CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 1-3

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

Dimensions and Weights for Concrete Design

Footing width, $\mathrm{w}_{\text {foot }}=$	9.50	ft	=	114.00
Footing heel width, $\mathrm{w}_{\text {heel }}=$	6.00	ft		
Footing heel height, $\mathrm{h}_{\text {heel }}=$	1.50	ft	=	18.00
Footing toe width, $\mathrm{w}_{\text {toe }}=$	2.00	ft		
Footing toe height, $\mathrm{h}_{\text {toe }}=$	1.50	ft	=	18.00
Wall width at top, $\mathrm{t}_{\mathrm{wt}}=$	1.50	ft	=	18.00
Wall width at base, $\mathrm{t}_{\mathrm{wb}}=$	1.50	ft	=	18.00
Concrete strength, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=$	4.00	ksi		
Rebar strength, $\mathrm{f}_{\mathrm{y}}=$	60.00	ksi		
Steel mod. of elast., $\mathrm{E}_{\mathrm{s}}=$	29,000	ksi		

Concrete weight, $\mathrm{w}_{\mathrm{c}}=$	0.150	kcf
Water weight, $\mathrm{w}_{\mathrm{w}}=$	0.062	kcf
Saturated soil weight, $\mathrm{w}_{\mathrm{ss}}=$	0.130	kcf
Buoyant soil weight, $\mathrm{w}_{\mathrm{sb}}=$	0.068	kcf

| Height of wall, $\mathrm{h}_{\mathrm{w}}=$
 Height of water, $\mathrm{h}_{\text {water }}=$ | 5.88
 0.00 | ft | ft |
| :--- | :--- | :--- | :--- | | top of heel to top of wall |
| :--- |
| top of heel to water line |

Optional Collision Loading for Barrier on Top of Wall
Per ODOT comments for I-70/71, use the transverse loading of 54 kips for a TL-4 test level railing [AASHTO, Table A13.2-1] distributed over the retaining wall's joint spacing.

Collision Loading $=$	y	$(\mathrm{y}$ or n$)$
Joint Spacing $=$	24.43	ft
Barrier Height $=$	3.50	ft

Design Summary

Summary of Design Status

Design Item		Footing	
	Heel	Toe	Stem
Shear	OK	OK	OK
Minimum Reinforcement	OK	OK	OK
Shrinkage \& Temperature	OK	OK	OK
Crack Control	N/A	N/A	OK

For calculations related to each design item, see below.

Reinforcing Steel Summary

Footing:	Top transverse: Bottom transverse: Longitudinal:	\#8 bars at 12.00 inc c \#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$ \#4 bars at 12.00 in c/c
Wall Stem:	Back face vertical: Front face vertical: Horizontal:	\#6 bars at $12.00 \mathrm{in} \mathrm{c/c}$ \#4 bars at 12.00 in c/c \#4 bars at 12.00 in c/c

Design Footing for Shear

[5.13.3.6]
Design footings to have adequate shear capacity without transverse reinforcement.
Determine d_{v}
Assume: \#8 bars at

$$
\begin{array}{ll}
12.00 & \text { in c/c for the top transverse bars in the heel } \\
12.00 & \text { in c/c for the bottom transverse bars in the toe }
\end{array}
$$

2.0 in cover
3.0 in cover

For the heel:

For the toe:

[5.8.2.9] $d_{\text {vtoe }}=d_{\text {stoe }}-\mathrm{a} / 2$	$=14.75$	$-(0.29$	$/ 2)$	$=14.60$ in	$=13.28$	in

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 1-3

PROJECT NO.

\qquad
COMP. BY CHECKED BY \qquad DATE \qquad $3 / 17 / 2014$
$3 / 17 / 2014$
or $\mathrm{d}_{\text {vtoe }}=0.72 \mathrm{~h}=0.72 \mathrm{x} 18.00 \quad=12.96 \mathrm{in}$

Check Heel for Shear

The critical shear section for the heel of the footing is located at the back face of the wall. The heel of the footing is assumed to carry its self weight and the rectangular soil block above it. This neglects the benefit of any upward soil pressure below the footing (conservative).
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the top mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

$$
\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} x \quad x \quad 12.00 \quad x \quad 14.92=20.37 \mathrm{k}
$$

$$
20.37 \text { k }>13.73 \text { k OK }
$$

Check Toe for Shear

The peak bearing stress is 2.36 ksf for the Extreme llb load case.
The critical section for the toe of the footing is at dv from the front face of the wall. For a quick simplified check, try applying the peak bearing stress over the entire length of the toe (conservative).
$\mathrm{V}_{\mathrm{u}}=\sigma_{\mathrm{V}} \mathrm{w}_{\text {toe }} \quad=2.36 \quad \mathrm{x} \quad 2.00=4.72 \mathrm{k} / \mathrm{ft}$
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the bottom mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]
$\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} \times 12.00 \times 14.60 \quad=\quad 19.93 \mathrm{k}$

Design Footing Reinforcement

[5.13.3.4]
Each mat of reinforcement is checked to ensure that it has adequate capacity and that the maximum and minimum reinforcement checks are satisfied. The critical section for flexure in the footing is at the face of the wall.

Top Transverse Reinforcement

From the shear check of the heel, $\mathrm{V}_{\mathrm{u}}=13.73 \mathrm{k} / \mathrm{ft}$

$$
\mathrm{M}_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} \times\left(\mathrm{w}_{\text {heel }} / 2\right) \quad=13.73 \times(6.00 / 2)=41.20 \mathrm{k} \text {-ft }
$$

Set up the equation to solve for the required steel area:

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 15.50$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.61 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#8 bars at $\quad 12.00$ in c/c for the top transverse bars in the heel \quad As $=0.79 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement
[5.7.3.3.2]

$$
\begin{aligned}
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right) \quad=\quad \phi A_{s} f_{y}\left(d_{s}-\frac{A_{s} f_{y}}{1.7 f_{c}{ }^{\prime} b}\right) \\
& M_{u}=0.90 \quad x_{\mathrm{s}} \times 60\left(\mathrm{ds}-\begin{array}{ccccc}
& \text { As } & \mathrm{x} & 60 & \\
\hline 1.7 & \mathrm{x} & 4.0 & \mathrm{x} & 12
\end{array}\right) \times\left(\frac{1}{12}\right) \\
& 3.309 \quad A_{s}{ }^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{u}=\left(\gamma_{E V} w_{S S} h_{s S}+\gamma_{E V} w_{s b} h_{s b}+\gamma_{D C} w_{c} h_{\text {heel }}+\gamma_{L L} w_{S S} h_{L L}+\gamma_{w A} w_{w} h_{\text {water }}\right) \times w_{\text {heel }}
\end{aligned}
$$

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design
SUBJECT Reinforced Concrete Retaining Wall Design
Wall WS1, Panels 1-3
PROJECT NO. \qquad

COMP. BY

 CHECKED BY \qquad LNB DATE DATE \qquadDetermine the cracking moment:

$\mathrm{f}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}} \mathrm{c}^{0}\right)^{0.5}$	=	0.24		. 0) ${ }^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	=	0.0833	x	12.00	x 1	18.00	$)^{3}=$	5832.0						
$y_{t}=(1 / 2) h$	$=$	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	1.60	x	0.67	x	0.48	x	5832.0	11	9.00	x	12.00) $=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rlllllll}
\mathrm{M}_{\mathrm{CR}} & = & & 27.79 & = & 27.79 & \mathrm{k}-\mathrm{ft} & \text { GOVERNS } \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33 & \mathrm{x} & 41.20 & =54.94 & \mathrm{k}-\mathrm{ft}
\end{array}
$$

The capacity of the top mat of reinforcement is:

$$
\mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
$$

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-2.00-(1.000 / 2)=15.50$ in

$$
\mathrm{M}_{\mathrm{r}}=0.90 \times 0.79 \times 60 \times\left(15.50 \quad-\frac{0.79 \times 60}{1.7 \times \mathrm{x} 4.0 \mathrm{x} 12}\right) \times\left(\frac{1}{12}\right) \quad=\quad 53.04 \quad \mathrm{k}-\mathrm{ft}
$$ 53.04 k-ft > 27.79 k-ft OK

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.79 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft} \quad \mathrm{OK}$ Use \#8 bars at 12.00 in c/c for top transverse reinforcement in the footing.

Bottom Transverse Reinforcement

From the shear check of the toe, $\mathrm{V}_{\mathrm{u}}=\quad 4.72 \mathrm{k} / \mathrm{ft}$

$$
M_{u}=V_{u} \times\left(w_{\text {toe }} / 2\right) \quad=4.72 \times(2.00 / 2)=4.72 \quad \mathrm{k}-\mathrm{ft}
$$

Set up the equation to solve for the required steel area and again use:

$$
3.309 \quad A_{s}^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
$$

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 14.75$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.07 \mathrm{in}^{2} / \mathrm{ft}$
Try: \#4 bars at $\quad 12.00$ in c/c for the bottom transverse bars in the toe \quad As $=0.20 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement [5.7.3.3.2]

Determine the cracking moment:

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{aligned}
M_{\mathrm{CR}} & = \\
& \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33
\end{aligned} \begin{array}{rllll}
27.79 & = & 27.79 & \mathrm{k}-\mathrm{ft} \\
\\
\hline
\end{array}
$$

The capacity of the bottom mat of reinforcement is:

$$
M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
$$

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)

SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 1-3

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	
		DNB	

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-3.00-(0.500 / 2)=14.75$ in

$$
M_{r}=0.90 \times 0.20 \times 60 \times\left(14.75-\frac{0.20 \times x-60}{1.7 \times 4.0 \times x} 12\right) \times\left(\frac{1}{12}\right) \quad=13.14 \quad \mathrm{k}-\mathrm{ft}
$$

$$
13.14 \mathrm{k}-\mathrm{ft}>6.29 \quad \mathrm{k}-\mathrm{ft} \text { OK }
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8)

$$
\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft} \quad>0.17 \mathrm{in}^{2} / \mathrm{ft}
$$

Use \#4 bars at 12.00 in c/c for bottom transverse reinforcement in the footing.

Longitudinal Reinforcement [5.10.8]
Provide longitudinal reinforcement in the footing based on shrinkage and temperature requirements.

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in }
$$

Use \#4 bars at 12.00 in c/c for top and bottom longitudinal reinforcement in the footing.

Determine Loads for Wall Stem Design

The loads on the stem at the top of the footing are determined to arrive at the design forces for the wall.
Saturated Earth Pressure:

$\mathrm{P}_{\mathrm{EH}(\mathrm{S})}=(1 / 2) \mathrm{w}_{\mathrm{ss}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\text {ss }}{ }^{2}$	0.5	x	0.130	x	0.280	x (5.88	$)^{2}=$	0.63	k	
$M_{E H(S)}=P_{E H(S)} \times\left[(1 / 3) h_{s s}+h_{s b}\right]$		=	0.63	x [0.333	x	5.88	+	0.00] =	1.23

Buoyant Earth Pressure:

$\mathrm{P}_{\mathrm{EH}(\mathrm{B})}=$	$\mathrm{h}_{\text {sb }}$	${ }_{\text {sb }}\left[w_{\text {ss }} \mathrm{h}_{\text {ss }}\right.$	12)	${ }_{\text {sb }} \mathrm{h}_{\text {sb }}$]													
$\mathrm{P}_{\mathrm{EH}(\mathrm{B})}=$		0.280	x	0.00	x [0.130	x	5.88	+	0.5 x		0.068	x	0.00] =	0.00	k
$y_{B}=\left[h_{s b}\left(w_{s s} h_{s s}+(1 / 3) w_{s b} h_{s b}\right)\right] /\left(2 w_{s s} h_{s s}+w_{s b} h_{s b}\right)$																	
$\mathrm{y}_{\mathrm{B}}=$	[0.00	x 1	0.130	x	5.88	+	0.333	x	0.068	x		0.00)]	=	0.00	ft
		112.0	x	0.130	X	5.88	+	0.068	x	0.00)						
$\mathrm{M}_{\mathrm{EH}(\mathrm{B})}=$	$\mathrm{EH}_{(\mathrm{B})}$	(B) $\mathrm{x} \mathrm{y}_{\text {B }}$	$=$	0.00	x	0.00					=		0.00	k-ft			

Water Pressure:

Live Load Surcharge:
$P_{\mathrm{LS}}=\mathrm{w}_{\mathrm{sS}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{LL}} \mathrm{h}_{\mathrm{s}} \quad=0.130 \mathrm{x} 0.280 \mathrm{x} 4.29 \mathrm{x} 5.88=0.92 \mathrm{k}$

$$
\begin{aligned}
& h_{\text {max }}=\max \left(h_{\text {heel }}, h_{\text {toe }}\right)=18.00 \text { in } \\
& \text { Min. } A_{s}=\frac{1.30 w_{\text {foot }} h_{\max }}{2\left(w_{\text {foot }}+h_{\max }\right) f_{y}}=\frac{1.30 x 114.00 \times 18.00}{2 x(114.00+18.00) \times 60}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

CLIENT	ODOT
PROJECT	CUY-271-0.00 (PID 80418)
SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 1-3

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DAECKED BY	DNB	$3 / 17 / 2014$

$\mathrm{M}_{\mathrm{LS}}=\mathrm{P}_{\mathrm{LS}} \times(1 / 2) \mathrm{h}_{\mathrm{s}} \quad=0.92 \mathrm{x} 0.500 \mathrm{x} 5.88=2.70 \mathrm{k}-\mathrm{ft}$

Collision Load at Top of Parapet:
Use a Live Load of $\quad 2210 \mathrm{lbs} / \mathrm{ft}$ applied at $\mathrm{h}_{\mathrm{r}}=\quad 3.5 \mathrm{ft}$ above the top of the wall.
$\mathrm{P}_{\mathrm{CT}}=$

$\mathrm{M}_{\mathrm{CT}}=\mathrm{P}_{\mathrm{CT}} \mathrm{X}\left(\mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{r}}\right) \quad=2.21 \mathrm{x}(5.88+3.50)=$| 2.21 k |
| :--- |
| $20.73 \mathrm{k}-\mathrm{ft}$ |

Using the Strength I load combination, the factored design forces for the wall stem are:

$$
\begin{aligned}
& H_{u}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.75\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right) \\
& H_{u}=1.50 \mathrm{x}(0.63+0.00)+1.00 \mathrm{x} 0.00+1.75 \mathrm{x}(0.92+0.00)=2.55 \mathrm{k} \\
& M_{u}=1.50\left(M_{E H(S)}+M_{E H(B)}\right)+1.00 M_{W A}+1.75\left(M_{L S}+M_{L L}\right) \\
& \mathrm{M}_{\mathrm{u}}=1.50 \mathrm{x}(1.23+0.00)+1.00 \mathrm{x} 0.00+1.75 \mathrm{x}(2.70+0.00 \quad)=6.57 \mathrm{kft}
\end{aligned}
$$

The Extreme Event II design forces for the wall stem are:

```
\(H_{\mathrm{ext}}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{CT}}+0.50\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(\mathrm{M}_{\mathrm{ext}}=1.50\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{CT}}+0.50\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
```


The service design forces for the wall stem are:

```
\(H_{\text {serv }}=1.00\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.00\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(M_{\text {serv }}=1.00\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{WA}}+1.00\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
\(M_{\text {serv }}=1.00 \times(1.23+0.00)+1.00 \times 1.00 \times 1.00 \times(\mathrm{ft}\)
```


Wall Stem Design - Investigate Shear

Shear typically does not govern the design of retaining walls. If shear does become an issue, the thickness of the stem should be increased such that transverse reinforcement is not required.

Ignoring the benefits of the shear key and axial compression, the shear capacity of the stem can be shown to be greater than that required.

$$
\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{p}}
$$

Recognizing that V_{s} and V_{p} are zero

$$
\begin{align*}
& V_{n}=V_{c} \\
& V_{c}=0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v} \tag{5.8.3.3-3}
\end{align*}
$$

The maximum effective shear depth is:

For	2.0 inch clear cover and		\#6 bars, $\mathrm{d}_{\mathrm{s}}=$		18.00		2.00		- (0.750	12)	$=$	15.63
$\mathrm{d}_{\mathrm{v}}=$	9 $\mathrm{d}_{\mathrm{e}}=0.9 \mathrm{~d}_{\mathrm{s}}=$	0.90	x	15.63	=	14.06	in		NS				
$\mathrm{d}_{\mathrm{v}}=$	$72 \mathrm{~h}=0.72 \mathrm{t}_{\mathrm{wb}}=$	0.72	x	18.00	=	12.96	in						

Follow the General Procedure using the provisions of Appendix B5, as per Section [5.8.3.4.2]:

$\beta=$	2.011897				0.00188			$\mathrm{s}_{\mathrm{xe}}=$				grega	ze $=$	1 in		BDM S5.10.3.1.1)
$\phi \mathrm{V}_{\mathrm{c}}=$	0.90	x	0.0316	x	2.01		4.0	$)^{0.50}$	x	12.00	x	14.06	=	19.31	k	

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 1-3

PROJECT NO.

\qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	CHECKED BY	DATE	$3 / 17 / 2014$

19.31 k > 3.61 k OK

Wall Stem Design - Investigate Strength Limit State

Determine the area of back-face flexural reinforcement necessary to satisfy the design moment:

$$
M_{u}=23.93 \quad k-\mathrm{ft}
$$

Again use the equation:

$$
3.309 \quad \mathrm{~A}_{\mathrm{s}}{ }^{2} \quad-\quad 4.50 \quad \mathrm{~d}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\mathrm{M}_{\mathrm{u}}=0
$$

Substituting and solving for A_{s}, it is found that required $\mathrm{A}_{\mathrm{s}}=0.35 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#6 bars at 12.00 in c/c $\mathrm{A}_{\mathrm{s}}=0.44 \quad \mathrm{in}^{2} / \mathrm{ft}>0.35 \quad \mathrm{in}^{2} / \mathrm{ft} \underline{\mathrm{OK}}$

Wall Stem Design - Investigate Service Limit State

[5.7.3.4]
Check the crack control equations to ensure that the primary flexural reinforcement is well distributed. The service load bending moment is:

$$
M_{\text {serv }}=\quad 3.93 \quad \mathrm{k}-\mathrm{ft}
$$

Check the modulus of rupture for concrete:

$$
\begin{aligned}
& \phi \mathrm{f}_{\mathrm{r}}=\phi 0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=0.80 \mathrm{x} 0.24 \mathrm{x}(4.0)^{0.50}=0.384 \mathrm{ksi} \\
& \mathrm{~S}=\frac{\mathrm{bt} \mathrm{wb}^{2}}{6}=\frac{12.00 \mathrm{x}(18.00)^{2}}{6}=648.00 \mathrm{in}^{3} \\
& \mathrm{f}_{\text {act }}=\frac{\mathrm{M}_{\text {serv }}}{\mathrm{S}}=\frac{3.93 \mathrm{x} \mathrm{12}}{648.00}=0.073 \mathrm{ksi}<0.384 \mathrm{ksi} \underline{\mathrm{OK}}
\end{aligned}
$$

If modulus of rupture check is " NG ", then check the spacing of the reinforcement. First, determine the modular ratio:

	$\mathrm{E}_{\mathrm{c}}=33,000 \mathrm{w}_{\mathrm{c}}^{1.5}\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=$		33,000		x 1	0.150		$)^{1.0}$	x (4.00	$)^{0.5}$	$=$	3,834		ksi
	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	29,000	1	3,8		=		7.56	, use $\mathrm{n}=$		8.00				
For	2.0 inch cor	ver and		ars,				-	2.00			0.750	(2)) =	15.63

Determine the location of the neutral axis:

```
\(0.5 b x^{2}=n A_{s}\left(d_{s}-x\right)\)
\(0.5(12) x^{2}=\quad 8 \quad x \quad 0.44 \quad x(15.63-x)\)
solving, \(x=2.75\) in
```

Check the spacing of the reinforcement to control cracking:

```
\(y=d_{s}-x=15.63-2.75=12.88\) in
\(I_{c r}=\frac{b x^{3}}{3}+n A_{s}\left(d_{s}-x\right)^{2}\)
\(\mathrm{I}_{\mathrm{cr}}=\frac{12.00 \times(2.75)^{3}}{3}+8 \mathrm{x} 0.44 \times(15.63-2.75)^{2}=666.68 \mathrm{in}^{4}\)
\(\gamma_{\mathrm{e}}=\quad 1.00\)
For 2.0 inch clear cover and \(\# 6\) bars, \(d_{c}=2.00+(0.750 / 2)=2.38\) in
\(\beta_{\mathrm{s}}=1.0+\frac{\mathrm{d}_{\mathrm{c}}}{0.7\left(\mathrm{t}_{\mathrm{wb}}-\mathrm{d}_{\mathrm{c}}\right)}=1.0+\frac{2.38}{0.7 \times(18.00-2.38)}=1.22\)
```


CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 1-3

PROJECT NO. \qquad
COMP. BY CHECKED BY
\qquad DATE \qquad

$S_{\max }=74.12$ in $\quad>\quad 12.00$ in $\underline{O K}$

Wall Stem Design - Check Reinforcement Limits

Check Minimum Reinforcement
[5.7.3.3.2]
Determine the cracking moment:

$\mathrm{fr}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	$=$	0.24		. 0$)^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	$=$	0.0833	x	12.00	x 1	18.00	$)^{3}=$	5832.0						
$y_{t}=(1 / 2) h$	$=$	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	0.67	x	1.6	x	0.48	x	5832.0	$1($	9.00	x	12.00	$)=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

M_{CR}	$=$		27.79	$=$	27.79	$\mathrm{k}-\mathrm{ft}$
$(4 / 3) \mathrm{M}_{\mathrm{u}}$	$=1.33$	GOVERNS				

The capacity of the reinforcement is:

$$
\begin{aligned}
& M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& 30.30 \text { k-ft > } 27.79 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.44 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.16 \quad \mathrm{in}^{2} / \mathrm{ft}$
Use \#6 bars at 12.00 in c/c for wall stem back face vertical reinforcing.

Wall Stem Design - Shrinkage and Temperature Reinforcement

A minimum amount of reinforcement should be placed near each face of concrete elements to limit the size of cracks associated with concrete shrinkage and temperature changes.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right)=18.00 \text { in } \\
& \mathrm{h}_{\mathrm{w}}=5.88 \mathrm{ft}=70.56 \text { in } \\
& \operatorname{Min} . \mathrm{A}_{\mathrm{s}} \quad=\frac{1.30 \mathrm{~h}_{\mathrm{w}} \mathrm{~h}_{\max }}{2\left(\mathrm{~h}_{\mathrm{w}}+\mathrm{h}_{\max }\right) \mathrm{f}_{\mathrm{y}}}=\frac{1.30 \mathrm{x} 10.56 \mathrm{x} 18.00}{2 \times(10.56+18.00) \times 60}=0.16 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right) \quad=18.00 \quad \text { in }
$$

[^0]CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 4-6

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

Dimensions and Weights for Concrete Design

| Footing width, $\mathrm{w}_{\text {foot }}=$ | 9.50 | ft | $=$ | 114.00 | in |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| Footing heel width, $\mathrm{w}_{\text {heel }}=$ | 6.00 | ft | | | |
| Footing heel height, $\mathrm{h}_{\text {heel }}=$ | 1.50 | ft | $=$ | 18.00 | in |
| | | | | | |
| Footing toe width, $\mathrm{w}_{\text {toe }}=$ | 2.00 | ft | | | |
| Footing toe height, $\mathrm{h}_{\text {toe }}=$ | 1.50 | ft | $=$ | 18.00 | in |
| | | | | | |
| Wall width at top, $\mathrm{t}_{\mathrm{wt}}=$ | | | | | |
| | 1.50 | ft | $=$ | 18.00 | in |
| Wall width at base, $\mathrm{t}_{\mathrm{wb}}=$ | | | | | |
| | 1.50 | ft | $=$ | 18.00 | in |
| | | | | | |
| Concrete strength, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=$ | 4.00 | ksi | | | |
| Rebar strength, $\mathrm{f}_{\mathrm{y}}=$ | 60.00 | ksi | | | |
| Steel mod. of elast., $\mathrm{E}_{\mathrm{s}}=$ | 29,000 | ksi | | | |

Concrete weight, $\mathrm{w}_{\mathrm{c}}=$	0.150	kcf	
Water weight, $\mathrm{w}_{\mathrm{w}}=$	0.062	kcf	
Saturated soil weight, $\mathrm{w}_{\mathrm{ss}}=$	0.130	kcf	
Buoyant soil weight, $\mathrm{w}_{\mathrm{sb}}=$	0.068	kcf	
Height of wall, $\mathrm{h}_{\mathrm{w}}=$	6.92	ft	top of heel to top of wall
Height of water, $\mathrm{h}_{\text {water }}=$	0.00	ft	top of heel to water line
Height of soil, $\mathrm{h}_{\mathrm{s}}=$	6.92	ft	top of heel to ground line
Height of satur. soil, $\mathrm{h}_{\text {ss }}=$	6.92	ft	height of satur. soil above top of heel
Height of buoy. soil, $\mathrm{h}_{\text {sb }}=$	0.00	ft	height of buoy. soil above top of heel
Active pressure coeff., $\mathrm{K}_{\mathrm{a}}=$	0.280		
LL surcharge soil ht., $\mathrm{h}_{\mathrm{LL}}=$	3.97	ft	

Optional Collision Loading for Barrier on Top of Wall
Per ODOT comments for I-70/71, use the transverse loading of 54 kips for a TL-4 test level railing [AASHTO, Table A13.2-1] distributed over the retaining wall's joint spacing.

Collision Loading $=$	y	$(\mathrm{y}$ or n$)$
Joint Spacing $=$	28.00	ft
Barrier Height $=$	3.50	ft

Design Summary

Summary of Design Status

Design Item			
	Footing		Wall
	Heel	Toe	Stem
Shear	OK	OK	OK
Minimum Reinforcement	OK	OK	OK
Shrinkage \& Temperature	OK	OK	OK
Crack Control	N/A	N $/ \mathrm{A}$	OK

Reinforcing Steel Summary		
Footing:	Top transverse:	\#8 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Bottom transverse:	\#4 bars at 12.00 in c/c
	Longitudinal:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$
Wall Stem:	Back face vertical:	\#6 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Front face vertical:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Horizontal:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$

Design Footing for Shear

[5.13.3.6]
Design footings to have adequate shear capacity without transverse reinforcement.
Determine d_{v}
Assume: \#8 bars at

$$
\begin{array}{ll}
12.00 & \text { in c/c for the top transverse bars in the heel } \\
12.00 & \text { in c/c for the bottom transverse bars in the toe }
\end{array}
$$

$\mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft}$
2.0 in cover
3.0 in cover

For the heel:

For the toe:

[5.8.2.9] $d_{\text {vtoe }}=d_{\text {stoe }}-\mathrm{a} / 2$	$=$	14.75	$-(0.29$	$/ 2)$	$=14.60$ in	$=13.28$ in

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 4-6

PROJECT NO.

\qquad
COMP. BY CHECKED BY \qquad DATE \qquad
or $\mathrm{d}_{\text {vtoe }}=0.72 \mathrm{~h}$
$=\quad 0.72$
18.00
$=12.96 \mathrm{in}$

Check Heel for Shear

The critical shear section for the heel of the footing is located at the back face of the wall. The heel of the footing is assumed to carry its self weight and the rectangular soil block above it. This neglects the benefit of any upward soil pressure below the footing (conservative).
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the top mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

$$
\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} x \quad x \quad 12.00 \quad x \quad 14.92=20.37 \mathrm{k}
$$

$$
20.37 \text { k }>14.39 \text { k OK }
$$

Check Toe for Shear

The peak bearing stress is 2.27 ksf for the Extreme llb load case.
The critical section for the toe of the footing is at dv from the front face of the wall. For a quick simplified check, try applying the peak bearing stress over the entire length of the toe (conservative).
$\mathrm{V}_{\mathrm{u}}=\sigma_{\mathrm{V}} \mathrm{W}_{\text {toe }} \quad=2.27 \quad \mathrm{x} \quad 2.00 \quad=4.54 \mathrm{k} / \mathrm{ft}$
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the bottom mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]
$\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} \times 12.00 \times 14.60 \quad=\quad 19.93 \mathrm{k}$

Design Footing Reinforcement

[5.13.3.4]
Each mat of reinforcement is checked to ensure that it has adequate capacity and that the maximum and minimum reinforcement checks are satisfied. The critical section for flexure in the footing is at the face of the wall.

Top Transverse Reinforcement

From the shear check of the heel, $\mathrm{V}_{\mathrm{u}}=14.39 \mathrm{k} / \mathrm{ft}$

$$
M_{u}=V_{u} \times\left(w_{\text {heel }} / 2\right) \quad=14.39 \times(6.00 / 2)=43.18 \quad \mathrm{k} \text {-ft }
$$

Set up the equation to solve for the required steel area:

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 15.50$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.64 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#8 bars at $\quad 12.00$ in c/c for the top transverse bars in the heel \quad As $=0.79 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement
[5.7.3.3.2]

$$
\begin{aligned}
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right) \quad=\quad \phi A_{s} f_{y}\left(d_{s}-\frac{A_{s} f_{y}}{1.7 f_{c}^{\prime} b}\right) \\
& M_{u}=0.90 \quad x_{\mathrm{s}} \times 60\left(\mathrm{ds}-\begin{array}{ccccc}
& \text { As } & \mathrm{x} & 60 & \\
\hline 1.7 & \mathrm{x} & 4.0 & \mathrm{x} & 12
\end{array}\right) \times\left(\frac{1}{12}\right) \\
& 3.309 \quad A_{s}{ }^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{u}=\left(\gamma_{E V} w_{S S} h_{s S}+\gamma_{E V} w_{s b} h_{s b}+\gamma_{D C} w_{c} h_{\text {heel }}+\gamma_{L L} w_{S S} h_{L L}+\gamma_{w A} w_{w} h_{\text {water }}\right) \times w_{\text {heel }}
\end{aligned}
$$

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

| SUBJECT | Reinforced Concrete Retaining Wall Design |
| :--- | :--- | :--- |
| | Wall WS1, Panels 4-6 |

PROJECT NO. \qquad

COMP. BY

 CHECKED BY \qquad DATE \qquadDetermine the cracking moment:

$\mathrm{f}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	=	0.24		. 0) ${ }^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	=	0.0833	x	12.00	x 1	18.00	$)^{3}=$	5832.0						
$y_{t}=(1 / 2) h$	$=$	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	1.60	x	0.67	x	0.48	x	5832.0	$1($	9.00	x	12.00	$)=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rlrlrll}
\mathrm{M}_{\mathrm{CR}} & = & & 27.79 & = & 27.79 & \mathrm{k}-\mathrm{ft} \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33 & \mathrm{G} & \text { GOVERNS } \\
43.18 & =57.57 & \mathrm{k}-\mathrm{ft}
\end{array}
$$

The capacity of the top mat of reinforcement is:

$$
\mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
$$

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-2.00-(1.000 / 2)=15.50$ in

$$
\mathrm{M}_{\mathrm{r}}=0.90 \times 0.79 \times 60 \times\left(15.50 \quad-\frac{0.79 \times 60}{1.7 \times \mathrm{x} 4.0 \mathrm{x} 12}\right) \times\left(\frac{1}{12}\right) \quad=\quad 53.04 \quad \mathrm{k}-\mathrm{ft}
$$ 53.04 k-ft > 27.79 k-ft OK

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.79 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft} \quad \mathrm{OK}$ Use \#8 bars at 12.00 in c / c for top transverse reinforcement in the footing.

Bottom Transverse Reinforcement

From the shear check of the toe, $\mathrm{V}_{\mathrm{u}}=\quad 4.54 \mathrm{k} / \mathrm{ft}$

$$
M_{u}=V_{u} \times\left(w_{\text {toe }} / 2\right) \quad=4.54 \times(2.00 / 2)=4.54 \quad \mathrm{k}-\mathrm{ft}
$$

Set up the equation to solve for the required steel area and again use:

$$
3.309 \quad A_{s}^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
$$

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 14.75$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.07 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#4 bars at $\quad 12.00$ in c/c for the bottom transverse bars in the toe \quad As $=0.20 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement [5.7.3.3.2]

Determine the cracking moment:

The capacity of the section must be greater than or equal to the smaller of:

The capacity of the bottom mat of reinforcement is:

$$
M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
$$

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | | Reinforced Concrete Retaining Wall Design |
| :--- | :--- |
| | Wall WS1, Panels 4-6 |

PROJECT NO. \qquad
\qquad
COMP. BY CHECKED BY \qquad DATE DATE

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-3.00-(0.500 / 2)=14.75$ in

$$
\begin{aligned}
& 13.14 \text { k-ft > } 6.05 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8)

$$
\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft} \quad>0.17 \mathrm{in}^{2} / \mathrm{ft}
$$

Use \#4 bars at 12.00 in c/c for bottom transverse reinforcement in the footing.

Longitudinal Reinforcement [5.10.8]
Provide longitudinal reinforcement in the footing based on shrinkage and temperature requirements.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in } \\
& \text { Min. } \mathrm{A}_{\mathrm{s}}=\frac{1.30 \mathrm{w}_{\text {foot }} \mathrm{h}_{\max }}{2\left(\mathrm{w}_{\text {foot }}+\mathrm{h}_{\max }\right) \mathrm{f}_{\mathrm{y}}}=\frac{1.30 \mathrm{x} 114.00 \mathrm{x} 18.00}{2 \mathrm{x}(114.00+18.00 \mathrm{~m}}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in }
$$

Use \#4 bars at 12.00 in c/c for top and bottom longitudinal reinforcement in the footing.

Determine Loads for Wall Stem Design

The loads on the stem at the top of the footing are determined to arrive at the design forces for the wall.
Saturated Earth Pressure:

$\mathrm{P}_{\mathrm{EH}(\mathrm{S})}=(1 / 2) \mathrm{w}_{\mathrm{ss}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\text {ss }}{ }^{2}$	0.5	x	0.130	x	0.280	x	6.92	$)^{2}=$	0.87	k	
$M_{E H(S)}=P_{E H(S)} \times\left[(1 / 3) h_{\text {ss }}+h_{\text {sb }}\right]$		=	0.87	x [0.333	x	6.92	+	0.00] =	2.01

Buoyant Earth Pressure:

$\mathrm{P}_{\text {EH(B) }}=$	$h_{\text {sb }}\left[w_{\text {ss }} \mathrm{h}_{\text {ss }}\right.$	/2)	$\mathrm{h}_{\text {sb }}$]													
$\mathrm{P}_{\mathrm{EH}(\mathrm{B})}=$	0.280	x	0.00	x [0.130	x	6.92	+	0.5 x		0.068	x	0.00] =	0.00	k
$y_{B}=\left[h_{s b}\left(w_{s s} h_{s s}+(1 / 3) w_{s b} h_{s b}\right)\right] /\left(2 w_{s s} h_{s s}+w_{s b} h_{s b}\right)$																
$y_{B}=$	[0.00	x 1	0.130	x	6.92	+	0.333	x	0.068	x		0.00)]	=	0.00	ft
	1 (2.0	x	0.130	x	6.92	+	0.068	x	0.00)						
$\mathrm{M}_{\mathrm{EH}(\mathrm{B})}=$	$\mathrm{EH}_{(B)} \times \mathrm{y}_{\mathrm{B}}$	$=$	0.00	x	0.00					=	$=$	0.00	k-ft			

Water Pressure:

Live Load Surcharge:
$P_{\mathrm{LS}}=\mathrm{w}_{\mathrm{sS}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{LL}} \mathrm{h}_{\mathrm{s}} \quad=0.130 \mathrm{x} 0.280 \mathrm{x} 3.97 \mathrm{x} \quad 6.92=1.00 \mathrm{k}$

CLIENT	ODOT
PROJECT	CUY-271-0.00 (PID 80418)
SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 4-6

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	CHECKED BY	DATE	$3 / 17 / 2014$

$M_{L S}=P_{L S} \times(1 / 2) h_{s} \quad=1.00 \quad x \quad 0.500 \quad 3.46 \quad \mathrm{k}-\mathrm{ft}$

Collision Load at Top of Parapet:
Use a Live Load of $\quad 1929 \mathrm{lbs} / \mathrm{ft}$ applied at $\mathrm{h}_{\mathrm{r}}=\quad 3.5 \mathrm{ft}$ above the top of the wall.
$\mathrm{P}_{\mathrm{CT}}=$

$\mathrm{M}_{\mathrm{CT}}=\mathrm{P}_{\mathrm{CT}} \mathrm{X}\left(\mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{r}}\right) \quad=1.93 \mathrm{x}(6.92+3.50)=$| 1.93 k |
| :--- |
| $20.10 \quad \mathrm{k}-\mathrm{ft}$ |

Using the Strength I load combination, the factored design forces for the wall stem are:

$$
\begin{aligned}
& H_{u}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.75\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right) \\
& H_{u}=1.50 \times(0.87+0.00)+1.00 \times 0.00+1.75 \times(1.00+0.00)=3.06 \mathrm{k} \\
& M_{u}=1.50\left(M_{E H(S)}+M_{E H(B)}\right)+1.00 M_{W A}+1.75\left(M_{L S}+M_{L L}\right) \\
& \mathrm{M}_{\mathrm{u}}=1.50 \mathrm{x}(2.01+0.00)+1.00 \mathrm{x} 0.00+1.75 \mathrm{x}(3.46+0.00 \quad)=9.07 \mathrm{k} \mathrm{ft}
\end{aligned}
$$

The Extreme Event II design forces for the wall stem are:

```
\(H_{\mathrm{ext}}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{CT}}+0.50\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(\mathrm{M}_{\mathrm{ext}}=1.50\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{CT}}+0.50\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
```


The service design forces for the wall stem are:

```
\(H_{\text {serv }}=1.00\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.00\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(M_{\text {serv }}=1.00\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{WA}}+1.00\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
```


Wall Stem Design - Investigate Shear

Shear typically does not govern the design of retaining walls. If shear does become an issue, the thickness of the stem should be increased such that transverse reinforcement is not required.

Ignoring the benefits of the shear key and axial compression, the shear capacity of the stem can be shown to be greater than that required.

$$
\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{p}}
$$

Recognizing that V_{s} and V_{p} are zero

$$
\begin{align*}
& V_{n}=V_{c} \\
& V_{c}=0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v} \tag{5.8.3.3-3}
\end{align*}
$$

The maximum effective shear depth is:

Follow the General Procedure using the provisions of Appendix B5, as per Section [5.8.3.4.2]:

$\beta=$	1.968862			=	0.00195			$\mathrm{s}_{\mathrm{xe}}=$				gregat	ze $=$	1 in		BDM S5.10.3.1.1)
$\phi \mathrm{V}_{\mathrm{c}}=$	0.90	x	0.0316	x	1.97		4.0	$)^{0.50}$	x	12.00	x	14.06	=	18.90	k	

CLIENT ODOT

PROJECT NO. \qquad
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 4-6

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATECKED BY	$3 / 17 / 2014$	

$$
18.90 \mathrm{k} \quad>3.74 \mathrm{k} \quad \underline{\mathrm{OK}}
$$

Wall Stem Design - Investigate Strength Limit State

Determine the area of back-face flexural reinforcement necessary to satisfy the design moment:

$$
\mathrm{M}_{\mathrm{u}}=24.84 \quad \mathrm{k}-\mathrm{ft}
$$

Again use the equation:

$$
3.309 \quad A_{s}{ }^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
$$

Substituting and solving for A_{s}, it is found that required $\mathrm{A}_{\mathrm{s}}=0.36 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#6 bars at 12.00 in c/c $\mathrm{A}_{\mathrm{s}}=0.44 \mathrm{in}^{2} / \mathrm{ft}>0.36 \quad \mathrm{in}^{2} / \mathrm{ft} \underline{\mathrm{OK}}$

Wall Stem Design - Investigate Service Limit State

[5.7.3.4]
Check the crack control equations to ensure that the primary flexural reinforcement is well distributed. The service load bending moment is:

$$
M_{\text {serv }}=\quad 5.47 \quad \mathrm{k}-\mathrm{ft}
$$

Check the modulus of rupture for concrete:

$$
\begin{aligned}
& \phi \mathrm{f}_{\mathrm{r}}=\phi 0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=0.80 \mathrm{x} 0.24 \mathrm{x}(4.0)^{0.50}=0.384 \mathrm{ksi} \\
& \mathrm{~S}=\frac{\mathrm{bt} \mathrm{wb}^{2}}{6}=\frac{12.00 \mathrm{x}(18.00)^{2}}{6}=648.00 \mathrm{in}^{3} \\
& \mathrm{f}_{\text {act }}=\frac{\mathrm{M}_{\text {serv }}}{\mathrm{S}}=\frac{5.47 \mathrm{x} 12}{648.00}=0.101 \mathrm{ksi}<0.384 \mathrm{ksi} \underline{\mathrm{OK}}
\end{aligned}
$$

If modulus of rupture check is "NG", then check the spacing of the reinforcement. First, determine the modular ratio:

	$\mathrm{E}_{\mathrm{c}}=33,000 \mathrm{w}_{\mathrm{c}}^{1.5}\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=$		33,000		x (0.150		$)^{1.0}$	x (4.00	$)^{\text {u. }}$	$=$	3,834		ksi	
	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	29,000	1	3,834		$=$. 56	, use $\mathrm{n}=$		8.00					
For	2.0 inch cle	ver and		ars, $\mathrm{d}_{\text {s }}$				-	2.00		- (0.750	12)) =		15.63

Determine the location of the neutral axis:

```
\(0.5 \mathrm{bx}^{2}=\mathrm{nA} \mathrm{A}_{\mathrm{s}}\left(\mathrm{d}_{\mathrm{s}}-\mathrm{x}\right)\)
\(0.5(12) x^{2}=8 \quad x \quad 0.44 \times(15.63-x)\)
solving, \(x=2.75\) in
```

Check the spacing of the reinforcement to control cracking:

```
\(y=d_{s}-x=15.63-2.75 \quad=12.88\) in
\(I_{c r}=\frac{b x^{3}}{3}+n A_{s}\left(d_{s}-x\right)^{2}\)
\(\mathrm{I}_{\mathrm{cr}}=\frac{12.00 \times(2.75)^{3}}{3}+8 \mathrm{x} 0.44 \times(15.63-2.75)^{2}=666.68 \mathrm{in}^{4}\)
\(\gamma_{\mathrm{e}}=\quad 1.00\)
For 2.0 inch clear cover and \(\# 6\) bars, \(d_{c}=2.00+(0.750 / 2)=2.38\) in
\(\beta_{\mathrm{s}}=1.0+\frac{\mathrm{d}_{\mathrm{c}}}{0.7\left(\mathrm{t}_{\mathrm{wb}}-\mathrm{d}_{\mathrm{c}}\right)}=1.0+\frac{2.38}{0.7 \times(18.00-2.38)}=1.22\)
```


CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 4-6 |

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DAECKED BY	DATE	$3 / 17 / 2014$

$$
\begin{aligned}
& \mathbf{s}_{\max }=\frac{700 \gamma_{\mathrm{e}}}{\beta_{\mathrm{s}} \mathrm{f}_{\mathrm{ss}}}-2.0 \mathrm{~d}_{\mathrm{c}}=\frac{700}{1.22 \mathrm{x}} \mathbf{x} 10.14 \\
& \mathbf{s}_{\max }=\quad 51.95 \text { in }>2.00 \mathrm{x} \quad 12.00 \text { in } \underline{\mathrm{OK}}
\end{aligned}
$$

Wall Stem Design - Check Reinforcement Limits

Check Minimum Reinforcement
[5.7.3.3.2]
Determine the cracking moment:

$\mathrm{fr}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	=	0.24		$4.0)^{0.50}$	$=$	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	=	0.0833	x	12.00	$x 1$	18.00	$)^{3}=$	5832.0	$i \mathrm{i}^{4}$					
$y_{t}=(1 / 2) h$	=	0.5000	x	18.00	$=$	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} I_{g} / y_{t}$	=	0.67	x	1.6	x	0.48	x	5832.0	11	9.00	x	12.00	$)=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

M_{CR}	$=$		27.79	$=$	27.79	$\mathrm{k}-\mathrm{ft}$
$(4 / 3) \mathrm{M}_{\mathrm{u}}$	$=1.33$	GOVERNS				

The capacity of the reinforcement is:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& 30.30 \text { k-ft > } 27.79 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.44 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.16 \quad \mathrm{in}^{2} / \mathrm{ft}$
OK
Use \#6 bars at 12.00 in c/c for wall stem back face vertical reinforcing.

Wall Stem Design - Shrinkage and Temperature Reinforcement

A minimum amount of reinforcement should be placed near each face of concrete elements to limit the size of cracks associated with concrete shrinkage and temperature changes.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right)=18.00 \text { in } \\
& \mathrm{h}_{\mathrm{w}}=6.92 \mathrm{ft}=83.04 \text { in } \\
& \operatorname{Min} . \mathrm{A}_{\mathrm{s}}=\frac{1.30 \mathrm{~h}_{\mathrm{w}} \mathrm{~h}_{\max }}{2\left(\mathrm{~h}_{\mathrm{w}}+\mathrm{h}_{\max }\right) \mathrm{f}_{\mathrm{y}}}=\frac{1.30 \mathrm{x} 83.048 \mathrm{x} 818.00}{2 \times(83.04+18.00) \times 60}=0.16 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right) \quad=18.00 \quad \text { in }
$$

[^1]CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 7-8

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

Dimensions and Weights for Concrete Design

Footing width, $\mathrm{w}_{\text {foot }}=$	9.50	ft	=	114.00
Footing heel width, $\mathrm{w}_{\text {heel }}=$	6.00	ft		
Footing heel height, $\mathrm{h}_{\text {heel }}=$	1.50	ft	=	18.00
Footing toe width, $\mathrm{w}_{\text {toe }}=$	2.00	ft		
Footing toe height, $\mathrm{h}_{\text {toe }}=$	1.50	ft	=	18.00
Wall width at top, $\mathrm{t}_{\mathrm{wt}}=$	1.50	ft	=	18.00
Wall width at base, $\mathrm{t}_{\mathrm{wb}}=$	1.50	ft	=	18.00
Concrete strength, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=$	4.00	ksi		
Rebar strength, $\mathrm{f}_{\mathrm{y}}=$	60.00	ksi		
Steel mod. of elast., $\mathrm{E}_{\mathrm{s}}=$	29,000	ksi		

Optional Collision Loading for Barrier on Top of Wall
Per ODOT comments for I-70/71, use the transverse loading of 54 kips for a TL-4 test level railing [AASHTO, Table A13.2-1] distributed over the retaining wall's joint spacing.

Collision Loading $=$	y	$(\mathrm{y}$ or n$)$
Joint Spacing $=$	28.00	ft
Barrier Height $=$	3.50	ft

Design Summary

Summary of Design Status

Design Item			
	Footing		Wall
	Heel	Toe	Stem
Shear	OK	OK	OK
Minimum Reinforcement	OK	OK	OK
Shrinkage \& Temperature	OK	OK	OK
Crack Control	N/A	N $/ \mathrm{A}$	OK

Reinforcing Steel Summary		
Footing:	Top transverse:	\#8 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Bottom transverse:	\#4 bars at 12.00 in c/c
	Longitudinal:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$
Wall Stem:	Back face vertical:	\#6 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Front face vertical:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Horizontal:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$

Design Footing for Shear

[5.13.3.6]
Design footings to have adequate shear capacity without transverse reinforcement.
Determine d_{v}
Assume: \#8 bars at

$$
\begin{aligned}
& 12.00 \text { in c/c for the top transverse bars in the heel } \\
& 12.00 \text { in c/c for the bottom transverse bars in the toe }
\end{aligned}
$$

$\mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2} / \mathrm{ft}$
$\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft}$
2.0 in cover
\#4 bars at
For the heel:

For the toe:

[5.8.2.9]	$d_{\text {vtoe }}=d_{\text {stoe }}-\mathrm{a} / 2$	$=$	14.75	$-(0.29$	$/ 2)$	$=$	14.60	in
	or $d_{\text {vtoe }}=0.90 d_{\text {e }}$	$=$	0.90	x	14.75		13.28	in

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)
SUBJECT $\frac{\text { Reinforced Concrete Retaining Wall Design }}{}$ Wall WS1, Panels 7-8
PROJECT NO.
COMP. BY
\qquad CHECKED BY \qquad DATE \qquad
or $\mathrm{d}_{\text {vtoe }}=0.72 \mathrm{~h}$
$=\quad 0.72$
18.00
$=12.96 \mathrm{in}$

Check Heel for Shear

The critical shear section for the heel of the footing is located at the back face of the wall. The heel of the footing is assumed to carry its self weight and the rectangular soil block above it. This neglects the benefit of any upward soil pressure below the footing (conservative).
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the top mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

$$
\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} x \quad x \quad 12.00 \quad x \quad 14.92=20.37 \mathrm{k}
$$

$$
20.37 \text { k }>14.97 \text { k OK }
$$

Check Toe for Shear

The peak bearing stress is 2.42 ksf for the Extreme llb load case.
The critical section for the toe of the footing is at dv from the front face of the wall. For a quick simplified check, try applying the peak bearing stress over the entire length of the toe (conservative).
$\mathrm{V}_{\mathrm{u}}=\sigma_{\mathrm{V}} \mathrm{w}_{\text {toe }} \quad=2.42 \quad \mathrm{x} \quad 2.00=4.84 \mathrm{k} / \mathrm{ft}$
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the bottom mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]
$\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} \times 12.00 \times 14.60 \quad=\quad 19.93 \mathrm{k}$

Design Footing Reinforcement

[5.13.3.4]
Each mat of reinforcement is checked to ensure that it has adequate capacity and that the maximum and minimum reinforcement checks are satisfied. The critical section for flexure in the footing is at the face of the wall.

Top Transverse Reinforcement

From the shear check of the heel, $\mathrm{V}_{\mathrm{u}}=14.97 \mathrm{k} / \mathrm{ft}$

$$
\mathrm{M}_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} \times\left(\mathrm{w}_{\text {heel }} / 2\right) \quad=14.97 \quad \times(6.00 / 2)=44.92 \mathrm{k} \text {-ft }
$$

Set up the equation to solve for the required steel area:

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 15.50$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.66 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#8 bars at $\quad 12.00$ in c/c for the top transverse bars in the heel \quad As $=0.79 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement
[5.7.3.3.2]

$$
\begin{aligned}
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right) \quad=\quad \phi A_{s} f_{y}\left(d_{s}-\frac{A_{s} f_{y}}{1.7 f_{c}^{\prime} b}\right) \\
& M_{u}=0.90 \quad x_{\mathrm{s}} \times 60\left(\mathrm{ds}-\begin{array}{ccccc}
& \text { As } & \mathrm{x} & 60 & \\
\hline 1.7 & \mathrm{x} & 4.0 & \mathrm{x} & 12
\end{array}\right) \times\left(\frac{1}{12}\right) \\
& 3.309 \quad A_{s}{ }^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{u}=\left(\gamma_{E V} w_{S S} h_{s S}+\gamma_{E V} w_{s b} h_{s b}+\gamma_{D C} w_{c} h_{\text {heel }}+\gamma_{L L} w_{S S} h_{L L}+\gamma_{w A} w_{w} h_{\text {water }}\right) \times w_{\text {heel }}
\end{aligned}
$$

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 7-8

PROJECT NO. \qquad

COMP. BY

 CHECKED BY \qquad LNB NB DATE DATE \qquadDetermine the cracking moment:

$\mathrm{f}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	=	0.24		. 0) ${ }^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	=	0.0833	x	12.00	x 1	18.00	$)^{3}=$	5832.0						
$y_{t}=(1 / 2) h$	$=$	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	1.60	x	0.67	x	0.48	x	5832.0	$1($	9.00	x	12.00	$)=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rlllllll}
\mathrm{M}_{\mathrm{CR}} & = & & 27.79 & =27.79 & \mathrm{k}-\mathrm{ft} & \text { GOVERNS } \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33 & \mathrm{x} & 44.92 & =59.89 & \mathrm{k}-\mathrm{ft}
\end{array}
$$

The capacity of the top mat of reinforcement is:

$$
\mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
$$

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-2.00-(1.000 / 2)=15.50$ in

$$
\mathrm{M}_{\mathrm{r}}=0.90 \times 0.79 \times 60 \times\left(15.50 \quad-\frac{0.79 \times 60}{1.7 \times \mathrm{x} 4.0 \mathrm{x} 12}\right) \times\left(\frac{1}{12}\right) \quad=\quad 53.04 \quad \mathrm{k}-\mathrm{ft}
$$ 53.04 k-ft > 27.79 k-ft OK

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.79 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft} \quad \mathrm{OK}$ Use \#8 bars at 12.00 in c / c for top transverse reinforcement in the footing.

Bottom Transverse Reinforcement

From the shear check of the toe, $\mathrm{V}_{\mathrm{u}}=\quad 4.84 \mathrm{k} / \mathrm{ft}$

$$
\mathrm{M}_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} \times\left(\mathrm{w}_{\text {toe }} / 2\right) \quad=4.84 \times(2.00 \quad / 2)=4.84 \mathrm{k}-\mathrm{ft}
$$

Set up the equation to solve for the required steel area and again use:

$$
3.309 \quad A_{s}^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
$$

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 14.75$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.07 \mathrm{in}^{2} / \mathrm{ft}$
Try: \#4 bars at $\quad 12.00$ in c/c for the bottom transverse bars in the toe \quad As $=0.20 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement [5.7.3.3.2]

Determine the cracking moment:

The capacity of the section must be greater than or equal to the smaller of:

The capacity of the bottom mat of reinforcement is:

$$
M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
$$

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)

SUBJECT	Reinforced Concrete Retaining Wall Design
Wall WS1, Panels $7-8$	

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	
		DNB	

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-3.00-(0.500 / 2)=14.75$ in

$$
\begin{aligned}
& 13.14 \text { k-ft > } 6.45 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8)

$$
\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft} \quad>0.17 \mathrm{in}^{2} / \mathrm{ft}
$$

Use \#4 bars at 12.00 in c/c for bottom transverse reinforcement in the footing.

Longitudinal Reinforcement [5.10.8]
Provide longitudinal reinforcement in the footing based on shrinkage and temperature requirements.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in } \\
& \text { Min. } A_{s}=\frac{1.30 w_{\text {foot }} h_{\max }}{2\left(w_{\text {foot }}+h_{\max }\right) f_{y}}=\frac{1.30 x 114.00 \times 18.00}{2 x(114.00+18.00) \times 60}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in }
$$

Use \#4 bars at 12.00 in c/c for top and bottom longitudinal reinforcement in the footing.

Determine Loads for Wall Stem Design

The loads on the stem at the top of the footing are determined to arrive at the design forces for the wall.
Saturated Earth Pressure:

$\mathrm{P}_{\mathrm{EH}(\mathrm{S})}=(1 / 2) \mathrm{w}_{\mathrm{ss}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\text {ss }}{ }^{2}$	0.5	x	0.130	x	0.280	x	7.82	$)^{2}=$	1.11	k	
$M_{E H(S)}=P_{E H(S)} \times\left[(1 / 3) h_{s s}+h_{s b}\right]$		=	1.11	x [0.333	x	7.82	+	0.00] =	2.90

Buoyant Earth Pressure:

$\mathrm{P}_{\text {EH(B) }}=$	$h_{\text {sb }}\left[w_{\text {ss }} \mathrm{h}_{\text {ss }}\right.$	/2)	$\mathrm{h}_{\text {sb }}$]													
$\mathrm{P}_{\mathrm{EH}(\mathrm{B})}=$	0.280	x	0.00	x [0.130	x	7.82	+	0.5 x		0.068	x	0.00] =	0.00	k
$y_{B}=\left[h_{s b}\left(w_{s s} h_{\text {ss }}+(1 / 3) w_{s b} h_{s b}\right)\right] /\left(2 w_{s s} h_{s s}+w_{s b} h_{s b}\right)$																
$y_{B}=$	[0.00	x 1	0.130	x	7.82	+	0.333	x	0.068	x		0.00)]	=	0.00	ft
	1 (2.0	x	0.130	x	7.82	+	0.068	x	0.00)						
$\mathrm{M}_{\mathrm{EH}(\mathrm{B})}=$	$\mathrm{EH}_{(B)} \times \mathrm{y}_{\mathrm{B}}$	$=$	0.00	x	0.00					=	$=$	0.00	k-ft			

Water Pressure:

Live Load Surcharge:
$P_{\mathrm{LS}}=\mathrm{w}_{\mathrm{sS}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{LL}} \mathrm{h}_{\mathrm{s}} \quad=0.130 \mathrm{x} 0.280 \mathrm{x} 3.70 \mathrm{x} \quad 7.82=1.05 \mathrm{k}$

CLIENT	ODOT
PROJECT	CUY-271-0.00 (PID 80418)
SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 7-8

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	CHECKED BY	DATE	$3 / 17 / 2014$

$M_{L S}=P_{L S} \times(1 / 2) h_{s} \quad=\quad 1.05 \quad x \quad 0.500 \quad x \quad 7.82=4.12 \quad k-f t$

Collision Load at Top of Parapet:
Use a Live Load of $\quad 1929 \mathrm{lbs} / \mathrm{ft}$ applied at $\mathrm{h}_{\mathrm{r}}=\quad 3.5 \mathrm{ft}$ above the top of the wall.
$\mathrm{P}_{\mathrm{CT}}=$

$\mathrm{M}_{\mathrm{CT}}=\mathrm{P}_{\mathrm{CT}} \mathrm{X}\left(\mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{r}}\right) \quad=1.93 \mathrm{x}(7.82+3.50)=$| 1.93 k |
| :--- |
| $21.83 \mathrm{k}-\mathrm{ft}$ |

Using the Strength I load combination, the factored design forces for the wall stem are:

$$
\begin{aligned}
& H_{u}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.75\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right) \\
& H_{u}=1.50 \times(1.11+0.00)+1.00 \times 0.00+1.75 \times(1.05+0.00)=3.51 \mathrm{k} \\
& M_{u}=1.50\left(M_{E H(S)}+M_{E H(B)}\right)+1.00 M_{W A}+1.75\left(M_{L S}+M_{L L}\right) \\
& \mathrm{M}_{\mathrm{u}}=1.50 \mathrm{x}(2.90+0.00)+1.00 \mathrm{x} 0.00+1.75 \times(4.12+0.00)=11.56 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

The Extreme Event II design forces for the wall stem are:

```
\(H_{\mathrm{ext}}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{CT}}+0.50\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(\mathrm{M}_{\mathrm{ext}}=1.50\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{CT}}+0.50\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
\(M_{\text {ext }}=1.50 \times(2.90+0.00)+1.00 \times 21.83+0.50 \times(4.12+28.24+\mathrm{ft}\)
```

The service design forces for the wall stem are:

```
\(H_{\text {serv }}=1.00\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.00\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(M_{\text {serv }}=1.00\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{WA}}+1.00\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
\(M_{\text {serv }}=1.00 \times(2.90+0.00)+1.00 \times 1.00 \times 1.00 \times(\mathrm{ft}\)
```


Wall Stem Design - Investigate Shear

Shear typically does not govern the design of retaining walls. If shear does become an issue, the thickness of the stem should be increased such that transverse reinforcement is not required.

Ignoring the benefits of the shear key and axial compression, the shear capacity of the stem can be shown to be greater than that required.

$$
V_{n}=V_{c}+V_{s}+V_{p}
$$

Recognizing that V_{s} and V_{p} are zero

$$
\begin{align*}
& V_{n}=V_{c} \\
& V_{c}=0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v} \tag{5.8.3.3-3}
\end{align*}
$$

The maximum effective shear depth is:

For	2.0 inch clear cover and		\#6 bars, $\mathrm{d}_{\mathrm{s}}=$		18.00		2.00		- (0.750	12)	$=$	15.63
$\mathrm{d}_{\mathrm{v}}=$	9 $\mathrm{d}_{\mathrm{e}}=0.9 \mathrm{~d}_{\mathrm{s}}=$	0.90	x	15.63	=	14.06	in		NS				
$\mathrm{d}_{\mathrm{v}}=$	$72 \mathrm{~h}=0.72 \mathrm{t}_{\mathrm{wb}}=$	0.72	x	18.00	=	12.96	in						

Follow the General Procedure using the provisions of Appendix B5, as per Section [5.8.3.4.2]:

$\beta=$	1.825634			=	0.00221			$\mathrm{s}_{\mathrm{xe}}=$				gregat	ze $=$	1 in		BDM S5.10.3.1.1)
$\phi \mathrm{V}_{\mathrm{c}}=$	0.90	x	0.0316	x	1.83		4.0	$)^{0.50}$	x	12.00	x	14.06	=	17.52	k	

CLIENT ODOT

PROJECT NO. \qquad
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 7-8 | \qquad DATE \qquad

$$
17.52 \mathrm{k} \quad>4.12 \mathrm{k} \quad \underline{\mathrm{OK}}
$$

Wall Stem Design - Investigate Strength Limit State

Determine the area of back-face flexural reinforcement necessary to satisfy the design moment:

$$
\mathrm{M}_{\mathrm{u}}=28.24 \quad \mathrm{k}-\mathrm{ft}
$$

Again use the equation:

$$
3.309 \quad \mathrm{~A}_{\mathrm{s}}{ }^{2} \quad-\quad 4.50 \quad \mathrm{~d}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\mathrm{M}_{\mathrm{u}}=0
$$

Substituting and solving for A_{s}, it is found that required $\mathrm{A}_{\mathrm{s}}=0.41 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#6 bars at 12.00 in c/c $\mathrm{A}_{\mathrm{s}}=0.44 \mathrm{in}^{2} / \mathrm{ft}>0.41 \quad \mathrm{in}^{2} / \mathrm{ft} \underline{\mathrm{OK}}$

Wall Stem Design - Investigate Service Limit State

[5.7.3.4]
Check the crack control equations to ensure that the primary flexural reinforcement is well distributed. The service load bending moment is:

$$
M_{\text {serv }}=\quad 7.02 \quad \mathrm{k}-\mathrm{ft}
$$

Check the modulus of rupture for concrete:

$$
\begin{aligned}
& \phi \mathrm{f}_{\mathrm{r}}=\phi 0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=0.80 \mathrm{x} 0.24 \mathrm{x}(4.0)^{0.50}=0.384 \mathrm{ksi} \\
& \mathrm{~S}=\frac{\mathrm{bt} \mathrm{wb}^{2}}{6}=\frac{12.00 \mathrm{x}(18.00)^{2}}{6}=648.00 \mathrm{in}^{3} \\
& \mathrm{f}_{\text {act }}=\frac{\mathrm{M}_{\text {serv }}}{\mathrm{S}}=\frac{7.02 \mathrm{x} 12}{648.00}=0.130 \mathrm{ksi}<0.384 \mathrm{ksi} \underline{\mathrm{OK}}
\end{aligned}
$$

If modulus of rupture check is " NG ", then check the spacing of the reinforcement. First, determine the modular ratio:

	$\mathrm{E}_{\mathrm{c}}=33,000 \mathrm{w}_{\mathrm{c}}^{1.5}\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=$		33,000		x (0.150		$)^{1.0}$	x (4.00	$)^{\text {u. }}$	$=$	3,834		ksi	
	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	29,000	1	3,834		$=$. 56	, use $\mathrm{n}=$		8.00					
For	2.0 inch cle	ver and		ars, $\mathrm{d}_{\text {s }}$				-	2.00		- (0.750	12)) =		15.63

Determine the location of the neutral axis:

```
\(0.5 \mathrm{bx}=\mathrm{nA} \mathrm{A}_{\mathrm{s}}\left(\mathrm{d}_{\mathrm{s}}-\mathrm{x}\right)\)
\(0.5(12) x^{2}=8 \quad x \quad 0.44 \quad x(15.63-x)\)
solving, \(x=2.75\) in
```

Check the spacing of the reinforcement to control cracking:

```
\(y=d_{s}-x=15.63-2.75 \quad=12.88\) in
\(I_{c r}=\frac{b x^{3}}{3}+n A_{s}\left(d_{s}-x\right)^{2}\)
\(\mathrm{I}_{\mathrm{cr}}=\frac{12.00 \times(2.75)^{3}}{3}+8 \mathrm{x} 0.44 \times(15.63-2.75)^{2}=666.68 \mathrm{in}^{4}\)
\(\gamma_{\mathrm{e}}=\quad 1.00\)
For 2.0 inch clear cover and \#6 bars, \(d_{c}=2.00+(0.750 / 2)=2.38\) in
\(\beta_{\mathrm{s}}=1.0+\frac{\mathrm{d}_{\mathrm{c}}}{0.7\left(\mathrm{t}_{\mathrm{wb}}-\mathrm{d}_{\mathrm{c}}\right)}=1.0+\frac{2.38}{0.7 \times(18.00-2.38)}=1.22\)
```


CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 7-8 |

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

$$
\begin{aligned}
& \mathbf{s}_{\max }=\frac{700 \gamma_{\mathrm{e}}}{\beta_{\mathrm{s}} \mathrm{f}_{\mathrm{ss}}}-2.0 \mathrm{~d}_{\mathrm{c}}=\frac{700}{1.22 \mathrm{x}} \mathbf{x} 13.01 \\
& \mathbf{s}_{\max }=39.44 \text { in }>3.00 \mathrm{x} \quad 12.00 \text { in } \underline{\mathrm{OK}}
\end{aligned}
$$

Wall Stem Design - Check Reinforcement Limits

Check Minimum Reinforcement
[5.7.3.3.2]
Determine the cracking moment:

$\mathrm{fr}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	$=$	0.24		$4.0)^{0.50}$	$=$	0.48	ksi							
$I_{g}=(1 / 12) b h^{3}$	$=$	0.0833	x	12.00	$x 1$	18.00	$)^{3}=$	5832.0	$i n^{4}$					
$y_{t}=(1 / 2) h$	=	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	0.67	x	1.6	x	0.48	x	5832.0	11	9.00	x	12.00) $=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

M_{CR}	$=$		27.79	$=27.79$	$\mathrm{k}-\mathrm{ft}$	GOVERNS
$(4 / 3) \mathrm{M}_{\mathrm{u}}$	$=1.33$	$\times 28.24$	$=37.66$	$\mathrm{k}-\mathrm{ft}$		

The capacity of the reinforcement is:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& 30.30 \text { k-ft > } 27.79 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.44 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.16 \quad \mathrm{in}^{2} / \mathrm{ft}$
OK
Use \#6 bars at 12.00 in c/c for wall stem back face vertical reinforcing.

Wall Stem Design - Shrinkage and Temperature Reinforcement

A minimum amount of reinforcement should be placed near each face of concrete elements to limit the size of cracks associated with concrete shrinkage and temperature changes.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right)=18.00 \text { in } \\
& \mathrm{h}_{\mathrm{w}}=7.82 \mathrm{ft}=93.84 \text { in } \\
& \operatorname{Min} . \mathrm{A}_{\mathrm{s}}=\frac{1.30 \mathrm{~h}_{\mathrm{w}} \mathrm{~h}_{\max }}{2\left(\mathrm{~h}_{\mathrm{w}}+\mathrm{h}_{\max }\right) \mathrm{f}_{\mathrm{y}}}=\frac{1.30 \mathrm{x} 93.84 \mathrm{x} 18.00}{2 \mathrm{x}(93.84+18.00 \mathrm{C}) \times 60}=0.16 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right) \quad=18.00 \quad \text { in }
$$

[^2]CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 9-10

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

Dimensions and Weights for Concrete Design

Footing width, $\mathrm{w}_{\text {foot }}=$	9.50	ft	=	114.00
Footing heel width, $\mathrm{w}_{\text {heel }}=$	6.00	ft		
Footing heel height, $\mathrm{h}_{\text {heel }}=$	1.50	ft	=	18.00
Footing toe width, $\mathrm{w}_{\text {toe }}=$	2.00	ft		
Footing toe height, $\mathrm{h}_{\text {toe }}=$	1.50	ft	=	18.00
Wall width at top, $\mathrm{t}_{\mathrm{wt}}=$	1.50	ft	=	18.00
Wall width at base, $\mathrm{t}_{\mathrm{wb}}=$	1.50	ft	=	18.00
Concrete strength, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=$	4.00	ksi		
Rebar strength, $\mathrm{f}_{\mathrm{y}}=$	60.00	ksi		
Steel mod. of elast., $\mathrm{E}_{\mathrm{s}}=$	29,000	ksi		

Concrete weight, $\mathrm{w}_{\mathrm{c}}=$	0.150	kcf	
Water weight, $\mathrm{w}_{\mathrm{w}}=$	0.062	kcf	
Saturated soil weight, $\mathrm{w}_{\mathrm{ss}}=$	0.130	kcf	
Buoyant soil weight, $\mathrm{w}_{\mathrm{sb}}=$	0.068	kcf	
Height of wall, $\mathrm{h}_{\mathrm{w}}=$	8.85	ft	top of heel to top of wall
Height of water, $\mathrm{h}_{\text {water }}=$	0.00	ft	top of heel to water line
Height of soil, $\mathrm{h}_{\mathrm{s}}=$	8.85	ft	top of heel to ground line
Height of satur. soil, $\mathrm{h}_{\text {ss }}=$	8.85	ft	height of satur. soil above top of heel
Height of buoy. soil, $\mathrm{h}_{\text {sb }}=$	0.00	ft	height of buoy. soil above top of heel
Active pressure coeff., $\mathrm{K}_{\mathrm{a}}=$	0.280		
LL surcharge soil ht., $\mathrm{h}_{\mathrm{LL}}=$	3.45	ft	

Optional Collision Loading for Barrier on Top of Wall
Per ODOT comments for I-70/71, use the transverse loading of 54 kips for a TL-4 test level railing [AASHTO, Table A13.2-1] distributed over the retaining wall's joint spacing.

Collision Loading $=$	y	$(\mathrm{y}$ or n$)$
Joint Spacing $=$	28.00	ft
Barrier Height $=$	3.50	ft

Design Summary

Design Item	Footing		Wall Stem
	Heel	Toe	
Shear	OK	OK	OK
Minimum Reinforcement	OK	OK	OK
Shrinkage \& Temperature	OK	OK	OK
Crack Control	N/A	N/A	OK

Reinforcing Steel Summary		
Footing:	Top transverse:	\#8 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Bottom transverse:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Longitudinal:	\#4 bars at 12.00 in c/c
Wall Stem:	Back face vertical:	\#7 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Front face vertical:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$
	Horizontal:	\#4 bars at $12.00 \mathrm{in} \mathrm{c/c}$

Design Footing for Shear

[5.13.3.6]
Design footings to have adequate shear capacity without transverse reinforcement.
Determine d_{v}
Assume: \#8 bars at

$$
\begin{array}{ll}
12.00 & \text { in c/c for the top transverse bars in the heel } \\
12.00 & \text { in c/c for the bottom transverse bars in the toe }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2} / \mathrm{ft} \\
& \mathrm{~A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

2.0 in cover
3.0 in cover

For the heel:

For the toe:

[5.8.2.9]	$d_{\text {vtoe }}=d_{\text {stoe }}-\mathrm{a} / 2$	$=$	14.75	$-(0.29$	$/ 2)$	$=$	14.60	in
	or $d_{\text {vtoe }}=0.90 d_{\text {e }}$	$=$	0.90	x	14.75		13.28	in

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 9-10

PROJECT NO.

\qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

or $\mathrm{d}_{\text {vtoe }}=0.72 \mathrm{~h}=0.72 \mathrm{x} 18.00 \quad=12.96 \mathrm{in}$

Check Heel for Shear

The critical shear section for the heel of the footing is located at the back face of the wall. The heel of the footing is assumed to carry its self weight and the rectangular soil block above it. This neglects the benefit of any upward soil pressure below the footing (conservative).
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the top mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

$$
\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} x \quad x \quad 12.00 \quad x \quad 14.92=20.37 \mathrm{k}
$$

$$
20.37 \text { k }>15.72 \text { k OK }
$$

Check Toe for Shear

The peak bearing stress is 2.62 ksf for the Extreme llb load case.
The critical section for the toe of the footing is at dv from the front face of the wall. For a quick simplified check, try applying the peak bearing stress over the entire length of the toe (conservative).
$\mathrm{V}_{\mathrm{u}}=\sigma_{\mathrm{V}} \mathrm{w}_{\text {toe }} \quad=2.62 \mathrm{x} \quad 2.00=5.24 \mathrm{k} / \mathrm{ft}$
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the bottom mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

Design Footing Reinforcement

[5.13.3.4]
Each mat of reinforcement is checked to ensure that it has adequate capacity and that the maximum and minimum reinforcement checks are satisfied. The critical section for flexure in the footing is at the face of the wall.

Top Transverse Reinforcement

From the shear check of the heel, $\mathrm{V}_{\mathrm{u}}=15.72 \mathrm{k} / \mathrm{ft}$

$$
\mathrm{M}_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} \times\left(\mathrm{w}_{\text {heel }} / 2\right) \quad=15.72 \times(6.00 / 2)=47.15 \mathrm{k} \text {-ft }
$$

Set up the equation to solve for the required steel area:

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 15.50$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.70 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#8 bars at $\quad 12.00$ in c/c for the top transverse bars in the heel \quad As $=0.79 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement
[5.7.3.3.2]

$$
\begin{aligned}
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right) \quad=\quad \phi A_{s} f_{y}\left(d_{s}-\frac{A_{s} f_{y}}{1.7 f_{c}{ }^{\prime} b}\right) \\
& M_{u}=0.90 \quad x_{\mathrm{s}} \times 60\left(\mathrm{ds}-\begin{array}{ccccc}
& \text { As } & \mathrm{x} & 60 & \\
\hline 1.7 & \mathrm{x} & 4.0 & \mathrm{x} & 12
\end{array}\right) \times\left(\frac{1}{12}\right) \\
& 3.309 \quad A_{s}{ }^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{u}=\left(\gamma_{E V} w_{S S} h_{s S}+\gamma_{E V} w_{s b} h_{s b}+\gamma_{D C} w_{c} h_{\text {heel }}+\gamma_{L L} w_{S S} h_{L L}+\gamma_{w A} w_{w} h_{\text {water }}\right) \times w_{\text {heel }}
\end{aligned}
$$

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design
SUBJECT Reinforced Concrete Retaining Wall Design
Wall WS1, Panels 9-10
PROJECT NO. \qquad

COMP. BY

 CHECKED BY \qquad DATE \qquadDetermine the cracking moment:

$\mathrm{f}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	=	0.24		. 0) ${ }^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	=	0.0833	x	12.00	x 1	18.00	$)^{3}=$	5832.0						
$y_{t}=(1 / 2) h$	$=$	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	1.60	x	0.67	x	0.48	x	5832.0	$1($	9.00	x	12.00	$)=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rlrlrll}
\mathrm{M}_{\mathrm{CR}} & = & & 27.79 & = & 27.79 & \mathrm{k}-\mathrm{ft} \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33 & \mathrm{G} & \text { GOVERNS } \\
47.15 & =62.86 & \mathrm{k}-\mathrm{ft}
\end{array}
$$

The capacity of the top mat of reinforcement is:

$$
\mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
$$

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-2.00-(1.000 / 2)=15.50$ in

$$
\mathrm{M}_{\mathrm{r}}=0.90 \times 0.79 \times 60 \times\left(15.50 \quad-\frac{0.79 \times 60}{1.7 \times \mathrm{x} 4.0 \mathrm{x} 12}\right) \times\left(\frac{1}{12}\right) \quad=\quad 53.04 \quad \mathrm{k}-\mathrm{ft}
$$ 53.04 k-ft > 27.79 k-ft OK

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.79 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft} \quad \mathrm{OK}$ Use \#8 bars at 12.00 in c/c for top transverse reinforcement in the footing.

Bottom Transverse Reinforcement

From the shear check of the toe, $\mathrm{V}_{\mathrm{u}}=\quad 5.24 \mathrm{k} / \mathrm{ft}$

$$
M_{u}=V_{u} \times\left(w_{\text {toe }} / 2\right) \quad=5.24 \times(2.00 \quad / 2)=5.24 \quad \mathrm{k}-\mathrm{ft}
$$

Set up the equation to solve for the required steel area and again use:

$$
3.309 \quad A_{s}^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
$$

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 14.75$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.08 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#4 bars at $\quad 12.00$ in c/c for the bottom transverse bars in the toe \quad As $=0.20 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement [5.7.3.3.2]

Determine the cracking moment:

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rlllllll}
\mathrm{M}_{\mathrm{CR}} & = & & 27.79 & =27.79 & \mathrm{k}-\mathrm{ft} \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33 & \mathrm{x} & 5.24 & =6.99 & \mathrm{k}-\mathrm{ft} & \\
\text { GOVERNS }
\end{array}
$$

The capacity of the bottom mat of reinforcement is:

$$
M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
$$

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 9-10 |

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	
CHECKED BY			

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-3.00-(0.500 / 2)=14.75$ in

$$
\begin{aligned}
\mathrm{M}_{\mathrm{r}}=0.90 & \times 0.20 \mathrm{x} \quad 60 \times\left(14.75 \quad-\frac{0.20 \times \mathrm{x} 60}{1.7 \mathrm{x} 4.0 \mathrm{x} 12}\right) \times\left(\frac{1}{12}\right) \quad=\quad 13.14 \mathrm{k}-\mathrm{ft} \\
& 13.14 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8)

$$
\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft} \quad>0.17 \mathrm{in}^{2} / \mathrm{ft}
$$

Use \#4 bars at 12.00 in c/c for bottom transverse reinforcement in the footing.

Longitudinal Reinforcement [5.10.8]
Provide longitudinal reinforcement in the footing based on shrinkage and temperature requirements.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in } \\
& \text { Min. } A_{s}=\frac{1.30 w_{\text {foot }} h_{\max }}{2\left(w_{\text {foot }}+h_{\max }\right) f_{y}}=\frac{1.30 x 114.00 \times 18.00}{2 x(114.00+18.00) \times 60}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in }
$$

Use \#4 bars at 12.00 in c/c for top and bottom longitudinal reinforcement in the footing.

Determine Loads for Wall Stem Design

The loads on the stem at the top of the footing are determined to arrive at the design forces for the wall.
Saturated Earth Pressure:

$P_{E H(S)}=(1 / 2) \mathrm{w}_{\mathrm{ss}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{ss}}{ }^{2}$	0.5	x	0.130	x	0.280	x 1	8.85	$)^{2}=$	1.43	k	
$M_{E H(S)}=P_{E H(S)} \times\left[(1 / 3) h_{s s}+h_{s b}\right]$		=	1.43	x [0.333	x	8.85	+	0.00] =	4.21

Buoyant Earth Pressure:

$\mathrm{P}_{\text {EH(B) }}=$	$\mathrm{h}_{\text {sb }}\left[\mathrm{w}_{\text {ss }} \mathrm{h}_{\text {ss }}\right.$	/2)	$\mathrm{h}_{\text {sb }}$]													
$\mathrm{P}_{\mathrm{EH}(\mathrm{B})}=$	0.280	x	0.00	x [0.130	x	8.85	+	0.5 x		0.068	x	0.00] =	0.00	k
$y_{B}=\left[h_{s b}\left(w_{s s} h_{s s}+(1 / 3) w_{s b} h_{s b}\right)\right] /\left(2 w_{s s} h_{s s}+w_{s b} h_{s b}\right)$																
$y_{B}=$	[0.00	x 1	0.130	x	8.85	+	0.333	x	0.068	x		0.00)]	=	0.00	ft
	1 (2.0	x	0.130	x	8.85	+	0.068	x	0.00)						
$\mathrm{M}_{\mathrm{EH}(\mathrm{B})}=$	$\mathrm{EH}_{(B)} \times \mathrm{y}_{\mathrm{B}}$	$=$	0.00	x	0.00					=	$=$	0.00	k-ft			

Water Pressure:

Live Load Surcharge:
$P_{\mathrm{LS}}=\mathrm{w}_{\mathrm{sS}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{LL}} \mathrm{h}_{\mathrm{s}} \quad=0.130 \mathrm{x} 0.280 \mathrm{x} 3.45 \mathrm{x} \quad 8.85=1.11 \mathrm{k}$

CLIENT	ODOT
PROJECT	CUY-271-0.00 (PID 80418)
SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels $9-10$

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

$M_{L S}=P_{L S} \times(1 / 2) h_{s} \quad=\quad 1.11 \quad x \quad 0.500 \quad x \quad 8.85 \quad 4.92 \quad k-f t$

Collision Load at Top of Parapet:
Use a Live Load of $\quad 1929 \mathrm{lbs} / \mathrm{ft}$ applied at $\mathrm{h}_{\mathrm{r}}=\quad 3.5 \mathrm{ft}$ above the top of the wall.
$\mathrm{P}_{\mathrm{CT}}=$

$\mathrm{M}_{\mathrm{CT}}=\mathrm{P}_{\mathrm{CT}} \mathrm{X}\left(\mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{r}}\right) \quad=1.93 \mathrm{x}(8.85+3.50)=$| 1.93 k |
| :--- |
| $23.82 \mathrm{k}-\mathrm{ft}$ |

Using the Strength I load combination, the factored design forces for the wall stem are:

$$
\begin{aligned}
& H_{u}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.75\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right) \\
& H_{u}=1.50 \mathrm{x}(1.43+0.00)+1.00 \mathrm{x} 0.00+1.75 \mathrm{x}(1.11+0.00)=4.08 \mathrm{k} \\
& M_{u}=1.50\left(M_{E H(S)}+M_{E H(B)}\right)+1.00 M_{W A}+1.75\left(M_{L S}+M_{L L}\right) \\
& \mathrm{M}_{\mathrm{u}}=1.50 \mathrm{x}(4.21+0.00)+1.00 \mathrm{x} 0.00+1.75 \times(4.92+0.00 \quad)=14.91 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

The Extreme Event II design forces for the wall stem are:

```
\(H_{\mathrm{ext}}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{CT}}+0.50\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(\mathrm{M}_{\mathrm{ext}}=1.50\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{CT}}+0.50\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
```


The service design forces for the wall stem are:

```
\(H_{\text {serv }}=1.00\left(\mathrm{P}_{\mathrm{EH}(\mathrm{S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.00\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right)\)
```



```
\(M_{\text {serv }}=1.00\left(\mathrm{M}_{\mathrm{EH}(\mathrm{S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{B})}\right)+1.00 \mathrm{M}_{\mathrm{WA}}+1.00\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right)\)
```


Wall Stem Design - Investigate Shear

Shear typically does not govern the design of retaining walls. If shear does become an issue, the thickness of the stem should be increased such that transverse reinforcement is not required.

Ignoring the benefits of the shear key and axial compression, the shear capacity of the stem can be shown to be greater than that required.

$$
\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{p}}
$$

Recognizing that V_{s} and V_{p} are zero

$$
\begin{align*}
& V_{n}=V_{c} \\
& V_{c}=0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v} \tag{5.8.3.3-3}
\end{align*}
$$

The maximum effective shear depth is:

Follow the General Procedure using the provisions of Appendix B5, as per Section [5.8.3.4.2]:

$\beta=$	2.020466			=	0.00187			$\mathrm{s}_{\mathrm{xe}}=$				grega	ze $=$	1 in		BDM S5.10.3.1.1)
$\phi \mathrm{V}_{\mathrm{c}}=$	0.90	x	0.0316	x	2.02		4.0	$)^{0.50}$	x	12.00	x	14.01	=	19.32	k	

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 9-10

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	CHECKED BY	DATE	$3 / 17 / 2014$

$$
19.32 \text { k } \quad>4.62 \text { k OK }
$$

Wall Stem Design - Investigate Strength Limit State

Determine the area of back-face flexural reinforcement necessary to satisfy the design moment:

$$
\mathrm{M}_{\mathrm{u}}=32.58 \quad \mathrm{k}-\mathrm{ft}
$$

Again use the equation:

$$
3.309 \quad \mathrm{~A}_{\mathrm{s}}{ }^{2} \quad-\quad 4.50 \quad \mathrm{~d}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\mathrm{M}_{\mathrm{u}}=0
$$

Substituting and solving for A_{s}, it is found that required $\mathrm{A}_{\mathrm{s}}=0.48 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#7 bars at 12.00 in c/c $\mathrm{A}_{\mathrm{s}}=0.60 \mathrm{in}^{2} / \mathrm{ft}>0.48 \quad \mathrm{in}^{2} / \mathrm{ft} \underline{\mathrm{OK}}$

Wall Stem Design - Investigate Service Limit State

[5.7.3.4]
Check the crack control equations to ensure that the primary flexural reinforcement is well distributed. The service load bending moment is:

$$
M_{\text {serv }}=\quad 9.12 \quad \mathrm{k}-\mathrm{ft}
$$

Check the modulus of rupture for concrete:

$$
\begin{aligned}
& \phi \mathrm{f}_{\mathrm{r}}=\phi 0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=0.80 \mathrm{x} 0.24 \mathrm{x}(4.0)^{0.50}=0.384 \mathrm{ksi} \\
& \mathrm{~S}=\frac{\mathrm{bt} \mathrm{wb}^{2}}{6}=\frac{12.00 \mathrm{x}(18.00)^{2}}{6}=648.00 \mathrm{in}^{3} \\
& \mathrm{f}_{\text {act }}=\frac{\mathrm{M}_{\text {serv }}}{\mathrm{S}}=\frac{9.12 \mathrm{x} 12}{648.00}=0.169 \mathrm{ksi}<0.384 \mathrm{ksi} \underline{\mathrm{OK}}
\end{aligned}
$$

If modulus of rupture check is " NG ", then check the spacing of the reinforcement. First, determine the modular ratio:

	$\mathrm{E}_{\mathrm{c}}=33,000 \mathrm{w}_{\mathrm{c}}^{1.5}\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=$		33,000		x ($)^{1.5}$	x (4.00		$)^{0.5}=$		3,834	ksi
	$\mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}=$	29,000	1	3,834		=		7.56	, use $\mathrm{n}=$		8.00				
For	2.0 inch co	ver and		ars, $\mathrm{d}_{\text {s }}$				-	2.00		- (0.875	(2))	15.56

Determine the location of the neutral axis:

$$
\begin{aligned}
& 0.5 b x^{2}=n A_{s}\left(d_{s}-x\right) \\
& 0.5(12) x^{2}=\quad 8 \quad x \quad 0.60 \quad x(15.56 \quad-x) \\
& \text { solving, } x=\quad 3.15 \text { in }
\end{aligned}
$$

Check the spacing of the reinforcement to control cracking:

```
\(y=d_{s}-x=15.56-3.15=12.41\) in
\(\mathrm{I}_{\mathrm{cr}}=\frac{\mathrm{b} \mathrm{x}^{3}}{3}+\mathrm{nA} \mathrm{A}_{\mathrm{s}}\left(\mathrm{d}_{\mathrm{s}}-\mathrm{x}\right)^{2}\)
\(\mathrm{I}_{\mathrm{cr}}=\frac{12.00 \times(3.15)^{3}}{3}+8 \mathrm{x} 0.60 \times(15.56 \quad-\quad 3.15)^{2}=864.56 \mathrm{in}^{4}\)
\(\gamma_{\mathrm{e}}=1.00\)
For 2.0 inch clear cover and \(\# 7\) bars, \(d_{c}=2.00+(0.875 / 2)=2.44\) in
\(\beta_{\mathrm{s}}=1.0+\frac{\mathrm{d}_{\mathrm{c}}}{0.7\left(\mathrm{t}_{\mathrm{wb}}-\mathrm{d}_{\mathrm{c}}\right)}=1.0+\frac{2.44}{0.7 \times(18.00-2.44)}=1.22\)
```


CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 9-10 |

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

$$
\begin{aligned}
& \mathrm{s}_{\max }=\frac{700 \gamma_{\mathrm{e}}}{\beta_{\mathrm{s}} \mathrm{f}_{\mathrm{ss}}}-2.0 \mathrm{~d}_{\mathrm{c}}=\frac{700 \mathrm{x} 1.00}{1.22 \mathrm{x} \frac{12.57}{}-2.0 \times 2.44 \quad=\quad 40.62 \text { in } \mathrm{x}} \\
& \mathrm{~s}_{\max }=40.62 \text { in }>12.00 \text { in } \underline{\mathrm{OK}}
\end{aligned}
$$

Wall Stem Design - Check Reinforcement Limits

Check Minimum Reinforcement
[5.7.3.3.2]
Determine the cracking moment:

$\mathrm{f}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}} \mathrm{C}^{0}\right)^{0.5}$	$=$	0.24		$4.0)^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	$=$	0.0833	x	12.00	$x 1$	18.00	$)^{3}=$	5832.0	in ${ }^{4}$					
$y_{t}=(1 / 2) h$	=	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\nu_{1} \gamma_{3} f_{r} I_{g} / y_{t}$	=	0.67	x	1.6	x	0.48	x	5832.0	$1($	9.00	x	12.00) $=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

M_{CR}	$=$		27.79	$=27.79$	$\mathrm{k}-\mathrm{ft}$	GOVERNS
$(4 / 3) \mathrm{M}_{\mathrm{u}}$	$=1.33$	$\times 32.58$	$=$	43.45	$\mathrm{k}-\mathrm{ft}$	

The capacity of the reinforcement is:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& 40.83 \text { k-ft > } 27.79 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.60 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft}$
OK
Use \#7 bars at 12.00 in c/c for wall stem back face vertical reinforcing.

Wall Stem Design - Shrinkage and Temperature Reinforcement

A minimum amount of reinforcement should be placed near each face of concrete elements to limit the size of cracks associated with concrete shrinkage and temperature changes.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right)=18.00 \text { in } \\
& \mathrm{h}_{\mathrm{w}}=8.85 \mathrm{ft}=106.20 \text { in } \\
& \operatorname{Min} . \mathrm{A}_{\mathrm{s}} \quad=\frac{1.30 \mathrm{~h}_{\mathrm{w}} \mathrm{~h}_{\max }}{2\left(\mathrm{~h}_{\mathrm{w}}+\mathrm{h}_{\max }\right) \mathrm{f}_{\mathrm{y}}}=\frac{1.30 \mathrm{x} 106.20 \times \mathrm{x} 18.00}{2 \times \mathrm{x}(106.20+18.00) \times 60}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right) \quad=18.00 \quad \text { in }
$$

[^3]CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 11-13 |

PROJECT NO.	$1122-1001-00$		
	DATE		
COMP. BY	ASP	$3 / 17 / 2014$	
	DATE	$3 / 17 / 2014$	

Dimensions and Weights for Concrete Design

Footing width, $\mathrm{w}_{\text {foot }}=$	9.50	ft	=	114.00
Footing heel width, $\mathrm{w}_{\text {heel }}=$	6.00	ft		
Footing heel height, $\mathrm{h}_{\text {heel }}=$	1.50	ft	=	18.00
Footing toe width, $\mathrm{w}_{\text {toe }}=$	2.00	ft		
Footing toe height, $\mathrm{h}_{\text {toe }}=$	1.50	ft	=	18.00
Wall width at top, $\mathrm{t}_{\mathrm{wt}}=$	1.50	ft	=	18.00
Wall width at base, $\mathrm{t}_{\mathrm{wb}}=$	1.50	ft	=	18.00
Concrete strength, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=$	4.00	ksi		
Rebar strength, $\mathrm{f}_{\mathrm{y}}=$	60.00	ksi		
Steel mod. of elast., $\mathrm{E}_{\mathrm{s}}=$	29,000	ksi		

Concrete weight, $\mathrm{w}_{\mathrm{c}}=$	0.150	kcf	
Water weight, $\mathrm{w}_{\mathrm{w}}=$	0.062	kcf	
Saturated soil weight, $\mathrm{w}_{\text {ss }}=$	0.130	kcf	
Buoyant soil weight, $\mathrm{w}_{\mathrm{sb}}=$	0.068	kcf	
Height of wall, $\mathrm{h}_{\mathrm{w}}=$	10.89	ft	top of heel to top of wall
Height of water, $\mathrm{h}_{\text {water }}=$	0.00	ft	top of heel to water line
Height of soil, $\mathrm{h}_{\mathrm{s}}=$	10.89	ft	top of heel to ground line
Height of satur. soil, $\mathrm{h}_{\text {ss }}=$	10.89	ft	height of satur. soil above top of heel
Height of buoy. soil, $\mathrm{h}_{\text {sb }}=$	0.00	ft	height of buoy. soil above top of heel
Active pressure coeff., $\mathrm{K}_{\mathrm{a}}=$	0.280		
LL surcharge soil ht., $\mathrm{h}_{\mathrm{LL}}=$	3.14	ft	

Optional Collision Loading for Barrier on Top of Wall
Per ODOT comments for l-70/71, use the transverse loading of 54 kips for a TL-4 test level railing [AASHTO, Table A13.2-1] distributed over the retaining wall's joint spacing.

Collision Loading $=$	y	$(\mathrm{y}$ or n$)$
Joint Spacing $=$	28.00	ft
Barrier Height $=$	3.50	ft

Design Summary

Summary of Design Status

Design Item			
Footing		Wall	
	Heel	Toe	Stem
Shear	OK	OK	OK
Minimum Reinforcement	OK	OK	OK
Shrinkage \& Temperature	OK	OK	OK
Crack Control	N/A	N/A	OK

Reinforcing Steel Summary		
Footing:	Top transverse: Bottom transverse: Longitudinal:	\#8 bars at $12.00 \mathrm{in} \mathrm{c/c}$ \#4 bars at 12.00 in c/c \#4 bars at 12.00 in c/c
Wall Stem:	Back face vertical: Front face vertical: Horizontal:	\#8 bars at $12.00 \mathrm{in} \mathrm{c/c}$ \#4 bars at 12.00 in c/c \#4 bars at 12.00 in c/c

Design Footing for Shear

[5.13.3.6]
Design footings to have adequate shear capacity without transverse reinforcement.
Determine d_{v}
Assume: \#8 bars at

12.00	in c/c for the top transverse bars in the heel
12.00	in c/c for the bottom transverse bars in the toe

$$
\mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2} / \mathrm{ft}
$$

2.0 in cover \#4 bars at

$$
12.00 \text { in c/c for the bottom transverse bars in the toe }
$$

For the heel:

For the toe:

[5.8.2.9]	$\mathrm{d}_{\text {vtoe }}=\mathrm{d}_{\text {stoe }}-\mathrm{a} / 2$	=	14.75	- (0.29	12)	=	14.60	in	GOVERNS
	or $\mathrm{d}_{\text {vtoe }}=0.90 \mathrm{~d}_{\mathrm{e}}$	=	0.90	x	14.75		=	13.28	in	

CLIENT ODOT

PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 11-13

PROJECT NO.

\qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DNB	DATE	$3 / 17 / 2014$

or $\mathrm{d}_{\text {vtoe }}=0.72 \mathrm{~h}=0.72 \mathrm{x} 18.00 \quad=12.96 \mathrm{in}$

Check Heel for Shear

The critical shear section for the heel of the footing is located at the back face of the wall. The heel of the footing is assumed to carry its self weight and the rectangular soil block above it. This neglects the benefit of any upward soil pressure below the footing (conservative).
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the top mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

$$
\phi V_{c}=0.90 \times 0.0316 \times 2.00 \times(4.0)^{0.50} x \quad x \quad 12.00 \quad x \quad 14.92=20.37 \mathrm{k}
$$

$$
20.37 \text { k }>17.44 \text { k OK }
$$

Check Toe for Shear

The peak bearing stress is 3.13 ksf for the Extreme llb load case.
The critical section for the toe of the footing is at dv from the front face of the wall. For a quick simplified check, try applying the peak bearing stress over the entire length of the toe (conservative).
$\mathrm{V}_{\mathrm{u}}=\sigma_{\mathrm{V}} \mathrm{w}_{\text {toe }} \quad=3.13 \quad \mathrm{x} \quad 2.00=6.26 \mathrm{k} / \mathrm{ft}$
[5.8.3.3] Using $\beta=2.00$ and assuming bars in the bottom mat as above:
[5.8.3.4]

$$
\phi V_{c}=\phi 0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v}
$$

[5.8.2.9]

Design Footing Reinforcement

[5.13.3.4]
Each mat of reinforcement is checked to ensure that it has adequate capacity and that the maximum and minimum reinforcement checks are satisfied. The critical section for flexure in the footing is at the face of the wall.

Top Transverse Reinforcement

From the shear check of the heel, $\mathrm{V}_{\mathrm{u}}=17.44 \mathrm{k} / \mathrm{ft}$

$$
\mathrm{M}_{\mathrm{u}}=\mathrm{V}_{\mathrm{u}} \times\left(\mathrm{w}_{\text {heel }} / 2\right) \quad=17.44 \times(6.00 / 2)=52.32 \mathrm{k}-\mathrm{ft}
$$

Set up the equation to solve for the required steel area:

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 15.50$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.78 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#8 bars at $\quad 12.00$ in c/c for the top transverse bars in the heel \quad As $=0.79 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement
[5.7.3.3.2]

$$
\begin{aligned}
& M_{u}=\phi M_{n}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right) \quad=\quad \phi A_{s} f_{y}\left(d_{s}-\frac{A_{s} f_{y}}{1.7 f_{c}^{\prime} b}\right) \\
& M_{u}=0.90 \quad x_{\mathrm{s}} \times 60\left(\mathrm{ds}-\begin{array}{ccccc}
& \text { As } & \mathrm{x} & 60 & \\
\hline 1.7 & \mathrm{x} & 4.0 & \mathrm{x} & 12
\end{array}\right) \times\left(\frac{1}{12}\right) \\
& 3.309 \quad A_{s}{ }^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{u}=\left(\gamma_{E V} w_{S S} h_{s S}+\gamma_{E V} w_{s b} h_{s b}+\gamma_{D C} w_{c} h_{\text {heel }}+\gamma_{L L} w_{S S} h_{L L}+\gamma_{w A} w_{w} h_{\text {water }}\right) \times w_{\text {heel }}
\end{aligned}
$$

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 11-13

PROJECT NO. \qquad

COMP. BY

CHECKED BY \qquad DATE \qquad

Determine the cracking moment:

$\mathrm{f}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	=	0.24		. 0) ${ }^{0.50}$	=	0.48	ksi							
$\mathrm{I}_{\mathrm{g}}=(1 / 12) \mathrm{b} \mathrm{h}^{3}$	=	0.0833	x	12.00	x 1	18.00	$)^{3}=$	5832.0						
$y_{t}=(1 / 2) h$	$=$	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	1.60	x	0.67	x	0.48	x	5832.0	$1($	9.00	x	12.00	$)=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rlrllll}
\mathrm{M}_{\mathrm{CR}} & = & & 27.79 & =27.79 & \mathrm{k}-\mathrm{ft} & \text { GOVERNS } \\
(4 / 3) \mathrm{M}_{\mathrm{u}} & =1.33 \mathrm{x} \quad 52.32 & =69.76 & \mathrm{k}-\mathrm{ft}
\end{array}
$$

The capacity of the top mat of reinforcement is:

$$
\mathrm{M}_{\mathrm{r}}=\phi \mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{~d}_{\mathrm{s}}-\mathrm{a} / 2\right)
$$

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-2.00-(1.000 / 2)=15.50$ in

$$
\mathrm{M}_{\mathrm{r}}=0.90 \times 0.79 \times 60 \times\left(15.50 \quad-\frac{0.79 \times \mathrm{x} 60}{1.7 \times \mathrm{x} 4.0 \times \mathrm{x}} \mathbf{1 2}\right) \times\left(\frac{1}{12}\right) \quad=\quad 53.04 \mathrm{k}-\mathrm{ft}
$$ 53.04 k-ft > 27.79 k-ft OK

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.79 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft} \quad \mathrm{OK}$ Use \#8 bars at 12.00 in c / c for top transverse reinforcement in the footing.

Bottom Transverse Reinforcement

From the shear check of the toe, $\mathrm{V}_{\mathrm{u}}=\quad 6.26 \mathrm{k} / \mathrm{ft}$

$$
M_{u}=V_{u} \times\left(w_{\text {toe }} / 2\right) \quad=6.26 \times(2.00 / 2)=6.26 \quad \mathrm{k}-\mathrm{ft}
$$

Set up the equation to solve for the required steel area and again use:

$$
3.309 \quad A_{s}^{2} \quad-\quad 4.50 \quad d_{s} A_{s}+M_{u}=0
$$

For the reinforcing steel assumed for the heel, $\mathrm{d}_{\mathrm{s}}=\quad 14.75$ in
Substituting and solving for A_{s}, it is found that required $A_{s}=0.09 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#4 bars at $\quad 12.00$ in c/c for the bottom transverse bars in the toe \quad As $=0.20 \mathrm{in}^{2} / \mathrm{ft}$

Check Minimum Reinforcement [5.7.3.3.2]

Determine the cracking moment:

The capacity of the section must be greater than or equal to the smaller of:

$$
\begin{array}{rllllll}
M_{C R} & = & & 27.79 & = & 27.79 & k-f t \\
(4 / 3) M_{u} & =1.33 & x & 6.26 & =8.35 & k-f t & \\
\text { GOVERNS }
\end{array}
$$

The capacity of the bottom mat of reinforcement is:

$$
M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
$$

CLIENT	ODOT
PROJECT	CUY-271-0.00 (PID 80418)
SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 11-13

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DAECKED BY	DNB	$3 / 17 / 2014$

For the reinforcing steel used, $\mathrm{d}_{\mathrm{s}}=18.00-3.00-(0.500 / 2)=14.75$ in

$$
\begin{aligned}
& 13.14 \text { k-ft > } 8.35 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8)

$$
\mathrm{A}_{\mathrm{s}}=0.20 \mathrm{in}^{2} / \mathrm{ft} \quad>0.17 \mathrm{in}^{2} / \mathrm{ft}
$$

Use \#4 bars at 12.00 in c/c for bottom transverse reinforcement in the footing.

Longitudinal Reinforcement [5.10.8]
Provide longitudinal reinforcement in the footing based on shrinkage and temperature requirements.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in } \\
& \text { Min. } A_{s}=\frac{1.30 w_{\text {foot }} h_{\max }}{2\left(w_{\text {foot }}+h_{\max }\right) f_{y}}=\frac{1.30 \times 114.00 \times 18.00}{2 \times(114.00+18.00 \quad) x 60}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{h}_{\text {heel }}, \mathrm{h}_{\text {toe }}\right)=18.00 \text { in }
$$

Use \#4 bars at 12.00 in c/c for top and bottom longitudinal reinforcement in the footing.

Determine Loads for Wall Stem Design

The loads on the stem at the top of the footing are determined to arrive at the design forces for the wall.
Saturated Earth Pressure:

$P_{E H(S)}=(1 / 2) \mathrm{w}_{\mathrm{ss}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{ss}}{ }^{2}$	0.5	x	0.130	x	0.280	x 1	10.89	$)^{2}=$	2.16	k	
$M_{E H(S)}=P_{E H(S)} \times\left[(1 / 3) h_{s s}+h_{s b}\right]$		=	2.16	x [0.333	x	10.89	+	0.00] =	7.83

Buoyant Earth Pressure:

$\mathrm{P}_{\text {EH(B) }}=$	sb	${ }_{\text {sb }}\left[w_{\text {ss }} h_{\text {ss }}\right.$	1/2)	h_{sb}]													
$\mathrm{P}_{\text {EH(B) }}=$		0.280	x	0.00	x [0.130	x	10.89	+	0.5 x		0.068	x	0.00] =	0.00	k
$y_{B}=\left[h_{\text {sb }}\left(w_{s s} h_{s s}+(1 / 3) w_{s b} h_{\text {sb }}\right)\right] /\left(2 w_{s s} h_{s s}+w_{s b} h_{s b}\right)$																	
$\mathrm{y}_{\mathrm{B}}=$	[0.00	x 1	0.130	x	10.89	+	0.333	x	0.068	x		0.00)]	=	0.00	ft
		$1(2.0$	x	0.130	X	10.89	+	0.068	X	0.00)						
$M_{E H(B)}=$	EM(B)	() $\mathrm{x} \mathrm{y}_{\mathrm{B}}$	=	0.00	x	0.00					=		0.00	k-ft			

Water Pressure:

Live Load Surcharge:
$P_{\mathrm{LS}}=\mathrm{w}_{\mathrm{sS}} \mathrm{K}_{\mathrm{a}} \mathrm{h}_{\mathrm{LL}} \mathrm{h}_{\mathrm{s}} \quad=0.130 \mathrm{x} 0.280 \mathrm{x} \quad 3.14 \mathrm{x} \quad 10.89=1.24 \mathrm{k}$

CLIENT	ODOT
PROJECT	CUY-271-0.00 (PID 80418)
SUBJECT	Reinforced Concrete Retaining Wall Design
	Wall WS1, Panels 11-13

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	CHECKED BY	DATE	$3 / 17 / 2014$

$M_{L S}=P_{L S} \times(1 / 2) h_{s} \quad=\quad 1.24 \quad x \quad 0.500 \quad x \quad 10.89 \quad=\quad 6.78 \quad k-f t$

Collision Load at Top of Parapet:
Use a Live Load of $\quad 1929 \mathrm{lbs} / \mathrm{ft}$ applied at $\mathrm{h}_{\mathrm{r}}=\quad 3.5 \mathrm{ft}$ above the top of the wall.
$\mathrm{P}_{\mathrm{CT}}=$

$\mathrm{M}_{\mathrm{CT}}=\mathrm{P}_{\mathrm{CT}} \mathrm{X}\left(\mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{r}}\right) \quad=1.93 \mathrm{x}(10.89+3.50)=$| 1.93 k |
| :--- |
| 27.75 |
| $\mathrm{k}-\mathrm{ft}$ |

Using the Strength I load combination, the factored design forces for the wall stem are:

$$
\begin{aligned}
& H_{u}=1.50\left(\mathrm{P}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.75\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right) \\
& H_{u}=1.50 \times(2.16+0.00)+1.00 \times 0.00+1.75 \times(1.24+0.00)=5.42 k \\
& M_{u}=1.50\left(M_{E H(S)}+M_{E H(B)}\right)+1.00 M_{W A}+1.75\left(M_{L S}+M_{L L}\right) \\
& \mathrm{M}_{\mathrm{u}}=1.50 \mathrm{x}(7.83+0.00)+1.00 \mathrm{x} 0.00+1.75 \mathrm{x}(6.78+0.00 \quad)=23.61 \mathrm{k} \mathrm{ft}
\end{aligned}
$$

The Extreme Event II design forces for the wall stem are:

$\mathrm{H}_{\text {ext }}=$	EH(S)	P_{E}	$+1.0$		(P_{LS}													
$\mathrm{H}_{\text {ext }}=$	1.50	x	2.16	+	0.00) +	1.00	X	1.93	+	0.50	X	1.24	+	0.00		5.79	k
$\mathrm{M}_{\text {ext }}=$	$\mathrm{MEH}_{(\mathrm{S}}$	M	+1.00		(ML	M_{L}												
$\mathrm{M}_{\text {ext }}=$	1.50	X	7.83	+	0.00) +	1.00	X	27.75	+	0.50	X	6.78	+	0.00		42.89	k-ft

The service design forces for the wall stem are:

$$
\begin{aligned}
& \mathrm{H}_{\text {serv }}=1.00\left(\mathrm{P}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{P}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{P}_{\mathrm{WA}}+1.00\left(\mathrm{P}_{\mathrm{LS}}+\mathrm{P}_{\mathrm{LL}}\right) \\
& H_{\text {serv }} 1.00 \times(2.16+0.00)+1.00 \times 1.0 .00+1.00 \times(1.24+2 \\
& M_{\text {serv }}=1.00\left(\mathrm{M}_{\mathrm{EH}(\mathrm{~S})}+\mathrm{M}_{\mathrm{EH}(\mathrm{~B})}\right)+1.00 \mathrm{M}_{\mathrm{WA}}+1.00\left(\mathrm{M}_{\mathrm{LS}}+\mathrm{M}_{\mathrm{LL}}\right) \\
& M_{\text {serv }}=1.00 \times(7.83+0.00)+1.00 \times 1.0 .00+1.00 \times(\mathrm{kt}
\end{aligned}
$$

Wall Stem Design - Investigate Shear

Shear typically does not govern the design of retaining walls. If shear does become an issue, the thickness of the stem should be increased such that transverse reinforcement is not required.

Ignoring the benefits of the shear key and axial compression, the shear capacity of the stem can be shown to be greater than that required.

$$
\mathrm{V}_{\mathrm{n}}=\mathrm{V}_{\mathrm{c}}+\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{p}}
$$

Recognizing that V_{s} and V_{p} are zero

$$
\begin{align*}
& V_{n}=V_{c} \\
& V_{c}=0.0316 \beta\left(f_{c}^{\prime}\right)^{0.5} b_{v} d_{v} \tag{5.8.3.3-3}
\end{align*}
$$

The maximum effective shear depth is:

For	2.0 inch clear cover and		\#8 bars, $\mathrm{d}_{\mathrm{s}}=$		18.00		2.00		- (1.000	12)	$=$	15.50
$\mathrm{d}_{\mathrm{v}}=$	$9 \mathrm{~d}_{\mathrm{e}}=0.9 \mathrm{~d}_{\mathrm{s}}=$	0.90	x	15.50	=	13.95	in		NS				
$\mathrm{d}_{\mathrm{v}}=$	$72 \mathrm{~h}=0.72 \mathrm{t}_{\mathrm{wb}}=$	0.72	x	18.00	=	12.96	in						

Follow the General Procedure using the provisions of Appendix B5, as per Section [5.8.3.4.2]:

	2.024824				0.00186		$\mathrm{s}_{\mathrm{xe}}=$				grega	$z e=$	1 in		BDM S5.10.3.1.1)
$\phi \mathrm{V}_{\mathrm{c}}=$	0.90	x	0.0316	x	2.02	x (4.0	$)^{0.50}$	x	12.00	x	13.95	=	19.28	k	

CLIENT ODOT

PROJECT NO. \qquad
PROJECT CUY-271-0.00 (PID 80418)
SUBJECT Reinforced Concrete Retaining Wall Design Wall WS1, Panels 11-13

COMP. BY			
CHECKED BY	ASP	DATE	$3 / 17 / 2014$
	DNB	$3 / 17 / 2014$	

```
19.28 k > 5.79 k OK
```


Wall Stem Design - Investigate Strength Limit State

Determine the area of back-face flexural reinforcement necessary to satisfy the design moment:

$$
\mathrm{M}_{\mathrm{u}}=42.89 \quad \mathrm{k}-\mathrm{ft}
$$

Again use the equation:

$$
3.309 \quad \mathrm{~A}_{\mathrm{s}}{ }^{2} \quad-\quad 4.50 \quad \mathrm{~d}_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\mathrm{M}_{\mathrm{u}}=0
$$

Substituting and solving for A_{s}, it is found that required $\mathrm{A}_{\mathrm{s}}=0.63 \quad \mathrm{in}^{2} / \mathrm{ft}$
Try: \#8 bars at 12.00 in c/c $\mathrm{A}_{\mathrm{s}}=0.79 \mathrm{in}^{2} / \mathrm{ft}>0.63 \quad \mathrm{in}^{2} / \mathrm{ft} \underline{\mathrm{OK}}$

Wall Stem Design - Investigate Service Limit State

[5.7.3.4]
Check the crack control equations to ensure that the primary flexural reinforcement is well distributed. The service load bending moment is:

$$
M_{\text {serv }}=\quad 14.61 \quad \mathrm{k}-\mathrm{ft}
$$

Check the modulus of rupture for concrete:

$$
\begin{aligned}
& \phi \mathrm{f}_{\mathrm{r}}=\phi 0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}=0.80 \mathrm{x} 0.24 \mathrm{x}(4.0)^{0.50}=0.384 \mathrm{ksi} \\
& \mathrm{~S}=\frac{\mathrm{bt} \mathrm{wb}^{2}}{6}=\frac{12.00 \mathrm{x}(18.00)^{2}}{6}=648.00 \mathrm{in}^{3} \\
& \mathrm{fact}=\frac{\mathrm{M}_{\text {serv }}}{\mathrm{S}}=\frac{14.61 \mathrm{x} 12}{648.00}=0.271 \mathrm{ksi}<0.384 \mathrm{ksi} \quad \underline{\mathrm{OK}}
\end{aligned}
$$

If modulus of rupture check is "NG", then check the spacing of the reinforcement. First, determine the modular ratio:

Determine the location of the neutral axis:

```
\(0.5 \mathrm{bx}=\mathrm{nA} \mathrm{A}_{\mathrm{s}}\left(\mathrm{d}_{\mathrm{s}}-\mathrm{x}\right)\)
\(0.5(12) x^{2}=8 \quad x \quad 0.79 \quad x(15.50 \quad-x)\)
solving, \(x=3.55\) in
```

Check the spacing of the reinforcement to control cracking:

```
\(y=d_{s}-x=15.50-3.55=11.95\) in
\(I_{c r}=\frac{b x^{3}}{3}+n A_{s}\left(d_{s}-x\right)^{2}\)
\(\mathrm{I}_{\mathrm{cr}}=\frac{12.00 \times(3.55)^{3}}{3}+8 \mathrm{x} 0.79 \times(15.50-3.55)^{2}=1081.47 \mathrm{in}^{4}\)
\(\gamma_{\mathrm{e}}=\quad 1.00\)
For 2.0 inch clear cover and \(\# 8\) bars, \(d_{c}=2.00+(1.000 / 2)=2.50\) in
\(\beta_{\mathrm{s}}=1.0+\frac{\mathrm{d}_{\mathrm{c}}}{0.7\left(\mathrm{t}_{\mathrm{wb}}-\mathrm{d}_{\mathrm{c}}\right)}=1.0+\frac{2.50}{0.7 \times(18.00-2.50)}=1.23\)
\(\mathrm{f}_{\mathrm{ss}}=\mathrm{n} \frac{\mathrm{M}_{\text {serv }} \mathrm{y}}{\mathrm{I}_{\mathrm{cr}}}=8 \quad \mathrm{x} \frac{14.61 \quad \mathrm{x} 11.95 \mathrm{x} 12.00}{1081.47}=15.50 \mathrm{ksi}\)
```

CLIENT ODOT
PROJECT CUY-271-0.00 (PID 80418)

SUBJECT | Reinforced Concrete Retaining Wall Design | |
| :--- | :--- |
| | Wall WS1, Panels 11-13 |

PROJECT NO. \qquad

COMP. BY	ASP	DATE	$3 / 17 / 2014$
	DATE	$3 / 17 / 2014$	

$$
\begin{aligned}
& s_{\max }=\frac{700 \gamma_{e}}{\beta_{s} f_{s s}}-2.0 d_{c}=\frac{700}{1.23} \mathrm{x} \frac{x}{} 15.50 \\
& s_{\max }=31.70 \text { in }>12.00 \text { in } \underline{\text { OK }}
\end{aligned}
$$

Wall Stem Design - Check Reinforcement Limits

Check Minimum Reinforcement
[5.7.3.3.2]
Determine the cracking moment:

$\mathrm{fr}_{\mathrm{r}}=0.24\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$	$=$	0.24		$4.0)^{0.50}$	$=$	0.48	ksi							
$I_{g}=(1 / 12) b h^{3}$	$=$	0.0833	x	12.00	$x 1$	18.00	$)^{3}=$	5832.0	$i n^{4}$					
$y_{t}=(1 / 2) h$	=	0.5000	x	18.00	=	9.00	in							
$M_{C R}=\gamma_{1} \gamma_{3} f_{r} l_{g} / y_{t}$	=	0.67	x	1.6	x	0.48	x	5832.0	11	9.00	x	12.00) $=$	27.79

The capacity of the section must be greater than or equal to the smaller of:

M_{CR}	$=$		27.79	$=$	27.79	$\mathrm{k}-\mathrm{ft}$
$(4 / 3) \mathrm{M}_{\mathrm{u}}$	$=1.33$	GOVERNS				

The capacity of the reinforcement is:

$$
\begin{aligned}
& M_{r}=\phi A_{s} f_{y}\left(d_{s}-a / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
& 53.04 \text { k-ft > } 27.79 \text { k-ft OK }
\end{aligned}
$$

Check minimum reinforcement for temperature and shrinkage (5.10.8) $\quad \mathrm{A}_{\mathrm{s}}=0.79 \quad \mathrm{in}^{2} / \mathrm{ft} \quad>\quad 0.17 \quad \mathrm{in}^{2} / \mathrm{ft}$
OK
Use \#8 bars at 12.00 in c/c for wall stem back face vertical reinforcing.

Wall Stem Design - Shrinkage and Temperature Reinforcement

A minimum amount of reinforcement should be placed near each face of concrete elements to limit the size of cracks associated with concrete shrinkage and temperature changes.

$$
\begin{aligned}
& \mathrm{h}_{\max }=\max \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right)=18.00 \text { in } \\
& \mathrm{h}_{\mathrm{w}}=10.89 \mathrm{ft}=130.68 \text { in } \\
& \operatorname{Min} . \mathrm{A}_{\mathrm{s}}=\frac{1.30 \mathrm{~h}_{\mathrm{w}} \mathrm{~h}_{\max }}{2\left(\mathrm{~h}_{\mathrm{w}}+\mathrm{h}_{\max }\right) \mathrm{f}_{\mathrm{y}}}=\frac{1.30 \mathrm{x} 130.68 \mathrm{x} 18.00}{2 \times \mathrm{x}(130.68+18.00) \times 60}=0.17 \quad \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

The maximum spacing of reinforcement is:

$$
\mathrm{h}_{\min }=\min \left(\mathrm{t}_{\mathrm{wt}}, \mathrm{t}_{\mathrm{wb}}\right) \quad=18.00 \quad \text { in }
$$

[^4]
[^0]: Use \#4 bars at 12.00 in c/c for wall stem front face reinforcing and back face horizontal reinforcing.

[^1]: Use \#4 bars at 12.00 in c/c for wall stem front face reinforcing and back face horizontal reinforcing.

[^2]: Use \#4 bars at 12.00 in c/c for wall stem front face reinforcing and back face horizontal reinforcing.

[^3]: Use \#4 bars at 12.00 in c/c for wall stem front face reinforcing and back face horizontal reinforcing.

[^4]: Use \#4 bars at 12.00 in c/c for wall stem front face reinforcing and back face horizontal reinforcing.

