Village of Barnesville – Trail Expansion

Geotechnical Engineering Report

April 19, 2023 | Terracon Project No. N4225393

Prepared for:

Pennoni 2 Summit Park Drive, Suite 335 Independence, Ohio 44131

Nationwide Terracon.com

Facilities
 Environmental
 Geotechnical
 Materials

800 Morrison Road Columbus, Ohio 43219 P (614) 863-3113 **Terracon.com**

April 19, 2023

Pennoni 2 Summit Park Drive, Suite 335 Independence, Ohio 44131

Attn: Mark Powell, P.E. P: (330) 222- 6282

- E: mpowell@Pennoni.com
- Re: Geotechnical Engineering Report Village of Barnesville – Trail Expansion Railroad Street Barnesville, Ohio Terracon Project No. N4225393

Dear Mr. Powell:

We have completed the scope of Geotechnical Engineering services for the above referenced project in general accordance with Terracon Proposal No. PN4225393 dated September 15, 2022. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundation for the proposed wing walls, stability of slopes and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Bijoy K. Halder, PhD, P.E. Project Engineer Kevin M. Ernst, P.E. Principal / Regional Manager

Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Table of Contents

Executive Summary	i
Introduction	
Geology	1
Reconnaissance	2
Exploration	2
Field Exploration	2
Laboratory Testing Program	4
Findings	4
Subsurface Profile	4
Bedrock	5
Groundwater	6
Pavement Analysis and Recommendations	
Subgrade Analysis	6
General Subgrade Preparation	8
Excavation Considerations	9
Retaining Wall Design and Construction	9
Soldier Pile Cantilever Retaining Wall (Soldier Pile with Lagging) - Design	
Considerations	10
Earthwork Considerations for Embankment Construction	
Shallow Spread Footing Foundations	16
General Comments	17

Attachments

Exploration and Testing Procedures Site Location and Exploration Plans Exploration and Laboratory Results GB1 Subgrade Analysis Supporting Information

Note: This report was originally delivered in a web-based format. **Blue Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the **plerracon** logo will bring you back to this page. For more interactive features, please view your project online at **client.terracon.com**.

Refer to each individual Attachment for a listing of contents.

Executive Summary

The project consists of construction of a Shared Use Path on the abandoned B&O rail bed starting from northeast end of a culvert that supports East South Street until past the B&O Railroad Depot and along Railroad Street to Bethesda Street Extension. It also includes include ADA compliant trailhead parking at the Depot and rehabilitation (drainage improvements, support for portal wingwalls, tunnel lining, and lighting) of the railroad tunnel that supports State Route 147 (East Main Street) and South Arch Street.

A total of seven (7) borings, designated as B-001-0-22 through B-007-0-22 were performed for the proposed trail expansion and rehabilitation of railroad tunnel. The borings were performed during the period of November 28, 2022, to January 31, 2023, to depths ranging from 10.5 to 39 feet below existing surface.

In general, borings (borings B-001-0-22, B-002-0-22, and B-003-0-22) advanced for rehabilitation of tunnel area encountered native cohesive soil overlying granular soil and bedrock. Borings advanced along the alignment of the trail expansion (borings B-004-0-22 through B-007-0-22) encountered possible fill materials overlying native soils.

The possible fill materials encountered in the borings consisted of very loose to dense granular soils described as gravel (A-1a), gravel with sand (A-1b), gravel with sand and silt (A-2-4), gravel with sand, silt and clay (A-2-6/A-2-7), coarse sand and fine sand (A-3a) sandy silt (A-4a); or medium stiff to hard cohesive soils described as silty clay (A-6b) and clay (A-7-6).

The native granular and cohesive soils encountered in most of the borings included very dense sandy silt (A-4a), very stiff to hard silty clay (A-6b), and medium stiff to very stiff clay (A-7-6). With respect to sulfate content of the subgrade soils, based on the project laboratory testing program, sulfate content results were well below 5,000 parts per million (ppm) limit that prohibits subgrade stabilization using chemical stabilization methods according to ODOT Geotechnical Bulletin GB-1.

Bedrock was encountered in borings B-001-0-22, B-002-0-22, and B-003-0-22 at varying depths between 4.5 to 19 feet below existing grades (at an approximate elevation between 1230.5 feet to 1243 feet).

Groundwater was encountered only in boring B-002-0-22, at a depth of 0.3 feet below existing grades during drilling and at surface level after completion of boring. It should also be noted that the water observed at the completion of drilling was related to hydro excavation and water introduced by the driller into the boreholes for rock coring. The contractor is responsible for employing appropriate dewatering methods to control seepage and facilitate construction.

Based on the results of the GB1 subgrade analyses, a CBR value of 7 is recommended for the design of the proposed trail expansion after subgrade remediation measures are implemented.

Constructing soldier pile cantilever retaining wall with temporary Hardwood as lagging was considered to remediate tunnel wingwalls and adjacent slope areas. Proposed new knee walls for the steel tunnel liner may be supported on shallow spread footings due to relatively shallow bedrock.

Close monitoring of the construction operations discussed herein will be critical in achieving the proposed remediated slope design. We therefore recommend that Terracon be retained to monitor this portion of the work.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled General Comments should be read for an understanding of the report limitations.

Introduction

This report presents the results of our subsurface exploration and Geotechnical Engineering services performed for the proposed trail expansion to be located in the Village of Barnesville, with its western terminus at East South Street, approximately 300 ft. east of SR-800, and its eastern terminus at the intersection of Railroad Street and Bethesda Street Extension in Barnesville, Ohio. The proposed improvement includes the construction of a 1.3 mile long Shared Use Path (SUP) along the alignment of an abandoned B&O rail bed starting from northeast end of culvert that supports East South Street until past the B&O Railroad Depot and along Railroad Street to Bethesda Street Extension. It also includes construction of ADA compliant trailhead parking at the Depot and rehabilitation (drainage improvements, portal wingwalls, tunnel lining, and lighting) of the railroad tunnel that supports State Route 147 (East Main Street) and South Arch Street.

The purpose of these services was to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil and rock conditions
- Groundwater conditions
- Seismic site classification per IBC
- Site preparation and earthwork
- Foundation design and construction
- Slope Stability analysis
- Lateral earth pressure
- Pavement design and construction

The geotechnical engineering Scope of Services for this project included the advancement of seven (7) test borings to depths ranging from 10.5 to 39 feet, laboratory testing, engineering analysis, and preparation of this report.

Drawings showing the site and boring locations are shown on the **Site Location** and **Exploration Plan**, respectively. The results of the laboratory testing performed on soil samples obtained from the site during our field exploration are included on the boring logs and/or as separate graphs in the **Exploration Results** section.

Geology

Based on the Ohio Department of Natural Resources Quaternary Geology Map of Ohio, the project site is located within the Marietta Plateau of the Allegheny Plateau physiographic province of Ohio. The region is characterized with a high relief dissected plateau with silty clay loam colluvium deposits. Fine-grained red shale bedrocks and red soils are relatively

common. Remnants of the ancient lacustrine clay- filled Teays drainage system Teays-age drainage system are common.

A desktop study was performed to understand the geology of the project site area using Geological Survey Maps from the Ohio State Department of Natural Resources. The bedrock at the site is Pennsylvanian-age Upper Conemaugh Group through Permian age Dunkard Group and consists of cyclic sequence of red and gray shales, and siltstones, sandstones, limestones, and coals.

Reconnaissance

Site reconnaissance was performed by Terracon on September 21, 2022. The existing railroad path is abandoned with rails and ties were removed from the path. The path is currently covered with gravel and light vegetation. The railroad path near the tunnel has steep 1H:1V slopes along the approaches to the tunnel on either side of the path. The height of the slopes near the tunnel portal ranges from about 10 to 15 feet above the path elevation. The existing East Main Street and South Arch Street cross over an old railroad tunnel structure. Terracon personnel observed tilted/leaning trees and shallow sloughing along the slopes. The existing railroad tunnel structure appears to be in good condition, with no visible signs of damage or settlement. However, the slopes at both portals have eroded significantly over time, which led to the exposure of wing-walls and the weakening of roadway embankments at all four corners near Stations (STA) 13+65 and 16+30.

The proposed trail path along Railroad Street is surrounded by commercial properties and residential dwellings. The railroad street is a two-lane roadway and the existing pavement appeared to fair to good condition.

Exploration

Field Exploration

A total of seven (7) borings, designated as B-001-0-22 through B-007-0-22 were performed during the period of November 28, 2022, to January 31, 2023, to depths ranging from 10.5 to 39 feet below existing surface.

The borings were performed in general accordance with Sections 303.3 and 303.7.3 of the Ohio Department of Transportation (ODOT) Specifications for Geotechnical Explorations (SGE).

The approximate locations of the borings are illustrated on the attached **Exploration Plan** and summarized in the following tables.

Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Exploration Number	Elevation ¹ (feet)	Latitude	Longitude	Depth ² (feet)
B-001-0-22	1235.0	39.987328	-81.175664	15.0
B-002-0-22	1235.0	39.987742	-81.174903	15.0
B-003-0-22	1262.0	39.987831	-81.174983	39.0
B-004-0-22	1235.0	39.988989	-81.171891	10.5
B-005-0-22	1236.0	39.989688	-81.167219	10.5
B-006-0-22	1250.0	39.990782	-81.161958	10.5
B-007-0-22	1261.0	39.991672	-81.156581	10.5

1. The coordinates were obtained using a hand-held GPS unit and surface elevations were obtained from Google Earth. Only surface elevations of borings B-001-0-22 and B-002-0-22 were obtained from the provided plan and profile prepared by Pennoni.

2. Below ground surface.

The boring locations were located in the field prior to drilling operations by Terracon personnel using a hand-held GPS unit. The coordinates presented on the preceding tables and on the logs were obtained using GPS unit and are approximate. Ground surface elevations presented on the preceding tables for boring locations were obtained using a hand-held GPS unit and from publicly available maps (Google Earth).

The borings were drilled with a track-mounted rotary drill rig utilizing a 3¼-inch I.D. continuous flight hollow stem auger to advance the boreholes between sampling attempts. Soil samples were obtained continuously until the termination depth of the borings B-004-0-22 through B-007-0-22. Hydro excavation was performed for top approximate 5 feet in borings B-001-0-22, B-002-0-22, and B-003-0-22 to minimize interference with private utilities during drilling. The soil samples were obtained using the split-barrel sampling procedure. In the split-barrel sampling procedure, a standard 2-inch O.D. sampling spoon is driven into the boring with a 140-pound automatic SPT (Standard Penetration Test) hammer falling 30 inches. We recorded the number of blows required to advance the sampling spoon and the last or middle 12 inches of an 18-inch or 24-inch sampling interval, respectively, as the standard penetration resistance value (N-value). This value is corrected to an equivalent (60 percent) energy ratio (N60) utilizing the hammer efficiency energy ratio. We observed and recorded groundwater levels during drilling and upon completion.

Upon encountering auger refusal, 10 feet of rock was cored in borings B-001-0-22, B-002-0-22 and B-003-0-22. Rock coring was performed using a NQ-size double tube-swivel core barrel. Percentage of recovery and rock quality designation (RQD) were calculated for the core samples and are noted at their depths of occurrence on the boring logs. Geotechnical Engineering Report Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

The field boring logs were prepared by a drilling crew that include sampling depths, penetration distances, and other relevant sampling information. Field logs include visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs represent the Geotechnical Engineer's interpretation of field logs, and include modifications based on visual classification and laboratory test results.

Laboratory Testing Program

As part of the testing program, all samples were examined in the laboratory by a geotechnical engineer. Soil samples were classified in general accordance with ODOT SGE Section 600 Laboratory Testing based on the texture and plasticity of the soils.

Visual classification was performed on all recovered soil and rock samples. Atterberg limits, moisture content, grain size analysis and sulfate content testing were performed on selected soil samples. In addition, uniaxial compressive tests and slake durability tests were performed on selected rock core samples.

Findings

Boring logs have been prepared based on the information obtained from the field logs prepared at the time of drilling, and the visual examination performed in the laboratory. Soil classification was performed in general accordance with the current ODOT SGE. The logs have also been modified as necessary based on the results of the laboratory testing program. The following sections summarize the subsurface conditions encountered at the boring locations.

Subsurface Profile

Borings B-001-0-22 and B-002-0-22 encountered surface cover consisting of a gravel layer of thickness approximately 4 to 8 inches. Boring B-003-0-33 encountered topsoil 6 inches thick. Borings B-004-0-22 to B-007-0-22 did not encounter any distinguishable surface material.

Borings B-004-0-22 to B-007-022 encountered possible fill material up to a depth of 1.5 to 10.5 feet below existing grades. The possible fill materials encountered in the borings consisted of very loose to dense granular soils described as gravel (A-1a), gravel with sand (A-1b), gravel with sand and silt (A-2-4), gravel with sand, silt and clay (A-2-6/A-2-7), coarse sand and fine sand (A-3a) sandy silt (A-4a); or medium stiff to hard cohesive soils described as silty clay (A-6b) and clay (A-7-6).

The native granular and cohesive soils encountered in the borings included very dense sandy silt (A-4a), very stiff to hard silty clay (A-6b), and medium stiff to very stiff clay (A-7-6).

Possible granular and cohesive fill soils with natural moisture contents more than 4 percent above the optimum moisture contents were observed in borings B-004-0-22, B-006-0-22 and B-007-0-22 to depths of approximately between 0 and 2 feet indicating wet subgrade conditions.

In addition, granular soils with N60L (lowest N60 value) <15 and/or cohesive soils with N60L<12 or HP<2 tsf were encountered in borings B-004-0-22, B-005-0-22, B-007-0-22 indicating weak/loose and unstable subgrade conditions.

The table below summarizes the results of sulfate testing performed on subgrade samples. It should be noted that soils with sulfate content greater than 5,000 parts per million (ppm) prohibit subgrade stabilization using chemical stabilization methods according to ODOT Geotechnical Bulletin GB-1. None of the test results exceeded the 5,000-ppm sulfate concentration level.

Exploration Number	Sample Depth ¹ (feet)	Sulfate Concentration (ppm)
B-004-0-22	4.5 -6.0	Non- Detectable
B-005-0-22	1.5-3.0	Non- Detectable
B-006-0-22	1.5-3.0	1093
B-007-0-22	4.5-6.0	Non- Detectable
1. Below ground surface		

Summary of Sulphate Testing Results

Bedrock

Bedrock was encountered in borings B-001-0-22, B-002-022 and B-003-0-22 at depths varying between 4.5 to 19 feet below existing grades (at an approximate elevation between varying from 1230.5 feet to 1243 feet). Bedrock encountered in the borings consisted very weak, severely weathered shale and weak to moderately strong, slightly to moderately weathered siltstone and sandstone. The table below summarizes the results of unconfined compressive strength and slate durability testing performed on selected rock samples.

Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Exploration Number	Sample Depth ¹ (feet)	Unconfined Compressive Strength (psi)	Slake Durability Index (%)
B-001-0-22	12.4 - 12.7	3,993	
B-002-0-22	8.0		32.7
B-002-0-22	10.0-10.3	4,299	
B-002-0-22	11.3 - 11.6	4,710	
B-003-0-22	35.5		98.2
B-003-0-22	35.5 - 35.8	3,998	
1. Below ground sur	face		

Summary of Rock Testing Results

Groundwater

Groundwater was encountered only in boring B-002-0-22, at a depth of 0.3 feet below existing grades during drilling and at surface level after completion of boring. It should also be noted that the water observed at the completion of drilling was related to hydro excavation and water introduced by the driller into the boreholes for rock coring.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the pavement may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

Pavement Analysis and Recommendations

Subgrade Analysis

A preliminary plan and profile drawing for the proposed widening was not available as of this report's preparation. It is anticipated that proposed subgrade elevations will closely match the existing subgrade. Hence, we are assuming that minimal cut/fill will be required to establish the proposed final grades, other than that required to remediate areas that currently have unsuitable/unstable subgrade. If the assumption is not consistent with the project plans, please notify Terracon.

In general, the soils encountered at or near the anticipated pavement subgrade consisted of granular possible fill described as medium dense gravel with sand (A-1b), dense gravel (A-1-a) and very loose gravel with sand, silt and clay (A-2-7).

Based on our laboratory testing, the subgrade soils to a depth of up to about 4.5 to 6 feet below the existing surface have moisture contents ranging from about 8 to 25 percent, with an average moisture content of the subgrade soils across the project area of about 19 percent. Plasticity indices ranged from about 9 to 12, with an average plasticity index of about 11. The N-values (N60L) ranged from about 3 to 20, with an average of 10.

The unconfined compressive strength of cohesive soil samples as determined by a hand penetrometer ranged from 3.0 to 4.0 tsf with an average value of about 3.67 tsf. A summary of the subgrade soils is tabulated on ODOT's GB-1 Subgrade Analysis spreadsheet in attachments section of this report.

Subgrade soils with a moisture content exceeding the optimum moisture content of the soil by four or more percentage points, or that have low N-values, are considered to be unstable soils, per ODOT Geotechnical Design Manual (GDM) guideline. Possible granular and cohesive fill soils with natural moisture contents more than 4 percent above the optimum moisture contents were observed in borings B-004-0-22, B-006-0-22, and B-007-0-22 to depths of between 0 and 2 feet indicating wet subgrade conditions.

In addition, granular soils with N60L<15 and/or cohesive soils with N60L<12 were encountered in borings B-007-0-22 indicating weak/loose and unstable subgrade conditions.

We recommend undercut the unstable subgrade soils encountered near boring B-007-0-22 up to a depth of 14 inches below the top of subgrade existing ground surface and replace with Item 204 Embankment.

Based on the results of our subgrade analyses, a CBR value of 7 is recommended for design of the proposed reconstruction and widening. The recommended CBR value assumes that the subgrade improvement/stabilization recommended in this report is performed.

Considering the high soil moisture contents encountered in the borings, installation of a drainage system including construction of underdrains and ditches are recommended as a practical solution to promote drainage of the subgrade and improve subgrade stability. Near boring B-007-0-22, we recommend that the subgrade be undercut below the design subgrade elevation to a depth of 12 inches and be replaced with Item 204 Granular Material Type B with ODOT Item 712.09 Geotextile fabric Type D installed at the bottom of the excavation.

The exposed subgrade in areas to receive fill and in areas of undercut should be densified and proof-rolled prior to installation of engineered controlled fill to identify possible soft

or loose yielding zones. Note that ODOT GDM specifies that Item 204 Granular Material Type B without a geotextile fabric be utilized to backfill undercuts performed in the vicinity of any underdrains.

The actual depths and limits of undercutting at pavement section should be determined by the Engineer in the field based on the results of proof-rolling and subgrade observations performed in accordance with ODOT CMS Item 204. Any areas that exhibit rutting, instability, or other indications of soft or loose soils should be over excavated and replaced in accordance with ODOT CMS Item 204. In addition, effective measures to promote drainage of groundwater and surface water should be incorporated into the design (i.e. grading of subgrade and surface, berms, ditches, etc.).

Once the design level drawings (plan and profile) become available, Terracon should be notified to review the proposed horizontal and vertical alignment changes (cut and fill) and make adjustments in our recommendations, if needed.

General Subgrade Preparation

Subgrade preparation for the new pavement, and shoulder areas should be performed in accordance with ODOT CMS Items 203 and 204. Prior to subgrade preparation, perform clearing and grubbing, including removal of stumps and roots, in accordance with ODOT CMS Item 201. The pavement subgrade should be stripped of any topsoil, organics, or other deleterious or unsuitable materials.

Once the pavement reconstruction areas have been stripped, excavated to the design subgrade elevation or to the design undercut elevation (if applicable), the exposed subgrade should be proof-rolled with a heavy piece of construction equipment to verify stability is achieved. It should be noted that fill containing organic materials or other deleterious materials may be encountered at other locations or at lower depths within the pavement alignment that were not disclosed by the borings. The actual depths and limits of undercutting should be determined by the Engineer in the field based on visual observations.

Any fill placed to achieve the final grade of the roadway pavement should follow requirements of ODOT CMS Item 203 and compacted to the specified percentage of the maximum dry density provided by ODOT CMS Item 204. The fill materials should be relatively free of debris, organic materials, and any deleterious materials deemed by the Engineer. No frozen materials should be incorporated into the fill, and no pavement, utilities, or fill should be placed on top of frozen materials.

All potential imported fill materials should be identified and approved by the Engineer prior to placement. Approval requires that moisture-density relationship tests, hydrometer analysis, and Atterberg limits be determined for each fill material prior to their placement. No particle size larger than two inches in any direction should be placed as fill, and any

particle size greater than 3-inches should be broken down to less than 2-inches or removed from the lift. Aggregate base and pavement construction must be performed in accordance with ODOT CMS 300 and 400.

Excavation Considerations

If the excavation depths are greater than 5 feet, the excavation sides will need to be laid back or shored. As a minimum, all excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. Reference to OSHA 29CFR, Part 1926, Subpart P should be included in the job specifications.

The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. Slope heights, slope inclinations and/or excavation depths should in no case exceed those specified in local, state or federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

Under no circumstances should the information provided in this report be interpreted to mean that Terracon is responsible for construction site safety or the contractor's activities. Construction site safety is the sole responsibility of the contractor, who shall also be solely responsible for the means, methods, and sequencing of the construction operations.

Where structures, roadways, underground utilities, etc. exist adjacent to or within the zone of influence of the excavations, care must be taken to protect these structures, roadways, underground utilities, etc. from possible damages due to construction activities. If structures and underground utilities are located near an excavation, a pre-construction survey should be performed on all existing structures and underground utilities located within 100 feet of the excavation. It is the Contractor's responsibility to prevent undermining of existing foundations and prevent any damage to adjacent structures or facilities.

Retaining Wall Design and Construction

The existing railroad path is abandoned with rails and ties removed from the path. The path is currently covered with gravel and light vegetation. The railroad path near the tunnel has steep 1H:1V slopes along the approaches to the tunnel on either side of the path. The height of the slopes near the tunnel portal ranges from about 10 to 15 feet above the path elevation. According to the preliminary assessment report dated May 17, 2016, prepared by Apple Tree, the existing railroad tunnel structure appears to be in good condition, with no visible signs of damage or settlement. However, the slopes at both portals have eroded significantly over time, which led to the exposure of wing-walls and

the weakening of roadway embankments at all four corners near Stations (STA) 13+65 and 16+30. We understand that tunnel wing-wall and the slope required remediation. We have completed slope stability analyses and recommendations of the embankments near the tunnel portals to ensure their long-term stability and to reduce the risk of future sloughing and/or slips in this section.

Soldier Pile Cantilever Retaining Wall (Soldier Pile with Lagging) – Design Considerations

A "Soldier Pile Cantilever" retaining wall is presented as the recommended remedial designs to stabilize and protect the tunnel wing-walls and proposed embankment. Terracon designed the retaining wall to retain lateral forces imparted by the proposed retained soil height as proposed in the plans provided by Pennoni. The plan and cross sections provided by Pennoni and used for our analyses and design are included in **Supporting Information**.

Geotechnical analysis followed the procedures outlined by Geotechnical Design Manual (Section 900) "Design of Drilled Shaft for Landslide Stabilization". This design method uses back-calculated slope failure geometry with the deepest possible slip circle with a factor of safety against slippage and soil strength parameters from a conventional limit-equilibrium slope stability analysis. "Wedge Method" analysis was utilized to calculate the lateral loading act over one pile spacing above the design grade in front of the retaining wall for the design of steel beam sections resisting shear and moment due to lateral earth loadings.

The analyses were completed using the software programs Slide, and L-Pile. Critical failure surfaces were modeled using Spencer's Method for circular failure geometry. The critical slope stability profiles and slope stability analyses are also included in **Supporting Information**. For our analyses, the retained soil (such as ODOT 304 or approved equivalent) was modelled with using typical long-term strength values. Existing natural Soil strength data used in our analysis are presented on the slope stability profiles. Existing soil strength parameters used in our analysis are developed from laboratory testing of collected soil samples and back-calculated values fitting observed slope failure conditions in the field. Lateral deformations were analyzed using L-Pile software for the lateral forces from retained soil mass calculated using "Wedge Method".

Terracon used a minimum factor of safety (FS) in our analyses of 1.5 for new slope construction. A minimum FS of 1.5 is typically desired for new permanent slope design for long-term, static conditions. Fill backslopes should be constructed as reflected on the provided plan with slopes no steeper than 2H:1V. The analyses also utilized standard geotechnical measures, such as compaction keys, benching, and drains as described herein.

Stability and strength checks for the chosen structural steel section embedded in concrete were performed to ensure its adequacy against lateral failure. Composite section of concrete and steel reinforcement is considered for stability checks, while only steel section is checked for deflection and strength requirement.

Plan showing the approximate wall alignment at STA 13+65 and 16+30 is provided in the **Supporting Information** section of the Attachments. The analysis indicated that the pile head deflection is less than or equal to 2 inches, which meets ODOT requirements.

The following tables provide a summary of the recommended "Soldier Pile Cantilever" retaining wall design wall design with temporary Hardwood timber (i.e., Douglas Fir or approved equivalent) five inches thick as lagging:

STA 13+65 and 16+30	(Along Trail Path)
Item	Requirement
Center-to-Center Structural Drilled Shaft Spacing	4 feet
Minimum Diameter of Structural Drilled Shaft	30 inches
Minimum Steel Pile Length	27 feet
Minimum rock socket ¹	10 feet
Structural Steel Section ²	HP 14x89, Grade 50
Minimum 28-day Unconfined Compressive Strength of Concrete (f'c) for drilled shafts	4,000 psi

Notes:

- 1. For approximate depth of bedrock encountered in borings, refer to boring logs.
- 2. The steel sections be painted or galvanized for corrosion protection. If sacrificial steel is being considered as corrosion protection, a larger section than that recommended should be used.

STA 13+65 and 16+30) (Along the Slope)
Item	Requirement
Center-to-Center Structural Drilled Shaft Spacing	Variable (7 to 9.75 feet)
Minimum Diameter of Structural Drilled Shaft	30 inches
Minimum Steel Pile Length	27 feet

Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Minimum rock socket ¹	10 feet
Structural Steel Section ²	HP 14x89, Grade 50
Minimum 28-day Unconfined Compressive Strength of Concrete (f'_c) for drilled shafts	4,000 psi

Notes:

- 1. For approximate depth of bedrock encountered in borings, refer to boring logs.
- 2. The steel sections be painted or galvanized for corrosion protection. If sacrificial steel is being considered as corrosion protection, a larger section than that recommended should be used.

The drilled concrete shafts are reinforced with HP 14X89 steel beam section placed centrally along the entire length of the drilled shaft excavation. Steel beam sections (structural drilled shafts/ soldier piles) are inserted vertically into the shafts and should be oriented such that the strong axis is parallel to the length of the wall.

Permanent lagging may be designed for lateral soil pressure. Any void between lagging must be backfilled with a permeable granular soil material that does not allow the buildup of hydrostatic pressure.

<u>Soft Soil Over-excavations</u>: Soft soils at the subgrade elevation of the proposed new placements should be removed prior to placing fill in these areas.

<u>Benches and Compaction Keys</u>: Benches and compaction keys should be used during fill placement to bond, or notch, new fills (such as ODOT 304 or approved equivalent) into residual soils/bedrock of the existing slopes for new embankment construction. Benches/compaction keys can be made manually excavating or using a dozer during fill placement. The benches/compaction keys should be constructed and extended a minimum of 4 feet horizontally in very stiff to hard, dense to very dense low plasticity residual soil, decomposed bedrock, or bedrock.

<u>Subsurface Drains</u>: Drain such as strip drains and perforated pipes installed near the back and bottom of the wall, should be provided behind structural walls in the wall design to prevent hydrostatic pressures from developing in the retained soil. If groundwater or seeps are encountered during construction, subsurface drains should be installed to collect and divert seeping water beyond and below the limits of new fill embankments. The collection and diversion of surface drainage away from fill embankment area is critical. Proper drainage design should include prevention of ponding water on or immediately adjacent to fill embankment areas. Concentrated runoff should be avoided in areas susceptible to erosion and slope instability.

Fill any void extending under wall face of the existing tunnel with ODOT 304/ lightweight cellular concrete/ flowable fill. A layer of low-permeability cohesive soil should be placed at the surface of the backfill to inhibit the infiltration of water into the backfill. The minimum thickness of low permeability cohesive soil layer placed to inhibit infiltration

should be 12 inches. A turf reinforcement mat or other form of armoring can be used to provide erosion control and surficial slope stabilization.

Soldier Pile Cantilever Wall – Construction Considerations

The following construction considerations should be adhered to during drilled shaft installation.

- The drilled shaft wall should be constructed by a "Specialty Contractor". Consideration should be given to contractor's previous experience in such type of construction during the bid approval process.
- The actual bearing elevation at each shaft location should be determined in the field during construction through inspection by an authorized representative of the geotechnical engineer.
- Temporary steel casing should be made available on site and used on an as needed basis.
- The bearing surface of each shaft should be cleaned of any loose material prior to concrete placement.
- If water seepage is encountered during drilling, specifications should state that no more than 2 inches of water should be allowed to collect at the bottom of the shaft hole prior to concreting. If water cannot be pumped out, then the concrete should be placed with a tremie pipe.
- It is recommended that no shaft holes be left open overnight without being filled with concrete.
- It is recommended that the bid document avoid use of "rock excavation" classification. Drilled shaft installation should either be bid per lineal foot for each diameter used or lump sum for the designated diameter and length, with an add or deduct for drill footage. An extra cost item should be included for any obstructions encountered in the overburden.
- Particular attention should be paid to the placement and orientation of the steel beam reinforcement. The steel beam should be oriented such that the strong axis is parallel to the length of the wall to resist the lateral force which will act in an upslope to downslope direction. The soldier pile that is placed within the hole must be vertical and not inclined more than 1 inch between top to bottom.
- The installation sequence shall be such that no drilled shaft is installed adjacent to either an open drilled shaft excavation or a drilled shaft in which the concrete has

less than a 48-hour cure. Installing the shafts in an alternating sequence or any other sequence that meets this criterion is permissible.

- For the drilled shaft wall, we anticipate the rolled steel sections would be extended to the top of the wall. The wall face could then be constructed of precast concrete lagging panels supported by the flanges of the rolled steel sections. The lagging panels can be placed between the flanges of the rolled steel sections.
- It is recommended that the concrete lagging panels be embedded to a depth of at least 2 feet below the downslope bench level (created to facilitate the drilled shaft construction).
- For temporary lagging Hardwood timber (i.e., Douglas Fir or approved equivalent) five inches thick should be used. Contractor must provide precast concrete lagging from a precast concrete manufacturer certified according to Supplement 1073 for permanent lagging. Class QC1 concrete with a 28-day design strength of at least 4000 psi according to C&MS 499 can be used. Reinforcing steel should be epoxy coated according to C&MS 709.00. Instead of epoxy coating, a corrosion inhibiting concrete admixture may be used at the specified dosage rate. The dimensions of the lagging or location of the reinforcing steel should not vary by more than 1/4-inch. The panel must be placed between the flanges of the soldier piles and bearing against the flanges on the exposed side of the wall so that the soldier pile flange overlaps the end of the lagging by at least one inch more than the concrete cover over the reinforcing steel at both ends of the lagging. When installing the precast concrete lagging panels, hardwood wedges may be placed to hold the lagging panels against the front inside flange of the steel piles. The lagging can be placed after 12 hours of concrete placing in the shaft.
- A minimum 2 feet wide zone of compacted free-draining granular material should be included behind the shaft wall (upslope side). This granular filter material should be capped with a minimum 12 inches of cohesive soil to minimize surface water infiltration.
- Lateral drainage should be provided at the bottom of the lagging and minimum ¼ inch thick spacers be placed between the lagging panels to allow for seepage. A separate perforated underdrain pipe at the bottom of a porous backfill wrapped in filter fabric at the front of the wall is recommended to achieve effective drainage of seepage water from the retained earth.

Earthwork Considerations for Embankment Construction

The geotechnical engineer and/or their representative should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during construction of embankment.

It is anticipated that initial site grading activities associated with this existing slope reconfiguration process will include stripping of the existing vegetation and topsoil within the new embankment fill area.

Based on review of current site grades it is expected that the slope regrading process will involve removal of excess soil with minimal, if any, structural fill placement required. It is recommended that the excess soil obtained from the slope re-grading process should either be trucked to an off-site location. It is critical that the excess soil is not placed along any other section of the existing slope or near the crown portion of the overall slope.

As a minimum, all temporary excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. Temporary excavations will probably be required during grading operations. The grading contractor, by his contract, is responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

If any sections along the existing slope will require placement of new structural fill after removal of disturbed soil, it is recommended that the unsuitable surficial materials be undercut to expose firm native soils. Soft soil areas should be assessed by a representative of the geotechnical engineer to determine what additional depth of undercut is required. After the proof-rolling and undercutting operations, exposed native soils should be scarified and the material re-compacted to a minimum of 98% of the standard Proctor density, ASTM D698.

Fill operations should commence at the lowest part of the slope in the required fill areas. The structural fill should be placed in horizontal lifts and should be adequately benched into the natural slope in accordance with the criteria discussed below. Slope benches should expose competent native soils or bedrock.

Existing slopes that are 5H:1V (horizontal to vertical) or steeper should be benched into native soils of at least stiff consistency after removal of surficial unsuitable soils. These soil benches should be wide enough for construction equipment and configured on a 2H:1V bench width to height ratio. This construction measure is recommended to allow all of the

structural fill to be keyed into the sloping ground surface. The finished grades should be established with quality controlled structural fill.

Structural fill should be free of organics, debris, and other deleterious substances. We recommend that structural fill be placed in maximum 8-inch loose lifts and be uniformly moisture conditioned to within about 3 percent of its optimum moisture content. Each fill should be compacted to at least 98 percent of standard proctor density, ASTM D 698. Each fill lift should be witnessed and tested by geotechnical personnel and approved prior to placing subsequent lifts.

For utility trenches or other confined areas, small compaction equipment may be necessary, such as vibratory plate, jumping jack or walk-behind vibratory roller. In these cases, compactive energy levels are lower and require smaller lift thicknesses to achieve compaction throughout the lift. In these cases, lift thicknesses should be maintained at 4 to 6 inches, maximum. Each lift of backfill should be compacted to the same criteria as presented for structural fill.

The site grading of the slope could incorporate provisions to drain this area and prevent development of water within the slope. This could be accomplished by designing gravel-filled trench drains perpendicular to the slope contours to daylight at the slope face. These drains could be constructed using a free draining gravel, such as #57 crushed stone, wrapped with a suitable geotextile fabric to mitigate intrusion of fines into the gravel drain.

Adequate site grading provisions should be made to drain/divert surface runoff water so that its flow on to the reconstructed areas is reduced. Development of concentrated surface water discharge onto the slope and retaining wall should be avoided. In order to reduce the potential for future slope stability issues at this site, we recommend that the new embankment construction should include improvements to the surface and subsurface drainage at this site.

All slopes should be seeded and mulched upon completion of the slope regrading/construction activities. Re-seeding may be required.

It is recommended that any site grading activities associated with the re-grading of the new embankment soil slope should be performed in conjunction with the soldier pile cantilever retaining wall construction.

Shallow Spread Footing Foundations

We understand that the proposed new knee walls for the steel tunnel liner will be supported on spread footing foundations. Borings B-001-0-22 and B-002-0-22 encountered bedrock at 4.5 feet below existing ground surface. Shallow spread footings bearing on weak to moderately strong sandstone/siltstone at a footing elevation of 1230

feet should be designed for a nominal bearing resistance of 168 ksf with a resistance factor of $\phi_b = 0.45$, corresponding to a factored bearing resistance of 76 ksf. We estimate that total settlements of spread footing foundations bearing on rock will be on the order of up to 1/2 inch or less.

The foundation excavations should be examined during construction to verify that the entire bearing surface consists of suitable bedrock. All decomposed/weathered shale should be removed from the bottoms of the excavations prior to concrete placement over the sandstone/siltstone bedrock. Confine the excavation into bedrock for the minimum specified depth of keying within the area bounded by the outer edge of the footing. Fill excavation outside these limits and within and below the keyed depth with concrete per CMS 503.05. It is recommended that the geotechnical engineer be retained to observe and test the foundation bearing materials.

General Comments

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

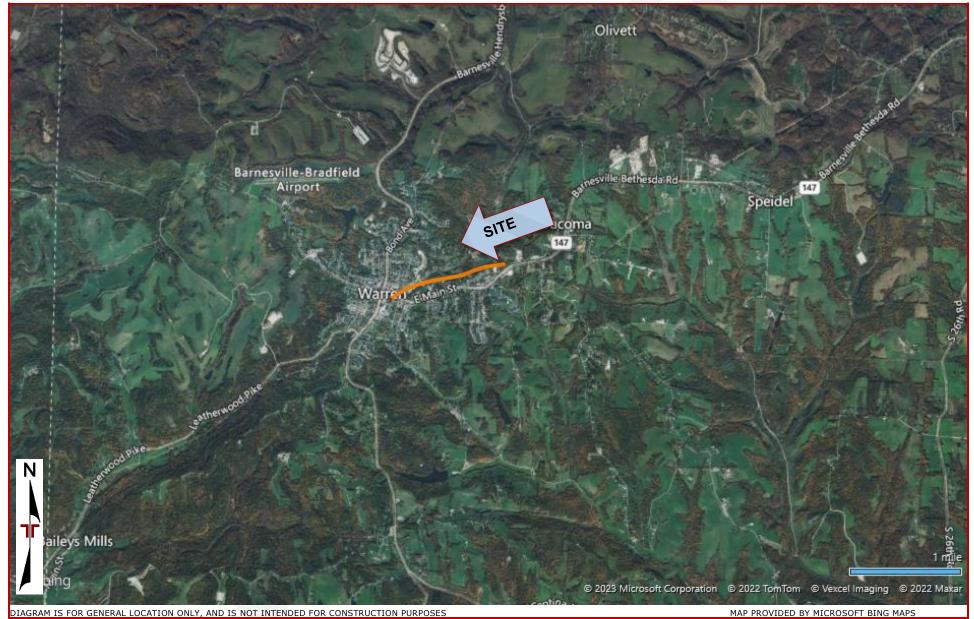
Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly effect excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety and cost estimating including excavation support and dewatering requirements/design are the responsibility of others. Construction and site development have the potential to affect adjacent properties. Such impacts can include damages due to vibration, modification of groundwater/surface water flow during construction, foundation movement due to undermining or subsidence from excavation, as well as noise or air quality concerns. Evaluation of these items on nearby properties are commonly associated with contractor means and methods and are not addressed in this report. The owner and contractor should consider a preconstruction/precondition survey of surrounding development. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

Village of Barnesville - Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Attachments

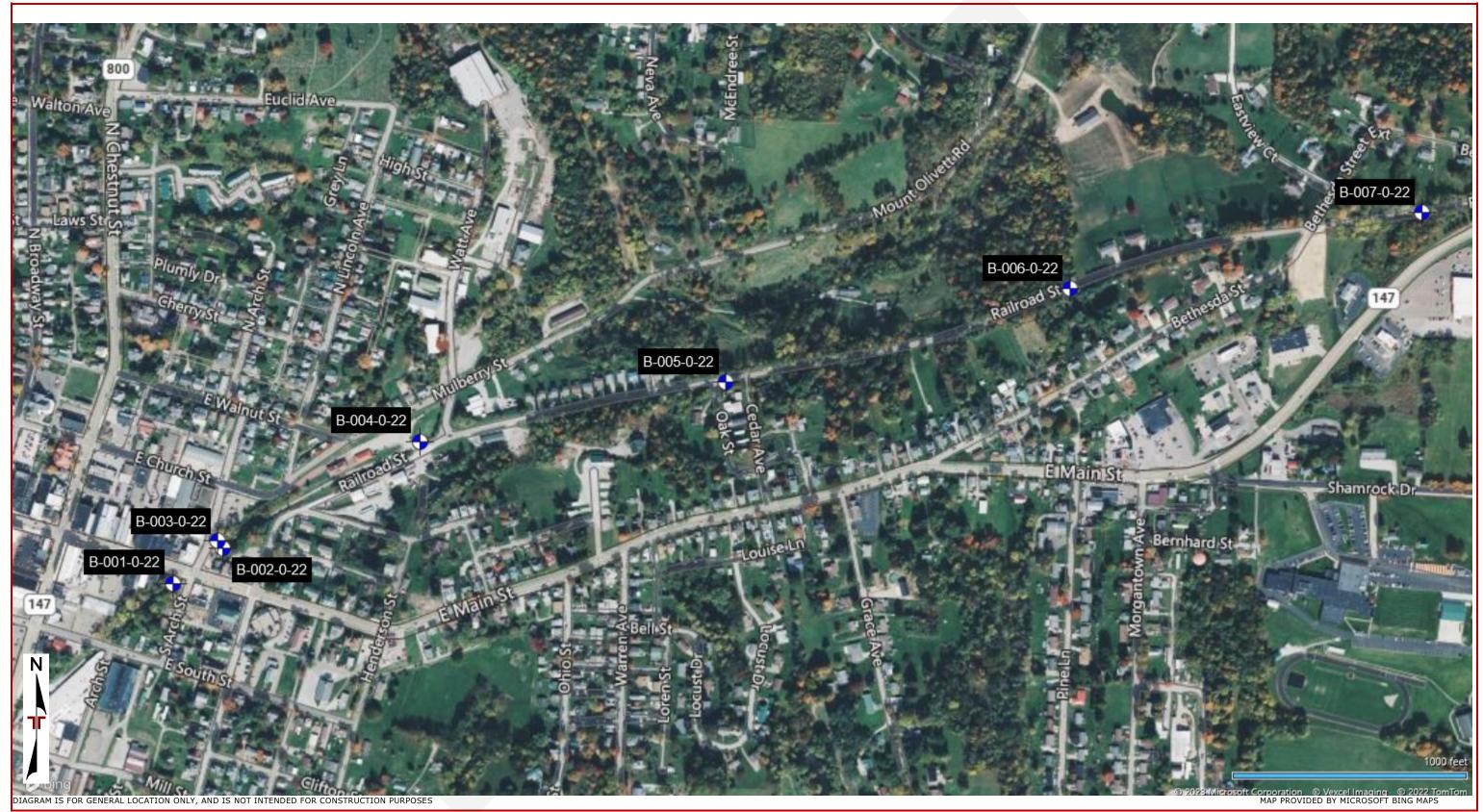
Village of Barnesville - Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Site Location and Exploration Plans


Contents:

Site Location Exploration Plan

Note: All attachments are one page unless noted above.


Site Location (Landscape)

Facilities | Environmental | Geotechnical | Materials

Geotechnical Engineering Report Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Exploration Plan (11x17 Landscape)

Village of Barnesville – Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Exploration and Laboratory Results

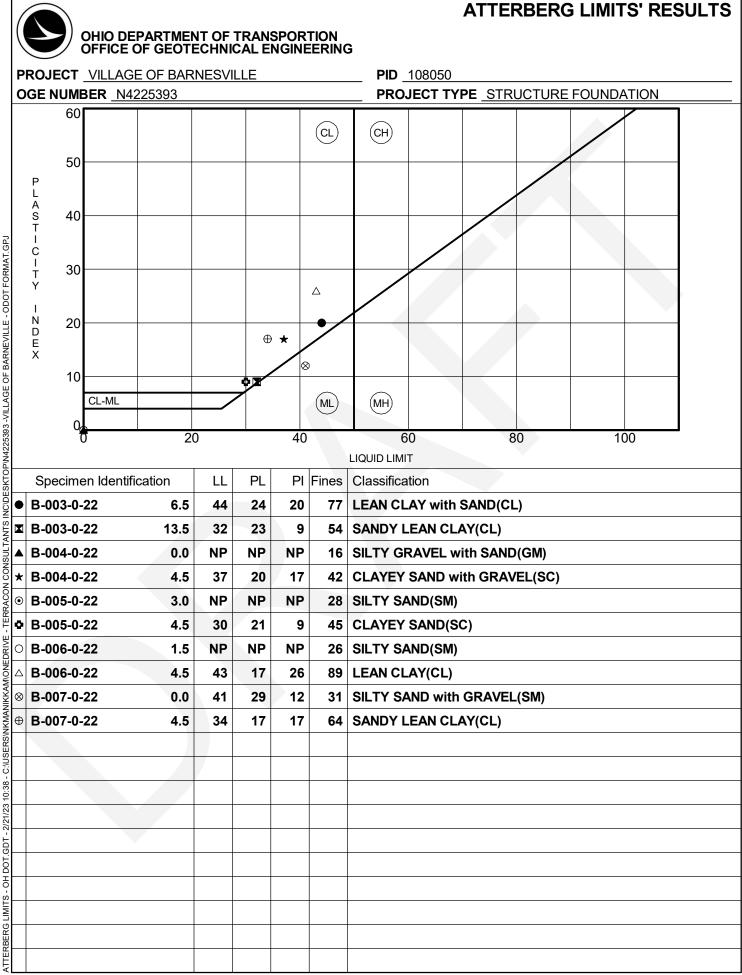
Contents:

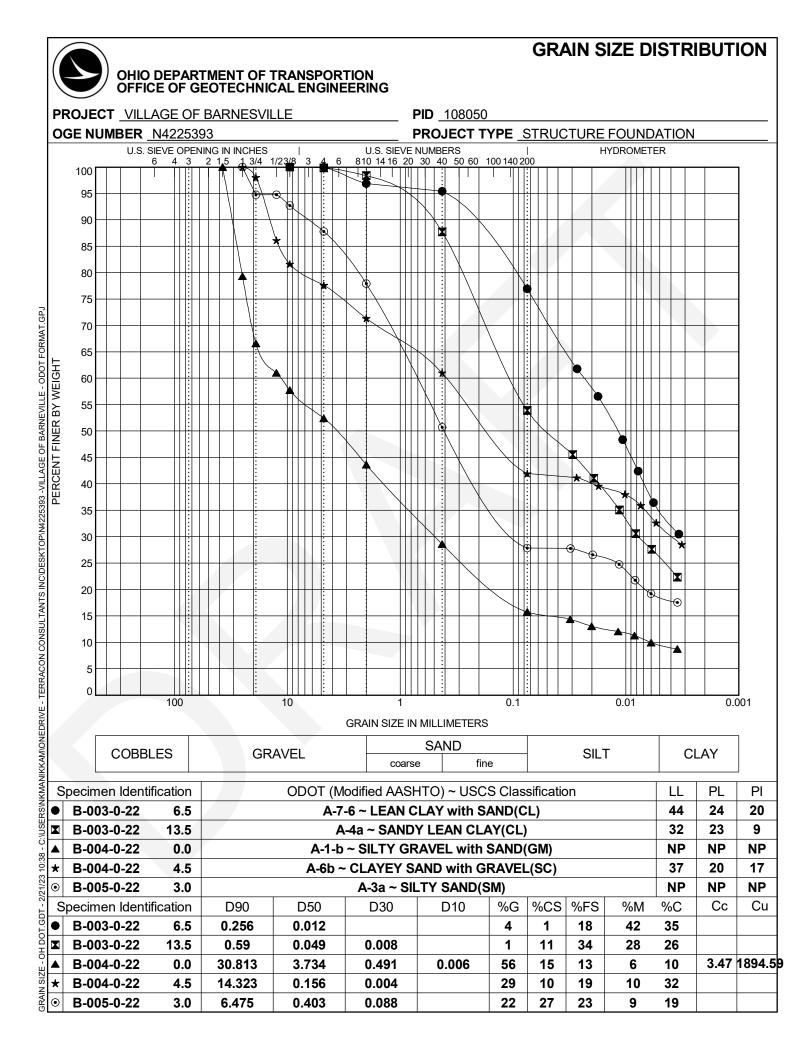
Boring Logs (B-001-0-22 through B-007-0-22) Atterberg Limits Grain Size Distribution Rock Core Photos Rock Core Compressive Strength Slake Durability Test Sulfate Test Results

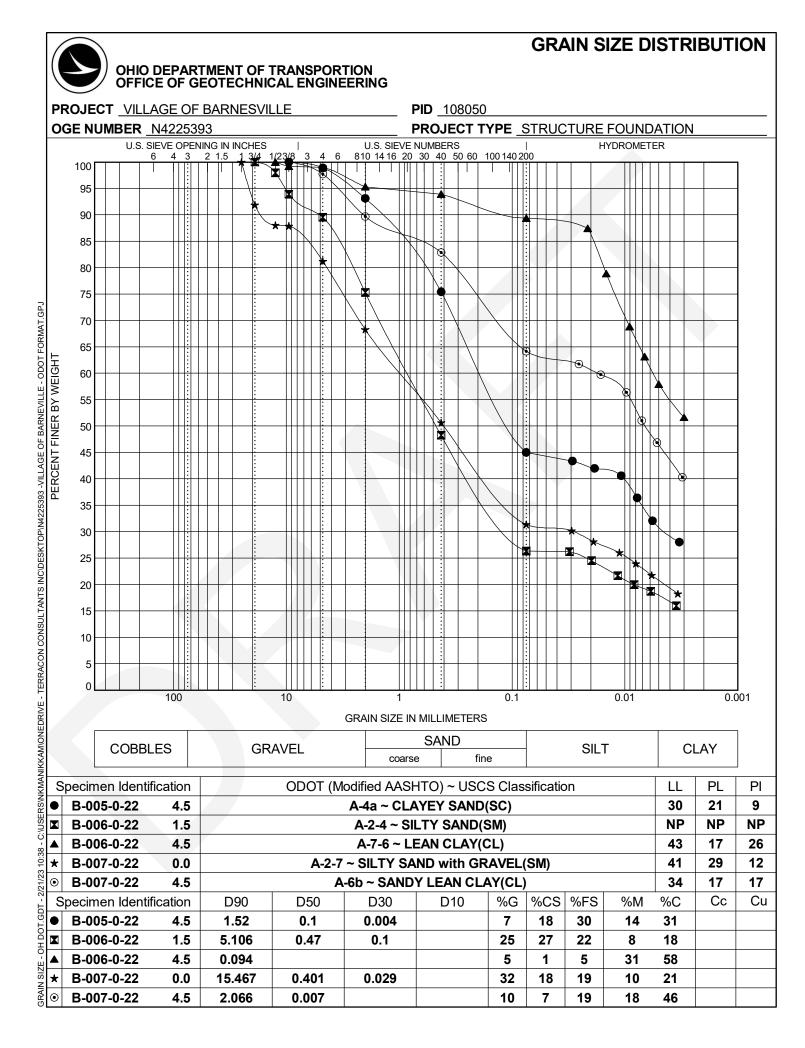
8, -81.17566 RG PI WC	0DOT H CLASS (GI) SE
PI WC	CLASS (GI) SE
	A L
	\leq
	dans.
	Rock (V)
	2
	1 A
	9 L 1999
	CORE
	Source and
	7
	7
	43
	71
	CORE
	Z Z
	र्क्य

PROJECT: VILLAGE OF BARNESVILLE TYPE: RETAINING WALL	DRILLING FIR SAMPLING FI							l Rig Mer:	CN CME A	1E 55/3		_	ATION GNME		FSET	:			PLORA B-002	ation IE -0-22
PID: 108050 SFN:	DRILLING ME			3.25" HSA			CALI	BRAT	ION DATE	: 3	/27/19	ELE	VATI	ON:	1235.) (MSL) EOI	B: 15.0 ft		PAGE
START: <u>1/31/23</u> END: <u>1/31/23</u>	SAMPLING ME	ETHO	DD:	SP	Τ		ENE	RGY F	RATIO (%)	:	90*	LAT	/ LOI	NG:		39.987	7742, -	81.174903		1 OF 1
MATERIAL DESCRIPTIO	N		ELEV.	_ DEPTI	це	SPT/	N		SAMPLE			DATIC	DN (%)	ATTE	RBER	G	ODOT	SO4	HOLE
AND NOTES			1235.0			RQD	N ₆₀	(%)	ID	(tsf)	GR CS	S FS	SI	CL	LL	PL F	PI WO	CLASS (GI)	ppm	
AGGREGATE BASE (4")		$\mathcal{O}($	_1234.7	₩1234.7	L .															A L
Hydrovac 0 to 4.5-ft					1 - 2 - 3 	-														
			1230.5	—	+ ,	50/4"		100	CC 1										<u> </u>	
SHALE, GRAY, SEVERLY WEATHERED. SILTSTONE, GRAY, MODERATELY WEA WEAK TO SLIGHTLY STRONG, VERY TH ARGILLACEOUS, FRACTURED, NARROV ROUGH; RQD 60%, REC 100%. SANDSTONE, GRAY, SLIGHTLY WEATHE	IIN BEDDED, V, SLIGHTLY		<u>1230.0</u> <u>1225.0</u>		- 5 - - 6 - - 7 - - 8 - - 9 - - 10 -	60	-	100	SS-1 NQ2-R1			-	-	-	-			CORE		
MODERATELY STRONG, FINE GRAINED ARENACEOUS, MODERATELY TO SLIGH FRACTURED, NARROW, SLIGHTLY ROU 92%, REC 100%. @10'-10.3'; Unit Weight = 146 pcf; Qu = 4, @11.3'-11.6'; Unit Weight = 135 pcf; Qu =4	ITLY IGH; RQD 298 psi		1220.0	EOB	- 11 - - 12 - - 13 - - 13 - - 14 - - 15 -	93		100	NQ2-R2									CORE		

PROJECT: VILLAGE OF BARNESVILLE				DR: TERRACO			L RIG		/IE 55/3			STA	TION	I / OF	FSE	T: _				LORA	
RETAINING WALL				R: TERRACON								ALIC								B-003-	0-22 PA
PID: <u>108050</u> SFN: START: 1/30/23 END: 1/30/23	DRILLING ME SAMPLING M		-	3.25" HSA / NQ SPT	2			ION DATE RATIO (%)	-	<u>/27/1</u> 90*		LAT			1262			EOB:	<u>39.0 ft.</u> 1.174983		10
MATERIAL DESCRIPTION			ELEV.		SPT/			SAMPLE			GRAD			-	ΔΤΤ	ERBE		-			
AND NOTES	·		1262.0	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)			FS		CL		PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	H SE
TOPSOIL (6")		\sum	1261.5																		Å
⊣ydrovac 0 to 4.5-ft				- 1 - 2 - 3 - 4																	X Levis & Ba & Jak & A &
/ERY STIFF, BROWN MOTTLED WITH G SILTY CLAY, LITTLE SAND, TRACE GRAV			1257.0	- - 5 - 6	- - - 3 5 8	20	100	SS-1	3.50		-	-	-	-	-	-	-	27	A-6b (V)	-	N. N
IARD, BROWN, CLAY , "AND" SILT, LITTL "RACE GRAVEL, MOIST	E SAND,			- 7 - 8		69	100	SS-2	4.50	4	1	18	42	35	44	24	20	26	A-7-6 (13)	-	8 8 - P 8 . B
				- 9	- ⁶ 14 20		100	SS-3	4.50	-	-	-	-	-	-	-	-	25	A-7-6 (V)	-	N. A. B. A. B.
				- 10 - 11 - 12	22 21 -	65	100	SS-4	4.50	-	-	-	-	-	-	-	-	26	A-7-6 (V)	-	A B A J & J & B B A
			1248.5	- 13	-																1-1-1
/ERY DENSE, GREENISH BROWN TO G SANDY SILT, SOME CLAY, TRACE GRAV SHALE FRAGMENTS, DRY			1240.3	- 	28 49	116	100	SS-5	-	1	11	34	28	26	32	23	9	20	A-4a (4)	-	A TO A UN NO
				- 16 - 17 - 18	-																TA AN Y AN GANNER
			1243.0	—тк— - 19	20 50/5"	-	91	SS-6A	-	-	-	-	-	-	-	-	-	15	A-4a (V)	-	4
SHALE, GRAY, SEVERELY WEATHERED WEAK.	, VERY			10	50/5"		<u> </u>	SS-6B	-	-	-	-	-	-	-	-	-	-	Rock (V)	-	- (4 (4)

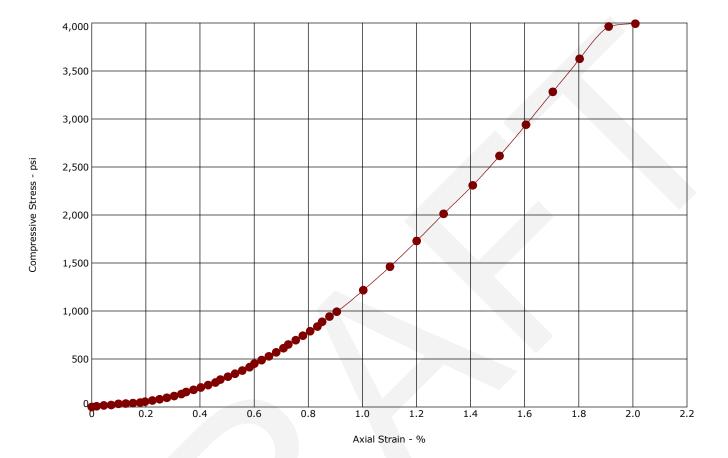

ID: 108050 S	SFN:	PROJECT:	VILLAG	E OF BAF	RNESVILL	E STA	TION /	OFFSI	ET:			S	STAR	T: 1/	30/2	3 E	ND:	1/3	30/23	P	PG 2 OF 2	B-00	3-0-
	MATERIAL DESCRIPTIO AND NOTES	N		ELEV. 1242.0	DEPT	-HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		RAD cs	ATIO FS	N (% si) CL	ATT LL	ERBE	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	
SHALE, GRAY, S NEAK. <i>(continue</i>	SEVERELY WEATHERED	D, VERY				- 21 - - 21 - - 22 - - 23 - - 23 -	32 50/3"	-	100	SS-7	-	-	-	-	-	-	-	-	-	8	Rock (V)	-	ALENA BAZIER BARAN
				1233.0		- 25 - - 25 - - 26 - - 27 - - 27 - - 28 -	50/5"		100	SS-8	-	-		-	-	-	-	-	-	5	Rock (V)	-	TADAN TAN BANK BANK
VEAK, VERY TH	RAY, MODERATELY WE. HIN BEDDED, ARGILLAC ARROW, SLIGHTLY ROU	EOUS,		1228.0		- 29 - - 30 - - 31 - - 32 - - 33 -	68		100	NQ2-R1											CORE		av V. a. B. B. B. Z. a. W. A. D. C. W. A.
NODERATELY S ARGILLACEOUS NARROW; RQD	RAY, SLIGHTLY WEATHI STRONG, VERY THIN BE 3, MODERATELY FRACT 80%, REC 100%. it weight = 134 pcf; Qu =3	DDED, URED,		1223.0		- 34 - - 35 - - 36 - - 37 - - 37 - - 38 -	80		100	NQ2-R2											CORE		ALA A A A A A A A A A A A A A A A


ROJECT: VILLAGE OF BARNESVILLE	DRILLING FIRM /						: MOBIL							FSE	T: _				PLORA B-004-	
YPE: ROADWAY PID: 108050 SFN:	SAMPLING FIRM		TC / CA 3.25" HSA	SEY			AUTOMA				ALIC				0 (1)		EOB:			PAG
TART: 11/28/22 END: 11/28/22	DRILLING METHO SAMPLING METH		<u>3.25 ная</u> SPT				RATIO (%)		<u>3/7/19</u> 90*	<u> </u>	LAT			1230				<u>10.5 it.</u> 1.171891		1 OF
MATERIAL DESCRIPTIO		ELEV.		SPT			SAMPLE			RAD	ATIO			ATT			50, 0	ODOT	L SO4	но
AND NOTES		1235.0	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	-	CS	FS		/	LL	PL	PI	WC	CLASS (GI)	ppm	SEA
MEDIUM DENSE, BLACK, GRAVEL WITH TRACE SILT, TRACE CLAY, WET (POSS				-4 	15	89	SS-1	-	56	15	13	6	10	NP	NP	NP	22	A-1-b (0)	-	LALAX A LA
STIFF, DARK BROWN, CLAY , SOME SIL ⁻ SAND, TRACE GRAVEL, MOIST (POSSIB		1232.8	- 2		20	100	SS-2A	-	-	-	-	-	-	-	-	-	24	A-7-6 (V)	-	A A D
MEDIUM DENSE, BLACK, COARSE AND I SAND , LITTLE CLAY, TRACE SILT, MOIS [:] (POSSIBLE FILL)	Т	1232.0	- 3	6	, 20	100	SS-2B	-	-	-	-	-	-	-	-	-	-	A-3a (V)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MEDIUM STIFF, DARK GRAY, CLAY , LIT TRACE SILT, CONTAINS SANDSTONE A FRAGMENTS, MOIST (POSSIBLE FILL)			- 4	-3 3	9	100	SS-3	-	-	-	-	-	-	-	-	-	25	A-7-6 (V)	-	A AL ANER
STIFF, DARK GRAY, SILTY CLAY, MOIST		1230.0	Γ				SS-4A	-	29	10	19	10	32	37	20	17	24	A-6b (3)	-	AAR.
(POSSIBLE FILL) MEDIUM DENSE, DARK GRAY, GRAVEL SAND, SILT, AND CLAY , MOIST (POSSIBI		1229.0	- 5	- 4	18	100	SS-4B	-	-	•	-	-	-	-	-	-	-	A-2-6 (V)	-	19 19 19 19 19 19 19 19 19 19 19 19 19 1
MEDIUM STIFF TO STIFF, GRAY AND BF SILTY CLAY , LITTLE SAND, TRACE GRA CONTAINS SANDSTONE AND COAL FRA MOIST (POSSIBLE FILL)	ROWN, VEL,		- 6 - - 7	-4 4	14	100	SS-5	1.50	-	-	-	-	-	-	-	-	-	A-6b (V)	-	AN AN AN
			- 8	3	9	100	SS-6	1.00	-	-	-	-	-	-	-	-	-	A-6b (V)	-	A & D J & L & A A
		1224.5	-	-3 0 - 3	11	100	SS-7	1.00	-	-	-	-	-	-	-	-	-	A-6b (V)	-	WX CHINE D


PROJECT: VILLAGE OF BARNESVILLE	DRILLING FIRM /		TC / CASEY			: MOBIL				STA	LORA B-005-									
	SAMPLING FIRM / LOGGER: _ DRILLING METHOD:						AUTOM					LIGNMENT: LEVATION: 1236.0 (MSL) EOB:								PAG
PID: <u>108050</u> SFN: <u></u> START: 11/28/22 END: 11/28/22	SAMPLING METH		3.25" HSA SPT		-		RATIO (%)		<u>8/7/19</u> 90*	9		/ LO		1230				<u>10.5 ft.</u> 1.167219		1 OF
MATERIAL DESCRIPTION		ELEV.		SPT/			SAMPLE	_		BRAD	ATIC			ATT			, 0	ODOT	I SO4	нс
AND NOTES	•	1236.0	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)		CS	-	sı	<i>'</i>	LL	PL	PI	WC	CLASS (GI)	ppm	
LOOSE TO MEDIUM DENSE, BLACK, GR WITH SAND, LITTLE CLAY, SLIGHTY ORG MOIST (POSSIBLE FILL)			- 1 -	3 5 8	20	100	SS-1	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	1. 8 X 8 2
		1233.0	- 2 - - - 3 -	4 3 3	9	39	SS-2	-	-	-	-	-	-	-	-	-	16	A-1-b (V)	-	C PANE D C
LOOSE, GRAY, COARSE AND FINE SAND GRAVEL, LITTLE CLAY, TRACE SILT, CC COAL FRAGMENTS, MOIST (POSSIBLE F	NTAINS FILL)	1231.5	_ 3 -	2 3 3	9	33	SS-3	-	22	27	23	9	19	NP	NP	NP	18	A-3a (0)	-	X A AVE AVE
MEDIUM STIFF, GRAY, SANDY SILT, SOM		1231.0					SS-4A	-	7	18	30	14	31	30	21	9	20	A-4a (2)	-	MAR.
TRACE GRAVEL, MOIST (POSSIBLE FILL STIFF, GRAY, SILTY CLAY , TRACE SANE GRAVEL, CONTAINS SANDSTONE AND FRAGMENTS, MOIST (POSSIBLE FILL)		1230.0	- 5 - - - 6 -	- ³ 4	11	100	SS-4B	-	-	-	-	-	-	-	-	-	-	A-6b (V)	-	
VERY STIFF, GRAY, SILTY CLAY , TRACE TRACE GRAVEL, CONTAINS SANDSTON COAL FRAGMENTS, MOIST (POSSIBLE F	E AND	1228.5	- 7 -	- ³ 33	9	89	SS-5	2.50		-	-	-	-	-	-	-	-	A-6b (V)	-	AN AN AN
MEDIUM STIFF, BROWN, CLAY , SOME S TRACE GRAVEL, MOIST	AND,		- 8 -	2 3 3	9	89	SS-6	0.25	-	-	-	-	-	-	-	-	-	A-7-6 (V)	-	A & Z A & A A
		1225.5	-EOB	-2 3 4	11	100	SS-7	1.00	-	-	-	-	-	-	-	-	-	A-7-6 (V)	-	HX CHING D

ROJECT: VILLAGE OF BARNESVILLE																		PLORA		
YPE:ROADWAY	SAMPLING FIRM			Y			AUTOM				ALIGNMENT: ELEVATION: 1250.0 (MSL)								B-006-	-0-22 PAC
ID: <u>108050</u> SFN: TART: 11/28/22 END: 11/28/22	DRILLING METH		3.25" HSA				ION DATI RATIO (%		<u>3/7/19</u> 90*	<u> </u>		VAT		1250	-			<u>10.5 ft.</u> 1.161958		1 OF
MATERIAL DESCRIPTIO		ELEV.				DEC	SAMPLE	<u> </u>		RAD				ΑΤΤ		ERG	5 <u>2, -0</u>	ODOT	 SO4	н
AND NOTES		1250.0	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)			-	,		LL	PL	1	wc	CLASS (GI)	ppm	
DENSE, BLACK, GRAVEL , TRACE CLAY, SILT, DAMP (POSSIBLE FILL)			- 1 -	-16 14 - 11	38	100	SS-1	-	-	-	-	-	-	-	-	-	8	A-1-a (V)	-	LAKAN AN
DENSE, GRAY, GRAVEL WITH SAND AN LITTLE CLAY, WET (POSSIBLE FILL)		1247.0	- 2 - - - 3 -	-9 - 13 - 12	38	100	SS-2A	-	25	27	22	8	18	NP	NP	NP	23	A-2-4 (0)	1093	L BULL BULL
VERY STIFF, GRAY TO BROWN, CLAY , TRACE SAND, TRACE GRAVEL, CONTAINS COAL AND SANDSTONE FRAGMENTS, MOIST			- - - 4 -	-7 6 7	20	100	SS-3	-	•	-	-	-	-	-	-	-	16	A-7-6 (V)	-	NAR JAR WY
		1244.0	- 5 - - - 6 -	-4 8 10	27	100	SS-4	3.00	5	1	5	31	58	43	17	26	30	A-7-6 (15)	-	AN A ANK
HARD, BROWN, SILTY CLAY , TRACE SAND, TRACE GRAVEL, CONTAINS SHALE FRAGMENTS, MOIST			- 7 -	-4 - 8 9	26	100	SS-5	-	-	-	-	-	-	-	-	-	-	A-6b (V)	-	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
			- 8 - - - 9 -	-5 10 - 11	32	100	SS-6	-	-	-	-	-	-	-	-	-	-	A-6b (V)	-	A DJAL AX 4
		1239.5	- 10 -	-12 15 - 18	50	100	SS-7	-	-	-	-	-	-	-	-	-	-	A-6b (V)	-	A X MY X W

				R: TC / CASEY					MOBIL						N / OF	EXF								
	SAMPLING FIRM / LOGGER: _ DRILLING METHOD:							AUTOM												B-007-	-0-2 PA			
PID: <u>108050</u> SFN: <u></u> START: 11/28/22 END: 11/28/22	SAMPLING								ON DATI ATIO (%	-	<u>8/7/19</u> 90*	<u> </u>		ELEVATION: <u>1261.0 (MSL)</u> EOB: <u>10.</u> LAT / LONG: <u>39.991672</u> , -81.15658								10		
MATERIAL DESCRIPTIO			ELEV.		6				SAMPLE			RAD				ATT		ERG	2, 0		SO4			
AND NOTES			1261.0	DEPTH	S	SPT/ RQD	N ₆₀	(%)	ID	(tsf)		CS	FS	sı	/	LL	PL		wc	CLASS (GI)	ppm			
VERY LOOSE, BLACK, GRAVEL WITH SA AND CLAY , SLIGHTLY ORGANIC, WET (I FILL)	(POSSIBLE		1259.5	-	- 1	1 1 1	3	89	SS-1	-	32	18	19	10	21	41	29	12	24	A-2-7 (0)	-	LAR A F A. W.		
VERY STIFF TO HARD, BROWN, SILTY CLAY , LITTLE SAND, TRACE GRAVEL, DAMP TO MOIST		+++++++++++++++++++++++++++++++++++++++		-	- 2	1 2 3	8	100	SS-2	4.00	-	-	-	-	-	-	-	-	21	A-6b (V)	-	3 / 44. 6 EV 0 X		
		+++++++++++++++++++++++++++++++++++++++		-	- 4 -	2 3 6	14	100	SS-3	3.00	-	-	-	-	-	-	-	-	23	A-6b (V)	-	N N . B. B. A.		
			-	- 5	6 9 9	27	100	SS-4	4.50	10	7	19	18	46	34	17	17	20	A-6b (9)	-	19 1 B 18 61			
@6.0'; CONTAINS SANDSTONE FRAGMENTS	ITS ++++	++++ ++++ +++++ +++++ +++++++++	++++ +++++ +++++ +++++ +++++ +++++ +++++	+ + + + + + + + + + + + + + + + + + + +		-	- 7 -	4 5 6	17	100	SS-5	-	-	-	-	-	-	-	-	-	-	A-6b (V)	-	
		+ + + + + + + +		-	- 8	3 4 5	14	100	SS-6	4.00	-	-	-	-	-	-	-	-	-	A-6b (V)	-	a N. I. a N. B. A.		
	+++++++++++++++++++++++++++++++++++++++	1250.5	-		6 8 8	24	100	SS-7	3.75	-	-	-	-	-	-	-	-	-	A-6b (V)	-	ar 2 / 44. 8 Br			



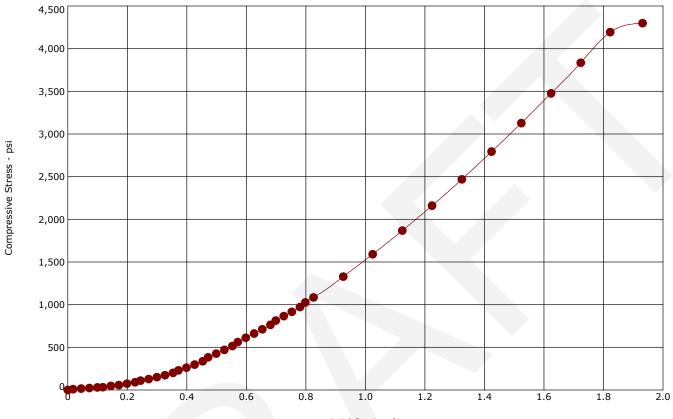
Village of Barnesville Pedestrian Trail Mulberry St | Barnesville, OH Terracon Project No. N4225393

Unconfined Compression Test

ASTM D70**12**

Boring ID	Depth (Ft)	Sample type	LL	PL	PI	Fines (%)	Description
B-001-0-22	12.4 - 12.7	NQ2-R2					SANDSTONE

Specimen	Test Data
Moisture Content (%):	7.1
Dry Density (pcf):	134
Diameter (in.):	1.98
Height (in.):	4.05
Height / Diameter Ratio:	2.04
Calculated Saturation (%):	
Calculated Void Ratio:	
Assumed Specific Gravity:	
Failure Strain (%):	2.01
Unconfined Compressive Strength (psi):	3993
Undrained Shear Strength (psi):	1996
Strain Rate (in/min):	0.0403
Remarks:	

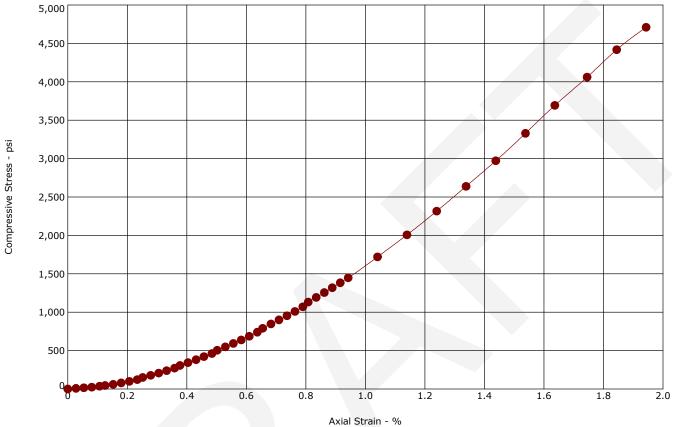

Laboratory tests are not valid if separated from original report.

Village of Barnesville Pedestrian Trail Mulberry St | Barnesville, OH Terracon Project No. N4225393

Unconfined Compression Test

ASTM D70**12**

Axial Strain - %

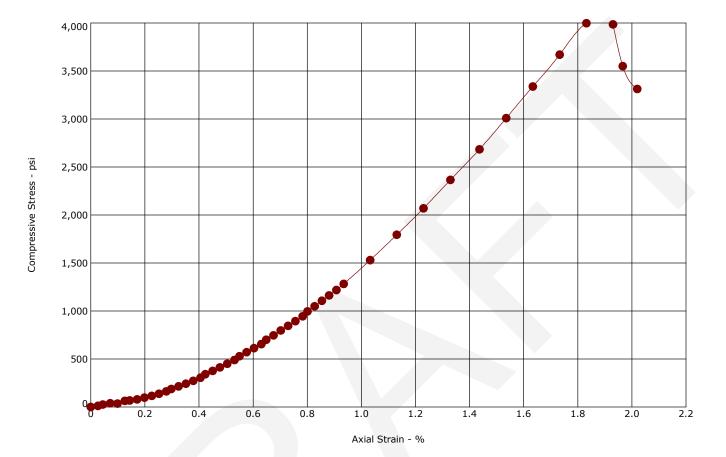

Boring ID	Depth (Ft)	Sample type	LL	PL	PI	Fines (%)		Description	
B-002-0-22	10.0 -10.3	NQ2 -R2					SANDSTONE		
	Specimo	en Failure Mod	e				Specimen	Test Data	
					1	Moisture Content	(%):		4.2
					ſ	Dry Density (pcf)	:		146
	N	1225393			E	Diameter (in.):			1.97
		B-1	III .		H	Height (in.):			3.98
		10.0'			ŀ	Height / Diamete	r Ratio:		2.02
					C	Calculated Satura	ation (%):		
					C	Calculated Void R	latio:		
					A A	Assumed Specific	: Gravity:		
				7	F	ailure Strain (%):		1.93
			/		ι	Jnconfined Comp	pressive Strength (psi):		4299
	and the second	The second	/		ι	Jndrained Shear	Strength (psi):		2149
		-			g	Strain Rate (in/m	in):		0.0398
	120				F	Remarks:			

Laboratory tests are not valid if separated from original report.

Unconfined Compression Test

ASTM D70**12**

Boring ID	Depth (Ft)	Sample type	ш	PL	PI	Fines (%)		Description	
B-002-0-22	11.3 - 11.6	NQ2 -R2					SANDSTONE		
	Specime	en Failure Mod	e				Specimen	Test Data	
					I	Moisture Content	(%):	6	5.7
-	RANK	SVILLE			I	Dry Density (pcf)	:	1	35
	N422 5	5393			I	Diameter (in.):		1.	98
		.3'			I	Height (in.):		4.	05
	4 -	. 3			1	Height / Diamete	r Ratio:	2.	04
					(Calculated Satura	ition (%):		
201	- 9				(Calculated Void R	atio:		
			F	a l		Assumed Specific	Gravity:		
	~				I	Failure Strain (%):	1.	94
	Han The		. /	1	ι	Unconfined Comp	pressive Strength (psi):	47	10
	C. March			1	l	Undrained Shear	Strength (psi):	23	55
a la	ST.			1	9	Strain Rate (in/m	in):	0.04	07
					1	Remarks:			


Laboratory tests are not valid if separated from original report.

Village of Barnesville Pedestrian Trail Mulberry St | Barnesville, OH Terracon Project No. N4225393

Unconfined Compression Test

ASTM D70**12**

Boring ID	Depth (Ft)	Sample type	ш	PL	PI	Fines (%)	Description
B-003-0-22	35.5 - 35.8	NQ2 -R2					SANDSTONE

Specimen Failure Mode	Specimen Test Data	
	Moisture Content (%):	
BarNesville	Dry Density (pcf):	
N4225393	Diameter (in.):	
B·3 35.5'	Height (in.):	
20.3	Height / Diameter Ratio:	
	Calculated Saturation (%):	
	Calculated Void Ratio:	
	Assumed Specific Gravity:	
	Failure Strain (%):	
	Unconfined Compressive Strength (psi):	
	Undrained Shear Strength (psi):	
	Strain Rate (in/min):	
	Remarks:	

Laboratory tests are not valid if separated from original report.

0.1 134 1.99 4.01 2.02

1.83 3998 1999 0.0398

SLAKE DURABILITY INDEX (SDI) TEST SUMMARY (ASTM D4644)

I

Client:	Pennoni Ass	ociates, Inc.			Date: 2/20/2023
Project:	Village of Ba	rnesville Pede	estrian Trail		Project Number: N4225393
Location:	Barnesville, (ЭН			
Boring No.			B-002-0-22		1.1
Depth (ft)			8.00		
Tare Weigł	nt:		843.8		
Moist weigl	nt (Sample+Tar	e):	1558.7		
Dry weight	(Sample+Tare)):	1538.2		1000 CC
Natural Mo	isture Content ((%):	3.0	9990	
	Afte	er Cycle No.	1		
	Temperature (°	F)	Dry Weight		
Start	End	Average	(Sample+Tare)		
74.1	75.9	75.0	1236.9		BARWARVILLE
	Afte	er Cycle No. 2	2	BALVASVILLE	N4225 393
	Temperature (°	F)	Dry Weight	N4225 593	B-1 8.0'
Start	End	Average	(Sample+Tare)	BI	
76 76 76		1070.7	8.0'		
SLAK	E DURABILITY	INDEX:	32.7	and the second s	
Fragm	ents Retained	- Type:	Π	Before Test	After Test
Material	Description:			Moderately weathered siltstone	e
Notes/0	comments:		Per OD	OT format, B-1 is renumbered as	B-002-0-22

Notes/Co	omments:		Per OD	OT format, B-3 is renumbered as B-	-003-0-22
	escription:			Slightly weathered sandstone	
Fragme	nts Retained	- Type:		Before Test	After Test
SLAKE	DURABILITY	INDEX:	98.2		
75	75	75	1299.3		
Start	End	Average	(Sample+Tare)	35.5'	
Te	emperature (°	Ϋ́F)	Dry Weight	13 - 3	B-3 355'
	Aft	er Cycle No. 2	2	BARNES VILLE NY225373	BARDES VILLE N4325393
73.8	75.1	74.5	1302.1		
Start	End	Average	(Sample+Tare)	1	
Te	emperature (°	°F)	Dry Weight		
	Aft	er Cycle No.	1		
Natural Mois	ture Content	(%):	3.4		0000
Dry weight (S	Sample+Tare):	1307.5		
Moist weight	(Sample+Ta	re):	1323.4		
Tare Weight:			840.0	and the first the	
Depth (ft)			35.50		
Boring No.			B-003-0-22		

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicableto the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Client

Pennoni Associates Inc. 1900 Market Street, Suite 300 Philadelphia, PA 19103

Project

Village of Barnesville Pedestrian Trail Mulberry St. Barnesville, OH 43713

Project No. N4225393

SUPPLEMENT 1122 DETERMINING SULFATE CONTENT IN SOILS

SAMPLE INFORMATION

Sample Type: Sample Location: Splitspoon sample

Lab Number	Hole Numer	Sample Number	Sample Depth	Sulfate Concentration, ppm
638	B-004-0-22, Sample 4	61	4.5-6.0	Non-Detectable
639	B-005-0-22, Sample 2	CNDYM	1.5-3.0	Non-Detectable
640	B-006-0-22, Sample 2	TIM-0	1.5-3.0	1093
641	B-007-0-22, Sample 4	59	4.5-6.0	Non-Detectable

Services: Terracon Rep: Reported To: Contractor: Report Distribution

N4225393 Village of Barnesville Trail Expansion

PHOTO 1: ROCK CORE OF BORING B-001-0-22

Project Manager: AR	Project No. N4225393			ROCK CORE PHOTO OF BORING B-001-0-22
Drawn by: NKM	Scale: N.T.S.	lierr	JCON	Village of Barnesville Trail Expansion
Checked by: BH	File Name:	Consulting En	gineers & Scientists	Geotechnical Investigation
Approved by:	Date:	800 Morrison Road	Columbus, Ohio 43230	Belmont County, Ohio
KE	02/09/2023	PH. (614) 863-3113	FAX. (614) 863-0475	

N4225393 Village of Barnesville Trail Expansion

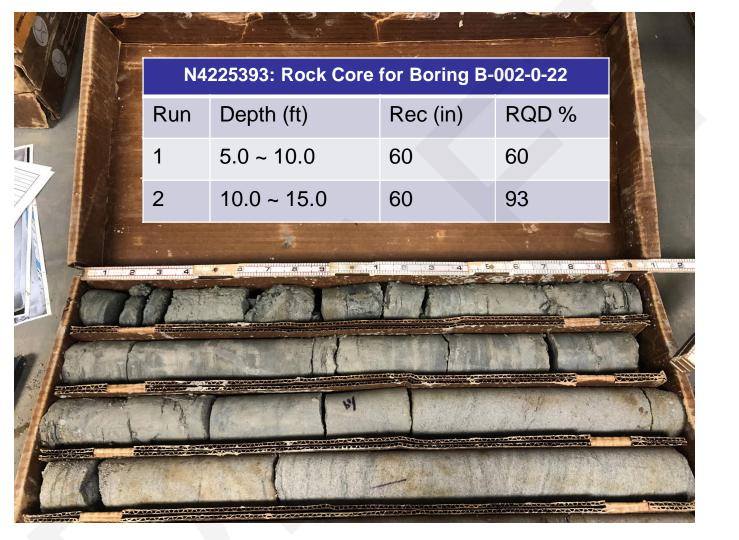
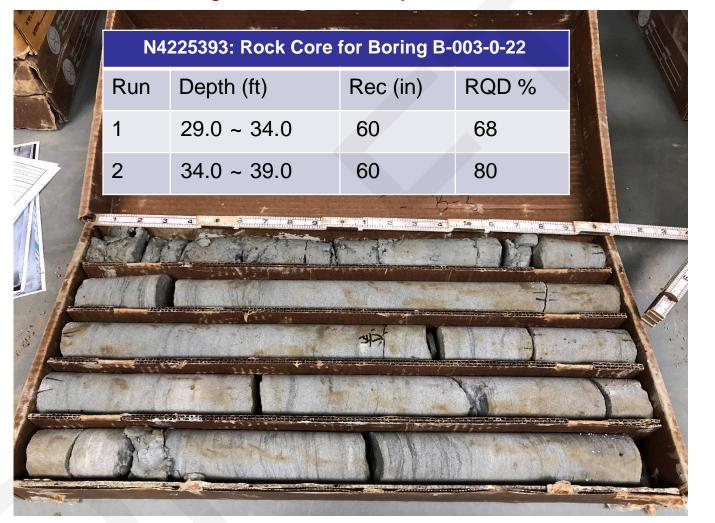



PHOTO 2: ROCK CORE OF BORING B-002-0-22

Project Manager: AR	Project No. N4225393			ROCK CORE PHOTO OF BORING B-002-0-22
Drawn by: NKM	Scale: N.T.S.	llerra	ICON	Village of Barnesville Trail Expansion
Checked by: BH	File Name: Rockcore Photos			Geotechnical Investigation
Approved by: KE	Date: 02/09/2023	800 Morrison Road PH, (614) 863-3113	Columbus, Ohio 43230 FAX. (614) 863-0475	Belmont County, Ohio

N4225393 Village of Barnesville Trail Expansion

PHOTO 3: ROCK CORE OF BORING B-003-0-22

Project Manager: AR	Project No. N4225393			ROCK CORE PHOTO OF BORING B-003-0-22
Drawn by: NKM	Scale: N.T.S.	lierr	acon	Village of Barnesville Trail Expansion
Checked by: BH	File Name: Rockcore Photos	0	gineers & Scientists	Geotechnical Investigation
Approved by: KE	Date: 02/09/2023	800 Morrison Road PH. (614) 863-3113	Columbus, Ohio 43230 FAX. (614) 863-0475	Belmont County, Ohio

Geotechnical Engineering Report

Village of Barnesville - Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

GB1 Subgrade Analysis

Facilities | Environmental | Geotechnical | Materials

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

BEL - BARNESVILLE TRAIL PID 108050

Village of Barnesville - Trail Expansion, Mulberry Street, Barnesville, Ohio

Terracon Consultants Inc

Prepared By: Date prepared:

Nithya K Manikkam Tuesday, April 11, 2023

Terracon Consultants Inc 800 Morrison Road Gahanna, Ohio

(614) 863-3113 nithya.k.manikkam@terracon.com

NO. OF BORINGS:

4

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-004-0-22	Barnesville Trail				B-57 (#594)	90	1235.0	1234.2	0.8 C
2	B-005-0-22	Barnesville Trail				B-57 (#594)	90	1236.0	1235.2	0.8 C
3	B-006-0-22	Barnesville Trail				B-57 (#594)	90	1250.0	1249.2	0.8 C
4	B-007-0-22	Barnesville Trail				B-57 (#594)	90	1261.0	1260.2	0.8 C

Subgrade Analysis

1/18/2019

V. 14.5

#	Boring	Sample	Sam Dej	-	-	rade pth	Stan Penet		HP		Pł	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	em	Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	Ы	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.0	1.5	-0.8	0.7	15			NP	NP	NP	6	10	16	22	6	A-1-b	0						
	004-0	SS-2A	1.5	2.0	0.7	1.2	20									24	18	A-7-6	16			Mc			
	22	SS -2B	2.0	3.0	1.2	2.2	20										8	A-3a	0						
		SS-3	3.0	4.5	2.2	3.7	9	9								25	18	A-7-6	16						
2	В	SS-1	0.0	1.5	-0.8	0.7	20									10	6	A-1-b	0						
	005-0	SS-2	1.5	3.0	0.7	2.2	9									16	6	A-1-b	0						
	22	SS-3	3.0	4.5	2.2	3.7	9			NP	NP	NP	9	19	28	18	8	A-3a	0						
		SS-4A	4.5	5.0	3.7	4.2	11	9		30	21	9	14	31	45	20	16	A-4a	2						
3	В	SS-1	0.0	1.5	-0.8	0.7	38									8	6	A-1-a	0						
	006-0	SS-2A	1.5	2.0	0.7	1.2	38			NP	NP	NP	8	18	26	23	10	A-2-4	0	1093		Mc			
	22	SS -2B	2.0	3.0	1.2	2.2	38										6	A-1-a	0						
		SS-3	3.0	4.5	2.2	3.7	20	20								16	18	A-7-6	16						
4	В	SS-1	0.0	1.5	-0.8	0.7	3			41	29	12	10	21	31	24	10	A-2-7	0			N ₆₀ & Mc		33''	Undercurt 14"
	007-0	SS-2A	1.5	2.0	0.7	1.2	8		4							21	16	A-6b	16			N ₆₀ & Mc		12''	
	22	SS -2B	2.0	3.0	1.2	2.2	8		4								16	A-6b	16			N ₆₀			
		SS-3	3.0	4.5	2.2	3.7	14	3	3							23	16	A-6b	16						

PID: PID 108050

County-Route-Section:BEL - BARNESVILLE TRAILNo. of Borings:4

Geotechnical Consultant:Terracon Consultants IncPrepared By:Nithya K ManikkamDate prepared:4/11/2023

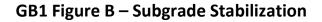
Chemical Stabilization Options											
320	Rubblize & Roll	No									
206	Cement Stabilization	Option									
	Lime Stabilization	No									
206	Depth	14"									

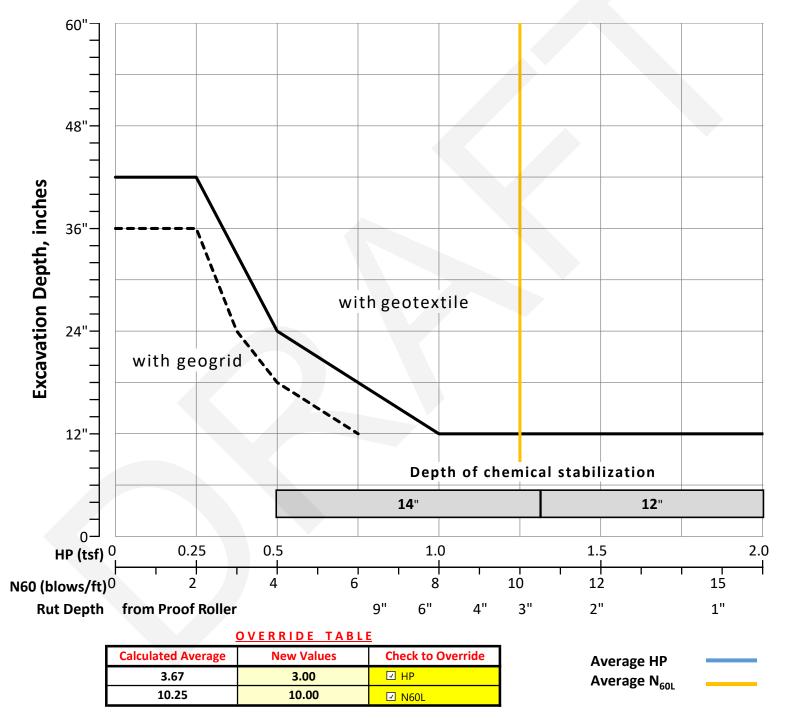
Excavate and Replace Stabilization Options									
Global Geotextile Override(N60L): Override(HP):	12" 0"								
Global Geogrid Override(N60L): Override(HP):	0'' 0''								

Design CBR	7
---------------	---

% Sampl	% Samples within 6 feet of subgrade													
N ₆₀ ≤ 5	6%	HP ≤ 0.5	0%											
N ₆₀ < 12	44%	0.5 < HP ≤ 1	0%											
12 ≤ N ₆₀ < 15	6%	1 < HP ≤ 2	0%											
N ₆₀ ≥20	44%	HP > 2	19%											
M+	25%													
Rock	0%													
Unsuitable	6%													

Excavate and Replace at Surface									
Average	0''								
Maximum	0''								
Minimum	0''								


% Proposed Subgrade Surface									
Unstable & Unsuitable	33%								
Unstable	33%								
Unsuitable	0%								


	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	18	10	3.67	36	25	11	9	20	29	19	12	6
Maximum	38	20	4.00	41	29	12	14	31	45	25	18	16
Minimum	3	3	3.00	30	21	9	6	10	16	8	6	0

					Class	ificat	ion C	ount	s by	Sam	ple								
ODOT Class	ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b											A-8b	Totals						
Count	0	2	3	1	0	0	1	0	2	1	0	0	0	3	0	3	0	0	16
Percent	0%	13%	19%	6%	0%	0%	6%	0%	13%	6%	0%	0%	0%	19%	0%	19%	0%	0%	100%
% Rock Granular Cohesive	0%					63%	-					-	-	38	3%		-	-	100%
Surface Class Count	0	2	3	1	0	0	1	0	2	0	0	0	0	3	0	3	0	0	15
Surface Class Percent	0%	13%	20%	7%	0%	0%	7%	0%	13%	0%	0%	0%	0%	20%	0%	20%	0%	0%	100%

Supporting Information

Contents:

General Notes Unified Soil Classification System ODOT Quick Reference for Visual Description of Soils and Rocks ODOT Classification of Soils Slope Stability and Lpile Analysis Spread Footing Foundation Calculation

Geotechnical Engineering Report

Village of Barnesville - Trail Expansion | Barnesville, Ohio April 19, 2023 | Terracon Project No. N4225393

Soil Classification

Unified Soil Classification System

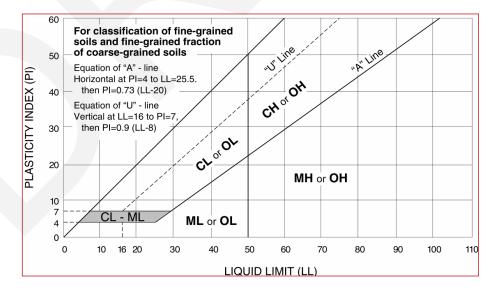
	Labora	atory Tests ^A	. 5	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu≥4 and 1≤Cc≤3 ^E	GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^c	Cu<4 and/or [Cc<1 or Cc>3.0] E	GP	Poorly graded gravel F
	coarse fraction retained on No. 4	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel ^{F, G, H}
Coarse-Grained Soils:	sieve	More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F, G, H}
More than 50% retained on No. 200 sieve		Clean Sands:	Cu≥6 and 1≤Cc≤3 ^E	SW	Well-graded sand ^I
	Sands: 50% or more of	Less than 5% fines ^D	Cu<6 and/or [Cc<1 or Cc>3.0] ^E	SP	Poorly graded sand ^I
	coarse fraction passes No. 4 sieve	Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G, H, I
		More than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand ^{G, H, I}
		Trevenie	PI > 7 and plots above "A" line 3	CL	Lean clay ^{K, L, M}
	Silts and Clays: Liquid limit less than	Inorganic:	PI < 4 or plots below "A" line ³	ML	Silt ^{K, L, M}
	50	Organic:	$\frac{LL \text{ oven } dried}{LL \text{ not } dried} < 0.75$	OL	Organic clay ^{K, L, M, N}
Fine-Grained Soils: 50% or more passes the		organic.	LL not dried < 0.75	UL	Organic silt ^{K, L, M, O}
No. 200 sieve		Inorganic:	PI plots on or above "A" line	CH	Fat clay ^{K, L, M}
	Silts and Clays:	Inorganica	PI plots below "A" line	MH	Elastic silt ^{K, L, M}
	Liquid limit 50 or more	Organici	LL oven dried	ОН	Organic clay ^{K, L, M, P}
		Organic:	$\frac{LL \text{ oven arrea}}{LL \text{ not dried}} < 0.75$	ОП	Organic silt ^{K, L, M, Q}
Highly organic soils:	Primarily of	organic matter, dark in o	color, and organic odor	PT	Peat

^A Based on the material passing the 3-inch (75-mm) sieve. в If field sample contained cobbles or boulders, or both, add "with

cobbles or boulders, or both" to group name.

- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM wellgraded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM wellgraded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

^E Cu =
$$D_{60}/D_{10}$$
 Cc = $(D_{30})^2$


D₁₀ x D₆₀

- ^F If soil contains \geq 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- I f soil contains \geq 15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or

"with gravel," whichever is predominant.

- ^L If soil contains \geq 30% plus No. 200 predominantly sand, add 'sandy" to group name.
- ^M If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N PI ≥ 4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- PI plots below "A" line.

APPENDIX A.1 - ODOT Quick Reference for Visual Description of Soils

1) STRENGTH OF SOI	L:
Non-Cohesive (granul	lar) Soils - Compactness
Description	Blows Per Ft.
Very Loose	≤ 4
Loose	5-10
Medium Dense	11 – 30
Dense	31 - 50
Very Dense	> 50

2) COLOR :

If a color is a uniform color throughout, the term is single, modified by an adjective such as light or dark. If the predominate color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled"

3) PRIMARY COMPONENT

Use **DESCRIPTION** from ODOT Soil Classification Chart on Back

Cohesive (fine	grained) So	ils - Consis	tency
Description	Qu (TSF)	Blows Per Ft.	Hand Manipulation
Very Soft	<0.25	<2	Easily penetrates 2" by fist
Soft	0.25-0.5	2 - 4	Easily penetrates 2" by thumb
Medium Stiff	0.5-1.0	5 - 8	Penetrates by thumb with moderate effort
Stiff	1.0-2.0	9 - 15	Readily indents by thumb, but not penetrate
Very Stiff	2.0-4.0	16 - 30	Readily indents by thumbnail
Hard	>4.0	>30	Indent with difficulty by thumbnail

4) COMPONENT MODIFIERS:

Description	Percentage By Weight
Trace	0% - 10%
Little	10% - 20%
Some	20% - 35%
"And"	35% -50%

6) Relative Visual Moisture

5) Soil Organi	c Content		Criteria	
Description	% by Weight	Description	Cohesive Soil	Non-cohesive Soils
Slightly Organic	2% - 4%	Dry	Powdery; Cannot be rolled; Water content well below the plastic limit	No moisture present
Moderately Organic	4% - 10%	Damp	Leaves very little moisture when pressed between fingers; Crumbles at or before rolled to $1/_8$ "; Water content below plastic limit	Internal moisture, but no to little surface moisture
Highly Organic	> 10%	Moist	Leaves small amounts of moisture when pressed between fingers; Rolled to ¹ / ₈ " or smaller before crumbling; Water content above plastic limit to -3% of the liquid limit	Free water on surface, moist (shiny) appearance
		Wet	Very mushy; Rolled multiple times to ¹ / ₈ " or smaller before crumbles; Near or above the liquid limit	Voids filled with free water, can be poured from split spoon.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Clossifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass	% Pass	Liquid Limit	Plastic Index	Group Index	REMARKS
	Gravel and/or Stone Fragments		1-a		#40 30 Max.	#200 15 Max.	(LL)	(P]) 6 Max.	Мах. 0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and/or Stone Fragments with Sand	Α-	1-b		50 Max.	25 Max.		6 Max.	0	
F-S	Fine Sand	A	- 3		51 Min.	10 Max.	NON-P	LASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
<u>4.0.0.6</u> 6.0.0 6.0.0.0	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0000 0000 0000 0000 0000 0000 0000	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A - 4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + \\ + + + + + \\ + + + + + \\ + + + + $	Silt	A - 4	A-4b	76 Min.		50 Min.	40 Max.	10 Ma×.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Sil†y Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	4-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-80	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	Sod and Topsoil Pavement or Base MA^{-}	1	CLASS trolled bescribe	SIFIED B'	Y VISUAL	Boulder			PPe	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

1: ROCK TYPE: Common rock types are: Claystone; Coal; Dolomite; Limestone; Sandstone; Siltstone; & Shale.

APPENDIX A.2 – ODOT Quick Reference Guide for Rock Description

2: COLOR: To be determined when rock is wet. When using the GSA Color charts use only Name, not code.

9	Description	Field Parameter
NIX	Unweathered	No evidence of any chemical or mechanical alternation of the rock mass. Mineral crystals have a bright
HE		appearance with no discoloration. Fractures show little or no staining on surfaces.
ITA	Slightly	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the
ΑE	weathered	rock volume presents alteration.
V :	Medonotoly	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted
£	woothered	appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration
	weathered	may be present. 10 to 15% of the rock volume presents alterations.
	Highly	Entire rock mass appears discolored and dull. Some pockets of slightly too moderately weathered rock
	weathered	may be present and some areas of severely weathered materials may be present.
	Severely	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more
-	weathered	resistant rock may be present, but the material can generally be molded and crumbled by hand pressures.
н	Description	Field Parameter
LÐN	Very Weak	Core can be carved with a knife and scratched by fingernail. Can be excavated readily with a point of a

Description	Field Parameter
Very Week	Core can be carved with a knife and scratched by fingernail. Can be excavated readily with a point of a
VUJ WUAN	pick. Pieces 1 inch or more in thickness can be broken by finger pressure.
W/oolz	Core can be grooved or gouged readily by a knife or pick. Can be excavated in small fragments by
WCAN	moderate blows of a pick point. Small, thin pieces can be broken by finger pressure.
Slightly	Core can be grooved or gouged 0.05 inch deep by firm pressure of a knife or pick point. Can be excavated
Strong	in small chips to pieces about 1-inch maximum size by hard blows of the point of a geologist's pick.
Moderately	Core can be scratched with a knife or pick. Grooves or gouges to ^{1/4} " deep can be excavated by hand blows
Strong	of a geologist's pick. Requires moderate hammer blows to detach hand specimen.
Ctuona	Core can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach
	hand specimen. Sharp and resistant edges are present on hand specimen.
Very	Core cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires hard repeated
Strong	blows of the geologist hammer.
Extremely	Core cannot be scratched by a knife or sharp pick. Chipping of hand specimens requires hard repeated
strong	blows of the geologist hammer.

gravel

Crystalline – contains crystalline structure

Fissile – thin planner partings

Stylolitic – contain stylotites (suture like structure) Micaceous - contains mica

Grain Diameter	>12"	3″-12″	<i>"</i> £- <i>"</i> 80'0	0.02"-0.08"	0.01"-0.02"	0.005"-0.01"	0°003″-0.005″	
Component	Boulder	Cobble	Gravel	Coarse	Medium	Fine	Very Fine	
					pu	ъS		

4: TEXTURE

Description	Thickness
Very Thick	>36"
Thick	18" – 36"
Medium	10" – 18"
Thin	2" – 10"
Very Thin	0.4" – 2"
Laminated	0.1" – 0.4"
Thinly Laminated	<0.1"

 Brecciated – contains angular to subangular gravel
 Cherty- contains chert fragments
 Dolomitic- contains calcium/magnesium carbonate
 Fossiliferous – contains fossils
 Pyritic – contains pyrite
 Vuggy – contains openings

ō
Ē
<u>.</u>
Ξ.
e e
S
Ď
×.
ĕ
Ž
Ξ.
for
£
-
lid
Ξ
ъ.
$\overline{}$
S
ŭ
G
Ē.
fe
e
2
<u></u>
C
. H
え
ODOT Qui
Ξ
Ō
ž
Ξ
\mathbf{O}
1
à
9
\triangleleft
5
5
Z
H.
L L
APPENDIX A

IES	
LIUNI	
INO	
DISC	
8: I	

sə	Type	Parameters
dA)	Equilt	Fracture which expresses displacement parallel to the
L /	Laut	surface that does not result in a polished surface.
Ain	1.0int	Planar fracture that does not express displacement.
nit	THIO	Generally occurs at regularly spaced intervals.
uot		Fracture which expresses displacement parallel to the
osi (Inalic	surface that results in polished surfaces or slickensides.
1:		
B	Bedding	A surface produced along a bedding plane.
	Contact	A surface produced along a contact plane.
	רטוומרו	(generally not seen in Ohio)

Spacing	> 10 ft.	3 ft. – 10 ft.	1 ft. – 3 ft.	4 in. – 12 in.	2 in. – 4 in.	< 2 in.
Description	Unfractured	Intact	Slightly fractured	Moderately fractured	Fractured	Highly fractured
81	b: Degree of Fracturing					

Spacing	> 0.2 in.	0.05 in 0.2 in.	<0.05 in.	
Description	Open	Narrow	Tight	
c: Aperture Width				

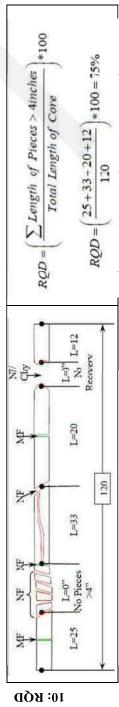
Criteria	Near vertical steps and ridges occur on the discontinuity surface.	Asperities on the discontinuity surface are distinguishable and can be felt.	Surface has a smooth, glassy finish with visual evidence of striation.	
Description	Very Rough	Slightly Rough	Slickensided	
d: Surface Roughness				

*100

 $\begin{bmatrix} \mathbf{R}_{U} \\ \mathbf{L}_{U} \end{bmatrix}$

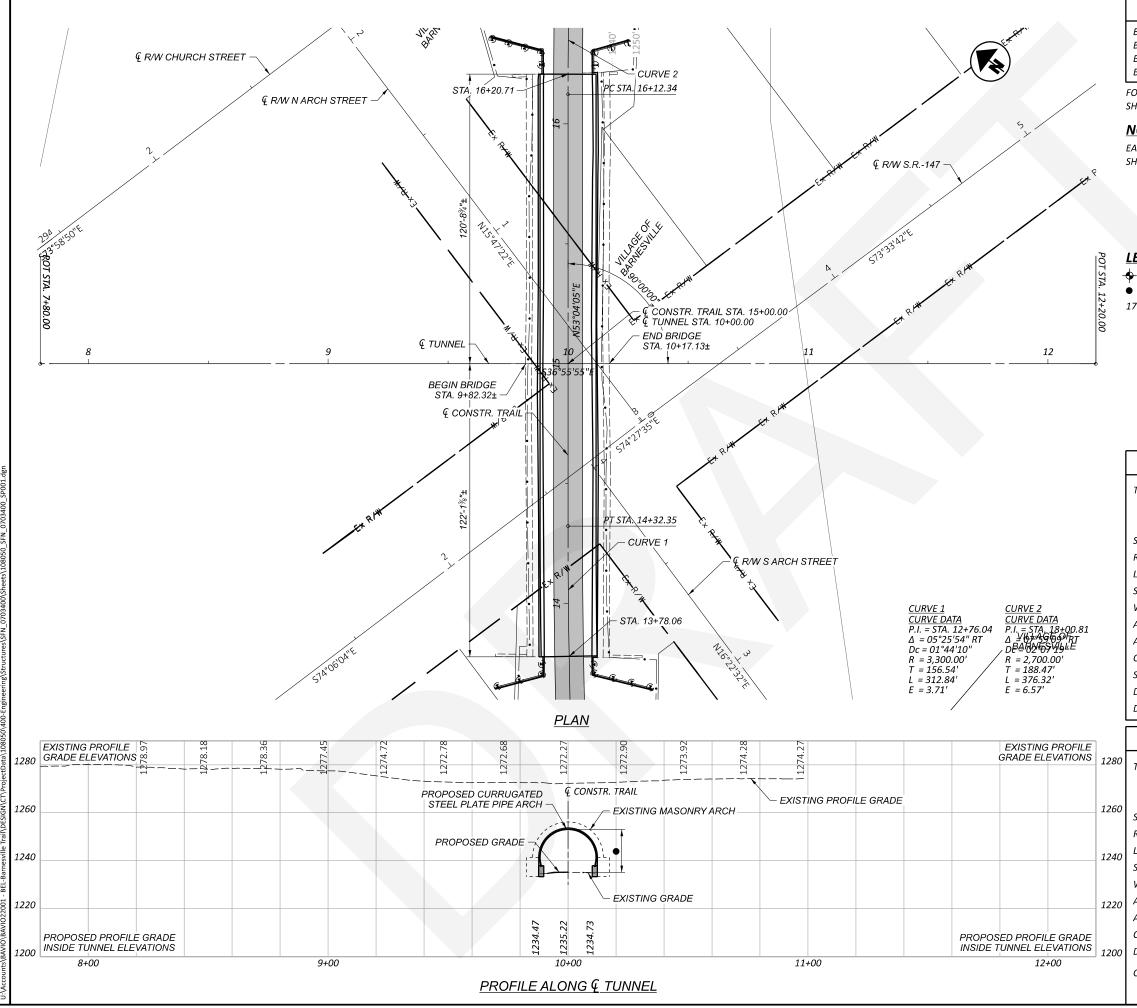
Run Recovery = $\left(\frac{R_R}{L_R}\right) * 100$ Unit Recovery =

II: RECOVERY

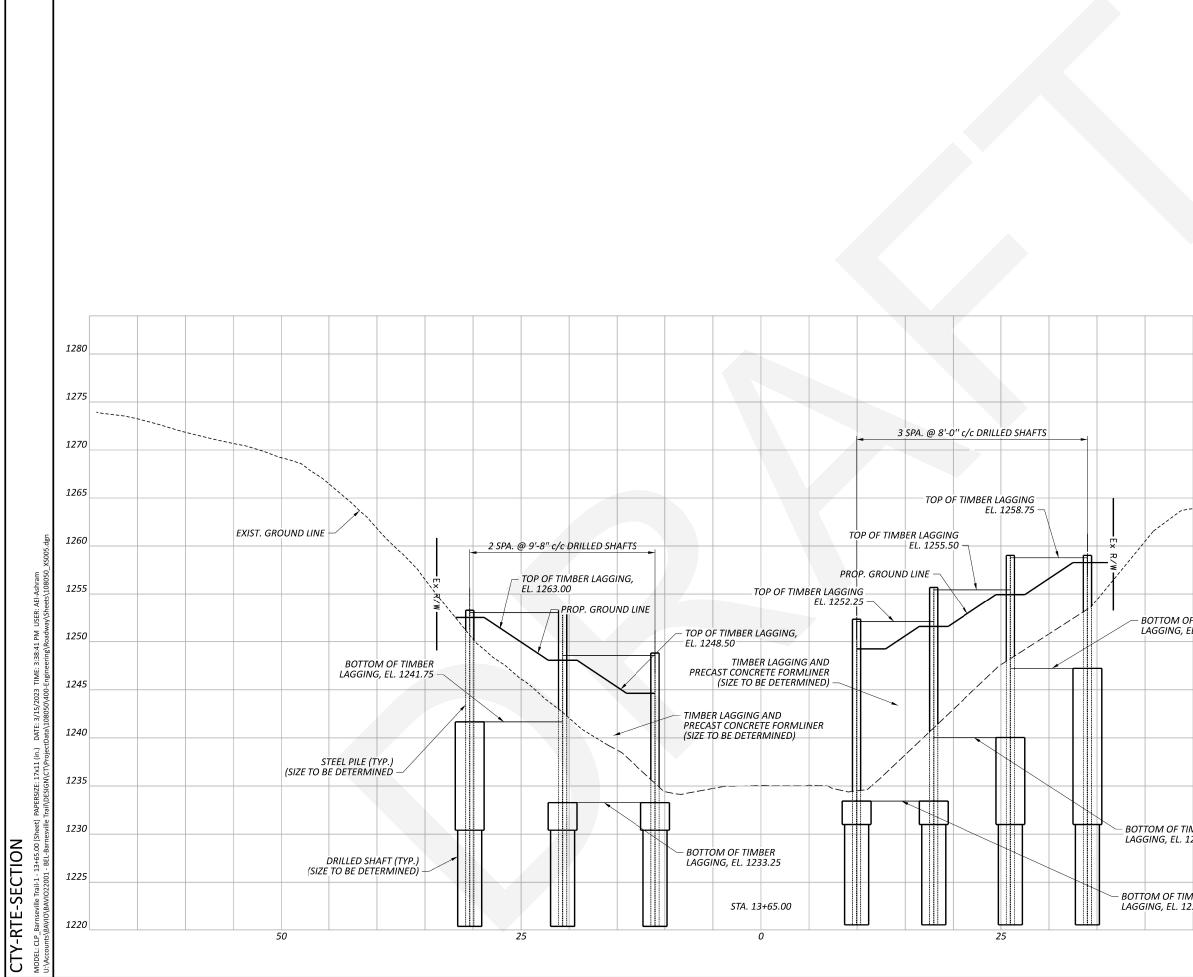

 $L_U = Rock Unit Length$ $R_U - Rock Unit Recovery$

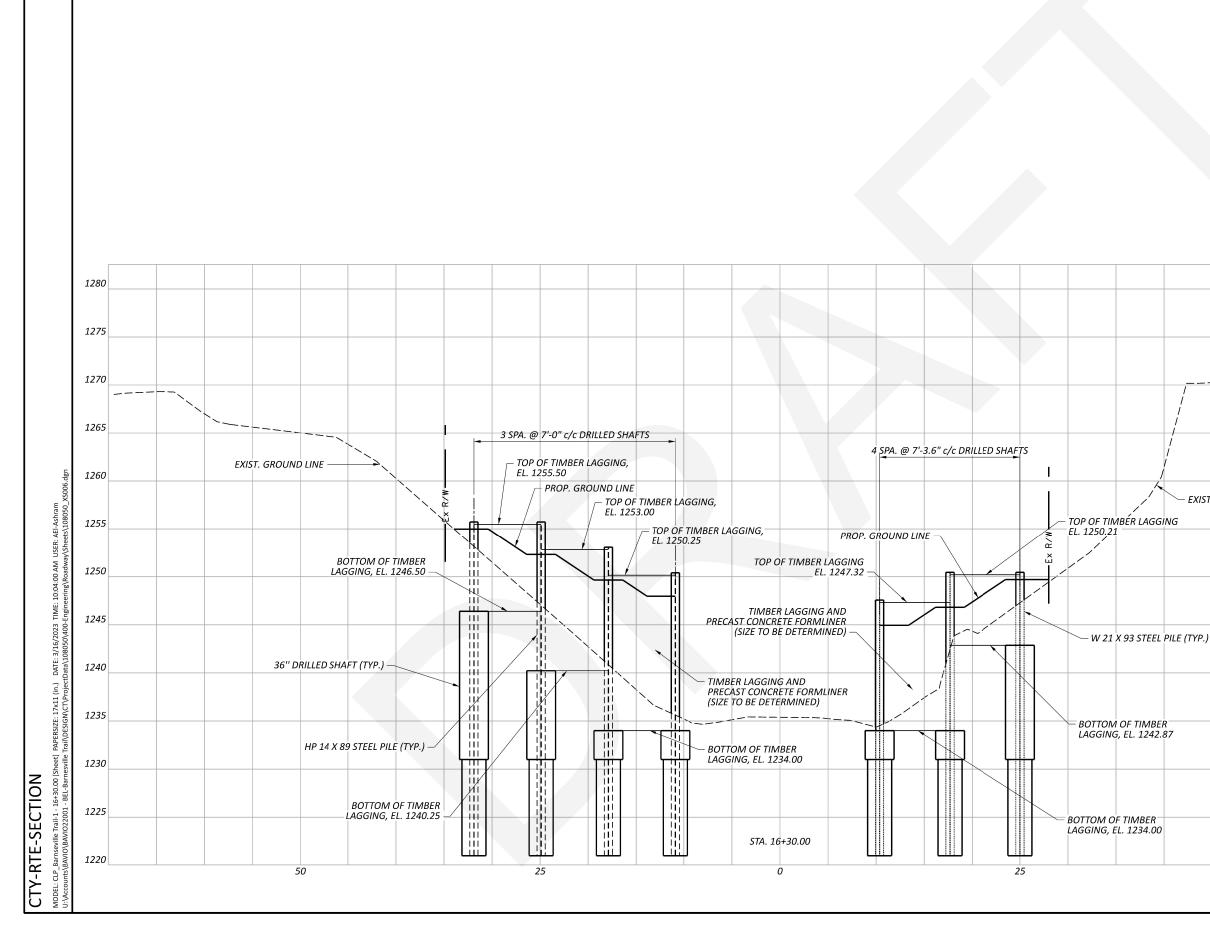
 $L_R = Run Length$ $R_R - Run Recovery$

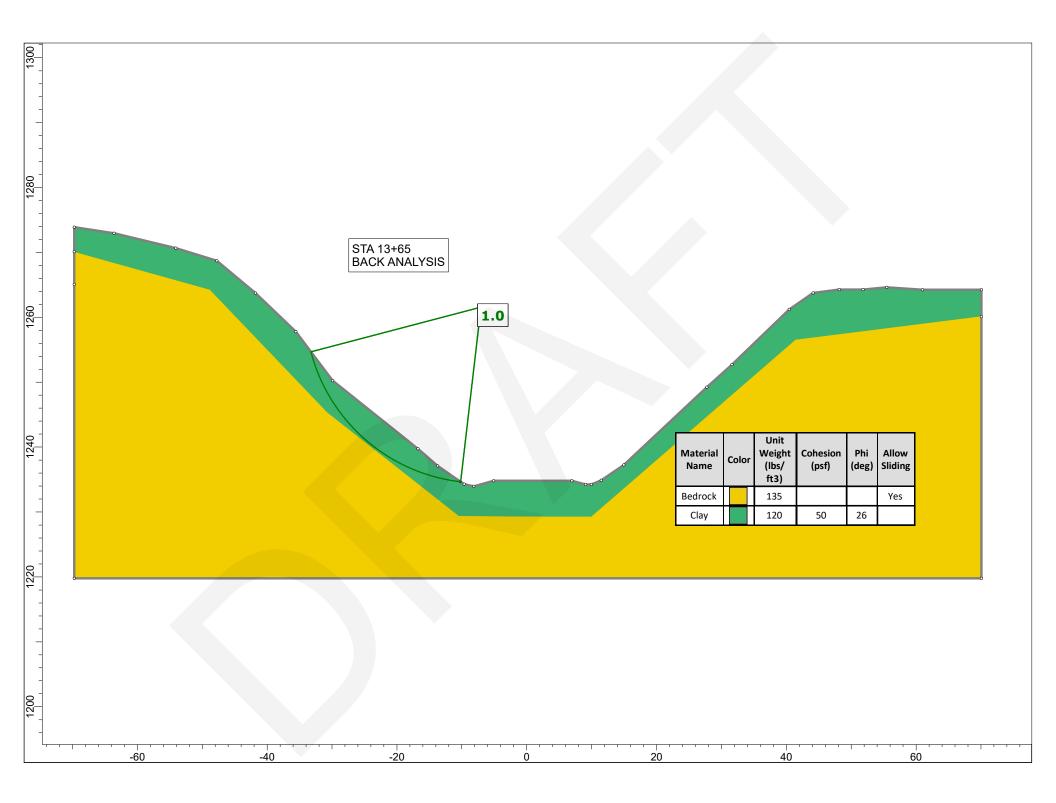
-
TPT
2
C
Ĭ
E
F
7
7
-
÷
-

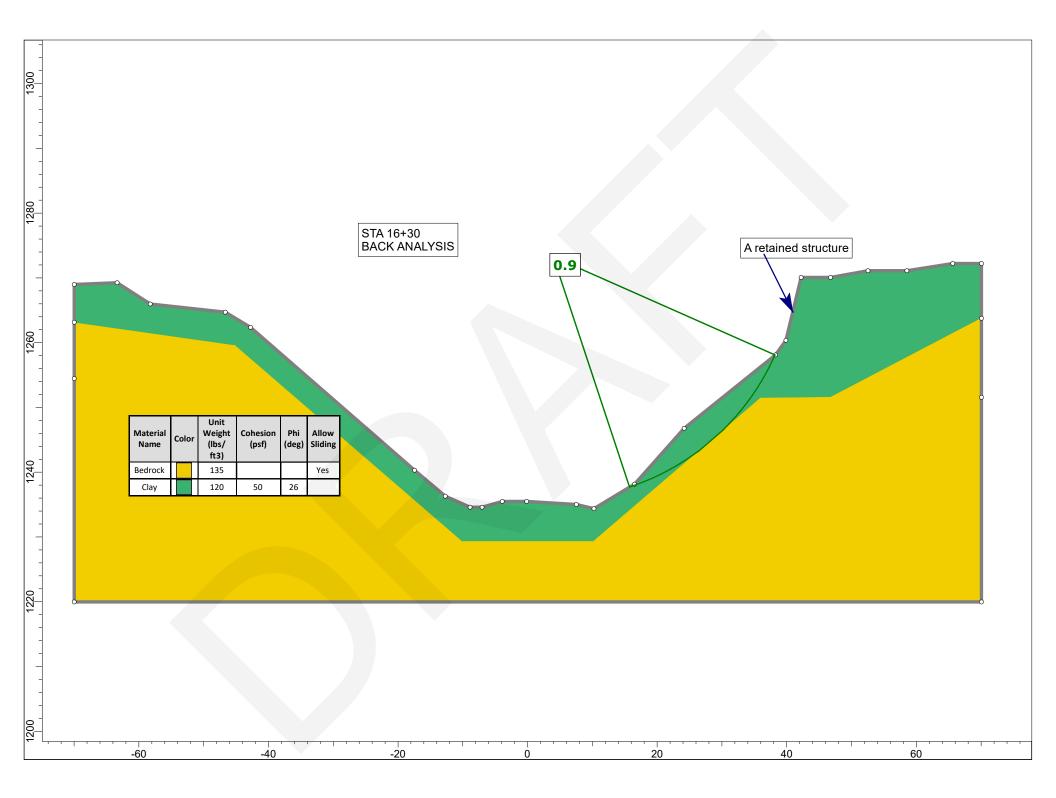

Description	Parameters
Intact or Massive	Intact rock with few widely spaced discontinuities
Blocky	Well interlocked undisturbed rock mass consisting of cubical
	blocks formed by three interesting discontinuity sets
Very Blocky	Interlocked, partially disturbed mass with multi-faceted angular
	blocks formed by 4 or more joint sets
Blocky/Disturbed/	Angular blocks formed by many intersecting discontinuity sets,
Seamy	Persistence of bedding planes
Disintegrated	Poorly interlocked, heavily broken rock mass with mixture of
	angular and rounded rock pieces
Laminated/Sheared	Laminated/Sheared Lack of blockiness due to close spacing of weak shear planes

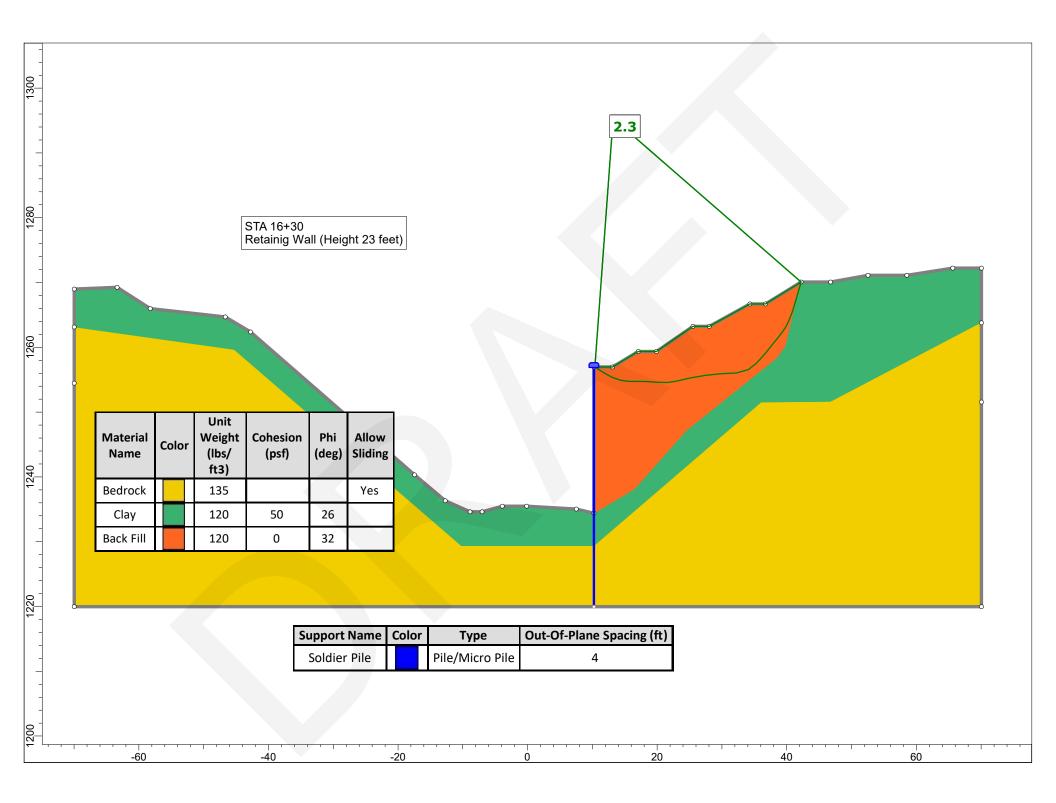
uc	Description	Parameters
bitil	Very Good	Very rough, fresh unweathered surfaces
bnoð	Good	Rough, slightly weathered, iron stained surface
rface	Fair	Smooth, moderately weathered and altered surfaces
ns :q	Poor	Slickensided, highly weathered surface with compact coatings or fillings or angular fragments
	Very Poor	Slickensided, highly weathered surfaces with soft clay coating or fillings

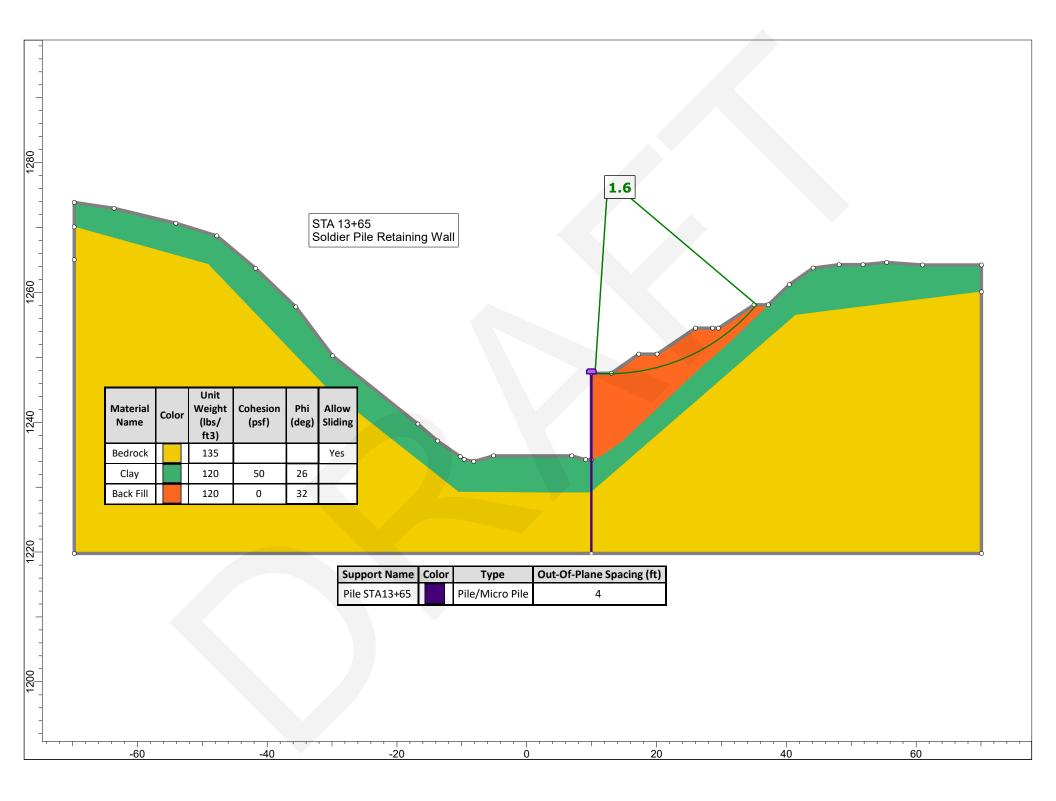



lP_1 - Plan 1 PAPERSIZE: 17x11 (m.) DATE: 3/16/2023 TIME: 9:58:24 AM USER: AEI-Ashram tis18AVIO28AV1022001 - BEL-Barnesville Trail\DESIGN\CT\ProjectData\108056\400-Engineering\Structures\SFN_0703400\Sheets\108050_SFN_0703400_SP001.dgn


BENCHMARK DATA	
BM #1 STA. 132+76.72, ELEV. 1232.20, OFFSET 31.49', LT BM #2 STA. 135+75.86, ELEV. 1232.98, OFFSET 30.82', LT BM #3 STA. 148+30.66, ELEV. 1237.12 OFFSET 40.69', RT BM #4 STA. 165+72.29, ELEV. 1258.89 OFFSET 43.29', RT	
OR ADDITIONAL BENCHMARK INFORMATION. SEE ROADWAY PLAN HEET	
NOTES	
ARTHWORK LIMITS SHOWN ARE APPROXIMATE. ACTUAL SLOPES HALL CONFORM TO PLAN CROSS SECTIONS.	
	NEI
EGEND > BORING LOCATION 10'-0" REQUIRED MINIMUM VERTICAL CLEARANCE 7'-10 ⁷ %" ACTUAL MINIMUM VERTICAL CLEARANCE	SITE PLAN SITE PLAN BRIDGE NO. BEL-147-0506 DUTE 147 OVER RAILROAD TUNNEI
EXISTING STRUCTURE	
TYPE: MASONRY (SANDSTONE AND BRICK) ARCH ON MASONRY (SANDSTONE AND BRICK) WALLS AND WINGWALLS	BI STATE ROL
SPANS: 24'-6"±	STA
ROADWAY: 10'-0"± WIDE TRAIL	
LOADING: UNKNOWN	
SKEW: NONE	
WEARING SURFACE: ASPHALT	
APPROACH SLABS: NONE ALIGNMENT: TANGENT	
CROWN: 0.016± FT/FT	
STRUCTURE FILE NUMBER: 0703400	
DATE BUILT: 1870	
DISPOSITION: TO BE REHABILITATED	
PROPOSED STRUCTURE	
TYPE: CORRUGATED METAL PIPE ARCH ON REINFORCED CONCRETE WALLS WITH SOLDIER PILE AND LAGGING WINGWALLS	SFN 703400 DESIGN AGENCY
SPANS: 23'-4" ROADWAY: 12'-0" WIDE TRAIL	Bonnoni
LOADING: HL93 AND 0.06 KSF FUTURE WEARING SURFACE	Pennoni
SKEW: NONE	
WEARING SURFACE: ASPHALT	DESIGNER CHECKER
APPROACH SLABS: NONE	AJK ARA REVIEWER
ALIGNMENT: TANGENT	MDP MM-DD-YY
CROWN: 0.016 FT/FT	PROJECT ID 108050
DECK AREA: NONE	SUBSET TOTAL
COORDINATES: LATITUDE 39° 59' 14.82" N	0 0 SHEET TOTAL
LONGITUDE 81° 10' 31.36" W	P.0 0



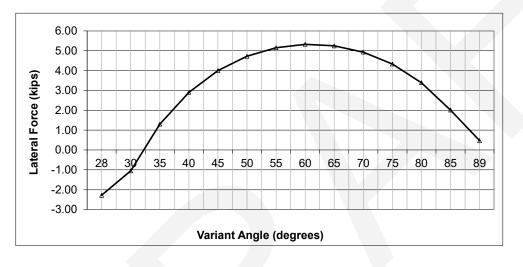

OF TIMBER (JEL. 1247.25) 1255 DESIGN AGENCY TIMBER .1240.00 TIMBER .1240.00		1280 1275 1270 1265	JTH PORTAL SOLDIER PILE WALL CROSS-SECTION BARNSVILLE TRAIL STA. 13+65.00
OF TIMBER , EL. 1247.25 1255 1250 1250 1245 1245 1240 1235 1230 1240 1230 1230 1225 1230		1260	
, EL. 1247.25 1250 1245 1245 1240 1240 1235 DESIGN AGENCY 1240 1230 1225		1255	S
Imber 1240 1235 1235 1240 1235 1230 1230 1240.00 1225		1250	
Image: Time in the image: Time in		1245	
TIMBER 1230 DESIGN AGENCY 1240.00 1225 1225 IMBER 1232.25 XXX		1240	
1240.00 IMBER 1225 DESIGNER XXX		1235	DESIGN AGENCY
DESIGNER IMBER XXX			
REVIEWER		1225	



					RTH PORTAL SOLDIER PILE WALL CROSS-SECTION BARNESVILLE TRAIL STA. 16+30.00
				1280	LE WA IL STA.
				1275	JIER PI
 			 	 1270	L SOLE
, ,				1265	DRTA BARN
				1260	ORTH I
– EXIST.	. GROUND			1255	ON N
				1250	
: (TYP.)				 1245	
				1240	
				1235	DESIGN AGENCY
				1230	
				1225	DESIGNER XXX
	5	0		1220	REVIEWER XXX MM-DD-Y PROJECT ID 0
					SHEET TOTAL P.0 0

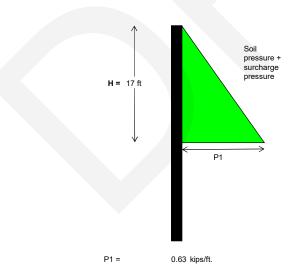
Village of Barnesville - Trail Expansion N4225393
N4225393
STA 13+65
THE FOLLOWING FORLE MODEL TO CALCUANE THE ACTING ON THE CANTILEVER WALL

B CA	W TOO H	
	ba i	
	= TRAFFSC SURCHARGE related Force	
	= WEIGHT OF THE UNSTABLE SOIL WEDG = LATERAL FORCE DUE TO ACTUE PRESSUR	
65	= ANGLE OF INEETIMAL FRICTION AT	G
	FALLUNE SURFALE	
5	= ANGLE OF PERIZON BETWEEN THE PEER	AND
X	THE Som Surface	
CONSIDER	THE FOLLOWING FORLE POLYGON!	
- 0	5=40-8 A	
Y	$\frac{1}{2} \frac{1}{80} - (\alpha - \phi + \theta)$	
W	X	
AREA DE ACT	THE SOLL WEDGE = 1/2 H H +an or	
	tan of	
	- 0·5 H2	
	$= \frac{0.5 H^2}{tanx}$ $= \frac{0.5 H^2}{tanx}$ $= \frac{0.5 H^2}{tanx}$ $= \frac{0.5 H^2}{tanx}$	
wi of we	tam d'bulk	


USING	SINE RULE	ON THE FORCE TRIANGLE
PA		W+F
Sn(x-\$) {	$\frac{\omega + F}{\sin(180 - \alpha + \phi - \Theta)}$
	PA	$(w+F)(sin \alpha-\phi)$ Sin (180- $\alpha+\phi-90+S$)

Soldier Pile Wall Design

CLIENT:	Village of Barnesville
PROJECT:	Village of Barnesville - Trail Expansion
PROJECT NO.:	N4225393
CASE:	STA 13+65


Angle of Internal Friction Φ:	32	degrees
Angle of Wall Friction δ:	0	degrees
Bulk Unit Weight y:	0.12	kcf
Traffic Surcharge Intensity:	0	ksf
Depth to slip surface H:	17	feet

Variant Angle (a)	W (kips)	F (kips)	P _A (kips)
28	32.61	0.00	-2.28
30	30.03	0.00	-1.05
35	24.76	0.00	1.30
40	20.67	0.00	2.90
45	17.34	0.00	4.00
50	14.55	0.00	4.73
55	12.14	0.00	5.15
60	10.01	0.00	5.32
65	8.09	0.00	5.25
70	6.31	0.00	4.93
75	4.65	0.00	4.33
80	3.06	0.00	3.40
85	1.52	0.00	2.01
89	0.30	0.00	0.47

Maximum Value of P_A = 5.32 kips

Distribute this P_A over the depth of the wall on a per foot basis.

CLIENT:	Village of Barnesville
PROJECT:	Village of Barnesville - Trail Expansion
PROJECT NO.:	N4225393
CASE:	STA 13+65
Pile Spacing =	4 feet

Therefore contributing pressure for the wall section on each pier will be:

=

=

2.50 kips/ft.

208.75 lbs/in.

Perform L-pile Analysis:

Steel Section	Width, bf	Depth, d	Equivalent Diameter	Section Area	lxx (in.4)	Sxx (in.3)
	(in.)	(in.)	(in.)	(in. ²)	()	
HP 8 x 36	8.155	8.02	9.12	10.36	119	29.8
HP 10 x 42	10.075	9.7	11.15	12.4	210	43.4
HP 10 x 57	10.225	9.99	11.40	16.8	294	58.8
HP 12 x 53	12.045	11.78	13.44	15.5	393	66.8
HP 12 x 84	12.295	12.28	13.86	24.6	650	106
HP 14 x 73	14.585	13.61	15.90	21.4	729	107
HP 14 x 89	14.695	13.83	16.09	26.1	904	131
HP 14 x 117	14.885	14.21	16.41	34.4	1220	172
W 21 x 93	8.42	21.62	15.22	27.3	2070	192
W 21 x 132	12.44	21.83	18.59	38.8	3220	295
W 21 x 147	12.51	22.06	18.74	43.2	3630	329

Lpile Analyses:

used HP14X89

(less than 1% of drilled shaft length above bedrock)

Steel Section top displacement

1.9 in

Bending Moment Check

Maximum bending moment from	Lpile Analyses:		2.21E+06 in-lbs 184.36 kips-ft
For 50 ksi steel F _b allowable =	33	Ksi	
S _{XX} (required) =	67	in ³	

S_{XX} for selected section =

131 in³

LPile for Windows, Version 2022-12.007

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

bkhalder Terracon Consultants

Serial Number of Security Device: 138584418

This copy of LPile is licensed for exclusive use by:

Terracon, LPILE Global, Global License

Use of this software by employees of Terracon other than those of the office site in LPILE Global, Global License is a violation of the software license agreement.

```
Files Used for Analysis
```

Path to file locations: \Projects\2022\N4225393\Working Files\Calculations-Analyses\LPILE\

Name of input data file: Lpile Pile Wall N4225393- downslope wall.lp12d Name of output report file: Lpile Pile Wall N4225393- downslope wall.lp120

Name of plot output file: Lpile Pile Wall N4225393- downslope wall.lp12p

Name of runtime message file: Lpile Pile Wall N4225393- downslope wall.lp12r

Date and Time of Analysis							
Date: March 22,	2023	Time:	13:25:03				
	Problem Title						
Village of Barnesville Pedestrian Trail							
Job Number: N4225393							
Client: Pennoni							
Engineer: BKH							
Description: STA 13+65 along bike path							

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed	=	500
- Deflection tolerance for convergence	=	1.0000E-05 in
 Maximum allowable deflection 	=	100.0000 in

- Maximum allowable deflection
- Number of pile increments

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- Analysis includes loading by multiple distributed lateral loads acting on pile

100

- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1

- No p-y curves to be computed and reported for user-specified depths

- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined	=	2
Total length of pile	=	31.500 ft
Depth of ground surface below top of pile	=	17.0000 ft

Pile diameters used for p-y curve computations are defined using 4 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	14.7000
2	17.000	14.7000
3	17.000	30.0000
4	31.500	30.0000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section

= Strong AISC Section Pile

= 17.000000 ft

AISC Section Name

Flange Width Section Depth Flange Thickness Web Thickness Section Area Moment of Inertia Elastic Modulus

Pile Section No. 2:

Section 2 is an elastic pile Cross-sectional Shape Length of section Width of top of section Width of bottom of section Top Area Bottom Area Moment of Inertia at Top Moment of Inertia at Bottom Elastic Modulus = HP14X89

=	14.700000	in
=	13.800000	in
=	0.615000	in
=	0.615000	in
=	26.100000	sq. in
=	904.000000	in^4
	2000000	

- = 29000000. psi
- Circular Pile = 14.500000 ft = 30.000000 in = 30.000000 in = 26.100000 sq. in = 26.100000 sq. in = 904.000000 in^4 = 904.000000 in^4 =
- = 29000000. psi

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is stiff clay without free water

Distance from top of pile to top of layer	=	17.000000	ft	
Distance from top of pile to bottom of layer	=	21.500000	ft	
Effective unit weight at top of layer	=	125.000000	pcf	
Effective unit weight at bottom of layer	=	125.000000		
Undrained cohesion at top of layer	=	1000.000000		
Undrained cohesion at bottom of layer	=	1000.000000	•	
Epsilon-50 at top of layer	=	0.007000	F -	
Epsilon-50 at bottom of layer	_			
Layer 2 is weak rock, p-y criteria by Reese, 1997				
Distance from top of pile to top of layer	=	21.500000	ft	
Distance from top of pile to bottom of layer	=	40.000000	ft	
Effective unit weight at top of layer	=	145.000000	pcf	
Effective unit weight at bottom of layer	=	145.000000	pcf	
Uniaxial compressive strength at top of layer	=	500.000000	•	
Uniaxial compressive strength at bottom of layer	=	500.000000	•	
Initial modulus of rock at top of layer	=	580000.	•	
Initial modulus of rock at bottom of layer	=	580000.	•	
RQD of rock at top of layer	=	78.000000	•	
RQD of rock at bottom of layer	=	78.000000		
k rm of rock at top of layer	=	0.0005000	<u> </u>	
k rm of rock at bottom of layer	=	0.0000500		
		0.0000000		

(Depth of the lowest soil layer extends 8.500 ft below the pile tip)

		Summary o	f Input Sc	oil Properties		
Layer	Soil Type		Layer	Effective	Cohesion	Uniaxial

E50 Rock Mass Num. Name Depth Unit Wt. RQD % qu Modulus or (p-y Curve Type) ft pcf psf psi krm psi 1 Stiff Clay 17.0000 125.0000 1000.0000 0.00700 - -1000.0000 125.0000 w/o Free Water 21.5000 0.00700 - -2 Weak 21.5000 145.0000 500.0000 78.0000 5.00E-04 580000. Rock 40.0000 145.0000 500.0000 78.0000 5.00E-05 580000. Modification Factors for p-y Curves Distribution of p-y modifiers with depth defined using 3 points Point Depth X p-mult y-mult No. ft _ _ _ _ _ 23.500 0.7500 1.0000 1 2 27.500 0.7500 1.0000 3 27.500 1.0000 1.0000

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading for Individual Load Cases

Distributed lateral load intensity for Load Case 1 defined using 2 points

Depth X	Dist. Load
ft	lb/in
0.000	0.000
17.000	208.750
	ft 0.000

Distributed lateral load intensity for Load Case 2 defined using 2 points

Point	Depth X	Dist. Load
No.	ft	lb/in
1	0.000	0.000
2	17.000	313.125

 Pile-head Loading and Pile-head Fixity Conditions

 Number of loads specified = 2

 Load
 Condition

 Condition
 Condition

 Axial Thrust
 Compute

 Top y
 Run Analysis

No. Length	Туре	1		ype 1 2		1		Type 1 2		1 2		Force, lbs	vs. Pile
1	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000							
Yes		Yes											
2	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	No						
		Yes											

V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

compacticitor of nominal nomene capacity and nonitinear benating seit mess

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 2

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Pile Section No. 2:

Moment-curvature properties were derived from elastic section properties

	Layerin	g Correction	Equivalent	Depths of So	il & Rock Lay	yers
	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer No.	Below Pile Head	Below Grnd Surf	Type As Layer	Rock or is Below	Integral for Layer	Integral for Layer
	ft 	ft 	Above	Rock Layer	lbs	1bs
1	17.0000	0.00	N.A.	No	0.00	47184.
2	21.5000	4.5000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

> Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-lbs
Axial thrust load on pile head	=	0.0 lbs

Depth Deflect. Bending Shear Slope Total Bending Soil Res. Soil Spr. Distrib.

	Moment	Force	S	Stress	Stiffness	р
Es*H Lat. Load feet inches lb/inch lb/inch				psi*	lb-in^2	lb/inch
0.00 1.904 0.00 0.9670	1.26E-05	0.00	-0.00870	1.03E-07	2.62E+10	0.00
0.3150 1.871 0.00 3.8680	6.9085	9.1382	-0.00870	0.05617	2.62E+10	0.00
0.6300 1.839 0.00 7.7360	69.0847	31.0698	-0.00870	0.5617	2.62E+10	0.00
0.9450 1.806 0.00 11.6040	51 241.7964	67.6226	-0.00870	1.9659	2.62E+10	0.00
1.2600 1.773 0.00 15.4721	32 580.3113	118.7964	-0.00870	4.7182	2.62E+10	0.00
1.5750 1.740 0.00 19.3401		184.5913	-0.00870	9.2680	2.62E+10	0.00
1.8900 1.707 0.00 23.2081	75 1976.	265.0074	-0.00870	16.0645	2.62E+10	0.00
2.2050 1.674 0.00 27.0761			-0.00870	25.5571	2.62E+10	0.00
2.5200 1.641 0.00 30.9441			-0.00870			0.00
2.8350 1.608 0.00 34.8121		593.9820	-0.00870	54.4283		0.00
3.1500 1.576 0.00 38.6801			-0.00869			0.00
3.4650 1.543 0.00 42.5482		886.4039	-0.00869			0.00
3.7800 1.510 0.00 46.4162						
4.0950 1.477 0.00 50.2842	74 20207.	1237.	-0.00869	164.2958	2.62E+10	0.00
4.4100 1.444 0.00 54.1522		1435.	-0.00869	205.2434	2.62E+10	0.00
4.7250 1.411	17 31054.	1647.	-0.00868	252.4819	2.62E+10	0.00

0.00 58.0202	27602	1070	0 00000	206 1609	2 625,10	0 00
5.0400 1.3789	57095.	18/3.	-0.00868	500.4008	2.62E+10	0.00
0.00 61.8882 5.3550 1.3462	45216.	2115.	-0.00867	267 6204	2.62E+10	0.00
0.00 65.7563	45210.	2115.	-0.0000/	507.0294	2.020+10	0.00
5.6700 1.3134	53679.	2270	-0.00866	126 1271	2.62E+10	0.00
0.00 69.6243	55079.	2570.	-0.00000	450.4571	2.020+10	0.00
5.9850 1.2807	63136.	2641.	-0.00865	E12 2222	2 625110	0.00
0.00 73.4923	03130.	2041.	-0.00003	515.5552	2.62E+10	0.00
6.3000 1.2480	73644.	2926.	-0.00865	598.7670	2.62E+10	0.00
0.00 77.3603	/ 5044.	2920.	-0.00803	598.7070	2.021+10	0.00
	85257.	2776	-0 00863	603 1870	2.62E+10	0.00
0.00 81.2283	05257.	5220.	-0.00005	055.1875	2.021+10	0.00
6.9300 1.1827	98031	3540.	-0.00862	797 0151	2.62E+10	0.00
0.00 85.0963	50051.	5540.	0.00002	/ // .0+)+	2.021110	0.00
7.2450 1.1501	112021.	3869.	-0.00861	910.7886	2.62E+10	0.00
0.00 88.9643	1120211	5005.	0.00001	51017000	21022:10	0.00
7.5600 1.1176	127282.	4213.	-0.00859	1035.	2.62E+10	0.00
0.00 92.8324						
7.8750 1.0852	143869.	4571.	-0.00857	1170.	2.62E+10	0.00
0.00 96.7004						
8.1900 1.0529	161838.	4944.	-0.00855	1316.	2.62E+10	0.00
0.00 100.5684						
8.5050 1.0206	181244.	5331.	-0.00852	1474.	2.62E+10	0.00
0.00 104.4364						
8.8200 0.9884	202142.	5733.	-0.00849	1644.	2.62E+10	0.00
0.00 108.3044						
9.1350 0.9564	224587.	6150.	-0.00846	1826.	2.62E+10	0.00
0.00 112.1724						
9.4500 0.9244	248636.	6581.	-0.00843	2022.	2.62E+10	0.00
0.00 116.0404						
9.7650 0.8927	274342.	7027.	-0.00839	2231.	2.62E+10	0.00
0.00 119.9085						
10.0800 0.8610	301762.	7488.	-0.00835	2453.	2.62E+10	0.00
0.00 123.7765						
10.3950 0.8295	330950.	7963.	-0.00830	2691.	2.62E+10	0.00
0.00 127.6445						

10.7100		361962.	8453.	-0.00825	2943.	2.62E+10	0.00
0.00 131. 11.0250	0.7671	394853.	8957.	-0.00820	3210.	2.62E+10	0.00
0.00 135. 11.3400 0.00 139.	0.7362	429679.	9476.	-0.00814	3494.	2.62E+10	0.00
11.6550 0.00 143.	0.7056	466494.	10010.	-0.00808	3793.	2.62E+10	0.00
11.9700 0.00 146.	0.6752	505354.	10558.	-0.00801	4109.	2.62E+10	0.00
12.2850 0.00 150.	0.6451	546315.	11121.	-0.00793	4442.	2.62E+10	0.00
12.6000 0.00 154.	0.6152	589430.	11699.	-0.00785	4792.	2.62E+10	0.00
12.9150 0.00 158.	0.5857	634757.	12291.	-0.00776	5161.	2.62E+10	0.00
13.2300 0.00 162.	0.5566	682349.	12898.	-0.00766	5548.	2.62E+10	0.00
13.5450 0.00 166.	0.5278	732263.	13519.	-0.00756	5954.	2.62E+10	0.00
13.8600 0.00 170.	0.4994	784553.	14155.	-0.00745	6379.	2.62E+10	0.00
14.1750 0.00 174.	0.4714	839275.	14806.	-0.00734	6824.	2.62E+10	0.00
14.4900 0.00 177.	0.4439	896484.	15471.	-0.00721	7289.	2.62E+10	0.00
14.8050 0.00 181.	0.4169	956236.	16151.	-0.00708	7775.	2.62E+10	0.00
15.1200 0.00 185.	0.3904	1018584.	16845.	-0.00694	8282.	2.62E+10	0.00
15.4350 0.00 189.	0.3645	1083586.	17554.	-0.00678	8810.	2.62E+10	0.00
15.7500 0.00 193.	0.3391	1151296.	18278.	-0.00662	9361.	2.62E+10	0.00
16.0650 0.00 197.	0.3144	1221769.	19017.	-0.00645	9934.	2.62E+10	0.00
16.3800	0.2904	1295061.	19770.	-0.00627	10530.	2.62E+10	0.00

0.00 201	1368						
	0.2670	1371227.	20537.	-0.00608	11149.	2.62E+10	0.00
0.00 205							
17.0100	0.2444	1450322.	20620.	-0.00587	24065.	2.62E+10	-258.414
3996. 97	7.3240						
17.3250	0.2226	1527116.	19822.	-0.00566	25339.	2.62E+10	-261.051
4433.	0.00						
17.6400	0.2016	1600179.	18832.	-0.00543	26552.	2.62E+10	-263.066
4932.	0.00						
17.9550	0.1815	1669483.	17835.	-0.00520	27702.	2.62E+10	-264.425
5506.	0.00						
18.2700	0.1623	1735010.	16834.	-0.00495	28789.	2.62E+10	-265.091
6173.	0.00						
	0.1441	1796748.	15832.	-0.00470	29813.	2.62E+10	-265.022
6953.							
	0.1268	1854700.	14832.	-0.00444	30775.	2.62E+10	-264.172
7875.	0.00						
	0.1105	1908877.	13837.	-0.00416	31674.	2.62E+10	-262.486
8976.							
	0.09532	1959304.	12849.	-0.00389	32511.	2.62E+10	-259.905
10306.		2006017	11070	0,000.00	22206	2 625 40	256 257
	0.08117	2006017.	11873.	-0.00360	33286.	2.62E+10	-256.357
11938.	0.00	2040060	10012	0 00221	24000	2 625.10	251 760
	0.06811	2049068.	10913.	-0.00331	34000.	2.62E+10	-251.760
13972.		2000520	0072	-0.00301	24655	2 625,10	246 015
16555.	0.05617 0.00	2088520.	9972.	-0.00501	34655.	2.62E+10	-246.015
	0.04537	2124458.	9056.	-0.00270	35251.	2.62E+10	-239.005
19914.	0.00	2124490.	.0202	-0.00270	55251.	2.021+10	-233.005
	0.03572	2156981.	8168.	-0.00240	35791.	2.62E+10	-230.588
24400.		2130301.	0100.	0.00240	55751.	2.021.10	230.900
21.4200	0.02725	2186209.	7315.	-0.00208	36276.	2.62E+10	-220.594
30598.	0.00						
21.7350	0.01997	2212285.	-1397.	-0.00177	36708.	2.62E+10	-4389.
830611.	0.00						
22.0500	0.01390	2175651.	-18483.	-0.00145	36100.	2.62E+10	-4652.
1264967.	0.00						

22.3650 1994616.	0.00901 0.00	2072552.	-36264.	-0.00114	34390.	2.62E+10	-4756.
22.6800 3357913.	0.00526 0.00	1901494.	-54078.	-8.57E-04	31551.	2.62E+10	-4669.
22.9950 6445294.	0.00254 0.00	1663722.	-71072.	-6.00E-04	27606.	2.62E+10	-4322.
23.3100 1.82E+07	7.21E-04 0.00	1364190.	-85810.	-3.82E-04	22636.	2.62E+10	-3475.
23.6250 2.56E+07	-3.50E-04 0.00	1014999.	-87895.	-2.10E-04	16842.	2.62E+10	2372.
23.9400 1.41E+07	-8.68E-04 0.00	699700.	-77303.	-8.65E-05	11610.	2.62E+10	3233.
24.2550 1.36E+07	-0.00100 0.00	430589.	-64354.	-4.98E-06	7145.	2.62E+10	3619.
24.5700 1.58E+07	-9.05E-04 0.00	213185.	-50355.	4.14E-05	3537.	2.62E+10	3788.
24.8850 2.07E+07	-6.91E-04 0.00	49907.	-36037.	6.04E-05	828.1005	2.62E+10	3787.
2.07E+07 25.2000 3.05E+07	-4.49E-04 0.00	-59259.	-22031.	5.97E-05	983.2756	2.62E+10	3624.
25.5150 5.20E+07	-2.39E-04 0.00	-116644.	-8965.	4.70E-05	1935.	2.62E+10	3289.
25.8300 1.12E+08	-9.30E-05	-127032.	2453.	2.95E-05	2108.	2.62E+10	2752.
26.1450	0.00 -1.62E-05	-98099.	11204.	1.32E-05	1628.	2.62E+10	1878.
4.38E+08 26.4600	0.00 7.12E-06	-42333.	11907.	3.12E-06	702.4293	2.62E+10	-1506.
7.99E+08 26.7750	0.00 7.37E-06	-8080.	5981.	-5.17E-07	134.0635	2.62E+10	-1630.
8.36E+08 27.0900	0.00 3.21E-06	2885.	1498.	-8.91E-07	47.8765	2.62E+10	-742.156
27.4050	0.00 6.31E-07	3246.	-191.670	-4.49E-07	53.8614	2.62E+10	-151.900
9.10E+08 27.7200	0.00 -1.82E-07	1436.	-392.431	-1.12E-07	23.8329	2.62E+10	45.6770
9.47E+08 28.0350	0.00 -2.13E-07	279.2680	-201.293	1.20E-08	4.6339	2.62E+10	55.4544

9.83E+08	0.00						
28.3500	-9.17E-08	-85.442	-49.705	2.60E-08	1.4177	2.62E+10	24.7510
1.02E+09	0.00						
28.6650	-1.68E-08	-96.499	5.9633	1.29E-08	1.6012	2.62E+10	4.7029
1.06E+09	0.00						
28.9800	5.48E-09	-40.359	11.8567	2.99E-09	0.6697	2.62E+10	-1.585
1.09E+09	0.00						
29.2950	5.77E-09	-6.863	5.6967	-4.16E-10	0.1139	2.62E+10	-1.674
1.10E+09	0.00						
29.6100	2.33E-09	2.7082	1.2543	-7.16E-10	0.04494	2.62E+10	-0.676
1.10E+09	0.00						
29.9250	3.64E-10	2.6195	-0.223	-3.31E-10	0.04347	2.62E+10	-0.106
1.10E+09	0.00						
30.2400	-1.75E-10	1.0209	-0.327	-6.90E-11	0.01694	2.62E+10	0.05066
1.10E+09	0.00						
30.5550	-1.57E-10	0.1462	-0.145	1.51E-11	0.00243	2.62E+10	0.04564
1.10E+09	0.00						
30.8700	-6.04E-11	-0.07648	-0.02579	2.01E-11	0.00127	2.62E+10	0.01752
1.10E+09	0.00						
31.1850	-5.11E-12	-0.04883	0.01012	1.11E-11	8.10E-04	2.62E+10	0.00148
1.10E+09	0.00						
31.5000	2.36E-11	0.00	0.00	7.59E-12	0.00	2.62E+10	-0.00683
5.48E+08	0.00						

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	1.90475322	inches
Computed slope at pile head	=	-0.0086983	radians
Maximum bending moment	=	2212285.	inch-lbs
Maximum shear force	=	-87895.	lbs
Depth of maximum bending moment	=	21.73500000	feet below pile head
Depth of maximum shear force	=	23.62500000	feet below pile head
Number of iterations	=	26	
Number of zero deflection points	=	6	

	Pile-head Def]	Lec	tion vs. Pil	e Length for Loa	ad Cas
		_			
Boundary Cor	ndition Type 1,	, S	hear and Mom	ent	
Shear =	=	0.	lbs		
Moment =			in-lbs		
Axial Load =	=	0.	lbs		
			Maximum	Marcimum	
Pile	Pile Head		Maximum Momont	Maximum	
Length	Deflection inches		Moment	Shear	
feet		_	ln-lbs	lbs	
31.50000	1.90475322		2212285.	-87895.	
29.92500	1.87523109		2211363.	-86981.	
28.35000	1.87296769		2204620.	-87057.	
26.77500	1.91610357		2234190.	-89234.	
25.20000	1.94819108		2229407.	-92703.	
23.62500	18.19616419		1829673.	-124727.	

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-lbs
Axial thrust load on pile head	=	0.0 lbs

Depth Deflect. Soil Spr. Distrib.	Bending	Shear	Slope	Total	Bending	Soil Res.
	Moment	Force	S	Stress	Stiffness	р
feet inches lb/inch lb/inch					lb-in^2	lb/inch
0.00 3.0622 0.00 1.4505	-9.78E-06	0.00	-0.01379	7.95E-08	2.62E+10	0.00
0.3150 3.0100 0.00 5.8020	10.3627	13.7073	-0.01379	0.08425	2.62E+10	0.00
0.6300 2.9579 0.00 11.6040	103.6270	46.6047	-0.01379	0.8425	2.62E+10	0.00
0.9450 2.9058 0.00 17.4061	362.6946	101.4339	-0.01379	2.9489	2.62E+10	0.00
1.2600 2.8537 0.00 23.2081	870.4669	178.1946	-0.01379	7.0774	2.62E+10	0.00
1.5750 2.8016 0.00 29.0101	1710.	276.8870	-0.01379	13.9020	2.62E+10	0.00
1.8900 2.7495 0.00 34.8121	2964.	397.5110	-0.01379	24.0967	2.62E+10	0.00
2.2050 2.6973 0.00 40.6142	4715.	540.0667	-0.01379	38.3357	2.62E+10	0.00
2.5200 2.6452 0.00 46.4162	7047.	704.5540	-0.01379	57.2929	2.62E+10	0.00
2.8350 2.5931 0.00 52.2182	10041.	890.9730	-0.01378	81.6424	2.62E+10	0.00
3.1500 2.5410 0.00 58.0202	13782.	1099.	-0.01378	112.0582	2.62E+10	0.00
3.4650 2.4889 0.00 63.8222	18352.	1330.	-0.01378	149.2143	2.62E+10	0.00
3.7800 2.4368	23834.	1582.	-0.01378	193.7848	2.62E+10	0.00
0.00 69.6243 4.0950 2.3848 0.00 75.4263	30311.	1856.	-0.01377	246.4437	2.62E+10	0.00

4.4100		37865.	2152.	-0.01377	307.8651	2.62E+10	0.00
0.00 81. 4.7250	2.2807	46580.	2470.	-0.01376	378.7229	2.62E+10	0.00
0.00 87. 5.0400 0.00 92.	2.2287	56539.	2810.	-0.01375	459.6913	2.62E+10	0.00
5.3550 0.00 98.	2.1767	67824.	3172.	-0.01375	551.4442	2.62E+10	0.00
5.6700 0.00 104.	2.1248	80518.	3556.	-0.01374	654.6556	2.62E+10	0.00
5.9850 0.00 110.	2.0729	94705.	3961.	-0.01372	769.9997	2.62E+10	0.00
6.3000 0.00 116.	2.0210	110466.	4389.	-0.01371	898.1505	2.62E+10	0.00
6.6150 0.00 121.	1.9692	127886.	4839.	-0.01369	1040.	2.62E+10	0.00
6.9300 0.00 127.	1.9175	147047.	5310.	-0.01367	1196.	2.62E+10	0.00
7.2450 0.00 133.	1.8659	168031.	5804.	-0.01365	1366.	2.62E+10	0.00
7.5600 0.00 139.	1.8143	190922.	6319.	-0.01362	1552.	2.62E+10	0.00
7.8750 0.00 145.	1.7629	215803.	6856.	-0.01359	1755.	2.62E+10	0.00
8.1900 0.00 150.	1.7116	242757.	7416.	-0.01356	1974.	2.62E+10	0.00
8.5050 0.00 156.	1.6604	271865.	7997.	-0.01352	2210.	2.62E+10	0.00
8.8200 0.00 162.	1.6093	303213.	8600.	-0.01348	2465.	2.62E+10	0.00
9.1350 0.00 168.	1.5585	336881.	9225.	-0.01344	2739.	2.62E+10	0.00
9.4500 0.00 174.	1.5078	372954.	9872.	-0.01338	3032.	2.62E+10	0.00
9.7650 0.00 179.	1.4573	411513.	10541.	-0.01333	3346.	2.62E+10	0.00
10.0800	1.4070	452643.	11232.	-0.01327	3680.	2.62E+10	0.00

0 00 105 6647						
0.00 185.6647 10.3950 1.3570 0.00 191.4667	496425.	11945.	-0.01320	4036.	2.62E+10	0.00
10.7100 1.3072 0.00 197.2687	542943.	12679.	-0.01312	4414.	2.62E+10	0.00
11.0250 1.2578 0.00 203.0708	592280.	13436.	-0.01304	4816.	2.62E+10	0.00
11.3400 1.2087 0.00 208.8728	644519.	14214.	-0.01295	5240.	2.62E+10	0.00
11.6550 1.1599 0.00 214.6748	699741.	15015.	-0.01285	5689.	2.62E+10	0.00
11.9700 1.1115 0.00 220.4768	758032.	15837.	-0.01275	6163.	2.62E+10	0.00
12.2850 1.0635 0.00 226.2789	819472.	16682.	-0.01263	6663.	2.62E+10	0.00
12.6000 1.0160 0.00 232.0809	884146.	17548.	-0.01251	7189.	2.62E+10	0.00
12.9150 0.9689 0.00 237.8829	952135.	18436.	-0.01238	7741.	2.62E+10	0.00
13.2300 0.9224 0.00 243.6849	1023524.	19346.	-0.01224	8322.	2.62E+10	0.00
13.5450 0.8764 0.00 249.4869	1098395.	20279.	-0.01208	8931.	2.62E+10	0.00
13.8600 0.8310 0.00 255.2890	1176830.	21233.	-0.01192	9568.	2.62E+10	0.00
14.1750 0.7863 0.00 261.0910	1258913.	22209.	-0.01174	10236.	2.62E+10	0.00
14.49000.74220.00266.8930		23206.	-0.01156	10933.	2.62E+10	0.00
14.80500.69890.00272.6950	1434353.	24226.	-0.01136	11662.	2.62E+10	0.00
15.1200 0.6564 0.00 278.4971					2.62E+10	0.00
15.43500.61470.00284.2991			-0.01092		2.62E+10	
15.75000.57390.00290.1011	1726944.	27417.	-0.01067	14041.	2.62E+10	0.00

	0.5340 5.9031	1832654.	28525.	-0.01042	14900.	2.62E+10	0.00
16.3800	0.4951	1942592.	29654.	-0.01015	15794.	2.62E+10	0.00
0.00 301 16.6950 0.00 307	7051 0.4573	2056841.	30806.	-0.00986	16723.	2.62E+10	0.00
17.0100		2175483.	31103.	-0.00955	36098.	2.62E+10	-295.967
17.3250	0.3851	2291983.	30254.	-0.00923	38031.	2.62E+10	-299.380
	0.00 0.3508	2404205.	29117.	-0.00889	39893.	2.62E+10	-302.127
3256. 17.9550	0.00 0.3178	2512110.	27971.	-0.00854	41683.	2.62E+10	-304.174
3617. 18.2700	0.00 0.2863	2615669.	26819.	-0.00817	43402.	2.62E+10	-305.483
4034. 18.5850	0.00 0.2561	2714863.	25663.	-0.00778	45048.	2.62E+10	-306.010
4517. 18.9000	0.00 0.2274	2809684.	24507.	-0.00738	46621.	2.62E+10	-305.710
5081. 19.2150	0.00 0.2003	2900138.	23354.	-0.00697	48122.	2.62E+10	-304.528
5748. 19.5300	0.00 0.1747	2986240.	22207.	-0.00655	49550.	2.62E+10	-302.405
6543. 19.8450	0.00 0.1508	3068021.	21070.	-0.00611	50907.	2.62E+10	-299.274
7503.	0.00						
20.1600 8679.	0.1285 0.00	3145527.	19946.	-0.00566	52193.	2.62E+10	-295.054
10143.	0.1079 0.00	3218816.	18841.	-0.00521	53410.	2.62E+10	-289.655
20.7900 11998.	0.08915 0.00	3287967.	17759.	-0.00474	54557.	2.62E+10	-282.972
21.1050 14403.	0.07214 0.00	3353074.	16705.	-0.00426	55637.	2.62E+10	-274.881
	0.05696 0.00	3414254.	15684.	-0.00377	56652.	2.62E+10	-265.238
	0.04364	3471644.	5098.	-0.00327	57605.	2.62E+10	-5336.

462420	0.00						
462139.	0.00	2452701	15025	0 00077	57202	2 625,10	F 7 2 0
22.0500 673372.	0.03222 0.00	3452791.	-15835.	-0.00277	57292.	2.62E+10	-5739.
22.3650	0.02267	3351931.	-38003.	-0.00228	55618.	2.62E+10	-5990.
998513.	0.02207	2221221.	-20002.	-0.00228	55010.	2.020+10	-3990.
22.6800	0.01496	3165489.	-60784.	-0.00181	52525.	2.62E+10	-6064.
1532481.	0.00	5105485.	-00784.	-0.00101	52525.	2.020110	-0004.
22.9950	0.00896	2892404.	-83446.	-0.00138	47993.	2.62E+10	-5927.
2498904.	0.00	2092404.	-05440.	-0.00138	47995.	2.021+10	- 3927.
23.3100	0.00455	2534639.	-105052.	-9.85E-04	42057.	2.62E+10	-5506.
4574639.	0.00	2554055.	-105052.	- J .8 J L-04	42057.	2.021+10	-5500.
23.6250	0.00151	2098208.	-121934.	-6.51E-04	34815.	2.62E+10	-3427.
8550096.	0.00	2090200.	121994.	0.512 04	J+01J.	2.021110	5427.
23.9400	-3.76E-04	1612814.	-123459.	-3.84E-04	26761.	2.62E+10	2620.
2.64E+07	0.00	1012014.	125455.	5.042 04	20701.	2.021.10	2020.
24.2550	-0.00139	1164861.	-111090.	-1.84E-04	19328.	2.62E+10	3924.
1.07E+07	0.00						
24.5700	-0.00176	772974.	-95214.	-4.39E-05	12826.	2.62E+10	4476.
9591079.	0.00						
24.8850	-0.00172	445043.	-77762.	4.39E-05	7385.	2.62E+10	4758.
1.05E+07	0.00						
25.2000	-0.00143	185094.	-59613.	8.93E-05	3071.	2.62E+10	4845.
1.28E+07	0.00						
25.5150	-0.00104	-5630.	-41466.	1.02E-04	93.4147	2.62E+10	4756.
1.72E+07	0.00						
25.8300	-6.60E-04	-128391.	-23987.	9.26E-05	2130.	2.62E+10	4492.
2.57E+07	0.00						
26.1450	-3.45E-04	-186970.	-7870.	6.98E-05	3102.	2.62E+10	4036.
4.43E+07	0.00						
26.4600	-1.32E-04	-187886.	6079.	4.28E-05	3118.	2.62E+10	3345.
9.60E+07	0.00						
26.7750	-2.11E-05	-141009.	16609.	1.91E-05	2340.	2.62E+10	2226.
3.99E+08	0.00						
27.0900	1.27E-05	-62325.	16927.	4.44E-06	1034.	2.62E+10	-2058.
6.12E+08	0.00						
27.4050	1.25E-05	-13040.	8977.	-9.94E-07	216.3782	2.62E+10	-2149.
6.50E+08	0.00						

27.7200	5.18E-06	5545.	2463.	-1.53E-06	92.0022	2.62E+10	-1298.
9.47E+08	0.00						
28.0350	8.94E-07	5584.	-429.323	-7.32E-07	92.6467	2.62E+10	-232.592
9.83E+08	0.00						
28.3500	-3.52E-07	2299.	-689.232	-1.64E-07	38.1469	2.62E+10	95.0738
1.02E+09	0.00						
28.6650	-3.46E-07	372.9170	-326.892	2.87E-08	6.1878	2.62E+10	96.6404
1.06E+09	0.00						
28.9800	-1.36E-07	-172.315	-70.039	4.31E-08	2.8592	2.62E+10	39.2603
1.09E+09	0.00						
29.2950	-1.97E-08	-156.579	14.9407	1.94E-08	2.5981	2.62E+10	5.7025
1.10E+09	0.00						
29.6100	1.10E-08	-59.363	19.6881	3.83E-09	0.9850	2.62E+10	-3.191
1.10E+09	0.00						
29.9250	9.31E-09	-7.737	8.5525	-1.00E-09	0.1284	2.62E+10	-2.701
1.10E+09	0.00						
30.2400	3.41E-09	5.2937	1.5784	-1.18E-09	0.08784	2.62E+10	-0.989
1.10E+09	0.00						
30.5550	3.90E-10	4.1961	-0.504	-4.96E-10	0.06962	2.62E+10	-0.113
1.10E+09	0.00						
30.8700	-3.42E-10	1.4820	-0.530	-8.70E-11	0.02459	2.62E+10	0.09932
1.10E+09	0.00						
31.1850	-2.67E-10	0.1871	-0.196	3.34E-11	0.00310	2.62E+10	0.07754
1.10E+09	0.00						
31.5000	-9.03E-11	0.00	0.00	4.68E-11	0.00	2.62E+10	0.02618
5.48E+08	0.00						

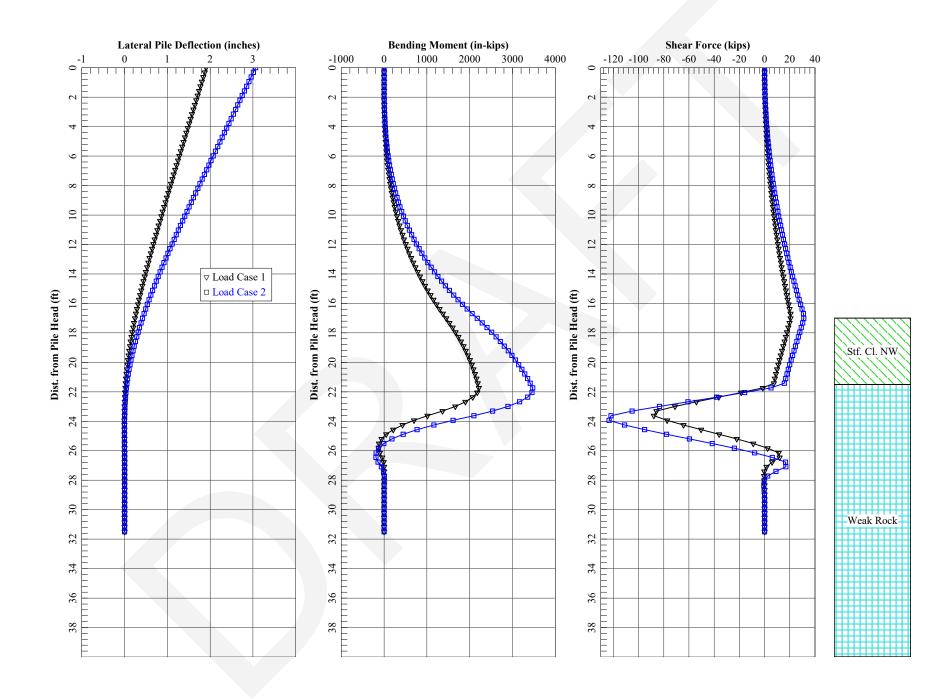
* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 2:

Pile-head deflection	=	3.06215130 inches
Computed slope at pile head	=	-0.0137876 radians
Maximum bending moment	=	3471644. inch-lbs
Maximum shear force	=	-123459. lbs
Depth of maximum bending moment	=	21.73500000 feet below pile head

Depth of maximum shear force	=	23.94000000 feet below pile head
Number of iterations	=	29
Number of zero deflection points	=	6
Pile deflection at ground	=	0.42174061 inches

Summary of Pile-head Responses for Conventional Analyses


Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load Moment		Load		Axial	Pile-head	Pile-head	Max Shear Max	
Case Type in Pile	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	
No. 1 in-lbs	Load 1	2	Load 2	lbs	inches	radians	lbs	
1 V, lb 2212285.	0.00	M, in-lb	0.00	0.00	1.9048	-0.00870	-87895.	
2 V, lb 3471644.	0.00	M, in-lb	0.00	0.00	3.0622	-0.01379	-123459.	

Maximum pile-head deflection = 3.0621513008 inches Maximum pile-head rotation = -0.0137875597 radians = -0.789969 deg.

The analysis ended normally.

UCS and RQD Data

Boring	RQD	Run Length	ı (ft)
B-001	87	5	435
	73	5	365
B-002	60	5	300
	93	5	465
B-003	68	5	340
	80	5	400
			0
Total		30	2305

W. Average 77

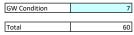
Boring	Depth	UCS (ksf)
B-001	12.4'	575
B-002	10'	619
B-002	11.3'	678
B-003	35.5'	576

Average 612

Rock Mass Rating (RMR) per LRFD Table 10.4.6.4-1 Per Section 10 LRFD 5th Edition

Relative Rating

 Strength of Rock


 612
 4

 RQD

 77
 17

Maximum Spacing of Joints (in.)
13
20

Condition of Joints 12

Adj for Joint Orientation 8 RMR 52

Class 3 Rock Type Fair Rock

Choose appropriate m and s paramters Per LRFD Table 10.4.6.4-4 (See Ref.)

0.03	m
0.000003	S

Elastic Modulus of the Rock (LRFD 5th Edition Equation 10.4.6.4-1)

4.00 GPA 5.8E+05 psi

LPile for Windows, Version 2022-12.007

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

bkhalder Terracon Consultants

Serial Number of Security Device: 138584418

This copy of LPile is licensed for exclusive use by:

Terracon, LPILE Global, Global License

Use of this software by employees of Terracon other than those of the office site in LPILE Global, Global License is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \Projects\2022\N4225393\Working Files\Calculations-Analyses\LPILE\

Name of input data file:

Lpile Pile Wall N4225393- along the slope.lp12d
Name of output report file: Lpile Pile Wall N4225393- along the slope.lp12o
Name of plot output file: Lpile Pile Wall N4225393- along the slope.lp12p
Name of runtime message file: Lpile Pile Wall N4225393- along the slope.lp12r
Date and Time of Analysis
Date: February 14, 2023 Time: 7:25:12
Problem Title
Village of Barnesville Pedestrian Trail
Job Number: N4225393
Client: Pennoni
Engineer: BKH

Description:

Program Options and Settings						
Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations - US Customary System Units (pounds, feet, inches)	5:					
<pre>Analysis Control Options: Analysis Control Options: Maximum number of iterations allowed Deflection tolerance for convergence Maximum allowable deflection Number of pile increments Loading Type and Number of Cycles of Loading: Static loading specified</pre>		500 1.0000E-05 in 100.0000 in 100				
 Use of p-y modification factors for p-y curves not selected Analysis uses layering correction (Method of Georgiadis) Analysis includes loading by multiple distributed lateral loads acting on pile Loading by lateral soil movements acting on pile not selected Input of shear resistance at the pile tip not selected Input of moment resistance at the pile tip not selected Computation of pile-head foundation stiffness matrix not selected Push-over analysis of pile not selected Buckling analysis of pile not selected 						

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined	=	1
Total length of pile	=	30.000 ft
Depth of ground surface below top of pile	=	15.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	24.0000
2	30.000	24.0000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Width of top of section Width of bottom of section Top Area Bottom Area Moment of Inertia at Top Moment of Inertia at Bottom Elastic Modulus

- = Circular Pile
- = 30.000000 ft
- = 24.000000 in
- = 24.000000 in
- = 26.100000 sq. in
- = 26.100000 sq. in
- = 904.000000 in^4
- = 904.000000 in^4
- = 29000000. psi

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is stiff clay without free water

Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Undrained cohesion at top of layer Undrained cohesion at bottom of layer Epsilon-50 at top of layer Epsilon-50 at bottom of layer = 15.000000 ft
= 19.500000 ft
= 125.000000 pcf
= 125.000000 pcf
= 1000.000000 psf
= 1000.000000 psf
= 0.007000
= 0.007000

Layer 2 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = Effective unit weight at top of layer = Effective unit weight at bottom of layer = Uniaxial compressive strength at top of layer = Uniaxial compressive strength at bottom of layer = Initial modulus of rock at top of layer Initial modulus of rock at bottom of layer RQD of rock at top of layer RQD of rock at bottom of layer k rm of rock at top of layer k rm of rock at bottom of layer =

=	19.500000	ft
=	40.000000	ft
=	145.000000	pcf
=	145.000000	pcf
=	500.000000	psi
=	500.000000	psi
=	580000.	psi
-	580000.	psi
-	78.000000	%
-	78.000000	%
-	0.0005000	
=	0.0000500	

(Depth of the lowest soil layer extends 10.000 ft below the pile tip)

	Summary	y of Input S	oil Propertie	S		
Layer E50	Soil Type Rock Mass	Layer	Effective	Cohesion	Uniaxial	
Num. or	Name Modulus	Depth	Unit Wt.		qu	RQD %
krm	(p-y Curve Type) psi	ft	pcf	psf	psi	
1 0.00700	Stiff Clay	15.0000	125.0000	1000.0000		
0.00700	w/o Free Water 	19.5000	125.0000	1000.0000		

2 Weak 19.5000 145.0000 500.0000 78.0000 5.00E-04 580000. Rock 145.0000 500.0000 78.0000 40.0000 5.00E-05 580000. Static Loading Type Static loading criteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Dist. Load ft lb/in No. _ _ _ _ _ 0.000 0.000 1 2 15.000 282.000

Distributed lateral load intensity for Load Case 2 defined using 2 points

Point	Depth X	Dist. Load
No.	ft	lb/in
1	0.000	0.000
2	15.000	380.700

Pile-head Loading and Pile-head Fixity Conditions

```
Number of loads specified = 2
```

Load Run	Load Analys	is	Condition		Condition	Axial Thrust	Compute Top y
No.	Type		1		2	Force, lbs	vs. Pile Length
1	 1 Yes	 V =	0.0000 lbs	M =	0.0000 in-1bs	0.000000	Yes
2	1 Yes	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	No

V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	15.0000	0.00	N.A.	No	0.00	39049.
2	19.5000	4.5000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

> Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-lbs
Axial thrust load on pile head	=	0.0 lbs

Depth Distrib.	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.
Lat. Load	У	Moment	Force	S	Stress	Stiffness	р	Es*H
feet lb/inch	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch
0.00	1.8908	2.29E-05	6.24E-08	-0.00939	3.04E-07	2.62E+10	0.00	0.00
1.4100 0.3000	1.8569	9.1368	12.6900	-0.00939	0.1213	2.62E+10	0.00	0.00
5.6400	4 9994							
0.6000 11.2800	1.8231	91.3680	43.1460	-0.00939	1.2128	2.62E+10	0.00	0.00
0.9000	1.7893	319.7880	93.9060	-0.00939	4.2450	2.62E+10	0.00	0.00
16.9200								
1.2000 22.5600	1.7555	767.4912	164.9700	-0.00939	10.1879	2.62E+10	0.00	0.00
1.5000	1.7217	1508.	256.3380	-0.00939	20.0120	2.62E+10	0.00	0.00
28.2000	1 6970	2612	269 0100	0 00000	24 6975	2 625,10	0.00	0.00
1.8000 33.8400	1.6879	2613.	368.0100	-0.00939	34.6875	2.62E+10	0.00	0.00
2.1000	1.6540	4157.	499.9860	-0.00939	55.1847	2.62E+10	0.00	0.00
39.4800					~~ .=~~			
2.4000 45.1200	1.6202	6213.	652.2660	-0.00939	82.4738	2.62E+10	0.00	0.00
2.7000	1.5864	8854.	824.8500	-0.00939	117.5251	2.62E+10	0.00	0.00

50.7600								
3.0000	1.5526	12152.	1018.	-0.00939	161.3090	2.62E+10	0.00	0.00
56.4000	1.5520	12192.	1010.	0.00000	101.5050	2.022110	0.00	0.00
3.3000	1.5188	16181.	1231.	-0.00939	214.7957	2.62E+10	0.00	0.00
62.0400								
3.6000	1.4850	21015.	1464.	-0.00938	278.9554	2.62E+10	0.00	0.00
67.6800								
3.9000	1.4513	26725.	1718.	-0.00938	354.7585	2.62E+10	0.00	0.00
73.3200								
4.2000	1.4175	33386.	1992.	-0.00938	443.1752	2.62E+10	0.00	0.00
78.9600								
4.5000	1.3837	41070.	2287.	-0.00937	545.1759	2.62E+10	0.00	0.00
84.6000								
4.8000	1.3500	49850.	2601.	-0.00937	661.7307	2.62E+10	0.00	0.00
90.2400								
5.1000	1.3163	59800.	2936.	-0.00936	793.8100	2.62E+10	0.00	0.00
95.8800								
5.4000	1.2826	70993.	3292.	-0.00935	942.3841	2.62E+10	0.00	0.00
101.5200								
5.7000	1.2490	83501.	3667.	-0.00934	1108.	2.62E+10	0.00	0.00
107.1600	4 0454	07200	40.52	0,00000	1202	2 625 10	0.00	0.00
6.0000	1.2154	97398.	4063.	-0.00933	1293.	2.62E+10	0.00	0.00
112.8000	1 1010	112757	1100	0.00001	1407	2 625.10	0.00	0.00
6.3000	1.1818	112757.	4480.	-0.00931	1497.	2.62E+10	0.00	0.00
118.4400 6.6000	1.1483	129651.	4916.	-0.00930	1721.	2.62E+10	0.00	0.00
124.0800	1.1403	129031.	4910.	-0.00930	1/21.	2.020410	0.00	0.00
6.9000	1.1149	148153.	5373.	-0.00928	1967.	2.62E+10	0.00	0.00
129.7200	1.1145	140199.	5575.	0.00920	1907.	2.021110	0.00	0.00
7.2000	1.0815	168336.	5850.	-0.00925	2235.	2.62E+10	0.00	0.00
135.3600								
7.5000	1.0483	190274.	6348.	-0.00923	2526.	2.62E+10	0.00	0.00
141.0000								
7.8000	1.0151	214039.	6865.	-0.00920	2841.	2.62E+10	0.00	0.00
146.6400								

8.1000	0.9820	239704.	7403.	-0.00917	3182.	2.62E+10	0.00	0.00
152.2800 8.4000	0.9491	267343.	7962.	-0.00914	3549.	2.62E+10	0.00	0.00
157.9200 8.7000	0.9162	297028.	8540.	-0.00910	3943.	2.62E+10	0.00	0.00
163.5600 9.0000	0.8836	328833.	9139.	-0.00905	4365.	2.62E+10	0.00	0.00
169.2000 9.3000	0.8510	362831.	9759.	-0.00901	4816.	2.62E+10	0.00	0.00
174.8400 9.6000	0.8187	399095.	10398.	-0.00895	5298.	2.62E+10	0.00	0.00
180.4800 9.9000	0.7866	437698.	11058.	-0.00890	5810.	2.62E+10	0.00	0.00
186.1200								
10.2000 191.7600	0.7546	478713.	11738.	-0.00883	6355.	2.62E+10	0.00	0.00
10.5000 197.4000	0.7230	522214.	12439.	-0.00877	6932.	2.62E+10	0.00	0.00
10.8000 203.0400	0.6915	568272.	13160.	-0.00869	7543.	2.62E+10	0.00	0.00
11.1000 208.6800	0.6604	616962.	13901.	-0.00861	8190.	2.62E+10	0.00	0.00
11.4000 214.3200	0.6295	668357.	14662.	-0.00852	8872.	2.62E+10	0.00	0.00
11.7000 219.9600	0.5990	722529.	15444.	-0.00843	9591.	2.62E+10	0.00	0.00
12.0000	0.5689	779552.	16246.	-0.00832	10348.	2.62E+10	0.00	0.00
225.6000 12.3000	0.5391	839498.	17068.	-0.00821	11144.	2.62E+10	0.00	0.00
231.2400 12.6000	0.5098	902442.	17911.	-0.00809	11979.	2.62E+10	0.00	0.00
236.8800 12.9000	0.4809	968455.	18774.	-0.00796	12856.	2.62E+10	0.00	0.00
242.5200 13.2000	0.4524	1037612.	19657.	-0.00783	13774.	2.62E+10	0.00	0.00

248.1600								
13.5000	0.4245	1109984.	20560.	-0.00768	14734.	2.62E+10	0.00	0.00
253.8000								
13.8000	0.3971	1185646.	21484.	-0.00752	15739.	2.62E+10	0.00	0.00
259.4400								
14.1000	0.3704	1264670.	22428.	-0.00735	16788.	2.62E+10	0.00	0.00
265.0800								
14.4000	0.3442	1347130.	23393.	-0.00717	17882.	2.62E+10	0.00	0.00
270.7200								
14.7000	0.3187	1433098.	24377.	-0.00698	19023.	2.62E+10	0.00	0.00
276.3600								
15.0000	0.2939	1522648.	24716.	-0.00678	20212.	2.62E+10	-228.662	2801.
140.2950								
15.3000	0.2699	1611052.	24139.	-0.00656	21386.	2.62E+10	-232.232	3098.
0.00								
15.6000	0.2467	1696447.	23297.	-0.00634	22519.	2.62E+10	-235.272	3434.
0.00	0 0040	4770700	22446	0.00510	22642	0.005.40	227 755	2016
15.9000	0.2243	1778793.	22446.	-0.00610	23612.	2.62E+10	-237.755	3816.
0.00	0 2020	1050057	21507	0 00505	24664	2 625,10	220 651	4255
16.2000 0.00	0.2028	1858057.	21587.	-0.00585	24664.	2.62E+10	-239.651	4255.
16.5000	0.1822	1934216.	20721.	-0.00559	25675.	2.62E+10	-240.928	4761.
0.00	0.1022	1934210.	20721.	-0.00.09	25075.	2.021+10	-240,920	4701.
16.8000	0.1625	2007252.	19853.	-0.00532	26645.	2.62E+10	-241.548	5350.
0.00	0.1025	2007252.	19099.	0.00552	20045.	2.022.10	241.940	5550.
17.1000	0.1439	2077157.	18984.	-0.00504	27573.	2.62E+10	-241.473	6042.
0.00								
17.4000	0.1263	2143933.	18116.	-0.00475	28459.	2.62E+10	-240.657	6861.
0.00								
17.7000	0.1097	2207591.	17252.	-0.00445	29304.	2.62E+10	-239.048	7844.
0.00								
18.0000	0.09424	2268150.	16396.	-0.00414	30108.	2.62E+10	-236.588	9038.
0.00								
18.3000	0.07989	2325643.	15550.	-0.00383	30871.	2.62E+10	-233.210	10509.
0.00								

18.6000 0.00	0.06669	2380113.	14719.	-0.00350	31594.	2.62E+10	-228.835	12352.
18.9000 0.00	0.05467	2431618.	13905.	-0.00317	32278.	2.62E+10	-223.374	14709.
19.2000 0.00	0.04385	2480228.	13113.	-0.00284	32923.	2.62E+10	-216.723	17792.
19.5000 0.00	0.03426	2526029.	9260.	-0.00249	33531.	2.62E+10	-1924.	202165.
19.8000 0.00	0.02591	2546897.	-1833.	-0.00214	33808.	2.62E+10	-4239.	588825.
20.1000 0.00	0.01883	2512833.	-17757.	-0.00180	33356.	2.62E+10	-4608.	881017.
20.4000 0.00	0.01299	2419048.	-34757.	-0.00146	32111.	2.62E+10	-4837.	1340850.
20.7000 0.00	0.00834	2262579.	-52292.	-0.00114	30034.	2.62E+10	-4905.	2117346.
21.0000 0.00	0.00481	2042544.	-69723.	-8.40E-04	27113.	2.62E+10	-4779.	3576533.
21.3000 0.00	0.00229	1760571.	-86234.	-5.79E-04	23370.	2.62E+10	-4393.	6901303.
21.6000 0.00	6.43E-04	1421660.	-100459.	-3.60E-04	18872.	2.62E+10	-3510.	1.96E+07
21.9000 0.00	-3.02E-04	1037265.	-101093.	-1.91E-04	13769.	2.62E+10	3157.	3.76E+07
22.2000 0.00	-7.35E-04	693791.	-87721.	-7.26E-05	9210.	2.62E+10	4272.	2.09E+07
22.5000 0.00	-8.25E-04	405677.	-71509.	2.88E-06	5385.	2.62E+10	4735.	2.07E+07
22.8000 0.00	-7.15E-04	178924.	-54175.	4.30E-05	2375.	2.62E+10	4896.	2.47E+07
23.1000 0.00	-5.15E-04	15617.	-36693.	5.64E-05	207.3019	2.62E+10	4817.	3.36E+07
23.4000 0.00	-3.09E-04	-85267.	-19910.	5.16E-05	1132.	2.62E+10	4507.	5.26E+07
23.7000	-1.44E-04	-127734.	-4685.	3.70E-05	1696.	2.62E+10	3951.	9.87E+07

0.00								
24.0000 0.00	-4.25E-05	-119000.	7969.	2.00E-05	1580.	2.62E+10	3079.	2.61E+08
24.3000 0.00	1.49E-07	-70359.	13446.	7.02E-06	933.9636	2.62E+10	-36.279	8.77E+08
24.6000 0.00	8.04E-06	-22187.	9686.	6.69E-07	294.5165	2.62E+10	-2053.	9.19E+08
24.9000 0.00	4.97E-06	-616.265	3606.	-8.96E-07	8.1805	2.62E+10	-1326.	9.60E+08
25.2000 0.00	1.59E-06	3774.	422.8576	-6.79E-07	50.0981	2.62E+10	-442.598	1.00E+09
25.5000 0.00	7.66E-08	2428.	-413.822	-2.54E-07	32.2342	2.62E+10	-22.224	1.04E+09
25.8000 0.00	-2.36E-07	794.5414	-330.591	-3.23E-08	10.5470	2.62E+10	68.4629	1.04E+09
26.1000 0.00	-1.56E-07	48.0517	-125.923	2.55E-08	0.6379	2.62E+10	45.2418	1.04E+09
26.4000 0.00	-5.22E-08	-112.105	-17.251	2.11E-08	1.4881	2.62E+10	15.1319	1.04E+09
26.7000 0.00	-3.77E-09	-76.152	11.9553	8.22E-09	1.0109	2.62E+10	1.0936	1.04E+09
27.0000 0.00	6.99E-09	-26.027	10.2744	1.20E-09	0.3455	2.62E+10	-2.027	1.04E+09
27.3000 0.00	4.89E-09	-2.176	4.0744	-7.34E-10	0.02889	2.62E+10	-1.417	1.04E+09
27.6000 0.00	1.71E-09	3.3089	0.6331	-6.56E-10	0.04392	2.62E+10	-0.495	1.04E+09
27.9000 0.00	1.61E-10	2.3823	-0.342	-2.66E-10	0.03162	2.62E+10	-0.04679	1.04E+09
28.2000	-2.06E-10	0.8494	-0.318	-4.36E-11	0.01128	2.62E+10	0.05963	1.04E+09
28.5000 0.00	-1.53E-10	0.08933	-0.131	2.08E-11	0.00119	2.62E+10	0.04428	1.04E+09
28.8000 0.00	-5.56E-11	-0.09687	-0.02271	2.03E-11	0.00129	2.62E+10	0.01612	1.04E+09

29.1000	-6.37E-12	-0.07415	0.00964	8.58E-12	9.84E-04	2.62E+10	0.00185	1.04E+09
0.00								
29.4000	6.18E-12	-0.02747	0.00974	1.60E-12	3.65E-04	2.62E+10	-0.00179	1.04E+09
0.00								
29.7000	5.16E-12	-0.00403	0.00382	0.00	5.35E-05	2.62E+10	-0.00150	1.04E+09
0.00								
30.0000	2.15E-12	0.00	0.00	0.00	0.00	2.62E+10	-6.22E-04	5.22E+08
0.00								

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	1.89075660	inches
Computed slope at pile head	=	-0.0093935	radians
Maximum bending moment	=	2546897.	inch-lbs
Maximum shear force	=	-101093.	lbs
Depth of maximum bending moment	=	19.8000000	feet below pile head
Depth of maximum shear force	=	21.90000000	feet below pile head
Number of iterations	=	26	
Number of zero deflection points	=	7	
Pile deflection at ground	=	0.29393457	inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear	=	0.	lbs
Moment	=	0.	in-lbs
Axial Load	=	0.	lbs

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
30.00000	1.89075660	2546897.	-101093.
28.50000	1.90405422	2566588.	-102520.
27.00000	1.91758991	2574976.	-103543.
25.50000	1.89670571	2556688.	-102982.
24.00000	1.91680295	2575010.	-102488.
22.50000	2.84148977	2473716.	-128134.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

Applied mom	e at pile he ment at pile st load on p	head		-	= = =	0.0 lbs 0.0 in-lbs 0.0 lbs		
Depth Distrib.	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.
Х	У	Moment	Force	S	Stress	Stiffness	р	Es*H
Lat. Load feet lb/inch	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch
0.00 1.9035	2.6920	-1.26E-05	-1.25E-07	-0.01323	1.67E-07	2.62E+10	0.00	0.00

0.3000	2.6443	12.3347	17.1315	-0.01323	0.1637	2.62E+10	0.00	0.00
7.6140 0.6000	2.5967	123.3468	58.2471	-0.01323	1.6373	2.62E+10	0.00	0.00
15.2280	2,3507	11313100	5012172	0101515	1.0575		0.00	0.00
0.9000	2.5491	431.7138	126.7731	-0.01323	5.7307	2.62E+10	0.00	0.00
22.8420								
1.2000	2.5015	1036.	222.7095	-0.01323	13.7537	2.62E+10	0.00	0.00
30.4560								
1.5000	2.4538	2035.	346.0563	-0.01323	27.0162	2.62E+10	0.00	0.00
38.0700	2 4062	2520	406 0125	0 01222	46.0001	2 625 10	0.00	0 00
1.8000	2.4062	3528.	496.8135	-0.01323	46.8281	2.62E+10	0.00	0.00
45.6840	2 2596	5612.	674 0011	-0.01323	74 4002	2 625,10	0 00	0.00
2.1000 53.2980	2.3586	5612.	674.9811	-0.01323	74.4993	2.62E+10	0.00	0.00
2.4000	2.3110	8388.	880.5591	-0.01323	111.3396	2.62E+10	0.00	0.00
60.9120	2.9110	0500.	000.5551	0.01525	111.5550	2.021110	0.00	0.00
2.7000	2.2634	11952.	1114.	-0.01323	158.6589	2.62E+10	0.00	0.00
68.5260								
3.0000	2.2158	16405.	1374.	-0.01322	217.7671	2.62E+10	0.00	0.00
76.1400								
3.3000	2.1682	21845.	1662.	-0.01322	289.9741	2.62E+10	0.00	0.00
83.7540								
3.6000	2.1206	28370.	1977.	-0.01322	376.5898	2.62E+10	0.00	0.00
91.3680								
3.9000	2.0730	36079.	2320.	-0.01321	478.9240	2.62E+10	0.00	0.00
98.9820	0.0055	45074	2622	0.04004	500 0066	0 605 40	0.00	
4.2000	2.0255	45071.	2690.	-0.01321	598.2866	2.62E+10	0.00	0.00
106.5960 4.5000	1.9779	55444.	7007	-0.01320	735.9874	2 625,10	0.00	0.00
4.3000	1.9779	55444.	3087.	-0.01320	/55.90/4	2.62E+10	0.00	0.00
4.8000	1.9304	67298.	3512.	-0.01319	893.3365	2.62E+10	0.00	0.00
121.8240	1.5504	07250.	5512.	0.01919	000.000	2.021110	0.00	0.00
5.1000	1.8829	80730.	3964.	-0.01318	1072.	2.62E+10	0.00	0.00
129.4380								
5.4000	1.8355	95840.	4444.	-0.01317	1272.	2.62E+10	0.00	0.00

137.0520								
5.7000	1.7881	112727.	4951.	-0.01316	1496.	2.62E+10	0.00	0.00
144.6660								
6.0000	1.7408	131488.	5486.	-0.01314	1745.	2.62E+10	0.00	0.00
152.2800								
6.3000	1.6935	152222.	6047.	-0.01312	2021.	2.62E+10	0.00	0.00
159.8940								
6.6000	1.6463	175029.	6637.	-0.01310	2323.	2.62E+10	0.00	0.00
167.5080								
6.9000	1.5992	200007.	7253.	-0.01307	2655.	2.62E+10	0.00	0.00
175.1220								
7.2000	1.5522	227254.	7898.	-0.01304	3017.	2.62E+10	0.00	0.00
182.7360	1 5050	256070	0560	0.01201	2410	2 625 10	0.00	0.00
7.5000	1.5053	256870.	8569.	-0.01301	3410.	2.62E+10	0.00	0.00
190.3500 7.8000	1.4586	288952.	9268.	-0.01297	3836.	2.62E+10	0.00	0.00
197.9640	1.4300	200952.	9200.	-0.01297	5650.	2.020+10	0.00	0.00
8.1000	1.4119	323600.	9995.	-0.01293	4296.	2.62E+10	0.00	0.00
205.5780	1.4117	525000.		0.01255	4250.	2.021.10	0.00	0.00
8.4000	1.3655	360913.	10748.	-0.01288	4791.	2.62E+10	0.00	0.00
213.1920								
8.7000	1.3192	400988.	11529.	-0.01283	5323.	2.62E+10	0.00	0.00
220.8060								
9.0000	1.2731	443925.	12338.	-0.01277	5893.	2.62E+10	0.00	0.00
228.4200								
9.3000	1.2272	489822.	13174.	-0.01271	6502.	2.62E+10	0.00	0.00
236.0340								
9.6000	1.1816	538779.	14038.	-0.01264	7152.	2.62E+10	0.00	0.00
243.6480								
9.9000	1.1363	590893.	14928.	-0.01256	7844.	2.62E+10	0.00	0.00
251.2620	1 0012	646262	15047	0 01247	0570	2 625.10	0.00	0 00
10.2000	1.0912	646263.	15847.	-0.01247	8579.	2.62E+10	0.00	0.00
258.8760 10.5000	1.0464	704989.	16792.	-0.01238	9358.	2 625-10	0.00	0.00
266.4900	1.0404	104389.	10/92.	-0.01230	.0056	2.62E+10	0.00	0.00
200.4900								

10.8000	1.0021	767168.	17765.	-0.01228	10184.	2.62E+10	0.00	0.00
274.1040 11.1000	0.9580	832899.	18766.	-0.01217	11056.	2.62E+10	0.00	0.00
281.7180 11.4000	0.9144	902282.	19794.	-0.01205	11977.	2.62E+10	0.00	0.00
289.3320 11.7000	0.8713	975414.	20849.	-0.01192	12948.	2.62E+10	0.00	0.00
296.9460 12.0000 304.5600	0.8286	1052395.	21932.	-0.01178	13970.	2.62E+10	0.00	0.00
12.3000 312.1740	0.7864	1133323.	23042.	-0.01163	15044.	2.62E+10	0.00	0.00
12.6000 319.7880	0.7448	1218296.	24179.	-0.01147	16172.	2.62E+10	0.00	0.00
12.9000 327.4020	0.7038	1307414.	25344.	-0.01130	17355.	2.62E+10	0.00	0.00
13.2000 335.0160	0.6635	1400776.	26537.	-0.01111	18594.	2.62E+10	0.00	0.00
13.5000 342.6300	0.6238	1498479.	27756.	-0.01091	19891.	2.62E+10	0.00	0.00
13.8000 350.2440	0.5849	1600622.	29004.	-0.01070	21247.	2.62E+10	0.00	0.00
14.1000 357.8580	0.5468	1707305.	30278.	-0.01047	22663.	2.62E+10	0.00	0.00
14.4000 365.4720	0.5095	1818625.	31580.	-0.01023	24141.	2.62E+10	0.00	0.00
14.7000 373.0860	0.4731	1934682.	32910.	-0.00997	25682.	2.62E+10	0.00	0.00
15.0000 189.3983	0.4377	2055574.	33467.	-0.00970	27286.	2.62E+10	-252.594	2078.
15.3000 0.00	0.4033	2175648.	32891.	-0.00941	28880.	2.62E+10	-256.757	2292.
15.6000 0.00	0.3700	2292393.	31961.	-0.00910	30430.	2.62E+10	-260.361	2534.
15.9000	0.3378	2405765.	31018.	-0.00878	31935.	2.62E+10	-263.379	2807.

0.00								
16.2000 0.00	0.3067	2515722.	30065.	-0.00844	33395.	2.62E+10	-265.780	3119.
16.5000 0.00	0.2770	2622236.	29106.	-0.00809	34808.	2.62E+10	-267.531	3477.
16.8000 0.00	0.2485	2725282.	28140.	-0.00772	36176.	2.62E+10	-268.596	3891.
17.1000 0.00	0.2214	2824847.	27173.	-0.00734	37498.	2.62E+10	-268.935	4373.
17.4000 0.00	0.1957	2920927.	26206.	-0.00695	38773.	2.62E+10	-268.501	4940.
17.7000 0.00	0.1714	3013527.	25241.	-0.00654	40003.	2.62E+10	-267.244	5614.
0.00 18.0000 0.00	0.1486	3102664.	24283.	-0.00612	41186.	2.62E+10	-265.107	6424.
18.3000	0.1273	3188365.	23334.	-0.00569	42323.	2.62E+10	-262.024	7409.
0.00 18.6000 0.00	0.1076	3270670.	22398.	-0.00524	43416.	2.62E+10	-257.920	8627.
18.9000 0.00	0.08956	3349632.	21479.	-0.00479	44464.	2.62E+10	-252.711	10158.
19.2000 0.00	0.07315	3425319.	20581.	-0.00432	45469.	2.62E+10	-246.299	12121.
19.5000 0.00	0.05844	3497814.	16180.	-0.00385	46431.	2.62E+10	-2199.	135448.
19.8000 0.00	0.04545	3541816.	3443.	-0.00336	47015.	2.62E+10	-4878.	386375.
20.1000 0.00	0.03421	3522603.	-14966.	-0.00288	46760.	2.62E+10	-5350.	562981.
20.4000 0.00	0.02471	3434058.	-34821.	-0.00240	45585.	2.62E+10	-5681.	827541.
20.7000 0.00	0.01691	3271891.	-55582.	-0.00194	43432.	2.62E+10	-5853.	1245737.
21.0000 0.00	0.01073	3033869.	-76630.	-0.00151	40273.	2.62E+10	-5841.	1959006.
0.00								

21.3000	0.00605	2720154.	-97222.	-0.00111	36108.	2.62E+10	-5600.	3331031.
0.00 21.6000	0.00272	2333868.	-116351.	-7.67E-04	30981.	2.62E+10	-5027.	6665483.
0.00 21.9000	5.32E-04	1882430.	-131961.	-4.77E-04	24988.	2.62E+10	-3645.	2.46E+07
0.00 22.2000 0.00	-7.20E-04	1383751.	-130873.	-2.53E-04	18368.	2.62E+10	4249.	2.12E+07
22.5000 0.00	-0.00129	940142.	-113698.	-9.33E-05	12480.	2.62E+10	5293.	1.48E+07
22.8000 0.00	-0.00139	565129.	-93759.	1.01E-05	7502.	2.62E+10	5784.	1.50E+07
23.1000 0.00	-0.00122	265076.	-72602.	6.71E-05	3519.	2.62E+10	5970.	1.77E+07
23.4000 0.00	-9.08E-04	42394.	-51227.	8.82E-05	562.7457	2.62E+10	5905.	2.34E+07
23.7000 0.00	-5.80E-04	-103755.	-30517.	8.40E-05	1377.	2.62E+10	5600.	3.47E+07
24.0000 0.00	-3.04E-04	-177332.	-11370.	6.47E-05	2354.	2.62E+10	5038.	5.97E+07
24.3000 0.00	-1.15E-04	-185620.	5200.	3.98E-05	2464.	2.62E+10	4168.	1.31E+08
24.6000 0.00	-1.75E-05	-139892.	17651.	1.74E-05	1857.	2.62E+10	2749.	5.66E+08
24.9000 0.00	1.06E-05	-58536.	18047.	3.79E-06	777.0234	2.62E+10	-2529.	8.59E+08
25.2000 0.00	9.76E-06	-9951.	8813.	-9.16E-07	132.0867	2.62E+10	-2601.	9.59E+08
25.5000 0.00	4.01E-06	4921.	2040.	-1.26E-06	65.3256	2.62E+10	-1162.	1.04E+09
25.8000 0.00	6.83E-07	4735.	-408.170	-5.98E-07	62.8581	2.62E+10	-198.074	1.04E+09
26.1000 0.00	-2.99E-07	1982.	-608.394	-1.37E-07	26.3147	2.62E+10	86.8384	1.04E+09
	-3.02E-07	354.8724	-294.492	2.37E-08	4.7107	2.62E+10	87.5516	1.04E+09

0.00								
26.7000 0.00	-1.29E-07	-137.963	-69.598	3.86E-08	1.8314	2.62E+10	37.3894	1.04E+09
27.0000	-2.42E-08	-146.232	10.3135	1.91E-08	1.9411	2.62E+10	7.0058	1.04E+09
0.00 27.3000	8.32E-09	-63.706	18.5795	4.65E-09	0.8457	2.62E+10	-2.414	1.04E+09
0.00 27.6000	9.31E-09	-12.459	9.3754	-5.81E-10	0.1654	2.62E+10	-2.700	1.04E+09
0.00 27.9000	4.14E-09	3.7970	2.3558	-1.18E-09	0.05040	2.62E+10	-1.200	1.04E+09
0.00 28.2000	8.43E-10	4.5025	-0.244	-6.06E-10	0.05977	2.62E+10	-0.244	1.04E+09
0.00 28.5000	-2.27E-10	2.0412	-0.565	-1.57E-10	0.02710	2.62E+10	0.06572	1.04E+09
0.00 28.8000	-2.87E-10	0.4316	-0.297	1.29E-11	0.00573	2.62E+10	0.08316	1.04E+09
0.00 29.1000	-1.34E-10	-0.100	-0.07801	3.57E-11	0.00133	2.62E+10	0.03873	1.04E+09
0.00 29.4000	-2.99E-11	-0.130	0.00734	1.99E-11	0.00173	2.62E+10	0.00868	1.04E+09
0.00 29.7000	9.38E-12	-0.04743	0.01807	7.66E-12	6.30E-04	2.62E+10	-0.00272	1.04E+09
0.00	2.52E-11	0.00	0.00	4.41E-12	0.00	2.62E+10	-0.00732	5.22E+08
0.00	2.J2L-11	0.00	0.00	4.410-12	0.00	2.021710	-0.00/32	J.22LT00

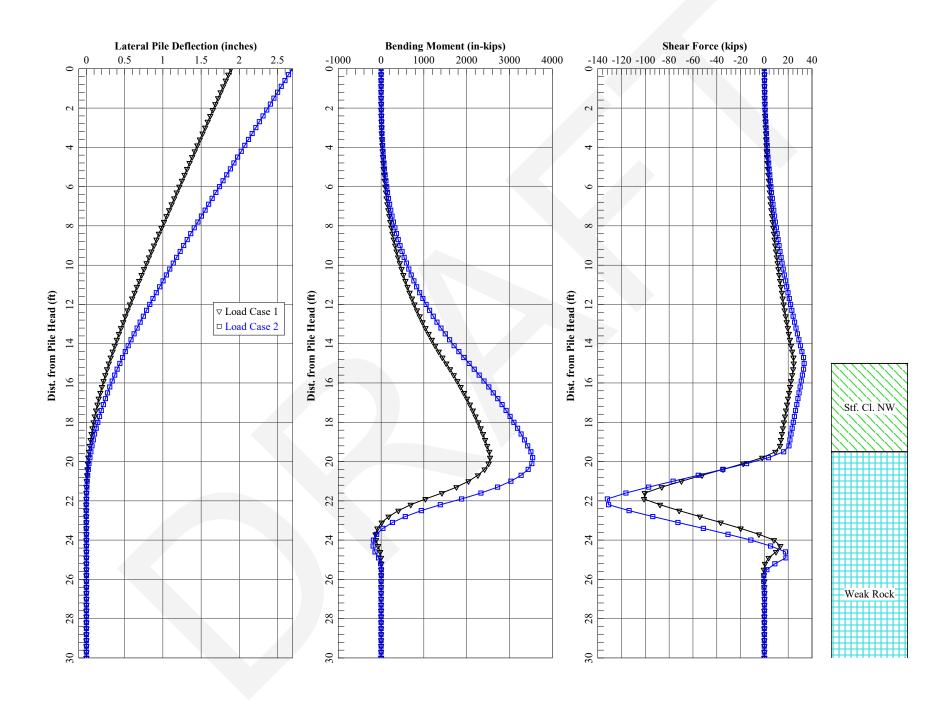
* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 2:

Pile-head deflection	=	2.69196428 inches
Computed slope at pile head	=	-0.0132288 radians
Maximum bending moment	=	3541816. inch-lbs
Maximum shear force	=	-131961. lbs

Depth of maximum bending moment = 19.80000000 feet below pile head Depth of maximum shear force = 21.9000000 feet below pile head Number of iterations = 25 Number of zero deflection points = 6 Pile deflection at ground = 0.43769712 inches

Summary of Pile-head Responses for Conventional Analyses


Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max Moment
Case Type	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1 V, lb	0.00	M, in-lb	0.00	0.00	1.8908	-0.00939	-101093.	2546897.
2 V, lb	0.00	M, in-lb	0.00	0.00	2.6920	-0.01323	-131961.	3541816.

Maximum pile-head deflection = 2.6919642845 inches
Maximum pile-head rotation = -0.0132287538 radians = -0.757952 deg.

The analysis ended normally.

CLIENT:	Pennoni
PROJECT:	Village of Barnesville
W.O.:	N4225393
Date:	4/19/2023
Case:	Spread footings on Rock

UCS and RQD Data

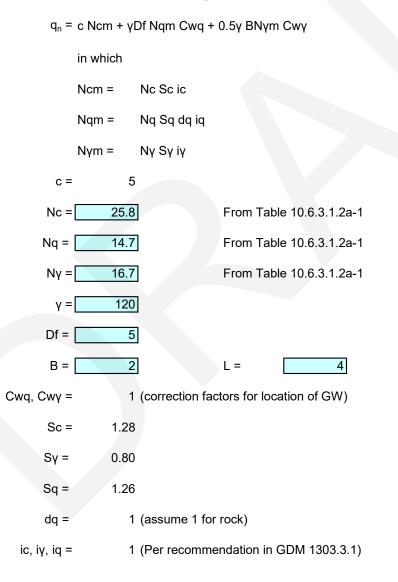
Boring	RQD (per 5 ft.)
B-001	87
	73
B-002	<u> </u>
	93
Average	78.25

Boring	Depth (Elevation)	UCS (ksf)
B-001	12.4'	575
B-002 B-002	10'	619
B-002	11.3'	678

Average

624

Rock Mass Rating (RMR) per LRFD Table 10.4.6.4-1 Per Section 10 LRFD 5th Edition


Spread footings on Rock		Relative Rating
Strength of Rock		
624		4
RQD 78.25		17
Maximum Spacing of Joints (in.)	13	20
	13	20
Condition of		
Joints		12
GW Condition		7
Total		60
Adj for Joint		
Orientation		15
RMR		45
Class		3
Rock Type		Fair Rock

Per GDM 1303.3.3 for RMR < 70, use Bieniawski (1989) method to evaluate c' and φ ' of the weak rock

c' = 104 x RMR (psf) = 4680 psf = 5 ksf

= 28 °

Per LRFD Eq. 10.6.3.1.2a-1 nominal bearing resistance of soil/weak rock in ksf is taken as

q_n = 168 ksf

Resistance Factors for Tip Resistance per LRFD Table 10.5.5.2.2-1

 Resistance Factor for Bearing in rock
 0.45

Factored Bearing Resistance = 76 ksf