T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J20200855.000 } \end{array}$	
	Section				Sheet no./rev	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	Date 12-14-2022

ITEM 202 - PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN, AS PER PLAN

- Include parapets, fence, deck sections for expansion joints, tops/backwalls, expansion joints, guardrail and any other appurtenances to complete work as described, etc.

LUMP SUM

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J20200855.000 } \end{array}$	
	Section				Sheet no./rev2	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & \text { 9-20-2022 } \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	Date 12-14-2022

ITEM 509 - EPOXY COATED REINFORCING STEEL

Superstructure (Parapet) Total (lbs);	$\mathrm{T}_{\text {SUPER }}=\mathbf{1 3 1 5 4 . 0 0}$
Backwall Total (lbs);	$\mathrm{T}_{\text {BACKWALL }}=1043+1698=\mathbf{2 7 4 1 . 0 0 0}$

TOTAL WEIGHT OF REINFORCING STEEL (LB); T = $\mathrm{T}_{\text {SUPER }}+\mathrm{T}_{\text {BACKWALL }}=15895.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.3	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	Date 12-14-2022

ITEM 510 - DOWEL HOLES WITH NONSHRINK, NONMETALLIC GROUT

EXPANSION JOINT REPLACEMENT:

Length of deck along joint (ft);
2 dowels per location;
No. dowel holes along abut (ea);

PARAPET REPLACEMENT:

No. Y501 bars along parapets (ea);

LIGHT PILASTERS:
Number of locations (EA);
4 holes at each location
No. dowel holes along pilasters (ea);

TOTAL DOWEL HOLES (EA);

$L_{D_{\text {EXP }}}=96.0 / \operatorname{COS}(24.12)=105.18$
$\mathrm{n}=2$
$N_{\text {exp jit }}=106 \times n \times 2=424.000$
$N_{\text {PAR }}=1530$
$\mathrm{L}_{\mathrm{N} \text { _LP }}=3$ LIGHTS $=3.0$
$N_{\mathrm{LP}}=4 \times 3=12.000$
$\mathrm{T}_{510}=\left(\mathrm{N}_{\text {exp jt }}+\mathrm{N}_{\text {PAR }}+\mathrm{N}_{\mathrm{LP}}\right)=\underline{1966.000}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev. 4	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	Date 12-14-2022

ITEM 511 - CLASS QC2 CONCRETE, BRIDGE DECK

Portions of deck required to place expansion joints.

Length of deck along joint (ft);
Thickness of deck (ft);
Width of deck (ft);
$L_{D_{_} E X P}=96.0 / \operatorname{COS}(24.12)=105.183$
$h_{\text {deck }}=0.75$
$w_{\text {deck }}=2.0$

Add additional concrete for portions of walk above deck (CY); $\quad T_{\text {walk }}=(4 \times 0.75 \times 9 \times 2) / 27=2.000$

TOTAL VOLUME OF DECK CONCRETE (CU YD); $\quad T_{\text {PAR }}=\operatorname{ceiling~}\left(\left(\left(2 \times L_{D_{-} E X P} \times h_{\text {deck }} \times w_{\text {deck }}\right) / 27\right)+T_{\text {walk }}, 1\right)=\underline{14.000}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.5	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	Date 12-14-2022

CLASS QC2 CONCRETE, BRIDGE DECK (PARAPET), AS PER PLAN (ALTERNATE 1)

*Item includes concrete parapets atop wingwalls.

Length of parapets on bridge/wings (ft); $\quad \mathrm{L}_{\mathrm{BR}}=339.40+332.86=\mathbf{6 7 2 . 2 6 0}$

Height of parapet (ft);
$h_{\text {ped }}=2.667$
Width of parapet (ft);
$\mathrm{w}_{\text {ped }}=1.0$

TOTAL VOLUME OF PARAPET CONCRETE (CU YD); $\quad T_{\text {PAR }}=$ ceiling $\left(\left(L_{B R} \times h_{\text {ped }} \times w_{\text {ped }}\right) / 27,1\right)=\underline{67.000}$

CLASS QC2 CONCRETE, BRIDGE DECK (PARAPET), AS PER PLAN (ALTERNATE 2)

*Item includes concrete parapets atop wingwalls.

Length of parapets on bridge/wings (ft);
$\mathrm{L}_{\mathrm{BR}}=339.40+332.86=\mathbf{6 7 2 . 2 6 0}$

Height of parapet (ft);
Width of parapet (ft);
$h_{\text {ped }}=2.667$
$w_{\text {aesth }}=1.33333333333$

TOTAL VOLUME OF PARAPET CONCRETE (CU YD);
$T_{\text {PAR }}=$ ceiling $\left(\left(L_{B R} \times h_{\text {ped }} \times W_{\text {aesth }}\right) / 27,1\right)=89.000$

	Project Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & 9-20-2022 \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 511 - CLASS QC1 CONCRETE, SUBSTRUCTURE

Portions of backwalls required to place expansion joints.

Length of deck along joint (ft);
$L_{D_{\text {_EXP }}}=96.0 / \operatorname{COS} 24.12=105.18$
Thickness of BW (ft);
$h_{B W}=1.17$
Width of deck (ft);
$\mathrm{W}_{\mathrm{BW}}=1.75$

Add additional concrete for portions of walk at corners. Include with item:
$\mathrm{T}_{\text {walk }}=\left(4 \times 1^{\prime} \times 9^{\prime} \times 1.75^{\prime} \mathrm{W}\right) / 27=3 \mathrm{CY}$ (add to total below)

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 512 - SEALING OF CONCRETE SURFACES (EPOXY-URETHANE), AS PER PLAN

Parapet on Bridge

Length parapets (ft);
$L_{\text {rail }}=289.19(R T)+289.20(L T)=578.40$
Sealing perimeter parapet (ft);
$P_{\text {rail }}=2.67(2)+1+1.57+2.3($ avg cantilever $)=10.21$
*Includes cantilever on outside fascia
Sealing area - on bridge (SF);
$A_{B R _ \text {_rails }}=\left(P_{\text {rail }} \times L_{B R}\right)=5905.46$

Parapet on Wingwalls

Length parapets (ft);
$\mathrm{L}_{\text {rail_ww }}=50.21$ (RT) $+43.66(\mathrm{LT})=93.87$
Sealing perimeter WW parapets (ft);
$P_{\text {rail_ww }}=2.67+1+2.67=6.34$
*to top existing/wingwall
Sealing area - at wingwalls (SF);
$A_{w w_{-} \text {rails }}=\left(P_{\text {rail_ww }} \times L_{\text {rail_ww }}\right)=595.14$

TOTAL Area at parapets (SY);
$\mathrm{T}_{512 \text { _rails }}=\operatorname{ceiling}\left(\left(\mathrm{A}_{\text {ww_rails }}+A_{B R _ \text {rails }}\right) / 9,1\right)=\mathbf{7 2 3 . 0 0}$

NOTE: To effectively seal backwalls, remove all end crossframes and replace - this will facilitate a good cleaning job and sealing of the backwalls. Replace ALL end crossframes.

Backwalls

Average elevation/top of abutments:
FWD (north) $=767.89$; REAR (south) $=771.24$
Average elevation/top of abut/seats:
*Consider from approach slab seat Length / backwalls (ft);

Sealing area - backwalls (SF);
FWD (north) $=762.25$; REAR $($ south $)=765.35$
$L_{\text {FWD }}=108.58$
$L_{\text {REAR }}=107.08$
$A_{B W}=\left(5.64 \times L_{\text {FWD }}\right)+\left(5.89 \times L_{\text {REAR }}\right)=1243.10$

TOTAL Area at parapets (SY);
$\mathrm{T}_{512 _\mathrm{BW}}=\operatorname{ceiling}\left(\left(\mathrm{A}_{\mathrm{BW}}\right) / 9,1\right)=139.00$

Breastwalls:
Width (length) of breastwall;
GL - avg height at breastwall;
$W_{\text {BRW_FWD }}=108.58 \quad W_{\text {BRW_REAR }}=107.08$
$\mathrm{GL}=3.25 \mathrm{ft}$

TOTAL Area - FWD (SF)
TOTAL Area - REAR (SF)
$\left(W_{\text {BRW_FWD }} \times G L\right)=352.89$ SF
$\left(W_{\text {BRW_REAR }} \times G L\right)=348.01$ SF

TOTAL Area at breastwalls (SY);
$\mathrm{T}_{512 _\mathrm{BRW}}=$ ceiling $((\mathrm{A}-\mathrm{REAR}+\mathrm{A}-\mathrm{FWD}) / 9,1)=\mathbf{7 8 . 0 0}$

TOTAL QUANTITY OF SEALING (SY);
$T_{512}=T_{512 \text { _rails }}+T_{512 _B W}+T_{512 _B R W}=\underline{940.00}$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev. 8	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM SPECIAL - URETHANE TOP COAT

*Per PN 519 - on those areas that receive E-glass or carbon fiber wrap.

Length of pier cap;	$\mathrm{L}_{\mathrm{PC}}=106.25$
Height (avg) of pier cap $(\mathrm{ft}) ;$	$\mathrm{h}_{\mathrm{PC}}=3.98$
Width of pier cap (ft);	$\mathrm{W}_{\mathrm{PC}}=3$
Height (avg) of columns, P1 \& P3 (ft);	$\mathrm{h}_{\mathrm{C}}=14.10$
Height (avg) of columns, P2 (ft);	$\mathrm{h}_{\mathrm{C} 2}=8.78$
Column perimeter (ft);	$\mathrm{C}_{\mathrm{A}}=11$

NOTE: Discount faces between NB \& SB pier caps; cannot access (~ 3 " width)

Area Pier Cap 1 of urethane top coat (SF);
Area pier 1 columns of urethane top coat (SF);
Area Pier Cap 2 of urethane top coat (SF);
Area pier 2 columns of urethane top coat (SF);
Area Pier Cap 3 of urethane top coat (SF);
Area pier 3 columns of urethane top coat (SF);

Total area of urethane top coat (SF);

$$
\begin{aligned}
& A_{P C 1}=2 \times\left(h_{P C} \times L_{P C}\right)+2 \times\left(W_{P C} \times L_{P C}\right)+2 \times\left(W_{P C} \times h_{P C}\right)=1507.130 \\
& A_{C 1}=3 \times\left(h_{C} \times C_{A}\right)=465.300 \\
& A_{P C 2}=A_{P C 1}=1507.130 \\
& A_{C 2}=2 \times\left(h_{C 2} \times C_{A}\right)=193.160 \\
& A_{P C 3}=A_{P C 1}=1507.130 \\
& A_{C 3}=3 \times\left(h_{C} \times C_{A}\right)=\mathbf{4 6 5 . 3 0 0}
\end{aligned}
$$

$$
A_{U T C}=A_{P C 1}+A_{C 1}+A_{P C 2}+A_{C 2}+A_{P C 3}+A_{C 3}=5645.150
$$

	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Section				Sheet no./rev.	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & \text { 9-20-2022 } \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l\|} \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 513 - STRUCTURAL STEEL MEMBERS, LEVEL UF, AS PER PLAN

*All end crossframes

Intermediate crossframe (L $3 \times 3 \times 5 / 16)(\mathrm{lbs} / \mathrm{ft}) ;$	$\mathrm{W}_{\mathrm{INT}}=6.10$
End crossframe (L $4 \times 4 \times 5 / 16)(\mathrm{lbs} / \mathrm{ft}) ;$	$\mathrm{W}_{\text {END }}=8.20$
Length/complete interior replaced (ft);	$\mathrm{H}_{\mathrm{INT}}=32.22$
Length/complete end replaced (ft);	$\mathrm{H}_{\text {END }}=33.55$
Length/lower Linterior replaced (ft);	$\mathrm{H}_{\mathrm{INT} \text { _L }}=10.00$
Length/cross Linterior replaced (ft);	$\mathrm{H}_{\mathrm{INT} \text { _C }}=11.1$
Number complete intermediate replaced;	$\mathrm{N}_{\text {int }}=5$
Number complete end replaced;	$\mathrm{N}_{\text {end }}=18$
Number lower L interior replaced;	$\mathrm{N}_{\text {low }}=61$
Number cross L interior replaced;	$\mathrm{N}_{\text {cross }}=0$

Gusset PLs - end crossframes: (3) 8 " $\times 10$ " $\times 3 / 8 "$ plates;
Unit weight of steel plates $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$; $\quad \mathrm{W}_{\text {stl }}=490$
Connection plate thickness (in); $\quad \mathrm{t}_{\mathrm{pl}}=0.375$
Connection plate area (in²);
Connection plate weight (lbs);
$\mathrm{A}_{\mathrm{pl}}=80$
$W_{G P}=3 \times W_{\text {stl }} \times\left(\left(A_{p l} \times t_{p l}\right) / 1728\right)=\mathbf{2 5 . 5 2 1}$

Length of interiors (ft);
$L_{\text {INT }}=\left(H_{\text {INT }} \times N_{\text {int }}\right)+\left(H_{\text {INT_L }} \times N_{\text {low }}\right)+\left(H_{\text {INT_C }} \times N_{\text {cross }}\right)=771.100$
Length of exteriors (ft);
$L_{\text {END }}=\left(H_{\text {END }} \times N_{\text {end }}\right)=\mathbf{6 0 3 . 9 0 0}$

Weight of steel (lbs);

$$
W_{S T}=\left(W_{I N T} \times L_{I N T}\right)+\left(W_{E N D} \times L_{E N D}\right)+\left(N_{\text {end }} \times W_{G P}\right)=10115.065
$$

TOTAL WEIGHT OF STRUCTURAL STEEL (lbs);

	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Section				Sheet no./rev.10	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & \text { 9-20-2022 } \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l\|} \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 516 - STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL

REAR ABUT $=107.08^{\prime}$
FWD ABUT = 108.58'
Length of EXP JT (ft);
$L_{\text {EXP }}=215.66 / \operatorname{COS} 24.12=237.00$

TOTAL EXPANSION JOINT (LF);
$\mathrm{T}_{\mathrm{EXP}}=\mathrm{L}_{\mathrm{EXP}}=\underline{237.00}$

	Project \quad Estimated Quantities - CUY-252-04.34				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J20200855.000 } \end{array}$	
	Final Tracings				11	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & \text { 9-20-2022 } \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{aligned} & \text { Date } \\ & \text { 12-14-2022 } \end{aligned}$

ITEM 516 - BEARING DEVICE, ROCKER

REAR ABUTMENT (EA);
$E_{R A}=11.00$
P1 (EA);
$E_{P 1}=0.00$
P2 - P3 (EA);
$E_{P 2}=E_{P 3}=0.00$
FWD ABUTMENT (EA);
$E_{F A}=11.00$

TOTAL NUMBER OF ROCKERS (EA);
$R_{\text {REPL }}=$ ceiling $\left(E_{F A}+E_{R A}+P_{1-3}, 1\right)=\underline{\mathbf{2 2 . 0 0}}$

	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Final Tracings				Sheet no./re	12
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	Date 12-14-2022

ITEM 516 - RESET BEARING

REAR ABUTMENT (EA);	$E_{R A}=0$
P1 (EA);	$E_{P 1}=0$
P2 (EA);	$E_{P 2}=0$
P3 (EA);	$E_{P 3}=1$
FWD ABUTMENT (EA);	$E_{F A}=0$

TOTAL NUMBER OF ROCKERS (EA); $\quad R_{R E P L}=\operatorname{ceiling}\left(E_{F A}+E_{R A}+P_{1-3}, \mathbf{1}\right)=\underline{1.00}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Final Tracings				13	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & 9-20-2022 \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{aligned} & \text { Date } \\ & \text { 12-14-2022 } \end{aligned}$

ITEM 516 - JACKING AND TEMPORARY SUPPORT OF SUPERSTRUCTURE, AS PER PLAN

LUMP SUM

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Section				Sheet no./rev.14	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	Date 12-14-2022

ITEM 519 - COMPOSITE FIBER WRAP SYSTEM

*Per PN 519 - on pier caps as required.

COMPOSITE FIBER WRAP SYSTEM: CARBON (CFRP)

Length of pier cap;
$L_{P C}=106.250$
Height (avg) of pier cap (ft);
Width of pier cap (ft);
Height (avg) of columns, P1 \& P3 (ft);
Height (avg) of columns, P2 (ft);
Column perimeter (ft);
$h_{P C}=3.980$
$W_{P C}=3.000$
$h_{C}=14.100$
$\mathrm{h}_{\mathrm{C} 2}=8.780$
$C_{A}=11.000$

NOTE: Discount faces between NB \& SB pier caps; cannot access (~ 3 " width)

Area Pier Cap 1 of urethane top coat (SF);	$A_{P C 1}=2 \times\left(h_{P C} \times L_{P C}\right)+2 \times\left(W_{P C} \times L_{P C}\right)+2 \times\left(W_{P C} \times h_{P C}\right)=1507.130$
Area Pier Cap 2 of urethane top coat (SF);	$A_{P C 2}=A_{P C 1}=1507.130$
Area Pier Cap 3 of urethane top coat (SF);	$A_{P C 3}=A_{P C 1}=1507.130$
Total area of composite carbon fiber wrap (SF);	$A_{C A R B O N}=A_{P C 1}+A_{P C 2}+A_{P C 3}=4521.390$
TOTAL AREA OF COMPOSITE CARBON FIBER WRAP (SF);	$T_{519-C A R B O N}=$ ceiling $\left(A_{C A R B O N}, 1\right)=\underline{4522.000}$
COMPOSITE FIBER WRAP SYSTEM: E-GLASS (EGFRP)	

Total area of composite E-glass fiber wrap (SF); $\quad A_{G L A S S}=A_{C 1}+A_{C 2}+A_{C 3}=1123.760$

TOTAL AREA OF COMPOSITE E-GLASS FIBER WRAP (SF); $\quad \mathrm{T}_{519 _ \text {GLAss }}=$ ceiling $\left(\mathrm{A}_{\text {GLASS }}, 1\right)=\underline{1124.000}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Section				Sheet no./rev.15	
	Calc. by JDH	$\begin{array}{\|l\|} \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{aligned} & \text { Date } \\ & \text { 12-14-2022 } \end{aligned}$

ITEM 519 - PATCHING CONCRETE STRUCTURE, AS PER PLAN

Include walks, curbs, median, abutment breastwalls, piers and backwalls Per BDM C405.2.1 - add 25% to all quantities for final.

Area of abutment repairs (SF);

Area of pier repairs (SF);

Area of curb repairs (SF);

Area of walk repairs (SF);

TOTAL CONCRETE PATCHING (SF);
$A_{\text {abut }}=64+48=112.000 \times 1.25=140$
$A_{\text {Piers }}=88+148+162=398.000 \times 1.25=498$
$A_{\text {curb }}=52+39=91.000 \times 1.25=114$
$A_{\text {walk }}=90+390=480.000 \times 1.25=600$
$P_{\text {conc }}=$ ceiling $\left(A_{\text {abut }}+A_{\text {Piers }}+A_{\text {curb }}+A_{\text {walk }}, 1\right)=\underline{1352.000}$

	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Final Tracings				Sheet no./re	16
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 519 - PATCHING CONCRETE BRIDGE DECK - TYPE B

Per BDM C405.2.1 - add 25% to all quantities for final.

Area of deck repairs - field measured (ft);

$$
\mathrm{A}_{\text {deck }}=100 \times 1.25=125
$$

TOTAL PATCHING BRIDGE DECK (SY);

$$
P_{B R}=\operatorname{ceiling}\left(\left(\mathrm{A}_{\text {deck }}\right) / 9,1\right)=\underline{14.00}
$$

© Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Final Tracings				17	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & 9-20-2022 \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{aligned} & \text { Date } \\ & \text { 12-14-2022 } \end{aligned}$

ITEM 530 - SPECIAL STRUCTURE, MISC.: BRIDGE CLEANING

LUMP SUM

	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Final Tracings				Sheet no./rev.	18
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ 12-14-2022 \end{array}$

ITEM SPECIAL - STRUCTURE, MISC.: TIMBER SUB-DECKING

Place sub-decking over spans 2 \& 3, plus additional 5 foot either side.
Spans (ft);

$$
S_{\text {deck }}=87.75+91.25+10=189 \mathrm{ft}
$$

Spacing between girders $=94.5$
Therefore, $\mathrm{A}_{\text {SUB }}=189 \times 94.5=\mathbf{1 7 8 6 0 . 5 0}$

TOTAL TIMBER SUB-DECK (SF);
$\mathrm{T}_{\text {SUB }}=\operatorname{ceiling}\left(\left(\mathrm{A}_{\text {SUB }}\right), 1\right)=17861.00$

STekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Final Tracings				Sheet no./rev.19	
	Calc. by JDH	$\begin{array}{\|l} \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l} \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM SPECIAL - STRUCTURE, MISC.: BOTTOM OF DECK SPALL REMOVAL

Inspection shall take place in conjunction with sub-decking over spans $2 \& 3$, plus additional 5 foot either side.
Spans (ft); $\quad \mathrm{S}_{\text {deck }}=87.75+91.25+10=189 \mathrm{ft}$

Spacing between girders $=94.5$
Therefore, $\mathrm{A}_{\text {SUB }}=189 \times 94.5=\mathbf{1 7 8 6 0 . 5 0}$

From observations in the field and markings on underside of deck, we assume 20% will be sounded. This is per note in plans that allows Field Engineer to spot areas as needed based on structural soundness and appearance.
So, $A_{\text {SUB }}=17860.50 \times 0.20=3572.10$ (Use 3575 SF)

TOTAL SOUNDING \& SPALL REMOVAL (SF); $\quad T_{\text {SUB }}=\operatorname{ceiling((ASUB),1)=\underline {3575.00}}$

	Project Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Final Tracings				20	
	Calc. by JDH	$\begin{aligned} & \text { Date } \\ & 9-20-2022 \end{aligned}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 607 - VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC, AS PER PLAN (ALTERNATE 1)

Length parapets (ft);
$L_{\text {rail }}=337.82+331.28=\mathbf{6 6 9 . 1 0 0}$

TOTAL VANDAL PROTECTION FENCE (LF); $\quad T_{\text {VPF }}=\operatorname{ceiling(L_{\text {rail}},1)=\mathbf {670.000}}$

ITEM 607 - FENCE MISC.: DECORATIVE FENCE (ALTERNATE 2)

Length parapets (ft);
$\mathrm{L}_{\text {aesth }}=343.86+336.59=\mathbf{6 8 0 . 4 5 0}$

TOTAL VANDAL PROTECTION FENCE (LF); $\quad T_{\text {VPF }}=\operatorname{ceiling}\left(L_{\text {aesth }}, 1\right)=681.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.21	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

UNDER LIGHTING QUANTITIES:

ITEM 625 - REMOVE AND REERECT EXISTING LIGHT POLE, AS PER PLAN

For use at each existing light pole ON BRIDGE.

3 LIGHTS BEING REMOVED AND REERECTED - EAST ONLY

TOTAL NUMBER LIGHTS (EA); $\quad R_{L}=\operatorname{ceiling}(2,1)=\underline{3.00}$

ITEM 625 - STRUCTURE JUNCTION BOX

For use at each reerected light pole.

3 LIGHTS BEING REMOVED AND REERECTED

TOTAL NUMBER JUNCTION BOXES (EA);

$$
\mathrm{R}_{\mathrm{L}}=\operatorname{ceiling}(2,1)=3.00
$$

ITEM 625 - STRUCTURE GROUNDING SYSTEM

1 EACH - PER BDM

TOTAL GROUNDING SYSTEM (EA); $\quad R_{L}=\operatorname{ceiling}(2,1)=\underline{1.00}$

ITEM 625 - CONDUIT, 2", 725.051, AS PER PLAN

The existing 2" conduit is buried on each end of the bridge beyond the parapets. It will run from end/parapet to end/parapet. Item shall include a contingency quantity as required to complete item, mostly for tie-ins at ends/bridge. A contingency of 10 LF at each pole will also be used for tie-ins at junction boxes and pole bases.

```
EAST PARAPET = BR LIMITS + 2x2 = 292' + 4' = 296 LF
WEST PARAPET = BR LIMITS + 2x2 = 292' + 4' = 296 LF
Contingency at pole = 10 LF x 3 = 30 LF
TOTAL = 622 LF
```

TOTAL LENGTH CONDUIT (LF);
$R_{\mathrm{L}}=$ ceiling $(2,1)=\underline{630.00}$

	Project Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.22	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	Date 12-14-2022

ITEM 625 - CONNECTION, FUSED PULL APART

Used in base of poles to for current carrying conductors.

RIGHT PARAPET $=2$ poles $=2 \mathrm{EA}$
LEFT PARAPET = 1 pole = 1 EA

TOTAL $=3 \mathrm{EA}$

TOTAL FUSED CONN (EA); $\quad R_{L}=$ ceiling(TOTAL, 1$)=\underline{3.00}$

ITEM 625 - CONNECTION, UNFUSED PULL APART

Used in base of poles to for grounding conductors.

RIGHT PARAPET $=2$ poles $=2$ EA
LEFT PARAPET = 1 pole = 1 EA

TOTAL = 3 EA

TOTAL UNFUSED CONN (EA); $\quad R_{\mathrm{L}}=$ ceiling(TOTAL, 1$)=\underline{3.00}$
ITEM 625 - CONNECTION, FUSED PULL APART
Used in ground box.

RIGHT PARAPET $=\mathbf{2}$ poles $=2$ EA
LEFT PARAPET = 1 pole = 1 EA

TOTAL = 3 EA

TOTAL UNFUSED PERM (EA);

$$
\left.\mathrm{R}_{\mathrm{L}}=\text { ceiling(TOTAL, } 1\right)=\underline{3.00}
$$

ITEM 625 - NO. 4 AWG 2400 VOLT DISTRIBUTION CABLE
Current carrying conductors in the feeder - from pull box to pul box.

Pull Boxes:
STA 71+85 (NE) AND STA 73+40 (NW)
STA 68+19 (SE) AND STA 67+86 (SW)

TOTAL = EAST, 366 LF \& WEST, 554 LF = 920.00

TOTAL NO. 4 AWG (LF);
$R_{L}=$ ceiling(TOTAL, 1$)=\underline{920.00}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Final Tracings				Sheet no./rev.23	
	Calc. by JDH	$\begin{array}{\|l} \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l} \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 625 - NO. 6 AWG 2400 VOLT DISTRIBUTION CABLE

Grond conductor - from pull box to pul box.

Pull Boxes:
STA 71+85 (NE) AND STA 73+40 (NW)
STA 68+19 (SE) AND STA 67+86 (SW)

TOTAL = EAST, 366 LF \& WEST, 554 LF $=920.00$

TOTAL NO. 6 AWG (LF); $\quad R_{L}=$ ceiling(TOTAL, 1$)=\underline{920.00}$

ITEM 625 - NO. 10 AWG POLE AND BRACKET

Cable that goes from junction box and up pole - taken from existing plans.

Stations from existing plans:
STA 68+90 (RT)
101 LF PROVIDED
STA 70+69 (RT)
101 LF PROVIDED
STA 69+80 (LT)
101 LF PROVIDED
TOTAL $=101+101+101=303$

TOTAL NO. 10 AWG (LF);

$$
\left.\mathrm{R}_{\mathrm{L}}=\text { ceiling(TOTAL, } 1\right)=\underline{303.00}
$$

ITEM 625 - REMOVAL OF LUMINAIRE AND REERECTION

The luminaire from each existing pole must be removed and stored per 625.21A in CMS.
PARAPET $=3$ poles $=3$ EA

TOTAL $=3$ EA

TOTAL REMOVE/REERECT LUMINAIRE (EA); $\quad R_{L}=c e i l i n g(T O T A L, 1)=\underline{3.00}$

ITEM 625 - PULL BOX CLEANED

The pull box where the disconect and reconnect occurs must be cleaned.

1 LOCATION

TOTAL NUMBER PULL BOXES CLEANED (EA);

$$
R_{\mathrm{L}}=\operatorname{ceiling}(2,1)=1.00
$$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project Estimated Quantities - CUY-252-04.34				Job Ref.J20200855.000	
	Final Tracings				Sheet no./rev.24	
	Calc. by JDH	$\begin{array}{\|l} \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	$\begin{array}{\|l} \text { Date } \\ 9-26-2022 \end{array}$	Rev. by MJD	$\begin{array}{\|l} \text { Date } \\ \text { 12-14-2022 } \end{array}$

ITEM 625 - MAINTAIN EXISTING LIGHTING

LUMP SUM

ITEM 625 - DISCONNECT CIRCUIT
Disconnect from existing circuit.

1 LOCATION

TOTAL NUMBER DISCONNECTIONS (EA);
$R_{L}=\operatorname{ceiling}(2,1)=\underline{1.00}$

ITEM 625 - REMOVE AND REERECT EXISTING LIGHT POLE, AS PER PLAN

For use at each existing light pole ON BRIDGE.

3 LIGHTS BEING REMOVED AND REERECTED

TOTAL NUMBER LIGHTS (EA); $\quad R_{L}=$ ceiling $(2,1)=\underline{3.00}$

ITEM 625 - REMOVAL OF LUMINAIRE AND REERECTION, AS PER PLAN

Item shall include all luminaires (UNDERPASS), conduit, adjacent junction boxes, supports, clamps and all appurtenances required to complete item.

P1: NORTH FACE @ 3 EACH = 3
P2: BOTH FACES @ 3 EACH = 6
P3: SOUTH FACE @ 3 EACH = 3

TOTAL NUMBER LUMINAIRES (EA);
$R_{L}=\operatorname{ceiling}(2,1)=\underline{12.00}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad Estimated Quantities - CUY-252-04.34				Job Ref. J20200855.000	
	Section				Sheet no./rev.25	
	Calc. by JDH	$\begin{array}{\|l\|} \hline \text { Date } \\ 9-20-2022 \end{array}$	Chk'd by MJD	Date 9-26-2022	Rev. by MJD	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12-14-2022 } \end{array}$

UNDER ROADWAY QUANTITIES:

ITEM 441 - ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2 (448), AS PER PLAN

Use width between curbs at each abutment: Length of PRJ;
$L_{\text {PRJ }}=80.0 / \operatorname{COS}(24.12)=87.653$

Width of PRJ - only ~ 1.5 reqires patching (ft);
$W_{\text {PRJ }}=1.5$
Depth of PRJ - STD DWG (ft);
$D_{\text {PRJ }}=1$

TOTAL CY PRJ (CY);

$T_{441 \text { _PRJ }}=$ ceiling $\left(\left(2 \times L_{\text {PRJ }}\right) \times W_{\text {PRJ }} \times D_{\text {PRJ }} / 27,1\right)=\underline{10.000}$

ITEM 606 - GUARDRAIL, TYPE MGS

Length guardrail - northwest;	$L_{N W}=25$
Length guardrail - northeast;	$L_{\text {NE }}=25$
Length guardrail - southwest;	$L_{S W}=25$
Length guardrail - southeast;	$L_{\text {SE }}=50$

TOTAL LENGTH MGS GUARDRAIL (FT);

$$
R_{B T A}=L_{N W}+L_{N E}+L_{S W}+L_{S E}=\underline{125.000}
$$

ITEM 606 - ANCHOR ASSEMBLY, MGS TYPE E

TOTAL NUMBER OF ANCHOR ASSEMLIES (EA); $\quad \mathbf{R}_{\mathrm{E}}=\underline{\mathbf{2 . 0 0}}$

ITEM 606 - ANCHOR ASSEMBLY, MGS TYPE T

TOTAL NUMBER OF ANCHOR ASSEMLIES (EA); $\quad \mathbf{R}_{\mathrm{T}}=\underline{\mathbf{2 . 0 0}}$

ITEM 606 - MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1

Place on each corner

TOTAL NUMBER OF BTA'S (EA); $\quad R_{B T A}=$ ceiling $(1)=\underline{4.00}$

