

Structure Foundation Exploration – Revised Final CUY-14-12.12E Bridge Replacement Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

Prepared for

Pennoni Associates, Inc.
2 Summit Park Drive, Suite 355
Independence, OH 44131

PREPARED BY:

S&ME, Inc. 6190 Enterprise Court Dublin, OH 43016

October 31, 2022

October 31, 2022

Pennoni Associates, Inc. 2 Summit Park Drive Suite 355 Independence, Ohio 44131

Attention:

Ms. Joan M. Zbin, P.E.

Reference:

Structure Foundation Exploration - Revised Final

CUY-14-12.12E (PID 13184)
Bedford, Cuyahoga County, Ohio
S&ME Project No. 1117-18-036

Ms. Zbin:

S&ME, Inc. (S&ME) has completed a supplemental structure foundation exploration for the above referenced project in accordance with our MOD 2 proposal dated September 22, 2021, which was authorized by Pennoni Associates, Inc. (Pennoni) on December 14, 2021, with an Amendment to our Consultant Agreement dated October 5, 2018. The supplemental exploration was performed due to a change in the proposed structure and foundation type for the planned replacement of the existing concrete arch bridge carrying Union Street over Tinkers Creek in Bedford, Cuyahoga County, Ohio. The approximate site location is depicted on the Vicinity Map presented as Plate 1 in Appendix I of this report. This revised report has been prepared to address comments received from ODOT which were provided to S&ME by Pennoni on August 17, 2022, and supersedes our original final report dated June 24, 2022.

In accordance with Section 701 of the current ODOT *Specifications for Geotechnical Explorations (SGE)*, S&ME is herewith submitting a "final" version of this report, which is also to be provided to the ODOT District Geotechnical Engineer. Final Soil Profile – Structure sheets will be submitted under separate cover.

We appreciate being given the opportunity to be of service. Please do not hesitate to contact our office if you have any questions concerning our report.

Sincerely,

S&ME, Inc.

Nathan D. Abele, P.E.

Project Engineer/Project Manager

Brian K. Sears, P.E. Senior Engineer

Senior Review By: Bethanie L. Meek, P.E.

Submitted: Email Copy

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

Table of Contents

1.0	Execu	ıtive Su	ımmary	1
2.0	Intro	duction	l	2
3.0	3.1	Site Reco	Observations of the Projectonnaissance	2
	3.3		le Information	
4.0		Explora	ationory Testing	3
5.0	5.1 5.2	Existing	Findings Pavement Thicknesses Subsurface Conditions	5
	5.3		and Groundwater Observations	
			Testing Results	
6.0			d Recommendations Project Discussion	
	6.2	Scour		3
	6.3	Bridge F	Foundation Recommendations	9
		6.3.1	Drilled Shafts – Axial Load Resistance	9
		6.3.2	Drilled Shaft Construction Recommendations	11
		6.3.3	Foundation Settlement	11
		6.3.4	Downdrag Considerations	12
		6.3.5	LPILE Lateral Resistance Analysis Design Parameters	12
	6.4	Lateral I	Earth Pressures	12
		6.4.1	Wingwalls and Abutment Walls	12
		6.4.2	Soil Parameters	13
	6.5	Tempora	ary Excavation Considerations	14
	6.6	Ground	water Considerations	15
7.0	Final	Consid	lerations and Report Limitations	15

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

List of Tables

Table 5-1 Summary of Pavement Material Thicknesses	6
Table 5-2 Unconfined Compression Test Results on Bedrock	7
Table 6-1 Summary of Grain-Size Data for Scour Analysis	8
Table 6-2 Bedrock Scour Criteria	8
Table 6-3 Recommended Nominal and Factored Unit End Bearing Resistance Values for Drilled Shafts Socketed into Bedrock (Strength Limit State)	
Table 6-4 Recommended Nominal and Factored Unit Side Resistance Values for Drilled Shafts Sockete into Bedrock (Strength Limit State)	
Table 6-5 LPile 2019 Input Parameters for Drilled Shafts	12
Table 6-6 Lateral Earth Pressures due to Soil	14

Appendices

Appendix I – Vicinity Map, Boring Logs, Laboratory Testing, and Rock Core Photos

Appendix II – Foundation Calculations

Appendix III - ODOT Geotechnical Checklists

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

1.0 Executive Summary

The project consists of replacing the existing Tinkers Creek bridge along Union Street, which was designed by the Ohio Department of Highways Bureau of Bridges in 1910 and was modified in 1934. S&ME understands that the existing arch bridge structure will be replaced with a single-span, prestressed concrete beam bridge with semi-integral abutments. The proposed abutments will be situated slightly behind the existing abutments and are anticipated to be supported on drilled shafts socketed into shale and/or sandstone bedrock. A span length of approximately 117 feet is anticipated. Minimal to no changes to the horizontal and vertical alignments are anticipated with minimal work beyond the bridge. Prior phases of work have been performed by S&ME including obtaining cores of the existing arch structure (S&ME Letter of Transmittal dated 1/10/19) and structure borings for a previously conceived bridge replacement supported on shallow spread foundations (S&ME Structure Foundation Exploration – Draft Report dated 2/25/20).

Multiple phases of drilling have been performed for this project and include four (4) structure borings and one exploratory probe boring. Two structure borings (B-001-0-19 and B-002-0-19) were performed in 2020 to a depth of at least 5 feet below the then proposed shallow spread footing elevations. Following a change in bridge type and foundation support system, three (3) supplemental borings/probes (B-001-1-21, B-001-2-21, and B-002-1-21) were performed to obtain additional rock core information, and to locate the outer longitudinal limits of the existing bridge foundations.

The primary pavement materials encountered consisted of about 3½ to 5½ inches of asphalt, over 8½ to 14 inches of concrete, over 4 to 13½ inches of granular base. In Boring B-002-0-19, 3¼ to 4-inch-thick layers of brick, slag concrete and/or flowable fill were encountered below the concrete layer. Beneath the pavement sections, soils visually described as fill were encountered in borings B-001-0, B-001-1, and B-001-2 to depths between roughly 20 and 26 feet at the rear abutment. The materials consisted of SILT AND CLAY (A-6a), GRAVEL (A-1-a), SANDY SILT (A-4a), and GRAVEL WITH SAND AND SILT (A-2-4). Many sandstone fragments, a few brick fragments and slag were noted in the fill.

Beneath the fill materials in Borings B-001-0, B-001-1, and B-001-2 and the pavement section in Boring B-002-0, natural soils were encountered and consisted of very-dense GRAVEL WITH SAND AND SILT (A-2-4), hard SILT AND CLAY (A-6a) and hard CLAY (A-7-6).

Borings at the rear abutment encountered SANDSTONE at depths of 26 and 27 feet which was underlain by interbedded SHALE with SANDSTONE at a depth of 33 feet and extended to the termination depth. At the forward abutment borings SANDSTONE was encountered at depths of roughly 8.5 to 9.5 feet below the existing road surface and extended to roughly 35 feet in Boring B-002-1 where the interbedded shale and sandstone was encountered to the termination depth.

Based on Section 305.4.1.1 of the ODOT *Bridge Design Manual (BDM)*, the length of the bedrock socket should be designed to meet the requirements of axial resistance and lateral stability. Recommendations for unit end bearing and unit side resistance of the drilled shafts are presented in Section 6.3.1. Recommended lateral load analyses parameters are provided in Section 6.3.5. Recommended soil parameters for the design of the bridge abutments and wingwalls are presented in Section 6.4.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

2.0 Introduction

This project consists of replacing the existing bridge over Tinkers Creek along Union Street. The existing bridge is a 72-foot long, single filled concrete arch bridge, designed by the Ohio Department of Highways Bureau of Bridges in 1910 and was modified in 1934. S&ME previously performed exploration work at the existing bridge site consisting of concrete bridge and pavement cores, the results of which were submitted in a transmittal dated January 10, 2019. An original structure foundation exploration was also performed in 2020, which included two (2) structure borings, laboratory testing, and recommendations for a shallow spread bridge foundation system. The results of this original exploration were submitted in a Draft Structure Foundation Exploration report dated February 25, 2020.

Following the submission of our original draft report, the proposed structure type was changed by others from a twin leaf arch bridge supported on shallow spread footings to the currently proposed 117-foot, single-span, prestressed concrete beam bridge with semi-integral abutments supported on drilled shafts. Due to the change in structure and foundation type, supplemental field exploration and recommendations were required. The combined information obtained from the original and supplemental explorations is included in this revised final report.

S&ME understands the proposed abutments are situated slightly behind the existing abutments. Minimal to no changes to the horizontal and vertical alignments are anticipated with minimal work beyond the bridge.

In addition to supplemental structure borings performed to obtain deeper rock core to design drilled shaft foundations for the proposed structure, one or more probe borings were requested to assist in ascertaining the longitudinal limits of the existing bridge foundations. One (1) probe boring was performed near the rear abutment. No probe boring was required at the forward abutment on account of performing the structure boring at the front side of the proposed drilled shaft foundations without encountering the existing bridge foundation.

For the sake of clarity, the borings performed in 2020 are referred to as the "original borings" and the borings for the current subsurface exploration are referred to as the "supplemental borings." This geotechnical exploration has been performed in general accordance with the ODOT *Specifications for Geotechnical Explorations (SGE)*, including July 2019 and July 2021 updates.

3.0 Geology and Observations of the Project

3.1 Site Reconnaissance

S&ME personnel visited the site on January 24, 2020, to observe the site and to mark the original structure foundation boring locations prior to drilling. At that time, significant longitudinal and transverse cracks were observed in the asphalt pavement on either side of the approach slabs and also within the approach slabs and bridge deck. Sandstone bedrock outcrops are visible at the north (forward) abutment and in portions of the creek channel. No significant evidence of scour within the banks of Tinkers Creek was observed and the approach embankments appeared to be in generally good condition, with a few areas of over-steepened slopes.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

S&ME personnel visited the site again on January 28, 2022, to mark the supplemental structure foundation boring locations. Union Street had recently been resurfaced; therefore, pavement distress was not observed in the vicinity of the supplemental borings.

3.2 Geology

The project site is within a previously glaciated portion of the state within the Killbuck-Glaciated Pittsburgh Plateau physiographic region. This region is characterized by clay to loam till of the Wisconsinan-age underlain by Mississippian and Pennsylvanian-age shales, sandstones and conglomerates. According to the Cuyahoga County Soil Survey as performed by the United States Department of Agriculture (USDA), the soils at the bridge are primarily composed of Brecksville Silt Loam (BrF) which is derived from weathered shale.

Bedrock topography mapping suggests that rock may be present at relatively shallow depths. An approximate top of rock surface is shown on some of the available plans from the 1934 project and is anticipated approximately 10 to 30 feet below the existing roadway surface. Bedrock has also been observed during our previous site visits for the coring project. In the original borings previously completed for this project, bedrock was encountered at depths of 27 and 9.5 feet in the rear and forward abutments, respectively. Similar conditions were encountered in the supplemental boring with bedrock noted at depths of 26 and 8.5 feet in the rear and forward abutments, respectively.

A review of the ODNR "Ohio Karst Areas" map reveals that the site lies in an area not known to contain karst features. A review of the ODNR "Landslides in Ohio" map reveals that the project site lies in an area of low incidence and low susceptibility to landslides, and the ODNR "Abandoned Underground Mines of Ohio" map indicates the site lies in areas with no mapped abandoned mines near the area of the project site.

3.3 Available Information

The existing structure was designed by the Ohio Department of Highways Bureau of Bridges in 1910, modified in 1934, and is a 72-foot long, single filled arch. We understand that the original construction was in 1910 with a widening in 1934. The on-line ODOT Transportation Information Mapping System (TIMS) records was searched for historic boring information with no available historic boring records being located for the site.

As referenced above, S&ME previously performed work at the existing bridge site consisting of concrete cores, structure foundation borings for shallow spread foundations, and associated laboratory testing. The transmittal for the bridge and pavement cores was submitted under separate cover and dated January 10, 2019. The original structure borings, laboratory testing, and recommendations for the support of a replacement structure on shallow spread foundations were submitted in the draft Structure Foundation Exploration report dated February 25, 2020.

4.0 Field Exploration

The boring locations were selected by S&ME in accordance with the ODOT *SGE* and discussions with Pennoni. Two (2) original borings, B-001-0-19 and B-002-0-19, were field marked by S&ME personnel on January 24, 2020, and were positioned behind the south and north abutments, respectively. Supplemental Borings B-001-1-21, B-001-2-21, and B-002-1-21 were field marked by S&ME personnel on January 28, 2022. The approximate locations of the

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

borings are shown on the Plan of Borings submitted as Plate 2 in Appendix I. The boring locations were obtained using a handheld GPS unit (with sub-meter accuracy) and ground surface elevations at the marked locations were estimated from available topographic and plan drawing information. All boring locations will be referred to hereafter without their two-digit year extension.

The original structure borings (B-001-0 and B-002-0) were performed with a truck-mounted drill rig on February 4, 2020. The supplemental structure borings (B-001-1 and B-002-2) were performed with a truck-mounted drill rig between February 7 to 9, 2022. All borings were advanced using 3-1/4" I.D. hollow-stem augers to the top of bedrock. At regular intervals in the original borings, disturbed (but representative) soil samples were obtained by lowering a 2-inch O.D. split-barrel sampler to the sampling depth where it was driven 18 inches into the soil strata by blows from a calibrated 140-pound hammer freely falling 30 inches (AASHTO T206, Standard Penetration Test – SPT). Split-barrel samples were examined immediately after recovery and representative samples were preserved in airtight containers. No SPT samples were attempted within the soil strata in the supplemental borings.

In accordance with ODOT specifications, the hammer system on the drilling rig was calibrated (ASTM D4633) to determine the drill rod energy ratio. The same truck rig was used for both phases of drilling, but was recalibrated in between the two phases of work. For the borings performed in February 2020, the hammer with a drill rod energy ratio of 93.8% was calibrated on November 5, 2018. The hammer system was recalibrated on November 25, 2020, prior to the second phase of drilling, with a drill rod energy ratio of 98.6%. The drill rod energy ratio for both calibrations has been limited to 90% in accordance with the ODOT SGE.

Rock coring was initiated at depths ranging from 26.4 to 28.5 feet at the rear (south) abutment and at depths of 9.9 to 10 feet at the forward (north) abutment. The original borings were extended to the termination depths of 38.5 feet in B-001-0 and 35 feet in B-002-0. The supplemental structure borings were extended to termination depths of 45 feet in B-001-1 and 44 feet in B-002-1.

A probe boring, B-001-2, to assist in locating the existing concrete foundation for the rear abutment, was completed on February 21, 2022. Auger refusal was encountered at a depth of 20.5 feet. A split-barrel sampler was lowered to the bottom of the boring and driven approximately 3 inches. Concrete fragments, presumed to be the existing bridge foundation, were observed in the sampler. The probe boring was then terminated.

Groundwater observations were made as the borings were being advanced and prior to coring. After drilling, the borings were sealed with a cement and bentonite slurry and/or with soil cuttings mixed with portland cement. At all boring locations in the roadway, the existing pavement surface was repaired with an equivalent thickness of cold patch asphalt. In Boring B-002-1, the rock core bit and associated rods had to be abandoned in place from about 0.8 to 32 feet below the pavement surface due to the rock core barrel becoming lodged into the sandstone formation while attempting to remove the tooling.

In the field, experienced personnel performed the following specific duties: preserved all recovered samples; prepared a log for the borings; made seepage and groundwater observations; obtained hand-penetrometer measurements in soil samples exhibiting cohesion; and coordinated with S&ME personnel so that the program of explorations could be modified, if necessary, because of unanticipated conditions. All samples were transported to the laboratory of S&ME for further identification and testing.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

4.1 Laboratory Testing

In the laboratory, under the direction of a Professional Engineer, all soil samples from the original borings were visually identified and tested for moisture content. Select samples were tested for liquid and plastic (Atterberg) limits, and particle-size distribution. The rock cores were visually identified, photographed, and percent recoveries and RQDs were estimated. Five (5) rock core samples, including one (1) interbedded shale/sandstone sample and four (4) sandstone samples were tested for unconfined compressive strength in accordance with ASTM D 7012, Method C. Results of the laboratory tests are included on the boring logs presented in Appendix I.

Based on the results of the laboratory identification and testing program, soil and rock descriptions on the field logs were modified, where necessary, and copies of the laboratory-corrected logs of the borings have been submitted as Plates 5 through 13 in Appendix I. Shown on these logs are: descriptions of the soil and rock stratigraphy encountered; depths from which samples were attempted and preserved; sampling efforts (blow-counts) required to obtain the samples in the borings; seepage and groundwater observations; and percent recovery and RQD measurements.

Soils samples described in this report have been classified in general accordance with Section 603 of the July 2021 ODOT SGE. The soil and rock samples have been described in general accordance with Sections 602 and 605 of the January 2021 ODOT SGE, including the use of adjectives to designate the approximate percentages of minor soil components. An explanation of the symbols and terms used on the boring logs and definitions of the special adjectives used to denote the minor soil components are presented on Plate 3 of Appendix I. An explanation of the symbols and terms used on the boring logs to describe the bedrock are presented on Plate 4 of Appendix I.

5.0 Exploration Findings

5.1 Existing Pavement Thicknesses

The various pavement materials encountered in the borings ranged from 13 to 23 inches over 4 to 13½ inches of granular base below the pavement. The existing pavement section thicknesses measured from the borings and recovered pavement cores are summarized in Table 5-1. Photos of the pavement cores obtained at the original boring locations are presented on Plate 28 of Appendix I.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

Table 5-1 Summary of Pavement Material Thicknesses

Boring/ Core ID	Approx. Location	Asphalt (in.)	Concrete (in.)	Flowable Fill (in.)	Slag Concrete (in.)	Slag Concrete/ Brick (in.)	Granular Base (in.)	Total (in.)
B-001-0-19	Rear Abutment	3 3/4	9 1/4				4	17
B-001-1-21	Rear Abutment	4 1/2	8 ½				12	25
B-001-2-21	Rear Abutment	5 ½	14				12	31 ½
B-002-0-19	Forward Abutment	3 ½	8 ½	3 3/4	3 1/4	4	4	27
B-002-1-21	Forward Abutment	4 1/2	12				13 ½	30

5.2 General Subsurface Conditions

Beneath the pavement sections listed above in Table 5-1, soils visually described as fill were encountered in all borings except B-002-0 to depths between roughly 20 and 26 feet at the rear abutment. The materials consisted of SILT AND CLAY (A-6a), GRAVEL (A-1-a), SANDY SILT (A-4a), and GRAVEL WITH SAND AND SILT (A-2-4). Many sandstone fragments, a few brick fragments and slag were noted in the fill.

Beneath the fill materials in Borings B-001-0, B-001-1, and B-001-2, and the pavement section in Boring B-002-0, natural soils were encountered and consisted of very-dense GRAVEL WITH SAND AND SILT (A-2-4), hard SILT AND CLAY (A-6a) and hard CLAY (A-7-6).

Borings at the rear abutment encountered SANDSTONE at depths of 26 and 27 feet which was underlain by interbedded SHALE with SANDSTONE at a depth of 33 feet and extended to the termination depth. At the forward abutment borings SANDSTONE was encountered at depths of roughly 8.5 to 9.5 feet below the existing road surface and extended to roughly 35 feet in Boring B-002-1 where the interbedded shale and sandstone was encountered to the termination depth of 44 feet. Photos of the rock cores are presented on Plates 23 and 27 of Appendix I.

5.3 Seepage and Groundwater Observations

Groundwater observations were made as the borings were being advanced, and again before commencing rock coring. Groundwater was observed at 20 feet below the pavement surface at B-001-1 after drilling was complete on February 7, 2022, and at about 26 feet from the pavement surface before rock coring on February 8, 2022. Groundwater was not encountered during drilling or before rock coring at any other boring location. Note that water was added to the boreholes during the rock coring process in each of the structure borings; therefore, after drilling water measurements are not considered to reflect long-term or static water levels.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

All groundwater levels and seepage measurements should be considered as temporary, short-term observations and should not be assumed to be representative of the long-term static groundwater level. Groundwater levels can fluctuate due to seasonal variations in precipitation, construction activities, etc.

5.4 Bedrock Testing Results

Table 5-2 summarizes the results of the unconfined compressive strength (UCS) tests performed on recovered sections of the bedrock core.

			-			
Boring No.	Core Run No.	Top Depth of Core Run	Bottom Depth of Core Run	Test Sample Depth	Rock Type	Unconfined Compressive Strength (psi)
B-001-1-21	NQ-3	27.1	31.4	29.7 – 30.1	Sandstone	7,247
B-002-1-21	NQ-3	13.9	23.9	17.1 – 17.5	Sandstone	5,208
B-002-1-21	NQ-5	34.0	44.0	39.1 – 39.4	Shale in/b w/ Sandstone	2,133
B-002-0-19	NQ-8	25.0	35.0	29.7 – 30.5	Sandstone	5,533
B-002-0-19	NQ-8	25.0	35.0	32.5 – 33.3	Sandstone	7,891

Table 5-2 Unconfined Compression Test Results on Bedrock

6.0 Analyses and Recommendations

6.1 General Project Discussion

Based on information provided by Pennoni, S&ME understands that the project consists of replacing the existing 72-foot long, single filled concrete arch bridge carrying Union Street over Tinkers Creek with a replacement structure that is anticipated to be a 117-foot, single-span bridge with prestressed concrete I-Beams supported on semi-integral abutments with turnback wingwalls. Based on discussions with Pennoni and ODOT District 12, S&ME understands that the decision has been made to support the proposed abutments on drilled shafts socketed into the shale and/or sandstone bedrock. Pennoni is currently considering two options for the drilled shafts:

- Five (5) shafts per abutment, spaced at 9 feet, 7 inches at the rear abutment and 10 feet, 3¾ inches at the forward abutment.
- Four (4) shafts per abutment, spaced at 12 feet, 9 inches at the rear abutment and 13 feet, 9 inches at the forward abutment.

Pennoni's preliminary calculations indicate that the anticipated max factored service reactions are approximately 550 kips per shaft and 650 kips per shaft for the five and four shaft options, respectively. Minimal to no changes to the horizontal and vertical alignments are anticipated with minimal work beyond the bridge.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

6.2 Scour

Grain-size analyses were performed on soil samples recovered from the continuously sampled scour zone between 18.5 and 25.6 feet below the existing ground surface in Boring B-001-0. A summary of the results is provided in Table 6-1. Scour design is to be performed by others. In addition to the particle size information provided in Table 6-1, the sandstone bedrock near the channel flow elevation is considered to be medium grained, which according to the ODOT *SGE*, corresponds to a particle size from 0.25 to 0.5 mm.

Table 6-1 Summary of Grain-Size Data for Scour Analysis

Boring ID	Sample ID	Depth Interval (ft)	D ₅₀ (mm)	D95 (mm)
	SS-4	18.5′ – 20.0′	0.301	24.267
D 004 0 40	SS-5	20.0′ – 21.5′	0.046	0.367
B-001-0-19	SS-6	21.5′ – 23.0′	0.036	0.262
	SS-7	23.0′ – 24.5′	0.043	0.906
	SS-8	24.5' – 25.6'	0.283	14.863

Stage 1 plans indicate the existing structure is planned to be cut off and concrete slope protection is to be drilled and grouted into the portion of existing abutment to remain. However, if riprap is elected to be used to protect against scour, it should be recognized that riprap is not a permanent countermeasure against, nor does it completely eliminate the potential for scour. For this reason, if riprap is used, we recommended that the project plans and specifications also contain provisions for routine maintenance of the rip-rap blanket to ensure that the design blanket thickness is preserved over the design life of the bridge. Additionally, in all cases where riprap is used for scour protection, the bridge must be monitored during and inspected after periods of high flow.

Section 305.2.1.2.b of the January 2020 ODOT *Bridge Design Manual (BDM)* defines several criteria that bedrock must meet or exceed to be considered as resistant to scour. These requirements are presented in Table 6-2.

Table 6-2 Bedrock Scour Criteria

ODOT BDM Requirement for Scour Resistant Bedrock			
Unconfined compressive strength \geq 2,500 psi			
Slake Durability Index (SDI) ≥ 90%			
Rock Quality Designation (RQD) <u>></u> 65%			
Unit weight <u>></u> 150 pcf			
Rock Mass Rating (RMR) \geq 75 or Geologic Strength Index (GSI) \geq 75			
Erodibility Index (K) ≥ 100			

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

Test results indicate that the sandstone and shale do not meet all the requirements in Table 6-2. However, we understand that Pennoni has performed a rock scour analysis based on HEC-18 which indicated that no scour is anticipated to occur in the sandstone bedrock at the creek bed level.

6.3 Bridge Foundation Recommendations

6.3.1 Drilled Shafts – Axial Load Resistance

Recommended unit end bearing and side resistance values have been calculated for both the sandstone and the underlying layer of shale interbedded with sandstone, as drilled shaft bearing elevations have not yet been determined. Drilled shafts should be designed in accordance with Section 305.4 of the 2020 ODOT *BDM*, with shaft and rock socket diameters determined in accordance with Section 305.4.4.2.

As the amount of movement necessary to develop shaft friction resistance is less than that needed to develop end bearing (tip) resistance, unless an on-site static load test is planned at this site, drilled shafts used to support the proposed abutments and piers should be designed for axial load carrying capacity using <u>either shaft friction</u> resistance only or <u>end bearing (tip) resistance only</u>.

LRFD resistance values for use during drilled shaft design of substructure elements at the bridge abutments are presented in Table 6-3 (End Bearing Tip Resistance) and Table 6-4 (Unit Side Resistance).

Table 6-3 Recommended Nominal and Factored Unit End Bearing Resistance Values for Drilled Shafts Socketed into Bedrock (Strength Limit State)

Substructure Element	Rock Type	Elevation Range	Nominal Unit Tip Resistance* (q _P)	Resistance Factor (φ _{qp}) for Tip Resistance**	Factored Unit Tip Resistance*
Rear Abutment Drilled	Scour Resistant Sandstone	870.0 – 862.7	2,325 ksf	0.5	1162.5 ksf
Shafts	Interbedded Shale and Sandstone	862.7 – 850.5	765 ksf	0.5	382.5 ksf
	Scour Resistant Sandstone	886.1 – 876.5	1,875 ksf	0.5	937.5 ksf
Forward Abutment	Scour Resistant Sandstone	876.5 – 869.3	2,100 ksf	0.5	1050.0 ksf
Drilled Shafts	Scour Resistant Sandstone	869.3 – 860.6	2,325 ksf	0.5	1162.5 ksf
	Interbedded Shale and Sandstone	860.6 – 852.0	760 ksf	0.5	380.0 ksf

^{*} For vertical loading only, calculated using AASHTO LRFD Eqn. 10.8.3.5.4c-1.

October 31, 2022

^{**} Table 10.5.5.2.4-1 of the AASHTO LRFD (tip resistance in rock).

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

Table 6-4 Recommended Nominal and Factored Unit Side Resistance Values for Drilled Shafts Socketed into Bedrock (Strength Limit State)

Substructure Element	Rock Type	Elevation Range	Nominal (Unfactored) Unit Shaft Resistance (qs)*	Resistance Factor (φ ₉) for Shaft Resistance**	Factored Unit Shaft Resistance*
Rear Abutment	Scour Resistant Sandstone	870.0 – 862.7	34.9 ksf	0.55	19.1 ksf
Drilled Shafts	Interbedded Shale and Sandstone	862.7 – 850.5	25.5 ksf	0.55	14.0 ksf
	Scour Resistant Sandstone	886.1 – 876.5	34.9 ksf	0.55	19.1 ksf
Forward Abutment	Scour Resistant Sandstone	876.5 – 869.3	34.9 ksf	0.55	19.1 ksf
Drilled Shafts	Scour Resistant Sandstone	869.3 – 860.6	34.9 ksf	0.55	19.1 ksf
	Interbedded Shale and Sandstone	860.6 – 852.0	25.5 ksf	0.55	14.0 ksf

^{*} For vertical loading only, calculated using AASHTO LRFD Eqn. 10.8.3.5.4b-1.

A calculation package with geologic strength index (GSI) determinations and estimates of nominal bedrock bearing resistance is included in Appendix II.

During a conference call with Pennoni, ODOT District 12, ODOT OGE and S&ME on August 29, 2022, ODOT OGE indicated that since no bedrock scour is expected based on the scour analysis performed by Pennoni that the drilled shafts at the forward abutment are not required to terminate below the stream bed in Tinkers Creek. Accordingly, the length for drilled shafts should be determined following an assessment of the axial and lateral loading at the forward abutment with the expectation that the shafts will bear within the scour resistant sandstone bedrock above El. 860.6.

In accordance with the *BDM* Section 305.4.2, the plans should not specify the tip elevation of drilled shafts socketed into bedrock, but should provide the approximate top of the bedrock elevation and the length of the bedrock socket in the profile view on the Final Structure Site Plan. The minimum length of rock socket required will be the greater of 1.5D below the anticipated scour depth (i.e., creek bed elevation since no scour is anticipated) if the axial load is supported using end-bearing resistance only, the socket length required to support the axial loads using shaft friction only (negating friction in the top 2 feet of the rock socket), or the socket length determined based on results of a lateral load analyses.

^{**} Table 10.5.5.2.4-1 of the AASHTO LRFD (side resistance in rock)

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

6.3.2 Drilled Shaft Construction Recommendations

The drilled shafts should be constructed in accordance with Item 524 of the ODOT *Construction and Materials Specifications* (*CMS*) and should be at a minimum center-to-center spacing of 3 shaft diameters (3D). Provisions should be made for providing a temporary casing during drilled shaft excavation through the soil overburden above the bedrock. Each of the borings encountered uncontrolled fill above bedrock, which may cave during drilled shaft construction. The casing should extend to the underlying bedrock to attempt to seal the shafts from influx of water, soil, and rock fragments. The temporary casing may then be removed during concrete placement; however, precautions should be taken to ensure that the structural integrity of the shafts is not compromised by caving of material during removal of the casing. The concrete level (head) should also be maintained a minimum of 4 feet above the bottom of the casing during withdrawal to prevent the entry of soil/rock and water into the shafts. The need for continual pumping should be anticipated to remove water accumulation (seepage) from the drilled shafts as seepage may occur; otherwise, placement of concrete should use approved tremie or pumping methods. All drilled shaft construction should be observed by a qualified geotechnical engineer or an experienced technician working under direction of the engineer to ensure that the drilled shafts are installed plumb, that the shaft bottoms are sufficiently clean and dry prior to concrete placement, and that the shafts extend into the appropriate bearing stratum as recommended.

In addition, S&ME also suggests that the following items be considered:

- <u>Determination/Verification of Bearing Surface</u>: Verification of the bearing surface will be required. Ideally, the bedrock socket and bottom surface should be directly observed by a trained inspector. To facilitate this, the contract plans should indicate that the contractor should attempt to dewater the shafts following drilling. However, if it is impossible to fully dewater the shafts, determination of the bearing surface will have to be made based on the type of material extracted from the hole and the degree of drilling difficulty.
- Bottom Clean-Out: Whether the shafts are designed to resist axial loads in end-bearing, side-friction, or a combination of both, bottom clean out is important. In general, the specifications contained in Item 524 of the ODOT CMS and Construction Administration Manual of Procedures (MOP) are acceptable.
 Verification of the clean-out may be performed by visual inspection if the excavations are dry or by using a submersible electronic inspection device (MiniSID) if the excavations are wet.
- <u>Steel Reinforcement</u>: If it is intended to fully reinforce the shafts, provisions will need to be made to permit either lengthening or shortening the reinforcing cages on site as required to reach the shaft bottom.
- <u>Concrete Integrity</u>: If the shafts are constructed in the dry, the potential for the inclusion of voids or pockets of deleterious material within the shafts is minimized.

6.3.3 Foundation Settlement

Abutment foundation settlement is anticipated to be limited to the elastic compression of the drilled shafts, provided that the shafts bear in intact sandstone or interbedded shale/sandstone layers.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

6.3.4 Downdrag Considerations

As no additional fill is planned in the abutments above the drilled shafts, no downdrag loads are anticipated on the drilled shaft foundations.

6.3.5 LPILE Lateral Resistance Analysis Design Parameters

Once the final structure configuration and loads have been determined, a lateral load analysis should be performed to determine the minimum required rock socket length at both abutments to provide lateral stability per ODOT *BDM* Section 305.4.1.1. Provided that the existing soil overburden is completely removed above the top of rock elevation during the design flood, Table 6-5 includes recommended p-y models, rock unit weights, strain, and rock strength parameters to be used in the lateral load analyses for drilled shaft foundations. Effective unit weights shown for bedrock reflect a water table being encountered above the point where bedrock becomes scour resistant. These parameters are based on the complete removal of the soil overburden due to scour along with bedrock scour, and recommended values given in the LPile 2019 user's manual. These parameters may be used for drilled shaft foundations at both abutments below the depth of potential bedrock scour.

Table 6-5 LPile 2019 Input Parameters for Drilled Shafts

Stratum	Rear Abutment Elevation Range	Forward Abutment Elevation Range	p-y Rock Model	Effective Unit Weight	Unconfined Compressive Strength
Sandstone Above OHWM		886.1 – 874.3	Strong Rock	130 pcf	5,000 psi
Sandstone Below OHWM	870.0 – 862.7	874.3 – 860.6	Strong Rock	64 pcf	5,000 psi
Interbedded Shale and Sandstone	862.7 – 850.5	860.6 – 852.0	Strong Rock	100 pcf	2,000 psi

The designer should verify that the shaft-head deflection amounts and internal forces (shear and moment) are accounted for and are acceptable for the design of the structures.

6.4 Lateral Earth Pressures

6.4.1 Wingwalls and Abutment Walls

The proposed bridge abutments and any wingwalls must be designed to withstand lateral earth pressures, as well as hydrostatic pressures, that may develop behind the structures. The magnitude of the lateral earth pressures varies on the basis of soil type, permissible wall movement, and the configuration of the backfill.

To minimize lateral earth pressures, the zone behind abutment walls should be backfilled with granular soil, and the backfill should be effectively drained. For effective drainage, a zone of free-draining gravel (ODOT Item

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

518.03) should be used directly behind the structures for a minimum thickness of 24 inches in accordance with ODOT Item 518.05. This granular zone should drain to either weepholes or a pipe, so that hydrostatic pressures do not develop against the walls.

The type of backfill beyond the free-draining granular zone, however, will govern the magnitude of the pressure to be used for structural design. Pressures of a relatively low magnitude will be developed by the use of granular backfill, whereas a cohesive (clay) backfill will result in the development of much higher pressures.

It is recommended that granular backfill be used behind the abutments and any wingwalls. The backfill should be placed in a wedge formed by the back of the structure and a line rising from the base of the wall abutment foundations at an angle no greater than 60 degrees from horizontal. Granular backfill behind the structures should be compacted in accordance with ODOT CMS Item 203, "Embankment Compaction". Over-compaction in areas directly behind the walls should be avoided, as this might cause damage to the structure.

If proper drainage is provided and compacted granular backfill is provided as described above, an equivalent fluid unit weight of 35 lb/ft³ (pcf) may be used if movement equivalent to 0.25 percent of the height of the abutment or wingwall (H) is allowed to occur. Such movement is considered sufficient to mobilize an active earth pressure condition, and the resultant lateral force should be taken as acting at 0.33H. If this movement is not anticipated or cannot occur, it is recommended that an "at-rest" equivalent fluid unit weight of 55 pcf be used.

Compacted cohesive materials tend alternatively to shrink, expand and creep over periods of time and create significant lateral pressures on any adjacent structures. Cohesive materials also require a greater amount of movement to mobilize an active earth pressure condition. For these reasons, if proper drainage (ODOT Item 518) is provided <u>and</u> a wall movement in excess of 1.0 percent of the height of the abutment or wingwall (H) is allowed to occur, an equivalent fluid unit weight of 65 pcf may be used for design of the abutment walls to resist the lateral loads imparted by drained cohesive backfill. If this amount of movement is not anticipated or cannot occur, it is recommended that an "at-rest" equivalent fluid unit weight of 95 pcf be used.

The structures must also be designed to withstand the surcharge effect of traffic in addition to the vertical load resulting from the weight of any fill and pavement to be placed over the structures. To estimate vertical loading, a total unit weight of 125 pcf and 135 pcf may be used for compacted granular and cohesive soil, respectively.

6.4.2 Soil Parameters

The following parameters in Table 6-6 may be used for determination of earth pressures from soils above bedrock acting on the proposed abutments where existing materials are to remain in place. Soils encountered above the bedrock in Boring B-001-0 are described as existing fill. These parameters only apply where new granular backfill cannot be placed in a wedge 60 degrees from the horizontal behind the abutments.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

Table 6-6 Lateral Earth Pressures due to Soil

Boring ID	Elevation Range	Angle of Internal Friction (deg.)	At-Rest Coefficient (K ₀)	Active Coefficient (K _a)	Passive Coefficient (K _P)	Recommended Unit Weight (pcf)
	894.6 - 887.1	28	0.53	0.36	2.77	120
	887.1 - 884.0	32	0.47	0.31	3.25	115
B-001-0-19	884.0 - 878.0	28	0.53	0.36	2.77	120
Rear Abutment	878.0 - 876.0	30	0.50	0.33	3.00	110
	876.0 - 871.5	28	0.53	0.36	2.77	110
	871.5 - 869.0	36	0.41	0.26	3.85	135
B-002-0-19	894.6 - 889.0	28	0.53	0.36	2.77	120
Forward Abutment	889.0 - 887.5	28	0.53	0.36	2.77	120

6.5 Temporary Excavation Considerations

In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, Part 1926, Subpart P". This document was issued to better ensure the safety of workers entering trenches or excavations. It is mandated by this federal regulation that excavations be constructed in accordance with the OSHA guidelines. It is our understanding that these regulations are being strictly enforced and if they are not closely followed, the owner and the contractor could be liable for substantial penalties.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR, Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations. If an excavation, including a trench is extended to a depth of more than twenty (20) feet, it will be necessary to have the side slopes designed by a professional engineer registered in the state where the construction is occurring.

We are providing this information solely as a service to our client. S&ME does not assume responsibility for construction site safety or the contractor's or other parties' compliance with local, state, and federal safety or other regulations.

Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

6.6 Groundwater Considerations

S&ME is of the opinion that the long-term groundwater level at this site will be approximately the same as, and vary with, the level of water in Tinkers Creek. Some water seepage may emanate from granular seams or zones encountered above the level of water in the creek; however, the quantity of water is expected to be limited and may potentially be controlled by bailing or using portable pumps. Provisions for continuous pumping from sumps should be made for the larger groundwater flows that may be encountered in excavations extending below the level of water in the creek.

It is recommended that groundwater and surface water runoff be controlled during construction, as soil in excavations may exhibit instability in the presence of water and construction vibrations. S&ME recommends that the sides and bottoms of all excavations be closely monitored by the Geotechnical Engineer of Record or their designated representative during construction. If the soils at the bottom of an excavation become disturbed by construction activity or channel flow, it is recommended that the disturbed material be undercut and replaced in accordance with the recommendations provided in this report, or be removed and the footing elevation lowered to more suitable soils.

Localized sheeting and continuous dewatering, in conjunction with stream diversion, may aid in minimizing disturbance of the soil/rock at the foundation bearing elevation, and it is recommended that all excavations for the proposed structure foundations be protected from stream, groundwater, and storm water flow. Even with stream flow diversion, provisions for continuous pumping from sumps should be made for the expected larger groundwater flows that may be encountered in excavations extending below the level of water in the stream and into the underlying granular soil.

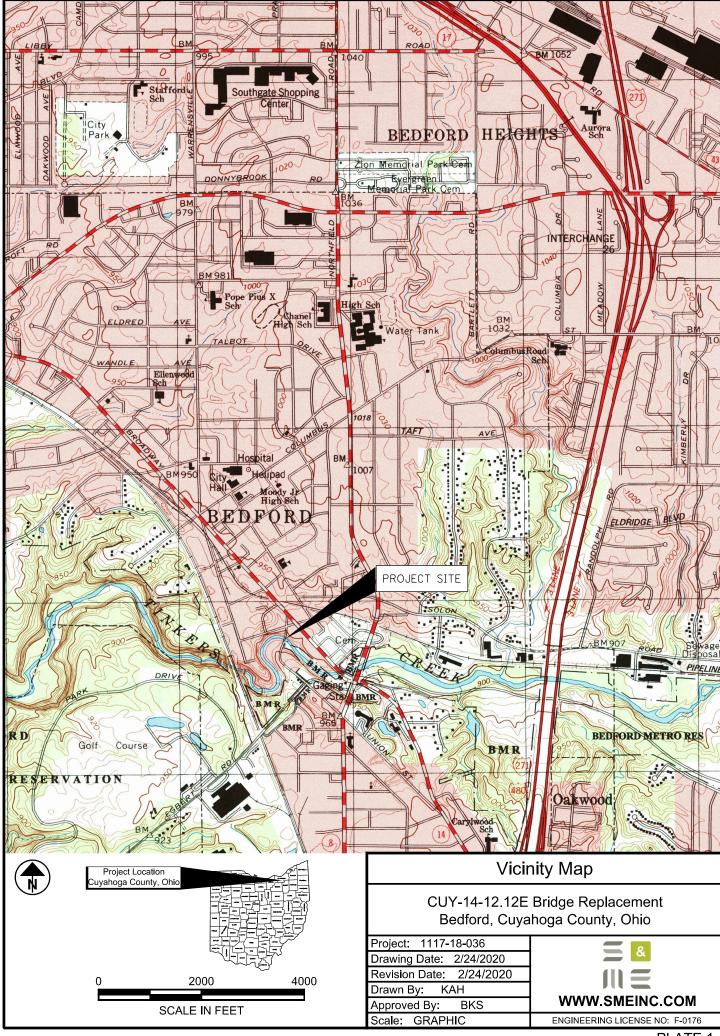
7.0 Final Considerations and Report Limitations

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other representation or warranty either express or implied, is made.

We relied on project information given to us to develop our conclusions and recommendations. If project information described in this report is not accurate, or if it changes during project development, we should be notified of the changes so we can modify our recommendations based on this additional information if necessary.

Our conclusions and recommendations are based on limited data from a field exploration program. Subsurface conditions can vary widely between explored areas. Some variations may not become evident until construction. If conditions are encountered which appear different than those described in our report, we should be notified. This report should not be construed to represent subsurface conditions for the entire site.

Unless specifically noted otherwise, our field exploration program did not include an assessment of regulatory compliance, environmental conditions or pollutants or presence of any biological materials (mold, fungi, bacteria). If there is a concern about these items, other studies should be performed. S&ME can provide a proposal and perform these services if requested.



Bedford, Cuyahoga County, Ohio S&ME Project No. 1117-18-036

S&ME should be retained to review the final plans and specifications to confirm that earthwork, foundation, and other recommendations are properly interpreted and implemented. The recommendations in this report are contingent on S&ME's review of final plans and specifications followed by our observation and monitoring of earthwork and foundation construction activities.

Appendix I - Vicinity Map, Boring Logs, Laboratory Testing, and **Rock Core Photos**

1117-18-036

Drawing Path: T:\GEO\Projects\2018\1117-18-036 CUY-14-12.12 Cores-GPR\CAD\Construction\Plan of Borings.dwg

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

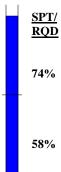
- Indicates sample was attempted within this depth interval.
- The number of blows required for each 6-inch increment of penetration of a "Standard" 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer freely falling 30 inches (SPT). The raw "blowcount" or "N" is equal to the sum of the second and third 6-inch increments of penetration.
- N₆₀ Corrected Blowcount = [(Drill Rod Energy Ratio) / (0.60 Standard)] X N
- 90* Calibrated energy ratio exceeds 90% but is limited to 90% per ODOT SGE.
- SS Split-barrel sampler, any size.
- ST Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-4" Number of blows (50) to drive a split-barrel sampler a certain distance (4 inches), other than the normal 6-inch increment.

DEPTH DATA

- W Depth of water or seepage encountered during drilling.
- ∇ Depth to water in boring at the end of drilling (EOD).
- ▼ 5 days Depth to water in monitoring well or piezometer in boring a certain number of days (5) after termination of drilling.
 - TR Depth to top of rock.

SOIL DESCRIPTIONS

Soils have been classified in general accordance with Section 603 of the most recent ODOT SGE, and described in general accordance with Section 602, including the use of special adjectives to designate approximate percentages of minor components as follows:


<u>Adjective</u>	Percent by Weight
trace	1 to 10
little	10 to 20
some	20 to 35
"and"	35 to 50

The following terms are used to describe density and consistency of soils:

Term (Granular Soils)	Blows per foot (N ₆₀)
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	Qu (tsf)
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF ROCK

SAMPLING DATA

When bedrock is encountered and rock core samples are attempted, the length of core recovered and lost during the core run is reported in the "REC" column. The type of rock core barrel utilized is recorded under the heading "Sampling Method" at the top of the boring log, and also in the "SAMPLE ID" column. Rock-core barrels can be of either single- or double-tube construction, and a special series of double-tube barrels, designated by the suffix M, may also be used to obtain maximum core recovery in very-soft or fractured rock. Four basic groups of barrels are used most often in subsurface investigations for engineering purposes, and these groups and the diameters of the cores obtained are as follows:

AX, AW, AXM, AWM - 1-1/8 inches BX, BW, BXM, BWM - 1-5/8 inches NX, NW, NXM, NWM - 2-1/8 inches NQ, NQ2 - 1-7/8 inches

Rock Quality Designation (RQD) is expressed as a percentage and is obtained by summing the total length of all core pieces which are at least 4 inches long and then dividing this sum by, either, the total length of core run or the length of the core run in a particular bedrock stratum. The RQD value is reported as a percentage in the "SPT/RQD" column. It has been found that there is a reasonably good relationship between the RQD value and the general quality of rock for engineering purposes. This relationship is shown as follows:

<u>RQD - %</u>	General Quality
0 - 25	Very-poor
25 - 50	Poor
50 - 75	Fair
75 - 90	Good
90 - 100	Excellent

ROCK HARDNESS

Recovered bedrock samples are described in general accordance with Section 605 of the latest ODOT SGE and subsequent revisions, where necessary. The following terms are used to describe rock hardness:

<u>Term</u>	<u>Meaning</u>
Very Weak	Rock can be excavated readily with the point of a pick and carved with a knife. Pieces 1 inch or greater in thickness can be broken by finger pressure. Can be scratched with a fingernail.
Weak	Rock can be grooved or gouged readily by a knife or pick, and can be excavated in small fragments with moderate blows from a pick point. Small, thin pieces may be broken with finger pressure.
Slightly Strong	Rock can be grooved or gouged 0.05 inches deep with firm pressure from a knife or pick point, and can be excavated in small chips to pieces of 1 inch maximum size using hard blows from the point of a geologist's pick.
Moderately Strong	Rock can be scratched with a knife or pick. Grooves or gouges to ¼ inch deep can be excavated by hard blows of a geologist's pick. Requires moderate hammer blows to detach a hand specimen.
Strong	Rock can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach a hand specimen. Sharp and resistant edges are present on hand specimens.
Very Strong	Rock cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires repeated hard blows of a geologist's hammer.
Extremely Strong	Rock cannot be scratched by a knife or sharp pick. Chipping of hand specimens requires repeated hard blows of a geologist's hammer.

S&ME JOB: 1117-18-036

\equiv	&
410	=

TYPE:	CT: CUY-14-1212E BRIDGE REPLACEMENT	DRILLING FIRM / OPER SAMPLING FIRM / LOG	_	OTB / A. F &ME / A. MA					MOBILE B ME AUTON		1	STAT ALIGI						7, 9' F REE		EXPLORA B-001	
PID: START:	13184 BR ID: 1801929 : 2/4/20 END: 2/4/20	DRILLING METHOD: _ SAMPLING METHOD: _		S" HSA / NQ SPT / NQ			BRAT RGY F		ATE: <u>1</u> (%):	1/5/18 90*	_	ELEV LAT /		_			_		38 .53100	8.5 ft. 06 W	PAGE 1 OF 2
	MATERIAL DESCRIPT	TION	ELEV.	DEDTU	_	SPT/		REC	SAMPLE	HP	C	RAD	ATIO	N (%))	ATT	ERBI	≣RG		ODOT	HOLE
	AND NOTES		896.0	DEPTH:	5	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
	ASPHALT - 3-3/4 INCHE	S / \\	895.7	L	_			` ,		Ì											*********
	CONCRETE - 9-1/4 INCH	ES X	894.9	. ⊢	- 1																*********
	GRANULAR BASE - 4 INCH	HES /V//	894.6 F	1 -																	
FILL: F	Hard brown SILT AND CLAY, some fi	ne to coarse			- 2 -																
gravel,	, little fine to coarse sand, few sandst	one fragments,		l ⊢	- 3 —																
damp.				l E	_ 4 🗐	2															
		\// _/		l -	4	2 3	8	44	SS-1	4.5	28	6	11	28	27	30	16	14	15	A-6a (6)	
		\///	1	<u> </u>	- 5 -																-
		\///			- 6 -																
				-																	
		V///			- 7 —																
l _		\///		<u> </u>	- 8 —																
- Few c	organic pockets.		887.1]	_ [3			SS-2A	4.5	- 1	- 1	- 1	-	-	-	-	-	19	A-6a (V)	
	Medium-dense brown GRAVEL, little				- 9 🕇	9	17	61	SS-2B		-			-	-	_	_	-	8	A-1-a (V)	
sand, p	predominantly composed of sandstor			<u> </u>	- 10 💾	2															-
		00	d	l E	- - 11 —																
		\circ	884.0		'' -																
FILL F	Hard brown SANDY SILT , some clay,		004.0	├	- 12 																
coarse	e gravel (sandstone fragments), damp				- 13 —																
	3 (-		1															-
					- 14 -	2	9	33	SS-3	4.5	-	-	-	-	-	-	-	-	13	A-4a (V)	
				l F	- 15 ⁻	4														` ,	
				<u> </u>	-																
					- 16 																
				l -	- 17 																
FILL: L			878.0	l t	- - 18 																
	oose brown to dark-brown GRAVEL	WITH SAND	1	l -		2															_
AND S	SILT , trace clay, many sandstone frag	ments, damp.	}	<u> </u>	- 19 -	2	6	56	SS-4		41	6	21	22	10	31	23	8	20	A-2-4 (0)	
			876.0] [- 20 -	2														(-/	
	Very-loose to medium-dense dark-gra				-	3	6	56	SS-5		5	3	34	42	16		_	_	29	A-4a (V)	
	Y SILT, little clay, trace fine to coarse andstone fragments, moist to wet.	graver, rew brick			- 21 🕂	_ 2					L		<u> </u>							π ια (τ)	
and sai	masterie magmente, moiet te wet.			<u> </u>	- 22 -	1	3	100	SS-6		l ,	3	33	45	18	20	17	3	22	A-4a (6)	
					22	່ 1	3	100	33-0		'	3	33	45	10	20	17	٥	22	A-4a (0)	
					- 23 -	1	44	70	00.7			_			4.0						
			871.5	 	- 24 -	2 5	11	78	SS-7		8	5	28	41	18	- 1	-	-	22	A-4a (V)	
Very-d	lense gray, GRAVEL WITH SAND AN	D SILT, trace	11	1 [- 25 -	6		92	SS-8		31	9	24	18	8	-	-	_	15	A-2-4 (V)	
clay, da	lamp to moist.		9	-	-	14 <u>50-1</u> "		52	33-0		ادا	9	54	10	٥		_		10	7-2-4 (V)	
clay, da		D SILT, trace	D D	-	- 26 																
			869.0	TR-	- 27 -	TEO 4" 7		1100 0	66.0										15	Book AA	
SANDS	STONE, gray, highly to severely weat	hered.	:		-	5 0-1" /	/	\100/	SS-9	1	┞╌╢	\∧	1	^	/	<u>-</u>	╙╌╜	\ <u>-</u>	(15)	Rock (V)	
SANDS			867.5	[- 28 —																
			:	-	- 29 -																
			<u>: </u>	<u> </u>		62		100	NQ-10		┖┃					╚				CORE	

I	PID: _	13184	BR ID: _	1801929	PROJECT:	CUY-1	4-1212E		STATION	OFFS	ET: _	9+9	7, 9' RT	_ s	TART	: <u>2</u> /	4/20	_ E1	ND: _	2/4	1/20	_ P	G 2 OF	2 B-00	1-0-19
Г			MAT	ERIAL DESCRIP	PTION		ELEV.	DEI	PTHS	SPT/	N ₆₀	REC	SAMPLE	HP	(RAD	ATIO	N (%	o)	ATT	ERB	ERG		ODOT	HOLE
				AND NOTES			866.0	DLI	- 1113	RQD	11460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
18036.GPJ 	graine fractu SHAL lamin	ed, medit ired, iron- _E, gray,	m bedded stained; RC	QD=84%; REC=	slightly to moderately 100%. (continued)		862.7		- 31 - 32 - 33 - 34 - 35 - 36 - 37 -	47		92	NQ-11											CORE	
Ž L							857.5	FOR-	 38	0		100	NQ-12											CORE	

NOTES:

- No seepage or groundwater encountered during drilling.
 Borehole was observed to be dry at completion.
 Borehole was sealed upon completion.

S&ME JOB: 1117-18-036

\equiv	&
m	=

PROJECT: TYPE:	CUY-14-12 BRIDGE REPLACE		DRILLING FIRM / C SAMPLING FIRM /		ER:	S&ME / A. F	ROLF				MOBILE ME AUTO			ALIG	NME	NT: _	UI	NION	STRE	ΕT	EXPLOR B-00	1-1-2
			DRILLING METHO			" HSA / NC)				ATE:		20						_ EOE		5.5 ft	PAC
START:	<u>2/7/22 </u>	2/8/22	SAMPLING METHO	_		SPT / NQ		ENE	RGY R			90*		LAT						1.5310	00 W	1 OF
	AN	L DESCRIPTI D NOTES			ELEV. 896.0	DEPTI	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLI ID			GRAD cs		N (%)			RBER(_	ODOT CLASS (GI)	BA FI
NO SAMI	ASPHALT - A CONCRETE - GRANULAR BA PLING PERFORME	SE - 12 INCH	HES		895.7 894.9 893.9		_ 1 _ _ 1 _ _ 2 _ _ 3 _ _ 4 _															× 1 1 × 1
- Few brick	fragments from 6.5	' to 9.0'.					5 - - 6 - - 7 - - 8 - - 9 - - 10 -															1 V 7 1 V 7
- Some slaç - Blue stain	g. ing due to slag from	n 15.0' to 26.0	r.			₩ 876.0	- 11 12 13 15 16 17 18 19 20 20															V17
medium gra		<u> </u>			870.0 869.6	_₩ _ <u>TR</u> 39.8-	21 — 22 — 23 — 24 — 25 — 26 — 27 —	50-5" 0	-	100 100	SS-1 NQ-2		-	-	-	-	-	-		-	CORE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
grained, mo fractured, n	NE, gray, slightly we oderately strong to sarrow, slightly rough 1', UC = 7,247 psi.	strong, thick b	edded, slightly				- 28 29 -	87		100	NQ-3										CORE	7 1 4 7 1 4 7 1

	PID: _	13184	BR ID: _	1801929	PROJECT:	CUY-1	4-1212E		STATION	I/OFFS	ET: _	10+0	6, 11' RT	_ s	TAR	Γ: _2/	7/22	_ EN		2/8			G 2 OF	2 B-00	1-1-21
			MAT	ERIAL DESCRIP	TION		ELEV.	DE	PTHS	SPT/	N		SAMPLE					N (%)	-		ERBE			ODOT	BACK
L				AND NOTES			866.0		11.10	RQD	1 460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
RESOURCES/COLUMBUS/GINTW/PROJECTS/111718036,GPJ	grain fractu (conti INTE RQD SHA very rough	RBEDDEI 11%, RE LE, gray, thin bedden.	Tately stronow, slightly D SHALE (6 C 82%. highly wealed, fracture gray, unwightly strongers.	rough; RQD 81% 60%) AND SAND thered, very fine d to highly fracture athered, fine graduate and the control of	bedded, slightly 6, REC 99%. STONE (40%),		862.7		- 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 43 - 43 - 43 - 43 - 43 - 43	11	N ₆₀	91 50 42	NQ-4 NQ-5 NQ-6	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CORE CORE CORE	FILL
3 - T:\CS\							850.5	FOR	44 · - 45 ·																1> \ 1 > \ 1
14:33						•		EOR.		_	•				•				•	·	·	•	,		

NOTES:
- Rock fragment jammed the core barrel during coring between depths of 36.4' and 40.4', limiting recovery of rock core within that range.

⁻ Groundwater was measured at 20' at the end of the day on 2/7/22. Groundwater was measured at 26.2' on 2/8/22 prior to coring.

TYPE: BRIDGE REPLACEMENT	DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO	SER: S	S&ME / A. ROLF	HAM	MER:	CN	MOBILE B ME AUTON	MATIC	ALIC	SNME	NT: _	U	NION S	TREE	T T		I-2-21
	DRILLING METHOD: SAMPLING METHOD:	3.	25" HSA SPT			ION D RATIO	ATE: <u>1</u>	1/25/20 90*		VATION / LON			(MSL) .386130			0.7 ft. 00 W	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV.	DEPTHS	SPT/ RQD			SAMPLE ID			DATIC	N (%)	P	ATTERE	BERG		ODOT CLASS (GI)	BACK FILL
ASPHALT - 5-1/2 INCHES		896.0 - 895.5 /-		NQD		(70)	טו	(ISI)	GR CS	FS	51	CL	LL PL	PI	WC		TILL
CONCRETE - 14 INCHES	KXX	894.4	- 1 														
GRANULAR BASE - 12 INCH	XX	893.4	<u> </u>														
NO SAMPLING PERFORMED - SEE BOR	RING B-001-0-19		- 3 -														1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
			- 4 -														12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			- 5 -														1 LV 1 L
			6 -														1>V 1>
			- 7 -														1> \ 1> \ 1 \ 1 \ 1
			- 8 -														1>11>
			9 -														1>1 1> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			_ 10 _														12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			<u> </u>														1 LV 1 L
			- 12 -														1> \ 1 \ \ 1
			<u> </u>														1> \ 1 \ \ 1
± 77			 14														1> \ 1> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
20.530			15 -														1>11>
			— 16 — -														1>V 1> 1 L 1 1 L
			 17														1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
5			18 -														1 LV 1 L
81 02			— 19 — -														1>V 1>
CONCRETE - 14 INCHES GRANULAR BASE - 12 INCH NO SAMPLING PERFORMED - SEE BOR CONCRETE		875.5 \875.37	- 20 -	5 0-3" /		100	SS-1	A - A	- 4 -		- 1	_	- 1 -	1 - <i>i</i>		Visual (V)	1>11>
CONCRETE	/	(010.0)	_ 		_	100/										(Y IOUGI (V)	´

- NOTES:
 No seepage or groundwater encountered during drilling.
 Borehole was observed to be dry at completion.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: 1 BAG ASPHALT PATCH; SOIL CUTTINGS

PROJECT: CUY-14-1212E TYPE: BRIDGE REPLACEMENT	DRILLING FIRM / OPER SAMPLING FIRM / LOG	GER:	S&ME / A. MAINS	_ HAM	IMER:	CI	MOBILE B	MATIC		ALIG	NME	NT: _	ι	JNIO	N ST	REE	Т		<u> 2-0-19</u>
PID: <u>13184</u> BR ID: <u>1801929</u> START: 2/4/20 END: 2/4/20	DRILLING METHOD: SAMPLING METHOD:		5" HSA / NQ SPT / NQ	_	IBRAT RGY F		ATE:1	1/5/18 90*		ELEV							38 53083	5.0 ft.	PAGE 1 OF 2
MATERIAL DESCRIPT		ELEV.	JETTING				SAMPLE			GRAD				_	ERBI		33060		HOLE
AND NOTES	ION	897.0	DEPTHS	SPT/ RQD		(%)	ID	(tsf)	_	cs		_ `	CL	LL	PL	PI	wc	ODOT CLASS (GI)	SEAL
ASPHALT - 3-1/2 INCHE	S /¥	896.7				(**)		(11)											****
CONCRETE - 8-1/2 INCHE	ES /	895.9	 																****
FLOWABLE FILL - 3-3/4 INC	//r\^\^\	895.5	- 2 -																
SLAG CONCRETE - 3-1/4 INC		894.9	- 3 -																
SLAG CONCRETE/BRICK - 4 II		894.6		3					1										_
GRANULAR BASE - 4 INCH	Y///		4 -	6	24	100	SS-1	4.5	8	7	13	39	33	28	16	12	16	A-6a (8)	
Hard brown SILT AND CLAY , little fine to co fine gravel, damp.	parse sand, trace		- 5 - - 6 -	6 9 13	33	100	SS-2	4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
		889.0	- 7 - - 8 -	4 8 11	29	100	SS-3	4.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
Hard gray CLAY, some silt, trace fine to coa	arse sand, trace	╡		3 50-4"	-	100	SS-4	4.5	3	3	6	26	62	43	21	22	26	A-7-6 (13))
fine gravel, damp to moist.	ered	887.5	TR	50-4	-	100	SS-5	_	<u> </u>	-	_	-	_		_	-	0	Rock (V)	
SANDSTONE , brownish-gray, highly weather SANDSTONE , gray, slightly weathered, more medium grained, thin to medium bedded, fr. fractured, narrow to open, slightly rough, zo	derately strong, actured to slightly	887.0	- 10 - - 11 - - 12	50-5		100	33-3											(NOCK (V)	
staining; RQD=18%, REC=83%.	**************************************		- 12 - - 13 - - 14 -	18		83	NQ-6											CORE	
SANDSTONE , gray and reddish-brown, slig moderately strong, medium grained, very th ferriferous, fractured to moderately fractured rough; RQD=32%, REC=100%.	nin to thin bedded,	882.0	- 15 - - 16 - - 17 - - 18 -																
SANDSTONE, brown and gray, slightly wea	thered	876.2	- 19 - - - 20 - - - 21 -	36		100	NQ-7											CORE	
moderately strong, medium grained, thin to fractured to moderately fractured, narrow to rough, few iron stained zones; RQD=39%, I	medium bedded, open, slightly																		
			- 24 - - - 25 - - - 26 -																
SANDSTONE , gray, slightly weathered to un moderately strong, medium grained, very th narrow, slightly rough; RQD=85%, REC=10	nick bedded, intact,	870.5	- 26 - - 27 - - 28 -																
@29.7'-30.5', UC = 5,533 psi.		3	29 30	77		100	NQ-8											CORE	

<u> </u>	=	æ
-		
	111	

I	PID: <u>13184</u>	BR ID:	1801929	PROJECT:	CUY-1	4-1212E		STATION	OFFSI	ET: _	11+5	50, 13' RT	_ s	TART	Γ: <u>2/</u>	4/20	_ EN	1D: _	2/4/2	20	PG	3 2 OF	2 B-0 0	2-0-19
		MA	TERIAL DESCRIP	TION		ELEV.	ב	EPTHS	SPT/	NI	REC	SAMPLE	HP	(SRAD	ATIO	N (%) /	ATTE	RBE	RG		ODOT	HOLE
			AND NOTES			866.0	יט	FINS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
	moderately s	trong, med ly rough; R	QD=85%, REC=1	thick bedded, intact,		862.0	EOF	- - 32 - - 33 - - 34 -																

- NOTES:

 No seepage or groundwater encountered during drilling.
 Borehole was observed to be dry at completion.
 Borehole was sealed upon completion.

	l &
411.6	

PROJECT: CUY-14-1212E TYPE: BRIDGE REPLACEMENT	DRILLING FIRM / OPER SAMPLING FIRM / LOG			LL RIG		STAT ALIG						5, 8' REE		EXPLOR B-00 2	2-1-21				
PID: <u>13184</u> BR ID: <u>1801929</u> START: 2/9/22 END: 2/9/22	DRILLING METHOD: SAMPLING METHOD:		5" HSA / NQ SPT / NQ				ATE:1	1/25/2 90*	20_			N: <u>89</u>			_			.0 ft.	PAGE 1 OF 2
MATERIAL DESCRIP	ELEV.			DEC CAMPLE UP C						LAT / LONG:								BACK	
AND NOTES	non	896.0	DEPTHS	RQD		(%)	ID		GR		FS		_			PI	wc	ODOT CLASS (GI)	FILL
ASPHALT - 4-1/2 INCHI	ES /	895.7	-	_		, ,		,					ヿ						
CONCRETE - 12 INCHE	\ \ \ \	894.7	<u> </u>	-															
GRANULAR BASE - 13-1/2 I	NCHES	893.5	[- :	2 -															
NO SAMPLING PERFORMED - SEE BO	ORING B-002-0-19		1	3 –															7 LV 7 L
				. d															< , v < , .
																			7>1/7>
				,]															7 LV 7 L
				5 🚽															1 LV 1 L
			 	' —															7>1/2
		887.5		3 –															1>1 1>
SANDSTONE, light brown, highly weathere	ed, fine to medium	337.0	TR	50	-	100	SS-1	-	-	-	-	-	-	-	-	-	-		1 LV 1 L
grained.		886.1		0 +					<u> </u>				4						1>11>
SANDSTONE, light brown to gray, modera slightly to moderately strong, fine to mediu		}	-	H															1>11>
bedded, fractured, narrow, slightly rough; I	RQD 30%, REC	1	-1	1 🖠															1 LV 1 L
95%.			<u> </u>	28		95	NQ-2											CORE	1>1 1>
- Iron staining observed at 9.9' and from 10	0.3' to 10.7'.	1	<u> </u>	3 –															1>11>
i		882.1		4					1				4						1>V 1>
SANDSTONE, light brown to reddish brown weathered, fine to medium grained, model	n, slightly fately strong thin	}	I -	H															1 LV 1 L
bedded, moderately fractured, narrow, slig	htly rough; RQD			5															1>V 1>
32%, REC 100%.		1	_ 1	6															12/12
- Iron staining observed from 14.0' to 20.0'	·		<u> </u>	7 🖁															1 LV 1 L
@17.1'-17.5', UC = 5,208 psi.		}	_ 1	8 -															<, v <,
	:::		I -	H		100	NQ-3											CORE	1>11>
SANDSTONE, light brown to reddish brown	o clightly to	876.5	<u> 1</u>	` 		100	ווע-ט											CORL	1 LV 1 L
moderately weathered, fine to medium gra	ined, moderately	1	-2	u 🗍															< \ \ < \ \ < \ \
strong, thin bedded, moderately fractured, rough, little iron staining; RQD 87%, REC	narrow, slightly	1	_ 2	1 🚽															1>11>
Tough, little from staining; RQD 87%, REC	100%.	}	<u>-</u> 2	2 -															1 LV 1 L
	[• <u>•</u> •	1	-	3															1 L 1 1 2 L
	:::	1	I -	н									_		_				1>1/2
		1	I -	4									\Box						7 2 7 4
	::: :	}		5 🖠															1>V 1> 1 X 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y 1 Y
		869.3	-2	6 🚽															< \ \ < \ \ <
SANDSTONE, gray, unweathered to slight	ly weathered, fine	009.3	-2	7 -															1>V 1> 1 V 1 V
to medium grained, moderately strong to s	strong, thick bedded,	}		8 -															1 LV 1 L
slightly fractured, narrow, slightly rought; F 100%.	'• '•'	1	l			100	NO 4											CORE	1>1 1>
		1		95		100	NQ-4											CORE	1>1 1>
	<u></u>		1			1	l .	1	1										< \/ < \

PID:	_13184	BR ID: _	1801929	PROJECT:	CUY-1	4-1212E		STATION	OFFSI	ET: _	11+1	15, 8' RT	s	TART	T: <u>2</u> /	9/22	_ EN	ID: _	2/9	/22	_ P	G 2 OF	2 B-00	2-1-21
						ELEV. 866.0	DE	PTHS	SPT/	N ₆₀		SAMPLE		_			N (%)	_	ATT				ODOT CLASS (GI)	BACK
		AND NOTES							RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
IN RQ SH. ver thic	rerbedum grahtly fracture FERBEDDE D 14%, RE ALE, gray, y thinly bed k clay infilli NDSTONE, bedded, h	ined, mode ed, narrow, red) D SHALE (C 98%. highly weat ded, highly ng observe	prately strong to slightly rought; I	DSTONE (10%), k to slightly strong, w, slightly rough. 1"		860.6		- 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 43 - 43 - 43 - 43 - 43 - 43	23		98	NQ-5											CORE	\(\lambda\) \(\lam

- NOTES:

 No groundwater noted during drilling.
 Borehole was observed to be dry prior to coring.
 After completion of rock coring and during removal of tools, the rock core barrel became lodged. Driller attempted to remove tools, but was unable to do so and tooling was left in the ground from approximately 0.8' to 32' below the ground surface. The borehole/tooling was filled with cuttings mixed with cement and the pavement surface repaired.

Form No. TR-43-D7012C-02

Revision No.: 0

Revision Date: 08/22/18

UNCONFINED COMPRESSION (ASTM D7012 Method C)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project Name: CUY-14-12.12E Bridge Replacement Report Date: February 17, 2020
Project Number: 1117-18-036 Reviewed By: N. Randy Rainwater

Boring No.	Sample	Depth	Dimens	ions, in.	Shape	Area	Unit Weight	Loading Rate	Maximum	Strength	Moisture
Builing No.	No.	(ft)	Length	Diameter	(See Key)	(in ²)	(lbs/ft ³)	(psi/sec)	Load (lbs)	(psi)	(%)
B-002-0-19	NQ-8	29.7 - 30.5	4.16	1.97	С	3.05	127.5	67	16,877	5,533	0.2
B-002-0-19	NQ-8	32.5 - 33.3	4.17	1.98	Α	3.08	129.6	64	24,304	7,891	0.2

NOTES: Effective (as received) unit weight as determined by RTH 109-93.

Loading rates were selected to target reaching failure between 2 and 15 minutes.

Test results for specimens not meeting the requirements of ASTM D4543-19 may differ from a test specimen that meets the requirements of ASTM D4543.

SHAPE KEY

ASTM D4543-19 Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial and error that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort and report it as such and if allowable or necessary for the intended test, capping the ends of the specimen as discussed in this practice is permitted."

- A Test specimen measurements met the desired shape tolerances of ASTM D4543-19 (side straightness, end flatness & parallelism, and end perpendicularity to axis)
- B Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness & parallelism, and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness. Specimen prepared to closest tolerances practicable.
- C Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness & parallelism. Specimen did not meet the desired tolerances for side straightness and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- D Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness. Specimen did not meet the desired tolerances for side straightness, parallelism and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- E Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness and parallelism. Specimen prepared to closest tolerances practicable.

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

PREPARING ROCK CORE AS CYLINDRICAL TEST SPECIMENS AND VERIFYING CONFORMANCE TO DIMENSIONAL AND SHAPE TOLERANCES (ASTM D4543)

y = 0.0030x + 0.0002

1413 Topside Road, Louisville, TN 37777

Diameter (in): 1.97 Date: Project: CUY-14-12.12E Bridge Replacement 2/14/2020 Project No.: Length (in): 4.16 Tested by: 1117-18-036 Tori Igoe Boring Id: B-002-0-19 Unit Weight (pcf): 127.5 Reviewed by: Ben Painter Sample No.: NQ-8 Moisture Content (%): 0.2

Depth (ft): 29.7 - 30.5

Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met?

End Eletnoce and Barollolism Pandings (Procedure ED1)

End Flatness and Parallelism Readings (Procedure FP1)				
Position	End 1	End 1(90)	End 2	End 2(90)
- 7/8	-0.0023	0.0000	-0.0062	0.0030
- 6/8	-0.0017	0.0000	-0.0050	0.0024
- 5/8	-0.0015	0.0000	-0.0037	0.0020
- 4/8	-0.0011	0.0000	-0.0028	0.0016
- 3/8	-0.0009	0.0000	-0.0022	0.0011
- 2/8	-0.0007	0.0000	-0.0014	0.0009
- 1/8	-0.0003	0.0000	-0.0002	0.0001
0	0.0000	0.0000	0.0000	0.0000
1/8	0.0004	0.0000	0.0004	0.0000
2/8	0.0007	0.0000	0.0012	-0.0005
3/8	0.0013	0.0000	0.0019	-0.0006
4/8	0.0016	0.0000	0.0032	-0.0012
5/8	0.0021	0.0000	0.0043	-0.0015
6/8	0.0025	0.0000	0.0051	-0.0017
7/8	0.0033	0.0000	0.0062	-0.0023

Il Gage Reading (in) Dial -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Diameter (in) y = 0.0000End 1 Diameter 2 Dial Gage Reading (in)


-0.75 -0.50 -0.25 0.00

0.25

End 1 Diameter 1

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

> Flatness Tolerance Met? YES



Diameter (in)

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

Parrallelism I	Diameter 1
----------------	------------

	i an anonom Diamotor i	
End 1:	Slope of Best Fit Line:	0.00295
	Angle of Best Fit Line:	0.16910
End 2:	Slope of Best Fit Line:	0.00656
	Angle of Best Fit Line:	0.37570
	Max Angular Difference:	-0.21
	Parrallelism Diameter 2	

	i airaileiisiii Diailletei Z	
End 1:	Slope of Best Fit Line:	0.00000
	Angle of Best Fit Line:	0.00000
End 2:	Slope of Best Fit Line:	-0.00281
	Angle of Best Fit Line:	-0.16108
	Max Angular Difference:	0.16

YES

Parallelism Tolerance Met?

Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is ≤ 0.0043.

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0056	0.0028	YES
End 1 Diam 2	0.0000	0.0000	YES
End 2 Diam 1	0.0124	0.0063	NO
End 2 Diam 2	0.0053	0.0027	YES
Perpendicularity T	olerance Met?		NO

PREPARING ROCK CORE AS CYLINDRICAL TEST SPECIMENS AND VERIFYING CONFORMANCE TO DIMENSIONAL AND SHAPE TOLERANCES (ASTM D4543)

1413 Topside Road, Louisville, TN 37777

 Project:
 CUY-14-12.12E Bridge Replacement
 Diameter (in): 1.98
 Date:
 2/14/2020

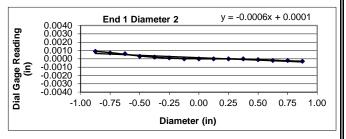
 Project No.:
 1117-18-036
 Length (in): 4.17
 Tested by:
 Tori Igoe

 Boring Id:
 B-002-0-19
 Unit Weight (pcf): 129.6
 Reviewed by:
 Ben Painter

Moisture Content (%): 0.2

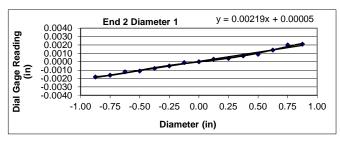
Depth (ft): 32.5 - 33.3

NQ-8


Sample No.:

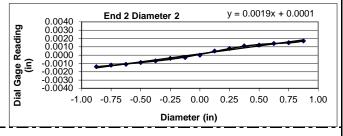
Deviation From Straightness (Procedure S1)

ls the maximum gap ≤ 0.02 in.? YES Straightness Tolerance Met? YES


End Flatness and Parallelism Readings (Procedure FP1)

End Flatness and Parallelism Readings (Procedure FP1)				
Position	End 1	End 1(90)	End 2	End 2(90)
- 7/8	0.0000	0.0009	-0.0018	-0.0014
- 6/8	0.0000	0.0007	-0.0016	-0.0012
- 5/8	0.0000	0.0006	-0.0012	-0.0011
- 4/8	0.0000	0.0003	-0.0011	-0.0009
- 3/8	0.0000	0.0002	-0.0008	-0.0007
- 2/8	0.0000	0.0001	-0.0005	-0.0004
- 1/8	0.0000	0.0000	-0.0001	-0.0003
0	0.0000	0.0000	0.0000	0.0000
1/8	0.0000	0.0000	0.0003	0.0005
2/8	0.0000	0.0000	0.0004	0.0008
3/8	0.0001	0.0000	0.0007	0.0011
4/8	0.0001	-0.0001	0.0009	0.0012
5/8	0.0001	-0.0002	0.0014	0.0014
6/8	0.0001	-0.0002	0.0020	0.0015
7/8	0.0002	-0.0003	0.0021	0.0017

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

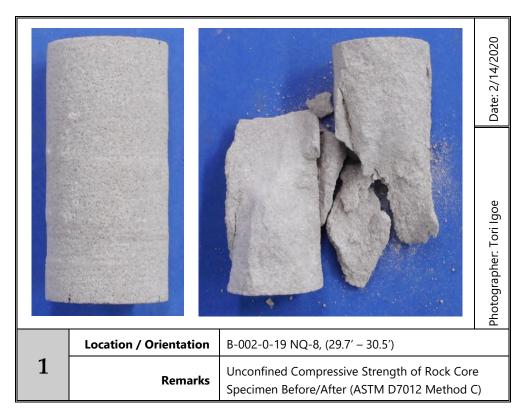

Flatness Tolerance Met? YES

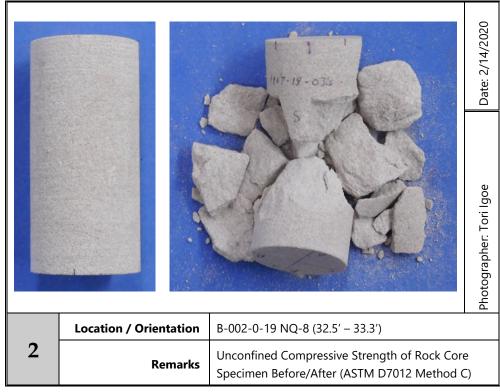
Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

 	_ 0.20 .		
	Parrallelism	Diameter	1

	Farranensin Diameter i	
End 1:	Slope of Best Fit Line:	0.00009
	Angle of Best Fit Line:	0.00524
End 2:	Slope of Best Fit Line:	0.00219
	Angle of Best Fit Line:	0.12540
	Max Angular Difference:	-0.12
	B	
	Parrallelism Diameter 2	

End 1:	Slope of Best Fit Line:	-0.00058
	Angle of Best Fit Line:	-0.03307
End 2:	Slope of Best Fit Line:	0.00193
	Angle of Best Fit Line:	0.11034
	Max Angular Difference:	-0.14


YES


Parallelism Tolerance Met?

Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is ≤ 0.0043.

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0002	0.0001	YES
End 1 Diam 2	0.0012	0.0006	YES
End 2 Diam 1	0.0039	0.0020	YES
End 2 Diam 2	0.0031	0.0016	YES
Perpendicularity T	olerance Met?		YES

Revision No. 0

Devision Date: 06/25/15

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

	S&ME, Inc Lexington: 2020 Liberty Road, Suite	e 105, Lexington, KY 4050	5
Project No.:	1117-18-036	Report Date:	03/15/22
Project Name:	CUY-14-12.12 Bridge Replacement	Test Date(s):	03/14/22
Client Name:	Pennoni Associates, Inc.		
Client Address:	323 West Camden Street, Suite 600, Baltimore, MD	Received Date:	03/03/22
Location:	B-001-1-21 NQ-3	Depth/Elev., ft:	29.7 - 30.1
Sample Descript	tion: Gray Sandstone		

Angle of load relative to lithology: Approximately perpendicular

> Test Results Dry Unit Weight 129.6 pcf Moisture Content 7.0 % Compressive Strength 7,247 psi

Notes / Deviations / References:

. Jacob Folsom J. Folsom Technical Responsibility Signature

Lab Services Manager

3/15/2022 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Revision No. 0

UNIAXIAL COMPRESSIVE STRENGTH

OF ROCK

Devision Date: 06/25/15 ASTM D 7012 Method C

S&ME, Inc. - Lexington: 2020 Liberty Road, Suite 105, Lexington, KY 40505

Project Name: CUY-14-12.12 Bridge Replacement Location: B-001-1-21 NO-2 Depth, feet: 29.7 - 30.1

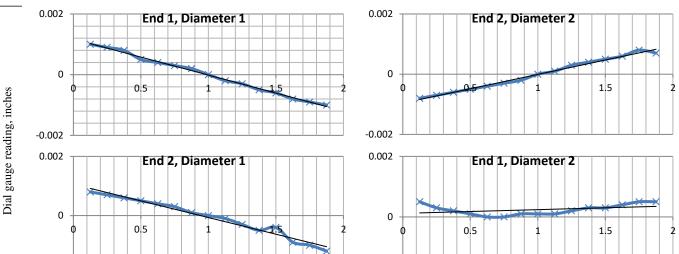
Summary of Specimen Tolerances

MET Length/diameter target: Perpendicularity target: **MET**

MET Side straightness target: **MET** Planeness target:

MET Parallelism target:

*ASTM D4543-08 Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance, Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content, chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial that this is not possible, the rock specimen will be prepared to the closest tolerance practicable and be considered the best effort and report it as such. If allowable or necessary for the intended test, capping the ends of the specimen as discussed in ASTM D7012 is permitted."


> Length to Diameter Ratio Side Straightness

Length, inches: 1.979 4.33 Diameter, inches: Maximum gap between side of core and

Ratio: 2.19 length to 1 diameter reference plate, inches: < .02

Target tolerance: L:D ratio between 2 to 1 and 2.5 to 1 Target tolerance: Maximum gap less than .02 inches

Distance along diameter, inches

< .001 Maximum point-line deviation, inches:

Target Tolerance: No individually measured point should deviate from the best fit line by more than .001 inches.

Perpendicularity

Slope of End 1, Diameter 1, degrees: -0.07Slope of End 2, Diameter 1, degrees: -0.06Slope of End 1, Diameter 2, degrees: 0.01 Slope of End 2, Diameter 2, degrees: 0.05

Target Tolerance: Each diameter perpendicular to the long axis

to within 0.25°

Parallelism

Slope difference, Diameter 1, degrees: 0.00 Slope difference, Diameter 2, degrees: 0.05

Target Tolerance: Difference between slopes on each end less

than 0.25°

-0.002

Test Information

Strain rate, in/min: 0.015

OR

Stress rate, lbs/sec:

Time to failure, min: 2.7

> Temperature: room temperature

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

-0.002

Revision No. 0

Devision Date: 06/25/15

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK



ASTM D 7012 Method C

	S&ME, Inc Lexington: 2020 Liberty Road, Suit	e 105, Lexington, KY 40505
Project No.:	1117-18-036	Report Date: 03/15/22
Project Name:	CUY-14-12.12 Bridge Replacement	Test Date(s): 03/14/22
Client Name:	Pennoni Associates, Inc.	
Client Address:	323 West Camden Street, Suite 600, Baltimore, MD	Received Date: 03/03/22
Location:	B-002-1-21 NQ-3	Depth/Elev., ft: 17.1 - 17.5
Sample Descript	ion: Gray Sandstone	

Angle of load relative to lithology: Approximately perpendicular

Test Results 126.6 pcf Dry Unit Weight Moisture Content 9.1 % Compressive Strength *5,208* psi

Notes / Deviations / References:

, Jacob Folsom J. Folsom Lab Services Manager 3/15/2022 Technical Responsibility Signature Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Side straightness target:

Length, inches:

Ratio:

Revision No. 0

UNIAXIAL COMPRESSIVE STRENGTH

OF ROCK

Devision Date: 06/25/15 ASTM D 7012 Method C

MET

S&ME, Inc. - Lexington: 2020 Liberty Road, Suite 105, Lexington, KY 40505

Project Name: CUY-14-12.12 Bridge Replacement Location: B-002-1-21 NO-3 Depth, feet: 17.1 - 17.5

Summary of Specimen Tolerances **MET** Length/diameter target:

Perpendicularity target: **MET** MET

Planeness target:

MET Parallelism target:

*ASTM D4543-08 Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance, Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content, chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial that this is not possible, the rock specimen will be prepared to the closest tolerance practicable and be considered the best effort and report it as such. If allowable or necessary for the intended test, capping the ends of the specimen as discussed in ASTM D7012 is permitted."

Length to Diameter Ratio

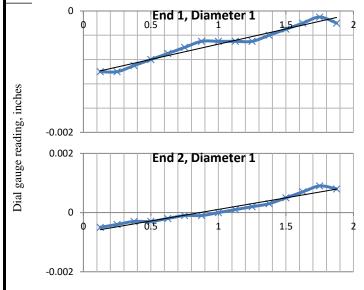
1.977 4.29 Diameter, inches:

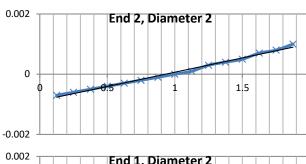
length to 1 diameter

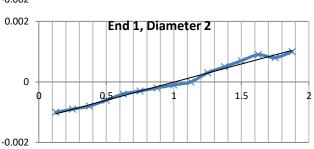
Target tolerance: L:D ratio between 2 to 1 and 2.5 to 1

2.17

Side Straightness


Maximum gap between side of core and


reference plate, inches:


< .02

Target tolerance: Maximum gap less than .02 inches

Planeness

Distance along diameter, inches

< .001 Maximum point-line deviation, inches:

Target Tolerance: No individually measured point should deviate from the best fit line by more than .001 inches.

Parallelism

Slope difference, Diameter 1, degrees:

0.02

Target Tolerance: Difference between slopes on each end less

than 0.25°

Perpendicularity

Slope of End 1, Diameter 1, degrees: 0.03 Slope of End 2, Diameter 1, degrees: 0.04 Slope of End 1, Diameter 2, degrees: 0.07

Slope of End 2, Diameter 2, degrees: Target Tolerance: Each diameter perpendicular to the long axis

to within 0.25°

Slope difference, Diameter 2, degrees: 0.01

Test Information

Strain rate, in/min: 0.015

OR

Stress rate, lbs/sec:

Time to failure, min: 2.6

Temperature:

room temperature

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

0.05

UNCONFINED COMPRESSION TEST REPORT

ASTM D7012 METHOD C

PROJECT INFORMATION

SAMPLE INFORMATION

CLIENT:	Pennoni	BORING ID:	B-002-1-21
PROJECT NUMBER:	1117-18-036	SAMPLE NUMBER:	NQ-5
PROJECT NAME:	CUY-14-12.12 Bridge	SAMPLE DEPTH:	38.8' - 39.3'
PROJECT LOCATION:	Bedford, Cuyahoga, Ohio	DATE OF TEST:	2/16/2022

SAMPLE DESCRIPTION: SHALE interbedded with SANDSTONE, gray, slighty strong.

SPECIMEN MEASUREMENTS

	2.87%	MOISTURE CONTENT:
in.	1.9783	AVERAGE DIAMETER:
in.	4.2177	AVERAGE HEIGHT:
	2.13	HEIGHT/DIAMETER RATIO:
pcf	162.80	WET DENSITY:
pcf	158.25	DRY DENSITY:
(est.)	2.75	SPECIFIC GRAVITY:
(est.)	93.06%	SATURATION:
_ (est.)	0.0849	VOID RATIO:

TEST RESULTS

MAXIMUM LOAD:	6,556	lbs
UNCONFINED STRENGTH:	2,133	psi
STRAIN RATE:	~ 75	psi/s
STRAIN AT FAILURE:	N/A	- %

ADDITIONAL TESTING REMARKS:

End preparation (per ASTM D4543-08) could not be performed due to the condition of the sample. The sample was capped with gypsum compound. Results reported may differ from results obtained from a test specimen meeting the requirements of D4543.

TESTED BY: ___EDP

CHECKED BY: ____ BKS

SPECIMEN BEFORE TESTING

Project #: 1117-18-036

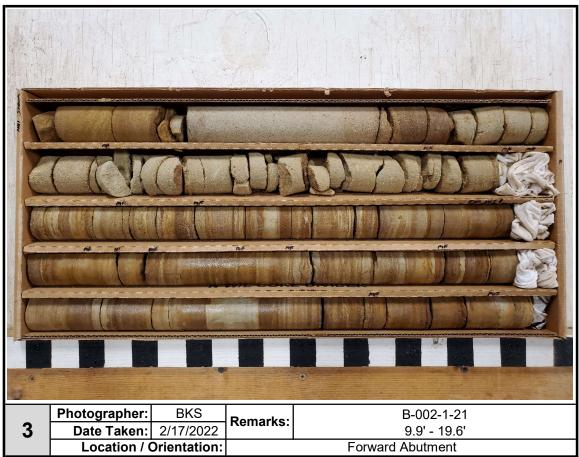
SHEET 1 OF 2

Project #: 1117-18-036

SHEET 2 OF 2

Project #: 1117-18-036

SHEET 1 OF 3

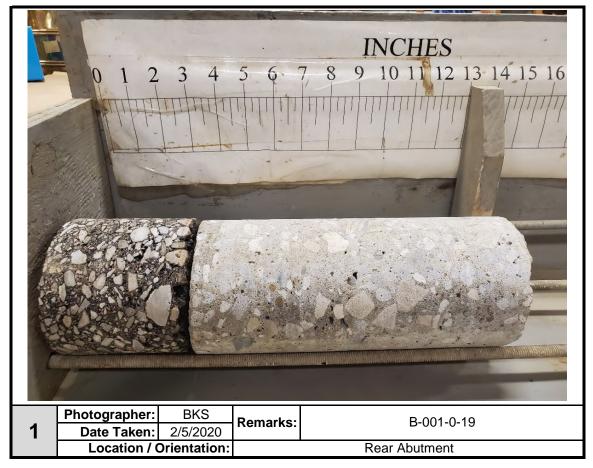


Bedford, Cuyahoga County, Ohio Project #: 1117-18-036

SHEET 2 OF 3

Project #: 1117-18-036

SHEET 3 OF 3



Project #: 1117-18-036

SHEET 1 OF 1

Important Information About Your Geotechnical Engineering Report

Variations in subsurface conditions can be a principal cause of construction delays, cost overruns and claims. The following information is provided to assist you in understanding and managing the risk of these variations.

Geotechnical Findings Are Professional Opinions

Geotechnical engineers cannot specify material properties as other design engineers do. Geotechnical material properties have a far broader range on a given site than any manufactured construction material, and some geotechnical material properties may change over time because of exposure to air and water, or human activity.

Site exploration identifies subsurface conditions at the time of exploration and only at the points where subsurface tests are performed or samples obtained. Geotechnical engineers review field and laboratory data and then apply their judgment to render professional opinions about site subsurface conditions. Their recommendations rely upon these professional opinions. Variations in the vertical and lateral extent of subsurface materials may be encountered during construction that significantly impact construction schedules, methods and material volumes. While higher levels of subsurface exploration can mitigate the risk of encountering unanticipated subsurface conditions, no level of subsurface exploration can eliminate this risk.

Geotechnical Findings Are Professional Opinions

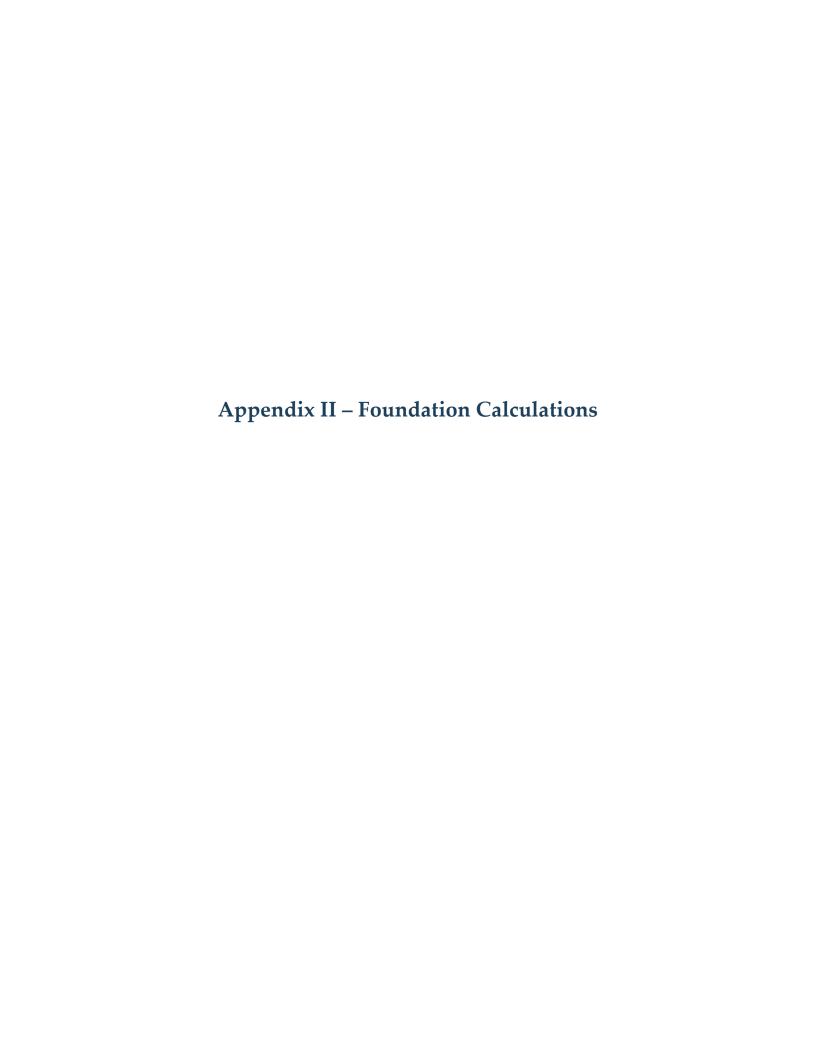
Professional geotechnical engineering judgment is required to develop a geotechnical exploration scope to obtain information necessary to support design and construction. A number of unique project factors are considered in developing the scope of geotechnical services, such as the exploration objective; the location, type, size and weight of the proposed structure; proposed site grades and improvements; the construction schedule and sequence; and the site geology.

Geotechnical engineers apply their experience with construction methods, subsurface conditions and exploration methods to develop the exploration scope. The scope of each exploration is unique based on available project and site information. Incomplete project information or constraints on the scope of exploration increases the risk of variations in subsurface conditions not being identified and addressed in the geotechnical report.

Services Are Performed for Specific Projects

Because the scope of each geotechnical exploration is unique, each geotechnical report is unique. Subsurface conditions are explored and recommendations are made for a specific project.

Subsurface information and recommendations may not be adequate for other uses. Changes in a proposed structure location, foundation loads, grades, schedule, etc. may require additional geotechnical exploration, analyses, and consultation. The geotechnical engineer should be consulted to determine if additional services are required in response to changes in proposed construction, location, loads, grades, schedule, etc.


Geo-Environmental Issues

The equipment, techniques, and personnel used to perform a geo-environmental study differ significantly from those used for a geotechnical exploration. Indications of environmental contamination may be encountered incidental to performance of a geotechnical exploration but go unrecognized. Determination of the presence, type or extent of environmental contamination is beyond the scope of a geotechnical exploration.

Geotechnical Recommendations Are Not Final

Recommendations are developed based on the geotechnical engineer's understanding of the proposed construction and professional opinion of site subsurface conditions. Observations and tests must be performed during construction to confirm subsurface conditions exposed by construction excavations are consistent with those assumed in development of recommendations. It is advisable to retain the geotechnical engineer that performed the exploration and developed the geotechnical recommendations to conduct tests and observations during construction. This may reduce the risk that variations in subsurface conditions will not be addressed as recommended in the geotechnical report.

Portion obtained with permission from "Important Information About Your Geotechnical Engineering Report", ASFE, 2004 © S&ME, Inc. 2010

Project Number:	1117-18-036
Project Name:	CUY-14-12.12 Bridge Replacement
Project Location:	Bedford, Ohio
Client Name:	Pennoni

Calculated By: BKS
Date: 10/25/2022
Checked By: BLM

10/26/2022

Date:

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9th EDITION)

(Example calculations with reference equations and information are provided on additional sheets)

Bridge Structure Identification Bridge over Tinkers Creek						
Boring ID	B-001-1-21	Foundation Element Description			Rear Abut	
Surface Elev.	896		Top of Shaft	/ Base of Shaft C	ap Elevation	883.55
Analysis Desc.	Term/Info Description	Unit	Layer 1	Layer 2	Layer 3	Layer 4
	Bedrock Type/Description		Sandstone	SH in/b SS		
	Layer Top Depth (from G.S.)	ft	26	33.3		
Boring/Layer	Layer Top Elevation	MSL	870	862.7		
Information	Layer Bottom Depth (from G.S.)	ft	33.3	45.5		
	Layer Bottom Elevation	MSL	862.7	850.5		
	Layer Thickness	ft	7.3	12.2		
	RQD	%	71	30		
	Discontinuity Length Rating		А	А		
GSI Index	Separation Rating		В	С		
Calculation	Roughness Rating		В	С		
(AASHTO LRFD,	Infilling Rating		Α	С		
9th Edition; Hoek, et al., 2013;	Weathering Rating		В	D		
Bieniawski, Z.T.	Estimated JCond89 Value		27	16		
1989)	Estimated GSI Value (quan.)		76	39		
	Estimated GSI Value (qual.)		75	35		
	Design GSI Value		75	37		
	Compressive Strength, q _u	psi	6470	2130		
	Concrete Strength, f'c	psi	4000	4000		
Unit Side	Fractured Rock? (Susceptible to Cav	ring?)	No	No		
Resistance	Joint Condition		Closed	Closed		
Calculations (AASHTO LRFD,	Regression Coefficient, C		1.0	1.0		
9th Edition)	q _s (Eqn. 10.8.3.5.4b-1)	ksf	34.94	25.5		
	Reduction Factor, α_{E}		0.86	0.5		
	q _s (Eqn. 10.8.3.5.4b-2)	ksf	19.53	8.29		
	Design Nominal Side Resistance, q _s	ksf	34.9	25.5		
Resistar	nce Factor, ϕ_{qs} (Table 10.5.5.2.4-1)		0.55	0.55		
Desi	gn Factored Side Resistance, φ _{qs} q _s	ksf	19.1	14		

Definition of Bedrock Type Abbreviations:

SS = Sandstone

SH = Shale

in/b = *interbedded* with

SLTS = Siltstone

CLST = Claystone

Project Number:	1117-18-036
Project Name:	CUY-14-12.12 Bridge Replacement
Project Location:	Bedford, Ohio

Pennoni

Client Name:

Calculated By: BKS

Date: 10/25/2022

Checked By: BLM

Date: 10/26/2022

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9TH EDITION) - CONTINUED

	Term/Info Description	Unit	Layer 1	Layer 2	Layer 3	Layer 4
	Compressive Strength, q _u		931.68	306.72		
GSI In.	Disturbance Factor, D		0.2	0.5		
for D Ec	Empirical Parameter, s		0.0509867	0.0002249		
ired LRFI	Empirical Parameter, a		0.5009	0.5139		
equ ITO	Constant, m _i (Table 10.4.6.4-1)		17	6		
ters Required for G\$ AASHTO LRFD Eqn. 5.4c-2	Empirical Parameter, m _b		6.3038	0.2987		
	Depth of Soil Cover	ft	26	26		
itermediate Paramet Empirical Approach, 10.8.3.	Average γ_{m} of Soil Cover	pcf	120	120		
ce Pa	Average γ _m of Bedrock		138.7	140		
diat	Depth to Water Table		20	20		
rme	Estimated Shaft Tip Depth (BGS)	ft	32	40		
Inte Em	Vertical Effective Stress, $\sigma'_{ extsf{vb}}$	ksf	3.203	3.832		
	Intermediate Parameter, A		253.75	21.70		
Unit Tip Resistance Calculations			2329.2	766.8		
(AASHTO LRFD, 9th Edition)	զ _թ (Eqn. 10.8.3.5.4c-2)		1493.15	64.19		
	Design Nominal Tip Resistance, q_p	ksf	2325	765		
Resistar	nce Factor, ϕ_{qp} (Table 10.5.5.2.4-1)		0.5	0.5		
Des	ign Factored Tip Resistance, $\phi_{qp}q_p$	ksf	1162.5	382.5		

Project Number:	1117-18-036
Project Name:	CUY-14-12.12 Bridge Replacement
Project Location:	Bedford, Ohio
Client Name:	Pennoni

Boring(s): B-001-1-21

Layer Depth Range: 26' - 33.3'

Layer Elevation Range: 870' - 862.7'

Foundation Element: Rear Abut

Calculated By: BKS

Date: 10/25/2022

Checked By: BLM

Date: 10/26/2022

Version 3.0 (10/25/22)

Parameter	Specimen Result	Relative Rating	RANGE OF VALUES AND RELATIVE RATINGS					
Discontinuity			А	В	С	D	Е	
Length	^	6	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m	
(Persistence)	A	0			RELATIVE RATING			
Rating			6	4	2	1	0	
			А	В	С	D	E	
Separation		5	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm	
(Aperature) Rating	В	Э			RELATIVE RATING			
			6	5	4	1	0	
		5	А	В	С	D	E	
Doughness Dating			Very Rough	Rough	Slightly Rough	Smooth	Slickensided	
Roughness Rating B	5	RELATIVE RATING						
		6	5	3	1	0		
			A	В	С	D	E	
Infilling (Gouge)	^		None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm	
Rating	A	6		RELATIVE RATING				
			6	4	2	2	0	
			A	В	С	D	E	
Weathering	Weathering _	_	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed	
Rating	В	5			RELATIVE RATING		·	
			6	5	3	1	0	

Layer JCond ₈₉	References:
Layer Jeonagg	Hoek, E., Carter, T.G., Diederichs, M.S., Quantification of the Geological Strength Index Chart, 47th US Rock Mechanics /
27	Geomechanics Symposium, San Francisco, CA, June 2013
21	Bieniawski, Z.T. 1989. Engineering Rock Mass Classification . New York: Wiley Interscience.

Project Number: 1117-18-036

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-001-1-21
Layer Depth Range: 33.3' - 45.5'
Layer Elevation Range: 862.7' - 850.5'
Foundation Element: Rear Abut

Calculated By: BKS

Date: 10/25/2022

Checked By: BLM

Date: 10/26/2022

Version 3.0 (10/25/22)

Parameter	Specimen Result	Relative Rating	RANGE OF VALUES AND RELATIVE RATINGS				
Discontinuity			А	В	С	D	Е
Length	۸	C	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m
(Persistence)	Α	6			RELATIVE RATING		
Rating			6	4	2	1	0
			А	В	С	D	E
Separation	С	4	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm
(Aperature) Rating	C	4			RELATIVE RATING		
			6	5	4	1	0
		2	А	В	С	D	E
Doughness Dating			Very Rough	Rough	Slightly Rough	Smooth	Slickensided
Roughness Rating C	3	RELATIVE RATING					
		6	5	3	1	0	
			А	В	С	D	E
Infilling (Gouge)	С	2	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm
Rating	C			RELATIVE RATING			
		6	4	2	2	0	
			А	В	С	D	E
Weathering	Weathering		Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed
Rating	D	1			RELATIVE RATING		
			6	5	3	1	0

Layer JCond ₈₉	References:
Layer seemagg	Hoek, E., Carter, T.G., Diederichs, M.S., Quantification of the Geological Strength Index Chart, 47th US Rock Mechanics /
16	Geomechanics Symposium, San Francisco, CA, June 2013
16	Bieniawski, Z.T. 1989. Engineering Rock Mass Classification . New York: Wiley Interscience.

Project Number: 1117-18-036

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-001-1-21

Layer Depth Range: 26' - 33.3'

Layer Elevation Range: 870' - 862.7'

Analysis Purpose: Rear Abut

Calc / Check By:

BKS BLM

Version 3.0 (10/25/22)

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine Unit Side Resistance, q_s (Utilizing 2 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4b-1

$$\frac{q_s}{p_a} = C \sqrt{\frac{q_u}{p_a}}$$

where:

 q_s = unit side resistance (ksf)

q_u = compressive strength of rock (ksf)

p_a = atmospheric pressure (2.12 ksf)

C = Regression Coefficient (see right)

Input Information

q _u =	6470	psi
f' _c =	4000	psi
<i>C</i> =	1.0	

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

tsf

17.47

Discussion on Regression Coefficient C (from C10.8.3.5.4b)

"The recommended value of the regression coefficient C = 1.0 is applicable to normal rock sockets, defined as sockets constructed with conventional equipment and resulting in nominally clean sidewalls without resorting to special procedures or artificial roughening. Rock that is prone to smearing or rapid deterioration upon exposure to atmospheric conditions, water, or slurry are outside the normal range and may require additional measures to insure reliable side resistance. Rocks exhibiting this type of behavior include clay shales and other argillaceous rocks. Rock that cannot support construction of an unsupported socket without caving is also outside the normal and will likely exhibit lower side resistance than given by Eq. 10.8.3.5.4b-1 with C = 1.0. For additional guidance on assessing the magnitude of C, See Brown et al. (2010)."

Discussion on Regression Coefficient C (from Brown et al. 2010)

"The most recent regression analysis of available load test data is reported by Kulhawy et al. (2005) and demonstrates that the mean value of the coefficient C is approximately equal to 1.0. The authors recommend the use of Equation [10.8.3.5.4b-1] with C = 1.0 for design of "normal" rock sockets. A lower bound value of C = 0.63 was shown to encompass 90% of the load test results...Considering the most recent research on side resistance in rock, in particular the work cited above by Kulhawy et al. (2005) that incorporates the original data of Horvath and Kenney (1979) plus additional data compiled over the ensuing 25+ years, Equation [10.8.3.5.4b-1] with C = 1.0 is recommended for routine design of rock sockets. For rock that cannot be drilled without some type of artificial support, such as casing or by grouting ahead of the excavation, the reduction factors ... based on RQD are recommended for application to the resistance calculated by Equation [10.8.3.5.4b-2]. The resistance factor recommended with use of Equations [10.8.3.5.4b-1] and [10.8.3.5.4b-2] is $\phi = 0.55$ based on fitting to ASD with a factor of safety FS = 2.5, as discussed in Chapter 10 and presented in Table 10-5. Artificial roughening of rock sockets through the use of grooving tools or other measures can increase side resistance compared to normal sockets. Regression analysis of the available load test data by Kulhawy and Prakoso (2007) suggests a mean value of C = 1.9 with use of Equation [10.8.3.5.4b-1] for roughened sockets. It is strongly recommended that load tests or local experience be used to verify values of C greater than 1.0. However, the advantages of achieving higher resistance by sidewall roughening often justify the cost of load tests." (emphasis added)

1117-18-036 **Project Number:**

Project Name: CUY-14-12.12 Bridge Replacement

Bedford, Ohio **Project Location:**

Client Name: Pennoni

Boring(s): B-001-1-21 Layer Depth Range: 26' - 33.3'

870' - 862.7' Layer Elevation Range:

Analysis Purpose:

Calc / Check By:

BKS

BLM

Version 3.0 (10/25/22)

Date: 10/25/22 10/26/22 Rear Abut

Driiled Shafts in Rock - Example Calculations - Determine Unit Side Resistance, q (Utilizing 2 Methods) - Continued

Method 2: AASHTO LRFD Equation 10.8.3.5.4b-2

$$\frac{q_s}{p_a} = 0.65\alpha_E \sqrt{\frac{q_u}{p_a}}$$

where:

q_s = unit side resistance (ksf)

 q_u = compressive strength of rock (ksf)

p_a = atmospheric pressure (2.12 ksf)

 α_E = joint modification factor (Table 10.8.3.5.4b-1)

Joint Modification Factor, α_{F}

Table 10.8.3.5.4b-1

RQD (%)	Closed Joints	Open or Gouge-Filled Joints
100	1.00	0.85
70	0.85	0.55
50	0.60	0.55
30	0.50	0.50
20	0.45	0.45

Input Information

$$q_u = 6470 \quad psi \\ f'_c = 4000 \quad psi \\ RQD = 71 \quad \%$$
Fractured Rock = No (i.e. susceptible to caving)
$$Joint Type = Closed \quad (Table 10.8.3.5.4b-1)$$

$$q_s = 19.53 \quad ksf$$

$$q_s = 9.77 \quad tsf$$

$$\begin{array}{c} q_s \ (\text{routine design}) = & 34.94 \\ q_s \ (\text{fractured rock}) = & 19.53 \\ \end{array} \ \text{ksf} \ \ (eqn. \ 10.8.3.5.4b-1) \\ \text{Nominal Side Resistance, } q_s = & 34.9 \\ \text{Resistance Factor, } \phi_{qs} = & 0.55 \\ \text{ksf} \end{array} \ \text{ksf}$$

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-001-1-21
Layer Depth Range: 26' - 33.3'

Layer Elevation Range: 870' - 862.7'

Analysis Purpose: Rear Abut

& & Wersion 3.0 (10/25/22)

BKS BLM

Calc / Check By:

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4c-1

$$q_p = 2.5q_u$$

$$q_u = \frac{6470}{f'_c} = \frac{6470}{4000} psi$$

$$q_p = 1164.6$$
 tsf

where:

q_p = unit end bearing resistance (ksf)

q_u = compressive strength of rock (ksf)

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

Discussion on the use of Equation 10.8.3.5.4c-1

"If the rock below the base of the drilled shaft to a depth of 2.0B is either intact or tightly jointed, i.e., no compressible material or gouge-filled seams (including no solution cavities or voids below the base of the drilled shaft per C10.8.3.5.4c), and the depth of the socket is greater than 1.5B."

Method 2: AASHTO LRFD Equation 10.8.3.5.4c-2

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a$$

where:

 q_u = compressive strength of rock (ksf)

A =defined by Equation 10.8.3.5.4c-3 (see right)

 m_b , s, a = Hoek-Brown strength parameters for the fractured rock mass determined from GSI (see Article 10.4.6.4)

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-2.

Discussion on the use of Equation 10.8.3.5.4c-2

"If the rock below the base of the shaft to a depth of 2.0B is jointed, the joints have random orientation and the condition of the joints can be evaluated per Equation 10.8.3.5.4c-2....Equation 10.8.3.5.4c-1 should be used as un upper-bound limit to base resistance calculated by Equation 10.8.2.5.4c-2, unless local experience or load tests can be used to validate higher values.

Equation 10.8.3.5.4c-3

$$A = \sigma'_{vb} + q_u \left[m_b \frac{\left(\sigma'_{v,b} \right)}{q_u} + s \right]^a$$

where:

σ'_{v,b} = vertical effective stress at the socket bearing elevation (tip elevation)

PLATE 7

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-001-1-21
Layer Depth Range: 26' - 33.3'

Layer Elevation Range: 870' - 862.7'

Analysis Purpose: Rear Abut

Calc / Check By: BKS BLM

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods) - Continued

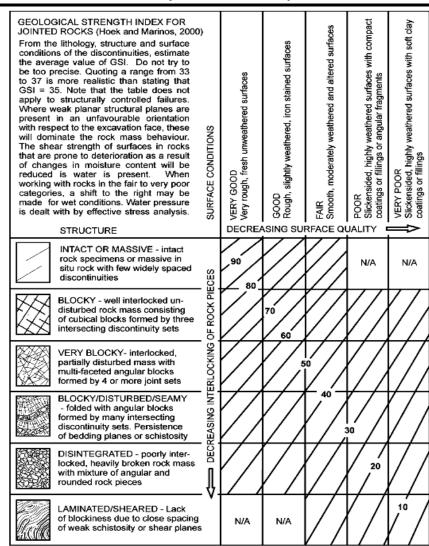


Figure 10.4.6.4-1—Determination of GSI for Jointed Rock Mass (Hoek and Marinos, 2000)

From Article 10.4.6.4

$$s = e^{\left(\frac{GSI - 100}{9 - 3D}\right)}$$
 Equ

Equation 10.4.6.4-2

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$$

Equation 10.4.6.4-3

$$m_b = m_i e^{\left(\frac{GSI - 100}{28 - 14D}\right)}$$

Equation 10.4.6.4-4

where:

GSI = Geological Strength Index (see Figures 10.4.6.4-1 and 10.4.6.4-2)

D = Disturbance factor (dim)

 m_i = Constant by Rock Group (see Table 10.4.6.4-1)

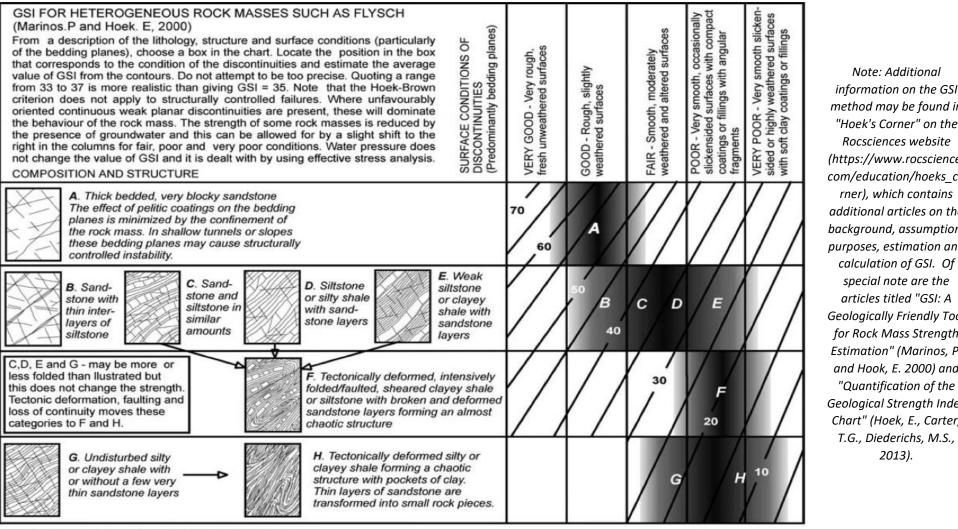
Note: Only the portion of Table 10.4.6.4-1 including rock types found in Ohio is shown below. Full table may be viewed in Article 10.4.6.4.

Table 10.4.6.4-1 Values of the Constant m_i by Rock Group (after Marinos and Hoek 2000, with updated values from Rocscience, Inc., 2007)

Rock	Class	Group	Texture			
type			Coarse	Medium	Fine	Very fine
			Conglomerate (21 ± 3)	Sandstone 17 ± 4	Siltstone 7 ± 2	Claystone 4 ± 2
>	Clastic		Breccia (19 ± 5)		Greywacke (18 ± 3)	Shale (6 ± 2)
NTAR						Marl (7 ± 2)
SEDIMENTARY		Carbonates	Crystalline Limestone (12 + 3)	Sparitic Limestone (10 + 5)	Micritic Limestone (8 + 3)	Dolomite (9 ± 3)
~	Non-Clastic	Evaporites	(12 - 3)	Gypsum 10 ± 2	Anhydrite 12 ± 2	
		Organic			DLAT	Chalk 7 <u>±</u> 2

Project Number: 1117-18-036 Project Name: CUY-14-12.12 Bridge Replacement Project Location: Bedford, Ohio Client Name: Pennoni

Boring(s): B-001-1-21 Layer Depth Range: 26' - 33.3' Layer Elevation Range: 870' - 862.7'


Calc / Check By:

BKS BLM

Version 3.0 (10/25/22)

Analysis Purpose: Rear Abut Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_n (Utilizing 2 Methods) - Continued

method may be found in "Hoek's Corner" on the Rocsciences website (https://www.rocscience. com/education/hoeks co rner), which contains additional articles on the background, assumption, purposes, estimation and calculation of GSI. Of special note are the articles titled "GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation" (Marinos, P. and Hook, E. 2000) and "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S.,

: Means deformation after tectonic disturbance

Figure 10.4.6.4-2—Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek 2000)

Project Number:	1117-18-036			
Project Name:	: CUY-14-12.12 Bridge Replacement			
Project Location:	Bedford, Ohio			
Client Name:	Pennoni			

Boring(s):	B-001-1-21
Layer Depth Range:	26' - 33.3'
Layer Elevation Range:	870' - 862.7'

Rear Abut

Version 3.0 (10/25/22)

7: BKS BLM

Calc / Check By: BKS

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods) - Continued

ksf

576.00

Analysis Purpose:

Step 1: Estimate GSI and Hoek-Brown strength parameters using analytical method outlined in "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013) and visually by using Figures 10.4.6.4-1 and 10.4.6.4-2

$$RQD = 71$$
 $JCond_{89} = 27$
 $GSI (Quan.) = 76$
 $GSI = 1.5 JCond_{89} + RQD/2$
 $GSI (Qual.) = 75$
 $GSI (Qual.) = 75$
 $GSI (Design) = 75$

$$s = 0.0509867$$
 $a = 0.5009$
 $m_b = 6.3038$

Step 2: Determine vertical effective stress at shaft tip and intermediate paremeter, A

Unconfined Compressive Strength of Bedrock (q_{ii}) =

Depth to bottom of Soil Cover & Decomposed Rock
$$(D_s) = 26$$
 ft Average Unit Weight of Soil Cover $(\gamma_{m,soil}) = 120$ pcf Average Unit Weight of Bedrock $(\gamma_{m,rock}) = 138.7$ pcf Depth to Water Table $(D_w) = 20$ ft Estimated Shaft Tip Depth Below Ground Surface $(D_t) = 32$ ft $\sigma'_{v,b} = D_s \gamma'_{soil} + (D_t - D_s) \gamma'_{rock}$ where:
$$\gamma'_{soil} = \gamma_{m,soil} - 62.4$$

$$\gamma'_{rock} = \gamma_{m,rock} - 62.4$$

$$\gamma'_{rock} = \gamma_{m,rock}$$
 when below water table when above water table

$$\sigma'_{vb} = 3.203$$
 ksf

Step 3: Determine estimated tip resistance

$$q_p = 972.69$$
 ksf $q_p = 486.35$ tsf

PLATE 10

1117-18-036

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni Boring(s): B-001-1-21

Layer Depth Range: 26' - 33.3'

Layer Elevation Range: 870' - 862.7'

> **Rear Abut** Analysis Purpose:

> > ksf

Version 3.0 (10/25/22)

Calc / Check By: BKS **BLM**

> 10/26/22 Date: 10/25/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods) - Continued

End Bearing Resistance, qp Summary

Method	Reference	q _p Value	Unit
1	AASHTO LRFD Eqn. 10.8.3.5.4c-1	2329.2	ksf
2	AASHTO LRFD Eqn. 10.8.3.5.4c-2	972.69	ksf

Nominal Tip Resistance, q_p = 2325

Resistance Factor, ϕ_{qp} = 0.5

Factored Tip Resistance, $\phi_{qp}q_p$ 1162.5 ksf

Project Number:	1117-18-036			
Project Name:	CUY-14-12.12 Bridge Replacement			
Project Location:	Bedford, Ohio			
Client Name:	Pennoni			

Calculated By: BKS
Date: 10/25/2022
Checked By: BLM

10/26/2022

Date:

DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9th EDITION)

(Example calculations with reference equations and information are provided on additional sheets)

Bridge Structure Identification		Bridge over Tinkers Creek				
Boring ID	B-002-1-21		Foundation Element Description			Fwd Abut
Surface Elev.	896		Top of Shaft	Top of Shaft / Base of Shaft Cap Elevation		
Analysis Desc.	Term/Info Description	Unit	Layer 1	Layer 2	Layer 3	Layer 4
	Bedrock Type/Description		Sandstone	Sandstone	Sandstone	SH in/b SS
	Layer Top Depth (from G.S.)	ft	9.9	19.5	26.7	35.4
Boring/Layer	Layer Top Elevation	MSL	886.1	876.5	869.3	860.6
Information	Layer Bottom Depth (from G.S.)	ft	19.5	26.7	35.4	44
	Layer Bottom Elevation	MSL	876.5	869.3	860.6	852
	Layer Thickness	ft	9.6	7.2	8.7	8.6
	RQD	%	31	87	97	14
	Discontinuity Length Rating	-	Α	A	В	А
GSI Index	Separation Rating		С	В	С	С
Calculation	Roughness Rating		В	В	С	С
(AASHTO LRFD,	Infilling Rating		А	Α	А	D
9th Edition; Hoek, et al., 2013;	Weathering Rating		С	С	В	D
Bieniawski, Z.T.	Estimated JCond89 Value		24	25	22	16
1989)	Estimated GSI Value (quan.)		51.5	81	81.5	31
	Estimated GSI Value (qual.)		45	60	80	27
	Design GSI Value		50	70	80	30
	Compressive Strength, q _u	psi	5210	5840	6470	2130
	Concrete Strength, f'c	psi	4000	4000	4000	4000
Unit Side	Fractured Rock? (Susceptible to Cav	ring?)	No	No	No	No
Resistance	Joint Condition		Closed	Closed	Closed	Closed
Calculations (AASHTO LRFD,	Regression Coefficient, C		1.0	1.0	1.0	1.0
9th Edition)	q _s (Eqn. 10.8.3.5.4b-1)	ksf	34.94	34.94	34.94	25.5
	Reduction Factor, α_{E}		0.51	0.94	0.99	0.45
	q _s (Eqn. 10.8.3.5.4b-2)	ksf	11.58	21.35	22.49	7.46
	Design Nominal Side Resistance, q _s	ksf	34.9	34.9	34.9	25.5
Resistar	nce Factor, ϕ_{qs} (Table 10.5.5.2.4-1)		0.55	0.55	0.55	0.55
Desi	gn Factored Side Resistance, φ _{qs} q _s	ksf	19.1	19.1	19.1	14

Definition of Bedrock Type Abbreviations:

SS = Sandstone SLTS = Siltstone SH = Shale

in/b = *interbedded* with

CLST = Claystone

Project Number:	1117-18-036			
Project Name:	CUY-14-12.12 Bridge Replacement			
Project Location:	Bedford, Ohio			

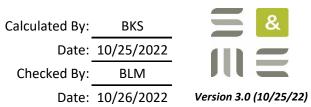
Pennoni

Client Name:

Calculated By: BKS

Date: 10/25/2022
Checked By: BLM

Date: 10/26/2022



DRILLED SHAFTS IN ROCK - RESISTANCE CALCULATION SUMMARY (AASHTO LRFD, 9TH EDITION) - CONTINUED

	Term/Info Description	Unit	Layer 1	Layer 2	Layer 3	Layer 4
	Compressive Strength, q _u	ksf	750.24	840.96	931.68	306.72
GSI qn.	Disturbance Factor, D		0.3	0.1	0	0.6
l for D Ec	Empirical Parameter, s		0.0020853	0.0318004	0.1083680	0.0000599
Intermediate Parameters Required for GSI Empirical Approach, AASHTO LRFD Eqn. 10.8.3.5.4c-2	Empirical Parameter, a		0.5057	0.5014	0.5006	0.5223
equ TO	Constant, m _i (Table 10.4.6.4-1)		17	17	17	6
ters Re AASH ⁻ 5.4c-2	Empirical Parameter, m _b		2.08	5.5036	8.3222	0.1687
nete th, A	Depth of Soil Cover	ft	8	8	8	8
itermediate Paramet Empirical Approach, 10.8.3.	Average γ_{m} of Soil Cover	pcf	120	120	120	120
te Pa App	Average γ_{m} of Bedrock	pcf	128	128	128	162.8
ediat	Depth to Water Table	ft	19	19	19	19
rme	Estimated Shaft Tip Depth (BGS)	ft	15	23.5	31	39.5
Inte Er	Vertical Effective Stress, $\sigma'_{ extsf{vb}}$	ksf	1.856	2.663	3.155	4.809
	Intermediate Parameter, A		63.89	188.47	347.02	18.79
Unit Tip Resistance Calculations	q _p (Eqn. 10.8.3.5.4c-1)	ksf	1875.6	2102.4	2329.2	766.8
(AASHTO LRFD, 9th Edition)	q _p (Eqn. 10.8.3.5.4c-2)	ksf	378.38	1134.7	2016.95	47.03
	Design Nominal Tip Resistance, q_p	ksf	1875	2100	2325	760
Resistance Factor, ϕ_{qp} (Table 10.5.5.2.4-1)			0.5	0.5	0.5	0.5
Des	Design Factored Tip Resistance, $\phi_{qp}q_p$		937.5	1050	1162.5	380

Project Number:	1117-18-036
Project Name:	CUY-14-12.12 Bridge Replacement
Project Location:	Bedford, Ohio
Client Name:	Pennoni

Boring(s):	B-002-1-21
Layer Depth Range:	9.9' - 19.5'
Layer Elevation Range:	886.1' - 876.5'
Foundation Element:	Fwd Abut

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS			
Discontinuity			А	В	С	D	Е
Length	^	C	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m
(Persistence)	A	6			RELATIVE RATING		
Rating			6	4	2	1	0
			А	В	С	D	E
Separation	С	4	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm
(Aperature) Rating	C	4			RELATIVE RATING		
			6	5	4	1	0
		5	А	В	С	D	E
Poughnoss Pating	В		Very Rough	Rough	Slightly Rough	Smooth	Slickensided
Roughness Rating	D	Э			RELATIVE RATING		
			6	5	3	1	0
			А	В	С	D	Е
Infilling (Gouge)	^	6	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm
Rating	A	0			RELATIVE RATING	1 D Mm 1.0 mm to 5.0 mm NG 1 D h Smooth NG 1 D mm Soft Infilling < 5 mm NG 2 D hering Highly Weathered	
			6	4	2	2	0
			А	В	С	D	E
Weathering	С	3	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed
Rating	C	5			RELATIVE RATING		_
			6	5	3	1	0

Layer JCond ₈₉	References:
2	Hoek, E., Carter, T.G., Diederichs, M.S., Quantification of the Geological Strength Index Chart, 47th US Rock Mechanics /
24	Geomechanics Symposium, San Francisco, CA, June 2013
24	Bieniawski, Z.T. 1989. Engineering Rock Mass Classification . New York: Wiley Interscience.

Project Number: 1117-18-036

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-002-1-21
Layer Depth Range: 19.5' - 26.7'
Layer Elevation Range: 876.5' - 869.3'
Foundation Element: Fwd Abut

Calculated By: BKS

Date: 10/25/2022

Checked By: BLM

Date: 10/26/2022

Version 3.0 (10/25/22)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS			
Discontinuity			А	В	С	D	Е
Length	^	C	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m
(Persistence)	A	6			RELATIVE RATING		
Rating			6	4	2	1	0
			А	В	С	D	E
Separation	В	5	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm
(Aperature) Rating	В	Э			RELATIVE RATING		
			6	5	4	1	0
		-	А	В	С	D	E
Doughness Dating	D		Very Rough	Rough	Slightly Rough	Smooth	Slickensided
Roughness Rating	В	5			RELATIVE RATING		
			6	5	3	1	0
			А	В	С	D	E
Infilling (Gouge)	^	c	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm
Rating	A	6			RELATIVE RATING		
			6	4	2	2	0
			А	В	С	D	E
Weathering		2	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed
Rating	С	3		· · ·	RELATIVE RATING		·
			6	5	3	1	0

	References: Hoek, E., Carter, T.G., Diederichs, M.S., <i>Quantification of the Geological Strength Index Chart</i> , 47th US Rock Mechanics /
75	Geomechanics Symposium, San Francisco, CA, June 2013 Bieniawski, Z.T. 1989. <i>Engineering Rock Mass Classification</i> . New York: Wiley Interscience.

Project Number:	1117-18-036
Project Name:	CUY-14-12.12 Bridge Replacement
Project Location:	Bedford, Ohio
Client Name:	Pennoni

Boring(s): B-002-1-21
Layer Depth Range: 26.7' - 35.4'
Layer Elevation Range: 869.3' - 860.6'
Foundation Element: Fwd Abut

Calculated By: BKS

Date: 10/25/2022

Checked By: BLM

Date: 10/26/2022

Version 3.0 (10/25/22)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS			
Discontinuity			А	В	С	D	Е
Length	D	4	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m
(Persistence)	В	4			RELATIVE RATING		
Rating			6	4	2	1	0
			A	В	С	D	E
Separation	С	4	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm
(Aperature) Rating	C	4			RELATIVE RATING		
			6	5	4	1	0
			А	В	С	D	E
Poughnoss Pating	С	3	Very Rough	Rough	Slightly Rough	Smooth	Slickensided
Roughness Rating	C	5			RELATIVE RATING		
			6	5	3	1	0
			А	В	С	D	Е
Infilling (Gouge)	۸	6	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm
Rating	А	0			RELATIVE RATING	1	
			6	4	2	2	0
			А	В	С	D	E
Weathering	В	5	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed
Rating	В	Э			RELATIVE RATING		
			6	5	3	1	0

Layer JCond ₈₉	References:
24yer 300ma89	Hoek, E., Carter, T.G., Diederichs, M.S., Quantification of the Geological Strength Index Chart, 47th US Rock Mechanics /
22	Geomechanics Symposium, San Francisco, CA, June 2013
22	Bieniawski, Z.T. 1989. Engineering Rock Mass Classification . New York: Wiley Interscience.

Project Number:	1117-18-036
Project Name:	CUY-14-12.12 Bridge Replacement
Project Location:	Bedford, Ohio
Client Name:	Pennoni

Boring(s):	B-002-1-21
Layer Depth Range:	35.4' - 44'
Layer Elevation Range:	860.6' - 852'
Foundation Element:	Fwd Abut

Calculated By: BKS

Date: 10/25/2022

Checked By: BLM

Date: 10/26/2022

Version 3.0 (10/25/22)

Parameter	Specimen Result	Relative Rating		RANGE OF VALUES AND RELATIVE RATINGS			
Discontinuity			А	В	С	D	Е
Length	۸	C	< 1 m	1 m to 3 m	3 m to 10 m	10 m to 20 m	> 20 m
(Persistence)	Α	6			RELATIVE RATING		
Rating			6	4	2	1	0
			А	В	С	D	E
Separation	С	4	None	< 0.1 mm	0.1 mm to 1.0 mm	1.0 mm to 5.0 mm	> 5.0 mm
(Aperature) Rating	C	4			RELATIVE RATING		
			6	5	4	1	0
			А	В	С	D	E
Doughness Dating	С	2	Very Rough	Rough	Slightly Rough	Smooth	Slickensided
Roughness Rating	C	3			RELATIVE RATING		
			6	5	3	1	0
			А	В	С	D	E
Infilling (Gouge)	D	2	None	Hard Infilling < 5 mm	Hard Infilling > 5 mm	Soft Infilling < 5 mm	Soft Infilling > 5 mm
Rating	U	2			RELATIVE RATING	D E	
			6	4	2	2	0
			А	В	С	D	E
Weathering	6	1	Unweathered	Slightly Weathered	Moderate Weathering	Highly Weathered	Decomposed
Rating	D	1			RELATIVE RATING		
			6	5	3	1	0

Layer JCond ₈₉	References:
Layer scoringg	Hoek, E., Carter, T.G., Diederichs, M.S., Quantification of the Geological Strength Index Chart, 47th US Rock Mechanics /
16	Geomechanics Symposium, San Francisco, CA, June 2013
16	Bieniawski, Z.T. 1989. Engineering Rock Mass Classification . New York: Wiley Interscience.

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-002-1-21
Layer Depth Range: 9.9' - 19.5'

Layer Elevation Range: 886.1' - 876.5'

Analysis Purpose: Fwd Abut

& (10/25/22)Wersion 3.0 (10/25/22)

Calc / Check By: BKS BLM

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine Unit Side Resistance, q_s (Utilizing 2 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4b-1

$$\frac{q_s}{p_a} = C \sqrt{\frac{q_u}{p_a}}$$

where:

q_s = unit side resistance (ksf)

q_u = compressive strength of rock (ksf)

p_a = atmospheric pressure (2.12 ksf)

C = Regression Coefficient (see right)

Input Information

q _u =	5210	psi
f' _c =	4000	psi
<i>C</i> =	1.0	

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

$$q_s = 17.47$$
 tsf

Discussion on Regression Coefficient C (from C10.8.3.5.4b)

"The recommended value of the regression coefficient C = 1.0 is applicable to normal rock sockets, defined as sockets constructed with conventional equipment and resulting in nominally clean sidewalls without resorting to special procedures or artificial roughening. Rock that is prone to smearing or rapid deterioration upon exposure to atmospheric conditions, water, or slurry are outside the normal range and may require additional measures to insure reliable side resistance. Rocks exhibiting this type of behavior include clay shales and other argillaceous rocks. Rock that cannot support construction of an unsupported socket without caving is also outside the normal and will likely exhibit lower side resistance than given by Eq. 10.8.3.5.4b-1 with C = 1.0. For additional guidance on assessing the magnitude of C, See Brown et al. (2010)."

Discussion on Regression Coefficient C (from Brown et al. 2010)

"The most recent regression analysis of available load test data is reported by Kulhawy et al. (2005) and demonstrates that the mean value of the coefficient C is approximately equal to 1.0. The authors recommend the use of Equation [10.8.3.5.4b-1] with C = 1.0 for design of "normal" rock sockets. A lower bound value of C = 0.63 was shown to encompass 90% of the load test results...Considering the most recent research on side resistance in rock, in particular the work cited above by Kulhawy et al. (2005) that incorporates the original data of Horvath and Kenney (1979) plus additional data compiled over the ensuing 25+ years, Equation [10.8.3.5.4b-1] with C = 1.0 is recommended for routine design of rock sockets. For rock that cannot be drilled without some type of artificial support, such as casing or by grouting ahead of the excavation, the reduction factors ... based on RQD are recommended for application to the resistance calculated by Equation [10.8.3.5.4b-2]. The resistance factor recommended with use of Equations [10.8.3.5.4b-1] and [10.8.3.5.4b-2] is $\phi = 0.55$ based on fitting to ASD with a factor of safety FS = 2.5, as discussed in Chapter 10 and presented in Table 10-5. Artificial roughening of rock sockets through the use of grooving tools or other measures can increase side resistance compared to normal sockets. Regression analysis of the available load test data by Kulhawy and Prakoso (2007) suggests a mean value of C = 1.9 with use of Equation [10.8.3.5.4b-1] for roughened sockets. It is strongly recommended that load tests or local experience be used to verify values of C greater than 1.0. However, the advantages of achieving higher resistance by sidewall roughening often justify the cost of load tests." (emphasis added)

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-002-1-21
Layer Depth Range: 9.9' - 19.5'

Layer Elevation Range: 886.1' - 876.5'

Analysis Purpose: Fwd Abut

& & Wersion 3.0 (10/25/22)

BLM

Calc / Check By:

BKS

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine Unit Side Resistance, q_s (Utilizing 2 Methods) - Continued

Method 2: AASHTO LRFD Equation 10.8.3.5.4b-2

$$\frac{q_s}{p_a} = 0.65\alpha_E \sqrt{\frac{q_u}{p_a}}$$

where:

 q_s = unit side resistance (ksf)

q_u = compressive strength of rock (ksf)

p_a = atmospheric pressure (2.12 ksf)

 α_{E} = joint modification factor (Table 10.8.3.5.4b-1)

Joint Modification Factor, α_{F}

Table 10.8.3.5.4b-1

RQD (%)	Closed Joints	Open or Gouge-Filled Joints
100	1.00	0.85
70	0.85	0.55
50	0.60	0.55
30	0.50	0.50
20	0.45	0.45

Input Information

$$q_u = 5210 \quad psi \\ f'_c = 4000 \quad psi \\ RQD = 31 \quad \%$$

$$Fractured Rock = No \quad (i.e. susceptible to caving)$$

$$Joint Type = Closed$$

$$\alpha_E = 0.51 \quad (Table 10.8.3.5.4b-1)$$

$$q_s = 11.58 \quad ksf$$

$$q_s = 5.79 \quad tsf$$

$$\begin{array}{c} \textbf{q}_s \text{ (routine design)} = & 34.94 & \text{ksf} & (eqn. \ 10.8.3.5.4b-1) \\ \textbf{q}_s \text{ (fractured rock)} = & & 11.58 & \text{ksf} & (eqn. \ 10.8.3.5.4b-2) \\ \\ \textbf{Nominal Side Resistance, } \textbf{q}_s = & & 34.9 & \text{ksf} \\ \\ \textbf{Resistance Factor, } \phi_{\textbf{q}s} = & & 0.55 & \text{ksf} \\ \end{array}$$

Factored Side Resistance,
$$\phi_{qs}q_s = 19.1$$
 ksf

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-002-1-21

Layer Depth Range: 9.9' - 19.5'

Layer Elevation Range: 886.1' - 876.5'

Analysis Purpose: Fwd Abut

Calc / Check By: BKS

BKS BLM

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods)

Method 1: AASHTO LRFD Equation 10.8.3.5.4c-1

$$q_p = 2.5q_u$$

$$q_u = 5210$$
 psi $f'_c = 4000$ psi

$$q_p = 1875.6$$
 ksf

where:

q_p = unit end bearing resistance (ksf)

q_u = compressive strength of rock (ksf)

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-1.

Discussion on the use of Equation 10.8.3.5.4c-1

"If the rock below the base of the drilled shaft to a depth of 2.0B is either intact or tightly jointed, i.e., no compressible material or gouge-filled seams (including no solution cavities or voids below the base of the drilled shaft per C10.8.3.5.4c), and the depth of the socket is greater than 1.5B."

Method 2: AASHTO LRFD Equation 10.8.3.5.4c-2

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a$$

where:

 q_u = compressive strength of rock (ksf)

A =defined by Equation 10.8.3.5.4c-3 (see right)

 m_b , s, a = Hoek-Brown strength parameters for the fractured rock mass determined from GSI (see Article 10.4.6.4)

Note: The lesser of q_u or f'_c (compressive strength of concrete) should be used for the value of q_u in Equation 10.8.3.5.4b-2.

Discussion on the use of Equation 10.8.3.5.4c-2

"If the rock below the base of the shaft to a depth of 2.0B is jointed, the joints have random orientation and the condition of the joints can be evaluated per Equation 10.8.3.5.4c-2....Equation 10.8.3.5.4c-1 should be used as un upper-bound limit to base resistance calculated by Equation 10.8.2.5.4c-2, unless local experience or load tests can be used to validate higher values.

Equation 10.8.3.5.4c-3

$$A = \sigma'_{vb} + q_u \left[m_b \frac{\left(\sigma'_{v,b} \right)}{q_u} + s \right]^a$$

where:

σ'_{v,b} = vertical effective stress at the socket bearing elevation (tip elevation)

PLATE 20

Project Number: 1117-18-036

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-002-1-21
Layer Depth Range: 9.9' - 19.5'

Layer Elevation Range: 886.1' - 876.5'

Analysis Purpose: Fwd Abut

8 Wersion 3.0 (10/25/22)

Calc / Check By:

BKS BLM

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods) - Continued



Figure 10.4.6.4-1—Determination of GSI for Jointed Rock Mass (Hoek and Marinos, 2000)

From Article 10.4.6.4

$$s = e^{\left(\frac{GSI - 100}{9 - 3D}\right)}$$

Equation 10.4.6.4-2

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$$

Equation 10.4.6.4-3

$$m_b = m_i e^{\left(\frac{GSI - 100}{28 - 14D}\right)}$$

Equation 10.4.6.4-4

where:

GSI = Geological Strength Index (see Figures 10.4.6.4-1 and 10.4.6.4-2)

D = Disturbance factor (dim)

 m_i = Constant by Rock Group (see Table 10.4.6.4-1)

Note: Only the portion of Table 10.4.6.4-1 including rock types found in Ohio is shown below. Full table may be viewed in Article 10.4.6.4.

Table 10.4.6.4-1 Values of the Constant m_i by Rock Group (after Marinos and Hoek 2000, with updated values from Rocscience, Inc., 2007)

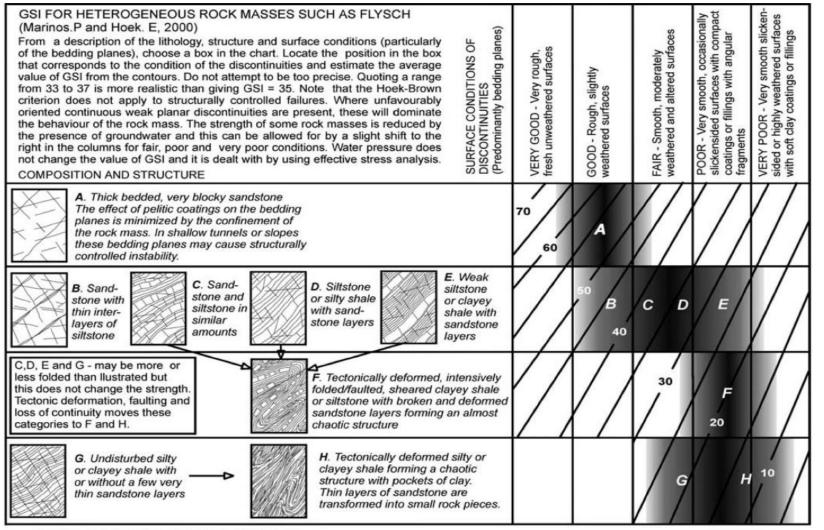
Rock	Class	Group	Texture					
type			Coarse	Medium	Fine	Very fine		
	Clastic		Conglomerate (21 ± 3)	Sandstone 17 ± 4	Siltstone 7 ± 2	Claystone 4 ± 2		
>			Breccia (19 ± 5)		Greywacke (18 ± 3)	Shale (6 ± 2)		
NTAR						Marl (7 <u>±</u> 2)		
SEDIMENTARY		Carbonates	Crystalline Limestone (12 ± 3)	Sparitic Limestone (10 ± 5)	Micritic Limestone (8 <u>+</u> 3)	Dolomite (9 ± 3)		
	Non-Clastic	Evaporites		Gypsum 10 <u>+</u> 2	Anhydrite 12 ± 2			
		Organic			DLATE	Chalk 7 <u>±</u> 2		

Project Number: 1117-18-036 Project Name: CUY-14-12.12 Bridge Replacement Project Location: Bedford, Ohio Client Name: Pennoni

Boring(s): B-002-1-21 Layer Depth Range: 9.9' - 19.5' Layer Elevation Range:

Fwd Abut

886.1' - 876.5' Calc / Check By:


BKS Date: 10/25/22 10/26/22

Version 3.0 (10/25/22)

BLM

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_n (Utilizing 2 Methods) - Continued

Analysis Purpose:

Note: Additional information on the GSI method may be found in "Hoek's Corner" on the Rocsciences website (https://www.rocscience. com/education/hoeks co rner), which contains additional articles on the background, assumption, purposes, estimation and calculation of GSI. Of special note are the articles titled "GSI: A Geologically Friendly Tool for Rock Mass Strength Estimation" (Marinos, P. and Hook, E. 2000) and "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013).

: Means deformation after tectonic disturbance

Figure 10.4.6.4-2—Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek 2000)

Project Number:	1117-18-036			
Project Name:	CUY-14-12.12 Bridge Replacement			
Project Location:	Bedford, Ohio			
Client Name:	Pennoni			

Boring(s):	B-002-1-21
Layer Depth Range:	9.9' - 19.5'
Layer Elevation Range:	886.1' - 876.5'

Calc / Check By:

10/26/22 Fwd Abut Date: 10/25/22 **Analysis Purpose:**

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods) - Continued

ksf

576.00

when above water table

Step 1: Estimate GSI and Hoek-Brown strength parameters using analytical method outlined in "Quantification of the Geological Strength Index Chart" (Hoek, E., Carter, T.G., Diederichs, M.S., 2013) and visually by using Figures 10.4.6.4-1 and 10.4.6.4-2

$$RQD = 31$$
 $JCond_{89} = 24$
 $GSI (Quan.) = 51.5$
 $GSI = 1.5 JCond_{89} + RQD/2$
 $GSI (Qual.) = 45$
 $from Figures 10.4.6.4-1 & 10.4.6.4-2$
 $GSI (Design) = 50$

$$s = 0.0020853$$

$$a = 0.5057$$

$$m_b = 2.08$$

Step 2: Determine vertical effective stress at shaft tip and intermediate paremeter, A

when below water table

Unconfined Compressive Strength of Bedrock (q₁₁) =

Depth to bottom of Soil Cover & Decomposed Rock (D_s) = 8 ft
Average Unit Weight of Soil Cover (
$$\gamma_{m,soil}$$
) = 120 pcf
Average Unit Weight of Bedrock ($\gamma_{m,rock}$) = 128 pcf
Depth to Water Table (D_w) = 19 ft
Estimated Shaft Tip Depth Below Ground Surface (D_t) = 15 ft
$$\sigma'_{v,b} = D_s \gamma'_{soil} + (D_t - D_s) \gamma'_{rock}$$
 where:
$$\gamma'_{soil} = \gamma_{m,soil} - 62.4$$

$$\gamma'_{rock} = \gamma_{m,rock} - 62.4$$

$$\gamma'_{rock} = \gamma_{m,rock}$$

$$\sigma'_{vb} = 1.856$$
 ksf

Step 3: Determine estimated tip resistance

$$q_p = 308.73$$
 ksf $q_p = 154.37$ tsf

PLATE 23

Number: 1117-18-036

Project Name: CUY-14-12.12 Bridge Replacement

Project Location: Bedford, Ohio

Client Name: Pennoni

Boring(s): B-002-1-21

ksf

Layer Depth Range: 9.9' - 19.5'

Layer Elevation Range: 886.1' - 876.5'

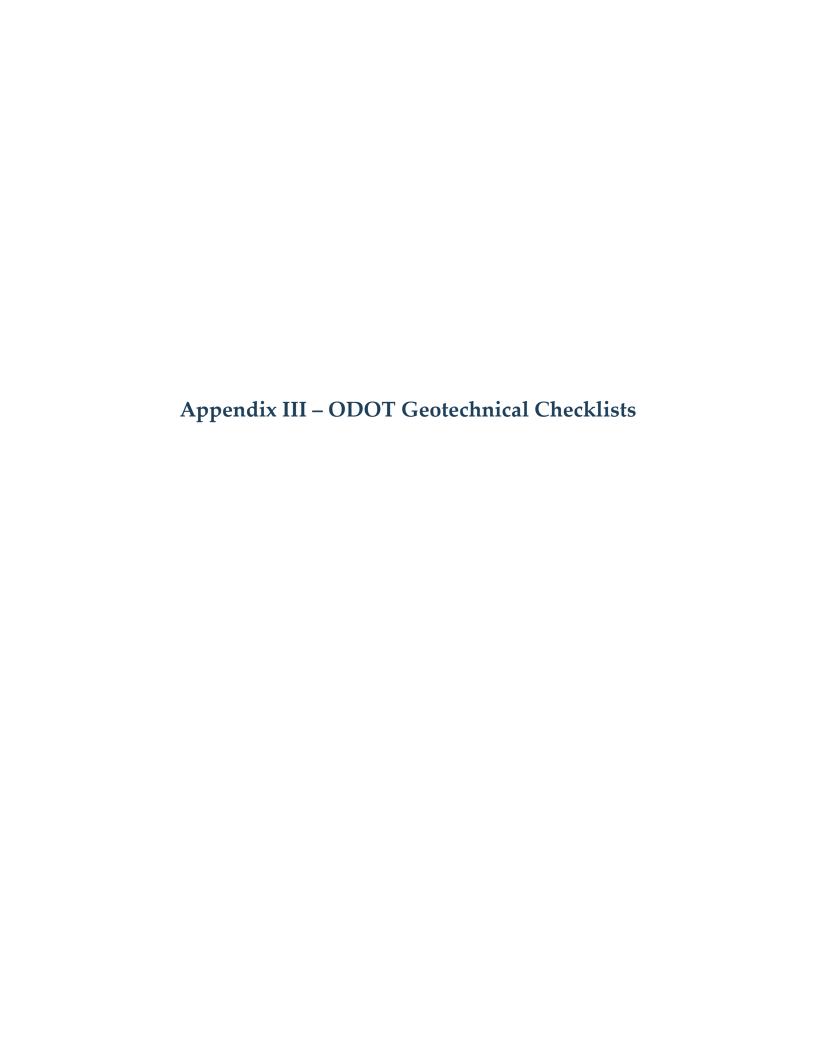
Analysis Purpose: Fwd Abut

& & Wersion 3.0 (10/25/22)

Calc / Check By: BKS BLM

Date: 10/25/22 10/26/22

Driiled Shafts in Rock - Example Calculations - Determine End Bearing Resistance, q_p (Utilizing 2 Methods) - Continued


End Bearing Resistance, q_p Summary

Method	Reference	q _p Value	Unit
1	AASHTO LRFD Eqn. 10.8.3.5.4c-1	1875.6	ksf
2	AASHTO LRFD Eqn. 10.8.3.5.4c-2	308.73	ksf

Nominal Tip Resistance, q_p = 1875

Resistance Factor, $\phi_{qp} = 0.5$

Factored Tip Resistance, $\varphi_{qp}q_p = 937.5$ ksf

I. Geotechnical Design Checklists					
Project: CUY-14-12.12E	PDP Path:				
PID: 13184	Review Stage:	Stage 3			

Υ

Checklist	Included in This
CHECKIST	Submission
II. Reconnaissance and Planning	✓
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	
IV. A. Foundations of Structures	✓
IV. B. Retaining Wall	
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Soil Profile	
VI. D. Geotechnical Reports	✓

II. Reconnaissance and Planning Checklist

C-R-S:	CUY-14-12.12E P	ID: 13184	Stage 2	. NDA	Date:	6/24/2022
	Reconnaissance			INIGHO		
				Notes:		
1	Based on Section 302.1 in the SG					
	necessary plans been developed					
	areas prior to the commenceme		Y			
	subsurface exploration reconnais	ssance:				
	Roadway plans					
	Structures plans		Υ			
	Geohazards plans					
2	Have the resources listed in Sect	ion 302.2.1 of				
	the SGE been reviewed as part o	f the office	Υ			
	reconnaissance?					
3	Have all the features listed in Sec	ction 302.3 of				
	the SGE been observed and eval	uated during th	e Y			
	field reconnaissance?					
4	If notable features were discove	red in the field				
	reconnaissance, were the GPS co	oordinates of	Х			
	these features recorded?					
	ng - General		(Y/N/X)	Notes:		
5	In planning the geotechnical exp					
	program for the project, have th	•				
	geologic conditions, the propose		Y			
	historic subsurface exploration v	vork been				
_	considered?					
6	Has the ODOT Transportation Int					
	Mapping System (TIMS) been acc		" Y			
	available historic boring informa	tion and				
	inventoried geohazards?					
7	Have the borings been located to	· ·				
	maximum subsurface informatio	•	.,			
	minimum number of borings, uti		Υ			
	geotechnical explorations to the	fullest extent				
0	possible?	rigin of				
8	Have the topography, geologic o materials, surface manifestation	_				
	conditions, and any other specia		Υ			
	considerations been utilized in d	_	Ī			
	spacing and depth of borings?	erennining tile				
9	Have the borings been located so	n as to provide				
	adequate overhead clearance fo					
	equipment, clearance of undergi					
	minimize damage to private proj		Υ			
	minimize disruption of traffic, wi	•	I			
	compromising the quality of the					
	compromising the quality of the	exploration:				
				<u>I</u>		

II. Reconnaissance and Planning Checklist

Planni	ng - General	(Y/N/X)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	Υ	
	The schedule of borings should present the follow information for each boring:	ving	
а	. exploration identification number	Υ	
b	. location by station and offset	Υ	
С	estimated amount of rock and soil, including the total for each for the entire program.	Υ	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, probes, test pits, etc.) been identified?	Υ	
12	Has each exploration been assigned a unique identification number, in the following format X-ZZZ-W-YY, as per Section 303.2 of the SGE?	Υ	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned identification numbers according to Section 303.2 of the SGE?	Х	

II. Reconnaissance and Planning Checklist

Planniı	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,		
	have the location, depth, and sampling	Υ	
	requirements for the following boring types	r	
	been determined for the project?		
	Check all boring types utilized for this project:		
	Existing Subgrades (Type A)		
	Roadway Borings (Type B)		
	Embankment Foundations (Type B1)		
	Cut Sections (Type B2)		
	Sidehill Cut Sections (Type B3)		
	Sidehill Cut-Fill Sections (Type B4)		
	Sidehill Fill Sections on Unstable Slopes (Type		
	B5)		
	Geohazard Borings (Type C)		
	Lakes, Ponds, and Low-Lying Areas (Type C1)		
	Peat Deposits, Compressible Soils, and Low		
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and Reclaimed		
	Surface Mines (Type C3)		
	Underground Mines (C4)		
	Landslides (Type C5)		
	Rockfall (Type C6)		
	Karst (Type C7)		
	Proposed Underground Utilities (Type D)		
	Structure Borings (Type E)	✓	
	Bridges (Type E1)	✓	
	Culverts (Type E2 a,b,c)		
	Retaining Walls (Type E3 a,b,c)		
	Noise Barrier (Type E4)		
	CCTV & High Mast Lighting Towers		
	(Type E5)		
	Buildings and Salt Domes (Type E6)		

C-R-S:	CUY-14-12.12E	PID:	13184	Stage 2	. NDA	Date:	6/24/2022
If	you do not have such a found	lation o	r structure (on the projec	ct you do not ha	ve to fill out	this chacklist
	Bedrock Strength Data	iution o	3tructure c	Y	Notes:	ve to jili out	tilis checklist.
1	Has the shear strength of the	foundat	ion soils	'	TTO CCS.		
-	been determined?	. oanaac		Х			
	Check method used:			Υ	1		
	laboratory shear tests				1		
	estimation from SPT or fie	ld tests			1		
2	Have sufficient soil shear strei						
	consolidation, and other para	•	oeen				
	determined so that the requir			Х			
	for the foundation/structure of						
	•		J				
3	Has the shear strength of the	foundat	ion	.,	Unconfined Con	npression Tes	sts were performed
	bedrock been determined?			Υ	on select bedro	-	·
	Check method used:					·	
	laboratory shear tests						
	other (describe other meth	nods)		√			
Spread	Footings			(Y/N/X)	Notes:		
4	Are there spread footings on t	the proje	ect?	N			
	If no, go to Question 11			N			
5	Have the recommended botto	m of fo	oting				
	elevation and reason for this r	ecomm	endation				
	been provided?		ļ				
a.	Has the recommended botto	om of fo	oting				
	elevation taken scour from s	streams	or other				
	water flow into account?						
6	Were representative sections	analyze	d for the				
	entire length of the structure	for the f	ollowing:				
a.	factored bearing resistance?)					
b.	factored sliding resistance?						
c.	eccentric load limitations (or	verturni	ng)?				
d.	predicted settlement?						
e.	overall (global) stability?						
7	Has the need for a shear key b	een eva	lluated?				
a.	If needed, have the details be the plans?	een incl	uded in				
8	If special conditions exist (e.g.	geomet	rv sloning				
Ü	rock, varying soil conditions),	-					
	footing "stepped" to accomm						
	rooting stepped to accommi	ouale li	ICIII;				
9	Have the Service I and Maxim	um Strei	ngth Limit				
,	States for bearing pressure on						
	provided?	. 50.7 01 1	231. 20011				

Spread	Footings	(Y/N/X)	Notes:
10	If weak soil is present at the proposed		
	foundation level, has the removal / treatment of		
	this soil been developed and included in the		
	plans?		
a.	Have the procedure and quantities related to		
	this removal / treatment been included in the		
	plans?		
Pile Str	uctures	(Y/N/X)	Notes:
11	Are there piles on the project?	N	
	If no, go to Question 17	IN	
12	Has an appropriate pile type been selected?		
	Check the type selected:		
	H-pile (driven)		
	H-pile (prebored)		
	Cast In-place Reinforced Concrete Pipe		
	Micropile		
	Continuous Flight Auger (CFA)		
	other (describe other types)		
13	Have the estimated pile length or tip elevation		
	and section (diameter) based on either the		
	Ultimate Bearing Value (UBV) or the depth to		
	top of bedrock been specified? Indicate method		
	used.		
14	If scour is predicted, has pile resistance in the		
	scour zone been neglected?		
15	Has a wave equation drivability analysis been		
	performed as per BDM 305.4.1.2 to determine		
	whether the pile can be driven to either the		
	UBV, the pile tip elevation, or refusal on bedrock		
	without overstressing the pile?		
16	If required for design, have sufficient soil		
	parameters been provided and calculations		
	performed to evaluate the:		
a.	Nominal unit tip resistance and maximum		
	settlement of the piles?		
b.	Nominal unit side resistance for each		
	contributing soil layer and maximum deflection		
	of the piles?		
C.	Downdrag load on piles driven through new		
	embankment or compressible soil layers, as		
	per BDM 305.4.2.2?		
d.	Potential for and impact of lateral squeeze		
	from soft foundation soils?		

Pile St	Pile Structures		Notes:
17	If piles are to be driven to strong bedrock (Q _u >7.5 ksi) or through very dense granular soils or overburden containing boulders, have "pile points" been recommended in order to protect the tips of the steel piling, as per BDM 305.4.5.6?		
18	If subsurface obstacles exist, has preboring been recommended to avoid these obstructions?		
19	If piles will be driven through 15 feet or more of new embankment, has preboring been specified as per BDM 305.4.5.7?		

Drilled	Shafts	(Y/N/X)	Notes:
20	Are there drilled shafts on the project?		
	If no, go to the next checklist.	Υ	
21	Have the drilled shaft diameter and embedment	NI	To be determined by others.
	length been specified?	N	·
22	Have the recommended drilled shaft diameter		To be determined by others.
	and embedment been developed based on the		
	nominal unit side resistance and nominal unit tip	N	
	resistance for vertical loading situations?		
23	For shafts undergoing lateral loading, have the	N	To be determined by others.
	following been determined:	IN	
a	. total factored lateral shear?		
b	. total factored bending moment?		
С	. maximum deflection?		
d	<u> </u>		
24	If a bedrock socket is required, has a minimum		To be determined by others.
	rock socket length equal to 1.5 times the rock	Х	
	socket diameter been used, as per BDM 305.5.2?	^	
25	Generally, bedrock sockets are 6" smaller in		To be determined by others.
	diameter than the soil embedment section of	Х	
	the drilled shaft. Has this factor been accounted	X	
	for in the drilled shaft design?		
26	If scour is predicted, has shaft resistance in the	✓	No scour anticipated based on analyses
	scour zone been neglected?	•	performed by others.
27	Has the site been assessed for groundwater	Υ	
	influence?	•	
a	• •		
	concern, does the design address control of	Х	
	groundwater flow during construction?		
28	Have all the proper items been included in the	Х	Plans being developed by others.
	plans for integrity testing?		
29	If special construction features (e.g., slurry,		Plans being developed by others.
	casing, load tests) are required, have all the	Х	
<u> </u>	proper items been included in the plans?		
30	If necessary, have wet construction methods	Х	
	been specified?		
Gener		(Y/N/X)	Notes:
31	Has the need for load testing of the foundations	Х	
	been evaluated?		
a	,	Х	
	testing been included in the plans?	• •	

VI.B. Geotechnical Reports

C-R-S:	CUY-14-12.12E	PID:	13184	Stage 2	ND	A	Date:	6/24/2022
Canana					Notos:			
Genera			:1	(Y/N/X)	Notes:			
1	Has an electronic copy of all gesubmissions been provided to Geotechnical Engineer (DGE)?			Y				
2	Has the first complete version report being submitted been la			Υ				
3	Subsequent to ODOT's review the complete version of the re report being submitted been la	vised ge	eotechnical	Y				
4	Has the boring data been subn format that is DIGGS (Data Inte Geotechnical and Geoenvironr compatable? gINT files may be	erchang nental) used fo	e for or this.	Х				
5	Does the report cover format format format and Identity Guidelines found at http://www.dot.state.oh.us/brand/Pages/default.asp	Report : :. ox ?	Standards	Υ				
6	Have all geotechnical reports been titled correctly as prescri 705.1 of the SGE?	_		Y				
Report	Body			(Y/N/X)	Notes:			
7	Do all geotechnical reports bei contain the following:	ng subn	nitted	Y				
a.	705.2 of the SGE?			Υ				
b.	of the SGE?			Υ				
C.	a section titled "Geology and the Project," as described in the SGE?			Y				
d.	a section titled "Exploration," Section 705.5 of the SGE?	' as des	cribed in	Υ				
e.	a section titled "Findings," as Section 705.6 of the SGE?	describ	ed in	Υ				
f.	a section titled "Analyses and Recommendations," as descr 705.7 of the SGE?		Section	Υ				
Append	dices			(Y/N/X)	Notes:			
8	Do all geotechnical reports bei contain all applicable Appendic Section 705.8 of the SGE?	_		Υ				
9	Do the Appendices present a s showing all boring locations as Section 705.8.1 of the SGE?		_	Υ				PLATE 9

VI.B. Geotechnical Reports

Appendices		(Y/N/X)	Notes:
10	Do the Appendices include boring logs and color		
	pictures of rock, if applicable, as described in	Υ	
	Section 705.8.2 of the SGE?		
11	Do the Appendices include reports of		
	undisturbed test data as described in Section	Υ	
	705.8.3 of the SGE?		
12	Do the Appendices include calculations in a		
	logical format to support recommendations as	Υ	
	described in Section 705.8.4 of the SGE?		