AN EMPLOYEE OWNED COMPANY

Established 1927

Consulting Engineers • Testing • Inspection Services • Analytical Laboratories

July 7, 2023

Prime AE Group, Inc. 8415 Pulsar Place, Suite 300 Columbus, Ohio 43240

Attention:	Ms. Angela Trautman, P.E.
	Associate Director – Bridge Design

Reference: Structure Foundation Exploration- Final Report BRO-68-44.12 Bridge Replacement PID No. 110556 Brown County, Ohio CTL Project No. 22050029COL

Dear Ms. Trautman,

CTL Engineering, Inc. has completed the Structure Foundation Exploration report for the above referenced project. A pdf copy of the Final Report is being submitted.

Thank you for the opportunity to work with you on this project. If you have any questions or need further information, please feel free to contact our office.

Respectfully Submitted

CTL ENGINEERING, INC.

Sarting M.V.

Sastry Malladi, P.E. Project Engineer

STRUCTURE FOUNDATION EXPLORATION FINAL REPORT

BRO-68-44.12 PID NO. 110556 1328 DOVER ROAD BROWN COUNTY, OHIO CTL PROJECT NO. 22050029COL

PREPARED FOR:

PRIME AE GROUP, INC. 8415 PULSAR PLACE, SUITE 300 COLUMBUS, OHIO 43240

PREPARED BY:

CTL ENGINEERING, INC. 2860 FISHER ROAD COLUMBUS, OHIO 43204 Phone 614-276-8123 Fax 614-276-6377

July 7, 2023

TABLE OF CONTENTS

PAGE

I.	EXE	CUTIVE SUMMARY	1			
II.	INTI	RODUCTION	1			
III.	GEO	DLOGY AND OBSERVATIONS OF THE PROJECT	2			
IV.	EXP	LORATION	3			
V.	FINI	DINGS	4			
VI.	ANA	LYSES AND RECOMMENDATIONS	6			
	А.	Stream Bed Material for Scour Analysis	6			
	B.	Subgrade Considerations	6			
	C.	Global Stability Analyses	7			
	D.	Foundation Support	9			
	E.	General Construction and Earthwork	10			
VI.	СНА	ANGED CONDITIONS	10			
VII.	TESTING AND OBSERVATION					
VIII.	CLO	SING	11			

APPENDIX A	BORING LOCATION MAP
APPENDIX B	TEST BORING RECORDS
APPENDIX C	LABORATORY TEST RESULTS
APPENDIX D	GB1 ANALYSIS
APPENDIX E	GLOBAL STABILITY ANALYSES
APPENDIX F	DRILLED SHAFT DESIGN CALCULATIONS
APPENDIX G	ROCK CORE PHOTOS

I. <u>EXECUTIVE SUMMARY</u>

The project involves constructing a replacement structure for BRO-68-44.12 over East Fork Little Miami River in Brown County, Ohio, and the realignment of existing curve for the roadway. The existing bridge is a 3-span structure supported on spread footings. It is understood that the proposed structure will be a single span, concrete I- Beam bridge with a composite reinforced deck on new semi-integral reinforced concrete abutments with drilled shafts.

Within the project limits, the roadway profile will be slightly raised (1.0 to 2.0 feet) and the existing roadway will be widened. The proposed roadway width will be 40.0 feet (12.0-foot lanes + 8.0-foot shoulders). Side hill cuts and embankment fills are planned within the project limits to accommodate the proposed shoulder/ditch. Fill /cut slopes are planned at a maximum slope rate of 2 horizontal to 1 vertical.

A total of five (5) test borings were performed for this project. The borings were extended to depths ranging from 7.0 to 46.1 feet below existing grade. The borings generally exhibited layers of gravel and/or stone fragments with sand and silt (A-2-4), sandy silt (A-4a), silt and clay (A-6a), silty clay (A-6b) or clay (A-7-6). Bedrock was encountered in 4 out of 5 borings at depths ranging from 2.5 to 25.0 feet below grade. The bedrock was identified as shale, siltstone, claystone or interbedded shale and limestone.

The proposed abutments for the replacement structure may be supported onto drilled shafts socketed into the underlying bedrock. Please refer to the *Analyses and Recommendations* section of this report for additional information.

The proposed cut and fill slopes are considered acceptable.

The new pavement near the proposed bridge approach areas may designed using a CBR value of 7.0. Please refer to the *Analyses and Recommendations* section for additional information.

II. INTRODUCTION

The project involves constructing a replacement structure for BRO-68-44.12 over East Fork Little Miami River in Brown County, Ohio, and the realignment of existing curve for the roadway. The existing bridge is a 3-span structure supported on spread footings. It is understood that the proposed structure will be a single span concrete I- Beam bridge with composite reinforced deck on new semi-integral reinforced concrete abutments with drilled shafts.

Within the project limits, the roadway profile will be slightly raised (1.0 to 2.0 feet) and the existing roadway will be widened. The proposed roadway width will be 40.0 feet (12.0-foot lanes + 8.0-foot shoulders). Side hill cuts and embankment fills are planned within the project limits to accommodate the proposed shoulder/ditch. Fill /cut slopes are planned at a maximum slope rate of 2 horizontal to 1 vertical.

According to the plan/profile sheets provided to us, the project begins at Sta. 142+25 and ends at Sta. 148+75. This is a Final Structure Foundation Exploration Report.

The Geotechnical profile-Roadway & Structure sheets are appended in Appendix A of this report.

III. <u>GEOLOGY AND OBSERVATIONS OF THE PROJECT</u>

According to the Ohio Department of Natural Resources (ODNR), Physiographic Regions of Ohio Map, the site is located within the Illinoian Till physiographic region of Ohio. According to the Bedrock Geologic Map of Ohio (2006), the underlying bedrock is mapped as Ordovician age interbedded shale and limestone of Waynesville and Arnheim Formations.

According to the ODNR website, no karst features have been mapped at the site. According to mapping from the ODNR Website, no underground mines have been mapped in the project area.

According to web-based mapping from *United States Department of Agriculture, Natural Resources Conservation Service,* the project area contains two primary soil types as shown below.

Soil Series	Series Symbol	Drainage Characteristics	Parent Material
Genesee silt loam, 0 to 2 percent slopes	Ge	Well drained, negligible runoff class	Loamy Alluvium
Bonnell silt loam, 15 to 25 percent slopes	BoD2	Well drained, very high runoff class	Loess over till

Table 1. Mapped Soil Survey Soils Types

Historic geotechnical records were searched for on the ODOT TIMS website. Historic geotechnical records were found from borings within the current project site. The information from these borings will be included on the Soil Profile – Structure Foundation Exploration sheets during future phases of this project.

An initial site visit was performed by CTL personnel on April 5, 2022. The existing structure is a three-span bridge. US 68, within the project limits is a bi-directional roadway having an asphalt surface. The area surrounding the bridge is primarily farmland with some residential properties. East Fork Little Miami River flows east to west flowing river below the structure. The stream bed is approximately 22 to 25 feet below the top of the existing bridge deck. No exposed bedrock was not observed from beneath the existing bridge or along the banks of East Fork Little Miami River.

No obvious signs of slope instability were noted along the hillside at the northern end of the site.

IV. <u>EXPLORATION</u>

A total of five (5) test borings, identified as B-001-0-22, B-002-0-22, B-003-0-22, B-004-0-22 and B-004-1-22 were performed for this project. The borings were drilled between June 14 and 22, 2022 and were extended to depths ranging from 7.0 to 46.1 feet below existing grade.

Information about the performed borings is provided in the Table 2 below:

Boring ID	Boring Type	Boring	Top of	Rock Coring
		Depth	Augerable	(feet)
		(feet)	Rock	
			(feet)	
B-001-1-22	A (roadway)	7.0		
B-002-0-22	A/E1 (roadway/structure)	46.1	25.0	20.0
B-003-0-20	A/E1 (roadway/structure)	45.1	22.5	20.0
B-004-0-22*	A/B2	5.8	2.5	
	(roadway/sidehill cut)			
B-004-1-22*	B2 (sidehill cut)	18.2	13.5	

 Table 2. Boring Information

*Borings terminated at auger refusal depth on the underlying bedrock.

The test borings were performed with a track mounted drill rig utilizing hollow stem augers (HSA). Standard penetration tests were conducted using 140-pound hammers falling 30 inches to drive a 2-inch O.D. split barrel sampler for 18 inches. Rock coring was performed in the borings, using an NQ-size, double tube core barrel with a diamond bit. The energy transfer ratio associated with the automatic SPT hammer was 89.3 percent. The hammer was calibrated on August 05, 2022.

Soil samples obtained from the drilling operation were preserved in glass jars, visually classified in the field and laboratory, and tested for natural moisture content.

Representative soil samples were subjected to additional laboratory testing including grain size distribution, Atterberg limits hand penetrometer testing and sulfate testing.

A representative Shelby Tube (ST) sample obtained from the boring B-004-1-22 was subjected to unconsolidated undrained (UU) triaxial test.

Rock from the coring operation was visually classified in the field and laboratory and the Rock Quality Designation (RQD) and percent core loss values were determined. Representative samples of the recovered rock were subjected to unconfined compressive strength testing.

Ground surface elevations and boring coordinates at the test boring locations were provided by personnel from Prime AE Group Inc.,

V. <u>FINDINGS</u>

Roadway & Sidehill Cut Borings

Borings B-001-0-22 (roadway boring) and B-004-0-22 (dual purpose, roadway/sidehill cut) were performed within the roadway, and exhibited 7 to 10 inches of asphalt over 2 to 5 inches of granular base near the surface. Boring B-004-1-22 (sidehill cut) was performed off the road, exhibited approximately 4 inches of topsoil near the surface.

Beneath the surface cover, boring B-001-0-22 encountered embankment fill material to its termination depth. The fill was described as silty clay (A-6b) and exhibited SPT N_{60} values ranging from 13 to 37 blows per foot (bpf), with natural moisture content values ranging from 8 to 16 percent.

Beneath the surface cover, borings B-004-0-22 and B-004-1-22 exhibited native cohesive soils described as silt and clay (A-6a), silty clay (A-6b) or clay (A-7-6) extending downwards to depths ranging from 2.5 to 13.5 feet below existing grade. The native soils exhibited SPT N_{60} values ranging from 15 to 48 bpf, with natural moisture content values ranging from 11 to 22 percent.

Below the soil overburden, borings B-004-0-22 and B-004-1-22 exhibited augerable bedrock. The augerable bedrock was augered and sampled using soil sampling techniques. The augerable bedrock was described as siltstone, claystone or shale. The augerable bedrock exhibited N_{60} values ranging from 95 bpf to 50 blows for 4 inches of penetration

Bridge Borings

Borings B-002-0-22 and B-003-0-22 encountered approximately 8 to 10 inches of asphalt over 2 to 4 inches of base course at the surface.

Below the surface cover, both borings exhibited embankment fill material to depths ranging from 5.5 to 8.0 feet below grade. The fill was classified as gravel and/or stone fragments with sand and silt (A-2-4), silt and clay (A-6a) or clay (A-7-6). The fill soils exhibited SPT N_{60} values ranging from 13 to 37 blows per foot (bpf), with natural moisture content values ranging from 6 to 19 percent.

Below the fill, borings B-002-0-22 and B-003-0-22 encountered cohesive native soils extending down to depths of 22.5 to 25.0 feet below grade. These soils were described as sandy silt (A-4a), silt and clay (A-6a), silty clay (A-6b) and clay (A-7-6). The native soils exhibited N_{60} values ranging from 7 to 48 bpf, with natural moisture content values ranging from 11 to 28 percent.

Below the soil overburden, borings B-002-0-22 and B-003-0-22 encountered augerable bedrock. The top of bedrock was encountered at depths ranging from 22.5 to 25.0 feet (elevations 904.3 to 908.9). The bedrock was identified as claystone or interbedded shale and limestone.

The upper few feet of bedrock was augerable. The augerable bedrock exhibited N_{60} values ranging from 39 bpf to 50 blows for less than 1 inch of penetration. The lower 20.0 feet of bedrock after refusal was encountered was cored and recovered using rock coring techniques. The recovered bedrock from the coring operations exhibited Rock Quality Designation (RQD) values ranging from 28 to 88 percent, and core recovery values ranging from 88 to 100 percent.

Groundwater and soil cave-in

During drilling, groundwater was encountered at depths of 20.0 feet in borings B-002-0-22 and B-003-0-22 (elevations 909.3 to 911.4). Groundwater at completion was not feasible to measure due to water use associated with the rock coring. Upon removing the augers, soil cave-in was measured at depths ranging from 3.7 to 21.3 feet below existing grade in the test borings.

VI. ANALYSES AND RECOMMENDATIONS

Based on the soil and rock data obtained from the field and laboratory testing, the following analyses and recommendations are provided for this project.

A. <u>Stream Bed Material for Scour Analysis</u>

The information provided in Table 3 below van be utilized while performing the scour computations.

Boring Number	Sample	Elevation (ft)	D50 (mm)	τ _c (psf)	D50, equiv (mm)	Erosion Category (EC)
	SS-5	921.3-919.8	0.0086	0.4039	19.3407	3.612
B-002-0-22	SS-7	916.3-914.8	0.0104	0.1499	7.1768	3.255
(Rear Abutment)	SS-8	914.8-913.3	0.0407	0.0870	4.1632	2.754
<i>rioutilenty</i>	SS-9	913.3-911.8	0.0245	0.0416	1.9915	3.168
D 000 0 00	SS-6	920.9-919.4	0.0083	0.4694	22.4755	3.670
B-003-0-22	SS-7	918.4-916.9	0.0096	0.1636	7.8312	3.168
(Forward Abutment)	SS-8	916.9-915.4	0.018	0.0604	2.8903	3.075
Abutinent)	SS-9	915.4-913.9	0.0608	0.1188	5.6886	2.975

Table 3: Scour Information

B. <u>Subgrade Considerations</u>

According to the plans, no significant fill will be placed near the approach embankments. Therefore, no major settlement is expected near the approach areas.

According to the plans, the project begins at project begins at Sta. 142+25 and ends at Sta. 148+75. Full depth pavement replacement is planned within the project limits in the bridge approach areas. Therefore, a GB1 analysis was performed to determine the limits of any subgrade stabilization needed prior to performing the full depth pavement replacement. A GB1 analysis was performed utilizing subsurface data from borings B-001-0-22 B-002-0-22, B-003-0-22 and B-004-0-22, which were drilled within the roadway of U.S. 68. A copy of the GB1 spreadsheet is provided in Appendix D.

To estimate cut/fill depths of the GB1 spreadsheet, the pavement thickness for the proposed roadway (pavement+ Item 304 granular material) was assumed to be on the order of 1.3 feet.

The natural moisture content values of the near surface (subgrade) samples ranged from 6 to 19 percent, averaging 13 percent. The estimated optimum moisture content (OMC) values ranged from 0 to 21 percent, averaging 13 percent.

According to GB1, the near surface soils in borings B-001-0-22, B-002-0-22 and B-003-0-22 are suitable to support the proposed pavement, and provide adequate cover for the underlying materials. Bedrock is not anticipated below the proposed pavement subgrade in these areas.

Bedrock was encountered and should be anticipated below the proposed pavement subgrade in B-004-0-22. According to the ODOT Geotechnical Design Manual Section 610.5, any bedrock encountered within 24 inches of the bottom of proposed pavement should be removed in accordance to 204.05 and replaced with Item 204 embankment.

According to the CMS 204.05, the aggregate base can be included with the bedrock removal depth. Since a 6 inch aggregate base is planned, the depth of bedrock removal can be 18 inches below the 6 inch aggregate base.

For estimating purposes, the approximate limits of bedrock removal are presented in Table 4.

-						
	Approximate Station	Depth* of Bedrock Removal (inches)				
	147+00 to End Project	18				

Table 4. Bedrock Removal

* Depth measured below the proposed 6-inch aggregate base.

The bedrock should also be removed at least 12 inches beyond the edge of the surface of pavement

Group Index values for the subgrade samples ranged from 0 to 16, averaging 8. This average Group Index value corresponds to an estimated California Bearing Ratio (CBR) value of 7. It is recommended that the pavement be designed using a CBR value of 7.

C. <u>Global Stability Analyses</u>

Side hill cuts and embankment fills are planned within the project limits to accommodate the proposed shoulder/ditch. Fill /cut slopes are planned at a maximum slope rate of 2 horizontal to 1 vertical

Global stability analyses were performed on both the areas of the cut slope (Station 148+00) and fill slope (Station 142+00). The stations used for each cross section were selected based on their estimated most critical geometry. For each location, a

long-term, effective stress and short-term total stress stability analyses was performed on both sides of the proposed embankments. The global stability analyses were performed using SLIDE computer software. This program is based on two-dimensional limit equilibrium methods in which the calculation of the factor of safety against instability of a slope is performed by the method of slices. The method used in these analyses was the Morgenstern-Price method for surfaces of a non-circular shape.

The soil parameters used in the analysis are based on the subsurface conditions encountered in the borings and estimated parameters for the embankment soils and published references.

Results of the stability analyses are submitted in graphical format in Appendix E of this report.

The graphs present the geometry of the proposed critical cut/fill sections, the modeled soil strata, their corresponding parameters and the most critical failure surface along with the minimum factor of safety. Factor of safety is defined as the ratio of forces resisting movement (generally the shear strength value along the assumed failure surface) to forces acting on the slope, generally gravity and applied vehicular loads. Results of the global stability analyses are summarized in Tables 5 and 6.

Case		Computed Factor of Safety	Computed Equivalent Resistance Factor from the analyses	Target Resistance Factor
Western	Effective Stress	1.7	0.59	0.75
Slope	Total Stress	9.1	0.11	0.75
Eastern	Effective Stress	2.1	0.48	0.75
Slope	Total Stress	9.3	0.11	0.75

 Table 5. Global Stability- Proposed Fill Slopes (Station 142+00)

Table 6. Global Stability	- Proposed Cut Slo	opes (Station 148+00)

Case		Computed Factor of Safety	Computed Equivalent Resistance Factor from the analyses	Target Resistance Factor
Western	Effective Stress	3.2	0.31	0.75
Slope	Total Stress	11.2	0.09	0.75
Eastern	Effective Stress	2.6	0.39	0.75
Slope	Total Stress	10.1	0.10	0.75

Based on the analyses, it is our opinion that the proposed cut and fill slopes are considered safe against overall (global) stability when constructed at a maximum slope rate of 2 horizontal to 1 vertical.

D. <u>Foundation Support</u>

It is understood that the replacement structure will be single span bridge. It is also understood that the new bridge will be constructed in the general vicinity the existing structure. Based upon the soil and rock data obtained from the field and laboratory testing, the proposed abutments for the replacement structure may be supported onto drilled shafts socketed into the underlying bedrock. The tip of the drilled shaft should be extended deep into the bedrock to exceed the anticipated scour during the life of the structure.

The drilled shaft tips should be extended to a minimum depth of 10 feet below the controlling scour elevation (ODOT BDM 305.4.1.1).

Drilled shaft bases may be proportioned using a nominal unit tip resistance value not exceeding those provided in Table 7.

Location	Boring	Elevation (feet)	Nominal Unit Tip			
			Resistance, qp (ksf)			
Rear Abutment	B-002-0-22	At or below 902.9	756.7			
Forward Abutment	B-003-0-22	At or below 904.9	777.6			

Table 7: Nominal Unit Tip Resistance

According to AASHTO Table 10.5.5.2.4-1, a resistance factor of 0.5 should be used for Unit Tip Resistance for the Strength Limit State.

The socket tip should extend at least 1.5 times the socket diameter into the bedrock per ODOT BDM 305.4.2 (AASHTO LRFD 10.8.3.5.4c).

Additional capacity can be achieved along the shafts using side resistance. Side resistance within upper portion of the rock socket should be neglected as outlined in ODOT BDM section 305.4.2. The side resistance should also be neglected within the scour zone (ODOT BDM 305.4.1.1).

Location	Boring	Elevation (feet)	Unfactored Unit Side Resistance (ksf)
Rear Abutment	B-002-0-22	904.0 to 902.9 Below 902.9	2.3 25.3
Forward Abutment	B-003-0-22	907.5 to 904.9	1.6
Forward Adulment	D-003-0-22	Below 904.9	25.7

Table 8. Unfactored Unit Side Resistance

The resistance factors in Table 9 should be used for Shaft Side Resistance. The resistance factors were obtained from AASHTO Table 10.5.5.2.4-1.

Material Type	Resistance	e Factors
	Compressive	Uplift
Rock	0.55	0.40

Drilled shaft design calculations and soil and rock parameters for lateral load analysis are provided in Appendix F.

E. <u>General Construction and Earthwork</u>

- 1. Site preparation, earthwork and installation of structures should be performed in accordance with the ODOT Construction and Material Specifications, and applicable Geotechnical Bulletins.
- 2. Embankment side slopes should be seeded and vegetation growth permitted to limit sloughing and slope failure.
- 3. Temporary excavations in excess of 4.0 feet in depth should be sloped or shored in accordance with OSHA regulations.

VII. <u>CHANGED CONDITIONS</u>

The evaluations, conclusions, and recommendations in this report are based on our interpretation of the field and laboratory data obtained during the exploration, our understanding of the project and our experience with similar sites and subsurface conditions using generally accepted geotechnical engineering practices. Although individual test borings are representative of the subsurface conditions at the boring locations on the dates drilled, they are not necessarily representative of the subsurface conditions between boring locations or subsurface conditions during other seasons of the year.

> In the event that changes in the project are proposed, additional information becomes available, or if it is apparent that subsurface conditions are different from those provided in this report, CTL Engineering should be notified so that our recommendations can modified, if required.

VIII. TESTING AND OBSERVATION

During the design process, it is recommended that CTL Engineering work with the project designers to confirm that the geotechnical recommendations are properly incorporated into the final plans and specifications, and to assist with establishing criteria for the construction observation and testing.

CTL Engineering is not responsible for independent conclusions, opinions and recommendations made by others based on the data and recommendations provided in this report. It is recommended that CTL be retained to provide construction quality control services on this project. If CTL Engineering is not retained for these services, CTL shall assume no responsibility for compliance with the design concepts or recommendations provided.

IX. <u>CLOSING</u>

This report has been prepared for the exclusive use by the client for use only on this project. Our services have been performed in accordance with generally accepted Geotechnical Engineering principles and practices. No warranty is either expressed or implied.

CTL Engineering's assignment does not include, nor does this geotechnical report address the environmental aspects of this particular site.

Specific design and construction recommendations have been provided in this report. Therefore, the report should be used in its entirety.

Respectfully Submitted,

CTL ENGINEERING, INC.

cm Holard

Evan Holcombe, P.E. Geotechnical Engineer

Sarten M.V-

Sastry Malladi, P.E Project Engineer

APPENDIX A BORING LOCATION MAP

PROJECT DESCRIPTION

THE PROJECT INVOLVES CONSTRUCTING A REPLACEMENT STRUCTURE FOR BRO-68-44.12 OVER EAST FORK LITTLE MIAMI RIVER IN BROWN COUNTY, OHIO, ALONG WITH THE REALIGNMENT OF AN EXISTING CURVE FOR THE ROADWAY. THE PROPOSED STRUCTURE WILL BE AN I-BEAM BRIDGE WITH A COMPOSITE REINFORCED DECK ON NEW SEMI-INTEGRAL CONCRETE ABUTMENTS WITH DRILLED SHAFTS.

HISTORIC RECORDS

FOUR (4) HISTORIC BORINGS FROM THE BRO- 123- 1.02 STRUCTURE FOUNDATION INVESTIGATION REPORT, DATED OCTOBER 30, 1996, ARE PRESENTED ON THIS GEOTECHNICAL PROFILE SHEETS.

GEOLOGY

ACCORDING TO PHYSIOGRAPHIC MAPS (ODNR, 1998), THE PROJECT SITE LIES WITHIN THE ILLINOIAN TILL PHYSIOGRAPHIC REGION OF OHIO. ACCORDING TO BEDROCK GEOLOGIC MAP OF OHIO (2006), THE BEDROCK UNDERLYING THE SITE CONSISTS OF ORDOVICIAN AGE INTERBEDDED SHALE AND LIMESTONE OF WAYNESVILLE AND ARNHEIM FORMATIONS.

RECONNAISSANCE

A SITE VISIT WAS PERFORMED ON APRIL 5, 2022, BY PERSONNEL FROM CTL ENGINEERING, INC. THE EXISTING STRUCTURE IS A THREE-SPAN BRIDGE. THE AREA SURROUNDING THE BRIDGE IS PRIMARILY FARMLAND WITH SOME RESIDENTIAL PROPERTIES. EAST FORK LITTLE MIAMI RIVER FLOWS EAST TO WEST BELOW THE STRUCTURE. NO EXPOSED BEDROCK WAS OBSERVED FROM BENEATH THE EXISTING BRIDGE OR ALONG THE BANKS OF EAST FORK LITTLE MIAMI RIVER.

SUBSURFACE EXPLORATION

A SUBSURFACE EXPLORATION WAS CONDUCTED BY CTL ENGINEERING, INC. BETWEEN JUNE 14 AND JUNE 22, 2022. THE EXPLORATION CONSISTED OF DRILLING FIVE (5) BORINGS DESIGNATED AS B-001-0-22 THROUGH B-004-0-22 AND B-004-1-22 TO DEPTHS RANGING FROM 7.0 TO 46.1 FEET.

EXPLORATION FINDINGS

BORINGS B- 001- 0- 22 THROUGH B- 003- 22 ENCOUNTERED FILL MATERIAL EXTENDING TO DEPTHS RANGING FROM 5.5 TO 8.0 FEET BELOW EXISTING GRADE CONSISTING OF GRAVEL AND/OR STONE FRAGMENTS WITH SAND AND SILT (A-2-4), SILT AND CLAY (A-6a) OR CLAY (A-7-6). BENEATH THE FILL AND FROM THE SURFACE COVER IN BORINGS B-004-0-22 AND B-004-1-22, NATIVE SOILS WERE ENCOUNTERED AND DESCRIBED AS SANDY SILT (A-4a), SILT AND CLAY (A-6a), SILTY CLAY (A-6b) OR CLAY (A-7-6).

BEDROCK WAS ENCOUTNERED IN BORINGS B-002-0-22 THROUGH B-004-0-22 AND B-004-1-22 AT DEPTHS RANGING FROM 2.5 FEET TO 25.0 FEET BELOW EXISTING GRADE. THE BEDROCK WAS DESCRIBED AS SILTSTONE, CLAYSTONE, SHALE OR INTERBEDDED SHALE AND LIMESTONE.

BORINGS B- 002- 0- 22 AND B- 003- 0- 22 ENCOUNTERED GROUNDWATER DURING DRILLING BETWEEN APPROXIMATE ELEVATIONS 909.3 FEET TO 911.4 FEET.

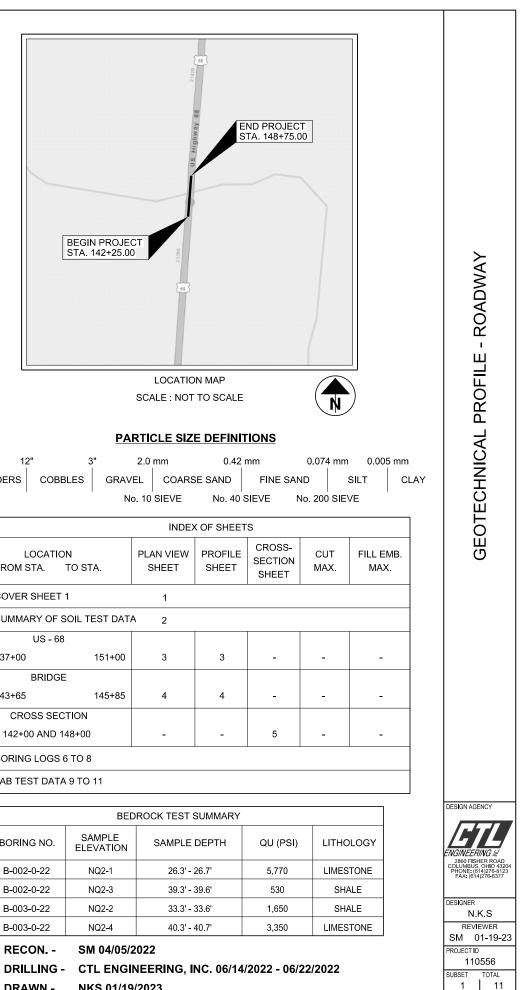
SPECIFICATIONS

THIS GEOTECHNICAL EXPLORATION WAS PERFORMED IN ACCORDANCE WITH THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, OFFICE OF GEOTECHNICAL ENGINEERING, SPECIFICATIONS FOR GEOTECHNICAL EXPLORATIONS, DATED JANUARY 2022.

AVAILABLE INFORMATION

THE SOIL, BEDROCK, AND GROUNDWATER INFORMATION COLLECTED FOR THIS SUBSURFACE EXPLORATION THAT CAN BE CONVENIENTLY DISPLAYED ON THE SOIL PROFILE SHEETS HAS BEEN PRESENTED. GEOTECHNICAL REPORTS, IF PREPARED, ARE AVAILABLE FOR REVIEW ON THE OFFICE OF CONTRACT SALES WEBSITE.

LE	GEND				
	DESCRIPTION	ODOT CLASS		SIFIED VISUAL	
	GRAVEL AND/OR STONE FRAGMENTS W/SAND AND SILT	A-2-4 (0)	1	1	
	SANDY SILT	A-4a (4)	2	1	
	SILT AND CLAY	A-6a (7)	7	2	
	SILTY CLAY	A-6b (10)	5	6	
	CLAY	A-7-6 (12)	6	2	
		TOTAL	21	12	
XXXXX	PAVEMENT OR BASE = X = APPROXIMATE THICKNESS	VISUAL			
[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	SOD AND TOPSOIL = X = APPROXIMATE THICKNESS	VISUAL			
	CLAYSTONE	VISUAL			
	INTERBEDDED SHALE AND LIMESTONE	VISUAL			
	SHALE	VISUAL			
	SILTSTONE	VISUAL			
	PROJECT BORING LOCATION - PLAN VIEW				
(- + -) - (- + -)	HISTORIC BORING LOCATION - PLAN VIEW - BRO-123-1.02				
	DRIVE SAMPLE AND/OR ROCK CORE BORING PLOTTED TO HORIZONTAL BAR INDICATES A CHANGE IN STRATIGRAPH		CALE ONL	Υ.	
WC	INDICATES WATER CONTENT IN PERCENT.				BOUI
N ₆₀	INDICATES STANDARD PENETRATION RESISTANCE NORMALIZED TO 60% DRILL ROD ENERGY RATIO.				
W	INDICATES FREE WATER ELEVATION.				
X/D"	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST X/D"= NUMBER OF BLOWS (UNCORRECTED) FOR D" OF PE		T REFUS	AL.	
X/Y/D"	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST X= NUMBER OF BLOWS FOR 6 INCHES (UNCORRECTED). Y/D"= NUMBER OF BLOWS (UNCORRECTED) FOR D" OF PE	. ,	T REFUS	AL.	=
X/Y/Z	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST X= NUMBER OF BLOWS FOR 6 INCHES. Y=NUMBER OF BLOWS FOR SECOND 6 INCHES. Z=NUMBER OF BLOWS FOR THIRD 6 INCHES.				
X/Y/Z/D"	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST X= NUMBER OF BLOWS FOR 6 INCHES. Y=NUMBER OF BLOWS FOR SECOND 6 INCHES. Z/D"=NUMBER OF BLOWS (UNCORRECTED) FOR D" OF PEN	NETRATION A	T REFUSA	۸L.	
• SS	INDICATES A PLASTIC MATERIAL WITH MOISTURE CONTEN EQUAL TO OR GREATER THAN THE LIQUID LIMIT MINUS 3. INDICATES A SPLIT SPOON SAMPLE.	IT			
TR	INDICATES TOP OF ROCK.				
ST	INDICATES A SHELBY TUBE SAMPLE.	ODOT	CLASS	SIFIED	
	HISTORIC BORING DESCRIPTION	CLASS		VISUAL	
	GRAVEL AND/0R STONE FRAGMENT W/SAND, SILT & CLAY	A-2-6	0	2	
	SANDY SILT	A-4a	4	5	
	SILT AND CLAY	A-6a	2	5	
	SILTY CLAY	A-6b	1	1	
	CLAY	A-7-6	1	3	
		TOTAL	8	16	
	SHALE	VISUAL			
	LIMESTONE	VISUAL			


	BEGIN PR STA. 142+
12" DERS COBE	3" HES G
LOCATIO FROM STA.	N TO STA.
COVER SHEET	1
SUMMARY OF S	OIL TEST
US - 68	
137+00	151·
BRIDGE	
143+65	145
CROSS SEC	
142+00 AND 1	48+00
BORING LOGS	6 TO 8
LAB TEST DATA	9 TO 11
BORING NO.	SAMPL ELEVAT
B-002-0-22	NQ2-1
B-002-0-22	NQ2-3
B-003-0-22	NO2-2

B-003-0-22 NQ2-4 RECON. -NKS 01/19/2023 DRAWN -**REVIEWED - SM 01/19/2023**

USER: hp

11.08.56

IIME

SHEET

TOTAL

MODEL:Sheet PAPERSIZE:IIxI7 (In.) DATE:23-01-2023 TIME:II:I3:02 USER:hp D:\Drop Box\CTL 2023\January\Dept 05\C0L\Shahed\22050029C0L_0D0T\Mod_23.01.23\II0556ID001.dgn

			S	UMMAR	YOF	SOIL T	EST D	ΑΤΑ								
					US	5 - 68										
EXPLORATION NO., STATION & OFFSET	FROM TO	SAMPLE ID	N 60	% REC	HP tsf	% GR	% CS	% FS	% SILT	% CLAY	LL	PL	PI	% WC	ODOT CLASS (GI)	ppm SO4
B-001-0-22	01.00-02.50	SS-1	22	100	4.50	10	7	12	35	36	35	19	16	8	A-6b (10)	<100
STA. 142+00, 6' RT. LATITUDE = 39.225085	02.50-04.00	SS-2	37	67	2.75	18	6	9	29	38	38	19	16	16	A-6b (9)	-
LONGITUDE = -83.910738	04.00-05.50	SS-3	15	44	2.75				SAME	AS SS-2				12	A-6b (VISUAL)	-
	05.50-07.00	SS-4	13	56	-				SAME	AS SS-2				15	A-6b (VISUAL)	-

FOR STRUCTURE BORINGS B-002-0-22 AND B-003-0-22, SEE BORING LOGS ON SHEETS 6 AND 7 RESPECTIVELY.

B-004-0-22	01.00-02.50	SS-1	28	100	4.50	10	6	19	35	30	27	16	11	11	A-6a (6)	400
STA. 148+33, 6' RT. LATITUDE = 39.226823	02.50-04.00	SS-2	138	89	-	SILTSTO	DNE, G	GRAY, S	SEVEREL	Y WEAT	HERED	, VERY	WEAK	9	ROCK (VISUAL)	-
LONGITUDE = -83.910560	04.00-05.50	SS-3	95	100	-				SAME A	S SS-2				11	ROCK (VISUAL)	-
	05.50-05.83	SS-4	50/4"	100	-	CLAYST	ONE, C	GRAY,	SEVEREL	Y WEA	THERED	, VERY	' WEAK	9	ROCK (VISUAL)	-
B-004-1-22	01.00-02.50	SS-1	15	78	4.50	1	4	14	42	39	40	22	18	19	A-6b (11)	-
STA. 148+40, 83' RT. LATITUDE = 39.226778	03.50-05.00	SS-2	27	100	4.50				SAME A	S SS-1				13	A-6b (VISUAL)	-
LONGITUDE = -83.910281	06.00-07.50	SS-3	48	100	4.50	3	7	12	24	54	55	27	28	22	A-7-6 (18)	-
	08.00-09.00	ST-4	-	100	-	3	5	6	43	43	41	22	19	-	A-7-6 (12)	-
	11.00-12.50	SS-5	33	78	2.25	32	9	4	18	37	42	24	18	21	A-7-6 (7)	-
	13.50-15.00	SS-6	113	100	3.75	CLAYS	TONE	, GRA	Y, HIGHLY	WEATH	IERED,	VERY \	VEAK	12	ROCK (VISUAL)	-
	16.00-16.80	SS-7	20/50/4"	100	-	SHAL	E, GR/	AY, SE	VERELY	WEATH	ERED, V	ERY W	EAK	9	ROCK (VISUAL)	-

SUMMARY OF SOIL TEST DATA

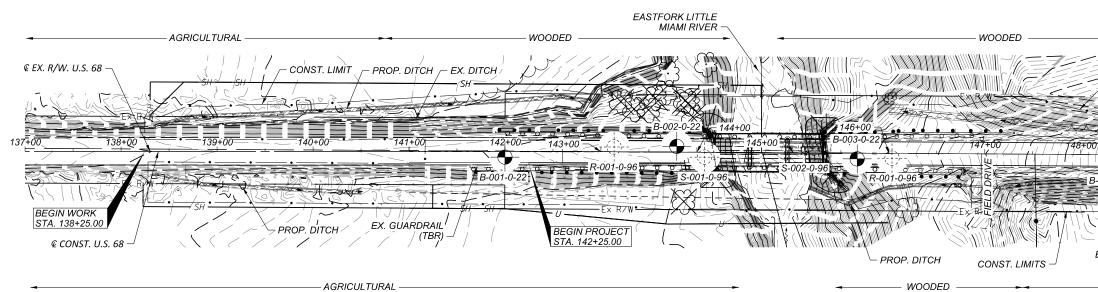
HISTORIC	SORINGS US - 68	

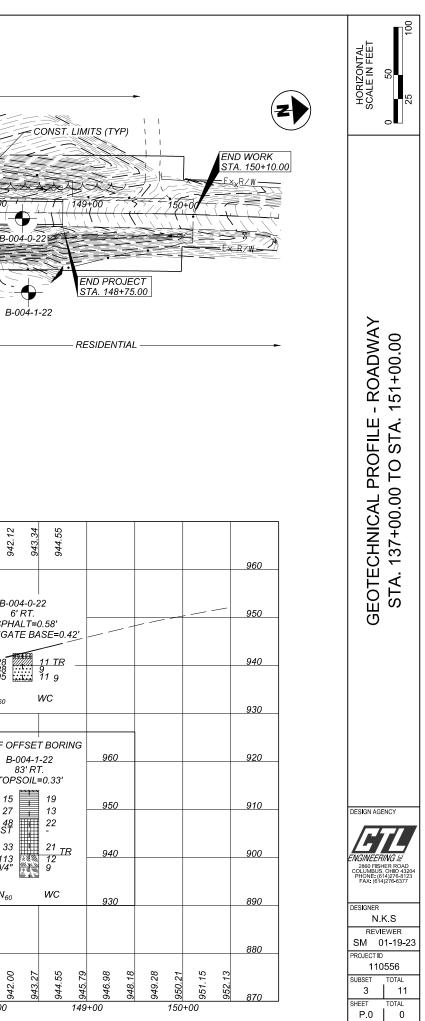
EXPLORATION NO., STATION & OFFSET	FROM TO	SAMPLE ID	N	% REC	% GR	% CS	% FS	% SILT	% CLAY	LL	PI	% WC	ODOT CLASS (GI)
R-001-0-96	01.15-02.65	SS-1	8	89	6	7	20	31	36	26	11	15	A-6a
STA. 143+13.7, 5' LT.	04.75-06.25	SS-2	5	89				SAME A	AS SS-1			22	A-6a
R-002-0-96	01.15-02.65	SS-1	16	100	9	11	19	28	33	-	_	12	A-6a
STA. 146+03.3, 5' RT.	04.75-06.25	SS-2	22	100				SAME A	AS SS-1			10	A-6a

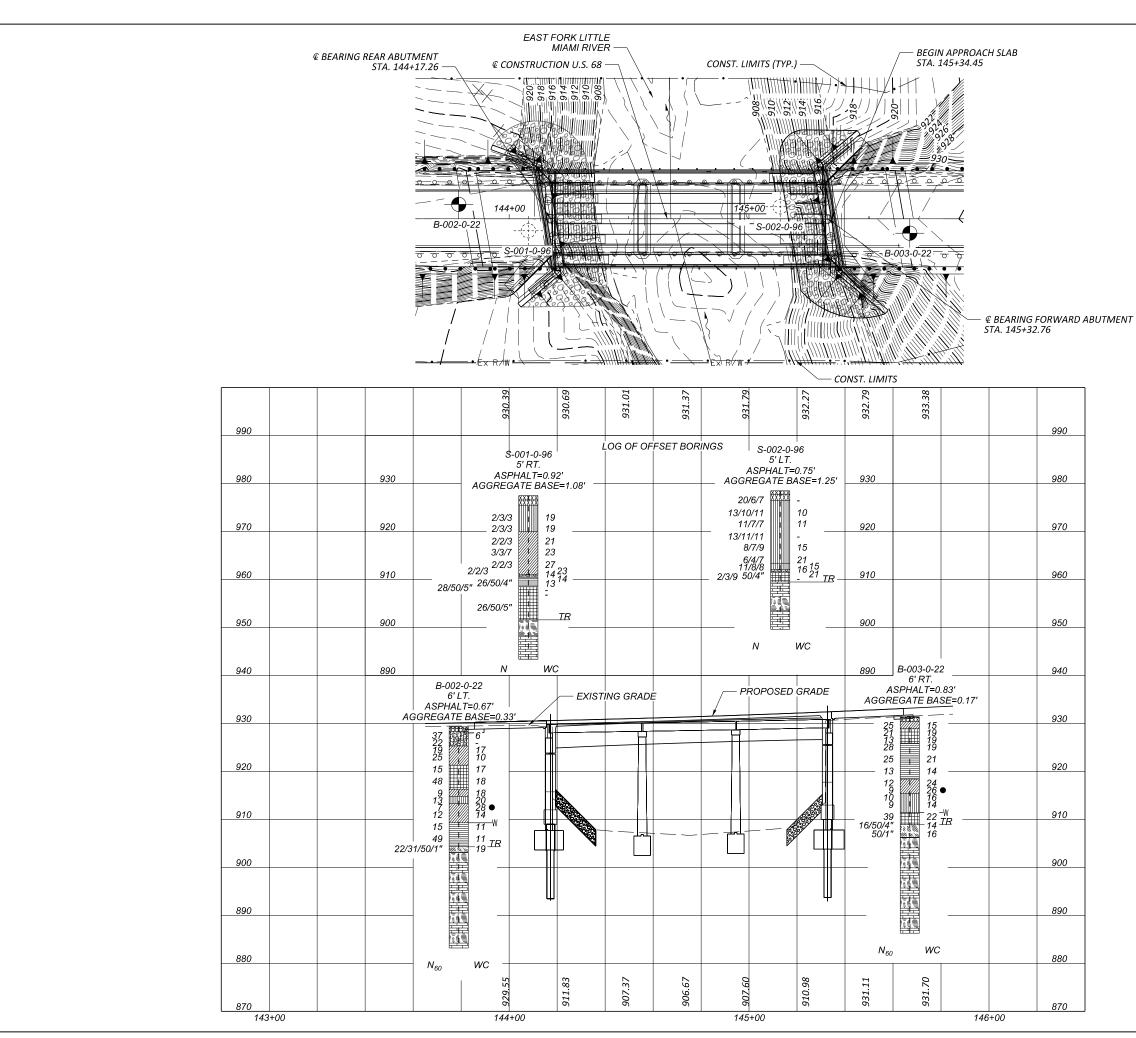
FOR HISTORIC STRUCTURE BORINGS S-001-0-96 AND S-002-0-96, SEE BORING LOGS ON SHEET 8.

SHEET P.0	SUBSET 2	PROJECT ID	SM 0	DESIGNER	ENGINEEA 2860 FISH COLUMBUS PHONE:06 FAX:0614
	TOTAL 11	1556	EWER)1-19-23	K.S	NING 원 - HID 43204 14)276-6377

DESIGN AGENC


GEOTECHNICAL PROFILE - ROADWAY SUMMARY OF SOIL TEST DATA


BRO-68-44.12


MODEL: Plan Drawing PAPERSIZE:17xII (in.) DATE: 20-01-2023 TIME:16:01:53 USER: hp D:NDrap BoxNCTL 2023\JanuaryNbep† 05\C0L\Shahed\22050029C0L_0D0T\Mod_20.01:23\II0556F001.dgr

970 950 27 48 ST																								1	1		1		1													—
950 950 <td></td> <td>1.83</td> <td></td> <td>74</td> <td>0.04</td> <td>.34</td> <td>.64</td> <td>.95</td> <td>.32</td> <td>.73</td> <td>21</td> <td>73</td> <td>32</td> <td>.95</td> <td>1.64</td> <td>5.39</td> <td>3.19</td> <td>.04</td> <td>.95</td> <td>3.91</td> <td>.92</td> <td>.99</td> <td>. 12</td>																					1.83		74	0.04	.34	.64	.95	.32	.73	21	73	32	.95	1.64	5.39	3.19	.04	.95	3.91	.92	.99	. 12
950 PROPOSED GRADE R.001-0-20 ASPHALT=0.05*																					976	000	926	93(93(93(93(931	931	932	932	933	933	934	936	936	937	937	938	936	94(942
940 PROPOSED GRADE R-002-0-96 S RT S RT AGREEATE BASE-0.23' AGREEATE S SRT AGREEATE BASE-0.23' AGREEATE BASE-0.23' SOUTH STUDY AGREEATE BASE-0.23' AGREEATE BASE-0.23' AGREEATE BASE-0.23' AGREEATE BASE-0.23' <th< td=""><td>960</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	960		_					_		_		_		_				_											_													
940 PROPOSED GRADE R-002-0-96 S RT S RT AGREEATE BASE-0.23' AGREEATE S SRT AGREEATE BASE-0.23' AGREEATE BASE-0.23' SOUTH STUDY AGREEATE BASE-0.23' AGREEATE BASE-0.23' AGREEATE BASE-0.23' AGREEATE BASE-0.23' <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																																										
940 PROPOSED GRADE R-002-0-96 S RT S RT AGREEATE BASE-0.23' AGREEATE S SRT AGREEATE BASE-0.23' AGREEATE BASE-0.23' SOUTH STUDY AGREEATE BASE-0.23' AGREEATE BASE-0.23' AGREEATE BASE-0.23' AGREEATE BASE-0.23' <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>' E</td><td>в-С</td></th<>																																									' E	в-С
940 PROPOSED GRADE R.002-0-96 ASPHALT D0.20* ASPHALT D	950		_					_		_				_															-												45	e PH
940 ASPHALT=0.52 ASPHALT=0.52 ASPHALT=0.52 AGREE Sold * 35 Sold * 35 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>AG</td><td>GRE</td><td>GA</td></th<>																																_								AG	GRE	GA
940 ASPHALT=0.52 ASPHALT=0.52 ASPHALT=0.52 AGREE Sold * 35 Sold * 35 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>— РŖ</td><td>OPOSI</td><td>ED G</td><td>RADE</td><td></td><td>R</td><td>-002-0 5' R1</td><td>)-96 F.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></th<>																										,	— РŖ	OPOSI	ED G	RADE		R	-002-0 5' R1)-96 F.								_
Bit Pirtue ASPHALTE-0.75' ASPHALTE-0.7 ASPHALTE-0.75' AGGREGATE BASE-0.3' ASPHALTE-0.7' AGGREGATE BASE-0.3' Asphalte-0.7' (11) Asphalte-0.7' Asphalte-0.7	940													+-						+	R	-001-0	9-96						+			ASP	PHALT		,	.,					13	8
930 ACCRECATE BASE=0.33' 1 1 1 1 920 313 15 2/32 15 10 96																	B-0	01-0-2	22		ASF	ר ו-5' ר ואחי	=0.75	,							AG	JREG	AIE 1	BASE-	-0.20		7	-		50)/4" 9	5 [
930 ACGREGATE BASE=0.33 I 920 11 10 11 920 12 15 11 10 920 13 15 23/2 12 10 920 13 15 23/2 12 10 10 920 14 15 23/2 12 10 10 10 920 10					E	XISTI. 	NG GRA	4 <i>DE -</i> 	$\overline{}$								ASPH.	ALT=0	0.67'	AG	GREG	ATE	BASE	=0.23'		1					+		—		. —	T	-	1			N_6	30
920 1 1 611/11 10 LOG OF C 920 No NC N NC 960 B 910 No NC N WC N WC N WC 950 12 910 No NC N WC N WC N 950 12 910 No No NC N WC N 950 12 910 No No NC N WC N 950 12 910 No NO NO NO NO 950 12 12 NO 10 950 12 12 10 <td< td=""><td>930</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>AGG</td><td>REGA</td><td>TE BA</td><td>SE=0.</td><td>33' -</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>ſ</td><td>-</td><td>-</td><td>B</td><td>3</td><td>_</td><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	930															AGG	REGA	TE BA	SE=0.	33' -		-							-	ſ	-	-	B	3	_	U						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										—							22 37		8 16														V//////	11								
200 000 <td>020</td> <td></td> <td>15 13</td> <td>+</td> <td>12 15</td> <td></td> <td>4/4/4</td> <td></td> <td>15</td> <td></td> <td></td> <td>İ</td> <td></td> <td></td> <td></td> <td>i i</td> <td>6</td> <td>11/11</td> <td><i>\//////</i></td> <td></td> <td></td> <td></td> <td></td> <td>060</td> <td></td> <td>LC</td> <td>OG OF</td> <td></td>	020																15 13	+	12 15		4/4/4		15			İ				i i	6	11/11	<i>\//////</i>					060		LC	OG OF	
910 910 950 10 910 910 950 10 910 950 10 910 950 10 910 950 10 900 940 10 900 940 11 900 940 11 900 940 11 900 940 11 900 940 11 900 940 11 900 940 11 900 940 11 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 900 11 10 10 10 10 11 10 10 11 10 10 11 10 12 1	920															+			_													N		WC				900				В-
970 27 970 27																	• 60				N		WC																		Т	OF
900 940 311 900 940 311 900 940 311 900 940 311 900 940 311 900 940 311 910 940 311 920 940 311 900 940 311 900 940 311 910 930 Net 920 930 Net 930 930 Net 930 930 Net 930 930 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726 930 19726 19726	910																													/								950				15
900																											\sum	_	-	. ~/								000			_	27 48
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																												-														
928.26 928.38 928.36 928.36 928.04 928.21 928.23 928.23 928.04 928.24 928.24 928.24 927.75 927.64 927.43 927.43 927.74 927.75 927.75 927.74 927.75 927.75 927.75 927.74 927.75 927.75 927.75 927.75 927.75 927.74 927.75 927.74 927.75 927.75 927.75 927.74 927.75 927.74 927.75 927.75 927.75 927.74 927.75 927.75 927.74 927.75 927.74 927.75 928.81 928.31 928.31 928.31 928.75 928.75 928.32 928.32 928.76 928.76 928.75 928.75 928.76 933.87 928.75 928.75 933.7.02 938.70 938.70 933.87 933.7.03 938.70 938.70 933.87 939.76 938.70 933.70 933.70 <td>900</td> <td></td> <td>940</td> <td></td> <td></td> <td></td> <td>33</td>	900																																					940				33
928.38 928.36 928.36 928.38 928.37 928.38 928.21 928.21 927.60 927.52 927.71 927.60 927.61 927.52 927.65 927.52 927.65 927.52 927.75 928.33 927.75 927.74 927.75 928.33 927.75 928.33 927.75 928.33 927.75 928.33 927.75 928.33 927.75 928.33 927.75 928.33 927.75 928.33 927.76 927.74 927.75 928.33 928.83 927.74 927.74 928.75 928.75 928.33 928.76 928.74 928.76 928.74 928.76 928.74 928.76 928.74 928.76 928.74 928.76 928.74 928.76 928.74 928.76 928.74 933.04 933.04 933.05 933.04 933.06 933.05 933.07 933.06 933.76 933.76 933.76 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20/50</td> <td>13 1/4"</td>																																									20/50	13 1/4"
928.56 928.21 928.56 928.56 928.56 928.51 928.51 928.51 928.51 928.51 928.51 928.51 928.51 928.51 927.52 927.43 927.52 927.52 927.52 927.52 927.53 927.54 927.55 927.54 927.55 927.55 927.56 927.57 927.56 927.56 927.57 928.31 928.56 927.52 927.54 928.56 927.55 928.56 927.57 928.56 929.50 928.56 933.66 933.67 933.87 933.87 933.87 933.98 933.04 933.04 933.05 933.04 933.04 933.04 933.04 933.04 933.04 933.04 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																																										
928.56 928.56 928.21 928.21 928.21 928.21 928.21 927.52 927.52 927.52 927.52 927.52 927.54 927.55 927.54 927.55 927.54 927.55 927.56 927.55 92	890																																					930			N	√ ₆₀
928.56 928.56 928.21 928.21 928.21 928.21 928.21 927.52 927.52 927.52 927.52 927.52 927.54 927.55 927.54 927.55 927.54 927.55 927.56 927.55 92																																										
928.56 928.56 928.21 928.21 928.21 928.21 928.21 927.52 927.52 927.52 927.52 927.52 927.54 927.55 927.54 927.55 927.54 927.55 927.56 927.55 92																																										
0 0	880																																									
36 87 7 7 80 90 10 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td><u></u></td> <td>~</td> <td>~</td> <td></td> <td>-</td> <td></td> <td>~ `</td> <td></td> <td>10</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>10</td> <td>(0)</td> <td>4</td> <td></td> <td>4</td> <td></td> <td>~</td> <td></td> <td>(0</td> <td>~</td> <td>~</td>			_				<u></u>	~	~		-		~ `		10		-									~				~		10	(0)	4		4		~		(0	~	~
870 8	8.56	8.38	8.21	8.04 7 8	7.71	7.6(7.52	7.43	7.43	7.46	7.54	7.61	7.68	7.74	7.75	7.80	7.94	8.00	8.31		8.81 0.12		9.31	9.36	<u>9.5(</u>	1.83	7.37	6.67	7.60	0.96	1.06	1.65	2.26	3.04	3.87	4.84	5.80	7.03	8.2(9.46	0.73	2.00
130+00 139+00 140+00 141+00 142+00 143+00 144+00 149+00 146+00 146+00 147+00 148+00	870 8							92		8		92				92		8 02		32		3 6	00	92	92	91	90		6	91	93		6		93		6		93	93	04	94
			130+00			139+	00		74	40+00			14	+1+00	,		14	+2+00			14.	5+00			144-	-00			140+	00		1	140+0	U		1	4/+(10			140+U	0

NOTE : SEE SHEET 4 OF 11 FOR BORINGS B-002-0-22, B-003-0-22, S-001-0-96 AND S-002-0-96 SOIL PROFILES.

USER: hp TIME: 16:03:32 1 MODEL: PLAN ALT 4 PAPERSIZE: 17x11 (In.) DATE: 20-01-2023 D:NDrob Box/CTL 2023/January/Dep+ 05/COL/Shahed/220 BRO-68-44.12

DESIGN AGENCY

2860 FISHER ROA COLUMBUS, OHIO 4 PHONE: (614)276-8 FAX: (614)276-63

N.K.S REVIEWER SM 01-19-23

DES GNER

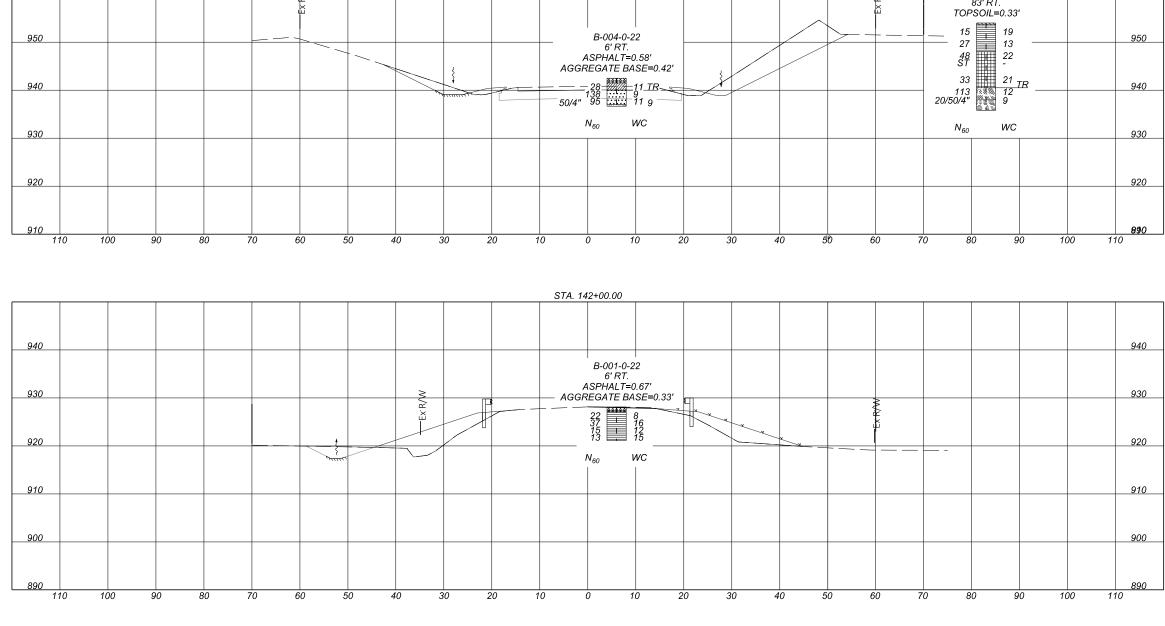
PROJECT ID 110556

SHEET 1 P.0

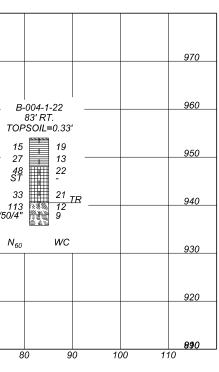
SUBSET TOTAL

4 | 11

TOTAL



BRO-68-44.12 MODEL: 142-00.00 Drawing Model PAPERSIZE: 17x11(1n.) DATE: 20-01-2023 TIME: 16:05:18 USER: hp D:\Drop Box\CTL 2023\January\Dept 05\C0L\Shahed\22050029C0L.0D01\Mod.20.0123\110556


970

960

STA. 148+00.00

BRO-68-44.12

MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 20-01-2023 TIME: 16:07:05 USER: hp D:Drop BoxICTL 2023\January\Dept 05\COL\Shahed\22050029COL_ODDT\Mod_20.01.23\110556ZL001.dgn

PID: 110556		SAMPLING	1ETHO	D:	3.25" HS			CALI	IBRAT	CME A	E: 8	8-5-20		ELE	VATI			3 (M		EOB:	46.1 ft.		PA 1 0
TART: <u>6-15</u>	5-22 END: <u>6-15-22</u> MATERIAL DESCRIPTIO	SAMPLING	METH	DD: ELEV.	SPT / DEPT		SPT/		REC	RATIO (%) SAMPLE		89.3 G	RAD	LAT ATIO			ATTI	39.2 ERBE		11, -83	.910727 одот	 SO4	E
ASPHALT, (8"	AND NOTES			929.3 -\929.0/			RQD	11 ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
AGGREGATE DENSE, BRO	,			928.3	-	- 1 - - 2 -	8 11	37	100	SS-1	4.50	52	13	9	15	11	20	14	6	6	A-2-4 (0)	<100	
FILL), DAMP 2.5'; NO RE				925.3		- 3 -	8 7 8 8	22	0	SS-2	-	-	-	-	-	-	-	-	-	-	A-2-4 (V)	-	NJAK AR
GRAVEL, TRA	BROWN, SILT AND CLAY , ACE SAND, (FILL), DAMP	"AND"				- 4 - - 5 -	8 7 6	19	67	SS-3	3.00	41	5	5	23	26	32	19	13	17	A-6a (4)	-	2 12 2
05.5'; STIFF						- 6 - - 7 -	6 6 11	25	33	SS-4	1.50	-	-	-	-	-	-	-	-	10	A-6a (V)	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	'N, CLAY , SOME SILT, SO ACE SAND, DAMP	ME		921.3			4 5	15	78	SS-5	1.75	26	4	5	23	42	41	23	18	17	A-7-6 (9)	-	A. A. A.
·						- 9 T - 10 -	5																28.8.8. 8.
010.5'; VERY	STIFF					- 11 - - - 12 -	3 17 15	48	67	SS-6	3.00	-	-	-	-	-	-	-	-	18	A-7-6 (V)	-	7 7 9 8
TIFF, GRAY	, SILT AND CLAY , LITTLE (, DAMP	GRAVEL,			-	- 13 - - 13 - - 14 -	332	9	100	SS-7	-	19	6	10	24	41	34	21	13	18	A-6a (7)	-	A 4 4 V
TIFF, GRAY RAVEL, MO	, SANDY SILT , LITTLE CLA IST	Y, TRACE		914.8 913.3	-	- 15 - -	4 4 5	13	100	SS-8	-	8	5	26	39	22	27	19	8	20	A-4a (5)	-	0807
	F, GRAY, SILT AND CLAY E GRAVEL, MOIST	, SOME]	- 16 - - - 17 -	2 2 3	7	67	SS-9	-	10	9	22	26	33	30	18	12	28	A-6a (6)	-	A N N N I A
						- 18 - - - 19 -	3 3 5	12	100	SS-10	-	-	-	-	-	-	-	-	-	14	A-6a (V)	-	B. a. V. a. S.
	N AND BLACK, SILTY CLA GRAVEL, TRACE ORGAN			909.3	₩ 909.3	20 - - 21 - - 21 -	3 5 5	15	67	SS-11	1.75	-	-	-	-	-	-	-	-	11	A-6b (V)	-	A. No. W.
022.5'; HARE RAGMENTS), CONTAINS CLAYSTONE	1				- 23 - - 23 - - 24 -	28 18 15	49	100	SS-12	4.50	-	-	-	-	-	-	-	-	11	A-6b (V)	-	2 4 1 2 3 4 V
	GRAY, HIGHLY WEATHER	RED, VERY		904.3	TR	24 -	22 31	-	92	SS-13	4.00	-	-	_	_	_	_	-	-	19	Rock (V)	-	1 A 2 4
30%), RQD 48 SHALE, GF NEAK, FRIAE RQD 41%, RI LIMESTON	D SHALE (70%) AND LIMES 3%, REC. 95%; RAY, HIGHLY WEATHERE BLE, CALCAREOUS, ARGII	D, VERY LLACEOUS,		903.2		- 26 - - 27 - - 28 - - 29 - - 30 - - 31 -	46		88	NQ2-1											CORE		- MARDAJAR ANA A
						- 32 - - 33 - - 34 - - 35 - - 35 - - 36 -	50		100	NQ2-2											CORE		A CAN A MA AN A CAN A
						37 - 38 - 39 - 39 - 40 - 	28		97	NQ2-3											CORE		ARE A A A A A A A A A A A A A
				883.2	EOB	- 41 - - 42 - - 43 - - 44 - - 44 - - 45 - - 46 -	67		97	NQ2-4											CORE		NA JA KANZ CHIA & BAR DI

DESIGN AGENCY	GEOTECHNICAL PROFILE - ROADWAY BRIDGE NO. BRO-68-44.12 OVER EAST FORK LITTLE MIAMI RIVER BORING LOG B-002-0-22

NOTES: CAVED AT 21.3' ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS; BENTONITE POWDER

NOTES: CAVED AT 21 3

BRO-68-44.12

MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 20-01-2023 TIME: 16:09:50 USER: hp D:Drop BoxICTL 2023\January\Dept 05\COL\Shahed!22050029COL_ODDT\Mod_20.01.23\110556ZL002.dgn

YPE: ID: <u>110556</u> \$	BRIDGE	SAMPLING			TL / TOI A / NQ2				CME /		MATI(3-5-20		ALIC ELE					U.S. SL)		L		PA
TART: <u>6-15-22</u>	END: <u>6-15-22</u>	SAMPLING		SPT	/ NQ2	SPT/			RATIO (%) SAMPLE		89.3		LAT ATIO	/ LO		ΔΤΤ		2260 ERG	· ·	3.910656 одот	so4	10 B
ASPHALT , 10"	AND NOTES		931.4	DEP1	THS	RQD	N ₆₀	(%)	ID		GR			SI	CL	LL	PL	PI	wc	CLASS (GI)	ppm	
AGGREGATE BA			 \ <u>931.2</u> / 930.4		- 1 -	7									_							
RACÉ GRAVEL,	, ,,		928.9		_ 2 -	7 10	25	67	SS-1	4.50	9	10	7	28	46	36	21	15	15	A-6a (10)	<100	A A A
	OWN, CLAY , SOME SIL SAND, (FILL), DAMP	T, LITTLE			- 3 -	12 7 7	21	78	SS-2	2.50	12	3	3	26	56	46	24	22	19	A-7-6 (14)	-	21AL
@4.0'; STIFF					- 4 -	55	13	78	SS-3	1.75		-	_	_		-	_	_	19	A-7-6 (V)	_	G
STIFF, BROWN,	SILTY CLAY, SOME GR	AVEL,	925.9		- 5 -	4 9																194 & B
ITTLE SAND, DA	AMP				- 7 -	9 10	28	56	SS-4	1.00	22	9	7	24	38	38	21	17	19	A-6b (8)	-	Ray La
028.0'; GRAY, MC	DIST				- 8 -	- 4																AL R
g,,					- 9 -	· 7 10	25	89	SS-5	1.75	•	-	-	-	-	-	-	-	21	A-6b (V)	-	A A v
	STIES DAMD				- 10 -																	2.8.84
2)10.5'; MEDIUM	STIFF, DAMP				- 11 -	4 4 5	13	100	SS-6	0.75	18	9	7	21	45	40	21	19	14	A-6b (10)	-	4 A 4
			918.4		- 12 - - - 13 -	_																878.48
STIFF, GRAY, SII TRACE GRAVEL,	LT AND CLAY , SOME SA MOIST	AND,			- 14 -	3 4 4	12	100	SS-7	1.75	3	3	18	37	39	32	20	12	24	A-6a (9)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
@14.5'; MEDIUM	STIFF, WET		915.4		- 15 -	3 3 3 3	9	100	SS-8	0.50	2	3	27	39	29	29	18	11	26	A-6a (7)	-	A B B A
STIFF, GRAY, SA GRAVEL, DAMP	NDY SILT, SOME CLAY	, LITTLE	913.4		- 16 - - - 17 -	3 3 4	10	100	SS-9	1.25	11	9	28	25	27	27	17	10	16	A-4a (3)	-	87 A 8 A
@17.5'; VERY ST	IFF				- 18 -	3 3 3	9	67	SS-10	2.25	-		-	-	-	-	-	-	14	A-4a (V)	-	8.8
					- 19 -	3																B. A. V. I.
IARD, GRAY, CL RACE GRAVEL,	AY, SOME SILT, TRAC	E SAND,	911.4	₩ 911.4	20 -	8 13	39	100	SS-11	4.50	9	5	3	24	59	45	25	20	22	A-7-6 (13)	_	off AB. B.
RACE GRAVEL,	DAMF				- 21 -	13			00-11	4.50		5	5	24		+5	20	20	~~~			
	AY, HIGHLY WEATHER	RED, VERY	908.9	TR	- 22 - - - 23 -	16 50/4"	-	100	SS-12	4.50	-	-	-	-	-	-	-	-	14	Rock (V)	-	2 A. A. A
VEAK, FRIABLE.					- 24 -																	AL A A
NTERBEDDED S	HALE (70%) AND LIMES	TONE	906.3		_ 25 -	- \$ 0/1"_/		100/	SS-13	<u> </u>								L	16	Rock (V)		EL A PLS
30%), RQD 73%, SHALE, GRAY	REC. 97%; , SLIGHTLY WEATHER	ED, VERY			26 -																	1. A.
'1%);	CALCAREOUS, (RQD)				- 27 -	52		97	NQ2-1											CORE		080
	(RQD 13%, REC 26%).	INERED,			- 28 - - - 29 -																	N - L R
					- 30 -																	6 B 6
					- 31 -																	- Brand - B
					_ 32 -	72		97	NQ2-2											CORE		Ban
					- 33 -				NGZ Z													L BAN
					- 34 - - - 35 -																	A. A. B
					- 36 -																	- 87 B 4
					- 37 -																	A Pr A
					- 38 -	88		95	NQ2-3											CORE		444
					- 39 -																	100
					- 40 -										-							8 B B
					- 41 - - - 42 -																	8 1 A 4
					- 43 -	80		100	NQ2-4											CORE		10 10 10
					- 44 -																	12 4 1
			886.3	EOB-	<u> </u>																	No.

DESIGN AGENCY	GEOTECHNICAL PROFILE - ROADWAY BRIDGE NO. BRO-68-44.12 OVER EAST FORK LITTLE MIAMI RIVER BORING LOG B-003-0-22

NOTES: CAVED AT 20.2' ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS; BENTONITE POWDER

STANDARD ODOT LOG W/ SULFATES (11 X 17) - OH DOT GDT STANDARD ODOT LOG W/ SULFATES (11 X 17) - OH DOT GDT STANDARD ODOT LOG W/ SULFATES (11 X 17) - OH DOT GDT

BRO-68-44.	12
------------	----

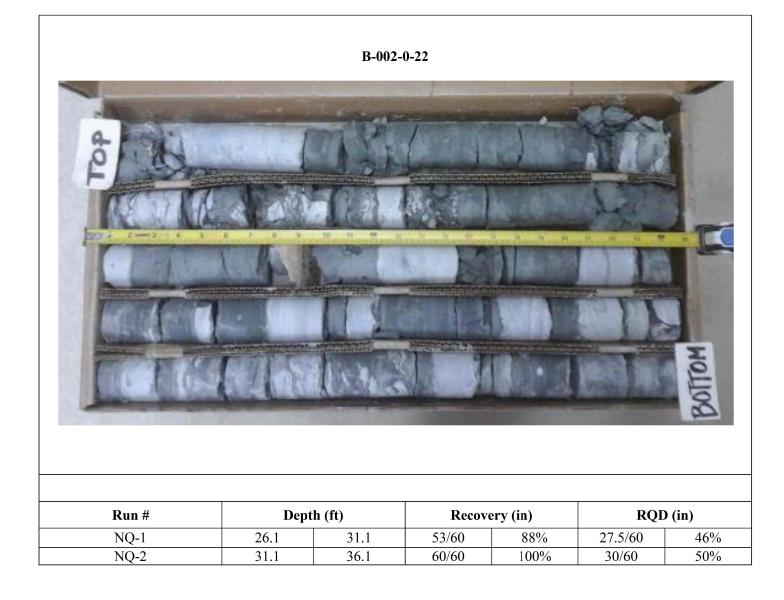
MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 20-01-2023 TIME: 16:26:25 USER: hp D:Drop Box\CTL 2023\January\Dept 05\COL\Shahed\22050029COL_ODOT\Mod_20.01.23\110556ZL003.dgn

BORING LOG:	S-001-0-96		
STATION AND OFFSET:	1+638, 1.5M RT	DATE STARTED:	
SURFACE ELEVATION:	282.7 M	DATE FINISHED:	
WATER ENCOUNTERED:	N/A *	SAMPLER TYPE:	

	SAMPLE	BLOWS	REC					TT		HARA	YSIC	RIST		ODOT
ELEV.	NUMBER	PER 15 cm	(%)	DEPTH	SOIL DESCRIPTION	WC	LiM	li i S	%	%	%	%	%	ODOT CLASS
			·		22.014 107.1417	L	LL	PI	AGO	cs	FS	SI	CL	
					28 CM - ASPHALT 0.3M									
					33 CM - SAND AND GRAVEL BASE 0.6M	1								
				1 —	BROWN SILTY SAND, SOME CLAY, TRACE GRAVEL									
281.1	SS-1	2/3/3	100			19	25	10	3	7	30	30	30	A – 4a
280.4	SS-2	2/3/3	100	2 —	2.4M	19								VISUAL
					BROWN CLAYEY SILT, LITTLE TO SOME SAND									
279.6	SS-3	2/2/3	100	3		21								VISUAL
278.9	SS-4	3/3/7	100			23								VISUAL
				4					1					
278.1	SS-5	2/2/3	100		÷	27	29	12	0	1	16	52	31	A-6a
277.7	SS-6	2/2/3	100	5 —	5.0M	23			0	1,	26	43	30	VISUAL
277.5 277.2	SS-7A SS-7B	8/21/24	83		BROWNISH-GRAY SAND, SOME GRAVEL, SOME CLAY, TRACE SILT 5.2M	14 14		}						VISUAL
276.9	SS-8	26/50~4"	39		BROWNISH-GRAY SILTY CLAY, LITTLE SAND, LITTLE	13	37	19	14	8	5	22	51	VISUAL A-6b
276.5	SS-9	28/50~5"	56	6 —	GRAVEL 5.8M 5.8M									VISUAL
					,								ĺ	
				7										
275.2	SS-10	26/50~5"	56	_										VISUAL
	RC-1		33	8	7.9M		1			Ľ				
	RC-1		55		SHALE / INDURATED CLAY (70%); GRAY, HIGHLY WEATHERED, SC GRAY, MODERATELY HARD, HIGHLY BROKEN, FOSSILIFEROUS -CORE LOSS = 67%) F (;	NIE	RBF	.DDE	υL	IMES	SIUN	NE (30%);
273.8					-RQD = 0%									8.9N
	RC-2		33	9	LIMESTONE (75%); GRAY, MODERATELY HARD, HIGHLY BROKEN, SHALE / INDURATED CLAY (25%); GRAY, HIGHLY WEATHERED, 1 -CORE LOSS = 67%	FOSS	SILIF	ER	DUS;	IN	TERI	BED	DED	
					-RQD = 0%									
272.3				10										

BOTTOM OF BORING = 10.4M

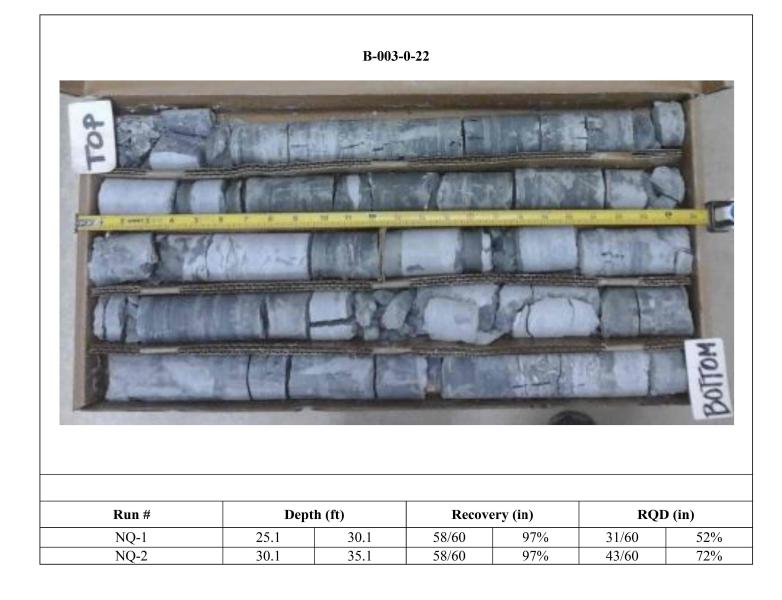
BORING LOG:


S-002-0-96

STATION AND OFFSET: SURFACE ELEVATION: WATER ENCOUNTERED:

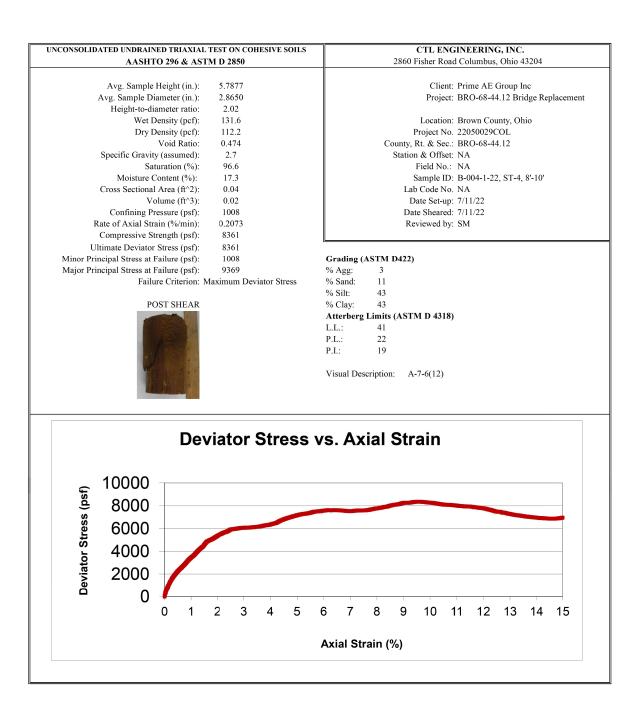
1+670, 1.5M LT 283.0 M N/A * DATE STARTED: 10/2/96 DATE FINISHED: 10/2/96 SAMPLER TYPE: HSA/RC

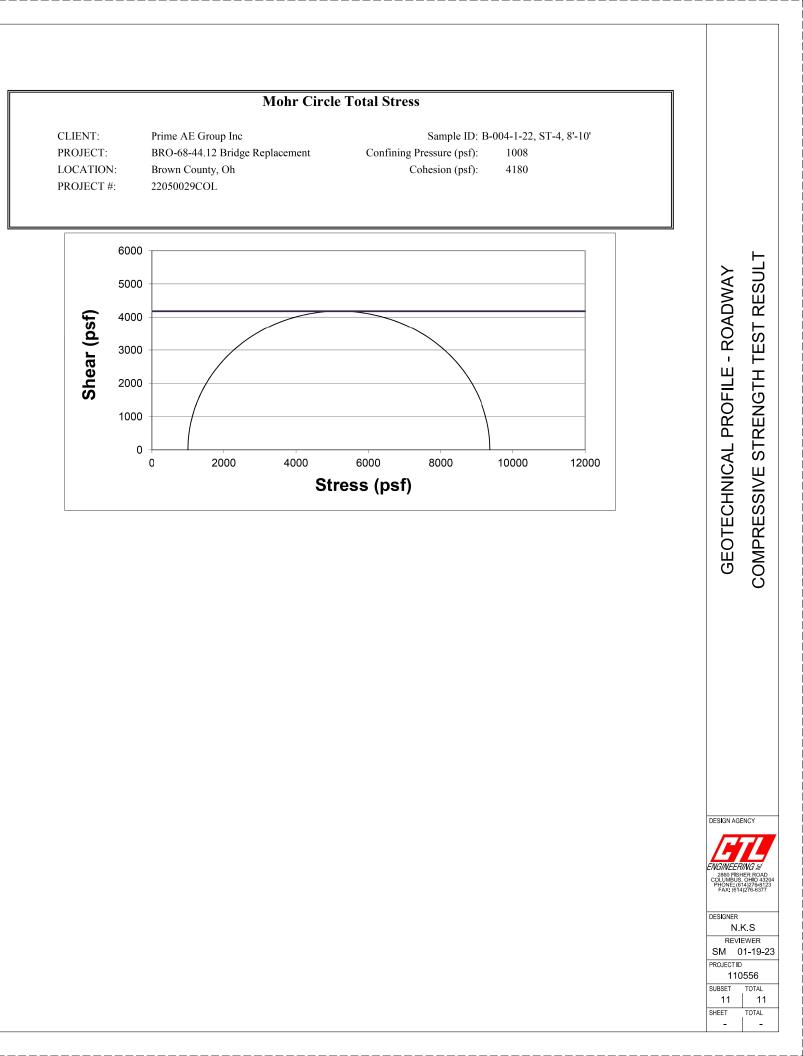
	NUMBER	PER 15 cm	(%)				LL	PIA	1	% :S FS			CLASS
282.2	SS-1	20/6/7	17	1	23 CM - ASPHALT 0.2M 38 CM - SAND AND GRAVEL BASE 0.6M BROWN SILTY SAND. SOME CLAY, TRACE GRAVEL								VISUAL
281.4	SS-2	13/10/11	78			10	23	9 1	0 1	1 2	25	33	A - 40
280.7	SS-3	11/7/7	67	2		11	22	9 1	0 1	1 24	25	30	A 40
279.9	SS-4	13/11/11	11	3 —									VISUAL
279.2	SS-5	8/7/9	89	4		15							VISUAL
278.4	SS-6	6/4/7	44		BROWN CLAYEY SAND, TRACE SILT, TRACE GRAVEL 4.6M	21			7 6	5 29	24	34	VISUAL
278.0 277.8 277.5	SS-7 SS-8A SS-8B	11/8/8 2/3/9	67 67	5 —	BROWN CLAY, LITTLE SAND, LITTLE SILT, TRACE 5.2M	16	22 47	1	4 1 8 1 7	7 42 7 32 7 11	6 2 10	31 31 65	A-4a VISUAL A-7-6
277.2	SS-9 RC-1	50~4"	22 39	6 —	GRAY LIMESTONE FRAGMENTS, LITTLE INDURATED CLAY 5.8M LIMESTONE; GRAY, MODERATELY HARD, HIGHLY BROKEN, FOSSILF	FROI					<u> </u>		VISUAL
276.3 275. 4	RC-2 RC-3		44 63	7 8	-CORE LOSS = 61% -RQD = 0% SHALE / INDURATED CLAY (75%); GRAY, HIGHLY WEATHERED, SC GRAY, MODERATELY HARD, HIGHLY BROKEN, FOSSILIFEROUS -CORE LOSS = 56% -RQD = 0% LIMESTONE (55%); GRAY, MODERATELY HARD, HIGHLY BROKEN FO INDURATED CLAY (45%); GRAY, HIGHLY WEATHERED, SOFT -CORE LOSS = 37%)F`T_	NTEF						7.6M
274.2					-RQD = 0% BIOTIOM OF BORING = 8.8M								
REVIEWER SM 01-19-23 PROJECT ID	ENGINEERING: COLUMBUS, OHIER RI PHONE: (614)276- FAX: (614)276- DESIGNER			E	GEOTECHNICAL PROFILE - ROAD RIDGE NO. BRO-68-44.12 OVER EAST FORK LI BORING LOGS S-001-0-96 AND S-00	ITTI	_E I		MI	RI\	/EF	२	



Run # Depth (ft) Recovery (in) RQD (in)	E di	16	I mail	3 10	116	CH IN	Hol
Run # Depth (ft) Recovery (in) ROD (in)							8
	Run # NQ-3	Dep 36.1	th (ft) 41.1	Recov 58/60	ery (in) 97%	RQE 16.5/60	D (in)

GEOTECHNICAL PROFILE - ROADWAY


ROCK CORE PHOTO FOR B-002-0-22



				1		Boltom
Run #	Dept	h (ft)	Recove	ery (in)	RQI) (in)
NQ-3	35.1	40.1	57/60	95%	53/60	88%
NQ-4	40.1	45.1	60/60	100%	48/60	80%

APPENDIX B TEST BORING RECORDS

Inc. Inc. <thinc.< th=""> Inc. Inc.</thinc.<>	TYPE:		SAMPLING FI	RM / LOGGER:			IMER:		UTO	ΛΑΤΙΟ)	ALIGN	ON / O MENT			U.S.	68		B-0	RATION 01-0-22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3.25" HSA SPT															1 OF
AND NOTES 928.1 INCL (70) ID (10)		MATERIAL DESCRIPTIO		ELEV.	SPT	/ N	REC	SAMPLE	HP	G	RADA	TION	(%)	ATT	ERB	ERG		ODOT	r s	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		r, (8")		927.4			(70)		(131)	GIX	0.5				ΓL	FI	wc	,		
@5.5'; STIFF	HARD, BR	ROWN, SILTY CLAY , LITTLE SA	/	×× 927.1		9 22	100	SS-1	4.50	10	7	12 3	5 36	35	19	16	8	A-6b (1	10) <	00
@5.5'; STIFF	@2.5'; VÉ	RY STIFF			$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 11		67	SS-2	2.75	18	6	9 2	9 38	35	19	16	16	A-6b ((9)	>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	@5 5'· ST	IFF			- 5 - 4	6 15	44	SS-3	2.75	-	-	-	-	-	-	-	12	A-6b ('	(V)	- 40 7 L
	@0.0,01			921.1	- 4		56	SS-4	-	-	-		· -	-	-	-	15	A-6b ((V)	- 12

PROJECT: BRO-68-44.12 TYPE: BRIDGE	DRILLING FIRM / OF SAMPLING FIRM / L		-			L RIG	: <u>CN</u> CME A							FSE		143+ U.S.	-79, 6' 68	<u>'LT.</u> EX	PLORA B-002-	
PID: <u>110556</u> SFN:	DRILLING METHOD		3.25" HSA / N				ION DATE		3/5/20					929.			EOB:	46.1 f		PAGE
START: <u>6/15/22</u> END: <u>6/15/22</u>	SAMPLING METHOD	D:	SPT / NQ2		ENE	RGY F	RATIO (%)	:	89.3		LAT	/ LON	IG: _		39.2	22564	41, -83	3.910727		1 OF 2
MATERIAL DESCRIPTION		ELEV.	DEPTHS	SPT/			SAMPLE					N (%)			ERB			ODOT	SO4	BAC
AND NOTES		929.3		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
ASPHALT, (8") AGGREGATE BASE, (4")		929.0 928.3	E 1	_																
DENSE, BROWN, GRAVEL AND STONE		020.0		8	37	100	SS-1	4.50	52	13	9	15	11	20	14	6	6	A-2-4 (0)	<100	A La
FRAGMENTS WITH SAND AND SILT, LITTL	E CLAY,		- 2	14		100		4.00	02	10	Ŭ.			20	17	•	Ŭ	772 4 (0)	100	
(FILL), DAMP @2.5'; NO RECOVERY			- 3	8 7	22	0	SS-2	-	-	-	-	-	-	-	-	-	-	A-2-4 (V)	-	<_ <
-		925.3	- 4	8		-														1 L 1 L 2 X
VERY STIFF, BROWN, SILT AND CLAY , "A GRAVEL, TRACE SAND, (FILL), DAMP	AND"		- 5	8 7 6	19	67	SS-3	3.00	41	5	5	23	26	32	19	13	17	A-6a (4)	-	ALL AL
@5.5'; STIFF			- 6	6	25	33	SS-4	1.50	-	_	-	-	-	-	-	-	10	A-6a (V)	_	
			F 7	<u>11</u>																121
		921.3	- 8	-																
STIFF, BROWN, CLAY, SOME SILT, SOME	■ ++++		-	4 5	15	78	SS-5	1.75	26	4	5	23	42	41	23	18	17	A-7-6 (9)	- I	É ant
GRAVEL, TRACE SAND, DAMP			- 9 -	5		10		1.70	20	-	Ŭ	20	72		20	10		/// 0 (0)		
			- 10	D —																22M
@10.5'; VERY STIFF			- 1 [.]	$1 - \frac{3}{17}$	48	67	SS-6	3.00	_	-	_	_	_	_			18	A-7-6 (V)		4 LX
			- 12	15		07		5.00	-		_	_	_	-	-	_	10	A-7-0 (V)		4994
		916.3	-	-																2000
STIFF, GRAY, SILT AND CLAY , LITTLE GR LITTLE SAND, DAMP		914.8	13 	3	9	100	SS-7	-	19	6	10	24	41	34	21	13	18	A-6a (7)	-	
STIFF, GRAY, SANDY SILT , LITTLE CLAY, GRAVEL, MOIST	, TRACE	913.3	- 1	4 5	13	100	SS-8	-	8	5	26	39	22	27	19	8	20	A-4a (5)	-	
MEDIUM STIFF, GRAY, SILT AND CLAY , S SAND, LITTLE GRAVEL, MOIST			- 16 - - 17	2^{2}	7	67	SS-9	-	10	9	22	26	33	30	18	12	28	A-6a (6)	-	
			- 18	$3 - \frac{3}{3}$	12	100	SS-10										14	A 60 (1/)		
			- 19	П ⁻ Б		100	33-10	-	-	-	-	-	-	-	-	-	14	A-6a (V)	-	
		909.3	u 000 3	_																a L
STIFF, BROWN AND BLACK, SILTY CLAY,	, SOME		- 20	3 5	15	67	SS-11	1.75									11	A-6b (V)		- L
SAND, LITTLE GRAVEL, TRACE ORGANIC			- 2'	1 - 5		0/	33-11	1./5	-	-	-	-	-	-	-	-	11	(V) do-A	-	2 Z
			- 22	2						Ī				Ī						2/2
@22.5'; HARD, CONTAINS CLAYSTONE			- 23	3 28	10	100	00.40	4.50									44		1	400
FRAGMENTS			-	10	49	100	SS-12	4.50	-	-	-	-	-	-	-	-	11	A-6b (V)	-	
		904.3	- 24	+																27M
CLAYSTONE, GRAY, HIGHLY WEATHERE WEAK, (SOIL-LIKE).	D. VERY	903.2		31	-	92	SS-13	4.00	-	-	-	-	-	-	-	-	19	Rock (V)	-	
@26.3' TO 26.7'; Qu = 5,770 PSI			- 2																	A SA
			-	H																400
			- 28	3 - 46		88	NQ2-1											CORE		
			- 29	9 - 40		00	11042-1													9000
																				A La

PID: <u>110556</u> SFN: PROJECT: _	BRO-68-44	4.12 STA	TION / (143+79,				T: _6/			ND:		5/22	P	G 2 OF 2	B-002	2-0-22
MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE				ATIO	<u>`</u>	<i>'</i>		ERBE			ODOT	SO4	BACK
AND NOTES INTERBEDDED SHALE (70%) AND LIMESTONE	899.3		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
(30%), RQD 48%, REC. 95%; SHALE, GRAY, HIGHLY WEATHERED, VERY WEAK, FRIABLE, CALCAREOUS, ARGILLACEOUS, (RQD 41%, REC 68%); LIMESTONE, GRAY, SLIGHTLY WEATHERED, VERY STRONG, (RQD 7%, REC 27%). (continued)		- 31 - - 32 - - 33 - - 34 - - 35 - - 36 -	50		100	NQ2-2											CORE		
@39.3' TO 39.6'; Qu = 530 PSI		- 37 - - 38 - - 39 - - 40 - - 41 -	28		97	NQ2-3											CORE		
	883.2	- 42 - - 43 - - 44 - - 45 - - 500 - 46 -	67		97	NQ2-4											CORE		
	<u>⊨</u> _∃ 883.2	— _{EOB} — <u>⊢</u> 46_			<u> </u>	<u> </u>	<u> </u>		<u> </u>		Į	I		<u> </u>		<u> </u>	<u> </u>	1	adne -
NOTES: CAVED AT 21.3' ABANDONMENT METHODS, MATERIALS, QUANTITIE																			

PROJECT: BRO-68-44.12	DRILLING FIRM / OPERA			- 1			1E 45									-67, 6	RT. EXI	PLORA ⁻ B-003-0	
TYPE: BRIDGE	SAMPLING FIRM / LOGGI														U.S.				PAG
PID: <u>110556</u> SFN:						ION DATE		8/5/20					931			EOB:		•	1 OF
START: <u>6/15/22</u> END: <u>6/15/22</u>	SAMPLING METHOD:	1	/ NQ2	-		RATIO (%)		89.3	_		/ LOI					-	3.910656		
MATERIAL DESCRIPTION		I DEPT				SAMPLE				ATIO	<u> </u>	,		1	ERG		ODOT	SO4	BA
AND NOTES	931.4		RQE) 00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FI
\ASPHALT , 10"	/ XX 931.2		+ $+$																
AGGREGATE BASE, 2"	930.4																		
HARD, BROWN, SILT AND CLAY , LITTLE S TRACE GRAVEL, (FILL), DAMP	928.9	_	$-2 - \frac{7}{1}$	25 0	67	SS-1	4.50	9	10	7	28	46	36	21	15	15	A-6a (10)	<100	
VERY STIFF, BROWN, CLAY , SOME SILT, GRAVEL, TRACE SAND, (FILL), DAMP	, LITTLE		$-3 - \frac{12}{7}$	7 21	78	SS-2	2.50	12	3	3	26	56	46	24	22	19	A-7-6 (14)	-	274 24 24 202
@4.0'; STIFF	925.9		- 4 - 5 - 5 - 5	4 13	78	SS-3	1.75	-	-	-	-	-	-	-	-	19	A-7-6 (V)	-	10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STIFF, BROWN, SILTY CLAY , SOME GRA LITTLE SAND, DAMP		_	- 6 - ⁹ 9	28	56	SS-4	1.00	22	9	7	24	38	38	21	17	19	A-6b (8)	_	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				0															TRE
			E . 1																
@8.0'; GRAY, MOIST				25	89	SS-5	1 75									24	A 65 AA		49.
			$-9 - \frac{7}{1}$	0 25	89	55-5	1.75	-	-	-	-	-	-	-	-	21	A-6b (V)	-	B B
			- 10 -																- 2
@10.5': MEDIUM STIFF. DAMP																			- ALA
				13	100	SS-6	0.75	18	9	7	21	45	40	21	19	14	A-6b (10)	-	7
			- 12 -	5															
	918.4		12																al 9
STIFF, GRAY, SILT AND CLAY , SOME SAN TRACE GRAVEL, MOIST	ND,		-13 -3 -14 -4	12	100	SS-7	1.75	3	3	18	37	39	32	20	12	24	A-6a (9)	-	
@14.5'; MEDIUM STIFF, WET			$-15 - \frac{3}{3}$	9	100	SS-8	0.50	2	3	27	39	29	29	18	11	26	A-6a (7)	-	
STIFF, GRAY, SANDY SILT, SOME CLAY,	915.4	_	- 16 - 3	3															91
GRAVEL, DAMP			- 17 - 3	4 10	100	SS-9	1.25	11	9	28	25	27	27	17	10	16	A-4a (3)	-	
@17.5'; VERY STIFF			$-18 - \frac{3}{3}$	9	67	SS-10	2.25	-	_	-	_	-	-	-	_	14	A-4a (V)	-	107
			- 19 -	3	<u> </u>														
	911.4	W 911.4																	A C
HARD, GRAY, CLAY , SOME SILT, TRACE TRACE GRAVEL, DAMP	SAND HH		20 - 8	39	100	SS-11	4.50	9	5	3	24	59	45	25	20	22	A-7-6 (13)	-	4 1 V
			F F	3															- 2
	908.9	TR	22																
CLAYSTONE, GRAY, HIGHLY WEATHERE	ED, VERY		- 23 - 16	-	100	SS-12	4.50	-	-	-	-	-	-	-	-	14	Rock (V)	-	40 7
WEAK, FRIABLE.			- 24																2 × 8
	906.3																		AR.
INTERBEDDED SHALE (70%) AND LIMEST		1	- 25 - 50/1"	/[/ <u>100</u> /	SS-13	<u> </u>	- /		- /		<u> </u>	- /	<u> </u>	<u> </u>	16	Rock (V)	- 1	
(30%), RQD 73%, REC. 97%;			- 26 -																
SHALE, GRAY, SLIGHTLY WEATHERE WEAK, FRIABLE, CALCAREOUS, (RQD 60			- 27 -																21ª
71%);			52		97	NQ2-1											CORE		Se la constante da la constant
LIMESTONE, GRAY, SLIGHTLY WEATH	HERED,		- 28 -																- DO
VERY STRONG, (RQD 13%, REC 26%).			- 29 -																
			⊢ 📕																49

PID: 110556	SFN:	PROJECT:	BRO-68-4	4.12 STA	TION /	OFFS	ET:	145+67, 6	6' RT.	5	STAR	T: _6	/15/22	2 EI	ND:	6/1	5/22	_ P	G 2 OF 2	B-003	3-0-22
	MATERIAL DESCR		ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE					N (%)			ERBE			ODOT CLASS (GI)	SO4 ppm	BACK FILL
(30%), RQD 73 SHALE, GF WEAK, FRIAB 71%); LIMESTON VERY STRON	AND NOTES D SHALE (70%) AND L 3%, REC. 97%; 2AY, SLIGHTLY WEAT LE, CALCAREOUS, (F E, GRAY, SLIGHTLY V G, (RQD 13%, REC 26 6'; Qu = 1,650 PSI	IMESTONE THERED, VERY RQD 60%, REC NEATHERED,		- 31 - 32 - 33 - 34 - 34 - 35 -			97	ID NQ2-2	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CORE		
				33 36 - 37 - 38 - 39 - 40 -	88		95	NQ2-3											CORE		
@40.3' TO 40.	7'; Qu = 3,350 PSI		886.3	- 41 - - 42 - - 43 - - 44 - _ EOB	80		100	NQ2-4											CORE		
NOTES: CAV	<u>'ED AT 20.2'</u> NT METHODS, MATE			ITINGS; BENT		20/0/0	FR														

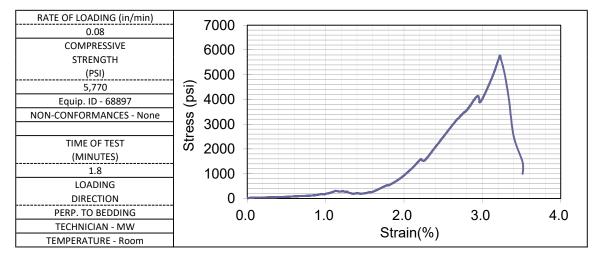
PROJECT: _								L RIG					STATION / OFFSET: 148+33, 6' RT. EXPLORATION ALIGNMENT: U.S. 68 B-004-0-2								-	
PID: 1105		DRILLING METHO	D:	3.25" SPT	HSA		CAL	IBRAT	ION DATE RATIO (%)	E: _ {	8/5/20 89.3		ELE		ON:		.5 (M	SL)	EOB:	5.83 f 3.910560	: <u> </u>	PAGE 1 OF 1
	MATERIAL DESCRIPTIONELEV.AND NOTES942.5					SPT/	N ₆₀	_	SAMPLE	HP	G	RAD	DATION (%)			ATTERBERG					SO4	BACK
				DEI I	110	RQD	•60	(%)	ID ((tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	WC CLASS (GI)	ppm	FILL
HARD, GRA	7" TE BASE , 5" AY, SILT AND CLAY , SOME S <i>A</i> AVEL, DAMP	ND,	<u>941.9</u> 941.5 940.0	—TR—	- 1 -	10 8 11	28	100	SS-1	4.50	10	6	19	35	30	27	16	11	11	A-6a (6)	400	
WEAK, FRI					- 3 -	40 44 49	138	89	SS-2	-	-	-	-	-	-	-	-	-	9	Rock (V)	-	
୭. @4.0'; CON ସ	ITAINS LIMESTONE FRAGME	NTS.	937.0		- 5 -	28 34 30	95	100	SS-3	-	-	-	-	-	-	-	-	-	11	Rock (V)	-	
	IE , GRAY, SEVERLY WEATHE AK, FRIABLE.	RED,	<u>936.6</u>	-EOB-		50/4"	L	L <u>100</u>	<u></u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	9	Rock (V)	<u> </u>	

	ART: 0/22/22 END: 0/22/22 Distributer from and the field of the field	PROJECT: TYPE:	BRO-68-44.12 ROADWAY	-1	ING FIRM / LOGGER:CTL / TOM HAMMER:CME AU						<u>1E 45</u> AUTON		с							<u>40, 83</u> 68	<u>8' RT.</u> EX	EXPLORATION B-004-1-22			
MATERIAL DESCRIPTION AND NOTES ELEV. 954.0 DEPTHS SPT 964.0 No. REC (%) SAMPLE ID HP (ts) GRADATION (%) ATTERBERG S is cL ODOST DASS(0) SOUT OPENIE SOUT OR CS FS SI CL IL PL PI ODOST OPENIE SOUT OPENIE SOUT OR SOUT OR CS FS SI CL IL PL PI CASS(0) SOUT OPENIE SOUT OPENIE SOUT OPENIE SOUT OPENIE SOUT OPENIE SOUT OPENIE SOUT OPENIE SOUTON <	ART. OUZDE Description Outcol (Hold) Outc	PID: 110556	SFN:	DRILLING M	ETHO	D:	3.25	" HSA						8/5/20)	ELE	VAT	ION:	954	.0 (M	SL)	EOB:	18.2 f	t	PA
AND NOTES 954.0 DEPTHS RQD No (%) ID (ts) GR CS FS SI CL L PI WC CLASS (G) ppp TOPSOIL, 4" 933.7 933.7 933.7 1	AND NOTES 954.0 DEPTRS ROD Non (%) ID (ist) GR cs FS SI CL LL PL PI vc CLASS (0) ppm OPSOIL, 4" ARD, BROWN, SILTY CLAY, LITTLE SAND, RACE GRAVEL, DAMP 933.7 1 1 4 14 4 2 3 4 15 78 SS-1 4.50 1 4 14 42 39 40 22 18 19 A-6b (11) - ARD, BROWN, SLAY CLAY, LITTLE SAND, RACE GRAVEL, DAMP 948.0 948.0 - - - - - - - - - - 13 A-6b (11) - 948.0 948.0 948.0 - - - - - - - - 13 A-6b (V) - 948.0 940.5 - - - - - - - - 13 A-6b (V) - 940.5 - - - - - - - - - -	START: 6/22	2/22 END: 6/22/22	_ SAMPLING	METHO	DD:	SP	T / ST		ENE	RGY F	RATIO (%)	:	89.3		LAT	/ LO	NG:		39.2	2267	78, -8	3.910281		10
AND NOTES 954.0 RUD	AND NOTES 954.0 RCU		MATERIAL DESCRIPTION	ON .		ELEV.		тие	SPT/	N	REC	SAMPLE	HP		RAD	ATIO	N (%	6)	ATT	ERBI	ERG				E
HARD, BROWN, SILTY CLAY, LITTLE SAND, TRACE GRAVEL, DAMP 1 4 14 42 39 40 22 18 19 A-6b (11) - 948.0 948.0 948.0 - 13 - - - - - - 13 - - - - 13 - - - - - 13 - - - - - - - -	ARD, BROWN, SILTY CLAY, LITTLE SAND, RACE GRAVEL, DAMP 1 1 4 14 42 3 40 22 18 19 A-6b (11) - 948.0 948.0 948.0 948.0 10 SS-2 4.50 1 4 14 42 39 40 22 18 19 A-6b (11) - 948.0 948.0 948.0 100 SS-2 4.50 - 13 A-6b (11) - - - - - - - - - - 13 A-6b (V) - - - - - 13 A-6b (V) - - - - - 13 A-6b (V) - - - - 19 A-76 (12) - - - - - - - A-76 (12) - - -		AND NOTES			954.0	DEP	113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	l
TRACE GRAVEL, DAMP 948.0 - <td>RACE GRAVEL, DAMP 948.0 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5</td> <td></td> <td></td> <td>/</td> <td></td> <td>∖953.7∕</td> <td></td> <td>-</td> <td>_</td> <td></td> <td>Å</td>	RACE GRAVEL, DAMP 948.0 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5			/		∖953.7∕		-	_																Å
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ARD, BROWN, CLAY, SOME SILT, LITTLE SAND, RACE GRAVEL, DAMP 948.0 948.0 948.0 ARD, BROWN, CLAY, SOME SILT, LITTLE SAND, RACE GRAVEL, DAMP 948.0 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 948.0 5 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.5 7 940.	HARD, BROW	N, SILTY CLAY, LITTLE SA	AND,				- 1 -	3																- 4 24
948.0 948.0 HARD, BROWN, CLAY, SOME SILT, LITTLE SAND, TRACE GRAVEL, DAMP 948.0 @8.0°-10.0°; UNDRAINED SHEAR STRENGTH = 4,180 948.0 @9.0°-10.0°; UNDRAINED SHEAR STRENGTH = 4,180 940.5 @11.0°; VERY STIFF 940.5 948.0 100 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - @11.0°; VERY STIFF 940.5 - 13 A-6b (V) - @11.0°; VERY STIFF 940.5 - 100 ST-4 - 3 5 6 43 41 22 19 - A-7-6 (7) - 940.5 - <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>TRACE GRAV</td><td>/EL, DAMP</td><td></td><td></td><td></td><td></td><td>F 2 -</td><td></td><td></td><td>78</td><td>SS-1</td><td>4.50</td><td>1</td><td>4</td><td>14</td><td>42</td><td>39</td><td>40</td><td>22</td><td>18</td><td>19</td><td>A-6b (11)</td><td>-</td><td>di K</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRACE GRAV	/EL, DAMP					F 2 -			78	SS-1	4.50	1	4	14	42	39	40	22	18	19	A-6b (11)	-	di K
948.0 940.5 940.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-	– 0																24 A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ARD, BROWN, CLAY, SOME SILT, LITTLE SAND, RACE GRAVEL, DAMP 948.0 948.0 5 100 SS-3 4.50 3 7 12 24 54 55 27 28 22 A-7-6 (18) - 98.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 5 - 100 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - 911.0'; VERY STIFF 940.5 - 110 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - 940.5 - 110 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - 940.5 - 111 6 8 14 33 78 SS-5 2.25 32 9 4 18 37 42 24 18 21 A-7-6 (7) - 110 - - - - - - -							- 3 -																	R
948.0 948.0 948.0 948.0 948.0 948.0 948.0 948.0 @8.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 @8.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 @9 100 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - @11.0'; VERY STIFF 940.5 940.5 100 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - 940.5 940.5 100 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - 940.5 940.5 100 ST-4 - 3 5 6 43 43 41 22 19 - A-7-6 (12) - 940.5 940.5 14 20 100 SS-5 2.25 32 9 4 18 37 42 24 18 21 A-7-6 (7) -	ARD, BROWN, CLAY, SOME SILT, LITTLE SAND, RACE GRAVEL, DAMP 948.0 98.0'-10.0'', UNDRAINED SHEAR STRENGTH = 4,180 SF 911.0'', VERY STIFF 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 940.5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>- 4 -</td><td></td><td>27</td><td>100</td><td>SS-2</td><td>4 50</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td><td>_</td><td>-</td><td>_</td><td>13</td><td>A-6h (V)</td><td></td><td>R A</td></tr<>							- 4 -		27	100	SS-2	4 50	-	-	-	-	_	_	-	_	13	A-6h (V)		R A
HARD, BROWN, CLAY , SOME SILT, LITTLE SAND, TRACE GRAVEL, DAMP @8.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 PSF @11.0'; VERY STIFF @11.0'; VERY STIFF @11.0'; VERY STIFF 940.5 TR 10 10 10 10 10 10 10 1	ARD, BROWN, CLAY, SOME SILT, LITTLE SAND, RACE GRAVEL, DAMP 948.0 -							- 5 -																	2 2 7
HARD, BROWN, CLAY, SOME SILT, LITTLE SAND, TRACE GRAVEL, DAMP @8.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 PSF @11.0'; VERY STIFF 940.5 TR CLAYSTONE, GRAY, HIGHLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 TR 10 10 10 10 10 10 10 10 10 10	ARD, BROWN, CLAY, SOME SILT, LITTLE SAND, RACE GRAVEL, DAMP Image: constraint of the stress					948.0		+	-																44
@8.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 Image: strength = 4,180 Imag	28.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 SF 211.0'; VERY STIFF 940.5			TLE SAND,				- 6 -		40	100	00.0	4 50	_	-	10	0.4	F 4		07	00		A 7 0 (40)		2 19 2
@8.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 Image: state of the state of t	08.0'-10.0'; UNDRAINED SHEAR STRENGTH = 4,180 B and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 C and the strength = 4,180 <lic and="" strength="4,180</li" the=""> C and</lic>	TRACE GRA	/EL, DAMP					- 7 -			100	55-3	4.50	3	1	12	24	54	55	27	28	22	A-7-6 (18) -	1
@11.0'; VERY STIFF @11.0'; VERY STIFF @11.0'; VERY STIFF 940.5 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE P38.0 P38.0 P40.5 P	P11.0'; VERY STIFF 940.5 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGMENTS. 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGENTS. 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGENTS. 938.0 9							- 8 -																	
@11.0'; VERY STIFF @11.0'; VERY STIFF @11.0'; VERY STIFF 940.5 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE P38.0 P38.0 P40.5 P	P11.0'; VERY STIFF 940.5 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGMENTS. 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGENTS. 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGENTS. 938.0 9		INDRAINED SHEAR STREI	NGTH = 4,180				-			100	ST-4	-	3	5	6	43	43	41	22	19	-	A-7-6 (12) -	4
@11.0'; VERY STIFF 940.5 Image: constraints of the second se	211.0'; VERY STIFF 940.5 Image: state of the sta	-01						- 9 -	_																-
@11.0'; VERY STIFF 940.5 CLAYSTONE, GRAY, HIGHLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 9	211.0'; VERY STIFF 940.5 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGMENTS. 938.0 HALE, CONTAINS LIMESTONE RAGMENTS. HALE, CONTAINS LIMESTONE HALE, CONTAINS LIMES							- 10 -	-																A.W.A.
@11.0'; VERY STIFF 940.5 CLAYSTONE, GRAY, HIGHLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS. 938.0 9	911.0"; VERY STIFF 940.5 -12 0 8 33 78 SS-5 2.25 32 9 4 18 37 42 24 18 21 A-7-6 (7) - LAYSTONE, GRAY, HIGHLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE RAGMENTS. TR -14 20 113 100 SS-6 3.75 - - - - 12 Rock (V) - 938.0 938.0 938.0 -16 -20 - - - - - - - - - 12 Rock (V) - PALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0 - 16 -							L 11 -																	- 4
Image: state of the state	Image: state in the state	@11.0'; VERY	ŚTIFF					-		33	78	SS-5	2 25	32	9	4	18	37	42	24	18	21	A-7-6 (7)		72
CLAYSTONE, GRAY, HIGHLY WEATHERED, VERY IR 14 20 113 100 SS-6 3.75 - - - - 12 Rock (V) - FRAGMENTS. 938.0 938.0 938.0 - - - - - - - 12 Rock (V) - SHALE, GRAY, SEVERLY WEATHERED, VERY 938.0 - - 100 SS-7 - - - - 9 Rock (V) - RAGMENTS. - - - - - - - - - - - - 12 Rock (V) - SHALE, GRAY, SEVERLY WEATHERED, VERY - - - - - - - - - - 9 Rock (V) - WEAK, FRIABLE, CONTAINS LIMESTONE - - - - - - - - - 9 Rock (V) - TR - - - - - - - - 9 Rock (V) -	LAYSTONE, GRAY, HIGHLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0							12 -			10		2.20	02	Ŭ		10	0.							9
CLAYSTONE, GRAY, HIGHLY WEATHERED, VERY IR 14 20 113 100 SS-6 3.75 - - - - 12 Rock (V) - FRAGMENTS. 938.0 938.0 938.0 - - - - - - - 12 Rock (V) - SHALE, GRAY, SEVERLY WEATHERED, VERY 938.0 - - 100 SS-7 - - - - 9 Rock (V) - RAGMENTS. - - - - - - - - - - - - 12 Rock (V) - SHALE, GRAY, SEVERLY WEATHERED, VERY - - - - - - - - - - 9 Rock (V) - WEAK, FRIABLE, CONTAINS LIMESTONE - - - - - - - - - 9 Rock (V) - TR - - - - - - - - 9 Rock (V) -	LAYSTONE, GRAY, HIGHLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY /EAK, FRIABLE, CONTAINS LIMESTONE 938.0					940 5		- 13 -	-																8 8 18
FRAGMENTS. 938.0 SHALE, GRAY, SEVERLY WEATHERED, VERY WEAK, FRIABLE, CONTAINS LIMESTONE FRAGMENTS.	ARAGMENTS. 938.0 HALE, GRAY, SEVERLY WEATHERED, VERY VEAK, FRIABLE, CONTAINS LIMESTONE RAGMENTS	CLAYSTONE,	GRAY, HIGHLY WEATHER	RED, VERY	1.11	0.010	——TR—		20																4
SHALE, GRAY, SEVERLY WEATHERED, VERY 938.0 WEAK, FRIABLE, CONTAINS LIMESTONE	HALE, GRAY, SEVERLY WEATHERED, VERY FEAK, FRIABLE, CONTAINS LIMESTONE RAGMENTS			NE				-			100	SS-6	3.75	-	-	-	-	-	-	-	-	12	Rock (V)	-	A
SHALE, GRAY, SEVERLY WEATHERED, VERY Image: state stat	/EAK, FRIABLE, CONTAINS LIMESTONE	FRAGMENTS	i.			000.0		- 15 -																	9
WEAK, FRIABLE, CONTAINS LIMESTONE	/EAK, FRIABLE, CONTAINS LIMESTONE					938.0		- 16 -	20		100	<u> </u>										0	Deek (A)		R B B
		WEAK, FRIAE	BLE, CONTAINS LIMESTON	NE				- 17 -		-	100	55-1	-	-	-	-	-	-	-	-	-	9	ROCK (V)	-	- 8
$F = \frac{933.8}{EOB} - \frac{18}{EOB}						005.0			-																R
						935.8	EOB		_																a and a second s
			VED AT 13.4'; BORING CO	ORDINATES A		VATION	ESTIMA				FART							חופו	FREI	ום א ר	PRO				

APPENDIX C LABORATORY TEST RESULTS

PROJECT NO:	22050029COL
DATE:	6/28/2022

UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK CORE - ASTM D 7012




Method C

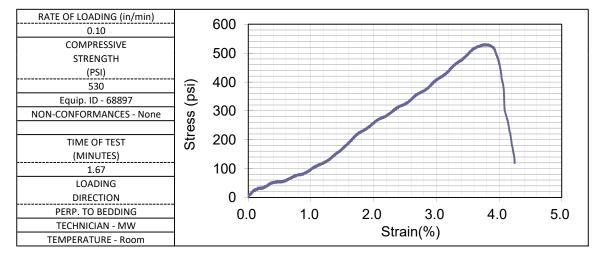
BORING NUMBER	B-002-0-22	TOP DEPTH(FT)	26.3	BOTTOM DEPTH(FT)	26.7
SAMPLE NUMBER	NQ-1	DISTRICT	9	PID NO.	110556
COUNTY	BRO	ROUTE	68	SECTION	44.12

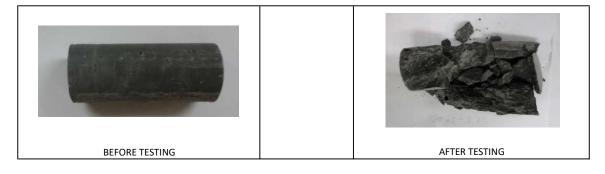
FORMATION	Ordovician age, Waynesville and Arnheim Group
DESCRIPTION	Limestone, gray, slightly weathered, moderately strong
MOISTURE CONDITION	As Received

MEASUREMENT	LENGTH(INCHES)	DIAMETER(INCHES)	LENGTH/DIAMETER	2.1
1	4.041	1.956	CORRECTION FACTOR	1
2	4.051	1.966	AREA(IN ²)	3.0
3	4.070	1.966	MASS (GRAMS)	546.1
AVERAGE	4.054	1.963	UNIT WEIGHT(LBS/FT ³)	169.6

PROJECT NO:	22050029COL
DATE:	6/28/2022

UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK CORE - ASTM D 7012




Method C

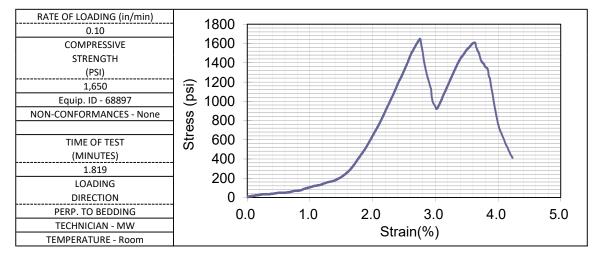
BORING NUMBER	B-002-0-22	TOP DEPTH(FT)	39.3	BOTTOM DEPTH(FT)	39.6
SAMPLE NUMBER	NQ-3	DISTRICT	9	PID NO.	110556
COUNTY	BRO	ROUTE	68	SECTION	44.12

FORMATION	Ordovician age, Waynesville and Arnheim Group
DESCRIPTION	Shale, gray, highly weathered, very weak
MOISTURE CONDITION	As Received

MEASUREMENT	LENGTH(INCHES)	DIAMETER(INCHES)	LENGTH/DIAMETER	2.1
1	4.076	1.908	CORRECTION FACTOR	1
2	4.078	1.929	AREA(IN ²)	2.9
3	4.072	1.941	MASS (GRAMS)	488.7
AVERAGE	4.075	1.926	UNIT WEIGHT(LBS/FT ³)	156.8

PROJECT NO:	22050029COL
DATE:	6/28/2022

UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK CORE - ASTM D 7012



Method C

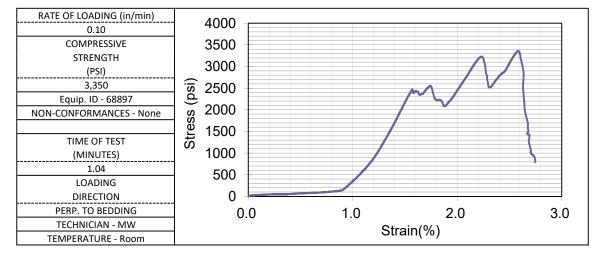
BORING NUMBER	B-003-0-22	TOP DEPTH(FT)	33.3	BOTTOM DEPTH(FT)	33.6
SAMPLE NUMBER	NQ-2	DISTRICT	9	PID NO.	110556
COUNTY	BRO	ROUTE	68	SECTION	44.12

FORMATION	Ordovician age, Waynesville and Arnheim Group
DESCRIPTION	Shale, gray, slightly weathered, slightly strong
MOISTURE CONDITION	As Received

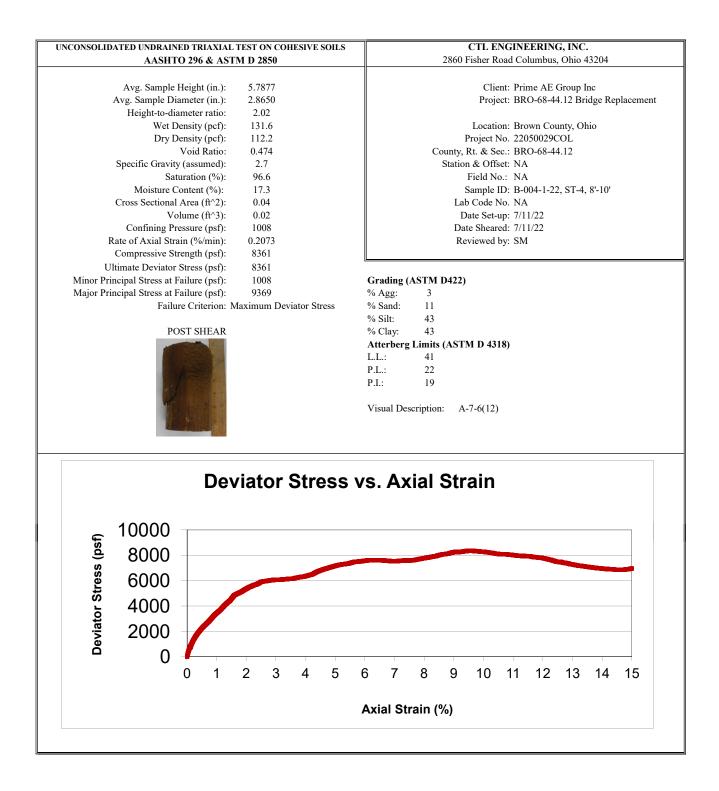
MEASUREMENT	LENGTH(INCHES)	DIAMETER(INCHES)	LENGTH/DIAMETER	2.1
1	4.089	1.957	CORRECTION FACTOR	1
2	4.084	1.956	AREA(IN ²)	3.0
3	4.081	1.957	MASS (GRAMS)	517.6
AVERAGE	4.085	1.957	UNIT WEIGHT(LBS/FT ³)	160.5

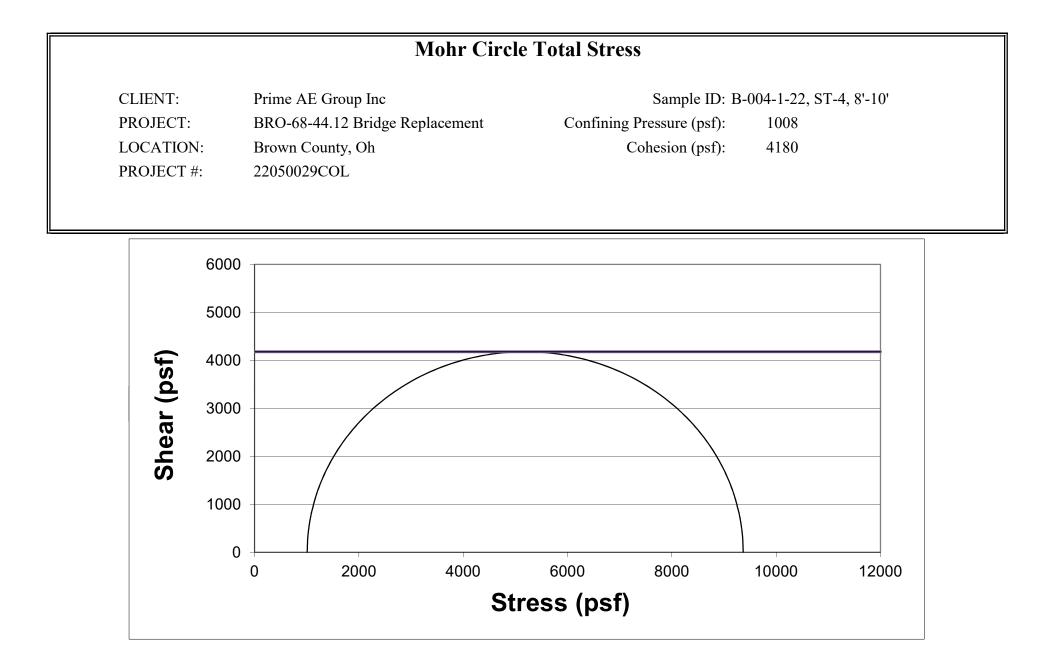
PROJECT NO:	22050029COL
DATE:	6/28/2022

UNIAXIAL COMPRESSIVE STRENGTH OF INTACT ROCK CORE - ASTM D 7012



Method C


BOR	NG NUMBER	B-003-0-22	TOP DEPTH(FT)	40.3	BOTTOM DEPTH(FT)	40.7
SAM	PLE NUMBER	NQ-4	DISTRICT	9	PID NO.	110556
	COUNTY	BRO	ROUTE	68	SECTION	44.12


FORMATION	Ordovician age, Waynesville and Arnheim Group
DESCRIPTION	Limestone, gray, slightly weathered, slightly strong
MOISTURE CONDITION	As Received

MEASUREMENT	LENGTH(INCHES)	DIAMETER(INCHES)	LENGTH/DIAMETER	2.0
1	3.945	1.970	CORRECTION FACTOR	1
2	3.950	1.966	AREA(IN ²)	3.0
3	3.948	1.966	MASS (GRAMS)	529.3
AVERAGE	3.948	1.967	UNIT WEIGHT(LBS/FT ³)	168

APPENDIX D GB1 ANALYSIS

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

BRO-68-44.12 110556

Re-alignment of bridge and roadway along US-68 from Sta. 142+60 to 148+75

CTL Engineering Inc.

Prepared By: Eva Date prepared: Th

Evan Holcombe, P.E. Thursday, January 12, 2023

CTL ENGINEERING INC. 2860 FISHER ROAD COLUMBUS, OHIO 43204 614-276-8123 eholcombe@ctleng.com

NO. OF BORINGS:

4

2

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring	Proposed Subgrade EL	Cut Fill
1	B-001-0-22	US-68	142+00	6	Rt	CME 45 Track	89	928.1	926.8	1.3 C
2	B-002-0-22	US-68	143+79	6	Lt	CME 45 Track	89	929.3	928.6	0.7 C
3	B-003-0-22	US-68	145+67	6	Rt	CME 45 Track	89	931.4	931.8	0.4 F
4	B-004-0-22	US-68	148+33	6	Rt	CME 45 Track	89	942.5	941.2	1.3 C

Subgrade Analysis

1/18/2019

V. 14.5

#	Boring	Sample	Sam Dej	-	-	rade pth		dard ration	НР		Pł	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	riobiem		Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchoc)
1	В	SS-1	1.0	2.5	-0.3	1.2	22		4.5	35	19	16	35	36	71	8	16	A-6b	10	99					
	001-0	SS-2	2.5	4.0	1.2	2.7	37		2.75	35	19	16	29	38	67	16	16	A-6b	9						
	22	SS-3	4.0	5.5	2.7	4.2	15		2.75							12	16	A-6b	16						
		SS-4	5.5	7.0	4.2	5.7	13	13								15	16	A-6b	16						
2	В	SS-1	1.0	2.5	0.3	1.8	37		4.5	20	14	6	15	11	26	6	10	A-2-4	0	99					
	002-0	SS-2	2.5	4.0	1.8	3.3	22										14	A-6a	10						
	22	SS-3	4.0	5.5	3.3	4.8	19		3	41	23	18	23	26	49	17	18	A-6a	6						
		SS-4	5.5	7.0	4.8	6.3	25	19	1.5							10	14	A-6a	10						
3	В	SS-1	1.0	2.5	1.4	2.9	25		4.5	36	21	15	28	46	74	15	16	A-6a	10	99					
	003-0	SS-2	2.5	4.0	2.9	4.4	21		2.5	46	24	22	26	56	82	19	21	A-7-6	14						
	22	SS-3	4.0	5.5	4.4	5.9	13		1.75							19	18	A-7-6	16						
		SS-4	5.5	7.0	5.9	7.4	28	13	1	38	21	17	24	38	62	19	16	A-6b							
4	В	SS-1	1.0	2.5	-0.3	1.2	28		4.5	27	16	11	35	30	65	11	14	A-6a	6	400					
	004-0	SS-2	2.5	4.0	1.2	2.7	138									9	0	Rock	0		Rock	Мс			
	22	SS-3	4.0	5.5	2.7	4.2	95									11	0	Rock	0						
		SS-4	5.5	5.8	4.2	4.6	225	28								9	0	Rock	0						

PID: 110556

County-Route-Section: BRO-68-44.12 No. of Borings: 4

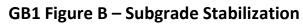
Geotechnical Consultant:CTL Engineering Inc.Prepared By:Evan Holcombe, P.E.Date prepared:1/12/2023

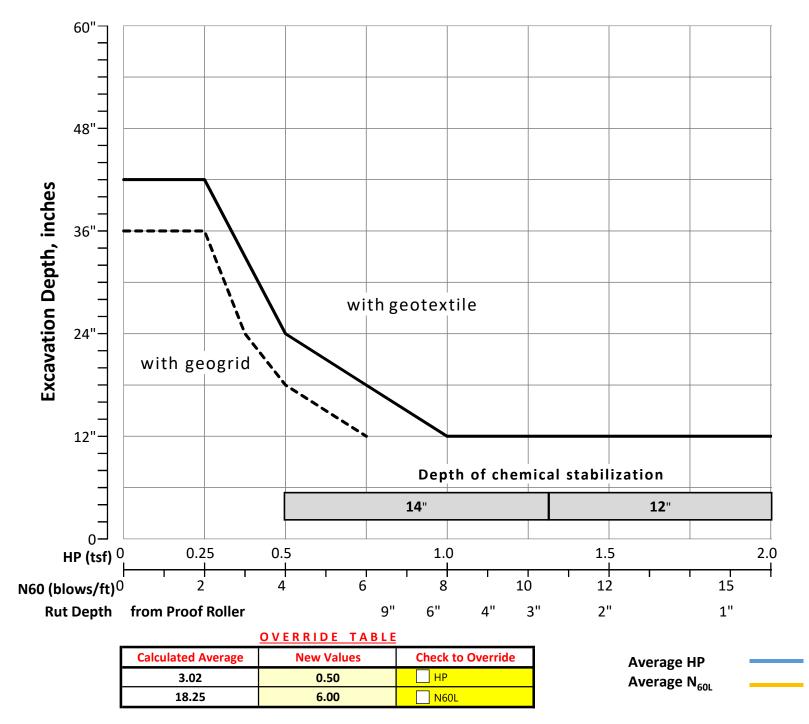
C	Chemical Stabilization Options											
320	Rubblize & Roll	Option										
206	Cement Stabilization	Option										
	Lime Stabilization	No										
206												

Excavate and Repl	ace
Stabilization Optio	ons
Global Geotextile	
Average(N60L):	0"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0"

Design CBR 7	
-----------------	--

% Sampl	es within	6 feet of subgr	ade		
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%		
N ₆₀ < 12	0%	0.5 < HP ≤ 1	6%		
12 ≤ N ₆₀ < 15	13%	1 < HP ≤ 2	13%		
N ₆₀ ≥ 20	75%	HP > 2	50%		
M+	6%				
Rock	22%				
Unsuitable	19%				


Excavate and Replace at Surface								
Average 0''								
Maximum	0''							
Minimum	0"							


% Proposed Subgrade Surface									
Unstable & Unsuitable	22%								
Unstable	11%								
Unsuitable	11%								

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	48	18	3.02	35	20	15	27	35	62	13	13	8
Maximum	225	28	4.50	46	24	22	35	56	82	19	21	16
Minimum	13	13	1.00	20	14	6	15	11	26	6	0	0

Classification Counts by Sample																			
ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b													Totals						
Count	3	0	0	1	0	0	0	0	0	0	0	0	5	5	0	2	0	0	16
Percent	19%	0%	0%	6%	0%	0%	0%	0%	0%	0%	0%	0%	31%	31%	0%	13%	0%	0%	100%
% Rock Granular Cohesive	19%					6%	-					-		75	5%			-	100%
Surface Class Count	2	0	0 0 1 0 0 0 0 0 0 0 3 3 0 0 0 0											9					
Surface Class Percent	22%	0%	0%	11%	0%	0%	0%	0%	0%	0%	0%	0%	33%	33%	0%	0%	0%	0%	100%

APPENDIX E GLOBAL STABILITY ANALYSIS

 Project:
 BRO-68-44.12

 Location:
 Stations 148+33, 143+40

 Boring No.:
 B-004-0-22, B-004-1-22

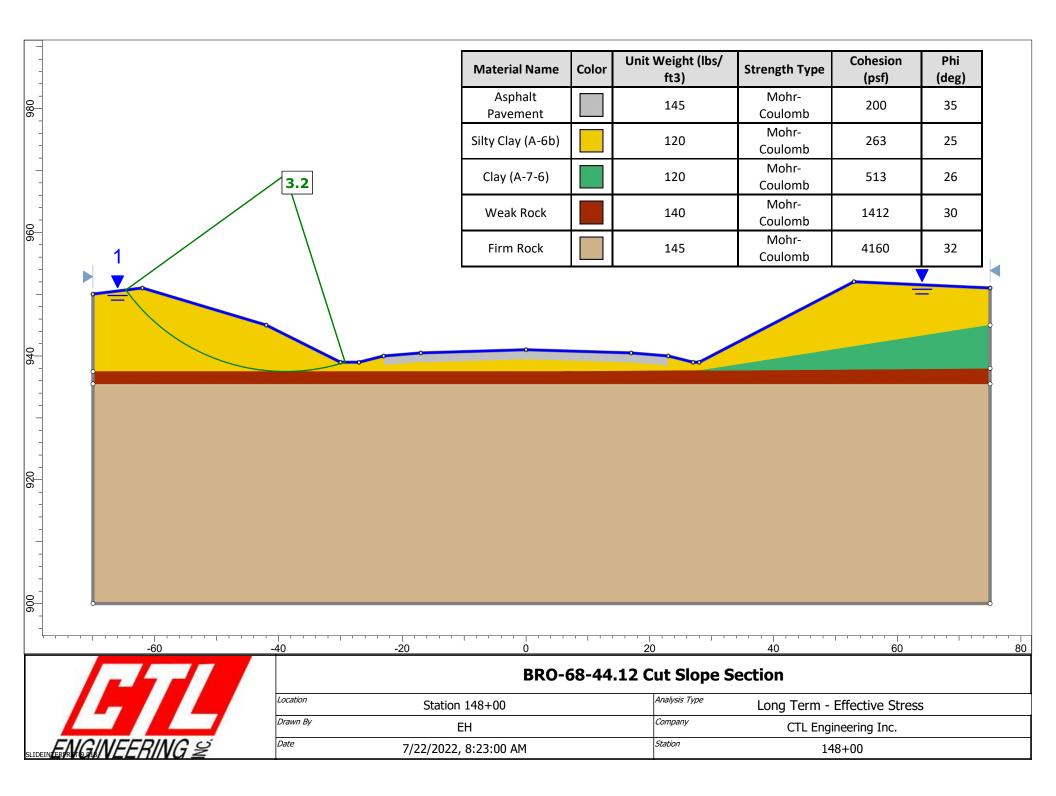
 Date:
 7/27/2022

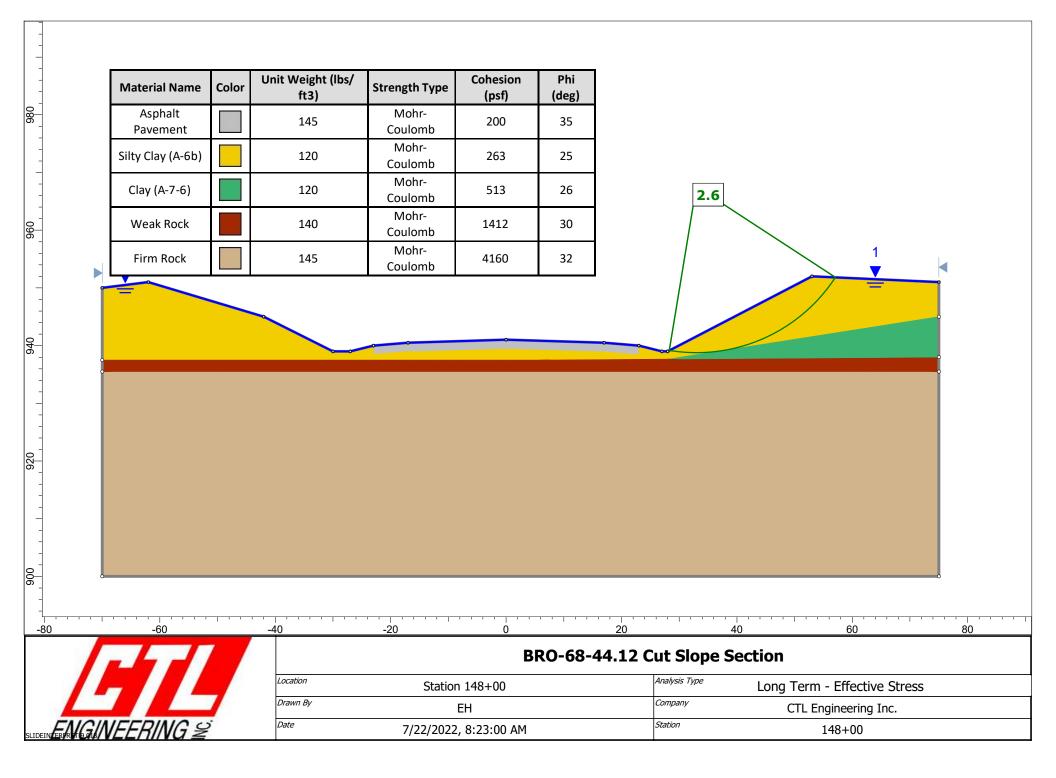
					Effective	e Stress	Total	Stress	
Layer No.	Туре	Total Weight (pcf)	N ₆₀ value (bpf)	Moisture Content (%)	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	Reference
1	Asphalt Pavement	145	NA	NA	200	35	200	35	5
2	A-6b (Native)	120	15	19					
			27	13					
	A-6b (Native)	120	21	16	263	25	2625	0	1,2,3,4
3	A-7-6 (Native)	120	48	22					
			33	21					
	A-7-6 (Native)	120	41	22	418	26	4180	0	1,2,3,4,7
4	Weak Rock	140	113	12					
	Weak Rock	140	113	NA	1412.5	30	14125	0	1,2,5
5	Firm Rock	145	100	NA					
	Firm Rock	145	100	NA	4160	32	4160	32	5,6

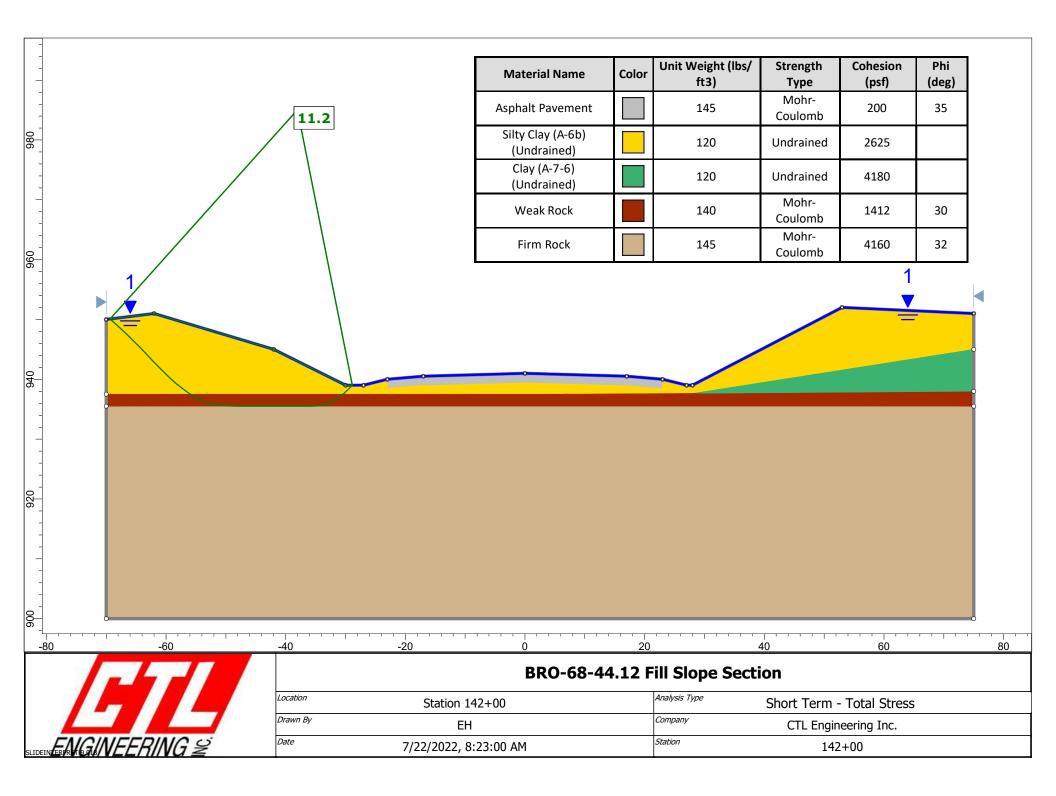
Reference Key

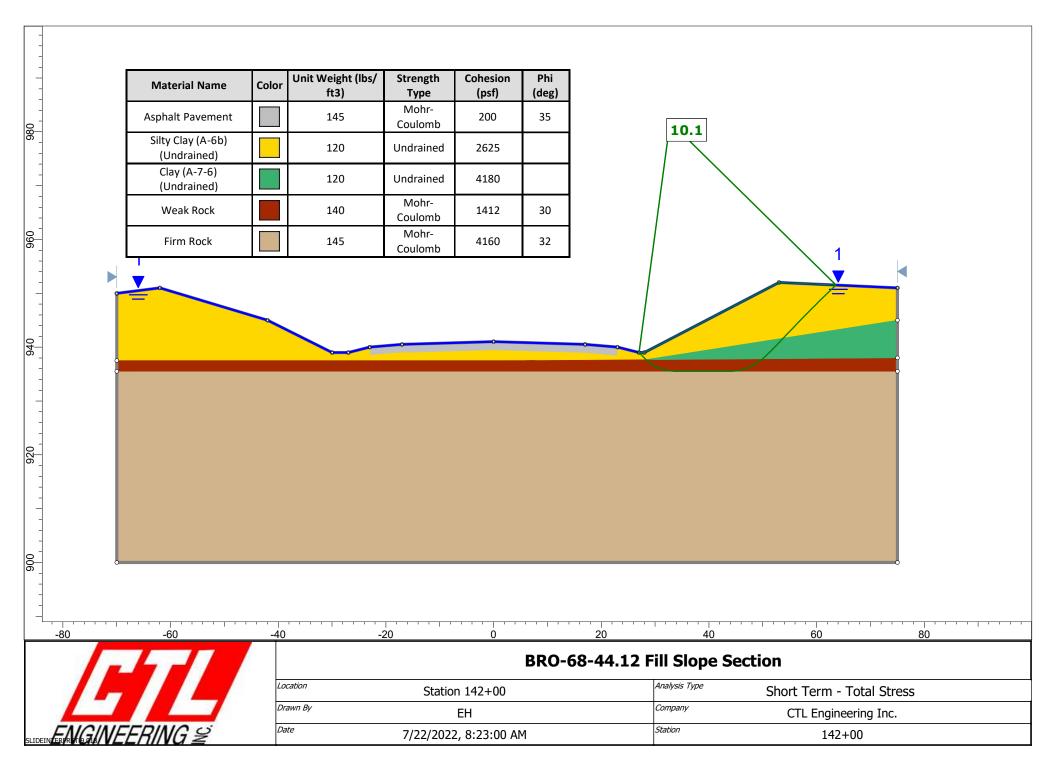
1 Total Stress Cohesion estimated as 12.5% of average N-Value - Bowles "Foundation Analysis and Design"

2 Total Stess Friction Angle estimated to be 0


3 Effective Stress Cohesion estimated to be 10 to 25 percent of Total Stress Cohesion


4 Effective Stress Friction Angle estimated based on soil type


5 ODOT GB7


6 Based on RMR value according to Bieniawski (1989).

7 UU Triaxial Laboratory Test Result (Boring B-004-1-22, 8.0'-10.0')

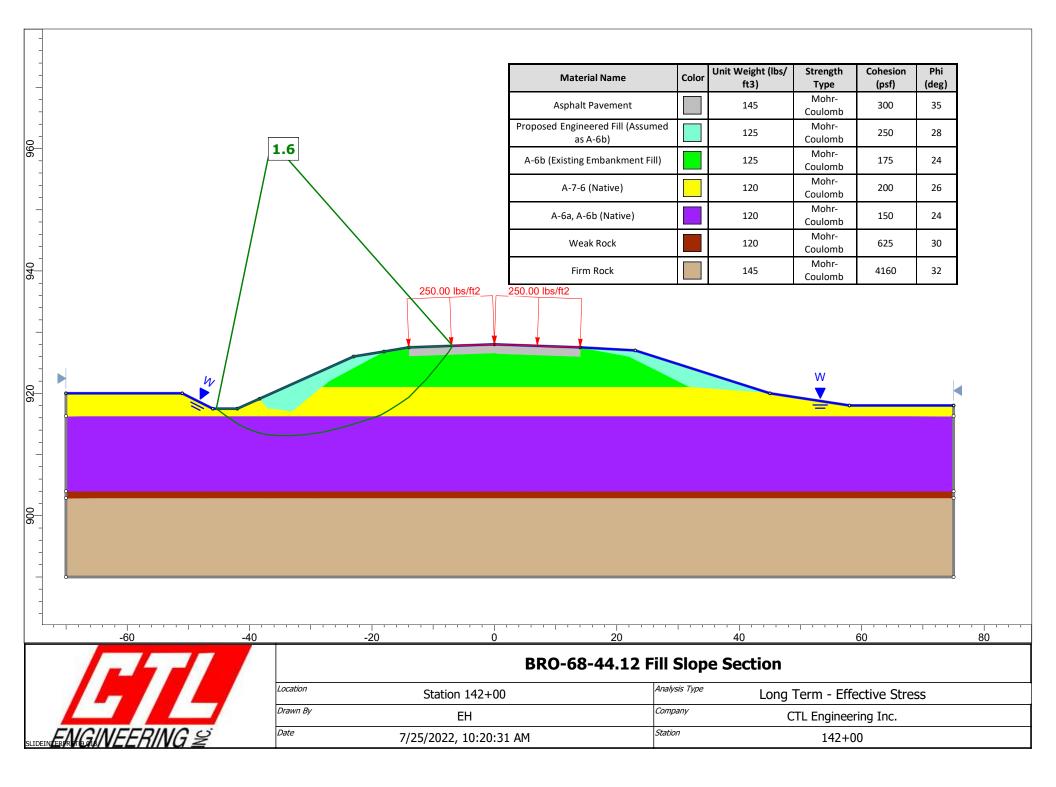
Project: BRO-68-44.12 Location: Stations 142+00, 143+79 Boring No.: B-001-0-22, B-002-0-22 Date: 7/27/22

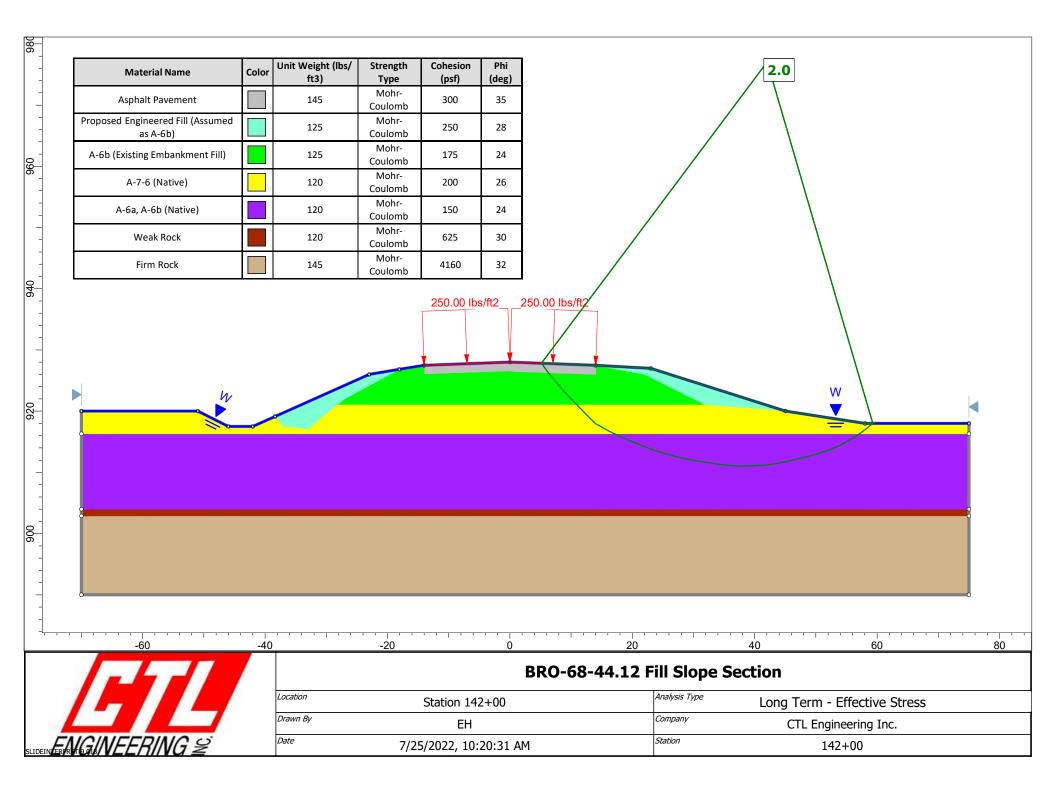
					Effectiv	e Stress	Total	Stress	
Layer No.	Туре	Total Weight (pcf)	N ₆₀ value (bpf)	Moisture Content (%)	Cohesion (psf)	Friction Angle (degrees)	Cohesion (psf)	Friction Angle (degrees)	Reference
1	Asphalt Pavement	145	NA	NA	200	35	200	35	5
2	Proposed Engineered Fill (Assumed as A-6b)	125	NA	NA	250	28	2500	0	7
3	A-6b (Existing Embankment Fill)	125	22 37 15 13	8 16 12 15					
	A-6b (Existing Embankment Fill)	125	22	13	175	24	2750	0	1,2,3,4,5
4	A-7-6 (Native)	120	15 48	17 18					
	A-7-6 (Native)	120	32	18	200	26	4000	0	1,2,3,4,5
5	A-6a, A-6b (Native)	120	9 13 7 12 15	18 20 28 14 11					
	A-6a, A-6b (Native)	120	11	11	150	24	1400	0	1,2,3,4,5
3	Weak Rock	140	50	11					
	Weak Rock	140	50	11	625	30	6250	0	1,2,5
4	Firm Rock	145	NA	NA					
	Firm Rock	145	NA	NA	4160	32	4160	25	5,6

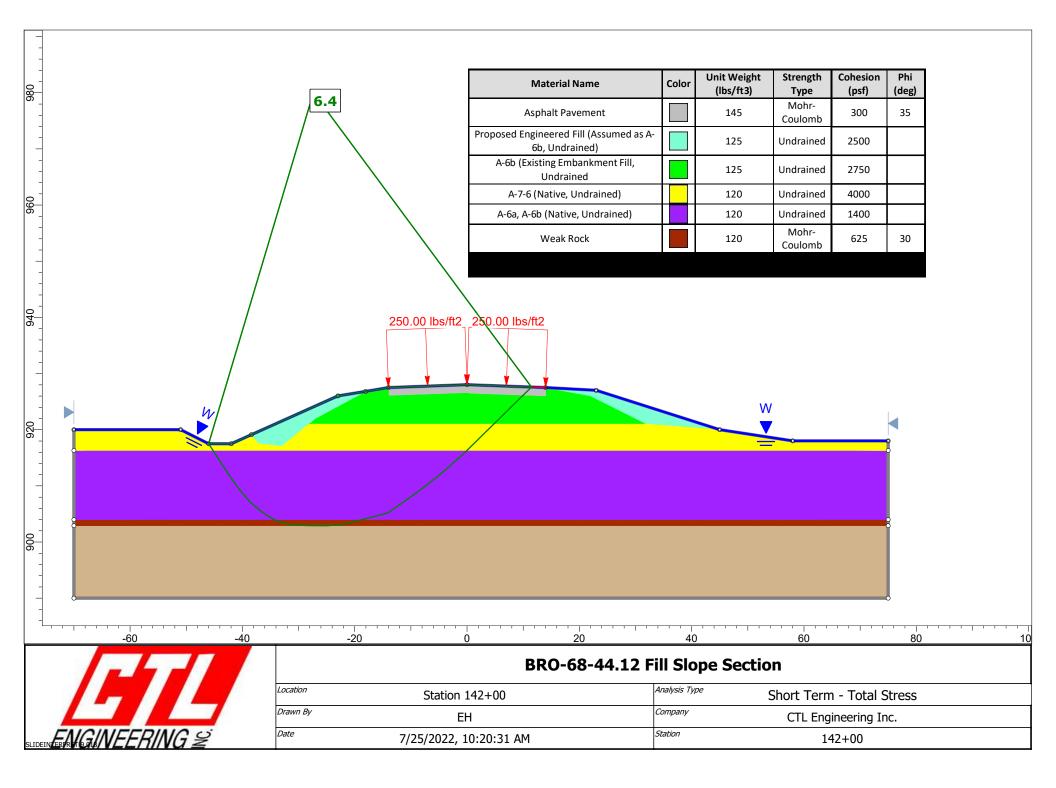
Reference Key

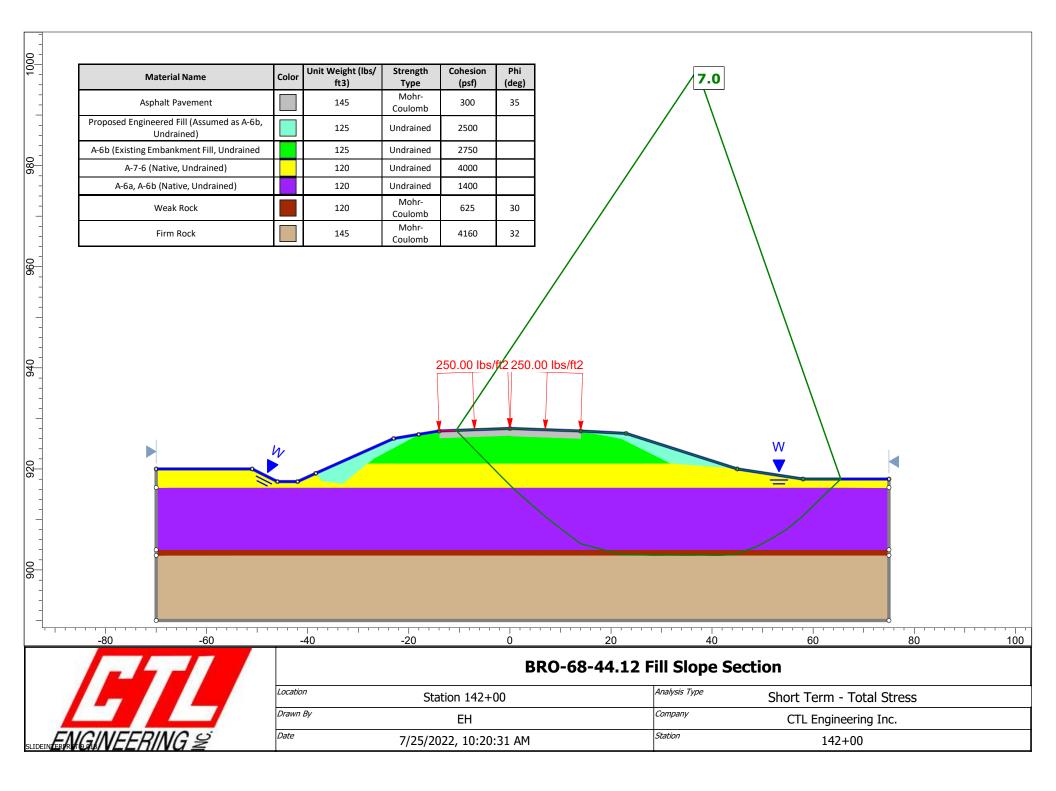
1 Total Stress Cohesion estimated as 12.5% of average N-Value - Bowles "Foundation Analysis and Design"

2 Total Stess Friction Angle estimated to be 0


3 Effective Stress Cohesion estimated to be 10 to 25 percent of Total Stress Cohesion


4 Effective Stress Friction Angle estimated based on soil type


5 ODOT GB7


6 Based on RMR value according to Bieniawski (1989).

7 ODOT GB2, Table 1: Estimated Shear Strengths

APPENDIX F DRILLED SHAFT DESIGN CALCULATIONS

BRO-68-44.12 Rear Abutment

Boring No	B-002-0-22	2	
Top of Rock Elevation	904.3	feet	(From Boring)
Shaft Tip Elevation	893.2	feet	(Assumed 10-foot shaft embeddment into coreable bedrock)

LRFD Side Resistance

											Compi	essive	Up	olift
												Factored		Factored
		Layer										Side		Side
	Bottom	Thickness							q₅max		Resistance	Resistance	Resistance	Resistance
Top Elev.	Elev.	(feet)	Material	q _u (ksf)	P _a (ksf)	С	f' _c (ksf)	q _s (ksf)	(ksf)	Check	Factor	(ksf)	Factor	(ksf)
904.3	903.2	1.1	Rock	30.2	2.12	0.29	576	2.3	34.9	ОК	0.55	1.3	0.4	0.9
903.2	893.2	10	Rock	302.7	2.12	1.00	576	25.3	34.9	ОК	0.55	13.9	0.4	10.1

* Side Friction within upper several feet of rock should be neglected per ODOT BDM section 305.4.2- To be determined by the structural engineer

** Side Resistance should be neglected within the scour zone - To be determined by the Structural Engineer

Notes

P _a (ksf)= Atm	ospheric Pressure								
C = regr	ession Coefficient			(C=1 for corable rock and for augerable rock lowerbound value per AASHTO TABLE 10.8.3.5.4b-1)					
f' _c (ksi)= Con	crete Compressive	Strength		(4.0 ksi as per BDM 2020, Section C304.2.1)	(4.0 ksi as per BDM 2020, Section C304.2.1)				
$q_s = CP_a$	q _u /P _a) ^{0.5}			(Equation 10.8.3.5.4b-1)					
q _s max= P _a (f	/P _a) ^{0.5}								
Resistance Factor=	esistance Factor= 0.55 Compressive			(AASHTO TABLE 10.5.5.2.4-1)					
	0.40 Uplift			(AASHTO TABLE 10.5.5.2.4-1)					
Mean blowcount for aug	erable rock=	331.0	bpf						
Energy ratio of SPT ham	ner=	89.3%							
q _{u 1} (ksf)= 0.09	2x(89.3/90x331)=	30.22	ksf	(EQ 2.2 of FHWA-ICT-17-018)					
q _{u 2} (ksf)= 302	q _{u 2} (ksf)= 302.7 ksf			(Composite strength of interbedded shale (70%) and limestone (30%) per BDM 2020, Section 305.4.2)					
				Compressive Strength of shale (psi)=	530	(B-002-0-22, Compressive Strength Test Result, R-3, 39.3'-39.7')			
				Compressive Strength of limestone (psi)=	5770	(B-002-0-22, Compressive Strength Test Result, R-1, 26.3'-26.7')			

Drilled Shaft - Tip Resistance

BRO-68-44.12

Rear Abutment

Boring No

B-002-0-22

Shaft Tip Elevation (feet)	Unconfined Compressive Strength, q _{u (1)} (ksf)	Nominal Unit Tip Resistance, q _p ⁽²⁾ (ksf)	Resistance Factor, Tip Resistance ⁽³⁾	Factored Unit Tip Resistance, q _p (ksf)
893.2	302.7	756.7	0.50	378.4

Reference Key

- (1) Composite strength of interbedded shale (70%)and limestone (30%) per BDM 2020, Section 305.4.2
- (2) AASHTO 10.8.3.5.4c-1
- (3) AASHTO Table 10.5.5.2.4-1

L-PILE Rock Parameters

BRO-68-44.12 Rear Abutment

Boring No	B-002-0-	-22	
Top of Rock Elevation	904.3	feet	(From Boring B-002-0-22)
Shaft Tip Elevation	893.2	feet	(Assumed a 10.0-foot drileld shaft embeddment into coreable bedrock)

From 904.3 to 903.2

Use Rock Type-	Weak Ro	ock (Reese)	
Effective Unit Weight =	77.6	pcf	(Assumed)
Compressive Strength (q _u) =	209.83	psi	(EQ 2.2 of FHWA-ICT-17-018)
Initial Rock Modulus =	18000	psi	(Per ODOT, OGE, Very Weak Rock)
RQD =	0%		(Assumed)
Use K _{rm} =	0.0005		(From L-pile)

Below 903.2

Use Rock Type- Effective Unit Weight = Composite strength of	Weak Roo 82.6	ck (Reese) pcf			(Assumed)	
interbedded shale (70%) an	d limestone	e (30%) (q _u) =	2102	psi	(BDM 2020, Section 305.4.2)	
					Compressive Strength of shale (psi)=	530
					Compressive Strength of limestone (psi)=	5770
Initial Rock Modulus =	100000	psi			(Per ODOT, OGE, Weak to Slightly Strong F	Rock)
RQD =	48%				(B-002-0-22, NQ-1, NQ-2, NQ-3, NQ-4)	
Use K _{rm} =	0.00005				(From L-pile)	

BRO-68-44.12 Forward Abutment

Boring No	B-003-0-22	2	
Top of Rock Elevation	908.9	feet	(From Boring)
Shaft Tip Elevation	896.3	feet	(Assumed 10-foot shaft embeddment into coreable bedrock)

LRFD Side Resistance

											Compi	ressive	Up	olift
												Factored		Factored
		Layer										Side		Side
	Bottom	Thickness							q₅max		Resistance	Resistance	Resistance	Resistance
Top Elev.	Elev.	(feet)	Material	q _u (ksf)	P _a (ksf)	С	f' _c (ksf)	q _s (ksf)	(ksf)	Check	Factor	(ksf)	Factor	(ksf)
908.9	906.3	2.6	Rock	13.7	2.12	0.29	576	1.6	34.9	ОК	0.55	0.9	0.4	0.6
906.3	896.3	10	Rock	311.0	2.12	1.00	576	25.7	34.9	ОК	0.55	14.1	0.4	10.3

* Side Friction within upper several feet of rock should be neglected per ODOT BDM section 305.4.2- To be determined by the structural engineer

** Side Resistance should be neglected within the scour zone - To be determined by the Structural Engineer

Notes

P _a (ksf)= Atm	ospheric Pressure								
C = regr	ession Coefficient			(C=1 for corable rock and for augerable rock lowerbound value per AASHTO TABLE 10.8.3.5.4b-1)					
f' _c (ksi)= Con	crete Compressive	Strength		(4.0 ksi as per BDM 2020, Section C304.2.1)					
$q_s = CP_a$	q _u /P _a) ^{0.5}			(Equation 10.8.3.5.4b-1)					
q _s max= P _a (f	(P _a) ^{0.5}								
Resistance Factor=	Resistance Factor= 0.55 Compressive			(AASHTO TABLE 10.5.5.2.4-1)					
	0.40 Uplift			(AASHTO TABLE 10.5.5.2.4-1)					
Mean blowcount for aug	erable rock=	150.0	bpf						
Energy ratio of SPT ham	ner=	89.3%							
q _{u 1} (ksf)= 0.09	2x(89.3/90x150)=	13.69	ksf	(EQ 2.2 of FHWA-ICT-17-018)					
q _{u 2} (ksf)= 311	q _{u 2} (ksf)= 311.0 ksf			(Composite strength of interbedded shale (70)%) and lime	estone (30%) per BDM 2020, Section 305.4.2)			
				Compressive Strength of shale (psi)=	1650	(B-003-0-22, Compressive Strength Test Result, R-2, 33.3'-33.6')			
				Compressive Strength of limestone (psi)=	3350	(B-003-0-22, Compressive Strength Test Result, R-4, 40.3'-40.7')			

Drilled Shaft - Tip Resistance

BRO-68-44.12 Forward Abutment

Boring No

B-003-0-22

Shaft Tip Elevation (feet)	Unconfined Compressive Strength, q _{u (1)} (ksf)	Nominal Unit Tip Resistance, q _p ⁽²⁾ (ksf)	Resistance Factor, Tip Resistance ⁽³⁾	Factored Unit Tip Resistance, q _p (ksf)
896.3	311.0	777.6	0.50	388.8

Reference Key

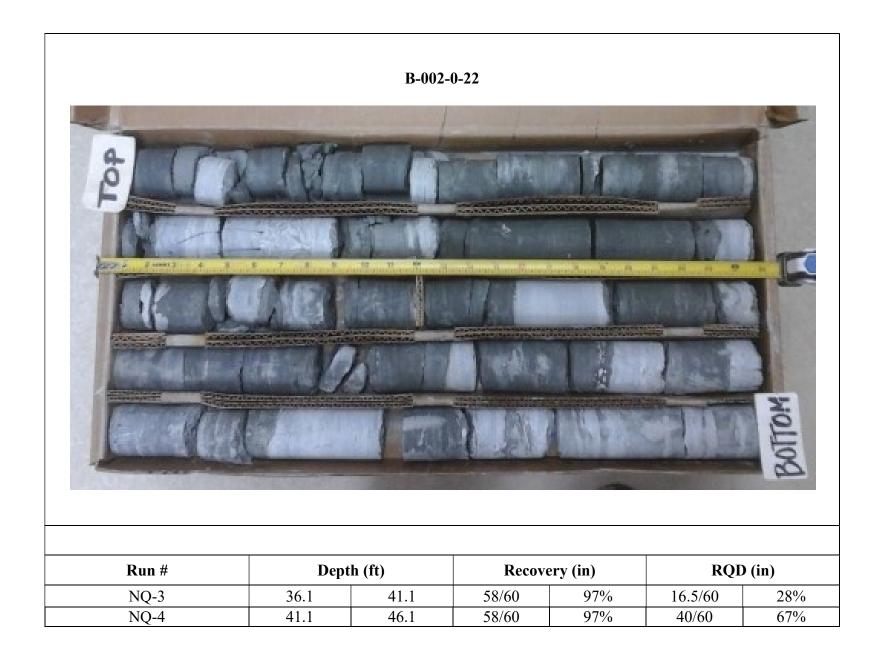
- (1) Composite strength of interbedded shale (70%)and limestone (30%) per BDM 2020, Section 305.4.2
- (2) AASHTO 10.8.3.5.4c-1
- (3) AASHTO Table 10.5.5.2.4-1

L-PILE Rock Parameters

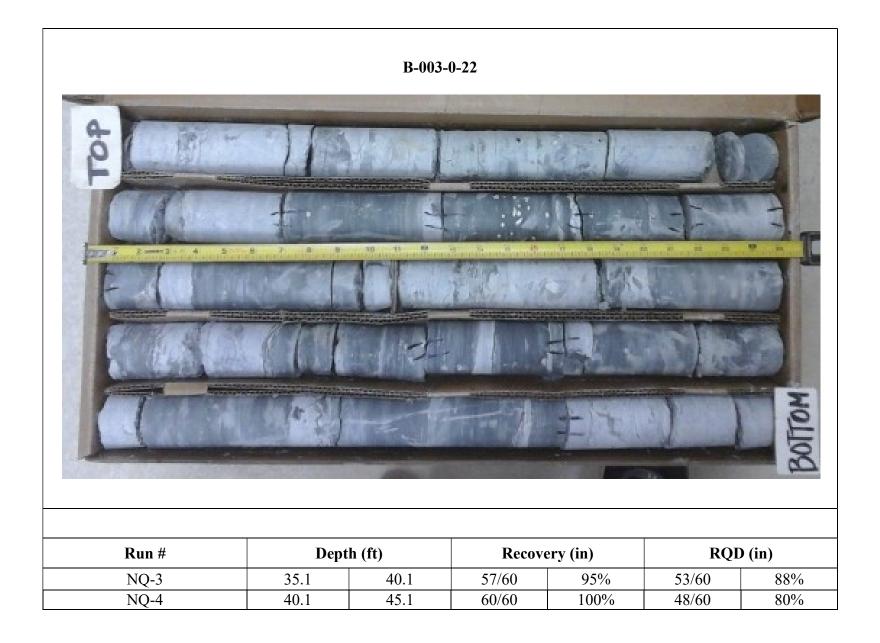
BRO-68-44.12 Forward Abutment

Boring No	B-003-0-	22	
Top of Rock Elevation	908.9	feet	(From Boring B-003-0-22)
Shaft Tip Elevation	896.3	feet	(Assumed a 10.0-foot drileld shaft embeddment into coreable bedrock)

From 908.9 to 906.3


Use Rock Type-	Weak Rock (Reese)				
Effective Unit Weight =	77.6	pcf		(Assumed)	
Compressive Strength (q _u) =	95.09	psi		(EQ 2.2 of FHWA-ICT-17-018)	
Initial Rock Modulus =	18000	psi		(Per ODOT, OGE, Very Weak Rock)	
RQD =	0%			(Assumed)	
Use K _{rm} =	0.0005			(From L-pile)	
<u>Below 906.3</u>					
Use Rock Type-	Weak Ro	ck (Reese)			
Effective Unit Weight =	82.6	pcf		(Assumed)	
Composite strength of					
interbedded shale (70%) an	d limestone	e (30%) (q _u) = 2160	psi	(BDM 2020, Section 305.4.2)	
				Compressive Strength of shale (psi)=	1650

Composite strength of	0 <u> </u>		(10041104)
interbedded shale (70%) and limestone (30%) $(q_u) = 2160$			(BDM 2020, Section 305.4.2)
			Compressive Strength of shale (psi)= 1650
			Compressive Strength of limestone (psi)= 3350
Initial Rock Modulus =	100000 psi		(Per ODOT, OGE, Weak to Slightly Strong Rock)
RQD =	73%		(B-002-0-22, NQ-1, NQ-2, NQ-3)
Use K _{rm} =	0.00005		(From L-pile)


APPENDIX G ROCK CORE PHOTOS

