO FS	, ,	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
6" TOPSOIL SOFT TO VERY STIFF, MOTTLED BROW GRAY CLAY , LITTLE SAND, MOIST	898.6	- 1 1 - 2 - 4	1 4	67	SS-1	0.50	1	2	13	34	50	48	23	25	34	A-7-6 (16) -	V
		3 - 4	6 18	89	SS-2	2.50	-	-	-	-	-	-	-	-	16	A-7-6 (V)	640	7 × × × × × × × × × × × × × × × × × × ×
	893.1	EOB 6	5 6 10	79	SS-3	1.50	1	1	1	17	80	50	27	23	25	A-7-6 (15	-	1 × 1 × 1 × 1 × 1

No Free Water Encountered Caved @ 5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4) TYPE: ROADWAY	DRILLING FIRM / (SAMPLING FIRM /						L RIG MER:		E 550			_		N / OF ENT:	_	T: _	1:	21+50)E		ATION ID 5-0-20
PID: SFN: START:5/13/20END:5/13/20	DRILLING METHO SAMPLING METHO	D:	3.25" H SPT	SA		CALI	BRAT	ION DATE	:7	/29/1 81.9	9		VATI	ON:				EOB: 17, -80	6.0 0.791263		PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	N	ELEV. 891.4	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS		CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (0		
8" TOPSOIL STIFF TO VERY STIFF, BROWN, SILT AN SOME SAND AND GRAVEL, MOIST	ID CLAY,	890.7	-	- 1 - - 2 - - 3 - - 4 -	2 2 4 6 9 10		100	SS-1 SS-2	1.50	24	9	24	22 35	32	27	15 17	12	16	A-6a (2	7) 86	
		885.4	EOB	- 5 - - 6	6 7 9	18	83	SS-3	2.50	8	5	12	40	35	30	18	12	17	A-6a (9) -	1 L 1 1

No Free Water Encountered Caved @ 5.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / C				ı	L RIG		E 550			STA			FSE	T: _	1	25+50)EX	PLORA B-016-	TION IE 0-20
PID: SFN: START: _5/13/20 END:5/13/20	DRILLING METHO SAMPLING METHO	D:	3.25" HSA SPT		CAL	IBRAT	TION DATE	:7	/29/1 81.9	9		VATI	ON:	897.			EOB:	6.0 ft 0.792005		PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	N	ELEV. 897.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		_	ATIO FS	, · ·	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
13" TOPSOIL SOFT TO VERY STIFF, BROWN SILT AN LITTLE SAND, TRACE GRAVEL, MOIST	D CLAY,	896.8	- 1 - 2 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6	WOH 1 1 1 5 8 3	3 18 20	67 78 100	SS-1	0.50 2.50 2.50	6 10	7	15	38	34 36	29 28	17 17 -	12	20 14 15	A-6a (8) A-6a (8) A-6a (V)	- <100	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

No Free Water Encountered Caved @ 5.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4) TYPE: ROADWAY	DRILLING FIRM / OI SAMPLING FIRM / L					L RIG		E 550			_	TION SNME	/ OFI	FSET	:	12	29+50	F		ATION ID 7-0-20
PID: SFN:	DRILLING METHOD SAMPLING METHO):	3.25" HSA SPT		CALI	BRAT	ION DATE RATIO (%)	E:7	/29/1 81.9	9	ELE		ON:				EOB: 8, -80	6.0 0.792785		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	-	ELEV. 897.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		RAD cs	ATIO FS	N (%)		ATTE		RG PI	WC	ODOT CLASS (C	SO ₂	
7" TOPSOIL STIFF TO VERY STIFF, BROWN, SANDY STRACE GRAVEL, MOIST		896.4	- - 1 - - 2 - - - 3 -	1 3 4 6 8	10	100	SS-1 SS-2	1.50	9	12	42	20	17	20	15	5	15 15	A-4a ((A-4a (\	<u> </u>	V V V V V V V V V V V V V V V V V V V
		891.0	- 4 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	4 7 9 7	22	92	SS-3	2.50	7	7	15	41	30	25	16	9	15	A-4a (7		

No Free Water Encountered

NOTES: NONE

PROJECT: GREENWAY BIKE TRAI	IL (PH4)	_				1			E 550			STA				T: _	1	33+50)		ATION IE 8-0-20
TYPE: ROADWAY		SAMPLING FIF	RM / LOGGEF	R: PSI/J.MELLII	NGER	HAM	IMER:	CME A	NOTU	MATI	С	ALIC	SNMI	ENT:					L	D-0 I	
PID: SFN:		DRILLING ME	THOD:	3.25" HSA		CAL	IBRAT	ION DATE	E:7	7/29/1	9	ELE	VATI	ION:	898	.6 (M	SL)	EOB:	6.0	ft.	PAGE
START: <u>5/13/20</u> END: <u>5/13</u>	3/20	SAMPLING ME	ETHOD:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.	2008	43, -80	0.793540)	1 OF 1
MATERIAL DESC	RIPTION	V	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	Ċ	RAD	OITA	N (%	(o)	ATT	ERB	ERG		ODOT		
AND NOTE	ES		898.6	DLFIIIS	RQD	1160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (C	GI) ppr	n FILL
8" TOPSOIL			897.9		-																1 LV 1
STIFF TO VERY STIFF, BROWN,		LAY,			1																
SOME SAND, TRACE GRAVEL, M	OIST			_ 2 -	2 7	12	100	SS-1	1.50	7	10	24	31	28	30	14	16	13	A-6b (7	7) -	12V 1
					5																- 1 LV 1
			894.6	- 3 -	7 8	20	100	SS-2	2.50	-	-	-	-	-	-	-	-	14	A-6b (\	/) <10	
VERY STIFF, BROWN, SILT AND (SAND AND GRAVEL, MOIST	CLAY, L	ITTLE		<u> </u>	4 8	27	100	00.0	3.50	44	_	10	34	36	28	47	11	15	A C = /-	7)	1>1/
SAND AND GIVAVEE, MOIST			892.6	- 5	12 14	21	100	SS-3	3.50	14	6	10	34	30	28	17	11	15	A-6a (7	' -	1 2 X
				—ЕОВ — — 6—			•	•		-	•			•	-		•		•	•	_

No Free Water Encountered

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / OPE					L RIG MER:		E 550			STAT			FSE	T: _	1	37+50)E	PLORA B-019	ATION ID -0-20
PID: SFN: START: 5/13/20 END: 5/13/20	DRILLING METHOD: SAMPLING METHOD		3.25" HSA SPT		CALI	BRAT	ION DATE RATIO (%)	:7	/29/1 81.9	9		/ATI	ON:	895.	_ `		EOB: 35, -80	6.0 f 0.794287	t	PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	· -	LEV. 395.2	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_		ATIOI FS	() ,	ATTI LL	ERBE PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	
6" TOPSOIL STIFF TO VERY STIFF, BROWN, SILT AI SOME SAND, TRACE GRAVEL, MOIST	ID CLAY,	889.2	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 2 4 6 8 10 4 7 7 8	8 25 19	100	SS-1 SS-2	1.50 2.50 2.50	8 10	6	14	39	33	31 29	17	14	17 14 16	A-6a (9) A-6a (8) A-6a (V)	-	V V V V V V V V V V V V V V V V V V V

No Free Water Encountered

NOTES: NONE

	PROJECT: GREEN																		FSET	:	13	39+00	EX	PLORATE B-020-0	
		ROADWA	<u>AY</u>	SAMPLING					NGER_			SAFET				ALIG									PAGE
		FN:		DRILLING N			3.25"			1		ION DATE		N/A	_	ELE\		_					6.92 f		1 OF 1
L	START: <u>5/24/20</u>	_ END: _	5/24/20	SAMPLING	METH		SI	PT		ENE		RATIO (%)		60		LAT						4, -80).794628	<u> </u>	IOFI
	N	IATERIAL	. DESCRIPTIO	N		ELEV.	DEPT	-HG	SPT/	N ₆₀	REC	SAMPLE	HP			IOITA)	ATTE	RBE	RG		ODOT	SO4	BACK
_L		AND	NOTES			878.1	DLII	110	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
GPJ	12" TOPSOIL							L	1		0.7	SS-1T		_	_	_	_	_	_	_	_	31	A-8a (V)	_	1 LV.
4.	VEDV CTIEF TO I	ADD OD	AV CH T AND	CL AV	\longrightarrow	877.1		<u> </u>	2	3	67	SS-1B		-	-	-	-	-	-	-	-	-	A-6a (V)	_	12×1
ASI	VERY STIFF TO H SOME SAND, SOI							 	4						_					_			A-0a (V)	<u> </u>	- 1 LV.
효	MOIST TO WET	/IL 0/ (I 1D	OTONETTORO	WILLIATO,				_ 2 -	5	44	67	SS-2		21	10	16	28	25	27	16	11	15	A-6a (4)	-	1>1.
ΑŢ								- 3 -	13	+															12V
Я							∇ 874.1 w 873.6	<u> </u>	8	14	17	SS-3	1.50	37	15	9	12	27	29	16	13	13	A-6a (2)	-	ZLV.
<u>m</u>							W 8/3.6		9	<u> </u>															12>1.
ROPARKS BIKE PATH PHASE						872.6		<u></u> 5 −	13	26	100	SS-4T	3.50	-	-	-	-	-	-	-	-	-	A-6a (V)	-	12V
PA	MEDIUM DENSE,	- ,		MENTS	0./ 39			F 6 -	1 3			SS-4B	3.50		19	24	10		24	12	12	25	A-2-6 (0)] 1/> /,
꿈	WITH SAND, SILT,				_ 	871.2	EOB-	-	13 50/5"	-	36	SS-5		-	-	-	-	-	-	-	-	9	Rock (V)	-	7 LV -
ME	SANDSTONE, GR	Y, HIGHI	LY WEATHER	ED, WEAK		<u> </u>	EOB-					-		-		•						•			
219	End of Boring @ 6	11"																							
393	Life of Boiling @ 0	11																							
S/01	Water Encountered	d @ 4' 6"																							
Ë	Water at Completic	on @ 4'																							
Ā																									
ΡĀ																									
Ę																									
\$\ \$																									
Ę																									
卣																									
Ş																									
32 -																									
15.																									
8/20																									
7/2																									
Ë																									
1																									
8																									
HO																									
-																									
×																									
(8.5																									
ES																									
FAT																									
Σ̈́																									
×																									
90																									
STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 7/28/20 15:32 - \\CLIENT\C\$\GINT\DATA FILES\013932\																									
00																									
S C																									
DAF																									
AN																									

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4)	DRILLING FIRM / (PERATO	RRI <u>DGEWAY/SI</u>	MPSO!	NDRIL	L RIG	:CMI	E 550	ATV		STA	TION	N / OF	FSE	T: _	1	43+00)E		ATION IE
TYPE: ROADWAY	SAMPLING FIRM /	LOGGER	: PSI / J. MELLIN	IGER	HAM	IMER:	CME A	NOTU	MATIO	2	ALIC	BNM	ENT:					L	B-02	1-0-20
PID: SFN:	DRILLING METHO	D:	3.25" HSA		CALI	BRAT	ION DATE	: 7	/29/1	9	ELE	VATI	ION:	898	9 (M	SL)	EOB:	6.0	ft.	PAGE
START: <u>5/13/20</u> END: <u>5/13/20</u>	SAMPLING METH	OD:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.2	2029	56, -80	795543		1 OF 1
MATERIAL DESCRIPTIO	V	ELEV.	DEPTHS	SPT/	NI	REC	SAMPLE	HP	G	RAD	ATIO	N (%	5)	ATT	ERBI	ERG		ODOT	so	4 BACK
AND NOTES		898.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	L	PL	PI	WC	CLASS (C	GI) ppn	n FILL
10" TOPSOIL		898.1	-																	7 LV 1
MEDIUM STIFF, BROWN, SANDY SILT , M	OIST	896.4	- 1 - - 2 -	WOH 1 3	5	100	SS-1	0.50	5	6	24	43	22	24	16	8	20	A-4a (6	6) -	1> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
VERY STIFF, BROWN, SILT AND CLAY , SAND AND STONE FRAGMENTS, MOIST	- Y///		3 -	5 6 8	19	100	SS-2	2.50	30	16	10	23	21	31	16	15	13	A-6a (3	3) -	
		892.9	- 5 - - 5 - - 6	3 5 7	16	100	SS-3	2.00	-	-	-	-	-	-	-	-	14	A-6a (\	/) <10	1>1/

No Free Water Encountered Caved @ 5.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4)	DRILLING FIRM / C	PERATO	RRIDGEWAY / S	IMPSOI	NDRIL	L RIG	:CMI	E 550	ATV		STA	MOIT	N / OF	FFSE	T: _	1	47+00) E		RATION IE
TYPE: ROADWAY	SAMPLING FIRM /	LOGGER:	: PSI / J. MELLIN	NGER	HAM	MER:	CME A	NOTU	MATIO	2	ALIC	BNM	ENT:					L	B-02	22-0-20
PID: SFN:	DRILLING METHO	D:	3.25" HSA		CALI	BRAT	ION DATE	: 7	/29/1	9	ELE	VATI	ION:	894	.1 (M	SL)	EOB:	6.0	ft.	PAGE
START: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METHO	DD:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.2	20397	74, -80	795933	3	1 OF 1
MATERIAL DESCRIPTION	1	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%	(o)	ATT	ERBI	ERG		ODOT	sc	04 BACK
AND NOTES		894.1	DEFINS	RQD	11460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	Ц	PL	PI	WC	CLASS (0	GI) pp	m FILL
9" TOPSOIL		893.4		-																1LV 1
STIFF, BROWN, SANDY SILT , MOIST			<u></u> 1 7	WOH	44	400	00.4	4.50	_	•	0.5	20	00	00	40	_	40	A 4 - //		
		891.6	_ 2 -	4 6	14	100	SS-1	1.50	1	6	35	36	22	20	13	7	19	A-4a (9) -	1>1
VERY STIFF, BROWN, SILT AND CLAY , SO SAND, TRACE GRAVEL, MOIST	OME		_ 3 -	5 8	25	100	SS-2	3.00	7	6	16	39	32	30	15	15	14	A-6a (9	9) -	· 1>^ 1
, , , , , , , , , , , , , , , , , , , ,			 4 	4																
		000.4	_ 5 -	[.] 5	16	100	SS-3	2.00	-	-	-	-	-	-	-	-	15	A-6a (\	/) <1	17 - 7
		888.1	—EOB——6—	7																1>1

No Free Water Encountered Caved @ 3.5'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / (SAMPLING FIRM /				ı	L RIG		E 550			STA [®]			FSE	T: _	1	51+00)E>	PLORA B-023	ATION ID -0-20
PID: SFN: START:5/21/20 END:5/21/20	DRILLING METHO	D:	3.25" HSA SPT		CAL	BRAT	TION DATE	:7	/29/1 81.9	9		VATI	ION:	888			EOB:	5.67	ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES)N	ELEV. 888.2	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_	_	ATIO FS	N (%	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
11" TOPSOIL STIFF TO HARD, BROWN, SANDY SILT , STONE FRAGMENTS, MOIST	SOME	887.3	- 1 - 2 3 4	0 3 4 8 13 11 10 28	10 33 72	100	SS-1	1.50	20		18	34	14	23	17	6	14 10	A-4a (3) A-4a (V) Rock (V)	<10	- < LV 1
SILTSTONE, BROWN, HIGHLY WEATHE WEAK	RED,	882.5	EOB 5 -	25 50/2"	. –	70	55-3		-	-	-	-	-	-	-	-	15	ROCK (V	-	7 L 7

End of Boring @ 5' 8"

No Free Water Encountered Caved @ 3.5'

NOTES: NONE

PROJEC1	Γ: GREENV	NAY BIKI	E TRAIL (PH4)	DRILLING FIF	RM / 0	OPERAT	ORR <u>IDGEV</u>	VAY/S	<u>IMPSO</u> I	NDRIL	L RIG	:CM	E 550	ATV		STA	MOIT	1 / OF	FFSE	T:	1	63+00			TION IE
TYPE:	F	ROADWA	·Υ	SAMPLING F	IRM /	LOGGE	R: PSI/J.	MELLI	NGER	HAM	MER:	CME A	NOTUA	MATI	С	ALIC	SNME	ENT:						B-024-	
PID:	SF	=N:		DRILLING ME	THO	D:	3.25" I	HSA		CALI	BRAT	ION DATE	: 7	//29/1	9	ELE'	VATI	ON:	892	7 (M	SL)	EOB:	6.0 ft.		PAGE
START: _	5/21/20	_ END: _	5/21/20	SAMPLING N	1ETH	OD:	SF	·Τ		ENE	RGY F	RATIO (%)):	81.9		LAT	/ LO	NG:		41.2	20762	21, -80	.798653		1 OF 1
	М	ATERIAL	DESCRIPTION	V		ELEV.	DEPT	ue	SPT/	N	REC	SAMPLE	HP	(RAD	ATIO	N (%	o)	ATT	ERBE	ERG		ODOT	SO4	BACK
		ANI	NOTES			892.7	DEFI	ПО	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	Ц	PL	PI	WC	CLASS (GI)	ppm	FILL
30" SLA	G DRIVEW	AY FILL			1 LV																				1 LV -
					1 V T V	890.2	∇ 890.7 W 890.2	- 1 - 2	28 19 25	60	100	SS-1		50	26	14	8	2	NP	NP	NP	17	A-1-a (0)	-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
18" DRIV	EWAY GF	RAVEL BA	ASE WITH SA	ND FILL	V 7 7 7	888.7		3 -	14 10 8	25	33	SS-2		46	27	15	9	3	NP	NP	NP	25	A-1-b (0)	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
VERY S	TIFF, BRO	WN, SIL 1	r , WET		++++	886.7		- 4 - 5 -	6 8 10	25	50	SS-3	3.00	5	5	4	65	21	28	24	4	26	A-4b (8)	-	77 77 77 77 77 77 77 77 77 77 77 77 77
					1: : : :	000.7	EOB—	6	14																1.7

Water Encountered at 2.5' Water at Completion @ 2' Caved @ 2.5'

NOTES: WATER LEVELS POTENTIALLY AFFECTED BY PROXIMITY TO DRAINAGE DITCH

PROJECT: GREENWAY BIKE TRAIL (PH4) DRILLING F				L RIG	i:CMI	E 550	ATV		STA	1OIT.	N / OF	FFSE	T: _	1	67+00) E		ration id 25-0-20
TYPE: ROADWAY SAMPLING	FIRM / LOGGER	R: PSI/J.MELLINGI	ER HAM	MER:	CME A	NOTU	ЛАТІС	0	ALIC	SNMI	ENT:					L	D-U2	:5-0-20
PID: SFN: DRILLING M	METHOD:	3.25" HSA	CAL	IBRAT	ION DATE	:7	/29/1	9	ELE'	VAT	ION:	889	.2 (M	ISL)	EOB:	6.0	ft.	PAGE
START: <u>5/21/20</u> END: <u>5/21/20</u> SAMPLING	METHOD:	SPT	ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.	2084	36, -8	0.799620)	1 OF 1
MATERIAL DESCRIPTION	ELEV.	DEPTHS S	SPT/ N ₆₀	REC	SAMPLE	HP	G	RAD	OITA	N (%	(o)	ATT	ERB	ERG		ODOT	sc	04 BACK
AND NOTES	889.2	R	RQD 14 ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) pp	m FILL
12" SLAG DRIVEWAY	5 LV 888.2																	12V
STIFF TO HARD, DARK GRAY, CLAY , AND STONE FRAGMENTS, LITTLE SLAG, MOIST <i>FILL</i>		_ 2 _ 6	9 41	6	SS-1		39	14	7	28	12	43	27	16	24	A-7-6 (3)	1 × × × × × × × × × × × × × × × × × × ×
	885.2	3 7	4 8	11	SS-2	1	1	1	-	-	-	-	-	-	46	A-6b (\	V)	- \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
STIFF, GRAY BROWN, CLAY , LITTLE SAND, MOIST	883.2	5 -	6 9 20	13	SS-3	1.50	8	6	5	25	56	51	25	26	29	A-7-6 (1	17)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	1111 000.2	—EOB——6——																

No Free Water Encountered Caved @ 3'

NOTES: NONE

PROJECT: GREENWAY BIKE TRAIL (PH4 TYPE: ROADWAY	DRILLING FIRM / C						L RIG		E 550			STA			FSE	T: _	1	71+00)EX	PLORA B-026	ATION IE -0-20
PID: SFN: START:5/21/20END:5/21/20	DRILLING METHO SAMPLING METHO	D:	3.25" H	ISA		CALI	IBRAT	TION DATE	:7	/29/1 81.9	9		VATI	ION:	888			EOB: 04, -80	6.0 ft 0.800510		PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	N	ELEV. 888.1	DEPTH	lS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS	N (%	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	
18" SLAG DRIVEWAY STIFF, BROWN AND GRAY TO BROWN, CLAY, TRACE SAND AND GRAVEL, MOI			₩ 886.6	- 1 T - 2 - - 3 -	4 3 7	14	67	SS-1T SS-1B SS-2	1.50		4	- 4	30	50	- 40	23	17	- 24 18	A-6b (11		V V V V V V V V V V V V V V V V V V V
		882.1	EOB	- - - - - - - - - - - -	14 8 11 13 15	33	83		4.00		3	2	28	63	37	21	16	19	A-6b (10		

Water Encountered @ 1.5' Caved @ 4'

NOTES: WATER LEVELS POTENTIALLY AFFECTED BY PROXIMITY TO DRAINAGE DITCH ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 72 IN. SOIL CUTTINGS

PROJECT: GREENWAY BIKE TRAIL (PH4	DRILLING FIRM / O	PERATO	ORRIDGEWAY / SI	MPSO!	NDRIL	L RIG	:CMI	E 550	ATV		STA	10IT	N / OI	FFSE	T: _	1	75+00) E		ATION IE
TYPE: ROADWAY	SAMPLING FIRM /	LOGGEF	R: PSI/J. MELLIN	IGER	HAM	IMER:	CME A	NOTU	MATI	С	ALIC	SNM	ENT:					L	B-02	7-0-20
PID: SFN:	DRILLING METHOD	D:	3.25" HSA		CALI	BRAT	ION DATE	: 7	/29/1	9	ELE	VAT	ION:	886	.3 (M	SL)	EOB:	6.0	ft.	PAGE
START: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METHO	D:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/LO	NG:		41.	21017	73, -80	0.801399)	1 OF 1
MATERIAL DESCRIPTION	N	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	Ċ	RAD	ATIO	N (%	6)	ATT	ERBI	ERG		ODOT		
AND NOTES		886.3	DLFIIIS	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (C	GI) ppr	n FILL
30" SLAG DRIVEWAY	1 1 N			_																
	7 × × × × × × × × × × × × × × × × × × ×	883.8	884.8 - 1 - 2 -	2 6 10	22	67	SS-1		52	21	13	9	5	NP	NP	NP	28	A-1-a (0) -	1>1×
STIFF TO VERY STIFF, BROWN, CLAY , GRAVEL, TRACE SAND, MOIST	ITTLE		3 -	9 4 5	12	67	SS-2	1.50	13	4	5	22	56	46	23	23	22	A-7-6 (1	-	V 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		880.3	- 5 - - 5 -	3 6 9 7	20	58	SS-3	2.50	-	-	-	-	-	-	-	-	25	A-7-6 (V) <10	1>1

Water Encountered @ 1.5' Water at Completion @ 1.5' Caved @ 3'

NOTES: WATER LEVELS POTENTIALLY AFFECTED BY PROXIMITY TO DRAINAGE DITCH

PROJECT: GREENWAY BIKE TRAIL (PH4)	DRILLING FIRM / OF	PERATO	ORRI <mark>DGEWAY / SI</mark>	MPSO!	NDRIL	L RIG	:CMI	E 550	ATV		STA	1OIT	N / OF	FFSE	T: _	1	79+00)E		ATION IE
TYPE: ROADWAY	SAMPLING FIRM / LO	.OGGEF	R: PSI/J. MELLIN	IGER	HAM	MER:	CME A	NOTU	MATIO	2	ALIC	SNMI	ENT:					L	B-02	8-0-20
PID: SFN:	DRILLING METHOD:	:	3.25" HSA		CALI	BRAT	ION DATE	: 7	/29/1	9	ELE	VATI	ION:	885	.1 (M	SL)	EOB:	6.0	ft.	PAGE
START: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METHOD	D:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.2	21103	38, -80	.802293	3	1 OF 1
MATERIAL DESCRIPTION	/	ELEV.	DEPTHS	SPT/	NI	REC	SAMPLE	HP	G	RAD	OITA	N (%	(o)	ATT	ERBI	ERG		ODOT	so	4 BACK
AND NOTES		885.1	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) ppr	n FILL
12" SLAG DRIVEWAY	7 LV	884.1	₩ 884.1																	- 12 N
MEDIUM STIFF, BROWN AND GRAY, SIL T CLAY , LITTLE SAND, MOIST		882.6	- - 2 -	1 2 4	8	100	SS-1	1.50	5	4	7	46	38	32	21	11	25	A-6a (8	3) -	1>1×
MEDIUM DENSE, BROWN, SILT , MOIST T	O WET		_ 3 _	4 6 7	18	89	SS-2	-	0	0	1	85	14	NP	NP	NP	28	A-4b (8	3) -	V 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	+ + + + + + + + + + + + + + + + + + + +	879.1	- 4 - 5 - - 6	5 7 6 8	18	88	SS-3		-	-	-	-	-	_	-	-	29	A-4b (\	/) <10	1>1

Water Encountered @ 1' Water at Completion @ 1' Caved @ 4'

NOTES: WATER LEVELS POTENTIALLY AFFECTED BY PROXIMITY TO DRAINAGE DITCH

PROJE	ECT: GREENWAY BIKE TRAIL (PH4) ROADWAY	DRILLING FIRM / (SAMPLING FIRM /							: CME A	E 550 \UTOI			STA ALIO		N / OI ENT:	_	T: _	1	99+00	0 E	XPLOR/ B-029	
PID: _	SFN:	DRILLING METHO		3.25" H					ION DATE		/29/1								EOB:			PAGE 1 OF 1
START	T: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METH	OD:	SP	<u> </u>		ENE	RGY F	RATIO (%)	:	81.9		LAT	/ LO	NG:		41.	2158	16, -8	0.805507	<u></u>	1011
	MATERIAL DESCRIPTION	N	ELEV.	DEPTH		SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIC	N (%	6)	ATT	ERB	ERG		ODOT	SO4	
	AND NOTES		878.7	DEI II	R	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (C	GI) ppm	
12" SI	LAG PARKING LOT	1 V	877.7	-	- , -																	
	TO HARD, BROWN, SILT AND CLA D, TRACE GRAVEL, MOIST	Y, SOME			_ 2 _ 2	3 4	10	67	SS-1	1.50	8	16	15	33	28	37	24	13	24	A-6a (6	6) -	1 × 1 × 1
7					3 6	7 8	20	100	SS-2	2.50	14	4	9	34	39	32	17	15	17	A-6a (1	0) -	
				-	_ 4	5 8	18	100	SS-3	2.50	-	-	-	-	-	-	-	-	24	A-6a (\	/) <10	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
					- 6 - - 7 -	3																
					8 1	1																- 1 × 1 1 × 1 1 × 1 1 × 1
			868.7	-FOB-	- 9 10	11 17 19	38	100	SS-4	4.00	-	-	-	-	-	-	-	-	12	A-6a (\	/) -	7 × × × ×

No Free Water Encountered Caved @ 5.5'

NOTES: OFFSET 20'S INTO GRAVEL PARKING AREA. DRILLED DEEPER TO COMPENSATE FOR THE ELEVATION DIFFERENCE BETWEEN THE PROPOSED BORING LOCATION AND THE DRILLE ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 120 IN. SOIL CUTTINGS

PROJECT: GREENWAY BIKE TRAIL (PH4)	DRILLING FIRM / C	PERATO	RRI <u>DGEWAY / SI</u>	MPSO!	NDRIL	L RIG	:CMI	E 550	ATV		STA	TION	N / OF	FSE	T: _	2	19+00			TION IE
TYPE: ROADWAY	SAMPLING FIRM /	LOGGER	R: PSI/J. MELLIN	NGER	HAM	MER:	CME A	NOTU	ИΑТΙ	0	ALIC	SNMI	ENT:						3-030-0	
PID: SFN:	DRILLING METHO	D:	3.25" HSA		CALI	BRAT	ION DATE	: 7	/29/1	9	ELE'	VATI	ION:	896.	.3 (M	SL)	EOB:	6.0 ft.	- 1	PAGE
START: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METHO	DD:	SPT		ENE	RGY F	RATIO (%)	:	81.9		LAT	/LO	NG:		41.2	2191	57, -80	0.802188		1 OF 1
MATERIAL DESCRIPTION	٧	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%	(o)	ATT	ERBI	ERG		ODOT	SO4	BACK
AND NOTES		896.3	DEPINS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
12" SLAG AND TOPSOIL MIXTURE	7 LV	895.3																		12V 1
MEDIUM DENSE, BROWN, GRAVEL WITH AND SILT , MOIST <i>POSSIBLE FILL</i>	I SAND	893.8	_ 2 _	5 5 9	19	67	SS-1	-	16	16	33	22	13	19	16	3	12	A-2-4 (0)	-	1 × × × ×
VERY STIFF TO HARD, BROWN, SILTY C LITTLE SAND AND GRAVEL, MOIST	LAY,		- 3 -	4 5 7	16	89	SS-2	2.00	17	3	8	42	30	33	17	16	15	A-6b (10)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		890.3	- 5 - - 5 -	10 19 28 42	64	17	SS-3		-	-	-	-	-	1	-	-	6	A-6b (V)	-	1 × × × × × × × × × × × × × × × × × × ×

No Free Water Encountered Caved @ 4'

NOTES: NONE

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

TRU- W RESERVE GREENWAY PH. 4

STATION 10+50 TO STATION 219+00

INTERTEK PSI

Prepared By:

Scott Hynes

Date prepared:

Tuesday, July 28, 2020

Scott Hynes 1280 Trumbull Ave. Girard, OH 44420 <CONTACT ADDRESS> 330.759.0288

scott.hynes@intertek.com

NO. OF BORINGS:

30

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-20	Greenway Bike Trail	10+50			CME 550 ATV	82	878.6	878.6	0.0
2	B-002-0-20	Greenway Bike Trail	24+50			CME 550 ATV	82	877.7	877.7	0.0
3	B-003-0-20	Greenway Bike Trail	53+50			CME 550 ATV	82	896.6	896.6	0.0
4	B-004-0-20	Greenway Bike Trail	57+50			CME 550 ATV	82	902.8	902.8	0.0
5	B-005-0-20	Greenway Bike Trail	61+50			Diedrich D-50 ATV	80	895.3	896.3	1.0 F
6	B-006-0-20	Greenway Bike Trail	65+50			Diedrich D-50 ATV	80	902.2	902.2	0.0
7	B-007-0-20	Greenway Bike Trail	73+50			Diedrich D-50 ATV	80	909.4	909.4	0.0
8	B-008-0-20	Greenway Bike Trail	88+00			CME 550 ATV	82	911.8	911.8	0.0
9	B-009-0-20	Greenway Bike Trail	93+50			CME 550 ATV	82	903.4	903.4	0.0
10	B-010-0-20	Greenway Bike Trail	97+50			CME 550 ATV	82	900.0	900.0	0.0
11	B-011-0-20	Greenway Bike Trail	101+50			CME 550 ATV	82	893.8	891.8	2.0 C
12	B-012-0-20	Greenway Bike Trail	105+50			CME 550 ATV	82	894.6	894.6	0.0
13	B-013-0-20	Greenway Bike Trail	109+50			CME 550 ATV	82	900.7	900.7	0.0
14	B-014-0-20	Greenway Bike Trail	113+50			CME 550 ATV	82	899.1	899.1	0.0
15	B-015-0-20	Greenway Bike Trail	121+50			CME 550 ATV	82	891.4	891.4	0.0
16	B-016-0-20	Greenway Bike Trail	125+50			CME 550 ATV	82	897.9	897.9	0.0
17	B-017-0-20	Greenway Bike Trail	129+50			CME 550 ATV	82	897.0	897.0	0.0
18	B-018-0-20	Greenway Bike Trail	133+50			CME 550 ATV	82	898.6	898.6	0.0
19	B-019-0-20	Greenway Bike Trail	137+50			CME 550 ATV	82	895.2	895.2	0.0
20	B-020-0-20	Greenway Bike Trail	139+00			Portable Hand Drill	60	878.1	890.1	12.0 F
21	B-021-0-20	Greenway Bike Trail	143+00			CME 550 ATV	82	898.9	898.9	0.0
22	B-022-0-20	Greenway Bike Trail	147+00			CME 550 ATV	82	894.1	894.1	0.0
23	B-023-0-20	Greenway Bike Trail	151+00			CME 550 ATV	82	888.2	890.2	2.0 F
24	B-024-0-20	Greenway Bike Trail	163+00			CME 550 ATV	82	892.7	892.7	0.0
25	B-025-0-20	Greenway Bike Trail	167+00			CME 550 ATV	82	889.2	890.2	1.0 F
26	B-026-0-20	Greenway Bike Trail	171+00			CME 550 ATV	82	888.1	890.1	2.0 F
27	B-027-0-20	Greenway Bike Trail	175+00			CME 550 ATV	82	886.3	886.3	0.0
28	B-028-0-20	Greenway Bike Trail	179+00			CME 550 ATV	82	885.1	885.1	0.0
29	B-029-0-20	Greenway Bike Trail	199+00			CME 550 ATV	82	878.7	879.7	1.0 F
30	B-030-0-20	Greenway Bike Trail	219+00			CME 550 ATV	82	896.3	896.3	0.0

#	Boring	Sample	Sam De	•	Subg De	rade pth	Stan Penet	dard ration	НР		P	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an	-	Recommendation (Enter depth in
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.0	2.5	1.0	2.5	11		1.5	25	17	8	28	20	48	15	12	A-4a	3			HP & Mc		12''	12"
	001-0	SS-2	2.5	4.0	2.5	4.0	11		1.5							19	10	A-4a	8	0					204 Geotextile
	20	SS-3T	4.0	5.0	4.0	5.0	44										10	A-4a	8						
		SS-3B	5.0	6.0	5.0	6.0		11		NP	NP	NP	11	3	14	25	6	A-1-b	0						
2	В	SS-1	1.0	2.5	1.0	2.5	19			NP	NP	NP	16	5	21	27	6	A-1-b	0						0"
	002-0	SS-2T	2.5	3.0	2.5	3.0	7										6	A-1-b	0						
	20	SS-2B	3.0	4.0	3.0	4.0				NP	NP	NP	41	13	54	20	11	A-4a	4						
		SS-3	4.0	6.0	4.0	6.0	7	7								19	10	A-4a	8	0					
3	В	SS-1T	1.0	1.5	1.0	1.5	3			NP	NP	NP	13	5	18	21	6	A-1-b	0						0"
	003-0	SS-1B	1.5	2.5	1.5	2.5											8	A-3a	0						
	20	SS-2	2.5	4.0	2.5	4.0	11			NP	NP	NP	15	13	28	17	8	A-3a	0						
		SS-3	4.0	6.0	4.0	6.0	10	3								17	8	A-3a	0	0					
4	В	SS-1	1.0	2.5	1.0	2.5	16		2	42	24	18	29	51	80	25	21	A-7-6	12			Mc			0"
	004-0	SS-2	2.5	4.0	2.5	4.0	10		1.5	41	18	23	38	53	91	19	18	A-7-6	13						
	20	SS-3	4.0	6.0	4.0	6.0	15		1.5							19	18	A-7-6	16						
								10																	
5	В	SS-1	1.0	2.5	2.0	3.5	12			NP	NP	NP	8	2	10	20	6	A-1-a	0						0''
	005-0	SS-2	2.5	4.0	3.5	5.0	12		1.5	52	26	26	18	82	100	26	23	A-7-6	17						
	20	SS-3	4.0	6.0	5.0	7.0	15		1.5							28	18	A-7-6	16	0					
								12																	
6	В	SS-1	1.0	2.5	1.0	2.5	16		2	24	15	9	57	27	84	15	10	A-4b	8		A-4b	Mc	30"		30"
	006-0	SS-2	2.5	4.0	2.5	4.0	16		2							14	10	A-4b	8	590					204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	13		1.5	24	14	10	47	25	72	16	10	A-4a	7						
								13																	
7	В	SS-1	1.0	2.5	1.0	2.5	3		0.5							20	10	A-4a	8	730		HP & Mc		33"	33"
	007-0	SS-2	2.5	4.0	2.5	4.0	4		0.5	19	16	3	44	12	56	21	11	A-4a	4						204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	16		2	27	16	11	45	26	71	16	14	A-6a	8						
								3																	
8	В	SS-1	1.0	2.5	1.0	2.5	30			25	19	6	23	10	33	12	10	A-2-4	0						0''
	008-0	SS-2	2.5	4.0	2.5	4.0	12									15	10	A-2-4	0	0					
	20	SS-3	4.0	6.0	4.0	6.0	14		1.5	29	18	11	30	21	51	18	14	A-6a	4						
								12																	
9	В	SS-1T	1.0	1.5	1.0	1.5	46										6	A-1-a	0						0"
	009-0	SS-1B	1.5	2.5	1.5	2.5			1.5	20	16	4	42	23	65	20	11	A-4a	6			нр & мс			
	20	SS-2	2.5	4.0	2.5	4.0	15		1.5	26	14	12	33	28	61	17	14	A-6a	6						
		SS-3	4.0	6.0	4.0	6.0	12	12	1.5							14	14	A-6a	10	0					

ц	Boring	Sample	Sam	nple pth	_	rade pth	Stan Penet	dard	НР		P	hysica	l Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate	Proble	m	Excavate ar	-	Recommendation
#			From		From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	Content (ppm)	Unsuitable	Unstable	Unsuitable	Unstable	(Enter depth in inches)
10	В	SS-1	1.0	2.5	1.0	2.5	15		2.5	30	15	15	40	29	69	17	14	A-6a	9			Mc			0''
	010-0	SS-2	2.5	4.0	2.5	4.0	18		2.5	39	16	23	34	40	74	25	16	A-6b	13						
	20	SS-3	4.0	6.0	4.0	6.0	19		2.5							23	16	A-6b	16	0					
								15																	
11	В	SS-1	1.0	2.5	-1.0	0.5	8		1.5	32	18	14	38	36	74	10	14	A-6a	9			HP		12"	12"
	011-0	SS-2	2.5	4.0	0.5	2.0	22		2.5	27	15	12	39	33	72	15	14	A-6a	8						204 Geotextile
	20	SS-3	4.0	6.0	2.0	4.0	15		1.5							13	14	A-6a	10	640					
								8																	
12	В	SS-1	1.0	2.5	1.0	2.5	11		1.5	44	20	24	31	47	78	26	18	A-7-6	14			HP & Mc		12"	12"
	012-0	SS-2	2.5	4.0	2.5	4.0	23		3							18	14	A-6a	10	0					204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	20		2.5	32	21	11	49	51	100	27	16	A-6a	8						
								11																	
13	В	SS-1	1.0	2.5	1.0	2.5	8		1.5	32	19	13	35	37	72	18	14	A-6a	9			HP & Mc		12"	12"
	013-0	SS-2	2.5	4.0	2.5	4.0	14		1.5							21	14	A-6a	10	900					204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	14		1.5	52	27	25	15	82	97	28	24	A-7-6	16						
								8																	
14	В	SS-1	1.0	2.5	1.0	2.5	4		0.5	48	23	25	34	50	84	34	20	A-7-6	16			HP & Mc		24"	24"
	014-0	SS-2	2.5	4.0	2.5	4.0	18		2.5							16	18	A-7-6	16	640					204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	15		1.5	50	27	23	17	80	97	25	24	A-7-6	15						
								4																	
15	В	SS-1	1.0	2.5	1.0	2.5	8		1.5	27	15	12	22	21	43	16	14	A-6a	2			HP		12"	12"
	015-0	SS-2	2.5	4.0	2.5	4.0	26		3	29	17	12	35	32	67	13	14	A-6a	7	860					
	20	SS-3	4.0	6.0	4.0	6.0	18		2.5	30	18	12	40	35	75	17	14	A-6a	9						
								8																	
16	В	SS-1	1.0	2.5	1.0	2.5	3		0.5	29	17	12	38	34	72	20	14	A-6a	8			HP & Mc		33"	33"
	016-0	SS-2	2.5	4.0	2.5	4.0	18		2.5	28	17	11	36	36	72	14	14	A-6a	8						204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	20		2.5							15	14	A-6a	10	0					
								3																	
17	В	SS-1	1.0	2.5	1.0	2.5	10		1.5	20	15	5	20	17	37	15	10	A-4a	0			HP & Mc		12"	12"
	017-0	SS-2	2.5	4.0	2.5	4.0	25		3							15	10	A-4a	8	0					204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	22		2.5	25	16	9	41	30	71	15	11	A-4a	7						
								10																	
18	В	SS-1	1.0	2.5	1.0	2.5	12		1.5	30	14	16	31	28	59	13	16	A-6b	7			HP		12"	12"
	018-0	SS-2	2.5	4.0	2.5	4.0	20		2.5							14	16	A-6b	16	0					204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	27		3.5	28	17	11	34	36	70	15	14	A-6a	7						
								12																	

#	Boring	Sample		nple pth	_	rade pth		dard tration	НР		P	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar	=	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
19	В	SS-1	1.0	2.5	1.0	2.5	8		1.5	31	17	14	39	33	72	17	14	A-6a	9			HP & Mc		12"	12"
	019-0	SS-2	2.5	4.0	2.5	4.0	25		2.5	29	17	12	37	34	71	14	14	A-6a	8						204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	19		2.5							16	14	A-6a	10	0					
								8																	
20	В	SS-1	0.0	1.5	12.0	13.5	3									31		A-8a							0''
	020-0	SS-2	1.5	3.0	13.5	15.0	44			27	16	11	28	25	53	15	14	A-6a							
	20	SS-3	3.0	4.5	15.0	16.5	14		1.5	29	16	13	12	27	39	13	14	A-6a							
		SS-4T	4.5	5.5	16.5	17.5	26		3.5								14	A-6a							
21	В	SS-1	1.0	2.5	1.0	2.5	5		0.5	24	16	8	43	22	65	20	11	A-4a	6			HP & Mc		24"	24"
	021-0	SS-2	2.5	4.0	2.5	4.0	19		2.5	31	16	15	23	21	44	13	14	A-6a	3						204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	16		2							14	14	A-6a	10	0					
								5																	
22	В	SS-1	1.0	2.5	1.0	2.5	14		1.5	20	13	7	36	22	58	19	10	A-4a	5			HP & Mc		12"	12"
	022-0	SS-2	2.5	4.0	2.5	4.0	25		3	30	15	15	39	32	71	14	14	A-6a	9						204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	16		2							15	14	A-6a	10	0					
								14																	
23	В	SS-1	1.0	2.5	3.0	4.5	10		1.5	23	17	6	34	14	48	14	12	A-4a	3						0''
	023-0	SS-2	2.5	4.0	4.5	6.0	33		4							10	10	A-4a	8	0					
	20	SS-3	4.0	5.7	6.0	7.7	72									15	0	Rock							
								10																	
24	В	SS-1	1.0	2.5	1.0	2.5	60			NP	NP	NP	8	2	10	17	6	A-1-a	0						0''
	024-0	SS-2	2.5	4.0	2.5	4.0	25			NP	NP	NP	9	3	12	25	6	A-1-b	0						
	20	SS-3	4.0	6.0	4.0	6.0	25		3	28	24	4	65	21	86	26	19	A-4b	8						
								25																	
25	В	SS-1	1.0	2.5	2.0	3.5	41			43	27	16	28	12	40	24	24	A-7-6	3						0''
	025-0	SS-2	2.5	4.0	3.5	5.0	8									46	16	A-6b	16						
	20	SS-3	4.0	6.0	5.0	7.0	20		1.5	51	25	26	25	56	81	29	22	A-7-6	17						
								8																	
26	В	SS-1	1.0	2.5	3.0	4.5	14		1.5	40	23	17	30	50	80	24	18	A-6b	11						0''
	026-0	SS-2	2.5	4.0	4.5	6.0	31		3.5							18	16	A-6b	16	0					
	20	SS-3	4.0	6.0	6.0	8.0	33		4	37	21	16	28	63	91	19	16	A-6b							
								14																	
27	В	SS-1	1.0	2.5	1.0	2.5	22			NP	NP	NP	9	5	14	28	6	A-1-a	0						0"
	027-0	SS-2	2.5	4.0	2.5	4.0	12		1.5	46	23	23	22	56	78	22	20	A-7-6	14						
	20	SS-3	4.0	6.0	4.0	6.0	20		2.5							25	18	A-7-6	16	0					
								12																	

#	Boring	Sample	San De	nple pth	1 ~	rade pth		dard ration	НР		Pl	hysic	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M_{c}	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
28	В	SS-1	1.0	2.5	1.0	2.5	8		1.5	32	21	11	46	38	84	25	16	A-6a	8			HP & Mc		12"	12"
	028-0	SS-2	2.5	4.0	2.5	4.0	18			NP	NP	NP	85	14	99	28	11	A-4b	8						204 Geotextile
	20	SS-3	4.0	6.0	4.0	6.0	18									29	10	A-4b	8	0					
								8																	
29	В	SS-1	1.0	2.5	2.0	3.5	10		1.5	37	24	13	33	28	61	24	19	A-6a	6			HP & Mc			0"
	029-0	SS-2	2.5	4.0	3.5	5.0	20		2.5	32	17	15	34	39	73	17	14	A-6a	10						
	20	SS-3	4.0	6.0	5.0	7.0	18		2.5							24	14	A-6a	10						
		SS-4	8.0	10.0	9.0	11.0	38	10	4							12	14	A-6a							
30	В	SS-1	1.0	2.5	1.0	2.5	19			19	16	3	22	13	35	12	10	A-2-4	0						0"
	030-0	SS-2	2.5	4.0	2.5	4.0	16		2	33	17	16	42	30	72	15	16	A-6b	10						
	20	SS-3	4.0	6.0	4.0	6.0	64									6	16	A-6b	16	0					
								16																	

PID:

County-Route-Section: TRU- W RESERVE GREENWAY PH. 4

No. of Borings: 30

Geotechnical Consultant: INTERTEK PSI

Prepared By: Scott Hynes

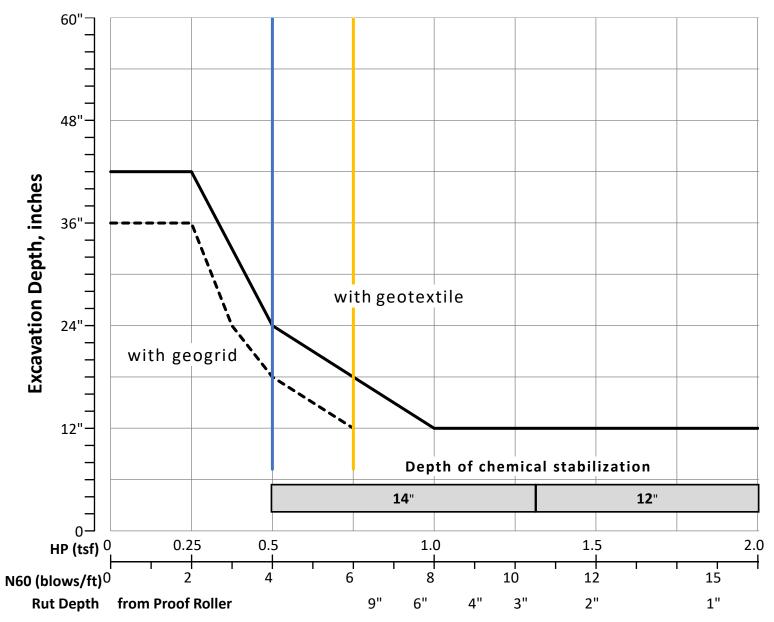
Date prepared: 7/28/2020

(Chemical Stabilization Option	(S								
320	Rubblize & Roll	No								
206 Cement Stabilization O										
	Lime Stabilization	No								
206	Depth	14"								

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Override(N60L):	18''
Override(HP):	24"
Global Geogrid	
Override(N60L):	12"
Override(HP):	18"

Design CBR	7
---------------	---

% Sampl	es within	6 feet of subgr	ade
N ₆₀ ≤ 5	7%	HP ≤ 0.5	5%
N ₆₀ < 12	25%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	13%	1 < HP ≤ 2	40%
N ₆₀ ≥ 20	30%	HP > 2	29%
M+	18%		
Rock	0%		
Unsuitable	7%		


Excavate and Replace at Surface								
Average	4"							
Maximum	12"							
Minimum	0"							

% Proposed Subgrade Surface								
Unstable & Unsuitable	37%							
Unstable	35%							
Unsuitable	2%							

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	19	10	2.02	32	18	13	32	30	62	19	13	8
Maximum	72	25	4.00	52	27	26	85	82	100	46	24	17
Minimum	3	3	0.50	19	13	3	8	2	10	6	0	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	1	4	5	3	0	0	0	0	3	16	5	0	34	10	0	14	1	0	96
Percent	1%	4%	5%	3%	0%	0%	0%	0%	3%	17%	5%	0%	35%	10%	0%	15%	1%	0%	100%
% Rock Granular Cohesive	1%		32%							67%							100%		
Surface Class Count	0	4	4	3	0	0	0	0	2	9	3	0	18	4	0	7	0	0	54
Surface Class Percent	0%	7%	7%	6%	0%	0%	0%	0%	4%	17%	6%	0%	33%	7%	0%	13%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
2.02	0.50	✓ HP
10.07	6.00	✓ N60L

Average HP Average N_{60L}

APPENDIX A.1 - ODOT Quick Reference for Visual Description of Soils

1) STRENGTH OF SOIL:

Non-Cohesive (granular) Soils - Compactness							
Description	Blows Per Ft.						
Very Loose	≤4						
Loose	5 – 10						
Medium Dense	11 – 30						
Dense	31 – 50						
Very Dense	> 50						

2) Color:

If a color is a uniform color throughout, the term is single, modified by an adjective such as light or dark. If the predominate color is shaded by a secondary color, the secondary color procedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled"

3) PRIMARY COMPONENT

Use **DESCRIPTION** from ODOT Soil Classification Chart on Back

Cohesive (fine grained) Soils - Consistency

Description	Qu (TSF)	Blows Per Ft.	Hand Manipulation			
Very Soft	<0.25	<2	Easily penetrates 2" by fist			
Soft	0.25-0.5	2 - 4	Easily penetrates 2" by thumb			
Medium Stiff	0.5-1.0	5 - 8	Penetrates by thumb with moderate effort			
Stiff	1.0-2.0	9 - 15	Readily indents by thumb, but not penetrate			
Very Stiff	2.0-4.0	16 - 30	Readily indents by thumbnail			
Hard	>4.0	>30	Indent with difficulty by thumbnail			

4) COMPONENT MODIFIERS:

Description	Percentage By Weight
Trace	0% - 10%
Little	10% - 20%
Some	20% - 35%
"And"	35% -50%

5) Soil Organic Content

5) Soil Organic Content							
Description	% by Weight						
Slightly Organic	2% - 4%						
Moderately Organic	4% - 10%						
Highly Organic	> 10%						

6) Relative Visual Moisture									
	Criteria								
Description	Cohesive Soil	Non-cohesive Soils							
Dry	Powdery; Cannot be rolled; Water content well below the plastic limit	No moisture present							
Damp	Leaves very little moisture when pressed between fingers; Crumbles at or before rolled to ${}^{1}/{}_{8}$ "; Water content below plastic limit	Internal moisture, but no to little surface moisture							
Moist .	Leaves small amounts of moisture when pressed between fingers; Rolled to ¹ / ₈ " or smaller before crumbling; Water content above plastic limit to -3% of the liquid limit	Free water on surface, moist (shiny) appearance							
Wet	Very mushy; Rolled multiple times to ¹ / ₈ " or smaller before crumbles; Near or above the liquid limit	Voids filled with free water, can be poured from split spoon.							

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classif		LL _O /LL × 100*	% Poss *40	% Pass #200	Liquid Limi† (LL)	Plastic Index (PI)	Group Index Max.	REMARKS	
0000	Gravel and/or Stone Fragments	A-1-a			30 Max.	15 Max.		6 Max.	- 0	Min. of 50% combined gravel, cobble and boulder sizes	
0.000	Gravel and/ar Stone Fragments with Sand	A-	1-b		50 Max.	' 25 Max.	-	6 Max.	0		
FS	Fine Sand	A	- 3		51 Min.	10 Max.	NON-P	_ASTIC	0		
	Coarse and Fine Sand		A-3a	:		35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes	
# C P 0	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0		
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gravel and/or Stane Fragments with Sond, Silt and Clay		2-6 2-7		•	35 Max.	40 Max. 41 Min.	II Min.	4		
	Sandy Silt	A-4	A-4a	76 Min,		36 Min.	40 Max.	to Max.	8	Less than 50% silt sizes	
+++++++++++++++++++++++++++++++++++++++	Silt	A-4	A-4b	76 Min.		50 Min.	40 Mox.	10 Max.	8	50% or more silt sizes	
	Elastic Silt and Clay	A	-5	76 Min.		36 Min,	41 Mîn.	10 Max.	12		
	Silt and Clay	A-6	A-6a	76' Min.		36 Min.	40 Max.	. 11 - 15	10		
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	18 Min.	16		
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≨L L -30	20		
	Ctay	A-	7-6	76 Min.	-	36 Min.	41 Min.	>LL-30	20		
+ + + + + + + +	Organie Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b	
	Organic Clay	8-A	A-8b	75 Max.		36 Min.				W/a arganics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6	
	MATERIAL CLASSIFIED BY VISUAL INSPECTION Sod and Topsoil XXXX Pavement or Base A-7-5 or A-7-6 MATERIAL CLASSIFIED BY VISUAL INSPECTION Peat, S-Sedimentary W-Woody F-Fibrous L-Loamy & etc										

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.