		ODOT	PROJE	ECT NO.	01-90	90				
		CUY 271	_							
SUBJECT		Wall SW1	BY:	A. Port		Date:	8/15/2014			
		oil Nail Wall	CHK BY:	M. Cross	sley	Date:	8/15/2014			
	Fa	cing Design								
T _{max-s} (from geotech)=	10	k	Perm. Face Re	bar Size =		#4				
Vertical Nail Head Spacing =	3.5	ft	Perm. Face Re	bar Spacing	g =	12	in.			
Horizontal Nail Head Spacing =	3.5	ft	Perm. Facing (4,000	psi					
Spacing Ratio =	1.00		Perm. Steel Yi	eld Strengt	h, f _y =	60	ksi			
# of Waler Bars (Horizontal) =	0		Perm. Facing	Thickness =		8	in.			
Waler Bar Size (Horizontal) =	#4		N _H =			4				
# of Waler Bars (Vertical) =	0		Stud Diameter	r =		0.5	in.			
Waler Bar Size (Vertical) =	#4		Stud Length =			4.125	in.			
Temp. Face WWF = 4x4-W2.9	9 x W2.9		Head Stud Head	ad Thicknes	ss =	0.31				
Temp. Facing Thickness =	4	in.	Stud Type=			A307				
Temp. Facing Concrete f ['] _c =	4,000	psi	Headed Stud S	Spacing =		5	in.			
Temp. Yield Strength, f _y =	60	ksi	Bearing Plate	Length =		9	in.			
			Bearing Plate	Thickness =		0.75	in.			
Temp. Rein. Ratio @ Midspan =	ОК		Temp. Fa	ce Tensile F	Resistance =	ОК				
Temp. Rein. Ratio @ Nailhead =	ОК		Perm. Fa	ce Tensile F	Resistance =	ОК				
Perm. Rein. Ratio =	ОК		Temp. Punch	ning Shear F	Resistance =	ОК				
Facing Head Stud Resistance =	OK		Perm. Punch	ning Shear F	Resistance =	OK				
Spreadsheet developed following FUM		017 Contachai	al Engineering (22			
Spreadsheet developed following FHW Spreadsheet is only valid for equal wale			ai Engineering (.7, 5011 Nd1	vvalis 200	J3			
Spreadsheet is only valid for equal war	ei nai sh	acing								
Maximum design tensile force at the fa	ace.									
$T_0 = T_{max-s} [0.6+0.057 (S_{max} - 3)] =$		[0.6 +	0.057 (3.5 -	3)]=	6.3	k			
10 1 max-s [0.0 0.0007 (0 max 07)]	10	1 0.0 1	0.037 (5.5	5 /]-	0.5	ĸ			
Temporary Facing Reinforcement										
a) Reinforcement in vertical and horizo	ontal dire	ection in midspa	n (Table A.2)							
$a_{vm} = a_{hm} = 0.087$	in ² /ft fc		. ,							
	•	IXT WE .57								
b) Reinforcement in vertical and horizo	ontal dire	ections around s	oil nail head							
$a_{vm} = a_{hn} = a_{vm} + A_{vw}/S_H =$				3.5 =	0.09 in ² ,	/ft				
	0.007	· (0.2 A	5 <i>//</i>	5.5 -	0.05					
c) C _F = 2.0	(Table 5	5.1)								

e) $\rho_{m} = a_{vm}/0.5h = (\ 0.087 \ / \ 12 \)/(\ 0.5 \ x \ 4 \)x \ 100 = \ 0.36 \ \%$ f) $\rho_{min} = 0.24 \ x \ (f_{c}^{-0.5}/f_{y}) = \ 0.24 \ x \ 4,000 \ ^{0.5}/ \ 60 = \ 0.25 \ \%$ g) $\rho_{max} = 0.05x(f_{c}/f_{y})(90/(90+f_{y})) = \ 0.05 \ x \ (\ 4,000 \ / \ 60 \)x(\ 90 \ / \ 90 \ + \ 60 \)) = \ 2 \ \%$ h) $\rho_{min} \ < \ \rho_{m} \ < \ \rho_{max} \ ? \ 0.25 \ < \ 0.36 \ < \ 2 \ OK$	d)	$ ho_{n}$ = a _{vn} /0.5h = (0.09	/	12)/(0.5	х	4) x	100	=	0.36	%		
g) $\rho_{max} = 0.05 x (f'_c/f_y)(90/(90+f_y)) = 0.05 x (4,000 / 60) x (90 / (90 + 60)) = 2 %$ h) $\rho_{min} < \rho_m < \rho_{max}$?	e)	$ ho_{m}$ = a _{vm} /0.5h = (0.087	/	12)/(0.5	x	4) x	100	=	0.36	%		
h) $\rho_{min} < \rho_m < \rho_{max}$?	f)	$ ho_{min}$ = 0.24 x (f'_c^{0.5}/f_y) =	0.24	x	4,000	0.5 /	60	=	0.25	%						
	g)	ρ_{max} =0.05x(f'_c/f_y)(90/(90+f_y)) =	0.05	x (4,000	/	60)x(90	/(90	+	60)) =	2	%
	h)								ОК	Ľ.						

i)	ρ_{min}	<	ρ_n	<	ρ_{max}	?	
	0.25	<	0.36	<	2	ОК	

j) $\rho_{total} = \rho_n + \rho_m = 0.36 + 0.36 = 0.73 \%$

A		ODOT CUY 271			PROJECT NO.			1122-10	01-90	_			
V			I SW1			BY:	А	. Po	rter	Date:	8/	15/20	14
			ail Wall		СН	K BY:			ssley	Date:	-	15/20	
			g Design										
	manent Facing Reinforcement												
a)	Reinforcement area per unit length a _{vn} = a _{vm} =		0.2	in ² /f	+								
	$a_{vn} - a_{vm} - a_{vm}$		0.2	,.	L L								
b)	Total Reinforcement in Vertical Direction (no v	valer bar	rs in p	erm. fa	acing)							
	a _{vn} = a _{vm} =		0.2	in²/f	t								
c)	$C_F = 1.0$ (Table 5	5.1)											
				0.5 /									
d)	$\rho_{min} = 0.24 \text{ x} (f'_c^{0.5}/f_y) = 0.24$	х	4,000	/	60	=	0.25	%					
e)	$\rho_{max} = 0.05 x (f'_c/f_v) (90/(90+f_v)) = 0.05$	x (4,000) /	60) x(90)/(90 +	60)))=	2	%
с,		~ (4,000	, ,	00	5 //(50	, (50 1	00	<i>)</i> // –	2	70
f)	$\rho_n = \rho_m = a_{vn}/0.5h = (0.20)$	/	12)/(0.5	х	8) x	100 =	0.42	%		
	ρ_{min}	<	ρ_{n}	<	ρ_{max}	?							
	0.25	<	0.42	<	2		ОК						
~)	2 - 0.82	0/											
g)	$\rho_{total} = 0.83$	%											
Fac	ing Tensile Flexural Resistance (R _{FF}) - Tem	p. ar	nd Perm.	Facin	ng								
a)	Facing flexural resistance (R _{FF})												
	Temporary: From Table 6.4a, R _{FF} =		26	k									
	Permanent: From Table 6.4a, R _{FF} =		59	k									
b)	Verify: $FS_{FF} T_0 < R_{FF}$								_				
	Temporary: 1.35 Permanent: 1.5	x	6.3	=	8.5	k <	26	k	Ok				
	Permanent: 1.5 (Table 5.	х 3)	6.3	=	9.4	k <	59	k	Ok	`			
	(-,											
Fac	ing Punching Shear Resistance (R _{FP}) - Tem	p. ar	nd Perm.	Facir	ng								
a)	Facing Punching resistance (R _{FP})												
	Temporary: From Table 6.4b, R _{FP} =		40	k									
	Permanent: From Table 6.4c, R _{FP} =		39	k			h _c =		5.00				
b)	Verify: $FS_{FP} T_0 < R_{FP}$		6.0		0.7		40		<i>c</i> .	,			
	Temporary: 1.35 Permanent: 1.5	x x	6.3 6.3	=	8.5 9.4	k < k <	40 39	k k	OK				
	(Table 5.		0.5	-	5.4	K N	35	ĸ		,			
		·											
Fac	ing Head Stud Resistance (R _{HT}) - Permaner	nt Fa	cing										
	$A_{SH} = 0.20 \qquad \text{in}^2$												
a)	Maximum tensile resistance (headed-stud	ten	sile failu	re) (R ₊	_{чт})								
	$R_{HT} = N_H A_{SH} f_y = 4$	х	0.20	х	60	=	47.1	k					
b)	Verify: $FS_{HT} T_0 = 1.8$	X	6.3	=	11.3	k <	47.1	k	Ok				
	(Table 5.	3)											