Interchange Modification Study ## **Appendix** February 2012 ## Appendix A ## Crash Analysis ### **Frequency of Crashes by Hour** #### Frequency of Crashes by Contributing Factor 1 #### **Frequency of Crashes by Hour** #### Frequency of Crashes by Contributing Factor 1 ## Appendix B ### **Certified Traffic** ### INTER-OFFICE COMMUNICATION TO: Joe DeFuria, District 4 **FROM:** Becky Salak, Transportation Planner, Office of Statewide Planning and Research SUBJECT: SUM-18-Corridor Study, PID 77749 **DATE:** May 9, 2011 In reply to a request dated April 12, 2011, attached is a set of plates showing 2015 and 2035 A.M. and P.M. DHV turning movement volumes for the subject project. Please use the following design designations and truck factors: | | IR-77 | | | SR-18 | | | |-----------|----------|----------|----------|---------------------|---------|---------------| | | north of | north of | south of | south of Cleveland- | east of | east of | | | SR-18 | SR-21 | SR-21 | Massillon Rd | IR-77 | Springside Dr | | 2015 ADT: | 60890 | 83870 | 52640 | 66140 | 41640 | 32940 | | 2035 ADT: | 74620 | 101620 | 60320 | 73820 | 41640 | 32940 | | K: | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 | | D: | 0.65 | 0.61 | 0.55 | 0.54 | 0.52 | 0.53 | | T24: | 0.11 | 0.11 | 0.10 | 0.09 | 0.03 | 0.03 | | A.M. TD: | 0.06 | 0.06 | 0.06 | 0.05 | 0.02 | 0.02 | | P.M. TD: | 0.06 | 0.06 | 0.06 | 0.05 | 0.02 | 0.02 | | | | | SR-18 | | | SR-21 | |-----------|---------|-----------------|------------------|-------------|----------------|----------| | | west of | west of Crystal | west of Heritage | west of N. | west of Medina | south of | | | IR-77 | Lake Dr | Woods Dr | Hametown Rd | Line Rd | IR-77 | | 2015 ADT: | 51010 | 36780 | 34900 | 27320 | 27230 | 39830 | | 2035 ADT: | 62640 | 49060 | 45760 | 35830 | 35520 | 51500 | | K: | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.11 | | D: | 0.52 | 0.58 | 0.58 | 0.53 | 0.50 | 0.65 | | T24: | 0.05 | 0.05 | 0.06 | 0.08 | 0.09 | 0.10 | | A.M. TD: | 0.03 | 0.03 | 0.04 | 0.05 | 0.05 | 0.06 | | P.M. TD: | 0.03 | 0.03 | 0.04 | 0.05 | 0.05 | 0.06 | #### IR-77 & SR-18 Ramps | | SB-WB | <u>SB-EB</u> | <u>NB-EB</u> | <u>NB-WB</u> | EB-SB | <u>EB-NB</u> | <u>WB-NB</u> | WB-SB | |----------|-------|--------------|--------------|--------------|-------|--------------|--------------|-------| | A.M. TD: | 0.07 | 0.08 | 0.03 | 0.12 | 0.07 | 0.04 | 0.03 | 0.04 | | P.M. TD: | 0.02 | 0.04 | 0.02 | 0.07 | 0.07 | 0.03 | 0.02 | 0.04 | #### IR-77 & SR-21 Ramps | | 77 SB to 21 SB | 77 NB to 21 SB | 21 NB to 77 SB | 21 NB to 77 NB | |----------|----------------|----------------|----------------|----------------| | A.M. TD: | 0.03 | 0.02 | 0.03 | 0.06 | | P.M. TD: | 0.03 | 0.02 | 0.02 | 0.06 | #### IR-77 & Cleveland-Massillon Rd Ramps | | 77 NB to Clev-Mass Rd | Clev-Mass Rd to 77 SB | |----------|-----------------------|-----------------------| | A.M. TD: | 0.04 | 0.03 | | P.M. TD: | 0.03 | 0.02 | | | | | #### All other locations A.M. TD: 0.02 P.M. TD: 0.02 If you have any questions, please contact me at (614) 644-8195. c: M. Byram, OSPR – G. Giaimo, OSPR – File RELOCATE MONTROSE WEST TO HERITAGE WOODS PLATE 1 OF 2 2015/2035 A.M. DHV With Heritage Woods Development and Relocation of Montrose West Option 1 Intersection Configuration RELOCATE MONTROSE WEST 2015/2035 A.M. DHV OHIO DEPARTMENT OF TRANSPORTATION OFFICE OF STATEWIDE PLANNING & RESEARCH MAY 9, 2011 NOT TO SCALE RELOCATE MONTROSE WEST TO HERITAGE WOODS PLATE 2 OF 2 2015/2035 P.M. DHV With Heritage Woods Development and Relocation of Montrose West Option 1 Intersection Configuration Option 2 Intersection Configuration Option 3 Intersection Configuration | RELOCATE MONTROSE WEST | | | | | |---|--------------|--|--|--| | 2015/2035 P.M. DHV | | | | | | OHIO DEPARTMENT OF TRANSPORTATION | | | | | | OFFICE OF STATEWIDE PLANNING & RESEARCH | | | | | | MAY 9, 2011 | NOT TO SCALE | | | | ### 2035 AM Weave Volumes Weave 1 - I-77 Northbound from SR 21 to SR 18 % of CUBE volume on off-ramp to EB SR 18 that comes from I-77 = 1218/2827 = 43% 0.43*590 = 250 vehicles % of CUBE volumes on off-ramp to SR 21 that come from EB SR 18 on-ramp = 350/3247 = 11% 0.11 * 1760 = **190 vehicles** ### 2035 PM Weave Volumes Weave 1 – I-77 Northbound from SR 21 to SR 18 % of CUBE volume on off-ramp to EB SR 18 that comes from I-77 = 400/1878 = 21% 0.21 * 590 = 120 vehicles % of CUBE volumes on off-ramp to SR 21 that comes from EB SR 18 on-ramp = 1038/6099 = 17% 0.17 * 3430 = **580 vehicles** ## Appendix C # Freeway LOS Analysis | Phone:
E-mai I : | | Fax: | | |--|--|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 SB
North of Ramp to SR
2035 | 2 18 WB | | | | Flow Inputs and Ad | ljustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
t, fHV | 2910
0.90
808
6
0
Level
0.00
0.00
1.5
1.2
0.971
1.00 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | djustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | e Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1110
70.0
70.0
3
15.9
B | pc/h/l n
mi /h
mi /h
pc/mi /l n | | Phone:
E-mail: | | Fax: | | |--|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 PM Peak Hour I-77 SB North of Ramp to SF 2035 Corridor Study PID | R 18 WB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
it, fHV | 5150
0. 90
1431
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1965 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 3 Measured 70.0 0.0 0.0 0.0 0.0 Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | speed, S | 1965
70. 0
65. 5
3
30. 0 | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mai I : | | Fax: | | | | |---|---|---|--|------------------------|----------------------------| | | Di ver | ge Analysis_ | | | | | Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: | MK
Jurgess & Niplo
/6/2011
M Peak Hour
-77 SB
xit to SR 18 \ | e Inc | | | | | | Free | way Data | | | | | Type of analysis
Number of lanes in freewa
Free-flow speed on freewa
Volume on freeway | y
y | Di verç
3
70. 0
2910 | | mph
vph | | | | 0ff R | amp Data | | | | | Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/dec
Length of second accel/de | | Ri ght
1
35. 0
200
500 | | mph
vph
ft
ft | | | | Adjacent Ramp | Data (if or | ne exists |) | | | Does adjacent ramp exist? Volume on adjacent ramp Position of adjacent ramp Type of adjacent ramp Distance to adjacent ramp | | No | | vph
ft | | | Conve | rsion to pc/h | Under Base | Condi ti o | ns | | | Junction Components Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type:
Grade Length Trucks and buses PCE, ET Recreational vehicle PCE, Heavy vehicle adjustment, Driver population factor, Flow rate, vp | ER
fHV | Freeway 2910 0.90 808 6 0 Level 0.00 % 0.00 mi 1.5 1.2 0.971 1.00 3330 | Ramp 200 0.90 56 7 0 Level 0.00 0.00 1.5 1.2 0.966 1.00 230 | %
mi | Adjacent Ramp vph v % % mi | | | | | | | | | L =
EQ | • | ation 25-8 (| _ | | | | P =
FD
V = V | 0.666 Using
+ (v - v) P | - | 5
pc/h | | | | V = V | + (v - v) P | = 2295 | pc/n | | | _Capacity Checks__ | | | 000.1.0 | | |--|-----------------|-------------------|------------------| | V = V | Actual
3330 | Maxi mum
7200 | LOS F?
No | | Fi F
V = V - V
FO F R | 3100 | 7200 | No | | ro r k
V
R | 230 | 2000 | No | | v v
3 or av34 | 1035 pc/h | (Equation 25-15 | or 25-16) | | Is v v > 2700 p | oc/h? | No | | | Is $v v > 1.5 v$ | | No | | | 3 or av34 1
If yes, v = 2295
12A | 2 | (Equation 25-18 |) | | FI ow | | erge Influence Ar | ea | | Actu
V 2295 | | Desi rabl e
) | Violation?
No | | Level of | Service Determ | nination (if not | F) | | Density, D= | 4. 252 + 0. 008 | 36 v - 0.009 L | = 19.5 pc/mi/ln | | Level of service for ramp- | freeway juncti | | uence B | | | Speed Estim | nati on | | | Intermediate speed variabl | e, | D = 0.449 | | | Space mean speed in ramp i | nfluence area, | _ | mph | | Space mean speed in outer | l anes, | S = 76.7 | mph | | Space mean speed for all v | ehi cl es | 0
S = 62.3 | mph | | Phone:
E-mail: | | Fax: | | | | |---|---|--|---|------------------------|--------------------| | | Di ver | ge Analysis_ | | | | | Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: Summit 18 | Exit to SR 18
2035
Corridor Study | WB
PID 77749 | | | | | | Free | way bata | | | | | Type of analysis Number of lanes in freew Free-flow speed on freew Volume on freeway | ay
ay | Di verç
3
70. 0
5150 | | mph
vph | | | | Off R | amp Data | | | | | Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/de
Length of second accel/d | | Ri ght
1
35.0
450
500 | | mph
vph
ft
ft | | | | | Data (if or | na avists | ` | | | Does adjacent ramp exist
Volume on adjacent ramp
Position of adjacent ram
Type of adjacent ramp
Distance to adjacent ram | ?
p | No No | ic carsts | ∨ph
ft | | | Conv | ersion to pc/h | Under Base | Condi ti o | ns | | | Junction Components | | Freeway | Ramp | | Adjacent
Ramp | | Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, ET Recreational vehicle PCE Heavy vehicle adjustment Driver population factor Flow rate, vp | , ER
, f HV | 5150
0. 90
1431
6
0
Level
0. 00 %
0. 00 mi
1. 5
1. 2
0. 971
1. 00
5894 | 450
0.90
125
2
0
Level
0.00
0.00
1.5
1.2
0.990
1.00
505 | %
mi | vph vph v % mi | | | _Estimation of | V12 Diverge | e Areas | | | | L = | | ation 25-8 d | | | | | EQ
P = | 0.589 Usi n | g Equation | 5 | | | | FD
V = V | + (v - v) P | = 3681 | pc/h | | | _Capacity Checks__ | V = V
Fi F | Actual
5894 | Maxi mum
7200 | LOS F?
No | |--|-----------------|------------------|------------------| | V = V - V | 5389 | 7200 | No | | FO F R | 505 | 2000 | No | | R
V V | 2213 pc/h | (Equation 25-15 | or 25-16) | | 3 or av34
Is v v > 2700 p | c/h? | No | | | 3 or av34
Is v v > 1.5 v | | No | | | 3 or av34 1
If yes, v = 3681
12A | 2 | (Equation 25-18 |) | | FI ow | Entering Dive | rge Influence Ar | ea | | Actu
v 3681
12 | | | Violation?
No | | | Service Determ | ination (if not | F) | | Density, D = | 4. 252 + 0. 008 | 6 v - 0.009 L | = 31.4 pc/mi/ln | | Level of service for ramp- | freeway juncti | on areas of infl | uence D | | | Speed Estim | ation | | | | | | | | Phone:
E-mail: | | Fax: | | |---|---|--|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 AM Peak Hour I-77 SB South of Exit to SI 2035 Corridor Study PID | R 18 WB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | E, ER
t, fHV | 2710
0. 90
753
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1034 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 3 Measured 70.0 0.0 0.0 0.0 0.0 Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1034
70. 0
70. 0
3
14. 8
B | pc/h/l n
mi /h
mi /h
pc/mi /l n | | Phone:
E-mail: | | Fax: | | |---|--|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 SB
South of Exit to SF
2035 | R 18 WB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 4700
0. 90
1306
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1793 | veh/h v % % mi pc/h/In | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 3 Measured 70.0 0.0 0.0 0.0 0.0 Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1793
70. 0
67. 9
3
26. 4
D | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |---|---|--|--| | | Operational Analy: | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Inc 9/6/2011 AM Peak Hour I-77 SB WB SR 18 On-Ramp Vo 2035 Corridor Study PID | ol/Lane DBL | | | | Flow Inputs and A | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 360
0. 90
100
4
0
Level
0. 00
0. 00
1. 5
1. 2
0. 980
1. 00
204 | veh/h v % % mi pc/h/In | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 2 Measured 55.0 0.0 0.0 4.5 55.0 Urban Freeway | ft
ft i nterchange/mi mi /h | | | LOS and Performan | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 204
55. 0
55. 0
2
3. 7
A | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |--|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I -77 SB
WB SR 18 On-Ramp Vo
2035 | ol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor | T
E, ER
t, fHV | 1300
0. 90
361
4
0
Level
0. 00
0. 00
1. 5
1. 2
0. 980
1. 00
737 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft i nterchange/mi mi /h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 737
55. 0
55. 0
2
13. 4
B | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | Fax | x : | | | | |---|---|--|---|---|------------------| | Operati | onal Anal | ysi s | | | | | Analyst: RMK Agency/Co.: Burgess & Nip Date Performed: 9/6/2011 Analysis Time Period: AM Peak Hour Freeway/Dir of Travel: I-77 SB Weaving Location: WB SR 18 On to Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study | o EB SR ´ | | | | | | l n | puts | | | | | | Freeway free-flow speed, SFF Weaving number of lanes, N Weaving segment length, L Terrain type Grade Length Weaving type Volume ratio, VR Weaving ratio, R | A
O. | | mph
ft
%
mi | ו | | | Conversion to pc/h | Under Ba | ase Cond | ditions | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | Non-Wea
V
o1
2530
0. 90
703
6
0
1. 5
1. 2
0. 971
1. 00
2895 | evi ng
V
02
0.90
0
0
1.5
1.2
1.000
1.00 | Weavi no
V
w1
180
0.90
50
4
0
1.5
1.2
0.980
1.00
204 | W2
180
0.90
50
8
0
1.5
1.2
0.962
1.00
208 | veh/h v % % pc/h | | Weaving and No | n-Weavi no | g Speeds | S | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit Maximum number of lanes, Nw (max) (Exi Type of operation is | Weavi no
0. 15
2. 20
0. 97
0. 80
0. 60
52. 48
24-7)
hi bi t 24- | (
(
(
(
(
(| Non-Weavir
0.0035
1.00
1.30
0.75
0.22
64.08
0.77
1.40
Jnconstrai | | | | Weaving Segment Speed, Densi | ty, Level | | | | / | | Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c | 62. 36
13. 26
B
8209 | mph
pc/mi/l
pc/h
pc/h | | | | Limitations on Weaving Segments_ | | | If Max Exce | eded See Note | |----------------------------|-----------|-------------|---------------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 412 | 2800 | а | | Average flow rate (pcphpl) | 826 | 2400 | b | | Volume ratio, VR | 0. 12 | 0. 35 | С | | Weaving ratio, R | 0. 50 | N/A | d | | Weaving Length (ft) | 840 | 2500 | е | | Notas | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | Fa | x: | | | | |---|--|--|---|---|------------------| | 0pe | rational Ana | l ysi s | | | | | Date Performed: 9/6/2011 Analysis Time Period: PM Peak H Freeway/Dir of Travel: I-77 SB | On to EB SR | | | | | | | Inputs | | | | | | Freeway free-flow speed, SFF Weaving number of lanes, N Weaving segment length, L Terrain type Grade Length Weaving type Volume ratio, VR Weaving ratio, R | 4
8
L
A
0 | 40
evel | mpl
ft
%
mi | ר | | | Conversion to | oc/h Under B | ase Cond | ditions | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | Non-We
V
01
4400
0.90
1222
6
0
1.5
1.2
0.971
1.00
5035 | V 02
0 0. 90
0 0
0 0
1. 5
1. 2
1. 000
1. 00 | Weavi no
V
w1
650
0.90
181
4
0
1.5
1.2
0.980
1.00
736 | W2
300
0.90
83
4
0
1.5
1.2
0.980
1.00
340 | veh/h v % % pc/h | | Weaving an | d Non-Weavin | g Speeds | 5 | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, S Number of lanes required for unconstrained operation, Nw (Exhi Maximum number of lanes, Nw (max) | oit 24-7) | -7) | Non-Weavi I
D. 0035
4. 00
1. 30
D. 75
D. 59
52. 70
1. 03
1. 40 | | | | Type of operation is | | | Jnconstrai | | | | Weaving Segment Speed, D Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate | 50. 50
30. 25
D
7843 | mph
pc/mi/l
pc/h
pc/h | | Capaci ty | <i>J</i> | ____Limitations on Weaving Segments_ | | | eded See Note | | |----------------------------|-----------|---------------|------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 1076 | 2800 | a | | Average flow rate (pcphpl) | 1527 | 2400 | b | | Volume ratio, VR | 0. 18 | 0. 35 | С | | Weaving ratio, R | 0. 32 | N/A | d | | Weaving Length (ft) | 840 | 2500 | е | | Notas | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and
some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | | Fax: | | |---|--|--|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 SB
EB SR 18 Off-Ramp \
2035 | /ol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 360
0. 90
100
8
0
Level
0. 00
0. 00
1. 5
1. 2
0. 962
1. 00
208 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft i nterchange/mi mi /h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 208
55. 0
55. 0
2
3. 8
A | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |--|-----------------------------------|---|---| | | Operational Analy | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 SB
EB SR 18 Off-Ramp | Vol/Lane DBL | | | | Flow Inputs and A | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
t, fHV | 600
0.90
167
4
0
Level
0.00
0.00
1.5
1.2
0.980
1.00
340 | veh/h v % % mi pc/h/I n | | | Speed Inputs and | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performan | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 340
55. 0
55. 0
2
6. 2
A | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mai I : | | Fax: | | |--|--|--|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 SB
South of Exit to SR
2035 | ? 18 EB | | | | Flow Inputs and Ad | ljustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
t, fHV | 2710
0.90
753
6
0
Level
0.00
0.00
1.5
1.2
0.971
1.00 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | djustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
J.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | e Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1034
70. 0
70. 0
3
14. 8
B | pc/h/l n
mi /h
mi /h
pc/mi /l n | | Phone:
E-mail: | | Fax: | | |--|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 PM Peak Hour I-77 SB South of Exit to SF 2035 Corridor Study PID | R 18 EB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
it, fHV | 5050
0. 90
1403
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1926 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | speed, S | 1926
70. 0
66. 2
3
29. 1
D | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |--|---|--|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 AM Peak Hour I-77 SB EB SR 18 On-Ramp Vo 2035 Corridor Study PID | ol/Lane DBL | | | | Flow Inputs and A | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
CE, ER
nt, fHV | 3500
0. 90
972
7
0
Level
0. 00
0. 00
1. 5
1. 2
0. 966
1. 00
2012 | veh/h v % % mi pc/h/l n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
stment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performan | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | speed, S | 2012
55. 0
54. 1
2
37. 2
E | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | |
---|--|--|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I - 77 SB
EB SR 18 On - Ramp Vo
2035 | ol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 2860
0. 90
794
7
0
Level
0. 00
0. 00
1. 5
1. 2
0. 966
1. 00
1644 | veh/h v % % mi pc/h/In | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft i nterchange/mi mi /h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1644
55. 0
55. 0
2
29. 9
D | pc/h/ln
mi/h
mi/h
pc/mi/ln | HCS+: Freeway Weaving Release 5.5 Phone: E-mail: Fax: _____Operational Analysis_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 2/21/2012 Analysis Time Period: AM Peak Hour Freeway/Dir of Travel: I-77 SB Weaving Location: EB SR 18 On to SR 21 Off Jurisdiction: Weaving ratio, R Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 _____Inputs_____ Freeway free-flow speed, SFF 70 mph Weaving number of lanes, N 4 Weaving segment length, L 2300 ft Terrain type Level % Grade Length mi Weaving type В Volume ratio, VR 0.70 _____Conversion to pc/h Under Base Conditions_____ 0.49 | | Non-Weaving | | Weaving | | | |----------------------------------|-------------|-------|---------|-------|-------| | | V | V | V | V | | | | 01 | 02 | w1 | w2 | | | Volume, V | 1140 | 190 | 1570 | 1560 | veh/h | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | | | Peak 15-min volume, v15 | 317 | 53 | 436 | 433 | V | | Trucks and buses | 6 | 3 | 6 | 3 | 용 | | Recreational vehicles | 0 | 0 | 0 | 0 | % | | Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | | | Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | | | Heavy vehicle adjustment, fHV | 0.971 | 0.985 | 0.971 | 0.985 | | | Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow rate, v | 1304 | 214 | 1796 | 1759 | pc/h | ______Weaving and Non-Weaving Speeds_____ | | Weaving | Non-Weaving | |------------------------------------|---------|-------------| | a (Exhibit 24-6) | 0.08 | 0.0020 | | b (Exhibit 24-6) | 2.20 | 6.00 | | c (Exhibit 24-6) | 0.70 | 1.00 | | d (Exhibit 24-6) | 0.50 | 0.50 | | Weaving intensity factor, Wi | 0.80 | 1.28 | | Weaving and non-weaving speeds, Si | 48.37 | 41.31 | Number of lanes required for | unconstrained operation, | Nw | (Exhibit 24-7) | | 3.23 | |--------------------------|----|----------------|-------|---------------| | Maximum number of lanes, | Nw | (max) (Exhibit | 24-7) | 3.50 | | Type of operation is | | | | Unconstrained | _______Weaving Segment Speed, Density, Level of Service and Capacity______ | Weaving segment speed, S | 46.02 | mph | |--------------------------------------|-------|----------| | Weaving segment density, D | 27.56 | pc/mi/ln | | Level of service, LOS | C | | | Capacity of base condition, cb | 5754 | pc/h | | Capacity as a 15-minute flow rate, c | 5586 | pc/h | | Capacity as a full-hour volume, ch | 5027 | pc/h | _____Limitations on Weaving Segments______ | | | If Max Exce | eded See Note | |----------------------------|----------|-------------|---------------| | | Analyzed | Maximum | Note | | Weaving flow rate, Vw | 3555 | 4000 | a | | Average flow rate (pcphpl) | 1268 | 2400 | b | | Volume ratio, VR | 0.70 | 0.80 | C | | Weaving ratio, R | 0.49 | N/A | d | | Weaving length (ft) | 2300 | 2500 | е | | Not og: | | | | ## Notes: - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. HCS+: Freeway Weaving Release 5.5 Phone: E-mail: Fax: _____Operational Analysis_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 2/21/2012 Analysis Time Period: PM Peak Hour Freeway/Dir of Travel: I-77 SB Weaving Location: EB SR 18 On to SR 21 Off Jurisdiction: Weaving ratio, R Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 _____Inputs_____ Freeway free-flow speed, SFF 70 mph Weaving number of lanes, N 4 Weaving segment length, L 2300 ft Terrain type Level % Grade Length mi Weaving type В Volume ratio, VR 0.57 ______Conversion to pc/h Under Base Conditions_____ 0.23 | | Non-Weaving | | Weaving | | | |----------------------------------|-------------|-------|---------|-------|-------| | | V | V | V | V | | | | 01 | 02 | w1 | w2 | | | Volume, V | 2200 | 580 | 2850 | 850 | veh/h | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | | | Peak 15-min volume, v15 | 611 | 161 | 792 | 236 | V | | Trucks and buses | 6 | 3 | 3 | 6 | % | | Recreational vehicles | 0 | 0 | 0 | 0 | % | | Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | | | Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | | | Heavy vehicle adjustment, fHV | 0.971 | 0.985 | 0.985 | 0.971 | | | Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow rate, v | 2517 | 654 | 3214 | 972 | pc/h | ______Weaving and Non-Weaving Speeds_____ | | Weaving | Non-Weaving | |------------------------------------|---------|-------------| | a (Exhibit 24-6) | 0.08 | 0.0020 | | b (Exhibit 24-6) | 2.20 | 6.00 | | c (Exhibit 24-6) | 0.70 | 1.00 | | d (Exhibit 24-6) | 0.50 | 0.50 | | Weaving intensity factor, Wi | 0.87 | 1.14 | | Weaving and non-weaving speeds, Si | 47.14 | 42.98 | | Number of lanes required for | | | | unconstrained operation, | Nw | (Exhibit 24-7) | | 2.65 | |--------------------------|----|----------------|-------|---------------| | Maximum number of lanes, | Nw | (max) (Exhibit | 24-7) | 3.50 | | Type of operation is | | | | Unconstrained | _______Weaving Segment Speed, Density, Level of Service and Capacity______ | Weaving segment speed, S | 45.25 | mph | |--------------------------------------|-------|----------| | Weaving segment density, D | 40.64 | pc/mi/ln | | Level of service, LOS | E | | | Capacity of base condition, cb | 7030 | pc/h | | Capacity as a 15-minute flow rate, c | 6825 | pc/h | | Capacity as a full-hour volume, ch | 6142 | pc/h | _____Limitations on Weaving Segments______ | | | If Max Exce | eded See Note | |----------------------------|----------|-------------|---------------| | | Analyzed | Maximum | Note | | Weaving flow rate, Vw | 4186 | 4000 | a | | Average flow rate (pcphpl) | 1839 | 2400 | b | | Volume ratio, VR | 0.57 | 0.80 | C | | Weaving ratio, R | 0.23 | N/A | d | | Weaving length (ft) | 2300 | 2500 | е | | No. to a second | | | | ## Notes: - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. HCS+: Freeway Weaving Release 5.5 Phone: E-mail: Fax: _____Operational Analysis_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 2/21/2012 Analysis Time Period: AM Peak Hour
Freeway/Dir of Travel: I-77 NB Weaving Location: SR 21 On and SR 18 Off Jurisdiction: Weaving ratio, R Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 _____Inputs______Freeway free-flow speed, SFF 70 mph Weaving number of lanes, N 4 Weaving segment length, L 1300 ft Terrain type Level Grade Length % Weaving type C Volume ratio, VR 0.55 _____Conversion to pc/h Under Base Conditions_____ 0.07 | | Non-Weaving | | Weaving | | | |----------------------------------|-------------|-------|---------|-------|-------| | | V | V | V | V | | | | 01 | 02 | w1 | w2 | | | Volume, V | 2360 | 340 | 3070 | 250 | veh/h | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | | | Peak 15-min volume, v15 | 656 | 94 | 853 | 69 | v | | Trucks and buses | 6 | 3 | 6 | 3 | % | | Recreational vehicles | 0 | 0 | 0 | 0 | % | | Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | | | Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | | | Heavy vehicle adjustment, fHV | 0.971 | 0.985 | 0.971 | 0.985 | | | Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow rate, v | 2700 | 383 | 3513 | 281 | pc/h | ______Weaving and Non-Weaving Speeds_____ | | Weaving | Non-Weaving | |------------------------------------|---------|-------------| | a (Exhibit 24-6) | 0.08 | 0.0020 | | b (Exhibit 24-6) | 2.30 | 6.00 | | c (Exhibit 24-6) | 0.80 | 1.10 | | d (Exhibit 24-6) | 0.60 | 0.60 | | Weaving intensity factor, Wi | 1.15 | 1.37 | | Weaving and non-weaving speeds, Si | 42.87 | 40.33 | | Number of lanes required for | | | | unconstrained operation, | Nw | (Exhibit 24-7) | | 2.63 | |--------------------------|----|----------------|-------|---------------| | Maximum number of lanes, | Nw | (max) (Exhibit | 24-7) | 3.00 | | Type of operation is | | | | Unconstrained | _______Weaving Segment Speed, Density, Level of Service and Capacity______ | Weaving segment speed, S | 41.69 | mph | |--------------------------------------|-------|----------| | Weaving segment density, D | 41.24 | pc/mi/ln | | Level of service, LOS | E | | | Capacity of base condition, cb | 6952 | pc/h | | Capacity as a 15-minute flow rate, c | 6750 | pc/h | | Capacity as a full-hour volume, ch | 6075 | pc/h | _____Limitations on Weaving Segments______ | | | If Max Exce | eded See Note | |----------------------------|----------|-------------|---------------| | | Analyzed | Maximum | Note | | Weaving flow rate, Vw | 3794 | 3500 | a | | Average flow rate (pcphpl) | 1719 | 2400 | b | | Volume ratio, VR | 0.55 | 0.50 | C | | Weaving ratio, R | 0.07 | 0.40 | d | | Weaving length (ft) | 1300 | 2500 | е | | Not og: | | | | ## Notes: - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. HCS+: Freeway Weaving Release 5.5 Phone: E-mail: Fax: _____Operational Analysis_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 2/21/2012 Analysis Time Period: PM Peak Hour Freeway/Dir of Travel: I-77 NB Weaving Location: SR 21 On and SR 18 Off Jurisdiction: Weaving ratio, R Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 _____Inputs_____ Freeway free-flow speed, SFF 70 mph Weaving number of lanes, N 4 Weaving segment length, L 1300 ft Terrain type Level 응 Grade Length mi Weaving type C Volume ratio, VR 0.35 ______Conversion to pc/h Under Base Conditions_____ 0.08 | | Non-Weaving | | Weaving | | | |----------------------------------|-------------|-------|---------|-------|-------| | | V | V | V | V | | | | 01 | 02 | w1 | w2 | | | Volume, V | 2260 | 470 | 1320 | 120 | veh/h | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | | | Peak 15-min volume, v15 | 628 | 131 | 367 | 33 | v | | Trucks and buses | 6 | 2 | 6 | 2 | % | | Recreational vehicles | 0 | 0 | 0 | 0 | % | | Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | | | Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | | | Heavy vehicle adjustment, fHV | 0.971 | 0.990 | 0.971 | 0.990 | | | Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow rate, v | 2586 | 527 | 1510 | 134 | pc/h | | | | | | | | _______Weaving and Non-Weaving Speeds_____ | | Weaving | Non-Weaving | |------------------------------------|---------|-------------| | a (Exhibit 24-6) | 0.08 | 0.0020 | | b (Exhibit 24-6) | 2.30 | 6.00 | | c (Exhibit 24-6) | 0.80 | 1.10 | | d (Exhibit 24-6) | 0.60 | 0.60 | | Weaving intensity factor, Wi | 0.62 | 0.39 | | Weaving and non-weaving speeds, Si | 52.07 | 58.22 | | Number of lanes required for | | | | unconstrained operation, | Nw | (Exhibit 24-7) | | 2.41 | |--------------------------|----|----------------|-------|---------------| | Maximum number of lanes, | Nw | (max) (Exhibit | 24-7) | 3.00 | | Type of operation is | | | | Unconstrained | _______Weaving Segment Speed, Density, Level of Service and Capacity______ | Weaving segment speed, S | 55.94 | mph | |--------------------------------------|-------|----------| | Weaving segment density, D | 21.26 | pc/mi/ln | | Level of service, LOS | C | | | Capacity of base condition, cb | 8300 | pc/h | | Capacity as a 15-minute flow rate, c | 8058 | pc/h | | Capacity as a full-hour volume, ch | 7252 | pc/h | _____Limitations on Weaving Segments______ | | | If Max Exceeded See No | | |----------------------------|----------|------------------------|------| | | Analyzed | Maximum | Note | | Weaving flow rate, Vw | 1644 | 3500 | а | | Average flow rate (pcphpl) | 1189 | 2400 | b | | Volume ratio, VR | 0.35 | 0.50 | C | | Weaving ratio, R | 0.08 | 0.40 | d | | Weaving length (ft) | 1300 | 2500 | е | ## Notes: - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | | Fax: | | |---|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 AM Peak Hour I-77 NB EB SR 18 Off-Ramp V 2035 Corridor Study PID | Vol/Lane DBL | | | | Flow Inputs and A | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 1180
0. 90
328
3
0
Level
0. 00
0. 00
1. 5
1. 2
0. 985
1. 00
665 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performan | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 665
55. 0
55. 0
2
12. 1
B | pc/h/l n
mi /h
mi /h
pc/mi /l n | | Phone:
E-mail: | | Fax: | |
---|--|---|--| | | Operational Analys | i s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
EB SR 18 Off-Ramp V
2035 | ol/Lane DBL | | | | Flow Inputs and Ad | justments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 1180
0. 90
328
2
0
Level
0. 00
0. 00
1. 5
1. 2
0. 990
1. 00
662 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | djustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performanc | e Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 662
55. 0
55. 0
2
12. 0
B | pc/h/l n
mi /h
mi /h
pc/mi /l n | | Phone:
E-mail: | | Fax: | | |---|--|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
North of Ramp to SF
2035 | R 18 EB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 5430
0. 90
1508
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
2071 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
Urban Freeway | ft ft i nterchange/mi mi /h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 2071
70. 0
63. 4
3
32. 7 | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |--|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 PM Peak Hour I-77 NB North of Ramp to SI 2035 Corridor Study PID | R 18 EB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
it, fHV | 3580
0.90
994
6
0
Level
0.00
0.00
1.5
1.2
0.971
1.00
1366 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 3 Measured 70.0 0.0 0.0 0.0 0.0 0.0 Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performan | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | speed, S | 1366
70. 0
70. 0
3
19. 5
C | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |---|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 AM Peak Hour I-77 NB EB SR 18 On-Ramp Vo 2035 Corridor Study PID | ol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 900
0.90
250
4
0
Level
0.00
0.00
1.5
1.2
0.980
1.00
510 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 510
55. 0
55. 0
2
9. 3
A | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |---|--|---|--| | | Operational Analys | si s | · · · · · · · · · · · · · · · · · · · | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I - 77 NB
EB SR 18 On - Ramp Vo
2035 | ol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 440
0.90
122
3
0
Level
0.00
0.00
1.5
1.2
0.985
1.00
248 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 248
55. 0
55. 0
2
4. 5
A | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mai I : | Fax | ί: | | | | |--|--|--
---|---|------------------| | Operatio | nal Anal | ysi s | | | | | Analyst: Agency/Co.: Date Performed: Analysis Time Period: Freeway/Dir of Travel: Jurisdiction: Analysis Year: Description: RMK Burgess & Nipl 9/6/2011 AM Peak Hour I-77 NB EB SR 18 On to 2035 Corridor Study |) WB SR 1 | | | | | | I np | outs | | | | | | Freeway free-flow speed, SFF Weaving number of lanes, N Weaving segment length, L Terrain type Grade Length Weaving type Volume ratio, VR Weaving ratio, R | Le
A
O. | 000
evel
27
28 | mph
ft
%
mi | 1 | | | Conversion to pc/h | Under Ba | ise Cor | ndi ti ons | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | Non-Weav
V 01
4330
0. 90
1203
6
0
1. 5
1. 2
0. 971
1. 00
4955 | vi ng
V
02
0. 90
0
0
1. 5
1. 2
1. 000
0 | Weavi no
V
w1
450
0.90
125
4
0
1.5
1.2
0.980
1.00
510 | W2
1100
0.90
306
12
0
1.5
1.2
0.943
1.00
1295 | veh/h v % % pc/h | | Weaving and Nor | n-Weavi ng | Speed | ls | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit 2 Maximum number of lanes, Nw (max) (Exhippe of operation is | Weavi no
0. 15
2. 20
0. 97
0. 80
1. 36
40. 43
24-7)
ni bi t 24- | 7) | Non-Weavir
0.0035
4.00
1.30
0.75
0.80
48.39
1.39
1.40
Unconstrai | | | | Weaving Segment Speed, Densit | y Loyel | | | | ., | | Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c | 45. 97
36. 76
E
7487 | mph
pc/mi/
pc/h
pc/h | | capaci ty | y | _____Limitations on Weaving Segments_ | | | If Max Exce | eded See Note | |----------------------------|-----------|-------------|---------------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 1805 | 2800 | a | | Average flow rate (pcphpl) | 1690 | 2400 | b | | Volume ratio, VR | 0. 27 | 0. 35 | С | | Weaving ratio, R | 0. 28 | N/A | d | | Weaving Length (ft) | 1000 | 2500 | е | | Motos: | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | Fax | (: | | | | |---|--|---|---|---|------------------| | Operation | nal Anal | ysi s | | | | | Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: PM Peak Hour Freeway/Dir of Travel: I-77 NB Weaving Location: EB SR 18 On to WB SR 18 Off Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 | | | | | | | I np | outs | | | | | | Freeway free-flow speed, SFF Weaving number of lanes, N Weaving segment length, L Terrain type Grade Length Weaving type Volume ratio, VR Weaving ratio, R | Le
A
O. | 000
evel
41
14 | mph
ft
%
mi | n | | | Conversion to pc/h | Under Ba | se Conc | ditions | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | Non-Weav
V o1
2240
0.90
622
6
0
1.5
1.2
0.971
1.00
2563 | vi ng
V 02
0 0.90
0 0
1.5
1.2
1.000
1.00 | Weavi no
V w1
1340
0.90
372
7
0
1.5
1.2
0.966
1.00
1540 | W2
220
0.90
61
3
0
1.5
1.2
0.985
1.00
248 | veh/h v % % pc/h | | Weaving and Nor | n-Weaving | Speeds | S | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit 2 Maximum number of lanes, Nw (max) (Exhibit 2) | Weavi ng
0. 35
2. 20
0. 97
0. 80
2. 62
31. 57
24-7)
ni bi t 24- | 0
4
1
0
0
5
1
7) 1 | lon-Weavi r
). 0020
I. 00
I. 30
). 75
). 39
58. 01
I. 72
I. 40
Constrai ne | | | | Weaving Segment Speed, Densit | y, Level | of Ser | vice and | Capaci ty | / | | Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c | 25. 20
C
6870 | mph
pc/mi/l
pc/h
pc/h | n | | | __Limitations on Weaving Segments_ | | | If Max Exce | eded See Note | |----------------------------|-----------|-------------|---------------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 1788 | 2800 | а | | Average flow rate (pcphpl) | 1087 | 2400 | b | | Volume ratio, VR | 0. 41 | 0. 35 | С | | Weaving ratio, R | 0. 14 | N/A | d | | Weaving Length (ft) | 1000 | 2500 | е | | Notes: | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | | Fax: | | |--|--|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
WB SR 18 Off-Ramp \
2035 | Vol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
t, fHV | 2200
0. 90
611
12
0
Level
0. 00
0. 00
1. 5
1. 2
0. 943
1. 00
1296 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 2 Measured 55.0 0.0 0.0 4.5 55.0 Urban Freeway | ft ft i nterchange/mi mi /h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1296
55. 0
55. 0
2
23. 6 | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | |
---|--|--|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
WB SR 18 Off-Ramp \
2035 | /ol/Lane DBL | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 2680
0. 90
744
7
0
Level
0. 00
0. 00
1. 5
1. 2
0. 966
1. 00
1541 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
2
Measured
55.0
0.0
0.0
4.5
55.0
Urban Freeway | ft ft i nterchange/mi mi /h | | · | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1541
55. 0
55. 0
2
28. 0
D | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |--|---|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple Ind 9/6/2011 AM Peak Hour I-77 NB North of Ramp to SF 2035 Corridor Study PID | R 18 WB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmer Driver population factor Flow rate, vp | T
E, ER
it, fHV | 4780
0. 90
1328
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1823 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustmere-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | speed, S | 1823
70. 0
67. 6
3
27. 0
D | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |---|--|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
North of Ramp to SF
2035 | R 18 WB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population facto Flow rate, vp | T
E, ER
t, fHV | 2460
0. 90
683
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
938 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Ndjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustm Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0 6.0 0.50 3 Measured 70.0 0.0 0.0 0.0 0.0 Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 938
70. 0
70. 0
3
13. 4
B | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | | | |---|---------------------------------------|--|--------------------------------------|------------------------|---------------------| | | Me | erge Analysis | | | | | Analyst: Agency/Co.: Burgess & Niple Inc Date performed: Analysis time period: AM Peak Hour Freeway/Dir of Travel: Junction: SR 18 WB to I-77 NB Jurisdiction: Analysis Year: Description: Summit 18 Corridor Study PID 77749 | | | | | | | Type of analysis | · · · · · · · · · · · · · · · · · · · | Freeway Data | | | | | Type of analysis Number of lanes in free Free-flow speed on free Volume on freeway | | Merge
3
70.0
4780 | | mph
vph | | | | (| On Ramp Data | | | | | Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/d
Length of second accel/ | ecel Lane | Ri ght
1
35. 0
190
850 | | mph
vph
ft
ft | | | | Adj acent F | Ramp Data (if on | ne exists |) | | | Does adjacent ramp exis
Volume on adjacent Ramp
Position of adjacent Ra
Type of adjacent Ramp
Distance to adjacent Ra | mp | No | | vph
ft | | | Con | version to p | oc/h Under Base | Condi ti o | ns | | | Junction Components | vor si on to p | Freeway | | | Adj acent | | Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Length Trucks and buses PCE, E | Т | 4780
0.90
1328
6
0
Level
mi
1.5 | 190
0.90
53
3
0
Level | %
mi | Ramp vph v % % mi | | Recreational vehicle PC
Heavy vehicle adjustmen
Driver population facto
Flow rate, vp | t, fHV | 1. 2
0. 971
1. 00
5470 | 1. 2
0. 985
1. 00
214 | | pcph | | | Estimation | n of V12 Merge A | reas | | | | L = EQ | 1021. 98 (| (Equation 25-2 o | or 25-3) | | | | P =
FM | 0. 601 l | Jsing Equation | 1 | | | pc/h V = V (P) = 3289 | Capacity Checks | | | | | | |--|-----------------|--
---------------------|--|--| | V | Actual
5684 | Maxi mum
7200 | LOS F?
No | | | | F0
V V | 2181 pc/h | (Equation 25-4 | or 25-5) | | | | 3 or av34
Is v v > 2700 p | c/h? | No | | | | | 3 or av34 Is v v > 1.5 v | | No | | | | | 3 or av34 1
If yes, v = 3289
12A | 2 | (Equation 25-8) | | | | | Actu
v 5684
R12 | aal Max
4600 | rge Influence Ar
Desirable
ination (if not | Vi ol ati on?
No | | | | Density, D = $5.475 + 0.00734 + 0.0078 + 0.0078 + 0.00627 + 0.006$ | | | | | | | Speed Estimation | | | | | | | Intermediate speed variabl | e, | $M_{c} = 0.391$ | | | | | Space mean speed in ramp i | nfluence area, | S
S = 59.1
R | mph | | | | Space mean speed in outer | I anes, | S = 63.9 | mph | | | | Space mean speed for all v | ehi cl es, | S = 60.8 | mph | | | | Phone:
E-mail: | | Fax: | | | | |---|----------------------------------|---|--|------------------------|--------------------| | | Merg | je Analysis | | | | | Agency/Co.: Date performed: Analysis time period: Freeway/Dir of Travel: Junction: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
SR 18 WB to I
2035 | -77 NB
ly PID 77749 | | | | | Type of analysis | | Merge | | | | | Number of lanes in freewa
Free-flow speed on freewa
Volume on freeway | | 3
70. 0
2460 | | mph
vph | | | | 0n | Ramp Data | | | | | Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/ded
Length of second accel/de | cel Lane
ecel Lane | Ri ght
1
35. 0
310
850 | | mph
vph
ft
ft | | | | _Adjacent Ram | np Data (if o | ne exists | s) | | | Does adjacent ramp exist
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp | р | No | | vph
ft | | | Conve | ersion to pc/ | 'n Under Base | Conditio | ns | | | Junction Components | | Freeway | Ramp | | Adj acent | | Volume, V (vph) Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade | | 2460
0.90
683
6
0
Level | 310
0. 90
86
2
0
Level | % | Ramp vph v % % | | Length Trucks and buses PCE, ET Recreational vehicle PCE, Heavy vehicle adjustment, Driver population factor, Flow rate, vp | , fHV | 1. 5
1. 2
0. 971
1. 00
2815 | 1. 5
1. 2
0. 990
1. 00
348 | mi | mi
pcph | | | _Estimation o | of V12 Merge | Areas | | | | L =
EQ | 482.48 (Eq | juation 25-2 | or 25-3) | | | | P =
FM | 0. 601 Usi | ng Equation | 1 | | | | V = V | (P) = 16 | 93 pc/h | | | | | Capaci ty Checks | | | | | | |---|-------------------|---|------------------|--|--| | v
F0 | Actual
3163 | Maxi mum
7200 | LOS F?
No | | | | VV | 1122 pc/h | (Equation 25-4 | or 25-5) | | | | 3 or av34
Is v v > 2700 p | oc/h? | No | | | | | 3 or av34
Is v v > 1.5 v | | No | | | | | 3 or av34 1
If yes, v = 1693
12A | 2 | (Equation 25-8) | | | | | Actu
v 3163
R12 | ual Max
B 4600 | erge Influence Ar
Desirable
)
nination (if not | Violation?
No | | | | Density, D = 5.475 + 0.007
R
Level of service for ramp- | R | 12 | A | | | | Speed Estimation | | | | | | | Intermediate speed variabl | e, | $M_{c} = 0.292$ | | | | | Space mean speed in ramp i | nfluence area, | S
S = 61.8 | mph | | | | Space mean speed in outer | I anes, | R
S = 67.8 | mph | | | | Space mean speed for all v | vehi cl es, | 0
S = 63.8 | mph | | | | Phone:
E-mail: | | Fax: | | |--|---------------------------------------|---|--| | | Operational Analys | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | I-77 NB
North of Ramp from
2035 | SR 18 WB | | | | Flow Inputs and Ad | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment Length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
E, ER
t, fHV | 4970
0. 90
1381
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1896 | veh/h v % % mi pc/h/I n | | | Speed Inputs and A | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
tment, fLC
ustment, fID | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
Urban Freeway | ft ft i nterchange/mi mi /h | | | LOS and Performand | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | peed, S | 1896
70. 0
66. 6
3
28. 5 | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | | Fax: | | |--|---|---|--| | | Operational Analy | si s | | | Analyst: Agency or Company: Date Performed: Analysis Time Period: Freeway/Direction: From/To: Jurisdiction: Analysis Year: Description: Summit 18 | RMK Burgess & Niple In 9/6/2011 PM Peak Hour I-77 NB North of Ramp from 2035 Corridor Study PID | SR 18 WB | | | | Flow Inputs and A | djustments | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Terrain type: Grade Segment length Trucks and buses PCE, E Recreational vehicle PC Heavy vehicle adjustmen Driver population factor Flow rate, vp | T
CE, ER
nt, fHV | 2770
0. 90
769
6
0
Level
0. 00
0. 00
1. 5
1. 2
0. 971
1. 00
1057 | veh/h v % % mi pc/h/I n | | | Speed Inputs and | Adjustments | | | Lane width Right-shoulder lateral Interchange density Number of lanes, N Free-flow speed: FFS or BFFS Lane width adjustment, Lateral clearance adjus Interchange density adj Number of lanes adjustment, Free-flow speed, FFS | fLW
stment, fLC
ustment, flD | 12.0
6.0
0.50
3
Measured
70.0
0.0
0.0
0.0
0.0
0.0
0.0
To.0
Urban Freeway | ft ft interchange/mi mi/h mi/h mi/h mi/h mi/h mi/h mi/h | | | LOS and Performan | ce Measures | | | Flow rate, vp
Free-flow speed, FFS
Average passenger-car s
Number of lanes, N
Density, D
Level of service, LOS | speed, S | 1057
70. 0
70. 0
3
15. 1
B | pc/h/ln
mi/h
mi/h
pc/mi/ln | | Phone:
E-mail: | Fax | (: | | | | | | | | |--
---|---|---|--|------------------|--|--|--|--| | Operation | onal Anal | ysi s | | | | | | | | | Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: AM Peak Hour Freeway/Dir of Travel: SR 18 WB Weaving Location: SR 18 WB at I-77 Loop Ramps Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 | | | | | | | | | | | · | | | | | | | | | | | Freeway free-flow speed, SFF
Weaving number of lanes, N
Weaving segment length, L
Terrain type | | 5
000
evel | mph
ft | 1 | | | | | | | Grade
Length
Weaving type
Volume ratio, VR | A
0. | 77 | %
mi | | | | | | | | Weaving ratio, R | 0. | 14 | | | | | | | | | Conversion to pc/h | Under Ba | ase Cond | di ti ons | | | | | | | | | Non-Wea
V
o1 | ovi ng
V
o2 | Weavi ng
V
w1 |)
V
w2 | | | | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | 400
0. 90
111
3
0
1. 5
1. 2
0. 985
1. 00
451 | 0.90
0.90
0
0
1.5
1.2
1.000
1.00 | 1100
0. 90
306
12
0
1. 5
1. 2 | 180
0. 90
50
4
0
1. 5
1. 2
0. 980
1. 00
204 | veh/h v % % pc/h | | | | | | Weaving and Nor | n-Weaving | Speeds | S | | | | | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit 2 Maximum number of lanes, Nw (max) (Exh | Weavi ng 0. 35 2. 20 0. 97 0. 80 2. 61 24. 68 | | Non-Weavi ng
0. 0020
4. 00
1. 30
0. 75
0. 50
38. 34
2. 12
1. 40 | | | | | | | | Type of operation is | | | Constrai ne | | | | | | | | Weaving Segment Speed, Densit | ty, Level | of Se | rvice and | Capaci ty | / | | | | | | Weaving segment speed, S
Weaving segment density, D
Level of service, LOS
Capacity of base condition, cb
Capacity as a 15-minute flow rate, c | 24. 16
C
4180 | mph
pc/mi/l
pc/h
pc/h | In | | | | | | | _____Limitations on Weaving Segments_ | | | If Max Exce | eded See Note | |----------------------------|-----------|-------------|---------------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 1499 | 2800 | а | | Average flow rate (pcphpl) | 650 | | b | | Volume ratio, VR | 0. 77 | 0. 45 | С | | Weaving ratio, R | 0. 14 | N/A | d | | Weaving Length (ft) | 1000 | 2500 | е | | Notos | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | Fax | (: | | | | | | | | |--|---|---|---|---|------------------|--|--|--|--| | Operation | nal Anal | ysi s | | | | | | | | | Operational Analysis | | | | | | | | | | | I np | outs | | | | | | | | | | Freeway free-flow speed, SFF Weaving number of lanes, N Weaving segment length, L Terrain type Grade Length Weaving type Volume ratio, VR Weaving ratio, R | A
O. | 5
050
evel
61
32 | mph
ft
%
mi | ı | | | | | | | Conversion to pc/h | Under Ba | ase Cond | ditions | | | | | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | Non-Weav
V o1
1310
0. 90
364
3
0
1. 5
1. 2
0. 985
1. 00
1477 | V 02
0 0. 90
0 0
0 1. 5
1. 2
1. 000
1. 00 | Weavi ng
V
w1
1340
0. 90
372
7
0
1. 5
1. 2
0. 966
1. 00
1540 | V
w2
650
0.90
181
4
0
1.5
1.2
0.980
1.00
736 | veh/h v % % pc/h | | | | | | Weaving and Nor | ı-Weavi ng | g Speeds | 5 | | | | | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit 2 Maximum number of lanes, Nw (max) (Exhippe of operation is | 0. 35
2. 20
0. 97
0. 80
3. 84
22. 23 | | Non-Weavi r
D. 0020
4. 00
1. 30
D. 75
D. 77
34. 80
1. 97
1. 40
Constrai ne | | | | | | | | Weaving Segment Speed, Densit | y, Level | of Ser | rvice and | Capaci ty | / | | | | | | Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c | 25. 92
48. 27
F
4210 | mph
pc/mi/l
pc/h
pc/h | | , | | | | | | _____Limitations on Weaving Segments_ | | | If Max Exce | eded See Note | |----------------------------|-----------|-------------|---------------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 2276 | 2800 | а | | Average flow rate (pcphpl) | 1251 | | b | | Volume ratio, VR | 0. 61 | 0. 45 | С | | Weaving ratio, R | 0. 32 | N/A | d | | Weaving Length (ft) | 1050 | 2500 | е | | Notes: | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | Fax | (: | | | | | | | | | |---|--|--|---|---|------------------|--|--|--|--|--| | Operation | nal Anal | ysi s | | | | | | | | | | Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: AM Peak Hour Freeway/Dir of Travel: SR 18 EB Weaving Location: SR 18 EB at I-77 Loop Ramps Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 | | | | | | | | | | | | I np | outs | | | | | | | | | | | Freeway free-flow speed, SFF
Weaving number of lanes, N | 45
3 | j | mph | 1 | | | | | | | | Weaving segment length, L
Terrain type | 60 | 00
evel | ft | | | | | | | | | Grade | Lo | , v C i | %
mi | | | | | | | | | Length Weaving type | A | 40 | 1111 | | | | | | | | | Volume ratio, VR
Weaving ratio, R | | 40
29 | | | | | | | | | | Conversion to pc/h | Under Ba | ise Cond | di ti ons | | | | | | | | | | Non-Wea | | Weavi ng | J ,, | | | | | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment,
fHV Driver population adjustment, fP Flow rate, v | V
01
950
0. 90
264
3
0
1. 5
1. 2
0. 985
1. 00
1071 | V 02
0 0. 90
0 0
0 1. 5
1. 2
1. 000
1. 00
0 | V
w1
450
0.90
125
4
0
1.5
1.2
0.980
1.00
510 | W2
180
0.90
50
8
0
1.5
1.2
0.962
1.00
208 | veh/h v % % pc/h | | | | | | | Weaving and Nor | n-Weavi ng | Speeds | S | | | | | | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit 2 Maximum number of lanes, Nw (max) (Exhibit 2 Type of operation is | 0. 15
2. 20
4
0. 97
1
0. 80
0. 93
33. 14
3
24-7)
1i bi t 24-7) | | Non-Weavi ng
0. 0035
4. 00
1. 30
0. 75
0. 45
39. 11
1. 27
1. 40
Unconstrai ned | | | | | | | | | Weaving Segment Speed, Densit | y, Level | | | | / | | | | | | | Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c | 36. 47
16. 35
B
4076
4016 | mph
pc/mi/I
pc/h
pc/h | n | | | | | | | | __Limitations on Weaving Segments_ | | | If Max Exce | eded See Note | |----------------------------|-----------|-------------|---------------| | | Anal yzed | Maxi mum | Note | | Weaving flow rate, Vw | 718 | 2800 | а | | Average flow rate (pcphpl) | 596 | | b | | Volumě ratio, VR | 0. 40 | 0. 45 | С | | Weaving ratio, R | 0. 29 | N/A | d | | Weaving Length (ft) | 600 | 2500 | е | | Notes: | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. | Phone:
E-mail: | Fax | (: | | | | | | | | | |--|--|--|---|---|----------------|--|--|--|--|--| | Operation | onal Anal | ysi s | | | | | | | | | | Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: PM Peak Hour Freeway/Dir of Travel: SR 18 EB Weaving Location: SR 18 EB at I-77 Loop Ramps Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 | | | | | | | | | | | | I np | outs | | | | | | | | | | | Freeway free-flow speed, SFF
Weaving number of Lanes, N | 45
3 | 5 | mph | 1 | | | | | | | | Weaving segment length, L
Terrain type | 60 | 00
evel | ft | | | | | | | | | Grade
Length | | | %
mi | | | | | | | | | Weaving type
Volume ratio, VR | A
0. | 30 | | | | | | | | | | Weaving ratio, R | | 42 | | | | | | | | | | Conversion to pc/h | Under Ba | ise Cond | ditions | | | | | | | | | | Non-Wea | ivi ng
V | Weavi no
V | J
V | | | | | | | | Volume, V Peak-hour factor, PHF Peak 15-min volume, v15 Trucks and buses Recreational vehicles Trucks and buses PCE, ET Recreational vehicle PCE, ER Heavy vehicle adjustment, fHV Driver population adjustment, fP Flow rate, v | o1
1190
0.90
331
3
0
1.5
1.2
0.985
1.00
1342 | o2
0
0.90
0
0
1.5
1.2
1.000
1.00 | w1
300
0.90
83
4
0
1.5
1.2
0.980
1.00
340 | w2
220
0.90
61
3
0
1.5
1.2
0.985
1.00
248 | veh/h v % pc/h | | | | | | | Weaving and Nor | n-Weaving | Speeds | 5 | | | | | | | | | a (Exhibit 24-6) b (Exhibit 24-6) c (Exhibit 24-6) d (Exhibit 24-6) Weaving intensity factor, Wi Weaving and non-weaving speeds, Si Number of lanes required for unconstrained operation, Nw (Exhibit 2 Maximum number of lanes, Nw (max) (Exh | Weavi ng 0. 15 0
0. 15 0
2. 20 4
0. 97 1
0. 80 0
0. 85 33. 87 4 | | Non-Weavir
0.0035
1.00
1.30
0.75
0.37
10.46
1.08
1.40
Jnconstrai | | | | | | | | | Type of operation is Weaving Segment Speed Densit | y Level | | | | , | | | | | | | Weaving Segment Speed, Densit Weaving segment speed, S | | mph | vice and | capaci ty | | | | | | | | Weaving segment speed, 3 Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c | 16. 84
B
4395 | pc/mi/l
pc/h
pc/h | n | | | | | | | | __Limitations on Weaving Segments_ | | | If Max Exceeded See Not | | | | | |----------------------------|-----------|-------------------------|------|--|--|--| | | Anal yzed | Maxi mum | Note | | | | | Weaving flow rate, Vw | 588 | 2800 | а | | | | | Average flow rate (pcphpl) | 643 | | b | | | | | Volume ratio, VR | 0. 30 | 0. 45 | С | | | | | Weaving ratio, R | 0. 42 | N/A | d | | | | | Weaving Length (ft) | 600 | 2500 | е | | | | | Notes. | | | | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). g. Five-lane Type A segments do not operate well at volume ratios greater - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. ## Appendix D # Intersection LOS Analysis #### Interchange Modification Study Summit 18 Corridor PID 77749 ### **No-Build Intersections** Jurisd: Analyst: RMK Inter.: SR 18 and Heritage Woods Rd Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/9/2011 Period: AM Peak Year : 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Heritage Woods | E/W St: SR | 18 | | N/S | St: H | erita | ge Wood | ls | | | |------------------------|------------|------------|------------|--------------|---------|----------|----------|--------|------| | | ST | GNALIZED I | NTERSE | CTION | SIIMMAI | RY | | | | | | Eastbound | Westbou | | | thbou | | Sout | hbound | | | | L T R | L T | R | L | Т | R | L | T R | j | | | | - | | . | | | | | [| | No. Lanes | 1 2 0 | 1 2 | 0 | 0 | 1 | 1 | 1 | 1 0 | | | LGConfig | L TR | L TR | | | LT | I . | L | TR | | | Volume | 10 2350 40 | 120 1030 | | 1 | | | | .0 10 | | | Lane Width
RTOR Vol | 12.0 12.0 | 12.0 12.0 | | | 12.0 | : | 2.0 1 | | | | RIOR VOI | l 0 | I | 0 | I | , | 0 | | 0 | I | | Duration | 0.25 Area | Type: All | other | areas | | | | | | | | | Signal | Operat | ions | | | | | | | Phase Combi | | 3 4 | : | | 5 | 6 | 7 | 8 | | | EB Left | P | | NB | Left | P | | | | | | Thru | P | | | Thru | P | | | | | | Right
Peds | P | | | Right | P | | | | | | WB Left | P P | | l
I SB | Peds
Left | P | | | | | | Thru | P P | | 25 | Thru | P | | | | | | Right | P P | | | Right | | | | | | | Peds | | | İ | Peds | | | | | | | NB Right | P | | EB | Right | | | | | | | SB Right | | | WB | Right | | | | | | | Green | 8.0 83.3 | } | | | 14.7 | | | | | | Yellow | 4.0 4.0 | | | | 4.0 | | | | | | All Red | 0.0 1.0 | | | | 1.0 | la Tama | h. 1 | 20 0 | ~~~ | | | Interse | ction Perf | ormanc | e Siimm | | le Leng | JCII• I | 20.0 | secs | | Appr/ Lan | | Ratios | | | |
Appr | oach | | | | Lane Gro | | | • | Laire | Croup | 1122 | · ou oii | | | | | acity (s) | |
/ C | Delay | LOS | Delay | , LOS | | | | | | | | | | | | | | | Eastbound | 0 420 | 0.04 0 | 60 | 6.0 | 7\ | | | | | | L 29
TR 24 | | | .69
.69 | 71.3 | A
E | 71.0 | E | | | | 110 24 | 09 3470 | 1.10 | .09 | 11.5 | 111 | 71.0 | 111 | | | | Westbound | | | | | | | | | | | L 17 | 9 1752 | 0.74 0 | .80 | 65.5 | E | | | | | | TR 27 | 70 3488 | 0.43 0 | .79 | 4.4 | A | 10.5 | В | | | | Northbound | | | | | | | | | | | LT 19 | 1 1563 | 0.35 0 | .12 | 53.1 | D | 70.9 | E | | | | R 36 | | | .23 | 74.4 | E | | | | | |
Southbound | | | | | | | | | | | L 16 | 3 1330 | 0.13 0 | .12 | 48.7 | D | | | | | | TR 21 | | | .12 | 47.8 | _ | 48.2 | D | | | Intersection Delay = 52.6 (sec/veh) Intersection LOS = D Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/9/2011 Analysis Time Period: AM Peak Intersection: SR 18 and Heritage Woods Rd Area Type: All other areas Jurisdiction: Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Heritage Woods #### _____VOLUME DATA_____ | Eas | stbour | nd | Wes | stbour | nd | Noi | cthbou | ınd | Sou | ıthboı | and | |-------|---|--|--|---|--|---|---|---|-------------------------|---|--| | L | T | R | L | T | R | L | T | R | L | Т | R | | 1.0 | 2250 | 4.0 | | 1020 | | | 2.0 | 200 | | 1.0 |
10 | | | | - | ! | | | ! | | | ! | | ! | | | _ | _ | ! - | | _ | ! | _ | | ! | | 2 | | | | | ! | | | | | | 0.90 | | 0.90 | | 3 | 653 | 11 | 33 | 286 | 14 | 8 | 8 | 83 | 6 | 3 | 3 | | | | | | | | | | | | | | | | 0 | | ĺ | 0 | | ĺ | 0 | | İ | 0 | ĺ | | 1900 | 1900 | | 1900 | 1900 | | İ | 1900 | 1900 | 1900 | 1900 | į | | | | | İ | | | İ | | | İ | | i | | | | | İ | | | İ | | | İ | | i | | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | | L | TR | | ĹГ | TR | | İ | $_{ m LT}$ | R | i L | TR | j | | 12.0 | 12.0 | | 12.0 | 12.0 | | İ | 12.0 | 12.0 | 12.0 | 12.0 | j | | | | 0 | İ | | 0 | İ | | 0 | İ | | 0 | | 11 | 2655 | | 133 | 1200 | | İ | 66 | 333 | 22 | 22 | İ | | | | | İ | | | İ | | | İ | | İ | | 1.000 | 0.00 | 0 0 | 1.000 | 0.00 | 0 0 | j | 0.50 | 0.0 | 1.000 | 0.00 | 0 O C | | 0. | .017 | | j 0. | .047 | | 0 | .000 | 1.000 | 0 | .500 | j | | 0 | | | j 0 | | | 0 | | | j 0 | | j | | 0 | 0 | | 0 | 0 | | j | 0 | 0 | 0 | 0 | j | | 2 | | | 0.0 | | | | | | | | j | | | L
10
4
0.90
3
1900
1
1.000
0
0 | L T 10 2350 4 4 0.90 0.90 3 653 0 1900 1900 1 2 L TR 12.0 12.0 11 2655 1.000 0.00 0.017 0 0 0 | 10 2350 40 4 4 4 0.90 0.90 0.90 3 653 11 0 1900 1900 1 2 0 L TR 12.0 12.0 0 11 2655 1.000 0.000 0.017 0 0 0 | L T R L 10 2350 40 120 4 4 4 3 0.90 0.90 0.90 0.90 3 653 11 33 0 1900 1900 1900 1 2 0 1 1 2 0 1 1 2.0 12.0 12.0 0 11 2655 133 1.000 0.000 1.000 0.017 0 0 0 0 0 0 0 0 0 0 0 0 0 | L T R L T 10 2350 40 120 1030 4 4 4 3 3 0.90 0.90 0.90 0.90 0.90 3 653 11 33 286 0 0 0 1900 1900 1900 1900 1 2 0 1 2 L TR L TR 12.0 12.0 12.0 11 2655 133 1200 1.000 0.000 1.000 0.00 0.017 0.047 0 0 0.0 | L T R L T R 10 2350 40 120 1030 50 4 4 4 4 3 3 3 3 3 3 3 3 3 | L T R L T R L C C C C C C C C C C C C C C C C C C | L T R L T R L T 10 2350 40 120 1030 50 30 30 4 4 4 3 3 3 2 2 0.90 < | L T R L T R L T R L T R | L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L D | L T R L T R L T R L T R L T 10 2350 40 120 1030 50 30 30 300 20 10 4 4 4 3 3 3 2 | Duration 0.25 Area Type: All other areas | | Ea | stbou | nd | Westbound | | | Northbound | | | So | nd | | |-------------|----------|-------|----|-----------|------|---|------------|------|-----|------------|-------|------| | | L | Т | R | L | T | R | L | Т | R | L | T | R | | Init Unmet |
 0.0 | 0.0 | | 0.0 | 0.0 | | | 0.0 | 0.0 | -
 0.0 | 0.0 |
 | | Arriv. Type | 3 | 3 | | 3 | 3 | | İ | 3 | 3 | 3 | 3 | į | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | | İ | 3.0 | 3.0 | 3.0 | 3.0 | į | | I Factor | ĺ | 1.00 | 0 | İ | 1.00 | 0 | Ì | 1.00 | 0 | | 1.000 | į | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | | | 2.0 | 2.0 | 2.0 | 2.0 | | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | | Ì | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ped Min g | | 3.2 | | | 3.2 | | | 3.2 | | | 3.2 | İ | Analyst: RMK Inter.: Heritage Woods and SR 18 Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/9/2011 Jurisd: ODOT Period: PM Peak Year : 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Heritage Woods | E/W St: SR | 18 | | | N/ | S St: H | Ierita | ige Woo | ods | | | |-------------------|--------|--------------------|-----------|----------------------|---------|------------|---------|------------|--------|------| | | | S | IGNALIZE | D INTERS | ECTION | SUMMA | ΙRΥ | | | | | | Eas | stbound | | bound | | thbou | | Sout | nbound | | | | L | T R | į L | T R | L | Т | R | ļь : | r R | | | No. Lanes | 1 | 2 0 | -
 1 | 2 0 | - | 1 | 1 | 1 | 1 0 | | | LGConfig | L | TR | L | TR | | $_{ m LT}$ | R | L | TR | | | Volume | 30 | 1710 30 | ! | 380 10 | 50 | 50 | 210 | 40 50 | | | | Lane Width | 12.0 | | 12.0 1 | | | 12.0 | | 12.0 1 | | | | RTOR Vol | | 0 | I | 0 | | | 0 | | 0 | I | | Duration | 0.25 | Area | | ll other
al Opera | | | | | | | | Phase Combi | nation | n 1 2 | 3 | 4 | 0110 |
5 | 6 | | 8 | | | EB Left | | - – –
P | - | NB | Left | P | - | | | | | Thru | | P | | İ | Thru | P | | | | | | Right | | P | | j | Right | P | | | | | | Peds | | | | | Peds | | | | | | | WB Left | | P P | | SB | Left | P | | | | | | Thru | | P P | | | Thru | P | | | | | | Right | | P P | | | Right | P | | | | | | Peds | | | | | Peds | | | | | | | NB Right | | P | | EB | Right | | | | | | | SB Right | | 01 0 66 | _ | WB | Right | | • | | | | | Green | | 21.0 66. | 3 | | | 18.7 | ' | | | | | Yellow
All Red | | 4.0 4.0
0.0 1.0 | | | | 4.0 | | | | | | All Red | | 0.0 1.0 | | | | | ile Lei | ngth: 12 | 20 0 | secs | | | | Inters | ection P | erforman | ce Summ | | | iigeii - i | 20.0 | БССБ | | Appr/ Lan | .e |
Adj Sat | | | | | | proach | | | | Lane Gro | up | Flow Rat | | | | | | | _ | | | Grp Cap | acity | (s) | v/c | g/C | Delay | LOS | Dela | ay LOS | | | | Eastbound | | | | | | | | | | | | L 61 | | 110 | 0.54 | 0.55 | 47.5 | D | | | | | | TR 19 | 17 | 3470 | 1.01 | 0.55 | 49.5 | D | 49. | 4 D | | | | Westbound | | | | | | | | | | | | L 36 | 8 | 1752 | 0.93 | 0.77 | 65.3 | E | | | | | | TR 26 | 71 | 3510 | 0.99 | 0.76 | 30.1 | С | 34. | 2 C | | | | Northbound | | | | | | | | | | | | LT 20 | 7 | 1327 | 0.54 | 0.16 | 56.5 | E | 38. | 4 D | | | | R 59 | | 1583 | 0.39 | 0.37 | 29.7 | С | | | | | | Southbound | | | | | | | | | | | | | • | 44-0 | | | | _ | | | | | Intersection Delay = 40.4 (sec/veh) Intersection LOS = D 0.16 0.16 47.7 50.4 D D 49.6 0.24 0.42 L ${\sf TR}$ 180 269 1158 1723 Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/9/2011 Analysis Time Period: PM Peak Intersection: Heritage Woods and SR 18 Area Type: All other areas Jurisdiction: ODOT Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Heritage Woods #### _____VOLUME DATA_____ | | Eas | Eastbound | | Wes | stbour | nd | No | thbo | ınd | Sou | ıthboı | ınd | |--------------|-----------|-----------|------------|---------|--------|------------|----------|--------|-------|-------------|--------|------| | | L | T | R | L | Т | R | L | T | R | L | Т | R | | _ | | | | | | | | | | | | | | Volume | 30 | 1710 | 30 | 310 | 2380 | 10 | 50 | 50 | 210 | 40 | 50 | 50 | | % Heavy Veh | 4 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | PK 15 Vol | 8 | 475 | 8 | 86 | 661 | 3 | 14 | 14 | 58 | 11 | 14 | 14 | | Hi Ln Vol | ĺ | | | ĺ | | | ĺ | | | ĺ | | j | | % Grade | j | 0 | | j | 0 | | İ | 0 | | İ | 0 | į | | Ideal Sat | 1900 | 1900 | | 1900 | 1900 | | İ | 1900 | 1900 | 1900 | 1900 | į | | ParkExist | İ | | | j | | | İ | | | j | | i | | NumPark | İ | | | İ | | | İ | | | j | | i | | No. Lanes | i 1 | 2 | 0 | İ 1 | 2 | 0 | i o | 1 | 1 | İ 1 | 1 | 0 | | LGConfig | L - | TR | - | L - | TR | - | i | LT | R | i L | TR | | | Lane Width | 12.0 | 12.0 | | ! - | 12.0 | | İ | 12.0 | 12.0 | 12.0 | 12.0 | | | RTOR Vol | | | 0 | | | 0 | !
 | | 0 | • • | | 0 | | Adj Flow | l
 33 | 1933 | O | 344 | 2655 | · · | l
İ | 112 | 233 | 44 | 112 | | | %InSharedLn | J J | 1733 | | 3 | 2033 | | !
[| 112 | 233 | | 112 | | | Prop LTs |
 1 | 0.0 | 1 0 |
 1 | 0.00 | ^ ^ |
 | 0.50 | ١. |
 1 | 0.00 |) I | | _ | ! | | 30 | ! | .004 | 00 | l
 0 | .000 | | ! | .500 |) | | Prop RTs | ! | .017 | | ! | .004 | | | .000 . | 1.000 | 1 | .500 | - ! | | Peds Bikes | 0 | • | | 0 | • | | 0 | • | • | 0 | • | | | Buses | 0 | 0 | | 0 | 0 | | ļ | 0 | 0 | 0 | 0 | | | %InProtPhase | | | | 0.0 | | | | | | | | | Duration 0.25 Area Type: All other areas | | Ea | Eastbound | | | stbour | nd | No | rthbo | und | So | uthbour | nd | |-------------|-------------|-----------|---|-----|--------|----|----|-------|-----|-----|---------|------| | | L | Т | R | L | Т | R | L | Т | R | L | T | R | | Init Unmet |
 0 . 0 | 0.0 | | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 |
 | | Arriv. Type | 3 | 3 | | 3 | 3 | | İ | 3 | 3 | 3 | 3 | į | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | | İ | 3.0 | 3.0 | 3.0 | 3.0 | į | | I Factor | İ | 1.000 | | İ | 1.000 |) | İ | 1.00 | 0 | j | 1.000 | į | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | | İ | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | | İ | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ped Min g | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | | j | 3.2 | į | Analyst: RMK Inter.: Crystal Lake Road and SR 18 Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/7/2011 Period: AM Peak Jurisd: Year : 2035 No-Build Project ID: Summit 18 Corridor Study E/W St: SR 18 N/S St: Crystal Lake Road | SIGNALIZED INTERSECTION SUMMARY | | | | | | | | | | | | | | | |---------------------------------|------|--------|----|------|-------|------|----|------------|------|------|--------|-----|--|--| | | Eas | stbour | nd | Wes | stbou | nd | No | rthbo | und | So | uthbou | ınd | | | | | LTR | | | L | T | R | L | T | R | L | T | R | No. Lanes | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | | | | LGConfig | L | TR | | L | T | R | | $_{ m LT}$ | R | L | TR | | | | | Volume | 300 | 2340 | 30 | 170 | 980 | 550 | 40 | 20 | 260 | 550 | 20 | 180 | | | | Lane Width | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | Ì | 12.0 | 12.0 | 12.0 | 12.0 | Ì | | | | RTOR Vol | | | 0 | ĺ | | 0 | Ì | | 0 | ĺ | | 0 | | | | Dur | ation | 0.25 | | Area T | ype: | All of | ther | areas | | | | | | |-----|---------|---------|-----|--------|------|--------|-------|-------|------|---------|--------|-----|------| | | | | | | Sig | gnal O | perat | ions | | | | | | | Pha | se Comb | ination | 1 | 2 | 3 | 4 | | | 5 | 6 | 7 | 8 | | | EB | Left | | P | P | P | | NB | Left | | P | | | | | | Thru | | | P | P | | j | Thru | | P | | | | | | Right | | | P | P | | j | Right | | P | | | | | | Peds | | | | | | j | Peds | | | | | | | WB | Left | | P | | P | | SB | Left | P | | | | | | | Thru | | | | P | | j | Thru | P | P | | | | | | Right | | | | P | | İ | Right | P | P | | | | | | Peds | | | | | | İ | Peds | | | | | | | NB | Right | | Р | | | | EB | Right | | | | | | | SB | Right | | | | | | WB | Right | P | | | | | | Gre | en | 8 | 3.0 | 10.3 | 53.1 | L | | | 16.6 | 9.0 | | | | | Yel | low | 4 | . 0 | 4.0 | 4.0 | | | | 4.0 | 4.0 | | | | | All | Red | 0 | 0.0 | 1.0 | 1.0 | | | | 0.0 | 1.0 | | | | | | | | | | | | | | Cycl | e Lengt | h: 120 | 0.0 | secs | | | | Intersec | tion Pe | erforman | ce Summa: | ry | | | |---------------|---------------|----------------------|---------|----------|-----------|------|-------|------| | Appr/
Lane | Lane
Group | Adj Sat
Flow Rate | | ios | Lane G | roup | Appro | each | | Grp | Capacity | (s) | V/C | g/C | Delay : | LOS | Delay | LOS | | Eastbou |
ınd | | | | | | | | | L | 435 | 1752 | 0.77 | 0.67 | 37.9 | D | | | | TR | 1998 | 3506 | 1.32 | 0.57 | 172.5 | F | 157.3 | F | | Westbou | ınd | | | | | | | | | L | 179 | 1752 | 1.06 | 0.51 | 116.5 | F | | | | T | 1554 | 3512 | 0.70 | 0.44 | 29.7 | С | 34.3 | C | | R | 976 | 1568 | 0.63 | 0.62 | 17.0 | В | | | | Northbo | ound | | | | | | | | | LT | 94 | 1249 | 0.70 | 0.08 | 89.8 | F | 98.9 | F | | R | 290 | 1583 | 1.00 | 0.18 | 101.0 | F | | | | Southbo | ound | | | | | | | | | L | 475 | 3437 | 1.29 | 0.14 | 195.8 | F | | | | TR | 397 | 1611 | 0.56 | 0.25 | 45.1 | D | 155.6 | F | Intersection Delay = 115.2 (sec/veh) Intersection LOS = F Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/7/2011 Analysis Time Period: AM Peak Intersection: Crystal Lake Road and SR 18 Area Type: All other areas Jurisdiction: Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study E/W St: SR 18 N/S St: Crystal Lake Road #### _____VOLUME DATA_____ | | Eastbound | | Wes | stbour | nd | No | rthbo | und | Soi | uthbou | ınd | | |--------------|-----------------|------|------|----------|------|-------|-------|------------|-------|----------|------|------| | | L | T | R | L | Т | R | L | T | R | L | Т | R | | Volume |
 300 | 2340 | 30 |
 170 | 980 | 550 | 40 | 20 | 260 |
 550 | 20 | 180 | | % Heavy Veh | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | PK 15 Vol | 83 | 650 | 8 | 47 | 272 | 153 | 11 | 6 | 72 | 153 | 6 | 50 | | Hi Ln Vol | İ | | | İ | | | İ | | | İ | | | | % Grade | İ | 0 | | İ | 0 | | İ | 0 | | İ | 0 | | | Ideal Sat | 1900 | 1900 | | 1900 | 1900 | 1900 | İ | 1900 | 1900 | 1900 | 1900 | | | ParkExist | ĺ | | | | | | Ì | | | | | | | NumPark | | | | | | | | | | | | | | No. Lanes | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | | LGConfig | L | TR | | L | T | R | | $_{ m LT}$ | R | L | TR | | | Lane Width | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | 12.0 | | | RTOR Vol | | | 0 | | | 0 | | | 0 | | | 0 | | Adj Flow | 333 | 2633 | | 189 | 1089 | 611 | | 66 | 289 | 611 | 222 | | | %InSharedLn | | | | | | | | | | | | | | Prop LTs | 1.000 | 0.0 | 0.0 | 1.000 | 0.00 | 0.0 | | 0.6 | 57 | | 0.00 | 0 0 | | Prop RTs | 0 | .013 | | 0. | .000 | 1.000 | 0 | .000 | 1.000 | 0 | .901 | | | Peds Bikes | 0 | | | 0 | | | 0 | | | 0 | | | | Buses | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | %InProtPhase | InProtPhase 0.0 | | | 0.0 | | | | | | | | | Duration 0.25 Area Type: All other areas | | Ea | stbou | nd | We | stbou | nd | No | rthbo | und | So | uthbound | E | |-------------|----------|-------|----|-----|-------|-----|----|-------|-----|-----|----------|------| | | L | Т | R | L | Т | R | L | Т | R | L | T I | ١ ١ | | Init Unmet |
 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | · | 0.0 | 0.0 | 0.0 | 0.0 |
 | | Arriv. Type | 3 | 3 | | 3 | 3 | 3 | İ | 3 | 3 | 3 | 3 | j | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | İ | 3.0 | 3.0 | 3.0 | 3.0 | j | | I Factor | İ | 1.00 | 0 | İ | 1.00 | 0 | İ | 1.00 | 0 | İ | 1.000 | į | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | İ | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | İ | 2.0 | 2.0 | 2.0 | 2.0 | j | | Ped Min g | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | j | Analyst: RMK Inter.: Crystal Lake Road and SR 18 Agency: Burgess & Niple Inc Area Type: All other areas 9/9/2011 Date: Jurisd: Year : 2035 No-Build Period: PM Peak Project ID: Summit 18 Corridor Study | E/W St: | SR 18 | | | | | N/S | St: C | rysta | ıl Lake | e Road | d | | |-------------------------|------------|----------|------------|--------|------------|-------------|---------|------------|---------|--------|--------|-------| | | | | | GNALIZ | ED IN | TERSE | CTION | SUMMA | ARY | | | | | | Ea | stbou | nd | Wes | tbour | .d | Nor | thbou | ınd | Sou | ıthboı | und | | | L |
Т | R | L
I | Т | R | L | Т | R | L
 | Т | R | | No. Lan | es 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | | LGConfi | g L | TR | | L | Т | R | | $_{ m LT}$ | R | L | TR | | | Volume | 100 | 1820 | 40 | | 2340 | | | 20 | 330 | 690 | 60 | 300 | | Lane Wi | dth 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | 12.0 | | | RTOR Vo | 1 | | 0 | | | 0 | | | 0 | | | 0 | | Duratio | n 0.25 | | Area | Type: | | | | | | | | | | Dhaga C | ombinatio |
n 1 | 2 | _ | nal C
4 | perat
1 | ions |
5 | 6 | 7 | |
8 | | Pnase C
EB Lef | | n 1
P | ۷ | 3
P | 4 | l
l nb | Left | 5 | 6
P | / | 6 | 0 | | вв цег
Thr | | P | | P
P | | I
I ND | Thru | | P
P | | | | | Rig | | | | P | | 1 | Right | | P
P | | | | | Ped | | | | r | | I
I | Peds | • | P | | | | | WB Lef | | P | P | P | | l
l SB | Left | P | | | | | | wb Her
Thr | | ı | P | P | | 1 22 | Thru | | P | | | | | Rig | | | P | P | | i
i | Right | | P | | | | | Ped | | | _ | _ | | i
i | Peds | | - | | | | | NB Rig | | P | P | | | EB | Right | | | | | | | SB Rig | | - | - | | | WB | Right | | | | | | | Green | 110 | 8.0 | 5.0 | 53.8 | | 1 112 | 1(19110 | 18.2 | 2 14.0 |) | | | | Yellow | | 4.0 | 3.0 | 4.0 | | | | 4.0 | 4.0 | | | | | All Red | | 0.0 | 0.0 | 1.0 | | | | 0.0 | 1.0 | | | | | | | | | _,, | | | | | cle Ler | ngth: | 120.0 | 0 sec | | | | | | | | | e Summ | nary | | | | | | Appr/ | Lane | | j Sat | | tios | | Lane | Group | qqA o | proacl | ı | | | Lane | Group | | w Rate | | | | | | | | | | | Grp | Capacity | | (s) | V/C | g/ | С | Delay | LOS | Dela | ay LOS | 5 | | | Eastbou | | | | | | | | | | | | | | L | 178 | 17 | | 0.62 | | 52 | 41.4 | D | | | | | | TR | 1570 | 35 | 01 | 1.32 | 0. | 45 | 179.9 | F | 172 | .8 F | | | | Westbou | | | | | | | | | | | | | | L | 309 | 17 | | 1.29 | | 63 | 195.1 | | | | | | | Т | 1809 | 35 | | 1.44 | | 52 | 229.1 | . F | 196 | .7 F | | | | R | 1111 | 15 | 68 | 0.40 | 0. | 71 | 8.2 | A | | | | | | Northbo | und | | | | | | | | | | | | | | | 10: | 27 | 0.74 | 0. | 12 | 84.7 | F | 56.6 | 5 E | | | | LT | 120 | ΙΟ. | 4 / | | | | | | | | | | | | 120
475 | 15 | | 0.77 | 0. | 30 | 49.8 | D | | | | | | R | 475 | | | | 0. | | | D | | | | | | LT
R
Southbo
L | 475 | | 83 | | | | | | | | | | Intersection Delay = 180.9 (sec/veh) Intersection LOS = F Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/9/2011 Analysis Time Period: PM Peak Intersection: Crystal Lake Road and SR 18 Area Type: All other areas Jurisdiction: Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study E/W St: SR 18 N/S St: Crystal Lake Road #### _____VOLUME DATA_____ | | Eas | Eastbound | | Wes | stbour | nd | No | rthbo | und | Soi | ıthboı | ınd | |--------------|-------|-----------|------|-------|--------|-------|------|------------|-------|------|--------|-------| | | L | Т | R | L | Т | R | L | Т | R | L | Т | R | | _ | | | | | | | | | | | | | | Volume | 100 | 1820 | 40 | 360 | 2340 | | 60 | 20 | 330 | 690 | 60 | 300 | | % Heavy Veh | | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | PK 15 Vol | 28 | 506 | 11 | 100 | 650 | 111 | 17 | 6 | 92 | 192 | 17 | 83 | | Hi Ln Vol | | | | | | | | | | | | | | % Grade | | 0 | | ĺ | 0 | | Ì | 0 | | | 0 | ĺ | | Ideal Sat | 1900 | 1900 | | 1900 | 1900 | 1900 | İ | 1900 | 1900 | 1900 | 1900 | j | | ParkExist | İ | | | İ | | | İ | | | İ | | j | | NumPark | İ | | | İ | | | İ | | | İ | | j | | No. Lanes | 1 | 2 | 0 | 1 | 2 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | | LGConfig | L | TR | | L | Т | R | İ | $_{ m LT}$ | R | L | TR | j | | Lane Width | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | İ | 12.0 | 12.0 | 12.0 | 12.0 | j | | RTOR Vol | İ | | 0 | İ | | 0 | İ | | 0 | İ | | 0 j | | Adj Flow | 111 | 2066 | | 400 | 2600 | 444 | İ | 89 | 367 | 767 | 400 | į | | %InSharedLn | İ | | | İ | | | İ | | | İ | | j | | Prop LTs | 1.000 | 0.0 | 0.0 | 1.000 | 0.00 | 0 0 | İ | 0.7 | 53 | İ | 0.00 |) o c | | Prop RTs | 0 | .021 | | j 0. | .000 | 1.000 | 0 | .000 | 1.000 | j 0 | .832 | į | | Peds Bikes | 0 | | | j o | | | 0 | | | 0 | | į | | Buses | 0 | 0 | | j o | 0 | 0 | İ | 0 | 0 | 0 | 0 | į | | %InProtPhase | | | | 0.0 | | | İ | | | İ | | j | | | | | | i . | | _ | 1 | | | | | ļ | Duration 0.25 Area Type: All other areas | | Ea | stbou | nd | We | stbou | nd | No | rthbo | und | So | uthbour | nd | |-------------|----------|-------|----|-----|-------|-----|--------------|-------|-----|-----|---------|------| | | L | Т | R | L | Т | R | L | Т | R | L | T | R | | Init Unmet |
 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | - ————
 | 0.0 | 0.0 | 0.0 | 0.0 |
 | | Arriv. Type | 3 | 3 | | 3 | 3 | 3 | İ | 3 | 3 | 3 | 3 | į | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | İ | 3.0 | 3.0 | 3.0 | 3.0 | į | | I Factor | İ | 1.00 | 0 | İ | 1.00 | 0 | İ | 1.00 | 0 | j | 1.000 | į | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | İ | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | İ | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ped Min g | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | | j | 3.2 | į | Analyst: RMK Inter.: Springside Drive and SR 18 Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/9/2011 Jurisd: ODOT Period: AM Peak Hour Year : 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Springside Drive | 2711 20 . | | | | 11, 5 | | 9111190 | ,140 1 | 2110 | | | |-----------|---------------|----------------------|----------|-----------------------|----------------|---------|--------|----------|--------|--------| | | | SI | GNALIZEI | INTERSE | CTION S | SUMMAR | Y | | | | | | : | stbound | ! | oound | 1 | thboun | | ! | nbound | ļ | | | L
 | T R | L 7 | r R | L | Т | R | L : | r R | l
I | | No. Lanes | s | 3 0 | 1 | 3 0 | 1 | 1 | 0 | 1 | 1 0 | | | LGConfig | L | TR | Ĺ | TR | L | TR | | L | TR | j | | Volume | 360 | 880 70 | 100 61 | | | | 0 | 60 20 | 70 | | | Lane Wid | th 12.0 | 12.0 | 12.0 12 | | 12.0 1 | | | 12.0 12 | 2.0 | | | RTOR Vol | | 0 | | 0 | | 0 | | | 0 | | | Duration | 0.25 | Area ' | | ll other
al Operat | | | | | | | | Phase Cor |
mbinatior | n 1 2 | 519110 | 4 | 10115 |
5 | 6 | | 8 | | | EB Left | | P P | - | NB | Left | P | | | - | | | Thru | | P P | | İ | Thru | P | | | | | | Right | t | P P | | j | Right | P | | | | | | Peds | | | | | Peds | | | | | | | WB Left | | P | | SB | Left | P | | | | | | Thru | | P | | ļ | Thru | Р | | | | | | Right | t | P | | | Right | P | | | | | | Peds | _ | | | | Peds | | | | | | | NB Right | | | | EB
 WB | Right
Right | | | | | | | Green | C | 16.0 46.7 | | l MB | Kigiic | 43.3 | | | | | | Yellow | | 4.0 4.0 | | | | 4.0 | | | | | | All Red | | 0.0 1.0 | | | | 1.0 | | | | | | | | | | | | | | ngth: 12 | 20.0 | secs | | | | | | erformanc | | _ | | | | | | | Lane
Group | Adj Sat
Flow Rate | Rati | LOS | Lane (| Group | App | proach | | | | | Capacity | (s) | v/c | g/C | Delay | LOS | Dela | ay LOS | | | | Eastbound |
d | | | | | | | | | | | L | 449 | 1770 | 0.89 | 0.56 | 39.0 | D | | | | | | TR | 2789 | 5018 | 0.38 | 0.56 | 15.4 | В | 21.9 | 9 C | | | | Westbound | d | | | | | | | | | | | L | 187 | 481 | | 0.39 | 42.2 | | | | | | | TR | 1948 | 5006 | 0.38 | 0.39 | 26.9 | С | 28.9 | 9 C | | | | Northbou | nd | | | | | | | | | | | L | 465 | 1290 | 0.31 | | 29.3 | C | | | | | | TR | 614 | 1703 | 0.25 | 0.36 | 28.0 | С | 28.6 | 5 C | | | | Southbour | nd | | | | | | | | | | | L | 419 | 1161 | | 0.36 | 26.8 | С | | | | | | TR | 594 | 1645 | 0.17 | 0.36 | 26.7 | С | 26.8 | 3 C | | | | | | | | | | | | | | | Intersection Delay = 25.0 (sec/veh) Intersection LOS = C Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/9/2011 Analysis Time Period: AM Peak Hour Intersection: Springside Drive and SR 18 Area Type: All other areas Jurisdiction: ODOT Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Springside Drive #### _____VOLUME DATA_____ | Eas | Eastbound | | Wes | stbour | nd | No | rthboi | ınd | Sou | ıthboı | ınd | |-----------------|--|--|--|--|---|--|---
--|--|--|---| | L | T | R | L | Т | R | L | Т | R | L | Т | R | | | | | | | | | | | | | | | ! | | | ! | | | ! | | | ! | - | 70 | | 2 | 2 | _ | 2 | 2 | | 2 | 2 | | 2 | 2 | 2 | | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 100 | 244 | 19 | 28 | 169 | 17 | 36 | 17 | 22 | 17 | 6 | 19 | | | | | | | | | | | | | | | İ | 0 | | İ | 0 | | İ | 0 | | İ | 0 | į | | 1900 | 1900 | | 1900 | 1900 | | 1900 | 1900 | | 1900 | 1900 | į | | | | | j | | | İ | | | j | | i | | !
 | | | İ | | | İ | | | <u> </u> | | i | | 1 | 3 | 0 | i 1 | 3 | 0 | i 1 | 1 | 0 | i 1 | 1 | 0 | | , —
I т. | _ | Ū | , –
I т. | _ | Ü | , –
I т. | _ | Ū | , —
 т. | _ | | | ! | | | ! — | | | ! - | | | ! | | | | = = . 0 | 12.0 | Λ | -2.0 | 12.0 | Ω | -2.0 | 12.0 | Λ | -2.0 | 12.0 | 0 | | 1
1 4 0 0 | 1056 | O |
 111 | 7/5 | O |
 1111 | 156 | O | l
 67 | 100 | | | 1 00 | 1030 | | - | 743 | |
 | 130 | | 0 <i>1</i> | 100 | | |
 1 00/ | | 2.0 |
 1 000 | | 0.0 |
 1 00 | 2 0 0 | 2.0 |
 1 00/ | | | | ! | | J | ! | | 00 | ! | | J | ! | | 0 | | ! | .074 | | ! | .090 | | | .571 | | 0 | .780 | ļ | | ! | | | | | | ! | | | 0 | | | | ı | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | e 0.0 | | | | | | | | | | | | | | L
360
2
0.90
100
1900
1
12.0
400
1.000
0 | L T 360 880 2 2 0.90 0.90 100 244 0 1900 1900 1 3 L TR 12.0 12.0 400 1056 1.000 0.00 0.074 0 0 0 0 | L T R 360 880 70 2 2 2 0.90 0.90 0.90 100 244 19 0 1900 1900 1 3 0 L TR 12.0 12.0 0 400 1056 1.000 0.000 0.074 0 0 0 0 | L T R L 360 880 70 100 2 2 2 2 0.90 0.90 0.90 0.90 100 244 19 28 0 1900 1900 1900 1 3 0 1 1 7R L 12.0 12.0 12.0 0 400 1056 111 1.000 0.000 1.000 0.074 0.000 0.074 0.000 0.074 0.000 0.000 0.000 | L T R L T 360 880 70 100 610 2 2 2 2 2 0.90 0.90 0.90 0.90 0.90 100 244 19 28 169 0 0 1900 1900 1900 1900 1900 1 3 0 1 3 L TR L TR 12.0 12.0 12.0 12.0 0 400 1056 111 745 1.000 0.000 1.000 0.000 0.074 0.090 0 0 0 0 0 | L T R L T R 360 880 70 100 610 60 2 2 2 2 2 2 2 0.90 0.90 0.90 0.90 0.90 0.90 100 244 19 28 169 17 0 0 0 1900 1900 1900 1900 1 3 0 1 3 0 1 17 TR 12.0 12.0 12.0 0 400 1056 111 745 1.000 0.000 1.000 0.000 0.074 0.090 0 0 0 0 0 | L T R L T R L T R L C C C C C C C C C C C C C C C C C C | L T R L T R L T 360 880 70 100 610 60 130 60 2 | L T R L T R L T R 360 880 70 100 610 60 130 60 80 2 2 2 2 2 2 2 2 2 0 0 0.90 | L T R L T R L T R L T R L 360 880 70 100 610 60 130 60 80 60 2 2 2 2 2 2 2 2 2 2 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 100 244 19 28 169 17 36 17 22 17 0 0 0 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 400 1056 111 745 144 156 67 1.000 0.000 0.000 0.571 0 0 0 0 0 0 0 0 0 0 </td <td>L T R L T R L T R L T R L T 360 880 70 100 610 60 130 60 80 60 20 2</td> | L T R L T R L T R L T R L T 360 880 70 100 610 60 130 60 80 60 20 2 | Duration 0.25 Area Type: All other areas | | Eastbound | | | Westbound | | | No | rthbo | und | Southbound | | | |-------------|-----------|------|---|-----------|------|---|-----|-------|-----|------------|-------|-----------| | | L | Т | R | L | Т | R | L | T | R | L | T | R | | Init Unmet |
 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 |

 | | Arriv. Type | 3 | 3 | | 3 | 3 | | 3 | 3 | | 3 | 3 | į | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | į | | I Factor | İ | 1.00 | 0 | İ | 1.00 |) | İ | 1.00 | 0 | İ | 1.000 | į | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | į | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | į | | Ped Min g | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | į | Analyst: RMK Inter.: Springside Drive and SR 18 Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/9/2011 Jurisd: ODOT Period: PM Peak Hour Year : 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Springside Drive | E/W | St: S | SR 18 | | | | | N/S | St: S | pring | side D | rive | | | | |------|--------------|-----------|--------|--------|-----------|--------|----------|--------------|-------|--------|-------|-------|-----|---------| | | | | | SIC | SNALIZ | ZED IN | TERSE | CTION | SUMMA | RY | | | | | | | | : | stbour | | | stboun | | 1 |
thbou | : | | thbou | | | | | | L | Т | R | L | T | R | L | Т | R | L | Т | R | | | No. | Lanes |
 1 | 3 |
0 | <u>-</u> | 3 | 0 |
 1 | 1 | 0 | 1 | 1 | 0 | .
 | | LGC | onfig | L | TR | | L | TR | | L L | TR | i | L | TR | | İ | | Vol | | 270 | 1410 | 180 | 260 | 1590 | 60 | 410 | | 160 | 150 | 70 | 270 | i | | Lan | e Widt | h 12.0 | 12.0 | | 12.0 | 12.0 | | 12.0 | 12.0 | į | 12.0 | 12.0 | | İ | | RTO | R Vol | İ | | 0 | | | 0 | İ | | 0 | | | 0 | İ | | Dur | ation | 0.25 | | Area 1 |
Гуре: | All o | ther | areas | | | | | | | | | | | | | | | perat | ions | | | | | | | | | | nbinatior | | 2 | 3 | 4 | | T - C: | 5 | 6 | 7 | 8 | | | | EB | Left | | P | P | | | NB | Left | P | P | | | | | | | Thru | _ | | P | | | | Thru | P | P | | | | | | | Right | | | P | | | | Right | P | P | | | | | | MD | Peds
Left | | P | P | | |
 SB | Peds
Left | | P | | | | | | WB | Thru | | Р | P | | | 20 | Thru | | P | | | | | | | Right | _ | | P | | | | Right | | P | | | | | | | Peds | - | | P | | | | Peds | | Р | | | | | | NB | Right | _ | | | | |
 EB | Right | | | | | | | | SB | Right | | | | | | WB | Right | | | | | | | | Gre | _ | | 13.0 | 40.1 | | | 1 112 | 1(19110 | 22.0 | 26.9 | | | | | | Yel | | | 4.0 | 4.0 | | | | | 4.0 | 4.0 | | | | | | | Red | | 0.0 | 1.0 | | | | | 0.0 | 1.0 | | | | | | | | | | | | | | | | le Len | gth: | 120.0 | se | cs | | | | | | | | | | e Summ | | | | | | | | App: | | Lane | _ | j Sat | Ra | atios | | Lane | Group | App | roach | | | | | Lan | | Group | | Rate | | | _ | | | | | | | | | Grp | C | Capacity | (| s) | v/c | g/ | С | Delay | LOS | Dela | y LOS | | | | | Eas | tbound | i | | | | | | | | | | | | | | L | | 254 | 177 | | 1.18 | | 48 | 150.7 | F | | | | | | | TR | | 1667 | 498 | 88 | 1.06 | 0. | 33 | 79.9 | E | 90.1 | F | | | | | Wes | tbound | Ē | | | | | | | | | | | | | | L | | 254 | 177 | 70 | 1.14 | 0. | 48 | 124.5 | F | | | | | | | TR | | 1686 | 504 | 16 | 1.09 | 0. | 33 | 89.9 | F | 94.6 | F | | | | | Nor | thbour | nd | | | | | | | | | | | | | | L | | 387 | 177 | 70 | 1.18 | 0. | 45 | 140.0 | F | | | | | | | TR | | 745 | 169 | 1 | 0.39 | 0. | 44 | 24.2 | С | 95.1 | F | | | | | Sou | thbour | nd | | | | | | | | | | | | | | L | | 243 | 108 | 36 | 0.69 | 0. | 22 | 57.4 | E | | | | | | | TR | | 368 | 164 | | 1.03 | | 22 | 100.6 | | 87.4 | F | Intersection Delay = 92.3 (sec/veh) Intersection LOS = F Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/9/2011 Analysis Time Period: PM Peak Hour Intersection: Springside Drive and SR 18 Area Type: All other areas Jurisdiction: ODOT Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Springside Drive #### _____VOLUME DATA_____ | | Eastbound | | Westbound | | | No | thbo | und | Southbound | | | | |--------------|-----------|---------|-----------|-------|---------|-------------|-------|------|------------|-------|------|------| | | L | Т | R | L | T | R | L | T | R | L | T | R | | 77 - 7 | | 1 4 1 0 | 1.00 | | 1 5 0 0 | | | 1.00 | 1.60 | | | | | Volume | 270 | 1410 | 180 | 260 | 1590 | 60 | 410 | 100 | 160 | 150 | 70 | 270 | | % Heavy Veh | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | PK 15 Vol | 75 | 392 | 50 | 72 | 442 | 17 | 114 | 28 | 44 | 42 | 19 | 75 | | Hi Ln Vol | | | | | | | | | | | | | | % Grade | | 0 | | ĺ | 0 | | ĺ | 0 | | | 0 | į | | Ideal Sat | 1900 | 1900 | | 1900 | 1900 | | 1900 | 1900 | | 1900 | 1900 | į | | ParkExist | | | | İ | | | İ | | | İ | | İ | | NumPark | İ | | | İ | | | İ | | | | | i | | No. Lanes | 1 | 3 | 0 | j 1 | 3 | 0 | 1 | 1 | 0 | 1 | 1 | o İ | | LGConfig | L | TR | | ĹЬ | TR | | ĹЬ | TR | | ĺь | TR | i | | Lane Width | 12.0 | 12.0 | | 12.0 | 12.0 | | 12.0 | 12.0 | | 12.0 | 12.0 | i | | RTOR Vol | | | 0 | | | 0 | | | 0 | | | 0 | | Adj Flow | 300 | 1767 | | 289 | 1834 | | 456 | 289 | | 167 | 378 | i | | %InSharedLn | | | | | | | | | | | | İ | | Prop LTs | 1.000 | 0.0 | 0.0 | 1.000 | 0.00 | 00 | 1.000 | 0.00 | 0.0 | 1.000 | 0.00 | oo i | | Prop RTs | i o | .113 | | io. | .037 | | i o | .616 | | i o | .794 | İ | | Peds Bikes | 0 | | | 0 | | | j o | | | 0 | | | | Buses | 0 | 0 | | 0 | 0 | | 0 | 0 | | 0 | 0 | | | %InProtPhase | 0.0 | | | 0.0 | | | 0.0 | | | İ | | į | | Dunation | 0 0 5 | | 7 [| Tl • | 777. | a + b a - a | | | | | | · | Duration 0.25 Area Type: All other areas | | Ea | stbound | We | stbound | No | rthbound | Southbound | | | |-------------|-------------|---------|-----|---------|-----|----------|------------|-------|--| | | L | T R | L | T R | L | T R | L | T R | | | Init Unmet |
 0 . 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Arriv. Type | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | Unit Ext. | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | I Factor | ĺ | 1.000 | İ | 1.000 | İ | 1.000 | İ | 1.000 | | | Lost Time | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | Ext of g | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | Ped Min g | j | 3.2 | İ | 3.2 | İ | 3.2 | İ | 3.2 | | #### ___TWO-WAY STOP CONTROL SUMMARY__ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: AM Peak Intersection: SR 18 and Scenic View Dr Jurisdiction: Units: U. S. Customary Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 East/West Street: SR 18 North/South Street: Scenic View Dr Intersection Orientation: EW Study period (hrs): 1.00 | | Ve | hicle Volu | umes and | Adjus | stme | nts | | | | |----------------|--------------|------------|----------|--------|------|--------|---------|------------|----| | Major Street: | Approach | Eas | stbound | | | We | stbound | i | | | | Movement | 1 | 2 | 3 | | 4 | 5 | 6 | | | | | L | Т | R | | L | Т | R | | | Volume | | | 2360 | 20 | | 10 | 1060 | | | | Peak-Hour Fact | or, PHF | | 0.90 | 0.90 | | 0.90 | 0.90 | | | | Hourly Flow Ra | ite, HFR | | 2622 | 22 | | 11 | 1177 | | | | Percent Heavy | Vehicles | | | | | 4 | | | | | Median Type/St | | Undiv | ided | | | / | | | | | Lanes | | | 2 0 | | | 1 | 2 | | | | Configuration | | | T TR | | | L | | | | | Upstream Signa | 11? | | No | | | | No | | | | Minor Street: | Approach | Noi | thbound | | | So | uthbour |
nd | | | | Movement | 7 | 8 | 9 | | 10 | 11 | 12 | | | | | L | Т | R | | L | T | R | | | Volume | | 10 | | 40 | | | | | | | Peak Hour Fact | | 0.90 | | 0.90 | | | | | | | Hourly Flow Ra | | 11 | | 44 | | | | | | | Percent Heavy | Vehicles | 2 | | 2 | | | | | | | Percent Grade | | | 0 | | | | 0 | | | | Flared Approac | h: Exists | ?/Storage | | No | / | | | | / | | Lanes | | 0 | 0 | | | | | | | | Configuration | | | LR | | | | | | | | | Dolay | Queue Lei | | d Towe | .1 0 | f Corr | | | | | Approach | DCIAY,
EB | WB | _ | hbound | | I DCIV | |
hbound | | | Movement | 1 | 4 | 7 | 8 | 9 | 1 | 10 | 11 | 12 | | Lane Config | Τ. | L | | LR | 9 | | 10 | 11 | 12 | | | | | | шк | |
 | | | | | v (vph) | | 11 | | 55 | | | | | | | C(m) (vph) | | 152 | | 27 | | | | | | | v/c | | 0.07 | | 2.04 | | | | | | | 95% queue leng | ŗth | 0.23 | | 18.47 | | | | | | | Control Delay | | 30.5 | | 2238 | | | | | | | LOS | | D | | F | | | | | | | Approach Delay | 7 | | | 2238 | | | | | | | Approach LOS | | | | F | | | | | | | | | | | | | | | | | #### __TWO-WAY STOP CONTROL SUMMARY__ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: PM Peak Intersection: SR 18 and Scenic View Dr Jurisdiction: Units: U. S. Customary Analysis Year: 2035 No-Build Project ID: Summit 18 Corridor Study PID 77749 East/West Street: SR 18 North/South Street: Scenic View Dr Intersection Orientation: EW Study period (hrs): 1.00 | | Veh | icle Volı | umes and | Adjus | stme | nts | | | | |----------------------------------|----------------|-----------------|-------------|------------------|-------|--------|---------|--------|-------| | Major Street: | Approach | Eas | stbound | | | We | stbound | l | | | | Movement | 1 | 2 | 3 | | 4 | 5 | 6 | | | | | L | T | R | j | L | T | R | | |
Volume | | |
1750 | 10 | | 50 | 2430 | | | | | or DIE | | 0.90 | 0.90 | | 0.90 | 0.90 | | | | Peak-Hour Fact
Hourly Flow Ra | | | 1944 | 11 | | 55 | 2700 | | | | Percent Heavy | | | 1944 | | | 4 | 2700 | | | | Median Type/St | | Undiv | | | | 4
/ | | | | | RT Channelized | _ | UIIQIV | ided | | | / | | | | | Lanes | | | 2 0 | | | 1 | 2 | | | | Configuration | | | T TR | | | L | Т | | | | Upstream Signa | 1? | | No | | | | No | | | | Minor Street: |
Approach |
No: |
thbound | | | So | uthbour |
ıd | | | | Movement | 7 | 8 | 9 | - 1 | 10 | 11 | 12 | | | | | L | T | R | j | L | Т | R | | |
Volume | | 0 | | 20 | | | | | | | Peak Hour Fact | or DUE | 0.90 | | 0.90 | | | | | | | Hourly Flow Ra | | 0.90 | | 22 | | | | | | | Percent Heavy | | 2 | | 2 | | | | | | | Percent Grade | | 2 | 0 | 4 | | | 0 | | | | Flared Approac | | /Storage | O | No | / | | U | | / | | Lanes | II. EXISCS: | 0 | 0 | | / | | | | / | | Configuration | | O | LR | Dolor | Queue Lei | nath an | d T 0 | . 1 . | £ 00 | | | | | Approach | Delay, (
EB | gueue пет
WB | _ | a веvе
hbound | | r serv | | hbound |
1 | | Movement | 1 | 4 l | 7 | 8 | 9 | ı | 10 | 11 | 12 | | Lane Config | T | L | | LR | 9 | | 10 | т т | 12 | | | | | | | | I
 | | | | | v (vph) | | 55 | | 22 | | | | | | | C(m) (vph) | | 287 | | 302 | | | | | | | v/c | | 0.19 | | 0.07 | | | | | | | 95% queue leng | th | 0.71 | | 0.24 | | | | | | | Control Delay | | 20.5 | | 17.9 | | | | | | | LOS | | С | | С | | | | | | | Approach Delay | | | | 17.9 | | | | | | | Approach LOS | | | | С | | | | | | | | | | | | | | | | | #### Interchange Modification Study Summit 18 Corridor PID 77749 ### **Build Intersections** Analyst: RMK Inter.: SR 18 and Heritage Woods Rd Agency: Burgess & Niple Inc Area Type: All other
areas Date: 9/26/2011 Jurisd: Period: AM Peak Hour Year : 2035 Build Project ID: Summit 18 Corridor Study PID 77749 | E/W St: SR | | 10 10 0011 | Idol Beac | _ | | ritage Woo | ods | | |------------|----------|------------|-----------|-----------------------|----------|----------------|-----------|----------| | | | S | IGNALIZEI | O INTERSE | CTION SU | JMMARY | | | | | Ea | stbound | | oound | | nbound | Southk | ound | | | L
 | T R | ļĿ: | Г В | j r | r R | L T | R
 | | No. Lanes | 1 | 3 0 | 2 | 2 0 | 1 | 1 1 | 1 1 | . 0 | | LGConfig | Ĺ | TR | L | TR | L | T R | ļь т | r İ | | Volume | 10 | 2320 70 | | 90 50 | | 580 | 20 10 | 10 | | Lane Width | 12.0 | 12.0 | 12.0 12 | 2.0 | 12.012 | 2.0 12.0 | 12.0 12. | 0 | | RTOR Vol | | 0 | | 0 | | 0 | | 0 | | Duration | 0.25 | Area | | ll other
al Operat | | | | | | Phase Comb | inatio | n 1 2 | 3 | 4 | 10110 | 5 6 | | 8 | | EB Left | | P | - | -
 NB | Left | P | - | • | | Thru | | P | | İ | Thru | P | | | | Right | | P | | İ | Right | P | | | | Peds | | | | ĺ | Peds | | | | | WB Left | | P | | SB | Left | P | | | | Thru | | P P | | | Thru | P | | | | Right | | P P | | | Right | P | | | | Peds | | | | | Peds | | | | | NB Right | | P | | EB | Right | | | | | SB Right | | | | WB | Right | | | | | Green | | 13.0 61. | 4 0.0 | | | 31.6 0.0 | | | | Yellow | | 4.0 4.0 | | | | 1.0 | | | | All Red | | 0.0 1.0 | | | | L.O | na+h· 100 |) 0 | | | | Intera | eation Da | arformana | | Cycle Le | _ | 0.0 secs | | Appr/ La |
.ne | Incers | | ios | | -y
coup Apj | | | | | oup | Flow Rat | | 105 | Dane Gi | LOUP API | proach | | | | pacity | | v/c | g/C | Delay I | LOS Dela | av LOS | | | | | | | | | | | | | Eastbound | 2.0 | 4.40 | 0 05 | 0 51 | 4 = 4 | _ | | | | | 30 | 449 | 0.05 | 0.51 | 15.1 | В | | | | TR 2 | 535 | 4955 | 1.05 | 0.51 | 61.3 | E 61. | 1 E | | | Westbound | . | 2.4.2.2 | 0 | 0 1 - | F.O | _ | | | | | 69 | 3403 | 0.63 | 0.11 | 59.2 | E 10 | <i>-</i> | | | TR 2 | 278 | 3487 | 0.51 | 0.65 | 11.6 | В 19.0 | 6 В | | | Northbound | | 1004 | 0 01 | 2 2 5 | 25.2 | _ | | | | | 64 | 1384 | 0.21 | 0.26 | 35.9 | D | o = | | | | 91 | 1863 | 0.07 | 0.26 | 33.4 | C 61.9 | 9 E | | | | 54 | 1583 | 0.98 | 0.41 | 66.5 | E | | | | Southbound | | 1270 | 0.06 | 0 26 | 22 4 | a | | | | | 61 | 1370 | 0.06 | 0.26 | 33.4 | C 22 1 | 2 G | | | TR 4 | 54 | 1723 | 0.05 | 0.26 | 33.2 | C 33. | 3 C | | Intersection Delay = 49.1 (sec/veh) Intersection LOS = D Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Burgess & Niple Inc Agency/Co.: Date Performed: 9/26/2011 Date Periormed. Analysis Time Period: AM Peak Hour Thtersection: SR 18 and Heritage Woods Rd Area Type: All other areas Jurisdiction: 2035 Build Analysis Year: Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Heritage Woods #### _____VOLUME DATA_____ | | Eas | stbou | nd | Wes | stbour | nd | No | rthbou | ınd | Sou | ıthboı | und | |--|---|------------------------------|------|-----------------------------|-------------------|--------|--|----------------------|---------------------------------|--------------------------------|-----------------|--------| | | L | T | R | L | T | R | L | Т | R | L | T | R | | Volumo |
 10 | 2220 | 70 |
 210 | 990 |
50 |
 70 | 2.0 |
580 |
 20 | 10 |
10 | | Volume | | 2320 | - | 210 | | | ! | 30 | | ! - | | - ! | | % Heavy Veh | : | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 0.90 | 0.90 | 0.90 | | PK 15 Vol | 3 | 644 | 19 | 58 | 275 | 14 | 19 | 8 | 161 | 6 | 3 | 3 | | Hi Ln Vol | | | | | | | | | | | | | | % Grade | | 0 | | | 0 | | | 0 | | | 0 | | | Ideal Sat | 1900 | 1900 | | 1900 | 1900 | | 1900 | 1900 | 1900 | 1900 | 1900 | ĺ | | ParkExist | İ | | | İ | | | İ | | | İ | | į | | NumPark | İ | | | İ | | | İ | | | İ | | į | | No. Lanes | 1 | 3 | 0 | 2 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | LGConfig | L | TR | | L | TR | | L | T | R | L | TR | j | | Lane Width | 12.0 | 12.0 | | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | j | | RTOR Vol | j | | 0 | İ | | 0 | İ | | 0 | j | | 0 | | Adj Flow | 11 | 2656 | | 233 | 1156 | | 78 | 33 | 644 | 22 | 22 | ĺ | | %InSharedLn | İ | | | ĺ | | | İ | | | İ | | j | | Prop LTs | 1.000 | 0.00 | 0.0 | İ | 0.00 | 0.0 | 1.000 | 0.00 | 0.0 | 1.000 | 0.00 | j oc | | Prop RTs | 0 | .029 | | 0 | .048 | | 0 | .000 | 1.000 | 0 | .500 | j | | Peds Bikes | 0 | | | 0 | | | 0 | | | 0 | | j | | Buses | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | j | | %InProtPhase | Э | | | | | | | | | | | | | No. Lanes LGConfig Lane Width RTOR Vol Adj Flow %InSharedLn Prop LTs Prop RTs Peds Bikes Buses | L
 12.0

 11

 1.000
 0
 0 | TR
12.0
2656
0 0.00 | 0 | L
 12.0
 233
 0 | TR 12.0 1156 0.00 | 0 | L
 12.0

 78

 1.000
 0 | 12.0
33
0 0.00 | 12.0
0
644
00
1.000 | 12.0
 22
 1.000
 0 | TR 12.0 22 0.00 | 0 | Duration 0.25 Area Type: All other areas #### ____OPERATING PARAMETERS______ | | Ea | stbou: | nd | We | stbour | nd | No | rthbo | und | So | uthbou | nd | |-------------|----------|--------|----|-----|--------|----|-----|-------|-----|--------------------|--------|------| | | L | Т | R | L | Т | R | L | Т | R | L | T | R | | Init Unmet |
 0.0 | 0.0 | | 0.0 | 0.0 | | - | 0.0 | 0.0 | - <u></u>
 0.0 | 0.0 |
 | | Arriv. Type | 3 | 3 | | 3 | 3 | | 3 | 3 | 3 | 3 | 3 | į | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | į | | I Factor | ĺ | 1.00 | 0 | İ | 1.000 |) | İ | 1.00 | 0 | İ | 1.000 | į | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ped Min q | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | j | Jurisd: Analyst: RMK Inter.: SR 18 and Heritage Woods Rd Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/26/2011 Period: PM Peak Hour Year : 2035 Build Project ID: Summit 18 Corridor Study PID 77749 | E/W St: SF | 18 | | | | | N/S | St: I | Herita | age Wo | ods | | | | |--------------|------------|------------|--------|---------|--------|-----------------|-------|---------|--------|--------|------------|-------|------| | | | | QT | anat.t' | יד מקק | MTFDCF | CTION | QTTMM7 | \ D V | | | | | | | Fa |
stbour | | | stbour | | | rthbou | | | uthbo | | | | | L | T | R R | We; | T | R R | | T | R R | 50 | испро
Т | R | | | | | 1 | IX. | | 1 | K | " | 1 | K | " | 1 | IX | | | No. Lanes | 1 | 3 | 0 | 2 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | | LGConfig | į L | TR | | i L | TR | | i L | ${f T}$ | R | ļь | TR | | į | | Volume | 30 | 1670 | 70 | 730 | 2320 | 10 | 110 | 50 | 560 | 40 | 50 | 50 | j | | Lane Width | ı 12.0 | 12.0 | | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | | j | | RTOR Vol | j | | 0 | j | | 0 | j | | 0 | İ | | 0 | j | | | | | | | | . 1 | | | | | | | | | Duration | 0.25 | | Area ' | | | otner
Operat | | | | | | | | | Phase Comb | oinatio | n 1 | 2 | S±: | 4 | | | 5 | 6 | | |
8 | | | EB Left | | _ | P | - | - | NB | Left | P | ŭ | • | | - | | | Thru | | | P | | | | Thru | | | | | | | | Right | | | P | | | i | Right | | | | | | | | Peds | | | _ | | | i | Peds | _ | | | | | | | WB Left | | P | | | | l sb | Left | P | | | | | | | Thru | | P | P | | | 22 | Thru | | | | | | | | Right | | P | P | | | i | Right | | | | | | | | Peds | | - | - | | | | Peds | | | | | | | | NB Right | | P | | | | EB | Right | t. | | | | | | | SB Right | | _ | | | | l WB | Right | | | | | | | | Green | | 31.9 | 50.9 | | | 1 | 3 | 23.2 | 0.0 | | | | | | Yellow | | 4.0 | 4.0 | | | | | 4.0 | | | | | | | All Red | | 0.0 | 1.0 | | | | | 1.0 | | | | | | | | | | | | | | | Сус | cle Le | ngth: | 120. | 0 | secs | | | | | nterse | | | | | _ | | | | | | | · | ane | | j Sat | | atios | | Lane | Group | o Apj | proac. | h | | | | | coup | | w Rate | | | | | | | | | | | | Grp Ca | apacity | (| (S) | V/C | g, | /C | ретау | y LOS | Dela | ay LO | S | | | | Eastbound | | | | | | | | | | | | | | | L 6 | 51 | 144 | 4 | 0.5 | 4 0 | .42 | 56.1 | E | | | | | | | TR 2 | 2098 | 494 | 46 | 0.9 | 2 0 | .42 | 40.9 | D | 41. | 1 D | | | | | Westbound | | | | | | | | | | | | | | | | 905 | 340 | 0.3 | 0.9 | 0 0 | . 27 | 55.8 | E | | | | | | | | 2539 | 351 | | 1.0 | | .72 | 39.6 | D | 43. | 5 D | | | | | Northbound | 1 | | | | | | | | | | | | | | | 1
231 | 119 | 2.7 | 0.5 | 3 0 | .19 | 51.9 | D | | | | | | | | 331
360 | 186 | | 0.5 | | .19 | 41.2 | | 35. | 9 D | | | | | | | | | 0.1 | | | | D
C | 33. | פ ע | | | | | R Southbound | 793
1 | 158 | 5.5 | 0.7 | 5 0 | .50 | 32.3 | С | | | | | | | | | 1 2 4 | 1.2 | 0 1 | 7 0 | 1 0 | /11 O | D | | | | | | | | 259 | 134 | | 0.1 | | .19 | 41.8 | D | 40 | 7 - | | | | | TR 3 | 333 | 172 | 45 | 0.3 | ± U | .19 | 44.5 | D | 43. | 7 D | | | | Intersection Delay = 41.8 (sec/veh) Intersection LOS = D Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/26/2011 Analysis Time Period: PM Peak Hour Intersection: SR 18 and Heritage Woods Rd Area Type: All other areas Jurisdiction: Analysis Year: 2035 Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Heritage Woods #### _____VOLUME DATA_____ | | Eas | stbou | nd | Wes | stbour | nd | No | thbo | ınd | Sou | ıthboı | ınd | |--------------|----------|-------|------|------|--------|------|----------|------|-------|-------|--------|-------| | | L | Т | R | L | Т | R | L | Т | R | L | Т | R | | 7 | | | | | | | | | | | | | | Volume | 30 | 1670 | 70 | 730 | 2320 | 10 | 110 | 50 | 560 | 40 | 50 | 50 | | % Heavy Veh | 4 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | PK 15 Vol | 8 | 464 | 19 | 203 | 644 | 3 | 31
 14 | 156 | 11 | 14 | 14 | | Hi Ln Vol | | | | | | | | | | | | | | % Grade | | 0 | | j | 0 | | İ | 0 | | İ | 0 | j | | Ideal Sat | 1900 | 1900 | | 1900 | 1900 | | 1900 | 1900 | 1900 | 1900 | 1900 | į | | ParkExist | | | | İ | | | İ | | | İ | | į | | NumPark | | | | İ | | | İ | | | İ | | į | | No. Lanes | 1 | 3 | 0 | 2 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | LGConfig | L | TR | | L | TR | | L | Т | R | ĹГ | TR | į | | Lane Width | 12.0 | 12.0 | | 12.0 | 12.0 | | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | į | | RTOR Vol | | | 0 | İ | | 0 | <u> </u> | | 0 | İ | | 0 | | Adj Flow | 33 | 1934 | | 811 | 2589 | | 122 | 56 | 622 | 44 | 112 | į | | %InSharedLn | | | | İ | | | İ | | | İ | | į | | Prop LTs | 1.000 | 0.0 | 0 0 | İ | 0.00 | 00 | 1.000 | 0.00 | 0.0 | 1.000 | 0.00 |) 0 j | | Prop RTs | 0 | .040 | | j 0. | .004 | | j o | .000 | 1.000 | j o | .500 | į | | Peds Bikes | 0 | | | j o | | | j o | | | j o | | į | | Buses | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | j | | %InProtPhase | <u>-</u> | | | İ | | | İ | | | İ | | į | | - | | | | | | | • | | | • | | | Duration 0.25 Area Type: All other areas #### _____OPERATING PARAMETERS_____ | | Ea | stbou | nd | We | stbour | nd | No | rthbo | und | So | uthbour | nd | |-------------|--------|-------|----|-----|--------|----|-----|-------|-----|-----|---------|------| | | L
I | Т | R | L | Т | R | L | Т | R | L | T | R | | Init Unmet | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
 | | Arriv. Type | 3 | 3 | | 3 | 3 | | 3 | 3 | 3 | 3 | 3 | ĺ | | Unit Ext. | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | į | | I Factor | | 1.000 |) | ĺ | 1.000 |) | İ | 1.00 | 0 | İ | 1.000 | ĺ | | Lost Time | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ext of g | 2.0 | 2.0 | | 2.0 | 2.0 | | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | į | | Ped Min g | İ | 3.2 | | İ | 3.2 | | Ì | 3.2 | | j | 3.2 | į | Analyst: RMK Inter.: SR 18 and Crystal Lake Rd Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/26/2011 Jurisd: Period: AM Peak Hour Year : 2035 Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd | | r | astbour | | | tbour | | CTION S | hbou | | 9011 | thbo | | |--|---|--|--|---------------------------------------|--------------------|--------------------------|-------------------------------------|--|---|---------------------|------|-------| | | L | T T | R | L | T | R | L | T | R | L | Т | R | | No. Lane | eg |
L 3 |
0 | |
3 | | | 0 |
0 | | |
1 | | LGConfig | I | T | | · · | T | R | | Ū | | L | Ū | R | | Volume | 510 | 2600 | i | | 1150 | | | | i | 550 | | 200 | | Lane Wid | 1 | 12.0 | i | | 12.0 | | İ | | į | 12.0 | | 12.0 | | RTOR Vol | 1 | | j | | | 0 | Ì | | İ | | | 0 | | Duration | n 0.25 |
5 | Area T | | | | | | | | | | | | 1- 2 | | | | |)perat | ions |
5 | | | | | | | ombinatio | | 2 | 3 | 4 | | T of t | 5 | 6 | 7 | | 8 | | EB Left
Thru | | P
P | P
P | | | NB | Left
Thru | | | | | | | | | Р | Р | | | | | | | | | | | Righ | | | | | | | Right | | | | | | | Peds | | | | | | | Peds | Ъ | | | | | | VB Left | | | D | | | SB | Left | Р | | | | | | Thru | | | P | | | | Thru | Ъ | | | | | | Righ | | | P | | | | Right
Peds | P | | | | | | Peds | | | | | | == | | | | | | | | NB Righ | | Б | | | | EB | Right | Ъ | | | | | | SB Righ | 110 | P | 26 7 | 0 0 | | WB | Right | 38.3 | 36.7 | 0.0 | | | | 31.0 | 0.0 | | | | | Yellow | | 4.0 | 4.0 | 0.0 | | | | 4.0 | 0.0 | | | | | Yellow | | | | 0.0 | | | | 4.0 | | acth: | 120 | 0 50 | | Zellow | | 4.0 | 4.0 | | Derfo | ormanc | e Summa | 4.0
1.0
Cyc | le Len | ıgth: | 120. | 0 sec | | Yellow
All Red | | 4.0
0.0 | 4.0
1.0
ntersec | tion | | ormanc | e Summa | 4.0
1.0
Cycl | le Len | | | 0 sec | | Yellow
All Red
 | Lane | 4.0
0.0
Ir
Adj | 4.0
1.0
ntersec
j Sat | tion | Perfo | ormanc | e Summa
Lane (| 4.0
1.0
Cycl | le Len | ngth:

proach | | 0 sec | | Yellow
All Red

Appr/
Lane | | 4.0
0.0
Ir
Adj | 4.0
1.0
ntersec | tion | tios | | | 4.0
1.0
Cyclary | le Len
App | | | 0 sec | | Yellow
All Red
Appr/
Lane
Grp | Lane
Group
Capacity | 4.0
0.0
Ir
Adj | 4.0
1.0
ntersec
j Sat
v Rate | tion
Ra | tios | | Lane (| 4.0
1.0
Cyclary | le Len
App | roach | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour | Lane
Group
Capacity | 4.0
0.0
Ir
Adj | 4.0
1.0
ntersection Sature Rate | tion
Ra | tios
g/ |
′C | Lane (| 4.0
1.0
Cyclary | le Len
App | roach | | 0 sec | | Yellow All Red Appr/ Lane Grp Lastbour | Lane
Group
Capacity
nd
621 | 4.0
0.0
In
Adj
Flow | 4.0
1.0
ntersection Sature Rate
(s) | tion
Ra

v/c
0.91 | g/ | | Lane (Delay | 4.0
1.0
Cyclary
Group

LOS | le Len
App
———
Dela | proach | | 0 sec | | Yellow All Red Appr/ Cane Grp Eastbour | Lane Group Capacity nd 621 3308 | 4.0
0.0
Ir
Adj
Flow | 4.0
1.0
ntersection Sature Rate
(s) | tion
Ra

v/c | g/ |
′C | Lane (

Delay | 4.0
1.0
Cyclary
Group

LOS | le Len
App | proach | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour | Lane Group Capacity nd 621 3308 | 4.0
0.0
In
Adj
Flow | 4.0
1.0
ntersection Sature Rate
(s) | tion
Ra

v/c
0.91 | g/ | | Lane (Delay | 4.0
1.0
Cyclary
Group

LOS | le Len
App
———
Dela | proach | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour L T | Lane Group Capacity nd 621 3308 | 4.0
0.0
In
Adj
Flow
(| 4.0
1.0
ntersection Sature Rate (SS) | tion
Ra

v/c
0.91
0.87 | tios
g/
. 0. |
(C
.67
.66 | Lane (Delay | 4.0
1.0
Cyclary
Group
LOS
D | le Len App ——— Dela | proach | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour U | Lane Group Capacity nd 621 3308 | 4.0
0.0
In
Adj
Flow
(| 4.0
1.0
ntersection Sature Rate (S) | tion Ra v/c 0.91 0.87 | g/
. 0. |
(C
.67
.66 | Lane (Delay 52.3 20.0+ | 4.0 1.0 Cyc. ary Group LOS D C | le Len App ——— Dela | proach | | 0 sec | | Tellow All Red Appr/ Lane Grp | Lane Group Capacity nd 621 3308 nd 1537 950 | 4.0
0.0
In
Adj
Flow
(| 4.0
1.0
ntersection Sature Rate (S) | tion Ra v/c 0.91 0.87 | g/
. 0. | 67
66 | Lane (Delay 52.3 20.0+ | 4.0 1.0 Cyc. ary Group LOS D C | le Len App ——— Dela | proach | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour L T Westbour | Lane Group Capacity nd 621 3308 nd 1537 950 | 4.0
0.0
In
Adj
Flow
(| 4.0
1.0
ntersection Sature Rate (S) | tion Ra v/c 0.91 0.87 | g/
. 0. | 67
66 | Lane (Delay 52.3 20.0+ | 4.0 1.0 Cyc. ary Group LOS D C | le Len App ——— Dela | proach | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour L T Westbour R R Northbou | Lane Group Capacity and 621 3308 and 1537 950 und | 4.0
0.0
In
Adj
Flow
7
175
502 | 4.0
1.0
ntersection Sature (Sature Rate (Sature Sature Sat | 0.91
0.87 | g/
. 0. | 67
66
31 | Lane (Delay 52.3 20.0+ 44.2 18.6 | 4.0 1.0 Cyc. ary Group LOS D C | le Len App ——— Dela | proach | | 0 sec | | | Lane Group Capacity nd 621 3308 nd 1537 950 und | 4.0
0.0
In
Adj
Flow
7
175
502 | 4.0
1.0
ntersection Sature (Sature Rate (Sature Sature Sat | 0.91
0.87 | g/
. 0. | 67
66
31 | Lane (Delay 52.3 20.0+ | 4.0 1.0 Cyc. ary Group LOS D C | le Len App —————————————————————————————————— | proach Ly Los | | 0 sec | | Yellow All Red Appr/ Lane Grp Eastbour L T Westbour R
Northbou | Lane Group Capacity and 621 3308 and 1537 950 und und 888 | 4.0
0.0
Ir
Add
Flow
7
(
175
502
156 | 4.0
1.0
ntersective Rate
(s)
 | 0.83
0.64 | g/
. 0. | .67
.66
.31
.61 | Lane (Delay 52.3 20.0+ 44.2 18.6 | 4.0 1.0 Cyc: ary Group LOS D C | le Len App —————————————————————————————————— | proach | | 0 sec | Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/26/2011 Analysis Time Period: AM Peak Hour Intersection: SR 18 and Crystal Lake Rd Area Type: All other areas Jurisdiction: Analysis Year: 2035 Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd #### _____VOLUME DATA_____ | | Eas | stbour | nd | Wes | stbour | nd | No | rthbo | und | Sou | thbo | und | |--------------|------------------|--------|-----|-------|--------|------|-------|-------|-----|-----------------|------|---------| | | L | T | R | ļ L | Т | R | L | T | R | L | Т | R | | Volume |
 510 | 2600 | |
 | 1150 | | | | | <u></u>
 550 | |
200 | | % Heavy Veh | ! | 3 | | !
 | 3 | 3 |]
 | | | 2 | | 2 | | PHF | : | 0.90 | |
 | - | 0.90 |
 | | | 0.90 | | 0.90 | | PK 15 Vol | 142 | 722 | |
 | 319 | 153 |
 | | | 153 | | 56 | | Hi Ln Vol | 1 1 2 | 1 4 4 | |
 | 319 | 133 |
 | | | 1 1 2 2 | | 50 | | |
 | 0 | |
 | 0 | | | | | | 0 | ļ | | % Grade | | • | | | | 1000 | | | | 11000 | 0 | 1000 | | Ideal Sat | 1900 | 1900 | | | 1900 | 1900 | | | | 1900 | | 1900 | | ParkExist | | | | | | | | | | ļ | | | | NumPark | | | | ļ | | | ļ | | | | | ļ | | No. Lanes | 1 | 3 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | | LGConfig | L | T | | | Т | R | | | | L | | R | | Lane Width | 12.0 | 12.0 | | | 12.0 | 12.0 | | | | 12.0 | | 12.0 | | RTOR Vol | | | | | | 0 | | | | | | 0 | | Adj Flow | 567 | 2889 | | İ | 1278 | 611 | İ | | | 611 | | 222 | | %InSharedLn | | | | İ | | | İ | | | İ | | į | | Prop LTs | 1.000 | 0.00 | 0 (| İ | 0.00 | 0.0 | İ | | | İ | | į | | Prop RTs | ! | .000 | | io. | .000 | | İ | | | i | | 1.000 | | Peds Bikes | | | | 0 | | | i 0 | | | 0 | | | | Buses | 0 | 0 | | | 0 | 0 | | | | 0 | | 0 | | %InProtPhase | | | | İ | | | İ | | | | | i | Duration 0.25 Area Type: All other areas #### _____OPERATING PARAMETERS_____ | | Ea | stbou | nd | We | stbou | nd | No | rthbo | und | Son | ıthbo | und | |-------------|-----|-------|----|----|-------|-----|----|-------|-----|-----|-------|-----| | | L | Т | R | L | T | R | L | T | R | L | T | R | | | | | | | | | | | | . | | | | Init Unmet | 0.0 | 0.0 | | | 0.0 | 0.0 | | | | 0.0 | | 0.0 | | Arriv. Type | 3 | 3 | | | 3 | 3 | | | | 3 | | 3 | | Unit Ext. | 3.0 | 3.0 | | İ | 3.0 | 3.0 | İ | | | 3.0 | | 3.0 | | I Factor | | 1.00 | 0 | ĺ | 1.00 | 0 | Ì | | | İ | 1.00 | 0 | | Lost Time | 2.0 | 2.0 | | İ | 2.0 | 2.0 | İ | | | 2.0 | | 2.0 | | Ext of g | 2.0 | 2.0 | | İ | 2.0 | 2.0 | İ | | | 2.0 | | 2.0 | | Ped Min g | İ | | | j | 3.2 | | İ | 3.2 | | İ | 3.2 | j | Jurisd: Analyst: RMK Inter.: SR 18 and Crystal Lake Rd Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/26/2011 Period: PM Peak Hour Year : 2035 Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd | | | | ~-~ | | | | ~ | ~ | | | | | |--|--------------------------------|-----------------------------------|--------------------------------------|---------------------------|-------------|--------------------------|--------------------------|-----------------------------------|--------------------|--------------------|-----------|----------| | | | | | | | | CTION S | | | | | | | | East
 L | tboun
T | a
R | wes
L | tbour
T | na
R | Nort | thbour
T | na
R | Sou
L | thbo
T | una
R | | | - | - | | | _ | 10 | - | _ | 1 | | _ | 10 | | No. Lanes | 1 | 3 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | | LGConfig | i L | T | į | | T | R | İ | | į | L | | R | | Volume | 120 2 | 2150 | j | | 2700 | 400 | İ | | j | 690 | | 360 | | Lane Width | 12.0 | 12.0 | j | | 12.0 | 12.0 | İ | | j | 12.0 | | 12.0 | | RTOR Vol | Ì | | İ | | | 0 | | | İ | | | 0 | | Duration | 0.25 | | Area T | | | | | | | | | | | | | | | | | perat | ions | | | | | | | Phase Comb | ınatıon | | 2 | 3 | 4 | | T - C - | 5 | 6 | 7 | | 8 | | EB Left | | P | P
P | | | NB | Left | | | | | | | Thru | | P | Р | | | | Thru | | | | | | | Right | | | | | | | Right | | | | | | | Peds | | | | | | | Peds | ъ | | | | | | WB Left | | | Б | | | SB | Left | Р | | | | | | Thru | | | P | | | | Thru | ъ | | | | | | Right | | | P | | | ļ | Right | P | | | | | | Peds | | | | | | === | Peds | | | | | | | NB Right | | _ | | | | EB | Right | _ | | | | | | SB Right | , | P | 60.0 | 0 0 | | WB | Right | | 0 0 | | | | | Green | | 9.0 | 67.8 | 0.0 | | | | 29.2 | 0.0 | | | | | Yellow | | 4.0 | 4.0 | | | | | 4.0 | | | | | | All Red | (| 0.0 | 1.0 | | | | | 1.0 | | | | | | | | | | | | | | ~ 7 | l - T | | 1 0 0 | A | | | | Tn | toraca | tion | Dorfo | xmana | o Cumma | _ | le Len | igth: | 120. | 0 sec | | 7nnr/ Ia | | | | | | ormanc | e Summa | ary | | | | 0 sec | | |
ne
oup | Adj | tersec
Sat
Rate | | Perfo | ormanc | e Summa
Lane (| ary | | ıgth:

roach | | 0 sec | | Lane Gr | | Adj
Flow | Sat | | tios | | | ary
Group |
App | |
 | 0 sec | | Lane Gr
Grp Ca
————Eastbound | oup
pacity
 | Adj
Flow
(| Sat
Rate
s) | Ra

v/c | ntios
g/ |
′C | Lane (| ary
Group |
App | roach |
 | 0 sec | | Lane Gr
Grp Ca

Eastbound | oup | Adj
Flow | Sat
Rate
s) | Ra

v/c | g/
9 | | Lane (| ary
Group |
App | roach |
 | 0 sec | | Lane Gr
Grp Ca

Eastbound
L 1 | oup
pacity
 | Adj
Flow
(| Sat
Rate
s)
 | Ra

v/c | g/
9 |
′C | Lane (| ary
Group

LOS |
App | roach
y LOS |
 | 0 sec | | Lane Gr
Grp Ca
Eastbound
L 1
T 3 | oup
pacity

92 | Adj
Flow
(| Sat
Rate
s)
 | Ra

v/c | g/
9 | | Lane (Delay | ary
Group

LOS | App
———
Dela | roach
y LOS |
 | 0 sec | | Lane Gr Grp Ca Eastbound L 1 T 3 | oup
pacity

92
384 | Adj
Flow
(175
502 | Sat
Rate
s)

2
5 | Ra
v/c
0.69
0.71 | g/
 |
/C

.68
.67 | Lane (Delay 52.5 13.5 | ary
Group

LOS
D
B | App Dela | proach Ly LOS |
 | 0 sec | | Lane Gr Grp Ca Eastbound L 1 T 3 Westbound | oup pacity 92 384 | Adj
Flow
(175
502 | Sat
Rate
s)

2
5 | 0.69 | g/
 |
/C

68
67 | Lane (Delay 52.5 13.5 | ary
Group

LOS
D
B | App
———
Dela | proach Ly LOS |
 | 0 sec | | Lane Gr Grp Ca Eastbound L 1 T 3 Westbound T 2 R 1 | oup pacity 92 384 839 333 | Adj
Flow
(175
502 | Sat
Rate
s)

2
5 | 0.69 | g/
 |
/C

.68
.67 | Lane (Delay 52.5 13.5 | ary
Group

LOS
D
B | App Dela | proach Ly LOS |
 | 0 sec | | Lane Gr Grp Ca Eastbound L 1 T 3 Westbound T 2 R 1 Northbound Southbound | oup pacity 92 384 839 333 | Adj
Flow
(175
502
502 | Sat
Rate
s)

2
5 | 0.69
0.71 | g/
. 0. | .68
.67
.56
.85 | Delay 52.5 13.5 | E A | App Dela | proach Ly LOS |
 | 0 sec | | Lane Gr Grp Ca Eastbound L 1 T 3 Westbound T 2 R 1 Northbound Southbound | oup pacity 92 384 839 333 | Adj
Flow
(175
502 | Sat
Rate
s)

2
5 | 0.69 | g/
. 0. |
/C

68
67 | Delay 52.5 13.5 | ary
Group

LOS
D
B | App Dela 15.5 | proach y LOS |
 | 0 sec | | Lane Gr Grp Ca Eastbound L 1 T 3 Westbound T 2 R 1 Northbound Southbound L 8 | oup pacity 92 384 839 333 | Adj
Flow
(175
502
502 | Sat
Rate
s)

2
5
8 | 0.69
0.71 | g/
0 0. | .68
.67
.56
.85 | Delay 52.5 13.5 60.4 2.6 | E A | App Dela | proach y LOS |
 | 0 sec | Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/26/2011 Analysis Time Period: PM Peak Hour Intersection: SR 18 and Crystal Lake Rd Area Type: All other areas Jurisdiction: Analysis Year: 2035 Build Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd #### _____VOLUME DATA_____ | | Eas | stbour | nd | Wes | stbou | nd | Noi | thbo | und | Sou | thbo | und | | |-----------------|----------|--------|-----|--------|----------------|------|-------|------|-----|-----------|------|-------|---| | | L | T | R | L | T | R | L | T | R | L | Т | R | ĺ | | | | | | | | | | | | - | | | | | Volume | 120 | 2150 | | ļ | 2700 | | | | | 690 | | 360 | ļ | | % Heavy Veh | 3 | 3 | | | 3 | 3 | | | | 2 | | 2 | | | PHF | 0.90 | 0.90 | | | 0.90 | 0.90 | | | | 0.90 | | 0.90 | | | PK 15 Vol | 33 | 597 | | | 750 | 111 | | | | 192 | | 100 | | | Hi Ln Vol | | | | | | | | | | | | | | | % Grade | İ | 0 | | j | 0 | | | | | j | 0 | | İ | | Ideal Sat | 1900 | 1900 | | j | 1900 | 1900 | | | |
 1900 | | 1900 | İ | | ParkExist | | | | İ | | | | | | İ | | | İ | | NumPark | İ | | | İ | | | | | | i | | | i | | No. Lanes | 1 | 3 | 0 | i o | 3 | 1 | 0 | 0 | 0 | 2 | 0 | 1 | i | | LGConfig | L | Т | | j | Т | R | | | | ĹЬ | | R | İ | | Lane Width | 12.0 | 12.0 | | İ | 12.0 | 12.0 | | | | 12.0 | | 12.0 | İ | | RTOR Vol | İ | | | į | | 0 | | | | i | | 0 | i | | Adj Flow | 133 | 2389 | | İ | 3000 | 444 | | | | 767 | | 400 | i | | %InSharedLn | | | | !
 | | | | | | | | | i | | Prop LTs | 1 . 000 | 0.00 | 0.0 | i
İ | 0.0 | 0.0 | | | | | | | i | | Prop RTs | ! | .000 | , , | ĺο | .000 | | ! | | | | | 1.000 | i | | Peds Bikes | , | | | 0 | | | 0 | | | 0 | | | | | Buses | l
 0 | 0 | | i 0 | 0 | 0 | | | | | | 0 | ¦ | | %InProtPhase | | J | | !
 | J | J | | | | | | J | | | 7 IIIFI OCFIIAS | | | 7 |
 | 7. 7. 7 | -+ h | l
 | | | I | | | I | Duration 0.25
Area Type: All other areas #### _____OPERATING PARAMETERS_____ | | Ea | stbou | nd | We | stbou | nd | No | rthbo | und | So | uthbo | und | |-------------|-----|-------|----|----|-------|-----|----|-------|-----|-----|-------|-----| | | L | Т | R | L | T | R | L | T | R | L | T | R | | | | | | | | | | | | . | | | | Init Unmet | 0.0 | 0.0 | | | 0.0 | 0.0 | | | | 0.0 | | 0.0 | | Arriv. Type | 3 | 3 | | | 3 | 3 | | | | 3 | | 3 | | Unit Ext. | 3.0 | 3.0 | | İ | 3.0 | 3.0 | Ì | | | 3.0 | | 3.0 | | I Factor | | 1.00 | 0 | | 1.00 | 0 | | | | | 1.00 | 0 | | Lost Time | 2.0 | 2.0 | | İ | 2.0 | 2.0 | İ | | | 2.0 | | 2.0 | | Ext of g | 2.0 | 2.0 | | İ | 2.0 | 2.0 | İ | | | 2.0 | | 2.0 | | Ped Min g | | | | İ | 3.2 | | Ì | 3.2 | | İ | 3.2 | į | Analyst: RMK Inter.: SR 18 and Crystal Lake Rd Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/26/2011 Jurisd: Period: AM Peak Hour Year : 2035 Build - WB Adjusted Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd | E/W St: | SR 18 | | | | | N/S | St: C | rysta. | l Lake | Rd | | | |--|-----------------------|------------------------|-------------|---------------|-----------------------|-----------------------|-------------------------------|-----------------------|---------|-----------------------|-----------|----------------| | |
 Eas
 L | stbound
T | | | ZED I
stbou
T | | CTION
 Nor
 L | SUMMAI
thbour
T | | Sou
L | thbo
T | und
R | | No. Lane
LGConfig
Volume
Lane Wid
RTOR Vol | L
 510
th 12.0 | 3
T
2600
12.0 | 0 | 0 | 2
T
860
12.0 | 1
R
550
12.0 | 0 | 0 | | 2
L
550
12.0 | 0 | 1 R 200 12.0 0 | |
Duration | 0.25 | | rea T | | | other | | | | | | | | | | | | | | Operat | ions | |
6 | | | | | EB Left
Thru
Righ | t | P
P | 2
P
P | 3 | 4 |
 NB

 | Left
Thru
Right | 5 | 6 | / | | 8 | | Peds
WB Left
Thru
Righ | t | | P
P | | |
 SB

 | Peds
Left
Thru
Right | P
P | | | | | | Peds
NB Righ
SB Righ
Green | t | P
38.3 | 37.7 | 0.0 | |
 EB
 WB | Peds
Right
Right | | 0.0 | | | | | Yellow
All Red | | 4.0 | 4.0 | 0.0 | | | | 4.0
1.0 | le Leng | gth: | 120. | 0 secs | | | | | | | | | e Summ | _ | | | | | | Lane | Lane
Group | Adj
Flow | | | | | | | | roach | | | | Grp | Capacity
 | (8 |) | v/c | g
g | /C | Delay | LOS | Dela | y LOS | | | | Eastboun
L | d
621 | 1752 | ı | 0.91 | 0 | .68 | 52.5 | D | | | | | | T | 3350 | 5025 | | 0.86 | | .67 | 18.9 | В | 24.4 | С | | | | Westboun | d | | | | | | | | | | | | | T
R
Northbou | 1103
950
nd | 3512
1568 | | 0.87 | | .31 | 48.0
18.6 | D
B | 36.5 | D | | | | | | | | | | | | | | | | | | Southbou: | nd
859 | 3437 | | 0.71 | n | .25 | 46.0 | D | | | | | | | | 1583 | | | | | | | 36.7 | D | | | | R | 967
Interse | | | 0.23 | | .61
sec/ve | 11.1
h) T | B
nterse | ection | T.OS | = C | | | | THICETPE | CCIOII L | стау | - 4 9. | · T (| BEC/VE | ш, Т. | TICETS | CCTOIL | ПОР | – C | | Phone: Fax: E-Mail: _____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/26/2011 Analysis Time Period: AM Peak Hour Thtersection: SR 18 and Crystal Lake Rd Area Type: All other areas Jurisdiction: 2035 Build - WB Adjusted Analysis Year: Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd #### _____VOLUME DATA_____ | | Eas | Eastbound | | Westbound | | | No | rthbo | und | Sou | thbo | ound | |--------------|-------|-----------|-----|-----------|------|-------|-----|-------|-----|------|------|-------| | | L | Т | R | L | Т | R | L | T | R | L | Т | R | | _ | | | | | | | ļ | | | · | | | | Volume | 510 | 2600 | | | 860 | 550 | ļ | | | 550 | | 200 | | % Heavy Veh | | 3 | | | 3 | 3 | | | | 2 | | 2 | | PHF | 0.90 | 0.90 | | | 0.90 | 0.90 | | | | 0.90 | | 0.90 | | PK 15 Vol | 142 | 722 | | | 239 | 153 | | | | 153 | | 56 | | Hi Ln Vol | | | | | | | | | | | | | | % Grade | | 0 | | | 0 | | ĺ | | | İ | 0 | ĺ | | Ideal Sat | 1900 | 1900 | | | 1900 | 1900 | İ | | | 1900 | | 1900 | | ParkExist | İ | | | | | | İ | | | İ | | į | | NumPark | ĺ | | | | | | Ì | | | İ | | į | | No. Lanes | 1 | 3 | 0 | 0 | 2 | 1 | j o | 0 | 0 | 2 | 0 | 1 | | LGConfig | L | Т | | ĺ | т | R | İ | | | į L | | R İ | | Lane Width | ! | 12.0 | | | 12.0 | 12.0 | İ | | | 12.0 | | 12.0 | | RTOR Vol | | | | | | 0 | İ | | | İ | | 0 j | | Adj Flow | 567 | 2889 | | | 956 | 611 | İ | | | 611 | | 222 | | %InSharedLn | | | | | | | İ | | | İ | | į | | Prop LTs | 1.000 | 0.00 | 0 0 | | 0.0 | 0 0 | İ | | | İ | | į | | Prop RTs | j o | .000 | | 0 | .000 | 1.000 | İ | | | İ | | 1.000 | | Peds Bikes | | | | 0 | | | j o | | | i o | | į | | Buses | 0 | 0 | | | 0 | 0 | İ | | | 0 | | 0 | | %InProtPhase | 0.0 | | | | | | j | | | İ | | į | | - | | | _ | | | | 1 | | | 1 | | ı | Duration 0.25 Area Type: All other areas #### _____OPERATING PARAMETERS_____ | | Ea | Eastbound | | Westbound | | | Northbound | | | So | Southbound | | |-------------|-----|-----------|---|-----------|------|-----|------------|-----|---|-----|------------|-----| | | L | T | R | L | T | R | L | T | R | L | T | R | | T | | | | | | | | | | - | | | | Init Unmet | 0.0 | 0.0 | | | 0.0 | 0.0 | | | | 0.0 | | 0.0 | | Arriv. Type | 3 | 3 | | | 3 | 3 | | | | 3 | | 3 | | Unit Ext. | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | 3.0 | | 3.0 | | I Factor | | 1.00 | 0 | | 1.00 | 0 | | | | | 1.00 | 0 | | Lost Time | 2.0 | 2.0 | | | 2.0 | 2.0 | | | | 2.0 | | 2.0 | | Ext of g | 2.0 | 2.0 | | ĺ | 2.0 | 2.0 | ĺ | | | 2.0 | | 2.0 | | Ped Min g | ĺ | | | İ | 3.2 | | İ | 3.2 | | İ | 3.2 | | Analyst: RMK Inter.: SR 18 and Crystal Lake Rd Agency: Burgess & Niple Inc Area Type: All other areas Date: 9/26/2011 Period: PM Peak Hour Jurisd: Year : 2035 Build - WB Adjusted Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd | 2,11 50 | | | ата | 13T3 T T I | 70D T | NEED CE | ICET ON | | DM | . 110 | | | |--|------------------|------------------------|----------------|------------|-------|-----------------------|---------------|-------|--------|------------------|-----------|------------------------| | | | | | | stbou | | CTION | thbou | | | | | | | L L | stbour
T | R | we:
L | T T | R R | L | Т | R | L | thbo
T | R | | No. Lane
LGConfig
Volume
Lane Wid | J L 120 12.0 | 3
T
2150
12.0 | 0 | 0 | | 1
R
400
12.0 | 0 | 0 | 0 | L
690
12.0 | 0 | 1 R 360 12.0 0 | | RTOR Vol | ·
 | | | | | |
 | | | | | | | Duration | 0.25 | | Area T | | | | areas
ions | | | | | | | Phase Co | mbinatio | n 1 | 2 | 3 | 4 | | |
5 | 6 | 7 | | 8 | | EB Left | | P | P | | | NB | Left | | | | | | | Thru | l | P | P | | | j | Thru | | | | | | | Righ | ıt | | | | | j | Right | | | | | | | Peds | | | | | | į | Peds | | | | | | | WB Left | | | | | | SB | Left | P | | | | | | Thru | l | | Р | | | İ | Thru | | | | | | | Righ | ıt | | P | | | i | Right | P | | | | | | Peds | | | | | | j | Peds | | | | | | | NB Righ | | | | | | i eb | Right | | | | | | | SB Righ | | P | | | | ĺWВ | Right | | | | | | | Green | | 8.0 | 70.6 | 0.0 | | 1 | 5 | 27.4 | 0.0 | | | | | Yellow | | 4.0 | 4.0 | | | | | 4.0 | | | | | | All Red | | 0.0 | 1.0 | | | | | 1.0 | | | | | | | | | | | | | | | le Ler | ath: | 120. | 0 secs | | | | Ir | ntersec | tion | Perf | ormand | e Summ | | | | | | | | Lane | Ad | j Sat | | atios | | Lane | | | roach | 1 | | | | Group | | v Rate | | | | | | | | | | | Grp
 | Capacity
 | (| (s)
 | v/c | | /C | Delay
 | LOS | | ту гоз | | | | Eastboun | | 175 | - 0 | 0.74 | 1 0 | 7.0 | E0 6 | T-7 | | | | | | L
T | 179 | | | 0.72 | | .70 | 59.6
12.3 | E | 1 / 0 |) D | | | | 1 | 3459 | 502 | 45 | 0.63 | 9 0 | .69 | 14.3 | В | 14.8 | B B | | | | Westboun | ıd | | | | | | | | | | | | | Т | 2066 | 351 | L2 | 1.09 | 9 0 | .59 | 74.7 | E | 62.8 | 8 E | | | | R | 1346 | 156 | | 0.33 | | .86 | 2.3 | A | | | | | | Northbou | | | | | | | | | | | | | | Southbou | ınd | | | | | | | | | | | | | L | 785 | 343 | 37 | 0.98 | 3 0 | .23 | 73.0 | E | 60.0 | | | | | R | 533 | 158 | 33 | 0.75 | 5 N | .34 | 44.7 | D | 63.3 | 8 E | | | | 10 | Interse | | | | | | | | ection | T.OG | - D | | | | Interse | clion | ретау | = 43 | . 9 (| sec/ve | :11 <i>)</i> | ncers | ection | т гор | = D | | Phone: Fax: E-Mail: ____OPERATIONAL ANALYSIS_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/26/2011 Analysis Time Period: PM Peak Hour Intersection: SR 18 and Crystal Lake Rd Area Type: All other areas Jurisdiction: Analysis Year: 2035 Build - WB Adjusted Project ID: Summit 18 Corridor Study PID 77749 E/W St: SR 18 N/S St: Crystal Lake Rd #### _____VOLUME DATA_____ | | Eastbound | | Westbound | | | Northbound | | | Southbound | | | | |--------------|-----------|------|-----------|------|------|------------|------|---|------------|------------|---|-------| | | L | Т | R | L | T | R | L | Т | R | L | Т | R | | Volume |
 120 | 2150 | |
 | 2030 | 400 |
 | | | -
 690 | | 360 | | % Heavy Veh | 3 | 3 | | İ | 3 | 3 | İ | | | 2 | | 2 | | PHF | 0.90 | 0.90 | | İ | 0.90 | 0.90 | İ | | | 0.90 | | 0.90 | | PK 15 Vol | 33 | 597 | | İ | 564 | 111 | İ | | | 192 | | 100 | | Hi Ln Vol | j | | | İ | | | İ | | | į | | | | % Grade | İ | 0 | | İ | 0 | | İ | | | İ | 0 | | | Ideal Sat | 1900 | 1900 | | İ | 1900 | 1900 | İ | | | 1900 | | 1900 | | ParkExist | İ | | | İ | | | İ | | | j | | | | NumPark | İ | | | İ | | | İ | | | j | | | | No. Lanes | j 1 | 3 | 0 | j o | 2 | 1 | j o | 0 | 0 | 2 | 0 | 1 | | LGConfig | i
L | Т | | İ | Т | R | İ | | | ĹЬ | | R | | Lane Width | 12.0 | 12.0 | | İ | 12.0 | 12.0 | İ | | | 12.0 | | 12.0 | | RTOR Vol | İ | | | İ | | 0 | İ | | | j | | 0 | | Adj Flow | 133 | 2389 | | İ | 2256 | 444 | İ | | | 767 | | 400 | | %InSharedLn | İ | | | İ | | | İ | | | | | | |
Prop LTs | 1.000 | 0.00 | 0 | İ | 0.00 | 00 | İ | | | j | | | | Prop RTs | ! | .000 | | j o | .000 | | İ | | | j | | 1.000 | | Peds Bikes | | | | 0 | | | i o | | | i o | | | | Buses | 0 | 0 | | | 0 | 0 | | | | 0 | | 0 | | %InProtPhase | e 0.0 | | | İ | | | İ | | | j | | | Duration 0.25 Area Type: All other areas #### _____OPERATING PARAMETERS_____ | | Ea | Eastbound | | | Westbound | | | rthbo | und | So | Southbound | | |-------------|-----|-----------|---|---|-----------|-----|---|-------|-----|-----|------------|-----| | | L | T | R | L | Т | R | L | Т | R | L | T | R | | | | | | | | | | | | . | | | | Init Unmet | 0.0 | 0.0 | | | 0.0 | 0.0 | | | | 0.0 | | 0.0 | | Arriv. Type | 3 | 3 | | | 3 | 3 | | | | 3 | | 3 | | Unit Ext. | 3.0 | 3.0 | | İ | 3.0 | 3.0 | İ | | | 3.0 | | 3.0 | | I Factor | | 1.00 | 0 | | 1.00 | 0 | | | | | 1.00 | 0 | | Lost Time | 2.0 | 2.0 | | ĺ | 2.0 | 2.0 | İ | | | 2.0 | | 2.0 | | Ext of g | 2.0 | 2.0 | | ĺ | 2.0 | 2.0 | İ | | | 2.0 | | 2.0 | | Ped Min g | | | | ĺ | 3.2 | | İ | 3.2 | | İ | 3.2 | į | #### ___TWO-WAY STOP CONTROL SUMMARY__ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: AM Peak Intersection: SR 18 and Scenic View Dr Jurisdiction: Units: U. S. Customary Analysis Year: 2035 Build Project ID: Summit 18 Corridor Study PID 77749 East/West Street: SR 18 North/South Street: Scenic View Dr Intersection Orientation: EW Study period (hrs): 1.00 | | Ve | hicle Volu | umes and | Adjus | stme: | nts | | | | |----------------|--------------|------------|----------|--------|-------|--------|---------|--------|----| | Major Street: | Approach | Eas | stbound | | | We | stbound | i | | | | Movement | 1 | 2 | 3 | | 4 | 5 | 6 | | | | | L | Т | R | | L | Т | R | | | Volume | | | 2360 | 20 | | 10 | 1060 | | | | Peak-Hour Fact | or, PHF | | 0.90 | 0.90 | | 0.90 | 0.90 | | | | Hourly Flow Ra | ate, HFR | | 2622 | 22 | | 11 | 1177 | | | | Percent Heavy | Vehicles | | | | | 4 | | | | | Median Type/St | | Undiv | ided | | | / | | | | | Lanes | | | 2 0 | | | 1 | 2 | | | | Configuration | | | T TR | | | L | | | | | Upstream Signa | 11? | | No | | | | No | | | | Minor Street: | Approach | Noi | thbound | | | So | uthbour |
nd | | | | Movement | 7 | 8 | 9 | | 10 | 11 | 12 | | | | | L | Т | R | | L | T | R | | | Volume | | 10 | | 40 | | | | | | | Peak Hour Fact | | 0.90 | | 0.90 | | | | | | | Hourly Flow Ra | | 11 | | 44 | | | | | | | Percent Heavy | Vehicles | 2 | | 2 | | | | | | | Percent Grade | | | 0 | | | | 0 | | | | Flared Approac | ch: Exists | ?/Storage | | No | / | | | | / | | Lanes | | 0 | 0 | | | | | | | | Configuration | | | LR | | | | | | | | | Dolay | Queue Lei | | d Toxe | | f Corr | | | | | Approach | DCIAY,
EB | WB | _ | hbound | | I DCIV | | hbound | | | Movement | 1 | 4 | | 8 | 9 | 1 | 10 | 11 | 12 | | Lane Config | Τ. | L | | LR | 9 | } | 10 | T T | 12 | | | | | | | |
 | | | | | v (vph) | | 11 | | 55 | | | | | | | C(m) (vph) | | 152 | | 27 | | | | | | | v/c | | 0.07 | | 2.04 | | | | | | | 95% queue leng | ŋth | 0.23 | | 18.47 | | | | | | | Control Delay | | 30.5 | | 2238 | | | | | | | LOS | | D | | F | | | | | | | Approach Delay | 7 | | | 2238 | | | | | | | Approach LOS | | | | F | | | | | | | | | | | | | | | | | #### ___TWO-WAY STOP CONTROL SUMMARY__ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 9/6/2011 Analysis Time Period: PM Peak Intersection: SR 18 and Scenic View Dr Jurisdiction: Units: U. S. Customary Analysis Year: 2035 Build Project ID: Summit 18 Corridor Study PID 77749 East/West Street: SR 18 North/South Street: Scenic View Dr Intersection Orientation: EW Study period (hrs): 1.00 | | Veh | icle Volı | umes and | Adjus | stme | nts | | | | |----------------------------------|----------------|-----------------|-------------|--------|-------|---------------|---------|--------|----| | Major Street: | Approach | Eas | stbound | | | We | stbound | i | | | | Movement | 1 | 2 | 3 | | 4 | 5 | 6 | | | | | L | T | R | j | L | T | R | | |
Volume | | |
1750 | 10 | |
50 | 2430 | | | | | or DIE | | 0.90 | 0.90 | | 0.90 | 0.90 | | | | Peak-Hour Fact
Hourly Flow Ra | | | 1944 | 11 | | 55 | 2700 | | | | Percent Heavy | | | 1944 | | | 4 | 2700 | | | | Median Type/St | | Undiv | | | | 4
/ | | | | | RT Channelized | _ | UIIQIV | ided | | | / | | | | | Lanes | | | 2 0 | | | 1 | 2 | | | | Configuration | | | T TR | | | L | T | | | | Upstream Signa | 1? | | No | | | | No | | | | Minor Street: |
Approach |
No: |
thbound | | |
So | uthboun |
nd | | | | Movement | 7 | 8 | 9 | - 1 | 10 | 11 | 12 | | | | | L | T | R | j | L | T | R | | |
Volume | | 0 | | 20 | | | | | | | Peak Hour Fact | or DUE | 0.90 | | 0.90 | | | | | | | Hourly Flow Ra | | 0.90 | | 22 | | | | | | | Percent Heavy | | 2 | | 2 | | | | | | | Percent Grade | | 2 | 0 | 4 | | | 0 | | | | Flared Approac | | /Storage | O | No | / | | U | | / | | Lanes | II. EXISCS: | 0 | 0 | | / | | | | / | | Configuration | | O | LR | Dolor | Queue Lei | nath an | d T 0 | . 1 . | £ 00 | | | | | Approach | Delay, (
EB | gueue пет
WB | _ | hbound | | ı serv | | hbound | | | Movement | 1 | 4 l | 7 | 8 | 9 | 1 | 10 | 11 | 12 | | Lane Config | T | L | | LR | 9 | } | 10 | T T | 12 | | | | | | | | I | | | | | v (vph) | | 55 | | 22 | | | | | | | C(m) (vph) | | 287 | | 302 | | | | | | | v/c | | 0.19 | | 0.07 | | | | | | | 95% queue leng | th | 0.71 | | 0.24 | | | | | | | Control Delay | | 20.5 | | 17.9 | | | | | | | LOS | | С | | C | | | | | | | Approach Delay | | | | 17.9 | | | | | | | Approach LOS | | | | С | | | | | | | | | | | | | | | | | ## **Appendix E** # Constrained Traffic Analysis #### Constrained Traffic Calculations #### SB I-77 On-Ramp AM The intersection of SR 18 @ Crystal Lake Road constrains traffic entering SB I-77. However, the downstream weaving section on I-77 is LOS C under full demand volumes. Because the full demand volumes yield and acceptable LOS, no check of constrained analysis is necessary. #### SB I-77 On-Ramp PM #### No-Build Condition (SR 18 @ Crystal Lake Road ``` EB Thru v/c = 1.32 NB Right v/c = 0.77 (No Constraint) SB Left v/c = 1.47 ``` Assume 50.35% diversion to interstate based on 2035 PM traffic plates DHV ``` EB Thru = 1820 * 0.5035 = 916 SB Left = 690 * 0.5035 = 348 NB Right = 330 * 0.5035 = 166 Total = 916+348+166 = 1430 = Full demand ramp volume ``` Constrained (No-Build Ramp Volume): EB Thru = 916/1.32 = 694 vehicles SB Left = 348/1.47 = 237 vehicles NB Right = 166 vehicles Total entering freeway = 694+237+166 = 1097 vehicles in PM No-Build condition Operation for freeway weaving segment under constrained condition is LOS E #### Build Condition (SR 18 @ Crystal Lake Road) ``` EB Thru v/c = 0.71 (No Constraint) NB Right v/c = N/A (Approach Removed) SB Left v/c = 0.92 (No Constraint) ``` The Build condition will operate with full demand traffic of 1430 because all v/c ratios are less than 1.0. Operation for freeway weaving segment under full demand traffic condition is LOS E ### LOS No-Build (Constrained) = LOS Build, Therefore No Degradation occurs to the freeway segment Phone: E-mail: Fax: ____Operational Analysis_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 2/21/2012 Analysis Time Period: PM No-Build (Constrained) Freeway/Dir of Travel: I-77 SB Weaving Location: EB SR 18 On to SR 21 Off Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 | - | | | | | | |------------|---|----|---|---|--| | Ιn | 2 | 11 | + | | | | $_{\rm L}$ | U | u | - | 0 | | | 70
4 | mph | |---------|---------------------------------| | 2300 | ft | | Level | | | | 8 | | | mi | | В | | | 0.57 | | | 0.19 | | | | 4
2300
Level
B
0.57 | #### ___Conversion to pc/h Under Base Conditions____ | | Non-Weaving | | Weaving | | | |----------------------------------|-------------|-------|---------|-------|-------| | | V | V | V | V | | | | 01 | 02 | w1 | w2 | | | Volume, V | 2200 | 445 | 2850 | 652 | veh/h | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | | | Peak 15-min volume, v15 | 611 | 124 | 792 | 181 | v | | Trucks and buses | 6 | 3 | 3 | 6 | % | | Recreational vehicles | 0 | 0 | 0 | 0 | 양 | | Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | | | Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | | | Heavy vehicle adjustment, fHV | 0.971 | 0.985 | 0.985 | 0.971 | | | Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow rate, v | 2517 | 501 | 3214 | 746 | pc/h | #### ______Weaving and Non-Weaving Speeds_____ | | Weaving | Non-Weaving | |------------------------------------|---------|-------------| | a (Exhibit 24-6) | 0.08 | 0.0020 | | b (Exhibit 24-6) | 2.20 | 6.00 | | c (Exhibit 24-6) | 0.70 | 1.00 | | d (Exhibit 24-6) | 0.50 | 0.50 | | Weaving intensity factor, Wi | 0.83 | 1.08 | | Weaving and non-weaving speeds, Si | 47.73 | 43.86 | | Number of lanes required for | | | unconstrained operation, Nw (Exhibit 24-7) 2.62 Maximum number of lanes, Nw (max) (Exhibit 24-7) 3.50 Type of operation is Unconstrained _Weaving Segment Speed, Density, Level of Service and Capacity | Weaving segment speed, S | 45.97 | mph | |--------------------------------------|-------|----------| | Weaving segment density, D | | pc/mi/ln | | Level of service, LOS | (E) | | | Capacity of base condition, cb | 7047 | pc/h | | Capacity as a 15-minute flow rate, c | 6842 | pc/h | | Capacity as a full-hour volume, ch | 6158 | pc/h | Limitations on Weaving Segments_____ | | | If Max Exce | eded See Note | |----------------------------|----------|-------------|---------------| | | Analyzed | Maximum | Note | | Weaving flow rate, Vw | 3960 | 4000 | a | | Average flow rate (pcphpl) | 1744 | 2400 | b | | Volume ratio, VR | 0.57 | 0.80 | С | | Weaving ratio, R | 0.19 | N/A | d | | Weaving length (ft) | 2300 | 2500 | е | | Notes. | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the
procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. Phone: E-mail: Fax: Operational Analysis_____ Analyst: RMK Agency/Co.: Burgess & Niple Inc Date Performed: 2/21/2012 Analysis Time Period: PM Peak Hour Full Demand Freeway/Dir of Travel: I-77 SB Weaving Location: EB SR 18 On to SR 21 Off Jurisdiction: Analysis Year: 2035 Description: Summit 18 Corridor Study PID 77749 | Ļ | n | p | u | t | S | | |---|---|---|---|---|---|---| | | | _ | | | | - | | Freeway free-flow speed, SFF | 70 | mph | |------------------------------|-------|-----| | Weaving number of lanes, N | 4 | | | Weaving segment length, L | 2300 | ft | | Terrain type | Level | | | Grade | | % | | Length | | mi | | Weaving type | В | | | Volume ratio, VR | 0.57 | | | Weaving ratio, R | 0.23 | | #### ___Conversion to pc/h Under Base Conditions_____ | | Non-Wea | ving | Weaving | | | |----------------------------------|---------|-------|---------|-------|---| | | V | V | V | V | | | | 01 | 02 | w1 | w2 | | | Volume, V | 2200 | 580 | 2850 | 850 | veh/h | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | Peak 15-min volume, v15 | 611 | 161 | 792 | 236 | v | | Trucks and buses | 6 | 3 | 3 | 6 | % | | Recreational vehicles | 0 | 0 | 0 | 0 | 9 | | Trucks and buses PCE, ET | 1.5 | 1.5 | 1.5 | 1.5 | | | Recreational vehicle PCE, ER | 1.2 | 1.2 | 1.2 | 1.2 | | | Heavy vehicle adjustment, fHV | 0.971 | 0.985 | 0.985 | 0.971 | | | Driver population adjustment, fP | 1.00 | 1.00 | 1.00 | 1.00 | | | Flow rate, v | 2517 | 654 | 3214 | 972 | pc/h | #### ___Weaving and Non-Weaving Speeds____ | | Weaving | Non-Weaving | |------------------------------------|---------|-------------| | a (Exhibit 24-6) | 0.08 | 0.0020 | | b (Exhibit 24-6) | 2.20 | 6.00 | | c (Exhibit 24-6) | 0.70 | 1.00 | | d (Exhibit 24-6) | 0.50 | 0.50 | | Weaving intensity factor, Wi | 0.87 | 1.14 | | Weaving and non-weaving speeds, Si | 47.14 | 42.98 | | Number of lanes required for | | | unconstrained operation, Nw (Exhibit 24-7) 2.65 Maximum number of lanes, Nw (max) (Exhibit 24-7) 3.50 Type of operation is Unconstrained _____Weaving Segment Speed, Density, Level of Service and Capacity Weaving segment speed, S Weaving segment density, D Level of service, LOS Capacity of base condition, cb Capacity as a 15-minute flow rate, c Capacity as a full-hour volume, ch 45.25 mph 40.64 pc/mi/ln 6825 pc/h 6825 pc/h Limitations on Weaving Segments | | | If Max Exce | eded See Note | |----------------------------|----------|-------------|---------------| | | Analyzed | Maximum | Note | | Weaving flow rate, Vw | 4186 | 4000 | a | | Average flow rate (pcphpl) | 1839 | 2400 | b | | Volume ratio, VR | 0.57 | 0.80 | С | | Weaving ratio, R | 0.23 | N/A | đ | | Weaving length (ft) | 2300 | 2500 | е | | Notes: | | | | - a. Weaving segments longer than 2500 ft. are treated as isolated merge and diverge areas using the procedures of Chapter 25, "Ramps and Ramp Junctions". - b. Capacity constrained by basic freeway capacity. - c. Capacity occurs under constrained operating conditions. - d. Three-lane Type A segments do not operate well at volume ratios greater than 0.45. Poor operations and some local queuing are expected in such cases. - e. Four-lane Type A segments do not operate well at volume ratios greater than 0.35. Poor operations and some local queuing are expected in such cases. - f. Capacity constrained by maximum allowable weaving flow rate: 2,800 pc/h (Type A), 4,000 (Type B), 3,500 (Type C). - g. Five-lane Type A segments do not operate well at volume ratios greater than 0.20. Poor operations and some local queuing are expected in such cases. - h. Type B weaving segments do not operate well at volume ratios greater than 0.80. Poor operations and some local queuing are expected in such cases. - i. Type C weaving segments do not operate well at volume ratios greater than 0.50. Poor operations and some local queuing are expected in such cases. ## Appendix F ## Storage Length Calculations #### SR 18 Storage Length Calculations | Intersection | Approach | Turn
Movement | # Turn
Lanes | # Thru
Lanes | Turn
Volume | Thru
Volume | Cycle
Length | Turn
Vehicles
per Cycle | Req'd
Storage
Length
Type B | Req'd
Storage
Length
Type C | Req'd
Storage
Leght
(per
lane) | Thru
Vehicles
per Cycle
per Lane | _ | Turn Lane
Decel and
Storage
Req'd for
Thru | Turn Lane
Decel and
Storage
Provided | |--|----------|------------------|-----------------|-----------------|----------------|----------------|-----------------|-------------------------------|--------------------------------------|--------------------------------------|--|---|------|--|---| | State Route 18 & Heritage Woods Road & | EB | Left | 1 | 3 | 30 | 2390 | 120 | 1.0 | 225 | 193 | 225 | 26.6 | 975 | 975 | 600 | | Akron General | WB | Left | 2 | 2 | 730 | 2330 | 120 | 24.3 | 225 | 968 | 484 | 38.8 | 1250 | 1250 | 1525 | | SR 18 & Crystal Lake Road | EB | Left | 1 | 3 | 320 | 2600 | 120 | 10.7 | 225 | 543 | 543 | 28.9 | 975 | 975 | 350 | | Six 10 & Crystal Lake Road | WB | Right | 1 | 3 | 550 | 2700 | 120 | 18.3 | 225 | 793 | 793 | 30.0 | 975 | 975 | 450 | ## Appendix G # Synchro/SimTraffic Analysis #### Intersection: 25: SR 18 & Crystal Lake, Interval #1 | Movement | EB | EB | EB | EB | WB | WB | WB | WB | SB | SB | SB | | |-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|--| | Directions Served | L | T | T | T | T | T | T | R | L | L | R | | | Maximum Queue (ft) | 266 | 96 | 140 | 137 | 269 | 305 | 318 | 228 | 200 | 218 | 151 | | | Average Queue (ft) | 150 | 77 | 82 | 96 | 150 | 216 | 232 | 153 | 146 | 142 | 68 | | | 95th Queue (ft) | 248 | 112 | 141 | 148 | 290 | 294 | 304 | 269 | 204 | 190 | 117 | | | Link Distance (ft) | | 596 | 596 | 596 | 597 | 597 | 597 | | 2638 | 2638 | | | | Upstream Blk Time (%) | | | | | | | | | | | | | | Queuing Penalty (veh) | | | | | | | | | | | | | | Storage Bay Dist (ft) | 315 | | | | | | | 450 | | | 300 | | | Storage Blk Time (%) | | | | | | | | | | | | | | Queuing Penalty (veh) | | | | | | | | | | | | | #### Intersection: 25: SR 18 & Crystal Lake, Interval #2 | Movement | EB | EB | EB | EB | WB | WB | WB | WB | SB | SB | SB | | |-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|--| | Directions Served | L | T | Т | T | T | T | Т | R | L | L | R | | | Maximum Queue (ft) | 267 | 140 | 116 | 116 | 314 | 287 | 286 | 246 | 544 | 591 | 325 | | | Average Queue (ft) | 183 | 95 | 77 | 102 | 164 | 213 | 214 | 195 | 422 | 458 | 169 | | | 95th Queue (ft) | 295 | 143 | 112 | 120 | 302 | 296 | 296 | 297 | 563 | 607 | 401 | | | Link Distance (ft) | | 596 | 596 | 596 | 597 | 597 | 597 | | 2638 | 2638 | | | | Upstream Blk Time (%) | | | | | | | | | | | | | | Queuing Penalty (veh) | | | | | | | | | | | | | | Storage Bay Dist (ft) | 315 | | | | | | | 450 | | | 300 | | | Storage Blk Time (%) | | | | | | | | | | 33 | 0 | | | Queuing Penalty (veh) | | | | | | | | | | 73 | 0 | | #### Intersection: 25: SR 18 & Crystal Lake, Interval #3 | Movement | EB | EB | EB | EB | WB | WB | WB | WB | SB | SB | SB | | |-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|--| | Directions Served | L | T | T | T | T | T | T | R | L | L | R | | | Maximum Queue (ft) | 286 | 96 | 112 | 141 | 270 | 312 | 348 | 244 | 346 | 347 | 324 | | | Average Queue (ft) | 215 | 73 | 87 | 104 | 189 | 256 | 287 | 184 | 184 | 192 | 106 | | | 95th Queue (ft) | 311 | 100 | 109 | 142 | 284 | 317 | 377 | 264 | 320 | 335 | 261 | | | Link Distance (ft) | | 596 | 596 | 596 | 597 | 597 | 597 | | 2638 | 2638 | | | | Upstream Blk Time (%) | | | | | | | | | | | | | | Queuing Penalty (veh) | | | | | | | | | | | | | | Storage Bay Dist (ft) | 315 | | | | | | | 450 | | | 300 | | | Storage Blk Time (%) | | | | | | | | | | 3 | | | | Queuing Penalty (veh) | | | | | | | | | | 5 | | | SUM-18 SimTraffic Report #### Intersection: 25: SR 18 & Crystal Lake, Interval #4 | Movement | EB | EB | EB | EB | WB | WB | WB | WB | SB | SB | SB | | |-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|--| | Directions Served | L | T | T | T | T | T | T | R | L | L | R | | | Maximum Queue (ft) | 240 | 103 | 120 | 138 | 203 | 270 | 263 | 184 | 265 | 282 | 171 | | | Average Queue (ft) | 175 | 81 | 93 | 105 | 140 | 210 | 206 | 105 | 207 | 230 | 91 | | | 95th Queue (ft) | 261 | 109 | 131 | 137 | 231 | 271 | 274 | 188 | 272 | 306 | 189 | | | Link Distance (ft) | | 596 | 596 | 596 | 597 | 597 | 597 | | 2638 | 2638 | | | | Upstream Blk Time (%) | | | | | | | | | | | | | | Queuing Penalty (veh) | | | | | | | | | |
 | | | Storage Bay Dist (ft) | 315 | | | | | | | 450 | | | 300 | | | Storage Blk Time (%) | | | | | | | | | | 0 | | | | Queuing Penalty (veh) | | | | | | | | | | 0 | | | #### Intersection: 25: SR 18 & Crystal Lake, All Intervals | Movement | EB | EB | EB | EB | WB | WB | WB | WB | SB | SB | SB | | |-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|--| | Directions Served | L | Т | T | T | T | Т | T | R | L | L | R | | | Maximum Queue (ft) | 286 | 140 | 140 | 141 | 314 | 312 | 348 | 246 | 544 | 591 | 325 | | | Average Queue (ft) | 181 | 82 | 85 | 102 | 161 | 224 | 235 | 159 | 240 | 255 | 108 | | | 95th Queue (ft) | 287 | 119 | 126 | 139 | 283 | 301 | 329 | 272 | 447 | 485 | 270 | | | Link Distance (ft) | | 596 | 596 | 596 | 597 | 597 | 597 | | 2638 | 2638 | | | | Upstream Blk Time (%) | | | | | | | | | | | | | | Queuing Penalty (veh) | | | | | | | | | | | | | | Storage Bay Dist (ft) | 315 | | | | | | | 450 | | | 300 | | | Storage Blk Time (%) | | | | | | | | | | 9 | 0 | | | Queuing Penalty (veh) | | | | | | | | | | 19 | 0 | | SUM-18 SimTraffic Report | | ᄼ | - | • | • | ← | • | 4 | † | / | > | ļ | 4 | |----------------------------|-------|------------|-------|-------|----------|-------|--------|----------|--------|-------------|------|--------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ } | | ሻ | ^ | 7 | ሻ | | 7 | ሻ | | 7 | | Volume (vph) | 20 | 1370 | 50 | 140 | 920 | 10 | 80 | 0 | 1000 | 10 | 0 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Storage Length (ft) | 150 | | 0 | 330 | | 125 | 150 | | 0 | 50 | | 0 | | Storage Lanes | 1 | | 0 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | 25 | 25 | | 25 | 25 | | 25 | 25 | | 25 | | Lane Util. Factor | 1.00 | 0.95 | 0.95 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | 0.995 | | | | 0.850 | | | 0.850 | | | 0.850 | | Flt Protected | 0.950 | | | 0.950 | | | 0.950 | | | 0.950 | | | | Satd. Flow (prot) | 1770 | 3456 | 0 | 1770 | 3438 | 1583 | 1770 | 0 | 1583 | 1770 | 0 | 1583 | | Flt Permitted | 0.280 | | | 0.082 | | | 0.950 | | | 0.950 | | | | Satd. Flow (perm) | 522 | 3456 | 0 | 153 | 3438 | 1583 | 1770 | 0 | 1583 | 1770 | 0 | 1583 | | Right Turn on Red | | | No | | | No | | | No | | | No | | Satd. Flow (RTOR) | | | | | | | | | | | | | | Link Speed (mph) | | 45 | | | 45 | | | 35 | | | 30 | | | Link Distance (ft) | | 1287 | | | 951 | | | 2174 | | | 424 | | | Travel Time (s) | | 19.5 | | | 14.4 | | | 42.4 | | | 9.6 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Heavy Vehicles (%) | 2% | 4% | 2% | 2% | 5% | 2% | 2% | 2% | 2% | 2% | 2% | 2% | | Adj. Flow (vph) | 22 | 1522 | 56 | 156 | 1022 | 11 | 89 | 0 | 1111 | 11 | 0 | 11 | | Shared Lane Traffic (%) | | | | | | | | | | | | | | Lane Group Flow (vph) | 22 | 1578 | 0 | 156 | 1022 | 11 | 89 | 0 | 1111 | 11 | 0 | 11 | | Enter Blocked Intersection | No | Lane Alignment | Left | Left | Right | Left | Left | Right | Left | Left | Right | Left | Left | Right | | Median Width(ft) | | 12 | | | 12 | | | 12 | | | 12 | | | Link Offset(ft) | | 0 | | | 0 | | | 0 | | | 0 | | | Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | | | Two way Left Turn Lane | | | | | | | | | | | | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Turn Type | Perm | | | pm+pt | | Perm | custom | | custom | custom | | custom | | Protected Phases | | 2 | | 1 | 6 | | | | 18 | | | | | Permitted Phases | 2 | | | 6 | | 6 | 8 | | | 4 | | 4 | | Minimum Split (s) | 30.0 | 30.0 | | 13.0 | 30.0 | 30.0 | 13.0 | | | 13.0 | | 13.0 | | Total Split (s) | 49.0 | 49.0 | 0.0 | 25.0 | 74.0 | 74.0 | 46.0 | 0.0 | 71.0 | 46.0 | 0.0 | 46.0 | | Total Split (%) | 40.8% | 40.8% | 0.0% | 20.8% | 61.7% | 61.7% | 38.3% | 0.0% | 59.2% | 38.3% | 0.0% | 38.3% | | Maximum Green (s) | 44.0 | 44.0 | | 20.0 | 69.0 | 69.0 | 41.0 | | | 41.0 | | 41.0 | | Yellow Time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | | 4.0 | | 4.0 | | All-Red Time (s) | 1.0 | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | | | 1.0 | | 1.0 | | Lost Time Adjust (s) | -2.0 | -2.0 | 0.0 | 0.0 | -2.0 | 0.0 | -2.0 | -2.0 | 0.0 | -2.0 | -2.0 | 0.0 | | Total Lost Time (s) | 3.0 | 3.0 | 4.0 | 5.0 | 3.0 | 5.0 | 3.0 | 2.0 | 5.0 | 3.0 | 2.0 | 5.0 | | Lead/Lag | Lag | Lag | | Lead | | | | | | | | | | Lead-Lag Optimize? | Yes | Yes | | Yes | | | | | | | | | | Act Effct Green (s) | 46.0 | 46.0 | | 69.0 | 71.0 | 69.0 | 43.0 | | 66.0 | 43.0 | | 41.0 | | Actuated g/C Ratio | 0.38 | 0.38 | | 0.58 | 0.59 | 0.58 | 0.36 | | 0.55 | 0.36 | | 0.34 | | v/c Ratio | 0.11 | 1.19 | | 0.44 | 0.50 | 0.01 | 0.14 | | 1.28 | 0.02 | | 0.02 | | Control Delay | 25.8 | 127.9 | | 19.2 | 11.6 | 2.9 | 26.8 | | 159.7 | 25.1 | | 26.5 | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | | Total Delay | 25.8 | 127.9 | | 19.2 | 11.6 | 2.9 | 26.8 | | 159.7 | 25.1 | | 26.5 | 2035 AM Build RMK Splits and Phases: 2: SR 18 & S. Hametown 2035 AM Build Synchro 7 - Report RMK Page 2 | | _ | • | \ | لإ | * | / | | |----------------------------|----------|-------|----------|-------|----------|-------|---| | Lane Group | WBL | WBR | SBL | SBR | NEL | NER | | | Lane Configurations | W | | W | 7 | W | | _ | | Volume (vph) | 0 | 320 | 220 | 170 | 360 | 0 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | | Frt | 0.865 | | 0.989 | 0.850 | | | | | Flt Protected | | | 0.956 | | 0.950 | | | | Satd. Flow (prot) | 1611 | 0 | 1761 | 1504 | 1770 | 0 | | | Flt Permitted | | | 0.956 | | 0.950 | | | | Satd. Flow (perm) | 1611 | 0 | 1761 | 1504 | 1770 | 0 | | | Link Speed (mph) | 25 | | 25 | | 25 | | | | Link Distance (ft) | 1228 | | 464 | | 448 | | | | Travel Time (s) | 33.5 | | 12.7 | | 12.2 | | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 0 | 356 | 244 | 189 | 400 | 0 | | | Shared Lane Traffic (%) | | | | 10% | | | | | Lane Group Flow (vph) | 356 | 0 | 263 | 170 | 400 | 0 | | | Enter Blocked Intersection | No | No | No | No | No | No | | | Lane Alignment | Left | Right | Left | Right | Left | Right | | | Median Width(ft) | 12 | | 24 | | 12 | | | | Link Offset(ft) | 0 | | 0 | | 0 | | | | Crosswalk Width(ft) | 16 | | 16 | | 16 | | | | Two way Left Turn Lane | | | | | | | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Turning Speed (mph) | 15 | 9 | 15 | 9 | 15 | 9 | | | Sign Control | Yield | | Yield | | Yield | | | | Intersection Summary | | | | | | | | Area Type: Other Control Type: Roundabout Intersection Capacity Utilization 65.4% Analysis Period (min) 15 ICU Level of Service C 2035 AM Build Synchro 7 - Report RMK Page 3 | | ۶ | → | • | • | — | • | • | † | / | > | ţ | 4 | |----------------------------|-------|----------|-------|-------|------------|-------|-------|----------|----------|-------------|-------|-------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ተተኈ | | 44 | ↑ ↑ | | ሻ | | 7 | ሻ | 1> | | | Volume (vph) | 10 | 2320 | 70 | 310 | 990 | 50 | 70 | 30 | 580 | 10 | 10 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Storage Length (ft) | 600 | | 0 | 270 | | 0 | 250 | | 250 | 50 | | 0 | | Storage Lanes | 1 | | 0 | 1 | | 0 | 1 | | 1 | 1 | | 0 | | Taper Length (ft) | 25 | | 25 | 25 | | 25 | 25 | | 25 | 25 | | 25 | | Lane Util. Factor | 1.00 | 0.91 | 0.91 | 0.97 | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | | 0.996 | | | 0.993 | | | | 0.850 | | 0.925 | | | Flt Protected | 0.950 | | | 0.950 | | | 0.950 | | | 0.950 | | | | Satd. Flow (prot) | 1770 | 5017 | 0 | 3433 | 3450 | 0 | 1770 | 1863 | 1583 | 1770 | 1723 | 0 | | Flt Permitted | 0.245 | | | 0.950 | | | 0.743 | | | 0.736 | | | | Satd. Flow (perm) | 456 | 5017 | 0 | 3433 | 3450 | 0 | 1384 | 1863 | 1583 | 1371 | 1723 | 0 | | Right Turn on Red | | | No | | | No | | | No | | | No | | Satd. Flow (RTOR) | | | | | | | | | | | | | | Link Speed (mph) | | 45 | | | 45 | | | 25 | | | 25 | | | Link Distance (ft) | | 719 | | | 684 | | | 464 | | | 388 | | | Travel Time (s) | | 10.9 | | | 10.4 | | | 12.7 | | | 10.6 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Heavy Vehicles (%) | 2% | 3% | 2% | 2% | 4% | 2% | 2% | 2% | 2% | 2% | 2% | 2% | | Adj. Flow (vph) | 11 | 2578 | 78 | 344 | 1100 | 56 | 78 | 33 | 644 | 11 | 11 | 11 | | Shared Lane Traffic (%) | | | | | | | | | | | | | | Lane Group Flow (vph) | 11 | 2656 | 0 | 344 | 1156 | 0 | 78 | 33 | 644 | 11 | 22 | 0 | | Enter Blocked Intersection | No | Lane Alignment | Left | Left | Right | Left | Left | Right | Left | Left | Right | Left | Left | Right | | Median Width(ft) | | 24 | | | 24 | | | 12 | | | 12 | | | Link Offset(ft) | | 0 | | | 0 | | | 0 | | | 0 | | | Crosswalk Width(ft) | | 16 | | | 16 | | | 16 | | | 16 | | | Two way Left Turn Lane | | | | | | | | | | | | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Turning Speed (mph) | 15 | | 9 | 15 | | 9 | 15 | | 9 | 15 | | 9 | | Number of Detectors | 1 | 1 | | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | | Detector Template | | | | | | | | | | | | | | Leading Detector (ft) | 50 | 50 | | 50 | 50 | | 50 | 50 | 50 | 50 | 50 | | | Trailing Detector (ft) | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Detector 1 Position(ft) | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Detector 1 Size(ft) | 50 | 50 | | 50 | 50 | | 50 | 50 | 50 | 50 | 50 | | | Detector 1 Type | CI+Ex | CI+Ex | | CI+Ex | CI+Ex | | CI+Ex | CI+Ex | CI+Ex
 CI+Ex | CI+Ex | | | Detector 1 Channel | | | | | | | | | | | | | | Detector 1 Extend (s) | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Detector 1 Queue (s) | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Detector 1 Delay (s) | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Turn Type | Perm | | | Prot | | | Perm | | pm+ov | Perm | | | | Protected Phases | | 2 | | 1 | 6 | | | 8 | 1 | | 4 | | | Permitted Phases | 2 | | | | | | 8 | | 8 | 4 | | | | Detector Phase | 2 | 2 | | 1 | 6 | | 8 | 8 | 1 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | | | Minimum Initial (s) | 8.0 | 8.0 | | 8.0 | 8.0 | | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | | Minimum Split (s) | 20.0 | 20.0 | | 13.0 | 32.0 | | 14.0 | 14.0 | 13.0 | 14.0 | 14.0 | | | Total Split (s) | 65.0 | 65.0 | 0.0 | 18.0 | 83.0 | 0.0 | 37.0 | 37.0 | 18.0 | 37.0 | 37.0 | 0.0 | 2035 AM Build RMK | | • | - | • | • | • | • | 1 | † | ~ | - | ţ | 4 | |-----------------------|-------|-------|------|-------|-------|------|-------|----------|-------|-------|-------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Total Split (%) | 54.2% | 54.2% | 0.0% | 15.0% | 69.2% | 0.0% | 30.8% | 30.8% | 15.0% | 30.8% | 30.8% | 0.0% | | Maximum Green (s) | 60.0 | 60.0 | | 13.0 | 78.0 | | 32.0 | 32.0 | 13.0 | 32.0 | 32.0 | | | Yellow Time (s) | 4.0 | 4.0 | | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 1.0 | 1.0 | | 1.0 | 1.0 | | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | | Lost Time Adjust (s) | 0.0 | -2.0 | 0.0 | 0.0 | -2.0 | 0.0 | -2.0 | -2.0 | -2.0 | -2.0 | -2.0 | 0.0 | | Total Lost Time (s) | 5.0 | 3.0 | 4.0 | 5.0 | 3.0 | 4.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 4.0 | | Lead/Lag | Lag | Lag | | Lead | | | | | Lead | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Recall Mode | C-Max | C-Max | | None | C-Max | | None | None | None | None | None | | | Act Effct Green (s) | 61.2 | 63.2 | | 34.0 | 102.8 | | 14.4 | 14.4 | 50.8 | 14.4 | 14.4 | | | Actuated g/C Ratio | 0.51 | 0.53 | | 0.28 | 0.86 | | 0.12 | 0.12 | 0.42 | 0.12 | 0.12 | | | v/c Ratio | 0.05 | 1.00 | | 0.35 | 0.39 | | 0.47 | 0.15 | 0.96 | 0.07 | 0.11 | | | Control Delay | 11.7 | 25.5 | | 37.5 | 5.6 | | 57.7 | 47.0 | 60.7 | 45.4 | 46.2 | | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.1 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 11.7 | 25.5 | | 37.5 | 5.6 | | 57.7 | 47.0 | 60.7 | 45.4 | 46.2 | | | LOS | В | С | | D | А | | Е | D | Е | D | D | | | Approach Delay | | 25.4 | | | 12.9 | | | 59.8 | | | 46.0 | | | Approach LOS | | С | | | В | | | Е | | | D | | #### **Intersection Summary** Area Type: Other Cycle Length: 120 Actuated Cycle Length: 120 Offset: 93 (78%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.00 Intersection Signal Delay: 27.0 Intersection LOS: C Intersection Capacity Utilization 99.0% ICU Level of Service F Analysis Period (min) 15 Splits and Phases: 15: SR 18 & Heritage Woods Dr. 2035 AM Build Synchro 7 - Report RMK Page 5 | | - | \rightarrow | • | ← | 1 | ~ | |----------------------------|------------|---------------|-------|----------|-------|-------| | Lane Group | EBT | EBR | WBL | WBT | NBL | NBR | | Lane Configurations | ↑ ↑ | | ሻ | ^ | W | | | Volume (vph) | 2360 | 20 | 10 | 1060 | 10 | 40 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Storage Length (ft) | | 0 | 350 | | 0 | 0 | | Storage Lanes | | 0 | 1 | | 1 | 0 | | Taper Length (ft) | | 25 | 25 | | 25 | 25 | | Lane Util. Factor | 0.95 | 0.95 | 1.00 | 0.95 | 1.00 | 1.00 | | Frt | 0.999 | | | | 0.892 | | | Flt Protected | | | 0.950 | | 0.990 | | | Satd. Flow (prot) | 3536 | 0 | 1770 | 3539 | 1645 | 0 | | Flt Permitted | | | 0.950 | | 0.990 | | | Satd. Flow (perm) | 3536 | 0 | 1770 | 3539 | 1645 | 0 | | Link Speed (mph) | 45 | | | 45 | 25 | | | Link Distance (ft) | 951 | | | 491 | 519 | | | Travel Time (s) | 14.4 | | | 7.4 | 14.2 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 2622 | 22 | 11 | 1178 | 11 | 44 | | Shared Lane Traffic (%) | | | | | | | | Lane Group Flow (vph) | 2644 | 0 | 11 | 1178 | 55 | 0 | | Enter Blocked Intersection | No | No | No | No | No | No | | Lane Alignment | Left | Right | Left | Left | Left | Right | | Median Width(ft) | 12 | ŭ | | 12 | 12 | ŭ | | Link Offset(ft) | 0 | | | 0 | 0 | | | Crosswalk Width(ft) | 16 | | | 16 | 16 | | | Two way Left Turn Lane | | | | | | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Turning Speed (mph) | | 9 | 15 | | 15 | 9 | | Sign Control | Free | | | Free | Stop | | | Intersection Summary | | | | | | | | | Other | | | | | | | Control Type: Unsignalized | | | | | | | Intersection Capacity Utilization 75.9% Analysis Period (min) 15 2035 AM Build Synchro 7 - Report RMK Page 6 ICU Level of Service D | | ۶ | - | ← | • | - | 1 | |----------------------------|------------|-----------------|-----------------|-------|-------|-----------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | <u>LDL</u> | † | ↑ ↑↑ | WDIX | 35L | الماد الم | | Volume (vph) | 320 | 777 2600 | TTT 1150 | 550 | 550 | 200 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Storage Length (ft) | 315 | 1700 | 1700 | 450 | 1900 | 300 | | | 1 | | | 450 | 1 | 1 | | Storage Lanes | 25 | | | 25 | 25 | 25 | | Taper Length (ft) | | 0.01 | 0.01 | | | | | Lane Util. Factor | 1.00 | 0.91 | 0.91 | 1.00 | 0.97 | 1.00 | | Frt | 0.050 | | | 0.850 | 0.050 | 0.850 | | Flt Protected | 0.950 | 500/ | F00/ | 4500 | 0.950 | 4500 | | Satd. Flow (prot) | 1770 | 5036 | 5036 | 1583 | 3433 | 1583 | | Flt Permitted | 0.125 | | | | 0.950 | | | Satd. Flow (perm) | 233 | 5036 | 5036 | 1583 | 3433 | 1583 | | Right Turn on Red | | | | No | | No | | Satd. Flow (RTOR) | | | | | | | | Link Speed (mph) | | 45 | 45 | | 45 | | | Link Distance (ft) | | 684 | 666 | | 2709 | | | Travel Time (s) | | 10.4 | 10.1 | | 41.0 | | | Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Heavy Vehicles (%) | 2% | 3% | 3% | 2% | 2% | 2% | | Adj. Flow (vph) | 356 | 2889 | 1278 | 611 | 611 | 222 | | Shared Lane Traffic (%) | 330 | 2007 | 1270 | 011 | 011 | | | Lane Group Flow (vph) | 356 | 2889 | 1278 | 611 | 611 | 222 | | Enter Blocked Intersection | No | | No | No | No | No | | | | No | | | | | | Lane Alignment | Left | Left | Left | Right | Right | Right | | Median Width(ft) | | 12 | 12 | | 24 | | | Link Offset(ft) | | 0 | 0 | | 0 | | | Crosswalk Width(ft) | | 16 | 16 | | 16 | | | Two way Left Turn Lane | | | | | | | | Headway Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Turning Speed (mph) | 15 | | | 9 | 15 | 9 | | Number of Detectors | 1 | 1 | 1 | 1 | 1 | 1 | | Detector Template | | | | | | | | Leading Detector (ft) | 50 | 50 | 50 | 50 | 50 | 50 | | Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | | Detector 1 Position(ft) | 0 | 0 | 0 | 0 | 0 | 0 | | Detector 1 Size(ft) | 50 | 50 | 50 | 50 | 50 | 50 | | Detector 1 Type | CI+Ex | CI+Ex | CI+Ex | CI+Ex | CI+Ex | CI+Ex | | | CI+LX | CI+LX | CI+LX | CI+LX | CI+LX | CI+LX | | Detector 1 Channel | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Detector 1 Extend (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Detector 1 Queue (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Detector 1 Delay (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Turn Type | pm+pt | | | pm+ov | | pm+ov | | Protected Phases | 5 | 2 | 6 | 4 | 4 | 5 | | Permitted Phases | 2 | | | 6 | | 4 | | Detector Phase | 5 | 2 | 6 | 4 | 4 | 5 | | Switch Phase | | | | | | | | Minimum Initial (s) | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | Minimum Split (s) | 13.0 | 22.0 | 22.0 | 22.0 | 22.0 | 13.0 | | Total Split (s) | 34.0 | 83.0 | 49.0 | 37.0 | 37.0 | 34.0 | | - July 2511 (2) | J-1.U | 00.0 | 77.0 | 37.0 | 37.0 | J-1.U | 2035 AM Build Synchro 7 - Report RMK Page 7 | | • | - | • | • | - | 1 | |------------------------------|--------------|----------|----------|------------|------------|------------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Total Split (%) | 28.3% | 69.2% | 40.8% | 30.8% | 30.8% | 28.3% | | Maximum Green (s) | 30.0 | 78.0 | 44.0 | 32.0 | 32.0 | 30.0 | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | | Lost Time Adjust (s) | 0.0 | -2.0 | -2.0 | -2.0 | -2.0 | 0.0 | | Total Lost Time (s) | 4.0 | 3.0 | 3.0 | 3.0 | 3.0 | 4.0 | | Lead/Lag | Lead | | Lag | | | Lead | | Lead-Lag Optimize? | | | | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Recall Mode | None | C-Max | C-Max | None | None | None | | Act Effct Green (s) | 83.0 | 84.0 | 57.3 | 90.3 | 30.0 | 55.7 | | Actuated g/C Ratio | 0.69 | 0.70 | 0.48 | 0.75 | 0.25 | 0.46 | | v/c Ratio | 0.79 | 0.82 | 0.53 | 0.51 | 0.71 | 0.30 | | Control Delay | 37.4 | 4.1 | 24.8 | 8.8 | 45.7 | 19.6 | | Queue Delay | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 37.4 | 4.4 | 24.8 | 8.8 | 45.7 | 19.6 | | LOS | D | Α | С | Α | D | В | | Approach Delay | | 8.1 | 19.6 | | 38.7 | | | Approach LOS | | А | В | | D | | | Intersection Summary | | | | | | | | Area Type: | Other | | | | | | | Cycle Length: 120 | | | | | | | | Actuated Cycle Length: 12 | | | | | | | | Offset: 0 (0%), Referenced | d to phase 2 | :EBTL an | d 6:WBT, | Start of 0 | Green, Ma | aster Inte | | Natural Cycle: 60 | | | | | | | | Control Type: Actuated-Co | oordinated | | | | | | | Maximum v/c Ratio: 0.82 | | | | | | | | Intersection Signal Delay: | | | | | ntersectio | | | Intersection Capacity Utiliz | zation 72.6% |) | | [(| CU Level | of Service | | Analysis Period (min) 15 | | | | | | | Splits and Phases: 25: SR 18 & Crystal Lake 2035 AM Build Synchro 7 - Report RMK Page 8