

DEL-SR 605 and Fancher Road Intersection Improvements Harlem Township

September 17, 2020 Terracon Project No. N4195366

Prepared for:

2LMN, Inc Lancaster, Ohio

Prepared by:

Terracon Consultants, Inc. Columbus, Ohio

Facilities

Geo

September 17, 2020

2LMN, Inc 2475 Sugar Grove Road SE Lancaster, Ohio 43130

Attn: Mr. Adam L. Lanier, P.E., President

- D: (740) 687 5542
- C: (740) 503 4033
- E: Adam.Lanier@2LMN.com
- Re: Subgrade Exploration Report DEL-SR 605 and Fancher Road Intersection Improvements Harlem Township Terracon Project No. N4195366

Dear Mr. Lanier:

Terracon Consultants, Inc. (Terracon) has completed the subgrade exploration for the above referenced project. This study was performed in general accordance with Terracon Proposal No. PN4195366 dated October 23, 2019. which was authorized by 2LMN, Inc. via the "Subconsultant Work Order" dated April 22, 2020.

The intersection of State Route (SR) 605 and Fancher Road is a rural 4-legged intersection in Harlem Township of southern Delaware County approximately 3 miles north of New Albany. This report presents the findings of our subsurface exploration, laboratory testing results, subgrade analyses results and provides construction recommendations for the proposed roadway improvements including the construction of a new single lane roundabout and modifications to SR 605 and Fancher Road.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Abdul K. Mohammed Staff Engineer Kevin M. Ernst, P.E. Principal | Office Manager

 Terracon Consultants, Inc.
 800 Morrison Road
 Columbus, Ohio 43230

 P (614) 863-3113
 F (614) 863-0475
 terracon.com

REPORT TOPICS

NTRODUCTION	1
SEOLOGY	1
RECONNAISSANCE	2
EXPLORATION	2
INDINGS	4
ANALYSIS AND RECOMMENDATION	6
PAVEMENT DESIGN RECOMMENDATIONS	8
SENERAL COMMENTS1	0

Note: This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

ATTACHMENTS

FIELD EXPLORATION INFORMATION SITE LOCATION AND EXPLORATION PLAN EXPLORATION RESULTS GB-1 SUBGRADE ANALYSIS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

EXECUTIVE SUMMARY

Eleven (11) borings were performed to depths of approximately 10.5 feet for this project designated as B-001-0-20 through B-011-0-20. The borings were drilled on existing pavement and encountered 6 inches of asphalt and 6 to 12 inches aggregate base material. Beneath the pavement, Boring B-007-0-20 encountered possible fill materials to a depth of approximately 4.5 feet below the existing ground surface. The possible fill materials consisted of medium dense granular soils described as gravel and stone fragments (A-1-a). The natural overburden materials in the borings typically consisted of medium dense granular soils including sandy silt (A-4a), and medium stiff to very stiff cohesive soils including silt and clay, silty clay and clay (A-6a, A-6b, A-7-6).

Granular and cohesive soils with natural moisture contents more than 3 percent above the optimum moisture contents were observed in the borings B-002-0-20, B-004-0-20, B-002-0-20 B-008-0-20, B-009-0-20 and B-011-0-20 from the existing ground surface to depths of approximately between 1.5 and 4.5 feet indicating wet conditions. Unsuitable soils were not encountered in the borings.

Considering the high soil moisture contents encountered in the borings, installation of a drainage system including construction of underdrains and adequate ditches are recommended as a practical solution to promote drainage of the subgrade and improve subgrade stability for both SR 605 and Fancher Road improvements. In addition, we recommend that the soils along SR 605 and Fancher Road be reworked to stabilize the subgrade.

Based on the results of the subgrade analyses, a CBR value of 5 is recommended for design of the proposed construction of new single lane roundabout and widening along SR 605 and Fancher Road.

Groundwater was not encountered during drilling of the borings and for the short duration the borings remained open after completion of drilling.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **General Comments** should be read for an understanding of the report limitations.

Subgrade Exploration Report DEL-SR 605 and Fancher Road Intersection Improvements Harlem Township Terracon Project No. N4195366 September 17, 2020

INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed DEL-605-0.31 project to be located along State Route (SR) 605 and Fancher Road, Harlem Township. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil conditions
- Subgrade analysis
- Construction recommendations
- Short-term ground water conditions
- Subgrade preparation
- Pavement Design and thickness evaluation

The geotechnical subsurface exploration performed by Terracon for this project included the advancement of eleven (11) test borings to depth of about 10.5 feet below existing site grades. Proposed plan, profile and cross section drawings have not been provided to us as of the time of this submission. However, we have assumed that minimal amount of fill placement (≤ 2 feet) will be required to establish the proposed grades in the proposed improvement areas.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and in the **Exploration Results** section.

GEOLOGY

The project site is located within the Galion Glaciated Low Plateau physiographic section of the Till Plains physiographic province. In general, the region is characterized as a rolling upland transitional between the gently rolling Till Plain and the hilly Glaciated Allegheny Plateau, which is mantled with thin to thick drift. Relief is moderate, with elevations ranging between approximately 800 to 1400 feet.

According to USGS surface geology maps, the surface bedrock is anticipated to be Maxville Limestone; Rushville, Logan, and Cuyahoga Formations, Undivided. The Mississippian-aged Maxville Limestone; Rushville, Logan and Cuyahoga Formations, Undivided consist of shale, siltstone, and sandstone, interbedded, with various shades of gray, yellow to brown weather

similar color. The sandstone is silty to granular, with local stringers of quartz pebbles. Shale is clayey to silty, and locally fossiliferous. Thickness varies from approximately 50 to 1300 feet. It is overlain by the Pottsville Group, with a base at the Sunbury Shale.

RECONNAISSANCE

The intersection of SR 605 and Fancher Road is a rural 4-legged intersection in Harlem Township of southern Delaware County approximately 3 miles north of New Albany. Site reconnaissance was performed by Terracon on May 5, 2020. At the time of our site reconnaissance visit, the existing SR 605 is a two lane, undivided roadway classified as a rural major collector with a 55-mph speed limit. Fancher Road is a two lane, undivided roadway classified as a rural major collector with a 45-mph speed limit. The existing pavement appeared to be in fair to good condition along SR 605 and Fancher Road. The ditch along SR 605 was poorly drained and standing water was observed on north east side along the pavement.

EXPLORATION

Field Exploration

A total of eleven (11) borings were performed between May 11, 2020 designated as B-001-0-20 through B-011-0-20. The borings were drilled through the existing roadway to depth of approximately 10.5 feet below the surface in general accordance with Section 303.3 of the Ohio Department of Transportation (ODOT) Specifications for Geotechnical Explorations (SGE) for roadway improvements.

Locations of the borings are illustrated on the attached **Exploration Plan** and summarized in the following table.

Boring Number	Alignment	Elevation ¹ (feet)	Northing ¹	Easting ¹	Boring Depth (feet) ²
B-001-0-20	Fancher Rd	1041.9	169826.74	1881939.487	10.5
B-002-0-20	Fancher Rd	1043.0	169823.19	1882207.005	10.5
B-003-0-20	SR-605	1044.6	169593.123	1881876.671	10.5
B-004-0-20	SR-605	1044.0	169304.51	1881844.962	10.5
B-005-0-20	SR-605	1040.7	169903.435	1881893.108	10.5
B-006-0-20	Fancher Rd	1040.1	169835.542	1881778.23	10.5
B-007-0-20	Fancher Rd	1039.5	169846.536	1881591.013	10.5
B-008-0-20	SR-605	1038.1	170101.456	1881904.756	10.5
B-009-0-20	Fancher Rd	1044.7	169821.414	1882393.758	10.5
B-010-0-20	Fancher Rd	1039.2	169856.603	1881380.813	10.5
B-011-0-20	SR-605	1037.6	170278.458	1881913.137	10.5

DEL-SR 605 and Fancher Road Intersection Improvements
Harlem Township September 17, 2020
Terracon Project No. N4195366

Boring Number	Alignment	Elevation ¹ (feet)	Northing ¹	Easting ¹	Boring Depth (feet) ²
1. The s	urvey information	n including coordinates	and ground surface	e elevations at the	e as drilled locations was

- provided by 2LMN, Inc.
- 2. Below ground surface

The boring locations were located in the field prior to drilling operations by Terracon personnel using a hand-held GPS unit. The coordinates and ground surface elevations presented on the preceding table, and boring logs, were obtained from the survey information provided by 2LMN Inc. Therefore, this information presented on the preceding table and the borings logs is based on the drilled locations.

We advanced the borings with a truck-mounted drill rig using continuous flight hollow stem augers through overburden materials. Soil samples were obtained continuously until the termination depth of the borings. The soil samples were obtained using the split-barrel sampling procedure. In the split-barrel sampling procedure, a standard 2-inch O.D. sampling spoon is driven into the boring with a 140-pound automatic SPT (Standard Penetration Test) hammer falling 30 inches. We recorded the number of blows required to advance the sampling spoon and the last 12 inches of an 18-inch sampling interval as the standard penetration resistance value (N-value). This value is corrected to an equivalent (60 percent) energy ratio (N_{60}) utilizing the hammer efficiency energy ratio. In addition, we observed and recorded groundwater levels during drilling and upon completion. The samples were placed in appropriate containers and taken to our soil laboratory for testing.

The field boring logs were prepared by a drilling crew that include sampling depths, penetration distances, and other relevant sampling information. Field logs include visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs represent the geotechnical engineer's interpretation of field logs, and include modifications based on visual classification and laboratory tests.

Following the completion of drilling, the boreholes were sealed with a cement-bentonite grout. Where borings penetrated the existing pavement surface, the roadway surface was repaired using asphalt patch.

Laboratory Testing Program

As part of the testing program, all samples were examined in our laboratory by a geotechnical engineer. Soil samples were classified in general accordance with ODOT SGE Section 600 Laboratory Testing based on the texture and plasticity of the soils.

Laboratory tests were assigned to the samples in accordance with the latest ODOT Geotechnical Bulletin No.1 (GB-1). Atterberg limits, moisture content, and grain size analysis testing were performed on selected soil samples to obtain accurate information. In addition, sulfate testing was

DEL-SR 605 and Fancher Road Intersection Improvements Harlem Township September 17, 2020 Terracon Project No. N4195366

performed on the samples within 1.5 to 4.5 feet below ground surface from each boring. The results of lab testing are shown on the boring logs and/or presented in the **Exploration Results** of this report.

FINDINGS

Boring logs have been prepared based on the information obtained from the field logs prepared at the time of drilling, and the visual examination performed in the laboratory. Soil classification was performed in general accordance with the current ODOT SGE. The logs have also been modified as necessary based on the results of the laboratory testing program. The following sections summarize the subsurface conditions encountered at the boring locations.

Subsurface Profile

In general, the borings encountered surface pavement materials underlain by cohesive and granular soils. Details on the soil types are presented in the following sections.

Conditions encountered at each boring location are indicated on the individual test boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the test borings can be found on the test boring logs in **Exploration Results** of this report. An **Exploration Plan** is also included in attachments.

In general, the borings indicated that the existing pavement section consisted mostly of asphalt over granular base material. The borings were drilled on existing pavement and encountered 6 inches of asphalt and 6 to 12 inches aggregate base material.

Borings B-007-0-20, encountered possible fill beneath the pavement materials to a depth range of about 1.0 to 4.5 feet below existing ground surface, consisting of gravel and/or stone fragments (A-1-a). Granular fill exhibited relative density of medium dense.

Below the granular base material, the test borings generally encountered native cohesive and granular soils to the termination depths of the borings. The cohesive soils encountered in the borings included silt and clay (A-6a), silty clay (A-6b) and clay (A-7-6) exhibiting consistencies ranging from medium stiff to very stiff. The granular soils encountered in the borings included sandy silt (A-4a) exhibiting relative density of medium dense.

Granular and cohesive soils with natural moisture contents more than 3 percent above the optimum moisture contents were observed in the borings B-002-0-20, B-004-0-20, B-002-0-20 B-008-0-20, B-009-0-20 and B-011-0-20 from the existing ground surface to depths of approximately between 1.5 and 4.5 feet indicating wet conditions. Unsuitable soils were not encountered in the borings.

Bedrock

Bedrock was not encountered in the borings to the depths explored.

Groundwater Conditions

Groundwater was not encountered during drilling of the borings and for the short duration the borings remained open after completion of drilling.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the pavement may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in the **Exploration Results** attachment of this report.

Laboratory Testing

Based on our laboratory testing, the existing subgrade soils to a depth of up to about 10.5 feet below the surface have moisture contents ranging from about 10 to 30 percent, with an average moisture content of the subgrade soils across the project area of about 18 percent. Plasticity indices ranged from about 14 to 28, with an average plasticity index of about 21.

The table below summarizes the results of sulfate testing performed on the subgrade samples. It should be noted that samples with sulfate content greater than 5,000 parts per million (ppm) prohibit subgrade stabilization using chemical stabilization methods according to ODOT GB1 guideline. None of the test results exceeded the 5,000-ppm sulfate concentration level.

Boring ID	Sample Depth (feet) ¹	Sulfate Concentration (ppm)
B-001-0-20	1.5 - 3.0	47
B-002-0-20	1.5 - 3.0	80
B-003-0-20	1.5 - 3.0	77
B-005-0-20	3.0 - 4.5	216
B-006-0-20	3.0 - 4.5	33
B-007-0-20	1.5 - 3.0	73
B-008-0-20	1.5 - 3.0	57
B-009-0-20	1.5 - 3.0	79
1. Below ground surface		

DEL-SR 605 and Fancher Road Intersection Improvements - Harlem Township September 17, 2020 - Terracon Project No. N4195366

ANALYSIS AND RECOMMENDATION

Subgrade Analysis

In general, the soils at or near the anticipated pavement subgrade level consisted of medium dense granular possible fill material described as gravel with stone fragments (A-1-a), medium dense natural granular soils including sandy silt (A-4a), medium stiff to very stiff Clay (A-7-6), silt and clay (A-6a) and silty clay (A-6b) per the ODOT Classification system. Based on our laboratory testing, the existing subgrade soils to a depth of up to about 10.5 feet below the surface have moisture contents ranging from about 1 to 30 percent, with an average moisture content of the subgrade soils across the project area of about 17 percent. Plasticity indices ranged from about 14 to 28, with an average plasticity index of about 21.

Information regarding the proposed final subgrade elevations was not available as of the time of this submission. Therefore, for our analysis we have assumed that the proposed subgrade will be approximately 1.5 feet below existing ground surface at various boring locations. Generally, subgrade soils with a moisture content exceeding the optimum moisture content of the soil by three or more percentage points, are considered to be unstable soils, per ODOT GB1 guideline. Granular and cohesive soils with natural moisture contents greater than more than 3 percent above the optimum moisture contents were observed in 64% of the sample intervals within 3 feet of the subgrade. Overall, granular and cohesive soils with natural moisture above the optimum moisture contents were observed in 45% of the samples within 6 feet of the subgrade in eleven borings.

The SPT N_{60} values in the roadway subgrade soils ranged from 6 to 30 blows per foot (bpf). The average SPT N_{60} value was about 16 bpf. The N_{60L} values (low N-values) for the anticipated subgrade soils encountered in the test borings ranged from 6 to 17 bpf, with an average N_{60L} value of 12 bpf. The unconfined compressive strength of cohesive soil samples as determined by a hand penetrometer ranged from 2.0 to 4.5 tsf with an average value of 3.85 tsf. A summary of the subgrade soils is tabulated on ODOT's **GB-1 Subgrade Analysis** spreadsheet in attachments section of this report.

Considering the high soil moisture contents encountered in the borings, installation of a drainage system including construction of underdrains and adequate ditches are recommended as a practical solution to promote drainage of the subgrade and improve subgrade stability for both SR 605 and Fancher Road improvements. In addition, we recommend that the soils along SR 605 and Fancher Road be reworked to stabilize the subgrade.

Laboratory California Bearing Ratio (CBR) testing was performed on the anticipated subgrade soils for this project. The average CBR value for the near surface soils encountered at the test boring locations B-001-0-20 and B-003-0-20 was about 4.75. Thus, based on ODOT's guidelines, we recommend an average CBR value of 5 be utilized in pavement design. The recommended

CBR value assumes that the subgrade improvement/stabilization recommended in this report is performed.

General Subgrade Preparation

Subgrade preparation for the new pavement, and shoulder areas should be performed in accordance with ODOT CMS Items 203 and 204. Prior to subgrade preparation, perform clearing and grubbing, including removal of stumps and roots, in accordance with ODOT CMS Item 201. Remove existing pavement and base materials as well as other structures or obstructions, as necessary, in accordance with ODOT CMS Item 202. The pavement subgrade should be stripped of any topsoil, organics, or other deleterious or unsuitable materials.

Once the new pavement areas have been stripped, excavated to the design subgrade elevation or to the design undercut elevation (if applicable), the exposed subgrade should be proof-rolled with a heavy piece of construction equipment to verify stability is achieved. It should be noted that fill containing organic materials or other deleterious materials may be encountered at other locations or at lower depths within the pavement alignment that were not disclosed by the borings. The actual depths and limits of undercutting should be determined by the Geotechnical Engineer in the field based on visual observations.

Any fill placed to achieve the final grade of the roadway pavement should follow requirements of ODOT CMS Item 203 and compacted to the specified percentage of the maximum dry density provided by ODOT CMS Item 204. The fill materials should be relatively free of debris, organic materials, and any deleterious materials deemed by the Geotechnical Engineer. No frozen materials should be incorporated into the fill, and no pavement, utilities, or fill should be placed on top of frozen materials.

All potential imported fill materials should be identified and approved by the Geotechnical Engineer prior to placement. Approval requires that moisture-density relationship tests, hydrometer analysis, and Atterberg limits be determined for each fill material prior to their placement. No particle size larger than two inches in any direction should be placed as fill, and any particle size greater than 3-inches should be broken down to less than 2-inches or removed from the lift. Aggregate base and pavement construction must be performed in accordance with ODOT CMS 300 and 400.

Subgrade Preparation and Stabilization

If the excavation depths are greater than 5 feet, the excavation sides will need to be laid back or shored. As a minimum, all excavations should be sloped or braced as required by Occupational Health and Safety Administration (OSHA) regulations to provide stability and safe working conditions. Reference to OSHA 29CFR, Part 1926, Subpart P should be included in the job specifications.

DEL-SR 605 and Fancher Road Intersection Improvements Harlem Township September 17, 2020 Terracon Project No. N4195366

The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. Slope heights, slope inclinations and/or excavation depths should in no case exceed those specified in local, state or federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

Under no circumstances should the information provided in this report be interpreted to mean that Terracon is responsible for construction site safety or the contractor's activities. Construction site safety is the sole responsibility of the contractor, who shall also be solely responsible for the means, methods, and sequencing of the construction operations.

Where structures, roadways, underground utilities, etc. exist adjacent to or within the zone of influence of the excavations, care must be taken to protect these structures, roadways, underground utilities, etc. from possible damages due to construction activities. If structures and underground utilities are located near an excavation, a pre-construction survey should be performed on all existing structures and underground utilities located within 100 feet of the excavation. It is the Contractor's responsibility to prevent undermining of existing foundations and prevent any damage to adjacent structures or facilities.

PAVEMENT DESIGN RECOMMENDATIONS

Parameter	Design Value
Design Life	20 years (2022 to 2042)
Opening Year ADT	8,130
Design Year ADT	9,820
Directional Distribution for 2-way traffic (D)	50% ¹
Lane Factor (LF)	100% (1 lane in each direction)
B:C Ratio	2:1 (rural, minor arterial)
24 hr Truck % (T24)	6%
1. D= 50% in the Pavement Design Manual.	

Project and Traffic Parameters

As requested, we are providing recommended minimum flexible thickness design recommendations for the planned pavement and subgrade modifications.

Flexible Pavement

The following parameters were used with the ODOT Pavement Design Manual for evaluation of flexible pavements:

DEL-SR 605 and Fancher Road Intersection Improvements Harlem Township September 17, 2020 Terracon Project No. N4195366

Parameter	Design Value
ESAL Conversion Factors	$B_{\text{flexible}} = 0.79$
	$C_{\text{flexible}} = 0.48$
Total ESALs for the Design Period (Flexible Pavement)	1.46 x 10 ⁶
Number of Trucks on Opening Day	493
Design Serviceability Loss	2.0 (flexible)
Reliability	85 (principal arterial, urban)
Overall Standard Deviation	0.49 (flexible)
Asphalt Concrete Structural Coefficients	0.43 (AC surface and intermediate courses)
	0.36 (AC base course)
Item 304 Structural Coefficient	0.14
Drainage Coefficient	1.0 (Section 205.2)

Using the project and traffic parameters provided by 2LMN, Inc Consultants, the pavement parameters listed in the ODOT Pavement Design Manual, and the results of our Geotechnical Engineering Report dated June 19, 2020, we considered the following flexible pavement option:

Flexible Pavement Thickness Evaluation

Our Geotechnical Engineering Report dated June 19, 2020 included ODOT GB-1 subgrade analysis indicating that subgrade remediation could include installation of a drainage system including construction of underdrains, and adequate ditches are recommended as a practical solution to promote drainage of the subgrade and improve stability for both SR 605 and Fancher Road.

The following parameters were used for this pavement option:

Parameter	Design Value
CBR	5 (estimated CBR value based on ODOT GB1 Subgrade Analysis and Report of Geotechnical Exploration dated June 19, 2020)
Subgrade Resilient Modulus	6,000 psi (ODOT Pavement Design Manual Section 203.1)

Using these parameters and Figures 402-2 and 402-3 in the ODOT Pavement Design Manual, we estimated a minimum required Structural Number (SN) of about 3.85 which could be constructed using the following minimum pavement section:

September 17, 2020
Terracon Project No. N4195366

FLEXIBLE PAVEMENT THICKNESS EVALUATION

Material Type	Thickness
Item 441 Asphalt Concrete Surface, Type 1 (448)	1.5"
301 Asphalt Concrete Base, PG64-22	5"
Item 304 Aggregate Base	10"
TOTAL	16.50"

Preventive Maintenance

Preventive maintenance should be planned and provided for through an on-going pavement management program. Preventive maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment. Preventive maintenance consists of both localized maintenance (e.g. crack and joint sealing and patching) and global maintenance. Preventive maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements. Prior to implementing any maintenance, additional engineering observation is recommended to determine the type and extent of preventive maintenance.

GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications, so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon should also be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

This Subgrade Exploration Report has been prepared to present the findings of our exploration and present our recommendations pertaining to proposed improvements. The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

DEL-SR 605 and Fancher Road Intersection Improvements
Harlem Township September 17, 2020
Terracon Project No. N4195366

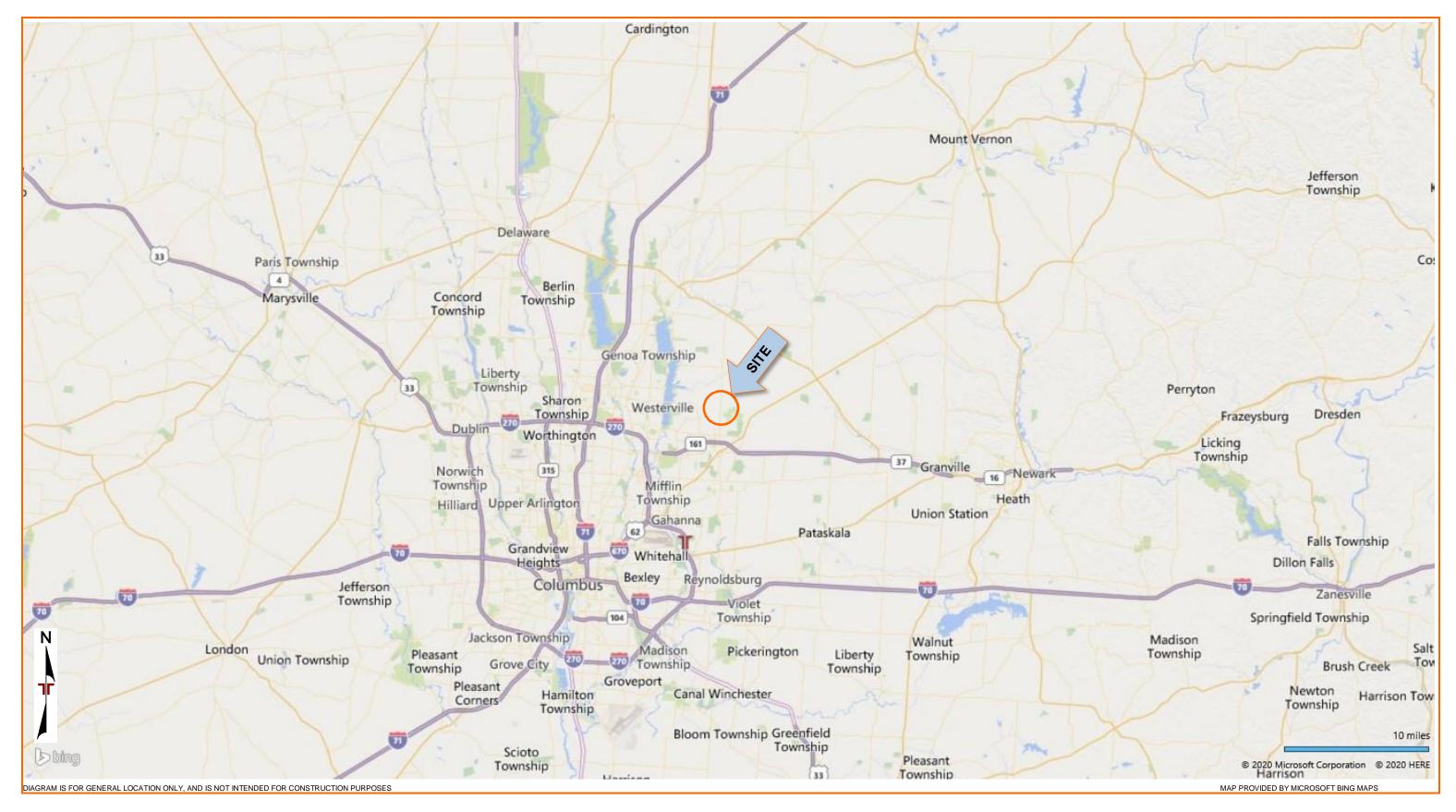
Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

ATTACHMENTS

FIELD EXPLORATION INFORMATION

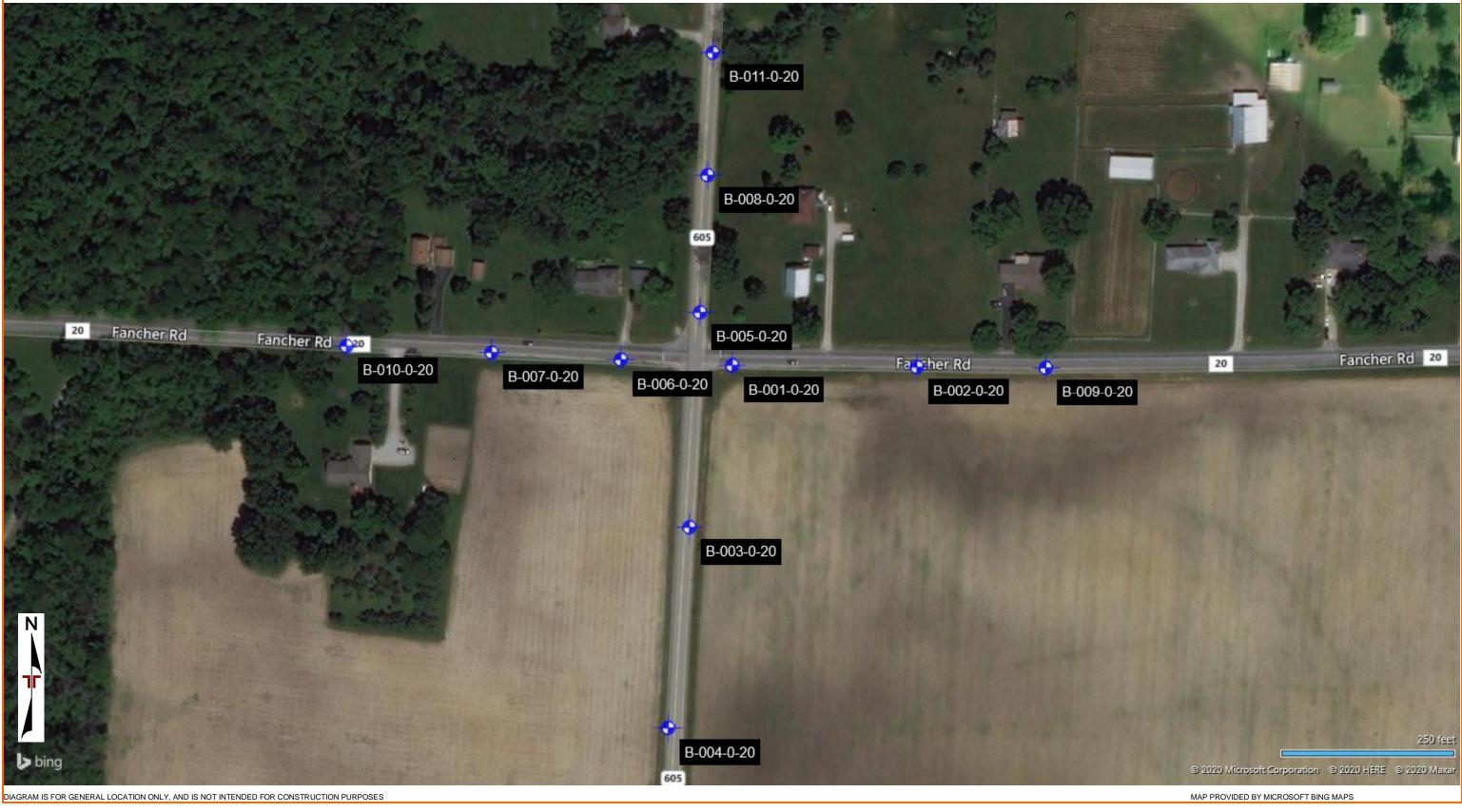
SITE LOCATION AND EXPLORATION PLANS


Contents:

Site Location Plan Exploration Plan

Note: All attachments are one page unless noted above.

SITE LOCATION


DEL-SR 605 and Fancher Road Intersection Improvements
Harlem Township September 17, 2020
Terracon Project No. N4195366

EXPLORATION PLAN

DEL-SR 605 and Fancher Road Intersection Improvements - Harlem Township September 17, 2020
Terracon Project No. N4195366

EXPLORATION RESULTS

Contents:

Boring Logs (B-001-0-20 through B-011-0-20) (11 pages) Atterberg Limits Grain Size Distribution (2 pages) CBR (2 pages) Sulfate Test Results (2 pages)

Note: All attachments are one page unless noted above.

BORING LOGS (B-001-0-20 THROUGH B-011-0-20)

(11 Pages)

5	PROJECT:DEL-605-00.31 TYPE:ROADWAY	DRILLING FIRM / SAMPLING FIRM					L RIG MER:	CME SAFET						N / OF ENT:				22, 14 ER RD		B-001-	
CHERF	PID: SFN: START: <u>5/11/20</u> END: <u>5/11/2</u>	DRILLING METH		3.25" HSA SPT				ION DATE RATIO (%)		/10/1 90*	8	ELE COC						EOB: , 1881	10.5 1 939 4870	<u>. </u>	PAGE 1 OF 1
ND FAN	MATERIAL DESCR AND NOTES	PTION	ELEV. 1041.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD	FS	N (% si) CL		ERBI PL	ERG PI	wc	ODOT CLASS (GI) SO4 ppm	HOLE SEALED
SR-605 A	Asphalt [6"] Base [6"]		1041.4	- 1 -																	
DDOT - S	STIFF, BROWN AND GRAY, SILTY SAND, TRACE GRAVEL, DAMP	LAY, TRACE	1038.9	- 2 -	3 4 4	12	100	SS-1	4.50	14	6	11	30	39	34	13	21	23	A-6b (11) <100	
195366 (STIFF TO VERY STIFF, BROWN, SI SOME SAND, SOME GRAVEL, DAM			_ 4 -	3 4 5	14	89	SS-2	4.50	10	13	16	32	29	28	14	14	15	A-6a (7)	-	
SINT/N4				- 5 - - - 6 -	3 6 7	20	100	SS-3	4.50	-	-	-	-	-	-	-	-	14	A-6a (V)	-	
OJECT (- 7 -	3 4 6	15	100	SS-4	3.50	-	-	-	-	-	-	-	-	14	A-6a (V)	-	
TOP\PR			1032.9	- 8 -	3 9 11	30	33	SS-5	3.00	-	-	-	-	-	-	-	-	16	A-6a (V)	-	
ED/DESK	VERY STIFF, GRAYISH BROWN, SI SOME SAND, LITTLE GRAVEL, DAN		1031.4		3 9 9	27	78	SS-6	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMME

	JECT: <u>DEL-605-00.31</u> E: ROADWAY	DRILLING FIRM / (SAMPLING FIRM /					L RIG: MER:							N / OF		-		-93, 7' ER RD	<u> </u>	PLORA B-002-	TION ID -0-20
PID: BHO STA	SFN: RT:5/11/20END:5/11/20	DRILLING METHO		3.25" HSA SPT				ION DATE RATIO (%)		90*	8	ELE COC						EOB: , 1882	10.5 f	·	PAGE 1 OF 1
ND FAN	MATERIAL DESCRIPTION AND NOTES	V	ELEV. 1043.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD	ATIO FS	N (% si) CL		ERBE PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
Bas	halt [6"] ee [6"]	/	_ <u>1042.5</u> _ _ <u>1042.0</u> _	- 1	_																
	RY STIFF, BROWN AND GRAY, SILTY TLE SAND, LITTLE GRAVEL, MOIST	CLAY,		- 2	3 3 3	9	89	SS-1	3.00	-	-	-	-	-	-	-	-	26	A-6b (V)	<100	
195366 C				4	2 2 2	6	89	SS-2	2.75	-	-	-	-	-	-	-	-	20	A-6b (V)	-	
SINT/N4			1037.0	- 5	3 3 5	12	100	SS-3	4.00	-	-	-	-	-	-	-	-	22	A-6b (V)	-	
	RY STIFF, BROWN, SILT AND CLAY , S ND, LITTLE GRAVEL, DAMP	OME		7	3 4 7	17	100	SS-4	4.50	-	-	-	-	-	-	-	-	14	A-6a (V)	-	
TOP/PR			1034.0	- 8	3 6 8	21	100	SS-5	4.50	-	-	-	-	-	-	-	-	15	A-6a (V)	-	
	RY STIFF, BROWN, SILTY CLAY , LITTL ME GRAVEL, MOIST TO WET	E SAND,	1032.5		5 8 11	29	100	SS-6	-	-	-	-	-	-	-	-	-	12	A-6b (V)	-	A A A

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMME

PID: SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 8/10/18 ELEVATION: 1044.6 (MSL) EOB: 10.5 ft. PAC START: 5/11/20 END: 5/11/20 ELEV. SAMPLING METHOD: SPT CALIBRATION DATE: 8/10/18 ELEVATION: 1044.6 (MSL) EOB: 10.5 ft. 10.1 ft. MATERIAL DESCRIPTION AND NOTES ELEV. DEPTHS SPT/ RQD N ₆₀ REC SAMPLE HP GRADATION (%) ATTERBERG ODOT SO4 HE Asphalt [6"] Base [6"] 1044.6 DEPTHS SPT/ RQD N ₆₀ (%) ID 18 7 9 27 39 44 16 28 18 A-7-6 (14) <100 4 100 14 34 32 29 15 14 15 A-6a (8) - 14 4 34 32 29 15 14 15 A-6a (V) - 14 4 34 34 31 34 15 100 SS-3 4.50 - - - - - - <th>PID: SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 8/10/18 ELEVATION: 1044.6 (MSL) EOS: 10.5 ft. PAA START: 5/11/20 END: 5/11/20 SAMPLING METHOD: SPT CALIBRATION DATE: 8/10/18 ELEVATION: 1044.6 (MSL) EOS: 10.5 ft. 10.5 ft.</th> <th>TYPE: ROADWAY</th> <th>•</th> <th></th> <th></th> <th>TERRACON /</th> <th></th> <th></th> <th>L RIG:</th> <th></th> <th>92, 21 605</th> <th><u>''LT.</u> EXF</th> <th>LORAT B-003-0</th> <th>TION)-20</th>	PID: SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 8/10/18 ELEVATION: 1044.6 (MSL) EOS: 10.5 ft. PAA START: 5/11/20 END: 5/11/20 SAMPLING METHOD: SPT CALIBRATION DATE: 8/10/18 ELEVATION: 1044.6 (MSL) EOS: 10.5 ft.	TYPE: ROADWAY	•			TERRACON /			L RIG:											92, 21 605	<u>''LT.</u> EXF	LORAT B-003-0	TION)-20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· •		-																10.5 ft.		
AND NOTES 1044.6 DEPTHS ROD No (%) ID (tst) GR cs FS si CL LL PL PI WC CLASS (G) Ppm si Asphalt [6"] 1044.1 1043.6 1044.1 1043.6 1	AND NOTES 1044.6 DEPTHS ROD Ne0 (%) ID (ts) GR CS FS si CL LL PL PI WC CLSSS (GI) pm si CL Asphalt [6"] 1044.1 1043.6 1044.1 1043.6 1					SPT														, 1881	876.6710 E	1	OF
AND NOTES Iddd,6 Iddd,6 <td>AND NOTES Index Index</td> <td></td> <td>N</td> <td></td> <td></td> <td>DEPTHS</td> <td></td> <td>N₆₀</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· ·</td> <td><i>.</i></td> <td></td> <td></td> <td></td> <td>11/0</td> <td></td> <td></td> <td>HC</td>	AND NOTES Index		N			DEPTHS		N ₆₀							· ·	<i>.</i>				11/0			HC
SAND, LITTLE GRAVEL, DAMP VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 100 1	SAND, LITTLE GRAVEL, DAMP VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 100			10			RQD		(70)	U	(เรา)	Ģĸ	US	F3	51	ÇL	LL	PL	PI	wc		P.P	 XXX
SAND, LITTLE GRAVEL, DAMP VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 100 1	SAND, LITTLE GRAVEL, DAMP VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 100	Base [6"]		XX 10		- 1 -																	
SAND, LITTLE GRAVEL, DAMP VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 100 1	SAND, LITTLE GRAVEL, DAMP VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 1038.6 100		RAY, CLAY ,	10	041.6	- 2 -		12	100	SS-1	4.00	18	7	9	27	39	44	16	28	18	A-7-6 (14)	<100	AN AN
VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 4 15 100 SS-4 4.50 - - - - 15 A-6b (V) - 1034.1 - - - - - - - - - - 15 A-6b (V) - - - - - - - - 16 A-6b (V) - - - - - - - 16 A-6b (V) - - - - - - - - - 16 A-6b (V) - - - - - - - - 16 A-6b (V) - - - - - - 16 A-6b (V) - - - - - - - 16 A-6b (V) - - - - - - 16 A-6b (V) - - - - - - 16 A-6b (V) - - - - - - 13 A-6b (V)	VERY STIFF, BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP 1038.6 4 15 100 SS-4 4.50 -<		SOME				4	15	100	SS-2	4.50	12	8	14	34	32	29	15	14	15	A-6a (8)	-	107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	38.6	- e -	8	20	100	SS-3	4.50	-	-	-	-	-	-	-	-	15	A-6a (V)	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -6 & 23 & 100 & SS-5 & 4.50 & -7 & -7 & -7 & -7 & -7 & -7 & -7 & -$		ЛЕ SAND,			- 7 -	4 6		100	SS-4	4.50	-	-	-	-	-	-	-	-	15	A-6b (V)	-	RY X LA
						E	6 9		100	SS-5	4.50	-	-	-	-	-	-	-	-	16	A-6b (V)	-	É.
					24.1			23	100	SS-6	4.50	-	-	-	-	-	-	-	-	13	A-6b (V)	-	Ad

PROJECT: _ TYPE: PID:	DEL-605-00.31 ROADWAY SFN:		RM / L	OGGER:	TERRACON / TERRACON / 3.25" HSA		НАМ	MER:	: <u>CME</u> SAFET	Y HAI		R	ALIG	GNM	N / OI ENT: ION:			SR - (-00, 8' 605 EOB:)-20 PAGE
START:5/	11/20 END: <u>5/11/20</u>	SAMPLING M	ETHOD	D:	SPT		ENE	RGY R	RATIO (%)	:	90*		coc	ORD:		1693	04.51	00 N	, 1881	844.9620 E		1 OF 1
	MATERIAL DESCRIPTIO	N	E	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE	HP		GRAD	OITA	N (%	5)	ATT	ERB	ERG		ODOT	SO4	HOLE
	AND NOTES		1	044.0	DEPTHS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	SEALE
_ Asphalt [6"]				043.5		-																
_Base [10"]			<u> </u>	042.7	- 1 -																	
	ERY STIFF, BROWN AND GR				- 2 -	3		100	00.4	4.05									0.5			13000
CLAY, TRAC	CE SAND, TRACE GRAVEL, D	AMP				34	11	100	SS-1	4.25	-	-	-	-	-	-	-	-	25	A-6b (V)	-	
					- 3 -	3	4.0															74>1
				039.5	- 4 -	35	12	100	SS-2	3.50	-	-	-	-	-	-	-	-	23	A-6b (V)	-	1 L N N N
VERY STIFF	F, BROWN AND GRAY, SILTY	CLAY.		000.0		3																all total
	ID, LITTLE GRAVEL, DAMP	,			- 5 -	3	11	100	SS-3	4.00	-	-	-	-	-	-	-	-	15	A-6b (V)	-	anno
					- 6 -	4																V LV
						5	15	100	SS-4	4.50	-	-	-	-	-	-	-	-	16	A-6b (V)	-	12
		20145	1	036.5	- ' -	5																
	WN AND GRAY, SILTY CLAY , LE GRAVEL, DAMP	SOME			- 8 -	3	12	100	SS-5	2.75	-	-	-	_	-	-	-	-	17	A-6b (V)	-	2) > 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			1	035.0	- 9 -	5																1000
	F, BROWN, SILT AND CLAY , L IE GRAVEL, DAMP	IIILE				5 10	32	100	SS-6	4.50	l _	_	-	_	_	_	_	_	13	A-6a (V)	_	
	E GRAVEL, DAIVIF		/// 1	033.5	-EOB	11																27m

TYPE: PID:	DEL-605-00.31			R: TERRACON/C		DRILL												02, 24		PLORA B-005-	
	ROADWAY SFN:	SAMPLING FIRM		TERRACON / SM 3.25" HSA				SAFET ON DATE		MMEI /10/1				ENT:			<u>SR - (</u>	605 EOB:			PAG
		SAMPLING METH		SPT				ATIO (%)		90*	0		ORD:						893 1080 E		1 OF
<u> </u>	MATERIAL DESCRIPTIO		ELEV.	6	CDT/	F		SAMPLE			RAD	ATIC			ATT					<u> </u>	но
	AND NOTES	-	1040.7		RQD		(%)	ID	(tsf)			FS	· · ·	CL	LL	PL	PI	wc	CLASS (GI)	ppm	SEAL
Asphalt [6"]																					
Base [10"]		X	1039.4	- 1																	
	ENSE, BROWNISH GRAY, SAI AVEL, DAMP	· IIIII	1037.7	2 - 6	3 9 9	27	100	SS-1	-	-	-	-	-	-	-	-	-	17	A-4a (V)	-	
	DISH BROWN AND GRAY, CL ID, TRACE GRAVEL, DAMP	AY,		- 3 - 3 - 4 -		18	33	SS-2	2.00	7	12	13	27	41	43	16	27	23	A-7-6 (14)	220	
			1034.7	5 ²	2	11	100	SS-3	3.50	-	-	-	-	-	-	-	-	20	A-7-6 (V)	-	
	F, BROWN TO GRAY, CLAY , T CE GRAVEL, DAMP	RACE		-6 + 3 - 7 +		14	100	SS-4	4.50	-	-	-	-	-	-	-	-	17	A-7-6 (V)	-	X Z AN
		RACE		8 - 3	3	15	100	SS-5	4.50	-	-	-	-	-	-	-	-	16	A-7-6 (V)	-	
			1030.2	= 9 7 - 10 -	/	21	100	SS-6	4.50	-	-	-	-	-	-	-	-	14	A-7-6 (V)	-	A A A

6	PROJECT: TYPE:	DEL-605-00.31 ROADWAY	DRILLING FIRM / SAMPLING FIRM			RACON /			L RIG MER:	: <u>CME</u> SAFET						N / OF				61, 10 ER RD		(PLORA B-006-	ATION ID -0-20
Ξ	PID: START:5	SFN:	DRILLING METH		3.25" I SF					ION DATE RATIO (%)		/10/1 90*	8	ELE COC					/	EOB: , 1881	10.5 t 778.2300		PAGE 1 OF 1
ND FAN		MATERIAL DESCRIPTION AND NOTES	V	ELEV. 1040.1	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	BRAD cs	ATIO FS	N (% si	S) CL		ERBI PL	ERG PI	wc	ODOT CLASS (GI) SO4 ppm	HOLE SEALED
3R-605 A	Asphalt [6"] Base [12"]			1038.6		- 1 -																	
- TODC	LITTLE SA	F, REDDISH BROWN AND GR ND, TRACE GRAVEL, DAMP		1037.1		- 2 -	4 4 6	15	67	SS-1	4.50	10	4	9	30	47	43	18	25	22	A-7-6 (15	,) -	43000 7 44 64 (1) 1
195366 (F, REDDISH BROWN AND GR LE SAND, TRACE GRAVEL, D				- 4 -	4 4	12	50	SS-2	3.25	-	-	-	-	-	-	-	-	22	A-6b (V)	<100	
GINT/N4						- 5 - - 6 -	3 5 6	17	78	SS-3	3.75	-	-	-	-	-	-	-	-	15	A-6b (V)		
OJECT (- 7 -	4 5 6	17	100	SS-4	4.50	-	-	-	-	-	-	-	-	15	A-6b (V)		
TOP/PR				1031.1		- 8 -	4 7 7	21	100	SS-5	4.00	-	-	-	-	-	-	-	-	15	A-6b (V)		
ED/DESK		F, BROWN AND GRAY, SILTY ID, SOME GRAVEL, DAMP	CLAY,	1029.6	— EOB—	- 10 -	4 4 4	12	100	SS-6	3.00	-	-	-	-	-	-	-	-	14	A-6b (V)	-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMME

TYPE: ROADWAY PID:	DRILLING FIRM / SAMPLING FIRM DRILLING METH SAMPLING METH	/ Logger: DD:			HAM CALI	BRAT	: <u>CME</u> SAFET ION DATE RATIO (%)	TY HÀI E:8		R	ALIO ELE	GNM	ENT: ION:	1039	FA 9.5 (N	NCHE /ISL)	⊦71, 5 <u>ER RE</u> EOB: . 1881		·	
MATERIAL DESCRIPTION		ELEV. 1039.5	DEPTHS	SPT/ RQD			SAMPLE ID		6		ATIC	N (%		ATT		ERG	wc	ODOT CLASS (GI)	SO4 ppm	HOLE
AND NOTES Asphalt [6"] Base [12"]		1039.0	- 1 -			(70)						0.	UL.							
 MEDIUM DENSE, BROWNISH GRAY, GRA STONE FRAGMENTS, TRACE SAND, TRAC DAMP ,POSSIBLE FILL 		a l	- 2 -	5 5 5 3	15	89	SS-1	-	-	-	-	-	-	-	-	-	15	A-1-a (V)	<100	
	0	1035.0	- 4 -	$3 \\ 3 \\ 2 $	9	89	SS-2	-	92	1	0	-	7 - 	NP	NP	NP	1	A-1-a (0)	-	
CLAY , TRACE SAND, TRACE GRAVEL, DA		- 1	- 5 - - 6 -	3 3 2	9	100	SS-3	2.00		-	-	-	-	-	-	-	30	A-7-6 (V)	-	
		-	- 7 -	3 4 2 3	11	100 100	SS-4 SS-5	3.50 1.50		-	-	-	-	- _	-	-	21 25	A-7-6 (V)	-	
VERY STIFF, BROWN, SILTY CLAY , LITTLI TRACE GRAVEL, DAMP	E SAND,	1030.5	- 9 - - 10 -		14	100	SS-6	2.50		-	-	-	-	-	-	-	25 17	A-7-6 (V)	-	

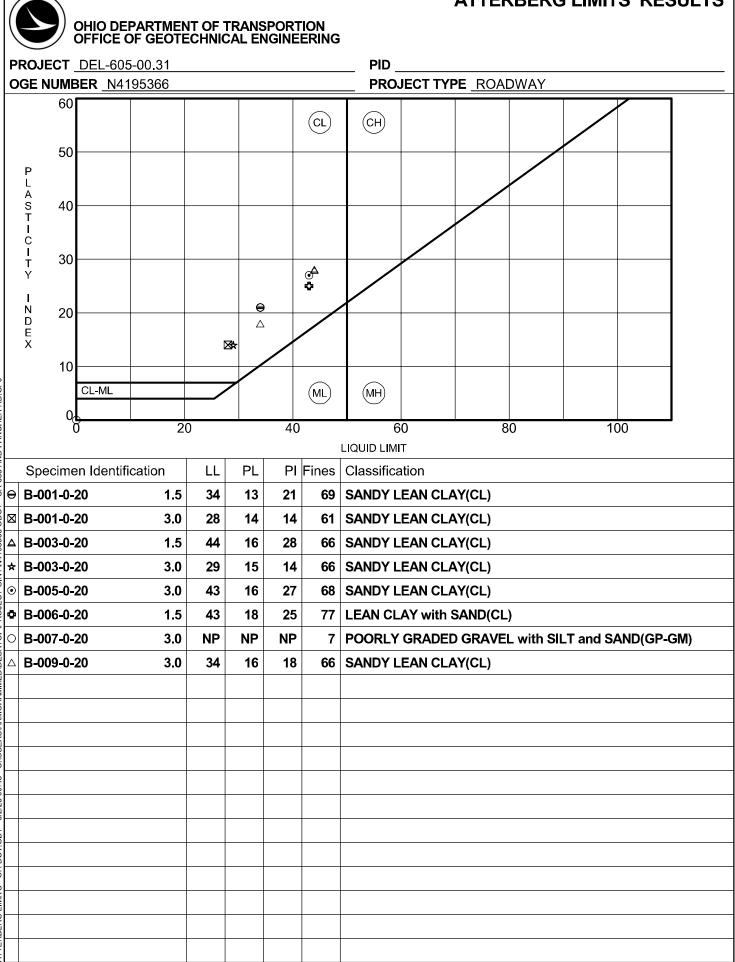
PROJECT: <u>DEL-605-00.31</u>	DRILLING FIRM / C SAMPLING FIRM /				DRIL HAM		CME SAFET				STA ALIO					110+ SR - 6	-04, 7' 605	<u>LT.</u> EX	PLORA B-008-	TION IE 0-20
PID:	DRILLING METHOR SAMPLING METHO		3.25" HSA SPT				ON DATE ATIO (%)	:8	/10/1 90*		ELE COC				`		EOB: , 1881	10.5 f 904.7560	· _	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	v	ELEV. 1038.1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD	ATIO FS	N (% si	s) CL		ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
Asphalt [6"] Base [12"]		_ <u>1037.6</u> _ 1036.6	- 1 -	_																
STIFF, BROWN, SILT AND CLAY , LITTLE TRACE GRAVEL, DAMP		1035.1	- 2 -	4 4 4	12	100	SS-1	3.00	-	-	-	-	-	-	-	-	21	A-6a (V)	<100	
MEDIUM DENSE, BROWN, SANDY SILT , S GRAVEL, DAMP	SOME		- 4 -	3 3 4	11	33	SS-2	I	I	-	-	-	-	-	-	-	14	A-4a (V)	-	
		1032.1	- 5 -	3 6 9	23	100	SS-3	I	I	-	-	-	-	-	-	-	15	A-4a (V)	-	
MEDIUM DENSE, BROWNISH GRAY, SAN LITTLE GRAVEL, DAMP	NDY SILT,		- 7 -	7 10 10	30	100	SS-4	I	I	-	-	-	-	-	-	-	10	A-4a (V)	-	
		1029.1	- 8 -	6 8 8	24	89	SS-5	-	-	-	-	-	-	-	-	-	11	A-4a (V)	-	
K VERY STIFF, BROWNISH GRAY, SILT AN SOME SAND, LITTLE GRAVEL, DAMP	ID CLAY,	1027.6	- 10 -	5 7 7	21	100	SS-6	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMME

		DRILLING FIRM / C				DRIL HAM		CME				STA ALIC		N / OF ENT:				·80, 7' ER RD	<u> </u>	PLORA B-009-	TION ID -0-20
	SFN: T:5/11/20END:5/11/20	DRILLING METHO		3.25" HSA SPT	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>			ION DATE RATIO (%)		/10/1 90*	8	ELE COC				`		EOB: , 1882	10.5 ft 393.7580	<u>. </u>	PAGE 1 OF 1
ND FAN	MATERIAL DESCRIPTION AND NOTES	V	ELEV. 1044.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD	FS	N (% si	5) CL		ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
d Aspha Goog- Hg Base	alt [6"] [12"]		<u>1044.2</u> 1043.2	-	1 -																
	Y STIFF, BROWN AND GRAY, SILTY LE SAND, LITTLE GRAVEL, DAMP	CLAY,		-	$\begin{array}{c} 2 \\ 3 \\ \end{array} \begin{array}{c} 4 \\ 4 \\ 5 \\ \end{array}$	14	78	SS-1	4.50	I	-	-	-	-	-	-	-	21	A-6b (V)	<100	
195366 C					4 - ³ 4 5	14	44	SS-2	4.00	12	7	15	31	35	34	16	18	16	A-6b (9)	-	
SINT/N4			1038.7	-	5 4 4 4 4 4 4 4 4 4	12	100	SS-3	4.00	-	-	-	-	-	-	-	-	20	A-6b (V)	-	
	Y STIFF, BROWN, SILTY CLAY , LITTI E GRAVEL, DAMP	E SAND,			0 4 7 - 7 9	24	100	SS-4	4.50	I	-	-	-	-	-	-	-	13	A-6b (V)	-	
TOP/PR			1035.7	-		17	100	SS-5	3.00	-	-	-	-	-	-	-	-	12	A-6b (V)	-	
	Y STIFF, BROWNISH GRAY, SILTY C LE SAND, SOME GRAVEL, MOIST	LAY,	1034.2	-	9 10 - 4 4	12	100	SS-6	4.00	-	-	-	-	-	-	-	-	13	A-6b (V)	-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMME

D.GP.J	PROJECT: DEL-605-00.31 TYPE: ROADWAY	DRILLING FIRM /					L RIG MER:	CME - SAFET			<i></i>			N / OF ENT:				·61, 7' ER RD	<u></u>	PLORA B-010	ATION ID 1-0-20
CHER RI	PID: SFN: START: 5/11/20 END: 5/11/20	DRILLING METHO SAMPLING METH		3.25" HSA SPT		CALI	BRAT	ION DATE RATIO (%)	:8				VATI			`		EOB: , 1881	10.5 f 380.8130		PAGE 1 OF 1
ND FAN	MATERIAL DESCRIPTION AND NOTES	N	ELEV. 1039.2	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD	ATIO FS	N (% si	S) CL		ERBI	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	
sR-605 A	Asphalt [6"] Base [12"]		<u>1038.7</u> 1037.7	- 1	-																
S- TODO	STIFF, BROWN, SILTY CLAY , LITTLE SAN GRAVEL, DAMP	ND, LITTLE		- 2	4 5 6	17	100	SS-1	3.50	-	-	-	-	-	-	-	-	16	A-6b (V)	-	A A A A A A A A A A A A A A A A A A A
195366 (1034.7	- 4	4 6 7	20	22	SS-2	3.50	-	-	-	-	-	-	-	-	13	A-6b (V)	-	
GINT/N4	STIFF TO VERY STIFF, BROWN, SILT AN SOME SAND, LITTLE GRAVEL, DAMP		1033.2	- 5 - 6	4 7 9	24	100	SS-3	3.75	-	-	-	-	-	-	-	-	16	A-6a (V)	-	
OJECT (VERY STIFF, BROWN AND GRAY, SILTY SOME SAND, LITTLE GRAVEL, SHALE FI NOTED. DAMP			- 7	5 7 10	26	100	SS-4	4.50	-	-	-	-	-	-	-	-	14	A-6b (V)	-	
TOP/PR	, ,		1030.2	- 8	4 8 11	29	100	SS-5	4.50	-	-	-	-	-	-	-	-	13	A-6b (V)	-	
ED/DESK	STIFF TO VERY STIFF, DARK GRAY, SIL CLAY, SOME SAND, LITTLE GRAVEL, SH FRAGMENTS NOTED, DAMP		1028.7		³ 6 6	18	94	SS-6	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	-	


STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMN

KD.GPJ	PROJECT: <u>DEL-605-00.31</u> TYPE: <u>ROADWAY</u>	DRILLING FIRM / SAMPLING FIRM /					L RIG					STA ALIG			FSE		111+ SR - 6	81, 7' 605	RT. EX	B-011-	
CHER F	PID: SFN: START:S/11/20 END:5/11/20	DRILLING METHC		3.25" HSA SPT				ION DATE RATIO (%)		/10/18 90*	8	ELE' COC		-		<u> </u>		EOB: 1881	<u>10.5 ft</u> 913.1370 l	· _	PAGE 1 OF 1
ND FAN	MATERIAL DESCRIPTION AND NOTES	N	ELEV. 1037.6	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		RAD cs	ATIO FS	N (%) si) / CL		ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	HOLE SEALED
R-605 AI	Asphalt [6"] Base [12"]		<u>1037.1</u> 1036.1	- 1	-																
S-TOOC	MEDIUM DENSE, GRAYISH BROWN, SA DAMP	NDY SILT,		- 2	5 5 7	18	100	SS-1	-	-	-	-	-	-	-	-	-	15	A-4a (V)	-	
195366 (DARK BROWN SAND SEAMS NOTED @		1033.1	4	7 7	21	22	SS-2	-	-	-	-	-	-	-	-	-	16	A-4a (V)	-	
BINT/N4	STIFF, OLIVE BROWN AND GRAY, SILTY LITTLE SAND, TRACE GRAVEL, DAMP		1031.6	- 5 - 6	2 4 5	14	100	SS-3	2.25	-	-	-	-	-	-	-	-	22	A-6b (V)	-	
OJECT (VERY STIFF, BROWN, SILT AND CLAY , S SAND, LITTLE GRAVEL, DAMP		1030.1	- 7	$\begin{bmatrix} 3 \\ 6 \\ 7 \end{bmatrix}$	20	100	SS-4	4.50	-	-	-	-	-	-	-	-	14	A-6a (V)	_	
TOP/PR	VERY STIFF, BROWN, SILTY CLAY , SOM LITTLE GRAVEL, DAMP	IE SAND,	1028.6	- 8	5 10 10	30	100	SS-5	4.50	-	-	-	-	-	-	-	-	13	A-6b (V)	-	
ED/DESK	VERY STIFF, BROWNISH GRAY, SILTY C SOME SAND, LITTLE GRAVEL, SHALE FI NOTED, DAMP		1027.1		10 10 7	26	94	SS-6	3.75	-	-	-	-	-	-	-	-	12	A-6b (V)	-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 6/14/20 21:48 - C:\USERS\AKMOHAMM

ATTERBERG LIMITS AND GRAIN SIZE DISTRIBUTION

(3 pages)

- SR-605 AND FANCHER RD GPJ ATTERBERG LIMITS - OH DOT GDT - 6/2/20 00:45 - C:/USERS/AKMOHAMMED/DESKTOP/PROJECT GINT/N4195366 ODOT **ATTERBERG LIMITS' RESULTS**

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

PID _ OGE NUMBER N4195366 PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 HYDROMETER U.S. SIEVE OPENING IN INCHES 1/2 3/8 3 2 1.5 4 6 6 4 - 3 1 3/4 100 95 90 ዎ 85 80 図 75 70 65 PERCENT FINER BY WEIGHT X 60 55 50 45 40 35 Ж 30 × 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT coarse fine LL PL Ы Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification θ B-001-0-20 1.5 A-6b ~ SANDY LEAN CLAY(CL) 34 13 21 A-6a ~ SANDY LEAN CLAY(CL) \boxtimes B-001-0-20 3.0 28 14 14 Δ B-003-0-20 1.5 A-7-6 ~ SANDY LEAN CLAY(CL) 44 16 28 ★ B-003-0-20 3.0 A-6a ~ SANDY LEAN CLAY(CL) 29 15 14 ۲ B-005-0-20 3.0 A-7-6 ~ SANDY LEAN CLAY(CL) 43 16 27 D30 %CS %FS Cu Specimen Identification D90 D50 D10 %G %М %C Cc θ 30 B-001-0-20 1.5 2.601 0.01 14 6 11 39 \boxtimes B-001-0-20 3.0 0.025 0.005 10 2.112 13 16 32 29 B-003-0-20 1.5 3.079 18 9 ⊿ 0.012 7 27 39 * B-003-0-20 3.0 2.393 0.017 0.004 12 8 14 32 34

7

12

13

27

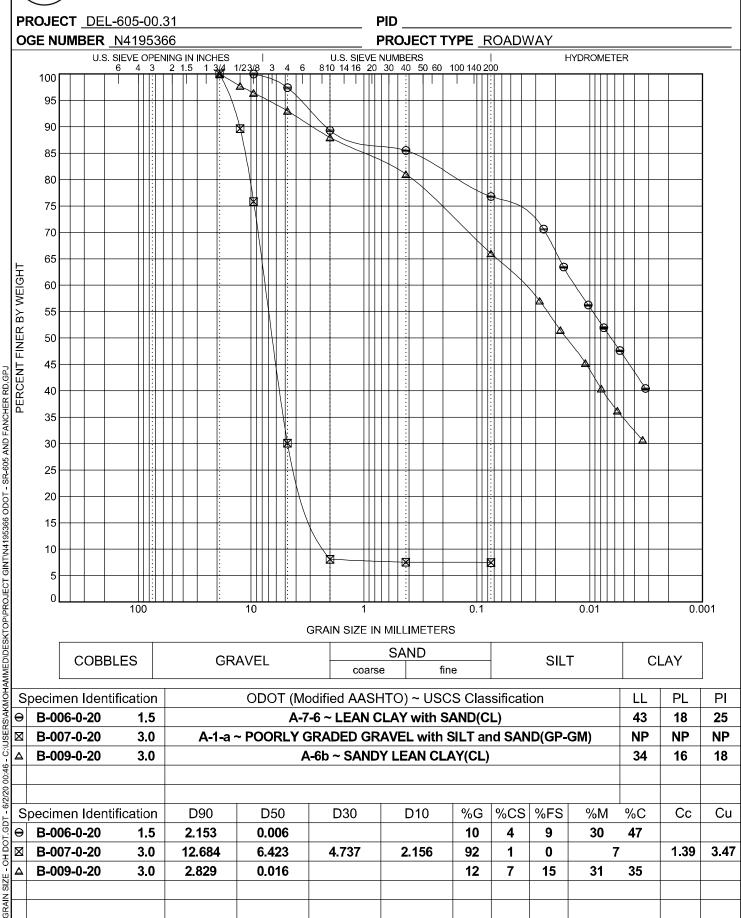
41

JSERS/AKMOHAMMED/DESKTOP/PROJECT GINT/N4195366 ODOT - SR-605 AND FANCHER RD GPJ ΰ 00:46 - 6/2/20 GDT - OH DOT **BRAIN SIZE**

۲

B-005-0-20

3.0


1.502

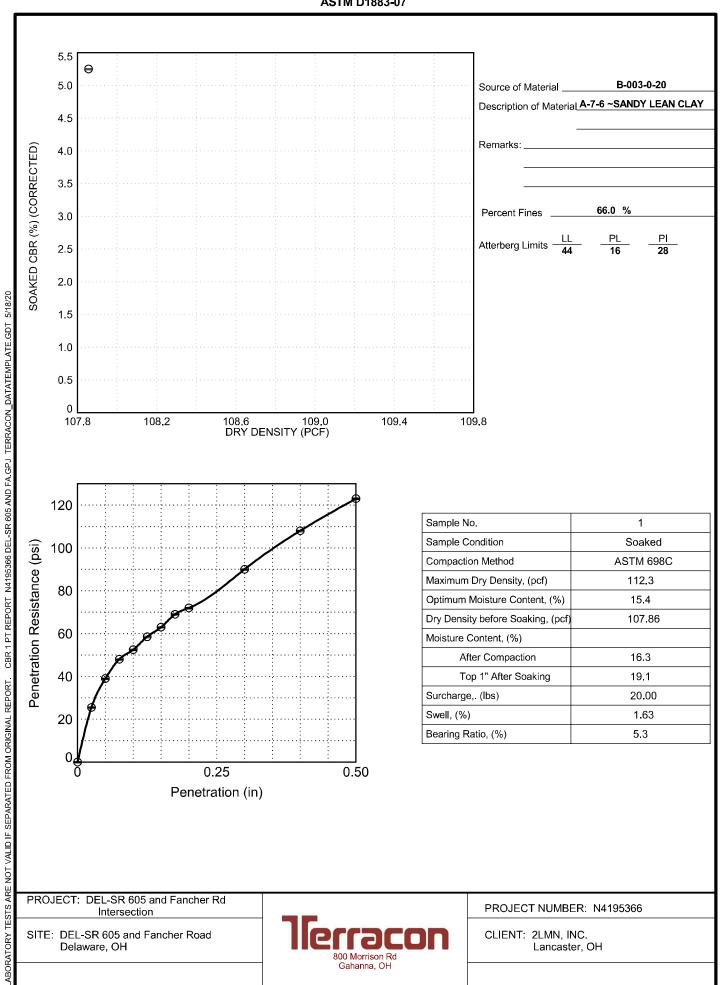
0.01

GRAIN SIZE DISTRIBUTION

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

(2 pages)

CBR


CALIFORNIA BEARING RATIO

ASTM D1883-07²

CALIFORNIA BEARING RATIO

ASTM D1883-07²

SULFATE TEST RESULTS

(2 pages)

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: Terracon Attn: S. Aaron Martin 800 Morrison Road Columbus, OH 43230
 Report Date:
 May 29, 2020

 Job No.:
 195867

 Report No.:
 431462

 No. of Pages:
 2

Report On:Laboratory Determination of Sulfate Content in Soils – Turbidimetric Method
Project: DEL-SR 605 and Fancher Rd Intersection – N4195366

On May 18, 2020, eight soil samples were submitted for determination of sulfate content in soils for the above referenced project. Testing was performed as specified by the client and in accordance with ODOT Supplement 1122, "Determining Sulfate Content in Soils by Turbidimetric Method".

Results are presented in the attached table.

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Vice President Assistant Director, CMT & Geotechnical Laboratories

KAF/blc 431462 1-File 1-samartin@terracon.com Report To: Terracon

Project: DEL-SR 605 and Fancher Rd. Intersection

Boring	Sample	Depth	Soaking	Dilution	Repli	cate Sample Rea	Average	Sulfate Content	
Number	Number	(ft)	Time (hr)	Ratio	1	2	3	Reading	(ppm)
B-20-1	1	1.0-2.5	16.0	20	2.3	2.6	2.1	2.3	47
B-20-2	1	1.0-2.5	16.0	20	6.0	3.0	3.0	4.0	80
B-20-3	1	1.0-2.5	16.0	20	3.2	5.4	3.0	3.9	77
B-20-5	1	3.5-5.0	16.0	20	10.0	10.9	11.5	10.8	216
B-20-6	2	3.5-5.0	16.0	20	1.5	1.8	1.7	1.7	33
B-20-7	1	1.0-2.5	16.0	20	3.9	3.9	3.2	3.7	73
B-20-8	1	1.0-2.5	16.0	20	3.4	2.8	2.4	2.9	57
B-20-9	1	1.0-2.5	16.0	20	4.3	3.5	4.1	4.0	79

Date Received: 5/18/2020

Job No.: 195867

Report No.: 431462

GB-1 SUBGRADE ANALYSIS

Contents:

GB-1 Subgrade Analysis (8 pages)

Note: All attachments are one page unless noted above.

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

DEL 605-0.31

Subgrade Analysis for The Proposed DEL- SR 605 and Fancher Road Intersection Improvements

Terracon Consultants, Inc.

Prepared By: Date prepared:

Abdul Mohammed Wednesday, June 17, 2020

Terracon Consultants, Inc. 800 Morrision Road Columbus, Ohio 43230 Phone: 614-328-5167

abdulkaleem.mohammed@terracon.com

NO. OF BORINGS:

11

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-20	Fancher Rd	207+21.	14	Lt	CME 45B (#3924)	91	1040.9	1041.7	0.8 F
2	B-002-0-20	Fancher Rd	209+93.3	7	Lt	CME 45B (#3924)	91	1042.0	1040.2	1.8 C
3	B-003-0-20	SR-605	104+92.2	21	Rt	CME 45B (#3924)	91	1043.6	1041.4	2.2 C
4	B-004-0-20	SR-605	101+99.	8	Lt	CME 45B (#3924)	91	1042.7	1042.7	0.0
5	B-005-0-20	SR-605	108+01.7	24	Rt	CME 45B (#3924)	91	1039.4	1040.2	0.8 F
6	B-006-0-20	Fancher Rd	205+61.3	10	Lt	CME 45B (#3924)	91	1038.6	1039.9	1.3 F
7	B-007-0-20	Fancher Rd	203+71.3	5	Lt	CME 45B (#3924)	91	1038.0	1038.0	0.0
8	B-008-0-20	SR-605	110+03.	7	Rt	CME 45B (#3924)	91	1036.6	1037.1	0.5 F
9	B-009-0-20	Fancher Rd	211+79.	7	Lt	CME 45B (#3924)	91	1043.2	1043.2	0.0
10	B-010-0-20	Fancher Rd	201+61.	7	Lt	CME 45B (#3924)	91	1037.7	1037.7	0.0
11	B-011-0-20	SR-605	111+80.	7	Rt	CME 45B (#3924)	91	1036.1	1036.3	0.2 F

Subgrade Analysis

V. 14.5

1/18/2019

#	Boring	Sample	San De	nple pth	Subg De		Stan Penet		HP		Ρ	hysic	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item		Recommendation (Enter depth in
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	ΡI	% Silt	% Clay	P200	M_{C}	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	1	1.5	3.0	2.3	3.8	12		4.5	34	13	21	30	39	69	23	16	A-6b	11	47					
	001-0	2	3.0	4.5	3.8	5.3	14		4.5	28	14	14	32	29	61	15	14	A-6a	7						
	20	3	4.5	6.0	5.3	6.8	20		4.5							14	14	A-6a							
		4	6.0	7.5	6.8	8.3	15	12	3.5							14	14	A-6a							
2	В	1	1.5	3.0	-0.3	1.2	9		3							26	16	A-6b	16	80		N ₆₀ & Mc		12''	
	002-0	2	3.0	4.5	1.2	2.7	6		2.75							20	16	A-6b	16			N ₆₀ & Mc			
	20	3	4.5	6.0	2.7	4.2	12		4							22	16	A-6b	16						
		4	6.0	7.5	4.2	5.7	17	6	4.5							14	14	A-6a	10						
3	В	1	1.5	3.0	-0.7	0.8	12		4	44	16	28	27	39	66	18	18	A-7-6	14	77					
	003-0	2	3.0	4.5	0.8	2.3	15		4.5	29	15	14	34	32	66	15	14	A-6a	8						
	20	3	4.5	6.0	2.3	3.8	20		4.5							15	14	A-6a	10						
		4	6.0	7.5	3.8	5.3	15	12	4.5							15	16	A-6b	16						
4	В	1	1.5	3.0	1.5	3.0	11		4.25							25	16	A-6b	16			N ₆₀ & MC			
	004-0	2	3.0	4.5	3.0	4.5	12		3.5							23	16	A-6b	16						
	20	3	4.5	6.0	4.5	6.0	11		4							15	16	A-6b	16						
		4	6.0	7.5	6.0	7.5	15	11	4.5							16	16	A-6b							
5	В	1	1.5	3.0	2.3	3.8	27									17	10	A-4a	8						
	005-0	2	3.0	4.5	3.8	5.3	18		2	43	16	27	27	41	68	23	18	A-7-6	14	216					
	20	3	4.5	6.0	5.3	6.8	11		3.5							20	18	A-7-6							
		4	6.0	7.5	6.8	8.3	14	11	4.5							17	18	A-7-6							
6	В	1	1.5	3.0	2.8	4.3	15		4.5	43	18	25	30	47	77	22	18	A-7-6	15						
	006-0	2	3.0	4.5	4.3	5.8	12		3.25							22	16	A-6b	16	33					
	20	3	4.5	6.0	5.8	7.3	17		3.75							15	16	A-6b							
		4	6.0	7.5	7.3	8.8	17	12	4.5							15	16	A-6b							
7	В	1	1.5	3.0	1.5	3.0	15									15	6	A-1-a	0	73					
	007-0	2	3.0	4.5	3.0	4.5	9			0	0	NP	7		7	1	6	A-1-a	0						
	20	3	4.5	6.0	4.5	6.0	9		2							30	18	A-7-6	16						
		4	6.0	7.5	6.0	7.5	11	9	3.5							21	18	A-7-6							
8	В	1	1.5	3.0	2.0	3.5	12		3							21	14	A-6a	10	56		N ₆₀ & MC			
	008-0	2	3.0	4.5	3.5	5.0	11									14	10	A-4a	8						
	20	3	4.5	6.0	5.0	6.5	23									15	10	A-4a	8						
		4	6.0		6.5	8.0	30	11								10	10	A-4a	-						
9	В	1	1.5		1.5	3.0	14		4.5							21	16	A-6b	16	79		N ₆₀ & MC			
	009-0	2	3.0		3.0	4.5	14		4	34	16	18	31	35	66	16	16	A-6b	9						
	20	3	4.5		4.5	6.0	12		4							20	16	A-6b	16						
	20	4	6.0		6.0	7.5	24	12	4.5							13	16	A-6b					L		
		-	0.0	7.0	0.0	,.0	27	12	1.0						I	10	10		I						

#	Boring	Sample		nple pth		jrade pth		dard ration	HP		PI	hysic	al Chara	cteristics		Mo	sture	Ohio DOT		Sulfate Content	Problem		Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M_{C}	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	1	1.5	3.0	1.5	3.0	17		3.5							16	16	A-6b	16						
	010-0	2	3.0	4.5	3.0	4.5	20		3.5							13	16	A-6b	16						
	20	3	4.5	6.0	4.5	6.0	24		3.75							16	16	A-6b	16						
		4	6.0	7.5	6.0	7.5	26	17	4.5							14	16	A-6b							
11	В	1	1.5	3.0	1.7	3.2	18									15	10	A-4a	8			Mc			
	011-0	2	3.0	4.5	3.2	4.7	21									16	10	A-4a	8						
	20	3	4.5	6.0	4.7	6.2	14		2.25							22	16	A-6b	16						
		4	6.0	7.5	6.2	7.7	20	14	4.5							14	14	A-6a							

PID:

County-Route-Section: DEL 605-0.31 No. of Borings: 11

Geotechnical Consultant:Terracon Consultants, Inc.Prepared By:Abdul MohammedDate prepared:6/17/2020

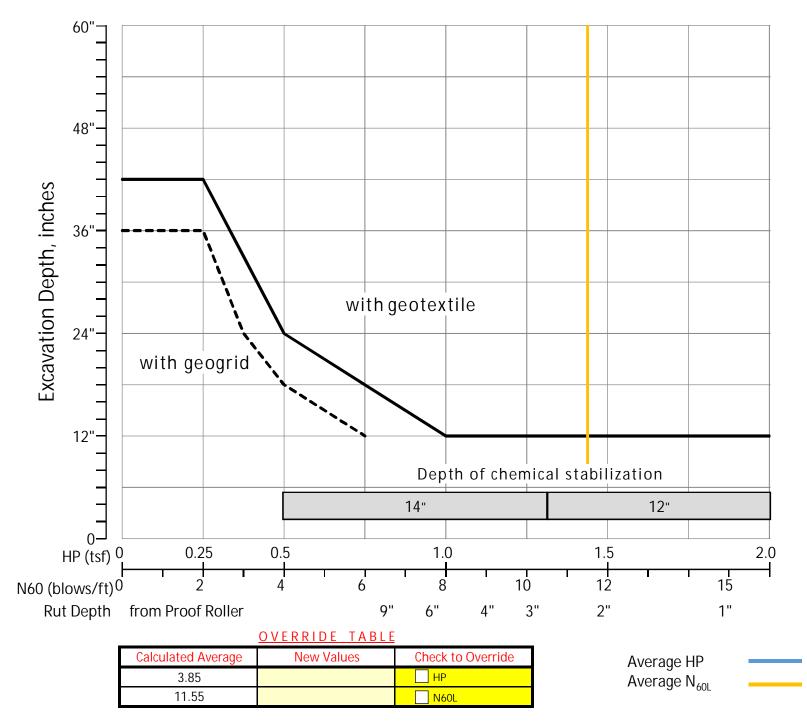
(Chemical Stabilization Option	IS
320	Rubblize & Roll	No
206	Cement Stabilization	No
	Lime Stabilization	Option
206	Depth	12''

Excavate and Repl	ace
Stabilization Optic	ons
Global Geotextile	
Average(N60L):	12''
Average(HP):	0''
Global Geogrid	
Average(N60L):	0''
Average(HP):	0''

Design CBR 5

% Sampl	es within	6 feet of subgr	ade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	23%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	28%	1 < HP ≤ 2	5%
N ₆₀ ≥ 20	23%	HP > 2	77%
M+	15%		
Rock	0%		
Unsuitable	0%		

Excavate and Repl at Surface	ace
Average	0''
Maximum	0''
Minimum	0''


% Proposed Subgrade Su	irface
Unstable & Unsuitable	43%
Unstable	43%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	16	12	3.85	32	14	21	27	37	60	17	15	12
Maximum	30	17	4.50	44	18	28	34	47	77	30	18	16
Minimum	6	6	2.00	0	0	14	7	29	7	1	6	0

					Class	sificat	ion C	count	ts by	Sam	ple								
ODOT Class	Rock	A-1-a	a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b												Totals				
Count	0	2	0	0	0	0	0	0	0	6	0	0	8	21	0	7	0	0	44
Percent	0%	5%	0%	0%	0%	0%	0%	0%	0%	14%	0%	0%	18%	48%	0%	16%	0%	0%	100%
% Rock Granular Cohesive	0%					18%								82	2%				100%
Surface Class Count	0	1	0	0	0	0	0	0	0	2	0	0	3	7	0	1	0	0	14
Surface Class Percent	0%	7%	0%	0%	0%	0%	0%	0%	0%	14%	0%	0%	21%	50%	0%	7%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OHIO DEPARTMENT OF TRANSPORTATION	Subgrade Analysis		
TRANSPORTATION	V. 14.5	1/18/2019	

The subgrade analysis workbook consists of five worksheets. Each worksheet functions independently. In all of the worksheets the fields are color coded as follows:

- Every yellow highlighted field indicates a field to be entered by the user.
- Every salmon field is to indicate a problem/issue.
- Every gray or green field is a heading/informational field.

IMPORTANT: The sequence of filling out the data needs to be followed as outlined below:

1. Cover Sheet: this worksheet is designed for the purpose of entering the project information. Enter all the following fields:

County-Route-Section	This includes the county, route, section number assigned to the project.
PID	the Project Identification Number
Project Description	See Cover Sheet for list of example details
Geotechnical Consultant	The Geotechnical Consultant performing the analysis.
Prepared By	The preparer of the subgrade analysis
Date prepared	The date the analysis is performed.
Contact Information	Name, address, telephone #, and email address
No. of Borings	Enter the total number of borings within the alignment that is being analyzed.

2. Boring Logs Entry Worksheet: this worksheet has a programming code that will run in the background every time the sheet is activated and will make the sheet unresponsive for less than a minute. The code is designed to read the total number of borings from the cover sheet and generate the needed number of fields.

a. All yellow highlighted fields are user's entry.

b. ODOT has developed a text table export from gINT (GB 1 Borings Log Entry Tab) that will allow for copy and paste of all highlighted fields with the exception of proposed subgrade elevation. The designer must provide a proposed subgrade elevation in order for the spreadsheet to function properly.

c. The Cut/Fill field is a calculated field that, based on the difference between the boring elevation and the proposed subgrade elevation, will highlight the cell either gray and adds the letter "C" to the end in a cut situation or highlights the cell in light purple and adds the letter "F" to the end in a fill situation.

d. Every duplicate boring ID will be highlighted in salmon background and red text.

e. IMPORTANT: <u>After</u> entering all the borings' information, the user must click "Add Subgrade Analysis Entry Fields" button. This will generate all the required fields in the "Subgrade Analysis" Worksheet.

3. Subgrade Analysis Worksheet:

a. The boring number and boring ID is read from the "Boring Logs Entry Worksheet" excluding every boring that has six feet or more of fill.

b. All yellow highlighted fields are to be entered by the user and salmon highlighted fields indicates a problem or issue.

c. Every sample that has a Sulfate Content greater than or equal to 3000 will be highlighted in light salmon background. Every sample that has a Sulfate Content greater than or equal to 8000 will be highlighted in darker salmon background. Note the revised sulfate criteria in GB1 issued July 20, 2018.

d. Unsuitable/Unstable:

i. Unsuitable samples that are within 3 feet of the top of subgrade will be highlighted with salmon background and the class will be showing in this field.

ii. Unstable Samples that are within 3 feet of top of subgrade will be highlighted with salmon background and text to indicate the problem as follows:

Criterion	Stabilization Need Check	Text displayed in the field
A-1-a, A-1-b, A-3, or A-3a Soil Class	No Stabilization is needed	
HP ≥ 1.875	No Stabilization is needed	
N ₆₀ ≥ 15	No Stabilization is needed	
$1.875 \ge HP \ge 1.5 \text{ and } M_c \ge Opt. M_c+3$	Unstable Subgrade	HP & Mc
$15 \ge N_{60} \ge 12$ and $M_c \ge Opt. M_c+3$	Unstable Subgrade	N ₆₀ & Мс
HP ≤ 1.5	Unstable Subgrade	HP
N ₆₀ ≤ 12	Unstable Subgrade	N ₆₀

iii. The field is formulated to check for HP first and check for N_{60} second.

e. Excavate and Replace (Item 204) is going to be calculated based on the subgrade depth for each sample indicating an unsuitable or unstable problem.

f. Recommendation:

i. Geotextile Option is calculated and rounded to a multiple of 3 inches based on the subgrade depth for every sample indicating an unsuitable or unstable problem.ii. GEOGRID Option is only offered in case of unstable subgrade problem and if the geotextile option indicates the need to excavate greater than 12 inches.

PLEASE NOTE: The Problem, Excavate & Replace, and Recommendation Fields are the responsibility of the Designer. These fields are being enhanced to attempt to capture the ODOT philosophy regarding the GB1 stabilization chart, but are considered still under development. If there are discrepancies between the spreadsheet output and the GB1 chart - the chart governs in conjunction with engineering judgement. Please contact Steve Taliaferro at stephen.taliaferro@dot.ohio.gov if you have any questions.

PLEASE NOTE: It is the Designer's responsibility to identify the most representative data when samples have been separated into multiple specimen (say 1.5 to 2.3 feet and 2.3 to 3.0 feet). The spreadsheet is not capable at this time of addressing this issue within a direct data export from gINT.

4. Results Summary:

All fields in this sheet are password protected and are either calculated or read from the other worksheets.

5. Graph Worksheet:

This worksheet is designed to read the average N_{60L} and the average HP from the Cover Sheet and plot a blue line for Average HP and orange line for Average N_{60L} on GB1 Figure B – Subgrade Stabilization. The Override Table can be used to enter HP and/or N_{60L} values that are different than the calculated averages. The Override values will change the global undercut recommendation in the Results Summary.

SUPPORTING INFORMATION

Contents:

General Notes Unified Soil Classification System ODOT Quick Reference for Visual Description of Soils ODOT Classification of Soils

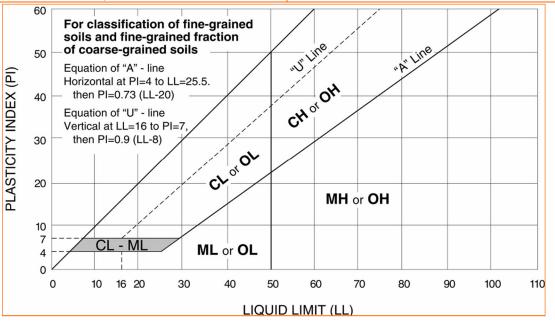
Note: All attachments are one page unless noted above.

UNIFIED SOIL CLASSIFICATION SYSTEM

Terracon GeoReport

						Soil Classification		
Criteria for Assigni	Group Symbol	Group Name ^B						
		Clean Gravels:	Cu ³ 4 and 1 £ Cc £ 3 ^E		GW	Well-graded gravel F		
	Gravels: More than 50% of	Less than 5% fines ^C	Cu < 4 and/or [Cc<1 or C	c>3.0] ^E	GP	Poorly graded gravel ^F		
	coarse fraction retained on No. 4 sieve	Gravels with Fines:	Fines classify as ML or N	1H	GM	Silty gravel ^{F, G, H}		
Coarse-Grained Soils: More than 50% retained	Tetained on No. 4 Sieve	More than 12% fines ^C	Fines classify as CL or C	Н	GC	Clayey gravel ^{F, G, H}		
on No. 200 sieve		Clean Sands:	Cu ³ 6 and 1 £ Cc £ 3 ^E		SW	Well-graded sand ^I		
	Sands: 50% or more of coarse fraction passes No. 4	Less than 5% fines D	Cu < 6 and/or [Cc<1 or C	c>3.0] ^E	SP	Poorly graded sand ^I		
		Sands with Fines:	Fines classify as ML or N	1H	SM	Silty sand ^{G, H, I}		
	sieve	More than 12% fines ^D	Fines classify as CL or C	н	SC	Clayey sand ^{G, H, I}		
		Increania	PI > 7 and plots on or above "A"		CL	Lean clay ^K , L, M		
	Silts and Clays:	Inorganic:	PI < 4 or plots below "A"	line ^J	ML	Silt K, L, M		
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75	OL	Organic clay K, L, M, N		
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	< 0.75	UL	Organic silt ^K , L, M, O		
No. 200 sieve	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line		СН	Fat clay ^{K, L, M}		
		norganic.	PI plots below "A" line		MH	Elastic Silt K, L, M		
		Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay ^K , L, M, P		
		Organic.	Liquid limit - not dried	< 0.75		Organic silt K, L, M, Q		
Highly organic soils:	Primarily	organic matter, dark in co	olor, and organic odor		PT	Peat		

A Based on the material passing the 3-inch (75-mm) sieve.


- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

 $E Cu = D_{60}/D_{10}$ $Cc = D_{10} \times D_{60}$

^F If soil contains ³ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- I f soil contains ³ 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ³ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains ³ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- NPI ³ 4 and plots on or above "A" line.
- ^OPI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- ^QPI plots below "A" line.

APPENDIX A.1 - ODOT Quick Reference for Visual Description of Soils

1) STRENGTH OF SOIL:

Non-Cohesive (granular) Soils - Compactness						
Description	Blows Per Ft.					
Very Loose	<u><</u> 4					
Loose	5 – 10					
Medium Dense	11 – 30					
Dense	31 – 50					
Very Dense	> 50					

2) COLOR :

If a color is a uniform color throughout, the term is single, modified by an adjective such as light or dark. If the predominate color is shaded by a secondary color, the secondary color procedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled"

3) PRIMARY COMPONENT

Use **DESCRIPTION** from ODOT Soil Classification Chart on Back

Cohesive (fine grained) Soils - Consistency

Description	Qu (TSF)	Blows Per Ft.	Hand Manipulation	4) COMPONENT M	Iodifiers:
Very Soft	<0.25	<2	Easily penetrates 2" by fist	Description	Percentage By Weight
Soft	0.25-0.5	2 - 4	Easily penetrates 2" by thumb	Trace	0% - 10%
Medium Stiff	0.5-1.0	5 - 8	Penetrates by thumb with moderate effort	Little	10% - 20%
Stiff	1.0-2.0	9 - 15	Readily indents by thumb, but not penetrate	Some	20% - 35%
Very Stiff	2.0-4.0	16 - 30	Readily indents by thumbnail	"And"	35% -50%
Hard	>4.0	>30	Indent with difficulty by thumbnail		

6) Relative Visual Moisture

5) Soil Organic Content			Criteria				
Description	% by Weight	Description	Cohesive Soil	Non-cohesive Soils			
Slightly Organic	2% - 4%	Dry	Powdery; Cannot be rolled; Water content well below the plastic limit	No moisture present			
Moderately Organic	4% - 10%	Damp	Leaves very little moisture when pressed between fingers; Crumbles at or before rolled to $\frac{1}{8}$; Water content below plastic limit	Internal moisture, but no to little surface moisture			
Highly Organic	> 10%	Moist	Leaves small amounts of moisture when pressed between fingers; Rolled to $\frac{1}{8}$ " or smaller before crumbling; Water content above plastic limit to -3% of the liquid limit	Free water on surface, moist (shiny) appearance			
Wet			Very mushy; Rolled multiple times to ¹ / ₈ " or smaller before crumbles; Near or above the liquid limit	Voids filled with free water, can be poured from split spoon.			

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL		Classif	ation	LL _O /LL	%	%	Liquid Limi†	Plastic	Group Index	REMARKS
STMBUL	DESCRIPTION	AASHTO OHIO		× 100*	Pass #40	Pass #200	(LL)	Index (PI)	Max.	REMARKS
	Gravel and/or Stone Fragments	A-1-a			30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and/or Stone Fragments with Sand	Α-	1-Ь		50 Max.	25 Max.		6 Max.	0	
F.S.	Fine Sand	А	-3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
000 000 000	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Sil†	A-4	A-4a	75 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
	silt	A-4	A-4b	75 Min.		50 Min.	40 Max.	10 Max.	8	50% or more sil† sizes
	Elastic Silt and Clay		-5	75 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	75 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	75 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	astic Clay A-7-5		75 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	Δ-	7-6	75 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	74 Max.		36 Min.				₩⁄o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	74 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MA	FERIAL	CLASS	SIFIED B'	Y VISUAL	INSPEC [®]	TION			
	Sod and Topsoil $\land \lor > \lor$ Pavement or Base $\land \lor \land \land$ $\lor \lor \land$ $\lor \lor$ $\lor \lor \lor$ $\lor \lor$	Uncon	trolled)escribe)		Bouldery	y Zone		P	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.