FRA-70-12.68 PROJECT 4R RETAINING WALLS 4W5 AND 4W6 PID NO. 105523 FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For: GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

> Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

> > Rii Project No. W-13-045

July 2018

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

December 1, 2015 (Revised July 16, 2018)

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Structure Foundation Exploration Report FRA-70-12.68 Project 4R Retaining Walls 4W5 and 4W6 PID No. 105523 Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this structure foundation exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of proposed Retaining Walls 4W5 and 4W6 as part of the FRA-70-12.68 Project 4R in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

linn

Brian R. Trenner, P.E. Director – Geotechnical Programming

Jonathan P. Sterenberg, P.E. Director – Geotechnical Planning

Enclosure: Structure Foundation Exploration Report

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 Planning

Engineering

Construction Management

Technology

Section	on	Pa	ge
EXEC	UTIVE S	SUMMARY	I
		ation and Findings es and Recommendations	
1.0	INTRO	DUCTION	1
2.0	GEOLC	OGY AND OBSERVATIONS OF THE PROJECT	2
		Site Geology Existing Conditions	
3.0	EXPLO	RATION	4
4.0	FINDIN	GS	7
	4.2 S 4.3 E 4.4 C	Surface Materials Subsurface Soils Bedrock Groundwater Historic Borings	8 9 11
5.0	ANALY	SES AND RECOMMENDATIONS	12
	5.2 N	Lightweight (Cellular Concrete) Wall RecommendationsMSE Wall Recommendations5.2.1Strength Parameters Utilized in External and Global Stability	
		Analyses	
	-	5.2.2 Bearing Stability	
		5.2.3 Settlement Evaluation	
		5.2.4 Eccentricity (Overturning Stability)	
		5.2.5 Sliding Stability 5.2.6 Overall (Global) Stability	
		5.2.7 Final MSE Wall Considerations	
	-	Lateral Earth Pressure	-
		Construction Considerations	
		5.4.1 Excavation Considerations	
		5.4.2 Groundwater Considerations	
6.0	LIMITA	TIONS OF STUDY	25

TABLE OF CONTENTS

APPENDICIES

Appendix I	Vicinity Map and Boring Plan
Appendix II	Description of Soil Terms
Appendix III	Project Boring Logs: B-020-1-13, B-020-2-13, B-020-3-13, B-020-7-13, B-020-9-15, B-021-0-08, B-023-0-08, B-023-1-13 and B-024-0-08
Appendix IV	Historic Boring Logs: B-001-A-57 and B-003-A-57
Appendix V	Laboratory Test Results
Appendix VI	Cellular Concrete Wall Calculations
Appendix VII	MSE Wall Calculations

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for the design and construction of the proposed retaining walls 4W5 and 4W6 as part of the FRA-70-12.68 Project 4R. Based on the proposed plan information provided by GPD GROUP, Retaining Wall 4W5 begins at station 176+66.37, 39.84' Lt (BL I-70 EB) and continues south along the forward abutment of the proposed FRA-70-1373R bridge carrying I-70 eastbound over Short Street to Sta. 176+97.14, 60.00' Rt. (BL I-70 EB). The wall continues south along the forward abutment of the proposed FRA-70-1373A bridge carrying Ramp C5 over Short Street between Sta. 5081+23.26, 25.73' Lt. and Sta. 5081+37.65, 24.29' Rt. (BL Ramp C5), and turns east and continues along the south side of Ramp C5 to Sta. 5085+53.99, 24.29' Rt. (BL Ramp C5), where the wall connects to the rear abutment of the proposed FRA-70-1390C bridge structure. **Please note that the design of the MSE wall where it crosses the abutments of the proposed bridge structures will be governed by the recommendations in the bridge structure report, which is presented under a separate cover.**

Retaining Wall 4W6 begins at Sta. 177+05.64, 59.72' Rt. (BL I-70 EB) and extends east along the north side of Ramp C5 to Sta. 180+30.70, 53.22' Rt. (BL I-70 EB). The wall will connect to the forward abutment of the proposed FRA-70-1373A structure at the east end of the wall alignment and to the rear abutment of the proposed FRA-70-1390C bridge carrying Ramp C5 over I-70 eastbound and westbound at the west end of the wall alignment.

Exploration and Findings

Between July 1, 2013 and January 22, 2015, six (6) structural borings, designated as B-020-1-13, B-020-2-13, B-020-3-13, B-020-7-13, B-020-9-15 and B-023-1-13, were drilled to completion depths ranging from 48.1 to 86.0 feet below the existing ground surface. In addition to the borings performed by Rii for the current exploration, three (3) borings, designated as B-021-0-08, B-023-0-08 and B-024-0-08, were drilled to completion depths ranging from 35.0 to 111.5 feet below the existing ground surface by DLZ as part of the FRA-70-8.93 preliminary exploration. In addition to the project borings, two (2) borings, designated as B-001-A-59 and B-003-A-59, were drilled to a completion depth of 51.0 feet each below the existing grade at the respective boring location at the time of the exploration by the Department of Highways as part of the FRA-40-12.89 project.

Boring B-020-1-13 was on the property located at the southwest corner of Short Street and an access drive that extends west of Short Street along the south side of I-70 to the existing railroad tracks and encountered 6.0 inches of topsoil overlying 4.0 inches of brick pavers at the ground surface. Boring B-020-2-13 was drilled through existing pavement at the entry of the access drive and encountered 4.0 inches of asphalt overlying 6.0 inches of aggregate base. Borings B-020-3-13 and B-020-9-13 were drilled through the existing pavement of Short Street and encountered 4.0 inches of

asphalt overlaying 4.0 inches of brick pavers in each boring followed by 9.0 and 3.0 inches of aggregate base, respectively, at the ground surface. Boring B-020-7-13 was drilled through the existing sidewalk along the east side of Short Street, below the existing structure and between the curb and pier columns, and encountered 8.0 inches of concrete at the ground surface. Boring B-023-0-08 was performed within the pavement of W. Fulton Street and encountered 4.0 inches of asphalt, overlying 8.0 inches of concrete followed by 6.0 inches of aggregate base at the ground surface. Borings B-021-0-08, B-023-1-13 and B-024-0-08 were drilled on the property located at the southeast corner of W. Fulton Street and Short Street. Boring B-021-0-08 encountered 3.0 inches of gravel at the ground surface and natural soils were encountered at the surface in borings B-023-1-13 and B-024-0-08.

Beneath the surface materials in borings B-020-1-13, B-020-2-13, B-020-3-13, B-020-7-13, B-020-9-15, B-021-0-08 and B-023-0-08, material identified as existing fill was encountered extending to depths ranging from 10.5 to 21.5 feet below existing grade, which corresponds to elevations ranging from 690.9 to 702.5 feet msl. The fill material consisted of dark brown, brown, black and gray gravel and sand, gravel with sand and silt, sandy silt, silt and clay, silty clay and clay (ODOT A-1-b, A-2-4, A-4a, A-6a, A-6b, A-7-6). The fill material was placed within the limits of the abandoned canal and contains construction debris and organics throughout. Additionally, the SPT blow counts were significantly lower and more variable within the fill depth of the borings where fill was encountered.

Underlying the surficial materials and existing fill, natural granular and cohesive soils were encountered. The granular soils were generally described as brown, gray, brownish gray, dark brown and black gravel, gravel and sand, gravel with sand and silt, gravel with sand, silt and clay, fine sand, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3, A-3a, A-4a, A-4b). The cohesive soils were described as gray, brown, brownish gray and dark gray sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6b, A-7-6).

Top of bedrock was encountered in borings B-020-1-13, B-020-2-13, B-020-7-13, B-020-9-13, B-021-0-08 and B-024-0-08 at elevations ranging from 647.1 to 660.9 feet msl. The upper portion of the bedrock consists of weak shale which was able to be augered to competent shale or mudstone bedrock in borings B-020-2-13 and B-021-0-08 and competent limestone bedrock in boring B-020-1-13. The cored bedrock consists of shale and mudstone, which was encountered in borings B-020-2-13, B-020-7-13, B-020-9-13, B-021-0-08 and B-024-0-08 at elevations ranging from 641.9 to 657.9 feet msl, and limestone bedrock, which was encountered in borings B-020-1-13 and B-020-2-13 and

In general, the subsurface conditions encountered in the historic borings matched relatively closely with the subsurface conditions encountered in the current and preliminary engineering exploration borings.

Analyses and Recommendations

Based on the plan information provided, the lightweight cellular concrete modified MSE walls and fill will be placed along the abutments of the FRA-70-1373A and R structures and will extend east to Sta. 5083+25 (BL Ramp C5) and Sta. 178+10 (BL I-70 EB). The cellular concrete fill section will extend the full height from the leveling pad elevation to the profile grade of the roadway. Where the walls and I-70 eastbound embankment span over the influence of the Franklin Main, it is understood that significant undercut of the existing soils will be performed, which will be backfilled with lightweight cellular concrete as part of the Project 2B improvements. Cellular concrete will be placed to the profile grade of Ramp C5, as well as geofoam blocking to the profile grade of I-70 eastbound within the limits of influence, which will result in no net loading. From Sta. 5083+25 to the end of the wall alignments at the read abutment of the FRA-70-1390C bridge structure, traditional MSE walls will be utilized.

Lightweight (Cellular Concrete) Wall Recommendations

Given the presence of existing fill material to significant depths, as well as the significant amount of existing utilities present along the east side of Short Street, it is understood that lightweight fill material consisting of cellular concrete is being considered to be utilized as the backfill along the length of Walls 4W5 and 4W6 from the FRA-70-1373A and R bridge structures to Sta. 5083+25 (BL Ramp C5) and Sta. 178+10 (BL I-70 EB). The use of the lightweight cellular concrete will eliminate the need for undercut or ground improvement to stabilize the underlying existing fill material and control settlement to tolerable limits. Based on information provided by GPD GROUP, two types of lightweight cellular concrete will be utilized in lieu of typical embankment fill and select granular fill, which is typically used for MSE wall applications. The wall facing will be connected to geosynthetic straps that are embedded into the cellular concrete and supported on a leveling pad, similar to traditional MSE walls. It is recommended that the reinforcement extend the minimum length of 70 percent of the wall height into the cellular concrete backfill, similar to traditional MSE walls.

Since the wall is located within an existing floodplain, the analysis was performed using a design groundwater level at the ground surface.

Based on the plan information provided, it is understood that the cellular concrete fill will be placed the full height of the embankment and full width of both Ramp C5 and I-70 eastbound. As such, external and global stability calculations will not be required for these sections of Wall 4W5 and 4W6. However, if bearing resistance must be checked, then a factored bearing resistance of 3.8 ksf should be utilized for design at the strength limit state.

Total settlements of 2.61 to 4.28 inches at the center of the wall mass and 1.98 to 3.15 inches at the facing of the wall are anticipated along Wall 4W5 where is crosses in front of the forward abutment of the two structures. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately 0 to 35 days.

The beginning of Retaining Wall 4W6, from Sta. 177+05 to 178+40 (BL I-70 EB), will be supported on approximately 25 to 30 feet of cellular concrete backfill. Once the cellular concrete has setup and cured at the bottom of wall elevation (leveling pad), this material will be suitable for support of the proposed wall along this length.

MSE Wall Recommendations

It is understood that a traditional MSE wall type is being utilized for Retaining Wall 4W5 from Sta. 5083+25 (BL Ramp C5) and Retaining Wall 4W6 from Sta. 178+85 (BL I-70 EB) to the end of the wall alignments, where they tie into the rear abutment of the proposed FRA-70-1390C bridge structure. Based on the proposed plan and profile information, the maximum wall height along the alignment of Retaining Wall 4W5 east of Sta. 5081+38 (BL Ramp C5) will range from 30.1 feet at Sta. 5085+54 to 45.3 feet at Sta. 5082+00 (BL Ramp C5), and wall height along the alignment of Retaining Wall 4W6 range from 14.6 feet at Sta. 177+06 to 26.7 feet at Sta. 180+31 (BL I-70 EB), as measured from the top of the coping and the top of the leveling pad. Since the wall is located within an existing floodplain, the analysis was performed using a design groundwater level at the ground surface.

Natural cohesive soils consisting of very stiff to hard sandy silt, silty clay and clay (ODOT A-4a, A-6b, A-7-6) were encountered at the proposed bearing elevation in borings B-003-A-59, B-023-1-13 and B-024-0-08 along the alignment of Wall 4W5 between Sta. 5083+25 to 5085+54 (BL Ramp C5). Retaining Wall 4W6 will be supported on approximately 10.0 to 20.0 feet of new fill from Sta. 178+85 to 180+31 (BL I-70 EB). MSE wall foundations bearing on these natural soils or granular embankment, placed and compacted in accordance with ODOT Item 203, may be proportioned for a nominal bearing resistance as indicated in the following table. A geotechnical resistance factor of ϕ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state.

Structure Reference	From Station /	To Station /	Wall Height Analyzed	Minimum Required Reinforcement	Bearing Resistance at Strength Limit (ksf)		Strength Limit Equivalent Bearing
	Offset ¹	Offset ¹	(feet)	Length ² (feet)	Nominal	Factored ³	Pressure ⁴ (ksf)
Retaining Wall 4W5	5083+25, 24.3' Rt.	5085+54, 24.3' Rt.	39.2	27.4 (0.70H)	14.16	9.20	8.91
Retaining Wall 4W6	178+85, 56.0' Rt.	180+30, 53.2' Rt.	26.7	18.7 (0.70H)	15.16	9.85	6.32

Retaining Wall 4W5 and 4W6 MSE Wall Design Parameters

1. Station and offset referenced to the baseline of Ramp C5 for Retaining Wall 4W5, and to the baseline of I-70 EB for Retaining Wall 4W6.

2. The required foundation width is expressed as a percentage of the wall height, H.

3. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Given that Walls 4W5 and 4W6 will both be constructed to the same profile grade and that Wall 4W6 will be constructed on granular embankment that extends to the same bottom of wall elevation as 4W5, settlement analysis was performed for Wall 4W5 only, and is considered representative of the settlement anticipated along Wall 4W6. Total settlements of 3.56 to 5.44 inches at the center of the reinforced mass and 2.27 to 2.37 inches at the facing of the wall are anticipated along the portion of the alignment of Retaining Walls 4W5 and 4W6 where the standard MSE walls are proposed. Based on the results of the analysis, 90 percent of the total settlement at the facing of the walls is anticipated to occur during construction of the wall or within 11 to 35 days following the completion of construction of the walls.

Based on the results of the external and global stability analysis performed for the MSE walls, the recommended controlling strap length is 0.70 times the height of the MSE walls (measured from the top of the leveling pad to top of the coping) along the alignment of Retaining Wall 4W5 between Sta. 5083+25 and 5085+54 (BL Ramp C5) and Retaining Wall 4W6 between Sta. 178+85 to 180+31 (BL I-70 EB). All of the external and global stability calculations indicate that adequate resistance is available for support of the proposed walls using the configurations and backfill materials outlined in the plan sheets provided by GPD GROUP.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for the design and construction of proposed retaining walls 4W5 and 4W6 as part of the FRA-70-12.68 Project 4R, as shown on the vicinity map and boring plan presented in Appendix I. The retaining walls will provide the required grade separation to support Ramp C5 adjacent to the proposed I-70 eastbound along the north side of the ramp and the existing terrain to the south. Based on the proposed plan information provided by GPD GROUP, Retaining Wall 4W5 begins at station 176+66.37, 39.84' Lt (BL I-70 EB) and continues south in front of the forward abutment of the proposed FRA-70-1373R bridge carrying I-70 eastbound over Short Street to Sta. 176+97.14, 60.00' Rt. (BL I-70 EB). The wall continues south in front of the forward abutment of the proposed FRA-70-1373A bridge carrying Ramp C5 over Short Street between Sta. 5081+23.39. 25.73' Lt. and Sta. 5081+37.65, 24.29' Rt. (BL Ramp C5), and turns east and continues along the south side of Ramp C5 to Sta. 5085+53.99, 24.29' Rt. (BL Ramp C5), where the wall connects to the rear abutment of the proposed FRA-70-1390C bridge structure. The total wall length is approximately 580 lineal feet as measured along the facing of the wall. The maximum wall height where the wall crosses in front of the forward abutments of the FRA-70-1373R and FRA-70-1373A structures is 37.1 and 44.1 feet, respectively, and wall heights along the remainder of the wall alignment range from 30.1 feet at Sta. 5085+54 to 45.3 feet at Sta. 5082+00 (BL Ramp C5). Please note that the design of the MSE wall where it crosses the abutments of the proposed bridge structures will be governed by the recommendations in the bridge structure report, which is presented under a separate cover.

Retaining Wall 4W6 begins at Sta. 177+05.64, 59.72' Rt. (BL I-70 EB) and extends east along the north side of Ramp C5 to Sta. 180+30.70, 53.22' Rt. (BL I-70 EB). The wall will connect to the forward abutment of the proposed FRA-70-1373A structure at the west end of the wall alignment and to the rear abutment of the proposed FRA-70-1390C structure at the east end of the wall alignment. The wall height along the wall alignment ranges from 14.6 feet at Sta. 177+06 to 26.7 feet at Sta. 180+31 (BL I-70 EB), and the total wall length is approximately 325 lineal feet as measured along the facing of the

wall. Due to the grade difference of the proposed I-70 eastbound from the existing grade, Retaining Wall 4W6 will be supported on new fill for the entire alignment.

Several wall type alternatives were considered during the Stage 1 design for these structures, including traditional mechanically stabilized earth (MSE) walls and walls constructed of lighter weight fill material such as geofoam and cellular concrete. Based on the evaluation performed as part of the Stage 1 design, it was determined that ground improvement would be required for a portion of the alignment if traditional MSE walls were utilized due to the presence of existing weak, highly variable fill soils encountered in several of the borings. Based on coordination with the Ohio Department of Transportation (ODOT) Office of Geotechnical Engineering (OGE), it was elected to utilize MSE wall types with lightweight cellular concrete backfill in lieu of typical soil backfill materials to reduce the bearing stress and settlement within the weak fill soils, where encountered along the wall alignments.

Additionally, it is understood that no net loading is permitted to be applied over the Franklin Main, which has been previously lined and subsequently loaded to the maximum permissible overburden pressure. Therefore, the lightweight cellular concrete modified MSE walls will be utilized to span Ramp C5 over the existing Franklin Main, where additional undercut of the existing soil and backfill with the lightweight cellular concrete will be provided to reduce the net loading on the existing 60-inch brick sewer. Where I-70 spans over the Franklin Main, geofoam blocking in conjunction with undercut and of the existing soil and backfill with lightweight cellular concrete will be utilized. On the east side of the Franklin Main, traditional MSE wall types with typical soil backfill be utilized up to the proposed FRA-70-1390C structure.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in

composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of the Scioto River, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits. Within the borings performed for this current project, shale bedrock was encountered at depths ranging from 60.5 to 91.8 feet below the ground surface, which corresponds to elevations ranging from 647.1 feet to 660.9 feet msl.

2.2 Existing Conditions

The proposed retaining wall 4W5 and 4W6 structures will be situated along the south side of I-70 eastbound, east of Short Street, and will generally follow the existing alignment of W. Fulton Street to just west of 2nd Street. The existing Short Street and W. Fulton Avenue in the vicinity of the structures are two-lane, asphalt paved roadways that are aligned north-to-south and east-to-west, respectively. The existing I-70 eastbound in the vicinity of the structures is a three-lane, asphalt paved roadway that is aligned east-to-west. The existing I-70 roadway profile grade is elevated approximately 26 feet above the Short Street profile grade, and is supported by an existing cast-in-place (CIP) retaining wall along the south side of the alignment between the highway and W. Fulton Street. The terrain along I-70 slopes down gently to the east and along W. Fulton Street slopes up moderately to the east from Short Street, and the surrounding area in the vicinity of the intersection of Short Street and W. Fulton Street is relatively flat-lying.

Based on utility plans provided by GPD GROUP, there are many buried utilities within the Short Street and W. Fulton Street roadways and also beneath the surrounding sidewalks, including the Franklin Main, which is a 60-inch brick sewer that crosses I-70 at approximately Sta. 178+30 (BL I-70 EB). It is understood that this line was previously lined when I-70 was originally constructed and that additional lining cannot be added as the current capacity of the line cannot be reduced further.

Additionally, based on information provided by ODOT and GPD GROUP, it is understood that a canal was formerly located in the area of the Short Street and W. Fulton Street intersection, which was abandoned and filled in prior to construction of the original US 40 or I-70 roadways.

3.0 EXPLORATION

Between July 1, 2013 and January 22, 2015, six (6) structural borings, designated as B-020-1-13, B-020-2-13, B-020-3-13, B-020-7-13, B-020-9-15 and B-023-1-13, were drilled to completion depths ranging from 48.1 to 86.0 feet below the existing ground surface. In addition to the borings performed by Rii for the current exploration, three (3) borings, designated as B-021-0-08, B-023-0-08 and B-024-0-08, were performed by DLZ as part of the FRA-70-8.93 preliminary exploration and their findings were published in a report dated January 2010 and March 2010. The borings were performed between July 1 and September 2, 2008, and were advanced to completion depths ranging from 35.0 to 111.5 feet below the existing ground surface. The current project boring locations are shown on the boring plan provided in Appendix I of this report and summarized in Table 1 below.

Boring Number	Reference Alignment	Station	Offset	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)			
B-020-1-13	BL Ramp C5	5080+09.80	30.9' Rt.	39.952922218	-83.004665587	712.8	86.0			
B-020-2-13	BL I-70 EB	176+13.92	34.0' Rt.	39.953155708	-83.004534664	711.4	84.5			
B-020-3-13	BL Ramp C5	5081+15.55	85.3' Rt.	39.952760425	-83.004309070	712.3	49.8			
B-020-7-13	BL I-70 WB	176+68.64	1.8' Rt.	39.953451540	-83.004376859	713.5	80.4			
B-020-9-15	BL Ramp C5	5081+05.25	39.8' Rt.	39.952886963	-83.004333117	713.0	75.5			
B-021-0-08	BL Ramp C5	5082+48.43	39.8' Rt.	39.952847911	-83.003831990	727.9	90.0			
B-023-0-08	BL I-70 EB	179+52.56	1.9' Lt.	39.953151856	-83.003323535	722.0	35.0			
B-023-1-13	BL Ramp C5	5084+74.16	15.0' Rt.	39.952844807	-83.003019835	732.4	48.1			
B-024-0-08	BL Ramp C5	5085+90.21	3.1' Lt.	39.952928381	-83.002605586	743.4	111.5			

Table 1. Test Boring Summary

The locations for the current exploration borings performed by Rii were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD GROUP.

The borings were drilled using either a truck or an all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing a 3.25 or 4.25-inch inside diameter hollow-stem auger or 4.0-inch flush joint casing to advance the holes. In general, standard penetration test (SPT) and split spoon sampling were performed in the boring at 2.5-foot increments of depth to 20 to 30 feet and at 5.0-foot increments thereafter to the boring termination depth or top of bedrock. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. A calibrated automatic drop hammer was utilized to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blows per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N₆₀, by the following equation. Both values are represented on boring logs in Appendix III.

 $N_{60} = N_m^*(ER/60)$

Where:

 N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The hammers for the Mobile B-53 and CME 750 drill rigs operated by Rii were calibrated on April 26, 2013, and have drill rod energy ratios of 77.7 and 82.6 percent, respectively. The hammer for the CME 55 drill rig operated by Rii was calibrated on October 20, 2014, and has a drill rod energy ratio of 92.0 percent. The hammers for the CME 750X and CME 55-LC drill rigs operated by Stock Drilling were calibrated on March 28, 2013, and have a drill rod energy ratios of 78.6 and 73.2 percent, respectively. The hammers for the CME 75 and CME 750X drill rigs used by DLZ have a drill rod energy ratios of 61.2 and 63.1 percent, respectively. No calibration date is available for the DLZ rig calibrations.

During drilling for the borings performed by Rii and Stock Drilling, field logs were prepared by Rii personnel showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	103
Plastic and Liquid Limits	AASHTO T89, T90	38
Gradation – Sieve/Hydrometer	AASHTO T88	38
Unconfined Compressive Strength of Cohesive Soil	ASTM D2166	1
One-Dimensional Consolidation	ASTM D2435	3
Consolidated Undrained (CU) Triaxial Test	ASTM D4767	2
Point Load Strength Index of Rock Specimens	ASTM D5731	1
Unconfined Compressive Strength of Intact Rock	ASTM D7012	1

The tests performed are necessary to classify existing soil according to the ODOT classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III and also in Appendix V. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

The depth to bedrock was determined by split spoon sampler or auger refusal, or by visual inspection of the very weak to weak shale and mudstone samples in conjunction with the blow counts obtained from the SPT testing. Split spoon sampler refusal is defined as exceeding 50 blows from the hammer with less than 6.0 inches of penetration by the split spoon sampler. Auger refusal is defined as no or insignificant observable advancement of the augers with the weight of the drill rig driving the augers. Where borings were extended into the bedrock, an NQ or HQ-sized double-tube diamond bit core barrel (utilizing wire line equipment) was used to core the bedrock. Coring produced 1.8 or 2.5 inch diameter cores, from which the type of rock and geological characteristics were determined.

Rock cores were logged in the field and visually classified in the laboratory. They were analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

 $RQD = \frac{\sum segments equal to or longer than 4.0 inches}{core run length} x 100$

In addition to the project borings, historic borings performed in 1959 by the Department of Highways as part of the FRA-40-12.89 project were also obtained from the construction documents on record. Two (2) borings, designated as B-001-A-59 and B-003-A-59, were obtained along the alignment of the existing CIP wall separating I-70 eastbound and W. Fulton Street. The borings were extended to a depth of 51.0 feet each below the existing grade at the respective boring location at the time of the exploration. Please note that the elevations provided on the historic boring logs are referenced to the North American Datum (NAD) 27. The current design survey is referenced to NAD 83. The NAD 27 datum is 0.6 feet lower than the NAD 83 datum. **Therefore, all elevations noted in this report with respect to the historic borings are adjusted to the current NAD 83 datum.** The historic boring locations are shown on the boring plan provided in Appendix I, and the historic boring logs are provided in Appendix IV.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings performed as part of the preliminary engineering phase and current exploration and what is represented on the boring logs.

4.1 Surface Materials

Boring B-020-1-13 was on the property located at the southwest corner of Short Street and an access drive that extends west of Short Street along the south side of I-70 to the existing railroad tracks and encountered 6.0 inches of topsoil overlying 4.0 inches of brick pavers at the ground surface. Boring B-020-2-13 was drilled through existing pavement at the entry of the access drive and encountered 4.0 inches of asphalt overlying 6.0 inches of aggregate base. Borings B-020-3-13 and B-020-9-13 were drilled through the existing pavement of Short Street and encountered 4.0 inches of asphalt overlaying 4.0 inches of brick pavers in each boring followed by 9.0 and 3.0 inches of aggregate base, respectively, at the ground surface. Boring B-020-7-13 was drilled through the existing sidewalk along the east side of Short Street, below the existing structure and between the curb and pier columns, and encountered 8.0 inches

of concrete at the ground surface. Boring B-023-0-08 was performed within the pavement of W. Fulton Street and encountered 4.0 inches of asphalt, overlying 8.0 inches of concrete followed by 6.0 inches of aggregate base at the ground surface. Borings B-021-0-08, B-023-1-13 and B-024-0-08 were drilled on the property located at the southeast corner of W. Fulton Street and Short Street. Boring B-021-0-08 encountered 3.0 inches of gravel at the ground surface and natural soils were encountered at the surface in borings B-023-1-13 and B-024-0-08.

4.2 Subsurface Soils

Beneath the surface materials in borings B-020-1-13, B-020-2-13, B-020-3-13, B-020-7-13, B-020-9-15, B-021-0-08 and B-023-0-08, material identified as existing fill was encountered extending to depths ranging from 10.5 to 21.5 feet below existing grade, which corresponds to elevations ranging from 690.9 to 702.5 feet msl. The fill material consisted of dark brown, brown, black and gray gravel and sand, gravel with sand and silt, sandy silt, silt and clay, silty clay and clay (ODOT A-1-b, A-2-4, A-4a, A-6a, A-6b, A-7-6). The fill material was placed within the limits of the abandoned canal and contains construction debris and organics throughout. Additionally, the SPT blow counts were significantly lower and more variable within the fill depth of the borings where fill was encountered.

Underlying the surficial materials and existing fill, natural granular and cohesive soils were encountered. The granular soils were generally described as brown, gray, brownish gray, dark brown and black gravel, gravel and sand, gravel with sand and silt, gravel with sand, silt and clay, fine sand, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3, A-3a, A-4a, A-4b). The cohesive soils were described as gray, brown, brownish gray and dark gray sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6b, A-7-6). Granite boulders were encountered in boring B-020-3-13 at an elevation of 686.3 feet msl and again at an elevation of 662.5 feet msl. Auger refusal was encountered at these elevations, and rock coring was performed for a 5.0-foot interval at both instances, which small boulder pieces were recovered from the core runs. Granite boulders were also encountered in boring B-020-7-13 at an elevation of 657.0 feet msl, and rock coring was performed below this elevation. Based on the lack of recovery and observation of the soil washout in the circulation fluid in core runs RC-1 through RC-3, it is anticipated that this material is a hard cohesive soil rather than highly weathered bedrock.

The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soil encountered ranged from very loose (N₆₀ < 6 blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 2 bpf to split spoon sampler refusal. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soils encountered ranged from very soft (HP \leq 0.25 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of

the cohesive soil samples tested, obtained from the hand penetrometer, ranged from less than 0.25 to over 4.5 tsf (limit of instrument).

Natural moisture contents of the soil samples tested ranged from 4 to 37 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 7 percent below to 7 percent above their corresponding plastic limits. In general, the soils exhibited natural moisture contents considered to be moderately below to moderately above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in the borings as presented in Table 3.

Boring	Ground Surface	Top of	Bedrock	Top of Bedrock Core		
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	
B-020-1-13	712.8	64.2	648.6	80.5	632.3	
B-020-2-13	711.4	64.3	647.1	69.5	641.9	
B-020-3-13	712.3	N/A	N/A	N/A	N/A	
B-020-7-13	713.5	65.4	648.1	65.4	648.1	
B-020-9-15	713.0	60.5	652.5	60.5	652.5	
B-021-0-08	727.9	67.0	660.9	70.0	657.9	
B-023-0-08	722.0	N/A	N/A	N/A	N/A	
B-023-1-13	732.4	N/A	N/A	N/A	N/A	
B-024-0-08	743.4	91.8	651.6	91.5	651.9	

Table 3. Top of Bedrock Elevations

Top of bedrock was encountered in borings B-020-1-13, B-020-2-13, B-020-7-13, B-020-9-13, B-021-0-08 and B-024-0-08 at elevations ranging from 647.1 to 660.9 feet msl. The upper portion of the bedrock consists of weak shale which was able to be augered to competent shale or mudstone bedrock in borings B-020-2-13 and B-021-0-08 and competent limestone bedrock in boring B-020-1-13. The cored bedrock consists of shale and mudstone, which was encountered in borings B-020-2-13, B-020-7-13, B-020-9-13, B-021-0-08 and B-024-0-08 at elevations ranging from 641.9 to 657.9 feet msl, and limestone bedrock, which was encountered in borings B-020-1-13 and B-020-2-13 and 631.9 feet msl, respectively.

The mudstone is described as gray, highly weathered, very weak, thinly laminated to thin bedded, arenaceous, calcareous, fissile, friable and slightly to highly fractured with tight, slightly rough apertures. The shale is described as dark gray, bluish gray and black, slightly to highly weathered, very weak to weak, thinly laminated to medium bedded, arenaceous, calcareous, fissile, friable, pyritic, jointed and moderately to highly fractured with tight to open, slightly rough to very rough apertures. The limestone is described as gray and tan, unweathered to slightly weathered, moderately strong to strong, very thin to medium bedded, calcareous, crystalline, dolomitic, pyritic and slightly fractured to fractured with narrow to open, slightly rough to very rough apertures.

The percent recovery, RQD values and unconfined compressive strengths of the bedrock core runs are summarized in Table 4.

Boring	Core No.	Elevation (feet msl)	Recovery (%)	RQD (%)	Unconfined Compressive Strength
B-020-1-13	RC-2	632.3 to 626.8	99	49	qu @ 80.7' = 9,465 psi
	RC-1	641.9 to 636.9	40	8	N/A
B-020-2-13	RC-2	636.9 to 631.9	20	0	N/A
	RC-3	631.9 to 626.9	97	97	N/A
P 020 7 12	RC-4	648.1 to 638.1	97	89	q _u @ 69.4' = 224 psi ¹
B-020-7-13	RC-5	638.1 to 633.1	100	45	N/A
	RC-1	652.5 to 647.5	52	17	N/A
B-020-9-13	RC-2	647.5 to 642.5	75	48	N/A
	RC-3	642.5 to 637.5	100	80	N/A
	R1	657.9 to 652.9	100	82	N/A
B 021 0 08	R2	652.9 to 647.9	100	90	N/A
B-021-0-08	R3	647.9 to 642.9	100	75	N/A
	R4	642.9 to 637.9	100	87	q _u @ 82.8' = 1,536 psi
P 024 0 08	R2	651.9 to 641.9	97	81	q _u @ 97.7' = 1,650 psi
B-024-0-08	R3	641.9 to 631.9	63	48	N/A

 Table 4. Rock Core Summary

1. Represents the mean unconfined compressive strength based on correlations with the mean point load strength index.

It should be noted that bedrock experiences mechanical breaks during the drilling and coring processes. Rii attempted to account for fresh, manmade breaks during tabulation of the RQD analysis. The zones where boulders were encountered that required rock coring techniques to advance through these zones are not included in the RQD tabulation above. The quality of the cored mudstone and shale bedrock, according to the RQD values of the bedrock units, ranged from very poor (RQD \leq 25%) to good $(75\% < RQD \le 90\%)$, and the quality of the cored limestone bedrock ranged from very fair $(50\% < RQD \le 75\%)$ to excellent (RQD > 90%).

4.4 Groundwater

Table 5. Groundwater Levels								
Poring	Ground Surface	Initial Gro	oundwater	Upon Completion				
Boring Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)			
B-020-1-13	712.8	23.0	689.8	N/A ¹	N/A			
B-020-2-13	711.4	18.5	692.9	N/A ¹	N/A			
B-020-3-13	712.3	15.0	697.3	N/A ¹	N/A			
B-020-7-13	713.5	N/A ²	N/A	N/A ¹	N/A			
B-020-9-15	713.0	24.5	688.5	N/A ¹	N/A			
B-021-0-08	727.9	28.0	699.9	26.9	701.0			
B-023-0-08	722.0	25.0	697.0	19.1	702.9			
B-023-1-13	732.4	32.0	700.4	18.0	714.4			
B-024-0-08	743.4	28.5	714.9	16.5	726.9			

Groundwater was encountered in the borings as presented in Table 5.

1. Groundwater was not encountered in boring B-020-7-13 prior to

introducing water to the borehole. 2. The groundwater level at completion could not be obtained due to the

addition of water or mud as a drilling fluid.

Groundwater was encountered initially during drilling in all of the borings, with the exception of boring B-020-7-13, at depths ranging from 15.0 to 32.0 feet below the existing ground surface, which corresponds to elevations ranging from 689.8 to 714.9 feet msl. Groundwater was not encountered in boring B-020-7-13 prior to introducing water to the borehole. At the completion of drilling and prior to beginning rock coring borings B-021-0-08, B-023-0-08, B-023-1-13 and operations in B-024-0-08. groundwater accumulated in the auger stems to depths ranging from 16.5 to 26.9 feet below the ground surface, which corresponds to elevations ranging from 701.0 to 726.9 feet msl. The groundwater levels at the completion of drilling could not be measured in the remainder of the borings due to the addition of mud to counteract heaving sands as well as water as a circulating fluid during the rock coring process.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

4.5 Historic Borings

Historic boring B-001-A-59 encountered existing fill consisting of loose to medium dense, gray, dark gray and brown gravel and sand, gravel with sand and silt and sandy silt (ODOT A-1-b, A-2-4, A-4a) extending to a depth of 17.0 feet below existing grade at the time the boring was performed, which corresponds to an elevation of 696.9 feet msl. In general, the natural soils encountered below the fill in boring B-001-A-59 and from the ground surface in boring B-003-A-59 consisted of medium dense to very dense granular soils with intermittent seams of very stiff to hard cohesive soils. The granular soils were generally described as brown and gray gravel, gravel and sand, gravel with sand and silt, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a, A-4b), and the cohesive soils were generally described as gray sandy silt, silt and silt and clay (ODOT A-4a, A-4b, A-6a). Boulders were noted throughout the natural granular soil deposits encountered below the fill in boring B-001-A-59 beginning at elevation 696.9 feet msl. Boulders were not noted on the log for boring B-003-A-59. Bedrock was not encountered in the historic borings prior to the termination depths. Groundwater levels were not noted in the borings performed during the 1959 exploration. In general, the subsurface conditions encountered in the historic borings matched relatively closely with the subsurface conditions encountered in the current and preliminary engineering exploration borings.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the current and preliminary exploration programs have been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject structure, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed retaining walls were provided by GPD GROUP. As noted in Section 1.0, traditional MSE walls were evaluated as part of the Stage 1 design and it was determined that ground improvement would be required to support this wall type due to the height of the walls and presence of existing weak, highly variable fill soils encountered in several of the borings. The existing fill is primarily located along the western half of the wall, west of the Franklin Main, where the former canal was abandoned in the vicinity of Short Street and W. Fulton Street. Based on coordination

with the Ohio Department of Transportation (ODOT) Office of Geotechnical Engineering (OGE), it was elected to utilize MSE wall types with lightweight cellular concrete backfill in lieu of typical soil backfill materials to reduce the bearing stress and settlement within the weak fill soils, where encountered along the wall alignments.

Additionally, it is understood that no net loading is permitted to be applied over the Franklin Main, which has been previously lined and subsequently loaded to the maximum permissible overburden pressure. Therefore, the lightweight cellular concrete modified MSE walls will be utilized to span Ramp C5 over the existing Franklin Main, where additional undercut of the existing soil and backfill with the lightweight cellular concrete will be provided to reduce the net loading on the existing 60-inch brick sewer. Where I-70 spans over the Franklin Main, geofoam blocking in conjunction with undercut and of the existing soil and backfill with lightweight cellular concrete will be utilized. On the east side of the Franklin Main, traditional MSE wall types with typical soil backfill be utilized up to the proposed FRA-70-1390C structure.

Based on the plan information provided, the lightweight cellular concrete modified MSE walls and fill will be placed along the abutments of the FRA-70-1373A and R structures and will extend east to Sta. 5083+25 (BL Ramp C5) and Sta. 178+10 (BL I-70 EB). The cellular concrete fill section will extend the full height from the leveling pad elevation to the profile grade of the roadway. Where the walls and I-70 eastbound embankment span over the influence of the Franklin Main, it is understood that significant undercut of the existing soils will be performed, which will be backfilled with lightweight cellular concrete as part of the Project 2B improvements. Cellular concrete will be placed to the profile grade of Ramp C5, as well as geofoam blocking to the profile grade of I-70 eastbound within the limits of influence, which will result in no net loading. From Sta. 5083+25 to the end of the wall alignments at the read abutment of the FRA-70-1390C bridge structure, traditional MSE walls will be utilized.

5.1 Lightweight (Cellular Concrete) Wall Recommendations

Given the presence of existing fill material to significant depths, as well as the significant amount of existing utilities present along the east side of Short Street, it is understood that lightweight fill material consisting of cellular concrete is being considered to be utilized as the backfill along the length of Walls 4W5 and 4W6 from the FRA-70-1373A and R bridge structures to Sta. 5083+25 (BL Ramp C5) and Sta. 178+10 (BL I-70 EB). The use of the lightweight cellular concrete will eliminate the need for undercut or ground improvement to stabilize the underlying existing fill material and control settlement to tolerable limits. Based on information provided by GPD GROUP, two types of lightweight cellular concrete will be utilized in lieu of typical embankment fill and select granular fill, which is typically used for MSE wall applications. The wall facing will be connected to geosynthetic straps that are embedded into the cellular concrete and supported on a leveling pad, similar to traditional MSE walls.

A typical section of the proposed cellular concrete wall system was provided by GPD GROUP. Based on the information provided, the typical section will consist of an approximate 3.0-foot thick pavement section, including asphalt and/or concrete and aggregate base, overlying 2.0 feet of Class III cellular concrete, followed by Class II cellular concrete to the bottom of the embankment/wall elevation. A composite unit weight of 130 pcf was considered for the entire pavement section, and the unit weight of the Class III cellular concrete is 36 pcf and the Class II cellular concrete is 30 pcf. The pressure at the bottom of the embankment was calculated as follows:

$$\Delta \sigma = (130 \text{ pcf})(3.0 \text{ ft}) + (36 \text{ pcf})(2.0 \text{ ft}) + (H - 5 \text{ ft})(30 \text{ pcf})$$

Where,

- $\Delta \sigma$ = induced pressure at the bottom of embankment/wall (psf)
- H = height of embankment/wall from existing ground surface to profile grade of roadway (ft)

Since the wall is located within an existing floodplain, the analysis was performed using a design groundwater level at the ground surface.

Following placement of the cellular concrete, the material will cure and harden similar to concrete and will become a rigid mass. The concept of active earth pressure within this mass is not valid, as it cannot substantially deform, develop an active wedge, and mobilize active earth pressure. Therefore, the entire cellular concrete mass must be treated as a solid block. The "reinforced zone" is not the same as a traditional MSE wall reinforced zone, as the reinforcement straps only need to extend back into the cellular mass far enough to fully develop resistance in tension as if it were a reinforcement extend the minimum length of 70 percent of the wall height into the cellular concrete backfill, similar to traditional MSE walls.

Considering the above commentary in regards to the external stability of the cellular concrete backfilled MSE walls, sliding, overturning, bearing and overall (global) stability of the wall must be performed for the entire mass as a single block. Therefore, consideration must be given to the effect of the backfill material behind the cellular concrete if it is only utilized within the reinforced zone of the wall.

The active earth pressure coefficient, and consequently the active pressure on the back of the cellular concrete mass, will greatly reduce as the slope of the backfill soil flattens. Once the slope of the backfill flattens more than the internal friction angle of the backfill soil, the active earth pressure coefficient will go to zero. Therefore, if the backslope of any backfill is reduced to the internal friction angle of the backfill material, analysis of external stability is not required, with the exception of bearing and overall (global) stability. Based on the plan information provided, it is understood that the cellular concrete fill will be placed the full height of the embankment and full width of both Ramp C5 and I-70 eastbound. As such, external and global stability calculations will not be

required for these sections of Wall 4W5 and 4W6. However, if bearing resistance must be checked, then a factored bearing resistance of 3.8 ksf should be utilized for design at the strength limit state.

The compressibility parameters utilized in the settlement analysis of the proposed cellular concrete backfilled areas are provided in Table 10.

•										
Material Type	γ (pcf)	LL (%)	<i>C</i> _c ⁽¹⁾	$C_{r}^{(2)}$	e _o ⁽³⁾	C _v ⁽⁴⁾ (ft²/yr)	N60	C' ⁽⁵⁾		
Existing Fill: Very Soft to Soft Sandy Silt (ODOT A-4a)	115	28	0.162	0.024	0.491	800	N/A	N/A		
Existing Fill: Very Soft to Stiff Silt and Clay (ODOT A-6a)	115 to 120	29 to 35	0.171 to 0.225	0.026 to 0.034	0.499 to 0.546	600	N/A	N/A		
Existing Fill: Medium Stiff to Stiff Silty Clay (ODOT A-6b)	115	34 to 40	0.216 to 0.270	0.032 to 0.041	0.538 to 0.585	300	N/A	N/A		
Existing Fill: Soft Clay (ODOT A-7-6)	115	41	0.279	0.042	0.593	150	N/A	N/A		
Existing Fill: Loose Sandy Silt (ODOT A-4a)	115	N/A	N/A	N/A	N/A	N/A	9	29 to 32		
Existing Fill: Very Loose to Loose Granular Soils (ODOT A-1-b, A-2-4)	120 to 125	N/A	N/A	N/A	N/A	N/A	4 to 21	51 to 136		
Medium Dense to Very Dense Granular Soils (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3, A-4a)	125 to 135	N/A	N/A	N/A	N/A	N/A	17 to 120	73 to 560		
Very Stiff to Hard Sandy Silt (ODOT A-4a)	120 to 130	22 to 27	0.108 to 0.153	0.011 to 0.015	0.444 to 0.483	800	N/A	N/A		
Hard Silty Clay (ODOT A-6b)	130	37 to 38	0.243 to 0.252	0.024 to 0.025	0.561 to 0.569	300	N/A	N/A		
Hard Clay (ODOT A-7-6)	130	42 to 44	0.288 to 0.306	0.029 to 0.023	0.600 to 0.616	150	N/A	N/A		

 Table 6. Compressibility Parameters Utilized in Settlement Analysis

1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5.

2. Estimated at 10% of C_c for natural soils and 15% C_c for existing fill per Section 8.11 of Holtz and Kovacs (1981).

3. Per Table 8-2 of Holtz and Kovacs (1981).

4. Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.

5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

Results of the settlement analysis are tabulated in Table 11. Total settlements of 2.61 to 4.28 inches at the center of the wall mass and 1.98 to 3.15 inches at the facing of the wall are anticipated along Wall 4W5 where is crosses in front of the forward abutment of the two structures. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately 0 to 35 days. Please note that the consolidation settlement and time rate of consolidation are based on estimates using correlated compressibility parameters provided in Table 10 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

Dering	Wall / Embankment	Pressure at Bottom of Wall /	Total Settler (incl	Time for 90%	
Boring	Height (feet)	Embankment ¹ (ksf)	Center of Wall Mass	Facing of Wall	Consolidation (Days)
B-001-A-59	45.3	1,731	3.88	2.80	0
B-020-1-13	45.3	1,731	3.40	2.46	18
B-020-2-13	45.3	1,731	4.28	3.15	35
B-020-9-15	45.3	1,731	3.19	2.37	10
B-021-0-08	43.3	1,671	2.61	1.98	7
B-023-0-08	41.2	1,608	2.72	2.00	11

Table 7. Retaining Wall 4W5 and 4W6 Settlement Results

1. $\Delta \sigma = (130 \text{ pcf})(3.0 \text{ ft}) + (36 \text{ pcf})(2.0 \text{ ft}) + (H - 5 \text{ ft})(30 \text{ pcf}).$

Per Section 204.6.2.1 of the ODOT BDM, for traditional MSE walls "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Based on the total anticipated settlement at the facing of the walls, maximum differential settlements in the longitudinal directions are anticipated to be less than 1/1000, which is within the tolerable limit of 1/100. If localized bearing pressures exerted on the leveling pad from the wall facing panels will be higher than the pressure exerted by the wall mass, then there is a potential for differential settlement to occur given the variability in the fill material.

Results of the settlement analysis for the cellular concrete fil areas are provided in Appendix VI.

For the portions of Walls 4W5 and 4W6 that span over the influence area of the Franklin Main (between Sta. 5082+80 and 5083+25, BL Ramp C5), it is understood that approximately 17 feet of over excavation will be performed (to El. 708 feet msl) and backfilled with Class II cellular concrete to the proposed top of leveling pad elevation of 718.5 feet msl. Based on the depth of over excavation noted and considering a unit weight for the soil removed of 120 pcf, the reduction in overburden over the sewer main

will be approximately 2,040 psf. The proposed profile grade where the alignment crosses the sewer main is approximately 759 feet msl, which results in a pressure increase of approximately 1,900 psf. Therefore, there is a slight net unload with respect to the proposed undercut and backfill with cellular concrete in the influence zone of the sewer main.

For the portion of I-70 eastbound that spans over the influence area of the Franklin Main (between Sta. 178+10 and 178+85), it is understood that approximately 13 feet of over excavation will be performed (to El. 702.5 feet msl) and backfilled with Class II cellular concrete to an elevation of 720 feet msl. It is understood that geofoam blocking (ASTM D6817, Type 19) will be utilized above this elevation. Based on the depth of over excavation noted and considering a unit weight for the soil removed of 120 pcf, the reduction in overburden over the sewer main will be approximately 1,560 psf. The proposed profile grade where the alignment crosses the sewer main is approximately 744 feet msl, which results in a pressure increase of approximately 1,200 psf considering a unit weight of 1.5 pcf for the geofoam blocking. Therefore, there is a net unload with respect to the proposed undercut and backfill with cellular concrete and geofoam blocking in the influence zone of the sewer main.

The beginning of Retaining Wall 4W6, from Sta. 177+05 to 178+40 (BL I-70 EB), will be supported on approximately 25 to 30 feet of cellular concrete backfill. Once the cellular concrete has setup and cured at the bottom of wall elevation (leveling pad), this material will be suitable for support of the proposed wall along this length.

5.2 MSE Wall Recommendations

It is understood that a traditional MSE wall type is being utilized for Retaining Wall 4W5 from Sta. 5083+25 (BL Ramp C5) and Retaining Wall 4W6 from Sta. 178+85 (BL I-70 EB) to the end of the wall alignments, where they tie into the rear abutment of the proposed FRA-70-1390C bridge structure. MSE walls are constructed on earthen foundations at a minimum depth of 3.0 feet below grade, as defined by the top of the leveling pad to the ground surface located 4.0 feet from the face of the wall. Per Section 204.6.2.1 of the 2007 ODOT Bridge Design Manual (BDM), where the wall alignment does not cross in from of an abutment the height of the MSE wall is defined as the elevation difference between the top of the coping and the top of the leveling pad. However, it is noted that the reinforced soil mass only extends from the foundation bearing elevation (top of leveling pad) to the roadway subgrade elevation. The width of the MSE wall foundation (B) is defined by the length of the reinforced soil mass. Per the Section 204.6.2.1 of the 2007 ODOT BDM and Supplemental Specification (SS) 840, the minimum length of the reinforced soil mass is equal to 70 percent of the height of the MSE wall or 8.0 feet whichever is greater. A non-structural bearing leveling pad consisting of a minimum of 6.0-inches of unreinforced concrete should be placed at the base of the wall facing for constructability purposes. Please note that the leveling pad is not a structural foundation.

Based on the proposed plan and profile information, the maximum wall height along the alignment of Retaining Wall 4W5 east of Sta. 5081+38 (BL Ramp C5) will range from 30.1 feet at Sta. 5085+54 to 45.3 feet at Sta. 5082+00 (BL Ramp C5), and wall height along the alignment of Retaining Wall 4W6 range from 14.6 feet at Sta. 177+06 to 26.7 feet at Sta. 180+31 (BL I-70 EB), as measured from the top of the coping and the top of the leveling pad. For the analysis, the foundation width was set at 70 percent of the maximum wall height and the foundation width was increased, if required, until external and global stability requirements were satisfied.

Per Section 840.06.D of ODOT SS 840, the foundation subgrade should be inspected to verify that the subsurface conditions are the same as those anticipated in this report. Natural cohesive soils consisting of very stiff to hard sandy silt, silty clay and clay (ODOT A-4a, A-6b, A-7-6) were encountered at the proposed bearing elevation in borings B-003-A-59, B-023-1-13 and B-024-0-08 along the alignment of Wall 4W5 between Sta. 5083+25 to 5085+54 (BL Ramp C5). Based on the plan and profile information provided, Retaining Wall 4W6 will be supported on approximately 10.0 to 20.0 feet of new fill from Sta. 178+85 to 180+31 (BL I-70 EB). Based on plan information provided, the fill material that Wall 4W6 will be bearing on along the portion of the wall alignment will consist of ODOT Item 203 granular embankment. Provided the granular embankment is placed and compacted in accordance with applicable specifications, then the new fill should be adequate for support of the proposed wall.

5.2.1 Strength Parameters Utilized in External and Global Stability Analyses

The shear strength parameters utilized in the external and global stability analyses for the MSE walls at the abutments are provided in Table 8.

Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	<i>c</i> ' ⁽²⁾ (psf)	S _u ⁽³⁾ (psf)
MSE Select Granular Backfill	120	34	0	N/A
Item 203 Granular Embankment	130	33	0	N/A
Very Stiff to Hard Natural Cohesive Soils (ODOT A-4a, A-6a, A-6b, A-7-6)	120 to 130	26 to 27	0	2,950 to 4,000
Dense to Very Dense Natural Granular Soils (ODOT A-1-a, A-1-b)	130 to 135	34 to 41	0	N/A

Table 8. Shear Strength Parameters Utilized in MSE Wall Stability Analyses

1. Per Figure 7-45, Section 7.6.9 of FHWA GEC 5 for cohesive soils and Table 10.4.6.2.4-1 of the 2018 AASHTO LRFS BDS for granular soils.

2. Estimated based on overconsolidated nature of soil.

3. $S_u = 125(N_{60})$, Terzaghi and Peck (1967).

Shear strength parameters for the select granular backfill are provided in ODOT SS 840. Per SS 840, the select granular backfill in the reinforced zone must meet the shear strength requirements provided in Table 8. Based on the design plans provided by GPD Group, it is understood that Item 203 granular embankment will be utilized where any new embankment will be placed behind the reinforced soil backfill at both MSE walls. Therefore, the shear strength parameters for the retained fill will be modeled using a friction angle of 33 degrees since granular embankment is being specified, instead of using the shear strength parameters provided in ODOT SS 840.

The shear strength parameters for the natural soils were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-NHI-16-072) Evaluation of Soil and Rock Properties and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles.

5.2.2 Bearing Stability

Natural cohesive soils consisting of very stiff to hard sandy silt, silty clay and clay (ODOT A-4a, A-6b, A-7-6) were encountered at the proposed bearing elevation in borings B-003-A-59, B-023-1-13 and B-024-0-08 along the alignment of Wall 4W5 between Sta. 5083+25 to 5085+54 (BL Ramp C5). Retaining Wall 4W6 will be supported on approximately 10.0 to 20.0 feet of new fill from Sta. 178+85 to 180+31 (BL I-70 EB). MSE wall foundations bearing on these natural soils or granular embankment, placed and compacted in accordance with ODOT Item 203, may be proportioned for a nominal bearing resistance as indicated in Table 9. A geotechnical resistance factor of ϕ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state. The reinforcement lengths presented in the following table represent the minimum foundation widths required to satisfy external and global stability requirements, expressed as a percentage of the wall height.

Structure Reference	From Station /	To Wall Station / Analyz		Minimum Required Reinforcement	•	esistance at th Limit sf)	Strength Limit Equivalent Bearing	
	Offset ¹	Offset ¹	(feet)	Length ² (feet)	Nominal	Factored ³	Pressure ⁴ (ksf)	
Retaining Wall 4W5	5083+25, 24.3' Rt.	5085+54, 24.3' Rt.	39.2	27.4 (0.70H)	14.16	9.20	8.91	
Retaining Wall 4W6	178+85, 56.0' Rt.	180+30, 53.2' Rt.	26.7	18.7 (0.70H)	15.16	9.85	6.32	

Table 9. Retaining Wall 4W5 and 4W6 MSE Wall Design Parameters

1. Station and offset referenced to the baseline of Ramp C5 for Retaining Wall 4W5, and to the baseline of I-70 EB for Retaining Wall 4W6.

2. The required foundation width is expressed as a percentage of the wall height, H.

3. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade material for the maximum specified wall heights indicated in Table 9. Based on the minimum length of reinforcement presented, the factored equivalent bearing pressure exerted below the wall **will not exceed** the factored bearing resistance at the strength limit state.

5.2.3 Settlement Evaluation

The compressibility parameters utilized in the settlement analyses of the proposed MSE wall are provided in Table 10.

Material Type	γ (pcf)	LL (%)	$C_{c}^{(1)}$	$C_{r}^{(2)}$	eo ⁽³⁾	С _v ⁽⁴⁾ (ft²/yr)	N60	<i>C</i> ' ⁽⁵⁾
Stiff to Hard Natural Cohesive Soils (ODOT A-4a, A-6b, A-7-6)	120 to 130	21 to 48	0.099 to 0.342	0.010 to 0.034	0.436 to 0.647	150 to 800	N/A	N/A
Medium Dense to Very Dense Natural Granular Soils (ODOT A-1-a, A-1-b, A-3a, A-4a)	130 to 135	N/A	N/A	N/A	N/A	N/A	28 to 100	49 to 300

Table 10. Compressibility Parameters Utilized in Settlement Analysis

1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5.

2. Estimated at 10% of C_c per Section 8.11 of Holtz and Kovacs (1981).

3. Per Table 8-2 of Holtz and Kovacs (1981).

4. Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.

5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

Results of the settlement analysis are tabulated in Table 11. Given that Walls 4W5 and 4W6 will both be constructed to the same profile grade and that Wall 4W6 will be constructed on granular embankment that extends to the same bottom of wall elevation as 4W5, settlement analysis was performed for Wall 4W5 only, and is considered representative of the settlement anticipated along Wall 4W6. Total settlements of 3.56 to 5.44 inches at the center of the reinforced mass and 2.27 to 2.37 inches at the facing of the wall are anticipated along the portion of the alignment of Retaining Walls 4W5 and 4W6 where the standard MSE walls are proposed. Based on the results of the analysis, 90 percent of the total settlement at the facing of the walls is anticipated to occur during construction of the wall or within 11 to 35 days following the completion of construction are based on estimates using correlated compressibility parameters provided in Table 10 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

Structure Reference	From Station ¹	To Station ¹	Wall Height	Height Bearing			
Relefence	Reference Station Station Analyzed (feet) Pressure ² (ksf)			Center of Wall Mass	Facing of Wall	(Days)	
Retaining Walls 4W5 and 4W6	5083+25, 24.3' Rt.	5085+54, 24.3' Rt.	39.4	6.29	5.44 / 3.56	2.37 / 2.27	11 / 35

Table 11. Retaining Wall 4W5 and 4W6 MSE Wall Settlement Values

1. Station and offset referenced to the baseline of Ramp C5.

2. The service limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the service limit state.

3. The first settlement value indicates the settlement based on the wall height and bearing elevation at boring B-023-1-13, and the second value indicates the settlement based on the wall height and bearing elevation at boring B-024-0-08.

Per Section 204.6.2.1 of the ODOT BDM, "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Based on the total anticipated settlement at the facing of the walls, maximum differential settlements in the longitudinal directions are anticipated to be less than 1/1000, which is within the tolerable limit of 1/100. If the total or differential settlement values predicted for the proposed walls present an issue with respect to the deformation tolerances that the walls can withstand, then measures should be taken to minimize the amount of settlement that will occur. This can be achieved by preloading the site and consolidating the underlying soils prior to constructing the walls. If preloading the site is not a desired option, then consideration could be given to ground improvement through the use of stone columns. Settlement calculations are provided in Appendix VI.

5.2.4 Eccentricity (Overturning Stability)

The resistance of the MSE walls to overturning will be dependent on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For MSE walls, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.10.5.5 of the 2018 AASHTO LRFD BDS, for foundations bearing on soil or cellular concrete, the location of the resultant of the reaction forces shall be within the middle two-thirds (2 /₃) of the base width. Therefore, the limiting eccentricity of the resultant force for the retaining wall configurations indicated in Table 9. Based on the minimum length of reinforcement presented in Table 9 and utilizing the parameters listed in Section 5.2.1 for the retained material, the calculated eccentricity of the resultant force **will not exceed** the limiting eccentricity at the strength limit state.

5.2.5 Sliding Stability

The resistance of the MSE walls to sliding was evaluated per Section 11.10.5.3 of the 2018 AASHTO LRFD BDS. Given that the bearing soils will consist of cohesive material, the sliding resistance was evaluated under both drained and undrained conditions. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the limiting friction angle between the foundation material and the reinforced backfill. Based on the material parameters listed in Section 5.2.1 for the foundation and retained material, a coefficient of sliding friction of 0.49 was utilized for design. For undrained conditions, the sliding resistance is taken as the limiting value between the undrained shear strength of the bearing soil and half of the vertical stress applied by the wall multiplied by the width of the MSE wall. Based on the material parameters listed in Section 5.2.1, the undrained shear strength of the bearing soil is 2.95 ksf. A geotechnical resistance factor of φ_{τ} =1.0 was considered in calculating the factored shear resistance between the reinforced backfill and foundation material for sliding. Based on the minimum length of reinforced soil mass presented in Table 9 and utilizing the material parameters listed in Section 5.2.1 for the retained material, the resultant horizontal forces on the back of the MSE walls will not exceed the factored shear resistance at the strength limit state under drained or undrained conditions.

5.2.6 Overall (Global) Stability

A slope stability analysis was performed to check the global stability of the wall. As per the AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state by assuming the reinforced soil mass to be a rigid body. Soil parameters utilized in the global stability analyses are presented in Section 5.2.1. For the global stability condition, it was considered that the failure plane will not cross through the reinforced soil mass. The computer software program Slide 6.0 manufactured by Rocscience Inc. was utilized to perform the analyses.

Per Section 11.6.2.3 of the 2018 AASHTO LRFD BDS, overall (global) stability for MSE walls that are not integrated with or supporting structural foundations or elements, global stability is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability is satisfied when a minimum factor of safety of 1.3 is obtained. For MSE walls designed with a minimum strap length listed in Table 9, the resulting factor of safety under drained conditions (long-term stability) and undrained conditions (short-term stability) using the Spencer's analysis method was greater than 1.3.

5.2.7 Final MSE Wall Considerations

Based on the results of the external and global stability analysis performed for the MSE walls, the recommended controlling strap length is 0.70 times the height of the MSE walls (measured from the top of the leveling pad to top of the coping) along the alignment of Retaining Wall 4W5 between Sta. 5083+25 and 5085+54 (BL Ramp C5) and Retaining Wall 4W6 between Sta. 178+85 to 180+31 (BL I-70 EB). All of the external and global stability calculations indicate that adequate resistance is available for support of the proposed walls using the configurations and backfill materials outlined in the plan sheets provided by GPD GROUP.

Calculations for external (bearing and sliding resistance and limiting eccentricity) and overall (global) stability of the MSE walls are provided in Appendix VI.

5.3 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 12 and Table 13.

Soil Type	γ (pcf) ¹	c (psf)	φ	ka	ko	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

 Table 12. Estimated Undrained (Short-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Soil Type	γ (pcf) ¹	c (psf)	φ'	<i>k</i> _a	k _o	k_p
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

Table 13. Estimated Drained (Long-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.4 Construction Considerations

All site work shall conform to local codes and to the latest ODOT Construction and Materials Specifications (CMS), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.4.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes		
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage		
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage		
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage		
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None		

Table 14. Excavation Back Slopes

5.4.2 Groundwater Considerations

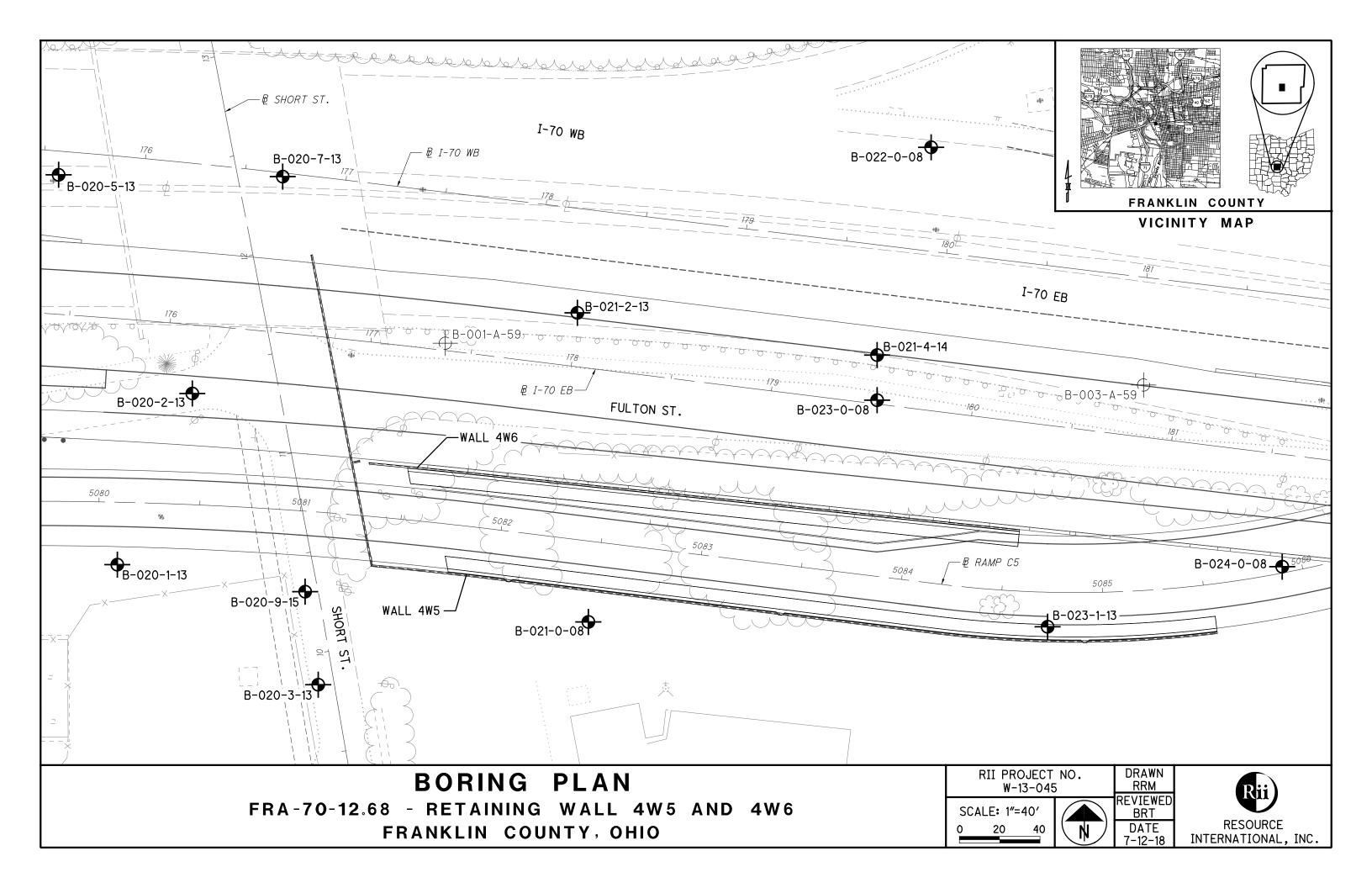
Based on the groundwater observations made during drilling, groundwater may be encountered during construction of the drilled shafts. Where groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. In the case of drilled shafts, the utilization of casing will be required below the water table to maintain an open hole and prevent the sidewalls from collapse. In addition, concrete placed below the water table should be placed by tremie method using a rigid tremie pipe. Note that mitigating the water during construction and protecting the excavation is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The recommendations in this report are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of our recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from historic and current test borings that were made at the proposed site. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.


The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>**Granular Soils**</u> – ODOT A-1, A-2, A-3, A-4 (non-plastic) The relative compactness of granular soils is described as:

Description	Blows per	foot - S	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

Description	Unconfined Compression (tsf)		
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

<u>Soil Fra</u> Boulders Cobbles		<u>Size</u> Larger than 12" 12" to 3"
Gravel	coarse fine	3" to ¾" ¾" to 2.0 mm (¾" to #10 Sieve)
Sand	coarse fine	2.0 mm to 0.42 mm (#10 to #40 Sieve) 0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt Clay		0.074 mm to 0.005 mm (#200 to 0.005 mm) Smaller than 0.005 mm

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	<u>Range - ODOT</u>
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments	A-			30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and∕or Stone Fragments with Sand	Α-	1-Ь		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
<u>4.0.0.0</u> <u>6.0.0.0</u> <u>6.0.0</u>	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.000 0.000 0.000 0.000 0.000 0.000	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + + + + + + + + + + + + + + + $	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Sil†y Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MATERIAL CLASSIFIED BY VISUAL INSPECTIONSod and Topsoil $\begin{pmatrix} A \rightarrow Y \\ - & C \\ - & A \end{pmatrix}$ Uncontrolled Fill (Describe)Bouldery ZonePavement or Base $\begin{pmatrix} A \rightarrow Y \\ - & C \\ - & A \end{pmatrix}$									

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Description	Field Parameter
Unweathered	No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a right appearance with no discoloration. Fractures show little or not staining on surfaces.
Slightly Weathered	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the rock volume presents alteration.
Moderately Weathered	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15% of the rock volume presents alterations.
Highly Weathered En	tire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.
Severely Weathered	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more resistant rock may be present but the material can generally be molded and crumbled by hand pressures.

Strength of Bedrock – The following terms are used to describe the relative strength of bedrock:

<u>Description</u> Very Weak	<u>Field Parameter</u> Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description	<u>Thickness</u>
Very Thick	Greater than 36 inches
Thick	18 to 36 inches
Medium	10 to 18 inches
Thin	2 to 10 inches
Very Thin	0.4 to 2 inches
Laminated	0.1 to 0.4 inches
Thinly Laminated	Less than 0.1 inches

Fracturing – Describes the degree and condition of fracturing (fault, joint, or shear):

Very Poor Poor Fair Good Very Good

Degree of Fracturing	
Description	<u>Spacing</u>
Unfractured	Greater than 10 feet
Intact	3 to 10 feet
Slightly Fractured	1 to 3 feet
Moderately Fractured	

Aperture Widt	h	Surface Rough	ness
Description	Width	Description	Criteria
Open	Greater than 0.2 inches	Very Rough	Near vertical steps and ridges occur on surface
Narrow	0.05 to 0.2 inches	Slightly Rough	Asperities on the surfaces distinguishable
Tight	Less than 0.05 inches	Slickensided	Surface has smooth, glassy finish, evidence of Striations

<u>RQD</u> – Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006): <u>RQD %</u> <u>Rock Index Property Classification (based on RQD, not slake durability index)</u>

APPENDIX III

PROJECT BORING LOGS:

B-020-1-13, B-020-2-13, B-020-3-13, B-020-7-13, B-020-9-15, B-021-0-08, B-023-0-08, B-023-1-13 and B-024-0-08

BORING LOGS

Definitions of Abbreviations

- AS=Auger sampleGI=Group index as determined from the Ohio Department of Transportation classification systemHP=Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LL_o = Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL_o/LL is less than 75 percent, soil is classified as "organic".
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

 \sum segments equal to or longer than 4.0 inches x100

core run length

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m).
- N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
- SS = Split spoon sample
- 2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N₆₀ values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- ▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Gravel
SA	=	% Sand
SI	=	% Silt
CL	=	% Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
ΡI	=	Plasticity Index

WC = Water content (%)

PROJECT: TYPE:		STRUCT		DRILLING FII SAMPLING F	IRM /	LOGGER	::R	DCK / A/M II / K.R.	H/	AMMER:		ME 750X (S AUTOMA	TIC	,	ALIGN			E	L RAN	IP C5		EXPLOF B-02	0-1-1
PID: <u>7</u> START:	7372 7/1/13	BR ID: END:	FRA-70-1373A 7/3/13	DRILLING ME SAMPLING N			4.25" HS/ SPT /			ALIBRAT NERGY F			3/28/13 78.6		ELEV.		l: <u>7</u>			-	.00466	36.0 ft.	PA 1 O
	MATER	IAL DES	CRIPTION			ELEV.	DEP		SPT/	/ N	REC	SAMPLE	HP		GRAD/		N (%)	A	TERI	BERG		ODOT CLASS (GI)	BA
0.5' - TOPSOIL (6.0		AND NOT	ES		$\langle \rangle$	712.8			RQD) 00	(%)	ID	(tsf)	GR	CS	FS	SI (L LI	- PL	PI	WC	CLASS (GI)	FII
0.3' - BRICK (4.0")	')				\overleftrightarrow	712.3	-	- 1 -												_			
FILL: HARD, BROW TO FINE SAND, TR -ROOT AND GRA	RACE FIN	IE GRAV	'EL, DAMP.	ARSE		709.8		- 2 -	50/5"		55	SS-1	-	-	-	-	-		-	-	11	A-6a (V)	
POSSIBLE FILL: MI SAND AND SILT, TI	EDIUM D	ENSE, C	GRAY GRAVEL	. WITH		707.3		- 3 - - 4 - - 5 -	15 11	21	81	SS-2	-	-	-	-	-		-	-	12	A-2-4 (V)	
POSSIBLE FILL: SO AND CLAY, SOME GRAVEL, DAMP TO	COARSI	E TO FIN				101.0	-	_ 7 -	2 1	4	64	SS-3	0.50	20	13	13	22 3	32 3	5 20	15	20	A-6a (6)	
-STONE FRAGME	ENTS PR	ESENT I	N SS-4			702.3		- 8 - - 9 - - 10 -	2 5	10 3	33	SS-4	-	-	-	-	-		-	-	12	A-6a (V)	
POSSIBLE FILL: ST BROWNISH GRAY COARSE TO FINE	TO BR	OWN SIL	TY CLAY, SOM			102.5		- 11 - - 11 - - 12 -	1 2	8	56	SS-5	2.75	-	-	-	-		-	-	23	A-6b (V)	
						697.3		- 13 - - 14 - - 15 -	2 3	8	78	SS-6	2.00	6	9	12	23 5	50 4	0 17	23	19	A-6b (13)	
Possible fill: Ve And Sand, Trace				RAVEL	2000			16	1	4	67	SS-7	-	-	-	-	-		-	-	21	A-1-b (V)	
MEDIUM DENSE, D SILT, AND CLAY, N -STONE FRAGME	IOIST.			SAND,		694.8		- 19 -	5 9	20	39	SS-8	-	-	-	-	-		-	-	15	A-2-6 (V)	
MEDIUM DENSE T SAND , LITTLE CLA				ND	0°00 000	692.3		- 20 -		16	39	SS-9	_	_	_	_	_	_		-	17	A-1-b (V)	
-COBBLES PRES	ENT @ 2	22.0'					w	- 22 - 23		5													
								- 24 - - - 25 -	3 6	18 8	53	SS-10	-	-	-	-	-	- -	-	-	15	A-1-b (V)	
					000			26 27	5 4	16	56	SS-11	-	36	30	12	9 ^	3 N	P NF	P NP	15	A-1-b (0)	
				C	00 00 00 00			- 28	8														Ŵ
								29	0 16 10	42	83	SS-12	-	-	-	-	-	- -	-	-	14	A-1-b (V)	\bigotimes

MATERIAL DESCRIPTION		ELEV.			SPT/		REC	SAMPLE	HP	(RAD		N (%)	ATT	ERB	ERG		ODOT	В
AND NOTES		682.8	DEPTH	S F	RQD	N ₆₀	(%)	ID	(tsf)		CS			, CL	LL		PI	wc	CLASS (GI)	
MEDIUM DENSE TO DENSE, BROWN GRAVE SAND, LITTLE CLAY, TRACE SILT, MOIST. (s <i>bove</i>) HARD, GRAY SANDY SILT , SOME CLAY, LITT	ame as	680.8		- 31																
GRAVEL, DAMP.			-	- 33 - 34 ¹ - 35	5 18 25	56	100	SS-13	4.5+	20	13	17	21	29	22	13	9	10	A-4a (3)	
-HEAVING SANDS ENCOUNTERED @ 35.0'	GRAVEL	675.8	-	- 36																
AND SAND, TRACE SILT, DAMP TO MOIST.			-	- 38 - 39 ⁷	13	62	100	SS-14	_	-	_	-	_	-	_	_	-	4	A-1-b (V)	
-INTRODUCED WATER @ 40.0'			-	- 40	34															
			-		0 43 50/5"	-	100	SS-15	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	
			-	- 46 - 47 - 48																
			-	- 49 - - 50	7 41 <u>50/3"</u>	-	100	SS-16	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
IARD, GRAY CLAY , LITTLE SILT, TRACE CO INE SAND, TRACE FINE GRAVEL, DAMP.	ARSE TO	660.8	-	- 51																
-SHALE FRAGMENTS PRESENT IN SS-17			-		8 30 25	72	100	SS-17	-	-	-	-	-	-	-	-	-	14	A-7-6 (V)	
			-	- 56																
			-	- 58 - 59 ³ - 60	0 26 33	77	78	SS-18	4.5+	6	1	8	18	67	44	21	23	14	A-7-6 (14)	
			-	- 61																

ID: <u>77372</u>	BR ID:	FRA-70-1373A	PROJECT: FRA-70-1	12.00 -)9.80 / 30.				_	1/13						= 3 B-02	
	M	ATERIAL DESCR			ELEV.	DEP	THS	SPT/	N ₆₀		SAMPLE			RADA		<u> </u>		ATTE				ODOT	BA
		AND NOTES			650.7	501		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FI
			ACE COARSE TO AMP. <i>(same as above)</i>				- 63 -	-															\bigotimes
					648.6	TR	64	24 \ <u>50/2"</u> /	-	100	SS-19	4.50	-	-	-	-	-	-	-	-	14	A-7-6 (V)	K
SHALE: GRA	Y, VERY	WEAK, HIGHLY	WEATHERED.	ŧ.		IK		<u></u> /															\gg
-AUGER RE CORE RUN. HAVE WASH MATERIAL D	FUSAL (NO REC ED OUT URING T	2,65.0'. ATTEM	PTED 10.0' ROCK CORE RUN. MAY HERED SHALE ERATION.				- 65 - 66 - 67 - 68 - 70 - 70 - 71 - 72 - 73 - 73 - 74 - 75 - 75 - 76 - 77 - 77 - 78 - 78	0	Z - £	0	RC-1	~ - ~			-	-	-	-	_	-	15	CORE Rock (V)	
	AUG	ER REFUSAL @	80.5'				- 79 - - 80 -				00.04												
JNWEATHEF CRYSTALLIN FO FRACTUF 49%, REC 99 -QU @ 80.7'	: LIGHT , RED, STF IE, DOLC RED, OPI %. ' = 9,465	AND DARK GRA RONG, VERY TH MITIC, MODER/ EN APERTURE,	Y, IIN TO THIN BEDDED, ATELY FRACTURED VERY ROUGH; RQD		632.3		- 81 - - 82 - - 83 - - 83 - - 84 - - 85 -	49	/	<u>0</u> / 99	<u>SS-21</u>	<u> </u>	<u> </u>		<u>- </u>	<u>- </u>	<u>- </u>	<u> </u>	<u></u> /	<u> </u>		CORE	

B-020-1-13 - RC-1 - Depth from 65.0 to 75.0 feet

B-020-1-13 - RC-2 - Depth from 81.0 to 86.0 feet

Rii	PROJEC		STRUCT		SAMPLI	NG FIRM	OPERATO / LOGGER	RI	II / S.M. I / C.H.	HAI	ILL RIG MMER:		CME-750 (S CME AUTO	MATIC		ALIG	NMEN		_	BL	6+13.9 . I-70 E	ΞB		EXPLOF B-02	
	PID: START:			FRA-70-1373R 7/17/13		IG METHO NG METH		3.25" HSA SPT /			librat Ergy f			4/26/13 82.6			ATIO	N:					<u>8</u> 00453	34.5 ft.	10
	START.			CRIPTION			ELEV.	DEP		SPT/	1		SAMPLE		6	BRAD		_			ERBE	-	.004554	ODOT	BA
			AND NO	TES		K // //	711.4	DLI	1110	RQD	¹ 1 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FI
<u>`</u>	SPHALT (,	(0.011)			-/ ĚŠ	<u>711.1</u> √710.6																		
FILL: S		CK AND	BROWN	SILT AND CLA			110.0		- 2 -	4 8 6	19	72	SS-1	1.75	-	-	-	-	-	-	-	-	16	A-6a (V)	
	K FRAGME						708.4		- 3 -																
	ERY LOOS LITTLE SIL			ROWN GRAV MOIST.	el and				- 4 -	2 2 1	4	33	SS-2	-	47	16	12	19	6	26	23	3	15	A-1-b (0)	
							705.9		- 5 -																
				LT AND CLAY INE GRAVEL					- 6 - - 7 -	3 4 7	15	33	SS-3	2.00	-	-	-	-	-	-	-	-	15	A-6a (V)	
) STIFF, BRO	//NI		703.4		- 8 -																
				FINE SAND, N					- 9 -	2 2 3	7	83	SS-4	1.00	0	1	8	54	37	39	20	19	25	A-6b (12)	
							-		- 10 -																
									- 11 - - - 12 -	3 4 6	14	83	SS-5	1.75	-	-	-	-	-	-	-	-	27	A-6b (V)	
							698.4		- 13 -																K
SILT, A MOIST.	ND FINE T	O COAF	RSE SANI	ROWN CLAY , D, LITTLE FINI		-,			- 14 -			83	ST-6	0.75	17	31	13	24	15	41	16	25	22	A-7-6 (4)	
-CON:	SOLIDATIO	JN TEST	PERFUR	RMED @ 14.7'			-		- 15 -																-1/
									— 16 — - - 17 —	1 1 2	4	33	SS-7	0.75	-	-	-	-	-	-	-	-	25	A-7-6 (V)	
		0085 1		GRAVEL WITH	SAND		693.4	w	- 18 -																
AND SI	LT , TRACE /ING SANI	E CLAY, ' DS ENCO	WET. DUNTERE		SAND			w	- 19 -	WOH 2 4	8	33	SS-8	-	33	21	13	26	7	31	25	6	30	A-2-4 (0)	
	BLES PRE			GRAVEL AND		- dy	690.9		- 20 -																
	SILT, TRA				J SAND,				- 21 - - - 22 -	4 13 10	32	67	SS-9	-	-	-	-	-	-	-	-	-	16	A-1-b (V)	
									- 23 -																
						o t				50/5"	-	80	SS-10		-	-	-	-	-	-	-	-	14	A-1-b (V)	->>>
									25																
									- 26 - - - 27 -	9 12 14	36	33	SS-11	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
						o t	k		- 28 -	14															Ŵ
						$\tilde{\mathbb{C}}$			29	9 24 32	77	39	SS-12	-	47	27	10	12	4	21	18	3	7	A-1-b (0)	

D: <u>77372</u> BR ID: <u>FRA-70-1373R</u> PRO. MATERIAL DESCRIPTIO	JECT: FRA-70-12.68 - P		STATION /				13.92 / 34 SAMPLE				_	N (%)		_	/17/13 ERBE			
AND NOTES		681.4	DEPTHS	SPT/ RQD		(%)	ID	⊓P (tsf)		CS) CL				wc	ODOT CLASS (GI)
ENSE TO VERY DENSE, BROWN GRAVEL ITTLE SILT, TRACE CLAY, MOIST. <i>(same a</i>	AND SAND,	001.4	- 31 - - 32 - - 32 -			(70)						0.	02					
			- 33 - - 34 - - 35 -	14 29 33	85	61	SS-13	-	-	-	-	-	-	-	-	-	12	A-1-b (V)
			36 37															
			- 38 - 39 - 19	22 48 50/5"	-	71	SS-14	-	-	-	-	-	-	-	-	-	14	A-1-b (V)
			- 40 - 41 - 41 - 42 															
ARD, BROWN SILT AND CLAY , LITTLE FIN		666.9	- 43 - - 44 - - 45 -	15 31 29	83	94	SS-15	- 4.5+	- 11	- 1	- 4	- 46	- 38	- 32	- 18			A-1-b (V) A-6a (10)
RACÉ COARSE TO FINE SAND, DAMP.		664.4	- 46 - 47															
RACÉ COARSE TO FINE SÁND, DAMP.			- 48 - 49 - - 50 -	29 27 25	72	22	SS-16	-	-	-	-	-	-	-	-	-	18	A-6b (V)
			51 52															
			- 53 - - 54 - - 55	11 20 20	55	56	SS-17	4.50	-	-	-	-	-	-	-	-	17	A-6b (V)
			55 56 57															
			58 59	14	-	89	SS-18	-	19	3	4	36	38	38	20	18	16	A-6b (11)
		649.4	60 61															

MATERIAL DESCRIPTION AND NOTES ELEV. 649.3 DEPTHS SPT/ RQD No. REC (%) SAMPLE ID HP GRADATION (%) ATTERBERG O. C.A.S. IARD, BROWN SILT AND CLAY, LITTLE COARSE TO INE SAND, TRACE FINE GRAVEL, DAMP. (same as above) 647.1 - - - - - - - - 1 A-68 647.1 TR - - - - - - - 1 A-68 641.9 647.1 TR - - - - - 1 A-68 641.9 - - - - - - 1 A-68 641.9 - - - - - - 1 A-68 641.9 - - - - - - - 1 A-68 641.9 - - - - - - - - 1 A-68 641.9 - - - - - - - - - - -<
INE SAND, TRACE FINE GRAVEL, DAMP. (same as above) 647.1 TR 63 64 36 64 647.1 100 SS-19 - - - - - - 111 A-6a HALE: GRAY, VERY WEAK, HIGHLY WEATHERED. 647.1 TR 65 - - - - - - - - - - - 11 A-6a HALE: GRAY, VERY WEAK, HIGHLY WEATHERED. 641.9 66 - - - - - - - - 11 A-6a HALE: GRAY AND BLACK, SLIGHTLY TO 641.9 641.9 641.9 - - - - - - 9 Rock HALE: GRAY AND BLACK, SLIGHTLY TO 641.9 641.9 - - - - - 9 Rock HINLY LAMINETD TO MEDIUM BEDDED, CALCAREOUS, YRITIC, FISSILE, FRACTURED, WEAK AND STRONG, HINLY LAMINETD TO MEDIUM BEDEDD, CALCAREOUS, YRITIC, FISSILE, FRACTURED, MARCHURE, SMOOTH TO SLIGHTLY - - - - - - - - - - - - - - - -
HALE: GRAY, VERY WEAK, HIGHLY WEATHERED. HALE: GRAY AND BLACK, SLIGHTLY TO 00 DEPARATELY WEATHERED, WEAK AND STRONG, HINLY LAMINATED TO MEDIUM BEDDED, CALCAREOUS, YRITIC, FISSILE, FRACTURED TO HIGHLY FRACTURED, 100 COURCE 100 SS-20 9 Rock 641.9 70 70 70 70 70 70 70 70 70 70
HALE : GRAY AND BLACK, SLIGHTLY TO (ODERATELY WEATHERED, WEAK AND STRONG, HINLY LAMINATED TO MEDIUM BEDDED, CALCAREOUS, YINTIC, FISSILE, FRACTURED TO HIGHLY FRACTURED, JARROW TO OPEN APERTURE, SMOOTH TO SLIGHTLY COUGH; RQD 4%, REC 30%. IMESTONE : GRAY AND TAN, SLIGHTLY WEATHERED, IODERATELY STRONG, VERY THIN TO MEDIUM HINLY LAMINATED TO HIGHLY FRACTURED, 631.9 HINLY LAMINATED TO HIGHLY WEATHERED, IODERATELY STRONG, VERY THIN TO MEDIUM HINLY LAMINATED TO HIGHLY WEATHERED, IODERATELY STRONG, VERY THIN TO MEDIUM
INDERATELY WEATHERED, WEAK AND STRONG, HINLY LAMINATED TO MIGHLY FRACTURED, CALCAREOUS, YRITIC, FRACTURED TO HIGHLY FRACTURED, ARROW TO OPEN APERTURE, SMOOTH TO SLIGHTLY OUGH; RQD 4%, REC 30%. IMESTONE : GRAY AND TAN, SLIGHTLY WEATHERED, IODERATELY STRONG, VERY THIN TO MEDIUM
IMESTONE : GRAY AND TAN, SLIGHTLY WEATHERED, IODERATELY STRONG, VERY THIN TO MEDIUM 631.9
IODERATELY STRONG, VERY THIN TO MEDIUM
EDDED, CALCAREOUS, PYRITIC, DOLOMITIC, CHERT ODULES, FRACTURED TO SLIGHTLY FRACTURED, ARROW APERTURE, SMOOTH; RQD 97%, REC 97%.

B-020-2-13 - RC-1, RC-2, and RC-3 - Depth from 69.5 to 84.5 feet

Rii PROJEC	STRUCTURE	DRILLING FIRM	/ LOGGER:	RIL	/ J.B. / S.B.	HAI	MMER:		BILE B-53 (S AUTOMA	TIC		STAT ALIGN	MEN	T:		BL I	RAMP	° C5			0-3-1
	77372 BR ID: FRA-70-1373A			3.25" HS	A		LIBRAT			1/26/13		ELEV					<u> </u>			9.8 ft.	10
START:	8/15/13 END: 8/21/13	SAMPLING MET		SPT		-	ERGY F	-		77.7		LAT /							.004309		
	MATERIAL DESCRIPTION AND NOTES		ELEV. 712.3	DEPT	HS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	(tsf)		GRAD		SI		ATT		PI	wc	ODOT CLASS (GI)	BA(
0.3' - ASPHALT (4		/	712.3					(70)		(101)	OIX	00	10	0.	0L						****
0.3' - BRICK (4.0"		/ 🕅	711.7/		- 1 -																$\sum_{n=1}^{\infty} L^{\vee}$
0.8' - AGGREGST			710.9		_ 2 -	3	10	70	00.4	0.00									10	A 0 - 0.0	1<1
	STIFF, BROWN SILT AND CLAY , I E SAND, TRACE FINE GRAVEL, I JICS IN SS-1		709.3		- 3 -	36	12	72	SS-1	2.00	-	-	-	-	-	-	-	-	13	A-6a (V)	$\begin{pmatrix} 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 1 \\ 7 \\ 1 \\ 1$
POSSIBLE FILL: S BROWN SILTY C	STIFF TO VERY STIFF, GRAY TO LAY, LITTLE COARSE TO FINE S	AND,			- 4 - - - 5 -	2 3	6	61	SS-2	1.25	4	4	8	47	37	38	18	20	22	A-6b (12)	1 > L
TRACE FINE GR/	AVEL, MOIST.				6	1															-7L 12
					- 7 -	2 4	8	83	SS-3	2.25	-	-	-	-	-	-	-	-	31	A-6b (V)	7 L
					- 8 -	4															7 L'
					- 9 - - - 10 -	3 5	10	78	SS-4	2.50	0	0	14	54	32	35	15	20	22	A-6b (12)	4>
					 - 11 -	1															-7 L -7 >
					- 12	2 3	6	44	SS-5	1.75	-	-	-	-	-	-	-	-	18	A-6b (V)	7 L 1 >
	MEDIUM STIFF, BROWN SILT AN		699.3		- 13 -																
	DARSE TO FINE SAND, TRACE F		696.8	W	- 14 15	WOH 2 4	8	44	SS-6	1.00	-	-	-	-	-	-	-	-	23	A-6a (V)	
GRAVEL, SOME (TO VERY DENSE, BROWN AND COARSE TO FINE SAND, TRACE		(- 16 -	14	54	20	00.7										0	A 1 - 00	
TRACE CLAY, MO	DIST.	00			- 17 -	22 20	54	39	SS-7	-	-	-	-	-	-	-	-	-	8	A-1-a (V)	
-COBBLES PRE	SENT THROUGHOUT				— 18 — - — 19 —	WOH	23	50	SS-8			_							9	A-1-a (V)	1 > 7 L
		0 0	691.8		_ 20 _	10		- 50	33-0	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	1 > - 7 - L
LOOSE TO VERY TRACE SILT, MO	' DENSE, GRAY GRAVEL AND SA IST.	ND,			_ 21 _ _ _ 22 _	2 3 4	9	50	SS-9	1.75	50	21	9	17	3	24	18	6	13	A-1-b (0)	
			q		- 23 -																
-COBBLES PRE	SENT THROUGHOUT				24 25	5 15 40	71	67	SS-10	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	17L
						-50/3" ,		_ 0 /			-		_	_	-	-					17 17 17 17 17
ATTEMPTED 5.0' RECOVERED IN	AL ENCOUNTERED @ 26.0'. CORE RUN. GRANITE BOULDEF CORE RUN. REMAINING SOIL W URING CORING OPERATION.	R PIECE			- 27 28	<u></u> /															7 × 1 7 × 1 7 × 1
	SAMPLING @ 31.3'.				20 29	7		17	RC-1											CORE	×1 × L 7 × L

MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			RAD		N (%	· · · · · · · · · · · · · · · · · · ·			ERG		ODOT
AND NOTES	682.3		RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
OOSE TO VERY DENSE, GRAY GRAVEL AND SAND , RACE SILT, MOIST. <i>(same as above)</i>	680.3	31 -															
ERY STIFF TO HARD, GRAY SILT AND CLAY , SOME OARSE TO FINE SAND, LITTLE FINE GRAVEL, DAMP TO IOIST.		- 32 - - - 33 -	-														
		34 - 35 -	10 30 50/5"	-	100	SS-12	4.5+	20	8	11	29	32	34	16	18	14	A-6b (8)
		- 36 - - 37 -															
	672.8	38 39	10 40	-	100	SS-13	4.00	-	-	-	-	-	-	-	-	19	A-6b (V)
ERY DENSE, BROWN GRAVEL , SOME COARSE TO INE SAND, TRACE SILT, TRACE CLAY, DAMP TO MOIST.		- 40 - - 41 -	50/4"					-				_		-	-	8	<u>A-1-a (V)</u>
		- 42 - - 43 -															
		44 - 45	19 _ <u>50/2"</u>	-	38	SS-14	-	-	-	-	-	-	-	-	-	5	A-1-a (V)
	₀ ○ (○ ○ ○ ○ ○ ○ 665.3	46	-														
ERY DENSE, BROWN GRAVEL WITH SAND AND SILT , RACE CLAY, DAMP. -AUGER REFUSAL ENCOUNTERED @ 49.8'.		47 48 1	25														
TTEMPTED ROCK CORE RUN AT 49.8' AND ECOVERED GRANITE BOULDER PIECE. SOIL WAS DESERVED TO BE WASHING OUT WITH THE FIRCULATION FUILD BELOW THE BOULDER. BORING	a 0.10 	— 49 – ЕОВ	36 50/3"	-	60	SS-15	-	47	20	12	14	7	22	14	8	10	A-2-4 (0)
ERMINATED AT 49.8' PRIOR TO ENCOUNTERING EDROCK.																	

B-020-3-13 - RC-1 - Depth from 26.0 to 29.0 feet

	ROJECT: _ 'PE:	FF	STRUC	TURE		SA	MPLING	FIRM	OPERAT		STOCH RII / M		HAN	LL RIG MMER:		1E 55-LC (S AUTOMA		185)	ALIG	NMEN		_	BL	I-70 V		3' RT	EXPLO B-02	20-7-
		464	_		A-70-1373L						HSA / N			IBRAT			3/28/13				N:		<u> </u>	/			30.4 ft.	P. 1
51		1/19/15	END	_	1/22/15	SA	MPLING	METH	ELEV.	1	PT / RC		ODT/	ERGY F		%): SAMPLE	73.2		LAT /				9.9532 ATTI			004376		I
			AND NC						713.5	I D	EPTH	S	SPT/ RQD	N ₆₀	(%)	ID	(tsf)			FS	· · ·) CL				wc	ODOT CLASS (GI)	B/
).7' - CONC	RETE (8							\times	712.8		L	_			(,,,,		(101)			-						-		***
POSSIBBLE GRAVEL WI											-	- 1 -	5 4 4	10	83	SS-1	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	
											-	- 3	WOH 2 3	6	67	SS-2	-	25	31	17	19	8	NP	NP	NP	13	A-2-4 (0)	7 × 1 7 × 1 7 × 1
									706.5		-	- 5	3															7777
OSSIBBLE BILT, TRAC						'AND"					-	- 7	2															
											F	- 9	2 4 6	12	11	SS-3	-	-	-	-	-	-	-	-	-	23	A-7-6 (V)	
-SWITCHE VATER AN						JES V	VITH					- 10 - - - 11 -																
-CONSOLI -CU TRIAX 2.0'	DATION	TEST //PRES	PERFO	RME EST	D @ 11.8' PERFORI	MED @	D) /		700.5	_	-	- 12 - 13			71	ST-4	1.50	0	2	7	45	46	43	19	24	23	A-7-6 (14	$) \xrightarrow{7}{7}$
OSSIBBLE		-	-		,		/ EL,				-	- 14 ¹ - 15	2 3 4	9	81	S-5	1.25	1	0	8	49	42	38	19	19	26	A-6b (12)	
									000 4			- 16 -					0.75	-	_	-	-	_	_	-	_	-	A-6b (V)	- 7 L - 7 X - 7 L
OSSIBBLE						NDY S	ILT,		696.4 695.5	_		- 17 - - 18			63	ST-6	4.50		14	12	40	15	26	21	5	21	A-4a (4)	- 1 > - 1 > - 1 4
POSSIBBLE SILT, LITTLI GRAVEL, M	FILL: M E COAR	EDIUN	I STIFF,	BRO	WN CLAY		ID"				-	- 19 -	1 2 3	6	33	SS-7	-	-	-	-	-	-	-	-	-	24	A-7-6 (V)	
/ERY DENS	SE, BLAC	CK GR	AVEL, L	ITTLE	E COARS	E TO			693.0	-	E	- 20																$\neg \downarrow $ $\neg \downarrow $ $\neg \downarrow $
INE SAND	, TRACE	SILT,	TRACE	CLA	Y, MOIST						-	- 22			0	ST-8	-	-	-	-	-	-	-	-	-	-		7477
-COBBLES	PRESE	NT @	24.0'									- 24 -	7 19 20	48	61	SS-9	-	78	11	5	4	2	NP	NP	NP	11	A-1-a (0)	171
												- 26																, 7 V T 7 V T
DENSE, BR ITTLE SILT	OWN AN ⁻ , TRACE	ND BLA	CK GR/ (, MOIS	AVEL T.	AND SAM	ND,					F	- 28																7'L 7> 7L
-HEAVING	SANDS	ENCO	UNTER	ED @	≬ 28.5'						Ē	- 29 -	5 13 14	33	100	SS-10	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	13

MATERIAL DESCR	IPTION	ELEV.	DEPTHS	SPT/	N		SAMPLE	HP	G	RAD	ATION	(%)	AT	TERB	ERG		ODOT	E
AND NOTES		683.5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI CL	LL	PL	PI	WC	CLASS (GI))
ENSE, BROWN AND BLACK GRAVEL TTLE SILT, TRACE CLAY, MOIST. (sa ARD, BROWNISH GRAY SILT AND C OARSE TO FINE SAND, LITTLE FINE	ame as above)	681.5		31 — 32 — 33 —														V77V77V7
ERY DENSE, BLACK GRAVEL AND S RACE CLAY, MOIST.		679.5		34 - 11 20	65	72	SS-11	4.5+	11 -	11 -	<u>19</u> 3	3 <u>3</u> 26 	27	15	12	13 9	A-6a (6) A-1-b (V)	11
VICE CEAT, MOIST.				35 <u>-</u> 36 <u>-</u> 37 <u>-</u> 38 <u>-</u>														1-74-74-7
		D V	-	$ \begin{array}{c} 39 \\ 40 \\ 40 \\ 38 \end{array} \begin{array}{c} 6 \\ 20 \\ 38 \end{array} $	71	94	SS-12	-	54	14	22	7 3	NP	NP	NP	14	A-1-b (0)	
COBBLES PRESENT @ 40.0'	COARSE TO FINE	671.5	_	41 — 42 —														74444
AND, LITTLE FINE GRAVEL, DAMP.	JOANSE TO FINE		-	43 - 44 + 46	33		66.40	4.50								45	A 65 (1)	-7VF7
		666.5	- 	45 <u>21</u> 46 <u>-</u>		44	SS-13	4.50	-	-	-		-	-	-	15	A-6a (V)	V 7 7 V 7 V
ERY DENSE, GRAY AND BLACK GR/ OARSE TO FINE SAND, TRACE SILT OIST.	AVEL, SOME		- 	47 — 48 — 49 — ⁹ ₃₂	89	100	SS-14		70	13	9	5 3		NP	ND	10	A-1-a (0)	777777
				50 <u>41</u> 51 <u>-</u> 52 <u>-</u>		100	33-14	-	70	13	9	5 5				10	A-1-a (0)	F7VF7VF7
		659.5	-	53 — 54 — ⁵ 20	72	78	<u>99 15</u>	_	-	-	-		-	-	-		A-1-a (V)	1
ARD, GRAY SILT AND CLAY , LITTLE AND, TRACE FINE GRAVEL, MOIST. AUGER REFUSAL @				55 20 55) /2		SS-15	4.5+	-	-	-		-	-	-	13	A-6a (V)	
0.8' GRANITE BOULDER @ 56.5'			-	56 — 57 —		25	RC-1	-	-	-	-		-	-	-	-	A-6a (V)	7 4 4 7 4 4
				58 59 60		33	RC-2	-	-	-	-	- -	-	-	-	-	A-6a (V)	74446
0.8' MUDSTONE SEAM @ 60.7'			-	61 —														7 4 4

PID: <u>89464</u> BR ID: <u>FRA-70-137</u>	3L PROJECT: FRA-70-13.1	0 - PHASE 6A	STATION	I / OFFSI	ET:	176+6	8.64 / 1.8	RT		STAR	T: <u>1</u> /	19/15	EN	D: 1	/22/1	15 P	G 3 O	F 3 B-02	0-7-13
MATERIAL DI		ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			GRAD		<u> </u>	,			ERG		ODOT	BACK
AND N HARD, GRAY SILT AND CLAY, LI SAND, TRACE FINE GRAVEL, MO -0.1' THICK PIECE OF GRANITE REMAINING SOIL WASHED OUT	TTLE COARSE TO FINE DIST. (same as above) E RECOVERED IN RC-3.	651.4	- 63 - 64 - 65			(%) 2	ID RC-3	(tsf) -	GR -	-	FS -	-	-	-	PL	-	-	CLASS (GI) A-6a (V)	FILL
MUDSTONE : GRAY, HIGHLY WE WEAK, THINLY LAMINATED TO ARENACEOUS, CALCAREOUS, F SLIGHTLY TO HIGHLY FRACTUF APERTURES, SLIGHTLY ROUGH -POINT LOAD STRENGTH @ 69 -MEAN QU = 224 PSI	THIN BEDDED, FRIABLE, FISSILE, RED, THIGHT I; RQD 74%, REC 98%.		-TR - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75	- 89		97	RC-4											CORE	
		633.1	– 76 – 77 – 78 – 79 – 80	45		100	RC-5												

B-020-7-13 - RC-1, RC-2, RC-3 and RC-4 - Depth from 55.0 to 73.5 feet

B-020-7-13 - RC-4 (cont.) and RC-5 - Depth from 73.5 to 80.4 feet

B-020-9-13 ALT - RC-1 and RC-2 - Depth from 60.5 to 70.5 feet

B-020-9-13 ALT - RC-3 - Depth from 70.5 to 75.5 feet

	DRILLING FIRM / OPERATO SAMPLING FIRM / LOGGER			l Rig: Mer: _		ME 55 (SN ME AUTO		,		FION / NMEN	OFFS	ET: _		1+05.2 RAMP		.8' RT		RATION ID 0-9-15
	DRILLING METHOD: SAMPLING METHOD:	4.25" HSA / RC SPT / HQ	-		ON DAT ATIO (%		0/20/14	ļ.		/atio / lon(N:			/		7 004333	75.5 ft.	PAGE 1 OF 3
START: <u>3/16/15</u> END: <u>3/17/15</u> MATERIAL DESCRIPTION	ELEV.					^{6).} SAMPLE	92 HD	6						ERBE		004333	ODOT	HOLE
AND NOTES	713.0				(%)	ID	(tsf)		-		<u>`</u>	CL	LL		PI	WC	CLASS (GI)	SEALED
0.3'- ASPHALT (4.0")	/ 712.7/																	
0.4' - BRICK (4.0") 0.3' - AGGREGATE BASE (3.0")	712.3 712.0	_ 1 _ 5		11	56	SS-1	1.25	-	-	-	-	-	-	-	-	22	A-6a (V)	
POSSIBLE FILL: STIFF, DARK BROWN SILT AND CI SOME COARSE TO FINE SAND, TRACE FINE GRA' DAMP TO MOIST.		- 3 -	3															
	707.5	- 4 - 4 - - 5 -	4 4	12	100	SS-2	1.50	10	10	14	37	29	35	20	15	18	A-6a (8)	
POSSIBLE FILL: STIFF, DARK BROWN AND BLACK BROWNISH GRAY SILTY CLAY , LITTLE COARSE TO FINE SAND, MOIST.	ТО		2 4	9	61	SS-3	2.00	-	-	-	-	-	-	-	-	37	A-6b (V)	
		8 -	4															
	702.5	94 10		15	100	SS-4	2.00	0	1	13	50	36	34	18	16	21	A-6b (10)	
DENSE, GRAY GRAVEL AND SAND , TRACE SILT, T CLAY, DAMP. -ROCK FRAGMENTS PRESENT IN SS-5		117 12		35	39	SS-5	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	
DENSE, GRAY GRAVEL AND SAND , TRACE SILT, T CLAY, DAMP. -ROCK FRAGMENTS PRESENT IN SS-5 MEDIUM DENSE, BROWN SANDY SILT , "AND" FINE GRAVEL, TRACE CLAY, MOIST. -ROCK FRAGMENTS PRESENT IN SS-6 VERY DENSE, BROWNISH GRAY GRAVEL AND SA LITTLE SILT, TRACE CLAY, MOIST. -ROCK FRAGMENTS PRESENT IN SS-7 MEDIUM DENSE, BROWNISH GRAY SANDY SILT , S FINE GRAVEL, TRACE CLAY, MOIST. MEDIUM DENSE, BROWNISH GRAY SANDY SILT , S FINE GRAVEL, TRACE CLAY, MOIST.		- 13 - - 14 - 6 - 15	5 13	28	100	SS-6	-	38	15	10	29	8	22	19	3	14	A-4a (0)	
VERY DENSE, BROWNISH GRAY GRAVEL AND SA LITTLE SILT, TRACE CLAY, MOIST. -ROCK FRAGMENTS PRESENT IN SS-7			0 14 24	58	89	SS-7	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
MEDIUM DENSE, BROWNISH GRAY SANDY SILT , S FINE GRAVEL, TRACE CLAY, MOIST.	SOME	- 18 - - 19 - 19 - 1 - 20	3 9 9	28	100	SS-8	-	34	18	12	26	10	NP	NP	NP	10	A-4a (0)	
MEDIUM DENSE TO VERY DENSE, BROWN GRAVI AND SAND, LITTLE SILT, TRACE CLAY, MOIST.	EL	21 - 1	4 43 17	92	50	SS-9	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	
		- 23 - - 24 - - 24 - - 25 -	3 4 8	18	33	SS-10	-	33	38	9	13	7	NP	NP	NP	16	A-1-b (0)	
-PETROLEUM ODOR PRESENT IN SS-11 VERY DENSE, BROWN GRAVEL WITH SAND AND S TRACE CLAY, MOIST. -INTRODUCED MUD @ 30.0'		- 26 - 2	3 25 50/4"	-	88	SS-11	-	47	21	14	12	6	NP	NP	NP	11	A-1-b (0)	
VERY DENSE, BROWN GRAVEL WITH SAND AND S TRACE CLAY, MOIST.	SILT,	- 28 - - 29 - 7	14	E1	100	00.40												
-INTRODUCED MUD @ 30.0'			14 19	51	100	SS-12	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)	

D: <u>77372</u> BR ID: <u>FRA-70-1373A</u> MATERIAL DESCR	PROJECT: FRA-70-	ELEV.		CDT/			SAMPLE			STAR1				_	RBE		10 2 0	
AND NOTES		683.0	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)			FS		, CL			PI	wc	ODOT CLASS (GI)
ERY DENSE, BROWN GRAVEL WIT RACE CLAY, MOIST. <i>(same as above)</i>	SAND AND SILT,		- 31 - - 32 - - 33 -	-														
			34 35	5 30 42	110	100	SS-13	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)
'ERY DENSE, GRAY gravel with s	SAND, SILT, AND	676.0	- 36 - - 37 -	-														
ELAY, MOIST.			- 38 - - 39 - - 40 -	34 37 50/5"	-	82	SS-14	-	35	18	14	15	18	26	13	13	9	A-2-6 (1)
ERY DENSE, BROWNISH GRAY TO		671.0	40 41 42	-														
ND SAND, TRACE SILT, TRACE CLA			- 43 - - 44 -	17 32 15	72	100	SS-15	-	-	-	_	-	_	-	_	_	14	A-1-b (V)
			45 46 47 48	15														
-ROCK FRAGMENTS PRESENT IN S	S-16		49 50	17 50/5"	-	73	SS-16	-	-	-	-	-	-	-	-	-	14	A-1-b (V)
ERY STIFF TO HARD, GRAY CLAY, S		à	- 51	-														
INE GRAVEL, TRACE COARSE TO F	INE SAND, DAMP.		_ 53 _ _ 54 _ _ 55 _	12 24 39	97	100	SS-17	4.5+	11	3	3	34	49	42	19	23	14	A-7-6 (14)
BECOMING SHALE WITH DEPTH			- 56 - - 57 -															
		652.5	- 58 - - 59 - - 60 -	23 50/4"	-	100	SS-18	3.75	-	-	-	-	-	-	-	-	16	A-7-6 (V)
		652.5																

AND NOTES 650.9 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI Wc CLASS (G) SI VERY WEAK TO WEAK, THINULY LAMINATED TO MEDIUM BEDDED, ARENACEOUS, CALCAREOUS, FRIABLE, FISSILE, JOINTED, MODERATELY TO HIGHLY TO VERY ROUGH; ROD 48%, REC 75%. (same as above) -63 17 52 RC-1 I	PID: 77372	BR ID:	FRA	-70-1373A	PROJECT:	: FRA-70-	12.68 -	PHASE 4	1A	STATION	/ OFFSI	ET: _	5081+(05.25 / 39.	8 RT	S	FART:	3/16/	15 EN	ND: _3	3/17/1	5 P	G 3 O	F3 B-02	20-9-15
SHALE: DARK GRAY TO BLACK, HIGHLY WEATHERED, VERY WEAK TO WEAK, THINLY LAMINATED TO MEDIUM BEDDED, ARENACEOUS, CALCAREOUS, FRIABLE, FISSILE, JOINTED, MODERATELY TO HIGHLY FRACTURED, THIGHT TO OPEN APERTURES, SLIGHTLY TO VERY ROUGH; RQD 48%, REC 75%. (same as above) -63 17 52 RC-1 I									DE	PTHS									<u> </u>	-	-	1		ODOT	HOLE
VERY WEAK TO WEAK, THINLY LAMINATED TO MEDIUM BEDDED, ARENACEOUS, CALCAREOUS, FRIABLE, FISSILE, JOINTED, MODERATELY TO HIGHLY FRACTURED, THIGHT TO OPEN APERTURES, SLIGHTLY TO VERY ROUGH; RQD 48%, REC 75%. (same as above) -0.4' GANNTE BOULDER @ 60.5' -0.2' CLAY SEAM @ 60.9' -0.4' LIMESTONE SEAM @ 61.5' -0.5' LIMESTONE SEAM @ 64.5' -5' LIMESTONE SEAM @ 50.5' -5' LIMESTONE SEAM @ 50' LIMESTONE SEAM @ 5' LIMESTONE SEAM @ 5' LIMESTONE SEAM @ 5' LIMESTONE					-			650.9			RQD	00	(%)	ID	(tsf)	GR	CS F	S S	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
-0.4' GRANITE BOULDER @ 60.5' -0.2' CLAY SEAM @ 60.9' -0.4' LIMESTONE SEAM @ 61.5' -0.5' LIMESTONE SEAM @ 64.5' -0.5' LIMESTONE SEAM @ 64.5' -70	VERY WEA BEDDED, A FISSILE, JC FRACTURE	K TO W RENACI DINTED, D, THIG	EAK, TI EOUS, MODEI HT TO	HINLY LAM CALCAREC RATELY TO OPEN APE	INATED TO DUS, FRIABI DHIGHLY RTURES, S	MEDIUM LE, SLIGHTLY				- 64 -			52	RC-1										CORE	
	-0.4' GRAN -0.2' CLAY -0.4' LIMES	NITE BO SEAM (STONE S	ULDER @ 60.9' SEAM @	@ 60.5' @ 61.5'						- 67 - - 68 - - 69 -			75	RC-2										CORE	
	-SLIGHTLY RC-3	Y WEAT	HERED	AND SLIG	HTLY FRAC	TURED IN		637.5	—EOB	72 - 73 - 74 -			100	RC-3										CORE	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 24.5'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 188 LBS CEMENT / 50 LBS BENTONITE POWDER / 40 GAL WATER

DLZ Ohio, Inc. * 6121 I	luntley Road, Columbus,	Ohio 43229 *	(614) 888-0040
-------------------------	-------------------------	--------------	----------------

Client:	ms c	onsu	Itants	6				Project: FRA-70-8.93							Job No. 022	1-1004.01
LOG	DF: Bo	oring	B-02	21-0-0	08		Locatio	n: Sta. 5082+48.43, 39.8' RT., BL RAMP C5			Dat	e D	Drille	d: 7	7/29/2008 to 7/3	1/2008
Depth (ft)	Elev. (ft) 727.9	Blows per 6"	Recovery	Sam No		Han Penet mete (tsf)	d tro- er _{FIEL}	TER OBSERVATIONS: Water seepage at: 0.0-8.0, 18.0-23.0, 28.0-57.0 Water level at completion: 26.9' (beginning of shift, 7/30/08) 25.3' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	Aggregate	C. Sand	M. Sand	% F. Sand	% Clav	Natural Moist	ENETRATION (N60) ure Content, % - *
0.3 /	727.6/							Gravel - 3"	XXXX							
-	-	5 5 4	1	1			5	ILL: Loose to medium dense brown and gray GRAVEL WITH AND (A-1-b), little silt; wet. 1.0', drove splitspoon on gravel particle.	0.	3						
<u>5</u>	-	6 5 6	6	2						63	13		8 -	-16	INP	
- 8.0	719.9	10 6 6	3	3			-		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0							
- <u>10</u>	-	6 3 3	10	4		1.0		POSSIBLE FILL: Medium stiff to stiff brown SILTY CLAY A-6b), trace to little fine to coarse sand, trace gravel; moist.								
-		5 7 9	1	5				⊉ 11.0'-12.0', drove gravel in spoon.								
- 15	-	2 3 6	18	6		2.5		② 13.0', very stiff.		1	7		10 3	9 43		
- - 18.0	709.9	3 10 14	6	7		2.75	5									
- <u>20</u>		11 13 16	5	8				/ledium dense to dense gray GRAVEL (A-1-a), trace to little ilty clay, trace fine sand; wet.								
- - 23.0	704.9	11 19 23	18	9			(21.0'-22.5', light brown, some fine to coarse sand.	00	50	20		15 -	-15		
- 25	704.9	9 5 3	18	10		2.0		Stiff to very stiff brown SANDY SILT (A-4a), some clay, little ravel; moist.								

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (6	(614) 888-0040
---	----------------

Client:	: ms c	consu	Itants				Project: FRA-70-8.93							Job No. 0221-1004.01
LOG	OF: Bo	oring	B-02	21-0-0	08	Lo	cation: Sta. 5082+48.43, 39.8' RT., BL RAMP C5			Date	e Dri	illed	1: 7/2	29/2008 to 7/31/2008
Depth (ft)	Elev. (ft) 702.9	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 0.0-8.0, 18.0-23.0, 28.0-57.0 Water level at completion: 26.9' (beginning of shift, 7/30/08) 25.3' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	% Aggregate	CRA C. Sand %		Silt	Clay	STANDARD PENETRATION (N60) Natural Moisture Content, % - ♥ PL ↓ LL Blows per foot - ○ / Non-Plastic - NP 10 20 30 40
- 28.0	699.9	5 5 5	18	11		1.5	Stiff to very stiff brown SANDY SILT (A-4a), some clay, little gravel; moist. @ 25.0'-35.0', set piezometer screen. Medium dense brown GRAVEL WITH SAND (A-1-b), some		11	12 -	32	19	26	
- <u>30</u> -	-	5 8 13	18	12			@ 33.5'-35.0', drove spoon on boulder. No sample was							
- <u>35</u> -		50/1	0	13			recovered. @ 33.5'-43.0', very dense; boulders and cobble caused difficult drilling and poor sample recovery.							
- <u>40</u> - 12 .0		43 48 42	18	14			@ 37.0', gray.	0.000000	53	17 -	14	1	5	NPI I I I I I I I I I I I I I I I I I I
- 4 <u>5</u> -		25 32 38	10	15			Very dense brown FINE SAND (A-3), some coarse sand, little gravel, trace silty clay; wet.							
- - 50	677.9	22 28 35	16	16					14	35 -	42	8		

DLZ Ohio, Inc.	* 6121 Huntley Road	, Columbus, Ohio 43229	* (614) 888-0040

Client:	ms c	onsul	ltants	;			Project: FRA-70-8.93								Job	No.	022 ⁻	1-10 [,]	04.01		
LOG	DF: Bo	oring	B-02	21-0-	08	Loc	cation: Sta. 5082+48.43, 39.8' RT., BL RAMP C5			Da	te l	Dril	led:	7/2	9/20	008 t	o 7/3	31/20)08		
Depth (ft)	Elev. (ft) 677.9	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 0.0-8.0, 18.0-23.0, 28.0-57.0 Water level at completion: 26.9' (beginning of shift, 7/30/08) 25.3' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	% Aggregate	C. Sand		F. Sand		lay	Nat	ural I PL ⊦	Moist		TRATIC Content, Non-Pla 30	, % - · LL	۱
- - <u>55</u> - <u>57.0</u> - - - - -		25 30 46 11 21 50/5	18	17		4.5+	Very dense brown FINE SAND (A-3), some coarse sand, little gravel, trace silty clay; wet. Hard gray SILTY CLAY (A-6b), trace to little gravel, trace fine to coarse sand; damp to moist.		0	1			31 (677 							
- 65 -		23 25 25	18	19		4.5+	@ 63.5'-65.0', brown, "and" fine to coarse sand; encountered sandstone fragments.		12	20		18	23 2	1							ii)
67.0	660.9	13					Shale, blue-gray, severely weathered, weak, laminated, pyritic.														
<u>70</u>		14 26	8	20				X	-					1			i i			6	
<u>71.2</u> - - - - 75	652.9	Core 60"	Rec 60"	RQD 82%			Shale, blue-gray, highly weathered, weak, thinly laminated, friable, fissile, pyritic, slightly calcareous, jointed, moderately fractured, tight, slightly rough; RQD 83%, Loss 0%. @ 73.1' - 73.3', high angle fracture.														

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 88	388-0040
---	----------

Client	-	one	tont-				Brojact: EDA 70.9.02							1-1		004 40	04.04	
Client:					10	1-	Project: FRA-70-8.93			D -	te	- <i>וו:</i> י <i>י</i> ר	d: 7		No. 02			
LOG	JF: B(ring	D-U2	21-0-0 Sam		LO	cation: Sta. 5082+48.43, 39.8' RT., BL RAMP C5					Drille		129/2	008 to	1/31/2	JUQ	
Depth (ft)	Elev. (ft) 652.9	Blows per 6"	Recovery	Drive		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 0.0-8.0, 18.0-23.0, 28.0-57.0 Water level at completion: 26.9' (beginning of shift, 7/30/08) 25.3' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	% Aggregate		M. Sand			Na	tural Mo PL ⊢	oisture (TRATION Content, % Non-Plasti 30 4	6 - 🏟 LL
- - - 80	-	Core 60"	Rec 60"	RQD 90%	R2		 Shale, blue-gray, highly weathered, weak, thinly laminated, friable, fissile, pyritic, slightly calcareous, jointed, moderately fractured, tight, slightly rough; RQD 83%, Loss 0%. @ 75.8', encountered large pyritic inclusions. @ 76.4'-76.8' and 78.8'-78.9', high angle fracture. 											
- 82.2 - - - 8 <u>5</u>	- <u>645.7</u>	Core 60"	Rec 60"	RQD 75%	R3		Interbedded Shale (91%) and Limestone (9%) RQD 82%, LOSS 0%; Shale, dark gray, weak, moderately to highly weathered, laminated, calcareous, fissile, jointed, moderately fractured, tight, slightly rough; Limestone, light gray, slightly weathered, slightly strong to strong, thinly bedded, pyritic.											
- - - 90.0 90	637.9	Core 60"	Rec 60"	RQD 87%	R4		@ 82.8' - 83.3', qu = 1536 psi.											
							Bottom of Boring - 90.0'											

Client:	: ms c	consu	Itants	6			Project: FRA-70-8.93		Job No. 0221-1004.01
LOG	OF: Bo	oring	B-02	23-0-0)8	Lc	cation: Sta. 179+52.56, 1.9' LT., BL I-70 EB Date Drille	ed: 8/	/20/2008 to 9/2/2008
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: GRADATIC Water seepage at: 25.0' Water level at completion: 19.1' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION DESCRIPTION	,	
<u>1.5</u> - -	720.5	7 2 3	4	1		3.0	Asphalt Concrete - 4" Portland Cement Concrete - 8" Aggregate Base - 6" FILL: Very soft to soft brown SILT AND CLAY (A-6a), some fine to coarse sand, trace to little gravel; contains few brick fragments; moist.		
	716.0		12	2	P1	0.25	@ 1.5'-2.5', stiff.	33 18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
-	-	WOH WOH 2	2	3	P2	1.5 0.25	FILL: Very soft to soft brown SANDY SILT (A-4a), some to "and" fine to coarse sand, trace to little gravel; contains few brick fragments; moist. @ 6.0'-7.5', slight organic odor.916203	32 23	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
- <u>10</u>)	2 4	18	4		<0.25			
- 13.5 ⁻	708.5	WOH 3 4	18	5					
- <u>15</u>	5	233	18	6			POSSIBLE FILL: Loose to medium dense brown GRAVEL WITH SAND AND SILT (A-2-4), trace clay; damp.		
-	-	/ 6 6 7	10	7				24 7	
- <u>20</u>		7 8	8	8			@ 21.0'-21.5', contains turpentine odor.		
<u>21.5</u> - -	700.5		10	9A 9B			Very dense medium orangish-brown SANDY SILT (A-4a), some fine to coarse sand, some gravel; contains turpentine odor; moist. Image: Contains turpentine		
- 25	697.0	11 43 50/5	14	10					

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888	-0040
--	-------

Client.	: ms c	onsu	Itants	6			<i>Project:</i> FRA-70-8.93	000-00						Job	No. ()221-1	1004.01	1	٦
LOG	DF: Bo	oring	B-02	23-0-0	8	L	ocation: Sta. 179+52.56, 1.9' LT., BL I-70 EB			Da	te D	rille	ed: 8	/20/20	008 to	9/2/2	2008		
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No		Hand Penetro meter (tsf)		Graphic Log	% Aggregate	Sand	W. Sand DA	Sand		Nati	ural M Pl ⊢	oisture	e Conter	ON (N60 nt, % - ● ⊣ LL lastic - NF 40	
-	-	18 32 33 7	18	11			Very dense brown COARSE AND FINE SAND (A-3a), some silt, some gravel; wet. @ 26.0'-27.5', contains turpentine odor.		•										68
<u>30</u> -		31 36 18 23 29	15	12 13			@ 31.0'-35.0', gray, little silt, little gravel.		•										70 10 155
- - 5.0 35	687.0	18 28 35	15	14			Bottom of Boring - 35.0'												66
- - - <u>40</u> -	-																		
- <u>45</u> - - - 50	-																		

PROJECT: FRA-70-12.68 - PHASE 4A	DRILLING FIRM /	OPERATO	R:	I / S.M.	DRI	LL RIG:	C	CME-750 (SI	N 98048	3)	STAT	TION /	OFFS	SET:	5084	+74.1	6 / 15	.0' RT	EXPLO	RATION
	SAMPLING FIRM	LOGGER:		/ K.R.		MMER:		CME AUTO	MATIC			NMEN				RAMP			D-02	
	DRILLING METHO		3.25" H			IBRATI			4/26/13			/ATIOI			4 (MSL				18.1 ft.	PAG
START: <u>8/6/13</u> END: <u>8/6/13</u>	SAMPLING METH	OD:	SPT	•	ENE	ERGY R	ratio (%):	82.6		LAT /	LONG	G:	3	9.9528	4480	7, -83	.003019	9835	1 OF
MATERIAL DESCRIPTION		ELEV.	DEPT		SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATTE	ERBI	ERG		ODOT	BAC
AND NOTES		732.4	DLFI	113	RQD	1N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILI
VERY STIFF TO HARD, BROWN CLAY, "AND" SILT,																				7 LV -
LITTLE COARSE TO FINE SAND, TRACE FINE GRA	VEL,			- 1 -	5															1<1-
DAMP.				- 2 -	7	28	53	SS-1	4.5+	-	-	-	-	-	-	-	-	14	A-7-6 (V)	76-
					13															- < , v
				- 3 -																76.
					4						_									ΞĹΥ.
					4 6	14	58	SS-2	3.50	10	5	11	37	37	42	21	21	16	A-7-6 (13)) 1 > 1 .
				- 5 -	0															- 7 LV .
				6 -																125
					6 8	25	53	SS-3	4.5+	_		_	_	_	_	-	_	16	A-7-6 (V)	11L .
				- 7 -	10															
		724.4		- 8 -																125
VERY STIFF TO HARD, BROWN SILT AND CLAY, SU COARSE TO FINE SAND, LITTLE FINE GRAVEL, MO							~	OT 4		10		4-	.	<u>.</u>		40	44	~~~	A 0- (5)	JLV
-COBBLES PRESENT @ 9.0'				- 9 -			60	ST-4	4.5+	16	11	15	34	24	29	18	11	22	A-6a (5)	1 > 1
-QU @ 8.3' = 2.95 TSF				_ 10 _																$\frac{1}{7}L^{\vee}$
-CONSOLIDATION TEST PERFORMED @ 8.9'				- 11 -	4															$= \frac{1}{7} L^{V}$
-CONSOLIDATION TEST FERI ORMED @ 8.9				- 12 -	5	15	78	SS-5	3.00	-	-	-	-	-	-	-	-	18	A-6a (V)	1<1
		719.4		- 4	6															74
STIFF TO VERY STIFF, BROWN CLAY, SOME SILT,		113.4		— 13 —																<, v
SOME COARSE TO FINE SAND, SOME FINE GRAV				- 14 -	4	47						4.0	<u> </u>	. -				10		12
DAMP TO MOIST.					6 6	17	81	SS-6	2.00	25	13	12	25	25	48	19	29	16	A-7-6 (10)	$) \leq L^{\vee}$
				_ 15 _																1<1
				- 16 -																7.6
																				1>1
			_	- 17 -			98	ST-7	3.00	-	-	-	-	-	-	-	-	21	A-7-6 (V)	12
		714.4	<u> </u>	- 18 -																- ZLV
DENSE TO VERY DENSE, BROWN TO GRAY GRAV AND SAND, LITTLE SILT, TRACE CLAY, MOIST TO			W		4															1<1
AND GATE, ETTLE GET, TRACE CEAT, WORT TO				- 19 -	8	33	100	SS-8	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	7 LV
				- 20 -	16															- 1>V
	$\circ \bigcirc \circ$			_ 21 _																76
	00																			< , v
	ې د م			- 22																12
	$\langle \mathcal{O} \rangle$			23																5 LV
	000				1															1<1
				- 24 -	+ 17	51	100	SS-9	-	-	_	-	-	-	_	-	-	13	A-1-b (V)	7 LV
	P. C.			_ 25 _	20															1721
-COBBLES PRESENT THROUGHOUT																				
				- 26																Y LV
				_ 27 _																1<1
																				ZLV J>C
	ه (۲۰			_ 28 _																1<1
	Po-D			- 29 -	22 50/5"	-	0	SS-10	-	-	-	-	-	-	-	-	-	-		
	10.	4 1			45			3S-10A	1								3	12	1	- 1 > r . - < . v

ID: <u>77372</u>	BR ID:				n- <i>1</i> 0-12.00	3 - PHASE						74.16 / 15 SAMPLE			RAD	_			ATT			G 2 OI		
	IVIA I	ERIAL DESC AND NOTE				ELEV. 702.4		EPTHS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)			FS	SI	CL		PL	PI	wc	ODOT CLASS (GI)	BA FI
DENSE TO V AND SAND, L (same as abov -HEAVING S	ITTLE SILT /e)	E, BROWN I , TRACE CL	to gray .Ay, mois			? .ไ	_w	31 32 33	-															
-COBBLES I	PRESENT -	HROUGHO	DUT					_ 34 _ 35 _ 36	17 18 22	55	100	SS-11	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
/ERY STIFF, TO FINE SAN					E	695.4	_	- 37 - 38 - 39	-	40	100	SS-12	3.50	4	8	20	46	22	36	16	20	11	A-6b (11)	- 7 < 1 × 1 7 < 7 × 7 × 7
/ERY DENSE								- 40 41 42	23			55-12	3.50	4	0	20	40	22	30	10	20			
SAND, TRAC	E SILT, DA	MP.	LECOAR	SE TO FII				- 43 44 45	12 30	91	78	SS-13	-	-	-	-	-	-	-	-	-	6	A-1-a (V)	
-COBBLES I	PRESENT (2 46.0'				70	EC	- 46 - 47 - 48	-			SS-14					/							
									<u> 20/1</u>					<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		
OTES: SEEF								22 0' VNIC AT			19.01													

Client:	: ms c	onsu	Itants	;			<i>Project:</i> FRA-70-8.93							Jol	b No. 0221-1	004.01
LOG	OF: B	oring	B-02	24-0-()8	Lo	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te I	Drill	ed:	7/1/20	08 to 7/2/20	08
Depth (ft)	Elev. (ft) 743.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate		M. Sand	F. Sand	% Sit	Na Blow	atural Moisture PL ⊢	ETRATION (N60 Content, % - ¶ // Non-Plastic - N 30 40
-	-	3 4 7 12 11 5	11	1 2		 4.5+	Stiff to very stiff brown SILTY CLAY (A-6b), trace to little fine to coarse sand, little gravel; damp to moist. @ 0.0 - 3.0', contains roots. @ 1.5', hard.		11	9		11		7		
- _5 		7 8 4 6 14	16 13	3		4.0 3.75	@ 3.0', very stiff to hard.						33 3 31 3			
- - <u>10</u> -	-	4 4 8	15	5		4.5										
- - - 15.5		14 21 22 17 14 15	9	6 7			@ 11.0', encountered rock fragments.									
 	727.9	4 7 7 2	18	8		3.5	Very stiff brownish gray SANDY SILT (A-4a), little to some fine to coarse sand, trace gravel; damp to moist.									
- 20 -	-	4 7 13 16	18	9 10		3.0	@ 21.5', encountered possible large rock fragments, cobbles.		9	15		19	35 2	2		
- 25		3 7 8	18	11		3.25										

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614	4) 888-0040
---	-------------

Client:	ms c	onsu	Itants	;			Project: FRA-70-8.93							Jok	b No. 022	1-100	4.01	
LOG	OF: Bo	oring	B-02	24-0-0)8	Loc	ation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te L	Drille	ed: 7	/1/20	08 to 7/2	/2008		
Depth (ft)	Elev. (ft) 718.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate	Sand	M. Sand	% F. Sand DILY	% Slit NC % Clav	Na Blow	ANDARD I atural Mois PL I Honder PL per foot - 10 2	ture Co	ontent, 9 i on-Plast	%- ♥ LL
- - 28.0	715.4	8 10 14	18	12			Very stiff brownish gray SANDY SILT (A-4a), little to some fine to coarse sand, trace gravel; damp to moist.											
- <u>30</u> -	-	3 12 15	16	13			Medium dense brownish gray SILT (A-4b), little fine sand; wet.	+ + + + + + + + + + + + + + + + + + + +	- - - -	0		17 -	83	 N P 				
<u>32.0</u> - <u>35</u> -		7 18 18	11	14			Dense brown GRAVEL (A-1-a), some fine to coarse sand, trace to little silty clay; wet.	-0000000000000000000000000000000000000	60	22		8 -	10	 N P 				
<u>37.0</u> - <u>40</u> -	706.4	13 26 45	15	15			Hard brownish gray SANDY SILT (A-4a), little gravel, trace clay; damp.		12	14		27 3	33 14		•			
42.0 - - <u>45</u> -	701.4	17 26 45	18	16			Very dense brownish gray COARSE AND FINE SAND (A-3a), little silty clay, little gravel; wet. @ 43.5', 2.0 feet sand heave.			25		47 -	12	 				
47.0 - - 50	696.4 693.4	26 30 27	13	17			Very dense brownish gray SANDY SILT (A-4a), little gravel; wet.		•						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

DLZ Ohio, Inc.	* 6121 Huntley Road,	Columbus, Ohio 43229 *	(614) 888-0040
----------------	----------------------	------------------------	----------------

Client:	ms c	onsul	Itants	6			Project: FRA-70-8.93							J	ob Nc	. 0221	-1004	I.01	
LOG	DF: Bo	oring	B-02	24-0-(08	Lo	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te l	Dril	led:	7/1/2	2008 t	o 7/2/2	2008		
Depth (ft)	Elev. (ft) 693.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	Aggregate	Sand	Sand	F. Sand	% Silt 0	Clay BI	Natura. PL	ARD PI Moistu foot - 20	ure Col	ntent, 9 on-Plas	% - 单 LL
- - - 55		15 40 50/4	13	18			Very dense brownish gray GRAVEL WITH SAND (A-1-b), some silty clay; wet. @ 50.0'-60.0', difficulty advancing boring due to obstruction inside augers blocking rods; possible boulder zone.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	30	31		16	15	8					 50 +
<u>57.0</u> - <u>60</u>	686.4	37 21 50	13	19			Very dense brownish gray SANDY SILT (A-4a), some gravel, some fine to coarse sand; damp.	<u>.</u>		19		10	28	13					
62.0 - 65		11 50/4	10	20			Very dense brown and gray GRAVEL (A-1-a), some fine to coarse sand, trace silt; wet. @ 63.5', one foot sand heave; encountered black shale fragments.		73	17		5	5-	- 	PI III III III III III III III				 50 +
- - <u>70</u> -		50/3	0	21			@ 68.5', possible cobbles or boulders.												 50 + 0 0
75	1	50 50/3	6	22			@ 73.5', 6.0 feet sand heave; washed out with tricone.	°0 0 <u>/</u> 0 0											 50 +

DLZ Ohio, Inc.	* 6121 Huntley Roa	d, Columbus, Ohio 43229 *	(614) 888-0040
----------------	--------------------	---------------------------	----------------

Client:	ms c	onsu	Itants	;			<i>Project:</i> FRA-70-8.93								Job I	√o. 02	21-10	04.01	
LOG C	DF: Bo	oring	B-02	24-0-0)8	Lo	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te l	Dril	led:	7/1	1/2008	to 7/2	2/2008	3	
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	a				% Silt O		Natu Pi Blows p	ral Moi L ⊢— per foot	<i>isture</i> C - ○ /	Non-Plas	% - ♠ LL tic - NP
	668.4	39 50/3 50/0 50/0 Core 18"	Ω 9 9 0 Rec 0" Rec 116"	23 24 25 RQD 0%	R1		 Very dense brown and gray GRAVEL (A-1-a), some fine to coarse sand, trace silt; wet. @ 78.5', 3.0 feet sand heave. @ 80.0'-90.0', difficult drilling; possible cobbles. @ 80.0'-90.0', difficult drilling; possible cobbles. @ 90.0' - 91.5', core loss. @ 91.5' - 91.8', encountered igneous-plutonic cobble/boulder; likely peridotite or gabbro. Interbedded Shale (90%) and Limestone (10%) RQD 60%, LOSS 26%; Shale, blue-gray, highly weathered, weak, laminated, slightly calcareous, contains abundant pyritic inclusions, moderately to highly fractured; Limestone, light gray, moderately weathered, moderately strong to strong, fractured. 			36		5	%4-	-				30 	
9 <u>5</u> 100		120"		RQD 81%	R2														

Client:	maa	oncui	Itanto				Project: FRA-70-8.93								Job No. 0221-1004.01
LOG C					18	1.00	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			יח	ate	וייח	المطا	. 7/	1/2008 to 7/2/2008
	л. D(ning 	D-U4	Sam		LOC	WATER OBSERVATIONS:								
Depth (ft)	Elev. (ft) 643.4	Blows per 6"	Recovery	Drive		Hand Penetro- meter (tsf)	Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) FIELD NOTES: 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate		% M. Sand		Silt	Clay	STANDARD PENETRATION (N60) Natural Moisture Content, % - • PL
- - 1 <u>05</u> - - 1 <u>10</u> 110	631.9	Core 120"	Rec 76"	RQD 48%	R3		Interbedded Shale (90%) and Limestone (10%) RQD 60%, LOSS 26%; Shale, blue-gray, highly weathered, weak, laminated, slightly calcareous, contains abundant pyritic inclusions, moderately to highly fractured; Limestone, light gray, moderately weathered, moderately strong to strong, fractured. @ 101.2', dark gray (shale). @ 107.8' - 111.5', core loss due to pyritic inclusion lodged in core barrel.								
- - 1 <u>15</u> - - 1 <u>20</u> - - - - - - - - - - - - - - - - - - -							Bottom of Boring - 111.5'								

APPENDIX IV

HISTORIC BORING LOGS:

B-001-A-57 and B-003-A-57

SHEET 4

STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

			NG WALL	
LOCATION	T.H.1_À	<u>BÅ</u> STA.	<u>51+16</u>	OFFSETFED.NO
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO	DESCRIPTION
714.5	0			
	2			
709.5	4			
	6	2/3	19687	Brown Silty Gravelly Sand
707.0		3/5	19688	Dk.Gr.Gravelly Sand Silt W/Coal
704.5	0			Fragments
702.0	12	3/6	19689	Dk.Gr.Gravelly Sandy Silt
	14	3/7	19690	Gr.Gravelly Sandy Silt Trace of Organi
699 .5		4/9	1969 1	Dk.Gray Silty Sandy Gravel
597.0		10/13		Brown Gravel W/Limestone Fragments
594.5	20	8/14	19693	Brown Sandy Gravel
692.0	22	(- 0		
589.5	24	12/18	19694	Brown Silty Sandy Gravel
5070D	26	10/16	19695	Brown Silty Sandy Gravel
-	28			
584.5			[
·	32_	19/32	19696	Gray Silty Gravelly Sand
	34			
79.5	36	30/55	19697	Gray Sandy Gravel

MB R. 26-59 B-001-A-59

4

ļ

LOG	OF BORI	NG (c	ONTINUE)) SHEET 5
BRIDG	E NO			
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
	38			
674.5	40]		
	42	45/75	1969 8	Gray Silty Sandy Gravel
	44			ہ Gray Silty Sandy Gravel
669.5	46	37/95	19699	Gray Silty Sandy Gravel
	48			
664.5 663.5	50	31/40	19700	Gray Sandy Silt
	52	<u></u>		BOTTOM OF BORING
	54			
-	56			
	58			
	60			
	62			
	64			
	66			
	68			
ľ	70			
	72			
	74			
	76			
	78			
]	80			
	82			

SHEET 6

STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

CO., RT. NO., SEC. FRA-40-12.82 RETAINING WALL-A SOUTH-EAST INNERBELT LOCATION: T.H. 3-AR STA. 54+68 OFFSET 60'RT FED. NO.

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
735.5	0			
	2			
730.5	4			
	6	19/14	19701	Gray Silty Sandy Gravel
728.0		8/9	197 02	Gray Sandy Gravelly Silt
725.5	<u>ю</u>	9/9	19703	Gray Gravelly Sandy Silt
723.0		7/10	19704	Gray Silt and Clay
720.5	16	9/10	19705	Gray Silt
718.0		13/15	19706	Gray Silty Sand
715.5	<u>20</u> 22	16/ 2 2	19707	Gray Sandy Silt
713.0		42/36	19708	Gray Silty Sandy Gravel W/Boulders
710.5	26	25/25	19709	Gray Gravel W/Boulders
708.0	28	20/46	19710	Brown Sandy Gravel W/Boulders
705.5	<u> </u>		19711	Brown Sandy Gravel W/Boulders
700.5	34	75/*	19712	Gray Silty Sand W/Boulders

*Refusal

B-003-A-59

.

÷,

LOG	OF BORI	ING (c	ONTINUE)	SHEET ?
BRIDG	E NO			Т.Н <u>З-А в</u>	
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION	
	38				
695.5	40]			
	42	38/34	19713	Gray Sandy Silt	
100 -	44				
690.5	46	27/42	19714	Gray Silty Sandy Gravel	
	48				
685.5	50	25/37	19715	Gray Silt W/Boulders	
683.0	52		·		
680.5	54	75/*	<u> </u>	Bouldery Gray Sand	
	56			BOTTOM OF BORING	
	58			*Refusal	
	60				
	<u>62</u> 64				
	66				
	68				
	70				
	72				
	74				
	76				
	78				
	80				
	.82				

APPENDIX V

LABORATORY TEST RESULTS

	RESOURCE			U	NCONI		COMP 1 D -2166	RESSI	ON		
	I'MOILN'			PROJEC JOB No.		FRA-70- W-13-04					
6350) Presidential G	ateway		BORING			B-023-1-1	3			
	lumbus, Ohio 4				N / OFFSE	Т	5084+74.1		Rt.		
	ohone: (614) 82				No. / DEF		ST-4 / 8.3 ft				
Fax N	lumber: (614) 8	23-4990		DATE O	F TESTIN() BY	3	8/14/2013 JJH				
	escription: <u>Brown</u> sification: <u>ODOT</u>		CLAY, so	ome coarse	to fine sar	nd, little fi	ne gravel.				
Physical Ch	aracteristics	L.L.	P.L.	P.I.	Gravel%	C. Sand%		Silt%	Clay%		
		29	18	11	16	11	15	34	24		
DIAMETER, D_0	2.87 in	72.898	mm	STRAIN	RATE		1	00	%/min		
AREA, A ₀	$\frac{1000}{6.47}$ in ²	41.7	-	-	NL + PAN	MASS		34.2	g		
HEIGHT, L ₀	5.77 in	146.58	-	PAN MA).2	g		
VOLUME, V_0	<u>37.33</u> in ³	611.8	cm ³			MASS		97.9	_g		
MACH. RATE WATER CONT.	0.577	in/min %		WET DE DRY DE	-			2.04 3.03	lb/ft ³ lb/ft ³		
WATER CONT.	10.02	70		DITIDE	NOTT			5.05			
UNCONFINED CO	OMPRESSION ST	RESS, q _u		5,	896	psf	2.	95	tsf		
A X / I A I A	FAILURE						0	~~	%		
AXIAL STRAIN @								66			
AXIAL STRAIN @ HAND PENETRO								66 5+	tsf		
HAND PENETRO				Unco	onfined Co	ompressi	4.				
HAND PENETRO	METER	(psf)	7,000 6,000 5,000	Unco	onfined Co	ompressi	4.				
HAND PENETRO	METER	e Stress (psf)	6,000	Unco	onfined Co	ompressi	4.				
HAND PENETRO	METER		6,000 5,000 4,000 3,000	Unco	onfined Co	ompressi	4.				
HAND PENETRO	METER re Sketch	Compressive Stress (psf)	6,000 5,000 4,000 3,000 2,000	Unco	onfined Co	ompressi	4.				
HAND PENETRO	METER re Sketch		6,000 5,000 4,000 3,000 2,000 1,000	Unco	onfined Co	ompressi	4.				
HAND PENETRO	METER		6,000 5,000 4,000 3,000 2,000	Unco	6.0		4. on Test				

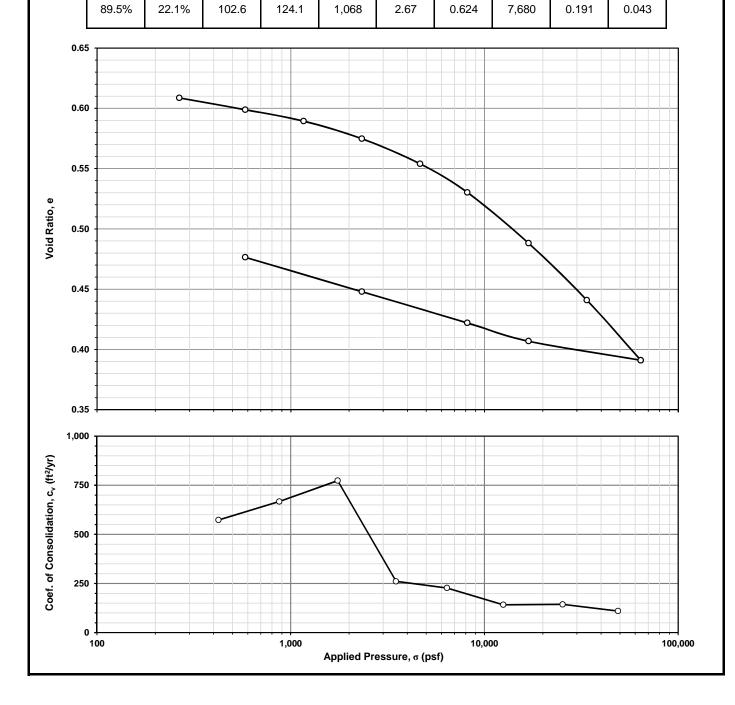
One-Dimensional Consolidation Test Report (ASTM D2435)Project Number:W-13-045Project Name:FRA-70-12.68Boring Number:B-020-2-13Station / Offset:176+13.62, 34.0' Rt.

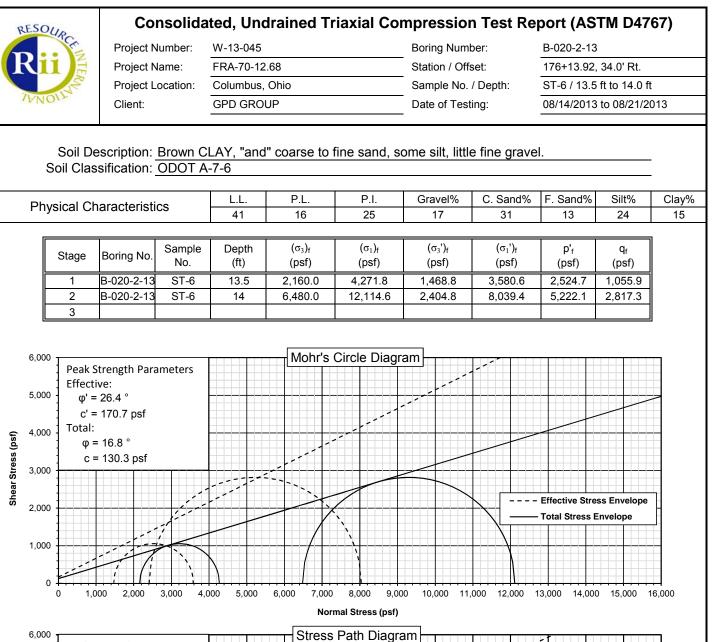
Void Ratio, e

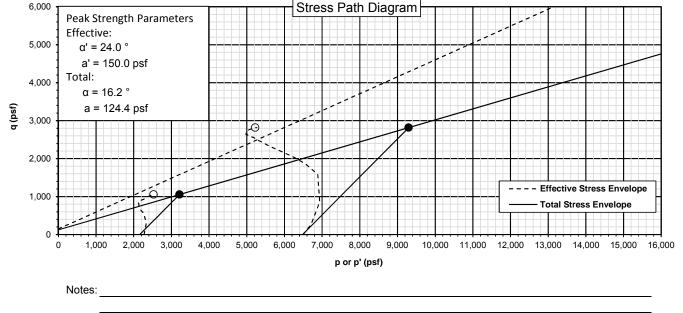
Coef. of Consolidation, c_{ν} (ft²/yr)

•	• =	Project N	umber:	W-13-045			Boring Nu	linder.	B-020-2-13		
i	1	Project N	lame:	FRA-70-1	2.68		Station / 0	Offset:	176+13.62,	34.0' Rt.	
	NA STR	Project L	ocation:	Columbus	, Ohio		Sample N	lo. / Depth:	ST-6 / 14.7	ft	
N	217	Client:		GPD GRO	DUP		Date of T	esting:	08/13/2013	to 08/30/20	013
							_	_			
			- -			<i>c</i>					
					coarse to	fine sand	a, some sil	t, little fine	e gravei.		-
	Soli Class	sification:		-1-0							-
				L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay
Ph	ysical Ch	aracteristi	CS	41	16	25	17	31	13	24	15
									1		
	Nat	ural	γd	γ_{sat}	σ_{vo}'	S_{G}	e _o	σ_p '	с,	c _r	
	S _o	W _o	(pcf)	(pcf)	(psf)	S G	C _o	(psf)	C _c	C _r	
Γ	101.6%	19.9%	105.6	128.9	1,617	2.67	0.578	2 470	0.154	0.022	
	101.0%	19.9%	105.0	120.9	1,017	2.07	0.576	2,470	0.154	0.022	
											-
0.60											
	1	<u>~</u>									
0.55											
				<u> </u>							
					- a						
0.50											
						a					
							Da				
0.45	-						`				
								\mathbf{i}			
								كر			
0.40	-										
			~								
					<u> </u>				à		
0.35							<u> </u>				
0.35										<u>~~</u>	
0.30	 										
000					1						
750											
						A					
		٩		\sim	/	$^{\prime}$					
500					\checkmark			0			
			6		0		b	\sim			
									~	-0	
250	1										
0											
				1,000		· · · · · ·	10,00			1	

One-Dimensional Consolidation Test Report (ASTM D2435)




Void Ratio, e


Coef. of Consolidation, c_v (ft²/yr)

RESC	NURCE		One-D	imensio	nal Con	solidat	ion Test	Report	(ASTM D	02435)		
	ARCE	Project N	lumber:	W-13-072			Boring Nu	mber:	B-020-7-13			
Ki	1)A	Project N	lame:	FRA-70-13	.10		Station / C	Offset:	176+68.64, 1.8' Rt.			
70	ALL NAS	Project L	ocation:	Columbus,	Ohio		Sample N	o. / Depth:	ST-4 / 11.8	ft		
14N	012	Client:		ms consulta	ants, inc.		Date of Te	esting:	01/27/2015	to 02/12/20	015	
					"and" silt,	trace co	arse to fine	e sand			-	
	Soil Class	sification:	ODOT A	-7-6							-	
Dh	voicel Ch	orootorioti	~~~	L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay%	
Pn	ysical Ch	aracteristi	cs	43	19	24	0	2	7	45	46	
Г	Nat	ural			σ_{vo}'			σ. '			1	
-	S _o	w _o	γ _d (pcf)	γ _{sat} (pcf)	(psf)	S_{G}	е о	σ_p' (psf)	С _с	C_r		
					4.057	0.07	0.745		0.040	0.040		
	99.6%	23.3%	95.5	122.0	1,357	2.67	0.745	3,449	0.210	0.049		
0.77											• 	
0.77												
	o											
0.72				<u> </u>								
					\searrow_{α}							
0.67												
						~						
0.62												
							r a					
0.57								\mathbf{i}				
0.01	_							Q				
			~	\sim								
0.52	-											
					~~~				كر			
0.47							<u> </u>			<b>\</b>		
										$\mathbf{\lambda}$		
0.42	ł										<u></u>	
1,000	T											
750												
750			$\sim$									
					<u> </u>							
500					$\rightarrow$							
		of										
250	-											
	•											
-						<u>\</u>		-0	-0	-0		
0	100			1,000			10,00	0				
					Applied Pre	essure, σ (p	osf)					

### **One-Dimensional Consolidation Test Report (ASTM D2435)** RESOUR Project Number: W-13-045 Boring Number: B-023-1-13 FRA-70-12.68 Project Name: Station / Offset: 5084+74.16, 15.0' Rt. Project Location: Columbus, Ohio Sample No. / Depth: ST-4 / 8.9 ft GPD GROUP Client: Date of Testing: 08/21/2013 to 09/11/2013 Soil Description: Reddish brown SILT AND CLAY, some coarse to fine sand, little fine gravel. Soil Classification: ODOT A-6a L.L. P.L. P.I. Gravel% C. Sand% F. Sand% Silt% Clay% **Physical Characteristics** 29 18 11 16 15 34 24 11 Natural $\sigma_{vo}'$ $\sigma_p'$ γd $\gamma_{sat}$ $S_G$ $c_c$ $e_o$ $C_r$ (psf) (psf) (pcf) (pcf) $S_o$ $W_o$







NLU	OU	RC	Co	nsolida	ated, Un	drained T	riaxial Co	mpressio	n Test Re	port (AS	TM D47	67)
		Cr.	Project Number: W-13-072					Boring Num	ber:	B-020-7-13		
К	11		Project N	lame:	FRA-70-13.10			Station / Offset:		176+68.64, 1.8' Rt.		
		N. S.	Project L	ocation:	Franklin C	ounty, Ohio		Sample No.	/ Depth:	ST-4 / 12.0	ft to 13.0 ft	
N	NO	12	Client:		ms consult	ants		Date of Tes	ting:	01/28/2015	to 02/10/20	015
						, "and" silt,	trace coarse	e to fine sand	ł			
	50		sification:	ODOT P	4-7-0	•			•			
Р	hys	sical Cha	aracteristi	CS	L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay%
	,				43	19	24	0	2	7	45	46
				Sample	Depth	(σ ₃ ) _f	(σ ₁ ) _f	(σ ₃ ') _f	(σ ₁ ') _f	p' _f	q _f	
		Stage	Boring No.	No.	(ft)	(03)f	(psf)	(03)# (psf)	(or) _f (psf)	(psf)	(psf)	
		1	B-020-7-13	ST-4	12.0-12.5	1,440.0	4,302.7	2,030.4	4,893.1	3,461.8	1,431.4	
			B-020-7-13		12.5-13.0	5,760.0	10,900.3	3,772.8	8,913.1	6,343.0	2,570.2	
		3										
6 (	000					Mohria	Circle Diag	rom				
6,0	- 000	Peak St	rength Para	ameters			Circle Diag	ram				
_		Effectiv	/e:							-		
5,0	000 -	1 .	23.3 °						· · · · ·			
		c' = 69.4 psf Total:										_
4,(	000 -		12.0 °									
		· ·	851.7 psf									
3,0	000 -											-
							$\sim$	$\sim$				
2,0	000 -					-//	<u>`</u> `			<ul> <li>Effective Stre</li> <li>Total Stress E</li> </ul>	-	
					7		· · · · · · · · · · · · · · · · · · ·				Invelope	
1,0	. 000				$\mathbf{x}$		<u>`</u>					
			1 1				N N					
	0 -				<u>                                     </u>		· · · · · · · · · · · · · · · · · · ·					
	(	0 1,00	00 2,000	3,000 4,	,000 5,000	6,000 7,00	0 8,000 9,0	00 10,000 11	,000 12,000	13,000 14,000	0 15,000 1	6,000
						No	ormal Stress (psf)					
6,0	000 -	1				Stres	s Path Diagi	am			1-1	
		Peak St Effectiv	rength Para	ameters							-	
5,0	. 000	1	21.6 °									-
			63.1 psf						[_]			
4.(	000 -	Total:	·									-
.,.			11.8 °									
21	000 -	a =	832.3 psf									
3,0	. 000					.0.:1						
							7					
	000 -						-/1					
2,0				-0-						- Effective Stre	ss Envelope	
2,0	000 -	┍╼╼╼╡				///////////////////////////////////////				- Total Stress E	-	H
	••••		:/			1/						
			1/1			1						
	0 -											
	0 -	0 1,00	0 2,000	3,000 4,	,000 5,000	6,000 7,00		00 10,000 11	,000 12,000	13,000 14,000	0 15,000 1	6,000
	0 -	0 1,00	0 2,000	3,000 4,	,000 5,000	6,000 7,00	0 8,000 9,0 p or p' (psf)	10,000 11	,000 12,000	13,000 14,000	0 15,000 1	6,000

RESOURCE	Conse	olidated	, Undrain	ed Tria	cial Comp	ression T	est (ASTM	D4767)	)	
GRCM	Project Number:	W-13-072	2		Boring Num	per:	B-020-7-13			
Project Name: F			FRA-70-13.10			set:	176+68.64, 1.	8' Rt.		
2	Project Location:	-	Franklin County, Ohio			Sample No. / Depth:		ST-4 / 12.0-12.5 ft		
7KNOIL4	Client:	ms consu	•		Date of Test	•	2/10/2015			
	Chiefta				-					
	scription: <u>Dark br</u> sification: <u>ODOT</u>	own CLA		-	en No. 1	and			-	
Dhyraiaal Ch		L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay%	
Physical Ch	aracteristics	43	19	24	0	2	7	45	46	
									2	
Di		2.872	in			of Solids , V _s			_in ³	
		6.478	in ²			e of Voids, V _v			_in ³	
	· · ·	5.941	in	Ini		/oid Ratio, e _o				
	/olume, V ₀ 3	8.487	in ³	INI	tial Degree of S	saturation, $S_0$	94.7	/	_%	
	Water Content BE	FORE Test	:		Wate	er Content AF	TER Test (Tota	al Specim	en)	
	Tin No.:		g				FUN	-	_g	
Wet		13.18	g		V	/et Soil + Tin			_g	
		97.47	g			Dry Soil + Tin			_g	
		29.97	g			Tin Weight		0	g	
	Dry Mass :	67.5	g			Dry Mass	242.80 23.88		g	
Weigh	t of water :	15.71	g		We	eight of water			g	
	Moisture : 2	23.27	_%			Moisture			_%	
						Wet Density	-		pcf	
						Dry Density	100.6	65	_pcf	
Consolidation Cel	Pressure:	140.0	psi	D	eviator Stress	@ Failure. Ds	2,86	3	psf	
Consolidation Back		130.0	 psi			ain @ Failure			 %	
Effective Confining		10.0	 psi	Major F	rincipal Stress				psf	
		1,440	 psf	Induc	ed Pore Press	ure @ Failure	-590	)	 psf	
S	strain Rate: 0	.0030	in/min		ive Minor Princi			0	psf	
			_	Effecti	ve Major Princi	pal Stress, $\sigma'_1$	4,89	3	psf	
Fa	ilure Sketch		CU C 4000 3000 2000 0 1	ompress	ive Strength	and Induc	ed Pore Pres	ssure	_	
12-0	-072		Deviator Stress / Induced Pore Pre				Deviator Stress nduced Pore Pres	sure	-	
B-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S	0.7 		57 -1000 -2000 -0%		5%	10% Strain (%)	15%	2	.0%	

RESOURCE	Conso	olidated,	Undrair	ned Triax	ial Comp	ression Te	est (ASTM	D4767	)	
Project Number: W-13-072					Boring Numb	ber:	B-020-7-13			
Rii	Project Name:	FRA-70-1		Station / Offset:			176+68.64, 1.8' Rt.			
	Project Location:		County, Ohio		Sample No.		ST-4 / 12.5-13.0 ft			
7KNOITAL	-		-		-	•		.0 11		
	Client:	ms consu	Itants		Date of Test	ing:	10/11/2014			
Soil De	escription: Dark br			•	en No. 2	and				
	sification: ODOT		,	.,					_	
Dhyraiaal Ch		L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay%	
Physical Ch	aracteristics	43	19	24	0	2	7	45	46	
	in a star D	075					00.70	-	. 3	
D		2.875	_in			of Solids , V _s :	1		_in ³	
	• • • •	5.492	in ²			e of Voids, $V_v$ :	1		_in ³	
	· ·	5.968	_in			/oid Ratio, e _o :	1		_	
	Volume, V ₀ 38	8.741	_in ³	Ini	ial Degree of S	Saturation, $S_0$ :	98.93	3	_%	
	Water Content BE	FORE Test			Wate	er Content AF	TER Test (Tota	al Specim	en)	
	Tin No.:	X-16	g	Tin No.: FUNKY						
Wet		13.18	g	Wet Soil + Tin : 1325.30						
		07.47	g			Dry Soil + Tin :			_g _g	
-		9.97	g	Tin Weight : 56.10					g	
	-	67.5	g			Dry Mass :			g	
Weiał	-	5.71	g		We	228.1		g		
		23.27	_9 %			21.9		_9 %		
		.0.27				124.8		pcf		
						Dry Density :			_pcf	
Consolidation Ce	Il Pressure: 1	43.0	psi	D	eviator Stress	@ Failure, Ds:	5,140	C	psf	
Consolidation Bac	k Pressure: 1	03.0	psi			%				
Effective Confining	stress, σ ₃ :	40.0	psi	Major F	rincipal Stress	10,90	0	psf		
	5	5,760	 psf	Induc	ed Pore Press	1,98	7	_ psf		
S	Strain Rate: 0	.0030	 in/min							
			_	Image: Definition of the stress of the st						
							_			
Failure Sketch       CU Compressive Strength and Induced Pore Pressure         6000										
			α						_	
			sur							
			4000 ↓							
		N	- +000 -							
			Č P			De	eviator Stress			
			<u>9</u> 3000 -	1		In	duced Pore Press	ure	1	
			ou /	/						
The Barres			Deviator Stress / Induced Pore Pressure (psf)						-	
Q-13	3-072		Str	<i>i</i>			<b></b>			
8-0	3-072		be 1000	<i>i</i> –					-	
	2.13.0		je vi	/						

0 0%

2%

Notes:

(2-13-072 8-020-7-13 57-4 12.5-13.0 40 PSI

4%

6%

8%

Strain (%)

10%

12%

16%

14%

RESOURCE	Project Number:	W-13-04	15		Boring Numb	ber:	B-020-2-13		
Rii	Project Name:	FRA-70-			- Station / Offs		176+13.92, 34	0' Rt	
a la	Project Location:	Columbus, Ohio			- Sample No. /		ST-6 / 13.5 ft		
7KNOIL4	Client:	GPD GF			- Date of Testi	•	6/21/2013		
	Glient.					ng.	0/21/2013		
	scription: <u>Brown (</u>	CLAY, "ai		•	en No. 1 d, some silt,	little fine gra	avel.		_
Soil Class	sification: ODOT A	4-7-6							_
Physical Cha	aracteristics	L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay
		41	16	25	17	31	13	24	15
Di	ameter, $D_0$ 2	.854	in		Volume o	of Solids , $V_s$	: 21.81	13	in ³
		.396	in ²		Initial Volume				_''' in ³
		.725	in			oid Ratio, eo			
١		6.618	in ³	Ini	tial Degree of S				%
	Water Content BE		•		Wate	or Contont AF	TER Test (Tota	al Snacim	on)
		/-74			Wale		KDV		
Wet		46.25	g		W	/et Soil + Tin			_g _g
	Soil + Tin : 12		9 			Dry Soil + Tin			_9 _9
-		27.9	g			, Tin Weight			g
		6.68	g			Dry Mass		40	g
Weigh	t of water : 2	1.67	g		We	ight of water	230.5	50	g
	Moisture : 2	2.41	%			Moisture	-		_%
						Wet Density			_pcf
						Dry Density	99.2	9	_pcf
Concolidation Col		40.0	psi	F	aviator Strago (	@ Failura Da	0.14	0	psf
Consolidation Cel		40.0 25.0	psi	L	eviator Stress (	ain @ Failure			_psi %
ffective Confining		<u>25.0</u> 15.0	psi	Maior F	Principal Stress				^o psf
		,160	psf		ced Pore Pressu		-		_psf
S		0030	in/min		ive Minor Princi				_psf
			_		ve Major Princip	-			 psf
Fai	lure Sketch		CUC	ompress	ive Strength	and Induc	ed Pore Pres	ssure	_
			2500 - 						7
- 1			1) 2000						_
			Less						
			1500						-
			1000 H						
			ي ارچ ارچ	,					
(1)-1	W-13-045								
	0 beviator Stress / Induced Pore Pressure (psi)						Deviator Stress		
	51-6		sviato			I	nduced Pore Press	sure	
	13.5-14.0		ے -500 ل						

Notes:

_____

- __

RESOURCE	Consc	lidated,	Undrai	ned Tria	kial Compr	ession T	est (ASTM	D4767	)	
A Car	Project Number:	W-13-045			Boring Numb	ber:	B-020-2-13			
	Project Name:	FRA-70-1	2.68	Station / Offset:			176+13.92, 34.0' Rt.			
	Project Location:	Columbus			_ Sample No. /		ST-6 / 14.0 ft			
74NOLLA	Client:	GPD GRC			- Date of Testi	•	8/21/2013			
	Ollerit.					ng.	0/21/2013			
Soil De	escription: Brown (			-	nen No. 2	little fine ar	avel.			
	sification: ODOT A				, ,				_	
 Physical Ch	aracteristics	L.L.	P.L.	P.I.	Gravel%	C. Sand%	F. Sand%	Silt%	Clay%	
Filysical Cil		41	16	25	17	31	13	24	15	
_									2	
D	°		_in			of Solids , V _s :			_in ³	
	÷	.376	_in ²		Initial Volume	-			_in ³	
	• •	.806	_in 			/oid Ratio, e _o :	1			
	Volume, V ₀ 37	7.019	_in ³	In	itial Degree of S	saturation, $S_0$ :	: 101.8	89	_%	
	Water Content BE	FORE Test			Wate	er Content AF	TER Test (Tot	al Specim	en)	
		Л-74	g		;	_g				
Wet		46.25	g		W	: BC : 1307.	g			
		24.58	_0			Dry Soil + Tin :			_g	
-		27.9	g				: 89.7	g		
	Dry Mass : 9	6.68	g			Dry Mass			g	
Weigl	nt of water : 2	1.67	g		We	eight of water	: 197.3	30	g	
	Moisture : 2	2.41	%			Moisture	: 19.3	4	%	
						Wet Density :	: 125.3	31	_pcf	
						Dry Density	: 105.0	01	_pcf	
Consolidation Ce	Il Pressure: 1	33.0	psi	C	eviator Stress	@ Failure, Ds:	: 5,63	5	psf	
Consolidation Bac	k Pressure:	38.0	psi		Axial Stra	ain @ Failure:	: 14.0	C	%	
Effective Confining	y Stress, σ ₃ :	45.0	psi	Major I	Principal Stress	: 12,1	psf			
	6	,480	psf	Indu	ced Pore Pressu	: 4,07	psf			
Ş	Strain Rate: 0.	0030	in/min	Effect	tive Minor Princi	: 2,40	5	 psf		
			—	Effecti	ve Major Princip	bal Stress, σ' ₁ :	: 8,03	9	psf	
Fa	ilure Sketch			Compress	ive Strength	and Induc	ed Pore Pre	ssure		
			6000						7	
			sd) 5000							
			enne							
			<u>و</u> 4000			• •			_	
	36		e P							
			a 3000	1.		D	eviator Stress	<u>_</u>	_	
-			nce	/		— — — In	duced Pore Press	ure		
and a	The second second		1 2000	1:					1	
			1000 Island	;						
B-02	0-2-13		St Not							
S	T-6		Deviator Stress / Induced Pore Pressure (psf)           0         0000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000						4	
14.	0-2-13 T-6 D-H-5		Dev							
4	s psi		-1000			·   · · · ·   · ·			_	
			09	% 2%	4% 6%	8% 10%	12% 14%	16% [·]	18%	

Strain (%)

Notes:

.



# **RESOURCE INTERNATIONAL, INC.**

Engineering Consultants

6350 Presidential Gatew.

Columbus, OH 43231 Phone (614) 823-4949 9885 Rockside Road Cleveland, OH 44125

Phone (216) 573-0955

4480 Lake Forest Drive Cincinnati, Ohio 45242 Phone (513) 769-6998

## **Point Load Strength Index** of Rock Specimens (ASTM D 5731-08)

Project: FRA-70-13.10

Date of Testing: 2/2/2015

Project No.: W-13-072

Test Performed by: E.M.

Rock Description: Gray Mudstone

Boring No.: B-020-7-13 Station / Offset: 176+68.64, 1.8' Rt. Sample No. / Depth: RC-4 / 69.4' to 74.8' Test Apparatus: Forney-LA 0080 Serial Number: A125/AZ/0014

Date of Calibration: 8/9/2014

Sample No.	Test Type	Depth (ft)	Width (mm)	Diameter (mm)	Load (N)	D _e ² (mm ² )	D _e (mm)	F	ls (MPa)	ls ₍₅₀₎ (MPa)	σ _c (MPa)
1	a⊥	69.4	37.0	46.5	70	2,192	46.8	0.97	0.03	0.03	0.38
2	a⊥	70.6	37.1	46.0	185	2,174	46.6	0.97	0.09	0.08	1.02
3	a⊥	70.9	35.8	45.5	195	2,078	45.6	0.96	0.09	0.09	1.13
4	a⊥	73.8	36.7	45.9	105	2,143	46.3	0.97	0.05	0.05	0.59
5	a⊥	74.8	34.2	45.6	110	1,983	44.5	0.95	0.06	0.05	0.67
6											
7											
8											
9											
10											
									STATISTICS		
								Mean Is ₍₅₀₎ ⊥		0.06 MP	a (9 psi)
Specific Spe	cimen Shape	e:	Estimated L	Jnaxial Compr	ession, $\sigma_c =$	K*ls		Mean Is ₍₅₀₎			
I = diametrica	al		K =	: 1:	2			la ₍₅₀₎			

a = axial

b = block

i = irregular lump

 $\perp$  = perpendicular to bedding plane

= parallel to bedding plane

Remarks:

*Per Section 206.1.3 of 2011 ODOT

0.76 MPa (110 psi) Mean  $\sigma_c$  =

Rock Slope Design Guide



# **RESOURCE INTERNATIONAL, INC.**

Engineering Consultants

# Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D 7012-04)

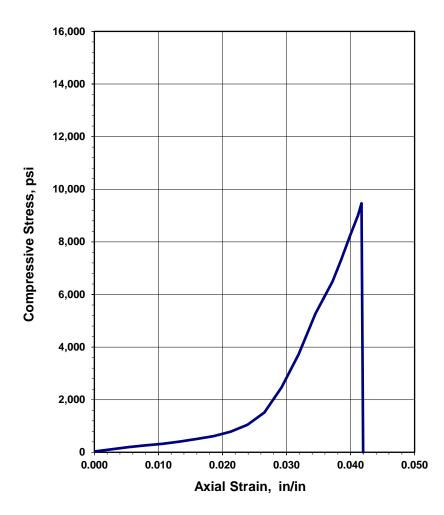
6350 Presidential Gatew. Columbus, OH 43231 Phone (614) 823-4949 9885 Rockside Road4480 Lake Forest DriveCleveland, OH 44125Cincinnati, Ohio 45242Phone (216) 573-0955Phone (513) 769-6998

Project: FRA-70-12.68

Project No.: <u>W-13-045</u> Date of Testing: <u>7/26/2013</u>

Test Performed by: KR/TK

# Rock Description: LIMESTONE: Light gray, unweathered, strong.


Boring No.:	B-020-1-13
Station / Offset:	5080+09.80, 30.9' Rt.
Sample No. / Depth:	RC-1 / 80.7 ft.
Moisture condition:	As received

Rate of Loading:55.0 lbs/secTesting Time:469 sec

(Rate 2-15 minutes to failure)

Average Length:	3.765 in
Average Diameter:	1.863 in
Length to diameter ratio:	2.021
Cross Sectional Area:	2.725 in ²
Failure Load:	25,800 lbs
Axial Strain at Failure:	0.0417 in/in
Stress:	9,465 psi
	· · · · · · · · · · · · · · · · · · ·

# **Unconfined Compression Test**



_____

**Before Testing** 



# **After Failure**



REMARKS:

**APPENDIX VI** 

CELLULAR CONCRETE WALL CALCULATIONS

W-13-045 - FRA-70-12.68 - Retaining Walls 4W5 and 4W6
MSE Wall with Cellular Concrete Backfill Settlement

Boring	Boring Elevation	Top of Wall / Profile Elevation (ft msl)	Bottom of Wall / Embankment Elevation (ft msl)	Wall / Embankment Height (ft)	Pressure at Bottom of Wall / Embankment ¹ (psf)	Total Settlement at Center of Wall / Embankment (in)	Total Settlement at Wall Facing (in)	Time for 90% Consolidation (Days)
B-001-A-59	713.9	756.1	710.8	45.3	1,731	3.88	2.80	0
B-020-1-13	712.8	756.1	710.8	45.3	1,731	3.40	2.46	18
B-020-2-13	711.4	756.1	710.8	45.3	1,731	4.28	3.15	35
B-020-9-15	713.0	756.1	710.8	45.3	1,731	3.19	2.37	10
B-021-0-08	727.9	758.1	714.8	43.3	1,671	2.61	1.98	7
B-023-0-08	722.0	759.7	718.5	41.2	1,608	2.72	2.00	11

1.  $\Delta \sigma = (130 \text{ pcf})(3.0 \text{ ft}) + (36 \text{ pcf})(2.0 \text{ ft}) + (H - 5 \text{ ft})(30 \text{ pcf})$ 

### Boring B-020-7-13

45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
0.0	ft	Depth below bottom of wall/embankment
1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)
	31.7 0.0	31.7 ft 0.0 ft

																			Total S	Settlement a	t Center of R	einforced Sc	oil Mass		Total Set	ttlement at Fa	acing of Wall	
Layer	Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL C _c ⁽	) C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	1 ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-1-b	G	0.0	4.0	4.0	2.0	120	480	240	115	2,115				5	10	56	0.06	0.999	1,730	1,845	0.086	1.026	0.500	865	981	0.066	0.792
	A-4a	G	4.0	6.5	2.5	5.3	115	768	624	296	2,296				9	15	32	0.17	0.986	1,707	2,004	0.065	0.779	0.499	864	1,160	0.046	0.556
2	A-4a	G	6.5	9.0	2.5	7.8	115	1,055	911	428	2,428				9	14	30	0.24	0.962	1,665	2,092	0.057	0.682	0.497	860	1,288	0.039	0.473
	A-4a	G	9.0	11.5	2.5	10.3	115	1,343	1,199	559	2,559				9	13	29	0.32	0.925	1,601	2,160	0.050	0.604	0.494	854	1,414	0.035	0.415
3	A-2-4	G	11.5	14.0	2.5	12.8	120	1,643	1,493	697	2,697				13	18	69	0.40	0.880	1,523	2,220	0.018	0.217	0.488	846	1,542	0.012	0.149
4	A-1-a	G	14.0	19.5	5.5	16.8	125	2,330	1,986	941	4,941				25	31	103	0.53	0.800	1,385	2,326	0.021	0.252	0.477	825	1,766	0.015	0.176
4	A-1-a	G	19.5	25.0	5.5	22.3	125	3,018	2,674	1,285	5,285				25	29	95	0.70	0.695	1,203	2,488	0.017	0.198	0.455	787	2,073	0.012	0.144
	A-1-b	G	25.0	30.0	5.0	27.5	135	3,693	3,355	1,639	5,639				94	100	472	0.87	0.608	1,053	2,692	0.002	0.027	0.430	745	2,384	0.002	0.021
F	A-1-b	G	30.0	35.0	5.0	32.5	135	4,368	4,030	2,002	6,002				94	94	424	1.03	0.540	934	2,936	0.002	0.024	0.405	701	2,703	0.002	0.018
5	A-1-b	G	35.0	40.0	5.0	37.5	135	5,043	4,705	2,365	6,365				94	89	387	1.18	0.483	836	3,201	0.002	0.020	0.380	658	3,023	0.001	0.017
	A-1-b	G	40.0	45.0	5.0	42.5	135	5,718	5,380	2,728	6,728				94	84	356	1.34	0.436	754	3,482	0.001	0.018	0.357	617	3,345	0.001	0.015
6	A-4a	G	45.0	48.0	3.0	46.5	135	6,123	5,920	3,018	7,018				71	61	102	1.47	0.404	699	3,717	0.003	0.032	0.339	586	3,605	0.002	0.027
1. σ _p ' = σ _v	$\sigma_{p}' = \sigma_{vo}' + \sigma_{m}$ , Estimate $\sigma_{m}$ of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003														Tota	I Settlement:		3.880 in		Tota	I Settlement:		2.803 in					

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3.  $C_r = 0.15(Cc)$  for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_o/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{p}'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$  for  $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

### Boring B-020-1-13

H =	45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

																				Total S	Settlement at	Center of R	einforced So	oil Mass		Total Se	ttlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	Layer (f	Depth t)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-2-4	G	0.0	3.5	3.5	1.8	125	438	219	110	2,110					21	41	136	0.06	0.999	1,730	1,840	0.032	0.379	0.500	865	975	0.024	0.294
	A-6a	С	3.5	6.0	2.5	4.8	115	725	581	285	2,285	35	0.225	0.034	0.546				0.15	0.990	1,713	1,998	0.046	0.554	0.499	864	1,149	0.033	0.397
2	A-6a	С	6.0	8.5	2.5	7.3	115	1,013	869	416	2,416	35	0.225	0.034	0.546				0.23	0.968	1,675	2,091	0.038	0.459	0.498	861	1,278	0.027	0.319
2	A-6b	С	8.5	11.0	2.5	9.8	115	1,300	1,156	548	2,548	40	0.270	0.041	0.585				0.31	0.933	1,615	2,163	0.038	0.457	0.494	856	1,404	0.026	0.313
	A-6b	С	11.0	13.5	2.5	12.3	115	1,588	1,444	679	2,679	40	0.270	0.041	0.585				0.39	0.889	1,539	2,218	0.033	0.394	0.490	848	1,527	0.022	0.270
5	A-1-b	G	13.5	16.0	2.5	14.8	120	1,888	1,738	817	2,817					4	5	51	0.47	0.840	1,455	2,272	0.022	0.263	0.483	836	1,653	0.015	0.181
6	A-1-b	G	16.0	21.0	5.0	18.5	125	2,513	2,200	1,046	5,046					17	21	76	0.58	0.766	1,325	2,371	0.023	0.281	0.470	814	1,860	0.017	0.198
0	A-1-b	G	21.0	26.0	5.0	23.5	125	3,138	2,825	1,359	5,359					17	19	73	0.74	0.673	1,165	2,523	0.019	0.222	0.449	778	2,136	0.014	0.162
7	A-1-b	G	26.0	30.0	4.0	28.0	130	3,658	3,398	1,650	5,650					42	45	148	0.88	0.601	1,040	2,690	0.006	0.069	0.428	740	2,391	0.004	0.052
8	A-4a	С	30.0	35.0	5.0	32.5	130	4,308	3,983	1,955	5,955	22	0.108	0.011	0.444				1.03	0.540	934	2,889	0.006	0.076	0.405	701	2,656	0.005	0.060
0	A-1-b	G	35.0	42.5	7.5	38.8	135	5,320	4,814	2,396	6,396					87	82	340	1.22	0.470	814	3,210	0.003	0.034	0.374	648	3,044	0.002	0.028
Э	A-1-b	G	42.5	50.0	7.5	46.3	135	6,333	5,826	2,940	6,940					87	76	303	1.46	0.405	702	3,642	0.002	0.028	0.340	588	3,528	0.002	0.024
10	A-7-6	С	50.0	56.0	6.0	53.0	130	7,113	6,723	3,415	7,415	44	0.306	0.031	0.616				1.67	0.360	623	4,038	0.008	0.099	0.312	540	3,955	0.007	0.087
10	A-7-6	С	56.0	62.0	6.0	59.0	130	7,893	7,503	3,821	7,821	44	0.306	0.031	0.616				1.86	0.327	565	4,386	0.007	0.082	0.290	501	4,322	0.006	0.073
1. $\sigma_p' = \sigma_v$	1. $\sigma_p' = \sigma_{vo}' + \sigma_{m;}$ Estimate $\sigma_m$ of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003 Total Settlement: 2.457 in													2.457 in															

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3.  $C_r = 0.15(Cc)$  for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{p}'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$  for  $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

### Boring B-020-1-13

H =	45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

	A-6a	A-6b	A-4a	A-7-6		
c _v =	600	300	800	150	ft²/yr	Coefficient of consolitation
t =	18	18	18	18	days	Time following completion of construction
H _{dr} =	5.5	5	2.5	12	ft	Length of longest drainage path considered
T _v =	0.978	0.592	6.312	0.051		Time factor
U =	93	81	100	26	%	Degree of consolidation

 $(S_c)_t = 2.389$  in Settlement complete at 90% of primary consolidation

																							Total Se	ttlement at I	Facing of Wall		mplete at 90% of onsolidation
Layer	Soil Type	Soil Type	Layer (f		Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-2-4	G	0.0	3.5	3.5	1.8	125	438	219	110	2,110					21	41	136	0.06	0.500	865	975	0.024	0.294	0.294	0.294	0.294
	A-6a	С	3.5	6.0	2.5	4.8	115	725	581	285	2,285	35	0.210	0.049	0.745				0.15	0.499	864	1,149	0.043	0.510		0.475	
2	A-6a	С	6.0	8.5	2.5	7.3	115	1,013	869	416	2,416	35	0.210	0.049	0.745				0.23	0.498	861	1,278	0.034	0.410	1.561	0.382	1.375
2	A-6b	С	8.5	11.0	2.5	9.8	115	1,300	1,156	548	2,548	40	0.210	0.049	0.745				0.31	0.494	856	1,404	0.029	0.344	1.001	0.279	1.375
	A-6b	С	11.0	13.5	2.5	12.3	115	1,588	1,444	679	2,679	40	0.210	0.049	0.745				0.39	0.490	848	1,527	0.025	0.296	-	0.240	1
5	A-1-b	G	13.5	16.0	2.5	14.8	120	1,888	1,738	817	4,817					4	5	51	0.47	0.483	836	1,653	0.015	0.181	0.181	0.181	0.181
6	A-1-b	G	16.0	21.0	5.0	18.5	125	2,513	2,200	1,046	5,046					17	21	76	0.58	0.470	814	1,860	0.017	0.198	0.360	0.198	0.360
0	A-1-b	G	21.0	26.0	5.0	23.5	125	3,138	2,825	1,359	5,359					17	19	73	0.74	0.449	778	2,136	0.014	0.162	0.300	0.162	0.300
7	A-1-b	G	26.0	30.0	4.0	28.0	130	3,658	3,398	1,650	5,650					42	45	148	0.88	0.428	740	2,391	0.004	0.052	0.052	0.052	0.052
8	A-4a	С	30.0	35.0	5.0	32.5	130	4,308	3,983	1,955	5,955	22	0.108	0.008	0.444				1.03	0.405	701	2,656	0.004	0.045	0.045	0.045	0.045
0	A-1-b	G	35.0	42.5	7.5	38.8	135	5,320	4,814	2,396	6,396					87	82	340	1.22	0.374	648	3,044	0.002	0.028	0.051	0.028	0.051
Э	A-1-b	G	42.5	50.0	7.5	46.3	135	6,333	5,826	2,940	6,940					87	76	303	1.46	0.340	588	3,528	0.002	0.024	0.051	0.024	0.051
10	A-7-6	С	50.0	56.0	6.0	53.0	130	7,113	6,723	3,415	7,415	44	0.306	0.023	0.616				1.67	0.312	540	3,955	0.005	0.065	0.120	0.017	0.031
10	A-7-6	С	56.0	62.0	6.0	59.0	130	7,893	7,503	3,821	7,821	44	0.306	0.023	0.616				1.86	0.290	501	4,322	0.005	0.055	0.120	0.014	0.031

1. σ_p' = σ_{vo}'+σ_m; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. C_r = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_p')$  for  $\sigma_{vo}' < \sigma_{vf}' < \sigma_{vf}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100); U = 100$  for all granular soils at time t = 0

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

Settlement Remaining After Hold Period: 0.275 in

### Boring B-020-2-13

H =	45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

																				Total S	Settlement at	Center of R	einforced Sc	oil Mass		Total Set	ttlement at Fa	acing of Wall	
Layer	Soil Class.	Soil Type	Layer (	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	1 ⁽⁷⁾	$\Delta \sigma_v^{(8)}$ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	2.5	2.5	1.3	120	300	150	72	2,072	35	0.225	0.034	0.546				0.04	1.000	1,731	1,803	0.076	0.916	0.500	865	937	0.061	0.730
2	A-1-b	G	2.5	4.5	2.0	3.5	120	540	420	202	2,202					4	7	53	0.11	0.996	1,724	1,925	0.037	0.445	0.500	865	1,067	0.027	0.329
3	A-6a	С	4.5	7.0	2.5	5.8	115	828	684	325	2,325	35	0.225	0.034	0.546				0.18	0.983	1,701	2,026	0.043	0.521	0.499	863	1,188	0.031	0.369
4	A-6b	С	7.0	9.5	2.5	8.3	115	1,115	971	456	2,456	39	0.261	0.039	0.577				0.26	0.955	1,653	2,110	0.041	0.495	0.497	860	1,316	0.029	0.342
4	A-6b	С	9.5	12.0	2.5	10.8	115	1,403	1,259	588	2,588	39	0.261	0.039	0.577				0.34	0.916	1,586	2,174	0.035	0.423	0.493	853	1,441	0.024	0.290
F	A-7-6	С	12.0	14.5	2.5	13.3	115	1,690	1,546	719	2,719	41	0.279	0.042	0.593				0.42	0.870	1,506	2,225	0.032	0.387	0.487	843	1,563	0.022	0.266
5	A-7-6	С	14.5	17.0	2.5	15.8	115	1,978	1,834	851	2,851	41	0.279	0.042	0.593				0.50	0.820	1,420	2,271	0.028	0.336	0.480	831	1,682	0.019	0.233
6	A-2-4	G	17.0	19.5	2.5	18.3	120	2,278	2,128	989	4,989					8	10	57	0.58	0.770	1,334	2,322	0.016	0.197	0.471	816	1,805	0.012	0.139
7	A-1-b	G	19.5	27.0	7.5	23.3	130	3,253	2,765	1,314	5,314					34	39	127	0.73	0.677	1,172	2,486	0.016	0.197	0.450	780	2,094	0.012	0.144
0	A-1-b	G	27.0	35.0	8.0	31.0	135	4,333	3,793	1,858	5,858					91	93	419	0.98	0.559	968	2,826	0.003	0.042	0.413	714	2,572	0.003	0.032
8	A-1-b	G	35.0	43.5	8.5	39.3	135	5,480	4,906	2,457	6,457					91	85	360	1.24	0.465	806	3,263	0.003	0.035	0.372	644	3,101	0.002	0.029
	A-6b	С	43.5	49.5	6.0	46.5	130	6,260	5,870	2,968	6,968	38	0.252	0.025	0.569				1.47	0.404	699	3,667	0.009	0.106	0.339	586	3,555	0.008	0.090
9	A-6b	С	49.5	55.5	6.0	52.5	130	7,040	6,650	3,374	7,374	38	0.252	0.025	0.569				1.66	0.363	628	4,002	0.007	0.086	0.314	543	3,917	0.006	0.075
	A-6b	С	55.5	63.5	8.0	59.5	130	8,080	7,560	3,847	7,847	38	0.252	0.025	0.569				1.88	0.324	561	4,408	0.008	0.091	0.288	498	4,346	0.007	0.082
1. σ _p ' = σ	_{νo} '+σ _{m;} Estima	stimate $\sigma_m$ of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003													•		Tota	Settlement:		4.276 in		Tota	I Settlement:		3.150 in				

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo})'$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{p'}) + [C_o/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{p'}) + [C_o/(1+e_o)$ 

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date: 7/14/2018
Checked By:	JPS	Date: 7/15/2018

### Boring B-020-2-13

H =	45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

c _v =	A-6a 600	A-6b (Upper) 300	A-7-6 150	A-6b (Lower) 300	ft²/yr	Coefficient of consolitation
t =	35	35	35	35	days	Time following completion of construction
H _{dr} =	2.5	5	5	20	ft	Length of longest drainage path considered
T _v =	9.205	1.151	0.575	0.072		Time factor
U =	100	95	80	30	%	Degree of consolidation

 $(S_c)_t = 2.845$  in Settlement complete at 90% of primary consolidation

																							Total Se	ttlement at F	Facing of Wall		mplete at 90% of onsolidation
Layer	Soil Type	Soil Type	Layer (f	•	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	Sc ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6a	С	0.0	2.5	2.5	1.3	120	300	150	72	2,072	35	0.225	0.034	0.546				0.04	0.500	865	937	0.061	0.730	0.730	0.730	0.730
2	A-1-b	G	2.5	4.5	2.0	3.5	120	540	420	202	2,202					4	7	53	0.11	0.500	865	1,067	0.027	0.329	0.329	0.329	0.329
3	A-6a	С	4.5	7.0	2.5	5.8	115	828	684	325	2,325	35	0.225	0.034	0.546				0.18	0.499	863	1,188	0.031	0.369	0.369	0.369	0.369
4	A-6b	С	7.0	9.5	2.5	8.3	115	1,115	971	456	2,456	39	0.261	0.039	0.577				0.26	0.497	860	1,316	0.029	0.342	0.632	0.325	0.601
4	A-6b	С	9.5	12.0	2.5	10.8	115	1,403	1,259	588	2,588	39	0.261	0.039	0.577				0.34	0.493	853	1,441	0.024	0.290	0.032	0.275	0.001
F	A-7-6	С	12.0	14.5	2.5	13.3	115	1,690	1,546	719	2,719	41	0.279	0.042	0.593				0.42	0.487	843	1,563	0.022	0.266	0.499	0.212	0.399
5	A-7-6	С	14.5	17.0	2.5	15.8	115	1,978	1,834	851	2,851	41	0.279	0.042	0.593				0.50	0.480	831	1,682	0.019	0.233	0.499	0.187	0.399
6	A-2-4	G	17.0	19.5	2.5	18.3	120	2,278	2,128	989	4,989					8	10	57	0.58	0.471	816	1,805	0.012	0.139	0.139	0.139	0.139
7	A-1-b	G	19.5	27.0	7.5	23.3	130	3,253	2,765	1,314	5,314					34	39	127	0.73	0.450	780	2,094	0.012	0.144	0.144	0.144	0.144
0	A-1-b	G	27.0	35.0	8.0	31.0	135	4,333	3,793	1,858	5,858					91	93	419	0.98	0.413	714	2,572	0.003	0.032	0.061	0.032	0.061
0	A-1-b	G	35.0	43.5	8.5	39.3	135	5,480	4,906	2,457	6,457					91	85	360	1.24	0.372	644	3,101	0.002	0.029	0.001	0.029	0.001
	A-6b	С	43.5	49.5	6.0	46.5	130	6,260	5,870	2,968	6,968	38	0.252	0.025	0.569				1.47	0.339	586	3,555	0.008	0.090		0.027	
9	A-6b	С	49.5	55.5	6.0	52.5	130	7,040	6,650	3,374	7,374	38	0.252	0.025	0.569				1.66	0.314	543	3,917	0.006	0.075	0.247	0.022	0.074
i Ī	A-6b	С	55.5	63.5	8.0	59.5	130	8,080	7,560	3,847	7,847	38	0.252	0.025	0.569				1.88	0.288	498	4,346	0.007	0.082	1	0.024	1

1.  $\sigma_p' = \sigma_{vo}' + \sigma_{m}$ ; Estimate  $\sigma_m$  of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. C_r = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_p')$  for  $\sigma_{vo}' < \sigma_{vf}' < \sigma_{vf}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100); U = 100$  for all granular soils at time t = 0

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

Settlement Remaining After Hold Period: 0.304 in

### Boring B-020-9-15

H =	45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

																				Total S	Settlement at	Center of Re	einforced So	il Mass		Total Se	ttlement at Fa	acing of Wall	
Layer	Soil Class.	Soil Type	Layer (f		Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	3.5	3.5	1.8	115	403	201	92	2,092	35	0.225	0.034	0.546				0.06	0.999	1,730	1,822	0.099	1.189	0.500	865	957	0.078	0.933
2	A-6b	С	3.5	6.0	2.5	4.8	115	690	546	250	2,250	34	0.216	0.032	0.538				0.15	0.990	1,713	1,963	0.047	0.566	0.499	864	1,114	0.034	0.410
2	A-6b	С	6.0	8.5	2.5	7.3	115	978	834	381	2,381	34	0.216	0.032	0.538				0.23	0.968	1,675	2,056	0.039	0.463	0.498	861	1,243	0.027	0.324
	A-4a	G	8.5	11.0	2.5	9.8	130	1,303	1,140	532	4,532					37	53	90	0.31	0.933	1,615	2,147	0.017	0.203	0.494	856	1,388	0.012	0.139
2	A-4a	G	11.0	13.5	2.5	12.3	130	1,628	1,465	701	4,701					37	50	85	0.39	0.889	1,539	2,240	0.015	0.179	0.490	848	1,548	0.010	0.122
3	A-4a	G	13.5	16.0	2.5	14.8	130	1,953	1,790	870	4,870					37	47	81	0.47	0.840	1,455	2,324	0.013	0.159	0.483	836	1,706	0.009	0.109
	A-4a	G	16.0	18.5	2.5	17.3	130	2,278	2,115	1,039	5,039					37	45	77	0.54	0.790	1,368	2,407	0.012	0.141	0.475	822	1,861	0.008	0.098
4	A-1-b	G	18.5	26.0	7.5	22.3	135	3,290	2,784	1,395	5,395					77	86	370	0.70	0.695	1,203	2,598	0.005	0.066	0.455	787	2,183	0.004	0.047
F	A-2-4	G	26.0	30.5	4.5	28.3	135	3,898	3,594	1,831	5,831					80	83	344	0.89	0.597	1,034	2,865	0.003	0.031	0.426	738	2,569	0.002	0.023
5	A-2-4	G	30.5	35.0	4.5	32.8	135	4,505	4,201	2,158	6,158					80	78	316	1.03	0.537	929	3,086	0.002	0.027	0.404	699	2,857	0.002	0.021
6	A-2-6	G	35.0	40.0	5.0	37.5	135	5,180	4,843	2,503	6,503					120	111	560	1.18	0.483	836	3,338	0.001	0.013	0.380	658	3,161	0.001	0.011
7	A-1-b	G	40.0	45.0	5.0	42.5	135	5,855	5,518	2,866	6,866					96	85	358	1.34	0.436	754	3,620	0.001	0.017	0.357	617	3,483	0.001	0.014
/	A-1-b	G	45.0	50.0	5.0	47.5	135	6,530	6,193	3,229	7,229					96	81	333	1.50	0.396	686	3,914	0.001	0.015	0.334	579	3,807	0.001	0.013
8	A-7-6	С	50.0	58.5	8.5	54.3	130	7,635	7,083	3,697	7,697	42	0.288	0.029	0.600				1.71	0.352	610	4,307	0.010	0.122	0.307	531	4,229	0.009	0.107
1. $\sigma_p' = \sigma_{vc}$	_'+σ _{m;} Estimate	$\sigma_{\rm m}$ of 2,000	psf in existin	ng fill materia	al and 4,000	psf (moderat	ely overcon:	solidated) for	natural soil	deposits; Ref	f. Table 11.2	, Coduto 200	)3		•		•	•	•		Tota	Settlement:		3.189 in		Tota	al Settlement:		2.372 in

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3.  $C_r = 0.15(Cc)$  for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{p}'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$  for  $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

### Boring B-020-9-15

H =	45.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	31.7	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,731	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

	A-6a	A-6b	A-7-6		
c _v =	600	300	150	ft²/yr	Coefficient of consolitation
t =	10	10	10	days	Time following completion of construction
H _{dr} =	3.5	4	8.5	ft	Length of longest drainage path considered
T _v =	1.342	0.514	0.057		Time factor
U =	97	77	27	%	Degree of consolidation

(S_c)_t = 2.097 in Settlement complete at 88% of primary consolidation

																							Total Se	ettlement at l	Facing of Wall		mplete at 88% of onsolidation
Layer	Soil Type	Soil Type	Layer (1	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6a	С	0.0	3.5	3.5	1.8	115	403	201	92	2,092	35	0.225	0.034	0.546				0.06	0.500	865	957	0.078	0.933	0.933	0.905	0.905
2	A-6b	С	3.5	6.0	2.5	4.8	115	690	546	250	2,250	34	0.216	0.032	0.538				0.15	0.499	864	1,114	0.034	0.410	0.735	0.316	0.566
2	A-6b	С	6.0	8.5	2.5	7.3	115	978	834	381	2,381	34	0.216	0.032	0.538				0.23	0.498	861	1,243	0.027	0.324	0.735	0.250	0.500
	A-4a	G	8.5	11.0	2.5	9.8	130	1,303	1,140	532	4,532					37	53	90	0.31	0.494	856	1,388	0.012	0.139		0.139	
2	A-4a	G	11.0	13.5	2.5	12.3	130	1,628	1,465	701	4,701					37	50	85	0.39	0.490	848	1,548	0.010	0.122	0.468	0.122	0.468
3	A-4a	G	13.5	16.0	2.5	14.8	130	1,953	1,790	870	4,870					37	47	81	0.47	0.483	836	1,706	0.009	0.109	0.400	0.109	0.408
	A-4a	G	16.0	18.5	2.5	17.3	130	2,278	2,115	1,039	5,039					37	45	77	0.54	0.475	822	1,861	0.008	0.098		0.098	Τ
4	A-1-b	G	18.5	26.0	7.5	22.3	135	3,290	2,784	1,395	5,395					77	86	370	0.70	0.455	787	2,183	0.004	0.047	0.047	0.047	0.047
5	A-2-4	G	26.0	30.5	4.5	28.3	135	3,898	3,594	1,831	5,831					80	83	344	0.89	0.426	738	2,569	0.002	0.023	0.044	0.023	0.044
5	A-2-4	G	30.5	35.0	4.5	32.8	135	4,505	4,201	2,158	6,158					80	78	316	1.03	0.404	699	2,857	0.002	0.021	0.044	0.021	0.044
6	A-2-6	G	35.0	40.0	5.0	37.5	135	5,180	4,843	2,503	6,503					120	111	560	1.18	0.380	658	3,161	0.001	0.011	0.011	0.011	0.011
7	A-1-b	G	40.0	45.0	5.0	42.5	135	5,855	5,518	2,866	6,866					96	85	358	1.34	0.357	617	3,483	0.001	0.014	0.027	0.014	0.027
'	A-1-b	G	45.0	50.0	5.0	47.5	135	6,530	6,193	3,229	7,229					96	81	333	1.50	0.334	579	3,807	0.001	0.013	0.027	0.013	0.027
8	A-7-6	С	50.0	58.5	8.5	54.3	130	7,635	7,083	3,697	7,697	42	0.288	0.029	0.600				1.71	0.307	531	4,229	0.009	0.107	0.107	0.029	0.029

1. σ_p' = σ_{vo}'+σ_m; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. C_r = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_p')$  for  $\sigma_{vo}' < \sigma_{vf}' < \sigma_{vf}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100); U = 100$  for all granular soils at time t = 0

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

Settlement Remaining After Hold Period: 0.275 in

### Boring B-021-0-08

H =	43.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	30.3	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,671	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

1 =	1.671	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)	

Total	Sattlement	ati	Cont

																				Tota	I Settlement	at Center of	Reinforced I	Mass		Total Set	tlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	Layer (	⁻ Depth [ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	1 ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6b	С	0.0	2.5	2.5	1.3	115	288	144	66	2,066	35	0.225	0.034	0.546				0.04	1.000	1,671	1,736	0.078	0.931	0.500	835	901	0.062	0.745
I.	A-6b	С	2.5	5.0	2.5	3.8	115	575	431	197	2,197	35	0.225	0.034	0.546				0.12	0.994	1,661	1,858	0.053	0.638	0.500	835	1,032	0.039	0.471
2	A-1-b	G	5.0	7.5	2.5	6.3	130	900	738	348	4,348					36	57	201	0.21	0.975	1,630	1,977	0.009	0.113	0.498	833	1,180	0.007	0.079
2	A-1-b	G	7.5	10.0	2.5	8.8	130	1,225	1,063	517	4,517					36	52	179	0.29	0.942	1,575	2,091	0.008	0.101	0.495	828	1,344	0.006	0.069
2	A-4a	С	10.0	12.5	2.5	11.3	120	1,525	1,375	673	4,673	27	0.153	0.015	0.483				0.37	0.898	1,501	2,174	0.013	0.158	0.491	820	1,493	0.009	0.107
3	A-4a	С	12.5	15.0	2.5	13.8	120	1,825	1,675	817	4,817	27	0.153	0.015	0.483				0.45	0.848	1,416	2,233	0.011	0.135	0.484	809	1,626	0.008	0.093
4	A-1-b	G	15.0	19.0	4.0	17.0	125	2,325	2,075	1,014	5,014					21	26	88	0.56	0.780	1,303	2,317	0.016	0.196	0.473	791	1,805	0.011	0.137
F	A-1-b	G	19.0	24.0	5.0	21.5	135	3,000	2,663	1,321	5,321					95	108	536	0.71	0.691	1,154	2,475	0.003	0.031	0.454	758	2,079	0.002	0.022
5	A-1-b	G	24.0	29.0	5.0	26.5	135	3,675	3,338	1,684	5,684					95	101	473	0.87	0.605	1,011	2,695	0.002	0.026	0.429	717	2,401	0.002	0.020
G	A-3	G	29.0	36.5	7.5	32.8	135	4,688	4,181	2,138	6,138					71	70	163	1.08	0.518	866	3,004	0.007	0.082	0.396	662	2,800	0.005	0.065
0	A-3	G	36.5	44.0	7.5	40.3	135	5,700	5,194	2,682	6,682					71	64	149	1.33	0.439	734	3,416	0.005	0.063	0.358	599	3,281	0.004	0.053
7	A-6b	С	44.0	49.0	5.0	46.5	130	6,350	6,025	3,123	7,123	37	0.243	0.024	0.561				1.53	0.388	648	3,772	0.006	0.076	0.329	550	3,674	0.005	0.066
/	A-6b	С	49.0	54.0	5.0	51.5	130	7,000	6,675	3,461	7,461	37	0.243	0.024	0.561				1.70	0.355	592	4,054	0.005	0.064	0.308	515	3,977	0.005	0.056
1. $\sigma_p' = \sigma_n$	,₀'+σ _{m;} Estima	te $\sigma_m$ of 2,0	00 psf in exi	sting fill ma	terial and 4,0	00 psf (mode	rately overco	onsolidated) f	or natural so	oil deposits; F	Ref. Table 11	.2, Coduto	2003		•		•	•	•		Tota	I Settlement:		2.614 in		Tota	Settlement:		1.982 in

0 psf (moderately over ated) for

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$ ;  $[C_{r'}(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{p}'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$  for  $\sigma_{vo}' < \sigma_{p}' < \sigma_{vt}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)

10.  $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

### Boring B-021-0-08

H =	43.3	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	30.3	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,671	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

	Ex. Fill A-6b	Nat. A-4a	Nat. A-6b		
c _v =	300	800	300	ft²/yr	Coefficient of consolitation
t =	7	7	7	days	Time following completion of construction
H _{dr} =	2.5	2.5	10	ft	Length of longest drainage path considered
T _v =	0.921	2.455	0.058		Time factor
U =	92	100	27	%	Degree of consolidation

(S_c)_t = 1.795 in Settlement complete at 91% of primary consolidation

																							Total Se	ttlement at l	Facing of Wall		mplete at 91% of onsolidation
Layer	Soil Type	Soil Type	Layer (1	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6b	С	0.0	2.5	2.5	1.3	115	288	144	66	2,066	35	0.225	0.034	0.546				0.04	0.500	835	901	0.062	0.745	1.216	0.685	1.118
1	A-6b	С	2.5	5.0	2.5	3.8	115	575	431	197	2,197	35	0.225	0.034	0.546				0.12	0.500	835	1,032	0.039	0.471	1.210	0.433	1.118
2	A-1-b	G	5.0	7.5	2.5	6.3	130	900	738	348	4,348					36	57	201	0.21	0.498	833	1,180	0.007	0.079	0.149	0.079	0.149
2	A-1-b	G	7.5	10.0	2.5	8.8	130	1,225	1,063	517	4,517					36	52	179	0.29	0.495	828	1,344	0.006	0.069	0.149	0.069	0.149
2	A-4a	С	10.0	12.5	2.5	11.3	120	1,525	1,375	673	4,673	27	0.153	0.015	0.483				0.37	0.491	820	1,493	0.009	0.107	0.200	0.107	0.200
3	A-4a	С	12.5	15.0	2.5	13.8	120	1,825	1,675	817	4,817	27	0.153	0.015	0.483				0.45	0.484	809	1,626	0.008	0.093	0.200	0.093	0.200
4	A-1-b	G	15.0	19.0	4.0	17.0	125	2,325	2,075	1,014	5,014					21	26	88	0.56	0.473	791	1,805	0.011	0.137	0.159	0.137	0.159
5	A-1-b	G	19.0	24.0	5.0	21.5	135	3,000	2,663	1,321	5,321					95	108	536	0.71	0.454	758	2,079	0.002	0.022	0.159	0.022	0.159
5	A-1-b	G	24.0	29.0	5.0	26.5	135	3,675	3,338	1,684	5,684					95	101	473	0.87	0.429	717	2,401	0.002	0.020	0.020	0.020	0.020
6	A-3	G	29.0	36.5	7.5	32.8	135	4,688	4,181	2,138	6,138					71	70	163	1.08	0.396	662	2,800	0.005	0.065	0.117	0.065	0.117
0	A-3	G	36.5	44.0	7.5	40.3	135	5,700	5,194	2,682	6,682					71	64	149	1.33	0.358	599	3,281	0.004	0.053	0.117	0.053	0.117
7	A-6b	С	44.0	49.0	5.0	46.5	130	6,350	6,025	3,123	7,123	37	0.243	0.024	0.561				1.53	0.329	550	3,674	0.005	0.066	0.122	0.018	0.033
/	A-6b	С	49.0	54.0	5.0	51.5	130	7,000	6,675	3,461	7,461	37	0.243	0.024	0.561				1.70	0.308	515	3,977	0.005	0.056	0.122	0.015	0.033

1. σ_p' = σ_{vo}'+σ_m Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

3. Cr = 0.15(Cc) for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(Cc) for very stiff to hard natural soil deposits, and 0.05(Cc) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_p')$  for  $\sigma_{vo}' < \sigma_{vf}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)

10.  $S_c = H(1/C')\log(\sigma_{v_f}'/\sigma_{v_o}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100)$ ; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

Settlement Remaining After Hold Period: 0.186 in

### Boring B-023-0-08

H =	41.2	ft	Total wall/embankment height from profile grade to top of leveling pad
B =	28.8	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,608	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

																				Total S	Settlement at	Center of R	einforced Sc	oil Mass		Total Set	tlement at Fa	acing of Wall	
Layer	Soil Class.	Soil Type	Layer (f	Depth t)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	$Z_f$ /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	2.5	2.5	1.3	115	288	144	66	2,066	29	0.171	0.026	0.499				0.04	1.000	1,608	1,673	0.060	0.722	0.500	804	870	0.048	0.576
	A-4a	С	2.5	5.0	2.5	3.8	115	575	431	197	2,197	28	0.162	0.024	0.491				0.13	0.993	1,597	1,794	0.039	0.469	0.500	803	1,001	0.029	0.345
2	A-4a	С	5.0	7.5	2.5	6.3	115	863	719	329	2,329	28	0.162	0.024	0.491				0.22	0.972	1,563	1,891	0.031	0.372	0.498	801	1,129	0.022	0.262
	A-4a	С	7.5	10.0	2.5	8.8	115	1,150	1,006	460	2,460	28	0.162	0.024	0.491				0.30	0.935	1,503	1,964	0.026	0.308	0.495	795	1,256	0.018	0.213
	A-2-4	G	10.0	12.0	2.0	11.0	120	1,390	1,270	584	2,584					11	16	66	0.38	0.892	1,434	2,018	0.016	0.197	0.490	788	1,371	0.011	0.136
3	A-2-4	G	12.0	14.0	2.0	13.0	120	1,630	1,510	699	2,699					11	15	64	0.45	0.849	1,365	2,064	0.015	0.175	0.484	779	1,478	0.010	0.121
3	A-2-4	G	14.0	16.0	2.0	15.0	120	1,870	1,750	814	2,814					11	14	63	0.52	0.805	1,295	2,109	0.013	0.156	0.478	768	1,582	0.009	0.109
	A-2-4	G	16.0	18.0	2.0	17.0	120	2,110	1,990	929	2,929					11	14	63	0.59	0.761	1,224	2,154	0.012	0.140	0.470	755	1,684	0.008	0.099
4	A-4a	G	18.0	21.5	3.5	19.8	135	2,583	2,346	1,114	5,114					120	144	224	0.69	0.704	1,132	2,246	0.005	0.057	0.457	735	1,849	0.003	0.041
	A-3a	G	21.5	24.5	3.0	23.0	135	2,988	2,785	1,350	5,350					62	70	212	0.80	0.642	1,033	2,383	0.003	0.042	0.441	709	2,058	0.003	0.031
5	A-3a	G	24.5	28.0	3.5	26.3	135	3,460	3,224	1,586	5,586					62	67	199	0.91	0.588	945	2,531	0.004	0.043	0.423	681	2,266	0.003	0.033
	A-3a	G	28.0	31.5	3.5	29.8	135	3,933	3,696	1,840	5,840					62	64	187	1.03	0.537	863	2,703	0.003	0.037	0.404	649	2,489	0.002	0.029
1. σ _p ' = σ _v	₀'+σ _{m;} Estimate	$\sigma_{\rm m}$ of 2,000	psf in existin	ng fill materia	al and 4,000	psf (moderat	ely overcons	solidated) for	natural soil o	deposits; Ref	. Table 11.2	, Coduto 20	03	•			•	•	•		Tota	Settlement:		2.718 in		Tota	Settlement:		1.996 in

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3.  $C_r = 0.15(Cc)$  for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_o/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{p}'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$  for  $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

### Boring B-023-0-08

H =	41.2	ft	Total wall/embankment height from profile grade to top of leveling pad
В =	28.8	ft	Wall/embankment width considered in analysis, equal to 70% of the wall height
D _w =	0.0	ft	Depth below bottom of wall/embankment
q =	1,608	psf	Bearing pressure at bottom of wall/embankment (see summary sheet)

c _v =	Ex. Fill A-6a 600	Ex. Fill A-4a 800	ft²/yr	Coefficient of consolitation
t =	11	11	days	Time following completion of construction
H _{dr} =	2.5	7	ft	Length of longest drainage path considered
T _v =	2.893	0.492		Time factor
U =	100	76	%	Degree of consolidation

Settlement complete at 90% of primary consolidation

 $\sigma_{vo}$ Layer Depth to  $\sigma_{vo}$  $\sigma_{vo}$  $\sigma_{p}'^{(1)}$  $\Delta \sigma_v^{(8)}$ Soil Layer Depth Soil N₆₀ C_c⁽²⁾ C_r⁽³⁾ e, ⁽⁴⁾ (N1)₆₀ (5) C' ⁽⁶⁾ 1⁽⁷⁾ Midpoint LL  $Z_f/B$ Layer Midpoint Thickness Bottom Midpoint (ft) Туре Туре (pcf) (psf) (psf) (ft) (ft) (psf) (psf) (psf) 0.0 2.5 1.3 115 288 144 66 0.171 0.026 0.499 0.500 804 A-6a С 2.5 2,066 29 0.04 1 С 2.5 2.5 431 197 803 A-4a 5.0 3.8 115 575 2,197 28 0.162 0.024 0.491 0.13 0.500 2 A-4a С 5.0 7.5 2.5 6.3 115 863 719 329 2,329 28 0.162 0.024 0.491 0.22 0.498 801 7.5 1,150 0.162 0.024 A-4a С 10.0 2.5 8.8 115 1,006 460 2,460 28 0.491 0.30 0.495 795 A-2-4 10.0 12.0 2.0 11.0 120 1,390 1,270 584 2,584 16 0.38 0.490 788 G 11 66 12.0 14.0 2.0 13.0 1,630 11 15 0.484 779 A-2-4 G 120 1,510 699 2,699 64 0.45 3 A-2-4 G 14.0 16.0 2.0 15.0 120 1,870 1,750 814 2,814 11 14 63 0.52 0.478 768 A-2-4 G 16.0 18.0 2.0 17.0 120 2,110 1,990 929 2,929 11 14 63 0.59 0.470 755 4 120 A-4a G 18.0 21.5 3.5 19.8 135 2,583 2,346 1,114 5,114 144 224 0.69 0.457 735 21.5 2.988 A-3a G 24.5 3.0 23.0 135 2.785 1.350 5.350 62 70 212 0.80 0.441 709 5 A-3a G 24.5 28.0 3.5 26.3 135 3,460 3,224 1,586 5,586 62 67 199 0.91 0.423 681 A-3a G 28.0 31.5 3.5 29.8 135 3,933 3,696 1,840 5,840 62 64 187 1.03 0.404 649

(S_c)_t =

1.799 in

1.  $\sigma_p' = \sigma_{vo}' + \sigma_{m}$ ; Estimate  $\sigma_m$  of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

3. Cr = 0.15(Cc) for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(Cc) for very stiff to hard natural soil deposits, and 0.05(Cc) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo}')$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{p'})$  for  $\sigma_{vo}' < \sigma_{vf}' \le \sigma_{vf}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100)$ ; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	7/14/2018
Checked By:	JPS	Date:	7/15/2018

	Total Se	ttlement at F	acing of Wall	Settlement Complete at 90% of Primary Consolidation			
σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	Setternerit		(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)		
870	0.048	0.576	0.576	0.576	0.576		
1,001	0.029	0.345		0.262			
1,129	0.022	0.262	0.820	0.199	0.623		
1,256	0.018	0.213		0.162			
1,371	0.011	0.136		0.136			
1,478	0.010	0.121	0.465	0.121	0.465		
1,582	0.009	0.109	0.405	0.109			
1,684	0.008	0.099		0.099			
1,849	0.003	0.041	0.041	0.041	0.041		
2,058	0.003	0.031		0.031			
2,266	0.003	0.033	0.093	0.033	0.093		
2,489	0.002	0.029		0.029			

Settlement Remaining After Hold Period: 0.197

in

W-13-045 - FRA-70-12.68 - Retaining Walls 4W5 and 4W6	Calculated By:	BRT	Date: 7/15/2018
MSE Wall with Cellular Concrete Backfill - Bearing Resistance	Checked By:	JPS	Date: 7/15/2018

B =	31.7	ft		
L =	142	ft		
c =	1,375	psf		
γ =	115	pcf		
D _f =	3.0	ft		
φ=	0	deg		
D _w =	0.0	ft	Below ground surface	

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma BN_{m} C_{w\gamma} = 7.55$$
 ksf

$N_{cm} = L$	$N_c s_c i_c$ =	5.36		$N_{qm}$ =	$= N_q s_q d_q i_q$	= 1.00			$N_{\gamma m} = N_\gamma s_\gamma i_\gamma$ =	0.00
N _c =	5.14		s _c =	1+(31.71 ft/142 ft)(1/5.14) =	1.043	i _c =	1.000	d _q =	1+2tan(0°)[1-sin(0°)]²tan⁻¹(3 ft/31.71 ft) =	1.000
N _q =	1.00		s _q =	1+(31.71 ft/142 ft)tan(0°) =	1.000	i _q =	1.000	C _{wq} =	0.0 ft < 3.0 ft =	0.500
N _y =	0.00		s _y =	1-0.4(31.71 ft/142 ft) =	0.911	i _y =	1.000	C _{wy} =	0.0 ft < 1.5(31.71 ft) + 3 ft =	0.500

$$q_R = q_n \cdot \phi_b$$
 = 3.77 ksf  
 $\varphi_b$  = 0.5

**MSE WALL CALCULATIONS** 

**APPENDIX VII** 



	k−−−−−− B −−−−−→	$\sigma_{LS}=$ 250 psf	
		Proposed Top of Wall $XXX$ EI. = 761.	7
$\uparrow$	▲ ×××	XXX	
	MSE Backfill		
 	$\gamma_{BF}$ = 120 pcf	Retained Soil: ODOT Item 203 Granular Embankment	
н .	$\varphi_{BF} = 34^{\circ}$		
	Reinforcement	$\gamma_{RS}$ = 130 pcf $\varphi_{RS}$ = 33° $c_{RS}$ = 0 psf	
	Straps	$\varphi_{RS} = 0$ psi $(S_u)_{RS} = 0$ psf	
Proposed Bottom of Wall			
xxx xx Bearing Soil: Very Stiff to Hard Silt a	and Clay or Clay ( $\Delta_{-6a}$ , $\Delta_{-7-6}$ ) $\gamma_{\rm p}$	EI. = 722. $s = 120 \text{ pcf}$ $\varphi_{BS} = 26^{\circ} c_{BS} = 0 \text{ psf}$ $(S_u)_{BS} = 2950 \text{ psf}$	5
		$\varphi_{BS} = 20  \varphi_{BS} = 20  \varphi_{BS} = 0  \varphi_{DS} = (3_u)_{BS} = 2500  \varphi_{DS}$	
SE Wall Dimensions and Retaine		Bearing Soil Properties:	•
SE Wall Height, ( <i>H</i> ) = SE Wall Width (Reinforcement Length	n), (B) = 27.4 ft		0 pc 6 °
SE Wall Width (Reinforcement Lengtr SE Wall Length, (L) =	$(B) = \frac{27.4 \pi}{229}$ ft		0 0 ps
ve Surcharge Load, $(\sigma_{LS}) =$	229 it 250 psf	Bearing Soil Undrained Shear Strength, $[(S_u)_{BS}] = 2950$	
etained Soil Unit Weight, $(\gamma_{RS}) =$	<u></u> 130 pcf		0 ft
etained Soil Friction Angle, ( $\varphi_{RS}$ ) =	33 °		0 ft
etained Soil Drained Cohesion ¹ , ( $c_{BS}$ )		LRFD Load Factors	
etained Soil Undrained Shear Strengtl		EV EH LS	
etained Soil Active Earth Pressure Co	ກາງການການນຶ່ງການມີກຄ້າງການການອົງການການ <mark>.</mark>	Strength la 1.00 1.50 1.75 CAASHTO LRFD BDM T	
SE Backfill Unit Weight, $(\gamma_{BF})$ = SE Backfill Friction Angle, $(\varphi_{BF})$ =	<u>120 pcf</u> <u>34</u> °	Strength Ib 1.35 1.50 1.75 + 3.4.1-1 and 3.4.1-2 - Ac Earth Pressure)	ctive
heck Sliding (Loading Case - Str Sliding Force:		Service I         1.00         1.00         1.00         Image: Constraint of the section of the	
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$	Section 11.10.5.3	p/ft
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$	<u>Section 11.10.5.3</u> $_{4}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$	p/ft
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \sigma_{LS} H K_{a} \gamma_{LS_{h}}$	<u>Section 11.10.5.3</u> ${}_{\gamma} \gamma_{EH} = \gamma_2(130 \text{ pcf})(39.2 \text{ ft})^2(0.264)(1.5) = 39.55 \text{ kip}$	
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$	Section 11.10.5.3 ${}_{i} \gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$	
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$	Section 11.10.5.3 ${}_{i} \gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$	
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{LS_{h}} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $R_{\tau} = P_{EV} \cdot \tan \delta$	Section 11.10.5.3 ${}_{i}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{2.S} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ft + 4.53 kip/ft = 44.08 kip/ft	p/ft
heck Sliding (Loading Case - Str Sliding Force:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot$	Section 11.10.5.3 ${}_{a}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ft + 4.53 kip/ft = 44.08 kip/ft ${}_{F}\gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.89 \text{ kip}$	p/ft
heck Sliding (Loading Case - Str Sliding Force: PLS heck Sliding Resistance - Draine Nominal Sliding Resistance:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{LS_{h}} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $R_{\tau} = P_{EV} \cdot \tan \delta$	Section 11.10.5.3 ${}_{a}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ft + 4.53 kip/ft = 44.08 kip/ft ${}_{F}\gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.89 \text{ kip}$	p/ft
heck Sliding (Loading Case - Str Sliding Force: PLS heck Sliding Resistance - Draine Nominal Sliding Resistance:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{LS_{h}} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{EV} = \gamma_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \tan \delta = (\tan \varphi_{BS} \leq \tan \delta)$	Section 11.10.5.3 ${}_{a}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ft + 4.53 kip/ft = 44.08 kip/ft ${}_{F}\gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.89 \text{ kip}$ un $\varphi_{BF}$ )	p/ft
heck Sliding (Loading Case - Str Sliding Force: $P_{LS}$ heck Sliding Resistance - Draine Nominal Sliding Resistance: $P_{EV}$	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{LS_{h}} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{EV} = \gamma_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \tan \delta = (\tan \varphi_{BS} \leq \tan \delta)$	Section 11.10.5.3 ${}_{a}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ft + 4.53 kip/ft = 44.08 kip/ft ${}_{F}\gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.89 \text{ kip}$	p/ft
heck Sliding (Loading Case - Str Sliding Force: PLS heck Sliding Resistance - Draine Nominal Sliding Resistance:	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{LS_{h}} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{EV} = \gamma_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \tan \delta = (\tan \varphi_{BS} \leq \tan \delta)$	Section 11.10.5.3 ${}_{a}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ${}_{ft} + 4.53 \text{ kip/ft} = 44.08 \text{ kip/ft}$ ${}_{ft} + 4.53 \text{ kip/ft} = 44.08 \text{ kip/ft}$ ${}_{FU} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.89 \text{ kip}$ ${}_{HI} \varphi_{BF}$ ${}_{O} \le \tan(34) \longrightarrow 0.49 \le 0.67 \longrightarrow \tan \delta = 0.49$	p/ft
heck Sliding (Loading Case - Str Sliding Force: $P_{LS}$ heck Sliding Resistance - Draine Nominal Sliding Resistance: $P_{EV}$	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a}$ $P_{EH} = \sigma_{LS} H K_{a} \gamma_{L}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{H} = 39.55 \text{ kip/f}$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot tan \delta = (tan \varphi_{BS} \le ta)$ $tan \delta = (tan \varphi_{BS} \le ta)$ $tan \delta = tan(26)$ $R_{\tau} = (128.89 \text{ kip/ft})(0.49)$	Section 11.10.5.3 ${}_{i}\gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5) = 39.55 \text{ kip}$ ${}_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53 \text{ kip}$ ft + 4.53 kip/ft = 44.08 kip/ft $\gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.89 \text{ kip}$ ${}_{M}\varphi_{BF}$ ) ${}_{O} \leq \tan(34) \longrightarrow 0.49 \leq 0.67 \longrightarrow \tan \delta = 0.49$ ${}_{O} = 63.16 \text{ kip/ft}$	p/ft



# RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	2	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	all 4W5 - Sta. 5083 [.]	+25 to Sta	a. 5085+54

MSE Wall Dimensions and Retained Soil Para	ameters	Bearing Soil Prope	rties:		
MSE Wall Height, ( <i>H</i> ) =	39.2 ft	Bearing Soil Unit Weig			120 pc
MSE Wall Width (Reinforcement Length), (B) =	27.4 ft	Bearing Soil Friction A			26 °
MSE Wall Length, (L) =	229 ft	Bearing Soil Drained C	ຈັດແມ່ນ		0 ps
ive Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil Undrained		$[(s_{u})_{RS}] =$	2950 ps
Retained Soil Unit Weight, $(\gamma_{RS}) =$	130 pcf	Embedment Depth, (D			3.0 ft
Retained Soil Friction Angle, $(\varphi_{RS}) =$	<u>33</u> °	Depth to Grounwater (	ອັດການການເຮັດການການສິ່ງການການອັດການການອັດການການ	$(D_{W}) =$	8.0 ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load Factors			
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf		EH LS		
Retained Soil Active Earth Pressure Coeff., $(K_a) =$	0.264		 1.50 1.75 ך		
<i>I</i> SE Backfill Unit Weight, $(\gamma_{BF}) =$	120 pcf		1.50 1.75 -	(AASHTO LRFD 3.4.1-1 and 3.4.	
ISE Backfill Friction Angle, $(\varphi_{BF})$ =	<u>- 120 por</u> 34 °	ແບບເງິດແບບເລີ້ມແບບບອກເບັນແບບບອກເຫຼົອມແບບບອກເຫຼົອມ	1.00 1.00	Earth Pres	
Check Sliding (Loading Case - Strength Ia) -		I Section 11.10.5.3 (Continu	ied)		
Check Sliding Resistance - Undrained Condi Nominal Sliding Resisting: $R_{\tau} =$	$\frac{tion}{I((S_u)_{BS} \leq q_s) \cdot B}$				
	$(S_u)_{BS} = q_s f D$ $(S_u)_{BS} = 2.95$				
	$a = \sigma_v / = 1$	(4.70 ksf) / 2 = 2.35	ksf		
	ч <i>s</i> /2 - Ч	()			
$(S_u)_{BS} \leq q_s$	$\sigma = P_{EV}/$	= (128.89 kip/ft) / (27.4	ft) = 4.70	) ksf	
∽u JBS − 4 s	~v /B	(.==	,,		
	2_ = (2.95 ksf ≤ 2.35	64.39 ksf)(27.4 ft) =	kip/ft		
	2 _τ = (2.95 ksf ≤ 2.35	ksf)(27.4 ft) = 64.39	kip/ft		
	$P_{\tau} = (2.95 \text{ ksf} \le 2.35)$	ksf)(27.4 ft) = 64.39	kip/ft		
			kip/ft		
			kip/ft		
	ling Resistance - Un	drained Condition	kip/ft 4.08 kip/ft ≤ 64.3	9 kip/ft	OK
Yerify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow$ 44.08 kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	OK
Verify Sliding Force Less Than Factored Slid	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	OK
<b>The set of the set o</b>	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	ok
<b>The set of the set o</b>	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	OK
Yerify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow$ 44.08 kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
Prify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow  44.08  ext{ kip/ft} \leq 0$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	ok
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow $ 44.08 kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	OK
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 44.08$ kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	OK
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow $ 44.08 kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 44.08$ kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 44.08$ kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 44.08$ kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow $ 44.08 kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
erify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow $ 44.08 kip/ft $\leq$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
Prify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow  44.08  ext{ kip/ft} \leq 0$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	OK
Prify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow  44.08  ext{ kip/ft} \leq 0$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
<b>The set of the set o</b>	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
<b>The set of the set o</b>	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
Prify Sliding Force Less Than Factored Slid $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow  44.08  ext{ kip/ft} \leq 0$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 kip/ft	
<b>The set of the set o</b>	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition		9 Kip/ft	
<b>Verify Sliding Force Less Than Factored Slid</b> $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow  44.08 \text{ kip/ft} \leq 0$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition			
<b>Verify Sliding Force Less Than Factored Slid</b> $P_H \leq R_\tau \cdot \phi_\tau  \longrightarrow  44.08 \text{ kip/ft} \leq 0$	l <u>ing Resistance - Un</u> (64.39 kip/ft)(1.0) = 64	drained Condition			



JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	3	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	II 4W5 - Sta. 5083+2	25 to Sta	a. 5085+54

$\frac{s}{39.2} \text{ ft}$ $\frac{39.2}{27.4} \text{ ft}$ $\frac{229}{27.4} \text{ ft}$ $\frac{229}{27.4} \text{ ft}$ $\frac{229}{27.4} \text{ ft}$ $\frac{229}{100} \text{ psf}$ $\frac{130}{9} \text{ psf}$ $\frac{0}{9} \text{ psf}$ $\frac{0}{9} \text{ psf}$ $\frac{0}{264}$ $\frac{120}{120} \text{ pcf}$ $\frac{34}{34} \text{ order }$ $\frac{34}{7} \text{ order }$ $\frac{8}{7} \text{ order }$ $\frac{120}{7} \text{ pcf}$ $\frac{120}{34} \text{ order }$ $\frac{120}{7} \text{ pcf}$ $\frac{120}{7}  $	Bearing S Bearing S Bearing S Embedm Depth to <u>LRFD Le</u> Strength Strength Service I BDM Section	ent Depth, Grounwate <u>oad Facto</u> EV la 1.00 lb 1.35 1.00 <b>11.10.5.5</b>	reight, (y _B n Angle, (q d Cohesic ned Shea ( <i>D</i> _f ) = er (Below <b>0rs</b> EH 1.50 1.50 1.00 5.71 kip·ft	$\varphi_{BS} = \\ \varphi_{BS} = \\ \text{on, } (c_{BS}) = \\ \text{ar Strength,} \\ \text{Bot. of Wa} \\ \text{LS} \\ 1.75 \\ 1.75 \\ 1.00 \end{bmatrix}$	II), (D _W ) = (AASHTO LRF 3.4.1-1 and 3. Earth Pr	.4.1-2 - Active ressure)
$\begin{array}{r} 39.2 \text{ ft} \\ \hline 27.4 \text{ ft} \\ \hline 229 \text{ ft} \\ \hline 250 \text{ psf} \\ \hline 130 \text{ pcf} \\ \hline 33 ^{\circ} \\ \hline 0 \text{ psf} \\ \hline 0 \text{ psf} \\ \hline 264 \\ \hline 120 \text{ pcf} \\ \hline 34 ^{\circ} \\ \hline \end{array}$	Bearing S Bearing S Bearing S Embedm Depth to <u>LRFD Le</u> Strength Strength Service I BDM Section	Soil Unit W Soil Frictior Soil Draine Soil Undrai ent Depth, Grounwate <u>oad Facto</u> EV Ia 1.00 Ib 1.35 1.00 <u>11.10.5.5</u>	reight, (y _B n Angle, (q d Cohesic ned Shea ( <i>D</i> _f ) = er (Below <b>0rs</b> EH 1.50 1.50 1.00 5.71 kip·ft	$\varphi_{BS} = \\ \varphi_{BS} = \\ \text{on, } (c_{BS}) = \\ \text{ar Strength,} \\ \text{Bot. of Wa} \\ \text{LS} \\ 1.75 \\ 1.75 \\ 1.00 \end{bmatrix}$	II), (D _W ) = (AASHTO LRF 3.4.1-1 and 3. Earth Pr	26 ° 0 psf 2950 psf 3.0 ft 8.0 ft D BDM Tables .4.1-2 - Active ressure)
$\begin{array}{r} 229 \text{ ft} \\ 250 \text{ psf} \\ 130 \text{ pcf} \\ 33 \circ \\ \hline 0 \text{ psf} \\ 0 \text{ psf} \\ 264 \\ 120 \text{ pcf} \\ 34 \circ \\ \hline \end{array}$	Bearing S Bearing S Embedm Depth to LRFD Lo Strength Strength Service I BDM Section	Soil Draine Soil Undrai ent Depth, Grounwate <u>oad Facto</u> EV la 1.00 lb 1.35 1.00 <u>11.10.5.5</u>	d Cohesid ned Shea $(D_f) =$ er (Below <b>DTS</b> EH 1.50 1.50 1.00 <b>5</b> 5.71 kip·ft	Bot. of Wa $LS$ $1.75$ $1.75$ $1.00$	II), (D _W ) = (AASHTO LRF 3.4.1-1 and 3. Earth Pr	26 ° 0 psf 2950 psf 3.0 ft 8.0 ft D BDM Tables .4.1-2 - Active ressure)
$\begin{array}{r} 229 \text{ ft} \\ 250 \text{ psf} \\ 130 \text{ pcf} \\ 33 \circ \\ \hline 0 \text{ psf} \\ 0 \text{ psf} \\ 264 \\ 120 \text{ pcf} \\ 34 \circ \\ \hline \end{array}$	Bearing S Bearing S Embedm Depth to LRFD Lo Strength Strength Service I BDM Section	Soil Draine Soil Undrai ent Depth, Grounwate <u>oad Facto</u> EV la 1.00 lb 1.35 1.00 <u>11.10.5.5</u>	d Cohesid ned Shea $(D_f) =$ er (Below <b>DTS</b> EH 1.50 1.50 1.00 <b>5</b> 5.71 kip·ft	Bot. of Wa $LS$ $1.75$ $1.75$ $1.00$	II), (D _W ) = (AASHTO LRF 3.4.1-1 and 3. Earth Pr	0 psf 2950 psf 3.0 ft 8.0 ft D BDM Tables 4.1-2 - Active ressure)
$\frac{250}{130} \text{ psf} \\ 130 \text{ pcf} \\ 33^{\circ} \\ 0 \text{ psf} \\ 0 \text{ psf} \\ 264 \\ 120 \text{ pcf} \\ 34^{\circ} \\ \text{ASHTO LRFD} \\ x_{o} \\ \hline \\ \frac{EV - M_{H}}{P_{EV}} = \\ P_{EV} \\ = 1765.79 \\ = 605.71 \\ = 128.89 \\ \hline $	Bearing S Embedm Depth to <u>LRFD Lo</u> Strength Strength Service I <u>BDM Section</u> = (1765.79 kip	Soil Undrai ent Depth, Grounwate <u>oad Facto</u> EV Ia 1.00 Ib 1.35 1.00 <u>11.10.5.5</u>	ned Shea ( <i>D_f</i> ) = er (Below <u>ors</u> EH 1.50 1.50 1.00 5.71 kip·ft	IT Strength, Bot. of Wa LS 1.75 1.75 1.00	II), (D _W ) = (AASHTO LRF 3.4.1-1 and 3. Earth Pr	2950 psf 3.0 ft 8.0 ft DBDM Tables 4.1-2 - Active ressure)
$\begin{array}{r} 130 \text{ pcf} \\ 33 \circ \\ \hline 0 \text{ psf} \\ \hline 0 \text{ psf} \\ \hline 264 \\ 120 \text{ pcf} \\ 34 \circ \\ \end{array}$ $\begin{array}{r} ASHTO \ LRFD \\ \hline \\ X_o \\ \hline \\ EV \ -M_H \\ \hline \\ P_{EV} \\ \hline \\ = 1765.79 \\ = 605.71 \\ = 128.89 \\ \end{array}$	Embedm Depth to <u>LRFD Le</u> Strength Strength Service I <u>BDM Section</u> = (1765.79 kip	ent Depth, Grounwate <u>oad Facto</u> EV la 1.00 lb 1.35 1.00 <b>11.10.5.5</b>	(D _f ) = er (Below <u>ors</u> EH 1.50 1.50 1.00 5.71 kip·ft	Bot. of Wa LS 1.75 1.75 1.00	II), (D _W ) = (AASHTO LRF 3.4.1-1 and 3. Earth Pr	3.0 ft 8.0 ft D BDM Tables 4.1-2 - Active ressure)
$\frac{33}{0} \text{ psf}$ $\frac{0}{0} \text{ psf}$ $\frac{264}{120} \text{ pcf}$ $\frac{34}{34} \text{ *}$ $\frac{ASHTO LRFD}{X_o}$ $\frac{E_V - M_H}{P_{EV}} = \frac{1765.79}{605.71}$ $= 128.89$	Depth to <u>LRFD Lo</u> Strength Strength Service I <u>BDM Section</u> = (1765.79 kip ) kip·ft/ft	Grounwate <u>oad Facto</u> EV Ia 1.00 Ib 1.35 1.00 <u>11.10.5.5</u> ·ft/ft - 605	er (Below <u>ors</u> EH 1.50 1.50 1.00 5 .71 kip·ft	LS 1.75 1.75 1.00	(AASHTO LRF 3.4.1-1 and 3. Earth Pr	8.0 ft D BDM Tables 4.1-2 - Active ressure)
$\frac{0}{0} \text{ psf} \\ \frac{0}{0} \text{ psf} \\ \frac{.264}{120} \text{ pcf} \\ \frac{34}{34} ^{\circ} \\ \frac{34}{2} \\ \frac{1}{20} \text{ pcf} \\ \frac{34}{34} ^{\circ} \\ \frac{1}{20} \text{ pcf} \\ $	LRFD Lo Strength Strength Service I BDM Section = (1765.79 kip	oad Facto EV la 1.00 lb 1.35 1.00 11.10.5.5	0rs EH 1.50 1.50 1.00	LS 1.75 1.75 1.00	(AASHTO LRF 3.4.1-1 and 3. Earth Pr	FD BDM Tables 4.1-2 - Active ressure)
$\frac{0}{264} \text{ psf} \\ \frac{120}{264} \text{ pcf} \\ \frac{34}{34} \text{ s} \\ \frac{120}{4} \text{ pcf} \\ \frac{34}{2} \text{ s} \\ \frac{120}{4} \text{ s} \\ 1$	Strength Strength Service I BDM Section = (1765.79 kip	EV la 1.00 lb 1.35 1.00 <b>11.10.5.5</b>	ЕН 1.50 1.50 1.00 5.71 kip·ft	1.75 1.75 1.00	3.4.1-1 and 3. Earth Pr	.4.1-2 - Active ressure)
$\frac{264}{120 \text{ pcf}}$ $\frac{120 \text{ pcf}}{34 \circ}$ <b>ASHTO LRFD</b> $x_{o}$ $\frac{EV - M_{H}}{P_{EV}} =$ $= 1765.79$ $= 05.71$ $= 128.89$	Strength Service I <u>BDM Section</u> = (1765.79 kip ) kip·ft/ft	la 1.00 lb 1.35 1.00 <u>11.10.5.5</u> ·ft/ft - 605	1.50 1.50 1.00	1.75 1.75 1.00	3.4.1-1 and 3. Earth Pr	.4.1-2 - Active ressure)
$\frac{120 \text{ pcf}}{34 \circ}$ <b>ASHTO LRFD</b> $x_{o}$ $\frac{EV - M_{H}}{P_{EV}} = 1765.79$ $= 005.71$ $= 128.89$	Strength Service I <u>BDM Section</u> = (1765.79 kip ) kip·ft/ft	lb 1.35 1.00 <u>11.10.5.5</u> ·ft/ft - 605	1.50 1.00 5 5.71 kip·ft	1.75	3.4.1-1 and 3. Earth Pr	.4.1-2 - Active ressure)
$\frac{34}{ASHTO LRFD}$ $x_{o}$ $\frac{EV - M_{H}}{P_{EV}} = 1765.79$ $= 605.71$ $= 128.89$	Service I <u>BDM Section</u> = (1765.79 kip ) kip·ft/ft	1.00 <u>11.10.5.5</u> ·ft/ft - 605	1.00 5.71 kip•ft	1.00	Earth Pr	ressure)
<b>ASHTO LRFD</b> $x_o$ $\frac{EV - M_H}{P_{EV}} =$ = 1765.79 = 605.71 = 128.89	<u>BDM Section</u> = (1765.79 kip 9 kip⋅ft/ft →	<u>11.10.5.5</u> ·ft/ft - 605	5.71 kip·ft			
$x_o$ $EV - M_H$ $P_{EV}$ = 1765.79 = 605.71 = 128.89	= (1765.79 kip 9 kip∙ft/ft	•ft/ft - 605	.71 kip·ft	ľ/ft) / (128.	89 kip/ft) =	9.00 ft
$x_o$ $EV - M_H$ $P_{EV}$ = 1765.79 = 605.71 = 128.89	= (1765.79 kip 9 kip∙ft/ft	•ft/ft - 605	.71 kip·ft	t/ft) / (128.	89 kip/ft) =	9.00 ft
$\frac{F_{EV} - M_H}{P_{EV}} = \frac{1765.79}{605.71} = \frac{128.89}{128.89}$	∂ kip·ft/ft ¬			ťft) / (128.	89 kip/ft) =	9.00 ft
= 1765.79 = 605.71 = 128.89	∂ kip·ft/ft ¬			t/ft) / (128.:	89 kip/ft) =	9.00 ft
= 1765.79 = 605.71 = 128.89	∂ kip·ft/ft ¬			t/ft) / (128.i	89 kip/ft) =	9.00 ft
= 1765.79 = 605.71 = 128.89	∂ kip·ft/ft ¬					
= 1765.79 = 605.71 = 128.89	∂ kip·ft/ft ¬					
= 605.71 = 128.89	<pre> 9 kip·ft/ft kip·ft/ft kip/ft </pre>	- Definec	d below			
= 605.71 = 128.89	kip·ft/ft -	- Defined	d below			
	kip/ft	Delined				
	кір/π —					
(27.4 ft)/2 - 9						
(Z7.4 IL)/Z - 9	4 _ A	70 A				
	ft = 4	.70 ft				
(r)						
$V(\mathcal{A}_1)$						
$\cdot$ . $H$ . $R$ .	$\cdot \chi = (12)$	0  pcf(30)	2 ft)(27 /	1 ft)(1 00)	= 128.8	39 kip/ft
$_{BF}$ · $\Pi$ · $D$ ·	$Y_{EV} = (12)$	0 pci)(39.	.2 11)(27.4	+ 10(1.00)	- 120.0	з кір/п
- (27	1 <del>ft</del> ) / 2 –	12 70	a			
2 = (27.4)	.4 1() / 2 =	13.70	Ц			
(400.00	()		705 70 1	1. 0.0		
, = (128.89	γ κιρ/π)(13.70 π	) = 1	/05./9	κιρ∙π/π		
$( \dots ) \cup D$	()					
$_{H}(x_{2}) + P_{L}$	$L_{S_h}(x_3)$					
$\frac{1}{2}\gamma_{RS}H^{2}K_{a}$	$_{a}\gamma_{EH} = \frac{1}{2}(1$	30 pcf)(3	9.2 ft)²(0.	.264)(1.5)	= 39.5	5 kip/ft
$\sigma_{LS}HK_a\gamma_{LS}$	. <i>s</i> = (250 p	sf)(39.2 ft	)(0.264)(	(1.75) =	4.53	kip/ft
2 = (39.)	.2 ft) / 3 =	13.07	ft			
2 = (39.1	.2 ft) / 2 =	19.60	ft			
— (20.55 L	kin/ft)/12.07.ft)	+ (1 52 k	/ft)/10 (	60 ft) –	605 71	kin ft/ft
— (39.33 k		1 (4.33 K	ap/n)(19.0	0010) –	005.71	кірлин
? _{max} = (27.4	.4 ft) / 3 =	9.13	ft			
	$2 = (27)$ $= (128.89)$ $H(x_2) + P_1$ $2\gamma_{RS}H^2K$ $\sigma_{LS}HK_a\gamma_1$ $3 = (39)$ $2 = (39)$ $= (39.55)$	$Y_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (12)$ $2 = (27.4 \text{ ft})/2 = (128.89 \text{ kip/ft})(13.70 \text{ ft})$ $H (x_2) + P_{LS_h} (x_3)$ $2\gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2}(100)$ $\sigma_{LS} H K_a \gamma_{LS} = (250 \text{ p})$ $3 = (39.2 \text{ ft})/3 = (250 \text{ p})$ $2 = (39.2 \text{ ft})/2 = (39.55 \text{ kip/ft})(13.07 \text{ ft})$	$Y_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(39)$ $2 = (27.4 \text{ ft})/2 = 13.70$ $Y = (128.89 \text{ kip/ft})(13.70 \text{ ft}) = 1$ $H (x_2) + P_{LS_h} (x_3)$ $2\gamma_{RS} H^2 K_a \gamma_{EH} = \gamma_2(130 \text{ pcf})(3)$ $\sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(39.2 \text{ ft})$ $3 = (39.2 \text{ ft})/3 = 13.07$ $2 = (39.2 \text{ ft})/2 = 19.60$ $= (39.55 \text{ kip/ft})(13.07 \text{ ft}) + (4.53 \text{ k})$	$Y_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4)$ $2 = (27.4 \text{ ft})/2 = 13.70 \text{ ft}$ $4 = (128.89 \text{ kip/ft})(13.70 \text{ ft}) = 1765.79$ $H (x_2) + P_{LS_h} (x_3)$ $2\gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^2(0)$ $\sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(0)$ $3 = (39.2 \text{ ft})/3 = 13.07 \text{ ft}$ $2 = (39.2 \text{ ft})/2 = 19.60 \text{ ft}$	$Y_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00)$ $2 = (27.4 \text{ ft})/2 = 13.70 \text{ ft}$ $= (128.89 \text{ kip/ft})(13.70 \text{ ft}) = 1765.79 \text{ kip-ft/ft}$ $H (x_2) + P_{LS_h} (x_3)$ $2 \gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^2(0.264)(1.5)$ $\sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) =$ $3 = (39.2 \text{ ft})/3 = 13.07 \text{ ft}$ $2 = (39.2 \text{ ft})/2 = 19.60 \text{ ft}$ $= (39.55 \text{ kip/ft})(13.07 \text{ ft}) + (4.53 \text{ kip/ft})(19.60 \text{ ft}) =$	$Y_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.00) = 128.8$ $2 = (27.4 \text{ ft})/2 = 13.70 \text{ ft}$ $= (128.89 \text{ kip/ft})(13.70 \text{ ft}) = 1765.79 \text{ kip-ft/ft}$ $H(x_2) + P_{LS_h}(x_3)$ $2\gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^2(0.264)(1.5) = 39.53$ $\sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(39.2 \text{ ft})(0.264)(1.75) = 4.53$ $3 = (39.2 \text{ ft})/3 = 13.07 \text{ ft}$ $2 = (39.2 \text{ ft})/2 = 19.60 \text{ ft}$ $= (39.55 \text{ kip/ft})(13.07 \text{ ft}) + (4.53 \text{ kip/ft})(19.60 \text{ ft}) = 605.71$



JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	4	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	ll 4W5 - Sta. 5083+	25 to St	a. 5085+54

WWW.RESOURCEINTE	RATIONAL.COM			
MSE Wall Dimensions and Retained Soil Para	<u>meters</u>	Bearing Soil Prope	rties:	
MSE Wall Height, ( <i>H</i> ) =	39.2 ft	Bearing Soil Unit Weig	ght, (γ _{BS} ) =	120 pc
MSE Wall Width (Reinforcement Length), (B) =	27.4 ft	Bearing Soil Friction A	$(\varphi_{BS}) =$	26 °
MSE Wall Length, (L) =	229 ft	Bearing Soil Drained (		0 ps
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil Undraine		
				garan garan garan <del>g</del> aran g
Retained Soil Unit Weight, $(\gamma_{RS}) =$	130 pcf	Embedment Depth, ( <i>L</i>	และการการการการการการการการการการการการการก	<u>3.0</u> ft
Retained Soil Friction Angle, ( $\varphi_{RS}$ ) =	<u>33</u> °	Depth to Grounwater	(Below Bot. of Wal	II), $(D_W) = 8.0$ ft
Retained Soil Drained Cohesion, $(c_{BS})$ =	<u>0</u> psf	LRFD Load Factors	8	
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV	EH LS	
Retained Soil Active Earth Pressure Coeff., $(K_a)$ =	0.264	Strength Ia 1.00	ך 1.50 1.75	(AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, ( $\gamma_{BF}$ ) =	120 pcf	Strength lb 1.35	1.50 1.75 -	3.4.1-1 and 3.4.1-2 - Active
MSE Backfill Friction Angle, ( $\varphi_{BF}$ ) =	<u>34</u> °	Service I 1.00	1.00 1.00 🗍	Earth Pressure)
Check Bearing Capacity (Loading Case - Strer	nath lb) - AASHTO I	RFD BDM Section 11.10	5.4	
$P_{LS_{s}}$			<u></u>	
	P /			
$q_{eq} =$				
	/ <b>D</b>			
$x_2$ $P_{EV}$ $P_{EV}$ $B'=$	$-R_{-}2a = 27$	.4 ft - 2(3.26 ft) = 20	88 ft	
$\uparrow^3$ $\downarrow$ $\downarrow^{L_V}$ $\leftarrow$ $\downarrow$ $P_{LS_L}$ $D$ $-$	-D $2c$ $2n$	20		
	a - B/r		= 3.26 ft	
	$e - \frac{1}{2} - x_o$	4 ft - 2(3.26 ft) = 20 = (27.4 ft) / 2 - 10.44 ft =	= 3.20 II	
	$M_{\nu} - M_{H}$			
	$x_o = \frac{v - n}{D}$	= (2548.04 kip·ft/ft -	605.7 kip·ft/ft) / 1	85.99 kip/ft = 10.44
$x_o \leftrightarrow e$	$P_V$			
$ \underbrace{ \overset{B}_{2}}_{\leftarrow B'} \underbrace{ \overset{B}_{2}} \underbrace{ \overset{B}_$	= (185.99 kip/ft)	/ (20.88 ft) = 8.91	ksf	
$B' \rightarrow B'$				
$M_{V} = P_{EV}(x_{1}) + P_{LS}(x_{1}) = (\gamma_{BF} \cdot H)$		$+(\sigma P \gamma)$		
$VIV - IEV(\lambda_1) + ILS_V(\lambda_1) - VBF $	$I D Y EV (\Lambda_1)$	$1 (O_{LS} D ) L_{S} (A_{1})$		
	(40 7 4) . [(050		- 0540.04 14-	£1/£1
$M_V = [(120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.35)]$	(13.7  ft) + [(250  pst)]	(27.4 π)(1.75)](13.7 π)	= 2548.04 кір	ŀΠ/Π
	··· )			
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS})$	$H^2K_a\gamma_{EH}(x_2)$	$+(\sigma_{LS}HK_a\gamma_{LS})(x_3)$		
$M_{H} = [\frac{1}{2}(130 \text{ pcf})(39.2 \text{ ft})^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{2}(0.264)(1.5)^{$	5)](13.07 ft) + [(250 p	osf)(39.2 ft)(0.264)(1.75)](1	9.6 ft) = 6	05.70 kip∙ft/ft
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$	$A + \sigma_{IG} \cdot B \cdot \gamma_{IG}$			
-V - EV - LS - BF	$\sim 1S - 1LS$			
P = (120  pof)(20.2  ft)(27.4  ft)(1.25)	(250 pcf)(27.4 ft)(1	(75) - 195.00 kin/ft		
$P_V = (120 \text{ pcf})(39.2 \text{ ft})(27.4 \text{ ft})(1.35) +$	- (250 psi)(27.4 ii)(1.	(75) = 165.99 kip/it		
Check Bearing Resistance - Drained Condition	<u>n</u>			
Nominal Bearing Resistance: $q_n = c N_{cm} + c r$	$+ \gamma D_f N_{am} C_{wa} +$	$-\frac{1}{2}\gamma BN_{m}C_{wv}$		
	<i>j 4m n</i> 4			
$N_{cm} = N_c s_c i_c = 23.34$	$N_{qm} = N_q s_q d_q i$	a = 12.92 <i>l</i>	$V_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 12.09
$cm - c^{-}c^{-}c^{-}$	$qm - q^{\alpha}q^{\alpha}q^{\alpha}$	q 1	$\gamma m - \gamma \sim \gamma \gamma \gamma \gamma$	
N _c = 22.25	$N_q$ = 11.85		$N_{\gamma} = 12.54$	
$S_c = 1+(20.88 \text{ ft}/229 \text{ ft})(11.85/22.25)$	$s_q = 1.044$		$s_{\gamma} = 0.964$	
	$a_a = 1+2\tan(26^\circ)$	²)[1-sin(26°)]²tan⁻¹(3.0 ft/20.88 ft)	$i_{\gamma} = 1.000$	
= 1.049			(' = 80  ft <	1.5(20.88 ft) + 3.0 ft = 0
= 1.049 <i>i</i> _c = 1.000 (Assumed)	1.044		C _{W7} 0.0 ft 4	
	1.044	Assumed)	C wy 0.0 k 4	
<i>i</i> _c = 1.000 (Assumed)	$i_q = 1.044$ $i_q = 1.000$ (A $C_{wq} = 8.0$ ft > 3	3.0 ft = 1.000		
	$i_q = 1.044$ $i_q = 1.000$ (A $C_{wq} = 8.0$ ft > 3	3.0 ft = 1.000		14.16 ksf
$i_c = 1.000$ (Assumed) $q_n = (0 \text{ psf})(23.340) + (120 \text{ pcf})(3.0 \text{ ft})(3.0 \text{ ft}$	$i_q = 1.044$ $i_q = 1.000 \text{ (A}$ $C_{wq} = 8.0 \text{ ft} > 3$ $(12.916)(1.000) + \frac{1}{2}(12.916)(1.000)$	120  pcf = 1.000 120 pcf)(20.9 ft)(12.089)(0	.628) = -	14.16 ksf
<i>i</i> _c = 1.000 (Assumed)	$i_q = 1.044$ $i_q = 1.000 \text{ (A}$ $C_{wq} = 8.0 \text{ ft} > 3$ $(12.916)(1.000) + \frac{1}{2}(12.916)(1.000)$	120  pcf = 1.000 120 pcf)(20.9 ft)(12.089)(0	.628) = -	



JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	5	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	II 4W5 - Sta. 5083+2	25 to Sta	a. 5085+54

MSE Wall Dimensions and Retained Soil Para	<u>ameters</u>	Bearing Soil Pro	perties:	
MSE Wall Height, ( <i>H</i> ) =	<u>39.2</u> ft	Bearing Soil Unit W	/eight, (γ _{BS} ) =	120 pcf
MSE Wall Width (Reinforcement Length), (B) =	27.4 ft	Bearing Soil Frictior	n Angle, ( $\varphi_{BS}$ ) =	26 °
MSE Wall Length, ( <i>L</i> ) =	229 ft	Bearing Soil Draine	d Cohesion, $(c_{BS}) =$	0 psf
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil Undrai	ned Shear Strength,	$[(s_u)_{BS}] = 2950 \text{ psf}$
Retained Soil Unit Weight, $(\gamma_{RS}) =$	130 pcf	Embedment Depth,		3.0 ft
Retained Soil Friction Angle, $(\varphi_{RS}) =$	<u>33</u> °		er (Below Bot. of Wal	iðannandannandannan <del>í</del> innann
Retained Soil Drained Cohesion, $(c_{RS}) =$	0 psf	LRFD Load Facto		-,, <u>-</u> , , , , , , , , , , , , , , , , , , ,
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV	EH LS	
Retained Soil Active Earth Pressure Coeff., $(K_a) =$	0.264	Strength la 1.00		
				(AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, $(\gamma_{BF}) =$	120 pcf	Strength lb 1.35	ດຂໍ້ການການການການການສູ້ການການການການການຂັດການສາມ	3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
MSE Backfill Friction Angle, ( $\varphi_{BF}$ ) =	<u>34</u> °	Service I 1.00	1.00 1.00 」	
Check Bearing Capacity (Loading Case - Stre	ength lb) - AASHTO	LRFD BDM Section 11.	10.5.4 (Continued)	
Check Bearing Resistance - Undrained Cond	lition			
Nominal Bearing Resistance: $q_n = c N_{cm}$	$+ \gamma D_f N_{qm} C_{wq}$ +	+ $\frac{1}{2} \gamma BN_{m} C_{w\gamma}$		
$N_{cm} = N_c s_c i_c = 5.230$	$N_{qm} = N_q s_q d_q t$	$i_q = 1.000$	$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 0.000
			77	
N _c = 5.140	$N_q$ = 1.000		$N_{\gamma} = 0.000$	
$S_c = 1+(20.88 \text{ ft/}[(5)(229 \text{ ft})]) = 1.018$			$s_{\gamma} = 1.000$	
$i_c = 1.000$ (Assumed)	$d_q$ = 1+2tan(0	°)[1-sin(0°)]²tan ⁻¹ (3.0 ft/20.88 ft)	$i_{\gamma} = 1.000$	
	1.000		$C_{w\gamma}$ = 8.0 ft <	1.5(20.88  ft) + 3.0  ft = 0.
$q_n = (2950 \text{ psf})(5.230) + (120 \text{ pcf})(3.0)$	$i_q = 1.000$ (c $C_{wq} = 8.0 \text{ ft} > 1.000$ ) $C_{wq} = 1.000$ (ft) $C_{wq} = 1.0000$ (ft) $C_{wq} = 1.000$	3.0 ft = 1.000	)(0.628) =	15.79 ksf
	$C_{wq} = 8.0 \text{ ft} > 10000 \text{ ft}$	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000)	)(0.628) =	15.79 ksf
	$C_{wq} = 8.0 \text{ft} > 1000 \text{(}1.000 \text{)} + 1000 $	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>	)(0.628) = ´ 8.91 ksf ≤ 10.26 ks	
Verify Equivalent Pressure Less Than Factor	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf ≤	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 8.91$ ksf s	$C_{wq} = 8.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + 1/ red Bearing Resistant $\leq$ (15.79 ksf)(0.65) =	3.0 ft = 1.000 ⁄2(120 pcf)(20.9 ft)(0.000) <u>nce</u>		



JOB	FRA-70-12.	68	NO.	W-13-045
SHEET NO.	6		OF	6
CALCULATED E	BY B	RT	DATE	7/15/2018
CHECKED BY	J	PS	DATE	7/15/2018
Retaining W	all 4W5 - Sta	a. 5083+	25 to Sta	a. 5085+54

	Retained Soil Parar	neters	Bearing Soil	Properties:		
MSE Wall Height, ( <i>H</i> ) =		39.2 ft	50000000- <u>6</u> 00000000000000000000000000000	nit Weight, $(\gamma_{BS}) =$		120 pc
MSE Wall Width (Reinforcement	Length), $(B) =$	27.4 ft	Bearing Soil Fr	fiction Angle, $(\varphi_{BS}) =$	-	26 °
MSE Wall Length, (L) =		229 ft	Bearing Soil Drained Cohesion, $(c_{BS}) =$		) =	0 ps
Live Surcharge Load, $(\sigma_{LS}) =$		250 psf	ຸ່ວາມການເອົາມາການການການກົມການການການການ	ndrained Shear Streng		2950 ps
Retained Soil Unit Weight, $(\gamma_{RS})$ =	=	130 pcf	Embedment D			3.0 ft
Retained Soil Friction Angle, ( $\varphi_{RS}$		<u></u> . 33 °		nwater (Below Bot. of	Wall), $(D_W) =$	8.0 ft
Retained Soil Drained Cohesion,		0 psf	LRFD Load F			
Retained Soil Undrained Shear S	Strength, $[(S_u)_{RS}] =$	 0 psf		EV EH LS		
Retained Soil Active Earth Press	ດດາວການການຄົວການການຄົງກ່າວການການການການການຄົວການການຄືກ	0.264	Strength la 1	.00 1.50 1.75	7	
MSE Backfill Unit Weight, $(\gamma_{BF})$ =		120 pcf	Strength lb 1	.35 1.50 1.75	(AASHTO LRFD - 3.4.1-1 and 3.4.	
MSE Backfill Friction Angle, ( $\varphi_{BF}$ )	) =	<u>34</u> °	່ງກາວກາວອັກການການການການການການການສຳການກ	.00 1.00 1.00	Earth Pres	ssure)
Settlement Analysis (Loadin $P_{LS_v}$			DM Section 11.10	. <b>4.1</b>		
	$q_{eq} = B' =$	B' = B - 2e = 27.4	ft - 2(2.91 ft) =	21.58 ft		
	$P_{LS_h} P_{EH} = 0$	$e = \frac{B}{2} - x_o =$	(27.4 ft) / 2 - 10. ⁻	79 ft = 2.91	ft	
	<u> </u>					
		$x_o = \frac{\bar{M}_v - M_H}{P_v}$	= (1859.63 kip	·ft/ft - 395.35 kip·ft/f	t) / 135.74 kip/ft	= 10.79
$x_o \leftarrow \rightarrow \cdots = e$		$P_V$				
	a	= (135.74 kip/ft) /	(21 58 ft) =	6.29 ksf		
$M_{V} = P_{FV}(x_{1}) + P_{V}$	$(x_1) = (\gamma_{BE} \cdot I)$	$(H \cdot B \cdot \gamma_{FV})(x_1) +$	$(\sigma_{IS} \cdot B \cdot \gamma_{IS})$	$(x_1)$		
$M_V = P_{EV}(x_1) + P_{LS}$						
$M_{V} = P_{EV}(x_{1}) + P_{LS}$ $M_{V} = [(120 \text{ pcf})(39)]$					kip-ft/ft	
$M_{_V} = [(120 \text{ pcf})(39$	.2 ft)(27.4 ft)(1.00)]	(13.7 ft) + [(250 psf)(2	7.4 ft)(1.00)](13.7	ft) = 1859.63	kip·ft/ft	
	.2 ft)(27.4 ft)(1.00)]	(13.7 ft) + [(250 psf)(2	7.4 ft)(1.00)](13.7	ft) = 1859.63	kip·ft/ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$	2 ft)(27.4 ft)(1.00)] $_{S_h}(x_3) = \left(\frac{1}{2}\gamma_{RS}\right)$	(13.7  ft) + [(250  psf)(2)] $H^2 K_a \gamma_{EH} (x_2) +$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$	ft) = 1859.63 )( $x_3$ )		
$M_{_V} = [(120 \text{ pcf})(39$	2 ft)(27.4 ft)(1.00)] $_{S_h}(x_3) = \left(\frac{1}{2}\gamma_{RS}\right)$	(13.7  ft) + [(250  psf)(2)] $H^2 K_a \gamma_{EH} (x_2) +$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$	ft) = 1859.63 )( $x_3$ )	kip·ft/ft 395.35 kip∙ft	/ft
$M_V = [(120 \text{ pcf})(39)$ $M_H = P_{EH}(x_2) + P_{LS}$ $M_H = [1/2(130 \text{ pcf})(3)]$	$f_{s,2}(x_3) = \left(\frac{1}{2} \gamma_{RS}\right)$ $g_{s_h}(x_3) = \left(\frac{1}{2} \gamma_{RS}\right)$ $g_{s_2}(x_3) = (1)^2 (0.264) (1.00)$	(13.7 ft) + [(250 psf)(2 $H^2 K_a \gamma_{EH} )(x_2)$ + D)](13.07 ft) + [(250 ps	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$	ft) = 1859.63 )( $x_3$ )		/ft
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$	$f_{s,2}(x_3) = \left(\frac{1}{2} \gamma_{RS}\right)$ $g_{s_h}(x_3) = \left(\frac{1}{2} \gamma_{RS}\right)$ $g_{s_2}(x_3) = (1)^2 (0.264) (1.00)$	(13.7 ft) + [(250 psf)(2 $H^2 K_a \gamma_{EH} )(x_2)$ + D)](13.07 ft) + [(250 ps	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$	ft) = 1859.63 )( $x_3$ )		
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(30)$ $P_{V} = P_{EV} + P_{LS} = \gamma$		(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ sf)(39.2 ft)(0.264)(	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		/ft
$M_V = [(120 \text{ pcf})(39)$ $M_H = P_{EH}(x_2) + P_{LS}$ $M_H = [1/2(130 \text{ pcf})(3)]$		(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ sf)(39.2 ft)(0.264)(	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		/ft
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(30)$ $P_{V} = P_{EV} + P_{LS} = \gamma$		(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ sf)(39.2 ft)(0.264)(	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		/ft
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(30)$ $P_{V} = P_{EV} + P_{LS} = \gamma$		(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ sf)(39.2 ft)(0.264)(	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(30)$ $P_{V} = P_{EV} + P_{LS} = \gamma$		(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ sf)(39.2 ft)(0.264)(	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(30)$ $P_{V} = P_{EV} + P_{LS} = \gamma$		(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ sf)(39.2 ft)(0.264)(	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(30)$ $P_{V} = P_{EV} + P_{LS} = \gamma$	$ \sum_{s_h} (x_3) = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{F} = (1, 27, 4 \text{ ft}) (1, 00) + 1 $	$(13.7 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^{2}K_{a}\gamma_{EH}(x_{2}) + (x_{2}) + (250 \text{ ps})]$ $(13.07 \text{ ft}) + [(250 \text{ ps})]$ $(250 \text{ psf})(27.4 \text{ ft})(1.00)]$	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS} H K_a \gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.2$	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		/ft
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(39)$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)$	$ \sum_{s_h} (x_3) = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{F} = (1, 27, 4 \text{ ft}) (1, 00) + 1 $	$(13.7 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^{2}K_{a}\gamma_{EH}(x_{2}) + (x_{2}) + (250 \text{ ps})]$ $(13.07 \text{ ft}) + [(250 \text{ ps})]$ $(250 \text{ psf})(27.4 \text{ ft})(1.00)]$	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS} H K_a \gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.2$	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		/ft
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(39)$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)$	$ \sum_{s_h} (x_3) = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{F} = (1, 27, 4 \text{ ft}) (1, 00) + 1 $	$(13.7 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^{2}K_{a}\gamma_{EH}(x_{2}) + (x_{2}) + (250 \text{ ps})]$ $(13.07 \text{ ft}) + [(250 \text{ ps})]$ $(250 \text{ psf})(27.4 \text{ ft})(1.00)]$	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS} H K_a \gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.264)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.266)(0.2$	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		/ft
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [1/2(130 \text{ pcf})(39)]$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)]$ Settlement, Time Rate of Co	$ \sum_{s_h} (x_3) = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_3 = (\frac{1}{2} \gamma_{RS}) $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{BF} \cdot H \cdot B \cdot \gamma_{EV} $ $ x_{F} = (1, 27, 4 \text{ ft}) (1, 00) + 1 $	$(13.7 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^{2}K_{a}\gamma_{EH}(x_{2}) + (x_{2}) + (250 \text{ ps})$ $Y + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $(250 \text{ psf})(27.4 \text{ ft})(1.0)$ $(250 \text{ psf})(27.4 \text{ ft})(1.0)$	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS}HK_a \gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0) = 135.74$ $(135.74)$	ft) = 1859.63 ) $(x_3)$ 1.00)](19.6 ft) =		
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [1/2(130 \text{ pcf})(39)]$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)]$ Settlement, Time Rate of Com	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma$	(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2}) +$ D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ · (250 psf)(27.4 ft)(1.00 ifferential Settlement Total Settlement at	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS}HK_a\gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0) = 135.74$ $\frac{11}{2}$ $Time \text{ for } 90\%$	ft) = 1859.63 )(x ₃ ) 1.00)](19.6 ft) = kip/ft Distance Between Borings Along Wall	395.35 kip-ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [1/2(130 \text{ pcf})(39)]$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)]$ Settlement, Time Rate of Com	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma$	$(13.7 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^{2}K_{a}\gamma_{EH}(x_{2}) + (x_{2}) + (250 \text{ ps})$ $Y + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $(250 \text{ psf})(27.4 \text{ ft})(1.0)$ $(250 \text{ psf})(27.4 \text{ ft})(1.0)$	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS}HK_a \gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0) = 135.74$ $(135.74)$	ft) = 1859.63 )(x ₃ ) 1.00)](19.6 ft) = kip/ft Distance Between	395.35 kip-ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [1/2(130 \text{ pcf})(39)]$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)]$ Settlement, Time Rate of Com	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma$	(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2}) +$ D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ · (250 psf)(27.4 ft)(1.00 ifferential Settlement Total Settlement at	$7.4 \text{ ft})(1.00)](13.7)$ $- (\sigma_{LS} H K_a \gamma_{LS})$ $(39.2 \text{ ft})(0.264)(0) = 135.74$ $\frac{1}{2}$ $Time \text{ for } 90\%$	ft) = 1859.63 )(x ₃ ) 1.00)](19.6 ft) = kip/ft Distance Between Borings Along Wall	395.35 kip-ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [1/2(130 \text{ pcf})(39)]$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)]$ Settlement, Time Rate of Co	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_4) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma$	(13.7 ft) + [(250 psf)(2 $H^{2}K_{a}\gamma_{EH})(x_{2})$ + D)](13.07 ft) + [(250 ps $\chi + \sigma_{LS} \cdot B \cdot \gamma_{LS})$ (250 psf)(27.4 ft)(1.00 ifferential Settlement Total Settlement at Wall Facing	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ (39.2 ft)(0.264)( 0) = 135.74 <u>t:</u> Time for 90% Consolidation	ft) = 1859.63 )(x ₃ ) 1.00)](19.6 ft) = kip/ft Distance Between Borings Along Wall	395.35 kip-ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(39)$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)$ Settlement, Time Rate of Combinations Boring $T_{Ce}$ B-023-1-13	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_4) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma_{RS})$ $(x_7) = (\frac{1}{2} \gamma$	(13.7 ft) + [(250 psf)(2 $H^2 K_a \gamma_{EH})(x_2)$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ (250 psf)(27.4 ft)(1.00 ifferential Settlement Total Settlement at Wall Facing 2.372 in	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ (39.2 ft)(0.264)( 0) = 135.74 t: Time for 90% Consolidation 11 days	ft) = 1859.63 )( $x_3$ ) 1.00)](19.6 ft) = kip/ft Distance Between Borings Along Wall Facing	395.35 kip·ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(39)$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)$ Settlement, Time Rate of Combinations Boring $T_{Ce}$ B-023-1-13	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_4) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma_{RS})$ $(x_7) = (\frac{1}{2} \gamma$	(13.7 ft) + [(250 psf)(2 $H^2 K_a \gamma_{EH})(x_2)$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ (250 psf)(27.4 ft)(1.00 ifferential Settlement Total Settlement at Wall Facing 2.372 in	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ (39.2 ft)(0.264)( 0) = 135.74 t: Time for 90% Consolidation 11 days	ft) = 1859.63 )( $x_3$ ) 1.00)](19.6 ft) = kip/ft Distance Between Borings Along Wall Facing	395.35 kip·ft	
$M_{V} = [(120 \text{ pcf})(39)$ $M_{H} = P_{EH}(x_{2}) + P_{LS}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})(39)$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(39)$ Settlement, Time Rate of Combinations Boring $T_{Ce}$ B-023-1-13	$f(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_3) = (\frac{1}{2} \gamma_{RS})$ $(x_4) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma_{RS})$ $(x_5) = (\frac{1}{2} \gamma_{RS})$ $(x_7) = (\frac{1}{2} \gamma$	(13.7 ft) + [(250 psf)(2 $H^2 K_a \gamma_{EH})(x_2)$ + D)](13.07 ft) + [(250 ps $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ (250 psf)(27.4 ft)(1.00 ifferential Settlement Total Settlement at Wall Facing 2.372 in	7.4 ft)(1.00)](13.7 - $(\sigma_{LS}HK_a\gamma_{LS})$ (39.2 ft)(0.264)( 0) = 135.74 t: Time for 90% Consolidation 11 days	ft) = 1859.63 )( $x_3$ ) 1.00)](19.6 ft) = kip/ft Distance Between Borings Along Wall Facing	395.35 kip·ft	

#### Boring B-023-1-13

H=	39.2	ft	Total wall height
B'=	21.6	ft	Effective footing width due to eccentricity
D _w =	7.5	ft	Depth below bottom of footing
q _e =	6,290	psf	Equivalent bearing pressure at bottom of wall

																				Total Settlement at Center of Reinforced Mass					Total Settlement at Facing of Wall				
Layer	Soil Class.	Soil Type	Layer (	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6b	С	0.0	3.0	3.0	1.5	120	360	180	180	4,180	29	0.171	0.017	0.499				0.07	0.999	6,283	6,463	0.112	1.338	0.500	3,145	3,325	0.043	0.520
0	A-7-6	С	3.0	5.5	2.5	4.3	120	660	510	510	4,510	48	0.342	0.034	0.647				0.20	0.978	6,153	6,663	0.137	1.645	0.498	3,135	3,645	0.044	0.532
2	A-7-6	С	5.5	8.0	2.5	6.8	120	960	810	810	4,810	48	0.342	0.034	0.647				0.31	0.931	5,853	6,663	0.114	1.363	0.494	3,109	3,919	0.036	0.426
3	A-1-b	G	8.0	12.0	4.0	10.0	130	1,480	1,220	1,064	5,064					33	40	131	0.46	0.842	5,295	6,359	0.024	0.285	0.483	3,040	4,104	0.018	0.215
4	A-1-b	G	12.0	19.5	7.5	15.8	135	2,493	1,986	1,471	5,471					53	59	208	0.73	0.680	4,275	5,746	0.021	0.256	0.451	2,837	4,308	0.017	0.202
4	A-1-b	G	19.5	27.0	7.5	23.3	135	3,505	2,999	2,016	6,016				-	53	53	182	1.08	0.520	3,271	5,287	0.017	0.207	0.397	2,497	4,513	0.014	0.173
5	A-6b	С	27.0	32.0	5.0	29.5	130	4,155	3,830	2,457	6,457	36	0.234	0.023	0.553				1.37	0.429	2,698	5,155	0.024	0.291	0.353	2,220	4,677	0.021	0.253
6	A-1-a	G	32.0	38.0	6.0	35.0	135	4,965	4,560	2,844	6,844					91	80	331	1.62	0.370	2,327	5,171	0.005	0.057	0.318	2,002	4,846	0.004	0.050
1. σ _p ' = σ	₀'+σ _{m;} Estima	te $\sigma_m$ of 2,0	00 psf in exi	sting fill mat	erial and 4,00	0 psf (moder	ately overco	nsolidated) f	for natural so	il deposits; F	Ref. Table 11	.2, Coduto	2003								Tota	I Settlement:		5.443 in		Total	Settlement:		2.372 in

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_{t'}(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}') + [C_c/(1+e_o)](H)\log(\sigma_{v$ 

10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/15/2018
Checked By:	JPS	Date:	7/15/2018

#### Boring B-023-1-13

H=	39.2	ft	Total wall height
B'=	21.6	ft	Effective footing width due to eccentricity
D _w =	7.5	ft	Depth below bottom of footing
q _e =	6,290	psf	Equivalent bearing pressure at bottom of wall

c _v =	Nat. A-6b 300	Nat. A-7-6 150	ft²/yr	Coefficient of consolitation
t =	11	11	days	Time following completion of construction
H _{dr} =	2.5	4.0	ft	Length of longest drainage path considered
T _v =	1.447	0.283		Time factor
U =	98	60	%	Degree of consolidation
(S _c ) _t =	2.145	in	Settlement complete	at 90% of primary consolidation

 $\sigma_{vo}$ Depth to  $\sigma_{vo}'$ Layer  $\sigma_{vo}$  $\sigma_{p}'^{(1)}$  $\Delta \sigma_v^{(8)}$ Soil Soil Layer Depth C_r⁽³⁾ C_c⁽²⁾ e, (4) LL N₆₀ (N1)₆₀ (5) C' ⁽⁶⁾  $Z_f/B$ I ⁽⁷⁾ Layer Thickness Midpoint Bottom Midpoint Midpoint Туре Туре (ft) (psf) (psf) (pcf) (ft) (psf) (ft) (psf) (psf) 1 1.5 120 180 0.500 3,145 A-6b С 0.0 3.0 3.0 360 180 4,180 29 0.171 0.017 0.499 0.07 A-7-6 С 3.0 2.5 4.3 120 660 510 510 4,510 48 0.342 0.034 0.647 0.20 0.498 3,135 5.5 2 A-7-6 С 5.5 8.0 2.5 6.8 120 960 810 810 4,810 48 0.342 0.034 0.647 0.31 0.494 3,109 3,040 3 A-1-b G 8.0 12.0 4.0 10.0 130 1,480 1,220 1,064 5,064 33 40 131 0.46 0.483 A-1-b G 12.0 19.5 7.5 15.8 135 2,493 1.986 1,471 5,471 53 59 208 0.73 0.451 2,837 4 A-1-b G 19.5 27.0 7.5 23.3 135 3,505 2,999 2,016 6,016 53 53 182 1.08 0.397 2,497 27.0 32.0 2,457 0.234 0.023 0.553 1.37 0.353 2,220 5 A-6b С 5.0 29.5 130 4,155 3,830 6,457 36 32.0 38.0 35.0 4,965 4,560 2,844 80 1.62 0.318 2,002 6 A-1-a G 6.0 135 6,844 91 331

1. σ_p' = σ_{vo}'+σ_m; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_{p'} \le \sigma_{vo}' < \sigma_{vt}'; [C_t/(1+e_o)](H)\log(\sigma_{p'}/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{v}/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vt}/\sigma_{vo}')]$  for  $\sigma_{vo} < \sigma_{vt}'; C_{t}(1+e_o)](H)\log(\sigma_{vt}/\sigma_{vo}')$  for  $\sigma_{vo} < \sigma_{vt} < \sigma_{vt}'; C_{t}(1+e_o)](H)\log(\sigma_{vt}/\sigma_{vo}')$  for  $\sigma_{vo} < \sigma_{vt}'; C_{t}(1+e_o)](H)\log(\sigma_{vt}/\sigma_{vo}')$  for  $\sigma_{vv} < \sigma_{vt}'; C_{t}(1+e_o)](H)\log(\sigma_{vt}/\sigma_{vv}')$  for  $\sigma_{vv} < \sigma_{vt}'; C_{t}(1+e_o)](H)\log(\sigma_{vt}/\sigma_{v$ 

10. S_c = H(1/C')log( $\sigma_{vf}'/\sigma_{vo}'$ ); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100)$ ; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	07/15/2018
Checked By:	JPS	Date:	07/15/2018

	Total Se	ttlement at F	acing of Wall	Settlement Complete at 90% of Primary Consolidation						
σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)					
3,325	0.043	0.520	0.520	0.510	0.510					
3,645	0.044	0.532	0.958	0.319	0.746					
3,919	0.036	0.426	0.956	0.426	0.740					
4,104	0.018	0.215	0.215	0.215	0.215					
4,308	0.017	0.202	0.375	0.202	0.371					
4,513	0.014	0.173	0.375	0.170	0.371					
4,677	0.021	0.253	0.253	0.253	0.253					
4,846	0.004	0.050	0.050	0.050	0.050					

Settlement Remaining After Hold Period: 0.227 in

## Boring B-024-0-13

H=	30.1	ft	Total wall height
B=	16.5	ft	Effective footing width due to eccentricity
D _w =	20.0	ft	Depth below bottom of footing
q _e =	4,930	psf	Equivalent bearing pressure at bottom of wall

																				Total Settlement at Center of Reinforced Mass						Total Settlement at Facing of Wall			
Layer	Soil Class.	Soil Type	Laye	r Depth (ft)	Layer Thickness H (ft)	B Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6b	С	0.0	3.0	3.0	1.5	125	375	188	188	4,188	38	0.252	0.025	0.569				0.09	0.998	4,918	5,105	0.106	1.278	0.500	2,464	2,652	0.055	0.665
-	A-6b	С	3.0	6.5	3.5	4.8	125	813	594	594	4,594	38	0.252	0.025	0.569				0.29	0.943	4,648	5,241	0.082	0.986	0.495	2,442	3,036	0.040	0.478
	A-4a	С	6.5	9.0	2.5	7.8	120	1,113	963	963	4,963	21	0.099	0.010	0.436				0.47	0.838	4,129	5,092	0.014	0.170	0.483	2,380	3,342	0.009	0.112
	A-4a	С	9.0	11.5	2.5	10.3	120	1,413	1,263	1,263	5,263	21	0.099	0.010	0.436				0.62	0.742	3,660	4,923	0.010	0.122	0.466	2,296	3,559	0.008	0.093
2	A-4a C 11.5 14.0 2.5 12.8 120 1,713 1,563 1,563 21 0.099 0.010 0.436 0.77														0.77	0.656	3,234	4,796	0.008	0.101	0.445	2,192	3,754	0.007	0.079				
	A-4a	С	14.0	16.5	2.5	15.3	120	2,013	1,863	1,863	5,863	21	0.099	0.010	0.436				0.92	0.582	2,870	4,732	0.007	0.084	0.421	2,076	3,939	0.006	0.067
	A-4a	С	16.5	19.0	2.5	17.8	120	2,313	2,163	2,163	6,163	21	0.099	0.010	0.436				1.08	0.520	2,565	4,728	0.006	0.070	0.397	1,958	4,120	0.005	0.058
3	A-4b	G	19.0	23.0	4.0	21.0	130	2,833	2,573	2,510	6,510					28	26	49	1.27	0.455	2,243	4,753	0.023	0.274	0.367	1,807	4,318	0.019	0.232
4	A-1-a	G	23.0	28.0	5.0	25.5	135	3,508	3,170	2,827	6,827					37	33	107	1.55	0.386	1,901	4,728	0.010	0.125	0.328	1,617	4,444	0.009	0.110
5	A-4a	С	28.0	33.0	5.0	30.5	130	4,158	3,833	3,177	7,177	21	0.099	0.010	0.436				1.85	0.329	1,620	4,797	0.006	0.074	0.291	1,435	4,612	0.006	0.067
6	A-3a	G	33.0	38.0	5.0	35.5	135	4,833	4,495	3,528	7,528					72	58	168	2.15	0.286	1,409	4,936	0.004	0.052	0.260	1,283	4,810	0.004	0.048
7	A-4a	G	38.0	41.0	3.0	39.5	135	5,238	5,035	3,818	7,818					58	46	78	2.39	0.258	1,274	5,093	0.005	0.058	0.239	1,179	4,997	0.004	0.054
8	A-1-b	G	41.0	48.0	7.0	44.5	135	6,183	5,710	4,181	8,181					100	76	300	2.70	0.231	1,138	5,319	0.002	0.029	0.217	1,069	5,250	0.002	0.028
9	A-4a	G	48.0	53.0	5.0	50.5	135	6,858	6,520	4,617	8,617					72	52	88	3.06	0.204	1,008	5,624	0.005	0.059	0.194	959	5,576	0.005	0.056
	A-1-a	G	53.0	63.0	10.0	58.0	135	8,208	7,533	5,161	9,161					100	68	259	3.52	0.179	881	6,042	0.003	0.032	0.172	848	6,009	0.003	0.031
10	A-1-a	G	63.0	73.0	10.0	68.0	135	9,558	8,883	5,887	9,887					100	64	236	4.12	0.153	754	6,641	0.002	0.027	0.149	733	6,620	0.002	0.026
	A-1-a	G	73.0	83.0	10.0	78.0	135	10,908	10,233	6,613	10,613					100	60	216	4.73	0.134	659	7,272	0.002	0.023	0.131	645	7,258	0.002	0.022
1. $\sigma_p' = \sigma_v$	_{/o} '+σ _{m;} Estima	ate $\sigma_m$ of 2,0	00 psf in ex	isting fill ma	terial and 4,0	00 psf (moder	ately overco	onsolidated) f	for natural so	il deposits; F	Ref. Table 11	.2, Coduto 2	2003			•		•	•		Total	Settlement:		3.563 in		Total	Settlement:		2.226 in

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 

9.  $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$  for  $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_{vt}' \leq \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_p')$  for  $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)

10.  $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date: 7/1	5/2018
Checked By:	JPS	Date: 7/15	5/2018

# Boring B-024-0-13

H=	30.1	ft	Total wall height
B'=	16.5	ft	Effective footing width due to eccentricity
D _w =	20.0	ft	Depth below bottom of footing
q _e =	4,930	psf	Equivalent bearing pressure at bottom of wall

	Nat.	Nat.		
	A-6b	A-4a		
c _v =	300	800	ft²/yr	Coefficient of consolitation
t =	35	35	days	Time following completion of construction
H _{dr} =	6.5	9.5	ft	Length of longest drainage path considered
T _v =	0.681	0.850		Time factor
U =	85	90	%	Degree of consolidation

(S_c)_t = 2.007 in Settlement complete at 90% of primary consolidation

																							Total Se	ettlement at l	Facing of Wall		mplete at 90% of onsolidation
Layer	Soil Type	Soil Type	-	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	Sc ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c ) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6b	С	0.0	3.0	3.0	1.5	125	375	188	188	4,188	38	0.252	0.025	0.569				0.09	0.500	2,464	2,652	0.055	0.665	1.143	0.565	0.972
I	A-6b	С	3.0	6.5	3.5	4.8	125	813	594	594	4,594	38	0.252	0.025	0.569				0.29	0.495	2,442	3,036	0.040	0.478	1.143	0.406	0.972
	A-4a	С	6.5	9.0	2.5	7.8	120	1,113	963	963	4,963	21	0.099	0.010	0.436				0.47	0.483	2,380	3,342	0.009	0.112		0.101	
	A-4a	С	9.0	11.5	2.5	10.3	120	1,413	1,263	1,263	5,263	21	0.099	0.010	0.436				0.62	0.466	2,296	3,559	0.008	0.093		0.084	7
2	A-4a	С	11.5	14.0	2.5	12.8	120	1,713	1,563	1,563	5,563	21	0.099	0.010	0.436				0.77	0.445	2,192	3,754	0.007	0.079	0.409	0.071	0.368
	A-4a	С	14.0	16.5	2.5	15.3	120	2,013	1,863	1,863	5,863	21	0.099	0.010	0.436				0.92	0.421	2,076	3,939	0.006	0.067		0.061	7
	A-4a	С	16.5	19.0	2.5	17.8	120	2,313	2,163	2,163	6,163	21	0.099	0.010	0.436				1.08	0.397	1,958	4,120	0.005	0.058		0.052	1
3	A-4b	G	19.0	23.0	4.0	21.0	130	2,833	2,573	2,510	6,510					28	26	49	1.27	0.367	1,807	4,318	0.019	0.232	0.232	0.232	0.232
4	A-1-a	G	23.0	28.0	5.0	25.5	135	3,508	3,170	2,827	6,827					37	33	107	1.55	0.328	1,617	4,444	0.009	0.110	0.110	0.110	0.110
5	A-4a	С	28.0	33.0	5.0	30.5	130	4,158	3,833	3,177	7,177	21	0.099	0.010	0.436				1.85	0.291	1,435	4,612	0.006	0.067	0.067	0.060	0.060
6	A-3a	G	33.0	38.0	5.0	35.5	135	4,833	4,495	3,528	7,528					72	58	168	2.15	0.260	1,283	4,810	0.004	0.048	0.048	0.048	0.048
7	A-4a	G	38.0	41.0	3.0	39.5	135	5,238	5,035	3,818	7,818					58	46	78	2.39	0.239	1,179	4,997	0.004	0.054	0.054	0.054	0.054
8	A-1-b	G	41.0	48.0	7.0	44.5	135	6,183	5,710	4,181	8,181					100	76	300	2.70	0.217	1,069	5,250	0.002	0.028	0.028	0.028	0.028
9	A-4a	G	48.0	53.0	5.0	50.5	135	6,858	6,520	4,617	8,617					72	52	88	3.06	0.194	959	5,576	0.005	0.056	0.056	0.056	0.056
	A-1-a	G	53.0	63.0	10.0	58.0	135	8,208	7,533	5,161	9,161					100	68	259	3.52	0.172	848	6,009	0.003	0.031		0.031	
10	A-1-a	G	63.0	73.0	10.0	68.0	135	9,558	8,883	5,887	9,887					100	64	236	4.12	0.149	733	6,620	0.002	0.026	0.079	0.026	0.079
	A-1-a	G	73.0	83.0	10.0	78.0	135	10,908	10,233	6,613	10,613					100	60	216	4.73	0.131	645	7,258	0.002	0.022	7	0.022	T

1.  $\sigma_p' = \sigma_{vo}' + \sigma_{m}$ ; Estimate  $\sigma_m$  of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

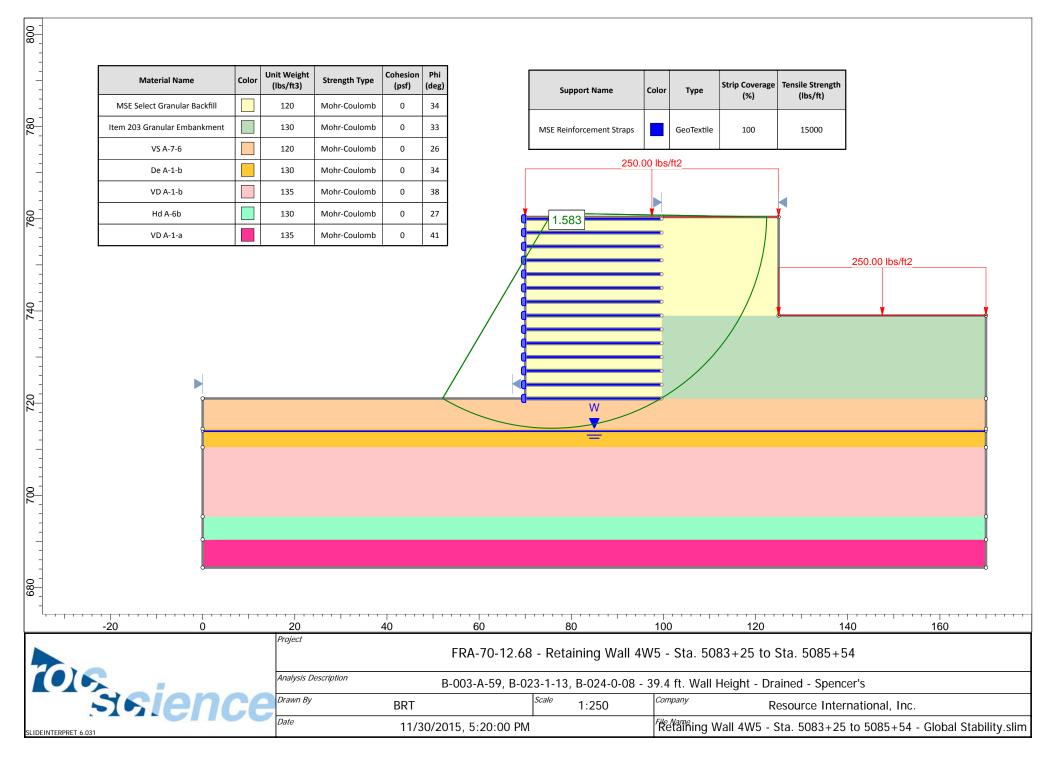
4.  $e_o = (C_c/1.15)+0.35$ ; Ref. Table 8-2, Holtz and Kovacs 1981

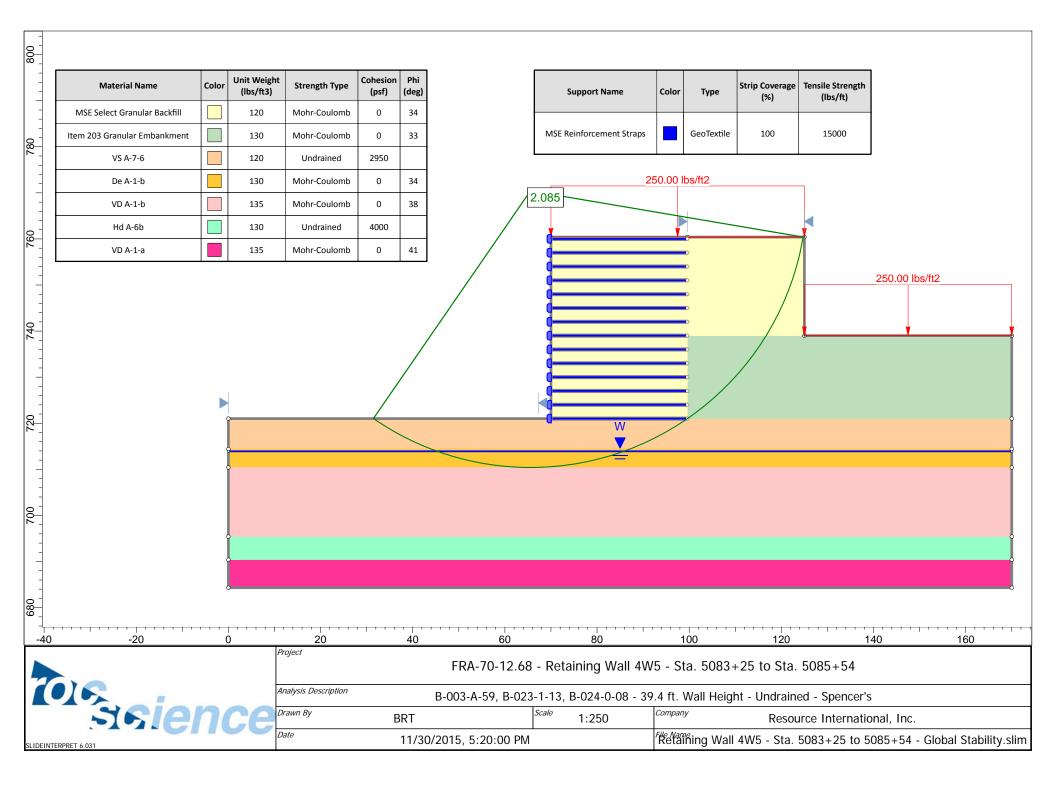
5.  $(N1)_{60} = C_n N_{60}$ , where  $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$  ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8.  $\Delta \sigma_v = q_e(I)$ 


9.  $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo}')$  for  $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$ ;  $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$  for  $\sigma_{vo}' < \sigma_p'$ ;  $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')+[C_o/(1+e_o)](H)\log(\sigma_{vf}/\sigma_p')$  for  $\sigma_{vo}' < \sigma_{vf}'$ ; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)


10.  $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$ ; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11.  $(S_c)_t = S_c(U/100)$ ; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	07/15/2018
Checked By:	JPS	Date:	07/15/2018

Settlement Remaining After Hold Period: 0.219 in







JOB	FRA-70-12	2.68	NO		W-13-045	
SHEET NO.		1	OF		6	
CALCULATED BY	(	BRT	DAT	E	7/15/2018	
CHECKED BY		JPS	DAT	E	7/15/2018	
Retaining Wa	all 4W6 - S	ta. 178	+85 to S	Sta.	180+30	

	к В	$\rightarrow \sigma_I$	$_{S}$ = 250 psf			
				Proposed Top	o of Wall xxx El.	
$\overline{\mathbf{\Lambda}}$			Ψ		XXX El.	= 763.7
	MSE Backfill					
	\	Retained	Soil:			
н	$\gamma_{BF}$ = 120 pcf $\varphi_{BF}$ = 34 °	ODOT Ite	m 203 Granular E	mbankment		
			$\gamma_{RS}$ = 130 pcf			
	Reinforcemer	nt	$\varphi_{RS} = 33^{\circ} c_{RS}$	= 0 psf		
	▶ ·		$(S_u)_{RS} = 0$ psi	f		
Proposed Bottom of Wall					_	707.0
XXX Bearing Soil: Item 203 Granula	ar Embankment	$\gamma_{BS}$ = 120 pcf $\varphi_{I}$	$-26^{\circ}$ c $-0$	nsf (S)		= 737.0
over Very Stiff to Hard Silt and		$\gamma_{BS} = 120 \text{ pci}  \varphi_{I}$	$a_{S} = 20$ $c_{BS} = 0$	$p_{SI} (S_u)_{BS}$	= 2950 psi	
MSE Wall Dimensions and Retain	ed Soil Parameters	Bearing S	Soil Properties	<u>.</u>		
MSE Wall Height, ( <i>H</i> ) =	<u>26.7</u> ft	Bearing So	il Unit Weight, (γ	_{BS} ) =		120 pc
MSE Wall Width (Reinforcement Lengt	h), ( <i>B</i> ) = <u>18.7</u> ft	Bearing So	il Friction Angle,	$(\varphi_{BS}) =$	_	<mark>26</mark> °
MSE Wall Length, (L) =	<u>145</u> ft		il Drained Cohes			<mark>0</mark> ps
Live Surcharge Load, $(\sigma_{LS}) =$	<u>250</u> ps1	ກລັກການການສັກການການສັກການການຂັ້ນການການການການການກັນການການ	il Undrained She	ear Strength,	$[(S_u)_{BS}] =$	2950 ps
Retained Soil Unit Weight, $(\gamma_{RS})$ =	<u>130</u> pc1		nt Depth, $(D_f)$ =		ļ	<u>3.0</u> ft
Retained Soil Friction Angle, ( $\varphi_{RS}$ ) =	<u>33</u> °		rounwater (Belov	w Bot. of Wal	I), $(D_W) =$	22.0 ft
Retained Soil Drained Cohesion ¹ , ( $c_{BS}$		กลุ่มมากการจุ่มากการจุ่มากการจุ่ <mark>มการการสุด</mark> การการสุด	ad Factors			
Retained Soil Undrained Shear Strengt			EV EH	LS		
Retained Soil Active Earth Pressure Co	$peff., (K_a) = 0.264$ 120 pcl	Strength la			(AASHTO LRFL	
MSE Backfill Unit Weight, $(\gamma_{BF}) =$			1.35 1.50	1.75 -	3.4.1-1 and 3.4	
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St	rength la) - AASHTO LRFI	Service I	1.00 1.00	1.00	Earth Pre	essure)
MSE Backfill Friction Angle, $(\varphi_{BF}) =$	$\frac{34}{34}$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{i}}$	Service I D BDM Section 11.10.	1.00 1.00 <u>5.3</u>			
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force:	$\frac{34}{P_{H}} \circ$ $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} P_{RS}$	Service I <b>D BDM Section 11.10.</b> $H^2 K_a \gamma_{EH} = \gamma_2(13)$	1.00 1.00 5.3 0 pcf)(26.7 ft)²(	0.264)(1.5)	= 18.35	kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force:	$\frac{34}{P_{H}} \circ$ $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} P_{RS}$	Service I D BDM Section 11.10.	1.00 1.00 5.3 0 pcf)(26.7 ft)²(	0.264)(1.5)	= 18.35	
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force:	$\frac{34}{34}$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{H}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$	Service I <b>D BDM Section 11.10.</b> $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26	0.264)(1.5) 64)(1.75)	= 18.35	kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force:	$\frac{34}{34}$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{H}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$	Service I <b>D BDM Section 11.10.</b> $H^2 K_a \gamma_{EH} = \gamma_2(13)$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26	0.264)(1.5) 64)(1.75)	= 18.35	kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force:	$\frac{34}{34} \circ$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$	Service I <b>D BDM Section 11.10.</b> $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26	0.264)(1.5) 64)(1.75)	= 18.35	kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force: <u>P</u> <u>P</u> <u>Check Sliding Resistance - Draine</u>	$\frac{34}{34} \circ$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{2} P_{EH} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ ed Condition	Service I <b>D BDM Section 11.10.</b> $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26	0.264)(1.5) 64)(1.75)	= 18.35	kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force:	$\frac{34}{34} \circ$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$	Service I <b>D BDM Section 11.10.</b> $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26	0.264)(1.5) 64)(1.75)	= 18.35	kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force: $P_L$ <u>Check Sliding Resistance - Drain</u>	$\frac{34}{P_{H}} \circ$ $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} P_{R}$ $\frac{S_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ $\frac{P_{LS}}{P_{H}} = 18.$	Service I <b>D BDM Section 11.10.</b> $H^2 K_a \gamma_{EH} = \frac{1}{2}(13)$ $IK_a \gamma_{LS} = (250 \text{ p})$ 35 kip/ft + 3.08 kip/ft	$\begin{array}{c} 1.00 & 1.00 \\ \hline 5.3 \\ 0 \text{ pcf})(26.7 \text{ ft})^2(10.26) \\ \text{sf})(26.7 \text{ ft})(0.26) \\ = 21.43 \end{array}$	0.264)(1.5) 64)(1.75) kip/ft	= 18.35	i kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force: P _L Check Sliding Resistance - Draine Nominal Sliding Resistance:	$\frac{34}{P_{H}} \circ$ $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} P_{R}$ $\frac{S_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ $\frac{P_{LS}}{P_{H}} = 18.$	Service I <b>D BDM Section 11.10.</b> $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$	$\begin{array}{c} 1.00 & 1.00 \\ \hline 5.3 \\ 0 \text{ pcf})(26.7 \text{ ft})^2(10.26) \\ \text{sf})(26.7 \text{ ft})(0.26) \\ = 21.43 \end{array}$	0.264)(1.5) 64)(1.75) kip/ft	= 18.35	i kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force: $P_L$ <u>Check Sliding Resistance - Drain</u>	$\frac{34}{P_{H}} \circ$ $P_{H} = P_{EH} + P_{LS_{H}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{S_{h}}{P_{EH}} P_{EH} = \sigma_{LS} I$ $P_{H} = 18.$ $\frac{ed \text{ Condition}}{R_{\tau}} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot I$	Service I D BDM Section 11.10. $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $IK_{a}\gamma_{LS} = (250 \text{ p})$ 35 kip/ft + 3.08 kip/ft $H \cdot B \cdot \gamma_{EV} = (120)$	$\begin{array}{c} 1.00 & 1.00 \\ \hline 5.3 \\ 0 \text{ pcf})(26.7 \text{ ft})^2(10.26) \\ \text{sf})(26.7 \text{ ft})(0.26) \\ = 21.43 \end{array}$	0.264)(1.5) 64)(1.75) kip/ft	= 18.35	i kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force: P _L Check Sliding Resistance - Draine Nominal Sliding Resistance:	$\frac{34}{P_{H}} \circ$ $P_{H} = P_{EH} + P_{LS}$ $P_{EH} = \frac{1}{2} \gamma_{RS} P_{R}$ $\frac{S_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ $\frac{P_{LS}}{P_{H}} = 18.$	Service I D BDM Section 11.10. $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $IK_{a}\gamma_{LS} = (250 \text{ p})$ 35 kip/ft + 3.08 kip/ft $H \cdot B \cdot \gamma_{EV} = (120)$	$\begin{array}{c} 1.00 & 1.00 \\ \hline 5.3 \\ 0 \text{ pcf})(26.7 \text{ ft})^2(10.26) \\ \text{sf})(26.7 \text{ ft})(0.26) \\ = 21.43 \end{array}$	0.264)(1.5) 64)(1.75) kip/ft	= 18.35	i kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force: <u>P</u> _L <u>Check Sliding Resistance - Drain</u> Nominal Sliding Resistance:	$\underline{34}^{\circ}$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{I}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ ed Condition $R_{\tau} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H$ $\tan \delta = (\tan \varphi_{B})$	Service I <b>D BDM Section 11.10.</b> $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$ 35  kip/ft + 3.08  kip/ft $H \cdot B \cdot \gamma_{EV} = (120)$ $R_{S} \leq \tan \varphi_{BF}$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26 = 21.43 pcf)(26.7 ft)(18	0.264)(1.5) 34)(1.75) kip/ft .7 ft)(1.00)	= 18.35 = 3.08 = 59.91	kip/ft kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ <u>Check Sliding (Loading Case - St</u> Sliding Force: <u>P</u> _L <u>Check Sliding Resistance - Drain</u> Nominal Sliding Resistance:	$\underline{34}^{\circ}$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{I}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{s_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ ed Condition $R_{\tau} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H$ $\tan \delta = (\tan \varphi_{B})$	Service I D BDM Section 11.10. $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $IK_{a}\gamma_{LS} = (250 \text{ p})$ 35 kip/ft + 3.08 kip/ft $H \cdot B \cdot \gamma_{EV} = (120)$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26 = 21.43 pcf)(26.7 ft)(18	0.264)(1.5) 34)(1.75) kip/ft .7 ft)(1.00)	= 18.35 = 3.08 = 59.91	i kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force: P _L Check Sliding Resistance - Draine Nominal Sliding Resistance: P _{EV} U	$\underline{34}^{\circ}$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS},$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\underline{s_{h}}_{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $\underline{s_{h}}_{P_{H}} = 18.$ $\underline{r}_{EV} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H$ $\tan \delta = (\tan \varphi_{B})$ $\tan \delta =$	Service I D BDM Section 11.10. $H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(13)$ $K_{a}\gamma_{LS} = (250 \text{ p})$ 35 kip/ft + 3.08 kip/ft $H \cdot B \cdot \gamma_{EV} = (120)$ $K_{B} \leq \tan \varphi_{BF}$ $\tan(26) \leq \tan(34) \longrightarrow$	1.00 1.00 5.3 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26 = 21.43 pcf)(26.7 ft)(18 > 0.49 ≤ 0.67	0.264)(1.5) 34)(1.75) kip/ft .7 ft)(1.00)	= 18.35 = 3.08 = 59.91	6 kip/ft kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force: P _L Check Sliding Resistance - Draine Nominal Sliding Resistance: $P_{EV}$ $R_{\tau}$	$\frac{34}{34} \circ$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{\mu}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{S_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ ed Condition $R_{\tau} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H$ $\tan \delta = (\tan \varphi_{B})$ $\tan \delta =$ $R_{\tau} = (59.91 \text{ kip/ft})$	Service I D BDM Section 11.10. $H^{2}K_{a}\gamma_{EH} = \gamma_{2}(13)$ $VK_{a}\gamma_{LS} = (250 \text{ p})$ 35  kip/ft + 3.08  kip/ft $I \cdot B \cdot \gamma_{EV} = (120)$ $K_{S} \leq \tan \varphi_{BF}$ $\tan(26) \leq \tan(34) \longrightarrow$ (0.49) = 29.36	1.00 1.00 <b>5.3</b> 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26 = 21.43 pcf)(26.7 ft)(18 > 0.49 ≤ 0.67 kip/ft	0.264)(1.5) 34)(1.75) kip/ft .7 ft)(1.00)	= 18.35 = 3.08 = 59.91	6 kip/ft kip/ft kip/ft
MSE Backfill Friction Angle, $(\varphi_{BF}) =$ Check Sliding (Loading Case - St Sliding Force: P _L Check Sliding Resistance - Draine Nominal Sliding Resistance: P _{EV} U	$\frac{34}{34} \circ$ rength la) - AASHTO LRFI $P_{H} = P_{EH} + P_{LS_{\mu}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} I$ $\frac{S_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H$ $P_{H} = 18.$ ed Condition $R_{\tau} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H$ $\tan \delta = (\tan \varphi_{B})$ $\tan \delta =$ $R_{\tau} = (59.91 \text{ kip/ft})$	Service I D BDM Section 11.10. $H^{2}K_{a}\gamma_{EH} = \gamma_{2}(13)$ $VK_{a}\gamma_{LS} = (250 \text{ p})$ 35  kip/ft + 3.08  kip/ft $I \cdot B \cdot \gamma_{EV} = (120)$ $K_{S} \leq \tan \varphi_{BF}$ $\tan(26) \leq \tan(34) \longrightarrow$ (0.49) = 29.36	1.00 1.00 <b>5.3</b> 0 pcf)(26.7 ft) ² ( sf)(26.7 ft)(0.26 = 21.43 pcf)(26.7 ft)(18 > 0.49 ≤ 0.67 kip/ft	0.264)(1.5) 34)(1.75) kip/ft .7 ft)(1.00)	= 18.35 = 3.08 = 59.91	kip/ft kip/ft kip/ft



# RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

JOB	-RA-70-12.68	NO.	W-13-045
SHEET NO.	2	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	ll 4W6 - Sta. 178+85	5 to Sta.	180+30

WWW.RESOURCEINTE	ERATIONAL.COM		
MSE Wall Dimensions and Retained Soil Para	<u>meters</u>	Bearing Soil Properties:	
MSE Wall Height, ( <i>H</i> ) =	26.7 ft	Bearing Soil Unit Weight, $(\gamma_{BS}) =$	120 pc
MSE Wall Width (Reinforcement Length), (B) =	18.7 ft	Bearing Soil Friction Angle, ( $\varphi_{BS}$ ) =	26 °
MSE Wall Length, (L) =	145 ft	Bearing Soil Drained Cohesion, $(c_{RS}) =$	0 ps
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$	2950 ps
Retained Soil Unit Weight, $(\gamma_{RS}) =$	130 pcf	Embedment Depth, $(D_f)$ =	3.0 ft
Retained Soil Friction Angle, $(\varphi_{RS})$ =	33 °	Depth to Grounwater (Below Bot. of Wall), $(D_W) =$	22.0 ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load Factors	
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV EH LS	
Retained Soil Active Earth Pressure Coeff., $(K_a)$ =	0.264	Strength la 1.00 1.50 1.75 ] (AASHTOLD	
		(AASHIULRI	FD BDM Tables
ASE Backfill Unit Weight, $(\gamma_{BF}) =$	<u>120</u> pcf 34 °	Ength F	3.4.1-2 - Active Pressure)
MSE Backfill Friction Angle, $(\varphi_{BF}) =$		Service I 1.00 1.00 1.00	
<u> Check Sliding (Loading Case - Strength Ia) - A</u>	ASHTO LRFD BDM	Section 11.10.5.3 (Continued)	
Check Sliding Resistance - Undrained Conditi			
Nominal Sliding Resisting: $R_{\tau} = ($	$\left(\left(S_{u}\right)_{BS} \leq q_{s}\right) \cdot B$		
	$(S_u)_{BS} = 2.95$	ksf	
P _{EV}	$\sigma$ /		
	$q_s = v_2 = ($	3.20 ksf) / 2 = 1.60 ksf	
$ R_{\tau} $	<i>'</i> <del>'</del>		
	p /		
	$\sigma = \frac{1}{EV}$	= (59.91 kip/ft) / (18.7 ft) = 3.20 ksf	
$\frac{1}{\left(S_{u}\right)_{BS}} \leq q_{s}$ $R_{\tau}$		<pre>(59.91 kip/ft) / (18.7 ft) = 3.20 ksf ksf)(18.7 ft) = 29.92 kip/ft</pre>	
R _z	= (2.95 ksf ≤ 1.60	ksf)(18.7 ft) = 29.92 kip/ft	
R _z	= (2.95 ksf ≤ 1.60 ng Resistance - Unc	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
R _z /erify Sliding Force Less Than Factored Slidir	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_ au$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft < (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_ au \cdot \phi_ au \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_{ au}$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_{ au}$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_{ au}$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	
$R_{ au}$ /erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 21.43$ kip/ft ≤ (2	= (2.95 ksf ≤ 1.60 ng Resistance - Unc 29.92 kip/ft)(1.0) = 29	ksf)(18.7 ft) = 29.92 kip/ft Irained Condition	



JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	3	OF	6
CALCULATED B	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	all 4W6 - Sta. 178+85	i to Sta.	180+30

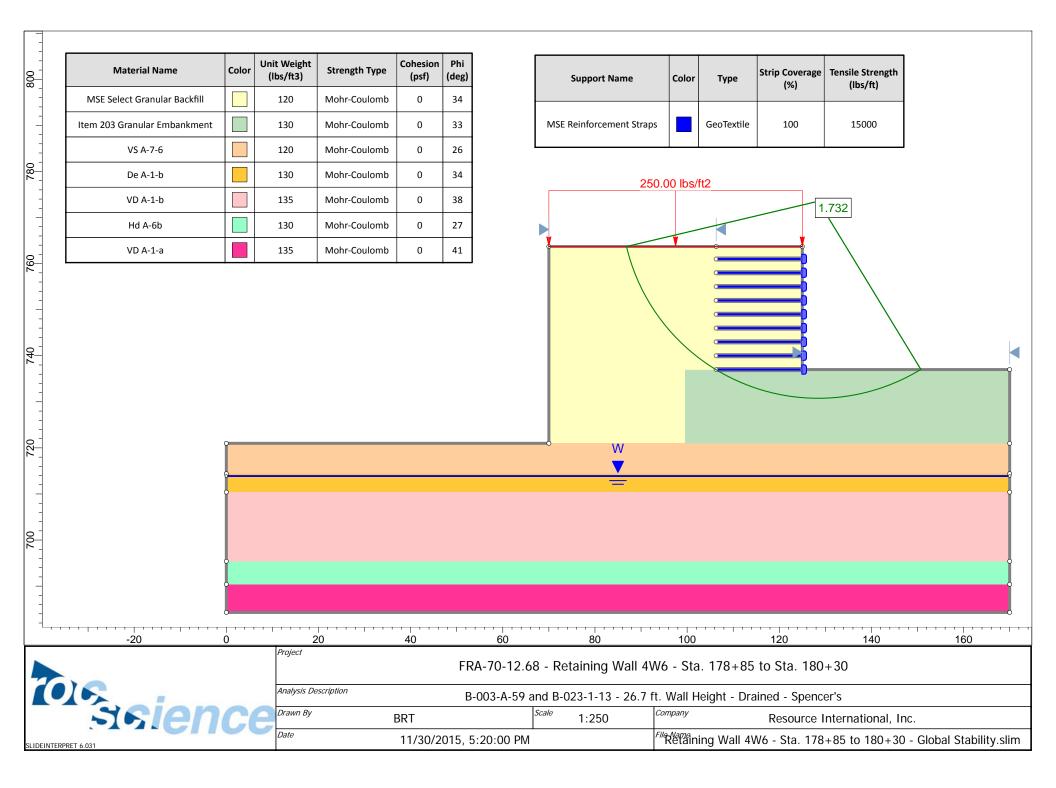
ERATIONAL.COM		
imeters	Bearing Soil Properties:	
26.7 ft	Bearing Soil Unit Weight, $(\gamma_{BS}) =$	120 pcf
18.7 ft	Bearing Soil Friction Angle, $(\varphi_{BS}) =$	26 °
145 ft	Bearing Soil Drained Cohesion, $(c_{BS}) =$	0 psf
250 psf	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$	2950 psf
130 pcf	Embedment Depth, $(D_f)$ =	3.0 ft
<u>33</u> °	Depth to Grounwater (Below Bot. of Wall), $(D_W) =$	22.0 ft
0 psf		
0 psf	EV EH LS	
0.264	Strength la 1 00 1 50 1 75 ¬	
120 pcf		D BDM Tables .4.1-2 - Active
<u>34</u> °		ressure)
la) - AASHTO LRFE	D BDM Section 11.10.5.5	
$\frac{x_o}{2} - x_o$		
λ <i>Λ</i> λ <i>Λ</i>		
$=\frac{I V I_{EV} - I V I_{H}}{I_{EV}}$	= (560.16 kip·ft/ft - 204.43 kip·ft/ft) / (59.91 kip/ft) =	5.94 ft
$P_{EV}$		
$M_{EV} = 560.16$	8 kip·ft/ft ─	
$M_H = 204.43$	3 kip·ft/ft ├── Defined below	
$P_{EV} = 59.91$	kip/ft —	
= (18.7 ft)/2 - 5.	94 ft = 3.41 ft	
$=P_{FV}(x_1)$		
£.K. N. 1.Z.		
$V_{V} = \gamma_{BE} \cdot H \cdot B$	$\cdot \dot{\gamma}_{EV} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.00) = 59.9$	1 kip/ft
у <i>I</i> БР Б		
$= B/_{2} = (18)$	8.7 ft) / 2 = 9.35 ft	
12		
$M_{rw} = (59.9)^{10}$	1 kip/ft)(9.35 ft) = 560.16 kip·ft/ft	
EV = (00.0)		
$= P_{ru}(x_{r}) + P$	$P_{rs}(\mathbf{x}_{2})$	
<i>- EH</i> \~2 J ' - ▲		
$\mu = \frac{1}{2} \gamma_{\rm pc} H^2 K$	$\chi_{FH} = \frac{1}{2}(130 \text{ pcf})(26.7 \text{ ft})^2(0.264)(1.5) = 18.3$	5 kip/ft
$\sigma_{S_{h}} = \sigma_{LS} H K_{a} \gamma$	$L_{LS}$ = (250 psf)(26.7 ft)(0.264)(1.75) = 3.08	kip/ft
$=H/_{-}$ - (20)	37  ft / 3 = 800  ft	
,,,		
$=\frac{H}{2} = (26)$	6.7 ft) / 2 = 13.35 ft	
$M_H = (18.3)$	85 kip/ft)(8.9 ft) + (3.08 kip/ft)(13.35 ft) = 204.43	kip∙ft/ft
$\rightarrow e = m$	$5.(\pi)/3 = 0.23$ fr	
$\rightarrow e_{\rm max} = (18)$	$5.7 \pi$ ) / 3 = 0.23 $\pi$	
	meters 26.7 ft 18.7 ft 145 ft 250 psf 130 pcf 33° 0 psf 0 psf 0.264 120 pcf 34° 22 - $x_o$ $= \frac{M_{EV} - M_H}{P_{EV}}$ M _{EV} = 560.14 M _H = 204.43 $P_{EV} = 59.91$ = (18.7 ft)/2 - 5. = $P_{EV}(x_1)$ $V = \gamma_{BF} \cdot H \cdot B$ $= \frac{B_2}{2} = (11)^2$ $M_{EV} = (59.9)^2$ $= P_{EH}(x_2) + F$ $M_{EV} = \sigma_{LS}HK_a\gamma$ $= \frac{H_2}{2} = (21)^2$ $M_H = (18.3)^2$	meters         Bearing Soil Properties:           26.7 ft         Bearing Soil Unit Weight. $(\gamma_{BS}) =$ 145.7 ft         Bearing Soil Unit Weight. $(\gamma_{BS}) =$ 145 ft         Bearing Soil Undrained Cohesion, $(c_{RS}) =$ 250 psf         Bearing Soil Undrained Shear Strength. $[(s_w)_{RS}] =$ 130 pcf         Embedment Depth. $(D_r) =$ 0         psf         LRFD Load Factors           0         psf         EV         EH         LS           0.264         Strength Ia         1.00         1.00         1.00           120 pcf         Strength Ia         1.00         1.00 $(AASHTOLRF)$ 24 *         Service I         1.00         1.00 $(AASHTOLRF)$ 25/2 - $x_o$ E         E         E $(AASHTOLRF)$ 26.7 ft



JOB	FRA-70-	12.68		NO.	W-13-045	
SHEET NO.		4		OF	6	
CALCULATED BY	,	BRT		DATE	7/15/2018	
CHECKED BY		JPS		DATE	7/15/2018	
Retaining Wa	ll 4W6 -	Sta. 17	8+85	i to Sta.	180+30	

$\frac{120}{\text{pcf}} \text{ pcf} \qquad \frac{120}{\text{Strength lb}} \text{ 1.35} \qquad 1.50 \qquad 1.75 \qquad -3.4.1-1 \text{ and } 3.4.1-2 \text{ Active} \\ -3.4.1-1 \text{ and } 3.4$	WWW.RESOURCEINTER	RATIONAL.COM		
$ \begin{split} & \text{MSE Wall Height, (P) = } & \frac{26.7 \text{ n}}{16.7 \text{ m}} & \text{Bearing Sol Unit Weight, (P_m) = } & \frac{120}{90}  prime of the transformation of transformati$	MSE Wall Dimensions and Retained Soil Paran	neters	Bearing Soil Properties:	
$ \begin{split} & \text{MSE Wall Length}, (L) = \underbrace{18,7 \text{ ft}}_{145 \text{ ft}} & \text{Bearing Soll Friction Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{145 \text{ ft}} & \text{Bearing Soll Friction Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} \underbrace{70}_{0} \text{ ft}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} & \text{Bearing Soll Inducation Angle, (e_m.) =}_{125 \text{ ft}} & Bearing Soll Inducati$				nof
$\begin{split} & \text{MSE Wall Length, } (L) = \underbrace{145 \text{ h}}_{P_1 \text{ Bearing Soil Drained Cohesion, } (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Soil Drained Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{Bearing Cohesion, (e_n) = \underbrace{220 \text{ pf}}_{220 \text{ pf}} = \underbrace{220 \text{ pf}}_$				şş.
Live Surfage Load $(e_{x_1}) =$ Relationed Solit Michanded Shear Strength, $\{g_{r_1}\}_{r_2} =$ Relationed Solit Michanded Shear Strength, $\{g_{r_2}\}_{r_2} =$ Relationed Sol Draned Cohesion, $(e_{x_2}) =$ Relationed Sol Draned Cohesion, $(e_{x_2}) =$ Relationed Solit Michanded Shear Strength, $\{g_{r_2}\}_{r_2} =$				
Retained Soil Unit Weight, $(y_n) =$ Retained Soil Unit Weight, $(y_n) =$ Retained Soil Drained Cohesion, $(e_n) =$ Retained Soil Drained Cohesion, $(e_n) =$ Retained Soil Unained Shear Strength, $[(S_n)_{R^n}] =$ Retained Soil Unained Cohesion, $(e_n) =$ Retained Soil Unained Cohesion, $(e_n) =$ Retained Soil Undianed Shear Strength, $[(S_n)_{R^n}] =$				șu un min
Retained Soil Friction Angle, $(g_{RV}) =$ Retained Soil Drained Cohesion, $(g_{RV}) =$ Retained Soil Drained Cohesion, $(g_{RV}) =$ Retained Soil Unrained Shear Strength, $(S_{V,Ne}) =$ Retained Soil Active Earth Pressure Coeff., $(K_{V}) =$ 0  pef EV EH LS Strength Ia 1.30 1.50 1.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00				
Related Soil Draned Chesion, $(x_{2}) = \frac{1}{20}$ psf Related Soil Undrained Shear Strength, $[(s_{1})_{k=1}] = \frac{1}{20}$ psf Related Soil Undrained Shear Strength, $[(s_{1})_{k=1}] = \frac{1}{20}$ psf Related Soil Undrained Shear Strength, $[(s_{1})_{k=1}] = \frac{1}{20}$ psf Strength is 1.30 1.50 1.75 Strength is 1.30 1.75 Strength is 1.30 1.00 1.00 1.00 1.00 <b>Check BeachIII</b> Unit Weight, $(y_{w}) = \frac{1}{34} + \frac{1}{3$				
$ \begin{array}{c} \text{Retained Soil Undrained Shear Strength, } (y, y_m) = & \hline 0 \text{ psf} & \hline V = \text{EV} & \text$		······		ft
		0 psf	LRFD Load Factors	
$\begin{split} & \text{MSE Backfill Unit Weight, } (\gamma_{srr}) = \underbrace{120 \text{ pcf}}_{34} & \text{Strength ib } 1.35 & 1.50 & 1.75 \\ & \text{MSE Backfill Friction Angle, } (\varphi_{trr}) = \underbrace{120 \text{ pcf}}_{34} & \text{Strength ib } 1.35 & 1.50 & 1.75 \\ & \text{MSE Backfill Friction Angle, } (\varphi_{trr}) = \underbrace{120 \text{ pcf}}_{34} & \text{Strength ib } 1.35 & 1.50 & 1.75 \\ & \text{P}_{LS} & q_{eq} = \frac{P_{T}}{B}, \\ & & & & & & & \\ P_{LS} & P_{ET} & & & & & \\ P_{LS} & P_{ET} & & & & & \\ P_{LS} & P_{ET} & & & & & \\ P_{LS} & P_{ET} & & & & & \\ P_{LS} & P_{ET} & P_{LS} & P_{ET} \\ & & & & \\ P_{LS} & P_{ET} & P_{LS} & P_{ET} \\ P_{T} & & & & \\ P_{LS} & P_{ET} & P_{LS} & P_{ET} \\ P_{T} & & & & \\ P_{LS} & P_{T} & P_{LS} & P_{ET} \\ P_{T} & & & \\ P_{LS} & P_{T} & P_{LS} & P_{LS} \\ P_{T} & & & \\ P_{LS} & P_{LS} & (x_{1}) = (\gamma_{RF} \cdot H \cdot B \cdot \gamma_{FT}) (x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS}) (x_{1}) \\ M_{H} & P_{ET} (x_{2}) + P_{LS} & (x_{3}) = (\gamma_{2} \gamma_{RS} H^{2} K_{a} \gamma_{EH}) (x_{2}) + (\sigma_{LS} H K_{a} \gamma_{LS}) (x_{3}) \\ M_{H} & & \\ P_{T} & = (120 \text{ pcf})(26.7 \text{ ft})(10.264)(1.5)(8.9 \text{ ft}) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)(13.35 \text{ ft}) & = & 204.48 \text{ kip-fuft} \\ P_{T} & P_{ET} & + P_{LS} & = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{ET} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{T} & & \\ P_{$	Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV EH LS	
$\begin{aligned} & \text{MSE Backfill Unit Weight, } (y_{BV}) = \underbrace{120 \text{ pcf}}_{34} & \text{Sterngth Ib}_{1.35} & 1.50 & 1.75 \\ \hline \text{MSE Backfill Friction Angle, } (\varphi_{BV}) = \underbrace{120 \text{ pcf}}_{34} & \text{Sterngth Ib}_{1.00} & 1.00 & 1.00 \\ \hline \text{MSE Backfill Friction Angle, } (\varphi_{BV}) = \underbrace{120 \text{ pcf}}_{34} & \text{Sterngth Ib}_{1.00} & 1.00 & 1.00 \\ \hline \text{Check Bearing Capacity (Loading Case - Strength Ib) - AASHTO LRFD BDM Section 11.10.5.4 \\ \hline P_{LS} \\ \hline q_{eq} = \underbrace{P_{V}}_{B'} \\ \hline q_{eq} = \underbrace{P_{V}}_{B'} \\ \hline q_{eq} = \underbrace{P_{V}}_{B'} \\ \hline P_{EH} \\ \hline e = \underbrace{B_{2}}_{2} - x_{o} = (18.7 \text{ fl} - 2(2.3 \text{ fl}) = 14.10 \text{ fl} \\ \hline x_{o} = \underbrace{M_{V} - M_{H}}_{P_{V}} = (832.77 \text{ kip ft/ft} - 204.48 \text{ kip ft/ft}) / 89.07 \text{ kip/ft} = 7.08 \\ \hline x_{o} = \underbrace{M_{V}}_{B'} - \underbrace{Q_{eq}}_{eq} = (89.07 \text{ kip/ft}) / (14.1 \text{ fl}) = 6.32 \text{ ksf} \\ \hline M_{V} = P_{EV} (x_{1}) + P_{LS} (x_{1}) = (\gamma_{BV} \cdot H \cdot B \cdot \gamma_{EV}) (x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS}) (x_{1}) \\ \hline M_{H} = P_{EV} (x_{2}) + P_{LS} (x_{3}) = (y_{2} - M_{B})^{2} K_{V} - y_{L} (x_{2}) + (x_{2} - M_{LS}) (x_{3}) \\ \hline M_{H} = [120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + ([250 \text{ psf})(18.7 \text{ ft})(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft} \\ \hline P_{V} = P_{EV} + P_{LS} (x_{3}) = (y_{2} - M_{EV}) + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ \hline M_{H} = [24(130 \text{ pcf})(26.7 \text{ ft})(16.2 \text{ ft})(1.50) \text{ psf}) + ([250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft} \\ \hline P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ \hline P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft} \\ \hline P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ \hline P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](1.35) \text{ ft} = 204.48 \text{ kip-ft/ft} \\ \hline P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ \hline P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](1.30 \text{ ft}) = 204.48 \text{ kip-ft/ft} \\ \hline P_{V} $	Retained Soil Active Earth Pressure Coeff., $(K_a)$ =	0.264	Strength la 1.00 1.50 1.75 CAASHTO LRED BDM Ta	bles
$\begin{aligned} & \text{Serveel}  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00$	MSE Backfill Unit Weight, $(\gamma_{BF})$ =	120 pcf		ive
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MSE Backfill Friction Angle, ( $\varphi_{BF}$ ) =	<u>34</u> °	Service I 1.00 1.00 J	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Check Bearing Canacity (Loading Case - Stren	ath lb) - AASHTO I	I RED BDM Section 11 10 5 4	
$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P., /		
$\begin{array}{c} \begin{array}{c} & & \\ R \\ R \\ \hline \\ R \\ R$	$q_{eq} = 1$	<i>V</i> / <i>B</i> '		
$\begin{array}{c} \begin{array}{c} & & \\ R \\ R \\ \hline \\ R \\ R$		$\mathbf{D}$ $\mathbf{O}$ - 10	(2, 2, 5) = 1110	
$x_{o} = \frac{1}{P_{V}} = (832.77 \text{ kip-ft/ft} - 204.48 \text{ kip-ft/ft}) / 89.07 \text{ kip/ft} = 7.05$ $x_{o} = \frac{1}{P_{V}} = (832.77 \text{ kip-ft/ft} - 204.48 \text{ kip-ft/ft}) / 89.07 \text{ kip/ft} = 7.05$ $M_{V} = P_{EV}(x_{1}) + P_{LS_{v}}(x_{1}) = (\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV})(x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_{1})$ $M_{V} = [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) = 832.77 \text{ kip-ft/ft}$ $M_{H} = P_{EH}(x_{2}) + P_{LS_{u}}(x_{3}) = (\gamma_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3})$ $M_{H} = [\gamma_{c}(130 \text{ pcf})(26.7 \text{ ft})(26.07 \text{ ft})(26.07 \text{ ft})(18.7 \text{ ft})(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $Check Bearing Resistance: \qquad q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \gamma_{2}\gamma BN_{pm}C_{wy}$ $N_{cm} = N_{c}S_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}S_{q}d_{q}i_{q} = 13.21 \qquad N_{pm} = N_{y}S_{y}i_{y} = 12.05$ $N_{c} = 22.25 \qquad S_{q} = 1.047 \qquad S_{q} = 1.047 \qquad S_{q} = 0.061 \text{ s}_{q} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.000 \text{ (Assumed)} \qquad 1.065 \qquad C_{wy} = 22.06 \times 15.16 \text{ ksf}$ $q_{q} = 1.000 \text{ (Assumed)} \qquad C_{wq} = 22.07 \times 3.07 \text{ t} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$\begin{array}{c c} x_3 \\ \uparrow \end{array}$	B - 2e = 18	$3.7 \pi - 2(2.3 \pi) = 14.10 \pi$	
$x_{o} = \frac{1}{P_{V}} = (832.77 \text{ kip-ft/ft} - 204.48 \text{ kip-ft/ft}) / 89.07 \text{ kip/ft} = 7.05$ $x_{o} = \frac{1}{P_{V}} = (832.77 \text{ kip-ft/ft} - 204.48 \text{ kip-ft/ft}) / 89.07 \text{ kip/ft} = 7.05$ $M_{V} = P_{EV}(x_{1}) + P_{LS_{v}}(x_{1}) = (\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV})(x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_{1})$ $M_{V} = [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) = 832.77 \text{ kip-ft/ft}$ $M_{H} = P_{EH}(x_{2}) + P_{LS_{u}}(x_{3}) = (\gamma_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3})$ $M_{H} = [\gamma_{c}(130 \text{ pcf})(26.7 \text{ ft})(26.07 \text{ ft})(26.07 \text{ ft})(18.7 \text{ ft})(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $Check Bearing Resistance: \qquad q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \gamma_{2}\gamma BN_{pm}C_{wy}$ $N_{cm} = N_{c}S_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}S_{q}d_{q}i_{q} = 13.21 \qquad N_{pm} = N_{y}S_{y}i_{y} = 12.05$ $N_{c} = 22.25 \qquad S_{q} = 1.047 \qquad S_{q} = 1.047 \qquad S_{q} = 0.061 \text{ s}_{q} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.000 \text{ (Assumed)} \qquad 1.065 \qquad C_{wy} = 22.06 \times 15.16 \text{ ksf}$ $q_{q} = 1.000 \text{ (Assumed)} \qquad C_{wq} = 22.07 \times 3.07 \text{ t} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$\langle \cdot \rangle = \langle \cdot \rangle P_{EH}$	a - B/r	$-(19.7 \pm)/2.705 \pm -2.200 \pm$	
$x_{o} = \frac{1}{P_{V}} = (832.77 \text{ kip-ft/ft} - 204.48 \text{ kip-ft/ft}) / 89.07 \text{ kip/ft} = 7.05$ $x_{o} = \frac{1}{P_{V}} = (832.77 \text{ kip-ft/ft} - 204.48 \text{ kip-ft/ft}) / 89.07 \text{ kip/ft} = 7.05$ $M_{V} = P_{EV}(x_{1}) + P_{LS_{v}}(x_{1}) = (\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV})(x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_{1})$ $M_{V} = [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) = 832.77 \text{ kip-ft/ft}$ $M_{H} = P_{EH}(x_{2}) + P_{LS_{u}}(x_{3}) = (\gamma_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3})$ $M_{H} = [\gamma_{c}(130 \text{ pcf})(26.7 \text{ ft})(26.07 \text{ ft})(26.07 \text{ ft})(18.7 \text{ ft})(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft}$ $P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $Check Bearing Resistance: \qquad q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \gamma_{2}\gamma BN_{pm}C_{wy}$ $N_{cm} = N_{c}S_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}S_{q}d_{q}i_{q} = 13.21 \qquad N_{pm} = N_{y}S_{y}i_{y} = 12.05$ $N_{c} = 22.25 \qquad S_{q} = 1.047 \qquad S_{q} = 1.047 \qquad S_{q} = 0.061 \text{ s}_{q} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.000 \text{ (Assumed)} \qquad 1.065 \qquad C_{wy} = 22.06 \times 15.16 \text{ ksf}$ $q_{q} = 1.000 \text{ (Assumed)} \qquad C_{wq} = 22.07 \times 3.07 \text{ t} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$\mathbf{e}$	$x - \frac{1}{2} - $	= (18.7  II) / 2 - 7.05  II = 2.30  II	
$\begin{aligned} A_{o} = B_{2} \\ H_{eq} = (89.07 \text{ kp/ft}) / (14.1 \text{ ft}) &= 6.32 \text{ ksf} \\ M_{V} &= P_{EV}(x_{1}) + P_{LS_{v}}(x_{1}) &= (\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV})(x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_{1}) \\ M_{V} &= [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) &= 832.77 \text{ kip-ft/ft} \\ M_{H} &= P_{EH}(x_{2}) + P_{LS_{v}}(x_{3}) &= (\gamma_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= [\gamma_{c}(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $		$M_V - M_H$		~F 4
$\begin{aligned} A_{o} = B_{2} \\ H_{eq} = (89.07 \text{ kp/ft}) / (14.1 \text{ ft}) &= 6.32 \text{ ksf} \\ M_{V} &= P_{EV}(x_{1}) + P_{LS_{v}}(x_{1}) &= (\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV})(x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_{1}) \\ M_{V} &= [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) &= 832.77 \text{ kip-ft/ft} \\ M_{H} &= P_{EH}(x_{2}) + P_{LS_{v}}(x_{3}) &= (\gamma_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= [\gamma_{c}(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $		$r_o = - \frac{r}{P}$	= (832.77 kip·ft/ft - 204.48 kip·ft/ft) / 89.07 kip/ft = 7.	05 1
$\begin{split} & (G,G) \in R_{p}(X_{1}) = (Y_{2q} - (G,G) \in R_{p}(Y_{1}(X,H)) = (X_{2q} - (X_{2})) \\ & M_{V} = P_{EV}(X_{1}) + P_{LS_{v}}(X_{1}) = (Y_{2}F_{F} \cdot H \cdot B \cdot Y_{EV})(X_{1}) + (\sigma_{LS} \cdot B \cdot Y_{LS})(X_{1}) \\ & M_{V} = [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) = 832.77 \text{ kip-ft/ft} \\ & M_{H} = P_{EH}(X_{2}) + P_{LS_{h}}(X_{3}) = (Y_{2}Y_{RS}H^{2}K_{a}Y_{EH})(X_{2}) + (\sigma_{LS}HK_{a}Y_{LS})(X_{3}) \\ & M_{H} = [Y_{2}(130 \text{ pcf})(26.7 \text{ ft})(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft} \\ & P_{V} = P_{EV} + P_{LS} = Y_{BF} \cdot H \cdot B \cdot Y_{EV} + \sigma_{LS} \cdot B \cdot Y_{LS} \\ & P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\gamma_{o} \gamma_{1} \gamma_{1} q$	1 V		
$\begin{split} & (G,G) \in R_{p}(X_{1}) = (Y_{2q} - (G,G) \in R_{p}(Y_{1}(X,H)) = (X_{2q} - (X_{2})) \\ & M_{V} = P_{EV}(X_{1}) + P_{LS_{v}}(X_{1}) = (Y_{2}F_{F} \cdot H \cdot B \cdot Y_{EV})(X_{1}) + (\sigma_{LS} \cdot B \cdot Y_{LS})(X_{1}) \\ & M_{V} = [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) = 832.77 \text{ kip-ft/ft} \\ & M_{H} = P_{EH}(X_{2}) + P_{LS_{h}}(X_{3}) = (Y_{2}Y_{RS}H^{2}K_{a}Y_{EH})(X_{2}) + (\sigma_{LS}HK_{a}Y_{LS})(X_{3}) \\ & M_{H} = [Y_{2}(130 \text{ pcf})(26.7 \text{ ft})(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) = 204.48 \text{ kip-ft/ft} \\ & P_{V} = P_{EV} + P_{LS} = Y_{BF} \cdot H \cdot B \cdot Y_{EV} + \sigma_{LS} \cdot B \cdot Y_{LS} \\ & P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$B_{A}$			
$\begin{split} M_{V} &= [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) &= 832.77 \text{ kip-ft/ft} \\ M_{H} &= P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (V_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= [V_{2}(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $	$q_{eq}$	= (89.07 kip/ft)	/ (14.1 ft) = 6.32 ksf	
$\begin{split} M_{V} &= [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) &= 832.77 \text{ kip-ft/ft} \\ M_{H} &= P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (V_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= [V_{2}(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $				
$\begin{split} M_{V} &= [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)](9.35 \text{ ft}) + [(250 \text{ psf})(18.7 \text{ ft})(1.75)](9.35 \text{ ft}) &= 832.77 \text{ kip-ft/ft} \\ M_{H} &= P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (V_{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= [V_{2}(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $	$M_{V} = P_{EV}(x_{1}) + P_{LS}(x_{1}) = (\gamma_{BF} \cdot E)$	$(I \cdot B \cdot \gamma_{EV})(x_1)$	$+(\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_1)$	
$\begin{split} M_{H} &= P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (1/2\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= (1/2(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5))(8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $				
$\begin{split} M_{H} &= P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (1/2\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3}) \\ M_{H} &= (1/2(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5))(8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $	$M_V = [(120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35)]($	9.35 ft) + [(250 psf)	(18.7 ft)(1.75)](9.35 ft) = 832.77 kip·ft/ft	
$\begin{split} M_{H} &= [1/2(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $				
$\begin{split} M_{H} &= [1/2(130 \text{ pcf})(26.7 \text{ ft})^{2}(0.264)(1.5)](8.9 \text{ ft}) + [(250 \text{ psf})(26.7 \text{ ft})(0.264)(1.75)](13.35 \text{ ft}) &= 204.48 \text{ kip-ft/ft} \\ P_{V} &= P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS} \\ P_{V} &= (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) &= 89.07 \text{ kip/ft} \\ \hline \\ $	$M_{H} = P_{FH}(x_{2}) + P_{IS}(x_{3}) = (\frac{1}{2}\gamma_{PS})$	$H^2 K_a \gamma_{FH} (x_2)$	$+(\sigma_{IS}HK_{a}\gamma_{IS})(x_{3})$	
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $Check \text{ Bearing Resistance - Drained Condition}$ Nominal Bearing Resistance: $q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \frac{1}{2}\gamma BN_{pm}C_{w\gamma}$ $N_{cm} = N_{c}s_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}s_{q}d_{q}i_{q} = 13.21 \qquad N_{pm} = N_{y}s_{y}i_{y} = 12.05$ $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{y} = 12.54$ $s_{c} = 1 + (14.1 \text{ ft})(18.5/22.25) \qquad s_{q} = 1.047 \qquad s_{y} = 0.961$ $= 1.052 \qquad d_{q} = 1 + 2\tan(26^{\circ})(1 - \sin(26^{\circ}))(13.0 \text{ ft})(14.1 \text{ ft})  i_{y} = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} < 3.0 \text{ ft} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$H = LH \times 27 = LS_h \times 37 = \sqrt{27} KS$	<i>u i Ell (</i> \ 2 <i>)</i>	<b>V L3 V V V V V V V V V V</b>	
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $Check \text{ Bearing Resistance - Drained Condition}$ Nominal Bearing Resistance: $q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \frac{1}{2}\gamma BN_{pm}C_{w\gamma}$ $N_{cm} = N_{c}s_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}s_{q}d_{q}i_{q} = 13.21 \qquad N_{pm} = N_{y}s_{y}i_{y} = 12.05$ $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{y} = 12.54$ $s_{c} = 1 + (14.1 \text{ ft})(18.5/22.25) \qquad s_{q} = 1.047 \qquad s_{y} = 0.961$ $= 1.052 \qquad d_{q} = 1 + 2\tan(26^{\circ})(1 - \sin(26^{\circ}))(13.0 \text{ ft})(14.1 \text{ ft})  i_{y} = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} < 3.0 \text{ ft} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$M_{} = [\frac{1}{2}(130 \text{ pcf})(26.7 \text{ ft})^2(0.264)(1.5)$	5)](8.9 ft) + [(250 ps	f)(26.7 ft)(0.264)(1.75)](13.35 ft) = 204.48 kip·ft/ft	
$P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $\frac{\text{Check Bearing Resistance - Drained Condition}}{\text{Nominal Bearing Resistance:}} \qquad q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \frac{1}{2}\gamma BN_{m}C_{w\gamma}$ $N_{cm} = N_{c}s_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}s_{q}d_{q}i_{q} = 13.21 \qquad N_{\gamma m} = N_{\gamma}s_{\gamma}i_{\gamma} = 12.05$ $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54$ $s_{c} = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25) \qquad s_{q} = 1.047 \qquad s_{\gamma} = 0.961$ $= 1.052 \qquad d_{q} = 1+2\tan(26^{\circ})[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(2$				
$P_{V} = (120 \text{ pcf})(26.7 \text{ ft})(18.7 \text{ ft})(1.35) + (250 \text{ psf})(18.7 \text{ ft})(1.75) = 89.07 \text{ kip/ft}$ $\frac{\text{Check Bearing Resistance - Drained Condition}}{\text{Nominal Bearing Resistance:}} \qquad q_{n} = cN_{cm} + \gamma D_{f}N_{qm}C_{wq} + \frac{1}{2}\gamma BN_{m}C_{w\gamma}$ $N_{cm} = N_{c}s_{c}i_{c} = 23.41 \qquad N_{qm} = N_{q}s_{q}d_{q}i_{q} = 13.21 \qquad N_{\gamma m} = N_{\gamma}s_{\gamma}i_{\gamma} = 12.05$ $N_{c} = 22.25 \qquad N_{q} = 11.85 \qquad N_{\gamma} = 12.54$ $s_{c} = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25) \qquad s_{q} = 1.047 \qquad s_{\gamma} = 0.961$ $= 1.052 \qquad d_{q} = 1+2\tan(26^{\circ})[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}[1-\sin(26^{\circ})]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(26^{\circ})}]^{1-\sin(2$	$P_{Y} = P_{Y} + P_{Y} = \gamma_{Y} + H \cdot B \cdot \gamma_{Y}$	$+\sigma \cdot \cdot B \cdot \gamma \cdot \cdot$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	V = EV = LS = BF = 1 = F = F = F = F = F = F = F = F =	$1 \circ_{LS} D \gamma_{LS}$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P = (120  pcf)(26.7  ft)(18.7  ft)(1.35) +	(250 psf)(18 7 ft)(1	75) – 80.07 <i>v</i> in/ft	
Nominal Bearing Resistance: $q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{pm} C_{w\gamma}$ $N_{cm} = N_c s_c i_c = 23.41$ $N_{qm} = N_q s_q d_q i_q = 13.21$ $N_{pm} = N_\gamma s_\gamma i_\gamma = 12.05$ $N_c = 22.25$ $N_q = 11.85$ $N_\gamma = 12.54$ $s_c = 1+(14.1 \text{ ft/145 ft})(11.85/22.25)$ $s_q = 1.047$ $s_\gamma = 0.961$ $= 1.052$ $d_q = 1+2\tan(26^\circ)[1-\sin(26^\circ)]^2\tan^{-1}(3.0 \text{ ft/14.1 ft})$ $i_\gamma = 1.000$ (Assumed) $i_c = 1.000$ (Assumed) $C_{wq} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$I_V = (120 \text{ pci})(20.7 \text{ tr})(10.7 \text{ tr})(1.33)^{-1}$	(200 psi)(10.7 ii)(1		
Nominal Bearing Resistance: $q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{pm} C_{w\gamma}$ $N_{cm} = N_c s_c i_c = 23.41$ $N_{qm} = N_q s_q d_q i_q = 13.21$ $N_{pm} = N_\gamma s_\gamma i_\gamma = 12.05$ $N_c = 22.25$ $N_q = 11.85$ $N_\gamma = 12.54$ $s_c = 1+(14.1 \text{ ft/145 ft})(11.85/22.25)$ $s_q = 1.047$ $s_\gamma = 0.961$ $= 1.052$ $d_q = 1+2\tan(26^\circ)[1-\sin(26^\circ)]^2\tan^{-1}(3.0 \text{ ft/14.1 ft})$ $i_\gamma = 1.000$ (Assumed) $i_c = 1.000$ (Assumed) $C_{wq} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	Ob I. Do			
$N_{cm} = N_c s_c i_c = 23.41$ $N_{qm} = N_q s_q d_q i_q = 13.21$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 12.05$ $N_c = 22.25$ $S_c = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25)$ $s_q = 1.047$ $s_{\gamma} = 0.961$ $i_{\gamma} = 1.052$ $d_q = 1+2\tan(26^\circ)[1-\sin(26^\circ)]^2\tan^{-1}(3.0 \text{ ft}/14.1 \text{ ft})$ $i_{\gamma} = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	Check Bearing Resistance - Drained Condition			
$N_{cm} = N_c s_c i_c = 23.41$ $N_{qm} = N_q s_q d_q i_q = 13.21$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 12.05$ $N_c = 22.25$ $S_c = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25)$ $s_q = 1.047$ $s_{\gamma} = 0.961$ $i_{\gamma} = 1.052$ $d_q = 1+2\tan(26^\circ)[1-\sin(26^\circ)]^2\tan^{-1}(3.0 \text{ ft}/14.1 \text{ ft})$ $i_{\gamma} = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$		D N C		
$N_{c} = 22.25$ $S_{c} = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25)$ $N_{q} = 11.85$ $S_{q} = 1.047$ $S_{q} = 0.961$ $S_{\gamma} = 0.961$ $S_{\gamma} = 0.961$ $S_{\gamma} = 1.000 \text{ (Assumed)}$ $I.065$ $C_{w\gamma} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000$ $Q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	Nominal Bearing Resistance: $q_n = c_{IN} + c_{cm}$	$\gamma D_{f} N_{qm} C_{wq} +$	$-\frac{\gamma_2}{2} \frac{\gamma B N}{m} \frac{m}{m} \frac{\omega_{w\gamma}}{\omega_{w\gamma}}$	
$N_{c} = 22.25$ $S_{c} = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25)$ $N_{q} = 11.85$ $S_{q} = 1.047$ $S_{q} = 0.961$ $S_{\gamma} = 0.961$ $S_{\gamma} = 0.961$ $S_{\gamma} = 1.000 \text{ (Assumed)}$ $I.065$ $C_{w\gamma} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000$ $Q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$		XT XT - 1 -		
$s_{c} = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25) \qquad s_{q} = 1.047 \qquad s_{\gamma} = 0.961 \qquad i_{\gamma} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.052 \qquad d_{q} = 1+2\tan(26^{\circ})[1-\sin(26^{\circ})]^{2}\tan^{-1}(3.0 \text{ ft}/14.1 \text{ ft}) \qquad i_{\gamma} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.000 \text{ (Assumed)} \qquad 1.065 \qquad C_{w\gamma} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$I\mathbf{v}_{cm} = I\mathbf{v}_c S_c I_c = 23.41$	$\mathbf{v}_{qm} = I \mathbf{v}_q S_q \mathcal{A}_q \mathcal{I}$	$q = 13.21$ $IV_{\gamma m} = IV_{\gamma}S_{\gamma}l_{\gamma} = 12.05$	
$s_{c} = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25) \qquad s_{q} = 1.047 \qquad s_{\gamma} = 0.961 \qquad i_{\gamma} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.052 \qquad d_{q} = 1+2\tan(26^{\circ})[1-\sin(26^{\circ})]^{2}\tan^{-1}(3.0 \text{ ft}/14.1 \text{ ft}) \qquad i_{\gamma} = 1.000 \text{ (Assumed)}$ $i_{c} = 1.000 \text{ (Assumed)} \qquad 1.065 \qquad C_{w\gamma} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$		37		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$i_{c} = 1.000 \text{ (Assumed)} \qquad 1.065 \qquad C_{w\gamma} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} = 1.000 \text{ (Assumed)} \\ C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000 \\ q_{n} = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$S_c = 1+(14.1 \text{ ft}/145 \text{ ft})(11.85/22.25)$			
$i_q = 1.000 \text{ (Assumed)}$ $C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	= 1.052	$d_q$ = 1+2tan(26		
$C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$	$i_c = 1.000$ (Assumed)		$C_{wy} = 22.0 \text{ ft} < 1.5(14.1 \text{ ft}) + 3.0 \text{ ft} =$	1.0
$C_{wq} = 22.0 \text{ ft} > 3.0 \text{ ft} = 1.000$ $q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$		$i_q = 1.000$ (A	Assumed)	
$q_n = (0 \text{ psf})(23.407) + (120 \text{ pcf})(3.0 \text{ ft})(13.213)(1.000) + \frac{1}{2}(120 \text{ pcf})(14.1 \text{ ft})(12.051)(1.020) = 15.16 \text{ ksf}$		$C_{wq} = 22.0 \text{ ft} > 3$	3.0 ft = 1.000	
		*** <b>*</b>		
	q = (0  psf)(23 407) + (120  pcf)(3 0  ft)(23 407)	13.213)(1.000) + 1/3	120  pcf(14.1  ft)(12.051)(1.020) = 15.16  ksf	
<u>Verify Equivalent Pressure Less Than Factored Bearing Resistance</u> Use $\varphi_b = 0.65$ (Per AASHTO LRFD BDM Table 11.5		-,(, /2		
	Verify Equivalent Pressure Less Than Factored	l Rearing Resistan	Use $(0_{\perp} = 0.65)$ (Per AASHTO   RED RDM Table 1)	57
		a Dearing Nesistal	$\psi_{b} = \psi_{b} = \psi_{c} \psi_{b}$ (rei AASHI U LKFU DUM Table 1)	.3.7-
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32 \text{ ksf} \leq (15.16 \text{ ksf})(0.65) = 9.85 \text{ ksf} \longrightarrow 6.32 \text{ ksf} \leq 9.85 \text{ ksf}$				




JOB	FRA-70-12	2.68	NO.	W-13-045
SHEET NO.		5	OF	6
CALCULATED BY	,	BRT	DATE	7/15/2018
CHECKED BY		JPS	DATE	7/15/2018
Retaining Wa	II 4W6 - S	ta. 178+	-85 to Sta.	180+30

WWW.RESOURCEINT	IERATIONAL.COM			
MSE Wall Dimensions and Retained Soil Para	ameters	Bearing Soil Pro	perties:	
MSE Wall Height, ( <i>H</i> ) =	26.7 ft	Bearing Soil Unit W	/eight, $(\gamma_{RS}) =$	120 pcf
MSE Wall Width (Reinforcement Length), (B) =	18.7 ft	Bearing Soil Friction		26 °
MSE Wall Length, $(L) =$	145 ft		ed Cohesion, $(c_{BS}) =$	0 psf
		າດກາງວັດການການເຮັດການການການການການການການການການການການການການກ		
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf		ined Shear Strength, [	
Retained Soil Unit Weight, $(\gamma_{RS}) =$	130 pcf	Embedment Depth		<u>3.0</u> ft
Retained Soil Friction Angle, $(\varphi_{RS}) =$	<u>33</u> °		er (Below Bot. of Wall	), $(D_W) = 22.0$ ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load Fact		
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV	EH LS	
Retained Soil Active Earth Pressure Coeff., $(K_a)$ =	0.264	Strength la 1.00	ך 1.50 1.75	(AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, $(\gamma_{BF})$ =	120 pcf	Strength lb 1.35	1.50 1.75 -	3.4.1-1 and 3.4.1-2 - Active
MSE Backfill Friction Angle, $(\varphi_{BF}) =$	<u>34</u> °	Service I 1.00	1.00 1.00 🖵	Earth Pressure)
Check Bearing Capacity (Loading Case - Stre	ength Ib) - AASHTO	LRFD BDM Section 11.	.10.5.4 (Continued)	
Check Bearing Resistance - Undrained Cond	lition			
Nominal Bearing Resistance: $q_n = c N_{cm}$	$+ \gamma D_f N_{qm} C_{wq} +$	$-\frac{1}{2}\gamma BN_{\gamma m}C_{w\gamma}$		
$N_{cm} = N_c s_c i_c = 5.240$	$N_{qm} = N_q s_q d_q i$	<i>q</i> = 1.000	$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 0.000
N _c = 5.140	$N_q = 1.000$		$N_{\gamma} = 0.000$	
$S_c = 1+(14.1 \text{ ft/}[(5)(145 \text{ ft})]) = 1.019$			$s_{\gamma} = 1.000$	
$i_c = 1.000$ (Assumed)		)°)[1-sin(0°)]²tan⁻¹(3.0 ft/14.1 ft)	$i_{\gamma} = 1.000$	
	1.000		$C_{w\gamma}$ = 22.0 ft <	1.5(14.1  ft) + 3.0  ft = 1.
$q_n = (2950 \text{ psf})(5.240) + (120 \text{ pcf})(3.0)$	$i_q = 1.000 \ (\mu C_{wq} = 22.0 \ \text{ft})$ 0 ft)(1.000)(1.000) + ½	3.0 ft = 1.000	)(1.020) = 1	5.82 ksf
	$C_{wq} = 22.0 \text{ ft} >$ 0 ft)(1.000)(1.000) + ½	3.0 ft = 1.000 2(120 pcf)(14.1 ft)(0.000	)(1.020) = 1	5.82 ksf
	C _{wq} = 22.0 ft > 0 ft)(1.000)(1.000) + ½ red Bearing Resistar	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>	)(1.020) = 1 6.32 ksf ≤ 10.28 ks	
Verify Equivalent Pressure Less Than Factor	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 6.32$ ksf ≤	$C_{wq} = 22.0 \text{ ft} >$ (1.000)(1.000) + 1/2 <b>red Bearing Resistar</b> $\leq (15.82 \text{ ksf})(0.65) = 1$	3.0 ft = 1.000 ⁄z(120 pcf)(14.1 ft)(0.000 <u>nce</u>		



JOB	FRA-70-12.	.68	NO.	W-13-045
SHEET NO.	6		OF	6
CALCULATED E	BY E	BRT	DATE	7/15/2018
CHECKED BY	J	IPS	DATE	7/15/2018
Retaining W	all 4W6 - Sta	a. 178+8	35 to Sta.	180+30

NOE Wall Dimensions and I	Retained Soil Parar	<u>neters</u>	Bearing Soil	Properties:			
MSE Wall Height, (H) =		26.7 ft	Bearing Soil Unit Weight, $(\gamma_{BS})$ =				120 pc
MSE Wall Width (Reinforcement Length), ( <i>B</i> ) =		18.7 ft	Bearing Soil Friction Angle, $(\varphi_{BS}) =$			26 °	
MSE Wall Length, (L) =		145 ft	Bearing Soil Drained Cohesion, $(c_{BS}) =$			0 ps	
Live Surcharge Load, ( $\sigma_{LS}$ ) =		250 psf	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$		2950 ps		
Retained Soil Unit Weight, ( $\gamma_{RS}$ ) =		130 pcf	Embedment Depth, $(D_f)$ =		3.0 ft		
Retained Soil Friction Angle, $(\varphi_{RS}) =$		<u>33</u> °	Depth to Grounwater (Below Bot. of Wall), $(D_W)$ =		22.0 ft		
Retained Soil Drained Cohesion, $(c_{BS}) =$		0 psf	LRFD Load Factors				
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$		0 psf		EV EH	LS		
Retained Soil Active Earth Pressure Coeff., $(K_a) =$		0.264		.00 1.50	1.75		RFD BDM Tables
MSE Backfill Unit Weight, $(\gamma_{BF}) =$		120 pcf	a contraction of the second seco		l 3.4.1-2 - Active Pressure)		
MSE Backfill Friction Angle, ( $\varphi_{BF}$	_{(F} ) =	<u>34</u> °	Service I 1.	.00 1.00	1.00		
Cattlamant Analysia (Laadiy	ng Cooo - Somilao IV		DM Section 11 10	A A			
Settlement Analysis (Loadir	ng case - Service I)	- AASHIU LKFU B	DM Section 11.10.4	<u>4.1</u>			
$P_{LS_{v}}$		<b>n</b> /					
	<i>q_{eq}</i> =	$P_{V/N}$					
	<b>'1</b> eq	/ <i>В</i> .					
$x_3 \mid P_{EV} \mid $	N B'=	= B - 2e = 18.	7 ft - 2(2.05 ft) =	14.60 f	ft		
$\uparrow^3$	$\sum I_{IS}$						
	$P_{LS_h} P_{EH} = 0$	$e = \frac{B}{2} - x_o =$	(18.7 ft) / 2 - 7.3	sft = 2	2.05 f	t	
	<u>`</u>						
		$x_o = \frac{M_V - M_H}{P}$	= (603.91 kip	•ft/ft - 132.4 k	kip∙ft/ft)	/ 64.59 kip/ft	= 7.3
$x_o \leftarrow + + - + - e$		$P_{v}$					
$\leftarrow B_{2}$							
	$q_{ea}$	= (64.59 kip/ft)	′ (14.6 ft) =	4.42 ksf			
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(2)]$	V		$+ (\sigma_{LS} \cdot B \cdot \gamma_{LS})$	(x ₁ )	3.91	kip·ft/ft	
	26.7 ft)(18.7 ft)(1.00) $P_{LS_h}(x_3) = \left(\frac{1}{2}\gamma_{RS}\right)$ f)(26.7 ft) ² (0.264)(1.0)	)(9.4 ft) + [(250 psf)( $H^2 K_a \gamma_{EH} )(x_2)$ 0)](8.9 ft) + [(250 ps	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS} H K_a \gamma_{LS})$ f)(26.7 ft)(0.264)(1.0	$(x_1)$ ) = 60 $(x_3)$	3.91 I		p-ft/ft
$M_{V} = [(120 \text{ pcf})(2$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [1/2(130 \text{ pcf})]$	26.7 ft)(18.7 ft)(1.00) $P_{LS_h}(x_3) = (\frac{1}{2}\gamma_{RS})$ f)(26.7 ft) ² (0.264)(1.0) $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$	$H^{2}K_{a}\gamma_{EH}(250 \text{ psf})(X_{2})$ $H^{2}K_{a}\gamma_{EH}(X_{2})$ $H^{2}K_{a}\gamma_{EH}(X_{2})$ $H^{2}K_{a}\gamma_{EH}(X_{2})$ $H^{2}K_{a}\gamma_{EH}(X_{2})$	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS}HK_a\gamma_{LS})$ ()(26.7 ft)(0.264)(1.0	$(x_1)$ ) = 60 $(x_3)$			p-ft/ft
$M_{V} = [(120 \text{ pcf})(2 M_{H} = P_{EH}(x_{2}) + P_{L})]$ $M_{H} = [1/2(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = \gamma$	26.7 ft)(18.7 ft)(1.00) $\gamma_{LS_h}(x_3) = (\frac{1}{2}\gamma_{RS})$ f)(26.7 ft) ² (0.264)(1.0) $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ 5.7 ft)(18.7 ft)(1.00) +	$J(9.4 \text{ ft}) + [(250 \text{ psf})(H^2 K_a \gamma_{EH})(x_2)$ $D)](8.9 \text{ ft}) + [(250 \text{ ps})(8.9 \text{ ft}) + [(250 \text{ ps})(18.7 \text{ ft})(1.4  ft$	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS}HK_a\gamma_{LS})$ (26.7 ft)(0.264)(1.0) (20) = 64.59	$(x_1)$ ) = 60 $(x_3)$ 00](13.35 ft)			p-ft/ft
$M_{V} = [(120 \text{ pcf})(2$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = \gamma$ $P_{V} = (120 \text{ pcf})(26)$ Settlement, Time Rate of Co	26.7 ft)(18.7 ft)(1.00) $P_{LS_h}(x_3) = (\frac{1}{2}\gamma_{RS}, \frac{1}{2}\gamma_{RS}, \frac{1}{2}\gamma_{RS}, \frac{1}{2}\gamma_{RS}, \frac{1}{2}\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ 5.7 ft)(18.7 ft)(1.00) + <u>onsolidation and Di</u>	$J(9.4 \text{ ft}) + [(250 \text{ psf})(H^2 K_a \gamma_{EH})(x_2)$ $D)](8.9 \text{ ft}) + [(250 \text{ ps})(8.9 \text{ ft}) + [(250 \text{ ps})(18.7 \text{ ft})(1.4  ft$	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS}HK_a\gamma_{LS})$ (26.7 ft)(0.264)(1.0) (20) = 64.59	$(x_1)$ ) = 60 $)(x_3)$ )(0)](13.35  ft) kip/ft		132.40 ki	
$M_{V} = [(120 \text{ pcf})(2$ $M_{H} = P_{EH} (x_{2}) + P_{L}$ $M_{H} = [1/2(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = 7$ $P_{V} = (120 \text{ pcf})(26)$ Settlement, Time Rate of Co	26.7 ft)(18.7 ft)(1.00) $\gamma_{LS_h}(x_3) = (\frac{1}{2}\gamma_{RS})$ f)(26.7 ft) ² (0.264)(1.0) $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ 5.7 ft)(18.7 ft)(1.00) +	$J(9.4 \text{ ft}) + [(250 \text{ psf})(H^2 K_a \gamma_{EH})(x_2)$ $D)](8.9 \text{ ft}) + [(250 \text{ ps})(8.9 \text{ ft}) + [(250 \text{ ps})(18.7 \text{ ft})(1.4  ft$	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS}HK_a\gamma_{LS})$ (26.7 ft)(0.264)(1.0) (20) = 64.59	$(x_1)$ ) = 60 $(x_3)$ 00](13.35 ft)	tween ig Wall		al long
$M_{V} = [(120 \text{ pcf})(2$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = \beta$ $P_{V} = (120 \text{ pcf})(26)$ Settlement, Time Rate of Co	26.7 ft)(18.7 ft)(1.00) $P_{LS_h}(x_3) = \left(\frac{1}{2}\gamma_{RS}\right)$ $F(26.7 ft)^2(0.264)(1.0)$ $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ 5.7 ft)(18.7 ft)(1.00) + <b>onsolidation and Di</b> Total Settlement at center of Reinforced	J(9.4  ft) + [(250  psf)(B) + C(250	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS}HK_a\gamma_{LS})$ (26.7 ft)(0.264)(1.0 (20) = 64.59 <b>nt:</b> Time for 90%	)(x ₁ )) = 60 )(x ₃ ) 00)](13.35 ft) kip/ft Distance Be Borings Alon	tween ig Wall	132.40 ki Differentia Settlement A	al long
$M_{V} = [(120 \text{ pcf})(2$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = \beta$ $P_{V} = (120 \text{ pcf})(26)$ Settlement, Time Rate of Co	26.7 ft)(18.7 ft)(1.00) $P_{LS_h}(x_3) = \left(\frac{1}{2}\gamma_{RS}\right)$ $F(26.7 ft)^2(0.264)(1.0)$ $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ 5.7 ft)(18.7 ft)(1.00) + <b>onsolidation and Di</b> Total Settlement at center of Reinforced	J(9.4  ft) + [(250  psf)(B) + C(250	+ $(\sigma_{LS} \cdot B \cdot \gamma_{LS})$ 18.7 ft)(1.00)](9.4 ft + $(\sigma_{LS}HK_a\gamma_{LS})$ (26.7 ft)(0.264)(1.0 (20) = 64.59 <b>nt:</b> Time for 90%	)(x ₁ )) = 60 )(x ₃ ) 00)](13.35 ft) kip/ft Distance Be Borings Alon	tween ig Wall	132.40 ki Differentia Settlement A	al long

