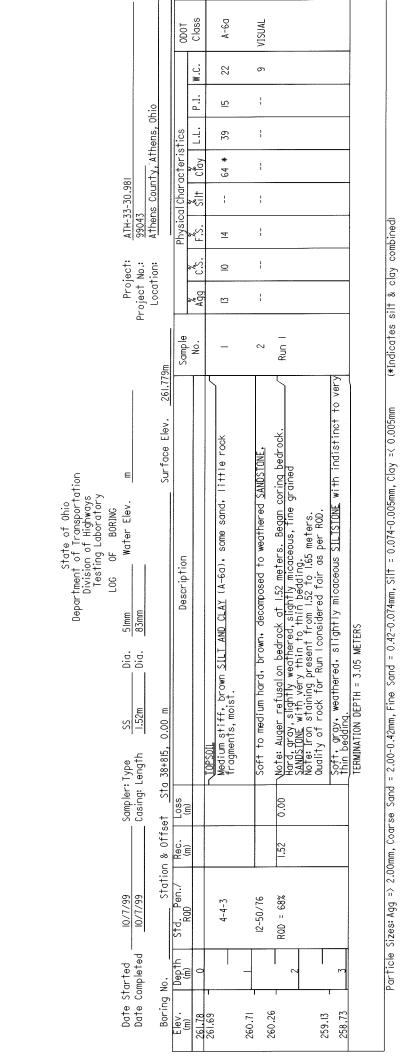
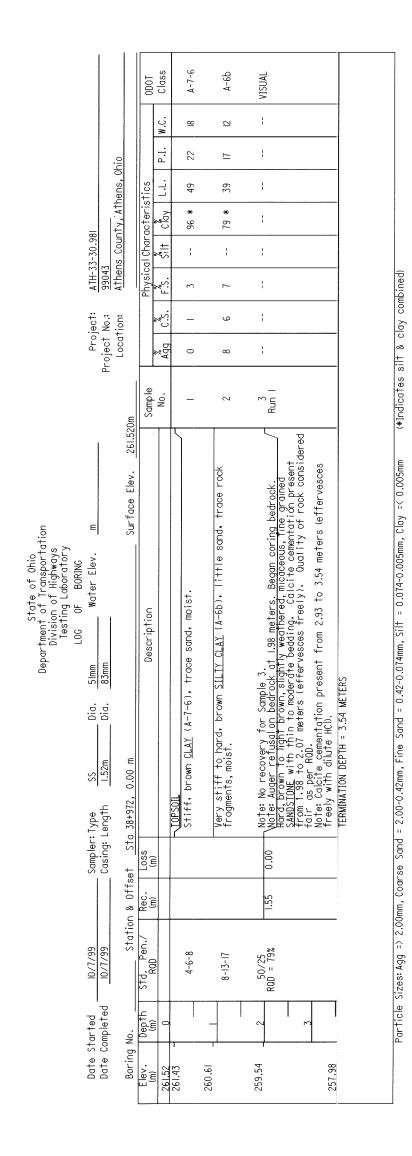
Date Started _	10/6/99		_ Sampler				ject:		<u>33-30.9</u>	81				
Date Completed	10/6/99		_ Casing:			Project Locat		<u>9904</u> Athei		nty, At	hens,C	hio		
Boring No. Elev. Depth (m) (m)	Std. Pen./	n & Offs Rec.	Loss	<u>1 38+050, 0.00 m</u> Surface Elev. <u>273.</u> Description	.296m Sample	-	Ph	ysical (Charac'	teristic	25			ODOT
273.30 0	RQD	(m)	(m)		No.	Å Agg	c % s.	F.S.	sîlt	Clay	L.L.	P.I.	W.C.	Class
273.20 -	5-9-27			<u>TOPSOIL</u> Very soft, light brown, decomposed <u>SANDSIONE</u> .							en 10		9	VISUAL
272.08	6-18-26			Very soft to medium hard, brown to gray, decomposed to weathered \underline{CLAY} SHALE.	2								14	VISUAL
2	12-19-33				3		** **					649 BD	14	VISUAL
3	50/150				4								6	VISUAL
268.72 	50/25 ROD = 100%	1.55	0.00	Note: Auger refusal on bedrock at 4.57 meters. Began coring bedrock. Hard, gray, slightly weathered, very tine grained <u>SANDSIONE</u> with massive bedding. Quality of rock considered excellent as per RQD.	5 Run I		-						2	VISUAL
267.17 6				TERMINATION DEPTH = 6.13 METERS										
				= 2.00-0.42mm Fine Sand = 0.42-0.074mm Silt = 0.074-0.005mm Clay -(0.005mm	100-100-100	e cilt & c								


Date S Date C Boring	completed		n & Off		r:Type <u>SS</u> Length <u>1.52m</u> a 38+250, 0.00 m	Dia. Dia.	LOG <u>5 Imm</u> 83mm	OF BORING Water Elev. 		 267.l40m		Pro Project Loca		9904		81 nty, At	hens, 0	hio		
Elev. (m)	Depth (m)	Std. Pen./ RQD	Rec. (m)	Loss (m)			Descrip	tion			Sample			Physic	al Char	racteri	stics		****	ODOT
67.14	0	NUD		(41)			1				No.	Åq	с%.	F.S.	silt	Clay	L.L.	P.I.	W.C.	Clas
67.02	-	2-4-5			<u>TOPSOIL</u> Stiff to very sti fragments, moist.	iff, reddisl	n-brown CL <u>AY</u>	(<u>A</u> -7-6), little t	o trace rock		I	7	3	10		80 *	46	23	21	A -7∙
5.31		4-11-16									2	3	4	2	476-489	90 *	48	19	16	A-7
	2	- 7-19-30	1		Very soft to mec <u>CLAY SHALE</u> .	lium hard,	reddish-browr	, decomposed †	o highly weathered		3						ar 44		15	VISU.
		30-39-50/127									4				409 FT				12	VISU
		21-43-40									5			40 40					10	VISU
51.04	6	50/76 RQD = 66%	1.45	0.08	Note: Auger refus soft, clay, highly	weathered	SILTY SHALE	with indistinct	coring bedrock. to laminar bedding		6 Run I					400 GB				VISUA
0.25 9.52	- 7	_			I Quality of rock f	or run lc	onsidered fai	as per RQD.	with moderated to											

					State of Ohio Department of Transportation Division of Highways Testing Laboratory										
					LOG OF BORING										
Date S	started _	10/6/99		_ Samplei	r:Type <u>SS</u> Dia. <u>51mm</u> Water Elev. <u>m</u>		Pro	oject:	ATH-	-33-30	.981				
Date C	Completec	10/6/99		_ Casing:	: Length <u>1.52m</u> Dia. <u>83mm</u>	F	Projec	† No.	<u>9904</u>						
Boring	No	Static	on & Of	fset	<u>Sta 38+600, 0.00 m</u> Surface Elev. <u>265.3</u>	97m	Loco	ation:	Athe	ens C	ounty	, Athe	ens, O	hio	
Elev. (m)	Depth (m)	Std. Pen./ RQD	Rec. (m)	Loss (m)	Description	Samp le			Physic	cal Cha	aracte	ristics	5		ODOT
265.40	0	itte	(III)			No.	% Agg	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	Class
265.28 -	-	4-9-10			<u>TOPSOIL</u> Very stiff. light brown <u>CLAY</u> (A-7-6). little to trace sand, trace to no rock fragments, moist.	1		2	9		88 *	45	22	17	A-7-6
264.48 .		Shelby Tube			Very stiff, brown <u>ELASTIC CLAY</u> (A-7-5), trace rock fragments, moist.	ST	7	о	0		93 *	53	21	18	A-7-5
263.87		5-10-12			Very stiff, light brown <u>CLAY</u> (A-7-6), trace sand, moist.	3	0	о	6		94 *	43	21	18	A-7-6
263.11		50/102			Very soft to soft, brown, highly weathered, micaceous <u>CLAY SHALE</u> .	4							~ ~	7	VISUAL
262.35		RQD = 36%	1.22	0.30	Note: Auger refusalon bedrock at 3.05 meters. Began coring bedrock Very soft to soft, brown, highly weathered <u>CLAYSTONE</u> with indistinct bedding.	Run 🕴									
260.83	4				Note: Iron staining present throughout length of core.										
					TERMINATION DEPTH = 4.57 METERS										


 $\overline{)}$

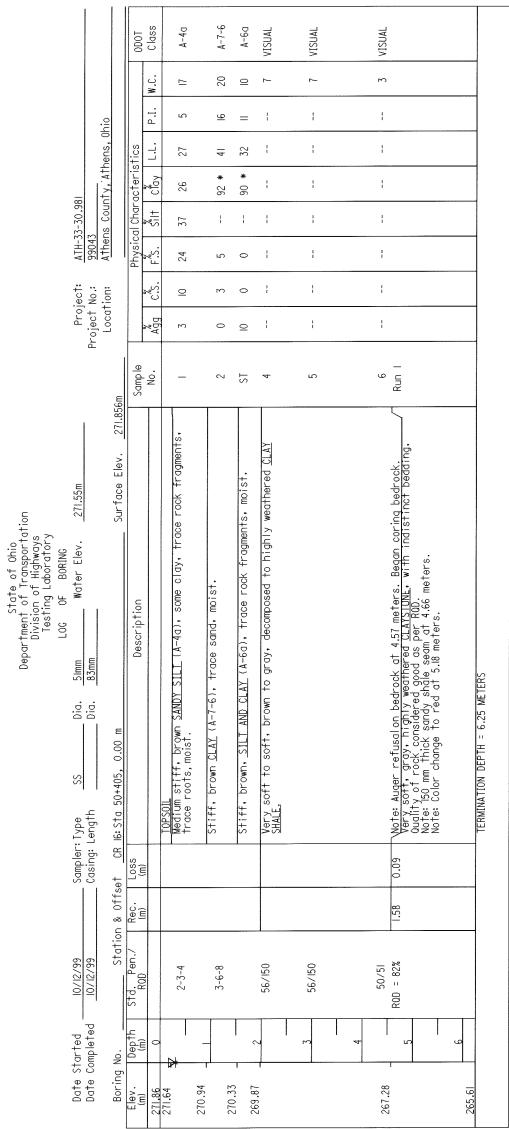
 \supset

)

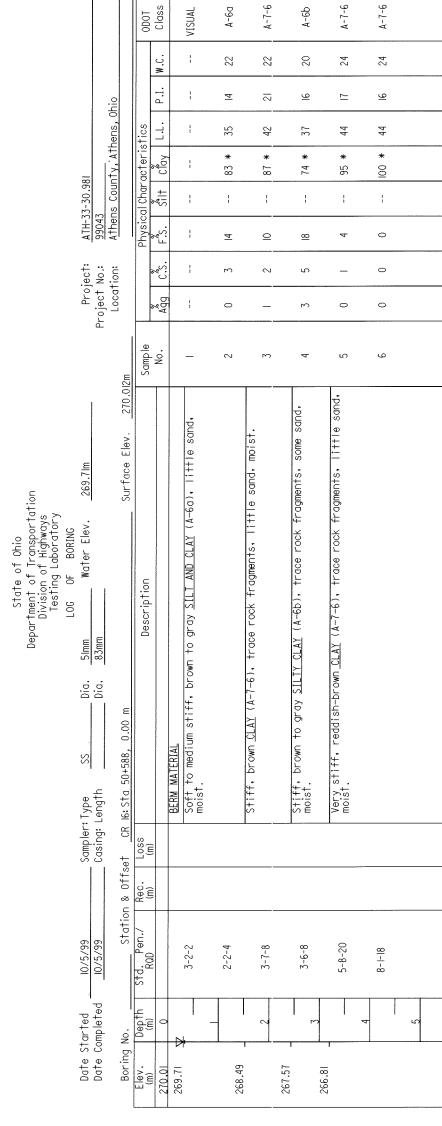
combined)

State of Ohio Department of Transportation Division of Highways Testing Laboratory

<u>ATH-33-30.981</u> <u>99043</u> Athens County, Athens, Ohio		Physical Characteristics 000T	clay L.L. P.I. W.C. Class		98 * 60 31 21 A-7-6	95 * 46 21 15 A-7-5	 6 VISUAL	 7 VISUAL						
Project: <u>ATH-33-30.981</u> ject No.: <u>99043</u> .ocation: <u>Athens Coun</u> t		al Charo	silt c		ອ ¦	ۍ ا	 	 }						
		Physic	F.S.		2	_	ł	{						
Project: oject No.: Location:			C.S.		0	~	1	8						
Project: Project No.: Location:			% Agg		0	2	 1	8						
	263.810m	Sample	No.		_	0	m	4	Run -					
<u>55</u> Dia. <u>51mm</u> Water Elev. <u>263.51m</u> <u>1.52m</u> Dia. <u>83mm</u>	ota 39+311, 0.00 m Surtace Elev.	s Description		- <u>ToPsoil</u>	Stiff to very stiff. brown <u>CLAY</u> (A-7-6). trace rock fragments. trace sand, moist.		Very soft to soft. brown. decomposed CLAY SHALE.		9 Note: Auger refusalon bedrock at 3.05 meters. Began coring bedrock Soft to verv soft. brown. biably weatbered (1 AYSTANE with	indisting bedding. Iron staining present throughout length of	Note:127 mm thick, very fine argined sandstone seam at 3.26 meters.	Note: 89 mm thick, verý fine ğrained sandstone seam at 3.51 meters.		TERMINATION DEPTH = 4.57 METERS
Casir	0TTset	c. Loss						 	3 0.09					
	Tion &	/ Rec.						 -	1.43					
10/1/	STO:	Std. Pen./ ROD			2-5-7	6-9-14	33-51	28-50/127	RQD = 29%					
Vate Started Date Completed	Boring No.	Depth (m)	0		•	_	 2	 ٣		1	4		Т	
Date Date	Bor	Elev.	263.81	263.72			261.98	25 020	01.003				259.24	


								Depai	tment Divisior Testir	ate of Ohio of Transpor- n of Highway ng Laborator DF BORING	tation s												
Date St		10/7/99		_ Sampler:		SS	Dia.	5lmm		Water Elev.	m				Pro	ject:	ATH-	33-30.9	81				
Date Co	ompleted	10/7/99		Casing: I	Length	1.52m	Dia.	<u>83mm</u>							Project		<u>9904</u>						
Boring	No	Statio	on & Offe	set <u>Sta</u>	38+815,	0.00 m					Surfa	ce Elev.	261.77	9m	Loca	tion:	A <u>the</u>	ens Cou	nty, At	hens, C)hio		
Elev. (m)	Depth (m)	Std. Pen./ RQD	Rec.	Loss (m)			****	De	scriptio	n				Sample			Physic	cal Cha	racteri	stics			ODOT
261.78	0	<u>RUD</u>		910						· · · · · · · · · · · · · · · · · · ·				No.	Agg	c.s.	F.S.	silt	C av	L.L.	P.I.	W.C.	Class
261.69 -		4-4-3		-	<u>TOPSOIL</u> Medium fragme		own <u>SILT</u>	AND CLAY	(A-6a)	some sand,	little	rock		I	13	10	14		64 *	39	15	22	A-6a
260.71 _ 260.26		12-50/76			Soft t	o medium h	ard, brow	vn, decom	posed to	o weathered	SANDSTON	<u>E.</u>		2			ua da					9	VISUAL
	2	RQD = 68%	1.52	0.00	Note: / Hard, c SANDST Note: I	Auger refus pray, slightl ONE with v fron stainin	salon bec y weathe ery thin g presen	rock at 1 red, sligh to thin 1 t from 1.5	.52 mete tly mica pedding 52 to 1.6	ers. Began c ceous, fine 5 meters. s per ROD.	<u>oring bec</u> grained	drock.		Run I									
259.13] —				Quality	of rock f	or Run I	considered	d fair a	s per RQD.							1						
258.73	3				Soft, thin be	gray, weat eddina.	hered, s	lightly m	i caceous	SILTSTONE	with ind	istinct	to very										
		**************************************	•	• •		ATION DEPTH																	

Date C	Started Completed	10/7/99 10/7/99	or 0 Off	_ Sampler: _ Casing:	Length	<u>SS</u> 1.52m	Dia. Dia.	51mm 83mm	Water		<u>m</u>			Pro Project Loca		9904		181 inty, At	hens,()hio		
Boring Elev.	Depth	Std. Pen./	on & Off: Rec.		38+972,	0.00 m	0.00	Desc	ription		Surface Elev	261.52	um Sample			Physic	al Char	racteri	stics			ODOT
(m) 61.52	(m) 0	RQD	(m)						· · F · · - · ·				No.	Ågg	c.s.	F.S.	silt	Clay	L.L.	P.I.	W.C.	Clas
61.43 60.61		4-6-8 8-13-17			Very s		-	, trace sa	nd, moist. <u>Y</u> (A-6b), li	ttle sar	nd, trace ro	/	l 2	0 8	І 6	3		96 * 79 *	49 39	22 17	18	A-7- A-6l
59.54		50/25 RQD = 79%	1.55	0.00	Note: N Note: A Hard, bi <u>SANDST(</u> from 1	o recovery uger refus rown to lig DNE with th 98 to 2.07	for Sam alon bed ht brown in to mc in to mc in tors	ple 3. rock at 1.9 , slightly w derate bed (effervesc	8 meters. Be eathered, mic ding, Calci es freely).	gan cori aceous, te cemer Quality	ing bedrock. Tine grained ntation pres y of rock co		3 Run I									VISUA
7.98					Note: C freely	s Der RUD.	ntation (HCl).	present fr	om 2.93 to 3.													


Date Completed 10/7/99 Casing: Length 1.52m Dia. 83mm Project No.: 93043 Boring No.	Date (Started	10/7/99		Sampler	Department of Transportation Division of Highways Testing Laboratory LOG OF BORING r: Type SS Dia. 51mm Water Elev. 263.51m		Dr		Λ.T.U_	-33-30	0.001				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					- 1			Projec	εť Νο.	: 9904	43					
Elev. (m) Depth (m) Std. Pen./ (m) Rec. (m) Loss (m) Description Sample Physical Characteristics 000 263.81 0 0 2 98 60 31 21 A-7 263.72 - 2-5-7 Stiff to very stiff, brown CLAY (A-7-6), trace rock fragments, trace sand, moist. 1 0 0 2 98 60 31 21 A-7 263.72 - - 6-9-14 - 95 46 21 15 A-7 261.98 - - - 6 VISU/ 260.76 - - - 6 VISU/ 260.76 - - -	Boring	No	static	רים אים חר	feet St	a 39+311 0.00 m Surface Floy 263	810m	Loco	ation:	Athe	ens C	ounty	, Athe	ens,C)hio	t
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Elev.	Depth	Std. Pen./	Rec.	Loss			İ		Physic	cal Che	aracte	ristic	s		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			RQD	(m)	(m)		1 1	% Agg	%				l	- <u>T</u>	w.c.	Clas
$\frac{2}{261.98} = \frac{2}{33-51}$ $\frac{2}{33-51}$ $\frac{28-50/127}{ROD} = 29\%$ $\frac{1.43}{1.43} = \frac{1.43}{0.09}$ $\frac{1.43}{0.09}$ $\frac{1.43}$		¥ —	2-5-7			Stiff to very stiff, brown <u>CLAY</u> (A-7-6), trace rock fragments,	-						60	31	21	A-7-
2 33-51 Very soft to soft, brown, decomposed CLAY SHALE. 3 6 VISUA 60.76 28-50/127 4 6 VISUA 60.76 3			6-9-14				2	2	2	1		95 *	46	21	15	A-7-
60.76 <u>3</u> ROD = 29% 1.43 0.09 Note: Auger refusal on bedrock at 3.05 meters. Began coring bedrock Soft to very soft. brown. highly weathered CLAYSTONE with indisting bedding. Iron staining present throughout length of core Quality of rock considered poor as per ROD. Note: 127 mm thick, very fine grained sandstone seam at 3.26 meters. Note: 89 mm thick, very fine grained sandstone seam at 3.51 meters.	61.98		33-51			Very soft to soft, brown, decomposed <u>CLAY SHALE</u> .	3								6	VISUA
	60.76						4								7	VISUA
	250.04	4	RQD = 29%	1.43	0.09	Note: Auger retustion bedrock at 3.05 meters. Began coring bedrock Soft to very soft. brown. highly weathered <u>CLAYSTONE</u> with indisting bedding. Iron staining present throughout length of core Quality of rock considered poor as per RQD. Note: 127 mm thick, very fine grained sandstone seam at 3.26 meters. Note: 89 mm thick, very fine grained sandstone seam at 3.51 meters.	Run I									
TERMINATION DEPTH = 4.57 METERS	:59.24			l	1	TERMINATION DEPTH = 4.57 METERS			1							

)

2001 16:35:42

silt & clay (*Indicates Clay Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Sand = 2.00-0.42mm, Fine Particle Sizes: Agg => 2.00mm, Coarse

 REVIEWED
 DATE
 CALCULATED

 B.M.
 03/22/00
 W.I.N.

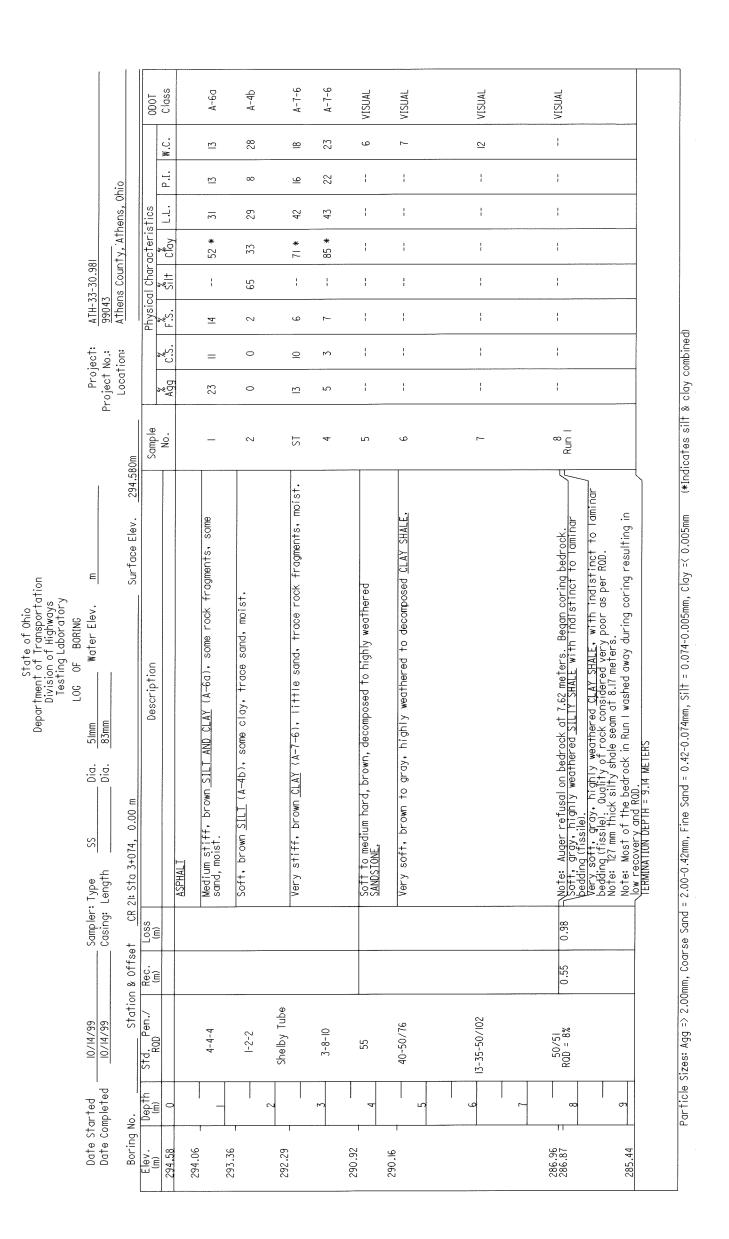
 B.M.
 03/22/00
 W.I.N.

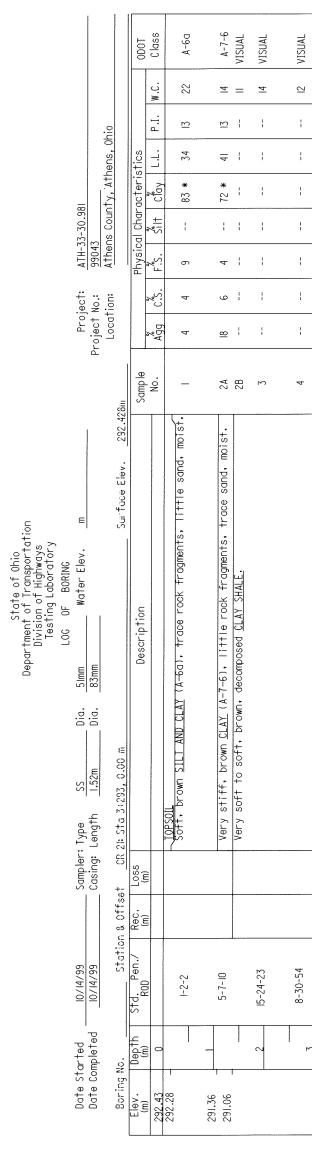
 S.S.S.
 CHECKED

 S.S.S.
 COLOUNATED

 Review
 CHECKED

 S.S.S.
 COLOUNATED
 A-7-6 A-60 A-6b VISUAL 0D0T Class VISUAL VISUAL /ISUAL ł 25 21 Ы 25 17 2 3 8 25 6 3 I I † I I 4 l 40 <u>county,</u>Athens, 32 54 Silt Clay 94 ***** 76 ***** 86 * ł ATH-33-30.981 99043 Athens Count-1 24 1 8 E 1 E E 5 Ľ combin Project: Project No.: Location: t | | | 0 0 (*Indicates silt & clay silt & clay Ågg ł 0 0 0 *DRAWN* E.D.S. 7 Run I Sample No. 6 Run I ST ŝ 4 S -----270.957m ROADWAY/CULVERT SOIL PROFILE Boring Logs aminar Note: Auger refusal on bedrock at 6.10 meters. Began coring bedrock Hard, gray, slightly weathered, micaceous, fossiliterous tine grained S<u>ANDSIONE</u> with thin to massive bedding. Surface Elev. =< 0 ∩∩E wet at 5.67 meters 7.56 Very soft, gray, highly weathered <u>CLAY SHALE</u> with indistinct to bedding (fissile). Wote: 25 mm hard, gray, weathered limestone seam present at 7.5 LERMINATION DEPH = 7.62 MmrtRS. 270.35m Note: Auger refusal on bedrock at 4.57 meters. Began coring bedr Very soft. red. decomposed <u>CLAY SHALE</u> with indistinct bedding. quality very poor as per ROD. = 0.074-0.005mm, Clay clay State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING = 0.074-0.005mm, Soft. brown <u>SILT AND CLAY</u> (A-6a). little sand. moist. Sample JF BORING Water Elev CLAY omposed SANDSTONE. mois Soft, brown <u>CLAY</u> (A-7-6), moist. (Shelby Tube sand. = 0.42-0.074mm. Silt Sand = 0.42-0.074mm, Silt 51mm 83mm SILTY CLAY (A-6b), TERMINATION DEPTH = 6.10 METERS brown to gray. Dia. Dia. 0.00 Sand = 2.00-0.42mm, Fine = 2.00-0.42mm, Fine BERM MATERIAL 50+660, soft. SS Stiff. r CR l6: Sta Loss 1 Sand 0.21 Station & Offset Std. Pen./ Rec. Lo. MOD (m) Coarse Coarse Σ. Particle Sizes: Agg => 2.00mm, ATH-33-30.981 Shelby Tube 31-50/76 ROD = 17% 10/5/99 RQD = 82% 14-23-28 50/51 4-6-9 Sizes: Agg 1-2-2 25-49 Date Started Date Completed Boring No. Elev. Depth (m) 270.50 270.50 289.89 269.28 269.28 article 268.37 264.37 263.92 266.39 262.61 262.39


72/105


	Started Completed	10/12/99 10/12/99	n & Offs		LOG OF BORING : Type <u>SS</u> Dia. <u>51mm</u> Water Elev. <u>271.55m</u> Length Dia. <u>83mm</u> Surface Elev. 271.65m	256 m	Pro Project Loca		9904		181 inty, At	hens, C	Ihio		
Elev.	Depth S	Std. Pen./	Rec.	Loss	Description	1			Physic	al Char	racteri	etice			
(m)	(m) 0	RQD	(m)	(m)	Uescripiion	Sample No.	Ågg	c.s.	F.S.	Silt	Clay	L.L.	P.I.	W.C.	_ ODOT Clas
71.86 71.64 70.94	¥	2-3-4			<u>TOPSOIL</u> Medium stiff, brown <u>SANDY SILT</u> (A-4a), some clay, trace rock fragments, trace roots, moist.		3	10	24	37	26	27	5	17	A-40
270.33		3-6-8			Stiff, brown <u>CLAY</u> (A-7-6), trace sand, moist.	2	0	3	5		92 *	41	16	20	A-7-
69.87	2	56/150			Stiff, brown, <u>SILT AND CLAY</u> (A-6a), trace rock fragments, moist. Very soft to soft, brown to gray, decomposed to highly weathered <u>CLAY</u> <u>SHALE.</u>	ST 4		0	0		90 *	32		10 7	A-6 VISUA
	3	56/150				5								7	VISUA
67.28	R	50/51 ROD = 82%	1.58	0.09	Note: Auger refusation bedrock at 4.57 meters. Began coring bedrock. Very soft, gray, highly weathered <u>CLAYSIONE</u> , with indistinct bedding. Quality of rock considered good as per ROD. Note: 150 mm thick sandy shale seam at 4.66 meters. Note: Color change to red at 5.18 meters.	6 Run I								3	VISUA

	Started Completed	10/5/99 10/5/99		_ Sampler _ Casing:			Project	oject: † No.: ation:	9904)81 	hens. ()hio		
Boring		Stati			<u>16: Sta 50+588, 0.00 m</u> Surface Elev	270.012m	_								
Elev. (m)	Depth (m)	Std. Pen./ RQD	Rec. (m)	Loss (m)	Description	Sample		1 %	1 %	0/	racteri	1	T	т	ODOT
70.01	0					No.	Aĝg	<u> </u>	F.S.	sîlt	Clay	L.L.	P.I.	W.C.	Clas
69.71	₩	3-2-2			BERM MATERIAL Soft to medium stiff, brown to gray <u>SILT AND CLAY</u> (A-6a), little sand, moist.	·						~~~			VISUAL
58.49		2-2-4				2	0	3	14		83 *	35	14	22	A-60
	2	. 3-7-8			Stiff, brown <u>CLAY</u> (A-7-6), trace rock fragments, little sand, moist.	3		2	10		87 *	42	21	22	A-7-
57.57		3-6-8			Stiff, brown to gray <u>SILTY CLAY</u> (A-6b), trace rock fragments, some sand moist.	4	3	5	18		74 *	37	16	20	A-6t
6.81	_	- 5-8-20			Very stiff, reddish-brown <u>CLAY</u> (A-7-6), trace rock fragments, little so moist.	ind, 5	0		4		95 *	44	17	24	A-7-
	4	8-1-18				6	0	0	0		100 *	44	16	24	A-7-
	5														
4.37 3.92		50/51			Very soft, brown to gray, decomposed <u>SANDSTONE</u> , wet at 5.67 meters.	7		~~					80.50		VISUA
J.JC		RQD = 82%	1.31	0.21	Note: Auger refusal on bedrock at 6.10 meters. Began coring bedrock. Hard, gray, slightly weathered, micaceous, fossiliterous fine grained SANDSTONE with thin to massive bedding.	Run I									
2.61 2.39		•			Very soft, gray, highly weathered <u>CLAY SHALE</u> with indistinct to laminar bedding (fissile). Note: 25 mm hard, gray, weathered limestone seam present at 7.56 meter										

								State tment of T Division of Testing Lo LOG OF	aboratory	tion											
Date S	tarted ompleled	10/5/99		_ Sampler	:Type <u>SS</u> Length	Dia.	5 lmm		ter Elev.	270.35m				ject:		<u>33-30.9</u>	81				
		··				Dia.	83mm			o f mi			Project Loca		<u>9904</u> Athe		nty, At	hens, C)hio		
Boring Elev.	Depth	Std. Pen./	Rec.	Loss	<u>16: Sta 50+660, 0.0</u>	0 m	Dooo	cription		Surface Elev	. 270.9	<u>Sample</u>			Physic	al Char	racteri	stics			ODOT
(m) 270,96	(m) 0	RQD	(m)	(m)			Desc					No.	Agg	c [%] s.	F.S.	Silt	Clay	L.L.	P.I.	W.C.	Class
270.50	¥ —	I-2-2			BERM MATERIAL Soft, brown <u>SIL1</u>	AND CLAY	<u>Y</u> (A-6a), 1	little sand	d, moist.				0	I	13		86 *	32	14	25	A-6a
269.89		Shelby Tube			Soft, brown <u>CLAY</u>	<u>(</u> (A-7-6),	, moist. (S	Shelby Tub	e Sample)			- ST	6	0	0		94 *	54	25	25	A-7-6
269.28	2	4-6-9			Stiff, brown <u>SIL</u>	TY CLAY ((A-6b), som	ne sand, ma	oist.			3	0	0	24		76 *	40	19	21	A-6b
268.37		14-23-28			Very soft, brown	n to reddi	ish-brown,	decompose	d <u>clay sh</u> a	ALE.		4		00 mar						17	VISUAL
		25-49										5								13	VISUAL
266.39	4	31-50/76										6								13	VISUAL
		RQD = 17%	1.34	0.18	Note: Auger refu Very soft, red, quality very pool	salon bec decompose as per l	drock at 4.5 ed <u>CLAY SHA</u> RQD.	57 meters, ALE with in	<u>Began co</u> ndistinct	ring bedrock. bedding, Rod	ск	- Run I									
264.86	6																				
	<u> </u>				TERMINATION DEPTH	= 6.10 ME	TERS					- L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	L		J	1	I	<u> </u>
	Particlo	Sizes Mag -> 20	0000 000	Irea Sand	= 2.00-0.42mm. Fine	Sand - A	42-0 074mm		17/-0 005mm	-Clay - C = 0.005	Smm	(*Indicate	e silt & /		mbinad						

APR 200

 \supset

 \mathbf{i}

 \sum

VISUAL /ISUAL و \simeq 2 E I ł ł ł 1 5 5 ł 5 Run I 4 Note: Auger refusal on bedrock at 4.57 meters. Began coring bedrock. Soft. gray. highly weathered <u>CLAY SHALE</u> with laminar bedding (fissile). duality of rock considered fair as per ROD. Note: Iron staining present from 4.66 meters to 5.24 meters. Note: 0.40 meter Thick hard, gray, weathered silty shale seam at 4.85 meters. TERMINATION DEPTH = 6.10 METER 1.52 8-30-54 -50/25 RQD = 52% 4 287.86 286.33

silt & clay Sand = 0.42-0.074mm, Silt = 0.074-0. Sand = 2.00-0.42mm, Fine Coarse article Sizes: Agg => 2.00mm,

State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING 51mm Water Elev. 279.92m 279

51mm 83mm Dia. Dia. SS I.52m Sampler: Type Casing: Length 10/15/99 Date Started Date Completed

A-I-b A-60 A-7-6 A-7-5 A-7-5 A-7-5 ISUAL 5 6 23 25 9 2 0 20 23 1 23 4 28 Ath 43 33 58 51 57 * ℃6 76 ***** 84 * ł Project: ATH-33-30.981 Project No.: <u>99043</u> Location: Athens Count 1 t ł m α \sim 24 10 - $\frac{4}{2}$ $\frac{4}{2}$ 0 — ∩ ∽ v <u>B</u> ≥ m ST Run 8 ŝ d No nations present from 5.06 along these laminations. Medium hard, brown, highly weathered <u>SANDSTONE</u>. Note: <u>Auger</u> refusal on bedrock at 4.42 meters. <u>Began</u> coring bedrock Hard, brown, slightly weathered, micaceous, tine grained <u>SANDSTONE</u> with moderate to thick bedding. Iron staining present throughout length of core. Quality of rock considered excellent as per ROD. Note: Some very thin, carbonaceous laminations present from 5.0 to 6.10 meters. Bedding planes are weak along these laminations. <u>ROAD BASE</u> Very stiff, brown <u>SILT AND CLAY</u> (A-6a) and rock fragments, little sand, moist. Medium stiff, brown <u>CLAY</u> (A-7-6), trace sand, moist. Medium stiff, brown <u>ELASTIC CLAY</u> (A-7-5), trace to little fragments trace sand, moist. decomposed CLAY SHALE INATION DEPTH = 6.10 METERS Very soft, brown, ASPHALT sraf Fd. Pen./ ROD Sheby Tube 15-48-27 50/76 RQD = 100% 2-4-4 2-4-4 31-19-14 281.14 280.84 280.38 277.79 277.33 277.18 279.62 Elev. (m) 281.60

PRIME ENGINEERING & Architecture, NC. 640457-200 556-5422 3300 556-5422 0 DATE CALCULATED 03/22/00 W.I.N. CHECKED REVIEWED B.M. *DRAWN* E.D.S. PROFILE ROADWAY/CULVERT SOIL BORING LOGS ATH-33-30.981

0.42-0.074m

2.00-0.42mm, Fine

Sand =

Coarse

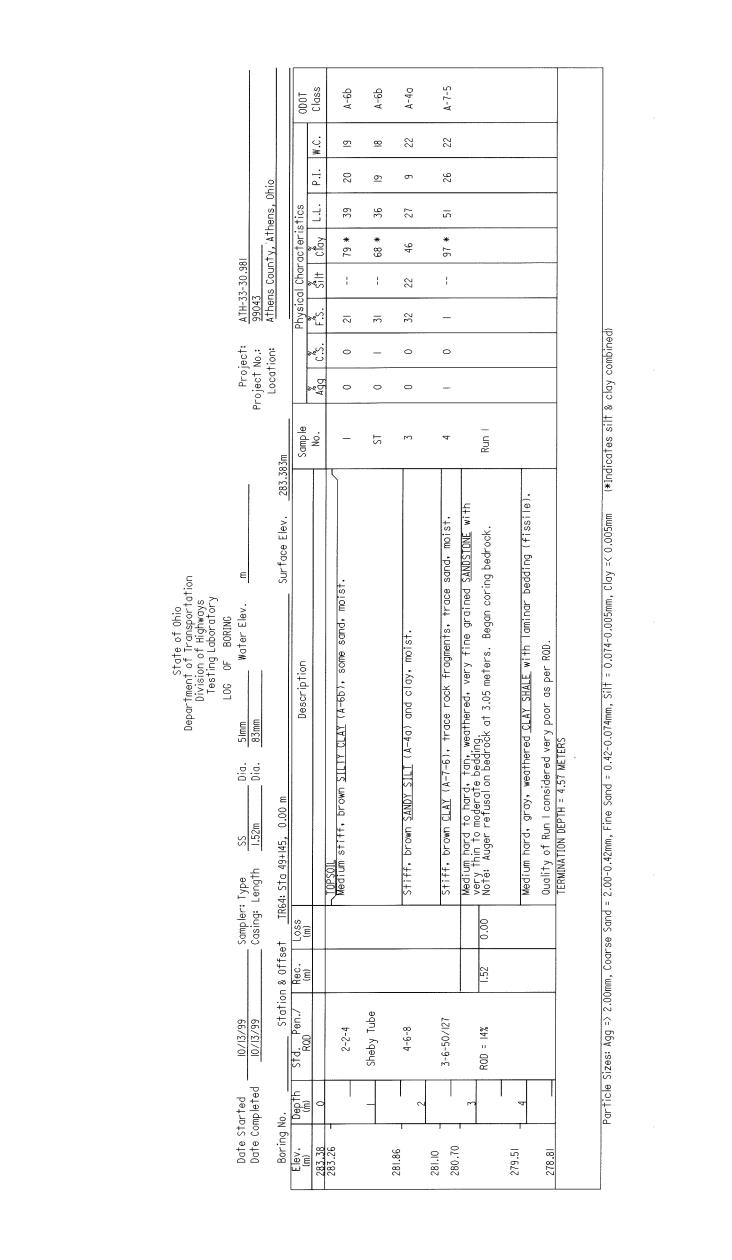
Agg

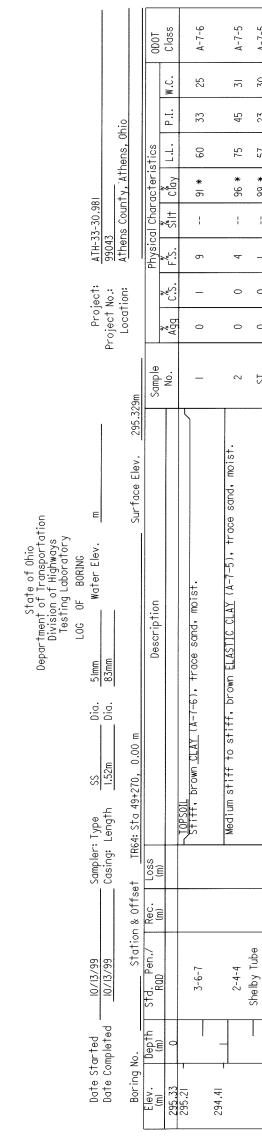
Sizes:

							Div T	State of Ohic ent of Transpor vision of Highway esting Laborato OG OF BORING	tation vs											
Date Star Date Comp		0/14/99 0/14/99		Sampler: Casing:			51mm 83mm	Water Elev	· <u>M</u>	******		Pro Project	ject: No.:	99043						
Boring No) .	Station	ı& Offse	et CR	21: Sta 3+074, 0.00	m			Surface Elev.	294.58Om	n	Loca ⁻	tion:	Ather	ns Cour	nty, Atl	hens,(<u>hio</u>		
Elev. D	Depth Sto	d. Pen./	Rec. (m)	Loss (m)			Descr	iption		1	Sample			Physic	al Char	racteri	stics		-	ODOT
294,58	0					***************************************					No.	Agg	c.s.	F.S.	silt	Clay	L.L.	P.I.	W.C.	Class
294.06					ASPHALT Medium stiff. br	own SILT AN	<u>Ι Γ΄ ΔΥ</u>	-fal, some rock	(fraaments, some											
293.36		4-4-4			sand, moist.						Ι	23		14		52 *	31	13	13	A-6a
		I-2-2			Soft, brown <u>SILT</u>	(A-4D), SO	ome clay,	trace sand, moi	ST.		2	0	0	2	65	33	29	8	28	A-4b
292.29	Sh	nelby Tube			Very stiff, brow	n <u>CLAY</u> (A-7	7-6), litt	le sand, trace	rock fragments, i	moist.	ST	13	10	6		7 *	42	16	18	A-7-6
-	3	3-8-10									4	5	3	7		85 *	43	22	23	A-7-6
290.92	4	55			Soft to medium ho SANDSTONE.	ırd, brown, d	decomposec	to highly weath	nered		5				1 07 100				6	VISUAL
290.16 _	40 5)-50/76	:		Very soft, brown	to gray, h	nighly wea	thered to decor	mposed <u>CLAY SHALE</u>	2	6				10 MP				7	VISUAL
	<u> 6 </u>	5-50/102									7								12	VISUAL
_	7																			
286.96 286.87 =		50/51 D = 8%	0.55	0.98	Note: Auger refu Soft, gray, high bedding (fissile).					()	8 Run I					-				VISUAL
	9				Very soft, gray, bedding (fissile). Note: 127 mm thic	Duality wea Quality of r k silty shale	othered <u>CL</u> ock considered seam at 8	AY SHALE, with lered very poor 9.17 meters.	indistinct to la as per ROD. coring resulting ir	minar '										
285.44	·······				low recovery and TERMINATION DEPTH	RQD.	s s s s s s s s s s s s s s s s s s s	ieu away auring	coring resulting in								<u> </u>	<u> </u>		

Date Starte			_ Sampler			Proj			33-30.9	81		rain		
Date Comple Boring No.		tion & Offs		Length <u>1.52m</u> Dia. <u>83mm</u> 21: Sta 3+293, 0.00 m Surface Elev. 292.42	8m	Project I Locat		<u>9904.</u> Athe		nty, Ath	nens, O	hio		
Ŷ	oth Std. Pen./		Loss (m)	Description	Sample		PI560-04-11	Physic	al Char	racteria	stics			ODOT
2.43					No.	Ågg	c.s.	F.S.	silt.	Clay	L.L.	P.I.	W.C.	Class
2.28 -	I-2-2			<u>IOPSOIL</u> Soft, brown <u>SILT AND CLAY</u> (A-6a), trace rock fragments, little sand, moist.	I	4	4	9	105-05	83 *	34	13	22	A-6a
1.36 1.06 _	5-7-10			Very stiff, brown <u>CLAY</u> (A-7-6), little rock fragments, trace sand, moist. Very soft to soft, brown, decomposed <u>CLAY</u> SHALE.	2A 2B	18	6	4		72 *	41	13	4	A-7-0 VISUAL
	215-24-23				3		100 av.					100 EU	14	VISUAL
					4		ner ste				49 es	~	12	VISUAL
	4 4 4I-50/25													
7.86					5		~~						6	VISUAI
	5 RQD = 52%	1.52	0.00	Note: Auger refusal on bedrock at 4.57 meters. Began coring bedrock. Soft, gray, highly weathered <u>CLAY SHALE</u> with laminar bedding (fissile), Quality of rock considered fair as per RQD. Note: Iron staining present from 4.66 meters to 5.24 meters. Note: 0.40 meter thick hard, gray, weathered silty shale seam at 4.85 meters.	Run I									

State of Ohio Department of Transportation Division of Highways Testing Laboratory										
LOG OF BORING Date Started <u>10/15/99</u> Sampler: Type <u>SS</u> Dia. <u>51mm</u> Water Elev. <u>279.92m</u> Date Completed <u>10/15/99</u> Casing: Length <u>1.52m</u> Dia. <u>83mm</u> Boring No Station & Offset <u>TR55</u> : Sta 48+365 Surface Elev. 281		Projec	oject: t No.: ation:	9904	43	0.981 ounty	, Athe	əns, O	hio	
Elev. Depth Std. Pen./ Rec. Loss Description (m) (m) (m) (m) (m) (m) (m) Description 281.60 0 0 0 0 0 0 0	Sample No.	% Agg	% C.S.	Physic % F.S.	cal Ch %ilt	naracte	ristic	s P.I.	W.C.	ODOT Class
281.60 0 281.14	IA IB 2 3 ST	Agg 41 41 0 2 5	24 10 1 3 8	12 7 2 12	 	23 * 43 * 98 * 93 * 76 *	 33 43 58 51	 4 23 28 20	5 9 23 25 16	A-I-b A-6a A-7-6 A-7-5 A-7-5
277.79 - I5-48-27 277.33 - 50/76 277.18 - 50/76 5 - - 5 - - 6 - - 275.50 - - 6 - - 275.50 - - 75.50 - - 75.50 - - 75.50 - - 6 - - 75.50 - - 6 - - 75.50 - - 6 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - - 75.50 - <td>5 6 Run I</td> <td></td> <td>2</td> <td>2</td> <td></td> <td>84 *</td> <td></td> <td></td> <td>12</td> <td>A-7-5 VISUAL</td>	5 6 Run I		2	2		84 *			12	A-7-5 VISUAL


APR 2001 |6:38:33 8287/geotech/PROJECT SOIL PROFILE/99043-39.


 $\overline{)}$

 $\overline{)}$

 \bigcirc


 $\widehat{}$

A-7-5	A-7-5	A-7-6	A-7-6	A-7-6	A-7-6	A-7-6 VISUAL	VISUAL	
30	31	28	31	29	20	9 0	ى ا	
23	27	9	21	8	6	9 ¦	}	
57	57	44	46	45	42	41	ł	
* 66	*001	* 86	* 66	* 96	95 *	26 *	1	
ł	}	3 5	ŧ ş	1	3	8 - 9 2	1	
_	0	_	_	м	ю	0	}	
0	0	0	0	0	_	27	}	
0	0	_	0	0	saating	∞ ¦		
ST	4	ى	9	7	80	9A 9B	Run -	
		Stiff to hard, brown <u>CLAY</u> (A-7-6), no to trace rock fragments, trace to and sand, moist.				Very soft to soft, brown, decomposed to highly weathered <u>CLAY SHALE</u> .	0.00 Note: Auger refusal on bedrock at 4.57 meters. Began coring bedrock. Hard. Tight gray. slightly weathered. micaceous. tine grained <u>SANUSIONE</u> with very thin to moderate bedding. Some iron staining present from 7.80 to 8.23 meters and from 8.81 to 9.14 meters. Note: Many to Note: Many to unality of rock for Run I considered excellent as per ROD.	TERMINATION DEPTH = 9.14 METERS
							1.52	
	4-5-8	3 4-6-8	4-7-7	3-5-6	7-13-9	4-24-50/127	R0D = 98%	
	1	292.43				289.23	287.71	286.13

*Indicates silt & clay clay = 0.42-Sand 2.00-0.42mm, Fine ticle Sizes: Agg

Date C	Started Completed	10/13/99 10/13/99		_ 0	Length <u>1.52m</u> Dia. <u>83mm</u>		Project	ject: No.: tion:	99043		81 	hens, ()hio		
Boring Elev.	No. Depth	Static Std. Pen./	on & Offs Rec.	e† <u>TR</u> Loss	64: <u>Sta 49+145, 0.00 m</u> Surface Elev. <u>283.</u>				Dhuaia						
(m) 283.38	(m)	RQD	(m)	(m)	Description	Sample No.	Ågg	c.s.	F.S.	sîlt	citeri Ciay	L.L.	P.I.	W.C.	ODOT Class
283.26		2-2-4			TOPSOIL Medium stiff, brown <u>SILIY CLAY</u> (A-6b), some sand, moist.		0	0	21		79 *	39	20	19	A-6b
		Sheby Tube				ST	0		31		68 *	36	19	18	A-6b
81.86		4-6-8			Stiff, brown <u>SANDY SILT</u> (A-4a) and clay, moist.	3	0	0	32	22	46	27	9	22	A-40
31.10 30.70		3-6-50/127			Stiff, brown <u>CLAY</u> (A-7-6), trace rock fragments, trace sand, moist.	4	ł	0	1		97 *	51	26	22	A-7-
	3	RQD = 14%	1.52	0.00	Medium hard to hard, tan, weathered, very fine grained <u>SANDSTONE</u> with very thin to moderate bedding. Note: Auger refusal on bedrock at 3.05 meters. Began coring bedrock.	Run I									
79.51	4	-			Medium hard, gray, weathered <u>CLAY SHALE</u> with laminar bedding (fissile).					- 					
78.81					Quality of Run I considered very poor as per RQD.										

						State of Ohio Department of Transport Division of Highways Testing Laboratory LOG OF BORING											
Date St		10/13/99		Sampler		<u>51mm</u> Water Elev.	_m			jec†:		33-30.9	81				
	mpleted	10/13/99		Casing:	Length <u>1.52m</u> Dia.	_83mm			Project Locat		<u>99043</u> Ather		nty, Atl	nens,O	Ihio		
Boring Elev.	No. Depth	Statio Std. Pen./	n & Offs Rec.	et <u>TRE</u> Loss	64: Sta 49+270, 0.00 m		Surface Elev										
(m)	(ḿ)		(m)	(m)		Description		Sample No.	.%	_%_	<u> </u>	M	racteria	stics	P.I.	W.C.	_ ODOT Class
<u>295.33</u> 295.21 -	0				TOPSOIL				Agg	c.s.	F.S.	sîlt	Clay	L.L.	F.I.	W.C.	
		3-6-7			Stiff, brown <u>CLAY</u> (A-7-6)), trace sand, moist.		I	0	I	9		9 *	60	33	25	A-7-6
294.41		2-4-4			Medium stiff to stiff, bro	rown <u>ELASTIC CLAY</u> (A-7-5), t	race sand, moist.	2	0	0	4		96 *	75	45	31	A-7-5
		Shelby Tube						ST	0	0			99 *	57	23	30	A-7-5
		4-5-8						4	0	0	0		100*	57	27	31	A-7-5
292.43		4-6-8			Stiff to hard, brown <u>CLAY</u> sand, moist.	Y (A-7-6), no to trace rock	fragments, trace to an	d 5		0			98 *	44	16	28	A-7-6
	4	4-7-7						6	0	0	l	Nin ut	99 *	46	17	31	A-7-6
		3-5-6						7	0	0	3	س بيه	96 *	45	18	29	A-7-6
		7-13-9						8		1	3	600 400	95 *	42	19	20	A-7-6
289.23	6	4-24-50/127			Very soft to soft, brown,	, decomposed to highly weath	ered <u>CLAY SHALE</u> .	9A 9B	8 	27	10	50- 00. 10	56 *	41	16 	16 10	A-7-6 VISUAL
287.71		50/76 RQD = 98%	1.52	0.00	Note: Auger refusal on bed	drock at 4.57 meters. Began c	oring bedrock.	– 10 Run I								5	VISUAL
200 10	<u>8</u> 					drock at 4.57 meters. Began c Ty weathered, micaceous, fin te bedding. Some iron stain to 9.14 meters. Thin carbonaceous laminations p considered excellent as per RQD											
286.19			1		TERMINATION DEPTH = 9.14 METE	I			1		l	L		l		L	

<u>SUMMARY OF SOIL TEST DATA (GANNETT FLEMING)</u>

BORING No.	Station & Offset	Depth From To	% % % % % % AGG. C.S. F.S. Silt Clay L.L. P.I. W.C.	ODOT Class	BORING No.	Station & Offset	Depth From To	% % % % % 0D07 AGG. C.S. F.S. Silt Clay L.L. P.I. W.C. <i>Class</i>	r s co
RA-I	29+505	0.00-0.61 1.22-1.83 1.83-2.13 2.13-2.44 2.44-3.05 4.11-4.42 4.42-4.57	FILL: MOTTLED BROWN SILTY CLAY WITH SAND AND ROCK FRAGMENTSIOBROWN SANDY SILT, SOME CLAY, LITTLE GRAVELI5BROWN CLAY, SOME SILT, TRACE SAND23OO415925OO1425731BROWN/ORANGE BROWN AND GRAY SILTY CLAY W/ OXIDES AND FINE SAND15BROWN/ORANGE BROWN AND GRAY SILTY CLAY W/ OXIDES AND FINE SAND18	VISUAL VISUAL VISUAL A-7-6 A-7-6 VISUAL VISUAL	TR64-2	49+195	0.00-0.61 0.61-1.22 1.22-1.83 1.83-2.44 2.44-3.05 4.11-4.51	FILL: BROWN/ORANGE BROWN SI. CLAY W/ SAND, GRAVEL AND OXIDE TRACES 12 VISUAL 9 7 36 20 27 13 A-6a 8 4 33 38 17 NP 11 A-4a 17 7 6 41 29 11 A-4a LIGHT OLIVE BROWN AND ORANGE BROWN SILTY CLAY 13 VISUAL OLIVE TO GRAY SILTY CLAY (EXTREMELY WEATHERED SHALE) 15 VISUAL	FOOT
		5.64-6.25 7.16-7.43	BROWN/ORANGE BROWN AND GRAY SILTY CLAY W/ OXIDES AND FINE SAND 26 GRAY SILTY CLAY/EXTREMELY WEATHERED SHALE	VISUAL VISUAL VISUAL	TR64-3	49+215	0.30-0.69	LIGHT BROWN SILTY SAND W/ SANDSTONE FRAGMENTS I2 VISUAL	
XA-2	29+515 5 M LEFT	0.00-0.61 0.61-1.22 1.22-1.52	FILL: BROWN/ORANGE BROWN SI. CLAY W/ SAND, GRAVEL, AND ROOT HAIRS. 9 FILL: BROWN/ORANGE BROWN SI. CLAY W/ SAND, GRAVEL, AND ROOT HAIRS. 12 FILL: BROWN/ORANGE BROWN SI. CLAY W/ SAND, GRAVEL, AND ROOT HAIRS. 16	VISUAL VISUAL VISUAL	TR64-4	49+240	0.30-0.91 0.91-1.37 1.37-1.61	LIGHT ORANGE BROWN W/LIGHT GRAY SILTY CLAY W/TRACES OF OXIDES 19 VISUAL LIGHT ORANGE BROWN W/LIGHT GRAY SILTY CLAY W/TRACES OF OXIDES 10 VISUAL LIGHT OLIVE BROWN TO OLIVE SILTY CLAY 7 VISUAL	AL 🚺
		1.52-1.83 1.83-2.44 2.44-2.74 2.74-3.05 4.11-4.42 4.42-4.57 5.64-6.10	FILL:BROWN/ORANGEBROWN SI.CLAYW/ SAND, GRAVEL, AND ROOT HAIRS.19FILL:BROWN/ORANGEBROWN SI.CLAYW/ SAND, GRAVEL, AND ROOT HAIRS.22FILL:BROWN/ORANGEBROWN SI.CLAYW/ SAND, GRAVEL, AND ROOT HAIRS.220016833317239317294121MOTTLEDDARKBROWN AND GRAYSILTYCLAYW/ SANDSTONEFRAGS.14MOTTLEDDARKBROWN AND GRAYSILTYCLAYW/ SANDSTONEFRAGS.17	V ISUAL V ISUAL V ISUAL A-6b A-6b V ISUAL V ISUAL	TR64-5	49+260	0.30-0.91 0.91-1.52 1.52-2.13 2.13-2.74 2.74-3.35 4.11-4.52	RED W/ ORANGE-BROWN AND GRAY SILTY CLAY W/ TRACES OF OXIDES31VISUAL012306628A-7-01891421527A-7-RED W/ TRACE GRAY SILTY CLAY26VISUAL26VISUALRED W/ TRACE GRAY SILTY CLAY23VISUAL23VISUALGRAY CLAY, SOME SILT, TRACE SAND12VISUAL12VISUAL	9- 9- ALCULATED
A-3	29+550	7.16-7.43	GRAY DECOMPOSED CLAY SHALE 14 BROWN W/ LT. GRAY SI. CLAY W/ TR. SAND, OXIDES AND ROCK FRAGS. 19	V ISUAL V ISUAL	RAW-2	I + 365	0.00-0.61	MOTTLED RED, BROWN, AND LT. BROWN SI. CLAY W/ SANDSTONE FRAGS. 9 VISUAL	DATE 14
	5 M RIGHT	0.61-1.22 1.22-1.83 1.83-2.44 2.44-3.05 4.11-4.57 5.64-6.10 8.69-8.90	BROWN W/ LT. GRAY SI. CLAY W/ TR. SAND, OXIDES AND ROCK FRAGS.18BROWN W/ LT. GRAY SI. CLAY W/ TR. SAND, OXIDES AND ROCK FRAGS.14BROWN W/ LT. GRAY SI. CLAY W/ TR. SAND, OXIDES AND ROCK FRAGS.19BROWN/ORANGE BROWN SILTY CLAY W/ TRACES OF FINE SAND AND OXIDES2418121823BROWN DECOMPOSED CLAY SHALE10GRAY DECOMPOSED CLAY SHALE12	V ISUAL V ISUAL V ISUAL V ISUAL A-6a V ISUAL V ISUAL	RAW-3	I +400	0.00-0.61 0.61-1.13 1.22-1.31 1.83-1.95 2.44-2.68	2 I 2 95 42 I9 I2 A-7-6 MOTTLED GRAY W/ MAROON SI. CLAY W/ LIMESTONE NODULE FRAGMENTS 8 VISUAL GRAY W/ OLIVE BROWN SILTY CLAY 4 VISUAL GRAY WEATHERED ARENACEOUS SHALE 4 VISUAL GRAY WEATHERED ARENACEOUS SHALE 3 VISUAL	
A-4	29+555	0.00-0.61 0.61-1.22 1.22-1.83 1.83-2.44 2.44-2.74	FILL: BROWN/LT. BROWN SI. CLAY AND SAND W/ GRAVEL AND ROCK FRAGS. 16 13 6 10 70 38 19 15 27 6 12 21 34 14 BROWN AND GRAY TO GRAY SILTY CLAY 17 BROWN AND GRAY SILT AND CLAY 26	V ISUAL A-6b A-6b V ISUAL V ISUAL V ISUAL	RA₩-4	I +430	0.00-0.61 0.61-1.22 1.22-1.58 1.83-2.07 2.44-2.65	7 4 4 23 62 16 A-7-6 FILL: GRAYISH BROWN SILTY CLAY, W/ BLACK AND GRAY SHALE FRAGS. 14 VISUAL 1 2 3 94 45 20 11 A-7-6 DARK OLIVE GRAY TO GRAY SILTY CLAY 8 VISUAL GRAY, EXTREMELY WEATHERED ARENACEOUS SHALE 7 VISUAL	DRAWN
R55 - I	48+215	2.74-3.05 4.11-4.57 5.64-6.10 7.16-7.28 0.00-0.61	BROWN AND GRAY SILT AND CLAY WITH SAND SEAMS26002574331522BROWN AND GRAY SILT AND CLAY, SOME SAND17BROWN SILTY CLAY, SOME SAND, TRACE SANDSTONE FRAGMENTS121197693818	V ISUAL A-6d V ISUAL V ISUAL A-7-5	RAW-5	I +4 70	0.00-0.61 0.61-1.22 1.22-1.83 1.83-2.19 2.44-2.68 4.11-4.29	FILL: BROWNISH GRAY SI. CLAY W/ SAND, GRAVEL, AND ORGANIC FIBERS13VISUALFILL: BROWNISH GRAY SI. CLAY W/ SAND, GRAVEL, AND ORGANIC FIBERS11VISUALFILL: BROWNISH GRAY SI. CLAY W/ SAND, GRAVEL, AND ORGANIC FIBERS12VISUAL02430641237586411910OLIVE BROWN, WEATHERED SHALE5VISUAL	NL 16 16 16
		0.61-1.22 1.22-1.83 1.83-2.44 2.44-3.05 4.11-4.42 4.42-4.57	RED/MAROON AND LIGHT BEIGE CLAY W/ TRACES OF SAND AND ROOT HAIR1093341441010LIGHT OLIVE/BEIGE SILTY CLAY W/ TRACES OF OXIDE STAINS9RED/MAROON AND OLIVE SILTY CLAY W/ TRACES OF OXIDE STAINS10RED/MAROON AND OLIVE SILTY CLAY W/ TRACES OF OXIDE STAINS9RED/MAROON AND OLIVE SILTY CLAY W/ TRACES OF OXIDE STAINS9RED/MAROON AND OLIVE SILTY CLAY W/ TRACES OF OXIDE STAINS14	V ISUAL A-7-6 V ISUAL V ISUAL V ISUAL V ISUAL	RAW-6	1+510 7 m RIGHT	0.00-0.61 0.61-1.22 1.22-1.83 1.83-2.44 2.44-3.05	25913203312A-7-6FILL: MOTTLED BROWN AND GRAY SI. CLAY W/ SAND AND ROCK FRAGMENTS11VISUAL267859411915A-7-6FILL: MOTTLED BROWN AND GRAY SI. CLAY W/ SAND AND ROCK FRAGMENTS13VISUALFILL: MOTTLED BROWN AND GRAY SI. CLAY W/ SAND AND ROCK FRAGMENTS13VISUALFILL: MOTTLED BROWN AND GRAY SI. CLAY W/ SAND AND ROCK FRAGMENTS11VISUAL	
R55-2	48+240	0.30-0.91 2.13-2.40 2.74-3.01	LIGHT OLIVE BROWN/BEIGE SILTY CLAY W/ SILTSTONE/SANDSTONE FRAGS. 7 LIGHT BROWN/BEIGE EXTREMELY WEATHERED SILTSTONE/ARENACEOUS SHALE 9 I 5 5 34 55 I3	VISUAL VISUAL A-7-6	RAW-8	1+400 15 M RIGHT	0.00-0.61 0.61-1.22 1.22-1.64 2.44-2.65	FILL: GRAY, OLIVE, AND RED SI. CLAY W/ SHALE FRAGS. AND ORGANICS 13 VISUAL 2 I 3 28 66 19 A-7-6 MOTTLED GRAY W/ BROWN TO DARK GRAY SILTY CLAY 11 VISUAL GRAY ARENACEOUS SHALE 8 VISUAL	
R55-3	48+260	0.30-0.91 0.91-1.52 1.52-2.13 2.13-2.44 2.44-2.74 2.74-3.01 4.11-4.32	0 1 1 25 73 31 7 2 3 88 42 21 30 12 10 5 24 49 22 1 4 4 90 48 20 18 RED AND YELLOW SILTY CLAY WITH TRACES OF SAND 13 13 13 LIGHT BROWN WEATHERED SILTSTONE/FINE GRAINED SANDSTONE 7 14 14 LIGHT BROWN, HIGHLY WEATHERED SANDSTONE 5 5	A - 7 - 6 A - 7 - 6 A - 7 - 6 A - 7 - 6 V I SUAL V I SUAL V I SUAL	RAW-9	1+450 15 m right	0.00-0.61 0.61-1.22 1.22-1.83 1.83-2.04 2.44-2.56	FILL: BROWN AND OLIVE BROWN SI. CLAY W/ TRACES OF ORGANIC FIBERS13VISUAL40393522115A-7-5OLIVE TO OLIVE AND DARK GRAY SILTY CLAY11VISUAL11VISUALOLIVE TO OLIVE AND DARK GRAY SILTY CLAY10VISUAL10VISUALOLIVE TO OLIVE AND DARK GRAY SILTY CLAY9VISUAL9VISUAL	NCTU
R55-4	48+280	0.30-0.91 0.91-1.52 1.52-2.13 2.13-2.74 2.74-3.35 4.11-4.35	0118863343601123762322294422118LIGHT YELLOWISH BROWN AND RED SILTY CLAY W/ TRACES OF SAND20LIGHT YELLOWISH BROWN AND RED SILTY CLAY W/ TRACES OF SAND17DARK GRAY WEATHERED ARENACEOUS SHALE9	A - 7 - 6 A - 7 - 6 A - 7 - 6 V ISUAL V ISUAL V ISUAL	RAW-IO	I+495 23 M RIGHT	0.00-0.61 0.61-1.22 1.22-1.83 1.83-2.44 2.44-3.05 4.11-4.29 5.64-6.10	FILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS14VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS9VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS8VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS14VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS14VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS14VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY W/ SAND AND SHALE FRAGMENTS15VISUALFILL: BROWN, OLIVE, AND GRAY SI. CLAY, W/ SAND AND SHALE FRAGMENTS15VISUAL1668363313FILL: LT. BROWN/BROWN SI. CLAY, W/ ROCK FRAGS., SAND, AND ORGANICS18VISUAL	
R55-5	48+300	0.30-0.91 0.91-1.52 1.52-2.13 2.13-2.74 4.11-4.25 4.25-4.38	ORANGE BROWN W/ RED AND GRAY SILTY CLAY W/ OXIDES AND FINE SAND 26 5 10 9 19 56 23 OLIVE BROWN TO OLIVE SILTY CLAY W/ TRACES OF OXIDES 7 OLIVE BROWN TO OLIVE SILTY CLAY W/ TRACES OF OXIDES 8 GRAY, WEATHERED SHALE 4 GRAY, WEATHERED SHALE 6	VISUAL A-7-6 VISUAL VISUAL VISUAL VISUAL	RB₩- I	29+280 5M LEFT	0.00-0.52 0.61-0.73 1.22-1.83 2.44-3.05 4.11-4.54 7.16-7.72	FILL: BROWN AND GRAY SI. CLAY W/ SAND, GRAVEL, AND SHALE FRAGS.8VISUALFILL: BROWN AND GRAY SI. CLAY W/ SAND, GRAVEL, AND SHALE FRAGS.4VISUAL407114331109447374916A-6bLT. BROWN W/ TRACE GRAY SA. SILT AND CLAY W/ TRACES OF ROCK FRAGS.12VISUALDARK GRAY, WEATHERED SHALE9VISUAL	
R64 - I	49+180	0.00-0.61 0.61-1.22 1.22-1.52 1.52-1.83 1.83-2.44 4.11-4.57	GRAY, HIGHLY WEATHERED CLAY SHALE9LT. BROWN SA. SILT W/ OXIDES (EXTREMELY WEATHERED SILTSTONE/SANDTONE) FILL: BROWN/LIGHT BROWN TO BEIGE SILTY CLAY W/ OXIDES AND SAND 6FILL: BROWN/LIGHT BROWN TO BEIGE SILTY CLAY W/ OXIDES AND SAND 7FILL: ORANGE BROWN SILT AND SAND W/ TRACES OF OXIDES011056341345212222	VISUAL VISUAL VISUAL VISUAL VISUAL A-4b A-4a A-6b	RB₩-2	29+330 7M LEFT	0.00-0.61 0.61-1.22 1.83-2.13 2.13-2.44 2.44-2.53 4.11-4.41 4.42-4.57 5.64-5.91	FILL: LIGHT BROWN SI. SAND W/ SANDSTONE FRAGMENTS AND GRAVEL9VISUALFILL: BROWN AND GRAY SANDSTONE AND SHALE FRAGMENTS7VISUALFILL: GRAY SHALE/CLAY SHALE FRAGMENTS8VISUAL231310203417FILL: BROWN AND GRAY, SI. SAND W/ SANDSTONE/CLAY SHALE FRAGS.10VISUAL641081391822A-6b80391822BROWN SILTY CLAY W/ TRACES OF OXIDES17VISUAL4617734017	
		5.64-6.07 7.16-7.43	LT. BROWN W/ GRAY VERY SILTY CLAY/CLAYEY SILT W/ ROCK FRAGS. 16 GRAY TO OLIVE GRAY SILTY CLAY AND SHALE 12	V I SUAL V I SUAL	ABBREVIATIONS		7.16-7.37 8.69-8.96	VERY WEATHERED, ORANGE BROWN TO OLIVE AND GRAY SHALE/CLAY SHALE 13 VISUAL RED/MAROON AND GRAY, VERY WEATHERED SHALE/CLAY SHALE 12 VISUAL	
					DK. = DARK LT. = LIGHT SI. = SILTY	SA. = SANDY FRAGS. = FR			

)

 \mathcal{I}

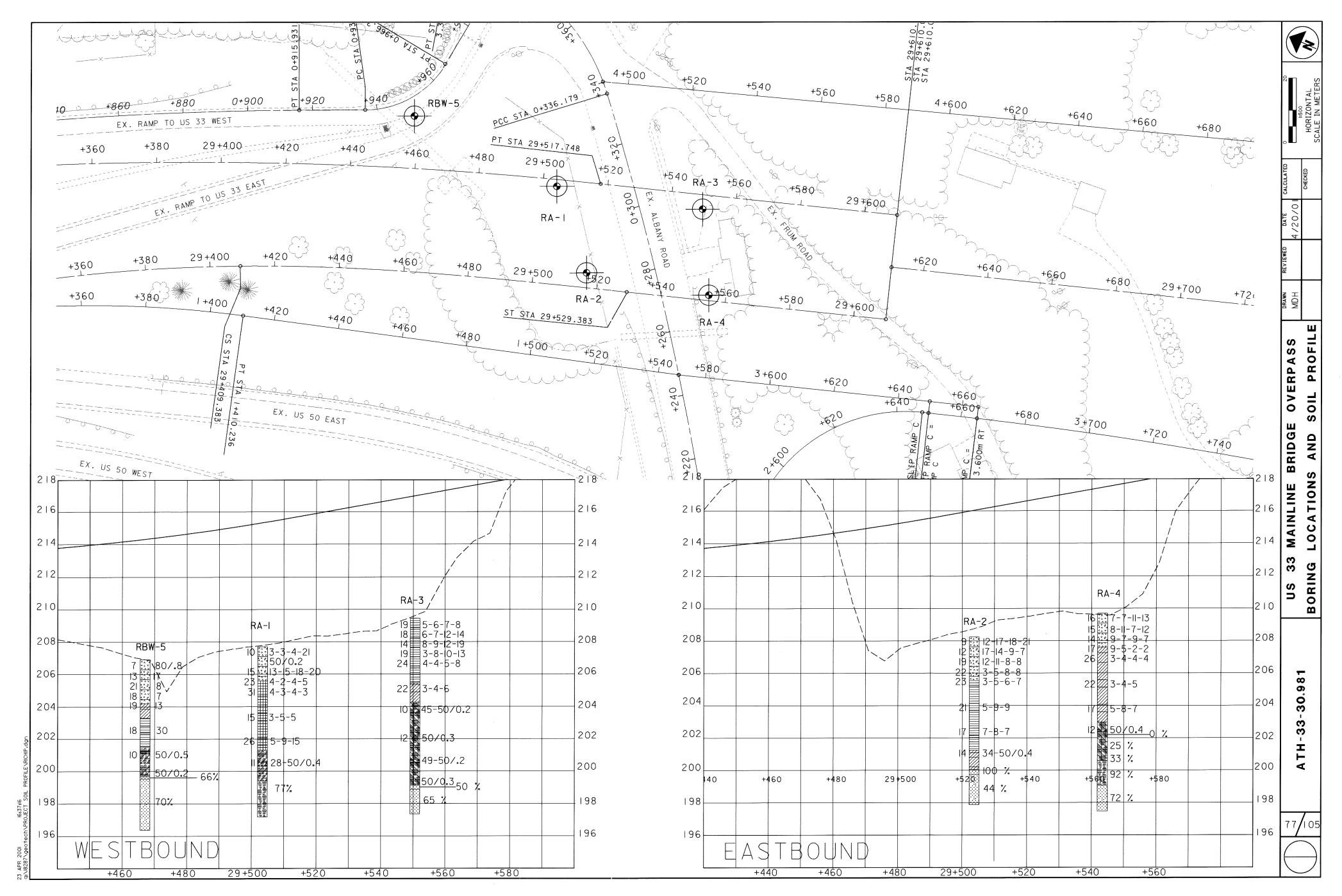
24 APR 2001 q:\\8287\ged

<u>SUMMARY OF SOIL TEST DATA (GANNETT FLEMING)</u>

BORING No.	Station & Offset	Depth From To	% AGG.	% C.S.	% F.S.	% Silt		% Clay	L.L.	Ρ.Ι	•	% W.C.	ODOT Class
RBW-3	29+380	0.00-0.61	FILL: MOTTLE	D BROWN/LT	. BROWN,	GRAY	AND	RED SI.	CLAY, W/	ROCK F	RAGS.	11	VISUAL
	8M LEFT	0.61-1.22	FILL: MOTTLE	D BROWN/LT	. BROWN,	GRAY	AND	RED SI.	CLAY, W/	ROCK F	RAGS.	9	VISUAL
	0111 22. 1	1.22-1.52	FILL: MOTTLE	D BROWN/LT	. BROWN,	GRAY	AND	RED SI.	CLAY, W/	ROCK F	RAGS.	10	VISUAL
		1.52-1.83	25	5	5		66		38	16	5	13	A-65
		1.83-2.44	FILL: MOTTLE	D BROWN/LT	. BROWN,	GRAY	AND	RED SI.	CLAY, W/	ROCK F	RAGS.	16	VISUAL
		2.44-3.05	FILL: MOTTLE	BROWN/LT	. BROWN,	GRAY	AND	RED SI.	CLAY, W/	ROCK F	RAGS.	13	VISUAL
		4.11-4.42	LT. BROWN	AND TRACE	RED SI.	CLAY	W/ '	TRACES C	OF OXIDES			15	VISUAL
		4.42-4.57	5	9	3		83		55	25		28	A-7-5
		5.64-6.00	0	1	I	34		64				13	A-7-6
RBW-4	29+430	0.00-0.61	34	13	12	20		21				9	A-6a
	IOM LEFT	0.61-1.00	FILL: MOTTL	ED BROWN/L	T. BROWN	AND E	BE I G	E SI. CL	LAY W/ SAI	ND AND	GRAVEL	9	VISUAL
		1.22-1.46	FILL: MOTTL	ED BROWN/L	T. BROWN	AND E	BE I G	E SI. CL	LAY W/ SAI	ND AND	GRAVEL	8	VISUAL
		1.83-1.95	OLIVE, EX	TREMELY WE	ATHERED,	SOF T	SHAL	_E				9	VISUAL
		2.44-2.56	RED/MAROO	N, EXTREME	LY WEATH	ERED,	SOF	T SHALE				10	VISUAL
		2.56-2.68	OLIVE, SO	FT WEATHER	ED SHALE							10	VISUAL
		4.11-4.57	GRAY, SOF	T TO VERY	SOFT WEA	THERED) SH/	ALE				16	VISUAL
		5.64-5.79	OL I VE/OL I	VE GRAY, S	OFT TO M	EDIUM	HAR	D SHALE					VISUAL
RBW-5	29+470	0.00-0.39	FILL: MOTTLED	LT. BROWN	/OLIVE S	SI. CLA	AY W	/ SAND,	ROCK FRA	GS. AND	WOOD	7	VISUAL
	IOM LEFT	0.61-1.22	LIGHT BRO	WN SILTY C	LAY, SOM	E ROCK	FR	AGMENTS,	, LITTLE S	SAND		13	VISUAL
		1.22-1.52	7	3	33		56		31	12		21	A-6a
		1.52-1.83	7	6	31	27		29				22	A-6a
		1.83-2.13	POSS. FIL	L: BROWN W	/ ORANGE	BROWN	I SIL	T AND C	CLAY W/ SA	ND AND	OXIDES	5 22	VISUAL
		2.13-2.44	2	7	40	26		25	25	5		18	A-4a
		2.44-2.74	6	0	0	50		40				19	A-45
		2.74-3.05	GRAY SA.	CLAY W/ TR	ACES OF	SANDST	ONE	FRAGS.				19	VISUAL
		4.11-4.42	DARK GRAY	SI. CLAY	W/ SILT	PARTIN	IGS;	TRACES	OF MOLLUS	K SHELL	S	23	VISUAL
		4.42-4.73	DARK GRAY	SI. CLAY	W/ SILT	PARTIN	IGS;	TRACES	OF MOLLUS	K SHELL	S	18	VISUAL
		5.64-5.79	OLIVE CRA	Y AND GRAY						1 5 1		10	VISUAL

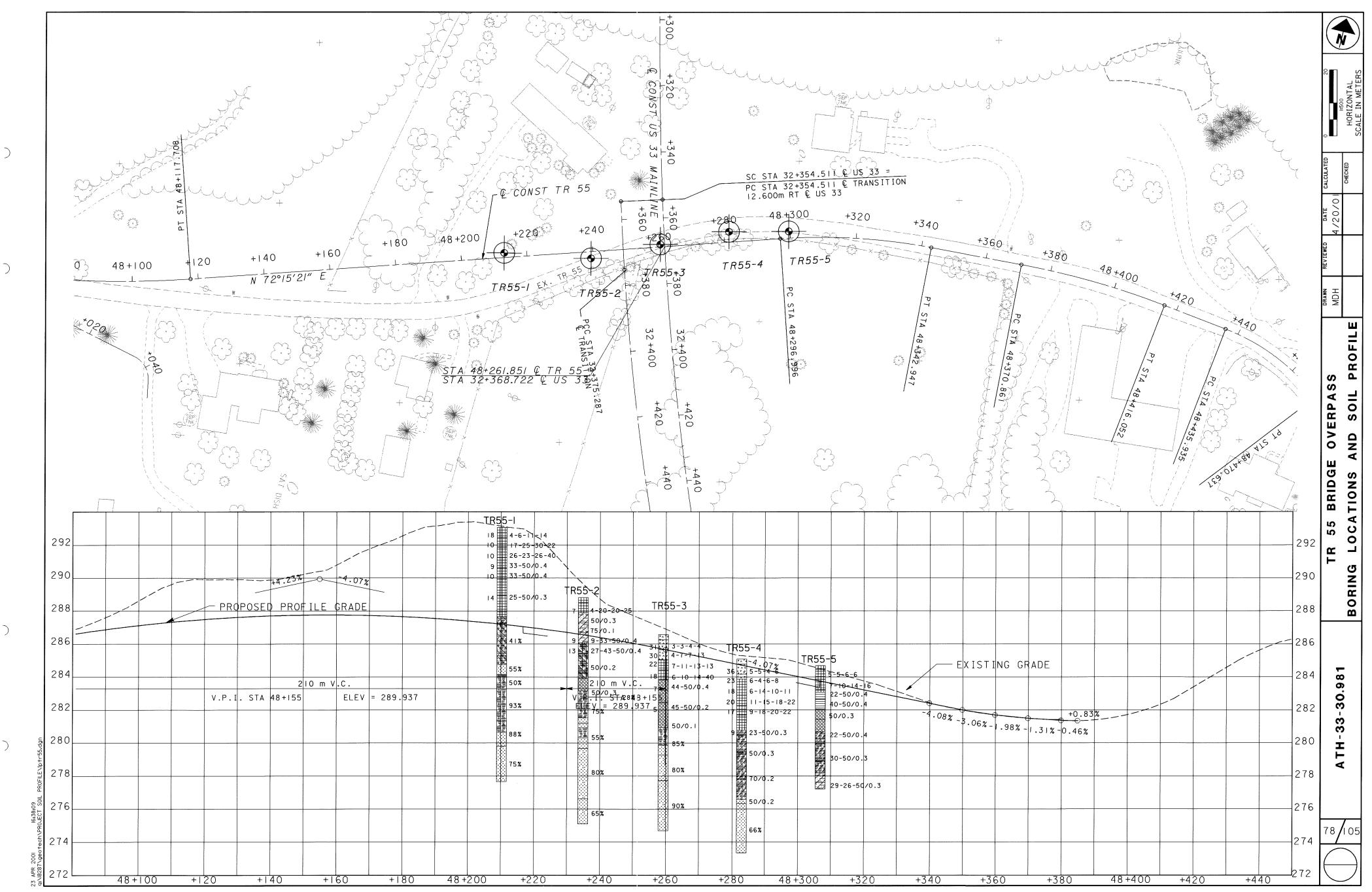
ABBREVIATIONS

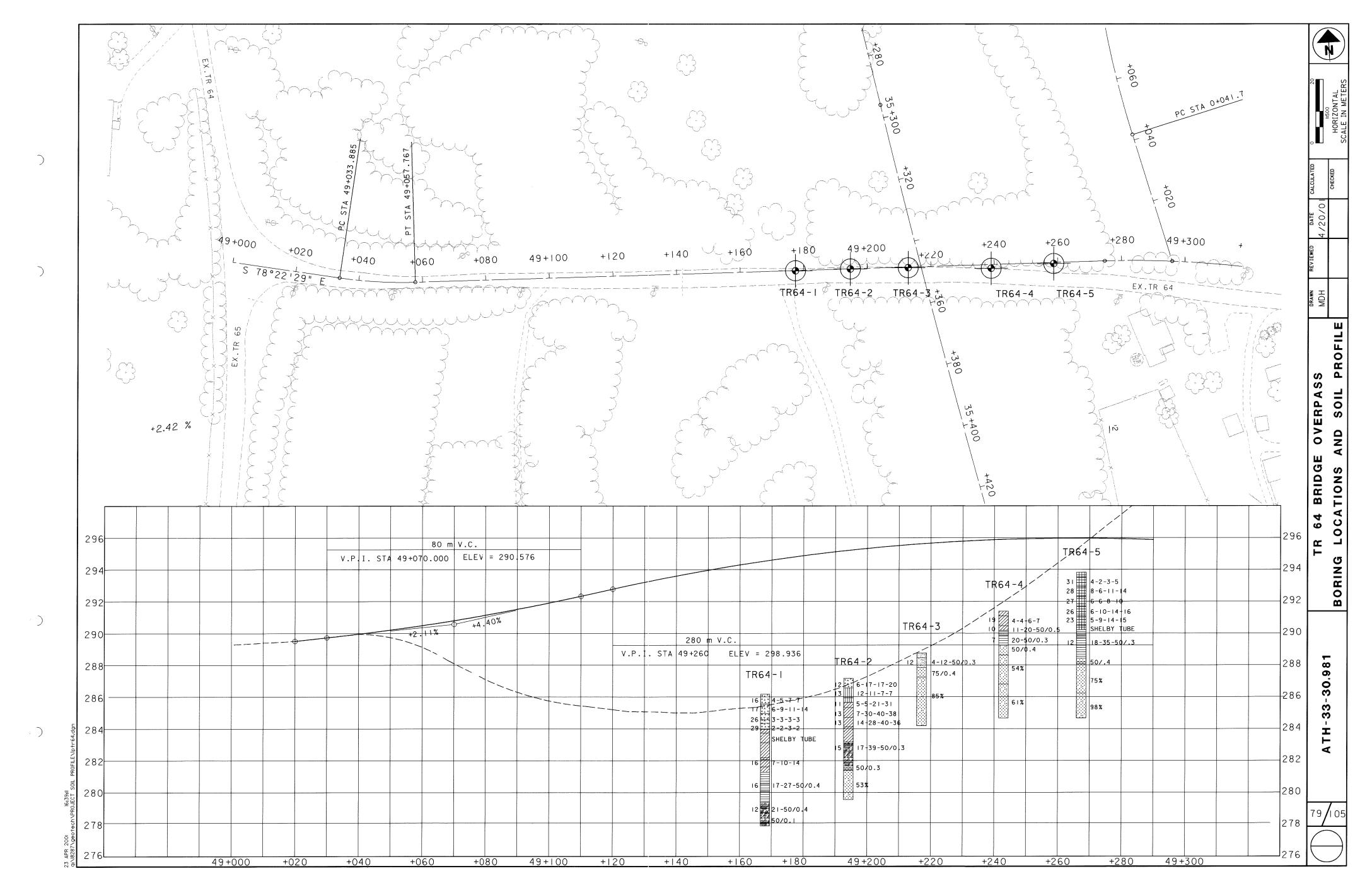
 \supset

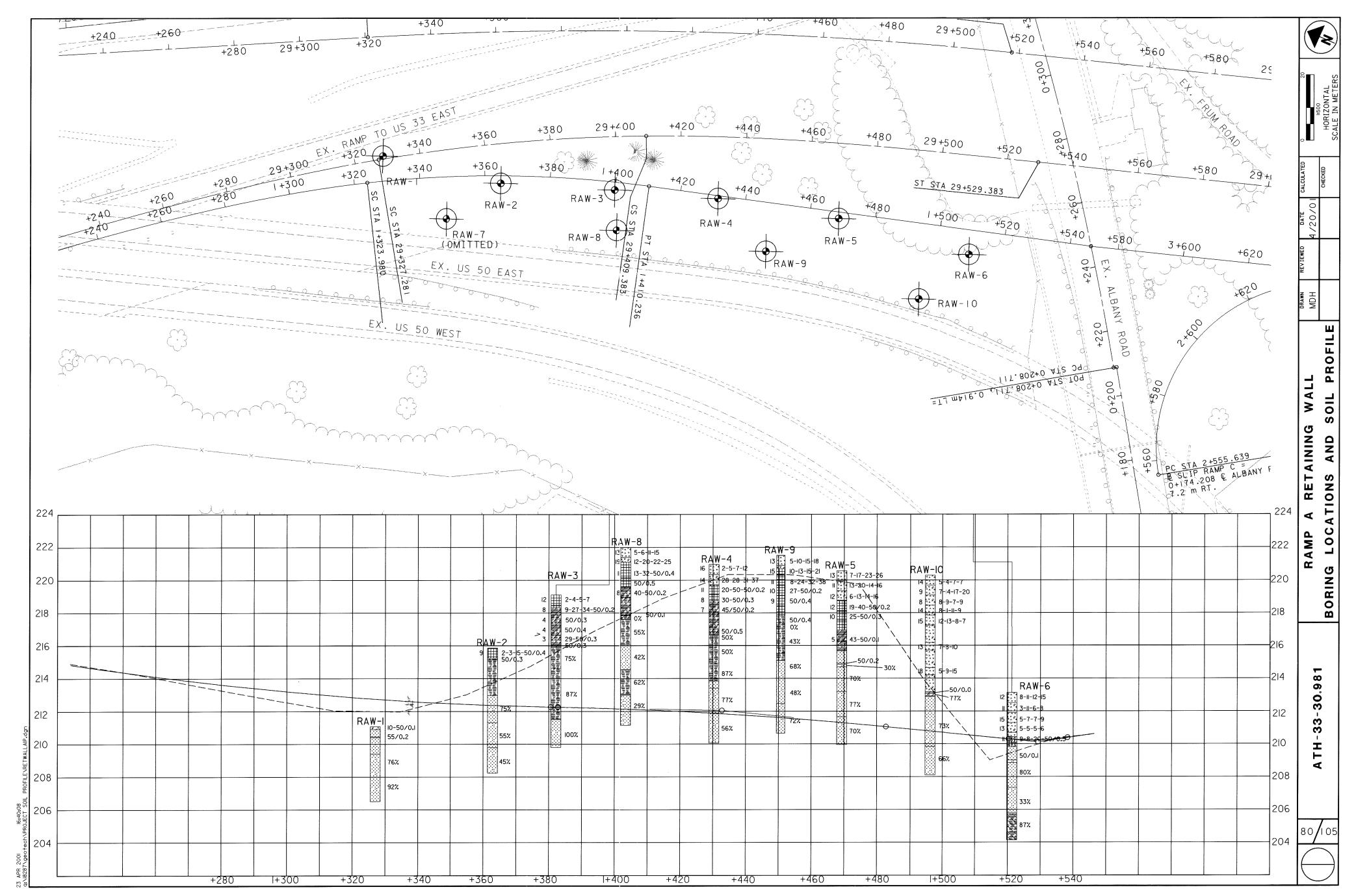

 \mathbf{i}

APR 1828

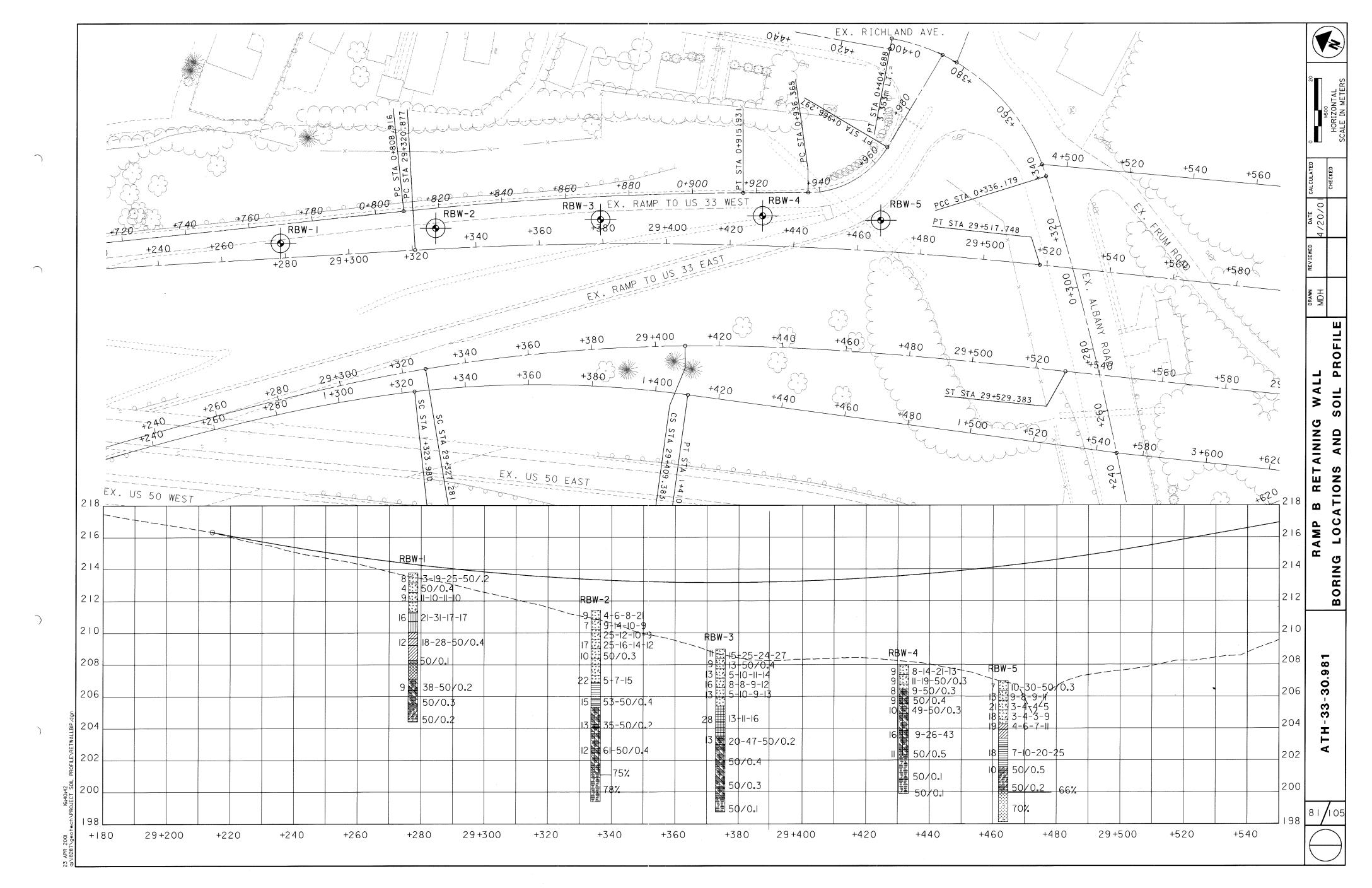
)


Ĺ





 \mathcal{D}


 \mathcal{D}

).

					Date Completed <u>072099</u> Sampler:Type Dffs <u>et</u> Surface Elev											-	e Star ng No.
																_	
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.				-		iracte				Elev. (m.)	Dep ⁻ (m.)
						UDS S	% Agg.	C.S.	% F.S.	% Silt	7. Clay	L.L.	P.I.	W.C.	ODOT Class.		
207.9		3-3-4-21	0.34	0.27	8 cm of Topsoilfill-mottled brown silty clay w/ sand and rock/gravelfragments; slightly moist.	I								10			_
207.3		50/0.2	0.00	0.06	qh=4.5+ kg/cm2	2										198.2	10
206.7		13-15-18-20	0.27	0.34	qh=4.5+ kg/cm2	3								15		197.4	_
206.1	2				qh=1.5+ kg/cm2												
205 . 8 205 . 5		4-2-4-5	0.30	0.30	Brown/orange brown and trace gray silty clay w/ traces of oxides and fine sand	- 4	0	0	0	41	59	0	0	23	4-7-6		
200:0	3	4-3-4-3	0.40	0.21	(CL); moist, medium stiff. gh=0.5 kg/cm2	5	0	0		42	57	0	0	31	4-7-6		-
				_	di-0.5 Kg/ diiz												
204.3	4				Traces of weathered sandstone and gravel noted at 3.7 meters.												-
203.8		3-5-5	0.30	0.30	qh=2.25 kg/cm2	6								15			
	5													,0			-
202.3					qh=1.25 kg/cm2												-
	6	5-9-15	0.24	0.37		7			,					26			15
201.5	7				Gray silty clay/extremely weathered shale (CL); moist, hard. Slight laminations present. Auger refusalat 8.2 meters.					- country of							- 16
200.8	3	28-50/0.4	0.24	0.03	qh=4.0 kg/cm2	8											
																	-
	8																17

)

 $\Big)$

23 APR 2001 I5:56:37 q:\\8287\geotech\PR0JECT S0IL PR0FILE\GANNETTL

072099			Date Completed <u>072099</u>												- D	SUITE 350 4151 EXECUTIVE PARKWAY WESTFRVII F. OHIO 43081
RA-I	Statio	on &	Offs <u>et</u>	Surface Elev	. 2	207.9	m		Wat	er E	Elev.		202	2.6 m		
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description		<u><u><u></u></u></u>			Pł	nysico	al Cha	racte	eristi	cs			XECU ⁻
		1		Anna	Sample No.	% Agg.	С.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GANN	SUITE 4151 E WFST
77	1.98	0.15	sandstone (30%); good rock qua qu=274	lity .3 kg/cm2	9											
			qu=50.8	3 kg/cm2												
			Bottom of boring at 10.5 mete	rs.											CALCULATED	CHECKED
															DATE	1/20/00
															REVIEWED	
															DRAWN	НДМ
																BORING LOGS

TH-33-30,981

82/105

					Date Completed <u>072099</u> Sampler:Type)ffs <u>et</u> Surface Elev <u>.</u>											-11	Start s No	
Elev.	Depth	Std. Pen./	Rec.	Loss	Description					hysica						Elev.	Depth	_
(m.)	(m.)	RQD	(m.)	(m.)		Sample No.	% Agg.	% C.S.							ODOT Class.	(m_)	(m.)	┥
208.4		2- 7- 8-2	0.30	0.30	Fill-mottled brown to orange-brown silty clay w/ sand, gravel, and traces of root									9				
207.8		17-14-9-7	0.46	0.15	hairs; slightly moist to moist. Increase in moisture w/ traces of sandstone fragments and oxides below 1.5 m.	2			P					12			10	
207.2 206.9		2- -8-8	0.46	0.15		3								19		198.1		_
206.6	2	3-5-8-8	0.40	0.21	qh=0.75 kg/cm2	4								22				-
206.0 205.7		3-5-6-7	0.40	0.21	qh=0.75 kg/cm2 Dark brown w/ trace gray silty clay w/	5	0	0	17		83	33	17	23	A-6b		12	-
					traces of fine sand and root fibers (CL); moist, medium stiff to stiff.													
204.3	4								:								13	
204.2		5-9-9	0.40	0.06		6	9	3	17	29	41			21	A-6b		_	_
	_5				very stiff.												14	-
202.8	6	7-8-7	0.30	0.15	qh=3.5 kg/cm2	7								17				_
																		_
201.4	7				Craw althe alay w/ transpa of candatana		-										16	
201.3		34-50/0.4	0.27		Gray silty clay w/ traces of sandstone fragments (CL); moist, hard. Auger refusalat 8.2 m.	8			1					14			_	
200.2	8																17	
99.8		100	0.46		Hard light gray cemented sandstone; excellent rock quality. qu=362.2 kg/cm2 Interbedded soft to medium hard gray shale	9												-

 \supset

 $\overline{)}$

)

23 APR 2001 15:57:28 q:\18287\geotech\PROJECT S01L PROFILE\GANNETTL

GANNETT FLEMING SLITF 350	5.9 m	203		Elev.	er E	Wat		m	08.4	<u>2</u>	Elev <u>.</u>	Date Completed 072099 Sampler: Type Offs <u>et</u> Surface Elev	ion	_ Stat	RA-2
		cs	eristi	racte	alCha			1 -		Sample No.		Description		Rec. (m.)	d. Pen./ RQD
GAN	ODOT Class .	W.C.	P.I.	L.L.	% Clay	% Silt	% F.S.	7. C.S.	% Agg.	sas					
X										10		and cemented hard light gray fine to medium grained sandstone; poor rock quality. qu= 591.3 kg/cm2 (note: Lost part of rock core sample back in boring - measured RQD is lower than in-situ value).	0.	1.31	44
CALCULATED												Bottom of boring at 10.4 meters.			
DATE 0															
1/20															
REVIEWED															
z I															
DRAWN MDH														-	
								5 9							
ILE															
PROFI															
SOIL															
FOUNDATION															
ND A															
Π															

TH-33-30,981

DULIIŬ	Mo			$n \theta$	Date Completed 080299 Sampler: Type											Borin	ig No
	NO	KA-J	210110)ffs <u>et</u> Surface Elev <u>.</u>		103.3			WUT	ei c	.Iev					IY NO
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u> ,			Pt	nysico	al Char	-acter	ristic	s		Elev. (m.)	Depth (m.)
						Sample No.	% Agg.	% C.S.	7. F.S.	% Silt (% Clay	L.L. P	P.I. V	I.C.	ODOT Class.		
209.5 209.3 208.8		5-6-7-8	0.18	0.43	12 cm.GravelBrown w/ trace light gray silty clay w/ traces of sandstone and shale fragments, sand and oxides (CL); moist,	1								19			
208.2		6-7-12-14		0.34	very stiff. qh=2.0 kg/cm2 Brown w/ trace light gray silty clay w/	2								18		199.2	10
200.2		8-9-12-19	0.18	0.43	sand, and oxides (CL); moist, very stiff. qh=3.75 kg/cm2	3								14		199.1 198.9	
207.0		3-8-10-13	0.30	0.30	qh=4.0 kg/cm2/ qh=3.0 kg/cm2	4								19		198.9	
201.0	3	4-4-5-8	0.46	0.15	Mottled brown and orange-brown silty clay w/ traces of fine sand and oxides (CL); moist,medium stiff. qh=3.0 kg/cm2	5								24		197.4	12
																1,51,4	-
205 . 5 205 . 3	4	3-4-6	0.27	0,18	Grayish brown silty clay w/ traces of gray sandstone fragments and fine sand (CL);	6	18	12	18	23	29			22	A-6a		
	5				moist, medium stiff												4
204.3					Very soft to soft brown shale.				T								
203.8	6	45-50/0.2	0.18	0.03		7								10			15
202.8					Soft to very soft black shale.												
202.3		50/0.3	0.06	0.03		8	<u> </u>							12			16
	8																17
201.2					Soft to very soft gray shale.												
200.8		49-50/0.2	0.15	0.06		9			с. 								

23 APR 2001 15:58:42 q:N8287\geotech\PROJECT SOIL PROFILE\GANNETTLOGS.c

 \supset

GANNETT FLEMING											Date Completed <u>080299</u> Sampler:Type_ Offs <u>et</u> Surface Ele			
NETT		ics			al Cha					ple 0.	Description	Loss (m.)	Rec. (m.)	Std. Pen./ RQD
GAN	ODOT Class.	W.C.	P.I.	L.L.	% Clay	% Silt	% F.S.	7. C.S.	% Agg.	Sample No.				
CALCULATED										10		0.03	0.06	50/0.3 50
CALC											Light gray moderately hard, fine to medium grained sandstone w/ soft to medium gray arenaceous shale seams; fair rock quality.	0.00	VIL	
DATE										12	arenaceous shale seams;fair rock quality. Limestone seam at II.7 m.qu=406.2 kg/cm2	0.12	1.40	65
REVIEWED								-			Bottom of boring at I2.Imeters .			
Ē														
DRAWN														
PROF														
SOIL														
Z														
FOUNDATION														
1														

ATH-33-30.981

84/105

Date S Boring	No	ed 080299 RA-4	Statio	on & (Date Completed <u>080299</u> Sampler:Type Offs <u>et</u> Surface Elev.	Split	Spoc 209.7	n m		_ Dia _ Wa-	• ter (Elev.		5 cm		-	Starte s No
Elev.	Depth	Std. Pen./	Rec.	Loss (m.)	Description		T				al Cha					Elev. (m.)	Depth (m.)
(m.)	(m.)	RQD	(m.)	(m.)		Sample No.	% Agg.	% C.S.		-					ODOT Class.		(111.)
209.7		7-7-11-13	0.27	0.34	I5 cm.of Topsoilfill-mottled brown and light brown silty clay and sand w/ traces of graveland rock fragments; brick/									16		200.6	
209.1		8-11-7-12	0.15	0.46	Concrete fragments noted above about 61cm.	2	13	6	10		71	38	19	15	A-6b		10
208.5 207.9		9-7-9-7	0.30	0.30	qh=4.25 kg/cm2	3	27	6	12	21	34			14	A-6b	199.2 199.1	
207.9 207.6 207.3	2	9-5-2-2	0.09	0.52	qh=4.5+ kg/cm2 Brown and gray to gray silty clay (CL);	4								17			
207.0	3	3-4-4-4	0.46	0.15	moist to very moist, medium stiff [alluvium].Predominantly brown w/ traces lof gray sandstone fragments and oxides in [sample #6.Stiff at sample #7.	5			2					26			12
					qh=1.5 kg/cm2 qh=1.0 kg/cm2											197.6	_
205.6					gh=1.0 kg/cm2								15				13
		3-4-5	0.40	0.06		6			25		75	33	15	22	A-6a		
	5																4
204.1	6	5-8-7	0.34	0.12	qh=1.75 kg/cm2	7								17			15
207.0									1								_
203.0 202.6	7				Soft to very soft black shale; poor rock quality.												16
202.4 202.I		0	0.12	0.00 0.30		9	 							12			
202.0 201.8	8	25	0.30	0.91	qu=26.4 kg/cm2 Very soft brown-gray to gray shale; poor to very poor rock quality.	10											17

)

)

23 APR 2001 I5:59:44 q:N8287\geotech\PROJECT SOIL PROFILE\GANNETTLC

			Date Completed <u>080299</u> Sampler:Type Dffs <u>et</u> Surface Elev											GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081	
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			Pt	nysic	al Char	racte	eristi	CS		ETT 350 ERVIL	
				Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	 GANN SUITE 4151 E WEST	:
33	0.18	0.12	/		//										I
92	1.49	0.03	Very soft, mottled brown and gray to gray arenaceous shale w/ limestone nodules; excellent rock quality (bottom 18 cm of rock sample is light gray sandstone). qu (sandstone) = 408.7 kg/cm2 note: RQD is misleadingly high, most of the shale sample is more like a hard soil.	12										CALCULATED	
72	1.46	0.06	Moderately hard to hard, fine to medium grained, light gray sandstone w/ isolated soft shale lenses and limestone nodules; thickly bedded; good rock quality.	13										DATE 1/20/00	
			Bottom of boring at 12.2 meters.											DRAWN REVIEWED MDH	
														FOUNDATION SOIL PROFILE BORING LOGS	

TH-33-30.981

					Date Completed 071699 Sampler: Type											-11	Starteg
Boring] No	TR 55-1	Statio	on & ()ffs <u>et</u> Surface Elev	• 4	292.9	m		Wa ⁻	ter I	Elev.				- ^{Borin}	g No
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description				F	hysic	al Cha	racte	eristi	ics		Elev. (m.)	Depth (m.)
						Sampl e No.	% Agg.	/ C.S.	7. F.S.	% Silt	% Clay	L.L.	P.I.	W. C.	ODOT Class.		
292.9		4-6-11-14	0.18	0.43	5 cm Topsoilred/maroon and light beige clay w/ traces of sand and root hairs (CH); slightly moist, very stiff to hard;	ł					97	69	38	18	A-7-5	284.0 283.8 283.3	
292.3		17-25-30-22	0.46	0.15	predominantly red w/ trace yellow in sample #3. qh=4.5+ kg/cm2	2								10		203.3	10
291.7		26-23-26-40	0.40	0.21	qh=4.0 kg/cm2	3	9	3	3	41	44			10	A-7-6		
29I . I 290 . 8	2	33-50/0.4	0.18	0.09	qh=4.5+ kg/cm2	4								9			
290 . 5 290 . 2		33-50/0.4	0.24	0.03	Light olive/beige silty clay w/ traces of oxide stains (CL); slightly moist, hard. 	5								10		281.2	
290.2	3				Red/maroon and olive silty clay w/ traces of oxide stains (CL); slightly moist, hard; laminated structure.												12
	4															280.5	13
288.8		25-50/0.3	0.24	0.00	qh=4.5+ kg/cm2	6	—							14		279.7	-
	5				Harder drilling below about 5.2 meters												14
287.5					Interbedded gray and red/maroon soft shale											278.6	
	6				w/ hard, white limestone and moderately hard sandstone lenses; limestone and												15
		41	1.98		sandstone lenses up to around 2" thick; poor rock quality.	7										277.6	
	7																16
285.5					Indurated clay shale (0% RQD).												
284.9	8	55	1.22	0.30	Very soft,dark maroon/gray shale.	8											
284.6			1	0.00	Light brown, moderately hard, fine grained												

 \supset

23 APR 2001 16:00:40 q:\18287\geotech\PR0JECT SOIL PROFILE\GANNETTLOGS.

071699 TR 55-1			Date Completed <u>071699</u> Sampler:Type Offs <u>et</u> Surface Elev <u>.</u>									5 cm		GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			Ph	ysic	al Chai	racte	eristi	CS		NETT E 350 EXECU TERVIL
				Sample No.	% Agg.	7. C.S.	% F.S. 5	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GANN SUIT 4151 E WES
50	0.61		Soft to medium gray shale; fair rock quality.	9										
93	1.98	0.15	Mud seam with sandstone lenses noted at 9.1 meters deep; lost water circulation - core run cut short (0.6 meters) Soft to moderately hard, gray arenaceous shale (83%) with moderately hard siltstone (17%) lenses; excellent rock quality.	10										DATE CALCULATED DATE CALCULATED CALCULATED
88	1.52		qu=200.2 kg/cm2 Gray moderately hard to hard sandstone; dark striations evident in sample; good rock quality; massive bedding. qu=626.5 kg/cm2											DRAWN REVIEWED
75	2.13		qu=261.9 kg/cm2	12										PROFILE
			Bottom of boring @ 15.4 meters.											OUNDATION SOIL BORING LOG

TH-33-30,981

86/105

	NO.	TR 55-2	Statio	on & (Date Completed <u>071999</u> Sampler:Type)ffs <u>et</u> Surface Elev	a	289.2	m		Wat	er F	lev.				Borin	g No
			ordin	511 OC 0		u , , , , , , , , , , , , , , , , , , ,					0. 2	-				-	9 ····
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ample No.			Р	hysic	al Chai	racte	ristic	CS		Elev. (m.)	Depth (m.)
						S S S S	% Agg.	7 C.S.	/ F.S.	% Silt	% Clay	L.L.	D. .	W.C.	ODOT Class.		
289.2 288.9					7.5 cm AsphaltLight olive brown/beige silty clay w/ traces of siltstone/weathered											280.1	-
		4-20-20-25	0.30	0.30	shale fragments (CL); slightly moist, hard [residual soil].				:					7			
288.3	<u> </u>	50/0.3	0.00	0.09	Light brown/beige sandstone (fragments).	2	\vdash										10
007.7					[Extremely weathered bedrock]												
287.7 287.4	2	75/0.1	0.03	0.00		3]										
287.1					Extremely weathered, very soft light brown/ beige siltstone/shale.				-							077.0	
286.8		9-33-50/0.4	0.40	0.03	Red and light brown/beige silty clay/	4								9		277.9	
286.5	3	27-43-50/	0.30	0.12	extremely weathered shale (CL); slightly moist; hard soil/ soft to very soft rock.	5		5	5	34	55			13	A-7-6		12
		0.4			qh=4.5+ kg/cm2											277.0	
285 . I	4								e.								13
2008		50/0.2	0.03	0.03		6	1										
284.3	5															275.5	
20 180					Medium to moderately hard,light brown/ beige,fine to medium grained sandstone												17
283.6			0.00	0.07	(fragments).	a 7											
283.6	6	50/0 . 3 28	0.06 0.12	0.03	Gray siltstone/ arenaceous shale;medium to poor rock quality.	8	1										15
283 . I					Soft to medium, gray arenaceous shale;												
					fissile, fair rock quality.												
	7	75	1.52			9											16
281.9					Medium to moderately hard, gray, fine	-			:								
281.6	8				grained sandstone, fair to good rock _quality.				1								17
281.3	0				Soft to medium, gray arenaceous shale; fair	1											
280.7		55	1.46	0.06	RQD.	10											
280.4					Medium to moderately hard,gray fine \grained sandstone w/ shale partings.												

 \supset

 \mathcal{I}

23 APR 2001 IG:01:25 q:\18287\geotech\PR0JECT S01L PR0F1LE\GANNETTL(

 \mathcal{A}

071999 R 55-2	 Static	n & (Date Completed <u>071999</u> Sampler:Type Offs <u>et</u> Surface Elev	Split	Spoc 289.2) <u>n</u> m		Dia		Flev		5 cr	n	GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTERVILLF, OHIO 43081
TV JJ Z	_ 510110	in a v	Surree Surree Liev	<u> </u>	_03.2			"u						
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.		1			al Cha	iract:	erist	ics		INETT FE 35 EXECU
				S S	% Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GAN SUI 4151 WES
			Light brown color below 8.8 meters. Moderately hard,light brown,fine to medium grained sandstone;good rock quality,thickly bedded.											
80	2.99	0.06												CALCULATEI DO CHECKED
			Color change to gray below II.2 meters; good to fair rock quality.											ер рате 1/20/00
	_		qu=202.2 kg/cm2				 							REVIEWED
65	I. 52			12										DRAWN MDH
			Bottom of boring at 13.7 meters.											FOUNDATION SOIL PROFILE BORING LOGS

TH-33-30.981

87/105

001.113	i No.	TR 55-3	Statio	on & I	Date Completed <u>071799</u> Sampler:Type Offs <u>et</u> Surface Elev <u>.</u>	. 7	°86.7	m		Wat						Borir	Sta na No
	,		or driv	, , , , , , , , , , , , , , , , , , ,												_	
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	e e			Р	hysic	alCha	racte	eristi	ics		Elev. (m.)	De (n
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.		
286.7					5 cm AsphaltProbable fill-brown silty												
286.4	<u> </u>	3-3-4-4	0.37	0.24	clay w/ traces of fine sand and oxides;		0		1	25	73			31	A-7-6		
285.8		JJJ	0.01	VaZI	qh=2.25 kg/cm2					2.5	15				AIO		
200.0	<u> </u>	4-7-7-13	0.24	0.37	qh=2.75 kg/cm2	2	7	2	3	0	88	42	21	30	A-7-6		
285.2									ļ							276.2	
	2	7-11-13-13	0.30	0.30	Red and yellow silty clay w/ traces of sand (CL); moist, very stiff.	3	12	10	° 5	24	49			22	A-7-6		
284.6					qh=2.75+ kg/cm2												
284.3		6-10-14-40	0.52	0.09		4		4	4	0	90	48	20	18	Δ-7-6		
284.0	3	44-50/0.4	0.27		Soft to medium siltstone/fine grained	5								7		274.8	
283.7					sandstone fragments.												┢
					Medium hard light brown sandstone (fragments).												
	4																
282.6		45-50/0.2	0.18	0.03		6								5			Γ
		<u></u>															
	5																
									7								
281.2		1		ļ	Gray sandstone (fragments sampled); spoon												
281.1 281.1	6	50/0.1	0.03	0.00	refusal.	7											
280.9					15 cm run to 5.8 m - Brown siltstone/fine grained sandstone recovered.												
		85	1.62	0.06	Medium hard, gray arenaceous (sandy) shale;	8											
280.0	7				Vmedium bedded, good rock quality.												
279 . 7 279 . 4					Medium to moderately hard gray, medium grained sandstone.												Γ
273.4					Medium to moderately hard brown sandstone;												
	8				thickly bedded, excellent rock quality.												
	0	80	1.52			9											
									2								

 \sim

23 APR 2001 16:03:14 q:\18287\geotech\PR0JECT SOIL PR0FILE\GANNETTL0

			Date Completed <u>071799</u>)ffs <u>et</u>												GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTFRVILLE OHIO 43081
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Descript	ion	<u>_</u>			Ph	ysicc	ıl Char	racte	eristi	cs		ETT FI E350 XECUTI
					Sample No.	% Agg.	% C.S.	% F.S. S	% ilt (% Clay	L.L.	P. .	W.C.	ODOT Class.	GANN SUITE 4151 E WFST
90	2.99	0.06	Moderately hard gray sar rock quality, thickly bedd cm2	ndstone; excellent ed. qu=246.7 kg/	10										00 CALCULATED CHECKED
			Bottom of boring @ 11.9 m	eters.											REVIEWED DATE
															DRAWN REVI
															FOUNDATION SOIL PROFILE BORING LOGS

TH-33-30.981

88/105

					Date Completed <u>071799</u> Sampler:Type Dffs <u>et</u> Surface Elev											_ Date _ Borin	
DOFING	NU		STUTI		JIIS <u>ei</u> Juilde Liev	• (.0.0.0			WUI		_1⊂ V •				-	iy no.
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	$\frac{\Phi}{\Phi}$.			P	hysic	al Cha	racte	erist	ics		Elev. (m.)	Dep (m.)
	Ì					Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.		
285.0 284.7					5 cm AsphaltProbable fill-red Clay w/											276.3	
204.1		5-5-4-6	0.37	0.24	traces of sandstone fragments and oxides; moist.		0		[98	63	34	36	A-7-6	075.0	.
284.1					qh=2.25 kg/cm2 qh=1.25 kg/cm2											275.2	10
283.8		6-4-6-8	0.30	0.30	Possible fill-mottled brown and red silty	- 2	0	-		23	76			23	4-7-6		
283.5	2	6-14-10-11	0.43	0.18	<u>clay w/ traces of sand (CL); moist, stiff.</u> qh=4.5+ kg/cm2	3	2	2	2		94	42	21	18	4-7-6		11
282.9	<u> </u>				qh=3.75 kg/cm2												
282.6		11-15-18-22	0.55	0.06	Light yellowish brown and red silty clay w/	- 4								20		077.7	-
282.3	3	9-18-20-22	0.37	0.24	traces of sand (CL);slightly moist, hard. Dark maroon to gray seam around 3.7 m.	5			1				İ	17		273.3	12
					qh=4.5+ kg/cm2		-										
280.9	4	23-50/0.3	0.21	0.03		6	1							9			13
280.7		20 30/ 0.3	0.21	0.03	Soft,gray to dark gray arenaceous shale.												-
	5																14
279.4		50/0.3	0.09	 		7	<u> </u>										-
	6																15
																	-
	7																16
277.8		70/0.2	0.06	0.00		8											
																	-
	8																17

 \supset

)

 \bigcirc

23 APR 2001 16:04:10 q:\18287\geotech\PR0JECT SOIL PR0FILE\GANNETTL

1 071799 TR 55-4	Static		Date Completed <u>071799</u> Sampler:Type Dffs <u>et</u> Surface Elev											 GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	e e			F	'nysic	al Cha	racte	eristi	ics		NETT F E 350 Execut TERVILI
				Sample No.	% Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	0D0 Class	GAN SUIT 41511 WES
66	2.29	0.76	Moderately hard,light gray fine grained sandstone;fair rock quality;clay seam at II.4 m.qu = II7.1kg/cm2 Note:Lifter in core barrelbecame binded in casing,resulting in core loss as sample was retrieved.											DATE CALCULATED CALCULATED CALCULATED CALCULATED CHECKED
			Bottom of boring @ II.7 meters.											REVIEWED
														REV
														DRAWN
														FOUNDATION SOIL PROFILE BORING LOGS

TH-33-30,981

89/105

					Date Completed 071699 Sampler: Type											- Date	
Boring	No	TR 55-5	Statio	on & ()ffs <u>et</u> Surface Elev <u>.</u>		284.7	m		Wat	er	Llev.				_ Borin	g No
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description					-		iracte			**********	Elev. (m.)	Dep (m.
						Sample No.	% Agg.	". C.S.	% F.S.	% Silt	% Clay	L.L.	P . I.	W.C.	ODOT Class.		
284.7 284.4					7.5 cm Pavementmottled orange-brown w/											286.1	
284.1		5-5-6-6	0.40	0.21	trace red and gray silty clay w/ traces of oxides and fine sand (CL); moist, stiff.				÷							285.4	
283.7	weather	7 10 14 10			qh=1.75 kg/cm2 Light orange brown Clay w/ traces of			10		10	FC					004.0	
283.4 283.I		7-10-14-16	0.40	0.21	oxides (CL);moist,very stiff. qh=2.25 kg/cm2	2	5	10	9	19	56				4-7-6	284.8 284.5	
2000	2	22-50/0.4	0.27		Olive brown to olive silty clay w/ traces	3										284.2	
282.5		40-50/0.4	0.21	0.06	of oxides (CL);slightly moist,hard. gh=4.5+ kg/cm2	4										283.9	
282.1					qh=4.5+ kg/cm2			1								283.6	
281.9	3	50/0.3	0.06	0.03	Moderately hard sandstone rocks (fragments in sample).	5											
	Л																
280.5		22-50/0.4	0.21	0.06		6			<u></u>							282.I 28I.9	
280.4			1		Soft,weathered gray shale (fragments in sample).												
	5															281.2	
279.0	6	30-50/0.3	0.24	0.00		7										280.4	
	0																
278.0																279.3	
	7				Light brown, fine sandy silt w/ traces of oxides (SM); slightly moist, hard.												
277.5		29-26-50/	0.27	0.12	[Extremely weathered siltstone/fine grained sandstone]	8			1							278.9	
277.1	0	0.3	4		Bottom of boring @ 7.6 meters.										· · · · · · · · · · · · · · · · · · ·		8
	8																

23 APR 2001 IG:05:08 q:N8287\geotech\PR0JECT SOIL PR0FILE\GANNETTL0GS

 $\Big)$

)

	 Static		Date Completed <u>071699</u> Sampler:Type											GANNETT FLEMING SUITE 350	PARKWAY OHIO 43081
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description						al Chc					NETT FLE E 350	EXECUTIVE TERVILLE,
· · · · · · · ·				Sample No.	% Agg.	7. C.S.	7. F.S.	γ Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GAN	41511 WES
4-5-7-7	0.30	0.30	9 cm Topsoilfill-mottled brown/light brown to beige silty clay w/ traces of oxides and sand;moist.qh=4.5+ kg/cm2									16			
6-9-11-14	0.40	0.21	qh=4.25 kg/cm2	/ 2								17			
3-3-3-3	0.40	0.21	Fill: orange-brown silt and sand w/ traces of oxides; moist. qh=1.5 kg/cm2, w.c.= 17%	3	0		10	56	33	28	7	26	A-4b	CALCULATED	CHECKED
2-2-3-2	0.40	0.21	qh=1.0 kg/cm2 qh=0.5 kg/cm2 Brownish gray silty clay w/ traces of wood	4	3	4	13	45	35			29	A-4a	DATE C/	
shelby tube	0.61		and organic material(CL,OL); very moist, soft.	5											
														REVIEWED	
			nOrange-brown and trace gray silty clay w/											drawn MDH	
7-10-14	0.46		traces of fine sand (CL); moist, very stiff.	6								18			
			qh=4.5 kg/cm2 Light brown w/ trace gray very silty clay/ clayey silt w/ weathered siltstone/ sandstone fragments (CL,ML); moist to very												
17-27-50/ 0.4	0.43		∖moist,hard. qh=2.75 kg/cm2	7								16		PROF	
			Soft, gray to olive gray silty clay (CL) and shale.												LOGS
21-50/0.4	0.24	0.03	qh=4.5+ kg/cm2	8								12		NOI-	ORING
50/0.1	þ.00	þ.03	Bottom of boring @ 8.3 meters.	9										FOUNDATION	BO

TH-33-30,981

4

90/105

	Depth (m.)	Std. Pen./ RQD	Rec.	Loss (m.)	Description	<u>0</u>			P	Physical Characterist							
/	(111.)	Nub	111.07	111.7		Description	% Agg.	% C.S.	% F.S.	У. Біlt	% Clay	L.L.	P.I.	W.C.	ODOT Class.		
7					7.5 cm Pavementmottled orange-brown w/ ηtrace red and gray silty clay w/ traces of										,		
		5-5-6-6	0.40	0.21	oxides and fine sand (CL); moist, stiff. gh=1.75 kg/cm2	I			ł.								
7 4		7-10-14-16	0.40	0.21	Light orange brown Clay w/ traces of oxides (CL);moist, very stiff.	2	5	10	9	19	56				4-7-6		
		22-50/0.4	0.27		qh=2.25 kg/cm2	3											
	2	22 307 0.1	0121		Olive brown to olive silty clay w/ traces of oxides (CL); slightly moist, hard.												
5		40-50/0.4	0.21	0.06	gh=4.5+ kg/cm2	4											
					qh=4.5+ kg/cm2												
	3	50/0.3	0.06	0.03	Moderately hard sandstone rocks (fragments in sample).	5											
5	4																
4		22-50/0.4	0.21	0.06	Soft,weathered gray shale (fragments in	6				<u> </u>							
					sample).												
╞	5																
0																	
	6	30-50/0.3	0.24	0.00		7	 										
ſ																	
	_																
С	7				Light brown, fine sandy silt w/ traces of												
5			0.07	0.10	oxides (SM);slightly moist,hard. [Extremely weathered siltstone/fine grained	0											
	_	29-26-50/ 0.3	0.27	0.12	sandstone]	8			1								
	8	L	Ť		Bottom of boring @ 7.6 meters.												

ing	No	TR 64-1	Statio	on & ()ffs <u>et</u> Surface Elev.	, 2	86.l m	<u> </u>		Wa	ter	Elev.		280).2 m
V.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	0			P	hysic	al Cho	ics	and a second second second second second second second second second second second second second second second		
						Sample No.	% Agg.	7. C.S.	7. F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
 4		4-5-7-7	0.30	0.30	9 cm Topsoilfill-mottled brown/light brown to beige silty clay w/ traces of oxides and sand; moist. qh=4.5+ kg/cm2									16	
		6-9-11-14	0.40	0.21		2								17	
8 5		3-3-3-3	0.40	0.21	Fill: orange-brown silt and sand w/ traces of oxides; moist. qh=1.5 kg/cm2, w.c.= 17%	3	0		10	56	33	28	7	26	A-4b
2 9	2	2-2-3-2	0.40	0.21	qh=1.0 kg/cm2 	4	3	4	13	45	35			29	A-40
6		shelby tube	0.61		and organic material(CL,OL); very moist, soft.	5									
I	4				hOrange-brown and trace gray silty clay w/ r	-									
)		7-10-14	0.46		traces of fine sand (CL); moist, very stiff.	6								18	
	5				qh=4.5 kg/cm2 Light brown w/ trace gray very silty clay/	-									
4					clayey silt w/ weathered siltstone/ sandstone fragments (CL,ML); moist to very moist, hard.										
٦	6	17-27-50/ 0.4	0.43		qh=2.75 kg/cm2	7								16	
3					Soft, gray to olive gray silty clay (CL)										
9	(and shale.	0									
		21-50/0.4	0.24	0.03	qh=4.5+ kg/cm2	8								12	
0	8														
.8 .8		50/0.1	p.00	p.03	Bottom of boring @ 8.3 meters.	9	1		1						

Dorin			C+~+'	~~ ° ′	Date Completed <u>071599</u> Sampler:Type)ffs <u>et</u> Surface Elev <u>.</u>					₩~+	-0r 1	Elov				-	Sto Na N
dur ing	J INO	ΙΠ 104-2	STUTI	JI & J	Sur de Elev.	2	_01.111			WUI						Borin	IY N
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	$\frac{\Phi}{\Phi}$.			P	hysic	al Cha	iracte	ristic	s		Elev. (m.)	De (n
						Sample No.	% Agg.	7. C.S.	7 F.S.	% Silt	% Clay	L.L.	P.I. 1	W.C.	ODOT Class.		
287.I		6-17-17-20	0.15	0.46	Probable fill-mottled brown and orange brown silty clay w/ little to some sand, traces of oxides and gravel; slightly									12		288.7 288.4	
286.5	<u> </u>	2- -7-7	0.37	0.24	\moist. qh=4.5+ kg/cm2 Light orange brown w/ trace gray sandy silt (ML); slightly moist to moist medium dense.	2	9	7	36	20	27			13	A-4a	287.8	
285.9 285.6 285.3		5-5-21-31	0.37	0.24	qh=1.5 kg/cm2 Light olive brown and orange brown silty	3	8	4	33	38	17				A-4a	287.2	
285.3 284.7	2	7-30-40-38	0.37	0.24	clay (CL); slightly moist, hard; laminated structure; olive brown in sample #5.	4	17	7	6	41	29				A-6a		
204.(3	14-28-40-36	0.61		qh=4.5+ kg/cm2	5								13			
283.I 283.0	4				Olive to gray silty clay (CL); slightly												-
203:0		17-39-50/ 0.3	0.34	0.06	\moist, hard; [Extremely weathered shale]. qh=4.5+ kg/cm2	6								15		284.1	
,																	
281.6 281.5 281.3	6	50/0.3	0.09	 	Light gray, medium hard sandstone (fragments).	17	<u> </u>										
		EZ		O IE	Light gray to gray, medium to moderately hard sandstone; fair rock quality, thickly bedded. qu=518.0 kg/cm2	8											
	7	53	1.68	0.15		0											
279 . 5		. We will be bounded			Bottom of boring @ 7.6 meters.											-	

)

)

23 APR 2001 16:05:51 q:\\8287\geotech\PR0JECT SOIL PR0FILE\GANNETTL

1 071599 TR 64-3	Static	on & (Date Completed <u>071599</u>)ffs <u>et</u>	Sampler:Type Surface Ele	Split	Spoo 88.7	<u>n</u>		Dia. Wate	er El	ev	<u>5 cr</u>	n	GANNETT FLEMING SUITE 350	TIVE PARKWAY -LE, OHIO 4308I
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	,	<u>0</u>			Ph	nysico	ıl Char	acteris	tics		LETT 835(TERVII
					Sample No.	% Agg.	<u>%</u> С.S.	% F.S. 5	% Silt (% Clay	L. P.I.	W.C.	ODOT Class.	CANN SUITI	4151 E WES
			5 cm Pavement											┨╽ _┪ ┏	
-12-50/0.3	0.30	0.09	Light brown silty sand w/ s fragments (SM); slightly mois dense;[weathered fine grai	andstone t to moist, ped sandstone								12			
75/0.4	0.09	0.03	Sandstone fragments below		2								-	TED	e
75	2.59	0.46	Light brown fine to medium to moderately hard sandsto rock quality, thick to massi qu=86.0 kg/cm2	ne;fair to good	3									DRAWN REVIEWED DATE CALCULATED MDH 1/20/00	CHECKED
			Bottom of boring @ 4.6 met	ers.										FOUNDATION SOIL PROFILE	BORING LOGS

TH-33-30.981

ng n	10.	11 64-2	STOTIC). X. NC)ffs <u>et</u> Surface Elev <u>.</u>		.01.111			WUT	IGLI	_iev.			
	epth m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u> .			Р	hysic	al Cha	racte	eristi	ics	
						Sampl e No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
5		6-17-17-20	0.15	0.46	Probable fill-mottled brown and orange brown silty clay w/ little to some sand, traces of oxides and gravel; slightly	900000								12	
	<u> </u>	2- -7-7	0.37	0.24	\moist.qh=4.5+ kg/cm2 Light orange brown w/ trace gray sandy silt (ML);slightly moist to moist medium dense.	2	9	7	36	20	27			13	A-4a
ô	2	5-5-21-31	0.37	0.24		3	8	4	33	38	17				A-4a
7	۷	7-30-40-38	0.37	0.24	structure; olive brown in sample #5.	4	7	7	6	41	29				A-6a
	3	14-28-40-36	0.61		qh=4.5+ kg/cm2	5								13	
	4														
		17-39-50/ 0.3	0.34	0.06	Olive to gray silty clay (CL); slightly moist, hard; [Extremely weathered shale]. qh=4.5+ kg/cm2	6								15	
-	5														
	6	50/0.3	0.09		Light gray, medium hard sandstone ∖(fragments).	7	4								
					Light gray to gray, medium to moderately hard sandstone; fair rock quality, thickly bedded. qu=518.0 kg/cm2										
	7	53	1.68	0.15		8									
>	8				Bottom of boring @ 7.6 meters.										

					Date Completed <u>071599</u> Sampler:Type)ffs <u>et</u> Surface Elev										
ev. n.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			P	hysio	cal Cho	aracte	erist	ics	
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
8.7		- 26-2270 http://			5 cm Pavement										
.4		4-12-50/0.3	0.30	0.09	Light brown silty sand w/ sandstone fragments (SM);slightly moist to moist, dense;[weathered fine grained sandstone.									12	
7.8		75/0.4	0.09	0.03	Sandstone fragments below 0.9 m.	2		1							
. 2												-			
	2				Light brown fine to medium grained,medium to moderately hard sandstone;fair to good rock quality,thick to massive bedding. qu=86.0 kg/cm2										
	3	75	2 50	0.40		3									
		(5	2.59	0.40		J									
	4														
4.1															
101	5				Bottom of boring @ 4.6 meters.										2
	6														
	7														
	8														

soring	NO	IK 64-4	Statio	on & ()ffs <u>et</u> Surface Elev <u>.</u>		291.4 1	n	Wa	ter I	lev.			Boring
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.		T T	-			eristics		Elev. (m.)
91.4					5 cm Pavement (tar and chip)	s Zar	Agg.	C.S. F.	7. 7. S. Silt	7. Clay	L.L.	P.I. W.(ODOT Class.	293.8
91.1		4-4-6-7	0.43	0.18	Light orange-brown w/ light gray silty clay w/ traces of oxides (CL); moist, medium stiff to stiff. qh=2.25 kg/cm2							19		293 . 5 293 . I
90.5 90.2	1000	II-20-50/ 0.5	0.37	0.09	qh=4.5+ kg/cm2	2						10		292.9
89.9		20-50/0.3	0.21	0.03	Light olive brown to olive silty clay (CL); slightly moist, hard.	3						7		292.3
89.3	2	50/0.4	0.09	0.03		4								291.7
89.0 88.7					Medium to moderately hard light brown sandstone fragments; auger refusalat 2.7 /									291.1
	4	54	I . 80	0.03	M. Medium to moderately hard light brown sandstone; fair rock quality, thick to massive bedding. Darker brown striations noted in core sample.	5		þ						290.5 290.2 289.7
86.8					qu=II9.2 kg/cm2									
		61	2.13			6								288.4 288.2
	 													288.1 -
34.7	7				Bottom of boring @ 6.7 meters.									
	8													286.3

 $\Big)$

 \supset

55 SOIL 23 APR 2001 16:06: q:\\8287\geotech\PR0JECT

PROFILENGANNETTLO

			Date Completed <u>071599</u> Sampler:Type)ffs <u>et</u> Surface Elev											GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			Pt	nysic	al Cho	iracte	erist	ics		ETT F E350 XECUT ERVILI
		(116)		Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GANN SUITE 4151 E WEST
			5 cm Pavement(tar and chip); fill-mottled brown silty clay w/ sand.											
4-2-3-5	0.30	0.30	Red w/ trace orange-brown and gray silty n clay w/ trace oxides (CL); moist, soft.									31		
8-6-11-14	0.34	0.27	qh=1.25 kg/cm2 Red w/ trace gray silty clay (CL); moist, hard.	2	0		2	30	66			28	A-7-6	ATED
6-6-8-10	0.43	0.18	qh=3.75 kg/cm2 qh=2.25 kg/cm2	3	0		8		91	42	15	27	A-7-6	CALCULATED O CHECKED
6-10-14-16	0.46	0.15	qh=2.5 kg/cm2	4								26		date 1/20/00
5-9-14-15	0.40	0.21	qh=2.75 kg/cm2	5								23		REVIEWED
shelby tube	0.37	0.24	Light olive brown to beige silty clay (CL);	- 6										
18-35-50/ 0.3	0.37	0.03	moist, hard.	7								12		DRAWN MDH
														ω
50/0.4	p.09	0.03	Light brown to beige, medium to moderately hard, fine to medium grained sandstone w/		,									OFIL
75	1.83		dark brown striations/laminations; good to excellent rock quality; massivley bedded. qu=151.2 kg/cm2	9										SOIL PR
														5
98	1.58			10										OUNDATION BORIN

TH-33-30,981

92/105

					Date Completed <u>071599</u> Sampler:Type)ffs <u>et</u> Surface Elev <u>.</u>										
	NU		June			L		1		. "0					
)epth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>•</u> .			Р	hysio	cal Cho	iracte	risti	CS	
						Sample No.	% Agg.	% C.S.	• % F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
91.4					5 cm Pavement (tar and chip)										
0.5		4-4-6-7	0.43	0.18	Light orange-brown w/ light gray silty clay w/ traces of oxides (CL); moist, medium _stiff to stiff. qh=2.25 kg/cm2									19	
0.2		II-20-50/	0.37	0.09	qh=4.5+ kg/cm2	2								10	
9.9		0.5			Light olive brown to olive silty clay (CL); slightly moist, hard.		-								
	2	20-50/0.3	0.21	0.03		3			+					7	
9.3	<u> </u>		0.00	0.07											
9.0		50/0.4	0.09	0.03	Madium to moderately band light brown										
8.7	3	<u></u>	_		Medium to moderately hard light brown γ sandstone fragments; auger refusalat 2.7 $arsigma$					<u> </u>					
		54	1.80	0.03	m. Medium to moderately hard light brown sandstone; fair rock quality, thick to massive bedding.	5			5						
6.8					Darker brown striations noted in core sample.										
	5				qu=119.2 kg/cm2										
	-														
		61	2.13			6									
┝	Ь														
									-						
4.7					Bottom of boring @ 6.7 meters.										
-	1				טטווטוו טו טטוווע פ טיו וופופו גי										
-	8														

					Date Completed 071599 Sampler: Type)ffs <u>et Surface Elev.</u>										
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			P	hysic	cal Cho	iract;	erist	ics	
						Sample No.	% Agg.	У. С.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
293.8 293.5					5 cm Pavement(tar and chip); fill-mottled http://www.silty.clay.w/sand.										
93.1		4-2-3-5	0.30	0.30	Red w/ trace orange-brown and gray silty clay w/ trace oxides (CL); moist, soft.	I								31	
292.9		8-6-11-14	0.34	0.27	qh=1.25 kg/cm2 Red w/ trace gray silty clay (CL); moist, hard.	2	0		2	30	66			28	A-7-6
92.3	2	6-6-8-10	0.43	0.18		3	0	1	8		91	42	15	27	A-7-6
291.7		6-10-14-16	0.46	0.15	qh=2.5 kg/cm2	4								26	
291.1	3	5-9-14-15	0.40	0.21	qh=2.75 kg/cm2	5								23	
90.5 90.2	4	shelby tube	0.37	0.24	Light olive brown to beige silty clay (CL); moist, hard.	6									
89.7		18-35-50/ 0.3	0.37	0.03		7								12	
	5														
88.4 88.2					Light brown to beige, medium to moderately										
.00.2 188.1	6	50/0.4	0.09	0.03	hard, fine to medium grained sandstone w/ dark brown striations/laminations; good to	8 []								
	7	75	1.83		excellent rock quality;massivley bedded. qu=151.2 kg/cm2	9									
86.3															
6.90	8														
		98	1.58			10									

							_Sampler:Type Surface Elev.							
∋v. ∩.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	[Description		· · · · · ·				 	iracter	
[]]_)	(10.7	RUD	(111.)	(11.)		·		Sample No.	% Agg.	% C.S.		 	L.L. P	0D01 Class
4.7					Bottom of borir	a a 92 meter	<u>م</u>							
	-					ig e 3.2 moror	0							
	10										~			
	12													
	13													
	14													
	15													
	16													
											2			
	17													

oring	NO.	IK 64-5	570710	n & ()ffs <u>et</u> Surface El	ev <u>.</u>	293.8	m	Water	LIEV.				- Born	ng No.	' —
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.		1	Physical Cho					Elev. (m.)	. Dept (m.)	th
047						S S S	Agg.	C.S.	% % % F.S. Silt Clay	L.L.	P.I.	W.C.	ODOT Class.	211.3		
84.7					Bottom of boring @ 9.2 meters.									210.7		
	10								a					210.1		
														209.6	6	
															-	
	12													208.2	2 3	
	13														4	
														206.7	7 –	
	14														5	
															_	-
	15														6	
	10														7	
	16															
									2 2 2						-	-
	17															8

(

 \supset

23 APR 2001 IG:07:33 q:\\8287\geotech\PR0JECT S0IL PR0FILE\GANNETTL(

I 073099 RAW-I	Static	on & (Date Completed <u>073099</u> Sampler:Type Offs <u>et</u> Surface Elev	Split V2	Spoc 211.3 m	<u>วท</u>		Dia. Wat	er l	Elev.		5 cr	n	 GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>•</u>			Pt	iysic	al Cho	iracte	erist	ics		NETT E 35 EXECU TERVI
				Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GAND SUIT 4151 E WES
10-50/0.1	0.09	0.09	Fill-graveland topsoill8 cm.	<u> </u>	/								-	
55/0.2	0.00	0.06	Light brown, moderately hard sandstone fragments.Had to grind down to set core barrel.	2										CALCULATED
76	1.25	0.15	Light brown to gray, hard, medium to coarse sandstone; good to excellent rock quality, massive bedding; light gray below about 3.5 m. qu=154.8 kg/cm2	3										DATE CALC 1/20/00 CH
92	1.52			4										DRAWN REVIEWED MDH
			Bottom of boring @ 4.6 meters.											FOUNDATION SOIL PROFILE BORING LOGS

1	
1	
1	
I	
I	
I	8
I	~~
I	
I	U /
I	•
I	~
I	0
I	
I	30.9
I	
1	1
1	
I	Ċ,
ł	
1	ö
1	
I	
I	
I	I
I	
I	1
ł	
1	• •
1	▼
1	
1	

IG NO	RAW-I		n & (offs <u>et</u> Surface Elev	. 2	11.3 m			Wat	rer l	±lev.			
Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			Pl	nysic	al Cha	racte	eristi	ics	
					Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
	10-50/0.1	0.09	0.09	Fill-graveland topsoill8 cm.		/								
	55/0.2	0.00	0.06	Light brown, moderately hard sandstone fragments. Had to grind down to set core barrel.	2									
2				Light brown to gray, hard, medium to coarse										
	76	I . 25	0.15	sandstone; good to excellent rock quality, massive bedding; light gray below about 3.5 m. qu=154.8 kg/cm2	3									
3														
4	92	I . 52			4									
				Bottom of boring @ 4.6 meters.										
<u> </u>														
7														
8														

					Date Completed 080599 Sampler: Type Offs <u>et</u> Surface Ele									Date Borir	
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ē.			Physic					Elev. (m.)	[
16.2					Mottled red and brown w/ trace light brown	Sample No.	% Agg.	7, 7, C.S. F.S	. 511†	% Clay	L.L. P.		ODOT Class.	219.1	
215 . 8 215 . 6		2-3-15-50/ 0.4 50/0.3		0.30	silty clay w/ traces of sandstone fragments (CL); moist, very stiff; gray shale noted (in bottom of spoon, qh=2,25 kg/cm2	1	/					9	_	218.5 218.3	
		L			Soft to medium hard gray arenaceous shale and fine grained sandstone/siltstone.									218.0 217.9	F
	2				Had to grind through bedrock to set core barrelat 2.9 meters.									217.2	
									THE SAME AND AND AND AND AND AND AND AND AND AND					216.6	
13.3	3				Light gray fine to medium grained, medium to moderately hard sandstone; thickly									216.0	
	4	75	1.65	0.00	bedded, good to fair rock quality. qu=522.7 kg/cm2	3								215.9 215.4	
11.9	тт.				trace of light brown color 4.3 m to 4.4 m										
ll . 6	_5				deep									214.4	
10.9		55	1.52		trace of light brown color 5.3 m to 5.5 m deep	- 4									
10.1	6												_	212.7	
09.2	7	45	1.40	0.12		5								L12.1	
03.2	: 				light brown sandstone with "poor" rock quality below 7.0 m (finall.5 m core run _appeared to have been disturbed during										
00.0	8				drilling). Bottom of boring @ 7.6 meters.	/ J								211.5 211.3	

)

)

23 APR 2001 I6:08:44 q:\18287\geotech\PR0JECT S0IL PR0FILE\G

			Date Completed <u>080599</u> Sampler:Type Offs <u>et</u> Surface Ele											GANNETT FLEMING SUITE 350	LTIVE PARKWAY Le, Ohio 43081
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			Pt	nysic	al Cha	racte	erist	ics		ETT 350	ERVII
				Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	Þ.I.	W.C.	ODOT Class.	GANN	4151 E WEST
2-4-5-7	0.34	0.27	Mottled gray w/ trace maroon silty clay w/ traces of limestone nodule fragments (CL); moist, medium stiff. qh=4.5+ kg/cm2		2		2		95	42	19	12	A-7-6		
1-27-34-50/ 0.2	0.34	0.18	qh=4.5+ kg/cm2	2								8			
50/0.3	0.09		Gray w/ trace olive brown silty clay (CL); slightly moist, hard.									1 4		g	
007 010	0.03		Soft,gray arenaceous shale.											CALCULATED	CHECKED
50/0.4	0.06	0.06		4								4			
				\										^{date} 1/20/00	
29-50/0.3	0.18	0.06		5								3		DA 1/20	
														9	
50/0.3	0.09		Light brown to gray,soft to moderately	6										REVIEWED	
			hard, arenaceous shale w/ limestone nodules and moderately hard to hard, fine to medium								<u> </u>			<u>«</u>	
75	1.34	0.18	grained, light gray sandstone w/ dark striations; good rock quality, medium to thickly bedded.	7										drawn MDH	
			moderately hard shale 3.5 m to 4.3 m deep;								-				
			light brown soft to medium shale in top 10 cm of core run.											Ш	
87	3.05			8										PROFIL	S
01	J.()		qu=500.4 kg/cm2											I SOIL	C LOG
100	1.52		Light gray, striated fine to medium grained, moderately hard sandstcne; excellent rock quality, thickly bedded.	9											BORIN

	-
	ω
	6
	Ő
	က
	ന
	300
	ł
	Τ
	⊢
	4

					Date Completed <u>080599</u> Sampler: Type											
oring] No	RAW-2	- Statio	on & (ffs <u>et</u> Surface E	lev <u>.</u>	2	16.2 1	n		_ Wa	ter	Llev.	·		
lev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	4)			Р	hysio	cal Ch	aract	erist	ics	
						Samr	S N N	% Agg.	С.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
5.2 5.8		2-3-15-50/ 0.4	0.27	0.30	Mottled red and brown w/ trace light brown silty clay w/ traces of sandstone fragments \(CL); moist, very stiff; gray shale noted										9	
5.6		50/0.3	0.03	0.06	in bottom of spoon. qh=2.25 kg/cm2		2									
					Soft to medium hard gray arenaceous shale and fine grained sandstone/siltstone. Had to grind through bedrock to set core											
	2				barrelat 2.9 meters.											
3.3					Light gray fine to medium grained, medium											
		75	1.65	0.00	to moderately hard sandstone; thickly bedded, good to fair rock quality, qu=522.7 kg/cm2	-	3									
.9	4		1.00	0.00			,									
.6					trace of light brown color 4.3 m to 4.4 m deep											
0.9		55	1.52			2	1									
7.2		22	1.32		trace of light brown color 5.3 m to 5.5 m deep		1									
).I	6				CODP											
<i></i>																
	7	45	1.40	0.12		Ę	5									
19.2					light brown sandstone with "poor" rock quality below 7.0 m (finall.5 m core run appeared to have been disturbed during											
8.6	8				drilling). Bottom of boring @ 7.6 meters.	4										

					Date Completed <u>080599</u> Sampler:Type Dffs <u>et</u> Surface Elev										
/.	Depth (m.)	Std. Pen./ RQD	Rec.	Loss (m.)	Description	<u>0</u>			P	hysic	cal Chc	racti	erist	ics	
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODO Class
,I ,5		2-4-5-7	0.34	0.27	Mottled gray w/ trace maroon silty clay w/ traces of limestone nodule fragments (CL); moist, medium stiff. qh=4.5+ kg/cm2		2		2		95	42	19	12	A-7-
.3 .3 .0		9-27-34-50/	0.34		dh=4.5+ kg/cm2 Gray w/ trace olive brown silty clay (CL);	2								8	
.0 .9		50/0.3	0.09		\slightly moist, hard.	3	/							4	
2	2	E0/0 /	0.00	0.00	Soft,gray arenaceous shale.									4	
~		50/0.4	0.06	0.00		4								<u> </u>	
.6		29-50/0.3	0.18	0.06		5								3	
.0	3	50/0.3	0.09	ļ		6									
.9 .4			0100		Light brown to gray, soft to moderately hard, arenaceous shale w/ limestone nodules										
•4	4	75	I . 34	0.18	and moderately hard to hard, fine to medium grained,light gray sandstone w/ dark striations; good rock quality, medium to thickly bedded.	7									
4	5				moderately hard shale 3.5 m to 4.3 m deep; light brown soft to medium shale in top 10										
					cm of core run.										
	6														
.7		87	3.05			8									
	7				qu=500.4 kg/cm2										
	I														
5 3					Light gray, striated fine to medium grained,										
3	8				moderately hard sandstone; excellent rock quality, thickly bedded.										
		100	1.52			9									

ring	No	RAW-3	Statio	on & (Offs <u>et</u> Surface Elev <u>.</u>	2	19 . 1 m		7	Wa	ter	Elev.			,
V. .)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u> ,			P	hysic	al Cha	iract(erist	ics	
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	0D0T Class.
.8					Bottom of boring @ 9.3 meters.										
	10				borroll of bornig 2 3.5 horors.										
	10														
	11								-						
	12														
	13														
	4														
									-						
ŀ	15														
						c									
-	16														
	17														

					Date Completed <u>080599</u> Sampler:Type										- Date Boring	
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ele.			Physic	al Chai	racte	eristi	ics		Elev. (m.)	Depth (m.)
						Sample No.	% Agg.	% C.S.	% % .S. Silt	7 Clay	L.L.	P.I.	W.C.	ODOT Class.	220.9	
209.8					Bottom of boring @ 9.3 meters.									<u></u>	-	
	10														220.2	
															219.6	
															219.0	2
															218.7	
															218.4	-
	12															3
																_
	13															_4
															216.7 216.6 216.4	
	4														216.4	5
																-
	15														214.8	6
	16														213.8	7
	17														213.3	8

 \mathbf{i}

37 S(23 APR 2001 16:09: q:\18287\geotech\PR0JECT

GANNET

1 072999 RAW-4			Date Completed <u>072999</u> Sampler:Type Offs <u>et</u> Surface Elev											GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>	Ι		P	hysic	al Cha	racte	erist	ics		
				Sample No.	% Agg.	7. C.S.	% F.S.	7 Silt	% Clay	L.L.	P .I.	W.C.	ODOT Class.	GANN SUITE 4151 E
2-5-7-12	0.30	0.30	Fill-grayish brown silty clay w/ traces of black and gray shale fragments; moist. qh=3.25 kg/cm2	1	7	4	4	23	62			16	A-7-6	
28-28-31-37	0.18	0.43	qh=2.5 kg/cm2	2								14		
20-50-50/ 0 . 2	0.24	0.12	Dark olive gray to gray silty clay (CL); slightly moist, hard; laminated structure. gh=4.5+ kg/cm2	3	1	2	3		94	45	20		A-7-6	CALCULATED
30-50/0.3	0.15	0.09	· · · · · · · · · · · · · · · · · · ·	4								8		
45-50/0.2	0.18	0.03	Very soft to soft,gray arenaceous shale.	5								7		date 1/20/00
50/0.5	0.09	0.06	Soft to medium,gray arenaceous shale;fair	6										DRAWN REVIEWED MDH
50	0.21	1	rock quality, medium bedding.											
50	I . 43	0.09	limestone nodules and lenses noted below about 4.6 meters.	8										PROFILE
87	1.52		Moderately hard in and below sample #9.	9										SOIL PR LOGS
			Medium to moderately hcrd, gray, fine grained sandstone/siltstone; thick to massive bedding; fair to good rock quality; isolated fissile lenses.											5
77	1.31	0.21		10										FOUNDATION BORING
			qu=277.6 kg/cm2	-					-					

					Date Completed 072999 Sampler: Type										
ing N	0	KAW-4	STOTI	un & ()ffs <u>et</u> Surface Elev <u>.</u>	<u> </u>	20.9			W.d.	rer	LIEV.			
	epth n.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>e</u> .			P	hysic	cal Cho	aracte	eristi	CS	
						Sample No.	% Agg.	С.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
.9		2-5-7-12	0.30	0.30	Fill-grayish brown silty clay w/ traces of black and gray shale fragments;moist. _qh=3.25 kg/cm2		7	4	4	23	62			16	A-7-6
_		28-28-31-37	0.18	0.43	qh=2.5 kg/cm2	2								4	
ò		20-50-50/ 0.2	0.24	0.12	Dark olive gray to gray silty clay (CL); slightly moist, hard; laminated structure.	3		2	3		94	45	20	- Concerns	A-7-6
	2	30-50/0.3	0.15	0.09	qh=4.5+ kg/cm2	4								8	
7		<u></u>			Very soft to soft, gray arenaceous shale.										
	3	45-50/0.2	0.18	0.03										7	
	<u> </u>														
	4														
7		50/0.5		0.06		6				<u> </u>					
o 4		50	0.21	<u> </u>	Soft to medium,gray arenaceous shale;fair rock quality,medium bedding.	7						<u> </u>			
	5	50	1.43	0.09	limestone nodules and lenses noted below about 4.6 meters.	8									
3 -	6				Moderately hard in and below sample #9.										
	7	87	1.52			9									
3					Medium to moderately hcrd,gray,fine grained sandstone/siltstone;thick to										
3					massive bedding;fair to good rock quality; isolated fissile lenses.										
	8	77	1.31	0.21		10									
2	_														
•					qu=277.6 kg/cm2										

					Date Completed <u>072999</u> Sampler:Type ffs <u>et</u> Surface Elev <u>.</u>										
ev. n.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			Р	hysic	cal Cha	iracte	erist	ics	
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
.8															
	10	56	1.83			Ш									
.6					Hard,light brown, fine to medium grained sandstone w/ dark striations;isolated fissile lenses.										
.0					Bottom of boring @ 10.9 meters.										
	12														
									-						
	13														
	14														
	15														
	16														

	J NU	NAW 4	310110)ffs <u>et</u> Surface Elev	V <u></u>	220.3		¥¥ (<u> </u>	_ Boring	J IN
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	$\frac{\Phi}{\Phi}$			Phys	sical Che	aracte	eristi	ics		Elev. (m.)	De (m
		арын алу шау байу байу түр 				Sample No.	7 Agg.	% C.S.	% % F.S. Silt	/ Clay	L.L.	P.I.	W.C.	ODOT Class.		
11.8										-					220.4	
	10	50	1.07												219.8	
10.6		56	1.83		Hard,light brown, fine to medium grained										219.2	
					sandstone w/ dark striations; isolated fissile lenses.										218.7 218.6	
10.0		and the second			Bottom of boring @ 10.9 meters.		1								- 218.6	┝
															218.0	
	12															-
									-							
	13														216.8	
															216.3	
															215.5	
	14															
															214.8	
	15														214.8 214.7 214.4	
									:							
	16															
															212.9	

 \supset

)

23 APR 2001 16:10:32 q:\18287\geotech\PR0JECT S01L PR0F1LE\GANNET1

1 072899			Date CompletedSampler:Type	Spli†	Spoc	n		Dia				5 cm	1	GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081	
RAW-5	Statio)ffs <u>et</u> Surface Elev.											FLEMING TIVE P/ LE, OHI	
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	e le						iracte	erist	ics		NETT TERVIL TERVIL	
				Sample No.	% Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GAN SUIT 4151 WES	
7-17-23-26	0.21	0.40	Fill: Mottled brownish gray silty clay w/ traces of sand, gravel, organic fibers and apparent coal pieces. qh=4.5 kg/	1								13			
3-20-14-16	0.15	0.46	\cm2 qh=4.5+ kg/cm2	2											
6-13-14-16	0.15	0.46	qh=2.75 kg/cm2	3								12		CALCULATED	
19-40-50/ 0.2	0.21	0.15	Light brown/beige w/ trace orange silty clay w/ traces of oxides (CL); slightly moist, hard.	4	0	2	4	30	64			12	A-7-6		
25-50/0.3	0.15	0.09	qh=3.0 kg/cm2 qh=4.5+ kg/cm2	5	3	7	5		85	41	19	10	A-7-6	^{DATE} 1/20/00	
														REVIEWED	
			Olive brown, soft weathered shale.											drawn MDH	
43-50/0.1	0.09	0.09		6								5		ag M	
			Light gray, medium hard to moderately hard, fine grained sandstone.											Ш	
	0.03			7										ROF	
30	0.15	ر 18.0	Olive and light gray sandstone below 5.8 m; soft to medium hard w/ shale/clay seams.	8	1									L C	
70	1.52			9										ro Lo	1
			Nadium band to maderately band alternation											N C N C N C	1
77	1.49	0.03	Medium hard to moderately hard alternating gray to light brown, fine to medium grained sandstone; thickly to massive bedded below 7.3 m.	10										FOUNDATION BORIN	

TH-33-30,981

A

					Date Completed <u>072899</u> Sampler:Type)ffs <u>et</u> Surface Elev										
200.03										-					
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>e</u> .			P	hysio	cal Cho	iract	erist	ics	
						Sample No.	% Agg.	С.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
220.4 219.8		7-17-23-26	0.21	0.40	Fill: Mottled brownish gray silty clay w/ traces of sand, gravel, organic fibers and apparent coal pieces. gh=4.5 kg/									13	
		13-20-14-16	0.15	0.46	\cm2 qh=4.5+ kg/cm2	2									
219.2 218.7		6-13-14-16	0.15	0.46	qh=2.75 kg/cm2	3								12	
218.6	2	19-40-50/ 0.2	0.21	0.15	Light brown/beige w/ trace orange silty clay w/ traces of oxides (CL); slightly moist, hard.	4	0	2	4	30	64			12	A-7-6
218.0		25-50/0.3	0.15	0.09	qh=3.0 kg/cm2 qh=4.5+ kg/cm2	5	3	7	5		85	41	19	10	A-7-6
216.8	4				Olive brown, soft weathered shale.										
216.3		43-50/0.1	0.09	0.09		6	<u> </u>						+	5	
215.5	5				Light gray, medium hard to moderately hard, fine grained sandstone.										
214.8 214.7 214.4	6	50/0.2	0.03 0.15	p.03		7			-						
214.4					Olive and light gray sandstone below 5.8 m; soft to medium hard w/ shale/clay seams.	<u> </u>									
	7	70	1.52			9									
212.9	8				Medium hard to moderately hard alternating gray to light brown, fine to medium grained sandstone; thickly to massive bedded below										
		77	1.49	0.03	7.3 m.	10									

					Date Completed 072899 Sampler:Type Offs <u>et</u> Surface Elev.							
Elev.	Depth	Std.Pen./ RQD	Rec.	Loss	Description	T	T			 cal Chai		
(m.)	(m.)	RQD	(m.)	(m.)		Sample No.	% Agg.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	F.S. 5			ODOT Class.
211.3					Dark striations below 8.8 m; predominantly light gray and moderately hard below 9.1m.		Myy.					
	_10	70	1.52			11						
209.8					Bottom of boring @ 10.6 meters.							
	_12											
	13											
	4											
									1			
	16											

Boring	No	RAW-5	_ Statio	on & ()ffs <u>et</u> Surface Elev	. 2	220.4	m	Water	r Elev.			_ Boring	g No	
Elev.	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Φ			Physical (Characte	eristics	_	Elev. (m.)	Depth (m.)	<u> </u>
(m.)	(111.2)	nuu	(111.)	(111.)		Sample No.	% Agg.	% C.S.	- % % // F.S. Біlt Сіс					(111.)	
211.3					Dark striations below 8.8 m;predominantly light gray and moderately hard below 9.1m.								213.1		8-
	10	70	1.52		ngin gruy unu model urely nuru below 3.mi.								212.5		
													211.9		
209.8					Bottom of boring @ 10.6 meters.								211.3	2	
													210.7 210.4		9-
	_12												209.8	<u> </u>	
													ZUJ.O		
	13												209.0 208.9		
													208.9		n
														5	
	15												207.2	6	
									5						
	16													7	
													205.7		
															1

 \supset

)

 \supset

23 APR 2001 IG:II:04 q:\I8287\geotech\PROJECT SOIL PROFILE\GANNETTL

080699 RAW-6			Date Completed <u>080699</u> Sampler:Type)ffs <u>et</u> Surface Elev											GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>	ľ		P	hysic	al Cho	iract:	erist	lcs		IETT F E 350 XECUT ERVILL
				Sample No.	% Agg.	7 C.S.	/ F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GANN SUITE 4151 E WEST
8-11-12-15	0.21	0.40	Fill-Mottled brown and gray silty clay w/ some sand and rock fragments; moist. _qh=3.25 kg/cm2	1	25	9	13	20	33			12	A-7-6	
3-11-6-8	0.09	0.52	qh=l.75 kg/cm2	2										
5-7-7-9	0.34	0.27	qh=2.0 kg/cm2	3	26	7	8		59	4	19	15	A-7-6	CALCULATED
5-5-5-6	0.21	0.40	qh=2.25 kg/cm2	4								13		
9-8-20-50/ 0.5	0.34	0.27	qh=1.75 kg/cm2 Light brown silty sand w/ little sandstone fragments (SM); moist, medium dense.	- 5										WED DATE
			Medium to moderately hard,light brown, fine to medium grained sandstone;good rock quality.											WN REVIEWED
50/0.1	0.03			6										DRAWN
80	1.52		qu=l52.2 kg/cm2	7										OFILE
33	0.70	0.82	Poor rock quality below 6.1m;possible cavity or soft mud seam from 6.7 m to 7.2 m.	8										SOIL PR G LOGS
87	1.52		Marled maroon w/ trace gray and olive, soft to very soft shale; "good" rock quality; medium hard at top of interval. (RQD measurement misleading) qu=39.7 kg/cm2	9										OUNDATION BORING

TH-33-30,981

97/105

ing	No	RAW-6	Statio	on & ()ffs <u>et</u> Surface Elev	. 2	13 . 1 m			Wat	ter	Elev.			
/ .	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description		<u> </u>		P	hysic	al Cho	iract	erist	ics	
						Sample No.	% Agg.	С.S.	۲. F.S.	% Silt	% Clay	L.L.	P .I.	W.C.	ODOT Class.
5		8-11-12-15	0.21	0.40	Fill-Mottled brown and gray silty clay w/ some sand and rock fragments; moist. _qh=3.25 kg/cm2		25	9			33			12	A-7-(
,		3-11-6-8	0.09	0.52	qh=1.75 kg/cm2	2									
		5-7-7-9	0.34	0.27	qh=2.0 kg/cm2	3	26	7	8		59	41	19	15	A-7-(
	2	5-5-5-6	0.21	0.40	qh=2.25 kg/cm2	4								13	
7 4	3	9-8-20-50/ 0.5	0.34	0.27	qh=1.75 kg/cm2 Light brown silty sand w/ little sandstone fragments (SM); moist, medium dense.	- 5									
.8	4				Medium to moderately hard, light brown, fine to medium grained sandstone; good rock quality.	_									
0 9		50/0.1	0.03	<u> </u>		6									
6	5	80	1.52		qu=152.2 kg/cm2	7									
2	6				Poor rock quality below 6.1m; possible cavity or soft mud seam from 6.7 m to 7.2										
	7	33	0.70	0.82	m.	8									
7	8				Marled maroon w/ trace gray and olive, soft to very soft shale; "good" rock quality;										
6		87	1.52		medium hard at top of interval. (RQD measurement misleading)	9									
J					qu=39.7 kg/cm2										

Date	Starte	d 080699			Date Completed080699Sampler:Type	Split	Sdoo	n	Di	a.			5 cm	1
					Offs <u>et</u> Surface Elev.									
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	e e		:	Phys	sical Ch	aracte	eristi	CS	
						Sample No.	% Agg.	7. C.S. F	% % .S. 5il1	Clay	LaL.»	P.I.	W.C.	ODOT Class.
204.1					Bottom of boring @ 9.0 meters.									1
	10													
	—													
	12													
	13													
	14													
	15													
	10													
	16													
	17													

] NO	RAW-6	. Static	on & (Offs <u>et</u> Surface El	ev.	213 . 1 m		Water	LIEV.		······································	Boring N
lev.	Depth	Std. Pen./	Rec.	Loss (m.)	Description	Φ			Physical Cho	aracte	ristics		Elev. De
(m.)	(m.)	RQD	(m.)	(11.)		Sample No.	% Agg.	% C.S. F	% % % .S. Silt Clay			ODOT Class.	(m.) (m
)4.		1. (ABO(1))			Bottom of boring @ 9.0 meters.								222.0
													221.4 221.1
	10												221.1
													220.8
													220.2
													219.6
	12												
	13												
													217.9 217.9 217.6
	14												
	15												216.0
													210.0
	16												
													214.5

 \mathcal{I}

)

23 APR 2001 16:12:03 q:\18287\geotech\PR0JECT S01L PR0F1LE\GANNETTL

1 072999 RAW-8			Date Completed <u>072999</u> Sampler:TypeSurface Ele											GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description				F	hysic	al Cha	racte	ristic	s		LETT E 350 XECU TERVIL
	1			Sample No.	% Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L.	°.I. V	I.C.	ODOT Class.	GANN SUITI 4151 E WEST
5-6-11-15	0.24	0.37	Fill-mottled gray, olive and red silty clay w/ traces of organic fibers and shale _fragments.gh=3.0 kg/cm2									13		
2-20-22-25	0.30	0.30	qh=1.0 kg/cm2 Mottled gray w/ brown to dark gray silty	2	2	1	3	28	66			19	A-7-6	
13-32-50/ 0.4	0.27	0.15	Clay (CL); slightly moist, hard. qh=4.5+ kg/cm2	3										CALCULATED
50/0.5	0.06	0.09		<u> </u>										8
40-50/0.2	0.12	0.09	Medium, gray arenaceous shale.	5								8		DATE
														DRAWN REVIEWED
50/0 . 0	0.03	b. 06	Soft,gray,arenaceous shale w/ limestone \nodules;poor rock quality,thinly bedded.	6										DRA M[
55	1.52		Medium to moderatley hard, gray, arenaceous shale w/ limestone nodules; fair rock quality, medium bedding. qu=196.8 kg/cm2	8										OFILE
42	1.40	0.12	Gray, medium to moderately hard, fine grained sandstone w/ soft gray shale seams; limestone nodules below about 6.6 m; poor rock quality, medium to thick bedding.	9										ON SOIL PR ING LOGS
62	1.31	0.21	Medium, gray arenaceous shale and moderately hard to hard, light gray, fine to medium grained sandstone; fair rock quality, medium bedding; sandstone below about 7.9 m; mud seam at about 8.8 m.	10										FOUNDATION BORIN

					Date Completed 072999 Sampler: Type										
Boring] NO	RAW-8	570710	on & ()ffs <u>et</u> Surface Elev <u>.</u>	2	22.0	m		₩d-	rer l	lev.			
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>	[P	hysic	al Cha	racte	erist	ics	
						Sample No.	% Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
222.0 221.4		5-6-11-15	0.24	0.37	Fill-mottled gray, olive and red silty clay w/ traces of organic fibers and shale fragments. qh=3.0 kg/cm2									13	
221.4 221.1 220.8		12-20-22-25	0.30	0.30	qh=1.0 kg/cm2 Mottled gray w/ brown to dark gray silty	2	2	1	3	28	66			19	A-7-6
22010		13-32-50/ 0.4	0.27	0.15	\clay (CL); slightly moist, hard. qh=4.5+ kg/cm2	3									
220.2	2	50/0.5	0.06	0.09		4									
219.6		40-50/0.2	0.12	0.09	Medium, gray arenaceous shale.	5								8	
	3	New 201													
	4														
217.9 217.9		50/0.1	0.03	b. 06	Soft, gray, arenaceous shale w/ limestone	6									
217.6		0	p.24	Δ	nodules; poor rock quality, thinly bedded. Medium to moderatley hard, gray, arenaceous	<u>\ </u>	l								
		55	1.52		shale w/ limestone nodules; fair rock quality, medium bedding.	8									
	6				qu=196.8 kg/cm2										
216.0	7	42	1.40	0.12	Gray, medium to moderately hard, fine grained sandstone w/ soft gray shale seams; limestone nodules below about 6.6 m; poor rock quality, medium to thick bedding.	9									
214.5	8	62	1.31	0.21	Medium, gray arenaceous shale and moderately hard to hard, light gray, fine to medium grained sandstone; fair rock quality, medium bedding; sandstone below about 7.9 m; mud seam at about 8.8 m.	10									

							Sampler: Type										
ring	J NO	KAW-8	STUTIC	n & C	JTTS <u>et</u>		Surface Elev <u>.</u>	2	.22.0			WUI	ere	lev			
lev. m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)		Description		<u>⊕</u>			Ph	nysic	al Chai	racte	ristics		
								Sample No.	7 Agg.	/ C.S.	7. F.S. 5	% Silt	% Clay	L.L.F	?. I. ₩.	c	ODOT Iass.
3.0	10	29	1.83		Light gray, mediu fine to medium shale seams; poor medium bedding.	grained fissil	e sandstone w/										
.2					Bottom of borin	g @ 10.9 mete	rs.										
	13										1:						
	14																
	16										r						
	17																

Boring	No	RAW-8	_ Static	on & (Offs <u>et</u> Surface Elev	• 4	222.0	m		Water	Elev.				_ Borin	g No
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	e e			PI	hysical Ch	aract	erist	ics		Elev. (m.)	Depth (m.)
						Sample No.	/ Agg.	7. C.S.	% F.S.	% % Silt Clay	L.L.	P,I,	W.C.	ODOT Class.		
213.0					Light gray, medium hard to moderately hard, fine to medium grained fissile sandstone w/										221.6	
					shale seams; poor rock quality, thin to medium bedding.				r						221.0 220.8	
	10	29	1.83		medidim bedding.	H										
															220.3	
211.2									ļ		_				219.7	2
					Bottom of boring @ 10.9 meters.											
															219.1	
	12															3
	13														217.9	4
	IJ								2						217.4	
															217.3 217.1	
	14															5
							- - - -								216.1	
	15														215.6	6
															215.2	
	16															7
									-							
															214.1	
	17															8

 $\overline{}$

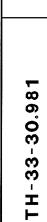
)

23 APR 2001 16:12:39 q:\\8287\geotech\PROJECT SOIL PROFILE\GANNETT

			Date CompletedO72899Sampler:Type											GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081	
RAW-9	Statio	on & ()ffs <u>et</u> Surface Ele	ev <u>. 2</u>	21 . 6 r	n		Wat	ter I	Elev.				LEMIN IVE P E, OH	
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.		T			al Cho	-			0007	NETT F TE 350 EXECUT STERVILI	
······································				s PZ	% Agg.	7. C.S.	7. F.S.	7. 511†	% Clay	L.L.	P.I.	W.C.	ODOT Class.	GAN SUI WES	
5-10-15-18	0.15	0.46	Probable fill-mottled brown and olive brown silty clay w/ traces of organic fibers; slightly moist. qh=4,5+ kg/cm2									13			
0-13-15-21	0.34	0.27		2	4	0	3		93	52	21	15	A-7-5		
			Olive to olive and dark gray silty clay (CL); slightly moist, hard.											E C	
8-24-32-38	0.27	0.34		3										CALCULATED	
27-50/0.2	0.12	0.09	qh=4.5+ kg/cm2	4								10			
		0.07			ļ									date 1/20/00	
50/0.4	0.09	0.03		5								<u>9</u>		<u> </u>	
														REVIEWED	
														REV	
			Soft to medium,gray arenaceous shale.											MDH	
50/0.4	p. 12		Soft to medium, gray arenaceous shale w/	6	/									DR.	
0	0.18		traces of limestone nodules; thickly bedded, poor rock quality.	7		-									
43	1.40	0.12		8										ш	
40	1.40	U.IZ													
			qu=143.9 kg/cm2											PROF	
68	1.46	0.06	Medium, fine to medium grained, gray sandstone; thickly bedded, fair to poor	9										201L	
			rock quality.												
			medium to moderately hard below 7.6 m.											RING	
														ORI	
48	1.52			10										B B	
														FOUNDA	
]		

•	-
	\sim
	Ø
- (ົ
	•
(0
	ñ
•	
	1
(3
	3
	1
	L
	_

					Date CompletedO72899Sampler:Type Offs <u>et</u> Surface Elev										
	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			P	hysic	cal Cho	iract	erist	ics	
	(1112)		(1117)			Sample No.	7 Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
		5-10-15-18	0.15	0.46	Probable fill-mottled brown and olive brown silty clay w/ traces of organic fibers; _slightly moist. qh=4.5+ kg/cm2									13	
	I	10-13-15-21	0.34	0.27		2	4	0	3		93	52	21	15	A-7-5
		8-24-32-38	0.27	0.34	(CL); slightly moist, hard.	3								11	
	2	27-50/0.2	0.12	0.09	qh=4.5+ kg/cm2	4								10	
		50/0.4	0.09	0.03		5								<u>9</u>	
	3														
	4				Soft to medium,gray arenaceous shale.										
		50/0.4	0.12		Soft to medium,gray arenaceous shale w/	6 /	/								
	5	0	0.18		traces of limestone nodules; thickly bedded, poor rock quality.										
		43	1.40	0.12		8									
	6				qu=143.9 kg/cm2										
1	7	68	I . 46	0.06	Medium, fine to medium grained, gray sandstone; thickly bedded, fair to poor rock quality.	9									
					medium to moderately hard below 7.6 m.										
	8														
		48	1.52			10									


					Offs <u>et</u> Surface Elev		1				19. M.				- Boring	
lev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.		1 %		sical Cho				ODOT	Elev. (m.)	Depth (m.)
2.5					Light gray, moderately hard to hard, fine to medium grained sandstone; fair rock quality, thick to massive bedding.	S S	% Agg.	C.S.	F.S. Sil	t Clay	L.L.	P.I.	W.C.	Class.	220.2	
	10	72	I . 55	0.27	quality, thick to massive bedding. dark striations below 9.5 m.										219.6 219.0	
0.7					Bottom of boring @ 10.9 meters.										218.4	2
															218.1 217.8	
	12															3
	13														216.5 216.1	4
																5
									2						215.0 214.6	
																6
	16														213.1	7
															213.1 213.0 212.8	-

23 APR 2001 16:14:18 q:N18287\geotech\PR0JECT SOIL PR0FILE\GANNETTLOG

 \sim

Ξ.)

072999 RAW-I0			Date Completed <u>072999</u> Sampler:Type Offs <u>et</u> Surface Elev <u>.</u>											GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ejo .			P	hysic	al Char	-acter	istics			VETT E 350 EXECU TERVII
				Sample No.	% Agg.	/ C.S.	% F.S.	% Silt	% Clay	L. P.	.I. W	.C.	ODOT Class.	GANN SUIT 4151 E WES
5-4-7-7	0.24	0.37	Fill-mottled brown,olive and gray silty clay w/ trace to little fine sand and shale fragments; moist. qh=2.0 kg/cm2									4		
7-14-17-20	0.30	0.30	qh=4.5+ kg/cm2	2								9		
8-9-7-9	0.12	0.49		3								8		CALCULATED
8-11-11-9	0.15	0.46	black shale fragments noted in sample #4.	4								4		DATE 1/20/00
12-13-8-7	0.24	0.37	qh=4.25 kg/cm2	5								5		
														REVIEWED
			predominantly gray ccloring below 3.7 m.											drawn MDH
7-8-10	0.21	0.24	qh=3.5 kg/cm2	6	16	6	8	36	33		-	3	A-6a	
			Probable fill-light brown to brown silty											L L
			clay w/ traces of gray sandstone fragments, \sand and organic fibers/oxides.											ROFI
5-9-15	0.30	0.15	qh=3.25 kg/cm2	7								8		PR(
														S0IL
50/0.0	0.00		Marled olive brown and light gray, hard	8										5
77	0.24		Vimestone; good rock quality, thin bedding.	9										'ION RING
			Light brown w/ trace gray, medium to moderately hard, fine to medium grained sandstone; darker brown striations noted in sandstone; thick to massive bedding, fair to good rock quality. qu=96.6 kg/cm2											FOUNDATION BORIN

100/105

					Date Completed 072999 Sampler: Type										
ring	No.	RAW-IO	Statio	on & ()ffs <u>et</u> Surface Elev	. 2	20.2	m		₩a [.]	ter	Elev			
/.	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	dmpie No.			Pt	nysio	al Cha	iracter	istic	cs	
						NO NO NO	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L. P		W.C.	ODOT Class.
2		5-4-7-7	0.24	0.37	Fill-mottled brown, olive and gray silty clay w/ trace to little fine sand and shale fragments; moist. qh=2.0 kg/cm2									14	
		7-14-17-20	0.30	0.30	qh=4.5+ kg/cm2	2								9	
		8-9-7-9	0.12	0.49		3								8	
		8-11-11-9	0.15	0.46	black shale fragments noted in sample #4.	- 4								4	
	3	12-13-8-7	0.24	0.37	qh=4.25 kg/cm2	5								15	
	4				predominantly gray ccloring below 3.7 m.										
		7-8-10	0.21	0.24	qh=3.5 kg/cm2	6	16	6	8	36	33			13	A-6a
	5														
					Probable fill-light brown to brown silty clay w/ traces of gray sandstone fragments,										
	6	5-9-15	0.30	0.15	\sand and organic fibers/oxides/ qh=3.25 kg/cm2	7								18	
	7														
		50/0.0 77	0.00	<u> </u>	Marled olive brown and light gray, hard Vimestone; good rock quality, thin bedding.	8									
	8				Light brown w/ trace gray, medium to moderately hard, fine to medium grained sandstone; darker brown striations noted in sandstone; thick to massive bedding, fair to good rock quality.										

ng No	. <u>R</u> A	₩-10	Static	on & (Surface Elev.	2	20.2	m		Wat	er (Elev.			
. Dep (m.	oth St	d.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ple.						racte			
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
		73	2.74	0.30		10									
-					fissile lenses noted in core run. qu=229.lkg/cm2	1		-							
10															
7 -															
		66	1.62	0.11											
-															
) 2															
-					Bottom of boring @ 12.2 meters.										
13															
_															
4															
-															
15															
.									L						
16															
-															
7															

Boring) No	RAW-10	Statio	on & (Date Completed <u>072999</u> Sampler:Type Offs <u>et</u> Surface Elev		220.2	m		Water	Elev.	·			_ Boring	Start g No
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>•</u>			Pł	nysical Ch	aract	erist	ics		Elev. (m.)	Depth (m.)
						Sample No.	% Agg.	% C.S.	% F.S.	% % Silt Clay	L.L.	P.I.	W.C.	ODOT Class.		
010 7		73	2.74	0.30		10									213.9	
210.7					fissile lenses noted in core run. qu=229.lkg/cm2										213.3	
	10														212.8 212.7	
209.7																-
																2
		66	I . 62	0.11											211.4	
	12															3
208.0					Bottom of boring @ 12.2 meters.											
															210.2	
	13														209.8	4
	4															5
															208.4 208.2	
	15														208.2	6
									a.							
															207.2	
	16														206.7	(
	17		1													8

23 APR 2001 16:14:55 q:\18287\geotech\PR0JECT SOIL PR0FILE\GANNETTL0GS

072099			Date CompletedSampler:Type	Split	Sdoc	'n		Dia.				5 cm)	GANNETT FLEMING SUITE 350 4151EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
RBW-I			Offs <u>et</u> Surface Elev											LEMING VE PA E, OHIO
Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.						iracte	erist	ics		NETT FI TE 350 EXECUTI STERVILL
				S S S	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.	GAN SUI WES
13-19-25- 50/ . 2	0.43	0.09	Fill-mottled brown and gray silty clay w/ sand, gravel, and shale fragments; slightly moist.									8		
50/0.4	0.06	0.06		2	/							4		
-10-11-10	0.37	0.24	Probable fill-mottled red and gray silty clay w/ gray sandstone fragments; moist.	3	40	7			43	31	10	9	A-4a	CALCULATED CHECKED
-3 - 7- 7	0.34	0.27	Mottled red and gray w/ trace yellow silty clay w/ traces of oxides (CL); moist, hard.	4	4	4	7	37	49			16	A-6a	DATE 1/20/00
			qh=3.5 kg/cm2											REVIEWED
18-28-50/ 0.4	0.40	0.03	Light brown w/ trace gray sandy silt and clay w/ traces of weathered sandstone fragments (ML, CL-ML); moist, very dense/ hard.	5								12		DRAWN MDH
			qh=4.5 kg/cm2											Ш
50/0.1	0.03	0.00	Soft to medium hard light brown, fine grained sandstone.	6										PROFI S
38-50/0.2	0.21	0.34	Soft, dark gray weathered shale; laminated structure.	7								9		G LOG
														OUNDATION BORING
			Soft to medium hard gray shale.											
50/0.3	0.09			8										<u>0</u>

TH-33-30.981

◄

					Date Completed <u>072099</u> Sampler:Type)ffs <u>et</u> Surface Elev										
)epth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>	Γ		P	hysic	al Cha	iracte	əristi	cs	
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
.9		13-19-25- 50/ . 2	0.43	0.09	Fill-mottled brown and gray silty clay w/ sand, gravel, and shale fragments; slightly moist.									8	
3		50/0.4	0.06	0.06		2	/						\square	4	
8		11-10-11-10	0.37	0.24	Probable fill-mottled red and gray silty clay w/ gray sandstone fragments; moist.	3	40	7			43	31	10	9	A-4a
-	2														
	3	21-31-17-17	0.34	0.27	Mottled red and gray w/ trace yellow silty clay w/ traces of oxides (CL); moist, hard.	4	4	4	7	37	49			16	A-6a
					qh=3.5 kg/cm2										
.8	_4				Light brown w/ trace gray sandy silt and clay w/ traces of weathered sandstone \fragments (ML,CL-ML); moist, very dense/ /										
		18-28-50/ 0.4	0.40	0.03	hard.	5								12	
.4	5														
.2	6	50/0.1	0.03	0.00	Soft to medium hard light brown, fine grained sandstone.	6									
.2					Caft dark grow weathered abole lowingted										
.7	7	38-50/0.2	0.21	0.34	Soft, dark gray weathered shale; laminated structure.									9	
	8														
.7					Soft to medium hard gray shale.	_									
•		50/0.3	0.09			8									

							_ Sampler:Type Surface Elev.										_ Date _ Boring	
Elev.	Depth	Std.Pen./ RQD	Rec.	Loss (m.)		Description		0			PI	hysical Ch	aract	erist	ics	<u></u>	Elev.	Depth
(m.)	(m.)	RUD	(m.)	(m.)				Sample No.	% Agg.	7 C.S.		% % Silt Clay				ODOT Class.	(m.)	(m.)
																	211.6	
	10										7						211.0	
03.7 03.6		50/0.2	p. 06	p.00 /	Bottom of boring	@ 10.3 meter	rs.	9	ф—							·	210.4	
																	209.8 209.5	2
																	209.2	
	12																200.0	3
																	208.2	
	13										-						207.5 207.3 207.0	
	4																207.0	5
	15																206.0	_6
																	205.5	
	16																204.4	7
											r.						204.4	
	17																203.7	8
																	202.9	

23 APR 2001 16:15:33 q:\18287\geotech\PR0JECT SOIL PROFILE\GANNETTLOGS.

4-6-8-21 0.40 0.21 5 cm Topsollfillight brown silty sond w/ sandstone fragments and growel slightly moist; cobbles/rock fragments at 15 m; argy shale fragments in sample #4. 1 1 9 9-14-10-9 0.37 0.24 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 10 1 1 5-16-14-12 0.43 0.48 arge shale fragments moist. Light orange-brown/beige at bottom of sample. 5 10 10 10 10 Fill-mottHed red, brown and gray slity clay w/ sand and shale fragments moist. Light orange-brown/beige at bottom of sample. 5 10 10 10 10 5-7-15 0.24 0.21 arge shale fragments moist. Light orange-brown at bottom of sample. 6 6 <th>I 072199 RBW-2</th> <th>Static</th> <th></th> <th>Date Completed<u>072199</u>Sampler:Type Offs<u>et</u>Surface Ele</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th><u>5 cm</u> 204</th> <th></th> <th>GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081</th>	I 072199 RBW-2	Static		Date Completed <u>072199</u> Sampler:Type Offs <u>et</u> Surface Ele									<u>5 cm</u> 204		GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
4-6-8-21 0.40 0.21 5 cm Topsollfillight brown silty sond w/ sandstone fragments and growel slightly moist; cobbles/rock fragments at 15 m; argy shale fragments in sample #4. 1 1 9 9-14-10-9 0.37 0.24 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 10 1 1 5-16-14-12 0.43 0.48 arge shale fragments moist. Light orange-brown/beige at bottom of sample. 5 10 10 10 10 Fill-mottHed red, brown and gray slity clay w/ sand and shale fragments moist. Light orange-brown/beige at bottom of sample. 5 10 10 10 10 5-7-15 0.24 0.21 arge shale fragments moist. Light orange-brown at bottom of sample. 6 6 <td></td> <td></td> <td></td> <td>Description</td> <td><u>e</u>.</td> <td></td> <td></td> <td>P</td> <td>hysic</td> <td>al Cho</td> <td>iracte</td> <td>eristi</td> <td>cs</td> <td></td> <td>NETT E 35(EXECL TERVII</td>				Description	<u>e</u> .			P	hysic	al Cho	iracte	eristi	cs		NETT E 35(EXECL TERVII
4-6-8-21 0.40 0.21 5 cm Topsollfillight brown silty sond w/ sandstone fragments and growel slightly moist; cobbles/rock fragments at 15 m; argy shale fragments in sample #4. 1 1 9 9-14-10-9 0.37 0.24 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 1 7 25-12-10-9 0.00 0.61 argy shale fragments in sample #4. 2 1 10 1 1 5-16-14-12 0.43 0.48 arge shale fragments moist. Light orange-brown/beige at bottom of sample. 5 10 10 10 10 Fill-mottHed red, brown and gray slity clay w/ sand and shale fragments moist. Light orange-brown/beige at bottom of sample. 5 10 10 10 10 5-7-15 0.24 0.21 arge shale fragments moist. Light orange-brown at bottom of sample. 6 6 <td><u></u></td> <td></td> <td></td> <td></td> <td>S amp No No</td> <td>% Agg.</td> <td>% C.S.</td> <td>7. F.S.</td> <td>% Silt</td> <td>% Clay</td> <td>L.L.</td> <td>P.I.</td> <td>W.C.</td> <td></td> <td>GANN SUIT 4151 E WES</td>	<u></u>				S amp No No	% Agg.	% C.S.	7. F.S.	% Silt	% Clay	L.L.	P.I.	W.C.		GANN SUIT 4151 E WES
9-14-10-3 0.37 0.24 qh=3.25 kg/cm2 2 1 1 1 25-12-10-9 0.00 0.61 3 3 1 1 1 1 1 25-16-14-12 0.43 0.18 0.43 0.18 0.18 0.18 0.09 10 17 A-6b 50/0.3 0.09 0.09 0.09 0.09 10 10 10 10 Fill-mottled red, brown and gray silty clay w/ sand and shele fragments; moist. Light orange-brown/beige at bottom of sample. 5 1 1 1 A-6b 5-7-15 0.24 0.21 qh=1.5 kg/cm2 6 6 4 10 81 39 18 22 A-6b 53-50/0.4 0.27 qh=4.5+ kg/cm2 7 4 6 17 73 40 17 I5 53-50/0.4 0.27 qh=4.5+ kg/cm2 7 4 6 17 15 A-6b 53-50/0.4 0.27 qh=4.5+ kg/cm2 7 4 6 17 15 A-6b 35-50/0.4 0.27	4-6-8-21	0.40	0.21	w/ sandstone fragments and gravel; slightly moist; cobbles/rock fragments at 1.5 m;									9		
5-16-14-12 0.43 0.18	9-14-10-9	0.37	0.24		2								7		
5-16-14-12 0.43 0.18	25-12-10-9	0.00	0.61		3										CALCULATED
5070.3 0.09 5 5 0 0 0 Fill-mottled red, brown and gray silty clay w/ sand and shale fragments; moist. Light orange-brown/beige at bottom of sample. 6 6 4 10 81 39 18 22 A-6b 5-7-15 0.24 0.21	25-16-14-12	0.43	0.18	8%	4	23	13	10	20	34			17	A-6b	DATE C. 20/00
5-7-15 0.24 0.21	50/0.3	0.09			<u>5</u>								10		REVIEWED D
5-7-15 0.24 0.21 Q1-1.5 Ng/ GHZ 6 6 4 10 81 39 18 22 A-6b gh=3.25 kg/ cm2, w.c.= 17/. Image: Structure; orange-brown at bottom of sample. Image: Structure; orange-brown at bottom of sat				w/ sand and shale fragments; moist. Light											DRAWN MDH
i7% Brown silty clay w/ traces of oxides (CL); slightly moist, hard. Slightly laminated structure; orange-brown at bottom of sample. 53-50/0.4 0.27 qh=4.5+ kg/cm2 Very soft to soft, very weathered orange- brown to olive and gray arenaceous shale; laminated structure. 35-50/0.2 0.18	5-7-15	0.24	0.21		6	6	4	10		81	39	18	22	A-6b	щ Х
Very soft to soft, very weathered orange- brown to olive and gray arenaceous shale; laminated structure.	F7 F0 (0 A	0.07		I7% Brown silty clay w/ traces of oxides (CL); slightly moist, hard. Slightly laminated structure; orange-brown at bottom of	/			17			40	17	15		FILE
brown to olive and gray arenaceous shale; laminated structure.	53-50/0.4	0.27		qh=4.5+ kg/cm2		4	6			15	40	11	15	A-6D	RO
<u>35-50/0.2</u> 0.18 0.03 8 13				brown to olive and gray arenaceous shale;											SOIL P Logs
	35-50/0.2	0.18	0.03		8	+							13		65
Very soft to soft red/maroon and gray, very weathered arenaceous shale. 9 12	61-50704	0.27		Very soft to soft red/maroon and gray, very weathered arenaceous shale.	- - - 9								12		FOUNDATION BORING

АТН-33-30.981

					Date Completed 072199 Sampler:Type) Offs <u>et</u> Surface Elev									<u>5 cm</u> 204		
V. .)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>			P	hysic	al Cho	aract.	erist	stics		
	(11.,7		XIIIe7	(IIIe/		Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	
)		4-6-8-21	0.40	0.21	5 cm Topsoilfill-light brown silty sand w/ sandstone fragments and gravel;slightly _moist;cobbles/rock fragments at 1.5 m;	1								9		
4		9-14-10-9	0.37	0.24	<u>gray shale fragments in sample #4.</u> qh=3.25 kg/cm2	2								7		
		25-12-10-9	0.00	0.61		3										
8 5	2	25-16-14-12	0.43	0.18	qh=3.25 kg/cm2, w.c.= 8%	4	23	13	10	20	34			17	A-6b	
2	3	50/0.3	0.09	/	qh=4.5 kg/cm2	5								10		
2					Fill-mottled red, brown and gray silty clay w/ sand and shale fragments; moist. Light orange-brown/beige at bottom of sample.											
5 3 0		5-7-15	0.24	0.21	qh=1.5 kg/cm2 qh=3.25 kg/cm2, w.c.=	6	6	4	10		81	39	18	22	A-6b	
	5				I7% Brown silty clay w/ traces of oxides (CL); slightly moist, hard. Slightly laminated structure; orange-brown at bottom of											
)	6	53-50/0.4	0.27		_sample. 	7	4	6	17		73	40	17	15	A-6b	
ō					Very soft to soft, very weathered orange- brown to olive and gray arenaceous shale; laminated structure.											
4	7															
•		35-50/0.2	0,18	0.03										13		
7	8				Very soft to soft red/maroon and gray, very weathered arenaceous shale.											
9		61-50/0.4	0.27			9								12		

ate Started 072199 Date Completed 072199 pring No. RBW-2 Station & Offset Description lev. Depth (m,) Std. Pen./ ROD Rec. (m,) Loss (m,) Description 01.4 75 0.30 Soft to medium hard gray argod rock quality; medium to thedded. Nedium hard, gray arenaceous siltstone/fine grained sandstor quality, medium to thickly bedok kg/cm2 0.6 12 80.6 Bottom of boring @ 12.0 meter																
lev. (m.)		Std.Pen./ RQD		Loss (m.)		Description		<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Τ		P	hysic	al Cha	racter	stics	
								Sample No.	% Agg.	7. C.S.	7. F.S.	% Silt	% Clay	L.L. P.	. W.C.	ODOT Class.
						Sec.										
	10															
		75	0.30		Soft to medium	hard gray ai v: medium to	renaceous shale; thickly	10								
	and the second se				bedded. Medium hard,ara	y arenaceou	s shale and]			T.					
		78	1.46	0.06	siltstone/fine gr quality,medium t	ained sandst o thickly bec	one;good rock Ided.qu=338.3									
9.6	12															
					Bottom of borin	g @ 12.0 mete	rs.									
	13															
	4															
											-					
	15															
	16															
	17															
											÷					
-																

oth	Std.Pen./ RQD	Re			fs <u>et</u> Surface Ele Description		I.6 m Water Elev. 204.2 m Physical Characteristics	Elev. Der (m.) (m.	epth	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description		I		Physi	icalChar	actoric	tics	
.)	RQD	(m.) (m.)		Sample No.	X X X X ODOT Agg. C.S. F.S. Silt Clay L.L. P.I. W.C. Class.	(m.) (m.	n.)	RQD	(m.)	(m.)		Sample No.	% Agg.	% C.S. F	х х .S. Біlt	%		W.C.	ODOT Class.
					4			209.6 209.0		5-25-24-27	0.52		5 cm Topsoilfill-mottled brown/light brown and gray to red silty clay w/ traces of brown sandstone and shale fragments; slightly moist to moist. qh=4.5+ kg/cm2	1							
)	75	0.3	0	-h	Soft to medium hard gray arenaceous shale; good rock quality;medium to thickly	10		208.4 208.1		5-10-11-14	0.37		qh=4.5+ kg/cm2 qh=4.5+ kg/cm2, w.c.= 10%	3	25	5	5	66	38 16	13	A-6b
	78	1.4	5 0.0)6	pedded. Medium hard,gray arenaceous shale and siltstone/fine grained sandstone;good rock quality,medium to thickly bedded.qu=338.3	/		207.8	2	8-8-9-12	0.37	0.24	qh=3.75 kg/cm2 qh=3.5 kg/cm2 qh=2.5 kg/cm2	4						16	
) 					kg/cm2 Bottom of boring @ 12.0 meters.				3	5-10-9-13	0.37	0.24		5						13	
3								206.0	4	13-11-16	0.34		Light brown and trace red silty clay w/ traces of oxides (CH); moist, very stiff. Slightly laminated structure. qh=2.5 kg/cm2, w.c.=	6	5	9	3	83	55 25	28	A-7-5
								205.2	5				I5% qh=1.5 kg/cm2 Mottled-orange-brown and red silty clay w/ traces of oxides (CL); moist, very stiff.	-							
								204.0	6	20-47-50/ 0.2	0.30	0.06	structure.[Very soft extrememly weathered shale].	7	0		34	64		13	A-7-5
								202.5	7	50/0.4	0.12		qh=3.5 kg/cm2 Red shale/hard silty clay (CL) seam noted								

23 APR 2001 16:16:20 q:\18287\geotech\PR0JECT SOIL PROFILE\GANNETTLOGS.

TH-33-30.981

4

					Date Completed 072199 Sampler:Type Offs <u>et Surface Elev</u>										
V.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ample Solo			Р	hysic	cal Cho	aracti	erist	ics	
							% Agg	. c.s.	% F.S.	γ. Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
.6		15-25-24-27	0.52	0.09	5 cm Topsoilfill-mottled brown/light brown and gray to red silty clay w/ traces of brown sandstone and shale fragments;										
.0	5000000	13-50/0.4	0.21	0.06	slightly moist to moist. qh=4.5+ kg/cm2 qh=4.5+ kg/cm2	2								9	
4 I		5-10-11-14	0.37	0.24	qh=4.5+ kg/cm2, w.c.= 10%	3	25	5	5		66	38	16	13	A-6b
8	2	8-8-9-12	0.37	0.24	qh=3.75 kg/cm2 qh=3.5 kg/cm2	4								16	
2	3	5-10-9-13	0.37	0.24	qh=2.5 kg/cm2	5								13	
C					Liebt burgers and burgers used silter along up/										
5	4	3-11-16	0.34	0.12	Light brown and trace red silty clay w/ traces of oxides (CH); moist, very stiff. Slightly laminated structure.	6	5	9	3		83	55	25	28	A-7-5
+ 2 -	5	0-11-10	0,J4	0.12	qh=2.5 kg/cm2, w.c.= 15% qh=1.5 kg/cm2	-					0.5		20	20	AIJ
					Mottled-orange-brown and red silty clay w/ traces of oxides (CL); moist, very stiff.										
)	6	20-47-50/ 0.2	0.30	0.06	Gray, silty clay (CL); slightly moist, hard. Slightly laminated, slickensided structure. [Very soft extrememly weathered	7	0			34	64			13	A-7-5
					shale]. qh=3.5 kg/cm2										
5	7	50/0.4	0.12	0.00	Red shale/hard silty clay (CL) seam noted	8									
	8				in Sample #8										
9		50/0.3	0.03	0.06		9		-							

					Date Completed <u>072199</u> Sampler:Type Offs <u>et</u> Surface Elev <u>.</u>									
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description				Phy	ysical Ch	haract	erist	ics	
			_			Sample No.	% Agg.	% C.S.	% F.S. Si	% % It Cla <u>r</u>	, L.L.	P.I.	W.C.	ODOT Class.
200.2					Soft to medium hard arenaceous shale.	-								
199.4 199.4	IU II I2 I2 I3 I4 I5 I6 I6	50/0.1	0.03	0.00 [Bottom of boring @ 10.2 meters.	10								

					Date Completed <u>072199</u> Sampler:Type Dffs <u>et</u> Surface Elev <u>.</u>										- Date Borine	g No
501 119														······	_	
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ele.			PI	hysical Ch	aract	erist	ics		Elev. (m.)	Depth (m.)
						Sample No.	% Agg.	% C.S.	7. F.S.	% % Silt Clay	L.L.	P.I.	W.C.	ODOT Class.		
															208.0	
200.2					Soft to medium hard arenaceous shale.										207.4	
99.4	10														206.8	
99 . 4		50/0.1	p. 03	0.00	/Bottom of boring @ 10.2 meters.	10	4								206.5	
	Noncome Second								r.						206.2	2
															205.5	
															205.2	3
	12															
	13														204.0 203.9	4
															203.9	
	14															5
									e.							
															202 . 3 202 . 2	
	15														202.2	6
	16															7
															200.8	
	17															8
									e.						199.4 199.4	
															199.4	

23 APR 2001 16:17:08 q:\18287\geotech\PR0JECT S01L PR0F1LE\GANNETTL0G

072199		1	Date Completed <u>072199</u> Sampler;T <u>;</u>	уре <u>Sp</u>	it Spo	on		Dia			<u> </u>	cm	GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE, OHIO 43081
RB₩-4	Static	on & C)ffs <u>et</u> Surfc	ice Elev <u>.</u>	208.0	m		Wat	ter E	lev.	9 9	99.9 m	FLEMIN
Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	<u>0</u>	5		P	hysic	alChai	racter	istics		E 350 E 350 EXECUT
				Sample Sample	2 % Agg.	7. C.S.	% F.S.	% Silt	% Clay	L.L. P.	I. W.C.	ODOT Class.	GANI SUIT AI5I E WES
3-14-21-13	0.55	0.06	Fill-mottled brown/light brown and beige silty clay w/ sand and gravel/rock fragments.qh=2.75 kg/cm2		34	13	12	20	21		9	A-6a	
II-19-50/ 0.3	0.27	0.12	qh=4.25 kg/cm2	2			-				9		
9-50/0.3	0.21	0.03		3							8	_	.ATED KED
			Olive, extremely weathered soft shale.										CHECKED
50/0.4	0.12	0.00	Red/maroon, extremely weathered soft sh	nale. <u>4</u>							<u> </u>		_
49-50/0.3	0.24	0.00		5							10	_	date 1/20/00
			Olive, soft weathered shale.										REVIEWED
9-26-43	0.30	0.15	Gray, soft to very soft weathered shale	. 6							16	_	DRAWN MDH
50.40.5		0.07											ELLE
50/0.5	0.12	0.03 /	Olive/olive gray soft to medium hard sha	le. 7									SOIL PROF Logs
50/0 . I	0.03	0.00		8									NDATION BORING
50/0.1	p.00	0.03	Bottom of boring © 8.6 meters.	9	4								B

TH-33-30.981

104/105

4

					Date Completed <u>072199</u> Sampler:Type)ffs <u>et</u> Surface Elev										
						Т	T					_			
:V. .)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.		т.,	г.	- -	1.	aracte			00.07
						S S S	% Agg.	7. C.S.	% F.S.	7. 511t	% Clay	L.L.	₽. .	W.C.	ODOT Class.
.0 .4		8-14-21-13	0.55	0.06	Fill-mottled brown/light brown and beige silty clay w/ sand and gravel/rock fragments.qh=2.75 kg/cm2		34	13						9	A-6a
.4		II-19-50/ 0.3	0.27	0.12	qh=4.25 kg/cm2	2								9	
.8		9-50/0.3	0.21	0.03		3								8	
.5					Olive, extremely weathered soft shale.										
5.2	2	50/0.4	0.12	0.00	Red/maroon, extremely weathered soft shale.	4								9	
5.5		49-50/0.3	0.24	0.00		5			1					10	
5.2	3				Olive, soft weathered shale.		1								
1.0	4				Gray, soft to very soft weathered shale.										
.9		9-26-43	0.30	0.15	Gluy, Soll to very Soll weathered shale.	6								16	
	5														
2.3 2.2	6	50/0.5	0.12	0.03	Olive/olive gray soft to medium hard shale.	7	/			-					
	7														
.8		50/0.1	0.03	0.00		8									
	8														
4 4		50/0.1	0.00	0.03	Bottom of boring @ 8.6 meters.	9									

					Date Completed <u>072299</u> Sampler:Type_ Offs <u>et</u> Surface E												-	Starte ng No
Elev. (m.)	Depth (m.)	Std.Pen./ RQD	Rec. (m.)	Loss (m.)	Description		Φ	Γ		F	hysic	al Cha	racte	erist	ics		Elev. (m.)	Depth (m.)
(11.)	\111•7	NUU	(11167	(111.)			Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.	(1).7	(11.7
207.7		10-30-50/ 0.3	0.24	0.15	Fill-mottled light brown and olive silty clay w/ trace to little rock/sandstone and										7	-		
207.1	Perdanan	9-8-9-11	0.52	0.09	shale fragments, sand and wood. qh=2.75 kg/cm2 qh=4.0 kg/cm2	_/	2								13			10
206 . 5 206 . 2		3-4-4-5	0.30	0.30	qh=2.0 kg/cm2		3	7	3	33		56	31	12	21	A-6a		
205.9 205.6	2	3-4-3-9	0.46	0.15	Possible fill-brown w/ orange-brown silt and clay w/ little to some sand and oxides (ML,CL); moist, medium stiff to stiff.qh=		4	2	7	40	26	25	25	5	18	A-40		
205 . 3 205 . 0		4-6-7-11	0.43	0.18	4h=1.5 kg/cm2 4h=2.5 kg/cm2 4h=2.5 kg/cm2		5								19			
	3				Traces of sandstone fragments noted in sample #5. qh=1.0 kg/cm2					-				-				12
204.1	4				Gray sandy clay w/ traces of sandstone fragments (CL); moist to very moist, stiff.									are a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a fair a				13
203.6		7-10-20-25	0.46	0.15	qh=1.25 kg/cm2 Dark gray silty clay w/ silt partings (CL); moist, very stiff to hard; mollusk shells		6								18			
	5				noted in top part of sample.w.c.= 23% in top of sample. qh=3.25 kg/cm2													4
202.3 202.1		50/0.5	0.12	0.03	Olive gray and gray silty clay (CL); moist, hard [Extremely weathered shale].		7								1 0			
																		15
	7																	16
200.6 200.6 200.4	: 	50/0 . 2 66	0.06 0.15	0.00	Light gray to white, moderately hard to hard sandstone (calcareous) w/ seams of		8 9											
	8	70	1.46	0.06	gray, soft to medium, arenaceous shale.		10											17

23 APR 2001 16:17:47 q:\18287\geotech\PR0JECT SOIL PR0FILE\GANNETTL0GS.

072199 RBW-5	Static	on &	Date Completed Offs <u>et</u>	072299	Sampler:Type Surface Elev	Split /	Spoor 207.7 n	ר ח	Dic Wa	ter E	lev	5 (CM	GANNETT FLEMING SUITE 350 4151 EXECUTIVE PARKWAY WESTERVILLE CULIO 43081
Std. Pen./ RQD	Rec. (m.)	Loss (m.)		Description		Sample No.				-	racter	istics		NNETT TE 35C TE 35C
			Bottom of borir	a a 8.8 mata	rc	N LDZ	X Agg. (% C.S. F.	% % .S. 5ilt	7. Clay	L.L. P.	I. W.C.	ODOT Class.	GAN GAN 415U
														CALCULATED
														DATE 1/20/00
														REVIEWED
														drawn MDH
														ш
														PROFI
														L0G
														1 (5
														FOUNDATION BORING
														B ND A

АТН-33-30,981

105/105

1998 Job. No. PTD 18287 #17777 County ATHERS Year Changes Project ATH-33-30.981 File No. DRS Identification	
CONSULTANT PROJECT	
Begin Sta. <u>29+013</u> End Sta. <u>39+600</u> Name of Consultant <u>Gamett Fleming</u> Name of Drilling Contractor <u>Resource International</u> Contents of File <u>Geotech Reports</u> <u>Suil Profile Sheets and Structural Fda. Sheets</u> <u>Review Comments</u>	
Date of Report No. of Tracings	
Date Received Filed with Year	-
Remarks Metric	_

FOUNDATION INVESTIGATION REPORT

T.R. 64 BRIDGE OVERPASS AT U.S. 33

for:

Ohio Department of Transportation, District 10

338 Muskingum Drive

Marietta, Ohio 45750-0658

GF Project No: 36151.250

January 2000

GANNETT FLEMING ENGINEERS AND ARCHITECTS, P.C. Blendonview Office Park 5015 Pine Creek Drive Columbus, Ohio 43081

Office: (614) 794-9424 Fax: (614) 794-9442 www.gannettfleming.com

January 19, 2000

Mr. George Collins, District Deputy Director Ohio Department of Transportation, District 10 338 Mukingum Drive Marietta, Ohio 45750-0658

Attn: Mr. Doug Briggs

Re: Foundation Investigation ATH-33-30.981 T.R. 64 Overpass at U.S. 33 Athens, Ohio G.F. No. 36151.250

Dear Mr. Briggs:

Here is a summary of our subsurface investigation for the aforementioned project. Based upon the present site plans, soil borings and an analysis of the encountered subsurface conditions, the following conclusions and recommendations have been developed.

• A deep foundation system consisting of driven piles can be installed in the embankment at the west abutment location. This should facilitate an "integral abutment" configuration. In order to establish the shortest bridge span, the embankment should be constructed utilizing imported granular fill to accommodate 2:1 grades. Based upon Boring TR-64-1, it appears as if the piles tips will bear on shale bedrock at about Elevation 278.9. During construction, a terminal driving resistance criteria should be established to determine axial load development and at which point the pile can be cut off. Given an HP 360 x 1.707 steel section and utilizing a steam hammer delivering 35,230 joules to the pile, a terminal driving resistance of 25 blows per 30 centimeters has been estimated for an allowable axial load of 400 kN.

• The western bridge pier can be designed to bear on a deep foundation system consisting of cast-in-place H-Pile elements. These elements should be placed in pre-drilled narrow diameter (500 mm) caissons excavated through the hard

Solen

residual soil to expose the sandstone Based upon the soil boring drilled at this location, it appears as if the caisson excavations will extend to about Elevation 281. An allowable axial load of 450 kN is permissible for an appropriately constructed pile at this pier location. This was determined utilizing the soil parameters outlined in the following table.

Reco	mmended PileDesign Paramete	:rs	
Depth/Stratum	Recommended Skin Friction	Recommended Point Bearing	
(meters)	(kPa)	(kPa)	ļ
0.0 to 0.8	-	-	
Frost Depth/Fill			
0.8 to 1.5			
Light orange-brown and trace gray	15.0	- '	
sandy silt with some clay			
1.5 to 4.0			1
Light olive-brown and orange-	20.0	1	
brown silty clay	1 1		
4.0 to 5.5			
Light olive-brown to beige silty	25.0	- '	
clay [very weathered shale]	1 1		
5.5	-		
Light gray medium to moderately	- 1	3100.0	30
hard sandstone	1		

• The central and eastern bridge piers are presently located in areas where the mainline U.S. 33 roadway cuts are to be 2 to 5 meters deep. Based upon Borings TR-64-3 and TR-64-4, the final roadway subgrade elevations will be at the level where sandstone was encountered and cored. This material is suitable for the support of shallow spread foundations. It is recommended that these foundations be proportioned with a maximum gross allowable bearing pressure of 3100 kPa. It should be noted however, that the construction of these particular foundation elements will involve excavation through massive, moderately hard sandstone bedrock.

• The present plans indicate that the top of the east abutment will be located in a very slight (about 0.3 meters) cut below the existing T.R. 64 profile, near a cut/fill transition. At that location the naturally occurring soil is a red silty clay residual material derived from the Red Bed deposits prevalent across the region. Because these residual soils exhibit lower shear strengths and are notorious for slope stability problems, the design cut slope ratio in the overburden soil is 4:1. Presently, it is assumed that these slopes will be maintained in the immediate location of the proposed bridge, unless the natural materials are improved or replaced with compacted, engineered fill comprised of granular soil. When imported granular engineered fill soils are utilized in the immediate vicinity of the abutment location, the side slopes may be placed at 2:1 grades. Driven pile foundation elements bearing on the moderately hard sandstone bedrock are recommended for this location. As is the case with the west abutment

construction, a terminal driving resistance criteria should be established for construction purposes to determine axial load development and at which point the pile can be cut off. Given an HP 360 x 1.707 steel section and utilizing a steam hammer delivering 35,230 joules to the pile, a terminal driving resistance of 33 blows per 30 centimeters has been estimated for an allowable axial load of 500 kN. Based upon the subsurface information noted in Boring TR-64-5, it is estimated that a driven pile will extend to about Elevation 288.4.

• The abutments will have to act as relatively short retaining walls of approximately 1.0 to 1.5 meters in height, depending upon the depth of the bridge superstructure. If it is desired to minimize the span lengths, the east abutment may be placed in a location where the wall may effectively approach 3 to 3.5 meters in height. As a result, here will be lateral earth pressures generated against these abutments from the backfill supporting the approach slabs and road traffic. An active lateral pressure coefficient (K_a) of 0.33 should be utilized in conjunction with an estimated granular soil unit weight of 20.43 kN/m³ (kilonewtons per cubic meter). If cohesive soil backfill is paced at the abutments, the K_a coefficient should be increased to 0.54. To help avert the build up of additional forces resulting from hydrostatic pressures, properly installed footing drains, backfilled with a free draining, open graded granular material, and/or weep holes should be incorporated into the abutment design. In addition, surface water infiltration should also be inhibited by compacting a layer of cohesive material (approximately 15 to 30 centimeters thick) above the granular backfill and by daylighting drains for the bridge superstructure away from the top of the abutment area.

The aforementioned recommendations are based upon proper construction and construction inspection to verify the subsurface conditions and assure the design is carried out in an appropriate manner. If there any questions concerning the content of this report, please contact this office.

Very truly yours,

GANNETT FLEMING ENGINEERS AND ARCHITECTS, P.C.

John R. Kenny, P.E. Vice President Manager, Ohio Office

Malcolm D. Hargraves, P.E. Geotechnical Engineer

FOUNDATION INVESTIGATION REPORT T.R. 64 BRIDGE OVERPASS at U.S. 33

Table of Contents

1.0 INTRODUCTION AND SCOPE	.1
1.1 INTRODUCTION	
1.2 Scope	. 1
2.0 PROJECT CHARACTERISTCS	.1
3. 0 GEOLOGY AND GENERALIZED SUBSURFACE CONDITIONS	.2
3.1 Geology	2
3.2 Subsurface Profile	2
3.3 GROUNDWATER CONDITIONS	3
4.0 FOUNDATION RECOMMENDATIONS	4
4.1 Bridge Substructures	
4.1.1 West Abutment – Shallow Spread Foundation	
4.1.2 West Abutment – Driven Piles (Integral Abutment)	
4.1.3 Western Bridge Pier	5
4.1.4 Central and Eastern Bridge Piers	6
4.1.5 East Abutment (Integral Abutment)	6
4.2 LATERAL LOADS	.7
5.0 EARTHWORK RECOMMENDATIONS	
5.1 SITE PREPARATION	8
5.2 Excavation	9
5.3 Embankment Fills	10
APPENDIX A	.I
Boring Location Plan	1
Soil Boring Logs	
Soil Profile	.1
APPENDIX B	II
Laboratory Test Data	II
APPENDIX CI	II
Foundation Summary Table	П

FOUNDATION INVESTIGATION REPORT T.R. 64 BRIDGE OVERPASS at U.S. 33

1.0 INTRODUCTION AND SCOPE

1.1 Introduction

This structure foundation report presents the findings of the geotechnical investigation performed to characterize the subsurface conditions at the proposed site for the Township Route (T.R.) 64 overpass bridge at the new U.S. 33 highway, east of the T.R. 65 - T.R. 64 intersection in Alexander Township (Athens County), Ohio. This bridge overpass is part of the larger U.S. 33 Athens-Darwin project involving a new "Super-Two" highway corridor through southern Athens county and Meigs county in southeast Ohio. The purpose of this investigation was to determine the nature of the subsurface materials at the site, to assess their structural support capability, and to make recommendations relative to the design and construction of the structural foundations and earthwork for the project.

<u>1.2 Scope</u>

The scope of this investigation included a review of available geologic and soils data for the project area, a subsurface investigation consisting of five (5) soil test borings and associated rock coring, and an engineering analysis and evaluation of the subsurface conditions encountered at the site.

2.0 PROJECT CHARACTERISTCS

The proposed project is planned for the portion of T.R. 64, presently a two-lane, "tar-and-chip" paved roadway crossing the proposed U.S. 33 corridor just east of the T.R. 64 - T.R. 65 intersection in eastern Alexander Township. Current site plans and topographic information indicate that the existing alignment in the project area changes about 15 meters in elevation at a grade of approximately 14 percent. At the T.R. 64 -T.R. 65 intersection, the roadway is at approximately Elevation 289. The roadway dips as it approaches the proposed U.S. 33 main line corridor to a low point of about Elevation 285, then rises to about Elevation 302 at a point just east of the U.S. 33 corridor. It is suspected that the low point of the present T.R. 64 alignment could be located in an old drainage feature. Most of the natural slopes in the area are fairly mild, in the range of 5 horizontal to 1 vertical (5:1) or flatter. It is very likely that these mild slopes are due to the presence of the relatively low shear strength residual soils prevalent in the project area.

The proposed construction will involve erecting a bridge structure to carry T.R. 64 traffic over the new U.S. 33 and straightening the approach alignment of T.R. 64 in the vicinity of the new overpass structure. Presently the proposed bridge structure, as

1

depicted on the site plans, is a four-span structure about 80 to 85 meters in length, supporting travel lanes about 7.0 to 8.0 meters above the proposed U.S. 33 finished grades. The proposed roadway profile indicates that the western approach slab and bridge abutment will be supported on an embankment about 9.0 meters in height, while the eastern abutment and approach slab will be placed where the present ground surface will be subjected to a slight cut. The cut-fill scenario at the bridge location is due to the fact that the U.S. 33 mainline will require a relatively shallow fill of approximately 1.0 meter along the south-bound lanes and about a 5.0 meter cut on the north-bound lanes to establish the design grades.

3.0 GEOLOGY and GENERALIZED SUBSURFACE CONDITIONS

3.1 Geology

The project lies in a region predominated by residual soils formed from Pennsylvanian aged sedimentary bedrock of the Marietta Plateau. Sandstone, siltstone, shale, clay shale/mudstone, along with occasional, deeper, thinly bedded coal seams of the Conemaugh and Monongahela formations dominate the bedrock profile along the proposed roadway corridor. In the immediate vicinity of the proposed bridge, there appears to be a mild expression of a very old, presently inactive drainage feature traversing the project site from northeast to southwest.

<u>3.2 Subsurface Profile</u>

Five (5) test borings were drilled for this investigation. The subsurface soil profile and groundwater conditions exposed in these borings are described in detail on the boring logs located in the appendix to this report. These boring logs indicate conditions at the particular locations and times the test bores were drilled. Some conditions, particularly groundwater levels, could change with time and periods of precipitation.

The soil borings encountered subsurface conditions along the proposed bridge alignment that varied from fill comprised of generally cohesive soils to residual soil materials. The residual materials were either silty clays derived from Red Bed (clayshale, mudstone) deposits, very silty clay and silts derived from arenaceous shale and siltstone bedrock or silty sand derived from fine grained sandstone bedrock.

Borings TR-64-1 and TR-64-2, drilled near the base of the present slope, encountered fill and probable fill material to depths ranging from 0.6 meters to 2.1 meters below the present surface. The fill consisted of mottled brown/light brown to orangebrown silty clay to silt and sand with traces of oxide stains and gravel. Standard Penetration (N) values in this fill and probable fill varied widely from 5 to 34 blows per 30 centimeters (bpf), with the higher N-values occurring within about 1.0 meter of the surface. Below the fill soil, very moist, brownish gray silty clay with traces of wood and other organic material was encountered at Boring TR-64-1 and disclosed to a depth of about 3.7 meters. An N-value of 5 bpf was recorded in this soil, indicative of a soft subsurface condition. This material was not observed below the fill in Boring TR-64-2, where medium dense (18 bpf), light orange-brown with trace gray sandy silt encountered and sampled to a depth of approximately 1.5 meters below the surface.

Very stiff to hard (24 to greater than 60 bpf), light olive brown and orange brown to orange-brown and trace gray silty clay to clayey silt became evident below about 1.5 to 4.0 meters deep in borings TR-64-1 and TR-64-2. These materials generally signified the top of the residual soil profile, and transitioned into the weathered arenaceous shale and siltstone bedrock, which became prominent below about 4.0 to 6.7 meters deep. Auger refusal occurred between 5.8 and 8.2 meters deep and a 1.8 meter rock core was obtained at boring TR-64-2. Light gray, medium, fine to medium grained sandstone was recovered from the coring activities and a Rock Quality Designation (RQD) of 53 percent, indicative of a fair rock quality, was measured in the sample.

The remaining borings, TR-64-3, TR-64-4, and TR-64-5, were drilled at successively higher points of elevation along the present roadway. Residual soil thicknesses in these borings ranged from about 0.3 meters at TR-64-3 to approximately 5.5 meters in TR-64-5, and were comprised of dissimilar materials. At Boring TR-64-3, the residual soil consisted of light brown silty sand with sandstone fragments. An Nvalue of greater than 50 bpf was recorded in this material, indicative of a very dense material. In Boring TR-64-4, medium stiff to stiff (10 bpf), light orange-brown with light gray silty clay was evident to about 1.2 meters deep. A transition to hard (greater than 50 bpf). light olive brown to olive silty clay was noted below the surficial soil and disclosed to the point of auger refusal. Boring TR-64-5 encountered residual soils derived from the Red Bed deposits consisting of red with trace orange-brown and trace gray silty clay to a depth of approximately 3.7 meters below the surface. The upper 0.8 meters of this material was in a soft (5 bpf) condition, while the remainder of this material exhibited a stiff to very stiff (14 to 29 bpf) consistency. These Red Bed residual soils were underlain by hard (greater than 50 bpf), light olive brown to beige silty clay.

Medium to moderately hard, light brown to beige, fine to medium grained sandstone with occasional striations was recovered in the rock core operations. RQD measurements of the core specimens ranged from 54 to 98 percent, denoting fair to excellent rock quality in the thickly to massively bedded sandstone formation.

3.3 Groundwater Conditions

Observations concerning groundwater were made during the drilling operations. Groundwater was noted in Boring TR-64-1 at 5.8 meters on the sampling tools as the boring was advanced and at 2.9 meters below the surface the next morning.

The observed groundwater level depends on normal variations in precipitation and surface runoff amounts. Fluctuations in groundwater can only be determined through observations made in bailed, cased holes, the construction of which was beyond the scope of this investigation.

4.0 FOUNDATION RECOMMENDATIONS

The following conclusions and recommendations have been developed based upon an analysis of the subsurface conditions encountered in this investigation and the present design details provided by ODOT. If there are changes to the current plans, the conclusions and recommendations outlined in this report should be reviewed by a representative of Gannett Fleming to determine if they need to be modified or if additional work is necessary.

4.1 Bridge Substructures

The soil borings and proposed grading plans indicate that the foundation structures will likely bear on three different materials, ranging from engineered fill to sandstone bedrock, based upon the particular substructure location and chosen method of construction. For this reason, the discussion of the foundation recommendations will be separated with respect to the subsurface conditions that particular substructure elements may have in common.

4.1.1 West Abutment – Shallow Spread Foundation

Present site plans and profiles for the T.R. 64 overpass show that the west approach to the bridge will require the construction of an embankment of up to 9.0 meters in height above the present T.R. 64 grade. It is presently planned to build this embankment out of the native materials available on the project site, a substantial portion of which are of somewhat marginal quality, necessitating the use of 3:1 slopes. In the event that imported, granular fill will be utilized for embankment construction, the fill slopes may be constructed with 2:1 finished grades. The embankment will be about 7.0 meters high at the proposed location of the abutment itself. As a result, the subsurface conditions must be evaluated for their suitability for earth structure and bridge substructure support.

Boring TR-64-1, drilled near the bottom of what appears to be a very old drainage feature, encountered approximately 2.1 meters of cohesive fill material comprised of silty clay, silt and sand. Although this fill was probably placed for the construction of the present T.R. 64, Gannett Fleming has not been presented with any compaction test records. For this reason, it is assumed that the fill was uncontrolled and is unsuitable for embankment and substructure support. This is because it is very likely that miscellaneous, uncontrolled fill has uncompacted or undercompacted lifts that can settle excessively and unpredictably.

Below this fill, very moist, soft, brownish gray silty clay with traces of wood and other organic material was observed and noted to about 4 meters below the surface. It is likely that this soft brownish gray, slightly organic soil is alluvium from the aforementioned drainage feature. Moisture contents in this material and deeper portions of the fill above it were on the order of 26 to 29 percent and a liquid limit (LL) of 28 percent was measured in material taken near this stratum. This scenario is usually an indication of a higher than desired stratum compressibility. As a consequence, this material is not deemed suitable for embankment and substructure support.

Suitable bearing material comprised of very stiff, orange-brown and trace gray silty clay was observed below about 4 meters deep. It is recommended that the existing fill and soft alluvium be undercut to expose this material before placing the new embankment fill. This will help minimize the likelihood of differential long-term settlement over the lifetime of the new embankment structure and help avoid unanticipated stresses in the proposed bridge due to added deflections at the abutment.

Once the properly constructed embankment fill is completed, the abutment may be constructed with either a shallow spread foundation or as a pile supported integral abutment. If a shallow spread foundation is the chosen option, the footing may be proportioned utilizing a bearing pressure of 96 kilopascals (kPa), assuming the footing is placed at the crest of the slope, allowing for frost depth (0.8 m). Recommended practice is to set the footing back from the edge of the slope at least 1.5 to 2.0 meters. If the footing is moved about 4.5 to 5.0 meters from the edge of the slope (roughly twice the width of the footing, assuming a width of about 2.5 meters) so that the slope effects are minimized, the allowable bearing pressure may be increased to 190 kPa. Moving the abutment away from the slope would increase the span lengths while the lower bearing pressures would increase the abutment footprint. Settlements associated with this option should be less than about 20 millimeters.

4.1.2 West Abutment – Driven Piles (Integral Abutment)

As an alternative to the shallow foundation, driven piles can be installed in the embankment. Utilizing this foundation type will help minimize the effect of the slope by transferring the structural loads to a deeper elevation. In addition, this facilitates shorter span lengths because the amount of set back necessary at the embankment crest can be reduced. Based upon Boring TR-64-1, it appears as if the piles tips will bear on shale bedrock at about Elevation 278.9. During construction, a terminal driving resistance criteria should be established to determine axial load development and at which point the pile can be cut off. Given an HP 360 x 1.707 steel section and utilizing a steam hammer delivering 35,230 joules to the pile, a terminal driving resistance of 25 blows per 30 centimeters has been estimated for an allowable axial load of 400 kN. This was determined utilizing the Engineering News pile driving formula.

4.1.3 Western Bridge Pier

١

Boring TR-64-2 encountered probable fill material similar to that noted in Boring TR-64-1 to a depth of about 0.6 meters below the surface, underlain by medium dense sandy silt to approximately 1.5 meters deep. Below the sandy silt material, a hard, light olive-brown and orange-brown silty clay was observed and sampled. This material exhibited a laminated structure characteristic of residual soils derived from fine grained sedimentary deposits. Sandstone bedrock was sampled at about 5.5 meters below the present surface grades. It is recommended that this material be utilized for structural

support. A deep foundation system consisting of H-Pile elements may be used at this location to carry the structural loads. These elements should be placed in pre-drilled narrow diameter (500 mm) caissons excavated through the hard residual soil to expose the sandstone. Based upon the soil boring drilled at this location, it appears as if the caisson excavations will extend to about Elevation 281. An allowable axial load of 450 kN is permissible for an appropriately constructed pile at this pier location. This was determined utilizing the soil parameters outlined in the following table.

Recommen	ded PileDesign Paramo	eters
Depth/Stratum	Recommended Skin	Recommended Point
(meters)	Friction (kPa)	Bearing (kPa)
0.0 to 0.8	-	-
Frost Depth/Fill		
0.8 to 1.5		
Light orange-brown and trace	15.0	-
gray sandy silt with some clay		
1.5 to 4.0		
Light olive-brown and orange-	20.0	
brown silty clay		
4.0 to 5.5		
Light olive-brown to beige silty	25.0	-
clay [very weathered shale]		
5.5		
Light gray medium to	-	3100.0
moderately hard sandstone		

4.1.4 Central and Eastern Bridge Piers

The central and eastern bridge piers are presently located in areas where the mainline U.S. 33 roadway cuts are to be 2 to 5 meters deep. Based upon Borings TR-64-3 and TR-64-4, the final roadway subgrade elevations will be at the level where sandstone was encountered and cored. This material is suitable for the support of shallow spread foundations. It is recommended that these foundations be proportioned with a maximum gross allowable bearing pressure of 3100 kPa. It should be noted however, that the construction of these particular foundation elements will involve excavation through massive, moderately hard sandstone bedrock.

4.1.5 East Abutment (Integral Abutment)

The present plans indicate that the top of the east abutment will be located in a very slight (about 0.3 meters) cut below the existing T.R. 64 profile, near a cut/fill transition. This places the proposed bridge abutment about 6 to 7 meters above the U.S. 33 north bound lanes. At that point, the new T.R. 64 roadway subgrade will require approximately 1.5 meters of fill to achieve the planned profile elevation. Boring TR-64-5

encountered about 3.7 meters of red with trace orange-brown, to red with trace gray silty clay below the existing pavement and subgrade fill. Hard, light olive-brown to beige silty clay was encountered below the red silty clay soil to a depth of about 5.5 meters, at which point medium to moderately hard sandstone bedrock was observed.

The red silty clay soil is the residual material derived from the Red Bed deposits prevalent across the region. Because these residual soils exhibit lower shear strengths and are notorious for slope stability problems, the design cut slope ratio in the overburden soil is 4:1. Presently, it is assumed that these slopes will be maintained in the immediate location of the proposed bridge, unless the natural materials are improved or replaced with compacted, engineered fill comprised of granular soil. When granular engineered fill soils are utilized in the immediate vicinity of the abutment location, the side slopes may be placed at 2:1 grades, which should shorten the bridge span. If the abutment is to remain in the location as currently shown on the plans, it will be constructed on the face of the cut slope and will have to retain about 2.5 to 3 meters of soil and backfill required to achieve the T.R. 64 grades. If it is desired to place the abutment at the crest of the cut slope, the bridge span will have to be lengthened.

Driven pile foundation elements bearing on the moderately hard sandstone bedrock are recommended for this location, particularly if the abutment is to remain in its presently proposed location. As is the case with the west abutment construction, a terminal driving resistance criteria should be established for construction purposes to determine axial load development and at which point the pile can be cut off. Given an HP 360×1.707 steel section and utilizing a steam hammer delivering 35,230 joules to the pile, a terminal driving resistance of 33 blows per 30 centimeters has been estimated for an allowable axial load of 500 kN. Based upon the subsurface information noted in Boring TR-64-5, it is estimated that a driven pile will extend to about Elevation 288.4

4.2 Lateral Loads

The abutments will have to act as relatively short retaining walls of approximately 1.0 to 1.5 meters in height, depending upon the depth of the bridge superstructure. This assumes that the abutments are placed at the crest of the slopes. If it is desired to minimize the span lengths, the east abutment may be placed in a location where the wall will effectively be about 3 to 3.5 meters in height. As a result, there will be lateral earth pressures generated against these abutments from the backfill supporting the approach slabs and road traffic.

When designing for the lateral earth pressure loads, the engineer may assume that the top of the proposed abutment can translate sufficiently to allow "active" pressure development, particularly if integral abutments that must accommodate temperature movements are utilized. An active lateral pressure coefficient (K_a) of 0.33 should be utilized in conjunction with an estimated granular soil unit weight of 20.43 kN/m³ (kilonewtons per cubic meter). If cohesive soil backfill is paced at the abutments, the K_a coefficient should be increased to 0.54. To help avert the build up of additional forces resulting from hydrostatic pressures, properly installed footing drains, backfilled with a free draining, open graded granular material, and/or weep holes should be incorporated into the abutment design. In addition, surface water infiltration should also be inhibited by compacting a layer of cohesive material (approximately 15 to 30 centimeters thick) above the granular backfill and by daylighting drains for the bridge superstructure away from the top of the abutment area.

4.3 General Foundation Comments

All structural footings should be placed at a minimum depth of 1.2 meters or greater below the finished grades for frost protection and to satisfy ODOT requirements. If any soft, wet, organic or loose soil, or any old fill is encountered, the excavations should be extended downward so that the footings rest on competent soils.

All foundation bearing surfaces should be protected against freezing, the surface water and undue disturbance as the bearing soils will tend to soften or loosen and increase settlements in such cases. If at all possible, the footing concrete should be placed the same day that the excavation takes place. If this is not feasible, proper protection of the footing excavations should be provided. All footing excavations should be inspected to assure that adequate bearing is achieved before placing concrete for the foundations.

The cast-in-place pile excavations should be inspected to confirm the assumed subsurface conditions before placing concrete for the piles. The concrete for the piles should be placed immediately after the drilling and inspection takes place. Inspection of the piles should include recording the top and bottom elevations and a visual examination for plumbness, alignment and diameter.

Although it is not believed that the groundwater table will pose a problem, it is recommended that steel casing be available if groundwater seeps become evident. This will also help retain any of the material that may loosen during pier excavation. It is recommended that the concrete for the piers have a design slump of at least 15 centimeters in order to avoid arching of the concrete upon withdrawal of the temporary casing (if utilized). Furthermore, a positive head of concrete should be maintained above any groundwater (if encountered) during the withdrawal of the casing. These measures will preclude contamination of the pile concrete by groundwater and soil and safeguard the integrity of the cast-in-place piles.

5.0 EARTHWORK RECOMMENDATIONS

5.1 Site Preparation

All vegetation, topsoil, and other organic material or miscellaneous fill and debris should be removed from the construction areas prior to building or placing any fill on the site. After the completion of stripping operations, the exposed subgrade areas should be proofrolled with suitable heavy equipment, preferably a 180 to 270 kN loaded dump truck. Any soft yielding areas delineated by the proofrolling should be further undercut to firm soil. In the area where the west approach embankment is to be constructed, the stripping activities will involve an undercut of existing fill and soft alluvium to a depth of about 4.0 meters to expose firm material upon which the new embankment fill is to be placed. This is necessary in order to minimize the possible settlements associated with the existing, potentially compressible materials and utilize the embankment as a structural support element for sustained abutment loads.

5.2 Excavation

Based upon the boring logs and the proposed grading plans, excavation for the west abutment (necessary undercutting), the west pier, and the east abutment should not be very difficult. The main issues at these locations will most likely be the need for temporary excavation bracing where the undercutting is deep or sufficient room to lay back the excavations is unavailable.

Difficulties can be expected in the areas of the central and eastern bridge piers, where fairly massive, moderately hard sandstone will have to be excavated to establish the U.S. 33 north bound lanes and the bearing elevations for the pier foundations. This sandstone appeared to be 1 to 2.5 meters in thickness above the bearing elevation in the pier foundation locations. The use of low power explosives may be necessary to attain the rough main line subgrade elevations and pneumatic tools, such as jack hammers, may be needed to excavate the bedrock in the structural foundations.

All temporary excavations for the installation of foundations, utilities, etc., should be properly laid back or braced in accordance with Occupational Safety and Health Administration (OSHA) requirements. In addition, existing underground utilities should be protected or rerouted as necessary in the proposed construction areas.

It is believed that the groundwater table at this site exists at a depth that should not present construction difficulties for a project of this type, particularly if construction is carried out during the dryer seasons of the year. Most of the water that may be encountered in shallow excavations at this site should be adequately controlled by conventional methods, such as positive gravity and/or pumping from sumps.

5.3 Embankment Fills

The embankment fill for the west abutment approach is to be placed at a 3:1 slope if it is to be constructed from the native soils of the area. A 2:1 slope is permissible if imported granular fill is used for the embankment construction. Material undercut from the existing roadway subgrade may be reused if it is sufficiently dried and free of deleterious materials (organics). Regardless of what material is utilized for embankment construction, any presently existing fill and soft alluvial soils must be undercut to expose suitable bearing material as outlined in Section 4.1.1 of this report before the embankment is constructed. It is recommended that the fill embankments be constructed in conjunction with the guidelines established in the Ohio Department of Transportation Construction and Material Specifications for embankment construction.

All fill should be placed in lifts of uniform thickness. For proper and timely construction of the fill, the soils should be placed at or near (within approximately 2 to 3 percent) the optimum moisture content as determined by the specified laboratory tests. Suitable equipment for either aerating or adding water should be available as the soil moisture and weather conditions dictate.

When placing soil backfill material immediately adjacent to any retaining walls, the compaction effort should be limited to that which is required to achieve 95 percent of the maximum Standard Proctor dry density. This measure should reduce the likelihood of excessive lateral earth pressures resulting from construction activities.

APPENDIX A Boring Location Plan Soil Boring Logs Soil Profile

I

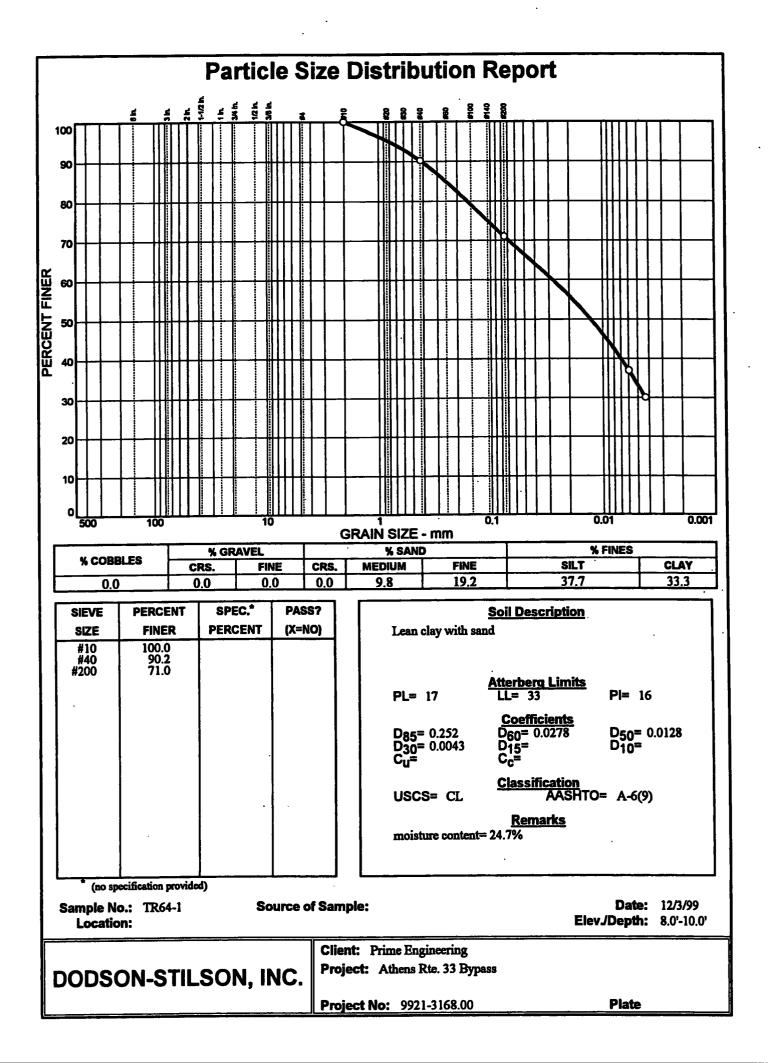
Date S	tarted	071699			Date Completed071699 Sampler: Type	Spli	t Spo	oon		Dia	•			5 CM	
oring	No	TR 64-1	Statior	n & Off	fset Surface Elev.	2	286.1	m		Wat	ter El	ev.		280).2 m
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.				•	vsical				
			1			San	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
86.1		4-5-7-7	0.30	0.30	9 cm Topsoilfill-mottled brown/light brown to beige silty clay w/ traces of oxides and sand; moist. gh=	1								16	
85.4	1	6-9-11-14	0.40	0.21	$4.5 \pm kg/cm^2$	2								17	
34.8 34.5	·	3-3-3-3	0.40	0.21	Fill: orange-brown silt and sand w/ traces \of oxides; moist. gh=1.5 kg/cm2, w.c.= 17%	3	0	1	10	56	33	28	7	26	A-4b
34.2 33.9		2-2-3-2	0.40	0.21		4	3	4	13	45	35			29	A-4a
33.6		shelby tube	0.61		Brownish gray silty clay w/ traces of wood and organic material (CL, OL); very moist, soft.	5									
82.1 81.9					Orange-brown and trace gray silty clay w/	<u> </u>									
		7-10-14	0.46		traces of fine sand (CL); moist, very stiff.	6								16	
31.2					qh=4.5 kg/cm2 Light brown w/ trace gray very silty clay/ clayey silt w/ weathered siltstone/	1									
10.4	6		0.43		sandstone fragments (CL,ML); moist to very moist, hard. gh=2.75 kg/cm2	7								16	
		0.4													
9.3	7				Soft, gray to olive gray silty clay (CL) and shale.	1									
5.2		21-50/0.4	0.24	0.03	qh=4.5+ kg/cm2	8								12	
7.8	.8														
7.8		50/0.1	0.00	0.03	Bottom of boring @ 8.3 meters.	_ 9	Į –								

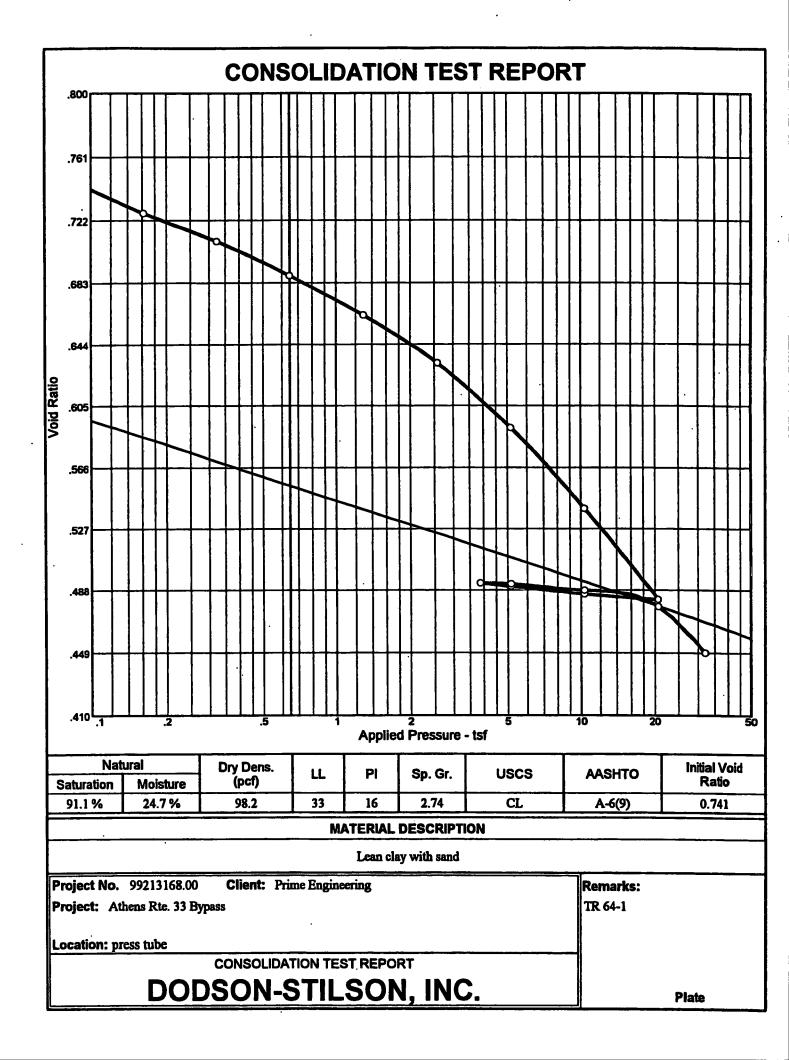
Elev. D		TR 64-2	Station	n & Off	Date Completed071599Sampler: Type setSurface Elev	2	287.1	<u>m</u>		Wa	ter E	lev.			
	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ple .			·····	Phy	ysical	Chara	cteris	tics	
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
87.1		6-17-17-20	0.15	0.46	Probable fill-mottled brown and orange brown silty clay w/ little to some sand, traces of oxides and gravel; slightly	1								12	
86.5	1	12-11-7-7	0.37	0.24	<pre>\moist. qh=4.5+ kg/cm2 / Light orange brown w/ trace gray sandy silt</pre>	2	9	7	36	20	27			13	A-4a
85.9 85.6		5-5-21-31	0.37	0.24	(ML); slightly moist to moist medium dense. _qh=1.5 kg/cm2 Light olive brown and orange brown silty	3	8	4	33	38	17			11	A-4a
	2	7-30-40-38	0.37	0.24	clay (CL): slightly moist, hard: laminated	4	17	7	6	41	29			11	А-ба
84.7	3	14-28-40-36	0.61		qh=4.5+ kg/cm2	5								13	
83.1 83.0	4	17-39-50/	0.34	0.06	Olive to gray silty clay (CL); slightly moist, hard; [Extremely weathered shale].	6								15	
	5	0.3	0.34	0.00	gh=4.5+ kg/cm2										
81.6	_				Light group modium band sandstone										
81.5 81.3	6	50/0.3	0.09		(fragments $)$.	7_					-				
		53	1.68	0.15	hard sandstone; fair rock quality, thickly bedded. qu=518.0 kg/ cm2	8.									
. 「	7								•						
	8				Bottom of boring @ 7.6 meters.	·									
81.5 81.3	.7				Light gray to gray, medium to moderately hard sandstone; fair rock quality, thickly bedded. qu=518.0 kg/ cm2										

Date St	tarted	071599			Date Completed071599	Sampler: Type	Spli	t Spo	oon		Dia.	·			<u>5 cm</u>	<u>1</u>
				n & Off	iset	Surface Elev.	2	288.7	<u>m</u>		Wat					
				_	·											
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description		Sample No.				-		Charac			
							Sai	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
288.7 288.4					5 cm Pavement											0
		4-12-50/0.3	0.30	0.09	Light brown silty sand w/ fragments (SM); slightly m dense; [weathered fine gra	noist to moist,	1	0	0	0	0	0	0	0	0	
287.8	1	75/0.4	0.09	0.03	Sandstone fragments below		2	0	0	0	0	0	0	0	0	0
287.2			 													
	_2				Light brown fine to medium to moderately hard sandsto rock quality, thick to mas	one; fair to good										
					qu=86.0 kg/cm2											
	3	75	2.59	0.46	-	· .	3									
	4															
284.1					Bottom of boring @ 4.6 met	cers.										
	5															
					- -											
	6															
	7															
	8								r .							
]	•														
								<u> </u>								

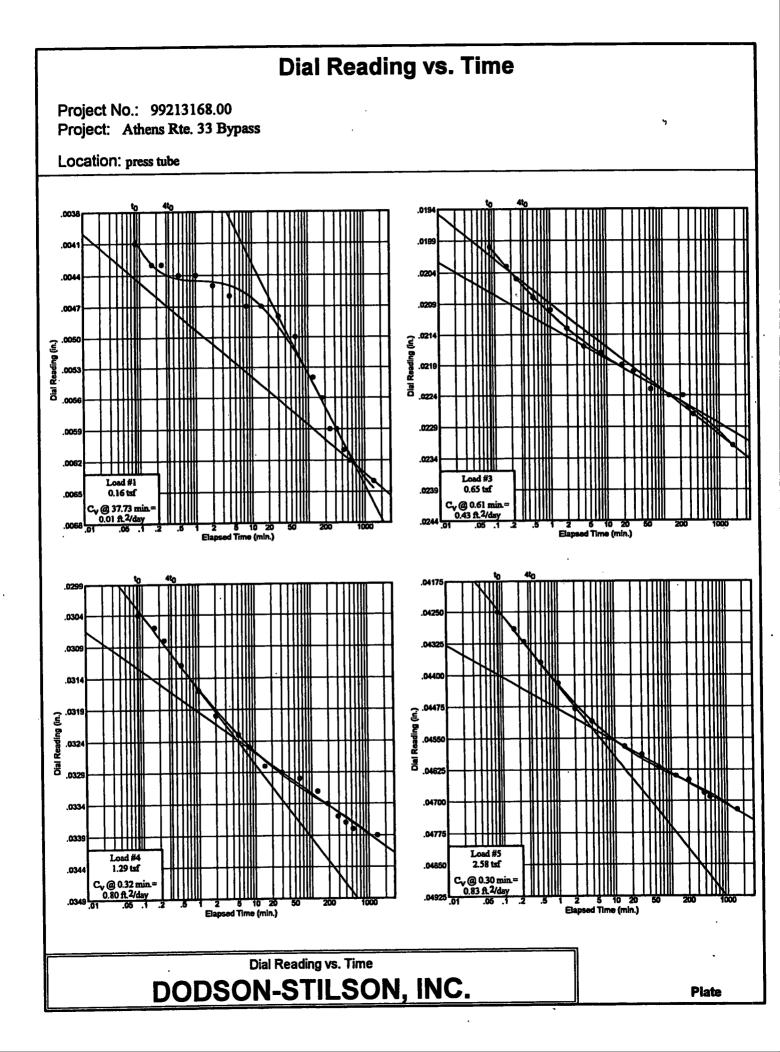
ate Sta Ioring N	arted No	071599 TR 64-4	Station	n & Off	Date Completed 071599 Sampler: Type set Surface Elev.	Spli	Split Spoon 291.4 m					_ Dia <u>5 cm</u> _ Water Elev						
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)					•		Chara							
						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.			
91.4					5 cm Pavement (tar and chip)													
91.1		4-4-6-7	0.43	0.18	Light orange-brown w/ light gray silty clay w/ traces of oxides (CL); moist, medium _stiff to stiff.	1								19				
90.5	<u> </u>	11-20-50/	0.37	0.09		2								10				
9.9		0.5		<u> </u>	Light olive brown to olive silty clay (CL);		<u> </u>					<u> </u>		7				
	2	20-50/0.3	0.21	0.03	slightly moist, hard.	3	┨	<u> </u>										
89.3						4						<u> </u>			,			
39.0		50/0.4	0.09	0.03	Medium to moderately hard light brown	┦╧┷	1											
8.7	3	····· - ····			\sandstone fragments; auger refusal at 2.7	/												
	4	54	1.80	0.03	Medium to moderately hard light brown sandstone; fair rock quality, thick to massive bedding. Darker brown striations noted in core sample.	5												
36.8	_ [•			qu=119.2 kg/cm2													
	<u>5</u> <u>6</u>	61	2.13			6												
34.7	_ }				Bottom of boring @ 6.7 meters.	╉───	<u> </u>								<u> </u>			
ŀ					Lottom of Dolling & C., moodes.													
		•																
Ļ	8						1											
						1	1	1										

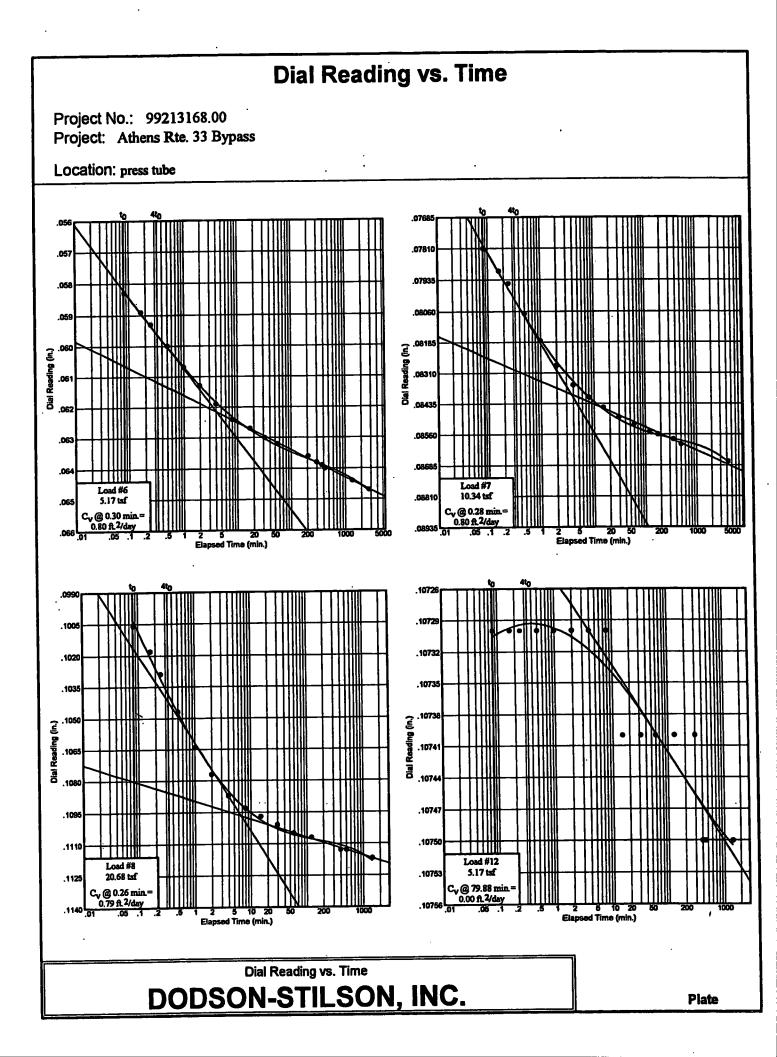
oring	No	Date Completed071599 Sampler: Type set Surface Elev Surface Elev.	2	293.8	m		Water Elev								
lev.	Depth	Std. Pen./	Rec.	Loss	Description	•				Physical Characteristics					
m.)_	(m.)	RQD	(m.)	(m.)		Sample No.	% 400	% C.S.	% E.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
3.8 3.5		•			5 cm Pavement (tar and chip); fill-mottled										
3.1		4-2-3-5	0.30	0.30	<u>brown silty clay w/ sand.</u> Red w/ trace orange-brown and gray silty clay w/ trace oxides (CL); moist, soft.	1								31	A-7-
2.9		8-6-11-14	0.34	0.27	<pre>qh=1.25 kg/cm2 Red w/ trace gray silty clay (CL); moist, hard.</pre>	2	0	1	2	30	66			28	A-7-
2.3 1.7	2	6-6-8-10	0.43	0.18		3	· 0	1	8		91	42	15	27	- / -
		6-10-14-16	0.46	0.15		4								26	
L.1	3	5-9-14-15	0.40	0.21	qh=2.75 kg/cm2	5								23	
).5).2		shelby tube	0.37	0.24	Light olive brown to beige silty clay (CL);	6									
9.7		18-35-50/ 0.3	0.37	0.03	moist, hard.	7								12	
							2 1 2				:				
3.4 3.2					Light brown to beige, medium to moderately	8									
3.1	_6	50/0.4	<u>10.09</u>	0.03	hard, fine to medium grained sandstone w/ dark brown striations/laminations; good to		Ĭ								
	_	75	1.83	•	excellent rock quality; massivley bedded qu=151.2 kg/cm2	9									
	7														
.3	.8										L				
		98	1.58			10									

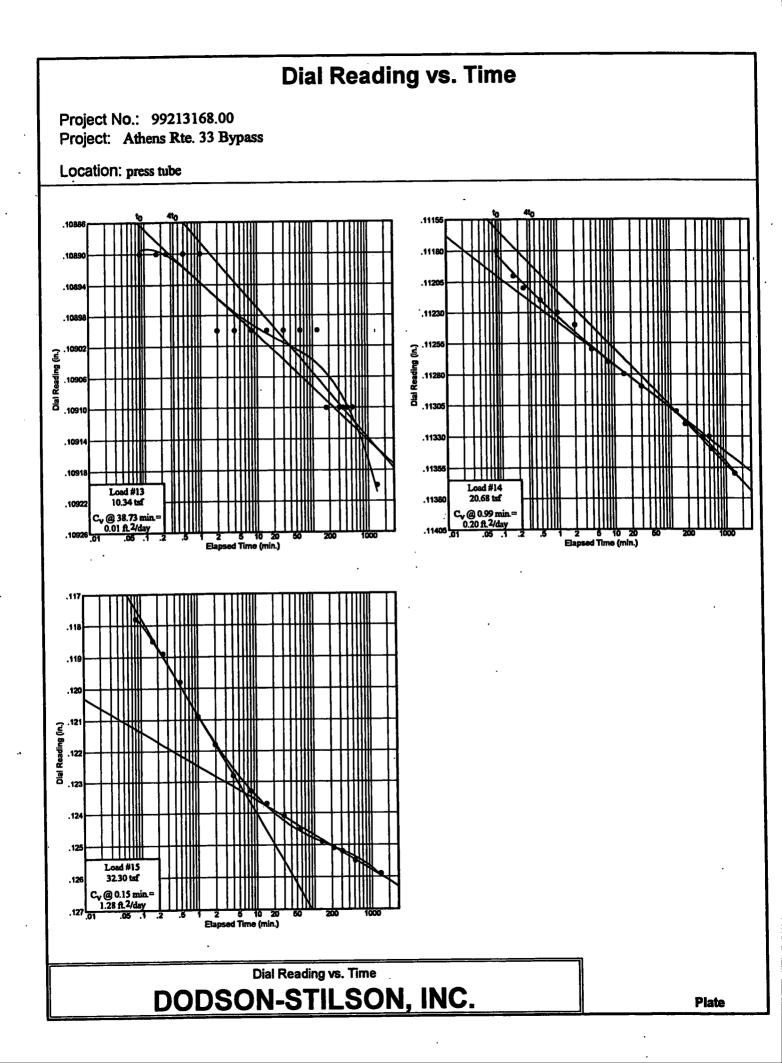

I


Date St	tarted	071599			Date Completed	071599	_ Sampler: Type	Spli	t Spo	on		Dia.			<u>5 cr</u>	n
Boring	No	TR 64-5	Statior	n & Ofi	iset	<u> </u>	Surface Elev	2	93.8	m		Wate	r Elev	•		
													<u>.</u>			
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)		Description		alde.				Physi	cal Cha	racter	istics	
								Sample No.	% Agg.	% C.S.	% F.S.	% Silt C	% lay L.	L. P.I	. w.c.	ODOT Class.
284.7					Bottom of bori	.ng @ 9.2 mete	rs.									
	10_															
	10_															
		-														
	11															
	12									:						
	13	•,			•											
	14					· ·										
								i								
	15															
	16								·							
	17															
	1															

.


.


APPENDIX B Laboratory Test Data



ł

APPENDIX C Foundation Summary Table

FOUNDATION SUMMARY TABLE

Substructure Unit	Proposed Bottom of Footing Elevation	Bearing Stratum	Applicable Core Borings	Average % Core Recovery	Average % RQD	Allowable Foundation Pressure	Pile Type Size	Pile Tip Reinforcement	Allowable Axial Pile Load Per Pile	Driving Method	Estimated Pile Tip Elevation	Estimated Footing Width, B	Coefficient of Friction
West Abutment Sta. 49+169.0 #	291.5	Weathered Gray Shale	TR 64-1	N/A	N/A	N/A	HP 310 x 1.079	N/A	400 kN	refusal or terminal set *	278.9	N/A	N/A
West Pier Sta. 49+191.4	286.3	Sandstone	TR 64-2	92	53	N/A	HP 310 x 1.079	N/A	500 kN	pre-drill to depth	280.8	N/A	N/A
Central Pier Sta. 49+218.2	286.1	Sandstone	TR 64-3	85	75	3100 kPa	N/A	N/A	N/A	N/A	N/A	3.0 m	0.7
East Pier Sta. 49+243.8	286.6	Sandstone	TR 64-4	99	58	3100 kPa	N/A	N/A	N/A	N/A	N/A	3.0 m	0.7
East Abutment Sta. 49+266.4	293.4	Sandstone	TR 64-5	100	87	N/A	HP 310 x 1.079	N/A	500 kN	refusal	288.4	N/A	N/A

SUMMARY OF T.R. 64 FOUNDATION DESIGN RECOMMENDATIONS

* Terminal Driving Resistance at West Abutment based upon the use of a steam hammer delivering 35,230 joules of input energy to the pile is 25 blows per 30 centimeters.

@ Abutments are to be constructed above imported granular fill embankments/improved slopes constructed with 2:1 grades. Otherwise the slopes at the east and west abutments are 4:1 and 3:1, respectively.

All station locations are for preliminary purposes only.

FOUNDATION INVESTIGATION REPORT

RAMP B RETAINING WALL AT U.S. 33 AND ALBANY ROAD

for:

Ohio Department of Transportation, District 10

338 Muskingum Drive

Marietta, Ohio 45750-0658

GF Project No: 36151.230

January 2000

GANNETT FLEMING ENGINEERS AND ARCHITECTS, P.C. Blendonview Office Park 5015 Pine Creek Drive Columbus, Ohio 43081

Office: (614) 794-9424 Fax: (614) 794-9442 www.gannettfleming.com

January 11, 2000

Mr. George Collins, District Deputy Director Ohio Department of Transportation, District 10 338 Mukingum Drive Marietta, Ohio 45750-0658

Attn: Mr. Doug Briggs

Re: Foundation Investigation ATH-33-30.981 Ramp B Retaining Wall at U.S. 33 and Albany Road Athens, Ohio G.F. No. 36151.230

Dear Mr. Briggs:

Here is a summary of our subsurface investigation for the aforementioned project. Based upon the present site plans, soil borings and an analysis of the encountered subsurface conditions, the following conclusions and recommendations have been developed.

• A traditional reinforced concrete retaining wall is to be supported on foundation elements extending through the existing entrance ramp fill to the hard residual soil and soft weathered bedrock encountered in the borings 1.5 to 4.6 meters below the fill. A double row of small diameter drilled piers extending about 1.0 meter into the bearing materials will be used. These piers are to be tied together below a pier cap that functions as the footing for the wall and proportioned with a gross allowable bearing pressure of 475 kPa. These piers will also be subjected to uplift or tension loads in response to the imposed overturning moments. To determine the necessary embedment for tension resistance, a side shear of 22.5 kPa has been estimated for piers installed in the very stiff to hard alluvium encountered at Boring RBW-5. This side shear increases to 35 kPa when the piers are installed in the hard residual soil and very soft bedrock encountered in Borings RBW-1 through RBW-4. Based upon the use of a granular backfill, an active lateral pressure coefficient (K_n) of 0.28 is to be utilized in conjunction with an estimated granular soil unit weight of 20.43 kN/m³ (Kilonewtons per cubic meter). Should the cohesive in-situ soils be utilized for backfill, the K_a value is to be increased to 0.5. In addition, surface water infiltration should also be inhibited by compacting a layer of cohesive material (approximately 15 to 30 centimeters thick) above the granular backfill.

• A reinforced earth retaining system is also an option for this wall. In the opinion of this writer, a system such as this is preferable to a traditional cantilevered wall in an

environment where potential differential settlement is a concern. The inherent flexibility of a mechanically stabilized wall allows such a system to accommodate the likely differential settlement that can occur after the main embankment fill surcharges the existing ramp. Based upon the use of a granular material, an active lateral pressure coefficient (K_a) of 0.28 is to be utilized in conjunction with an estimated granular soil unit weight of 20.43 kN/m³ (Kilonewtons per cubic meter). The bearing/leveling subgrade for the wall is to be undercut to a depth of 0.9 to 1.0 meter below the proposed bearing elevation and backfilled with a well compacted, well graded granular material such as ODOT No. 304 stone. In the area of the existing culvert location, the existing soft fill and alluvial materials encountered in the foundation excavation have to be removed to expose stiff to very stiff soils. Based upon the boring at this location, this will involve an undercut of up to roughly 3 meters. Once the gravel trench has been constructed, the leveling pad may be proportioned utilizing a gross allowable bearing pressure of 190 kPa. A subgrade reaction modulus of 27 N/cm³ (Newtons per cubic centimeter) and a sliding friction coefficient equal to 0.55 has been estimated for design purposes.

• The proposed U.S. 33 northbound embankment will require up to roughly 10.0 meters of fill, 3.0 to 4.0 meters of which will be above the present entrance ramp embankment. The present embankment exhibited some slope instability that became a source of concern with respect to the proposed construction and a computer-aided slope stability analysis was performed to determine if the proposed surcharge would overload the present embankment slope and initiate a failure. An estimate of the in-situ soil strength parameters was obtained from the slip area and used to model the slope supporting the probable surcharge. From this analysis, it is believed that a minimum F.S. of 1.5 will be realized. It appears as if the slip area has been repaired. However, because Gannett Fleming was not involved during the design or construction of the slip repair, recommendations regarding this issue are outlined in Section 4.1 of this report.

The aforementioned recommendations are based upon proper construction and construction inspection to verify the subsurface conditions and assure the design is carried out in an appropriate manner. If there any questions concerning the content of this report, please contact this office.

Very truly yours,

GANNETT FLEMING ENGINEERS AND ARCHITECTS, P.C.

John R. Kenny, P.E. Vice President Manager, Ohio Office

Malcolm D. Hargraves, P.E. Geotechnical Engineer

cc: Mr. Jeffrey B. Koehn, M-E Companies

FOUNDATION INVESTIGATION REPORT RAMP B RETAINING WALL at U.S. 33 and ALBANY ROAD

Table of Contents

1.0 INTRODUCTION AND SCOPE1
1.1 INTRODUCTION
2.0 PROJECT CHARACTERISTCS
3. 0 GEOLOGY AND GENERALIZED SUBSURFACE CONDITIONS
3.1 GEOLOGY 2 3.2 SUBSURFACE PROFILE 2 3.3 GROUNDWATER CONDITIONS 3
4.0 FOUNDATION RECOMMENDATIONS
4.1 CONCRETE RETAINING WALL
5.0 EARTHWORK RECOMMENDATIONS
5.1 SITE PREPARATION
APPENDIX AI
Boring Location PlanI Soil Boring LogsI Soil ProfileI
APPENDIX BII
Laboratory Test Data
DESIGN SUMMARY TABLESIII
Retaining Wall Design Recommendations

FOUNDATION INVESTIGATION REPORT RAMP B at U.S. 33 and ALBANY ROAD

1.0 INTRODUCTION AND SCOPE

1.1 Introduction

This structure foundation report presents the findings of the geotechnical investigation performed to characterize the subsurface conditions at the proposed site for the new U.S. 33 northbound lanes and entrance ramp from the Albany Road–Richland Avenue intersection in Athens, Ohio. This entrance ramp is part of the larger U.S. 33 Athens-Darwin project involving a new "Super-Two" highway corridor through southern Athens county and Meigs county in southeast Ohio. The purpose of this investigation was to determine the nature of the subsurface materials at the site, to assess their structural support capability, and to make recommendations relative to the design and construction of the structural foundations and earthwork for the project.

<u>1.2 Scope</u>

The scope of this investigation included a review of available geologic and soils data for the project area, a subsurface investigation consisting of five (5) soil test borings and associated rock coring, and an engineering analysis and evaluation of the subsurface conditions encountered at the site.

2.0 PROJECT CHARACTERISTCS

U.S. 33 is currently configured as a four-lane, divided, limited access highway carrying traffic around Athens, Ohio. This highway also carries traffic from U.S. 50 and S.R. 32. At the intersection with Richland Avenue and Albany Road, U.S. 33 narrows to a two-lane configuration as it continues in a southerly direction toward Pomeroy, Ohio, while the U.S. 50/S.R. 32 traffic is maintained with a four-lane configuration as an overpass above the U.S. 33 exit ramp and Albany Road. Present topographic information and site plans indicate that the proposed construction site has fairly substantial relief in the project vicinity, changing approximately 10 to 12 meters in elevation with moderately wooded slopes as steep as 1 vertical to 1 horizontal (1:1). A comparison of the current topographic information to older USGS maps of the area indicate that the present day four-lane alignment required cuts on the order of 15 to 18 meters to establish the subgrade elevations. Some of this excavated material was probably reused as fill for the present entrance ramp embankment for northbound U.S. 33 traffic access to the present by-pass. This embankment ranges up to roughly 12 to 14 meters in height with slopes as steep as about 2:1.

A topographic map of the immediate area depicts a slip in this embankment adjacent to the ramp. This slip, approximately 27 meters long and 56 meters wide, occurred where the ramp was relatively high and where deeper fill appeared to have been placed during the ramp construction. In addition to the slip area, a relatively large culvert, roughly 2.0 meters in diameter, crosses below the ramp near the U.S. 33-Richland Avenue intersection.

Proposed for construction is a retaining wall, approximately 180 to 200 meters long, providing a grade separation and transition between the present entrance ramp from the Richland Avenue-Albany Road intersection and the proposed embankment for the U.S. 33 mainline northbound lanes. Proposed profiles indicate that the embankment is to range from 1.0 to nearly 10.0 meters in height, which implies that the proposed wall will need to be up to 10.0 meters tall, depending upon the chosen grades and space constraints in the wall area.

3.0 GEOLOGY and GENERALIZED SUBSURFACE CONDITIONS

3.1 Geology

The project lies in a region predominated by residual soils formed from Pennsylvanian aged sedimentary bedrock of the Marietta Plateau. Sandstone, siltstone, shale, clay shale/mudstone, along with occasional, deeper, thinly bedded coal seams of the Conemaugh formation dominate the bedrock profile along the proposed roadway corridor. In the specific location of the proposed wall and mainline embankment, a transition zone between the residual soils of the more rugged higher elevations and alluvium associated with a localized drainage stream is evident, along with human placed fill related to earlier construction activities.

3.2 Subsurface Profile

Five (5) test borings were drilled for this investigation. The subsurface soil profile and groundwater conditions exposed in these borings are described in detail on the boring logs located in the appendix to this report. These boring logs indicate conditions at the particular locations and times the test bores were drilled. Some conditions, particularly groundwater levels, could change with time and periods of precipitation.

The soil borings generally encountered fill comprised of mottled olive, brown, beige, red and gray silty clay and weathered mudstone, clay shale, and sandstone fragments to depths ranging from 1.1 to 4.6 meters below the present ground surface. Standard Penetration (N) values in this material varied widely from 7 to greater than 50 blows per 30 centimeters (bpf), indicative of a generally unpredictable soil consistency.

Below the fill, residual soil comprised of mottled red and gray, and brown to light brown with trace red silty clay or silty sand was observed and sampled. N-values in these materials generally ranged from 22 to greater than 50 bpf, indicative of a very stiff to hard consistency. Where residual soils were not evident, weathered bedrock comprised of soft orange-brown to olive and gray arenaceous shale was encountered. A notable exception was in Boring RBW-5, where very stiff to hard gray sandy clay underlain by dark gray silty clay alluvium was observed below the fill.

Rock coring techniques were used in Borings RBW-2 and RBW-5. Medium to moderately hard, gray arenaceous shale and siltstone/fine grained sandstone to light gray/white

hard calcareous sandstone with shale seams was recovered in the respective borings. Rock Quality Designation (RQD) measurements ranged from 66 to 78 percent in the recovered samples, reflective of a fair to good rock quality.

3.3 Groundwater Conditions

Observations concerning groundwater were made during the drilling operations. The following table summarizes the levels at which groundwater was measured in each of the borings where observed prior to the rock coring activities.

Groundwat	ter Levels (m)
Boring	Noted on
Number	Drilling Rods
RBW-2	7.3
RBW-4	8.1

The groundwater level depends on normal variations in precipitation and surface runoff amounts. Fluctuations in groundwater can only be determined through observations made in bailed, cased holes, the construction of which was beyond the scope of this investigation.

4.0 FOUNDATION RECOMMENDATIONS

The following conclusions and recommendations have been developed based upon an analysis of the subsurface conditions encountered in this investigation and the present design details provided by ODOT. If there are changes to the current plans, the conclusions and recommendations outlined in this report should be reviewed by a representative of Gannett Fleming to determine if they need to be modified or if additional work is necessary.

Two wall type alternatives shall be considered in this section of the report. The first wall type is a traditional, cantilever concrete retaining wall. The second wall type is a mechanically stabilized, reinforced earth retaining system, the effectiveness of which strongly depends upon the backfill material and embankment material chosen for the U.S. 33 northbound lanes. In addition to the wall types, the global stability of the proposed alignment was initially examined to determine if the existing ramp embankment might be compromised.

4.1 Concrete Retaining Wall

The soil borings encountered fill to depths ranging from 1.5 to 4.6 meters in depth along the length of the proposed wall. This fill was most probably placed as part of the present ramp embankment construction and as part of the backfill associated with the culvert crossing at the bottom of the ramp. Compaction records regarding the placement of this fill were not available for review. Consequently, it is assumed that the material was placed in an uncontrolled manner, and should not be utilized for structural support of a relatively rigid, concrete wall system. The reason is that uncontrolled fills may settle unpredictably, due to the compression of undercompacted or uncompacted areas within the soil mass and result in excessive deflection, differential settlement, and possibly induce unanticipated stresses in the proposed wall structure. Because of concerns with excessive deflection and differential settlement associated with an uncontrolled fill, it is recommended to extend the wall foundations through this fill to the hard residual soil and soft weathered bedrock encountered in the borings below the fill.

A double row of small diameter drilled piers extending about 1.0 meter into the bearing materials will be used. These piers will be tied together below a pier cap that functions as the footing for the wall and must be proportioned with a gross allowable bearing pressure of 475 kPa. These piers will also be subjected to uplift or tension loads in response to the imposed overturning moments. To determine the necessary embedment for tension resistance, a side shear of 22.5 kPa has been estimated for piers installed in the very stiff to hard alluvium encountered at Boring RBW-5. This side shear increases to 35 kPa when the piers are installed in the hard residual soil and very soft bedrock encountered in Borings RBW-1 through RBW-4. A factor of safety equal to 3 has been utilized in the tension capacity estimates.

The primary loads on the retaining wall will be horizontal forces derived from lateral earth pressures associated with the new U.S. 33 embankment. When designing for the lateral earth pressure loads, it is assumed that the top of the proposed wall can translate sufficiently to allow "active" pressure development. Based upon the use of a granular backfill, an active lateral pressure coefficient (K_a) of 0.28 should be utilized in conjunction with an estimated granular soil unit weight of 20.43 kN/m³ (Kilonewtons per cubic meter). Should the cohesive in-situ soils be utilized for backfill, the K_a value increases to 0.5. To help avert the build up of additional forces resulting from hydrostatic pressures, properly installed footing drains, backfilled with a free draining, open graded granular material, and/or weep holes must be incorporated into the wall design. In addition, surface water infiltration should also be inhibited by compacting a layer of cohesive material (approximately 15 to 30 centimeters thick) above the granular backfill.

4.2 Mechanically Stabilized Earth Retaining Wall

An alternative to the concrete wall is a mechanically stabilized earth retaining wall. As is the case for the traditional concrete wall, the primary loads on the retaining wall will be from lateral earth pressures associated with the new U.S. 33 embankment surcharge. In order for a reinforced earth system to mobilize the shear strength between the reinforcing strips (or geogrid as the case may be) and the soil, the wall will have to yield, resulting in the formation of "active" pressures. Based upon the use of a granular backfill in the zone of reinforcement, an active lateral pressure coefficient (K_a) of 0.28 must be utilized in conjunction with an estimated granular soil unit weight of 20.43 kN/m³ (Kilonewtons per cubic meter). Appropriate measures for drainage and prevention of surface water infiltration as mentioned in the previous section will also be incorporated in the design. The bearing/leveling subgrade for the wall should be undercut to a depth of 0.9 to 1.0 meter below the proposed bearing elevation and backfilled with a well compacted, well graded granular material such as ODOT No. 304 stone. In the area of the existing culvert location between approximately Station 29+450 and 29+460, the existing soft fill and alluvial materials encountered in the foundation excavation should be removed to expose stiff to very stiff soils. Based upon the boring at this location, this will involve an undercut of up to roughly 3 meters. Adequate bearing conditions in this undercut area should be verified by a qualified geotechnical professional. Once the gravel trench has been constructed, the leveling pad may be proportioned utilizing a gross allowable bearing pressure of 190 kPa. A subgrade reaction modulus of 27 N/cm³ (Newtons per cubic centimeter) and an ultimate sliding friction coefficient equal to 0.55 has been estimated for design purposes. A factor of safety equal to 1.5 against a sliding failure should be utilized in the design.

In the opinion of this writer, a mechanically stabilized earth retaining system is preferable to a traditional cantilevered wall in an environment where potential differential settlement is a concern. The inherent flexibility of a mechanically stabilized wall allows such a system to accommodate the likely differential settlement that can occur after the main embankment fill surcharges the existing ramp. The use of a reinforced earth wall will also reduce the necessary undercutting or pier installation outlined for the concrete wall system.

4.3 Embankment Stability

The proposed U.S. 33 northbound embankment will require up to roughly 10.0 meters of fill, 3.0 to 4.0 meters of which will be above the present entrance ramp embankment. As mentioned previously, the present embankment exhibited some slope instability that became a source of concern with respect to the proposed construction. For this reason, a computer-aided slope stability analysis was performed to determine if the proposed surcharge would overload the present embankment slope and initiate a failure.

Using an old topographic map depicting the initial slip, the shear strength parameters of the existing fill soils were back-calculated with the computer program. A phi angle of 23 degrees and a cohesion of 0.47 kPa were obtained from this process. These values were inserted into the program modeling the proposed surcharge. From this it was determined that a minimum factor of safety (F.S.) equal to about 1.54 is probable, assuming that the failure surface is forced into a surcharge given no shear strength characteristics. Generally a F.S. equal to 1.5 is the required value for global slope stability. Since the imposed surcharge will be a real material with some shear strength, it is believed that the recommended F.S. of 1.5 will be realized.

The slope appears to have been repaired where the failure occurred, however Gannett Fleming did not design nor was Gannett Fleming present during the repair operations. As a result, this company can neither confirm nor deny that the failure was repaired appropriately. To properly repair the slope and to protect against future instability, the existing embankment material should be removed to expose competent material below the slip surface and replaced with compacted, engineered fill as outlined in the Ohio Department of Transportation (ODOT) Construction and Material Specification Manual. As part of this repair the new compacted material must be appropriately benched into the competent in-situ soils to engage the replacement material with the natural soils. In addition, it is likely that erosion due to the drainage stream located at the toe of the slope adversely affected the present embankment where the aforementioned slip occurred. For this reason it is recommended that some form of rock channel protection, such as ODOT Type D or Type C stone, be placed at the existing embankment toe.

4.4 General Foundation Comments

All structural footings should be placed at a minimum depth of 0.8 meters or greater below the finished grades for frost protection. If any soft, wet, organic or loose soil, or any old fill is encountered, the excavations should be extended downward so that the footings rest on competent soils.

All foundation bearing surfaces should be protected against freezing, the surface water and undue disturbance as the bearing soils will tend to soften or loosen and increase settlements in such cases. If at all possible, the footing concrete should be placed the same day that the excavation takes place. If this is not feasible, proper protection of the footing excavations should be provided. All footing excavations should be inspected by a qualified geotechnical professional to assure that adequate bearing is achieved before placing concrete for the foundations.

Drilled pier excavations should be inspected to confirm the assumed subsurface conditions before placing concrete for the drilled piers. The concrete for the piers should be placed immediately after the drilling and inspection takes place. Inspection of the drilled piers should include recording the top and bottom elevations and a visual examination for plumbness, alignment and diameter.

Although it is not believed that the groundwater table will pose a problem, it is recommended that steel casing be available if groundwater seeps become evident. This will also help retain any of the material that may loosen during pier excavation. It is recommended that the concrete for the piers have a design slump of at least 15 centimeters in order to avoid arching of the concrete upon withdrawal of the temporary casing (if utilized). Furthermore, a positive head of concrete should be maintained above any groundwater (if encountered) during the withdrawal of the casing. These measures will preclude contamination of the pier concrete by groundwater and soil and safeguard the integrity of the piers.

5.0 EARTHWORK RECOMMENDATIONS

5.1 Site Preparation

Site preparation operations should consist of removing any vegetation, topsoil, and other organic material or loose miscellaneous fill and debris from the construction areas. After the completion of undercutting operations, the exposed subgrade areas should be proofrolled with suitable heavy equipment, preferably a 180 to 270 kN loaded dump truck. Any soft yielding areas delineated by the proofrolling may need to be undercut or otherwise stabilized as recommended by the geotechnical engineer prior to placing the new embankment material.

5.2 Excavation

Based upon the boring logs and the proposed grading plans, the wall foundations for the concrete retaining wall will have to be excavated through fill and into hard residual soil or soft

weathered bedrock. Exceptions will probably occur in the areas around Boring RBW-5, where encounters with softer fill and alluvium are likely to occur. In the event the stabilized earth wall system is chosen, the major excavation and undercutting should occur around the present culvert in the softer materials, and excavation through harder materials should be minimized. If the drilled piers are installed for the concrete wall, some difficulty may be encountered, however the hard soils/soft rock generally appear to accommodate removal without unusual effort.

All temporary excavations for the installation of foundations, utilities, etc., should be properly laid back or braced in accordance with Occupational Safety and Health Administration (OSHA) requirements. Where the excavation occurs around the present culvert, temporary bracing will probably be required in the soft fill and alluvial soils observed at this location.

It is believed that the groundwater table generally occurs at a depth that should not present construction difficulties for a project of this type, particularly if construction is carried out during the dryer seasons of the year. Exceptions will probably occur at the present culvert location where drainage from an active stream may encroach upon the wall excavation during brief periods of intense precipitation. Consequently, the contractor should have a means of channeling the flow away from the excavation. In the remaining areas of the wall, most of the water that may be encountered in shallow excavations at this site should be adequately controlled by conventional methods.

<u>5.3 Fills</u>

It is recommended that the fill embankments be constructed in conjunction with the guidelines established in the Ohio Department of Transportation Construction and Material Specifications for embankment construction. When placing soil material immediately adjacent to the retaining wall, the compaction effort should be limited to that which is required to achieve 95 percent of the maximum Standard Proctor dry density. This measure should reduce the likelihood of excessive lateral earth pressures resulting from construction activities.

APPENDIX A Boring Location Plan Soil Boring Logs Soil Profile

I

					Date Completed072099 Sampler: Type										
onng	NO	RBW-1	Station		set Surface Elev.	4	13.9			vva		IGV.			
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.					ysical				
						San San	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
13.9		13-19-25- 50/.2	0.43	0.09	Fill-mottled brown and gray silty clay w/ sand, gravel, and shale fragments; slightly	1								8	
13.3		50/0.4	0.06	0.06	moist.	2								4	
12.8	_1				Probable fill-mottled red and gray silty										
.2.7		11-10-11-10	0.37	0.24	clay w/ gray sandstone fragments; moist.	3	·							9	
	2														
11.4	3	21-31-17-17	0.34	0.27	Mottled red and gray w/ trace yellow silty clay w/ traces of oxides (CL); moist, hard.	4	40	7	11		43	31	10	16	A-4a
					qh=3.5 kg/cm2										
.0.2	4				Light brown w/ trace gray sandy silt and										
9.8			0.40	0.03	clay w/ traces of weathered sandstone fragments (ML, CL-ML); moist, very dense/ / hard.	5	4	4	7	37	49			12	A-6a
	-	0.4 /			qh=4.5 kg/cm2										
-	5														
8.4															
)8.2	6	50/0.1	0.03	0.00	Soft to medium hard light brown, fine grained sandstone.	6									
7.2	\neg														
	_7				Soft, dark gray weathered shale; laminated			•							
6.7	Ł	38-50/0.2	0.21	0.34	structure.	7								9	
					· · · · ·										
5.7	8			l											
- 1					Soft to medium hard gray shale.										
5.2	5	50/0.3	0.09/			8 /							==		

.

•																	
Date St	tarted	072099			Date Completed	072099	_ Sampler: Type	Spli	t Spo	oon		Dia.	tor Fl	A \/		5 <u>cr</u>	n
Boring	NO	RBW-1	Station	יוס או	[Set		Surface Elev.	4	:13.9			vva		ev			•
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)		Description		e .				Phy	sical (Chara	cteris	tics	
					•			Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.1.	w.c.	ODOT Class.
			1														
		•		•	•												
202 7	10															6	
203.7 203.6		50/0.2	0.06	0.00	Bottom of bori	ng @ 10.3 met	ers.	9	Ţ								
	11																
													:				
	12																
· ·																	
						•											
	_13																
						·											
	14																
																	a
	15																
									ŀ								
	16																
	17																

Ł

ate St	arted	072199			Date Completed072199 Sampler: Type	Spli	t Spo	oon		Dia	·			<u>5</u> cm	·
oring	No	RBW-2	Statior	n & Ofi	set Surface Elev	2	211.6	m		Wa	ter E	lev.		204	1.2 m
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.					ysical				
			<u> </u>			San N	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
.1.6		4-6-8-21	0.40	0.21	5 cm Topsoilfill-light brown silty sand w/ sandstone fragments and gravel; slightly moist; cobbles/rock fragments at 1.5 m;	1	_							9	
1.0	_1	9-14-10-9	0.37	0.24	gray shale fragments in sample #4.	2								7	
0.4		25-12-10-9	0.00	0.61		3									
9.8 9.5	·	25-16-14-12	0.43	0.18		4	23	13	10	20	34			17	A-6b
9.2	3	50/0.3	0.09		qh=4.5 kg/cm2	5								10	
8.2	4				Fill-mottled red, brown and gray silty clay w/ sand and shale fragments; moist. Light orange-brown/beige at bottom of sample.								•		
7.5 7.3	ſ	5-7-15	0.24	0.21	qh=1.5 kg/cm2	6	6	4	10		81	39	18	22	A-61
7.0					qh=3.25 kg/cm2, w.c.= 17% Brown silty clay w/ traces of oxides (CL); slightly moist, hard. Slightly laminated structure; orange-brown at bottom of sample.								1.7	15	A-61
	_6	53-50/0.4	0.27			7	4	6	17		73	40	17	15	
5.5					Very soft to soft, very weathered orange- brown to olive and gray arenaceous shale. Laminated structure.										
4.4	_ <u></u> _	35-50/0.2	0.10	0.07		8	 					<u> </u>		13	
		35-50/0.2	0.18	0.03			1	<u> </u>							
3.7	8				Very soft to soft red/maroon and gray, very weathered arenaceous shale.										
2.9							 	<u> </u>	L						
	L	61-50/0.4	0.27		·	9								12	

.

	RBW-2	Chatler		Date Completed072199 Sampler: Type										
	Station	n & Off	set Surface Elev.	2	211.6	m		Wa	ter Ei	lev.		204	4.2 m	
Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.				-	sical				
				·	хал Хал	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
10														
	75	0.30		Soft to medium hard gray arenaceous shale;	10									
				bedded Medium hard, gray arenaceous shale and										
	78	1.46	0.06	siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. qu=338.3 kg/cm2										
╧╋				Bottom of boring @ 12.0 meters.	<u> </u>						<u> </u>			
				-		1								
13														
14														
15														
					1									
16														
17				·										
				·										
		757878121314151616	75 0.30 11 78 1.46 12 13 14 15 16 	75 0.30 11 78 1.46 0.06 12 13 14 15 16 	10 75 0.30 Soft to medium hard gray arenaceous shale; 11 75 0.30 Soft to medium hard gray arenaceous shale; 11 78 1.46 0.06 12 78 1.46 0.06 12 8 12 9 13 9 12.0 meters. 14 14 14 15 16 16	10 75 0.30 Soft to medium hard gray arenaceous shale; good rock quality; medium to thickly bedded. 10 11 78 1.46 0.06 siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. qu=338.3 kg/cm2 11 12 Bottom of boring @ 12.0 meters. 11 13 14 15 16	10 75 0.30 Soft to medium hard gray arenaceous shale; good rock quality; medium to thickly 10 11 78 1.46 0.06 Medium hard, gray arenaceous shale and siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. qu=338.3 kg/cm2 11 12 Bottom of boring @ 12.0 meters. 11 13 14 14 14 16 16 16 16	10 75 0.30 Soft to medium hard gray arenaceous shale; good rock quality; medium to thickly 10 11 78 1.46 0.06 Medium hard, gray arenaceous shale and siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. qu=338.3 kg/cm2 11 12 Bottom of boring @ 12.0 meters. 11 13 14 14 14 16 16 16 16	10 75 0.30 Soft to medium hard gray arenaceous shale; 10 11 good rock quality; medium to thickly 10 10 11 78 1.46 0.066 Siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. qu=338.3 kg/cm2 11 12 Bottom of boring @ 12.0 meters. 11 11 13 14 14 14 14 16 16 16 16 16 16	10 75 0.30 Soft to medium hard gray arenaceous shale; 10 11	10 75 0.30 Soft to medium hard gray arenaceous shale; good rock quality; medium to thickly 10 10 11 Medium hard, gray arenaceous shale and guality, medium to thickly bedded. qu=338.3 11 11 12 Bottom of boring @ 12.0 meters. 11 11 13 14 13 14 14 16 16 16 16 16 16	10 75 0.30 Soft to medium hard gray arenaceous shale; good rock quality; medium to thickly 10 10 11 78 1.46 0.06 Soft store/fine grained sandstone; good rock quality, medium to thickly bedded. 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 1	10 75 0.30 Soft to medium hard gray arenaceous shale; good rock quality; medium to thickly 10 10 11 78 1.46 0.06 siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	10 75 0.30 Soft to medium hard gray arenaceous shale; 10 10 11 78 1.46 0.06 siltstone/fine grained sandstone; good rock quality, medium to thickly bedded. quality, medium to thickly bedded. quality, medium to thickly bedded. quality, medium to thickly bedded. quality. 11 12 Bottom of boring @ 12.0 meters. 11

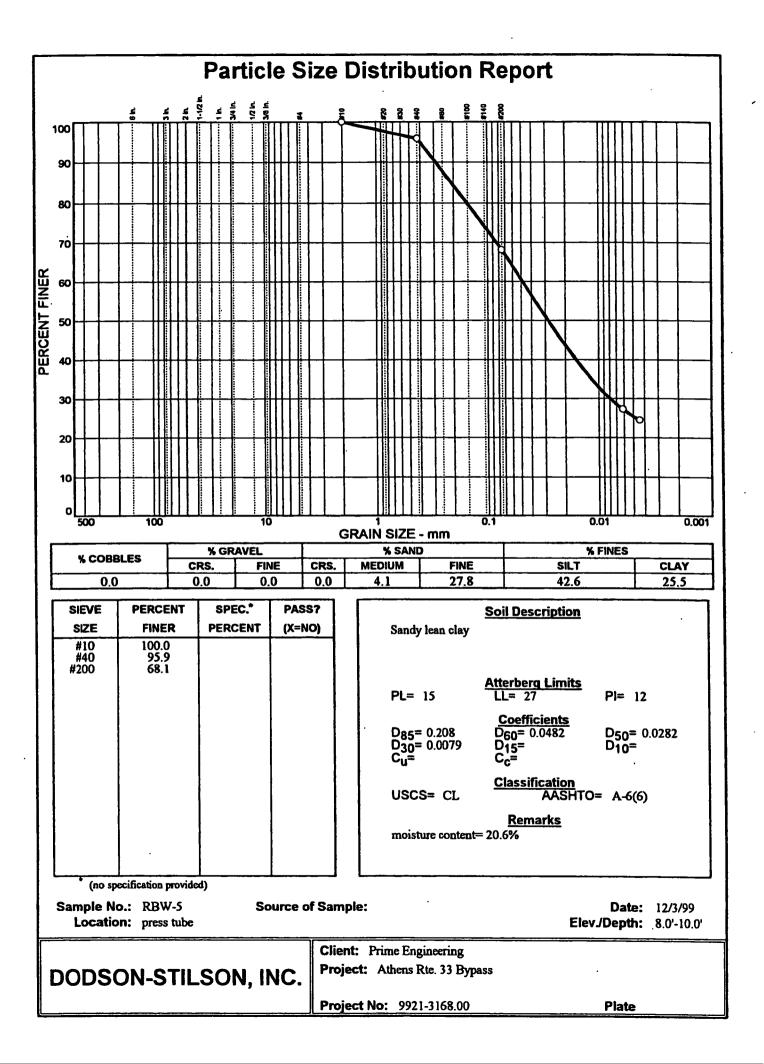
-

Boring No. RBW-3 Station & Offset Surface Elev. 209.6 m Water Elev. Eav. (m.) 0m.) Std. Pen./ ROD Rec. (m.) Loss (m.) Description 20 20.6 m Water Elev. 209.6 M Std. Pen./ ROD Rec. (m.) Loss (m.) Description 20 20.6 m Water Elev. 209.6 M Std. Pen./ ROD Rec. (m.) Loss (m.) Description 20 - - 1 - - 11 209.6 15-25-24-27 0.52 0.09 5 cm Topsoilfill-mottled brown/light brown and gray to red silty clay w/ traces of brown sandstone and shale fragments; sof brown sandstone and shale fragments; used.1 1 - - 11 208.1 - - - - - - - - 16 207.2 - 0.37 0.24 Qh=3.75 kg/cm2 4 - - 16 207.2 - 13-11-16 0.34 0.12 Silightly laminated structure: - 13 -	<u></u>	<u>5 cm</u>			·	Dia		on	Spo	t Sr	<u>Spli</u>	Sampler: Type	Date Completed	l		072199	rted	Date St
D9.6 15-25-24-27 0.52 0.09 5 cm Topsoilfill-mottled brown/light of brown and gray to red silty clay w/ traces if brown sandscree and shale fragments; slightly moist tomoist. gh=4.5+ kg/cm2 1 1 11 09.0 13-50/0.4 0.21 0.06 slightly moist tomoist. gh=4.5+ kg/cm2 2 1 9 08.4				ev.	ter El	Wat		m	. 6	209.		Surface Elev.	set	& Off	Station	RBW-3	lo	oring l
39:6 15-25-24-27 0.52 0.09 5 cm Topsoilfill-mottled brown/light brown and gray to red silty clay w/ traces of brown sandstone and shale fragments; slightly moist tomoist. gh=4.5+ kg/cm2 1 1 11 13-50/0.4 0.21 0.06 1 11 11 11 13-50/0.4 0.21 0.06 1 11 11 11 18.4 5-10-11-14 0.37 0.24 Qh=4.5+ kg/cm2, qh=3.75 kg/cm2 3 25 5 66 38 16 13 17.8 2 8-8-9-12 0.37 0.24 Qh=3.5 kg/cm2 4 16 16 16.0 4 5-10-9-13 0.37 0.24 Qh=2.5 kg/cm2 5 13 11 13-11-16 0.34 0.12 Slightly laminated structure. 6 5 9 3 83 55 25 28 16.1 13-11-16 0.34 0.12 Slightly laminated structure. 6 5 9 3 83 55 25 28 17.2 5 13-11-16 0.34 0.12 Slightly laminated, slickensided </td <td><u> </u></td> <td>tics</td> <td>cteris</td> <td>Chara</td> <td>sical</td> <td>Phy</td> <td></td> <td></td> <td></td> <td></td> <td>ple</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u> </u>	tics	cteris	Chara	sical	Phy					ple							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ODOT Class.	w.c.	P.I.	L.L.	% Clay	% Silt	% F.S.	% C.S.	6 19.	% Agg	Sam No						(111)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											1	y clay w/ traces	brown and gray	0.09	0.52	15-25-24-27		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9									2			0.06	0.21	13-50/0.4		9.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-6b								_								-	8.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	16	38.	66		5	5	5	25	3	2.= 10%	٦	0.24	0.37	5-10-11-14		8.1
3 5-10-9-13 0.37 0.24 5 13 4 13 13 5.0 4 13 13 4 13-11-16 0.34 0.12 13-11-16 0.34 0.12 13 5.1 13-11-16 0.34 0.12 13-11-16 0.34 0.12 15% 5 13-11-16 0.34 0.12 13-11-16 0.34 0.12 15% 5 13-11-16 0.34 0.12 13-11-16 0.34 0.12 13-11-16 0.34 0.12 13-11-16 0.34 0.12 14-1 13 15% 6 5 9 3 83 55 25 13-11-16 0.34 0.12 0.14 0.12 13 14 14-1 13 14 14 13 14 14 14-1 13 13 14 14 13 15 11 14 14 13 14		16									4		∖	0.24	0.37	8-8-9-12	_2	_
4 Light brown and trace red silty Clay W/ traces of oxides (CH); moist, very stiff. 6 5 9 3 83 55 25 5.4 13-11-16 0.34 0.12 gh=2.5 kg/cm2, w.c.= 15% 6 5 9 3 83 55 25 28 5.2		13									5	2.5 kg/cm2		0.24	0.37	5-10-9-13		7.2
13-11-16 0.34 0.12 Slightly laminated structure. 6 5 9 3 83 55 25 28 5.2												silty clay w/ st, very stiff.	Light brown and					
5 gh=1.5 kg/cm2 6 20-47-50/ 0.2 0.30 7 0.30 7 0.11 1 34 6 0.2 7 0.12 7 0.12 0.00 Red shale/hard silty clay (CL) seam noted 8 1	A-7-!	28	25	55	83		3	9	5	5	6	2.5 kg/cm2, w.c.=	Slightly lamina	0.12	0.34	13-11-16		5.4
1 - traces of oxides (CL); moist, very stiff. - - - 6 20-47-50/ 0.2 0.30 0.06 Gray, silty clay (CL); slightly moist, hard. Slightly laminated, slickensided structure. [Very soft extrememly weathered shale]. 7 0 1 1 34 64 13 - - - - - - - - - - - - - 13 - - - - - - - - - - - - 13 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td>5</td><td></td></t<>													L				5	
6 20-47-507 0.30 0.06 hard. Slightly laminated, slickensided structure. [Very soft extrememly weathered shale]. 7 7 1												st, very stiff.	<u>traces of oxide</u>					
7	A-7-9	13			64	34	1	1	>	0	7	slickensided	hard. Slightly	0.06	0.30		6	.0
7 50/0.4 0.12 0.00 Red shale/hard silty clay (CL) seam noted 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6																		
in Sample #8												5.5 Kg/Cm2					7	
										/	8	(CL) seam noted		0.00	0.12	50/0.4		.5
	•																8	
														'				

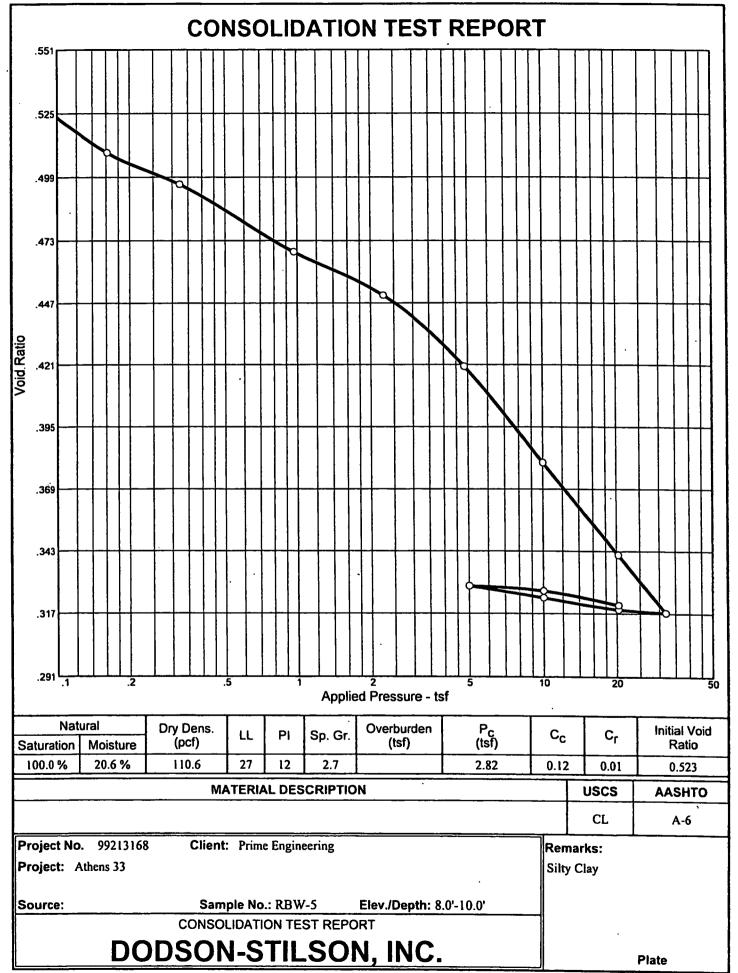
Date St Boring	tarted	072199	Statio	- 8. Of	Date Completed 072199 Sampler: Type	Spli	t Sp	<u>oon</u>		Dia	·			_5 c	m
boning		KBW-3	Statio		fset Surface Elev.		209.6	5 m		Wa	ter E	lev.			
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	be be				Phy	ysical	Chara	cteris	tics	
•						Sample No.	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
200.2															
	10				Soft to medium hard arenaceous shale.										
.99.4 .99.4	T	50/0.1	0.03	0.00	Bottom of boring @ 10.2 meters.	10									
	11						ľ								•
														i	
	12														
ſ															
	13														
f					·										
	14														
ſ															
	15														
	16														
F	10														
-	17													ļ	·

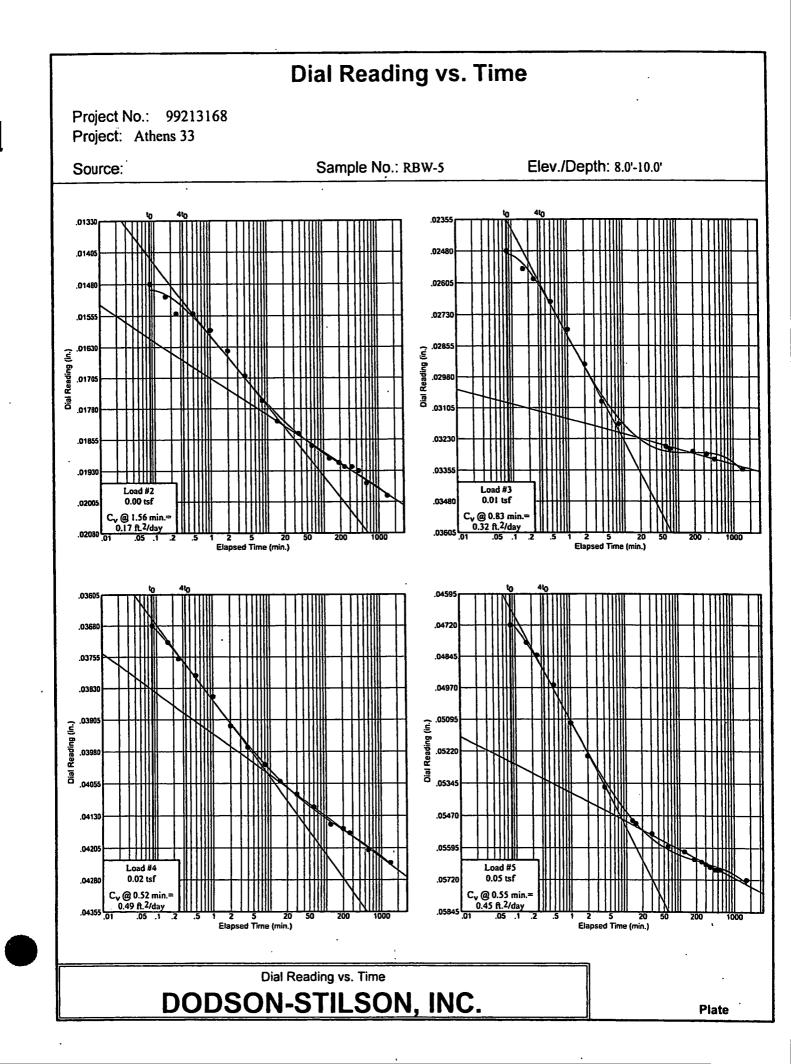
Date S	tarted	072199			Date Completed072199 Sampler: Type	Spli	t Spo	oon		Dia	•			<u>5 cr</u>	n
Boring	No	RBW-4	Statior	n & Off	fset Surface Elev.		208.0	<u>m</u>		Wa	ter E	lev.		19	9.9 m
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	Sample No.					ysical				
			1	,		Sar	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	w.c.	ODOT Class.
208.0 207.4		8-14-21-13	0.55	0.06	Fill-mottled brown/light brown and beige silty clay w/ sand and gravel/rock _fragments. qh=2.75 kg/cm2	1		13						9	A-6a
207.4	1	11-19-50/ 0.3	0.27	0.12	qh=4.25 kg/cm2	2								9'	
206.8		9-50/0.3	/ 0.21	0.03		3	1							8	
206.5 206.2					Olive, extremely weathered soft shale.										
	2	50/0.4	0.12	0.00	Red/maroon, extremely weathered soft shale.	4	/							9	
205.5		49-50/0.3	0.24	0.00		5								10	
205.2	_3		· ·		Olive, soft weathered shale.	1								,	
							•								•
204.0 203.9					Gray, soft to very soft weathered shale.										
		9-26-43	0.30	0.15		6	<u> </u>					-		16	
	5														
202.3		50/0.5	0.12	0.03/		7								11	
202.2	6				Olive/olive gray soft to medium hard shale.										
	7														
200.8	ħ	50/0.1	0.03	0.00		В									
					· ·										
	8												ļ		
			1 I			1	1			- 1			1		

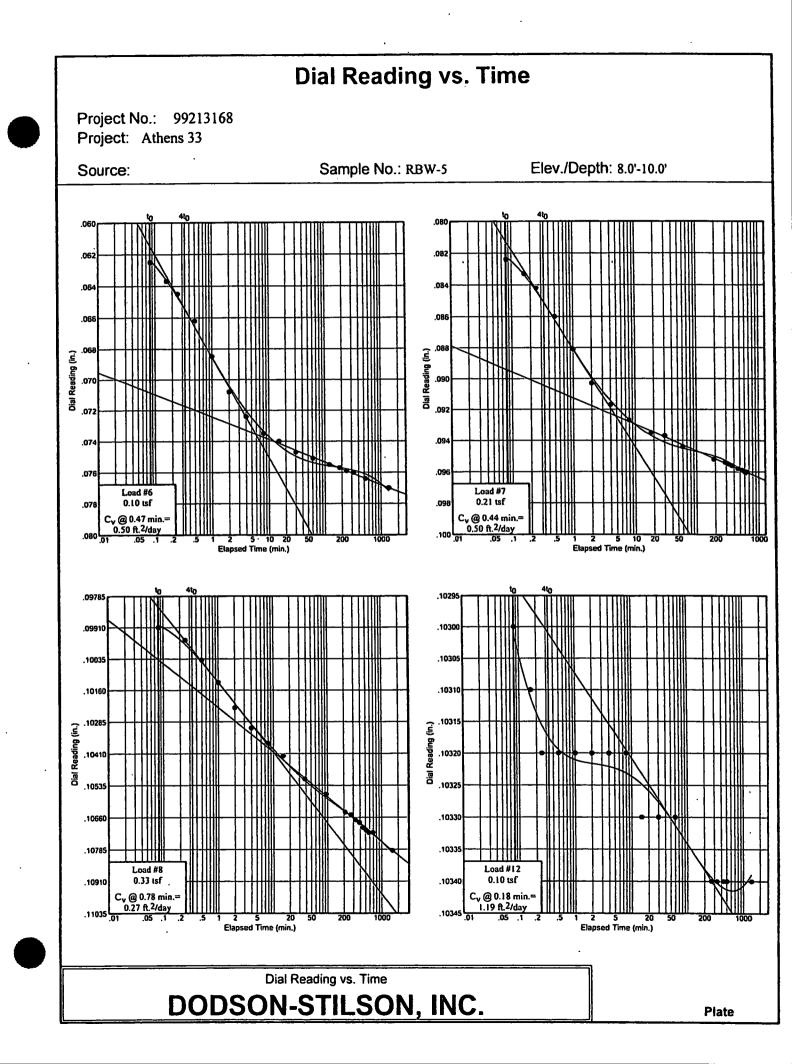
Date S Boring	No	072199 RBW-5	Statior	n & Off	Date Completed072299 Sampler: Type set Surface Elev	<u>2</u>	<u>t spo</u> 207.7	m		Wa	 ter E	lev.		<u> </u>	
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Description	ample No.					ysical				
						Sar	% Agg.	% C.S.	% F.S.	% Silt	% Clay	L.L.	P.I.	W.C.	ODOT Class.
07.7		10-30-50/	0.24	0.15	Fill-mottled light brown and olive silty clay w/ trace to little rock/sandstone and	1								7	
07.1	1	9-8-9-11	0.52	0.09	shale fragments, sand and wood. qh=2.75 kg/cm2 qh=4.0 kg/cm2	2								13	
)6.5)6.2		2445	0.30	0.30	gh=2.0 kg/cm2	3	7	3	33		56	31	12	21	A-6a
05.9		3-4-4-5	0.30	0.30	Possible fill-brown w/ orange-brown silt \and clay w/ little to some sand and oxides [<u> </u>								A-4a
05.6		3-4-3-9	0.46	0.15	(ML,CL); moist, medium stiff to stiff. qh=	4	2	7	40	26	25	25	5	18	
05.3 05.0		4-6-7-11	0.43	0.18	$gh=1.5 kg/cm^2$	5								19	
04.1		<u></u>			Traces of sandstone fragments noted in sample #5 qh=1.0 kg/ cm2										
)4.1	4				Gray sandy clay w/ traces of sandstone fragments (CL); moist to very moist, stiff. qh=1.25 kg/cm2										
		7-10-20-25	0.46	0.15	Dark gray silty clay w/ silt partings (CL); moist, very stiff to hard; mollusk shells	6								18	
	5				noted in top part of sample. w.c.= 23% in top of sample.										
02.3 02.1					<pre>qh=3.25 kg/cm2 Olive gray and gray silty clay (CL); moist,</pre>	7	<u> </u>							10	
02.1	_6	50/0.5	0.12	0.03	hard. [Extremely weathered shale]	\/								10	
	7														
00.6 00.6			0.06	0.00	Light gray to white, moderately hard to	8		· · ·							
00.4		66	0.15		hard sandstone (calcareous) w/ seams of gray, soft to medium, arenaceous shale.	9									
	8	70	1.46	0.06		10									
	_														


Date S Boring	tarted _ No	072199 RBW-5	Station	n & Of	Date Completed07229	9 Sampler: Type Surface Elev.	Spli 2	t Spc	m						n
Elev. (m.)	Depth (m.)	Std. Pen./ RQD	Rec. (m.)	Loss (m.)	Descri	iption .	e de				Physic	al Char	acteri	stics	
(111.7			(11.7	(11.7	<u></u>		Sample No.	% Agg.	% C.S.	% F.S.	% 9 Silt Cl	6 ay L.L	. P.I.	w.c.	ODOT Class.
			1		Bottom of boring @ 8.8	meters.									
	10														
								İ							
	11				•										
	12														
	ľ			ĺ											
	13														
						•									
	14					•									
	15														
	16			· ·	-										
													.		
	17														
					•										

.


.


APPENDIX B Laboratory Test Data Global Slope Stability Analysis


•

REAME (ROTATIONAL EQUILIBRIUM ANALYSIS OF MULTILAYERED EMBANKMENTS) COPYRIGHT, CIVIL ENGINEERING SOFTWARE CENTER (MARCH 1994 VERSION) UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506

INPUT FILE NAME -RAMPBSUR.DAT

.

TITLE -RAMP B RETAINING WALL - W/ SURCHARGE FROM ROADWAY FILL (6 FT. EMBANKMENT FILL NOT GIVEN SHEAR STRENGTH)

NO. OF STATIC AND SEISMIC CASES- 1

NO. OF NONCIRCULAR SLIP SURFACES= 0

CASE NO. 1 SEISMIC COEFFICIENT= 0

NO. OF BOUNDARY LINES= 5

NO. 1 2 3 4 5 6 7 8	OF POINTS X COORD.=- X COORD.= X COORD.= X COORD.= X COORD.= X COORD.= X COORD.= X COORD.=	ON BOUNDARY 100 0 22 84 128 136 198 300	LINE 1 = 8 Y COORD.= 14 Y COORD.= 14 Y COORD.= 6 Y COORD.= 6 Y COORD.= 24 Y COORD.= 42 Y COORD.= 48 Y COORD.= 48
NO.	OF POINTS	ON BOUNDARY	LINE $2 = 2$
2	X COORD.=	162	Y COORD. = 57 Y COORD. = 55
	OF POINTS	ON BOUNDARY	LINE $3 = 2$
1	X COORD.=	136	Y COORD. = 58
2	X COORD.=	136	Y COORD. = 58 Y COORD. = 56
NO.			LINE $4 = 5$
1	X COORD.=	136	Y COORD. = 58
2	X COORD.=	162	Y COORD. = 57
3	X COORD.=	188	Y COORD. = 55
4	X COORD.=	198	Y COORD. = 53
5	X COORD.=	136 162 188 198 300	Y COORD. = 53
NO.	OF POINTS	ON BOUNDARY	LINE $5 = 13$
1	X COORD.=-	100	Y COORD. = 29
2	X COORD.=	0	Y COORD. = 29
3	X COORD.=	14	Y COORD. = 27
4	X COORD. =	22	Y COORD. = 24
5	X COORD.=	23	Y COORD. = 24
5	X COORD.=	30	Y COORD. = 27
/	X COORD.=	53	Y COORD. = 32
8	X COORD.=	104	Y COORD = 57
ד ד 1	X COORD =	136	LINE 5 = 13 Y COORD.= 29 Y COORD.= 29 Y COORD.= 27 Y COORD.= 24 Y COORD.= 24 Y COORD.= 24 Y COORD.= 27 Y COORD.= 32 Y COORD.= 32 Y COORD.= 57 Y COORD.= 58 Y COORD.= 58 Y COORD.= 58 Y COORD.= 64 Y COORD.= 64
11	X COORD. =	136	I COURD. = 58
10	X COORD	100	I COURD = 64
17	X COORD -	300	V COORD = 64
		500	1 COORD 04

LINE NO. AND SLOPE OF EACH SEGMENT ARE:

						4			
					_				
	+0	.000	0.364	+0.0	000	+0.409	+2.250	+0.097	
	2 +99999 3 +99999								
			0.077	-0.1	200	+0.000			
			0.143	-0.1		+0.000	+0.429	+0.217	
	+0	.490 +	0.100	+0.0	000 +	99999.000	+0.000	+0.000	
	MIN. DEPTH C NO. OF RADIU								
	RADIUS DECRE								
	NO. OF CIRCL				- 1				
	ID NO. FOR F NO. OF BOTTO				= 1				
	FOR ZONE 1 LINE NO.= 1	LINE SEQ BEG. NO.			= 8				
	RADIUS DECRE								
	NO. OF CIRCL ID NO. FOR F				= 1				
	NO. OF BOTTO				-				
	FOR ZONE 2	LINE SEQ	UENCE	1 [′]					
	LINE NO.= 1	BEG. NO.	= 1	END NO.	= 8				
	FOR ZONE 2 LINE NO.= 3	LINE SEQ BEG. NO.		2 END NO.	= 1				
	RADIUS DECRE NO. OF CIRCI				•				÷.
	ID NO. FOR F				= 1				
	NO. OF BOTTO								
	FOR ZONE 3	LINE SEQ		1					
	LINE NO. = 1			END NO.	= 8				
	FOR ZONE 3 LINE NO.= 2			2 END NO.	_ 1		•		
	UNIT WEIGHT			END NO.	= 1		·		
	SOIL NO.	COHESION	ſ	FRIC. A	NGLE	UNIT WEIG	HT		
	1	10		23		125			
	2 . 3	10 · 10		23		125			
	4	.0001		23 0		125 135 .			
	_			•			ı		
	NO SEEPAGE USE GRID		•						
	NO. OF SLICE	CS= 20							
	NO. OF ADD.	RADII= 3							
	ANALYSIS BY			METHOD	(MTH	D=4)			
	NUMBER OF FO							• • •	
	INPUT, COORD.			1,2,AND	3 *				
	POINT 1 X CO	ORD. = 20	Y	COORD. =	140				
	POINT 2 X CO POINT 3 X CO	ORD. = 20	Y	COORD. = COORD. =	64				
•						•			
	X INCREMENT= NO. OF DIVIS			Y INCRE (NTS 1 A					
						-			

NO. OF DIVISIONS BETWEEN POINTS 2 AND 3= 4 ONLY F. S. AT EACH CENTER WILL BE PRINTED SLICES WILL BE SUBDIVIDED

AUTOMATIC SEARCH WILL FOLLOW AFTER GRID

FACTORS OF SAFETY BASED ON GRID

IN THE FOLLOWING TABLE WARNING INDICATES HOW MANY TIMES THE MAXIMUM RADIUS IS LIMITED BY THE END POINTS OF GROUND LINES AND CONVERGE INDICATES HOW MANY FACTORS OF SAFETY NOT CONVERGED

CENTER X	CENTER Y	NO.	OF C	IRCLE	LOWEST	WARNING
CONVERGE COORDINATE	COORDINATE	TOTAL	CRITI	C. RADIUS	F.S.	
20 0	140	1	1	127.577	2.433	· 0
20 0	124.8	1	1	112.591	2.621	0
20 0	109.6	1	1	97.670	3.049	0
20 0	94.40001	1、	1	82.850	3.845	0
20 0	79.20001	1	1	68.199	5.338	0
20 0	64.00002	1	1	53.825	8.835	0
40 0	140	1	1	132.197	2.079	0
40 0	124.8	1	1	117.799	2.134	0
40 0	109.6	1	1	103.514	2.191	0
40 0	94.40001	1	1	88.400	2.203	0
40 0	79.20001	1	1	73.200	2.306	0
40 0	64.00002	1	1	58.000	2.613	0
60 0	140	1	1	124.016	1.595	0
/ 0 ⁶⁰	124.8	1	1	112.391	1.689	0
60	109.6	1	1	101.714	1.840	0

IN THE FOLLOWING TABLE WARNING INDICATES HOW MANY TIMES THE MAXIMUM RADIUS IS LIMITED BY THE END POINTS OF GROUND LINES AND CONVERGE INDICATES HOW MANY FACTORS OF SAFETY NOT CONVERGED

•

FACTORS OF SAFETY BASED ON SEARCH

•								
АТ	POINT	(60	140)	RADIUS		124.016
тні	E MINIM	w	I FA	CTOR	01	F SAFETY	IS	1.595

c	60)	94.40001	1	1	88.400	1.911	0
C	60)	79.20001	1	1	73.200	1.914	0
C	60	64.00002	1	1	58.000	1.939	0
C	80	140	1	1	112.872	1.653	0
C	80)	124.8	1	1	99.959	1.644	0
(80	109.6	1	1	87.782	1.672	0
	80	94.40001	1	1	76.693	1.761	0
	80)	79.20001	1	1	67.230	1.961	0
	80 0	64.00002	1	1	55.196	2.262	0
	100 D	140	1	1	104.403	2.088	0
	100 0	124.8	1	1	90.288	2.055	0
	100 0	109.6	1	1	76.588	2.050	0
	100 0	94.40001	1	1	63.575	2.107	0
	100	79.20001	1	1	51.767	2.312	0
	100	. 64.00002	1	1	42.190	2.325	0
. • :	L .						

0

, , , , , , , , , , , , , , , , , , ,									
	J								
	CENTER X	CENTER Y	NO.	OF C	IRCLE	LOWEST	WARNING		
	CONVERGE COORDINATE	COORDINATE			C. RADIUS	F.S.			
	60 0	140	1	1	124.016	1.595	0		
	64 0	140	1	1	121.606	1.563	0		
	68 0	140	1	1	119.281	1.571	0		
	64 0	144	1	1	124.852	1.558	0		
7	64 0	148	1	1	128.141	1.555	0		
-	64 0	152	1	1	131.469	1.553	0	• •	
	64 0	156	1 ·	1	134.833	1.552	0		
	64 0	160	1	1	138.232	1.553	0		
	68 0	156	1	1	132.740	1.567	0		•
	60 0	156	1	1	137.011	1.540	0	,	
	56 0	156	1	1	139.270	1.611	0		
	60 0	160	1	ŀ	140.357	1.539	0		
	60 0	164	1	1	143.736	1.539	0		
	64 0	160	1	1.	138.232	. 1.553	0		
	56 0	160	1	1	142.562	1.595	0		
1	61 0	160	1.	1	139.818	1.542	0		
	59 0	160	1	1	140.901	1.536	0		
	_ 58 0	160	1	1	141.450	1.557	0		
	59 0	161	1	1	141.739	1.536	0		

.

0 1 1 142.580 1.536 0 143.422 1.536 144.267 1.536 142.888 1.539 . 0 143.962 1.549 0 . AT POINT (59 163) RADIUS 143.422

THE MINIMUM FACTOR OF SAFETY IS 1.536

SL. SOIL THRUST	SUMMAF SLICE	RY OF SLI BOTTOM	CE INFORM BOTTOM		MOST CRITI	CAL SLIP S RESISTING	SURFACE DRIVING
NO. NO. HEIGHT	WIDTH	TAN	SHEAR	NORMAL	SHEAR	FORCE	FORCE
0.000				0.000E+00			
1 1 1.743	6.754	-0.232 0	.741E+03	0.129E+04	0.366E+03	0.117E+04	530E+03
2 1 1.751	0.223	-0.206 0	.456E+02	0.137E+04	0.388E+03	0.715E+02	303E+02
3 1 2.684	6.976	-0.179 0	.184E+04	0.432E+04	0.123E+04	0.287E+04	108E+04
4 1 3.685	6.976	-0.129 0	.250E+04	0.794E+04	0.225Ė+04	0.388E+04	109E+04
5 1 4.598	6.976	-0.079 0	.303E+04	0.118E+05	0.336E+04	0.467E+04	835E+03
4.398 6 1 4.821	1.848	-0.048 0	.875E+03	0.128E+05	0.365E+04	0.135E+04	149E+03
4.821 7 1 5.361	5.128	-0.024 0	.270E+04	0.158E+05	0.448E+04	0.415E+04	229E+03
8 1 5.929	6.976	0.018 0	.435E+04	0.198E+05	0.563E+04	0.668E+04	0.286E+03
9 1 6.369	6.976	0.067 0	.502E+04	0.236E+05	0.671E+04	0.773E+04	0.123E+04
10 1 6.705	6.976	0.116 0	.559E+04	0.269E+05	0.763E+04	0.864E+04	0.239E+04
11 1 6.944	6.976	0.166 0	.606E+04	0.293E+05	0.831E+04	0.943E+04	0.374E+04
12 1	6.976	0.218 0	.644E+04	0.306E+05	0.870E+04	0.101E+05	0.522E+04
7.089 13 1	6.976	0.271 0	.674E+04	0.308E+05	0.875E+04	0.107E+05	0.681E+04
7.144 14 1	4.014	0.314 0	.398E+04	0.303E+05	0.861E+04	0.641E+04	0.466E+04
7.139 15 1	2.963	0.343 0	.292E+04	0.297E+05	0.843E+04	0.474E+04	0.372E+04
7.118 16 1 6.993	7.037	0.385 0	.658E+04	0.273E+05	0.777E+04	0.108E+05	0.939E+04

17	1	6.916	0.446	0.585E+04	0.241E+05	0.686E+04	0.983E+04	0.961E+04
6.730								
	1	6.976	0.512	0.512E+04	0.203E+05	0.577E+04	0.884E+04	0.956E+04
6.252								
19	1	6.976	0.585	0.425E+04	0.163E+05	0.464E+04	0.757E+04	0.893E+04
5.434								
20	1	1.132	0.630	0.601E+03	0.157E+05	0.446E+04	0.109E+04	0.134E+04
5.255								
21	1	5.845	0.671	0.390E+04	0.112E+05	0.317E+04	0.721E+04	0.923E+04
4.670								
22	1	6.976	0.754	0.365E+04	0.624E+04	0.177E+04	0.703E+04	0.949E+04
3.784								
23	1	7.050	0.857	0.244E+04	0.250E+04	0.709E+03	0.493E+04	0.696E+04
2.396								
24	4	6.903	0.979	0.629E-03	0.195E-02	0.000E+00	0.135E-02	0.250E+04
0.000								
		SUM					0.140E+06	0.911E+05

AT CENTER (59.000, 163.000) WITH RADIUS 143.422 AND SEISMIC COEFF. 0.00 FROM MODIFIED SPENCER METHOD, DEL ANGLE = 0.277 AND FACTOR OF SAFETY IS 1.536 REAME (ROTATIONAL EQUILIBRIUM ANALYSIS OF MULTILAYERED EMBANKMENTS) COPYRIGHT, CIVIL ENGINEERING SOFTWARE CENTER (MARCH 1994 VERSION) UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506

INPUT FILE NAME -RAMPBSUR.DAT

TITLE -RAMP B RETAINING WALL - W/ SURCHARGE FROM ROADWAY FILL (9 FT. EMBANKMENT NOT GIVEN SHEAR STRENGTH)

NO. OF STATIC AND SEISMIC CASES- 1

NO. OF NONCIRCULAR SLIP SURFACES= 0

CASE NO. 1 SEISMIC COEFFICIENT= 0

NO. OF BOUNDARY LINES= 5

NO. 1 2 3 4 5 6 7 8	OF POINTS X COORD.=- X COORD.= X COORD.= X COORD.= X COORD.= X COORD.= X COORD.= X COORD.=	ON BOUNDARY 100 0 22 84 128 136 198 300	LINE 1 = 8 Y COORD.= 14 Y COORD.= 14 Y COORD.= 6 Y COORD.= 6 Y COORD.= 24 Y COORD.= 42 Y COORD.= 48 Y COORD.= 48
NO.	OF POINTS	ON BOUNDARY	LINE 2 = 2 Y COORD.= 57 Y COORD.= 55
NO. 1 2			LINE 3 = 2 Y COORD.= 58 Y COORD.= 56
NO. 1 2 3 4 5			LINE 4 = 5 Y COORD. = 58 Y COORD. = 57 Y COORD. = 55 Y COORD. = 53 Y COORD. = 53
	OF POINTS X COORD.= X COORD.=	ON BOUNDARY 100 0 14 22 23 30 53 104 114 136 136 198 300	LINE 5 = 13 Y COORD. = 29 Y COORD. = 29 Y COORD. = 27 Y COORD. = 24 Y COORD. = 24 Y COORD. = 24 Y COORD. = 27 Y COORD. = 32 Y COORD. = 57 Y COORD. = 57 Y COORD. = 58 Y COORD. = 58 Y COORD. = 67 Y COORD. = 67 Y COORD. = 67

LINE NO. AND SLOPE OF EACH SEGMENT ARE:

1 +0.000 -0.364 +0.000 +0.409 +2.250 +0.097 +0.000 2 +99999.000 3 +99999.000 -0.077 4 -0.038 -0.200 +0.000 5 +0.000 -0.143 -0.375 +0.000 +0.429+0.217+0.490 +0.100+0.000 + 99999.000+0.000+0.000MIN. DEPTH OF TALLEST SLICE= 0 NO. OF RADIUS CONTROL ZONES= 3 RADIUS DECREMENT FOR ZONE 1 = 0NO. OF CIRCLES FOR ZONE 1 = 0ID NO. FOR FIRST CIRCLE FOR ZONE 1 = 1NO. OF BOTTOM LINES FOR ZONE 1 = 1FOR ZONE 1 LINE SEQUENCE 1 LINE NO. = 1BEG. NO. = 1 END NO. = 8RADIUS DECREMENT FOR ZONE 2 = 0NO. OF CIRCLES FOR ZONE 2 = 10ID NO. FOR FIRST CIRCLE FOR ZONE 2 = 1NO. OF BOTTOM LINES FOR ZONE 2 = 2FOR ZONE 2 LINE SEQUENCE 1 LINE NO. = 1BEG. NO. = 1 END NO. = 8FOR ZONE 2 LINE SEQUENCE 2 LINE NO. = 3BEG. NO. = 2 END NO. = 1RADIUS DECREMENT FOR ZONE 3 = 0NO. OF CIRCLES FOR ZONE 3 = 0ID NO. FOR FIRST CIRCLE FOR ZONE 3 = 1NO. OF BOTTOM LINES FOR ZONE 3 = 2FOR ZONE 3 LINE SEQUENCE 1 LINE NO. = 1BEG. NO. = 1 END NO. = 8FOR ZONE 3 LINE SEQUENCE 2 LINE NO.= 2 BEG. NO.= 2 END NO.= 1 UNIT WEIGHT OF WATER= 62.4 SOIL NO. COHESION FRIC. ANGLE UNIT WEIGHT 1 10 23 125 2 10. 23 125 3 10 23 125 4 .0001 0 135 NO SEEPAGE USE GRID NO. OF SLICES= 20 NO. OF ADD. RADII= 3 ANALYSIS BY MODIFIED SPENCER METHOD (MTHD=4) NUMBER OF FORCES (NFO) = 0SOFT SOIL NUMBER (SSN) = 0 INPUT COORD. OF GRID POINTS 1,2, AND 3 POINT 1 X COORD. = 20 Y COORD. = 140POINT 2 X COORD. = 20 Y COORD. = 64POINT 3 X COORD. = 100 Y COORD. = 64X INCREMENT = 4Y INCREMENT= 4 NO. OF DIVISIONS BETWEEN POINTS 1 AND 2= 5

NO. OF DIVISIONS BETWEEN POINTS 2 AND 3= 4 ONLY F. S. AT EACH CENTER WILL BE PRINTED SLICES WILL BE SUBDIVIDED

AUTOMATIC SEARCH WILL FOLLOW AFTER GRID

FACTORS OF SAFETY BASED ON GRID

IN THE FOLLOWING TABLE WARNING INDICATES HOW MANY TIMES THE MAXIMUM RADIUS IS LIMITED BY THE END POINTS OF GROUND LINES AND CONVERGE INDICATES HOW MANY FACTORS OF SAFETY NOT CONVERGED

CENTER X CONVERGE	CENTER Y	NO.	OF C	IRCLE	LOWEST	WARNING
COORDINATE	COORDINATE	TOTAL	CRITI	C. RADIUS	F.S.	
20 0	140	1	1	127.577	2.433	0
20 0	124.8	1	1	112.591	2.621	0
20 0	109.6	. 1	1	97.670	3.049	0
20 0	94.40001	1	1	82.850	3.845	0
20 0	79.20001	1	1	68.199	5.338	0
20 0	64.00002	1	1	53.825	8.835	0
40 0	140	1	· 1	132.197 ·	2.006	0
40 0	124.8	1	1	117.799	2.090	0
40 0	109.6	1	1	103.514	2.191	0
40 0	94.40001	1	1	88.400	2.203	0
40 0	79.20001	1	1	73.200	2.306	0
40 0	64.00002	1	1	58.000	2.613	0
60 0	140.	1	1	124.016	1.517	0
`60 0	124.8	1	1	112.391	1.617	0
60	109.6	1	1	101.714	1.775	0

IN THE FOLLOWING TABLE WARNING INDICATES HOW MANY TIMES THE MAXIMUM RADIUS IS LIMITED BY THE END POINTS OF GROUND LINES AND CONVERGE INDICATES HOW MANY FACTORS OF SAFETY NOT CONVERGED

FACTORS OF SAFETY BASED ON SEARCH

AT	POINT	(60	140)	RADIUS		124.016
тне	E MININ	IUM	FA	CTOR	OF	SAFETY	IS	1.517

0	80	140	1	T	112.872	1.529	0
0	80	124.8	1	1	99.959	1.534	0
0	80	109.6	1	1	87.782	1.575	. 0
0	80	94.40001	1	1	76.693	1.679	0
0	80	79.20001	1.	1	67.230	1.897	. 0
0	80	64.00002	1	1	55.196	2.262	0
0	100	140	1	1	104.403	1.832	0
0	100	124.8	1	1	90.288	1.811	0
0	100	109.6	1	1	76.588	1.821	0
0	100	94.40001	1	1	63.575	1.896	0
0	100	79.20001	1	1	51.767	2.122	0
1	100	64.00002	1	1	42.190	1.832	0
	TPOINT (60	140) PADTUS		124 0	16		

1

1

1

1

88.400

73.200

58.000

112.872

1.872

1.914

1.939

1.529

0

0

0

0

1

1

1

1

0

0

0

0

60

60

60

80

94.40001

79.20001

64.00002

CENTER X	CENTER Y	NO	. OF CI	RCLE	LOWEST	WARNING
CONVERGE COORDINATE	COORDINATE	TOTAL	CRITIC	. RADIUS	F.S.	
60 0	. 140	1	1	124.016	1.517	0
64 . 0	140	1	1	121.606	1.481	0
68 0	140	1	1	119.281	1.481	0
72 0	140	1	1	117.047	1.485	0
68 0	144	1	1	122.589	1.476	0
68 0	148	1	1	125.936	1.472	0
68 0	152	1	1	129.321	1.469	0
68 0	156	1	1	132.740	1.468	0
68 0	160	1	1	136.191	1.468	0
68 0	164	1	1	139.671	1.469	0
72 0	160	1	1	134.239	1.485	0
64 0	160	1	1	138.232	1.460	0
60 0	160	1	1	140.357	1.455	0
56 0	160	1	1	142.562	1.511	0
60 0	164	1	1	143.736	1.453	0
60 0	168	1	1	147.146	1.452	0
60 0	172	1	1	150.586	1.451	0
60 0	176	1	1	154.052	1.452	0
64 0	172	1	1	148.607	1.460	0

.

. '

•

,						
56 0	172	1	1	152.643	1.471	0
61 0 .	172	1	1	150.083	1.454	0
59 0	172	1	1	151.093	1.450	0
58 0	172	1	1	151.605	1.448	0
57 0	172	1	1	152.122	1.456	0
58 0	173	1	1	152.463	1.448	0
58 0	174 [.]	1	1	153.323	1.448	0
58 0	175	1	1.	154.185	1.448	0
59 0	, 174	1	1	152.817	1.450	0
57 0	174	1	1	153.834	1.445	0
56	174	1	1	154.350	1.466	0
0 57	175	1	1	154.693	1.445	0
0 , 57	176	1	1	155.554	1.445	0
0 58	175	1	1	154.185	1.448	0
0 56	175	1	1	155.206	1.464	0
0	2.5	1	*	199.200	T.404	U
AT POINT (57	175) RADIUS		154.69	3		

THE MINIMUM FACTOR OF SAFETY IS 1.445

4

SUMMARY OF SLICE INFORMATION FOR MOST CRITICAL SLIP SURFACE SL. SOIL SLICE BOTTOM BOTTOM INTERSLICE FORCE RESISTING DRIVING THRUST NO. NO. WIDTH TAN SHEAR NORMAL SHEAR FORCE FORCE HEIGHT 0.000E+00 0.000 1 1 6.863 -0.201 0.772E+03 0.124E+04 0.376E+03 0.114E+04 -.454E+03 1.730

21 1.745	0.368	-0.176	0.777E+02	0.136E+04	0.413E+03	0.114E+03	420E+02
3 1	7.231	-0.150	0.197E+04	0.428E+04	0.130E+04	0.287E+04	927E+03
2.720 4 1	7.231	-0.103	0.267E+04	0.784E+04	0.238E+04	0.388E+04	883E+03
3.752 5 1	7.231	-0.055	0.323E+04	0.117E+05	0.354E+04	0.467E+04	588E+03
4.695 6 1	0.940	-0.029	0.452E+03	0.122E+05	0.369E+04	0.654E+03	435E+02
4.809 71	6.291	-0.006	0.341E+04	0.156E+05	0.474E+04	0.494E+04	633E+02
5.468 81	7.231	0.038	0.473E+04	0.198E+05	0.599E+04	0.684E+04	0.615E+03
6.047 91	7.231	0.085	0.546E+04	0.236E+05	0.716E+04	0.793E+04	0.161E+04
6.504 10 1	7.231	0.133	0.608E+04	0.270E+05	0.817E+04	0.887E+04	0.281E+04
6.860 11 1	7.231	0.181	0.659E+04	0.295E+05	0.893E+04	0.968E+04	0.419E+04
7.122 12 1	7.231	0.231	0.70 <u>0E</u> +04	0.310E+05	0.939E+04	0.104E+05	0.569E+04
7.290 13 1	7.231	0.283	0.732E+04	0.313E+05	0.948E+04	0.110E+05	0.729E+04
7.368 14 1	1.325	0.314	0.137E+04	0.312E+05	0.946E+04	0.207E+04	0.151E+04
7.373	5.906	0.341	0.594E+04	0.303E+05	0.920E+04	0.907E+04	0.714E+04
7.357 16 1	4.094	0.380	0.390E+04	0.293E+05	0.888E+04	0.603E+04	0.521E+04
7.299 17 1	3.137	0.409	0.284E+04	0.283E+05	0.858E+04	0.444E+04	0.407E+04
7.221 18 1	7.231	0.452	0.596E+04	0.254E+05	0.771E+04	0.945E+04	0.940E+04
6.896 19 1	7.231	0.516	0.506E+04	0.221E+05	0.670E+04	0.824E+04	0.902E+04
6.277 20 1	4.402	0.572	0.260E+04	0.200E+05	0.607E+04	0.433E+04	0.508E+04
5.687 21 1	2.829	0.609	0.239E+04	0.179E+05	0.542E+04	0.405E+04	0.496E+04
5.457 22 1	7.231	0.663	0.534E+04	0.124E+05	0.376E+04	0.926E+04	0.119E+05
4.699 23 1 3.554	7.231	0.748	0.412E+04	0.743E+04	0.225E+04	0.743E+04	0.101E+05
24 1 2,602	3.955	0.823	0.167E+04	0.518E+04	0.157E+04	0.313E+04	0.442E+04
2.802 25 4 2.374	3.276	0.875	0.301E-03	0.260E+04	0.790E+03	0.579E-03	0.257E+04
2.374 26 4 0.000	7.231	0.960	0.694E-03	732E-03	0.000E+00	0.139E-02	0.260E+04
0.000	SUM					0.140E+06	0.972E+05

.

•

.

AT CENTER (57.000, 175.000) WITH RADIUS 154.693 AND SEISMIC COEFF. 0.00 FROM MODIFIED SPENCER METHOD, DEL ANGLE = 0.294 AND FACTOR OF SAFETY IS 1.445

.

REAME (ROTATIONAL EQUILIBRIUM ANALYSIS OF MULTILAYERED EMBANKMENTS) COPYRIGHT, CIVIL ENGINEERING SOFTWARE CENTER (MARCH 1994 VERSION) UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506

INPUT FILE NAME -RAMPBSUR.DAT

TITLE -RAMP B RETAINING WALL - W/ SURCHARGE FROM ROADWAY FILL (9 FT. EMBANKMENT FILL GIVEN SHEAR STRENGTH)

NO. OF STATIC AND SEISMIC CASES- 1

NO. OF NONCIRCULAR SLIP SURFACES= 0

CASE NO. 1 SEISMIC COEFFICIENT= 0

NO. OF BOUNDARY LINES= 5

NO. 1 2 3 4 5 6 7 8	OF POINTS X COORD.=- X COORD.= X COORD.= X COORD.= X COORD.= X COORD.= X COORD.= X COORD.=	ON BOUNDARY 100 0 22 84 128 136 198 300	LINE 1 = 8 Y COORD.= 14 Y COORD.= 14 Y COORD.= 6 Y COORD.= 6 Y COORD.= 24 Y COORD.= 42 Y COORD.= 48 Y COORD.= 48
NO.	OF POINTS	ON BOUNDARY	LINE $2 = 2$
1	X COORD.=	162	Y COORD. = 57
2	X COORD.=	162	Y COORD. = 57 Y COORD. = 55
NO.	OF POINTS	ON BOUNDARY	LINE $3 = 2$
2	X COORD	126	Y COORD. = 58 Y COORD. = 56
2	A COORD	130	I COORD. = 56
NO.	OF POINTS	ON BOUNDARY	LINE $4 = 5$
1	X COORD.=	136	Y COORD. = 58
2	X COORD. =	162	Y COORD. = 57
3	X COORD. =	188	Y COORD = 55
3 4	X COORD. =	198	Y COORD = 53
5	X COORD. =	300	Y COORD. = 58 Y COORD. = 57 Y COORD. = 57 Y COORD. = 55 Y COORD. = 53 Y COORD. = 53
-			1 000102. 00
NO.	OF POINTS	ON BOUNDARY	LINE $5 = 13$
1	X COORD.=-	·100	Y COORD. = 29^{-1}
2	X COORD.=	0	Y COORD. = 29
3	X COORD.=	14	Y COORD. $= 27$
4	X COORD. =	22	Y COORD. = 24
5	X COORD.=	23	Y COORD. = 24
6	X COORD.=	30	Y COORD. = 27
7	X COORD.=	53	Y COORD. = 32
8	X COORD. =	104	Y COORD.= 57
9	X COORD.=	114	Y COORD. = 58
10	X COORD.=	136	Y COORD. = 58
11	X COORD. =	136	Y COORD.= 67
12	X COORD.=	198	Y COORD. = 67
13	X COORD.=	300	LINE 5 = 13 Y COORD.= 29 Y COORD.= 27 Y COORD.= 27 Y COORD.= 24 Y COORD.= 24 Y COORD.= 27 Y COORD.= 32 Y COORD.= 32 Y COORD.= 57 Y COORD.= 58 Y COORD.= 58 Y COORD.= 58 Y COORD.= 67 Y COORD.= 67 Y COORD.= 67

LINE NO. AND SLOPE OF EACH SEGMENT ARE:

.

1	+0.000	-0.364	+0.000	+0.409	+2.250	+0.097	
. .	+0.000						
	99999.000 99999.000						
4		-0.077	-0.200	+0.000		-	
5		-0.143	-0.375		+0.429	+0.217	
	+0.490	+0.100	+0.000 +	-99999.000	+0.000	+0.000	
	PTH OF TALLE RADIUS CONTF						
NO. OF ID NO.	DECREMENT FO CIRCLES FOR FOR FIRST CI BOTTOM LINES	ZONE 1 = 0 RCLE FOR ZO	ONE 1 = 1				
	E 1 LINE .= 1 BEG.		ND NO.= 8				
	DECREMENT FO					·	
ID NO.	CIRCLES FOR FOR FIRST CI BOTTOM LINES	RCLE FOR ZO	ONE 2 = 1				
	E 2 LINE						
FOR ZON	0.= 1 BEG. 0.= 2 LINE 0.= 3 BEG.	SEQUENCE 2	ND NO.= 8 ND NO.= 1				
NO. OF ID NO.	DECREMENT FO CIRCLES FOR FOR FIRST CI BOTTOM LINES	$\begin{array}{rcl} \text{ZONE } 3 &= & 0 \\ \text{RCLE FOR } 2 \end{array}$	ONE 3 = 1		,	I	
FOR ZON	E 3 LINE	SEQUENCE 1				•	
).= 1 BEG.		ND NO. $= 8$				
FOR ZON LINE NO UNIT WE			ND NO.= 1				
SOIL NO	COHES	TON F	RIC. ANGLE	UNIT WEIG	ሀጥ		•
1	. 10		23	125			
2	10		23	125			
3 4	10 0		23 38	125 135			
NO. OF ANALYSI NUMBER SOFT SO		3 2D SPENCER 1 1FO) = 0 3SN) = 0	METHOD (MT				
	X COORD. = 2						
POINT 2	X COORD. = 2	.0 Y C	OORD. = 140 OORD. = 64				
	X COORD. = 1						

.

. .

NO. OF DIVISIONS BETWEEN POINTS 2 AND 3= 4 ONLY F. S. AT EACH CENTER WILL BE PRINTED SLICES WILL BE SUBDIVIDED

AUTOMATIC SEARCH WILL FOLLOW AFTER GRID

FACTORS OF SAFETY BASED ON GRID

IN THE FOLLOWING TABLE WARNING INDICATES HOW MANY TIMES THE MAXIMUM RADIUS IS LIMITED BY THE END POINTS OF GROUND LINES AND CONVERGE INDICATES HOW MANY FACTORS OF SAFETY NOT CONVERGED

CENTER X	CENTER Y	NO.	OF C	IRCLE	LOWEST	WARNING
CONVERGE COORDINATE	COORDINATE	TOTAL	CRITI	C. RADIUS	F.S.	
20 0	140	1	1	·127.577	2.433	0
20 0	124.8	1	1	112.591	2.621	0
20 0	109.6	1	1	97.670	3.049	0
20 0	94.40001	1	1	82.850	3.845	0
20 0	79.20001	1	1	68.199	5.338	0
20 0	64.00002	1	1	53.825	8.835	0
4 0 0	140	1	1	132.197	2.040	0
40 0	124.8	1	1	117.799	2.121	0
40 0	109.6	1	1	103.514	2.191	0
40 0	94.40001	1	1	. 88.400	2.203	0
40 0	79.20001	1	1	73.200	2.306	0
40 0	64.00002	1	1	58.000	2.613	0
60 0	140	1	1	124.016	1.552	0
60 0	124.8 [·]	i	1	112.391	1.645	0
60	109.6	1	1	101.714	1.797	0

U							
0	60	94.40001	1	1	88.400	1.890	0
0	60	79.20001	1	1 .	73.200	1.914	0
0	60	64.00002	1	1	58.000	1.939	0
0	80	140	1	1	112.872	1.591	0
0	80	124.8	1	1	99.959	1.583	0
0	80	109.6	1	1	87.782	1.611	0
0	80	94.40001	1	1	76.693	1.705	0
0	80	79.20001	1	1	67.230	1.918	0
0	80	64.00002	1	1	55.196	2.262	0
0	100	140	1 .	1	104.403	1.956	0
0	100	124.8	1	1	90.288	1.913	0
0	100	109.6	1	1	76.588	1.902	0
0	100	94.40001	1	1	63.575	1.957	0
0	100	79.20001	1	1	51.767	2.167	0.
0	100	64.00002	1	1	42.190	2.806	0

AT POINT (60 140) RADIUS 124.016 THE MINIMUM FACTOR OF SAFETY IS .1.552

FACTORS OF SAFETY BASED ON SEARCH

IN THE FOLLOWING TABLE WARNING INDICATES HOW MANY TIMES THE MAXIMUM RADIUS IS LIMITED BY THE END POINTS OF GROUND LINES AND CONVERGE INDICATES HOW MANY FACTORS OF SAFETY NOT CONVERGED

0

•

CENTER X CONVERGE	CENTER Y	NO.	OF C	IRCLE	LOWEST	WARNING
COORDINATE	COORDINATE	TOTAL C	RITI	C. RADIUS	F.S.	
60 0	140	1	1	124.016	1.552	0
64 0	140	1	1	121.606	1.520	0
68 0	140	1	1	119.281	1.524	0
64 0	144	1	1	124.852	1.515	0
64 0	148	1	1	128.141	1.512	0
64 0	152	1	1	131.469	1.511	0
64 0	156	1	1	134.833	1.511	0
64 0	160	1.	1	138.232	1.512	0
68 0	156	1	1	132.740	1.522	0
60 0	156	1	1	137.011	1.501	0 4
56 0	156	1	1	139.270	1.569	0
60 0	160	1	1	140.357	1.501	0
60 0	164	1	1	143.736	1.501	0
64 0	160	1	1	138.232	1.512	0
56 0	160	1	1	142.562	1.554	0.
61 0	160	1	1	139.818	1.503	0
59 0	160	1	1	140.901	1.498	0
58 0	160	1	1	141.450	1.517	0
59 0	161	1	1	141.739	1.498	0

•

•

.

.

.

-

59 159 1 1 140.064 1.505 0 0

AT POINT (59 160) RADIUS 140.901

THE MINIMUM FACTOR OF SAFETY IS 1.498

SL. SOÍL	SUMMAF SLICE	RY OF SLI BOTTOM	CE INFORM BOTTOM		MOST CRITI ICE FORCE	CAL SLIP S RESISTING	URFACE DRIVING
THRUST NO. NO. HEIGHT	WIDTH	TAN	SHEAR	NORMAL	SHEAR	FORCE	FORCE
•				0.000E+00			
0.000 1 1 0.233	0.838	-0.268 0	.115E+02	0.162E+02	0.469E+01	0.178E+02	441E+01
2 1	6.297	-0.240 0	.747E+03	0.132E+04	0.382E+03	0.115E+04	537E+03
1.690 3 1 1.735	0.703	-0.213 0	.155E+03	0.158E+04	0.458E+03	0.237E+03	103E+03
4 1 2.670	6.431	-0.186 0	.183E+04	0.453E+04	0.131E+04	0.278E+04	109E+04
2.870 5 1 · 3.751	7.134	-0.136 0	.272E+04	0.850E+04	0.246E+04	0.412E+04	122E+04
6 1 4.725	7.134	-0.085 0	.330E+04	0.128E+05	0.369E+04	0.496E+04	942E+03
4.725 7 1 5.013	2.300	-0.051 0).116E+04	0.141E+05	0.408E+04	0.174E+04	202E+03
81	4.834	-0.025 0	.270E+04	0.171E+05	0.493E+04	0.404E+04	237E+03
5.542 9 1	7.134	0.017 0	0.468E+04	0.215E+05	0.620E+04	0.701E+04	0.280E+03
6.150 10 1	7.134	0.068 0).540E+04	0.256E+05	0.739E+04	0.810E+04	0.130E+04
6.617 11 1	7.134	0.119 0).599E+04	0.290E+05	0.839E+04	0.904E+04	0.257E+04
6.971 12 1	7.134	0.171 0).648E+04	0.316E+05	0.913E+04	0.985E+04	0.402E+04
7.216 13 1	7.134	0.225 0	0.687E+04	0.330E+05	0.954E+04	0.105E+05	0.563E+04
7.357 14 1	7.134	0.281 0	0.717E+04	0.331E+05	0.958E+04	0.112E+05	0.733E+04
7.396 15 1	3.360	0.323 (0.345E+04	0.327E+05	0.945E+04	0.544E+04	0.406E+04
7.381 16 1	3.774	0.353 (0.383E+04	0.318E+05	0.920E+04	0.609E+04	0.492E+04
7.337 17 1	6.226	0.396 ().599E+04	0.297E+05	0.858E+04	0.965E+04	0.860E+04
7.184 18 1	0.909	0.428 (D.835E+03	0.293E+05	0.847E+04	0.136E+04	0.129E+04
7.151 19 1	7.134				0.746E+04	•	
6.776 20 1		-			0.630E+04		
6.106 21 1	6.823				0.515E+04		
5.019 22 1					0.515E+04		
4.986	0.912	0.034 (5.204ETVJ	0.1/36+03	0.JU/E+U4	0.4/28+03	0.3338+03

7.134 0.701 0.546E+04 0.111E+05 0.320E+04 0.998E+04 0.131E+05 23 1 4.111 7.134 0.800 0.424E+04 0.516E+04 0.149E+04 0.813E+04 0.113E+05 24 1 3.091 25 4.836 0.896 0.208E+04 0.190E+04 0.550E+03 0.419E+04 0.605E+04 1 2.941 26 4 2.298 0.960 0.119E+04 0.118E+04 0.341E+03 0.248E+04 0.238E+04 2.732 27 4 7.134 1.055 0.167E+04 0.134E-02 0.000E+00 0.365E+04 0.361E+04 0.000 SUM 0.152E+06 0.102E+06

AT CENTER (59.000, 160.000) WITH RAILIUS 140.901 AND SEISMIC COEFF. 0.00 FROM MODIFIED SPENCER METHOD, DEL ANGLE = 0.282 AND FACTOR OF SAFETY IS 1.498

DESIGN SUMMARY TABLES Retaining Wall Design Recommendations Foundation Design Recommendation

SUMMARY TABLE I

SUMMARY OF RAMP B RETAINING WALL DESIGN RECOMMENDATIONS

Lateral Earth	Lateral Earth Pressure Coefficients (Gravel Backfill)							
Ki	Coefficient	Equivalent Fluid Pressure						
K _a (Active)	0.28	5.72 kPa/m depth						
K _o (At Rest)	0.44	8.98 kPa/m depth						
K _p (Passive)	3.57	72.93 kPa/m depth						

Lateral Earth Pressur	re Coefficients (Silty	y Clay / In-situ Soil Backfill)
Ki	Coefficient	Equivalent Fluid Pressure
K _a (Active)	0.49	9.24 kPa/m depth
K _o (At Rest)	0.65	12.26 kPa/m depth
K _p (Passive)	2.04	38.49 kPa/m depth

When utilizing the aforementioned pressure coefficients, the granular backfill must occupy a zone between the wall and a line extending upward and away from the base of the wall at a 45° angle.

SUMMARY TABLE II

Wall/Foundati on Type	Bearing Stratum	Allowable Side Shear	Allowable Point Bearing	Allowable Axial Pile Load Per Pile	Installation Method	Pile Tip Reinforcement	Allowable Bearing Pressure	Modulus of Subgrade Reaction	Coefficient of Friction
M.S.E. w/ Spread Foundation	Gravel filled trench / gray sandy clay	N/A	N/A	N/A	N/A	N/A	190 kPa	27 N/cm	0.58
Concrete Wall on drilled piers	Weathered Shale/Hard Residual Silty Clay	35 kPa	475 kPa	N/A	Pre-drilled H- Piles or small diameter drilled pier	N/A	N/A	N/A	N/A

•

SUMMARY OF FOUNDATION DESIGN RECOMMENDATIONS

RESOURCE

PREDIMINARY SUBSICITACE INVESTIGATION REPORT

ATH/MEC-033-30-980/0.000 North Section: from Station 294534 to 34+134 Athens County, Ohio

Prepared For:

Sverdrup Associates, Inc. 50 West Broad Street, Suite 1700 Columbus, Ohio 43214

Prepared By:

Resource International, Inc. 281 Enterprise Drive Westerville, Ohio 43081

RI# W-7139

May, 1998

the court

WORLDWIDE PROFESSIONAL SERVICES ORGANIZATION

RESOURCE INTERNATIONAL

Engineering Consultants

Chil Engineering Surveying and Mapping Testing Laboratories Geotechnical/Environmental Environmental Drilling Construction Management System Design and Software Development

May 22, 1998

Mr. Terry Winebrenner, P.E. Sverdrup Associates, Inc. 50 West Broad Street, Suite 1700 Columbus, Ohio 43214

Re: Preliminary Subsurface Investigation ATH/MEG-033-30.980/0.000 PID 17974 North Section, from Station 29+534 to 34+134 RI #W-7139

Dear Mr. Winebrenner:

We are pleased to submit this preliminary subsurface investigation report for the north section of the referenced project, ATH/MEG-033-30.980/0.000. In order to expedite the delivery of the subsurface investigation report for this project, the report has been divided into four (4) parts, north, south, north-central, and south-central. Engineering logs have been prepared and are attached to this report along with results of laboratory testing. Full size plan and profile sheets are being prepared, and will be submitted as a single submission for the entire project. For reference purposes, half-size plan and profile sheets for this section are being included in this submittal.

If you have any questions concerning the subsurface investigation or this report, please call.

Sincerely,

and Ollam

RESOURCE INTERNATIONAL. INC.

MATT Ka

Christopher Merklin, P.E. Director - Geotechnical Engineering

- -----

P.E. G. Philip Half Vice President

Corporate Office: 281 Enterprise Dr. • Westerville, OH 43081 • Telephone: (614) 885-1959 • Fax: (614) 885-3341 • www.ResourceInternational.com

- -----

TABLE OF CONTENTS

1.0	INTRODUCTION	1-4
	1.1 Existing Land Usage	1
	1.2 Site Geology	1-3
	1.2.1 Conemaugh Formation	2-3
	1.2.2 Monongahela Formation	3
	1.3 Cut/Fill Sections	3-4
2.0	SUBSURFACE INVESTIGATION	4-6
3.0	SUBSURFACE PROFILE	6-8
	3.1 Bedrock	7-8
	3.2 Groundwater	8
4.0	CONCLUSIONS AND RECOMMENDATIONS	8-13
	4.1 Pavement Design	8-9
	4.2 Embankment Design	9
	4.3 Backslope Design	10-11
	4.4 Construction Considerations	11-13
5.0	LIMITATIONS OF STUDY	13-14

APPENDIX

- Appendix A State Geology. Site Geology
- Appendix B Description of Soil Terms
- Appendix C Boring Logs: B-1 through B-39
- Appendix D One-Dimensional Consolidation Test (B-14, B-26, B-30)

1.0 INTRODUCTION

This report is a presentation of the subsurface investigation performed for ATH/MEG-033-30.980/0.000 - north section. The north section limits, for the purpose of this report, are between Stations 29+534 and 34+134.

The subject project is the design of a "super two" lane highway system linking the four-lane existing portion of USR 33 at Athens with the existing four-lane portion of USR 33 at Darwin. The total project length is 19.858 kilometers. The northern two-thirds of the alignment is within Athens County, traversing Athens, Alexander and Lodi Townships. The southern one-third (of the alignment) is within Bedford Township in Meigs County.

1.1 EXISTING LAND USAGE

The land usage along the entire alignment is generally described as alternating forest and pasture with very few cultivated fields. Typically, the valleys and steeply sloping hills are tree covered, and the flatter sidehills and hilltops are pasture. The field observations along Corridor A, as presented in the Geologic Study performed for Feasible Corridors A and B, are indicative of the land usage along the alignment in this northern section. Because of the relief, the area is well drained with creeks at the bottom of every valley and drainage paths down the sides of most of the hills. Drainage paths are easily identifiable by the erosion of the easily erobable surficial red clays and/or mudstone/shale. The alignment is traversed several times, typically along ridge tops, by county and township roads, with rural residences and farms scattered throughout.

The steep slopes and flatter hilltops show evidence of movement which is very common for this area. Many of the pastures exibit hummocky terrain. Many signs of predominantly small surficial slumps have been observed on the steep slopes and near the valley bottoms, along creek beds. Much of the exposed red soils and rock (red beds) in the valleys and on the slopes show evidence of severe decomposition from erosion.

Coal mines are common in southeast Ohio. It was determined in the Geologic Study that there are one abandoned underground mine and three reclaimed strip mines within the Feasible Study Corridors, none of which are present within this northern section of the alignment.

1.2 SITE GEOLOGY

Both Athens County and Meigs County lie entirely within the unglaciated section of the Allegheny Plateau. The area is maturely dissected, well-drained and is characterized by steep-sides. "V" shaped valleys and narrowly rounded hilltops.

Elevations along the alignment range from approximately 200 meters at the southern most portion, at Darwin, to approximately 300 meters in the northern portion.

The uplands are covered with a thin layer of residual soils; soils formed in place by the disintegration and decomposition of rocks and the consequent weathering of the mineral materials. Soils consist predominantly of sands and clays, very similar to the shales, mudstones, and sandstones on which they lie. The transition to bedrock is very subtle, and in most cases, not clearly identifiable, unless the parent rock is sandstone, siltstone, or limestone.

Soils in the valleys are generally described as colluvial (consisting of alluvial in part) soils overlying residual soils. Colluvial soils (colluvium) are loose and incoherent deposits typically found at the foot of a slope or cliff, brought there chiefly by gravity. Alluvial soils (Alluvium) are (intermixed) water-laid deposits. Typically, soils in the valley run deeper than on the slopes and hilltops, however, the soils are similar to those on the hills, consisting predominantly of sand and clay, and the transition to bedrock is equally difficult to identify.

Both Athens and Meigs Counties, along the alignment, are comprised of bedrock of Pennsylvania Age. The rock strata in this area of southeastern Ohio dips gently to the east-southeast at a rate of approximately 6 meters per kilometer. The top of the Conemaugh formation is estimated to be between elevations 260 and 270 meters at the north end of the alignment. It slopes downward to the eastsoutheast until it is entirely below any influence on the subject alignment at approximately Station 40+250.

The bedrock was deposited under regular succession of varying environmental conditions that were repeated many times. As a result, the rocks show a definite succession of strata representing one sequence of changing sedimentary conditions. A sequence of strata matching one depositional cycle is termed a cyclothem. Cyclothems are typically associated with unstable shelf or interior basin conditions in which alternate marine transgressions and regressions occur. The non-marine sediments occur in the lower half of the cyclothem and the marine sediments in the upper half. In Ohio, each cyclothem is usually defined as the series between a coal-to-coal interval. The lithology of the rocks that comprise the Pennsylvania System in Ohio consist of alternating clay, coal, shale, limestone and sandstone beds. These beds lack a real persistence and vary greatly in thickness over a short distance.

1.2.1 CONEMAUGH FORMATION

The literature defines the upper boundary of the Conemaugh Formation as the top of the Upper Freeport No. 7 coal and the lower boundary being the base of the No.

8 Pittsburgh coal. The lithology of the Conemaugh consists of sandstone, sandy shale, shale, limestone, coal, under-clay and varicolored claystones (clay-shales, mudstones, etc.) referred to as "Red beds". Bedded marine shales and some thin marine limestone are present in the lower part of the series, whereas the upper part contains only non-marine strata, including abundant red calcareous claystones. Coal seams of minable thickness occur throughout the study area. The Conemaugh Formation has a reported thickness of approximately 108 meters.

1.2.2 MONONGAHELA FORMATION

The Monongahela Formation overlies the Conemaugh Formation. Its lower boundary is defined as the base of the No. 8 Pittsburgh coal and the upper limit is the top of the No. 1 Waynesburg coal bed. The lithology of the Monongahela Formation is similar to the upper portion of the Conemaugh Formation. The most significant difference is the occurrence of minable coal beds in the Monongahela in contrast to the thin coal beds of the Conemaugh only available by strip mining.

The Monongahela Formation is approximately 76 meters thick. A full thickness above drainage is displayed in Lodi and Bedford Townships. Athens and Alexander Townships show only parts of the Monongahela Series above drainage.

1.3 CUT/FILL SECTIONS

The entire alignment will be constructed on alternating, massive cuts (hilltops) and fills (valleys). The cut and fill sections projected for the north section are presented in Table 1 (based on centerline profiles).

Begin Station	End Station	Earthwork	Maximum Depth (Cut or Fill)
29+600	30+196	Cut	24 meters
30+196	30+248	Fill	J meter
30+248	30+634	Cut	35 meters
30+634	30+885	Fill	18 meters
30+885	31+056	Cut	21 meters
31+056	31+366	Fill	24 meters
31+366	31+497	Cut	11 meters
31+497	31+906	Fill	42 meters

Table 1: Cut/Fill Sections

31+906	31+962	Cut	7 meters
31+962	32+290	Fill	32 meters
32+290	32+420	Cut	11 meters
32+420	33+283	Fill	36 meters
33+283	33+322	Cut	3 meters
33+322	33+866	Fill	25 meters
33+866	33+970	Cut	9 meters
33+970	34+204	Fill	19 meters

2.0 SUBSURFACE INVESTIGATION

Forty (40) engineering test borings, designated B-1 through B-40, were planned for the north section. At the time of this report, all borings except B-40 have been drilled. B-40 will be drilled as soon as access is granted by the landowner (Brad Harter).

The boring locations were specified (station and offset) by representatives of Resource International, Inc. (RI), based on the horizontal and vertical alignment current in December, 1997. It is noted that both the horizontal and vertical alignments have changed since the development and execution of this boring plan, thus, many of the borings extend to awkward depths and/or are located well off the alignment. The boring locations were converted to Project Coordinates and field located by representatives of Sverdrup Associates (Sverdrup), Canter Surveying, with the use of Global Positioning Satelite (GPS). Borings in cut sections were drilled along the alignment and left and/or right of centerline (within the proposed backslopes) to identify the soil and rock conditions in the cut sections and at the proposed subgrade. Borings in fill sections were drilled to a depth equivalent to the height of the proposed embankment or spoon refusal in bedrock, whichever was shallower.

All but four (4) of the borings in the north section were drilled with either a truckmounted or ATV-mounted rotary drilling rig, utilizing hollow-stem continuous flight augers to advance the holes in soil. The remaining four (4) borings were advanced with a Geoprobe Model 4220, a vehicle-mounted, hydraulically-powered machine that utilizes static force and percussion to advanced a 122-centimeter long by 5.1-centimeter diameter soil sampler.

Where borings extended into the bedrock (after encountering split-spoon sample refusal), a double tube diamond bit core barrel (both wireline and conventional

equipment) was used to core (the bedrock). Coring produced NX-sized (5.3centimeter diameter) cores, from which the type of rock and its geological characteristics were determined.

For the borings advanced using a truck mounted rig, Standard Penetration testing was performed at 0.46 to 1.52-meter intervals. The Standard Penetration Test (ASTM D 1586) is conducted by using a 63.5-kilogram hammer falling 76.0 centimeters to drive a 5.1-centimeter O.D. split-barrel sampler 45.0 centimeters. Driving resistance is recorded on the boring logs in terms of blows per 15-centimeter interval of the driving distance. The second and third intervals are added to obtain the number of blows per 30 centimeters. Standard Penetration blow counts aid in determining soil properties applicable in embankment and roadway design.

A nominal 7.6-centimeter diameter shelby tube, or thin-walled sampler, was employed (ASTM D-1587) to obtain undisturbed samples from borings B-14, B-22, B-26, B-30, and B-36. The shelby tube is hydraulically pressed into the subsurface soils to obtain an undisturbed sample.

Soil samples obtained from the drilling operation were preserved in jars (drill rig boreholes) or sealed tubes (geoprobe boreholes), tested for natural moisture content (ASTM 2216), and visually classified in the laboratory. Representative soil samples were tested in the laboratory to determine the following properties:

_	Liquid Limit, Plastic Limit	(AASHTO T89, T90)
	Gradation	(AASHTO T 88)
-	Unconfined Compressive Strength (of Cohesive Soils)	(AASHTO T 208)
_	(Wet) Unit Weight	(EM 1110-2-1906)
	One-Dimensional Consolidation Properties	(AASHTO T 216)
-	One-Dimensional Consondation Properties	· · · ·

The tests performed are necessary to classify existing soils according to the Ohio Department of Transportation (ODOT) Classification System and to infer engineering properties of importance in determining pavement, embankment, and backslope design and construction recommendations. Results of the laboratory testing are presented in Appendices C and D.

A majority of the cohesive soil samples obtained with the drill rigs were tested to determine their unconfined compressive strengths by means of a hand penetrometer. These values are reported on the boring logs in kilopascals (kPa). The unconfined compressive strength of cohesive soils is used to estimate their undrained shear strength. It is noted that split-spoon samples are considered to be disturbed samples. and the laboratory determination of their shear strengths may vary slightly from undisturbed conditions.

Rock cores were logged in the field and visually classified in the laboratory. They were analyzed to identify the type of rock, color, minerals, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each type of rock was calculated according to the equation:

 $RQD = \sum_{\text{segments equal or longer than 10.2 centimeters } x 100$ Core Run Length

The RQD aids in estimating the general quality of the rock and is used in conjunction with other parameters to designate the quality of the rock mass. Unconfined compressive strength of intact rock cores segments (ASTM D 2938) were performed on representative samples to identify their strength and hardness.

3.0 SUBSURFACE PROFILE

Interpreted engineering logs have been prepared from field geologist's logs, visual examination of samples, and laboratory testing. Classification follows the current ODOT <u>Specifications for Subsurface Investigation</u>. The following is a generalization of what was found in the test borings.

Soil drilled along the alignment is generally between 1.0 and 5.0 meters thick, averaging approximately 3.0 meters thick. The transition to bedrock is not easily discernable where the surface rock is shale, clay-shale, or mudstone, which accounts for at least 75% of this section. Where sandstone, limestone, or siltstone is the surface rock, transition (to rock) was easily discernable and typically shallower. The soils are almost exclusively cohesive, described as reddish brown clay (silty clay, sandy clay) of medium to high plasticity. The soils are predominantly classified as ODOT A-7-6 as well as A-6a, A-6b, and very little A-4a. It is noted that fill, described as native soils mixed with construction debris, was encountered in the top 5.0 meters of B-29 (above elevation 262.7 meters). However, since the alignment was shifted in the vicinity of CR 21, the area represented by B-29 is no longer within the limits of the pavement.

Many soil properties, including soil consistency and shear strength (of cohesive samples), are primarily derived from Standard Penetration blow counts. The Standard Penetration blow counts recorded during the drilling process ranged from 2 blows per 30 centimeters to refusal, increasing with depth. Generally speaking, soils encountered from the ground surface to 1.5 meters± are desribed as soft to stiff, below 1.5 meters±, soils are very stiff to hard. Split-spoon refusal, defined as obtaining in excess of 50 blows with less than 15 centimeters of penetration, was encountered in virtually every boring in the transitional material (hard indurated clay/very soft bedrock).

Laboratory testing indicates that the natural moisture contents of the soil encountered to a depth of $1.5 \text{ meters} \pm$ are typically at to well above their corresponding plastic limits. However, because of the highly plastic nature of the clays encountered, the moisture contents do not approach the soils' corresponding liquid limits. Below the surficial $1.5 \text{ meters} \pm$, moisture contents typically decrease, down to typically less than 10% in the transitional material.

3.1 Bedrock

I

Bedrock was cored when encountered in any proposed cut section above the proposed completion depth of the test boring. If bedrock was encountered above the completion depth in any boring drilled in a proposed fill section, the boring was terminated on the top of bedrock (defined as split-spoon refusal). Much of the bedrock encountered consisted of shale, clay-shale, or mudstone, predominantly in poor condition. The mudstone and some of the shale was frequently slickensided and deteriorated when exposed to water. As mentioned above, where these bedrocks were encountered, the rock condition was typically so poor that it was difficult to identify the transition from soil to rock. Interbeds of sandstone, limestone, and (very little) siltstone were also encountered, some massive, near the central and southern portions of this section (from Station 30+470 to 34+400).

In the cut section between stations 29+600 and 30+634, bedrock was encountered in all borings above the proposed grade. Most of the bedrock consists of poor quality (soft and broken) shale and mudstone. A few limestone and sandstone interbeds were encountered above the proposed grade, none of which was greater than 1.0 meter thick.

In the cut section between stations 30+885 and 31+056, sandstone bedrock was encountered in B-16 very near the ground surface at approximately elevation 282 meters. The sandstone, described as brown, medium, medium-grained, slightly weathered, and highly broken (possibly "poker chipped"), extends to elevation 272.4 meters±. A 1.0-meter thick, soft, weathered, arenaceous shale interbed is present between elevations 273.4 and 274.4 meters±. Similar shale was again encountered between elevations 272.4 and 269.8 meters±. This shale is underlain by gray, moderately hard, slightly broken limestone, extending to elevation 266.2 meters± (at or near the proposed grade). Soft. varigated, mudstone was encountered near the proposed grade, extending to the bottom of B-16 (elevation 258.5 meters).

Similar to the previous cut section, massive sandstone was encountered close to the ground surface in B-20, between stations 31+366 and 31+497. This sandstone was encountered over the full height of the proposed 11.0-meter cut, extending well below the proposed grade.

In the cut sections between 31+906 and 31+962 and between 32+290 and 32+420, soft (to medium), poor quality shales and mudstones were predominantly encountered in B-24 and B-27 above the proposed grade. Massive sandstone, similar to that encountered in B-20, was encountered just above the proposed grade in B-24 and well below the proposed grade in B-27.

A small cut of about 3.0 meters is proposed between stations 33+283 and 33+322. B-34, the closest boring to this area, encountered 1.8 meters of soil (reddish brown silty clay) overlying weathered sandstone bedrock which extends below the proposed grade.

In the cut section between stations 33+866 and 33+970, B-38 encountered weathered sandstone very near the ground surface, extending to the proposed grade near elevation 288 meters. The sandstone is underlain by soft shale, clay-shale, and mudstone. It is noted that B-38 is located well right of the alignment since the alignment was shifted, however, it is on the same ridge, and the soil and rock conditions are considered to be representative.

3.2 Groundwater

With the exception of the Hocking River Valley, groundwater in Athens and Meigs Counties is scarce at best. Few pearched lenses of groundwater was encountered during the drilling process in the northern section within the soil. It was impossible to identify groundwater in the rock sections since water was being used during the coring process. Groundwater for the area can be found in alternating layers of shale and thin sandstone with yields of less than 1.0 gallon per minute.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Data obtained from the drilling and testing program have been used to develop preliminary pavement, embankment, and backslope recommendations for the soils and bedrock encountered along the alignment. These parameters have been used to provide guidelines for the design of the pavement systems for the subject roadway which are discussed in the following paragraphs. It is noted that these recommendations are preliminary. Additional subsurface investigations will be performed to verify these recommendations along a finalized alignment.

4.1 Pavement Design

Because of the extensive earthwork necessary for this project, very little soil will remain in-place, in its current condition, as a pavement subgrade soil. Subgrades in most of the cut sections will be bedrock. The soils are almost exclusively cohesive, described as reddish brown clay (silty clay, sandy clay) of medium to high plasticity. The shales and mudstone deteriorate to a highly plastic clay when exposed to weathering (water) as well. Therefore, it is recommended that pavement designs be based on a Group Index value of 16. The corresponding and design California Bearing Ratio (CBR) is approximately 4, and the equivalent Subgrade Resilient Modulus, M_R , is 4800 psi (this value is left in English units since the current L&D manual presents it that way for use in a correlation chart).

Where bedrock is encountered in the subgrade, the rock shall be cut an additional 0.5 to 0.6 meters below the surface of the subgrde, depending on the pavement type, for the cross section width of the roadway between points 0.3 meters beyond the shoulders.

4.2 Embankment Design

Massive embankment fills are proposed at the locations presented in Table 1. The largest fill section is 42 meters, between stations 31+497 and 31+906. To estimate the settlement of the "in-situ" soils (and rock) due to the weight of the embankment, one-dimensional consolidation tests were performed on undisturbed samples procurred from B-14 (station 30+736), B-26 (station 32+154), and B-30 (station 32+719). The results of these tests (See Appendix F) were employed to verify the compressibility parameters of the soils along the alignment in the valleys. A worst case settlement, within the foundation soils alone, was determined beneath the centerline of the proposed highway at the maximum fill section at station 31+670. In this analysis, the top 3.0 meters was modeled as a preconsolidated clay. The total settlement caused by the consolidation of the "in-situ" subsoils is estimated to be between 0.6 and 0.8 meters. Additional settlements can be expected within the embankment itself, on the order of 0.3 to 0.5 meters.

Total settlement on the order of 1.0 meter± for such an embankment is not considered out of the ordinary. The foundation soils and the fill soils will be predominantly clayey, therefore, the time-rate of settlement will be slow. However, the construction process for such an embankment will be slow as well, and the embankment will like sit idle for a period of time before paving. In any case, the use of settlement plates is recommended to monitor the settlement of the soils in the larger embankments. Because of the notorious instability of the soils and rock in this area, the use of inclinometers is recommended to monitor the stability of these larger embankments as well. In the final design stage, it is recommended that further analysis be performed on the embankment slope-stability.

The earthwork design of all fill sections (and cut sections) shall follow ODOT's *Location and Design Manual* (1995, or latest, edition). The maximum (steepest) recommended unreinforced slope for the embankments is 2:1 (horizontal:vertical).

4.3 Backslope Design

The study area is considered to be highly susceptible to slope movements due to the lithology, topography and amount of rainfall. Problems of instability typically occur where the red shales and claystones (mudstones) are the thickest. Much of the bedrock encountered consisted of (red) shale, clay-shale, or mudstone, predominantly in poor condition. The mudstone and some of the shale was frequently slickensided and deteriorated when exposed to water. As mentioned above, where these bedrocks were encountered, the rock condition was typically so poor that it was difficult to identify the transition from soil to rock.

Many small slumps and rock falls were observed during field reconnaissance, most (slumps) of which are identified on the plans. A large slump was observed left of the alignment, in the vicinity of stations 32+600 to 32+700. The terrain is typically hummocked, indicating movement. The most common forms of landslides in southeastern Ohio are rock falls, where the soft shale bedrock is weathered out from underneath blocky sanstone or limestone, and rotational slumps.

Based on the soil and rock encountered in the proposed cut sections, backslope recommendations are presented below in Table 2, applying to both left and right backslopes as applicable.

Cut Section	Maximum Cut	Recommended Backslope
29+600 to 30+196	24 meters	2:1 to daylight
30+248 to 30+634	35 meters	2:1 to daylight
30+885 to 31+056	21 meters	2:1 to 3.0-meter bench at elevation 275 (bottom of sandstone), 1:1 to top of sandstone, 2:1 to daylight
31+366 to 31+497	11 meters	1:1 to top of sandstone bedrock, 2:1 to daylight
31+906 to 31+962	7 meters	2:1 to daylight
32+290 to 32+420	11 meters	2:1 to daylight
33+283 to 33+322	3 meters	2:1 to daylight
33+866 to 33+970	9 meters	1:1 to the top of bedrock (sandstone), 2: to daylight

Table 2: Backslope Recommendations

The top 5.0 (vertical) meters of all backslopes should be considered soil and laid back at a 2:1 slope.

Due to the lithologic character of the rock formations in this area, most of the cut slopes will be mixed-faced, consisting of various rock types. Differential weathering of the various rock types must be considered in the design of the cut slope. This is especially true where sandstone is overlying a less resistant shale. Because the shale weathers at a faster rate than the overlying sandstone, the sandstone may be left unsupported and subject to rock falls. Rock falls occur routinely in this area. Consequently, it is recommended that at least a 3-meter wide bench be constructed behind the roadway ditch to allow temporary accumulation of talus and rock fall material.

It is expected that blasting will be required for cuts in the limestone and sandstone bedrock. It is expected that the shales (and mudstone), even in an unweathered condition can be removed using standard ripping methods. We expect that even the upper, weathered sandstone can also be removed by ripping, due to the friable nature of the weathered sandstone.

It is recommended that sidehill benches be cut in the rock slopes which are greater than 15 meters high. Past experience has shown that these benches act to collect rock falls as well as minimize erosion of the exposed surface. The benches interrupt the velocity of runoff water washing down the slope and thus minimizes the erosion. Typically, these benches do not significantly increase hillside stability.

4.4 Construction Considerations

All site work shall conform to the latest ODOT <u>Construction and Materials</u> <u>Specifications</u> (January, 1997), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

Where existing structures will be razed, all foundations, floor slabs, basements, wells, and/or cistern walls shall be removed to a minimum of 0.3 meters below the grade of the surrounding area. All basements or cavities left by structure removal shall be filled to the level of the surrounding ground. For those areas within the vicinity of construction, the fill shall be compacted in accordance with the specifications provided in ODOT's Specifications.

Prior to beginning excavation, grading, and/or embankment operations across the site. all necessary clearing and grubbing shall be completed. Topsoil, organic deposits, unsuitable fill materials (as determined by a soils engineer or an experienced soils technician), and/or existing pavement sections should be stripped away from proposed pavement areas prior to excavation. In constructing

the embankments, if topsoil is encountered at the ground surface of the existing subgrade within 1.22 meters of the proposed subgrade elevation, the topsoil (and any other unsuitable material, as determined by the site soils engineer) should be stripped off and stockpiled. In areas where greater than 1.22 meters of fill is to be placed, the excavation is dependent on the soil conditions at the time of construction. In particular, if dry conditions exist, the topsoil will provide adequate stability, and can remain in place. If wet conditions exist, and excessive moisture contents are present, this topsoil will not provide adequate stability, and will require removal. Where a new pavement is to be constructed on an embankment which is less than 0.9 meters over an existing pavement, the existing pavement must be removed.

The proposed subgrade surfaces should be proofrolled prior to placing engineered fill. A soils engineer or an experienced soils technician should be present during proofrolling to determine if soft soils exist. When employing proofrolling to determine the soils that will require stabilization, the proposed profile of the roadway must be considered. A greater amount of subgrade deformation is acceptable at the base of an embankment than along sections of the subgrade where the roadway will be constructed at the existing grade.

The highway construction will cut through the Conemaugh and Monongahela Formations. Therefore, we expect the predominant rock fill to consist of weathered shale and sandstone. It is our opinion that colluvium and residual soil, sandstone and most of the shale will be suitable for embankment fill material. It is recommended that the cut material available for fill be classified. The sandstone and limestone are best suited for fill. This is followed by the green and gray shale, colluvium and residual soils. The "Red Bed" shales and claystones are the least suitable for fill soil due to their rapid slaking and deterioration into a plastic unstable clay soil. This "Red Bed" shale should be wasted whenever possible. Alternatively, special precautions and flatter slopes must be used if this red shale is used as fill.

Special design and construction techniques are recommended even when the gray and green, more stable shale is used for embankment fill. This shale requires the addition of water and special handling in order to construct a stable embankment fill. Even with special precautions, however, the stability of subgrades in shale deteriorates with time. Shallow sloughing is common in 2:1 embankment slopes formed in shale, therefore, it is recommended that limitations be placed on the use of shale in embankment construction. It is recommended that shale not be allowed within the upper 0.6 meter of embankment fill. A 0.6 meter cap of soil will minimize weathering and deterioration of the underlying shale. Further limitations are recommended if the "Red Bed" shale must be used in embankment fill. The shale should be broken into pieces no larger than 150 millimeters of the initial pass of the compactor and should be broken into pieces smaller than 50 millimeters following compaction. The shale should be compacted at a range of moisture varying from optimum to 3% wetter than optimum. Past experience has shown "Red Bed" fill will perform better when compacted wetter than optimum, due to swelling. It has been found that less swelling occurs in the fill when it is compacted at a moisture content wetter than optimum.

When employed as embankment fill, excavated bedrock shall be placed in lifts not to exceed 0.9 meters. When rock and other embankment material are excavated at the same time, the rock shall be incorporated into the outer portions of the embankment as rock fill and the other material shall be incorporated into the inner portion as rolled embankment. The top 0.6 meters of all embankments shall be constructed of material other than excavated bedrock.

Due to the steeply sloping topography, sidehill fills would be expected. It is critical that benches be cut into the hillside where the toe of the new slope starts on an existing slope. This bench should cut into the hillside wide enough to accommodate construction equipment. Wherever possible, benching should "key" into the underlying bedrock. Drains intercepting seepage would be installed in the back of the benches as dictated by site conditions. Landslide activity is common in areas of sidehill cut and fill operations. Consequently, landslides can be expected to occur if sidehill fills are improperly constructed.

Individual stability analyses should be performed in the final investigation for the sidehill fill areas.

Groundwater is does not occur in large quantities over the length of the alignment. A static water table is not expected within the depths of cuts for the proposed roadway. However, perched groundwater is expected in the more permeable sandstone beds of the Conemaugh and Monongahela Formations. This is especially true where the more permeable sandstone is directly underlain by a relatively impervious shale. Also, groundwater should be expected along the overburden/shale interface during wet weather. Horizontal drains may be needed on intermediate benches and along the roadway ditch line to lower the perched water table and minimize scepage emerging on the cut slopes. The need for horizontal drains will largely be controlled by the dip of the bedrock at the As previously indicated, the regional dip of the rock is individual cut. approximately 6 meters per kilometer to the east-southeast. Drains are used to dewater cut slopes when the rock is dipping toward the cut. Horizontal drains are usually not necessary when the rock dips away from the highway cut.

5.0 LIMITATIONS OF STUDY

Our recommendations for this project were developed utilizing soil and bedrock

information obtained from the test borings that were made at the proposed site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the preliminary design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the soils engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the soils engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater, or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils, or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted Geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions, or recommendations made by others based upon the data included herein.

REPORT OF SOIL EXPLORATION

.

Clien	nt_	Sv	erdrup A	ssociat	es, Inc.	Boring Nun	nber	B-1	
Proje	ect.	A7	H/MEG-	33-30.9	380/0.000	Sheet	1	of	1
Proje		lumt	er	V-7139		Completion	Depth	3.0) m
			144770	015	DRILLING AND SAMPLING INFORMATION	Date F Drilled ON		12/15/5 M.F.	97
Norti	hing		144770			Boring Met		9.5 cm F	
Easti	ing _		634241			Hammer W	/eight _	63.5 k	
Eleva			209.6 n	7		Hammer D		76 cm	
SAMPLE NO		ISCM	PERČENŤ RECOVERY	DEPTH	SOL DESCRIPTION		CONTE		TERBERG PL
\$\$-1	6	35	56		Brown SiLTY CLAY, some coarse to fine sand, little organics, trace fine gravel (Topsoil). Moist. Brown and gray SILT and CLAY, some fin coarse sand, some fine gravel. Stiff. Moi -SS-1: ODOT A-6b (7); gh = 96 kPa	e to ist.	22	36	18
<i>SS-2</i>	-	4 5	100	1.0	Brown and gray to red CLAY, some to litt silt, little coarse to fine sand, trace fine gravel. Stiff. Moist. -SS-2: qh = 144 kPa	1.1 le	1 25		
<u>\$</u> \$-3	7	7 7	89	2.0	-SS-3: qh = 239 kPa		22		
<u>\$\$-4</u>		56	83	3.0	-SS-4: qh = 168 kPa Bottom of Boring = 3.0 meters	3.0	26		
4 2 1	55 - 5. 65 - 6. 57 - 51 87 - 81	tem Ol	9		GROUND WATER READING At Completion <u>PDy</u> n After 24 His <u>VN/A</u> m	SFA - : MU - N WD - N	BORIN Hotiow Stem Solid Flight Ad Aud Drilling Wash Drilling		D

.

,

Ĩ

Ï

l

l

1

I

Î

f

Î

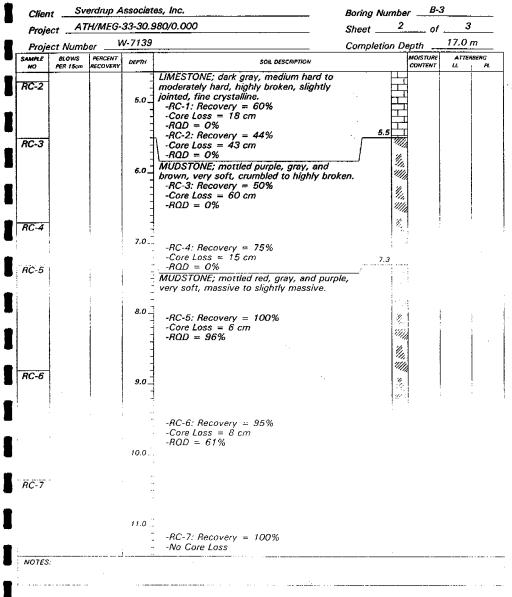
ł

I

Çlien	nt <u>Svi</u>	erdrup A	ssociat	es, Inc.	Boring Numbe	<u>B-2</u>	2	
Proje	47	H/MEG-	33-30,9	80/0.000	Sheet 1	of	4	
	ect Numb	erV	V-7139		Completion D	epth	25.0 n	n
Norti	4 5 - -	144646	.477	DRILLING AND SAMPLING INFORMATI	Date Star Date Finis Drilled By ON Boring Metho	shed: 12 : M.		A/RC
East		634282			Hammer Weid		3.5 kg	
	ation	235.8 n	n		Hammer Drop		6 cm	
SAMPLE	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		MOISTURE	ATTER	BERG PL
	2 2 3	33		Brown SILTY CLAY, some organics, some coarse to fine sand, trace fine gravel (Topsoil). Moist. Red CLAY, little silt, trace, fine gravel, trac coarse and fine sand. Medium stiff. Mois -SS-1: qh = 48 kPa		. <u>.37</u> .	-	
SS-2A SS-2B	4 11 17		1.0	-SS-2A: ODOT A-7-6 (20); qh = 72 kPz Brownish-gray CLAYEY SILT, little fine sa Very stiff to hard. Moist. -SS-2B: qh = 383 kPa		36	74	23
<u>\$\$-3</u>	14 26 28	100	2.0		2.6	13		۰.
<u>SS-4</u>	50/13cn	28	3.0	Brownish-gray to reddish-brown INDURA'T CLAY/WEATHERED MUDSTONE. Hard soil/very soft bedrock.		10		
SS-5 NOTES	50/5cm	71	4.0			23		
		e Sample ube re	,	GROUND WATER READING At Completion - Dry m Atter 24 Hrs V.A. m		Drilling	2/5	

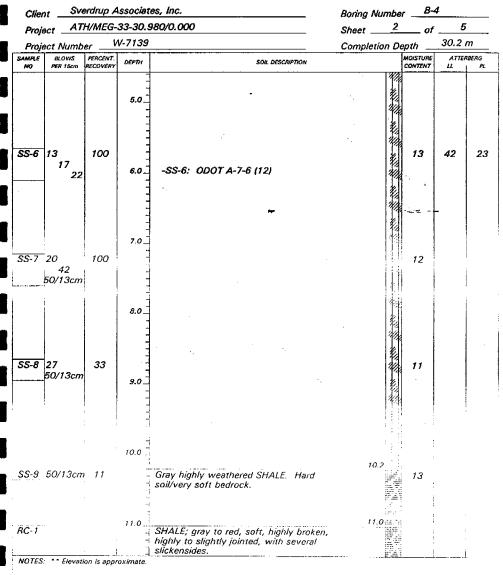
ProjectAT	H/MEG-	33-30.9	380/0.000	Sheet	2	of	4	
- Project Numb	erV	V-7139		Comple	etion D	epth	25.01	n
MPLE BLOWS NO PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION			MOISTURE		BERG PL
		5.0	Brown weathered SANDSTONE. Very soft bedrock.		5.0			
<u>S-6</u> 50/8cm	17				5.8			
IC-1		6.0 - -	SHALE; gray, medium hard to soft, slightly weathered, highly broken, fissile, arenaceou -Siltstone lens (soft) from 5.8 m to 6.1 m	<i>IS</i> .				
			-RC-1: Recovery = 90%* -Core Loss = 15 cm -RQD = 0%				-	
		7.0	-Siltstone lens (soft) from 7.0 m to 7.2 m					
IC-2		8.0 	-RC-2: Recovery = 100% -No Core Loss -RQD = 0%					
IC-3		9.0	-highly crumbled from 8.5 m to 8.8 m					÷.
			-RC-3: Recovery = 8 5% -Core Loss = 21 cm -RQD = 0%				1	
2C-4	-	· · · · · ·	SHALE; gray and maroon stained to dark gray, soft, highly broken, slightly jointed, with several slickensides. -RC-4: Recovery = 85%		10.2			
C-5	· . :	11.0	-Core Loss = 59 cm -RQD = 0%					

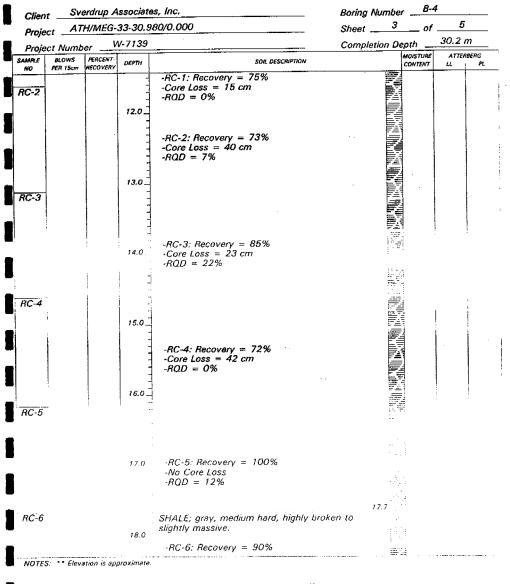
Proje	ct _AT	H/MEG-	33-30.9	980/0.000	Sheet	3	_ of	4	Ļ
•	ct Numb	er V	V-7139			etion Depti		25.0	m
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		MOL		ATTE	RBERG PL
	PER TOUM				•		12/11		<u> </u>
			-						
			1	-RC-5: Recovery = 75%		三			
1			12.0	-Core Loss = 38 cm		目			
-			1	-RQD = 0%					
			-		19		1		
							-		
RC-6									
			. 1				1		
]	13.0						
1				-RC-6: Recovery = 25%					ļ
			1	-Core Loss = 94 cm					
			-	-RQD = 0%					i –
		i ł	-						
RC-7			14.0						
			74.0	-RC-7; Recovery = 0%					
		1	-	-Core Loss = 150 cm -RQD = 0%					
RÇ-8			_			17			
						8.43 1.11			
		i i	Ŧ	-RC-8: Recovery = 80%					
			15.0	-Care Loss = 16 cm -RQD = 13%		틀ᇘ			
RC-9			-	-hub = 13% -limestone lens (medium to moderately			ł		-
			-	hard) from 15.1 m to 15.4 m		目			
			1			5.5	+		
			1	SILTSTONE; gray, medium hard, highly broken, micaceous, argillaceous.					
			1	worken, micaceous, arginaceous.					i i
			16.0	-RC-9: Recovery = 100%			1		
				-No Core Loss					
				-RQD = 0%					
					;	6.6			
RC-10				SHALE; gray to dark gray, soft, highly					
			17.0	broken, highly fissile, carbonaccous. -qr (@ 16.9 m) = 31.05 MPa					
			17.0	-911W 10.3111 = 31.05 MPa					
						1			
				-RC-10: Recovery = 90%		A L			
				-Core Loss = 15 cm					
				-RQD = O%					
			18.0						
0 11									
RC-11	· ·		·						
NOTES:									


Project Number W-7139 Completion Depth 25.0 m Sums $acvec} acvec} acvec} acvec} acvece} acvece} acvece} acvece} acvece} acvecee} acveceee acveceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee$	Proje	ct <u>A</u>			980/0.000	Sheet _	4	of		4
NOPER ISONRECOVERTCONTRACTUR.RC-1219.0-slightly jointed, several slickensides from 18.9 m to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.3 m -RC0 to 20.4 m <b< th=""><th></th><th></th><th>c/</th><th>V-7139</th><th>· · · · · · · · · · · · · · · · · · ·</th><th>Completi</th><th>on Dep</th><th>th</th><th>25.0</th><th>m</th></b<>			c/	V-7139	· · · · · · · · · · · · · · · · · · ·	Completi	on Dep	th	25.0	m
from 18.9 m to 20.3 m -RC-11: Recovery = 94% -Core Loss = 9 cm -RD = 0%20.0-RC-11: Recovery = 80% -Core Loss = 30 cm -ROD = 0%21.0-RC-12: Recovery = 80% -Core Loss = 30 cm -ROD = 0%21.0-RC-13: Recovery = 90% -ROD = 0%22.0-RC-13: Recovery = 90% -ROD = 0%21.0-RC-13: Recovery = 90% -ROD = 0%22.0-RC-13: Recovery = 90% -ROP = 0%22.0-RC-14: Recovery = 100% -ROP = 0%23.0SANDSTONE; brown and gray, medium to modorately hard, slightly broken, medium grained, micaceousRC-14: Recovery = 100% -Na Care Loss = 8 cm -ROD = 20%24.0-qr (10 23.6 m) = 33.26 MPaRC-15: Recovery = 90% -Care Loss = 8 cm -ROD = 20%25.0Bottom of Boring = 25.0 meters				DEPTH	SOIL DESCRIPTION					
RC-12 $-Care Loss = 9 cm$ -ROD = 0%20.0-RC-12: Recovery = 80% -Core Loss = 30 cm -ROD = 0%21.0-RC-12: Recovery = 80% -Core Loss = 30 cm -ROD = 0%21.0-RC-13: Recovery = 90% -Core Loss = 15 cm -ROD = 0%22.0-RC-13: Recovery = 90% -Core Loss = 15 cm -ROD = 0%23.0SANDSTONE: brown and gray, medium to modorately hard, slightly broken, medium grained, micaceous.RC-14: Recovery = 100% -No Core Loss -ROD = 29%24.0-qr (@ 23.6 m] = 33.26 MPaRC-15:-RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15:-RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15:-RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15:-RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15:-RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15:RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 90% -Core Loss = 8 cm -ROD = 20%RC-15: Recovery = 25.0 meters				19.0	from 18.9 m to 20.3 m					
$\frac{-RC-12: Recovery = 80\%}{-Core Loss = 30 cm}$ $\frac{-RC-12: Recovery = 80\%}{-Core Loss = 30 cm}$ $\frac{-RC-13}{-ROD = 0\%}$ 21.0 21.0 21.0 21.0 21.2 21.0 21.0 21.2 21.0 21.0	RC-12			1111	-Core Loss = 9 cm	·.		ž.		
RC-1321.2RC-13SILTSTONE: gray to greenish-gray, medium hard, highly broken, arenaceous, micaceous.PRC-13: Recovery = 90% -Core Loss = 15 cm -RQD = 0%23.0SANDSTONE: brown and gray, medium to moderately hard, slightly broken, medium grained, micaceous.RC-14: Recovery = 100% -No Core Loss -RQD = 29%24.0-RC-15: Recovery = 90% -Qr (@ 23.6 m) = 33.26 MPaRC-15-RC-15: Recovery = 90% -Core Loss = 8 cm -RQD = 20%25.0Bottom of Boring = 25.0 meters				20.0	-Core Loss = 30 cm					
RC-1423.0-Core Loss = 15 cm -RQD = 0%23.0SANDSTONE; brown and gray, medium to moderately hard, slightly broken, medium grained, micaceous. -RC-14: Recovery = 100% -No Core Loss - -RQD = 29%24.0-gr (@ 23.6 m) = 33.26 MPa $RC-15:$ Recovery = 90% -Core Loss = 8 cm -RQD = 20%25.0Bottom of Boring = 25.0 meters	RC-13			21.0	SILTSTONE; gray to greenish-gray, mediur hard, highly broken, arenaceous, micaceou	<u>n</u>	2			
23.0 SANDSTONE; brown and gray, medium to moderately hard, slightly broken, medium grained, micaceous. -RC-14: Recovery = 100% -No Core Loss -RQD = 29% 24.0 -qr (@ 23.6 m) = 33.26 MPa 24.0 -qr (@ 23.6 m) = 33.26 MPa -Core Loss = 8 cm -RQD = 20% 25.0 Bottom of Boring = 25.0 meters				22.0	-Core Loss = 15 cm					
grained, micaceous. -RC-14: Recovery = 100% -No Core Loss -RQD = 29% 24.0 -qr (@ 23.6 m) = 33.26 MPa -RC-15: -RC-15: Recovery = 90% -Core Loss = 8 cm -RQD = 20% 25.0 Bottom of Baring = 25.0 meters	1C-14			23.0			<u></u>	× 1		
-RC-15: Recovery = 90% -Core Loss = 8 cm -RQD = 20% 25.0 Bottom of Baring = 25.0 meters				24.0	grained, micaceous. -RC-14: Recovery = 100% -No Core Loss -RQD = 29%		· · · · · · · · · · · · · · · · · · ·			
25.0 Bottom of Boring = 25.0 meters	C-15			•	-Core Loss = 8 cm -RQD = 20%					
				25.0	Bottom of Boring = 25.0 meters	25.	<u>;;;;</u>			

٠.

Clien	, Sv	erdrup A	ssociate	es, Inc.	Boring Number	B-3		_
Proje		H/MEG-	33-30.9	80/0.000	Sheet1	of	3	
	ct Numb	er V	V-7139		Completion Dep	th	17.0 n	n
,-		· .		DRILLING AND SAMPLING INFORMATI	Date Starte Date Finish Drilled By: ON	ed: 2/5 M.F	/98 -	
North	•	144458	-		Boring Method		cm HS.	A/R
Easti	ng	634437			Hammer Weigh	•	1.5 kg	
Eleva		252.2 n	2**		Hammer Drop		і ст	
SAMPLE NO	BLOWS PER 16cm	PERCENT	ОЕРТН	SOIL DESCRIPTION		OISTURE	ATTER	BERG PL
SS-1 SS-2	2 5 38 7 9 15	44		Dark brown coarse to fine SANDY SILT, li clay, little organics (Topsoil). Moist. Brown SILTY CLAY, some coarse to fine sand. Hard. Moist. Light brown coarse to fine SANDY CLAY, some silt, trace fine gravel. Very stiff.	0.5	30 17		
<u>\$S-3</u>	20	61	1,0	Moist. Brown SILTY CLAY, trace coarse to line sand, trace fine gravel. Hard. Moist.	1.1	9		
SS-4	25 10 12 24	61	2.0			9		
<u>SS-5</u>	14 21 24	67	- - - 3.0			10		
			4.0		···· ··· ·			
RC-1				SHALE; gray, soft, highly broken, slightly weathered.	4.3 4.4			
	SAMP SS - 5 Ten G GS - Geoprob ST - Shelby T RC - Rock Co NS - Auger Sau	H.T. TYPE D Split Spoor e Semple Vate re		GROUND WATER READING At Completion N/A* m Atter 24 Hrs ▼ N/A m * Wash water used during the coring process	HSA : ow SFA - Soud Fi MD - Mad Dri	ght ≓ugers lling rilling		

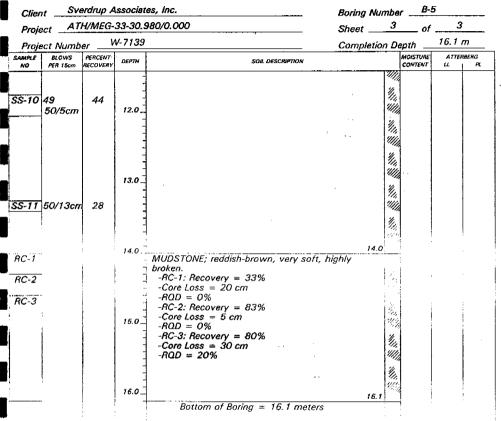



Proje	ct AT	H/MEG-	33-30.S	980/0.000	Sheet		3	of	з	;
•	ct Numb	, V	V-7139		Comple		Den		17.0	m
SAMPLE	BLOWS	PERCENT	DEPTH	SOIL DESCRIPTION	Gompic		M	DISTURE		RBERG
NO	PER 15cm	RECOVERY		-RQD = 65%	·····			WTENT	ц	PL PL
			-	-100 - 00%			1			
			-		. ,	1.9				
RC-8			12.0	interest and the set of the purple			7			
			-	soft, highly broken to slightly massive.		1				
				-RC-8: Recovery = 53%	1.					
			-	-Core Loss = 42 cm -RQD = 0%						
			-							
RC-9			13.0			12				
			-	-RC-9: Recovery = 95%						
			-	-Core Loss = 3 cm						
RC-10			-	-RQD = 21%			- T			
								l		
			14.0				i	1		1
				-RC-10; Recovery = 99%						
		-		-Core Loss = 2 cm		i				1
1		· ·		RQD = 76%			1			,
			-			12	<u>esi</u>			1
RC-11			15.0			2				
nu-11			15.0 _			20				
			2							
						1				
			-	-RC-11: Recovery = 100%		12				
				-No Core Loss -RQD = 18%		2	2			
			16.0	-100 - 10%		1				
			-				1			
ŘČ-12				SANDSTONE; gray, moderately hard, slight	tlv 1	6.4		i.		
				massive, medium to fine grained, slightly						
				carbonaceous. -RC-12: Recovery = 90%						
•			17.0	-Core Loss = 6 cm		7.0				
				-RQD = 71%						
				Bottom of Boring = 17.0 meters						
		<u>.</u>					:	,		
NOTES:										

Clier	ntSve	ardrup A	ssocia	es, Inc.	Borina	Numbe	r <u>B-4</u>	¢	
Proje	4 7	H/MEG-	33-30.	980/0.000	-	1	of	5	ī
	ect Numb	er V	V-7139			etion D	epth	30.2	m
-		144471	.272	DRILLING AND SAMPLING INFORMATIO	Da Da Di Di	ate Star	ted: 12 shed: 12 : M.	/18/97	,
East	•	634340	.311		· · ·	er Weig	-	3.5 kg	
	•	249.5 n	n**			er Drop		6 cm	
SAMPLE NO	BLOWS PER 15cm	PERCENT	ДЕРТН	SOIL DESCRIPTION		<i></i>	MOISTURE	ATTEL	RBERG
				5 cm - Asphalt		0.1	•		
			-	8 cm - Sand and gravel base	<i>1</i>	0.3	· ·		
SS-1	11	44	-	Reddish-brown CLAY, some silt, trace coa	rse	F4 T	7		
	4		-	to fine sand, trace fine gravel. Medium st.				-	
	3		-	to hard. Moist.					
	1					Π			
			1.0			Ħ	1 !		
SS-2		67	-			H	24		
	3		-				1		
	4		_			Π			ĺ
	1	I İ	-			Η	1 1		
SS-3	3	67	-				20	E 1	2
53-3	5	0/	2.0			H	20	51	2
	7		-	-SS-3: ODOT A-7-6 (18)		FT1			
	1		-			田			
			-				1		
SS-4	7	56				H	13		
	14		-			H	13		
	21		3.0			3.0			
	1 -1		-	Reddish-brown INDURATED		一物			
1	1		-	CLAY/WEATHERED MUDSTONE. Hard					
		1	-	sail/very soft bedrock.					
			-				1		
			-						
			4.0			:]]	ļ .		
· · ·			4.U						
SS-5	_50/13cm	28	-	-sandstone encountered at 4.1 m		1			
			-						
						: :	<u>.</u>		
NOTES:	: ** Elevati	on is appr	oximate.						
		E TYPE		GROUND WATER READING			BORING N		
	SS - 5.1cm OD GS - Geopropr			At Completion 🚆 N/A * m			w Stem Auger	5	
	ST · Shelby Tul	50		Aller 24 His IN/A		SFA · Solid MD · Mud L	Flight Augers Irilling		
	RC · Rock Core			* Wash water used during the coring process.		WD - Wash	Dritting		
	AS - Auger Samp	ne -		,		RC . Rock C	anino.		

Proje	<i>ci</i>			80/0.000	Sheet	of		
Proje	ct Numb	er	V-7139		Complet	ion Depth	30.2	
SAMPLE NO	BLOWS PER 15cm	PERCENT - RECOVERY	DEPTH	SOIL DESCRIPTION		MOISTURE CONTENT	ATTE LL	RBERĞ 1 PL
			Ī	-Core Loss = 10 cm				
		1 1		-RQD = 0%		e 74		i
RC-7			1			FAI		
			-	·				
			19.0	-RC-7: Recovery = 83%				
		t	_	-Core Loss = 10 cm		「「「「」」		
RC-8				-RQD = 0%	· ·			
			-					
			4					
		1	20.0	0C 8: Casaviant - 03%			•	I I
				-RC-8: Recovery = 92% -Core Loss = 12 cm				1
				-ROD = 47%				
				-qr (@ 20.4 m) = 46.80 MPa				
			-	-qr (@ 20.4 m) = 40.00 mi a				
RC-9								
10-3						n e e		
			21.0 .			dinas la		
		1	-					i
						f (7) =		
				-RC-9: Recovery = 95%				
İ		1		-Core Loss = 8 cm				1
1				-RQD = 43%				
			22.0					
			1					
RC-10			-					1
			1					
			-	· · ·				
			- 1					1
		1	23.0	-RC-10: Recovery = 100%				÷
				-No Core Loss				
				-RQD = 27%	. 23	3		
				SILTSTONE; gray, medium hard, highly				
				broken, micaceous.				
RC-11					~,			
nu-11			24.0	SHALE; reddish-brown and purple, soft to		1.9 List s		
			24.0	medium hard, highly broken, with periodic		· · · · ·		
				slickensides.	,	91 A.T		
						.17		
				-RC-11: Recovery = 70%				
				-Core Loss = 47 cm		1.1		
				-ROD = 0%				
			25.0			177.4 J === 1.1		
NOTES	++ Eleva							

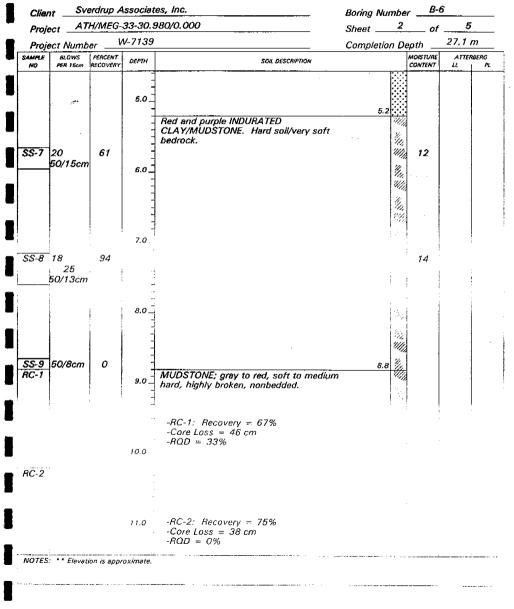
Proje		1/	33- <u>30.9</u> V-7139	980/0.000	Sheet _		of	8 30.2	
	ect Numb		V-7133		Complet	tion De			
SAMFLE NO	BLOWS PER 15cm	RECOVERY	DEPTH	SOIL DESCRIPTION			MOISTURE CONTENT	ATTE. LL	REERG PL
9C-12			26.0	-RC-12: Recovery = 98% -Core Loss = 6 cm -RQD = 0%					
3C-13			28.0 	LIMESTONE; brown and gray, moderately hard, highly broken, highly jointed, fine crystalline. SANDSTONE; gray, moderately hard, high broken, micaceous, fine grained. -RC-13: Recovery = 100% -No Core Loss -RQD = 0%	21	9.9			


NOTES: ** Elevation is approximate.

Clier	ntSvi	erdrup A	ssociat	es, Inc.	Boring	Numbe	г <u> </u>	5	
Proje	ect AT	H/MEG-	<u>33-30.5</u>	380/0.000	Sheet	1	of	3	
•	ect Numb	er V	V-7139		Compl	etion D	epth	16.1	m
		·	-		Da Da Di	ate Star	ted: 12 shed: 12	2/26/97	
Nort	hing	144354	.317	DRILLING AND SAMPLING INFORMATIC		Metho	1 9.5	cm HS	A/RC
East	-	634389	.372			er Weig		3.5 kg	
	- .	260.4 n	1		÷.,	er Drop	···		
SAMPLE	BLOWS	PERCENT	DEPTH	SOIL DESCRIPTION	110/////		MOISTURE	ATTE	
NO	PER 15cm	RECOVERY	UCFIA			0.1	CONTENT	Ц	<u> ^ </u>
55-1	9 12 19	100		5 cm - Asphalt 7 cm - Sand and gravel base Brown SILTY CLAY, some coarse to fine sand, little to some fine grevel, trace coars gravel (Fill). Hard to very stiff. Moist.	se		13	-	
\$5-2	7 14 15	100	1.0 	-trace asphalt in SS-2			9		
<u>\$\$-3</u>	28 36 49	78	2.0	Brown weathered SANDSTONE. Very sof bedrock.	t	1.8			
<u>SS-4</u>	20 32 49	100	3.0	Brown and reddish-brown MUDSTONE. H soil/very soft bedrock.	lard	2.6			
			4.0						
SS-5 NOTES	45 50/13cm	100							
	SAMPL SS - 5. Tem OE GS - Geoprate ST - Shelly Tu RC - Rock Con AS - Auger Sam	Sample be		GROUND WATER READING At Completion <u>N/A</u> m Atter 24 His <u>V.MA</u> m * Wash water used during the coring process	•	HSA - Holla	Dritting	<i>us</i>	

			33-30.9 V-7139	80/0.000	Sheet _	2	of		
Proje sample	ect Numb	PERCENT			Complet	ion De		16.1	
NO	PER 15cm	RECOVERY	DEPTH	SOIL DESCRIPTION	· · ·		MOISTURE CONTENT	L	RBERG
<u>SS-6</u>	50/8cm	17	5.0	-change in color to brownish-gray					
33-0	5U/8CM	17	6.0 	-change in color to brownish-gray					
<u>SS-7</u>	50/8cm	17	7.0						
SS-8	34 50/8cm	56	8.0 9.0 9.0						
<i>\$\$-9</i>	44 50/5cm	44	10.0	-change in color to reddish-brown					
		1							

REPORT OF SOIL EXPLORATION



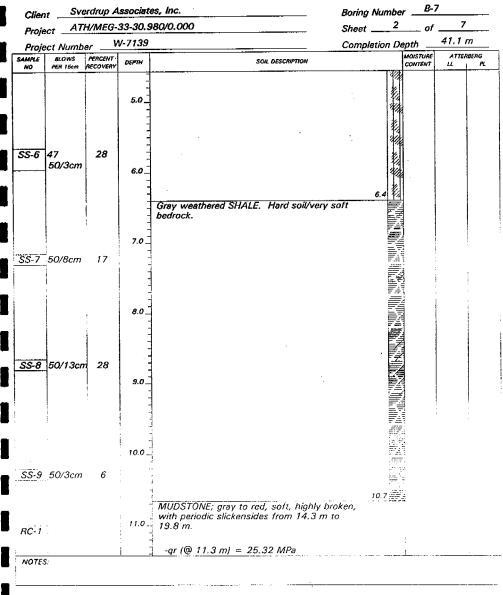
NOTES:

SVE	rdrup A	ssociat	es, Inc.	Boring	, Numbe	<u>г</u> В-	6	
ĄŢ	H/MEG-	33-30.9			_		- 5	·
Vumb	erV	V-7139				epth _	27.1	m
	144366	. 744		ם ב N	oate Finis Orilled By	hed: 1, : M	/29/98 1.F.	SA/RC
						·		
ows	PERCENT	БЕРТН	SOLL DESCRIPTION	110/11/		MOISTURE	ATTE	
1 bam	44			, _	.0.1	22		PL.
2 2 2	89		silt, trace fine gravel, trace coarse to fine sand. Soft to very stiff. Moist.	tle		31	61	20
2		1.0	-55 2. 0501 A 7-0 (20)					
	44				· · · · ·	25		
4 5								
		1						
e	33	2.0				16		
10		1						
		-			Ĥ			
	61	اء 1				11		
· I		3.0			Ħ			
	ļ	-						
		1					i	
		4.0			4.0			
3	50		Brown fine SAND, some clay, little silt, little coarse sand, trace coarse gravel. Dense. Moist.	le		17	NP	NP
25 Elevatie	on is appr	oximate.	-SS-6; ODOT A-3a					
AMPL Jen: GD eoprate : ietby Tab ack Care	E TYPE Split Spann Sample Ie		GROUND WATER READING At Completion N/A* m Atter 24 Hrs <u>Y N/A</u> m * Wash water used during the coring process.		HSA - Hollav SFA - Solid I MD - Mud D. WD - Wash J	v Sten: Auge Hight Augers ätting Dritting	ev s	
	ATT Vumbu Vumbu 1500 2 2 2 2 2 2 2 2 2 2 2 2 2	ATH/MEG- Vumber V 144366 634339 249.5 n 0 44 2 89 2 89 2 89 2 61 10 61 11 50 32 50 325 50 25 50 3 25 Elovation is inpute SAMPLE TYPE rem GD Simit Spann Somid Sample	ATH/MEG-33-30.5 Number W-7139 Number W-7139 144366.744 634339.381 634339.381 634339.381 249.5 m** 00% PERCENT DEPTH 2 44 5 100 41 5 8 10 8 61 10 61 8 61 11 3.0 50 3 25 4.0 50 3 25 4.0 50 3 25 50 3 25 Elovation is opproximate. SAMPLE TYPE Sem CDS m Spano eequate Sample eetwy Tube bet Cure	DRILLING AND SAMPLING INFORMATION 144366.744 634339.381	ATH/MEG-33-30.980/0.000 Sheek Wumber W-7139 Complete DRILLING AND SAMPLING INFORMATION L 144366.744 Boring 634339.381 Hamn 249.5 m** Hamn 16m RECENT 15m Fencent 2 89 2 44 4 Brown Sil T, some fine sand, little organics, little cary (Topsoil). Moist. 7 Reddish brown to brownish gray CLAY, little silt, trace fine gravel, trace coarse to fine sand. Soft to very stift. Moist. 2 89 10 10 41 50 50 Brown fine SAND, some clay, little silt, little coarse sand, trace coarse gravel. Danse. 40 -SS-2: ODOT A-7-6 (20) 41 -SS-2: ODOT A-7-6 (20) 50 Brown fine SAND, some clay, little silt, little coarse sand, trace coarse gravel. Danse. 50 Brown fine SAND, some clay, little silt, little coarse sand, trace coarse gravel. Danse. 50 Brown fine SAND, some clay. little silt, little coarse sand, trace coarse gravel. Danse. 50 Brown fine SAND, some clay. little silt, little coarse sand, trace coarse gravel. Danse. 51 -	ATH/MEG-33-30.980/0.000 Sheet 1 Wumber W-7139 Completion Du Date Star Date Star Dottild By Date Star Drilled By Boring Method 634339.381 Boring Method 144366.744 Boring Method 634339.381 Hemmer Weig 249.5 m** Hemmer Drop Ows Receiver Sou Descernow Sou Descernow 15m Recoutery 12 89 2 Sou Descernow 16m Recoutery 10 Sou Descernow 40 Sou Descernow 41 Sou Descernow 42 Sou Descernow 50 Brown fine SAND, some clay, fittle silt, fittle 50 Brown fine SAND, some clay, fittle silt, fittle 50 Brown fine SAND, some clay, fittle silt, fittle 50 Brown fine SAND, some clay, fittle silt, fittle 50 Brown fine SAND, some clay, fittle silt, fittle 50 Sou Starse 50 SS-6: ODOT A-3e Elevation is approximate Alo	ATH/MEG-33-30.980/0.000 Sheet	ATH/MEG-33-30.980/0.000 Sheet

.

Proje	ct	H/MEG-	33-30.	980/0.000	Sheet		_ of		5	
Proje	ct Numb	erV	V-7139		Completi	on Dept	h	27.1	m	_
SAMPLE NO	BLOWS PER 15cm	RECOVERY	DEPTH	SOIL DESCRIPTION		MO	ISTURE NTENT		RBERG FL	-
			-			1202			1	<u>.</u>
RC-3			-	21	· .	1/1				
			12.0			111				
			-			111				
			-		·. *	4/1				
			-	-RC-3: Recovery = 85%						
			-	-Core Loss = 23 cm -RQD = 22%						
			13.0						ļ.	,
RC-4			-						1	
10-4			-	-RC-4: Recovery = 60% -Core Loss = 12 cm					i	
RC-5			-	-RQD = 0%						
		1	14.0			:				
			-	-RC-5: Recovery = 95%		. E	1			
			-	-Core Loss = 6 cm -RQD = 29%						
RC-6			-							
			15.0						•	
			1			1.20			1	
			-			2				
			1 - 1	-RC-6: Recovery = 100%		472				
				-No Core Loss -RQD = 0%						
			16.0 _	-gray soft CLAY-SHALE @ 15.8-16.1 m						
RC-7										
10-7										
			_							
			17.0							
			-	-RC-7: Recovery = 90% -Core Loss = 15 cm						
			-	-RQD = 20%						
RC-8			-	SHALE; gray, soft to medium hard, highly		3 				
			18.0	broken, fissile, slightly arenaceous.		i, et				
	* * Elevat		-{			<u>1.</u>				

Proje	ct _AT	H/MEG-	33-30.	980/0.000	Sheet _	4	_ of	5
Proje	ct Numb	erV	V-7139		Comple	tion Dept	h	27.1 m
NO NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		MQ	STURE NTENT	ATTERBERG
			19.0	-RC-8: Recovery = 100% -No Core Loss -RQD = 20%				
RC-9			19.0	-gr (@ 19.0 m) = 14.20 MPa	•			
			20.0	-RC-9: Recovery = 93% -Core Loss = 11 cm -RQD = 27%				
C-10		:	21.0					
			22.0	-RC-10: Recovery = 89% -Core Loss = 13 cm -ROD = 27%				
C-11 C-12			22.0	MUDSTONE; red and gray, soft, highly broken, nonbedded. -RC-11: Recovery = 100% -No Core Loss	22	.1		
C-13			23.0	-RQD = 0% -RC-12: Recovery = 95% -Core Loss = 2 cm -RQD = 0%				
			•	-RC-13: Recovery				
C-14			24.0					
C-15			•	-RC-14: Recovery = 68% -Core Loss = 26 cm -RQD = 0%				
			25.0					


Clien	· · · · · ·	erdrup A		· · · · · · · · · · · · · · · · · · ·	Boring N				
Proje	ect _AT	H/MEG-	33-30.9	80/0.000	Sheet _	5	of	5	ī
Proje	ect Numb	er	V-7139		Complet	ion D	epth	m	
SAMPLE NO	BLOWS PER 16cm	PERCENT RÉCOVERY	DEPTH	SOIL DESCRIPTION			MOISTURE	ATTE.	RBERG PL
RC-16				-RC-15: Recovery = 76% -Core Loss = 19 cm -RQD = 0%	· · · · · · · · · · · · · · · · · · ·				
			26.0	-RC-16: Recovery = 87% -Core Loss = 16 cm -RQD = 0%	۰.				
RC-17			27.0	-RC-17: Recovery = 100% -No Core Loss -RQD = 50% Bottom of Boring = 27.1 meters		.1 3			

REPORT OF SOIL EXPLORATION

ClientSverdru	p Associates, Inc.	
Project ATH/M	EG-33-30.980/0.000	·····
Project Number	W-7139	
,	·	

Boring	Number `	B-1	,
Sheet	1	of	7
Comple	etion Depth		41.1 m
	te Started:		
Da	te Finished:	12	/29/97
	illed By:	М.	F

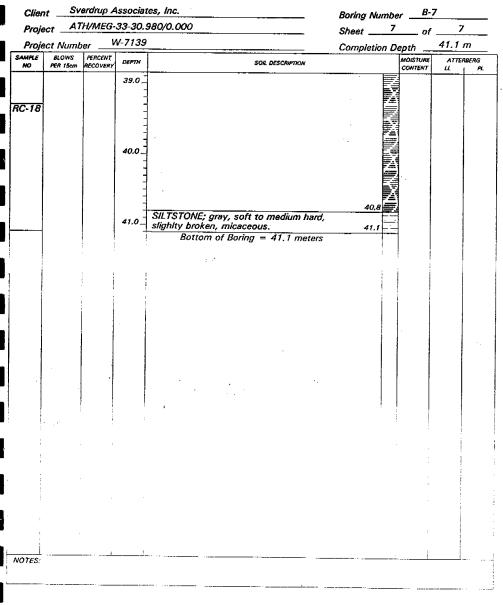
	Nort	hina	144228	.912	DRILLING AND SAMPLING INFORMATION Boring M	ethoo	9.5	cm HS	A/RC
	East	5	634432	.009	Hammer		~	3.5 kg	
_	Eleva	-	269.5 n)	Hammer	,		5 cm	
	SAMPLE	BLOWS PER 15cm	PERCENT	DEPTH	SON. DESCRIPTION		MOISTURE CONTENT	ATTER	BERG PL
	<u>SS-1</u>	5 8 12	100		3 cm - Asphalt 8 cm - Sand and gravel base Mottled brown and gray CLAY, some coarse to fine sand, little silt, trace fine gravel. Very stiff to hard. Moist to damp.	1	19		
	SS-2	6 9 14	67	1.0	-\$\$-2: ODOT A-7-6 (17)		17	53	25
	55-3 55-4	13 22 30	67	2.0_	2 Brown CLAYEY SILT, little coarse to fine sand. Hard. Damp.	.3	13 9		
		22 29		3.0 <u>-</u> -	·. · · · ·				
	SS-5	36 50/3cm	22	4.0	A Reddish-brown highly weathered MUDSTONE. Hard soil/very soft bedrock.	.,	-		
-	NOTES	5: 			······································				
		SAMP 55 5. Jam O GS - Geaprob ST - Shelby T RC - Rock Co AS - Auger Sa	e Sample ube re		Alter 24 Hrs <u>V/A</u> m M * Wash water used during the coring process. W		Drilling		

Clien	•		ssociate		Boring Nu		B-7
Proje		H/MEG-	33-30.98	80/0.000	Sheet	3	of7
	ct Numb	er _V	V-7139		Completi	on Depth	41.1 m
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOL DESCRIPTION		MOISTL	RE ATTERBERG
~~			-				
			-			14	
			12.0			11/1	
				-RC-1: Recovery = 100%		111	
				-No Core Loss	1.	1111	
				-RQD = 19%		11	
						11/1	
			13.0			1	
RC-2						3	
				PC 2, $Paper = 50%$		막힌	
			14.0	-RC-2: Recovery = 60% -Core Loss = 36 cm			
			1	-RQD = 0%			
RC-3]]			- 1	
						đ	1
			15.0	-RC-3: Recovery = 100% -No Core Loss			
			10.0	$-R\Omega D = 30\%$		30	
RC-4	1]]			1	
			1 1	· · · · · · · · · · · · · · · · · · ·		32	
			16.0				
]	-RC-4: Recovery = 70%			
			·	-Core Loss = 64 cm -RQD = 5%			
			17.0				
			د ج				
RC-5	-		-				
	1.1	:					
		:					
			18.0				
			<u> </u>				
NOTES	i.						

REPORT OF SOIL EXPLORATION

,

Client		H/MEG-		30/0.000	Sheet _	4	of	2	7
Proje			/-7139		Complet			41.1	m
AMPLE	ct Numb	PERCENT	DEPTH	SOIL DESCRIPTION	compile	MO	ISTURE	ATTL LL	RBÊRĞ PL
NO	PER 15cm	RECOVERY	- - - 19.0 _	-RC-5: Recovery = 94% -Core Loss = 15 cm -RQD = 39%					
RC-6			20.0	-RC-6: Recovery = 80% -Core Loss = 31 cm -RQD = 11%					
RC-7 RC-8		-	21.0	-RC-7: Recovery = 100% -No Core Loss -RQD = 0% -RC-8: Recovery = 71%	,				
RC-9			23.0	-Core Loss = 26 cm -RQD = 9%	2.	2.4			
				-RC-9: Recovery = 70% -Core Loss = 81 cm -RQD = 36%				•	
						: :			
NOTES	2		<u>. </u>			·			


REPORT OF SOIL EXPLORATION

,

Clien	4 1	- H/MEG-3	33-30.98	0/0.000	Sheet	5	of	7	<i>;</i>
Proje			/-7139		Complet			41.1	m
Proje	Ct Numb	PERCENT	DEPTH	SOIL DESCRIPTION		ĥ		ATTE	ABERG
мо RC-10	PER IBcm	RECOVERY	26.0	-RC-10: Recovery = 86% -Core Loss = 36 cm -RQD = 35%					
RC-11			28.0	-RC-11: Recovery = 52% -Core Loss = 53 cm					
RC-12 RC-13			29.0	-RQD = 60% -RC-12: Recovery = 100% -No Core Loss -RQD = 0% -RC-13: Recovery = 40%			·		
RC-14	T		30.0 - 	-Core Loss = 45 cm -RQD = 15%					
			31.0	-RC-14: Recovery = 90% -Care Loss = 30 cm -RQD = 35%				;	÷ .

Client _ Project . Project N SAMPLE BL NO PER	Vumbe		33-30.9 V-7139 DEPTH 32 0	80/0.000	Sheet Completio			7 41.1 m
	ows	PERCENT.	D ЕРТН		Completio			41.1 m
SAMPLE BL	ows	PERCENT.	DEPTH					
				SOL DESCRIPTIÓN		00	ISTURE NTENT	ATTERBERG
RC-15			33.0	CLAY-SHALE; red to gray, soft, highly broken.	33.1			
			34.0	-RC-15: Recovery = 100% -No Core Loss -RQD = 30%				
RC-16			36.0	-RC-16: Recovery = 80%				
RC-17			37.0	-Core Loss = 16 cm -RQD = 0% SHALE; gray, soft, slightly broken, fissild arenaceous.	<u>36.</u>	9		
			38.0.	-Siltstone (medium hard) lens from 37.9 m to 38.5 m -RC-17: Recovery = 99% -Core Loss = 2 cm -RQD = 64%				: . :

REPORT OF SOIL EXPLORATION

,

Client	Sverdrup Associates, Inc.	Boring Number <u>B-8</u>
Project _	ATH/MEG-33-30.980/0.000	Sheet of1
Project N	lumber	Completion Depth3.0 m
		Date Started: 2/11/98
		Date Finished: 2/11/98 Drilled By: S.B.

Norti	hing	144196	.170	DRILLING AND SAMPLING INFORMATIO	N Boring Method	Geo	oprobe	
East	-	634325	.107		lammer Weig		I/A	
Eleva	•	248.8 m	7		lammer Drop		I/A	
SAMPLE NO	BLÓWS PER 15cm	RECOVERY	DEPTH	SOIL DESCRIPTION		MQISTURE CONTENT	ATTER LL ·	UBERG PL
<u>GS-1</u> GS-2		100 100	1.0	Brown SILTY CLAY, little coarse to fine san trace organics, trace fine gravel (Topsoil). Moist. Reddish brown SILTY CLAY, some fine sand trace coarse sand, trace fine gravel. Moist.		28		
GS-3		100		-GS-3: ODOT A-66 (9)		15	40	21
<u>GS-4</u>		100	2.0 3.0	Brownish gray weathered CLAY-SHALE. Hard soil/very soft bedrock. Bottom of Boring = 3.0 meters	2.6 3.0	ş ¹ .		

NOTES:

SAMPLE TYPE	GROUND WATER READING		BORING METHOD
SS - 6.1cm OD Split Spain	At Completion Dry	m	HSA · Hollow Stem Augers
GS - Geoprobe Sample			SFA - Solid Flight Augers
ST - Shelby Tube	After 24 Hrs 🔻 N/A	m	MD Mud Drilling
RC - Rock Core			WD - Wash Dritting
AS - Auger Sample			RC - Rock Caring

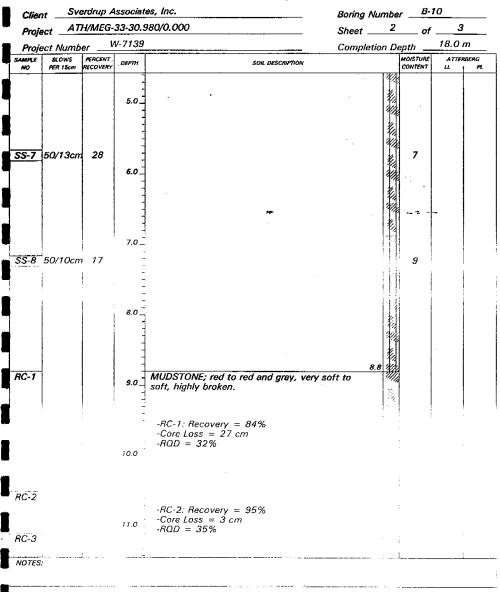
REPORT OF SOIL EXPLORATION

Clien	ntSv	erdrup A	ssociat	es, Inc.	Boring Numbe	r <u> </u>	9	
Proje	ect A	TH/MEG-	33-30.	980/0.000	Sheet1	of		
Proje	ect Numi	berV	V-7139	·	Completion De	epth	3.0 n	n
•					Date Star Date Finis Drilled By	hed: 2/	11/98	
Nort	hina	144201	.968	DRILLING AND SAMPLING INFORMATI	ON Boring Method	- Geo	probe	
East	•	634290	.591		Hammer Weig		I/A	
Eleva		241.5 n	7		Hammer Drop		//A	
SAMPLE	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		MOISTURE CONTENT	ATTER	BERG PL
GS-1 GS-2 GS-3		100 100 100	1.0	Brown SILTY CLAY, some coarse to fine sand, trace organics, trace fine gravel (Topsoil). Moist. Reddish brown CLAY, some silt, little fine gravel, trace coarse sand. Moist. -GS-2: ODOT A-7-6 (19) Red INDURATED CLAY/MUDSTONE. Han soil/very soft bedrock.	1.0	20 14	55	20
<u>GS-4</u> <u>GS-5</u>		100 100	2.0	Brown to gray CLAY-SHALE. Hard soil/ve soft bedrock. Bottom of Boring = 3.0 meters	2.7 %			

NOTES:

. GROUND WATER READING SAMPLE TYPE BORING METHOD A: Completion ____Dry SS 5 Tem OD Sult Snort HSA - Hollow Stem Augers mSFA Solid Flight Augers GS - Geoprope Sample Alter 24 His 🗵 N/A ST - Shelby Tube m MD - Mud Drilling RC - Hock Cure WD · Wash Drilling AS - Auger Sample RC Rock Coring

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959


REPORT OF SOIL EXPLORATION

Client	Sverdrup Associates, Inc.		B-10	
Project	ATH/MEG-33-30.980/0.000	Sheet1		3
Project Nu		Completion Depth		0 m
	·	Date Started:		

Date Finished: 1/16/98 Drilled By: M.F.

Norti Easti	-	634291	.974		Boring Method Iammer Weigl	~	3.5 kg	
Eleva	-	255.8 n	7		lammer Drop		6 cm	
AMPLE NO	BLOWS PER 15cm	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION		MOISTURE CONTENT	ATTER	BERG PL
SS-1 SS-2	2 2 2 2	56 39		Brown CLAYEY SILT, little organics, trace coarse to fine sand (Topsoil). Moist. Brown SILTY CLAY, little to some coarse to fine sand, trace to little fine gravel. Medium stiff. Moist.		30 _23	-	
55-3	6	56	1.0	Mottled brown, red, and purple CLAY, some silt, trace coarse to fine sand. Still to hard.		25	49	2
55-4	6 4 10 11	78		Moist. -SS-3: ODOT A-7-6 (17)		18		
<u>55-5</u>	9 11	83	3.0		3.0	13		
	22		3.0	Brown and purple weathered MUDSTONE. Hard soil/very soft bedrock.				
55-6		67	4.0			9	1	
NOTES:		1	-,		: [:			
	SAMP 55 - 5. 1cm Ol 65 - Geoprobe 57 - Snelby Tu	Sample		GROUND WATER READING AI Completion <u></u>	HSA - Hollow SFA Said F MD - Mud Dr	light Augers		

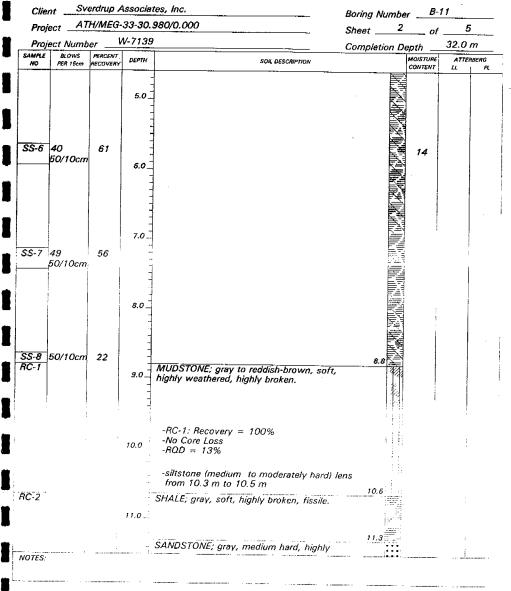
é

Clien	t Sv	erdrup A	ssociate	es, Inc.	Boring I	Vumbei	<u> </u>	•	
Proie	47	H/MEG-	33-30.9	80/0.000	Sheet _		of	3	
	ct Numb		v-7139		Comple		pth	18.0	m
SAMPLE	BLOWS PER 15cm	PERCENT	ОЕРТН	SOIL DESCRIPTION			MOISTURE	ATTER	HERG PL
NO	PER 15cm	SPECOVERY	-	-RC-3: Recovery = 97%		1111	1		
			_	-Core Loss = 3 cm		1	1		
			_	-RQD = 38%					ļ
RC-4	•		12.0						
76-4			-			11			
					1.1	1111			
				-RC-4: Recovery = 44%		1/4			
			-	-Core Loss = 78 cm -RQD = 15%					l.
			13.0	-100 - 15%		1			
						14			
			-			3.4 1///			
RC-5			1 1	MUDSTONE; red, soft, slightly massive,	with	111			
			. 1	sporadic slickensides.		15.			1
			14.0						
			-	-RC-5: Recovery = 80% -Core Loss = 30 cm		1.1			
				-RQD = 56%		1.1			
	I						i i		:
i		1	i -	· · · ·		4.9 444			
RC-6		1	15.0	MUDSTONE, gray, soft, slightly to high	ly	202			-
İ			1 -	broken.		14			
			-			111			
1			-						
	1		1 -	-RC-6: Recovery = 90%		14	1		
			16.0	-Core Loss = 17 cm -ROD = 43%		- 1 M.			1
				114D = 4070		,			
				1 					
RC-7				-ar (@ 16.7m) = 1.06 MPa					
			17.0						
				-					
				- RC-7: Recovery = 87%					
				Core Loss = 18 cm					
				-RQD = 0%					
	·					18.0			
			18.0 -	Bottom of Boring = 18.0 meters		, a. U			
								<u> </u>	

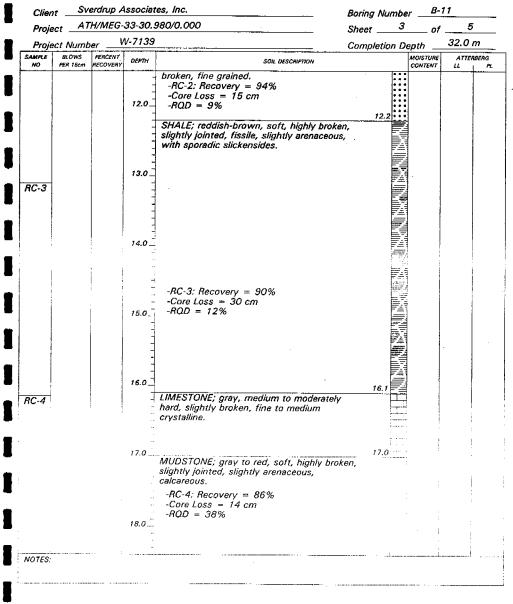
REPORT OF SOIL EXPLORATION

ClientSvero	drup Associates, Inc.				
ProjectATH/	MEG-33-30.980/0.000	S			
Project Number	14/ 7190	C			

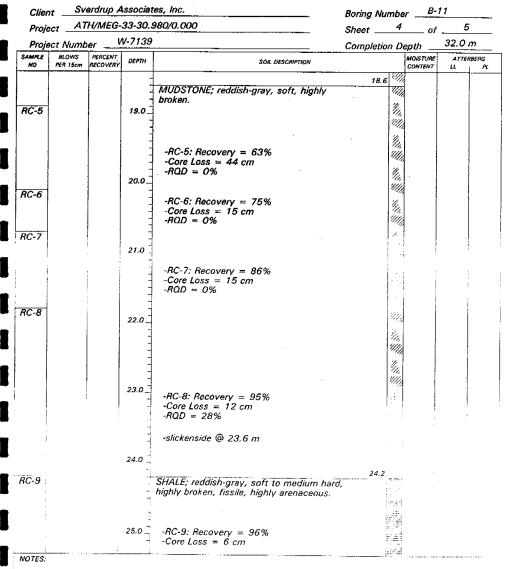
Boring	Number _	B-11	
Sheet		_ of	5
Comple	etion Dept	h3	2.0 m
	te Started		
Da	te Finishe	d: 1/8/	98
Dr	illed By:	M.F.	

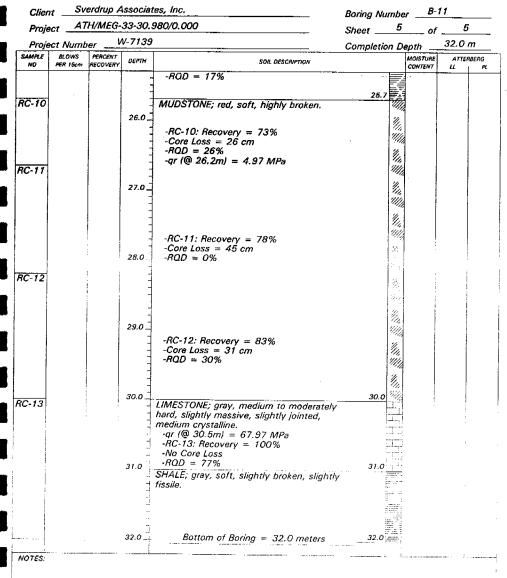

RC - Rock Coving

	143860	696	DRILLING AND SAMPLING INFORMATION		. 95	cm HS	A/RC
Northing	634270			ring Metho	·	3.5 kg	~//10
Easting				mmer Weig		5.5 ky 6 cm	
Elevation	273.7 n	n	Hai	mmer Drop			
SAMPLE BLOW		DEPTH	SOK. DESCRIPTION		MOISTURE CONTENT	ATTER LL	IBERG PL
<u>\$\$-1</u> 2 2	44		Brown CLAYEY SILT, some organics, some coarse to fine sand (Topsoil). Moist. Mottled brown and gray SILTY CLAY, some coarse to fine sand, trace fine gravel. Medium stiff to stiff. Moist.	0.1	18		
<u>55-2</u> 4 5	56 4	1.0_ - - -		1.8	16		
<u>SS-3</u> 9 11	28	2.0	Reddish-brown coarse to fine SAND, little coarse to fine gravel (weathered sandstone fragments), trace clayey silt. Dense. Damp to moist.	2.5	12		
SS-4 5 10	56 24	3.0	Mottled brown and gray CLAY, little silt, little fine to coarse sand, trace fine gravel. Hard. Moist. -SS-4: ODOT A-7-6 (19)	3.5	19	53	23
	56	4.0	Gray CLAY-SHALE. Hard soil/very soft bedrock.		18		
50/13	cm 		· · · · · · · · · · · · · · · · · · ·				<u>.</u>
SS · 5.1cr			GROUND WATER READING At Completion N/A* m Atter 24 Hrs N/A m			775	


RC - Rock Core AS - Auger Sample

* Wash water used during the coring process.





Clier	nt Sve	erdrup A	ssociat	es, Inc.	Boring Number	<u>B-12</u>
Proje	ect _AT	H/MEG-	33-30.	980/0.000	÷ ,	of3
	ect Numb	erV	V-7139	<u></u>	Completion Dep	th <u>18.0 m</u>
		143867	047	DRILLING AND SAMPLING INFORMATION	Date Finish Drilled By: ON	d: 1/14/98 ed: 1/15/98 M.F. 9.5 cm HSA/RC
Nort	niing	634210		· · · · · · · · · · · · · · · · · · ·	Boring Method	
East	""y	289.7 n		· · · · · · · · · · · · · · · · · · ·	Hammer Weight	76 cm
EIBV SAMPLE NO	BUON BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		DISTURE ATTERBERG
	PER IBCRI	RECOVERT		Brown CLAYEY SILT, some organics, little		OWTENT LL PL
<i>\$\$</i> +1	4 8 19	50		coarse to fine sand (Topsoil). Moist. Reddish-brown fine SAND, some silt, trace clay, trace coarse sand, trace fine gravel. Medium dense. Moist.	 •	17
<u>55-2</u>	29 50/8cm	28	1.0	Reddish-brown weathered SANDSTONE. Soft bedrock.	1.0	9
SS-3	46 50/5cm	39	2.0_			8
<u>55-4</u>	44 50/8cm	44	3.0	· · ·		8
SS-5 RC-1	50/8cm	17	4.0	SANDSTONE; brown to reddish-gray,	4.3	6
NOTES	:					<u> </u>
	SAMPI. SS - 5. 1cm 00 GS - Geoprabe ST - Shelby Tun RC - Rock Care AS - Auger Sang	Semple be		GROUND WATER READING At Completion : N/A*m After 24 Hrs <u>V/A</u> m * Wash water used during the coring process	HSA Hollow S SFA - Salid Higi MD - Mud Drillin	ht Augers ng ling

R

RESOURCE INTERNAȚIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

Proje	ct A7	H/MEG-	33-30.5	080/0.000	Sheet _	2		of		3
Proje	ct Numb	erV	V-7139		Complet	tion L	epth		18.0	m
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION			MOIST CONT		ATTE	RBERG
				medium to moderately hard, broken, coarse	;	11	:			<u> </u>
			-	to medium grained.				1		
			5.0	-RC-1: Recovery = 80%						
			1	-Core Loss = 30 cm				1		
		1		-RQD = 48%						1
			+							
						::	:			
RC-2			1							
			6.0							
			-							
			-				:			
			1	-RC-2: Recovery = 76%						
			-	-Core Loss = 36 cm -RQD = 24%				ł		
			7.0	$-\pi QD = 24\%$						1
RC-3			1							
HC-3			- -				1	:		
			-							
1			Ē		;	7.9	1	i		
			8.0_	SANDSTONE; brown, soft, highly broken,						
			-	slightly argillaceous, medium grained. -RC-3: Recovery = 90%						
		1 1		-Core Loss = 18 cm			:			1
			1	-RQD = 7%						
			1							
			9.0	.'		. 1				
RC-4		ļi	-	SANDSTONE; gray, medium to moderately			ļ			
			:	hard, highly broken, medium to coarse						
				grained.						
			10.0							
				-RC-4: Recovery = 98%		::				
				-Core Loss = 6 cm						
				-RQD = 28%		::				
						2.8				
			11.0	SHALE; gray, soft, broken to slightly broke fissile, slightly arenaceous.	n,		:			
				nssne, angituy arenaceous.		645 811 9	-			
			3							

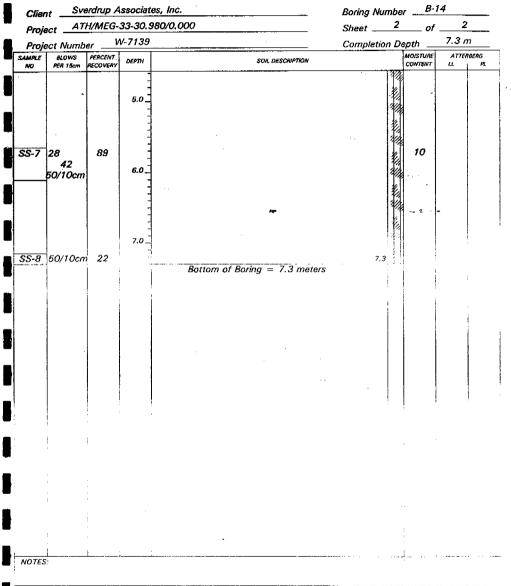
Clien		HIMEG	32.30	980/0.000		Number		3	>
Proje	· · · · ·		V-7139		Sheet		of	18.0	
Proje	ect Numb BLOWS	PERCENT			Comp	letion De			
NO	PER 15cm	RECOVERY	DEPTH	SOIL DESCRIPTION			MOISTURE CONTENT		RBERG
			12.0	-qr (@ 11.9 m) = 32.03 MPa					
1C-5				т.					
			13.0		-		· ·		
ļ			14.0	-RC-5: Recovery = 98% -Care Loss = 5 cm -RQD = 50%					
				-qr (@ 14.3 m) = 7.45 MPa -coal seam from 14.4 m to 14.6 m					
<u> १८-</u> ६			15.0 	LIMESTONE; gray, medium hard, slightly broken, slightly jointed, coarse crystalline.					
			16.0	-RC-6: Recovery = 96% -Core Loss = 6 cm -RQD = 38%					
RC-7				MUDŠTONE; dark gray, soft, highly broker	n.	16.4			
			17.0	-RC-7: Recovery = 91% -Core Loss = 14 cm -RQD = 0%					
			- 18.0 .	LIMESTONE; gray, medium hard, highly broken, slightly jointed, medium crystalline Bottom of Boring = 18.0 meters		17.7 18.0			

REPORT OF SOIL EXPLORATION

Clier	nt <u>Sv</u>	erdrup A	ssocial	tes, Inc.	Boring Number			<u>B-13</u>		
Proje	ect AT	TH/MEG-	33-30.	980/0.000	Sheet			r2	2	
Proje	ect Numb	ber	V-7139		Comple	etion D	epth _	6.1	m	
Mort	hing	143700	873	DRILLING AND SAMPLING INFORMATE	Da Dri ON	illed By	shed: 1, r: N	/20/98 /20/98 1.F. 5 cm HS	54	
	•	634267			Boring		·	53.5 kg		
East		255.4 n			Hamme	-		76 cm		
EIBVI SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION	Hamme	er Drop	MOISTURE	ATTE	RBERG	
	2	44		Brown coarse to fine SANDY SILT, some		0.1	CONTENT	ш	PL	
	2 2 3 3	50		clay, little organics (Topsoil). Moist. Brown CLAY, some silt, little fine gravel, trace coarse to fine sand. Medium stiff to stiff. Moist. -SS-1: gh = 120 kPa]		25 27			
			1.0	-SS-2: qh = 96 kPa						
\$5-3	3 5 9	44		-SS-3: ODOT A-7-6 (19); qh = 215 kPa			23	53	20	
<i>\$\$-4</i>	3 6 9	89	2.0	Mottled red and gray to red CLAY, some s trace fine sand, trace fine gravel. Very sti to hard. Moist to damp. -SS-4: qh = 263 kPa	ilt,	1.8	19		4	
SS-5	11 14 20	72	3.0_	-SS-5: qh = 431 + kPa			15			
!		ļ :] ;; ;							
SS-6	14	94	4.0				12	39	18	
NOTES:	27 44			-SS-6: ODOT A-6b (13); qh = 431 + kPa	3		• • •		. (3	
(5 #	SAMPL 55 - 5. Icm OD 35 - Geoprabe 57 - Shelby Tut 90 - Rock Core NS - Auger Samp	Sample be		CROUND WATER READING AI Completion Dry mi Alter 24 His N/A m	5) M N	SA Hora	Dutting	· 5		

REPORT OF SOIL EXPLORATION

Client	·		ssociate		Boring N	umber	<u> </u>	3	
Projec	atAT			80/0.000	Sheet _		of .		
Projec	t Numb		V-7139		Complet	ion De	pth	6.1 n	1
AMPLE NO	BLOWS PER 15cm	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION		ł	MOISTURE CONTENT		BERG PL
			5.0						
S-7 2 6	25 0/13cm	61	6.0	-SS-7: qh = 431 + kPa Bottom of Boring = 6.1 meters	6.	,	11		
			i				ſ		
								:	
-								-	
	İ								
IOTES:									



.

Clien	t Sve	erdrup A	ssociate	is, Inc.	Boring Numbe	rB	14	
Proje		H/MEG-	33-30.9	80/0.000	-	of	2	
	ect Numb	erV	V-7139	<u></u>	Completion De	epth	7.3 n	n
		143601	720	DRILLING AND SAMPLING INFORMATI		hed: 1/ : M.	20/98	A
Norti	nng	634280			Boring Method	·	3.5 kg	<u> </u>
Easti	mg	240.5 п		······································	Hammer Weig		'6 cm	
Eleve	BLOWS	PERCENT			Hammer Drop	MOISTURE	ATTER	REAG
NO	PER 15cm	RECOVERY	DEPTH	SOIL DESCRIPTION	0.10	CONTENT	<u>u</u>	PL.
SS-1 ST-2	2 2 4	33		Brown coarse to fine SANDY SILT, some clay, little organics (Topsoil). Moist. Brown to reddish-brown CLAYEY SILT, lit coarse to fine sand, trace fine gravel. Medium stiff. Moist. -SS-1: ODOT A-6a (10); gh = 120 kPa	tle 0.4	30 .21	35 - 35	21 17
<u>55-3</u>	4 5 7	89	1.0	Mottled brown, red, and purple SILT and CLAY, some to trace fine to coarse sand, trace to little fine gravel. Stiff to hard. Moist to damp. -ST-2: ODOT A-6b (9); qu = 91 kPa; uw = 19.28 kN/m3		21		
<u>SS-4</u>	6 9 26	44	2.0	-SS-3: qh = 144 kPa -SS-4: qh = 239 kPa		18	-	
55-5	13 15 27	89	3.0	-SS-5: ODOT A-6b (13); qh = 431 + kH Mottled brown, red, and purple INDURAT. CLAY/WEATHERED MUDSTONE. Hard soil/very soft bedrock.	3.0	13	39	17
			4.0					
SS-6	42 50/10cm	78	-		: : :	: 9		
NOTES		Sample ibe 9		GROUND WATER READING AI Completion — Dry m Atter 24 Hrs <u>V/A</u> n		Dritting	c/5	

13

3.0

REPORT OF SOIL EXPLORATION

....

Client	Sve	ardrup A	ssociat	es, Inc.	Borii	ng Nu	ımbe	er	15	
Projec	AT	H/MEG-	33-30.5	980/0.000				of		
	ct Numb	erV	V-7139		Corr	pletic	on D	epth	3.0 r	n
			•				Finis	ted: 1/. shed: 1/ :: M.	20/98	
North	ing	143465	.374	DRILLING AND SAMPLING INFORMATI		ng Mi	etho	d9.5	cm HS	SA
Eastin	ng	634311	.724		Нал	mer	Weig	ht6	3.5 kg	
Eleva	-	266.0 п	7			mer i		-	6 cm	<u>-</u> -
SAMPLE NO	BLOWS PER 16cm	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION				MOISTURE CONTENT	ATTE	RBERG PL
<u>SS-1</u> 2	3	89	i i i	Brown coarse to fine SANDY SILT, some \clay, little organics (Topsoil). Moist.	[О.	2	26	35	21
AS-2 3	3 3 2 3	0		Brown CLAYEY SILT, some fine sand, litt fine gravel, trace coarse sand. Medium s Moist.				22		
	0		1.0	-SS-1: ODOT A-6a (6); qh = 144 kPa		1.	, . , .	· ·		
55-3 6	5 7 11	78		Mottled red, brown and gray SILTY CLAY little coarse to fine sand, trace fine gravel Very stiff. Moist to damp. -SS-3: qh = 287 kPa				18		
SS-4	7 10 12	67	2.0_	-SS-4: ah = 431+ kPa				10		

NOTES:

SS-5 7

10

16

67

3.0

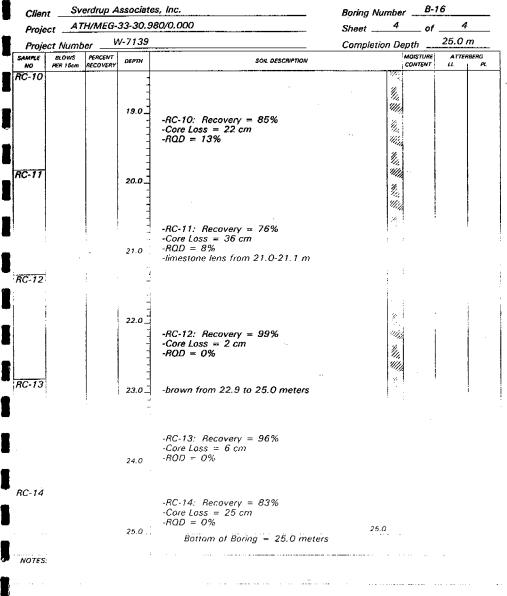
	and the second second second second second second second second second second second second second second second		
SAMPLE TYPE	GROUND WATER READING		BORING METHOD
55 - 5. tem OD Split Spann	Ar Completion 5 Dry	<i></i>	115A Hallow Stem Augers
GS - Geoprobe Sample	U		SFA Solid Flight Augnts
ST - Shelby Tube	After 24 Hrs Y N/A	m	MD Mud Dritting
RC · Rock Core			WD - Wash Drilling
AS - Auger Sample			RC - Rock Coring

.....

Bottom of Boring = 3.0 meters

-SS-5: qh = 431 + kPa

RESOL


RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

Clier	ntSve	erdrup A	ssociat	es, Inc.	Boring Numbe	r	6	
Proje	ectAT	H/MEG-	33-30.9	80/0.000	Sheet1	of	4	
Proje	ect Numb	erV	V-7139		Completion D	epth	25.0	m
Nort	thing	143358	.495	DRILLING AND SAMPLING INFORMATI	Date Star Date Finis Drilled By ON Boring Methor	shed: 2/9 : M.I	/98	A/RC
East	ting	634337	. 739		Hammer Weig	ht <u>63</u>	8.5 kg	
Elev	ation	283.4 n	n		Hammer Drop	76	б ст	
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		MOISTURE	ATTER	UBERĢ PL
\$5-1	2	83		Brown SILTY SAND, little clay, trace orga				
<u>\$\$-2</u>	4 8 10 17	78	1.0	(Topsoil). Moist. Brown CLAYEY SILT, some fine sand, littl coarse sand, trace fine gravel. Stiff. Moi Brown weathered SANDSTONE. Very sol bedrock.	<u>st.</u> ////////////////////////////////////	27		
<u>55-3</u>	50/13cm	ר <i>80</i>		SANDSTONE; brown, medium hard, highl broken, medium to coarse grained, slightly weathered.		: :		
<u>SS-4</u>	50/8cm	100	2.0					-
RC-1			3.0 			141. 1		
			4.0 .	-RC-1: Recovery = 95% -Core Loss = 9 cm -RQD = 20%				
NOTES	3:			· · · · · · · · ·	· ····· • • •	<u>.</u>		
	SAMPL SS - 6 Tem OL GS - Geoprobe ST - Sheloy Tu RC - Rock Core AS - Auger Sam	Sample ibe e		GROUND WATER READING At Completion N/A m After 24 Hrs <u>X</u> N/A m * Wash water used during the coring process	SFA - Solid MO - Mud I	Dritting		

Proje	ct	H/MEG-	<u>33-30.9</u>	80/0.000	Sheet	2	of		
Proie	ct Numb	erV	V-71 <u>39</u>		Comp	letion De	epth	25.0	m
AMPLE	BLOWS PER 15cm	RECOVERY	DEPTH	SOL DESCRIPTION			MOISTURE CONTENT	ATTE. LL	RBERG PL
RC-2							i		
			5.0_						
							l ¦		
				-RC-2: Recovery = 84%					
				-Core Loss = 24%	•••				
				-RQD = 0%					
			6.0						
00.0			-						
RC-3			1						
			-						1
			-	-RC-3: Recovery = 92%			1		
			7.0			:::			
				-RQD = 25%					
		;	; -	-qr (@ 7.3 m) = 12.36 MPa		:::	;		
	1	1							
RC-4			1 1				•:		
	-	i i	8.0						
	1								
									i
								•	1
				-RC-4: Recovery = 98%					
				-Core Loss = 6 cm -RQD = 5%		9.0			i
			9.0	SHALE; gray, very soft to soft, highly bro	ken,				1
	1		1 -	fissile, weathered, arenaceous.					
			-				5 1		
						[#74	÷.		
						÷.,			
			10.0			10.1			
				SANDSTONE; brown, medium hard, highl	lý -				
				broken, weathered.			į		
				loss of fluid circulation @ 10.2 meters			:		
RC-5									
			11.0			11.0			
			11.0	SHALE; gray, medium hard to soft, highly	/	1. A. 1. A.			
				broken, arenaceous, fissile, slightly		1. T			
		:	<u> </u>	weathered.		<u>ن</u> ة ج	1 7 7		
NOTES	5:								

Proje	ctA7	H/MEG-	33-3 <u>0.</u> 9	380/0.000	Sheet	3	_ of	4	!
	ct Numb	er V	V-7139		Completi	on Dept	h	25.0	m
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	ŞOIL DESCRIPTION		MO	ISTURE NTENT	ATTE	RBERG
			-			R			
			12.0						
				-RC-5: Recovery = 100% -No Core Loss -RQD = 11%	•.				
			13.0_						
			T T		13.0	5			
RC-6			14.0	LIMESTONE; gray, moderately hard, fine crystalline, slightly broken, slightly jointed.					
			· 	-RC-6: Recovery = 100% -No Core Loss -RQD = 47% -qr (@ 14.6 m) = 43.20 MPa					
RC-7			15.0						
			-	-gray shale lens from 15.5-15.8 m		H			
			16.0	-RC-7: Recovery = 88% -Core Loss = 15 cm -RQD = 0%					
RC-8									
00 0			17.0	-RC-8: Recovery = 100% -No Core Loss -ROD = 0%	. 17.	2			
RC-9				MUDSTONE; variegated gray, red, and brown, soft to very soft, highly broken, nonbedded, slickensides. -RC-9: Recovery = 100%		:			
			18.0	-No Core Loss					

.

REPORT OF SOIL EXPLORATION

Clier	ntSvi	erdrup A	ssociat	es, Inc.	Boring Nu	mbe	<u>в-</u>	17	
Proje	ectAT	H/MEG-	33-30.	980/0.000	Sheet			1	
Proje	ect Numb	er <u>V</u>	V-7139		Completio	n De	epth	3.0 п	7
						Finis	ted: 1/. hed: 1/ : M.	21/98	
Nort	thing	143271	.048	DRILLING AND SAMPLING INFORMATI	ION Boring Me	tho	9.5	cm HS	A
East	•	634359	.023		Hammer \			3.5 kg	
	-	265.3 n	n		Hammer L	. .	-	'6 cm	
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION			MOISTURE	ATTER	ISERG PL
SS-1	4 3	67		Brown CLAYEY SILT, little organics, little coarse to fine sand (Topsoil). Moist.	.	\mathbb{P}	31	40	25
<i>SS-2</i>	4	44	1.0	Brown to mottled brown and red CLAYEV SILT, some to trace coarse to fine sand, if fine gravel. Medium stiff. Moist. -SS-1: ODOT A-6b (6); qh = 168 kPa			19		
SS-3	15 26 40	10	, 	-SS-3: qh = 431 + kPa			10		
\$S-4	17 33 42	78	2.0	-SS-4: qh = 431+ kPa			9		
SS-5	19 35 50/10cm	89	- - - 3.0_	Red highly weathered SHALE. Hard soil/ soft bedrock. -SS-5: qh = 431 + kPa Bottom of Boring = 3.0 meters	2.5 very 3.0		10 95		

NOTES:

.

GROUND WATER READING SAMPLE TYPE BORING METHOD At Completion Dry SS 5.1cm OD Sulit Sphon m HSA · Hollow Stein Augers SFA - Solid Flight Augers GS Geoprobe Sample After 24 His N/A m ST - Shelby Tube MD - Mud Drilling RC - Rock Core WD - Wash Drilling AS Auger Smiple RC - Rack Coring

ClientSverdra	up Associates, Inc.	
Project ATH/M	EG-33-30.980/0.000	
	W-7139	
1 Tojoot Maribon	· .	

Boring Num	ber	B-1	8
Sheet			
Completion			
Date S Date Fi	tarted: inished: By:	1/2 1/2	1/98 1/98

East	hing	634385	.038	H	ammer Weigl	nt <u>6</u> :	3.5 kg	
Eleva	-	248.4 n	7		ammer Drop	70	6 cm	
SAMPLE NO	BLOWS PER 15cm	PERCENT	ОЕРТН	SOL DESCRIPTION		MOISTURE CONTENT		ERG FL
<u>55-1</u> 55-2	2 4 4 7 11	67 83	-	Brown CLAYEY SILT, some coarse to fine sand, little organics (Topsoil). Moist. Brown SILTY CLAY, some fine sand, trace coarse sand, trace coarse to fine gravel. Stiff to very stiff. Moist. -SS-1: gh = 96 kPa		18 17	34	17
55-3	:	33	1.0	-SS-2: ODOT A-6b (8); qh = 287 kPə Reddish-brown CLAY, some silt, trace coars to fine sand, trace fine gravel. Hard. Moist -SS-3: qh = 431 + kPə	e	10	1	
<u>SS-4</u>	8 13 15	44	2.0_			9		
<u>SS-5</u>	8 14 21	39	3.0	-SS-5: qh = 431+ kPa		10		
<i>55-6</i>		44	4.0		· · · · · · · · · · · · · · · · · · ·	16	46	7
NOTE		5		SS-6: ODOT A-7-6 (16); qh = 431 + kPa	J	· · · ·		
	SAMI SS - 5.1cm (GS - Geoprat ST - Shelby 1 RC - Rock Co AS - Auger Se	e Sample Tube pre		GROUND WATER READING At Completion - <u>Dry</u> M Alter 24 Hrs <u>¥ N/A</u> m		ow Stem Aug Flight Augnt Drilling Drilling		

REPORT OF SOIL EXPLORATION

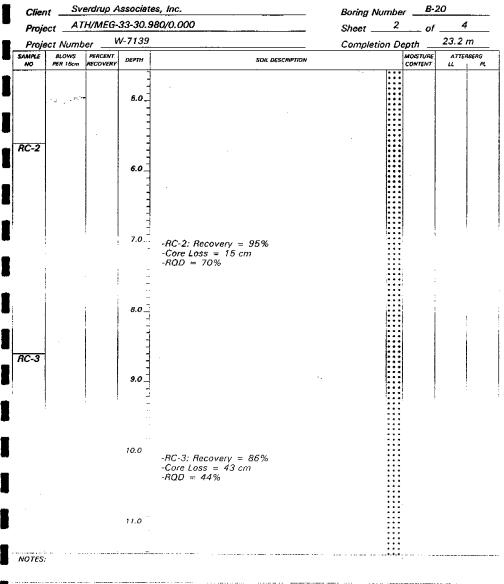
Cliel	nt <u>Svi</u>	erdrup A	ssociat	es, Inc.	Boring I	Vumi	ber	<u>B-1</u>	8		
				980/0.000	Sheet _			of	2	-	
	ect Numb		V-7139		Comple				5.9 r	n	
SAMPLE NO	BLOWS PER 16cm	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION			Мо	NSTURE NTENT	ATTEI LL	IBERG PL]
<u>SS-7</u>	16 50/5cm	33	5.0	Gray CLAYEY SILT, some coarse to fine sand. Hard. Damp. Bottom of Boring = 5.9 meters		5.6		8			
							ал жили жили так на так на так на так на так на так на так на так на так на так на так на так на так на так на				

REPORT OF SOIL EXPLORATION

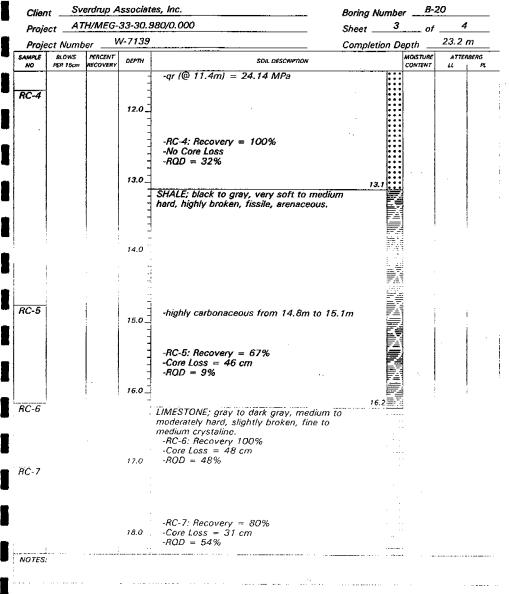
verdrup A	ssociate	es, Inc	Boring Numbe	rB	-19	
nberV	V-7139		Completion D	epth _	3.0 n	n
		i na	Date Finis	shed: 1	/21/98	
143018	.423	DRILLING AND SAMPLING INFORMATIO	DN Boring Metho	d	5 cm HS	:A
634420	.512		- Hammer Weig	ht	63.5 kg	
267.5 n	n					
PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION				RBERG
83 4 22 4 61		organics, little clay (Topsoil). Moist. Brown fine SANDY SILT, some clay, trace coarse sand, trace fine gravel. Medium st Moist. -SS-1: ODOT A-4a (5); gh = 144 kPa Brown fine SAND, some silty clay, little fin	iff.	24 13 20	26	17
50	i ¬	hard. Moist to damp.	3.0	17		
	143018 634420 267.5 m 83 4 22 4 61 7 50 15 67	Ith/MEG-33-30.9 nber W-7139 143018.423 634420.512 267.5 m 267.5 m mecovern Deenth 4 22 4 1.0 61 50 50 2.0 15 67	ITH/MEG-33-30.980/0.000 DRILLING AND SAMPLING INFORMATION Interview W-7139 DRILLING AND SAMPLING INFORMATION 143018.423 634420.512 267.5 m Sou Descentrion Recover and the provide the	NTH/MEG-33-30.980/0.000 Sheet1 nber W-7139 Completion D Date Star Date Star Date Finis Drilled By 143018.423 Boring Methon 634420.512 Hammer Weig 267.5 m Hammer Drop RECOVER Bernit Sour Descention 0.1 More SANDY SILT, some clay, trace 0.4 22 Brown coarse to fine SANDY SILT, some clay, trace 0.4 Vorganics, little clay (Topsoll). Moist. 0.1 4 Sist. 0.4 22 Brown fine SANDY SILT, some clay, trace 0.4 10 Brown fine SANDY SILT, some clay, trace 0.4 4 Sist. 0.5 5 Sist. 0.00T A-4a (5); gh = 144 kPa 10 Brown fine SAND, some silty clay, little fine 1.1 61 coarse gravel (sandstone fragments), trace 1.1 61 coarse sand. Loose. Moist. -SS-2: ODOT A-3a 7 Brown SILTY CLAY, some coarse to fine 1.1 50 2.0 -SS-3: qh = 311 kPa -SS-4: qh = 431 + kPa <td< td=""><td>NTH/MEG-33-30.980/0.000Sheet1oinberW-7139Completion DepthDate Started:1Barown Starte0.1Solut Descentrion0.1PrecoverDeeminSolut Descentrion0.1Brown fine SANDY SillT, some clay, trace0.4Organics, little clay (Topsoil). Moist.13MoistSS-1: ODOT A-4a (5); gh = 144 kPa10Brown file SAND, some silty clay, little fine1.161to coarse gravel (sandstone fragments), trace20coarse sand. Loose. MoistSS-2: ODOT A-3a7Brown Sill TY CLAY, some coarse to fine17502.0-SS-3: qh = 311 kPa1755-SS-5: qh = 335 kPa867-SS-5: qh = 335 kPa8</td><td>NTH/MEG-33-30.980/0.000Sheet 1of 1nberW-7139Completion Depth3.0 mDate Started:1/21/98Date Started:1/21/98Date Started:1/21/98Date Started:1/21/98Drilled By:M.F.143018.423DRILLING AND SAMPLING INFORMATION143018.423Boring Method9.5 cm HS634420.512Hammer Weight63.5 kg267.5 mHammer Drop76 cmnecoverncorreeru83Brown coarse to fine SANDY SiLT, some0.1organics, little clay (Topsoill). Moist.12426Brown fine SANDY SiLT, some clay, trace0.410Brown fine SANDY SiLT, some clay, trace0.410Brown fine SAND some silty clay, little fine1.361to coarse gravel (sandstone fragments), trace20coarse sand, Loose. Moist.20502.0-SS-3: qh = 311 kPa512.0-SS-5: qh = 335 kPa8</td></td<>	NTH/MEG-33-30.980/0.000Sheet1oinberW-7139Completion DepthDate Started:1Barown Starte0.1Solut Descentrion0.1PrecoverDeeminSolut Descentrion0.1Brown fine SANDY SillT, some clay, trace0.4Organics, little clay (Topsoil). Moist.13MoistSS-1: ODOT A-4a (5); gh = 144 kPa10Brown file SAND, some silty clay, little fine1.161to coarse gravel (sandstone fragments), trace20coarse sand. Loose. MoistSS-2: ODOT A-3a7Brown Sill TY CLAY, some coarse to fine17502.0-SS-3: qh = 311 kPa1755-SS-5: qh = 335 kPa867-SS-5: qh = 335 kPa8	NTH/MEG-33-30.980/0.000Sheet 1of 1nberW-7139Completion Depth 3.0 m Date Started:1/21/98Date Started:1/21/98Date Started:1/21/98Date Started:1/21/98Drilled By:M.F.143018.423DRILLING AND SAMPLING INFORMATION143018.423Boring Method9.5 cm HS634420.512Hammer Weight 63.5 kg 267.5 mHammer Drop76 cmnecoverncorreeru83Brown coarse to fine SANDY SiLT, some0.1organics, little clay (Topsoill). Moist.12426Brown fine SANDY SiLT, some clay, trace0.410Brown fine SANDY SiLT, some clay, trace0.410Brown fine SAND some silty clay, little fine1.361to coarse gravel (sandstone fragments), trace20coarse sand, Loose. Moist.20502.0-SS-3: qh = 311 kPa512.0-SS-5: qh = 335 kPa8

NOTES:

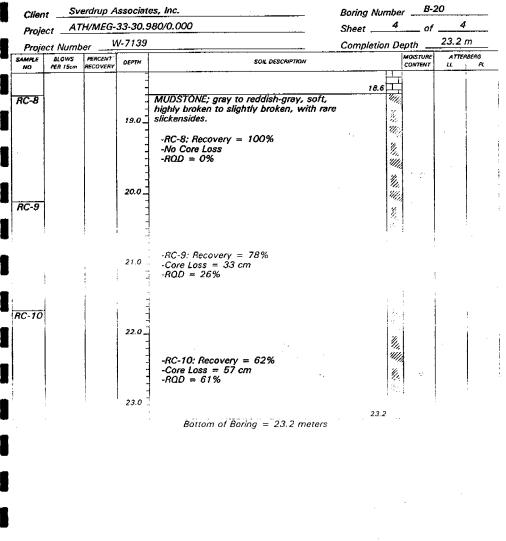
SAMPLE TYPE	GROUND WATER READING		BORING METHOD
SS - 5.1cm OD Split Spoon	At Completion Dry	m	HSA Horew Stem Augers
GS - Geoprobe Sample			SFA - Solid Flight Augers
ST - Shelby Tube	Allei 24 His Y N/A	111	MD - Mud Drilling
RC - Rock Core			WD - Wash Dritting
AS - Auger Sample			RC - Rock Coving



REPORT OF SOIL EXPLORATION


,

Client	Sve	erdrup A	ssociat	es, Inc.	Boring Numbe	er <u>B-3</u>	20
Proje ct	ΑΤ	H/MEG-	33-30.5	80/0.000	Sheet 1	of	4
Project	Numb	erV	V-7139		Completion D	epth	23.2 m
				DRILLING AND SAMPLING INFORMATI	Date Star Date Fini Drilled By	shed: 1/. v: M.	22/98 .F.
Northin	y	142927			Boring Metho	u	cm HSA/RC
Easting		634468			Hammer Weig		3.5 kg
Elevatio	<u> </u>	285.7 п	<u>,</u>		Hammer Drop		<u>6 cm</u>
	LOWS R 15cm	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION		MOISTURE CONTENT	ATTERBERG LL † PL
SS-1 4	4	28		Dark brown coarse to fine SANDY SILT, some organics, little clay (Topsoil). Moist.	0.1	78	
<u>\$\$-2</u> 4	4 6 6	56		Dark brown to reddish brown SILTY CLAY trace coarse to fine sand, trace fine grave Medium stiff. Moist.		27	
	0		1.0 _		1.1	- 1	
\$\$-3 8 50/	28 13cm	56 I		Brown highly weathered SANDSTONE. H soil/very soft bedrock.		12	
<u>\$\$-4</u> 50	/13cm	22	2.0	SANDSTONE; brown, soft to medium hard slightly massive to slightly broken, slightly		8	
RC-1			3.0	jointed, coarse grained.			
: <u></u>			4.0			, 1	I
				-RC-1: Recovery = 99% -Core Loss = 3 cm -RQD = 55%			
NOTES:				· · · · · ·			
65 - 51 RC -	SAMPL 5. tem OD Geoprobe Shelby Tul Rock Core Auger Samp	Split Spoan Sample re		GROUND WATER READING At Completion N/A* m Atter 24 His <u>V/A</u> m * Wash water used during the drilling process	SFA - Solid MD - MLC L	Dritting	



REPORT OF SOIL EXPLORATION

NOTES:

REPORT OF SOIL EXPLORATION

Clien	nt <u>Sve</u>	erdrup A	ssociat	es, Inc.	Boring	Number	г <u>В</u>	21	
Proje	ect AT	H/MEG-	33-30.5	380/0.000	Sheet	1	of	1	
Proje	ect Numb	erV	V-7139	· · · ·	Comple	etion De	epth	3.0 r	n
					Da	nte Stari nte Finis illed By:	hed: 1/	26/98	
Norti	hing	142824	.097	DRILLING AND SAMPLING INFORMAT		Methoo	, <u>9.5</u>	cm HS	<u>A</u>
Easti	ing	634467	.811		Hamme	er Weig	ht6	3.5 kg	
Eleva	ation	263.9 n	n	······································	Hamme	er Drop	7	6 cm	
SAMPLE	BLOWS PER 16cm	RECOVERY	DEPTH	SOIL DESCRIPTION			MOISTURE CONTENT	ATTER	RBERG I PL
SS-1 SS-2 SS-3	3 2 2 3	61 39	1.0	SILT, some fine sand, trace coarse sand, trace fine gravel. Medium stiff to very st Moist.	tiff.	0.1	22 25 21	32 32	18 19
<u>SS-4</u> <u>SS-5</u>	-	56	2.0	-SS-3: ODOT A-6a (9)		2.7	21		
	40 50/8cm		3.0_	Variegated brown and purple INDURATEL CLAY/MUDSTONE. Hard soil/very soft bedrock. Bottom of Boring = 3.0 meters) 	3.0 🦼			

NOTES

SAMPLE TYPE	GROUND WATER READING		BORING METHOD
SS - 5.1cm OD Split Spoon	A: Completion Dry	m	HSA Hollow Stom Augers
GS - Geoprobe Sample			SFA - Solid Flight Augers
ST - Shelby Tube	After 24 His Y N/A	m	MD - Mud Drilling
RC · Rock Care			WD - Wash Drilling
A5 - Auger Sample			HC - Rock Coring

REPORT OF SOIL EXPLORATION

٠.

Clier	st Sve	erdrup A	ssociat	es, Inc.	Boring Numb	er8-	22	
Proje	A T	H/MEG-	33-30.5	980/0.000	Sheet1	of	2	
-	ect Numb	erV	V-7139		Completion L	epth _	6.1 m	1
···-,. 				DRILLING AND SAMPLING INFORMATI		ished: 2, y: N		· 4
Nort	11111g	142690	•••		Boring Metho		53.5 kg	<u> </u>
East	<i>mg</i>	634502			Hammer Wei	ym		
		236.5 n	? **		Hammer Dro	MOISTURE	76 cm	
SAMPLE NO	BLOWS PER 15cm	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION		CONTENT	4	PL PL
SS-1 ST-2	3 3 3	56 100		Brown fine SANDY SILT, little organics, tr clay (Topsoil). Moist. Brown SILTY CLAY, some fine sand, little fine gravel, trace organics., Medium stiff. Moist.	0.4	27		
55-3	4 5 10	50	1.0_	- ST-2: Visual ODOT A-3a Brown CLAY, little fine sand, little to som silt, trace coarse sand, trace fine gravel. Very stiff. Moist.	1.7	22	47	16
ST-4	-	67	2.0	-SS-3: ODOT A-7-6 (17)		17	47	17
SS-5	7 14 17	67	3.0	-ST-4: ODOT A-7-6 (17); uw = 21.05 KN/m3 Varigated red, brown, and gray INDURAT, CLAY/MUDSTONE. Hard soil/very soft bedrock.	2.6 ED			
SS-6 NOTES	21 50/13cm 5: ++ Eleva		4.0 . ioximate.					
	SAMP SS - 5.1cm O GS - Geopratu ST - Shelby To RC - Rock Cot AS - Noger Sam	e Sample ube re		GROUND WATER READING AI Completion Dry m After 24 Hrs V/A m		llow Stem Au id Flight Auge 1 Drilling sh Drilling		

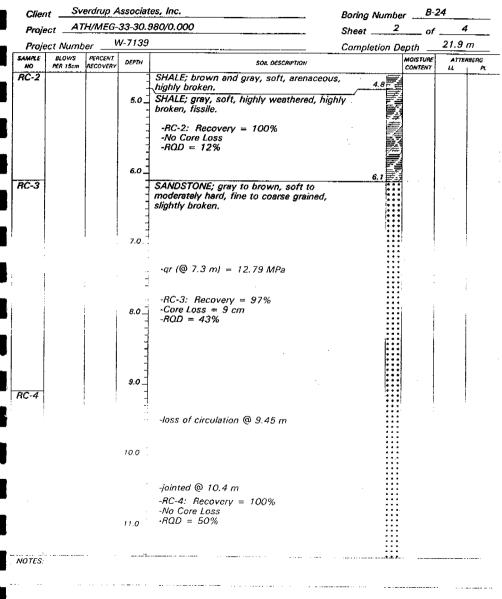
REPORT OF SOIL EXPLORATION

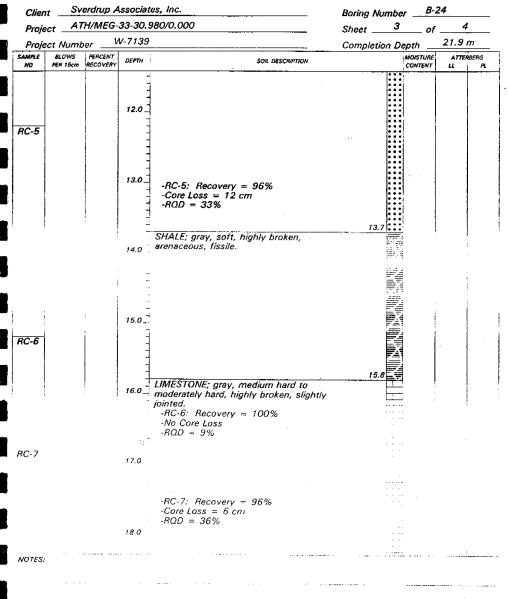
4.7	rdrup Associates,		Boring No	imbe	r <u>B-2</u>		
Project	I/MEG-33-30.980	0.000	Sheet	2	of	2	2
Project Numbe	roject Number		Completi	on De	epth	6.1 m	
	PERCENT DEPTH	SOIL DESCRIPTION			MOISTURE CONTENT	ATTE	NBERG
\$\$-7 46 50/5cm	88 6.0	Bottom of Boring = 6.1 meters				· .	

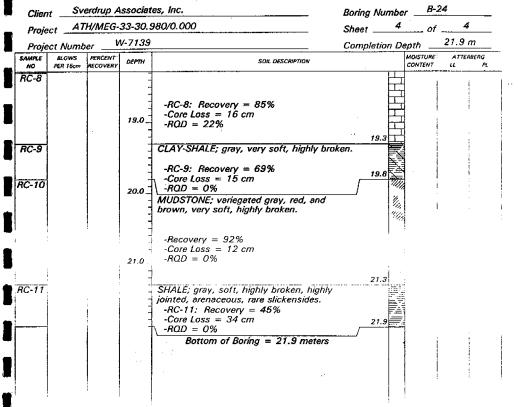
NOTES: ** Elevation is approximate.

REPORT OF SOIL EXPLORATION

Clier	ntSvi	erdrup A	ssociat	es, Inc. Boi	ring Numbe	, <u> </u>	23	
Proje	act AT	H/MEG-	33-30.5		eet1			
Proje	ect Numb	er	V-7139	Co.	mpletion De		2.3 n	?
r L					Date Stan Date Finis Drilled By:	hed: 2/	2/98	
Nort	hing	142508	.316	DRILLING AND SAMPLING INFORMATION	ring Method	9.5	cm HS	A
East	ing	634544	.673		- mmer Weigi	~	3.5 kg	
- Eleva	ation	268.0 n	n**	Ha	mmer Drop	7	6 ст	
SAMPLE NO	BLOWS PER 15cm	PERCENT RECOVERY	DEPTH	SON DESCRIPTION		MOISTURE CONTENT	ATTER 4	BERG PL
SS-1	3 3	39		Brown CLAYEY SILT, some coarse to fine sand, little organics (Topsoil). Wet.		38		
<u>\$\$-2</u>	2 2 2 3	50	1.0	Dark brown CLAY, some silt, trace coarse to fine sand, trace fine gravel. Medium stiff to very stiff. Wet to moist. -SS-2: ODOT A-7-6 (17)		27	51	23
SS-3		44				17		
	7 12		-	-SS-3: Mottled red and brown	1.8			
SS-4	12 47 50/3cm	77	2.0	Brown highly weathered SHALE. Hard soil/very soft bedrock.	2.3	11		
				Bottom of Boring = 2.3 meters				


NOTES: ** Elevation is approximate.


SAMPLE TYPE	GROUND WATER READING	BORING MET	นก
SS - 5. fcm OD Split Spoon	AL Completion - Dry		110
GS Geoprote Sample		SFA - St. 5 Filant Augus	
ST - Shelby Tube	After 24 Hrs Y N/A		
RC · Rock Core		WD - Wesn Dellerg	
AS - Auger Sample		BC - Baci Corine	


Cliem	$t _ Sv_t$	erdrup A	ssociat	es, Inc.	Boring Nul	mber	-24	
Projec	ct	H/MEG-	33-30.5	980/0.000	Sheet	10	f4	
Projec	ct Numb	er	V-7139		Completio	n Depth	21.9	m
North	vina	142435	.444	DRILLING AND SAMPLING INFORMATIO	Date I Drilled	, ,		SA/RC
Eastin	÷	634562	.410		Hammer V		63.5 kg	
Eleva	-	288.6 n	7		Hammer D		76 cm	
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION	1101111101 0	MOISTUR		RBERG
	2	56		Dark brown SILT, some clay, little organics	s, <u>0.1</u>	41		
SS-2	3 4 11 21	89	-	trace fine sand (Topsoil). Moist. Red to brown SILTY CLAY, little coarse to fine sand, trace fine gravel. Medium stiff hard. Moist.]	13		
\$5-3 z		62	1,0 _ - -	Brown INDURATED CLAY/CLAY-SHALE. Hard soil/very soft bedrock.	1,0	8		
SS-4	13 50/10cm	100	2.0_ - - -			12	i	
RC-1			3.0	SHALE; brownish gray, soft to medium ha highly broken. SANDSTONE; brown to gray, medium han moderately hard, highly broken.	3.1			
			4.0	MUDSTONE; brown, soft, highly broken. -RC-1: Recovery = 88%	3.5	***		
			-	-Core Loss = 22 cm -RQD = 24%	4,5	: .		
NOTES:				····				
G S R	SAMPI S 5 Icm OL S Graprobe T Shelby To IC - Rock Con S - Auger Sam	Sample be		GROUND WATER READING At Completion: N/A * m After 24 Hrs. <u>N/A</u> m * Wash water used during the coring process	SFA - MD - WD -	BORING Holew Stein Augo Solid Flight Augo Mud Drilling Wash Drilling Nesh Drilling Nock Coring		

R

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

.

Clien	t Sve	ardrup A	ssociat	es, Inc E	Boring Numbe	B-2	25	
Proje	AT	H/MEG	33-30.9		Sheet1			
-	ect Numb	er	V-7139	C	Completion D	epth	3.0 n	<u>n</u>
					Date Star Date Finis Drilled By	shed: 2/.	2/98	
Nort	hina	142382	.975	DRILLING AND SAMPLING INFORMATIO	N Boring Method	d 9.5	cm HS	:A
East	•	634575	5.181		lammer Weig	~	3.5 kg	
	•	272.0 r	n**		lammer Drop	_	6 cm	
SAMPLE	BLOWS PER 15cm	PERCENT RECOVERY	ОЕРТН	SOIL DESCRIPTION		MOISTURE CONTENT		WERG PL
<u>SS-1</u>	2 3 3	89	-	Brown SANDY SILT, little clay, little organic (Topsoil). Moist. Brown to reddish-brown SILTY CLAY, some		25		
<u>SS-2</u>	3 3 4	83		coarse to fine sand, little fine gravel. Medium stiff, Moist. -SS-2: ODOT A-6a (5)		16	26	14
SS-3	4 6 8	56	1.0	Brown fine to coarse SANDY CLAY, some silt, trace coarse to fine gravel. Stiff. Mois	1.1 st.	13		I
<u>\$</u> \$-4	4 7 13	61	2.0	Brown to gray SILTY CLAY, little coarse to fine sand, trace fine gravel. Very stiff. Moi	1.8	20		
<u>\$\$-5</u>	8 23 27	72	3.0	Gray CLAY-SHALE. Very soft bedrock.	2.4 3.0	12		
				Bottom of Boring $=$ 3.0 meters				

NOTES: ** Elevation is approximate.

SAMPLE TYPE	GROUND WATER READI	NG	BORING METHOD
SS - 5. Icm OD Split Spain	ALCompletion : Dry .	79	HSA · Hallow Stem Augers
GS · Geoprobe Sample			SFA - Salid Flight Augers
ST Shelby Tube	Aller 24 His 🔍 N/A	<i>m</i>	MD - Mud Dritting
RC · Rock Core			WD · Wash Dritting
AS - Auger Sample			BC Bock Coring

ClientSverdr	Sverdrup Associates, Inc.					
ProjectATH/N	1EG-33-30.980/0.000	Sheet1				
Project Number	W-7139	Completion Depti				
	and the second second second second second second second second second second second second second second second					

Boring	Number	B-26					
- Sheet	1	of	2				
Compl	etion Depth		5.8 m				
Da	ate Started:	2/1	1/98				
	te Finished:	-					
Di	illed By:	М.	F.				
	-						

Norti Easti	5	634613	.966		loring Metho Iammer Weig	·	cm HS 3.5 kg	
Eleve	-	250.0 n	, **		lammer Drop	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6 cm	
SAMPLE	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION	iammer Drop	MOISTURE	ATTER	BERG PL
\$\$-1 \$7-2	2 3 3	78 100		Brown SILTY CLAY, some fine sand, little organics, trace fine gravel (Topsoil). Moist. Brown SILTY CLAY, some fine sand, trace to little fine gravel, trace coarse sand. Medium stiff to stiff. Moist.		20 23	36	14
SS-3	2 2	56	1.0	-ST-2: ODOT A-6b		23		
\$\$-4	4	39	2.0	-SS-3: Visual ODOT A-6b		- 23		
SS-5	6 9 19	33	3.0	Red to brown CLAY, little silt, trace fine sand, trace fine gravel, trace coarse sand. Very stiff to hard. Moist to damp.	2.4	17		
SS-6	10 21 29	78	4.0	-SS-6: ODOT A-7-6 (15)		14	44	10
	SAMP], SS 5 tem OD SS 6coprote ST - Shelly Tal RC - Rock Core	E TYPE Spiit Spoon Sample Ie	uximate.	GROUND WATER READING At Completion Dry m After 24 Hrs IN/A m		Dritting		

REPORT OF SOIL EXPLORATION

ClientSverdrup	Associates, Inc.	Boring Nu	mber .	<i>B</i> -2	6	
ProjectATH/MEG	-33-30.980/0.000	Sheet	2	of .	2	
Project Number	W-7139	Completio	n Dept	h	5.8 n	,
SAMPLE BLOWS PERCENT NO PER 15cm RECOVER				ISTURE NTENT	ATTER	BERG PL
<u>\$\$-7</u> 50/8cm 100	5.0 Gray weathered SHALE. Hard soil/ver bedrock. Bottom of Boring = 5.8 meters	5.8				

---- -

NOTES: ** Elevation is approximate.

Clien	<u> </u>	erdrup A		· · · · · · · · · · · · · · · · · · ·	Boring Numbe			
Proje	ectAT	H/MEG-	33-30.5	980/0.000	Sheet1	of		
Proje	ect Numb	erV	V-7139		Completion D	epth	19.2	m
					Date Star Date Finis Drilled By	hed: 1/	30/98	
Nort	hing	142050	.402	DRILLING AND SAMPLING INFORMATI	ION Boring Metho	d9.5	cm HS	A/R
East	ing	634644	.425		Hammer Weig	ht6	3.5 kg	
Eleva	ation	292.6 п	ר		Hammer Drop	7	'6 cm	
SAMPLE NO	BLOWS PER 16cm	PERCENT	DEPTN	SOIL DESCRIPTION		MOISTURE CONTENT	ATTER LL	RBERG
SS-1	3 6 13	67	-	Brown SILTY CLAY, little coarse to fine s little organics, trace fine gravel (Topsoil). Moist.		22		
<u>SS-2</u>	19 21 24	100	-	Red SILTY CLAY, some coarse to fine sau Very stiff to hard. Moist to damp. -SS-2: ODOT A-6a (5)	nd.	16	34	2
55-3	50/5cm	100	1.0	Light gray INDURATED CLAY/weathered CLAY-SHALE. Hard soil/very soft bedroc		10		
<u>SS-4</u>	50/10cm	n 100	2.0			12		
<u>SS-5</u>	50/13cn	n 100	-					
			3.0			2000 Cattor - 1999		
				:				
SS-6	50/0cm	0	4.0		۲۰۰۶ ۲۰۰۶ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰			
NOTES				1	<i>4.5</i>			
	SAMP SS - 5 Icm O GS - Geoprobi ST - Sheby T	e Sample		GROUND WATER READING At Completion N/A^+ is After 24 Hirs $\sqrt{N/A}$ m		BORING w Stein Aug Flight Auger Drilling	ers.	
	RC - Rock Col AN - Auger Nar	re		* Wash water used during the coring proces		Drilling		

REPORT OF SOIL EXPLORATION

.

Proje	at AT	H/MEG-	33-30.5	380/0.000	Sheet .	2	of	4	ţ.
			/-7139		Comple			19.2	m
SAMPLE	ct Numb Blows	PERCENT	ОЕРТН	SOIL DESCRIPTION			MOISTURE		RBERG
NO A	PER 15cm	RECOVERY	µ 27 1/1	MUDSTONE; brown and red, soft, highly		12	CONTENT	ц	+ ^P
RC-1			1	broken, slightly jointed, rare slickensides.		123			
			5.0						
			-			1111			
			3	-RC-1: Recovery = 91%					
			-	-Core Loss = 14 centimeters -RQD = 27%		111			
			-			14			
			6.0			114			
RC-2			-			8			
			-			24			
			-			:			
		1	-	-RC-2: Recovery = 50%					1
		i	7.0	-Ccre Loss = 76 centimeters -RQD = 0%					
				-AQD = 0.76					
			-	4			E i		ł.
RC-3				-					
			-	-changing to gray in RC-3					
			8.0_						1
			-	-RC-3: Recovery = 100% -No Core Loss		111			
			-	-RQD = 24%		8.6 1			
			-	SHALE; gray, soft, highly broken,					
			9.0	arenaceous. SANDSTONE; gray, moderately hard, med	dium	8.9			
RC-4		1		to fine grained, highly broken.	.—	9.2	1		
				SHALE; gray, moderately hard, arenaceou slightly broken.	15,		-		
				-RC-4: Recovery = 100% -No Core Loss			÷		
			10.0	-RQD 54%	;	0.7			
				MUDSTONE; gray, soft to moderately hai slightly broken.		2			
				signay broken.					
na ć					i	0.7			
RC-5				SANDSTONE; gray to brown, soft, slight massive, medium to fine grained.	lv				
			11.0	- messive, medium to fine grameu. - -					
NOTES				RC-5: Recovery == 100%					

Proje	ct AT			980/0.000	Sheet	3	of	
*	ect Numl		V-7139		Completi			19.2 m
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION		M	IOISTURE ONTENT	AYYERBERG LL PL
			-	-No Core Loss				
			-	-RQD = 69%	. 11.	8		
			12.0	MUDSTONE; gray, soft, highly broken.				
				SANDSTONE; brown to gray, medium hard	12.	1 1/2		
RC-6			-	medium to fine grained, massive.				
			-				1	
			-					
			-					
			13.0				· ·	
			-					
				-RC-6: Recovery = 100%				
			-	-No Core Loss -RQD = 58%				
RC-7		- 4	-					
· · • ·			14.0					
				•		:::		
			-					
		:	-	PC 7. 8 100%				
				-RC-7: Recovery = 100% -No Core Loss				
			-	-RQD = 88%				
			15.0					
RC-8			-					
10-0			-				1	
			-					
			-	-RC-8: Recovery = 100%			N 1	1
			16.0	-No Core Loss -RQD = 27%				
		1						
				-qr (@ 16.1 meters) = 18.52 MPa				
				•		:::		
RÇ-9								
			17.0	•				
				•				
				-RC-9: Recovery = 100%				
				-No Core Loss -RQD = 95%		:::		
			18.0	-nub - 30 /0		:::		
						:::		
NOTES		<u></u>						

REPORT OF SOIL EXPLORATION

.

Clien	nt <u>Svi</u>	erdrup A	ssociate	es, Inc.	Boring No	ımbe	r <u>B-2</u>	7
Proje				80/0.000	Sheet	4		4
	ect Numb	er_V	V-71 <u>39</u>		Completi	on De	pth	19.2 m
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION			MOISTURE CONTENT	ATTERBERG
RC-10			19.0	-RC-10: Recovery = 100% -No Core Loss -RQD = 63%	19.			
				Bottom of Boring = 19.2 meter	3			
							••	
							;	
								1

REPORT OF SOIL EXPLORATION

Clien	t Svi	erdrup A	ssociat	es, Inc.	Boring	Numbe	<u>гВ</u>	-28	
Proje	AT	H/MEG-3	33-30.9	380/0.000	Sheet	1	0	f1	
•	ect Numb	erW	-7139		Compl	etion De	epth_	4.3 n	n
		• .			Da	ate Star ate Finis villed By	hed: 2		
Nort	hipa	141999.	229	DRILLING AND SAMPLING INFORMATION		Metho	<u>, 9</u> .	5 cm HS	SA
East	_	634701.	289		-	er Weig		63.5 kg	
	-	279.5 m	**		1 A A	er Drop		76 cm	
SAMPLE NO	BLOWS PER 15cm	PERCENT	DEPTH	SOIL DESCRIPTION			MOISTUR		RBERG 1 PL
	2	56		Brown CLAYEY SILT, some coarse to fine	, , , , , , , , , , , , , , , , , , ,	0.1		1	<u> </u>
<u>SS-2</u>	2 2 2 8	22		sand, little organics (Topsoil). Moist. Brown SILTY CLAY, little coarse to fine so trace fine gravel. Medium stiff to stiff. Moist.	/ and,		27 21		
SS-3	3 4 : 6	61	1.0				31		
<u>55-4</u>	17 20 50/10cm	56	2.0	Brown coarse to fine SANDY SILT, little c trace fine gravel. Hard. Moist.	laγ,	7.8	15	-	
<u>SS-5</u>	9 11 37	100	3.0_	-SS-5: ODOT A-4a (5)			17	NP	NP
	50/3cm		4.0	Brown weathered SANDSTONE. Very so bedrock. Bottom of Boring = 4.3 meters NP = non-plastic sample.	ft 	4.3	. 7		

SAMPLE TYPE	GROUND WATER READING		BORING METHOD
55 - 5. icm OD Split Spinon	A: Completion Dry	en en	HSA - Holkow Stem Augers
GS - Geoprobe Sample			SFA - Solid Flight Augers
ST - Shelby Tube	After 24 Hrs J. N/A	a	AID - Mud Drilling
RC · Rock Care			WD · Wash Drilling
AN - Auger Sample			RC Rock Coving