

PREPARED FOR

ms consultants, inc. 425 Literary Road, Suite 100 Cleveland, OH 44113-4506

PREPARED BY:

S&ME, Inc. 6190 Enterprise Court <u>Dublin, OH</u> 43016

July 25, 2023

July 25, 2023

ms consultants, inc. 425 Literary Road, Suite 100 Cleveland, OH 44113-4506

Attention: Mr. Jonathan Hren, P.E.

Reference: Structure Foundation Exploration Report – FINAL, Rev #1 BEL-National Road Tunnel (PID 108774) St. Clairsville, Belmont County, Ohio S&ME Project No. 210435B

Dear Mr. Hren:

In accordance with our revised proposal dated February 18, 2022, which was authorized by ms consultants, inc. (ms) on April 14, 2022, S&ME, Inc. (S&ME) has completed a Structure Foundation Exploration for proposed improvements at both ends of the existing tunnel carrying the National Road Bikeway trail beneath the National Road in St. Clairsville, Ohio. Also included in this project is the repair/replacement of a failing retaining wall at the northwest corner of the pedestrian trestle bridge carrying the trail over SR 9 approximately 0.75 miles north of the tunnel (see Vicinity Map, Plate 1 of the Appendix).

In accordance with Section 701 of the ODOT *Specifications for Geotechnical Explorations (SGE)*, S&ME submitted a revised "draft" version of this report dated October 27, 2022. Review comments from ODOT D11 based on their review of the Stage 2 plans and dated April 4, 2023, were provided by ms to S&ME on April 11, 2023. This revised final report incorporates changes to address the Stage 2 comments provided by ODOT.

We appreciate being given the opportunity to be of service. Please do not hesitate to contact our office if you have any questions concerning our report.

Sincerely,

Richard S. Weigand, P.E. **Principal Engineer | Senior Reviewer**

Attachments:Appendices I through VSubmitted:Electronic copy via email to Jonathan Hren (jhren@msconsultants.com), ms consultants

Table of Contents

Tal	ble of	Conten	ts	<u>Page</u>
1.0	Executi	ve Summ	ary	1
2.0	Introdu	ction		2
3.0	Geolog	y and Ob	servations of the Project	2
	3.1		gy	
	3.2	Site Recon	naissance	3
4.0	Explora	ntion		3
	4.1	Field Inve	stigation	3
	4.2	Laborator	y Testing	4
5.0	Finding	gs		5
	5.1	Surface M	aterials	5
	5.2	Fill Materi	als	5
	5.3	Natural So	pil	5
	5.4	Bedrock		5
	5.5	DCP Test	Findings	6
	5.6	Groundwa	ater observation	7
6.0	Analys	es and Re	commendations	7
	6.1	Drilled Sh	afts for Soldier Pile and Lagging Walls	8
		6.1.1	Axial Resistance	8
		6.1.2	Lateral Earth Pressures	10
		6.1.3	Lateral Loading – LPILE Parameters	10
		6.1.4	Drilled Shafts - Construction Recommendations	11
	6.2	Spread Fo	otings	12
		6.2.1	Tunnel Extension (South Side)	
		6.2.2	North Side Entrance Path Modular Block Walls	
		6.2.3	SR 9 Trestle Bridge - Northwest Abutment Wall	14
	6.3	5	nalyses	
	6.4		ent Construction	
		6.4.1	Site Preparation	
		6.4.2	Benching and Special Benching	
		6.4.3	Borrow Requirements and Compaction Criteria	
		6.4.4	Compaction/Moisture Conditioning Concerns	
	6.5		ater Considerations	
	6.6	-	y Excavation Considerations	
7.0	Final C	onsiderat	ions	18

Plate No.

Table of Appendices

<u>Appendix I</u>

Appendix II

Bedrock Core Photographs	1-21
Bedrock Unconfined Compressive Strength Test Results	22-31
Bedrock Slake Durability Test Results	

Appendix III

Drilled Shaft Resistance Computations (South)	
Drilled Shaft Resistance Computations (North)	
Spread Foundation Computations (Tunnel Extension)	
Spread Foundations on Slope Computations	
Stability Analysis Output	

Appendix IV

Stage 3 Status Set Retaining Wall Plan and Profiles (North and South) and Details	1-9
Stage 3 Status Set Tunnel and Soldier Pile Wall Details and Cross Sections	
Stage 3 Status Set Modular Wall Plan, Profile and Cross Sections	
Plan and Profile for Modular Block Retaining Wall Stability Analysis	
5 , ,	

Appendix V

ODOT Geotechnical Checklists 1-14

1.0 Executive Summary

The BEL-National Road Tunnel project includes the construction of multiple retaining structures (soldier pile with lagging walls, an arched tunnel section, and modular block walls) to improve the safety and accessibility of the existing bikeway tunnel beneath National Road and at the existing trestle pedestrian bridge carrying the bikeway over SR 9 to the north of the tunnel. In total, approximately 370 linear feet of soldier pile with lagging retaining wall, 90 feet of arched tunnel and 80 feet of modular block walls are planned. The project is located in St. Clairsville, Belmont County, Ohio.

A geotechnical exploration consisting of 10 soil borings and six Wildcat Dynamic Cone Penetrometers (DCP's) were performed in multiple phases between June 13, 2022, and September 29, 2022. Beneath 4 to 17 inches of asphalt or 2 to 14 inches of topsoil, the borings encountered 1.7 to 11.1 feet of existing fill in six (6) of the borings to depths ranging from 2.0 to 12.5 feet below the existing grade. In borings performed above the trail, the fill was composed of stiff to hard SILT AND CLAY (A-6a) or medium-stiff to stiff CLAY (A-7-6). Medium-dense GRAVEL WITH SAND (A-1-b) was encountered in the borings drilled through the trail near the tunnel. A larger amount of fill was encountered near the trestle bridge with discontinuous layers of medium-dense GRAVEL (A-1-a) and COARSE AND FINE SAND (A-3a) and very-stiff SILT AND CLAY (A-6a) and CLAY (A-7-6).

Natural soil was encountered in each boring to depths ranging from 3.5 to 33 feet where shale bedrock was then encountered, except in Boring B-010-0-22, which was terminated at a depth of 15 feet without encountering bedrock. These natural soils consisted predominantly of cohesive materials including hard SANDY SILT (A-4a), stiff to hard SILT AND CLAY (A-6a), medium-stiff to hard SILTY CLAY (A-6b), very-stiff to hard ELASTIC CLAY (A-7-5) and stiff to hard CLAY (A-7-6). Discontinuous layers of GRAVEL WITH SAND AND SILT (A-2-4), dense COARSE AND FINE SAND (A-3a), and medium-dense GRAVEL WITH SAND, SILT AND CLAY (A-2-6) were encountered within these soils in Borings B-006, B-002 and B-008, respectively. In five of the borings, a layer of hard SANDY SILT (A-4a), SILT (A-4a), SILT AND CLAY (A-6a), SILTY CLAY (A-6b) and CLAY (A-7-6) with the appearance of severely weathered or decomposed shale was encountered immediately above bedrock.

Bedrock at the site consisted of predominantly gray SHALE, which was slightly to highly weathered and very weak to moderately strong. Interbedded SHALE and SANDSTONE or SANDSTONE bedrock were encountered in three borings, and several limestone seams were encountered in Boring B-004-0-22. Zones of carbonaceous shale or coal were encountered in three borings.

Based on the results of the borings, the subsurface conditions appear generally suitable for supporting the currently planned retaining structures. Recommended design parameters for axial and lateral design of drilled shaft foundations to support the soldier pile and lagging walls are presented in Section 6.1. Factored bearing resistance values for shallow spread footings planned to support the arched tunnel extension structure and the modular block walls are included in Section 6.2. The results of stability analyses performed on representative cross sections and recommendations for slope regrading are discussed in Section 6.3. Recommendations regarding embankment construction and the placement of fill are summarized in Section 6.4.

2.0 Introduction

The National Road Bikeway serves as a key recreational benefit to the City of St. Clairsville, extending from the southern terminus at TR 278 (near the intersection with SR 9) and winding its way approximately 2.5 miles north, crossing under IR 70 and National Road (US 40), and then over SR 9, terminating at the St. Clairsville Junior Sports Fields. A former railroad tunnel currently carries the bikeway beneath US 40. At both ends of the old railway tunnel, over-steepened slopes are present on both sides of the path. These slopes have previously experienced numerous slope failures of varying size and severity, resulting in vegetation (trees, shrubs, etc.), soil, and rock fragments falling on the existing path. These conditions create a safety hazard and impact the safe use of the tunnel and bike path.

S&ME is pleased to work with ms and the City on this project to improve conditions at the tunnel termini and at the SR 9 bridge. Currently, it is proposed to provide retaining structures and/or regrading of soil/rock slopes at both ends of the existing tunnel to protect the trail from future slope failure. Based on a retaining wall type study prepared by ms (dated September 2, 2022) and follow-up discussions between ms, ODOT District 11, and the City of St. Clairsville, we understand the preferred remediation will include soldier pile with lagging walls along the trail at the north end of the tunnel and extending the tunnel with a cast-in-place arch concrete tunnel and soldier pile wingwalls on the south end. Improvements planned at the trestle bridge carrying the trail over SR 9 approximately 0.75 miles north of the National Road Tunnel include the replacement of a failing retaining wall at the northwest corner of the bridge.

To assess conditions at the project site, S&ME performed a total of 10 borings (nine (9) in the vicinity of the tunnel and one (1) at the north abutment of the trestle bridge) and six (6) Wildcat Dynamic Cone Penetrometer (DCP) explorations (five (5) in the vicinity of the tunnel and one (1) below the retaining wall at the northwest corner of the trestle bridge). This Geotechnical Exploration has been performed in general accordance with the January 2022 update of the ODOT *Specifications for Geotechnical Investigations (SGE)*. However, at the request of ms and ODOT District 11, preparation of Soil Profile – Structure sheets are <u>not</u> required.

3.0 Geology and Observations of the Project

3.1 Site Geology

The site lies within the Appalachian Plateaus Province and more specifically the Little Switzerland Plateau physiographic region of the Allegheny (Kanawha) Plateau section. This region is composed of highly dissected and high-relief plateaus which typically consist of Pleistocene-age silty clay loam colluvium Pennsylvanian-age Upper Conemaugh Group through Permian-age Dunkard Group red and gray shales, siltstones, limestones, sandstones, and coal. Additionally, landslides are common throughout this region.

Topographic mapping indicates the ground surface along the project alignment at the existing US 40 tunnel ranges from approximate El. 1240 on National Road to El. 1145 on the trail. Bedrock outcrops are visible above the trail at both ends of the tunnel to roughly the same elevation as the top of the existing tunnel, near El. 1175. The top of bedrock elevations encountered in the borings performed above the trail varied from El. 1200.7 near the tunnel, to El. 1161.2 where bedrock had been previously excavated to construct the rail line.

The "Ohio Karst Areas" map published by ODNR shows that the project site lies in an area known to not contain karst features. A review of ODNR's "Landslides in Ohio" shows the site is located within an area that is subject to

severe slope failure. The "Abandoned Underground Mine Maps" published by ODNR indicate a significant presence of abandoned underground coal mines in and surrounding St. Clairsville, with some mapped mines overlapping with the current project limits. On the south side of National Road, an abandoned coal mine (Willow Grove No. 10) overlaps with a portion of our project limits with a coal elevation of El. 886 (approximately 260 feet below the level of the path). On the north side of the National Road, another abandoned coal mine (Colliery No. 1) overlaps with a portion of our project limits with a reported coal seam elevation of El. 890. This same mine (Colliery No. 1) extends north to completely encompass the site of the trestle bridge.

3.2 Site Reconnaissance

S&ME visited the site on multiple occasions between October 25, 2021, to September 29, 2022, to observe the site conditions, mark boring locations, and perform the field explorations. Bedrock outcrops, as previously mentioned, were observed at both ends of the tunnel. Steep rock slopes with varying amounts of talus (eroded rock/soil) at the trail level rise above the trail transitioning to moderate to steep soil slopes. Heavy vegetation (trees, brush, etc.) is present around the rim of the cut down to the trail and multiple instances of exposed root systems were observed. Some areas of undermining where weaker and more degraded rock is present beneath a stronger and more resistant rock layer were observed in the bedrock outcrops at both ends of the tunnel. These undermined layers were more prevalent at the south end of the tunnel. The timber retaining walls along the access path down to the trail at the north end of the tunnel are in varying states of failure, with numerous instances of bulging or rot observed.

At the trestle bridge, the north abutment is positioned at the top a steep soil slope. No bedrock outcrops were observed in this slope. The retaining wall at the northwest quadrant of the bridge is showing similar signs of bulging and rot.

4.0 Exploration

4.1 Field Investigation

S&ME visited the site on April 22, 2022, to mark the locations of the proposed borings and DCPs to be performed. The borings were completed in two phases. The first phase included Borings B-001-0-22, B-002-0-22, B-004-0-22, B-008-0-22, and B-010-0-22 and was performed between June 13 and 16, 2022. The second phase of the exploration program included Borings B-003-0-22, B-005-0-22, B-006-0-22, B-007-0-22 and B-009-0-22, and this phase was performed between July 18 and 21, 2022. All boring numbers will hereafter be referred to without their offset and year designations (e.g., B-001, B-002, etc.). These soil borings were drilled to depths ranging from 15 to 76 feet.

A total of six (6) Wildcat DCPs (D-006-1-22, D-006-2-22, D-006-3-22, D-008-1-22, D-008-2-22 and D-010-1-22) were also performed for this project during the period of July 22 and September 29, 2022. As with the borings, the DCPs will hereafter be referred to without their year designations (e.g., D-006-1, D-008-1, etc.).

The borings were advanced by truck and ATV-mounted drill rigs using a 3¹/₄-inch hollow-stem auger. Disturbed, but representative, soil samples were attempted by lowering a 2-inch O.D. split-barrel sampler through the auger stem to the bottom of the boring and then driving the sampler into the soil with blows from a 140-pound hammer freely falling 30 inches (AASHTO T206 – Standard Penetration Test, SPT). Recovered SPT samples were examined immediately after recovery and representative portions were preserved in airtight glass jars. In

accordance with ODOT specifications, the hammer systems on the drilling rigs were calibrated (ASTM D4633) to determine the drill rod energy ratio. The truck rig used to perform borings in the first phase was calibrated on November 25, 2020, with a drill rod energy ratio of 98.6% which has been limited to 90% in accordance with the ODOT *SGE*. The ATV rig used to perform borings in the second phase was calibrated on June 7, 2022, with a drill rod energy ratio of 69.8%.

All soil samples were examined in the field and representative portions were preserved in airtight glass jars. Rock core samples were stored in compartmented cardboard or wood boxes. Following the completion of drilling, the borings were backfilled with cuttings mixed with bentonite or sealed with a bentonite-cement grout, and a plastic hole plug was placed in the borehole a few feet below the surface. At Borings B-002, B-008 and B-010, the existing trail pavement was patched with an equivalent thickness of cold patch asphalt.

Soil samples were delivered to S&ME's lab for further examination and testing. Coordinates were obtained by S&ME using a handheld GPS and were provided to ms consultants who provided stations, offsets, and ground surface elevations at the boring/DCP locations.

In the field, experienced personnel from S&ME observed the drilling procedures and performed the following specific duties: preserved all recovered samples; prepared a log of each boring; made seepage and groundwater observations in the borings; obtained hand-penetrometer measurements in soil samples exhibiting cohesion; and, provided liaison between the fieldwork and the Project Manager so that the program of exploration could be modified, if necessary, because of unanticipated conditions.

4.2 Laboratory Testing

In the laboratory, all soil samples were visually identified and tested for natural moisture content. Classification testing (liquid/plastic limit determinations and grain-size analyses) was also performed on selected representative specimens. In addition, ten (10) unconfined compressive strength tests and four (4) slake durability tests were performed on selected bedrock samples. Unit weight determinations were performed on a section of soil retrieved in the two (2) recovered Shelby tube samples. Results of these tests are recorded numerically on the boring logs, with photos of the recovered bedrock cores and the results of the bedrock testing included in Appendix II.

Based upon the results of the laboratory testing program, the field logs were modified, if necessary, and copies of the laboratory corrected boring logs are submitted as Plates 5 through 20 of Appendix I. Shown on these logs are: descriptions of the soil stratigraphy encountered; depths from which samples were preserved; sampling efforts (blow-counts) required to obtain the specimens in the borings; calculated N₆₀ values; laboratory testing results; seepage and groundwater observations made at the time of drilling; values of hand-penetrometer measurements made in soil samples exhibiting cohesion; and, RQD (rock quality designation) and recovery percentages of rock core samples. For your reference, hand-penetrometer values are roughly equivalent to the unconfined compressive strength of the cohesive fraction of the soil sample.

Soils have been classified in general accordance with Section 603 of the ODOT *SGE* and described in general in accordance with Section 602. Bedrock has been classified and described in general accordance with Section 605 of the ODOT *SGE*. An explanation of the symbols and terms used on the boring logs, definitions of the special adjectives used to denote the minor soil components, description of rock, and information pertaining to sampling and identification are presented on Plate 3 and 4 of Appendix I. Group Indices determined from the results of the laboratory testing program are also provided on the boring logs.

5.0 Findings

Please refer to the individual boring logs (Plates 5 through 20 in Appendix I) for detailed descriptions of the pavement, soil, rock and groundwater/seepage conditions encountered at each boring location. Inferences should not be made regarding the subsurface conditions between or in areas away from the borings without performance of additional borings or other methods of field verification.

5.1 Surface Materials

The existing trail pavement was encountered in three borings and ranged from 4 to 6 inches thick near the tunnel entrances to 17 inches in Boring B-010 drilled at the trestle bridge. No definite aggregate base course was observed in any of the borings performed through the trail pavement; however, a granular fill material (sand and/or gravel) was present below the pavement. The remaining seven (7) borings encountered 2 to 14 inches of topsoil.

5.2 Fill Materials

Below the pavement section or topsoil, 1.7 to 11.1 feet of existing fill was visually identified in six (6) of the borings to depths ranging from 2.0 to 12.5 feet below the existing grade. Borings B-001, B-003 and B-005, performed above the trail, encountered existing fill composed of stiff to hard SILT AND CLAY (A-6a) or medium-stiff to stiff CLAY (A-7-6), with some wood fragments observed in Boring B-001. Medium-dense brownish gray or grayish black GRAVEL WITH SAND (A-1-b) was encountered in Borings B-002 and B-008 beneath the trail pavement near the tunnel. Boring B-010 near the trestle bridge encountered 11.1 feet of fill with discontinuous layers of medium-dense gray or black GRAVEL (A-1-a) and COARSE AND FINE SAND (A-3a), and very-stiff gray and/or brown SILT AND CLAY (A-6a) and CLAY (A-7-6).

5.3 Natural Soil

Natural soil was encountered in each boring to depths ranging from 3.5 to 33 feet, whereupon shale bedrock was encountered, except in Boring B-010, which was terminated at a depth of 15 feet before encountering bedrock.

Natural soils consisted predominantly of cohesive materials including hard gray SANDY SILT (A-4a), stiff to hard brown and/or gray SILT AND CLAY (A-6a), medium-stiff to hard brown and/or gray SILTY CLAY (A-6b), very-stiff to hard gray and black ELASTIC CLAY (A-7-5) and stiff to hard brown and/or gray CLAY (A-7-6). The SANDY SILT (A-4a) and SILT AND CLAY (A-6a) were only encountered on the north side of National Road. Discontinuous layers of GRAVEL WITH SAND AND SILT (A-2-4), dense COARSE AND FINE SAND (A-3a), and medium-dense GRAVEL WITH SAND, SILT AND CLAY (A-2-6) were encountered within these soils in Borings B-006, B-002 and B-008, respectively.

In Borings B-003, B-004, B-005, B-007 and B-009, a 3.0 to 13.5-foot-thick layer of hard gray with some brown SANDY SILT (A-4a), SILT AND CLAY (A-6a), SILTY CLAY (A-6b) and CLAY (A-7-6) was encountered immediately above bedrock and was observed to have the appearance of severely weather or decomposed shale.

5.4 Bedrock

Bedrock at the site consisted of predominantly gray SHALE which was slightly to highly weathered and very weak to moderately strong. Zones of INTERBEDDED SHALE AND SANDSTONE or SANDSTONE bedrock were

encountered in Borings B-007, B-008 and B-009, with several limestone seams also noted in Boring B-004. Zones of carbonaceous shale or coal were encountered in Borings B-003, B-004 and B-005. Core recovery ranged from 72% to 100%, with an average of 95%. RQD measurements ranged from 0% to 85% with an average of 50%.

As previously noted, ten (10) unconfined compressive strength tests and four (4) slake durability tests were performed on recovered rock core samples. Results of the unconfined compressive strength tests are summarized in Table 5-1 and the results of the slake durability tests are presented in Table 5-2.

Boring ID	Sample ID	Sample Depth (ft)	Sample Elevation	Rock Type	UCS (psi)
B-001-0-22	NQ-13	37.0 – 37.4	1154.5 – 1154.1	Shale	2,245
B-002-0-22	NQ-3	8.6 – 9.0	1141.1 – 1140.7	Shale	1,368
B-002-0-22	NQ-5	19.5 – 19.9	1130.2 – 1129.8	Shale	3,975
B-003-0-22	NQ-13	40.5 – 40.9	1177.3 – 1176.9	Shale	2,024
B-007-0-22	NQ-11	31.2 – 31.6	1161.5 – 1161.1	Shale	1,050
B-007-0-22	NQ-14	44.1 – 44.5	1148.6 – 1148.2	Shale	2,062
B-008-0-22	NQ-5	10.7 – 11.1	1134.5 – 1134.1	Sandstone	9,862
B-008-0-22	NQ-6	20.9 – 21.3	1124.3 – 1123.7	Sandstone	6,748
B-009-0-22	NQ-10	27.0 – 27.4	1150.2 – 1149.8	Shale	4,754
B-009-0-22	NQ-11	32.4 – 32.8	1144.8 – 1144.4	Sandstone	9,376

Table 5-1 Summary of Unconfined Compressive Strength Test Results

Table 5-2 Summary of Slake Durability Test Results

Boring ID	Sample ID	Sample Depth (ft)	Sample Elevation	Rock Type	SDI (%)
B-001-0-22	NQ-12	28.0 - 33.0	1163.5 – 1158.5	Shale	3.5
B-003-0-22	NQ-16	51.0 – 56.0	1166.8 – 1161.8	Shale	12.5
B-007-0-22	NQ-12	32.4 – 37.4	1160.3 – 1155.3	Shale	20.4
B-009-0-22	NQ-10	23.0 - 28.0	1154.2 – 1149.2	Shale	9.4

5.5 DCP Test Findings

Five (5) Wildcat DCP explorations were performed at various locations on the hillside on the north side of the tunnel, and one (1) DCP was performed below the retaining wall at the northwest corner of the trestle bridge abutment. The general locations and findings of these six (6) DCPs are described below.

• Three (3) DCPs (D-006-1, D-006-2 and D-006-3) were performed as near to the existing timber retaining walls along the north side path access as could safely be reached. These DCPs generally encountered the following:

Structure Foundation Exploration Report – FINAL, Rev #1 BEL-National Road Tunnel Improvements

St. Clairsville, Belmont County, Ohio S&ME Project No. 210435B

- Very-soft to medium-stiff (or very-loose to loose) with occasional stiff/medium-dense zones near the bottom of the 5- to 6-foot deep DCP's.
- D-006-1 encountered stiff to very-stiff/medium-dense materials approximately 3 feet below grade.
- Each of these DCPs terminated by refusal on what was assumed to be bedrock or the top of the existing tunnel.
- Two (2) DCPs (D-008-1 and D-008-2) were performed on the west side of the path to assess, if possible, the depth to bedrock in between Borings B-005, B-006 and B-009.
 - DCP D-008-1 which was performed just north of the walking path leading to the upper resting platform encountered generally very-stiff/medium-dense soil to a depth of approximately 5 feet, followed by 1 foot of hard/dense soil.
 - Below the hard/dense soils, D-008-1 re-entered stiff to very stiff/medium dense soils which then softened into medium-stiff to stiff/loose to medium-dense soils until the termination of the test.
 - DCP D-008-2 remained in very-stiff to hard/medium-dense to dense soils until encountering blowcount refusal near a depth of 6.5 feet. Based on the depth to bedrock in the surrounding borings, we do not believe that bedrock was the cause of the blow-count refusal.
- The DCP performed at the trestle bridge abutment (D-010-1) encountered primarily medium-stiff to stiff/loose to medium-dense soils until encountering a sudden hard/dense material near a depth of 10.5 feet. This sudden hard/dense material may be existing bedrock.

5.6 Groundwater observation

Seepage was noted in four (4) borings (B-002, B-004, B-006 and B-008) between the depths of 3 and 21 feet. The remaining borings were dry prior to coring, or at the termination of Boring B-010 where coring was not performed. All groundwater measurements should be considered temporary, short-term observations, and should not be assumed to be representative of the long-term static groundwater level. Groundwater levels can fluctuate due to seasonal variations in precipitation, construction activities, etc.

6.0 Analyses and Recommendations

The intent of this project is to improve the safety and usability of the National Road Bikeway trail by incorporating multiple improvements between CR 9 and US 40. Based on the Stage 3 Status Set plans prepared by ms and provided to S&ME on July 18, 2023, the currently planned improvements include the following:

- <u>North Side of Tunnel</u>
 - Construct soldier pile with lagging walls on both sides of the trail extending approximately 139 feet north of the north end of the tunnel.
 - These walls are expected to range from 6 to 26 feet high (above the top of the drilled shafts), with a strut positioned at the top of the walls where the wall height is 22 feet or greater.
 - The soldier piles will be supported by 36-inch diameter drilled shafts socketed 5.7 to 18.7 feet into bedrock.
 - Behind the walls, soil backfill will be placed to create general 2H:1V slopes to buttress the existing rock and soil slopes.
 - Replace the failing wood retaining walls along the access path and down to the path with modular block type walls.

Structure Foundation Exploration Report – FINAL, Rev #1

BEL-National Road Tunnel Improvements

St. Clairsville, Belmont County, Ohio S&ME Project No. 210435B

- South Side of Tunnel
 - Extend the tunnel approximately 90 feet to the south of the existing tunnel opening with a cast-inplace arched concrete tunnel.
 - This tunnel extension will be supported by spread footings beneath each vertical side wall with dimensions of 8 feet wide and 2.5 feet thick. The spread footings are expected to bear near El. 1144.25.
 - Construct soldier pile with lagging wingwalls beginning at the south end of the tunnel extension for an additional 72 feet. These soldier pile walls are anticipated to range from 6 to 28 feet high (above the top of the drilled shafts) with a strut at the top of the walls where the wall height is 24 feet or greater.
 - These soldier piles will be supported by 36-inch diameter drilled shafts socketed 5.7 to 18.7 feet into bedrock.
 - Behind the walls, embankment fill will be placed over the tunnel extension at slopes ranging from 2H:1V to 5H:1V and behind the soldier pile wall at a 2H:1V slope.
- Trestle Bridge Northwest Abutment Wall
 - Replace a failing wood retaining wall at the northwest corner of the bridge with a modular block type wall.

Recommendations for the design and construction of these improvements are provided in the following sections. Portions of these recommendations were provided previously in Geotechnical Design Memorandums dated August 16 and 26, 2022.

6.1 Drilled Shafts for Soldier Pile and Lagging Walls

Based on available plans, we understand the proposed soldier pile with lagging retaining walls are to be constructed on the north and south sides of the existing tunnel and will range from approximately 6 to 28 feet in height. When the height of the walls equals or exceeds 20 feet, struts will be placed at intervals to provide additional lateral support.

6.1.1 Axial Resistance

S&ME has performed analyses to estimate the shaft and tip resistance for drilled shafts socketed into bedrock and which will support the proposed soldier pile walls. A summary of the recommended nominal and factored resistances is provided in Tables 6-1 and 6-2. Calculations for estimating the bearing resistance values are provided in Appendix III.

Table 6-1 Recommended Nominal and Factored Unit End Bearing Resistance Values forDrilled Shafts Socketed into Bedrock (Strength Limit State)

Substructure Element	Rock Type	Elevation Range	Nominal Unit Tip Resistance* (q _P)	Resistance Factor (φ _{۹P}) for Tip Resistance**	Factored Unit Tip Resistance*
South End of Tunnel	Shale	1144.7 – 1135.7	7 ksf	0.5	3.5 ksf
(B-002-0-22)	Shale	1135.7 – 1124.2	1430 ksf	0.5	715 ksf
	Shale	1139.7 – 1134.5	10 ksf	0.5	5.0 ksf
North End of Tunnel (B-008-0-22)	Sandstone	1134.5 – 1122.6	2430 ksf	0.5	1215 ksf
	Shale	1122.6 – 1120.2	1430 ksf	0.5	715 ksf

* For vertical loading only.

** Table 10.5.5.2.4-1 of the AASHTO LRFD.

Table 6-2 Recommended Nominal and Factored Unit Side Resistance Values for DrilledShafts Socketed into Bedrock (Strength Limit State)

Substructure Element	Rock Type	Elevation Range	Nominal (Unfactored) Unit Shaft Resistance (q _s)*	Resistance Factor (φ ₅) for Shaft Resistance**	Factored Unit Shaft Resistance*
South End of Tunnel	Shale	1144.7 – 1135.7	4 ksf	0.55	2.2 ksf
(B-002-0-22)	Shale	1135.7 – 1124.2	34 ksf	0.55	18.7 ksf
North End of Tunnel (B-008-0-22)	Shale	1139.7 – 1134.5	10 ksf	0.55	5.5 ksf
	Sandstone	1134.5 – 1122.6	34 ksf	0.55	18.7 ksf
	Shale	1122.6 – 1120.2	34 ksf	0.55	18.7 ksf

* For vertical loading only.

** Table 10.5.5.2.4-1 of the AASHTO LRFD (side resistance in rock)

Drilled shafts should be designed in accordance with Section 305.4 of the 2020 ODOT *BDM*, with shaft and rock socket diameters determined in accordance with Section 305.4.4.2.

As the amount of movement necessary to develop shaft friction resistance is less than that needed to develop end bearing (tip) resistance, unless an on-site static load test is planned at this site, drilled shafts used to support the proposed abutments and piers should be designed for axial load carrying capacity using <u>either shaft friction</u> <u>resistance only</u> or <u>end bearing (tip) resistance only</u>.

The drilled shafts must also have sufficient length to resist both the applied axial and lateral loading.

Structure Foundation Exploration Report – FINAL, Rev #1 BEL-National Road Tunnel Improvements

St. Clairsville, Belmont County, Ohio S&ME Project No. 210435B

6.1.2 Lateral Earth Pressures

Values of soil unit weight and earth pressure design coefficients recommended for use during design of drilled shaft walls at this site for in-situ soils are provided in Table 6-3. The earth pressure coefficient to be used should be determined based on the anticipated and/or allowable movement of the structural system being considered. These parameters are not applicable to new backfill soils placed above the existing ground surface.

Table 6-3 Lateral Earth Pressure Parameter Recommendations for In-Situ Soil

	Angle of	Earth Pro	Unit		
Soil Type	Internal Friction (deg.)	At-Rest (K₀)	Active (K₁)	Passive (K _P)	Weight (pcf)
Medium-dense to dense Gravel with Sand (A-1-b), Gravel with Sand, Silt and Clay (A-2-6), or Coarse and Fine Sand (A-3a)	32	0.47	0.31	3.25	125

Lateral earth pressures exerted on the portion of the walls above the trail and which will be backfilled by new fill materials must be designed to withstand lateral earth pressures as well as hydrostatic pressures that may develop behind the walls. The magnitude of the lateral earth pressures varies based on soil type, permissible wall movement, and the configuration of the backfill.

To minimize lateral earth pressures, the zone behind the retaining walls should be backfilled with granular soil, and the backfill should be effectively drained. For effective drainage, a zone of free-draining gravel (*CMS* Item 518.03) should be used directly behind the tunnel for a minimum thickness of 24 inches in accordance with ODOT *CMS* Item 518.05. This granular zone should drain to either weepholes or a pipe, so that hydrostatic pressures do not develop against the retaining walls.

The type of backfill beyond the free-draining granular zone will govern the magnitude of the pressure to be used for structural design. Pressures of a relatively low magnitude will be developed by using granular backfill, whereas a cohesive (clay) backfill will result in the development of much higher pressures.

To reduce the earth pressure acting on the walls, it is recommended that granular backfill be used behind the walls and tunnel structure. The backfill should be placed in a wedge formed by the back of the structures and a line rising from the base of the wall at an angle no greater than 60 degrees from the horizontal. Granular backfill behind the soldier pile walls should be compacted in accordance with *CMS* Items 203 and 611.06. Over-compaction in areas directly behind the walls should be avoided as this might cause damage to the structure.

6.1.3 Lateral Loading – LPILE Parameters

Table 6-4 includes recommended p-y models, rock unit weights, and the unconfined compressive strength to be used in lateral load analyses for the retaining wall structures. These parameters are based on the bedrock and lab data shown on the boring logs, and recommended values given in the LPile 2019 user's manual and guidance provided by ODOT Office of Geotechnical Engineering (OGE).

Substructure Element	Stratum	Rock Type	Effective Unit Weight	Unconfined Compressive Strength	Hoek-Brown Material Index	Poisson's Ratio	GSI	Rock Mass Modulus (psi)
Courth Find	1144.7 – 1135.7	Shale	90 pcf	500	6	0.09	20	3,100
South End	1135.7 – 1124.2	Shale	90 pcf	3,975	6	0.09	60	56,800
North End	1139.7 – 1134.5	Shale	90 pcf	1,368	6	0.09	25	3,100
	1134.5 – 1122.6	Sandstone	90 pcf	6,750	17	0.20	75	535,000
	1122.6 – 1120.2	Shale	90 pcf	3,975	6	0.09	60	56,800

Table 6-4 LPile 2019 Input Parameters for Drilled Shafts (Massive Rock P-Y Model)

6.1.4 Drilled Shafts - Construction Recommendations

In general, the new drilled shafts should be constructed in accordance with Item 524 of the *ODOT Construction and Materials Specifications (CMS)*. S&ME recommends that provisions be made for providing a temporary casing during drilled shaft excavation above the bedrock, since the granular soils encountered above the bedrock may cave during drilled shaft construction. The casing should extend into the underlying bedrock to seal the shafts from contamination with water, soil, and loose rock fragments. The temporary casing may then be removed during concrete placement; however, precautions should be taken to ensure that the structural integrity of the shafts is not compromised by caving of material during removal of the casing. The concrete level (head) should be maintained at least 5 feet above the bottom of the casing during withdrawal to prevent the entry of soil/rock and water into the shafts. Sumps may be required to remove water accumulation (seepage) from the drilled shafts beneath the depth of encountered groundwater level, otherwise placement of concrete should use approved tremie or pumping methods.

All drilled shaft construction should be observed by a qualified geotechnical engineer or an experienced technician working under direction of the engineer to ensure that the drilled shafts are installed plumb, that the shaft bottoms are sufficiently clean and dry prior to concrete placement, and that the shafts extend into the appropriate bearing stratum as recommended.

In addition, S&ME also suggests that the following items be considered:

- Determination/Verification of Bearing Surface: Verification of the bearing surface will be required. Ideally, the bedrock socket and bottom surface should be directly observed by a trained inspector. To facilitate this, the contract plans should indicate that the contractor attempt to dewater the shafts following drilling. However, if it is impossible to fully dewater the shafts, determination of the bearing surface will have to be made based on the type of material extracted from the hole and the degree of drilling difficulty.
- *Bottom Clean-Out*: Whether the shafts will be designed to resist axial loads in end-bearing or side-friction, bottom clean out is important. In general, the specifications contained in Item 524 of the ODOT CMS and Construction Administration Manual of Procedures (MOP) are acceptable. Verification of the clean-out may

St. Clairsville, Belmont County, Ohio S&ME Project No. 210435B

be performed by visual inspection if the excavations are dry or by using a submersible electronic inspection device (MiniSID) if the excavations are wet.

- *Steel Reinforcement*: If it is intended to fully reinforce the shafts, provisions will need to be made to permit either lengthening or shortening the reinforcing cages on site as required to reach the shaft bottom.
- *Concrete Integrity*: If the shafts are constructed in the dry, the potential for the inclusion of voids or pockets of deleterious material within the shafts is minimized. If wet method shaft construction (see Section 305.4.4.6 of the ODOT *BDM*) is necessary, construction of a demonstration drilled shaft will also be required.

The ODOT *BDM* Item 305.4.5 also requires Thermal Integrity Profiling (TIP) testing per ASTM D7949 Method B for at least 10 percent of all drilled shafts, including at least one shaft per substructure unit. Plan notes for TIP testing are provided in Section 600 of the *BDM*.

6.2 Spread Footings

6.2.1 Tunnel Extension (South Side)

We understand that the proposed tunnel extension will be supported by spread footings which will be roughly 8 feet wide and 2.5 feet thick and bearing at approximate El. 1144.25. Based on the results of the borings, S&ME has performed analyses to estimate the nominal and factored bearing resistance values for spread footings founded on existing bedrock at this elevation. A summary of the recommended nominal and factored bearing resistances are provided in Table 6-5.

All existing tunnel foundations should be removed prior to the construction of the new tunnel extension foundations, and all bedrock that becomes disturbed or loosened during the demolition and foundation excavation operations should be removed prior to placement of concrete for the new foundations. Sufficient longitudinal reinforcing steel should be provided to strengthen continuous footings against any abrupt differential settlements.

Foundation bearing surfaces should be kept dry and free from standing water during all construction activities. If the foundation materials become wet or loose, additional excavation may be necessary prior to placing foundation concrete. Sumps may be required to pump water accumulations (seepage) from the foundation excavations.

Table 6-5 Recommended Nominal and Factored Bearing Resistance Values for the Tunnel Extension Foundations[‡]

Substructure Element	Rock Type	Elevation Range	Limit State	Nominal Bearing Resistance* (q _n)	Resistance Factor (φ _b)**	Factored Bearing Resistance (q _R)
South End of Tunnel (B-002-0-22)	Shale (highly to	1144.7 –	Service	20 ksf	1.0	20 ksf
	severely weathered) Shale (slightly to	1135.7	Strength	26 ksf	0.45	11.7 ksf
		1135.7 – 1124.2	Service	20 ksf	1.0	20 ksf
	moderately weathered)		Strength	80 ksf	0.45	36 ksf

* For vertical loading only, service limit state values are currently taken from presumptive values given in Table C10.6.2.6.1-1.

** Resistance Factor for Strength Limit State is given in Table 10.5.5.2.2-1 of the AASHTO LRFD.

+ See Plates 28 through 35 in Appendix C for calculations.

6.2.2 North Side Entrance Path Modular Block Walls

Due to the significantly deteriorated and generally unsafe nature of the existing timber retaining walls along the access path to the path level on the north side of the tunnel, S&ME understands that new modular block type walls are proposed to be constructed. Based on preliminary drawings provided by ms on October 11, 2022, S&ME understands the proposed walls will be approximately 4 to 12 feet high and are expected to bear near El. 1174. Based on the elevation of the top of bedrock in Borings B-006 (El. 1185.9) and B-007 (El. 1176.8) and refusal depths in DCPs D-006-1 (~El. 1175), D-006-2 (~El. 1172.5) and D-006-3 (~El. 1171), we anticipate these walls will bear on existing shale bedrock. As no explorations were able to be performed into the bedrock in the immediate area surrounding the existing timber walls, we have assumed that the upper few feet of bedrock immediately below the walls will be similar in nature to the generally moderately weathered shale encountered in the upper portion of Borings B-006, B-007, B-008 and B-009. Accordingly, we recommend the nominal and factored resistances as provided in Table 6-6 be used to design the north side access path retaining walls.

Table 6-6 Recommended Nominal and Factored Bearing Resistance Values for the NorthSide Access Path Walls[‡]

Substructure Element	Rock Type	Elevation Range	Limit State	Nominal Bearing Resistance* (q _n)	Resistance Factor (φ _b)**	Factored Bearing Resistance (q _R)
North End Path	Chala		Service	20 ksf	1.0	20 ksf
Modular Block Walls	Shale	Below El. 1174	Strength	57 ksf	0.45	25.6 ksf

* For vertical loading only, service limit state values are currently taken from presumptive values given in Table C10.6.2.6.1-1.

** Resistance Factor for Strength Limit State is given in Table 10.5.5.2.2-1 of the AASHTO LRFD.

\$ See Plate 36 in Appendix C for calculations.

An engineer from S&ME should be present to examine the condition of the bedrock at the planned bearing elevations as the excavations for these foundations are made. If the condition of the shale beneath these foundations is observed to be more weathered and or weaker than that encountered in the borings, S&ME requests the opportunity to revise the recommended bearing resistance values presented in the above table.

6.2.3 SR 9 Trestle Bridge - Northwest Abutment Wall

Based on the ground surface elevation of Boring B-010, and DCP D-010-1 performed near the failing retaining wall at the northwest abutment of the trestle bridge, S&ME anticipates the base of the proposed modular block replacement wall will bear in the very-stiff CLAY (A-7-6) encountered in Boring B-010 at the approximate proposed foundation bearing level of El. 1078. It is recommended that spread foundations for the headwalls be founded a minimum of 33 inches below surrounding grades in accordance with frost code requirements (Figure 305-3 of the 2020 ODOT *Bridge Design Manual, BDM*).

Table 6-7 summarizes the recommended nominal and factored bearing resistances (q_n and q_R) at the service and strength limit states for a proposed modular block wall bearing on the very-stiff cohesive soils encountered below the anticipated bearing elevation and accounting for the placement of the wall on an existing slope. To achieve the recommended factored bearing resistances provided in Table 6-7, the bearing surfaces should be carefully cleaned prior to placement of the modular blocks or any required bedding material. Calculations are included in Appendix III.

Table 6-7: Recommended Nominal and Factored Bearing Resistance Values for theTrestle Bridge Abutment Wall[‡]

Proposed Bearing Elevation (ft)	Limit State	Nominal Bearing Resistance, qn (ksf)	Resistance Factor, φь	Factored Bearing Resistance, qR (ksf)
FL 1070	Service	8.0*	1.0	8.0
El. 1078	Strength	10.7	0.5	5.3

* AASHTO LRFD Table C10.6.2.6.1-1.

[‡] See Plates 37 through 42 in Appendix C for calculations.

The foundation bearing surfaces should be kept dry and free from standing water during all construction activities. If the foundation materials become wet or loose, additional excavation may be necessary prior to placing the modular blocks or required bedding. Sumps may be required to pump any surface water accumulations that enter the excavation.

Recommendations regarding sliding, eccentricity and external (global) stability for the proposed retaining wall at the trestle bridge are not within our requested scope of work. If required, these analyses will be performed by others.

6.3 Stability Analyses

Cross sections provided by ms (see Appendix IV) show new fill being placed behind the proposed soldier pile and lagging walls and on the sides and on top of the tunnel extension. This new fill is generally shown to be placed up to the top of the existing hillsides on both sides of the path, except for the sections near the far north and south

termini of the project and near the north end of the existing tunnel. In these areas, more significant portions of the existing ravine slopes are not being covered by new fill, as the new fill would need to be placed with a slope that is steeper than 2H:1V. Placement of unreinforced fill slopes steeper than 2H:1V is not recommended.

S&ME performed stability evaluations of both side slopes of the cross section at the north end of the existing tunnel (Sta. 706+66.50). At this section (see Plate 20 in Appendix IV), the proposed 2H:1V slopes behind the walls intersect the existing hillsides near the approximate elevation of the top of rock with approximately 14 to 20 feet of natural soil above the top of rock and which would not be supported by the new fill. The existing soil slopes above the bedrock are currently at inclinations ranging from approximately 0.5H:1V to 0.75H:1V. Based on our observations at the site, these severely over-steepened slopes appear to be "intact" primarily due to "reinforcement" from the existing trees and their root systems and other vegetation (bio stabilization). Disturbance or damage to this "bio-reinforcement" during construction (i.e., vibrations, grubbing, backfill placement) may result in failure of these over-steepened soil slopes.

To assess the contribution of the bio stabilization, S&ME performed global stability analyses of the right and left hillsides at Sta. 706+66.50 under two conditions. The first (and current) condition included a layer of bio-stabilized soil in the upper 3 to 5 feet of the existing ground profile by incorporating a cohesion component to the strength condition of the existing soil. The cohesion was adjusted until the factor of safety was approximately 1.0, which is the point of incipient failure. The second condition then modeled the existing soil slopes without the cohesion component, which would then provide an estimate of the factor of safety of these slopes with the bio-stabilization removed or disturbed. These Factors of Safety were estimated to range from 0.2 to 0.41, which indicates failure will have occurred.

These analyses, the results of which are provided in Appendix III, Plates 43, 44, 46 and 47 were performed using the two-dimensional limit-state computer program SLIDE2 (v9.025). The Spencer method was used for the limit equilibrium calculations. The strength parameters used to represent the soil layers were determined by performing an analysis of the soils by soil type and index property characteristics and comparison to strength values (i.e., peak, fully softened and residual) from literature correlations.

To address areas of the project where over steepened slopes are present, S&ME recommends the following:

- If the proposed 2H:1V slopes behind the walls extend a significant distance up the slope and are expected to intersect the existing slopes above the top of rock elevation, continue the 2H:1V slope by regrading the existing slope to an inclination no steeper than 2H:1V. This may require slope regrading work to be performed outside of the existing right-of-way. This approach would apply from approximately Sta. 705+28.50 to Sta. 706+66.50, from Sta. 713+00 (left) to Sta. 713+25 (left), and from Sta. 713+25 to Sta. 713+48.
- For fill being placed above the tunnel extension, adjust the fill inclination so that new fill intersects the top of the slope on the existing hillside. If this requires an inclination steeper than 2H:1V, regrade the portion of the existing hillside to a 2H:1V slope as discussed in the first bullet above. This approach would apply from approximately Sta. 712+10.2 to Sta. 713+00 and from Sta. 713+00 (right) to Sta. 713+25 (right).

In addition to the bio stabilization assessment discussed above, S&ME also performed an assessment of the stability of the slopes at Sta. 706+66.50 after existing hillsides were regraded to a maximum inclination of 2H:1V, as just described. The regraded slopes included a 1-foot-thick bio stabilized surface representing conditions after

the restoration of vegetation. The analyses of the regraded slopes achieved a factor of safety exceeding 1.3 (see Plates 45 and 48 in Appendix III).

S&ME also performed stability analyses for a multiple wall sections of the proposed modular block retaining wall that is planned to replace the existing timber retaining walls along the access path to the north side of the tunnel. Results of these stability analyses indicate that a factor of safety exceeding 1.5 is anticipated for the global stability of the modular block wall. Additional analyses were performed on the slopes uphill of the proposed walls where it is proposed to regrade the slopes to a 2H:1V inclination. To achieve the minimum required factor of safety for this condition (minimum of 1.3), the upper 5 feet of the regraded slope should be over-excavated and recompacted in accordance with *CMS* Item 203 and the benching recommendations in Section 6.4 of this report. Output from the stability analyses for the retaining wall and regraded slopes are included on Plates 49 through 53 in Appendix III.

6.4 Embankment Construction

Currently proposed project drawings supplied by ms indicate that new fill will be placed to construct the slopes behind proposed retaining walls and to fill over the top of the tunnel extension. Recommendations for the placement of fill and the preparation of existing ground surfaces are provided in the following sections.

6.4.1 Site Preparation

We recommend that all vegetation, topsoil, pavement, and miscellaneous materials be removed from the footprint of the proposed fill slopes. Prior to the placement of any new fill, existing debris and talus at the base of the existing rock faces on both ends of the tunnel should be removed. This material may also be used as borrow material for backfill of the walls and tunnel provided it meets the criteria for backfill material type and drainage characteristics (see also Section 6.4.3).

6.4.2 Benching and Special Benching

After all unsuitable materials have been removed and prior to commencing fill placement, it is recommended that horizontal benches be cut into all existing sloping surfaces composed of soil which are steeper than 8(H):1(V) to permit placement and compaction of new fill in horizontal lifts. Where new fill is to be placed on an existing ground surface with a slope between 8(H):1(V) and 4(H):1(V), S&ME recommends that benching of the existing ground be performed in accordance with Item 203.05 of the ODOT *CMS*. At locations where the existing ground surface is steeper than 4(H):1(V), S&ME recommends "Special Benching" procedures as outlined in Section 800 "Special Benching and Sidehill Embankment Fills" in the ODOT *Geotechnical Design Manual (GDM)* and the ODOT *Construction Inspection Manual of Procedures (CIMP*) should be performed. Additionally, in accordance with Section 800, wherever "Special Benching" is used, Plan Note G109 from the ODOT L&D Manual, Vol. 3, should be included in the General Notes.

Where the proposed embankment configuration will require a minimal width of new fill to be placed against a steeper sloping surface, it likely will be difficult to properly compact the new fill in a horizontal fashion. Sketches illustrating several "typical" Special Benching configurations for sidehill fills on various slopes are included in Figures 800-1, 800-3 and 800-4 of the ODOT *GDM*. These configurations require a minimum distance of 8 feet between the crest of the bench back-slopes and the face of the new slope to permit compaction and grading equipment to work on a horizontal surface.

Where the last (highest) benches encompass the top of the existing slope, S&ME recommends that consideration be given to utilizing the approach outlined in Figure 800-2 of the ODOT *GDM* which constructs an over-steepened slope of temporary fill near the top of the existing slope. This process would provide sufficient width (minimum 8-foot width) for the compaction equipment without having to over-excavate and replace potentially competent sections of the existing slope. Once the fill has been placed and properly compacted to the top of existing hillside, the temporary fill may then be "shaved" off to the final designed embankment configuration. The use of smaller (narrower) compaction equipment may be considered to reduce the minimum width (8 feet) between the crest of the bench back-slopes and the face of the new slope.

During any required Special Benching procedures, S&ME also recommends the following: 1) only one (1) bench be exposed at any given time and that excavation of the next bench should not be permitted until embankment fill placement and compaction has been completed to within 1 to 2 feet of the top of the backslope of the previous bench; and, 2) the length of any given bench that is exposed should not exceed the quantity of embankment fill which may be properly placed and compacted in one (1) day.

6.4.3 Borrow Requirements and Compaction Criteria

New embankment fill should consist of inorganic soil free of all miscellaneous materials, cobbles, and boulders, which is placed in uniform, thin layers and then compacted in accordance with either *CMS* Item 203. Further, borrow materials should be selected in accordance with recommendations provided in Section 6.1.2 to avoid excessive lateral earth pressures acting on the retaining walls and tunnel extension walls.

Borrow materials should not be placed in a frozen condition or upon a frozen surface, and any sloping surfaces on which new fill is to be placed should first be benched in accordance with the recommendations presented in Section 6.4.2 of this report.

Compaction requirements for the construction of earthen embankments are based on ODOT *CMS* Item 203.07.B, which specifies a minimum percent compaction based on the dry unit weight of the type of soil fill being placed as borrow. At the time of this submittal, it is unknown if a borrow source will be required for this project. S&ME recommends that, if a borrow site is required, that sampling and testing of this borrow material be performed prior to construction to verify that the borrow soils are suitable for the planned construction.

6.4.4 Compaction/Moisture Conditioning Concerns

Exposed soil surfaces should be protected from exposure to water prior to regrading or new fill placement. Exposure of cohesive soils to water will result in a decrease in soil strength and an increase in compressibility and should be prevented. Seepage or surface runoff should not be permitted to collect and stand on exposed soil surfaces. Soils loosened/softened by standing water and/or by construction activities should be moisture conditioned (if feasible) or removed from the embankment prior to the placement of additional embankment material. The areas around the proposed construction should be graded such that all water runoff is directed away from the new site improvements during and upon completion of construction.

6.5 Groundwater Considerations

During this exploration, seepage was encountered in four (4) borings ranging from 3 to 16 feet below existing grades. Accordingly, no significant sources of groundwater are anticipated to be encountered during construction.

Surface water and groundwater (if any) should be controlled during construction as the presence of water may loosen or soften soils, causing then to exhibit instability. The quantity of water is anticipated to be limited and may likely be controlled by bailing or with portable pumps. S&ME recommends that the sides and bottoms of all excavations be closely monitored during the construction of the structure. If the soil or shale bedrock at the bottom of an excavation become softened or disturbed by construction activity or exposure to weather, it is recommended that the disturbed/softened material be undercut in accordance with the recommendations provided in Section 6.4 of this report or be removed and the footing elevation be lowered to suitable bearing material.

6.6 Temporary Excavation Considerations

In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, Part 1926, Subpart P". This document was issued to better ensure the safety of workers entering trenches or excavations. It is mandated by this federal regulation that excavations be constructed in accordance with the OSHA guidelines. It is our understanding that these regulations are being strictly enforced and if they are not closely followed, the owner and the contractor could be liable for substantial penalties.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR, Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations. If an excavation, including a trench is extended to a depth of more than twenty (20) feet, it will be necessary to have the side slopes designed by a professional engineer registered in the state where the construction is occurring.

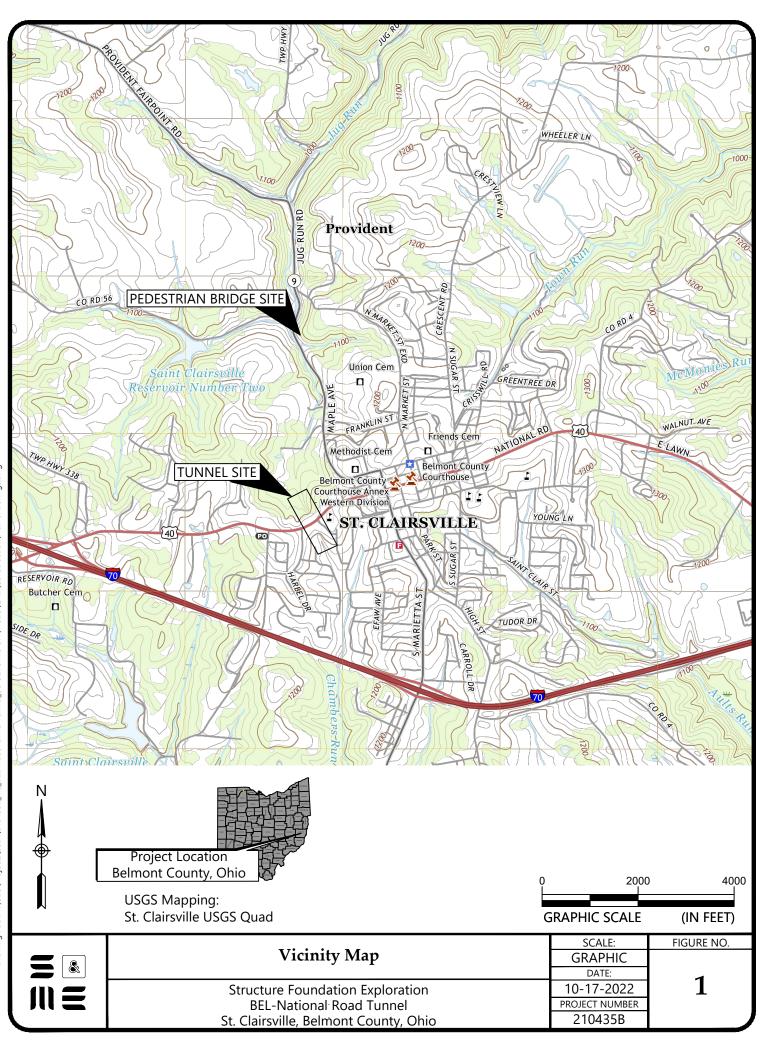
We provide this information solely as a service to our client. S&ME does not assume responsibility for construction site safety or the contractor's or other parties' compliance with local, state, and federal safety or other regulations.

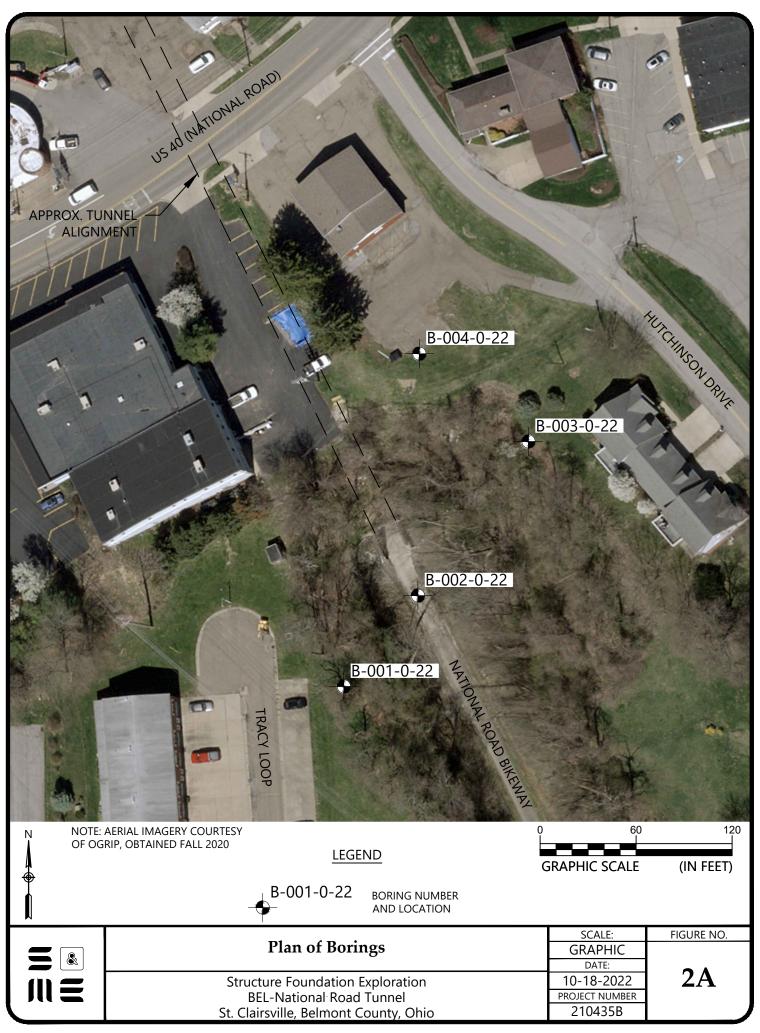
7.0 Final Considerations

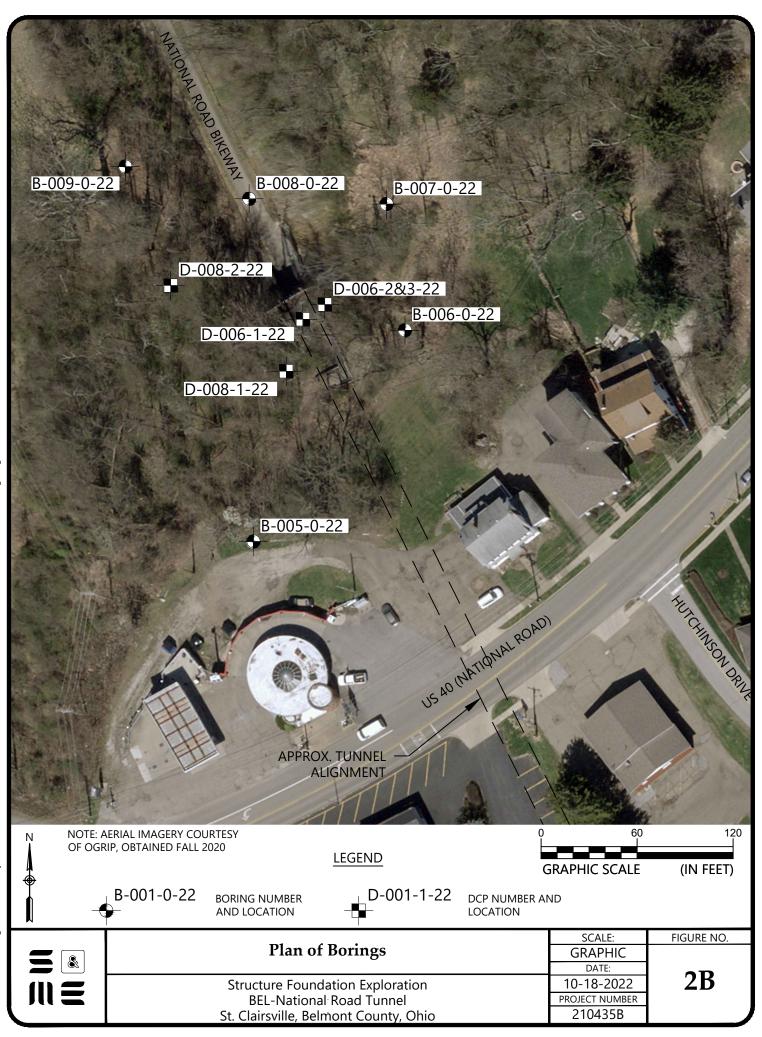
This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other representation or warranty either express or implied, is made.

We relied on project information given to us to develop our conclusions and recommendations. If project information described in this report is not accurate, or if it changes during project development, we should be notified of the changes so we can modify our recommendations based on this additional information if necessary.

Our conclusions and recommendations are based on limited data from a field exploration program. Subsurface conditions can vary widely between explored areas. Some variations may not become evident until construction. If conditions are encountered that appear different than those described in our report, we should be notified. This report should not be construed to represent subsurface conditions for the entire site.




Unless specifically noted otherwise, our field exploration program did not include an assessment of regulatory compliance, environmental conditions or pollutants or presence of any biological materials (mold, fungi, bacteria). If there is a concern about these items, other studies should be performed. S&ME can provide a proposal and perform these services if requested.


S&ME should be retained to review the final plans and specifications to confirm that earthwork and other recommendations are properly interpreted and implemented. The recommendations in this report are contingent on S&ME's review of final plans and specifications followed by our observation and monitoring of earthwork construction activities.

Appendices

Appendix I – General Project Information and Boring Logs

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Indicates sample was attempted within this depth interval.

- The number of blows required for each 6-inch increment of penetration of a "Standard"
 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer
 freely falling 30 inches (SPT). The raw "blowcount" or "N" is equal to the sum of the second and third 6-inch increments of penetration.
- N₆₀ Corrected Blowcount = [(Drill Rod Energy Ratio) / (0.60 Standard)] X N
- SS Split-barrel sampler, any size.
- ST Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-4" Number of blows (50) to drive a split-barrel sampler a certain distance (4 inches), other than the normal 6-inch increment.

DEPTH DATA

- W Depth of water or seepage encountered during drilling.
- ∇ Depth to water in boring at the end of drilling (EOD).
- ▼ 5 days Depth to water in monitoring well or piezometer in boring a certain number of days (5) after termination of drilling.
 - TR Depth to top of rock.

SOIL DESCRIPTIONS

Soils have been classified in general accordance with Section 603 of the most recent ODOT SGE, and described in general accordance with Section 602, including the use of special adjectives to designate approximate percentages of minor components as follows:

Adjective	Percent by Weight
trace	1 to 10
little	10 to 20
some	20 to 35
"and"	35 to 50

The following terms are used to describe density and consistency of soils:

<u>Term (Granular Soils)</u>	Blows per foot (N ₆₀)
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF ROCK

SAMPLING DATA

 SPT/ ROD
 When bedrock is encountered and rock core samples are attempted, the length of core recovered and lost during the core run is reported in the "REC" column. The type of rock core barrel utilized is recorded under the heading "Sampling Method" at the top of the boring log, and also in the "SAMPLE ID" column. Rock-core barrels can be of either single- or double-tube construction, and a special series of double-tube barrels, designated by the suffix M, may also be used to obtain maximum core recovery in very-soft or fractured rock. Four basic groups of barrels are used most often in subsurface investigations for engineering purposes, and these groups and the diameters of the cores obtained are as follows:

AX, AW, AXM, AWM	-	1-1/8 inches
BX, BW, BXM, BWM	-	1-5/8 inches
NX, NW, NXM, NWM	-	2-1/8 inches
NQ, NQ2	-	1-7/8 inches

Rock Quality Designation (RQD) is expressed as a percentage and is obtained by summing the total length of all core pieces which are at least 4 inches long and then dividing this sum by, either, the total length of core run or the length of the core run in a particular bedrock stratum. The RQD value is reported as a percentage in the "SPT/RQD" column. It has been found that there is a reasonably good relationship between the RQD value and the general quality of rock for engineering purposes. This relationship is shown as follows:

General Quality
Very-poor
Poor
Fair
Good
Excellent

ROCK HARDNESS

Recovered bedrock samples are described in general accordance with Section 605 of the 2007 ODOT SGE and subsequent revisions, where necessary. The following terms are used to describe rock hardness:

Meaning
Rock can be excavated readily with the point of a pick and carved with a knife. Pieces 1 inch or greater in thickness can be broken by finger pressure. Can be scratched with a fingernail.
Rock can be grooved or gouged readily by a knife or pick, and can be excavated in small fragments with moderate blows from a pick point. Small, thin pieces may be broken with finger pressure.
Rock can be grooved or gouged 0.05 inches deep with firm pressure from a knife or pick point, and can be excavated in small chips to pieces of 1 inch maximum size using hard blows from the point of a geologist's pick.
Rock can be scratched with a knife or pick. Grooves or gouges to ¼ inch deep can be excavated by hard blows of a geologist's pick. Requires moderate hammer blows to detach a hand specimen.
Rock can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach a hand specimen. Sharp and resistant edges are present on hand specimens.
Rock cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires repeated hard blows of a geologist's hammer.
Rock cannot be scratched by a knife or sharp pick. Chipping of hand specimens requires repeated hard blows of a geologist's hammer.

PROJECT:BEL-NATIONAL ROAD TUNNEL DRILLING F								TB MOBIL									79, 63		EXPLOR
TYPE: STRUCTURE SAMPLING								ME AUTO					-					EWAY	-
PID: <u>108774</u> BR ID: <u>N/A</u> DRILLING M			5" HSA / N	Q				ATE: <u>1</u>	1/25/2				DN: 1	191.	5 (MS	<u>SL)</u> E	EOB:	5(0.0 ft.
START: <u>6/14/22</u> END: <u>6/14/22</u> SAMPLING	METHOD: _		SPT / NQ		ENE	RGY F	RATIO	(%):	90*		C00	RD:		40.0	07722	26 N,	80.90	08075	W
MATERIAL DESCRIPTION		ELEV.	DEP1	-110	SPT/	N	REC	SAMPLE	HP		GRAD	ATIC)N (%	5)	ATT	ERB	ERG		ODOT
AND NOTES		1191.5	DEPI	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)
TOPSOIL - 14 INCHES	\sim				_														
		1190.3		- 1 -	2												──┦	<u> </u>	
FILL: Stiff to very-stiff brown SILTY CLAY, little fine to		1		- 2 -	2	6	50	SS-1	1.5- 2.5	-	-	-	-	-	-	-	-	23	A-6b (V)
coarse sand, trace fine gravel, many wood fragments, fe roots, damp.	v				2				2.5								\square	 '	. ,
ious, uamp.		1188.0		- 3 -	-													1 '	
Very-stiff brown mottled with gray CLAY, "and" silt, little f	ne 🖽		1		3				25										
to coarse sand, trace fine gravel, few roots, damp.		1			4	11	50	SS-2	2.5- 3.5	2	6	8	44	40	42	23	19	19	A-7-6 (12)
				<u> </u>	3								$\left - \right $			-	──┦	┣───'	
		1			1													1 '	
		1185.0		6	3			SS-3A	2.5-	-	-	-	-	-	-	-	-	27	A-7-6 (V)
Stiff to very-stiff brown SILTY CLAY, little fine to coarse		1		- 7 -	5	14	50	SS-3B	2.5- 3.5 2.0- 2.5	-	-	-	-	-	-	-	-	19	A-6b (V)
sand, trace fine gravel, few coal fragments, damp.		1			4				<u>\2.5</u> /		-						┝──┦	┢───┘	. ,
		4		8 -	1														
		-		- 9 -	2 4	17	67	SS-4	2.0- 3.5			_						20	A-6b (V)
				-	4 7	17	0/	55-4	3.5	-	-	-	-	-	-	-	-	20	(V) 00-A
				- 10 -	· ·														
				- 11 -	0												\vdash	 '	
					2	8	100	SS-5	1.0- 2.0	4	6	7	50	33	38	20	18	22	A-6b (11)
				- 12 -	<u></u> 3	,		000	2.0					00			.0		
		1178.5	-	- 13 -	_														
Very-stiff to hard gray SILTY CLAY , trace fine to coarse	🗎	-			6												\parallel	<u> </u>	
saand, trace fine gravel, probable decomposed shale, fe shale fragments, iron oxide staining, dry to damp.	v 📄	1		- 14 -	7	21	61	SS-6	3.5- 4.5+	-	-	-	-	-	-	-	-	11	A-6b (V)
Share mayinents, non oxide Stalining, dry to damp.		-		- 15 -	7				4.0+								\square	<u> </u>	. ,
		4		+	-													1 '	
		-		- 16 -	11														
		-		- 17 -	13	47	100	SS-7	4.5+	4	5	4	58	29	35	19	16	10	A-6b (10)
		1		- L	18													├ ──'	
				- 18	1													1 '	
		-		- 19 -	10				1.										
		-			30	110	50	SS-8	4.5+	-	-	-	-	-	-	-	-	7	A-6b (V)
		1		- 20 -	43												┝──┦	<u> </u>	
		1170.5		- 21 -	1														
SHALE, gray, highly weathered, very weak to weak.		-		+ 5	50-5"	-	100	SS-9	<u> </u>	-	-	-	-	-	-		-	3	Rock (V)
	E			- 22														1 '	
		-		- 23 -	1													1 '	
		1167.5			E0 4"		100	CC 40									\vdash		Rock (V)
SHALE, gray to greenish gray, slightly weathered, very w			-	- 24 -	<u>120-4"</u> _/	<u> </u>	<u>\100</u> /	SS-10	<u> </u>		<u>↓ -</u>				<u> </u>	<u>├</u>	<u> </u>		KOCK (V)
to slightly strong, laminated to medium bedding, highly to				- 25														1 '	
moderately fractured, slightly rough, blocky/disturbed/sea	mv. =			_ 25 -														1 '	
good to fair condition, gravel/broken rock zones from 24.)' to =			- 26 -	33		79	NQ-11										1 '	CORE
24.4', 25.1' to 25.5', 31.1' to 31.5'; RQD = 45%, REC = 9	3%.	-																1 '	
	E	-		27 -														1 '	
- @ 28.0' to 33.0' SDI = 3.5%				- 28 -													\vdash	└── ′	
																		1 '	
		1		- 29 -														1 '	
	L=		1	1				1	1		1		ı			1	1 7	1	1

S&ME JOB: 210

ID: <u>108774</u> BR ID: <u>N/A</u> PROJECTB <u>EL-NATIONAL</u>		JNNE STATION				9, 63' RT		: <u>6/1</u>		-	 6/14		5 2 OF		01-0-2
MATERIAL DESCRIPTION AND NOTES	ELEV. 1161.5	DEPTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)	 	FS	N (%) si		ERBEI	WC	ODOT CLASS (GI)	HOL SEALI
SHALE , gray to greenish gray, slightly weathered, very weak to slightly strong, laminated to medium bedding, highly to moderately fractured, slightly rough, blocky/disturbed/seamy, good to fair condition, gravel/broken rock zones from 24.0' to 24.4', 25.1' to 25.5', 31.1' to 31.5'; RQD = 45%, REC = 93%.		- 31 - - 32 - - 33 -	22		88	NQ-12								CORE	
(continued) - @ 37.0' to 37.4' Qu = 2,245 psi		- 34 - - 35 - - 36 - - 37 -	58		100	NQ-13								CORE	
		- 38 - - 39 - - 40 - - 41 - - 42 -	40		100	NQ-14								CORE	
		43 44 45 46 47 48 48	62		95	NQ-15								CORE	

<u>NOTES:</u> - Borehole was dry prior to coring. - Water measured at a depth of 11' after completion of coring. - SS-5, SS-7 and SS-9 were obtained from an offset boring approximately 2 feet from the original boring.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLASTIC HOLE PLUG DEVICE; SOIL CUTTINGS MIXED WITH BENTONITE

TΥ	OJECT:B <u>EL-NATIONAL ROAD TUNNEL</u> PE: <u>STRUCTURE</u> D: 108774 BR ID: N/A	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHO	LOG	GER:		KHAN	HAM	MER:	CN	TB MOBIL //E AUTOM ATE:1^	MATIC		STATI ALIGN ELEV/	ME	NT: <u>I</u>	ΝΑΤΙ	ONA	L RD	BIKE	WAY	EXPLOR B-00 2 5.5 ft.
	ART: <u>6/15/22</u> END: <u>6/15/22</u>	SAMPLING METHO	DD: _		SPT / NQ		ENE	RGY F	RATIO	(%):	90*		COOR	D: _		40.0)7727	78 N,	80.90	07857	W
	MATERIAL DESCRIPT AND NOTES	ION		ELEV. 1144.7	DEPT	ΉS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID			RADA		SI) CL		ERBI	ERG PI	WC	ODOT CLASS (GI)
	ASPHALT - 4 INCHES		X	1144.4	_		-														
W	ILL: Medium-dense to dense brownish gra /ITH SAND, trace silt, trace clay, dry to da	mp.		1142.7			7			SS-1A	-	-	-	-	-	-	-	-	-	8	A-1-b (V)
	ense brown COARSE AND FINE SAND , se ace silt, damp.	ome fine gravel,		1141.2	₩ 1141. ⁻	7 3	12 12	36	44	SS-1B	-	-	-	-	-	-	-	-	-	8	A-3a (V)
S	HALE, gray, highly weathered, very weak	to weak.			TR	_ 4 -	26 50-5"	-	100	SS-2	-	-	-	-	-	-	-	-	-	3	Rock (V)
st fra di	HALE, gray, highly to severely weathered, rong, thinly laminated to very thin bedded actured, narrow to open, slickensided to s sintegrated, poor condition, RQD = 39%, @ 8.6' to 9.0' Qu = 1,368 psi	, highly fractured to lightly rough,		1139.7	-	- 5 - - 6 - - 7 - - 8 - - 9 - - 10 -	55		85	NQ-3											CORE
m	HALE, gray, slightly to moderately weathe oderately strong, thinly laminated to medi actured to moderately fractured, narrow, s	um bedded,		1130.7	-	- 11 - - 12 - - 13 - - 13 - - 14 - - 15 -	40		78	NQ-4											CORE
rc	@ 19.5' to 19.9' Qu = 3,975 psi	67%, REC = 100%.		1119.2		- 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 23 - - 24 - - 25 -	62		100	NQ-5											CORE

₩ 2

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASPHALT PATCH; PLASTIC HOLE PLUG DEVICE; SOIL CUTTINGS MIXED WITH BENTONITE

DRILL RIG HAMMER: CALIBRAT ENERGY F 2QD N ₆₀ 3 4 3 4 4 12 4 12 4 12 8 16	CN ION D RATIO	1E AUTOM ATE:6 (%):6 SAMPLE ID SS-1 SS-2	ATIC /7/22 69.8 HP (tsf) 1.5- 2.0	[[[[G	2	MENT TION 2: FION s s s s s s c 2 4	T: <u>NA</u> I: <u>121</u> 4 (%) SI C 	ATIO 17.8 40.07 A CL	0NAL 6 (MS 7757	L RD SL) E	BIKE OB: 80.90 ERG	WAY	6.0 ft.
CALIBRAT ENERGY I PT/ N ₆₀ 3 4 4 12 4 12 4 12 8 16	ION D. RATIO REC (%) 67 67 100	ATE:6 (%):(SAMPLE ID SS-1 SS-2 SS-3A SS-3B	/7/22 69.8 HP (tsf) 1.5- 2.0 2.5- 3.0	E GR - 10	ELEVA COORI RADA CS F - 2	TION D: TION S S - - 2 4	J: 121 4 (%) si c	17.8 40.07 A CL	(MS 7757 ATTE	<u>SL)</u> E 70 N, ERBE	OB: 80.90 ERG	76 07681 	6.0 ft. W ODOT CLASS (GI)
PT/ QD N ₆₀ 3 4 4 12 4 12 4 9 5 9 8 16	REC (%) 67 67 100	SAMPLE ID SS-1 SS-2 SS-3A SS-3B	HP (tsf) 1.5- 2.0 2.5- 3.0	C GR - 10	COOR RADA CS F - 2	D: FION s s - - 2 4 -	4 (%) SI C	40.07 A CL	7757 ATTE	0 N, ERBE	80.90 ERG	07681 wc	W ODOT CLASS (GI)
$\begin{array}{c c} QD & N_{60} \\ \hline \\ 3 & 4 \\ \hline \\ 4 & 12 \\ \hline \\ 4 & 15 \\ \hline \\ 9 & 15 \\ \hline \\ 8 & 16 \end{array}$	(%) 67 67 100	ID SS-1 SS-2 SS-3A SS-3B	(tsf) 1.5- 2.0 2.5- 3.0	GR - 10	CS F - 2	2 4	(%) SI C	A CL -	ATT	ERB	ERG	WC	ODOT CLASS (GI)
$\begin{array}{c c} QD & N_{60} \\ \hline \\ 3 & 4 \\ \hline \\ 4 & 12 \\ \hline \\ 4 & 15 \\ \hline \\ 9 & 15 \\ \hline \\ 8 & 16 \end{array}$	(%) 67 67 100	ID SS-1 SS-2 SS-3A SS-3B	1.5- 2.0 2.5- 3.0	GR - 10	CS F - 2	2 4	<u></u>	-			_		CLASS (GI)
4 12 6 12 4 12 8 15 8 16	67 67 100	SS-2 SS-3A SS-3B	2.5- 3.0		2	2 4	 	-	-	-	-	25	A-7-6 (V)
4 12 6 12 4 12 8 15 8 16	67	SS-2 SS-3A SS-3B	2.5- 3.0		2	2 4	 	- 16 4	-	-	-	25	A-7-6 (V)
4 12 6 12 4 12 8 15 8 16	67	SS-2 SS-3A SS-3B	2.5- 3.0		2	2 4	- ·	- - 16	-	-	-	25	A-7-6 (V)
6 4 9 15 8 16	100	SS-3A SS-3B	2.5- 3.0		-	-	10 4						ļ
6 4 9 15 8 16	100	SS-3A SS-3B			-	-	10 4	16					
6 4 9 15 8 16	100	SS-3A SS-3B			-	-	10 4	16 ⁴	1				
6 4 9 15 8 16	100	SS-3A SS-3B			-	-		46 [,]		~	47	40	A 7 0 (44)
4 15 9 8 16			4.0- 4.5 3.5- 4.5	-		_			41	24	17	13	A-7-6 (11)
9 8 16			4.0- 4.5 3.5- 4.5	-		_							[
9 8 16			4.5 3.5- 4.5	-		_	1	+				10	A 7 0 0.0
	72		3.5- 4.5	-	-	- -		-	-	-	-	-	A-7-6 (V)
	72					-+			-	-	-	46	A-7-5 (V)
	72	SS-4											i i
	/2	SS-4		4.6								<u> </u>	
		00 -	-	10	9 1	6 4	15 2	20 6	60	44	16	37	A-7-5 (11)
	I I						+	+					
							\rightarrow	+					
9 21	78	SS-5	4.5+	-	-	_ .	- -	-	-	-	_	16	A-7-6 (V)
9							\perp	\perp				-	- (.)
													1
							+	+					
18 45 21	100	SS-6	4.5+	-	-	- -	- -	-	-	-	-	18	A-7-6 (V)
21							+	+					
							\square	\perp					
) 12 31	94	SS-7	-	1	2	3 2	24 7	70	46	27	19	21	A-7-6 (13)
15		00 /		'	-			Ľ	10	-1		~ '	
		Τ	Γ						Π	1			1
)							+	+					
40 105	100	SS-8	-	-	-	- -	- -	-	-	-	-	6	Rock (V)
50							+	+					<u> </u>
-0"/\/	\ <u>100</u> /	SS-9/	<u> </u>	^		<u> </u>	- 1 -	-	- 1	<u> </u>	<u> </u>	17	Rock (V)
													l
													1
	98	NQ-10		-	-	- -	- -	-	-	-	-	-	CORE
65													1
65													l
65													1
65													[
65													1
65													1
65													CORE
	100	NQ-11					1						
				C5 400 NO 44		65 100 NQ-11	65 100 NQ-11	65 100 NQ-11	65 100 NQ-11	65 100 NQ-11	65 100 NQ-11	65 100 NQ-11	65 100 NQ-11

S&ME JOB: 2	210435B
-------------	---------

ID: <u>108774</u>	BR ID: N/A	PROJECTB <u>EL-NATION</u>	IAL ROAD 1	UNNELSTATION	/ OFFS	ET: _	712+	13, 91' LT	S [.]	TART	: 7/2	1/22	EN	D:	7/2	1/22	P	G 2 OI	=з В-0	03-0-							
MATERIAL DESCRIPTION AND NOTES			ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	Ģ	GRADATIC		ON (%)				BERG		ODOT CLASS (GI)	HC							
			1187.8		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)								
SHALE, dark gray, slightly weathered, weak to slightly strong, laminated to thick bedded, fractured to slightly fractured, narrow to open, slightly rough, very blocky, good condition, carbonaceous from 21.0' to 23.0', 52.0' to 53.0' and 75.2' to 75.7', RQD = 59%, REC = 98%. <i>(continued)</i>			- 31 - - 32 - - 33 -	58		95	NQ-12											CORE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
				- 34 - - 35 - - 36 -	50		95																				
			- 37 - - 38 - - 39 - - 40 -	50		100	NQ-13											CORE									
@ 40.5' to 4	0.9' Qu = 2,024 psi			- 41 - - 42 - - 43 - - 44 - - 45 -	40		92	NQ-14											CORE								
				- 46 - - 47 - - 48 - - 49 - - 50 -	63		100	NQ-15											CORE								
- @ 51.0' to 56.0' SDI = 12.5%											51 - 52 - 53 - 54 - 55 -	58		100	NQ-16											CORE	
				56 - 57 - 58 - 59 - - 60 -	47		100	NQ-17											CORE								

PID: <u>108774</u>	_ BR ID:	N/A	PROJECTB <u>EL-NAT</u>	IONAL	ROAD T		ATION /	OFFSE	ET:	712+′	13, 91' LT	S ⁻		: <u>7/</u> 2				7/21/2		PG 3 C	F 3 B-0	03- 0 -2
		RIAL DESCRIP	TION		ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE					N (%)			RBER		ODOT	HOL
		AND NOTES			1155.7			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL F	PL PI	WC	CLASS (GI)	0 _ / 1
strong, lamin fractured, na condition, ca	ated to thick b row to open, s bonaceous fro	veathered, wea edded, fracture lightly rough, v m 21.0' to 23.0 REC = 98%. (c	d to slightly ery blocky, good)', 52.0' to 53.0' and				- 63 - - 64 - - 65 -	83		95	NQ-18										CORE	X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
							- 66 - - 67 - - 68 - - 69 - - 70 - - 71 -	58		98	NQ-19										CORE	
					1141.8	— EOB—	- 72 - - 73 - - 73 - - 74 - - 75 -	58		97	NQ-20										CORE	

NOTES: - No water observed during drilling. - Borehole was dry prior to coring. - Water measured at a depth of 3.5' after completion of coring. - Borehole caved at 21.0' after removal of drilling tools.

NOTES: SEE ABOVE.

PROJECT:B <u>EL-NATIONAL ROAD TUNNEL</u> D TYPE: STRUCTURE S	DRILLING FIRM / OPER SAMPLING FIRM / LOGO						TE MOBIL			STAT ALIG							S' LT WAY	EXPLORA B-004
	DRILLING METHOD:		5" HSA / NQ			-	ATE: <u>1</u> '			ELEV								9.0 ft.
START: <u>6/13/22</u> END: <u>6/13/22</u> S	SAMPLING METHOD: _	;	SPT / NQ	ENER				90*	_	000							07920	W
MATERIAL DESCRIPTIO	DN	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			GRAD			,	ATT				ODOT
AND NOTES		1230.0		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
TOPSOIL - 4 INCHES	- 6	1229.7																
Medium-stiff to stiff brown SILTY CLAY , some gravel, little fine to coarse, few roots, damp.				4 2	6	0	SS-1		_	-	_	-	_		_	_	21	A-6b (V)
g,			- 2 -	2	0	0	33-1		-	-	-	-	-	-	-	-	21	A-00 (V)
			- 3 -															
			- 4 -	2	-			0.5-										
				2 3	8	33	SS-2	0.5- 1.5	26	7	8	33	26	38	21	17	14	A-6b (8)
			- 5 -															
			- 6 -	1														
			- 7 -	1	15	33	SS-3	0.5- 1.5	-	-	-	-	-	-	-	-	23	A-6b (V)
				9														
		1221.5	- 8 -	~														
Medium-stiff to stiff brown and gray SILTY CL coarse sand, trace fine gravel, damp.	AY, little fine to		- 9 -	2 3	11	100	SS-4	0.5- 1.5	4	6	6	48	36	39	19	20	23	A-6b (12)
- @ 8.5' organic odor			- 10 -	4				1.5								 	I	. ,
C C																		
			- 11															
			- 12															
			- 13 -															
- @ 13.5' iron oxide staining			- 14 -	2				1.0										
- @ 14.5' few coal fragments				6	15	72	SS-5	1.0- 1.5	-	-	-	-	-	-	-	-	22	A-6b (V)
			- 15 -															
			- 16															
		1213.0																
Very-stiff to hard gray CLAY, trace fine to coa	rse sand, trace	-																
fine gravel, dry to damp.			- 18 -															
		1210.5	- 19	4 7	21	94	SS-6A	3.5- 4.5	1	2	3	22	72	41	21	20	14	A-7-6 (12)
Hard gray SILTY CLAY, little fine to coarse gra	avel, trace fine		- 20 -	<u> </u>	- '		SS-6B	4.5+	-	-	-	-	-	-	-	-	-	A-6b (V)
to coarse sand, probable decomposed shale,	iron oxide	1	w 1209 0 -															
staining, dry.			21 -															
- @ 19.5' few coal fragments			- 22															
			- 23 -															
				7												<u> </u>		
			- 24 -		62	50	SS-7	4.5+	-	-	-	-	-	-	-	-	12	A-6b (V)
			- 25 -	23												-		
			- 26															
			- 27															
			- 28															
			- 29 -	12 15	57	0.4	<u> </u>	4.5.	10		2	4.4	40	20	20	10	10	
		1		15 23	57	94	SS-8	4.5+	12	1	3	44	40	39	20	19	10	A-6b (12)

	JOD . 210	1550		-													-						(1)	Ξ
Big PID:	108774	BR ID:	N/A	PROJECTBEL-NAT	IONAL	ROAD T	UNNELS	TATION	/ OFFSI	ET: _	711+	14, 63' LT	S [.]	TART	: 6/1	3/22	_ EN	ND:	6/13	3/22	_ P	G 2 O	F 2 B-0	04-0-22
104		MATE	RIAL DESCRIP	TION		ELEV.	DEP	гue	SPT/	м	REC	SAMPLE	HP	G	RAD	ΑΤΙΟ	N (%) A	TTE	ERB	ERG		ODOT	HOLE
LS/2			AND NOTES			1200.0	DLI	115	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	01/110
TO LO COA Staini SHAL SHAL Iamin fractu carbo	LE, gray, f LE, gray, f LE, gray, s nated to m ured, narro onaceous f	probable d ontinued) ighly weath lightly weath edium bedd w, slightly re	ecomposed sha ered, very weak nered, weak to ed, highly fractu bugh, very bloc 15', few limestor	to weak. moderately strong,		1197.0 1196.0 1191.0	—TR	- 31 - - 32 - - 33 - - 34 - - 35 - - 36 - - 37 - - 38 - - 39	<u>50-5'</u> 62	-	<u>40</u> 98	<u>SS-9</u> NQ-10		-	-	-	-	-		-	-	10	<u>Rock (V)</u> CORE	

NOTES:

NOTES:
 SS-1 moisture content performed on auger cuttings
 recovered from 1.0' to 2.5'.
 Seepage noted at 21' during drilling.
 Borehole was dry prior to coring.
 Water measured at a depth of 26' after completion of coring.
 Borehole caved at 24' after augers were removed.

PROJECT:B <u>EL-NATIONAL ROAD TUNNEL</u> YPE:	DRILLING FIRM / OPE SAMPLING FIRM / LOO						ME ATV D ME AUTO			STAT ALIGI								EXPLOR B-00
PID: BR ID: N/A	DRILLING METHOD:		HSA / NQ			ION D		6/7/22		ELEV								6.3 ft.
START: <u>7/18/22</u> END: <u>7/18/22</u>	SAMPLING METHOD:		PT / NQ			RATIO	. ,	69.8		COOF							8906	W
MATERIAL DESCRIPT AND NOTES	ION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	(tsf)		RAD	FS	<u> </u>	_		PL		wc	ODOT CLASS (GI)
TOPSOIL - 4 INCHES		1221.9		RQD		(70)	U	(เรา)	GR	65	F3	51	UL		PL	PI	WC	
FILL: Very-stiff to hard brown and gray SILT some fine to coarse sand, some fine to coar roots, damp to moist.		(12211.9	- 1 - - 2 - - 3 -	3 3 4	8	44	SS-1	3.5- 4.5	-	-	-	-	-	-	-	-	19	A-6a (V)
FILL: Medium-stiff to stiff brown and dark br	own CLAY "and"	1218.2	- 4 -	15			SS-2A	$\frac{1}{1-1}$	<u> </u>		-	-	-		- /		26	<u>A-6a (V)</u>
fine to coarse gravel (brick fragments), som sand, little silt, few sandstone fragments, da	e fine to coarse		- 5 -	15 7	26	89	SS-2B	1.0- 1.5	37	15	11	19	18	42	25	17	15	A-7-6 (2)
			- 6 - - - 7 -	2 2 3	6	22	SS-3	0.5- 1.0	-	-	-	-	-	-	-	-	31	A-7-6 (V)
Stiff to very-stiff brown mottled with gray SIL	.TY CLAY, some	1213.9	- 8 -															
to "and" silt, little fine to coarse sand, trace t	ine gravel, damp.		- 9 - - - 10 -	3 3 4	8	78	SS-4	1.5- 3.5	-	-	-	-	-	-	-	-	26	A-6b (V)
Very-stiff black ELASTIC CLAY, "and" silt, li	ttle fine to	1210.6	- 11 -	3 7	23	89	SS-5A	1.0-	-		-	-	-	-	-	-	30	A-6b (V)
coarse sand, trace fine gravel, few coal frag	ments, damp.	1208.9	- 12 - - - 13 -	13		09	SS-5B	1.0- 1.5 2.0- 2.5	1	5	12	46	36	61	44	17	46	A-7-5 (15
Hard brown and gray CLAY , "and" silt, little t sand, trace fine gravel, similar to severely w damp.			- 14 -	5 12 17	34	100	SS-6	4.0- 4.5	-	-	-	-	-	-	-	-	17	A-7-6 (V)
			15 - - 16 -	9	40	400	00.7	4.5		_	_	45	40	40			4.0	
			- 17 -	18 23	48	100	SS-7	4.5+	1	7	5	45	42	43	24	19	16	A-7-6 (12
			18 - - 19 - -	9 9	26	72	SS-8	4.5+	-	-	-	-	-	-	-	-	6	A-7-6 (V)
		1200.6	- 20 - 	13														
SHALE, black, moderately weathered, weak strong, very thin to thin bedded, carbonaced	ous, highly 📃 🗄		—TR—21 - 22 -	3 <u>\50-5"</u> ∫	-	<u>\100</u> /	SS-9A SS-9B	↓ <u>-</u>	<u> </u>	-	-	-	-		-		<u>11</u> 5	A-7-6 (V) Rock (V)
fractured to fractured, narrow, slightly rough blocky/disturbed/seamy, fair condition, coal 21.3' to 21.4', RQD = 11%, REC = 69%.	fragments from	1197.8	- 23 - - - 24 -	47		82	NQ-10		_	-	_	-	-	-	-	_	-	CORE
SHALE, dark gray, slightly weathered, weak bedded, slightly carbonaceous, moderately fractured, narrow to tight, slightly rough, very condition, RQD = 96%, REC = 100%.	to slightly	1195.6	– 25 – – 26 –															
NOTES: - No water observed during drilling. - Borehole was dry prior to coring. - Water measured at a depth of 15.0' after c - Borehole caved at 22.0' after removal of dr																		

₩ 2

ROJECT:B <u>EL-NATIONAL ROAD TUNNEL</u> DRILLING FIRM / O YPE: <u>STRUCTURE</u> SAMPLING FIRM / L ID: 108774 BR ID: N/A DRILLING METHOD	LOGGE	R:		KHAN	HAM		CN	<u>IE ATV D</u> IE AUTOI ATE:		;	STAT ALIG ELE\	NME	NT:	NATI	ONA	L RD	BIKE	WAY	EXPLOR B-006 6.5 ft.	
TART:	D:	SP	PT / NQ / S	Т		RGY F	RATIO	(%):	69.8		coo	RD:		40.0	07873	37 N,	80.90	08558	W	10
MATERIAL DESCRIPTION AND NOTES		ELEV. 203.2	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR GR	RAD cs	ATIC FS	DN (% si	5) CL	ATT LL	ERB	ERG PI	wc	ODOT CLASS (GI)	H SE
TOPSOIL - 2 INCHES		203.0⁄																		71
Hard brown SILT AND CLAY , little fine to coarse sand, trace ine gravel, few roots, damp.				- 1 - 2 -	7 9 9	21	94	SS-1	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	
	1	197.7		- 3 - - 4 - - 5 -	7 7 7	16	89	SS-2	4.0- 4.5	6	6	7	39	42	36	24	12	14	A-6a (9)	, 7 < 7 < 7
Stiff to very-stiff gray and gray mottled with brown CLAY , and" silt, trace fine to coarse sand, few coal fragments, damp o moist.		131.1		- 6 - - 7 -	4 7 9	19	72	SS-3	3.0- 4.0	-	-	-	-	-	-	-	-	19	A-7-6 (V)	
Shelby tube obtained from 8.0' to 10.0' in offset boring.				8 -			69	ST-11	-	0	2	3	39	56	46	23	23	26	A-7-6 (14)	5 4 2
Sheby tabe obtained from 0.0 to 10.0 in onset boning.				- 9 - - 10 -	3 3 9	14	100	SS-4	1.0- 1.5	-	-	-	-	-	-	-	-	36	A-7-6 (V)	771
				- 11 - - 12 -	3 2 2	5	28	SS-5	1.0- 4.0	-	-	-	-	-	-	-	-	25	A-7-6 (V)	
	1	188.9	W 1188.9	- 13 - 	5 15	40	100	SS-6A	1.0- 3.0	-	-	-	-	-	-	-	-	23	A-7-6 (V)	
/ery-dense orangish-brown GRAVEL WITH SAND AND SILT, little clay, damp to moist.		187.7		- ₁₅	19			SS-6B	-	-	-	-	-	-	-	-	-	14	A-2-4 (V)	74
/ery-stiff orangish-brown CLAY , some fine gravel, some silt, race fine to coarse sand, damp to moist.			₩ 1187.2	2 ⁻ 16 -	5 5 6	12	100	SS-7	2.0- 2.5	30	5	3	28	34	44	27	17	25	A-7-6 (9)	
	1	184.7		- 18 -	-															
SHALE, gray, moderately weathered, laminated to thin bedding, highly to moderately fractured, narrow to open,			TR	- 19 -	50-5"	-	100	SS-8		-	-	-	-	-	-	-	-	6	Rock (V)	
lightly rough, disintegrated to blocky/disturbed/seamy, poor to air condition, RQD = 21%, REC = 85%.				20 21	0		88	NQ-9											CORE	
				- 22 - - 23 -																7 7 7 7 7 1
				- 24 - 25 -	30		83	NQ-10											CORE	V T 7 V T
	1	176.7	EOB-	- 26 -																42

- Borehole caved at 25.0' after removal of drilling tools.

NTE 14

NOTES: SEE ABOVE.

STRUCTURE PID: 108774 BR ID: N/A START: 7/19/22 END: 7/19/22	SAMPLING FIRM / LOG		S&ME / T. FROST			: <u>S&N</u>	<u>/IE ATV D</u> /IE AUTOI	50 (RE		STAT ALIG								EXPLOR B-007
	DRILLING METHOD:		" HSA / NQ					6/7/22		ELEV								7.4 ft.
JINKI. 1/10/22 END. 1/10/22	SAMPLING METHOD:		T / NQ / ST			RATIO		69.8		000							08620	
MATERIAL DESCRIPT	ION	ELEV.	DEPTHS	SPT/			SAMPLE	HP		GRAD	ATIO	N (%)	ATT	ERB	ERG		ODOT
AND NOTES		1192.7	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
TOPSOIL - 4 INCHES	/ 👫	1192.4																
Stiff to hard brown mottled with gray CLAY , fine to coarse sand, trace fine gravel, few m few coal fragments near 6', damp.	some silt, trace edium-stiff zones,		- 1 - - 2 -	1 2 2	5	72	SS-1	0.5- 1.0	-	-	-	-	-	-	-	-	25	A-7-6 (V)
			- 3 -	0														
			- 4 - - 5 -	3 5 6	13	78	SS-2	2.5- 3.5	-	-	-	-	-	-	-	-	21	A-7-6 (V)
			6	4				2.5										
		1184.7	- 7 -	6 8	16	78	SS-3	2.5- 4.5	1	1	2	33	63	45	25	20	19	A-7-6 (13)
Stiff to very-stiff brown mottled with gray SIL	T AND CLAY,		- 8 -	4		81	ST-17	-	25	14	9	25	27	34	21	13	16	A-6a (5)
some fine to coarse gravel, some fine to coa fragments, damp. - Shelby tube obtained from 8.0' to 10.0' in c			- 9 - - - 10 -	4 4 6	12	89	SS-4	1.0- 3.5	-	-	-	-	-	-	-	-	16	A-6a (V)
	3		 - 11 -	3				25										
		1179.7	- 12 -	5 7	14	94	SS-5	2.5- 3.5	-	-	-	-	-	-	-	-	14	A-6a (V)
Hard gray SANDY SILT , some clay, little fine shale fragments, similar to severely weather	e gravel, few red shale, dry.		13 14	6 6	22	100	SS-6	4.5+	16	5	1	46	32	35	25	10	13	A-4a (8)
		1176.7	- 15 -	13														
SHALE, brown, gray and red, highly to slight	tly weathered,		TR16	20	-	100	SS-7		-	-	-	-	-	-	-	-	11	Rock (V)
very weak to weak, laminated to thin bedded	d, highly to		- 17 -	50-5"		100												CORE
moderately fractured, narrow to open, slight blocky/disturbed/seamy, poor condition, fria 22.6', brown from 17.0' to 21.0' and reddish- 26.4', RQD = 30%, REC = 89%.	ble from 21.0' to		- 18 - - 19															
20.4, RQD = 30%, REO = 35%.			- 20 -	17		72	NQ-9											CORE
			- 21 - - - 22 -															
			- 23 -															
			- 24 -	20		02	NO 10											COPE
			25 - 26	30		92	NQ-10											CORE
			- 27 -															
			28															
			- 29 -															

MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N		SAMPLE			RAD		<u> </u>			ERBE	RG		ODOT	HC
AND NOTES	1162.7	DEFINS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	ODOT CLASS (GI)	SEA
SHALE, brown, gray and red, highly to slightly weathered, very weak to weak, laminated to thin bedded, highly to moderately fractured, narrow to open, slightly rough, blocky/disturbed/seamy, poor condition, friable from 21.0' to 22.6', brown from 17.0' to 21.0' and reddish-gray from 24.4' to		- 31 - 32 - 	47		100	NQ-11											CORE	V77V77V
 26.4', RQD = 30%, REC = 89%. (continued) @ 31.2' to 31.6' Qu = 1,050 psi @ 32.4' to 37.4' SDI = 20.4% SHALE, gray, slightly weathered (moderately weathered from 47.4' to 50.0'), weak to slightly strong, very thin to medium bedded, fractured to slightly fractured, narrow, slightly 	1157.3	- 33 - - 34 - - 35 - - 36 - - 37 -	48		97	NQ-12											CORE	
ough, very blocky, fair to good condition, RQD = 62%, REC = 96%.		- 38 - - 39 - - 40 - - 41 - - 42 -	67		88	NQ-13											CORE	
- @ 44.1' to 44.5' Qu = 2,062 psi		- 43 - - 44 - - 45 - - 46 - - 46 - - 47 -	65		100	NQ-14											CORE	
		- 48 - - 49 - - 50 - - 51 - - 52 -	47		98	NQ-15											CORE	
SANDSTONE, gray with dark gray, slightly weathered, medium grained, moderately strong, thin bedded, fractured to moderately fractured, narrow, very rough, blocky, good condition, RQD = 86%, REC = 100%.	1139.9 1136.9	- 53 - - 54 - - 55 -	77		100	NQ-16											CORE	
condition, RQD = 47% , REC = 100% .	1135.3	EOB - 57 -																× L 1 > 1
<u>NOTES:</u> No water observed during drilling. Borehole was dry prior to coring. Water measured at a depth of 18' after completion of coring. Borehole caved at 25.0' after removal of drilling tools.																		

TYPE: STRUCTURE	NEL DRILLING FIRM / C SAMPLING FIRM /	LOGO	GER:	S&ME / A.	KHAN	HAM	MER:	CN		MATIC	;		NME	NT:	NATI	ONA	L RD	BIKE	WAY	· .	
PID: <u>108774</u> BR ID: <u>N/A</u> START: 6/16/22 END: 6/16/22	DRILLING METHOD SAMPLING METHOD	-		5 <u>" HSA / N(</u> SPT / NQ	2			ION D RATIO	ATE: <u>1</u> (%):	1/25/2 90*		ELEV COO		JN: _						5.0 ft. W	10
MATERIAL DESC			ELEV.	DEPT	ΉS	SPT/	N ₆₀	REC	SAMPLE			RAD		· · ·	· ·		1	ERG		ODOT CLASS (GI)	Н
AND NOTE ASPHALT - 6 INCH		\mathbb{X}	<u>1145.2</u> _1144.7_			RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SE
FILL: Medium-dense grayish black GRA	/		~		- 1 -																72
trace silt, trace clay, damp.			4440.0	₩ 1143.2	2 - 2 -	9 10	29	67	SS-1	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	
Medium-dense gray GRAVEL WITH SA CLAY , damp.	ND, SILT AND		1142.2 1141.4		- 3 -	9 8			SS-2A		-	-		-	-	-	-	-	11	A-2-6 (V)	-74 -77 -77
SHALE, gray, highly weathered, very w	/				- 4 -	35 50-5"	-	100	SS-2B	-	-	-	-	-	-	-	-	-	5	Rock (V)	
			1139.7	-	- 5 -	50	-	67	SS-3	-	-	-	-	-	-	-	-	-	4	Rock (V)	
SHALE, gray, slightly weathered, very v laminated to thin bedded, highly fractur	ed to moderately				6 -																$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right $
fractured, narrow to open, slightly rough blocky/disturbed/seamy, fair condition,), POD - 23% PEC -				- 7 -																77
100%.	RQD = 2370, REC =				- 8 -	23		100	NQ-4											CORE	12
		EE			- 9 -																74
			1134.5		_ 10 -																×74
INTERBEDDED SANDSTONE (90%) AN	ID SHALE (10%),				- 11 -																
RQD = 81%, REC = 92%.					- 12 -																7>
SANDSTONE, gray, slightly weathered,					- 13 -																12
thick bedded, highly fractured to slightly slightly rough to rough, very blocky, go	od condition.				- 14 -																74
SHALE, dark gray, slightly weathered, i	nodoratoly strong				- 15 -																7
laminated, highly fractured to slightly fractured					F	85		92	NQ-5											CORE	77
rough, very blocky, good condition. - @ 10.7' to 11.1' Qu = 9,862 psi					- 16 -																/ / / / /
					- 17 -																74
					- 18 -																71
					_ 19 -																
					- 20 -																12
- @ 20.9' to 21.3' Qu = 6,748 psi					- 21 -																
			1100 6		- 22 -																74
CHALE arou alighthe weathered weath	to moderately strong.		1122.6	-	- 23 -	80		96	NQ-6											CORE	11
SHALE, gray, slightly weathered, weak	htly fractured, narrow,				- 24 -																7 × 7 7 × 7 7 × 7

≝ &

NOTES: SEE ABOVE.

PROJECT: BEL-NATIONAL ROAD TUNNEL							/IE ATV D			STAT								EXPLOR	
	SAMPLING FIRM / LOG																WAY	· I	-U-0 PA
	DRILLING METHOD:		HSA / NQ			ON D		6/7/22		ELEV)N: <u>1</u>						1.0 ft.	1(
	SAMPLING METHOD: _		SPT / NQ	ENEF				69.8		COO		NI (0/				_	09145		
MATERIAL DESCRIPTIO AND NOTES	DN	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID			RAD cs					ERBE PL	ERG PI	wc	ODOT CLASS (GI)	H
TOPSOIL - 2 INCHES		1177.2 \1177.0		RQD		(%)	U	(tsf)	GR	5	FS	51	CL	LL	PL	PI	VVC		5L 1
Hard brown mottled with gray SILTY CLAY, the coarse sand, trace fine gravel, damp.	race fine to	<u>\</u>		2 6	14	56	SS-1	4.5+	_	_	_	_	_	_	_	_	19	A-6b (V)	
			- 2 + - 3 -	6															7 4 7
			4 5	4 8 10	21	89	SS-2	4.5+	1	2	3	30	64	39	23	16	16	A-6b (10)	
Hard reddish-brown SILT AND CLAY , trace fi sand, trace fine gravel, damp.	ne to coarse	1171.7	- 6 -	5 7	16	67	SS-3	4.5+	_	_	_	_	_				18	A-6a (V)	12
			- 7 + - 8 -	<u> </u>	10	07	00-0	4.57			-	-	-	_	-		10	∩-0a (v)	7477
		1100 7	- 9 - - 10 -	4 6 8	16	78	SS-4	4.0- 4.5	2	2	3	43	50	38	24	14	19	A-6a (10)	ź.
Hard gray and brown SILT AND CLAY , trace sand, trace fine gravel, few shale fragments,	fine to coarse similar to	1166.7	- 11 -	12 24	63	89	SS-5	4.5+	_	_	_	_	_		_		9	A-6a (V)	7477
severely weathered shale, dry.			12 13	30	00	03		4.0+	_		_	_	_		_			A-0a (V)	
			- 14 - - 15 -	11 11 15	30	100	SS-6	4.5+	3	3	2	54	38	35	23	12	10	A-6a (9)	77V77
		1161.2	TD 16																$\left \frac{1}{2} \right $
SHALE, gray, slightly to moderately weathered	ed, slightly to			35 \ <u>50-5"</u> /	-	100	SS-7		-	-	-	-	-	-	-	-	6	Rock (V)	4>
moderately strong, thin to medium bedded, h moderately fractured, narrow to open, slightly blocky, fair to good condition, RQD = 49%, R	rough, very		- 17 - - - 18 -	0		100	NQ-8											CORE	
			- 19 - - 20 - - 21 -	60		98	NQ-9											CORE	, 7 V T 7 V T 7 V
- @ 23.0' to 28.0' SDI = 9.4%			- 22 - - 23 -																77777
			- 24 - - 25 - - 26 -	37		100	NQ-10											CORE	V 7 7 7 7 V
- @ 27.0' to 27.4' Qu = 4,757 psi			- 27 - - - 28 -																

PID: <u>108774</u>	BR ID:	N/A	PROJECTBEL-NAT	TIONAL	ROAD T	UNNE	STATION	/ OFFSI	ET:	705+6	3, 57' RT	S	TART	: 7/2	20/22	EN	D:	7/20/22	P(G 2 O	F 2 B-00)9-0-22
	MATE	RIAL DESCRIP	TION		ELEV.	DEI	PTHS	SPT/	N ₆₀	REC	SAMPLE	ΗP	0	RAD	ATIO	N (%)	/	ATTERB	ERG		ODOT	HOLE
		AND NOTES			1147.2		1110	RQD	IN60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL PL	PI	WC	CLASS (GI)	SEALE
RQD = 56%, I SHALE, gray	REC = 96%. and brown, s	ightly weathered	d, slightly to		_ <u>1146.7</u> _		- 	80		100	NQ-11										CORE	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
moderately fr blocky, fair to SANDSTONE medium grain	actured, narro good condition, light and da red, strong, th red, narrow, v	rk gray, slightly in to medium be ery rough, block	tly rough, very				- 33 - - 34 - - 35 - - 36 - - 37 -	30		93	NQ-12										CORE	
					1136.2		38 - 39 - 40 -	72		97	NQ-13										CORE	

NOTES: - No water observed during drilling. - Borehole was dry prior to coring. - Water measured at a depth of 17' after completion of coring. - Borehole caved at 21.0' after removal of drilling tools.

NOTES: SEE ABOVE.

S&ME JOB: 210435B																			Č.
Same JOB. 210455B																			Ξ
PROJECT: BEL-NATIONAL ROAD TUNNEL							TB MOBIL			STAT						98, 1'		EXPLOR	
TYPE:STRUCTURE	SAMPLING FIRM / LOG				MER:												WAY		0-0-22 PAGE
PID: <u>108774</u> BR ID: <u>N/A</u>	DRILLING METHOD:	3.25	HSA / NQ				ATE: <u>1</u>			ELEV		DN: <u>1</u>						5.0 ft.	1 OF 1
START: <u>6/16/22</u> END: <u>6/16/22</u>	SAMPLING METHOD:		SPT		RGY F	RATIO	. ,	90*	_	000	-			_	,		09453		
MATERIAL DESCRIPTI AND NOTES	ON	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	RAD	FS	<u> </u>) CL		ERBE PL	=RG PI	wc	ODOT CLASS (GI)	HOLE
AND NOTES ASPHALT - 17 INCHES	XX	1087.6		RQD		(%)	U	(ເຣເ)	GR	5	F3	51	UL	LL	PL	PI	WC		
	\otimes	1086.2	- 1 -																
FILL: Medium-dense black COARSE AND F	INE SAND,		- 2 -	3															$\overline{1}^{\mu\nu}$
some fine gravel, little silt, trace clay, few co	al fragments,			3 4	11	67	SS-1	-	-	-	-	-	-	-	-	-	15	A-3a (V)	1761
damp.	••••• •••••	1084.1	- 3 -	· · ·															
FILL: Very-stiff (est.) grayish brown SILT AN fine to coarse sand, little fine gravel, few sha		2	- 4 -	2 4	14	50	SS-2	_	20	22	15	29	14	31	20	11	17	A-6a (2)	JLV J
to damp.	ale fragments, dry			. 5			00 -							•••				/ 00 (2)	1741
		1																	
		1080.8		2 4	17	78	SS-3A	-	-	-	-	-	-	-	-	-	14	A-6a (V)	
FILL: Medium-dense gray GRAVEL (shale a	nd sandstone	5	- 7 -	47	17	10	SS-3B	-	-	-	-	-	-	-	-	-	2	A-1-a (V)	1 1 < L
fragments), little to some fine to coarse sand	d, trace silt, dry.		- 8 -																
POSSIBLE FILL: Very-stiff brown and gray		-	- 9 -	2				2 5-											S N S
some fine to coarse sand, little fine to coarse	CLAY, some silt, e gravel, few coal			3 4	11	67	SS-4	2.5- 3.5	17	9	12	21	41	41	23	18	21	A-7-6 (9)	1761
fragments, dry to damp.		-	10 -	· · ·															
		-	- 11 -	2															
		1075.1	- 12 -	3	9	67	SS-5	2.0- 2.7	-	-	-	-	-	-	-	-	23	A-7-6 (V)	17<1
Very-stiff brown SILT AND CLAY, some fine	to coarse sand	1075.1	│ ├ ┗	3															
trace fine gravel, damp.		1073.7	- 13 -	2			SS-6A	20-						-	_		18	A-6a (V)	
Very-stiff to hard brown CLAY, "and" silt, tra-	ce fine to coarse	-	14	3 2	8	67	 SS-6B	2.0- \ <u>3.5</u> / 3.0-		2	5	46	46	46	25	21		A-7-6 (14)	1 1 < 1
sand, trace fine gravel, moist.		1072.6	EOB-15-	3			00.05	$\frac{3.0}{4.5}$	'	-	U	40	40	40	20	21	00	////0(14)	
NOTES: - No water observed during drilling. - Borehole caved at a depth of 12' and was o dry.	observed to be																		

 $\leq \&$

PLATE 20

NOTES: SEE ABOVE.

		PROJECT NUMBER:	210435B
		DATE STARTED:	07-22-2022
		DATE COMPLETED:	07-22-2022
HOLE #:	D-006-1-22		
CREW:	A. Khan, H. Fisher	SURFACE ELEVATION:	1179
PROJECT:	BEL-National Road Tunnel	WATER ON COMPLETION:	Dry
ADDRESS:	N Main Street, St. Clairsville, OH	HAMMER WEIGHT:	35 lbs.
LOCATION:	Sta. 706+88, 0.2 Rt.	CONE AREA:	10 sq. cm

	BLOWS RESISTANCE GRAPH OF CONE RESISTANCE						FANCE		TESTED CO	NSISTENCY
DEPT	ГН	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		0	0.0					0	VERY LOOSE	VERY SOFT
-		1	4.4	•				1	VERY LOOSE	VERY SOFT
-	1 ft	1	4.4	•				1	VERY LOOSE	VERY SOFT
-		2	8.9	••				2	VERY LOOSE	SOFT
-		3	13.3	•••				3	VERY LOOSE	SOFT
-	2 ft	4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-		10	44.4	•••••	•••••			12	MEDIUM DENSE	STIFF
-	3 ft	11	48.8	•••••	•••••			13	MEDIUM DENSE	STIFF
- 1 m		12	53.3	•••••	•••••			15	MEDIUM DENSE	STIFF
-		22	84.9	•••••	•••••	••••		24	MEDIUM DENSE	VERY STIFF
-	4 ft	12	46.3	•••••	•••••			13	MEDIUM DENSE	STIFF
-		20	77.2	•••••	••••••	•••		22	MEDIUM DENSE	VERY STIFF
-		20	77.2	•••••	••••••	•••		22	MEDIUM DENSE	VERY STIFF
-	5 ft	16	61.8	•••••	•••••			17	MEDIUM DENSE	VERY STIFF
-		12	46.3	•••••	•••••			13	MEDIUM DENSE	STIFF
-		10	38.6	•••••	•••••			11	MEDIUM DENSE	STIFF
-	6 ft	30	115.8	•••••	••••••	•••••		25 +	DENSE	HARD
-										
- 2 m										
-	7 ft									
-										
-										
-	8 ft									
-										
-										
-	9 ft									
-										
-										
- 3 m 1	10 ft									
-										
-										
-										
- 1	11 ft									
-										
-										
- 1	12 ft									
-										
-										
- 4 m 1	13 ft									

	PROJECT NUMBER:	210435B
	DATE STARTED:	07-22-2022
	DATE COMPLETED:	07-22-2022
HOLE #: <u>D-006-2-22</u>	_	
CREW: A. Khan, H. Fisher	SURFACE ELEVATION:	1178
PROJECT: BEL-National Road Tunnel	WATER ON COMPLETION:	Dry
ADDRESS: 247 W Main Street, St. Clairsville, OH	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 706+77, 12.5' Lt.	CONE AREA:	10 sq. cm

		BLOWS	RESISTANCE	GRAPH OF CO	NE RESISTA	ANCE		TESTED CO	NSISTENCY
DEP	ТН	PER 10 cm	Kg/cm ²	0 50	100	150	N'	NON-COHESIVE	COHESIVE
-		0	0.0				0	VERY LOOSE	VERY SOFT
-		1	4.4	•			1	VERY LOOSE	VERY SOFT
-	1 ft	2	8.9	••			2	VERY LOOSE	SOFT
-		2	8.9	••			2	VERY LOOSE	SOFT
-		1	4.4	•			1	VERY LOOSE	VERY SOFT
-	2 ft	1	4.4	•			1	VERY LOOSE	VERY SOFT
-		1	4.4	•			1	VERY LOOSE	VERY SOFT
-		2	8.9	••			2	VERY LOOSE	SOFT
-	3 ft	1	4.4	•			1	VERY LOOSE	VERY SOFT
- 1 m		1	4.4	•			1	VERY LOOSE	VERY SOFT
-		1	3.9	•			1	VERY LOOSE	VERY SOFT
-	4 ft	3	11.6	•••			3	VERY LOOSE	SOFT
-		8	30.9	•••••			8	LOOSE	MEDIUM STIFF
-		13	50.2	•••••			14	MEDIUM DENSE	STIFF
-	5 ft	18	69.5	•••••			19	MEDIUM DENSE	VERY STIFF
-		21	81.1	•••••	•••		23	MEDIUM DENSE	VERY STIFF
-									
-	6 ft								
-									
- 2 m									
-	7 ft								
-									
-									
-	8 ft								
-									
-									
-	9 ft								
-									
-									
- 3 m	10 ft								
-									
-									
-									
-	11 ft								
-									
-									
-	12 ft								
-									
-									
- 4 m	13 ft								

		PROJECT NUMBER:	210435B
		DATE STARTED:	07-22-2022
		DATE COMPLETED:	07-22-2022
HOLE #:	D-006-3-22	-	
CREW:	A. Khan, H. Fisher	SURFACE ELEVATION:	1176
PROJECT:	BEL-National Road Tunnel	WATER ON COMPLETION:	Dry
ADDRESS:	247 W Main Street, St. Clairsville, OH	HAMMER WEIGHT:	35 lbs.
LOCATION:	Sta. 706+79, 11.6' Lt.	CONE AREA:	10 sq. cm

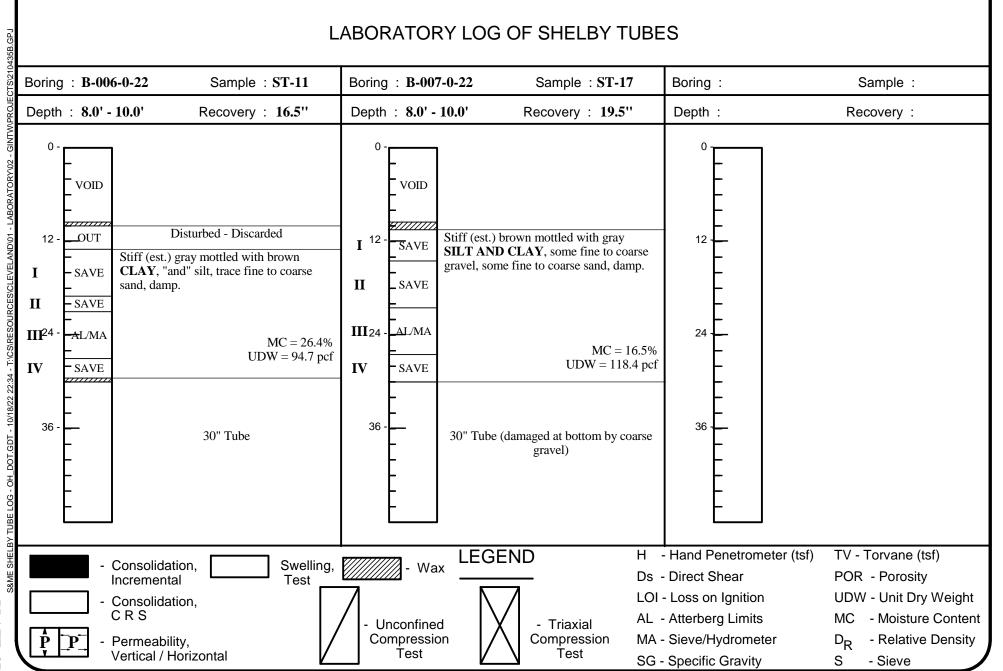
		BLOWS	BLOWS RESISTANCE GRAPH OF CONE RESISTANCE				ANCE		TESTED CO	NSISTENCY
DEF	PTH	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		0	0.0					0	VERY LOOSE	VERY SOFT
-		0	0.0					0	VERY LOOSE	VERY SOFT
-	1 ft	1	4.4	•				1	VERY LOOSE	VERY SOFT
-		1	4.4	•				1	VERY LOOSE	VERY SOFT
-		2	8.9	••				2	VERY LOOSE	SOFT
-	2 ft	2	8.9	••				2	VERY LOOSE	SOFT
-		2	8.9	••				2	VERY LOOSE	SOFT
-		4	17.8	••••				5	LOOSE	MEDIUM STIFF
-	3 ft	5	22.2	•••••				6	LOOSE	MEDIUM STIFF
- 1 m		5	22.2	•••••				6	LOOSE	MEDIUM STIFF
-		10	38.6	•••••	••••			11	MEDIUM DENSE	STIFF
-	4 ft	8	30.9	•••••	•			8	LOOSE	MEDIUM STIFF
-		8	30.9	•••••	•			8	LOOSE	MEDIUM STIFF
-		3	11.6	•••				3	VERY LOOSE	SOFT
-	5 ft	30	115.8	•••••	•••••	•••••		25+	DENSE	HARD
-										
-										
-	6 ft									
-										
- 2 m										
-	7 ft									
-										
-										
-	8 ft									
-										
-										
-	9 ft									
-										
-										
- 3 m	10 ft									
-										
-										
-										
-	11 ft									
-										
-										
-	12 ft									
-										
-										
- 4 m	13 ft									

		PROJECT NUMBER:	210435B
		DATE STARTED:	09-29-2022
		DATE COMPLETED:	09-29-2022
HOLE #:	D-008-1-22	_	
CREW:	A. Khan, K. Harper	SURFACE ELEVATION:	1200
PROJECT:	BEL-National Road Tunnel	WATER ON COMPLETION:	Dry
ADDRESS:	247 W Main Street, St. Clairsville, OH	HAMMER WEIGHT:	35 lbs.
LOCATION:	Sta. 707+17, 20.5' Rt.	CONE AREA:	10 sq. cm

	BLOWS	RESISTANCE	GRAPH OF CONE RESISTA	ANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100	150	N'	NON-COHESIVE	COHESIVE
-	5	22.2	•••••		6	LOOSE	MEDIUM STIFF
-	5	22.2	•••••		6	LOOSE	MEDIUM STIFF
- 1 ft	10	44.4	•••••		12	MEDIUM DENSE	STIFF
-	23	102.1	•••••		25+	MEDIUM DENSE	VERY STIFF
-	18	79.9	•••••		22	MEDIUM DENSE	VERY STIFF
- 2 ft	19	84.4	•••••		24	MEDIUM DENSE	VERY STIFF
-	18	79.9	•••••		22	MEDIUM DENSE	VERY STIFF
-	20	88.8	•••••		25	MEDIUM DENSE	VERY STIFF
- 3 ft	20	88.8	•••••		25	MEDIUM DENSE	VERY STIFF
- 1 m	23	102.1	•••••		25+	MEDIUM DENSE	VERY STIFF
-	19	73.3	•••••		20	MEDIUM DENSE	VERY STIFF
- 4 ft	18	69.5	•••••		19	MEDIUM DENSE	VERY STIFF
-	16	61.8	•••••		17	MEDIUM DENSE	VERY STIFF
-	20	77.2	•••••		22	MEDIUM DENSE	VERY STIFF
- 5 ft	26	100.4	•••••		25+	MEDIUM DENSE	VERY STIFF
-	30	115.8	•••••		25+	DENSE	HARD
-	32	123.5	•••••		25+	DENSE	HARD
- 6 ft	30	115.8	•••••		25+	DENSE	HARD
-	25	96.5	•••••		25+	MEDIUM DENSE	VERY STIFF
- 2 m	15	57.9	•••••		16	MEDIUM DENSE	VERY STIFF
- 7 ft	18	61.6	•••••		17	MEDIUM DENSE	VERY STIFF
-	28	95.8	•••••		25+	MEDIUM DENSE	VERY STIFF
-	21	71.8	•••••		20	MEDIUM DENSE	VERY STIFF
- 8 ft	13	44.5	•••••		12	MEDIUM DENSE	STIFF
-	17	58.1	•••••		16	MEDIUM DENSE	VERY STIFF
-	26	88.9	•••••		25	MEDIUM DENSE	VERY STIFF
- 9 ft	11	37.6	•••••		10	LOOSE	STIFF
-	10	34.2	•••••		9	LOOSE	STIFF
-	7	23.9	•••••		6	LOOSE	MEDIUM STIFF
- 3 m 10 ft	8	27.4	•••••		7	LOOSE	MEDIUM STIFF
-	9	27.5	•••••		7	LOOSE	MEDIUM STIFF
-	13	39.8	•••••		11	MEDIUM DENSE	STIFF
-	17	52.0	•••••		14	MEDIUM DENSE	STIFF
- 11 ft	11	33.7	•••••		9	LOOSE	STIFF
-	19	58.1	•••••		16	MEDIUM DENSE	VERY STIFF
-	12	36.7	•••••		10	LOOSE	STIFF
- 12 ft	13	39.8	•••••		11	MEDIUM DENSE	STIFF
-							
-							
- 4 m 13 ft							

	PROJECT NUMBER:	210435B
	DATE STARTED:	09-29-2022
	DATE COMPLETED:	09-29-2022
HOLE #: D-008-2-22	_	
CREW: A. Khan, K. Harper	SURFACE ELEVATION:	1186
PROJECT: BEL-National Road Tunnel	WATER ON COMPLETION:	Dry
ADDRESS: 247 W Main Street, St. Clairsville, OH	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 706+30, 72.5' Rt.	CONE AREA:	10 sq. cm

	BLOWS	RESISTANCE	GRAPH OF CONE	RESISTANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50	100 150	N'	NON-COHESIVE	COHESIVE
-	4	17.8	••••		5	LOOSE	MEDIUM STIFF
-	14	62.2	•••••		17	MEDIUM DENSE	VERY STIFF
- 1 ft	27	119.9	•••••	•••••	25+	DENSE	HARD
-	26	115.4	•••••	•••••	25 +	DENSE	HARD
-	27	119.9	•••••	•••••	25 +	DENSE	HARD
- 2 ft	20	88.8	•••••	•	25	MEDIUM DENSE	VERY STIFF
-	20	88.8	•••••	•	25	MEDIUM DENSE	VERY STIFF
-	26	115.4	•••••	•••••	25 +	DENSE	HARD
- 3 ft	21	93.2	•••••	•••	25 +	MEDIUM DENSE	VERY STIFF
- 1 m	22	97.7	•••••	••••	25 +	MEDIUM DENSE	VERY STIFF
-	25	96.5	•••••	•••	25+	MEDIUM DENSE	VERY STIFF
- 4 ft	32	123.5	•••••	•••••	25+	DENSE	HARD
-	23	88.8	•••••	•	25	MEDIUM DENSE	VERY STIFF
-	27	104.2	•••••	•••••	25 +	MEDIUM DENSE	VERY STIFF
- 5 ft	30	115.8	•••••	•••••	25 +	DENSE	HARD
-	30	115.8	•••••	•••••	25 +	DENSE	HARD
-	30	115.8	•••••	•••••	25 +	DENSE	HARD
- 6 ft	30	115.8	•••••	•••••	25 +	DENSE	HARD
-	31	119.7	•••••	•••••	25 +	DENSE	HARD
- 2 m							
- 7 ft							
-							
-							
- 8 ft							
-							
-							
- 9 ft							
-							
-							
- 3 m 10 ft							
-							
-							
-							
- 11 ft							
-							
-							
- 12 ft							
-							
-							
- 4 m 13 ft							

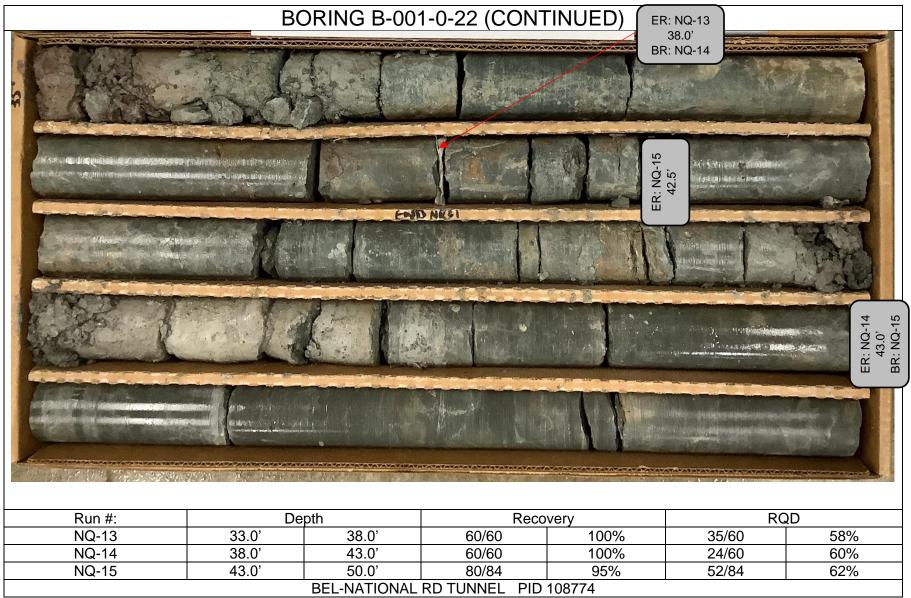

		PROJECT NUMBER:	210435B
		DATE STARTED:	09-29-2022
		DATE COMPLETED:	09-29-2022
HOLE #:	D-010-1-22		
CREW:	A. Khan, K. Harper	SURFACE ELEVATION:	1082
PROJECT:	BEL-National Road Tunnel	WATER ON COMPLETION:	Dry
ADDRESS:	SR 9, St. Clairsville, OH	HAMMER WEIGHT:	35 lbs.
LOCATION:	Sta. 667+97, 15.9' Rt.	CONE AREA:	10 sq. cm

	BLOWS	RESISTANCE	GRAPH OF CONE RESI	STANCE		TESTED CO	NSISTENCY
DEPTH	PER 10 cm	Kg/cm ²	0 50 100	150	N'	NON-COHESIVE	COHESIVE
-	6	26.6	•••••		7	LOOSE	MEDIUM STIFF
-	8	35.5	•••••		10	LOOSE	STIFF
- 1 ft	9	40.0	•••••		11	MEDIUM DENSE	STIFF
-	12	53.3	•••••		15	MEDIUM DENSE	STIFF
-	12	53.3	•••••		15	MEDIUM DENSE	STIFF
- 2 ft	13	57.7	•••••		16	MEDIUM DENSE	VERY STIFF
-	14	62.2	•••••		17	MEDIUM DENSE	VERY STIFF
-	18	79.9	•••••		22	MEDIUM DENSE	VERY STIFF
- 3 ft	5	22.2	•••••		6	LOOSE	MEDIUM STIFF
- 1 m	5	22.2	•••••		6	LOOSE	MEDIUM STIFF
-	7	27.0	•••••		7	LOOSE	MEDIUM STIFF
- 4 ft	8	30.9	•••••		8	LOOSE	MEDIUM STIFF
-	10	38.6	•••••		11	MEDIUM DENSE	STIFF
-	10	38.6	•••••		11	MEDIUM DENSE	STIFF
- 5 ft	11	42.5	•••••		12	MEDIUM DENSE	STIFF
-	11	42.5	•••••		12	MEDIUM DENSE	STIFF
-	13	50.2	•••••		14	MEDIUM DENSE	STIFF
- 6 ft	14	54.0	•••••		15	MEDIUM DENSE	STIFF
-	12	46.3	•••••		13	MEDIUM DENSE	STIFF
- 2 m	10	38.6	•••••		11	MEDIUM DENSE	STIFF
- 7 ft	5	17.1	••••		4	VERY LOOSE	SOFT
-	7	23.9	•••••		6	LOOSE	MEDIUM STIFF
-	18	61.6	•••••		17	MEDIUM DENSE	VERY STIFF
- 8 ft	12	41.0	•••••		11	MEDIUM DENSE	STIFF
-	10	34.2	•••••		9	LOOSE	STIFF
-	7	23.9	•••••		6	LOOSE	MEDIUM STIFF
- 9 ft	9	30.8	•••••		8	LOOSE	MEDIUM STIFF
-	10	34.2	•••••		9	LOOSE	STIFF
-	7	23.9	•••••		6	LOOSE	MEDIUM STIFF
- 3 m 10 ft	7	23.9	•••••		6	LOOSE	MEDIUM STIFF
-	35	107.1	•••••		25 +	MEDIUM DENSE	VERY STIFF
-	50	153.0	•••••	•••••	25 +	DENSE	HARD
-							
- 11 ft							
-							
-							
- 12 ft							
-							
-							
- 4 m 13 ft							

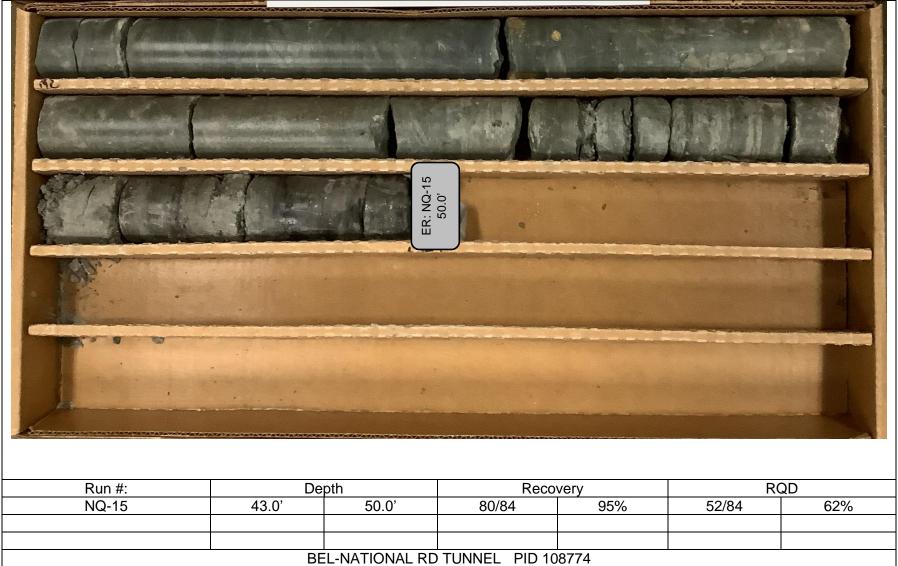
JOB NUMBER : 210435B

PROJECT : BEL-NATIONAL ROAD TUNNEL

PID : 108774


Appendix II – Rock Core Lab Test Results

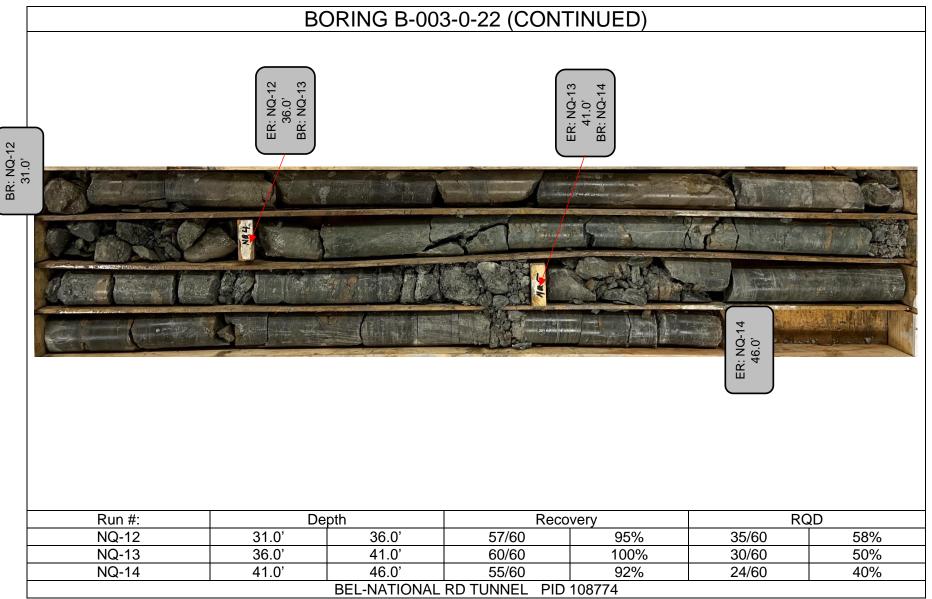
BORING B-001-0-22 BR: NQ-11 24.0' 1 ER: NQ-11 28.0' BR: NQ-12 1 . S. S. S. FIC ER: NQ-12 33.0' BR: NQ-13 ENAME?


Run #:	Depth		Reco	very	RQD								
NQ-11	24.0'	28.0'	38/48	79%	16/48	33%							
NQ-12	28.0'	33.0'	53/60	88%	13/60	22%							
NQ-13	33.0'	38.0'	60/60	100%	35/60	58%							
		BEL-NATIONAL	RD TUNNEL PID	108774	BEL-NATIONAL RD TUNNEL PID 108774								

BORING B-001-0-22 (CONTINUED)

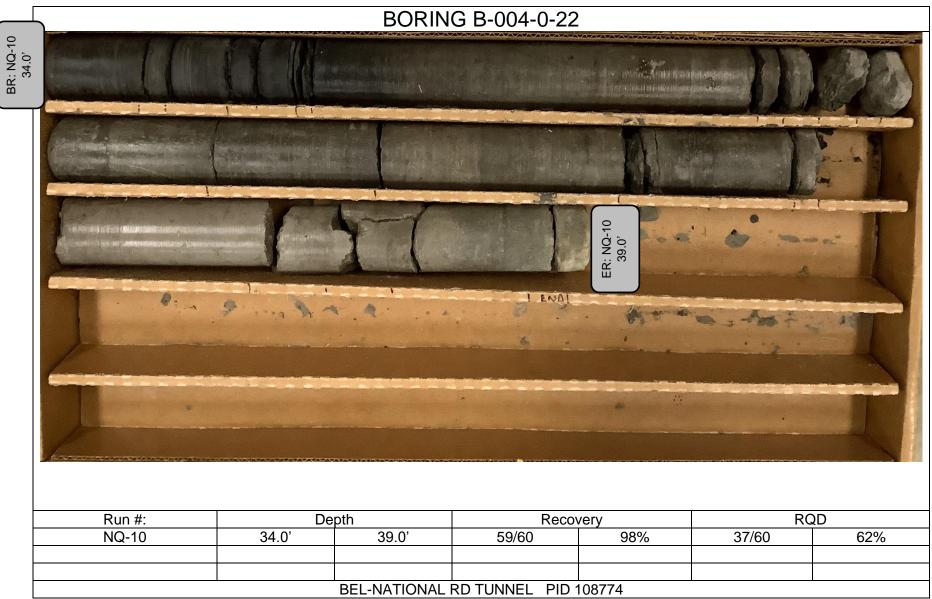
BORING B-002-0-22

5.0 [,]						
	man all stalls from	- KZ			A	
And	2.5 4	ENO NO	ER: NQ-3 10.5' BR: NQ-4	AND A		12.0
	A		M.			
					ER: NQ-4 15.5'	
Run #:	De	pth	Reco	werv	RC	
NQ-3 NQ-4	<u> </u>	10.5' 15.5'	56/66 47/60	85% 78%	36/66 24/60	55% 40%
			TUNNEL PID 10		24/00	40 /0

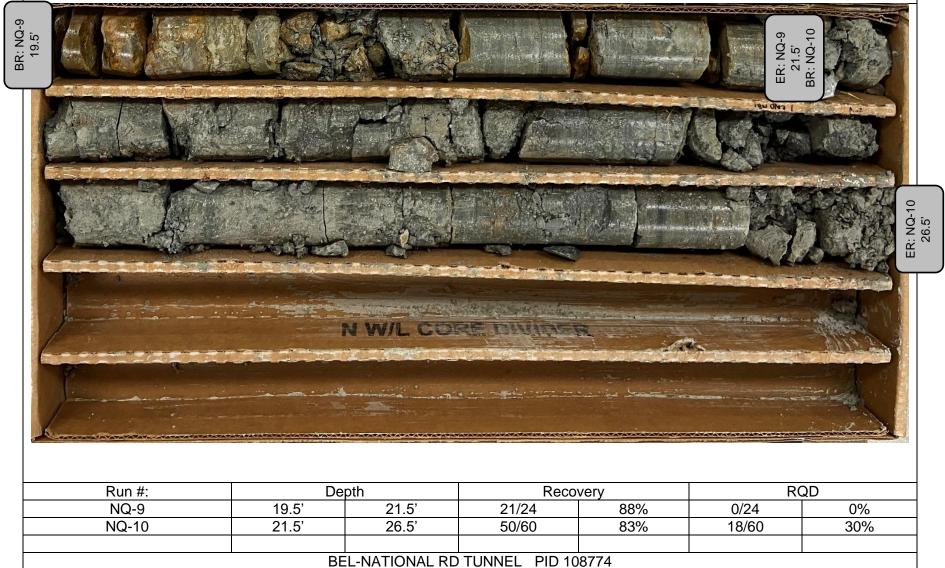

BORING B-002-0-22 (CONTINUED)

BR: NQ-5 15.5'						
				I.		
en entretien på stade forskaller entretande En stade er en en de Påd mene Basis angeste stade	montaliju ja konstanta mantaliju ja konstanta sekara seka				1	
		12-				ER: NQ-5
Run #:	De		Reco		RC	
NQ-5	15.5'	25.5'	120/120	100%	74/120	62%
	BE	L-NATIONAL RD	TUNNEL PID 10	08774		

			BORING	B-003-0-22			
	Contraction of the second	anna ann an 1973. An tha ann an tha an tha ann an tha an tha ann an tha ann an tha an tha ann an tha an tha an Tha ann ann an tha ann a	in the second				M
Run #: Depth Recovery RQD NQ-10 21.0' 26.0' 59/60 98% 39/60 65%	and end of recommender for an an an an	A CONTRACTOR		norma preservação de la	No. of Concession, Name		
Run #: Depth Recovery RQD NQ-10 21.0' 26.0' 59/60 98% 39/60 65%			ER: NQ-10	BK: NQ-11	mat () to Symmetry at		
Run #: Depth Recovery RQD NQ-10 21.0' 26.0' 59/60 98% 39/60 65%			No the part of the second	whereas a comparison of the state			Personal and a second
NQ-10 21.0' 26.0' 59/60 98% 39/60 65%	providence and the second of the	a series a const d Kill and Capacity of Announces			- Ale	2 A	EB. NOT
NQ-10 21.0' 26.0' 59/60 98% 39/60 65%	Run #:	Der	oth	Rec	overy	RC	QD
	NQ-10	21.0'	26.0'	59/60	98%		
BEL-NATIONAL RD TUNNEL PID 108774						00,00	0070







BORING B-006-0-22

BORING B-007-0-22

BORING B-007-0-22 (CONTINUED)

27.4'				A strain and a str		
			na ann an Air Star Air Air		an a	
			ER: NQ-11 32.4' BR: NQ-12	I MAYS		
		ne gi an ann fa annhair y martair an tartar a				
Run #:		pth	Reco	very	RG	
NQ-11 NQ-12	27.4' 32.4	32.4' 37.4'	60/60 58/60	100% 97%	28/60 29/60	47% 48%
		BEL-NATIONAL	RD TUNNEL PID	108774		

BORING B-007-0-22 (CONTINUED)

31.4					ng ng ng ng ng ng ng ng ng ng ng ng	Remotive Stores de
ER: NQ-13	BR: NQ-14	A-1		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
		a in i a firminan a				ER: NQ-14 47.4'
Run #:		epth	Per	overy	RQ	
		42.4'	53/60	88%	40/60	67%
NQ-13	37.4'	42.4	00/00	00/0	+0/00	6/%

BORING B-007-0-22 (CONTINUED)

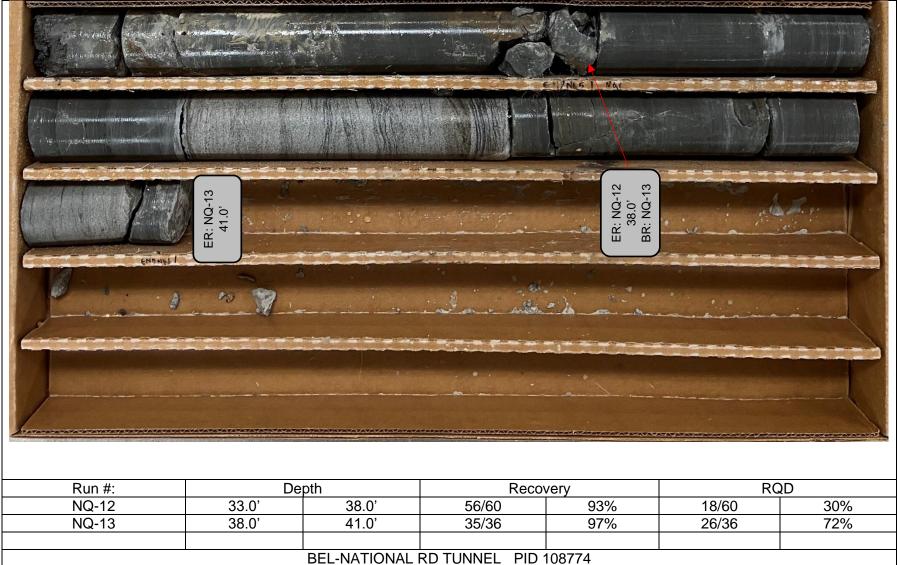
BR: NQ-15 47.4'		1		KI		
		Annara ann			re e construction de la construction	Amontal and a second
	t di	ER: NQ-15 52.4'	BR: NQ-16			
Contraction of the second second		ERO MAT	Niếg		NE	MA
	INF					ER: NQ-16 57.4'
Run #:	De	epth	Reco	verv	RQ	and and
NQ-15 NQ-16	47.4' 52.4'	52.4' 57.4'	59/60 60/60	98% 100%	28/60 46/60	47% 77%
		EL-NATIONAL RD				

BORING B-008-0-22 BR: NQ-4 5.5' NE NE NF ER: NQ-4 10.7' BR: NQ-5 END NEI NF Run #: RQD Depth Recovery NQ-4 NQ-5 5.5' 10.7' 100% 14/62 23% 62/62 10.7' 20.5' 92% 85% 108/118 100/118 BEL-NATIONAL RD TUNNEL PID 108774

BORING B-008-0-22 (CONTINUED)

						FIL
				ER: NQ-5 20.5'	BR: NQ-6	
ME THE				HONES		
Ст. стали Зап <mark>и различное постоянов</mark> ение	Annumerorezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinereziner Annumerorezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinerezinere				TET 4 Blattenprised and the second	ER: NQ-6 25.0'
Run #:	De	pth	Recov	ery	RQI	
NQ-5 NQ-6	10.7' 20.5'	20.5' 25.0	108/118 52/54	92% 96%	100/118 43/54	85% 80%
		BEL-NATIONAL	RD TUNNEL PID	108774		

BORING B-009-0-22 ER: NQ-8 18.0' BR: NQ-9 BR: NQ-8 17.0' Nas NOI ER: NQ-9 23.0' BR: NQ-10 and any frank have END NET 40. 12 mil De Tarcine Servi Vanis 110.2 RQD Run #: Depth Recovery NQ-8 17.0' 18.0' 12/12 100% 0/12 0% NQ-9 60% 18.0' 23.0' 59/60 98% 36/60 60/60 NQ-10 23.0' 28.0' 100% 22/60 37% **BEL-NATIONAL RD TUNNEL** PID 108774


BORING B-009-0-22 (CONTINUED)

Run #:	De	pth	Reco	very	R	QD
NQ-10	23.0'	28.0'	60/60	100%	22/60	37%
NQ-11	28.0'	33.0'	60/60	100%	48/60	80%
NQ-12	33.0'	38.0'	56/60	93%	18/60	30%
	BE	EL-NATIONAL RD	TUNNEL PID 10	8774		

BORING B-009-0-22 (CONTINUED)

UNIAXIAL COMPRESSIVE STRENGTH **OF ROCK**

ASTM D 7012 Method C

Quality Assurance S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 Project No.: 210435B **Report Date:** 07/26/22 **BEL-National Road Tunnel** Project Name: Test Date(s): 07/20/22 Client Name: ms consultants, inc. 425 Literary Road, Suite 100 Cleveland, OH 44113 Client Address: **Received Date:** 07/07/22 Boring ID: B-001-0-22 / NQ-13 Depth/Elev., ft: 37.0' - 37.4' Sample Description: SHALE, gray

Angle of load relative to lithology	: Approximately perpendicula		
0	Test Result		
Moisture Content	1.7 %	Dry Unit Weight	<i>162.0</i> pcf
	Compressive Strength	2,245 psi	
Fefore Te		After T	Fest
	Strain rate: 0.03 i		
	pecimen end preparation was not	done in accordance with A	
pecimen was capped using Sulfur	pecimen end preparation was not in accordance with ASTM C617,	done in accordance with A based on previous similar s	amples.
pecimen was capped using Sulfur Test results for specimens not meet	pecimen end preparation was not in accordance with ASTM C617,	done in accordance with A based on previous similar s	amples.
Totes / Deviations / References: S pecimen was capped using Sulfur Test results for specimens not meeting meeting this requirement. Paula J. Manning Technical Responsibility	pecimen end preparation was not in accordance with ASTM C617,	done in accordance with A based on previous similar s	amples. om specimens

PLATE 22 B-001-0-22 S-NQ3 37'-37.4'D7012 Rx UC.xlsx Page 1 of 2

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 Project No.: 210435B **Report Date:** 08/03/22 **BEL-National Road Tunnel** Project Name: Test Date(s): 08/02/22 Client Name: ms consultants, inc. 425 Literary Road, Suite 100 Cleveland, OH 44113 Client Address: **Received Date:** 07/07/22 Boring ID: B-002-0-22 / NQ-3 Depth/Elev., ft: 8.6' - 9.0' Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicu	lar to bedding plane	
	Test Resu	lts	
Moisture Content	1.5 %	Dry Unit Weight 165	5.0 pcf
	Compressive Strength	<i>1,368</i> psi	
		Frage<	The data Balantin Balantin Communication
	Strain rate: 0.03		D 45 42
		ot done in accordance with ASTM	
pecimen was capped using Sulfur in			
-	g this requirement may differ	from test results obtained from spe	ecimens
neeting this requirement.	\wedge		
Paula J. Manning	Paula & Manning	Laboratory Manager	<u>8/3/2022</u>
Technical Responsibility	Signature	Position	Date

PLATE 23 B-002-0-22 S-NQ1 8.6'-9.0'D7012 Rx UC.xlsx Page 1 of 2

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 Project No.: 210435B **Report Date:** 08/03/22 **BEL-National Road Tunnel** Project Name: Test Date(s): 08/02/22 Client Name: ms consultants, inc. 425 Literary Road, Suite 100 Cleveland, OH 44113 Client Address: **Received Date:** 07/07/22 Boring ID: B-002-0-22 / NQ-5 Depth/Elev., ft: 19.5' - 19.9' Sample Description: SHALE, gray

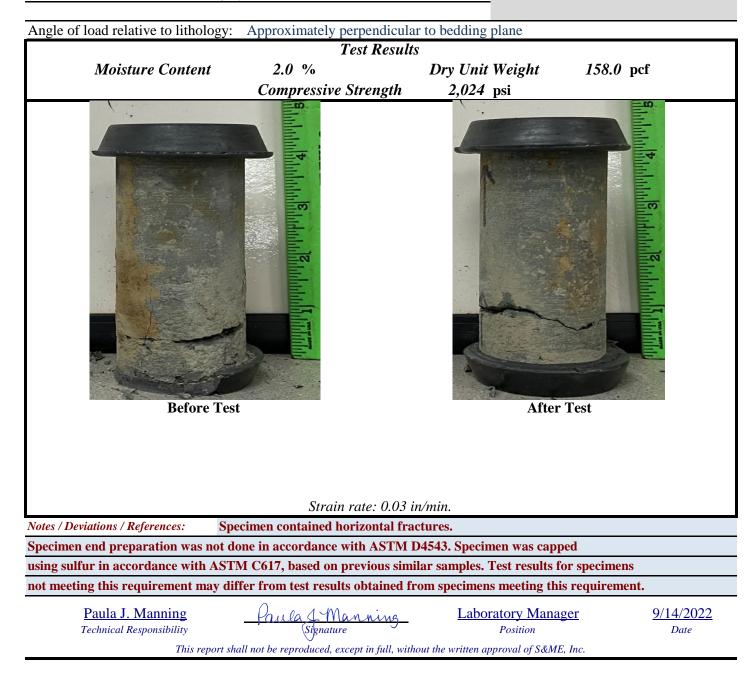

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane	
<u> </u>	Test Result	<u> </u>	
Moisture Content	1.2 % Compressive Strength	<i>Dry Unit Weight</i> 3,975 psi	163.6 pcf
			Fest
	Strain rate: 0.03 i	n/min.	
Notes / Deviations / References: Spe	cimen end preparation was not	done in accordance with A	STM D4543.
pecimen was capped using Sulfur in	accordance with ASTM C617,	based on previous similar s	samples.
		-	
Specimen was capped using Sulfur in Fest results for specimens not meeting meeting this requirement.		-	

PLATE 24 B-002-0-22 S-NQ3 19.5'-19.9'D7012 Rx UC.xlsx Page 1 of 2

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 Project No.: 210435B Report Date: 09/13/22 Project Name: **BEL-National Road Tunnel** Test Date(s): 08/31/22 Client Name: ms consultants, inc. 2221 Schrock Rd., Columbus, Ohio 43229 Client Address: **Received Date:** 07/07/22 Boring ID: B-003-0-22 / NO-13 Depth/Elev., ft: 40.5' - 40.9' Sample Description: SHALE, gray

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

	S&ME, Inc Columbus: 6190 Enterprise	Court, Dublin, Ohio 43016	
Project No.:	210435B	Report Date:	09/13/22
Project Name:	BEL-National Road Tunnel	Test Date(s):	08/29/22
Client Name:	ms consultants, inc.		
Client Address:	2221 Schrock Rd., Columbus, Ohio 43229	Received Date:	07/07/22
Boring ID:	B-007-0-22 / NQ-11	Depth/Elev., ft:	31.2' - 31.6'
Sample Description	on: SHALE, gray		

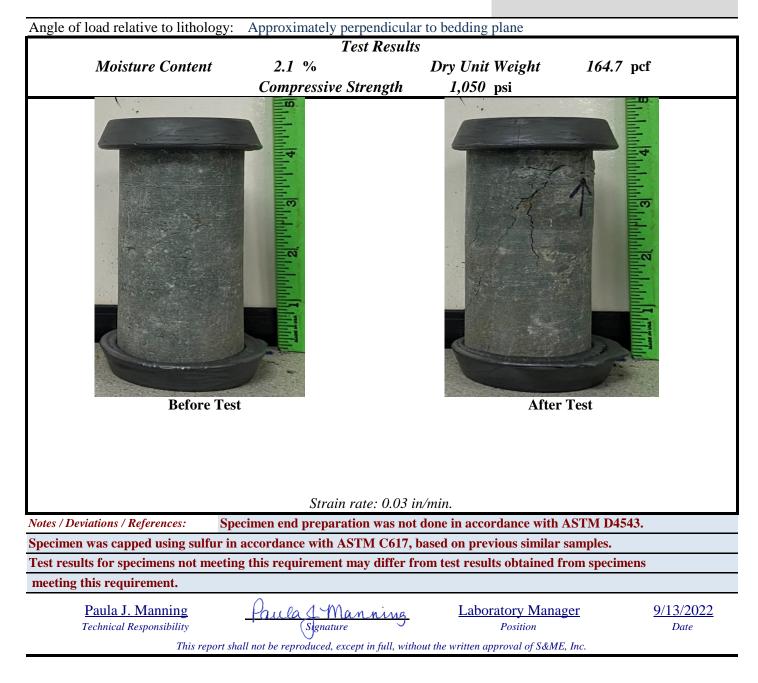


PLATE 26 B-007-0 S-NQ4 31.2'-31.6' D7012 Rx UC.xlsx Page 1 of 2

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 Project No.: 210435B Report Date: 09/13/22 Project Name: **BEL-National Road Tunnel** Test Date(s): 08/29/22 Client Name: ms consultants, inc. 2221 Schrock Rd., Columbus, Ohio 43229 Client Address: **Received Date:** 07/07/22 Boring ID: B-007-0-22 / NO-14 Depth/Elev., ft: 44.1' - 44.5' Sample Description: SHALE, gray

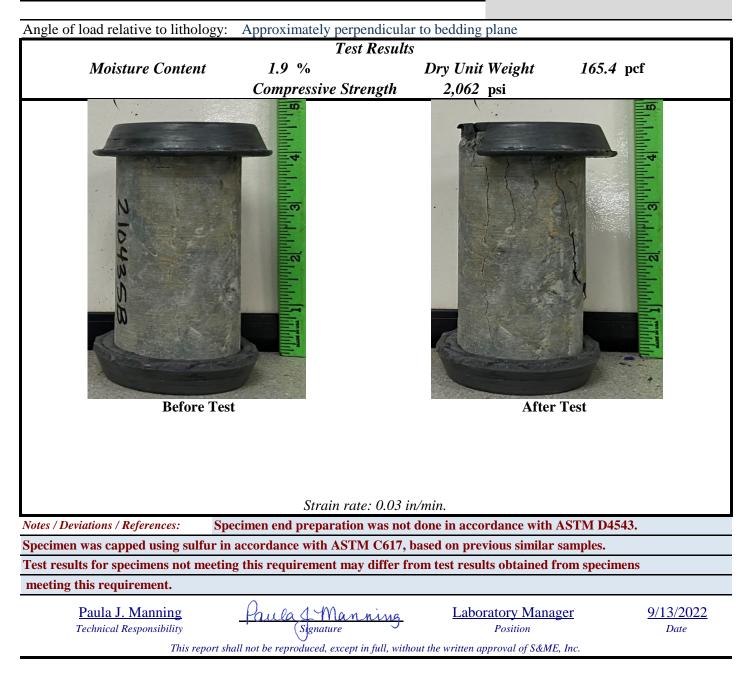


PLATE 27 B-007-0 S-NQ7 44.1'-44.5' D7012 Rx UC.xlsx Page 1 of 2

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

	S&ME, Inc Columbus: 6190 Enterprise Cou	rt, Dublin, Ohio 43016	
Project No .:	210435B	Report Date:	07/26/22
Project Name:	BEL-National Road Tunnel	Test Date(s):	07/20/22
Client Name:	ms consultants, inc.		
Client Address:	425 Literary Road, Suite 100 Cleveland, OH 44113	Received Date:	07/07/22
Boring ID:	B-008-0-22 / NQ-5	Depth/Elev., ft:	10.7' - 11.1'
Sample Description	on: SANDSTONE, gray		

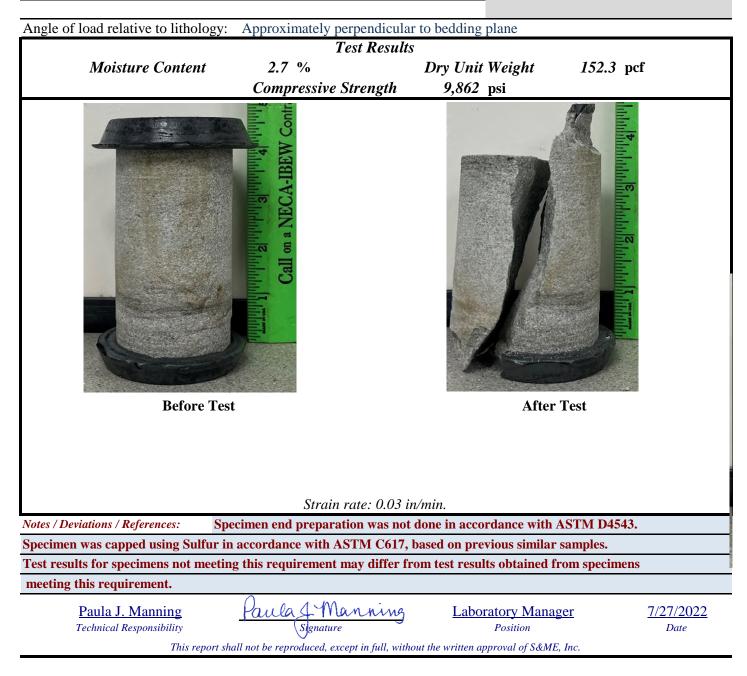
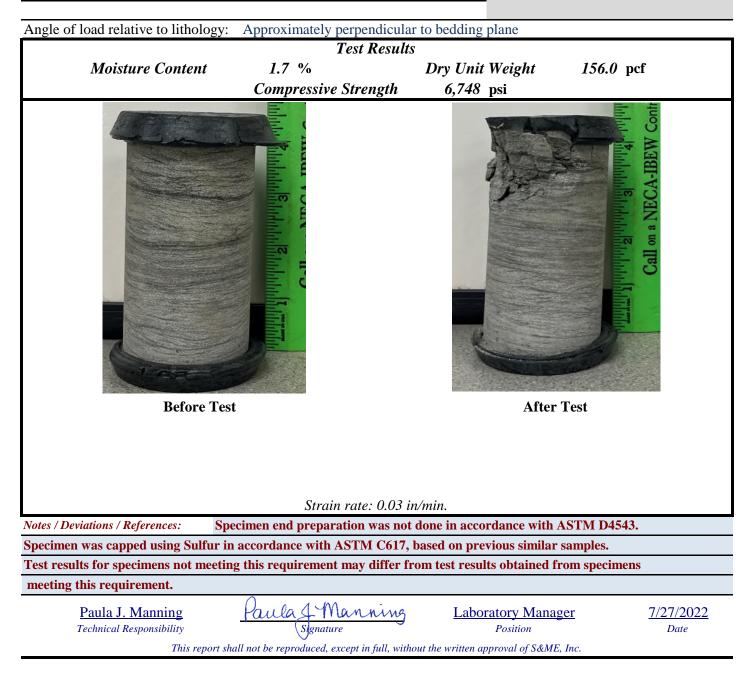
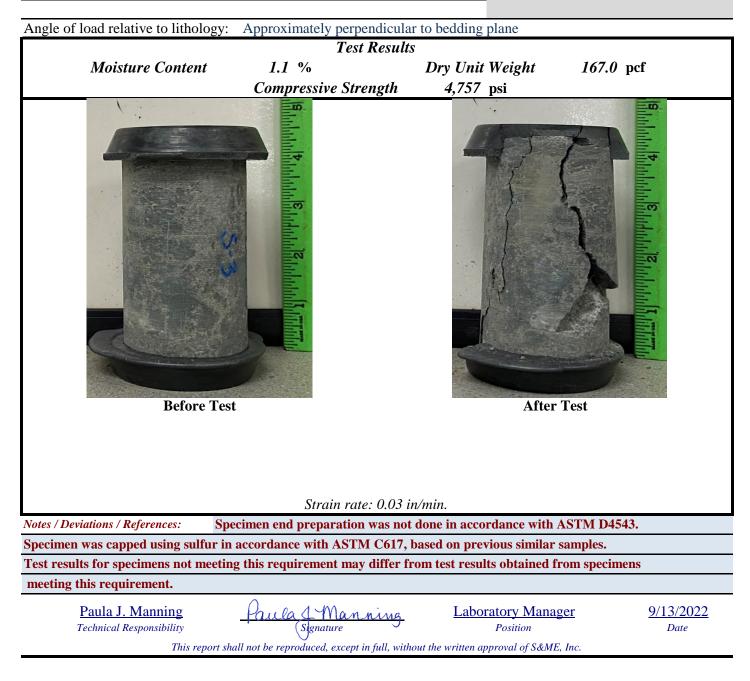



PLATE 28 B-008-0-22 S-NQ2 10.7'-11.1'D7012 Rx UC.xlsx Page 1 of 2

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

	S&ME, Inc Columbus: 6190 Enterprise Co	urt, Dublin, Ohio 43016	
Project No.:	210435B	Report Date:	07/27/22
Project Name:	BEL-National Road Tunnel	Test Date(s):	07/20/22
Client Name:	ms consultants, inc.		
Client Address:	425 Literary Road, Suite 100 Cleveland, OH 44113	Received Date:	07/07/22
Boring ID:	B-008-0-22 / NQ-6	Depth/Elev., ft:	20.9' - 21.3'
Sample Description	ion: SANDSTONE, gray		



UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016

Project No.:	210435B	Report Date:	09/13/22
Project Name:	BEL-National Road Tunnel	Test Date(s):	08/29/22
Client Name:	ms consultants, inc.		
Client Address	2221 Schrock Rd., Columbus, Ohio 43229	Received Date:	07/07/22
Client Address:	2221 Schlock Ru., Columbus, Onio 43229	Received Date.	07/07/22
Boring ID:	B-009-0-22 / NQ-10	Depth/Elev., ft:	27.0' - 27.4'

UNIAXIAL COMPRESSIVE STRENGTH Revision No. 1 **OF ROCK** Revision Date: 07/14/17 ASTM D 7012 Method C S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 Project No.: 210435B Report Date: Project Name: **BEL-National Road Tunnel** Test Date(s): Client Name: ms consultants, inc. 2221 Schrock Rd., Columbus, Ohio 43229 Received Date: Client Address:

Angle of load relative to lithology: Approximately perpendicular to bedding plane **Test Results Moisture Content** 0.8 % Dry Unit Weight 161.9 pcf **Compressive Strength** 9,376 psi **Before Test** After Test Strain rate: 0.03 in/min. Specimen end preparation was not done in accordance with ASTM D4543. Notes / Deviations / References: Specimen was capped using sulfur in accordance with ASTM C617, based on previous similar samples. Test results for specimens not meeting this requirement may differ from test results obtained from specimens meeting this requirement. 9/13/2022 Paula J. Manning Laboratory Manager Technical Responsibility Signature Position Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-D7012C-01

B-009-0-22 / NO-11

SANDSTONE, gray

Boring ID:

Sample Description:

Quality Assurance

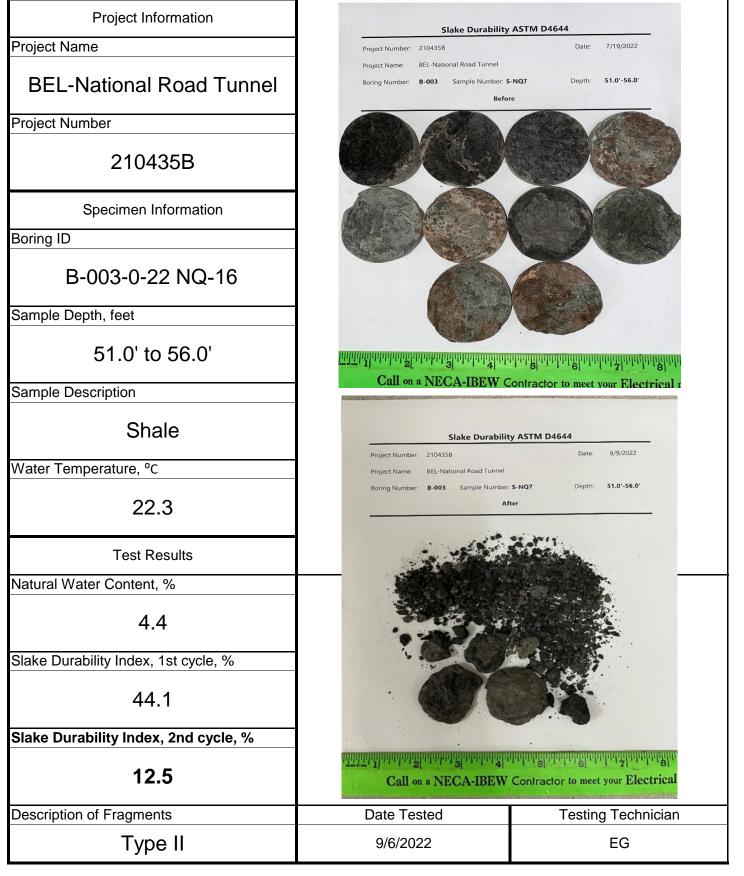
Depth/Elev., ft:

09/13/22

08/24/22

07/07/22

32.4' - 32.8'


ASTM D 4644

S&ME, Inc. - Columbus 6190 Enterprise Court, Dublin, Ohio 43016

ASTM D 4644

S&ME, Inc. - Columbus 6190 Enterprise Court, Dublin, Ohio 43016

ASTM D 4644

S&ME, Inc. - Columbus 6190 Enterprise Court, Dublin, Ohio 43016

Project Information

Project Name

BEL-National Road Tunnel

Project Number

210435B

Specimen Information

Boring ID

B-007-0-22 NQ-12

Sample Depth, feet

32.4' to 37.4'

Sample Description

Claystone (vso to soft shale)

Water Temperature, °C

21.9

Test Results

Natural Water Content, %

4.6

Slake Durability Index, 1st cycle, %

28.1

Slake Durability Index, 2nd cycle, %

20.4

Description of Fragments

Type II

<text><text><text><complex-block><complex-block></complex-block></complex-block></text></text></text>	eigen Manner Ben Antenen Benormannen Benor	Flojectivumber	: 210435B	Date:	7/19/2022
		Project Name:			
<page-header></page-header>	<page-header></page-header>			Depth:	32.4'-37.4'
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	a sha			ASSA
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	L'			
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				61.310
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	COR NOT	A AND A		and the second
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'			Contraction of	A
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	3. 1. 1.			Charles A
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	the states	Aller A		
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'		Contraction (THURSDA	
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'			Active	
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'			and the second second	
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'		W PLANS		1
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'				
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ühAlantadad			ada da ana ang ang ang ang ang ang ang ang an
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	Coll Thillutulut	and NECVIBER Cost	antitulation and	unandantantantantanta
oject Number: 210435B Date: 7/19/2022 oject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Number: 2104358 Date: 7/19/2022 ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	Coll Thillintechet	an a MECA IBEM Contra Mutumutulatulatulatulatul	Statistical States	uppling the providence of the second
pject Name: BEL-National Road Tunnel ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ect Name: BEL-National Road Tunnel ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	Con The International	allulukululululululululululul	graphic to man	upupupupupupupu t vour Electrical
ring Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	ng Number: B-007 Sample Number: S-NQ5 Depth: 32.4'-37.4'	Call	2 NECA IREW Contr Slake Durability ASTM E		t vour Flootrical
		roject Number:			T/19/2022
After			210435B		T/19/2022
	After	roject Number: roject Name: oring Number:	210435B BEL-National Road Tunnel	Date:	
	After	ect Number:			Tripping The second sec
		oject Name:	210435B BEL-National Road Tunnel B-007 Sample Number: S-NQ5	Date:	
		oject Name:	210435B BEL-National Road Tunnel B-007 Sample Number: S-NQ5	Date:	
		roject Name:	210435B BEL-National Road Tunnel B-007 Sample Number: S-NQ5	Date:	
_	_	roject Name:	210435B BEL-National Road Tunnel B-007 Sample Number: S-NQ5	Date:	

Call on a NECA-IREW C

Date Tested

9/1/2022

TN1

Testing Technician

EG

ASTM D 4644

S&ME, Inc. - Columbus 6190 Enterprise Court, Dublin, Ohio 43016

Project Number: 210435B

BEL-National Road Tunnel Boring Number: B-009 Sample Number: S-NQ3

Project Name:

Project Information

Project Name

BEL-National Road Tunnel

Project Number

210435B

Specimen Information

Boring ID

B-009-0-22 NQ-10

Sample Depth, feet

23.0' to 28.0'

Sample Description

Shale

Water Temperature, °C

21.9

Test Results

Natural Water Content, %

4.7

Slake Durability Index, 1st cycle, %

32.9

Slake Durability Index, 2nd cycle, %

Description of Fr

-			
)
		BO	
	and the second	anta hada hada hada sha a sha sha sha sha sha sha sha sha	
Call on	a NECA-IBEW Contra	ctor to meet your Electrical	1
	Slake Durability ASTM	D4644	
Designet Number			
Project Number:	210435B	Date: 7/19/2022	
Project Name:	BEL-National Road Tunnel		
Boring Number:	B-009 Sample Number: S-NQ3	Depth: 23.0'-28.0'	

Slake Durability ASTM D4644

Before

Date:

7/19/2022

Depth: 23.0'-28.0'

After

9.4	Call on a NECA-IBEM Contraction of the flat of the fla			
ragments	Date Tested	Testing Technician		
Type II	9/1/2022	EG		

Appendix III – Calculation Output

Project Number:	210435B	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Date:	7/17/2023	
Project Location:	St. Clairsville, Ohio	Checked By:	RSW	
Client Name:	ms consultants, inc.	Date:	7/18/2023	Version 2.0 (8/31/16)

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9th EDITION)

(Example calculations with reference equations and information are provided on additional sheets)

Brid	dge Structure Identification	South End Soldier Pile Wall				
Boring ID	B-002-0-22		Founda	tion Element Des	cription	Ret. Walls
Surface Elev.	1149.7		Top of Shaft	: / Base of Shaft C	ap Elevation	1148
Analysis Desc.	Term/Info Description	Unit	Layer 1	Layer 2	Layer 3	Layer 4
	Bedrock Type/Description		Shale	Shale		
	Layer Top Depth (from G.S.)	ft	5.5	14		
Boring/Layer	Layer Top Elevation	MSL	1144.2	1135.7		
Information	Layer Bottom Depth (from G.S.)	ft	14	25.5		
	Layer Bottom Elevation	MSL	1135.7	1124.2		
	Layer Thickness	ft	8.5	11.5		
	RQD	%	32	68		
	Discontinuity Length Rating		E	В		
GSI Index	Separation Rating		E	С		
Calculation	Roughness Rating		D	С		
(AASHTO LRFD,	Infilling Rating		E	В		
7th Edition; Hoek, et al., 2013;	Weathering Rating		D	В		
Bieniawski, Z.T.	Estimated JCond89 Value		2	20		
1989)	Estimated GSI Value (quan.)		19	64		
	Estimated GSI Value (qual.)		20	55		
	Design GSI Value		20	60		
	Compressive Strength, q _u	psi	500	3975		
	Concrete Strength, f' _c	psi	4000	4000		
	Fractured Rock? (Susceptible to Cav	ing?)	Yes	No		
Unit Side	Joint Condition		Open	Closed		
Resistance	Regression Coefficient, C		0.5	1.0		
Calculations (AASHTO LRFD,	q _s (Eqn. 10.8.3.5.4b-1)	ksf	6.18	34.84		
7th Edition)	Reduction Factor, α_{E}		0.51	0.83		
	q _s (Eqn. 10.8.3.5.4b-2)	ksf	4.1	18.79		
	q _s (Design)	ksf	4	34		
	q _s (Design)	tsf	2	17		

Definition of Bedrock Type Abbreviations:

Project Number:	210435B	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Date:	7/17/2023	
Project Location:	St. Clairsville, Ohio	Checked By:	RSW	
Client Name:	ms consultants, inc.	Date:	7/18/2023	Version 2.0 (8/31/16)

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9TH EDITION) - CONTINUED

		Term/Info Description	Unit	-	· · ·	-	1
		Compressive Strength, q _u	ksf	Layer 1 72.00	Layer 2 572.40	Layer 3	Layer 4
s Intermediate Parameters Required for GSI Empirical Approach, AASHTO LRFD Eqn. 10.8.3.5.4c-2		KSI					
	Disturbance Factor, D		1	0.1			
	ED E	Empirical Parameter, s		0.0000016	0.0100750		
	uire D LR	Empirical Parameter, a		0.5437	0.5028		
	Req HTC -2	Constant, m _i (Table 10.4.6.4-1)		6	6		
	itermediate Parameters Required for G Empirical Approach, AASHTO LRFD Eqn. 10.8.3.5.4c-2	Empirical Parameter, m _b		0.0198	1.3338		
	met ich, 8.3.5	Depth of Soil Cover	ft	4	4		
	ara oroa 10.8	Average γ_m of Soil Cover	pcf	125	125		
	tе F Арр	Average γ_m of Bedrock	pcf	150	150		
	edia 'ical	Depth to Water Table	ft	25	25		
	ermo	Estimated Shaft Tip Depth (BGS)	ft	25	25		
S	Inte Er	Vertical Effective Stress, σ'_{vb}	ksf	3.65	3.65		
Unit End Bearing Resistance Calculations		Intermediate Parameter, A		5.34	80.81		
alcula	_	Rock Socket Diameter, B	ft	3	3		
e C	diar om	Rock Socket Embedment, D _s	ft	20	20		
tanc	ana 21 fi	s _v Selection ID		10	6		
esist	or C 13-5 J)	S _v	ft	0.16	1		
ng R	Intermediate Parameters Required for Canadian Geotechnical Society Solution (Eqn. 13-21 from FHWA-NHI-10-016, GEC 10)	t _d Selection ID		1	4		
earii	equir on (E 6, GE	t _d	in	0.5	0.05		
d B	s Re lutic -01(Check 1		YES	YES		
it Er	eter y So I-10	Check 2		NO	YES		
Un	am. ciet	USE t _d /s _v		0.02	0.004		
	ate Parameters Req ical Society Solutior FHWA-NHI-10-016,	NEW s _v		2.08333	N/A		
	liate nica FH	Check 3		YES	YES		
	mec	USE s _v /B		0.694	0.333		
	iter Seot	K _{sp}		0.14	0.225		
	<u> </u>	d		3.4	3.4		
		q _p (Eqn. 10.8.3.5.4c-1)	ksf	180	1431		
	esigr tior	q _p (Eqn. 10.8.3.5.4c-2)	ksf	7.41	334.6		
	& Dé	q _p (FHWA-IF-99-025, Eqn. 11.6)	ksf	LOW RQD	LOW RQD		
	Solutions & Design Strength Selection	q _p (FHWA-NHI-10-016, Eqn. 13-21)	ksf	102.82	1313.66		
	olutio :ren§	q _p (Design)	ksf	7	1430		
	Sc St	q _p (Design)	tsf	3.5	715		

Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Date:	7/17/2023	m =
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Checked By:	RSW	
Client Name:	ms consultants, inc.	Foundation Element:	Ret. Walls	Date:	7/18/2023	Version 2.0 (8/31/16)

ESTIMATION OF JOINT CONDITION FACTOR (JCond₈₉) FOR BEDROCK LAYERS (See Hoek, et al., 2013; Bieniawski, 1989)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS				
Discontinuity			А	В	С	D	E	
Length	F	0	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m	
(Persistence)	E	0			RELATIVE RATING			
Rating			6	4	2	1	0	
			A	В	С	D	E	
Separation	r.	0	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm	
(Aperature) Rating	E	0		•	RELATIVE RATING			
			6	5	4	1	0	
			A	В	С	D	E	
Developer Deting		1	Very Rough	Rough	Slightly Rough	Smooth	Slickensided	
Roughness Rating	D	1			RELATIVE RATING			
			6	5	3	1	0	
			A	В	С	D	E	
Infilling (Gouge)	F		None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm	
Rating	E	0	0 RELATIVE RATING					
			6	4	2	2	0	
			A	В	С	D	E	
Weathering	D	1	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed	
Rating	D	Ţ			RELATIVE RATING			
			6	5	3	1	0	

Laver JCond ₈₀	References: Hoek, E., Carter, T.G., Diederichs, M.S., <i>Quantification of the Geological Strength Index Chart</i> , 47th US Rock Mechanics /
	Geomechanics Symposium, San Francisco, CA, June 2013 Bieniawski, Z.T. 1989. <i>Engineering Rock Mass Classification</i> . New York: Wiley Interscience.

Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	14' - 25.5'	Date:	7/17/2023	
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1135.7' - 1124.2'	Checked By:	RSW	
Client Name:	ms consultants, inc.	Foundation Element:	Ret. Walls	Date:	7/18/2023	Version 2.0 (8/31/16)

ESTIMATION OF JOINT CONDITION FACTOR (JCond₈₉) FOR BEDROCK LAYERS (See Hoek, et al., 2013; Bieniawski, 1989)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS				
Discontinuity			А	В	С	D	E	
Length	В	4	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m	
(Persistence)	Б	4			RELATIVE RATING			
Rating			6	4	2	1	0	
			A	В	С	D	E	
Separation	C	4	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm	
(Aperature) Rating	C	4			RELATIVE RATING			
			6	5	4	1	0	
			A	В	С	D	E	
Developes Dating	C	2	Very Rough	Rough	Slightly Rough	Smooth	Slickensided	
Roughness Rating	C	3			RELATIVE RATING			
			6	5	3	1	0	
			A	В	С	D	E	
Infilling (Gouge)	р	4	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm	
Rating	В	4			RELATIVE RATING			
			6	4	2	2	0	
			A	В	С	D	E	
Weathering	P	F	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed	
Rating	В	5			RELATIVE RATING			
		l l	6	5	3	1	0	

	References: Hoek, E., Carter, T.G., Diederichs, M.S., <i>Quantification of the Geological Strength Index Chart</i> , 47th US Rock Mechanics /
20	Geomechanics Symposium, San Francisco, CA, June 2013 Bieniawski, Z.T. 1989. <i>Engineering Rock Mass Classification</i> . New York: Wiley Interscience.

						CK .	
Project Number:	210435B	Boring(s):	B-002-0-22	_	- 10	E	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	Layer Depth Range: 5.5' - 14'		Version 2.0 (8/31/16)		
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By:	BKS	RSW	_
Client Name:	ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date:	07/17/23	07/18/23	

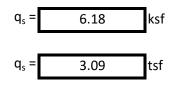
Driiled Shafts in Rock - Example Calculations - Determine Unit Side Resistance, q_s (Utilizing 2 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4b-1

$$\frac{q_s}{p_a} = C \sqrt{\frac{q_u}{p_a}}$$

where:

q_s = unit side resistance (ksf)


q_u = compressive strength of rock (ksf)

- P_a = atmospheric pressure (2.12 ksf)
- C = Regression Coefficient (see right)

Input Information

q _u =	500	psi
$f'_c =$	4000	psi
<i>C</i> =	0.5	

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

Discussion on Regression Coefficient C (from C10.8.3.5.4b)

"The recommended value of the regression coefficient C = 1.0 is applicable to normal rock sockets, defined as sockets constructed with conventional equipment and resulting in nominally clean sidewalls without resorting to special procedures or artificial roughening. Rock that is prone to smearing or rapid deterioration upon exposure to atmospheric conditions, water, or slurry are outside the normal range and may require additional measures to insure reliable side resistance. Rocks exhibiting this type of behavior include clay shales and other argillaceous rocks. Rock that cannot support construction of an unsupported socket without caving is also outside the normal and will likely exhibit lower side resistance than given by Eq. 10.8.3.5.4b-1 with C = 1.0. For additional guidance on assessing the magnitude of C, See Brown et al. (2010)."

Discussion on Regression Coefficient C (from Brown et al. 2010)

"The most recent regression analysis of available load test data is reported by Kulhawy et al. (2005) and demonstrates that the mean value of the coefficient C is approximately equal to 1.0. The authors recommend the use of Equation [10.8.3.5.4b-1] with C = 1.0 for design of "normal" rock sockets. A lower bound value of C = 0.63 was shown to encompass 90% of the load test results...Considering the most recent research on side resistance in rock, in particular the work cited above by Kulhawy et al. (2005) that incorporates the original data of Horvath and Kenney (1979) plus additional data compiled over the ensuing 25+ years, Equation [10.8.3.5.4b-1] with C = 1.0 is recommended for routine design of rock sockets. For rock that cannot be drilled without some type of artificial support, such as casing or by grouting ahead of the excavation, the reduction factors ... based on RQD are recommended for application to the resistance calculated by Equation [10.8.3.5.4b-2]. The resistance factor recommended with use of Equations [10.8.3.5.4b-1] and [10.8.3.5.4b-2] is $\phi = 0.55$ based on fitting to ASD with a factor of safety FS = 2.5, as discussed in Chapter 10 and presented in Table 10-5. Artificial roughening of rock sockets through the use of grooving tools or other measures can increase side resistance compared to normal sockets. Regression analysis of the available load test data by Kulhawy and Prakoso (2007) suggests a mean value of C = 1.9 with use of Equation [10.8.3.5.4b-1] for roughened sockets. It is strongly recommended that load tests or local experience be used to verify values of C greater than 1.0. However, the advantages of achieving higher resistance by sidewall roughening often justify the cost of load tests." (emphasis added)

.

210435B	Boring(s):	B-002-0-22	
BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Version 2.0 (8/31/16)
St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By: BKS RSW
ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date: 07/17/23 07/18/23
	BEL-National Rd Tunnel St. Clairsville, Ohio	BEL-National Rd TunnelLayer Depth Range:St. Clairsville, OhioLayer Elevation Range:	BEL-National Rd TunnelLayer Depth Range:5.5' - 14'St. Clairsville, OhioLayer Elevation Range:1144.2' - 1135.7'

Method 2: AASHTO LRFD Equation 10.8.3.5.4b-2

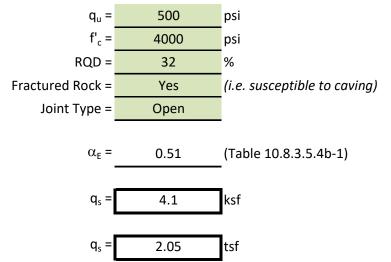
$$\frac{q_s}{p_a} = 0.65 \alpha_E \sqrt{\frac{q_u}{p_a}}$$

where:

q_s = unit side resistance (ksf)

q_u = compressive strength of rock (ksf)

P_a = atmospheric pressure (2.12 ksf)

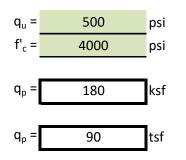

 α_{E} = joint modification factor (Table 10.8.3.5.4b-1)

Joint Modification Factor, α_{E}

Table 10.8.3.5.4b-1

RQD (%)	Closed Joints	Open or Gouge-Filled Joints
100	1.00	0.85
70	0.85	0.55
50	0.60	0.55
30	0.50	0.50
20	0.45	0.45

Input Information


	SUMMA	ARY
-		ksf (eqn. 10.8.3.5.4b-1) ksf (eqn. 10.8.3.5.4b-2)
q _s (design) =	4	ksf
q _s (design) =	2	ksf

					L.
Project Number:	210435B	Boring(s):	B-002-0-22	(1) =	E
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Version 2.0 (8	3/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By: BKS	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date: 07/17/23 0	07/18/23

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q p (Utilizing 4 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4c-1

 $q_{n} = 2.5q_{u}$

Method 1: AASHTO LRFD Equation 10.8.3.5.4c-2

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a$$

where:

q_u = compressive strength of rock (ksf)

A = defined by Equation 10.8.3.5.4c-3 (see right)

- m_{b} , s, a = Hoek-Brown strength parameters for the fractured rock mass determined from GSI (see Article 10.4.6.4)
 - Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-2.

where:

q_p = unit end bearing resistance (ksf)

q_u = compressive strength of rock (ksf)

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

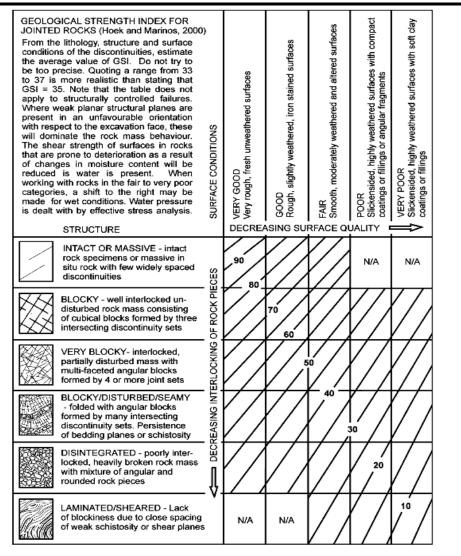
Discussion on the use of Equation 10.8.3.5.4c-1

"If the rock below the base of the drilled shaft to a depth of 2.0B is either intact or tightly jointed, i.e., no compressible material or gouge-filled seams (including no solution cavities or voids below the base of the drilled shaft per C10.8.3.5.4c), and the depth of the socket is greater than 1.5B."

Discussion on the use of Equation 10.8.3.5.4c-2

"If the rock below the base of the shaft to a depth of 2.0B is jointed, the joints have random orientation and the condition of the joints can be evaluated per Equation 10.8.3.5.4c-2....Equation 10.8.3.5.4c-1 should be used as un upper-bound limit to base resistance calculated by Equation 10.8.2.5.4c-2, unless local experience or load tests can be used to validate higher values.

Equation 10.8.3.5.4c-3


$$A = \sigma'_{vb} + q_u \left[m_b \frac{\left(\sigma'_{v,b}\right)}{q_u} + s \right]^a$$

where:

 $\sigma'_{v,b}$ = vertical effective stress at the socket bearing elevation (tip elevation) PLATE 7

•

Project Number:	210435B	Boring(s):	B-002-0-22		
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Version 2.0 (8/31/16)	
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By: BKS RSW	
Client Name:	ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date: 07/17/23 07/18/23	3

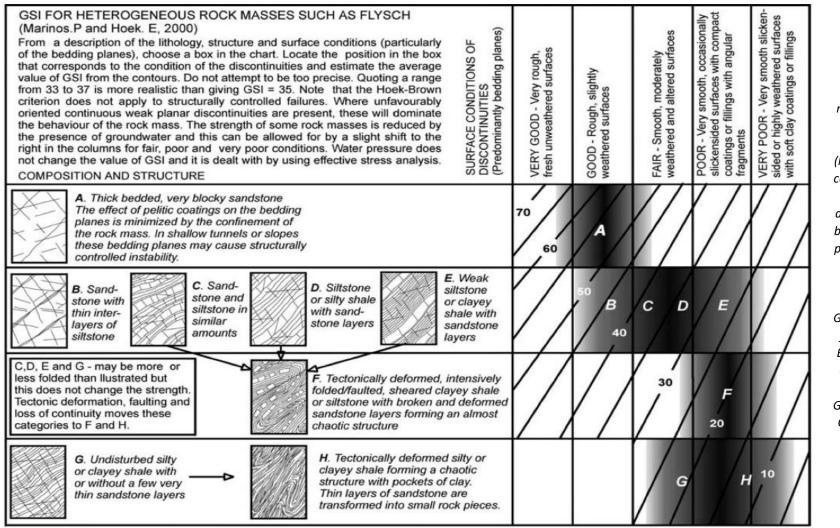
From Article 10.4.6.4	
$s = e^{\left(\frac{GSI-100}{9-3D}\right)}$	Equation 10.4.6.4-2
$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$	Equation 10.4.6.4-3
$m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$	Equation 10.4.6.4-4

where:

GSI = Geological Strength Index (see Figures 10.4.6.4-1 and 10.4.6.4-2)

.

D = Disturbance factor (dim)


 m_i = Constant by Rock Group (see Table 10.4.6.4-1)

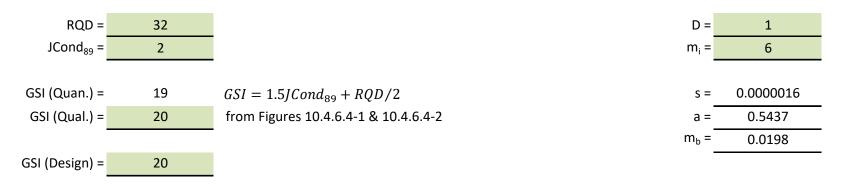
Note: Only the portion of Table 10.4.6.4-1 including rock types found in Ohio is shown below. Full table may be viewed in Article 10.4.6.4.

Table 10.4.6.4-1 Values of the Constant m_i by Rock Group (after Marinos and Hoek 2000,with updated values from Rocscience, Inc., 2007)

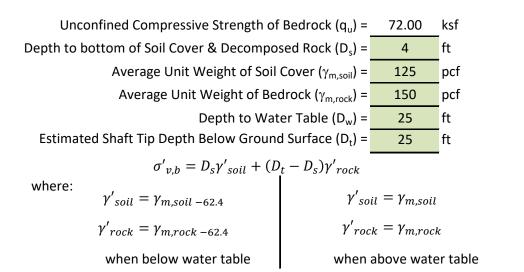
Rock	Class	Group	Texture			
type			Coarse	Medium	Fine	Very fine
			Conglomerate (21 ± 3)	Sandstone 17 ± 4	Siltstone 7 <u>+</u> 2	Claystone 4 ± 2
Y	Clastic		Breccia (19 ± 5)		Greywacke (18 ± 3)	Shale (6 ± 2)
SEDIMENTARY						Marl
E N						(7 ± 2)
4E			Crystalline	Sparitic	Micritic	Dolomite
Id		Carbonates	Limestone	Limestone	Limestone	(9 ± 3)
SE			(12 ± 3)	(10 ± 5)	(8 ± 3)	
	Non-Clastic	Tit		Gypsum	Anhydrite	
		Evaporites		10 ± 2	12 ± 2	
		a				Chalk
		Organic				7 ± 2
					PLAT	E 8

2.0 (8/31/16)
RSW
3 07/18/23
n

Note: Additional information on the GSI method may be found in "Hoek's Corner" on the Rocsciences website (https://www.rocscience. com/education/hoeks co rner), which contains additional articles on the background, assumption, purposes, estimation and calculation of GSI. Of special note are the articles titled "GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation" (Marinos, P. and Hook, E. 2000) and "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013).

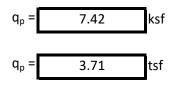

.

-> : Means deformation after tectonic disturbance

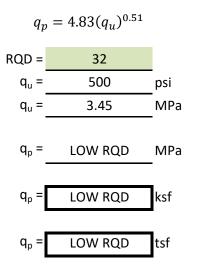

Figure 10.4.6.4-2—Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek 2000)

Project Number:	210435B	Boring(s):	B-002-0-22	(I) =
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Version 2.0 (8/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By: BKS RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date: 07/17/23 07/18/23

Step 1: Estimate GSI and Hoek-Brown strength parameters using analytical method outlined in "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013) and visually by using Figures 10.4.6.4-1 and 10.4.6.4-2



Step 2: Determine vertical effective stress at shaft tip and intermediate paremeter, A



Step 3: Determine estimated tip resistance

Project Number:	210435B	Boring(s):	B-002-0-22		
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Version 2.0 (8/	-
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By: BKS	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date: 07/17/23 07	/18/23

Method 3: FHWA-IF-99-025 Equation 11-6

Method 4: FHWA-NHI-10-016 Equations 13-21 thru 13-23

Equation 13-21: $q_p = q_{BN} = 3q_u K_{sp} d$

Equation 13-22:

$$K_{sp} = \frac{3 + \frac{S_v}{B}}{10\sqrt{1 + 300\frac{t_d}{S_v}}}$$

Equation 13-23: d = 1 + d

$$= 1 + 0.4 \frac{D_s}{B} \le 3.4$$

where:

q_p = unit end bearing resistance (MPa)
q_u = compressive strength of rock (MPa) (1 psi = 0.00689475728 MPa)
NOTE: Equation 11-6 should only be used when the following are true:

Rock mass has an RQD value between 70% and 100%;
Closed joints are approximately horizontal; and
q_u > 0.5 MPa (5.2 tsf or 72.5 psi)

where:

q_p = unit end bearing resistance (ksf)

q_u = compressive strength of rock (ksf)

 s_v = vertical spacing between discontinuities t_d = aperature (thickness) of discontinuities

B = socket diameter (ft)

D_s = depth of socket (rock) embedment (ft)

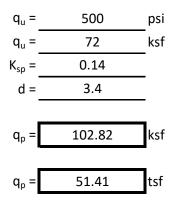
					Q	
210435B	Boring(s):	B-002-0-22				
BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'				
St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By:	BKS	RSW	
ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date:	07/17/23	07/18/23	
•	BEL-National Rd Tunnel St. Clairsville, Ohio	BEL-National Rd TunnelLayer Depth Range:St. Clairsville, OhioLayer Elevation Range:	BEL-National Rd TunnelLayer Depth Range:5.5' - 14'St. Clairsville, OhioLayer Elevation Range:1144.2' - 1135.7'	BEL-National Rd TunnelLayer Depth Range:5.5' - 14'St. Clairsville, OhioLayer Elevation Range:1144.2' - 1135.7'Calc / Check By:	210435BBoring(s):B-002-0-22BEL-National Rd TunnelLayer Depth Range:5.5' - 14'St. Clairsville, OhioLayer Elevation Range:1144.2' - 1135.7'Calc / Check By:BKS	BEL-National Rd TunnelLayer Depth Range:5.5' - 14'Version 2.0 (8/31/16)St. Clairsville, OhioLayer Elevation Range:1144.2' - 1135.7'Calc / Check By:BKSRSW

Method 4: FHWA-NHI-10-016 Equations 13-21 thru 13-23 (continued)

Adapted from Table 600-14 in 2007 ODOT SGE, July 2014 Update

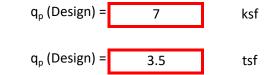
B =	3	ft
D _s =	20	ft
s_v Selection ID =	10	
s _v =	0.16	ft
t_d Selection ID =	1	
t _d =	0.5	in
		_
Check 1:	Is B > 1 ft	
B =	3	
PASS CHECK?	YES	
Check 2:	$1 \text{ s} \ 0 < t_{\rm d}/\text{s}_{\rm v} < 0.02$	2
$t_d/s_v =$	0.26	
PASS CHECK?	NO	If no, adjust s_v
USE $t_d/s_v =$	0.02	
NEW s _v =	2.08333	ft
Check 3:	Is 0.05 < s _v /B < 2	0
$s_v/B =$	0.694	
PASS CHECK?	YES	
USE s _v /B =	0.694	

	•		<u> </u>	
Selection	Degree of Fracturing	Spacing, s _v	Design V	Value, s _v
ID	Degree of Flacturing	(ft)	(ft)	(mm)
1	Unfractured	> 10.0	10	3048
2	Intact to Unfractured	3.0 < s _v	8	2438
3	Intact	3.0 < s _v < 10.0	6	1829
4	Slightly Fractured to Intact	$1.0 < s_v < 10.0$	4	1219
5	Slightly Fractured	$1.0 < s_v < 3.0$	2	610
6	Moderately to Slightly Fractured	0.33 < s _v < 3.0	1	305
7	Moderately Fractured	0.33 < s _v < 1.0	0.67	204
8	Fractured to Moderately Fractured	0.16 < s _v < 1.0	0.5	152
9	Fractured	$0.16 < s_v < 0.33$	0.25	76
10	Highly Fractured to Fractured	s _v < 0.33	0.16	49
11	Highly Fractured	s _v < 0.16	0.1	30


Adapted from Table 600-15 in 2007 ODOT SGE, July 2014 Update

Selection	Condition of Fractures	Aperture, t _d	Design V	Value, t _d
ID	condition of Fractures	(in)	(in)	(mm)
1	Open	0.2 < t _d	0.5	13
2	Narrow to Open	0.05 < t _d	0.15	3.8
3	Narrow	0.05 < t _d < 0.2	0.1	2.5
4	Tight to Narrow	t _d < 0.2	0.05	1.3
5	Tight	t _d < 0.05	0.02	0.5

*Selections 2, 4, 6, 8 & 10 represents cross overs between two descriptions PLATE 12


						&
Project Number:	210435B	Boring(s):	B-002-0-22		- D	=
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	_		0 (8/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Calc / Check By:	BKS	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Ret. Walls	Date:	07/17/23	07/18/23

Method 4: FHWA-NHI-10-016 Equations 13-21 thru 13-23 (continued)

End Bearing Resistance, $q_{\rm p}$ Summary

Method	Reference	q _p Value	Unit
1	AASHTO LRFD Eqn. 10.8.3.5.4c-1	180	ksf
2	AASHTO LRFD Eqn. 10.8.3.5.4c-2	7.42	ksf
3	FHWA-IF-99-025 Eqn. 11-6	N/A	ksf
4	FHWA-NHI-10-016 Eqn. 13-21	102.82	ksf

Project Number:	210435B	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Date:	8/26/2022	
Project Location:	St. Clairsville, Ohio	Checked By:	RSW	
Client Name:	ms consultants, inc.	Date:	10/19/2022	Version 2.0 (8/31/16)

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9th EDITION)

(Example calculations with reference equations and information are provided on additional sheets)

Brid	dge Structure Identification	North End Soldier Pile Wall				
Boring ID	B-008-0-22 Foundation Element Description				North Walls	
Surface Elev.	1145.2		Top of Shaft	Top of Shaft / Base of Shaft Cap Elevation		
Analysis Desc.	Term/Info Description Unit		Layer 1	Layer 2	Layer 3	Layer 4
	Bedrock Type/Description		Shale	Sandstone	Shale w/ Coal	
	Layer Top Depth (from G.S.)	ft	5.5	10.7	22.6	
Boring/Layer	Layer Top Elevation	MSL	1139.7	1134.5	1122.6	
Information	Layer Bottom Depth (from G.S.)	ft	10.7	22.6	25	
	Layer Bottom Elevation	MSL	1134.5	1122.6	1120.2	
	Layer Thickness	ft	5.2	11.9	2.4	
	RQD	%	23	85	80	
	Discontinuity Length Rating		С	В	С	
GSI Index	Separation Rating		С	В	В	
Calculation	Roughness Rating		С	В	С	
(AASHTO LRFD,	Infilling Rating		С	А	А	
9th Edition; Hoek, et al., 2013;	Weathering Rating		D	В	В	
Bieniawski, Z.T.	Estimated JCond89 Value		12	25	21	
1989)	Estimated GSI Value (quan.)		29.5	80	71.5	
	Estimated GSI Value (qual.)		25	75	55	
	Design GSI Value		25	75	60	
	Compressive Strength, q _u	psi	1368	6750	3975	
	Concrete Strength, f' _c	, psi	4000	4000	4000	
	Fractured Rock? (Susceptible to Cav	ing?)	Yes	No	No	
Unit Side	Joint Condition		Open	Closed	Closed	
Resistance Calculations (AASHTO LRFD,	Regression Coefficient, C		0.5	1.0	1.0	
	q _s (Eqn. 10.8.3.5.4b-1)	ksf	10.22	34.94	34.84	
9th Edition)	Reduction Factor, α_{E}		0.47	0.93	0.9	
, ,	q _s (Eqn. 10.8.3.5.4b-2)	ksf	6.24	21.12	20.38	
	q _s (Design)	ksf	10	34	34	
	q _s (Design)	tsf	5	17	17	

Definition of Bedrock Type Abbreviations:

Project Number:	210435B	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Date:	8/26/2022	
Project Location:	St. Clairsville, Ohio	Checked By:	RSW	三川三
Client Name:	ms consultants, inc.	Date:	10/19/2022	Version 2.0 (8/31/16)

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9TH EDITION) - CONTINUED

		Term/Info Description	Unit	Layer 1	Layer 2	Layer 3	Layer 4
		Compressive Strength, q _u	ksf	196.99	972.00	572.40	
s Intermediate Parameters Required for GSI Empirical Approach, AASHTO LRFD Eqn.	GSI n.	Disturbance Factor, D		1	0.1	0.2	
	for D Eq	Empirical Parameter, s		0.0000037	0.0564973	0.0085493	
	ired LRFI	Empirical Parameter, a		0.5313	0.5009	0.5028	
	equ TO	Constant, m _i (Table 10.4.6.4-1)		6	17	6	
	ters Re , AASH1 .5.4c-2	Empirical Parameter, m _b		0.0283	6.6417	1.2269	
	nete :h, A :3.5.	Depth of Soil Cover	ft	4	4	4	
	arame oroach, 10.8.3.	Average γ_m of Soil Cover	pcf	125	125	125	
	te Pa Appi 1	Average γ_m of Bedrock	pcf	150	150	150	
	cal <i>i</i>	Depth to Water Table	ft	25	25	25	
	rme	Estimated Shaft Tip Depth (BGS)	ft	10.5	22.5	25	
S	Inte En	Vertical Effective Stress, σ'_{vb}	ksf	1.475	3.275	3.65	
Unit End Bearing Resistance Calculations		Intermediate Parameter, A		3.70	275.64	76.05	
lcula		Rock Socket Diameter, B	ft	3	3	3	
e Ca	dian om	Rock Socket Embedment, D _s	ft	5	17	20	
anc	ana 21 fr	s _v Selection ID		8	6	8	
esist	or C 13-2))	S _v	ft	0.5	1	0.5	
лg R	Intermediate Parameters Required for Canadian Geotechnical Society Solution (Eqn. 13-21 from FHWA-NHI-10-016, GEC 10)	t _d Selection ID		2	4	4	
earir	quir on (E 6, GE	t _d	in	0.15	0.05	0.05	
d Be	ate Parameters Req ical Society Solutior FHWA-NHI-10-016,	Check 1		YES	YES	YES	
it En	eter: y So I-10	Check 2		NO	YES	YES	
Uni	ame ciety -NH	USE t _d /s _v		0.02	0.004	0.008	
	: Par I So WA	NEW s _v		0.625	N/A	N/A	
	liate nica FH	Check 3		YES	YES	YES	
	mec	USE s _v /B		0.208	0.333	0.167	
	ateri Seot	K _{sp}		0.121	0.225	0.172	
	= 0	d		1.7	3.3	3.4	
	5 5	q _p (Eqn. 10.8.3.5.4c-1)	ksf	492.48	2430	1431	
	esign	q _p (Eqn. 10.8.3.5.4c-2)	ksf	7.29	1630.26	311.98	
	& Dı Sele(q _p (FHWA-IF-99-025, Eqn. 11.6)	ksf	LOW RQD	547.62	545.95	
	Solutions & Design Strength Selection	q _p (FHWA-NHI-10-016, Eqn. 13-21)	ksf	119.42	2145.45	1004.22	
	oluti. :ren§	q _p (Design)	ksf	10	2430	1430	
	Sc St	q _p (Design)	tsf	5	1215	715	

Project Number:	210435B	Boring(s):	B-008-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Date:	8/26/2022	
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Checked By:	RSW	
Client Name:	ms consultants, inc.	Foundation Element:	North Walls	Date:	10/19/2022	Version 2.0 (8/31/16)

ESTIMATION OF JOINT CONDITION FACTOR (JCond₈₉) FOR BEDROCK LAYERS (See Hoek, et al., 2013; Bieniawski, 1989)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS				
Discontinuity			А	В	С	D	E	
Length	C	2	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m	
(Persistence)	С	2			RELATIVE RATING			
Rating			6	4	2	1	0	
			A	В	С	D	E	
Separation	c	4	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm	
(Aperature) Rating	С	4			RELATIVE RATING			
			6	5	4	1	0	
			A	В	С	D	E	
Devictore and Deting	C	2	Very Rough	Rough	Slightly Rough	Smooth	Slickensided	
Roughness Rating	C	3	RELATIVE RATING					
			6	5	3	1	0	
			A	В	С	D	E	
Infilling (Gouge)	C	2	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm	
Rating	С	2	RELATIVE RATING					
			6	4	2	2	0	
			Α	В	С	D	E	
Weathering	P	1	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed	
Rating	D	1			RELATIVE RATING			
			6	5	3	1	0	

	References: Hoek, E., Carter, T.G., Diederichs, M.S., <i>Quantification of the Geological Strength Index Chart</i> , 47th US Rock Mechanics /
17	Geomechanics Symposium, San Francisco, CA, June 2013 Bieniawski, Z.T. 1989. <i>Engineering Rock Mass Classification</i> . New York: Wiley Interscience.

Project Number:	210435B	Boring(s):	B-008-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	10.7' - 22.6'	Date:	8/26/2022	
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1134.5' - 1122.6'	Checked By:	RSW	
Client Name:	ms consultants, inc.	Foundation Element:	North Walls	Date:	10/19/2022	Version 2.0 (8/31/16)

ESTIMATION OF JOINT CONDITION FACTOR (JCond₈₉) FOR BEDROCK LAYERS (See Hoek, et al., 2013; Bieniawski, 1989)

Parameter	Specimen Result	Relative Rating	RANGE OF VALUES AND RELATIVE RATINGS				
Discontinuity Length (Persistence) Rating	В	4	А	В	С	D	E
			< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m
			RELATIVE RATING				
			6	4	2	1	0
Separation (Aperature) Rating	В	5	A	В	С	D	E
			None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm
			RELATIVE RATING				
			6	5	4	1	0
Roughness Rating	В	5	A	В	С	D	E
			Very Rough	Rough	Slightly Rough	Smooth	Slickensided
			RELATIVE RATING				
			6	5	3	1	0
Infilling (Gouge) Rating	A	6	A	В	С	D	E
			None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm
			RELATIVE RATING				
			6	4	2	2	0
Weathering Rating	В	5	A	В	С	D	E
			Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed
			RELATIVE RATING				
			6	5	3	1	0

	References: Hoek, E., Carter, T.G., Diederichs, M.S., <i>Quantification of the Geological Strength Index Chart</i> , 47th US Rock Mechanics /		
75	Geomechanics Symposium, San Francisco, CA, June 2013 Bieniawski, Z.T. 1989. <i>Engineering Rock Mass Classification</i> . New York: Wiley Interscience.		

Project Number:	210435B	Boring(s):	B-008-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	22.6' - 25'	Date:	8/26/2022	
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1122.6' - 1120.2'	Checked By:	RSW	
Client Name:	ms consultants, inc.	Foundation Element:	North Walls	Date:	10/19/2022	Version 2.0 (8/31/16)

ESTIMATION OF JOINT CONDITION FACTOR (JCond₈₉) FOR BEDROCK LAYERS (See Hoek, et al., 2013; Bieniawski, 1989)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS				
Discontinuity			А	В	С	D	E	
Length	С	2	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m	
(Persistence)	C	2		- -	RELATIVE RATING			
Rating			6	4	2	1	0	
			A	В	С	D	E	
Separation	P	F	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm	
(Aperature) Rating	В	5		·	RELATIVE RATING			
			6	5	4	1	0	
	С	3	Α	В	С	D	E	
Doughnoss Dating			Very Rough	Rough	Slightly Rough	Smooth	Slickensided	
Roughness Rating			RELATIVE RATING					
			6	5	3	1	0	
			A	В	С	D	E	
Infilling (Gouge)	•	A 6	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm	
Rating	A		RELATIVE RATING					
			6	4	2	2	0	
			A	В	С	D	E	
Weathering	P	Г	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed	
Rating	В	5			RELATIVE RATING			
			6	5	3	1	0	

Laver JCond _{so}	References: Hoek, E., Carter, T.G., Diederichs, M.S., <i>Quantification of the Geological Strength Index Chart</i> , 47th US Rock Mechanics /
)1	Geomechanics Symposium, San Francisco, CA, June 2013 Bieniawski, Z.T. 1989. Engineering Rock Mass Classification . New York: Wiley Interscience.

						CX .
Project Number:	210435B	Boring(s):	B-008-0-22	_	- 10	=
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'			0 (8/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By:	BKS	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date:	08/26/22	10/19/22

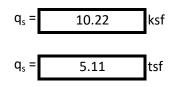
Driiled Shafts in Rock - Example Calculations - Determine Unit Side Resistance, q_s (Utilizing 2 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4b-1

$$\frac{q_s}{p_a} = C \sqrt{\frac{q_u}{p_a}}$$

where:

q_s = unit side resistance (ksf)


q_u = compressive strength of rock (ksf)

- P_a = atmospheric pressure (2.12 ksf)
- C = Regression Coefficient (see right)

Input Information

q _u =	1368	psi
$f'_c =$	4000	psi
<i>C</i> =	0.5	

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

Discussion on Regression Coefficient C (from C10.8.3.5.4b)

"The recommended value of the regression coefficient C = 1.0 is applicable to normal rock sockets, defined as sockets constructed with conventional equipment and resulting in nominally clean sidewalls without resorting to special procedures or artificial roughening. Rock that is prone to smearing or rapid deterioration upon exposure to atmospheric conditions, water, or slurry are outside the normal range and may require additional measures to insure reliable side resistance. Rocks exhibiting this type of behavior include clay shales and other argillaceous rocks. Rock that cannot support construction of an unsupported socket without caving is also outside the normal and will likely exhibit lower side resistance than given by Eq. 10.8.3.5.4b-1 with C = 1.0. For additional guidance on assessing the magnitude of C, See Brown et al. (2010)."

Discussion on Regression Coefficient C (from Brown et al. 2010)

"The most recent regression analysis of available load test data is reported by Kulhawy et al. (2005) and demonstrates that the mean value of the coefficient C is approximately equal to 1.0. The authors recommend the use of Equation [10.8.3.5.4b-1] with C = 1.0 for design of "normal" rock sockets. A lower bound value of C = 0.63 was shown to encompass 90% of the load test results...Considering the most recent research on side resistance in rock, in particular the work cited above by Kulhawy et al. (2005) that incorporates the original data of Horvath and Kenney (1979) plus additional data compiled over the ensuing 25+ years, Equation [10.8.3.5.4b-1] with C = 1.0 is recommended for routine design of rock sockets. For rock that cannot be drilled without some type of artificial support, such as casing or by grouting ahead of the excavation, the reduction factors ... based on RQD are recommended for application to the resistance calculated by Equation [10.8.3.5.4b-2]. The resistance factor recommended with use of Equations [10.8.3.5.4b-1] and [10.8.3.5.4b-2] is $\phi = 0.55$ based on fitting to ASD with a factor of safety FS = 2.5, as discussed in Chapter 10 and presented in Table 10-5. Artificial roughening of rock sockets through the use of grooving tools or other measures can increase side resistance compared to normal sockets. Regression analysis of the available load test data by Kulhawy and Prakoso (2007) suggests a mean value of C = 1.9 with use of Equation [10.8.3.5.4b-1] for roughened sockets. It is strongly recommended that load tests or local experience be used to verify values of C greater than 1.0. However, the advantages of achieving higher resistance by sidewall roughening often justify the cost of load tests." (emphasis added)

.

210435B	Boring(s):	B-008-0-22	(II) =
BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Version 2.0 (8/31/16)
St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By: BKS RSW
ms consultants, inc.	Analysis Purpose:	North Walls	Date: 08/26/22 10/19/22
•	BEL-National Rd Tunnel St. Clairsville, Ohio	BEL-National Rd TunnelLayer Depth Range:St. Clairsville, OhioLayer Elevation Range:	BEL-National Rd TunnelLayer Depth Range:5.5' - 10.7'St. Clairsville, OhioLayer Elevation Range:1139.7' - 1134.5'

Method 2: AASHTO LRFD Equation 10.8.3.5.4b-2

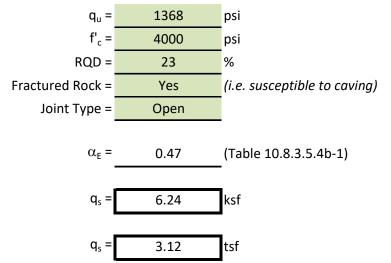
$$\frac{q_s}{p_a} = 0.65 \alpha_E \sqrt{\frac{q_u}{p_a}}$$

where:

q_s = unit side resistance (ksf)

q_u = compressive strength of rock (ksf)

P_a = atmospheric pressure (2.12 ksf)


 α_{E} = joint modification factor (Table 10.8.3.5.4b-1)

Joint Modification Factor, α_{E}

Table 10.8.3.5.4b-1

RQD (%)	Closed Joints	Open or Gouge-Filled Joints
100	1.00	0.85
70	0.85	0.55
50	0.60	0.55
30	0.50	0.50
20	0.45	0.45

Input Information

SUMMARY	
q_s (routine design) = 10.22 ksf (eqn. 10.8.3.5.4b-1) q_s (fractured rock) = 6.24 ksf (eqn. 10.8.3.5.4b-2)	
q _s (design) = 10 ksf	
q _s (design) = 5 ksf	

					<u> </u>
Project Number:	210435B	Boring(s):	B-008-0-22	(1) 🗄	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Version 2.0 ((8/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By: BKS	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date: 08/26/22	10/19/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q p (Utilizing 4 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4c-1

 $q_{n} = 2.5q_{u}$

Method 2: AASHTO LRFD Equation 10.8.3.5.4c-2

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a$$

where:

q_u = compressive strength of rock (ksf)

A = defined by Equation 10.8.3.5.4c-3 (see right)

- m_{b} , s, a = Hoek-Brown strength parameters for the fractured rock mass determined from GSI (see Article 10.4.6.4)
 - Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-2.

where:

q_p = unit end bearing resistance (ksf)

q_u = compressive strength of rock (ksf)

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

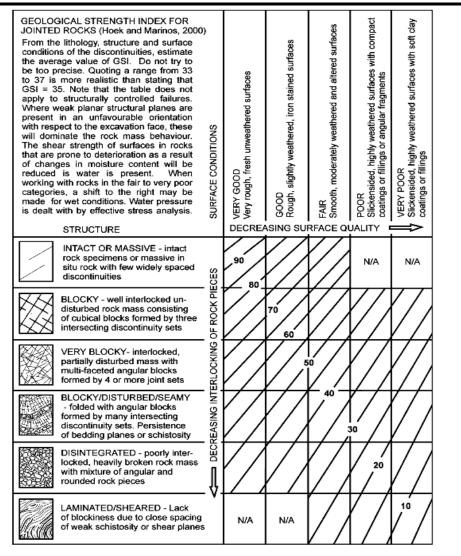
Discussion on the use of Equation 10.8.3.5.4c-1

"If the rock below the base of the drilled shaft to a depth of 2.0B is either intact or tightly jointed, i.e., no compressible material or gouge-filled seams (including no solution cavities or voids below the base of the drilled shaft per C10.8.3.5.4c), and the depth of the socket is greater than 1.5B."

Discussion on the use of Equation 10.8.3.5.4c-2

"If the rock below the base of the shaft to a depth of 2.0B is jointed, the joints have random orientation and the condition of the joints can be evaluated per Equation 10.8.3.5.4c-2....Equation 10.8.3.5.4c-1 should be used as un upper-bound limit to base resistance calculated by Equation 10.8.2.5.4c-2, unless local experience or load tests can be used to validate higher values.

Equation 10.8.3.5.4c-3


$$A = \sigma'_{vb} + q_u \left[m_b \frac{\left(\sigma'_{v,b}\right)}{q_u} + s \right]^a$$

where:

 $\sigma'_{v,b}$ = vertical effective stress at the socket bearing elevation (tip elevation) PLATE 21

.

Project Number:	210435B	Boring(s):	B-008-0-22		
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Version 2.0 (8/31/16	5)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By: BKS RSW	/
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date: 08/26/22 10/19/	22

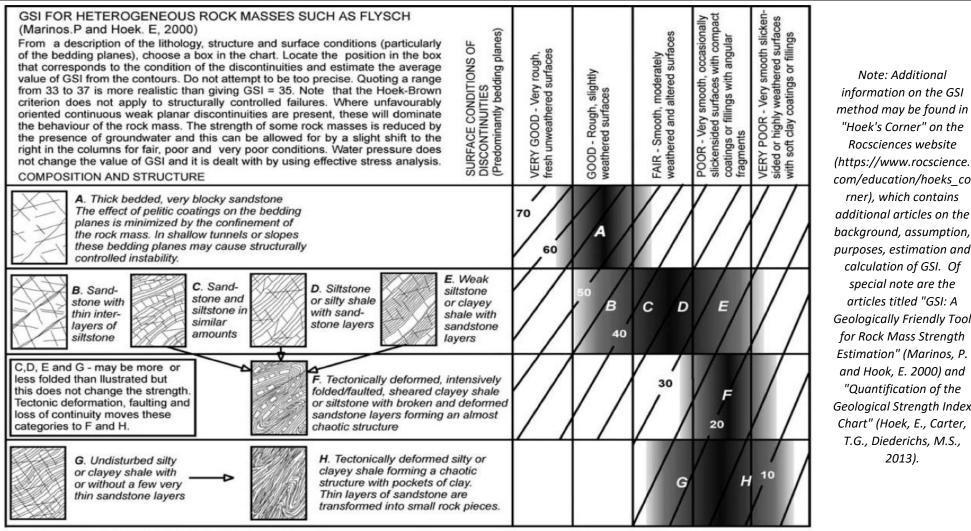
From Article 10.4.6.4	
$s = e^{\left(\frac{GSI-100}{9-3D}\right)}$	Equation 10.4.6.4-2
$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$	Equation 10.4.6.4-3
$m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$	Equation 10.4.6.4-4

where:

GSI = Geological Strength Index (see Figures 10.4.6.4-1 and 10.4.6.4-2)

.

D = Disturbance factor (dim)


 m_i = Constant by Rock Group (see Table 10.4.6.4-1)

Note: Only the portion of Table 10.4.6.4-1 including rock types found in Ohio is shown below. Full table may be viewed in Article 10.4.6.4.

Table 10.4.6.4-1 Values of the Constant m_i by Rock Group (after Marinos and Hoek 2000,with updated values from Rocscience, Inc., 2007)

Rock	Class	Group	Texture				
type			Coarse	Medium	Fine	Very fine	
			Conglomerate (21 ± 3)	Sandstone 17 ± 4	Siltstone 7 <u>+</u> 2	Claystone 4 ± 2	
Y	Clastic		Breccia (19 ± 5)		Greywacke (18 ± 3)	Shale (6 ± 2)	
SEDIMENTARY						Marl (7 ± 2)	
ME			Crystalline	Sparitic	Micritic	Dolomite	
DI		Carbonates	Limestone	Limestone	Limestone	(9 ± 3)	
SE			(12 ± 3)	(10 ± 5)	(8 ± 3)		
	Non-Clastic	F		Gypsum	Anhydrite		
		Evaporites		10 ± 2	12 ± 2		
		oi.				Chalk	
		Organic				7 ± 2	
					PLATE	22	

Project Number:	210435B	Boring(s):	B-008-0-22		
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Version 2.0 (8/31/	16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By: BKS RS	W
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date: 08/26/22 10/1	9/22

calculation of GSI. Of special note are the articles titled "GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation" (Marinos, P. and Hook, E. 2000) and "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013).

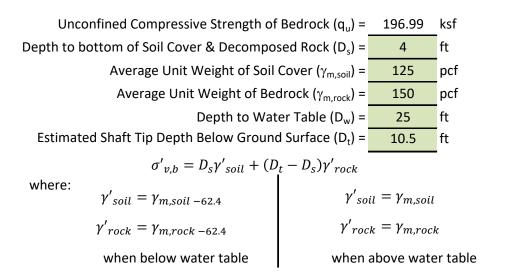
Means deformation after tectonic disturbance

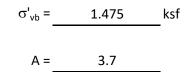
Figure 10.4.6.4-2—Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek 2000)

-

Note: Additional

Rocsciences website

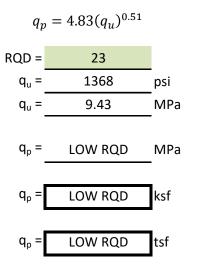

rner), which contains


Project Number:	210435B	Boring(s):	B-008-0-22	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Version 2.0 (8/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By: BKS RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date: 08/26/22 10/19/22

Step 1: Estimate GSI and Hoek-Brown strength parameters using analytical method outlined in "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013) and visually by using Figures 10.4.6.4-1 and 10.4.6.4-2



Step 2: Determine vertical effective stress at shaft tip and intermediate paremeter, A



Step 3: Determine estimated tip resistance

Project Number:	210435B	Boring(s):	B-008-0-22	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'	Version 2.0 (8/31/16)
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By: BKS RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date: 08/26/22 10/19/22

Method 3: FHWA-IF-99-025 Equation 11-6

Method 4: FHWA-NHI-10-016 Equations 13-21 thru 13-23

Equation 13-21: $q_p = q_{BN} = 3q_u K_{sp} d$

Equation 13-22:

$$K_{sp} = \frac{3 + \frac{S_v}{B}}{10\sqrt{1 + 300\frac{t_d}{S_v}}}$$

Equation 13-23: d = 2

$$= 1 + 0.4 \frac{D_s}{B} \le 3.4$$

where:

q_p = unit end bearing resistance (MPa)
q_u = compressive strength of rock (MPa) (1 psi = 0.00689475728 MPa)
NOTE: Equation 11-6 should only be used when the following are true:

Rock mass has an RQD value between 70% and 100%;
Closed joints are approximately horizontal; and
q_u > 0.5 MPa (5.2 tsf or 72.5 psi)

where:

q_p = unit end bearing resistance (ksf)

q_u = compressive strength of rock (ksf)

 s_v = vertical spacing between discontinuities t_d = aperature (thickness) of discontinuities

B = socket diameter (ft)

D_s = depth of socket (rock) embedment (ft)

$(1) \equiv$	
/ersion 2.0 (8/31/16)	
BKS RSW	
/26/22 10/19/2	22
I	ersion 2.0 (8/31/16) BKS RSW

Method 4: FHWA-NHI-10-016 Equations 13-21 thru 13-23 (continued)

Adapted from Table 600-14 in 2007 ODOT SGE, July 2014 Update

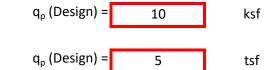
		_
B =	3	ft
D _s =	5	ft
s_v Selection ID =	8	
s _v =	0.5	ft
t _d Selection ID =	2	
t _d =	0.15	in
		-
Check 1:	Is B > 1 ft	
B =	3	
PASS CHECK?	YES	
Check 2:	Is $0 < t_d/s_v < 0.02$	
$t_d/s_v =$	0.025	
PASS CHECK?	NO	If no, adjust s_v
USE t _d /s _v =	0.02	
NEW s _v =	0.625	ft
Check 3:	Is 0.05 < s _v /B < 2.	.0
$s_v/B =$	0.208	
PASS CHECK?	YES	
USE s _v /B =	0.208	

	•	,	, ,	
Selection	Degree of Fracturing	Spacing, s _v	Design V	Value, s _v
ID	Degree of Fracturing	(ft)	(ft)	(mm)
1	Unfractured	> 10.0	10	3048
2	Intact to Unfractured	3.0 < s _v	8	2438
3	Intact	3.0 < s _v < 10.0	6	1829
4	Slightly Fractured to Intact	$1.0 < s_v < 10.0$	4	1219
5	Slightly Fractured	1.0 < s _v < 3.0	2	610
6	Moderately to Slightly Fractured	0.33 < s _v < 3.0	1	305
7	Moderately Fractured	0.33 < s _v < 1.0	0.67	204
8	Fractured to Moderately Fractured	0.16 < s _v < 1.0	0.5	152
9	Fractured	0.16 < s _v < 0.33	0.25	76
10	Highly Fractured to Fractured	s _v < 0.33	0.16	49
11	Highly Fractured	s _v < 0.16	0.1	30

Adapted from Table 600-15 in 2007 ODOT SGE, July 2014 Update

Selection	Condition of Fractures	Aperture, t _d	Design V	Value, t _d
ID	condition of Fractures	(in)	(in)	(mm)
1	Open	0.2 < t _d	0.5	13
2	Narrow to Open	0.05 < t _d	0.15	3.8
3	Narrow	0.05 < t _d < 0.2	0.1	2.5
4	Tight to Narrow	t _d < 0.2	0.05	1.3
5	Tight	t _d < 0.05	0.02	0.5

*Selections 2, 4, 6, 8 & 10 represents cross overs between two descriptions PLATE 26


						×.	
Project Number:	210435B	Boring(s):	B-008-0-22	_	- III	E	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 10.7'			0 (8/31/16)	
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1139.7' - 1134.5'	Calc / Check By:	BKS	RSW	
Client Name:	ms consultants, inc.	Analysis Purpose:	North Walls	Date:	08/26/22	10/19/22	

Method 4: FHWA-NHI-10-016 Equations 13-21 thru 13-23 (continued)

q _u =	1368	psi
q _u =	196.99	ksf
K _{sp} =	0.121	
d =	1.7	
q _p =	119.42	ksf

End Bearing Resistance, $q_{\rm p}$ Summary

Method	Reference	q_p Value	Unit
1	AASHTO LRFD Eqn. 10.8.3.5.4c-1	492.48	ksf
2	AASHTO LRFD Eqn. 10.8.3.5.4c-2	7.3	ksf
3	FHWA-IF-99-025 Eqn. 11-6	N/A	ksf
4	FHWA-NHI-10-016 Eqn. 13-21	119.42	ksf

Project Number:	210435B	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Date:	7/17/2023	
Project Location:	St. Clairsville, Ohio	Checked By:	RSW	Version 2.0
Client Name:	ms consultants, inc.	Date:	7/18/2023	(6/11/2015)

SHALLOW FOUNDATION BEARING RESISTANCE CALCULATION SUMMARY

(Example calculations with reference equations and information are provided on additional sheets)

Bridge	Structure Identification	South End Tunnel Extension Footings			
Boring ID	B-002-0-22		Foundation Elemen	t Description	Tunnel Footings
Surface Elev.	1149.7		Footing Base E	levation	1144.25
Analysis Desc.	Term/Info Description	Unit	Layer 1	Layer 2	Layer 3
	Bedrock Type/Description		Shale	Shale	
	Layer Top Depth (from G.S.)	ft	5.5	14	
Boring/Layer	Layer Top Elevation	MSL	1144.2	1135.7	
Information	Layer Bottom Depth (from G.S.)	ft	14	25.5	
	Layer Bottom Elevation	MSL	1135.7	1124.2	
	Layer Thickness	ft	8.5	11.5	
	Compressive Strength, q _u	psi	500	3975	
	RQD	%	32	68	
Rock Mass Rating	Joint Spacing Selection		D to E	C to D	
(RMR)	Joint Condition Selection		E	В	
Information (per AASHTO LRFD	Groundwater Selection		В	В	
10.6.3.2)	Analysis Type Selection		Foundations	Foundations	
	Joint Strike and Dip Selection		В	В	
	RMR		21	57	
	Compressive Strength, q _u	psi	500	3975	
	Rock Type (A, B or C)		В	В	
	m		0.036	0.466	
Nominal Bearing	5		0.00000195	0.00076295	
Resistance	q _N (Carter & Kulhawy, 1988)	ksf	0.62	82.65	
Calculations (per AASHTO LRFD	Rock Type Selection ID (NAVFAC)		3	3	
10.6.3.1.1 &	q _N (Presumptive, NAVFAC 1986)	ksf	100	100	
10.6.3.2)	Rock Type Selection ID (Peck)		5	3	
	q_N (Suggested Values, Peck 1974)	ksf	150	600	
	q _N (Use)	ksf	See Bieniawski	80	
	q _N (Use)	tsf	See Bieniawski	40	
	q _N (Layer 2)	ksf	80		
Factored Bearing	φ _b	ksf	0.45	(per AASHTO LRFD	Table 10.5.5.2.2-1)
Resistance (per AASHTO LRFD	q _R (Layer 2)	ksf	36	$q_R = \varphi_b q_I$	J
10.6.3.1.1)	NOTE: The presumptive NAVFAC and su of safety of 2.5		Peck values have bee rt from allowable to u	en multiplied by an ass	

Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Date:	7/17/2023	Version 2.0
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Checked By:	RSW	(6/11/2015)
Client Name:	ms consultants, inc.	Foundation Element:	Tunnel Footings	Date:	7/18/2023	

ESTIMATION OF ROCK MASS RATING (RMR) FOR BEDROCK LAYERS (SEE AASHTO LRFD 10.4.6.4, TABLES 10.4.6.4-1, 2 & 3)

Parameter	Specimen Result	Relative Rating		RANGE (OF VALUES AN	ID RELATIVE	RATINGS			
Strength of Intact			> 30000	30000 - 15000	15000	- 7500	7500 - 3610	3610 - 1495	1495 - 485	485 - 138
Rock (UC	500	1		·	RELATIVE	RATING				
Strength, psi)			15	12	-	7	4	2	1	0
Drill Core Quality,			100% - 90%	90% - 75%	75%	- 50%	50% -	- 25%	25%	- 0%
RQD (%)	32	8		-	RELATIVE	RATING	-			
RQD (%)			20	17	1	3	8	}		}
			А	В	(2	C)	E	<u> </u>
Spacing of Joints (ft) D to E	7	> 10	10 - 3	3 - 1		1 - 0.167		< 0.167		
			RELATIVE RATING							
			30	25	2	20		10		5
			А	В	С		D		E	<u> </u>
			Very Rough Surfaces	Slightly Rough Surfaces	Slightly Rou	Slightly Rough Surfaces		d Surfaces,		
Condition of			Not Continuous				Gouge < 0.2 in thick OR		Soft Gouge	> 0.2 in OR
Joints	E	0	No Separation	Separation < 0.05 in	Separatio	n < 0.05 in	Joints Open 0.05 - 0.2 in		Joints Ope	en > 0.2 in
JOINTS			Hard Joint Wall Rock	Hard Joint Wall Rock	Soft Joint	Wall Rock	Continuo	us Joints	Continuo	us Joints
					RELATIVE	RATING				
			25	20	1	2	6	5	()
			A	В			С		C)
Groundwater	Р	7	Completely Dry	Moist Only (Interstitia	l Water)	Water Ur	der Moderate	e Pressure	Severe Wate	er Problems
Conditions (General Conditions criteria)	В	/			RELATIVE	RATING				
			10	7			4		()

Strike and	Strike and Dip Orientations of Joints		А	В	С	D	E
Project Type	Project Analysis	Rating	Very Favorable	Favorable	Fair	Unfavorable	Very Unfavorable
Tunnels		N/A	0	-2	-5	-10	-12
Foundations	В	-2	0	-2	-7	-15	-25
Slopes		N/A	0	-5	-25	-50	-60

Layer RMR	RMR Rating	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0
21	Class No.	l	II	=	IV	V
21	Description	Very Good Rock	Good Rock	Fair Rock	Poor Rock	Very Poor Rock

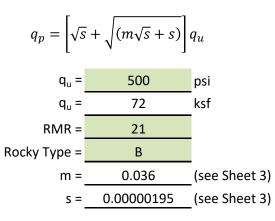
۶ 🗧

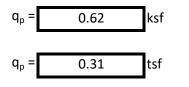
Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS	
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	14' - 25.5'	Date:	7/17/2023	Version 2.0
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1135.7' - 1124.2'	Checked By:	RSW	(6/11/2015)
Client Name:	ms consultants, inc.	Foundation Element:	Tunnel Footings	Date:	7/18/2023	

ESTIMATION OF ROCK MASS RATING (RMR) FOR BEDROCK LAYERS (SEE AASHTO LRFD 10.4.6.4, TABLES 10.4.6.4-1, 2 & 3)

Parameter	Specimen Result	Relative Rating		RANGE (OF VALUES AN	ID RELATIVE	RATINGS					
Strength of Intact			> 30000	30000 - 15000	15000	- 7500	7500 - 3610	3610 - 1495	1495 - 485	485 - 138		
Rock (UC	3975	4		RELATIVE RATING								
Strength, psi)			15	12	-	7	4	2	1	0		
Drill Core Quality,			100% - 90%	90% - 75%	75%	- 50%	50% -	25%	25%	- 0%		
RQD (%)	68	13			RELATIVE	RATING	-					
RQD (%)			20	17	1	3	8	}		}		
			А	В	(2	C)	E	<u> </u>		
Spacing of Joints (ft) C to D	15	> 10	10 - 3	3 - 1		1 - 0.167		< 0.167				
			RELATIVE RATING									
			30	25	2	0	10		5			
			А	В	С		D		E			
			Very Rough Surfaces	Slightly Rough Surfaces	Slightly Rough Surfaces		Slicken-sided Surfaces,					
Condition of			Not Continuous				Gouge < 0.2 in thick OR		Soft Gouge	> 0.2 in OR		
Joints	В	20	No Separation	Separation < 0.05 in	Separatio	n < 0.05 in	Joints Open 0.05 - 0.2 in		Joints Ope	en > 0.2 in		
JOINTS			Hard Joint Wall Rock	Hard Joint Wall Rock	Soft Joint	Wall Rock	Continuo	us Joints	Continuo	us Joints		
					RELATIVE	RATING						
			25	20	1	2	6	5	()		
			A	В			С		[)		
Groundwater	В	7	Completely Dry	Moist Only (Interstitia	l Water)	Water Ur	der Moderate	Pressure	Severe Wate	er Problems		
Conditions (General Conditions criteria)	В	/			RELATIVE	RATING						
conditions enterial			10	7			4		()		

Strike and	Strike and Dip Orientations of Joints		А	В	С	D	E
Project Type	Project Analysis	Rating	Very Favorable	Favorable	Fair	Unfavorable	Very Unfavorable
Tunnels		N/A	0	-2	-5	-10	-12
Foundations	В	-2	0	-2	-7	-15	-25
Slopes		N/A	0	-5	-25	-50	-60


Layer RMR	RMR Rating	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0
	Class No.	l	II	III	IV	V
37	Description	Very Good Rock	Good Rock	Fair Rock	Poor Rock	Very Poor Rock


۶ 🗧

				Version 2.0 (6/11/2015)	
Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Date:	7/17/2023
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Checked By:	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Tunnel Footings	Date:	7/18/2023

Example Calculations - Determine Nominal Bearing Resistance, q_N

Analysis Method: AASHTO LRFD, 6th Edition, Equation 10.8.3.5.4c-2 (after Carter and Kulhawy, 1988)

where:

q_p = unit end bearing resistance (ksf)

 q_u = compressive strength of rock (ksf)

m, s = fractured rock mass parameters (see Sheet 2)

Note: RMR value may be correlated by exponential trendline equations to determine the values for m and s. See sheet 3 for background calculations and development of exponential equations to solve for m and s.

Rock Type Legend for Bedrock Found in Ohio (see Table 10.4.6.4-4)

Type A - Carbonate - Dolomite, Limestone and Marble Type B - Argrillaceous - Mudstone, Siltstone, Shale and Slate Type C - Arenaceous - Sandstone and Quartzite

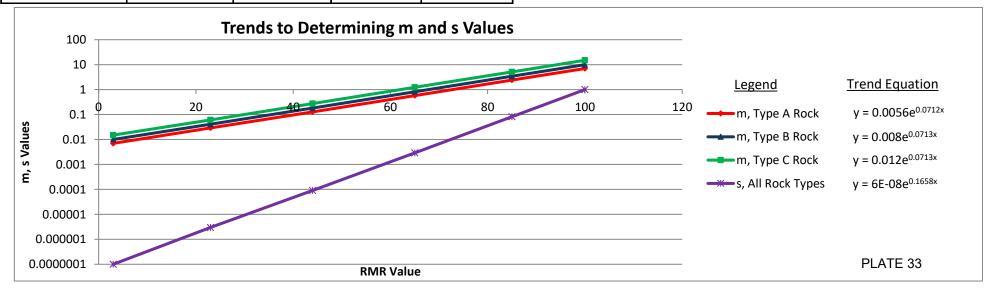
				Version 2.0 (6/11/2015)	
Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Date:	7/17/2023
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Checked By:	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Tunnel Footings	Date:	7/18/2023

Example Calculations - Determine Nominal Bearing Resistance, q_{N} - Continued

TABLE 10.4.6.4-4 (AASHTO LRFD 6th Edition)			A = Carbonat	te rocks - dolomit	e, limestone and	marble			
Rock Quality	Approx. CSIR Rating (RMR Value)	Constants	StudyB = Lithified argrillaceous rocks - mudstone, siltstone, shale and slateC = Arenaceous rocks - sandstone and quartziteD = Fine grained igneous rocks - andesite, dolerite, diabase and rhyoliteE = Coarse grained igneous rocks = gabbro gneiss, granite, quartz-diorite						
			A	В	С	D	E		
INTACT ROCK SAMPLES		m	7.00	10.00	15.00	17.00	25.00		
Laboratory size specimens free from discontinuties	100	S	1.00	1.00	1.00	1.00	1.00		
VERY GOOD QUALITY ROCK MASS		m	2.4	3.43	5.14	5.82	8.567		
Tightly interlocking undisturbed rock with unweathered joints at 3 - 10 feet.	85	S	0.082	0.082	0.082	0.082	0.082		
GOOD QUALITY ROCK MASS		m	0.575	0.821	1.231	1.395	2.052		
Fresh to slightly weathered rock, slightly disturbed with joints at 3 - 10 feet.	65	S	0.00293	0.00293	0.00293	0.00293	0.00293		
FAIR QUALITY ROCK MASS		m	0.128	0.183	0.275	0.311	0.458		
Several sets of moderately weathered joints spaced at 1 - 3 feet.	44	S	0.00009	0.00009	0.00009	0.00009	0.00009		
POOR QUALITY ROCK MASS		m	0.029	0.041	0.061	0.069	0.102		
Numerous weathered joints at 2 to 12 inches; some gouge. Clean compacted waste rock.	23	S	0.000003	0.000003	0.000003	0.000003	0.000003		
VERY POOR QUALITY ROCK MASS		m	0.007	0.01	0.015	0.017	0.025		
Numerous heavily weathered joints spaced <2 inches with gouge. Waste rock with fines.	3	S	0.0000001	0.0000001	0.0000001	0.0000001	P64969901		

				Version 2.0 (6/11/2015)	
Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Date:	7/17/2023
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Checked By:	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Tunnel Footings	Date:	7/18/2023

Example Calculations - Determine Nominal Bearing Resistance, q_N - Continued


Background Calculation: Determine m and s values based on RMR value

RMR	s Value (All Rock	m Va	alue (by Rock Ty	/pe)				
	Types)	Type A	Туре В	Type C				
3	0.0000001	0.007	0.01	0.015				
23	0.000003	0.029	0.041	0.061				
44	0.00009	0.128	0.183	0.275				
65	0.00293	0.575	0.821	1.231				
85	0.082	2.4	3.43	5.14				
100	1	7	10	15				

From Table 10.4.6.4-4 (see Sheet 2)

Rock Type Legend for Bedrock Found in Ohio Type A - Carbonate - Dolomite, Limestone and Marble Type B - Argrillaceous - Mudstone, Siltstone, Shale and Slate Type C - Arenaceous - Sandstone and Quartzite

Note: Trend equations shown below are for best fit lines using an exponential trendline (best fit regression analysis) for the m or s values shown in the table to the left for each rock type.

				Version 2.0 (6/11/2015)	
Project Number:	210435B	Boring(s):	B-002-0-22	Calculated By:	BKS
Project Name:	BEL-National Rd Tunnel	Layer Depth Range:	5.5' - 14'	Date:	7/17/2023
Project Location:	St. Clairsville, Ohio	Layer Elevation Range:	1144.2' - 1135.7'	Checked By:	RSW
Client Name:	ms consultants, inc.	Analysis Purpose:	Tunnel Footings	Date:	7/18/2023

Example Calculations - Determine Nominal Bearing Resistance, q_N - Continued

Additional Alternative: Presumptive/Suggested Allowable Bearing Pressures

Table 8-9 in FHWA NHI-06-089 "Soils and Foundations, Volume 2" (modified after NAVFAC, 1986; AASHTO 2004 with 2006 Interims)

Selection ID	Rock Type (General Description)	Rock Type (Examples)	Allowable Bearing Pressure		
Selection ID	Rock Type (General Description)	Rock Type (Examples)	(MPa)	(ksf)	
1	Massive crystalline igneous and metamorphic	Granite, diorite, basalt, gneiss, cemented conglomerate	7.7	160	
2	Foliated metamorphic	Slate, schist	3.4	70	
3	Sedimentary	Hard shales, siltstone, sandstone, limestone	1.9	40	
4	Weathered or broken rock	All types (except clay shale), RQD < 25%	1	20	
5	Compaction Shale or Highly Argillaceous	Shale	1	20	

From Table 8-10 FHWA NHI-06-089 "Soils and Foundations, Volume 2" (after Peck, et al., 1974)

Selection ID	tion ID RQD (%)		ring Pressure	
Selection ID	NQD (70)	(MPa)	(ksf)	
1	100	29	600	
2	90	19	400	
3	75	12	240	
4	50	6	130	
5	25	3	60	
6	0	1	20	

Note: The bearing pressure values given in these two tables are equal to allowable bearing pressures, or roughly equivalent to factored bearing pressures. To complete the analysis using these values, nominal resistances should by calculated from the values shown in the tables by multiplying by an assumed applied factor of safety to convert from allowable (factored) to ultimate (nominal) resistances. A factor of safety of 2.5 has been applied in these analyses.

Reference Table	Selection ID	Allowable Bearing Pressure (ksf)	Nominal Bearing Resistance (ksf)
8-9	3	40	100
8-10	5	60	150
			PLATE 34

Project No	210435B			
Client ms consultants, inc.				
Project	BEL-National Rd Tunnel			
Desc.	Retaining Walls			
	South End			

	Sheet	1	of	1	
Calc. By	BKS	Date	7/17/23		
Check By	RSW	Date	7/18	3/23	
-					

LRFD BEARING RESISTANCE CALCULATION - FOOTING ON BEDROCK

BEDROCK PARAMETERS (using Bieniawski, 19	989, equations for ϕ ' and c')
---	-------------------------------------

Rock Layer	Boring ID	Bedrock Description at/below Foundation Bearing Elevation	q _u psi	RMR Rating	φ' (deg.)	C' (psf)	D _w (ft)	γ _f (pcf)	Υ _q (pcf)
Upper	B-002-0-22	Shale (between 5.5' and 14')	500	21	15.5	2184	26	152	120
Lower	B-002-0-22	Shale (between 14' and 25.5')	3975	50	30	5200	26	152	120
					5	0		152	

$$q_N = cN_c s_c i_c + \gamma_q D_f N_q s_q d_q i_q C_{wq} + \frac{1}{2} \gamma_f B N_\gamma s_\gamma i_\gamma C_{w\gamma}$$

Equation 10.6.3.1.2a-1

	Footin	g Dimens	ions	Bearing Capacity and Shape Factors				Shearing/Groundwater Factors				
Rock Layer	D _f (ft)	B (ft)	L (ft)	N _c (1)	N _q (1)	Ν _γ (1)	S _c (2)	S q (2)	S γ (2)	Dq (3)	C _{wq} (4)	C _{wγ} (4)
Upper	4	8	100	11.00	3.90	2.70	1.028	1.022	0.968	1.2	0.5	0.5
Lower	4	8	100	30.10	18.40	22.40	1.049	1.046	0.968	1.2	0.5	0.5

NOMINAL BEARING RESISTANCE

Rock Layer	q ℕ (ksf)	
Upper	26.6	
Lower	176.3	
0	0.0	

BEARING RESISTANCE FACTORS

Resistance

Factor 1.0

FACTORED BEARING RESISTANCE

Service Limit State*	Strength Limit State
20	11.9
20	79.3
20	0
	State* 20 20 20

*Refer to LRFD Table C10.6.2.6.1-1

Bieniawski (1989) Equations

$$\phi' = \frac{RMR}{2} + 5^{o}$$

$$c' = 0.104RMR$$
 (in ksf)

Strength 0.45

REFERENCES

Limit

State

Service

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

Article 10.5.5.1

Table 10.5.5.2.2-1 (rock)

- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and Sγ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cw γ obtained from Table 10.6.3.1.2a-2.

Project No	210435B
Client	ms consultants, inc.
Project	BEL-National Rd Tunnel
Desc.	Retaining Walls
	North End

	Sheet	1	of	1
Calc. By	BKS	Date	8/16	5/22
Check By	RSW	Date	10/1	9/22

LRFD BEARING RESISTANCE CALCULATION - FOOTING ON BEDROCK

Rock Layer	Boring ID	Bedrock Description at/below Foundation Bearing Elevation	q _u psi	RMR Rating	φ' (deg.)	C' (psf)	D _w (ft)	γ _f (pcf)	Υ _q (pcf)
Upper	B-008-0-22	Shale (5.5' to 10.7')	1368	32	21	3328	26	152	120
Middle	B-008-0-22	Sandstone (10.7' to 22.6')	6750	73	41.5	7592	26	152	120
Lower	B-008-0-22	Shale (22.6' to 24.5')	3975	59	34.5	6136	26	152	120

$$q_N = c N_c s_c i_c + \gamma_q D_f N_q s_q d_q i_q C_{wq} + \frac{1}{2} \gamma_f B N_\gamma s_\gamma i_\gamma C_{w\gamma}$$

Equation 10.6.3.1.2a-1

	Footin	g Dimens	ions		Bearing	Shearing/Groundwater Factors						
Rock Layer	D _f (ft)	B (ft)	L (ft)	N _c (1)	N q (1)	Ν _γ (1)	S _c (2)	S q (2)	S γ (2)	Dq (3)	C _{wq} (4)	C _{wγ} (4)
Upper	4	6	100	15.80	7.10	6.20	1.027	1.023	0.976	1.2	0.5	0.5
Middle	4	6	100	83.90	73.90	130.20	1.053	1.053	0.976	1.2	0.5	0.5
Lower	4	6	100	42.20	29.40	41.10	1.042	1.041	0.976	1.2	0.5	0.5

NOMINAL BEARING RESISTANCE

Rock Layer	q ℕ (ksf)
Upper	57.5
Middle	722.0
Lower	287.7

BEARING RESISTANCE FACTORS

Resistance

Factor 1.0

0.45

FACTORED BEARING RESISTANCE

Rock Layer	Service Limit State*	Strength Limit State				
Upper	20	25.8				
Middle	20	324.9				
Lower	20	129.4				
Middle		324				

*Refer to LRFD Table C10.6.2.6.1-1

Bieniawski (1989) Equations

$$\phi' = \frac{RMR}{2} + 5^{o}$$

$$c' = 0.104RMR$$
 (in ksf)

Limit

State

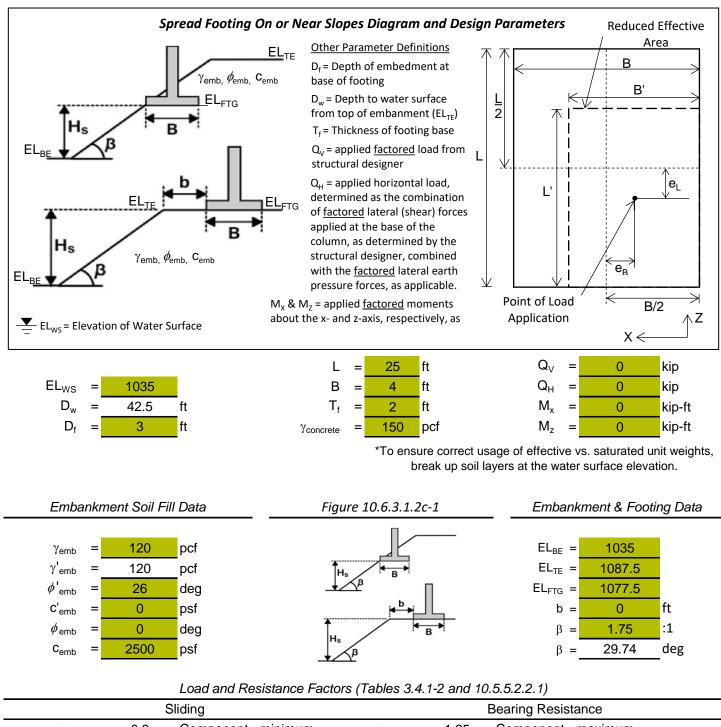
Service

Strength

REFERENCES

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

Article 10.5.5.1


Table 10.5.5.2.2-1 (rock)

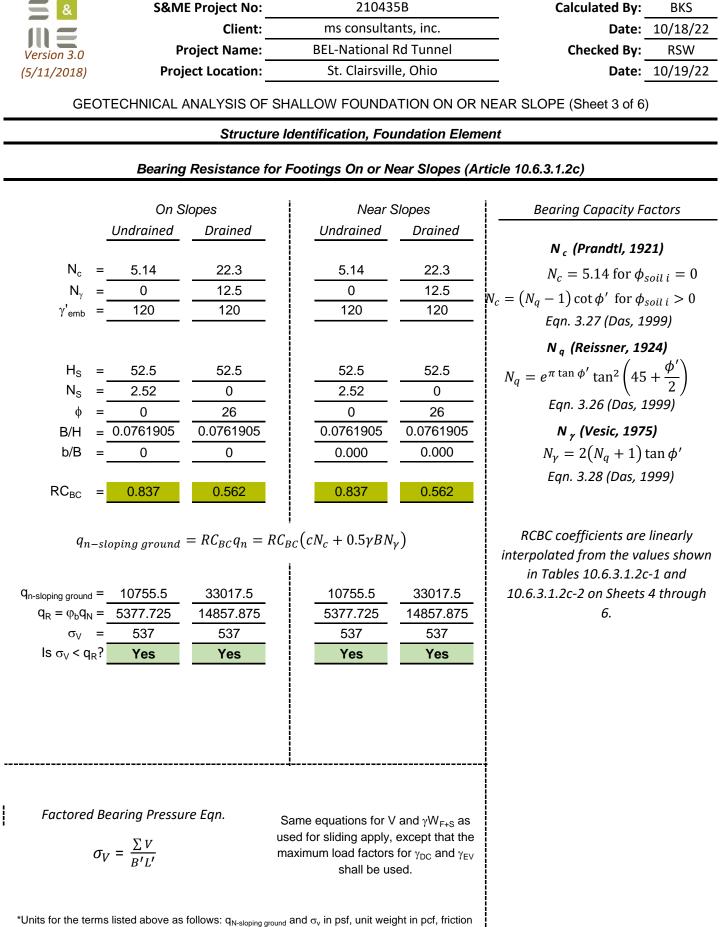
- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and S γ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cw γ obtained from Table 10.6.3.1.2a-2.

8	S&ME Project No:	210435B	Calculated By: BKS
$m \equiv$	Client:	ms consultants, inc.	Date: 10/18/22
Version 3.0	Project Name:	BEL-National Rd Tunnel	Checked By: RSW
(5/11/2018)	Project Location:	St. Clairsville, Ohio	Date: 10/19/22

GEOTECHNICAL ANALYSIS OF SHALLOW FOUNDATION ON OR NEAR SLOPE (Sheet 1 of 6)

Structure Identification, Foundation Element

	S	Sliding			Bearing Resistance					
γ_{DC} =	0.9	Component - minimum	γdc	=	1.25	Component - maximum				
γ_{EV} =	1.0	Vertical earth pressure - min	γεν	=	1.35	Vertical earth pressure - maximum				
ϕ_{τ} =	0.9	Precast concrete on sand	ϕ_{b}	=	0.5	Munfakh et al., 2001, clay				
ϕ_{τ} =	0.8	CIP concrete on sand	ϕ_{b}	=	0.5	Munfakh et al., 2001, CPT in sand				
ϕ_{τ} =	0.85	Concrete on clay	ϕ_{b}	=	0.45	Munfakh et al., 2001, SPT in sand				
$\varphi_{\tau} =$	0.9	 Soil on soil	Φb	=	0.45	Meyerhof, 1957, all soils				

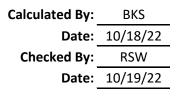

8	S&ME Project No	: 210435B	Calculated By:	BKS				
$\overline{\mathbf{m}} =$	Client	ms consultants, inc.	Date:	10/18/22				
Version 3.0	Project Name	BEL-National Rd Tunnel	Checked By:	RSW				
(5/11/2018)	Project Location		Date:	10/19/22				
		F SHALLOW FOUNDATION ON OR NEA	-					
	Struct	ure Identification, Foundation Element						
		Interim Calculations						
e _L =	<u> </u>	$e_L = \frac{M_X}{Q_v} \qquad \qquad L' = L - 2e_L$	L' = 25	ft				
e _B =	<u> </u>	$e_B = \frac{M_Z}{Q_\nu} \qquad \qquad B' = B - 2e_B$	B' =	ft				
Equations for e_B and e	e _L are taken from Equations 3.4 Foundation Engineering,	16 and 3.47 (based on Figure 3.13) in Principles of 4th Edition (Das, 1999)						
		Sliding & Eccentricity						
Draine	ed Analysis	Undrained Analysis	Eccentricity (Overtu	urning)				
(Article	e 10.6.3.4)	(Article 10.6.3.4)	(Article 10.6.3.3)					
$\delta = _$ Tan(δ) = Concrete =	26 deg 0.488 Precast	$\begin{array}{c} \mbox{Method 1: Cohesion of Clay} \\ \mbox{q}_{s} = S_{u} = \underline{2500} \mbox{ psf} \\ \mbox{B} = \underline{4} \mbox{ ft} \end{array}$	ls e _L < L/3? Is e _B < B/3?	Yes Yes				
$\gamma W_{F+S} = $ $V = $ $\phi_{\tau} = $	39 kip 39 kip 0.85	$R_{R} = \varphi_{\tau}R_{\tau} = \underbrace{8500}_{q_{H}} \text{ plf}$ $q_{H} = \underbrace{0.0}_{p_{H}} \text{ plf}$						
C =	0.8	Is R _R > q _H ? Yes						
$R_R = \varphi_\tau R_\tau =$	12.9 kip							
Q _H =	0 kip	Method 2: ¹ / ₂ Vertical Effective Stress	EQUATIONS - Undraine	d Analysis				
ls R _R > Q _H ?	Yes	$q_{s} = 0.5\sigma'_{v} = \frac{180}{4} \text{ psf}$ $B = \frac{4}{4} \text{ ft}$	$\sigma'_{v} = D_{f} \gamma_{backfill}$					
EQUATIONS	- Drained Analysis	$R_R = \phi_\tau R_\tau = 612$ plf	$q_s = ext{lesser of } S_u or 0$	$0.5\sigma'_v$				
$Q_H = Sum Hor$	rizontal Forces	$q_H = 0.0$ plf	$R_{\tau} = Bq_s$					
$R_{ au}$ = V tan (where δ i	is $\phi'_{\text{soil 1}}$)	Is R _R > q _H ? Yes	$q_H = \frac{Q_H}{L}$					
(where W _{F+S} is footing and s	$W_{F+S} + \gamma Q_v$ is the weight of the oil backfill on top ing, see below)	least 6 inches of compacted granular material, the lesser of the two methods above should be used.	q _H is the sum of horizo per foot of footi					

 $\gamma W_{F+S} = \gamma_{DC} LBT_f \gamma_{concrete} + \gamma_{EV} LB(D_f - T_f) \gamma'_{backfill}$

where minimum values for γ_{DC} and γ_{EV} shall be used

NOTE: Passive resistance is neglected when checking for stability in sliding.

NOTE: "N/A" indicates that the bearing material is cohesionless and an undrained analysis is not required.


angle in degrees and Hs in feet. Remaining terms listed above are dimensionless.

S&ME Project No: 210435B Client:

ms consultants, inc.

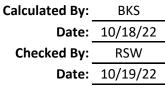
Project Name: Project Location: BEL-National Rd Tunnel St. Clairsville, Ohio

GEOTECHNICAL ANALYSIS OF SHALLOW FOUNDATION ON OR NEAR SLOPE (Sheet 4 of 6)

Structure Identification, Foundation Element

Table 10.6.3.1.2c-1 Reduction Coefficients (RC BC) for Footings on Slopes

				β=	10°			β=	20°			β=	30°			β=	40°	
				Λ	Vs			Ν	s			Ν	Vs.			Ν	Vs	
(°)	B/H	b/B	0	2	4	<i>c</i> '=0	0	2	4	c'=0	0	2	4	c'=0	0	2	4	<i>c</i> '=0
	0.1		0.89	0.89	0.88	0.00	0.89	0.88	0.87	0.00	0.85	0.84	0.83	0.00	0.77	0.76	0.74	0.00
	0.2	e)	0.89	0.88	0.88	0.00	0.89	0.87	0.86	0.00	0.82	0.81	0.78	0.00	0.76	0.73	0.69	0.00
	0.4	Slope)	0.88	0.87	0.86	0.00	0.89	0.86	0.82	0.00	0.81	0.77	0.66	0.00	0.74	0.68	0.53	0.00
0	0.6	n S	0.89	0.87	0.84	0.00	0.88	0.84	0.71	0.00	0.81	0.74	0.53	0.00	0.74	0.64	0.41	0.00
	1	(On	0.87	0.84	0.75	0.00	0.87	0.79	0.56	0.00	0.80	0.66	0.42	0.00	0.73	0.56	0.33	0.00
	1.5	0	0.87	0.82	0.62	0.00	0.87	0.72	0.47	0.00	0.80	0.61	0.37	0.00	0.73	0.54	0.30	0.00
	3		0.87	0.73	0.47	0.00	0.87	0.67	0.37	0.00	0.83	0.62	0.31	0.00	0.80	0.59	0.28	0.00
	0.1		0.91	0.91	0.91	0.69	0.80	0.79	0.79	0.22	0.64	0.63	0.61	0.00	0.53	0.52	0.50	0.00
	0.2	e)	0.90	0.89	0.90	0.68	0.75	0.73	0.72	0.21	0.62	0.59	0.56	0.00	0.52	0.49	0.45	0.00
	0.4	Slope)	0.86	0.86	0.84	0.63	0.73	0.70	0.67	0.22	0.62	0.56	0.51	0.00	0.52	0.45	0.39	0.00
20	0.6	n S	0.85	0.84	0.82	0.58	0.73	0.68	0.63	0.22	0.61	0.54	0.47	0.00	0.51	0.41	0.33	0.00
	1	0 (On	0.85	0.82	0.78	0.58	0.72	0.64	0.58	0.26	0.61	0.50	0.42	0.00	0.52	0.39	0.30	0.00
	1.5		0.86	0.80	0.75	0.58	0.73	0.62	0.54	0.31	0.65	0.50	0.42	0.00	0.60	0.44	0.34	0.00
	3		0.90	0.77	0.72	0.58	0.88	0.66	0.56	0.35	0.86	0.61	0.51	0.00	0.85	0.57	0.46	0.00
	0.1		0.93	0.92	0.91	0.77	0.65	0.64	0.63	0.40	0.51	0.50	0.48	0.11	0.40	0.37	0.36	0.00
	0.2	e)	0.81	0.82	0.84	0.76	0.64	0.61	0.59	0.39	0.50	0.47	0.44	0.11	0.39	0.35	0.32	0.00
	0.4	Slope)	0.79	0.79	0.78	0.72	0.63	0.59	0.55	0.37	0.50	0.43	0.39	0.13	0.39	0.32	0.27	0.00
30	0.6	n S	0.78	0.77	0.75	0.68	0.62	0.56	0.52	0.36	0.49	0.41	0.36	0.14	0.39	0.30	0.24	0.00
	1	(On	0.79	0.75	0.73	0.67	0.63	0.53	0.49	0.41	0.55	0.41	0.35	0.24	0.48	0.33	0.26	0.00
	1.5	0	0.79	0.73	0.69	0.66	0.72	0.56	0.50	0.46	0.68	0.47	0.39	0.33	0.64	0.41	0.33	0.00
	3		0.95	0.74	0.70	0.65	0.92	0.66	0.60	0.51	0.90	0.62	0.57	0.43	0.88	0.59	0.51	0.00
	0.1		0.74	0.77	0.79	0.80	0.52	0.51	0.50	0.38	0.37	0.36	0.34	0.17	0.28	0.26	0.24	0.05
	0.2	()	0.69	0.69	0.69	0.78	0.51	0.48	0.47	0.37	0.37	0.33	0.30	0.16	0.27	0.23	0.20	0.05
	0.4	Slope)	0.67	0.69	0.67	0.72	0.50	0.45	0.43	0.36	0.36	0.30	0.26	0.17	0.27	0.20	0.17	0.06
40	0.6	n S	0.67	0.67	0.64	0.66	0.50	0.43	0.43	0.34	0.40	0.34	0.26	0.17	0.32	0.22	0.18	0.08
	1	(On	0.69	0.64	0.62	0.70	0.63	0.48	0.43	0.45	0.58	0.39	0.33	0.32	0.54	0.33	0.27	0.24
	1.5	0	0.76	0.65	0.61	0.74	0.74	0.53	0.48	0.56	0.71	0.47	0.40	0.47	0.68	0.43	0.36	0.41
	3		0.95	0.74	0.71	0.77	0.94	0.68	0.65	0.66	0.91	0.67	0.62	0.62	0.92	0.67	0.59	0.57



S&ME Project No: 210435B Calculate

BEL-National Rd Tunnel

Project Name: _____ Project Location:

EL-National Rd Tunnel St. Clairsville, Ohio

GEOTECHNICAL ANALYSIS OF SHALLOW FOUNDATION ON OR NEAR SLOPE (Sheet 5 of 6)

Structure Identification, Foundation Element

Table 10.6.3.1.2c-2 Reduction Coefficients (RC BC) for Footings Adjacent to Slopes

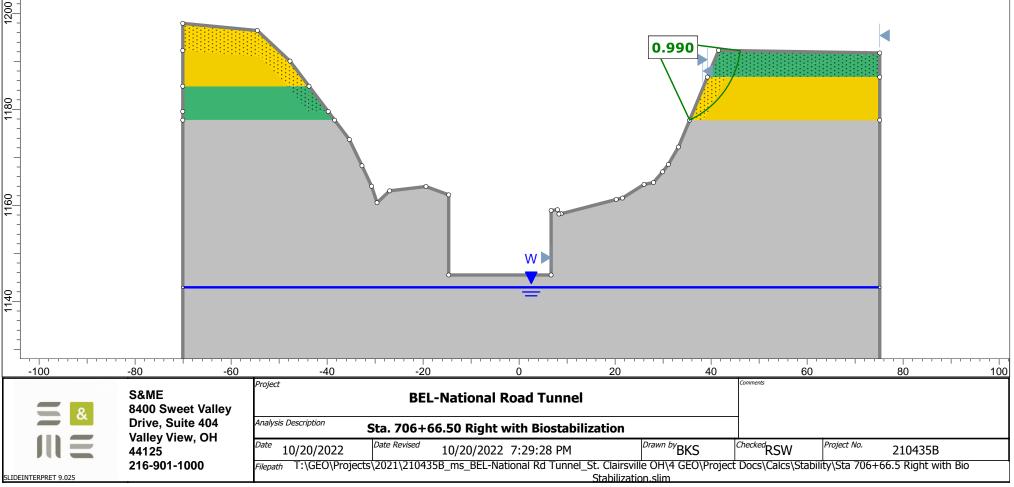
				β=	10°			β=	20°			β=	30°		β=40°			
					s				ls				Vs.			1	Vs	
• (°)	B/H	b/B	0	2	4	c'=0												
		0	0.89	0.88	0.88	0.00	0.89	0.87	0.86	0.00	0.82	0.81	0.78	0.00	0.76	0.73	0.69	0.00
		0.5	0.97	0.96	0.96	0.00	0.95	0.93	0.91	0.00	0.92	0.89	0.87	0.00	0.86	0.83	0.76	0.00
		1.25	1.00	0.99	0.98	0.00	1.00	0.98	0.96	0.00	1.00	0.97	0.95	0.00	0.95	0.91	0.81	0.00
	0.2	2.5	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	0.97	0.84	0.00
		5	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.89	0.00
		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.92	0.91	0.88	0.00	0.85	0.82	0.76	0.00	0.77	0.73	0.63	0.00	0.71	0.65	0.52	0.00
		0.5	0.96	0.95	0.89	0.00	0.92	0.89	0.78	0.00	0.87	0.84	0.68	0.00	0.83	0.76	0.56	0.00
	0.5	1.25	0.98	0.97	0.90	0.00	0.96	0.94	0.80	0.00	0.94	0.92	0.71	0.00	0.90	0.83	0.58	0.00
		2.5	1.00	1.00	1.00	0.00	1.00	1.00	0.86	0.00	1.00	1.00	0.79	0.00	1.00	0.93	0.68	0.00
		5	1.00	1.00	1.00	0.00	1.00	1.00	0.95	0.00	1.00	1.00	0.93	0.00	1.00	1.00	0.88	0.00
0		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.87	0.84	0.75	0.00	0.87	0.79	0.56	0.00	0.80	0.66	0.42	0.00	0.73	0.56	0.33	0.00
		0.5	0.95	0.91	0.82	0.00	0.92	0.83	0.65	0.00	0.86	0.73	0.46	0.00	0.81	0.67	0.40	0.00
	1	1.25 2.5	0.97	0.94	0.83	0.00	0.95	0.87	0.67	0.00	0.92	0.81	0.50	0.00	0.89	0.76	0.46	0.00
		2.5 5	1.00 1.00	0.98 1.00	0.88 0.95	0.00 0.00	1.00 1.00	0.97 1.00	0.77 0.90	0.00 0.00	1.00 1.00	1.00 1.00	0.84 0.84	0.00 0.00	0.99	0.92 1.00	0.63 0.83	0.00 0.00
		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.87	0.79	0.57	0.00	0.87	0.71	0.44	0.00	0.81	0.62	0.35	0.00	0.75	0.56	0.29	0.00
		0.5	0.97	0.93	0.65	0.00	0.94	0.79	0.49	0.00	0.89	0.72	0.42	0.00	0.85	0.69	0.37	0.00
		1.25	0.99	0.98	0.73	0.00	0.99	0.91	0.57	0.00	0.98	0.86	0.51	0.00	0.96	0.83	0.47	0.00
	2	2.5	1.00	0.99	0.82	0.00	1.00	0.96	0.69	0.00	1.00	0.95	0.64	0.00	1.00	0.95	0.61	0.00
		5	1.00	1.00	0.96	0.00	1.00	1.00	0.87	0.00	1.00	1.00	0.84	0.00	1.00	1.00	0.81	0.00
		10	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.90	0.89	0.90	0.68	0.75	0.73	0.72	0.21	0.62	0.59	0.56	0.00	0.52	0.49	0.45	0.00
		0.5	0.78	0.87	0.86	0.70	0.74	0.76	0.74	0.40	0.63	0.65	0.63	0.00	0.52	0.56	0.52	0.00
		1.25	0.86	0.92	0.92	0.82	0.83	0.84	0.83	0.70	0.74	0.75	0.74	0.00	0.63	0.66	0.63	0.00
	0.2	2.5	0.96	0.98	0.99	0.83	0.95	0.94	0.95	0.84	0.90	0.89	0.90	0.00	0.78	0.81	0.78	0.00
		5	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	0.96	0.98	0.96	0.00
		10	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	0.99	0.99	1.00	0.00
		0	0.86	0.86	0.84	0.60	0.73	0.70	0.67	0.22	0.62	0.56	0.51	0.00	0.52	0.45	0.39	0.00
		0.5	0.84	0.91	0.92	0.71	0.80	0.80	0.79	0.40	0.70	0.68	0.67	0.00	0.62	0.59	0.56	0.00
	0.5	1.25	0.88	1.00	0.97	0.82	0.85	0.88	0.86	0.70	0.76	0.75	0.75	0.00	0.68	0.66	0.64	0.00
		2.5	0.97	1.00	1.00	0.81	0.95	0.97	0.98	0.84	0.90	0.94	0.96	0.00	0.84	0.86	0.87	0.00
		5	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
20		10	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.81	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		0	0.85	0.82	0.78	0.58	0.72	0.64	0.58	0.26	0.61	0.50	0.42	0.00	0.52	0.39	0.30	0.00
		0.5	0.84	0.91	0.91	0.71	0.81	0.80	0.79	0.46	0.70	0.69	0.67	0.00	0.64	0.62	0.60	0.00
	1	1.25	0.87	0.95	0.96	0.82	0.85	0.85	0.85	0.73	0.76	0.76	0.75	0.00	0.71	0.70	0.69	0.00
		2.5	0.97	1.00	1.00	0.82	0.95	0.97	0.98	0.83	0.90	0.94	0.97	0.00	0.86	0.89	0.91	0.00
		5 10	1.00 1.00	1.00 1.00	1.00 1.00	0.83 0.83	1.00 1.00	1.00 1.00	1.00 1.00	0.81 0.81	1.00 1.00	1.00 1.00	1.00 1.00	0.00 0.00	1.00 1.00	1.00 1.00	1.00 1.00	0.00
		0	0.90	0.90	0.90	0.85	0.87	0.86	0.84	0.33	0.84	0.81	0.78	0.00	0.81	0.77	0.74	0.00
		0.5	0.90	0.90	0.90	0.38	0.87	0.88	0.84	0.53	0.84	0.81	0.78	0.00	0.81	0.82	0.81	0.00
		1.25	0.90	0.95	0.95	0.81	0.88	0.88	0.92	0.77	0.84	0.85	0.86	0.00	0.85	0.85	0.84	0.00
	2	2.5	0.92	1.00	1.00	0.81	0.90	0.92	1.00	0.81	0.93	0.97	1.00	0.00	0.92	0.96	0.99	0.00
		5	1.00	1.00	1.00	0.82	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		10	1.00	1.00	1.00	0.82	1.00	1.00	1.00	0.84	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
		10	1.00	1.00	1.00	0.02	1.00	1.00	1.00	0.04	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00

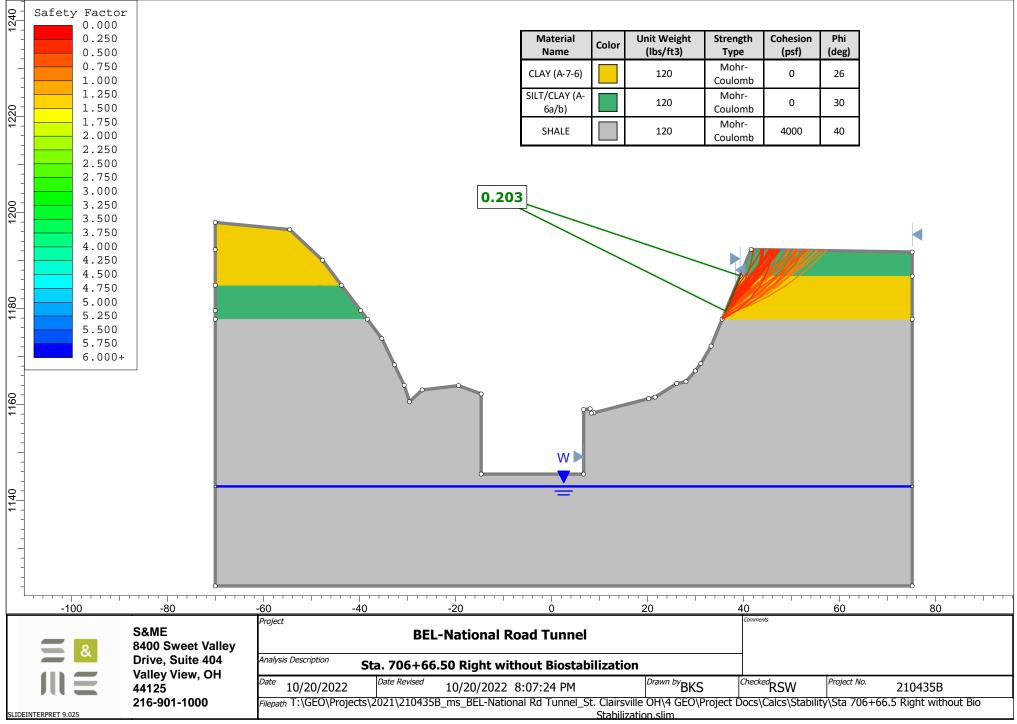
St. Clairsville, Ohio

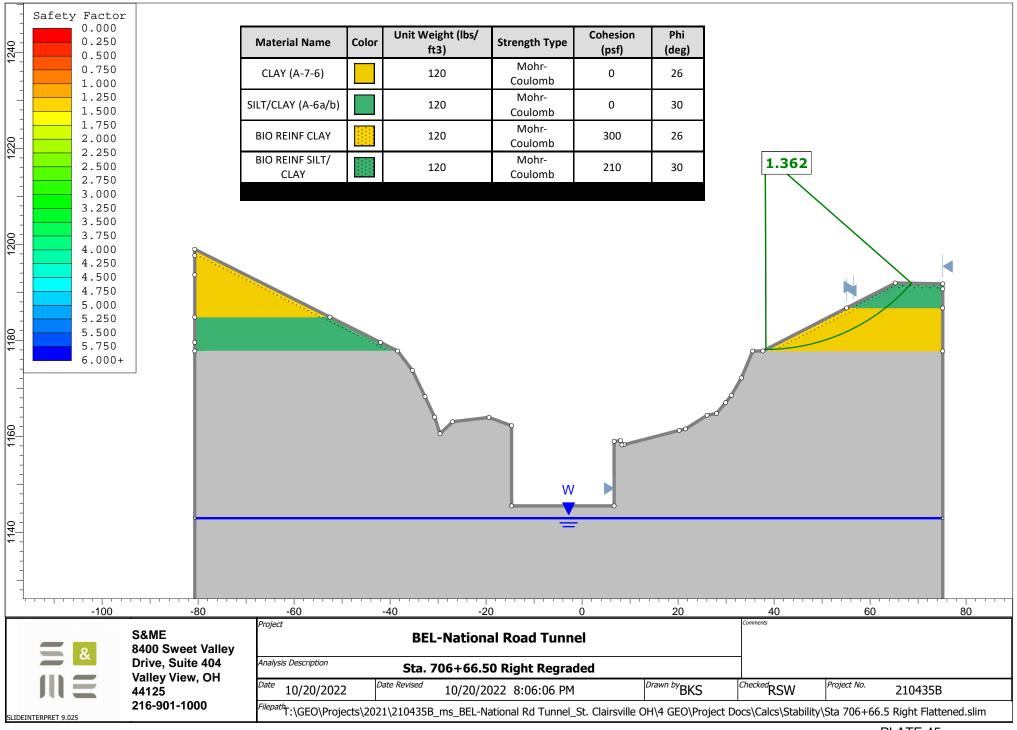
RSW **Date:** 10/19/22

BKS

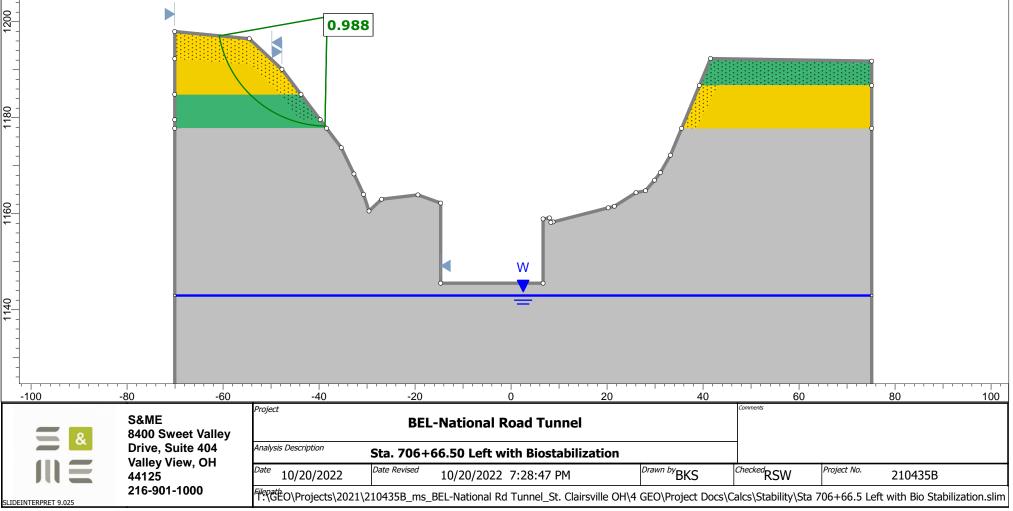
GEOTECHNICAL ANALYSIS OF SHALLOW FOUNDATION ON OR NEAR SLOPE (Sheet 6 of 6)

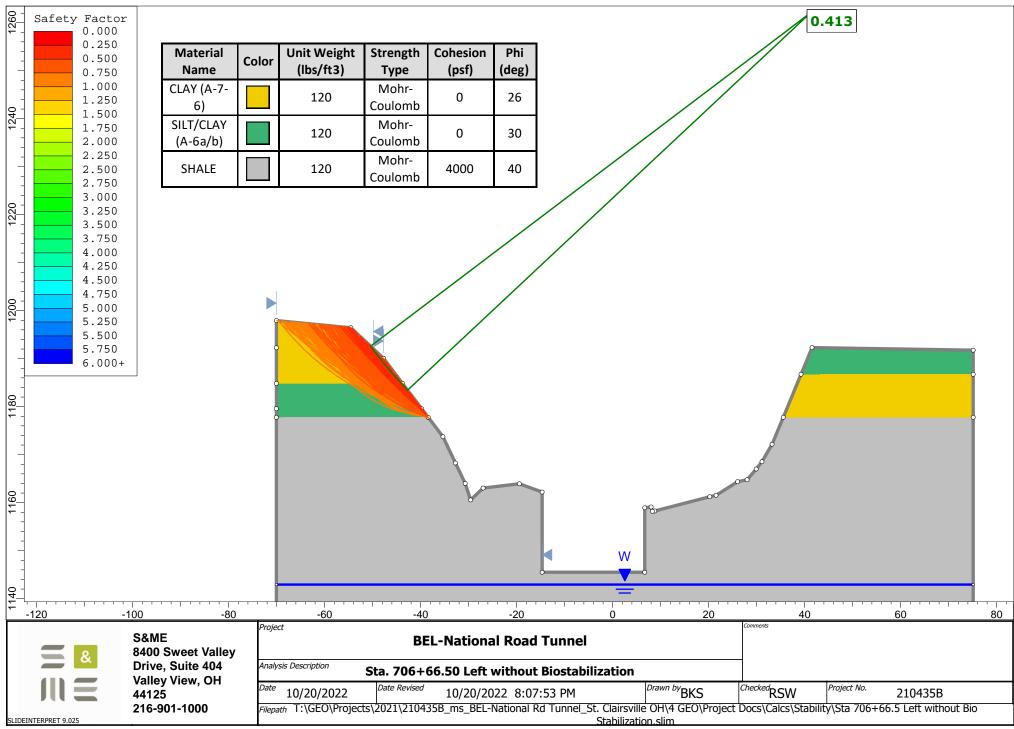

Project Location:

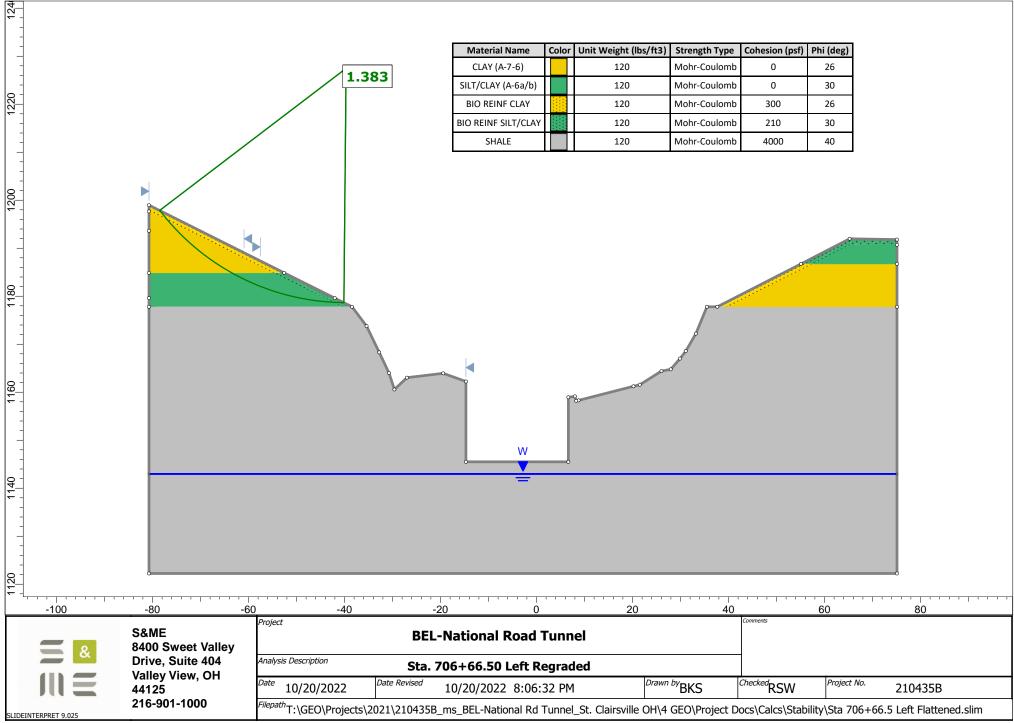

Structure Identification, Foundation Element

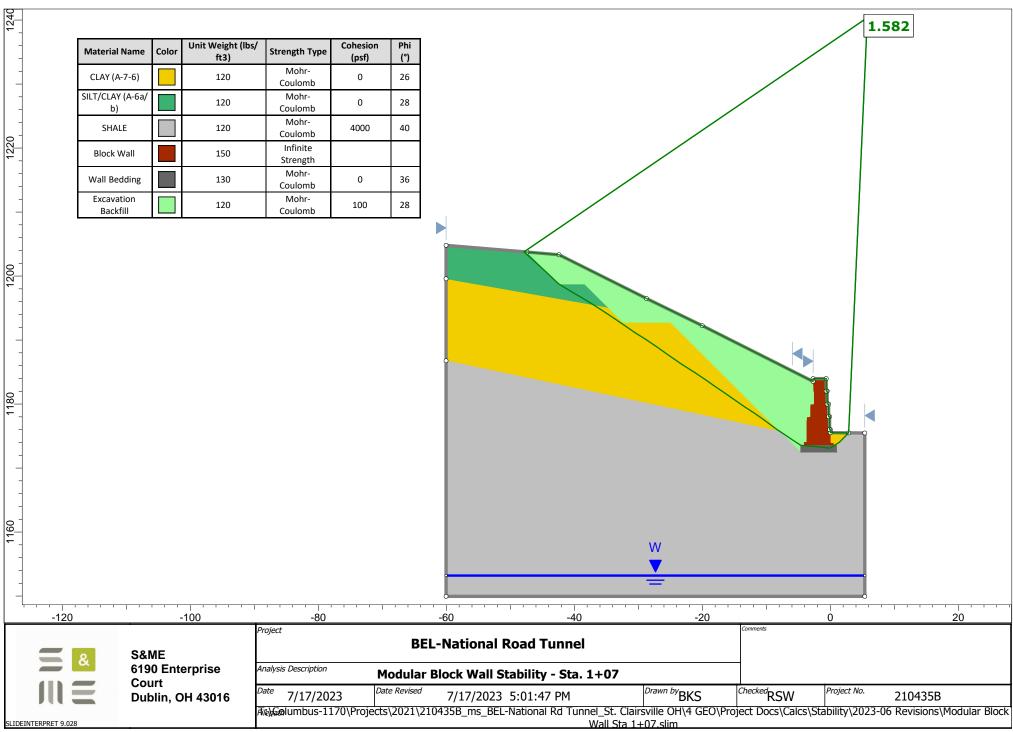

Table 10.6.3.1.2c-2 (continued) Reduction Coefficients (RC BC) for Footings Adjacent to Slopes

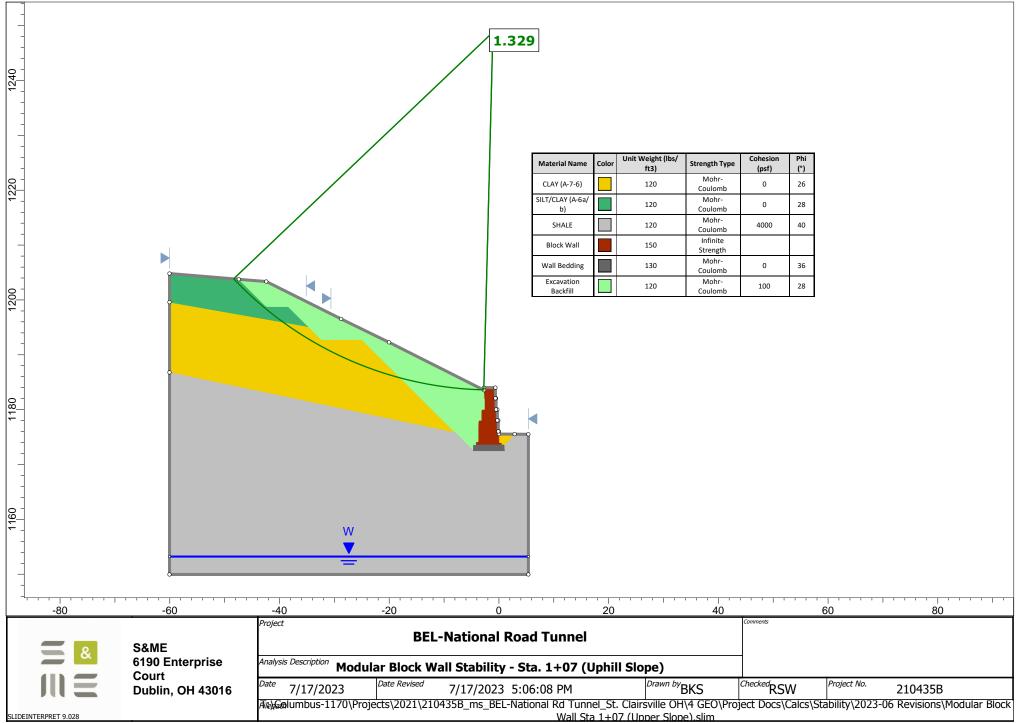
	β=10°		β=20°				β=30°				β=40°							
			Ns			Ns			Ns				Ns					
• (°)	B/H	b/B	0	2	4	c'=0	0	2	4	c'=0	0	2	4	c'=0	0	2	4	c'=0
		0	0.93	0.92	0.91	0.76	0.65	0.64	0.63	0.39	0.51	0.50	0.48	0.11	0.40	0.37	0.36	0.00
		0.5	0.74	0.81	0.80	0.75	0.70	0.66	0.65	0.50	0.57	0.52	0.49	0.21	0.47	0.42	0.39	0.00
		1.25	0.78	0.85	0.86	0.86	0.74	0.73	0.72	0.72	0.63	0.60	0.59	0.38	0.54	0.50	0.47	0.00
	0.2	2.5	0.84	0.92	0.93	0.99	0.81	0.82	0.83	0.94	0.72	0.73	0.74	0.74	0.64	0.62	0.61	0.00
		5	0.95	1.00	1.00	1.00	0.93	0.98	1.00	1.00	0.88	0.95	1.00	0.97	0.80	0.85	0.87	0.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
		0	0.79	0.79	0.78	0.70	0.63	0.59	0.55	0.36	0.50	0.43	0.39	0.13	0.39	0.32	0.27	0.00
		0.5	0.76	0.87	0.87	0.74	0.72	0.71	0.70	0.51	0.58	0.56	0.54	0.24	0.49	0.46	0.43	0.00
		1.25	0.79	0.85	0.92	0.87	0.75	0.73	0.76	0.72	0.63	0.62	0.61	0.45	0.54	0.52	0.50	0.00
	0.5	2.5	0.87	0.91	1.00	0.99	0.84	0.85	0.90	0.98	0.74	0.78	0.80	0.80	0.67	0.70	0.71	0.00
		5	0.97	1.00	1.00	1.00	0.95	1.00	1.00	1.00	0.90	1.00	1.00	1.00	0.85	0.94	0.98	0.00
20		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
30		0	0.79	0.75	0.73	0.67	0.63	0.53	0.49	0.41	0.55	0.41	0.35	0.24	0.48	0.33	0.26	0.00
		0.5	0.78	0.87	0.89	0.74	0.75	0.74	0.74	0.51	0.64	0.62	0.60	0.35	0.59	0.56	0.54	0.00
	1	1.25	0.81	0.90	0.91	0.88	0.78	0.78	0.78	0.72	0.68	0.67	0.66	0.58	0.64	0.62	0.61	0.00
		2.5	0.88	0.99	1.00	0.96	0.85	0.90	0.92	0.95	0.78	0.81	0.84	0.88	0.75	0.78	0.80	0.00
		5	0.97	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.92	1.00	1.00	1.00	0.89	0.98	1.00	0.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
	2	0	0.88	0.88	0.87	0.65	0.87	0.85	0.83	0.48	0.85	0.82	0.80	0.38	0.83	0.80	0.76	0.00
		0.5	0.89	0.91	0.91	0.75	0.89	0.89	0.87	0.58	0.88	0.86	0.84	0.51	0.87	0.85	0.82	0.00
		1.25	0.90	0.92	0.93	0.88	0.90	0.90	0.90	0.75	0.89	0.87	0.87	0.70	0.89	0.87	0.86	0.00
	-	2.5	0.97	1.00	1.00	1.00	0.96	0.97	0.98	0.98	0.92	0.94	0.96	0.95	0.91	0.92	0.94	0.00
		5	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
		0	0.69	0.69	0.69	0.78	0.51	0.48	0.47	0.37	0.37	0.33	0.30	0.16	0.27	0.23	0.20	0.05
		0.5	0.65	0.73 0.77	0.71	0.74	0.60	0.55	0.53	0.38	0.64 0.74	0.38	0.35 0.42	0.25 0.39	0.34	0.29 0.34	0.25 0.31	0.13 0.25
	0.2	2.5	0.68 0.72	0.83	0.75 0.84	0.86 1.00	0.63 0.68	0.60 0.68	0.58 0.68	0.55 0.76	0.74	0.44 0.53	0.42	0.59	0.39	0.34	0.31	0.23
		5	0.72	0.85	0.84	1.00	0.08	0.82	0.85	1.00	1.00	0.33	0.33	1.00	0.43	0.45	0.41	0.48
		10	0.80	1.00	1.00	1.00	0.76	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.76	0.93	1.00	1.00
		0	0.67	0.69	0.67	0.69	0.50	0.45	0.43	0.35	0.36	0.30	0.26	0.17	0.27	0.20	0.17	0.07
		0.5	0.68	0.81	0.81	0.73	0.63	0.62	0.61	0.46	0.47	0.44	0.41	0.25	0.39	0.35	0.32	0.07
		1.25	0.00	0.81	0.84	0.85	0.65	0.65	0.66	0.60	0.51	0.49	0.47	0.40	0.43	0.41	0.32	0.18
	0.5	2.5	0.76	0.92	0.96	1.00	0.72	0.77	0.80	0.81	0.59	0.62	0.63	0.60	0.54	0.56	0.56	0.37
		5	0.84	1.00	1.00	1.00	0.81	0.91	0.94	1.00	0.71	0.82	0.88	1.00	0.67	0.77	0.83	0.84
		10	0.96	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.89	1.00	1.00	1.00	0.86	1.00	1.00	1.00
40		0	0.69	0.64	0.62	0.70	0.63	0.48	0.43	0.45	0.58	0.39	0.33	0.32	0.54	0.33	0.27	0.24
		0.5	0.77	0.81	0.82	0.74	0.75	0.73	0.72	0.49	0.71	0.66	0.62	0.38	0.68	0.62	0.57	0.30
		1.25	0.78	0.84	0.85	0.84	0.77	0.76	0.75	0.64	0.73	0.69	0.66	0.55	0.71	0.66	0.63	0.48
	1	2.5	0.83	0.92	0.95	1.00	0.81	0.85	0.87	0.85	0.76	0.78	0.79	0.76	0.75	0.76	0.77	0.72
		5	0.89	1.00	1.00	1.00	0.87	0.95	0.98	1.00	0.80	0.90	0.95	1.00	0.80	0.89	0.94	1.00
		10	0.98	1.00	1.00	1.00	0.97	1.00	1.00	1.00	0.94	1.00	1.00	1.00	0.93	1.00	1.00	1.00
		0	0.93	0.92	0.89	0.45	0.92	0.90	0.87	0.60	0.91	0.88	0.84	0.53	0.89	0.85	0.81	0.47
		0.5	0.93	0.95	0.93	0.76	0.93	0.92	0.90	0.65	0.92	0.89	0.87	0.64	0.92	0.89	0.86	0.60
	2	1.25	0.93	0.95	0.94	0.86	0.93	0.93	0.92	0.78	0.93	0.91	0.89	0.74	0.93	0.90	0.88	0.74
	-	2.5	0.94	0.99	1.00	1.00	0.94	0.98	0.98	0.92	0.94	0.97	0.97	0.87	0.94	0.96	0.96	0.88
		5	0.95	1.00	1.00	1.00	0.96	1.00	1.00	1.00	0.98	1.00	1.00	1.00	0.96	1.00	1.00	1.00
		10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00

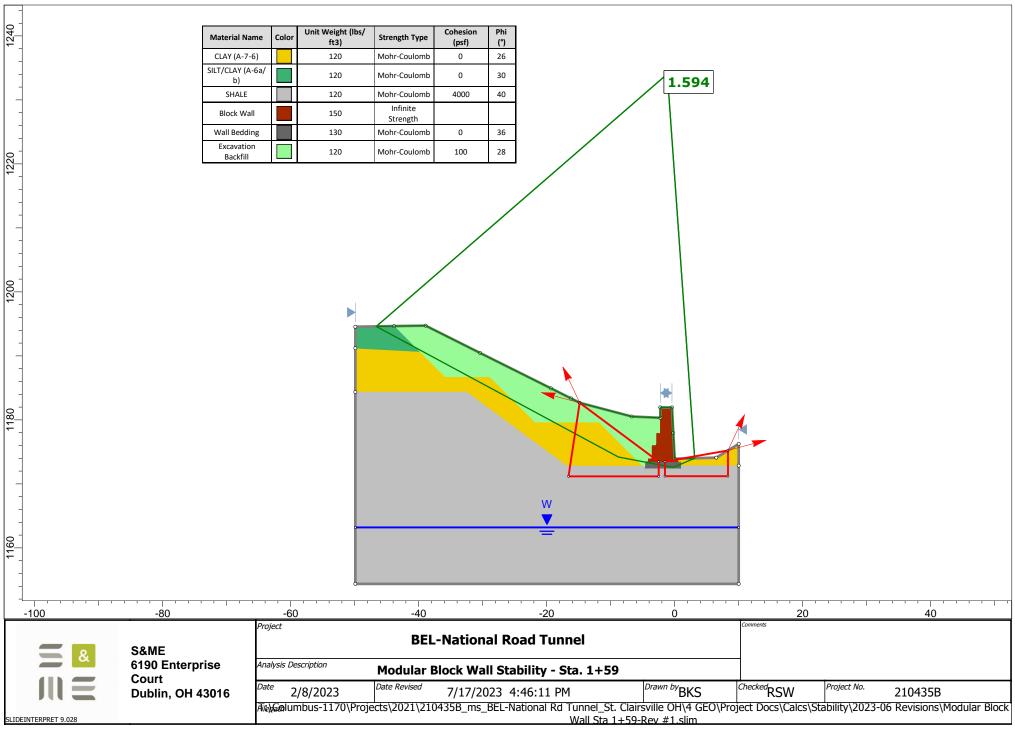

Material Name	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (deg)	
CLAY (A-7-6)		120	Mohr- Coulomb	0	26	
SILT/CLAY (A-6a/b)		120	Mohr- Coulomb	0	30	
BIO REINF CLAY		120	Mohr- Coulomb	300	26	
BIO REINF SILT/ CLAY		120	Mohr- Coulomb	210	30	
SHALE		120	Mohr- Coulomb	4000	40	

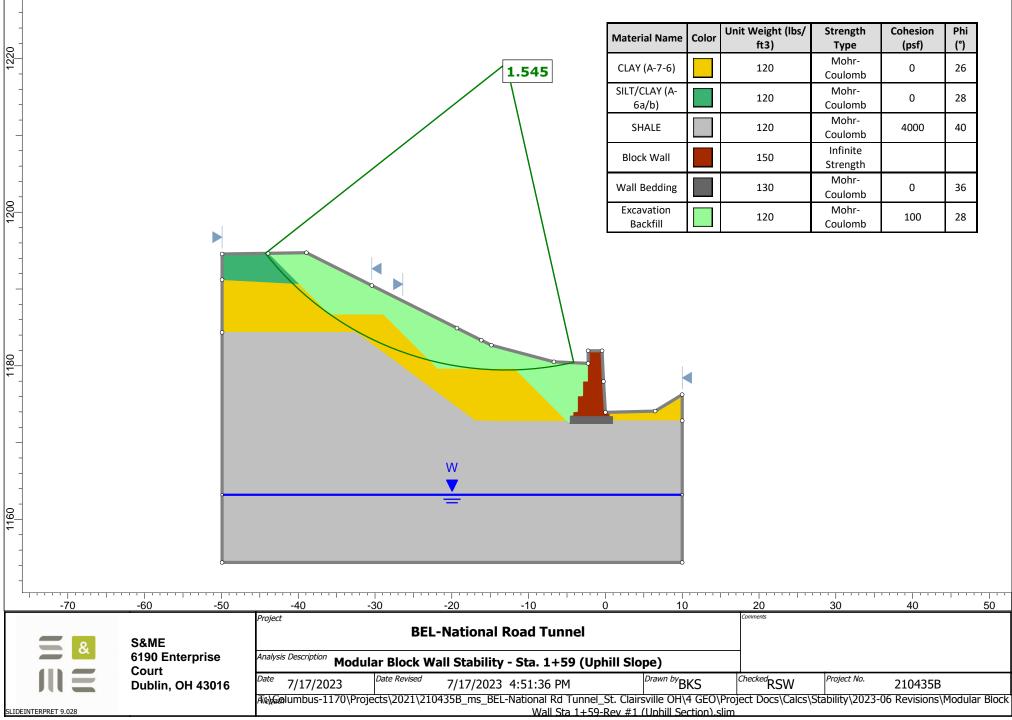




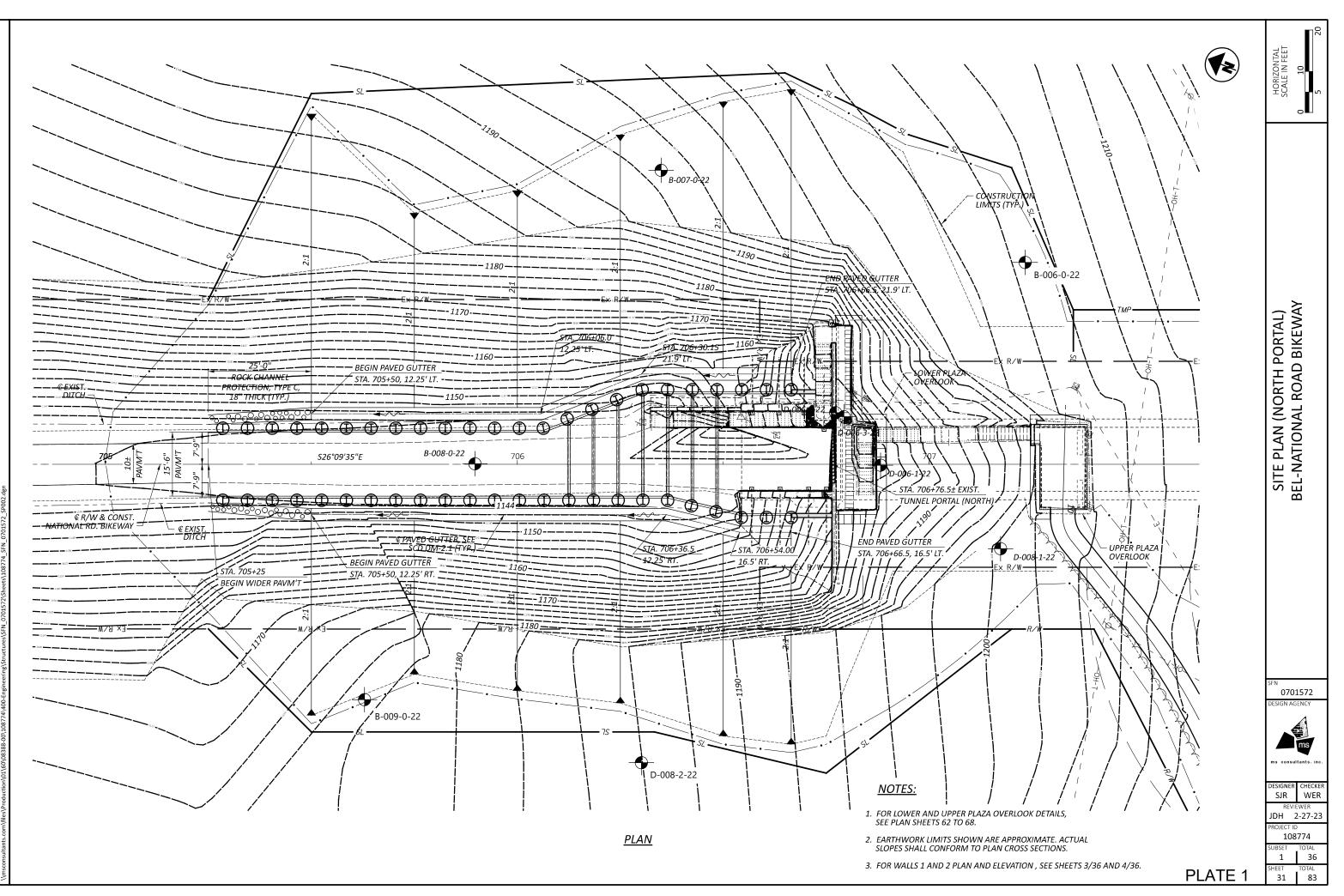

Material Name	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (deg)	
CLAY (A-7-6)		120	Mohr- Coulomb	0	26	
SILT/CLAY (A-6a/ b)		120	Mohr- Coulomb	0	30	
BIO REINF CLAY		120	Mohr- Coulomb	300	26	
BIO REINF SILT/ CLAY		120	Mohr- Coulomb	210	30	
SHALE		120	Mohr- Coulomb	4000	40	

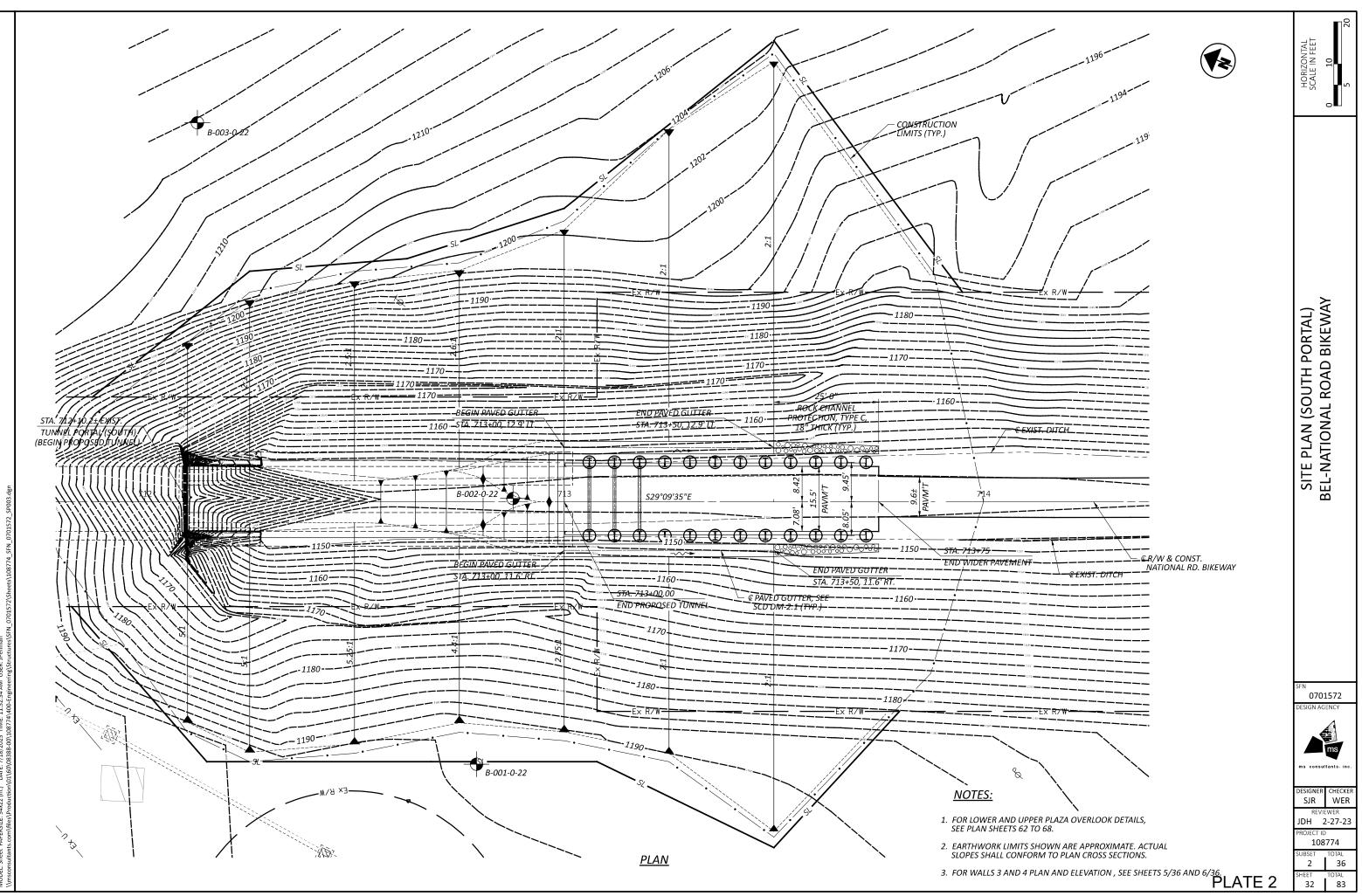




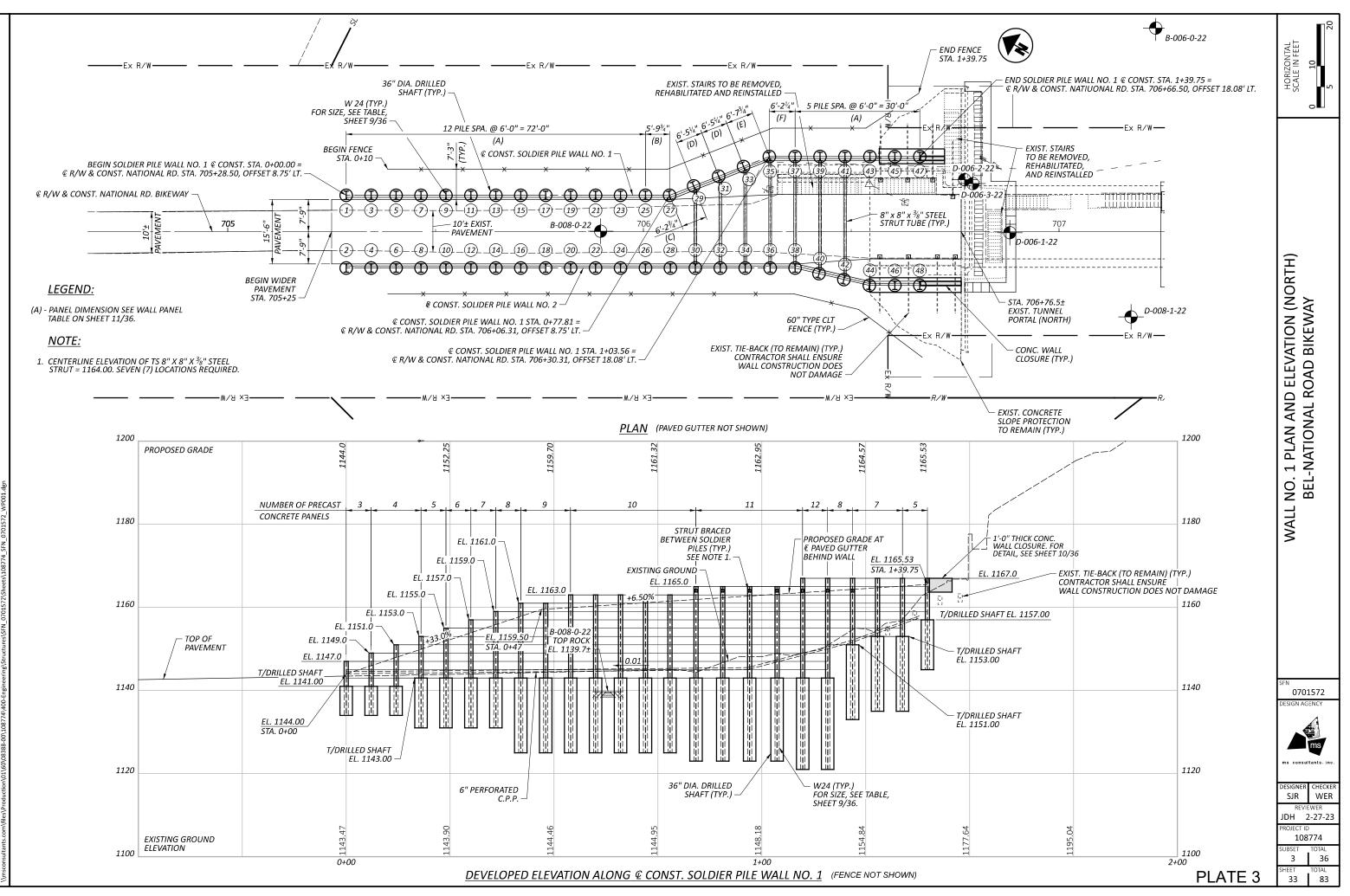


126				Material Name	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (°)			
	-			CLAY (A-7-6)		120	Mohr-Coulomb	0	26			
				SILT/CLAY (A-6a/ b)		120	Mohr-Coulomb	0	28			
1240	F 9			SHALE		120	Mohr-Coulomb	4000	40			
				Block Wall		150	Infinite Strength					
	-	0		Wall Bedding		130	Mohr-Coulomb	0	36			
	-	0 0		Excavation Backfill		120	Mohr-Coulomb	100	28			
1220									·1			1.866
0							0		0	a		
1200												
1180												
1160												
						W						
40	2					=						 o
1140												
	0	20 40	60 Project	80		100	120		140	Comments	180	200
		S&ME	BEL-National Road Tunnel									
		6190 Enterprise	Analysis Description Modular Block Wall Stability									
	ΞM	Court Dublin, OH 43016	^{Date} 10/20/2022			2023 9:27:18 P		Drawn by	3KS	Checked RSW	Project No. 210435	B
						ns_BEL-National F	Rd Tunnel_St.	Clairsville O	H\4 GE	O\Project Docs\Calcs\S	Stability\2023-06 Revisio	
SL	Path Access Wall-Rev #1.slim											

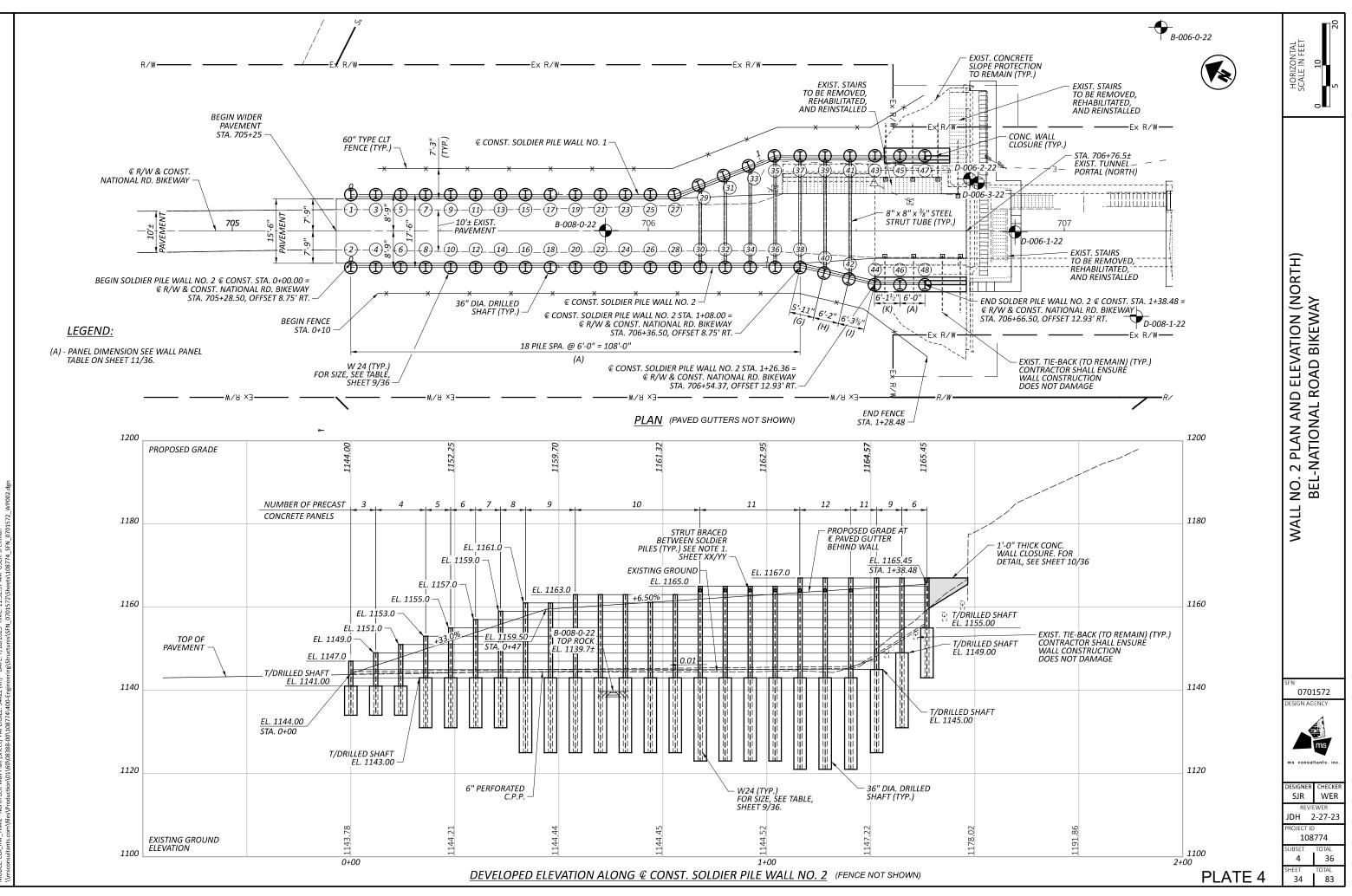




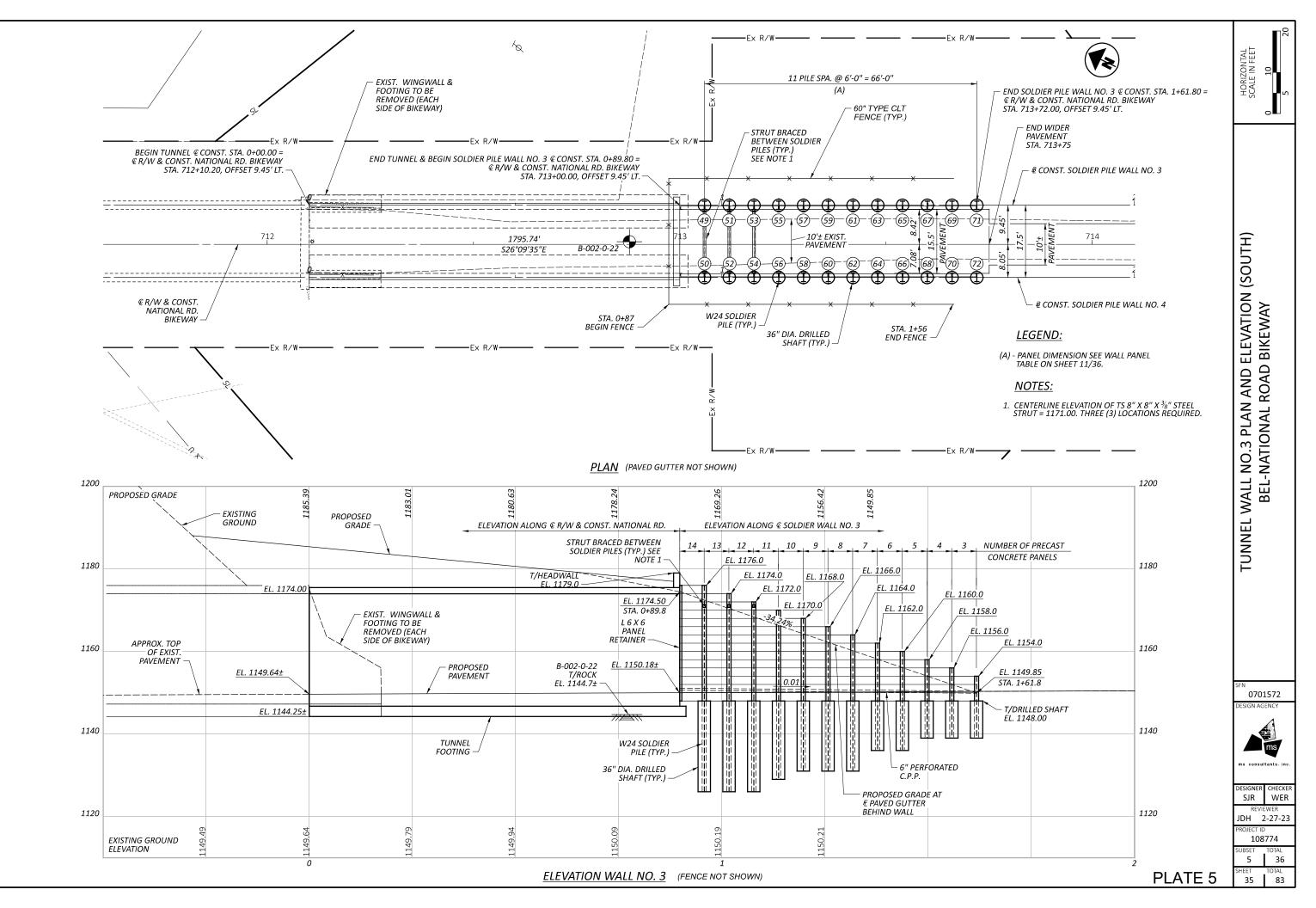
Appendix IV – Available Plan Drawings

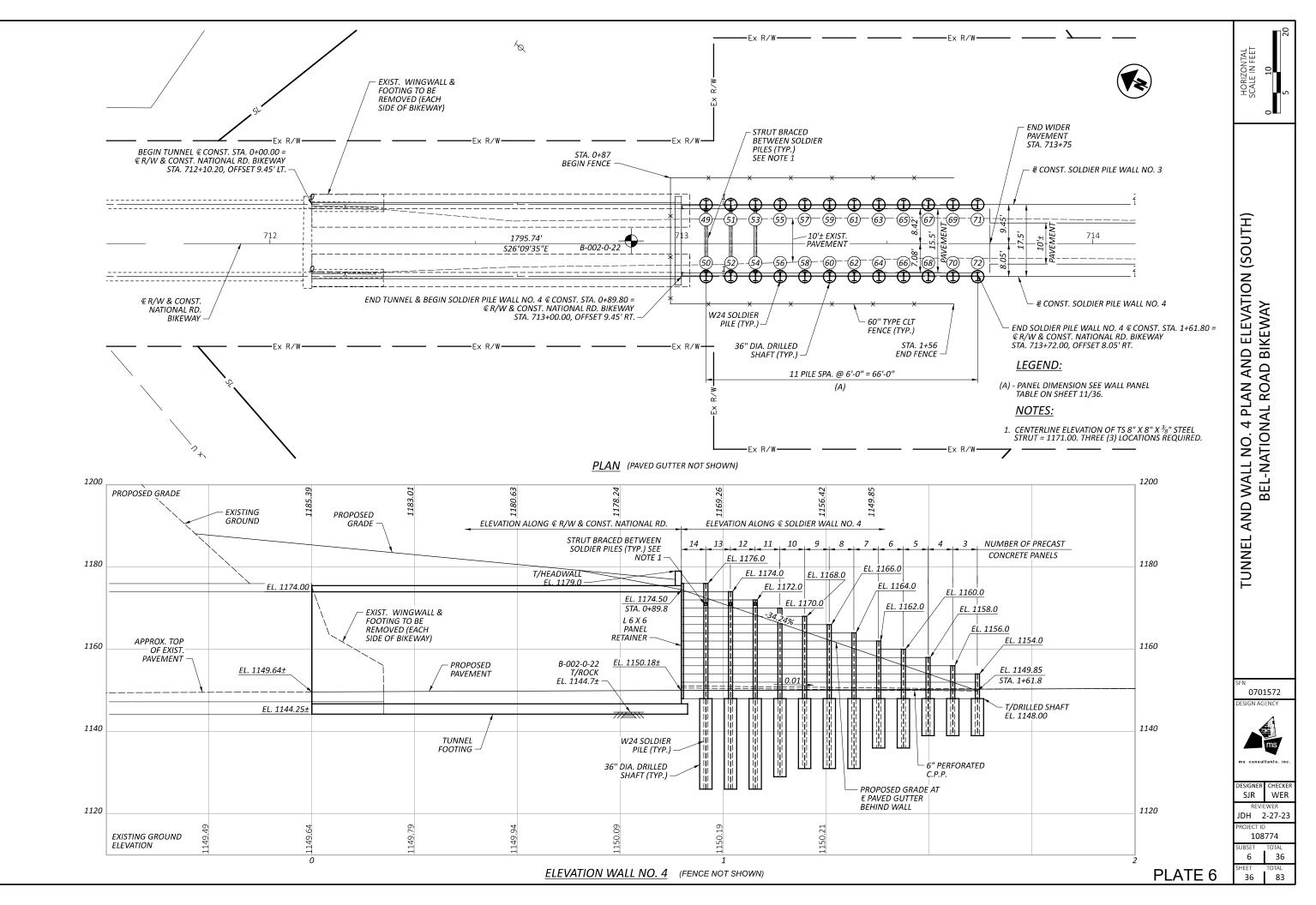


BEL-NATIONAL RD. BIKEWAY MODEL: Sheet PAPERSIZE: 34/22 (in.) DATE: 7/18/2023 TIME: 11:32:33 AM USER: JPenman (Inscordulants.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts.com/files/Production/01160/03338-001/108774.4407-Frainancharts



MODEL: Sheet PAPERSIZE: 34x2 (in.) DATE: 7/18/2023 TIME: 11:32:34 AM USER: JPenman Amsconsultants.com/MeckProduction/01160/08388-00/1087744.400-Envineerina/Structrure/SEN 17711573/Sheers/108774 SEW 0701


BEL-NATIONAL RD. BIKEWAY


BEL-NATIONAL RD. BIKEWAY MODEL: CLV_RW_TRAIL- North Left Wall Plan [Sheet] PAPERSIZE: 34/22 (In.) DATE: 7/18/2023 TIME: 11:32:36 AM USER: JPenman Unecconsultance convolution of the Mondars and INSTACA AND-Encinement Server interview (Server 1977) 57:375

BEL-NATIONAL RD. BIKEWAY MODEL: CLX, RW_TRALL - North Left Wall Plan (Sheet) PAPERSIZE: 34x22 (m.) DATE: 7/18/2023 TIME: 11:32:37 AM USER: JPENMAIN Numerican Level Complete And Plan (Sheet) PAPERSIZE: 34x22 (m.) DATE: 7/18/2023 TIME: 11:32:37 AM USER: JPENMAIN

BEL-NATIONAL RD. BIKEWAY

BEL-NATIONAL RD. BIKEWAY MODEL: CUX_RW_TRAIL - Plan 1 [Sheet] PAPERSIZE: 34/22 (In.) DATE: 7/18/2023 TIME: 11:32:40 AM USER: JPenman

STANDARD DRAWINGS AND SUPPLEMENTAL SPECIFICATIONS

REFER TO THE FOLLOWING STANDARD BRIDGE DRAWING(S): DM-2.1 REVISED 01-18-13

AND TO THE FOLLOWING SUPPLEMENTAL SPECIFICATION(S): 1083 DATED 01-20-2017

DESIGN SPECIFICATIONS

THIS STRUCTURE CONFORMS TO THE 9th EDITION OF THE "LRFD BRIDGE DESIGN SPECIFICATIONS" ADOPTED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPOR-TATION OFFICIALS, 2020 AND THE ODOT BRIDGE DESIGN MANUAL, 2020.

DESIGN DATA

CONCRETE CLASS QC1: COMPRESSIVE STRENGTH 4.0 KSI (TUNNEL)

CONCRETE CLASS QC2: COMPRESSIVE STRENGTH 4.5 KSI (PRECAST PANELS)

CONCRETE CLASS QC5: COMPRESSIVE STRENGTH 4.5 KSI (DRILLED SHAFT) (3/8" NOMINAL MAXIMUM SIZE AGGREGATE)

CONCRETE REINFORCEMENT:

EPOXY COATED STEEL REINFORCEMENT - MINIMUM YIELD STRENGTH 60-KSI

STRUCTURAL STEEL - ASTM A709 GRADE 50W - YIELD STRENGTH 50 KSI

STEEL SOLDIER PILES - ASTM A709 GRADE 50W - YIELD STRENGTH 50 KSI

CUT LINE CONSTRUCTION JOINT PREPARATION

SAW CUT BOUNDARIES OF PROPOSED CONCRETE REMOVALS 1 INCH DEEP. REMOVE CONCRETE TO A ROUGH SURFACE. INSTALL DOWEL BARS IF SPECIFIED. PRIOR TO CONCRETE PLACEMENT ABRASIVELY CLEAN JOINT SURFACES TO REMOVE LOOSE AND DISINTEGRATED CONCRETE AND LOOSE RUST FROM EXISTING REBAR. THOROUGHLY CLEAN THE JOINT SURFACE AND OF ALL DIRT, DUST, RUST OR OTHER FOREIGN MATERIAL BY THE USE OF WATER, AIR UNDER PRESSURE, OR OTHER METHODS THAT PRODUCE SATISFACTORY RESULTS. THOROUGHLY DRENCH EXISTING CONCRETE SURFACES WITH CLEAN WATER AND ALLOW TO DRY TO A DAMP CONDITION BEFORE PLACING CONCRETE.

SUBSTRUCTURE CONCRETE REMOVAL

REMOVE CONCRETE BY MEANS OF APPROVED PNEUMATIC HAMMERS EMPLOYING POINTED AND BLUNT CHISEL TOOLS. HYDRAULIC HOE-RAM TYPE HAMMERS WILL NOT BE PERMITTED. THE WEIGHT OF THE HAMMER SHALL NOT BE MORE THAN 35 POUNDS FOR REMOVAL WITHIN 18 INCHES OF PORTIONS TO BE PRESERVED. OUTSIDE THE 18 INCH LIMIT, THE CONTRACTOR MAY USE HAMMERS NOT EXCEEDING 90 POUNDS UPON THE APPROVAL OF THE ENGINEER. DO NOT PLACE PNEUMATIC HAMMERS IN DIRECT CONTACT WITH REINFORCING STEEL THAT IS TO BE RETAINED IN THE REBUILT STRUCTURE.

FOUNDATION BEARING RESISTANCE

THE TUNNEL FOOTINGS, AS DESIGNED, PRODUCE A MAXIMUM STRENGTH LOAD PRESSURE OF 8.1 KIPS PER SQUARE FOOT. THE FACTORED BEARING RESISTANCE IS 11.7 KIPS PER SQUARE FOOT.

FOOTINGS

FOOTINGS SHALL EXTEND A MINIMUM OF 3 INCHES INTO BEDROCK OR TO THE ELEVATION SHOWN, WHICHEVER IS IOWER

EXISTING STRUCTURE VERIFICATION

DETAILS AND DIMENSIONS SHOWN ON THESE PLANS PERTAINING TO THE EXISTING STRUCTURE HAVE BEEN OBTAINED FROM PLANS OF THE EXISTING STRUCTURE AND FROM FIELD OBSERVATIONS AND MEASUREMENTS. CONSEQUENTLY, THEY ARE INDICATIVE OF THE EXISTING STRUCTURE AND THE PROPOSED WORK BUT THEY SHALL BE CONSIDERED TENTATIVE AND APPROXIMATE. THE CONTRACTOR IS REFERRED TO C&MS, SECTIONS 102.05 AND 105.02. BASE CONTRACT BID PRICES UPON A RECOGNITION OF THE UNCERTAINTIES DESCRIBED ABOVE AND UPON A PREBID EXAMINATION OF THE EXISTING STRUCTURE. HOWEVER, THE DEPARTMENT WILL PAY FOR ALL PROJECT WORK BASED UPON ACTUAL DETAILS AND DIMENSIONS THAT HAVE BEEN VERIFIED IN THE FIELD.

ITEM 507 - STEEL PILES, MISC.: W24X ____ STEEL BEAM, FURNISHED

THIS WORK SHALL CONSIST OF FURNISHING UNPAINTED STRUCTURAL STEEL MEMBERS THAT CONFORM TO ASTM A572, GRADE 50 AND CMS 711.01. DO NOT FIELD WELD OR SPLICE THOSE PARTS OF THE STRUCTURAL STEEL MEMBERS THAT WILL BE ABOVE GROUND.

THE INDIVIDUAL LENGTHS SHOWN IN THE SOLDIER PILE WALL TABLES ON SHEET XX/XX AND THE TOTAL LENGTHS SHOWN IN THE ESTIMATED QUANTITIES ARE CALCULATED FROM THE ESTIMATED TOP OF ROCK ELEVATIONS AND THE ACTUAL LENGTH OF EACH STEEL BEAM MAY VARY. THE CONTRACTOR SHOULD ANTICIPATE THAT THE STEEL BEAMS WILL NEED TO BE TRIMMED OR SPLICED BASED ON THE ACTUAL TOP OF THE ROCK

THE DEPARTMENT WILL MEASURE STEEL BEAMS ALONG THE AXIS OF THE STEEL BEAM FROM THE TOP OF SHAFT ELEVATION TO THE BOTTOM OF THE DRILLED SHAFT, AS DETERMINED BY THE ENGINEER. THE DEPARTMENT WILL PAY FOR STEEL BEAMS AT THE CONTRACT UNIT PRICE PER FOOT ITEM 507, STEEL PILES, MISC.: W24X STEEL BEAM, FURNISHED

ITEM 512 - SEALING OF CONCRETE SURFACES, AS PER PLAN. (PERMANENT GRAAFFITI PROTECTION)

APPLY A PERMANENT GRAFFITI COATING QUALIFIED AC-CORDING TO S1083 THAT IS COMPATIBLE WITH THE CON-CRETE SEALER OVER WHICH IT IS APPLIED. APPLY THE GRAFFITI COATING IN ACCORDANCE WITH THE MANUFAC-TURER'S PRINTED INSTRUCTION.

ITEM 513 - STRUCTURAL STEEL, MISC.: BRACKETS AND STRUTS

THIS WORK SHALL CONSIST OF FURNISHING STRUCTURAL MEMBERS, (TUBES AND PLATES), THAT CONFORM TO ASTM A709, GRADE 50W AND CMS 711.01. DO NOT FIELD WELD OR SPLICE THOSE PARTS OF THE STEEL SOLDIER PILES THAT WILL BE ABOVE GROUND.

THE SOLDIER PILE LENGTHS SHOWN IN THE WALL TABLES ON SHEET 9/36 ARE CALCULATED BASED ON THE ESTIMATED TOP OF ROCK ELEVATIONS AND THE ACTUAL LENGTH OF EACH SOLDIER PILE MAY VARY. THE CONTRACTOR SHOULD ANTICIPATE THAT THE SOLDIER PILES WILL NEED TO BE TRIMMED OR SPLICED BASED ON THE ACTUAL TOP OF THE ROCK.

THIS ITEM SHALL INCLUDE THE FIELD PAINTING OF ALL EXPOSED SURFACES OF THE HORIZONTAL STEEL STRUTS. PAINT SHALL BE FEDERAL COLOR NO. 595-30055 (BROWN) AND SHALL CONFORM TO CMS 514.

ITEM 524, DRILLED SHAFTS, 36" DIAMETER, ABOVE BEDROCK, AS PER PLAN ITEM 524, DRILLED SHAFTS, 36" DIAMETER, INTO BEDROCK, AS PER PLAN

THIS WORK CONSISTS OF FURNISHING AND INSTALLING DRILLED SHAFTS FOR THE SOLDIER PILE WALLS. THE DRILLED SHAFTS ARE REINFORCED WITH STRUCTURAL STEEL MEMBERS INSTEAD OF REINFORCING STEEL CAGES. FURNISH AND INSTALL THE DRILLED SHAFTS IN ACCORDANCE WITH CMS 524 EXCEPT AS MODIFIED AND SUPPLEMENTED BELOW.

PLACE THE STEEL MEMBER WITHIN THE HOLE SO IT IS VERTICAL BETWEEN THE TOP AND BOTTOM. CENTER THE STEEL MEMBER WITHIN THE HOLE. SUPPORT THE STEEL MEMBER SO THAT IT DOES NOT MOVE DURING CONCRETE PLACEMENT.

USE CLASS QC5 CONCRETE ACCORDING TO CMS 524.10. THE CONTRACTOR MAY PLACE CONCRETE USING THE FREE FALL METHOD PROVIDED THE DEPTH OF WATER IS LESS THAN 6 INCHES AND THE CONCRETE FALLS WITHOUT STRIKING THE SIDES OF THE HOLE. POURING CONCRETE ALONG THE WEB OF THE STRUCTURAL STEEL MEMBER IS ACCEPTABLE.

CHECK THE POSITION, THE VERITICAL ALIGNMENT AND ORIENTATION OF THE STRUCTURAL MEMBER IMMEDIATELY AFTER CONCRETE PLACEMENT. MAKE CORRECTIONS AS NECESSARY TO MEET ABOVE TOLERANCES.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE MEANS AND METHODS USED TO CONSTRUCT THE DRILLED SHAFTS. ANY TEMPORARY GRADING, EXCAVATION, EMBANKMENT, AGGREGATE, DRAINAGE, SHEETING, ETC. NEEDED TO COMPLETE THE WORK SHALL BE INCLUDED IN THE BID PRICE FOR THE DRILLED SHAFTS.

METHOD OF MEASUREMENT: THE DEPARTMENT WILL MEASURE DRILLED SHAFTS ABOVE BEDROCK, AS PER PLAN AND DRILLED SHAFTS INTO BEDROCK, AS PER PLAN, ALÓNG THE AXIS OF THE DRILLED SHAFT FROM THE PRÓPOSED TOP OF SHAFT ELEVATION TO THE BOTTM OF DRILLED SHAFT, AS DETERMINED BY THE ENGINEER.

PAYMENT FOR LABOR, EQUIPMENT AND MATERIALS FOR THE ABOVE SHALL BE INCLUDED IN THE PER FOOT CONTRACT PRICE FOR ITEM 524, DRILLED SHAFTS, 36" DIAMETER ABOVE BEDROCK, AS PER PLAN AND ITEM 524, DRILLED SHAFTS, 36" DIAMETER INTO BEDROCK, AS PER PLAN.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL FALSEWORK THAT IS REQUIRED TO CONSTRUCT THE TUNNEL. AT LEAST 14 DAYS PRIOR TO CONSTRUCTION OF THE TUNNEL, THE CONTRACTOR SHALL SUBMIT A DETAILED PLAN OF THE FALSEWORK THAT WILL BE REQUIRED AND BE DEVELOPED BY AN OHIO REGISTERED ENGINEER TO THE ENGINEER. APPROVAL BY THE ENGINEER IS REQUIRED BEFORE THIS WORK IS TO BE PERFORMED. PAYMENT FOR LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT PRICE FOR ITEM 503, COFFERDAMS AND EXCAVATION BRACING.

PLACEMENT OF EMBANKMENT MATERIAL WITHIN THE LIMITS OF THE TUNNEL SHALL NOT BE PERFORMED UNTIL ALL TUNNEL CONSTRUCTION IS COMPLETE. THIS INCLUDES ALL CONCRETE FOOTINGS, WALLS, AND ARCH ABOVE THE SPRINGLINE.

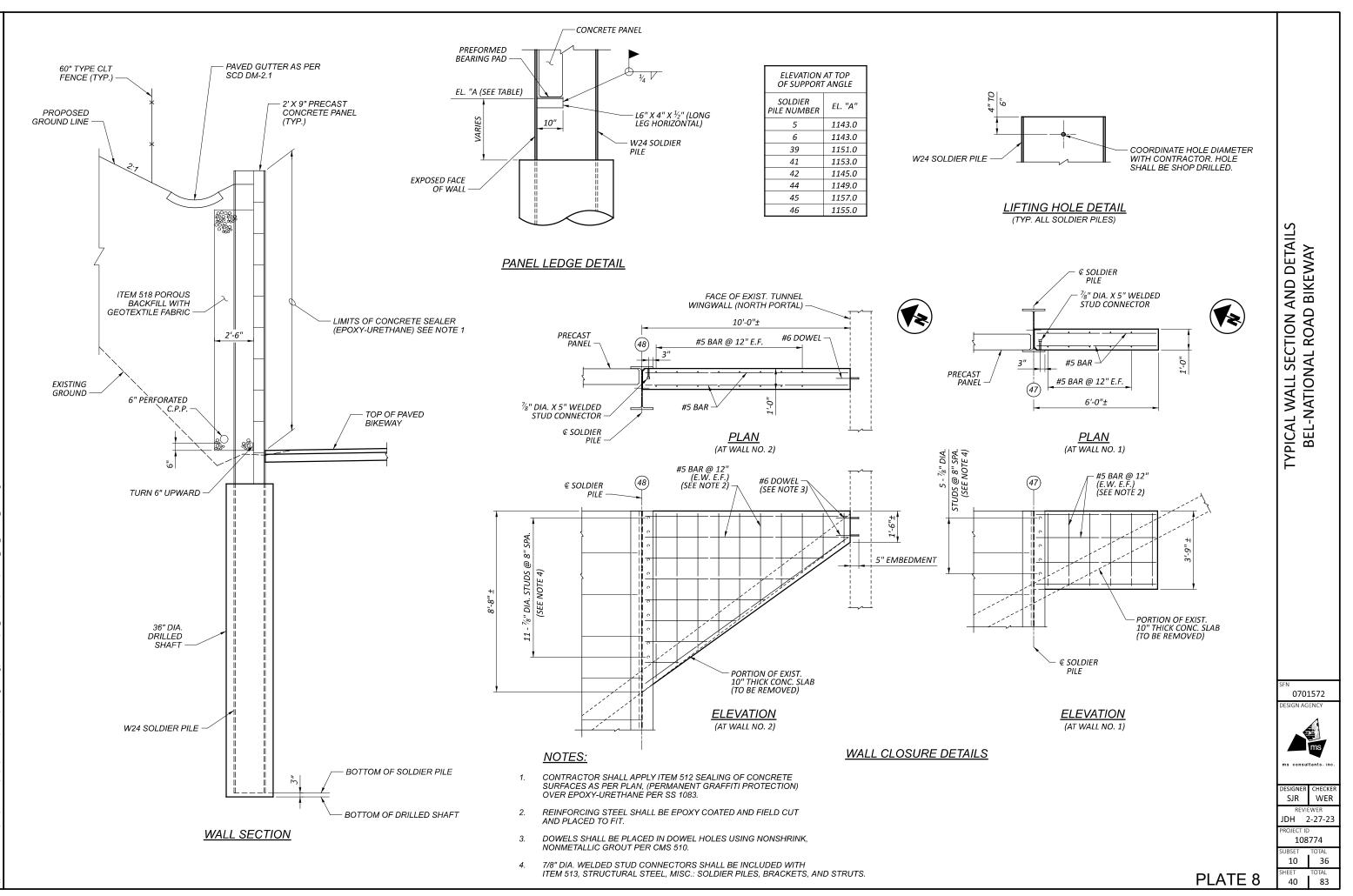
PLACEMENT OF EMBANKMENT MATERIAL WITHIN THE LIMITS OF THE SOLDIER PILE WALLS THAT INCLUDE THE HORIZONTAL STEEL STRUT TUBES SHALL NOT BE PERFORMED UNTIL ALL STRUTS ARE IN PLACE.

GEOTECHNICAL SUBSURFACE INVESTIGATION REPORT A GEOTECHNICAL INVESTIGATION REPORT PREPARED BY S&ME, INC. DATED FEBRUARY 10, 2023 IS AVAILABLE TO ASSIST THE CONTRACTOR IN EVALUATING EXISTING CONDITIONS.

THE REPORTS AND BORING LOGS ARE AVAILABLE FOR THE CONTRACTOR'S INFORMATION, BUT ARE NOT A WARRANT OF SUBSURFACE CONDITIONS. THE CONTRACTOR MUST DRAW HIS OWN CONCLUSIONS OF THE SUBSURFACE CONDITIONS DEPICTED BY THE INFORMATION.

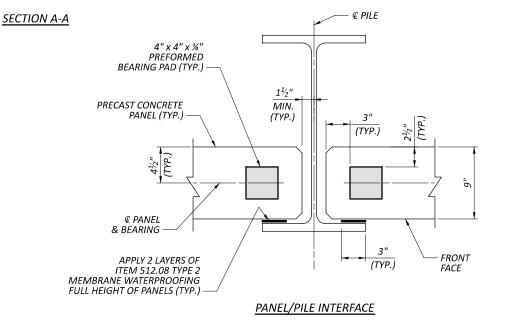
TUNNEL FALSEWORK

SEQUENCE OF CONSTRUCTION


THE REPORTS INCLUDE BORING LOGS AND LABORATORY TESTING. INDICATED STRATA BOUNDARIES SHOWN ON THE BORING LOGS ARE BASED ON ENGINEERING INTERPRETATIONS OF ALL AVAILABLE SUBSURFACE INFORMATION AND MAY NOT REFLECT THE ACTUAL VARIATIONS IN SUBSURFACE CONDITIONS BETWEEN BORINGS AND RECOVERED SAMPLES.

ABBREVIATIONS

CLR CONC CONST C.P.P E.F EL ELEC EX	CONSTRUCTION JOINT CLEAR CONCRETE CONCRETE CONSTRUCTION CORRUGATED PLASTIC PIPE DIAMETER EACH FACE ELEVATION ELECTRIC EACH WAY EXISTING EXISTING RIGHT-OF-WAY EXISTING RIGHT-OF-WAY EXISTING RIGHT-OF-WAY MINIMUM - MINIMUM - MINIMUM - NUMBER NON-PERFORATED CORRUGATED PLASTIC PIPE - PERFORATED CORRUGATED PLASTIC PIPE - PERFORATED CORRUGATED PLASTIC PIPE - PERFORATED CORRUGATED PLASTIC PIPE - PERFORATED CORRUGATED PLASTIC PIPE - PERFORMED EXPANSION JOINT FILLER PROPOSED - REINFORCING - STATION - TYPICAL - WITH
W/ -	- WITH


PLATE 7

BEL-NATIONAL RD. BIKEWAY MODEL: Sheet PAPERSIZE: 34/22 (n.) DATE: 7/18/2023 TIME: 11:32:45 AM USER: JPenman (Minesconsultants.com)files/Production/01160/033388-00/108774 400-Ensineering/Structures/SFN 0701573/Sheets/108774 5FN 070157

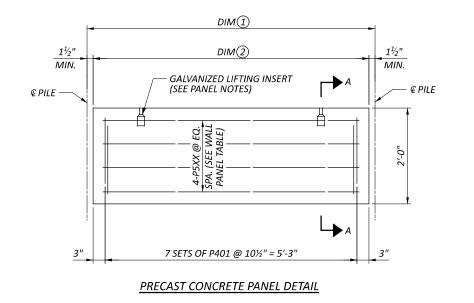
							DIMEN	ISIONS		
MARK	TOTAL	LENGTH WEIGHT	TYPE	A	В	с	D	E	INC.	
					PANEL BA	RS				
P401	8,274	3'-4"	18,423	2	1'-6"	0'-6"	1'-6"			
P501	3,864	5'-3"	21,158	ST						
P502	80	5'-0"	417	ST						
P503	80	5'-5"	452	ST						
P504	176	5'-8"	1,040	ST						
P505	88	5'-10"	535	ST						
P506	88	5'-5"	497	ST						
P507	96	5'-2"	517	ST						
P508	96	5'-5"	542	ST						
P509	88	5'-6"	505	ST						
P510	72	5'-4"	401	ST						
		TOTAL =	44,487							

PREFORMED BEARING PAD NOTES:

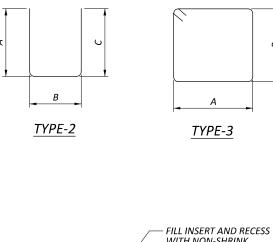
34" X 34"

 $1\frac{1}{2}''$ CLR. (TYP.)

P401


CHAMFER (TYP.)

- 1. PREFORMED BEARING PADS SHALL BE PROVIDED BENEATH ALL PANELS AND SHALL BE ADHESIVELY BONDED TO THE TOP CONCRETE SURFACE OF THE UNDERLYING PANEL AND GRADE BEAM. THE BONDING ADHESIVE SHALL BE AN APPROVED ADHESIVE AS RECOMMENDED BY THE MANUFACTURER OF THE PREFORMED BEARING PADS.
- 2. PREFORMED BEARING PADS SHALL BE ETHYLENE PROYLENE DIENE MONOMER (EPDM) RUBBER PADS CONFORMING TO ASTM D2000 GRADE 2, TYPE A, CLASS A WITH A DUROMETER OF 50±5.


PANEL FABRICATION NOTES:

- 1. PROVIDE A SMOOTH SURFACE TO THE FRONT AND BACK OF EACH PANEL. PROVIDE PANEL NUMBER AND PRECAST FABRICATOR MARK ON BACK FACE OF EACH PANEL.
- 2. PRECAST PANEL REINFORCEMENT SHOWN IS FOR FINAL, ERECTED (IN PLACE) CONDITION ONLY. ADDITIONAL REINFORCEMENT MAY BE REQUIRED IN ORDER TO MEET THE CONTRACTOR'S SPECIFIC ERECTION AND HANDLING REQUIREMENTS. COORDINATE WITH THE CONTRACTOR.
- 3. THE NUMBER, TYPE AND LOCATION OF GALVANIZED LIFTING INSERTS SHALL BE DESIGNED BY THE PRECAST PANEL FABRICATOR. PROVIDE A ½-INCH RECESS IN THE TOP OF THE PANEL FOR EACH INSERT. FILL INSERT AND RECESS AFTER ERECTION IN PANELS BELOW TOP PANELS WITH SELF-LEVELING, I-PART POYURETHANE SEALANT CONFORMING TO ASTM C-920, TYPE S, GRADE P, CLASS 25. IN THE TOP PANELS ONLY, FILL THE RECESS WITH NON-SHRINK, NON-METALLIC GROUT CONFORMING TO MATERIAL 705.20.

4. ALL EXPOSED EDGES OF PRECAST PANELS SHALL BE CHAMFERED 3/4" x 3/4".

WALL PANEL TABLE							
PANEL TYPE	DIM 1	DIM 2	REBAR				
A	6'-0"	5'-9"	P501				
В	5'-9 ³ ⁄4"	5'-6 ³ ⁄4"	P502				
С	6'-2 ³ ⁄4"	5'-11 ³ ⁄4"	P503				
D	D 6'-5 ¼"		P504				
Е	6'-7 ³ ⁄4"	6'-4 ³ ⁄4"	P505				
F	6'-2 ¼"	5'-11 ¹ ⁄4"	P506				
G	5'-11"	5'-8"	P507				
н	6'-2"	5'-11"	P508				
J	6'-3 ³ ⁄8"	6'-0 ³ ⁄8"	P509				
К	6'-1 ½"	5'-10 ½"	P510				

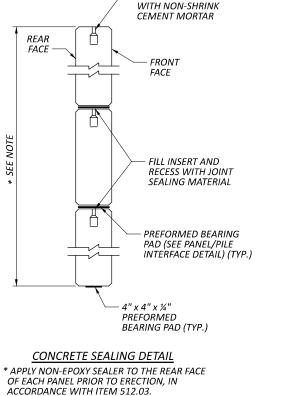
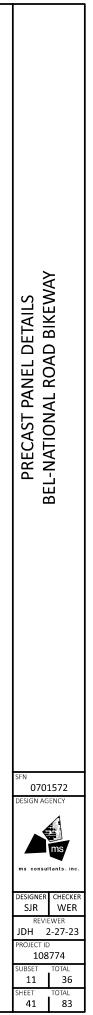
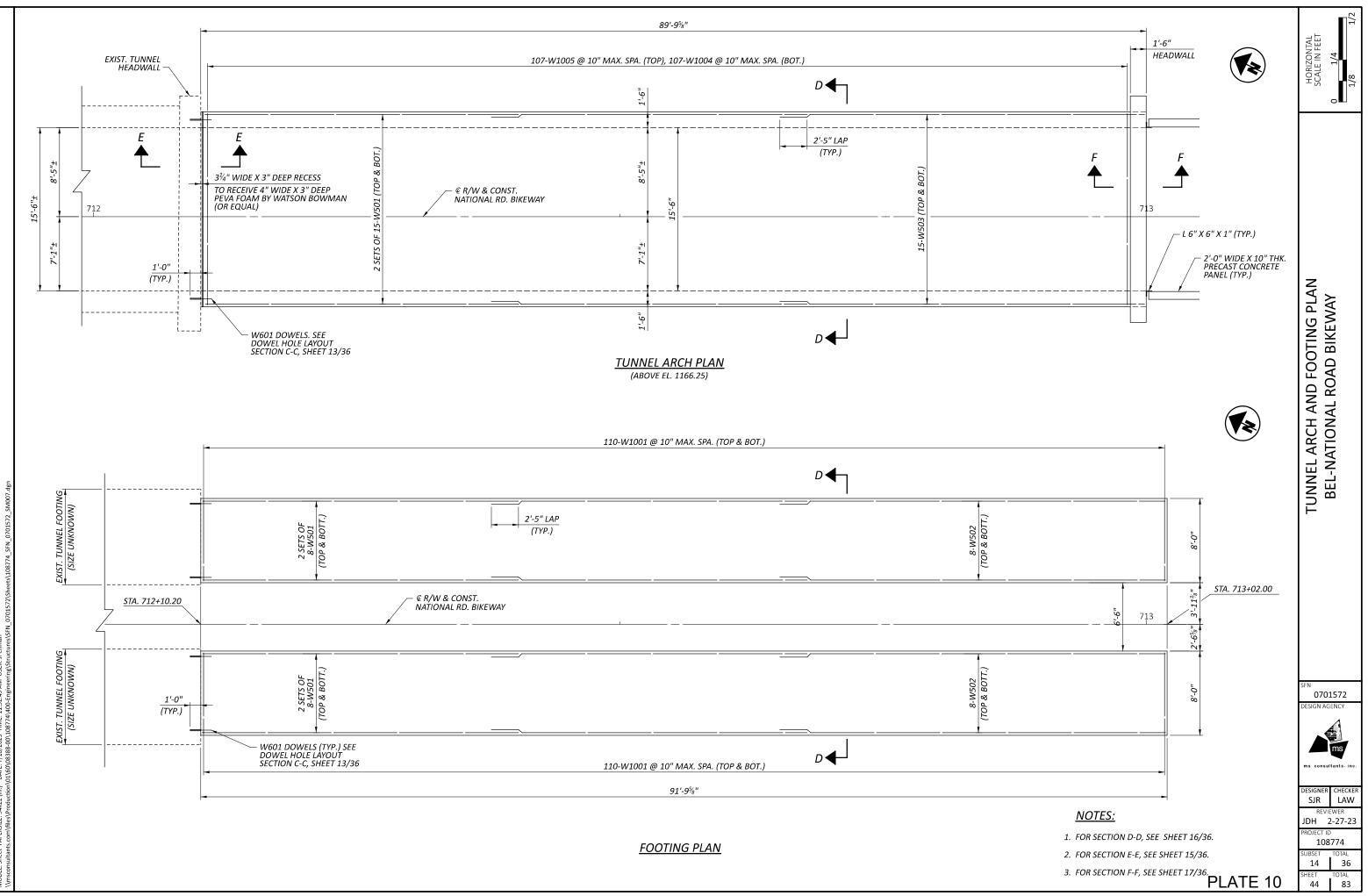
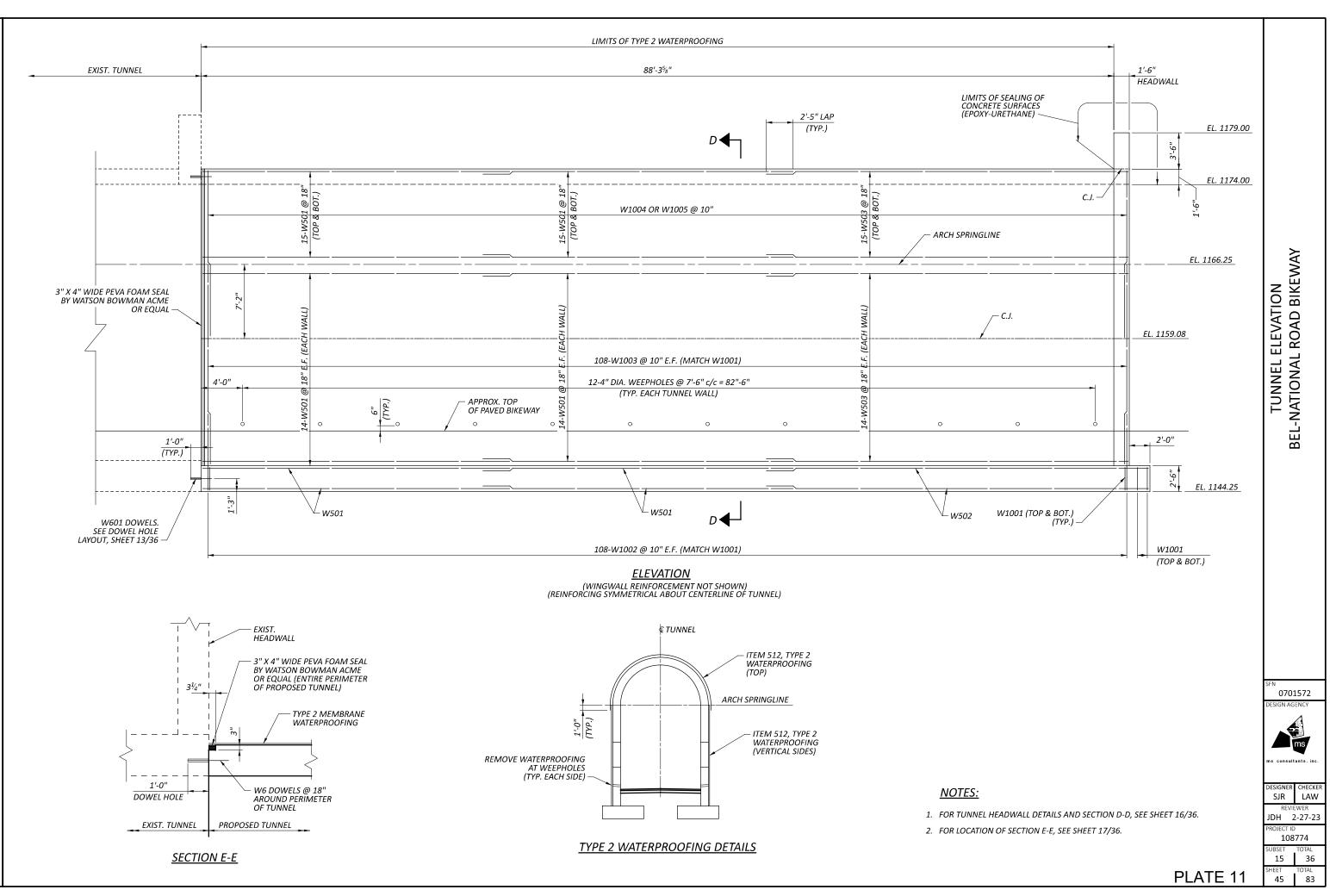
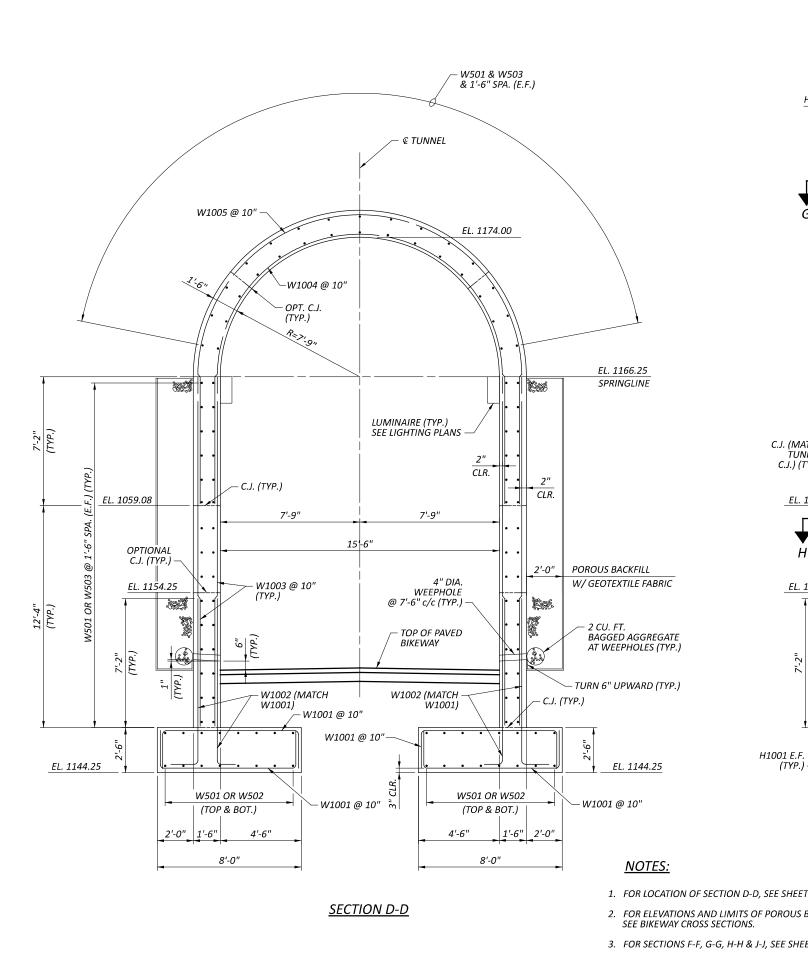
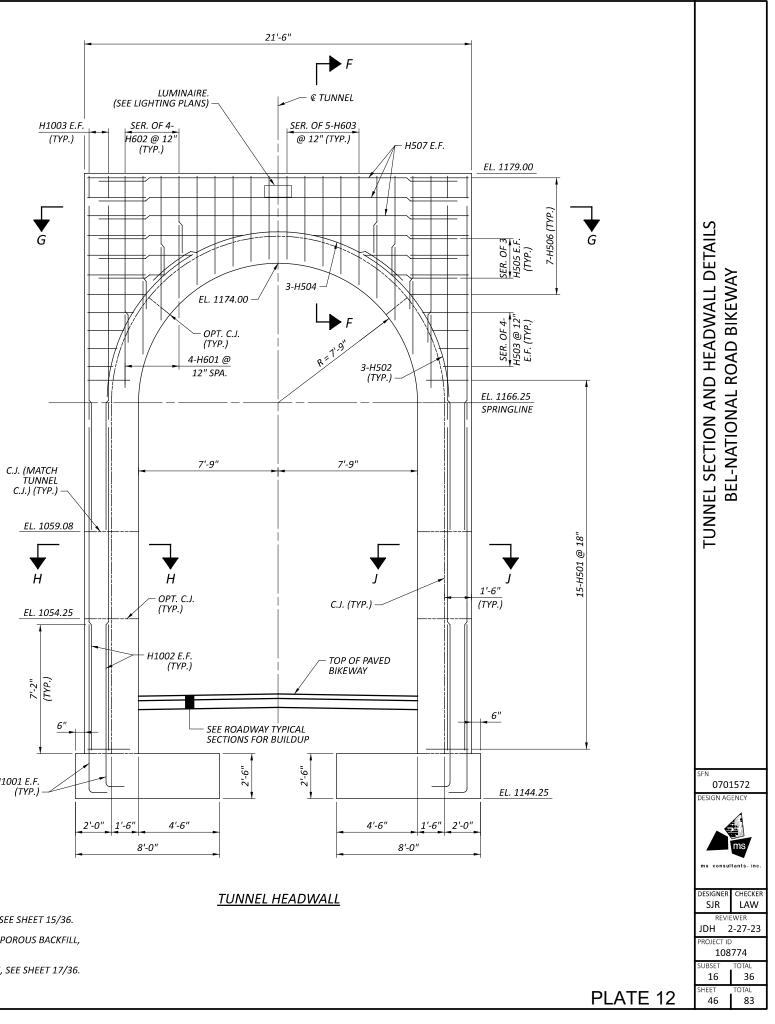





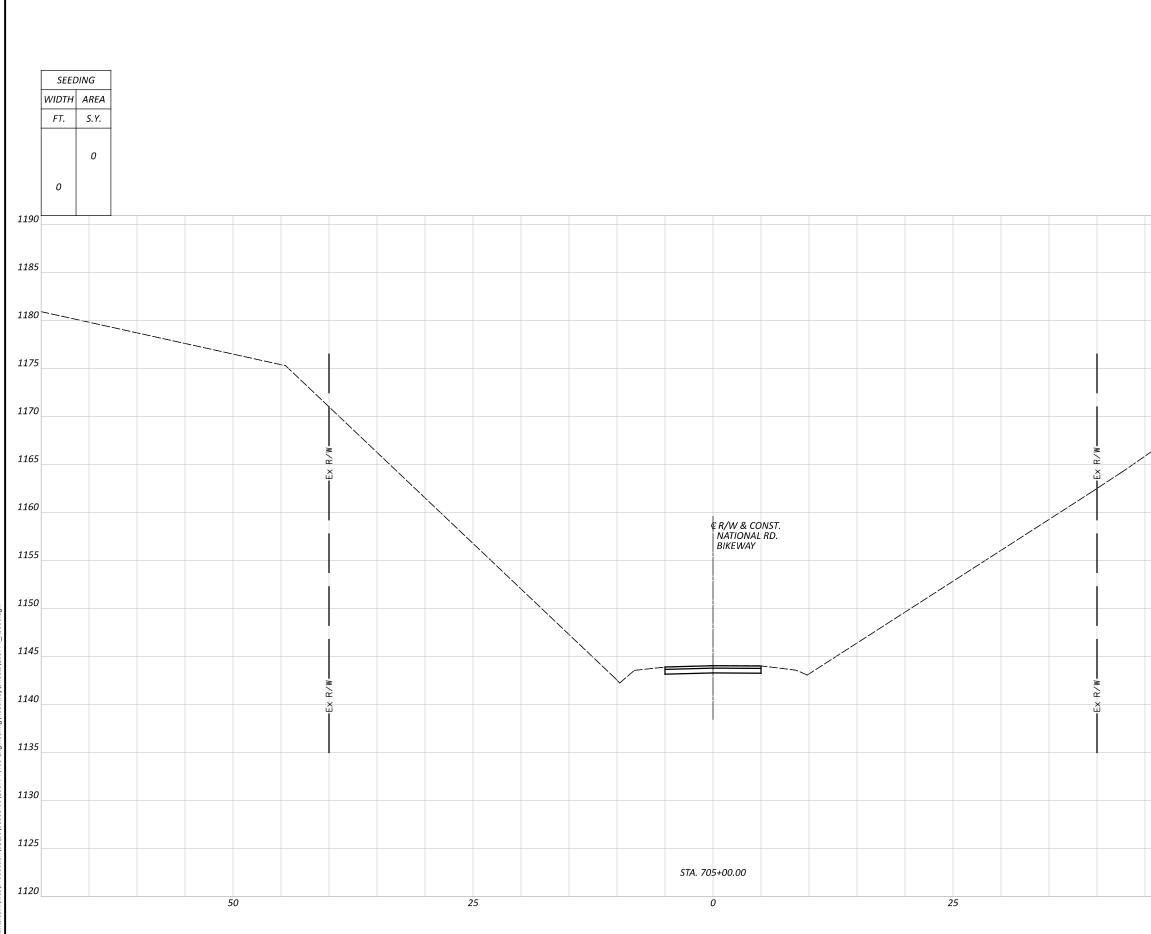
PLATE 9



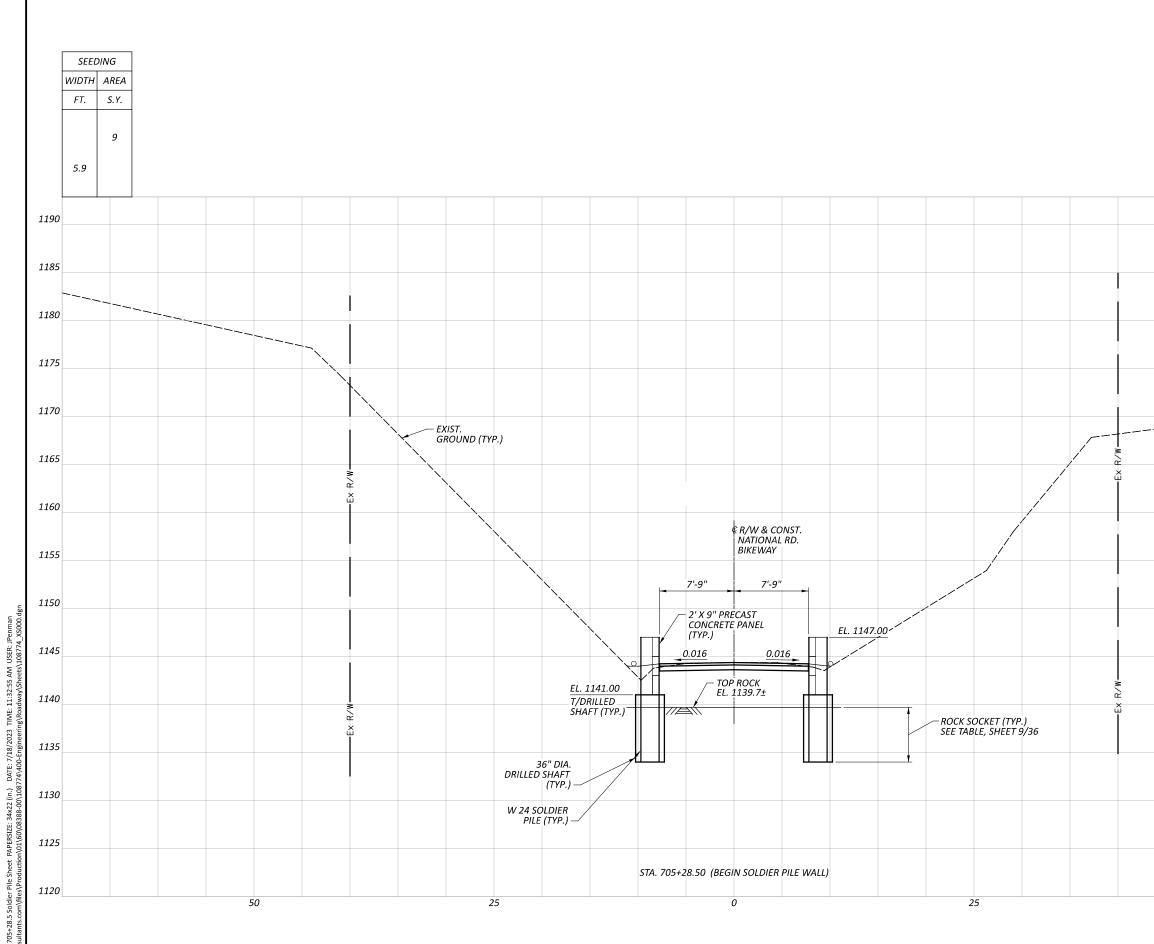

BEL-NATIONAL RD. BIKEWAY MODEL: Sheet PAPERSIZE: 34/22 (m.) DATE: 7/18/2023 TIME: 11:32-94 AM USER: JPenman (Insconsultants.com/files/Production/01/60/08338-00/108774 (400-Engineering)Structures/SFN_0701572/Sheets/108774 SFN

BEL-NATIONAL RD. BIKEWAY MODEL: Sheet PAPERSIZE: 34.22 (In.) DATE: 7/18/2023 TIME: 11:32:50 AM USER: JPenman (Imesonsultants.com/Rites/Production/01/60/053388-00/108774.4005-Engineering/Structures/SFN_0701572/Sheetes/108774_5FN_0701572_SMC

JSER: TIME: 11:32:51 AM 08774\400.5**** **BEL-NATIONAL RD. BIKEWAY** 7/18/2023 DATE: 34x22 (in.) PAPERSIZE

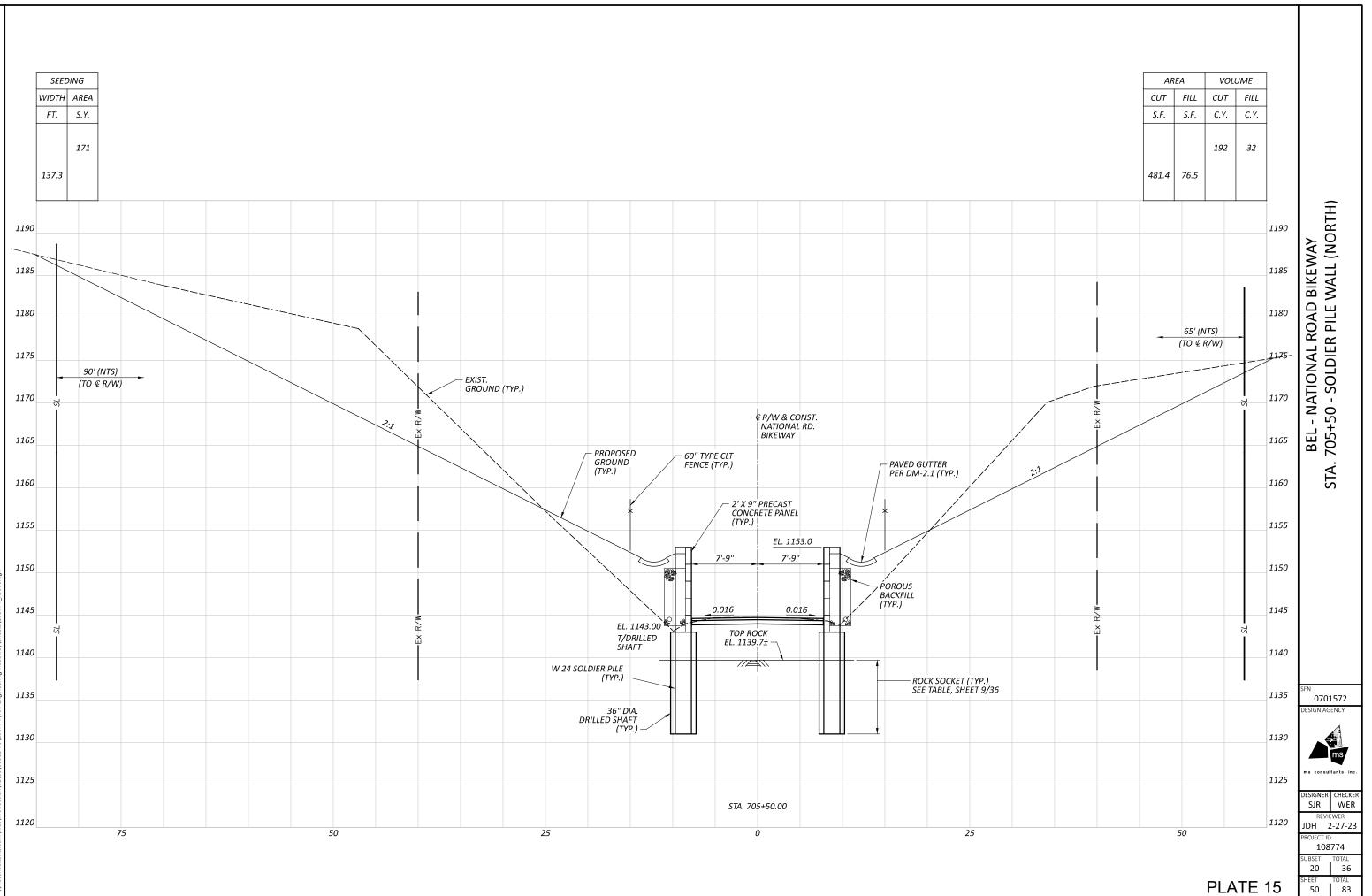


1. FOR LOCATION OF SECTION D-D, SEE SHEET 15/36.


2. FOR ELEVATIONS AND LIMITS OF POROUS BACKFILL, SEE BIKEWAY CROSS SECTIONS.

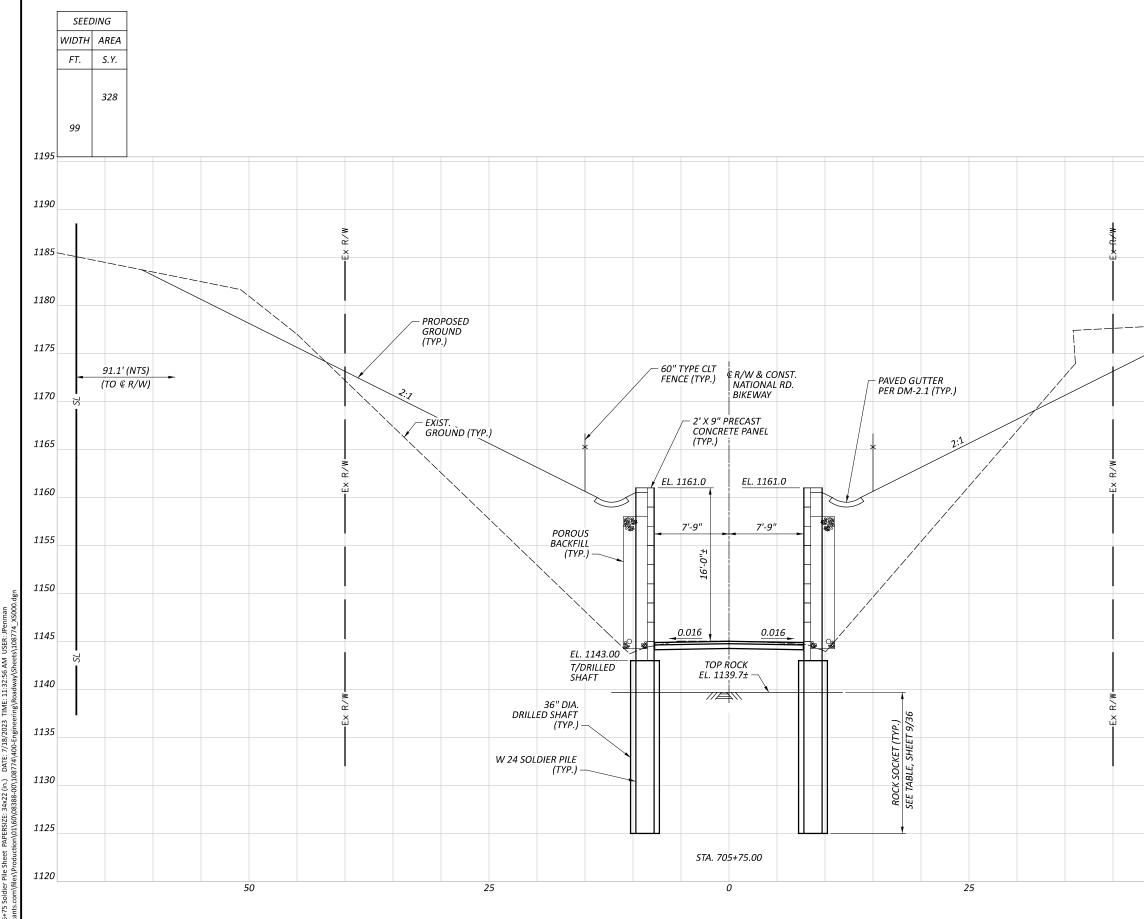
3. FOR SECTIONS F-F, G-G, H-H & J-J, SEE SHEET 17/36.

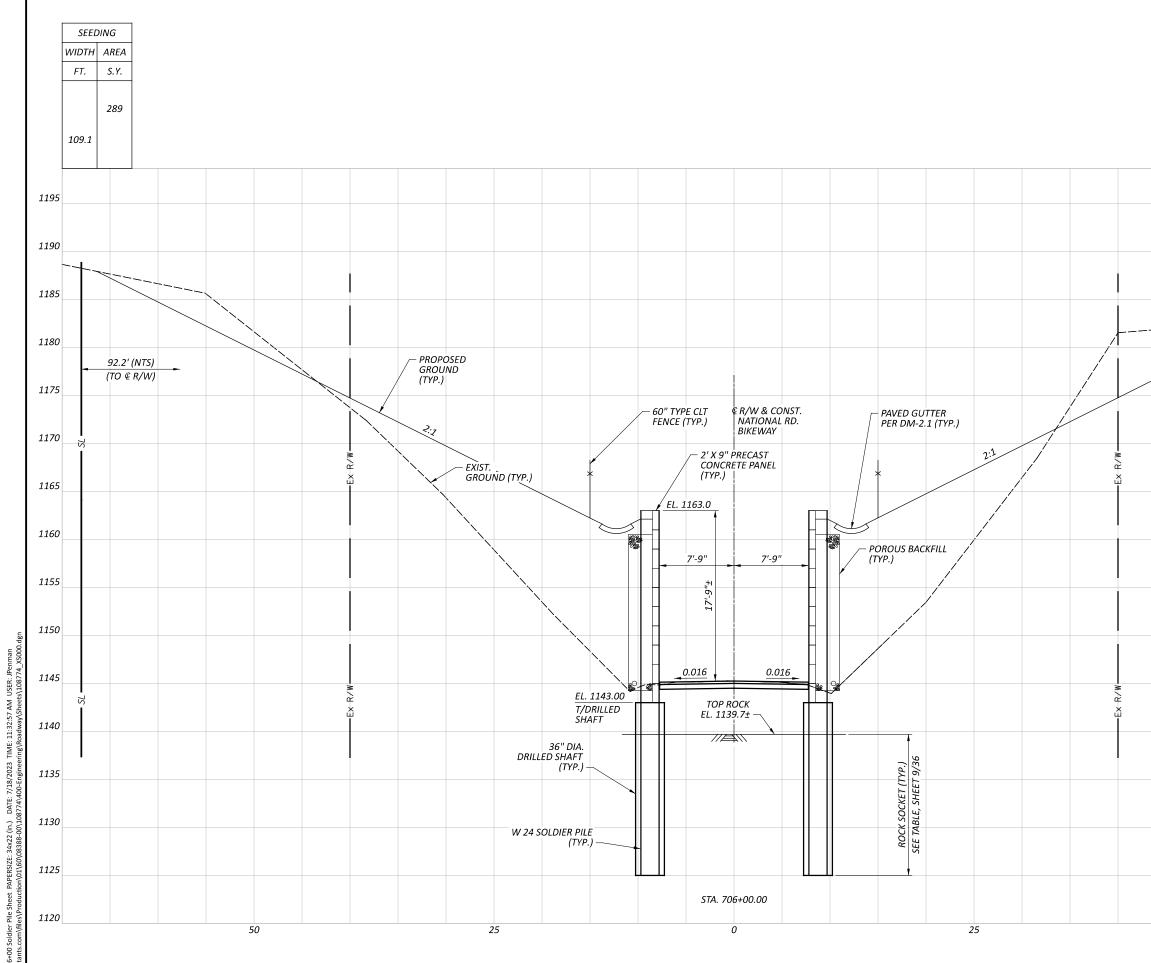
	AR			UME		
	СИТ	FILL	СИТ	FILL		
	S.F.	S.F.	С.Ү.	С.Ү.		
			0	о		
	0	0				
					1190	
					1150	≽
					1185	KEW
					1180	BEL-NATIONAL ROAD BIKEWAY STA. 705+00
					1175	AL RO. . 705-
					_	STA
					1170	IATI
					1165	BEL-N
					1160	
					1160	
					1155	
					1150	
					1145	
					1140	
					1135	SFN 0701572
					1130	
					1125	ms consultants, inc.
						DESIGNER CHECKER SJR WER



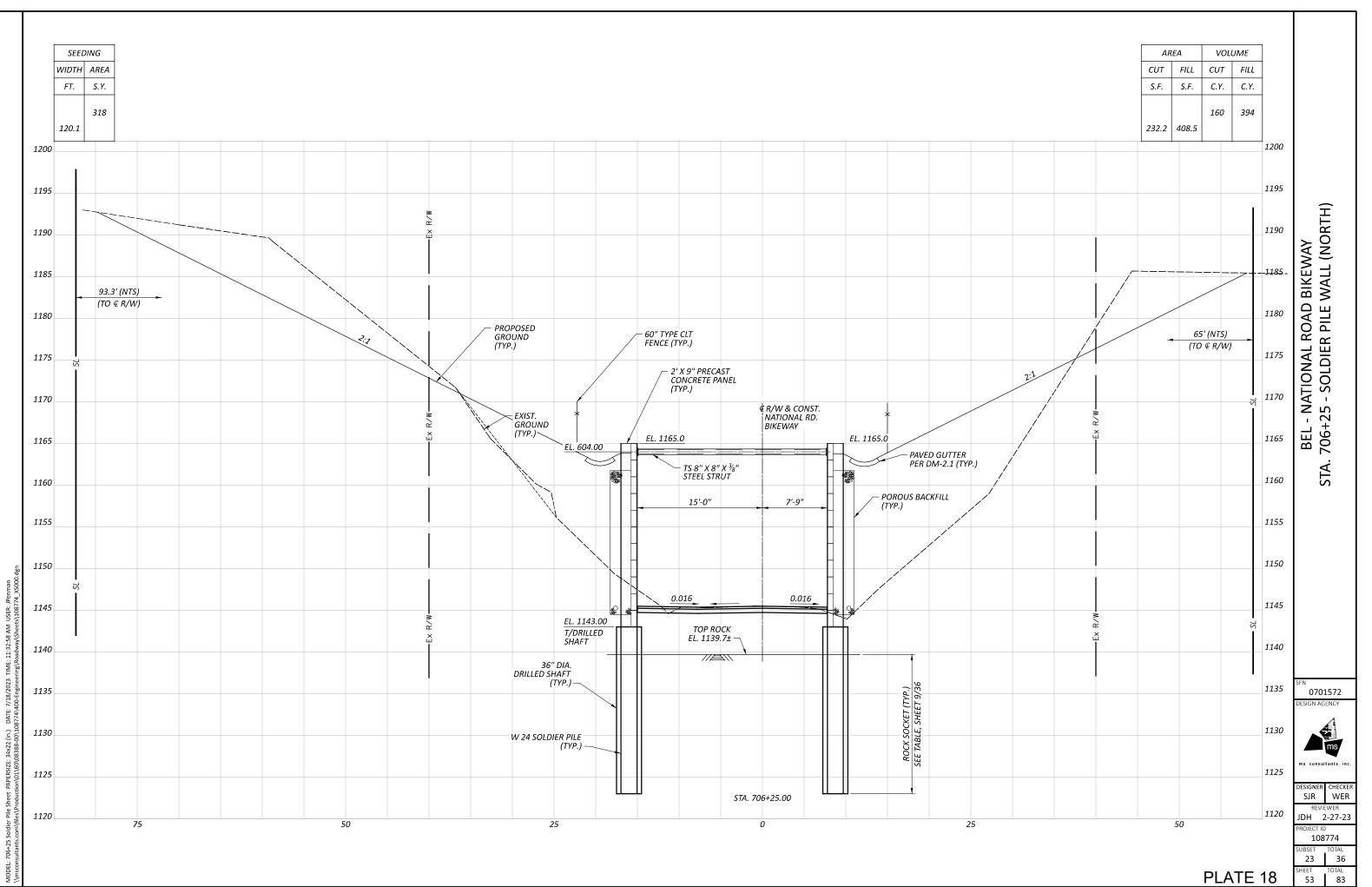
BEL-NATIONAL RD. BIKEWAY MODEL: 705+28,5 Soldier Pile Sheet PARERIZE: 34x2 (m.) DATE: 7/18/2023 (Intercentions.com/files/Froduction/01/60/03388-00/108774/400-Engineeri

		EA		UME		
	СИТ	FILL	СИТ	FILL	-	
	S.F.	S.F.	С.Ү.	С.Ү.	-	
			0	2		
	о	3.4				
						BEL - NATIONAL ROAD BIKEWAY STA. 705+28.5 - SOLDIER PILE WALL (NORTH)
					1190	IOR
						NA) F (D
					1185	IKE/ VAL
					1180	LE V
					1180	R PI
					1175	ALF
						SOL
 	 				1170	1ATI 5 - 5
						L - N +28.
					1165	BE '05+
					1160	Ä. 7
					1160	ST
					1155	
					1100	
					1150	
					1145	
					1140	
						SFN
		_			1135	0701572 DESIGN AGENCY
					1130	
					1150	ms
					1125	ms consultants, inc.
						DESIGNER CHECKER SJR WER
					1120	REVIEWER

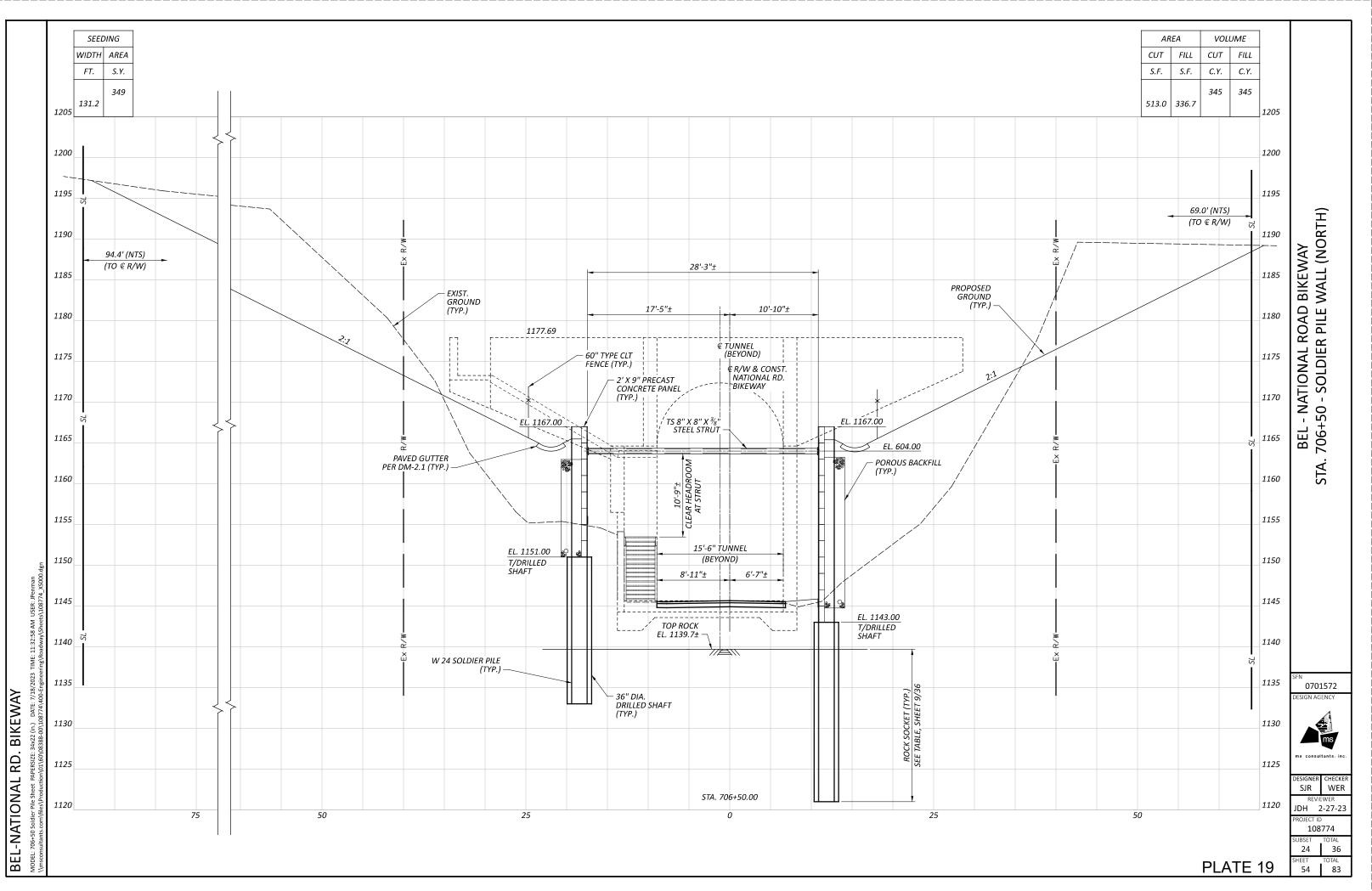


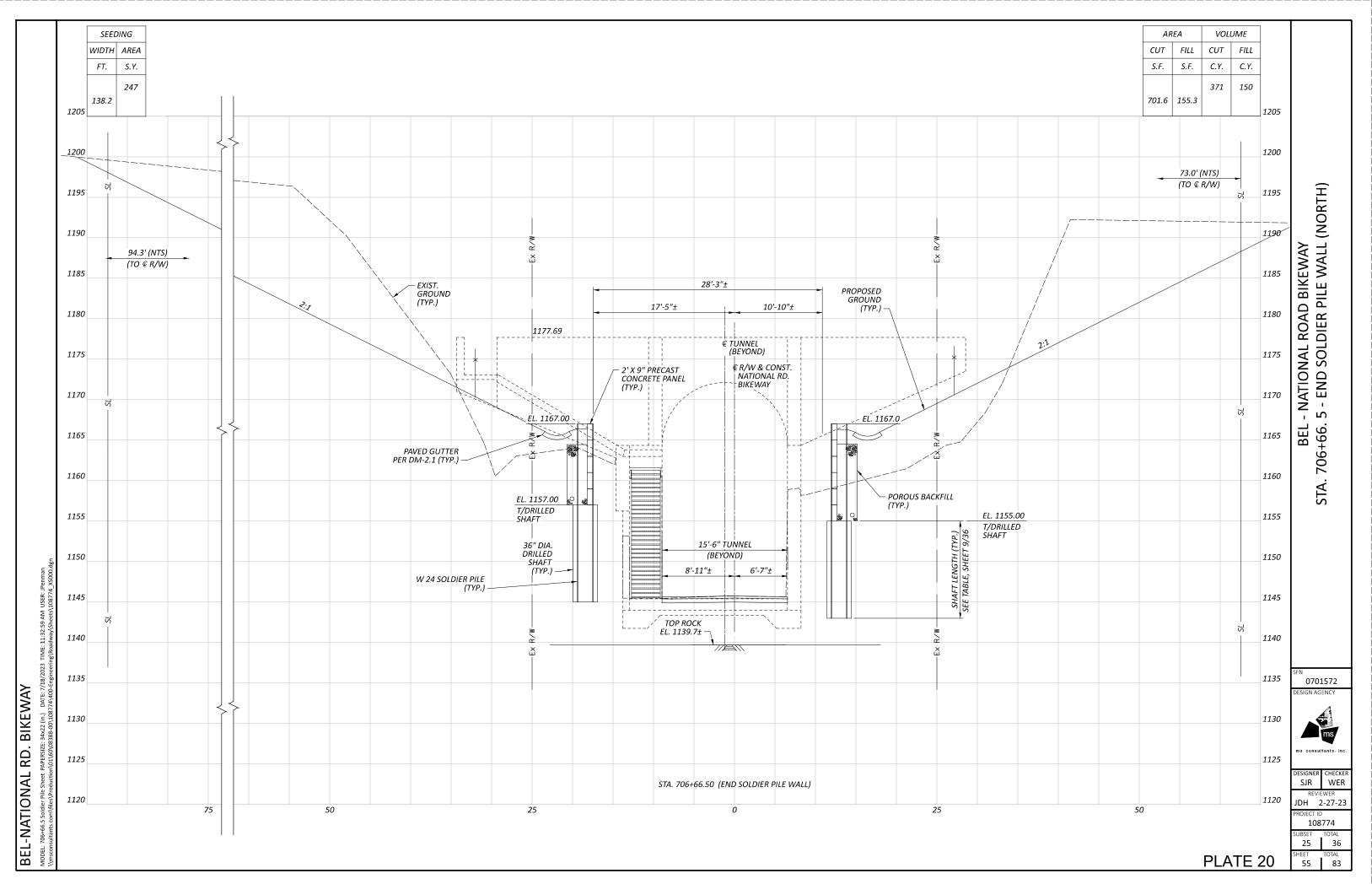


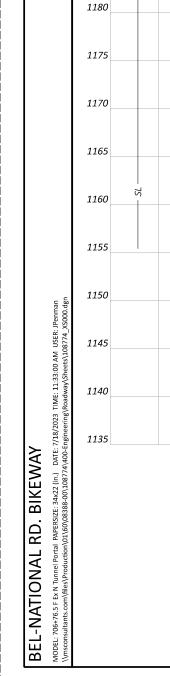
IIME: 11:32:56 AM USER: JPei
ing\Roadway\Sheets\108774 2023 7/18/. 400-En

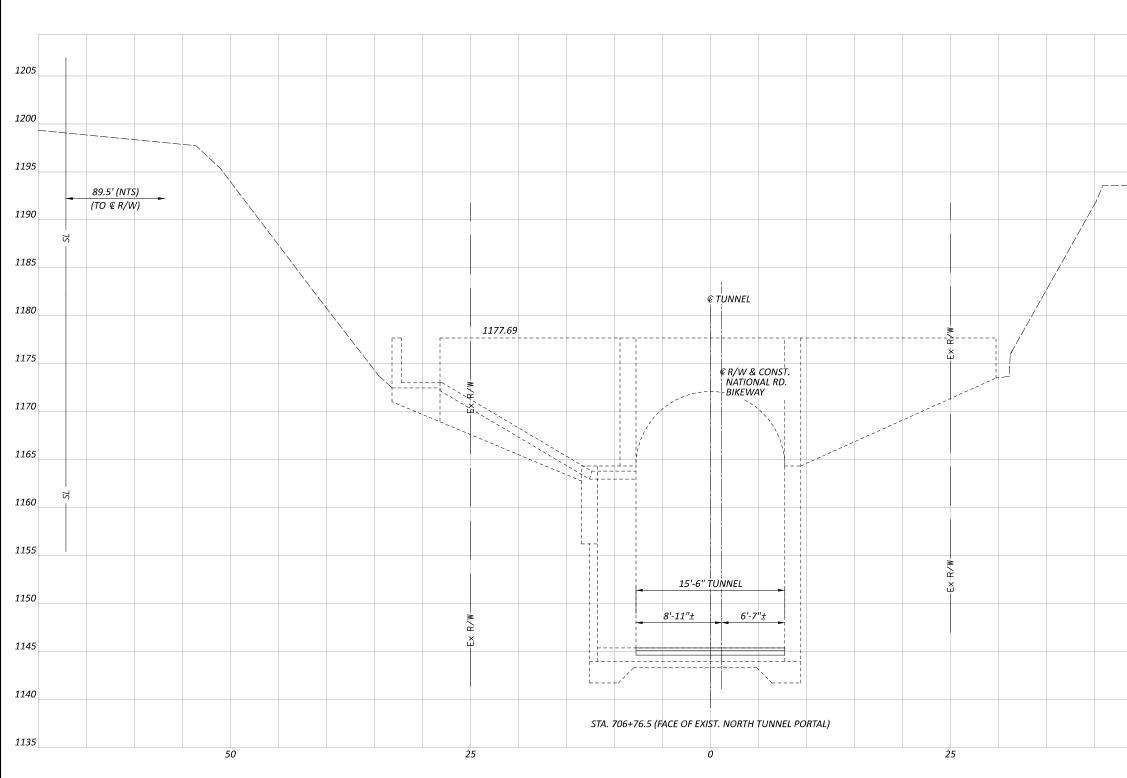


	СИТ			UME		
		FILL	CUT	FILL	1	
	<i>S.F.</i>	S.F.	С.Ү.	С.Ү.	-	
	81.0	374.5	260	209		
					1195	
					1190	BEL - NATIONAL ROAD BIKEWAY STA. 705+75 - SOLDIER PILE WALL (NORTH)
					1185	BIKEW/ WALL (I
		·			1180	OAD PILE '
					1175	ONAL R
		- 27			1170	NATIC 5 - SC
					1165	BEL - '05+7
					1160	STA. 7
					1155	
					1150	
					1145	
		ZF			1140	
					1135	SFN 0701572 DESIGN AGENCY
					1130	ms
					1125	ms consultants, inc.
50					1120 75	SJR WER REVIEWER JDH 2-27-23

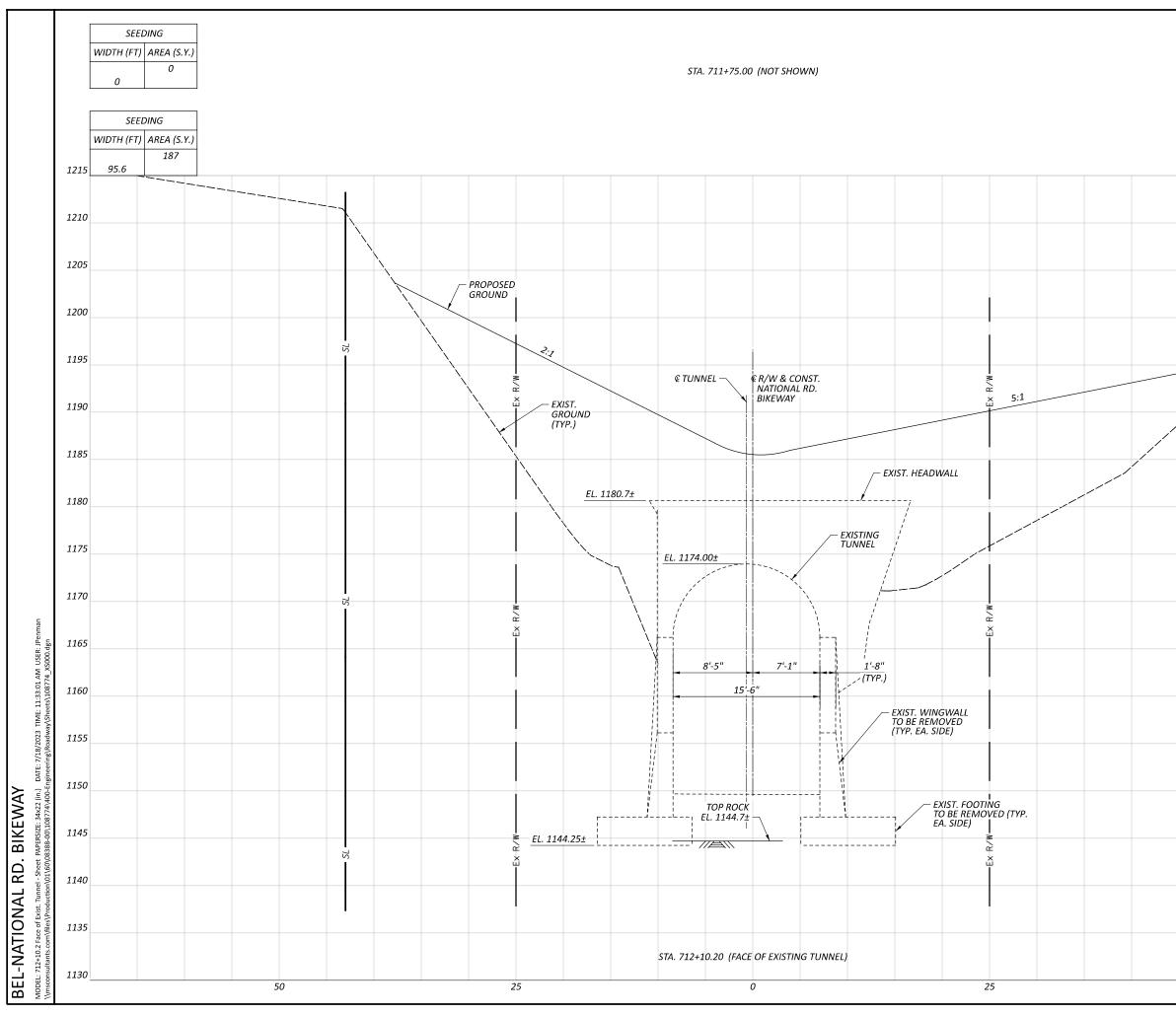


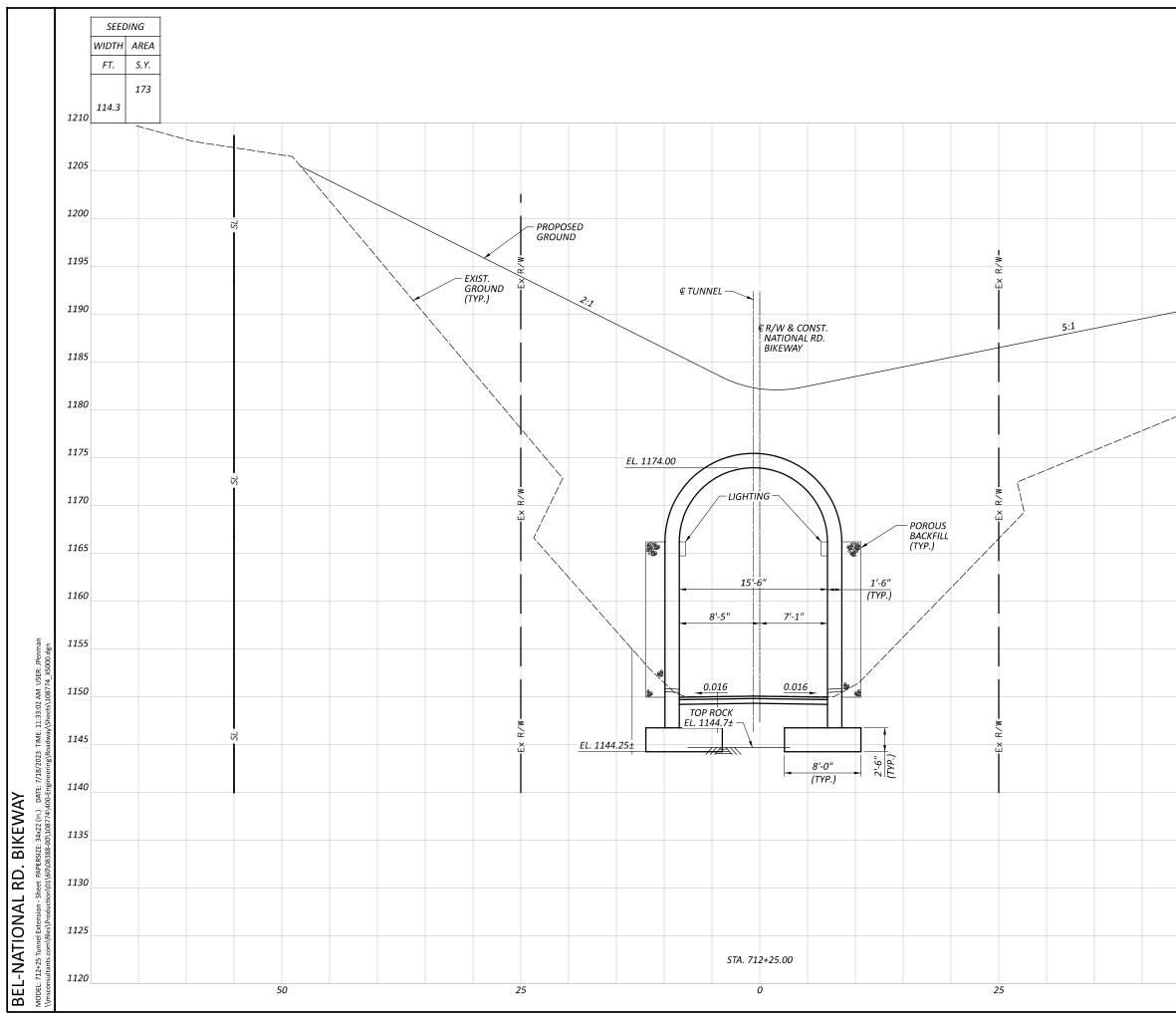

BEL-NATIONAL RD. BIKEWAY MODEL: 706400 Soldier Pile Sheet PAPERSIZE: 34/22 (m.) DATE: 7/18/2023 (Ninsconsultants.com/files/Production/021/60/08388-00/108774/400-Enginee


	AF	REA	VOL	UME]	
	сит	FILL	сит	FILL	1	
	S.F.	S.F.	С.Ү.	С.Ү.	1	
					-	
			90	379		
	112.4	443.4				
					1195	
		_			1195	
					1190	OR.
						Į Į Ž
					1185	
						¥≋
	+	-+			1180	
					1180	BEL - NATIONAL ROAD BIKEWAY STA. 706+00 - SOLDIER PILE WALL (NORTH)
						R R
					1175	DIE
						0 0
		27			1170	ATI - S
		ĺ				ZO
					1165	6 <u>+</u> .
					1105	70 BI
						Ă.
					1160	ST
					1155	
					1150	
					1150	
					1145	
		SL				
					1140	
		1			1135	SFN
						0701572 DESIGN AGENCY
					1130	
						ms
					1125	ms consultants, inc.
						DESIGNER CHECKER
					1120	REVIEWER
50					75	JDH 2-27-23 PROJECT ID
						108774 SUBSET TOTAL
						22 36
			PLA	TE	17	SHEET TOTAL 52 83

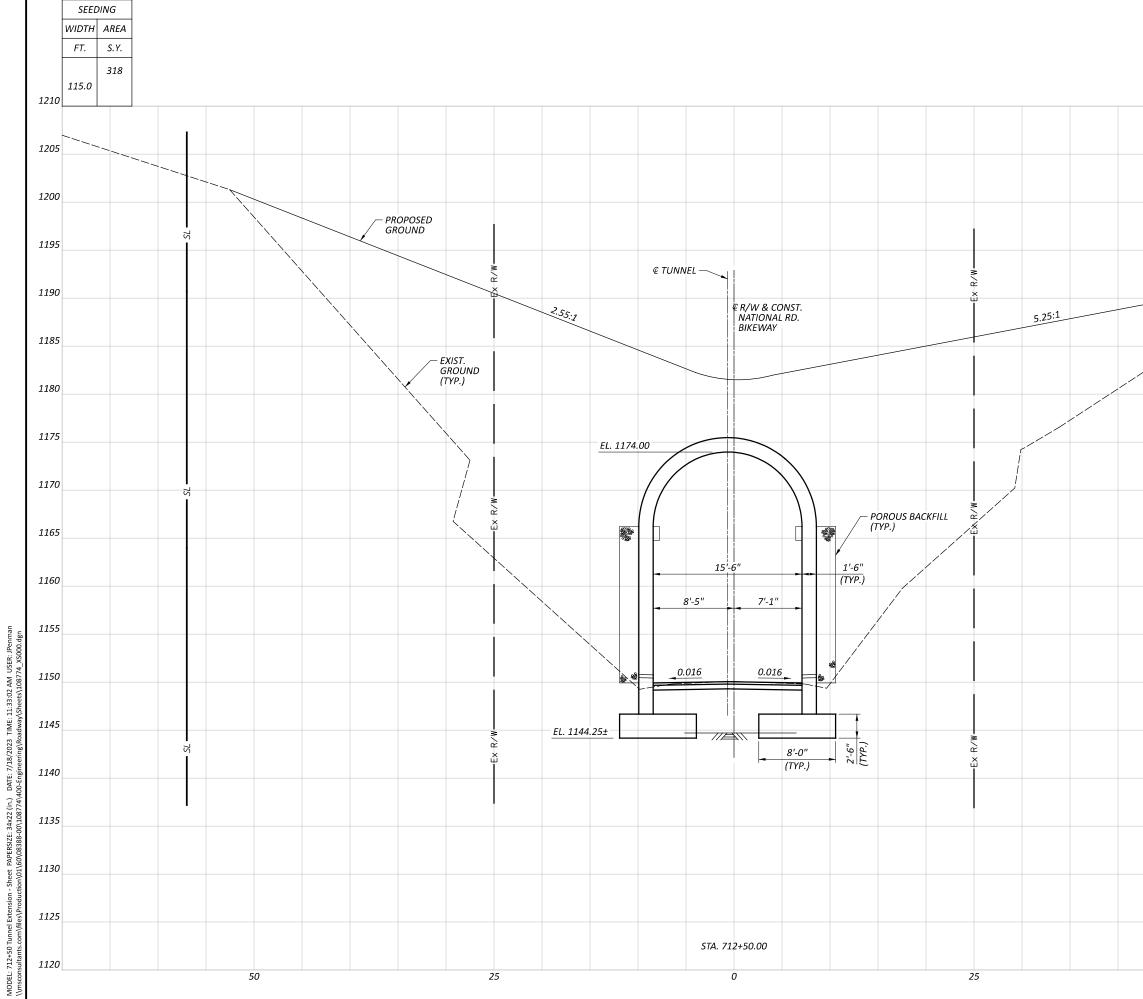


BEL-NATIONAL RD. BIKEWAY

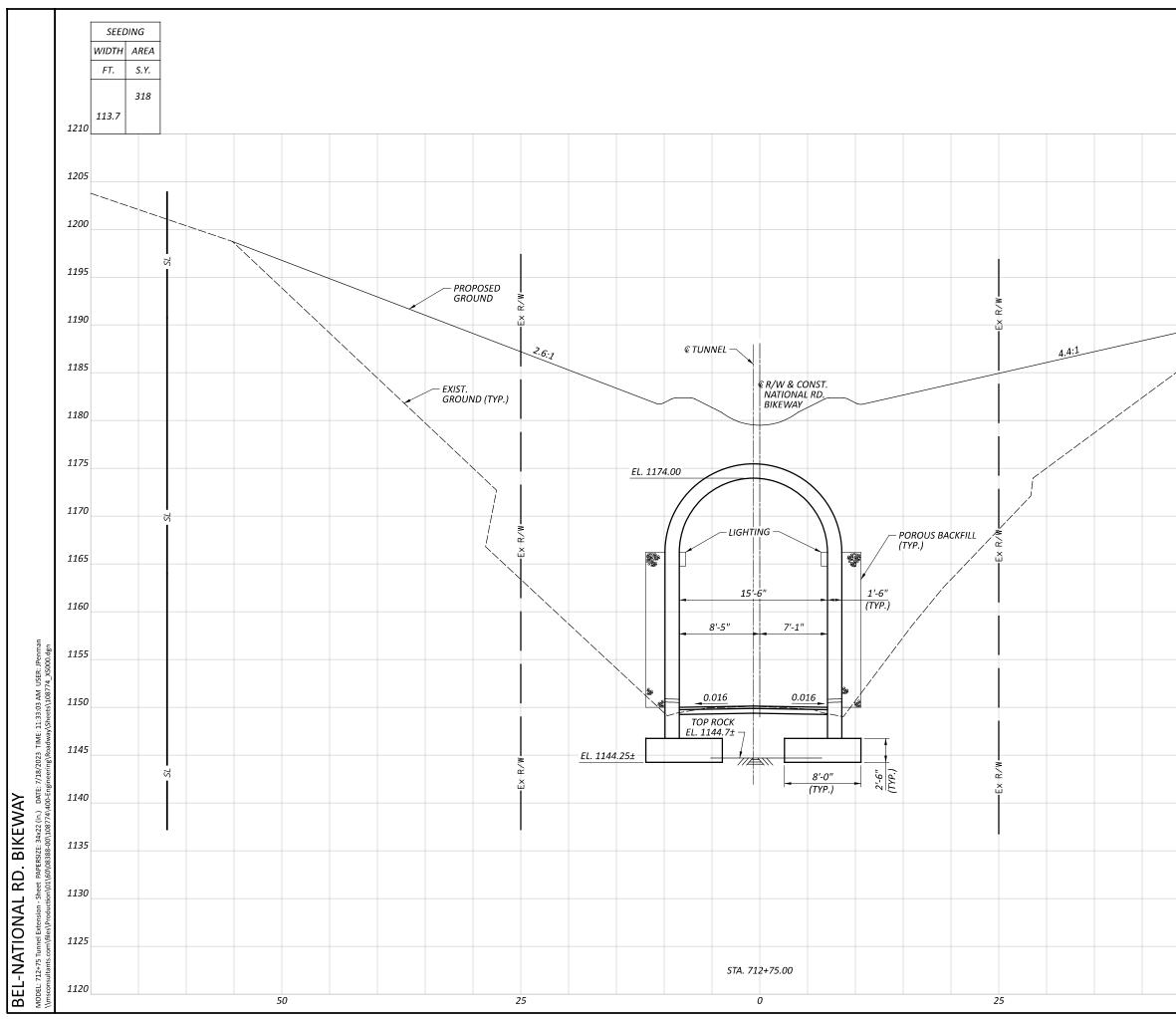




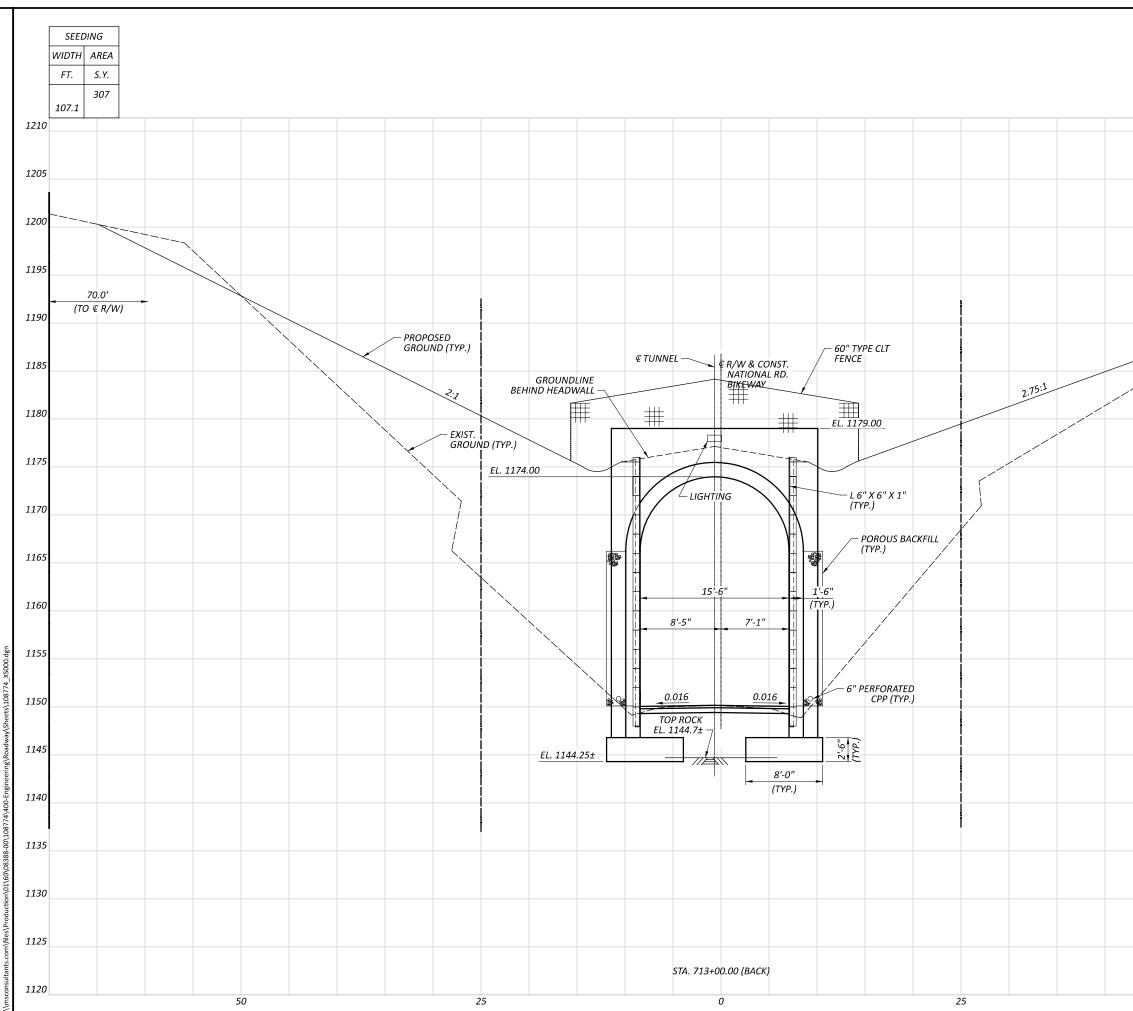
		1205 1200 1195 1190 1185 1180 1175	BEL - NATIONAL ROAD BIKEWAY STA. 706+66.5 - END SOLDIER PILE WALL (NORTH)
			(EWAY WALL (
		1180	OAD BIK ER PILE
	- 27	1175	ONAL R
		1170	- NATI
		1165	BEL 706+66
		1160	STA.
		1150	
		1145	
		1140	
50	7	1135 75	SFN 0701572 DESIGN AGENCY
	PLATE 2	21	DESIGNER CHECKER SJR WER REVIEWER UMER JDH 2-27-23 PROJECT ID 108774 SUBSET TOTAL 26 36 SHEET TOTAL 56 83


AR	EA	VOLUME					
CUT (S.F.)	FILL (S.F.)	CUT (C.Y.)	FILL (C.Y.)				
		0	0				
0	0						

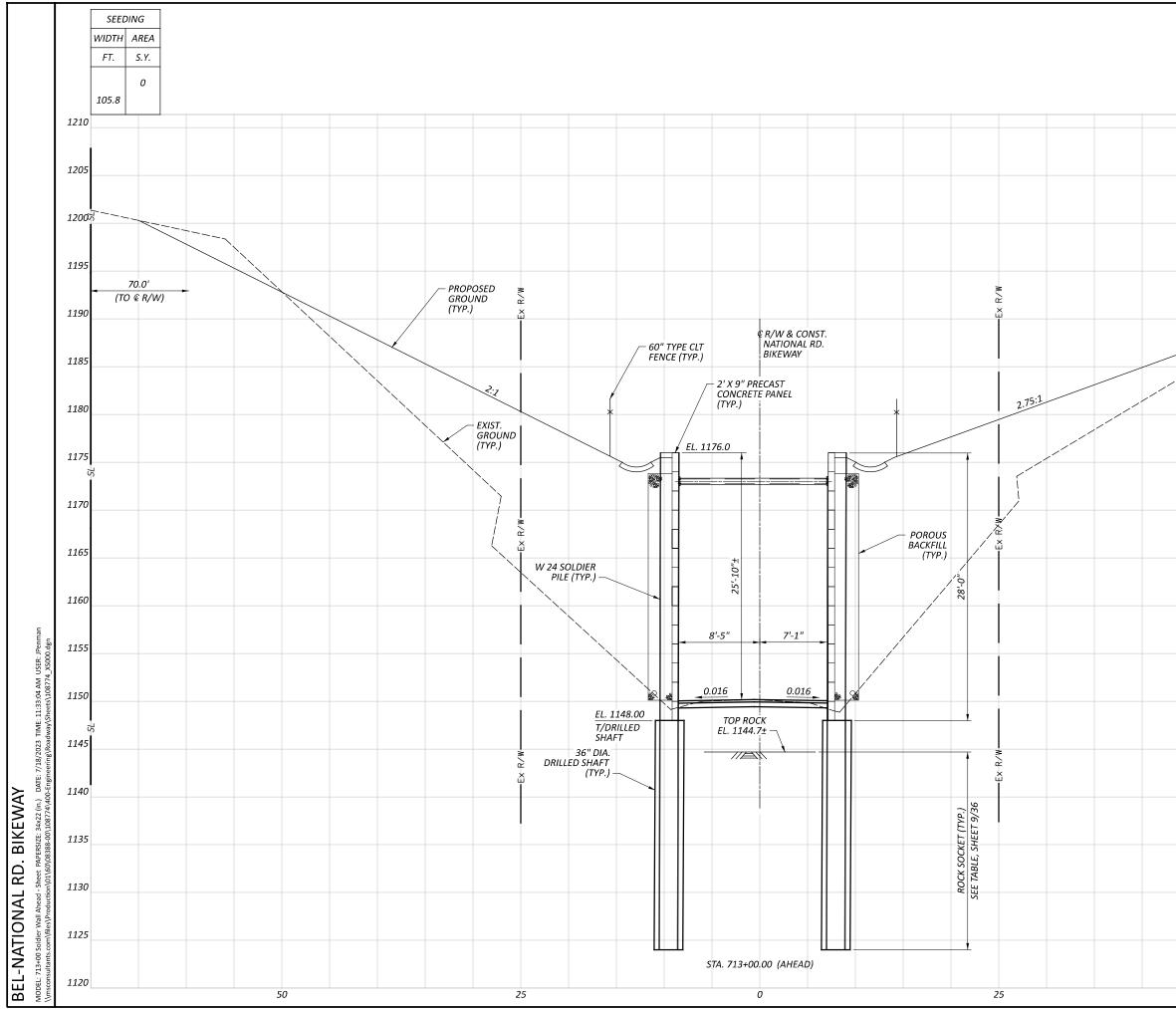
					1	
	AR CUT (S.F.)	FILL (S.F.)	VOL CUT (C.Y.)		-	
	CUT (S.F.)	FILL (S.F.)	0	FILL (C.Y.) 581	-	
	0	891.9			1215	
					1210	BEL - NATIONAL ROAD BIKEWAY STA. 712+10.2 - FACE OF EXISTING TUNNEL (SOUTH)
						S.
					1205	≽ ⊒
						Š Z
					1200	₩2
						B U
					1195	
/						RO IS
					1190	N N N
						12 H
					1185	FA FA
					1180	3EL
					1100	на 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						712
					1175	
						ST/
	–				1170	
	, i					
					1165	
					1105	
					1160	
					1155	
					1150	SFN 0701572
					1150	DESIGN AGENCY
					1145	ms
	- SL					ms consultants, inc.
					1140	DECIONER
						DESIGNER CHECKER SJR WER
					1135	REVIÈWER
						PROJECT ID 108774
						SUBSET TOTAL
50]1130 ອີງ	27 36 SHEET TOTAL
			P	LAIE	<u> </u>	57 83



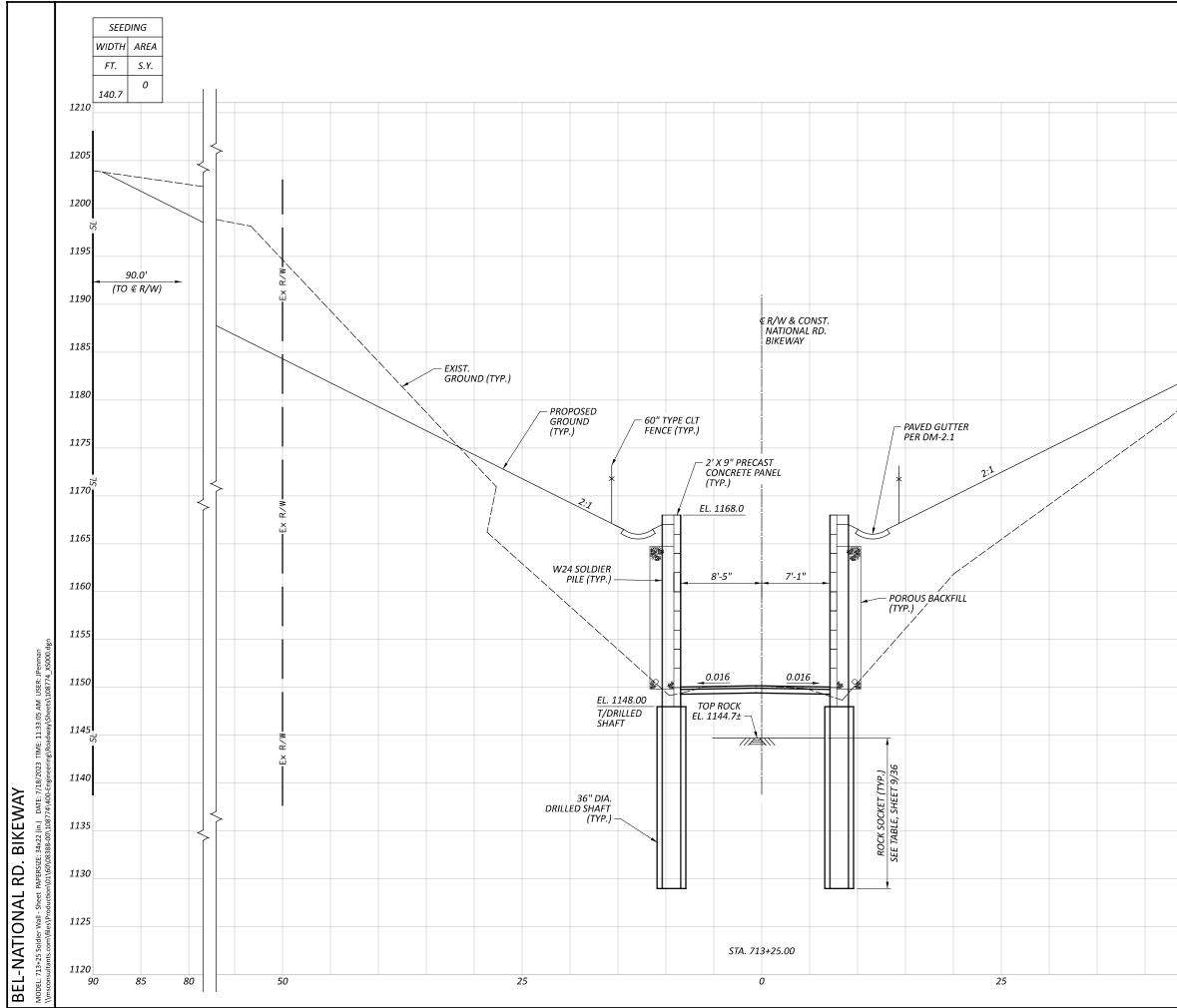
	AF	REA	VOL	UME]	
	СИТ	FILL	СИТ	FILL		
	S.F.	S.F.	С.Ү.	С.Ү.		
	0	1520.0	0	661	1210	
				1		
					1205	
	<i>S</i> [1200	(H
					1195	AY (sour
					1190	BIKEW NSION
					1185	ROAD
					1180	BEL - NATIONAL ROAD BIKEWAY STA. 712+25 - TUNNEL EXTENSION (SOUTH)
					1175	- NAT 25 - T
	27				1170	BEL 712+:
					1165	STA.
					1160	
					1155	
					1150	
	SL —				1145	
					1140	SFN 0701572 DESIGN AGENCY
					1135	ms
					1130	ms consultants, inc.
					1125	SJR WER REVIEWER JDH 2-27-23
					1120	PROJECT ID 108774 SUBSET TOTAL 28 36
50			PLA	TE	⁷⁵ 23	SHEET TOTAL 58 83

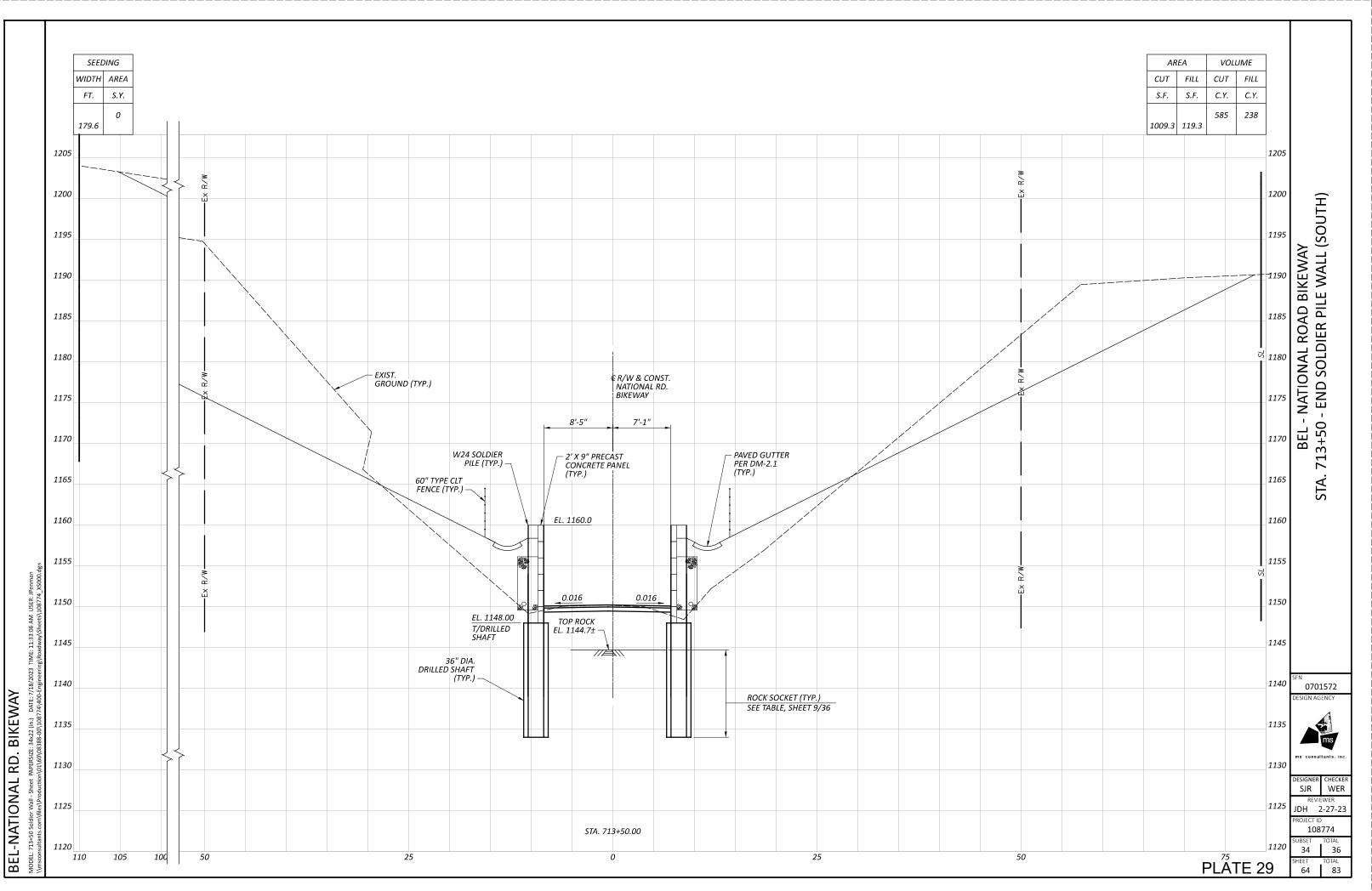


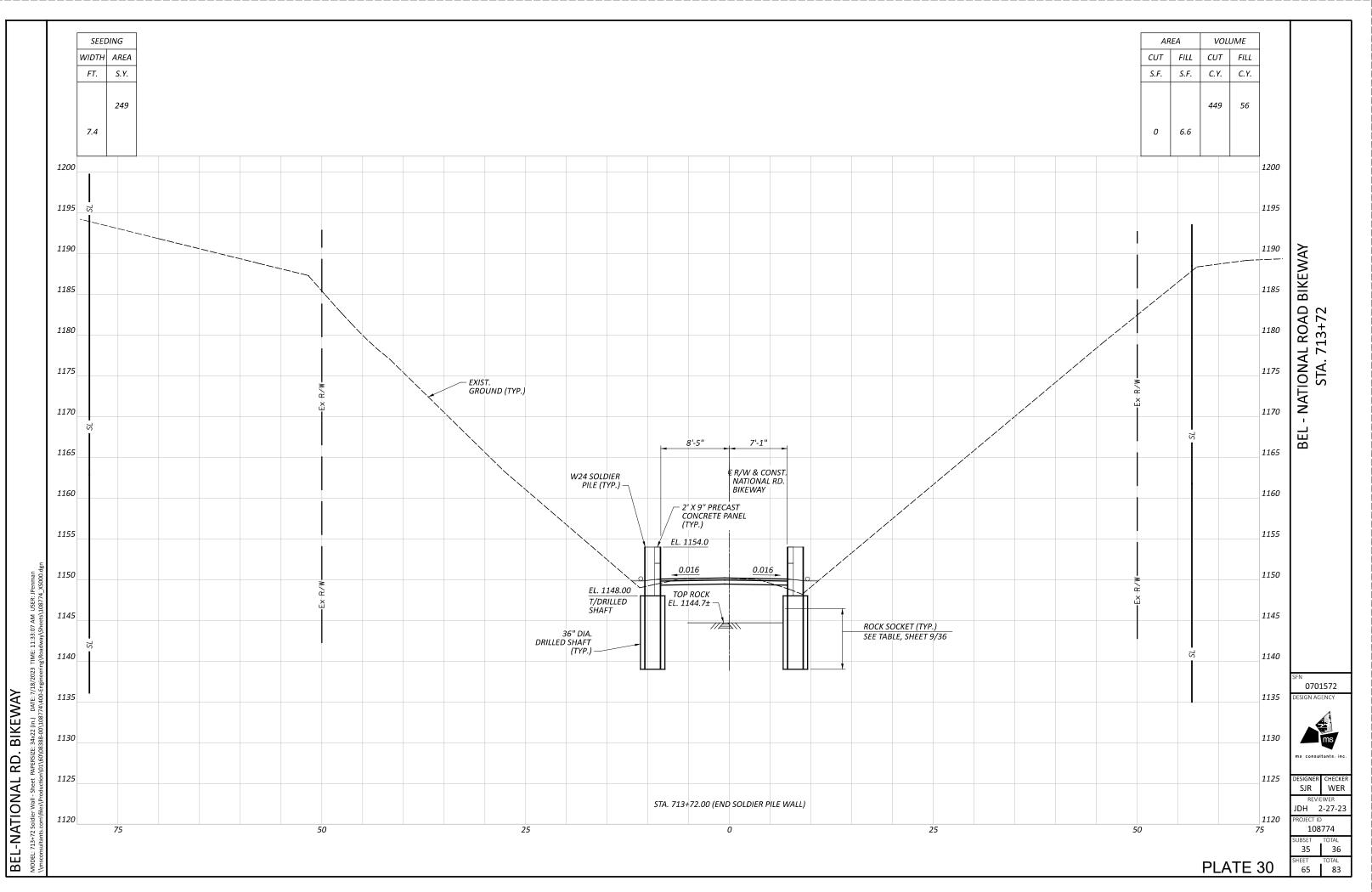
			AR	REA	VOI	.UME		
			СИТ	FILL	CUT	FILL		
			S.F.	S.F.	С.Ү.	С.Ү.		
					0	1433		
			0	1576.1				
							1210	
							1205	
			Т					
							1200	
							1200	
			- 75					프
							1195	
			 					(SC
							1190	BEL - NATIONAL ROAD BIKEWAY STA. 712+50 - TUNNEL EXTENSION (SOUTH)
_								
	/							N N
	//						1185	ATE A
	•							В С П С
							1180	AL JEL
								Z Z
_							1175	
								+50
							1170	3EL
			Î					В 1
							1165	₹
							1105	s
							1160	
							1155	
							1150	
							1145	
			- 7S					
			ĺ				11.00	SFN
							1140	0701572 DESIGN AGENCY
								A
							1135	
								ms
							1130	ms consultants, inc.
							1130	DESIGNER CHECKER
								SJR WER
							1125	REVIEWER
								PROJECT ID 108774
							1120	SUBSET TOTAL
	5	0			י וח	TE 2		29 36 Sheet total
					rl/	11E (24	59 83

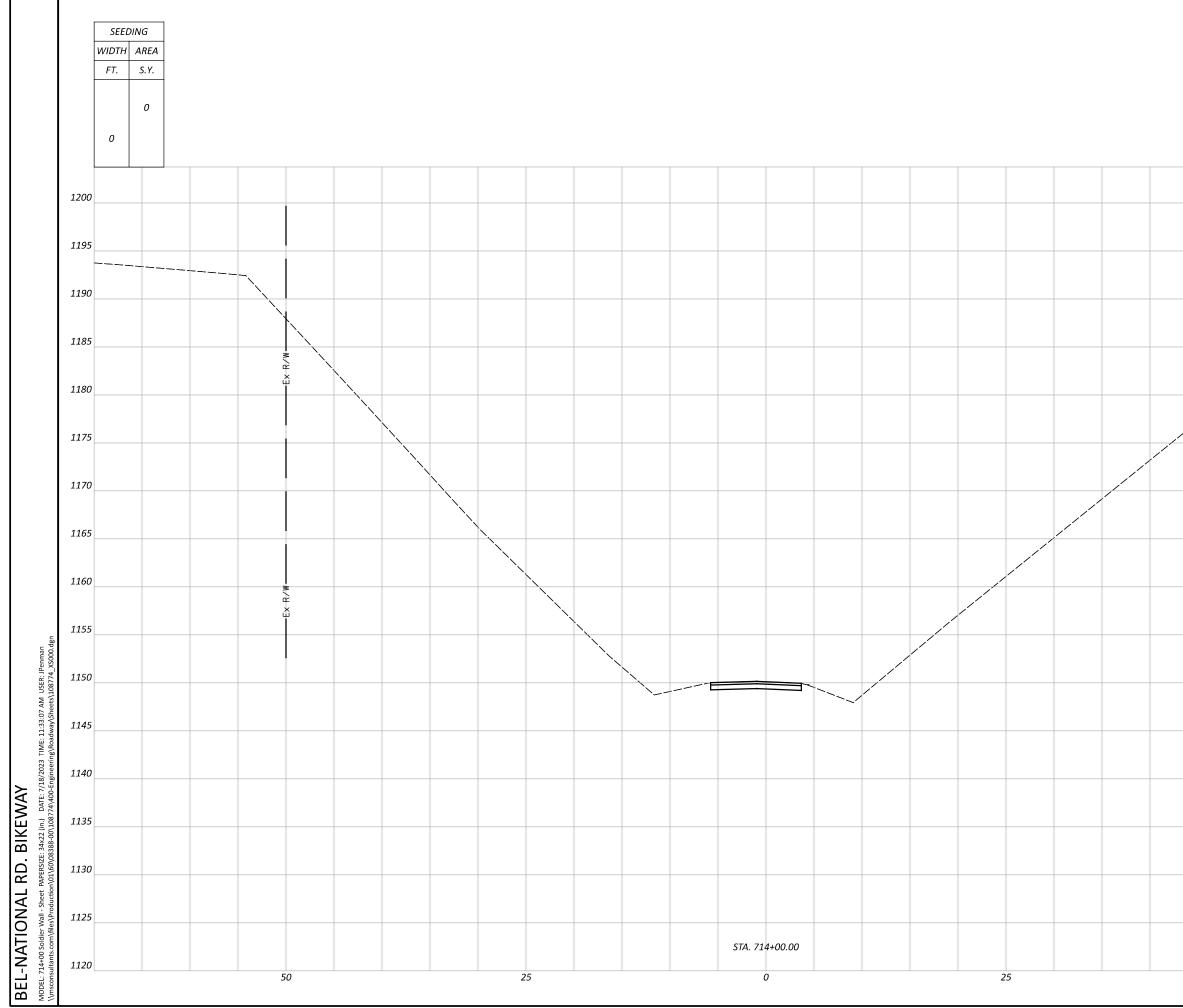


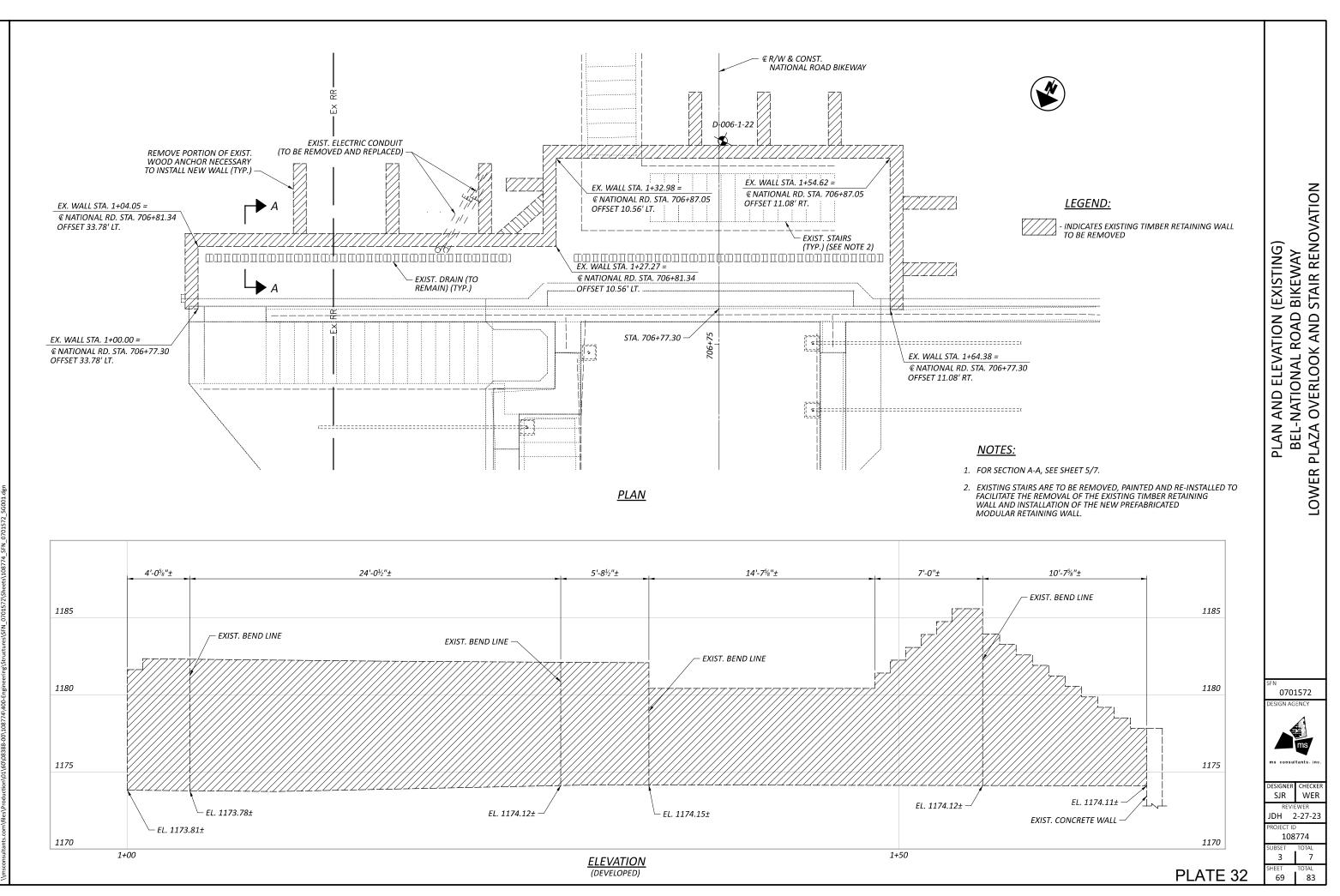
						1	
			REA		UME	-	
		СИТ	FILL	CUT	FILL	-	
		<i>S.F.</i>	S.F.	С.Ү.	С.Ү.	-	
				0	1358		
		0	1357.5				
						1210	
						1205	
		_					
						1200	T
		Ļ					
		- SL				1195	ا کر ا
							VA) (S
		 		+-		-	
	1					1190	SIC SIC
							EN E
///						1185	A T
							L E R
							BEL - NATIONAL ROAD BIKEWAY STA. 712+75 - TUNNEL EXTENSION (SOUTH)
						1180	NN
							TU
						1175	
							3EL 12-
		-SL				1170	Ч Ч
							Ξ.
						1165	S
						1160	
						1155	
						1150	
						1145	
		- 7S					CEN
						1140	SFN 0701572
			_			1140	DESIGN AGENCY
		I					
						1135	ms
							ms consultants, inc.
						1130	
							DESIGNER CHECKER SJR WER
							REVIEWER JDH 2-27-23
						1125	PROJECT ID
							108774 SUBSET TOTAL
						1120	30 36
5	50			PLA	TE 2	25	SHEET TOTAL 60 83

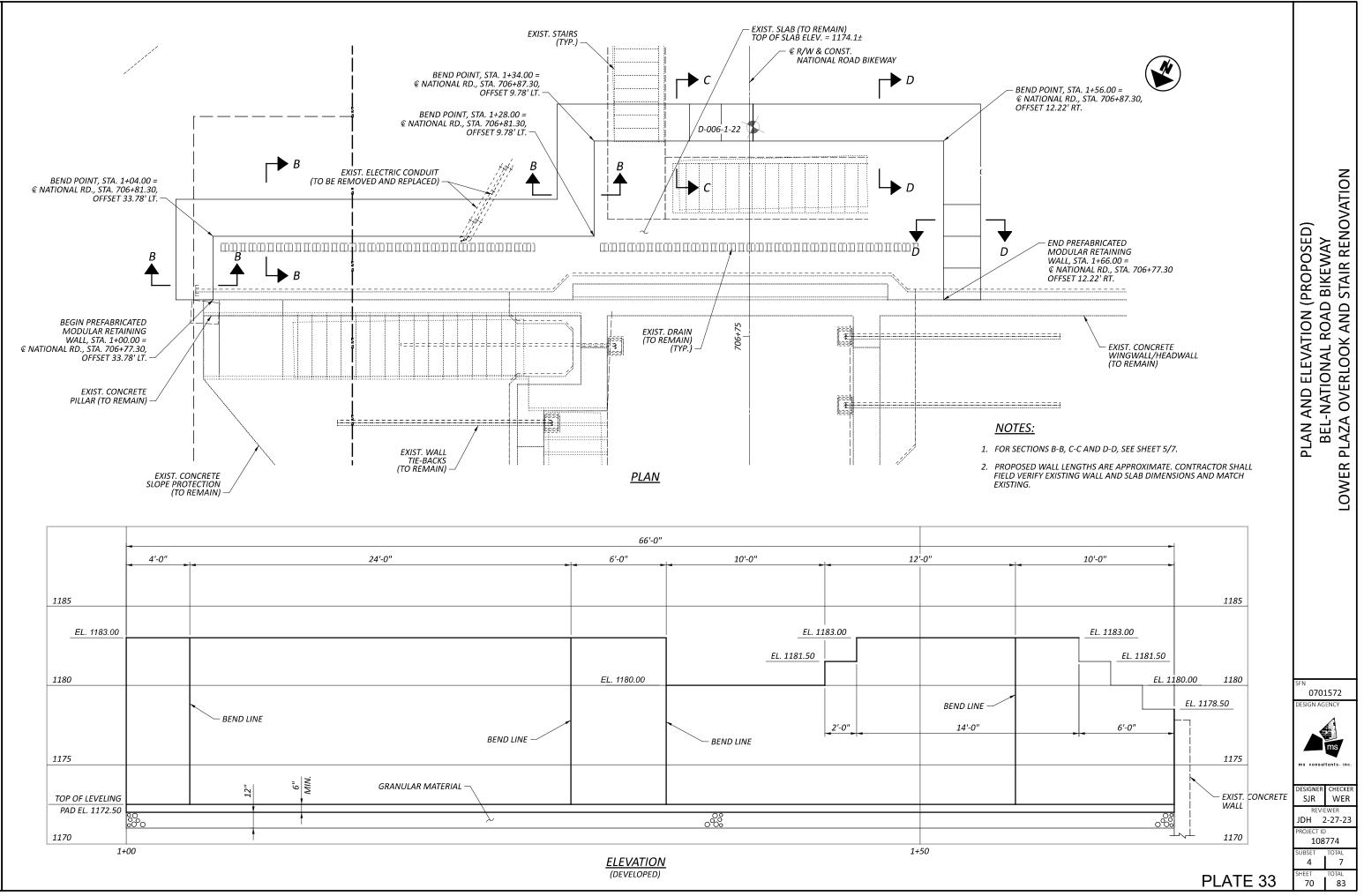



			Δ	AREA VOLUME]		
			сит	FILL	сит	FILL	-	
			S.F.	S.F.	С.Ү.	С.Ү.	-	
				5	9	984	-	
			19.2	766.9	9	504		
						1	1210	
							1205	
							1200	E E
								0
							1195	
								N N N
					+-		1190	I ISI
							1190	BIX
								BEL - NATIONAL ROAD BIKEWAY STA. 713+00 - END TUNNEL EXTENSION (SOUTH)
	//						1185	I L D I
/	·							Ă Ĥ
							1100	Z ∀
							1180	
							1175	
								L Q L
							1170	B ₩ 1
								71
							1165	
								ST
							1160	
							1155	
			1				2222	
			1					
							1150	
							1115	
							1145	
								SFN
							1140	0701572 DESIGN AGENCY
			I				4435	
							1135	ms
								ms consultants, inc.
							1130	
								DESIGNER CHECKER SJR WER
								REVIEWER JDH 2-27-23
							1125	PROJECT ID
								108774 SUBSET TOTAL
							1120	31 36
	5	50			PLA	TE?		SHEET TOTAL 61 83

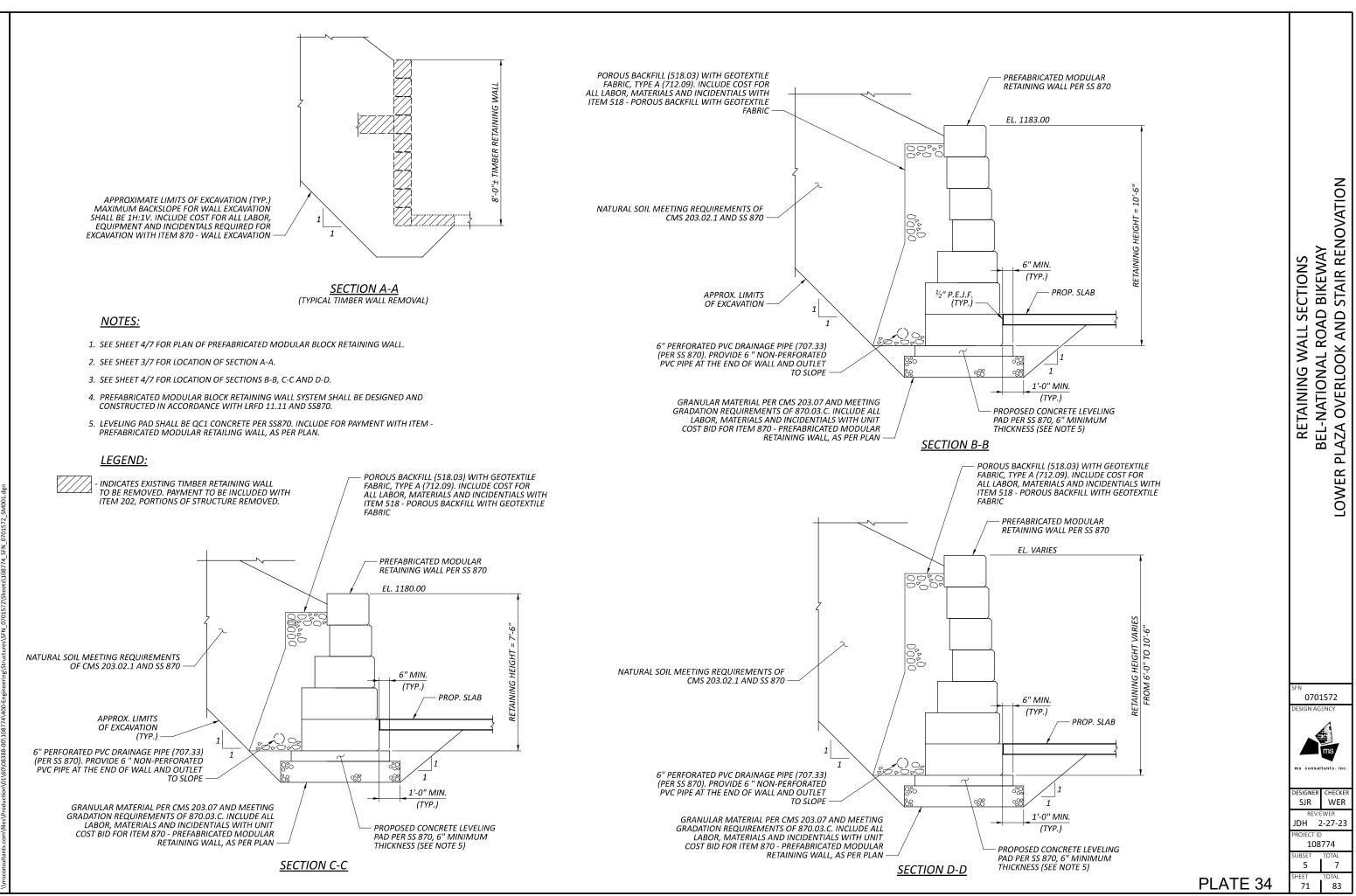



	AREA		VOLUME]	
	СИТ	FILL	СИТ	FILL	1	
	S.F.	S.F.	С.Ү.	С.Ү.]	
			0	0		
	19.5	777.3				
					1210	
					1205	
					1205	
					1200	
	– SL				1195	. (S
					-	
					1190	I E BI
					1185	OA ER
					1180	
						0 Z
						BEL - NATIONAL ROAD BIKEWAY STA. 713+00 - BEGIN SOLDIER PILE WALL (SOUTH)
					1175	N B
	- 75				1170	BI BH BH
	Ĩ					119
					1165	
					1105	ST
					1160	
					1155	
					1150	
					1100	
					1145	
	– SL					SFN
					1140	0701572 DESIGN AGENCY
						A
	-				1135	
					1100	ms
						ms consultants, inc.
					1130	DESIGNER CHECKER
						SJR WER REVIEWER
					1125	JDH 2-27-23 PROJECT ID
						108774 SUBSET TOTAL
					1120	32 36
50		I	PLA	TE	27	SHEET TOTAL 62 83

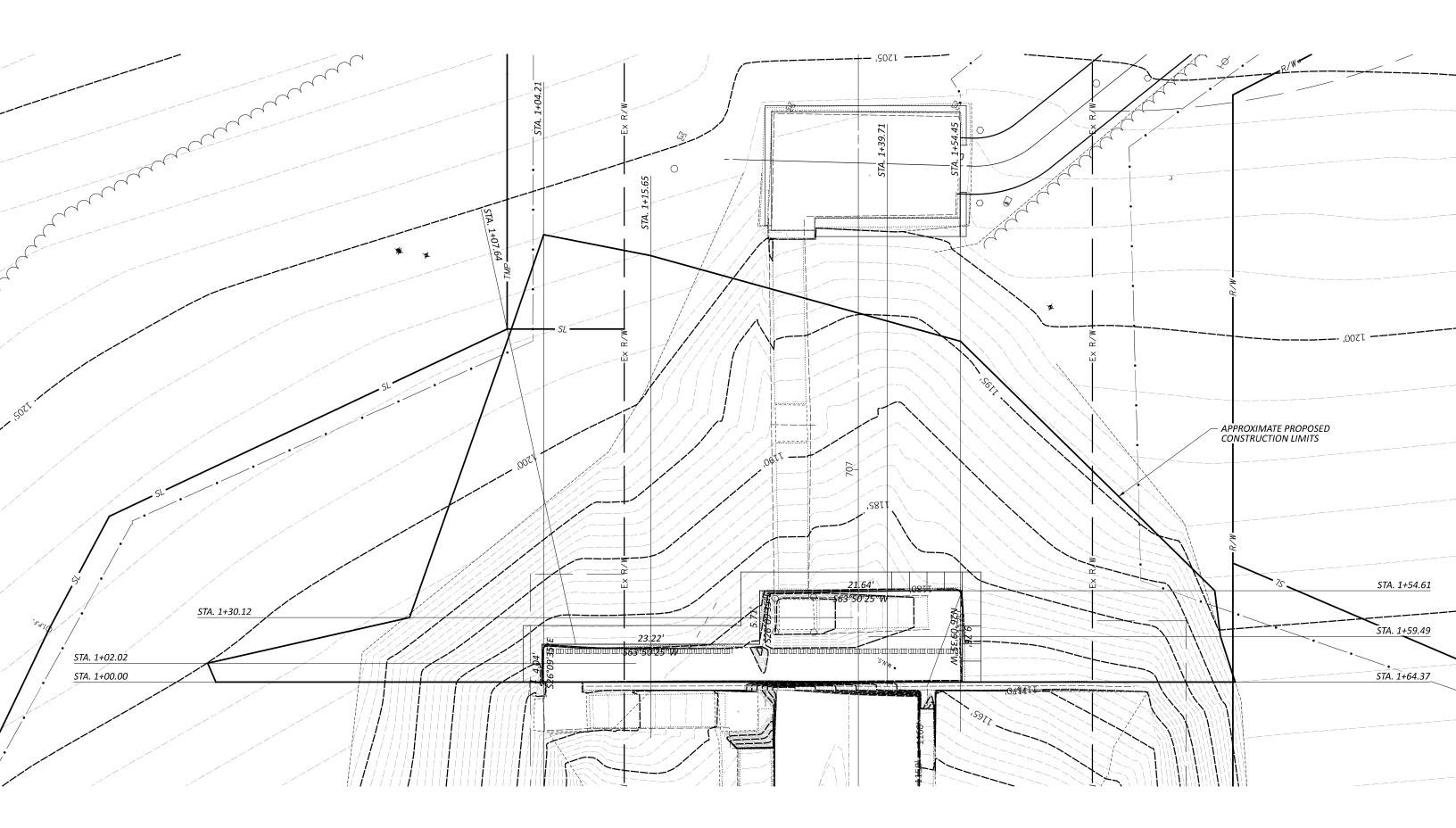

	AREA		VOLUME		1	
	СИТ	FILL	CUT	FILL	-	
	S.F.	S.F.	С.Ү.	C.Y.	-	
			177	563	-	
	363.7	439.0			1210	
					1210	
					1205	
					1200	
			– 75			
					1195	
					1195	
E× R/W						(S (S
					1190	
						N N BI
					1185	
						BEL - NATIONAL ROAD BIKEWAY STA. 713+25 - SOLDIER PILE WALL (SOUTH)
					4400	ER L
					1180	A D
					1175	AT - 5
						- N
			- 75 -		1170	
M						B [
Ex R/W-						. <u> </u>
					1165	l S l
					1160	
					1155	
					1155	
					1150	
					1145	
-Ex R/W			- SL			
E I					1140	SFN
					1140	0701572 DESIGN AGENCY
					1135	
						ms
					1130	ms consultants, inc.
					1	DESIGNER CHECKER
						SJR WER
					1125	JDH 2-27-23
						PROJECT ID 108774
					1120	SUBSET TOTAL 33 36
50				TE	75 28	SHEET TOTAL
			1 L/		20	63 83



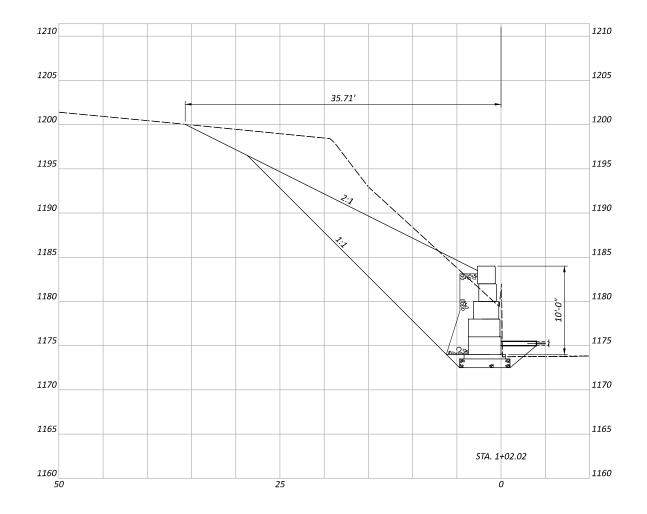
	AREA		VOLUME]	
	сит	FILL	сит	FILL		
	S.F.	<i>S.F.</i>	С.Ү.	С.Ү.]	
			0	0		
	0	0				
					1200	
					1195	≻
					1190	IKEWA
					1185	1400
Ex R/W-					1180	NAL R(A. 714
					1175	BEL - NATIONAL ROAD BIKEWAY STA. 714+00
					1170	BEL -
					1165	
M /					1160	
EX-R/W					1155	
					1150	
					1145	
					1140	SFN 0701572 DESIGN AGENCY
					1135	
					1130	ms consultants. inc.
					1125	DESIGNER SJR WER REVIEWER JDH 2-27-23
50				;	1120 75	PROJECT ID 108774 SUBSET TOTAL 36 36
			PLA			SHEET TOTAL 66 83

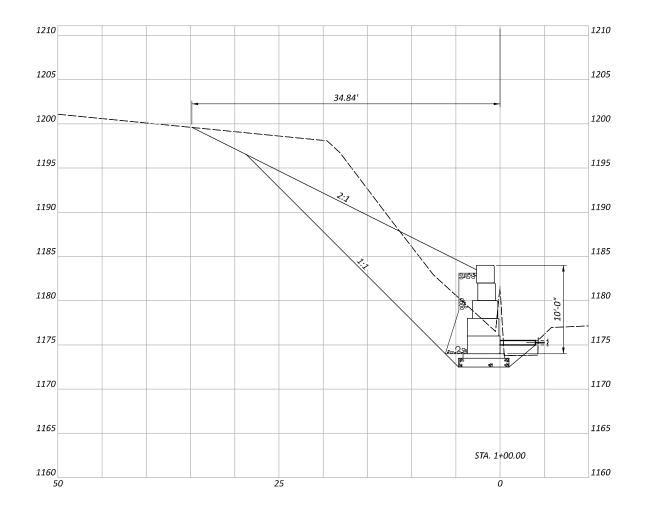


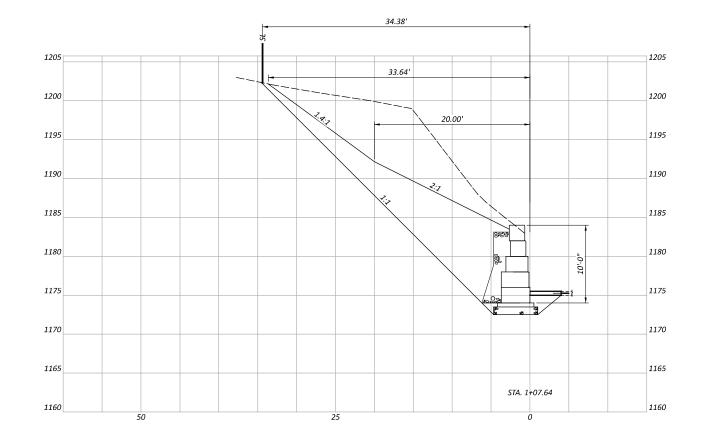
BEL-NATIONAL RD. BIKEWAY VODEL: Sheet PAPERSIZE: 34/22 (in.) DATE: 7/18/2023 TIME: 11:33:13 AM USER: JPenman

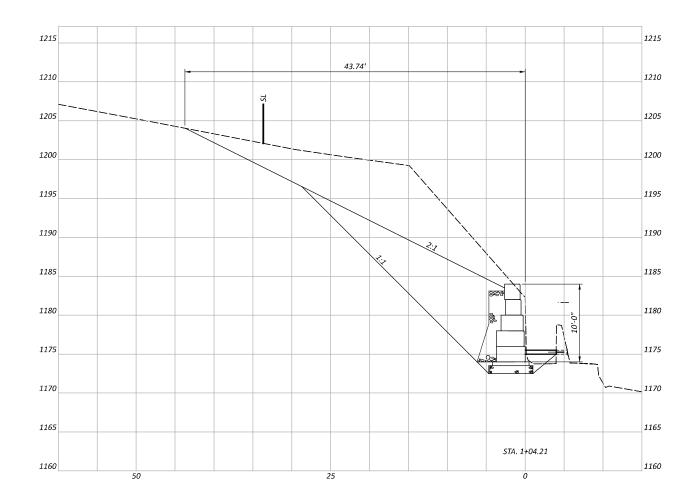


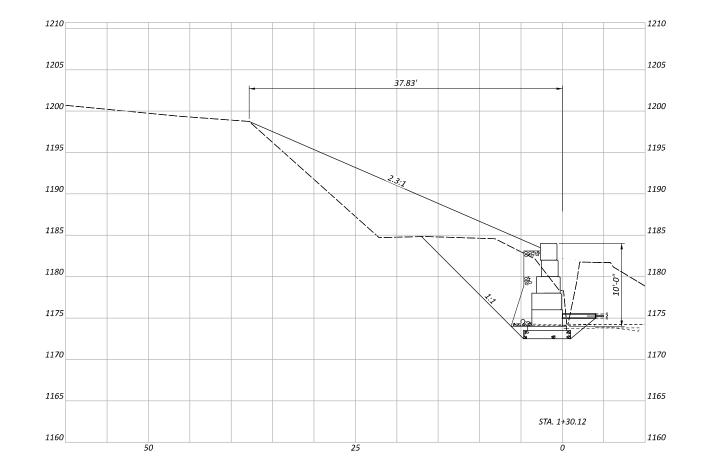
MODEL: Sheet PAPERSIZE: 34x22 (m.) DATE: 7/18/2023 TIME: 11:33:14 AM USER: JPenman \\msconsultants.com\files\Production\01660(08388-00\108774,400-Engineering\Structure\SFR_0701572_S

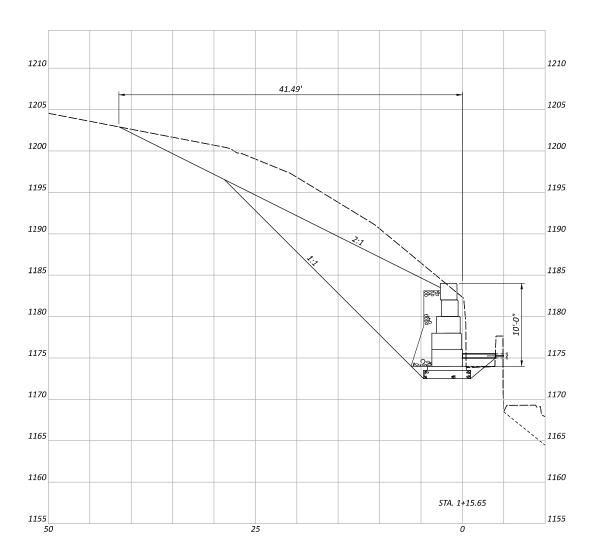

BEL-NATIONAL RD. BIKEWAY MODEL: Sheet PAPERSIZE: 343.2 (In.) DATE: 7/18/2023 TIME: 11:33-14 AM USER: JPC

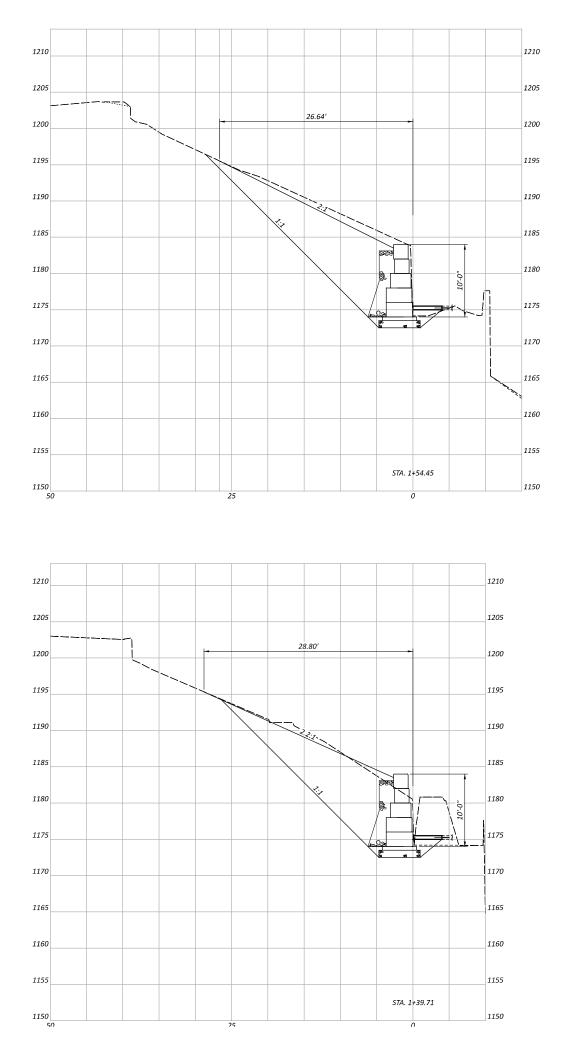


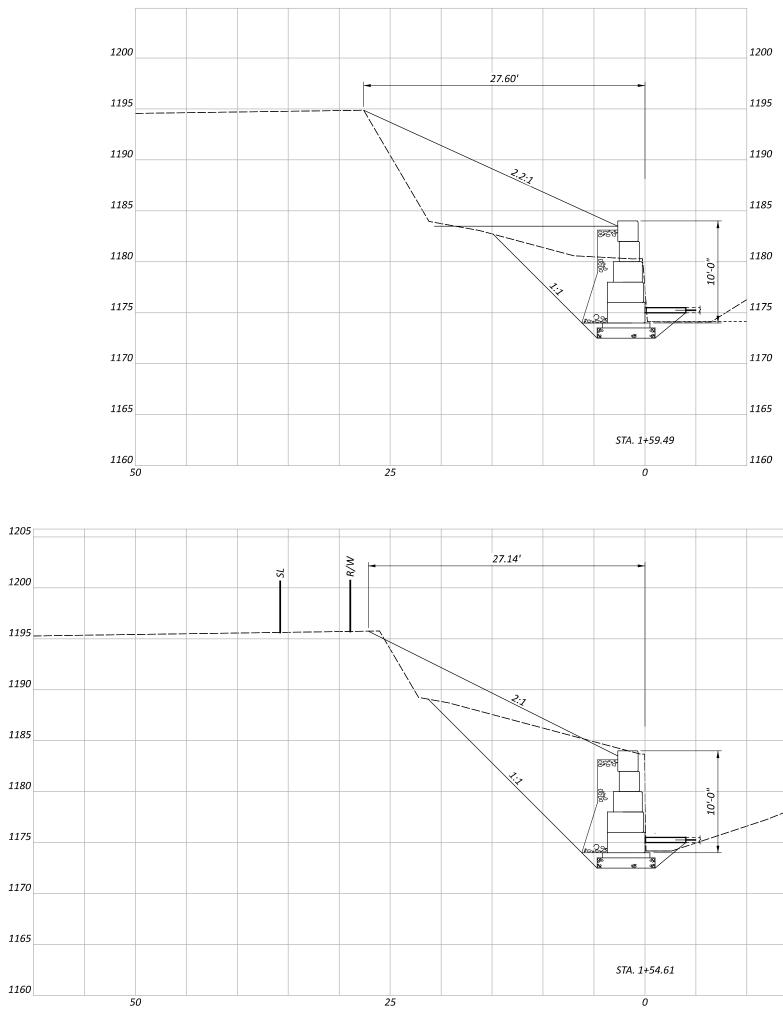

BEL-NATIONAL RD. BIKEWAY Nodel: Sheet Papersize: 34/22 (in.) DATE: 7/18/2023 TIME: 11:33:15 AM USER: JPenman

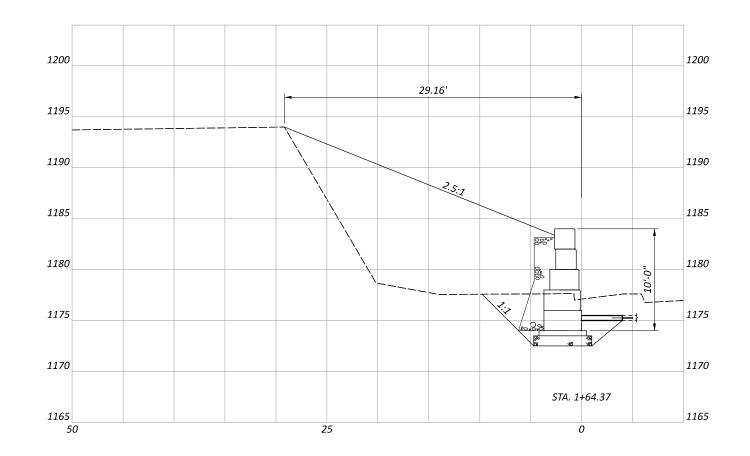


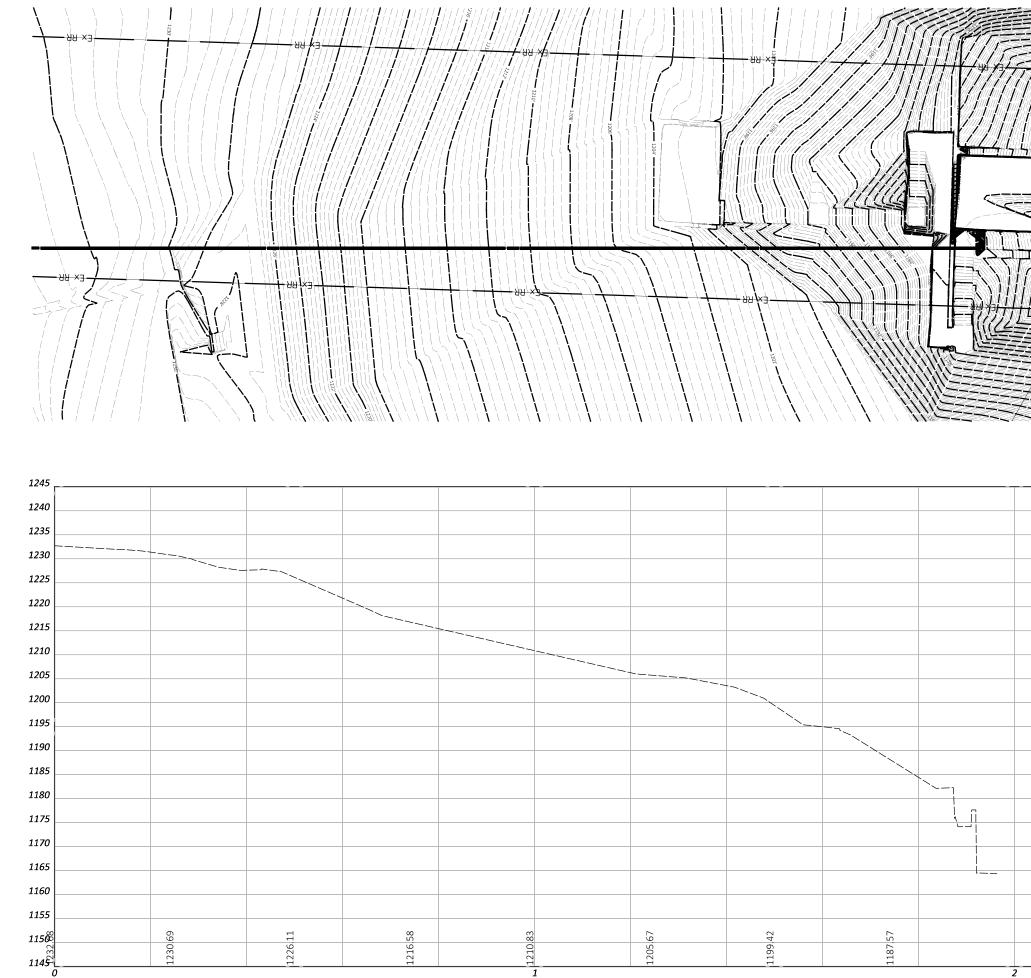

PLATE 35











- PLATE 40

CTY-RTE-SECTION MODEL: CLP_KMC - Plan 1 KMC-1 [Sheet] PAPERSIZE: 34x22 (in.) DATE: 10/10/2022 TIME: 3:59:35 PM USER: KCOWIIE N:/011600/03388-00/1087744400-Engineering/Roadway/Basempas/working1108774_Connector Trail_Conc Steps FOR BRIANS PROFILE.dg

1245 1240 1235 1230 1235 1230 1225 1220 1225 1220 1210 1220 1210 1220 1210 1220 1210 1200 1195 1190 1185 1180 1180 1185 1180 1185 1180 1185 1180 1185 1180 <		HORIZONTAL SCALE IN FEET 0 10 5 20
	1240 1235 1230 1225 1220 1215 1210 1205 1200 1195 1190 1185 1180 1175 1170 1165 1160 1155 1150	DESIGN AGENCY THE CONSULTANTS INC. DESIGNER KMC REVIEWER SSR 10-10-2022 PROJECT ID 108774 SHEET TOTAL

Appendix V – OGE Geotechnical Checklists

I. Geotechnical Design Checklists

Project: BEL-National Rd Tunnel

PID: 108774

PDP Path: Review Stage:

3

Checklist	Included in This
	Submission
II. Reconnaissance and Planning	\checkmark
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	
IV. A. Foundations of Structures	\checkmark
IV. B. Retaining Wall	\checkmark
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Soil Profile	
VI. D. Geotechnical Reports	\checkmark

II. Reconnaissance and Planning Checklist

C-R-S:	BEL-National Rd Tunnel	PID: 1	L08774	Reviewer:	BKS	Date:	7/17/2023
				() () () ()	I		
	naissance			(Y/N/X)	Notes:		
1	Based on Section 302.1 in the necessary plans been develop areas prior to the commencer subsurface exploration reconr	ed in the ment of th	following e	Y			
	Roadway plans				1		
	Structures plans			\checkmark			
	Geohazards plans						
2	Have the resources listed in Set the SGE been reviewed as part reconnaissance?			Y			
3	Have all the features listed in S the SGE been observed and ev field reconnaissance?			Y			
4	If notable features were discorreconnaissance, were the GPS these features recorded?			х			
Plannii	ng - General			(Y/N/X)	Notes:		
5	In planning the geotechnical e program for the project, have geologic conditions, the propo- historic subsurface exploration considered?	the speci osed work	fic , and	Y			
6	Has the ODOT Transportation Mapping System (TIMS) been available historic boring inform inventoried geohazards?	accessed	to find all	х	No historic info	rmation was a	available.
7	Have the borings been located maximum subsurface informa minimum number of borings, geotechnical explorations to t possible?	ition while utilizing h	e using a istoric	Y			
8	Have the topography, geologic materials, surface manifestatic conditions, and any other spec considerations been utilized in spacing and depth of borings?	on of soil cial desigr n determin	ı	Y			
9	Have the borings been located adequate overhead clearance equipment, clearance of unde minimize damage to private p minimize disruption of traffic, compromising the quality of th	d so as to for the erground u property, a without	itilities, nd	Y			

II. Reconnaissance and Planning Checklist

Dlan:	ng - General	(\sqrt{N}/N)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	(Y/N/X) Y	Notes.
	The schedule of borings should present the follow information for each boring:	ving	
а	. exploration identification number	Y	
b	. location by station and offset	Y	
С	 estimated amount of rock and soil, including the total for each for the entire program. 	Y	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, probes, test pits, etc.) been identified?	Y	
12	Has each exploration been assigned a unique identification number, in the following format X-ZZZ-W-YY, as per Section 303.2 of the SGE?	Y	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned identification numbers according to Section 303.2 of the SGE?	х	

II. Reconnaissance and Planning Checklist

Planni	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,	(1/11///)	
14	have the location, depth, and sampling		
	requirements for the following boring types	Y	
	been determined for the project?		
	Check all boring types utilized for this project:		-
	Existing Subgrades (Type A)		-
	Roadway Borings (Type B)		4
	Embankment Foundations (Type B1)		4
	Cut Sections (Type B2)		4
	Sidehill Cut Sections (Type B2)		4
			4
	Sidehill Cut-Fill Sections (Type B4) Sidehill Fill Sections on Unstable Slopes (Type		4
	B5)		
	Geohazard Borings (Type C)		4
	Lakes, Ponds, and Low-Lying Areas (Type C1)		4
	Lakes, Polius, and Low-Lying Areas (Type CI)		
	Peat Deposits, Compressible Soils, and Low		
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and Reclaimed		
	Surface Mines (Type C3)		
	Underground Mines (C4)		
	Landslides (Type C5)		
	Rockfall (Type C6)		
	Karst (Type C7)		
	Proposed Underground Utilities (Type D)		
	Structure Borings (Type E)	\checkmark	
	Bridges (Type E1)		
	Culverts (Type E2 a,b,c)		
	Retaining Walls (Type E3 a,b,c)	\checkmark	
	Noise Barrier (Type E4)		
	CCTV & High Mast Lighting Towers		
	(Type E5)		
	Buildings and Salt Domes (Type E6)]

C-R-S:	BEL-National Rd Tunnel PID	: 108774	Reviewer	BKS	Date:	7/17/2023
-	f you do not have such a foundation	n or structure o		-	ve to fill out	this checklist.
Soil and	d Bedrock Strength Data		(Y/N/X)	Notes:		
1	Has the shear strength of the found	dation soils	Y			
	been determined?		1			
	Check method used:					
	laboratory shear tests					
	estimation from SPT or field tes	sts	\checkmark			
2	Have sufficient soil shear strength,					
	consolidation, and other parameter	ers been				
	determined so that the required al	llowable loads	Y			
	for the foundation/structure can b	e designed?				
3	Has the shear strength of the found	dation	Y			
	bedrock been determined?			4		
	Check method used:					
	laboratory shear tests		\checkmark			
	other (describe other methods)					
Spread	Footings		(Y/N/X)	Notes:		
4	Are there spread footings on the p If no, go to Question 11	roject?	Y			
5	Have the recommended bottom of	f footing				
	elevation and reason for this recon	nmendation	Y			
	been provided?					
a.	Has the recommended bottom o	f footing				
	elevation taken scour from stream	ms or other	Х			
	water flow into account?					
6	Were representative sections analy	yzed for the				
	entire length of the structure for th		Y			
a.	0		Y			
b.	0		Х	Performed by ot		
C.		ırning)?	Х	Performed by ot		
d.			Х	Bearing on bedr		
e.			Х	Bearing on bedr	ock	
7	Has the need for a shear key been	evaluated?	Х			
a.	If needed, have the details been	included in	v			
	the plans?		Х			
8	If special conditions exist (e.g. geor	metry, sloping				
	rock, varying soil conditions), was t		v			
	footing "stepped" to accommodate		Х			
9	Have the Service I and Maximum S	-				
	States for bearing pressure on soil provided?	or rock been	Y			

Spread	Footings	(Y/N/X)	Notes:
10	If weak soil is present at the proposed foundation level, has the removal / treatment of this soil been developed and included in the plans?	Х	
a.	Have the procedure and quantities related to this removal / treatment been included in the plans?	Х	
Pile Stı	ructures	(Y/N/X)	Notes:
11	Are there piles on the project? If no, go to Question 17	Ν	
12	Has an appropriate pile type been selected?		
	Check the type selected:		
	H-pile (driven)		
	H-pile (prebored)		
	Cast In-place Reinforced Concrete Pipe		
	Micropile		
	Continuous Flight Auger (CFA)		
	other (describe other types)		
13	Have the estimated pile length or tip elevation		
	and section (diameter) based on either the		
	Ultimate Bearing Value (UBV) or the depth to		
	top of bedrock been specified? Indicate method		
	used.		
14	If scour is predicted, has pile resistance in the		
45	scour zone been neglected?		
15	Has a wave equation drivability analysis been		
	performed as per BDM 305.4.1.2 to determine		
	whether the pile can be driven to either the		
	UBV, the pile tip elevation, or refusal on bedrock without overstressing the pile?		
16	If required for design, have sufficient soil		
	parameters been provided and calculations		
	performed to evaluate the:		
a.			
la la	settlement of the piles? Nominal unit side resistance for each		
b.	contributing soil layer and maximum deflection of the piles?		
C.	Downdrag load on piles driven through new embankment or compressible soil layers, as per BDM 305.4.2.2?		
d.	Potential for and impact of lateral squeeze from soft foundation soils?		

Pile St	ructures	(Y/N/X)	Notes:
17	If piles are to be driven to strong bedrock (Q _u >7.5 ksi) or through very dense granular soils or overburden containing boulders, have "pile points" been recommended in order to protect the tips of the steel piling, as per BDM 305.4.5.6?		
18	If subsurface obstacles exist, has preboring been recommended to avoid these obstructions?		
19	If piles will be driven through 15 feet or more of new embankment, has preboring been specified as per BDM 305.4.5.7?		

Drilled Shafts		(Y/N/X)	Notes:
20 Are there drilled shaft	s on the project?		Drilled shafts are for retaining wall supports
If no, go to the ne	xt checklist.	Y	
	diameter and embedment		
length been specified	?	Y	
	ed drilled shaft diameter		
and embedment beer	developed based on the		
nominal unit side resis	stance and nominal unit tip	Y	
resistance for vertical	loading situations?		
	-		
23 For shafts undergoing	lateral loading, have the	V	
following been detern	nined:	Y	
a. total factored latera	l shear?	Y	Drilled shafts are for retaining wall supports
b. total factored bendi	ng moment?	Y	Drilled shafts are for retaining wall supports
c. maximum deflectior	1?	Y	Drilled shafts are for retaining wall supports
d. reinforcement desig	n?	Y	Drilled shafts are for retaining wall supports
24 If a bedrock socket is	required, has a minimum		
rock socket length equ	ual to 1.5 times the rock	Y	
socket diameter been	used, as per BDM 305.5.2?	Y	
25 Generally, bedrock so	ckets are 6" smaller in		
diameter than the soi	l embedment section of	V	
the drilled shaft. Has t	his factor been accounted	Y	
for in the drilled shaft	design?		
26 If scour is predicted, h	as shaft resistance in the	\checkmark	
scour zone been negle	ected?	V	
27 Has the site been asse	essed for groundwater	х	
influence?		~	
a. If yes, and if artesiar	n flow is a potential		
concern, does the d	esign address control of	Х	
groundwater flow d	uring construction?		
28 Have all the proper ite	ems been included in the	х	Plans prepared by otheres
plans for integrity test	ting?	^	
29 If special construction	features (e.g., slurry,		Plans prepared by otheres
casing, load tests) are	required, have all the	Х	
proper items been inc	luded in the plans?		
30 If necessary, have we	t construction methods	х	
been specified?		^	
General		(Y/N/X)	Notes:
31 Has the need for load	testing of the foundations	х	
been evaluated?		Λ	
	ails and plan notes for load	х	
testing been include	d in the plans?	~	<u> </u>

C-R-S:	BEL-National Rd Tunnel PID: 108774	Reviewer	BKS	Date:	7/17/2023
		PDP Path:			
	If you do not have a retaining wall on the	project, you	do not have to fill	out this che	cklist.
Soil Dat	a and Preliminary Calculations	(Y/N/X)	Notes:		
1	Has a justification study been performed to determine the necessity of a wall as opposed to ROW purchase or other project alternatives?	Y	Retaining wall ty	pe study was	s prepared by ms.
	Have the necessary soil strength parameters and unit weights been determined?	Y			
	Check method used:	-	4		
	laboratory shear tests		4		
	estimation from SPT or field tests	\checkmark			
	Has the groundwater elevation been determined?	Y			
	Have the proper loading conditions been determined?	Y			
a.	If yes, check which loading conditions a	oply:			
	Backfill (Active Earth Pressure Loading): Backfill (Apparent Earth Pressure (AEP)	\checkmark	-		
	Loading for Ground Anchors):				
ŀ	Backfill (At-Rest Earth Pressure Loading):		-		
	Backfill (Flat, No Slope):		-		
ŀ	Backfill (Infinite Slope):	√	-		
ŀ	Backfill (Broken Back Slope):	\checkmark			
ł	Earth Surcharge:	v	1		
ŀ	Live Load Surcharge:		1		
-	Other (describe):		1		
	Have the correct Load Factors, Load Combinations, and Limit States been considered, per AASHTO LRFD 8th Ed. Articles 3.4.1, 10.5, and 11.5?	x	Walls being desig axial and lateral recommendatior footings.	resistance pa	•
6	Are earth pressure loads inclined at the soil- structure interaction friction angle, δ and has δ been determined per BDM 307.1.1?	х	Walls being desig	gned by ms.	
7	Have the correct Resistance Factors been considered, per AASHTO LRFD 8th Ed. Articles 10.5 and 11.5?	x	Walls being desig	gned by ms.	
	If applicable, has the influence of groundwater been taken into account with regards to soil unit weights and active pressures?	x	Walls being desig	gned by ms.	
	Has the Coulomb method been utilized to determine the lateral earth pressure?	х	Walls being desig	gned by ms.	

Design	(Y/N/X)	Notes:
10 For preliminary wall design, have the design		Walls being designed by ms.
criteria and wall type selection process been	Х	
followed as instructed in BDM 201.2.5?		
11 Was an economic analysis performed to		Retaining wall type study was prepared by ms.
evaluate the cost benefits of the chosen wall	Y	
type compared to others?		
12 Were representative sections analyzed for the		Walls being designed by ms.
entire length of the retaining wall for the	Х	
following:		
a. bearing resistance?	Х	Walls being designed by ms.
b. sliding resistance?	Х	Walls being designed by ms.
c. limiting eccentricity and overturning		Walls being designed by ms.
resistance? Analyze moment equilibrium about	x X	
toe for non-gravity cantilever walls.		
d. total and differential settlement?	Х	Walls bearing on intact rock.
e. overall (global) stability?	Х	Walls bearing on intact rock.
13 If poor foundation soils are present, has a		Walls bearing on intact rock.
solution been determined with respect to the	Х	
following:		
a. excessive settlement?	Х	Walls bearing on intact rock.
b. inadequate bearing resistance?	Х	Walls bearing on intact rock.
c. inadequate sliding resistance?	Х	Walls bearing on intact rock.
d. overall (global) instability?	Х	Walls bearing on intact rock.
14 For non-proprietary walls, each wall type has		
design recommendations which need to be		
determined. For the wall type being evaluated,		
have the following design recommendations	Х	
been determined by accepted design methods		
or, where applicable, FHWA design guidelines:		
a. Rigid Gravity and Semigravity footing width		
and elevation, maximum factored Service and		
Strength Limit State bearing pressures,	Х	
factored bearing resistance (BDM 307.1.5 &		
307.2)		
 Drilled Shafts - diameter, spacing, embedment, 		
arrangement and percent reinforcement,		
maximum moment and lateral shear,	Х	
maximum deflection (see BDM 307.6)		
c. Soldier Pile -pile size and type, drilled hole		S&ME provided design parameter
diameter, embedment, spacing, lagging design,	,	recommendations and ms performed retaining
facing, maximum moment and lateral shear,	Y	wall analysis.
section modulus, maximum deflection		

Design	(Y/N/X)	Notes:
d. Sheet Pile - pile size, embedment, maximum moment and lateral shear, section modulus, maximum deflection (BDM 307.7.1)	x	
 e. Cellular - type, maximum factored Service and Strength Limit State bearing pressures, factored bearing resistance, fill material (BDM 307.7.2) 	х	
 f. Soil Anchor - load per anchor, number of rows, wale design, anchor inclination and minimum length, type of anchor, pile size, type, spacing, and embedment, maximum moment and lateral shear, section modulus, lagging design, facing (BDM 307.8) 	х	
g. Soil Nail - nail size, spacing, inclination, and length, loading per nail, facing (BDM 307.9)	х	
15 Has the need for load testing of the retaining wall elements been evaluated?	х	
a. If needed, have details and plan notes for load testing been included in the plans?	х	
16 Proprietary wall designs require a special process for detail design, as outlined in BDM 307.3 and 307.4. Has this procedure been followed for this project?	х	Modular block walls planned at multiple locations. ms preparing plans.
17 Temporary walls - have the same design requirements as permanent walls of the same type been followed, except the design service life is no more than three years (BDM 307.10)?	х	
18 The presence and quality of water behind the wall structure and in the backfill can be a major source of overloading and failure.		Surface water only.
a. Has the quality / chemistry of the groundwater been accounted for in the drainage system?	х	
b. Has an adequate drainage system been included in the detail wall design?	х	Plans and design by ms.
c. If there is a water source behind the wall, has additional drainage been added to control the effect of this water source on the wall?	х	Plans and design by ms.
19 Have the effects of the wall design and construction procedure been determined and accounted for on the construction schedule?	х	Plans and design by ms.

Design	1	(Y/N/X)	Notes:
20	Has the effect of the wall design and construction been evaluated with regard to structures (e.g., bridges, culverts, buildings, utilities), which may be subject to unusual stresses or require special design or construction considerations?	х	
Plans and Contract Documents		(Y/N/X)	Notes:
21	Have all the necessary notes, specifications, special provisions, and details for the construction of the wall system been included in the plans?	х	Plans and design by ms.
22	Have the need, location, type, plan notes, and reading schedule for any instrumentation been determined and included in the plans?	х	
	Check the types of instrumentation specified:]
	settlement cells		
	settlement platforms		
	inclinometers		
	monitoring wells / piezometers		
	load cells		
	strain gages		1
	other (describe other types)		

VI.B. Geotechnical Reports

C-R-S:	BEL-National Rd Tunnel PID: 108774	Reviewer	: BKS	Date:	7/17/2023
C a 10 a 11 a		()//NI/)/	Netec		
Genera		(Y/N/X)	Notes:		
	Has an electronic copy of all geotechnical submissions been provided to the District	Y			
	Geotechnical Engineer (DGE)?	-			
2	Has the first complete version of a geotechnical				
	report being submitted been labeled as 'Draft'?	Y			
3	Subsequent to ODOT's review and approval, has				
	the complete version of the revised geotechnical	Y			
	report being submitted been labeled 'Final'?				
4	Has the boring data been submitted in a native				
	format that is DIGGS (Data Interchange for				
	Geotechnical and Geoenvironmental)	Y			
	compatable? gINT files may be used for this.				
5	Does the report cover format follow ODOT's				
	Brand and Identity Guidelines Report Standards	Y			
	found at http://www.dot.state.	-			
	oh.us/brand/Pages/default.aspx ?				
6	Have all geotechnical reports being submitted				
	been titled correctly as prescribed in Section	Y			
Poport	705.1 of the SGE?	(V/NI/V)	Notes:		
Report 7	Do all geotechnical reports being submitted	(Y/N/X)	Notes.		
-	contain the following:	Y			
a.					
u.	705.2 of the SGE?	Y			
b.	an Introduction as described in Section 705.3				
	of the SGE?	Y			
C.	a section titled "Geology and Observations of				
	the Project," as described in Section 705.4 of	Y			
	the SGE?				
d.	• •	Y			
	Section 705.5 of the SGE?	•			
e.	5,	Y			
	Section 705.6 of the SGE?				
f.	a section titled "Analyses and				
	Recommendations," as described in Section	Y			
A	705.7 of the SGE?	N/ ALLAN	Neter		
Append		(Y/N/X)	Notes:		
8	Do all geotechnical reports being submitted	V			
	contain all applicable Appendices as described in	Y			
0	Section 705.8 of the SGE?				
	Do the Appendices present a site Boring Plan	V			
	showing all boring locations as described in	Y			
-	Section 705.8.1 of the SGE?				

VI.B. Geotechnical Reports

Appendices		(Y/N/X)	Notes:		
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 705.8.2 of the SGE?	Y			
11	Do the Appendices include reports of undisturbed test data as described in Section 705.8.3 of the SGE?	Y	Rock core testing. Only unit weight determinations were performed on recovered Shelby tube samples.		
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 705.8.4 of the SGE?	Y			