

BEL-7-11.04 PID NO. 110788 BELMONT COUNTY, OHIO

GEOHAZARD AND STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For:
Ohio Department of Transportation - District 11
2201 Reiser Avenue
New Philadelphia, Ohio 44663

Prepared By:
Resource International, Inc.
6350 Presidential Gateway
Columbus, OH 43231

Rii Project No. W-20-120

January 2025

January 7, 2025

Mr. Christopher (Cody) Notz, P.E. District Geotechnical Engineer 2201 Reiser Avenue New Philadelphia, Ohio 44663

Re: Geohazard and Structure Foundation Exploration Report BEL-7-11.04 Slope Repairs and Rock Catchment

Belmont County, Ohio Rii Project No. W-20-120

Mr. Notz:

Resource International, Inc. (Rii) is pleased to submit this geohazard and structure foundation exploration report for the referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the stabilization of multiple landslides on existing cut slopes and for the design and construction of the proposed rockfall fence/barrier along State Route 7 (SR-7) in Belmont County, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the Geotechnical Exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Ashok Gaire, P.E.

Project Engineer

Jonathan P. Sterenberg, P.E. Vice President – Geotechnical Services

Enclosure: Geotechnical Exploration Report

ISO 9001:2015 QMS

Committed to providing a high quality, accurate service to our clients in a timely manner

Planning

Engineering

Construction

Management

Technology

TABLE OF CONTENTS

Sect	ion		Page
EXE	CUTIV	E SUMMARY	I
	Expl Anal	oration and Findingsysis and Recommendations	i ii
1.0	INTR	RODUCTION	1
2.0	GEO	LOGY AND OBSERVATIONS OF THE PROJECT	2
	2.1	Site Geology	2
	2.2	Existing Site Conditions	3
3.0	EXP	LORATION	3
4.0	FIND	DINGS	8
	4.1	Surface Materials	8
	4.2	Subsurface Soils	
	4.3	Bedrock	9
	4.4	Groundwater	10
5.0	ANA	LYSES AND RECOMMENDATIONS	11
	5.1	Slope Stability Evaluation	
		5.1.1 Strength Parameters Utilized in Slope Stability Analyses	
		5.1.2 Slope Stability Analyses – Existing Slopes	
		5.1.3 Slope Remediation Recommendations	
	5.2	Foundation Recommendations – Rockfall Barrier	
	5.3	Site Drainage	
	5.4	Drainage Recommendations	
	5.5	Construction Considerations	
		5.5.1 Excavation Considerations	
	5.6	Groundwater Considerations	22
6.0	LIMI	TATIONS OF STUDY	22

APPENDICES

Appendix I Vicinity Map and Boring Plan

Appendix II Description of Soil Terms

Appendix III Boring Logs: B-004-0-20 and B-005-0-20

B-001-2-22 through B-001-4-22

Rock Core Photographs

Appendix IV CTL Boring Logs (May 2019 and March 2020)

Appendix V Dynamic Cone Penetration Test Logs

Appendix VI Laboratory Test Results

Appendix VII Lateral Load Analysis Results

Appendix VIII Slope Stability Analysis Outputs

Appendix IX Site Remediation Exhibits

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed the geohazard and structure foundation exploration report. This report presents the findings of two geotechnical explorations conducted to support the stabilization of an existing cut slope and the design of a proposed rockfall fence/barrier along State Route 7 (SR-7) in Belmont County, Ohio, approximately 1.5 miles south of Shadyside, Ohio. The first phase, the geohazard exploration, was completed in 2020, and the second phase, the structural foundation exploration, was completed in 2022.

It is understood that four (4) document landslides have occurred in the vicinity. Three (3) of the landslides are on the cut slope above SR-7, designed as Slide Areas 1 through 3, and one has occurred on the slope supporting SR-7 above the existing railroad and the Ohio River, designated as Slide Area 4. Based on discussions with ODOT District 11 and the Rii design team, the proposed fence/barrier will have an approximate length of 400 feet and will be constructed from Station 581+50 to Station 585+50, downslope from Slide 3, along SR-7 alignment.

Exploration and Findings

For slope stability, soil borings obtained as part of previous explorations performed by CTL Engineering (CTL) in 2019 (four borings) and 2020 (three borings) were utilized for Slide Areas 1 and 2. As part of the current exploration, Rii performed an additional two (2) borings for Slide Area 4, as well as dynamic cone penetration (DCP) tests for Slide Area 3. It should be noted that the design of the remediation for the Slide 4 will be performed by the ODOT District 11 office, and the exploration was performed by Rii to facilitate the design.

On October 13, 2020, two (2) borings, designated as B-004-0-20 and B-005-0-20, were performed to completion depths of 31.0 and 37.4 feet below the ground surface, respectively, for slope stability of Slide Area 4. As previously mentioned, a total of seven (7) borings were previously performed by CTL in 2019 and 2020. The borings were designated as B-001-0-19 and B-002-0-19, with offset borings B-001-1-19 and B-002-1-19, and B-003-0-20 through B-003-2-20. The borings were performed to completion depths of 60.0 to 140.0 feet below the existing ground surface and were utilized for Slide Areas 1 and 2. Further, Rii performed a total of six (6) dynamic cone penetration (DCP) tests for Slide Area 3 on November 23 and 24, 2020, designated as DCP-1 through DCP-6, as well as offset test locations, were performed to completion depths ranging from approximately 3 to 13 feet below the ground surface.

On December 21 and 22, 2022, a total of three (3) structure borings, designated as B-001-2-22, B-001-3-22 and B-001-4-22 were advanced for this project. The borings were advanced to depths ranging from 15.0 to 20.0 feet below the existing ground/pavement surface for the proposed fence/barrier.

At the ground surface, structure borings B-001-2-22, B-001-3-22 and B-001-4-22 encountered approximately 9 to 11 inches of hot mix asphalt (HMA) pavement over 7.0 to 9.0 inches of aggregate base materials. Beneath the surficial materials, borings B-001-2-22 encountered cohesive and granular soils layers extended to the top of bedrock surface and borings B-001-3-22 and B-001-4-22 encountered cohesive soils extended to the top of bedrock surface. The cohesive soils were described as gray to brownish gray sandy silt, silty clay, silt and clay soils (ODOT A-4a, A-6a, A-6b) with varying amount of sand and gravel. The granular soils were described as gray, medium dense, gravel with sand, silt and clay (ODOT A-2-6). Borings B-004-0-20 and B-005-0-20 encountered approximately six to seven feet of fill material consisting of stiff to hard cohesive soils and loose to medium dense granular soils. Beneath the fill or surficial materials, borings B-004-0-20 and B-005-0-20 encountered stiff to very stiff cohesive material to the bedrock surface at approximately 15.5 feet to 22.5 feet. Boings performed by CTL in 2019 and early 2020 encountered approximately 12.0 to 14.5 feet of overburden, with the exception of boring B-003-1-20, which encountered approximately 2.5 feet. The overburden material generally consisted of very soft to hard cohesive soils with isolated layers of granular soils encountered in borings B-002-0-19 and B-003-0-20. Overburden soils were encountered in the previous CTL borings at depths ranging from 5.0 feet to 20.0 feet below the existing ground surface. The results of the DCP tests indicated the existing soils were generally very loose to very dense granular soils or very soft to hard cohesive soils.

Bedrock was encountered in each boring at depths ranging from 3.5 to 9.1 feet below the existing grade corresponding to elevations ranging from 679.5 to 673.3 feet msl. Rock coring was performed in each boring upon the encounter of auger refusal and/or split-spoon refusal on bedrock. The upper auger-able rock was described as gray to dark gray shale underlain by competent sandstone. The recovered cored rock samples were described as light gray and gray, slightly weathered, weak to moderately strong sandstone.

Groundwater was not encountered in any boring during the drilling operations. At the completion of drilling groundwater was not recorded due to the influence of water added during rock coring.

Analysis and Recommendations

Slope Stability

Schematic cross sections of the existing slopes at the project location were developed based on cross section information obtained from the aerial survey provided by ODOT. The subsurface profile at each cross section was developed based on the borehole information obtained as part of the current exploration, as well as DCP data for Slide Area 3. Based upon on-site observations it is anticipated that the slope instability at each of the three slide areas is primarily contributed erosion from surface groundwater and creep under sustained loading.

Conceptual options have been considered and presented herein. These options have met or exceeded ODOT and AASHTO guidelines for minimum required factor-of-safety against slope stability of 1.3.

Slide Area 1

In order to provide an adequate factor of safety against slope instability, earthwork options have been considered and analyzed to regrade the existing slope. It is recommended that the existing slope be reconstructed at a 1.9H:1V slope with benched material in accordance with ODOT Geotechnical Bulletin No. 2, Analysis was performed for a 1.9H:1V slope with benched material at 1.5H:1V cut slopes. Results of the analysis indicated a minimum factor of safety of 1.34. In addition to benching in compacted fill, it is recommended that slope drains be constructed on the cut slopes in accordance with GB-2, in conjunction with surface drainage improvements to promote drainage away from the slope and prevent any ponding. Finally, it is recommended that a dense vegetation be established to mitigate any surface erosion.

Slide Area 2

It is anticipated that the failure mechanism for Slide Area 2 is similar to Slide Area 1. However, the slope after the failure is on the order of 2.25H:1V, and the back analysis (using similar parameters as Slide Area 1 based on similar subsurface conditions) indicated a factor of safety of 1.3. Therefore, it is recommended that the residual, or failed soil mass, be excavated and regraded. Drainage improvements should be provided to control surface water and mitigate erosion, as well as vegetation reestablished in the vicinity of the slide area and clearing that was previously performed.

Slide Area 3

It is understood that the primary concern is debris, such as cobbles and boulders, will be eroded or carried from the ledge or above and fall down the rock slope as a hazard to SR- below, as observed by the damage to the existing Type D barrier observed in the field during the reconnaissance. Therefore, it is recommended that the slope be protected using erosion control mats and a wire mesh, or slope drape. It is recommended that the existing failed material ("slough") be excavated from the ledge and the immediate slope above. The slope drape should be anchored above the ledge in order to mitigate any fall potential from the over-steepened slope.

Barrier Wall Foundation Stability

Based on the information provided by Rii design team, the proposed rockfall barrier wall is understood to consist of flexible steel mesh ropes barrier supported on steel posts. The proposed barrier is proposed to have an exposed height of 13.5 feet above the existing pavement surface. Based on the rock fall analysis performed by Rii using the Colorado Rockfall Simulation Program (CRSP), it is calculated that the a single rockfall event will transmit a factored maximum shear-force load of 3.3 kips to a steel post.

Utilizing the soil and rock parameters and estimated load on the proposed steel fence post, Rii performed lateral load analysis to determine the embedment depths along with maximum lateral deflections of the proposed posts. An H-pile post (size HP 10x 42 and yield strength 36 ksi) was utilized for the proposed analysis. The results of the LPILE analysis are presented in Appendix VII and a summary of analysis is presented in the table below.

Summary of Lateral Load Analysis – HP 10x42 Piles

Location/ Boring Number	Calculated Maximum Moment, (kips-ft)	Allowable Maximum Moment, (kips-ft)	Calculated Maximum Shear Force, (kips)	Allowable Maximum Shear Resistance, (kips)	Maximum Pile Head Deflection, (in)	Calculated Embedment Pile Length, (ft)	Minimum Pile Length Embedment in Bedrock, (ft)
B-001-2-22	46.2	144.9	9.0	84.1	1.94	16.0	7.0
B-001-3-22	46.3	144.9	12.8	84.1	1.87	14.0	8.0
B-001-4-22	47.0	144.9	31.7	84.1	1.78	11.5	8.0

Please note that this executive summary does not contain all the information presented in the report. The unabridged Subgrade exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

This report presents the findings of two geotechnical explorations conducted to support the stabilization of an existing cut slope and the design of a proposed rockfall fence/barrier along State Route 7 (SR-7) in Belmont County, Ohio, approximately 1.5 miles south of Shadyside, Ohio. The first phase, the geohazard exploration, was completed in 2020, and the second phase, the structural foundation exploration, was completed in 2022.

It is understood that four (4) documented landslides have occurred within the project limits. Three (3) of the landslides are on the cut slope above SR-7, designed as Slide Areas 1 through 3, and one has occurred on the slope supporting SR-7 above the existing railroad and the Ohio River, designated as Slide Area 4. The existing rock cut slope adjacent to SR-7 is approximately 120 feet in height with slopes on the order of approximately 3/4(H):1(V) (horizontal: vertical), with an overall hillside height of approximately 500 feet. SR-7 primarily runs south to north in the project area. It is also understood that the project involves the design and construction of rockfall protection fence/barrier on the west side of SR-7. Based on discussions with ODOT District 11 and the Rii design team, the proposed fence/barrier will have an approximate length of 400 feet and will be constructed from Station 581+50 to Station 585+50, downslope from Slide 3, along SR-7 alignment. It is understood that the proposed barrier will be constructed immediately west of the west edge of the existing shoulder.

Soil borings obtained as part of previous explorations performed by CTL Engineering (CTL) in 2019 (four borings) and 2020 (three borings) were utilized for Slide Areas 1 and 2. As part of the current exploration, Rii performed an additional two (2) borings for Slide Area 4, as well as dynamic cone penetration (DCP) tests for Slide Area 3. It should be noted that corrections were made in the form of markups to the CTL borings logs with respect to ground surface elevations, based on information provided by ODOT, as well as location data (coordinates and project stations/offset) for each log. Corrections were not made to the content of the logs individually.

Based on the initial information provided by the Ohio Department of Transportation (ODOT) District 11 during the project development, and preliminary site visits, the failure limits and slope heights are summarized below in Table 1.

Table 1. Summary of Slope Stability Failure Sites

Slope Failure Designation	Station ¹	Supported Roadway	Slope Height ² (feet)	Representative Borings
Slide Area 1	589+00 to 593+25	SR-7 Uphill cut slope	180	B-001-0-19, B-001-1-19, B-002-0-19, B-002-1-19
Slide Area 2	586+40 to 589+50	SR-7 Uphill cut slope	460	B-003-0-20 through B-003-1-20
Slide Area 3	582+00 to 585+50	SR-7 Uphill cut slope	240	DCP-1 through DCP-6
Slide Area 4	4	SR-7	30 ³	B-004-0-20 & B-005-0-20

- 1. The station limits are referenced to the existing centerline of SR-7 and are considered approximate.
- 2. Slope height provide is approximate and measured from the road surface of SR-7 to the upper limit of the slide area.
- 3. Slide Area 4 is measured from the road surface of SR-7 to the toe of the slope at the railroad bench.
- 4. Slide Area 4 is estimated to be approximately 100-feet long, with the final station limits to be determined by ODOT design.

It should be noted that the geotechnical evaluation and the design of the remediation for the Slide 4 will be performed by the ODOT District 11 office, and the explorations herein for this area were performed by Rii to help facilitate the design.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Physiographically, the project site lies in the Little Switzerland Plateau physiographic region within the Appalachian Plateau Province where the rocks are relatively flat-lying and comprised of Pennsylvanian and Permian strata. The plateaus are covered with a thin to non-existent layer of colluvium over bedrock. The top of bedrock generally follows the ground surface and is typically shallower on the ridges and slopes, and deeper in the valley zones where more overburden soils or thicker colluvium has accumulated. Colluvium is the weathered rock, weathered debris, and scattered residuum that forms due primarily to gravity and erosion.

Based on the Bedrock Geology and Bedrock Topography maps, obtained from Ohio Department of Natural Resources (ODNR), the bedrock at the proposed project site consists of sandstone, siltstone, shale, limestone, and coal. The rock types within these zones can change rapidly both horizontally and vertically and commonly intertongue and intergrade. These formations, especially at the interface with the overburden soils, can also be prone to slope instability due to the soils on steep slopes becoming wet.

Within the borings performed for this project, shale, sandstone, limestone, coal seams, and claystone bedrock was encountered at the boring locations between depths of 3.5 to 60.5 feet below the ground surface.

2.2 Existing Site Conditions

Representatives of Rii performed a site reconnaissance with ODOT personnel being on site to provide guidance and insight into the past operations. At the time of the site visit on October 1, 2020, the terrain upslope was highly vegetated, with the exception of Slide Area 3, which had previously been cleared under previous work. Additionally, it is understood that paths were cleared previously in the vicinity of Slide Area 1 for access to the boring locations. During the site visit, the cleared paths were observed to be relatively saturated with soft surficial ground and ponding water in isolated areas. Bedrock outcrop was also observed toward the top (upper elevation) of Slide Area 1. The terrain was overly steepened at nearly vertical slopes in the vicinity of the west of Slide Area 1 (top) and the east end of Slide Area 2 (lower elevation/bottom).

Slide Area 3 is located toward the south end of the project and is located above a rock cut that extends approximately 100 to 120-feet above SR-7. During the site reconnaissance Rii and ODOT only access the northeast portion of the slide to overlook the slide area due to the terrain. Above the rock cut slope, the overburden appeared to have failed with slough and multiple fallen trees observed, as well as from below on SR-7. With the existing rock catchment area, multiple cobbles and boulders were observed, as well as a damaged section of fence along the Type D barrier below along the southbound travel lanes of SR-7.

As stated, Slide Area 4 is on the supporting slope of SR-7 above the bench supporting railroad. The existing scarp appeared to extend over a linear distance of approximately 100-feet in the northbound, east shoulder and outside travel lane. Pavement distress including longitudinal and transverse cracking was observed in the vicinity of the slide. The scarp did not appear to present significant vertical settlement.

Rii understands that, within the project limits rockfall is a cause of concern and ODOT District 11 desires to construct a flexible barrier fence to capture the falling rocks.

3.0 EXPLORATION

On October 13, 2020, two (2) borings, designated as B-004-0-20 and B-005-0-20, were performed to completion depths of 31.0 and 37.4 feet below the ground surface, respectively. The borings were performed in general accordance with the ODOT Specifications for Geotechnical Explorations (SGE) dated July, 2020.

As previously mentioned, a total of seven (7) borings were previously performed by CTL in 2019 and 2020. The borings were designated as B-001-0-19 and B-002-0-19, with offset borings B-001-1-19 and B-002-1-19, and B-003-0-20 through B-003-2-20. The

borings were performed to completion depths of 60.0 to 140.0 feet below the existing ground surface.

In addition to the current exploration by Rii and the previous explorations by CTL, Rii performed a total of six (6) DCP tests on November 23 and 24, 2020, designated as DCP-1 through DCP-6, were performed to completion depths ranging from approximately 3 to 13 feet below the ground surface. DCP testing was performed using the Wildcat DCP. Additional DCP tests were performed as offsets at four of the test locations, designated as DCP-1.1, DCP-2.1, DCP-3.1, and DCP-5.1. Each test was performed to a depth where refusal was encountered, designated as 50 blows per interval (10 centimeters, cm). If refusal was encountered at a shallow depth, an offset test location was performed to verify the refusal depth.

Further, on December 21 and 22, 2022, a total of three (3) structure borings, designated as B-001-2-22, B-001-3-22 and B-001-4-22 were advanced for this project. The borings were advanced to depths ranging from 15.0 to 20.0 feet below the existing ground/pavement surface.

The borings locations are illustrated on the boring plan presented in Appendix I of this report and a summary of borings and DCP information is provided in Tables 2 and 3.

Table 2. Test Boring Summary

Boring Number	Station ¹	Offset ¹	Latitude	Longitude	Ground Surface Elevation (feet msl)	Boring Depth (feet)
B-001-0-19	589+96	207' LT	39.9536310 ³	-80.7650654 ³	791.8 ³	115.0
B-001-1-19	589+77	297' LT	39.9536230 ³	-80.7647391 ³	837.6 ³	60.6
B-002-0-19	592+72	159' LT	39.9543399 ³	-80.7643173 ³	735.1 ³	65.0
B-002-1-19	591+70	300' LT	39.9541657 ³	-80.7649001 ³	820.0 ³	105.1
B-003-0-20	588+23	461' LT	39.9532700 ³	-80.7657000 ³	963.3 ³	140.0
B-003-1-20	587+93	612'LT	39.9532700 ³	-80.7663000 ³	1013.0 ³	60.0
B-003-2-20	587+27	752 LT	39.9532700 ³	-80.7657000 ³	1095.0 ³	120.5
B-004-0-20	590+28	29' RT	39.953555 ²	-80.7638930 ²	679.4 ²	31.0
B-005-0-20	591+29	40' RT	39.953815 ²	-80.7637660 ²	677.7 ²	37.4
B-001-2-22	581+50	33' LT	39.9512184 ²	-80.7646902 ²	682.4 ²	20.0
B-001-3-22	583+50	33' LT	39.95176422	-80.7645889 ²	683.3 ²	17.5
B-001-4-22	585+50	33' LT	39.9523078 ²	-80.7644689 ²	683.0 ²	15.0

- 1. Station and offsets are referenced to the centerline of SR-7.
- 2. Ground surface elevations were determined from survey performed by Rii
- 3. Ground surface elevations were approximated from topographic maps provided by ODOT aerial survey.

Table 3. DCP Test Summary

DCP Test Number	Station ¹	Offset ¹	Latitude ^{2,3}	Longitude ^{2,3}	Ground Surface Elevation (feet msl) ^{2,3}	Test Depth (feet)
DCP-1	584+73.8	-255.3	39.9522050	-80.7652980	869.0	6.89
DCP-1.1	584+87.9	-265.2	39.9522490	-80.7653240	880.0	3.94
DCP-2	584+77.0	-240.5	39.9522070	-80.7652440	862.0	5.35
DCP-2.1	584+60.9	-283.4	39.9521820	-80.7654050	890.0	4.59
DCP-3	584+63.1	-246.3	39.9521710	-80.7652730	865.0	2.95
DCP-3.1 ⁴	584+63.1	-246.3	39.9521710	-80.7652730	865.0	2.95
DCP-4	582+68.1	-261.5	39.9516310	-80.7654390	880.0	12.63
DCP-5	583+85.1	-288.0	39.9519710	-80.7654670	900.0	2.46
DCP-5.1	583+64.6	-280.0	39.9519100	-80.7654510	900.0	9.02
DCP-6	583+59.8	-316.0	39.9519120	-80.7655810	913.0	9.35

- 1. Station and offset referenced to the centerline of SR-7.
- 2. Ground surface elevations and coordinates at the boring locations were surveyed by Rii.
- 3. Ground surface elevations were approximated from topographic maps provided by ODOT aerial survey.
- 4. The location for DCP-3.1 was not recorded by GPS but was offset to DCP-3. Identical location data is provided as an approximation.

The locations of the borings B-004-0-20, B-005-0-20, B-001-2-22, B-001-3-22 and B-001-4-22 were determined in the field by using a handheld GPS unit, and the available project information. Also, for these borings, the ground surface elevations at the boring locations were determined from survey performed by Rii. Stations and offsets at boring locations were referenced to centerline of SR-7. The boring coordinate and elevation data from the previous explorations were provided as part of the available information at the start of the project by ODOT. It should be noted that the elevations reported on the logs did not match the data provided or correspond to the topographic maps provided, and, therefore, markups are provided on the individual boring logs.

Borings B-004-0-20 and B-005-0-20 were drilled and sampled using CME 55 truck rig utilizing a 3.25-inch inside diameter, hollow-stem auger to advance the holes. In general, standard penetration test (SPT) and split spoon sampling were performed in the borings with continuous sampling performed on the borings to 10.0 feet, followed by 2.5-foot interval sampling to auger refusal on the underlying bedrock. Further, structure borings B-001-2-22, B-001-3-22 and B-001-4-22 were drilled and sampled using CME 55 truck rig utilizing 4.5-inch continuous flight augers to advance the holes. SPT and split spoon sampling were performed at 2.5-foot intervals.

The borings performed by CTL were drilled using an ATV-mounted rotary drilling machine, utilizing a 3.25-inch inside diameter, hollow-stem auger to advance the holes.

In general, standard penetration test (SPT) and split spoon sampling were performed in the borings with continuous sampling performed on all of the borings to 10.0 feet, followed by 2.5-foot interval sampling to auger refusal on the underlying bedrock.

The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, was conducted using a 140 pound hammer free falling 30 inches to drive a 2.0-inch outside diameter (O.D.) split spoon sampler for 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blows per 6.0-inch interval of the driving distance. The second and third intervals were added to obtain the number of blows per foot (N). SPT blow counts aid in estimating soil characteristics used to calculate bearing/subgrade capacities and settlement potential. Measured blow count (N_m) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation.

$$N_{60} = N_m^*(ER/60)$$

Where:

N₆₀ = energy corrected number of blows required to drive split spoon sampler final 12 inches in 1.5-foot sampling intervals

 N_m = measured N value

ER = drill rod energy ratio, expressed as a percent, for the system used

For the first and second explorations, the hammer utilized in CME 55 was calibrated on September 14, 2020 and March 21, 2022, respectively, and had an energy ratio of 84.2 percent. Upon completion of drilling, the borings were backfilled with a mixture of soil cuttings and bentonite chips. The pavement surface was patched with an equivalent thickness of asphalt cold patch.

The depth to bedrock was determined by split spoon sampler refusal and/or auger refusal on bedrock. Borings were extended into the bedrock using an NQ-2 double-tube diamond bit core barrel (utilizing wire line equipment). The rock cores obtained from the borings were logged in the field and visually classified in the laboratory. The retrieved cores were analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

$$RQD = \frac{\sum segments \ equal \ to \ or \ longer \ than \ 4.0 \ inches}{core \ run \ length} \times 100$$

The RQD value aids in estimating the general quality of the rock and is used in conjunction with other parameters to designate the quality of the rock mass.

Upon completion of drilling, the borings were backfilled with a mixture of bentonite chips and soil cuttings generated during the drilling process or sealed with cement-bentonite grout in accordance with ODOT standards. Where borings penetrated the existing roadway, the pavement surface was patched with an equivalent thickness of quick-set concrete.

During drilling, Rii personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operations were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 4.

Table 4. Laboratory Test Schedule

Laboratory Test	Test Designation	Number of Tests Performed (Rii Exploration 2020)	Number of Tests Performed (Rii Exploration 2022)	Number of Tests Performed (CTL Exploration 2019 and 2020)
Natural Moisture Content	ASTM D 2216	20	6	37
Plastic and Liquid Limits	· I AASHIO IXY IYO I		3	14
Gradation – Sieve/Hydrometer	AASHTO T88		3	14
Unconfined Compressive Strength Test (Rock) ASTM D7012		2	3	7

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance for pavement design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III and also in Appendix VI. A description of the soil terms used throughout this report is presented in Appendix III. A summary of rock core photographs is also presented in Appendix III.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the current version of the ODOT SGE. The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

At the ground surface, borings B-004-0-20, B-001-2-22, B-001-3-22 and B-001-4-22 encountered approximately 9 to 11 inches of asphalt over 2.0 to 9.0 inches of aggregate base materials.

All of the previous project borings performed by CTL were performed on the existing cut slope and did not record surficial materials at the ground surface. It should be noted that the borings were reportedly performed in areas that had be excavated and cleared for drill rig access.

4.2 Subsurface Soils

Beneath the surficial materials, borings B-004-0-20 and B-005-0-20 encountered approximately six to seven feet of fill material consisting of stiff to hard silt and clay, silty clay (ODOT A-6a and A-6b) containing coal fragments and loose to medium dense gravel with sand and gravel with sand, silt, and clay (ODOT A-1-b and A-2-6). Beneath the fill or surficial materials, borings B-004-0-20 and B-005-0-20 encountered stiff to very stiff sandy silt, silt and clay, silty clay, and clay (ODOT A-4a, A-6a, A-6b, and A-7-6) material to the bedrock surface at approximately 15.5 feet to 22.5 feet.

Beneath the surficial materials of structure borings, boring B-001-2-22 encountered cohesive and granular soils layers extended to the top of bedrock surface and, borings B-001-3-22 and B-001-4-22 encountered cohesive soils extended to the top of bedrock surface. The cohesive soils were described as gray to brownish gray sandy silt, silty clay, silt and clay soils (ODOT A-4a, A-6a, A-6b) with varying amount of sand and gravel. The shear strength and consistency of the cohesive soils were primarily derived from the hand penetrometer values (HP). The consistency of the encountered cohesive soils ranged from very stiff to hard. The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 3.0 tsf to 4.5 tsf. The granular soils were described as gray, medium dense, gravel with sand, silt and clay (ODOT A-2-6). The SPT-N₆₀ values determined within these granular soils ranged from 25 blows per foot (bpf) to 29 bpf.

Boings performed by CTL in 2019 and early 2020 encountered approximately 12.0 to 14.5 feet of overburden, with the exception of boring B-003-1-20, which encountered approximately 2.5 feet. The overburden material generally consisted of very soft to hard sandy silt, silt and clay, elastic clay, and clay (ODOT A-4a, A-6a, A-7-5, and A-7-6) with isolated layers of gravel and/or stone fragments encountered in borings B-002-0-19 and B-003-0-20. Overburden soils were encountered in the previous CTL borings at depths ranging from 5.0 feet to 20.0 feet below the existing ground surface.

Natural moisture contents of the soil samples tested ranged from 2 to 46 percent. The natural moisture content of the cohesive samples tested for plasticity index, ranged from 17 percent below to 6 percent above the corresponding plastic limits.

DCP tests do not obtain physical samples that can be used to visually or mechanically classify the soils. However, based on typical correlations, the consistency or compactness of the soils is estimated based on either fine- or coarse-grained soils (cohesive or granular). The results of the DCP tests indicated the existing soils were generally very loose to very dense granular soils or very soft to hard cohesive soils. Based on the site observations and the historic borings at the site, it is anticipated the overburden soils are primarily cohesive in nature.

4.3 Bedrock

Borings performed by Rii in the two stages, B-004-0-20, B-005-0-20, B-001-2-22, B-001-3-22 and B-001-4-22, encountered bedrock at depths ranging from 3.5 to 22.4 feet below the existing grade corresponding to elevations ranging from 679.5 to 655.3 feet msl. Rock coring was performed in each boring upon the encounter of auger refusal and/or split-spoon refusal on bedrock. The upper auger-able rock was described as gray to dark gray shale underlain by competent sandstone. The recovered cored rock samples were described as light gray and gray, slightly weathered, weak to moderately strong sandstone. Borings B-004-0-20 and B-005-0-20, were located in the shoulder of the northbound travel lanes of SR-7 and encountered sampler and auger refusal on slightly weathered sandstone and limestone bedrock. Borings performed upslope of SR-7 by CTL encountered severely weathered to slightly weathered shale, siltstone, limestone, claystone, and sandstone. Coal was also encountered in isolated seams at depths ranging from 26.7 feet to 127.0 feet below the existing ground surface in multiple borings.

In general, percent recoveries of the rock cores ranged from 42 to 100 percent, with an average value of 95 percent. The RQD values determined generally ranged from 0 to 100 percent, with an average value of 68 percent. Uniaxial compressive strength testing performed on sandstone rock core samples for the structure foundation exhibited unconfined compressive strength (Qu) values ranging from 932 to 4,721 pounds per square inch (psi). However, two (2) unconfined compressive strength tests were performed on the recovered limestone core samples from borings B-004-0-20 and B-005-020 with results ranging from 8,441 psi to 15,532 psi. Results of the unconfined compressive strength testing are provided on the boring logs in Appendix III.

A detailed description of recovered rock cores along with photographic summary of rock cores samples is provided in Appendix III. A summary of the top of bedrock elevations encountered in the borings is provided in Table 5 below.

Table 5. Top of Bedrock Elevations

Davis s	Ground	Ground Top of Bedrock		
Boring Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Rock Description ¹
B-001-0-19	791.8	13.5	778.3	Siltstone
B-001-1-19	837.6	14.5	823.4	Shale
B-002-0-19	735.1	12.0	723.1	Claystone
B-002-1-19	820.0	13.1	806.9	Shale
B-003-0-20	963.3	12.5	950.8	Shale
B-003-1-20	1013.0	5.0	1008.0	Limestone
B-003-2-20	1095.0	14.0	1081.0	Sandstone
B-004-0-20	679.4	15.5	663.9	Sandstone
B-005-0-20	677.7	22.4	655.3	Limestone
B-001-2-22	682.4	9.1	673.3	Sandstone
B-001-3-22	683.3	6.0	677.3	Sandstone
B-001-4-22	683.0	3.5	679.5	Sandstone

^{1.} Rock descriptions reflects the material encountered at the top of rock only.

4.4 Groundwater

Groundwater seepage was encountered in boring B-005-0-20 at a depth of 6-feet below the existing ground surface. Groundwater was not encountered in any boring during the drilling operations. At the completion of drilling groundwater was not recorded due to the influence of water added during rock coring.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the historic soil borings, and performed drilling and testing program have been used to determine shear strength parameters and foundation support capabilities for the soils/rock encountered at the site. These parameters have been used for evaluating the stability of the existing slopes as well as the proposed slope remediation alternatives, and to provide guidelines for the design and construction of the foundation systems. The soil parameters and results of the analysis performed are presented in the following sections. This report, and the recommendations contained herein, has been written under the consideration that the construction will be performed in accordance with the latest version of the ODOT Construction and Materials Specifications (CMS). Recommendations are provided herein for Slide Areas 1 through 3. It should be noted that recommendations are provided for Slide Area 4. It is understood that the remediation design will be performed by ODOT District 11.

5.1 Slope Stability Evaluation

5.1.1 Strength Parameters Utilized in Slope Stability Analyses

The shear strength parameters utilized in the slope stability analyses for the analysis of the existing conditions and proposed slope remediations are provided in Tables 6 and 7.

Table 6. Soil Parameters Utilized in Slope Stability Analyses – Slide Area 1

Material Type	Unit Weight, γ (pcf)	Effective Friction Angle, φ' (°)	Effective Cohesion, c' (psf)
Fill	120	30	0
Stiff to Very Stiff A-6a/A-6b	120	28	100
Soft to Medium Stiff A-7-6	120	26	45
Stiff to Hard A-6a	120	30	100
Bedrock	145	28	4,000

Table 7. Soil Parameters Utilized in Slope Stability Analyses – Slide Area 2

Material Type	Unit Weight, γ (pcf)	Effective Friction Angle, φ' (°)	Effective Cohesion, c' (psf)
Fill	120	30	0
Very Stiff Elastic Clay/Clay (A-7-5/A-7-6)	120	28	100
Stiff Clay (A-7-6)	120	28	45
Bedrock	145	28	4,000

Shear strength parameters were estimated based on the results of the available boring information and DCP test results, as well as engineering judgment based on the results of analyses.

5.1.2 Slope Stability Analyses – Existing Slopes

Schematic cross sections of the existing slopes at the project location were developed based on cross section information obtained from the aerial survey provided by ODOT. The subsurface profile at each cross section was developed based on the borehole information obtained as part of the current exploration, as well as DCP data for Slide Area 3.

Based upon on-site observations it is anticipated that the slope instability at each of the three slide areas is primarily contributed erosion from surface groundwater and creep under sustained loading. It is understood that inclinometers were installed by CTL in borings B-003-0-20 and B-003-1-20. However, based on correspondence with ODOT, it is understood that the inclinometers installed were impacted by earthwork (fill placement) performed by the contractor that cleared the site and provided access, and therefore, were not able to provide reliable readings.

Rii performed a slope stability analysis to calibrate the in-situ soil parameters by adjusting factor of safety (FS) to 1.0, also known as a back-analysis. Analyses were performed using the program Slide developed by Rocscience. Analysis exhibits for the back analysis and remediation alternatives herein are presented in Appendix VIII.

It should be noted that back analysis was not performed for Slide Area 3 due to the uncertainty in the original slope geometry and the lack of subsurface data above the slide area. The geometry within the limits of Slide Area 3 creates a ledge, or shelf, where residual material has sloughed above the rock cut slope. Due to the rock cut slope at a higher elevation, the over-steepened slope above in conjunction with uncertainty in the original slope geometry, and lack of subsurface information above the ledge, calibrating the model in a back analysis is not feasible. Due to the slope configuration and the higher rock cut slope, it is understood from the field reconnaissance and coordination with ODOT, that rockfall or debris falling down the hill is the primary concern. It is understood that the existing Type D barrier was struck by a fallen cobble or boulder previously. Recommendations are provided herein for Slide Area 3.

5.1.3 Slope Remediation Recommendations

Conceptual options have been considered and presented below. These options have met or exceeded ODOT and AASHTO guidelines for minimum required factor-of-safety against slope stability of 1.3. Therefore, they are considered viable options for repairing the slope failure encountered at this site. Results of the analysis are provided in the Appendix VIII. Conceptual exhibits for remediation of Slide Areas 1 through 3 are provided in Appendix IX.

Slide Area 1

Slide Area 1 extends up to approximately 180 feet above SR-7 between approximately stations 589+00 to 593+25 (approximately a failure length of 425 feet), and appears to have experienced progressive failure. Progressive failure occurs when the adjacent soils – either up or downslope, or laterally – have been weakened by the initial failure, causing propagation of the slip to occur beyond the initial limits. Weakening can occur through the creation of surface cracks that allow water to enter the subsurface strata, softening the soils below. Based on site observations during the reconnaissance, and the results of the back analysis, it is anticipated that erosion and any cyclic variations due to groundwater through surface cracks and/or ponding, contributed to the failure.

In order to provide an adequate factor of safety against slope instability, earthwork options have been considered and analyzed to regrade the existing slope. Based on the site observations and the field survey, it appears the existing slope prior to failure was on the order of 1.9H:1V (horizontal to vertical). Due to the geometry of the overall hillside, flattening the slope to a 2H:1V, or flatter, would require an excavation on the order of 20 feet vertical at the top of the hillside, and, therefore, is not considered practical. Thus, it is recommended that the existing slope be reconstructed at a 1.9H:1V slope with benched material in accordance with ODOT Geotechnical Bulletin No. 2, Special Benching and Sidehill Embankment Fills (GB2).

Analysis was performed for a 1.9H:1V slope with benched material at 1.5H:1V cut slopes, no greater than 10-feet in vertically. Benching should be limited to phases, such as 50 linear feet, to prevent excavations from being open without new fill in place for extended periods. Results of the analysis indicated a minimum factor of safety of 1.34. In the analysis, cohesive fill material with long-term (drained) shear strengths of a 28 degree friction angle and a cohesion of 270 pounds per square foot (psf) were considered, in general accordance with ODOT GB-7. It is recommended that material meeting or exceeding these values be used as fill placement. In addition to benching in compacted fill, it is recommended that slope drains be constructed on the cut slopes in accordance with GB-2, in conjunction with surface drainage improvements to promote drainage away from the slope and prevent any ponding. Drainage improvements consisting of surface drainage systems combined with slope drains along the excavation for benching may be considered. Finally, it is recommended that vegetation be reestablished to mitigate any surface erosion.

Slide Area 2

Slide Area 2 extends up to approximately 460 feet above SR-7 between approximately stations 586+40 to 589+50 (approximately a failure length of 310 feet). However, it should be noted that the failure area appears to extend on the slope at a skew from the SR-7 centerline alignment. It is anticipated that the failure mechanism for Slide Area 2 is similar to Slide Area 1. However, the slope after the failure is on the order of 2.25H:1V, and the back analysis (using similar parameters as Slide Area 1 based on similar subsurface conditions) indicated a minimum factor of safety of 1.3. However, in areas where the existing failure resulted in over-steepened slopes, the factor of safety was on the order of 1.0 to 0.9. Over-steepened areas should be regraded to match the overall slope and be no steeper than 2H:1V.

Therefore, it is recommended that the residual, or failed soil mass, be excavated and regraded. Drainage improvements should be provided to control surface water and mitigate erosion, as well as vegetation reestablished in the vicinity of the slide area and clearing that was previously performed. In order to determine the depth of excavations, test pits inspected by the Geotechnical Engineer should be considered during construction. Excavations should be regraded to slopes no steeper than 2H:1V and blended to match the adjacent grades. Any fill material required should be benched in accordance with ODOT GB-2.

Slide Area 3

Slide Area 3 extends up to approximately 240 feet above SR-7 between approximately stations 582+00 to 585+50 (approximately a failure length of 310 feet). As previously stated, due to the uncertainties in the past slope conditions and the subsurface conditions above the failure area, a back analysis was not performed. Based on the results of the DCP testing performed, it is anticipated that the bedrock surface is on the order of 7 to 10 feet below the existing ground surface at the test locations. The test locations were generally performed in the vicinity of the failed mass on the "ledge" at approximately elevation 900, immediately above the existing rock cut slope.

As stated, it is understood that the primary concern is debris, such as cobbles and boulders, will be eroded or carried from the ledge or above and fall down the rock slope as a hazard to SR- below, as observed by the damage to the existing Type D barrier observed in the field during the reconnaissance. Therefore, it is recommended that the slope be protected using erosion control mats and a wire mesh, or slope drape. Additional analysis will be required during final design to determine the loads on the rock anchors to support the slope drape. It is recommended that the existing failed material ("slough") be excavated from the ledge and the immediate slope above. Additionally, the slope drape should be anchored above the ledge in order to mitigate any fall potential from the oversteepened slope. It is recommended that consideration be given to additional exploration be performed to determine the depth and quality of the bedrock above Slide Area 3, above the DCP test locations, in order to facilitate the design of the rock anchors for the slope drape. Erosion control mats should be provided at the slope transitions to mitigate loss of material. A conceptual exhibit for the remediation is provided in Appendix IX.

5.2 Foundation Recommendations - Rockfall Barrier

Based on the information provided by the Rii design team, the proposed rockfall barrier wall is understood to consist of flexible steel mesh ropes barrier supported on steel posts. The barrier is proposed to have an exposed height of 13.5 feet above the existing pavement surface. Based on the rock fall analysis performed by Rii using the Colorado Rockfall Simulation Program (CRSP), it is calculated that the a single rockfall event will transmit a factored maximum shear-force load of 3.3 kips to a steel post.

Utilizing the soil and rock parameters provided in Table and the estimated load on the proposed steel fence post, Rii performed a lateral load analysis to determine the required embedment depths of the foundation along with maximum lateral deflections of the proposed posts. A H-pile post (size HP 10x42 and yield strength 36 ksi) was utilized for the proposed analysis. The results of the LPILE analysis are presented in Appendix VII and a summary of analysis is presented below in Table .

Table 8. Summary of Lateral Load Analysis – HP 10x42 Piles

Location/ Boring Number	Calculated Maximum Moment, (kips-ft)	Allowable Maximum Moment, (kips-ft)	Calculated Maximum Shear Force, (kips)	Allowable Maximum Shear Resistance, (kips)	Maximum Pile Head Deflection, (in)	Calculated Embedment Pile Length, (ft)	Minimum Pile Length Embedment in Bedrock, (ft)
B-001-2-22	46.2	144.9	9.0	84.1	1.94	16.0	7.0
B-001-3-22	46.3	144.9	12.8	84.1	1.87	14.0	8.0
B-001-4-22	47.0	144.9	31.7	84.1	1.78	11.5	8.0

Table 9. Lateral Design Parameters

Boring No.	Elevation (feet msl)	Strata	Unit Weight	Strength Parameter	k (soil) k _{rm} (rock)	ϵ_{50} (soil) E_r (rock)
	682.4-679.2	Stiff Clay w/o Free Water	125 psf	S _u = 1,875 psf		0.007
B-001-2-22	679.2-673.3	Sand (Reese)	125 psf	φ = 32°	50 pci	
	673.3-672.4	Weak Rock	135 psf	q _u = 100 psi	0.0005	18,000
	672.4-662.4	Weak Rock	140 psf	q _u = 4,721 psi	0.00005	300,000
	683.3-677.3	Stiff Clay w/o Free Water	125 psf	S _u = 1,875 psf		0.007
B-001-3-22	677.3-675.8	Weak Rock	135 psf	q _u = 100 psi	0.0005	18,000
	675.8-665.8	Weak Rock	140 psf	q _u = 932 psi	0.0005	100,000
	683.0-679.5	Stiff Clay w/o Free Water	125 psf	S _u = 1,875 psf		0.007
B-001-4-22	679.5-678.0	Weak Rock	135 psf	q _u = 100 psi	0.0005	18,000
	678.0-668.0	Weak Rock	140 psf	q _u = 3,061 psi	0.00005	300,000

5.3 Site Drainage

The project site is located along the west side of State Route 7 in Belmont County, Ohio. State Route 7 runs adjacent to the Ohio River, but the site is not within the Ohio River floodplain as the earth slips are located on the upland hillside of State Route 7. Drainage from the site drains directly to the Ohio River by way of storm sewers under State Route 7. The project site consists of several slide areas located on a steep hill slope. The overall drainage area for the hillside starts near a small residential area west of State Route 7. Sheet flow is the predominant flow throughout all project drainage areas, though over time several channels have developed in the topography. Earth slips have hastened the development of these channels. The flow characteristics in each slide area are different based on topography and the location and effect of the earth slips.

Slide Area 1

The earth slide in Area 1 is along the lower third of the hill side adjacent to State Route 7. The slide failure deposited soil alongside the shoulder of State Route 7. Further up the slide area, several small channels have developed, including some alongside access paths established during investigation of the slip. Upslope of the earth slip the flow is predominantly sheet flow on a forested slope. The primary drainage concern in this area is the concentrated flow through the small concentrated channels, some of which run obliquely along the slip area.

Slide Area 2

The earth slide in Area 2 is higher along the hill side than Slide Area 1 but does not reach the top of the hill. This area is largely overburden deposited in the middle third of the hill. A natural drainage gully has formed along the south side of the slide area. This gully runs fairly directly down the hill side with minor deviations as it flows down to the base of the hill behind the shoulder barrier of State Route 7. This drainage gully collects nearly all of the drainage from Slide Area 2.

Slide Area 3

Slide Area 3 is located predominantly along a rock face of the hill. Along the top part of the hill side, the rock has soil cover. Drainage down this slide area is generally sheet flow off of the soil and down the rock face. While this flow is not channelized and may not present a danger of erosion to the rock face, it will need to be addressed alongside any proposed improvements in Slide Area 3. The soil upslope of any work in Slide Area 3 will need to be stabilized and protected from future erosion.

5.4 Drainage Recommendations

Slide Area 1

The geotechnical improvements to Slide Area 1 involve the construction of benches under the soil to provide stabilization. The earthen surface will be graded at a slope of [x:1], restoring the sheet flow to the surface of the hillside in this area. In order to collect the sheet flow, a series of two surface benches will be proposed – one along the north side of the slide area between Stations 591+00 and 593+50 at elevation 738 and a second along the south side of the slide area between Stations 588+50 and 592+00 at elevation 790. These two benches will have shallow ditches to collect the sheet flow and carry it to the catch basins along the bench. From these basins, the flow is conveyed down the hill side in closed storm sewer systems. The proposed system will also serve to convey the collected runoff from Slide Area 2, which will enter the Slide Area 1 system at Station 591+00.

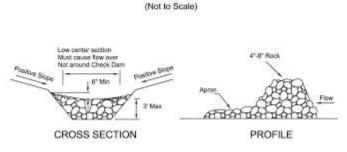
Slide Area 2

The improvements to Slide Area 2 do not propose the same extent of earthwork as Slide Area 1. The main drainage concern in Slide Area 2 is the stabilization of the existing earthen gully that conveys collected flow down the hillside. There are a range of options available for lining the gully bottom and slowing and/or collecting the drainage as it flows down the hillside.

Stabilization of the gully requires lining the gully with a ditch lining capable of resisting the erosive forces of the collected flow down a steep slope. Three options are available.

The first is rock channel protection as a ditch lining. This would require placing Type B or C rock channel protection at a depth of 1.5 to 2.5 feet across the gully and up part of each side. This would slow the water and resist erosion but would require extensive excavation under the existing gully bottom elevation. The photo at left shows an example of an installation of a rock channel protection stabilized channel at a similar hillside channel at a project in Kentucky in 2019. The rock channel protection would line the gully bottom and part of the side slopes of the gully. Upslope of the rock channel protection, the gully side slopes would be seeded and mulched with temporary slope protection installed to allow the grass to take root.

The second option is the use of gabion baskets or reno mattresses. These consist of wire cages containing rock with a thickness of 6 inches to one foot with geotextile under the base. These alternatives function similar to rock channel protection in slowing the water and preventing erosion and can be installed with less excavation than rock channel protection.



The final option is the use of tied concrete block or similar surface lining. These options do not require significant excavation in and along the channel. The lining would extend along the gully bottom and up the side slopes about 18 inches. The upslope area would be seeded and mulched and protected with temporary slope protection. These linings prevent erosion of the gully bottom but do not slow the velocity of the channel flow.

The choice of channel lining will also depend on the method to slow and/or collect drainage in the gully. At the very least, one catch basin structure will be required near Station 588+50 to collect the gully flow and convey it in a closed system through Slide

Area 1 to the roadside ditch. Upstream of this location there are three options. The first option slows the water as it flows down the gully but does not capture it at any point, eliminating the need for any trenching on the hill side. This option is a series of check dams, placed across the

gully at locations along the flow line of the gully. Each check dam will consist of a rock dam across the channel. The ends of the dam will be placed at or near the existing top of bank of the gully. The top of the rock dam will be an arc with the center six inches lower than the ends in order to allow for overtopping. Behind the rock check dam, there will be a short, flatter area to allow water to pond behind the dam. The entire area of the rock check dam will be underlain by geotextile fabric. The spacing between dams will depend on the local slope in the area of the dam and the accumulated flow of water reaching the dam. Rock check dams provide a flexible means to place channel impoundments to slow velocity of flow without significant excavation. The primary disadvantage of these dams is that by failing to capture and convey any water in a closed system, the dams along the lower gully channel will receive contributing flow from the entire hillside.

The second option uses periodic catch basins to capture flow and reduce the flow volume in the gully. The preferred catch basin is a CB No. 5, as the sloped grate will reduce the effects of clogging. This will reduce erosion in the gully by limiting the flow in the lower reaches of the gully and safely conveying the flow down to the base of the hill side. These catch basins would be placed sequentially down the gully and would be connected by broken back pipes. For velocity reduction in the storm sewer system, corrugated piping should be specified. The main advantage of the catch basin system is the reduction of flow volume on the hillside, reducing the erosion potential from high flow volume at a steep grade. The major disadvantage of the catch basin system is the need to trench the proposed piping down the hill side. However, use of the catch basin system reduces some of the impacts of the gabions and rock channel protection, as the backfill of the storm sewer trench could incorporate these ditch linings.

The third option is a hybrid of the two options. Periodic catch basins can be placed to bring flow into the closed storm sewer system. Rock check dams could be used on the gully to slow the flow down the hill. Because of the flow reduction, the number of dams would be reduced along the lower part of the hill. The combination of the check dams and catch basins provides for conveyance of the flow while reducing the buildup of flow in all parts of the gully.

Slide Area 3

Drainage improvements in Slide Area 3 are limited in scope. The area is located on a steep slope and is predominantly sheet flow. The proposed geotechnical improvement consists of mesh netting to control rock falls with the netting anchored upslope of the rock face. To protect against undercutting the netting, rolled erosion control matting will be used under the matting to stabilize the soil surface upslope of the rock face. This matting will be used on steep slopes under the netting. For milder sloped areas under the netting, seeding and mulching with temporary slope protection are recommended. These are less prone to eroding and the seeded slopes with a firmly rooted grass cover will safely convey the sheet flow over the ground surface.

Summary

The three slide areas addressed by this project requires a different approach. The best approach for Slide Area 1 is a benched collection system for the sheet flow with catch basins and a closed storm sewer system conveying the flow to the base of the hill side. Drainage improvements for Slide Area 2 focus on stabilizing the existing natural gully down the hillside and either using a periodic capture of the flow or a sequential series of check dams to slow the velocity of the accumulated flow. Regardless of the option selected, the system eventually ties into and uses the storm sewer system of Slide Area 1 to convey the drainage to the base of the hill. Slide Area 3 is a surface treatment of erosion control matting or seeding and mulching to stabilize the ground under the proposed mesh netting. The combination of these approaches will safely convey project drainage to the base of the hill and provide protection for the remediation of all of the earth slip areas.

5.5 Construction Considerations

All site work shall conform to local codes and to the latest ODOT CMS, including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.5.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Table 10. Excavation Back Slopes

Soil	Maximum Back Slope (H:V)	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None
Weathered bedrock	0.75 : 1.0	Vertical excavation may be performed on competent bedrock.

5.6 Groundwater Considerations

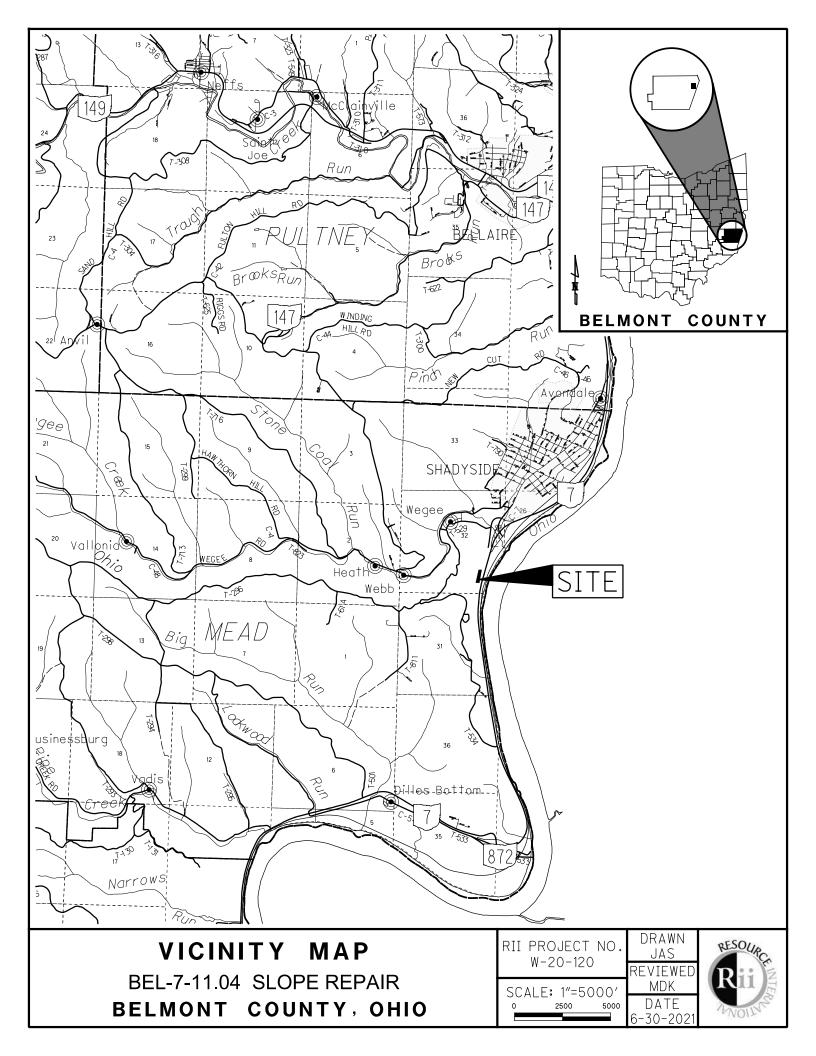
Based on the groundwater observations made during drilling, little to no seepage of groundwater is anticipated to be encountered during construction. Based on our experience with the geology at this site, groundwater conditions affecting construction may be encountered within the trapped/perched zones. These trapped/perched zones are generally the layer(s) of granular soils that are isolated within fine-grained soil layers and may not have been encountered in the borings. If excavations encounter such layers, temporary dewatering may be accomplished by placing localized sumps and pumps within and beyond the excavation. Seepage rates from these layers are difficult to predict and flow rate could be significant. Additionally, trapped water should also be expected at the interface of bedrock and overburden soils.

Where encountered, proper groundwater control measures should be implemented to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition if soft/loose silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 24.0 inches below the deepest excavation. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.


The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted Subgrade engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

Appendix I

VICINITY MAP AND BORING PLAN

 \bigcirc

0

 \bigcirc

PLAN

LOCATION

BORING

BEL-7-11.04

Appendix II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>Granular Soils</u> - The relative compactness of granular soils is described as: ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

<u>Description</u>	Blows per	foot -	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as:

ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

	Und	contin	ed
<u>Description</u>	Compr	essio	n (tsf)
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

Soil Fra	ction	USCS Size	ODOT Size
Boulders	3	Larger than 12"	Larger than 12"
Cobbles		12" to 3"	12" to 3"
Gravel	coarse	3" to 3/4"	3" to 3/4"
	fine	3/4" to 4.75 mm (3/4" to #4 Sieve)	3/4" to 2.0 mm (3/4" to #10 Sieve)
Sand	coarse	4.75 mm to 2.0 mm (#4 to #10 Sieve)	2.0 mm to 0.42 mm (#10 to #40 Sieve)
	medium	2.0 mm to 0.42 mm (#10 to #40 Sieve)	-
	fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt		0.074 mm to 0.005 mm (#200 to 0.005 mm)	0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay		Smaller than 0.005 mm	Smaller than 0.005 mm

Modifiers of Components - Modifiers of components are as follows:

<u>l erm</u>		<u>Range</u>	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>i erm</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	≥ Liquid Limit	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

<u>Description</u>	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Field Parameter Description

No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a Unweathered

right appearance with no discoloration. Fractures show little or not staining on surfaces.

Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% Slightly Weathered

of the rock volume presents alteration.

Moderately Weathered Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a

pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to

alteration may be present. 10 to 15% of the rock volume presents alterations.

Highly Weathered Entire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock

may be present and some areas of severely weathered materials may be present.

Severely Weathered Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of

more resistant rock may be present but the material can generally be molded and crumbled by

hand pressures.

Strength of Bedrock - The following terms are used to describe the relative strength of bedrock:

Description Field Parameter

Very Weak Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger

pressure.

Weak Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure. Slightly Strong

Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist

hammer.

Moderately Strong Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist

Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen. Strona Very Strong

Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand

Extremely Strong Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand

specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description Thickness

Greater than 36 inches Very Thick Thick 18 to 36 inches Medium 10 to 18 inches Thin 2 to 10 inches Very Thin 0.4 to 2 inches Laminated 0.1 to 0.4 inches Thinly Laminated Less than 0.1 inches

<u>Fracturing</u> – Describes the degree and condition of fracturing (fault, joint, or shear):

Degree of Fracturing

Description Spacing

Unfractured Greater than 10 feet

3 to 10 feet Intact Slightly Fractured 1 to 3 feet

Moderately Fractured

Aperture Width Surface Roughness

Description Width Description Criteria

Greater than 0.2 inches Open Very Rough Near vertical steps and ridges occur on surface Narrow 0.05 to 0.2 inches Slightly Rough Asperities on the surfaces distinguishable

Tight Less than 0.05 inches Slickensided Surface has smooth, glassy finish, evidence of Striations

RQD - Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006):

RQD % Rock Index Property Classification (based on RQD, not slake durability index)

0 - 25%Very Poor 26 - 50%Poor 51 - 70% Fair 71 – 85% Good 86 - 100%Very Good

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

nd/or agments nd/or Stone s with Sand d nd Fine Sand d/or Stone Fragments and Silt	Α-΄	OHIO 1-a 1-b	x 100*	30 Max. 50 Max.	Pass #200 15 Max. 25 Max.	Liquid Limi† (LL)	Index (PI) 6 Max.	Inde'x Max.	REMARKS Min. of 50% combined gravel, cobble and boulder sizes
agments nd/or Stone 's with Sand d nd Fine Sand	A- '	1-b		Max. 50	Max. 25		Max.	0	combined gravel,
d and Fine Sand	A						6		
nd Fine Sand		-3					Max.	0	
				51 Min.	10 Max.	NON-PL	-ASTIC	0	
d/or Stone Fragments and Silt		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
		2-4			35 Max.	40 Max. 41 Min.	10 Max.	0	
d/or Stone Fragments , Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
l†	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
ilt and Clay	Δ-	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
у	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b
	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
Clay	Uncon	trolled		/ VISUAL	1			P Pe	at
S	Iay MAT	Idy A-8 MATERIAL Topsoil A-5 Y	Idy A-8 A-80 MATERIAL CLASS Topsoil A-3 V	Idy A-8 A-8a 75 Max. A-8 A-8b 75 Max. MATERIAL CLASSIFIED BY	Idy A-8 A-8a T5 Max. A-8b T5 Max. MATERIAL CLASSIFIED BY VISUAL	ilt A-8 A-8a 75 36 Min. lay A-8 A-8b 75 Max. 36 Min. MATERIAL CLASSIFIED BY VISUAL INSPECTOPSOIL	Idy A-8 A-8a 75 Max. Min. Min. Min. A-8 A-8a 75 Max. MATERIAL CLASSIFIED BY VISUAL INSPECTION Topsoil	ilt A-8 A-8a 75 36 Min. lay A-8 A-8b 75 Max. Min. MATERIAL CLASSIFIED BY VISUAL INSPECTION Topsoil A-V	ilt A-8 A-8a 75 Max. Min. Min. Min. Min. Min. Min. Max. Max.

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

Appendix III

BORING LOGS:

B-001-2-22 through B-001-4-22, B-004-0-20 and B-005-0-20

ROCK CORE PHOTOGRAPHS

BORING LOGS

Definitions of Abbreviations

AS	=	Auger sample
GI	=	Group index as determined from the Ohio Department of Transportation classification system
HP	=	Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
LLo	=	Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL ₀ /LL is less than 75 percent, soil is classified as "organic".
LOI	=	Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
PID	=	Photo-ionization detector reading (parts per million)
QR	=	Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
QU	=	Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
RC	=	Rock core sample
REC	=	Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
RQD	=	Rock quality designation – estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:
		\sum segments equal to or longer than 4.0 inches
		core run length
_		55.5 i si.i i si.i gi.i
S	=	Sulfate content (parts per million)
SPT	=	· ·
-		Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the
SPT	=	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m) . Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following
SPT	=	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m). Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
SPT N ₆₀ SS	= =	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m). Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$ Split spoon sample For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N_{60}
SPT N ₆₀ SS 2S	= = =	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m). Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$ Split spoon sample For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N_{60} values.

Classification Test Data

=

W

Gradation (as defined on Description of Soil Terms):

Initial water level measured during drilling

Water level measured at completion of drilling

GR = % Gravel SA = % Sand SI = % Silt CL = % Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
PI	=	Plasticity Index

WC = Water content (%)

	RESOURCE INTERNATIONAL, INC. PROJECT: BEL SR 7 11.040 DRILLING FIRM / OP TYPE: SLOPE REPAIRS SAMPLING FIRM / LC				DRILL RIG: CME 55 (386345) HAMMER: AUTOMATIC					STATION / OFFSET: 590+28 / ALIGNMENT: SR-7							.9'	RATION II 04-0-20						
1			<u>-0PE REPA</u> SFN:	NA	DRILLING METH		3.25" HS			ALIBRAT			9/14/20		_		_	679.4					_ 31.0 ft.	PAGE
		10/13/20		10/13/20	SAMPLING MET								ELEVATION: 679.4 (MS LAT / LONG: 39					- <i>)</i> 95355		1 OF 2				
F		MATERIA	AL DESC	RIPTION	<u> </u>	ELEV.	5.55		SPT/		REC	SAMPLE	HP	(RAD			o)		ERBI			ODOT	BACK
		A	ND NOTE	S		679.4	DEF	PTHS	RQD		(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	
	0.8' - ASPHALT (10.	.0")			\boxtimes	678.6		-	-															
	0.2' - AGGREGATE					678.4		<u> </u>	10_	-		00.4												- < < < < < < < < < < < < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - < - <
	FILL: MEDIUM DEN TRACE SILT, DAMF		Y GRAVE	L WITH SAN	D,	676.4		<u> </u>	- /	20	67	SS-1	-	-	-	-	-	-	-	-	-	3	A-1-b (V)	EX STE
	FILL: STIFF, GRAY CLAY, SOME FINE					070.4		- 3 -	4 ,	13	39	SS-2	2.00	-	-	-	-	-	-	-	-	18	A-6a (V)	1 / 1
	GRAVEL, DAMP.	TO COAI	VOL OAIN	D, IIVACETI		070.0		- 4 - - 5 -	7 3	14	44	SS-3	2.00	9	17	11	32	31	32	21	11	12	A-6a (6)	
	FILL: LOOSE, BROV		RAY GR	AVEL WITH S	SAND,	673.9		- - 6 -	8 4	10	44	SS-4	_	_	_	_	_	_	_	_	_	13	A-2-6 (V)	The Party of the P
	STIFF, DARK GRAY		SOME SIL	T, SOME FI	NE TO	672.4		7 -	2	3			4.5	_									` '	TX VIII
GPJ	COARSE SAND, TR					670.9		- 8 -	2 2	6	44	SS-5	1.50	9	11	10	30	40	45	23	22	27	A-7-6 (13)	
	COARSE SAND, TR							- 9 - - - 10 -	2	7	61	SS-6	2.00	7	16	15	30	32	40	23	17	31	A-6b (8)	1 × ×
W-2	STIFF TO VERY ST	IEE GDA	V SVND	V SII T SOM	E EINE	668.9		- ·	-															entimo
.S\2020	GRAVEL, LITTLE C				_			11 12	6	17	100	SS-7	3.00	-	-	-	-	-	-	-	-	15	A-6a (V)	/ /
DJECT								- - 13 -	- (0														AND 1
J:\GI8\PR								- 14 - 15 -	40 35 40	105	81	SS-8	1.50	31	9	14	34	12	29	19	10	5	A-4a (2)	1 > MA
:16 - 1	GRAY SANDSTONE	FRAGMI	ENTS.			663.9 663.4	—TR-		50/5"	-	40	SS-9							_	_	_	3	Rock (V)	
DT - 6/29/21 14:	LIMESTONE: GRAY THICK TO MEDIUM FOSSILIFEROUS, M SLIGHTLY ROUGH	/, SLIGH BEDDEI MODERA	TLY WEA), FERRII TELY FR	FEROUS, ACTURED, N	· H	660.4		- 17 - - 18 -	55		80	NQ2-1											CORE	2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- OH DOT.G	COAL : BLACK, UN FRACTURED, NARI			RY WEAK, H	IIGHLY C			19 20 21																
	LIMESTONE : LIGHT WEATHERED, STR	ONG, TH	IICK BED	DÉD,		657.4		- 22 - 23 -																2/12/2 40 40 40 40 40 40 40 40 40 40 40 40 40
	FOSSILIFEROUS, ON NARROW, SMOOTI -QU @ 23.0' = 15,5	H, INTAC			RED,			- 24 - 25 -	74		99	NQ2-2											CORE	
ODOT								- 26 -																THE T
V STA (27 -																100 1 500 1
00-2021 NEW STA ODOT BOR								28 29 -	91		100	NQ2-3											CORE	

D:	NA	SFN:	PROJECT:	REI SD	7 11.040	STATION	/ OFFS	ET.	500	28, 29'	Т	TAPI	Γ: 10/	13/20	TEN	ıD.	10/	13/20	Ъ	G 2 O	E 2 B_(004-0-2
D	INA			DLL SIX		IOIATION													_			
		MATERIAL DESCRIP	TION		ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE			SRAD.					ERBE			ODOT	BAC
		AND NOTES			649.4		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G	
					648.4	-	H										l					
					0-101	—EOB——31—						-										W.R.Am
TES	S. GRO	UNDWATER NOT ENCOUNTER	ED DURING DRILLI	NG: CAVE-IN	N DEPTH ⋒	21 3'																
		T METHODS, MATERIALS, QUA																				

_	KES	OURCE	INIERI	IAII	ONAL, INC	<i>,</i> .																							
			PROJE	CT:		BEL SR 7	11.040	[DRILLING I	FIRM /	OPERATO	R:R	I / L.H.	DR	ILL RIG	i:	CME 55 (3	86345)		STA	TION	OFFS	SET:		591+	29 / 40)'		RATION
	R	ii)	TYPE:		SL	OPE REP	PAIRS		SAMPLING	FIRM	/ LOGGER	: RII	/ J.K.	HA	MMER:		AUTOMA	ATIC		ALIG	NME	NT:			SR-7			_ LB-00	5-0-20
	6	**/	PID:	N	IA SI	FN:	NA		DRILLING I	METHO	DD:	3.25" HSA	NQ2	CA	LIBRAT	ION DA	TE:	9/14/20		ELE\	/ATIO	N:	677.7	7 (MSL	_)	EOB:	3	7.4 ft.	PAG
			START:		10/13/20	END:	10/13/20		SAMPLING	METH	IOD:	SPT		EN	ERGY F	RATIO (%):	84.2		LAT	/ LON	G:		39.	95381	5, -80.	763766	3	1 OF
				_	MATERIA	AL DESC	CRIPTION				ELEV.			SPT/		RFC	SAMPLE	HP		SRAD			<u>(</u>)	ATT	ERB	ERG		ODOT	BACI
				•		ND NOT					677.7	DEPT	HS	RQD		(%)	ID	(tsf)	-		FS	_ `	CL	LL	PL	PI	WC	CLASS (GI)	
F	FILI	L: VER	Y STIF	FT			GRAY TO DA	ARK	(3				` ′											<0/100 <
							O COARSE						F 1 F	5	13	58	SS-1	4.5+	-	-	-	-	-	-	-	-	14	A-6b (V)	WSD V
ı	TRA	ACE FI	NE GF	RAVI	EL, DAMI	P TO MO	OIST.						- <u> </u>	9	+														auto 1
													_ 2 +	8	25	75	SS-2	4.00	7	15	10	31	37	37	20	17	20	A-6b (9)	A > L
													- 3 -	10 6)													, ,	1 000
	-C	·ΩΔΙ Ε	RAGM	FNT	ΓS @ 1.5	'-6 O'							+ , 	7	24	78	SS-3	4.25	_	_	_	_	_	_	_	_	14	A-6b (V)	
	Ŭ	/O/ (L 1	i o toivi		10 @ 1.0	0.0								10)													,	A
													<u> </u>	5	17	75	SS-4	4.25	١.	_	_	_	_	١.	١_	_	14	A-6b (V)	≤ LV
											671.7			7	· ' '	13	7	7.20									17	A-00 (V)	15/10
Γ							GRAY TO G			HH			6	6	13	44	SS-5	1.50									11	A 7 6 A A	3/1/100
1							COARSE SA	AND	,	##	1		├ 7 ┼	4 5		44	აა-ა	1.50	-	-	-	-	-	-	-	-	14	A-7-6 (V)	X > 1
1					EL, MOIS IS AND A		PHTHALENE		OR IN		1		E 8 -	J															744 S
	SS-		I VACIVI		CANDA	1110 11/1	IIIIIIAEENE	- 00		$\parallel \parallel \parallel$						63	ST-6	2.50	1	10	9	34	46	47	23	24	24	A-7-6 (15)) \(\frac{1}{2} \text{min.}
										HH			9 +															, ,	1
													- 10 -																S LY
										$\parallel \parallel \parallel$			-																THE NO
										HH			<u> </u>	3															76
										\blacksquare			12	4 5	13	89	SS-7	2.50	1	7	7	36	49	54	25	29	26	A-7-6 (18)	
										$\parallel \parallel \parallel$			- ₄₂ •		-														- 1 > PZ
										Ħ			13 —	_															1 1
ı													14	3	8	78	SS-8	2.50	١.	_	_	_	_	١.	١_	_	28	A-7-6 (V)	STORE OF THE PERSON OF THE PER
										$\parallel \parallel \parallel$			1.5	4	. ~	'0	33-0	2.50	-	-	-	-	-	-	-	-	20	A-1-0 (V)	Py L
ı										Ħ			15																W 477
													<u></u> 16 ⊤	4															
										$\parallel \parallel \parallel$			17	4	14	0	SS-9	-	-	-	-	-	-	-	-	-	-		STATE OF THE PARTY
										HH			⊢ '' ⊢	6	5	67	2S-SS-9A	2.50	2	6	6	33	53	54	25	29	28	A-7-6 (18)	7 7 W
ı													<u></u> 18 [⊥]	0	 	07	<u> 20-00-9F</u>	2.50		-	-	33	33	34	23	29	20	A-1-0 (10,	
ı										##	1		- 19 -	4	44		00.10	0									0.4	47000	
										H	1		- H	3 5	11	39	SS-10	2.75	-	-	-	-	-	-	-	-	24	A-7-6 (V)	L as
L											657.2]	20	J	1														
آ							LITTLE CLA	Υ, ¯					_ 21 _	0	1									-					1
1					EL, MOIS		11						- F	7	-	94	SS-11	2.50	-	_	_	_	-	-	-	_	14	A-4a (V)	Land.
ŀ					GMENT					ЩЩ	655.3	TR-	22	50/5"	<u>'</u>									<u> </u>				- \ /	- No.
1							AY, SLIGHTI DED, FOSSII		BOLIE	 	1		23																
							NARROW, SI			片	1		⊢ ⊪																
			1ASSIV			UINED, I	w. 11 11 10 vv , O	14100	○ 111,	片	1		_ 24 _	68		87	NQ2-1											CORE	THE WAR
	-Q	U @ 2	2.9' = 8	3.44						 	1		- 25 -																April 1
	-R	UBBLI	ZED @)						\mathbf{H}	1		_ 26																N 950.
										H	1		26																\$10 Ju
										H	}		_ 27 _																7 > PZ
										H	1																		1 L
ĺ	-45	5° VEF	RTICAL	FR	ACTURE	@ 27.9)'-28.3'			H	1		28	72		97	NQ2-2											CORE	477Xd>
SOCIETA SIN SECTION OF THE SECTION O										H	1		29																ASAM
										H	1																		ZX 477

PID:	NA	SFN:	PROJECT: BE	EL SR 7 11.04	10	STATION	OFFS /	ET: _	591	29, 40'	_ S	TART	Γ: <u>10</u> /	/13/20	<u>EN</u>	D: _	10/1	3/20	_ P(G 2 OF	2 B-00	5-0-20
		MATERIAL DESCRIP	TION	ELEV		EPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	(GRAD	ATIO	N (%)		ATT	ERBE	ERG		ODOT	BACK
		AND NOTES		647.7	D	EFINS	RQD	11160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
		LIGHT GRAY AND GRAY, . STRONG. THIN BEDDED		H		- 24																4 L MA
CHE	RTY, SLI	GHTLY FRACTURED, NAR SIVE, GOOD. (continued)				- 31 - - - 32 -																4 × 1 ×
-45	° VERTIC	AL FRACTURE @ 33.6'-33.	.8'			33 34 35	92		100	NQ2-3											CORE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-AR	GILLACE	OUS @ 36.5-37.4'		640.3	F0	- 36 - - 37 -	100		100	NQ2-4											CORE	7 X X X X X X X X X X X X X X X X X X X
					LO	5																

TYPE: STRUCTURE FOUNDATION	DRILLING FIRM / SAMPLING FIRM :	/ LOGGER:		RII / L.H. RII / E.T.	НА			CME 55 (3	ATIC		STAT ALIG	NMEN	NT: _			SR 7				1-2-22 PAGE
	DRILLING METHO SAMPLING METH		4.5" CF S	FA / NQ PT		LIBRAT ERGY I			9/14/20 84.2		ELE\		_	682.4				<u>2</u> .764690).0 ft.	1 OF
MATERIAL DESCRIPTION AND NOTES	-	ELEV. 682.4		PTHS	SPT/ RQD	NI		SAMPLE ID			GRAD	ATIO				ERBE	RG	wc	ODOT CLASS (GI)	BACK FILL
0.8' - ASPHALT (9.0")		681.6																		
0.7' - AGGREGATE BASE (9.0")		680.9		1 -																1 LV 7
HARD, GRAY SILT AND CLAY , SOME FINE GRAVEL, LEFINE TO COARSE SAND, DAMP.	ITTLE	679.2		- 2 - - - 3 -	5 4 7	15	61	SS-1	4.50	28	12	8	28	24	33	18	15	13	A-6a (5)	1>V 1 7 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V
MEDIUM DENSE, GRAY GRAVEL WITH SAND, SILT, A CLAY , DAMP.	ND			- 4 -	11 10 11	29	61	SS-2	-	59	11	5	16	9	29	18	11	10	A-2-6 (0)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-COAL FRAGMENTS THROUGHOUT				- 6 T	14	25	61	SS-3	_	_	_	_	_	_	_	_	_	_	A-2-6 (V)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
				- 7 T	9		01												7.20(1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		673.3	TR	9 -	3 4	62	67	SS-4A	-	-	-	-	-	-	-	-	-	10	A-2-6 (V)	1>11
DARK GRAY SHALE FRAGMENTS , DAMP.		672.4		10	4 40		67	SS-4B	-	-	-	-	-	-	-	-	-	-	Rock (V)	7 LV 7
SANDSTONE: LIGHT GRAY AND GRAY, SLIGHTLY WEATHERED, MODERATELY STRONG, VERY FINE GITO FINE GRAINED, LAMINATED TO THIN BEDDED, HIBIOTURBATED, CALCAREOUS, CARBONACEOUS, CL. TO SILTY, MODERATELY FRACTURED, NARROW TO APERATURES, VERY ROUGH SURFACES, BLOCKY/DISTURBED/SEAMY, FAIR. -QU @ 10.0' = 4,721 PSI -THIN CLAY SEAM @ 13.4'	GHLY AYEY			- 11 - - 12 - - 13 - - 14 - - 15 -	70		97	NQ2-1											CORE	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
-CLAYEY/SILTY ZONE FROM 13.5' TO 16.0' -MEDIUM GRAINED ZONE FROM 16.0' TO 17.0'		662.4		- 16 - - 17 - - 18 - - 19 -	88		100	NQ2-2											CORE	<pre></pre>

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 50 LBS. BENTONITE CHIPS AND SOIL CUTTINGS. PAVEMENT PATCHED WITH COLD PATCH ASPHALT.

Rij TYPE: STRUCTURE FOUNDATION	DRILLING FIRM / SAMPLING FIRM	/ LOGGER:	RI	II / L.H. I / E.T.	HA	ILL RIG MMER:		CME 55 (3 AUTOMA	ATIC		STA ^T ALIG	NMEN	NT: _			583+50 SR 7			EXPLOR B-00	1-3-2
	DRILLING METHO SAMPLING METH		4.5" CFA			LIBRAT ERGY I			9/14/20 84.2)	l	/ATIO / LON		683.3		_)E		1 .764589	7.5 ft.	PA 1 C
MATERIAL DESCRIPTION	SAMPLING MET	ELEV.			SPT/			SAMPLE			GRAD)		ERBE	_	.704368	ODOT	BA
AND NOTES		683.3	DEP1	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	sı	CL	LL	PL	PI	wc	CLASS (GI)	
0.8' - ASPHALT (10.0") 0.7' - AGGREGATE BASE (8.0") VERY STIFF TO HARD, GRAY TO BROWNISH GRAY SCLAY, LITTLE COARSE AND FINE SAND, LITTLE FINE		682.5 681.8		- 1 - - 2 -	6 10	34	72	SS-1	4.50	_	_	_	_	_	-	_		16	A-6b (V)	× 1 > 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
GRAVEL, MOISTCOAL FRAGMENTS THROUGHOUT				- 3 - - 4 -	5		70	00.0	4.00	47			00	00	0.4	40		47		7777
		677.3	—TR—	5 - 6 -	10 6	22	72	SS-2	4.00	17	9	9	29	36	34	18	16	17	A-6b (8)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
GRAY SHALE FRAGMENTS, DAMP.		675.8		7 -	50 30 42	101	67	SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V)	17 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
SANDSTONE: LIGHT GRAY AND GRAY, SLIGHTLY WEATHERED, MODERATELY STRONG, VERY FINE G TO FINE GRAINED, LAMINATED TO THIN BEDDED, BIOTURBATED, CALCAREOUS (LIMESTONE SEAMS), CARBONACEOUS, CLAYEY TO SILTY, MODERATELY FRACTURED, NARROW TO OPEN APERATURES, VEI ROUGH SURFACES, BLOCKY/DISTURBED/SEAMY, FA-SHALEY ZONE FROM 9.6'-11.3' -CLAY SEAM/SOFT ZONE @ 10.3'-10.6' -QU @ 12.0' = 932 PSI	RY			- 8 - - 9 - - 10 - - 11 - - 12 - - 13 -	38		88	NQ2-1											CORE	V77V77V77V77 V
-WATER LOSS @ 13.5' -CARBONACEOUS NODULES IN RC-2 -0.25" CLAY SEAM @ 16.2' -SOFT/FRIABLE ZONE @ 16.6'-16.8'		665.8	—F0B—	- 13 - - 14 - - 15 - - 16 - - 17 -	40		90	NQ2-2											CORE	V

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

PROJECT: BEL- 7-11.04 DRILLING FIRM / TYPE: STRUCTURE FOUNDATION SAMPLING FIRM		RII / L.H.	_	L RIG: MER:	(CME 55 (38 AUTOMA			STAT			SET:		585+5 SR 7	0 / 33'	LT	EXPLOR B-00	1-4-22
PID: 110788 SFN: NA DRILLING METH	OD:4	.5" CFA/NQ	CALI	BRATIC	ON DA	TE:9	9/14/20		ELEV	/ATIO	N:	683.0) (MSL	L)	EOB:		15.0 ft.	PAG
START: <u>12/21/22</u> END: <u>12/21/22</u> SAMPLING METH	HOD:	SPT	ENEF	RGY RA	ATIO (9	%):	84.2		LAT /	LON	G:		39.9	95230	8, -80	.76446	9	1 OF
MATERIAL DESCRIPTION AND NOTES	ELEV. 683.0		SPT/ RQD	NI I	REC S	SAMPLE ID	HP (tsf)		CS CS) CL	ATT LL	ERBI PL	ERG P	wc	ODOT CLASS (GI)	BAC FILI
0.9' - ASPHALT (11.0")	682.1	- 1 -																
0.6' - AGGREGATE BASE (7.0") /ERY STIFF, GRAY SANDY SILT , LITTLE CLAY, TRACE FINE GRAVEL, DAMP. -COAL FRAGMENTS THROUGHOUT	681.5	2 - 2	4 3 8	15	39	SS-1	3.00	-	-	-	-	-	-	-	-	10	A-4a (V)	V V V V V V V V V V V V V V V V V V V
GRAY AND DARK GRAY SHALE FRAGMENTS , DAMP.	678.0	F 4 =	50/5"	- ′	100	SS-2	-	-	-	-	_	-		-	-	-	Rock (V)	V 1 7 V 1
SANDSTONE: LIGHT GRAY AND GRAY, SLIGHTLY WEATHERED, WEAK TO MODERATELY STRONG, VERY FINE GRAINED TO FINE GRAINED, LAMINATED TO THIN BEDDED, BIOTURBATED, CALCAREOUS (LIMESTONE SEAMS), CARBONACEOUS, CLAYEY TO SILTY, MODERATELY FRACTURED, NARROW TO OPEN APERATURES, VERY ROUGH SURFACES, BLOCKY/DISTURBED/SEAMY, FAIRQU @ 6.0' = 3,061 PSI -SHALEY/CARBONACEOUS ZONE FROM 7.8'-10.2'		- 5 - 6 7 - 8 9 10 - 10 - 1	40		83	NQ-1											CORE	77
-BIOTURBATED ZONE FROM 10.0'-11.5' -BECOMING COARSER GRAINED IN RC-2		- 11 - - 11 - - 12 - - 13 -	83		100	NQ-2											CORE	V
-WATER LOSS @ 14.0'	668.0	_ 14 _																1>V

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

Project Name: BEL-7-11.04

Location:

Belmont County, Ohio

Project No.:

Rii. W-20-120

Photo No.

Boring: B-001-2-22

RC-1: 10.0'-15.0' REC (%):97% RQD (%):70%

RC-2: 15.0'-20.0' REC (%):100% RQD (%):88%

Project Name: BEL-7-11.04

Location:

Belmont County, Ohio

Project No.:

Rii. W-20-120

Photo No.

2

Boring: B-001-3-22

RC-1: 7.5'-12.5' REC (%):88% RQD (%):38%

RC-2: 37.0'-42.0' REC (%):90% RQD (%):40%

Project Name: BEL-7-11.04

Location:

Project No.:

Belmont County, Ohio

Rii. W-20-120

Photo No.

Boring: B-001-4-22

RC-1: 5.0'-10.0' REC (%): 83% RQD (%): 40%

RC-2: 10.0'-15.0' REC (%): 100% RQD (%): 83%

Appendix IV

CTL Boring Logs (May 2019 and March 2020)

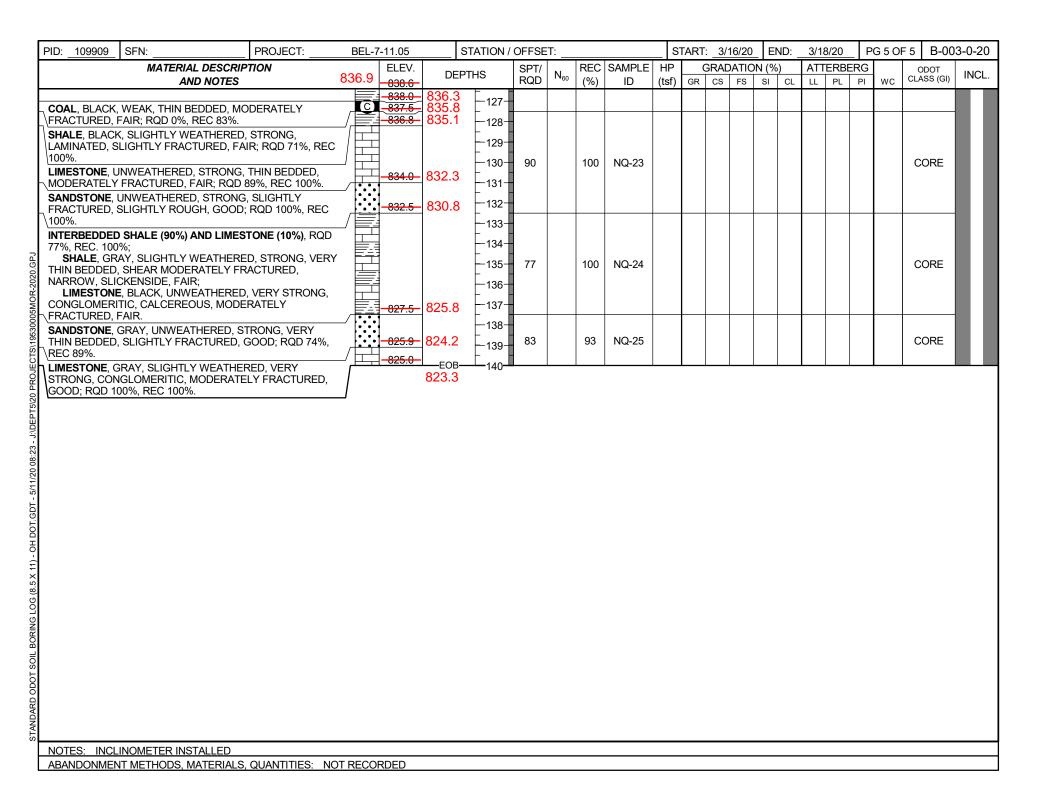
PROJECT: BEL-7-11.05	DRILLING FIRM / OPERA	ATOR:	CTL / RANDY	DRI	LL RIG	:	TRACK	55		STAT	ION /	OFF	SET:	589	+96 /	-207	.2	EXPLOR
TYPE: ROADWAY	SAMPLING FIRM / LOGG		CTL / RANDY				ME AUTON			ALIGI	NME	NT: _	SR-7					B-001
PID:10176 SFN:	DRILLING METHOD:	3.25					ATE:1		_			N: _					11	
START:5/6/19 END:5/10/19	SAMPLING METHOD:	T	SPT		RGY F			90	$=$ \perp	COOL							65065	04
MATERIAL DESCRIP AND NOTES	791.8	ELEV.	I INCUIRC	SPT/ RQD		REC (%)	SAMPLE ID			GRAD cs					ERBE PL		wc	ODOT CLASS (GI)
STIFF, BROWN, CLAY, CONTAINS COBBI		000.0		INQL		(70)	וט	((51)	GR	CS	го	31	CL	LL	FL	FI	WC	(- /
om , brown, de n, den mine debbi		1	<u> </u>	4														
			_ 2	3	11	33	SS-1	-	-	-	-	-	-	-	-	-	15	A-7-6 (V)
		‡		4	4													
]	3															
@3.5'; MEDIUM STIFF, MOIST		1	_ 4	2 2	8	78	SS-2	-	_	-	-	-	-	-	-	-	26	A-7-6 (V)
		_	- 5		3													` '
		‡					00.04										00	4 7 0 0 0
@6.0'; STIFF]	 	H ³ ₁	15	100	SS-3A	-	-		-	-	-	-	-	-		A-7-6 (V)
			- 7		3		SS-3B	-	-	-	-	-	-	-	-	-	36	A-7-6 (V)
			_ 8															
@8.5'; HARD, GRAY			- 9	¹⁹ 11	36	33	SS-4	_	_	_	_	_	_	_	_	_	2	A-7-6 (V)
		1	_ 10	III 44													_	717 0 (1)
		1	l + .												,			
@11.0'; STIFF, BROWN			-1	H2'	18	22	SS-5	1.50		_			_		-		28	A-7-6 (V)
		1	L _	2 📜 " ;	3 10		30-3	1.50									20	A-1-0 (V)
		666.5	778.3 - 10	3 —														
SILTSTONE, GRAY, SEVERELY WEATHE	RED, VERY WEAK.	1	- 14	14 18	87	100	SS-6	_	-		_	_	_	_	-	_	19	Pook (\/)
		665.0	776.8 - 19	II 40		100	33-0	_	_					_	_		19	Rock (V)
SHALE, BROWN, SEVERELY WEATHERE FRIABLE, ARGILLACEOUS, (SOIL-LIKE); F	D, VERY WEAK,	664.5	776.3	H		40	NO 4											0005
LIMESTONE, BROWN, MODERATELY WE		1	16	17		42	NQ-1											CORE
STRONG, CALCAREOUS, CONTAINS ARC	GILACEOUS SHALE	1	17	' 														
INTERBEDS; RQD 57%, REC 82%. @17.5'; GRAY, UNWEATHERED, VERY ST	TPONG	=	- 18	3 📙														
WIT.5, GIVAT, GIVVEATHERED, VERT 5	TKONO.	1	19	, 📙														
		1	-	48		95	NQ-2											CORE
		1	- 20	Н .														
@21.0'; BROWN, SLIGHTLY WEATHERED).		2	' 🖠														
@21.6'; GRAY, UNWEATHERED.		1	- 22	2 📗														
			<u> </u>	3 🗐														
			- 24	H														
		1	-	65		75	NQ-3											CORE
		1	- 25	· 1														
		}	_ 20	3 🖠														
		‡	- 27	—	1	-				\vdash								
		1	- 28	3 🗐	1													
]	l -	- 11	1													
		4	29	69		96	NQ-4											CORE

PROJECT: BEL-7-11.05 TYPE: ROADWAY PID: 10176 SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGO DRILLING METHOD:	GER:	CTL / TOM CTL / TOM " HSA / NQ		HAM	L RIG: MER: BRATI	CI	TRACK ME AUTON ATE: 1			ALIG	NME	NT: _	SR-7			/ -296 EOB:		EXPLOR B-00°	-1-19 PAGE
START: <u>5/14/19</u> END: <u>5/14/19</u>	SAMPLING METHOD:		SPT		ENE	RGY R	ATIO	(%):	90		COO	RD:		39	.9536	5230,	-80.7	64739	91	1 OF 2
MATERIAL DESCRIPTI	ION	ELEV.	5-5-10		SPT/		REC	SAMPLE	HP	(GRAD	ATIC	N (%	o)	ATT	ERBI	ERG		ODOT	BACK
AND NOTES	837.6	732.0	DEPTHS		RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	
SOFT, BROWN, CLAY , CONTAINS WOOD,	FILL, MOIST		835.6	1 -	2 1 1	3	100	SS-1	0.50	-	-	-	-	-	-	-	-	23	A-7-6 (V)	< 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
STIFF, REDDISH BROWN, CLAY, AND SILT TRACE GRAVEL, MOIST	, LITTLE SAND,	7.50.0	-	2 — 3 — 4	2 2 5	11	100	SS-2	1.50	-	-	-	-	-	-	-	-	28	A-7-6 (V)	1>11
			- - - -	5 6 7	3 3 4	11	67	NQ-3	1.50	10	13	7	- 7	0 -	51	29	22	28	A-7-6 (14)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
@7.5'; VERY STIFF		723.0	828 6	8 = 9	3 4 5	14	100	SS-4	2.50	-	-	-	-	-	-	-	-	34	A-7-6 (V)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HARD, GRAY, SILT AND CLAY , LITTLE SAN GRAVEL, MOIST	ID, TRACE		-	10 T	5 8 16	36	100	NQ-5	4.50	1	5	8	- 8	6 -	31	18	13	17	A-6a (9)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
@12.5'; VERY STIFF, CONTAINS ROCK FRA	AGMENTS, DAMP	-717.5 -	823.4	12 — 13 — 14	6 8 20	42	100	SS-6	2.50	-	-	-	-	-	-	-	-	15	A-6a (V)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SHALE, GRAY, SLIGHTLY WEATHERED, SL STRONG, ARENACEOUS, CALCAREOUS; R 76%.		714.0	819.6	15 - 16 - 17 -	76		76	NQ-1											CORE	V
SANDSTONE, GRAY, UNWEATHERED, STR CONTAINS SHALE INTERBEDS; RQD 94%,			- - - - - - - - - -	18 — 19 — 20 — 21 — 22 —	92		100	NQ-2											CORE	V
		1	- - - - - -	23 — 24 — 25 — 26 — 27 —	97		100	NQ-3											CORE	7 1
			-	28 - 29 -																7

ID: <u>10176</u>	SFN:		PROJECT:	BEL-	7-11.05	IS	STATION /				0.11			: <u>5/1</u>					4/19		G 2 OF	_ '	_
		AL DESCRIPT ND NOTES	TON	807.6	ELEV.	DEP	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD.	ATIO FS		CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BAG
SHALE. GRAY	/, SLIGHTLY WE		VEAK. FRIABLE:	- ::	702.0	806.6	_ 31 -	85		94	NQ-4	((SI)	GR	CS	FS	51	CL	LL	PL	PI	WC	CORE	1 / V
RQD 46%, RE		ŕ	,				- 32 - - 33 - - 34 -																7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
47%, REC. 80	%;		ONE (50%), RQD		-695.5_	801.1	- 35 - - 36 - - 37 -	40		85	NQ-5											CORE	V V V V V V V V V V V V V V V V V V V
FRIABLE; LIMESTON SHALE , BLAC		ITLY WEATHI EATHERED, \), WEAK, ERED, STRONG. WEAK, FRIABLE,		-693.0	798.6	- 38 - - 39 - - 40 - - 41 - - 42 -	53		83	NQ-6											CORE	- 1
							- 43 44 45 46 47 40	61		96	NQ-7											CORE	V77V77V77V77V
2%, REC. 96 SHALE, BL	%; .ACK, SLIGHTLY		ONE (40%) , RQD D, WEAK,		<u>-681.0</u>	786.6	- 48 - - 49 - - 50 - - 51 - - 52 -	76		100	NQ-8											CORE	17 V 17 V 17 V 17 V 1
RIABLE, CAL LIMESTON	.CAREOUS; I E , GRAY, UNWE	EATHERED, V	/ERY STRONG.				- 53 54 55 56 57 57 57 57 57 57 - 5	69		96	NQ-9											CORE	77
@58.0'; SHAL	E IS ARENACEO	ous.			671.4	777.0 EOB-	- 58 - - 59 - - 60 -	80		100	NQ-10											CORE	7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

PROJECT: BEL-7-11.05	DRILLING FIRM / OPER	ATOR:	CTL /	ТОМ	DRIL	L RIG:		TRACK	55		STAT	ION /	OFF	SET:	592	2+72	/ -159	9.4	EXPLOR/
YPE: ROADWAY	SAMPLING FIRM / LOG		CTL / T		- 1			ME AUTON			ALIG	NME	NT:	SR-7					B-002
PID: SFN:	DRILLING METHOD:	3.25	5" HSA / N	IQ	- 1				0/2/17		ELEV)N: _						5.0 ft.
START: <u>5/3/19</u> END: <u>5/3/19</u>	SAMPLING METHOD: _	T	SPT		_	RGY R	ATIO (,	90	$=$ \bot	COO				_			64317	′3
MATERIAL DESCRIPT	70N 735.1	ELEV.	DEF	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE			GRAD cs) CL	LL	ERBE PL		wc	ODOT CLASS (GI)
AND NOTES VERY STIFF, BROWN, CLAY, AND SILT, LI		030.0			NQD		(%)	ID	(tsf)	GR	CS	гъ	51	CL	LL	PL	PI	WC	
LITTLE SAND, CONTAINS ROCK FRAGME				1 7	2 6	20	67	NQ-1	2.00	16	9	5	- 7		57	26	21	_	A-7-6 (18)
				- 2 - 3 -	7	20	07	INQ-1	2.00	10	9	<u> </u>	- 1	0 -	31	20	31	-	A-7-0 (10)
				- 4 -	2 3	9	100	SS-2	1.00	_	_	_	_	_	_	_	_	17	A-7-6 (V)
				_ 5 _	3														,
				- 6 - 7	5 7 6	20	78	SS-3	-	-	-	-	-	-	-	-	-	-	A-7-6 (V)
				8 -	4														
		627.5	724.6	9 - 10	⁴ 8	30	100	SS-4	-	-	-	-	-	-	-	-	-	15	A-7-6 (V)
VERY DENSE, GRAY, GRAVEL AND/OR ST FRAGMENTS WITH SAND AND SILT, LITTI	ONE	626.0	700.4	11 7	14 50/5"	_	100	NQ-5	-	36	17	17	- 3	0 -	25	15	10	-	A-2-4 (0)
CLAYSTONE, BROWN, SEVERELY WEATH WEAK, FRIABLE, CONGLOMERITIC; RQD	HERED, VERY		TR-721.6	12 -															
LIMESTONE, GRAY, UNWEATHERED, VER CALCAREOUS, CONTAINS CALCAREOUS			721.0	14	1		100	NQ-1											CORE
INTERBEDS; RQD 85%, REC 98%.				15 - 16 -															
				17	94		99	NQ-2											CORE
				- 18 - - - 19 -				110, 2											00112
				20															
				21 - 22															
				22 23	90		97	NQ-3											CORE
				24															
		611.5	708.6	25 - - 26 -															
SHALE, GRAY, SEVERELY WEATHERED, FRIABLE, CALCAREOUS; RQD 94%, REC. @27.5'; SLIGHTLY WEATHERED, WEAK.		609.5		- 27 - 28 -	73		98	NQ-4											CORE
LIMESTONE, GRAY, SLIGHTLY WEATHER CALCAREOUS; RQD 98%, REC 100%.	ED, STRONG,	<u>+</u> <u>909.8</u>	100.0	29															

PROJECT:		DRILLING FIRM			CTL / T			L RIG		TRACK								1+70	/ -300).1	EXPLORA B-002	
TYPE: PID: 10176 S		SAMPLING FIRM			CTL / TO					IE AUTON				NME					-OD:			PAG
START: 5/15/19		DRILLING METH SAMPLING MET		3.23	" HSA / NO SPT	Į	- 1		ATIO (NTE:1	90		COO		'IN. <u>(</u>					10 64900		1 OF
<u> </u>	MATERIAL DESCRIPT		<u> </u>	ELEV.			SPT/			SAMPLE		_		ATIO	N (%		_	ERBI		04000	ODOT	BAG
	AND NOTES		820.0	734.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)		cs			CL		PL	PI	wc	CLASS (GI)	FIL
VERY SOFT, BROV	WN, CLAY , FILL, MOIST					_	0	0	11	SS-1		_	_	_	_	_	_	_	_	22	A-7-6 (V)	1 LV
						<u> </u>	0		11	33-1			_	_			_		_		A-7-0 (V)	1 > 1
						_ 2 -	_															1>1
@2.5'; VERY STIFE	=					F 3 +	6 5	20	78	SS-2										33	A-7-6 (V)	12
				700 -	045.5		8		70	33-2	-	-	-	_	-	-	-	_	_	33	A-7-0 (V)	1 > 1 2 L
STIFE GRAY SII 1	AND CLAY, LITTLE GR	AVEL LITTLE		-729.5 -	815.5		1															1>1
SAND, CONTAINS	ROCK FRAGMENTS, DA	MP				5 7	6	15	100	SS-3	_	-	_	_	_	_	_	_	_	17	A-6a (V)	12
						<u></u> 6 →	4	13	100	33-3			_	_		L-	_	L-	_	17	A-0a (V)	1 L
						- 7 -	1															1>
@7.5'; VERY STIFI	=					F 8 -	4 8	39	100	SS-4	3.50	-		_	_					14	A-4a (1)	1 >
						<u>_</u> 9]	18		100	33-4	3.30		_	_			_		_	14	A-4a (1)	1 L
						⊢ -	1															4>
						10 7	9 16	51	100	NO E	2.50	21	6	9	- 6	1	31	18	13	11	A 60 (7)	1>
						_ 11 -	18		100	NQ-5	2.50	21	0	9	- 0	- -	31	10	13	11	A-6a (7)	7 L
					0000	<u> </u>																1 × L
				720.9	806.9 TR	13 -	36 \50/1"/	-	100	SS-6	-	-	-	-	-	-	-	-	-	4	A-6a (V)	1/>
SHALE , GRAY, UN 100%.	IWEATHERED, STRONG	; RQD 67%, REC				- - 14 -																12>
100 /0.						- 1																1 L
@15.1'; WEAK, FR	IABLE, CALCAREOUS.		를	1		— 15 -	67		100	NQ-1											CORE	4>
						_ 16 _																1>
						- 17 -	ł															1 L
			- [=	715.9	801.9	<u> </u>																1/2
	AY, UNWEATHERED, STE ONTAINS INTERBEDS CA			İ		19																1>
SHALE; RQD 78%,				1		- H																17
						20	90		100	NQ-2											CORE	1 L
				!		21																4>
				<u> </u>		_ 22 -																1>
				<u> </u>		- 23 -										_		_				177
			 :::	Ī		_ 24 -																15/
				‡		25																14>1
			 :::	†		- I	66		92	NQ-3											CORE	1 > 1
				<u>†</u>		_ 26 -																15 L
			 		700.0	_ 27 -																14>1
CHALE CDAY IN	WEATHERED, WEAK, FI	DIARI E: DOD	- 🔛	706.0	792.0	28																12/
54%, REC 91%.	IVVEATILISED, WEAR, FI	יייייייייייייייייייייייייייייייייייייי		1		_ 29 -		l			1	l				1	l	1	1			17/


PID	: 10176	SFN:	PROJECT:	BEL-7-11.05	s	TATION /	OFFSE	T:			_ s	TART	: 5/	15/19	_ EN	ND:	5/16	5/19	P	G 2 OF	4 B-00	2-1-1
			AL DESCRIPTION	790.0 ELEV.	DEP	THS	SPT/ RQD	N ₆₀	REC						N (%		-	ERBEI			ODOT CLASS (GI)	BA(
			<i>ND NOTES</i> RED, WEAK, FRIABLE; RQD	790.0		- - 31 - - - 32 -	58		92	NQ-4	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CORE	V
85° S H	%, REC 889	%. 7, SLIGHTLY W	THERED, VERY STRONG; RQD EATHERED, WEAK, FRIABLE;	- 700.5 - 098.5		- 33 34 35 36 37	45		82	NQ-5											CORE	1
@4	41.5'; MODE	ERATELY WEAT	THERED, VERY WEAK.			- 38 - - 39 - - 40 - - 41 - - 42 - - 43 -	40		88	NQ-6											CORE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
@4 LIN	45.5'; CALC MESTONE,	GRAY, SLIGHTI	ED. 	687.5	773.5	- 44 - - 45 - - 46 - - 47 -	41		83	NQ-7											CORE	V77 V77 V77 V77
	EC 88%.		INEL INTENDEDO, NGO 00 /0,			- 48 - - 49 - - 50 - - 51 - - 52 -	72		100	NQ-8											CORE	7 V 7 7 V 7 7 V 7 7 V 7 7 V 7 V 7 V 7 V
FR SA	RIABLE; RQI	D 0%, REC 80%	THERED, VERY WEAK, ATHERED, STRONG; RQD 57%,	680.0 677.5 676.0	763.5	- 53 - - 54 - - 55 - - 56 - - 57 -	25		97	NQ-9											CORE	1 V 1 1 V 1 V 1 V V V V V V V V V V V V
SH RC	IALE, GRAY QD 99%, RE	7, UNWEATHER C 99%.	RED, STRONG, CALCAREOUS;	672.5		- 58 - - 59 - - 60 -	93		96	NQ-10											CORE	, 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7

	ORILLING FIRM / OPERA		CTL / TO			L RIG:		CME 55 #			STAT					8+23	/ -46	0.9	EXPLOR/ B-003	
	SAMPLING FIRM / LOGG		CTL / TO		- 1			1E AUTO		_	ALIGI		_				-00		. —	PAGE
	DRILLING METHOD:	3.25	" HSA / NQ	Į.	-		ON DA		0/8/19		ELEV								0.0 ft.	1 OF 5
	SAMPLING METHOD:		SPT			KGY K	ATIO (81.5		LAT /							.7657	J0	1 01 3
MATERIAL DESCRIPTIO	963.3	ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE		_	GRAD					ERBI			ODOT CLASS (GI)	INCL.
AND NOTES		965.0			RQD	60	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
VERY STIFF, BROWN, ELASTIC CLAY, AND				-	-															
SAND, CONTAINS COAL FRAGMENTS, DAMP	Чи			<u></u> 1 1	4															
				- 2 -	7	30	67	SS-1	3.75	0	3	2	47	48	51	40	11	26	A-7-5 (11)	
	И			- I	15															
				3 -	1															
	\mathcal{M}			<u> </u>	14 28	_	80	SS-2	3.50	0	10	6	56	28	53	42	11	46	A-7-5 (11)	
		960.0	958.3	H	28 50/3"			33-2	3.50	ľ	10	0	50	20	55	42	111	40	A-7-3 (11)	
STIFF, BROWN, CLAY, AND SILT, TRACE SA	ND, MOIST			5 -																
1				⊢ 6 ¬	4															-
					4	11	100	SS-3	1.50	0	0	1	51	48	47	29	18	33	A-7-6 (13)	
				F / T	4														- (- /	
				8 -	1															
@8.5'; HARD				F 9 F	4															
				"	5 5	14	100	SS-4	4.25	0	1	1	50	48	43	26	17	32	A-7-6 (11)	
				- 10 -	3					l										
				- 11 -																
@11.0'; VERY STIFF				- H	5	49	89	SS-5	2.50	6	2	1	47	44	41	26	15	18	A-7-6 (10)	
		952.5	950.8	12	22 14	73	03	00-0	2.50	Ľ	_	'	7/	44	41	20	13	10	A-7-0 (10)	
SHALE, GRAY, SEVERELY WEATHERED, VE	RY WEAK.			- 13 -																
				F r	50/5"	-	100	SS-6	4.50	-	- 1	-	- 1	_	-	-	-	16	Rock (V)	
				14 -																
				- 15 -	1															
	E			_ 16 _																
				16 -	5 0/1" _/	\ <u>-</u> _	\100/	SS-7	Ν┅	\ <u>-</u> _	<u> </u>	/	\ <u>-</u> \	/		<u> </u>	acksquare	_6_	Rock (V)	1
				- 17 -	1															
				18 -	1															
				- ''	\$0/1" <i>[</i>	\ _ /	1007	SS-8	h - /	-	l - 1	- /	· - 🛦	- /	- /	.	\ - <i>\</i>	5	Rock (V)	
			943.3	- 19 -	100/1		100	0-00		<u> </u>			<u> </u>			<u> </u>	<u> </u>		(NOCK (V)	
		945.0	943.3 TR	20 -	1															
SILTSTONE, GRAY, SLIGHTLY WEATHERED,				F 1																
MODERATELY STRONG, THIN BEDDED, CAL INTACT, OPEN. SLIGHTY ROUGH, GOOD; RO		,		21	87		90	NQ-1											CORE	
90%.	3D 07 70, NEO ::	942.5	940.8	- 22 -																
SHALE, GRAY, MODERATELY WEATHERED,	SI ICHTI V	942.3	540.0	F 1																
STRONG, LAMINATED, ARGILLACEOUS, JOH				23																
MODERATELY FRACTURED, SLIGHTLY ROU				_ 24 _																
88%, REC 99%.				F 1	1		00	NO 2											CODE	
				25	87		98	NQ-2											CORE	
				_ 26 -																
				27																
		005.5	005.4	21																
		936.8	935.1	28	1															
SANDSTONE, GRAY, SLIGHTLY WEATHERED LAMINATED TO THIN BEDDED. INTACT. NAR				_ 29 _																
RQD 92%, REC 98%.	INOVV, GOOD;																			
11QD 0270, 11EO 0070.																				

PID: 10990)9	SFN	_			OJECT:	•	BEL-	7-11.05	S	TATION /	OFFSE	T:			_		: _3/1		EN		3/1	8/20	P	G 2 OI	5 B-00	3-0-20
				RIAL DES AND NO	CRIPTION	V	ç	933.3	ELEV.	DEP	THS	SPT/ RQD	N ₆₀		SAMPLE			GRAD/				_	ERBE		1	ODOT CLASS (GI)	INCL
SANDSTON LAMINATED RQD 92%, I	D TO	THI	, SLIGH N BEDE	HTLY WEA	ATHERED		G,		933.0		- - 31 - - 32 -	93		98	ID NQ-3	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CORE	
@34.0'; TO	36.5	'; VE	RTICAL	. FRACTL	JRES.						- 33 - - 34 - - 35 - - 36 - - 37 -	83		93	NQ-4											CORE	
@41.7'; UN	WEA	THE	RED, P	YRITIC, V	VERY GOO	OD.					- 38 - - 39 - - 40 - - 41 - - 42 -	97		100	NQ-5											CORE	
									017.5	915.8	- 43 - - 44 - - 45 - - 46 - - 47 -	97		100	NQ-6											CORE	
SHALE, DA WEATHERE JOINTED, N ROUGH, PO	ED, S NARF	ELIGH ROW	HTLY S MODE	TRONG, ' ERATELY	VERY THI	N BEDDE			· ‡		- 48 49 50 51 52 -	45		88	NQ-7											CORE	
									907.5	- 905.8	53 - - 54 - - 55 - - 56 - - 57 -	72		100	NQ-8											CORE	
SANDSTON MODERATE FRACTURE	ELY:	STRO	NG, C	ALCAREC	OUS, SLIG	WEATHEF GHTLY	RED,				- 58 - - 59 - - 60 - - 61 -	97		100	NQ-9											CORE	

	PID: <u>109909</u> SFN:		PROJECT:	BEL-	7-11.05	s	TATION /	OFFSE	:T:			S	TART	: <u>3/1</u>	6/20	EN	D: _	3/18	8/20	_ P(G 3 OF	5 B-00	3-0-20
	М	NATERIAL DESCRIP	TION	004.2	ELEV.	DEP.	THS	SPT/	N ₆₀		SAMPLE			GRAD.					ERBE			ODOT CLASS (GI)	INCL.
	SANDSTONE, GRAY A	AND NOTES	I V WEATHERED	901.2	002.0			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
	MODERATELY STRON FRACTURED, GOOD; @62.5'; STRONG.	NG, CALCAREOUS,	SLIGHTLY				- 63 - - 64 - - 65 - - 66 - - 67 -	92		98	NQ-10											CORE	ı
OR-2020.GPJ							68 69 70 71 72	98		100	NQ-11											CORE	ı
20 PROJECTS\19530005MOR-2020.GP\	SHALE, BLACK, GREE WEATHERED, SLIGHT NARROW, FRACTURE SLIGHTLY ROUGH, PO	TLY STRONG, LAMII ED, TO MODERATEL	NATED, JOINTED, LY FRACTURED,		891.4	889.7	73 74 75 76 77	60		100	NQ-12											CORE	ı
- 5/11/20 08:23 - J:\DEPT5\2	@78.5'; HIGHLY WEAT	THERED, VERY ROL	JGH.				- 78 - - 79 - - 80 - - 81 - - 82 -	45		93	NQ-13											CORE	ı
G (8.5 X 11) - OH DOT.GDT	LIMESTONE, LIGHT G WEATHERED, VERY S CALCAREOUS, MODE 93%, REC 100%.	STRONG, THIN BED	DED,		-880.7	879.0	- 83 84 85 86 87 -	88		100	NQ-14											CORE	ı
STANDARD ODOT SOIL BORING LO	SHALE, DARK GRAY, LAMINATED, INTACT, 95%.	UNWEATHERED, S' VERY GOOD TO FA	TRONG, NR; RQD 81%, REC		-875.7	874.0	- 88 - - 89 - - 90 - - 91 - - 92 -	95		95	NQ-15											CORE	
STANDAR							- - - 94 -																

Р	ID: <u>109909</u>	SFN:		PROJECT:	BEL-	7-11.05	S	TATION /	OFFSE	T:				TART	: <u>3/1</u>	6/20	_ EN	ND: _	3/1	8/20	F	G 4 O	5 B-00	3-0-20
		MA7	TERIAL DESCRIP	PTION	060.0	ELEV.	DEP	THS	SPT/	N ₆₀					GRAD		$\overline{}$		+		BERG	1	ODOT	INCL.
L	= 5.5.	(054)(11)	AND NOTES		869.0	-870.7	, J_,		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
	AMINATED, 1 95%. <i>(continue</i> @96.5'; FRAC	NTACT, VE ed) TURED.		AIR; RQĎ 81%, REC		868.0	866.3	- 95 - - 96 - - 97 -	77		97	NQ-16											CORE	Ш
	STRONG, THI GOOD; RQD 8	N BEDDED 31%, REC 9	, MODERATELY 5%.			866.3	864.6	- - - - - 99																ш
	MODERATEL'	Y STRONG, ACTURED,	IGHTLY WEATH LAMINATED, JO SLIGHTLY ROU	,				- -100- -101-	98		98	NQ-17											CORE	П
	,							- -102- - -103-												<u> </u>				П
I SV I SSSUUUSIMIOIK-ZUZU.GFJ								- 104 105	83		93	NQ-18											CORE	
	DOLL BLACK	() A (= A) (T)	W. 252252 D	(DITIO		857.5	855.8	106 107																П
			HIN BEDDED, PY 2D 40%, REC 100		6	-855.0	853.3	108 109 	50		100	NO 40											0005	П
	STRONG, LAN	INATED, J FAIR; RQD	OINTED, TIGHT, 00%, REC 100%	•		853.5	851.8	110- 111- 112-	58		100	NQ-19											CORE	П
2000		SLIGHTLY F	•	TRONG, DOD; RQD 97%, RE(113- 114-																П
100	_							115 116	97		97	NQ-20											CORE	П
								- 117- - 118-																П
0.00								- 119 120	93		100	NQ-21											CORE	П
								121 122																
	SHALE, DARK	(GRAY, UN	IWEATHERED, S	STRONG,		011.0	839.3	123 124																
ζ	LAMINATED, I	PYRITIC, JO		W, MODERATELY				125 126	87		98	NQ-22											CORE	

١,	corrections by	/ Resource ir	nternationa	ai, inc.																				
	PROJECT:	BEL-7-11.0)5	DRILLING FIRM	// OPERA	ATOR:	CTL / To	MC	DRIL	L RIG:		CME 55 #	£393		STAT	ION /	OFF	SET:	58	7+93	/ -612	2.0	EXPLOR/	
١	TYPE:	ROADWAY		SAMPLING FIR	M / LOG	SER:	CTL / TC	M	HAM	MER:	CN	ME AUTON	MATIC		ALIGN	ME	NT: S	8R-7					B-003	
١	PID: <u>109909</u>	_ SFN:		DRILLING MET	HOD:	3.25	" HSA / NC)	CALI	BRATI	ON DA	TE:1	0/8/19		ELEV.	ATIO	N: <u>1</u>	013.0	o (MS	SL) E	EOB:	60).0 ft.	PAGE
١	START:3/12/	20 END:	3/18/20	SAMPLING ME	THOD: _		SPT		ENEF	RGY R	ATIO (%):	81.5		LAT /	LON	G: _		39.9	53270	ე, -80	.76630	00	1 OF 2
ı		MATERIAL	L DESCRIPTI	ON		ELEV.			SPT/		REC	SAMPLE	HP	(GRAD.	ATIO	N (%)	ATT	ERBE	ERG		ODOT	
1		ANL	D NOTES		1013.0	1015.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)		CS		Sì		LL	PL	PI	wc	CLASS (GI)	INCL.
Ī	VERY STIFF, D.	ARK BROWN, C	LAY, AND SI	LT, TRACE				L .			`													
١	SAND, CONTAI	NS SANDSTONE	E FRAGMEN	TS, DAMP		1		<u></u> 1 ¬	26												\vdash			
- [- ##	‡		- I	36 50/1"/-	-	100	SS-1	3.50	0	0	1	59	40	45	26	19	17	A-7-6 (13)	
ŀ						1012.5	1010.5	2 -	50/1/														, ,	
1	SHALE, GRAY,	SEVERELY WE	ATHERED, V	ERY WEAK.		₫		_ 3 -	•															
١						3		_ 4 _	50/2"_ <i>ſ</i>	\ <u>-</u> _	\ <u>100</u> /	SS-2	\ <u>-</u> _		<u> </u>	/					\	_35_/	Rock (V)	
1						1010.0	1008.0	F																
ı	LIMESTONE. G	RAY TO DARK O	GRAY, MODE	RATELY	\neg	1	TR	5 7																
٦	WEATHERED, Y	VERY STRONG,	THINLY LAN	/INATED,		1		<u></u> 6 −																
0.GPJ		CTURES, FAUL				1		 	61		89	NQ-1											CORE	
202	FRACTURED, C	PEN, FAIR; RQI	D 68%, REC	95%.		1		F / T																
Q A						1		8 -													\vdash			
25M						1		F 9 4																
300								- H	-															
195						1		10	72		100	NQ-2											CORE	
(ZZ						1		- 11 -	12		100	NQ-2											CORE	
핅						4000 7	1000.7	- H																
읽	CHALE CDAY	HIGHLY WEATH	HEBED MOD	DEDATEL V		1002.7	1000.7	12																
DEPT5\20 PROJECTS\19530005MOR-2020.		NATED. FAULTS			-D 📑	1		13													\vdash			
5T5		LY ROUGH, FAIR				-}		14																
ä	@14.0'; ARGILL	ACEOUS, POOF	R.		F.=	.]		'4																
ن ڪ						· <u>·</u>		15	40		400	NO 0											0005	
3:23						-		16	49		100	NQ-3											CORE	
000						1		F 1	-															
11/2						-		17																
NG LOG (8.5 X 11) - OH DOT.GDT - 5/11/20 08:23					E			18													\sqcup			
SPI						-		- H																
5					三	1		19																
Ĭ						1		20																
Ō						-		21	75		98	NQ-4											CORE	
=								- 21																
.5 X						· [_ 22 -																
8)						1		_ 23 _													$\sqcup \sqcup$			
Š						1		- H																
						1		24	1															
S S								_ 25 -																
SOIL BORII						1		⊢	30		100	NQ-5											CORE	
SC						988.3	986.3	26																
ODO		VERY WEAK, VI			0		1	- 27 -																
ġ.		US, HIGHLY FRA			_	987.3	985.3																	
ARI	ROUGH, VERY REC 100%.	POOR, CONTAI	INS SHALE S	ELAMS; RQD 0%	, / 	-		28																
STANDARD	INEC 100%.				→ 🖽			29																
ST,					三等	1															$oxed{oxed}$			

RIAL DESCRIPTION AND NOTES 6) AND LIMESTONE (46%), RQD (, HIGHLY WEATHERED, THIN TO LAMINATED, GHTLY WEATHERED, STRONG, LY FRACTURED, FAIR. (continue		ELEV. -985.0-	DEP	THS - 31 - 32 - 32 -	SPT/ RQD 57	N ₆₀	REC (%) 100	SAMPLE ID NQ-6	HP (tsf)	GR	cs	ATIOI FS				RBER	G PI W	ODOT CLASS (GI)	INCL.
6) AND LIMESTONE (46%), RQD K, HIGHLY WEATHERED, THIN TO LAMINATED, GHTLY WEATHERED, STRONG,			DEP	- 31 -	RQD	N ₆₀	(%)	ID										CLASS (GI)	INCL.
6) AND LIMESTONE (46%), RQD K, HIGHLY WEATHERED, THIN TO LAMINATED, GHTLY WEATHERED, STRONG,		-		- H	57		` ′	NQ-6	,									CORE	
	, _d) 🗐	1	1	- H															П
		976.8	974.8	- 33 - - 34 - - 35 - - 36 - - 37 -	52		100	NQ-7										CORE	
NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC		973.4		- 39 - - 40 - - 41 -	18		93	NQ-8										CORE	
DDERATELY WEATHERED, ATED; ARBONACEOUS, FRACTURED.				- 43 - - 44 -															Ш
HTLY WEATHERED, SLIGHTLY NTED, NARROW, MODERATELY		-969.6-	967.6	- 45 - - 46 - - 47 - - 48 -	67		100	NQ-9										CORE	
		962.0	. 960.0	- 49 - 50 - 51 - 52 -	48		100	NQ-10										CORE	I
OR; RQD 0%, REC 100%. RAY, MODERATELY FRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%.		961.3	959.3 956.0	- 54 - 55 - 56 -	68		97	NQ-11										CORE	
JS, MODERATELY FRACTURED	,	955.0	953.0 FOB-	- 58 - - 59 -	83		100	NQ-12										CORE	
	INATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%.	NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 6) AND COAL (43%), RQD 45%, DERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. HTLY WEATHERED, SLIGHTLY NYED, NARROW, MODERATELY 7%, REC 100%. INATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%. TLY WEATHERED, STRONG, US, MODERATELY FRACTURED, US, MODERATELY FRACTURED, US, MODERATELY FRACTURED, US, MODERATELY FRACTURED,	NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 6) AND COAL (43%), RQD 45%, DERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. HTLY WEATHERED, SLIGHTLY NITED, NARROW, MODERATELY 7%, REC 100%. INATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%. TLY WEATHERED, STRONG, US, MODERATELY FRACTURED, LAMINATED, D, FAIR; RQD 68%, REC 95%.	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 971.4 6) AND COAL (43%), RQD 45%, DERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. HTLY WEATHERED, SLIGHTLY NTED, NARROW, MODERATELY 7%, REC 100%. INATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%. TLY WEATHERED, STRONG, US, MODERATELY FRACTURED, D, STRONG, US, MODER	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 6) AND COAL (43%), RQD 45%, DDERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. HTLY WEATHERED, SLIGHTLY NTED, NARROW, MODERATELY 7%, REC 100%. INATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%. 10 963.0 974.8 974.8 974.8 971.4 41 42 43 44 49 50 51 969.6 967.6 967.6 967.6 967.6 968.0 969.6 967.6 967.6 968.0 969.6 967.6 969.6 967.6 969.6	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 18 971.4 971.4 18 974.8 38 38 39 40 41 41 42 42 43 ARBONACEOUS, FRACTURED, OOR. HTLY WEATHERED, SLIGHTLY NITED, NARROW, MODERATELY 7%, REC 100%. 10 10 10 10 11 11 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 (a) AND COAL (43%), RQD 45%, DDERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. HTLY WEATHERED, SLIGHTLY NTED, NARROW, MODERATELY 7%, REC 100%. INATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%. TLY WEATHERED, STRONG, US, MODERATELY FRACTURED, D, FAIR; RQD 68%, REC 95%. 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 974.8 68 974.8 974.8 974.8 68 974.8 974.8 974.8 68 974.8 68 974.8 67 67 67 67 68 956.0 956.0 956.0 956.0 956.0 956.0 958.0 958.0 958.0 958.0	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 6) AND COAL (43%), RQD 45%, DDERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. HTLY WEATHERED, SLIGHTLY NTED, NARROW, MODERATELY 7%, REC 100%. 960.0 96	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 6) AND COAL (43%), RQD 45%, DEFATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, OOR. HTLY WEATHERED, SLIGHTLY NITED, NARROW, MODERATELY PW, REC 100%. 100 NQ-9 100 NQ-9 100 NQ-10 100 NQ-10 100 NQ-10 100 NQ-11 RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 971.4	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 6) AND COAL (43%), RQD 45%, ODERATELY WEATHERED, AITED; OOR.	PAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 971.4	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 (b) AND COAL (43%), RQD 45%, DOERATELY WEATHERED, ARBONACEOUS, FRACTURED, OPEN, MARROW, MODERATELY NTED, NARROW, MODERATELY NOR, RCC 100%. 1NATED, PYRITIC, JOINTED, OR; RQD 0%, REC 100%. RAY, MODERATELY TRONG, LAMINATED, D, FAIR; RQD 68%, REC 95%. 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0 958.0	RAY, HIGHLY WEATHERED, NG, LAMINATED OPEN, MODERATELY OPE	RAY, HIGHLY WEATHERED, NG, LAMINATED OPEN, MODERATELY OPE	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 971.4 41 42 43 44 46) AND COAL (43%), RQD 45%, ODERATELY WEATHERED, IATED; ARBONACEOUS, FRACTURED, DOR. ATILY WEATHERED, SLIGHTLY 17%, REC 100%. INATED, PYRITIC, JOINTED, OR: RQD 0%, REC 100%. ASSOCIATED AND CONTROL OF THE PROPERTY OF	974.8 974.8 974.8 974.8 974.8 974.8 984.8 985.8 974.8 985.8 974.8 985.8 974.8 986.8 974.8 987.4 974.8 988.8 974.8 988.8 974.8 988.8 974.8 988.8 974.8 988.8 974.8 988.8 974.8 988.8 974.8 988.8 98	RAY, HIGHLY WEATHERED, NG, LAMINATED, OPEN, MODERATELY DUGH, POOR; RQD 37%, REC 973.4 971.4	974.8 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	

Corrections by Resource Internation	T .	NTOD.	OTI / T/	214	Lppu	l DIO		ON 45 55 /	1000	- 1	OT 4 T	101	/ OFF	OFT		7 . 07	, , ,,	0.0	EXPLORA	ATION ID
PROJECT: BEL-7-11.05 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGO		CTL / TO			L RIG: MER:		CME 55 # 1E AUTON			STAT ALIG					1+21	/ -/5	2.2	B-003	
PID: 109909 SFN:	DRILLING METHOD:		" HSA / NQ						0/8/19		ELEV		_			SL) F	OB.	12	0.5 ft.	PAGE
START: 3/10/20 END: 3/18/20	SAMPLING METHOD:	0.20	SPT				ATIO (81.5		LAT /		_		_			.7657		1 OF 4
MATERIAL DESCRIP	-	ELEV.			SPT/			SAMPLE		_	GRAD)			ERG		ODOT	HOLE
AND NOTES		1127 0	DEPT	HS	RQD	N ₆₀	(%)	ID			cs			CL	LL	PL	PI	wc		SEALED
VERY STIFF, BROWN, ELASTIC CLAY, AN		1127.0																		
SAND, DAMP		1		<u></u> 1 ⊤	2					-										
		1124.5	1092.5	- 2 -	2	5	67	SS-1	2.75	0	1	15	38	46	49	34	15	17	A-7-5 (12)	
VERY STIFF, BROWN, SILT AND CLAY , TI	RACE SAND	1124.3	1092.5		2															
TRACE GRAVEL, DAMP	///			- 3 -	4															
	\///			<u></u>	5	18	100	SS-2	4.00	1	7	2	65	25	32	21	11	13	A-6a (8)	
	\// _!			<u></u> 5 ⊥	8															
,	· · · · · · · · · · · · · · · · · · ·			6 7	40															
@6.0'; HARD, SOME GRAVEL, CONTAINS FRAGMENTS	SANDSTONE ///			- H	13 11	38	100	SS-3	_	31	14	5	35	15	33	21	12	17	A-6a (4)	
	OD OTONE	1119.5	1087.5	7 1	17														- ()	
MEDIUM DENSE, BROWN, GRAVEL AND/ FRAGMENTS WITH SAND AND SILT, CON	ITAINS	9		8 -																
SANDSTONE FRAGMENTS, DRY		<u>{</u>		<u></u> 9 →	5 5	16	33	SS-4	_	۱.	_	_	١.	_	l _	١.	_	9	A-2-4 (V)	
		Ä		F 10 J	7															
5				L 11 -																
		\$		<u> </u>	0 9	24	78	SS-5		_			_		-	_		5	A-2-4 (V)	
		q		12	9		70							_				J	7-2-4 (V)	
		7	1081.0	- 13 -	1															
		1113.0	TR	14	50/4"	-	100	SS-6	↓ -	<u> </u>	-		<u> </u>		-	<u> </u>	<u> </u>	5	A-2-4 (V)	
SANDSTONE, LIGHT BROWN TO GRAY, S WEATHERED, STRONG, THIN LAMINATED		; 		- - 15 -																
FRACTURED, NARROW, SLIGHTLY ROUG		:}		F F	100		100	NQ-1											CORE	
REC 81%.		•1		16																
		; }		17	1															
		:}		- ₁₈ -																
		•‡		- H	E0		70	NO 2											CODE	
		; }		19	50		72	NQ-2											CORE	
		:}		20																
	:::	1105.5	1073.5	21	ł															
SHALE, LIGHT GRAY, BLUISH TO RED, SE		=		_ 22 _																
WEATHERED, VERY WEAK, LAMINATED,				⊢ ⊦																
JOINTED, HIGHLY FRACTURED, NARROV VERY POOR; RQD 41%, REC 92%.	V, VERT ROUGH,	1		_ 23 -	1															
		1		_ 24 _	25		100	NQ-3											CORE	
		1		_ 25 -	-															
		1		_ 26 -																
		1		⊢						<u> </u>			-		-	_				
		1		27																
		1		_ 28 _																
		1		- 29	60		100	NQ-4											CORE	
		1																		

	PID: 109909	SFN:		PROJECT:	BEL-	7-11.05	ST	ATION /	OFFSE	T:			s	TART	: <u>3/1</u>	0/20	EN	D: _	3/18	3/20	Р	G 2 OF	4 B-00	3-2-20
			AL DESCRIP	TION	1065.0	ELEV.	DEPT	HS	SPT/ RQD	N ₆₀		SAMPLE		-	GRAD			_		ERBE			ODOT CLASS (GI)	HOLE
•		GRAY, BLUIS VERY WEAK, HLY FRACTUR	LAMINATED, RED, NARROV	ARGILLACEOUS, V, VERY ROUGH,		1001.0	1060.7	- - 31 - - 32 - - 33 - - 34 -	63		(%)	ID NQ-5	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CORE	SEALED
OR-2020.GPJ		SLIGHTLY STI CTURED, VER	RONG, LAMIN Y ROUGH, SL	NATED TO THIN LICKENSIDE, POC	DR,			- 35 - 36 - 37 - 38 - 39 - 40 - 40 -	82		100	NQ-6											CORE	
J:\DEPT5\20 PROJECTS\19530005MOR-2020.GP.	SANDSTONE, WEATHERED, CARBONACEO VERTICAL FR	STRONG, VEF OUS, IRON STA	RY THIN BEDI NNS, SLIGHT	DED, LY FRACTURES,		1085.7	1053.7	41 42 43 44 45 46	85		97	NQ-7											CORE	
.GDT - 5/11/20 08:24 -	SHALE, GRAY MODERATELY	STRONG, LAN	MINATED, IRC	ON STAINS,		1076.4	1044.4	- 47 - - 48 - - 49 - - 50 - - 51 -	70		87	NQ-8											CORE	
RING LOG (8.5 X 11) - OH DOT	FAIR; RQD 82	%, REC 96%. Ó		BLIGHTLY ROUGH		-1070.5	1038.5	52 53 54 55 56	73		97	NQ-9											CORE	
STANDARD ODOT SOIL BOR	MODERATELY	STRONG, LAM ERATELY FRA	MINATED TO ACTURED, OF	PEN SLIGHTLY TO			1033.5	57 58 59 60 61			100	NQ-10											CORE	

PID: <u>109909</u>	SFN:	PROJECT:	BEL-7-11.05	S	TATION /	OFFSE	T:			S	ΓART	: _3/1	0/20	EN	ND: _	3/18	3/20	Р	G 3 OI	4 B-00	3-2-20
		DESCRIPTION NOTES	1032.9 ELEV.	DEP1	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD	ATIO FS	N (%)) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	HOLE SEALED
SLIGHTLY ST	/ AND RED, SLIGHT RONG, LAMINATED , SLIGHTLY FRACT			1028.5	- 63 - 64 - 65 - 66 -	77		100	NQ-11	(tor)	- GIV	00		OI .	ÖL.				Wo	CORE	
VERY THIN B FRACTURED	EDDED, CALCAREO	FEW SHALE SEAMS WITH			- 67 - 68 - 69 - 70 - 71 - 71 -	92		98	NQ-12											CORE	
SHALE GRA	/ HIGHI Y WEATHE	ERED, WEAK, LAMINATED,	-1051.0	1019.0	- 72 - - 73 - - 74 - - 75 - - 76 -	82		98	NQ-13											CORE	
ARGILLACEO RQD 63%, RE SANDSTONE WEATHERED	US, FRACTURED, (C 92%. GRAY AND BROW , STRONG, LAMINA	OPEN, VERY ROUGH, GOOI	<u>1049.0</u>	1017.0	- 77 - - 78 - - 79 - - 80 - - 81 -	77		93	NQ-14											CORE	
					- 82 - - 83 - - 84 - - 85 - - 86 -	87		98	NQ-15											CORE	
					- 87 - - 88 - - 89 - - 90 - - 91 -	88		100	NQ-16											CORE	
LAMINATED,		WEATHERED, STRONG, ULAR FRACTURES, 90%, REC 100%.	1035.0	1003.0	- 92 - - 93 - - 94 -	97		100	NQ-17											CORE	

PID: 109909	SFN:	PROJECT:	BEL-	7-11.05	s	TATION /	OFFSE	T:			_ s	TART	: 3/10	/20	ENI	D: _	3/18	8/20	Р	G 4 O	F 4 B-00	3-2-20
	MATERIAL DESCRIP	TION	1000.7	ELEV.	DEP1	ГНЅ	SPT/ RQD	N ₆₀	REC (%)	SAMPLE			GRADA					ERBE			ODOT CLASS (GI)	HOLE
LAMINATED, IN	AND NOTES GRAY, SLIGHTLY WEATHE TACT, FEW ANGULAR FR. TO POOR; RQD 90%, REC	ERED, STRONG, ACTURES,		1002.7		- - 95 - - 96 -	RQD		(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CENCO (CI)	SEALEL
						- 97 - - 98 - - 99 - - 100 - - 101 -	98		100	NQ-18											CORE	
						102- 103- 104- 105- 106-	83		100	NQ-19											CORE	
SLIGHTLY WEA STRONG, VERY	RAY TO DARK GRAY, MOD THERED, MODERATELY S THIN BEDDED, MODERA GOPEN, SLIGHTLY ROUG	STRONG TO TELY FRACTURED		<u>-1017.5</u>	985.5	107- 108- 109- 110- 111-	60		93	NQ-20											CORE	
RQD 85%, REC		n, PAIR TO GOOD,				112- 113- 114- 115- 116-	90		100	NQ-21											CORE	
				1006.5	974.5 —EOB—	117- 118- 119- 120-	96		100	NQ-22											CORE	
NOTES: NONE																						
ABANDONMEN [*]	<u>T METHODS, MATERIALS,</u>	QUANTITIES: BAG	CKFILLE	D WITH	BENTONI	TE GRO	JT															

Appendix V

Dynamic Cone Penetration Test Logs

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway

PROJECT NUMBER: __ DATE STARTED:

W-20-120 11-23-2020

Columbus, Ohio 43231

DATE COMPLETED: 11-23-2020

HOLE #: DCP-1

STATION: STA.584+73.8 OFFSET: -255.3

SURFACE ELEVATION:

CREW: Justin, Steve, and Zach WATER ON COMPLETION:

HAMMER WEIGHT: 35 lbs.

PROJECT: BEL-7-11.04 | PID 110788 HAMMER WEI
ADDRESS: ODOT District 11 CONE A

CONE AREA: 10 sq. cm

		BLOWS	RESISTANCE	GRA	APH OF	CONE RI	ESISTANCE		TESTED CO	NSISTENCY
DEPT	Ή	PER 10 cm	Kg/cm²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		2	8.88	••				2	VERY LOOSE	SOFT
-		2	8.88	••				2	VERY LOOSE	SOFT
-	1 ft	3	13.32	•••				3	VERY LOOSE	SOFT
-		5	22.20	•••••				6	LOOSE	MEDIUM STIFF
-		9	39.96	•••••	••••			11	MEDIUM DENSE	STIFF
-	2 ft	11	48.84	•••••	•••••			13	MEDIUM DENSE	STIFF
-		12	53.28	•••••	•••••			15	MEDIUM DENSE	STIFF
-		25	111.00	•••••	••••••	•••••		25+	DENSE	HARD
-	3 ft	26	115.44	•••••	••••••	•••••		25+	DENSE	HARD
- 1 m		25	111.00	•••••	••••••	•••••		25+	DENSE	HARD
-		28	108.08	•••••	••••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-	4 ft	30	115.80	•••••	••••••	•••••		25+	DENSE	HARD
-		35	135.10	•••••	••••••	••••••	•••	25+	DENSE	HARD
-		40	154.40	•••••	••••••	••••••	•••••	25+	DENSE	HARD
-	5 ft	40	154.40	•••••	••••••	••••••	•••••	25+	DENSE	HARD
-		19	73.34	•••••	••••••	••		20	MEDIUM DENSE	VERY STIFF
-		15	57.90	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
-	6 ft	21	81.06	•••••	••••••	•••		23	MEDIUM DENSE	VERY STIFF
-		22	84.92	•••••	••••••	••••		24	MEDIUM DENSE	VERY STIFF
- 2 m		13	50.18	•••••	•••••			14	MEDIUM DENSE	STIFF
-	7 ft	50	171.00	•••••	••••••	•••••	•••••	25+	DENSE	HARD
-										
-										
-	8 ft									
-										
-										
-	9 ft									
-										
 -										
- 3 m 1	0 ft									
[-										
-										
- 1	1 ft									
[-										
 -										
- 1	2 ft									
-										
 -										
- 4 m 1	3 ft									

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

PROJECT NUMBER: ____ DATE STARTED:

W-20-120 11-23-2020

DATE COMPLETED:

11-23-2020

880

HOLE #: DCP-1.1

STATION: STA. 584+87.9

OFFSET: -265.2 SURFACE ELEVATION:

CREW: Justin, Steve, and Zach WATER ON COMPLETION:

PROJECT: BEL-7-11.04 | PID 110788 HAMMER WEIGHT: 35 lbs.

ADDRESS: ODOT District 11 CONE AREA: 10 sq. cm

		BLOWS	RESISTANCE	GRAF	PH OF (CONE RE	SISTANCE		TESTED CO	NSISTENCY
DEF	PTH	PER 10 cm	Kg/cm²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		5	22.20	••••				6	LOOSE	MEDIUM STIFF
-		4	17.76	••••				5	LOOSE	MEDIUM STIFF
-	1 ft	4	17.76	••••				5	LOOSE	MEDIUM STIFF
-		8	35.52	•••••				10	LOOSE	STIFF
-		10	44.40	•••••	••			12	MEDIUM DENSE	STIFF
-	2 ft	11	48.84	•••••	•••			13	MEDIUM DENSE	STIFF
-		13	57.72	•••••	••••			16	MEDIUM DENSE	VERY STIFF
-		16	71.04	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
-	3 ft	19	84.36	•••••	•••••	•••		24	MEDIUM DENSE	VERY STIFF
- 1 m		34	150.96	•••••	•••••	•••••	•••••	25+	DENSE	HARD
-		60	231.60	•••••	•••••	•••••	••••••	25+	VERY DENSE	HARD
-	4 ft	61	235.46	•••••	•••••	•••••	••••••	25+	VERY DENSE	HARD
-										
-										
-	5 ft									
-										
-	<i>c</i> c.									
-	6 ft									
- 2										
- 2 m	7.6									
-	7 ft									
l ⁻										
l ⁻	8 ft									
Ī	0 11									
Ī										
Ī	9 ft									
Ī	911									
Ī										
- 3 m	10 ft									
- 3 III	1011									
L										
<u> </u> _	11 ft									
_	1111									
<u> </u> _										
<u> </u> _	12 ft									
₋										
 -										
- 4 m	13 ft									
			•							

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

PROJECT NUMBER: ____ DATE STARTED:

W-20-120 11-23-2020

DATE COMPLETED:

11-23-2020

HOLE #: DCP-2

STATION: STA. 584+77.0

OFFSET: -240.5

SURFACE ELEVATION:

862

CREW: Justin, Steve, and Zach

WATER ON COMPLETION:

35 lbs.

PROJECT: BEL-7-11.04 | PID 110788

HAMMER WEIGHT:

ADDRESS: ODOT District 11

CONE AREA:

10 sq. cm

		BLOWS	RESISTANCE	GRA	PH OF	CONE RE	SISTANCE		TESTED CO	NSISTENCY
DEP	ΉTΗ	PER 10 cm	Kg/cm²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		2	8.88	••				2	VERY LOOSE	SOFT
-		2	8.88	••				2	VERY LOOSE	SOFT
-	1 ft	2	8.88	••				2	VERY LOOSE	SOFT
-		2	8.88	••				2	VERY LOOSE	SOFT
-		4	17.76	••••				5	LOOSE	MEDIUM STIFF
-	2 ft	3	13.32	•••				3	VERY LOOSE	SOFT
-		13	57.72	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
-		28	124.32	•••••	•••••	•••••		25+	DENSE	HARD
-	3 ft	16	71.04	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
- 1 m		20	88.80	•••••	•••••	••••		25	MEDIUM DENSE	VERY STIFF
-		28	108.08	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-	4 ft	28	108.08	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-		34	131.24	•••••	•••••	•••••	••	25+	DENSE	HARD
-		56	216.16	•••••	•••••	•••••	••••••	25+	VERY DENSE	HARD
-	5 ft	65	250.90	•••••	•••••	•••••	••••••	25+	VERY DENSE	HARD
-		60	231.60	•••••	•••••	•••••	••••••	25+	VERY DENSE	HARD
-										
-	6 ft									
-										
- 2 m										
-	7 ft									
-										
-										
-	8 ft									
-										
-										
-	9 ft									
-										
-										
- 3 m	10 ft									
-										
-										
-	11 ft									
-										
 -										
-	12 ft									
[-										
 -	10.3									
- 4 m	13 ft									

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

PROJECT NUMBER: ___ DATE STARTED:

W-20-120 11-23-2020

DATE COMPLETED:

11-23-2020

HOLE #: DCP-2.1

STATION: STA. 584+60.9 OFFSET: -283.4

SURFACE ELEVATION:

890

CREW: Justin, Steve, and Zach
PROJECT: BEL-7-11.04 | PID 110788

WATER ON COMPLETION:

HAMMER WEIGHT: 35 lbs.

ADDRESS: ODOT District 11

CONE AREA:

10 sq. cm

LOCATION: Belmont County, Ohio

4 m 13 ft

BLOWS RESISTANCE GRAPH OF CONE RESISTANCE TESTED CONSISTENCY N' **DEPTH** PER 10 cm Kg/cm² NON-COHESIVE **COHESIVE** 50 100 150 1 4.44 1 VERY LOOSE VERY SOFT 2 8.88 2 VERY LOOSE **SOFT** 2 2 VERY LOOSE 1 ft 8.88 **SOFT** 3 3 13.32 VERY LOOSE **SOFT** 2 2 8.88 **VERY LOOSE SOFT** 2 ft 3 13.32 3 VERY LOOSE **SOFT** 4 17.76 5 LOOSE **MEDIUM STIFF** 7 31.08 8 **LOOSE MEDIUM STIFF VERY STIFF** 3 ft 13 57.72 16 **MEDIUM DENSE** 1 m 28 124.32 25 +**DENSE HARD** 32 123.52 25 +**DENSE HARD** 4 ft 50 193.00 25 +**VERY DENSE HARD** 55 212.30 25 +VERY DENSE **HARD** 53 204.58 25+**VERY DENSE HARD** 5 ft 6 ft 2 m 7 ft 8 ft 9 ft 3 m 10 ft 11 ft 12 ft

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway

Columbus, Ohio 43231

PROJECT NUMBER: ____ DATE STARTED:

W-20-120 11-23-2020

DATE COMPLETED:

11-23-2020

HOLE #: DCP-3

STATION: STA. 584+63.1

OFFSET: -246.3

SURFACE ELEVATION:

865

CREW: Justin, Steve, and Zach

WATER ON COMPLETION:

PROJECT: BEL-7-11.04 | PID 110788

HAMMER WEIGHT:

IGHT: 35 lbs.

ADDRESS: ODOT District 11

CONE AREA:

: 10 sq. cm

		BLOWS	RESISTANCE	GRAI	PH OF	CONE RE	SISTANCE		TESTED CO	NSISTENCY
DEPT	Ή	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		2	8.88	••				2	VERY LOOSE	SOFT
-		2	8.88	••				2	VERY LOOSE	SOFT
-	1 ft	3	13.32	•••				3	VERY LOOSE	SOFT
-		4	17.76	••••				5	LOOSE	MEDIUM STIFF
-		4	17.76	••••				5	LOOSE	MEDIUM STIFF
- 2	2 ft	9	39.96	•••••	•			11	MEDIUM DENSE	STIFF
-		9	39.96	•••••	•			11	MEDIUM DENSE	STIFF
-		16	71.04	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
	3 ft	50	222.00	•••••	•••••	••••••	••••••	• 25+	VERY DENSE	HARD
- 1 m										
-										
- 4	4 ft									
-										
 -	7 C									
-	5 ft									
-										
l	<i>c</i> c									
-	6 ft									
- 2 m										
- 2 m	7 ft									
-	/ It									
[8 ft									
[_ `	o it									
_										
(9 ft									
	<i>,</i> 10									
_										
- 3 m 10	0 ft									
-	0 10									
_										
- 1	1 ft									
-										
-										
- 12	2 ft									
-										
-										
- 4 m 13	3 ft									

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway

Columbus, Ohio 43231

PROJECT NUMBER: ____ DATE STARTED:

W-20-120 11-23-2020

DATE COMPLETED:

11-23-2020

HOLE #: DCP-3.1

STATION: STA. 584+63.1

OFFSET: -246.3

SURFACE ELEVATION:

865

CREW: Justin, Steve, and Zach

WATER ON COMPLETION:

/EIGHT: 35 lbs.

PROJECT: BEL-7-11.04 | PID 110788

HAMMER WEIGHT:

VEIGITT. 33 108.

ADDRESS: ODOT District 11

(

CONE AREA: 10 sq. cm

		BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	NSISTENCY
DEF	PTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-		1	4.44	•	1	VERY LOOSE	VERY SOFT
-		1	4.44	·	1	VERY LOOSE	VERY SOFT
-	1 ft	3	13.32	•••	3	VERY LOOSE	SOFT
-		6	26.64	•••••	7	LOOSE	MEDIUM STIFF
-		5	22.20	•••••	6	LOOSE	MEDIUM STIFF
-	2 ft	12	53.28	•••••	15	MEDIUM DENSE	STIFF
-		25	111.00	•••••	25+	DENSE	HARD
-		35	155.40	••••••	25+	DENSE	HARD
-	3 ft	50	222.00	•••••	25+	VERY DENSE	HARD
- 1 m							
-							
-	4 ft						
-							
-							
-	5 ft						
-							
-							
-	6 ft						
-							
- 2 m							
-	7 ft						
-							
-							
-	8 ft						
-							
-							
-	9 ft						
-							
-							
- 3 m	10 ft						
-							
-							
-	11 ft						
-							
-							
-	12 ft						
-							
-							
- 4 m	13 ft						

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

PROJECT NUMBER: W-20-120
DATE STARTED: 11-24-2020

DATE COMPLETED: 11-24-2020

HOLE #: DCP-4

STATION: STA. 582+68.1 OFFSET: -261.5 SURFACE ELEVATION: 880

CREW: Justin, Steve, and Zach WATER ON COMPLETION:

PROJECT: BEL-7-11.04 | PID 110788 HAMMER WEIGHT: 35 lbs.

ADDRESS: ODOT District 11 CONE AREA: 10 sq. cm

	BLOWS	RESISTANCE	GRAPH OF CONE RESIST	ΓANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100 1	50	N'	NON-COHESIVE	COHESIVE
-	2	8.88	••		2	VERY LOOSE	SOFT
_	4	17.76	••••		5	LOOSE	MEDIUM STIFF
- 1 ft	3	13.32	•••		3	VERY LOOSE	SOFT
-	3	13.32	•••		3	VERY LOOSE	SOFT
-	3	13.32	•••		3	VERY LOOSE	SOFT
- 2 ft	5	22.20	••••		6	LOOSE	MEDIUM STIFF
-	9	39.96	•••••		11	MEDIUM DENSE	STIFF
-	7	31.08	•••••		8	LOOSE	MEDIUM STIFF
- 3 ft	8	35.52	•••••		10	LOOSE	STIFF
- 1 m	8	35.52	•••••		10	LOOSE	STIFF
-	9	34.74	•••••		9	LOOSE	STIFF
- 4 ft	11	42.46	•••••		12	MEDIUM DENSE	STIFF
-	9	34.74	•••••		9	LOOSE	STIFF
-	9	34.74	•••••		9	LOOSE	STIFF
- 5 ft	16	61.76	•••••		17	MEDIUM DENSE	VERY STIFF
-	35	135.10	••••••		25+	DENSE	HARD
-	20	77.20	•••••		22	MEDIUM DENSE	VERY STIFF
- 6 ft	11	42.46	•••••		12	MEDIUM DENSE	STIFF
-	11	42.46	•••••		12	MEDIUM DENSE	STIFF
- 2 m	9	34.74	•••••		9	LOOSE	STIFF
- 7 ft	13	44.46	••••••		12	MEDIUM DENSE	STIFF
-	35	119.70	••••••		25+	DENSE	HARD
-	18	61.56	••••••		17	MEDIUM DENSE	VERY STIFF
- 8 ft	9	30.78	•••••		8	LOOSE	MEDIUM STIFF
-	8	27.36	•••••		7	LOOSE	MEDIUM STIFF
-	9	30.78	•••••		8	LOOSE	MEDIUM STIFF
- 9 ft	12	41.04	•••••		11	MEDIUM DENSE	STIFF
-	15	51.30	••••••		14	MEDIUM DENSE	STIFF
-	20	68.40	•••••		19	MEDIUM DENSE	VERY STIFF
- 3 m 10 ft	16	54.7	•••••		15	MEDIUM DENSE	STIFF
 -	24	73.4	•••••		20	MEDIUM DENSE	VERY STIFF
 -	16	49.0	••••••		13	MEDIUM DENSE	STIFF
- 11 ft	16	49.0	••••••		13	MEDIUM DENSE	STIFF
[-	18	55.1	•••••		15	MEDIUM DENSE	STIFF
-	21	64.3	•••••		18	MEDIUM DENSE	VERY STIFF
- 12 ft	19	58.1	••••••		16	MEDIUM DENSE	VERY STIFF
[-	17	52.0	•••••		14	MEDIUM DENSE	STIFF
-	50	153.0	••••••	•	25+	DENSE	HARD
- 4 m 13 ft							

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway

PROJECT NUMBER: DATE STARTED:

W-20-120 11-24-2020

Columbus, Ohio 43231

DATE COMPLETED:

11-24-2020

HOLE #: DCP-5

STATION: STA. 583+85.1

OFFSET: -288

SURFACE ELEVATION:

CREW: Justin, Steve, and Zach PROJECT: BEL-7-11.04 | PID 110788 WATER ON COMPLETION:

35 lbs.

HAMMER WEIGHT:

ADDRESS: ODOT District 11

CONE AREA: 10 sq. cm

DEPTH PER 10 cm Kg/cm² 0 50 100 150 N' NON-COHESIVE COHESIVE - 1 4.44 • 1 VERY LOOSE VERY SOFT - 3 13.32 ••• 3 VERY LOOSE SOFT - 3 13.32 ••• 3 VERY LOOSE SOFT - 8 35.52 ••• 10 LOOSE STIFF - 2 ft 8 35.52 ••• 10 LOOSE STIFF - 15 66.60 ••• 19 MEDIUM DENSE VERY STIFF - 3 ft VERY DENSE HARD			BLOWS	RESISTANCE	GRAP	H OF 0	CONE RE	SISTANCE		TESTED CO	NSISTENCY
1	DEF	TH							N'		
3 13.32 3 VERY LOOSE SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT	-										
- 1 ft 3	-		3		•••						
3 13.32 35.52 10 LOOSE STIFF S	-	1 ft	3		•••						
- 2 ft 8 35.52 66.60 222.00	-			13.32	•••				3	VERY LOOSE	SOFT
- 2 ft 8 35.52 66.60 222.00	-		8	35.52	•••••				10	LOOSE	STIFF
- 3 ft	-	2 ft	8	35.52	•••••				10	LOOSE	STIFF
- 3ft - 1m - 4ft 5ft	-		15	66.60	•••••	•••••			19	MEDIUM DENSE	VERY STIFF
- 1 m	-		50	222.00	•••••	•••••	•••••	•••••	25+	VERY DENSE	HARD
- 4 ft - 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 11 ft - 12 ft - 12 ft	-	3 ft									
- 5ft - 6ft - 2m - 7ft - 8ft - 9ft - 3m 10ft - 12ft	- 1 m										
- 5ft - 6ft - 2m - 7ft - 9ft - 3m 10ft - 11ft - 12ft	-										
- 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-	4 ft									
- 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-										
- 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-										
- 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-	5 ft									
- 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-										
- 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-	c C									
- 7 ft 8 ft 9 ft 11 ft 12 ft -	-	6 ft									
- 7 ft 8 ft 9 ft 11 ft 12 ft -	-										
- 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	- 2 m	7.6									
- 9 ft - 3 m 10 ft - 11 ft - 12 ft	-	/ It									
- 9 ft - 3 m 10 ft - 11 ft - 12 ft	-										
- 9 ft - 3 m 10 ft - 11 ft - 12 ft	Ī-	Q ft									
- 3 m 10 ft - 11 ft - 12 ft	Ī-	0 II									
- 3 m 10 ft - 11 ft - 12 ft	-										
- 3 m 10 ft - 11 ft - 12 ft	Ī	Q ft									
- 11 ft - 12 ft - 12 ft	[Jπ									
- 11 ft - 12 ft - 12 ft	[_										
- 11 ft - 12 ft - 12 ft	- 3 m	10 ft									
- 12 ft - 12 ft 		1011									
- 12 ft - 12 ft 	₋										
- 12 ft - 12 ft 	_	11 ft									
-	_										
-	_										
-	-	12 ft									
- 4 m 13 ft	-										
- 4 m 13 ft	-										
	- 4 m	13 ft									
	<u> </u>										

Page 1 of 1

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

W-20-120 PROJECT NUMBER:

DATE STARTED: 11-24-2020 DATE COMPLETED: 11-24-2020

HOLE #: DCP-5.1

STATION: STA. 583+64.6 OFFSET: -280 SURFACE ELEVATION:

WATER ON COMPLETION:

CREW: Justin, Steve, and Zach

PROJECT: BEL-7-11.04 | PID 110788 35 lbs. HAMMER WEIGHT: ADDRESS: ODOT District 11 CONE AREA: 10 sq. cm

	BLOWS	RESISTANCE	GRAPH O	F CONE RE	SISTANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50		150	N'	NON-COHESIVE	COHESIVE
-	2	8.88	••			2	VERY LOOSE	SOFT
-	3	13.32				3	VERY LOOSE	SOFT
- 1 ft	3	13.32	•••			3	VERY LOOSE	SOFT
_	4	17.76	••••			5	LOOSE	MEDIUM STIFF
_	3	13.32	•••			3	VERY LOOSE	SOFT
- 2 ft	5	22.20	••••			6	LOOSE	MEDIUM STIFF
_	5	22.20	••••			6	LOOSE	MEDIUM STIFF
_	6	26.64	•••••			7	LOOSE	MEDIUM STIFF
- 3 ft	5	22.20	••••			6	LOOSE	MEDIUM STIFF
- 1 m	5	22.20	••••			6	LOOSE	MEDIUM STIFF
_	6	23.16	••••			6	LOOSE	MEDIUM STIFF
- 4 ft	7	27.02	•••••			7	LOOSE	MEDIUM STIFF
-	6	23.16	••••			6	LOOSE	MEDIUM STIFF
-	7	27.02	•••••			7	LOOSE	MEDIUM STIFF
- 5 ft	10	38.60	•••••			11	MEDIUM DENSE	STIFF
-	9	34.74	•••••			9	LOOSE	STIFF
-	9	34.74	•••••			9	LOOSE	STIFF
- 6 ft	25	96.50	••••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-	8	30.88	•••••			8	LOOSE	MEDIUM STIFF
- 2 m	9	34.74	•••••			9	LOOSE	STIFF
- 7 ft	7	23.94	••••			6	LOOSE	MEDIUM STIFF
-	18	61.56	•••••	1		17	MEDIUM DENSE	VERY STIFF
-	11	37.62	•••••			10	LOOSE	STIFF
- 8 ft	9	30.78	•••••			8	LOOSE	MEDIUM STIFF
-	8	27.36	•••••			7	LOOSE	MEDIUM STIFF
-	11	37.62	•••••			10	LOOSE	STIFF
- 9 ft	15	51.30	•••••			14	MEDIUM DENSE	STIFF
-	50	171.00	•••••	•••••	••••••	25+	DENSE	HARD
-								
- 3 m 10 ft								
-								
-								
- 11 ft								
-								
-								
- 12 ft								
-								
-								
- 4 m 13 ft								

Page 1 of 1

35 lbs.

Resource International, Inc. 6350 Presidential Gateway

Columbus, Ohio 43231

PROJECT NUMBER:

W-20-120 11-24-2020 DATE STARTED:

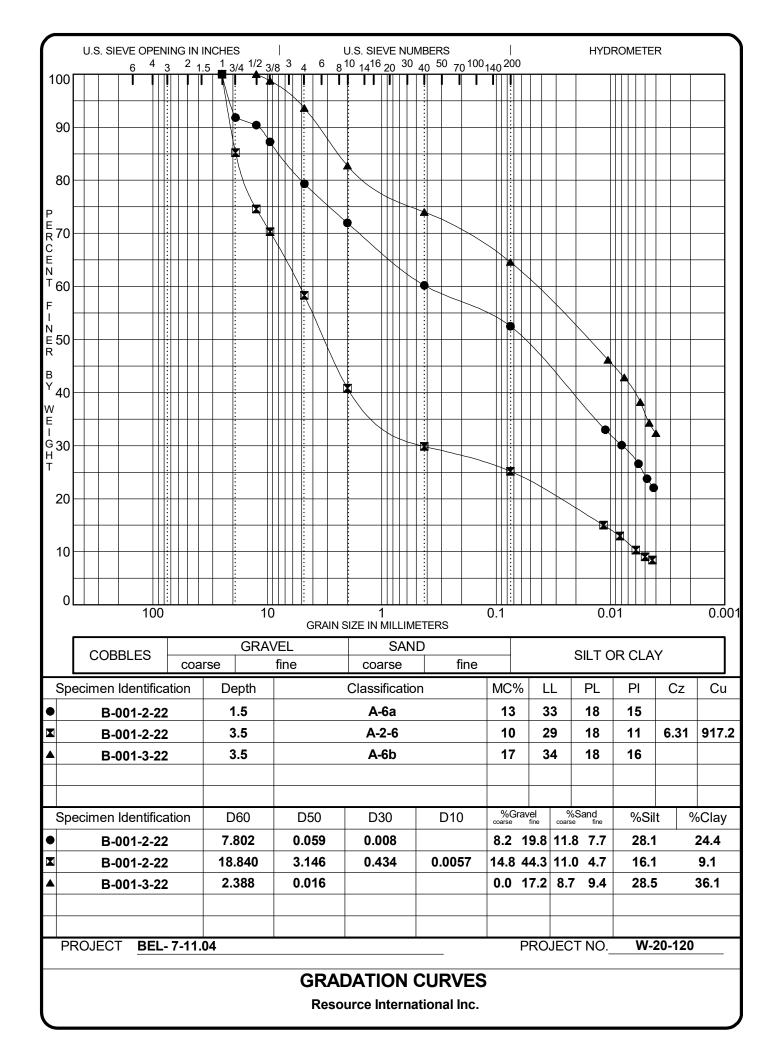
DATE COMPLETED: 11-24-2020

HOLE #: DCP-6

ADDRESS: ODOT District 11

STATION: STA.583+59.8 OFFSET: -316 SURFACE ELEVATION:

CREW: Justin, Steve, and Zach WATER ON COMPLETION: PROJECT: BEL-7-11.04 | PID 110788


HAMMER WEIGHT:

CONE AREA: 10 sq. cm

	BLOWS	RESISTANCE	GRAPH OF CONE RESISTANO	CE	TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-	2	8.88	••	2	VERY LOOSE	SOFT
-	2	8.88	••	2	VERY LOOSE	SOFT
- 1	ft 3	13.32	•••	3	VERY LOOSE	SOFT
-	2	8.88	••	2	VERY LOOSE	SOFT
-	4	17.76	••••	5	LOOSE	MEDIUM STIFF
- 2	ft 3	13.32	•••	3	VERY LOOSE	SOFT
-	6	26.64	•••••	7	LOOSE	MEDIUM STIFF
-	33	146.52	••••••	25+	DENSE	HARD
- 3	ft 10	44.40	•••••	12	MEDIUM DENSE	STIFF
- 1 m	11	48.84	•••••	13	MEDIUM DENSE	STIFF
-	10	38.60	•••••	11	MEDIUM DENSE	STIFF
- 4	ft 9	34.74	•••••	9	LOOSE	STIFF
 -	7	27.02	•••••	7	LOOSE	MEDIUM STIFF
-	8	30.88	•••••	8	LOOSE	MEDIUM STIFF
- 5	ft 6	23.16	•••••	6	LOOSE	MEDIUM STIFF
-	5	19.30	••••	5	LOOSE	MEDIUM STIFF
-	6	23.16	•••••	6	LOOSE	MEDIUM STIFF
- 6	ft 10	38.60	•••••	11	MEDIUM DENSE	STIFF
-	6	23.16	•••••	6	LOOSE	MEDIUM STIFF
- 2 m	14	54.04	•••••	15	MEDIUM DENSE	STIFF
- 7		51.30	•••••	14	MEDIUM DENSE	STIFF
-	12	41.04	•••••	11	MEDIUM DENSE	STIFF
-	4	13.68	•••	3	VERY LOOSE	SOFT
- 8		23.94	•••••	6	LOOSE	MEDIUM STIFF
-	9	30.78	•••••	8	LOOSE	MEDIUM STIFF
-	11	37.62	•••••	10	LOOSE	STIFF
- 9		61.56	•••••	17	MEDIUM DENSE	VERY STIFF
-	14	47.88	•••••	13	MEDIUM DENSE	STIFF
-	50	171.00	•••••	25+	DENSE	HARD
- 3 m 10	ft					
-						
-						
- 11	ft					
-						
-						
- 12	ft					
-						
-						
- 4 m 13	ft					

Appendix VI

LABORATORY TEST RESULTS

Engineering Consultants

Unconfined Compressive Strength of Intact Rock Core Specimens

(ASTM D 7012-14)

6350 Presidential Gatew.

9885 Rockside Road

4480 Lake Forest Drive Cleveland, OH 44125

Columbus, OH 43231 Phone (614) 823-4949

Phone (216) 573-0955

Cincinnati, Ohio 45242

Phone (513) 769-6998

Project: BEL SR 7 11.040

Project No.: W-20-120

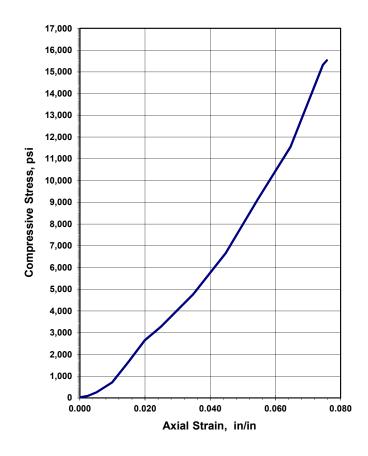
Date of Testing: 11/2/2020

Test Performed by: KL/EM

Rock Description: Gray LIMESTONE

Sample Preparation: Per ASTM D4543

Rock Formation:


Boring No.:	B-004-0-20	
Sample No:	NQ-2	
Depth (ft):	23.0	feet
Moisture condition:		
Sample Mass:	528.19	grams
Testing Temperature:	21	°C
Rate of Loading:	117.3	lbs/sec
Testing Time:	408	sec
(Rate 2-15 minutes		

4.025 Average Length: in in Average Diameter: 1.981 Length to diameter ratio: 2.032 in² Cross Sectional Area: 3.082 ft^3 Volume: 0.0072

Unit Weight (sample specimen)*: 162.19 lbs/ft3 Failure Load: 47,872 lbs Axial Strain at Failure: 0.0758 in/in Compressive Strength: 15,532 psi

*Actual test sample used for unit weight prior to testing.

Unconfined Compression Test

After Failure

Engineering Consultants

Unconfined Compressive Strengthof Intact Rock Core Specimens

(ASTM D 7012-14)

Project: BEL SR 7 11.040

6350 Presidential Gatew.

9885 Rockside Road Cleveland, OH 44125 4480 Lake Forest Drive

Columbus, OH 43231 Phone (614) 823-4949

Phone (216) 573-0955

Cincinnati, Ohio 45242 Phone (513) 769-6998 Project No.: <u>W-20-120</u>

Date of Testing: 11/2/2020

Test Performed by: KL/EM

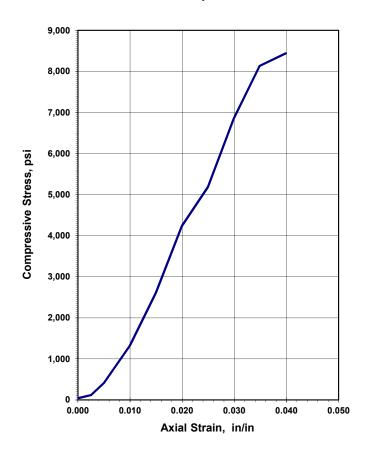
Compressive Strength:

Rock Description: Gray LIMESTONE

Rock Formation:

Boring No.:	B-005-0-20					
Sample No:	NQ-2					
Depth (ft):	22.9	feet				
Moisture condition:						
Sample Mass:	535.00	grams				
Testing Temperature:	21	°C				
Rate of Loading:	91.5	lbs/sec				
Testing Time:	285	sec				
(Rate 2-15 minutes to failure)						

4.016 Average Length: in Average Diameter: 1.983 in Length to diameter ratio: 2.025 in² Cross Sectional Area: 3.088 ft^3 Volume: 0.0072 Unit Weight (sample specimen)*: 164.32 lbs/ft3 Failure Load: 26,068 lbs Axial Strain at Failure: 0.0398 in/in


Sample Preparation: Per ASTM D4543

*Actual test sample used for unit weight prior to testing.

8,441

psi

Unconfined Compression Test

Before Testing

After Failure

Engineering Consultants

6350 Presidential Gatew.

Columbus, OH 43231 Phone (614) 823-4949 9885 Rockside Road

Cleveland, OH 44125 Phone (216) 573-0955 4480 Lake Forest Drive Cincinnati, Ohio 45242

Phone (513) 769-6998

Unconfined Compressive Strength of Intact Rock Core Specimens

(ASTM D 7012-14)

Project: BEL SR 7 11.40

Project No.: W-20-120

Date of Testing: 12/28/2022

Test Performed by: KL/EM

Rock Description: Gray SHALE

Sample Preparation: Per ASTM D4543

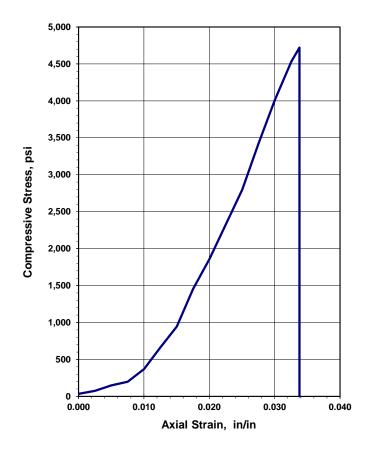
Rock Formation:

Boring No.:	B-001-2-22	_
Sample No:	RC-1	<u>.</u>
Depth (ft):	10.0	feet
Moisture condition:	As received	_
Sample Mass:	519.50	grams
Testing Temperature:	23	°C
Rate of Loading:	39.1	lbs/sec
Testing Time:	368	sec
(Rate 2-15 mir		=

 Average Length:
 3.995
 in

 Average Diameter:
 1.971
 in

 Length to diameter ratio:
 2.027


 Cross Sectional Area:
 3.051
 in²

 Volume:
 0.0071
 ft³

Unit Weight (sample specimen)*: 162.36 lbs/ft3
Failure Load: 14,405 lbs
Axial Strain at Failure: 0.0338 in/in
Compressive Strength: 4,721 psi

*Actual test sample used for unit weight prior to testing.

Unconfined Compression Test

After Failure

Engineering Consultants

6350 Presidential Gatew. Columbus, OH 43231

Phone (614) 823-4949

9885 Rockside Road Cleveland, OH 44125

Phone (216) 573-0955

4480 Lake Forest Drive Cincinnati, Ohio 45242

Phone (513) 769-6998

Unconfined Compressive Strength of Intact Rock Core Specimens

(ASTM D 7012-14)

Project: BEL SR 7 11.40

Project No.: W-20-120

Date of Testing: 12/28/2022

Test Performed by: KL/EM

Rock Description: Gray SHALE

Sample Preparation: Per ASTM D4543

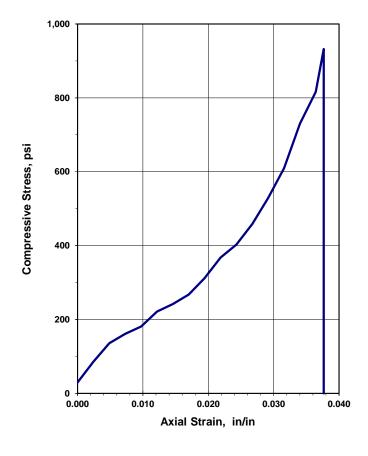
Rock Formation:

Boring No.:	B-001-3-22	_
Sample No:	RC-1	<u></u>
Depth (ft):	12.0	feet
Moisture condition:	As received	_
Sample Mass:	507.41	grams
Testing Temperature:	23	°C
Rate of Loading:	7.1	lbs/sec
Testing Time:	368	sec
(Rate 2-15 mir	_	_

 Average Length:
 4.116
 in

 Average Diameter:
 1.89
 in

 Length to diameter ratio:
 2.178


 Cross Sectional Area:
 2.806
 in²

 Volume:
 0.0067
 ft³

Unit Weight (sample specimen)*: 167.39 lbs/ft3
Failure Load: 2,615 lbs
Axial Strain at Failure: 0.0377 in/in
Compressive Strength: 932 psi

*Actual test sample used for unit weight prior to testing.

Unconfined Compression Test

After Failure

Engineering Consultants

6350 Presidential Gatew.

Columbus, OH 43231 Phone (614) 823-4949 9885 Rockside Road Cleveland, OH 44125

Phone (216) 573-0955

4480 Lake Forest Drive Cincinnati, Ohio 45242

Phone (513) 769-6998

Unconfined Compressive Strength of Intact Rock Core Specimens

(ASTM D 7012-14)

Project: BEL SR 7 11.40

Project No.: W-20-120

Date of Testing: 12/28/2022

Test Performed by: KL/EM

Rock Description: Gray SHALE

Sample Preparation: Per ASTM D4543

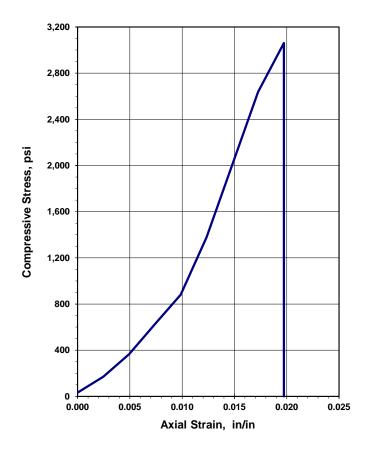
Rock Formation:

Boring No.:	B-001-3-22	
Sample No:	RC-1	_
Depth (ft):	6.0	feet
Moisture condition:	As received	=" =
Sample Mass:	518.98	grams
Testing Temperature:	23	°C
Rate of Loading:	30.8	lbs/sec
Testing Time:	305	sec
(Rate 2-15 mir		

 Average Length:
 4.055
 in

 Average Diameter:
 1.976
 in

 Length to diameter ratio:
 2.052

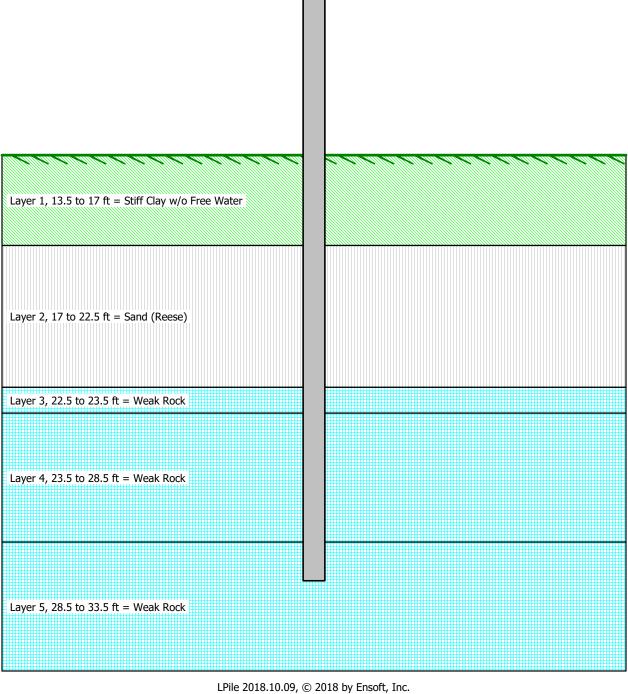

 Cross Sectional Area:
 3.067
 in²

 Volume:
 0.0072
 ft³

Unit Weight (sample specimen)*: 158.99 lbs/ft3
Failure Load: 9,387 lbs
Axial Strain at Failure: 0.0197 in/in
Compressive Strength: 3,061 psi

*Actual test sample used for unit weight prior to testing.

Unconfined Compression Test



After Failure

Appendix VII

LATERAL LOAD ANALYSIS

LPile for Windows(Beta), Version 2018-10.009

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2018 by Ensoft, Inc. All Rights Reserved

______ This copy of LPile is being used by: Resource International, Inc. Columbus, OH Serial Number of Security Device: 160709429 This copy of LPile is licensed for exclusive use by: Resource International, Inc., Co Use of this program by any entity other than Resource International, Inc., Co is a violation of the software license agreement. Files Used for Analysis ______ Path to file locations: \GEOTECH\PROJECTS\2020\W-20-120 BEL-7-11.04\Analysis\2.17.2023 LPile Analysis\Lpile\ Name of input data file: HP 10x42 B-001-2-22.1p10 Name of output report file: HP 10x42 B-001-2-22.1p10 Name of plot output file: HP 10x42_B-001-2-22.lp10 Name of runtime message file: HP 10x42 B-001-2-22.1p10 Date and Time of Analysis ______

Date: February 20, 2023 Time: 15:58:02

Problem Title

Project Name: BEL-7-11.04

Job Number: W-20-120

Client:

Engineer: AG/JPS

Description: 10 x 42 HP - Boring B-001-2-22

Program Options and Settings

Computational Options:

- Use unfactored loads in computations (conventional analysis)

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 100.0000 in

- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1

- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1
Total length of pile = 30.000 ft
Depth of ground surface below top of pile = 13.5000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	10.1000
2	30.000	10.1000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a H strong axis steel pile

Length of section = 30.000000 ft = 10.100000 in = 84100. lbs Pile width Shear capacity of section 84100. lbs

Ground Slope and Pile Batter Angles

Ground Slope Angle 0.000 degrees 0.000 radians

Pile Batter Angle 0.000 degrees

0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 5 layers

Layer 1 is stiff clay without free water

```
Distance from top of pile to top of layer
                                                      13.500000 ft
Distance from top of pile to bottom of layer
                                                  = 17.000000 ft
Effective unit weight at top of layer
                                                  = 125,000000 pcf
Effective unit weight at bottom of layer
                                                  = 125.000000 pcf
Undrained cohesion at top of layer
                                                          1875. psf
Undrained cohesion at bottom of laver
                                                          1875. psf
Epsilon-50 at top of layer
                                                       0.007000
Epsilon-50 at bottom of layer
                                                       0.007000
```

Layer 2 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer 17.000000 ft Distance from top of pile to bottom of layer 22.500000 ft Effective unit weight at top of layer = 125.000000 pcf Effective unit weight at bottom of layer = 125.000000 pcf Friction angle at top of layer = 32.000000 deg. Friction angle at bottom of layer 32.000000 deg. Subgrade k at top of layer 50.000000 pci Subgrade k at bottom of layer 50.000000 pci

Layer 3 is weak rock, p-y criteria by Reese, 1997

22.500000 ft Distance from top of pile to top of layer Distance from top of pile to bottom of layer 23.500000 ft Effective unit weight at top of layer = 135.000000 pcf Effective unit weight at bottom of layer = 135.000000 pcf Uniaxial compressive strength at top of layer 100.000000 psi Uniaxial compressive strength at bottom of layer 100.000000 psi Initial modulus of rock at top of laver 18000. psi Initial modulus of rock at bottom of layer 18000. psi ROD of rock at top of layer 0.0000 % RQD of rock at bottom of layer 0.0000 % k rm of rock at top of layer 0.0005000 k rm of rock at bottom of laver 0.0005000

Layer 4 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer	=	23.500000 ft
	_	
Distance from top of pile to bottom of layer	=	28.500000 ft
Effective unit weight at top of layer	=	140.000000 pcf
Effective unit weight at bottom of layer	=	140.000000 pcf
Uniaxial compressive strength at top of layer	=	4721. psi

Uniaxial compressive strength at bottom of layer = 4721. psi
Initial modulus of rock at top of layer = 300000. psi
Initial modulus of rock at bottom of layer = 300000. psi
RQD of rock at top of layer = 70.000000 %
RQD of rock at bottom of layer = 70.000000 %
k rm of rock at top of layer = 0.0000500
k rm of rock at bottom of layer = 0.0000500

Layer 5 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 28.500000 ft Distance from top of pile to bottom of layer 33.500000 ft Effective unit weight at top of layer = 140.000000 pcf Effective unit weight at bottom of layer = 140.000000 pcf Uniaxial compressive strength at top of layer 4721. psi Uniaxial compressive strength at bottom of layer 4721. psi Initial modulus of rock at top of layer 300000. psi Initial modulus of rock at bottom of layer 300000. psi ROD of rock at top of layer = 88.000000 % RQD of rock at bottom of layer 88.000000 % k rm of rock at top of layer 0.0000500 k rm of rock at bottom of layer 0.0000500

(Depth of the lowest soil layer extends 3.500 ft below the pile tip)

Summary of Input Soil Properties

Layer	Soil Type	Layer	Effective	Undrained	Angle of	Uniaxial		E50		Rock Mass
Layer	Name	Depth	Unit Wt.	Cohesion	Friction	qu	RQD %	or	kpy	Modulus
Num.	(p-y Curve Type)	ft	pcf	psf	deg.	psi		krm	pci	psi
1	Stiff Clay	13.5000	125.0000	1875.				0.00700		
	w/o Free Water	17.0000	125.0000	1875.				0.00700		
2	Sand	17.0000	125.0000		32.0000				50.0000	
	(Reese, et al.)	22.5000	125.0000		32.0000				50.0000	
3	Weak	22.5000	135.0000			100.0000	0.00	5.00E-04		18000.
	Rock	23.5000	135.0000			100.0000	0.00	5.00E-04		18000.

4	Weak	23.5000	140.0000	 	4721.	70.0000	5.00E-05	 300000.
	Rock	28.5000	140.0000	 	4721.	70.0000	5.00E-05	 300000.
5	Weak	28.5000	140.0000	 	4721.	88.0000	5.00E-05	 300000.
	Rock	33.5000	140.0000	 	4721.	88.0000	5.00E-05	 300000.

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load	Condition		Condition Condition		Axial Thrust	Compute Top y	
No.	Type	1		2		Force, 1bs	vs. Pile Length	
1	1	V =	3300. lbs	M =	0.0000 in-1hs	9 9999999	No	

- V = shear force applied normal to pile axis
- M = bending moment applied to pile head
- y = lateral deflection normal to pile axis
- S = pile slope relative to original pile batter angle
- R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Steel H Strong Axis:

Length of Section 30.000000 ft Flange Width 10.100000 in Section Depth 9.700000 in Flange Thickness 0.420000 in Web Thickness 0.415000 in Yield Stress of Pipe 36.000000 ksi Elastic Modulus 29000. ksi Cross-sectional Area = 12.160900 sq. in. Moment of Inertia = 206.834773 in^4 Elastic Bending Stiffness 5998208. kip-in^2 Plastic Modulus, Z 47.510093in^3 Plastic Moment Capacity = Fy Z 1710.in-kip

Axial Structural Capacities:

Nom. Axial Structural Capacity = Fy As = 437.792 kips Nominal Axial Tensile Capacity = -437.792 kips

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Run Stress Msg ksi
0.00000522	31.3039815	5992769.	4.8500000	0.7273560
0.00001045	62.6079629	5992769.	4.8500000	1.4547119
0.00001567	93.9119444	5992769.	4.8500000	2.1820679
0.00002089	125.2159259	5992769.	4.8500000	2.9094238
0.00002612	156.5199073	5992769.	4.8500000	3.6367798
0.00003134	187.8238888	5992769.	4.8500000	4.3641357
0.00003657	219.1278703	5992769.	4.8500000	5.0914917
0.00004179	250.4318517	5992769.	4.8500000	5.8188476
0.00004701	281.7358332	5992769.	4.8500000	6.5462036

0.00005224	313.0398146	5992769.	4.8500000	7.2735596	
0.00005746	344.3437961	5992769.	4.8500000	8.0009155	
0.00006268	375.6477776	5992769.	4.8500000	8.7282715	
0.00006791	406.9517590	5992769.	4.8500000	9.4556274	
0.00007313	438.2557405	5992769.	4.8500000	10.1829834	
0.00007835	469.5597220	5992769.	4.8500000	10.9103393	
0.00008358	500.8637034	5992769.	4.8500000	11.6376953	
0.00008880	532.1676849	5992769.	4.8500000	12.3650512	
0.00009403	563.4716664	5992769.	4.8500000	13.0924072	
0.00009925	594.7756478	5992769.	4.8500000	13.8197632	
0.0001045	626.0796293	5992769.	4.8500000	14.5471191	
0.0001097	657.3836108	5992769.	4.8500000	15.2744751	
0.0001149	688.6875922	5992769.	4.8500000	16.0018310	
0.0001201	719.9915737	5992769.	4.8500000	16.7291870	
0.0001254	751.2955551	5992769.	4.8500000	17.4565429	
0.0001306	782.5995366	5992769.	4.8500000	18.1838989	
0.0001358	813.9035181	5992769.	4.8500000	18.9112548	
0.0001410	845.2074995	5992769.	4.8500000	19.6386108	
0.0001463	876.5114810	5992769.	4.8500000	20.3659668	
0.0001515	907.8154625	5992769.	4.8500000	21.0933227	
0.0001567	939.1194439	5992769.	4.8500000	21.8206787	
0.0001619	970.4234254	5992769.	4.8500000	22.5480346	
0.0001672	1002.	5992769.	4.8500000	23.2753906	
0.0001724	1033.	5992769.	4.8500000	24.0027465	
0.0001776	1064.	5992769.	4.8500000	24.7301025	
0.0001828	1096.	5992769.	4.8500000	25.4574585	
0.0001881	1127.	5992769.	4.8500000	26.1848144	
0.0001933	1158.	5992769.	4.8500000	26.9121704	
0.0001985	1190.	5992769.	4.8500000	27.6395263	
0.0002037	1221.	5992769.	4.8500000	28.3668823	
0.0002142	1283.	5992769.	4.8500000	29.8215942	
0.0002246	1346.	5992769.	4.8500000	31.2763061	
0.0002351	1409.	5992769.	4.8500000	32.7310180	
0.0002455	1471.	5992769.	4.8500000	34.1857299	
0.0002560	1534.	5992769.	4.8500000	35.6404418	
0.0002664	1583.	5942130.	4.8500000	36.0000000	Υ
0.0002769	1608.	5807975.	4.8500000	36.0000000	Υ
0.0002873	1617.	5627120.	4.8500000	36.0000000	Υ
0.0002977	1623.	5451108.	4.8500000	36.0000000	Υ
0.0003082	1629.	5285148.	4.8500000	36.0000000	Υ
0.0003186	1634.	5128131.	4.8500000	36.0000000	Υ
0.0003291	1639.	4979678.	4.8500000	36.0000000	Υ
0.0003395	1643.	4839137.	4.8500000	36.0000000	Υ
0.0003500	1647.	4705909.	4.8500000	36.0000000	Υ
0.0003604	1651.	4579458.	4.8500000	36.0000000	Υ
0.0003709	1654.	4459307.	4.8500000	36.0000000	Υ
0.0003813	1657.	4345022.	4.8500000	36.0000000	Υ
0.0003918	1660.	4236215.	4.8500000	36.0000000	Υ
0.0004022	1662.	4132530.	4.8500000	36.0000000	Υ
0.0004127	1665.	4033644.	4.8500000	36.0000000	Υ
0.0004231	1667.	3939263.	4.8500000	36.0000000	Υ
0.0004336	1669.	3849104.	4.8500000	36.0000000	Υ

0.0004545 1672. 3680141. 4.8500000 36.0000000 0.0004649 1674. 3601052. 4.8500000 36.0000000 0.0004753 1676. 3525092. 4.8500000 36.0000000 0.0004858 1677. 3452291. 4.8500000 36.0000000 0.0005067 1680. 3315098. 4.8500000 36.000000 0.0005171 1681. 3250437. 4.8500000 36.000000 0.0005276 1682. 3188206. 4.8500000 36.000000 0.0005380 1683. 3128263. 4.8500000 36.000000 0.0005485 1684. 3070519. 4.8500000 36.000000 0.0005594 1686. 2961096. 4.8500000 36.000000 0.0005993 1687. 2909147. 4.8500000 36.000000 0.0006007 1688. 2859037. 4.8500000 36.000000 0.0006112 1689. 2763692. 4.8500000 36.000000 0.0006216 1690. 2718382. 4.8500							
0.0004649 1674. 3601052. 4.8500000 36.0000000 0.0004753 1676. 3525092. 4.8500000 36.0000000 0.0004858 1677. 3452291. 4.8500000 36.0000000 0.0005067 1680. 3315098. 4.8500000 36.0000000 0.0005171 1681. 3250437. 4.8500000 36.0000000 0.0005276 1682. 3188206. 4.8500000 36.0000000 0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822.<	0	.0004440	1671.	3762749.	4.8500000	36.0000000	Υ
0.0004753 1676. 3525092. 4.8500000 36.0000000 0.0004858 1677. 3452291. 4.8500000 36.0000000 0.0004962 1678. 3382319. 4.8500000 36.0000000 0.0005067 1680. 3315098. 4.8500000 36.0000000 0.0005171 1681. 3250437. 4.8500000 36.0000000 0.0005276 1682. 3188206. 4.8500000 36.0000000 0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005798 1687. 2961096. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007888 1697. 2151822.<	0	.0004545	1672.	3680141.	4.8500000	36.0000000	Υ
0.0004858 1677. 3452291. 4.8500000 36.0000000 0.0004962 1678. 3382319. 4.8500000 36.0000000 0.0005067 1680. 3315098. 4.8500000 36.0000000 0.0005171 1681. 3250437. 4.8500000 36.0000000 0.0005276 1682. 3188206. 4.8500000 36.0000000 0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005798 1687. 2961096. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0066047 1688. 2810577. 4.8500000 36.0000000 0.006612 1690. 2718382. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. </td <td>0</td> <td>.0004649</td> <td>1674.</td> <td>3601052.</td> <td>4.8500000</td> <td>36.0000000</td> <td>Υ</td>	0	.0004649	1674.	3601052.	4.8500000	36.0000000	Υ
0.0004962 1678. 3382319. 4.8500000 36.000000 0.0005067 1680. 3315098. 4.8500000 36.000000 0.0005171 1681. 3250437. 4.8500000 36.000000 0.0005276 1682. 3188206. 4.8500000 36.000000 0.0005380 1683. 3128263. 4.8500000 36.000000 0.0005589 1685. 3014790. 4.8500000 36.000000 0.0005694 1686. 2961096. 4.8500000 36.000000 0.0005798 1687. 2909147. 4.8500000 36.000000 0.0005903 1688. 2859037. 4.8500000 36.000000 0.0006007 1688. 2810577. 4.8500000 36.000000 0.0006112 1689. 2763692. 4.8500000 36.000000 0.0006216 1690. 2718382. 4.8500000 36.000000 0.0007470 1696. 2270298. 4.8500000 36.000000 0.0007888 1697. 2151822. 4.8500000 36.000000 0.0008723 1700. 1948248. <td< td=""><td>0</td><td>.0004753</td><td>1676.</td><td>3525092.</td><td>4.8500000</td><td>36.0000000</td><td>Υ</td></td<>	0	.0004753	1676.	3525092.	4.8500000	36.0000000	Υ
0.0005067 1680. 3315098. 4.8500000 36.0000000 0.0005171 1681. 3250437. 4.8500000 36.0000000 0.0005276 1682. 3188206. 4.8500000 36.0000000 0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005694 1686. 2961096. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009977 1702. 1705811.<	0	.0004858	1677.	3452291.	4.8500000	36.0000000	Υ
0.0005171 1681. 3250437. 4.8500000 36.0000000 0.0005276 1682. 3188206. 4.8500000 36.0000000 0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005798 1687. 2961096. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.006607 1688. 2810577. 4.8500000 36.0000000 0.0066112 1689. 2763692. 4.8500000 36.0000000 0.006634 1692. 2550781. 4.8500000 36.0000000 0.007852 1694. 2402455. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.000977 1702. 1705811. 4.8500000 36.0000000 0.0010395 1701. 1779680.	0	.0004962	1678.	3382319.	4.8500000	36.0000000	Υ
0.0005276 1682. 3188206. 4.8500000 36.0000000 0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.000634 1692. 2550781. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. <t< td=""><td>0</td><td>.0005067</td><td>1680.</td><td>3315098.</td><td>4.8500000</td><td>36.0000000</td><td>Υ</td></t<>	0	.0005067	1680.	3315098.	4.8500000	36.0000000	Υ
0.0005380 1683. 3128263. 4.8500000 36.0000000 0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005694 1686. 2961096. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.000634 1692. 2550781. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0010395 1701. 1779680. 4.8500000 36.0000000 0.0010813 1703. 1637830. </td <td>0</td> <td>.0005171</td> <td>1681.</td> <td>3250437.</td> <td>4.8500000</td> <td>36.0000000</td> <td>Υ</td>	0	.0005171	1681.	3250437.	4.8500000	36.0000000	Υ
0.0005485 1684. 3070519. 4.8500000 36.0000000 0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005694 1686. 2961096. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0008788 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. <	0	.0005276	1682.	3188206.	4.8500000	36.0000000	Υ
0.0005589 1685. 3014790. 4.8500000 36.0000000 0.0005694 1686. 2961096. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0011231 1704. 1516858.<	0	.0005380	1683.	3128263.	4.8500000	36.0000000	Υ
0.0005694 1686. 2961096. 4.8500000 36.0000000 0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.001833 1703. 1637830. 4.8500000 36.0000000 0.0012395 1703. 1637830. 4.8500000 36.0000000 0.001267 1704. 1462791. <td>0</td> <td>.0005485</td> <td>1684.</td> <td>3070519.</td> <td>4.8500000</td> <td>36.0000000</td> <td>Υ</td>	0	.0005485	1684.	3070519.	4.8500000	36.0000000	Υ
0.0005798 1687. 2909147. 4.8500000 36.0000000 0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.001833 1703. 1637830. 4.8500000 36.0000000 0.001843 1703. 1575020. 4.8500000 36.0000000 0.001267 1704. 1462791. 4.8500000 36.0000000	0	.0005589	1685.	3014790.	4.8500000	36.0000000	Υ
0.0005903 1688. 2859037. 4.8500000 36.0000000 0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0012813 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1442468. 4.8500000 36.0000000	0	.0005694	1686.	2961096.	4.8500000	36.0000000	Υ
0.0006007 1688. 2810577. 4.8500000 36.0000000 0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0008386 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1442468. 4.8500000 36.00000000	0	.0005798	1687.	2909147.	4.8500000	36.0000000	Υ
0.0006112 1689. 2763692. 4.8500000 36.0000000 0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009977 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0005903	1688.	2859037.	4.8500000	36.0000000	Υ
0.0006216 1690. 2718382. 4.8500000 36.0000000 0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1442468. 4.8500000 36.0000000	0	.0006007	1688.	2810577.	4.8500000	36.0000000	Υ
0.0006634 1692. 2550781. 4.8500000 36.0000000 0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.00000000	0	.0006112	1689.	2763692.	4.8500000	36.0000000	Υ
0.0007052 1694. 2402455. 4.8500000 36.0000000 0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.00000000	0	.0006216	1690.	2718382.	4.8500000	36.0000000	Υ
0.0007470 1696. 2270298. 4.8500000 36.0000000 0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0006634	1692.	2550781.	4.8500000	36.0000000	Υ
0.0007888 1697. 2151822. 4.8500000 36.0000000 0.0008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0007052	1694.	2402455.	4.8500000	36.0000000	Υ
0.0008306 1699. 2045031. 4.8500000 36.0000000 0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0009977 1702. 1705811. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0007470	1696.	2270298.	4.8500000	36.0000000	Υ
0.0008723 1700. 1948248. 4.8500000 36.0000000 0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0009977 1702. 1705811. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0007888	1697.	2151822.	4.8500000	36.0000000	Υ
0.0009141 1700. 1860154. 4.8500000 36.0000000 0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0009977 1702. 1705811. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0008306	1699.	2045031.	4.8500000	36.0000000	Υ
0.0009559 1701. 1779680. 4.8500000 36.0000000 0.0009977 1702. 1705811. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0008723	1700.	1948248.	4.8500000	36.0000000	Υ
0.0009977 1702. 1705811. 4.8500000 36.0000000 0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0009141	1700.	1860154.	4.8500000	36.0000000	Υ
0.0010395 1703. 1637830. 4.8500000 36.0000000 0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0009559	1701.	1779680.	4.8500000	36.0000000	Υ
0.0010813 1703. 1575020. 4.8500000 36.0000000 0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0009977	1702.	1705811.	4.8500000	36.0000000	Υ
0.0011231 1704. 1516858. 4.8500000 36.0000000 0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0010395	1703.	1637830.	4.8500000	36.0000000	Υ
0.0011649 1704. 1462791. 4.8500000 36.0000000 0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0010813	1703.	1575020.	4.8500000	36.0000000	Υ
0.0012067 1704. 1412468. 4.8500000 36.0000000	0	.0011231	1704.	1516858.	4.8500000	36.0000000	Υ
	0	.0011649	1704.	1462791.	4.8500000	36.0000000	Υ
0.0012484 1705. 1365457. 4.8500000 36.0000000	0	.0012067	1704.	1412468.	4.8500000	36.0000000	Υ
	0	.0012484	1705.	1365457.	4.8500000	36.0000000	Υ
0.0012902 1705. 1321468. 4.8500000 36.0000000	0	.0012902	1705.	1321468.	4.8500000	36.0000000	Υ

Summary of Results for Nominal (Unfactored) Moment Capacity for Section 1

		Nominal
Load	Axial	Moment
No.	Thrust kips	Capacity in-kips
	0.0000000	4705
1	0.0000000	1705.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	1bs
1	13.5000	0.00	N.A.	No	0.00	22957.
2	17.0000	5.8515	No	No	22957.	113304.
3	22.5000	9.0000	No	Yes	N.A.	N.A.
4	23.5000	10.0000	No	Yes	N.A.	N.A.
5	28.5000	15.0000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 3300.0 lbs
Applied moment at pile head = 0.0 in-lbs
Axial thrust load on pile head = 0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	у	Moment	Force	S	Stress	Stiffness	р	Es*h	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	in-lb^2	lb/inch	lb/inch	lb/inch
0.00	1.9444	-5.75E-06	3300.	-0.01315	1.40E-07	5.99E+09	0.00	0.00	0.00
0.3000	1.8970	11880.	3300.	-0.01314	290.0576	5.99E+09	0.00	0.00	0.00
0.6000	1.8497	23760.	3300.	-0.01313	580.1152	5.99E+09	0.00	0.00	0.00

0.9000	1.8025	35640.	3300.	-0.01312	870.1728	5.99E+09	0.00	0.00	0.00
1.2000	1.7553	47520.	3300.	-0.01309	1160.	5.99E+09	0.00	0.00	0.00
1.5000	1.7082	59400.	3300.	-0.01306	1450.	5.99E+09	0.00	0.00	0.00
1.8000	1.6613	71280.	3300.	-0.01302	1740.	5.99E+09	0.00	0.00	0.00
2.1000	1.6145	83160.	3300.	-0.01297	2030.	5.99E+09	0.00	0.00	0.00
2.4000	1.5678	95040.	3300.	-0.01292	2320.	5.99E+09	0.00	0.00	0.00
2.7000	1.5214	106920.	3300.	-0.01286	2611.	5.99E+09	0.00	0.00	0.00
3.0000	1.4753	118800.	3300.	-0.01279	2901.	5.99E+09	0.00	0.00	0.00
3.3000	1.4293	130680.	3300.	-0.01272	3191.	5.99E+09	0.00	0.00	0.00
3.6000	1.3837	142560.	3300.	-0.01263	3481.	5.99E+09	0.00	0.00	0.00
3.9000	1.3384	154440.	3300.	-0.01255	3771.	5.99E+09	0.00	0.00	0.00
4.2000	1.2934	166320.	3300.	-0.01245	4061.	5.99E+09	0.00	0.00	0.00
4.5000	1.2487	178200.	3300.	-0.01235	4351.	5.99E+09	0.00	0.00	0.00
4.8000	1.2045	190080.	3300.	-0.01224	4641.	5.99E+09	0.00	0.00	0.00
5.1000	1.1606	201960.	3300.	-0.01212	4931.	5.99E+09	0.00	0.00	0.00
5.4000	1.1172	213840.	3300.	-0.01199	5221.	5.99E+09	0.00	0.00	0.00
5.7000	1.0743	225720.	3300.	-0.01186	5511.	5.99E+09	0.00	0.00	0.00
6.0000	1.0318	237600.	3300.	-0.01172	5801.	5.99E+09	0.00	0.00	0.00
6.3000	0.9899	249480.	3300.	-0.01157	6091.	5.99E+09	0.00	0.00	0.00
6.6000	0.9485	261360.	3300.	-0.01142	6381.	5.99E+09	0.00	0.00	0.00
6.9000	0.9077	273240.	3300.	-0.01126	6671.	5.99E+09	0.00	0.00	0.00
7.2000	0.8674	285120.	3300.	-0.01109	6961.	5.99E+09	0.00	0.00	0.00
7.5000	0.8278	297000.	3300.	-0.01092	7251.	5.99E+09	0.00	0.00	0.00
7.8000	0.7888	308880.	3300.	-0.01074	7541.	5.99E+09	0.00	0.00	0.00
8.1000	0.7505	320760.	3300.	-0.01055	7832.	5.99E+09	0.00	0.00	0.00
8.4000	0.7129	332640.	3300.	-0.01035	8122.	5.99E+09	0.00	0.00	0.00
8.7000	0.6760	344520.	3300.	-0.01015	8412.	5.99E+09	0.00	0.00	0.00
9.0000	0.6398	356400.	3300.	-0.00994	8702.	5.99E+09	0.00	0.00	0.00
9.3000	0.6044	368280.	3300.	-0.00972	8992.	5.99E+09	0.00	0.00	0.00
9.6000	0.5698	380160.	3300.	-0.00949	9282.	5.99E+09	0.00	0.00	0.00
9.9000	0.5361	392040.	3300.	-0.00926	9572.	5.99E+09	0.00	0.00	0.00
10.2000	0.5031	403920.	3300.	-0.00902	9862.	5.99E+09	0.00	0.00	0.00
10.5000	0.4711	415800.	3300.	-0.00878	10152.	5.99E+09	0.00	0.00	0.00
10.8000	0.4399	427680.	3300.	-0.00852	10442.	5.99E+09	0.00	0.00	0.00
11.1000	0.4097	439560.	3300.	-0.00826	10732.	5.99E+09	0.00	0.00	0.00
11.4000	0.3804	451440.	3300.	-0.00800	11022.	5.99E+09	0.00	0.00	0.00
11.7000	0.3521	463320.	3300.	-0.00772	11312.	5.99E+09	0.00	0.00	0.00
12.0000	0.3249	475200.	3300.	-0.00744	11602.	5.99E+09	0.00	0.00	0.00
12.3000	0.2986	487080.	3300.	-0.00715	11892.	5.99E+09	0.00	0.00	0.00
12.6000	0.2734	498960.	3300.	-0.00685	12182.	5.99E+09	0.00	0.00	0.00
12.9000	0.2492	510840.	3300.	-0.00655	12472.	5.99E+09	0.00	0.00	0.00
13.2000	0.2262	522720.	3300.	-0.00624	12763.	5.99E+09	0.00	0.00	0.00
13.5000	0.2043	534600.	2932.	-0.00592	13053.	5.99E+09	-204.5438	3604.	0.00
13.8000	0.1836	543829.	2182.	-0.00560	13278.	5.99E+09	-212.2995	4164.	0.00
14.1000	0.1640	550307.	1405.	-0.00527	13436.	5.99E+09	-219.1927	4812.	0.00
14.4000	0.1456	553944.	604.9222	-0.00494	13525.	5.99E+09	-225.1935	5567.	0.00
14.7000	0.1284	554662.	-214.9120	-0.00461	13542.	5.99E+09	-230.2700	6454.	0.00
15.0000	0.1125	552396.	-1051.	-0.00427	13487.	5.99E+09	-234.3879	7503.	0.00
15.3000	0.09767	547093.	-1901.	-0.00394	13358.	5.99E+09	-237.5101	8754.	0.00
15.6000	0.08407	538711.	-2760.	-0.00362	13153.	5.99E+09	-239.5949	10260.	0.00
15.9000	0.07163	527225.	-3624.	-0.00330	12873.	5.99E+09	-240.5947	12091.	0.00
16.2000	0.06034	512620.	-4490.	-0.00298	12516.	5.99E+09	-240.4531	14347.	0.00

16.5000	0.05015	494898.	-5353.	-0.00268	12083.	5.99E+09	-239.1010	17165.	0.00
16.8000	0.04103	474079.	-6209.	-0.00239	11575.	5.99E+09	-236.4490	20747.	0.00
17.1000	0.03294	450194.	-6763.	-0.00211	10992.	5.99E+09	-71.1412	7776.	0.00
17.4000	0.02582	425388.	-6999.	-0.00185	10386.	5.99E+09	-60.4105	8424.	0.00
17.7000	0.01962	399799.	-7197.	-0.00160	9761.	5.99E+09	-49.4351	9072.	0.00
18.0000	0.01428	373569.	-7355.	-0.00137	9121.	5.99E+09	-38.5623	9720.	0.00
18.3000	0.00976	346839.	-7475.	-0.00115	8468.	5.99E+09	-28.0957	10368.	0.00
18.6000	0.00598	319746.	-7559.	-9.53E-04	7807.	5.99E+09	-18.2947	11016.	0.00
18.9000	0.00289	292415.	-7609.	-7.69E-04	7139.	5.99E+09	-9.3745	11664.	0.00
19.2000	4.40E-04	264962.	-7628.	-6.02E-04	6469.	5.99E+09	-1.5062	12312.	0.00
19.5000	-0.00144	237490.	-7622.	-4.51E-04	5798.	5.99E+09	5.1822	12960.	0.00
19.8000	-0.00281	210086.	-7593.	-3.16E-04	5129.	5.99E+09	10.6060	13608.	0.00
20.1000	-0.00372	182818.	-7548.	-1.98E-04	4464.	5.99E+09	14.7226	14256.	0.00
20.4000	-0.00423	155742.	-7490.	-9.67E-05	3803.	5.99E+09	17.5306	14904.	0.00
20.7000	-0.00441	128893.	-7424.	-1.12E-05	3147.	5.99E+09	19.0696	15552.	0.00
21.0000	-0.00432	102291.	-7355.	5.82E-05	2497.	5.99E+09	19.4190	16200.	0.00
21.3000	-0.00400	75940.	-7286.	1.12E-04	1854.	5.99E+09	18.6975	16848.	0.00
21.6000	-0.00351	49832.	-7222.	1.50E-04	1217.	5.99E+09	17.0627	17496.	0.00
21.9000	-0.00292	23945.	-7164.	1.72E-04	584.6335	5.99E+09	14.7102	18144.	0.00
22.2000	-0.00227	-1751.	-7117.	1.78E-04	42.7589	5.99E+09	11.8744	18792.	0.00
22.5000	-0.00163	-27294.	-6410.	1.70E-04	666.3940	5.99E+09	380.9013	838862.	0.00
22.8000	-0.00105	-47900.	-4803.	1.47E-04	1170.	5.99E+09	511.5922	1748132.	0.00
23.1000	-5.76E-04	-61875.	-2827.	1.14E-04	1511.	5.99E+09	586.3626	3664605.	0.00
23.4000	-2.32E-04	-68252.	-720.0743	7.50E-05	1666.	5.99E+09	583.9839	9049332.	0.00
23.7000	-3.62E-05	-67060.	6005.	3.43E-05	1637.	5.99E+09	3152.	3.13E+08	0.00
24.0000	1.49E-05	-25019.	8969.	6.67E-06	610.8473	5.99E+09	-1505.	3.65E+08	0.00
24.3000	1.18E-05	-2486.	3798.	-1.59E-06	60.7001	5.99E+09	-1367.	4.16E+08	0.00
24.6000	3.43E-06	2324.	534.4760	-1.64E-06	56.7488	5.99E+09	-445.4143	4.67E+08	0.00
24.9000	5.46E-08	1362.	-281.4362	-5.29E-07	33.2568	5.99E+09	-7.8702	5.19E+08	0.00
25.2000	-3.77E-07	297.9407	-193.9426	-3.03E-08	7.2744	5.99E+09	56.4778	5.40E+08	0.00
25.5000	-1.63E-07	-34.2768	-48.1807	4.89E-08	0.8369	5.99E+09	24.5011	5.40E+08	0.00
25.8000	-2.43E-08	-48.9602	2.4795	2.39E-08	1.1954	5.99E+09	3.6434	5.40E+08	0.00
26.1000	8.88E-09	-16.4247	6.6402	4.28E-09	0.4010	5.99E+09	-1.3319	5.40E+08	0.00
26.4000	6.53E-09	-1.1509	2.4800	-9.99E-10	0.02810	5.99E+09	-0.9793	5.40E+08	0.00
26.7000	1.69E-09	1.4314	0.2613	-9.14E-10	0.03495	5.99E+09	-0.2533	5.40E+08	0.00
27.0000	-5.56E-11	0.7307	-0.1796	-2.65E-10	0.01784	5.99E+09	0.00834	5.40E+08	0.00
27.3000	-2.20E-10	0.1381	-0.1053	-4.10E-12	0.00337	5.99E+09	0.03295	5.40E+08	0.00
27.6000	-8.51E-11	-0.02745	-0.02300	2.91E-11	6.70E-04	5.99E+09	0.01277	5.40E+08	0.00
27.9000	-9.93E-12	-0.02751	0.00266	1.26E-11	6.72E-04	5.99E+09	0.00149	5.40E+08	0.00
28.2000	5.77E-12	-0.00828	0.00379	1.87E-12	2.02E-04	5.99E+09	-8.65E-04	5.40E+08	0.00
28.5000	3.56E-12	-2.50E-04	0.00127	0.00	6.10E-06	5.99E+09	-5.34E-04	5.40E+08	0.00
28.8000	0.00	8.59E-04	8.84E-05	0.00	2.10E-05	5.99E+09	-1.22E-04	5.40E+08	0.00
29.1000	0.00	3.87E-04	-1.11E-04	0.00	9.45E-06	5.99E+09	1.14E-05	5.40E+08	0.00
29.4000	0.00	6.28E-05	-5.54E-05	0.00	1.53E-06	5.99E+09	1.92E-05	5.40E+08	0.00
29.7000	0.00	-1.21E-05	-8.72E-06	0.00	2.96E-07	5.99E+09	6.71E-06	5.40E+08	0.00
30.0000	0.00	0.00	0.00	0.00	0.00	5.99E+09	-1.87E-06	2.70E+08	0.00
						_			

^{*} This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the

magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection = 1.94436171 inches
Computed slope at pile head = -0.01314850 radians
Maximum bending moment = 554662. inch-lbs
Maximum shear force = 8969. lbs

Depth of maximum bending moment = 14.70000000 feet below pile head Depth of maximum shear force = 24.00000000 feet below pile head

Number of iterations = 23 Number of zero deflection points = 8

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

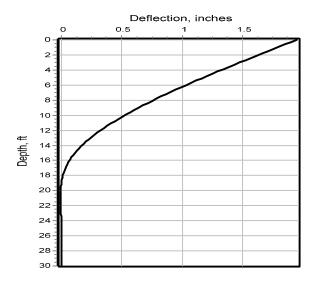
```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
```

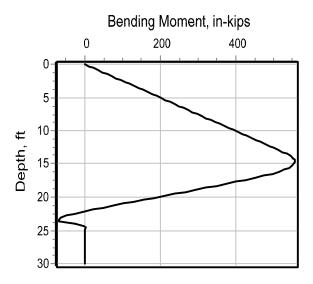
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max Moment
Case Type	Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No. 1	Load 1	2	Load 2	1bs	inches	radians	lbs	in-lbs
1 V. 1b	3300.	M. in-lb	0.00	0.00	1.9444	-0.01315	8969.	554662.

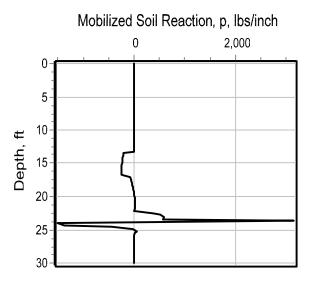
Maximum pile-head deflection = 1.9443617146 inches

Maximum pile-head rotation = -0.0131485037 radians = -0.753354 deg.


Summary of Warning Messages


The following warning was reported 483 times


**** Warning ****


An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

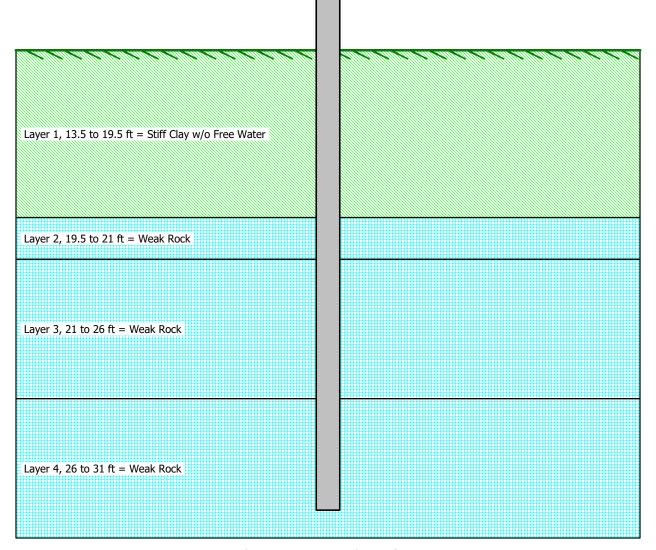
The analysis ended normally.

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949

FAX: (614) 823-4990

WWW.RESOURCEINTERATIONAL.COM

 JOB
 BEL-7-11.04
 NO.


 SHEET NO.
 1
 OF
 1

 CALCULATED BY
 AG
 DATE
 2/20/2023

 CHECKED BY
 JPS
 DATE
 2/20/2023

 Wall - Steel post with fence (B-001-2-22)

<u>tructı</u>	ıral Elei	nent Pro	pertie	<u>'S</u>		Section Type:	HP 10	x42								
E =	29,000	ksi		d =	9.7	in i	$I_x =$	210	in ⁴	No	m. W	/t., W	steel =	42	lb/ft	
4 _s =	12.4	in ²		$b_f =$	10.1	in	$r_s =$	4.13	in				$Z_x =$	48.3	in ³	
7 _y =	36	ksi		$t_w =$	0.415	in	$r_y =$	2.41	in				T =	7.6	in	
$r_{yr} =$	25	ksi		$t_f =$	0.420	in	$r_t =$	2.77	in				S =	43.4	in ³	
heck	Shear F	Resistan	ce (AA	SHTO	0 6.10.9	<u>.2)</u>		$\varphi_v = 1$.00							
						kips < 1.00(84.1				O O kin	vc ~ 0	11 bi	ne		OK	
Cne	ck. v_u	$\sim \psi_v v_n$			9.0	Kips < 1.00(64.1	Kips)			9.0 KIL)S \ 0	4. I KI	þδ			
	V ,, =	9.0	kips	(De	etermine	d from LPile)										
			i i													
	$V_n = V_c$	$c = CV_p$	=	84.1	kips											
	V_p =	$= 0.58 F_{y_1}$	$_wDt_W$	=	84.1	kips										
	<i>α</i> –	1 00														
	C =	1.00														
		f $^{D}/_{t_{w}}$	≤ 1.12	$\sum_{i=1}^{n} Ek_{i}^{i}$	$/_{F_{vw}}$	> C	= 1.0									
		f 1.12	$Ek_{/_{\Sigma}}$	_ ' < [)/, <	$1.40\sqrt{E^k/_{F_{yw}}}$		→ c	1.1	12 [Ek]	ζ/ _E					
		٧	IF_{y_1}	w —	/ t _w –	$\sqrt{F_{yw}}$	1 [:7 <i>(</i>	(D/	$(t_w)\sqrt{}$	I Fyw					
		$_{\rm f}$ $^{D}/_{t_{\rm m}}$	> 1.40	$_0 \mid Ek$	/ _{F.}	→ 	$=\frac{1.5}{(D/s)}$	$\frac{D'}{F}$ $\frac{D'}{2}$ $\left(E_{i}\right)$	$K_{/_{E,}}$)						
		, vw		٧	' ¹ yw		(D)	(w)- \	' yw.							
		ת ת				[F];					Fi	71, ,				
		$D/t_{\rm w}$, =	23.4		$1.12\sqrt{Ek}$	$F_{yw} =$	71.1		1.	40 J	F_{2}	w =	88.9		
						5.10.9.2)										
		ĸ	- 3.0	(,,,,	копто (5.10.9.2)										
heck	<u>Flexura</u>	l Resista	ance a	t Max	<u>imum l</u>	Moment (AAS	<u>HTO 6.</u>	<u>10.8)</u>			$\varphi_f =$	1.0	0			
	ok: M	$< \varphi_f M_n$		→	46.2	kip-ft < 1.00(14	l4.9 kip-	·ft) -	-	46.2	kip-ft	: < 14	4.9 kip	o-ft	OK	
Che	ck. Mu	rji														

LPile for Windows(Beta), Version 2018-10.009

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2018 by Ensoft, Inc. All Rights Reserved

______ This copy of LPile is being used by: Resource International, Inc. Columbus, OH Serial Number of Security Device: 160709429 This copy of LPile is licensed for exclusive use by: Resource International, Inc., Co Use of this program by any entity other than Resource International, Inc., Co is a violation of the software license agreement. Files Used for Analysis _____ Path to file locations: \GEOTECH\PROJECTS\2020\W-20-120 BEL-7-11.04\Analysis\2.17.2023 LPile Analysis\Lpile\ Name of input data file: HP 10x42 B-001-3-22.1p10 Name of output report file: HP 10x42 B-001-3-22.1p10 Name of plot output file: HP 10x42_B-001-3-22.1p10 Name of runtime message file: HP 10x42 B-001-3-22.1p10 Date and Time of Analysis ______

Date: February 20, 2023 Time: 16:01:09

Problem Title

Project Name: BEL-7-11.04

Job Number: W-20-120

Client:

Engineer: AG/JPS

Description: 10 x 42 HP - Boring B-001-3-22

Program Options and Settings

Computational Options:

- Use unfactored loads in computations (conventional analysis)

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1

- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1
Total length of pile = 30.000 ft
Depth of ground surface below top of pile = 13.5000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	10.1000
2	30.000	10.1000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a H strong axis steel pile

Length of section = 30.000000 ft = 10.100000 in = 84100. lbs Pile width Shear capacity of section 84100. lbs

Ground Slope and Pile Batter Angles

Ground Slope Angle 0.000 degrees 0.000 radians

Pile Batter Angle 0.000 degrees

0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

Layer 1 is stiff clay without free water

```
Distance from top of pile to top of layer
                                                        13.500000 ft
Distance from top of pile to bottom of layer
                                                        19.500000 ft
Effective unit weight at top of layer
                                                   = 125.000000 pcf
Effective unit weight at bottom of layer
                                                      125.000000 pcf
Undrained cohesion at top of layer
                                                            1875. psf
Undrained cohesion at bottom of laver
                                                            1875. psf
Epsilon-50 at top of layer
                                                         0.007000
Epsilon-50 at bottom of layer
                                                         0.007000
```

Layer 2 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 19.500000 ft Distance from top of pile to bottom of layer 21.000000 ft Effective unit weight at top of layer 135.000000 pcf Effective unit weight at bottom of layer 135.000000 pcf Uniaxial compressive strength at top of layer 100.000000 psi Uniaxial compressive strength at bottom of layer 100.000000 psi Initial modulus of rock at top of layer 18000. psi Initial modulus of rock at bottom of layer 18000. psi RQD of rock at top of layer 0.0000 % RQD of rock at bottom of layer 0.0000 % k rm of rock at top of layer 0.0005000 k rm of rock at bottom of layer 0.0005000

Layer 3 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 21.000000 ft Distance from top of pile to bottom of layer 26.000000 ft Effective unit weight at top of laver 140.000000 pcf Effective unit weight at bottom of layer 140.000000 pcf Uniaxial compressive strength at top of layer 932.000000 psi Uniaxial compressive strength at bottom of layer 932.000000 psi Initial modulus of rock at top of layer 100000. psi Initial modulus of rock at bottom of laver 100000. psi ROD of rock at top of layer 38.000000 % ROD of rock at bottom of layer 38.000000 % k rm of rock at top of layer 0.0005000 k rm of rock at bottom of laver 0.0005000

Layer 4 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = 26.000000 ft

Distance from top of pile to bottom of layer = 31.000000 ft Effective unit weight at top of layer = 140.000000 pcf Effective unit weight at bottom of laver = 140.000000 pcf Uniaxial compressive strength at top of layer = 932.000000 psi Uniaxial compressive strength at bottom of layer = 932.000000 psi Initial modulus of rock at top of layer 100000. psi Initial modulus of rock at bottom of layer 100000. psi RQD of rock at top of layer = 40.000000 % RQD of rock at bottom of layer = 40.000000 % k rm of rock at top of layer = 0.0005000 k rm of rock at bottom of layer 0.0005000

(Depth of the lowest soil layer extends 1.000 ft below the pile tip)

Summary of Input Soil Properties

Layer Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Undrained Cohesion psf	Uniaxial qu psi	RQD %	E50 or krm	Rock Mass Modulus psi
1	Stiff Clay	13.5000	125.0000	1875.			0.00700	
	w/o Free Water	19.5000	125.0000	1875.			0.00700	
2	Weak	19.5000	135.0000		100.0000	0.00	5.00E-04	18000.
	Rock	21.0000	135.0000		100.0000	0.00	5.00E-04	18000.
3	Weak	21.0000	140.0000		932.0000	38.0000	5.00E-04	100000.
	Rock	26.0000	140.0000		932.0000	38.0000	5.00E-04	100000.
4	Weak	26.0000	140.0000		932.0000	40.0000	5.00E-04	100000.
	Rock	31.0000	140.0000		932.0000	40.0000	5.00F-04	100000.

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

·-----

Number of loads specified = 1

Load	Load	Condition	Condition	Axial Thrust	Compute Top y
No.	Type	1	2	Force, 1bs	vs. Pile Length

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Steel H Strong Axis:

30.000000 ft Length of Section Flange Width 10.100000 in Section Depth 9.700000 in Flange Thickness 0.420000 in Web Thickness 0.415000 in Yield Stress of Pipe 36.000000 ksi Elastic Modulus 29000. ksi Cross-sectional Area 12.160900 sq. in. Moment of Inertia 206.834773 in^4 Elastic Bending Stiffness 5998208. kip-in^2 Plastic Modulus, Z 47.510093in^3 Plastic Moment Capacity = Fy Z 1710.in-kip

Axial Structural Capacities:

Nom. Axial Structural Capacity = Fy As = 437.792 kips Nominal Axial Tensile Capacity = -437.792 kips

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number Axial Thrust Force

kips -----1 0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending	Bending	Bending	Depth to	Max Total	Run
Curvature	Moment	Stiffness	N Axis	Stress	Msg
rad/in.	in-kip	kip-in2	in	ksi	
0.00000522	31.3039815	5992769.	4.8500000	0.7273560	
0.00001045	62.6079629	5992769.	4.8500000	1.4547119	
0.00001567	93.9119444	5992769.	4.8500000	2.1820679	
0.00002089	125.2159259	5992769.	4.8500000	2.9094238	
0.00002612	156.5199073	5992769.	4.8500000	3.6367798	
0.00003134	187.8238888	5992769.	4.8500000	4.3641357	
0.00003657	219.1278703	5992769.	4.8500000	5.0914917	
0.00004179	250.4318517	5992769.	4.8500000	5.8188476	
0.00004701	281.7358332	5992769.	4.8500000	6.5462036	
0.00005224	313.0398146	5992769.	4.8500000	7.2735596	
0.00005746	344.3437961	5992769.	4.8500000	8.0009155	
0.00006268	375.6477776	5992769.	4.8500000	8.7282715	
0.00006791	406.9517590	5992769.	4.8500000	9.4556274	
0.00007313	438.2557405	5992769.	4.8500000	10.1829834	
0.00007835	469.5597220	5992769.	4.8500000	10.9103393	
0.00008358	500.8637034	5992769.	4.8500000	11.6376953	
0.00008880	532.1676849	5992769.	4.8500000	12.3650512	
0.00009403	563.4716664	5992769.	4.8500000	13.0924072	
0.00009925	594.7756478	5992769.	4.8500000	13.8197632	
0.0001045	626.0796293	5992769.	4.8500000	14.5471191	
0.0001097	657.3836108	5992769.	4.8500000	15.2744751	
0.0001149	688.6875922	5992769.	4.8500000	16.0018310	
0.0001201	719.9915737	5992769.	4.8500000	16.7291870	
0.0001254	751.2955551	5992769.	4.8500000	17.4565429	
0.0001306	782.5995366	5992769.	4.8500000	18.1838989	
0.0001358	813.9035181	5992769.	4.8500000	18.9112548	
0.0001410	845.2074995	5992769.	4.8500000	19.6386108	
0.0001463	876.5114810	5992769.	4.8500000	20.3659668	
0.0001515	907.8154625	5992769.	4.8500000	21.0933227	
0.0001567	939.1194439	5992769.	4.8500000	21.8206787	
0.0001619	970.4234254	5992769.	4.8500000	22.5480346	
0.0001672	1002.	5992769.	4.8500000	23.2753906	
0.0001724	1033.	5992769.	4.8500000	24.0027465	
0.0001776	1064.	5992769.	4.8500000	24.7301025	
0.0001828	1096.	5992769.	4.8500000	25.4574585	
0.0001881	1127.	5992769.	4.8500000	26.1848144	
0.0001933	1158.	5992769.	4.8500000	26.9121704	
		•			

0.0001985	1190.	5992769.	4.8500000	27.6395263	
0.0002037	1221.	5992769.	4.8500000	28.3668823	
0.0002142	1283.	5992769.	4.8500000	29.8215942	
0.0002246	1346.	5992769.	4.8500000	31.2763061	
0.0002351	1409.	5992769.	4.8500000	32.7310180	
0.0002455	1471.	5992769.	4.8500000	34.1857299	
0.0002560	1534.	5992769.	4.8500000	35.6404418	
0.0002664	1583.	5942130.	4.8500000	36.0000000	Υ
0.0002769	1608.	5807975.	4.8500000	36.0000000	Υ
0.0002873	1617.	5627120.	4.8500000	36.0000000	Υ
0.0002977	1623.	5451108.	4.8500000	36.0000000	Υ
0.0003082	1629.	5285148.	4.8500000	36.0000000	Υ
0.0003186	1634.	5128131.	4.8500000	36.0000000	Υ
0.0003291	1639.	4979678.	4.8500000	36.0000000	Υ
0.0003395	1643.	4839137.	4.8500000	36.0000000	Υ
0.0003500	1647.	4705909.	4.8500000	36.0000000	Υ
0.0003604	1651.	4579458.	4.8500000	36.0000000	Υ
0.0003709	1654.	4459307.	4.8500000	36.0000000	Υ
0.0003813	1657.	4345022.	4.8500000	36.0000000	Υ
0.0003918	1660.	4236215.	4.8500000	36.0000000	Υ
0.0004022	1662.	4132530.	4.8500000	36.0000000	Υ
0.0004127	1665.	4033644.	4.8500000	36.0000000	Υ
0.0004231	1667.	3939263.	4.8500000	36.0000000	Υ
0.0004336	1669.	3849104.	4.8500000	36.0000000	Υ
0.0004440	1671.	3762749.	4.8500000	36.0000000	Υ
0.0004545	1672.	3680141.	4.8500000	36.0000000	Υ
0.0004649	1674.	3601052.	4.8500000	36.0000000	Υ
0.0004753	1676.	3525092.	4.8500000	36.0000000	Υ
0.0004858	1677.	3452291.	4.8500000	36.0000000	Υ
0.0004962	1678.	3382319.	4.8500000	36.0000000	Υ
0.0005067	1680.	3315098.	4.8500000	36.0000000	Υ
0.0005171	1681.	3250437.	4.8500000	36.0000000	Υ
0.0005276	1682.	3188206.	4.8500000	36.0000000	Υ
0.0005380	1683.	3128263.	4.8500000	36.0000000	Υ
0.0005485	1684.	3070519.	4.8500000	36.0000000	Υ
0.0005589	1685.	3014790.	4.8500000	36.0000000	Υ
0.0005694	1686.	2961096.	4.8500000	36.0000000	Υ
0.0005798	1687.	2909147.	4.8500000	36.0000000	Υ
0.0005903	1688.	2859037.	4.8500000	36.0000000	Υ
0.0006007	1688.	2810577.	4.8500000	36.0000000	Υ
0.0006112	1689.	2763692.	4.8500000	36.0000000	Υ
0.0006216	1690.	2718382.	4.8500000	36.0000000	Υ
0.0006634	1692.	2550781.	4.8500000	36.0000000	Υ
0.0007052	1694.	2402455.	4.8500000	36.0000000	Υ
0.0007470	1696.	2270298.	4.8500000	36.0000000	Υ
0.0007888	1697.	2151822.	4.8500000	36.0000000	Υ
0.0008306	1699.	2045031.	4.8500000	36.0000000	Υ
0.0008723	1700.	1948248.	4.8500000	36.0000000	Υ
0.0009141	1700.	1860154.	4.8500000	36.0000000	Υ
0.0009559	1701.	1779680.	4.8500000	36.0000000	Υ
0.0009977	1702.	1705811.	4.8500000	36.0000000	Υ
0.0010395	1703.	1637830.	4.8500000	36.0000000	Υ

0.0010813	1703.	1575020.	4.8500000	36.0000000	Υ
0.0011231	1704.	1516858.	4.8500000	36.0000000	Υ
0.0011649	1704.	1462791.	4.8500000	36.0000000	Υ
0.0012067	1704.	1412468.	4.8500000	36.0000000	Υ
0.0012484	1705.	1365457.	4.8500000	36.0000000	Υ
0.0012902	1705.	1321468.	4.8500000	36.0000000	Υ

Summary of Results for Nominal (Unfactored) Moment Capacity for Section 1

Load	Axial	Nominal Moment
No.	Thrust kips	Capacity in-kips
1	0.0000000	1705.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1	13.5000	0.00	N.A.	No	0.00	47971.
2	19.5000	6.0000	No	Yes	N.A.	N.A.
3	21.0000	7.5000	No	Yes	N.A.	N.A.
4	26.0000	12.5000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays,

.....

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 3300.0 lbs
Applied moment at pile head = 0.0 in-lbs
Axial thrust load on pile head = 0.0 lbs

Depth X	Deflect. V	Bending Moment	Shear Force	Slope S	Total Stress	Bending Stiffness	Soil Res.	Soil Spr. Es*h	Distrib. Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	in-lb^2	lb/inch	lb/inch	lb/inch
0.00	1.8781	1.54E-06	3300.	-0.01286	3.76E-08	5.99E+09	0.00	0.00	0.00
0.3000	1.8318	11880.	3300.	-0.01285	290.0576	5.99E+09	0.00	0.00	0.00
0.6000	1.7856	23760.	3300.	-0.01284	580.1152	5.99E+09	0.00	0.00	0.00
0.9000	1.7394	35640.	3300.	-0.01283	870.1728	5.99E+09	0.00	0.00	0.00
1.2000	1.6932	47520.	3300.	-0.01280	1160.	5.99E+09	0.00	0.00	0.00
1.5000	1.6472	59400.	3300.	-0.01277	1450.	5.99E+09	0.00	0.00	0.00
1.8000	1.6013	71280.	3300.	-0.01273	1740.	5.99E+09	0.00	0.00	0.00
2.1000	1.5555	83160.	3300.	-0.01268	2030.	5.99E+09	0.00	0.00	0.00
2.4000	1.5100	95040.	3300.	-0.01263	2320.	5.99E+09	0.00	0.00	0.00
2.7000	1.4646	106920.	3300.	-0.01257	2611.	5.99E+09	0.00	0.00	0.00
3.0000	1.4195	118800.	3300.	-0.01250	2901.	5.99E+09	0.00	0.00	0.00
3.3000	1.3746	130680.	3300.	-0.01243	3191.	5.99E+09	0.00	0.00	0.00
3.6000	1.3300	142560.	3300.	-0.01234	3481.	5.99E+09	0.00	0.00	0.00
3.9000	1.2857	154440.	3300.	-0.01226	3771.	5.99E+09	0.00	0.00	0.00
4.2000	1.2418	166320.	3300.	-0.01216	4061.	5.99E+09	0.00	0.00	0.00
4.5000	1.1982	178200.	3300.	-0.01206	4351.	5.99E+09	0.00	0.00	0.00
4.8000	1.1550	190080.	3300.	-0.01195	4641.	5.99E+09	0.00	0.00	0.00
5.1000	1.1122	201960.	3300.	-0.01183	4931.	5.99E+09	0.00	0.00	0.00
5.4000	1.0698	213840.	3300.	-0.01170	5221.	5.99E+09	0.00	0.00	0.00
5.7000	1.0279	225720.	3300.	-0.01157	5511.	5.99E+09	0.00	0.00	0.00
6.0000	0.9865	237600.	3300.	-0.01143	5801.	5.99E+09	0.00	0.00	0.00
6.3000	0.9456	249480.	3300.	-0.01128	6091.	5.99E+09	0.00	0.00	0.00
6.6000	0.9052	261360.	3300.	-0.01113	6381.	5.99E+09	0.00	0.00	0.00
6.9000	0.8655	273240.	3300.	-0.01097	6671.	5.99E+09	0.00	0.00	0.00
7.2000	0.8263	285120.	3300.	-0.01080	6961.	5.99E+09	0.00	0.00	0.00
7.5000	0.7877	297000.	3300.	-0.01063	7251.	5.99E+09	0.00	0.00	0.00
7.8000	0.7497	308880.	3300.	-0.01045	7541.	5.99E+09	0.00	0.00	0.00
8.1000	0.7125	320760.	3300.	-0.01026	7832.	5.99E+09	0.00	0.00	0.00
8.4000	0.6759	332640.	3300.	-0.01006	8122.	5.99E+09	0.00	0.00	0.00
8.7000	0.6400	344520.	3300.	-0.00986	8412.	5.99E+09	0.00	0.00	0.00
9.0000	0.6049	356400.	3300.	-0.00965	8702.	5.99E+09	0.00	0.00	0.00
9.3000	0.5706	368280.	3300.	-0.00943	8992.	5.99E+09	0.00	0.00	0.00

9.6000	0.5370	380160.	3300.	-0.00920	9282.	5.99E+09	0.00	0.00	0.00
9.9000	0.5043	392040.	3300.	-0.00897	9572.	5.99E+09	0.00	0.00	0.00
10.2000	0.4724	403920.	3300.	-0.00873	9862.	5.99E+09	0.00	0.00	0.00
10.5000	0.4414	415800.	3300.	-0.00849	10152.	5.99E+09	0.00	0.00	0.00
10.8000	0.4113	427680.	3300.	-0.00823	10442.	5.99E+09	0.00	0.00	0.00
11.1000	0.3821	439560.	3300.	-0.00797	10732.	5.99E+09	0.00	0.00	0.00
11.4000	0.3539	451440.	3300.	-0.00771	11022.	5.99E+09	0.00	0.00	0.00
11.7000	0.3266	463320.	3300.	-0.00743	11312.	5.99E+09	0.00	0.00	0.00
12.0000	0.3004	475200.	3300.	-0.00715	11602.	5.99E+09	0.00	0.00	0.00
12.3000	0.2752	487080.	3300.	-0.00686	11892.	5.99E+09	0.00	0.00	0.00
12.6000	0.2510	498960.	3300.	-0.00656	12182.	5.99E+09	0.00	0.00	0.00
12.9000	0.2279	510840.	3300.	-0.00626	12472.	5.99E+09	0.00	0.00	0.00
13.2000	0.2059	522720.	3300.	-0.00595	12763.	5.99E+09	0.00	0.00	0.00
13.5000	0.1851	534600.	2941.	-0.00563	13053.	5.99E+09	-199.5456	3882.	0.00
13.8000	0.1654	543894.	2209.	-0.00531	13280.	5.99E+09	-206.8277	4503.	0.00
14.1000	0.1468	550507.	1453.	-0.00498	13441.	5.99E+09	-213.2187	5228.	0.00
14.4000	0.1295	554357.	675.8341	-0.00465	13535.	5.99E+09	-218.6860	6079.	0.00
14.7000	0.1134	555373.	-119.5532	-0.00431	13560.	5.99E+09	-223.1958	7088.	0.00
15.0000	0.09844	553497.	-929.3873	-0.00398	13514.	5.99E+09	-226.7121	8291.	0.00
15.3000	0.08470	548682.	-1750.	-0.00365	13396.	5.99E+09	-229.1966	9742.	0.00
15.6000	0.07215	540896.	-2578.	-0.00332	13206.	5.99E+09	-230.6085	11506.	0.00
15.9000	0.06077	530122.	-3408.	-0.00300	12943.	5.99E+09	-230.9032	13678.	0.00
16.2000	0.05054	516356.	-4238.	-0.00269	12607.	5.99E+09	-230.0322	16386.	0.00
16.5000	0.04142	499608.	-5062.	-0.00238	12198.	5.99E+09	-227.9412	19811.	0.00
16.8000	0.03339	479907.	-5877.	-0.00209	11717.	5.99E+09	-224.5693	24216.	0.00
17.1000	0.02639	457294.	-6677.	-0.00181	11165.	5.99E+09	-219.8457	29993.	0.00
17.4000	0.02038	431833.	-7457.	-0.00154	10543.	5.99E+09	-213.6872	37750.	0.00
17.7000	0.01530	403602.	-8213.	-0.00129	9854.	5.99E+09	-205.9917	48460.	0.00
18.0000	0.01110	372702.	-8937.	-0.00106	9100.	5.99E+09	-196.6295	63770.	0.00
18.3000	0.00770	339253.	-9625.	-8.42E-04	8283.	5.99E+09	-185.4265	86649.	0.00
18.6000	0.00504	303401.	-10269.	-6.49E-04	7408.	5.99E+09	-172.1303	122924.	0.00
18.9000	0.00303	265318.	-10860.	-4.78E-04	6478.	5.99E+09	-156.3355	185477.	0.00
19.2000	0.00160	225209.	-11388.	-3.30E-04	5499.	5.99E+09	-137.2749	308585.	0.00
19.5000	6.56E-04	183321.	-11979.	-2.08E-04	4476.	5.99E+09	-191.0572	1049125.	0.00
19.8000	1.06E-04	138957.	-12831.	-1.11E-04	3393.	5.99E+09	-281.9654	9559604.	0.00
20.1000	-1.43E-04	90939.	-12594.	-4.18E-05	2220.	5.99E+09	413.6208	1.04E+07	0.00
20.4000	-1.95E-04	48281.	-10843.	-9.22E-09	1179.	5.99E+09	558.9145	1.03E+07	0.00
20.7000	-1.43E-04	12867.	-8721.	1.84E-05	314.1610	5.99E+09	620.3969	1.56E+07	0.00
21.0000	-6.28E-05	-14507.	-3788.	1.79E-05	354.1893	5.99E+09	2120.	1.22E+08	0.00
21.3000	-1.42E-05	-14407.	1009.	9.18E-06	351.7575	5.99E+09	545.3565	1.39E+08	0.00
21.6000	3.31E-06	-7240.	1733.	2.68E-06	176.7606	5.99E+09	-143.2903	1.56E+08	0.00
21.9000	5.13E-06	-1929.	1032.	-7.53E-08	47.1045	5.99E+09	-246.1792	1.73E+08	0.00
22.2000	2.77E-06	190.6173	339.6283	-5.98E-07	4.6540	5.99E+09	-138.4615	1.80E+08	0.00
22.5000	8.24E-07	516.0489	16.2313	-3.85E-07	12.5997	5.99E+09	-41.2036	1.80E+08	0.00
22.8000	-5.08E-09	307.4825	-57.4782	-1.38E-07	7.5074	5.99E+09	0.2538	1.80E+08	0.00
23.1000	-1.69E-07	102.2059	-41.7878	-1.49E-08	2.4954	5.99E+09	8.4631	1.80E+08	0.00
23.4000	-1.12E-07	6.6105	-16.4370	1.78E-08	0.1614	5.99E+09	5.6207	1.80E+08	0.00
23.7000	-4.13E-08	-16.1405	-2.6053	1.49E-08	0.3941	5.99E+09	2.0636	1.80E+08	0.00
24.0000	-5.03E-09	-12.1476	1.5622	6.42E-09	0.2966	5.99E+09	0.2517	1.80E+08	0.00
24.3000	4.93E-09	-4.8925	1.5713	1.30E-09	0.1195	5.99E+09	-0.2466	1.80E+08	0.00
24.6000	4.32E-09	-0.8340	0.7387	-4.21E-10	0.02036	5.99E+09	-0.2160	1.80E+08	0.00
24.9000	1.90E-09	0.4258	0.1788	-5.44E-10	0.01040	5.99E+09	-0.09509	1.80E+08	0.00

```
0.00
25.2000
          4.05E-10
                       0.4532
                                 -0.02885 -2.80E-10
                                                        0.01107
                                                                  5.99E+09
                                                                              -0.02026
                                                                                        1.80E+08
25.5000
         -1.11E-10
                       0.2180
                                -0.05532
                                          -7.80E-11
                                                        0.00532
                                                                  5.99E+09
                                                                               0.00556
                                                                                        1.80E+08
                                                                                                        0.00
                                                        0.00134
                                                                               0.00780
25.8000
         -1.56E-10
                      0.05491
                                 -0.03127
                                            4.02E-12
                                                                  5.99E+09
                                                                                        1.80E+08
                                                                                                        0.00
26.1000
         -8.22E-11
                     -0.00708
                                 -0.00982
                                            1.84E-11
                                                       1.73E-04
                                                                  5.99E+09
                                                                               0.00411
                                                                                        1.80E+08
                                                                                                        0.00
26.4000
         -2.37E-11
                     -0.01580
                               -2.89E-04
                                            1.15E-11
                                                       3.86E-04
                                                                  5.99E+09
                                                                               0.00118
                                                                                        1.80E+08
                                                                                                        0.00
26.7000
              0.00
                     -0.00916
                                  0.00178
                                            4.02E-12
                                                       2.24E-04
                                                                  5.99E+09
                                                                             -3.36E-05
                                                                                        1.80E+08
                                                                                                        0.00
27.0000
          5.22E-12
                     -0.00296
                                  0.00125
                                                0.00
                                                       7.23E-05
                                                                  5.99E+09
                                                                            -2.61E-04
                                                                                        1.80E+08
                                                                                                        0.00
27.3000
          3.36E-12 -1.40E-04
                                4.81E-04
                                                0.00
                                                       3.42E-06
                                                                  5.99E+09
                                                                            -1.68E-04
                                                                                        1.80E+08
                                                                                                        0.00
27.6000
          1.20E-12
                     5.02E-04
                                7.01E-05
                                                0.00
                                                       1.23E-05
                                                                  5.99E+09
                                                                             -6.01E-05
                                                                                        1.80E+08
                                                                                                        0.00
27,9000
              0.00
                     3.65E-04
                               -4.98E-05
                                                0.00
                                                       8.90E-06
                                                                  5.99E+09
                                                                             -6.48E-06
                                                                                        1.80E+08
                                                                                                        0.00
28.2000
              0.00
                    1.43E-04 -4.75E-05
                                                0.00
                                                       3.50E-06
                                                                  5.99E+09
                                                                             7.77E-06
                                                                                        1.80E+08
                                                                                                        0.00
28.5000
                     2.27E-05 -2.18E-05
                                                       5.53E-07
                                                                  5.99E+09
                                                                             6.51E-06
                                                                                        1.80E+08
                                                                                                        0.00
              0.00
                                                0.00
28.8000
                   -1.36E-05 -5.04E-06
                                                       3.33E-07
                                                                  5.99E+09
                                                                             2.80E-06
                                                                                        1.80E+08
                                                                                                        0.00
              0.00
                                                0.00
29,1000
                   -1.36E-05
                                1.02E-06
                                                       3.33E-07
                                                                  5.99E+09
                                                                             5.68E-07
                                                                                        1.80E+08
                                                                                                        0.00
                                                0.00
29.4000
                   -6.26E-06
                                1.70E-06
                                                0.00
                                                       1.53E-07
                                                                  5.99E+09
                                                                            -1.91E-07
                                                                                        1.80E+08
                                                                                                        0.00
              0.00
29.7000
                    -1.36E-06
                                                       3.31E-08
                                                                                                        0.00
              0.00
                                8.69E-07
                                                0.00
                                                                  5.99E+09
                                                                            -2.73E-07
                                                                                        1.80E+08
30.0000
              0.00
                         0.00
                                     0.00
                                                0.00
                                                           0.00
                                                                  5.99E+09 -2.09E-07
                                                                                        9.00E+07
                                                                                                        0.00
```

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

```
Pile-head deflection = 1.87813295 inches

Computed slope at pile head = -0.01285849 radians

Maximum bending moment = 555373. inch-lbs

Maximum shear force = -12831. lbs

Denth of maximum bending moment = 14 70000000 feet below nile
```

Depth of maximum bending moment = 14.70000000 feet below pile head
Depth of maximum shear force = 19.80000000 feet below pile head
Number of iterations = 22

Number of zero deflection points = 8

Summary of Pile-head Responses for Conventional Analyses

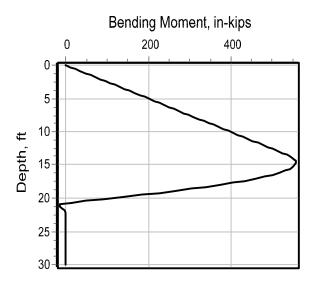
Definitions of Pile-head Loading Conditions:

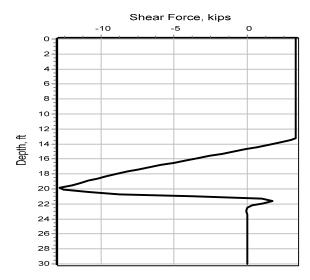
```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians
```

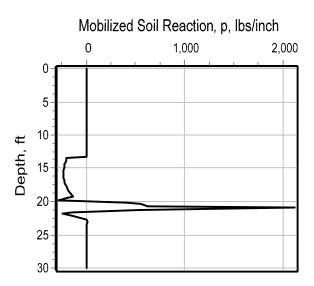
, ,		,,	Pile-head Load 2					
1 V. lb	3300.	M, in-lb	0.00	0.00	1.8781	-0.01286	-12831.	555373.

Maximum pile-head deflection = 1.8781329485 inches
Maximum pile-head rotation = -0.0128584889 radians = -0.736737 deg.

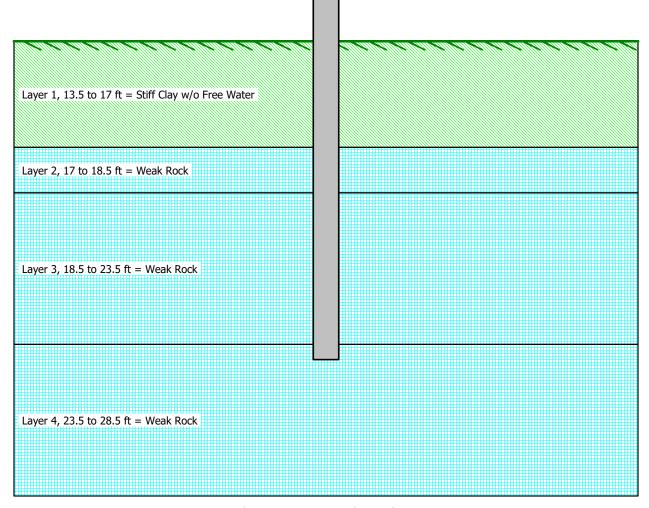
Summary of Warning Messages


The following warning was reported 660 times


**** Warning ****


An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.


RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949

FAX: (614) 823-4990

WWW.RESOURCEINTERATIONAL.COM

JOB	BEL-7-11.04	NO.	
SHEET NO.	1	OF	1
CALCULATED BY	AG	DATE	2/20/2023
CHECKED BY	JPS	DATE	2/20/2023
Wall - Steel p)		

tructural Eler	ment Properti	ies	Section	า Type: I	HP 10x4	2							
E = 29,000	ksi	d = 9	9.7 in		$I_x =$	210	in ⁴	Nom	. Wt., <i>I</i>	$V_{steel} =$	42	lb/ft	
$A_s = 12.4$	in ²	$b_f = 1$	0.1 in		$r_s =$	4.13	in				48.3		
$F_y = 36$	ksi ksi	$t_w = 0.$	415 in		$r_y =$	2.41	in				7.6		
$F_{yr} = 25$	ksi	$t_f = 0.$	420 in		r _t =	2.77	in			<i>S</i> =	43.4	in ³	
heck Shear F	Resistance (A	ASHTO 6.	10.9.2)		$arphi_1$, = 1 .	00						
Chaple V	- 0 V -		10 0 kine < 1	00/9// 1	daa)			12 9 kinc	- 0/1	lina		NV.	
Спеск. <i>v_u</i>	$<\varphi_v V_n$ -		12.0 Kips > 1	.00(64.11	apsi			12.0 KIPS	< 04. ı	кірь	<u> </u>)K	
$V_u =$	12.8 kips	s (Deteri	nined from L	.Pile)									
$V_n = V_{cr}$	$_{r}=\mathit{CV}_{p}$ =	84.1 kip	S										
17 -	OFOR De	_ 0	4.4 1,1										
<i>v_p</i> =	$= 0.58 F_{yw} Dt_W$, = o	4.1 Kips										
C =	1.00												
1	If $D/t_w \le 1.7$	$12 \int_{-E_{V}}^{E_{K}} /F_{V}$	A7	→ C =	: 1.0								
	If $1.12\sqrt{Ek}/_F$		- 140 [I	Ξk /		> C-	1.1	$2_{\underline{}}$					
	1.14 / /F	$T_{yw} > /t_v$	/ ≥ 1.40	F_{yw}		r с-	$\overline{(D/t)}$	(w) V	yw				
I	If $D/t_w > 1.4$	$40 Ek/_E$	-	→ C =	1.57	$\frac{1}{2}$ (EF	$\langle /_{\scriptscriptstyle F} \rangle$						
	/ LW	√ '¹y	N .		$(D/t_w$) <u>^</u> \	1 yw/						
	N a			E1, ,					ſυ,				
	$^{D}/t_{w} =$	23.4	1.1	$2\sqrt{E^{\kappa}/F_{3}}$	= 'w'	71.1		1.40	JEK/	$F_{yw} =$	88.9		
	k = 5	ο (ΔASH	TO 6.10.9.2	\						-			
	n -		10 0.10.5.2	/									
heck Flexura	I Resistance	at Maximı	ım Momen	t (AASH	ΓΟ 6.10). 8)		Ø	· = 1.	00			
1100KT 10XUIU	<u>I Roolotanoo</u>				0.10	<u></u>							
	$< \varphi_f M_n$ -	-	46.3 kip-ft <	1.00(144	9 kip-ft)	-	-	46.3 ki	p-ft < 1	44.9 kip	-ft	OK	
Check: M_u													

LPile for Windows(Beta), Version 2018-10.009

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2018 by Ensoft, Inc. All Rights Reserved

______ This copy of LPile is being used by: Resource International, Inc. Columbus, OH Serial Number of Security Device: 160709429 This copy of LPile is licensed for exclusive use by: Resource International, Inc., Co Use of this program by any entity other than Resource International, Inc., Co is a violation of the software license agreement. Files Used for Analysis _____ Path to file locations: \GEOTECH\PROJECTS\2020\W-20-120 BEL-7-11.04\Analysis\2.17.2023 LPile Analysis\Lpile\ Name of input data file: HP 10x42 B-001-4-22.1p10 Name of output report file: HP 10x42 B-001-4-22.1p10 Name of plot output file: HP 10x42_B-001-4-22.lp10 Name of runtime message file: HP 10x42 B-001-4-22.1p10 Date and Time of Analysis ______

Date: February 20, 2023 Time: 16:02:00

Problem Title

Project Name: BEL-7-11.04

Job Number: W-20-120

Client:

Engineer: AG/JPS

Description: 10 x 42 HP - Boring B-001-3-22

Program Options and Settings

Computational Options:

- Use unfactored loads in computations (conventional analysis)

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1

- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1
Total length of pile = 24.000 ft
Depth of ground surface below top of pile = 13.5000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	10.1000
2	24.000	10.1000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a H strong axis steel pile

Length of section = 24.000000 ft = 10.100000 in = 84100. lbs Pile width Shear capacity of section 84100. lbs

Ground Slope and Pile Batter Angles

Ground Slope Angle 0.000 degrees 0.000 radians

Pile Batter Angle 0.000 degrees

0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

Layer 1 is stiff clay without free water

```
Distance from top of pile to top of layer
                                                        13.500000 ft
Distance from top of pile to bottom of layer
                                                        17.000000 ft
Effective unit weight at top of layer
                                                   = 125.000000 pcf
Effective unit weight at bottom of layer
                                                      125.000000 pcf
Undrained cohesion at top of layer
                                                            1875. psf
Undrained cohesion at bottom of laver
                                                            1875. psf
Epsilon-50 at top of layer
                                                         0.007000
Epsilon-50 at bottom of layer
                                                         0.007000
```

Layer 2 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 17.000000 ft Distance from top of pile to bottom of layer 18.500000 ft Effective unit weight at top of layer 135.000000 pcf Effective unit weight at bottom of layer 135.000000 pcf Uniaxial compressive strength at top of layer 100.000000 psi Uniaxial compressive strength at bottom of layer 100.000000 psi Initial modulus of rock at top of layer 18000. psi Initial modulus of rock at bottom of layer 18000. psi RQD of rock at top of layer 0.0000 % RQD of rock at bottom of layer 0.0000 % k rm of rock at top of layer 0.0005000 k rm of rock at bottom of layer 0.0005000

Layer 3 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 18.500000 ft Distance from top of pile to bottom of layer 23.500000 ft Effective unit weight at top of laver 140.000000 pcf Effective unit weight at bottom of layer 140.000000 pcf Uniaxial compressive strength at top of layer 3061. psi Uniaxial compressive strength at bottom of layer 3061. psi 300000. psi Initial modulus of rock at top of layer Initial modulus of rock at bottom of laver 300000. psi ROD of rock at top of layer 40.000000 % ROD of rock at bottom of layer 40.000000 % k rm of rock at top of layer 0.0000500 k rm of rock at bottom of laver 0.0000500

Layer 4 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = 23.500000 ft

Distance from top of pile to bottom of layer = 28.500000 ft Effective unit weight at top of layer = 140.000000 pcf Effective unit weight at bottom of laver = 140.000000 pcf Uniaxial compressive strength at top of layer = 3061. psi Uniaxial compressive strength at bottom of layer = 3061. psi Initial modulus of rock at top of layer 300000. psi Initial modulus of rock at bottom of layer 300000. psi RQD of rock at top of layer = 83.000000 % RQD of rock at bottom of layer = 83.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer 0.0000500

(Depth of the lowest soil layer extends 4.500 ft below the pile tip)

Summary of Input Soil Properties

Layer Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Undrained Cohesion psf	Uniaxial qu psi	RQD %	E50 or krm	Rock Mass Modulus psi
1	Stiff Clay	13.5000	125.0000	1875.			0.00700	
	w/o Free Water	17.0000	125.0000	1875.			0.00700	
2	Weak	17.0000	135.0000		100.0000	0.00	5.00E-04	18000.
	Rock	18.5000	135.0000		100.0000	0.00	5.00E-04	18000.
3	Weak	18.5000	140.0000		3061.	40.0000	5.00E-05	300000.
	Rock	23.5000	140.0000		3061.	40.0000	5.00E-05	300000.
4	Weak	23.5000	140.0000		3061.	83.0000	5.00E-05	300000.
	Rock	28.5000	140.0000		3061.	83.0000	5.00F-05	300000.

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load	Condition	Condition	Axial Thrust	Compute Top y
No.	Type	1	2	Force, 1bs	vs. Pile Length

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Steel H Strong Axis:

24.000000 ft Length of Section Flange Width 10.100000 in Section Depth 9.700000 in Flange Thickness 0.420000 in Web Thickness 0.415000 in Yield Stress of Pipe 36.000000 ksi Elastic Modulus 29000. ksi Cross-sectional Area 12.160900 sq. in. Moment of Inertia 206.834773 in^4 Elastic Bending Stiffness 5998208. kip-in^2 Plastic Modulus, Z 47.510093in^3 Plastic Moment Capacity = Fy Z 1710.in-kip

Axial Structural Capacities:

Nom. Axial Structural Capacity = Fy As = 437.792 kips Nominal Axial Tensile Capacity = -437.792 kips

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number Axial Thrust Force

kips -----1 0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending	Bending	Bending	Depth to	Max Total	Run
Curvature	Moment	Stiffness	N Axis	Stress	Msg
rad/in.	in-kip	kip-in2	in	ksi	
0.00000522	31.3039815	5992769.	4.8500000	0.7273560	
0.00001045	62.6079629	5992769.	4.8500000	1.4547119	
0.00001567	93.9119444	5992769.	4.8500000	2.1820679	
0.00002089	125.2159259	5992769.	4.8500000	2.9094238	
0.00002612	156.5199073	5992769.	4.8500000	3.6367798	
0.00003134	187.8238888	5992769.	4.8500000	4.3641357	
0.00003657	219.1278703	5992769.	4.8500000	5.0914917	
0.00004179	250.4318517	5992769.	4.8500000	5.8188476	
0.00004701	281.7358332	5992769.	4.8500000	6.5462036	
0.00005224	313.0398146	5992769.	4.8500000	7.2735596	
0.00005746	344.3437961	5992769.	4.8500000	8.0009155	
0.00006268	375.6477776	5992769.	4.8500000	8.7282715	
0.00006791	406.9517590	5992769.	4.8500000	9.4556274	
0.00007313	438.2557405	5992769.	4.8500000	10.1829834	
0.00007835	469.5597220	5992769.	4.8500000	10.9103393	
0.00008358	500.8637034	5992769.	4.8500000	11.6376953	
0.00008880	532.1676849	5992769.	4.8500000	12.3650512	
0.00009403	563.4716664	5992769.	4.8500000	13.0924072	
0.00009925	594.7756478	5992769.	4.8500000	13.8197632	
0.0001045	626.0796293	5992769.	4.8500000	14.5471191	
0.0001097	657.3836108	5992769.	4.8500000	15.2744751	
0.0001149	688.6875922	5992769.	4.8500000	16.0018310	
0.0001201	719.9915737	5992769.	4.8500000	16.7291870	
0.0001254	751.2955551	5992769.	4.8500000	17.4565429	
0.0001306	782.5995366	5992769.	4.8500000	18.1838989	
0.0001358	813.9035181	5992769.	4.8500000	18.9112548	
0.0001410	845.2074995	5992769.	4.8500000	19.6386108	
0.0001463	876.5114810	5992769.	4.8500000	20.3659668	
0.0001515	907.8154625	5992769.	4.8500000	21.0933227	
0.0001567	939.1194439	5992769.	4.8500000	21.8206787	
0.0001619	970.4234254	5992769.	4.8500000	22.5480346	
0.0001672	1002.	5992769.	4.8500000	23.2753906	
0.0001724	1033.	5992769.	4.8500000	24.0027465	
0.0001776	1064.	5992769.	4.8500000	24.7301025	
0.0001828	1096.	5992769.	4.8500000	25.4574585	
0.0001881	1127.	5992769.	4.8500000	26.1848144	
0.0001933	1158.	5992769.	4.8500000	26.9121704	
		•			

0.0001985	1190.	5992769.	4.8500000	27.6395263	
0.0002037	1221.	5992769.	4.8500000	28.3668823	
0.0002142	1283.	5992769.	4.8500000	29.8215942	
0.0002246	1346.	5992769.	4.8500000	31.2763061	
0.0002351	1409.	5992769.	4.8500000	32.7310180	
0.0002455	1471.	5992769.	4.8500000	34.1857299	
0.0002560	1534.	5992769.	4.8500000	35.6404418	
0.0002664	1583.	5942130.	4.8500000	36.0000000	Υ
0.0002769	1608.	5807975.	4.8500000	36.0000000	Υ
0.0002873	1617.	5627120.	4.8500000	36.0000000	Υ
0.0002977	1623.	5451108.	4.8500000	36.0000000	Υ
0.0003082	1629.	5285148.	4.8500000	36.0000000	Υ
0.0003186	1634.	5128131.	4.8500000	36.0000000	Υ
0.0003291	1639.	4979678.	4.8500000	36.0000000	Υ
0.0003395	1643.	4839137.	4.8500000	36.0000000	Υ
0.0003500	1647.	4705909.	4.8500000	36.0000000	Υ
0.0003604	1651.	4579458.	4.8500000	36.0000000	Υ
0.0003709	1654.	4459307.	4.8500000	36.0000000	Υ
0.0003813	1657.	4345022.	4.8500000	36.0000000	Υ
0.0003918	1660.	4236215.	4.8500000	36.0000000	Υ
0.0004022	1662.	4132530.	4.8500000	36.0000000	Υ
0.0004127	1665.	4033644.	4.8500000	36.0000000	Υ
0.0004231	1667.	3939263.	4.8500000	36.0000000	Υ
0.0004336	1669.	3849104.	4.8500000	36.0000000	Υ
0.0004440	1671.	3762749.	4.8500000	36.0000000	Υ
0.0004545	1672.	3680141.	4.8500000	36.0000000	Υ
0.0004649	1674.	3601052.	4.8500000	36.0000000	Υ
0.0004753	1676.	3525092.	4.8500000	36.0000000	Υ
0.0004858	1677.	3452291.	4.8500000	36.0000000	Υ
0.0004962	1678.	3382319.	4.8500000	36.0000000	Υ
0.0005067	1680.	3315098.	4.8500000	36.0000000	Υ
0.0005171	1681.	3250437.	4.8500000	36.0000000	Υ
0.0005276	1682.	3188206.	4.8500000	36.0000000	Υ
0.0005380	1683.	3128263.	4.8500000	36.0000000	Υ
0.0005485	1684.	3070519.	4.8500000	36.0000000	Υ
0.0005589	1685.	3014790.	4.8500000	36.0000000	Υ
0.0005694	1686.	2961096.	4.8500000	36.0000000	Υ
0.0005798	1687.	2909147.	4.8500000	36.0000000	Υ
0.0005903	1688.	2859037.	4.8500000	36.0000000	Υ
0.0006007	1688.	2810577.	4.8500000	36.0000000	Υ
0.0006112	1689.	2763692.	4.8500000	36.0000000	Υ
0.0006216	1690.	2718382.	4.8500000	36.0000000	Υ
0.0006634	1692.	2550781.	4.8500000	36.0000000	Υ
0.0007052	1694.	2402455.	4.8500000	36.0000000	Υ
0.0007470	1696.	2270298.	4.8500000	36.0000000	Υ
0.0007888	1697.	2151822.	4.8500000	36.0000000	Υ
0.0008306	1699.	2045031.	4.8500000	36.0000000	Υ
0.0008723	1700.	1948248.	4.8500000	36.0000000	Υ
0.0009141	1700.	1860154.	4.8500000	36.0000000	Υ
0.0009559	1701.	1779680.	4.8500000	36.0000000	Υ
0.0009977	1702.	1705811.	4.8500000	36.0000000	Υ
0.0010395	1703.	1637830.	4.8500000	36.0000000	Υ

0.0010813	1703.	1575020.	4.8500000	36.0000000	Υ
0.0011231	1704.	1516858.	4.8500000	36.0000000	Υ
0.0011649	1704.	1462791.	4.8500000	36.0000000	Υ
0.0012067	1704.	1412468.	4.8500000	36.0000000	Υ
0.0012484	1705.	1365457.	4.8500000	36.0000000	Υ
0.0012902	1705.	1321468.	4.8500000	36.0000000	Υ

Summary of Results for Nominal (Unfactored) Moment Capacity for Section 1

Load	Axial	Nominal Moment
No.	Thrust kips	Capacity in-kips
1	0.0000000	1705.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	1bs
1	13.5000	0.00	N.A.	No	0.00	23316.
2	17.0000	3.5000	No	Yes	N.A.	N.A.
3	18.5000	5.0000	No	Yes	N.A.	N.A.
4	23.5000	10.0000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays,

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 3300.0 lbs
Applied moment at pile head = 0.0 in-lbs
Axial thrust load on pile head = 0.0 lbs

Depth X feet	Deflect. y inches	Bending Moment in-lbs	Shear Force lbs	Slope S radians	Total Stress psi*	Bending Stiffness in-lb^2	Soil Res. p lb/inch	Soil Spr. Es*h lb/inch	Distrib. Lat. Load lb/inch
0.00	1.7777	-4.17E-06	3300.	-0.01245	1.02E-07	5.99E+09	0.00	0.00	0.00
0.2400	1.7418	9504.	3300.	-0.01245	232.0461	5.99E+09	0.00	0.00	0.00
0.4800	1.7060	19008.	3300.	-0.01244	464.0922	5.99E+09	0.00	0.00	0.00
0.7200	1.6702	28512.	3300.	-0.01243	696.1383	5.99E+09	0.00	0.00	0.00
0.9600	1.6344	38016.	3300.	-0.01241	928.1844	5.99E+09	0.00	0.00	0.00
1.2000	1.5987	47520.	3300.	-0.01239	1160.	5.99E+09	0.00	0.00	0.00
1.4400	1.5630	57024.	3300.	-0.01237	1392.	5.99E+09	0.00	0.00	0.00
1.6800	1.5275	66528.	3300.	-0.01234	1624.	5.99E+09	0.00	0.00	0.00
1.9200	1.4920	76032.	3300.	-0.01230	1856.	5.99E+09	0.00	0.00	0.00
2.1600	1.4566	85536.	3300.	-0.01226	2088.	5.99E+09	0.00	0.00	0.00
2.4000	1.4213	95040.	3300.	-0.01222	2320.	5.99E+09	0.00	0.00	0.00
2.6400	1.3862	104544.	3300.	-0.01217	2553.	5.99E+09	0.00	0.00	0.00
2.8800	1.3512	114048.	3300.	-0.01212	2785.	5.99E+09	0.00	0.00	0.00
3.1200	1.3164	123552.	3300.	-0.01206	3017.	5.99E+09	0.00	0.00	0.00
3.3600	1.2818	133056.	3300.	-0.01200	3249.	5.99E+09	0.00	0.00	0.00
3.6000	1.2473	142560.	3300.	-0.01193	3481.	5.99E+09	0.00	0.00	0.00
3.8400	1.2130	152064.	3300.	-0.01186	3713.	5.99E+09	0.00	0.00	0.00
4.0800	1.1789	161568.	3300.	-0.01179	3945.	5.99E+09	0.00	0.00	0.00
4.3200	1.1451	171072.	3300.	-0.01171	4177.	5.99E+09	0.00	0.00	0.00
4.5600	1.1115	180576.	3300.	-0.01162	4409.	5.99E+09	0.00	0.00	0.00
4.8000	1.0782	190080.	3300.	-0.01153	4641.	5.99E+09	0.00	0.00	0.00
5.0400	1.0451	199584.	3300.	-0.01144	4873.	5.99E+09	0.00	0.00	0.00
5.2800	1.0123	209088.	3300.	-0.01134	5105.	5.99E+09	0.00	0.00	0.00
5.5200	0.9797	218592.	3300.	-0.01124	5337.	5.99E+09	0.00	0.00	0.00
5.7600	0.9475	228096.	3300.	-0.01113	5569.	5.99E+09	0.00	0.00	0.00
6.0000	0.9156	237600.	3300.	-0.01102	5801.	5.99E+09	0.00	0.00	0.00
6.2400	0.8840	247104.	3300.	-0.01090	6033.	5.99E+09	0.00	0.00	0.00
6.4800	0.8528	256608.	3300.	-0.01078	6265.	5.99E+09	0.00	0.00	0.00
6.7200	0.8219	266112.	3300.	-0.01066	6497.	5.99E+09	0.00	0.00	0.00
6.9600	0.7914	275616.	3300.	-0.01053	6729.	5.99E+09	0.00	0.00	0.00
7.2000	0.7613	285120.	3300.	-0.01039	6961.	5.99E+09	0.00	0.00	0.00
7.4400	0.7315	294624.	3300.	-0.01025	7193.	5.99E+09	0.00	0.00	0.00

7.6800	0.7022	304128.	3300.	-0.01011	7425.	5.99E+09	0.00	0.00	0.00
7.9200	0.6733	313632.	3300.	-0.00996	7658.	5.99E+09	0.00	0.00	0.00
8.1600	0.6448	323136.	3300.	-0.00981	7890.	5.99E+09	0.00	0.00	0.00
8.4000	0.6168	332640.	3300.	-0.00965	8122.	5.99E+09	0.00	0.00	0.00
8.6400	0.5893	342144.	3300.	-0.00949	8354.	5.99E+09	0.00	0.00	0.00
8.8800	0.5622	351648.	3300.	-0.00932	8586.	5.99E+09	0.00	0.00	0.00
9.1200	0.5356	361152.	3300.	-0.00915	8818.	5.99E+09	0.00	0.00	0.00
9.3600	0.5095	370656.	3300.	-0.00897	9050.	5.99E+09	0.00	0.00	0.00
9.6000	0.4839	380160.	3300.	-0.00879	9282.	5.99E+09	0.00	0.00	0.00
9.8400	0.4588	389664.	3300.	-0.00861	9514.	5.99E+09	0.00	0.00	0.00
10.0800	0.4343	399168.	3300.	-0.00842	9746.	5.99E+09	0.00	0.00	0.00
10.3200	0.4103	408672.	3300.	-0.00823	9978.	5.99E+09	0.00	0.00	0.00
10.5600	0.3869	418176.	3300.	-0.00803	10210.	5.99E+09	0.00	0.00	0.00
10.8000	0.3641	427680.	3300.	-0.00782	10442.	5.99E+09	0.00	0.00	0.00
11.0400	0.3418	437184.	3300.	-0.00762	10674.	5.99E+09	0.00	0.00	0.00
11.2800	0.3202	446688.	3300.	-0.00740	10906.	5.99E+09	0.00	0.00	0.00
11.5200	0.2992	456192.	3300.	-0.00719	11138.	5.99E+09	0.00	0.00	0.00
11.7600	0.2788	465696.	3300.	-0.00697	11370.	5.99E+09	0.00	0.00	0.00
12.0000	0.2591	475200.	3300.	-0.00674	11602.	5.99E+09	0.00	0.00	0.00
12.2400	0.2400	484704.	3300.	-0.00651	11834.	5.99E+09	0.00	0.00	0.00
12.4800	0.2216	494208.	3300.	-0.00627	12066.	5.99E+09	0.00	0.00	0.00
12.7200	0.2039	503712.	3300.	-0.00603	12298.	5.99E+09	0.00	0.00	0.00
12.9600	0.1868	513216.	3300.	-0.00579	12530.	5.99E+09	0.00	0.00	0.00
13.2000	0.1705	522720.	3300.	-0.00554	12763.	5.99E+09	0.00	0.00	0.00
13.4400	0.1549	532224.	3300.	-0.00529	12995.	5.99E+09	0.00	0.00	0.00
13.6800	0.1401	541728.	3021.	-0.00503	13227.	5.99E+09	-193.5002	3979.	0.00
13.9200	0.1260	549627.	2458.	-0.00477	13419.	5.99E+09	-198.0128	4527.	0.00
14.1600	0.1126	555884.	1882.	-0.00450	13572.	5.99E+09	-201.8612	5162.	0.00
14.4000	0.1000	560466.	1296.	-0.00423	13684.	5.99E+09	-205.0165	5902.	0.00
14.6400	0.08823	563348.	701.9108	-0.00396	13754.	5.99E+09	-207.4473	6771.	0.00
14.8800	0.07721	564509.	102.0557	-0.00369	13783.	5.99E+09	-209.1188	7800.	0.00
15.1200	0.06697	563936.	-501.4640	-0.00342	13769.	5.99E+09	-209.9921	9030.	0.00
15.3600	0.05751	561621.	-1106.	-0.00315	13712.	5.99E+09	-210.0238	10517.	0.00
15.6000	0.04883	557563.	-1710.	-0.00288	13613.	5.99E+09	-209.1644	12336.	0.00
15.8400	0.04092	551771.	-2310.	-0.00261	13472.	5.99E+09	-207.3569	14594.	0.00
16.0800	0.03377	544260.	-2903.	-0.00235	13288.	5.99E+09	-204.5355	17441.	0.00
16.3200	0.02738	535051.	-3486.	-0.00209	13064.	5.99E+09	-200.6227	21103.	0.00
16.5600	0.02173	524179.	-4057.	-0.00184	12798.	5.99E+09	-195.5270	25918.	0.00
16.8000	0.01680	511684.	-4611.	-0.00159	12493.	5.99E+09	-189.1398	32425.	0.00
17.0400	0.01258	497621.	-5857.	-0.00135	12150.	5.99E+09	-676.6612	154910.	0.00
17.2800	0.00905	477946.	-8065.	-0.00111	11669.	5.99E+09	-856.4265	272557.	0.00
17.5200	0.00618	451167.	-10725.	-8.88E-04	11016.	5.99E+09	-990.6019	461607.	0.00
17.7600	0.00394	416171.	-13698.	-6.79E-04	10161.	5.99E+09	-1074.	786146.	0.00
18.0000	0.00227	372265.	-16831.	-4.90E-04	9089.	5.99E+09	-1101.	1398593.	0.00
18.2400	0.00111	319226.	-19942.	-3.24E-04	7794.	5.99E+09	-1060.	2740721.	0.00
18.4800	4.02E-04	257396.	-22806.	-1.85E-04	6284.	5.99E+09	-928.7535	6650286.	0.00
18.7200	4.69E-05	187863.	-31690.	-7.82E-05	4587.	5.99E+09	-5241.	3.22E+08	0.00
18.9600	-4.84E-05	74860.	-30655.	-1.51E-05	1828.	5.99E+09	5960.	3.55E+08	0.00
19.2000	-4.01E-05	11288.	-14309.	5.60E-06	275.6005	5.99E+09	5392.	3.88E+08	0.00
19.4400	-1.61E-05	-7558.	-3152.	6.50E-06	184.5290	5.99E+09	2355.	4.20E+08	0.00
19.6800	-2.66E-06	-6869.	812.5144	3.03E-06	167.7225	5.99E+09	398.2662	4.32E+08	0.00
19.9200	1.32E-06	-2878.	1102.	6.88E-07	70.2619	5.99E+09	-197.5633	4.32E+08	0.00

20.1600	1.31E-06	-524.6791	534.8757	-1.30E-07	12.8104	5.99E+09	-195.9443	4.32E+08	0.00
20.4000	5.69E-07	203.1426	129.7448	-2.07E-07	4.9599	5.99E+09	-85.3966	4.32E+08	0.00
20.6400	1.13E-07	222.6509	-17.7399	-1.05E-07	5.4362	5.99E+09	-17.0234	4.32E+08	0.00
20.8800	-3.42E-08	100.9606	-34.8731	-2.70E-08	2.4650	5.99E+09	5.1253	4.32E+08	0.00
21.1200	-4.21E-08	21.7816	-18.4013	2.48E-09	0.5318	5.99E+09	6.3135	4.32E+08	0.00
21.3600	-1.99E-08	-5.0309	-5.0193	6.51E-09	0.1228	5.99E+09	2.9796	4.32E+08	0.00
21.6000	-4.60E-09	-7.1297	0.2651	3.59E-09	0.1741	5.99E+09	0.6902	4.32E+08	0.00
21.8400	7.94E-10	-3.5039	1.0875	1.03E-09	0.08555	5.99E+09	-0.1191	4.32E+08	0.00
22.0800	1.34E-09	-0.8658	0.6268	-1.87E-11	0.02114	5.99E+09	-0.2009	4.32E+08	0.00
22.3200	6.86E-10	0.1063	0.1894	-2.01E-10	0.00260	5.99E+09	-0.1029	4.32E+08	0.00
22.5600	1.80E-10	0.2252	0.00243	-1.22E-10	0.00550	5.99E+09	-0.02698	4.32E+08	0.00
22.8000	-1.44E-11	0.1203	-0.03332	-3.85E-11	0.00294	5.99E+09	0.00216	4.32E+08	0.00
23.0400	-4.21E-11	0.03333	-0.02111	-1.61E-12	8.14E-04	5.99E+09	0.00632	4.32E+08	0.00
23.2800	-2.37E-11	-0.00129	-0.00690	6.08E-12	3.15E-05	5.99E+09	0.00355	4.32E+08	0.00
23.5200	-7.06E-12	-0.00644	-2.63E-04	4.23E-12	1.57E-04	5.99E+09	0.00106	4.32E+08	0.00
23.7600	0.00	-0.00280	0.00112	2.01E-12	6.85E-05	5.99E+09	-9.99E-05	4.32E+08	0.00
24.0000	4.51E-12	0.00	0.00	1.33E-12	0.00	5.99E+09	-6.76E-04	2.16E+08	0.00

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

```
Pile-head deflection = 1.77767856 inches

Computed slope at pile head = -0.01244821 radians

Maximum bending moment = 564509. inch-lbs

Maximum shear force = -31690. lbs

Depth of maximum bending moment = 14.88000000 feet below pile head

Depth of maximum shear force = 18.72000000 feet below pile head

Number of iterations = 17
```

Number of zero deflection points = 6

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

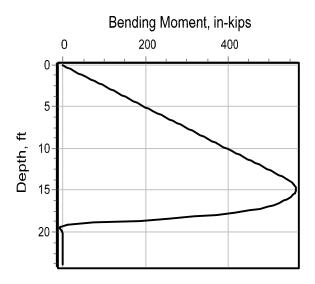
```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians
```

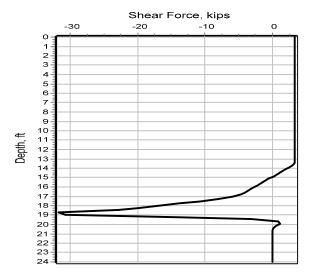
, ,		<i>,</i> ,	Pile-head Load 2	U				
1 V, lb	3300.	M, in-lb	0.00	0.00	1.7777	-0.01245	-31690.	564509.

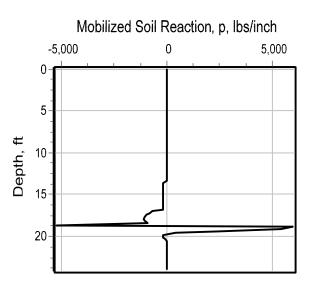
Maximum pile-head deflection = 1.7776785582 inches
Maximum pile-head rotation = -0.0124482103 radians = -0.713230 deg.

Summary of Warning Messages




The following warning was reported 391 times


**** Warning ****


An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949

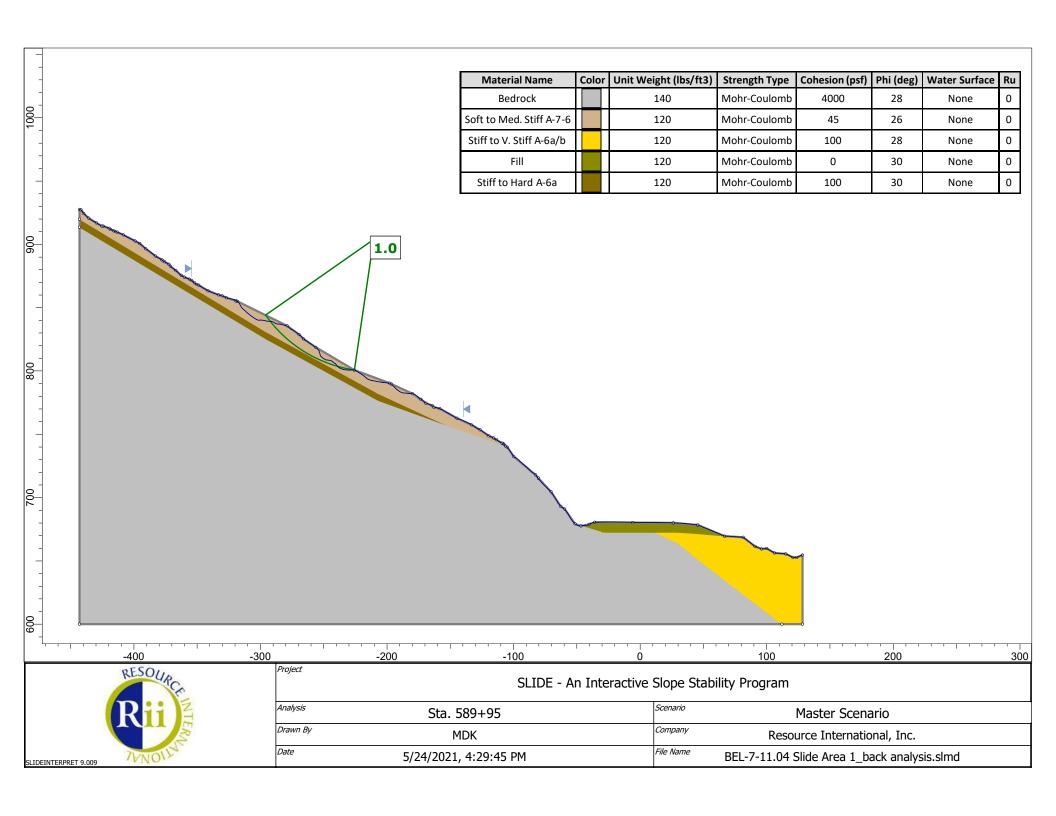
FAX: (614) 823-4990

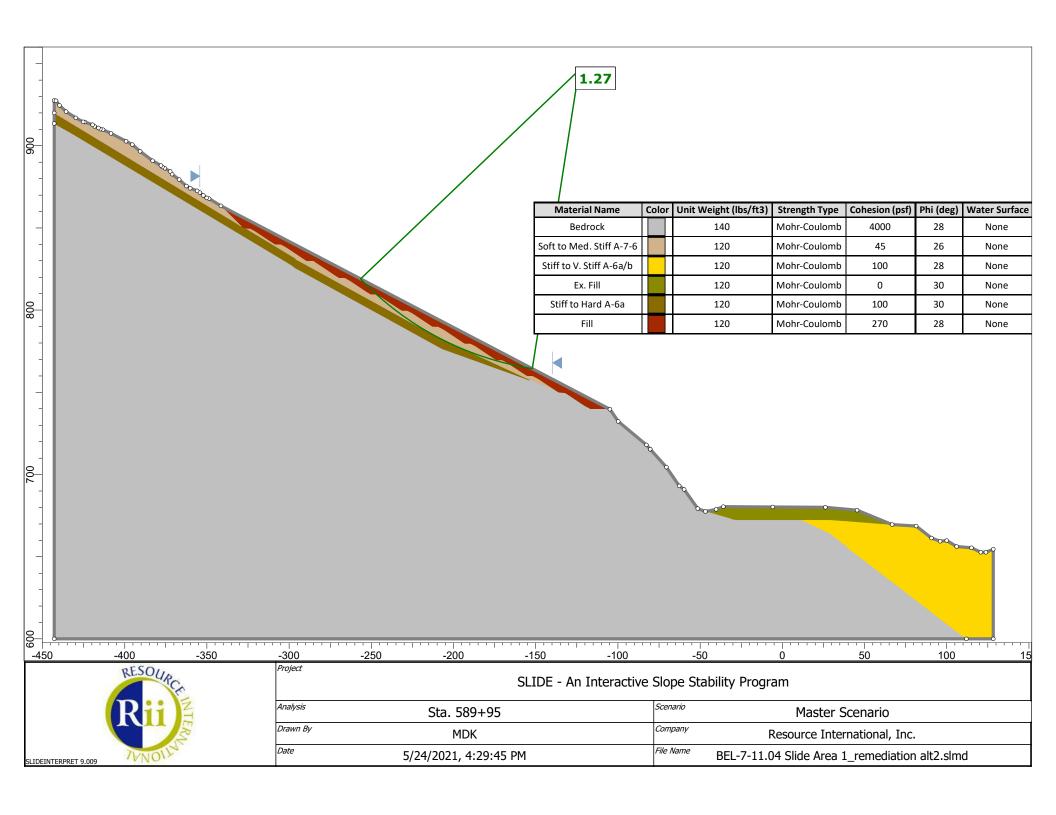
WWW.RESOURCEINTERATIONAL.COM

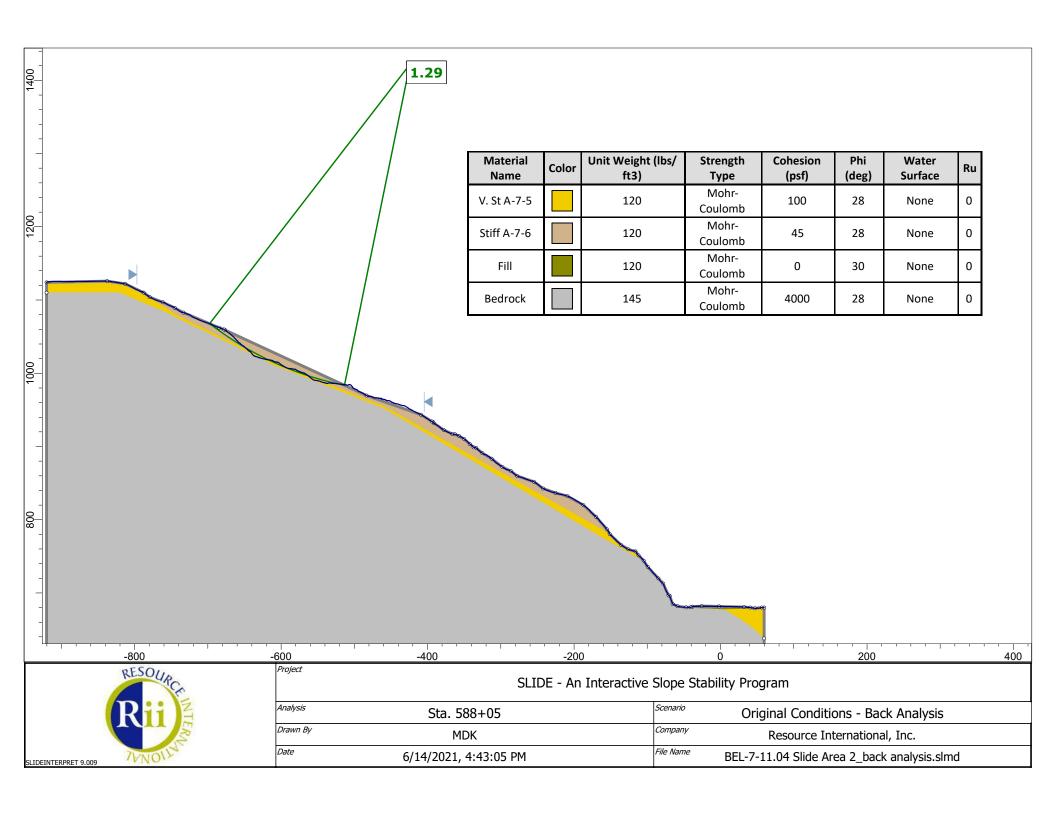
 JOB
 BEL-7-11.04
 NO.

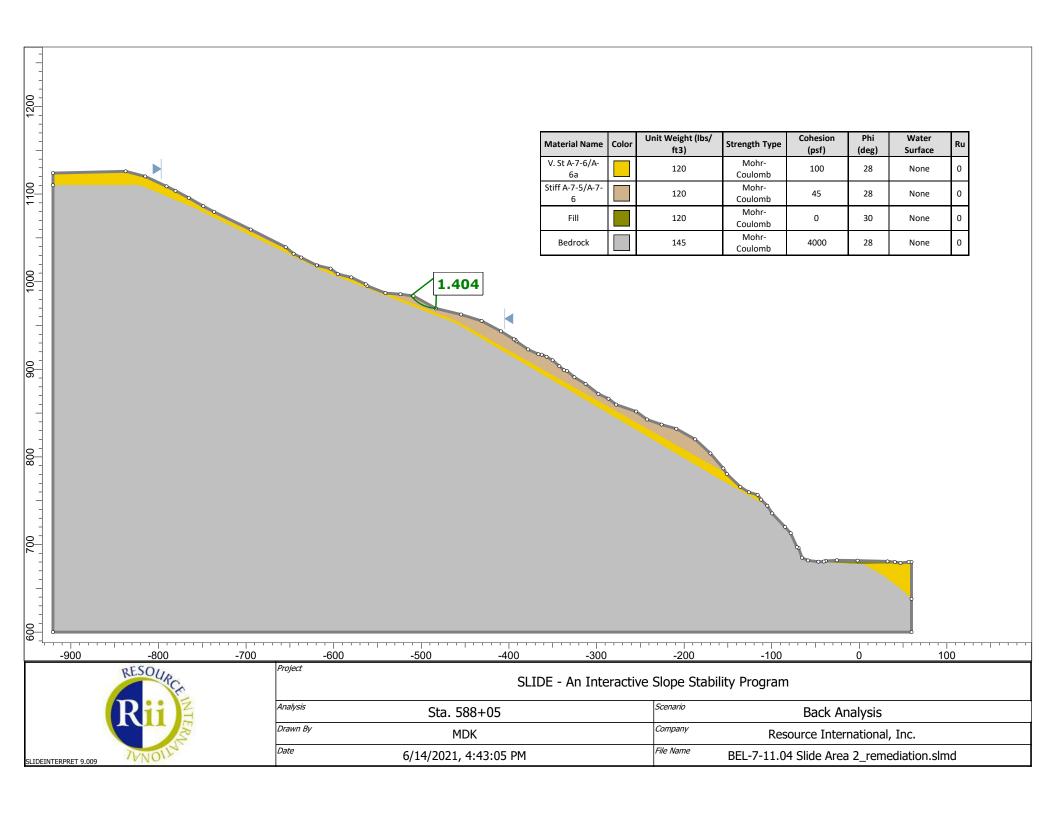
 SHEET NO.
 1
 OF
 1

 CALCULATED BY
 AG
 DATE
 2/20/2023

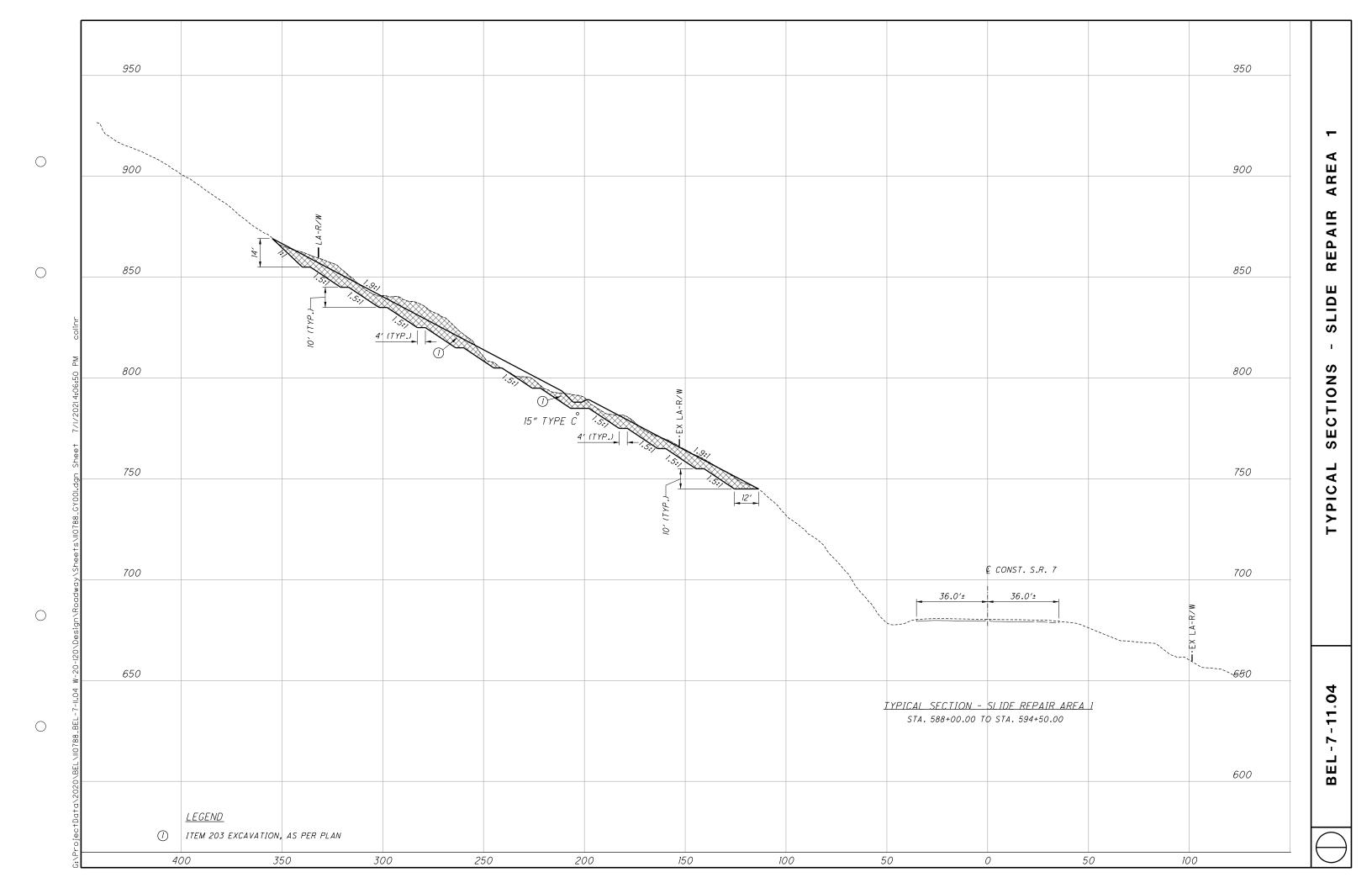

 CHECKED BY
 JPS
 DATE
 2/20/2023


 Wall - Steel post with fence (B-001-4-22)


	ural Ele	ment Pr	opertie	<u>s</u>		Section Type:	HP 10:	x42							
E =	29,000	ksi		d =	9.7	in in in	$I_x =$	210	in ⁴	No	m. Wt.	$W_{steel} =$	42	lb/ft	
4 _s =	12.4	in ²		$b_f =$	10.1	in	$r_s =$	4.13	in			$Z_x =$	48.3	in ³	
7 _y =	36	ksi		t w =	0.415	in	$r_y =$	2.41	in				7.6		
$r_{yr} =$	25	ksi		$t_f =$	0.420	in	$r_t =$	2.77	in			<i>S</i> =	43.4	in ³	
heck	Shear	Resistar	nce (AA	ASHTO	<u>) 6.10.9</u>	.2)		$\varphi_{v} = 1$.00						
Ch	eck: V_i	$_{1}<\varphi _{v}V_{n}$	-		31.7	kips < 1.00(84.	1 kips)	-	-	31.7 kip	s < 84	.1 kips	(OK	
	<i>V</i> _u =	31.7	kips	(De	etermine	d from LPile)									
	$V_n = V_0$	$c_r = CV_p$	=	84.1	kips										
	V_p	= 0.58 <i>F</i> ₃	_{vw} Dt _W	=	84.1	kips									
	C =	1.00	0												
		If $D_{/t_{ m W}}$, ≤ 1.1 ⁷	$2\sqrt{Ek}$	$/_{F_{yw}}$	→ C	= 1.0								
		lf 1.12	$\sqrt{E^k}/_{F_y}$	< [$^{0}/t_{w} \leq$	$1.40\sqrt{Ek/_{F_{yw}}}$		→ c	$\equiv \frac{1.1}{(D/$	$\frac{12}{t_w} \sqrt{Ek}$	$I_{F_{yw}}$				
		If $D/t_{ m w}$	> 1.4	$0\sqrt{Ek}$	$/F_{yw}$	→ <i>C</i>	$=\frac{1.5}{(D/t)}$	$\left(\frac{D}{W}\right)^2$	$K/_{F_{yw}}$						
		D/t	_ = w	23.4		$1.12\sqrt{Ek}$	$F_{yw} =$	71.1		1.4	$0\sqrt{Ek}$	- - - - - - - - - - - - - - - - - - -	= 88.9		
		k	; = 5.() (A <i>A</i>	ASHTO 6	3.10.9.2)									
			1				што о	10.63				1 00			
neck	riexur	ai Kesisi	tance a	it iviax	irnum I	Noment (AAS	пт <u>О 6.'</u>	<u>10.8)</u>		($o_f =$	1.00			
	I. N/	$< \varphi_f M_1$. ! =		47 N	kip-ft < 1.00(14)	4 9 kin-	ft\ -		47 0	kin_ft <	144.9 k	in-ft	OK	


Appendix VIII

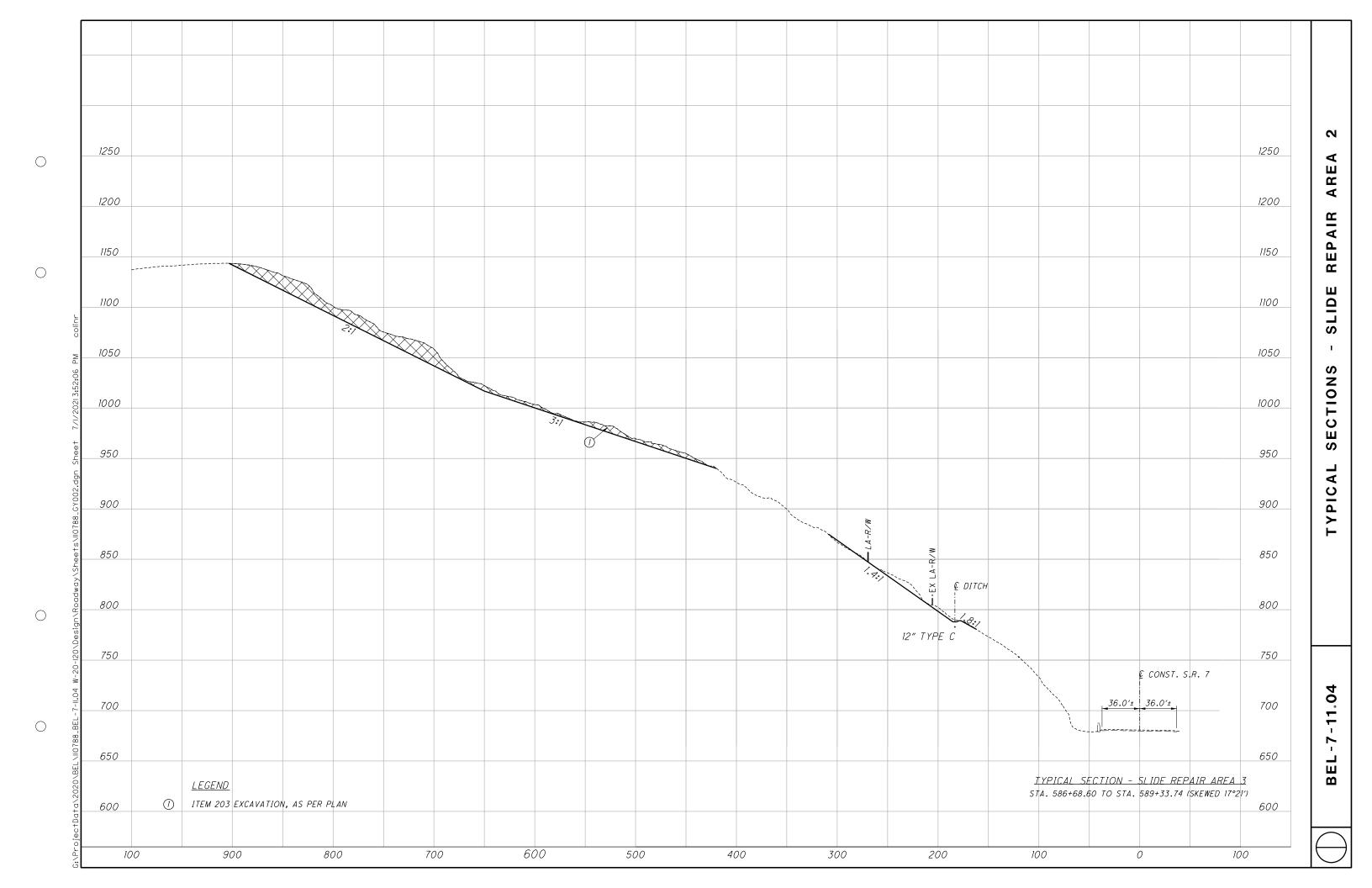
Slope Stability Analysis Outputs

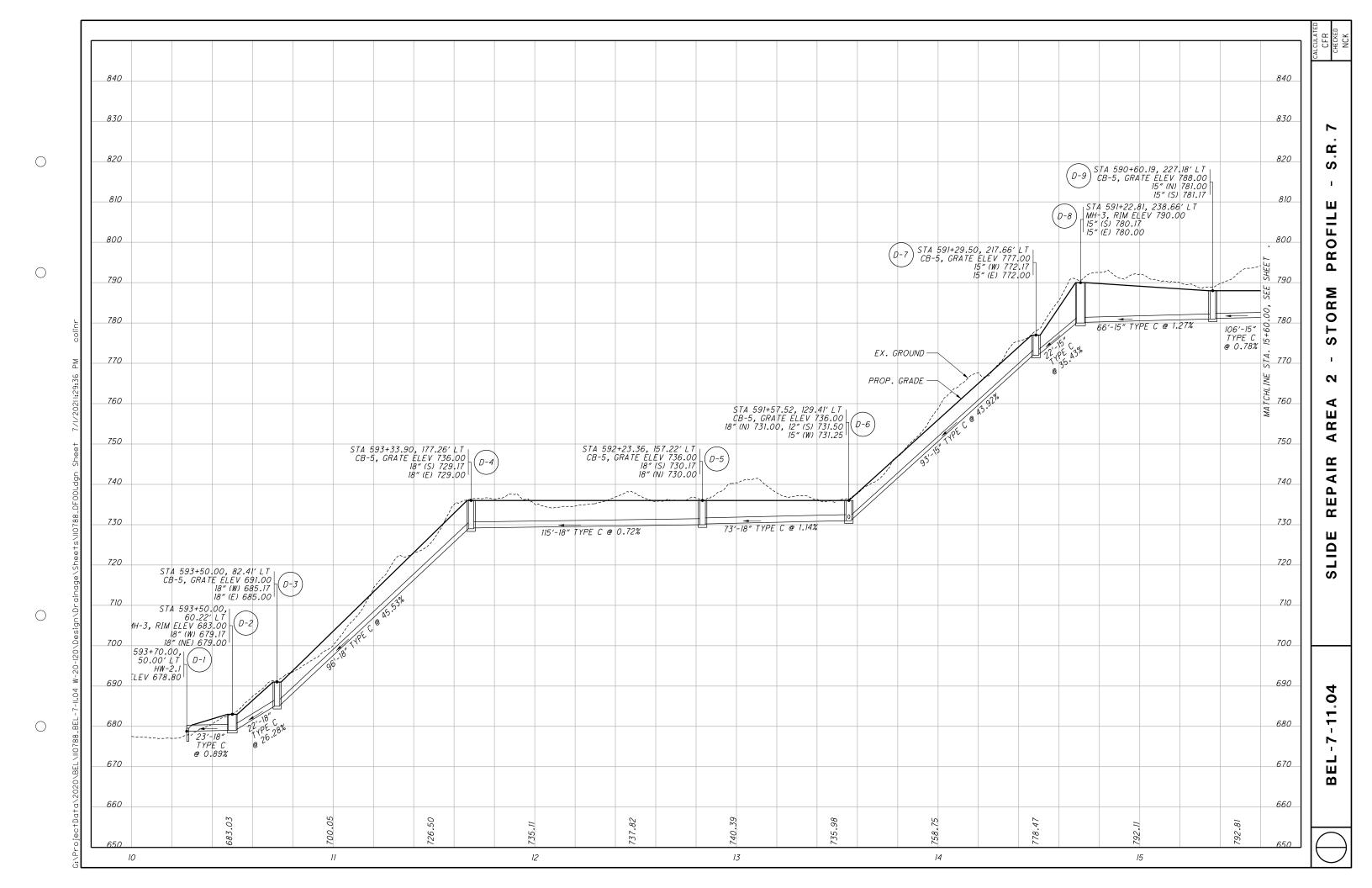


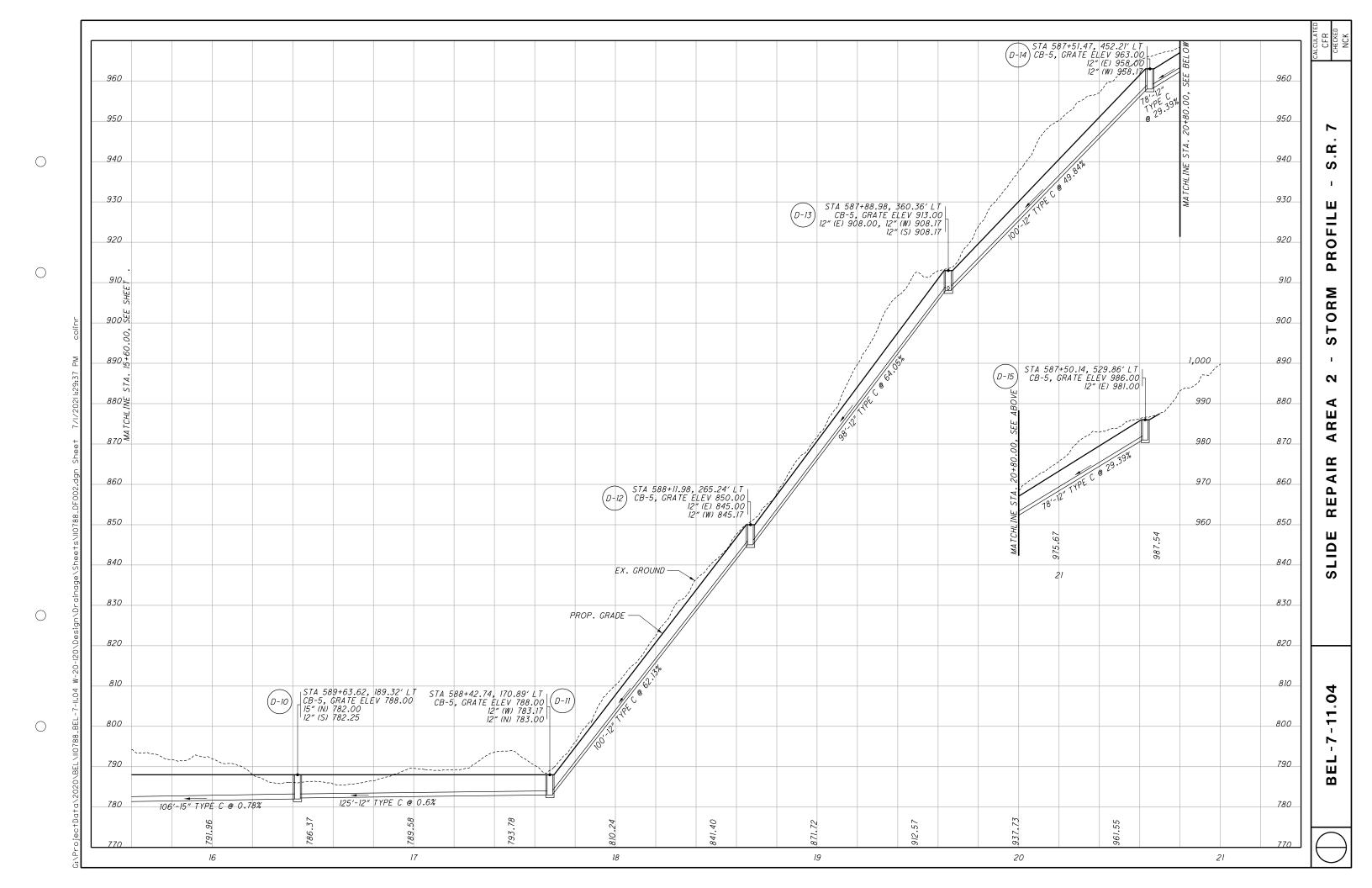
Appendix IX

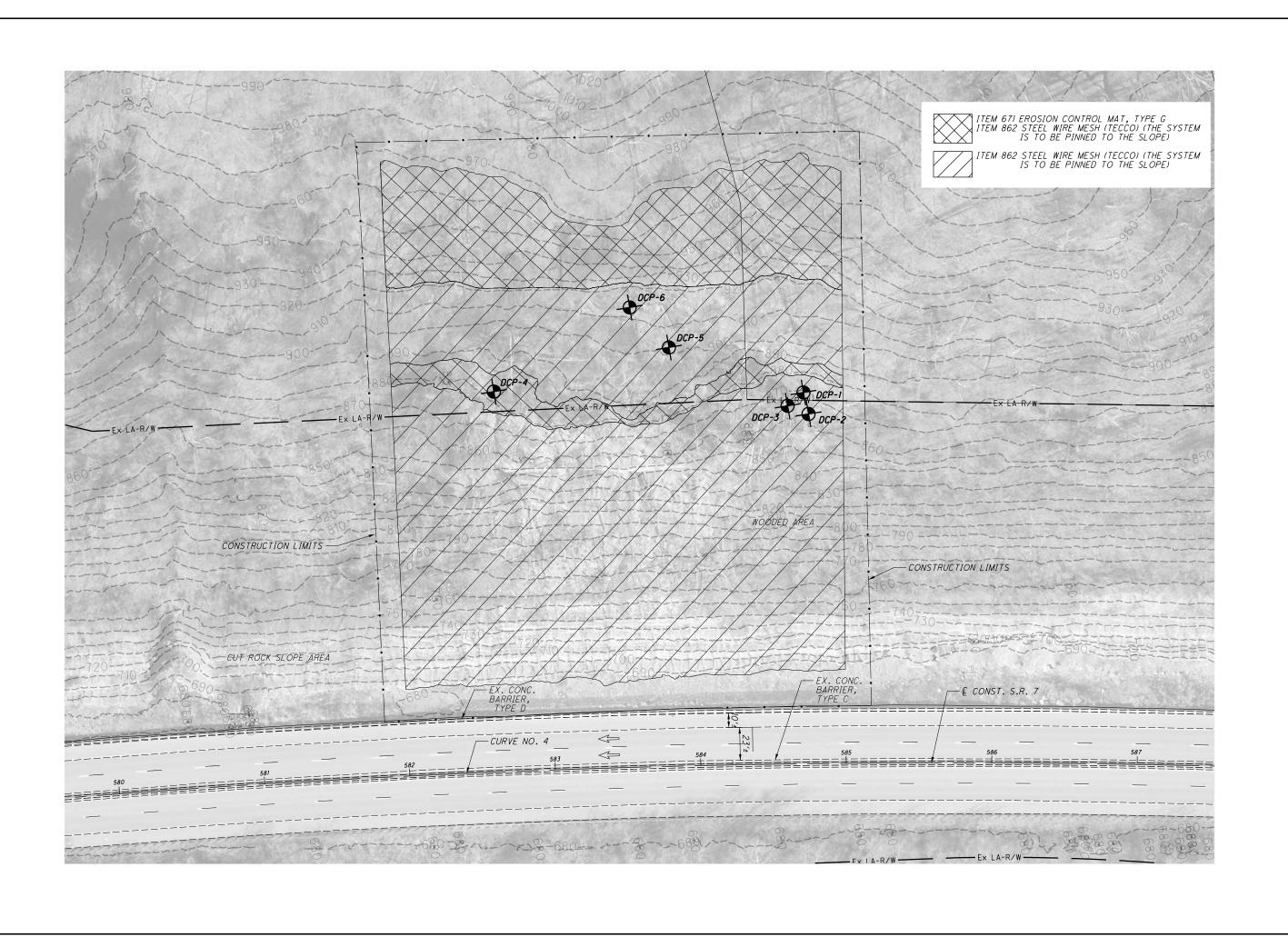
Site Remediation Exhibits

 \bigcirc




PLAN GULL 2


Ø ARE, REPAIR SLIDE

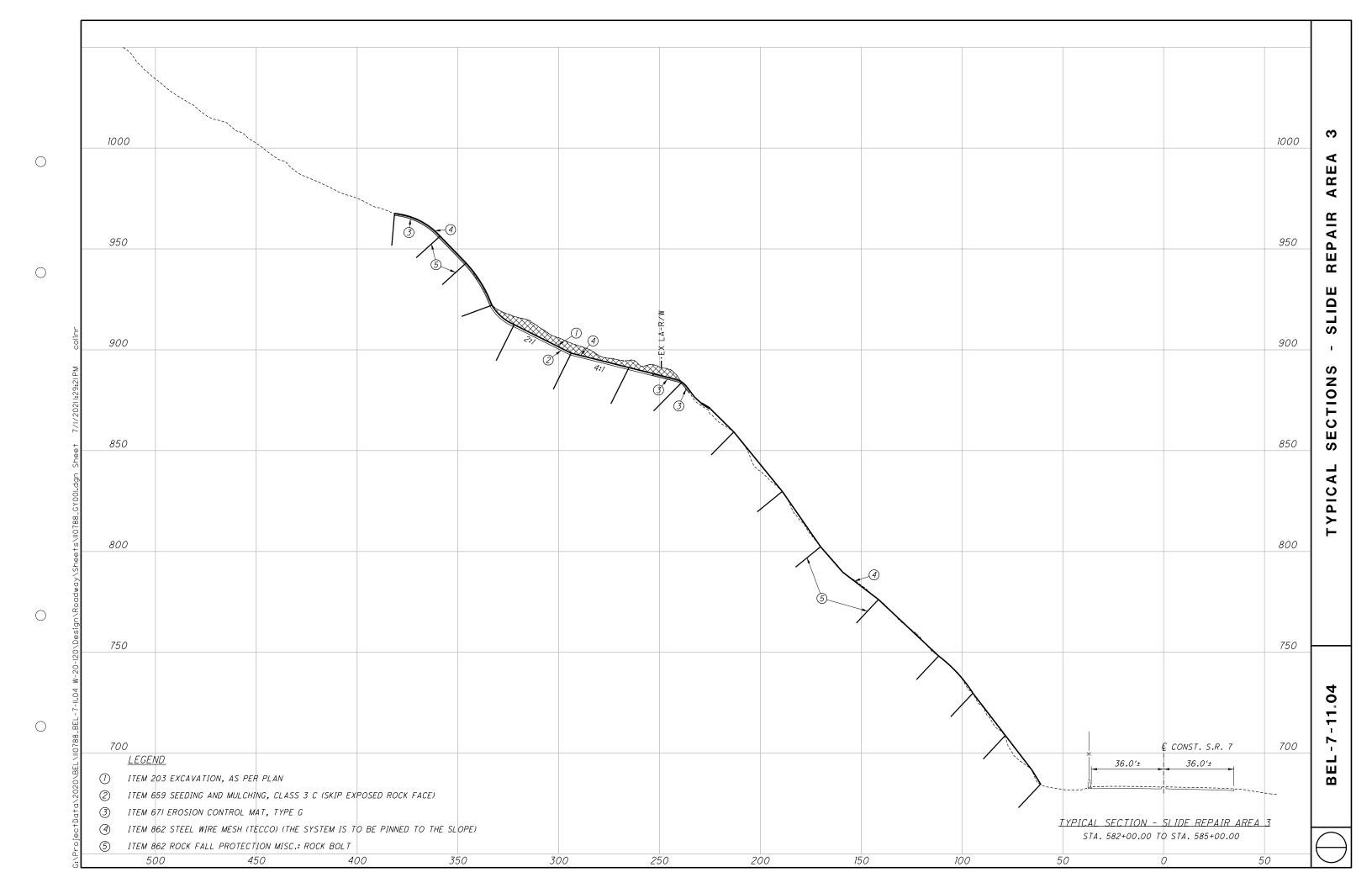

-11.04 __ E

m

 \bigcirc

 \bigcirc

0 30


JAS

PLAN

SLIDE REPAIR AREA 3

EL-7-11.04

B

