

1980 W. Broad Street, Columbus, OH 43223 614-466-7170 transportation.ohio.gov

October 19, 2018 (Revised November 6, 2018)

Mr. Matthew Rotar, E.I. Ohio Department of Transportation District 6 400 E. William Street Delaware, Ohio 43015

Re: Office of Geotechnical Engineering Geotechnical Report Project DEL-315-5.0/6.35/8.10 PID 102124

Dear Mr. Rotar,

The Office of Geotechnical Engineering (OGE) has completed the geohazard exploration for the subject project. The following report discusses the geologic setting for the project, the exploration process and findings, and remediation recommendations. It also identifies a few items that may require further plan detail development and discussion with the District and ODNR.

If you have any questions regarding the contents of this report, please contact me at (614)-466-8341 or Stephen Taliaferro at (614)-351-2873.

Sincerely,

Andrew Chudzik, E.I.

Geotechnical Engineer ODOT Office of Geotechnical Engineering 1980 W. Broad Street, MS5090, Columbus, Ohio 43223 (p) 614.466.8341 (m) 319.541.0948 transportation.ohio.gov

100 Introduction

Ohio route 315 is located along the western edge of the Olentangy River within Delaware and Franklin Counties. The upper portion of roadway is a two-lane road which has been designated as the "Scenic Olentangy Heritage Corridor" (SOC) which begins at I-270 in Franklin County and extends 10.5 miles to the roadway terminus with US-23 just south of the City of Delaware. The roadway was first commissioned in 1808 and has gone through several upgrades since. Today heavy car traffic utilizes the roadway with over 25,000 cars/day between IR 270 and SR 750 and between 8,787 to over 15,000 cars/day from SR 750 to US 23.

Due to the roadway's proximity to the river, several areas of concern have been identified by ODOT District 6 due to the potential for the waterway to migrate into the river bank resulting in loss of material. If significant loss of material occurs along the toe of the bank, instability may occur along the slope between the river and the roadway. If slope instability occurs, and then continues to progress, the roadway may be adversely impacted.

Three locations were identified where possible corrective actions may be needed to address slope instability due to toe erosion. These locations were identified as DEL-315-5.00 (SLM 5.00), DEL-315-6.35 (SLM 6.35) and DEL-315-8.14 (SLM 8.14). The SLM 5.00 study area extends from Station (Sta.) 1264+25 to 1279+25 for 1,500 linear feet, the SLM 6.35 study area extends from Sta. 1336+50 to 1359+00 for 2,250 linear feet and the SLM 8.10 study area extends from Sta. 1429+00 to 1449+75 for 2,075 linear feet.

The ODOT Geohazard Management System (GHMS) includes the ODOT landslide inventory. Within the SLM 5.00 site, 2 separate landslides were first identified in 2012 and then re-inspected in 2017. From a preliminary rating standpoint both sites are considered Tier 1 (Tiers 1 to 4 with 4 being the highest risk) landslides with the probability of further landslide occurrence judged as moderate (possible values are low, moderate, high, very high). The large traffic volumes on DEL-315 do not factor into the preliminary landslide rating in the GHMS but were considered when this project was selected for ODOT Geologic Site Management Program (GSMP) funding. The SLM 6.35 and 8.10 sites are scheduled for initial inspection and rating by ODOT's Statewide Geohazard Inspection Consultant in late 2018.

200 Geology and Observation

200.1 Geological Information

The study areas are within Delaware County with SLM 5.00 and SLM 6.35 presently located on the Powell USGS Quad sheets while SLM 8.14 is located on the boundary between the Delaware and Powell USGS Quad Sheets. All three study areas are located within the Central Ohio Loamy Till Plain Physiographic Region¹ which is characterized by glacially deposited flat-lying ground moraine with well-defined recessional moraines. Along the larger streams in the area moderate topographic relief is present with limited sand and gravel outwash.

The USDA Web Soil Survey² was consulted to evaluate the soils present within the study areas. SLM 5.00 was predominately comprised of Lybrand silt loam (LyE2) 18 to 25% eroded beneath the roadway and between the roadway and the river. This soil type is classified as being well drained with a high calcium carbonate content

¹ Brockman, Scott 1998, Physiographic Regions of Ohio, Ohio Department of Natural Resources.

² <u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>

which has a very high run off potential. The material is typically derived from tills from glacially deposited moraines which are generally silty clay. Figure 200.1 presents the soils map for the SLM 5.00 study area.

Map Unit Symbol	Map Unit Name	Acresin AOI	Percent of AOI
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	0.0	0.9%
LyE2	Lybrand silt loam, 18 to 25 percent slopes, eroded	2.4	89.3%
RoA	Rossburg silt loam, 0 to 2 percent slopes, occasionally flooded	0.0	0.0%
ScB	Scioto silt loam, 2 to 6 percent slop es	0.2	7.4%
w	Water	0.1	2.4%
Totals for Area of Interest		2.7	100.0%

The SLM 6.35 study area was predominately comprised of Sloan silt loam (SkA) 0 to 2% slopes, occasionally flooded beneath the roadway and between the roadway and the river. This soil type is classified as being very poorly drained with low runoff potential which are occasionally flooded. The material is typically derived from loamy alluvium. Figure 200.2 presents the soils map for the SLM 6.35 study area.

The SLM 8.14 study area was predominately comprised of Scioto silt loam (ScB) 2 to 6% slopes, Lybrand silt loam (LyE2) 18 to 25% eroded, and Lobdell silt loam (LoA) 0 to 2% slopes, occasionally flooded. Beneath the roadway are typically LyE2 and ScB soils with LoA between the roadway and the river. LyE2 are classified as being well drained with a high calcium carbonate content which has a very high runoff potential. ScB are classified as being well drained with a low runoff potential which are silty and granular. LoA are typically floodplain soils which are silty or clayey and are classified as being moderately well drained with a low runoff potential which can occasionally be flooded. Figure 200.3 presents the soils map for the SLM 8.14 study area.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
LoA	Lobdell silt loam, channery substratum, 0 to 2 percent slopes, occasionally flooded	0.6	18.5%
LyE2	Lybrand silt loam, 18 to 25 percent slopes, eroded	1.1	33.0%
ScA	Scioto silt loam, 0 to 2 percent slopes	0.1	3.8%
ScB	Scioto silt loam, 2 to 6 percent slopes	1.5	44.6%
w	Water	0.0	0.1%
Totals for Area of Interest		3.5	100.0%

Westgate³ reports that the Olentangy River, south of the City of Delaware, flows within a pre-glacial valley with an average drop of 8 feet per mile to Franklin County Line. The river bed is flowing on bedrock comprised of the Delaware and Columbus Limestones and that steep bedrock banks can be present, especially along the east side of the river. Jointing within the bedrock is very prevalent and can be easily seen within the river valley. Three predominate intersecting joint sets are evident within the river bed. These sets are running approximately N40°E, N12°E, and N90°E. Outside of the immediate river bed glacially deposited soils are present. Rock terraces are present along the river which have thin veneers of alluvium as well as isolated areas within the river bed. Adjacent to the river bed glacially deposited soils comprised predominately of clayey ground moraine tills which can be calcareous and contain boulders are present.

Bedrock geology of the Powell and Delaware USGS Quadrangles indicates that the Olentangy River is flowing on Devonian aged limestone bedrock at each of the three study areas. At SLM 5.00 mapping indicates that the river bed is comprised of Columbus Limestone with Delaware Limestone found within the stream banks and beneath the roadway. Immediately downstream of the project the river bed is flowing on Delaware Limestone. Figure 200.4 present the bedrock mapping for SLM 5.00.

³ Westgate, Lewis G., 1962, Geology of Delaware County, Bulletin 30, Ohio Geological Survey

At SLM 6.35 the Olentangy River is flowing on Columbus Limestone which is also present beneath the roadway. The lower hillsides are comprised of Delaware Limestone and upper hillsides is comprised of Ohio Shale. Figure 200.5 present the bedrock mapping for SLM 6.35.

At SLM 8.14 the Olentangy River is flowing on Delaware Limestone which is also present beneath the roadway. The hillsides to the west is comprised of Delaware Limestone which is covered with glacial till. East of the river the hillside is comprised of Ohio Shale. Figure 200.6 present the bedrock mapping for SLM 8.14.

A water well log search was completed through utilization of ODNR water well viewer. Three water wells were located within proximity to SLM 5.00 study area. All three were present above the roadway and encountered thin overburden soils, 23 to 32 feet thick, underlain by limestone. All three wells were completed within limestone with static water elevations reported between 24 and 74 feet below ground surface, approximately between elevation 812 and 789 feet. At SLM 6.35 no water wells were reported to the roadway study area. At SLM 8.14 one well report was found in proximity to the roadway study area, located to the south, which encountered 18 feet of overburden soils, approximately elevation 832 feet, underlain by limestone with water encountered at approximately elevation 795 feet with static water reported at approximate elevation 840 feet.

200.2 Historical Boring Information

Historical boring information was obtained from the ODOT Transportation Information Mapping System (TIMS).

At SLM 5.00 four (4) historical borings were located for a proposed water and sewer line being installed under SR 315 for the proposed Nelson Farm subdivision. Two (2) borings B-1 and B-2 were completed for the water line on either side of SR 315. B-1 was along the west side of SR 315 and encountered 0.7 feet of topsoil underlain by lean clay with sand to a depth of 8.0 feet when weathered limestone was encountered. The limestone was sampled through coring to a depth of 30 feet. B-2 was completed in the northbound lane of SR 315 and encountered 13 inches of asphalt underlain by 5 inches of aggregate base. Beneath the pavement lean clay with sand was encountered to a depth of 5 feet where weathered limestone was encountered. Limestone was sampled through coring to a depth of 30 feet where the boring was terminated. Two (2) borings, B-3 and B-4, were completed for the proposed sewer line on either side of SR 315. B-3 was completed on the west side of SR 315 and encountered fill to a depth of 2.5 feet underlain by lean clay with sand to a depth of 7.0 feet. At 7.0 feet the boring encountered weathered limestone which was sampled thought coring to a depth of SR 315 and encountered 12 inches of asphalt underlain by 6 inches of aggregate base. Beneath the pavement fill was encountered to a depth of 3.0 feet underlain by lean clay with sand to a depth of 15 feet. B-4 was completed in the northbound lane of SR 315 and encountered 12 inches of asphalt underlain by 6 inches of aggregate base. Beneath the pavement fill was encountered to a depth of 3.0 feet underlain by lean clay with sand to top of bedrock at a depth of 6.0 feet. Weathered bedrock was sampled to a depth of 14 feet where the boring was terminated.

At the SLM 6.35 study area one (1) historical boring was located for a culvert replacement project (DEL-315-6.69) completed in 2009. This boring was completed in the northbound lane and encountered 5 inches of asphalt underlain by very stiff to hard Silt and Clay (A-6a) soils to elevation 804.4 feet. Beneath the A-6a soils medium dense Stone Fragments with Sand and Silt (A-2-4) was encountered extending to top of bedrock at elevation 802.3 feet. Limestone bedrock was samples through coring methods to elevation 792.3 when the boring was terminated. One compressive strength test of the bedrock was completed at a depth of 11.7 feet (elevation 797.7 feet) with a result of 13,410 psi.

No historical records were located within the SLM 8.14 study area.

200.3 Field Observations

A site visit was completed by ODOT personnel from the Office of Geotechnical Engineering and District 6 on April 3, 2017 to evaluate site conditions and lay out boring locations. Study areas SLM 5.00 and 6.35 were visited during this site visit.

At SLM 5.00 study area, the area was noted as being predominately wooded and rural residential. The pavement along SR 315 was noted as having been repaired in several locations within both the northbound and southbound lanes. Within areas which had not been repaired, several areas of pavement distress were noted with cracking and slight dropping of the pavement within the outside 3 to 4 feet of the northbound lane. West of SR 315 was noted as being wooded hillside with intermediate rural residential lots. The entrance to the Nelson Farms subdivision is well maintained with exposed bedrock noted within the drainage area running parallel to Shale Run Drive. The bedrock was noted as being thin bedded limestone which was moderately weathered and highly jointed. The drainage is carried under SR 315 through DEL-315-5.07 which is box culvert. The outlet to this culvert was noted as having sediment build up with limestone blocks. To the east of SR 315 is the wooded riparian zone between the roadway and the river. The slope was noted as being wooded with isolated areas of erosion and

evidence of slope creep. One area of seepage was noted within the slope which was south of Shale Run Dr. and appears to be water discharging from a joint set within the bedrock. Free blocks of limestone and glacial cobbles and boulders were noted along the edge of water. Grayish brown limestone which appeared to be moderately weathered and highly jointed was noted within the river and above the normal water elevation of the Olentangy River. Isolated areas of minor bedrock plucking was noted along the and within the river bed.

At SLM 6.35 study area, the area was noted as being rural residential. The pavement was noted as being in fair condition with areas of crack sealing and patching noted. To the west of SR 315 are rural residential lots. Between SR 315 and the river the wooded riparian zone is very steep and is exhibiting signs of long term creep instability. No signs of seepage were noted within the slope. The river appears to be flowing on bedrock with minor outcropping above the normal flow elevation. Limestone blocks as well as glacial cobbles and boulders were noted along the edge of the river. The study area ends at the north with the abandoned Winter Road bridge abutment. Most of the drainage ways crossing under the roadway appear to have bedrock exposed, or large limestone slabs with the channels. The larger drainage structures are constructed of limestone blocks which have been extended with cast in place concrete.

The SLM 8.14 study area was noted as having the roadway being much higher than the river relative to the other two study areas. The pavement was noted as being in good condition with areas of crack sealing. To the west of SR 315 the area was noted as being mixed wooded and rural residential. East of SR 315 is a steep hillside which is wooded. Signs of long term creep instability were noted throughout most of the hillside. No signs of seepage were noted within the slope. The river bed is flowing on limestone bedrock with exposures present above the normal water elevation. The primary drainage structure within the study area is a 3-sided slab deck which has a large fall from the outlet to the river bed. Bedrock is exposed below most of the outfall.

300 Exploration

A multifaceted exploration approach was completed within each study area. A combination of borings, dynamic cone penetration (DCP) soundings, and electric resistivity (ER) was completed within each area for better determine the subsurface conditions. All borings were completed with either a truck mounted or track mounted rotary drill unit completed using 3 ¼-inch I.D. hollow stem augers to advance the borings through the soil. Disturbed samples were collected in accordance with the Standard Penetration Test (AASHTO T206) at 2.5-foot intervals within the overburden soils. The borings were advanced into bedrock and sampled (AASHTO T225) using an N series wireline core barrel, water method. Electrical resistivity testing was performed utilizing multi-electrode ER lines. An Advanced Geosciences Inc. (AGI) Supersting R8 control unit was utilized to measure the potential field with dipole-dipole and strong gradient arrays. The collected resistivity data was processed with EarthImager 2D (developed by AGI), an inversion and modeling software package.

At SLM 5.00, four (4) borings, B-001-0-18 through B-004-0-18, were completed as part of the subsurface exploration between July 11 and 12, 2017. The borings were drilled with a truck mounted drill except for B-001 which was completed with a track mounted drill. Two (2) wildcat DCP soundings were completed in conjunction with the borings. D-001-1-17 was completed at the anticipated southern end of instability and D-002-1-17 was completed at the anticipated southern end of instability and D-002-1-17 was completed at the outlet of DEL-315-5.07. Three (3) ER lines were completed behind the guardrail running

parallel to the roadway. The first line was completed July 12, 2017 and the second and third lines were completed on August 9, 2017.

At SLM 6.35, eight (8) borings, B-001-0-17 thought B-006-0-17, B-006-1-17, and B-007-0-17 were completed between July 10 and 15, 2017. The borings were drilled with a truck mounted drill except for B-004 which was completed with a track mounted drill. B-006-1 was initially started with a hand auger, but encountered top of rock immediately and was confirmed utilizing hand coring equipment. One (1) wildcat DCP sounding, D-007-1-17, was completed in the upslope ditch line along with hand coring of boulders. One (1) ER line was completed on August 11, 2018.

At SLM 8.14 two (2) borings, B-001-0-17 and B-002-1-17, were completed as part of the subsurface exploration between July 19 and 20, 2017. The borings were drilled with a truck mounted drill. One (1) wildcat DCP soundings, D-001-1-17, was completed in conjunction with the borings at the inlet for DEL-315-8.17 culvert. One (1) ER line was completed behind the guardrail running parallel to the roadway on August 17, 2018.

400 Findings

400.1 SLM 5.00

Subsurface conditions revealed 12 to 14 inches of asphalt within the roadway and 4 inches topsoil behind the guardrail. Beneath the pavement the borings encountered predominately cohesive soils consisting of Sandy Silt (A-4a) and Silty Clay (A-6b) which ranged from stiff to very stiff in consistency and damp to moist in condition. These materials were encountered to top of rock except in B-003 where a dense Sandy Silt (A-4a) was encountered at elevation 793.3 feet to top of rock. B-001 encountered dense to very dense Stone fragments with sand and silt (A-2-4) which contained boulders and cobbles from beneath the topsoil to top of rock. Limestone bedrock was encountered between elevation 786.8 and 792.5 feet. The bedrock was reported as moderately to slightly weathered, ranging from moderately to very strong and thin bedded. Unit recovery values ranged from 98% to 100% and Unit RQD values ranged from 0% to 91%. Compressive strength testing results ranged from 6,365 to 23,148 psi and is summarized in Table 400.1.

Tak	ole 400.1 SLM 5.00	Summary of Unconfir	ned Compressive St	rength Testing
Boring	Top of Bedrock Elevation (Feet)	Sample Depth (feet)	Sample Elevation (feet)	Unconfined Compressive Strength (psi)
B-001-0-17	786.8	10.1	785.9	11,424
B-001-0-17	786.8	15.8	780.2	20,033
B-002-0-17	792.5	11.7	787.0	18,630
B-002-0-17	792.5	14.7	784.0	23,148
B-003-0-17	791.3	10.5	788.8	12,062
B-003-0-17	791.3	13.4	785.9	6,365
B-004-0-17	790.4	10.5	790.1	16,772
B-004-0-17	790.4	16.3	784.3	19,032

All the borings were dry prior to introduction of core water. Water levels were not recorded at the completion of the drilling due to the artificial influence of the coring operations. During the field reconnaissance only one point of seepage was noted within the slope between the roadway and the river. However, groundwater will fluctuate seasonally.

400.2 SLM 6.35

Borings completed within the roadway encountered 11 to 18 inches of asphalt with typically 12 inches encountered. Beneath the pavement the borings typically encountered cohesive soils consisting of Sandy Silt (A-4a), Silt and Clay (A-6a), and Silty Clay (A-6b). These soils ranged from stiff to very stiff in consistency and damp to moist in condition. The Silty Clay (A-6b) material encountered near the surface in B-004 was moderately organic. B-001 encountered cobbles or a boulder between 8.5 and 10 feet. Beneath the pavement in B-006 the boring encountered medium dense Stone fragment with sand and silt (A-2-4) that was damp in condition extending to top or bedrock. Non-cohesive soils were encountered with depth in B-001 through B-005. These soils consisted of Gravel and Stone Fragments with Sand (A-1-b), Gravel and Stone Fragments with sand and silt (A-2-4), Stone Fragments with sand, silt and clay (A-2-6), Sandy Silt (A-4a) which ranged from medium dense to very dense in compactness and damp to wet in condition. These non-cohesive soils extended to top of bedrock. Limestone bedrock was encountered between elevation 790.7 and 803.4 feet, generally rising in elevation to the north. The bedrock was described as moderately to slightly weathered, ranging from strong to very strong and thin bedded. Unit recovery values ranged from 83% to 100% and Unit RQD values ranged from 8% to 72%. Compressive strength testing results ranged from 10,563 to 21,096 psi and is summarized in Table 400.2.

Tab	ole 400.2 SLM 6.35	Summary of Unconfir	ned Compressive St	rength Testing
Boring	Top of Bedrock Elevation (Feet)	Sample Depth (feet)	Sample Elevation (feet)	Unconfined Compressive Strength (psi)
B-001-0-17	790.7	18.7	788.1	13,563
B-001-0-17	790.7	23.2	783.6	14,189
B-002-0-17	798.9	13.3	794.6	14,672
B-002-0-17	798.9	16.4	791.5	10,563
B-003-0-17	798.1	14.6	794.0	16,880
B-003-0-17	798.1	18.1	790.5	15,331
B-004-0-17	795.2	14.4	792.8	11,969
B-004-0-17	795.2	20.4	786.8	14,374
B-005-0-17	802.7	16.8	793.4	15,896
B-006-0-17	803.9	8.5	801.5	17,676
B-007-0-17	803.4	8.7	802.5	21,096

All the borings were dry prior to introduction of core water except B-001. Water levels were not recorded at the completion of the drilling due to the artificial influence of the coring operations. B-001 encountered free water during drilling at elevation 796.8 feet and static water prior to coring at elevation 794.8 feet. During the field reconnaissance, no points of seepage were noted within the slope between the roadway and the river. However, groundwater will fluctuate seasonally.

400.3 SLM 8.14

B-001 was completed within the roadway and encountered 23 inches of asphalt. B-002 was completed near the DEL-315-8.30 culvert inlet and encountered 4 inches of topsoil. Beneath the surface material both borings encountered Sandy Silt (A-4a) which was stiff to very stiff in consistency and damp in condition. In B-002, this layer was noted as being moderately organic. At approximately elevation 833, the borings encountered Silt and Clay (A-6a) which was hard and damp in B-001 and stiff and moist in B-002. The soils were also slightly organic in B-002. Top of limestone bedrock was encountered at elevation 827.7 and 829.6 feet, respectively. The bedrock was described as slightly or moderately weathered, very strong, and thin bedded. The Unit recovery was 88% and 90% and the Unit RQD value was 70% and 7%. One unconfined compressive strength test was completed from B-001 at a depth of 16.1 feet, elevation 825.6 feet, with a result of 20,451 psi.

Both borings were dry prior to introduction of core water. Water levels were not recorded at the completion of the drilling due to the artificial influence of the coring operations. During the field reconnaissance no points of seepage were noted within the slope between the roadway and the river. However, groundwater will fluctuate seasonally.

500 Analyses and Recommendations

500.1 Slope Stability

Cross sections for each site were created from the survey data provided by the District 6 survey crew. The cross sections were reviewed in conjunction with the boring logs and a critical section was chosen for each site. The critical section for SLM 5.00 was determined to be at Sta. 1272+67, the critical section for SLM 6.35 was determined to be Sta. 1351+00, and the critical section for SLM 8.14 was determined to be Sta. 1436+50.

After the critical sections were determined for each site, OGE created soil and bedrock profiles for each site using the boring log information closest to each critical section as outlined in Geotechnical Bulletin 7 (GB7). The soil and bedrock profiles were modelled in MicroStation and used to create a slope stability model. OGE used GSTABL7 with STEDwin version 2.005.2 (GSTABL) for the slope stability analysis of the models created in MicroStation. GSTABL is a 2D Limit Equilibrium slope stability program developed by Gregory Geotechnical Software. GSTABL can analyze slope stability using a variety of different methods; OGE used the Modified Bishop Method for its analysis.

In order to analyze a "worst-case" scenario with regards to seasonal variances, the analyses included a much higher groundwater elevation than what was encountered in the borings. All 3 slopes were found to be marginally stable (Factors of Safety greater than 1.0 but less than 1.3) consistent with the slow moving or "creeping" instability condition that has been observed in the past several years. The slope stability analyses results are summarized in Table 500.1.

Table 500.1: Slope Stability Analy	ses Results – Factor of Safety (for Elevated Ground	water Scenario)
Location	Factor of Safety	
DEL-315-5.00	1.15	
DEL-315-6.35	1.20	
DEL-315-8.10	1.06	

500.2 Remediation Options

After the slope stability analyses was completed in GSTABL, OGE proposed four (4) options for remediation. These options were: installation of a plug pile wall, installation of a drilled shaft wall with lagging, construction of a reinforced soil slope, and installation of a GeoWeb wall. OGE analyzed the four options for the critical section at each site. The results are presented in the following sections.

500.2.1 Options 1 & 2 - Plug Pile Wall and Drilled Shaft Wall with Lagging

To analyze the effectiveness of the plug pile and drilled shaft wall designs, the force imposed on each plug pile or drilled shaft within each of the wall systems needed to be determined. ODOT GB7 recommends the use of a software program called UA Slope for the analysis of the force applied to a shaft within a reinforcing wall system. UA Slope was developed through a research study conducted by Dr. Robert Liang of the University of Akron in conjunction with ODOT to determine the force imposed on one shaft in a single row of equally spaced drilled shafts by a moving soil mass. UA Slope version 2.3 was utilized by OGE. The location of the drilled shafts was based on the minimum allowed guardrail offset specified by District 6 for all three (3) sites.

The UA slope results are presented in Appendix C and were used to conduct an LPILE analysis on each shaft type to determine the size of shaft needed to resist the calculated force. LPILE is a program developed by Ensoft Inc. for the analysis of a pile under lateral loading using the p-y method. Different shaft and reinforcement sizes were evaluated in LPILE.

The results of the LPILE analysis showed that 24" shafts with minimum HP12x53 steel reinforcement and a 6' rock socket would be required for the plug pile wall while the drilled shaft wall with lagging would require 36" shafts with minimum HP12x53 steel reinforcement and a 6' rock socket. There would be limited slope disturbance beyond the plug pile wall while it is being installed whereas the drilled shaft with lagging would require significant excavation beyond the wall to install the lagging and would vary in depth from site to site. The LPILE results are presented in Appendix D.

500.2.2 Option 3 - Reinforced Soil Slope

For the analyses of the reinforced soil slope design, OGE used a program called ReSSA. The program developed by Adama Engineering, assesses the rotational and translational stability of slopes with geosynthetic reinforcement. The designer note that accompanies ODOT Supplemental Specification 863 *Reinforced Soil Slopes* (SS 863) was utilized to determine the proper parameters for inclusion in the analyses of the reinforced soil slope.

The inputs previously used for the GSTABL analysis were modified for use with ReSSA and the analyses of the reinforced soil slope option was completed. The ReSSA analysis showed that, to construct the reinforced slope, the excavation limits could extend across the northbound lane of DEL-315 and into the southbound lane. The design would also require erosion protection which could include wrapping of the slope face. The ReSSA results are presented in Appendix E.

500.2.3 Option 4 - GeoWeb Wall

Due to the height of the current soil embankment along the DEL-315, a gravity wall was determined to not be feasible. A MSE Wall made from GeoWeb cells was proposed and would require P2 geogrid as outlined in SS 863. An analysis was conducted using a proprietary program provided by the GeoWeb vendor which showed the excavation limits for the GeoWeb wall to include the entire northbound lane of DEL-315. However, OGE has questions over how the GeoWeb software handles existing marginally stable slopes and recommends that if the GeoWeb design is to be pursued, the vendor should provide the detailed design. Due to the expiration of our temporary license for the proprietary software, only the GeoWeb conceptual details are presented in Appendix F.

500.3 Recommendations

OGE visited DEL-315-0.86 (south of DEL-315 intersection with Powell Rd/DEL-750) on November 2, 2018 with District 6 personnel to observe localized areas where the soil mass downhill from the existing plug pile wall had moved. The localized movement occurred to a depth that OGE recommended the District review the consultant's report to determine what the design assumed for a cantilever condition.

After evaluating the four design options, OGE continues to recommend that the District pursue the plug pile wall option. We believe that it provides the least invasive construction of the options along the DEL-315 corridor. We believe that a planting plan or other bio-engineering solutions to provide support to the vegetation of the soil mass downhill from the wall should also be pursued. Those solutions are beyond the expertise of OGE.

Based on discussions with the State Construction Geotechnical Engineer, we believe that a plan note could be added indicating that grading shall not extend beyond the construction limits shown on the plans. This note, while redundant to the ODOT CMS definition of *Construction Limits*, would draw further attention from the contractor during bid development that there needs to be limited disturbance below the wall during construction including for items such as formwork.

As stated previously, OGE recognizes the seasonal variances in groundwater. It is our opinion that for much of the year, the slopes at the three sites are stable. The slow or "creeping" movement that has been observed over several years is occurring during periods of elevated groundwater. We agree with the District that a measure such as placing #57's would be possible beneath the "plug" or unreinforced shafts. It would require details and possibly consultation with a drilled shaft contractor as to how best present in the plans. Based on what has been observed following the construction at DEL-315-0.86, it is possible that the soil mass downhill from the wall will experience instability that could expose the #57's in localized areas.

While it is the opinion of OGE that the existing slope geometry at DEL-315-5.00/6.40/8.10 will be less susceptible to the localized downhill slope movement observed at the DEL-315-0.86 wall, this could still occur. We recommend the District engage ODNR and other riparian experts as to how best address these localized failures.

If you have any questions, please contact our office.

pc: Reading File

Enclosures: Appendices

APPENDIX A ODOT BORING LOGS, DCP RESULTS, CORE PHOTOS

APPENDIX A.1 DEL-315-5.0

PROJECT: TYPE:		DRILLING FIRM / C SAMPLING FIRM / I		ODOT /			L RIG: 1MER:	ACKEF	<u>R XLS</u> AUTO		СК							09, 21 OF SF	1	PLORA B-001-	ATION I -0-17
PID: 102124		DRILLING METHOD	_	.25" HSA / N				ON DATE:		6/1/17	,							EOB:			PAGE
START: 7/1		SAMPLING METHO	-	SPT	102			ATIO (%):		89		LAT			100.				.059277		1 OF 1
	MATERIAL DESCRIPTION		ELEV.		SPT/		-	SAMPLE		1	GRAF			-	ΑΤΤ	ERBE				 	BAC
	AND NOTES		796.0	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	-	1	1 1	SI	/	LL	PL	PI	wc	ODOT CLASS (GI)	ppm	
TOPSOIL (4"))		795.2	L	_																à C
	ERY DENSE, BROWN AND GR SMENTS WITH SAND AND SILT		190.2	-	$\begin{array}{c}1 \\ 2 \\ 3 \end{array} \begin{array}{c}10 \\ 25 \\ 32 \end{array}$	85	78	SS-1A	-	55	12	7	18	8	19	17	2	3	A-2-4 (0)	-	
@5.0' - 9.2'; E	ENCOUNTERED BOULDERS/CO				$\begin{array}{c} 4 \\ 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	31	72	SS-2A	-	-	-	-	-	-	-	-	-	4	A-2-4 (V)	-	
-			786.8		6 - 7 - 0 8 -		33	NQ2-1											CORE		
STRONG TO CRYSTALLINI STYOLITIC, J NARROW, VE REC 98%.	GRAY, SLIGHTLY WEATHERE VERY STRONG, THIN BEDDEL E, FOSSILIFEROUS, SLIGHTLY OINT, MODERATELY FRACTU ERY ROUGH; BLOCKY, GOOD; I'; γ = 169 pcf; Qu = 11,424 psi	D, HIT Y HIT RED, HIT	/80.8	- - - - - -	9 10 11 12 13 14		98	NQ2-2											CORE		
@16.6' - 17.9' FRACTURE	2'; γ = 168 pcf; Qu = 20,033 psi '; HIGH ANGLE PARTIALLY HE ': HIGH ANGLE MODERATELY	ALED	777.0	- - - - - -	14 15 16 17 18		97	NQ2-3											CORE		

NOTES: LAT/LONG/ELEV FROM OGE HANDHELD GPS UNIT. HOLE DRY BEFORE CORING. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

PROJECT: TYPE: PID: 102124	LANDSLIDE	DRILLING FIRM / (SAMPLING FIRM / DRILLING METHO	LOGGER	-	/ MCLEI		HAM		CME CME A ON DATE:			;	ALIG	INME	NT:	CEN	ITER	LINE	⊦15, 8' OF SI EOB:	R 315	B-002-	ATION ID -0-17 PAGE
START: 7/11		SAMPLING METHO	-	<u>5.25 115</u> SF	-				ATIO (%):		77		LAT		-	730.				.059899		1 OF 1
	MATERIAL DESCRIPTION	V	ELEV.	DEPT	ue	SPT/	N		SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBE	ERG		ODOT	 SO4	BACK
	AND NOTES		798.7	DEFI	п о	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G	l) ppm	
	") SH BROWN WITH BLACK, SI TRACE GRAVEL. MOIST	LTY CLAY,	797.7		 - 1	3																
,	,					3 6	12	39	SS-1A	2.00	6	8	14	37	35	38	16	22	20	A-6b (12) -	
@3.5'; SOME	GRAVEL AND STONE FRAGM	/ENTS			- 4 - - 5 -	2 15 60	96	83	SS-2A	1.00	-	-	-	-	-	-	-	-	22	A-6b (V)	-	
	BROWNISH GRAY, MODERA		792.5	TR	- 6 -	-5 <u>0/2"</u> ,		83_/	SS-3A	<u>↓</u> ∕	-							_		A-6b (V)	<u> </u>	
WEATHERED CRYSTALLINE OPEN, VERY 100%.	, VERY STRONG, THIN BEDD E, FOSSILIFEROUS, JOINT, F ROUGH; BLOCKY, FAIR; RQE HIGH ANGLE RUST STAINED	PED, RACTURED, D 0%, REC			- 7 - - 8 - - 9 - - 10 -																	
STRONG, THI FOSSILIFERC MODERATELY BLOCKY, GOO @ 11.7' - 12.0'	GRAY, SLIGHTLY WEATHERI N BEDDED, CRYSTALLINE, DUS, SLIGHTLY STYOLITIC, JU Y FRACTURED, NARROW, VE DD; RQD 91%, REC 100%. ;; Y = 170 pcf; Qu = 18,630 psi		787.9		- 11 - - 12 - - 13 - - 13 - - 14 -	49		100	NQ2-1											CORE		
@14.4' - 15.2'; @ 14.7' - 15.1'	; ΡΥΚΙΠΟ '; γ = 169 pcf; Qu = 23,148 psi		782.5	FOR	- 15 - - - 16 -																	

NOTES: LAT/LONG/ELEV FROM OGE HANDHELD GPS UNIT. HOLE DRY BEFORE CORING. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 75 LB. BENTONITE CHIPS

PROJECT:	DEL-315 LANDSLI		DRILLING FI SAMPLING F			-					CME										12, 10 OF SI	· · · · · ·	PLORA B-003-	TION ID 0-17
PID: 102124		N/A	DRILLING M			3.25" HSA		~			ON DATE:		3/1/17									18.0 ft.		PAGE
START: 7/11		7/11/17	SAMPLING N			SP					ATIO (%):		77		LAT							3.060309		1 OF 1
	MATERIA	L DESCRIPTIO	N	-	ELEV.			SPT/			SAMPLE			GRAD	DATIO	N (%		ATT		ERG		ODOT	S04	BACK
		D NOTES			799.3	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)		cs			CL	LL	PL	-	wc	CLASS (GI)	ppm	FILL
ASPHALT (14') & BASE (2")			\times	100.0		_	_																Sap -
-					798.0		- 1 -	_																ABDOD .
		VITH BLACK, SI	LTY CLAY,				-	2																
SOME SAND,	LITTLE GRAV	'el, damp					2 -	2	6	50	SS-1A	1.50	18	11	13	27	31	33	17	16	22	A-6b (7)	-	
							- 3 -	3															<u> </u>	RISK.
@3.5': REDDI	SH BROWN T	O DARK BROW	'N					2																
G,							- 4 -	3	13	61	SS-2A	2.00	-	-	-	-	-	-	-	-	19	A-6b (V)	-	
							- 5 -	· · ·																121
					793.3																			A LAND
		ILT, LITTLE STO	ONE				- 6 -	15		70		4 50	10	10		40					10			
FRAGMENTS,	LITTLE CLAY	, DAMP					- 7 -	16 10	33	78	SS-3A	1.50	19	13	14	40	14	NP	NP	NP	16	A-4a (4)	-	700 0
					791.3		-																	- Sala
		RAY, MODERA					- 8 -																	
		VERY STRON					- 9 -																	S Daug
FRACTURED,	OPEN, VERY	ROUGH; BLOC			789.1		- 10 -																	A Va
∖RQD 0%, REC			/																					< 900
		TLY WEATHER) STRONG, THI					- 11 -																	9/12/10-1 13 > 10-12
		ROUS, JOINT, N					- 12 -																	7 4 3
FRACTURED,	ÓPEN, VERY	ROUGH; BLOC					-																	1770
GOOD; RQD 6			:				- 13 -	50		100	NQ2-1											CORE		A L M
		Qu = 12,062 ps Qu = 6,365 psi	1				- 14 -																	A ALL
_	• • •	· •					-																	1<
							- 15 -																	TERT
@15.3' - 18.0';	HIGH ANGLE	- FRACTURE					- 16 -																	
							-																	
				<u>⊢</u> ⊥			- 17 -																	J L an
					781.3	—FOB—	L_19_																	

NOTES: LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

PROJECT: TYPE:	DEL-315-05.00 LANDSLIDE	DRILLING FIRM / C					L RIG	: <u>CME</u> CME A										+67, 8' OF SI	<u></u>	PLORA B-004-	ATION IE -0-17
PID: 102124		DRILLING METHO		.25" HSA / NQ2				ION DATE:							-			EOB:			PAGE
START: 7/12		SAMPLING METHO		SPT				RATIO (%):		77			/ LOI	-					.060530		1 OF 1
	MATERIAL DESCRIPTIO	N	ELEV.		SPT/			SAMPLE	-		GRAD	ATIO	N (%)	ATT	ERB		T	1	S04	BACK
	AND NOTES		800.6	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	-	CS		SI		LL	1	-	wc	ODOT CLASS (GI)	ppm	FILL
ASPHALT (12"	')	\sim	700.0																		A L
	BROWN, SANDY SILT, SOM		799.6	- 1 -	-																
	FRAGMENTS, DAMP				4																
	- ,			- 2 -	6	13	67	SS-1A	2.50	21	13	17	28	21	23	15	8	14	A-4a (3)	-	
				- 3 -	4																
@3.5'; REDDIS	SH BROWN				2																
0,				- 4 -	4	12	67	SS-2A	2.50	-	-	-	-	-	-	-	-	16	A-4a (V)	-	
				- 5 -	5																- 1 2 T
					1																The second
					6																21 > 1 21 > 1 21 > 1
				- 7 -	8	21	89	SS-3A	4.00	-	-	-	-	-	-	-	-	15	A-4a (V)	-	7000
				- I	0																
				- 8 -																	
@8.5'; HARD,	REDDISH BROWN AND BRO	DWN		- 9 -	6	19	00	00.44	4 50				00	05	07	47	10				A Van
					8	19	89	SS-4A	4.50	21	8	14	32	25	27	17	10	11	A-4a (4)	-	No.
		,	790.4																		Jaco.
	LIGHT GRAY, MODERATELY . VERY STRONG. THIN BEDI			- 11 -																	40m
	E, FOSSILIFEROUS, BEDDIN																				
	FRACTURED, OPEN, VERY	ROUGH;		- 12 -																	1
	DD; RQD 79%, REC 100%.			- 13 -	65		100	NQ2-1											CORE		STA
@ 10.5 - 10.8	; γ = 168 pcf; Qu = 16,772 ps			- 10	-																430m
@13.9'; VERY	THIN CLAY SEAM			- 14 -	-																
				- 15 -																	
				- 15			+														
@16.0'; 1.0" C	I AV SEAM			- 16 -														1			
	; $\gamma = 170 \text{ pcf}; \text{Qu} = 19,032 \text{ ps}$	si L		- 47																	
@17.0'; 45° FF	RACTURE			- 17 -																	J L al
@17.2'; 45° FF	RACTURE			- 18 -	93		100	NQ2-2											CORE		X V
			1																		
			1	19																	Éast .
@19.5' - 19.9';	HIGH ANGLE HEALED FRAM		780.3	<u></u>														1			

EOF

NOTES: LAT/LONG/ELEV FROM OGE HANDHELD GPS UNIT. HOLE DRY BEFORE CORING. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 75 LB. BENTONITE CHIPS

			CAT DYNAMIC CON	E LO	DG	Page 1 of 1
The Ohio Depa		-		D		102124
Office of Geote		umbus, Ohio 432	273	P.	ROJECT NUMBER: DATE STARTED:	<u>102124</u> 07-10-2017
1000 west blo	au Sueer, Coi	1000 100	225	D	ATE COMPLETED:	
HOLE #:	D-001-1-17			D.		07 10 2017
		. Binkley, & A.	Jalbrzikowski	SURF	ACE ELEVATION:	793.0
	DEL-315-5.0				R ON COMPLETION:	none observed
LAT/LONG:	40.20625117	6,-83.059052512	2	Н	AMMER WEIGHT:	35 lbs.
LOCATION:	Delaware Co	ounty, Ohio		-	CONE AREA:	10 sq. cm
	BLOWS	RESISTANCE			TESTED CO	
DEPTH	PER 10 cm	0	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-	1	4.4	•	1	VERY LOOSE	VERY SOFT
-	2	8.9	••	2	VERY LOOSE	SOFT
- 1 ft	3	13.3	•••	3	VERY LOOSE	SOFT
-	5	22.2	•••••	6	LOOSE	MEDIUM STIFF
-	7 25	31.1	•••••	8	LOOSE	MEDIUM STIFF
- 2 ft	25	111.0	••••••	25+	DENSE	HARD
-						
- 3 ft						
- 1 m						
- - 4 ft						
- 4 π						
-						
- 5 ft						
- 5 II						
-						
- 6 ft						
- 011						
- 2 m						
- 2 m - 7 ft						
- / It						
-						
- 8 ft						
- 011						
- 9 ft						
<i>y</i> n						
- 3 m 10 ft						
_						
_						
- 11 ft						
_						
- 12 ft						
12 11						
_						
- 4 m 13 ft						
τιι 1 <i>3</i> π						
	1		1	I		

LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM.

			CAT DYNAMIC CON	EL	OG	Page 1 of 1
The Ohio Depart		-		D	ROJECT NUMBER:	102124
Office of Geote		umbus, Ohio 432	222	P	DATE STARTED:	
1000 West Blue	au Sileei, Col	unious, Onio 432	.25	Л	ATE COMPLETED:	
HOI F #·	D-002-1-17			D	ATE COMILETED.	07-10-2017
		. Binkley, & A. J	albrzikowski	SURF	ACE ELEVATION:	791.7
	DEL-315-5.0				R ON COMPLETION:	none observed
		5,-83.059606556			AMMER WEIGHT:	35 lbs.
LOCATION:				•	CONE AREA:	10 sq. cm
				-		
	BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-	3	13.3	•••	3	VERY LOOSE	SOFT
-	10	44.4	•••••	12	MEDIUM DENSE	STIFF
- 1 ft	5	22.2	•••••	6	LOOSE	MEDIUM STIFF
-	4	17.8	•••••	5	LOOSE	MEDIUM STIFF
_	6	26.6	•••••	7	LOOSE	MEDIUM STIFF
- 2 ft	6	26.6	•••••	7	LOOSE	MEDIUM STIFF
-	14	62.2	••••	17	MEDIUM DENSE	VERY STIFF
-	12	53.3	•••••	15	MEDIUM DENSE	STIFF
- 3 ft	25	111.0	•••••	25+	DENSE	HARD
- 1 m	20	111.0		20	DEROE	millo
-						
- 4 ft						
- 5 ft						
- 511						
-						
- 6 ft						
0 11						
- 2 m						
- 7 ft						
- / 11						
- 8 ft						
- 011						
-						
- - 9 ft						
- 911						
⁻						
- - 3 m 10 ft						
- 5 111 10 10						
-						
⁻						
11.0						
- 11 ft						
-						
-						
- 12 ft						
-						
-						
- 4 m 13 ft						

LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM.

APPENDIX A.2 DEL-315-6.40

PROJECT:	DEL-	315-06.40 SLIDE	DRILLING FIRM / C SAMPLING FIRM /			ODOT / CA		- 1	L RIG: MER:		CME 55 TF			STAT ALIG							RT. R 315		ATION ID 1-0-17
PID: 102124		N/A	DRILLING METHO			' HSA / NQ2	2	- 1	BRATI		-	6/1/17		ELEV			806.8					5.5 ft.	PAGE
START:7/1				DD:		PT / NQ2			RGY R			77		LAT /							.06474	19	1 OF 1
	MA	TERIAL DES			ELEV.	DEPT	HS	SPT/ RQD	N ₆₀		SAMPLE			GRAD			<u> </u>		ERB	-		ODOT CLASS (GI)	BACK
ASPHALT (12	0")	AND NOT	ES		806.8		1	RQD		(%)	ID	(tst)	GR	CS	FS	SI	CL	LL	PL	PI	WC	02400 (01)	
ASPHALT (12	2)				805.8			1															
			VN MOTTLED, SILT	V//			- 1 -																Carlos 1 L
			NTS, LITTLE SAND, , DAMP TO MOIST				- 2 -	3	9	11	SS-1A	2.00			_	_	_	_	_		16	A-6a (V)	7215
		AL TO ILST)	, DAIVIF TO WOIST					4	Ŭ		00-17	2.00									10	A-00 (V)	1 EV 1 E
																							20000
@3.5'; NO RE	ECOVERY, I	AUGER SAMI	PLE TAKEN	\///			- 4 -	3	12	0	SS-2A	_	-	_	-	-	_	-	_	_	17	A-6a (V)	27 - 17
								5															H L CAL
				\///			- ·	-															X X TZ
							F 6 T	9															
				\///			[- 7 -	7	18	44	SS-3A	1.50	21	7	13	32	27	28	17	11	18	A-6a (5)	900 ada
							⊢ [·] I	7															
							8 -																
@8.5' - 10.0';	ENCOUNT	ERED BOULD	DERS/COBBLES				- 9 -	4 7	45		00.44	4 50									40	A 0 - 0.0	A Vingth
						W 796.8	-	5	15	28	SS-4A	1.50	-	-	-	-	-	-	-	-	18	A-6a (V)	North And
							- 10 -																X L COOL
					795.8		- 11 -	0															- 400 - 40 - 40 - 40 - 40 - 40 - 40 - 40
			DISH BROWN T H SAND, SILT, AND			▼ 794.8		3	15	78	SS-5A	-	46	13	10	17	14	34	20	14	23	A-2-6 (1)	
CLAY, MOIS							12	4					_					-			_	- ()	12 Acres 12
							- 13 -	-															4 Las
				95 95				3															Restand
							- 14 -	2 14	21	22	SS-6A	-	-	-	-	-	-	-	-	-	17	A-2-6 (V)	7 1 2
				005			- 15 -	14															
				$\mathcal{O}^{\mathbb{D}}$	790.7	TR	- 16 -																
			TELY WEATHERED,			K	-																1>
			INE, FOSSILIFEROUS, ED. OPEN. VERY				- 17 -																J L Varge
ROUGH; BLC							- 18 -	37		95	NQ2-1											CORE	12 13 K, Vites
								0,			I TOOL I											CORE	J > J >
@ 18.7' - 19.0	0'; γ = 164 j	ocf; Qu = 13,5	i63 psi				- 19 -																Fait and
							- 20 -																
																							HARD 1 4
							_ 21 -																A Valence
							- 22 -																
				<u>⊢</u> ⊥																		oc	The The
@ 23.2' - 23.5	5' w = 162 -	$cf \cap u = 1/4$	80 nei	H-			23 -	88		97	NQ2-2											CORE	Stand the
w 23.2 - 23.3	5, 7 - 103	JUI, QU - 14, I	oa hai	H-			- 24 -																
																							TLAT
					781.3	FOB-	- 25 -	1															<000 < 100

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 2/13/18 14:16 - X:IGINTPR
--

NOTES: LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 100 LB. BENTONITE CHIPS

	ORILLING FIRM / OPERA CAMPLING FIRM / LOGG		ODOT / CAREY		DRILL RIG: <u>CME 55 TRUCK</u> HAMMER: <u>CME AUTOMATIC</u>						ION /	EXPLORATION II B-002-0-17							
	RILLING METHOD:		HSA / NQ2		HAMMER: CME AUTOMATIC ALIGNMENT: CENTERLINE OF CALIBRATION DATE: 6/1/17 ELEVATION: 807.9 (MSL) EQ								9.0 ft.	PAC					
	SAMPLING METHOD:		PT / NQ2			ATIO		77		LAT / LONG: 40.226824, -83.0640									1 OF
MATERIAL DESCRIPTION	N	ELEV.	DEPTHS	SPT/	NI	REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERB	ODOT	BA		
AND NOTES		807.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
ASPHALT (12")	\times	806.9	_	-															4 L
VERY STIFF, BROWN, SILTY CLAY, SOME SA		_000.3_	- 1	-															1990 177 - 1
STONE FRAGMENTS, DAMP			- 2	5 14 9	30	56	SS-1A	3.50	17	13	16	24	30	37	17	20	15	A-6b (8)	
/ERY DENSE, GRAY, GRAVEL AND STONE F		804.4	- 3	8															
WITH SAND AND SILT, TRACE CLAY, DAMP			- 4 - - 5	25	67	56	SS-2A	-	51	11	12	20	6	NP	NP	NP	6	A-2-4 (0)	
@6.0'; DENSE, BROWN			- - 6 - 7	- 11 12 24	46	89	SS-3A	-	41	13	13	25	8	NP	NP	NP	7	A-2-4 (0)	
		798.9	- 8 - - 78 9	35	-	100	SS-4A	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)	
LIMESTONE, LIGHT GRAY, MODERATELY WE STRONG, THIN BEDDED, CRYSTALLINE, SLIC STYLOLITIC, BEDDING, MODERATELY FRAC VERY ROUGH; BLOCKY, GOOD; RQD 25%, R	GHTLY		<u> </u>)		93	NQ2-1											CORE	
@ 13.3' - 13.6'; γ = 165 pcf; Qu = 14,672 psi			- 13 - 14																
@ 16.4' - 16.8'; γ = 163 pcf; Qu = 10,563 psi			- 	5 — 54 7 —		92	NQ2-2											CORE	N LUN L N L N
		788.9																	

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 2/13/18 14:16 - X:\GINT\PR	NOTES: LAT/LONG FROM OGE HANDHELD
	NOTES: LAT/LONG FROM OGE HANDHELD

 NOTES:
 LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING.

 ABANDONMENT METHODS, MATERIALS, QUANTITIES:
 AUGER CUTTINGS MIXED WITH 70 LB. BENTONITE CHIPS

		ATOR: <u>ODOT / CAREY</u> DRILL RIG: <u>CME 55 TRUCK</u> STATION / OFFSET: <u>1345+40, 4</u> GER: ODOT / MCLEISH HAMMER: CME AUTOMATIC ALIGNMENT: CENTERLINE OF S										EXPLOR B-003	ATION IE 3-0-17							
PID: 102124 SFN: N/A [DRILLING METHOD:				CALIBRATION DATE:6/1/17						ELEVATION: 808.6 (MSL) EOB: 20).5 ft.	PAGE	
START: 7/15/17 END: 7/15/17 S	Sampling Method:	S	PT / NQ2		ENERGY RATIO (%):77						LAT / LONG: 40.227234, -83.06461						3	1 OF 1		
MATERIAL DESCRIPTIO AND NOTES	DN .	ELEV. 808.6	DEPTH	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID			GRAD cs		N (%) SI) CL	ATT LL	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (12")	\sim	807.6																		5000 < 19 - 100 1880000
VERY STIFF, DARK BROWN, SILTY CLAY , "A FRAGMENTS, LITTLE SAND, DAMP	AND" STONE	805.1		- 1 - - 2 - - 3 -	7 4 7	14	67	SS-1A	4.00	38	9	10	20	23	39	17	22	17	A-6b (5)	
VERY DENSE, BROWN, GRAVEL AND STON WITH SAND AND SILT, TRACE CLAY, DAMP		000.1		F 4 T	8 55	-	83	SS-2A	-	-	-	-	-	-	-	-	-	7	A-2-4 (V)	
@6.0'; MEDIUM DENSE				- 5 - - 6 - - 7 -	14 11 6	22	100	SS-3A	-	44	14	12	22	8	NP	NP	NP	8	A-2-4 (0)	
VERY DENSE, GRAY, GRAVEL AND STONE I WITH SAND, LITTLE SILT, TRACE CLAY, DAM		800.1		- 8 - - 9 - - 10 -	27 31 42	94	17	SS-4A	-	54	14	9	17	6	NP	NP	NP	3	A-1-b (0)	
LIMESTONE, LIGHT GRAY, MODERATELY W VERY STRONG, THIN BEDDED, CRYSTALLIN FOSSILIFEROUS, SLIGHTLY STYLOLITIC, BE FRACTURED, OPEN, VERY ROUGH; VERY B RQD 45%, REC 100%. @12.5'; SLIGHTLY WEATHERED, FRACTURE MODERATELY FRACTURED, BLOCKY, GOOD @ 14.6' - 14.9'; γ = 164 pcf; Qu = 16,880 psi	NE, EDDING, HIGHLY BLOCKY, FAIR; ED TO	798.1	TR	- 11 - - 12 - - 13 - - 13 - - 14 - - 15 -	18		100	NQ2-1											CORE	
@ 18.1' - 18.5'; γ = 164 pcf; Qu = 15,331 psi @18.7'; CLAY INFILLING @19.2' - 19.3'; CLAY INFILLING		788.1		- 16 - - 17 - - 17 - - 18 - - 19 - - 20 -	72		100	NQ2-2											CORE	

NOTES: LAT/LONG FROM OGE HANDHELL

 NOTES:
 LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING.

 ABANDONMENT METHODS, MATERIALS, QUANTITIES:
 AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

PROJECT: DEL-315-06.40	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODOT / BIN ODOT / A			DRILL RIG: <u>ACKER XLS TRACK</u> HAMMER: ACKER AUTOMATIC					STATION / OFFSET: <u>1346+80, 20' RT.</u> ALIGNMENT: CENTERLINE OF SR 315								EXPLORATIO B-004-0-1	
PID: 102124 SFN: N/A	DRILLING METHOD:	3.25"	CALIBRATION DATE: 6/1/17						ELEVATION: 807.2 (MSL) EOB:							2.0 ft.	PAC			
START: 7/15/17 END: 7/15/17	SAMPLING METHOD:		PT / NQ2		ENERGY RATIO (%): 81						LAT / LONG: 40.227619, -83.0645							.06454	9	10
MATERIAL DESCRIPT		ELEV.		SPT/		REC	SAMPLE	HP		GRADATION			(%) ATTERBE					ODOT	BA	
AND NOTES		807.2	DEPTH	15	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	
TOPSOIL (6") VERY STIFF, DARK BROWN, SILTY CLAY , ORGANIC (LOI = 4.9%), DAMP		806.7																		
CROANIC (LOI - 4.070), DANI				2 	2 3 4	9	44	SS-1A	3.50	19	26	18	27	10	40	19	21	18	A-6b (3)	
				- 4 -	2 6 20	35	28	SS-2A	2.00	-	-	-	-	-	-	-	-	18	A-6b (V)	
DENSE TO VERY DENSE, BROWN AND RE	EDDISH BROWN,	801.2		- 5 - - 6 -	9															
SANDY SILT, SOME STONE FRAGMENTS, DAMP TO MOIST	SOME CLAY,			- 7 -	17 19	49	56	SS-3A	1.50	35	6	10	23	26	NP	NP	NP	13	A-4a (3)	
				- 8 - - 9 -	1 6 50/4"	-	45	SS-4A	1.00	-	-	-	-	-	-	-	-	21	A-4a (V)	
		705.2		10 11 -	1 _50/1",2	-	14	SS-5A	-	-	-	-	-	-	-	-	-	9	A-4a (V)	4 4 2 2 2 2 2
LIMESTONE, LIGHT GRAY, MODERATELY STRONG, THIN BEDDED, FOSSILIFEROUS PETROLIFEROUS, BEDDING, MODERATEL OPEN, VERY ROUGH; BLOCKY, GOOD; RC @ 14.4' - 14.8'; γ = 162 pcf; Qu = 11,969 psi	S, STYLOLITIC, LY FRACTURED, QD 45%, REC 96%.	795.2	—TR	- 12 - - 13 - - 14 -	0		100	NQ2-1											CORE	
				15 16 17 -	63		94	NQ2-2											CORE	
@17.8' - 18.0'; HIGH ANGLE FRACTURE				18 - 19 -																
@ 20.4' - 20.8'; 	i			20 - 21	80		93	NQ2-3											CORE	

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 2/13/18 14:16 - X:\GINT)PR	
	NOTES: LAT/LONG FROM OGE HANDHELD

 NOTES:
 LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING.

 ABANDONMENT METHODS, MATERIALS, QUANTITIES:
 AUGER CUTTINGS MIXED WITH 75 LB. BENTONITE CHIPS

PROJECT: DEL-315-06.40 DRILLING FIRM / OPERATOR: ODOT / CAREY TYPE: LANDSLIDE SAMPLING FIRM / LOGGER: ODOT / MCLEISH PID: 102124 SFN: N/A DRILLING METHOD: 3.25" HSA / NQ2						HAMMER: <u>CME AUTOMATIC</u> ALIGNMENT: <u>CENTERLINE OF SR 315</u>								ATION II 5-0-17 PAGE						
PID: <u>102124</u> SFN: <u>N/A</u> START: 7/15/17 END: 7/15/17	DRILLING METHOD: SAMPLING METHOD:		<u>HSA / NQ2</u> PT / NQ2				ON DA		<u>6/1/17</u> 77		_ ELEVATION: <u>810.2 (MSL)</u> EOB: LAT / LONG: 40.228764, -83.0									1 OF 1
MATERIAL DESCRIPT AND NOTES	ION	ELEV. 810.2	DEPTHS	6	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRADATION (%) CL	ATT	ERB	ERG PI	wc	ODOT CLASS (GI)	BACK
ASPHALT (14")	\sim		_				(/0)		(101)	OIX	00	10	01	UL						< 0000 < 7 - 000 8 - 000
VERY STIFF, BROWN, SANDY SILT , SOME STONE FRAGMENTS, DAMP	CLAY, LITTLE	<u>809.0</u>		- 1 - - 2 - - 3 -	³ 4 6	13	56	SS-1A	3.00	16	16	16	25	27	34	28	6	15	A-4a (3)	
@3.5'; SOME STONE FRAGMENTS			-	- 4 -	3 6 12	23	44	SS-2A	-	-	-	-	-	-	-	-	-	14	A-4a (V)	
VERY DENSE, BROWN AND GRAY, GRAVI FRAGMENTS WITH SAND , LITTLE SILT, TF DAMP		804.2 802.7		- 6 - 7	37 18 31	63	33	SS-3A	-	66	10	7	13	4	NP	NP	NP	6	A-1-b (0)	
LIMESTONE, BROWNISH GRAY, MODERA WEATHERED, VERY STRONG, THIN BEDD CONTAINS CLAY INFILLING, JOINTED, FR VERY ROUGH; VERY BLOCKY, POOR; RQ @8.1' - 16.8'; HIGH ANGLE FRACTURE WIT AND RUST STAINING	ED, CRYSTALLINE, ACTURED, OPEN, D 8%, REC 100%.			- 8 - 9 - 10 - 11 - 12	0		100	NQ2-1											CORE	
				- 13 - 14 - 15 - 16 - 17	15		100	NQ2-2											CORE	
@16.8'; MODERATELY FRACTURED @ 16.8' - 17.1'; γ = 167 pcf; Qu = 15,896 ps		792.7	EOB	1/ -																En L'ell

NOTES: LAT/LONG FROM OGE HANDHELL

 NOTES:
 LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING.

 ABANDONMENT METHODS, MATERIALS, QUANTITIES:
 AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

PROJECT: DEL-315-06.40 TYPE: LANDSLIDE PID: 102124 SFN: N/A START: 7/15/17 END: 7/15/17	SAMPLING FIRM / LOGGER: ODOT / AJ H DRILLING METHOD: 3.25" HSA / NQ2 C SAMPLING METHOD: SPT / NQ2 E					HAMMER: <u>CME AUTOMATIC</u> CALIBRATION DATE: <u>6/1/17</u>					STATION / OFFSET: 1356+38, 5' LT. ALIGNMENT: CENTERLINE OF SR 315 ELEVATION: 810.0 (MSL) LAT / LONG: 40.230148, -83.063919								B-006	ATION ID 5-0-17 PAGE 1 OF 1
MATERIAL DESCRIPT AND NOTES	ΠΟΝ	ELEV. 810.0	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR			N (%) SI) CL	ATT LL	ERBE	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (11") & BASE (2") MEDIUM DENSE, BROWN, STONE FRAGN SAND AND SILT , LITTLE CLAY, DAMP LIMESTONE, LIGHT GRAY, SLIGHTLY WEJ STRONG, THIN BEDDED, CRYSTALLINE, E MODERATELY FRACTURED, OPEN, VERY GOOD; RQD 40%, REC 100%. @ 7.9' - 8.0'; CLAY SEAM @ 8.5' - 8.9'; γ = 167 pcf; Qu = 17,676 psi	ATHERED, VERY BEDDING,	808.9 803.9 798.7	TR		17 7 4 17 21 50 \$0/1" 40	14 91	44	SS-1A	1.50	- 44	- 13	- 15	- 17	- 11	22	- 17	- 5	11	A-2-4 (V) A-2-4 (0) (A-2-4 (V) CORE	

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 2/13/18 14:16 - X:\GINTIPR	
NOTES: LAT/LONG FROM OGE HANDHELD	LD (

 NOTES:
 LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING.

 ABANDONMENT METHODS, MATERIALS, QUANTITIES:
 AUGER CUTTINGS MIXED WITH 25 LB. BENTONITE CHIPS
ART: 7/1	SFN:		E N/A		ORILLIN	IG MET	THOD	:	HAND	ODO AUGEF	R / NX		CALI	BRATI	CN ON DA		DMATIC 6/1/17	;	ELEVA	MEN	T: <u>CE</u> N: <u>802</u>	NTEF	ISL)	EOB:	2	 2.0 ft.	6-1-17 PAGE 1 OF
			7/10/17 AL DESCI		SAMPLI	NG ME	ETHO		HA ELEV.	ND AUC			ENEF		ATIO (%): SAMPL	77 F HP	_	LAT / L GRADA					51, -8 BERG	3.0637		
		A	ND NOTE	ES					802.1	DE TR	EPTHS		RQD	N ₆₀	(%)	ID			CS	FS	SI CI	. LL		- PI		ODOT CLASS (GI)	DON
Imestone , Trong, Thi	N BEDDE	ED, CR	YSTALLIN	NE, BED	DDING,						F	1 -	21		100											CORE	
IODERATEL OOD; RQD 2	20%, REC	C 100%			ough;	BLOCI	KY,		800.1	EOE	F		21		100											CORE	
0 1.4' - 1.8';	r = 166 p	cf; Qu =	= 17,037 p	psi								-2						-			·	-		-			

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 2/13/18 14:16 - X:GINTIPR
--

NOTES: LAT/LONG/ELEV FROM OGE HANDHELD GPS UNIT. HOLE DRY BEFORE CORING. ABANDONMENT METHODS, MATERIALS, QUANTITIES: NOT RECORDED

PROJECT: DEL-315- TYPE: LANDSLID PID: 102124 SFN: START: _7/15/17 END:		DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER:	ODOT / MCI ODOT / A ' HSA / NQ2 PT / NQ2	J	HAM CALI	MER: BRATI	-			_	STAT ALIGN ELEV LAT /	NMEN ATIO	NT: N:{	CEN 811.2	TERL 2 (MS	INE (L) E	of Sf Eob:	R 315	EXPLOR B-007 2.7 ft. 35	
	RIAL DESCRIPT AND NOTES	10N	ELEV. 811.2	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD	ATIO FS) CL	ATT LL	ERBE	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (18") STIFF TO VERY STIFF, RED "AND" STONE FRAGMENTS	DDISH BROWN,		809.7	-	 - 1 - 2 - 2	8 16 10	33	28	SS-1A	2.00			11	19	17	27	16	11	10	A-6a (0)	
					- 3 - - 4 - - 5 -	4 4 5	12	44	SS-2A	1.50	-	-	-	-	-	-	-	-	13	A-6a (V)	
@6.0'; WITH WOOD FRAGM	IENTS, MOIST		803.4		- 6 -	10 6 50/4"	-	58	SS-3A	1.00	-	-	-	-	-	-	-	-	18	A-6a (V)	
LIMESTONE, GRAY, SLIGHT STRONG, THIN BEDDED, CI STYOLITIC, BEDDING AND FRACTURED, OPEN, VERY 72%, REC 88%. @ 8.7' - 9.0'; ¥ = 168 pcf; Qu @9.4' - 10.1'; CLAY SEAM @11.3' - 11.7'; HIGH ANGLE	RYSTALLINE, S JOINTED, MOD ROUGH; BLOC J = 21,096 psi	ELIGHTLY	798.5	TR	- 8 - - 9 - - 10 - - 11 - - 12 -	72		88	NQ2-1											CORE	

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 2/13/18 14:16 - X:\GINT)PR	
	NOTES: LAT/LONG FROM OGE HANDHELD

 NOTES:
 LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM. HOLE DRY BEFORE CORING.

 ABANDONMENT METHODS, MATERIALS, QUANTITIES:
 AUGER CUTTINGS MIXED WITH 75 LB. BENTONITE CHIPS

24
2017
2017
6
erved
s.
cm

WILDCAT DYNAMIC CONE LOG

Page 1 of 1

	BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-	0	0.0	0'-0.7'; LIMESTONE FRAGMENTS	0	VERY LOOSE	VERY SOFT
-	0	0.0		0	VERY LOOSE	VERY SOFT
- 1 ft	0	0.0	0.7'-1.8'; LIMESTONE BOULDERS	0	VERY LOOSE	VERY SOFT
-	0	0.0		0	VERY LOOSE	VERY SOFT
-	0	0.0		0	VERY LOOSE	VERY SOFT
- 2 ft	0	0.0	1.8'-3.5'; BROWN STONE FRAGMENTS WITH SAND, SILT, AND CLAY, DAMP	0	VERY LOOSE	VERY SOFT
-	0	0.0	WITH SAND, SILT, AND CLAT, DAMP	0	VERY LOOSE	VERY SOFT
-	0	0.0		0	VERY LOOSE	VERY SOFT
- 3 ft	0	0.0		0	VERY LOOSE	VERY SOFT
- 1 m	0	0.0	WILDCAT DCP STARTED @3.5'	0	VERY LOOSE	VERY SOFT
-	12	46.3	•••••	13	MEDIUM DENSE	STIFF
- 4 ft	24	92.6	••••••	25+	MEDIUM DENSE	VERY STIFF
-	15	57.9	•••••	16	MEDIUM DENSE	VERY STIFF
-	25	96.5	•••••	25+	MEDIUM DENSE	VERY STIFF
- 5 ft						
-						
-						
- 6 ft						
-						
- 2 m						
- 7 ft						
-						
-						
- 8 ft						
-						
-						
- 9 ft						
-						
-						
- 3 m 10 ft						
-						
-						
-						
- 11 ft						
-						
-						
- 12 ft						
-						
-						
- 4 m 13 ft						

DEL-315-6.40 B-003-0-17 10.5 to 20.5'

and a land the state of the second state of the second state of the STAINLESS STEEL HA State State State State State State State State State State

12 13 14 15 16 17 18 19 30 21 22 HELIX' NON-SKID

APPENDIX A.3 DEL-315-8.10

Constraint Constraint <th></th> <th></th> <th>RM / OPERATOR: RM / LOGGER:</th> <th>ODOT / CAREY ODOT / CHUDZIK</th> <th></th> <th>L RIG</th> <th></th> <th>+45, 8' ∩E SE</th> <th>1</th> <th>PLORA B-001</th> <th></th>			RM / OPERATOR: RM / LOGGER:	ODOT / CAREY ODOT / CHUDZIK		L RIG											+45, 8' ∩E SE	1	PLORA B-001	
START: 7/19/17 END: 7/19/17 SAMPLING METHOD: SPT / NO2 ENERGY RATIO (%): TT LAT / LONG: 40.251238.83.3061525 MATERIAL DESCRIPTION AND NOTES ELEV. 841.7 DEPTHS SPT / No RCC (%) ID ID IAT (LONG: 40.251238.83.3061525 ASPHALT (23') BATTERIAL DESCRIPTION AND NOTES ELEV. 841.7 DEPTHS SPT / No (%) ID ID IS I.1 PL														-						PAG
MATERIAL DESCRIPTION AND NOTES ELEV. 841.7 DEPTHS SPT/ RQD N ₆₀ REC (%) SAMPLE ID HP GRADATION (%) ATTERBERG IL V// IL ATTERBERG IL V/// IL ATTERBERG IL V/// IL ATTERBERG IL V/// IL ATTERBERG IL V//// IL V////IL ATTERBERG IL V////IL ATTERBERG IL V////IL ATTERBERG IL V////IL ATTERBERG IL V////IL ATTERBERG IL V////IL ATTERBE													-	041					. <u> </u>	1 OF
AND NOTES B41.7 DEPTHS ROD No. (%) ID (ts) GR CS FS SI CL LL PL PI WC CLÄSS (a) ASPHALT (23') 339.8				ent/						GRAD				ΑΤΤ					S04	BA
STIFF, DARK BROWN, SANDY SILT, SOME CLAY, LITTLE GRAVEL, DAMP 839.8 9 5 12 50 SS-1A 2.00 - - - - 15 A4a (V) @6.0'; VERY STIFF - - - - - - - - - - - - - - 15 A4a (V) @6.0'; VERY STIFF - 15 A4a (V) @6.0'; VERY STIFF - - - - - - - - - - - 15 A4a (V) 833.2 - - - - - - - - 15 A4a (V) 11TLE GRAVEL, DAMP - - - - - - - 15 A-6a (V) 111TLE GRAVEL, DAMP - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>/</td><td></td><td></td><td></td><td>wc</td><td>CLASS (GI)</td><td>ppm</td><td></td></t<>													/				wc	CLASS (GI)	ppm	
STEF: DARK BROWN, SANDY SILT, SOME CLAY, LITTLE GRAVEL, DAMP @6.0; VERY STIFF @6.0; VERY STIFF B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B27.7 TR B27.7 TR B27.7 TR B27.7 TR B27.7 TR B27.7 TR B27.7 TR B27.7 <td></td> <td>A.C</td>																				A.C
STEF. DARK BROWN, SANDY SILT, SOME CLAY, LITTLE GRAVEL, DAMP @6.0'; VERY STIFF @6.0'; VERY STIFF B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, LITTLE GRAVEL, DAMP B33.2 B33.4 B27.7 TR B27.7 TR B27.7 TR B27.7 TR B27.7 <td></td> <td>- ABD</td>																				- ABD
$\begin{array}{c} 2 \\ \text{matrix} 5 \\ \text{matrix} F, \text{ DARK BROWN, SANDY SILT, SOME CLAY, \\ \text{LITTLE GRAVEL, DAMP} \end{array}$ $\begin{array}{c} 2 \\ \text{matrix} 5 \\ \text{matrix} 4 \\ \text{matrix} 2 \\ $			839.8																	× ×
$ \begin{array}{c} 3 \\ @6.0; VERY STIFF \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ LITTLE GRAVEL, DAMP \\ \\ \\ HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		CLAY,			12	50	SS-1A	2.00	-	-	-	-	-	-	-	-	15	A-4a (V)	-	North Contraction
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	МР			- 3 - 4	1															~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 2																21
@6.0'; VERY STIFF HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DARK BROWN, SILTAND CLAY, LITTLE SAND, HARD, TARK BROWN, SILTAND CLAY, LITTLE SAND, JITTLE GRAVEL, DARK BROWN, SILTAND CLAY, SUBHTLY WEATHERED, JITTLE GRAV, S					5	56	SS-2A	1.50	10	8	13	40	29	27	18	9	13	A-4a (7)	-	200
26.0°; VERY STIFF 833.2 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 5 6 14 67 SS-3A 2.50 15 A-4a (V) - 8				- 5 - 2	2															- 7
26.0°; VERY STIFF 833.2 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 4ARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 4 4 4 4 4 5 6 14 67 SS-3A 2.50 - - - - - - - - - - - - -																				TX TH
HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 9 4 7 22 94 9 4 9 4 10 10 10 10 10 10 11 5 6 18 833.2 9 4 7 10 10 10 10 10 10 10 10 11 5 6 18 83 SS-5A 4.00 11 6 8 13 13 13 13 14 - 14 - 15 - 16 16 16 16 16 16 16 16 16 16				6 2																L.
MARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, ITTLE GRAVEL, DAMP 9 4 9 4 10 10 10 10 11 5 6 18 833.2 6 11 5 6 18 833.2 11 5 6 10 10 11 5 5 6 12 6 6 18 833.2 11 11 5 5 6 12 6 83 SS-5A 4.00 11 6 18 83 SS-6A 4.50 - 13 - 14 - 15 - 16 - 16 - 16 - 16 -						67	SS-3A	2.50	-	-	-	-	-	-	-	-	15	A-4a (V)	-	\$0 17
HARD, DARK BROWN, SILT AND CLAY, LITTLE SAND, JITTLE GRAVEL, DAMP 9 4 9 4 10 10 10 10 10 10 10 10 11 5 6 18 83 SS-5A 4.00 11 6 12 33 38 31 17 14 A-6a (V) 11 5 6 18 83 SS-5A 4.00 11 6 12 33 38 31 17 14 A-6a (V) 13 13 14 - 50/4" - 83 SS-6A 4.50 - - - 15 A-6a (V) 13 13 14 - 6 83 SS-6A 4.50 - - - 15 - - - 15 A-6a (V) 14 - 50/4" - 83 SS-6A 4.50 - - - - 15 - - - -																				
LITTLE GRAVEL, DAMP			833.2	- 8 -																A.
111LE GRAVEL, DAMP 10 10 22 94 SS-4A 4.50 - - - 15 A-6a (V) 10 10 10 22 94 SS-4A 4.50 - - - 15 A-6a (V) 11 5 6 18 83 SS-5A 4.00 11 6 12 33 38 31 17 14 A-6a (9) 12 6 18 83 SS-6A 4.50 - - - 15 A-6a (V) 14 - 50/4" - 83 SS-6A 4.50 - - - 15 A-6a (V) 14 - 50/4" - 83 SS-6A 4.50 - - - 15 A-6a (V) 15 - 16 - - - - - - - - - 15 A-6a (V) 16 - - - - - - - - - - -		TLE SAND,		_ ₉ _ 4																ΞĘ.
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, /ERY STRONG, THIN BEDDED, PYRITIC, CRY STALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 88%. 11 16 16 16 16 16 16 16 16 16	MP					94	SS-4A	4.50	-	-	-	-	-	-	-	-	15	A-6a (V)	-	
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, VERY STRONG, THIN BEDDED, PYRITIC, CRYSTALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 18%. 14 16 16 16				- 10 - 10	<u> </u>															
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, VERY STRONG, THIN BEDDED, PYRITIC, CRYSTALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 18%. 14 16 16 16																				
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, /ERY STRONG, THIN BEDDED, PYRITIC, CRYSTALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 88%. 9 16 11 16 51; m = 166 ppf; Ou = 20 451 ppi				5	10	0.0	00 54	1 00	44		10	~~	20	24	47	44		A C= (0)		
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, /ERY STRONG, THIN BEDDED, PYRITIC, CRYSTALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 827.7 16				- 12 - ⁰ 8	3	83	55-5A	4.00	11	6	12	33	38	31	17	14	14	А-6а (9)	-	
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, /ERY STRONG, THIN BEDDED, PYRITIC, CRYSTALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 827.7 16				- 12 -																- Sel
IMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, Image: Construction of the second s			007 7	-		02	55 GA	4 50									15	A 60 () ()		
/ERY STRONG, THIN BEDDED, PYRITIC, CRYSTALLINE, JOINT, MODERATELY FRACTURED, DPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 18%.			821.1	-TR-+ 14 -	ϯ∸	<u>83</u>	<u>55-0A</u>	4 <u>.50</u> /	┝╼╯		┝		-	<u>├</u>	┝	┝	15	<u>A-6a (V)</u>		- ad
CRYSTALLINE, JOINT, MODERATELY FRACTURED, 13 PPEN, VERY ROUGH; BLOCKY, GOOD; RQD 70%, REC 16 8%. 16 916 11: 16 51: m = 166 ppf: Qui = 20.451 ppi		INERED,																		18
	T, MODERATELY FRAC																			TR
	I; BLOCKY, GOOD; RQD	D 70%, REC		- 16																
	66 pcf: Qu = 20 451 psi			⊢ <u> </u> –																es à
	50 poi, Qu - 20,401 poi																			
				- 18																ZZ
			822 7																	K K

NOTES: HOLE DRY BEFORE CORING. LAT/LONG/ELEV FROM OGE HANDHELD GPS UNIT. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 75 LB. BENTONITE CHIPS

PROJECT: DEL-315-08.10 TYPE: LANDSLIDE	DRILLING FIRM / C		: ODOT / (ODOT / CH			L RIG: MER:											62, 16 OF SF	<u> </u>	PLORA B-002	ATION ID -0-17
PID: <u>102124</u> SFN: <u>N/A</u>			3.25" HSA / N				ON DATE:		/1/17				-					17.5 f		PAGE
START: 7/19/17 END: 7/20/1	SAMPLING METHC)D:	SPT / NQ2	2	ENE	RGY R	ATIO (%):		77		LAT	LON	IG: _		40.2	25124	9, -83	.061628		1 OF 1
MATERIAL DESCR AND NOTES	PTION	ELEV. 841.6	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIOI FS	N (%) SI		ATT	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	
TOPSOIL (4")		840.1		1 -		(70)		((0))												
STIFF TO VERY STIFF, DARK BROW SOME CLAY, LITTLE GRAVEL, MODE ORGANIC (LOI = 4.2%), DAMP			-	$\begin{array}{c} 2 \\ 3 \end{array} \begin{array}{c} 0 \\ 2 \\ 3 \end{array}$	6	78	SS-1A	2.00	17	10	15	31	27	26	17	9	13	A-4a (5)	-	
			-	$\begin{array}{c}4\\5\end{array}$	8	78	SS-2A	2.50	-	-	-	-	-	-	-	-	17	A-4a (V)	-	
@6.0'; BROWN, TRACE GRAVEL ANI FRAGMENTS, MOIST	STONE			$\begin{array}{c} & - \\ & - \\ & 2 \\ 7 & - \\ & 4 \\ & 5 \end{array}$	12	61	SS-3A	1.50	8	10	20	36	26	26	17	9	19	A-4a (5)	-	
STIFF, BROWN, SILT AND CLAY , SC TRACE GRAVEL AND STONE FRAGM ORGANIC (LOI = 3.8%), MOIST		833.1		8 - 9 - 1 10 - 6	9	67	SS-4A	1.00	5	8	15	40	32	33	20	13	24	A-6a (9)	-	
@11.0'; VERY STIFF, DARK BROWN		829.6	-	$11 \frac{-4}{12}$	28	78	SS-5A	2.00	-	-	-	-	-	-	-	-	28	A-6a (V)	-	
LIMESTONE, LIGHT GRAY, MODERA WEATHERED, VERY STRONG, THIN CRYSTALLINE, JOINT, FRACTURED, ROUGH; BLOCKY, FAIR; RQD 7%, RI @12.8' - 13.1'; CLAY SEAM @13.2' - 16.0'; HIGH ANGLE FRACTU	BEDDED, PYRITIC, DPEN, VERY C 90%.		- 1 1 1 -	13																

NOTES: HOLE DRY BEFORE CORING. LAT/LONG/ELEV FROM OGE HANDHELD GPS UNIT. ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 75 LB. BENTONITE CHIPS

The Ohio Department of Transportation PROJECT NUMBER: 102124 1600 West Broad Street, Columbus, Ohio 43223 DATE STARTED: 08-22-2017 DATE STARTED: 08-22-2017 OB-22-2017 PROJECT: DILL-315-8-10 BS1.7 831.7 ORDERY: DATE STARTED: 08-22-2017 Non-Completen: 08-22-2017 PROJECT: DILL-315-8-10 BLOWS RESISTANCE: SUBFACE LEVATION: 831.7 LATIAONG: 40.24998635-83.060284535 DOI 150 N NON-COHESIVE: 35 lbs. LOCATION: DEWare County, Ohio TESTED CONSISTENCY Non-COHESIVE COHESIVE 0 6 26.6 - 7 NON-COHESIVE COHESIVE 1 6 26.6 - 7 NON-COHESIVE COHESIVE 2 1 12.8 - 25+ VERY DENSE MEDIUM STIFF 1 1 22 97.7 - 25+ DENSE HARD - 3 ft - 25+ DENSE HARD - - 3 ft - - - <th></th> <th></th> <th></th> <th>CAT DYNAMIC CON</th> <th>E LO</th> <th>OG</th> <th>Page 1 of 1</th>				CAT DYNAMIC CON	E LO	OG	Page 1 of 1
1600 West Broad Street, Columbus, Ohio 43223 DATE STARTED: 08-22-2017 HOLE #: D401-1-17 08-22-2017 DATE STARTED: 08-22-2017 HOLE #: D401-1-17 08-22-2017 DATE STARTED: 08-22-2017 PROJECT DH-315-8:10 SURFACE ELEVATION: 331.7 331.7 LATLONG: 40.2498505.83.00028435 HAMMER WEIGHT: 35 lbs. LOCATION: Delaware County, Ohio 0.50 N NON-COHESIVE OOH FUTON: DEPTH PR to cm Kg/cm* 0.50 100 150 N NON-COHESIVE OOH FUTON: 08.00 100 </td <td></td> <td></td> <td></td> <td></td> <td>D</td> <td></td> <td>102124</td>					D		102124
DATE COMPLETED: 08-22-2017 DATE COMPLETED: 08-22-2017 CREW: J. Lautanen & A. Jalbzikowski SURFACE ELEVATION: 831.7 WATER ON COMPLETED: 08-22-2017 DEPTH DI-315-8.10 LOCATION: Delaware County, Ohio DEPTH BLOWS RESISTANCE GRAPH OF CONE RESISTANCE N TESTED CONSISTENCY OBEPTH BLOWS RESISTANCE GRAPH OF CONE RESISTANCE N TESTED CONSISTENCY OBEPTH BLOWS RESISTANCE GRAPH OF CONE RESISTANCE N TESTED CONSISTENCY OBEPTH BLOWS RESISTANCE GRAPH OF CONE RESISTANCE N TESTED CONSISTENCY A 44 19.6 2.5 VERY DENSE HARD - 2 ft - 11.0 - 1 A ft - 2 ft - 2 ft - 2 ft - 2 ft - 2 ft - 2 ft - 2 ft - 2 ft				223	P.		
HOLE #: D-001-1/7 CREW: J. Lautanen & A. Jabrzikowski SURFACE ELEVATION: MATER ON COMPLETION: DEL315-8.10 PROJECT: DEL35-8.10 LATIZONG: 40.2498653: 833.060284535 HAMMER WEIGHT: 35 lbs. 35 lbs. LOCATION: Delaware County, Ohio SURFACE ELEVATION: MATER ON COMPLETION: 10 sg. cm 36 lbs. CONTON: Delaware County, Ohio SURFACE ILEVATION: SURFACE VERSITIANCE TESTED CONSISTENCY NON-COHESIVE OOHSUVE DEPTH PER 10 cm RESISTANCE Kg/cm² GRAPH OF CONE RESISTANCE 0 50 100 150 N TESTED CONSISTENCY NON-COHESIVE MEDIUM STIFF - 6 26.6	1000 west bio	au Street, Col	unious, Onio 432	.25	D		
CREW: I Laumen & A. Jabrzkowski SURFACE ELEXATION: 831.7 PROJECT: JEL:315.8.10. WATE RO COMPLETION: none observed LAT/LONG: 40249985635.83.060284535 CONE AREA: 10 sq. cm DCATION: Delaware County, Ohio St Doc St Doc DEPTH PER 10 cm ResistANCE GRAPH OF CONE RESISTANCE N TESTED CONSISTENCY 0 6 26.6 ************************************	HOLE #·	D-001-1-17			D	THE COMPLETED.	00 22 2017
PROFECT: DEI:15:5:10 (40:24998535:83:0602x4535 WATTR: ON COMENTION: Imme observed HAMMER WEIGHT: Imme observed 35 lbs. LOCATION: Delaware County, Ohio CONE AREA: 10 sq. cm CONE AREA: 10 sq. cm DEPTH PER 10 cm Kg/cm² 0 50 100 150 N NON-COILESIVE CONESTENCY - 6 26.6 ************************************			& A. Jalbrzikows	ski	SURF	ACE ELEVATION:	831.7
LAT/LONG; 40.249985635-83.060284535 LOCATION: Delaware County, Ohio Telaware County, Ohio DEPTH PER 10 cm Kg/cm ² 0 50 100 150 N CONE AREA: CONSISTENCY NON-COHENSIVE COHENSIVE ARD CONSISTENCY NON-COHENSIVE HARD 25+ VERY DENNE HARD VERY STIFF AC 25+ DENNE HARD VERY STIFF HARD 25+ DENNE HARD VERY STIFF HARD 25+ DENNE							
LOCATION: Delaware County, Ohio CONE AREA: 10 sq. cm DEPTH PER 10 cm RESISTANCE GRAPH OF CONE RESISTANCE N TESTED CONSISTENCY 6 26.6 0 50 100 150 N NON-CORESIVE CORESIVE 1 ft 29 128.8 ************************************							
DEPTH BLOWS PLR 10 cm RESISTANCE Kg/cm ² GRAPH OF CONE RESISTANCE 0 50 100 150 N TESTED CONSISTENCY 6 26.6					-	CONE AREA:	10 sq. cm
DEPTH PER 10 cm Kg/cm ² 0 50 100 150 N' NON-COHESIVE COHESIVE MEDIUM STIFF 4 495,4 195,4 - 25 VERY DENSE HARD 22 97,7 - 25 MEDIUM DENSE HARD 22 97,7 - 25 MEDIUM DENSE VERY STIFF 2 ft 111.0 - 25 MEDIUM DENSE VERY STIFF - 3 ft - 11.0 - 25+ DENSE HARD - 3 ft -	_				•		•
6 26.6 7 LOOSE MEDIUM STIFF 1 ft 29 128.8 25+ DENSE HARD 22 97.7 25 111.0 25+ DENSE HARD 25 111.0 - 25+ DENSE HARD - 25 111.0 - - - - 3 ft - - - - - 3 ft - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	NSISTENCY
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	6		•••••	7	LOOSE	MEDIUM STIFF
22 97.7 25 111.0 3 ft 1 m 4 ft 5 ft 6 ft 2 m - 3 m 10 ft - 11 ft - 12 ft - 12 ft - 12 ft - 12 ft - 2 m - 2 m - 2 ft -	-	44	195.4	•••••	25+	VERY DENSE	HARD
25 111.0 25+ DENSE HARD 3 ft 1 m 4 ft 5 ft 6 ft 2 m 7 ft 3 m 10 ft 1 l ft 1 l ft 1 2 ft	- 1 ft	29	128.8	•••••	25+	DENSE	HARD
25 111.0	-	22	97.7	•••••	25+	MEDIUM DENSE	VERY STIFF
3 ft 1 m 4 ft 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-			•••••			
- 1 m - 4 ft - 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	- 2 ft						
- 1 m - 4 ft - 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	-						
- 1 m - 4 ft - 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	_						
- 1 m - 4 ft - 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	- 3 ft						
4 ft 5 ft - 6 ft - 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft							
5 ft 6 ft 2 m 7 ft - 3 m 10 ft - 11 ft - 12 ft	-						
5 ft 6 ft 2 m 7 ft - 3 m 10 ft - 11 ft - 12 ft	- 4 ft						
6 ft 2 m 7 ft 8 ft - 3 m 10 ft - 11 ft - 12 ft	-						
6 ft 2 m 7 ft 8 ft - 3 m 10 ft - 11 ft - 12 ft	_						
6 ft 2 m 7 ft 8 ft - 3 m 10 ft - 11 ft - 12 ft	- 5 ft						
- 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft - 12 ft	- 511						
- 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft - 12 ft							
- 2 m - 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft - 12 ft	- 6 ft						
- 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	- 011						
- 7 ft - 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft	- 2 m						
- 8 ft - 9 ft - 3 m 10 ft - 11 ft - 12 ft							
9 ft - 3 m 10 ft - 11 ft - 12 ft	- / It						
9 ft - 3 m 10 ft - 11 ft - 12 ft	-						
9 ft - 3 m 10 ft - 11 ft - 12 ft	-						
- 3 m 10 ft - 3 m 10 ft - 11 ft - 12 ft	- 8 H						
- 3 m 10 ft - 3 m 10 ft - 11 ft - 12 ft	-						
- 3 m 10 ft - 3 m 10 ft - 11 ft - 12 ft	-						
- 11 ft - 11 ft - 12 ft	- 9 ft						
- 11 ft - 11 ft - 12 ft - 12 ft	-						
- 11 ft - 11 ft - 12 ft - 12 ft	-						
- 12 ft - 12 ft	- 3 m 10 ft						
- 12 ft - 12 ft	-						
- 12 ft - 12 ft	-						
- 12 ft - 12 ft	-						
	- 11 ft						
	-						
	-						
	- 12 ft						
4 m 13 ft	-						
- 4 m 13 ft	-						
	- 4 m 13 ft						

LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP DEM.

APPENDIX B ODOT RESISTIVITY RESULTS

APPENDIX B.1 DEL-315-5.0

DEL-315-5.0 Line 1 Inverted Resistivity Section

DEL-315-5.0 Line 2 Inverted Resistivity Section

DEL-315-5.0 Line 3 Inverted Resistivity Section

Typical resistivity range of earth materials in ohm-meters

Johnson, J. (2003) Application of the Electrical Resistivity Method for Detection of Underground Mine Workings. Monroeville, PA. Retrieved December 17, 2015 from: https://www.fhwa.dot.gov/engineering/geotech/hazards/mine/workshops/ktwkshp/ky0 311.pdf

APPENDIX B.2 DEL-315-6.40

DEL-315-6.40 Exploration Plan 75 150 Feet

DEL-315-6.40 Line 1 Inverted Resistivity Section

Typical resistivity range of earth materials in ohm-meters

Johnson, J. (2003) Application of the Electrical Resistivity Method for Detection of Underground Mine Workings. Monroeville, PA. Retrieved December 17, 2015 from: https://www.fhwa.dot.gov/engineering/geotech/hazards/mine/workshops/ktwkshp/ky0 311.pdf

APPENDIX B.3 DEL-315-8.10

DEL-315-8.10 Line 1 Inverted Resistivity Section

Typical resistivity range of earth materials in ohm-meters

Johnson, J. (2003) Application of the Electrical Resistivity Method for Detection of Underground Mine Workings. Monroeville, PA. Retrieved December 17, 2015 from: https://www.fhwa.dot.gov/engineering/geotech/hazards/mine/workshops/ktwkshp/ky0 311.pdf

APPENDIX C SLOPE STABILITY ANALYSES GSTABL AND UA SLOPE

APPENDIX C.1 DEL-315-5.0

Safety Factors Are Calculated By The Modified Bishop Method

🔏 UA Slope Program Version 2.3 - I:\gt\Projects\D06\Delaware\DEL-315-5.0\Geotechnical\EngData\UA Slope\1272_67.ua3*

Calculated Results	N			Chart (Doub	le-Click for M	fore Options)
	√ Factor of Safety	: 1.93				
	Force per Shaf	7523.807	lb	0	10	20
Acting Point X: 52.500		ft Y: 7.640	ft	U D		
Analysis Unit System				5		
		0		10		
English		O Metric		10		
Number of Vertical Sections and Soil Layers				15		
Vertical Section Num:		15 Soil Layer Num:	2	20		
				•		
Analysis Method				Ý		
◯ Total Stress		Effective Stress				

Soil Properties

	Cohesion (psf)	Friction Angle	Total Unit Weight (pcf)
Layer1	38.0	20.0	100.0
Layer2	135.0	24.0	110.0
Layer3	800.0	30.0	150.0

	Section 1	Section 2	Section 3	Section 4	Section 5	Section 6	Section 7	Section 8	Section 9	Section 10	Section 11	Section 12	Section 13	Section 14
X (ft)	0.00	4.00	13.00	23.00	39.00	42.50	44.50	46.50	50.00	51.00	53.00	55.00	71.00	73.00
Y1 (ft)	0.00	0.00	2.00	1.00	1.00	1.15	1.25	1.35	1.50	2.00	3.75	5.50	13.90	15.00
Y2 (ft)	0.00	0.00	2.00	1.00	1.00	1.15	1.25	1.35	1.50	2.80	5.50	6.60	15.00	15.00
Y3 (ft)	6.00	6.50	7.70	9.00	11.00	11.50	11.50	11.50	12.00	12.10	12.40	12.70	15.00	15.00
Y4 (ft)	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
6														>
	Coordinates	of Crest	X:	50.00 ft	Y:	1.5	0 ft	Co	ordinates of	Toe X:	79.	00 ft	Y:	16.00 ft
Pore Water Pr														

Drilled Shaft Information						Pore Water Pressure																	
O Calculate without Drilled Shaft							Pore Pre	essure Op	tions: ()	No Pore	Pressure	•			O Cons	tant Ratio			Speil	cified phrea	atic surface	•	
O Automatic Load Transfer Factor		Anchor force:	0.00	lb		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7											
Manually Defined Load Transfer Factor		Anchor angle:	0.00		► X (ft)	0.00	13.00	50.50	54.00	66.00	73.00	79.00											
Anchor (On/Off)		Anchor spacing:	0.00	ft	Y (ft)	1.00	2.00	2.00	5.50	12.00	13.00	14.00											
	Auto 🔘 On	● Off	0.000	(n)	Slip Surface																		
Auto Save Data	Xmin 0.00	Diameter:	2.00	ft		Point 1	Point 2	Point 3	Point 4	Point 5	Point 6	Point 7	Point 8	Point 9	Point 10	Point 11	Point 12	Point 13	Point 14	Point 15	Point 16	Point 17	Po
	Xmax 0.00	CTC Spacing:	4.00	ft	▶ X (ft)	44.16	44.29	44.83	45.40	46.00	46.63	47.29	47.98	48.70	49.45	50.22	51.01	51.83	52.67	53.53	54.41	55.31 5	56.2
	XDelta 0.00	X Coordinate:	52.50	ft	Y (ft)	1.24	1.45	2.29	3.11	3.91	4.69	5.44	6.16	6.85	7.52	8.16	8.76	9.34	9.88	10.39	10.86	11.30 1	11.
	0.00				<																		>

Slope Profile Vertical Sections

APPENDIX C.2 DEL-315-6.40
102124 DEL-315-6.40, Sta. 1351+00, B-005-0-17, Water in Soil, Weakened Soil

i:\gt\projects\d06\delaware\del-315-6.40\geotechnical\engdata\gstabl\102124 gstabl analysis_sta 1351+00_iteration 8.pl2_Run By: Andrew Chudzik_2/27/2018_07:50AM

Safety Factors Are Calculated By The Modified Bishop Method

🔏 UA Slope Program Version 2.3 - 1:\gt\Projects\D06\Delaware\DEL-315-6.40\Geotechnical\EngData\UA Slope\102124_Slope Analysis (6.40).ua3*

File Run Options Help

	Calculated Results			
		Factor of Safety:	1.31]
		Force per Shaft:	2264.379	lb
	Acting Point X: 63.440		ft Y: 8.520	ft
	Analysis Unit System			
(● English		O Metric	
	Number of Vertical Sections and Soil Layers			
	Vertical Section Num:	1	0 Soil Layer Num:	4
	Analysis Method			
(◯ Total Stress		Effective Stress	

Chart (Double-Click for More Options)

Slope Profile Vertical Sections

Soil Properties

Drilled Shaft Information

	Cohesion (psf)	Friction Angle	Total Unit Weight (pcf)
Layer1	135.0	24.0	120.0
Layer2	188.0	25.0	122.0
Layer3	0.0	34.0	135.0
Layer4	800.0	30.0	143.0

 \mathbf{k}

Pore Water Pressure

O Calculate without Drilled Shaft					Po	re Pressu	re Options:	○ No Pore	Pressure		() Constant Ratio	Specified phreatic surfa	ce
O Automatic Load Transfer Factor	Anchor force:	0.00	lb		Point 1 P	oint 2 Po	oint 3 Poin	t 4 Point 5						
Manually Defined Load Transfer Factor	Anchor angle:	0.00		► X (ft)	0.00 58	3.06 67	.71 77.39	82.67						
Anchor (On/Off)	Anchor spacing:	0.00	ft	Y (ft)	3.00 3.	00 6.4	11.98	15.00						
	Auto 🔿 On 🖲 Off	0.000	(ŋ)	Slip Surfac	e									
Auto Save Data	Xmin 0.00 Diameter:	2.00	ft		Point 1 P	oint 2 Po	oint 3 Poin	t4 Point5	Point 6	Point 7 F	Point 8			
	Xmax 0.00 CTC Spacing:	2.00	ft	► X (ft)	55.35 56	5.28 59	.52 63.40	67.79	72.53	77.48 8	2.48			
Run	XDelta 0.00 X Coordinate:	63.44	ft	Y (ft)	2.22 3.	84 7.6	64 10.80	13.20	14.77	15.46 1	5.24			

APPENDIX C.3 DEL-315-8.10

102124 DEL-315-8.10, Sta. 1436+25, B-002-0-17

🔏 UA Slope Program Version 2.3 - I:\gt\Projects\D06\Delaware\DEL-315-8.10\Geotechnical\EngData\UA Slope\102124_Slope Analysis (8.10).ua3*

File Run Options Help																	
Calculated Results			Chart (Double	e-Click for Mo	ore Options)											
	Factor of Safety: 1.31																
	Force per Shaft: 5569.685	lb	15			50			1(0			→ X				
Acting Point X: 50.680	ft Y: 25.239	ft	20			* • • •											
Analysis Unit System			25														
English	⊖ Metric		30				A D										
Number of Vertical Sections and Soil Layers			35 - 40 -				0 0 ⁰ 0			_							
Vertical Section Num:	16 Soil Layer Num:	3	45														
Analysis Method			Y														
◯ Total Stress	Interview Stress																
Soil Properties			Slope Profile	Vertical Sect	tions												
Cohesion (psf)	Friction Angle Total Unit	Weight (pcf)		Section 1	Section 2	2 Section	3 Section 4	Section 5	Section 6	Section 7	7 Section	8 Section 9	ection 10) Section 1	1 Section 1	2 Section	13 Section 14
▶ Layer1 108.0	23.0 118.0		► X (ft)	0.00	5.00	8.50	15.00	16.50	18.00	20.50	34.00	40.50	44.50	46.50	62.00	75.50	84.00
Layer2 218.0	25.0 122.0		Y1 (ft)	17.50	18.00	19.50	19.00	19.25	19.50	18.00	17.50	18.02	18.34	18.50	28.50	37.50	39.50
Layer3 800.0	30.0 145.0		Y2 (ft)	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.68	32.93	37.50	39.50
			Y3 (ft)	28.50 50.00	29.06 50.00	29.44 50.00	30.17 50.00	30.33 50.00	30.33 50.00	30.50 50.00	30.50 50.00	32.00 50.00	32.00 50.00	32.35 50.00	35.10 50.00	37.50 50.00	39.50 50.00
			Y4 (ft)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
	ß																
	*v																
			<														>
				Coordinates	of Crest	X:	46.50 f	t Y:	18.	50 ft	(Coordinates o	ofToe X	: 7	5.50 ft	Y:	37.50 ft
Drilled Shaft Information			Pore Water P	ressure													
O Calculate without Drilled Shaft				Pore	Pressure C)ptions: C	No Pore Pro	essure			O Const	ant Ratio		•	Specified phre	eatic surface	•
O Automatic Load Transfer Factor		Anchor force: 0.00 lb	F	Point 1 Poir	nt 2 Point	3 Point 4	Point 5 F	oint 6									
Manually Defined Load Transfer Factor		Anchor angle: 0.00		.00 48.0				01.00									
Anchor (On/Off)		Anchor spacing: 0.00 ft	Y (ft) 2	2.00 22.0	0 32.00	39.00	40.50 42	2.00									
	Auto 🔿 On	Off 0.000 (n)	Slip Surface														
Auto Sava Data	Xmin 0.00	Diameter: 2.00 ft		Point 1 Poir	nt 2 Point	3 Point 4	Point 5 P	oint 6 Poi	nt 7								
Auto Save Data	Xmax 0.00		► X (ft) 4	1.42 45.1	7 49.33	53.92	62.67 67	7.25 71.8	3								
▶ Run	XDelta 0.00		Y (ft) 1	8.33 22.5	0 26.25	29.58	32.92 34	4.58 35.0	0								

APPENDIX D LPILE ANALYSIS

APPENDIX D.1 DEL-315-5.0

LPile for Windows, Version 2016-09.010 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2016 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
odot 1980 west broad st, columbus,oh
Serial Number of Security Device: 228746756
This copy of LPile is licensed for exclusive use by:
Ohio Dept. of Transportation, Co
Use of this program by any entity other than Ohio Dept. of Transportation, Co is a violation of the software license agreement.
Files Used for Analysis
 Path to file locations: \gt\Projects\D06\Delaware\DEL-315-5.0\Geotechnical\EngData\LPILE\
Name of input data file: 24in_HP12_53_6ftsocket_factored.lp9d
Name of output report file: 24in_HP12_53_6ftsocket_factored.lp9o
Name of plot output file: 24in_HP12_53_6ftsocket_factored.lp9p
Name of runtime message file: 24in_HP12_53_6ftsocket_factored.lp9r
Date and Time of Analysis
Date: March 1, 2018 Time: 8:56:07
Problem Title
Project Name: DEL-315-5.00 Job Number: 102124 Client:

Engineer: Taliaferro Description: Plug Pile Wall

Program Options and Settings

Computational Options:

- Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1 Total length of pile = 16.000 ft Depth of ground surface below top of pile = 3.4000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth	
	Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0	24
2	16	24

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape = Circular Pile Length of section = 16.000000 ft Width of top of section = 24.000000 in Width of bottom of section = 24.000000 in Top Area = 15.500000 sq. in Bottom Area = 15.500000 sq. in Moment of Inertia at Top = 393.000000 in^4 Moment of Inertia at Bottom = 393.000000 in^4 Elastic Modulus = 29000000. psi

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees = 0.000 radians

Pile Batter Angle = 0.000 degrees

0.000 radians

=

Soil and Rock Layering Information

The soil profile is modelled using 3 layers

Layer 1 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer = 3.400000 ft Distance from top of pile to bottom of layer = 5.400000 ft Effective unit weight at top of layer = 37.600000 pcf Effective unit weight at bottom of layer = 37.600000 pcf Undrained cohesion at top of layer = 375.000000 psf Undrained cohesion at bottom of layer = 375.000000 psf Epsilon-50 at top of layer = 0.019400 Epsilon-50 at bottom of layer = 0.019400 Layer 2 is stiff clay with water-induced erosion

Distance from top of pile to top of layer = 5.400000 ft Distance from top of pile to bottom of layer = 10.000000 ft Effective unit weight at top of layer = 57.600000 pcf Effective unit weight at bottom of layer = 57.600000 pcf Undrained cohesion at top of layer = 1250. psf Undrained cohesion at bottom of layer = 1250. psf Epsilon-50 at top of layer = 0.008200 Epsilon-50 at bottom of layer = 0.008200 Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = 10.000000 ft Distance from top of pile to bottom of layer = 20.000000 ft Effective unit weight at top of layer = 79.800000 pcf Effective unit weight at bottom of layer = 79.800000 pcf Uniaxial compressive strength at top of layer = 2000. psi Uniaxial compressive strength at bottom of layer = 2000. psi Initial modulus of rock at top of layer = 540000. psi Initial modulus of rock at bottom of layer = 540000. psi RQD of rock at top of layer = 30.000000 % RQD of rock at bottom of layer = 30.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer = 0.0000500

(Depth of the lowest soil layer extends 4.000 ft below the pile tip)

	Summary	of Input S	oil Propertie	25					
	Soil Type								
Layer	Name	Layer	Effective	Undrained	Uniaxial		E50		Rock Mass
Layer	(р-у	Depth	Unit Wt.	Cohesion	qu	RQD %	or	kpy	Modulus
Num.	Curve Type)	ft	pcf	psf	psi		krm	pci	psi
1	Soft	3.4	37.6	375			0.0194		
	Clay	5.4	37.6	375			0.0194		
2	Stiff Clay	5.4	57.6	1250			0.0082	default	
	with Free Wat	10	57.6	1250			0.0082	default	
3	Weak	10	79.8		2000	30	5.00E-05		540000
	Rock	20	79.8		2000	30	5.00E-05		540000
		20	, 5.0			50	5.00L 05		540000

p-y Modification Factors for Group Action

Distributio	n of p-y mod	lifiers with	depth defin	ed usi	ng 2 points									
Point No.	Depth X ft	p-mult	y-mult											
1	3.4	0.81	1											
2	10		1											
	Static Loading Type													
Static loadi	ing criteria w	vere used w	hen compu	iting p-	y curves for	all ar	nalyses.							
Dis	tributed Late	eral Loading	g for Indivic	lual Lo	ad Cases									
Distributed	l lateral load	intensity fo	or Load Cas	e 1 def	ined using 2	2 poin	ts							
	le-head Load													
	loads specif													
No.	Load Type	-	L		2		Force, lbs	Top y vs. Pile Length						
1					0.0000 in									
M = bendir $y = lateral of$ $S = pile slop$ $R = rotation$ $Values of t$ $specified slop$	orce applied ng moment a deflection no pe relative to nal stiffness op y vs. pile hear loading se is assumed	ipplied to p ormal to pil- o original pi applied to p lengths can (Load Type	ile head e axis le batter ar pile head be computes 1, 2, and	ted onl 3).			vith							
	ations of No					endin	g Stiffness							
	t force value					ng cor	nditions							
Number of	Pile Section	s Analyzed	= 1											
Pile Section	n No. 1:													
	urvature pro	-				n prop	oerties							
	ring Correcti					ers								

	Top of	Equivalent	Same			
	Layer	Top Depth	Layer	Layer is	FO	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	3.4	0	N.A.	No	0	5046
2	5.4	9.0583	No	No	5046	15338
3	10	6.6	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection

for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 0.0 lbs Applied moment at pile head = 0.0 in-lbs Axial thrust load on pile head = 0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	У	Moment	Force	S	Stress	Stiffness	р	Es*h	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	in-lb^2	lb/inch	lb/inch	lb/inch
0	0.4519	6.52E-06	4.47E-08	-0.00501	1.99E-07	1.14E+10	0	0	134.566
0.16	0.4423	248.0321	264.7777	-0.00501	7.5735	1.14E+10	0	0	141.2441
0.32	0.4327	1017	544.5144	-0.00501	31.0457	1.14E+10	0	0	150.1482
0.48	0.4231	2339	841.347	-0.00501	71.4189	1.14E+10	0	0	159.0524
0.64	0.4135	4248	1155	-0.00501	129.6952	1.14E+10	0	0	167.9565
0.8	0.4039	6775	1486	-0.00501	206.8771	1.14E+10	0	0	176.8606
0.96	0.3942	9955	1834	-0.00501	303.9667	1.14E+10	0	0	185.7647
1.12	0.3846	13819	2200	-0.005	421.9664	1.14E+10	0	0	194.6689
1.28	0.375	18402	2582	-0.005	561.8783	1.14E+10	0	0	203.573
1.44	0.3654	23734	2981	-0.005	724.7048	1.14E+10	0	0	212.4771
1.6	0.3558	29850	3398	-0.00499	911.4481	1.14E+10	0	0	221.3812
1.76	0.3462	36782	3831	-0.00499	1123	1.14E+10	0	0	230.2854
1.92	0.3367	44563	4282	-0.00498	1361	1.14E+10	0	0	239.1895
2.08	0.3271	53225	4750	-0.00497	1625	1.14E+10	0	0	248.0936
2.24	0.3176	62803	5235	-0.00496	1918	1.14E+10	0	0	256.9977
2.4	0.3081	73327	5737	-0.00495	2239	1.14E+10	0	0	265.9018
2.56	0.2986	84832	6256	-0.00494	2590	1.14E+10	0	0	274.806

2.72	0.2891	97350	6792	-0.00492	2973	1.14E+10	0	0	283.7101
2.88	0.2797	110913	7345	-0.00491	3387	1.14E+10	0	0	292.6142
3.04	0.2703	125556	7916	-0.00489	3834	1.14E+10	0	0	301.5183
3.2	0.2609	141310	8503	-0.00486	4315	1.14E+10	0	0	310.4225
3.36	0.2516	158208	9108	-0.00484	4831	1.14E+10	0	0	319.3266
3.52	0.2423	176284	9686	-0.00481	5383	1.14E+10	-45.6374	361.5873	328.2307
3.68	0.2331	195401	10236	-0.00478	5966	1.14E+10	-45.882	377.8802	337.1348
3.84	0.224	215592	10804	-0.00474	6583	1.14E+10	-46.0932	395.1145	346.039
4	0.2149	236888	11388	-0.00471	7233	1.14E+10	-46.2701	413.3744	354.9431
4.16	0.2059	259323	11989	-0.00466	7918	1.14E+10	-46.4116	432.7534	363.8472
4.32	0.197	282927	12607	-0.00462	8639	1.14E+10	-46.5168	453.356	372.7513
4.48	0.1882	307735	13242	-0.00457	9396	1.14E+10	-46.5848	475.299	381.6554
4.64	0.1795	333777	13894	-0.00451	10192	1.14E+10	-46.6144	498.7135	390.5596
4.8	0.1708	361088	14563	-0.00446	11026	1.14E+10	-46.6047	523.7465	399.4637
4.96	0.1624	389699	15249	-0.00439	11899	1.14E+10	-46.5547	550.5638	408.3678
				-0.00433					
5.12	0.154	419644	15952		12814	1.14E+10	-46.4633	579.3521	417.2719
5.28	0.1457	450956	16673	-0.00425	13770	1.14E+10	-46.3295	610.3227	426.1761
5.44	0.1377	483668	16720	-0.00417	14768	1.14E+10	-765.444	10676	435.0802
5.6	0.1297	515162	16112	-0.00409	15730	1.14E+10	-747.906	11069	443.9843
5.76	0.122	545536	15555	-0.004	16658	1.14E+10	-729.219	11480	452.8884
5.92	0.1144	574891	15053	-0.0039	17554	1.14E+10	-707.549	11878	461.7926
6.08	0.107	603341	14612	-0.0038	18423	1.14E+10	-684.267	12282	470.6967
6.24	0.09976	631003	14233	-0.0037	19267	1.14E+10	-660.81	12718	479.6008
6.4	0.09276	657997	13917	-0.00359	20092	1.14E+10	-637.192	13189	488.5049
6.56	0.08597	684443	13244	-0.00348	20899	1.14E+10	-613.423	13701	61.6892
6.72	0.0794	708855	12149	-0.00336	21644	1.14E+10	-589.518	14256	0
6.88	0.07306	731094	11040	-0.00324	22323	1.14E+10	-565.49	14862	0
7.04	0.06695	751248	9977	-0.00312	22939	1.14E+10	-541.351	15525	0
7.2	0.06109	769406	8961	-0.00299	23493	1.14E+10	-517.114	16252	0
7.36	0.05548	785659	7992	-0.00286	23990	1.14E+10	-492.79	17054	0
7.52	0.05012	800094	7069	-0.00272	24430	1.14E+10	-468.39	17943	0
7.68	0.04502	812803	6193	-0.00259	24818	1.14E+10	-443.925	18932	0
7.84	0.04019	823876	5364	-0.00245	25157	1.14E+10	-419.405	20039	0
8	0.03562	833402	4583	-0.00231	25447	1.14E+10	-394.839	21285	0
8.16	0.03132	841473	3848	-0.00217	25694	1.14E+10	-370.237	22700	0
8.32	0.02729	848179	3161	-0.00203	25899	1.14E+10	-345.607	24318	0
8.48	0.02353	853611	2521	-0.00188	26064	1.14E+10	-320.957	26185	0
8.64	0.02006	857860	1928	-0.00174	26194	1.14E+10	-296.297	28365	0
8.8	0.01686	861016	1383	-0.00159	26291	1.14E+10	-271.633	30940	0
8.96	0.01393	863172	885.3943	-0.00145	26356	1.14E+10	-246.974	34029	0
9.12	0.01129	864416	434.8641	-0.0013	26394	1.14E+10		37802	0
9.28	0.00893	864841	31.6314	-0.00116	26407	1.14E+10	-197.706	42510	0
9.44	0.00685	864538	-324.359	-0.00101	26398	1.14E+10	-173.117	48548	0
9.6	0.00504	863596	-633.187	-8.67E-04	26369	1.14E+10	-148.579	56566	0
9.76	0.00352	862106	-880.244	-7.21E-04	26324	1.14E+10	-108.773	59346	0
9.92	0.00227	860216	-1054	-5.76E-04	26266	1.14E+10	-72.0517	60839	0
10.08	0.00131	858060	-21009	-4.31E-04	26200	1.14E+10	-20714	3.04E+07	0

10.24	6.17E-04	779543	-59130	-2.93E-04	23803	1.14E+10	-18996	5.91E+07	0
10.4	1.80E-04	631000	-89195	-1.75E-04	19267	1.14E+10	-12322	1.31E+08	0
10.56	-5.30E-05	437033	-97249	-8.46E-05	13345	1.14E+10	3933	1.42E+08	0
10.72	-1.45E-04	257564	-82359	-2.61E-05	7865	1.14E+10	11577	1.53E+08	0
10.88	-1.53E-04	120773	-58630	5.74E-06	3688	1.14E+10	13141	1.65E+08	0
11.04	-1.23E-04	32426	-35232	1.86E-05	990.1054	1.14E+10	11231	1.76E+08	0
11.2	-8.18E-05	-14517	-16817	2.02E-05	443.2717	1.14E+10	7950	1.87E+08	0
11.36	-4.55E-05	-32152	-4692	1.62E-05	981.7546	1.14E+10	4680	1.98E+08	0
11.52	-1.95E-05	-32536	1837	1.08E-05	993.4759	1.14E+10	2121	2.09E+08	0
11.68	-4.09E-06	-25100	4323	5.92E-06	766.4214	1.14E+10	468.7694	2.20E+08	0
11.84	3.20E-06	-15936	4403	2.46E-06	486.6013	1.14E+10	-385.145	2.31E+08	0
12	5.35E-06	-8192	3387	4.26E-07	250.1339	1.14E+10	-673.65	2.42E+08	0
12.16	4.84E-06	-2931	2128	-5.11E-07	89.4938	1.14E+10	-637.722	2.53E+08	0
12.32	3.39E-06	-20.854	1069	-7.59E-07	0.6368	1.14E+10	-465.588	2.64E+08	0
12.48	1.92E-06	1173	357.0259	-6.62E-07	35.8128	1.14E+10	-275.734	2.75E+08	0
12.64	8.43E-07	1350	-28.2423	-4.50E-07	41.2252	1.14E+10	-125.587	2.86E+08	0
12.8	1.98E-07	1064	-178.163	-2.46E-07	32.5013	1.14E+10	-30.5804	2.97E+08	0
12.96	-1.03E-07	665.9783	-191.605	-1.01E-07	20.3352	1.14E+10	16.5789	3.08E+08	0
13.12	-1.89E-07	328.6555	-145.568	-1.68E-08	10.0353	1.14E+10	31.376	3.19E+08	0
13.28	-1.68E-07	106.9971	-87.7377	1.99E-08	3.2671	1.14E+10	28.8639	3.30E+08	0
13.44	-1.12E-07	-8.2574	-40.8706	2.82E-08	0.2521	1.14E+10	19.9561	3.41E+08	0
13.6	-5.94E-08	-49.9459	-11.2497	2.33E-08	1.5251	1.14E+10	10.899	3.53E+08	0
13.76	-2.27E-08	-51.4564	3.3338	1.48E-08	1.5712	1.14E+10	4.2922	3.64E+08	0
13.92	-2.61E-09	-37.1442	7.9441	7.31E-09	1.1342	1.14E+10	0.5102	3.75E+08	0
14.08	5.42E-09	-20.9511	7.3881	2.42E-09	0.6397	1.14E+10	-1.0893	3.86E+08	0
14.24	6.68E-09	-8.7737	5.0165	-8.23E-11	0.2679	1.14E+10	-1.3811	3.97E+08	0
14.4	5.11E-09	-1.6876	2.6494	-9.64E-10	0.05153	1.14E+10	-1.0846	4.08E+08	0
14.56	2.98E-09	1.4001	0.9833	-9.88E-10	0.04275	1.14E+10	-0.6509	4.19E+08	0
14.72	1.31E-09	2.0882	0.07597	-6.94E-10	0.06376	1.14E+10	-0.2942	4.30E+08	0
14.88	3.19E-10	1.6918	-0.2768	-3.75E-10	0.05166	1.14E+10	-0.07332	4.41E+08	0
15.04	-1.28E-10	1.0252	-0.3183	-1.47E-10	0.0313	1.14E+10	0.03015	4.52E+08	0
15.2	-2.44E-10	0.4696	-0.2329	-2.07E-11	0.01434	1.14E+10	0.05879	4.63E+08	0
15.36	-2.08E-10	0.1309	-0.1272	2.99E-11	0.004	1.14E+10	0.05126	4.74E+08	0
15.52	-1.29E-10	-0.01899	-0.04674	3.93E-11	5.80E-04	1.14E+10	0.03261	4.85E+08	0
15.68	-5.66E-11	-0.04863	-0.00138	3.36E-11	0.00148	1.14E+10	0.01464	4.96E+08	0
15.84	0	-0.0243	0.01266	2.75E-11	7.42E-04	1.14E+10	-7.10E-06	5.07E+08	0
16	4.88E-11	0	0	2.54E-11	0	1.14E+10	-0.01318	2.59E+08	0

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection = 0.45193820 inches Computed slope at pile head = -0.00500942 radians Maximum bending moment = 864841. inch-lbs Maximum shear force = -97249. lbs Depth of maximum bending moment = 9.28000000 feet below pile head Depth of maximum shear force = 10.56000000 feet below pile head Number of iterations = 13 Number of zero deflection points = 6

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 0.0 lbs Moment = 0.0 in-lbs Axial Load = 0.0 lbs

Pile	Pile Head	Maximum	Maximum	
Length	Deflection	Moment	Shear	
feet	inches	In-lbs	lbs	
16	0.451938	864841	-97249	
15.2	0.453096	879949	-100338	
14.4	0.456223	874425	-99980	
13.6	0.451424	865895	-97499	
12.8	0.463669	882084	-99109	
12	0.463675	889171	-101618	
11.2	0.461901	882212	-104366	
10.4	1.113438	672992	-70632	

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

									Max
Load	Load		Load		Axial	Pile-head	Pile-head	Max Shear	Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, lb	0	M, in-lb	0	0	0.4519	-0.00501	-97249	864841

```
Maximum pile-head deflection = 0.4519381961 inches
```

Maximum pile-head rotation = -0.0050094190 radians = -0.287019 deg.

Summary of Warning Messages

The following warning was reported 3042 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.

LPile for Windows, Version 2016-09.010	
Analysis of Individual Piles and Drilled Shafts	
Subjected to Lateral Loading Using the p-y Met	hod
© 1985-2016 by Ensoft, Inc.	
All Rights Reserved	
=======================================	
This copy of LPile is being used by:	
S Taliaferro	
ODOT-OGE	
Serial Number of Security Device: 228746756	
This copy of LPile is licensed for exclusive use by:	
Ohio Dept. of Transportation, Co	
Use of this program by any entity other than Ohio Dept.	of Transportation, Co
is a violation of the software license agreement.	
Files Used for Analysis	
, 	
Path to file locations:	
\gt\Projects\D06\Delaware\DEL-315-5.0\Geotechnical\	EngData\LPILE\
Name of input data file:	
24in_HP12_53_6ftsocket_unfactored.lp9d	
Name of output report file:	
24in_HP12_53_6ftsocket_unfactored.lp9o	
Name of plot output file:	
24in_HP12_53_6ftsocket_unfactored.lp9p	
Name of runtime message file:	
24in_HP12_53_6ftsocket_unfactored.lp9r	
Date and Time of Analysis	
Date: February 26, 2018 Time: 9:56:19	
Problem Title	

Project Name: DEL-315-5.00 Job Number: 102124 Client: Engineer: Taliaferro Description: Plug Pile Wall

Program Options and Settings

Computational Options:

Use unfactored loads in computations (conventional analysis)
Engineering Units Used for Data Input and Computations:
US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1 Total length of pile = 16.000 ft Depth of ground surface below top of pile = 3.4000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

Depth	
Below	Pile
Pile Head	Diameter
feet	inches
0	24
16	24
	Below Pile Head feet 0

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape = Circular Pile Length of section = 16.000000 ft Width of top of section = 24.000000 in Width of bottom of section = 24.000000 in Top Area = 15.500000 sq. in Bottom Area = 15.500000 sq. in Moment of Inertia at Top = 393.000000 in^4 Moment of Inertia at Bottom = 393.000000 in^4 Elastic Modulus = 29000000. psi

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees = 0.000 radians

Pile Batter Angle = 0.000 degrees

= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 3 layers

Layer 1 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer = 3.400000 ft Distance from top of pile to bottom of layer = 5.400000 ft Effective unit weight at top of layer = 37.600000 pcf Effective unit weight at bottom of layer = 37.600000 pcf Undrained cohesion at top of layer = 375.000000 psf Undrained cohesion at bottom of layer = 375.000000 psf Epsilon-50 at top of layer = 0.019400 Epsilon-50 at bottom of layer = 0.019400 Layer 2 is stiff clay with water-induced erosion

Distance from top of pile to top of layer = 5.400000 ft Distance from top of pile to bottom of layer = 10.000000 ft Effective unit weight at top of layer = 57.600000 pcf Effective unit weight at bottom of layer = 57.600000 pcf Undrained cohesion at top of layer = 1250. psf Undrained cohesion at bottom of layer = 1250. psf Epsilon-50 at top of layer = 0.008200 Epsilon-50 at bottom of layer = 0.008200 Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = 10.000000 ft Distance from top of pile to bottom of layer = 20.000000 ft Effective unit weight at top of layer = 79.800000 pcf Effective unit weight at bottom of layer = 79.800000 pcf Uniaxial compressive strength at top of layer = 2000. psi Uniaxial compressive strength at bottom of layer = 2000. psi Initial modulus of rock at top of layer = 540000. psi Initial modulus of rock at bottom of layer = 540000. psi RQD of rock at top of layer = 30.000000 % RQD of rock at bottom of layer = 30.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer = 0.0000500

(Depth of the lowest soil layer extends 4.000 ft below the pile tip)

	Summary	of Input S	oil Propertie	25					
Layer Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Undrained Cohesion psf	Uniaxial qu psi	RQD %	E50 or krm	kpy pci	Rock Mass Modulus psi
1	Soft	3.4	37.6	375			0.0194		
	Clay	5.4	37.6	375			0.0194		
2	Stiff Clay	5.4	57.6	1250			0.0082	default	
with Fr	ee Water	10	57.6	1250			0.0082	default	
3	Weak	10	79.8		2000	30	5.00E-05		540000
	Rock	20	79.8		2000	30	5.00E-05		540000

p-y Modification Factors for Group Action

Distributic	on of p-y mod	lifiers with	depth define	ed using 2 points		
Point No.	Depth X ft	p-mult	y-mult			
2	3.4 10	0.81	1			
		: Loading Ty	pe			
Static load	ling criteria v	vere used w	hen comput	ting p-y curves for all a	analyses.	
Di	stributed Lat	eral Loadin	g for Individ	ual Load Cases		
Distribute		l intensity f	or Load Case	e 1 defined using 2 point	nts	
Р	ile-head Loa	ding and Pil	e-head Fixit	y Conditions		
	f loads specif				Autol	Commente
	Load Type	:	1			Compute Top y vs. Pile Length
1	1		000 lbs	M = 0.0000 in-lbs	0	Yes
M = bendi y = lateral S = pile slo R = rotatic Values of t specified s Thrust for	hear loading	applied to p ormal to pil o original p applied to lengths car (Load Type d to be actin	ile head e axis ile batter an pile head be compute s 1, 2, and 3 ng axially for	ed only for load types ;). r all pile batter angles.		
				y and Nonlinear Bendi	ng Stiffness	
Axial thrus	st force value	es were det	ermined froi	m pile-head loading co	onditions	
Number o	f Pile Section	s Analyzed	= 1			
Pile Sectio	n No. 1:					
Moment-c	 curvature pro	perties we	re derived fr	om elastic section pro	perties	

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent	Same			
	Layer	Top Depth	Layer	Layer is	FO	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	3.4	0	N.A.	No	0	5046
2	5.4	9.0583	No	No	5046	15338
3	10	6.6	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection

for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 0.0 lbs Applied moment at pile head = 0.0 in-lbs Axial thrust load on pile head = 0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	у	Moment	Force	S	Stress	Stiffness	р	Es*h	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	in-lb^2	lb/inch	lb/inch	lb/inch
0	0.248	1.54E-06	0	-0.0028	4.72E-08	1.14E+10	0	0	77.1041
0.16	0.2426	142.1182	152.3139	-0.0028	4.3395	1.14E+10	0	0	81.5562
0.32	0.2372	584.8854	314.6007	-0.0028	17.8591	1.14E+10	0	0	87.4925
0.48	0.2318	1350	488.2851	-0.0028	41.227	1.14E+10	0	0	93.4287
0.64	0.2265	2460	673.367	-0.0028	75.1115	1.14E+10	0	0	99.365
0.8	0.2211	3936	869.8466	-0.0028	120.1806	1.14E+10	0	0	105.3012
0.96	0.2157	5800	1078	-0.0028	177.1026	1.14E+10	0	0	111.2375
1.12	0.2103	8074	1297	-0.0028	246.5458	1.14E+10	0	0	117.1737
1.28	0.2049	10781	1528	-0.0028	329.1782	1.14E+10	0	0	123.11
1.44	0.1996	13941	1770	-0.0028	425.6681	1.14E+10	0	0	129.0462
1.6	0.1942	17576	2023	-0.0028	536.6837	1.14E+10	0	0	134.9825
1.76	0.1888	21710	2288	-0.00279	662.8931	1.14E+10	0	0	140.9187
1.92	0.1835	26363	2564	-0.00279	804.9646	1.14E+10	0	0	146.855
2.08	0.1781	31557	2852	-0.00278	963.5664	1.14E+10	0	0	152.7912
2.24	0.1728	37314	3151	-0.00278	1139	1.14E+10	0	0	158.7274
2.4	0.1674	43657	3462	-0.00277	1333	1.14E+10	0	0	164.6637
2.56	0.1621	50606	3783	-0.00276	1545	1.14E+10	0	0	170.5999

2.72	0.1568	58185	4117	-0.00275	1777	1.14E+10	0	0	176.5362
2.88	0.1516	66414	4461	-0.00274	2028	1.14E+10	0	0	182.4724
3.04	0.1463	75316	4817	-0.00273	2300	1.14E+10	0	0	188.4087
3.2	0.1411	84913	5185	-0.00272	2593	1.14E+10	0	0	194.3449
3.36	0.1359	95226	5564	-0.0027	2908	1.14E+10	0	0	200.2812
3.52	0.1307	106277	5918	-0.00269	3245	1.14E+10	-37.1485	545.7307	206.2174
3.68	0.1256	117951	6248	-0.00267	3602	1.14E+10	-37.3304	570.8484	212.1537
3.84	0.1205	130270	6590	-0.00265	3978	1.14E+10	-37.4839	597.4681	218.0899
4	0.1154	143255	6942	-0.00262	4374	1.14E+10	-37.6082	625.7279	224.0262
4.16	0.1104	156927	7305	-0.0026	4792	1.14E+10	-37.7026	655.7816	229.9624
4.32	0.1054	171308	7680	-0.00257	5231	1.14E+10	-37.7661	687.8017	235.8986
4.48	0.1005	186419	8066	-0.00254	5692	1.14E+10	-37.7979	721.9814	241.8349
4.64	0.09567	202282	8464	-0.00251	6177	1.14E+10	-37.7973	758.5379	247.7711
4.8	0.09089	218920	8873	-0.00247	6685	1.14E+10	-37.7633	797.7158	253.7074
4.96	0.08618	236353	9293	-0.00243	7217	1.14E+10	-37.6951	839.791	259.6436
5.12	0.08155	254605	9725	-0.00239	7774	1.14E+10	-37.592	885.0751	265.5799
5.28	0.077	273697	10168	-0.00235	8357	1.14E+10	-37.453	933.9212	271.5161
5.44	0.07254	293651	10119	-0.0023	8966	1.14E+10	-563.474	14915	277.4524
5.6	0.06817	312552	9592	-0.00225	9544	1.14E+10	-546.247	15385	283.3886
5.76	0.0639	330483	9109	-0.00219	10091	1.14E+10	-528.878	15891	289.3249
5.92	0.05974	347532	8672	-0.00214	10612	1.14E+10	-511.376	16435	295.2611
6.08	0.0557	363784	8280	-0.00208	11108	1.14E+10	-493.752	17021	301.1974
6.24	0.05177	379325	7933	-0.00201	11582	1.14E+10	-476.017	17655	307.1336
6.4	0.04796	394245	7631	-0.00195	12038	1.14E+10	-458.181	18343	313.0698
6.56	0.04428	408629	7107	-0.00188	12477	1.14E+10	-440.257	19090	39.5511
6.72	0.04073	421536	6317	-0.00181	12871	1.14E+10	-422.256	19903	0
6.88	0.03732	432887	5524	-0.00174	13218	1.14E+10	-404.193	20793	0
7.04	0.03405	442747	4765	-0.00167	13519	1.14E+10	-386.078	21768	0
7.2	0.03093	451185	4041	-0.00159	13777	1.14E+10	-367.922	22843	0
7.36	0.02794	458266	3352	-0.00151	13993	1.14E+10	-349.738	24030	0
7.52	0.02511	464058	2698	-0.00144	14170	1.14E+10	-331.535	25350	0
7.68	0.02243	468627	2079	-0.00136	14309	1.14E+10	-313.322	26823	0
7.84	0.0199	472042	1495	-0.00128	14413	1.14E+10	-295.11	28479	0
8	0.01752	474368	945.9767	-0.0012	14485	1.14E+10	-276.907	30351	0
8.16	0.01529	475674	431.7738	-0.00112	14524	1.14E+10	-258.721	32484	0
8.32	0.01322	476026	-47.5359	-0.00104	14535	1.14E+10	-240.56	34937	0
8.48	0.0113	475492	-492.007	-9.59E-04	14519	1.14E+10	-222.431	37784	0
8.64	0.00954	474137	-901.708	-8.79E-04	14477	1.14E+10	-204.341	41130	0
8.8	0.00793	472029	-1277	-7.99E-04	14413	1.14E+10	-186.296	45114	0
8.96	0.00647	469235	-1617	-7.20E-04	14328	1.14E+10	-168.302	49937	0
9.12	0.00516	465819	-1917	-6.41E-04	14223	1.14E+10	-143.583	53374	0
9.28	0.00401	461875	-2164	-5.63E-04	14103	1.14E+10	-114.586	54867	0
9.44	0.003	457508	-2359	-4.85E-04	13970	1.14E+10	-88.1773	56360	0
9.6	0.00215	452816	-2506	-4.09E-04	13826	1.14E+10	-64.6637	57853	0
9.76	0.00143	447886	-2610	-3.33E-04	13676	1.14E+10	-44.3432	59346	0
9.92	8.68E-04	442792	-2679	-2.58E-04	13520	1.14E+10	-27.5068	60839	0
10.08	4.45E-04	437597	-17895	-1.84E-04	13362	1.14E+10	-15822	6.83E+07	0

10.24	1.63E-04	374077	-42885	-1.15E-04	11422	1.14E+10	-10210	1.20E+08	0
10.4	2.21E-06	272920	-52831	-6.07E-05	8333	1.14E+10	-151.344	1.31E+08	0
10.56	-7.03E-05	171205	-47973	-2.33E-05	5228	1.14E+10	5212	1.42E+08	0
10.72	-8.74E-05	88705	-36263	-1.45E-06	2709	1.14E+10	6985	1.53E+08	0
10.88	-7.58E-05	31957	-23319	8.72E-06	975.7711	1.14E+10	6498	1.65E+08	0
11.04	-5.39E-05	-839.583	-12347	1.13E-05	25.6361	1.14E+10	4931	1.76E+08	0
11.2	-3.23E-05	-15458	-4600	9.97E-06	471.9859	1.14E+10	3139	1.87E+08	0
11.36	-1.57E-05	-18505	-39.7287	7.11E-06	565.0333	1.14E+10	1612	1.98E+08	0
11.52	-5.00E-06	-15610	2030	4.23E-06	476.6442	1.14E+10	544.1133	2.09E+08	0
11.68	5.97E-07	-10710	2487	2.02E-06	327.0087	1.14E+10	-68.3259	2.20E+08	0
11.84	2.73E-06	-6061	2106	6.03E-07	185.0642	1.14E+10	-328.779	2.31E+08	0
12	2.91E-06	-2624	1438	-1.29E-07	80.1276	1.14E+10	-366.846	2.42E+08	0
12.16	2.24E-06	-539.847	802.2784	-3.95E-07	16.4839	1.14E+10	-295.115	2.53E+08	0
12.32	1.39E-06	456.5707	334.9992	-4.02E-07	13.9411	1.14E+10	-191.634	2.64E+08	0
12.48	6.95E-07	746.5498	55.4509	-3.01E-07	22.7954	1.14E+10	-99.5624	2.75E+08	0
12.64	2.38E-07	669.5021	-74.1439	-1.82E-07	20.4428	1.14E+10	-35.4322	2.86E+08	0
12.8	-2.86E-09	461.8374	-107.735	-8.64E-08	14.1019	1.14E+10	0.442	2.97E+08	0
12.96	-9.41E-08	255.8018	-92.8115	-2.60E-08	7.8107	1.14E+10	15.1028	3.08E+08	0
13.12	-1.03E-07	105.4411	-61.942	4.47E-09	3.2196	1.14E+10	17.053	3.19E+08	0
13.28	-7.69E-08	17.9444	-32.8686	1.49E-08	0.5479	1.14E+10	13.2319	3.30E+08	0
13.44	-4.55E-08	-20.7743	-12.4061	1.46E-08	0.6343	1.14E+10	8.0832	3.41E+08	0
13.6	-2.07E-08	-29.6951	-0.9924	1.04E-08	0.9067	1.14E+10	3.8061	3.53E+08	0
13.76	-5.61E-09	-24.5852	3.6818	5.80E-09	0.7507	1.14E+10	1.0629	3.64E+08	0
13.92	1.55E-09	-15.5569	4.4116	2.42E-09	0.475	1.14E+10	-0.3027	3.75E+08	0
14.08	3.68E-09	-7.6446	3.4104	4.67E-10	0.2334	1.14E+10	-0.7401	3.86E+08	0
14.24	3.34E-09	-2.4608	2.0364	-3.84E-10	0.07514	1.14E+10	-0.6912	3.97E+08	0
14.4	2.21E-09	0.1751	0.9224	-5.77E-10	0.00535	1.14E+10	-0.4692	4.08E+08	0
14.56	1.13E-09	1.0814	0.2354	-4.71E-10	0.03302	1.14E+10	-0.2465	4.19E+08	0
14.72	4.01E-10	1.0789	-0.08737	-2.89E-10	0.03294	1.14E+10	-0.0897	4.30E+08	0
14.88	2.03E-11	0.7459	-0.1779	-1.35E-10	0.02277	1.14E+10	-0.00465	4.41E+08	0
15.04	-1.19E-10	0.3956	-0.1556	-3.91E-11	0.01208	1.14E+10	0.02798	4.52E+08	0
15.2	-1.30E-10	0.1485	-0.09861	6.72E-12	0.00453	1.14E+10	0.03134	4.63E+08	0
15.36	-9.30E-11	0.01697	-0.04646	2.07E-11	5.18E-04	1.14E+10	0.02298	4.74E+08	0
15.52	-5.06E-11	-0.02988	-0.01212	1.96E-11	9.12E-04	1.14E+10	0.01279	4.85E+08	0
15.68	-1.79E-11	-0.02956	0.0046	1.46E-11	9.03E-04	1.14E+10	0.00462	4.96E+08	0
15.84	5.29E-12	-0.0122	0.0077	1.10E-11	3.73E-04	1.14E+10	-0.0014	5.07E+08	0
16	2.45E-11	0	0	1.00E-11	0	1.14E+10	-0.00662	2.59E+08	0

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection = 0.24799776 inches Computed slope at pile head = -0.00280497 radians Maximum bending moment = 476026. inch-lbs Maximum shear force = -52831. lbs Depth of maximum bending moment = 8.32000000 feet below pile head Depth of maximum shear force = 10.40000000 feet below pile head Number of iterations = 11 Number of zero deflection points = 6

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 0.0 lbs Moment = 0.0 in-lbs Axial Load = 0.0 lbs

Pile	Pile Head	Maximum	Maximum	
Length	Deflection	Moment	Shear	
feet	inches	In-lbs	lbs	
16	0.247998	476026	-52831	
15.2	0.249319	483208	-53926	
14.4	0.250601	481123	-53395	
13.6	0.247559	476137	-52355	
12.8	0.254729	486262	-54602	
12	0.255052	489603	-55696	
11.2	0.25377	486234	-55280	
10.4	0.35434	400280	-46493	

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

									Max
Load	Load		Load		Axial	Pile-head	Pile-head	Max Shear	Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, lb	0	M, in-lb	0	0	0.248	-0.0028	-52831	476026

```
Maximum pile-head deflection = 0.2479977594 inches
```

Maximum pile-head rotation = -0.0028049671 radians = -0.160713 deg.

Summary of Warning Messages

The following warning was reported 2463 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.

APPENDIX D.2 DEL-315-6.40

LPile for Windows, Version 2016-09.010
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2016 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
odot 1980 west broad st, columbus,oh
Serial Number of Security Device: 228746756
This copy of LPile is licensed for exclusive use by:
Ohio Dept. of Transportation, Co
Use of this program by any entity other than Ohio Dept. of Transportation, Co is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \gt\Projects\D06\Delaware\DEL-315-6.40\Geotechnical\EngData\LPILE\

Name of input data file: 24in_HP12_53_6ftsocket_factored.lp9d

Name of output report file: 24in_HP12_53_6ftsocket_factored.lp9o

Name of plot output file: 24in_HP12_53_6ftsocket_factored.lp9p

Name of runtime message file: 24in_HP12_53_6ftsocket_factored.lp9r

Date and Time of Analysis

Date: March 5, 2018 Time: 15:34:37

Problem Title

Project Name: DEL-315-6.40 Job Number: 102124 Client: Engineer: Taliaferro Description: Plug Pile Wall

Program Options and Settings

Computational Options:

Use unfactored loads in computations (conventional analysis)
Engineering Units Used for Data Input and Computations:
US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis includes loading by one distributed lateral load acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1

Total length of pile = 14.400 ft

Depth of ground surface below top of pile = 2.1300 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth	
	Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0	24
2	14.4	24

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape = Circular Pile Length of section = 14.400000 ft Width of top of section = 24.000000 in Width of bottom of section = 24.000000 in Top Area = 15.500000 sq. in Bottom Area = 15.500000 sq. in Moment of Inertia at Top = 393.000000 in^4 Moment of Inertia at Bottom = 393.000000 in^4 Elastic Modulus = 29000000. psi

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees = 0.000 radians

Pile Batter Angle = 0.000 degrees

= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

Layer 1 is stiff clay with water-induced erosion

Distance from top of pile to top of layer = 2.130000 ft Distance from top of pile to bottom of layer = 3.500000 ft Effective unit weight at top of layer = 57.600000 pcf Effective unit weight at bottom of layer = 62.600000 pcf Undrained cohesion at top of layer = 1625. psf Undrained cohesion at bottom of layer = 1625. psf Epsilon-50 at top of layer = 0.007000 Epsilon-50 at bottom of layer = 0.007000 Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer.

Layer 2 is stiff clay with water-induced erosion

Distance from top of pile to top of layer = 3.500000 ft Distance from top of pile to bottom of layer = 6.000000 ft Effective unit weight at top of layer = 62.600000 pcf Effective unit weight at bottom of layer = 62.600000 pcf Undrained cohesion at top of layer = 2875. psf Undrained cohesion at bottom of layer = 2875. psf Epsilon-50 at top of layer = 0.005200 Epsilon-50 at bottom of layer = 0.005200 Subgrade k at top of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = 6.000000 ft Distance from top of pile to bottom of layer = 7.500000 ft Effective unit weight at top of layer = 72.600000 pcf Effective unit weight at bottom of layer = 72.600000 pcf Friction angle at top of layer = 34.000000 deg. Friction angle at bottom of layer = 34.000000 deg. Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 4 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = 7.500000 ft Distance from top of pile to bottom of layer = 17.500000 ft Effective unit weight at top of layer = 80.700000 pcf Effective unit weight at bottom of layer = 80.700000 pcf Uniaxial compressive strength at top of layer = 15896. psi Uniaxial compressive strength at bottom of layer = 15896. psi Initial modulus of rock at top of layer = 1400000. psi Initial modulus of rock at bottom of layer = 1400000. psi RQD of rock at top of layer = 8.000000 % RQD of rock at bottom of layer = 8.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer = 0.0000500

(Depth of the lowest soil layer extends 3.100 ft below the pile tip)

Summary of Input Soil Properties

Layer Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Undrained Cohesion psf	Angle of Friction deg.	Uniaxial qu psi	RQD %	E50 or krm	kpy pci	Rock Mass Modulus psi
	Stiff Clay	2.13	57.6	1625				0.007	default	
with	n Free Water	3.5	62.6	1625				0.007	default	
2	Stiff Clay	3.5	62.6	2875				0.0052	default	
with	n Free Water	6	62.6	2875				0.0052	default	
3	Sand	6	72.6		34				default	
(1	Reese, et al.)	7.5	72.6		34				default	
4	Weak	7.5	80.7			15896	8	5.00E-05		1400000
	Rock	17.5	80.7			15896	8	5.00E-05		1400000

p-y Modification Factors for Group Action

Distribution of p-y modifiers with depth defined using 2 points

Point	Depth X	p-mult	y-mult
No.	ft		
1	2.13	0.81	1
2	7	0.81	1

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading Used For All Load Cases

Distributed lateral load intensity defined using 2 points

Point	Depth X	Dist. Load	
No.	in	Ib/in	
1	0	77.86	
2	84	239.6	

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load	Condition	Condition	Axial Thrust	Compute Top y vs.
No.	Туре	1	2	Force, lbs	Pile Length
1	1	V = 0.0000 lbs	M = 0.0000 in-lbs	0	No

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer Ibs	F1 Integral for Layer Ibs
1	2.13	0	N.A.	No	0	591.8196
2	3.5	1.37	Yes	No	591.8196	6595
3	6	3.0845	No	No	7187	11172
4	7.5	5.37	No	Yes	N.A.	N.A.

Notes: The FO integral of Layer n+1 equals the sum of the FO and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 0.0 lbs Applied moment at pile head = 0.0 in-lbs Axial thrust load on pile head = 0.0 lbs

Depth X feet	Deflect. y inches	Bending Moment in-Ibs	Shear Force Ibs	Slope S radians	Total Stress psi*	Bending Stiffness in-lb^2	Soil Res. p Ib/inch	Soil Spr. Es*h Ib/inch	Distrib. Lat. Load Ib/inch
 0	 0.05255	 -1.32E-07	 0	 -7.87E-04	 4.04E-09	 1.14E+10	 0	 0	 78.6918
0.144	0.05255	117.4862	138.1355	-7.87E-04	4.04L-05 3.5874	1.14E+10	0	0	81.1872
0.288	0.04983	477.3962	281.3017	-7.87E-04	14.577	1.14E+10	0	0	84.5144
0.432	0.04847	1090	430.2174	-7.87E-04	33.2722	1.14E+10	0	0	87.8417
0.576	0.04711	1964	584.8825	-7.87E-04	59.9764	1.14E+10	0	0	91.1689
0.72	0.04575	3111	745.2971	-7.86E-04	94.9929	1.14E+10	0	0	94.4961
0.864	0.04439	4540	911.4611	-7.86E-04	138.6252	1.14E+10	0	0	97.8233
1.008	0.04304	6261	1083	-7.85E-04	191.1764	1.14E+10	0	0	101.1506
1.152	0.04168	8284	1261	-7.84E-04	252.9501	1.14E+10	0	0	104.4778
1.296	0.04033	10619	1444	-7.82E-04	324.2496	1.14E+10	0	0	107.805
1.44	0.03898	13276	1634	-7.80E-04	405.3782	1.14E+10	0	0	111.1322
1.584	0.03763	16265	1829	-7.78E-04	496.6392	1.14E+10	0	0	114.4595
1.728	0.03629	19596	2029	-7.75E-04	598.3362	1.14E+10	0	0	117.7867
1.872	0.03495	23278	2236	-7.72E-04	710.7723	1.14E+10	0	0	121.1139
2.016	0.03362	27322	2448	-7.68E-04	834.251	1.14E+10	0	0	124.4411
2.16	0.0323	31737	2662	-7.64E-04	969.0757	1.14E+10	-4.709	251.9424	127.7683
2.304	0.03098	36520	2859	-7.59E-04	1115	1.14E+10	-26.1994	1461	131.0956
2.448	0.02968	41616	3026	-7.53E-04	1271	1.14E+10	-45.8628	2671	134.4228
2.592	0.02838	46977	3166	-7.46E-04	1434	1.14E+10	-63.7225	3880	137.75
2.736	0.0271	52559	3283	-7.39E-04	1605	1.14E+10	-79.8053	5089	141.0772
2.88	0.02583	58323	3379	-7.30E-04	1781	1.14E+10	-94.1425	6299	144.4045
3.024	0.02457	64238	3458	-7.21E-04	1961	1.14E+10	-106.77	7508	147.7317
3.168	0.02334	70275	3522	-7.11E-04	2146	1.14E+10	-117.726	8717	151.0589
3.312	0.02212	76412	3575	-6.99E-04	2333	1.14E+10	-127.057	9927	154.3861
3.456	0.02092	82630	3618	-6.87E-04	2523	1.14E+10	-134.811	11136	157.7133
3.6	0.01974	88916	3533	-6.74E-04	2715	1.14E+10	-282.085	24690	161.0406
3.744	0.01859	94841	3319	-6.60E-04	2896	1.14E+10	-291.617	27109	164.3678
3.888	0.01746	100386	3096	-6.46E-04	3065	1.14E+10	-298.344	29528	167.695
4.032	0.01636	105541	2870	-6.30E-04	3223	1.14E+10	-302.398	31946	171.0222
4.176	0.01528	110304	2644	-6.14E-04	3368	1.14E+10	-303.914	34365	174.3495
4.32	0.01424	114680	2424	-5.97E-04	3502	1.14E+10	-303.037	36784	177.6767
4.464	0.01322	118682	2213	-5.79E-04	3624	1.14E+10	-299.912	39202	181.0039
4.608	0.01223	122328	2015	-5.61E-04	3735	1.14E+10	-294.693	41621	184.3311
4.752	0.01128	125645	1833	-5.42E-04	3836	1.14E+10	-287.533	44040	187.6584
4.896	0.01036	128664	1671	-5.23E-04	3929	1.14E+10	-278.591	46458	190.9856
5.04	0.00948	131421	1532	-5.03E-04	4013	1.14E+10	-268.027	48877	194.3128
5.184	0.00862	133958	1418	-4.83E-04	4090	1.14E+10	-256.004	51295	197.64

5.328	0.00781	136321	1331	-4.62E-04	4162	1.14E+10	-242.687	53714	200.9672
5.472	0.00703	138559	1275	-4.41E-04	4231	1.14E+10	-228.245	56133	204.2945
5.616	0.00628	140725	1249	-4.20E-04	4297	1.14E+10	-212.846	58551	207.6217
5.76	0.00557	142876	1257	-3.99E-04	4363	1.14E+10	-196.663	60970	210.9489
5.904	0.0049	145070	1299	-3.77E-04	4430	1.14E+10	-179.872	63389	214.2761
6.048	0.00427	147367	1506	-3.55E-04	4500	1.14E+10	-12.2052	4938	217.6034
6.192	0.00368	150276	1865	-3.32E-04	4589	1.14E+10	-10.8946	5120	220.9306
6.336	0.00312	153813	2232	-3.09E-04	4697	1.14E+10	-9.58	5301	224.2578
6.48	0.00261	157991	2607	-2.86E-04	4824	1.14E+10	-8.2768	5483	227.585
6.624	0.00214	162824	2990	-2.61E-04	4972	1.14E+10	-7.0013	5664	230.9123
6.768	0.00171	168325	3381	-2.36E-04	5140	1.14E+10	-5.7709	5846	234.2395
6.912	0.00132	174509	3780	-2.10E-04	5329	1.14E+10	-4.6039	6027	237.5667
7.056	9.80E-04	181388	4000	-1.83E-04	5539	1.14E+10	-4.3457	7665	26.6017
7.2	6.87E-04	188334	4017	-1.55E-04	5751	1.14E+10	-3.1364	7889	0
7.344	4.44E-04	195270	4017	-1.26E-04	5962	1.14E+10	-2.0829	8113	0
7.488	2.51E-04	202200	4002	-9.59E-05	6174	1.14E+10	-1.2131	8337	0
7.632	1.12E-04	202200	-10757	-6.47E-05	6386	1.14E+10	-17089	2.63E+08	0
7.776	2.77E-04	165025	-29496	-3.64E-05	5039	1.14E+10	-4600	2.86E+08	0
7.92	-1.35E-05	105025	-31386	-3.04L-05	3273	1.14L+10 1.14E+10	2412	2.80L+08 3.10E+08	0
8.064	-2.66E-05	56555	-24878	-3.31E-06	1727	1.14E+10	5121	3.33E+08	0
8.004 8.208	-2.49E-05	21212	-16021	2.59E-06	647.6817	1.14L+10 1.14E+10	5129	3.56E+08	0
8.352	-2.49E-05	1185	-8244	4.29E-06	36.1816	1.14E+10 1.14E+10	3872	3.79E+08	0
8.332 8.496	-1.01E-05	-7279	-2869	4.29E-00 3.82E-06	222.2486	1.14E+10 1.14E+10	2348	4.03E+08	0
8.64 8.64	-4.43E-06	-8730	102.1425	2.61E-06	266.5795	1.14E+10 1.14E+10	2348 1091	4.03E+08 4.26E+08	0
8.784	-4.43E-00	-6926	102.1423	1.42E-06	200.3793	1.14E+10 1.14E+10	275.4697	4.20E+08 4.49E+08	0
8.928			1282	1.42E-00 5.72E-07	131.2442	1.14E+10 1.14E+10			0
	4.92E-07	-4298	1404		63.2664		-134.333	4.72E+08	0
9.072	9.17E-07	-2072		8.92E-08		1.14E+10	-262.962	4.95E+08	
9.216	8.00E-07	-630.903	626.5165	-1.16E-07	19.2642	1.14E+10	-240.089	5.19E+08	0
9.36	5.17E-07	93.267	278.9159	-1.56E-07	2.8478	1.14E+10	-162.227	5.42E+08	0
9.504	2.59E-07	333.0308	65.5192	-1.24E-07	10.1689	1.14E+10	-84.7604	5.65E+08	0
9.648	8.83E-08		-33.6888		9.7619		-30.0636		0
9.792	1.18E-09	216.6024		-3.40E-08	6.6138	1.14E+10	-0.4184	6.12E+08	0
9.936	-2.92E-08	112.254	-51.1237	-9.06E-09	3.4276	1.14E+10	10.7211	6.35E+08	0
10.08	-3.01E-08	39.9187	-31.9442	2.47E-09	1.2189	1.14E+10	11.4774	6.58E+08	0
10.224	-2.06E-08	1.8549	-14.9979	5.64E-09	0.05664	1.14E+10	8.1363	6.81E+08	0
10.368	-1.06E-08	-11.9141	-4.2171	4.88E-09	0.3638	1.14E+10	4.3416	7.04E+08	0
10.512	-3.78E-09	-12.7193	0.9102	3.01E-09	0.3884	1.14E+10	1.5929	7.28E+08	0
10.656	-2.48E-10	-8.7683	2.3795	1.38E-09	0.2677	1.14E+10	0.1077	7.51E+08	0
10.8	9.89E-10	-4.4956	2.0896	3.75E-10	0.1373	1.14E+10	-0.4433	7.74E+08	0
10.944	1.05E-09	-1.5466	1.2884	-8.28E-11	0.04722	1.14E+10	-0.484	7.97E+08	0
11.088	7.03E-10	-0.04282	0.5817	-2.03E-10	0.00131	1.14E+10	-0.3339	8.21E+08	0
11.232	3.46E-10	0.4639	0.1472	-1.71E-10	0.01416	1.14E+10	-0.1691	8.44E+08	0
11.376	1.11E-10	0.4658	-0.0469	-1.01E-10	0.01422	1.14E+10	-0.05557	8.67E+08	0
11.52	-2.63E-12	0.3018	-0.09374	-4.27E-11	0.00922	1.14E+10	0.00135	8.90E+08	0
11.664	-3.69E-11	0.1419	-0.0757	-9.10E-12	0.00433	1.14E+10	0.01953	9.13E+08	0
11.808	-3.41E-11	0.04019	-0.04287	4.70E-12	0.00123	1.14E+10	0.01847	9.37E+08	0
11.952	-2.07E-11	-0.00631	-0.01698	7.27E-12	1.93E-04	1.14E+10	0.0115	9.60E+08	0
12.096	-8.97E-12	-0.01848	-0.00263	5.39E-12	5.64E-04	1.14E+10	0.0051	9.83E+08	0
--------	-----------	-----------	-----------	----------	----------	----------	-----------	----------	---
12.24	-2.08E-12	-0.01542	0.00282	2.82E-12	4.71E-04	1.14E+10	0.00121	1.01E+09	0
12.384	0	-0.00874	0.00347	0	2.67E-04	1.14E+10	-4.58E-04	1.03E+09	0
12.528	1.33E-12	-0.00343	0.00238	0	1.05E-04	1.14E+10	-8.07E-04	1.05E+09	0
12.672	0	-5.26E-04	0.00115	0	1.61E-05	1.14E+10	-6.13E-04	1.08E+09	0
12.816	0	5.46E-04	3.42E-04	0	1.67E-05	1.14E+10	-3.22E-04	1.10E+09	0
12.96	0	6.56E-04	-3.21E-05	0	2.00E-05	1.14E+10	-1.11E-04	1.12E+09	0
13.104	0	4.35E-04	-1.32E-04	0	1.33E-05	1.14E+10	-4.46E-06	1.15E+09	0
13.248	0	2.01E-04	-1.10E-04	0	6.13E-06	1.14E+10	2.92E-05	1.17E+09	0
13.392	0	5.37E-05	-6.10E-05	0	1.64E-06	1.14E+10	2.79E-05	1.19E+09	0
13.536	0	-9.97E-06	-2.26E-05	0	3.04E-07	1.14E+10	1.66E-05	1.21E+09	0
13.68	0	-2.42E-05	-2.53E-06	0	7.40E-07	1.14E+10	6.63E-06	1.21E+09	0
13.824	0	-1.87E-05	4.20E-06	0	5.71E-07	1.14E+10	1.16E-06	1.21E+09	0
13.968	0	-9.72E-06	4.43E-06	0	2.97E-07	1.14E+10	-8.90E-07	1.21E+09	0
14.112	0	-3.39E-06	2.66E-06	0	1.04E-07	1.14E+10	-1.15E-06	1.21E+09	0
14.256	0	-5.10E-07	9.82E-07	0	1.56E-08	1.14E+10	-7.94E-07	1.21E+09	0
14.4	0	0	0	0	0	1.14E+10	-3.42E-07	6.05E+08	0

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection = 0.05255032 inches Computed slope at pile head = -0.00078692 radians Maximum bending moment = 209127. inch-lbs Maximum shear force = -31386. lbs Depth of maximum bending moment = 7.63200000 feet below pile head Depth of maximum shear force = 7.92000000 feet below pile head Number of iterations = 6 Number of zero deflection points = 9

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

								Max	Max
Load	Load		Load		Axial	Pile-head	Pile-head	Shear	Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, lb	0	M, in-lb	0	0	0.05255	-7.87E-04	-31386	209127

Maximum pile-head deflection = 0.0525503174 inches Maximum pile-head rotation = -0.0007869225 radians = -0.045087 deg.

Summary of Warning Messages

The following warning was reported 288 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.

LPile for Windows, Version 2016-09.010
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2016 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
odot 1980 west broad st, columbus,oh
Serial Number of Security Device: 228746756
This copy of LPile is licensed for exclusive use by:
Ohio Dept. of Transportation, Co
Use of this program by any entity other than Ohio Dept. of Transportation, Co is a violation of the software license agreement.
Files Used for Analysis
 Path to file locations: \gt\Projects\D06\Delaware\DEL-315-6.40\Geotechnical\EngData\LPILE\
Name of input data file: 24in_HP12_53_6ftsocket_unfactored.lp9d
Name of output report file: 24in_HP12_53_6ftsocket_unfactored.lp9o
Name of plot output file: 24in_HP12_53_6ftsocket_unfactored.lp9p
Name of runtime message file:

24in_HP12_53_6ftsocket_unfactored.lp9r

Date and Time of Analysis

Date: March 5, 2018 Time: 10:49:37

Problem Title

Project Name: DEL-315-6.40 Job Number: 102124 Client: Engineer: Taliaferro Description: Plug Pile Wall

Program Options and Settings

Computational Options:

Use unfactored loads in computations (conventional analysis)
Engineering Units Used for Data Input and Computations:
US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis includes loading by one distributed lateral load acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1 Total length of pile = 14.000 ft

Depth of ground surface below top of pile = 2.1200 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth	
	Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0	24
2	14	24

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape = Circular Pile Length of section = 14.000000 ft Width of top of section = 24.000000 in Width of bottom of section = 24.000000 in Top Area = 15.500000 sq. in Bottom Area = 15.500000 sq. in Moment of Inertia at Top = 393.000000 in^4 Moment of Inertia at Bottom = 393.000000 in^4 Elastic Modulus = 29000000. psi

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees = 0.000 radians

Pile Batter Angle = 0.000 degrees

= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 4 layers

Layer 1 is stiff clay with water-induced erosion

Distance from top of pile to top of layer = 2.120000 ft Distance from top of pile to bottom of layer = 3.500000 ft Effective unit weight at top of layer = 57.600000 pcf Effective unit weight at bottom of layer = 62.600000 pcf Undrained cohesion at top of layer = 1625. psf Undrained cohesion at bottom of layer = 1625. psf Epsilon-50 at top of layer = 0.007000 Epsilon-50 at bottom of layer = 0.007000 Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer.

Layer 2 is stiff clay with water-induced erosion

Distance from top of pile to top of layer = 3.500000 ft Distance from top of pile to bottom of layer = 6.000000 ft Effective unit weight at top of layer = 62.600000 pcf Effective unit weight at bottom of layer = 62.600000 pcf Undrained cohesion at top of layer = 2875. psf Undrained cohesion at bottom of layer = 2875. psf Epsilon-50 at top of layer = 0.005200 Epsilon-50 at bottom of layer = 0.005200 Subgrade k at top of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is sand, p-y criteria by Reese et al., 1974

Distance from top of pile to top of layer = 6.000000 ft Distance from top of pile to bottom of layer = 7.500000 ft Effective unit weight at top of layer = 72.600000 pcf Effective unit weight at bottom of layer = 72.600000 pcf Friction angle at top of layer = 34.000000 deg. Friction angle at bottom of layer = 34.000000 deg. Subgrade k at top of layer = 0.0000 pci Subgrade k at bottom of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 4 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = 7.500000 ft Distance from top of pile to bottom of layer = 17.500000 ft Effective unit weight at top of layer = 80.700000 pcf Effective unit weight at bottom of layer = 80.700000 pcf Uniaxial compressive strength at top of layer = 15896. psi Uniaxial compressive strength at bottom of layer = 15896. psi Initial modulus of rock at top of layer = 1400000. psi Initial modulus of rock at bottom of layer = 1400000. psi RQD of rock at top of layer = 8.000000 % RQD of rock at bottom of layer = 8.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer = 0.0000500

(Depth of the lowest soil layer extends 3.500 ft below the pile tip)

Summary of Input Soil Properties

Layer Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Undrained Cohesion psf	Angle of Friction deg.	Uniaxial qu psi	RQD %	E50 or krm	kpy pci	Rock Mass Modulus psi
	Stiff Clay	2.12	57.6	1625				0.007	default	
wit	, h Free Water	3.5	62.6	1625				0.007	default	
2	Stiff Clay	3.5	62.6	2875				0.0052	default	
wit	h Free Water	6	62.6	2875				0.0052	default	
3	Sand	6	72.6		34				default	
(Reese, et al.)	7.5	72.6		34				default	
4	Weak	7.5	80.7			15896	8	5.00E-05		1400000
	Rock	17.5	80.7			15896	8	5.00E-05		1400000
	Rock	17.5	80.7			15896	8	5.00E-05		1400

p-y Modification Factors for Group Action

Distribution of p-y modifiers with depth defined using 2 points

Point	Depth X	p-mult	y-mult
No.	ft		
1	2.124	0.81	1
2	6.969	0.81	1

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading Used For All Load Cases

Distributed lateral load intensity defined using 2 points

Point No.	Depth X in	Dist. Load Ib/in	
1	0	0	
2	83.628	108.307	

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load	Condition	Condition	Axial Thrust	Compute Top y vs.
No.	Туре	1	2	Force, lbs	Pile Length
1	1	V = 0.0000 lbs	M = 0.0000 in-lbs	0	No

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer Ibs	F1 Integral for Layer Ibs
1	2.12	0	N.A.	No	0	600.1836
2	3.5	1.38	Yes	No	600.1836	6618
3	6	3.0909	No	No	7218	11194
4	7.5	5.38	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 0.0 lbs Applied moment at pile head = 0.0 in-lbs Axial thrust load on pile head = 0.0 lbs

Depth X feet	Deflect. y inches	Bending Moment in-lbs	Shear Force Ibs	Slope S radians	Total Stress psi*	Bending Stiffness in-Ib^2	Soil Res. p Ib/inch	Soil Spr. Es*h Ib/inch	Distrib. Lat. Load lb/inch
0	0.01247	4.20E-08	2.08E-09	-1.75E-04	1.28E-09	1.14E+10	0	0	0.5439
0.14	0.01217	0.7676	2.2846	-1.75E-04	0.02344	1.14E+10	0	0	2.1758
0.28	0.01188	7.6761	7.7675	-1.75E-04	0.2344	1.14E+10	0	0	4.3516
0.42	0.01159	26.8665	16.9058	-1.75E-04	0.8204	1.14E+10	0	0	6.5273
0.56	0.01129	64.4795	29.6993	-1.75E-04	1.9688	1.14E+10	0	0	8.7031
0.7	0.011	126.6562	46.1482	-1.75E-04	3.8674	1.14E+10	0	0	10.8789
0.84	0.01071	219.5375	66.2524	-1.75E-04	6.7034	1.14E+10	0	0	13.0547
0.98	0.01041	349.2642	90.0118	-1.75E-04	10.6646	1.14E+10	0	0	15.2304
1.12	0.01012	521.9773	117.4266	-1.75E-04	15.9382	1.14E+10	0	0	17.4062
1.26	0.00983	743.8176	148.4967	-1.75E-04	22.712	1.14E+10	0	0	19.582
1.4	0.00953	1021	183.2221	-1.74E-04	31.1733	1.14E+10	0	0	21.7578
1.54	0.00924	1359	221.6027	-1.74E-04	41.5097	1.14E+10	0	0	23.9335
1.68	0.00895	1766	263.6387	-1.74E-04	53.9087	1.14E+10	0	0	26.1093
1.82	0.00866	2245	309.33	-1.74E-04	68.5579	1.14E+10	0	0	28.2851
1.96	0.00836	2805	358.6766	-1.73E-04	85.6446	1.14E+10	0	0	30.4609
2.1	0.00807	3450	411.6785	-1.73E-04	105.3564	1.14E+10	0	0	32.6366
2.24	0.00778	4188	464.5229	-1.72E-04	127.8809	1.14E+10	-4.539	979.776	34.8124
2.38	0.00749	5011	513.0684	-1.72E-04	153.0144	1.14E+10	-9.4694	2123	36.9882
2.52	0.00721	5912	557.3145	-1.71E-04	180.5194	1.14E+10	-14.0089	3266	39.164
2.66	0.00692	6884	597.9151	-1.70E-04	210.1923	1.14E+10	-18.1607	4409	41.3397
2.8	0.00664	7921	635.5185	-1.69E-04	241.8627	1.14E+10	-21.9286	5552	43.5155
2.94	0.00635	9019	670.7658	-1.68E-04	275.3936	1.14E+10	-25.3171	6695	45.6913
3.08	0.00607	10175	704.29	-1.66E-04	310.6802	1.14E+10	-28.3315	7838	47.8671
3.22	0.00579	11386	736.7146	-1.65E-04	347.6505	1.14E+10	-30.9777	8981	50.0428
3.36	0.00552	12650	768.6521	-1.63E-04	386.2638	1.14E+10	-33.2629	10124	52.2186
3.5	0.00525	13968		-1.61E-04		1.14E+10	-70.3897	22535	54.3944
3.64	0.00498	15241	743.4273	-1.59E-04	465.3791	1.14E+10	-73.5647	24821	56.5702
3.78	0.00471	16466	714.5997	-1.56E-04	502.7829	1.14E+10	-76.07	27107	58.7459
3.92	0.00445	17642	685.7636	-1.54E-04	538.6937	1.14E+10	-77.9263	29393	60.9217
4.06	0.0042	18770	657.9907	-1.51E-04	573.1391	1.14E+10	-79.1559	31679	63.0975
4.2	0.00395	19853	632.3143	-1.48E-04	606.2006	1.14E+10	-79.782	33966	65.2733
4.34	0.0037	20895	609.7272	-1.45E-04	638.0117	1.14E+10	-79.8296	36252	67.449
4.48	0.00346	21902	591.1797	-1.42E-04	668.7558	1.14E+10	-79.3246	38538	69.6248
4.62	0.00322	22881		-1.39E-04	698.664	1.14E+10	-78.2942	40824	71.8006
4.76	0.00299	23842	569.7785	-1.35E-04	728.0126	1.14E+10	-76.7668	43110	73.9764
4.9	0.00277	24796	568.594	-1.32E-04	757.1207	1.14E+10	-74.7719	45396	76.1521
5.04	0.00255	25753	574.7829	-1.28E-04	786.3477	1.14E+10	-72.3403	47682	78.3279

5.18	0.00234	26727	589.0521	-1.24E-04	816.0908	1.14E+10	-69.5042	49969	80.5037	
5.32	0.00213	27732	612.0529	-1.20E-04	846.7818	1.14E+10	-66.2971	52255	82.6795	
5.46	0.00193	28783	644.3792	-1.16E-04	878.8846	1.14E+10	-62.754	54541	84.8552	
5.6	0.00174	29897	686.5643	-1.12E-04	912.8921	1.14E+10	-58.9119	56827	87.031	
5.74	0.00156	31090			949.3229		-54.8095	59113	89.2068	
5.88	0.00138	32381	802.3233	-1.03E-04		1.14E+10	-50.4879	61399	91.3826	
6.02	0.00121	33786	912.3649	-9.76E-05	1032	1.14E+10	-3.4511	4779	93.5583	
6.16	0.00105	35446	1066	-9.25E-05	1082	1.14E+10	-3.1039	4950	95.7341	
6.3	9.02E-04	37367	1224	-8.72E-05	1141	1.14E+10	-2.7508	5122	97.9099	
6.44	7.60E-04	39557	1386	-8.15E-05	1208	1.14E+10	-2.3961	5294	100.0857	
6.58	6.28E-04	42023	1552	-7.55E-05	1283	1.14E+10	-2.0442	5465	102.2615	
6.72	5.07E-04	44772	1722	-6.91E-05	1367	1.14E+10	-1.7003	5637	102.2015	
6.86	3.96E-04	47810	1897	-6.23E-05	1460	1.14E+10	-1.3699	5808	104.4572	
7	2.98E-04	51146	2010	-5.50E-05	1562	1.14E+10	-1.3075	7382	30.0868	
, 7.14	2.12E-04	54562	2010	-4.72E-05	1666	1.14E+10	-0.9561	7594	0	
7.28	1.39E-04	57976	2033	-4.72L-05	1770	1.14L+10 1.14E+10	-0.6458	7806	0	
7.42	8.08E-05	61389	2032	-3.01E-05	1874	1.14L+10 1.14E+10	-0.3858	8018	0	
7.56	3.79E-05	64800	-2601	-3.01E-05	1979	1.14E+10 1.14E+10	-0.3838 -5514	2.45E+08	0	
7.7	1.10E-05		-2001	-2.08E-05	1608	1.14E+10 1.14E+10		2.43E+08 2.67E+08	0	
		52649			1008		-1738			
7.84	-2.92E-06	35592 10051	-9732 8071	-5.64E-06		1.14E+10	501.474	2.89E+08	0 0	
7.98	-7.98E-06	19951	-8071	-1.54E-06	609.1905	1.14E+10	1475	3.10E+08	-	
8.12	-8.10E-06	8472	-5486	5.53E-07		1.14E+10	1603	3.32E+08	0	
8.26	-6.12E-06	1518	-3054	1.29E-06	46.3598	1.14E+10	1292	3.54E+08	0	
8.4	-3.77E-06	-1790	-1260	1.27E-06	54.6631	1.14E+10	844.4575	3.76E+08	0	
8.54	-1.86E-06	-2715	-180.376	9.37E-07	82.9105	1.14E+10	440.8098	3.98E+08	0	
8.68	-6.21E-07	-2396	320.4681	5.60E-07	73.1689	1.14E+10	155.4333	4.20E+08	0	
8.82	2.32E-08	-1639	445.9015	2.63E-07	50.032	1.14E+10	-6.1078	4.42E+08	0	
8.96	2.62E-07	-898.052	379.9616	7.60E-08	27.4214	1.14E+10	-72.3921	4.64E+08	0	
9.1	2.78E-07	-361.876		-1.69E-08	11.0496	1.14E+10	-80.5709		0	
9.24	2.05E-07	-53.1035	131.6467	-4.75E-08	1.6215	1.14E+10	-62.0791	5.08E+08	0	
9.38			47.9782				-37.5262		0	
9.52	5.25E-08	108.1033	1.9552	-3.16E-08	3.3009	1.14E+10	-17.2631		0	
9.66	1.29E-08	87.0264	-16.2498	-1.72E-08	2.6573	1.14E+10	-4.4095	5.74E+08	0	
9.8	-5.18E-09	53.5041	-18.4112	-6.82E-09	1.6337	1.14E+10	1.8364	5.96E+08	0	
9.94	-1.00E-08	25.1648	-13.7754	-1.02E-09	0.7684	1.14E+10	3.6824	6.18E+08	0	
10.08	-8.62E-09	7.2187	-7.9255	1.36E-09	0.2204	1.14E+10	3.2817	6.40E+08	0	
10.22	-5.43E-09	-1.465	-3.3709	1.79E-09	0.04473	1.14E+10	2.1404	6.62E+08	0	
10.36	-2.61E-09	-4.1076	-0.6795	1.38E-09	0.1254	1.14E+10	1.0636	6.84E+08	0	
10.5	-8.10E-10	-3.7482	0.4998	7.97E-10	0.1144	1.14E+10	0.3403	7.06E+08	0	
10.64	6.50E-11	-2.4284	0.762	3.42E-10	0.07415	1.14E+10	-0.02815	7.28E+08	0	
10.78	3.39E-10	-1.188	0.6113	7.55E-11		1.14E+10	-0.1512	7.50E+08	0	
10.92	3.19E-10	-0.3743	0.3615	-3.97E-11	0.01143	1.14E+10	-0.1463	7.71E+08	0	
11.06	2.06E-10	0.02648	0.157	-6.53E-11	8.09E-04	1.14E+10	-0.09707	7.93E+08	0	
11.2	9.91E-11	0.1533	0.03511	-5.21E-11	0.00468	1.14E+10	-0.04808	8.15E+08	0	
11.34	3.06E-11	0.1444	-0.01808	-3.01E-11	0.00441	1.14E+10	-0.01524	8.37E+08	0	
11.48	-2.15E-12	0.09255	-0.02996	-1.27E-11	0.00283	1.14E+10	0.0011	8.59E+08	0	
11.62	-1.20E-11	0.04376	-0.02378	-2.61E-12	0.00134	1.14E+10	0.00627	8.81E+08	0	

11.76	-1.09E-11	0.01267	-0.01358	1.55E-12	3.87E-04	1.14E+10	0.00587	9.03E+08	0
11.9	-6.75E-12	-0.00186	-0.00553	2.35E-12	5.68E-05	1.14E+10	0.00372	9.25E+08	0
12.04	-3.04E-12	-0.0059	-9.67E-04	1.77E-12	1.80E-04	1.14E+10	0.00171	9.47E+08	0
12.18	0	-0.00511	8.53E-04	0	1.56E-04	1.14E+10	4.54E-04	9.69E+08	0
12.32	0	-0.00303	0.00114	0	9.26E-05	1.14E+10	-1.16E-04	9.91E+08	0
12.46	0	-0.00129	8.22E-04	0	3.93E-05	1.14E+10	-2.59E-04	1.01E+09	0
12.6	0	-2.72E-04	4.26E-04	0	8.32E-06	1.14E+10	-2.12E-04	1.03E+09	0
12.74	0	1.44E-04	1.46E-04	0	4.38E-06	1.14E+10	-1.20E-04	1.06E+09	0
12.88	0	2.20E-04	5.40E-06	0	6.71E-06	1.14E+10	-4.75E-05	1.08E+09	0
13.02	0	1.62E-04	-4.05E-05	0	4.94E-06	1.14E+10	-7.12E-06	1.10E+09	0
13.16	0	8.37E-05	-3.96E-05	0	2.55E-06	1.14E+10	8.13E-06	1.12E+09	0
13.3	0	2.86E-05	-2.45E-05	0	8.72E-07	1.14E+10	9.87E-06	1.14E+09	0
13.44	0	1.34E-06	-1.05E-05	0	4.09E-08	1.14E+10	6.76E-06	1.17E+09	0
13.58	0	-6.79E-06	-2.10E-06	0	2.07E-07	1.14E+10	3.26E-06	1.18E+09	0
13.72	0	-5.72E-06	1.38E-06	0	1.75E-07	1.14E+10	8.83E-07	1.18E+09	0
13.86	0	-2.15E-06	1.70E-06	0	6.55E-08	1.14E+10	-5.05E-07	1.18E+09	0
14	0	0	0	0	0	1.14E+10	-1.52E-06	5.88E+08	0

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection = 0.01246821 inches Computed slope at pile head = -0.00017479 radians Maximum bending moment = 64800. inch-lbs Maximum shear force = -9732. lbs Depth of maximum bending moment = 7.56000000 feet below pile head Depth of maximum shear force = 7.84000000 feet below pile head Number of iterations = 6 Number of zero deflection points = 8

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

								Max	Max
Load	Load		Load		Axial	Pile-head	Pile-head	Shear	Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, lb	0	M, in-lb	0	0	0.01247	-1.75E-04	-9732	64800

Maximum pile-head deflection = 0.0124682131 inches Maximum pile-head rotation = -0.0001747935 radians = -0.010015 deg.

Summary of Warning Messages

The following warning was reported 282 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.

APPENDIX D.3 DEL-315-8.10

LPile for Windows, Vei	rsion 2016-09.010
Analysis of Individual Pile	es and Drilled Shafts
Subjected to Lateral Load	ding Using the p-y Method
-	
© 1985-2016 by Er	
All Rights Reserv	
This copy of LPile is being used by:	:
odot	
1980 west broad st, columbus,oh	
Serial Number of Security Device:	228746756
This copy of LPile is licensed for ex	xclusive use by:
Ohio Dept. of Transportation, Co	
Use of this program by any entity	other than Ohio Dept. of Transportation, Co
is a violation of the software licens	se agreement.
Files Used for Ana	
Path to file locations:	
\gt\Projects\D06\Delaware\DEL-3	315-8.10\Geotechnical\EngData\LPILE\
Name of input data file:	
24in_HP12_53_6ftsocket_factored	d.lp9d
Name of output report file:	
24in_HP12_53_6ftsocket_factored	d.lp9o
Name of plot output file:	
24in_HP12_53_6ftsocket_factored	d.lp9p
Name of runtime message file:	
24in_HP12_53_6ftsocket_factored	d.lp9r
Date and Time of A	Analysis
Date: March 1, 2018	
Problem Title	
Project Name: DEL-315-8.10	
Job Number: 102124	
Client:	

Engineer: Taliaferro Description: Plug Pile Wall

Program Options and Settings

Computational Options:

- Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence = 1.0000E-05 in
- Maximum allowable deflection = 100.0000 in
- Number of pile increments = 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined = 1 Total length of pile = 14.000 ft Depth of ground surface below top of pile = 1.5000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

Depth	
Below	Pile
Pile Head	Diameter
feet	inches
0	24
14	24
	Below Pile Head feet 0

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape = Circular Pile Length of section = 14.000000 ft Width of top of section = 24.000000 in Width of bottom of section = 24.000000 in Top Area = 15.500000 sq. in Bottom Area = 15.500000 sq. in Moment of Inertia at Top = 393.000000 in^4 Moment of Inertia at Bottom = 393.000000 in^4 Elastic Modulus = 29000000. psi

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees = 0.000 radians

Pile Batter Angle = 0.000 degrees

= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 3 layers

Layer 1 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 1.500000 ft Distance from top of pile to bottom of layer = 8.500000 pcf Effective unit weight at top of layer = 55.600000 pcf Undrained cohesion at top of layer = 1083. psf Undrained cohesion at bottom of layer = 1083. psf Epsilon-50 at top of layer = 0.009000 Epsilon-50 at bottom of layer = 0.009000 Subgrade k at top of layer = 0.0000 pci NOTE: Default values for subgrade k will be computed for this layer.

Layer 2 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 8.500000 ft Distance from top of pile to bottom of layer = 12.000000 ft Effective unit weight at top of layer = 59.600000 pcf Effective unit weight at bottom of layer = 59.600000 pcf Undrained cohesion at top of layer = 2313. psf Undrained cohesion at bottom of layer = 2313. psf Epsilon-50 at top of layer = 0.005800 Epsilon-50 at bottom of layer = 0.005800 Subgrade k at top of layer = 0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is weak rock, p-y criteria by Reese, 1997 Distance from top of pile to top of layer = 12.000000 ft Distance from top of pile to bottom of layer = 17.500000 ft Effective unit weight at top of layer = 82.500000 pcf Effective unit weight at bottom of layer = 82.500000 pcf Uniaxial compressive strength at top of layer = 20451. psi Uniaxial compressive strength at bottom of layer = 20451. psi Initial modulus of rock at top of layer = 1800000. psi Initial modulus of rock at bottom of layer = 1800000. psi RQD of rock at top of layer = 7.000000 % RQD of rock at top of layer = 0.0000500 k rm of rock at bottom of layer = 0.0000500

(Depth of the lowest soil layer extends 3.500 ft below the pile tip)

	Summary	of Input S	oil Propertie	25					
Layer Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Undrained Cohesion psf	Uniaxial qu psi	RQD %	E50 or krm	kpy pci	Rock Mass Modulus psi
1	Stiff Clay	1.5	55.6	1083			0.009	default	
with	n Free Water	8.5	55.6	1083			0.009	default	
2	Stiff Clay	8.5	59.6	2313			0.0058	default	
with	n Free Water	12	59.6	2313			0.0058	default	
3	Weak	12	82.5		20451	7	5.00E-05		1800000
	Rock	17.5	82.5		20451	7	5.00E-05		1800000

p-y Modification Factors for Group Action

Distributic	on of p-y moo	lifiers with o	depth define	ed using 2 points		
Point No.	Depth X ft	p-mult	y-mult			
1	3.4	0.81	1			
	10					
	Static	Loading Ty	pe			
Static load	ling criteria w	vere used w	hen comput	ing p-y curves for all a	analyses.	
Di	stributed Lat	eral Loadin	g for Individu	ual Load Cases		
Distribute	d lateral load	intensity fo	or Load Case	1 defined using 2 poi	nts	
Р	ile-head Load	ding and Pil	e-head Fixity	/ Conditions		
	f loads specif					
	Load Type		lition L			Compute Top y vs. Pile Length
1	1	V = 0.0	000 lbs	 M = 0.0000 in-lbs	0	Yes
M = bendi y = lateral S = pile slo R = rotatio Values of t specified s Thrust for	hear loading	applied to p ormal to pil- o original pi applied to p lengths can (Load Type d to be actin	ile head e axis le batter any bile head be compute s 1, 2, and 3 ng axially for	ed only for load types). all pile batter angles.		
				y and Nonlinear Bendi	ng Stiffness	
Axial thrus	t force value	s were dete	ermined fror	n pile-head loading co	onditions	
Number o	f Pile Section	s Analyzed	= 1			
Pile Sectio	n No. 1:					

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers _____

	Top of	Equivalent	Same			
	Layer	Top Depth	Layer	Layer is	FO	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	1.5	0	N.A.	No	0	8740
2	8.5	7	Yes	No	8740	48741
3	12	10.5	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 0.0 lbs Applied moment at pile head = 0.0 in-lbs Axial thrust load on pile head = 0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	У	Moment	Force	S	Stress	Stiffness	р	Es*h	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	in-lb^2	lb/inch	lb/inch	lb/inch
0	0.2422	2.80E-06	0	-0.00266	8.56E-08	1.14E+10	0	0	134.2878
0.14	0.2378	189.5069	230.5119	-0.00266	5.7865	1.14E+10	0	0	140.1311
0.28	0.2333	774.5199	472.4767	-0.00266	23.6495	1.14E+10	0	0	147.9222
0.42	0.2288	1777	727.5305	-0.00266	54.2604	1.14E+10	0	0	155.7133
0.56	0.2244	3219	995.6734	-0.00266	98.2908	1.14E+10	0	0	163.5044
0.7	0.2199	5122	1277	-0.00266	156.4119	1.14E+10	0	0	171.2955
0.84	0.2154	7509	1571	-0.00266	229.2954	1.14E+10	0	0	179.0866
0.98	0.2109	10402	1879	-0.00266	317.6126	1.14E+10	0	0	186.8778
1.12	0.2065	13822	2199	-0.00266	422.0349	1.14E+10	0	0	194.6689
1.26	0.202	17791	2533	-0.00265	543.2338	1.14E+10	0	0	202.46
1.4	0.1976	22332	2879	-0.00265	681.8808	1.14E+10	0	0	210.2511
1.54	0.1931	27466	3200	-0.00265	838.6472	1.14E+10	-46.3468	403.2	218.0422
1.68	0.1887	33084	3429	-0.00264	1010	1.14E+10	-125.46	1117	225.8333
1.82	0.1842	38986	3587	-0.00264	1190	1.14E+10	-145.767	1329	233.6244
1.96	0.1798	45136	3725	-0.00263	1378	1.14E+10	-165.298	1544	241.4155
2.1	0.1754	51501	3843	-0.00262	1573	1.14E+10	-184.099	1763	249.2066
2.24	0.171	58050	3944	-0.00262	1773	1.14E+10	-202.202	1987	256.9977
2.38	0.1666	64753	4028	-0.00261	1977	1.14E+10	-219.632	2215	264.7888

2.52	0.1622	71584	4096	-0.0026	2186	1.14E+10	-236.403	2448	272.5799
2.66	0.1579	78516	4150	-0.00259	2397	1.14E+10	-252.528	2687	280.371
2.8	0.1535	85528	4190	-0.00257	2612	1.14E+10	-268.013	2933	288.1622
2.94	0.1492	92596	4218	-0.00256	2827	1.14E+10	-282.861	3185	295.9533
3.08	0.1449	99701	4235	-0.00255	3044	1.14E+10	-297.072	3444	303.7444
3.22	0.1407	106825	4241	-0.00253	3262	1.14E+10	-310.642	3710	311.5355
3.36	0.1407	113952	4238	-0.00255	3479	1.14E+10	-323.564	3985	319.3266
3.5				-0.00232		1.14E+10 1.14E+10	-323.304		319.3200
	0.1322	121066	4281		3697			3457	
3.64	0.128	128336	4372	-0.00248	3919	1.14E+10	-281.408	3693	334.9088
3.78	0.1239	135757	4461	-0.00246	4145	1.14E+10	-290.23	3936	342.6999
3.92	0.1198	143326	4549	-0.00244	4376	1.14E+10	-298.458	4187	350.491
4.06	0.1157	151042	4637	-0.00242	4612	1.14E+10	-306.04	4445	358.2821
4.2	0.1116	158906	4725	-0.0024	4852	1.14E+10	-312.85	4709	366.0732
4.34	0.1076	166920	4817	-0.00237	5097	1.14E+10	-318.089	4966	373.8643
4.48	0.1037	175091	4913	-0.00235	5346	1.14E+10	-322.572	5228	381.6554
4.62	0.09974	183429	5016	-0.00232	5601	1.14E+10	-326.612	5502	389.4466
4.76	0.09586	191944	5125	-0.00229	5861	1.14E+10	-330.202	5787	397.2377
4.9	0.09203	200648	5241	-0.00226	6127	1.14E+10	-333.339	6085	405.0288
5.04	0.08826	209555	5366	-0.00223	6399	1.14E+10	-336.019	6396	412.8199
5.18	0.08453	218678	5500	-0.0022	6677	1.14E+10	-338.239	6722	420.611
5.32	0.08086	228034	5643	-0.00217	6963	1.14E+10	-339.994	7064	428.4021
5.46	0.07724	237640	5797	-0.00213	7256	1.14E+10	-341.281	7423	436.1932
5.6	0.07369	247513	5963	-0.0021	7558	1.14E+10	-342.098	7799	443.9843
5.74	0.07019	257674	6140	-0.00206	7868	1.14E+10	-342.442	8196	451.7754
5.88	0.06676	268144	6330	-0.00202	8188	1.14E+10	-342.311	8614	459.5665
6.02	0.0634	278944	6534	-0.00198	8517	1.14E+10	-341.704	9055	467.3576
6.16	0.0601	290100	6753	-0.00194	8858	1.14E+10	-340.62	9521	475.1487
6.3	0.05688	301634	6987	-0.00194	9210	1.14E+10	-339.06	10015	482.9398
6.44	0.05373	313575	7207	-0.00185	9575	1.14E+10	-337.025	10538	455.4204
6.58	0.05066	325850	7026	-0.0018	9950	1.14E+10	-334.518	11094	0
6.72	0.04767	337181	6466	-0.00176	10296	1.14E+10		11685	0
6.86	0.04476	347577	5912	-0.0017	10613	1.14E+10	-328.106	12315	0
7	0.04194	357046	5364	-0.00165	10902	1.14E+10	-324.21	12988	0
7.14	0.03921	365600	4823	-0.0016	11163	1.14E+10		13707	0
7.28	0.03656	373251	4290	-0.00155	11397	1.14E+10		14477	0
7.42	0.03401	380013	3765	-0.00149	11603	1.14E+10	-309.843	15304	0
7.56	0.03156	385901	3249	-0.00143	11783	1.14E+10	-304.185	16193	0
7.7	0.0292	390930	2745	-0.00138	11937	1.14E+10	-295.654	17011	0
7.84	0.02693	395124	2258	-0.00132	12065	1.14E+10	-283.964	17712	0
7.98	0.02477	398517	1791	-0.00126	12168	1.14E+10	-272.31	18470	0
8.12	0.0227	401142	1343	-0.0012	12249	1.14E+10	-260.703	19292	0
8.26	0.02074	403031	914.9603	-0.00114	12306	1.14E+10	-249.151	20187	0
8.4	0.01887	404216	506.0344	-0.00108	12342	1.14E+10	-237.666	21162	0
8.54	0.0171	404731	-199.246	-0.00102	12358	1.14E+10	-601.954	59139	0
8.68	0.01543	403547	-1185	-9.63E-04	12322	1.14E+10		62251	0
8.82	0.01387	400749	-2121	-9.03E-04	12237	1.14E+10		65676	0
8.96	0.01307	396420	-3007	-8.45E-04	12104	1.14E+10		69455	0
0.90	0.0124	550420	5007	0.432-04	12104	1.146+10	512.540	00400	U

9.1	0.01103	390646	-3843	-7.87E-04	11928	1.14E+10	-483.401	73643	0
9.24	0.00975	383507	-4631	-7.30E-04	11710	1.14E+10	-454.642	78302	0
9.38	0.00858	375084	-5371	-6.74E-04	11453	1.14E+10	-426.303	83507	0
9.52	0.00749	365459	-6064	-6.19E-04	11159	1.14E+10	-398.419	89352	0
9.66	0.0065	354709	-6710	-5.66E-04	10831	1.14E+10	-371.024	95949	0
9.8	0.00559	342912	-7311	-5.15E-04	10471	1.14E+10	-344.153	103441	0
9.94	0.00477	330144	-7867	-4.65E-04	10081	1.14E+10	-317.841	112005	0
10.08	0.00403	316478	-8437	-4.17E-04	9663	1.14E+10	-360.648	150450	0
10.22	0.00337	301795	-9017	-3.72E-04	9215	1.14E+10	-329.683	164582	0
10.36	0.00278	286181	-9542	-3.28E-04	8738	1.14E+10	-295.374	178618	0
10.5	0.00226	269733	-9995	-2.87E-04	8236	1.14E+10	-244.284	181440	0
10.64	0.00181	252596	-10368	-2.49E-04	7713	1.14E+10	-198.786	184262	0
10.78	0.00143	234898	-10668	-2.13E-04	7172	1.14E+10	-158.744	187085	0
10.92	0.0011	216752	-10905	-1.80E-04	6618	1.14E+10	-123.978	189907	0
11.06	8.22E-04	198256	-11089	-1.49E-04	6054	1.14E+10	-94.2648	192730	0
11.2	5.96E-04	179494	-11226	-1.21E-04	5481	1.14E+10	-69.3424	195552	0
11.34	4.14E-04	160536	-11325	-9.62E-05	4902	1.14E+10	-48.9094	198374	0
11.48	2.72E-04	141440	-11394	-7.40E-05	4319	1.14E+10	-32.6277	201197	0
11.62	1.66E-04	122252	-11438	-5.45E-05	3733	1.14E+10	-20.1234	204019	0
11.76	8.92E-05	103008	-11464	-3.79E-05	3145	1.14E+10	-10.9878	206842	0
11.9	3.83E-05	83732	-11478	-2.42E-05	2557	1.14E+10	-4.7789	209664	0
12.04	8.08E-06	64443	-12735	-1.32E-05	1968	1.14E+10	-1492	3.10E+08	0
12.18	-6.18E-06	40941	-12942	-5.47E-06	1250	1.14E+10	1246	3.39E+08	0
12.32	-1.03E-05	20957	-10006	-9.07E-07	639.8959	1.14E+10	2250	3.67E+08	0
12.46	-9.23E-06	7321	-6293	1.18E-06	223.5523	1.14E+10	2171	3.95E+08	0
12.6	-6.35E-06	-187.301	-3126	1.70E-06	5.7191	1.14E+10	1599	4.23E+08	0
12.74	-3.51E-06	-3183	-991.189	1.45E-06	97.1904	1.14E+10	942.8065	4.52E+08	0
12.88	-1.46E-06	-3518	150.5561	9.61E-07	107.4105	1.14E+10	416.4134	4.80E+08	0
13.02	-2.80E-07	-2677	571.3996	5.04E-07	81.744	1.14E+10	84.5908	5.08E+08	0
13.16	2.36E-07	-1598	579.2864	1.89E-07	48.7875	1.14E+10	-75.2017	5.36E+08	0
13.3	3.55E-07	-730.715	415.855	1.74E-08	22.3119	1.14E+10	-119.36	5.64E+08	0
13.44	2.94E-07	-200.519	228.4887	-5.13E-08	6.1227	1.14E+10	-103.696	5.93E+08	0
13.58	1.83E-07	37.0069	84.5852	-6.33E-08	1.13	1.14E+10	-67.6181	6.21E+08	0
13.72	8.11E-08	83.6874	1.4494	-5.44E-08	2.5553	1.14E+10	-31.3531	6.49E+08	0
13.86	5.84E-11	41.877	-24.907	-4.52E-08	1.2787	1.14E+10	-0.02356	6.77E+08	0
14	-7.07E-08	0	0	-4.21E-08	0	1.14E+10	29.6747	3.53E+08	0

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection = 0.24224816 inches Computed slope at pile head = -0.00266233 radians Maximum bending moment = 404731. inch-lbs Maximum shear force = -12942. lbs Depth of maximum bending moment = 8.54000000 feet below pile head Depth of maximum shear force = 12.18000000 feet below pile head Number of iterations = 16 Number of zero deflection points = 3

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 0.0 lbs Moment = 0.0 in-lbs Axial Load = 0.0 lbs

Pile	Pile Head	Maximum	Maximum	
Length	Deflection	Moment	Shear	
feet	inches	In-lbs	lbs	
14	0.242248	404731	-12942	
13.3	0.241868	405137	-12066	
12.6	0.244308	406072	-13259	
11.9	0.289994	330961	-11952	
11.2	0.337612	295246	-11921	
10.5	0.449654	263617	-11525	

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

								Max	Max
Load	Load		Load		Axial	Pile-head	Pile-head	Shear	Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, lb	0	M, in-lb	0	0	0.2422	-0.00266	-12942	404731

Maximum pile-head deflection = 0.2422481624 inches Maximum pile-head rotation = -0.0026623256 radians = -0.152540 deg.

Summary of Warning Messages

The following warning was reported 720 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 500 psi. Please check your input data for correctness.

The analysis ended normally.

APPENDIX E RSS ANALYSIS

APPENDIX E.1 DEL-315-5.0

ReSSA Output 5.0

Data for circles, ending point - Lower part on 10/31/18 at 07:45:09 AM

	X center	Y center	Radius	Factor of Safety	X down	Y down	X up	Y up	Theta
	[ft]	[ft]	[ft]		[ft]	[ft]	[ft]	[ft]	[degrees]
1	13.84	828.38	41.71	1.304	6.32	787.36	45.30	801.00	10.0
2	12.56	843.86	55.61	1.335	8.62	788.38	48.00	801.00	4.0
3	17.82	825.76	36.99	1.317	10.39	789.52	45.30	801.00	11.0
4	21.11	814.54	25.40	1.368	12.76	790.55	42.60	801.00	19.0
5	24.80	814.01	24.28	1.484	14.66	791.94	45.30	801.00	24.0
6	26.84	806.67	16.75	1.692	16.78	793.29	42.60	801.00	36.0
7	27.51	816.38	23.52	1.925	18.92	794.49	45.30	801.00	21.0
8	29.65	807.42	14.45	2.297	21.03	795.82	42.60	801.00	36.0
9	30.91	808.83	14.07	2.812	23.13	797.10	42.60	801.00	33.0
10	31.04	808.23	11.44	3.775	25.32	798.33	39.90	801.00	30.0
11	27.53	801.46	1.84	1.579	27.40	799.63	29.10	800.50	4.0

Lower Part Minimum Factor of Safety = 1.304

Data for circles, starting point - Upper part on 10/31/18 at 07:44:56 AM

	X center	Y center	Radius	Factor of Safety	X down	Y down	X up	Y up	Theta
	[ft]	[ft]	[ft]		[ft]	[ft]	[ft]	[ft]	[degrees]
1	27.53	801.46	1.84	1.579	27.40	799.63	29.10	800.50	4.0
2	28.98	802.86	3.60	2.119	27.37	799.64	31.80	800.63	26.0
3	16.47	802.50	18.12	1.857	6.35	787.47	34.50	800.75	33.0
4	15.99	807.44	22.21	1.598	6.60	787.31	37.20	800.87	25.0
5	16.25	811.19	25.76	1.408	6.57	787.32	39.90	801.00	22.0
6	14.38	821.02	34.60	1.312	6.30	787.38	42.60	801.00	13.0
7	13.84	828.38	41.71	1.304	6.32	787.36	45.30	801.00	10.0
8	12.56	843.86	55.61	1.335	8.62	788.38	48.00	801.00	4.0
9	17.84	839.81	50.85	1.377	10.38	789.50	50.70	801.00	8.0
10	17.90	847.58	58.57	1.420	10.38	789.50	53.40	801.00	7.0
11	10.24	877.91	89.54	1.507	8.40	788.38	56.10	801.00	1.0

Upper Part Minimum Factor of Safety = 1.304

APPENDIX E.2 DEL-315-6.40

ReSSA Output 6.40

Data for circles, ending point - Lower part on 10/31/18 at 07:46:49 AM

	X center	Y center	Radius	Factor of Safety	X down	Y down	X up	Y up	Theta
	[ft]	[ft]	[ft]		[ft]	[ft]	[ft]	[ft]	[degrees]
1	3.73	832.14	35.71	1.309	-0.07	796.64	31.80	810.06	6.0
2	7.62	826.87	29.44	1.376	1.74	798.02	31.80	810.06	11.0
3	10.80	823.01	24.67	1.501	3.70	799.38	31.80	810.06	16.0
4	13.68	819.63	20.49	1.751	5.85	800.69	31.80	810.06	22.0
5	15.37	819.32	18.86	2.075	8.00	801.96	31.80	810.06	23.0
6	17.42	817.87	16.35	2.377	9.91	803.34	31.80	810.06	27.0
7	19.21	817.13	14.43	2.821	11.98	804.64	31.80	810.06	30.0
8	20.98	816.32	12.49	3.525	13.87	806.05	31.80	810.06	34.0
9	22.65	815.81	10.80	4.767	15.88	807.39	31.80	810.06	38.0
10	20.32	813.85	5.71	6.356	17.96	808.65	24.15	809.61	24.0
11	22.08	811.35	2.71	9.707	19.98	809.63	24.15	809.61	50.0

Lower Part Minimum Factor of Safety = 1.309

Data for circles, starting point - Upper part on 10/31/18 at 07:46:40 AM

	X center	Y center	Radius	Factor of Safety	X down	Y down	X up	Y up	Theta
	[ft]	[ft]	[ft]		[ft]	[ft]	[ft]	[ft]	[degrees]
1	5.01	811.19	15.40	4.419	-0.15	796.68	20.33	809.61	19.0
2	10.74	810.97	13.48	2.201	3.87	799.37	24.15	809.61	30.0
3	4.65	823.02	26.80	1.469	-0.03	796.63	27.98	809.82	10.0
4	3.73	832.14	35.71	1.309	-0.07	796.64	31.80	810.06	6.0
5	1.70	845.40	48.80	1.383	-0.07	796.63	35.62	810.31	2.0
6	0.00	859.50	62.87	1.539	-0.00	796.63	39.44	810.54	0.0
7	3.20	866.96	69.01	1.799	1.84	797.97	43.26	810.77	1.0
8	0.43	887.87	89.92	1.946	1.81	797.96	47.08	811.00	-1.0
9	-4.29	917.92	120.12	2.172	1.92	797.96	50.91	811.23	-3.0
10	-12.80	967.15	169.84	2.532	1.48	797.92	54.73	811.32	-5.0
11	-30.32	1061.19	265.21	2.910	1.54	797.91	58.55	811.32	-7.0

Upper Part Minimum Factor of Safety = 1.309

APPENDIX E.3 DEL-315-8.10

ReSSA Output 8.10

Data for circles, ending point - Lower part on 10/31/18 at 07:47:57 AM

	X center	Y center	Radius	Factor of Safety	X down	Y down	X up	Y up	Theta
	[ft]	[ft]	[ft]		[ft]	[ft]	[ft]	[ft]	[degrees]
1	24.22	870.05	56.65	2.618	2.29	817.81	73.53	842.15	22.0
2	25.74	866.34	51.00	2.569	8.15	818.47	70.67	842.20	20.0
3	24.88	868.17	50.14	2.509	13.12	819.43	67.80	842.25	13.0
4	7.51	928.86	108.98	2.312	18.64	820.45	73.53	842.15	-6.0
5	-2.46	947.55	128.24	1.822	24.14	822.10	70.67	842.20	-12.0
6	35.52	853.59	28.97	1.298	29.34	825.28	62.07	841.96	12.0
7	43.17	850.58	23.35	1.521	34.55	828.88	64.93	842.14	21.0
8	45.86	849.04	17.68	1.775	39.90	832.39	62.07	841.96	19.0
9	50.99	846.37	11.92	2.372	45.35	835.88	62.07	841.96	28.0
10	55.37	845.15	7.42	4.708	50.70	839.39	62.07	841.96	39.0
11	61.11	857.36	16.53	20.499	55.96	841.66	67.80	842.25	18.0

Lower Part Minimum Factor of Safety = 1.298

Data for circles, starting point - Upper part on 10/31/18 at 07:47:44 AM

	X center	Y center	Radius	Factor of Safety	X down	Y down	X up	Y up	Theta
	[ft]	[ft]	[ft]		[ft]	[ft]	[ft]	[ft]	[degrees]
1	35.12	846.20	21.70	1.883	29.31	825.30	56.33	841.66	15.0
2	35.20	849.93	25.34	1.451	29.30	825.29	59.20	841.81	13.0
3	35.52	853.59	28.97	1.298	29.34	825.28	62.07	841.96	12.0
4	34.92	859.48	34.66	1.298	29.27	825.28	64.93	842.14	9.0
5	33.89	867.00	41.99	1.327	29.16	825.28	67.80	842.25	6.0
6	35.03	870.28	45.37	1.373	29.32	825.27	70.67	842.20	7.0
7	34.93	876.90	51.94	1.430	29.35	825.26	73.53	842.15	6.0
8	34.68	884.49	59.47	1.495	29.36	825.26	76.40	842.11	5.0
9	34.25	893.23	68.15	1.568	29.37	825.26	79.27	842.06	4.0
10	33.73	905.87	80.73	1.694	29.38	825.25	82.13	841.26	3.0
11	32.84	920.81	95.62	1.847	29.00	825.27	85.00	840.67	2.0

Upper Part Minimum Factor of Safety = 1.298

APPENDIX F GEOWEB ANALYSES

APPENDIX F.1 DEL-315-5.0

APPENDIX F.2 DEL-315-6.40

APPENDIX F.3 DEL-315-8.10

