
STRUCTURE FOUNDATION EXPLORATION

Proposed Bridge Replacement Bridge Street Over Middle Branch Portage River

Sylvania, Lucas County, Ohio

Submitted to Tetra Tech FINAL REPORT Date *May 2025*

Prepared by

May 30, 2025

CT Project No. 231797

Mr. David T. Charville, PE Tetra Tech 420 Madison Ave, Suite 1001 Toledo, Ohio 43604

Re: Final Report Structure Foundation Exploration Proposed Bridge Replacement Bridge Street over Middle Branch Portage River Village of Pemberville, Ohio

Dear Mr. Charville:

Following is the final report of the structure foundation exploration performed by CT Consultants, Inc. (CT) for the referenced project conducted for Tetra Tech. This study was performed in accordance with CT Proposal No. P231797R3, dated September 13, 2023, and authorized via a Tetra Tech Subconsultant Services Agreement dated October 27, 2023.

A "draft" version of the report, dated September 19, 2024, was previously provided for review by Tetra Tech and ODOT. It was indicated that there were no comments regarding the draft report. This final report contains the results of our study, our engineering interpretation of the results with respect to the project characteristics, as well as our design and construction recommendations for bridge foundations and pavements.

Should you have any questions regarding this report or require additional information, please contact our office.

Should you have any questions regarding this report or require additional information, please contact our office.

Respectfully, CT Consultants, Inc.

Katherine C. Hennicken, P.E. Senior Geotechnical Engineer

May 30, 2025 Tetra Tech Page **2** of **2**

topo

Imad El Hajjar, P.E. Project Manager

LER

Curtis E. Roupe, P.E. Vice President/Market Leader

H:\2023\231797\PHASE\1 Structure Foundation Exploration\Reports and Other Deliverables\231797 Geotech Report Pemberville Bridge Street Bridge.docx

FINAL REPORT STRUCTURE FOUNDATION EXPLORATION PROPOSED BRIDGE REPLACEMENT BRIDGE STREET OVER MIDDLE BRANCH PORTAGE RIVER VILLAGE OF PEMBERVILLE, OHIO

FOR

TETRA TECH 420 MADISON AVE, SUITE 1001 TOLEDO, OHIO 43604

SUBMITTED

MAY 30, 2025 CT PROJECT NO. 231797

CT CONSULTANTS, INC. 1915 NORTH 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222 (419) 321-6257 FAX

TABLE OF CONTENTS

<u>Page No.</u>

TABLE	OF CONTENTS	i
1.0	INTRODUCTION	
1.1	Purpose and Scope of Exploration	1
1.2	Proposed Construction	2
2.0	GEOLOGY AND OBSERVATIONS OF THE PROJECT	3
2.1	General Geology and Hydrogeology	3
2.2	Observations of the Project	4
3.0	EXPLORATION	5
3.1	Historic Borings	5
3.2	Project Exploration Program	5
3.3	Boring Methods	6
3.4	Laboratory Testing Program	
4.0	FINDINGS	
4.1	General Site Conditions	
4.2	General Soil Conditions	
4.3	General Bedrock Conditions	
4.4	Groundwater Conditions	
4.5	Gradation Results for Potential Scour Evaluations	
4.6	Remedial Measures	
5.0	ANALYSES AND RECOMMENDATIONS	
5.1	Bridge Foundations	
-	.1.1 Drilled Shaft Rock Socket Vertical Resistance	
	.1.2 Lateral Load Soil and Rock Design Parameters	
5.2		
	2.1 Subgrade Analysis Worksheet	
-	.2.2 Construction Considerations	
	2.3 Planned Subgrade Modification Recommendation	
5.3	Flexible (Asphalt) Pavement Design	
5.4	Construction Dewatering and Groundwater Control	
5.5	Construction	
	.5.1 Sediment and Erosion Control	
	.5.2 Site and Subgrade Preparation	
	.5.3 Fill	
	.5.4 Excavations and Slopes	
6.0	QUALIFICATION OF RECOMMENDATIONS	25

PLATES

Plate 1.0	Site Location Map
Plate 2.0	Test Boring Location Plan

FIGURES

Logs of Test Borings Legend Key Rock Core Photographic Logs Grain Size Distribution Rock Core Unconfined Compressive Strength Test Results

APPENDICIES

Appendix A:	Engineering Calculations (including ODOT Subgrade Analysis)
Appendix B:	Geotechnical Engineering Design Checklists

1.0 INTRODUCTION

This structure foundation exploration report has been prepared for the replacement of the existing bridge along Bridge Street over Middle Branch Portage River in the Village of Pemberville, Ohio. The general project area is shown on the Site Location Map (Plate 1.0).

This report describes the investigative and testing procedures, presents the findings, discusses our evaluations and conclusions, and provides our recommendations for bridge foundations.

This report has been prepared for Tetra Tech. This study was performed in accordance with CT Proposal No. P231797R3, dated September 13, 2023, and authorized via a Tetra Tech Subconsultant Services Agreement dated October 27, 2023.

1.1 <u>Purpose and Scope of Exploration</u>

The purpose of this exploration was to evaluate the subsurface conditions relative to the design and construction of foundations for a new bridge structure at the referenced location. To accomplish this, CT performed four test borings, field and laboratory soil testing, a geotechnical engineering evaluation of the test results, and a review of available geologic and soils data for the project area.

This report summarizes our understanding of the proposed construction, describes the investigative and testing procedures utilized to evaluate the subsurface conditions at the site, and presents our findings from the field and laboratory testing. This report also presents our evaluations and conclusions in accordance with ODOT Bridge Design Manual, as well as provides our design and construction recommendations for foundations for the proposed bridge replacement structure.

This report includes:

- > A description of the subsurface soil, rock, and groundwater conditions encountered in the borings.
- > Design recommendations for bridge foundations.
- > Recommendations concerning soil-, rock-, and groundwater-related construction procedures such as site preparation, earthwork, foundation and pavement construction, as well as related field testing.

Appendix B includes pertinent ODOT Geotechnical Engineering Design Checklists that apply to the scope of this report.

This exploration did not include an environmental assessment of the surface or subsurface materials at the site.

1.2 <u>Proposed Construction</u>

It is our understanding that the existing bridge is indicated to be a three-span structure 160 feet in length, bearing on shallow spread foundations. Currently the bridge includes a barricaded closure in an abundance of caution for the exterior bridge beams beneath the sidewalks which showed section loss.

It is planned to support the structure using drilled shafts socketed into bedrock at the abutments. Maximum total factored loads are shown in the following table

Tab	le 1.2. Maxim	num Factored	Load	
ltem	Rear (West) Abutment (B-001)	Pier 1 (West Pier) (B-002)	Pier 2 (East Pier) (B-003)	Forward (East) Abutment (B-004)
Maximum Factored Load (feet)	247	456	456	247

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 General Geology and Hydrogeology

Published geologic maps from the Ohio Department of Natural Resources (ODNR) indicate that the project site is located in the Woodville Lake-Plain Reefs Physiographic District of the Maumee Lake Plains Region of Ohio. Within this district, the geologic deposits consist of Wisconsinan-age, wave-planed clayey glacial till, lacustrine (lake-bed) deposits, and sand.

At the project site, the sandy soils, as well as lacustrine deposits may have been eroded by the Portage River or removed and replaced with fill as part of the previous bridge construction. Alluvial deposits associated with the Portage River may also be encountered at the site.

The glacial till, also referred to as moraine, was deposited by the advance and retreat of glacial ice. Due to the weight of the ice mass, the till deposits are moderately to highly overconsolidated, that is, the existing soil deposits have experienced a previous vertical stress significantly higher than the effective vertical stress presently caused by the remaining overlying soil strata in the profile. Additionally, within the glacial till, it is not uncommon to encounter cobbles, boulders, and seams of granular soils, which may or may not be water bearing.

Underlying the soils, bedrock in the project area is broadly mapped on the "Geologic Map of Ohio" as Silurian-age Monroe limestone. Borings performed for this investigation encountered bedrock at elevations varying from approximate Elevs. 637 to 630. The USDA Natural Resource Conservation Service (NRCS) Web Soil Survey indicates that soils in the project area are predominantly mapped as Eel silt Loam (EmA) and Haney Loam (HdA). The Eel silt loam soils consist of loamy alluvium formed on rises on flood plains, natural levees on flood plains, as well as flats on flood plains , and are characterized as moderately well drained. The Haney loam soils consist of loamy glaciolacustrine deposits formed along beach ridges on lake plains, flats on lake plains, as well as rises on lake plains , and are characterized as moderately well drained.

2.2 Observations of the Project

Based on the original plans for the existing bridge structure prepared by the Wood County Engineer's Office, the existing bridge consists of a three-span structure 160 feet in length, bearing on shallow spread foundations. The ten-year High Water Level is indicated at Elev. 644.5, and the channel bottom is indicated at Elev. 633.

Currently the bridge includes a barricaded closure in an abundance of caution for the exterior bridge beams beneath the sidewalks which showed section loss. The central, interior bridge beams were suitable for support of CT's drilling rig.

CT performed a site reconnaissance on December 8, 2023. Cracks were observed along each of the abutments, with one abutment wingwall observed to have translated away from the superstructure. Spill through sections were observed to contain rip rap, sediment, and debris. Gravel appeared below the west and east spans to have accumulated to a level above the existing stream at the time of our reconnaissance. The observable portions of the existing bridge piers appeared in generally good condition.

The existing asphalt pavements appeared in fair condition, with longitudinal and transverse cracks which had been sealed. The existing bridge deck appeared in fair condition, with occasional transverse cracking.

Surrounding land usage consisted of residential developments.

3.0 EXPLORATION

3.1 <u>Historic Borings</u>

Historic boring data was not available at this site.

3.2 Project Exploration Program

This exploration included four test borings, designated as Borings B-001-0-23 through B-004-0-23, performed by CT from the period of December 11, 2023 to January 4, 2024. These borings are fully designated in accordance with ODOT protocol, but the "-0-23" portion of the nomenclature is generally omitted for ease of identification in the discussions within this report. The borings were located in the field by CT based on the proposed boring location plan provided with the proposal for this project. Two of the borings were performed with pavement cores, one behind each abutment, and two of the borings were performed offset from the existing pier locations. The approximate locations of the borings and existing structure are shown on the Test Boring Location Plan (Plate 2.0).

Stations, offsets, and ground surface elevations, at the boring locations were provided by Tetra Tech. Latitude and Longitude were estimated using Google Earth. These data are presented on the logs of test borings.

In accordance with the ODOT Specifications for bridge structure explorations, each of the borings were extended to auger refusal at depths ranging from 10 to 17 feet below existing grades. Upon encountering auger refusal, the borings were then advanced by coring 10 feet into the underlying bedrock, with the exception of Boring B-001 having cored 15 feet into underlying rock due to poor recovery/Rock Quality Designation in the upper profile rock.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations. Therefore, it is essential that a geotechnical engineer be retained to provide soil engineering and inspection services during the site preparation, excavation, and foundation phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.3 Boring Methods

The test borings performed during this exploration were drilled with a CME 550 ATV-mounted drilling rig. The borings were extended utilizing 3¼-inch inside diameter hollow-stem augers. During auger advancement, samples were collected continuously using 18-inch sample drives to evaluate gradation for subgrade analyses as well as for scour potential. The samples were sealed in jars and transported to our laboratory for further classification and testing.

Split-spoon (SS) soil samples were obtained by the Standard Penetration Test Method (ASTM D 1586). The Standard Penetration Test (SPT) consists of driving a 2-inch outside diameter splitspoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch increments, with the number of blows per increment being recorded, and these data are presented under the "SPT" column on the Logs of Test Borings attached to this report. The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or N_m-value, and is typically reported in blows per foot (bpf). The N_m-values were corrected to an equivalent rod energy ratio of 60 percent, N₆₀. The hammer/rod energy ratio was 75.2 percent for the CME 550 ATV-mounted drill rig utilized on this project, based on calibration performed on February 20, 2023. The N₆₀-values are presented on the attached Logs of Test Borings attached to this report. In conjunction with published data and typical correlations, the N₆₀-values can be evaluated as a measure of soil compactness/consistency as well as shear strength and bearing capacity.

A Shelby tube sample, designated ST on the Logs of Test Borings, was attempted in Boring B-004 (5½ to 7½ feet) by hydraulically advancing a 3-inch diameter, thin-walled sampler approximately 24 inches beyond the hollow-stem auger into relatively undisturbed soil in accordance with ASTM D 1587. The Shelby tube was then extracted from the subsoils but resulted in no recovery.

Core samples of the bedrock were obtained from each boring, using an NQ2 diamond-bit core barrel and coring techniques in general accordance with ASTM D 2133. In Boring B-001, two core runs were completed immediately following auger refusal for a total depth of 15 feet. In Borings B-002, B-003, and B-004, two rock core runs were performed for a total of 10 feet. Recovery of the core is expressed as the percentage ratio of the recovered rock length to the

total length of the core run. The Rock Quality Designation (RQD) is the percentage ratio of the summed length of rock pieces 4 inches long and greater to the total length of the run. The rock core samples are designated as "NQ2-1 and NQ2-2" on the Logs of Test Borings. The recovered rock cores were visually classified using the ODOT Rock Classification System. The rock cores were also documented by photographic core logs which are attached to this report in Appendix C.

Soil and rock conditions encountered in the test borings are presented in the Logs of Test Borings along with information related to sample data, SPT results and corresponding N_{60} -values, water conditions observed in the borings, and laboratory test data. Field and laboratory data were incorporated into gINT^M software for presentation purposes. It should be noted that these logs have been prepared on the basis of laboratory classification and testing as well as field logs of the encountered soils and rock.

3.4 Laboratory Testing Program

All soil samples were visually or manually classified in accordance with the ODOT Soil Classification System. All samples of the subsoils were also tested in our laboratory for moisture content (ASTM D 2216). Atterberg limits tests (ASTM D 4318) and/or particle size analyses (ASTM D 6913 and D 7928) were performed on selected samples to determine soil classification and index properties. Dry density determinations and unconfined compressive strength tests (ASTM D 2166) by the constant rate of strain method were performed on selected intact cohesive split-spoon samples. Unconfined compressive strength estimates were obtained for the remaining intact cohesive samples using a calibrated hand penetrometer. Additionally, sulfate content testing (ODOT Supplement 1122) was performed on two samples, B-001 (SS-1) and B-002 (SS-1), one from the uppermost 3 feet of the subgrade soils in each of the pavement borings. These test results are presented on the Logs of Test Borings attached to this report.

Recovered rock core specimens were visually classified in general accordance with Ohio Department of Transportation (ODOT) "Specifications for Geotechnical Explorations" (SGE) criteria. Selected intact rock specimens were tested for unconfined compressive strength in accordance with ASTM D 7012, Method C. Results of these tests are presented on the Logs of Test Borings and the attached Unconfined Compressive Strength Test results.

It should be noted that the specimens were prepared using a table saw to obtain flat perpendicular ends with respect to the longitudinal specimen, then the ends were capped using capping compound to ensure they were relatively flat. The planeness of the bearing surfaces of the specimens were checked by means of a straightedge and feeler gauge, and the capped surfaces were determined to be plane within 0.002 inches (0.05 mm). The surfaces of the specimens in contact with the lower bearing block of the testing machine were similarly evaluated for perpendicularity to the axis by less than 1 degree (approximately equivalent to a deviance of 0.07 inches along a 4-inch specimen). ASTM D 7012 requires that we indicate the sample was not prepared using specialized equipment per ASTM D 4543, and that the reported results may differ from those obtained using a test specimen prepared per ASTM D 4543. However, the difference should be insignificant for strong rock, such as encountered for this project, but the difference can be more pronounced for weak rock.

4.0 FINDINGS

4.1 <u>General Site Conditions</u>

The project site is located along Bridge Street, at the crossing of Portage River, between Water Street and Brierley Avenue, in the Village of Pemberville, Wood County, Ohio. Roadway grades in the project area are generally level, with ground surface elevations at the boring locations on the order of Elev. 611.

Borings B-001 and B-004 were performed within the roadway, and the encountered surface materials consisted of approximately 3 to 6½ inches of asphalt underlain by approximately 5 to 11½ inches of aggregate base.

Borings B-002 and B-003 were performed within the bridge deck and the encountered surface materials consisted of concrete approximately 8 inches in thickness.

Granular existing fill materials were encountered underlying the pavement materials in Borings B-001 and B-004 to depths of 3 feet and feet below existing grade (Elevs. $643\pm$ and $642\pm$), respectively. The granular existing fill materials consisted of predominantly crushed stone (or gravel and stone fragments) with varying amounts of sand, silt, and clay. SPT N₆₀-values ranged from 15 to 24 bpf, indicating medium dense compactness. Moisture contents ranged from 4 to 8 percent.

4.2 <u>General Soil Conditions</u>

The subsoils encountered underlying the surface and fill materials can be generally described as a layer of cohesive till underlain granular soils, overlying bedrock.

Stratum I consisted of predominantly stiff to very stiff cohesive till deposits encountered underlying the existing fill materials in Borings B-001 and B-004 to depths of 10 feet and 7 feet below existing grade (Elevs. $636\pm$ and $639\pm$), respectively. These cohesive soils consisted of sandy silt (ODOT A-4a). SPT N₆₀-values generally ranged from 10 to 25 blows per foot (bpf). Unconfined compressive strengths generally ranged from 3,000 to 7,500 pounds per square foot (psf). Moisture contents ranged from 14 to 20 percent.

Stratum II consisted of predominantly medium dense granular soils encountered at the river bottom in Boring B-002 as well as underlying Stratum I in Boring B-004 to depths of 17 feet and 9 feet (Elevs. $630\pm$ and $637\pm$), respectively. These granular soils consisted of gravel and stone fragments (ODOT A-1-a) as well as gravel and stone fragments with sand (ODOT A-1-b). SPT N₆₀-values of 26 bpf and 25 bpf were determined for these granular soils. Moisture contents of 11 percent and 14 percent were determined for the recovered samples.

Additional descriptions of the stratigraphy encountered in the borings are presented on the Logs of Test Borings.

4.3 <u>General Bedrock Conditions</u>

Augerable weathered dolomite was encountered at the river bottom in Boring B-003 as well as underlying the subsoils in the remaining borings at depths ranging from 9 to 17 feet (Elev. $637\pm$ to $630\pm$), extending to depths of ranging from 10½ to 18 feet (Elev. $635\pm$ to $629\pm$).

Underlying the weathered dolomite, auger refusal on dolomite bedrock was encountered. The rock was cored in each of the borings for a total length of 10 to 15 feet. The cored bedrock consisted of highly weathered to moderately weathered dolomite. The rock core data obtained from the borings are summarized as follows:

	Table 4.3.	Rock Core [Data			
Boring Number	Rock Core Number	Depth (feet)	Elevation (feet)	Recovery (%)	RQD (%)	Unconfined Compressive Strength (psi)
B-001	NQ2-1	12.0-22.0	633.8-623.8	40	0	-
B-001	NQ2-2	22.0-27.0	623.8-618.8	100	40	10,990
B-002	NQ2-1	18.0-23.0	629.4-624.4	100	30	5,510
D-002	NQ2-2	23.0-28.0	624.4-619.4	95	75	-
B-003	NQ2-1	15.5-20.5	631.8-626.8	100	57	-
B-005	NQ2-2	20.5-25.5	626.8-631.8	100	95	15,570
B-004	NO2-1 10 5-15 5 635 2-630 2 100 17	-				
D-004	NQ2-2	15.5-20.5	630.2-625.2	80	65	5,560

RQD values typically ranged from 17 to 75 percent, indicating that the overall rock mass quality can be generally described as very poor to fair. Unconfined compressive strength results ranged from 5,510 to 15,570 pounds per square inch (psi), indicating moderately strong to very strong bedrock.

Additional descriptions of the stratigraphy encountered in the borings are presented on the Logs of Test Borings. Photographs of the rock cores are attached to this report in Appendix C.

4.4 **Groundwater Conditions**

Provided drawings for the existing structure indicate the ten-year High Water Level at Elev. 644.5.

Groundwater was initially encountered during drilling and observed at the completion of drilling in Borings B-002 and B-003 at a depths 14 feet below existing grade (Elev. 633±). It should be noted that each boring was drilled and sealed within the same day. Therefore, stabilized water levels may not have occurred over this limited time period. Instrumentation was not installed to observe long-term groundwater levels.

Based on the soil characteristics and water conditions encountered in the borings, it is our opinion that "normal" groundwater levels at this structure location will generally occur at or slightly above the streamflow levels in Portage River. It should be noted that groundwater elevations can also fluctuate with seasonal and climatic influences, as well as streamflow conditions in the river. In particular, "perched" groundwater conditions may be present within the existing fill materials underlain by relatively impermeable cohesive soils, as well as at the soil/bedrock interface. Therefore, the groundwater conditions may vary at different times of the year from those encountered during this exploration.

4.5 <u>Gradation Results for Potential Scour Evaluations</u>

Scour considerations for the encountered subsoils and bedrock should be made as part of the vertical and lateral load evaluations for the drilled shafts and rock sockets. Scour calculations were completed in accordance with the ODOT Bridge Design Manual and ODOT Geotechnical Design Manual, incorporating geotechnical scour parameters such as critical shear stress, erodibility index, and geological strength index. Additionally, rock quality parameters, including slake durability test results (ASTM D4644-16) and unconfined compressive strength tests (ASTM D7012 Method C), were provided.

The preliminary Slake Durability test results indicate the corable bedrock section is scourresistant. Accordingly, the top of competent bedrock at each boring location is established as the controlling scour elevation. The scour calculations are attached in Appendix A for review by the project's hydrological professional.

However, it was subsequently communicated that methods found in FHWA Hydraulic Engineering Circular No. 18 (HEC 18) will be used to determine bridge scour, which relies on a geotechnical scour number empirically derived from modified slake durability test results to calculate rock abrasion scour. As this procedure is not commonly used on ODOT projects and is not mentioned in the ODOT SGE, it was not included in the scope of this subsurface investigation. If required, CT can perform the modified slake durability test and provide a Geotechnical scour number under separate cover.

4.6 <u>Remedial Measures</u>

Based on the relative proximity of bedrock to the proposed foundation pier/pile caps, we understand that the new bridge is planned to be supported by a deep foundation system consisting of drilled shafts socketed into bedrock. The planned extension for the sockets is typically 1.5 times the shaft diameter. However, rock sockets should be increased to 5 feet below top of competent rock (i.e., top of corable bedrock). In accordance with BDM 305.4.1.1 requirements, drilled shafts must extend at least 5 feet below the controlling scour elevation.

The ODOT "Subgrade Analysis" worksheet (V14.6, 02/11/22) indicates that over-excavation of unsuitable subgrade soils and replacement with new granular engineered fill are not anticipated.

During construction, temporary sheet-pile cutoff walls or cofferdams to direct streamflow may be required to manage groundwater in addition to pumping from prepared sumps. It is likely that temporary steel casing will be required to support the walls of the drilled shafts and to control groundwater seepage.

5.0 ANALYSES AND RECOMMENDATIONS

The following analyses and recommendations are based on our understanding of the proposed construction and upon the data obtained during our field exploration. If the project information or location as outlined is incorrect or should change significantly, a review of these recommendations should be made by CT.

5.1 Bridge Foundations

Consideration was given to spread foundations bearing on bedrock for the bridge. However, based on our evaluations, none of the samples of the upper potential bearing rock met all of the criterion required to be considered scour-resistant rock in accordance with ODOT Bridge Design Manual (BDM) Section 305.2.1.2.b. The RQD values, RMR values, and GSI values were lower than the minimum requirements. These structures are now planned to be supported by drilled shafts socketed into bedrock.

5.1.1 Drilled Shaft Rock Socket Vertical Resistance

We understand that the bridge foundations will be designed using LRFD methods. Based on the relative proximity of bedrock to the proposed foundation pier/pile caps, as well as the potential for scour, we understand that the new bridge is planned to be supported by a deep foundation system consisting of drilled shafts socketed into bedrock. Maximum total factored loads associated with individual drilled shafts were not available at the time of preparing this memo. Recommendations are provided herein for the smallest diameter drilled shafts that may be constructed in accordance with the ODOT Bridge Design Manual (BDM).

The minimum diameter for drilled shafts that support pier columns is 42 inches. Likewise, drilled shafts that support abutments may be 36 inches in diameter. The diameter of bedrock sockets for drilled shafts are generally 6 inches less than the diameter of the shaft above the bedrock elevation. Regardless of shaft diameter, reinforcing steel cages should be based on the bedrock socket diameter.

For the abutments, we have evaluated a 36-inch diameter shafts above bedrock and a socket diameter of 30 inches. At the pier locations, we have evaluated 42-inch diameter shafts for the

full depth below the bottom of the river without a reduction in shaft diameter for the socket due to minimal overburden.

Based on the rock conditions encountered in <u>Boring B-001, as well as considering rock</u> conditions in nearby Boring B-002, for the <u>Rear (West) Abutment</u>, an unfactored unit tip resistance (q_p) of 1,984 kips per square foot (ksf) was calculated. Based on the design methodologies utilized to evaluate unfactored unit tip resistance and AASHTO LRFD Table 10.5.5.2.4-1, a resistance factor of 0.50 should be utilized for design for tip resistance. As such, the factored unit tip resistance was calculated to be 992 ksf. **Using the planned 30-inch diameter socket, this design value would provide sufficient resistance for the indicated factored vertical load**. The maximum factored load to be supported by the read abutment drilled shafts is <u>247</u> kips at the abutments. This load is resisted entirely by tip resistance. At the Rear Abutment, the factored tip resistance is <u>4868 kips</u>.

Based on the rock conditions encountered in <u>Boring B-002</u> for the <u>Pier 1 (West Pier)</u>, an unfactored unit tip resistance (q_p) of 1,984 kips per square foot (ksf) was calculated. Based on the design methodologies utilized to evaluate unfactored unit tip resistance and AASHTO LRFD Table 10.5.5.2.4-1, a resistance factor of 0.50 should be utilized for design for tip resistance. As such, the factored unit tip resistance was calculated to be 992 ksf. Using the planned 42-inch diameter socket, this design value would provide sufficient resistance for the indicated factored vertical load. The maximum factored load to be supported by the West Pier drilled shafts is <u>576</u> kips at the abutments. This load is resisted entirely by tip resistance. At the West Pier, the factored tip resistance is <u>9542</u> kips.

Based on the rock conditions encountered in <u>Boring B-003</u> for the <u>Pier 2 (East Pier)</u>, an unfactored unit tip resistance (q_p) of 5,605 kips per square foot (ksf) was calculated. Based on the design methodologies utilized to evaluate unfactored unit tip resistance and AASHTO LRFD Table 10.5.5.2.4-1, a resistance factor of 0.50 should be utilized for design for tip resistance. As such, the factored unit tip resistance was calculated to be 2,803 ksf. Using the planned 42-inch diameter socket, this design value would provide sufficient resistance for the indicated factored vertical load. The maximum factored load to be supported by the East Pier drilled shafts is <u>576</u> kips at the abutments. This load is resisted entirely by tip resistance. At the East Pier, the factored tip resistance is <u>26,964 kips</u>.

Based on the rock conditions encountered in <u>Boring B-004</u> for the <u>Forward (East) Abutment</u>, an unfactored unit tip resistance (q_p) of 2,002 kips per square foot (ksf) was calculated. Based on the design methodologies utilized to evaluate unfactored unit tip resistance and AASHTO LRFD Table 10.5.5.2.4-1, a resistance factor of 0.50 should be utilized for design for tip resistance. As such, the factored unit tip resistance was calculated to be 1,001 ksf. **Using the planned 30-inch diameter socket, this design value would provide sufficient resistance for the indicated factored vertical load**. The maximum factored load to be supported by the East Pier drilled shafts is <u>576</u> kips at the abutments. This load is resisted entirely by tip resistance. At the East Pier, the factored tip resistance is <u>26,964</u> kips.

It should be noted that the values for factored unit tip resistance listed above are based on bearing in competent rock that does not contain adverse jointing, open solution cavities, or joints that are filled with weathered material that would affect the bearing resistance of the rock, within a distance equal to two socket diameters below the tip of the drilled shaft rock socket.

The minimum prescribed rock socket length is 1.5B, where B is the socket diameter. For the abutment and pier socket diameters indicated above, the minimum socket length would be 3.75 feet for the abutments and 5.25 feet for the piers for bearing elevations on the order of Elevs. 633± to 625±. In any case, any structural requirement for the drilled shaft foundations to resist lateral loads or moments may increase the socket depth or diameter and should be evaluated on an individual shaft basis by Tetra Tech.

A summary of the recommended rock socket lengths based on vertical resistance evaluations is provided in the following table.

Table 5.5.1. Minimum Rock	< Socket Leng	th Based on V	/ertical Load (Considerations
ltem	Rear (West) Abutment (B-001)	Pier 1 (West Pier) (B-002)	Pier 2 (East Pier) (B-003)	Forward (East) Abutment (B-004)
Minimum Rock Socket Length ⁽¹⁾⁽²⁾ (feet)	7	6	6	6.5
Top of Rock Elevation (feet)	635.8	630.4	632.8	636.7
Bottom of Rock Socket Elevation (feet)	628.8	624.4	626.8	630.2

- ⁽¹⁾ Based on rock socket diameters of 30 inches for the abutments and 42 inches for the piers, as well as rock considerations discussed above.
- ⁽²⁾ Rock socket length based on BDM 305.4.1.1 requirements, drilled shafts must extend at least 5 feet below the controlling scour elevation.

The factored unit tip resistance was based on rock conditions. We recommend the structural engineer also consider any limiting conditions associated with the stress limitations of the concrete.

It should be noted that the provided factored unit bearing resistance reflects end-bearing conditions only. Typically, design based on end-bearing alone is considered when sound bedrock underlies highly weathered rock. Conversely, design based on side shear resistance alone is considered when the drilled shaft cannot be adequately cleaned, or where large movement of the shaft would be required to mobilize the end bearing. For this project, significant movement is not expected to be required to mobilize the end bearing, and it is assumed that due diligence will be exercised to install the shafts in a cleaned drill hole.

Drilled shafts should be constructed in accordance with ODOT Construction and Material Specifications (CMS) Item 524. It is also recommended that the center-to-center spacing between adjacent shafts be no less than 2 shaft diameters.

Due to the presence of groundwater, it is likely that temporary steel casing will be required to support the walls of the shaft and to control water seepage. If significant seepage is encountered and cannot be suitably pumped to dewater the drilled shaft, concrete will require placement by tremie methods. As the steel casing is withdrawn during concreting, sufficient concrete should be maintained above the bottom of the casing to counteract any hydrostatic head. Care must be taken during concreting and removal of any temporary liner so as to avoid the possibility of soil intrusions. The contractor should submit procedures for installation prior to the start of work.

Although cobbles or boulders were not noted in the borings performed for this exploration, they may be encountered at this site. Additionally, although not encountered, debris may be present in existing fill materials. Therefore, provisions should be made by the contractor to remove any obstructions, including debris, cobbles or boulders, if they are encountered during the drilling operations.

Drilled shafts should be clean and free of all loose material prior to the placement of concrete. A CT representative should verify that shafts are bearing on competent materials and that installation procedures meet specifications.

Based on ODOT guidelines, foundation plans should contain the following typical notes:

The maximum factored load to be supported by each drilled shaft is <u>247</u> kips at the abutments. This load is resisted entirely by tip resistance. At the Rear Abutment and Forward Abutment, the factored tip resistance is <u>4,868</u> kips and <u>4,913</u> kips, respectively.

The maximum factored load to be supported by each drilled shaft is <u>576</u> kips at the piers. This load is resisted entirely by tip resistance. At Pier 1 and Pier 2, the factored tip resistance is <u>9,542</u> kips and <u>26,964</u> kips, respectively.

5.1.2 Lateral Load Soil and Rock Design Parameters

For lateral load-deflection evaluations using software, such as LPILE, recommended design parameters are provided in the attached tables based on the conditions encountered in the borings. For the portion of the drilled shaft below the groundwater table (estimated at or slightly above the water level in Middle Branch Portage River), the effective unit weight must be considered (i.e., reduce the total unit weight by the unit weight of water, 62.4 pounds per cubic foot). These LPILE inputs are being provided for the structural engineer to evaluate a suitable, economical socket length and diameter, as well as to modify steel reinforcement conditions.

5.2 GDM Section 600 "Plan Subgrades" Evaluation

5.2.1 Subgrade Analysis Worksheet

Based on the encountered pavement sections, our evaluations considered an average pavement cross-section of 13 inches (approximately 1.1 feet) for the proposed pavements.

Based on GDM Section 600, soils classified as ODOT A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, or rock have been designated as being problematic with respect to pavement subgrade support. None

of these soil types were encountered at planned subgrade elevations in the borings performed for this exploration.

Based on GDM Section 600 criteria, subgrade soils with moisture contents greater than 3 percent above optimum likely indicate the presence of unstable subgrade that may require some form of subgrade modification. For this site, approximately 75 percent of tested cohesive subgrade soil samples and approximately 25% of the tested granular subgrade soil samples were greater than 3 percent above the optimum as determined using GDM Section 600 criteria.

It should be noted that all of the evaluated samples with moisture contents greater than 3 percent above optimum had moisture contents greater than or equal to 5 percent above optimum. Thus, where moisture contents were wet of optimum, they were appreciably wet of optimum. These data indicate that scarification and aeration methods may not be feasible to achieve satisfactory proof rolling and stabilization of the predominantly cohesive subgrades. However, scarification and aeration methods may be utilized in areas where granular subgrades wet of optimum are present, provided weather conditions and construction schedule will allow such soil modification.

The type and thickness of subgrade modification is determined by GDM Section 600 criteria based on the average, low SPT N_{60} -value (N_{60L}) of the subgrade soils in a particular portion of the project area, hand penetrometer values, soil type, and moisture content. Based on these criteria, none of the borings contained subgrade soils which indicated subgrade modification is likely to be required. Possible alternatives for those areas where modification of the subgrade soils is indicated could include the following, using GDM Section 600 criteria based on the encountered conditions:

- > Undercut to a depth of 12 inches and replacement with geotextile and granular engineered fill in those areas, or
- > Global chemical stabilization to a depth of 14 inches using cement.

5.2.2 Construction Considerations

Undercut and Replacement Option

If undercut and replacement is utilized, all fill should consist of ODOT Item 304 Aggregate Base or Item 703.16C, Granular Material Type B or Type C. As prescribed by GDM Section 600 criteria, excavate unstable subgrades to 18 inches beyond the edge of the surface of the pavement, paved shoulders, or paved medians, including under new curbs and gutters. Always drain the excavation to an underdrain, catch basin, or pipe. It is recommended that geotextile fabric (referenced in ODOT Item 204, and specified as ODOT Item 712.09, Type D) be utilized on the subgrade at the bottom of the undercut zone. Although not anticipated to be required based on the conditions encountered in the borings and the proposed sections and grades, if particularly unstable subgrades are encountered during construction, or undercuts exceed approximately 18 inches, a geogrid could be used to reduce the total undercut and replacement of the unsuitable soils by 6 inches. Do not use geotextile or geogrid in the areas of underdrains.

Additionally, if the ongoing cement shortage precludes the use of cement for chemical stabilization, subgrade modification should consider over-excavation of unsuitable subgrade soils and replacement with new granular engineered fill.

Chemical Stabilization Option

For projects where the total length of required undercuts is equal to or greater than 0.1 mile, it is common that global chemical stabilization to a depth of 14 inches can be more economical compared to over-excavation and replacement with new granular engineered fill.

As previously noted, none of the borings contained subgrade soils which indicated subgrade modification is likely to be required. GDM Section 600 indicates that, if it is determined that 30 percent or more of the subgrade area must be stabilized, consideration should be given to stabilizing the entire project (global chemical stabilization). As such, it is anticipated that global chemical stabilization would not be an economical modification option.

As required by GDM Section 600, sulfate content tests (ODOT Supplement 1122) were performed on a sample typically within the upper 3 feet of the subgrade elevation in each boring. The sulfate content test results are summarized in the following table.

Table 5.2.2.2. Sulfate Content Test Results									
Boring Number	Sulfate Content (mg/kg)								
B-001	<100								
B-004	<100								

GDM Section 600 indicates that chemical stabilization cannot be utilized when sulfate contents for the majority of the samples exceed 3,000 parts per million (ppm), or individual soil samples exhibit sulfate contents of greater than 5,000 ppm. Based on the tested samples, sulfate content will not preclude the use of chemical stabilization for this project.

<u>General</u>

It should be noted that subgrade analyses are used as a pre-construction tool to plan subgrade modification alternatives. Actual subgrade modification will depend on field observations of proof-rolling conditions at the time of construction. Changes in soil moisture content could create more or less favorable subgrade conditions that may result in adjustments to subgrade modification or soil stabilization requirements at the time of construction.

5.2.3 Planned Subgrade Modification Recommendation

Based on the subgrade analysis and our understanding of the project, it is anticipated that overexcavation and replacement with new granular engineered fill to a depth of 12 inches will be more economical compared to global chemical stabilization.

5.3 Flexible (Asphalt) Pavement Design

Based on the subgrade analysis, a design CBR value of 9 percent was determined for the project. It should be noted that the CBR determination by the subgrade analysis spreadsheet is based on the average Group Index of all the evaluated samples, which was 3. Group indices for the evaluated samples ranged from 0 to 8, which would correlate with a CBR value of 6 to 12 percent. Based on the average design value calculations from the subgrade analysis spreadsheet, it does not appear to be unconservative to use the spreadsheet design CBR value of 9 percent for new pavement sections throughout the project area.

All pavement design and paving operations should conform to ODOT specifications. The pavement and subgrade preparation procedures outlined in this report should result in a reasonably workable and satisfactory pavement. It should be recognized, however, that all pavements need repairs or overlays over time as a result of progressive yielding under repeated loading for a prolonged period.

It is recommended that proof rolling, placement of aggregate base, and placement of asphalt be performed within as short a time period as possible. Exposure of the aggregate base to rain, snow, or freezing conditions may lead to deterioration of the subgrade and/or base materials due to excessive moisture conditions and to difficulties in achieving the required compaction.

5.4 <u>Construction Dewatering and Groundwater Control</u>

Groundwater conditions encountered in the borings were summarized in Section 4.4. Based on the soil characteristics and moisture conditions encountered in the borings, it is our opinion that "normal" groundwater levels in the vicinity of Portage River will generally occur at or slightly above the "normal" flow levels in Portage River. It should be noted that groundwater elevations can also fluctuate with seasonal and climatic influences, as well as streamflow conditions in the river. Additionally, perched water may be present in granular soils that are underlain by relatively impermeable cohesive soils, as well as at the soil/bedrock interface.

Groundwater seepage, perched water, and surface water runoff into shallow excavations in predominantly cohesive soils should be controllable by pumping from prepared sumps. If excavations extend below the groundwater level in granular soils, installation of multiple well points may be required in addition to pumping from prepared sumps. Installation of the intermediate piers in Portage River may require temporary cofferdams to divert streamflow to manage groundwater in addition to pumping from prepared sumps. Otherwise, steel casing may also be used to help facilitate groundwater control. In any case, as mentioned in Section 5.1.1, it is likely that temporary steel casing will be required to support the walls of the drilled shafts, in addition to facilitating control groundwater seepage. In the event excessive seepage is encountered during construction, TTL should be notified to evaluate whether other dewatering methods are required.

5.5 <u>Construction</u>

5.5.1 Sediment and Erosion Control

In planning the implementation of earthwork operations, special consideration should be given to provide measures to prevent or reduce soil erosion and the subsequent sedimentation into nearby waterways. These measures may include some or all of the following:

- 1. Scheduling of earthwork operations such that erodible areas are kept as small as possible and are exposed for the shortest possible time.
- 2. Using special grading practices, along with diversion or interceptor structures, to reduce the amount of run-off water from an erodible area.
- 3. Providing vegetative buffer zones, filter berms, or sedimentation basins to trap sediment from surface run-off water.

A specific and detailed soil erosion and sedimentation control program and permits may be required by local, state, or federal regulatory agencies.

5.5.2 Site and Subgrade Preparation

Site and subgrade preparation activities should conform to ODOT Construction and Materials Specifications (CMS) Item 201 and 204 specifications. Site preparation activities should include the removal of vegetation, topsoil, root mats, pavements, and other deleterious non-soil materials from all proposed roadway areas. The actual amount of required stripping should be determined in the field by a geotechnical engineer or qualified representative.

Upon completion of the clearing and undercutting activities, all areas that are to receive fill, or that have been excavated to proposed final subgrade elevation, should be inspected by a geotechnical engineer. Prior to performing undercutting or subgrade stabilization, pavement subgrades should be proof rolled in accordance with ODOT CMS 204.06 to confirm the depth

and extent of subgrade modifications required, followed by subgrade modification in accordance with ODOT CMS 204.06.

The subgrade analysis indicates options for "planned" subgrade modification of either global chemical stabilization to a depth of 14 inches or over-excavation to a depth of 12 inches of unsuitable subgrade soils and replacement with geotextile and new granular engineered fill. As indicated in Section 5.2.3, planned subgrade modifications are recommended to consist of global chemical stabilization.

5.5.3 <u>Fill</u>

Material for engineered fill or backfill required to achieve design grades should meet ODOT Item 203 "Embankment Fill" placement and compaction requirements. Borrow materials used for fill at subgrade elevations should be similar to the encountered existing subgrade soils to maintain the subgrade support properties associated with the recommended design CBR value and k-value for pavement design.

The upper profile on-site soils predominantly consist of cohesive soils, although granular soils were also encountered at pavement subgrade elevations. For the cohesive soils, a sheepsfoot roller should provide the most effective soil compaction. Where granular soils are encountered or new dense-graded aggregate pavement base materials are placed, a vibratory smooth-drum roller would be required to provide effective compaction.

5.5.4 Excavations and Slopes

The sides of temporary excavations for utility installations and other construction should be adequately sloped to provide stable sides and safe working conditions. Otherwise, the excavation must be properly braced against lateral movements. In any case, applicable Occupational Safety and Health Administration (OSHA) safety standards must be followed.

Based on the encountered soils, excavation may encounter the following OSHA type soils:

• Type A soils (native cohesive soils with unconfined compressive strengths of 3,000 pounds

per square foot (psf) or greater),

- Type B soils (native cohesive soils with unconfined compressive strengths greater than 1,000 psf but less than 3,000 psf, cohesive embankment fill, as well as dry rock that is not stable), and
- Type C soils (granular soils, submerged soil, as well as submerged rock).

For temporary excavations in Type A, B, and C soils, side slopes must be no steeper than 34 horizontal to 1 vertical (34H:1V), 1H:1V, and 1½H:1V, respectively. For situations where a higher strength soil is underlain by a lower strength soil and the excavation extends into the lower strength soil, the slope of the entire excavation is governed by that required by the lower strength soil. In all cases, flatter slopes may be required if lower strength soils or adverse seepage conditions are encountered during construction.

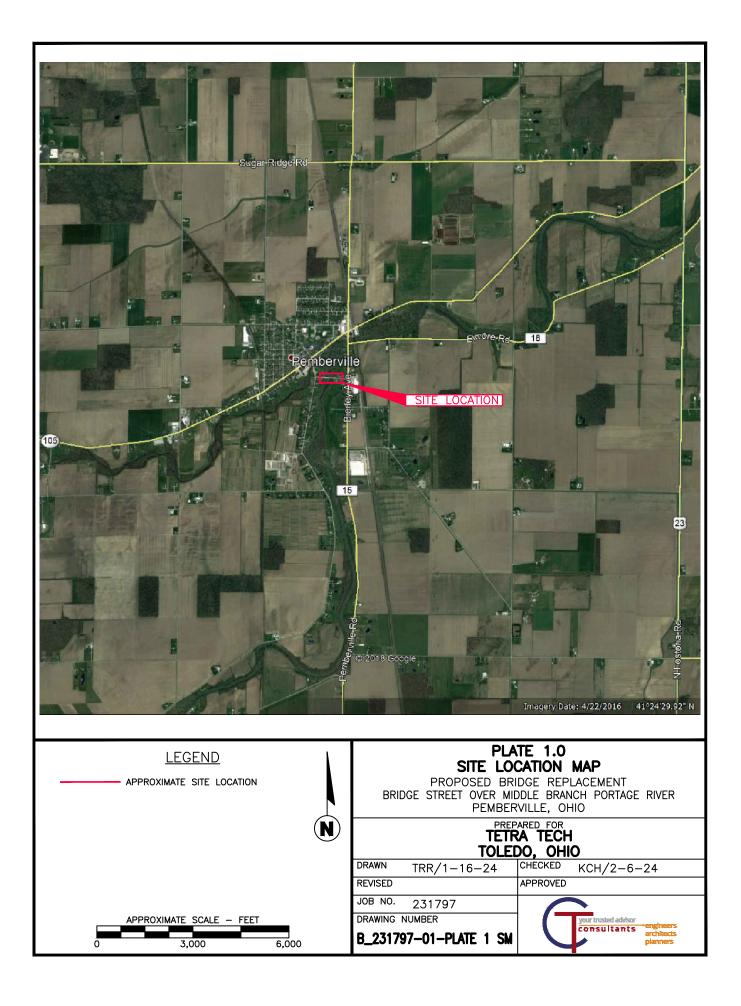
For permanent excavations and slopes, we recommend that grades generally be no steeper than 3H:1V. Based on the provided plans, embankment slopes are generally planned to be 2H:1V. It should be noted that ODOT routinely uses 2H:1V slopes for roadway embankments. While these steeper slopes may used, it should be noted that the embankment faces are more prone to erosion and sloughing. Additional discussions regarding GB-2 "Special Benching" and slope stability were presented in Sections 5.1.1 and 5.1.2, respectively.

6.0 QUALIFICATION OF RECOMMENDATIONS

Our evaluation of bridge foundation and roadway pavement design and construction conditions has been based on our understanding of the site and project information and the data obtained during our field investigation. The general subsurface conditions were based on interpretation of the subsurface data at specific boring locations. Regardless of the thoroughness of a subsurface investigation, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the soil conditions. This potential is increased at previously developed sites. Therefore, experienced geotechnical engineers should observe earthwork construction to confirm that the conditions anticipated in design are noted. Otherwise, CT assumes no responsibility for construction compliance with the design concepts, specifications, or recommendations.

The design recommendations in this report have been developed on the basis of the previously described project characteristics and subsurface conditions. If project criteria or locations change, a qualified geotechnical engineer should be permitted to determine whether the recommendations must be modified. The findings of such a review will be presented in a supplemental report.

The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate the recommendations of this report after on-site observations of the conditions.


Our professional services have been performed, our findings derived, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. CT is not responsible for the conclusions, opinions, or recommendations of others based on this data.

Plates

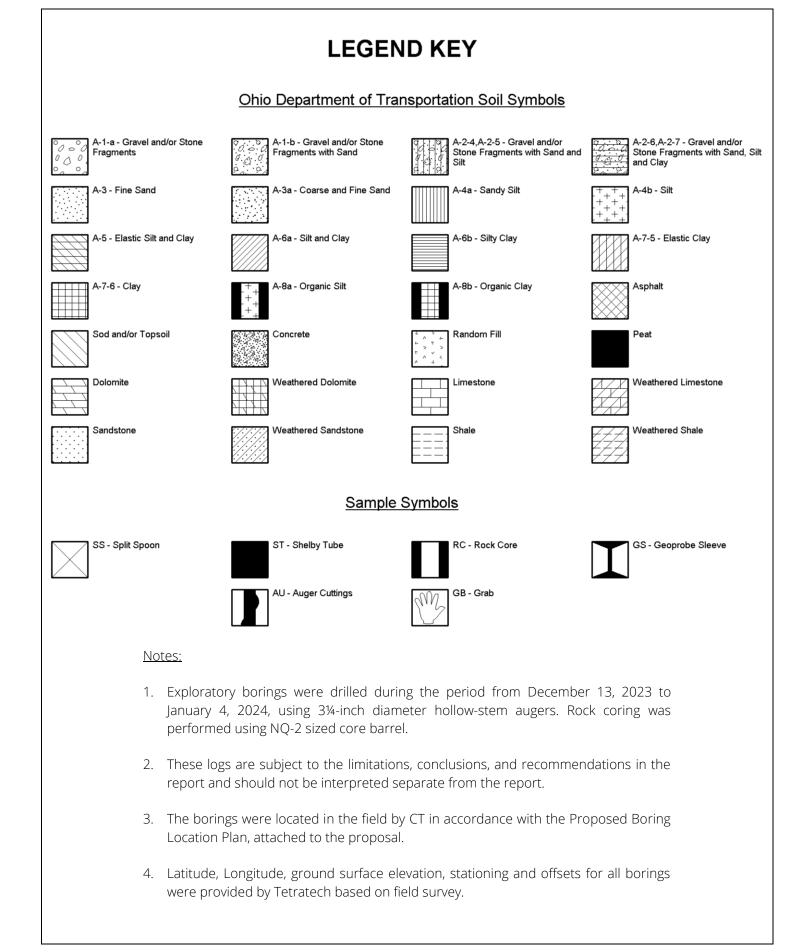
Plate 1.0	Site Location Map
Plate 2.0	Test Boring Location Plan

Figures

Logs of Test Borings Legend Key Rock Core Photo Log Grain Size Distribution Curves Rock Core Unconfined Compressive Strength Test Results

PROJECT: BRIDGE STREET BRIDGE "YPE: BRIDGE "ID: N/A SFN: 8758948	DRILLING FIRM / SAMPLING FIRM DRILLING METH	/ LOGGEF	R: CT / KK0 3.25" HSA / NQ2	C	НАМ				MATIO	C	ALIG	NME	NT:	E	BRID	GE S	<u>56, 4'</u> Stree Eob:	ET		0-23 PAGI
START: <u>12/11/23</u> END: <u>12/13/23</u>	SAMPLING METH	HOD:	SPT / NQ2		ENE		RATIO (%)		75.2		LAT /	LON	IG: _		41.4	10916	69, - 83	3.457336		1 OF
MATERIAL DESCRIPTION AND NOTES	1	ELEV. 645.8	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID				ATION FS				ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BA Fl
ASPHALT - 3 INCHES AGGREGATE BASE - 5 INCHES		645.5	- 1 -	-																XXX 7_[
MEDIUM DENSE, GRAY, CRUSHED STON SAND, SOME SILT, TRACE CLAY, DAMP F		642.8	- 2 -	16 8 7	20	100	SS-1 SS-2A	-	54	15	9	20	2	NP -	NP	NP	8	A-1-b (0)	<100	
STIFF TO VERY STIFF, BROWN, SANDY S LITTLE GRAVEL, LITTLE CLAY, DAMP	SILT,		- 3 -	5	13	100	SS-2A	3.75		6				22	17	5	14	A-4a (3)	-	10
MEDIUM STIFF TO STIFF, BROWN/GRAY SILT, TRACE CLAY, TRACE GRAVEL, MO @5.5': BROWN			- 5 -	2 2	6	100	SS-3	1.50	2	5	41	45	7	23	15	8	20	A-4a (3)	-	14 8 12 A
@7.0' TO 8.0': Qu = 1.755 PSF		007.0	- 6 - - 7 -	3	8	100		2.00		-	-	-	-	-	-	-	17	A-4a (V)	-	LAX4
STIFF TO VERY STIFF, BROWN, SANDY S 'AND" GRAVEL, LITTLE CLAY, DAMP	BILT,	637.8	- 8 -	3 10	11	100	SS-5	2.00		-	-	-	-	-	-	- 6	17	A-4a (V)	-	AL PAN
@8.5': VERY STIFF BROWN, WEATHERED DOLOMITE , "AND"	SAND,	635.8	TR10 -	10 10 50/4"	25	100 100	SS-6 	- ~-~		11 15	9 			22 23	16 _ <u>17</u> _	6 _6	14 _10_	A-4a (1) A-2-4 (0)	-	ALR D
SOME SILT, TRACE CLAY DOLOMITE , GRAY, HIGHLY WEATHERED STRONG, JOINTED - HIGHLY FRACTURE FRACTURED, TIGHT, ROUGH; RQD 0%, F DOLOMITE , GRAY, HIGHLY WEATHERED	D TO REC 40%.	633.8	$ \begin{array}{c} -11$	0		40	NQ2-1											CORE		XENX CHARDIAR AN AN ANALAN CHAR
STRONG, JOINTED - FRACTURED TO MC FRACTURED, TIGHT, ROUGH; RQD 40%, @24.5' TO 24.9': Qu=10,990 PSI, γ_{DRY} =162	REC 100%.		23 - 24 - 25 - 	40		100	NQ2-2											CORE		A MAN AND
@25.9' TO 26.7': CRYSTALLINE		618.8	EOB 26 -																	10 10

NOTES: NONE


ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.25 BAG ASPHALT PATCH; AUGER CUTTINGS MIXED WITH 1.5 BAGS BENTONITE CHIPS

YPE:	BRIDGE STREET BRIDGE BRIDGE	DRILLING FI				/ CW KKC		L RIG	CME CME A				STA ALIC						26, 4' Stree		PLORA B-002-(
PID: N		DRILLING ME			3.25" HSA / N				ION DATE										EOB:			PAG
START:	1/4/24 END: 1/4/24	SAMPLING M	1ETH0	DD:	SPT / NQ	2	ENE	RGY F	RATIO (%)	:	75.2		LAT	/ LOI	NG:		41.4	40913	34, -83	3.457104		1 OF
	MATERIAL DESCRIPTIO	v		ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			RAD				ATT	ERBE			ODOT	SO4	BA
	AND NOTES			647.4	DEI IIIG	RQD	• 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FI
	TE BRIDGE DECK - 8 INCHES OF BRIDGE DECK TO TOP OF	WATER		646.7	-	1 -																***
						2 3 4 5 6 7 8 9 10 11																
	DENSE, GRAY, GRAVEL AND S T NTS , SOME SAND, LITTLE SILT, DIST			631.9	€ 633.4 633.4 	12 - 12 - 13 - 14 - 14 - 15 - 16 - 5 - 7 - 17 - 14 - 14 - 14 - 14 - 14 - 14	26	89	SS-1	-	64	11		11			NP		11	A-1-a (0)	-	- ~ 1 ~ ~ 1 ~ ~ ~ ,
gray, W	EATHERED DOLOMITE, SOME S	AND,	É	629.4		17 <u>34</u> 18 <u>\50/1"/</u>	-	100	SS-2	-	58	15	12	14	1	NP	NP	NP	11	A-1-a (0)	-	
DOLOMIT STRONG, FRACTUR 13%, REC DOLOMIT MODERA ⁻ - FRACTU	LT, TRACE CLAY E, GRAY, MODERATELY WEAT CRYSTALLINE, JOINTED - HIG RED TO FRACTURED, TIGHT, R 100%. E, GRAY, MODERATELY WEAT TELY STRONG, SANDY LAMINA IRED TO MODERATELY FRACT DUGH; RQD 67%, REC 100%.	HLY DUGH; RQD HERED, \E, JOINTED		626.7		19		100	NQ2-1											CORE		
@21.2 ['] TC	UGGY AND CRYSTALLINE	6 PCF		619.4		24 25 26 27 28		95	NQ2-2											CORE		A AN GANE AND

NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 0.5 BAG BENTONITE CHIPS; PLACED 0.25 BAG QUICKCRETE

TYPE:	BRIDGE STREET BRIDGE	DRILLING F				CT / CV			L RIG	: <u>CME</u> CME A	E 550X				TION GNME			_		+96, 0' STRE		PLORA B-003-(
PID: N/	A SFN: 8758948	DRILLING M	IETHO	D:	3.25" HS	A / NQ2		CAL	IBRAT	ION DATE	E: 2	2/20/2	3	ELE	VATI	ON:6	647.3	(NA)	VD88	B)EOB:	25.5 ft	•	PAG
START:	1/4/24 END: 1/4/24	SAMPLING	METH	DD:	SPT	/ NQ2		ENE	RGY F	RATIO (%)):	75.2		LAT	/LO	NG:		41.	.4091	27, -8	3.456794	i .	1 OF
	MATERIAL DESCRIPT			ELEV.			SPT/		REC	SAMPLE	HP		GRAD	ATIC)N (%))	ATT	ERB	ERG	ì	ODOT	SO4	BA
	AND NOTES			647.3	DEPT	THS	RQD	N ₆₀	(%)	ID	(tsf)	_	-		SI			PL			CLASS (GI)	ppm	F
CONCRET	FE BRIDGE DECK - 8 INCHE	S	\times			L	_																*
	OF BRIDGE DECK TO TOP			040.0		- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 -																	
	EATHERED DOLOMITE, SOM	E SAND,		633.3 632.8 631.8	● 633.3 —		15 50/5"	-	91	SS-1	-	65	16	8	10	1	NP	NP	NP	11	A-1-a (0)	-	
DOLOMITE STRONG, FRACTUR FRACTUR	LT, TRACE CLAY E, GRAY, SLIGHTLY WEATH JOINTED, FRACTURED TO IED, TIGHT, ROUGH, NEAR- ING; RQD 59%, REC 100%.	MODERATELY		628.0		- 16 - - 17 - - 17 - - 18 - - 19 -			100	NQ2-1											CORE		R. D. A. LALARA
STRONG, MODERAT FRACTUR	E, GRAY, SLIGHTLY WEATH SANDY LAMINAE, JOINTED TELY FRACTURED TO SLIG ED, TIGHT, ROUGH; RQD 8 0 20.5': Qu=15,570 PSI, γ_{DRY} =	, HTLY 6%, REC 100%.				- - 20 - - 21 - - 22 -																	AN LAX CHIN
				621.8	EOB-	23 - 24 - 25 -			100	NQ2-2											CORE		HAR ANE


ASPHALT - 6.5 INCHES 645.1 AGGREGATE BASE - 11.5 INCHES 644.2 MEDIUM DENSE, GRAY, GRAVEL AND STONE 644.2 FRAGMENTS, SOME SAND, LITTLE SILT, TRACE 643.2 CLAY, DAMP FILL 641.7 MEDIUM DENSE, GRAY, GRAVEL AND STONE 641.7 FRAGMENTS WITH SAND, LITTLE SILT, TRACE 641.7 CLAY, DAMP FILL 641.7 MEDIUM DENSE, GRAY, GRAVEL AND STONE 641.7 FRAGMENTS WITH SAND, LITTLE SILT, TRACE 641.7 CLAY, DAMP FILL 641.7 MEDIUM DENSE, GRAY, GRAVEL AND STONE 641.7 FRAGMENTS WITH SAND, LITTLE SILT, TRACE 641.7 CLAY, DAMP FILL 641.7 STIFF TO VERY STIFF, BROWN, SANDY SILT, 641.7 LITTLE CLAY, LITTLE GRAVEL, MOIST 638.7 MEDIUM DENSE, BROWN, GRAVEL AND STONE 638.7 FRAGMENTS WITH SAND, LITTLE SILT, LITTLE 638.7 DOLOMITE FRAGMENTS, TRACE CLAY, MOIST TO 636.7 WET 636.7) A1 CL LL 1 NI 3 NI 18 22 4 NI)) CL 1 3 18 - - 4	AT1 LL NP 22 - -	P NP NP 15	BERG PI PNF NF 57	wc wc	A-1-a (0) A-1-b (0) A-4a (5) A-4a (V) A-1-b (V) A-1-b (0)	<pre>SO4 ppm </pre> <100 - <	A A A A A A A A A A A A A A A A A A A
AGGREGATE BASE - 11.5 INCHES 644.2 MEDIUM DENSE, GRAY, GRAVEL AND STONE 643.2 FRAGMENTS, SOME SAND, LITTLE SILT, TRACE 643.2 CLAY, DAMP FILL 641.7 MEDIUM DENSE, GRAY, GRAVEL AND STONE 641.7 FRAGMENTS WITH SAND, LITTLE SILT, TRACE 641.7 CLAY, DAMP FILL 641.7 STIFF TO VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, MOIST 638.7 MEDIUM DENSE, BROWN, GRAVEL AND STONE 638.7 FRAGMENTS WITH SAND, LITTLE SILT, TRACE 638.7 MEDIUM DENSE, BROWN, GRAVEL AND STONE 638.7 FRAGMENTS WITH SAND, LITTLE SILT, LITTLE 638.7 MEDIUM DENSE, BROWN, GRAVEL AND STONE 638.7 FRAGMENTS WITH SAND, LITTLE SILT, LITTLE 638.7 MEDIUM DENSE, BROWN, GRAVEL AND STONE 638.7 FRAGMENTS WITH SAND, LITTLE SILT, LITTLE 638.7 BROWN, WEATHERED DOLOMITE, SOME SAND, 635.2 DOLOMITE, GRAY, SLIGHTLY WEATHERED, 635.2 DOLOMITE, GRAY, SLIGHTLY WEATHERED, 7 STRONG, JOINTED - HIGHLY FRACTURED TO 7 FRACTURED, TIGHT, ROUGH; RQD 15%, REC 100%. 7 MEDIUM NQ2-1 10 MEDIUM NQ2	3 Ni 18 22 4 Ni	3 18 - 4	NP 22 - - NP	P NF 15 - - P NF	 NF 7 - NF 	P 8 18 - - P 14	A-1-b (0) A-4a (5) A-4a (V) A-1-b (V) A-1-b (0)	-	A A A A A A A A A A A A A A A A A A A
CLAY, DAMP FILL 3 9 7 15 100 SS-2 - 50 13 15 19 3 MEDIUM DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND, LITTLE SILT, TRACE -	18 22 4 Ni	18 - - 4	22 - - NP	2 15 - - P NP	5 7 - - P NF	18 - - P 14	A-4a (5) A-4a (V) A-1-b (V) A-1-b (0)	-	X X X X X X X X X X X X X X X X X X X
CLAY, DAMP FILL 5 3 10 100 SS-3 2.75 11 2 26 43 1 STIFF TO VERY STIFF, BROWN, SANDY SILT, LITTLE GRAVEL, MOIST 638.7 6 0 ST-4A - <td< td=""><td> 4 NI</td><td>- 4</td><td>- - NP</td><td>- - P NF</td><td>- - - NF</td><td>- - - 14</td><td>A-4a (V) A-1-b (V) A-1-b (0)</td><td>-</td><td>K AND JAK RY CHAR</td></td<>	 4 NI	- 4	- - NP	- - P NF	- - - NF	- - - 14	A-4a (V) A-1-b (V) A-1-b (0)	-	K AND JAK RY CHAR
MEDIUM DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND, LITTLE SILT, LITTLE DOLOMITE FRAGMENTS, TRACE CLAY, MOIST TO WET -7 </td <td>4 NI</td> <td>4</td> <td>NP</td> <td>P NF</td> <td>P NF</td> <td>P 14</td> <td>A-1-b (0)</td> <td>-</td> <td>X A YA AV A</td>	4 NI	4	NP	P NF	P NF	P 14	A-1-b (0)	-	X A YA AV A
WET TR 9 11 BROWN, WEATHERED DOLOMITE, SOME SAND, LITTLE SILT, TRACE CLAY 635.2 10 10 58-6 -<		-	-	-	-	7	A-1-a (V)	-	N N
STRONG, JOINTED - HIGHLY FRACTURED TO FRACTURED, TIGHT, ROUGH; RQD 15%, REC 100%. - 13 - 17 - 13 - 17 - 14 - - 15 - - 16 -							1	1	- SI
							CORE		A A HA CAN AN AN CAN
MODERATELY STRONG, JOINTE WEATHERED - SLIGHTLY FRACTURED, TIGHT, ROUGH; RQD 75%, REC 100%. @16.2' TO 17.0': Qu=5,560 PSI, γ_{DRY} =154.1 PCF 625.2 FOR 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20							CORE		AL BUNK AN AN

231797 - Legend - Bridge Street Bridge.docx

			B-002-	0-23			
	ייייייייייייייייייייייייייייייייייייי	1 1 1 1 1 1 1 1 1 1		μ-ω ω-Ψ	<u>ک</u> ال ک		טיים
BR: NQ2-1 18.0'							
		R			1		
			12	ER: NQ2-1 23.0'		-	
						or all	
Core Date:	January 4, 2024		an a	Ground Surface E	levation: 6	246 O'	
Run #:	Depth	Elev	ration	Recovery		RQD)
NQ2-1	18.0' 23.0'	628.0'	623.0'	60/60	100%	18/60	30%
	PROF	VUSED BRIDG	E REPLACEME	NT - BRIDGE STREE	BRIDGE		

				B-002-	0-23			× ×
Tum					, , , , , , , , , , , , , , , , , , ,	որդորդ	Internation	uluulu
	ι ώ ú	rù à	ה ט מ		P N L			
BR: NQ2-2 23.0'				1.1/				
	(and				(Tu - 2			
				ER: NQ2-2	28.0'			
1			1					
Core Date:	January 4,	2024			Ground Surf	ace Elevation: 62	28.2'	
Run #:	Der		Eleva	ation		overy	RC)D
NQ2-2	23.0'	28.0'	623.0'	618.0'	57/60	95%	45/60	75%
		PROF	POSED BRIDG	E REPLACEME	ENT - BRIDGE S	TREET BRIDGE		

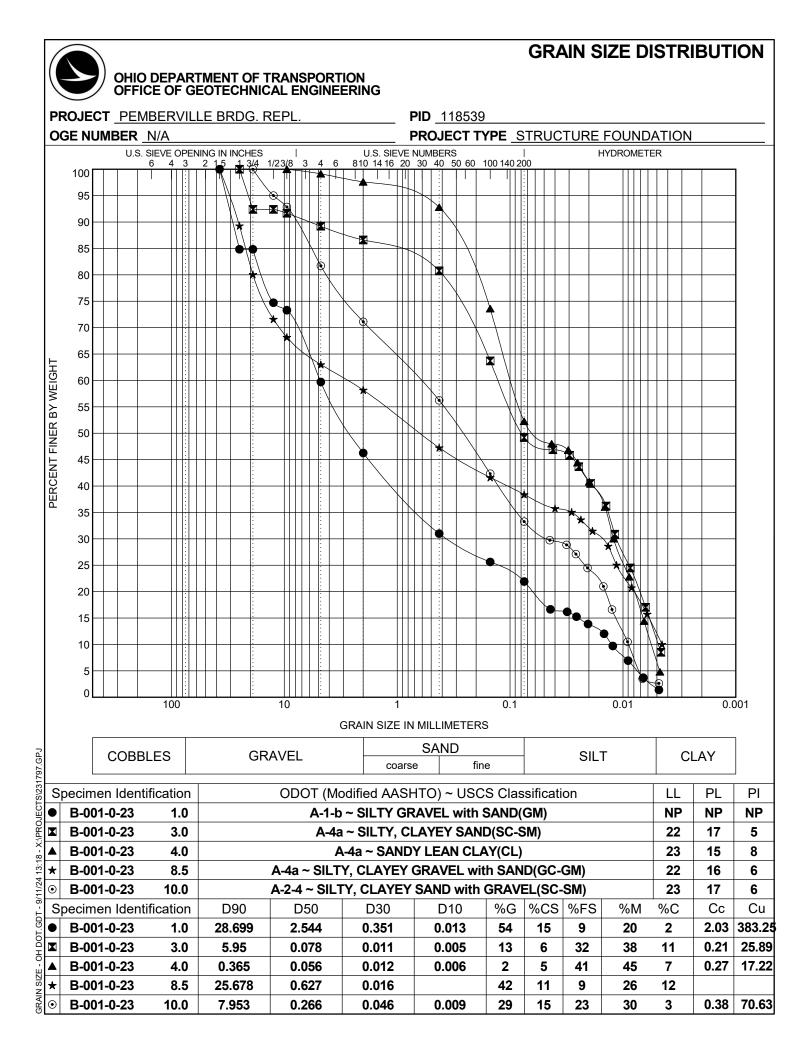
Г

Office of Geotechnical Engineering

-

				B-003-	0-23			
	ΰω	ייןייייןיי דט 4,	ייייייייייייייייייייייייייייייייייייי	ניייין		רט 4- C	0-V-0	
BR: NQ2-1 15.5'				AL PR				
				F				
		F	-		ER: NQ2-1 20.5 [°]			

Core Date:			 .			ace Elevation: 6		
Run #:	De		Eleva			overy	RC	-
NQ2-1	15.5'	20.5'		625.5'	60/60 ENT - BRIDGE S		34/60	57%
		PRUI			INT - DRIDGE 3	INCEI DRIDGE		


	U
BR: NQ2-2 20.5'	
Ek: NQ2-2 26:57	
Core Date: January 4, 2024 Ground Surface Elevation: 646.0' Run #: Depth Elevation RQD	
	95%

				B-004-	0-23			<u> </u>
BR: Na2-1 10.5'								
							ER: NQ2-1 15.5'	
Core Date: Run #:	January 3, Dej		Elev	ation	Ground Surfa	ace Elevation: 6	46.0' RQ	ID.
NQ2-1	10.5'	15.5'	635.5'	630.5'	60/60	100%	10/60	17%
		PROF	POSED BRIDG	E REPLACEME	NT - BRIDGE S	REET BRIDGE		

				B-004-	0-23			
	ν N W	ייייייייייייייייייייייייייייייייייייי	ייייייייייייייייייייייייייייייייייייי			יייןיייןייין רט 4ט		
BR: NQ2-2 15.5'				ER: NQ2-2 20.5'				
Core Date: Run #:	January 3,		Floy	ation		ace Elevation: 6	46.0'	
NQ2-2	Dej 15.5'	20.5'	630.5'	625.5'	48/60	overy 80%	39/60	65%
		PROF	POSED BRIDG	E REPLACEME	NT - BRIDGE S	TREET BRIDGE		

CLIENT TE BORING NUMBER B-(SAMPLE DEPTH (FEET) 22	001-0-23 .0 TO 27.0 AY, HIGHLY WEATHEREI 3.47 1.99 1.74	SAMPLE NUMBER NQ2-2 SPECIMEN DEPTH (FEET) 24.5 TO 24.9 D, STRONG, JOINTED - FRACTURED TO MODERAT MASS (GRAMS) UNIT WEIGHT (LBS/CU. FT.)	ELY FRACTUR 460.80 162.7
BORING NUMBER B-(SAMPLE DEPTH (FEET) 22 ROCK DOLOMITE, GR/ TIGHT, ROUGH LENGTH (INCHES) DIAMETER (INCHES) LENGTH / DIAMETER CORRECTION FACTOR	001-0-23 .0 TO 27.0 AY, HIGHLY WEATHEREI 3.47 1.99 1.74	SPECIMEN DEPTH (FEET) 24.5 TO 24.9 D, STRONG, JOINTED - FRACTURED TO MODERAT MASS (GRAMS)	460.80
SAMPLE DEPTH (FEET) 22 ROCK DESCRIPTION TIGHT, ROUGH LENGTH (INCHES) DIAMETER (INCHES) LENGTH / DIAMETER CORRECTION FACTOR	.0 TO 27.0 AY, HIGHLY WEATHEREI 3.47 1.99 1.74	SPECIMEN DEPTH (FEET) 24.5 TO 24.9 D, STRONG, JOINTED - FRACTURED TO MODERAT MASS (GRAMS)	460.80
Rock Description Length (Inches) DIAMETER (Inches) LENGTH / DIAMETER Correction Factor	3.47 1.99 1.74	D, STRONG, JOINTED - FRACTURED TO MODERAT MASS (GRAMS)	460.80
DESCRIPTION TIGHT, ROUGH LENGTH (INCHES) DIAMETER (INCHES) LENGTH / DIAMETER CORRECTION FACTOR	3.47 1.99 1.74	Mass (grams)	460.80
DIAMETER (INCHES) LENGTH / DIAMETER CORRECTION FACTOR	1.99 1.74		
LENGTH / DIAMETER CORRECTION FACTOR	1.74		
CORRECTION FACTOR			
	1.0	MAXIMUM LOAD (LBS)	34,870
	3.11	COMPRESSIVE STRENGTH (PSI)	10,990
		No market	

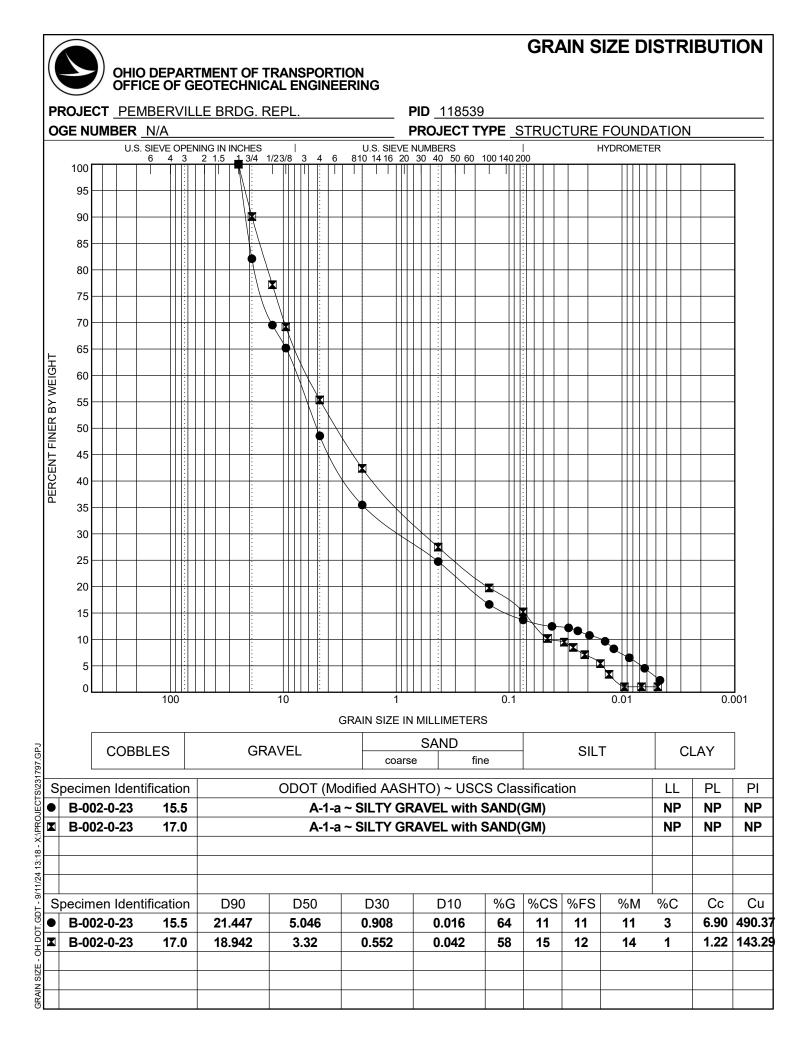
TEST SPECIMEN PHOTO

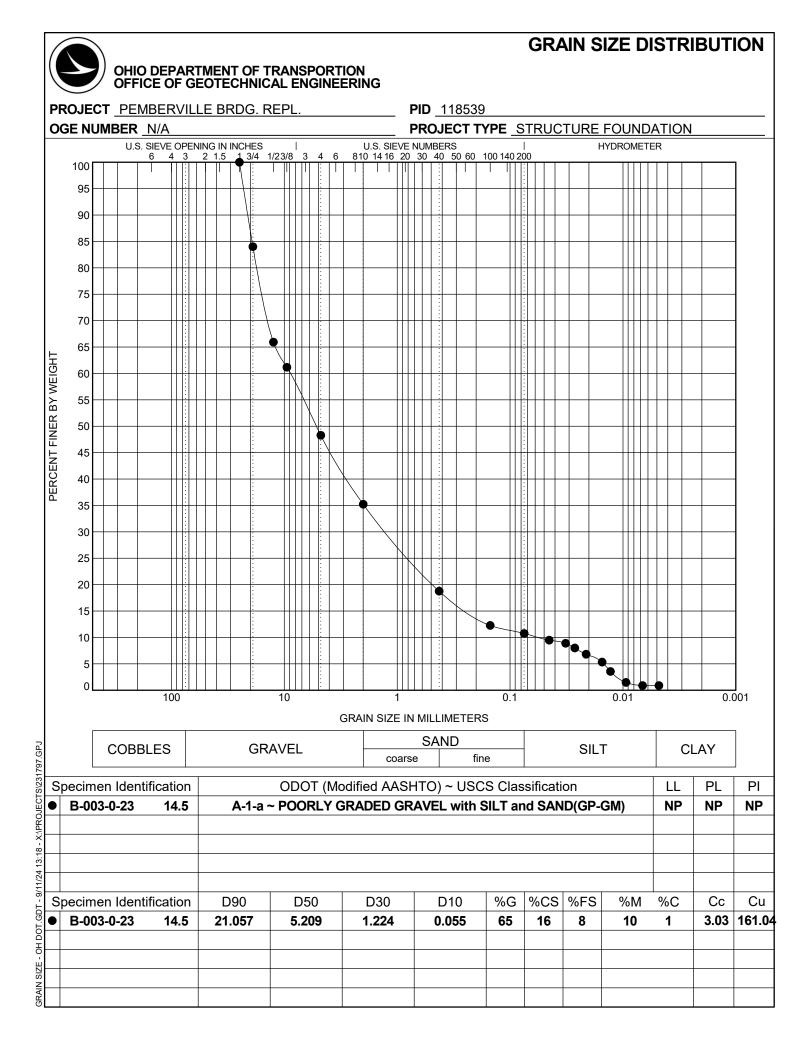
TEST SPECIMEN PHOTO

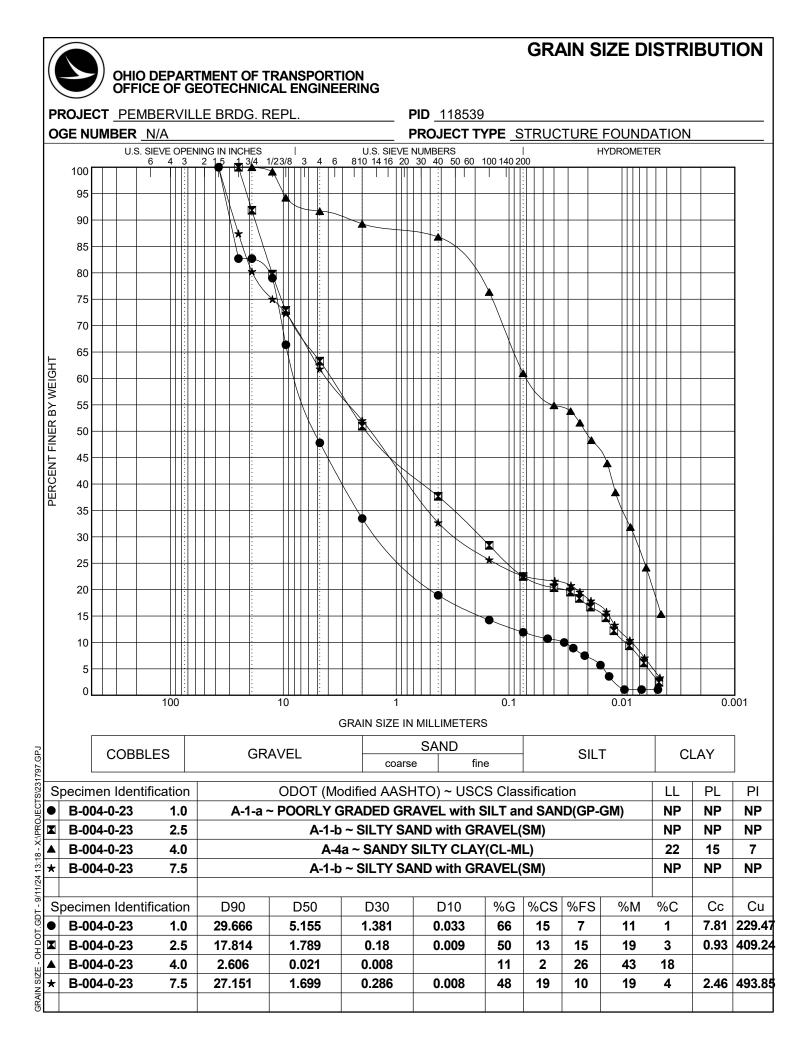
	PROJECT	Proposed Bridge Replace	ement - Bridge	e Street	CT PROJECT NUMBER	231797
	LOCATION	Village of Pemberville, Of	nio			
	CLIENT	Tetra Tech				
BOF	RING NUMBER	B-002-0-23		SAMPLE NUMBER	NQ2-1	
SAMPLE I	DEPTH (FEET)	18.0 TO 23.0	Spe	ECIMEN DEPTH (FEET)	21.2 TO 21.8	
	· ·	GRAY, MODERATELY WE	· · ·		ONG, SANDY LAMINAE	E, JOINTED -
	· ·		· · ·		ONG, SANDY LAMINAE	E, JOINTED -
	FRACTURE		· · ·		ONG, SANDY LAMINAE Mass (grams)	E, JOINTED - 474.20
DESCRIPTION F		TO MODERATELY FRAC	· · ·	GHT, ROUGH		·
DESCRIPTION F	FRACTUREE (INCHES) (INCHES)	O TO MODERATELY FRAC	· · ·	GHT, ROUGH	Mass (grams)	474.20
DESCRIPTION F LENGTH (I DIAMETER (I	FRACTUREE (INCHES) (INCHES) IAMETER	O TO MODERATELY FRAG 3.99 1.95	· · ·	GHT, ROUGH Unit Weig	Mass (grams)	474.20

TEST SPECIMEN PHOTO

TEST SPECIMEN PHOTO


Pr	OJECT Proposed Bridge Repl	acement - Bridge Street	CT PROJECT NUMBER	231797
Lo	CATION Village of Pemberville,	Ohio		
	CLIENT Tetra Tech			
Boring N	JMBER B-003-0-23	SAMPLE NUMBER	NQ2-1	
SAMPLE DEPTH	(FEET) 15.5 TO 20.5	SPECIMEN DEPTH (FEET)	20.1 TO 20.5	
		ATHERED, VERY STRONG, SAND	LAMINAE, JOINTED, MO	DERATELY
DESCRIPTION FRACT	URED TO SLIGHTLY FRAC	· · · ·		
	URED TO SLIGHTLY FRAC	· · · ·	(LAMINAE, JOINTED, MO	DERATELY 474.60
DESCRIPTION FRACT	URED TO SLIGHTLY FRAC			
DESCRIPTION FRACT	URED TO SLIGHTLY FRAC) 3.74) 1.97		Mass (grams)	474.60
DESCRIPTION FRACT LENGTH (INCHES DIAMETER (INCHES	URED TO SLIGHTLY FRAC) 3.74) 1.97 3 1.90		Mass (grams)	474.60





TEST SPECIMEN PHOTO

Projec	Proposed Bridge Replacement - B	ridae Street	CT PROJECT NUMBER	231797
	Village of Pemberville, Ohio	- 3		
	T Tetra Tech			
BORING NUMBE	R B-004-0-23	SAMPLE NUMBER	IQ2-2	
SAMPLE DEPTH (FEET) 15.5 TO 20.5	SPECIMEN DEPTH (FEET) 1	6.2 TO 17.0	
Rock DOLOMITE, DESCRIPTION TIGHT, ROL	GRAY, SLIGHTLY WEATHERED, GH	MODERATELY STRONG,	JOINTED - SLIGHTLY FF	ACTURED,
LENGTH (INCHES)	4.00		MASS (GRAMS)	493.20
DIAMETER (INCHES)	1.97		· · · ·	154.1
LENGTH / DIAMETER	2.03		. (,	
CORRECTION FACTOR	1.0	Махім	UM LOAD (LBS)	16,960
AREA (SQ. IN.)	3.05	COMPRESSIVE S		5,560
			H)
TEST SPE	CIMEN PHOTO	TE	ST SPECIMEN PHOTO	

APPENDIX A

Engineering Calculations

Project Name:	Proposed Bridge Replacement - Bridge Street B	ridge
Project Numbe	231797	
Calculated by:	КСН 01/29/2024	
Reviewed By:	JH 09/06/2024	

645 624.5

Scour Determination - Rear (West) Abutment

Upper Elevation Limit for Analysis = Lower Elevation Limit for Analysis = feet, based on 100-year floodplain feet, based on 6 feet below bottom of river

				Table	1. Scour Parame	eters for Soils -	Rear (West) Abı	ıtment				
Boring Number	Sample Number	Sample Depth (feet)	Sample Approximate Elevation (feet)	ODOT Soil Class	Fines (<75 μm) (percent)	Pl (percent)	w (percent)	qu ¹ (psf)	D ₅₀ (mm)	D ₉₅ (mm)	Critical Shear Stress, τ _c (psf)	Critical Shear Stress, τ _c (Pa)
B-001	SS-1	1.0 to 2.5	645.0 to 643.5	A-1-b	22	NP	8	-	2.5441	32.8057	0.053	2.54
B-001	SS-2B	3.0 to 4.0	643.0 to 642.0	A-4a	49	5	14	1,500	0.078	20.869	0.046	2.18
B-001	SS-3	4.0 to 5.5	642.0 to 640.5	A-4a	52	8	20	1,500	0.0556	0.8613	0.047	2.22
B-001	SS-6	8.5 to 10.0	637.5 to 636.0	A-4a	38	6	14	6,250	0.6266	31.031	0.063	2.95
B-001	SS-7	10.0 to 10.3	636.0 to 635.7	A-2-4	33	6	10	-	0.2664	12.4692	0.006	0.27

¹ For cohesive samples which were not intact for an unconfined compressive strength test or a hand penetrometer value, or where such tests were affected by desiccation, q_u was estimated by N₆₀x250.

				Table 2	2. Scour Param	eters for Rock - I	Rear (West) Ab	utment				
								Rock				
						Rock		Mass				
			Sample	Unconfined	Slake	Quality		Rating,	Geologic			Critical
		Sample	Approximate	Compressive	Durability	Designation,	Unit	RMR	Strength		Critical Shear	Shear
Boring	Sample	Depth	Elevation	Strength, Q _u	Index, S _{DI}	RQD	Weight	(Superseded	Index,	Erodibility	Stress, τ _c	Stress, τ _c
Number	Number	(feet)	(feet)	(psi)	(percent)	(percent)	(pcf)	by GSI)	GSI	Index, K	(psf)	(Pa)
B-001	NQ2-1	12.0 to 22.0	634.0 to 624.0	-	90.6	0	150	-	35 to 45	5	11.88	568.9

Scour Determination - Pier 1 (West)

Upper Elevation Limit for Analysis = Lower Elevation Limit for Analysis = 645 feet, based on 100-year floodplain

624.5 feet, based on 6 feet below bottom of river

Project Name: Proposed Bridge Replacement - Bridge Street Bridge

Project Number 231797

Calculated by: KCH 01/29/2024 Reviewed By: IJH 09/06/2024

				Т	able 3. Scour Pa	arameters for So	oils - Pier 1 (Wes	st)				
			Sample									Critical
		Sample	Approximate	ODOT	Fines						Critical Shear	Shear
Boring	Sample	Depth	Elevation	Soil	(<75 μm)	PI	w	qu	D ₅₀	D ₉₅	Stress, τ _c	Stress, τ _c
Number	Number	(feet)	(feet)	Class	(percent)	(percent)	(percent)	(psf)	(mm)	(mm)	(psf)	(Pa)
B-002	SS-1	15.5 to 17.0	630.5 to 629.0	A-1-a	14	NP	11	-	5.046	23.1553	0.105	5.05
B-002	SS-2	17.0 to 17.6	629.0 to 628.4	A-1-a	15	NP	11	-	3.3205	21.7658	0.069	3.32

	Table 4. Scour Parameters for Rock - Pier 1 (West)													
								Rock						
						Rock		Mass						
			Sample	Unconfined	Slake	Quality		Rating,	Geologic			Critical		
		Sample	Approximate	Compressive	Durability	Designation,	Unit	RMR	Strength		Critical Shear	Shear		
Boring	Sample	Depth	Elevation	Strength, Q _u	Index, S _{DI}	RQD	Weight	(Superseded	Index,	Erodibility	Stress, τ _c	Stress, τ _c		
Number	Number	(feet)	(feet)	(psi)	(percent)	(percent)	(pcf)	by GSI)	GSI	Index, K	(psf)	(Pa)		
B-002	NQ2-1	18.0 to 23.0	628.0 to 623.0	-	90.6	30	-	-	45 to 55	633	133.02	6,369.0		

T

Project Name:	Proposed Bridge Replacement - Bridge Street B	ridge
Project Numbe	231797	
Calculated by:	КСН 01/29/2024	
Reviewed By:	IJH 09/06/2024	

645 624.5

Scour Determination - Pier 2 (East)

Upper Elevation Limit for Analysis = Lower Elevation Limit for Analysis = feet, based on 100-year floodplain feet, based on 6 feet below bottom of river

				1	Table 5. Scour Pa	arameters for S	oils - Pier 2 (Eas	t)				
	Sample Critical											
		Sample	Approximate	ODOT	Fines						Critical Shear	Shear
Boring	Sample	Depth	Elevation	Soil	(<75 μm)	PI	w	qu	D ₅₀	D ₉₅	Stress, τ _c	Stress, τ _c
Number	Number	(feet)	(feet)	Class	(percent)	(percent)	(percent)	(psf)	(mm)	(mm)	(psf)	(Pa)
B-003	SS-1	14.5 to 15.4	631.5 to 630.6	A-1-a	11	NP	11	-	5.2089	22.9437	0.109	5.21

	Table 6. Scour Parameters for Rock - Pier 2 (East)													
								Rock						
						Rock		Mass						
			Sample	Unconfined	Slake	Quality		Rating,	Geologic			Critical		
		Sample	Approximate	Compressive	Durability	Designation,	Unit	RMR	Strength		Critical Shear	Shear		
Boring	Sample	Depth	Elevation	Strength, Q _u	Index, S _{DI}	RQD	Weight	(Superseded	Index,	Erodibility	Stress, τ _c	Stress, τ _c		
Number	Number	(feet)	(feet)	(psi)	(percent)	(percent)	(pcf)	by GSI)	GSI	Index, K	(psf)	(Pa)		
B-003	NQ2-1	15.5 to 20.5	630.5 to 625.5	-	90.6	57	-	-	60 to 70	3399	308.22	14,757.6		
B-003	NQ2-2	20.5 to 25.5	625.5 to 620.5	15,570	90.6	95	158.6	-	70 to 90	5666	397.91	19,051.9		

T

Project Name:	Proposed Bridge Replacement - Bridge Street B	ridge
Project Numbe	231797	
Calculated by:	КСН 01/29/2024	
Reviewed By:	IJH 09/06/2024	
Scour Determin	nation - Forward (East) Abutment	

645

Upper Elevation Limit for Analysis = Lower Elevation Limit for Analysis = feet, based on 100-year floodplain

nalysis = 624.5 feet, based on 6 feet below bottom of river

	Table 7. Scour Parameters for Soils - Forward (East) Abutment														
Boring	Sample	Sample Depth	Sample Approximate Elevation	ODOT Soil	Fines (<75 μm)	PI	w	qu ¹	D ₅₀	D ₉₅	Critical Shear Stress, τ _c	Critical Shear Stress, τ _c			
Number	Number	(feet)	(feet)	Class	(percent)	(percent)	(percent)	(psf)	(mm)	(mm)	(psf)	(Pa)			
B-004	SS-1	1.0 to 2.5	645.0 to 643.5	A-1-a	12	NP	4	-	5.1554	33.3535	0.108	5.16			
B-004	SS-2	2.5 to 4.0	643.5 to 642.0	A-1-b	22	NP	8	-	1.789	21.1207	0.037	1.79			
B-004	SS-3	4.0 to 5.5	642.0 to 640.5	A-4a	61	7	18	2,500	0.021	9.9267	0.083	3.89			
B-004	SS-5	8.5 to 10.0	637.5 to 636.0	A-1-b	23	NP	14	-	1.6987	31.9085	0.035	1.70			

¹ For cohesive samples which were not intact for an unconfined compressive strength test or a hand penetrometer value, or where such tests were affected by desiccation, q_u was estimated by N₆₀x250.

				Table 7.	Scour Paramet	ers for Rock - Fo	orward (East) Al	butment				
								Rock				
						Rock		Mass				
			Sample	Unconfined	Slake	Quality		Rating,	Geologic			Critical
		Sample	Approximate	Compressive	Durability	Designation,	Unit	RMR	Strength		Critical Shear	Shear
Boring	Sample	Depth	Elevation	Strength, Q _u	Index, S _{DI}	RQD	Weight	(Superseded	Index,	Erodibility	Stress, τ _c	Stress, τ _c
Number	Number	(feet)	(feet)	(psi)	(percent)	(percent)	(pcf)	by GSI)	GSI	Index, K	(psf)	(Pa)
B-004	NQ2-1	10.5 to 15.5	635.5 to 630.5	-	90.6	17	-	-	35 to 45	362	100.59	4,816.1
B-004	NQ2-2	15.5 to 20.5	630.5 to 625.5	10,990	90.6	65	154.1	-	60 to 70	1384	196.68	9,417.3

	Project Name:	Prop. Brid	dge Replacement - Bridge	Street Drilled Shaft Socket I	Evaluations - Load and R	esistance F	actor Des	ign	
P	roject Number:								
	Calculated by:	KCH 2/9/	2024	Reviewed by: CPI 2/15/	2024				
	Boring:	B-001-0-2	2 <mark>3 - Rear (West) Abutme</mark> n	t	shaft diameter, B =	3	feet	= 36 inches	
					socket diameter, B =	2.5	feet	= 30 inches	
					minimum socket length	5	feet		
N -2					GSE =	645.8	feet		
$\hat{q}_{p} = 2.5$	a		C	(0.8.3.5.4c-1)	TR =	12	feet	TR Elev.(ft)= 633.8	
$q_p = 2.50$	\mathcal{P}_u		N.		+5 feet =	17	feet		
					Tip Elev.	628.80	feet		
qu =	10,990	psi	B-001 (NQ2-2 Sample),	for rock zone starting approximation	ately 8 feet below tip.				
			However, for nearest b	oring without RQD=0 at tip eleva	ition				
qu =	5,510	psi	B-002 (NQ2-2 Sample)	Conservatively use th	nis value				
=	793,440	psf							
qp = 2.5*qu =	1,983,600	psf	= 1984	ksf					
Dociston	ce Factor, phi =	0	.5 Table 10.5.5.2.4-1, tip I	rocistanco in rock					
phi*qp =			.5 Table 10.5.5.2.4-1, tip I						
A*phi*qp =	4,868		tip only, 10.8.3.5.4c-1 r	nethod, use for design					
	.,								
consider strengt	th of concrete								
f'c =	4000	psi							
=	576	ksf							
0.33*f'c*A =	933	kips	allowable strength of c	oncrete; structural engineer to co	onsider any limiting cond	itions asso	ciated wit	h the stress limitations of the co	ncrete
Δ	vailable Resista	nce (kips)	= 4868						
	Based on provid	ded loadin	ng						
Indicated 7	Fotal Factored L	.oad (kips))= 247						
Sui	itable Vertical F	Resistance	e? YES						

	Project Name: Prop. Bri	dge Replacen	nent - Bridge	Street	Drilled Sha	aft Socket Evaluations - Load and Res	sistance F	actor Desi	gn		
F	roject Number: 231797										
	Calculated by: KCH 2/9/	2024		Re	eviewed by:	CPI 2/15/2024					
	Boring: B-002-0-	23 - Pier 1 (W	/est Pier)			shaft diameter, B =	3.5	feet	= 42 i	nches	
						socket diameter, B =	3.5	feet	= 42 i	nches	
						minimum socket length	5	feet	N	ery little o	verburden,
									(do not size	down 6 inches
					-	GSE =	647.4				
$\hat{q}_{p} = 2.5$	$q_{}$		(10.8.3.	5.4c-1			feet	TR Elev.(ft)=	629.4	
- p	- <i>u</i>				-	+5 feet =		feet			
						Tip Elev.	624.40	feet			
qu =		B-002 (NQ	<mark>2</mark> -1 Sample)								
=	793,440 psf										
qp = 2.5*qu =	1,983,600 psf	=	1984	ksf							
Resistar	ce Factor, phi = 0	.5 Table 10.5	.5.2.4-1, tip	resistance i	n rock						
phi*qp =	992 ksf										
A*phi*qp =	9,542 kips	tip only, 10	D.8.3.5.4c-1	method, us	e for desigr						
consider streng	th of concrete										
f'c =											
=	576 ksf										
0.33*f'c*A =	1829 kips	allowable	strength of c	oncrete; st	ructural en	gineer to consider any limiting condit	ions asso	ciated with	the stress limitati	ons of the	concrete
	Available Resistance (kips)= 9542									
	Based on provided loadir	ng									
Indicated	Total Factored Load (kips)= 456									
Su	itable Vertical Resistance	e? YES									

	Project Name: Prop. Bri	dge Replacer	ment - Bridge	Street	Drilled Sha	ft Socket Evaluations - Load and Re	sistance Factor Desig	n		
F	Project Number: 231797									
	Calculated by: KCH 2/9	/2024		R	eviewed by:	CPI 2/15/2024				
	Boring: B-003-0-	23 - Pier 2 (E	ast Pier)			shaft diameter, B =	3.5 feet	= 42	inches	(N/A, see below)
						socket diameter, B =	3.5 feet	= 42	inches	
						minimum socket length	5 feet		no overbu	rden,
									do not size	down 6 inches
						GSE =	647.3 feet			
$\hat{q}_{p} = 2.5$	a		(10.8.3.	5.4c-1) TR =	15.5 feet	TR Elev.(ft)=	631.8	
1 p	11					+5 feet =	20.5 feet			
						Tip Elev.	626.80 feet			
qu =		<mark>B-003 (NC</mark>	<mark>)2</mark> -1 Sample)							
=	2,242,080 psf									
qp = 2.5*qu =	5,605,200 psf	=	5605	ksf						
Resistar	nce Factor, phi = 0	0.5 Table 10.5	5.5.2.4-1 <i>,</i> tip	resistance	in rock					
phi*qp =	2,803 ksf									
A*phi*qp =	26,964 kips	tip only, 1	0.8.3.5.4c-1	method, us	e for desigr					
onsider streng	th of concrete									
f'c =	4000 psi									
=	576 ksf									
0.33*f'c*A =	1829 kips	allowable	strength of o	concrete; st	ructural en	gineer to consider any limiting condit	tions associated with	the stress limita	tions of the	concrete
	Available Resistance (kips)= 26964								
	Based on provided loadi	ng								
Indicated	Total Factored Load (kips)= 456								
Si	uitable Vertical Resistanc	e? YES								

	Project Name:	Prop.	Bridge Replacen	nent - Bridge	Street	Drilled Sha	ft Socket Evaluations - Load and R	esistance F	actor Des	ign			
P	roject Number:	23179	97										
	Calculated by:	KCH 2	/9/2024		Re	eviewed by:	CPI 2/15/2024						
	Boring:	B-004	-0-23 - Forward	(East) Abutm	nent		shaft diameter, B =	3	feet	= 36	inches		
							socket diameter, B =		feet	= 30	inches		
							minimum socket length	5	feet				
N -2							GSE =	645.7	feet				
$\hat{q}_{p} = 2.5$	a			C	10.8.3.	5.4c-1)		10.5		TR Elev.(ft)=	635.2		
$q_p = 2.5$	\mathcal{A}_{u}			C.			+5 feet =	15.5					
							Tip Elev.	630.20					
qu =	5,560	psi	B-004 (NQ	2-2 Sample)									
=	800,640	psf											
qp = 2.5*qu =	2,001,600	psf	=	2002	ksf								
Resistan	ice Factor, phi =		0.5 Table 10.5	.5.2.4-1, tip	resistance i	n rock							
phi*qp =		ksf											
A*phi*qp =	4,913	kips	tip only, 10	0.8.3.5.4c-1 r	method, us	e for design							
consider streng	th of concrete												
f'c =	4000	psi											
=	576	ksf											
0.33*f'c*A =	933	kips	allowable	strength of c	oncrete; st	ructural eng	ineer to consider any limiting cond	itions asso	ciated with	n the stress limita	tions of the	concrete	
	Available Resista	ince (k	ips)= 4913										
	Based on provid												
	Total Factored L		-										
Su	itable Vertical F	Resista	nce? YES										

	Prop. Bridge Replacement - Bridge Street								
Project Number:			Deviewe d bu		024				
Calculated by:	КСН 2/9/2024		Reviewed by:	CPI 2/15/2	2024				
Calcer	Drilled Shaft Rock Sockets - Lateral Resistance								
	B-001-0-23 - Rear (West) Abutment								
Location.	B-001-0-23 - Real (West) Abuthent	-							
GSE (ft):	645.8								
Long-Term GWT (ft):		annrovim	ate river eleva	tion					
Bottom of Pier Cap Elev. (ft):			based on exist		alanc				
	000.0	ussumeu,	bused off exist	ing bridge	510115				
Soil									
		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 1	Very Stiff A-4b	8.5	10	637.3	635.8	25	-	-	
			m of Pier Cap	-	1				
Total Unit Wt (pcf):		GDM Tab		Use	125	pcf			
Su = N60 x 125 (N60<= 52 bpf) per GDM 4						P **			
Su (ksf)=	3.125								
		-							
Evaluation of Strain at half stress (epsilon	50) from LPILE 2018 Technical Manual	P-Y Curve	Type:						
Su = 2-4 ksf, epsilon 50 =		-	w/o Free Wat	er (Reese)		1	1		
<u> </u>		Sun Ciay	, 0	. (112636)					
Augerable Weathered Bedrock									
		Тор							
		Depth	Bottom	Top Elev.	Bottom	SPT			
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Result			
Layer 2	Weathered Dolomite	10	12	635.8	633.8	50/4"			
Edjer E		-	m of Pier Cap		3	50/4			
Total Unit Wt (pcf):	165-175	GDM Tab	•	Use	155	pcf			
	103-175		of Tested Value			per			
Qu based on SPT Results per GDM 404.3	157	Average c	i resteu value	s for the pr	oject.				
Qu (ksf)=0.092x(Nrate)90 (bpf)									
ER(%)=	75.2								
N75.2 =	150	bpf							
N90 = 75.2/90 x 150 bpf =	130	bpf							
Qu (ksf) =	11.5	201							
Qu (psi) =									
Qu (psi) -	00								
Estimate E based on GDM Table 400-6									
Lowest Qu = 200 psi, indicated as $E = 18,0$	IOO nsi								
Use E (psi) =									
Use E (psi) -	18,000	_							
If Strain at 18000 psi is 1%, then strain at	half max stross (krm) is calculated by:								
Half max stress = Qu/2 =		psi							
	0.0022	μsi %							
krm = 1% x (40 psi / 18000 psi) = krm (decimal format) =			Type, RQD =0	%					
kill (deciliar forfildt) =	0.000022		ck (Reese)	/0.					
		Weak RO	in (neese)						
Bedrock		-				-			
bearoen		Тор							
		Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	
Layer 3	Dolomite - Strong	12	22	633.8	623.8	0	40	No Test	
	Highly Frac. to Frac.			000.0	020.0	Ŭ	~		
		elow hotto	m of Pier Cap	3	13				
Total Unit Wt (pcf):		GDM Tab		Use	15	pcf			
	157	-	of Tested Value			pei			
	±J/				0,000				
			1			02 tostad s	nocimon in	stood of	
Ou (nei)-	5510	Conservat	tively using low	ver value fri	DM CLOSE R-U				
Qu (psi)=	5510		tively using lov						amples
			tively using lov high value froi						amples
Qu (psi)= From GDM Table 400-6, say E (psi) =	5510 450000								amples
From GDM Table 400-6, say E (psi) =	450000								amples
From GDM Table 400-6, say E (psi) = If Strain at 450000 psi is 1%, then strain a	450000 t half max stress (krm) is calculated by:	relatively							amples
From GDM Table 400-6, say E (psi) = If Strain at 450000 psi is 1%, then strain a Half max stress = Qu/2 =	450000 t half max stress (krm) is calculated by: 2755	relatively psi							amples
From GDM Table 400-6, say E (psi) = If Strain at 450000 psi is 1%, then strain a Half max stress = Qu/2 = krm = 1% x (2755 psi / 450000 psi) =	450000 t half max stress (krm) is calculated by: 2755 0.0061	relatively psi %	high value from						amples
From GDM Table 400-6, say E (psi) = If Strain at 450000 psi is 1%, then strain a Half max stress = Qu/2 =	450000 t half max stress (krm) is calculated by: 2755 0.0061	relatively psi % P-Y Curve	high value from						amples

Calcs:	Drilled Shaft Rock Sockets - Lateral Resistance									
Location:	B-001-0-23 - Rear (West) Abutment									
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Wt (pcf)	
Layer 4	Dolomite - Strong	22	27	623.8	618.8	40	100	10990	162.7	at 24.5 ft
	Frac. To Mod Frac.									
	Depth b	elow botto	n of Pier Cap:	13	18					
Total Unit Wt (pcf):	165-175	GDM Table	e 400-5	Use	160	pcf				
	162.7	Tested Val	ue							
Qu (psi)=	10990	Tested val	ue							
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900000 psi is 1%, then strain a										
Half max stress = Qu/2 =		psi								
krm = 1% x (5495 psi / 900000 psi) =	0.0061	%								
krm (decimal format) =	0.000061	P-Y Curve	Туре:							
		Weak Roc	k (Reese)							

Project Number Proc. Prof. Prof			_							
Could by: Could by: Could by: Description of the Could by: Could										
Definite dual floot solute - Later all solution Part of the solution o					0010/10/					
Long in 0000000000000000000000000000000000	Calculated by:	KCH 2/12/2024	_	Reviewed by:	CPI 2/16/	2024				
Long in 0000000000000000000000000000000000	0.1									
original										
Long-Terr OWT (D: 63) approximate were direction sol	Location:	: B-002-0-23 - Pier 1 (West Pier)								
Long-Terr OWT (D: 63) approximate were direction sol										
Bottom of Pier Cap Der, 10; 623.4 assumed, based on existing indige plan Image of precision of Pier Cap Der, 10; Com Mode										
Scal Image: Scal Top Lay: Image: No.										
Layer Soil Type Top Depth Bettom Top Elsev. Bottom No HP HP Du (tor) Layer 1 Medium Denze A1-3 55.5 17.6 63.13 63.01 26.0 26.0 26.0 26.0 27.0	Bottom of Pier Cap Elev. (ft):	629.4	assumed, ba	ised on existing	g bridge pla	ans				
Layer Soil Type Top Dept Bottom Top Elev. Bottom No HP (n) Ou (tor) Layer 1 Medium Dense A1-3 Dept below totom of Mer Cap 2.3 1 - - Teal Unit (hgf) 1.28 Dept below totom of Mer Cap 2.3 1 - - Mathematic Determination (COM 40-2): CAD Table 40.0-4 Use 1.25 pd - - Mathematic Determination (COM 40-2): CAD Table 40.0-4 Use 1.25 pd - - CAD Table 40.0-4 CAD Table 40.0-4 Use 1.2 pd -<										
Layer Sol Type (h) Deeph (h)	Soil									
Layer Sol Type (h) Deeph (h)				_						
Layer 1Medium berse A-1-a151763/363/463/4Total turk ty (cf):128GOM Table 40-4Use125pdfInternal Auge of Friction Determination (GOM 404.2):DASITO LIPD 10.6.2.4Use125pdfII					-					
Internal age of Ficione Determination (DM 924) (228 OPM 1246 04-4 Use 1 Image of Ficione Determination (DM 924) (2011) N180 (GPL 674 600) AMSTO LIPD 10.4.5.24 Image of Ficione Determination (DM 924) Image of Ficione								HP (tsf)	Qu (tsf)	
Test Junk (pd): 128 GDM Table 400-4 Use 125 pef Mis6) (pd)-CK*M60 AASITO LKPD 10.4.6.2.4 AASITO LKPD 10.4.6.	Layer 1		-	-			26	-	-	
Internal Age of Friction Determination (GDM 40-2); Image of Fricination (GDM 40-2); Image of Friction Determination (GDM 40-2); Image of Fricination (GDM 40-2); Image of Friction (GDM 4		-	1							
NH30 (pt)=CN*800 CN+070;e(4); 9(30-40, V, Wt CN+20 CN+4 ASHTO LRF3 D.A.6.2.4 F I			GDM Table 4	100-4	Use	125	pcf			
CH-0.270 (gd/s)(gm/s) CH-0.270 (gd/s)(gm/s) CH-0.270 (gd/s)(gm/s) CH-0.270 (gd/s)(gd/s) CH-0.270 (gd/s)(gd/s) CH-0.270 (gd/s) CH-0.270 (gd/	Internal Angle of Friction Determination	(GDM 404.2):								
CN at sigma-v(sh): D.0.5	N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4								
signa V (str): 0.05 2 0	CN=0.77log(40/sigma-v'), with CN<2.0									
ON- N1507.232.50 use:2.07.0	CN at	16.25	ft							
N160 AGS/TO LIRE 7. bits 0.4, 2.4 AGS/TO LIRE 7. bits 0.4, 2.4 AGG/TO LIRE 7. A AGS/TO LIRE	sigma-v' (ksf):	0.05								
AASHTOLRB Table 10.4 6.2.4.1 Midd Ange Phi (deg) S0 40.5	CN=	2.3	>2 so use:	2.0						
AASITO LIDE Table 10.4.6.2.4.1 MAGE MULA BADE PHI (deg) 50 40.5 MAGE ALS	N160 (bpf)=	52								
NiE0 Mid-Ange Pri (deg) Image Pri (deg) <thimage (deg)<="" pri="" th=""> Image Pri (deg)<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thimage>										
50 40.5 Image: state structure str		Mid-Range Phi (deg)								
N160 PPI (deg) use dot deg deg <th< td=""><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	50									
52 40.5 use 40.5 deg Image Image <td></td>										
52 40.5 use 40.5 deg Image Image <td>N160</td> <td>Phi (deg)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	N160	Phi (deg)								
GOM Table 400-3 pit Adjustment -2.5 - <			use	40.5	deg					
A1-3 +2.5 Phi (deg) = 43 < 000T Maximum 46 deg, ok										
Phi (deg) = 43 < 000T Maximum 46 deg, ok K Evaluation From LPILE 2018 Technical Manual Parameters: Mcdium Dense, Submerged Sand Range of k-Value (pc)) = Mcdium Dense, Submerged Sand Range of k-Value (pc) =		+2.5								
Live Number of the DFLE 2018 Technical Manual Number of the Moduum Dense, Submerged Sand Number of the Moduum De				imum 46 deg	ok					
Parameters: Medium Dense, Submerged Sand Image of K-values	· · · · (deg) =		1.0001 (Ma)	um +0 ueg,						
Parameters: Medium Dense, Submerged Sand Image of K-values	k Evaluation From LDILE 2019 Toobside	Anual	-					-		 -
Range of k-value (pci) = 80 - 27.0 Image of k-30 is (pci) = Image of k-30 is (pci)		1								
Med Dense range of M60 k (pc) Image of M80 k (pc) Image of M80 Ima										
11 8 27 7										
30 27 V Interpolate for 26 bpf for this layer: 23.0 P-V Curve Type: Image: Constraint of this layer: Image: Constraint of this layer: <thimage: constraintof="" layer:<="" th="" this=""> Image</thimage:>										
Interpolate for 26 bpf for this layer: 23.0 P-Y Curve Type: I										
Sand (Reese) Augerable Weathered Bedrock Top Depth Bottom Top Elev. Bottom SPT Layer Rock Type Top Depth Bottom Top Elev. Bottom SPT Layer 2 Weathered Dolomite 17 18 63.04 62.94 50/1" Total Unit Wt (pcf): 165-175 GDM Table 400-5 Use 155 pcf Qu based on SPT Results per GDM 404.3 157 Average of Tested Values for the project. Image: Colspan="2">Image: Colspan="2" Qu based on SPT Results per GDM 404.3 Image: Colspan="2">Image: Colspan="2" Ny52 = Colspan="2">Colspan="2" Ny52 = Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Qu (psi) Elev. Image: Colspan="2" <			D V Current	-						
Augerable Weathered Bedrock Top Depth Bottom (t) Top Elev. (t) Bottom (t) SPT Elev. (t) Bestom Result SPT Elev. (t) SPT Result										
Layer Rock Type Top Depth (ft) Bottom Depth (ft) Top Elev. (ft) Bottom (ft) SPT Result Layer 2 Weathered Dolomite 17 18 630.4 629.4 50/1" Total Unit Wt (pcf) 165-175 GDM Table 400.5 Use 10 0 Qu based on SPT Results per GDM 404.3 157 Average of Tested Values for the project. 0 0 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= 75.2 0 0 0 Qu (ksf)= 0.092x(Nrate)90 (bpf) ER(%)= 75.2 0 0 0 0 Qu (ksf)= do.1 bpf 0 0 0 0 0 0 Qu (ksf)= d6.1 0	Say k (pci) =	23	Isand (Reese	1						
Layer Rock Type Top Depth (ft) Bottom Depth (ft) Top Elev. (ft) Bottom (ft) SPT Result Layer 2 Weathered Dolomite 17 18 630.4 629.4 50/1" Total Unit Wt (pcf) 165-175 GDM Table 400.5 Use 10 0 Qu based on SPT Results per GDM 404.3 157 Average of Tested Values for the project. 0 0 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= 75.2 0 0 0 Qu (ksf)= 0.092x(Nrate)90 (bpf) ER(%)= 75.2 0 0 0 0 Qu (ksf)= do.1 bpf 0 0 0 0 0 0 Qu (ksf)= d6.1 0										
Layer Rock Type Top Depth (ft) Bottom Depth (ft) Top Elev. (ft) Bottom (ft) SPT Result Layer 2 Weathered Dolomite 17 18 630.4 629.4 50/1" Total Unit Wt (pcf) 165-175 GDM Table 400.5 Use 10 0 Qu based on SPT Results per GDM 404.3 157 Average of Tested Values for the project. 0 0 Qu (ksf)=0.092x(Nrate)90 (bpf) ER(%)= 75.2 0 0 0 Qu (ksf)= 0.092x(Nrate)90 (bpf) ER(%)= 75.2 0 0 0 0 Qu (ksf)= do.1 bpf 0 0 0 0 0 0 Qu (ksf)= d6.1 0										
Layer Rock Type (ft) Depth (ft) (ft) Elev. (ft) Result Layer 2 Weatherd Dolomite 17 18 630.4 629.4 $50/1^{\circ}$ 60 Layer 2 Weatherd Dolomite 17 18 630.4 629.4 $50/1^{\circ}$ 60 629.4 $50/1^{\circ}$ 600 629.4 $50/1^{\circ}$ 600 75.2 Use 155 pcf 600 75.2 10 100	Augerable Weathered Bedrock									
Layer Rock Type (ft) Depth (ft) (ft) Elev. (ft) Result Layer 2 Weatherd Dolomite 17 18 630.4 629.4 $50/1^{\circ}$ 60 Layer 2 Weatherd Dolomite 17 18 630.4 629.4 $50/1^{\circ}$ 60 629.4 $50/1^{\circ}$ 600 629.4 $50/1^{\circ}$ 600 75.2 Use 155 pcf 600 75.2 10 100										
Layer 2 Weathered Dolomite 17 18 630.4 629.4 50/1" $<$ $<$ $<$ Depth Holowitor Flier Cass .1 0 .1 10 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1 0 .1					-					
Depth below bottom of Pier Cap: -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 <										
Total Unit Wt (pcf): 165-175 GDM Table 400-5 Use 155 pcf Qu based on SPT Results per GDM 404.3	Layer 2						50/1"			
157 Average of Tested Values for the project. Image: Constraint of the pro		-								
Qu based on SPT Results per GDM 404.3	Total Unit Wt (pcf):						pcf			
Qu (ksf)=0.092x(Nrate)90 (bpf) Image: Strate (Strate) (S			Average of T	ested Values f	or the proj	ect.				
ER(%)= 75.2 600 bpf <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
N75.2 =600bpfIII	Qu (ksf)=0.092x(Nrate)90 (bpf)									
N90 = 75.2/90 x 600 bpf = 501 bpf Image: Solid stress for the str	ER(%)=	75.2								
Qu (ksf) =46.1Image: Constraint of the straint			bpf							
Qu (psi) = 320 Image: Constraint of the stress (krm) is calculated by: Image: Constraint of the stress (krm) is calculated b	N90 = 75.2/90 x 600 bpf =	501	bpf							
Estimate E based on GDM Table 400-6 Ei (psi) Image: Constraint of the state of the stat	Qu (ksf) =	46.1								
Estimate E based on GDM Table 400-6 Ei (psi) Image: Constraint of the state of the stat	Qu (psi) =	320								
Qu (psi) Ei (psi) Image: margin and ma										
Qu (psi) Ei (psi) Interpolate	Estimate E based on GDM Table 400-6									
200 18000 Image: Sector S		Ei (psi)								
360 32000 Interpolate for 320 psi for this layer: 28526 Interpolate for 320 psi for this layer: 28526 Interpolate for 320 psi for this layer: Interpolate for 320 psi for 320 ps										
Interpolate for 320 psi for this layer: 28526 Image: Constraint of the straint of the straintof the straint of the straint of the straint of										
Use E (psi) 28,525 Image: Constraint of the strain at half max stress (krm) is calculated by: Image: Constraint of the strain at half max stress (krm) is calculated by: Image: Constraint of the stress (krm) is calculated by: Image: Cons										
If Strain at 28525 psi is 1%, then strain at lat max stress (krm) is calculated by: psi max <			1							
Half max stress = Qu/2 = 160 psi Image: Constraint of the stress in the stress i										
Half max stress = Qu/2 = 160 psi Image: Constraint of the stress in the stress i	If Strain at 28525 nsi is 1%, then strain at	half may stress (krm) is calculated by:								
krm = 1% x (160 psi / 28525 psi) = 0.0056 %			nsi					-		 -
krm (decimal format) = 0.000056 P-Y Curve Type, RQD =0%: Weak Rock (Reese)										
Weak Rock (Reese)			1 (0	1						
	krm = 1% x (160 psi / 28525 psi) =									
Redrock	krm = 1% x (160 psi / 28525 psi) =		P-Y Curve Ty							
I Redrock	krm = 1% x (160 psi / 28525 psi) =		P-Y Curve Ty							
	krm = 1% x (160 psi / 28525 psi) = krm (decimal format) =		P-Y Curve Ty							

						1	1	1	1	1
	Drilled Shaft Rock Sockets - Lateral Resistance									
Location:	B-002-0-23 - Pier 1 (West Pier)									
							-			
		Top Depth	Bottom	Top Elev.						
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)				
Layer 3	Dolomite - Strong	18	20.7	629.4	626.7	13	100	No Test		
	Highly Frac. to Frac.									
	•		m of Pier Cap:	: 0	2.7					
Total Unit Wt (pcf):	165-175	GDM Table 4	100-5	Use	155	pcf				
	157	Average of T	ested Values f	for the proj	ect.					
Qu (psi)=	FF10	Value for too	ted sample de	opportin P. C	02					
Qu (psi)=	5510	value for tes		серегить-о	02					
From GDM Table 400-6, say E (psi) =	450000									
If Strain at 450000 psi is 1%, then strain a	t half max stress (krm) is calculated by:									
Half max stress = Qu/2 =	2755	psi								
krm = 1% x (2755 psi / 450000 psi) =	0.0061	%								
krm (decimal format) =	0.000061	P-Y Curve Ty	pe:							
		Weak Rock (Reese)							
			_		_					
		Top Depth	Bottom	Top Elev.					Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 4	Dolomite - Strong	20.7	28	626.7	619.4	67	100	5510	151.6	at 21.2 f
	Frac. To Mod Frac.									
			m of Pier Cap:		10					
Total Unit Wt (pcf):		GDM Table 4		Use	155	pcf				
	151.6	Tested Value								
	157	-	ested Values f	for the proj	ect.					
Qu (psi)=	5510	Tested value	2							
From GDM Table 400-6, say E (psi) =	450000	1								
If Strain at 450000 psi is 1%, then strain a	t half max stress (krm) is calculated by:									
Half max stress = Qu/2 =		psi								
krm = 1% x (2755 psi / 450000 psi) =		%								
							1	-	1	
krm (decimal format) =	0.000061	P-Y Curve Ty	pe:							

Project Name:	Prop. Bridge Replacement - Bridge Street								
Project Number:									
-	KCH 2/12/2024		Reviewed by:	CPI 2/16/2	024		 		
Calculated by.	RCH 2/12/2024		Reviewed by.	CTT 2/10/2	1024				
Calcs:	Drilled Shaft Rock Sockets - Lateral Resistance						 		
	B-003-0-23 - Pier 2 (East Pier)						 		
Location		-							
GSE (ft):	647.3						 		
Long-Term GWT (ft):		annrovim	ate river elevat	ion					
Bottom of Pier Cap Elev. (ft):			based on exist		olans		 		
	02010	assumed)			biano				
Augerable Weathered Bedrock									
·····		Тор							
		Depth	Bottom	Top Elev.	Bottom	SPT			
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Result			
Layer 2	Weathered Dolomite	14.5	15.5	632.8	631.8	50/5"			
.,	Depth be	elow botto	m of Pier Cap:		-2.5				
Total Unit Wt (pcf):		GDM Tabl		Use	155	pcf			
	157		of Tested Value	s for the pr		P			
Qu based on SPT Results per GDM 404.3					-,				
Qu (ksf)=0.092x(Nrate)90 (bpf)									
ER(%)=	75.2								
N75.2 =	120	bpf							
N90 = 75.2/90 x 120 bpf =	100	bpf							
Qu (ksf) =	9.2								
Qu (psi) =	64								
Estimate E based on GDM Table 400-6									
Lowest Qu = 200 psi, indicated as E = 18,0	00 psi								
Use E (psi) =	18,000	1							
If Strain at 18000 psi is 1%, then strain at I	half max stress (krm) is calculated by:								
Half max stress = Qu/2 =		psi							
krm = 1% x (32 psi / 18000 psi) =	0.0018	%							
krm (decimal format) =	0.000018	P-Y Curve	Type, RQD =0%	%:					
		Weak Roo	ck (Reese)						
		1		1				1	

	Drilled Shaft Rock Sockets - Lateral Resistance									
Location:	B-003-0-23 - Pier 2 (East Pier)									
Bedrock										
		Тор								
		Depth	Bottom	Top Elev.	Bottom					
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 3	Dolomite - Strong	15.5	19.3	631.8	628	59	100	No Test		
	Frac. to Mod. Frac.									
	Depth b	elow botto	m of Pier Cap:	-2.5	1.3					
Total Unit Wt (pcf):	165-175	GDM Tabl	e 400-5	Use	155	pcf				
	157	Average o	f Tested Value	s for the pr	oject.					
Qu (psi)=	9408	Average o	f Tested Value	s for the pr	oject.					
From GDM Table 400-6, say E (psi) =	900000									
If Strain at 900000 psi is 1%, then strain at	t half max stress (krm) is calculated by:									
Half max stress = $Qu/2$ =		psi								
krm = 1% x (4704 psi / 900000 psi) =		%								
krm (decimal format) =		P-Y Curve	Type:							
	0.000032	Weak Roo							1	
		Тор								
		Depth	Bottom	Top Elev.	Bottom				Total Unit	
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 4	Dolomite - Strong	19.3	25.5	628	621.8	86	100	15570	158.6	at 20.1 ft
Layer 4	Frac. To Mod Frac.	15.5	23.5	028	021.0	80	100	15570	138.0	at 20.1 It
		alow hotto	m of Pier Cap:	1.3	7.5					
Total Unit Wt (pcf):	•	GDM Tabl		Use	155	pcf				
				USE	135	pci				
	158.6	Tested Va	lue							
0 (1-3)	15570	Tested	 							
Qu (psi)=	15570	Tested va	ue							
		-								
From GDM Table 400-6, say E (psi) =	1400000									
		-								
If Strain at 1400000 psi is 1%, then strain										
Half max stress = Qu/2 =	7785	psi								
krm = 1% x (7785 psi / 1400000 psi) =		%								
krm (decimal format) =	0.000056	P-Y Curve	Туре:						-	
		Weak Roo	k (Reese)							

		_		-					
	Prop. Bridge Replacement - Bridge Street								
Project Number:			D. 1. 11	0012412	0.2.4	L			
Calculated by:	KCH 2/9/2024		Reviewed by:	CPI 2/16/2	2024				
Calco	Drilled Shaft Rock Sockets - Lateral Resistance								
	B-004-0-23 - Forward (East) Abutment								
Location	B-004-0-23 - Torward (Last) Abutment								
GSE (ft):	645.7								
Long-Term GWT (ft):		approximat	e river elevatio	n					
Bottom of Pier Cap Elev. (ft):			ased on existin		ans				
Soil									
		Top Depth	Bottom	Top Elev.	Bottom				
Layer	Soil Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	N60	HP (tsf)	Qu (tsf)	
Layer 1	Medium Dense A-1-b	7	9	638.7	636.7	25	-	-	
			m of Pier Cap:	_	0				
Total Unit Wt (pcf):		GDM Table	400-4	Use	125	pcf			
Internal Angle of Friction Determination									
N160 (bpf)=CN*N60	AASHTO LRFD 10.4.6.2.4								
CN=0.77log(40/sigma-v'), with CN<2.0	0	<u>ь</u>							
CN at	8	ft							
sigma-v' (ksf): CN=	1.00	<2 50 USC:	1 2						
	1.2	<2 so use:	1.2						
N160 (bpf)= AASHTO LRFD Table 10.4.6.2.4-1	31								
N160	Mid-Range Phi (deg)								
30	37.5								
50	40.5								
N160	Phi (deg)								
31	37.6	use	37.5	deg					
GDM Table 400-3 phi Adjustment			-	-0					
A-1-b	+1.5								
Phi (deg) =	39	< ODOT Ma	ximum 46 deg,	ok					
k Evaluation From LPILE 2018 Technical N	1anual								
Parameters:	Medium Dense, Moist Sand								
Range of k-value (pci) =	13.0 - 40.0								
Med Dense range of N60	k (pci)								
11	13								
30	40								
Interpolate for 25 bpf for this layer:	33	P-Y Curve T							
Say k (pci) =	33	Sand (Rees	e)						
Augerable Weathered Bedrock									
		Top Depth		Top Elev.	Bottom	SPT			
Layer	Rock Type	(ft)	Depth (ft)	(ft)	Elev. (ft)	Result			
Layer 2	Weathered Dolomite	9	10.5	636.7	635.2	50/5"			
		1	m of Pier Cap:	0	1.5				
Total Unit Wt (pcf):		GDM Table		Use	155	pcf			
	157	Average of	Tested Values	ror the proj	ect.				
Qu based on SPT Results per GDM 404.3									
Qu (ksf)=0.092x(Nrate)90 (bpf)	75.2								
ER(%)=		hof							
N75.2 = N90 = 75.2/90 x 120 bpf =	120 100	bpf bpf							
Qu (ksf) =		nhi							
Qu (ksi) = Qu (psi) =									
Estimate E based on GDM Table 400-6									
Lowest Qu = 200 psi, indicated as $E = 18,0$	DOO psi								
Use E (psi) =		1							
03e E (psi) =							-		
1		1	1						
If Strain at 18000 nsi is 1% then strain at	half max stress (krm) is calculated by:								
If Strain at 18000 psi is 1%, then strain at Half max stress = Ou/2 =		psi							
Half max stress = Qu/2 =	32.0	psi %							
Half max stress = Qu/2 = krm = 1% x (32 psi / 18000 psi) =	32.0 0.0018	%	vpe, ROD =0%.						
Half max stress = Qu/2 =	32.0 0.0018	%	ype, RQD =0%:						

Calcs:	Drilled Shaft Rock Sockets - Lateral Resistance									
Location:	B-004-0-23 - Forward (East) Abutment									
Bedrock										
Layer	Soil Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)		
Layer 3	Dolomite - Strong	10.5	16.2	635.2	629.5	15	100	No Test		
Edjel 5	Highly Frac. to Frac.	10.5	10.2	035.2	025.5	15	100	NO TEST		
		below bottor	m of Pier Cap:	1.5	7.2					
Total Unit Wt (pcf):	-	GDM Table		Use	155	pcf	1			
	157		ested Values		ect.	P.4.				
Qu (psi)=	5560	Value for tes	sted sample d	eeper in B-(002					
From GDM Table 400-6, say E (psi) =	450000									
If Strain at 450000 psi is 1%, then strain a										
Half max stress = Qu/2 =		psi								
krm = 1% x (2780 psi / 450000 psi) =	0.0062	%								
krm (decimal format) =	0.000062	P-Y Curve Ty	/pe:							
		Weak Rock	(Reese)							
Layer	Soil Type	Top Depth (ft)	Bottom Depth (ft)	Top Elev. (ft)	Bottom Elev. (ft)	RQD (%)	Rec (%)	Qu (psi)	Total Unit Wt (pcf)	
Layer 4	Dolomite - Strong	16.2	20.5	629.5	625.2	40	100	5560	154.1	at 16.2 ft
	Slightly Frac.									
	Depth	below botton	m of Pier Cap:	7.2	11.5					
Total Unit Wt (pcf):	165-175	GDM Table 4	400-5	Use	155	pcf				
	154.1	Tested Value	e							
Qu (psi)=	5560	Tested value	9							
	450000									
From GDM Table 400-6, say E (psi) =	450000									
If Strain at 450000 psi is 1%, then strain a										
Half max stress = Qu/2 =		psi								
krm = 1% x (2780 psi / 450000 psi) =		%								
krm (decimal format) =	0.000062	P-Y Curve Ty	•							
		Weak Rock	(Reese)							

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Bridge Street

Between Water Street and Brierley Avenue Village of Pemberville, Wood County, Ohio

CT Consultants, Inc.

Prepared By: Date prepared: Katherine C. Hennicken, P.E. Friday, April 26, 2024

Katherine C. Hennicken, P.E. CT Consultants, Inc. 1915 N. 12th Street Toledo, Ohio 43604 419-214-5026 khennicken@ctconsultants.com

NO. OF BORINGS:

2

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill
1	B-001-0-23	Bridge Street	57+56	4	Lt	CME 550X	75	645.8	644.7	1.1 C
2	B-004-0-23	Bridge Street	59+66	4	Rt	CME 550X	75	645.7	644.6	1.1 C

Subgrade Analysis

V. 14.6

2/11/2022

#	Boring	Sample		nple pth	-	rade pth		dard tration	НР		Pl	hysic	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate and Replace (Item 204)		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchos)
1	В	SS-1	1.0	3.0	-0.1	1.9	20			NP	NP	NP	20	2	22	8	6	A-1-b	0	100					NO UNDERCUT
	001-0	SS-2B	3.0	4.0	1.9	2.9	13		3.75	22	17	5	38	11	49	14	12	A-4a	3						
	23	SS-3	4.0	5.5	2.9	4.4	6		1.5	23	15	8	45	7	52	20	10	A-4a	3						
		SS-4	5.5	7.0	4.4	5.9	8	6	2							17	10	A-4a	8						
2	В	SS-1	1.0	2.5	-0.1	1.4	24			NP	NP	NP	11	1	12	4	6	A-1-a	0	100					NO UNDERCUT
	004-0	SS-2	2.5	4.0	1.4	2.9	15			NP	NP	NP	19	3	22	8	6	A-1-b	0						
	23	SS-3	4.0	7.0	2.9	5.9	10		2.75	22	15	7	43	18	61	18	10	A-4a	5						
		ST-4B	7.0	7.5	5.9	6.4	25	10								14	6	A-1-b							

PID:

County-Route-Section: Bridge Street No. of Borings: 2

Geotechnical Consultant:CT Consultants, Inc.Prepared By:Katherine C. Hennicken, P.E.Date prepared:4/26/2024

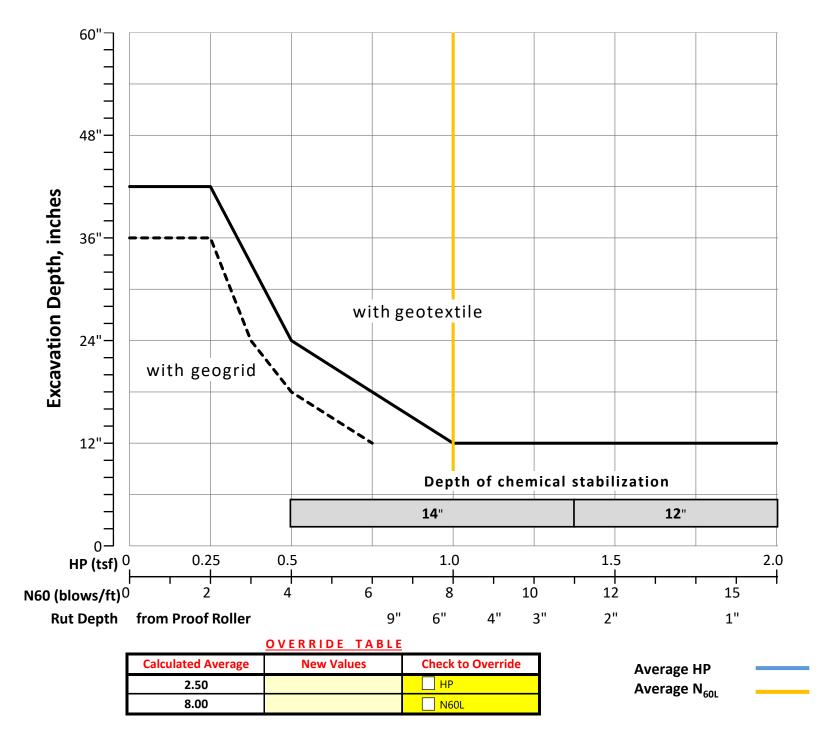
C	Chemical Stabilization Option	IS
320	Rubblize & Roll	No
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	14"

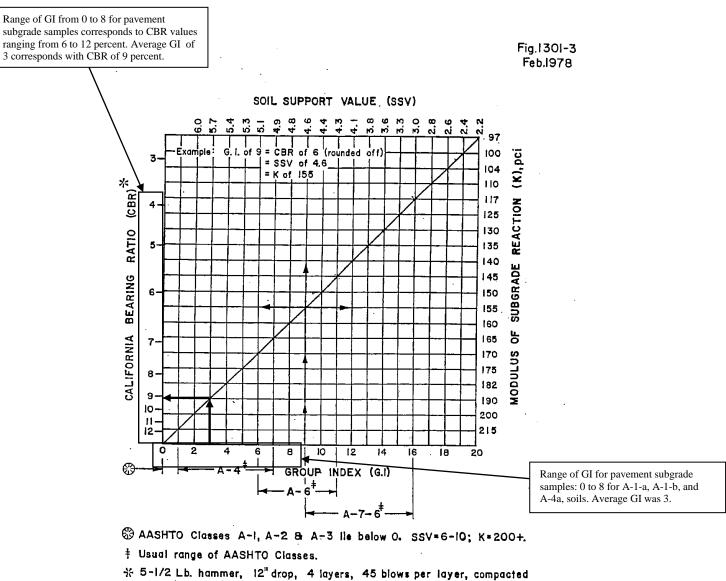
Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0''
Average(HP):	0''

Design CBR	9
---------------	---

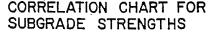
% Sampl	es within	6 feet of subg	rade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	38%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	13%	1 < HP ≤ 2	25%
N ₆₀ ≥ 20	38%	HP > 2	25%
M+	0%		
Rock	0%		
Unsuitable	0%		

Excavate and Replace at Surface								
Average								
Maximum	0''							
Minimum	0"							


% Proposed Subgrade Su	irface
Unstable & Unsuitable	0%
Unstable	0%
Unsuitable	0%


	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	15	8	2.50	22	16	7	29	7	36	13	8	3
Maximum	25	10	3.75	23	17	8	45	18	61	20	12	8
Minimum	6	6	1.50	22	15	5	11	1	12	4	6	0

					Class	ificat	ion C	ount	s by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	1	3	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	8
Percent	0%	13%	38%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%		100%								0%								100%
Surface Class Count	0	1	2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	4
Surface Class Percent	0%	25%	50%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	100%



Bridge Street over Middle Branch Portage River

at optimum moisture as determined by AASHTO T-99.

Based on the subgrade analysis, a design CBR value of 9 percent was determined for the project. It should be noted that the CBR determination by the subgrade analysis spreadsheet is based on the **average** Group Index of all the evaluated samples, which was 3. Group indices for the evaluated samples ranged from 0 to 8, which would correlate with a CBR value of 6 to 12 percent. Based on the average design value calculations from the subgrade analysis spreadsheet, it does not appear to be unconservative to use the spreadsheet design CBR value of 9 percent for new pavement sections throughout the project area.

APPENDIX B

Geotechnical Engineering Design Checklists

I. Geotechnical Design Checklists

Project: Bridge Street Bridge

PID:

PDP Path: Review Stage: Final

Checklist	Included in This Submission
II. Reconnaissance and Planning	\checkmark
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	\checkmark
IV. A. Foundations of Structures	\checkmark
IV. B. Retaining Wall	
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Geotechnical Profile	√
VI. D. Geotechnical Reports	\checkmark

II. Reconnaissance and Planning Checklist

C-R-S:	Bridge Street Bridge	0 DI	Reviewer:	IJH	Date:	9/19/2024
Poconr	naissance		(Y/N/X)	Notes:		
		CE have the	(1/10/7)	Plans to be pre	parad by othe	rc
1	Based on Section 302.1 in the So necessary plans been developed areas prior to the commenceme	in the following	x	Plans to be pre	pared by othe	15.
	subsurface exploration reconna					
	Roadway plans					
	Structures plans					
	Geohazards plans					
2	Have the resources listed in Sec the SGE been reviewed as part of		Y			
	reconnaissance?					
3	Have all the features listed in Se					
	the SGE been observed and eva field reconnaissance?	luated during the	Y			
4	If notable features were discove	ered in the field				
	reconnaissance, were the GPS c	oordinates of	Х			
	these features recorded?					
				.		
	ng - General		(Y/N/X)	Notes:		
5	In planning the geotechnical exp					
	program for the project, have the	-	v			
	geologic conditions, the propose		Y			
	historic subsurface exploration v considered?	work been				
6	Has the ODOT Transportation In	formation				
0	Mapping System (TIMS) been ad					
	available historic boring informa		Y			
	inventoried geohazards?					
7	Have the borings been located t	o develop the				
-	maximum subsurface information					
	minimum number of borings, ut	-	Y			
	geotechnical explorations to the	-				
	possible?					
8	Have the topography, geologic of	origin of				
	materials, surface manifestatior	n of soil				
	conditions, and any other specia	al design	Y			
	considerations been utilized in c	letermining the				
	spacing and depth of borings?					
9	Have the borings been located s	•				
	adequate overhead clearance for					
	equipment, clearance of underg					
	minimize damage to private pro	• •	Y			
	minimize disruption of traffic, w					
	compromising the quality of the	exploration?				

II. Reconnaissance and Planning Checklist

Planni	ng - General	(Y/N/X)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	Y	Included with proposal.
	The schedule of borings should present the follow	ving	
	information for each boring:	Y	
a b		x	Station and offset were not available during planning.
С	 estimated amount of rock and soil, including the total for each for the entire program. 	Y	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, soundings, test pits, etc.) been identified?	(Y/N/X) y	Notes.
12	Has each exploration been assigned a unique identification number, in the following format X-ZZZ-W-YY, as per Section 303.2 of the SGE?	Y	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned identification numbers according to Section 303.2 of the SGE?	х	

II. Reconnaissance and Planning Checklist

Planni	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,		The borings were conducted following ODOT
	have the location, depth, and sampling	Y	Type E1 standards for a bridge, with sampling
	requirements for the following boring types	r	performed in the upper 6 feet as an ODOT Type
	been determined for the project?		A Roadway Boring. To gather comprehensive
	Check all boring types utilized for this project:		subsurface data for the scour analysis,
	Existing Subgrades (Type A)	\checkmark	continuous sampling was extended to
	Roadway Borings (Type B)		encounter bedrock.
	Embankment Foundations (Type B1)		
	Cut Sections (Type B2)		
	Sidehill Cut Sections (Type B3)		
	Sidehill Cut-Fill Sections (Type B4)		
	Sidehill Fill Sections on Unstable Slopes (Type		
	B5)		
	Geohazard Borings (Type C)		
	Lakes, Ponds, and Low-Lying Areas (Type C1)		
	Peat Deposits, Compressible Soils, and Low		
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and Reclaimed		
	Surface Mines (Type C3)		
	Underground Mines (C4)		
	Landslides (Type C5)		
	Rock Slope (Type C6)		
	Karst (Type C7)		
	Proposed Underground Utilities (Type D)		
	Structure Borings (Type E)		
	Bridges (Type E1)	\checkmark	
	Culverts (Type E2 a,b,c)		
	Retaining Walls (Type E3 a and b)		
	Noise Barrier (Type E4)		
	CCTV & High Mast Lighting Towers		
	(Type E5)		
	Buildings and Salt Domes (Type E6)		

III.C. Subgrade Checklist

C-R-S: Bridge Street Brid	lge PIC) :	0	Reviewer:		IJH	Date:	9/19/2024
Use this Checkli	-			-				
If you do not have	e any subgra	ide wol	rk on the		1		fill out this	checklist.
bubgrade				(Y/N/X)	Notes	:		
1 Has the subsurface ex characterized the soil Section 600?	•	•	•	Y				
 a. Has each sample been inspected for the pro- moisture content be sample? 	esence of gy	psum?	Has a	Y				
 b. Has mechanical class Liquid Limit (LL), and done on at least two within six feet of the 	l gradation t samples fro	esting) om eacl	been h boring	Y				
 c. Has the sulfate content from each boring wing subgrade been detendeter 1122, Determining S 	thin 3 feet o rmined, per	f the p Supple	roposed ment	Y				
d. Has the sulfate contr exhibit gypsum cryst		•		х	No gy	psum obs	erved in sam	ples.
e. Have A-2-5, A-4b, A- within the top 3 feet been mechanically c	t of the prop			Х	None	present.		
2 If soils classified as A-2 or A-8b, or having a LL proposed subgrade (g plans specify that thes removed and replaced	.>65, are pre eotechnical se materials	esent at profile) need to	t the), do the o be	х	None	present.		
 a. If these materials are replaced, have the s lateral limits for the provided? 	tation limits	, depth	, and	х				
3 If there is any rock, sh proposed subgrade (C specify the removal of	&MS 204.05	5), do tł		х		•		below anticipated val not required.
a. If removal of any roo required, have the s lateral limits for the material at proposed	tation limits, planned ren	, depth noval o	f the					

III.C. Subgrade Checklist

Subgra	nde	(Y/N/X)	Notes:
4	In accordance with GDM Section 600, do the SPT $(N_{60})/HP$ values and existing moisture contents for the proposed subgrade soils indicate the need for subgrade stabilization?	N	
a.	If removal and replacement is applicable, has the detail of subgrade removal been shown on the plans, including depth of removal, station limits, lateral extent, replacement material, and plan notes (Item 204 - Subgrade Compaction and Proof Rolling)?	Y	Removal and replacement is not anticipated. Plans to be prepared by others.
b.	 If chemical stabilization is applicable, has the detail of this treatment been shown on the plans, including depth, percentage of chemical, station limits, lateral extent, and plan notes? 	N	Chemical stabilization not anticipated to be economical. Plans to be prepared by others.
	Indicate type of chemcial stabilization specified:		
	cement stabilization		
	lime stabilization		4
5	If removal and replacement has been specified, do the plans include Plan Note G121 from L&D3?	х	
6	If drainage or groundwater is an issue with the proposed subgrade, has an appropriate drainage system (e.g., pipe, underdrains) been provided?	х	Plans to be prepared by others.
7	Has an appropriate quantity of Proof Rolling (C&MS 204.06) and has Plan Note G111 from L&D3 been included in the plans?	х	Plans to be prepared by others.
8	Has a design CBR value been provided?	Y	

C-R-S	Bridge Street Bridge PID: 0	Reviewer	:	Date:	9/19/2024
	Use this Checklist in conjunction with the bridge	-			
lj	f you do not have such a foundation or structure o	on the proje	ct, you do not h	ave to fill out	this checklist.
Soil an	d Bedrock Strength Data	(Y/N/X)	Notes:		
1	Has the shear strength of the foundation soils	Y			
	been determined?	ř			
	Check method used:				
	laboratory shear tests				
	estimation from SPT or field tests	\checkmark			
2	Have sufficient soil shear strength,				
	consolidation, and other parameters been				
	determined so that the required allowable loads	Y			
	for the foundation/structure can be designed?				
3	Has the shear strength of the foundation	Y	1		
	bedrock been determined?	•	4		
	Check method used:				
	laboratory shear tests	\checkmark			
	other (describe other methods)				
Spread	l Footings	(Y/N/X)	Notes:		
4	Are there spread footings on the project? If no, go to Question 11	Ν			
5	Have the recommended bottom of footing				
-	elevation and reason for this recommendation				
	been provided?				
a.					
	elevation taken scour from streams or other				
	water flow into account?				
6	Were representative sections analyzed for the				
	entire length of the structure for the following:				
a.	5				
b.	0				
<u> </u>					
d.			-		
e.			-		
7	Has the need for a shear key been evaluated?				
a.					
	the plans?				
8	If special conditions exist (e.g. geometry, sloping				
	rock, varying soil conditions), was the bottom of				
	footing "stepped" to accommodate them?				
9	Have the Service I and Maximum Strength Limit				
	States for bearing pressure on soil or rock been				
	provided?				

Spread	Footings	(Y/N/X)	Notes:
10	If weak soil is present at the proposed	· · ·	
	foundation level, has the removal / treatment of		
	this soil been developed and included in the		
	plans?		
a.	Have the procedure and quantities related to		
	this removal / treatment been included in the		
	plans?		
Pile Str	ructures	(Y/N/X)	Notes:
11	Are there piles on the project?	Ν	
	If no, go to Question 17		
12	Has an appropriate pile type been selected?		
	Check the type selected:		
	H-pile (driven)		
	H-pile (prebored)		
	Cast In-place Reinforced Concrete Pipe		
	Micropile		
	Continuous Flight Auger (CFA)		
	other (describe other types)		
13	Have the estimated pile length or tip elevation		
	and section (diameter) based on either the		
	Ultimate Bearing Value (UBV) or the depth to		
	top of bedrock been specified? Indicate method		
	used.		
14	If scour is predicted, has pile resistance in the		
	scour zone been neglected?		
15	Has a wave equation drivability analysis been		
	performed as per BDM 305.3.1.2 to determine		
	whether the pile can be driven to either the		
	UBV, the pile tip elevation, or refusal on bedrock		
	without overstressing the pile?		
16	If required for design, have sufficient soil		
10	parameters been provided and calculations		
	performed to evaluate the:		
a.			1
a.	settlement of the piles?		
b.	•		
	contributing soil layer and maximum deflection		
	of the piles?		
C.			
	embankment or compressible soil layers, as		
	per BDM 305.3.2.2?		
d.	·		
	from soft foundation soils?		

Pile St	ructures	(Y/N/X)	Notes:
17	If piles are to be driven to strong bedrock (Q _u >7.5 ksi) or through very dense granular soils or overburden containing boulders, have "pile points" been recommended in order to protect the tips of the steel piling, as per BDM 305.3.5.6?	х	
18	If subsurface obstacles exist, has preboring been recommended to avoid these obstructions?	х	
19	If piles will be driven through 15 feet or more of new embankment, has preboring been specified as per BDM 305.3.5.7?	х	

Drilled	Shafts	(Y/N/X)	Notes:
20	Are there drilled shafts on the project?	(1111)	
20	If no, go to the next checklist.	Y	
21	Have the drilled shaft diameter and embedment		
	length been specified?	Y	
22	Have the recommended drilled shaft diameter		
	and embedment been developed based on the		
	nominal unit side resistance and nominal unit tip	Y	
	resistance for vertical loading situations?		
23	For shafts undergoing lateral loading, have the	Y	Lateral load-deflection parameters provided to
	following been determined:	I	structural engineer.
a	. total factored lateral shear?		
b			
С	. maximum deflection?		
d	0		
24	If a bedrock socket is required, has a minimum		Yes, then deeper embedment required for
	rock socket length equal to 1.5 times the rock	Y	shallow bedrock considerations.
	socket diameter been used, as per BDM 305.4.2?	•	
25	Generally, bedrock sockets are 6" smaller in		
	diameter than the soil embedment section of	Y	
	the drilled shaft. Has this factor been accounted		
20	for in the drilled shaft design?		Coour has hear we also that in data waining shaft
26	If scour is predicted, has shaft resistance in the	\checkmark	Scour has been neglected in determining shaft
27	scour zone been neglected?		capacities.
27	Has the site been assessed for groundwater influence?	Y	
	. If yes, and if artesian flow is a potential		
u	concern, does the design address control of	х	
	groundwater flow during construction?	X	
28	Have all the proper items been included in the		Plans to be prepared by others.
	plans for integrity testing?	Х	
29	If special construction features (e.g., slurry,		Plans to be prepared by others. Provided
	casing, load tests) are required, have all the	х	recommendations in geotechnical report.
	proper items been included in the plans?		
30	If necessary, have wet construction methods	V	
	been specified?	Y	
Gener	al	(Y/N/X)	Notes:
31	Has the need for load testing of the foundations	х	
	been evaluated?	Λ	
a	, , , , , , , , , , , , , , , , , , , ,		
	testing been included in the plans?		

VI.B. Geotechnical Reports

C-R-S:	Bridge Street Bridge PID: 0	Reviewer:	Date: 5/30/2025
			· · · · · · · · · · · · · · · · · · ·
Genera	al	(Y/N/X)	Notes:
1	Has an electronic copy of all geotechnical		
	submissions been provided to the District	Y	
	Geotechnical Engineer (DGE)?		
2	Has the first complete version of a geotechnical		
	report being submitted been labeled as 'Draft'?	Y	
3	Subsequent to ODOT's review and approval, has		
	the complete version of the revised geotechnical	У	
	report being submitted been labeled 'Final'?	у	
4	Has the boring data been submitted in a native		
	format that is DIGGS (Data Interchange for		
	Geotechnical and Geoenvironmental)	У	
	compatable? gINT files meet this demand?		
<u> </u>			
5	Does the report cover format follow ODOT's		
	Brand and Identity Guidelines Report Standards	Y	
	found at http://www.dot.state.		
	oh.us/brand/Pages/default.aspx ?		
6	Have all geotechnical reports being submitted	v	
	been titled correctly as prescribed in Section 706.1 of the SGE?	Y	
Report		(Y/N/X)	Notes:
7	Do all geotechnical reports being submitted	(1/14/7)	
,	contain the following:		
a.			
	706.2 of the SGE?	Y	
b.			
	of the SGE?	Y	
C.			
	the Project," as described in Section 706.4 of	Y	
	the SGE?		
d.	a section titled "Exploration," as described in	N/	
	Section 706.5 of the SGE?	Y	
e.	a section titled "Findings," as described in	v	
	Section 706.6 of the SGE?	Y	
f.	a section titled "Analyses and		
	Recommendations," as described in Section	Y	
	706.7 of the SGE?		
Appen		(Y/N/X)	Notes:
8	Do all geotechnical reports being submitted		
	contain all applicable Appendices as described in	Y	
	Section 706.8 of the SGE?		
9	Do the Appendices present a site Boring Plan		
	showing all boring locations as described in	Y	
	Section 706.8.1 of the SGE?		

VI.B. Geotechnical Reports

Apper	Appendices		Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 706.8.2 of the SGE?	Y	
11	Do the Appendices include reports of undisturbed test data as described in Section 706.8.3 of the SGE?	Y	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 706.8.4 of the SGE?	Y	