

FRA-70-12.68 PROJECT 4R
FRA-71-1518A
RAMP A5 OVER THE SCIOTO RIVER
RETAINING WALL 4W11
PID NO. 105523
FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For:
GPD GROUP
1801 Watermark Drive, Suite 210
Columbus, OH 43215

Prepared By:
Resource International, Inc.
6350 Presidential Gateway
Columbus, Ohio 43231

Rii Project No. W-13-045

July 2018

April 1, 2015 (Revised July 13, 2018)

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Structure Foundation Exploration Report

FRA-70-12.68 Project 4R

FRA-71-1518A – Ramp A5 over the Scioto River

Retaining Wall 4W11 PID No. 105523

Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this structure foundation exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of the proposed FRA-71-1518A bridge structure carrying Ramp A5 over the Scioto River as well as Retaining Wall 4W11 as part of the FRA-70-12.68 Project 4R in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Brian R. Trenner, P.E.

Director – Geotechnical Programming

Jonathan P. Sterenberg, P.E. Director – Geotechnical Planning

Enclosure: Structure Foundation Exploration Report

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 **Planning**

Engineering

Construction Management

Technology

TABLE OF CONTENTS

Secti	ion	Pa	age
EXE	CUTIVE	SUMMARY	I
		oration and Findingsyses and Recommendations	
1.0	INTR	ODUCTION	1
2.0	GEO	LOGY AND OBSERVATIONS OF THE PROJECT	2
3.0	2.1 2.2 EXPL	Site Geology Existing Conditions	3
4.0	FIND	INGS	6
	4.1 4.2 4.3 4.4	Surface Materials Subsurface Soils Bedrock Groundwater	6 6 7
5.0	ANA	LYSES AND RECOMMENDATIONS	9
	5.1 5.2 5.3 5.4	Driven Pile Recommendations 5.1.1 Downdrag Considerations 5.1.2 Driveability 5.1.3 Driven Pile Considerations Drilled Shaft Recommendations Lateral Design Considerations Retaining Wall 4W11 Recommendations 5.4.1 Strength Parameters Utilized in External and Global Stability	. 11 . 12 . 13 . 13 . 16 . 16
	5.5 5.6 5.7	5.4.1 Strength Parameters Utilized in External and Global Stability Analyses	. 18 . 19 . 20 . 21 . 22 . 23 . 23
6.0	LIMIT	TATIONS OF STUDY	. 26

APPENDICIES

Appendix I Vicinity Map and Boring Plan

Appendix II Description of Soil Terms

Appendix III Project Boring Logs: B-015-7-13, B-108-2-13, B-108-3-13

and B-108-9-15

Appendix IV Laboratory Test Results

Appendix V DRIVEN Analysis Outputs

Appendix VI GRLWEAP Driveability Analysis Outputs

Appendix VII Drilled Shaft Calculations

Appendix VIII Lateral Design Parameters

Appendix IX MSE Wall Calculations

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for the design and construction of the proposed FRA-71-1518A bridge structure carrying Ramp A5 to connect with the FRA-70-1321A bridge structure over the Scioto River. Based on information provided by Burgess and Niple, it is understood that the proposed bridge will consist of a two-span prestressed concrete I-beam structure with a composite reinforced concrete deck and a pile supported stub abutment behind an MSE wall at the rear abutment and piers supported on drilled shafts. The bridge will have a total length of approximately 280 feet and width of approximately 31.5 feet. The roadway profile will be elevated approximately 35 feet above the existing ground surface grade. In addition, Retaining Wall 4W11 will also be located at the rear abutment of the proposed structure to provide the required grade separation to support the configuration. It is understood that a mechanically stabilized earth (MSE) wall type is being considered as the preferred wall type for the entire alignment of Retaining Wall 4W11. The wall height will range from 4.8 feet at the beginning of the wall alignment to a maximum height of 35.6 feet at the proposed abutment and back down to a height of 3.6 feet at the end of the wall alignment. The total wall length is approximately 328 lineal feet.

Exploration and Findings

Between June 6, 2013, and March 8, 2015, a total of four (4) borings, designated as B-015-7-13, B-108-2-13, B-108-3-13 and B-108-9-15, were drilled to completion depths ranging from 50.0 to 80.5 feet below the existing ground surface along the proposed bridge alignment at the locations shown on the boring plan provided in Appendix I of the full report.

Boring B-108-2-13 was performed in the grass infield along the west side of the existing I-71 northbound ramp and borings B-015-7-13 and B-108-3-13 were performed at the top of the grass covered bank of the Scioto River and encountered 5.0 to 6.0 inches of topsoil at the ground surface. Boring B-108-9-15 was performed within the existing ramp from I-71 northbound to I-70 eastbound and encountered 3.0 inches of asphalt overlying 9.0 inches of concrete followed by 4.0 inches of aggregate base.

Beneath the surface materials in borings B-108-2-13, B-108-3-13 and B-108-9-15, material identified as existing fill was encountered extending to depths ranging from 5.0 to 8.0 feet below existing grade. The fill material consisted of brown, gray, dark brown and brownish gray gravel with sand and silt, and silty clay (ODOT A-2-4, A-6b) and contained trace amounts of cinders, brick and stone fragments in several of the samples recovered.

Underlying the topsoil in boring B-015-7-13 and existing fill in the remaining borings, natural cohesive soils were encountered extending to an approximate elevation of 700 feet msl overlying granular soils. The cohesive soils were generally described as gray, brown, brownish gray, dark brown and dark gray sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6b, A-7-6). The granular soils were generally described as brown, gray, brownish gray and dark brown gravel, gravel and sand gravel with sand and silt, gravel with sand, silt and clay, coarse and fine sand and sandy silt (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3a, A-4a).

Bedrock was encountered in borings B-015-7-13 and B-108-9-15 at a depth of 70.5 and 67.0 feet below the ground surface, respectively, which corresponds to and elevation of 651.3 and 655.4 feet msl. The cored bedrock in boring B-015-7-13 consisted of dolomite, and the cored bedrock in boring B-108-9-15 consisted of limestone.

Analyses and Recommendations

Foundation recommendations for the combined Pier A are provided in the FRA-70-1321A Structure Foundation Exploration report. Therefore, recommendations for this substructure unit are not provided in this report.

Driven Pile Recommendations

It is understood that driven piles are to be utilized at the rear abutment substructure. Given the depth of bedrock encountered in the borings performed, it is recommended that CIP pipe piles (ODOT Item 507.07) driven to the frictional bearing values listed below or steel H-piles (ODOT Item 507.06) driven to refusal on bedrock be employed for foundation support. Per Section 202.2.3.2a of the 2007 ODOT Bridge Design Manual, refusal is met during driving when the pile penetration is an inch or less after receiving at least 20 blows from the pile hammer. The following table shows recommended pile lengths and the corresponding ultimate bearing value (R_{Ndr}) of CIP pipe piles and factored structural axial resistance ($R_{\text{R max}}$) of steel H-piles and associated resistance factors (Φ):

FRA-71-1518A Driven Pile Recommendations

Substructure	Ground	Pile	Pile Elevation (feet msl)		Pile Length ⁴	R _{ndr} ⁵ / R _{R max} ⁶	Sleeve Length ⁷	Φ 8,9
Reference	Elevation ¹	Size ²	Top ³	Tip	(feet)	(kips/pile)	(feet)	τ
Rear Abutment	733.4	14" CIP	746.3	690.5	60	390	23.8	0.7
(B-108-3-13 and B-108-9-15)	733.4	HP 10x42	746.3	655.5	95	310	23.8	N/A

- 1. Ground elevation listed is the ground elevation at the respective boring locations.
- 2. A steel pile point is recommended to protect the tips of the CIP pipe piles during pile installation.
- 3. The top of pile elevation corresponds to the pile cutoff elevation, which is 1.0-foot above the proposed bottom of footing elevation.
- 4. Per Section 202.3.2 of the 2007 ODOT BDM, the estimated pile length was determined as the pile cutoff elevation (top) minus the pile tip elevation, rounded up to the nearest 5.0 feet.
- 5. The ultimate bearing value (R_{ndr}) is based on the maximum factored load per pile and was calculated in accordance with Section 202.2.3.2.b of the 2007 ODOT BDM.
- 6. The factored structural axial resistance for H-piles is based on the structural limit state of the steel H-pile section per Section 202.2.3.2.a of the 2007 ODOT BDM.
- 7. Sleeve length represents the required length of pile that should be sleeved within the MSE wall backfill, including the foundation preparation.
- 8. The resistance factor listed for CIP pipe piles assumes dynamic testing of the pile elements per Section 303.4.2.7 of the 2007 ODOT BDM.
- 9. For H-piles driven to refusal on bedrock, no geotechnical resistance factor should be applied to the factored structural axial resistance values presented, as the values presented account for the structural resistance factor, $\varphi_c = 0.50$, for H-piles subject to damage due to severe driving conditions.

The anticipated total settlement at the facing of the MSE wall at the rear abutment is 2.83 inches. Results of the settlement analysis indicate that approximately 90 percent of the primary consolidation of the cohesive layers at the rear will be complete within fifteen (15) days following the placement if the surcharge load. Therefore, if the above noted waiting period is specified following completion of construction of the MSE wall at the rear abutment, downdrag forces along the piles will be eliminated.

<u>Drilled Shaft Recommendations</u>

It is understood that drilled shaft foundations are planned for support of the proposed Pier 1 due to proximity of the substructure unit to the existing 42-inch storm force main. Given the proposed loading per shaft at Pier 1, friction bearing drilled shafts within the overburden soils are not economically feasible foundation options due to the size and number of shafts that would be required to support the proposed loading. Therefore, it is recommended that the drilled shafts be extended through the surficial soils to bear on or within the underlying limestone bedrock at Pier 1.

Per Section 10.8.3.5.4c of the 2018 AASHTO LRDF Bridge Design Specifications (BDS), a minimum rock socket length of 1.5 times the diameter of the drilled shaft within the rock socket (1.5B_{RS}) is required to utilize the full end bearing resistance within the bedrock unit that the shafts are end bearing in/on. Using equation 10.8.3.5.4c-1 and the limiting unconfined compressive strength from the range for the limestone bedrock, it is

recommended that drilled shaft foundations socketed a minimum of 1.5B_{RS} into the bedrock to bear on or within the competent limestone bedrock be proportioned for a nominal end bearing resistance of 2,804 ksf at the strength limit state.

Where lateral load demands do not require a rock socket length of 1.5B_{RS}, the socket length can be reduced or the shaft can bear on the bedrock surface with no rock socket. If the rock socket is reduced to a length less than 1.5B_{RS}, a reduced nominal end bearing resistance should be utilized based on equations 10.8.3.5.4c-2 and 10.8.3.5.4c-3 of the AASHTO LRFD BDS. Using the limiting unconfined compressive strength from the given range for the limestone bedrock, it is recommended that drilled shaft foundations bearing on or within the competent limestone bedrock with a socket length less than 1.5B_{RS} into the bedrock be proportioned for a nominal end bearing resistance of 1,188 ksf at the strength limit state.

Based on the plan information provided by Burgess and Niple, the proposed shaft diameter at Pier 1 will be 5.0 feet within the overburden soils and 4.5 feet within the bedrock socket. The following table lists the estimated elevation of the top of bedrock as well as the proposed rock sock diameter and length from the design plans and, corresponding nominal end bearing resistance to be utilized for the design of the drilled shaft foundations. A resistance factor of $\varphi_{qp} = 0.5$ at the strength limit state should be utilized for design.

Drilled Shaft Recommendations

Substructure Unit (Boring)	Top of Bedrock Elevation (feet msl)	Rock Socket Diameter ¹ (feet)	Proposed Socket Length ¹ (feet)	Nominal End Bearing Resistance ² (ksf)
Pier 1 (B-108-9-15 / B-015-7-13)	653.5	4.5	4.5	1,188

- 1. Proposed rock socket diameter and length determined from proposed plan information provided by Burgess and Niple.
- 2. Nominal end bearing resistance provided is the value that should be utilized in the determination of the end bearing resistance per drilled shaft based on the proposed rock socket length and diameter.

If lateral analysis of the drilled shafts foundations indicates that the rock socket length can be reduced based on the lateral load demands, then the rock socket length may be reduced from those shown in the current design plans. If the rock socket is reduced to a length less than 1.5B_{RS}, then the reduced bearing resistance of 1,188 ksf should be utilized for design.

Given the factored end bearing resistances noted above for drilled shafts extended to bear on or within the limestone bedrock, it is anticipated that the axial resistance will be governed by structural resistance of the drilled shaft. The factored resistance per shaft provided in the design sheets should be the limiting value between the factored geotechnical resistance and the factored axial compressive resistance of the shaft.

MSE Wall Recommendations

Retaining Wall 4W11 will be located at the rear abutment of the proposed structure. Based upon the proposed plan information, the maximum wall height at the rear abutment is anticipated to be 35.7 feet from the top of the leveling pad to the proposed profile grade of the roadway. The wall will be turned back approximately 45 degrees and graded down to the north and south of the abutment, and will then turn back again at approximately 45 degrees at the north side of Ramp A5, just south of the I-71 northbound ramp. It is understood that 2:1 backslopes will be graded up to the proposed Ramp A5 roadway from the top of the wall where it extends away from the rear abutment.

Existing fill material comprised of medium dense gravel with sand and silt (ODOT A-2-4) was encountered at the proposed bearing elevation along the wall alignment, which extends to a depths ranging from 5.0 to 8.0 feet below the proposed bearing elevation, overlying medium stiff to stiff silty clay (ODOT A-6b). Based on the blow counts obtained within fill material and the absence of significant amounts of deleterious materials, the existing fill material is considered suitable to support the proposed retaining wall. Given the relatively shallow thickness of the gravel with sand and silt (existing fill) layer, a two layer bearing stratum should be evaluated for this wall. Therefore, the bearing resistance was calculated considering just the drained and undrained properties of the underlying medium stiff to stiff silty clay (ODOT A-6b). MSE wall foundations bearing on these soils or new embankment fill, placed and compacted in accordance with ODOT Item 203, may be proportioned for a factored bearing resistance as indicated in the following table.

Retaining Wall 4W11 MSE Wall Design Parameters

From Station ¹	To Station ¹	Wall Height Analyzed	Backslope Behind Wall in	Minimum Required Reinforcement	Strengt	sistance at th Limit sf)	Strength Limit Equivalent Bearing	
		(feet)	Analysis	Length ² (feet)	Nominal	Factored ³	Pressure ⁴ (ksf)	
0+00	1+78	35.7	Level	28.6 (0.80H)	13.59	8.83	7.70	
1+78	3+38	20.0	2:1	17.0 (0.85H)	10.11	6.57	5.77	

- 1. Station referenced to the baseline of Wall 4W11.
- 2. The required foundation width is expressed as a percentage of the wall height, H.
- 3. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state.
- 4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Total settlements of up to 5.32 inches at the center of the reinforced soil mass and 3.16 inches at the facing of the wall are anticipated along the alignment of retaining wall 4W11. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately fifteen (15) days.

Based on the results of the external and global stability analyses performed for Retaining Wall 4W11, the recommended controlling strap length is 0.80 times the maximum height of the MSE wall (measured from the top of the leveling pad to the proposed profile grade of the roadway) between Sta. 0+00 and 1+78 and 1.0 times the wall height from Sta. 1+78 to 3+38 (end of the wall). Global stability under drained and undrained conditions were the controlling factors in the determination of the recommended strap length of 80 percent of the wall height for the section between Sta. 0+00 and 1+78. Bearing stability under drained conditions and global stability under both drained and undrained conditions were the controlling factors in the recommended strap length of 85 percent of the wall height between Sta. 1+78 and 3+38.

As noted in Section 5.4.2 of the full report, bearing stability was not satisfied under undrained conditions for either wall section assuming a uniform bearing stratum with the weakest shear strength parameters within the zone of influence below the bottom of wall. However, if a layered soil profile is considered and the upper gravel with sand and silt layer is modeled a cohesive soil with an undrained shear strength of approximately 4,000 psf, then the nominal bearing resistance increases to the approximate resistance calculated under drained conditions, which satisfies bearing stability requirements.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for the design and construction of the proposed FRA-71-1518A bridge structure carrying Ramp A5 to connect with the FRA-70-1321A bridge structure over the Scioto River, as shown on the vicinity map and boring plan presented in Appendix I. The proposed Ramp A5 will be a single-lane ramp that will carry traffic from I-71 northbound to exit onto the proposed Ramp C5. Based on information provided by Burgess and Niple, it is understood that the proposed bridge will consist of a two-span prestressed concrete I-beam structure with a composite reinforced concrete deck and a pile supported stub abutment behind an MSE wall at the rear abutment and piers supported on drilled shafts. The bridge will have a total length of approximately 280 feet and width of approximately 31.5 feet. The roadway profile will be elevated approximately 35 feet above the existing ground surface grade.

Retaining Wall 4W11 will be located at the rear abutment of the proposed structure to provide the required grade separation to support the configuration. Based on plan information provided by Dynotec, there are several bends in the wall geometry, which are required to minimize the impact of the wall to the existing levee along the Scioto River as well as an existing 48-inch storm force main that is to remain in service. It is understood that a mechanically stabilized earth (MSE) wall is being considered as the preferred wall type for the entire alignment of Retaining Wall 4W11. The wall height will range from 4.8 feet at the beginning of the wall alignment to a maximum height of 35.6 feet at the proposed abutment and back down to a height of 3.6 feet at the end of the wall alignment. The total wall length is approximately 328 lineal feet.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of High Street, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits. Bedrock was encountered in borings B-015-7-13 and B-108-9-15 at an elevation of 651.3 and 655.4 feet msl, respectively.

2.2 Existing Conditions

The proposed FRA-71-1518A structure will be situated over the existing I-71 northbound ramp to I-70 eastbound, approximately 350 feet southwest of the existing bridge over the Scioto River. The Scioto River flows along the east side of I-71 and SR-315 northbound. The existing I-71 northbound ramp is a single-lane, composite asphalt and concrete roadway that is aligned along the top of the existing Scioto River flood protection levee. The western leg of retaining wall 4W11 will be situated over the I-70 eastbound ramp to SR-315 northbound, which is also a single-lane, asphalt roadway. There is also an existing pump station situated within the infield of the loop ramp from I-70 eastbound to SR-315 northbound, which has 42-inch and 48-inch storm force mains that pump storm water to outlets along the Scioto River in the vicinity of the proposed structure. The existing terrain along the top of the level is flat and raised approximately 35 feet above the riverbed elevation of the Scioto River, which provides flood protection for the 500 year flood event. The existing infields between the roadways are generally grass covered, with some dense vegetation along the slope supporting the I-70 eastbound ramp to SR-315 northbound.

3.0 EXPLORATION

Between June 6 and 13, 2013, a total of three (3) borings, designated as B-015-7-13, B-108-2-13 and B-108-3-13, were drilled along the proposed bridge alignment at the locations shown on the boring plan provided in Appendix I of this report and summarized in Table 1. The borings were advanced to completion depths ranging from 50.0 to 80.5 feet below the existing ground surface at the respective boring location. In compliance with comments provided by the ODOT Office of Geotechnical Engineering (OGE), an additional boring was obtained at the approximate midpoint between the proposed rear abutment and central pier for evaluation of deep foundation alternatives for these substructures. On March 7 and 8, 2015, boring B-108-9-15 was advanced to a completion depth of 80.1 feet below existing grade at that location shown on the boring plan in Appendix I.

Table 1. Test Boring Summary

Boring Number	Station ¹	Offset ¹	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)
B-015-7-13	5051+29.66	9.8' Rt.	39.950618516	-83.014254653	721.8	80.5
B-108-2-13	5014+11.97	28.9' Rt.	39.949854823	-83.014658823	722.1	50.0
B-108-3-13	5015+67.23	22.0' Lt.	39.950228123	-83.014459410	722.9	50.0
B-108-9-15	5015+96.50	15.7' Rt.	39.950352963	-83.014507695	722.4	80.1

^{1.} Station and offset of boring B-015-7-13 referenced to the proposed baseline of Ramp C5, and the station and offset of the remaining borings are referenced to the proposed baseline of Ramp A5.

The boring locations were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD GROUP.

The borings were drilled using a truck or an all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing a 3.25-inch inside diameter, hollow-stem auger to advance the holes. Standard penetration test (SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of depth to 20.0 feet in borings B-108-2-13 and B-108-3-13 and 30.0 feet in borings B-015-7-13 and B-108-9-15 and 20.0 feet, and at 5.0-foot increments thereafter to the boring termination depth or top of bedrock. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler during the SPT testing. Driving resistance is recorded on the boring logs in terms of blow per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N₆₀, by the following equation. Both values are represented on boring logs in Appendix III.

 $N_{60} = N_m*(ER/60)$

Where:

 N_m = measured N value

ER = drill rod energy ratio, expressed as a percent, for the system used

The hammer for the CME 750 and Mobile B-53 drill rigs used for these structure borings were calibrated on April 26, 2013, and have a drill rod energy ratio of 82.6 and 77.7 percent, respectively.

Borings B-015-7-13 and B-108-3-13 were performed within the flood protection zone along the Scioto River, and were sealed at with a cement-bentonite grout at the completion of drilling. Boring B-108-2-13 was performed outside the limits of the flood protection zone and was also sealed with a cement-bentonite grout at the completion of drilling. Boring B-108-9-15 was performed within the existing I-71 northbound ramp to I-70 eastbound, which is not considered part of the flood protection zone, and was backfilled with a mixture of bentonite chips and soil cuttings.

During drilling, Rii personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Table 2. Laboratory Test Schedule

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D2216	66
Plastic and Liquid Limits	AASHTO T89, T90	26
Gradation – Sieve/Hydrometer	AASHTO T88	26
Unconfined Compressive Strength of Cohesive Soil	ASTM D2166	1
Unconfined Compressive Strength of Intact Rock	ASTM D7012	3

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III and also in Appendix IV. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

The depth to bedrock in borings B-015-7-13 and B-108-9-15 was determined by auger refusal. Auger refusal is defined as no or insignificant observable advancement of the augers with the weight of the drill rig driving the augers. Where borings were extended into the bedrock (after encountering auger refusal), an NQ-sized double-tube diamond bit core barrel (utilizing wire line equipment) was used to core the bedrock. Coring produced 1.85 inch diameter cores, from which the type of rock and its geological characteristics were determined.

Rock cores were logged in the field and visually classified in the laboratory. They were analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

$$RQD = \frac{\sum segments equal to or longer than 4.0 inches}{core run length} \times 100$$

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

Boring B-108-2-13 was performed in the grass infield along the west side of the existing I-71 northbound ramp and borings B-015-7-13 and B-108-3-13 were performed at the top of the grass covered bank of the Scioto River. These borings encountered 5.0 to 6.0 inches of topsoil at the ground surface. Boring B-108-9-15 was performed within the existing ramp from I-71 northbound to I-70 eastbound and encountered 3.0 inches of asphalt overlying 9.0 inches of concrete followed by 4.0 inches of aggregate base.

4.2 Subsurface Soils

Beneath the surface materials in borings B-108-2-13, B-108-3-13 and B-108-9-15, material identified as existing fill was encountered extending to depths ranging from 5.0 to 8.0 feet below existing grade. The fill material consisted of brown, gray, dark brown and brownish gray gravel with sand and silt, and silty clay (ODOT A-2-4, A-6b) and contained trace amounts of cinders, brick and stone fragments in several of the samples recovered.

Underlying the topsoil in boring B-015-7-13 and existing fill in the remaining borings, natural cohesive soils were encountered extending to an approximate elevation of 700 feet msl overlying granular soils. The cohesive soils were generally described as gray, brown, brownish gray, dark brown and dark gray sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6b, A-7-6). The granular soils were generally described as brown, gray, brownish gray and dark brown gravel, gravel and sand gravel with sand and silt, gravel with sand, silt and clay, coarse and fine sand and sandy silt (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3a, A-4a).

The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from soft (0.25 < HP \leq 0.5 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.5 to over 4.5 tsf (limit of instrument). The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soil encountered ranged from loose (5 \leq N₆₀ \leq 10 blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 9 bpf to split spoon sampler refusal. Split spoon sampler refusal is defined as exceeding 50

blows from the hammer with less than 6.0 inches of penetration by the split spoon sampler.

Natural moisture contents of the soil samples tested ranged from 4 to 26 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 10 percent below to 5 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be significantly below to moderately above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in the borings as presented in Table 3.

Table 3. Top of Bedrock Elevations

Boring	Ground Surface	Top of Bedrock (Auger Refusal)			
Number	Elevation (feet msl)	bepin Elevation			
B-015-7-13	721.8	70.5	651.3		
B-108-2-13	722.1	N/A	N/A		
B-108-3-13	722.9	N/A	N/A		
B-108-9-15	722.4	67.0	655.4		

Bedrock was encountered in borings B-015-7-13 and B-108-9-15 at a depth of 70.5 and 67.0 feet below the ground surface, respectively, which corresponds to and elevation of 651.3 and 655.4 feet msl. The cored bedrock in boring B-015-7-13 consisted of dolomite, and the cored bedrock in boring B-108-9-15 consisted of limestone. The dolomite bedrock was described as brown and gray, slightly weathered, strong, very thin to medium bedded, cherty, crystalline and siliceous with calcite/pyrite deposits and chert nodules and lenses, and is moderately fractured to fractured with slightly rough to rough, open apertures. The limestone bedrock was described as brown and gray, slightly weathered, moderately strong to strong, medium to thin bedded, cherty, dolomitic, crystalline and slightly fractured with slightly rough, narrow apertures.

The percent recovery, RQD values and unconfined compressive strengths of the bedrock core runs are summarized in Table 4.

Table 4. Rock Core Summary

Boring	Core No.	Elevation (feet msl)	Recovery (%)	RQD (%)	Unconfined Compressive Strength
B-015-7-13	RC-1	651.3 to 646.3	97	58	q _u @ 72.1' = 12,300 psi
B-015-7-13	RC-2	646.3 to 641.3	95	58	N/A
	RC-1	655.3 to 652.3	85	69	q _u @ 68.6' = 12,574 psi
B-108-9-15	RC-2	652.3 to 647.3	100	86	N/A
	RC-3	647.3 to 642.3	100	95	q _u @ 75.4' = 7,788 psi

It should be noted that bedrock naturally experiences mechanical breaks during the drilling and coring processes. Rii attempted to account for fresh, manmade breaks during tabulation of the RQD analysis. The quality of the cored bedrock, according to the RQD value, was fair $(50\% < RQD \le 75\%)$ to excellent $(90\% < RQD \le 100\%)$.

4.4 Groundwater

Groundwater was encountered in the borings as presented in Table 5.

Table 5. Groundwater Levels

Boring	Ground	Initial Gro	oundwater	Upon Completion		
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	
B-015-7-13	721.8	30.0	691.8	N/A ¹	N/A	
B-108-2-13	722.1	37.0	685.1	N/A ¹	N/A	
B-108-3-13	722.9	37.0	685.9	37.0	685.9	
B-108-9-15	722.4	33.5	688.9	N/A ¹	N/A	

^{1.} The groundwater level at completion could not be obtained due to the addition of water or mud as a drilling fluid.

Groundwater was encountered initially during drilling in the borings at depths ranging from 30.0 to 37.0 feet below existing grade, which corresponds to elevations ranging from 685.1 to 691.8 feet msl. At the completion of drilling and after removing the augers, groundwater accumulated in the borehole of boring B-108-3-13 to a depth of 37.0 feet below existing grade, which corresponds to an elevation of 685.9 feet msl. The groundwater level at the completion of drilling in the remaining borings could not be measured due to the addition of either mud to counteract heaving sands that were encountered during drilling or water as a circulating fluid during the rock coring process.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition,

groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the review of existing geotechnical information have been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject bridge, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed bridge structure were provided by Burgess and Niple. Based on the information provided, it is understood that the proposed bridge will consist of a two-span prestressed concrete I-beam with composite reinforced concrete deck structure with pile supported stub abutment behind an MSE wall at the rear abutment and piers supported on drilled shafts and will have a total length of approximately 280 feet and width of approximately 31.5 feet. The roadway profile will be elevated approximately 35 feet above the existing ground surface grade. Foundation recommendations for the combined Pier A are provided in the FRA-70-1321A Structure Foundation Exploration Report. Therefore, recommendations for this substructure unit are not provided in this report. Proposed structural data was obtained from design details provided by Burgess and Niple and are included in Table 6.

Table 6. Structure and Bridge Design Elevations

Substructure Unit	Structure Component ¹	Elevation ¹ (feet msl)	Design Maximum Factored Load	
	Profile Grade	758.7		
Rear Abutment (B-108-3-13 and	Bottom of Footing	745.3	268 kips/pile	
B-108-9-15)	Bottom of Wall (Leveling Pad)	723.0	' '	
Pier 1 (B-108-9-15 and B-015-7-13)	Top of Shaft	721.0	1,317 kips/shaft	

^{1.} Proposed foundation elevations and structural loading based on structure information provided by Burgess and Niple.

Retaining Wall 4W11 will be located at the rear abutment of the proposed structure to provide the required grade separation to support the configuration. It is understood that a mechanically stabilized earth (MSE) wall type is being considered as the preferred wall type for the entire alignment of Retaining Wall 4W11. Based on plan information

provided by Dynotec, the wall alignment will be turned back approximately 45 degrees at both sides of the abutment and graded down to existing grade on the south side of the proposed structure. On the north side of the proposed structure, the wall will be graded down and turn back again at approximately 45 degrees and graded down adjacent to the proposed I-71 northbound alignment until a transition can be made to graded embankments. The wall height will range from 4.8 feet at the beginning of the wall alignment to a maximum height of 35.6 feet at the proposed abutment and back down to a height of 3.6 feet at the end of the wall alignment. The total wall length is approximately 328 lineal feet.

5.1 Driven Pile Recommendations

It is understood that driven piles are to be utilized at the rear abutment substructure. Given the depth of bedrock encountered in the borings performed, it is recommended that CIP pipe piles (ODOT Item 507.07) driven to the frictional bearing values listed below or steel H-piles (ODOT Item 507.06) driven to refusal on bedrock be employed for foundation support. Per Section 202.2.3.2a of the 2007 ODOT Bridge Design Manual, refusal is met during driving when the pile penetration is an inch or less after receiving at least 20 blows from the pile hammer. Table 7 shows recommended pile lengths and the corresponding ultimate bearing value (Rndr) of CIP pipe piles and factored structural axial resistance (RR max) of steel H-piles and associated resistance factors (ϕ):

Table 7. FRA-71-1	518A Driven	Pile Recommendations
-------------------	-------------	----------------------

Substructure	Ground	Pile	Pile Elevation (feet msl)		Pile Length ⁴	R _{ndr} ⁵ / R _{R max} ⁶	Sleeve Length ⁷	Φ ^{8,9}
Reference	Elevation ¹	Size ²	Top ³	Tip	(feet)	(kips/pile)	(feet)	
Rear Abutment	722.4	14" CIP	746.3	690.5	60	390	23.8	0.7
(B-108-3-13 and B-108-9-15)	733.4	HP 10x42	746.3	655.5	95	310	23.8	N/A

- 1. Ground elevation listed is the ground elevation at the respective boring locations.
- 2. A steel pile point is recommended to protect the tips of the CIP pipe piles during pile installation.
- 3. The top of pile elevation corresponds to the pile cutoff elevation, which is 1.0-foot above the proposed bottom of footing elevation.
- 4. Per Section 202.3.2 of the 2007 ODOT BDM, the estimated pile length was determined as the pile cutoff elevation (top) minus the pile tip elevation, rounded up to the nearest 5.0 feet.
- 5. The ultimate bearing value (R_{ndr}) is based on the maximum factored load per pile and was calculated in accordance with Section 202.2.3.2.b of the 2007 ODOT BDM.
- 6. The factored structural axial resistance for H-piles is based on the structural limit state of the steel H-pile section per Section 202.2.3.2.a of the 2007 ODOT BDM.
- 7. Sleeve length represents the required length of pile that should be sleeved within the MSE wall backfill, including the foundation preparation.
- 8. The resistance factor listed for CIP pipe piles assumes dynamic testing of the pile elements per Section 303.4.2.7 of the 2007 ODOT BDM.
- 9. For H-piles driven to refusal on bedrock, no geotechnical resistance factor should be applied to the factored structural axial resistance values presented, as the values presented account for the structural resistance factor, $\varphi_c = 0.50$, for H-piles subject to damage due to severe driving conditions.

The CIP pipe piles were analyzed using the DRIVEN software program, and the results are provided in Appendix V. The ultimate bearing value (Rndr) provided in Table 7 for CIP pipe piles is based on the maximum factored load per pile and was calculated in accordance with Section 202.2.3.2.b of the 2007 ODOT BDM. Given that the CIP piles will be driven to end bear in dense to very dense sand and gravel at the elevation noted above, it is anticipated that the capacity will be achieved almost solely through end bearing. However, if results of dynamic pile load testing indicate that the piles have not achieved the required capacity at the end of driving, then it is recommended that restrike of the pile be performed after a hold period which will allow soil setup to occur. A hold period of three (3) days should be specified between the end of driving the pile and the time of restrike to allow adequate soil setup to occur. Settlement is estimated to be less than 1.0 inch for CIP piles driven to the ultimate bearing values listed in Table 7.

Per Section 202.2.3.2.a of the 2007 ODOT BDM, the factored resistance of H-piles driven to refusal on bedrock is typically governed by the structural resistance of the pile element. The factored structural axial resistances listed in Table 7 consider an axially loaded pile with negligible moment, no appreciable loss of section due to deterioration throughout the life of the structure, a steel yield strength of 50 ksi, a structural resistance factor for H-piles subject to damage due to severe driving conditions (LRFD 6.5.4.2: $\varphi_c = 0.50$) and a pile fully braced along its length. The factored structural axial resistance should not be used for piles that are subjected to bending moments or are not supported by soil for their entire length. Static or dynamic load testing is not required for H-piles driven to refusal on bedrock. It is anticipated that the piles will be able to be driven a short distance into the surficial bedrock before satisfying the driving conditions that meet the refusal criterion. It is estimated that refusal will be met within the upper 6.0 inches of the surficial bedrock. Settlement is estimated to be less than 1.0 inch for H-piles driven to refusal on bedrock.

We emphasize that the pile lengths and ultimate bearing values presented in Table 7 for CIP pipe piles are estimates using empirical equations based on the derived characteristics of the soils encountered in the subject borings drilled. The actual pile capacities should be verified using static or dynamic pile load testing as detailed in Sections 303.4.2.6 and 303.4.2.7 of the 2007 ODOT BDM. The most accurate method for determining pile capacities and lengths is to drive test piling at the site and perform static load testing in accordance with the ASTM D1143 procedure. Dynamic pile load testing should be performed in accordance with ASTM 4945. Static or dynamic load testing is not required for H-piles driven to refusal on bedrock. Further installation considerations are presented in Section 5.1.3.

5.1.1 Downdrag Considerations

The anticipated total settlement at the facing of the MSE wall at the rear abutment is 2.83 inches. Given the anticipated amount of settlement at the MSE wall facing, downdrag loads may be induced on the pile elements if installed to the final tip elevation prior to construction of the wall. To reduce the amount of downdrag induced on the

piles, it is recommended that the piles be pre-driven into the soil only as far as necessary to remain vertical and that the MSE wall should be constructed around the piles and then allowed to sit for a specified holding period such that a percentage of the consolidation can occur prior to driving the piles the to the design tip elevation and reduce the amount of downdrag on the piles. In order to consolidate the underlying soil to the required settlement, consideration should be given to the placement of a surcharge load in order to preload the site under the full weight of the MSE wall height (from the bottom of wall elevation to the profile grade). The surcharge should remain in place until approximately 90 percent of consolidation of the subsurface soils has occurred to prevent downdrag loads from developing along the pile elements. Results of the settlement analysis indicate that approximately 90 percent of the primary consolidation of the cohesive layers at the rear abutment will be complete within **fifteen** (15) days following the placement if the surcharge load. Therefore, if the above noted waiting period is specified following completion of construction of the MSE wall at the rear abutment, downdrag forces along the piles will be eliminated.

Settlement platforms should be installed once the embankment surcharge has been placed to monitor the settlement of the embankment over time. A shorter or longer hold period than specified may be required based on the settlement platform readings as directed by the geotechnical engineer. The required hold period may be considered complete when survey monitoring of the settlement platforms indicate that the above noted settlement has occurred for the hold period or until the survey shows less than ½-inch of total movement per week over a two week period following placement of the final lifts of surcharge loading.

5.1.2 Driveability

A drivability analysis was performed in accordance with Section 10.7.8 of the 2014 AASHTO LRFD BDS using the GRLWEAP software program, and the results are provided in Appendix VI. In the driveability analysis, a Delmag 19-42 hammer with a rated energy of approximately 43,000 ft-lbs was used in conjunction with the CIP pipe pile and H-pile sections. The minimum wall thickness utilized in the driveability analysis for CIP pipe piles was determined from the following equation per ODOT Item 507.06 for the ultimate bearing values listed in Table 7.

t = UBV / 900,000

Where: t = pile wall thickness in inches UBV = design ultimate bearing value in pounds

Based on the results of this analysis and using a wall thickness as determined from ODOT Item 507.06, it appears that the driving stresses induced on the CIP pipe piles **would not exceed** 90 percent of the yield stress for A252, Grade 2 steel ($f_y = 35$ ksi, $0.9f_y = 31.5$ ksi) if driven to the depths provided in Table 7. Please note that the pile wall

thickness utilized in the driveability analysis was rounded up to the nearest 1/16-inch increment, which resulted in a pile wall thickness of 0.4375 inches.

Based on the results of this analysis, driving stresses induced on the H-piles **would not exceed** 90 percent of the yield stress of the steel ($f_y = 50$ ksi, $0.9f_y = 45$ ksi) if driven through the overburden soils to the bedrock elevation provided in Table 7. Care should be taken during pile driving operations when approaching the bedrock, and when extending the piles into the surficial bedrock material, to ensure that the driving stresses induced on the pile elements do not exceed the maximum allowable value of 90 percent of the yield stress of the steel, subsequently damaging the pile elements. Pile driving should be terminated upon achieving the required 20 blows from the pile hammer with an inch or less of penetration to reduce the possibility of damaging the pile element. Per Section 202.2.3.2.a of the 2007 ODOT BDM, steel pile points should be used when the piles are driven to bear on strong bedrock.

5.1.3 Driven Pile Considerations

Proper pile installation is as important as pile design in order to obtain a cost effective and safe product. Driven piles must be installed to develop adequate soil resistance without structural damage. Because piles cannot be visually inspected after installation, direct quality control of the finished product is impossible. Consequently, substantial control must be exercised over peripheral operations leading to the pile placement within the foundation. It is essential that installation be considered during the design stage to insure that piles shown on the plans can be installed. Construction monitoring should be employed in (1) pile materials, (2) installation equipment, and (3) the estimation of the static load capacity.

It is recommended that the contractor submit a wave equation analysis (bearing graph) of his driving equipment, or the necessary pile driving and equipment data to perform the wave equation analysis, for hammer approval. A constant capacity wave equation analysis (inspector's chart) should also be performed to assist field personnel during inspection in accordance with the 2007 ODOT BDM.

5.2 Drilled Shaft Recommendations

It is understood that drilled shaft foundations are planned for support of the proposed Pier 1 due to proximity of the substructure unit to the existing 42-inch storm force main. Given the proposed loading per shaft at Pier 1, friction bearing drilled shafts within the overburden soils are not economically feasible foundation options due to the size and number of shafts that would be required to support the proposed loading. Therefore, it is recommended that the drilled shafts be extended through the surficial soils to bear on or within the underlying limestone bedrock at Pier 1. The elevation of the top of bedrock at Pier 1 was interpolated based on the elevation of the top of bedrock encountered in borings B-015-7-13 and B-108-9-15, and was estimated at El. 653.5 feet msl.

Per Section 10.8.3.5.4c of the 2018 AASHTO LRDF Bridge Design Specifications (BDS), a minimum rock socket length of 1.5 times the diameter of the drilled shaft within the rock socket (1.5B_{RS}) is required to utilize the full end bearing resistance within the bedrock unit that the shafts are end bearing in/on. However, based on discussions with the ODOT Office of Geotechnical Engineering (OGE), a reduced tip resistance can be utilized for shafts not extended to the required minimum socket length of 1.5B_{RS}.

Using equation 10.8.3.5.4c-1 of the AASHTO LRFD BDS, the nominal end bearing resistance for drilled shafts socketed a minimum of 1.5B_{RS} into intact rock is 2.5 times the unconfined compressive strength of the bedrock unit that the shaft tip is bearing on or within. Based on unconfined compression tests performed on limestone rock cores obtained from the borings performed at the subject piers, the unconfined compressive strength ranges from 7,788 to 12,574 psi. Using equation 10.8.3.5.4c-1 and the limiting unconfined compressive strength from the given range for the limestone bedrock, it is recommended that drilled shaft foundations socketed a minimum of 1.5B_{RS} into the bedrock to bear on or within the competent limestone bedrock be proportioned for a nominal end bearing resistance of 2,804 ksf at the strength limit state.

Where lateral load demands do not require a rock socket length of 1.5B_{RS}, the socket length can be reduced or the shaft can bear on the bedrock surface with no rock socket. If the rock socket is reduced to a length less than 1.5B_{RS}, a reduced nominal end bearing resistance should be utilized based on equations 10.8.3.5.4c-2 and 10.8.3.5.4c-3 of the AASHTO LRFD BDS, which is as follows:

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a$$

In which:

$$A = \sigma'_{vb} + q_u \left[m_b \left(\frac{\sigma'_{vb}}{q_u} \right) + s \right]^a$$

Where:

 σ'_{vb} = vertical effective stress at the socket bearing (tip) elevation (ksf) s, a and m_b = Hoek-Brown strength parameters for fractured rock mass determined from GSI in accordance with Section 10.4.6.4 of the AASHTO LRFD BDS

 q_u = unconfined compressive strength of intact rock (ksf)

Based on discussions with ODOT OGE, the condition of the rock mass for the determination of the GSI rating should consider the limestone to have a "closed" joint condition, a "blocky" structure and a "good" joint surface condition. Using this description for the structure and surface conditions of the rock mass, a GSI rating of 70 was determined from Figure 10.4.6.4-1 of the AASHTO LRFD BDS, and the

Hoek-Brown strength parameters s, a and m_b were calculated as 0.036, 0.50 and 3.08, respectively. The vertical effective stress was estimated considering 68 feet of soil overburden with a buoyant unit weight of 57.6 pcf. Using the above noted equations and the limiting unconfined compressive strength from the given range for the limestone bedrock, it is recommended that drilled shaft foundations bearing on or within the competent limestone bedrock with a socket length less than 1.5B_{RS} into the bedrock be proportioned for a nominal end bearing resistance of 1,188 ksf at the strength limit state.

Based on the plan information provided by Burgess and Niple, the proposed shaft diameter at Pier 1 will be 5.0 feet within the overburden soils and 4.5 feet within the bedrock socket. Table 8 lists the estimated elevation of the top of bedrock as well as the proposed rock sock diameter and length from the design plans and, corresponding nominal end bearing resistance to be utilized for the design of the drilled shaft foundations. A resistance factor of $\varphi_{qp} = 0.5$ at the strength limit state should be utilized for design.

Table 8. Drilled Shaft Recommendations

Substructure Unit (Boring)	Top of Bedrock Elevation (feet msl)	Rock Socket Diameter 1 (feet) Proposed Socket Length 1 (feet)		Nominal End Bearing Resistance ² (ksf)	
Pier 1 (B-108-9-15 / B-015-7-13)	653.5	4.5	4.5	1,188	

^{1.} Proposed rock socket diameter and length determined from proposed plan information provided by Burgess and Niple.

If lateral analysis of the drilled shafts foundations indicates that the rock socket length can be reduced based on the lateral load demands, then the rock socket length may be reduced from those shown in the current design plans. If the rock socket is reduced to a length less than 1.5B_{RS}, then the reduced bearing resistance of 1,188 ksf should be utilized for design.

Given the factored end bearing resistances noted above for drilled shafts extended to bear on or within the limestone bedrock, it is anticipated that the axial resistance will be governed by structural resistance of the drilled shaft. The factored resistance per shaft provided in the design sheets should be the limiting value between the factored geotechnical resistance and the factored axial compressive resistance of the shaft.

Drilled shafts designed in accordance with the requirements presented above should experience a maximum settlement estimated to be less than 0.5 inches. Group settlement of the shafts, socketed into bedrock, is considered negligible for a minimum

^{2.} Nominal end bearing resistance provided is the value that should be utilized in the determination of the end bearing resistance per drilled shaft based on the proposed rock socket length and diameter.

spacing of 2.0 shaft diameters center-to-center. Drilled shaft calculations are provided in Appendix VII.

5.3 Lateral Design Considerations

If lateral loads or moments are expected to be applied on the foundation elements, they should be analyzed to verify the shaft or pile has enough lateral and bending resistance against these loads. A boring-by-boring tabulation of parameters that should be used for lateral loading design is provided in Appendix VIII. In order to evaluate the lateral capacity, it is recommended that a derivation of COM624, such as LPILE, be utilized to determine the proper embedment depth and cross section (for drilled shafts) required to resist the lateral load for a given end condition and deflection. Table 9 lists the different soil types internal to the LPILE program. These strata were utilized to define the soil strata in the soil profile for each boring provided in Appendix VIII.

Table 9. Subsurface Strata Description

	Table 3. Subsurface Strata Description						
Strata	Description						
1	Soft Clay						
2	Stiff Clay with Water						
3	Stiff Clay without Free Water						
4	Sand (Reese)						
5	User Defined						
6	Vuggy Limestone (Strong Rock)						
7	Silt (with cohesion and internal friction angle)						
8	API Sand						
9	Weak Rock						
10	Liquefiable Sand (Rollins)						
11	Stiff Clay without free water with a specified initial K (Brown)						

5.4 Retaining Wall 4W11 Recommendations

As previously noted, Retaining Wall 4W11 will be located at the rear abutment of the proposed structure. It is understood that a mechanically stabilized earth (MSE) wall type is being considered as the preferred wall type for the entire alignment of Retaining Wall 4W11. MSE walls are constructed on earthen foundations at a minimum depth of 3.0 feet below grade, as defined by the top of the leveling pad to the ground surface located 4.0 feet from the face of the wall. Per Section 204.6.2.1 of the 2007 ODOT BDM, the height of the MSE wall at the bridge abutments is defined as the elevation difference

between the profile grade at the face of the wall and the top of the leveling pad. However, it is noted that the reinforced soil mass only extends from the foundation bearing elevation (top of leveling pad) to the bottom of footing elevation. Additionally, per Section 303.5.1 of the 2007 ODOT BDM, a minimum of one row of soil reinforcement straps should be attached to the backside of the abutment footing to resist horizontal forces from the bridge structure and lateral pressures along the backwall of the abutment footing, and prevent any load transfer from these forces to the coping and facing panels. For portions of the wall outside the limits of the bridge abutments, the straps should be installed the full height of the wall. The width of the MSE wall foundation (B) is defined by the length of the reinforced soil mass. Per the Section 204.6.2.1 of the 2007 ODOT BDM and Supplemental Specification (SS) 840, the minimum length of the reinforced soil mass is equal to 70 percent of the height of the MSE wall or 8.0 feet whichever is greater. A non-structural bearing leveling pad consisting of a minimum of 6.0-inches of unreinforced concrete should be placed at the base of the wall facing for constructability purposes. Please note that the leveling pad is not a structural foundation.

Based upon the proposed plan information, the maximum wall height at the rear abutment is anticipated to be 35.7 feet from the top of the leveling pad to the proposed profile grade of the roadway. The wall will be turned back approximately 45 degrees and graded down to the north and south of the abutment, and will then turn back again at approximately 45 degrees at the north side of Ramp A5, just south of the I-71 northbound ramp. It is understood that 2:1 backslopes will be graded up to the proposed Ramp A5 roadway from the top of the wall where it extends away from the rear abutment. For the analysis, the foundation width was set at 70 percent of the wall height and the foundation width was increased, if required, until external and global stability requirements were satisfied.

Per Section 840.06.D of ODOT SS 840, the foundation subgrade should be inspected to verify that the subsurface conditions are the same as those anticipated in this report. Existing fill material comprised of medium dense gravel with sand and silt (ODOT A-2-4) was encountered at the proposed bearing elevation along the wall alignment, which extends to a depths ranging from 5.0 to 8.0 feet below the proposed bearing elevation, overlying medium stiff to stiff silty clay (ODOT A-6b). Based on the blow counts obtained within fill material and the absence of significant amounts of deleterious materials, the existing fill material is considered suitable to support the proposed retaining wall. Additionally, the final approximately 80 feet of the wall alignment (between Sta. 2+55 and 3+38, BL Wall 4W11) will be bearing partially or completely on new embankment fill that will be placed as part of the construction of the ramps in this area.

Per ODOT SS 840, following foundation subgrade inspection and acceptance, a minimum of 12.0 inches of ODOT Item 703.16.C, Granular Material Type C, should be placed and compacted in accordance with ODOT Item 204.07.

Groundwater was encountered in the borings performed in the vicinity of the wall at elevations ranging from 685.1 to 691.8 feet msl. Based on the plan information provided, the normal water elevation for the Scioto River is 696.2 feet msl with a 100-year flood elevation of 715.1 feet msl. For the analysis of the retaining wall, a design groundwater elevation of 715.1 feet msl was utilized, which is 7.9 feet below the bottom of wall (top of leveling pad) elevation.

5.4.1 Strength Parameters Utilized in External and Global Stability Analyses

The shear strength parameters utilized in the external and global stability analyses for Retaining Wall 4W11 are provided in Table 10.

Table 10. Shear Strength Parameters Utilized in MSE Wall Stability Analyses

<u> </u>						
Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	c' (2) (psf)	$S_u^{(3)}$ (psf)		
MSE Wall Backfill (Select granular fill)	120	34	0	N/A		
Item 203 Embankment Fill (Retained soil)	120	30	0	2,000		
Existing Fill: Medium Dense Gravel with Sand and Silt (ODOT A-2-4)	125	32	0	N/A		
Soft to Stiff Silty Clay (ODOT A-6b)	115	26	0	1,500		
Medium Dense to Very Dense Natural Granular Soils (ODOT A-1-a, A-1-b, A-2-6, A-3a, A-4a)	125 to 135	34 to 41	0	N/A		
Very Stiff Sandy Silt (ODOT A-4a)	120	29	0	2,250		

^{1.} Per Figure 7-45, Section 7.6.9 of FHWA GEC 5 for cohesive soils and Table 10.4.6.2.4-1 of the 2018 AASHTO LRFS BDS for granular soils.

Shear strength parameters for the reinforced soil backfill and retained embankment are provided in ODOT SS 840. Per SS 840, the select granular backfill in the reinforced zone and the retained embankment must meet the shear strength requirements provided in Table 10. The shear strength parameters for the natural soils were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-NHI-16-072) Evaluation of Soil and Rock Properties and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles. However, the friction angle for the existing fill that consisted of medium dense gravel with sand and silt was conservatively assigned since there no records of the material origin or how it was placed.

^{2.} Estimated based on overconsolidated nature of soil.

^{3.} $S_u = 125(N_{60})$, Terzaghi and Peck (1967).

5.4.2 Bearing Stability

Existing fill material comprised of medium dense gravel with sand and silt (ODOT A-2-4) was encountered at the proposed bearing elevation along the wall alignment, which extends to a depths ranging from 5.0 to 8.0 feet below the proposed bearing elevation, overlying medium stiff to stiff silty clay (ODOT A-6b). Based on the blow counts obtained within fill material and the absence of significant amounts of deleterious materials, the existing fill material is considered suitable to support the proposed retaining wall. Given the relatively shallow thickness of the gravel with sand and silt (existing fill) layer, a two layer bearing stratum should be evaluated for this wall. Therefore, the bearing resistance was calculated considering just the drained and undrained properties of the underlying medium stiff to stiff silty clay (ODOT A-6b).

MSE wall foundations bearing on these soils or new embankment fill, placed and compacted in accordance with ODOT Item 203, may be proportioned for a factored bearing resistance as indicated in Table 11. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state. The reinforcement length presented in the following table represents the minimum foundation width required to satisfy external and global stability requirements, expressed as a percentage of the wall height.

Table 11. Retaining Wall 4W11 MSE Wall Design Parameters

	rabio in retaining trail into mod trail bodgi i arametere								
From Station ¹	To Station ¹	Wall Height Analyzed	Backslope Behind Wall in	Behind Reinforcement		esistance at th Limit sf)	Strength Limit Equivalent Bearing		
		(feet)	Analysis	Length ² (feet)	Nominal	Factored ³	Pressure ⁴ (ksf)		
0+00	1+78	35.7	Level	28.6 (0.80H)	13.59	8.83	7.70		
1+78	3+38	20.0	2:1	17.0 (0.85H)	10.11	6.57	5.77		

- 1. Station referenced to the baseline of Wall 4W11.
- 2. The required foundation width is expressed as a percentage of the wall height, H.
- 3. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state.
- 4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade material for the maximum specified wall heights indicated in Table 11. Based on the minimum length of reinforced soil mass presented, the factored equivalent bearing pressure exerted below the wall will not exceed the factored bearing resistance at the strength limit state under drained conditions. However, using the undrained shear strength noted in Table 10 for the silty clay (ODOT A-6b) material, the analysis indicates that the factored equivalent bearing pressure exerted below the wall will exceed the factored bearing resistance at the strength limit state under undrained conditions. If a layered soil profile is considered (as outlined in Section 10.6.3.1.2e of the 2018 AASHTO LRFD BDS) and the upper gravel with sand and silt layer (ODOT A-2-4) is modeled as a cohesive soil with an undrained shear strength of approximately 4,000 psf (based on the SPT N-values obtained within that material), then the nominal bearing resistance increases to the approximate resistance calculated under drained conditions (considering just the silty clay layer properties as provided in Table 11). Therefore, for temporary scenarios where undrained loading of the underlying silty clay soils occurs, the factored equivalent bearing pressure exerted below the wall will not exceed the factored bearing resistance at the strength limit state under drained conditions considering a two layer bearing stratum.

5.4.3 Settlement Evaluation

The compressibility parameters utilized in the settlement analyses of the proposed MSE walls are provided in Table 12.

Table 12. Compressibility Parameters Utilized in Settlement Analysis

Material Type	γ (pcf)	<i>LL</i> (%)	C_c (1)	$C_r^{(2)}$	e _o (3)	$C_{v}^{(4)}$ (ft²/yr)	N_{60}	C' (5)
Existing Fill: Medium Dense Gravel with Sand and Silt (ODOT A-2-4)	125	N/A	N/A	N/A	N/A	N/A	14	71 to 83
Soft to Stiff Silty Clay (ODOT A-6b)	115	37	0.243	0.012	0.561	400	N/A	N/A
Medium Dense to Very Dense Natural Granular Soils (ODOT A-1-a, A-1-b, A-2-6, A-3a, A-4a)	125 to 135	N/A	N/A	N/A	N/A	N/A	19 to 37	44 to 91
Very Stiff Sandy Silt (ODOT A-4a)	120	18	0.072	0.007	0.413	1,000	N/A	N/A

- 1. Per Table 6-9. Section 6.14.1 of FHWA GEC 5.
- 2. Estimated at 10% of C_c per Section 8.11 of Holtz and Kovacs (1981).
- 3. Per Table 8-2 of Holtz and Kovacs (1981).
- 4. Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.
- 5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

Results of the settlement analysis are tabulated in Table 13. Total settlements of up to 5.32 inches at the center of the reinforced soil mass and 3.16 inches at the facing of the wall are anticipated along the alignment of retaining wall 4W11. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately fifteen (15) days. Please note that the consolidation settlement and time rate of consolidation are based on estimates using correlated compressibility parameters provided in Table 12 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

Table 13. Retaining Wall 4W11 MSE Wall Settlement Results

From	То	Wall Height	Backslope Behind	Service Limit Equivalent	Total Settler		Time for 90%
Station ¹	Station ¹	Analyzed (feet)	Wall in Analysis	Bearing Pressure ¹ (ksf)	Center of Wall Mass	Facing of Wall	Consolidation (Days)
0+00	1+78	35.7	Level	5.47	5.323	3.156	15
1+78	3+38	20.0	2:1	4.08	2.769	2.287	15

^{1.} The service limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the service limit state.

Per Section 204.6.2.1 of the ODOT BDM, "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Based on the total anticipated settlement at the facing of the walls, maximum differential settlements in the longitudinal directions are anticipated to be less than 1/500, which is within the tolerable limit of 1/100. If the total or differential settlement values predicted for the proposed walls present an issue with respect to the deformation tolerances that the walls can withstand, then measures should be taken to minimize the amount of settlement that will occur. This can be achieved by preloading the site and consolidating the underlying soils prior to constructing the walls. If preloading the site is not a desired option, then consideration could be given to ground improvement through the use of stone columns. Settlement calculations are provided in Appendix IX.

5.4.4 Eccentricity (Overturning Stability)

The resistance of the MSE wall to overturning will be dependent on the on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For MSE walls, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.10.5.5 of the 2018 AASHTO LRFD BDS, for foundations bearing on soil, the location of the resultant of the reaction forces shall be within the middle two-thirds (2/3) of the base width. Therefore, the limiting eccentricity is one-third (1/3) of the base width of the wall. Rii performed a verification of the eccentricity of the resultant force for the specified wall

heights indicated in Table 11. Based on the minimum length of reinforced soil mass presented in Table 11 and utilizing the soil parameters listed in Section 5.4.1 for the retained embankment material, the calculated eccentricity of the resultant force <u>will not exceed</u> the limiting eccentricity at the strength limit state.

5.4.5 Sliding Stability

The resistance of the MSE walls to sliding was evaluated per Section 11.10.5.3 of the 2018 AASHTO LRFD BDS. Given that the bearing soils consist of granular material, the sliding resistance was only evaluated under drained conditions. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the limiting friction angle between the foundation soil and the reinforced soil backfill. Based on the soil parameters listed in Section 5.4.1 for the foundation and select granular backfill material, a coefficient of sliding friction of 0.62 was utilized for design based on the limiting friction angle of 34 degrees for the select granular backfill. A geotechnical resistance factor of ϕ_{τ} =1.0 was considered in calculating the factored shear resistance between the backfill material and foundation for sliding. Based on the minimum length of reinforced soil mass presented in Table 11 and utilizing the soil parameters listed in Section 5.4.1 for the retained embankment material, the resultant horizontal forces on the back of the MSE wall will not exceed the factored shear resistance at the strength limit state.

5.4.6 Overall (Global) Stability

A slope stability analysis was performed to check the global stability of the wall. As per the AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state by assuming the reinforced soil mass to be a rigid body. Soil parameters utilized in the global stability analyses are presented in Section 5.4.1. For the global stability condition, it was considered that the failure plane will not cross through the reinforced soil mass. The computer software program Slide 6.0 manufactured by Rocscience Inc. was utilized to perform the analyses.

Per Section 11.6.2.3 of the 2018 AASHTO LRFD BDS, overall (global) stability for MSE walls that are integrated with or supporting structural foundations or elements is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.65 is greater than 1.0. Therefore, global stability for the portion of the wall that crosses the abutment substructure is satisfied when a minimum factor of safety of 1.5 is obtained. For an MSE wall designed with the minimum strap lengths listed in Table 11, the resulting factor of safety under drained conditions (long-term stability) and undrained conditions (short-term stability) for the portion of the wall that crosses the abutment substructure using the Spencer's analysis method was greater than 1.5.

For MSE walls that are not integrated with or supporting structural foundations or elements, global stability is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability for the portions of the wall that are adjacent to the abutment substructure is satisfied when a minimum factor of safety of 1.3 is obtained. For an MSE wall designed with the minimum strap lengths listed in Table 11, the resulting factor of safety under drained conditions (long-term stability) and undrained conditions (short-term stability) for the portions of the wall that are adjacent to the abutment substructure using the Spencer's analysis method was greater than 1.3.

5.4.7 Final MSE Wall Considerations

Based on the results of the external and global stability analyses performed for Retaining Wall 4W11, the recommended controlling strap length is 0.80 times the maximum height of the MSE wall (measured from the top of the leveling pad to the proposed profile grade of the roadway) between Sta. 0+00 and 1+78 and 1.0 times the wall height from Sta. 1+78 to 3+38 (end of the wall). Global stability under drained and undrained conditions were the controlling factors in the determination of the recommended strap length of 80 percent of the wall height for the section between Sta. 0+00 and 1+78. Bearing stability under drained conditions and global stability under both drained and undrained conditions were the controlling factors in the recommended strap length of 85 percent of the wall height between Sta. 1+78 and 3+38.

As noted in Section 5.4.2, bearing stability was not satisfied under undrained conditions for either wall section assuming a uniform bearing stratum with the weakest shear strength parameters within the zone of influence below the bottom of wall. However, as previously noted, if a layered soil profile is considered and the upper gravel with sand and silt layer is modeled a cohesive soil with an undrained shear strength of approximately 4,000 psf, then the nominal bearing resistance increases to the approximate resistance calculated under drained conditions, which satisfies bearing stability requirements.

Calculations for external (bearing and sliding resistance and limiting eccentricity) and overall (global) stability of the MSE walls are provided in Appendix IX.

5.5 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ) , cohesion (c), effective angle of friction (ϕ) , and lateral earth pressure coefficients for at-rest conditions (k_o) , active conditions (k_a) , and passive conditions (k_p) have been estimated and are provided in Table 14 and Table 15.

Table 14. Estimated Undrained (Short-term) Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ	k_a	k_o	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

Table 15. Estimated Drained (Long-term) Soil Parameters for Design

Table 13. Estimated Dramed (Long-term) Son Parameters for Design							
Soil Type	γ (pcf) ¹	c (psf)	φ'	k_a	k_o	k_p	
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53	
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07	
Loose Granular Soil	120	0	28°	0.32	0.53	5.07	
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82	
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09	
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58	
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41	

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.6 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Table 16. Excavation Back Slopes

Soil	Maximum Back Slope	Notes					
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage					
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage					
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage					
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None					
Rock to 3.0' +/- below Auger Refusal	0.75 : 1.0	Above Ground Water Table and No Seepage					
Stable Rock	Vertical	Above Ground Water Table and No Seepage					

5.7 Groundwater Considerations

Based on the groundwater observations made during drilling, groundwater is anticipated to be encountered during construction of the drilled shafts. Where groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. In the case of drilled shafts, the utilization of casing will be required below the water table to maintain an open hole and prevent the sidewalls from collapse. In addition, concrete placed below the water table should be placed by tremie method using a rigid tremie pipe. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

Granular Soils – ODOT A-1, A-2, A-3, A-4 (non-plastic)

The relative compactness of granular soils is described as:

<u>Description</u>	Blows per	foot –	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

Und	confin	ed
Compr	essio	n (tsf)
Less than		0.25
0.25	-	0.5
0.5	-	1.0
1.0	-	2.0
2.0	-	4.0
Over		4.0
	Compr Less than 0.25 0.5 1.0 2.0	0.25 - 0.5 - 1.0 - 2.0 -

Gradation - The following size-related denominations are used to describe soils:

Soil Fra	<u>ction</u>	<u>Size</u>
Boulders		Larger than 12"
Cobbles		12" to 3"
Gravel	coarse	3" to ¾"

 fine
 %" to 2.0 mm (%" to #10 Sieve)

 Sand
 coarse fine
 2.0 mm to 0.42 mm (#10 to #40 Sieve)

 6 silt
 0.42 mm to 0.074 mm (#40 to #200 Sieve)

 10 coarse fine
 0.074 mm to 0.005 mm (#200 to 0.005 mm)

Clay Smaller than 0.005 mm

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

<u>Term</u>	<u>Range</u>		
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	<u>Range - ODOT</u>
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist .	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)

Slightly organic 2-4 Moderately organic 4-10 Highly organic >10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

<u>Description</u>	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

APPENDIX III

PROJECT BORING LOGS:

B-015-7-13, B-108-2-13, B-108-3-13 and B-108-9-15

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

Granular Soils – ODOT A-1, A-2, A-3, A-4 (non-plastic)

The relative compactness of granular soils is described as:

<u>Description</u>	Blows per	foot –	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

Und	confin	ed
Compr	essio	n (tsf)
Less than		0.25
0.25	-	0.5
0.5	-	1.0
1.0	-	2.0
2.0	-	4.0
Over		4.0
	Compr Less than 0.25 0.5 1.0 2.0	0.25 - 0.5 - 1.0 - 2.0 -

Gradation - The following size-related denominations are used to describe soils:

Soil Fra	<u>ction</u>	<u>Size</u>
Boulders		Larger than 12"
Cobbles		12" to 3"
Gravel	coarse	3" to ¾"

 fine
 %" to 2.0 mm (%" to #10 Sieve)

 Sand
 coarse fine
 2.0 mm to 0.42 mm (#10 to #40 Sieve)

 6 silt
 0.42 mm to 0.074 mm (#40 to #200 Sieve)

 10 coarse fine
 0.074 mm to 0.005 mm (#200 to 0.005 mm)

Clay Smaller than 0.005 mm

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

<u>Term</u>	<u>Range</u>		
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	<u>Range - ODOT</u>
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist .	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)

Slightly organic 2-4 Moderately organic 4-10 Highly organic >10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

<u>Description</u>	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
0000	Gravel and/or Stone Fragments	Д-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
0.0.0	Gravel and/or Stone Fragments with Sand	Α-	1-b		50 Max.	25 Max.		6 Max.	0	
F.S.	Fine Sand	А	-3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
9 9 9	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
6.0.0.0 6.0.0.0	Gravel and/or Stone Fragments with Sand and Silt		2-4			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.0.0	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
+ + + + + + + + + + + + + + + + + + + +	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	А	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MA ⁻	TERIAL	CLASS	SIFIED B	/ VISUAL	INSPEC ⁻	TION			
	Sod and Topsoil	Uncon Fill ([trolled escribe)		Bouldery	/ Zone		P	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Field Parameter Description

No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a Unweathered

right appearance with no discoloration. Fractures show little or not staining on surfaces.

Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% Slightly Weathered

of the rock volume presents alteration.

Moderately Weathered Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a

pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to

alteration may be present. 10 to 15% of the rock volume presents alterations.

Highly Weathered Entire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock

may be present and some areas of severely weathered materials may be present.

Severely Weathered Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of

more resistant rock may be present but the material can generally be molded and crumbled by

hand pressures.

Strength of Bedrock - The following terms are used to describe the relative strength of bedrock:

Description Field Parameter

Very Weak Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger

pressure.

Weak Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure. Slightly Strong

Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist

hammer.

Moderately Strong Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist

Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen. Strona Very Strong

Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand

Extremely Strong Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand

specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description Thickness

Greater than 36 inches Very Thick Thick 18 to 36 inches Medium 10 to 18 inches Thin 2 to 10 inches Very Thin 0.4 to 2 inches Laminated 0.1 to 0.4 inches Thinly Laminated Less than 0.1 inches

<u>Fracturing</u> – Describes the degree and condition of fracturing (fault, joint, or shear):

Degree of Fracturing

Description Spacing

Unfractured Greater than 10 feet

3 to 10 feet Intact Slightly Fractured 1 to 3 feet

Moderately Fractured

Aperture Width Surface Roughness

Description Width Description Criteria

Greater than 0.2 inches Open Very Rough Near vertical steps and ridges occur on surface Narrow 0.05 to 0.2 inches Slightly Rough Asperities on the surfaces distinguishable

Tight Less than 0.05 inches Slickensided Surface has smooth, glassy finish, evidence of Striations

RQD - Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006):

RQD % Rock Index Property Classification (based on RQD, not slake durability index)

0 - 25%Very Poor 26 - 50%Poor 51 - 70% Fair 71 – 85% Good 86 - 100%Very Good

PROJECT: _	FRA-70-12.68 - PHASE 4A STRUCTURE	DRILLING FIRM / SAMPLING FIRM				LL RIG /IMER:		CME-750 (S CME AUTO			1	ΓΙΟΝ / NMEN		ET: _		1+29.6 RAMP		8' RT	EXPLORA B-015
	72 BR ID: FRA-70-1301A	DRILLING METHO		3.25" HSA / RC	_				4/26/13		1			721 8		.) E		8	D.5 ft.
	6/10/13 END: 6/13/13	SAMPLING METH		SPT / NQ			RATIO (82.6		1	LONG						014254	
	IATERIAL DESCRIPTION		ELEV.		SPT/			SAMPLE					N (%		_	ERBE	_		ODOT
	AND NOTES		721.8		RQD	N_{60}	(%)	ID	(tsf)			FS	_ `	CL	LL		PI	wc	CLASS (GI)
0.4' - TOPSOIL (5.0")			721.4																×
	, SOME FINE GRAVEL, SOI	ME FINE		- 1 - - 2 -	15	37	50	SS-1	4.5+	24	14	13	15	34	43	19	24	9	A-7-6 (8)
DENSE GRAY GRAN	'EL , LITTLE FINE TO COARS	E 0 (718.8	- 3 -	12														
	TRACE CLAY, DAMP.			4 - 5 -	9 11 12	32	17	SS-2	-	-	-	-	-	-	-	-	-	6	A-1-a (V)
	F, DARK BROWN TO BROW	/NISH	716.3	- 6 -	3														
SOME FINE GRAVEL	Y, SOME COARSE TO FINE , DAMP TO MOIST.	SAND,		7 -	4 2	8	61	SS-3	2.00	-	-	-	-	-	-	-	-	15	A-6a (V)
				- 8 - - 9 -	2 4	11	67	SS-4	2.50	26	15	15	16	28	32	17	15	13	A-6a (3)
				- 10 - - - 11 -	4														
			700.0	- 11 - - - 12 -	3 6 5	15	56	SS-5	2.00	-	-	-	-	-	-	-	-	20	A-6a (V)
LOOSE TO DENSE, E	BROWN GRAVEL WITH SANI	D, SILT,	708.8	— 13 — — 14 —	2														
				- 15	3 3	8	72	SS-6	-	-	-	-	-	-	-	-	-	17	A-2-6 (V)
				— 16 — — 17 —	3 9	19	44	SS-7	_	30	20	15	11	24	30	18	12	17	A-2-6 (0)
	NSE, GRAY GRAVEL AND S	AND SOL	703.8	_ '' — 18 —	5														
	T, TRACE CLAY, DAMP TO			- 19 - 20 -			0	ST-8	-	-	-	-	-	-	-	-	-	-	
				_ 21 _	5														
				_ 22 _	18 18	50	72	SS-9	-	-	-	-	-	-	-	-	-	7	A-1-b (V)
				- 23 - - 24 -	11		67	66.40		10	18	9	23	1	ND	NP	NID.	7	A 1 b (0)
				25	19	55	67	SS-10	-	49	10	9	23	'	NP	INP	INP	1	A-1-b (0)
				- 26 - - 27	12 27 22	67	83	SS-11	-	-	-	-	-	-	-	-	-	8	A-1-b (V)
		à.O.		- 28 -															
				_ 29 _	8 13 17	41	11	SS-12	-	-	-	-	-	-	-	-	-	10	A-1-b (V)

MATERIAL DESCRIPTION	EI	EV.		SPT/		REC	SAMPLE	HP	G	RAD	ATIC	N (%)	ATT	ERBI	ERG		ODOT
AND NOTES		1.8	DEPTHS	RQD	N_{60}	(%)	ID		GR			SI		LL			wc	CLASS (GI)
DENSE TO VERY DENSE, GRAY GRAVEL AND SAND , LITTLE TO SOME SILT, TRACE CLAY, DAMP TO MOIST. (same as above)			- 31 - - 32 - - 33 -															
-HEAVING SANDS ENCOUNTERED @ 33.5'			- 34 I	21 \50/1"/	-	100	SS-13	-	34	30	16	19	1	NP	NP	NP	15	A-1-b (0)
-INTRODUCED MUD @ 33.5'			- 35 - - 36 - - 37															
			- 37 - - 38 - - 39 -	. 30	102	56	SS-14	-	-	_		-	_	_	_	-	9	A-1-b (V)
			- 40 - - 41 - - 42 -	38														
			- 43 - - 44 - - 45 -	13 14 24	52	72	SS-15	-	-	-	-	-	-	-	-	-	8	A-1-b (V)
HARD, GRAY SILTY CLAY , SOME COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.	67 67	<u>′4.8</u>	46 47 48															
			- 49 - 50 - 51	16 19 25	61	83	SS-16	4.50	7	7	15	46	25	30	14	16	19	A-6b (10)
/ERY DENSE, GRAY GRAVEL AND SAND , LITTLE SILT, TRACE CLAY, MOIST TO WET.	66	69.8	51 52 53															
			- 54 - - 55 - - 56 -	20 \50/1"/	-	171	SS-17	-	-	-	1	-	-	-	-	-	17	A-1-b (V)
			- 57 - - 58 - - 59 -	30 \50/1"/	-	100	SS-18	-	-	-	-	-	-	-	-	-	11	A-1-b (V)
			- 60 - - 61 -															

B-015-7-13 – RC-1 – Depth from 70.5 to 75.5 feet

B-015-7-13 - RC-2 - Depth from 75.5 to 80.5 feet

PROJECT: _	FRA-70-12.68 - F STRUCTURI			FIRM / OPERATOR: FIRM / LOGGER:	RII / S.M.	DRILL RIG		CME-750 (SI			STATION		SET:		4+11.9 RAMP		.9' RT	EXPLO	
PID: 773		N/A	DRILLING N	-	3.25" HSA	CALIBRAT			4/26/13		ELEVAT	_	722				5	 0.0 ft.	F
START:	6/6/13 END:	6/6/13	SAMPLING		SPT	ENERGY			82.6		LAT / LC	_					 014658		1
			SAMELING				_							_			014030		ᄂ
, n	MATERIAL DESCR			ELEV.	DEPTHS S	RQD N ₆₀		SAMPLE			RADAT			_	ERBI			ODOT CLASS (GI)	B
	AND NOTES	5		722.1	ŀ	KQD °°	(%)	ID	(tsf)	GR	CS FS	SI	CL	LL	PL	PI	WC	CLASS (GI))
0.5' - TOPSOIL (6.0"				721.6															X
FILL : STIFF TO HAR GRAY SILTY CLAY , S SAND, LITTLE FINE	SOME TO SOME (COARSE TO			- 1 - 4 - 2 -	20 48	33	SS-1	4.5+	-		-	-	-	-	-	7	A-6b (V)	
-STONE AND CIND	ER FRAGMENTS	PRESENT			3 -														X
THROUGHOUT				740.0	- 4 - ⁵	7 18	67	SS-2	2.00	19	16 12	2 27	26	36	17	19	16	A-6b (7)	
STIFF, DARK GRAY			E TO	716.6	6 16														\mathbb{X}
INE SAND, TRACE -COBBLES PRESE				714.1	7 -	6 18 7	78	SS-3	2.00	-		-	-	-	-	-	16	A-6b (V)	
MEDIUM DENSE, BF BILT, TRACE CLAY,		ND SAND, LI	TTLE		- 8 - - 9 - 7	9 21	39	SS-4	_								6	A-1-b (V)	$\frac{1}{\sqrt{2}}$
					10	6	39	33-4	-	-		-	-	-	-	-	6	A-1-D (V)	
					- 11 - 9 - 12 -	6 15	44	SS-5	-	46	25 8	12	9	24	18	6	6	A-1-b (0)	-
MEDIUM DENSE, GF	RAY GRAVEL WIT	H SAND, SIL	T, AND	709.1	13 —														X
CLAY, MOIST. -QU @ 13.7' = 0.40		,			— 14 —		54	ST-6	-	55	10 8	15	12	31	19	12	15	A-2-6 (0)	, X
-ATTEMPTED SHE 17.0'	LBY TUBE @ 15.5	', TUBE CRI	JSHED @	705.6	15 16														$\frac{1}{2}$
SOFT TO STIFF, GR COARSE TO FINE S MOIST.					17 3	4 12	56	SS-7	0.50	_			-	_	_	_	24	A-7-6 (V)	
-COBBLES PRESE	NT @ 18.0'				- 18 - - - 19 - 2	3 11	72	SS-8	1.50		10 13	3 38	30	41	25	16		A-7-6 (9)	-
					20	5	12	33-0	1.50	9	10 1	, 30	30	- '	2.5	10	20	rx-1-0 (9)	
				700.1	- 21 - - 22 -														
MEDIUM DENSE, DA BRAVEL AND SAND,					23														
O MOIST.					24 4 - 25	6 15	78	SS-9	-	-		-	-	-	-	-	8	A-1-b (V)	
					- 25 - - 26 -														
					_ 27 _														
00001505555	NT C 00 21				- 28 - - 29 - 8	0 10	22	66.40		60	12 2	14	_	NID	ND	ND		A 1 b (0)	K
-COBBLES PRESE	NT @ 30.0'				- 20	9 19 5	33	SS-10	-	62	13 8	11	6	NP	NP	NP	5	A-1-b (0)	\geqslant

D::)	PRO.	JECT:	F		0-12.6 RUCT		HASE 4A	١	_			PERATOR LOGGER:		/ S.M. / K.S.		ILL RIG MMER:		ME-750 (S			STATI			T: _		5+67.2 AMP		2' RT	EXPLO B-10	
KIII			270	_				0.4	_												_			20.0						Т
				_			A-71-151			ING ME			3.25" HS			LIBRAT			4/26/13		ELEVA					_			50.0 ft.	-
	STAF		6/7/13		END	_	6/7/13		SAMI	PLING M	EIH		SPT			ERGY F			82.6		LAT / L		_					014459	9410	4
			MATE				PTION					ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE	1		RADA					RBE			ODOT	E
				ANI	ON C	TES					Ų	722.9			RQD	. •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI))
).3' - TO										/ià	प्राप्तः	∖722.6																		X
FILL: ME							NN GR	AVE	L WIT	H [W 9			_ 1 _	10															$\rightarrow >$
SAND A	ND SIL	.I, IK	ACE (JLAY	r, DA	MP.				K	#1 b			_ 2 _	8	25	44	SS-1	-	-	-	-	-	-	-	-	-	7	A-2-4 (V) [~
										å				- 4	10															$\rightarrow >$
										5	\mathbb{H}			_ 3 _																
-CINDE	RS PI	RESE	NT IN	SS-2	>									<u> </u>	20 12	28	56	SS-2	_	_		_			_		_	0	A-2-4 (V	$\langle \rangle$
-COBBI										Q	Mà				12		50	33-2	-	-	-	-	-	-	-	-	-	9	A-2-4 (V	'
										5	111	717.4		_ 5 _																
FILL: ST								ARSE	E TO	E	\equiv			− 6 −	4							+	+	+	-					-
FINE SA -BRICK										E	\equiv			7	4	12	61	SS-3	1.75	30	15	14	20 2	21	34	18	16	18	A-6b (3)	
אטואום	· 1 1 1 1 1 1 1	>IVI∟I\	.011	\LUL	_1 1 1	. 1 00				E		714.9		⊦ ′ ™	5							_		\dashv						_{
SOFT TO	O STIE	FRE	(A/V)	SII :	LA Cı	Δ٧	I ITTI E	- TO	SOM	=	=	114.8		— 8 —										- [
COARSE										-	\equiv			_ 9 _	1 _	4-			1,_,					1						\mathbb{K}
		_ `	,					,		E	\equiv			⊢ ⊪	5 6	15	67	SS-4	1.50	-	-	-	-	-	-	-	-	17	A-6b (V)	
										E				_ 10 _										1						$+\!$
										F	\equiv			11	7					L		_		\perp						_()
															3	7	44	SS-5	1.50	_	_	_	_	-	_	_	_	14	A-6b (V)	
														_ 12 _	2	·			1.00										7.00(1)	
										E				— 13 —										- [K
										E	\equiv			14 	2									\dashv						$\neg \triangleright$
										E	\equiv			- 14 -	3	8	44	SS-6	0.50	-	-	-	-	-	-	-	-	16	A-6b (V)	·
										E	\equiv	707.4		— 15 —	3							\dashv	+	\dashv	+	+	-			$\rightarrow >$
OOSE,	BROV	VN GI	RAVEI	_, SC	ME (COA	RSE TO	O FIN	ΝE		Ž			_ 16										\perp						_
Sand, T	ΓRACE	SILT	, TRA	CE C	LAY,	MO	IST.				Og				3	10	33	SS-7	_	67	13	8	8	4	NID	NP	ND	7	A-1-a (0)	, D
										1				17	3_	10	55	00-1		07	10	0		_	141	141	141	'	Α-1-α (0,	
TIEE -	20011	N 611		0		TT: -	- 00 4 -	205	T.C.	0	}	704.9		— 18 —																
STIFF, B FINE SA								KSE	10					- 19 -	3							\dashv		\dashv	-					$ \!$
INC SA	אואט, ו	IVACE	I IINE	GR/	¬v ⊏L	, IVIC	/IO I .							19	⁴ _	15	44	SS-8	1.75	-	-	-	-	-	-	-	-	23	A-6a (V)	
										/.				— 20 —	7							+	+	+	+					- {<
										1				- 21																
												700.9																		K
DENSE.	BROV	WN G	2Λ//Ει	20	ME (COA	RSE TO) FIN	VE.	0	(()	700.9		— 22 —																
SAND, T								J 1 11	•-	C	09			_ 23																K
-,.		•	,		,						20				11				-			+		+						-13
-COBBI	LES P	RESF	NT @	24 ()'					U	ŎΊ			_ 24 _	10	47	61	SS-9	_	-	_	_	-	-	-	-	-	7	A-1-a (V) K
3020			😅		-						Og			_ 25 _	19							_		_						
										1																				X
										0	0			26																
AED	105.	05 5	2014/		A \ '		D 0 4 4 7 -			Š	\mathcal{L}	695.9		— 27 —																X
MEDIUN SILT, TR					AVEL	_ AN	D SANE	J, LIT	IILE	Q.	0			-																
יו∟ו, ור	VACE (JLA I	IVIOIS	, .							- N			_ 28 _						L				\perp						_ X
										å	0.4			— 29 —	7 11	28	56	SS-10	_	31	34	18	14	3	NP	NP	ND	11	A-1-b (0)	Ň
										Š	Na			- H	11		50	33-10	-	ادا	34	10	14	J	INF	INF	INC	1.1	A- 1-D (U,	' ∑

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 188 LBS CEMENT / 50 LBS BNTONITE POWDER / 50 GAL WATER

	DRILLING FIRM / OPERATO SAMPLING FIRM / LOGGER			LL RIG MMER:		BILE B-53 (AUTOMA		400)	1	TION /		SET: _		5+96.5 RAMP		5.7' LT	EXPLOR B-108	
PID: <u>77372</u> BR ID: <u>FRA-71-1518A</u>	DRILLING METHOD:	3.25" HSA / NQ	CAL	IBRAT	ION DA	ATE:	4/26/13	1	ELE\	/ATIO	N:	722.4	(MSL	_)	EOB:	8	0.1 ft.	P
START: 3/7/15 END: 3/8/15	SAMPLING METHOD:	SPT / RC	ENE	RGY F	RATIO ((%):	77.7		LAT	LON	G:	3	9.950	35296	3, -83	.014507	695	1
MATERIAL DESCRIPTION	ELEV.		SPT/		REC	SAMPLE	HP	(GRAD	ATIC	N (%)	ATT	ERBI	ERG		ODOT	В
AND NOTES	722.4		RQD	N_{60}	(%)	ID.	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	F
0.2' - ASPHALT (3.0")	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	L			,													
0.8' - CONCRETE (9.0")	721.4	⊢ 1 −																1 L
0.3' - AGGREGATE BASE (4.0")	721.1	├ , F	11_	- 4								_			_			1>
FILL: LOOSE TO MEDIUM DENSE, DARK BROWN		_ 2 _	8	21	100	SS-1	-	48	18	9	17	8	25	16	9	8	A-2-4 (0)	7 1
GRAVEL WITH SAND AND SILT, LITTLE CLAY, MOIS	т. (\$1.)	- 3 -	- 0															< , \ \ \
- , ,		├ , 	6															7 2
	51H]	_ 4`	4	9	100	SS-2	-	-	-	-	-	-	-	-	-	11	A-2-4 (V)	1 L
		⊢ 5 ⊢	3															i >
																		7 1
-LOI = 1.9%		6		10	100	00.0		40	20	4.4	20		25	10		40	A O 4 (0)	173
		- 7 -	5 4	12	100	SS-3	_	43	20	11	20	6	25	19	6	10	A-2-4 (0)	7 7 7
	714.4	- 8 -																7 × 1
MEDIUM STIFF TO STIFF, DARK GRAY TO BROWN		- i	2					 										13
SILTY CLAY, SOME COARSE TO FINE SAND, LITTL	E 🔚	- 9 - 1	3	6	33	SS-4	1.00	_	_	_	_	_	_	_	_	26	A-6b (V)	< 1
FINE GRAVÉL, MOIST.		10	2														` ′	13
		- 1						l										7
		- 11 +			67	ST-5	1.25	14	13	17	32	24	37	19	18	22	A-6b (7)	7 >
		- 12 -																7 1
	709.4	⊢																<
MEDIUM DENSE, BROWNISH GRAY GRAVEL AND	مَنِي ١	_ 13																1 >
SAND, TRACE SILT, TRACE CLAY, MOIST.	K. C.9	<u></u> 14 — 14	8	19	50	SS-6					_					7	A-1-b (V)	7
		- 45	′ 8	19	30	33-0	-	-	-	-	-	-	-	-	-	′	A-1-0 (V)	7 >
	706.9	15																7 4
MEDIUM DENSE, GRAY SANDY SILT , SOME FINE		_ 16	5															</td
GRAVEL, TRACE CLAY, MOIST.		17	8	23	78	SS-7	_	30	16	15	34	5	NP	NP	NP	14	A-4a (1)	7 >
	704.4	''	10														, ,	7 L
/ERY STIFF, BROWNISH GRAY SILTY CLAY, SOME		- 18 -																7>
COARSE TO FINE SAND, LITTLE FINE GRAVEL, MC		— 19 —	4 _	40	400													7 1
		⊢ ⊪	5 7	16	100	SS-8	2.25	-	-	-	-	-	-	-	-	22	A-6b (V)	<
	701.9	_ 20 _																7 1
MEDIUM DENSE TO DENSE, BROWN GRAVEL AND		21	0					-										< 1
SAND, LITTLE SILT, TRACE CLAY, MOIST.			14	36	100	SS-9	_	_	_	_	_	_	_	_	_	7	A-1-b (V)	1/>
		_ 22 _	14	- •	. 50												~ (•)	1/2
		— 23 —																\ \ \ \ \
		_ 24 _	15															71
		_ 24 _	12	28	67	SS-10	-	51	14	18	14	3	NP	NP	NP	7	A-1-b (0)	5,
	[o • [Cd	- 25	10															1/2
	6 D	26																7 > 7 2
	à:Q:¶		15	44	100	SS-11										c	A 1 h // /	1>
	[: <u>.</u> 59	- 27 -	16 18	44	100	33-11	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	7.
	6.0	- 28 -	5															7 7 7
		⊢ ⊯,	0					1										1 1 2
	K. C.	<u></u> 29 − 3	9 6	17	100	SS-12	_	_	_	_	_	_	_	_	_	9	A-1-b (V)	15
	10. U		7			-		1		1						_	(.)	1

PID	77372	2 BF	R ID:	FF	A-71-15	18A	PF	OJECT	: <u>F</u>	RA-	70-12	2.68 -	PHASE	4A	_	STA	TION	/ OFFS	SET:	50	015+9	6.50 / ´	15.7 L	Γ	S	STAR	T: <u>3</u>	/7/15	EN	1D: _	3/8/1	5 P	G 2 C	F 3 B-1	108-9-1
			M	ATE	RIAL D			ION					ELEV.		DE	PTH	S	SPT	N _e			SAMPL				RAD			· —	_	_	ERG	-	ODOT	BAC
					AND I								692.4					RQD	116	0	(%)	ID	(ts	f) (GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI	
SA	DIUM DE ND , LITT ove)												690.4			-	- 31 -	- - -																	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
CC	DIUM DE											00		W		F	- 32 - - 33 -	_																	1>V
MC	OIST.																- 34 - - 35 -	19 18 18	47	,	100	SS-13	3 -	•	61	17	7	12	3	NP	NP	NP	10	A-1-a (0)
												000				-	- 36 -	<u>-</u> -																	7 / V
																-	- 37 - - 38 -																		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
																	- 39 - - 40 -	5 8	19	9	56	SS-14	-		-	-	-	-	-	-	-	-	15	A-1-a (V	1 / LV .
																-	- 41 - - 42 -	_																	7
																	- 43 -	-																	7777
_F	OULDEF	R PR	ESEN	JT 6) 45 0'											-	- 44 - - 45 -	15 21 1	4	ı	39	SS-15	5 -		-	-	-	-	-	-	-	-	16	A-1-a (V	1) 1 > L
•	OCLDE		LOLI	•••	, 40.0											-	- 46 - - 47 -																		V V V V V V V V V V V V V V V V V V V
																-	- 48 - - 49 -	24 15	39	<u> </u>	0	SS-16			_	_	_		_		_	_	_		1 × 1 7 × ×
												60	a				- 50 -	1:	5					1		·									7>1
												000	670.4			-	- 51 -	30	-		0	2S-16/	-		-	-	-	-	-	-	-	-	-		
DE MC	NSE, GR NST.	RAY (GRAV	EL۱	VITH S	AND,	SILT	, AND C	CLA	Υ,						E	- 52 - - 53 -	_																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
																-	- 54 - - 55 -	14 11 13	3	ı	56	SS-17	-		-	-	-	-	-	-	-	-	15	A-2-6 (V	1 < 1
													665.4				- 56 - - 57 -	_																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VĒ LI1	RY STIFI TLE CLA	F, GF VY, D	RAY (AMP	SANI	OY SIL	r, LIT	TLE	FINE G	RA\	/EL,						E	- 57 - - 58 -																		1
																	- 59 - - 60 -	6 6	18	3	100	SS-18	3 2.5	0	19	12	19	36	14	18	13	5	11	A-4a (3)) 1 > \ 1
													660.4			E	- 61 - 																		1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×

B-108-9-15 - RC-1 and RC-2 - Depth from 67.1 to 75.1 feet

B-108-9-15 - RC-3 - Depth from 75.1 to 80.1 feet

APPENDIX IV

LABORATORY TEST RESULTS

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

UNCONFINED COMPRESSION

ASTM D -2166

PROJECT FRA-70-12.68

JOB No. W-13-045

BORING B-108-2-13

STATION / OFFSET 5014+11.97 / 28.9' Rt.

SAMPLE No. / DEPTH ST-6 / 13.7 ft

DATE OF TESTING <u>6/14/2013</u>

TESTED BY JJH

Soil Description: Gray GRAVEL WITH SAND, SILT AND CLAY.

Soil Classification: ODOT A-2-4

Physical Characteristics	L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay%
Physical Characteristics	31	19	12	55	10	8	15	12

DIAMETER, D_0	2.85 in	72.3 mm
AREA, A ₀	6.37 in ²	41.1 cm ²
HEIGHT, L_0	5.72 in	145.16 mm
VOLUME, V_0	36.38 in ³	596.19 cm ³
MACH. RATE	0.572	in/min
WATER CONT.	22.25	 %

UNCONFINED COMPRESSION STRESS, q_u
AXIAL STRAIN @ FAILURE
HAND PENETROMETER

STRAIN RATE
WET SOIL + PAN MASS
PAN MASS
DRY SOIL + PAN MASS
WET DENSITY
DRY DENSITY

807	psf
	.!!

1.00	%/min
1281.5	g
77.9	g
1062.4	g
126.03	lb/ft ³
103.09	lb/ft ³
0.40	tsf

6.12

N/A

%

tsf

Unconfined Compression Test

Engineering Consultants

Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D 7012-04)

6350 Presidential Gatew.
Columbus, OH 43231
Phone (614) 823-4949

9885 Rockside Road Cleveland, OH 44125 Phone (216) 573-0955 4480 Lake Forest Drive Cincinnati, Ohio 45242 Phone (513) 769-6998

Project: <u>FRA-70-12.68</u>
Project No.: <u>W-13-045</u>

Date of Testing: <u>7/12/2013</u>

Test Performed by: JJH/TK

Rock Description: DOLOMITE: Gray and brown, slightly weathered, strong.

 Boring No.:
 B-015-7-13

 Station / Offset:
 5051+29.66, 9.8' Rt.

 Sample No. / Depth:
 RC-1 / 72.1 ft.

 Moisture condition:
 As received

Rate of Loading: 63.9 lbs/sec
Testing Time: 520 sec

(Rate 2-15 minutes to failure)

Average Length: 4.081 in

Average Diameter: 1.855 in

Length to diameter ratio: 2.200

Cross Sectional Area: 2.701 in²

Failure Load: 33,240 lbs

Axial Strain at Failure: 0.0458 in/in

Stress:

Unconfined Compression Test

Before Testing

12,300 psi

After Failure

REMARKS: _____

Engineering Consultants

Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D 7012-04)

6350 Presidential Gatew.
Columbus, OH 43231
Phone (614) 823-4949

9885 Rockside Road Cleveland, OH 44125 Phone (216) 573-0955 4480 Lake Forest Drive Cincinnati, Ohio 45242 Phone (513) 769-6998

Project: <u>FRA-70-12.68</u>

Project No.: <u>W-13-045</u>

Date of Testing: 3/27/2015

Test Performed by: JH/TK

Rock Description: LIMESTONE: Brown and gray, moderately weathered, strong.

 Boring No.:
 B-108-9-15

 Station / Offset:
 5015+96.50, 15.7' Rt.

 Sample No. / Depth:
 RC-1 / 68.6 ft.

 Moisture condition:
 As received

 Average Length:
 5.023 in

 Average Diameter:
 1.862 in

 Length to diameter ratio:
 2.698

 Cross Sectional Area:
 2.722 in²

Rate of Loading: 72.7 lbs/sec

Testing Time: 471 sec

(Rate 2-15 minutes to failure)

Failure Load: 34,230 lbs

Axial Strain at Failure: 0.0243 in/in

Stress: 12,574 psi

Unconfined Compression Test

Before Testing

After Failure

REMARKS:

Engineering Consultants

Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D 7012-04)

6350 Presidential Gatew. Columbus, OH 43231 Phone (614) 823-4949

9885 Rockside Road Cleveland, OH 44125 Phone (216) 573-0955

4480 Lake Forest Drive Cincinnati, Ohio 45242 Phone (513) 769-6998

Project: FRA-70-12.68 Project No.: W-13-045 Date of Testing: 3/27/2015

Test Performed by: JH/TK

Rock Description: LIMESTONE: Brown and gray, moderately weathered, strong.

Boring No.: B-108-9-15 Station / Offset: 5015+96.50, 15.7' Rt. Sample No. / Depth: RC-3 / 75.4 ft. Moisture condition: As received

Average Length: 4.887 in Average Diameter: 1.862 in Length to diameter ratio: 2.625 Cross Sectional Area: 2.722 in²

38.7 lbs/sec Rate of Loading: Testing Time: 571 sec

0.0225 in/in Axial Strain at Failure: 7,788 psi

Stress:

Failure Load:

(Rate 2-15 minutes to failure)

Unconfined Compression Test

16,000 14,000 12,000 Compressive Stress, psi 10,000 8,000 6,000 4,000 2,000 0.000 0.005 0.010 0.015 0.020 0.025 0.030 Axial Strain, in/in

Before Testing

21,200 lbs

After Failure

REMARKS: Upper corner of sample sheared off at 3,500 psi. Based on nature of shear, this is not considered failure.

APPENDIX V
DRIVEN ANALYSIS OUTPUTS

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\DOCUME~1\LEGACY\DESKTOP\1518A-RA.DVN

Project Name: FRA-71-1518A-RA-B-108-9 Project Date: 00/00/ 0

Project Client: GPD GROUP

Computed By: BRT Project Manager: BRT

PILE INFORMATION

Pile Type: Pipe Pile - Closed End

Top of Pile: 0.00 ft Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	7.90 ft
·	 Driving/Restrike 	7.90 ft
	- Ultimate:	7.90 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	 Long Term Scour: 	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	8.50 ft	17.00%	125.00 pcf	32.0/32.0	Nordlund
2	Cohesive	5.00 ft	33.00%	115.00 pcf	1500.00 psf	T-79 Steel
3	Cohesionless	7.50 ft	17.00%	125.00 pcf	34.0/34.0	Nordlund
4	Cohesionless	11.50 ft	0.00%	130.00 pcf	38.0/38.0	Nordlund
5	Cohesionless	5.00 ft	0.00%	135.00 pcf	41.0/41.0	Nordlund
6	Cohesionless	5.00 ft	0.00%	125.00 pcf	37.0/37.0	Nordlund
7	Cohesionless	10.00 ft	0.00%	130.00 pcf	40.0/40.0	Nordlund
8	Cohesionless	5.00 ft	17.00%	130.00 pcf	36.0/36.0	Nordlund
9	Cohesive	5.00 ft	17.00%	120.00 pcf	2250.00 psf	T-79 Steel
10	Cohesionless	5.00 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.62 psf	21.33	N/A	0.00 Kips
7.89 ft	Cohesionless	493.12 psf	21.33	N/A	6.11 Kips
7.91 ft	Cohesionless	987.81 psf	21.33	N/A	6.14 Kips
8.49 ft	Cohesionless	1005.97 psf	21.33	N/A	7.06 Kips
8.51 ft	Cohesive	N/A	N/A	1060.00 psf	7.11 Kips
13.49 ft	Cohesive	N/A	N/A	1072.24 psf	26.68 Kips
13.51 ft	Cohesionless	1288.37 psf	22.66	N/A	26.75 Kips
20.99 ft	Cohesionless	1522.50 psf	22.66	N/A	48.45 Kips
21.01 ft	Cohesionless	1757.90 psf	25.33	N/A	48.54 Kips
30.01 ft	Cohesionless	2062.10 psf	25.33	N/A	105.95 Kips
32.49 ft	Cohesionless	2145.92 psf	25.33	N/A	124.74 Kips
32.51 ft	Cohesionless	2535.32 psf	27.33	N/A	124.92 Kips
37.49 ft	Cohesionless	2716.10 psf	27.33	N/A	176.24 Kips
37.51 ft	Cohesionless	2898.27 psf	24.66	N/A	176.43 Kips
42.49 ft	Cohesionless	3054.15 psf	24.66	N/A	218.24 Kips
42.51 ft	Cohesionless	3211.30 psf	26.66	N/A	218.45 Kips
51.51 ft	Cohesionless	3515.50 psf	26.66	N/A	337.77 Kips
52.49 ft	Cohesionless	3548.62 psf	26.66	N/A	352.01 Kips
52.51 ft	Cohesionless	3887.30 psf	23.99	N/A	352.25 Kips
57.49 ft	Cohesionless	4055.62 psf	23.99	N/A	400.92 Kips
57.51 ft	Cohesive	N/A	N/A	1570.00 psf	401.08 Kips
62.49 ft	Cohesive	N/A	N/A	1570.00 psf	429.74 Kips
62.51 ft	Cohesionless	4513.27 psf	22.66	N/A	429.88 Kips
67.49 ft	Cohesionless	4669.15 psf	22.66	N/A	474.19 Kips

RESTRIKE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft	Cohesionless	1.25 psf	40.40	35.28 Kips	0.03 Kips
7.89 ft	Cohesionless	986.25 psf	40.40	35.28 Kips	26.65 Kips
7.91 ft	Cohesionless	988.13 psf	40.40	35.28 Kips	26.70 Kips
8.49 ft	Cohesionless	1024.43 psf	40.40	35.28 Kips	27.68 Kips
8.51 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
13.49 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
13.51 ft	Cohesionless	1288.69 psf	55.60	78.59 Kips	50.77 Kips
20.99 ft	Cohesionless	1756.93 psf	55.60	78.59 Kips	69.21 Kips
21.01 ft	Cohesionless	1758.24 psf	110.40	287.14 Kips	149.82 Kips
30.01 ft	Cohesionless	2366.64 psf	110.40	287.14 Kips	201.66 Kips
32.49 ft	Cohesionless	2534.28 psf	110.40	287.14 Kips	215.95 Kips
32.51 ft	Cohesionless	2535.69 psf	202.00	538.27 Kips	417.24 Kips
37.49 ft	Cohesionless	2897.23 psf	202.00	538.27 Kips	476.73 Kips
37.51 ft	Cohesionless	2898.59 psf	91.20	220.26 Kips	199.94 Kips
42.49 ft	Cohesionless	3210.33 psf	91.20	220.26 Kips	220.26 Kips
42.51 ft	Cohesionless	3211.64 psf	160.00	446.42 Kips	411.99 Kips
51.51 ft	Cohesionless	3820.04 psf	160.00	446.42 Kips	446.42 Kips
52.49 ft	Cohesionless	3886.28 psf	160.00	446.42 Kips	446.42 Kips
52.51 ft	Cohesionless	3887.64 psf	77.60	162.06 Kips	162.06 Kips
57.49 ft	Cohesionless	4224.28 psf	77.60	162.06 Kips	162.06 Kips
57.51 ft	Cohesive	N/A	N/A	N/A	21.65 Kips
62.49 ft	Cohesive	N/A	N/A	N/A	21.65 Kips
62.51 ft	Cohesionless	4513.59 psf	55.60	78.59 Kips	78.59 Kips
67.49 ft	Cohesionless	4825.33 psf	55.60	78.59 Kips	78.59 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 7.89 ft 7.91 ft 8.49 ft 8.51 ft	0.00 Kips 6.11 Kips 6.14 Kips 7.06 Kips 7.11 Kips	0.03 Kips 26.65 Kips 26.70 Kips 27.68 Kips 14.43 Kips	0.03 Kips 32.75 Kips 32.84 Kips 34.73 Kips 21.54 Kips
13.49 ft	26.68 Kips	14.43 Kips	41.11 Kips
13.51 ft 20.99 ft	26.75 Kips 48.45 Kips	50.77 Kips 69.21 Kips	77.51 Kips 117.66 Kips
21.01 ft	48.54 Kips	149.82 Kips	198.36 Kips
30.01 ft	105.95 Kips	201.66 Kips	307.61 Kips
32.49 ft	124.74 Kips	215.95 Kips	340.69 Kips
32.51 ft	124.92 Kips	417.24 Kips	542.16 Kips
37.49 ft	176.24 Kips	476.73 Kips	652.97 Kips
37.51 ft	176.43 Kips	199.94 Kips	376.37 Kips
42.49 ft	218.24 Kips	220.26 Kips	438.50 Kips
42.51 ft	218.45 Kips	411.99 Kips	630.44 Kips
51.51 ft	337.77 Kips	446.42 Kips	784.19 Kips
52.49 ft	352.01 Kips	446.42 Kips	798.43 Kips
52.51 ft	352.25 Kips	162.06 Kips	514.31 Kips
57.49 ft	400.92 Kips	162.06 Kips	562.98 Kips
57.51 ft	401.08 Kips	21.65 Kips	422.73 Kips
62.49 ft	429.74 Kips	21.65 Kips	451.39 Kips
62.51 ft	429.88 Kips	78.59 Kips	508.48 Kips
67.49 ft	474.19 Kips	78.59 Kips	552.78 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.62 psf	21.33	N/A	0.00 Kips
7.89 ft	Cohesionless	493.12 psf	21.33	N/A	5.07 Kips
7.91 ft	Cohesionless	987.81 psf	21.33	N/A	5.10 Kips
8.49 ft	Cohesionless	1005.97 psf	21.33	N/A	5.86 Kips
8.51 ft	Cohesive	N/A	N/A	1060.00 psf	5.89 Kips
13.49 ft	Cohesive	N/A	N/A	1072.24 psf	19.01 Kips
13.51 ft	Cohesionless	1288.37 psf	22.66	N/A	19.06 Kips
20.99 ft	Cohesionless	1522.50 psf	22.66	N/A	37.07 Kips
21.01 ft	Cohesionless	1757.90 psf	25.33	N/A	37.16 Kips
30.01 ft	Cohesionless	2062.10 psf	25.33	N/A	94.57 Kips
32.49 ft	Cohesionless	2145.92 psf	25.33	N/A	113.37 Kips
32.51 ft	Cohesionless	2535.32 psf	27.33	N/A	113.54 Kips
37.49 ft	Cohesionless	2716.10 psf	27.33	N/A	164.87 Kips
37.51 ft	Cohesionless	2898.27 psf	24.66	N/A	165.06 Kips
42.49 ft	Cohesionless	3054.15 psf	24.66	N/A	206.86 Kips
42.51 ft	Cohesionless	3211.30 psf	26.66	N/A	207.07 Kips
51.51 ft	Cohesionless	3515.50 psf	26.66	N/A	326.39 Kips
52.49 ft	Cohesionless	3548.62 psf	26.66	N/A	340.63 Kips
52.51 ft	Cohesionless	3887.30 psf	23.99	N/A	340.83 Kips
57.49 ft	Cohesionless	4055.62 psf	23.99	N/A	381.23 Kips
57.51 ft	Cohesive	N/A	N/A	1570.00 psf	381.36 Kips
62.49 ft	Cohesive	N/A	N/A	1570.00 psf	405.15 Kips
62.51 ft	Cohesionless	4513.27 psf	22.66	N/A	405.29 Kips
67.49 ft	Cohesionless	4669.15 psf	22.66	N/A	449.59 Kips

DRIVING - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft	Cohesionless	1.25 psf	40.40	35.28 Kips	0.03 Kips
7.89 ft	Cohesionless	986.25 psf	40.40	35.28 Kips	26.65 Kips
7.91 ft	Cohesionless	988.13 psf	40.40	35.28 Kips	26.70 Kips
8.49 ft	Cohesionless	1024.43 psf	40.40	35.28 Kips	27.68 Kips
8.51 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
13.49 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
13.51 ft	Cohesionless	1288.69 psf	55.60	78.59 Kips	50.77 Kips
20.99 ft	Cohesionless	1756.93 psf	55.60	78.59 Kips	69.21 Kips
21.01 ft	Cohesionless	1758.24 psf	110.40	287.14 Kips	149.82 Kips
30.01 ft	Cohesionless	2366.64 psf	110.40	287.14 Kips	201.66 Kips
32.49 ft	Cohesionless	2534.28 psf	110.40	287.14 Kips	215.95 Kips
32.51 ft	Cohesionless	2535.69 psf	202.00	538.27 Kips	417.24 Kips
37.49 ft	Cohesionless	2897.23 psf	202.00	538.27 Kips	476.73 Kips
37.51 ft	Cohesionless	2898.59 psf	91.20	220.26 Kips	199.94 Kips
42.49 ft	Cohesionless	3210.33 psf	91.20	220.26 Kips	220.26 Kips
42.51 ft	Cohesionless	3211.64 psf	160.00	446.42 Kips	411.99 Kips
51.51 ft	Cohesionless	3820.04 psf	160.00	446.42 Kips	446.42 Kips
52.49 ft	Cohesionless	3886.28 psf	160.00	446.42 Kips	446.42 Kips
52.51 ft	Cohesionless	3887.64 psf	77.60	162.06 Kips	162.06 Kips
57.49 ft	Cohesionless	4224.28 psf	77.60	162.06 Kips	162.06 Kips
57.51 ft	Cohesive	N/A	N/A	N/A	21.65 Kips
62.49 ft	Cohesive	N/A	N/A	N/A	21.65 Kips
62.51 ft	Cohesionless	4513.59 psf	55.60	78.59 Kips	78.59 Kips
67.49 ft	Cohesionless	4825.33 psf	55.60	78.59 Kips	78.59 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 7.89 ft 7.91 ft 8.49 ft	0.00 Kips 5.07 Kips 5.10 Kips 5.86 Kips	0.03 Kips 26.65 Kips 26.70 Kips 27.68 Kips	0.03 Kips 31.72 Kips 31.79 Kips 33.53 Kips
8.51 ft	5.89 Kips	14.43 Kips	20.32 Kips
13.49 ft 13.51 ft	19.01 Kips 19.06 Kips	14.43 Kips 50.77 Kips	33.44 Kips 69.83 Kips
20.99 ft	37.07 Kips	69.21 Kips	106.29 Kips
21.01 ft	37.16 Kips	149.82 Kips	186.98 Kips
30.01 ft	94.57 Kips	201.66 Kips	296.23 Kips
32.49 ft	113.37 Kips	215.95 Kips	329.31 Kips
32.51 ft	113.54 Kips	417.24 Kips	530.78 Kips
37.49 ft	164.87 Kips	476.73 Kips	641.60 Kips
37.51 ft	165.06 Kips	199.94 Kips	364.99 Kips
42.49 ft	206.86 Kips	220.26 Kips	427.12 Kips
42.51 ft	207.07 Kips	411.99 Kips	619.07 Kips
51.51 ft	326.39 Kips	446.42 Kips	772.81 Kips
52.49 ft	340.63 Kips	446.42 Kips	787.05 Kips
52.51 ft	340.83 Kips	162.06 Kips	502.89 Kips
57.49 ft	381.23 Kips	162.06 Kips	543.29 Kips
57.51 ft	381.36 Kips	21.65 Kips	403.01 Kips
62.49 ft	405.15 Kips	21.65 Kips	426.79 Kips
62.51 ft	405.29 Kips	78.59 Kips	483.88 Kips
67.49 ft	449.59 Kips	78.59 Kips	528.19 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.62 psf	21.33	N/A	0.00 Kips
7.89 ft	Cohesionless	493.12 psf	21.33	N/A	6.11 Kips
7.91 ft	Cohesionless	987.81 psf	21.33	N/A	6.14 Kips
8.49 ft	Cohesionless	1005.97 psf	21.33	N/A	7.06 Kips
8.51 ft	Cohesive	N/A	N/A	1060.00 psf	7.11 Kips
13.49 ft	Cohesive	N/A	N/A	1072.24 psf	26.68 Kips
13.51 ft	Cohesionless	1288.37 psf	22.66	N/A	26.75 Kips
20.99 ft	Cohesionless	1522.50 psf	22.66	N/A	48.45 Kips
21.01 ft	Cohesionless	1757.90 psf	25.33	N/A	48.54 Kips
30.01 ft	Cohesionless	2062.10 psf	25.33	N/A	105.95 Kips
32.49 ft	Cohesionless	2145.92 psf	25.33	N/A	124.74 Kips
32.51 ft	Cohesionless	2535.32 psf	27.33	N/A	124.92 Kips
37.49 ft	Cohesionless	2716.10 psf	27.33	N/A	176.24 Kips
37.51 ft	Cohesionless	2898.27 psf	24.66	N/A	176.43 Kips
42.49 ft	Cohesionless	3054.15 psf	24.66	N/A	218.24 Kips
42.51 ft	Cohesionless	3211.30 psf	26.66	N/A	218.45 Kips
51.51 ft	Cohesionless	3515.50 psf	26.66	N/A	337.77 Kips
52.49 ft	Cohesionless	3548.62 psf	26.66	N/A	352.01 Kips
52.51 ft	Cohesionless	3887.30 psf	23.99	N/A	352.25 Kips
57.49 ft	Cohesionless	4055.62 psf	23.99	N/A	400.92 Kips
57.51 ft	Cohesive	N/A	N/A	1570.00 psf	401.08 Kips
62.49 ft	Cohesive	N/A	N/A	1570.00 psf	429.74 Kips
62.51 ft	Cohesionless	4513.27 psf	22.66	N/A	429.88 Kips
67.49 ft	Cohesionless	4669.15 psf	22.66	N/A	474.19 Kips

ULTIMATE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft	Cohesionless	1.25 psf	40.40	35.28 Kips	0.03 Kips
7.89 ft	Cohesionless	986.25 psf	40.40	35.28 Kips	26.65 Kips
7.91 ft	Cohesionless	988.13 psf	40.40	35.28 Kips	26.70 Kips
8.49 ft	Cohesionless	1024.43 psf	40.40	35.28 Kips	27.68 Kips
8.51 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
13.49 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
13.51 ft	Cohesionless	1288.69 psf	55.60	78.59 Kips	50.77 Kips
20.99 ft	Cohesionless	1756.93 psf	55.60	78.59 Kips	69.21 Kips
21.01 ft	Cohesionless	1758.24 psf	110.40	287.14 Kips	149.82 Kips
30.01 ft	Cohesionless	2366.64 psf	110.40	287.14 Kips	201.66 Kips
32.49 ft	Cohesionless	2534.28 psf	110.40	287.14 Kips	215.95 Kips
32.51 ft	Cohesionless	2535.69 psf	202.00	538.27 Kips	417.24 Kips
37.49 ft	Cohesionless	2897.23 psf	202.00	538.27 Kips	476.73 Kips
37.51 ft	Cohesionless	2898.59 psf	91.20	220.26 Kips	199.94 Kips
42.49 ft	Cohesionless	3210.33 psf	91.20	220.26 Kips	220.26 Kips
42.51 ft	Cohesionless	3211.64 psf	160.00	446.42 Kips	411.99 Kips
51.51 ft	Cohesionless	3820.04 psf	160.00	446.42 Kips	446.42 Kips
52.49 ft	Cohesionless	3886.28 psf	160.00	446.42 Kips	446.42 Kips
52.51 ft	Cohesionless	3887.64 psf	77.60	162.06 Kips	162.06 Kips
57.49 ft	Cohesionless	4224.28 psf	77.60	162.06 Kips	162.06 Kips
57.51 ft	Cohesive	N/A	N/A	N/A	21.65 Kips
62.49 ft	Cohesive	N/A	N/A	N/A	21.65 Kips
62.51 ft	Cohesionless	4513.59 psf	55.60	78.59 Kips	78.59 Kips
67.49 ft	Cohesionless	4825.33 psf	55.60	78.59 Kips	78.59 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.03 Kips	0.03 Kips
7.89 ft	6.11 Kips	26.65 Kips	32.75 Kips
7.91 ft	6.14 Kips	26.70 Kips	32.84 Kips
8.49 ft	7.06 Kips	27.68 Kips	34.73 Kips
8.51 ft	7.11 Kips	14.43 Kips	21.54 Kips
13.49 ft	26.68 Kips	14.43 Kips	41.11 Kips
13.51 ft	26.75 Kips	50.77 Kips	77.51 Kips
20.99 ft	48.45 Kips	69.21 Kips	117.66 Kips
21.01 ft	48.54 Kips	149.82 Kips	198.36 Kips
30.01 ft	105.95 Kips	201.66 Kips	307.61 Kips
32.49 ft	124.74 Kips	215.95 Kips	340.69 Kips
32.51 ft	124.92 Kips	417.24 Kips	542.16 Kips
37.49 ft	176.24 Kips	476.73 Kips	652.97 Kips
37.51 ft	176.43 Kips	199.94 Kips	376.37 Kips
42.49 ft	218.24 Kips	220.26 Kips	438.50 Kips
42.51 ft	218.45 Kips	411.99 Kips	630.44 Kips
51.51 ft	337.77 Kips	446.42 Kips	784.19 Kips
52.49 ft	352.01 Kips	446.42 Kips	798.43 Kips
52.51 ft	352.25 Kips	162.06 Kips	514.31 Kips
57.49 ft 57.51 ft 62.49 ft	400.92 Kips 401.08 Kips	162.06 Kips 21.65 Kips	562.98 Kips 422.73 Kips
62.49 ft	429.74 Kips	21.65 Kips	451.39 Kips
62.51 ft	429.88 Kips	78.59 Kips	508.48 Kips
67.49 ft	474.19 Kips	78.59 Kips	552.78 Kips

APPENDIX VI

GRLWEAP DRIVEABILITY ANALYSIS OUTPUTS

Gain/Loss 3 at Shaft and Toe 0.670 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	18.9	2.0	16.9	1.6	8.178	0.000	3.68	24.7
10.0	24.2	9.8	14.4	2.1	11.039	0.000	3.91	23.6
15.0	76.6	22.1	54.4	8.6	20.880	-0.330	5.60	18.8
20.0	101.1	34.3	66.8	12.0	22.739	-0.313	6.04	17.7
25.0	233.3	60.5	172.8	35.4	28.165	-0.408	7.72	16.4
30.0	296.1	94.5	201.6	48.6	28.797	-0.552	8.07	16.5
32.5	430.1	113.5	316.6	95.6	34.421	-1.603	9.00	17.8
33.0	541.4	118.3	423.1	199.0	38.904	-0.940	9.78	19.3

Total Continuous Driving Time 16.00 minutes; Total Number of Blows 673

GRLWEAP - Version 2010 WAVE EQUATION ANALYSIS OF PILE FOUNDATIONS

written by GRL Engineers, Inc. (formerly Goble Rausche Likins and Associates, Inc.) with cooperation from Pile Dynamics, Inc.

Copyright (c) 1998-2010, Pile Dynamics, Inc.

ABOUT THE WAVE EQUATION ANALYSIS RESULTS

The GRLWEAP program simulates the behavior of a preformed pile driven by either an impact hammer or a vibratory hammer. The program is based on mathematical models, which describe motion and forces of hammer, driving system, pile and soil under the hammer action. Under certain conditions, the models only crudely approximate, often complex, dynamic situations.

A wave equation analysis generally relies on input data, which represents normal situations. In particular, the hammer data file supplied with the program assumes that the hammer is in good working order. All of the input data selected by the user may be the best available information at the time when the analysis is performed. However, input data and therefore results may significantly differ from actual field conditions.

Therefore, the program authors recommend prudent use of the GRLWEAP results. Soil response and hammer performance should be verified by static and/or dynamic testing and measurements. Estimates of bending or other local stresses (e.g., helmet or clamp contact, uneven rock surfaces etc.), prestress effects and others must also be accounted for by the user.

The calculated capacity - blow count relationship, i.e. the bearing graph, should be used in conjunction with observed blow counts for the capacity assessment of a driven pile. Soil setup occurring after pile installation may produce bearing capacity values that differ substantially from those expected from a wave equation analysis due to soil setup or relaxation. This is particularly true for pile driven with vibratory hammers. The GRLWEAP user must estimate such effects and should also use proper care when applying blow counts from restrike because of the variability of hammer energy, soil resistance and blow count during early restriking.

Finally, the GRLWEAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of building and other factors.

Input File: J:\GEOTECH\PROJECTS\2013\W-13-045 FRA-70-13.54 PROJECT 4A\ANALYSIS\FRA-71-1518A AND RETAINING WALL 4W11\DRIVEABILITY\14 IN CIP\B-108-9-15 - RA - 14 IN CIP.GWW
Hammer File: C:\ProgramData\PDI\GRLWEAP\2010\Resource\HAMMER2003.GW

Hammer File Version: 2003 (2/22/2013)

Input File Contents FRA-71-1518A - RA - B-108-9-15 - 14" CIP IT OSG HAM STR FUL PEL N SPL N-U P-D %SK T

HAM			PEL	Ν	SPL	N-U	P-D	%SK	ISM	0	PHI	RSA	ITR	H-D	MX	Γ	DEx
41	0	0	0	0	0	0	1	0	0	0	0	0	0	0	6	9 0.	000
g I	Hamme	er g	Toe	Ar	rea	Pile	Size	ē			Pile	у Тур	e				
0	32.	170	14	4.6	900	14	4.000)			Uı	ıknov	ın				
p	P	4 Ср		Ε	Ср		T Cp)	C	oR		RΟι	it		StCp)	
10	227.	000		536	0.6	2	2.000)	0.8	00		0.01	.0		0.6	9	
u	E	Cu		Т	Cu		CoF	}	RO	ut		StO	u				
10		0.0		0.6	900	(0.000)	0.0	00		0.	0				
.e	P	APle		EF	Ple		WPle	ē	Pe	ri		(Ί		CoF	₹	ROut
10	18	3.43	29	00 6	0.6	492	2.000)	3.6	70			0	0	.856	9	0.010
Hmr	n Nam	ne F	HmrTy	pe	No	Seg-s	S										
D :	19-42	2		1			5										
lt	Ra	am L	Ra	m C	Dia	Max	xStrl	ا)	RtdSt	rk	1	ffic	У				
10	129	.10		12.	.60		11.86	5	10.	81		0.8	0				
lt	IE	3. L	I	В.[Dia	I	B CoF	}	IB	RO							
'5	25	3.30		12.	.60	(0.900)	0.0	10							
k A	Chan	ıber	V Ch	amb	per	CI	Delay	/ C	Dura	tn	Exp	Coef	f V	olcs	tart	t Vol	. CEnd
5	124	1.70	1	57.	.70	(0.002	2	0.0	02		1.25	0		0.00	9	0.00
m		P1			P2		Ρ3	3		Ρ4		P5					
0	1526	00.6	13	68.	.00	123	31.00) :	1108.	00		0.0	10				
e	Eff	ic.	Pre	ssı	ıre	R-We	eight	: '	T-Del	ay	Exp-	Coef	f	Eps	-Str	r Tot	:al-AW
	41 g l l l l l l l l l l l l l l l l l l	41 0 g Hamme (0 32.5 p	41 0 0 g Hammer g 60 32.170 cp A Cp	41 0 0 0 g Hammer g Toe 60 32.170 14 p A Cp 80 227.000 E Cu E Cu 80 0.0 p APle 80 18.43 29 p Hmr Name HmrTy D 19-42 pt Ram L R	41 0 0 0 0 0 0 g Hammer g Toe Ar 60 32.170 144.6 p A Cp E 90 227.000 536 e APle EF 90 18.43 29000 Hmr Name HmrType 10 19-42 1 tr Ram L Ram	41 0 0 0 0 0 0 0 0 g Hammer g Toe Area 0 32.170 144.000 cp A Cp E Cp 0 227.000 530.0 cm E Cu T Cu 0 0 0.0 0 0.000 ce APle EPle 0 18.43 29000.0 ce APle EPle 0 19.42 1 12.60 ce APLE 0 12.	41 0 0 0 0 0 0 0 0 0 g Hammer g Toe Area Pile 0 32.170 144.000 14 10 10 10 10 10 10 10 10 10 10 10 10 10	41 0 0 0 0 0 0 0 1 g Hammer g Toe Area Pile Size 0 32.170 144.000 14.000 p A Cp E Cp T Cp 00 227.000 530.0 2.000 p E Cu T Cu Cof 00 0.0 0.000 0.000 p E APle EPle WPle 18.43 29000.0 492.000 Hmr Name HmrType No Seg-s D 19-42 1 5 pt Ram L Ram Dia MaxStrk 10 129.10 12.60 11.80 pt IB. L IB.Dia IB Cof 15 25.30 12.60 0.900 pk A Chamber V Chamber C Delay 15 124.70 157.70 0.002 15 1520.00 1368.00 1231.000	41 0 0 0 0 0 0 1 0 g Hammer g Toe Area Pile Size 0 32.170 144.000 14.000 cp A Cp E Cp T Cp 0 227.000 530.0 2.000 cu E Cu T Cu CoR 0 0.0 0.000 0.000 ce APle EPle WPle 10 18.43 29000.0 492.000 ce APle EPle WPle 10 18.43 29000.0 492.000 ce APle EPle WPle 10 18.43 29000.0 192.000 ce APle EPle WPle 10 18.43 19000.0 15 5 19.42 1 5 5 cm Amm L Ram Dia MaxStrk 10 129.10 12.60 11.86 cm IB. L IB.Dia IB CoR 129.10 12.60 0.900 ck A Chamber V Chamber C Delay C 15 124.70 157.70 0.002 cm P1 P2 P3 10 1520.00 1368.00 1231.00	41 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 g Hammer g Toe Area Pile Size 0 32.170 144.000 14.000 cp A Cp E Cp T Cp C 0 227.000 530.0 2.000 0.8 cm E Cu T Cu CoR R0 0 0.0 0.000 0.000 0.00 0.0 ce APle EPle WPle Pe 0 18.43 29000.0 492.000 3.6 cm White Name HmrType No Seg-s D 19-42 1 5 cm Ram L Ram Dia MaxStrk RtdSt 10 129.10 12.60 11.86 10. cm IB. L IB.Dia IB CoR IB 15 25.30 12.60 0.900 0.0 cm A Chamber V Chamber C Delay C Dura 155 124.70 157.70 0.002 0.0 cm P1 P2 P3 10 1520.00 1368.00 1231.00 1108.	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	41 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

						B-108-9-	15 _ PA	_ 1/ TN	I CTD
10.8100	0.80	00 1520.0	000 0.	0000	0.0000	0.000			0.0000
Qs		Qt	Js	Jt	Qx		x l	Rati	Dept
0.000 Pasaansh		000 0. del: Atoe).000 Gap, Q-	0.000	0.00	0 0	.000	0.000
0.000	0.0			оар, ц-).000	Tac				
	Soil Mo	del: RD-s			ı, d				
0.000	0.0 		000 0	.000					
Res. Dis ¹ Dpth	Rskn	Rtoe	Qs	Qt	Js	Jt	SU F	LimD	SU T
0.01	0.00	0.03	0.10	0.12	0.10	0.15	1.21	0.00	0.0
7.89	0.42	26.65	0.10	0.12	0.10	0.15	1.21	0.00	0.0
7.91 8.49	0.42 0.44	26.70 27.68	0.10 0.10	0.12 0.12	0.10 0.10	0.15 0.15	1.21 1.21	0.00 0.00	0.0 0.0
8.51	1.06	14.43	0.10	0.12	0.10	0.15	1.49	0.00	0.0
13.49	1.07	14.43	0.10	0.12	0.20	0.15	1.49	0.00	0.0
13.51	0.67	50.77	0.10	0.12	0.10	0.15	1.21	0.00	0.0
20.99 21.01	0.91 1.48	69.21 149.82	0.10 0.10	0.12 0.12	0.10 0.10	0.15 0.15	1.21 1.00	0.00 0.00	0.0 0.0
30.01	2.00	201.66	0.10	0.12	0.05	0.15	1.00	0.00	0.0
32.49	2.14	215.95	0.10	0.12	0.05	0.15	1.00	0.00	0.0
32.51 33.00	2.62 2.66	417.24 423.09	0.10 0.10	0.12 0.12	0.05 0.05	0.15 0.15	1.00 1.00	0.00 0.00	0.0 0.0
		s: shaft		0.12	0.05	0.15	1.00	0.00	0.0
0.60400	0.637			0300	0.73600				
1.00000				0000	1.00000	F.C.C		C+ CC	C - D
Dpth 5.00				Strk 0.000	Pmx% 0.000	Eff 0.00		Stff .000	CoR 0.000
10.00				.000	0.000	0.00		.000	0.000
15.00				.000	0.000	0.00		.000	0.000
20.00 25.00				0.000 0.000	0.000 0.000	0.00 0.00		.000 .000	0.000
30.00				0.000	0.000	0.00		.000	0.000 0.000
32.50				.000	0.000	0.00		.000	0.000
33.00				.000	0.000	0.00		.000	0.000
0.00	0.	00 0	.00 0						
				0.000 1	0.000	0.00	0 0	.000	0.000
^	1		10.81000	1	1.86000			.000	0.000
•	1	0	10.81000 EQUATION Ve	1 ANALYSI ersion 2	.1.86000 IS OF PII 1010			.000	0.000
•	1	0	10.81000 EQUATION Ve	ANALYS	.1.86000 IS OF PII 1010			.000	0.000
*	1	0 EAP: WAVE	10.81000 EQUATION Ve	1 ANALYSI ersion 2 dish Un	1.86000 IS OF PII 010 iits	E FOUNDA	TIONS	.000	0.000
•	1	0 EAP: WAVE	10.81000 EQUATION Ve Eng	1 ANALYSI ersion 2 dish Un	1.86000 IS OF PII 010 iits	E FOUNDA	TIONS	.000	0.000
•	1 GRLWE	0 EAP: WAVE	10.81000 EQUATION Ve Eng 518A - RA	1 ANALYSI ersion 2 dish Un	1.86000 IS OF PII 2010 uits 08-9-15	E FOUNDA	TIONS		0.000
*	1 GRLWE	PRA-71-1 Model:	10.81000 EQUATION Ve Eng 518A - RA D 19-42	1 ANALYSI Prsion 2 Prsion 2 Jish Un	1.86000 IS OF PII 2010 its 08-9-15 -	E FOUNDA 14" CIP	TIONS DELI		0.000
•	1 GRLWE	PRA-71-1 Model: Weight	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn	1 ANALYSI Prsion 2 Prsion 2 Jish Un	1.86000 IS OF PII 1010 iits 18-9-15 -	14" CIP de by:	TIONS DELI Dampg		0.000
•	GRLWE	FRA-71-1 Model: Weight kips	10.81000 EQUATION Ve Eng 518A - RA D 19-42	1 ANALYSI Prsion 2 Prsion 2 Jish Un	1.86000 IS OF PII 2010 its 08-9-15 -	14" CIP de by:	TIONS DELI		0.000
*	1 GRLWE	PRA-71-1 Model: Weight kips 0.800	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn	1 ANALYSI Prsion 2 Prsion 2 Jish Un	1.86000 IS OF PII 1010 1015 108-9-15 - Ma	14" CIP de by:	TIONS DELI Dampg		0.000
*	1 GRLWE Hammer No. 1 2 3	PRA-71-1 Model: Weight kips 0.800 0.800 0.800	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7	ANALYSI Prsion 2 Pilish Ur A - B-10 C	.1.86000 IS OF PII .010 .its .08-9-15 - 	LE FOUNDA 14" CIP de by: C-Slk ft 0100 0100	TIONS DELI Dampg		0.000
*	1 GRLWE Hammer No. 1 2 3 4	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.800 0.800	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7	1 ANALYSI Presion 2 (lish Ur A - B-10 C 1.0 1.0	1.86000 IS OF PII 010 01ts 18-9-15 - Ma COR (000 0.00	14" CIP de by: 1-Slk ft 0100 0100 0100	TIONS DELI Dampg		0.000
↑	1 GRLWE Hammer No. 1 2 3	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.800 0.800	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7	ANALYSI Prsion 2 Pilish Ur A - B-10 C	1.86000 IS OF PII OF PI	LE FOUNDA 14" CIP de by: C-Slk ft 0100 0100	TIONS DELI Dampg		0.000
Helm	Hammer No. 1 2 3 4 5 Block	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0	ANALYSI ANALYSION 2 Clish Ur A - B-10 C 1.0 1.0 1.0	.1.86000 IS OF PII .010 .01ts .08-9-15 - .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000	14" CIP de by: -Slk ft 0100 0100 0100 0100	TIONS DELI Dampg		0.000
Helm	1 GRLWE Hammer No. 1 2 3 4 5 5 Block	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7	1 ANALYSI ANALYSION 2 (lish Ur A - B-10 1.0 1.0 1.0 0.9	.1.86000 IS OF PII .010 .01ts .08-9-15 - .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s		0.000
Helm	Hammer No. 1 2 3 4 5 Block et ined Pil	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0	1 ANALYSI ANALYSION 2 (lish Ur A - B-10 1.0 1.0 1.0 0.9	.1.86000 IS OF PII .010 .01ts .08-9-15 - .000 0.000 .000 0.000 .000 0.000 .000 0.000 .000 0.000	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s		0.000
Helmo Comb: HAMMER OPT: Hammer F:	Hammer No. 1 2 3 4 5 Block et ined Pil IONS:	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7	1 ANALYSI Prision 2 (lish Ur 1 - B-10 1	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s	MAG OE Dies	el
Helm Comb: HAMMER OPT: Hammer F: Stroke Op	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7	1 ANALYSI Prision 2 (lish Ur 1 - B-10 1.0 1.0 1.0 1.0 0.9 0.8 41 HammarS Str	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: 3-Slk ft 0100 0100 0100 0100 0100 0100	DELI Dampg k/ft/s	MAG	el
Helmo Comb: HAMMER OPT: Hammer F:	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7	1 ANALYSI Prision 2 (lish Ur 1 - B-10 1.0 1.0 1.0 1.0 0.9 0.8 41 HammarS Str	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s	MAG OE Dies	el
Helm Comb: HAMMER OPT: Hammer F Stroke Op Fuel Pump	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A:	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7	1 ANALYSI Prision 2 (lish Ur 1 - B-10 1.0 1.0 1.0 1.0 0.9 0.8 41 HammarS Str	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s	MAG OE Dies	el
Helm Comb: HAMMER OPT: Hammer F: Stroke Op Fuel Pump HAMMER DATA Ram Weigl	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A: ht	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7 FxdP-Va Maxim	1 ANALYSI rrsion 2 (lish Ur	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s	MAG OE Dies	el 10
Helm Comb: HAMMER OPT: Hammer F: Stroke Op Fuel Pump HAMMER DATA Ram Weigl Maximum !	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A: ht Stroke	PRAP: WAVE FRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900 Top Weight kips (kips (ft	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7 FxdP-Va Maxim) 4.) 11.	1 ANALYSI rrsion 2 (lish Ur	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s 5.8	MAG OE Dies 0.0	el 10
Helm Comb: HAMMER OPT: Hammer F: Stroke Op Fuel Pump HAMMER DATA Ram Weigl	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A: ht Stroke	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7 FxdP-Va Maxim) 4.) 11.	1 ANALYSI rrsion 2 (lish Ur	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: -Slk ft 0100 0100 0100 0100	DELI Dampg k/ft/s 5.8	MAG OE Dies 0.0	el 10
Helm Comb: HAMMER OPT: Hammer F: Stroke O; Fuel Pum; HAMMER DATA Ram Weig! Maximum ! Rated Str	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A: ht Stroke Pressure	PRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.800 0.753 1.900 e. Top	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 FxdP-Va Maxim) 4.) 11.) 10.	1 ANALYSI rrsion 2 (lish Ur	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: 3-Slk ft 0100 0100 0100 0100 0100 0100	DELI Dampg k/ft/s 5.8	MAG OE Dies 0.0 129. 0.8 1520.	el 10 10
Helm Comb: HAMMER OPT: Hammer F: Stroke O Fuel Pum HAMMER DATA Ram Weig! Maximum S Rated Str	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A: ht Stroke roke Pressure	PRAP: WAVE FRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900 e. Top (kips (ft ft) (ft) (psi enent	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 FxdP-Va Maxim) 4.) 11.) 10.) 1520. 1.3	1 ANALYSI rrsion 2 (lish Ur	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	14" CIP de by: 3-Slk ft 0100 0100 0100 0100 0100 0100	DELI Dampg k/ft/s 5.8 Crit. (inch)	MAG OE Dies 0.0 129.	el 10 10
Helm Comb: HAMMER OPT: Hammer F: Stroke O; Fuel Pum; HAMMER DATA Ram Weig! Maximum ! Rated Str	Hammer No. 1 2 3 4 5 Block et ined Pil IONS: ile ID N ption p Settin A: ht Stroke roke Pressure ion Expo	PRAP: WAVE FRA-71-1 Model: Weight kips 0.800 0.800 0.800 0.753 1.900 Per Top Io. Ig (kips (ft) (ft) (ft) (ft) (inch	10.81000 EQUATION Ve Eng 518A - RA D 19-42 Stiffn k/inch 140046.7 140046.7 140046.7 140046.7 70735.6 60155.0 13496.7 FxdP-Va Maxim) 4.) 11.) 10.) 1520. 1.3) 12.	1 ANALYSI rsion 2 (lish Ur	1.86000 IS OF PII OID OID OID OID OID OID OID OID OID O	de by: 14" CIP de by: 1-Slk ft 0100 0100 0100 0100 0100	DELI Dampg k/ft/s 5.8 Crit. (inch)	MAG OE Dies 0.0 129. 0.8 1520. 1.2	el 10 10 00 00 50

The Hammer Data Includes Estimated (NON-MEASURED) Quantities

```
HAMMER CUSHION
                                      PILE CUSHION
Cross Sect. Area
                     (in2)
                              227.00 Cross Sect. Area
                                                                      0.00
                                                           (in2)
                               530.0 Elastic-Modulus
Flastic-Modulus
                     (ksi)
                                                           (ksi)
                                                                       0.0
Thickness
                    (inch)
                                2.00 Thickness
                                                          (inch)
                                                                      0.00
Coeff of Restitution
                                 0.8
                                      Coeff of Restitution
                                                                       1.0
RoundOut
                      (ft)
                                 0.0
                                      RoundOut
                                                                       0.0
Stiffness
                  (kips/in)
                             60155.0 Stiffness
                                                       (kips/in)
                                                                       0.0
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                                  07/06/2018
                                                        GRLWEAP Version 2010
Resource International Inc
                                 5.0
Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                     1.000
PTLE PROFTLE:
                             144.000 Pile Type
Toe Area
                     (in2)
                                                                   Unknown
Pile Size
                    (inch)
                              14.000
  L b Top
             Area
                     E-Mod
                            Spec Wt
                                       Perim C Index Wave Sp
                                                                    EA/c
                             lb/ft3
                                          ft
                                                                  k/ft/s
             in2
                      ksi
                                                          ft/s
      ft
     a a
                    29000
                                         3.7
                                                    а
            18 43
                              492.0
                                                         16524
                                                                    32.3
     33.0
            18.43
                    29000.
                              492.0
                                         3.7
                                                    0
                                                         16524.
                                                                    32.3
Wave Travel Time 2L/c (ms)
                               3.994
       Pile and Soil Model
                                      Total Capacity Rut (kips)
                                                                      18.8
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                                                          Area
     kips
              k/in ft ft
                                       kips
                                              s/ft inch
                                                            ft
                                                                   ft
                                                                           in2
             13497 0.010 0.000 0.85
    0.208
                                        0.0
                                              0.000 0.100
                                                            3.30
                                                                   3.7
                                                                          18.4
    0.208
             13497 0.000 0.000 1.00
                                        0.0
                                              0.000 0.100
                                                                   3.7
                                                                          18.4
                                                            6.60
             13497 0.000 0.000 1.00
                                              0.100 0.100
    0.208
                                        0.2
                                                           29.70
                                                                   3.7
                                                                          18.4
10 0.208
             13497 0.000 0.000 1.00
                                              0.100 0.100
                                        1.7
                                                           33.00
                                                                          18.4
                                                                   3.7
                                       16.9
                                              0.150 0.117
Toe
    2.078 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.078 kips total reduced pile weight (g= 32.17 ft/s2)
PILE, SOIL, ANALYSIS OPTIONS:
                                      Pile Segments: Automatic
Uniform pile
No. of Slacks/Splices
                                   0 Pile Damping
                                                                         1
                                      Pile Damping Fact.(k/ft/s)
                                                                     0.647
Driveability Analysis
Soil Damping Option
                               Smith
Max No Analysis Iterations
                                  0 Time Increment/Critical
                                                                       160
Output Time Interval
                                   1 Analysis Time-Input (ms)
                                                                         0
Output Level: Normal
Gravity Mass, Pile, Hammer: 32.170
                                        32,170
                                                  32.170
Output Segment Generation: Automatic
    Depth
             Stroke Pressure
                                Efficy
      ft
                ft
                       Ratio
             10.81
                                 0.800
     5.00
                        1.00
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                                  07/06/2018
Resource International Inc
                                                        GRLWEAP Version 2010
                 Stroke (ft) Ten Str
                                                            t ENTHRU
   Rut
         Bl Ct
                                       i
                                           t Comp Str
  kips
          b/ft
                 down
                                ksi
                                                              kip-ft
                                                                       h/min
                         up
                                                  ksi
   18.8
           1.6
                 3.67
                        3.65
                                0.00
                                       1
                                                 8.12
                                                        1
                                                                24.7
                                                                        61.8
   18.9
           1.6
                 3.68
                        3.66
                                0.00
                                       1
                                           a
                                                 8.13
                                                        1
                                                            2
                                                                24.7
                                                                        61.8
   18.9
                 3.68
                        3.66
                                0.00
                                           0
                                                 8.18
                                                                24.7
           1.6
                                                        1
                                                                        61.8
   19.0
           1.6
                 3.68
                        3.66
                                0.00
                                       1
                                                 8.17
                                                        1
                                                                24.7
                                                                        61.8
                     9 3.66 0.
0 10.81000
   19.0
                 3.69
                                0.00
                                           0
                                                                24.7
                                                 8.26
                                                                        61.7
           1.6
                                       1
                                        11.86000
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                                  07/06/2018
Resource International Inc
                                                        GRLWEAP Version 2010
                                10.0
Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                     1,000
PILE PROFILE:
Toe Area
                     (in2) 144.000 Pile Type
                                                                   Unknown
```

```
Pile Size
                   (inch)
                            14.000
                  E-Mod Spec Wt
                                    Perim C Index Wave Sp
 L b Top
                                                               EA/c
            Area
                    ksi lb/ft3
            in2
                                     f†
                                                     ft/s
                                                             k/ft/s
     f†
     0.0
           18.43
                   29000.
                            492.0
                                      3.7
                                                     16524.
                                                               32.3
    33.0
           18.43
                   29000.
                            492.0
                                      3.7
                                                0
                                                     16524.
                                                               32.3
Wave Travel Time 2L/c (ms)
                             3,994
      Pile and Soil Model
                                   Total Capacity Rut (kips)
                                                                23.6
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim Area
     kips
             k/in ft ft
                                    kips
                                          s/ft inch
                                                       ft
                                                              ft
                                                                     in2
             13497 0.010 0.000 0.85
                                          0.000 0.100
    0.208
                                     0.0
                                                        3.30
                                                               3.7
                                                                     18.4
            13497 0.000 0.000 1.00
 2 0.208
                                     0.0 0.000 0.100
                                                       6.60
                                                              3.7
                                                                     18.4
 7 0.208
            13497 0.000 0.000 1.00
                                     0.0 0.100 0.100 23.10
                                                              3.7
                                                                     18.4
            13497 0.000 0.000 1.00
                                     0.9 0.100 0.100 26.40
 8 0.208
                                                              3.7
                                                                     18.4
            13497 0.000 0.000 1.00
                                     2.6 0.100 0.100 29.70
 9 0.208
                                                              3.7
                                                                     18.4
10 0.208
            13497 0.000 0.000 1.00
                                     5.7
                                          0.169 0.100 33.00
                                                              3.7
                                                                     18.4
                                    14.4 0.150 0.117
    2.078 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.078 kips total reduced pile weight (g= 32.17 ft/s2)
   Depth
           Stroke Pressure
                             Efficy
      ft
              ft
                   Ratio
   10.00
            10.81
                      1.00
                               0.800
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                             07/06/2018
                                                    GRLWEAP Version 2010
Resource International Inc
                                                    i t ENTHRU
                Stroke (ft) Ten Str i t Comp Str
         Bl Ct
  kips
         b/ft
                down up ksi
                                              ksi
                                                         kip-ft
                3.88
                              0.00
                                       0
                                             10.70
                                                                   60.0
  23.6
          2.1
                      3.90
                                                       2
                                                           23.7
                                    1
                                                    1
                      3.92
                              0.00
                                            10.87
                                                                   59.9
  23.9
          2.1
                3.90
                                    1
                                       a
                                                    1
                                                       2
                                                            23.7
         2.1 3.91 3.93
2.2 3.93 3.95
                              0.00
                                                    1 2
1 2
  24.2
                                    1 0
                                            11.04
                                                           23.6
                                                                   59.8
  24.5
                             0.00
                                    1 0
                                            11.16
                                                            23.5
                                                                   59.7
        2.2 3.94 3.96
                              0.00
                                   1 0 11.30
                   0 10.81000
                                     11.86000
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                             07/06/2018
Resource International Inc
                                                    GRLWEAP Version 2010
                              15.0
Shaft Gain/Loss Factor
                             0.604 Toe Gain/Loss Factor
                                                               1.000
PILE PROFILE:
                           144.000 Pile Type
Toe Area
                    (in2)
                                                              Unknown
Pile Size
                   (inch)
                            14.000
 L b Top
            Area
                   E-Mod Spec Wt
                                    Perim C Index Wave Sp
                                                               EA/c
     ft
             in2
                    ksi lb/ft3
                                     ft
                                                    ft/s
                                                              k/ft/s
           18.43
                   29000.
                            492.0
                                      3.7
                                                0
     0.0
                                                     16524.
                                                               32.3
                  29000.
           18.43
                            492.0
                                      3.7
                                                a
                                                     16524.
    33.0
                                                               32.3
Wave Travel Time 2L/c (ms)
                             3.994
                                   Total Capacity Rut (kips)
       Pile and Soil Model
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim Area
                                          s/ft inch
             k/in ft ft
                                                        f†
                                                              ft
                                                                     in2
     kins
                                    kips
            13497 0.010 0.000 0.85
 1 0.208
                                     0.0 0.000 0.100
                                                        3.30
                                                              3.7
                                                                     18.4
 2 0.208
            13497 0.000 0.000 1.00
                                     0.0 0.000 0.100
                                                       6.60 3.7
                                                                     18.4
 6 0.208
            13497 0.000 0.000 1.00
                                     0.3
                                           0.100 0.100
                                                       19.80
                                                                     18.4
            13497 0.000 0.000 1.00
 7 0.208
                                     1.8
                                          0.100 0.100 23.10
                                                              3.7
                                                                     18.4
 8 0.208
            13497 0.000 0.000 1.00
                                          0.100 0.100 26.40
                                     3.5
                                                              3.7
                                                                     18.4
           13497 0.000 0.000 1.00
                                     7.7
                                          0.199 0.100 29.70
   0.208
                                                              3.7
                                                                     18.4
                                     7.3 0.165 0.100 33.00
          13497 0.000 0.000 1.00
10 0.208
                                                              3.7
                                                                     18.4
Toe
                                     54.4
                                          0.150 0.117
    2.078 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.078 kips total reduced pile weight (g= 32.17 ft/s2)
           Stroke Pressure
   Depth
                              Efficy
      ft
               ft
                     Ratio
```

```
15.00
                      1.00
                             0.800
            10.81
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
                                                     GRLWEAP Version 2010
Resource International Inc
                Stroke (ft) Ten Str i t Comp Str
                                                         t ENTHRU
  kips
         b/ft
                down up ksi
                                               ksi
                                                          kip-ft
                       5.55
                                     7 46
  74.9
           8.3
                5.56
                              -0.29
                                              20.71
                                                             18.9
  75.8
                5.53
                       5.58
                              -0.32
                                     7 45
                                                     7
                                                                     50.0
           8.5
                                              20.61
                                                        3
                                                             18.6
                                     7 45
                5.60
                       5.59
  76.6
           8.6
                              -0.33
                                              20.88
                                                     7 3
                                                             18.8
                                                                     49.8
                                     7 45
  77.4
           8.7
                5.62
                      5.61
                             -0.34
                                              20.95
                                                         3
                                                             18.8
                                                                     49.7
  78.2
           8.9
               5.59 5.64
                            -0.36
                                    7 45
                                              20.89
                                                     7 3 18.5
                                                                     49.7
                   0 10.81000
                                      11.86000
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
                                                     GRLWEAP Version 2010
Resource International Inc
                              20.0
Shaft Gain/Loss Factor
                             0.604 Toe Gain/Loss Factor
                                                                1.000
PILE PROFILE:
                            144.000 Pile Type
Toe Area
                    (in2)
                                                               Unknown
Pile Size
                   (inch)
                             14.000
 L b Top
            Area
                    E-Mod Spec Wt
                                     Perim C Index Wave Sp
                                                                 EA/c
                                                     ft/s
                     ksi lb/ft3
     ft
             in2
                                      ft
                                                               k/ft/s
     0.0
            18.43
                   29000.
                             492.0
                                       3.7
                                                       16524.
                                                                 32.3
    33.0
           18.43 29000.
                            492.0
                                       3.7
                                                 0
                                                      16524.
                                                                 32.3
Wave Travel Time 2L/c (ms)
                              3.994
       Pile and Soil Model
                                    Total Capacity Rut (kips)
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
             k/in ft ft
                                            s/ft inch
                                                                ft
                                                          ft
                                                                       in2
     kips
                                     kips
                                            0.000 0.100
  1 0.208
             13497 0.010 0.000 0.85
                                      0.0
                                                         3.30
                                                                3.7
                                                                      18.4
            13497 0.000 0.000 1.00
                                      0.0 0.000 0.100
 2 0.208
                                                        6.60
                                                                3.7
                                                                      18.4
 4 0.208
            13497 0.000 0.000 1.00
                                      0.0
                                           0.100 0.100 13.20
                                                                3.7
                                                                      18.4
  5 0.208
            13497 0.000 0.000 1.00
                                            0.100 0.100 16.50
                                      0.9
             13497 0.000 0.000 1.00
 6 0.208
                                      2.7
                                            0.100 0.100
                                                        19.80
                                                                3.7
                                                                      18.4
            13497 0.000 0.000 1.00
  7 0.208
                                           0.171 0.100 23.10
                                      5.8
                                                                3.7
                                                                      18.4
            13497 0.000 0.000 1.00
 8 0.208
                                      7.8
                                           0.200 0.100 26.40
                                                                3.7
                                                                      18.4
 9 0.208
            13497 0.000 0.000 1.00
                                      7.0
                                           0.104 0.100 29.70
                                                                3.7
                                                                      18.4
10 0.208
            13497 0.000 0.000 1.00
                                      8.0
                                           0.100 0.100 33.00
                                                                3.7
                                                                      18.4
                                     66.8
                                           0.150 0.117
    2.078 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.078 kips total reduced pile weight (g= 32.17 ft/s2)
   Depth
            Stroke Pressure
                             Efficy
               ft
                     Ratio
   20.00
            10.81
                      1.00
                                0.800
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
Resource International Inc
                                                     GRLWEAP Version 2010
                                                     i t ENTHRU
                Stroke (ft) Ten Str i t Comp Str
  kips
          b/ft
                down up
                               ksi
                                               ksi
                                                           kip-ft
                                                                    b/min
                                     6 37
  98.9
          11.6
                6.00
                       6.02
                              -0.31
                                              22.55
                                                         3 17.8
                                                                    48.1
  100.0
                6.02 6.04
                             -0.31
                                              22.64
                                                                     48.0
          11.8
                                     6 37
                                                         3
                                                             17.7
 101.1
          12.0
               6.04
                      6.07
                             -0.31
                                     6 37
                                              22.74
                                                         3
                                                             17.7
                                                                     47.9
                6.06 6.08 -0.31 6 37
6.09 6.10 -0.31 6 37
0 10.81000 11.86
  102.2
          12.1 6.06 6.08
                                              22.86
                                                     7
                                                         3
                                                             17.7
                                                                     47.8
          12.3
                                     6 37
                                              22.97
                                                                     47.7
  103.3
                                                             17.7
                                      11.86000
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
                                                     GRLWEAP Version 2010
Resource International Inc
                              25.0
Shaft Gain/Loss Factor
                              0.604 Toe Gain/Loss Factor
PILE PROFILE:
Toe Area
                    (in2) 144.000 Pile Type
                                                               Unknown
Pile Size
                   (inch)
                             14.000
```

B-108-9-15 - RA - 14 IN CIP L b Top Area E-Mod Spec Wt Perim C Index Wave Sp EA/c ft in2 ksi lb/ft3 ft ft/s k/ft/s 29000. 0 0.0 18.43 492.0 3.7 16524. 32.3 29000. a 33.0 18.43 492.0 3.7 16524. 32.3 Wave Travel Time 2L/c (ms) 3.994 Pile and Soil Model Total Capacity Rut (kips) 231.0 No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim Area k/in ft ft f† kips kips s/ft inch ft in2 1 0.208 13497 0.010 0.000 0.85 0.0 0.000 0.100 3.30 3.7 18.4 2 0.208 13497 0.000 0.000 1.00 0.0 0.000 0.100 6.60 3.7 18.4 13497 0.000 0.000 1.00 0.100 0.100 9.90 0.208 0.3 18.4 13497 0.000 0.000 1.00 4 0.208 0.100 0.100 13.20 3.7 18.4 1.8 5 0.208 13497 0.000 0.000 1.00 3.5 0.100 0.100 16.50 3.7 18.4 13497 0.000 0.000 1.00 6 0.208 7.8 0.200 0.100 19.80 3.7 18.4 0.162 0.100 23.10 7 0.208 13497 0.000 0.000 1.00 7.3 3.7 18.4 8 0.208 13497 0.000 0.000 1.00 7.5 0.100 0.100 26.40 3.7 18.4 9 0.208 13497 0.000 0.000 1.00 10.5 0.099 0.100 29.70 3.7 18.4 10 0.208 13497 0.000 0.000 1.00 19.6 0.087 0.100 33.00 Toe 172.8 0.150 0.117 2.078 kips total unreduced pile weight (g= 32.17 ft/s2) 2.078 kips total reduced pile weight (g= 32.17 ft/s2) Depth Stroke Pressure Efficy ft ft Ratio 25.00 10.81 1.00 0.800 FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 Resource International Inc GRLWEAP Version 2010 Bl Ct Stroke (ft) Ten Str i t Comp Str t ENTHRU Bl Rt Rut kips b/ft down up ksi ksi kip-ft h/min 7.70 -0.41 5 41 3 231.0 34.8 7.70 28.04 16.5 42.6 232.2 35.1 7.70 7.71 -0.41 5 40 28.08 6 3 16.4 42.6 233.3 35.4 7.72 7.72 -0.41 5 40 28.17 16.4 42.5 7.73 7.72 7.73 7.73 5 40 234.4 35.5 -0.42 28.22 6 3 16.5 42.5 -0.41 5 40 235.6 35.9 28.27 16.4 42.5 0 10.81000 11.86000 FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 Resource International Inc GRLWEAP Version 2010 (ft) 30.0 Shaft Gain/Loss Factor 0.604 Toe Gain/Loss Factor 1,000 PILE PROFILE: Toe Area (in2) 144.000 Pile Type Unknown Pile Size (inch) 14.000 L b Top E-Mod Spec Wt Perim C Index Wave Sp EA/c Area ksi lh/ft3 ft/s f† ft in2 k/ft/s 0.0 18.43 29000. 492.0 3.7 а 16524. 32.3 33.0 18.43 29000. 492.0 3.7 0 16524. 32.3 Wave Travel Time 2L/c (ms) 3.994 Pile and Soil Model Total Capacity Rut (kips) 293.9 No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim Area kips k/in ft ft kips s/ft inch ft ft in2 0.100 0.100 13497 0.010 0.000 0.85 0.208 0.0 3.30 3.7 13497 0.000 0.000 1.00 2 0.208 1.0 0.100 0.100 6.60 3.7 18.4 13497 0.000 0.000 1.00 0.100 0.100 9.90 18.4 3 0.208 2.7 3.7 13497 0.000 0.000 1.00 4 0.208 0.173 0.100 13.20 3.7 5.9 18.4 0.200 0.100 16.50 13497 0.000 0.000 1.00 5 0.208 7.8 3.7 18.4 0.208 13497 0.000 0.000 1.00 7.0 0.100 0.100 19.80 3.7 18.4 7 0.208 13497 0.000 0.000 1.00 8.0 0.100 0.100 23.10 3.7 18.4 13497 0.000 0.000 1.00 0.095 0.100 0.208 16.0 26.40 18.4 13497 0.000 0.000 1.00 0.208 20.8 0.078 0.100 29.70 3.7 18.4 13497 0.000 0.000 1.00 10 0.208 23.0 0.059 0.100 33.00 3.7 18.4 Toe 201.6 0.150 0.117 2.078 kips total unreduced pile weight (g= 32.17 ft/s2)

2.078 kips total reduced pile weight (g= 32.17 ft/s2)

```
Efficy
   Depth
            Stroke Pressure
      ft
              ft
                      Ratio
    30.00
             10.81
                       1.00
                                0.800
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
                                                     GRLWEAP Version 2010
Resource International Inc
                Stroke (ft) Ten Str i t Comp Str
   Rut
         Bl Ct
                                                        t ENTHRU
  kips
         b/ft
                down up ksi
                                               ksi
                                                          kip-ft
                                                                   b/min
  293.9
          47.9
                8.05
                       8.09
                              -0.55
                                     4 35
                                              28.70
                                                             16.5
                                                                    41.6
  295.0
          48.4
                8.06
                       8.10
                              -0.55
                                     4 35
                                              28.74
                                                                     41.6
                                                             16.5
  296.1
          48.6
                8.07
                      8.10
                             -0.55
                                     4 34
                                              28.80
                                                     4
                                                         2
                                                             16.5
                                                                    41.6
                                                       2
  297.3
                8.07 8.12
                             -0.55
                                     4 34
          49.2
                                              28.84
                                                     4
                                                             16.5
                                                                    41.6
  298.4
         49.4 8.08 8.12
                             -0.55
                                     4 34
                                              28.90
                                                       2 16.5
                                                                    41.5
         1
                    0 10.81000
                                      11.86000
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
Resource International Inc
                                                     GRLWEAP Version 2010
Depth
                    (ft)
                              32.5
Shaft Gain/Loss Factor
                             0.604 Toe Gain/Loss Factor
                                                                 1.000
PILE PROFILE:
Toe Area
                    (in2)
                            144.000 Pile Type
                                                                Unknown
Pile Size
                   (inch)
                            14.000
 L b Top
            Area
                    E-Mod Spec Wt
                                     Perim C Index Wave Sp
                                                                 EA/c
                          1b/ft3
                                      ft
             in2
                    ksi
                                                      ft/s
                                                               k/ft/s
      ft
            18.43
                   29000.
                             492.0
                                       3.7
                                                  0
                                                      16524.
                                                                 32.3
     0.0
    33.0
           18.43 29000.
                             492.0
                                       3.7
                                                  0
                                                      16524.
                                                                 32.3
Wave Travel Time 2L/c (ms)
                            3.994
       Pile and Soil Model
                                    Total Capacity Rut (kips)
                                                                 427.8
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
             k/in ft ft
                                            s/ft inch
                                                          ft
                                                                ft
                                                                       in2
     kips
                                     kips
    0.208
                                            0.100 0.100
             13497 0.010 0.000 0.85
                                      0.6
                                                         3.30
                                                                3.7
                                                                      18.4
            13497 0.000 0.000 1.00
                                           0.100 0.100
 2 0.208
                                                         6.60
                                      2.3
                                                                3.7
                                                                      18.4
 3 0.208
            13497 0.000 0.000 1.00
                                      4.8
                                           0.150 0.100
                                                        9.90
                                                                3.7
                                                                      18.4
 4 0.208
            13497 0.000 0.000 1.00
                                      7.8
                                            0.200 0.100 13.20
                                                                3.7
                                                                      18.4
 5 0.208
             13497 0.000 0.000 1.00
                                      7.1
                                            0.132 0.100
                                                        16.50
                                                                3.7
                                                                      18.4
  6 0.208
             13497 0.000 0.000 1.00
                                            0.100 0.100 19.80
                                     7.8
                                                                3.7
             13497 0.000 0.000 1.00
  7 0.208
                                     13.4
                                           0.097 0.100 23.10
                                                                3.7
                                                                      18.4
 8 0.208
            13497 0.000 0.000 1.00
                                     20.2
                                           0.082 0.100 26.40
                                                                3.7
                                                                      18.4
            13497 0.000 0.000 1.00
 9 0.208
                                            0.064 0.100 29.70
                                     22.5
                                                                3.7
                                                                      18.4
            13497 0.000 0.000 1.00
10 0.208
                                     24.8
                                           0.051 0.100 33.00
                                                                3.7
                                                                      18.4
Toe
                                    316.6
                                           0.150 0.117
    2.078 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.078 kips total reduced pile weight (g= 32.17 ft/s2)
   Depth
            Stroke Pressure
                               Efficy
              ft
                      Ratio
   32.50
            10.81
                                0.800
                       1.00
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                               07/06/2018
                                                     GRLWEAP Version 2010
Resource International Inc
                                                         t ENTHRU
                Stroke (ft) Ten Str i t Comp Str
  kips
         b/ft
                down up ksi
                                               ksi
                                                          kip-ft
                                                                   b/min
  427.8
          93.9
                8.99
                       8.93
                              -1.74
                                     7 31
                                              34.68
                                                    10
                                                             17.8
                                                                    39.5
                                     7 31
  428.9
          94.2
                8.99
                       8.92
                              -1.69
                                              34.56
                                                    10 4
                                                                    39.6
                                                            17.9
                9.00
          95.6
                      8.93
                             -1.60
                                     7 31
7 31
                                                        4 17.8
4 17.7
  430.1
                                              34.42 10
                                                                    39.5
  431.2
          97.6
                8.99
                      8.94
                              -1.50
                                              34.31 10
                                                                    39.5
  432.3
          97.9
                9.00 8.94
                             -1.46
                                     6 31
                                             34.18 10 4 17.8
                                                                    39.5
         1
                    0
                       10.81000
                                      11.86000
FRA-71-1518A - RA - B-108-9-15 - 14" CIP
                                                              07/06/2018
                                                     GRLWEAP Version 2010
Resource International Inc
Depth
                     (ft)
                               33.0
```

B-108-9-15 - RA - 14 IN CIP 0.604 Toe Gain/Loss Factor Shaft Gain/Loss Factor PILE PROFILE: (in2) 144.000 Pile Type Unknown Toe Area Pile Size (inch) 14.000 L b Top E-Mod Spec Wt Area Perim C Index Wave Sp ft in2 ksi lb/ft3 ft ft/s k/ft/s 29000. 492.0 3.7 16524. 0.0 18.43 32.3 29000. a 33.0 18.43 492.0 3.7 16524. 32.3 Wave Travel Time 2L/c (ms) 3.994 Pile and Soil Model Total Capacity Rut (kips) No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim k/in ft ft s/ft inch ft kips kips ft 0.208 13497 0.010 0.000 0.85 0.8 0.100 0.100 3.30 3.7 2 0.208 6.60

Area in2 18.4 13497 0.000 0.000 1.00 2.6 0.100 0.100 3.7 18.4 3 0.208 13497 0.000 0.000 1.00 5.5 0.166 0.100 9.90 3.7 18.4 4 0.208 13497 0.000 0.000 1.00 7.8 0.200 0.100 13.20 3.7 18.4 5 0.208 13497 0.000 0.000 1.00 0.113 0.100 16.50 7.0 3.7 18.4 13497 0.000 0.000 1.00 6 0.208 7.9 0.100 0.100 19.80 3.7 18.4 13497 0.000 0.000 1.00 7 0 208 15.0 0.096 0.100 23.10 3 7 18 4 8 0.208 13497 0.000 0.000 1.00 20.6 0.079 0.100 26.40 3.7 18.4 9 0.208 13497 0.000 0.000 1.00 22.8 0.061 0.100 29.70 3.7 18.4 13497 0.000 0.000 1.00 10 0.208 26.0 0.050 0.100 33.00 3.7 Toe 423.1 0.150 0.117

2.078 kips total unreduced pile weight (g= 32.17 ft/s2) 2.078 kips total reduced pile weight (g= 32.17 ft/s2)

Depth Stroke Pressure Efficy ft Ratio ft 1.00 0.800 33.00 10.81

FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 GRLWEAP Version 2010 Resource International Inc

Bl Ct Stroke (ft) Ten Str i t Comp Str t ENTHRU Rut kips b/ft down un ksi ksi kin-ft b/min 539.2 189.5 9.79 9.76 -1.09 4 29 39.23 10 4 19.3 37.9 540.3 195.2 9.79 9.77 -0.99 4 29 39.05 10 4 19.3 37.9 541.4 199.0 9.78 9.77 -0.94 4 29 38.90 10 4 19.3 37.9 9.78 9.77 -0.88 4 29 38.77 10 542.6 202.8 4 19.3 206.7 9.78 9.77 -0.85 4 29 38.61 10 4 19.3 37.9

FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 GRLWEAP Version 2010 Resource International Inc

SUMMARY OVER DEPTHS

G/L at Shaft and Toe: 0.604 1.000 Frictn End Bg Bl Ct Com Str Ten Str Stroke FNTHRU Depth Rut ft kips kips kips bl/ft ksi ksi ft kip-ft 5.0 18.8 1.9 16.9 1.6 8.120 0.000 3.67 24.7 9.2 14.4 2.1 10.699 0.000 10.0 23.6 3.88 23.7 20.5 54.4 8.3 20.706 -0.295 15.0 74.9 5.56 18.9 11.6 22.552 -0.313 20.0 98.9 32.2 66.8 6.00 17.8 34.8 28.036 -0.413 25.0 231.0 58.2 172.8 7.70 16.5 47.9 28.699 -0.551 30.0 293.9 92.3 201.6 8.05 16.5 32.5 427.8 111.2 316.6 93.9 34.678 -1.740 8.99 17.8 539.2 116.1 423.1 189.5 39.225 -1.094 19.3 33.0 9.79 Total Driving Time 16 minutes; Total No. of Blows 660 G/L at Shaft and Toe: 0.637 1.000 Depth Rut **ENTHRU** kips kips bl/ft ksi ksi ft kip-ft ft kips 16.9 8.133 0.000 18.9 2.0 1.6 3.68 24.7 10.0 23.9 9.5 14.4 2.1 10.870 0.000 3.90 23.7 8.5 20.609 -0.315 15.0 75.8 21.3 54.4 5.53 18.6 20.0 100.0 33.2 66.8 11.8 22.636 -0.314 6.02 17.7 25.0 232.2 59.4 172.8 35.1 28.080 -0.412 7.70 16.4 30.0 295.0 93.4 201.6 48.4 28.739 -0.547 8.06 16.5

B-108-9-15 - RA - 14 IN CIP 316.6 94.2 34.560 -1.691 8.99 32.5 428.9 112.4 17.9 423.1 195.2 39.051 -0.989 33.0 540.3 117.2 9.79 19.3 Total No. of Blows Total Driving Time 16 minutes: 666 FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 Resource International Inc GRLWEAP Version 2010 SUMMARY OVER DEPTHS G/L at Shaft and Toe: 0.670 1.000 Depth Rut Frictn End Bg Bl Ct Com Str Ten Str Stroke **ENTHRU** bl/ft kip-ft ft kips kips kips ksi 5.0 8.178 18.9 16.9 1.6 0.000 3.68 24.7 2.0 10.0 24.2 9.8 14.4 2.1 11.039 0.000 3.91 23.6 8.6 20.880 -0.330 15.0 76.6 22.1 54.4 5.60 18.8 12.0 22.739 20.0 101.1 34.3 66.8 -0.313 6.04 17.7 25.0 233.3 60.5 172.8 35.4 28.165 -0.408 7.72 16.4 30.0 296.1 94.5 201.6 48.6 28.797 -0.552 8.07 16.5 32.5 430.1 113.5 316.6 95.6 34.421 -1.603 9.00 17.8 423.1 199.0 38.904 -0.940 33.0 541.4 118.3 9.78 19.3 Total Driving Time Total No. of Blows 16 minutes; 673 G/L at Shaft and Toe: 0.703 1.000 Frictn End Bg Bl Ct Com Str Ten Str Stroke Depth Rut kips kips bl/ft ksi ksi ft kip-ft ft kips 8.170 5.0 19.0 2.1 16.9 1.6 0.000 3.68 24.7 10.0 24.5 10.1 14.4 2.2 11.161 0.000 3.93 23.5 15.0 77.4 23.0 54.4 8.7 20.954 -0.344 5.62 18.8 20.0 102.2 35.4 66.8 12.1 22.862 -0.312 6.06 17.7 25.0 234.4 61.6 172.8 28.217 -0.417 7.73 35.5 16.5 30.0 297.3 95.7 201.6 49.2 28.843 -0.546 8.07 16.5 97.6 34.308 -1.497 32.5 431.2 114.6 316.6 8.99 17.7 423.1 202.8 38.773 -0.878 33.0 542.6 119.5 9.78 19.3 16 minutes; Total Driving Time Total No. of Blows 682 FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 Resource International Inc GRLWEAP Version 2010 SUMMARY OVER DEPTHS G/L at Shaft and Toe: 0.736 1.000 Frictn End Bg Bl Ct Com Str Ten Str Stroke Depth Rut ft kips kips kips bl/ft ksi ksi ft kip-ft 8.262 0.000 24.7 5.0 19.0 16.9 1.6 3.69 2.1 0.000 10.0 24.8 10.4 14.4 2.2 11.304 3.94 23.5 15.0 78.2 23.8 54.4 8.9 20.892 -0.356 5.59 18.5 20.0 103.3 36.5 66.8 12.3 22.968 -0.306 6.09 17.7 25.0 235.6 62.8 172.8 35.9 28.270 -0.414 7.73 16.4 30.0 298.4 96.8 201.6 49.4 28.898 -0.550 8.08 16.5 97.9 34.179 -1.457 9.00 32.5 432.3 115.8 316.6 17.8 423.1 206.7 38.611 -0.848 120.6 543.7 33.0 9.78 19.3 Total Driving Time 16 minutes; Total No. of Blows 688 FRA-71-1518A - RA - B-108-9-15 - 14" CIP 07/06/2018 Resource International Inc GRLWEAP Version 2010 Table of Depths Analyzed with Driving System Modifiers

	Temp.	Wait	Equivalent	Pressure		Stiffn.	Cushion
Depth	Length	Time	Stroke	Ratio	Efficy.	Factor	CoR
ft	ft	hr	ft				
5.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00
10.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00
15.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00
20.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00
25.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00
30.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00
32.50	33.00	0.00	10.81	1.00	0.80	1.00	1.00
33.00	33.00	0.00	10.81	1.00	0.80	1.00	1.00

			Soil Lave	er Resis	stance Va	alues			
	Shaft	End	Shaft	Toe	Shaft	Toe	Soil	Limit	Setup
Depth	Res.	Bearing	Quake	Quake	Damping	Damping	Setup	Distance	Time
ft	k/ft2	kips	inch	inch	s/ft	s/ft	Normlzd	ft	hrs
0.01	0.00	0.03	0.100	0.117	0.100	0.150	0.515	0.000	0.000
7.89	0.42	26.65	0.100	0.117	0.100	0.150	0.515	0.000	0.000
7.91	0.42	26.70	0.100	0.117	0.100	0.150	0.515	0.000	0.000
8.49	0.44	27.68	0.100	0.117	0.100	0.150	0.515	0.000	0.000
8.51	1.06	14.43	0.100	0.117	0.200	0.150	1.000	0.000	0.000
13.49	1.07	14.43	0.100	0.117	0.200	0.150	1.000	0.000	0.000
13.51	0.67	50.77	0.100	0.117	0.100	0.150	0.515	0.000	0.000
20.99	0.91	69.21	0.100	0.117	0.100	0.150	0.515	0.000	0.000
21.01	1.48	149.82	0.100	0.117	0.100	0.150	0.000	0.000	0.000
30.01	2.00	201.66	0.100	0.117	0.050	0.150	0.000	0.000	0.000
32.49	2.14	215.95	0.100	0.117	0.050	0.150	0.000	0.000	0.000
32.51	2.62	417.24	0.100	0.117	0.050	0.150	0.000	0.000	0.000
33.00	2.66	423.09	0.100	0.117	0.050	0.150	0.000	0.000	0.000

Gain/Loss 3 at Shaft and Toe 0.670 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
5.0	2.8	1.5	1.4	0.0	0.000	0.000	11.86	0.0
10.0	8.9	7.8	1.2	-1.0	0.000	0.000	0.00	0.0
15.0	22.8	18.4	4.4	2.0	13.713	-0.266	4.05	23.5
20.0	32.1	26.8	5.3	2.9	16.600	-0.216	4.35	22.1
25.0	57.1	43.2	13.9	5.5	21.471	0.000	5.05	20.0
30.0	80.5	64.3	16.2	8.2	23.815	-1.403	5.52	19.0
35.0	127.0	91.0	36.0	14.4	26.570	-1.647	6.22	17.9
40.0	136.8	119.9	16.9	14.9	26.686	-1.467	6.28	17.8
45.0	186.1	152.1	34.0	21.5	28.670	-1.321	6.85	17.6
50.0	227.6	192.1	35.5	27.2	29.474	-1.594	7.19	17.8
55.0	239.6	226.5	13.1	27.6	29.682	-0.916	7.22	17.5
60.0	252.6	250.9	1.7	29.6	29.722	-0.606	7.33	17.3
65.0	283.1	276.7	6.3	38.1	30.642	-0.426	7.59	17.2
67.0	295.6	289.2	6.3	42.6	30.908	-0.519	7.65	17.0

Total Continuous Driving Time 21.00 minutes; Total Number of Blows 945

GRLWEAP - Version 2010 WAVE EQUATION ANALYSIS OF PILE FOUNDATIONS

written by GRL Engineers, Inc. (formerly Goble Rausche Likins and Associates, Inc.) with cooperation from Pile Dynamics, Inc. Copyright (c) 1998-2010, Pile Dynamics, Inc.

ABOUT THE WAVE EQUATION ANALYSIS RESULTS

The GRLWEAP program simulates the behavior of a preformed pile driven by either an impact hammer or a vibratory hammer. The program is based on mathematical models, which describe motion and forces of hammer, driving system, pile and soil under the hammer action. Under certain conditions, the models only crudely approximate, often complex, dynamic situations.

A wave equation analysis generally relies on input data, which represents normal situations. In particular, the hammer data file supplied with the program assumes that the hammer is in good working order. All of the input data selected by the user may be the best available information at the time when the analysis is performed. However, input data and therefore results may significantly differ from actual field conditions.

Therefore, the program authors recommend prudent use of the GRLWEAP results. Soil response and hammer performance should be verified by static and/or dynamic testing and measurements. Estimates of bending or other local stresses (e.g., helmet or clamp contact, uneven rock surfaces etc.), prestress effects and others must also be accounted for by the user.

The calculated capacity - blow count relationship, i.e. the bearing graph, should be used in conjunction with observed blow counts for the capacity assessment of a driven pile. Soil setup occurring after pile installation may produce bearing capacity values that differ substantially from those expected from a wave equation analysis due to soil setup or relaxation. This is particularly true for pile driven with vibratory hammers. The GRLWEAP user must estimate such effects and should also use proper care when applying blow counts from restrike because of the variability of hammer energy, soil resistance and blow count during early restriking.

Finally, the GRLWEAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of building and other factors.

Input File: J:\GEOTECH\PROJECTS\2013\W-13-045 FRA-70-13.54 PROJECT 4A\ANALYSIS\FRA-71-1518A AND RETAINING WALL 4W11\DRIVEABILITY\HP 10X42\B-108-9-15 - RA - HP10X42.GWW

Input File Contents

Hammer File Version: 2003 (2/22/2013)

1520.00

Effic.

14.70

Stroke

1368.00

Pressure

FRA-71-1518A - RA - B-108-9-15 - HP10x42 OUT OSG HAM STR FUL PEL N SPL N-U P-D %SK ISM 0 PHI RSA ITR H-D MXT DEx -100 0 41 0 0 0 0 0 0 1 0 0 0 0 0 0.000 0 0 Pile Type Pile g Hammer g Toe Area Pile Size 32.170 32.170 144.000 10.000 Unknown W Cp A Cp E Cp T Cp CoR **ROut** StCp 1.900 227.000 2.000 530.0 0.800 0.010 0.0 A Cu F Cu T Cu CoR ROut. StCu 9.999 0.000 0.0 0.000 0.000 9.9 LPle APle EPle WPle Peri CI CoR **ROut** 29000.0 492.000 67,000 12.40 3.300 0.850 0.010 Manufac Hmr Name HmrType No Seg-s DELMAG D 19-42 1 Ram Wt RtdStrk Ram I Ram Dia MaxStrk Efficv 4.00 129.10 12.60 11.86 10.81 0.80 IB. Wt IB. L IB.Dia IB CoR IB RO 0.900 0.010 0.75 25.30 12.60 C Duratn Exp Coeff VolCStart Vol CEnd CompStrk A Chamber V Chamber C Delay 124.70 0.002 0.002 1.250 16.65 157.70 0.00 0.00 P atm P1 P2 Р3 P4 P5

1231.00

R-Weight

1108.00

T-Delay Exp-Coeff

Eps-Str Total-AW

0.00

						B-108-9-			
10.8100		1520.0000		0.0000	0.0000	0.0000	0	.0100	0.0000
Qs	Qt	Js		Jt	Qx	Jx		Rati	Dept
0.000	0.000	0.000		0.000	0.000	0.000	(0.000	0.000
		l: Atoe, F		Gap, Q	-tac				
0.000	0.000 0.000	0.000		0.000	, d				
0.000	.000 0	l: RD-skn: 0.000		a, toe: 1 0.000	n, u				
Res. Dist		0.000	'	0.000					
Dpth	Rskn	Rtoe	Qs	Qt	Js	Jt	SU F	LimD	SU T
0.01	0.00	0.00	0.10	0.10	0.10	0.15	1.21	0.00	0.0
7.89	0.34	2.15	0.10	0.10	0.10	0.15	1.21	0.00	0.0
7.91	0.34	2.15	0.10	0.10	0.10	0.15	1.21	0.00	0.0
8.49	0.35	2.23	0.10	0.10	0.10	0.15	1.21	0.00	0.0
8.51	1.06	1.16	0.10	0.10	0.20	0.15	1.49	0.00	0.0
13.49	1.11	1.16	0.10	0.10	0.20	0.15	1.49	0.00	0.0
13.51	0.51	4.09	0.10	0.10	0.10	0.15	1.21	0.00	0.0
20.99	0.70	5.50	0.10	0.10	0.10	0.15	1.21	0.00	0.0
21.01	1.02	12.07	0.10	0.10	0.10	0.15	1.00	0.00	0.0
30.01	1.38	16.24	0.10	0.10	0.10	0.15	1.00	0.00	0.0
32.49	1.47	17.39	0.10	0.10	0.10	0.15	1.00	0.00	0.0
32.51	1.75	33.61	0.10	0.10	0.05	0.15	1.00	0.00	0.0
37.49	2.00	38.40	0.10	0.10	0.05	0.15	1.00	0.00	0.0
37.51	1.53	16.11	0.10	0.10	0.05	0.15	1.00	0.00	0.0
42.49	1.70	17.74	0.10	0.10	0.05	0.15	1.00	0.00	0.0
42.51	2.19	33.19	0.10	0.10	0.05	0.15	1.00	0.00	0.0
51.51 52.49	2.61 2.65	35.96	0.10 0.10	0.10 0.10	0.05 0.05	0.15 0.15	1.00	0.00 0.00	0.0 0.0
52.49	1.86	35.96 13.05	0.10	0.10	0.05	0.15	1.21	0.00	0.0
57.49	2.02	13.05	0.10	0.10	0.05	0.15	1.21	0.00	0.0
57.51	1.57	1.74	0.10	0.10	0.15	0.15	1.21	0.00	0.0
62.49	1.57	1.74	0.10	0.10	0.15	0.15	1.21	0.00	0.0
62.51	1.80	6.33	0.10	0.10	0.05	0.15	1.00	0.00	0.0
67.00	1.92	6.33	0.10	0.10	0.05	0.15	1.00	0.00	0.0
Gain/Loss									
0.60400	0.63700	0.67000		70300	0.73600				
1.00000	1.00000	1.00000	1.	.00000	1.00000				
Dpth	L	Wait		Strk	Pmx%	Eff.		Stff	CoR
5.00	0.00	0.00)	0.000	0.000	0.000	(0.000	0.000
10.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
15.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
20.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
25.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
30.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
35.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
40.00 45.00	0.00 0.00	0.00 0.00		0.000	0.000 0.000	0.000 0.000		0.000 0.000	0.000 0.000
50.00	0.00	0.00		0.000	0.000	0.000		0.000 0.000	0.000
55.00	0.00	0.00		0.000	0.000	0.000		0.000 0.000	0.000
60.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
65.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
67.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
0.00	0.00	0.00		0.000	0.000	0.000		0.000	0.000
	1		81000		11.86000		·		
^		: WAVE EQU				E FOUNDAT	IONS		
			١	/ersion 2	2010				
			Er	nglish U	nits				

FRA-71-1518A - RA - B-108-9-15 - HP10x42

Hammer	Model:	D 19-42		Made by:	DELMAG
No.	Weight kips	Stiffn k/inch	CoR	C-Slk ft	Dampg k/ft/s
1	0.800				
2	0.800	140046.7	1.000	0.0100	
3	0.800	140046.7	1.000	0.0100	
4	0.800	140046.7	1.000	0.0100	
5	0.800	140046.7	1.000	0.0100	
Imp Block	0.753	70735.6	0.900	0.0100	
Helmet	1.900	60155.0	0.800	0.0100	5.8
Combined Pile	е Тор	8945.3			

HAMMER OPTIONS:
Hammer File ID No.
41 Hammer Type

OE Diesel

Stroke Option Fuel Pump Setting	FxdP-VarS Maximum	Stroke Convergence		- HP10X42 0.010	2
Maximum Stroke	ips) 4.00 (ft) 11.86 (ft) 10.81		(inch)	129.10 0.800	
Maximum Pressure (p	1.350	Expansion Exponent		1520.00 1.250	
•	nch) 12.60 (s) 0.00200		(s)	0.00200	
The Hammer Data	a Includes Esti	imated (NON-MEASURED)	Quantit	ies ——	
HAMMER CUSHION		PILE CUSHION			
	in2) 227.00	PILE CUSHION Cross Sect. Area	(in2)	0.00	
		Elastic-Modulus	(ksi)	0.0	
Thickness (in Coeff of Restitution		Thickness Coeff of Restitutio	(inch) n	0.00 1.0	
RoundOut	(ft) 0.0		 (ft)	0.0	
Stiffness (kips,				0.0	
♠ FRA-71-1518A - RA - B-10 Resource International	Inc		RLWEAP V	07/06/201 ersion 201	
Depth Shaft Gain/Loss Factor	(ft) 5.0 0.604	Toe Gain/Loss Facto	r	1.000	
DILE DROFTLE.					
PILE PROFILE: Toe Area (:	in2) 144.000	Pile Tyne		Unknown	
Pile Size (in	nch) 10.000	. 110		· · · · · · · · · · · · · · · · · · ·	
L b Top Area E ft in2	-Mod Spec Wt ksi lb/ft3		ve Sp ft/s	EA/c k/ft/s	
	000. 492.0		16524.	21.8	
67.0 12.40 290	900. 492.0	3.3 0	16524.	21.8	
Wave Travel Time 2L/c	(ms) 8.109				
Pile and Soil Mo	odel	Total Capacity Rut	(kins)	2.8	
		Soil-S Soil-D Quake			Area
	ft ft	kips s/ft inch			in2
1 0.142 8945 0.03	10 0.000 0.85	0.0 0.000 0.100 0.0 0.000 0.100			12.4
1 0.142 8945 0.00 2 0.142 8945 0.00 19 0.142 8945 0.00	10 0.000 0.85 30 0.000 1.00 30 0.000 1.00	0.0 0.000 0.100 0.2 0.100 0.100	63.65	3.3 1	L2.4 L2.4
	00 0.000 1.00	1.2 0.100 0.100	67.00		12.4
Toe		1.4 0.150 0.100			
		weight (g= 32.17 ft/s ight (g= 32.17 ft/s			
PILE, SOIL, ANALYSIS OF	PTIONS:	D:3 6			
Uniform pile No. of Slacks/Splices	0	Pile Segments: Auto Pile Damping	matic (%)	1	
•	Ü	Pile Damping Fact.(0.435	
Driveability Analysis	C!+h				
Soil Damping Option Max No Analysis Iterat:	Smith ions 0		ical	160	
Output Time Interval	1	·		0	
Output Level: Normal					
Gravity Mass, Pile, Har Output Segment Generat:		32.170 32.170			
Depth Stroke Pro ft ft	essure Effic Ratio	У			
5.00 10.81	1.00 0.86	90			
INITIAL STATIC ANALYSIS Hammer+Pile Weight > Ru		n(R) 5.5 2.8			

```
INITIAL STATIC ANALYSIS: Total Wt, Sum(R)
                                            5.5
                                                    2.8
Hammer+Pile Weight > Rult: Pile Runs
INITIAL STATIC ANALYSIS: Total Wt, Sum(R)
                                            5.5
                                                    2.8
Hammer+Pile Weight > Rult: Pile Runs
INITIAL STATIC ANALYSIS: Total Wt, Sum(R)
                                            5.5
                                                    2.8
Hammer+Pile Weight > Rult: Pile Runs
INITIAL STATIC ANALYSIS: Total Wt, Sum(R)
                                            5.5
                                                    2.9
Hammer+Pile Weight > Rult: Pile Runs
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
Resource International Inc
                                                       GRLWEAP Version 2010
                                          t Comp Str
         Bl Ct Stroke (ft) Ten Str
                                                           t ENTHRU
          b/ft
                                                             kip-ft
                down up
                                                                      b/min
   kips
                                ksi
                                                 ksi
                        0.00
   2.8
           0.0 10.81
                                0.00
                                      1
                                                0.00
                                                                0.0
                                                                       78 4
   2.8
           0.0 11.86
                        0.00
                                0.00
                                      1
                                          0
                                                0.00
                                                       1
                                                           а
                                                                0.0
                                                                       74.4
   2.8
           0.0 11.86
                        0.00
                                0.00
                                          0
                                                0.00
                                                       1
                                                           0
                                                                0.0
                                                                       74.4
           0.0 11.86 0.00
   2.8
                                0.00
                                      1
                                                0.00
                                                       1
                                                                       74.4
           0.0 11.86 0.00 0.
0 10.81000
   2.9
                               0.00
                                      1
                                          a
                                                0.00
                                                                       74.4
                                       11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
                                                       GRLWEAP Version 2010
Resource International Inc
                               10.0
Shaft Gain/Loss Factor
                              0.604 Toe Gain/Loss Factor
                                                                   1.000
PTLE PROFILE:
                            144.000 Pile Type
Toe Area
                     (in2)
                                                                  Unknown
Pile Size
                             10.000
                    (inch)
 L b Top
                     E-Mod Spec Wt
                                       Perim C Index Wave Sp
                                                                   EA/c
             Area
                            lb/ft3
                                        ft
                                                        ft/s
      ft
             in2
                      ksi
                                                                 k/ft/s
     0.0
            12.40
                    29000.
                              492.0
                                         3.3
                                                   a
                                                        16524.
                                                                   21.8
    67.0
            12.40
                   29000.
                              492.0
                                         3.3
                                                   a
                                                        16524.
                                                                   21.8
Wave Travel Time 2L/c (ms)
                               8.109
       Pile and Soil Model
                                     Total Capacity Rut (kips)
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                                                        Area
                                             s/ft inch
     kips
              k/in ft ft
                                      kips
                                                            ft
                                                                  ft
                                                                         in2
   0.142
              8945 0.010 0.000 0.85
                                       0.0
                                            0.000 0.100
                                                           3.35
                                                                  3.3
                                                                         12.4
 2 0.142
              8945 0.000 0.000 1.00
                                       0.0
                                             0.000 0.100
                                                           6.70
                                                                  3.3
                                                                         12.4
18 0.142
              8945 0.000 0.000 1.00
                                       0.6
                                             0.100 0.100 60.30
                                                                  3.3
                                                                         12.4
19 0.142
              8945 0.000 0.000 1.00
                                       1.9
                                             0.100 0.100 63.65
                                                                         12.4
                                                                  3.3
                                             0.173 0.100 67.00
20 0.142
              8945 0.000 0.000 1.00
                                       4.8
                                                                  3.3
                                                                         12.4
Toe
                                       1.2
                                            0.150 0.100
     2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
     2.839 kips total reduced pile weight (g= 32.17 ft/s2)
                               Efficy
   Depth
            Stroke Pressure
      ft
               ft
                       Ratio
   10.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
Resource International Inc
                                                       GRLWEAP Version 2010
         Bl Ct Stroke (ft) Ten Str i t Comp Str b/ft down up ksi ksi
                                                      i t ENTHRU Bl Rt
                                                            kip-ft b/min
   8.4 Hammer did not run
   8.7 Hammer did not run
   8.9 Hammer did not run
   9.2 Hammer did not run
   9.4 Hammer did not run
         1
                     0 10.81000
                                       11.86000
```

Page 4

```
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                               07/06/2018
Resource International Inc
                                                      GRLWEAP Version 2010
                              15.0
Shaft Gain/Loss Factor
                              0.604 Toe Gain/Loss Factor
                                                                 1.000
PILE PROFILE:
                          144.000 Pile Type
Toe Area
                    (in2)
                                                               Unknown
Pile Size
                   (inch)
                             10.000
 L b Top
             Area
                    E-Mod Spec Wt
                                     Perim C Index Wave Sp
                                                                 EA/c
                                                       ft/s
                                                               k/ft/s
             in2
                           1b/ft3
                                       ft
      ft
                     ksi
                   29000.
     0.0
            12.40
                             492.0
                                       3.3
                                                       16524.
                                                                 21.8
    67.0
            12.40
                   29000.
                             492.0
                                       3.3
                                                  0
                                                       16524.
                                                                 21.8
Wave Travel Time 2L/c (ms)
                             8.109
                                    Total Capacity Rut (kips)
       Pile and Soil Model
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
             k/in ft ft
    kips
                                     kips
                                           s/ft inch
                                                         ft ft
                                                                       in2
              8945 0.010 0.000 0.85
                                      0.0 0.000 0.100
    0.142
                                                         3.35
                                                                       12.4
                                                                3.3
              8945 0.000 0.000 1.00
                                      0.0 0.000 0.100
 2 0.142
                                                         6.70
                                                                3.3
                                                                       12.4
              8945 0.000 0.000 1.00
16 0.142
                                      0.1 0.100 0.100 53.60
                                                                3.3
                                                                       12.4
17 0.142
              8945 0.000 0.000 1.00
                                      1.2
                                            0.100 0.100
                                                         56.95
                                                                3.3
                                                                       12.4
              8945 0.000 0.000 1.00
                                            0.100 0.100 60.30
18 0.142
                                      2.5
                                                                3.3
                                                                       12.4
19 0.142
              8945 0.000 0.000 1.00
                                       6.9
                                           0.198 0.100 63.65
                                                                3.3
                                                                       12.4
             8945 0.000 0.000 1.00
                                      6.2 0.172 0.100 67.00
20 0.142
                                                                3.3
                                                                       12.4
Toe
                                      4.4
                                           0.150 0.100
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.839 kips total reduced pile weight (g= 32.17 ft/s2)
            Stroke Pressure
                             Ffficv
   Depth
                    Ratio
               f†
      f†
   15.00
             10.81
                       1.00
                                0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                               07/06/2018
Resource International Inc
                                                      GRLWEAP Version 2010
   Rut
         Bl Ct \, Stroke (ft) Ten Str \, i \, t Comp Str \,
                                                     i t ENTHRU
                                                                    B1 Rt
  kips
          b/ft
                down up ksi
                                               ksi
                                                           kip-ft
                                                                    b/min
  21.3
          1.9
                4.00
                       3.96
                              -0.29
                                     5 12
                                              13.08
                                                         2
                                                             23.9
                                                                     59.4
                4.03 4.00
                             -0.29
  22.0
           2.0
                                     5 12
                                             13.41
  22.8
         2.0 4.05 4.03 -0.27
2.1 4.08 4.07 -0.23
2.2 4.08 4.11 -0.18
1 0 10.81000
          2.0
               4.05
                      4.03
                             -0.27
                                     5 12
                                              13.71
                                                     1
                                                         2
                                                             23.5
                                                                     58.9
                                     5 12
                                                      1 2
                                              13.98
                                                                     58.7
  23.5
                                                             23.3
                                    5 12
  24.2
                                              14.12
                                                             23.1
                                                                     58.5
         1
                                      11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                               07/06/2018
Resource International Inc
                                                      GRLWEAP Version 2010
                     (ft)
                              20.0
Shaft Gain/Loss Factor
                              0.604 Toe Gain/Loss Factor
                                                                1.000
PILE PROFILE:
                            144.000 Pile Type
Toe Area
                    (in2)
                                                                Unknown
Pile Size
                   (inch)
                             10.000
 L b Top
            Area
                   E-Mod Spec Wt
                                     Perim C Index Wave Sp
                                                                 EA/c
                            lb/ft3
                    ksi
      ft
             in2
                                       ft
                                                       ft/s
                                                               k/ft/s
     0.0
            12.40
                   29000.
                             492.0
                                       3.3
                                                  0
                                                       16524.
                                                                 21.8
                   29000.
    67.0
           12.40
                             492.0
                                       3.3
                                                      16524.
                                                                 21.8
Wave Travel Time 2L/c (ms)
                              8.109
                                    Total Capacity Rut (kips)
      Pile and Soil Model
                                                                   30.3
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
              k/in ft ft
                                            s/ft inch
                                                               ft
     kips
                                     kips
                                                         ft
                                                                       in2
              8945 0.010 0.000 0.85
                                            0.000 0.100
 1 0.142
                                      0.0
                                                         3.35
                                                                3.3
                                                                       12.4
              8945 0.000 0.000 1.00
                                      0.0 0.000 0.100
 2 0.142
                                                         6.70
                                                                       12.4
                                                                3.3
15 0.142
              8945 0.000 0.000 1.00
                                      0.6 0.100 0.100
                                                         50.25 3.3
                                                                       12.4
              8945 0.000 0.000 1.00
                                      1.8 0.100 0.100
16 0.142
                                                         53.60 3.3
                                                                       12.4
17 0.142
             8945 0.000 0.000 1.00
                                      4.7
                                           0.172 0.100 56.95
                                                               3.3
                                                                       12.4
```

```
B-108-9-15 - RA - HP10X42
                                            0.200 0.100 60.30 3.3
0.111 0.100 63.65 3.3
              8945 0.000 0.000 1.00
                                       7.3
18 0.142
                                                                        12.4
19 0.142
              8945 0.000 0.000 1.00
                                       5.0
                                                                         12.4
              8945 0.000 0.000 1.00
                                             0.100 0.100 67.00 3.3
20 0.142
                                       5.6
                                                                         12.4
                                             0.150 0.100
Toe
                                       5.3
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.839 kips total reduced pile weight (g= 32.17 ft/s2)
                               Efficy
            Stroke Pressure
   Depth
      f†
               ft
                      Ratio
   20.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
Resource International Inc
                                                       GRLWEAP Version 2010
   Rut
         B1 C+
                 Stroke (ft) Ten Str i t Comp Str
                                                       i t ENTHRU
                                                                      B1 Rt
   kips
          b/ft
                 down
                        up
                               ksi
                                                 ksi
                                                             kip-ft
                                                                      b/min
                       4.30
                                      4 12
   30.3
          2.7
                 4.28
                               -0.27
                                               16.07
                                                       1 2 22.3
                                                                       57.1
                               -0.25
   31.2
           2.8
                 4.31
                       4.34
                                      4 12
                                               16.35
                                                               22.2
                                                                       56.9
                               -0.22
   32.1
          2.9
               4.35 4.38
                                      4 12
                                               16.60
                                                               22.1
                                                                       56.7
          3.0 4.37 4.41 -0.
3.1 4.40 4.45 -0.
0 10.81000
                             -0.18
-0.16
                                      4 12
4 12
                                               16.78
                                                       2 2
4 3
   33.0
                                                               21.9
                                                                       56.5
   33.9
                                               16.98
                                                               21.8
                                                                       56.3
         1
                                       11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
Resource International Inc
                                                       GRLWEAP Version 2010
                               25.0
Denth
                     (ft)
Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                    1.000
PILE PROFILE:
                           144.000 Pile Type
Toe Area
                     (in2)
                                                                  Unknown
Pile Size
                              10.000
                    (inch)
                     E-Mod Spec Wt
 I h Ton
             Area
                                      Perim C Index Wave Sp
                                                                  EA/c
      ft
            in2
                     ksi
                            lb/ft3
                                        ft
                                                        ft/s
                                                                 k/ft/s
            12.40
                    29000.
                              492.0
     0.0
                                                        16524.
                                                   0
    67.0
            12.40
                    29000.
                              492.0
                                        3.3
                                                        16524.
                                                                   21.8
Wave Travel Time 2L/c (ms)
                               8,109
       Pile and Soil Model
                                     Total Capacity Rut (kips)
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
             k/in ft ft
                                            s/ft inch
                                                                 ft
     kips
                                      kips
              8945 0.010 0.000 0.85
    0.142
                                       0.0
                                            0.000 0.100
                                                           3.35
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                       0.0 0.000 0.100
 2 0.142
                                                           6.70
                                                                  3.3
                                                                        12.4
              8945 0.000 0.000 1.00
                                            0.100 0.100 43.55
13 0.142
                                       0.1
                                                                  3.3
                                                                        12.4
14 0.142
              8945 0.000 0.000 1.00
                                       1.2
                                             0.100 0.100
                                                          46.90
                                                                  3.3
                                                                         12.4
15 0.142
              8945 0.000 0.000 1.00
                                       2.5
                                             0.100 0.100
                                                          50.25
                                                                  3.3
                                                                        12.4
                                             0.197 0.100
16 0.142
              8945 0.000 0.000 1.00
                                        6.9
                                                          53.60
                                                                  3.3
                                                                         12.4
17 0.142
              8945 0.000 0.000 1.00
                                       6.2
                                             0.173 0.100
                                                          56.95
                                                                  3.3
                                                                         12.4
18 0.142
              8945 0.000 0.000 1.00
                                             0.100 0.100 60.30
                                       5.2
                                                                         12.4
                                                                  3.3
              8945 0.000 0.000 1.00
19 0.142
                                       7.0
                                             0.100 0.100 63.65
                                                                  3.3
                                                                         12.4
                                             0.100 0.100 67.00
20 0.142
              8945 0.000 0.000 1.00
                                      12.3
                                                                 3.3
                                                                        12.4
Toe
                                      13.9
                                             0.150 0.100
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.839 kips total reduced pile weight (g= 32.17 ft/s2)
   Depth
            Stroke Pressure
                                Efficv
      ft
               ft
                       Ratio
             10.81
    25.00
                       1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
                                                       GRLWEAP Version 2010
Resource International Inc
         Bl Ct
                 Stroke (ft) Ten Str
                                      i
                                          t Comp Str
                                                           t ENTHRU
                                                                      Bl Rt
   Rut
   kips
          b/ft
                 down up
                                ksi
                                                 ksi
                                                             kip-ft
                                                                      b/min
                       4.97
   55.3
           5.3
                 5.01
                                0.00
                                                21.17
                                                           5 20.2
                                                                       52.8
                 5.03
                        5.00
                                0.00
                                          0
                                                      15
                                                               20.1
                                                                       52.7
   56.2
           5.4
                                      1
                                               21.33
                                                           5
   57.1
           5.5
                 5.05
                        5.02
                                0.00
                                      1
                                          0
                                               21.47
                                                      15
                                                           5
                                                               20.0
                                                                       52.5
   58.1
           5.7
                 5.08
                       5.05
                                0.00
                                      1
                                          0
                                               21.62 16
                                                           5
                                                               20.0
                                                                       52.4
   59.0
           5.8
                5.11
                       5.07
                                0.00
                                      1
                                          0
                                               21.80
                                                      16
                                                           5
                                                              19.9
                                                                       52.2
```

1 0 10.81000 11.86000

```
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
                                                       GRLWEAP Version 2010
Resource International Inc
                                30.0
 Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                  1.000
 PILE PROFILE:
                           144.000 Pile Type
 Toe Area
                     (in2)
                                                                  Unknown
                    (inch)
 Pile Size
                              10.000
  L b Top
                    E-Mod Spec Wt
                                      Perim C Index Wave Sp
             Area
                                                                   EA/c
                           lb/ft3
      ft
             in2
                     ksi
                                       ft
                                                        ft/s
                                                                 k/ft/s
     0.0
            12.40
                    29000.
                              492.0
                                         3.3
                                                   0
                                                        16524.
                                                                   21.8
                    29000.
                              492.0
            12.40
                                                   0
                                                        16524.
     67.0
                                         3.3
                                                                   21.8
 Wave Travel Time 2L/c (ms)
                               8.109
Pile and Soil Model Total Capacity Rut (kips) 78.6
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim Area
              k/in ft ft
                                             s/ft inch
                                                                  ft
                                                           ft
                                                                         in2
                                      kins
     kips
              8945 0.010 0.000 0.85
                                             0.000 0.100
                                                           3.35
  1 0.142
                                       0.0
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
  2 0.142
                                       0.0 0.000 0.100
                                                          6.70
                                                                  3.3
                                                                        12.4
 12 0.142
              8945 0.000 0.000 1.00
                                       0.6
                                             0.100 0.100 40.20
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
 13 0.142
                                       1.8
                                             0.100 0.100 43.55
                                                                  3.3
                                                                        12.4
 14 0.142
              8945 0.000 0.000 1.00
                                        4.6
                                             0.170 0.100 46.90
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
 15 0.142
                                            0.200 0.100 50.25
                                       7.3
                                                                  3.3
                                                                         12.4
 16 0.142
              8945 0.000 0.000 1.00
                                       5.1 0.114 0.100 53.60
                                                                         12.4
                                                                  3.3
              8945 0.000 0.000 1.00
 17 0.142
                                       5.6
                                             0.100 0.100 56.95
                                                                  3.3
                                                                         12.4
 18 0.142
              8945 0.000 0.000 1.00
                                      10.0
                                             0.100 0.100 60.30
                                                                  3.3
                                                                         12.4
 19
    0.142
              8945 0.000 0.000 1.00
                                      13.0
                                            0.100 0.100 63.65
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                       14.5 0.100 0.100 67.00
 20 0.142
                                                                        12.4
                                       16.2
                                            0.150 0.100
Toe
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.839 kips total reduced pile weight (g= 32.17 ft/s2)
            Stroke Pressure
                              Efficy
    Depth
                ft
                       Ratio
      ft
    30.00
             10.81
                       1.00
                                0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
Resource International Inc
                                                       GRLWEAP Version 2010
                 Stroke (ft) Ten Str i t Comp Str
                                                      i t ENTHRU
         Bl Ct
   Rut
          b/ft
                        up
   kips
                 down
                                ksi
                                                 ksi
                                                            kip-ft
                                                                      b/min
   78.6
           8.0
                 5.49
                        5.47
                               -1.42 12 48
                                               23.56 14
                                                              19.0
                                                                       50.2
   79.6
           8.1
                 5.50
                       5.48
                              -1.42 12 48
                                               23.68 14
                                                          5
                                                               19.0
                                                                       50.2
   80.5
           8.2
                 5.52
                       5.50
                              -1.40 12 48
                                               23.82 14
                                                               19.0
                                                                       50.1
          8.2 5.52 5.50
8.4 5.54 5.53
               5.54 5.53 -1.39 13 48
5.50 5.56 -1.37 13 47
0 10.81000 11.86
   81.4
                                               23.93 14
                                                               18.9
                                                                       50.0
   82.4
                                               23.84 14
          8.6
                                                           5 18.7
                                                                       50.0
                                       11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
Resource International Inc
                                                       GRLWEAP Version 2010
                      (ft)
                               35.0
 Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                  1.000
 PTLE PROFTLE:
 Toe Area
                     (in2)
                             144.000 Pile Type
                                                                  Unknown
 Pile Size
                    (inch)
                             10.000
  L b Top
                     E-Mod Spec Wt
                                      Perim C Index Wave Sp
                                                                   EA/c
             Area
                             lb/ft3
             in2
                     ksi
                                        ft
                                                        ft/s
      ft
                                                                 k/ft/s
     0.0
            12.40
                    29000.
                              492.0
                                         3.3
                                                   0
                                                        16524.
                                                                   21.8
     67.0
            12.40
                   29000.
                              492.0
                                         3.3
                                                   a
                                                        16524.
 Wave Travel Time 2L/c (ms)
       Pile and Soil Model
                                      Total Capacity Rut (kips)
                                                                  125.1
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                                           ft ft
     kips
              k/in ft ft
                                      kips
                                             s/ft inch
                                                                         in2
```

```
1 0.142
              8945 0.010 0.000 0.85
                                        0.0
                                              0.000 0.100 3.35 3.3
                                                                          12.4
 2 0.142
              8945 0.000 0.000 1.00
                                        0.0
                                              0.000 0.100
                                                           6.70
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.100 0.100 33.50
10 0.142
                                        0.1
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
11 0.142
                                        1.2
                                              0.100 0.100 36.85
                                                                   3.3
                                                                          12.4
                                        2.4
12 0.142
              8945 0.000 0.000 1.00
                                              0.100 0.100 40.20
                                                                   3.3
                                                                          12.4
13
    0.142
              8945 0.000 0.000 1.00
                                        6.8
                                              0.197 0.100
                                                           43.55
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.174 0.100
    0.142
                                        6.2
                                                           46.90
15
    0.142
              8945 0.000 0.000 1.00
                                        5.2
                                              0.100 0.100
                                                           50.25
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.100 0.100
16 0.142
                                        6.9
                                                           53.60
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.100 0.100
17 0.142
                                       12.3
                                                           56.95
                                                                   3.3
                                                                          12.4
18
    0.142
              8945 0.000 0.000 1.00
                                       13.7
                                              0.100 0.100
                                                           60.30
                                                                   3.3
                                                                          12.4
19 0.142
              8945 0.000 0.000 1.00
                                       15.2
                                              0.100 0.100 63.65
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
    0.142
                                       19.0
                                              0.061 0.100 67.00
20
                                                                   3.3
                                                                          12.4
Toe
                                       36.0
                                              0.150 0.100
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.839 kips total reduced pile weight (g= 32.17 ft/s2)
    Depth
            Stroke Pressure
                                Efficy
      f†
               f†
                       Ratio
    35.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                  07/06/2018
Resource International Inc
                                                        GRLWEAP Version 2010
         Bl Ct
                 Stroke (ft) Ten Str i t Comp Str
                                                           t ENTHRU
   Rut
  kips
          b/ft
                 down
                               ksi
                                                 ksi
                                                              kip-ft
                                                                       b/min
                         up
 125.1
          14.1
                 6.18
                        6.21
                               -1.60 11 36
                                                26.35 13
                                                           4
                                                               17.9
                                                                        47.3
  126.0
          14.2
                 6.20
                        6.22
                               -1.62 11 36
                                                26.49
                                                       13
                                                                17.9
                                                                        47.2
  127.0
          14.4
                 6.22
                        6.23
                               -1.65 11 36
                                                26.57
                                                               17.9
                                                                        47.2
                              -1.67 11 36
-1.68 11 36
                 6.23
          14.5
                       6.25
                                                26.70
                                                                17.9
                                                                        47.1
  127.9
                                                       13
 128.8
          14.7
                 6.25 6.26
                                                26.79
                                                                17.8
                                        11.86000
                     0
                        10.81000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                  07/06/2018
                                                        GRLWEAP Version 2010
Resource International Inc
                                40.0
Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                    1.000
PILE PROFILE:
Toe Area
                     (in2)
                             144.000 Pile Type
                                                                   Unknown
Pile Size
                    (inch)
                              10.000
  L b Top
             Area
                     E-Mod
                            Spec Wt
                                       Perim C Index Wave Sp
                                                                    EA/c
                             lb/ft3
                                         ft
                                                         ft/s
      ft
             in2
                     ksi
                                                                  k/ft/s
                    29000.
                              492.0
                                         3.3
                                                    0
     0.0
            12,40
                                                         16524.
                                                                    21.8
     67.0
            12.40
                    29000.
                              492.0
                                         3.3
                                                    0
                                                         16524.
                                                                    21.8
Wave Travel Time 2L/c (ms)
                               8.109
       Pile and Soil Model
                                      Total Capacity Rut (kips)
                                                                    135.0
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                                                         Area
     kips
              k/in ft ft
                                       kips
                                              s/ft inch
                                                            ft
                                                                   ft
                                                                          in2
  1 0.142
              8945 0.010 0.000 0.85
                                        0.0
                                              0.000 0.100
                                                            3.35
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.000 0.100
                                                            6.70
    0.142
                                                                   3.3
    0.142
              8945 0.000 0.000 1.00
                                        0.6
                                              0.100 0.100
                                                           30.15
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
10 0.142
                                        1.8
                                              0.100 0.100
                                                           33.50
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
11 0.142
                                              0.169 0.100
                                                           36.85
                                        4.5
                                                                   3.3
                                                                          12.4
12 0.142
              8945 0.000 0.000 1.00
                                        7.3
                                              0.200 0.100
                                                           49.29
                                                                   3.3
                                                                          12.4
13 0.142
              8945 0.000 0.000 1.00
                                        5.1
                                              0.116 0.100 43.55
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.100 0.100
14
    0.142
                                        5.6
                                                           46.90
                                                                          12.4
15
   0.142
              8945 0.000 0.000 1.00
                                        9.9
                                              0.100 0.100
                                                           50.25
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                       13.0
                                              0.100 0.100
                                                           53.60
    0.142
                                                                   3.3
                                                                          12.4
16
              8945 0.000 0.000 1.00
                                              0.100 0.100
17
    0.142
                                       14.4
                                                           56.95
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
18 0.142
                                       16.6
                                              0.086 0.100
                                                           60.30
                                                                   3.3
                                                                          12.4
19
    0.142
              8945 0.000 0.000 1.00
                                       20.7
                                              0.050 0.100 63.65
                                                                   3.3
                                                                          12.4
20 0.142
              8945 0.000 0.000 1.00
                                       18.5
                                              0.050 0.100 67.00
                                                                   3.3
                                                                          12.4
                                              0.150 0.100
                                       16.9
     2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
```

2.839 kips total reduced pile weight (g= 32.17 ft/s2)

B-108-9-15 - RA - HP10X42

```
Efficy
    Depth
            Stroke Pressure
     · ft
             ft Ratio
    40.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                   07/06/2018
Resource International Inc
                                                         GRLWEAP Version 2010
          Bl Ct Stroke (ft) Ten Str i t Comp Str i t ENTHRU
          b/ft
                                                              kip-ft
  kips
                  down up ksi
                                                                        b/min
                                                 ksi
                  6.24
                        6.26
                                -1.54 11 35
  135.0
           14.5
                                                 26.47 11
                                                             4 17.8
                                                                         47.1
  135.9
           14.8
                6.25
                        6.28
                               -1.51 11 35
                                                 26.56 11
                                                                 17.7
                                                                          47.0

    14.9
    6.28
    6.29
    -1.47
    11
    35

    15.1
    6.30
    6.31
    -1.45
    10
    36

    15.3
    6.31
    6.33
    -1.44
    10
    36

  136.8
                                                 26.69 11 4 17.8
                                                                          47.0
                                                 26.79 11 4 17.8
26.87 11 4 17.8
  137.8
                                                                          46.9
  138.7
         15.3
                                                                          46.8
                   0 10.81000 11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                   07/06/2018
                                                         GRLWEAP Version 2010
Resource International Inc
                                 45.0
 Shaft Gain/Loss Factor
                              0.604 Toe Gain/Loss Factor
                                                                     1.000
 PTLE PROFTLE.
 Toe Area
                      (in2)
                            144.000 Pile Type
                                                                    Unknown
 Pile Size
                     (inch)
                               10,000
  L b Top
             Area
                    E-Mod Spec Wt
                                        Perim C Index Wave Sp
                                                                     EA/c
                      ksi lb/ft3
                                                         ft/s
      ft
              in2
                                        ft
                                                                    k/ft/s
     0.0
            12.40
                     29000.
                               492.0
                                          3.3
                                                    0
                                                          16524.
                                                                      21.8
     67.0
             12.40 29000.
                               492.0
                                          3.3
                                                     0
                                                          16524.
                                                                      21.8
 Wave Travel Time 2L/c (ms)
                               8.109
Pile and Soil Model Total Capacity Rut (kips) 184
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                                                      184.2
                                        kips s/ft inch
                                                            ft ft
3.35 3.3
     kips
              k/in ft ft
                                                                            in2
  1 0.142
               8945 0.010 0.000 0.85
                                         0.0 0.000 0.100
                                                                     3.3
                                                                           12.4
               8945 0.000 0.000 1.00
                                         0.0 0.000 0.100 6.70 3.3
  2 0.142
                                         0.1 0.100 0.100 23.45 3.3
1.2 0.100 0.100 26.80 3.3
               8945 0.000 0.000 1.00
  7 0.142
                                                                            12.4
  8 0.142
               8945 0.000 0.000 1.00
                                                                           12.4
                                         2.4 0.100 0.100 30.15
6.7 0.196 0.100 33.50
               8945 0.000 0.000 1.00
  9 0.142
                                                                     3.3
                                                                           12.4
 10 0.142
               8945 0.000 0.000 1.00
                                                                    3.3
                                                                           12.4
 11 0.142
               8945 0.000 0.000 1.00
                                         6.3 0.175 0.100 36.85
                                                                    3.3
 12 0.142
               8945 0.000 0.000 1.00
                                         5.2
                                               0.100 0.100 40.20
                                                                     3.3
 13 0.142
               8945 0.000 0.000 1.00
                                         6.8 0.100 0.100 43.55
                                        12.3 0.100 0.100 46.90
13.7 0.100 0.100 50.25
               8945 0.000 0.000 1.00
                                                                           12.4
 14 0.142
                                                                    3.3
 15 0.142
               8945 0.000 0.000 1.00
                                                                    3.3
                                                                           12.4
                                        15.2 0.100 0.100 53.60
18.9 0.061 0.100 56.95
               8945 0.000 0.000 1.00
 16 0.142
                                                                    3.3
                                                                           12.4
 17 0.142
               8945 0.000 0.000 1.00
                                                                     3.3
                                                                            12.4
 18 0.142
               8945 0.000 0.000 1.00
                                        20.4 0.050 0.100 60.30
                                                                    3.3
                                                                           12.4
 19
    0.142
               8945 0.000 0.000 1.00
                                        17.9
                                               0.050 0.100 63.65
                                                                    3.3
                                                                           12.4
20 0.142
               8945 0.000 0.000 1.00
                                        23.3
                                              0.050 0.100 67.00
                                                                    3.3
                                                                           12.4
                                        34.0
                                              0.150 0.100
Toe
     2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
     2.839 kips total reduced pile weight (g= 32.17 ft/s2)
                               Efficy
    Depth
             Stroke Pressure
       f†
              ft Ratio
    45.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                   07/06/2018
                                                         GRLWEAP Version 2010
Resource International Inc
          Bl Ct Stroke (ft) Ten Str \, i \, t Comp Str \,
                                                        i t ENTHRU Bl Rt
   Rut
                                                              kip-ft b/min
          b/ft
  kips
                  down up ksi
                                                  ksi
                                       9 29
  184.2
           21.1
                  6.83
                         6.79
                                -1.36
                                                 28.48 10
                                                             4 17.6
                                                                         45.1
                               -1.35
  185.2
           21.2
                 6.84 6.79
                                       9 29
                                                 28.59 10 4 17.7
                                                                          45.1
           21.5
                6.85
                        6.81
                               -1.32
                                        9 29
                                                 28.67 10
  186.1
                                                             4
                                                                 17.6
                                                                          45.0
                 6.87 6.82 -1.31 9 29
6.87 6.83 -1.29 9 29
0 10.81000 11.86
                                                 28.76 10 4 17.7
                6.87 6.82
           21.5
                                                 28.82 10 4 17.6
  188.0
          21.7
                                                                         45.0
                                        11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                  07/06/2018
```

Resource Into	ernationa	ıl Inc				GR	LWEAP \	Version	2010
Depth Shaft Gain/	Loss Fact	(ft) or	50.0 0.604	Toe Ga	in/Loss	Factor	•	1.6	900
PILE PROFILI Toe Area Pile Size		(in2) (inch)	144.000 10.000	Pile T	ype			Unkno	own
L b Top ft 0.0 67.0		E-Mod ksi 29000. 29000.	Spec Wt 1b/ft3 492.0 492.0	Perim ft 3.3 3.3		0 1	re Sp ft/s .6524.	EA/c k/ft/s 21.8 21.8	5 3
Wave Travel	Time 2L/	c (ms)	8.109						
No. Weight kips 1 0.142 2 0.142 6 0.142 7 0.142 8 0.142 9 0.142 11 0.142 11 0.142 12 0.142 13 0.142 14 0.142 15 0.142 16 0.142 17 0.142 18 0.142 19 0.142 Toe 2.839 k:	8945 0 8945 0	-SIk T-S ft .010 0.6 .000 0.6	ft 1000 0.85 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Soil-S kips 0.0 0.0 0.5 1.8 4.5 7.3 5.1 5.6 9.8 13.0 14.4 16.6 20.7 18.6 19.8 25.5 27.2 35.5	0.000 0.000 0.100 0.100 0.168 0.200 0.119 0.100 0.100 0.100 0.050 0.050 0.050 0.050 0.150 g= 32.17	Quake inch 0.100	LbTop ft 3.35 6.70 20.10 23.45 26.80 30.15 33.50 36.85 40.20 43.55 46.90 50.25 53.60 56.95 60.30 63.65 67.00	Perim ft 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.	Are in 122 122 122 122 122 122 122 122 122 12
Depth ft 50.00	Stroke ft 10.81	Pressure Ratio)	-					
FRA-71-1518A Resource Inte	- RA - B	S-108-9-1				GR	LWEAP \	07/06/ Version	
kips b, 225.7 20 226.7 20 227.6 2 228.5 2	Ct Str /ft dow 6.8 7.1 6.9 7.1 7.2 7.1 7.4 7.1 7.7 7.2	n up 7 7.13 8 7.14 9 7.15 9 7.16 1 7.17	3 -1.60 4 -1.61 5 -1.59 5 -1.57	i t 8 50 8 50 8 50 8 50 8 50 11.8	29.4 29.4 29.5 29.6	33 8 40 8 47 8 51 8	3 : 3 : 3 :	p-ft b	31 Rt 0/min 44.1 44.0 44.0 44.0 43.9
↑ FRA-71-1518A Resource Inte			L5 - HP10>	(42		GR	LWEAP \	07/06/ Version	
Depth Shaft Gain/	Loss Fact	(ft) or	55.0 0.604	Toe Ga	in/Loss	Factor		1.6	900
PILE PROFILI Toe Area Pile Size		(in2) (inch)	144.000 10.000	Pile T	ype			Unkno	own
L b Top ft 0.0 67.0 Wave Travel		ksi 29000. 29000.	Spec Wt 1b/ft3 492.0 492.0	Perim ft 3.3 3.3		0 1	re Sp ft/s .6524.	EA/c k/ft/s 21.8 21.8	5 3
		-							

B-108-9-15 - RA - HP10X42 Pile and Soil Model Total Capacity Rut (kips) 237.2 No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim k/in s/ft inch ft ft ft ft in2 kips kips 8945 0.010 0.000 0.85 0.000 0.100 1 0.142 3.35 0.0 3.3 12.4 0.0 0.000 0.100 6.70 3.3 8945 0.000 0.000 1.00 2 0.142 12.4 4 0.142 8945 0.000 0.000 1.00 0.1 0.100 0.100 13.40 3.3 12.4 8945 0.000 0.000 1.00 0.100 0.100 16.75 5 0.142 1.2 3.3 8945 0.000 0.000 1.00 6 0.142 2.4 0.100 0.100 20.10 3.3 12.4 8945 0.000 0.000 1.00 0.196 0.100 23.45 7 0.142 6.7 3.3 12.4 8945 0.000 0.000 1.00 0.176 0.100 26.80 8 0.142 6.3 3.3 12.4 9 0.142 8945 0.000 0.000 1.00 5.2 0.100 0.100 30.15 3.3 12.4 10 0.142 8945 0.000 0.000 1.00 6.7 0.100 0.100 33.50 3.3 12.4 8945 0.000 0.000 1.00 0.100 0.100 36.85 11 0.142 12.2 3.3 12 0.142 8945 0.000 0.000 1.00 13.7 0.100 0.100 40.20 3.3 12.4 13 0.142 8945 0.000 0.000 1.00 15.1 0.100 0.100 43.55 3.3 12.4 8945 0.000 0.000 1.00 18.9 0.062 0.100 46.90 14 0.142 3.3 12.4 0.050 0.100 50.25 8945 0.000 0.000 1.00 15 0.142 20.4 3.3 12.4 16 0.142 8945 0.000 0.000 1.00 17.8 0.050 0.100 53.60 3.3 12.4 0.050 0.100 56.95 17 0.142 8945 0.000 0.000 1.00 23.2 3.3 12.4 18 0.142 8945 0.000 0.000 1.00 26.3 0.050 0.100 60.30 3.3 12.4 8945 0.000 0.000 1.00 19 0.142 28.0 0.050 0.100 63.65 3.3 12.4 8945 0.000 0.000 1.00 0.050 0.100 67.00 3.3 20 0.142 19.9 12.4 13.1 0.150 0.100 Toe 2.839 kips total unreduced pile weight (g= 32.17 ft/s2) 2.839 kips total reduced pile weight (g= 32.17 ft/s2) Depth Stroke Pressure Ffficv ft ft Ratio 55.00 10.81 1.00 0.800 FRA-71-1518A - RA - B-108-9-15 - HP10x42 07/06/2018 Resource International Inc GRLWEAP Version 2010 Rut Bl Ct Stroke (ft) Ten Str i t Comp Str i t ENTHRU B1 Rt kips b/ft down up ksi ksi kip-ft h/min 237.2 7.20 7.16 6 50 29.51 7 3 17.5 26.9 -1.03 44.0 238.4 27.3 7.20 7.17 -0.97 6 50 29.58 17.5 43.9 7.20 7.22 7 3 27.6 7.19 -0.92 6 50 29.68 239.6 17.5 43.9 27.8 7.24 7.20 -0.85 28.1 7.25 7.21 -0.81 1 0 10.81000 6 50 29.81 7 3 17.5 7 3 17.5 240.8 43.9 242.0 5 46 29.90 43.8 11.86000 FRA-71-1518A - RA - B-108-9-15 - HP10x42 07/06/2018 GRLWEAP Version 2010 Resource International Inc Depth 60.0 Shaft Gain/Loss Factor 0.604 Toe Gain/Loss Factor 1.000 PILE PROFILE: Toe Area (in2) 144.000 Pile Type Unknown Pile Size (inch) 10.000 L b Top Area E-Mod Spec Wt Perim C Index Wave Sp EA/c ft in2 ksi lb/ft3 ft ft/s k/ft/s 12.40 29000. 492.0 3.3 21.8 0.0 16524. 29000. 0 67.0 12.40 492.0 16524. 21.8 Wave Travel Time 2L/c (ms) 8.109 Pile and Soil Model Total Capacity Rut (kips) 249.2 No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim Area kips k/in ft ft kips s/ft inch in2 1 0.142 8945 0.010 0.000 0.85 0.0 0.000 0.100 3.35 3.3 12.4 8945 0.000 0.000 1.00 0.0 0.000 0.100 2 0.142 6.70 3.3 12.4 0.5 0.100 0.100 10.05 8945 0.000 0.000 1.00 3 0.142 3.3 12.4 4 0.142 8945 0.000 0.000 1.00 1.8 0.100 0.100 13.40 3.3 12.4 5 0.142 8945 0.000 0.000 1.00 4.4 0.167 0.100 16.75 3.3 12.4 8945 0.000 0.000 1.00 0.200 0.100 20.10 6 0.142 7.3 12.4 7 0.142 8945 0.000 0.000 1.00 5.2 0.121 0.100 23.45 3.3 12.4 8945 0.000 0.000 1.00 0.100 0.100 26.80 8 0.142 12.4 5.5 3.3 9 0.142 8945 0.000 0.000 1.00 9.7 0.100 0.100 30.15 3.3 12.4 8945 0.000 0.000 1.00 10 0.142 12.9 0.100 0.100 33.50 3.3 12.4

11 0.142

8945 0.000 0.000 1.00

3.3

12.4

14.4 0.100 0.100 36.85

```
B-108-9-15 - RA - HP10X42
              8945 0.000 0.000 1.00
                                             0.088 0.100 40.20 3.3
12 0.142
                                       16.5
                                                                         12.4
13 0.142
              8945 0.000 0.000 1.00
                                       20.6
                                              0.050 0.100 43.55
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                              0.050 0.100 46.90
14 0.142
                                       18.7
                                                                         12.4
                                                                  3.3
              8945 0.000 0.000 1.00
                                              0.050 0.100 50.25
15 0.142
                                       19.7
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
16 0.142
                                       25.5
                                              0.050 0.100 53.60
                                                                  3.3
                                                                         12.4
17
    0.142
              8945 0.000 0.000 1.00
                                       27.2
                                              0.050 0.100
                                                          56.95
                                                                  3.3
                                                                         12.4
   0.142
              8945 0.000 0.000 1.00
                                              0.050 0.100
                                       25.8
                                                          60.30
                                                                  3.3
                                                                         12.4
19
    0.142
              8945 0.000 0.000 1.00
                                       17.1
                                              0.050 0.100 63.65
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                             0.120 0.100 67.00
20 0.142
                                       14.8
                                                                  3.3
                                                                         12.4
                                             0.150 0.100
Toe
                                       1.7
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
     2.839 kips total reduced pile weight (g= 32.17 ft/s2)
            Stroke Pressure
                                Efficy
   Depth
      f†
               f†
                       Ratio
   60.00
             10.81
                       1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
                                                       GRLWEAP Version 2010
Resource International Inc
                 Stroke (ft) Ten Str \, i \, t Comp Str \,
         Bl Ct
                                                       i t ENTHRU
                                                                      R1 Rt
   Rut
  kips
          b/ft
                 down
                        up
                                ksi
                                                 ksi
                                                             kip-ft
                                                                      b/min
  249.2
          28.8
                 7.29
                        7.26
                               -0.58
                                      5 45
                                                29.53
                                                           3
                                                               17.2
                                                                       43.7
                                      5 45
  250.9
          29.1
                 7.31
                       7.27
                               -0.57
                                                29.63
                                                          3
                                                               17.3
                                                                       43.7
  252.6
          29.6
                 7.33
                        7.29
                               -0.61
                                      4 44
                                                29.72
                                                               17.3
                                                                       43.6
                                                           3
                                                         3
                                      4 44
  254.3
          30.0
                 7.34
                       7.31
                               -0.67
                                                29.81
                                                       5
                                                               17.3
                                                                       43.6
                 7.37 7.33 -0.71
0 10.81000
  256.0
          30.7
                                      4 44
                                               29.91
                                                                       43.5
                                                               17.2
         1
                                       11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                 07/06/2018
                                                       GRLWEAP Version 2010
Resource International Inc
Denth
                                65.0
                     (ft)
Shaft Gain/Loss Factor
                               0.604 Toe Gain/Loss Factor
                                                                    1.000
PILE PROFILE:
                             144.000 Pile Type
Toe Area
                     (in2)
                                                                  Unknown
Pile Size
                    (inch)
                              10.000
 L b Top
             Area
                     E-Mod Spec Wt
                                       Perim C Index Wave Sp
                                                                   EA/c
      ft
             in2
                     ksi
                             1b/ft3
                                        ft
                                                        ft/s
                                                                 k/ft/s
     0.0
            12.40
                    29000.
                              492.0
                                         3.3
                                                   0
                                                        16524.
                                                                   21.8
                    29000.
                                                   0
     67.0
            12.40
                              492.0
                                                        16524.
Wave Travel Time 2L/c (ms)
                               8.109
                                                                    279.2
       Pile and Soil Model
                                      Total Capacity Rut (kips)
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                              s/ft inch
     kips
              k/in ft ft
                                       kips
                                                           ft
                                                                  ft
                                                                         in2
 1 0.142
              8945 0.010 0.000 0.85
                                              0.100 0.100
                                                           3.35
                                                                  3.3
                                                                         12.4
                                       0.1
              8945 0.000 0.000 1.00
                                             0.100 0.100
 2 0.142
                                                           6.70
                                                                         12.4
                                       1.1
                                                                  3.3
              8945 0.000 0.000 1.00
 3 0.142
                                             0.100 0.100 10.05
                                       2.4
                                                                  3.3
                                                                         12.4
 4 0.142
              8945 0.000 0.000 1.00
                                        6.6
                                             0.195 0.100 13.40
                                                                  3.3
                                                                         12.4
 5 0.142
              8945 0.000 0.000 1.00
                                        6.3
                                             0.178 0.100
                                                          16.75
                                                                  3.3
                                                                         12.4
   0.142
              8945 0.000 0.000 1.00
                                              0.100 0.100
                                        5.2
                                                          20.10
                                                                  3.3
              8945 0.000 0.000 1.00
    0.142
                                       6.6
                                             0.100 0.100
                                                          23.45
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
 8 0.142
                                       12.2
                                             0.100 0.100 26.80
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                             0.100 0.100
 9 0.142
                                                          30.15
                                       13.7
                                                                  3.3
                                                                         12.4
10 0.142
              8945 0.000 0.000 1.00
                                       15.1
                                             0.100 0.100
                                                          33.50
                                                                  3.3
                                                                         12.4
11 0.142
              8945 0.000 0.000 1.00
                                       18.8
                                             0.063 0.100 36.85
                                                                  3.3
                                                                         12.4
    0.142
              8945 0.000 0.000 1.00
                                       20.5
                                              0.050 0.100
                                                          40.20
12
                                                                  3.3
                                                                         12.4
13 0.142
              8945 0.000 0.000 1.00
                                       17.8
                                              0.050 0.100 43.55
                                                                  3.3
                                                                         12.4
14 0.142
              8945 0.000 0.000 1.00
                                             0.050 0.100 46.90
                                       23.1
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                              0.050 0.100 50.25
15 0.142
                                       26.3
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                             0.050 0.100 53.60
16 0.142
                                       28.0
                                                                  3.3
                                                                         12.4
17
   0.142
              8945 0.000 0.000 1.00
                                       20.0
                                             0.050 0.100
                                                          56.95
                                                                  3.3
                                                                         12.4
18 0.142
              8945 0.000 0.000 1.00
                                       16.6
                                              0.070 0.100 60.30
                                                                  3.3
                                                                         12.4
              8945 0.000 0.000 1.00
                                              0.150 0.100
19
    0.142
                                       13.8
                                                         63.65
                                                                  3.3
                                                                         12.4
20
   0.142
              8945 0.000 0.000 1.00
                                       18.6
                                             0.073 0.100 67.00
                                                                         12.4
                                             0.150 0.100
Toe
                                       6.3
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
```

2.839 kips total reduced pile weight (g= 32.17 ft/s2)

Page 12

```
Efficy
   Depth
            Stroke Pressure
              f†
      ft
                       Ratio
    65.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                  07/06/2018
Resource International Inc
                                                        GRLWEAP Version 2010
                 Stroke (ft) Ten Str \, i \, t Comp Str \,
   Rut
         B1 C+
                                                        i t ENTHRU
                                                                       B1 Rt
  kips
          b/ft
                 down
                         up
                                ksi
                                                 ksi
                                                              kip-ft
                                                                       b/min
                        7.53
  279.2
          36.9
                 7.56
                                -0.39
                                       3 /11
                                                30.43
                                                            3
                                                                17.2
                                                                        42.9
  281.2
          37.5
                 7.56
                        7.54
                               -0.41
                                          41
                                                30.51
                                                                17.2
                                                                        42.9
                                       4
                                                        4
  283.1
          38.1
                 7.59
                        7.55
                               -0.43
                                       4 41
                                                30.64
                                                                17.2
                                                                        42.9
                                                            3
  285.0
          39.2
                 7.60
                        7.58
                               -0.41
                                       4 41
                                                30.73
                                                        4
                                                                17.1
                                                                        42.8
                                                            3
                               -0.41
  286.9
          39.8
                       7.59
                                       4 41
                                                30.85
                                                                17.2
                                                                        42.8
                 7.62
         1
                     a
                        10.81000
                                        11.86000
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                  07/06/2018
Resource International Inc
                                                        GRLWEAP Version 2010
                                67.0
Depth
                      (ft)
                               0.604 Toe Gain/Loss Factor
Shaft Gain/Loss Factor
                                                                     1,000
PILE PROFILE:
                             144.000 Pile Type
Toe Area
                     (in2)
                                                                   Unknown
Pile Size
                    (inch)
                              10.000
 I h Ton
                     F-Mod Spec Wt
                                       Perim C Index Wave Sn
                                                                   FA/c
             Area
                             1b/ft3
      ft
             in2
                      ksi
                                         ft
                                                         ft/s
                                                                  k/ft/s
     0.0
            12.40
                    29000.
                              492.0
                                         3.3
                                                    а
                                                         16524.
                                                                    21.8
    67.0
            12.40
                    29000.
                              492.0
                                                    0
                                                         16524.
                                                                    21.8
                                         3.3
Wave Travel Time 2L/c (ms)
                               8.109
       Pile and Soil Model
                                      Total Capacity Rut (kips)
                                                                     291.7
No. Weight Stiffn C-Slk T-Slk CoR Soil-S Soil-D Quake LbTop Perim
                                                                          Area
              k/in ft ft
                                              s/ft inch
                                                                   ft
     kips
                                       kips
                                                            ft
                                                                          in2
              8945 0.010 0.000 0.85
    0.142
                                        0.6
                                              0.100 0.100
                                                            3.35
                                                                   3.3
                                                                          12.4
 2 0.142
              8945 0.000 0.000 1.00
                                              0.100 0.100
                                                            6.70
                                                                          12.4
                                        1.9
                                                                   3.3
              8945 0.000 0.000 1.00
 3 0.142
                                              0.174 0.100
                                                           10.05
                                        4.8
                                                                   3.3
                                                                          12.4
 4 0.142
              8945 0.000 0.000 1.00
                                        7.3
                                              0.200 0.100
                                                           13.40
                                                                   3.3
                                                                          12.4
 5 0.142
              8945 0.000 0.000 1.00
                                        5.0
                                              0.106 0.100
                                                           16.75
                                                                   3.3
                                                                          12.4
  6
    0.142
              8945 0.000 0.000 1.00
                                        5.6
                                              0.100 0.100
                                                           20.10
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
    0.142
                                       10.3
                                              0.100 0.100
                                                           23.45
                                                                   3.3
                                                                          12.4
                                                                          12.4
    0.142
              8945 0.000 0.000 1.00
                                       13.1
                                              0.100 0.100
                                                           26.80
                                                                   3.3
              8945 0.000 0.000 1.00
                                              0.100 0.100
 9 0.142
                                       14.5
                                                           30.15
                                                                   3.3
                                                                          12.4
10 0.142
              8945 0.000 0.000 1.00
                                              0.083 0.100
                                       16.9
                                                           33.50
                                                                   3.3
                                                                          12.4
11 0.142
              8945 0.000 0.000 1.00
                                       20.8
                                              0.050 0.100
                                                           36.85
                                                                   3.3
                                                                          12.4
12 0.142
              8945 0.000 0.000 1.00
                                       18.3
                                              0.050 0.100 40.20
                                                                   3.3
                                                                          12.4
                                       20.3
13
    0.142
              8945 0.000 0.000 1.00
                                              0.050 0.100
                                                           43.55
                                                                   3.3
                                                                          12.4
14 0.142
              8945 0.000 0.000 1.00
                                       25.6
                                              0.050 0.100 46.90
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.050 0.100
                                                           50.25
15 0.142
                                       27.3
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
                                              0.050 0.100
16 0.142
                                       24.7
                                                           53.60
                                                                   3.3
                                                                          12.4
17 0.142
              8945 0.000 0.000 1.00
                                       17.2
                                              0.050 0.100
                                                           56.95
                                                                   3.3
                                                                          12.4
18
    0.142
              8945 0.000 0.000 1.00
                                       14.5
                                              0.130 0.100
                                                           60.30
                                                                   3.3
                                                                          12.4
    0.142
               8945 0.000 0.000 1.00
                                              0.112 0.100
19
                                       16.0
                                                           63.65
                                                                   3.3
                                                                          12.4
              8945 0.000 0.000 1.00
20
    0.142
                                       20.7
                                              0.050 0.100
                                                           67.00
                                                                   3.3
                                                                          12.4
                                              0.150 0.100
Toe
                                        6.3
    2.839 kips total unreduced pile weight (g= 32.17 ft/s2)
    2.839 kips total reduced pile weight (g= 32.17 ft/s2)
    Depth
            Stroke Pressure
                                Efficy
               ft
      ft
                       Ratio
    67.00
             10.81
                        1.00
                                 0.800
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                  07/06/2018
Resource International Inc
                                                        GRLWEAP Version 2010
                 Stroke (ft) Ten Str
                                                           t ENTHRU
   Rut
         Bl Ct
                                       i
                                          t Comp Str
                                                                       Bl Rt
  kips
          b/ft
                 down
                         up
                                ksi
                                                 ksi
                                                             kip-ft
                                                                       b/min
                        7.61
                               -0.42
                                       3 40
                                                        3
                                                            3 17.0
  291.7
          40.7
                 7.62
                                                30.69
                                                                        42.8
  293.6
          41.8
                 7.64
                        7.63
                               -0.48
                                       3 40
                                                30.82
                                                        3
                                                            2 17.0
                                                                        42.7
```

```
B-108-9-15 - RA - HP10X42
                                                                                          30.91 3 3 17.0
31.06 3 3 17.1
31.17 3 3 17.1

    42.6
    7.65
    7.64
    -0.52
    3
    39

    43.2
    7.67
    7.65
    -0.54
    3
    39

    44.3
    7.70
    7.67
    -0.53
    3
    39

                                                                                                                                       42.7
   297.5
                                                                                                                                       42.6
   299.4
                                                                                                                                      42.6
FRA-71-1518A - RA - B-108-9-15 - HP10x42
                                                                                                                            07/06/2018
```

Resource International Inc

GRLWEAP Version 2010

SUMMARY OVER DEPTHS

	G/L at	Shaft an	d Toe:	0.604	1.000		
Depth Rut	Frictn	End Bg	Bl Ct	Com Str	Ten Str	Stroke	ENTHRU
ft kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft
5.0 2.8	1.4	1.4	0.0	0.000	0.000	10.81	0.0
10.0 8.4	7.2	1.2	Hammer	did not	run		
15.0 21.3	17.0	4.4	1.9	13.077	-0.295	4.00	23.9
20.0 30.3	25.0	5.3	2.7	16.075	-0.270	4.28	22.3
25.0 55.3	41.3	13.9	5.3	21.173	0.000	5.01	20.2
30.0 78.6	62.4	16.2	8.0	23.557	-1.421	5.49	19.0
35.0 125.1	89.1	36.0	14.1	26.353	-1.601	6.18	17.9
40.0 135.0	118.0	16.9	14.5	26.472	-1.539	6.24	17.8
45.0 184.2	150.3	34.0	21.1	28.479	-1.360	6.83	17.6
50.0 225.7	190.2	35.5	26.8	29.325	-1.602	7.17	17.8
55.0 237.2	224.1	13.1	26.9	29.510	-1.032	7.20	17.5
60.0 249.2	247.5	1.7	28.8	29.532	-0.584	7.29	17.2
65.0 279.2	272.9	6.3	36.9	30.428	-0.388	7.56	17.2
67.0 291.7	285.4	6.3	40.7	30.691	-0.421	7.62	17.0
tal Driving Time	20 mi	inutes;		Total	No. of	Blows	920

		G/L at	Shaft an	d Too.	0.637	1.000		
		-						
Depth	Rut	Frictn	End Bg	B1 Ct	Com Str	Ten Str	Stroke	ENTHRU
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft
5.0	2.8	1.4	1.4	0.0	0.000	0.000	11.86	0.0
10.0	8.7	7.5	1.2	Hammer	did not	run		
15.0	22.0	17.7	4.4	2.0	13.411	-0.287	4.03	23.7
20.0	31.2	25.9	5.3	2.8	16.355	-0.247	4.31	22.2
25.0	56.2	42.3	13.9	5.4	21.330	0.000	5.03	20.1
30.0	79.6	63.3	16.2	8.1	23.682	-1.415	5.50	19.0
35.0	126.0	90.0	36.0	14.2	26.493	-1.623	6.20	17.9
40.0	135.9	119.0	16.9	14.8	26.556	-1.513	6.25	17.7
45.0	185.2	151.2	34.0	21.2	28.588	-1.347	6.84	17.7
50.0	226.7	191.2	35.5	26.9	29.395	-1.609	7.18	17.8
55.0	238.4	225.3	13.1	27.3	29.579	-0.972	7.20	17.5
60.0	250.9	249.2	1.7	29.1	29.628	-0.566	7.31	17.3
65.0	281.2	274.8	6.3	37.5	30.507	-0.412	7.56	17.2
67.0	293.6	287.3	6.3	41.8	30.823	-0.476	7.64	17.0

Total Driving Time 21 minutes; Total No. of Blows

933

↑FRA-71-1518A - RA - B-108-9-15 - HP10x42 Resource International Inc

07/06/2018 GRLWEAP Version 2010

SUMMARY OVER DEPTHS

		G/L at	Shaft an	d Toe:	0.670	1.000		
Depth	Rut	Frictn	End Bg	Bl Ct	Com Str	Ten Str	Stroke	ENTHRU
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft
5.0	2.8	1.5	1.4	0.0	0.000	0.000	11.86	0.0
10.0	8.9	7.8	1.2	Hammer	did not	run		
15.0	22.8	18.4	4.4	2.0	13.713	-0.266	4.05	23.5
20.0	32.1	26.8	5.3	2.9	16.600	-0.216	4.35	22.1
25.0	57.1	43.2	13.9	5.5	21.471	0.000	5.05	20.0
30.0	80.5	64.3	16.2	8.2	23.815	-1.403	5.52	19.0
35.0	127.0	91.0	36.0	14.4	26.570	-1.647	6.22	17.9
40.0	136.8	119.9	16.9	14.9	26.686	-1.467	6.28	17.8
45.0	186.1	152.1	34.0	21.5	28.670	-1.321	6.85	17.6
50.0	227.6	192.1	35.5	27.2	29.474	-1.594	7.19	17.8
55.0	239.6	226.5	13.1	27.6	29.682	-0.916	7.22	17.5
60.0	252.6	250.9	1.7	29.6	29.722	-0.606	7.33	17.3
65.0	283.1	276.7	6.3	38.1	30.642	-0.426	7.59	17.2
67.0	295.6	289.2	6.3	42.6	30.908	-0.519	7.65	17.0

Total Driving Time

21 minutes;

Total No. of Blows 945

G/L at Shaft and Toe: 0.703 1.000

						B-108-9-1	15 - RA -	HP10X42
Depth	Rut	Frictn	End Bg	Bl Ct	Com Str	Ten Str	Stroke	ENTHRU
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft
5.0	2.8	1.5	1.4	0.0	0.000	0.000	11.86	0.0
10.0	9.2	8.0	1.2	Hammer	did not	run		
15.0	23.5	19.1	4.4	2.1	13.983	-0.231	4.08	23.3
20.0	33.0	27.7	5.3	3.0	16.784	-0.180	4.37	21.9
25.0	58.1	44.1	13.9	5.7	21.618	0.000	5.08	20.0
30.0	81.4	65.2	16.2	8.4	23.930	-1.392	5.54	18.9
35.0	127.9	91.9	36.0	14.5	26.697	-1.667	6.23	17.9
40.0	137.8	120.8	16.9	15.1	26.790	-1.451	6.30	17.8
45.0	187.0	153.1	34.0	21.5	28.764	-1.310	6.87	17.7
50.0	228.5	193.0	35.5	27.4	29.508	-1.572	7.19	17.8
55.0	240.8	227.7	13.1	27.8	29.811	-0.852	7.24	17.5
60.0	254.3	252.6	1.7	30.0	29.805	-0.671	7.34	17.3
65.0	285.0	278.7	6.3	39.2	30.726	-0.407	7.60	17.1
67.0	297.5	291.1	6.3	43.2	31.058	-0.536	7.67	17.1

Total Driving Time 21 minutes; Total No. of Blows 957

 $lack ag{FRA-71-1518A}$ - RA - B-108-9-15 - HP10x42 Resource International Inc

07/06/2018 GRLWEAP Version 2010

SUMMARY OVER DEPTHS

		G/L at	Shaft an	d Toe:	0.736	1.000		
Depth	Rut	Frictn	End Bg	Bl Ct	Com Str	Ten Str	Stroke	ENTHRU
ft	kips	kips	kips	bl/ft	ksi	ksi	ft	kip-ft
5.0	2.9	1.5	1.4	0.0	0.000	0.000	11.86	0.0
10.0	9.4	8.3	1.2	Hammer	did not	run		
15.0	24.2	19.8	4.4	2.2	14.119	-0.181	4.08	23.1
20.0	33.9	28.6	5.3	3.1	16.981	-0.162	4.40	21.8
25.0	59.0	45.1	13.9	5.8	21.797	0.000	5.11	19.9
30.0	82.4	66.1	16.2	8.6	23.836	-1.374	5.50	18.7
35.0	128.8	92.8	36.0	14.7	26.785	-1.680	6.25	17.8
40.0	138.7	121.8	16.9	15.3	26.869	-1.442	6.31	17.8
45.0	188.0	154.0	34.0	21.7	28.820	-1.287	6.87	17.6
50.0	229.5	194.0	35.5	27.7	29.604	-1.544	7.21	17.8
55.0	242.0	228.9	13.1	28.1	29.895	-0.812	7.25	17.5
60.0	256.0	254.3	1.7	30.7	29.912	-0.715	7.37	17.2
65.0	286.9	280.6	6.3	39.8	30.853	-0.412	7.62	17.2
67.0	299.4	293.1	6.3	44.3	31.168	-0.531	7.70	17.1

Total Driving Time 22 minutes;

Total No. of Blows

972

↑ FRA-71-1518A - RA - B-108-9-15 - HP10x42

Resource International Inc

07/06/2018 GRLWEAP Version 2010

Table of Depths Analyzed with Driving System Modifiers

	_			_			
	Temp.		Equivalent	Pressure		Stiffn.	Cushion
Depth	Length	Time	Stroke	Ratio	Efficy.	Factor	CoR
ft	ft	hr	ft				
5.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
10.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
15.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
20.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
25.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
30.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
35.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
40.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
45.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
50.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
55.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
60.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
65.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00
67.00	67.00	0.00	10.81	1.00	0.80	1.00	1.00

Soil Layer Resistance Values

	Shaft	End	Shaft	Toe	Shaft	Toe	Soil	Limit	Setup
Depth	Res.	Bearing	Quake	Quake	Damping	Damping	Setup	Distance	Time
ft	k/ft2	kips	inch	inch	s/ft	s/ft	Normlzd	ft	hrs
0.01	0.00	0.00	0.100	0.100	0.100	0.150	0.515	0.000	0.000
7 89	0 3/1	2 15	0 100	a 1aa	0 100	0 150	0 515	a aaa	a aaa

						B-108	-9-15 -	RA - HP1	0X42
7.91	0.34	2.15	0.100	0.100	0.100	0.150	0.515	0.000	0.000
8.49	0.35	2.23	0.100	0.100	0.100	0.150	0.515	0.000	0.000
8.51	1.06	1.16	0.100	0.100	0.200	0.150	1.000	0.000	0.000
13.49	1.11	1.16	0.100	0.100	0.200	0.150	1.000	0.000	0.000
13.51	0.51	4.09	0.100	0.100	0.100	0.150	0.515	0.000	0.000
20.99	0.70	5.50	0.100	0.100	0.100	0.150	0.515	0.000	0.000
21.01	1.02	12.07	0.100	0.100	0.100	0.150	0.000	0.000	0.000
30.01	1.38	16.24	0.100	0.100	0.100	0.150	0.000	0.000	0.000
32.49	1.47	17.39	0.100	0.100	0.100	0.150	0.000	0.000	0.000
32.51	1.75	33.61	0.100	0.100	0.050	0.150	0.000	0.000	0.000
37.49	2.00	38.40	0.100	0.100	0.050	0.150	0.000	0.000	0.000
37.51	1.53	16.11	0.100	0.100	0.050	0.150	0.000	0.000	0.000
42.49	1.70	17.74	0.100	0.100	0.050	0.150	0.000	0.000	0.000
42.51	2.19	33.19	0.100	0.100	0.050	0.150	0.000	0.000	0.000
51.51	2.61	35.96	0.100	0.100	0.050	0.150	0.000	0.000	0.000
52.49	2.65	35.96	0.100	0.100	0.050	0.150	0.000	0.000	0.000
52.51	1.86	13.05	0.100	0.100	0.050	0.150	0.515	0.000	0.000
57.49	2.02	13.05	0.100	0.100	0.050	0.150	0.515	0.000	0.000
57.51	1.57	1.74	0.100	0.100	0.150	0.150	0.515	0.000	0.000
62.49	1.57	1.74	0.100	0.100	0.150	0.150	0.515	0.000	0.000
62.51	1.80	6.33	0.100	0.100	0.050	0.150	0.000	0.000	0.000
67.00	1.92	6.33	0.100	0.100	0.050	0.150	0.000	0.000	0.000

APPENDIX VII

DRILLED SHAFT CALCULATIONS

W-13-045 FRA-70-12.68 - FRA-71-1518A

Drilled Shaft Calculations

End Bearing Resistance in Bedrock: Limestone

Intact Rock (Minimum Rock Socket Length ≥ 1.5B):

$$q_p = 2.5q_u$$
 Equation 10.8.3.5.4c-1

$$q_p = 2,804 \text{ ksf}$$

Jointed Rock (or Shafts with Rock Socket Length < 1.5B):

$$q_p = A + q_u \left[m_b \left(\frac{A}{q_u} \right) + s \right]^a \qquad \text{Equation 10.8.3.5.4c-2:}$$

$$A = \sigma'_{vb} + q_u \left[m_b \frac{\sigma'_{vb}}{q_u} + s \right]^a \qquad \text{Equation 10.8.3.5.4c-3}$$

$$m_i = 9$$
 Per Table 10.4.6.4-1

$$m_b = 3.08$$
 Per Equation 10.4.6.4-4

$$\sigma'_{vb}$$
 = 3.92 ksf Considering overburden depth of 68 feet and bouyant unit weight of overburden of 57.6 pcf

$$q_p = 1,188 \text{ ksf}$$

APPENDIX VIII
LATERAL DESIGN PARAMETERS

Boring No.	Elevation (feet msl)	Soil Class.	Soil Type	Strata	N ₆₀	N1 ₆₀	γ (pcf)	γ' (pcf)	Strength Parameter	k (soil) k _{rm} (rock)	ε ₅₀ (soil) Ε _r (rock)	RQD (rock)
	721.8 to 718.8	A-7-6	С	3	37	37	125 psf	125 psf	Su = 4,625 psf	1,540 pci	0.0045	-
	718.8 to 716.3	A-1-a	G	4	32	46	130 psf	130 psf	φ = 42°	355 pci	-	-
	716.3 to 708.8	A-6a	С	3	11	11	115 psf	115 psf	Su = 1,375 psf	435 pci	0.0075	-
	708.8 to 703.8	A-2-6	G	4	14	14	125 psf	125 psf	φ = 35°	135 pci	-	-
B-015-7-13	703.8 to 689.8	A-1-b	G	4	53	45	135 psf	135 psf	φ = 41°	315 pci	-	-
D-015-7-13	689.8 to 679.8	A-1-b	G	4	100	74	135 psf	72.6 psf	φ = 42°	195 pci	-	-
	679.8 to 674.8	A-1-b	G	4	52	37	135 psf	72.6 psf	φ = 40°	155 pci	-	-
	674.8 to 669.8	A-6b	С	2	61	61	130 psf	67.6 psf	Su = 7,625 psf	2,540 pci	0.0035	-
	669.8 to 651.3	A-1-b	G	4	100	63	135 psf	72.6 psf	φ = 42°	195 pci	-	-
	651.3 to 641.3	Dolomite	R	9	-	-	165 psf	102.6 psf	Qu = 10,000 psi	0.00005	1,000,000 psi	85
	722.4 to 714.4	A-2-4	G	4	14	21	125 psf	125 psf	φ = 37°	190 pci	-	-
	714.4 to 709.4	A-6b	С	1	6	6	115 psf	115 psf	Su = 750 psf	100 pci	0.0100	-
	709.4 to 704.4	A-4a	G	4	21	21	125 psf	125 psf	φ = 34°	115 pci	-	-
	704.4 to 701.9	A-6b	С	3	16	16	120 psf	120 psf	Su = 2,000 psf	665 pci	0.0063	-
	701.9 to 690.4	A-1-b	G	4	31	26	130 psf	130 psf	φ = 38°	215 pci	-	-
D 400 0 45	690.4 to 685.4	A-1-a	G	4	47	35	135 psf	72.6 psf	φ = 41°	175 pci	-	-
B-108-9-15	685.4 to 680.4	A-1-a	G	4	19	14	125 psf	62.6 psf	φ = 37°	110 pci	-	-
	680.4 to 670.4	A-1-a	G	4	40	28	130 psf	67.6 psf	φ = 40°	155 pci	-	-
	670.4 to 665.4	A-2-6	G	4	31	20	130 psf	67.6 psf	φ = 36°	95 pci	-	-
	665.4 to 660.4	A-4a	С	2	18	18	120 psf	57.6 psf	Su = 2,250 psf	750 pci	0.0060	-
	660.4 to 655.4	A-3a	G	4	22	14	125 psf	62.6 psf	φ = 34°	70 pci	-	-
	655.4 to 642.3	Limestone	R	9	-	-	165 psf	102.6 psf	Qu = 10,000 psi	0.00005	1,000,000 psi	69

APPENDIX IX

MSE WALL CALCULATIONS

JOB FRA-70-12.68 W-13-045 SHEET NO. DATE 7/4/2018 CALCULATED BY JPS CHECKED BY DATE 7/5/2018 FRA-71-1518A - MSE Wall - Rear Abutment

WWW.RESOURCEINTERATIONAL.COM

 JOB
 FRA-70-12.68
 NO.
 W-13-045

 SHEET NO.
 2
 OF
 6

 CALCULATED BY
 BRT
 DATE
 7/4/2018

 CHECKED BY
 JPS
 DATE
 7/5/2018

 FRA-71-1518A - MSF Wall - Rear Abutment

<u>WWW.RESOURCEI</u>) 823-4990 NTERATIONAL.COM	<u>FK/</u>	4-71-15	18A - IVI	SE Wa	III - F	Rear Abutment
			- :				
MSE Wall Dimensions and Retained Soil Pa		Bearing Sol					405
MSE Wall Height, (H) =	35.7 ft	Bearing Soil					125 po
MSE Wall Width (Reinforcement Length), (B) =	28.6 ft	Bearing Soil				ļļ	32 °
MSE Wall Length, (<i>L</i>) =	32 ft	Bearing Soil				iaaaaaaaa	0 ps
Live Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil			ır Strenç	gtn, [(
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment				ļļ	3.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	30°	Depth to Gro			Bot. of	Wall)	$(D_W) = 7.9 \text{ ft}$
Retained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Load					
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =			EV	EH	LS		
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	Strength la		1.50	1.75	7	(AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength Ib	1.35	1.50	1.75	-	3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
MSE Backfill Friction Angle, (φ_{BF}) =	34 °	Service I	1.00	1.00	1.00	J	Editi 1 1000dro)
Check Sliding (Loading Case - Strength Ia) Check Sliding Resistance - Undrained Cond		M Section 11.10.5	.3 (Conti	nued)			
	$= \left(\left(S_u \right)_{BS} \le q_s \right) \cdot I$	В					
	$(S_u)_{BS} = N/A$	ksf					
P_{EV}							
	$q_s = \frac{\sigma_v}{2} = \frac{\sigma_v}{2}$	(4 28 ksf) / 2 =	2 14	ksf			
	4s /2	(1.20 1.01), 2		1.01			
$(S_u)_{BS} \leq q_s$	$\sigma = P_{EV} /$	= (122.52 kip/	ft) / (28	6 ft)	=	4 28	ksf
$(\mathcal{C}_u)_{BS} = q_s$	\sim	(122.02 Kip)	11,7 (20.	O 11.)		1.20	NOT
	R _τ = (N/A ksf ≤ 2.1	4 ksf)(28.6 ft) =	N/A	kip/	ft		
	$R_{\tau} = (\text{N/A ksf} \le 2.1)$	4 ksf)(28.6 ft) =	N/A	kip/	ft		
				kip/	ft		
Verify Sliding Force Less Than Factored Sl	iding Resistance - U			kip/	ft		
			<u>on</u>	kip/	ft N/A		
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} \Longrightarrow$	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} \Longrightarrow$	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} \Longrightarrow$	iding Resistance - U	ndrained Conditio	<u>on</u>	Kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	Kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>	Kip/			
Verify Sliding Force Less Than Factored Sl $P_H \leq R_{ au} \cdot \phi_{ au} {\longrightarrow} $	iding Resistance - U	ndrained Conditio	<u>on</u>				

FRA-70-12.68 W-13-045 JOB SHEET NO. OF 6 CALCULATED BY DATE 7/4/2018 CHECKED BY JPS DATE 7/5/2018 FRA-71-1518A - MSE Wall - Rear Abutment

FAX: (614) 823-4990	
WWW.RESOURCEINTERATIONAL.COM	

SE Wall Dimensions and Retained Soil Par	ameters	B [,]	earing Soil Pr	operties:			
SE Wall Height, (H) =	35.7 ft		earing Soil Unit \				125 pcf
SE Wall Width (Reinforcement Length), (<i>B</i>) =	28.6 ft		earing Soil Fricti				32 °
SE Wall Length, (L) =	32 ft		earing Soil Drain			=	0 psf
/e Surcharge Load, (σ_{LS}) =	250 p		earing Soil Undr				0 psf
etained Soil Unit Weight, (γ_{RS}) =	120 p		mbedment Dept				3.0 ft
etained Soil Friction Angle, (φ_{RS}) =	30 °		epth to Grounwa		Bot. of V	Vall), (D _W) =	
etained Soil Drained Cohesion, (c_{RS}) =	0 p		· RFD Load Fac				
etained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 p	j j j j 	EV		LS		
etained Soil Active Earth Pressure Coeff., (K_a) =	0.297		rength la 1.00	1.50	1.75	(AACUTO	LRFD BDM Tables
SE Backfill Unit Weight, (γ_{BF}) =	120 p	cf St	rength lb 1.35	5 1.50	1.75	- 3.4.1-1 aı	nd 3.4.1-2 - Active
SE Backfill Friction Angle, (φ_{BF}) =	34 °	Se	ervice I 1.00	1.00	1.00	Ear	th Pressure)
neck Eccentricity (Loading Case - Strength	ı la) - AASHTO) LRFD BDM S	ection 11.10.5	. <u>.5</u>			
e =	$B/_2 - x_o$						
	/ 2 0						
P_{EV}	M	M					
P_{LS_h}	$_{o}=\frac{_{IVI}_{EV}}{-}$	$\frac{M_H}{} = (1752.$	04 kip·ft/ft - 48	88.26 kip∙f	t/ft) / (12	2.52 kip/ft)	= 10.31 ft
P_{EH}	$P_{\scriptscriptstyle EV}$						
		1752.04 kip·ft/					
$x_o + + e$		488.26 kip·ft/		ed below			
$x_o \leftarrow * \Rightarrow e$	$P_{EV} =$	122.52 kip/ft					
	2 = (28.6 ft))/2 - 10.31 ft =	: 3.99 ft				
Resisting Moment, M_{EV} : M_{EV}	$_{V}=P_{EV}(x_{1})$						
P_{EV}	$\gamma_{EV}=\gamma_{BF}\cdot I$	$H \cdot B \cdot \gamma_{EV} =$: (120 pcf)(3	5.7 ft)(28.	6 ft)(1.00)) = 12	2.52 kip/ft
	$a_1 = B/2$:	= (28.6 ft) / 2	= 14.30	ft			
	Μ _	(122.52 kip/ft)(1	4 30 ft) =	1752 04	kin ft/ft		
	IVI _{EV} —	(122.32 Kip/it)(1	4.30 ty –	1732.04	KIP-II/II		
Overturning Moment, M_H : M_H	$=P_{EH}(x_2)$	$+P_{LS_h}(x_3)$)				
		$H^2K_a\gamma_{EH} =$					
P_{EH}	$G_{LS_h} = \sigma_{LS} H$	$HK_a \gamma_{LS} = 0$	(250 psf)(35.7	ft)(0.297)	(1.75)	= 4.64	kip/ft
	$r_2 = \frac{H}{3}$	= (35.7 ft) / 3	= 11.90	ft			
X	$_{3}=\frac{H}{2}$:	= (35.7 ft) / 2	= 17.85	ft			
	$M_H =$	(34.07 kip/ft)(1	1.9 ft) + (4.64	kip/ft)(17.	85 ft)	= 488.26	6 kip⋅ft/ft
neck Eccentricity							
	OK						

 $q_{eq} \leq q_n \cdot \phi_b$

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990
 JOB
 FRA-70-12.68
 NO.
 W-13-045

 SHEET NO.
 4
 0F
 6

 CALCULATED BY
 BRT
 DATE
 7/4/2018

 CHECKED BY
 JPS
 DATE
 7/5/2018

FAX: (614)		FRA-71-1	518A - MSE Wall -	Rear Abutment
MSE Well Discouling and Datained Soil De		Doning Call Day		
MSE Wall Dimensions and Retained Soil Pa		Bearing Soil Unit W		100
ASE Wall Height, (H) =	35.7 ft	Bearing Soil Unit W		120 pcf
ASE Wall Width (Reinforcement Length), (B) =	28.6 ft	Bearing Soil Friction		26°
ASE Wall Length, (L) =	32 ft		d Cohesion, $(c_{BS}) =$	0 psf
Live Surcharge Load, (σ_{LS}) =	250 psf		ned Shear Strength,	
Retained Soil Unit Weight, $(\gamma_{RS}) =$	120 pcf	Embedment Depth,		3.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	30°		er (Below Bot. of Wal	I), $(D_W) = 7.9$ ft
Retained Soil Drained Cohesion, (c _{BS}) =	0 psf	LRFD Load Facto		
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	ninganiani, <u>j</u> umangani	EV	EH LS	
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	Strength Ia 1.00	Entertainment of the control of the Entertainment Entertainment (Entertainment Entertainment Enterta	(AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength lb 1.35	.2	3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
MSE Backfill Friction Angle, (φ_{BF}) =	34 °	Service I 1.00	1.00 1.00 🗸	
Check Bearing Capacity (Loading Case - St	ength lb) - AASHTO	LRFD BDM Section 11.	<u>10.5.4</u>	
$P_{LS_{\gamma}}$				
	$=P_{V}/R'$			
q_{eq}	= '/B'			
$\begin{vmatrix} P_{EV} \\ P_{FS} \end{vmatrix}$	B - 2e = 28	.6 ft - 2(2.74 ft) =	23.12 ft	
$ \begin{array}{c c} x_3 & P_{EV} \\ P_{LS_h} \\ P_{EH} \end{array} $	R			
$R \downarrow $	$e = \frac{B}{2} - x_o$	= (28.6 ft) / 2 - 11.56 ft	= 2.74 ft	
	$M_{\nu} - M_{\nu}$			
	$x_o = \frac{1-y}{D}$	= (2544.22 kip·ft/ft	- 488.2 kip·ft/ft) / 1	77.92 kip/ft = 11.56
$x_o \leftarrow + - + - e$	F_{γ}			
$\leftarrow B_2$				
$\downarrow \qquad \qquad$	$t_{eq} = (177.92 \text{ kip/ft})$	/ (23.12 ft) = 7.7	0 ksf	
$M_V = [(120 \text{ pcf})(35.7 \text{ ft})(28.6 \text{ ft})(1.3.6 \text{ ft})]$ $M_H = P_{EH}(x_2) + P_{LS_h}(x_3) = (\frac{1}{2}\gamma_H)$ $M_H = [\frac{1}{2}(120 \text{ pcf})(35.7 \text{ ft})^2(0.297)]$ $P_V = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma$	$_{\rm RS}H^2K_a\gamma_{EH})(x_2)$	$+ (\sigma_{LS} H K_a \gamma_{LS}) (x_3)$		88.20 kip-ft/ft
LS ABF	EV SLS 2 7 LS	X		
$P_{\scriptscriptstyle U} = (120~{ m pcf})(35.7~{ m ft})(28.6~{ m ft})(1.35)$) + (250 psf)(28.6 ft)(1	.75) = 177.92 kip	/ft	
Check Bearing Resistance - Drained Condit	<u>ion</u>			
	$rac{ion}{\omega_d} + \gamma D_f N_{qm} C_{wq} + 1$	$-\frac{1}{2}\gamma BN_{\gamma m}C_{w\gamma}$		
		()	$N_{jm} = N_{\gamma} S_{\gamma} i_{\gamma}$	= 8.92
Nominal Bearing Resistance: $q_{_{n}}=cN_{_{cn}}$	$N_{qm} = N_q s_q d_q t$	()		= 8.92
Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 30.82$ $N_c = 22.25$	$N_{qm} = N_q S_q d_q t$ $N_q = 11.85$	()	N_{γ} = 12.54	= 8.92
Nominal Bearing Resistance: $q_{_{n}}=cN_{_{cn}}$ $N_{_{cm}}=N_{_{c}}s_{_{c}}i_{_{c}}$ = 30.82	$N_{qm} = N_q S_q d_q t$ $N_q = 11.85$ $S_q = 1.352$	$i_q = 16.66$	$N_{\gamma} = 12.54$ $s_{\gamma} = 0.711$	
Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 30.82$ $N_c = 22.25$ $s_c = 1 + (23.12 \text{ ft/32 ft})(11.85/22.25)$	$N_{qm} = N_q S_q d_q t$ $N_q = 11.85$ $S_q = 1.352$	()	$N_{\gamma} = 12.54$ $s_{\gamma} = 0.711$ $i_{\gamma} = 1.000$	(Assumed)
Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 30.82$ $N_c = 22.25$ $s_c = 1 + (23.12 \text{ ft/}32 \text{ ft})(11.85/22.25)$ $= 1.385$	$N_{qm} = N_q S_q d_q I$ $N_q = 11.85$ $S_q = 1.352$ $d_q = 1.2 tan(26)$ 1.040	$\dot{f}_q = 16.66$ °)[1-sin(26°)]²tan⁻¹(3.0 ft/23.12 ft)	$N_{\gamma} = 12.54$ $s_{\gamma} = 0.711$ $i_{\gamma} = 1.000$	(Assumed)
Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 30.82$ $N_c = 22.25$ $s_c = 1 + (23.12 \text{ ft/}32 \text{ ft})(11.85/22.25)$ $= 1.385$	$N_{qm} = N_q S_q d_q I$ $N_q = 11.85$ $S_q = 1.352$ $d_q = 1.2 \tan(26)$ $i_q = 1.000 (6)$	$\dot{q}_q = 16.66$ °)[1-sin(26°)] ² tan ⁻¹ (3.0 ft/23.12 ft) Assumed)	$N_{\gamma} = 12.54$ $s_{\gamma} = 0.711$ $i_{\gamma} = 1.000$	(Assumed)
Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 30.82$ $N_c = 22.25$ $s_c = 1 + (23.12 \text{ ft/}32 \text{ ft})(11.85/22.25)$ $= 1.385$	$N_{qm} = N_q S_q d_q I$ $N_q = 11.85$ $S_q = 1.352$ $d_q = 1.2 tan(26)$ 1.040	$\dot{q}_q = 16.66$ °)[1-sin(26°)]²tan⁻¹(3.0 ft/23.12 ft) Assumed)	$N_{\gamma} = 12.54$ $s_{\gamma} = 0.711$ $i_{\gamma} = 1.000$	(Assumed)
Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 30.82$ $N_c = 22.25$ $s_c = 1 + (23.12 \text{ ft/}32 \text{ ft})(11.85/22.25)$ $= 1.385$	$N_{qm} = N_{q} S_{q} d_{q} I$ $N_{q} = 11.85$ $S_{q} = 1.352$ $d_{q} = 1+2 \tan(26$ $i_{q} = 1.000 \text{ (a}$ $C_{wq} = 7.9 \text{ ft} > 3$	$i_q = 16.66$ °)[1-sin(26°)]²tan-¹(3.0 ft/23.12 ft) Assumed) 3.0 ft = 1.000	$N_{\gamma} = 12.54$ $s_{\gamma} = 0.711$ $i_{\gamma} = 1.000$ $C_{w\gamma} = 7.9 \text{ft} <$	(Assumed)

 $7.70 \text{ ksf} \le (13.59 \text{ ksf})(0.65) = 8.83 \text{ ksf}$

7.70 ksf ≤ 8.83 ksf

OK

 JOB
 FRA-70-12.68
 NO.
 W-13-045

 SHEET NO.
 5
 0F
 6

 CALCULATED BY
 BRT
 DATE
 7/4/2018

 CHECKED BY
 JPS
 DATE
 7/5/2018

FRA-71-1518A - MSE Wall - Rear Abutment

MSE Wall Width (Reinforcement Length), (B) = 28.6 ft Bearing Soil Friction Angle, (φ_{BS}) = 32 ft Bearing Soil Drained Cohesion, (c_{BS}) = 32 ft Bearing Soil Undrained Shear Strength, [$(s_u)_{BS}$] = 32 ft Bearing Soil Undrained Shear Strength, [$(s_u)_{BS}$] = 32 ft Bearing Soil Undrained Shear Strength, [$(s_u)_{BS}$] = 32 ft Bearing Soil Undrained Shear Strength, [$(s_u)_{BS}$] = 32 ft Bearing Soil Undrained Shear Strength, [$(s_u)_{BS}$] = 33 se Depth to Grounwater (Below Bot. of Wall), (D_W) = 33 ft Bearing Soil Drained Cohesion, (c_{BS}) = 33 se Depth to Grounwater (Below Bot. of Wall), (D_W) = 33 ft Bearing Soil Drained Shear Strength, [$(s_u)_{BS}$] = 33 se Depth to Grounwater (Below Bot. of Wall), (D_W) = 33 ft Bearing Soil Drained Shear Strength, [$(s_u)_{BS}$] = 33 se Depth to Grounwater (Below Bot. of Wall), (D_W) = 33 ft Bearing Soil Drained Shear Strength, [$(s_u)_{BS}$] = 33 series and 33 ser	20 pct 26 ° 0 pst 00 pst 5.0 ft 1.9 ft
MSE Wall Length, (L) = 32 ft Bearing Soil Drained Cohesion, (c_{RS}) = 1 Live Surcharge Load, (c_{LS}) = 250 psf Bearing Soil Undrained Shear Strength, $[(s_w)_{RS}]$ = 150 pcf Embedment Depth, (D_f) = 35 Retained Soil Friction Angle, (φ_{RS}) = 30 ° Depth to Grounwater (Below Bot. of Wall), (D_{RF}) = 35 Retained Soil Undrained Shear Strength, $[(S_w)_{RS}]$ = 35 ° Depth to Grounwater (Below Bot. of Wall), (D_{RF}) = 35 Retained Soil Undrained Shear Strength, $[(S_w)_{RS}]$ = 35 ° Depth to Grounwater (Below Bot. of Wall), (D_{RF}) = 35 Retained Soil Undrained Shear Strength, $[(S_w)_{RS}]$ = 35 ° Depth to Grounwater (Below Bot. of Wall), (D_{RF}) = 35 Retained Soil Undrained Shear Strength, $[(S_w)_{RS}]$ = 35 ° Depth to Grounwater (Below Bot. of Wall), (D_{RF}) = 35 Retained Soil Undrained Shear Strength, $[(S_w)_{RS}]$ = 35 ° Depth to Grounwater (Below Bot. of Wall), (D_{RF}) = 35 Retained Soil Undrained Shear Strength, $(S_w)_{RS}$ = 35 Strength la 1.00 1.50 1.50 1.75 35 Strength la 1.00 1.00 1.00 1.00 1.00 35 Strength la 1.00 1.00 1.00 1.00 1.00 35 Strength la 1.00 1.00 1.00 1.00 1.00 35 Strength la 1.00 1.00 1.00 1.00 35 Strength la 35 Stren	0 ps 00 ps .0 ft
The Surcharge Load, $(\sigma_{LS}) = \frac{250}{120}$ psf Bearing Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{15}{30}$ betained Soil Unit Weight, $(\gamma_{RS}) = \frac{30}{30}$ bepth to Grounwater (Below Bot. of Wall), $(D_{W}) = \frac{30}{70}$ betained Soil Orained Cohesion, $(c_{RS}) = \frac{30}{30}$ bepth to Grounwater (Below Bot. of Wall), $(D_{W}) = \frac{30}{70}$ betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Soil Undrained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$ psf betained Shear Strength, $[(s_u)_{RS}] = \frac{30}{2000}$	00 ps 0.0 ft
Retained Soil Unit Weight, $(\gamma_{RS}) = \frac{120}{30}$ pcf Embedment Depth, $(D_f) = \frac{3}{30}$ betained Soil Friction Angle, $(\varphi_{RS}) = \frac{30}{9}$ Depth to Grounwater (Below Bot. of Wall), $(D_W) = \frac{3}{7}$ Retained Soil Undrained Chesion, $(c_{RS}) = \frac{9}{2000}$ psf LRFD Load Factors Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] = \frac{2000}{30}$ Strength la 1.00 1.50 1.75 Retained Soil Active Earth Pressure Coeff., $(K_u) = \frac{9.297}{34}$ Strength la 1.00 1.50 1.75 Strength li 1.35 1.50 1.75 Retained Soil Active Earth Pressure Coeff., $(K_u) = \frac{9.297}{34}$ Strength li 1.35 1.50 1.75 Strength li 1.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00	.0 ft
tetained Soil Friction Angle, (φ_{RS}) = 0 psf tetained Soil Drained Cohesion, (c_{RS}) = 0 psf tetained Soil Drained Cohesion, (c_{RS}) = 2000 psf tetained Soil Active Earth Pressure Coeff., (K_a) = 0.297 Strength Ia 1.00 1.50 1.75 letained Soil Active Earth Pressure Coeff., (K_a) = 0.297 Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Coeff., (K_a) = 120 pcf Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Coeff., (K_a) = 0.297 Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Coeff., (K_a) = 120 pcf Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Active Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Earth Pressure Strength Ib 1.35 1.50 1.75 letained Soil Earth Pressure Less Than Factored Bearing Resistance Plant In 1.00 1.00 1.00 1.00 letained Soil Earth Pressure Less Than Factored Bearing Resistance Plant In 1.00 1.00 letained Plant In 1.00 1.00 letained Plant In 1.00 let	
tetained Soil Drained Cohesion, (c_{BS}) = 0 psf LRFD Load Factors EV EH LS Evaluated Soil Undrained Shear Strength, $[(S_a)_{BS}]$ = 0.297 Strength Ia 1.00 1.50 1.75 Ashirto LRFD BDM Strength Ib 1.35 1.50 1.75 Ste Backfill Unit Weight, (γ_{BF}) = 0.297 Strength Ib 0.35 1.50 0.175 Ste Backfill Unit Weight, (γ_{BF}) = 0.34 ° Service I 0.00 0.00 Service I 0.00 0.00 Service I 0.00 0.00 Steek Bearing Capacity (Loading Case - Strength Ib) - AASHTO LRFD BDM Section 11.10.5.4 (Continued) Steek Bearing Resistance - Undrained Condition Steek Bearing Resistance - Undrained Condition Steek Bearing Resistance (α_{BF}) $(\alpha$	'.9 ft
tetained Soil Undrained Shear Strength, $[(S_w)_{BS}] = 2000$ psf $EV EH LS$ tetained Soil Active Earth Pressure Coeff., $(K_w) = 0.297$ Strength la 1.00 1.50 1.75 ISE Backfill Unit Weight, $(\gamma_{BF}) = 120$ pcf Strength lb 1.35 1.50 1.75 ISE Backfill Friction Angle, $(\varphi_{BF}) = 34^\circ$ Service I 1.00 1.00 1.00 ISE Service I 1.00 1.00 1.00 ISE Strength Ib 1.35 1.50 1.75 ISE Backfill Friction Angle, $(\varphi_{BF}) = 34^\circ$ Service I 1.00 1.00 1.00 ISE Service I 1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Tables
Service 1 1.00 1.00 1.00 3 Service 1 1.00 1.00 1.00 3 Service 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	Active
The Resistance - Undrained Condition dominal Bearing Resistance: $q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma}$ $N_{cm} = N_c s_c i_c = 5.890$ $N_{qm} = N_q s_q d_q i_q = 1.000$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 0.000$ $N_{\gamma m} = 0.$	
$N_{cm} = N_c s_c i_c = 5.890 \qquad N_{qm} = N_q s_q d_q i_q = 1.000 \qquad N_{\gamma m} = N_\gamma s_\gamma i_\gamma = 0.000$ $N_c = 5.140 \qquad N_q = 1.000 \qquad N_\gamma = 0.000$ $s_c = 1 + (23.12 \text{ ft/[(5)(32 \text{ ft)}])} = 1.145 \qquad s_q = 1.000 \qquad s_\gamma = 1.000 \qquad s_\gamma = 1.000$ $i_c = 1.000 (\text{Assumed}) \qquad d_q = 1 + 2 \tan(0^\circ)[1 + \sin(0^\circ)]^2 \tan^{-1}(3.0 \text{ ft/23.12 ft}) \qquad i_\gamma = 1.000 (\text{Assumed})$ $C_{w\gamma} = 7.9 \text{ ft} < 1.5(23.12 \text{ ft}) + 3.0 \text{ ft}$ $Q_{q} = 7.9 \text{ ft} > 3.0 \text{ ft} = 1.000$ $Q_{q} = (1500 \text{ psf})(5.890) + (120 \text{ pcf})(3.0 \text{ ft})(1.000)(1.000) + \frac{1}{2}(120 \text{ pcf})(23.1 \text{ ft})(0.000)(0.614) = 9.20 \text{ksf}$ $Q_{eq} \le Q_{q} \cdot \phi_b \longrightarrow 7.70 \text{ ksf} \le (9.20 \text{ ksf})(0.65) = 5.98 \text{ ksf} \longrightarrow 7.70 \text{ ksf} \le 5.98 \text{ ksf} \longrightarrow 7.70 \text{ ksf} \le 5.98 \text{ ksf}$	
$\begin{split} N_{cm} &= N_c s_c i_c = 5.890 & N_{qm} = N_q s_q d_q i_q = 1.000 & N_{\gamma m} = N_\gamma s_\gamma i_\gamma = 0.000 \\ N_c &= 5.140 & N_q = 1.000 & N_\gamma = 0.000 \\ s_c &= 1+(23.12 \text{ft/(5)(32 ft))}) = 1.145 & s_q = 1.000 & s_\gamma = 1.000 \\ i_c &= 1.000 & (Assumed) & d_q = 1+2 \text{tan(0^\circ)[1-sin(0^\circ)]^2 tan^{-1}(3.0 \text{ft/23.12 ft)}} & i_\gamma = 1.000 & (Assumed) \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 0
$C_{Nq} = 7.9 \text{ft} > 3.0 \text{ft} = 1.000$ $Q_n = (1500 \text{psf})(5.890) + (120 \text{pcf})(3.0 \text{ft})(1.000)(1.000) + \frac{1}{2}(120 \text{pcf})(23.1 \text{ft})(0.000)(0.614) = 9.20 \text{ksf}$ $\text{Terify Equivalent Pressure Less Than Factored Bearing Resistance}$ $Q_{eq} \le Q_n \cdot \phi_b \longrightarrow 7.70 \text{ksf} \le (9.20 \text{ksf})(0.65) = 5.98 \text{ksf} \longrightarrow 7.70 \text{ksf} \le 5.98 \text{ksf} $ ERROR!!	

FRA-70-12.68 W-13-045 JOB NO. SHEET NO. OF 6 CALCULATED BY BRT DATE 7/4/2018 CHECKED BY JPS DATE 7/5/2018

PHONE: (614) 8 FAX: (614) 82:		CHECKED BY FRA-71-151	JPS DATE <u>//5/201</u> 8A - MSE Wall - Rear Abutment
WWW.RESOURCEINTEI		110(11 101)	OA - WOL Wall - Roar Abarrion
MSE Wall Dimensions and Retained Soil Paran	<u>neters</u>	Bearing Soil Prope	rties:
MSE Wall Height, (<i>H</i>) =	35.7 ft	Bearing Soil Unit Weig	ght, (γ_{BS}) = 125 pcf
MSE Wall Width (Reinforcement Length), (<i>B</i>) =	28.6 ft	Bearing Soil Friction A	$\log (\varphi_{BS}) = 32^{\circ}$
MSE Wall Length, (<i>L</i>) =	32 ft	Bearing Soil Drained (Cohesion, $(c_{BS}) = 0$ psf
Live Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil Undraine	d Shear Strength, $[(s_u)_{BS}] = 0$ psf
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment Depth, (L	O_f) = 3.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	30 °	Depth to Grounwater ((Below Bot. of Wall), $(D_W) = 7.9$ ft
Retained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Load Factors	1
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 psf	EV	EH LS
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	Strength Ia 1.00	1.50 1.75 \(\) (AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength lb 1.35	1.50 1.75 - 3.4.1-1 and 3.4.1-2 - Active
MSE Backfill Friction Angle, (φ_{BF}) =	34 °	ກາສູ້ການການສູ້ການການສູ້ການການການການກັນການການກາສູ້ການການການການຄຸ້ນກາ	1.00 1.00 Earth Pressure)
Settlement Analysis (Loading Case - Service I)	- AASHTO LRF	D BDM Section 11.10.4.1	
$P_{LS_{v}}$			
	D /		
$q_{eq}=0$	r_V		
	/ D		
x_3 P_{EV} $B'=$	B-2e =	28.6 ft - 2(2.45 ft) = 23	.70 ft
\uparrow		28.6 ft - 2(2.45 ft) = 23 $= (28.6 ft) / 2 - 11.85 ft = 23$	
P_{EH}	e = B/2 - x	= (28.6 ft) / 2 - 11.85 ft :	= 2.45 ft
	11 11	r	
	$\kappa_{\perp} = \frac{M_{V} - M_{I}}{2}$	$\frac{H}{}$ = (1854.32 kip·ft/ft - 3	317.58 kip·ft/ft) / 129.67 kip/ft = 11.85
x _o ← ×>e	P_{V}		
$\leftarrow B_{2} \rightarrow a$	— (120 67 kir	p/ft) / (23.7 ft) = 5.47	Lof
Yeq Yeq	— (129.07 KI	p/ft) / (23.7 ft) = 5.47	ksf
	~_		
$M_{V} = P_{EV}(x_{1}) + P_{LS_{V}}(x_{1}) = (\gamma_{BF} \cdot H)$	$A \cdot B \cdot \gamma_{EV}$)(x	$(x_1) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_1)$	
$M_V = [(120 \text{ pcf})(35.7 \text{ ft})(28.6 \text{ ft})(1.00)]($	14.3 ft) + [(250 p	osf)(28.6 ft)(1.00)](14.3 ft)	= 1854.32 kip·ft/ft
$M_{H} = P_{EH}(x_{2}) + P_{LS_{L}}(x_{3}) = (\frac{1}{2}\gamma_{RS})$	$H^2K_a\gamma_{EH}$ (x	$(x_2) + (\sigma_{IS}HK_a\gamma_{IS})(x_3)$	
$H = EH = 2$, $ES_h = S$, $\sqrt{2.5}$ RS	u - E11 , \	2) u. LS / () .	
$M_{_H}=[\frac{1}{2}(120 { m pcf})(35.7 { m ft})^2(0.297)(1.00 { m ft})^2$))](11.9 ft) + [(25	0 psf)(35.7 ft)(0.297)(1.00)](17	7.85 ft) = 317.58 kip·ft/ft
	.//\		
$P_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	$+\sigma \cdot R \cdot 1$	1	
$1V - 1EV + 1LS - IBF \cdot 11 \cdot D \cdot IEV$	TO_{LS}	$^{\prime\prime}LS$	
D - (420 post)(25.7 ft)(20.6 ft)(4.00) i	(050 mof)(00 6 ft)(1,00) = 120,67 kin/ft	
$P_V = (120 \text{ pcf})(35.7 \text{ ft})(28.6 \text{ ft})(1.00) +$	(250 psi)(28.6 it)(1.00) = 129.67 kip/ft	
Settlement (To be calculated at Stage 2 Detaile	ed Design):		
Total Settlement at Center of Reinforced Soil I	Mass: S_t	= 5.323 in	
Total Settlement at Wall Facing:	S_t	= 3.156 in	
Time Rate of Consolidation and Downdrag Dep	oths and Loads:		
Time Nate of Conconduction and Downards Dop	Julio una Loudo.		
	Dograp of	Sottlement at Completion of	Donth of
Hold Period	Degree of onsolidation	Settlement at Completion of Hold Period	Depth of Downdrag
15 days	100 %	3.156 in	0.0 ft

W-13-045 - FRA-70-12.86 - FRA-71-1518A / Retaining Wall 4W11

MSE Wall Settlement - Rear Abutment

Boring B-108-3-13 and B-108-9-15

35.7 ft Total wall height

B'= 23.7 ft Effective footing width due to eccentricity

 $D_w =$ 7.9 ft Depth below bottom of footing

5,470 psf Equivalent bearing pressure at bottom of wall

																				Total S	Settlement at	Center of Re	einforced So	il Mass		Total Sett	tlement at Fa	acing of Wall	
Layer	Soil Class.	Soil Type		Depth it)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z_f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-2-4	G	0.0	4.0	4.0	2.0	125	500	250	250	3,250					14	24	83	0.08	0.998	5,459	5,709	0.066	0.789	0.500	2,734	2,984	0.052	0.625
'	A-2-4	G	4.0	8.5	4.5	6.3	125	1,063	781	781	3,781					14	18	71	0.26	0.954	5,217	5,998	0.056	0.673	0.496	2,715	3,497	0.041	0.495
2	A-6b	С	8.5	11.0	2.5	9.8	115	1,350	1,206	1,091	4,091	37	0.243	0.012	0.561				0.41	0.874	4,781	5,872	0.072	0.867	0.488	2,668	3,759	0.010	0.125
2	A-6b	С	11.0	13.5	2.5	12.3	115	1,638	1,494	1,222	4,222	37	0.243	0.024	0.561				0.52	0.808	4,417	5,640	0.070	0.838	0.478	2,615	3,837	0.019	0.232
3	A-1-b	G	13.5	16.0	2.5	14.8	125	1,950	1,794	1,366	4,366					19	21	77	0.62	0.742	4,057	5,423	0.019	0.232	0.466	2,547	3,913	0.015	0.177
4	A-4a	G	16.0	18.5	2.5	17.3	125	2,263	2,106	1,523	4,523					23	25	47	0.73	0.680	3,721	5,244	0.028	0.339	0.451	2,468	3,991	0.022	0.264
5	A-6b	С	18.5	21.0	2.5	19.8	120	2,563	2,413	1,673	4,673	37	0.243	0.024	0.561				0.83	0.625	3,418	5,091	0.032	0.382	0.435	2,382	4,055	0.015	0.180
	A-1-b	G	21.0	26.5	5.5	23.8	130	3,278	2,920	1,931	4,931					31	31	103	1.00	0.549	3,003	4,934	0.022	0.261	0.409	2,236	4,167	0.018	0.214
б	A-1-b	G	26.5	32.5	6.0	29.5	130	4,058	3,668	2,320	5,320					31	30	98	1.24	0.463	2,535	4,854	0.020	0.237	0.371	2,029	4,348	0.017	0.201
-	A-1-a	G	32.5	42.5	10.0	37.5	130	5,358	4,708	2,860	5,860					37	33	107	1.58	0.378	2,066	4,927	0.022	0.266	0.323	1,768	4,628	0.020	0.235
/	A-1-a	G	42.5	52.5	10.0	47.5	130	6,658	6,008	3,536	6,536					37	30	99	2.00	0.305	1,669	5,206	0.017	0.204	0.274	1,501	5,038	0.016	0.186
8	A-2-6	G	52.5	57.5	5.0	55.0	130	7,308	6,983	4,043	7,043					31	24	83	2.32	0.266	1,456	5,499	0.008	0.097	0.245	1,341	5,385	0.008	0.090
9	A-4a	С	57.5	62.5	5.0	60.0	120	7,908	7,608	4,356	7,356	18	0.072	0.007	0.413				2.53	0.245	1,341	5,697	0.003	0.036	0.229	1,250	5,606	0.003	0.034
10	A-3a	G	62.5	67.5	5.0	65.0	125	8,533	8,220	4,657	7,657					22	16	60	2.74	0.227	1,242	5,899	0.009	0.103	0.214	1,169	5,826	0.008	0.097
1. σ _p ' = σ _ν	o'+σ _{m:} Estima	ate $\sigma_{\rm m}$ of 3,0	00 psf for mo	derately ove	erconsolidate	ed soil deposi	t; Ref. Table	11.2, Codut	o 2003	1	I		1				1		ı		Total	Settlement:		5.323 in		Total	Settlement:	<u>_</u> _	3.156 in

Calculated By: BRT Date: 7/4/2018 Checked By: JPS Date: 7/5/2018

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

^{3.} $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

^{9.} $S_c = [C_o/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{vo})$ for $\sigma_p' \leq \sigma_{vo}' < \sigma_{v'}$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo})' + [C_o/(1+e_o)](H)\log(\sigma_{v'}/\sigma_p')$ for $\sigma_{vo}' < \sigma_{p'}' < \sigma_{v'}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

^{10.} S_c = H(1/C')log(σ_{v_i} '/ σ_{v_o} '); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

W-13-045 - FRA-70-12.86 - FRA-71-1518A / Retaining Wall 4W11

MSE Wall Settlement - Rear Abutment

Boring B-108-3-13 and B-108-9-15

H= 35.7 ft Total wall height A-6b A-4a B'= 23.7 ft Effective footing width due to eccentricity 400 1000 ft²/yr Coefficient of consolitation $c_v =$ 7.9 Depth below bottom of footing 15 15 days Time following completion of construction 5,470 psf Equivalent bearing pressure at bottom of wall $H_{dr} =$ 2.5 2.5 Length of longest drainage path considered $q_e =$ $T_v =$ 2.630 6.575 Time factor 100 100 Degree of consolidation U = $(S_c)_t =$ 3.156 in Settlement complete at 100% of primary consolidation

																							Total Set	tlement at F	acing of Wall		nplete at 100% of onsolidation
Layer	Soil Type	Soil Type	Layer (f		Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z_f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-2-4	G	0.0	4.0	4.0	2.0	125	500	250	250	4,250					14	24	83	0.08	0.500	2,734	2,984	0.052	0.625	1.120	0.625	1.120
'	A-2-4	G	4.0	8.5	4.5	6.3	125	1,063	781	781	4,781					14	18	71	0.26	0.496	2,715	3,497	0.041	0.495	1.120	0.495	1.120
2	A-6b	С	8.5	11.0	2.5	9.8	115	1,350	1,206	1,091	5,091	37	0.243	0.012	0.561				0.41	0.488	2,668	3,759	0.010	0.125	0.357	0.125	0.357
	A-6b	С	11.0	13.5	2.5	12.3	115	1,638	1,494	1,222	5,222	37	0.243	0.024	0.561				0.52	0.478	2,615	3,837	0.019	0.232	0.337	0.232	0.337
3	A-1-b	G	13.5	16.0	2.5	14.8	125	1,950	1,794	1,366	5,366					19	21	77	0.62	0.466	2,547	3,913	0.015	0.177	0.177	0.177	0.177
4	A-4a	G	16.0	18.5	2.5	17.3	125	2,263	2,106	1,523	5,523					23	25	47	0.73	0.451	2,468	3,991	0.022	0.264	0.264	0.264	0.264
5	A-6b	С	18.5	21.0	2.5	19.8	120	2,563	2,413	1,673	5,673	37	0.243	0.024	0.561				0.83	0.435	2,382	4,055	0.015	0.180	0.180	0.180	0.180
6	A-1-b	G	21.0	26.5	5.5	23.8	130	3,278	2,920	1,931	5,931					31	31	103	1.00	0.409	2,236	4,167	0.018	0.214	0.416	0.214	0.416
	A-1-b	G	26.5	32.5	6.0	29.5	130	4,058	3,668	2,320	6,320					31	30	98	1.24	0.371	2,029	4,348	0.017	0.201	0.410	0.201	0.410
7	A-1-a	G	32.5	42.5	10.0	37.5	130	5,358	4,708	2,860	6,860					37	33	107	1.58	0.323	1,768	4,628	0.020	0.235	0.422	0.235	0.422
,	A-1-a	G	42.5	52.5	10.0	47.5	130	6,658	6,008	3,536	7,536					37	30	99	2.00	0.274	1,501	5,038	0.016	0.186	0.422	0.186	0.422
8	A-2-6	G	52.5	57.5	5.0	55.0	130	7,308	6,983	4,043	8,043					31	24	83	2.32	0.245	1,341	5,385	0.008	0.090	0.090	0.090	0.090
9	A-4a	С	57.5	62.5	5.0	60.0	120	7,908	7,608	4,356	8,356	18	0.072	0.007	0.413				2.53	0.229	1,250	5,606	0.003	0.034	0.034	0.034	0.034
10	A-3a	G	62.5	67.5	5.0	65.0	125	8,533	8,220	4,657	8,657					22	16	60	2.74	0.214	1,169	5,826	0.008	0.097	0.097	0.097	0.097

- 1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003
- 2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5
- 3. $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981
- 4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- 9. $S_c = [C_o/(1+e_o)](H)log(\sigma_{v'}/\sigma_{v'})$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{v'}$; $[C_{v'}(1+e_o)](H)log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_p'$; $[C_{v'}(1+e_o)](H)log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_p' < \sigma_{v'}$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)
- 10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By: BRT Date: 07/04/2018 Checked By: Date: 07/05/2018

Settlement Remaining After Hold Period: 0.000 in

JOB W-13-045 SHEET NO. CALCULATED BY DATE 7/4/2018 JPS CHECKED BY DATE 7/5/2018 Retaining Wall 4W11 - Sta. 1+78 to 3+38

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

FRA-70-12.68 W-13-045 JOB SHEET NO. CALCULATED BY DATE 7/4/2018 JPS CHECKED BY DATE 7/5/2018 Retaining Wall 4W11 - Sta. 1+78 to 3+38

MSE Wall Dimensions and Retained Soil Paran	neters	Bearing Soil Pro	erties:				
MSE Wall Height, (H) =	20.0 ft	MSE Backfill Unit W	/eight, (₂	$(y_{BF}) =$			120 pc
MSE Wall Width (Reinforcement Length), (B) =	17.0 ft	MSE Backfill Frictio	n Angle,	$(\varphi_{BF}) =$	•		34 °
Distance from Wall Face to Toe of Backslope, (l) =	2.0 ft	Bearing Soil Unit W	eight, (γ	_{BS}) =			125 pc
MSE Wall Length, (L) =	160.0 ft	Bearing Soil Friction	n Angle,	$(\varphi_{BS}) =$		_	32 °
MSE Wall Effective Height, (h) =	28.5 ft	Bearing Soil Draine	d Cohes	ion, (c_B	s) =		0 ps
Retained Soil Backslope, (β) =	26.6 °	Bearing Soil Undrai	ned She	ar Strer	ngth,	$[(s_u)_{BS}] =$	0 ps
Effective Retained Soil Backslope, (θ) =	20 °	Embedment Depth,	$(D_f) =$				3.0 ft
Distance from Toe to Top of Backslope, (z) =	29.0 ft	Depth to GW (Below	w Bot. of	f Wall),	$(D_W$) =	7.9 ft
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf						
Retained Soil Friction Angle, (φ_{RS}) =	30 °	LRFD Load Facto	ors				
Retained Soil Drained Cohesion, (c_{RS}) =	0 psf	EV	EH	LS			
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =	2000 psf	Strength la 1.00	1.50	1.75	٦	(AASHTO LRFD	RDM Tables
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.414	Strength lb 1.35	1.50	1.75	-	3.4.1-1 and 3.4.	.1-2 - Active
Live Surcharge Load, (σ_{LS}) =	0 psf	Service I 1.00	1.00	1.00	J	Earth Pres	ssure)

Check Sliding (Loading Case - Strength Ia) - AASHTO LRFD BDM Section 11.10.5.3 (Continued,

Check Sliding Resistance - Undrained Condition

 $(S_u)_{BS} = \text{N/A} \quad \text{ksf}$ $Q_s = \sigma_v / 2$ $P_{EH} \quad \sigma_v = P_v / B$ $P_V = P_{EV_1} + P_{EV_2} + P_{EH} \sin \theta$

(Neglect $P_{LS_{\nu}}$ for conservatism)

Nominal Sliding Resisting: $R_{\tau} = ((S_u)_{BS} \le q_s) \cdot B$

 $P_{EV_1} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ = (120 pcf)(20.0 ft)(17.0 ft)(1.00) = 40.8 kip/ft

 $P_{EV_{\star}} = \frac{1}{2} \gamma_{RS} (h-H)(B-l) \gamma_{EV}$

 $P_{EV} = \frac{1}{2}(120 \text{ pcf})(28.5 \text{ ft} - 20.0 \text{ ft})(17.0 \text{ ft} - 2.0 \text{ ft})(1.00) = 7.66 \text{ kip/ft}$

 $P_{EH} = \frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(28.5 \text{ ft})^2 (0.414)(1.50) = 30.29 \text{ kip/ft}$

 $P_V = 40.8 \text{ kip/ft} + 7.66 \text{ kip/ft} + (30.29 \text{ kip/ft}) \sin(20^\circ) = 58.82 \text{ kip/ft}$

 $\sigma_{v} = (58.82 \text{ kip/ft}) / (17.0 \text{ ft}) =$ 3.46 ksf

 $q_s = (3.46 \text{ ksf}) / 2 = 1.73 \text{ ksf}$

 $R_{\tau} = (N/A \text{ ksf} \le 1.73 \text{ ksf})(17.0 \text{ ft}) =$

Verify Sliding Force Less Than Factored Sliding Resistance - Undrained Condition

 $P_{H} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow$

N/A

Use $\varphi_{\tau} = 1.0$ (Per AASHTO LRFD BDM Table 11.5.6-1)

WWW.RESOURCEINTERATIONAL.COM

FRA-70-12.68 W-13-045 JOB NO. SHEET NO. OF 6 7/4/2018 CALCULATED BY BRT DATE JPS 7/5/2018 CHECKED BY DATE Retaining Wall 4W11 - Sta. 1+78 to 3+38

MSE Wall Dimensions and Retained Soil Pa	<u>rameters</u>	Bearing Sc	oil Properti	es:		
MSE Wall Height, (<i>H</i>) =	20.0 ft	MSE Backfill	l Unit Weigh	$t,\; (\gamma_{\mathit{BF}}) =$		120 pcf
MSE Wall Width (Reinforcement Length), (B) =	<u>17.0</u> ft	MSE Backfill	I Friction An	gle, (φ_{BF}) =		34 °
Distance from Wall Face to Toe of Backslope, (l) =	2.0 ft	Bearing Soil	Unit Weight	$, (\gamma_{BS}) =$		125 pcf
MSE Wall Length, (<i>L</i>) =	160.0 ft	Bearing Soil	.			32 °
MSE Wall Effective Height, (h) =	28.5 ft	Bearing Soil			laharan Amana Amana Ama	0 psf
Retained Soil Backslope, (β) =	26.6 °				$gth, [(s_u)_{BS}] =$	0 psf
Effective Retained Soil Backslope, (θ) =	20 °	Embedment				3.0 ft
Distance from Toe to Top of Backslope, (z) =	29.0 ft	Depth to GW	V (Below Bo	i. of Wall), ($(D_W) =$	7.9 ft
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf					
Retained Soil Friction Angle, (φ_{RS}) =	30 °	<u>LRFD Load</u>				
Retained Soil Drained Cohesion, (c_{RS}) =	0 psf		EV EI			
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 psf		1.00 1.5			_RFD BDM Tables
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.414	Strength lb				d 3.4.1-2 - Active h Pressure)
Live Surcharge Load, (σ_{LS}) = 1. Drained cohesion for retained soil not accounted for in external stal	0 psf bility analyses. This parameter is	Service I s utilized in global stability a	1.00 1.0 analysis.	0 1.00		
Check Eccentricity (Loading Case - Strength P_{EV}		D BDM Section 1	<u>1.6.3.3</u>			
$e = \frac{B}{2}$	$-x_o$					
X_{\downarrow} P_{EV} P_{LS} P_{LS} P_{LS}	M-M					
$ \begin{array}{c cccc} x_4 & P_{EV_1} & P_{EV_2} & P_{ES_N} & P_{ES_N} & P_{ES_N} \\ \end{array} $	$\frac{M_V - M_H}{P_V} = (614)$	4.84 kip·ft/ft - 270.	4 kip·ft/ft) /	(58.82 kip	/ft) = 5.80	6 ft
$P_{EH_{\nu}}$	P_V					
$R \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$						
A A A A A A A A A A A A A A A A A A A	$I_V = 614.84 \text{ k}$	ip·ft/ft	ned below			
	$M_H = 270.40 \text{ k}$	ip·ft/ft -				
	$P_V = P_{EV_1} + P_{EV_2} + P_{EV_3} + P_{EV_4} + P_{EV_5} + P_{$	$P_{EH} \sin \theta = 40.8$	8 kip/ft + 7.66	kip/ft + (30.2	29 kip/ft)sin(20°) = 58.82 kip/
$x_1 \leftarrow B_2 \rightarrow$	(47.0 (1/0) 5.00 (
\downarrow $\stackrel{\cdot}{x_2}$ $\stackrel{\cdot}{\Rightarrow}$ $\stackrel{\cdot}{=}$	(17.0 ft/ 2) - 5.86 f	t = 2.64 1	ft			
Resisting Moment, M_V : $M_V = P$	(-) B (-)	D sin O(D)	/N	loglost P	for concor	votiem)
P_{EV_2}	$_{EV_{1}}(x_{1})+P_{EV_{2}}(x_{2})$	$+ r_{EH} \sin \theta(D)$	(1)	legiect I _L	S _v 101 Consei	vausiii)
$\frac{1}{2}EV_2$	$= \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$	= (120 ncf)(20 0 ft)(17 0	ft)(1 00)	= 40.80	kip/ft
EV	J BF 11 B J EV	(120 poi)	20.0 10/(17.0	11)(11.00)	10.00	Кірлі
p	$= \frac{1}{2} \gamma_{RS} (h - H) (B -$	$-l)\gamma_{EV} = \frac{1}{2}(120 \text{ pc})$	f)(28.5 ft - 20	.0 ft)(17.0 ft	t - 2.0 ft)(1.00)	= 7.66 kip/1
P_{EV_1} P_{LS_V} P_{EV_2} P_{EV_2}	727 RS (** 119)(2	· J/ EV /-\	,,			
P_{EH}	$= \frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EH}$	= ½(120 pcf)(2	8.5 ft)2(0.41	4)(1.50)	= 30.29 k	ip/ft
L L						
$\lambda = \sum_{i=1}^{n} \lambda_i \theta_i$	B/2 = (17.0 ft)/2	= 8.50 1	ft			
$\Rightarrow x_1 \Rightarrow x_2 \qquad x_2 = x_2 \Rightarrow x_$	$l+\frac{2}{3}(B-l)=$	2.0 ft + ² / ₃ (17.0 ft - 2	2.0 ft) =	12.00	ft	
-						
$M_{\scriptscriptstyle V}$ =	(40.8 kip/ft)(8.50 ft) +	(7.66 kip/ft)(12 ft) +	- (30.29 kip/i	t)sin(20°)(1	7 ft) =	614.84 kip
Overturning Moment, M_H : $M_H = I$	$P_{EH}\cos\theta(x_3) + P_{EH}$	$_{LS}\cos\theta(x_4)$				
	$= \frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EH}$	1//100 = -5//0	0.5 (4)2/0.44	4)/4 50)	_ 20.00 1	· (C)
P_{EH}	$= \gamma_2 \gamma_{RS} n K_a \gamma_{EH}$	= /2(120 pci)(2	.0.5 11)-(0.41	+)(1.50)	= 30.29 K	пр/п
D _	$=\sigma_{LS}hK_a\gamma_{LS}=$	(0 psf)/28 5 ft)/0	<i>1</i> 1 <i>1</i>)/1 75)	- 0	00 kin/ft	
x_4	$-O_{LS}nK_a\gamma_{LS}$ -	(0 psi)(20.3 it)(0	.414)(1.73)	– 0.	.ου κιρ/π	
$\uparrow \mid \qquad \qquad \mid \qquad \mid \stackrel{P_{LS_{N}}}{\mid} P_{EH} \qquad r = $	$h/_{2} = (28.5 \text{ ft})/3$	= 9.50	ft			
P_{EH} $X_3 =$	/3 - (20.0 1.) / 0	_ 5.55				
$\mathbf{x} = \mathbf{x}$	h/3 = (28.5 ft)/3 h/2 = (28.5 ft)/2	= 14.26 1	ft			
	(30 20 kin/ft)(20°\/	0 50 ft) + /0 bis/ft)~	ne/20°\/44 º	6 ft) -	: 270 A0 II	in ft/ft
	(30.29 kip/ft)cos(20°)(9.50 ft) + (0 kip/ft)co	os(20°)(14.2	6 ft) =	270.40 k	ip·ft/ft

FRA-70-12.68 W-13-045 JOB NO. SHEET NO. OF 7/4/2018 CALCULATED BY BRT DATE JPS 7/5/2018 CHECKED BY DATE Retaining Wall 4W11 - Sta. 1+78 to 3+38

6

WWW.RESOURCEINTERATIONAL.COM

MSE Wall Dimensions and Retained So	il Parameters	Bearing Soil Properties:		
MSE Wall Height, (H) =	20.0 ft	MSE Backfill Unit Weight, (γ	_{RF}) =	120 pcf
MSE Wall Width (Reinforcement Length), (B)		MSE Backfill Friction Angle,		34 °
Distance from Wall Face to Toe of Backslope,		Bearing Soil Unit Weight, (γ		125 pcf
MSE Wall Length, (L) =	160.0 ft	Bearing Soil Friction Angle,		26 °
MSE Wall Effective Height, (h) =	28.5 ft	Bearing Soil Drained Cohes	V	0 psf
Retained Soil Backslope, (β) =	26.6 °	Bearing Soil Undrained She		1500 psf
Effective Retained Soil Backslope, (θ) =	20 °	Embedment Depth, (D_f) =	5 / [(- 11 / 15)]	3.0 ft
Distance from Toe to Top of Backslope, (z) =	29.0 ft	Depth to GW (Below Bot. of	Wall). (D w) =	7.9 ft
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf		,, (- ,, /	
Retained Soil Friction Angle, (φ_{RS}) =	30 °	LRFD Load Factors		
Retained Soil Drained Cohesion, (c_{RS}) =	0 psf	EV EH	LS	
Retained Soil Undrained Shear Strength, $[(S_n)]$		Strength la 1.00 1.50	175 ¬	
Retained Soil Active Earth Pressure Coeff., (K		Strength lb 1.35 1.50	(AASHIU LK	FD BDM Tables 3.4.1-2 - Active
Live Surcharge Load, (σ_{LS}) =	0.414 0 psf	Service I 1.00 1.00		Pressure)
Drained cohesion for retained soil not accounted for in exter			1.00 =	
Check Bearing Capacity (Loading Case	- Strength lb) - AASHTO	LRFD BDM Section 11.6.3.2		
P_{EV_2}				
	P. /			
	$I_{eq} = \frac{P_V}{R'}$			
ם יו ח				
$\begin{array}{c c} X_4 \\ \uparrow \end{array} \begin{array}{c c} P_{EV_1} & P_{LS_V} & P_{LS_V} \\ \hline \end{array} \begin{array}{c c} P_{LS_V} & P_{LS_V} \end{array}$	B' = B - 2e = 17.0	0 ft - 2(1.93 ft) = 13.14	ft	
LH V LH LH				
P_{EH_h}	$e = \frac{B}{2} - x_0 =$: (17.0 ft / 2) - 6.57 ft =	1.93 ft	
$\perp + \frac{R}{\Lambda \Lambda \Lambda} + \frac{1}{\Lambda} = \frac{1}{2} = \frac{1}{2$	/ 2			
	$x_o = \frac{W_V - W_H}{V}$	= (768.38 kip·ft/ft - 270.40	kip·ft/ft) / 75.78 kip/ft	= 6.57 1
$x_o \leftarrow \xrightarrow{*} -1 -1 - e$	P_{V}			
$\angle B / \preceq$				
$\stackrel{B}{\leftarrow}$	$q_{eq} = (75.78 \text{kip/ft}) /$	(13.14 ft) = 5.77 ksf		
<i>B'</i>	1.eq ' ' '			
Resisting Moment, \overline{M}_V : \overline{M}_V	$= P_{EV_1}(x_1) + P_{EV_2}(x_2) +$	- P_{m} $\sin \theta(B)$		
	$EV_1 \times 1J = EV_2 \times 2J$	EH SISO (S)		
$P_{\scriptscriptstyle EV_2}$	$P_{-} = \gamma_{-} \cdot H \cdot B \cdot \gamma_{-}$	= (120 pcf)(20.0 ft)(17.0 ft)(1.35) = 55.08	kip/ft
	EV_1 / BF / EV			
	$P = 1/\chi (h - H)(R -$	$l)\gamma_{EV} = \frac{1}{2}(120 \text{ pcf})(28.5 \text{ ft} - 20.0 \text{ ft})$)(17.0 ft - 2.0 ft)(1.35) =	10.34 kin/ft
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$EV_2 - /2 \gamma_{RS} (n - 11) (D -$	J EV 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1 EV. 1 \ 1	$P_{EH} = \frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EH} =$: ½(120 pcf)(28.5 ft)²(0.414)(1	.50) = 30.29 kip)/ft
P_{EH}	$EH = /2 f RS^{H} = A f EH$.00)p	
ana da kada ang manga kada ang manga kada kada ang manga ana da manga ang kada kada kada kada kada kada kada k	$r_1 = B/2 = (17.0 \text{ ft})/2$	= 850 ft		
1 1 2 1 1 2	$1 - 1 = 10^{-1}$	- 0.00 IL		
$\longmapsto x$,	$-1 \pm \frac{2}{(R-1)} = 3$	2.0 ft + ⅔(17.0 ft - 2.0 ft) = 1	2.00 ft	
$\begin{array}{c c} & \rightarrow & x_1 & & x_2 \\ & \rightarrow & x_2 & & & \end{array}$	$r_2 = \iota + r_3 (D - \iota) - \iota$	2.01(1/3(17.01(-2.01() -	2.00 11	
M_{c}	= (55 08 kip/ft)(8 50 ft) + (1	0.34 kip/ft)(12.0 ft) + (30.29 kip/ft)sin(20°)(17 ft) =	768.38 kip⋅fi
	- (00.00p/,)(0.00)		,5,2	
Overturning Moment, $\overline{M}_{\scriptscriptstyle H}$: $\overline{M}_{\scriptscriptstyle H}$	$= P_{EH} \cos \theta(x_3) + P_{LS}$	$\cos \theta(x_{\star})$		
H	EH (3)	5.4.2		
	$P_{\rm rec} = \frac{1}{2} \gamma_{\rm rec} h^2 K \gamma_{\rm rec} =$: ½(120 pcf)(28.5 ft)²(0.414)(1	.50) = 30.29 kip	/ft
	$P_{rs} = \sigma_{rs} h K \gamma_{rs} =$	(0 psf)(28.5 ft)(0.414)(1.75)	= 0.00 kip/ft	
X_4	LS LS at LS			
P_{EH}	$f_3 = h/3 = (28.5 \text{ ft})/3$	= 9.50 ft		
\perp	$\frac{1}{4} = h/2 = (28.5 \text{ ft})/2$	= 14.26 ft		
	4 /2 (2001), 2			
			070.40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	= (30,29 kip/ft)cos(20°)(9	1.50 ft) + (0 kip/ft)cos(20°)(14 26 ft)	= 2/()4() kir	∍ft/ft
M_H :	= (30.29 kip/ft)cos(20°)(9	.50 ft) + (0 kip/ft)cos(20°)(14.26 ft)	= 270.40 kip	›-ft/ft
			= 270.40 KIP	≻ft/ft
	= $(30.29 \text{ kip/ft})\cos(20^\circ)(9)$ = $P_{EV_1} + P_{EV_2} + P_{EH} \sin(20^\circ)$		= 270.40 KIP	·ft/ft
Vertical Forces, $P_{_{V}}$: $P_{_{V}}$ =	$=P_{EV_1} + P_{EV_2} + P_{EH} \sin \theta$	$oldsymbol{ heta}$		-ft/ft
Vertical Forces, $P_{\scriptscriptstyle V}$: $P_{\scriptscriptstyle V}$ =	$=P_{EV_1} + P_{EV_2} + P_{EH} \sin \theta$		= 270.40 kip	-ft/ft

RESOURCE INTERNATIONAL, INC.
6350 PRESIDENTIAL GATEWAY
COLUMBUS, OHIO 43231
PHONE: (614) 823-4949
FAX: (614) 823-4990
WWW.RESOURCEINTERATIONAL.COM

 JOB
 FRA-70-12.68
 NO.

 SHEET NO.
 5
 OF

 CALCULATED BY
 BRT
 DATE

 CHECKED BY
 JPS
 DATE

W-13-045 6 7/4/2018 F 7/5/2018

Retaining Wall 4W11 - Sta. 1+78 to 3+38

ISE Wall Dimensions and Retained Soil Par	ameters	Bearing Soil	<u>Prop</u> erti	es:				
ISE Wall Height, (H) =	20.0 ft	MSE Backfill U	Jnit Weigh	$t, (\gamma_{BF}) =$				120 pcf
ISE Wall Width (Reinforcement Length), (B) =	17.0 ft	MSE Backfill F	riction And	gle, (φ_{BF})	=			34 °
Distance from Wall Face to Toe of Backslope, (l) =	2.0 ft	Bearing Soil U	nit Weight	$(\gamma_{BS}) =$			1	120 pcf
1SE Wall Length, (L)=	160.0 ft	Bearing Soil F	riction Ang	le, (φ_{BS})	=			26 °
ISE Wall Effective Height, (h) =	28.5 ft	Bearing Soil D	rained Col	nesion, (c	_{BS}) =			0 psf
letained Soil Backslope, (β) =	26.6 °	Bearing Soil U	ndrained S	Shear Stre	ength,	$[(s_u)_{BS}] =$	15	500 psf
ffective Retained Soil Backslope, ($ heta$) =	20 °	Embedment D						3.0 ft
sistance from Toe to Top of Backslope, (z) =	29.0 ft	Depth to GW ((Below Bot	. of Wall)	$, (D_W)$) =		7.9 ft
tetained Soil Unit Weight, (γ_{RS}) =	120 pcf							
tetained Soil Friction Angle, (φ_{RS}) =	<u>30</u> °	LRFD Load I						
tetained Soil Drained Cohesion, (c _{RS}) =	0 psf		EV E					
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 psf	Strength la 1				(AASHTO L		
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.414	Strength lb 1				3.4.1-1 an Earti	d 3.4.1-2 h Pressur	
ive Surcharge Load, (σ_{LS}) = 1. Drained cohesion for retained soil not accounted for in external stab	0 psf		1.00 1.0	0 1.00)]			
theck Bearing Capacity (Loading Case - Str Check Bearing Resistance - Drained Condition		LRFD BDM Section	on 11.10.	5.4 (Contii	nued)			
lominal Bearing Resistance: $q_{\scriptscriptstyle n} = c N_{\scriptscriptstyle CM}$	$+ \gamma D_f N_{qm} C_{wq} +$	$-rac{1}{2}\gamma B'N_{\gamma m}C_{w\gamma}$						
	$N_{qm} = N_q s_q d_q i$	r _q = 14.3	N_p	$_{n}=N_{\gamma}$	$S_{\gamma}i_{\gamma}$	= 12.	5	
$N_c = 22.25$	N_q = 11.85			N _γ = ·	12.54			
S _c = 1+(13.14 ft/160 ft)(11.85/22.25)	$S_q = 1+(13.14 \text{ f})$	t/160 ft)tan(26°) = 1	.100	$s_{\gamma} =$	1-0.4(13	3.14 ft/160 f	t) =	1.000
= 1.000	$d_q = 1+2 \tan(26^\circ)$	°)[1-sin(26°)]²tan⁻¹(3.0 ft/13.	.14 ft)	$i_{\gamma} = $	1.000	(Assumed)	
$i_c = 1.000$ (Assumed)	= 1.100			C = 7	.9 ft < 1	.5(13.14 ft)	+ 3.0 ft	= 0.9
	$i_q = 1.000$ (A			С wy .				
	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$	3.0 ft = 1.000						
$q_n = (0 \text{ psf})(22.25) + (120 \text{ pcf})(3.0 \text{ ft})(3.0 \text{ ft})$	$i_q = 1.000$ (A $C_{wq} = 7.9 \text{ ft} > 3$ 14.3)(1.0) + $\frac{1}{2}$ (120 pc	3.0 ft = 1.000 cf)(13.1 ft)(12.5)(0.5		10.11	ksf			
$q_n= (ext{0 psf})(22.25)$ + (120 pcf)(3.0 ft)(/erify Equivalent Pressure Less Than Factor	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc}$ red Bearing Resistal	s.o ft = 1.000 cf)(13.1 ft)(12.5)(0.5 nce	5) =	10.11	ksf			
$q_n = (0 \text{ psf})(22.25) + (120 \text{ pcf})(3.0 \text{ ft})(3.0 \text{ ft})$	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc})$ $red Bearing Resistant \leq (10.11 \text{ ksf})(0.65) = 0$	s.o ft = 1.000 cf)(13.1 ft)(12.5)(0.5 nce	5) =		ksf		OK	
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($^{\prime}$ (erify Equivalent Pressure Less Than Factor $q_{eq}\leq q_n\cdot\phi_b \longrightarrow 5.77$ ksf:	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ 14.3)(1.0) + ½(120 pc) red Bearing Resistant ≤ (10.11 ksf)(0.65) = 0 M Table 11.5.6-1)	s.o ft = 1.000 cf)(13.1 ft)(12.5)(0.5 nce	5) =	10.11	ksf			
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq} \leq q_n \cdot \phi_b \rightarrow 5.77 \text{ ksf}:$ Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDM)	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ 14.3)(1.0) + ½(120 pc) red Bearing Resistant ≤ (10.11 ksf)(0.65) = 0 M Table 11.5.6-1)	.0 ft = 1.000 cf)(13.1 ft)(12.5)(0.5 nce 6.57 ksf →	5) =	10.11	ksf			
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq} \leq q_n \cdot \phi_b \rightarrow 5.77 \text{ ksf}:$ Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDM) Check Bearing Resistance - Undrained Concominal Bearing Resistance: $q_n=cN_{cm}$	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ 14.3)(1.0) + ½(120 pc) red Bearing Resistal ≤ (10.11 ksf)(0.65) = 0 A Table 11.5.6-1)	$0.0 \mathrm{ft} = 1.000$ cf)(13.1 ft)(12.5)(0.5 nce $0.657 \mathrm{ksf} \longrightarrow$	5.77	10.11	ksf 57 ksf			
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq} \leq q_n \cdot \phi_b \rightarrow 5.77 \text{ ksf}:$ Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDM) Check Bearing Resistance - Undrained Concominal Bearing Resistance: $q_n=cN_{cm}$	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ 14.3)(1.0) + ½(120 pc) red Bearing Resistal ≤ (10.11 ksf)(0.65) = 0 M Table 11.5.6-1) Sittion + $\gamma D_f N_{qm} C_{wq}$ +	$0.0 \mathrm{ft} = 1.000$ cf)(13.1 ft)(12.5)(0.5 nce $0.657 \mathrm{ksf} \longrightarrow$	5.77 5.77	10.11 ksf ≤ 6.	ksf ksf 57 ksf $S_{\gamma}i_{\gamma}$		ok	
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ $q_n\cdot\phi_b$ \longrightarrow 5.77 ksf: Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDM) Check Bearing Resistance - Undrained Concluding Resistance: $q_n=cN_{cm}$ $N_{cm}=N_cs_ci_c=5.140$	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc})$ 14	$0.0 \mathrm{ft} = 1.000$ cf)(13.1 ft)(12.5)(0.5 nce $0.657 \mathrm{ksf} \longrightarrow$	5.77 5.77	10.11 $ksf \le 6.9$	ksf ksf		ok	
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ $q_n\cdot\phi_b \rightarrow$ 5.77 ksf: Use $\phi_b=$ 0.65 (Per AASHTO LRFD BDM) Check Bearing Resistance - Undrained Concominal Bearing Resistance: $q_n=cN_{cm}=N_{cm}=N_cs_ci_c=5.140$ $N_{cm}=N_cs_ci_c=5.140$	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ 14.3)(1.0) + $\frac{1}{2}$ (120 pc) red Bearing Resistal ≤ (10.11 ksf)(0.65) = 0 Mathematical Table 11.5.6-1) Sittion + $\frac{1}{2}D_f N_{qm}C_{wq} + N_{qm} = N_q S_q d_q i_q$ $N_q = 1.000$ $S_q = 1.000$	$0.0 \mathrm{ft} = 1.000$ cf)(13.1 ft)(12.5)(0.5 nce $0.657 \mathrm{ksf} \longrightarrow$	N_{p}	10.11 $ksf \le 6.9$ $N_{\gamma} = 0$ $s_{\gamma} = 0$ $i_{\gamma} = 0$	ksf ksf $S_{\gamma}i_{\gamma}$	= 0.((Assumed	OK 000	
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)([erify Equivalent Pressure Less Than Factor] $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 5.77 \text{ ksf}:$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD BDM) [heck Bearing Resistance - Undrained Concominal Bearing Resistance: $q_n = cN_{cm}$ $N_{cm} = N_c s_c i_c = 5.140$ $N_c = 5.140$ $S_c = 1+(13.14 \text{ ft/[(5)(160 ft)]} = 1.000$	$i_q = 1.000 \text{ (A} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 1.000 \ C_{q} = 1.000$	$0.0 \mathrm{ft} = 1.000$ cf)(13.1 ft)(12.5)(0.5 nce $0.57 \mathrm{ksf} \longrightarrow 0.57 ks$	N_{p}	10.11 $ksf \le 6.9$ $N_{\gamma} = 0$ $s_{\gamma} = 0$ $i_{\gamma} = 0$	ksf ksf $S_{\gamma}i_{\gamma}$	= 0.0	OK 000	= 0.4
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq} \leq q_n \cdot \phi_b \rightarrow 5.77 \text{ ksf}$: Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDM) Check Bearing Resistance - Undrained Concominal Bearing Resistance: $q_n=cN_{cm}$ $N_{cm}=N_c s_c i_c=5.140$ $s_c=1+(13.14 \text{ ft/[(5)(160 ft)]}=1.000$ $i_c=1.000 \text{ (Assumed)}$	$i_q = 1.000 \text{ (A} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 1.000 \ C_{wq} = 7.9 \text{ ft} > 3$	$0.0 \mathrm{ft} = 1.000$	5.77 5.77 4 ft)	10.11 $ksf \le 6.$ $N_{\gamma} = 0$ $S_{\gamma} = i$ $i_{\gamma} = C$ $C_{w\gamma} = 7$	ksf $S_{\gamma}i_{\gamma}$	= 0.0. (Assumed (Assu	OK 000	= 0.4
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq} \leq q_n \cdot \phi_b \rightarrow 5.77 \text{ ksf}:$ Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDM) Sheck Bearing Resistance - Undrained Concombinal Bearing Resistance: $q_n=cN_{cm}$ $N_{cm}=N_c s_c i_c=5.140$ $N_c=5.140$ $s_c=1+(13.14 \text{ ft/[(5)(160 ft)]}=1.000$ $i_c=1.000 \text{ (Assumed)}$	$i_q = 1.000 \text{ (A}$ $C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc})$	$\begin{array}{lll} \text{0.0 ft} &=& 1.000 \\ \text{cf)} &(13.1 \text{ ft)} &(12.5) &(0.5 \\ \hline & & \\ \text{0.57 ksf} & \longrightarrow \\ & & \\ \text{0.57 ksf} & \longrightarrow \\ & & \\ &$	5.77 5.77 4 ft)	10.11 $ksf \le 6.9$ $N_{\gamma} = 0$ $s_{\gamma} = 0$ $i_{\gamma} = 0$	ksf ksf $S_{\gamma}i_{\gamma}$	= 0.0. (Assumed (Assu	OK 000	= 0.
$q_n=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq}=$ (0 psf)(22.25) + (120 pcf)(3.0 ft)($q_{eq} \leq q_n \cdot \phi_b \rightarrow 5.77 \text{ ksf}:$ Use $\varphi_b=$ 0.65 (Per AASHTO LRFD BDN) Check Bearing Resistance - Undrained Concominal Bearing Resistance: $q_n=cN_{cm}$ $N_{cm}=N_c s_c i_c=5.140$ $N_c=5.140$ $s_c=1+(13.14 \text{ ft/[(5)(160 ft)]}=1.000$ $i_c=1.000 \text{ (Assumed)}$	$i_q = 1.000 \text{ (A} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 1.000 \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 7.9 \text{ ft} > 3$ $14.3)(1.0) + \frac{1}{2}(120 \text{ pc} \ C_{wq} = 1.000 \ C_{wq} = 7.9 \text{ ft} > 3$	$\begin{array}{lll} 0.0 \ \mathrm{ft} & = & 1.000 \\ \mathrm{cf)} & (13.1 \ \mathrm{ft)} & (12.5) & (0.5) \\ & & \\ $	5.77 5.77 4 ft)	10.11 $ksf \le 6.$ $N_{\gamma} = 0$ $S_{\gamma} = i$ $i_{\gamma} = C$ $C_{w\gamma} = 7$	ksf $S_{\gamma}i_{\gamma}$	= 0.0. (Assumed (Assu	OK 000	= 0.5

RESOURCE INTERNATIONAL, INC.

FRA-70-12.68 W-13-045 JOB SHEET NO. CALCULATED BY DATE 7/4/2018 JPS CHECKED BY DATE 7/5/2018 Retaining Wall 4W11 - Sta. 1+78 to 3+38

	COLUMBUS, OHIO 43231
	PHONE: (614) 823-4949
10	FAX: (614) 823-4990
37	
	WWW.RESOURCEINTERATIONAL.COM

MSE Wall Dimensions and Retained Soil Paran		Bearing So									
MSE Wall Height, (<i>H</i>) =	20.0 ft	MSE Backfil		120 pc							
MSE Wall Width (Reinforcement Length), (<i>B</i>) =	17.0 ft	MSE Backfil	I Frictio	n Angle,	$(\varphi_{BF}) =$		34 °				
Distance from Wall Face to Toe of Backslope, (<i>l</i>) =	2.0 ft	Bearing Soil		125 pc							
MSE Wall Length, (<i>L</i>) =	160.0 ft	Bearing Soil		32 °							
MSE Wall Effective Height, (h) =	28.5 ft	Bearing Soil	_s)=	0 psf							
Retained Soil Backslope, (β) =	26.6 °	Bearing Soil	ıgth,	$[(s_u)_{BS}] =$	0 ps						
Effective Retained Soil Backslope, (θ) =	20 °	Embedment		3.0 ft							
Distance from Toe to Top of Backslope, (z) =	29.0 ft	Depth to GV	=	7.9 ft							
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf										
Retained Soil Friction Angle, (φ_{RS}) =	30 °	LRFD Load	d Facto	ors							
Retained Soil Drained Cohesion, (c_{RS}) =	0 psf		ΕV	EH	LS						
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =	2000 psf	Strength la	1.00	1.50	1.75	٦	(AASHTO LRFD I	RDM Tables			
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.414	Strength lb	1.35	1.50	1.75	-	3.4.1-1 and 3.4.1	1-2 - Active			
Live Surcharge Load, (σ_{LS}) =	0 psf	Service I	1.00	1.00	ال	Earth Pres	sure)				
1. Drained cohesion for retained soil not accounted for in external stability	analyses. This parameter is	s utilized in global stability	analysis.								

$$M_{V} = P_{EV_{1}}(x_{1}) + P_{EV_{2}}(x_{2}) + P_{EH} \sin \theta(B) = (\gamma_{BF} H B \gamma_{EV})(1/2 B) + (1/2 \gamma_{RS} (h - H)(B - l)\gamma_{EV})(l + 1/2 (B - l)) + (1/2 \gamma_{RS} h^{2} K_{a} \gamma_{EH} \sin \theta)(B)$$

 $M_V =$ [(120 pcf)(20.0 ft)(17.0 ft)(1.00)][½(17.0 ft)] + [½(120 pcf)(28.5 ft - 20.0 ft)(17.0 ft - 2.0 ft)(1.00)][2.0 ft + ¾(17.0 ft - 2.0 ft)] 556.16 kip-ft/ft + [1/2(120 pcf)(28.5 ft)2(0.414)(1.00)sin(20°)](17.0 ft)

$$M_{H} = P_{EH} \cos \theta(x_{3}) + P_{LS} \cos \theta(x_{4}) = \left(\frac{1}{2}\gamma_{RS}h^{2}K_{a}\gamma_{EH} \cos \theta\right)\left(\frac{h}{3}\right) + \left(\sigma_{LS}hK_{a}\gamma_{LS} \cos \theta\right)\left(\frac{h}{2}\right)$$

 $\frac{1}{2}[(120 \text{ pcf})(28.5 \text{ ft})^2(0.414)(1.00)\cos(20^\circ)](28.5 \text{ ft}/3)$ = 180.36 kip·ft/ft + [(0 psf)(28.5 ft)(0.414)(1.00)cos(20°)](28.5 ft /2)

$$P_{V} = P_{EV_{1}} + P_{EV_{2}} + P_{EH} \sin \theta = (\gamma_{BF} H B \gamma_{EV}) + (\frac{1}{2} \gamma_{RS} (h - H)(B - l) \gamma_{EV}) + (\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} \sin \theta)$$

 $P_V = (120 \text{ pcf})(20.0 \text{ ft})(17.0 \text{ ft})(1.00) + \frac{1}{2}(120 \text{ pcf})(28.5 \text{ ft} - 20.0 \text{ ft})(17.0 \text{ ft} - 2.0 \text{ ft})(1.00) = 55.37 \text{ kip/ft}$ + 1/2(120 pcf)(28.5 ft)2(0.414)(1.00)sin(20°)

Settlement (See Attached Spreadsheet Calculations):

Total Settlement at Center of Reinforced Soil Mass: $S_t =$ 2.769 Total Settlement at Wall Facing: $S_t =$ 2.287

Time Rate of Consolidation Settlement at Wall Facing (See Attached Spreadsheet Calculations):

 $(S_c)_{100} =$ 2.287 in 15 days following completion of construction W-13-045 - FRA-70-12.86 - Retaining Wall 4W11

MSE Wall Settlement - Sta. 1+78 to Sta. 3+38

Boring B-108-2-13, B-108-3-13 and B-108-9-15

H= 20.0 ft Total wall height

B'= 13.6 ft Effective footing width due to eccentricity

 D_w = 7.9 ft Depth below bottom of footing

 q_e = 4,080 psf Equivalent bearing pressure at bottom of wall

															Total S	Settlement at	Center of Re	einforced Soi	il Mass	Total Settlement at Facing of Wall									
Layer	Soil Class.	Soil Type		Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z_f /B	1 ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	$\Delta\sigma_{v}^{(8)}$ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-2-4	G	0.0	4.0	4.0	2.0	125	500	250	250	3,250					14	24	83	0.15	0.990	4,040	4,290	0.060	0.717	0.499	2,037	2,287	0.046	0.558
'	A-2-4	G	4.0	8.5	4.5	6.3	125	1,063	781	781	3,781					14	18	71	0.46	0.844	3,444	4,225	0.046	0.557	0.484	1,973	2,755	0.035	0.416
2	A-6b	С	8.5	11.0	2.5	9.8	115	1,350	1,206	1,091	4,091	37	0.243	0.012	0.561				0.72	0.686	2,801	3,891	0.011	0.129	0.453	1,847	2,938	0.008	0.100
	A-6b	С	11.0	13.5	2.5	12.3	115	1,638	1,494	1,222	4,222	37	0.243	0.024	0.561				0.90	0.593	2,418	3,641	0.018	0.221	0.425	1,734	2,956	0.015	0.179
3	A-1-b	G	13.5	16.0	2.5	14.8	125	1,950	1,794	1,366	4,366					19	21	77	1.08	0.517	2,110	3,476	0.013	0.157	0.396	1,615	2,981	0.011	0.131
4	A-4a	G	16.0	18.5	2.5	17.3	125	2,263	2,106	1,523	4,523					23	25	47	1.27	0.456	1,862	3,384	0.018	0.219	0.367	1,498	3,021	0.016	0.188
5	A-6b	С	18.5	21.0	2.5	19.8	120	2,563	2,413	1,673	4,673	37	0.243	0.024	0.561				1.45	0.407	1,661	3,334	0.012	0.140	0.341	1,390	3,063	0.010	0.123
6	A-1-b	G	21.0	26.5	5.5	23.8	130	3,278	2,920	1,931	4,931					31	31	103	1.75	0.346	1,412	3,343	0.013	0.153	0.303	1,235	3,166	0.011	0.138
0	A-1-b	G	26.5	32.5	6.0	29.5	130	4,058	3,668	2,320	5,320					31	30	98	2.17	0.284	1,157	3,477	0.011	0.130	0.259	1,055	3,374	0.010	0.120
7	A-1-a	G	32.5	42.5	10.0	37.5	130	5,358	4,708	2,860	5,860					37	33	107	2.76	0.226	922	3,782	0.011	0.137	0.213	868	3,729	0.011	0.130
,	A-1-a	G	42.5	52.5	10.0	47.5	130	6,658	6,008	3,536	6,536					37	30	99	3.49	0.180	734	4,270	0.008	0.099	0.173	706	4,242	0.008	0.096
8	A-2-6	G	52.5	57.5	5.0	55.0	130	7,308	6,983	4,043	7,043					31	24	83	4.04	0.156	636	4,679	0.004	0.046	0.151	617	4,661	0.004	0.045
9	A-4a	С	57.5	62.5	5.0	60.0	120	7,908	7,608	4,356	7,356	18	0.072	0.007	0.413				4.41	0.143	584	4,940	0.001	0.017	0.140	569	4,926	0.001	0.016
10	A-3a	G	62.5	67.5	5.0	65.0	125	8,533	8,220	4,657	7,657					22	16	60	4.78	0.132	540	5,196	0.004	0.048	0.129	528	5,185	0.004	0.047
1. σ _p ' = σ _ν	₀'+σ _{m;} Estima	te $\sigma_{\rm m}$ of 3,0	00 psf for mo	oderately ove	erconsolidate	ed soil deposi	t; Ref. Table	11.2, Codut	o 2003		•										Total	Settlement:		2.769 in	Total Settlement: 2.287 in				2.287 in

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

 Calculated By:
 BRT
 Date:
 7/4/2018

 Checked By:
 JPS
 Date:
 7/5/2018

^{3.} $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_{o}/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{vo}') \\ \text{for } \sigma_p' \leq \sigma_{vo}' < \sigma_{v'}; \ [C_{f}/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') \\ \text{for } \sigma_{vo}' < \sigma_{v'}; \ [C_{f}/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') \\ \text{for } \sigma_{vo}' < \sigma_{v'}; \ \text{Ref. Section } 10.6.2.4.3, \ \text{AASHTO LRFD BDS (Cohesiv soil layers)} \\ \text{(AASHTO LRFD BDS (Cohesiv soil layers)$

^{10.} S_c = H(1/C')log(σ_{v_l} '/ σ_{v_o} '); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

W-13-045 - FRA-70-12.86 - Retaining Wall 4W11

MSE Wall Settlement - Sta. 1+78 to Sta. 3+38

Boring B-108-2-13, B-108-3-13 and B-108-9-15

H= 20.0 ft Total wall height A-6b A-4a B'= 13.6 ft Effective footing width due to eccentricity 400 1000 ft²/yr $c_v =$ Coefficient of consolitation 7.9 Depth below bottom of footing 15 15 days Time following completion of construction 4,080 Equivalent bearing pressure at bottom of wall $H_{dr} =$ 2.5 Length of longest drainage path considered $q_e =$ psf 2.5 $T_v =$ 2.630 6.575 Time factor 100 U = 100 Degree of consolidation

 $(S_c)_t =$

2.287 in

																			Primary Consolidation								
Layer	Soil Type	Soil Type	Layer (¹	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z_f /B	I ⁽⁷⁾	Δσ _ν ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-2-4	G	0.0	4.0	4.0	2.0	125	500	250	250	4,250					14	24	83	0.15	0.499	2,037	2,287	0.046	0.558	0.974	0.558	0.974
'	A-2-4	G	4.0	8.5	4.5	6.3	125	1,063	781	781	4,781					14	18	71	0.46	0.484	1,973	2,755	0.035	0.416	0.974	0.416	7 0.974
2	A-6b	С	8.5	11.0	2.5	9.8	115	1,350	1,206	1,091	5,091	37	0.243	0.012	0.561				0.72	0.453	1,847	2,938	0.008	0.100	0.280	0.100	0.280
2	A-6b	С	11.0	13.5	2.5	12.3	115	1,638	1,494	1,222	5,222	37	0.243	0.024	0.561				0.90	0.425	1,734	2,956	0.015	0.179	0.200	0.179	0.200
3	A-1-b	G	13.5	16.0	2.5	14.8	125	1,950	1,794	1,366	5,366					19	21	77	1.08	0.396	1,615	2,981	0.011	0.131	0.131	0.131	0.131
4	A-4a	G	16.0	18.5	2.5	17.3	125	2,263	2,106	1,523	5,523					23	25	47	1.27	0.367	1,498	3,021	0.016	0.188	0.188	0.188	0.188
5	A-6b	С	18.5	21.0	2.5	19.8	120	2,563	2,413	1,673	5,673	37	0.243	0.024	0.561				1.45	0.341	1,390	3,063	0.010	0.123	0.123	0.123	0.123
6	A-1-b	G	21.0	26.5	5.5	23.8	130	3,278	2,920	1,931	5,931					31	31	103	1.75	0.303	1,235	3,166	0.011	0.138	0.258	0.138	0.258
0	A-1-b	G	26.5	32.5	6.0	29.5	130	4,058	3,668	2,320	6,320					31	30	98	2.17	0.259	1,055	3,374	0.010	0.120	0.236	0.120	0.236
7	A-1-a	G	32.5	42.5	10.0	37.5	130	5,358	4,708	2,860	6,860					37	33	107	2.76	0.213	868	3,729	0.011	0.130	0.225	0.130	0.225
,	A-1-a	G	42.5	52.5	10.0	47.5	130	6,658	6,008	3,536	7,536					37	30	99	3.49	0.173	706	4,242	0.008	0.096	0.096	0.225	
8	A-2-6	G	52.5	57.5	5.0	55.0	130	7,308	6,983	4,043	8,043					31	24	83	4.04	0.151	617	4,661	0.004	0.045	0.045	0.045	0.045
9	A-4a	С	57.5	62.5	5.0	60.0	120	7,908	7,608	4,356	8,356	18	0.072	0.007	0.413				4.41	0.140	569	4,926	0.001	0.016	0.016	0.016	0.016
10	A-3a	G	62.5	67.5	5.0	65.0	125	8,533	8,220	4,657	8,657					22	16	60	4.78	0.129	528	5,185	0.004	0.047	0.047	0.047	0.047

Settlement complete at 100% of primary consolidation

- 1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 3,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003
- 2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5
- 3. $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981
- 4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \ \ S_c = [C_o/(1+e_o)](H)log(\sigma_{v_f}/\sigma_{v_o}') for \ \sigma_p' \leq \sigma_{v_o}' < \sigma_{v_f}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_o/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_o/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}'$
- 10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By: BRT Date: 07/04/2018 Checked By: Date: 07/05/2018

Settlement Remaining After Hold Period: 0.000 in

Total Settlement at Facing of Wall

Settlement Complete at 100% of

