FRA-70-22.85 RETAINING WALL 1 PID NO. 98232 FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT (REV. 1)

nternational, Inc

Resource

Prepared For: EMH&T 5500 New Albany Road Columbus, OH 43054

Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, OH 43231

Rii Project No. W-17-140

May 2023

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949

RESOURCE INTERNATIONAL, INC. 6350 Presidential Gateway Columbus, Ohio 43231 Ph: 614.823.4949

December 22, 2022 (Revised May 6, 2023)

Mr. Steve Beal, P.E. Senior Transportation Engineer EMH&T 5500 New Albany Road Columbus, Ohio 43054

Re: Structure Foundation Exploration (Rev. 1) FRA-70-22.85 Far East Freeway Retaining Wall 1 PID 98232 Franklin County, Ohio Rii Project No. W-17-140

Mr. Beal:

Resource International, Inc. (Rii) is pleased to submit this revised Structure Foundation Exploration Report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of the proposed Retaining Wall 1 carrying westbound I-70 to northbound I-270, underneath the existing FRA-70-2293 bridge, as part of the FRA-70-22.85 project within the City of Columbus, in Franklin County, Ohio.

We sincerely appreciate the opportunity to be of continued service to you on this project. If you have any questions regarding the structure foundation exploration, or this report, please do not hesitate to contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

and E Kenl

Daniel E. Karch, P.E. Project Manager – Geotechnical Services

rian Trenner

Brian Trenner, P.E. Vice President – Geotechnical Services

Enclosure: Structure Foundation Exploration Report (Rev. 1)

Planning

Engineering

Construction Management

Technology

ISO 9001: 2015 QMS Committed to providing a high quality, accurate service in a timely manner

Sectio	Page
EXECL	UTIVE SUMMARYI
1.0	INTRODUCTION
2.0	RECONNAISSANCE AND PLANNING 1
	2.1 Site Geology
3.0	EXPLORATION
:	3.1 Historical Borings5
4.0	FINDINGS
•	4.1Surface Materials54.2Subsurface Soils64.3Bedrock74.4Groundwater7
5.0	ANALYSES AND RECOMMENDATIONS7
	5.1 Soil Nail Wall Recommendations 8 5.1.1 Internal (Snail) Stability Analysis 8 5.1.2 Pullout Capacity 9 5.1.3 Sliding Stability 10 5.1.4 Bearing Capacity (Basal Heave) 10 5.1.5 Global Stability 11 5.1.6 Corrosivity 11 5.1.7 Final Evaluation 12 5.2 Lateral Earth Pressure Parameters 12 5.3 Construction Considerations 15 5.3.1 Excavation Considerations 15 5.3.2 Groundwater Considerations 15
6.0	LIMITATIONS OF STUDY16

TABLE OF CONTENTS

APPENDICES

Appendix I	Vicinity Map and Boring Plan
Appendix II	Description of Soil and Rock Terms
Appendix III	Project Boring Logs
Appendix IV	Historic Boring Log
Appendix V	Corrosivity Test Results
Appendix VI	Calculations – Wall 1

EXECUTIVE SUMMARY

The overall purpose of this project is to provide detailed subsurface information and recommendations for the Phase 2 and 3 of the FRA-70-022.85 project. This report is a presentation of the structure foundation exploration performed for the proposed retaining wall along Ramp F carrying westbound I-70 to northbound I-270, underneath the existing FRA-70-2293 bridge. The proposed widening of Ramp F will extend into the existing spill through slope and requires a top-down (cut) retaining wall to support the soil in front of the forward abutment of the overhead bridge structure. The limits of the proposed retaining wall structure along the Ramp F baseline extend from station 1533+25 to station 1535+70, for a total length of approximately 245 feet. Due to the limited clearance beneath the existing structure, it is understood that a soil nail wall type is the preferred option.

Exploration and Findings

One (1) boring, identified as B-001-0-19, was performed for Wall 1 on August 4, 2020 to a depth of approximately 38.8 feet beneath the existing ground surface. The boring was performed along the embankment of the I-70 eastbound to I-270 northbound ramp. On November 30, 2021, one (1) additional boring, identified as B-001-8-21, was performed on the east side of the bridge abutment to a depth of 21.4 feet below existing grade. In addition to the borings performed for this project, Rii utilized historical boring B-011-0-67 in the area of the proposed Wall 1 structure available through the ODOT Transportation Information Mapping System (TIMS).

Underlying the existing fill material in boring B-001-0-19 and the surface material in boring B-001-8-21, the natural soils encountered consisted of both cohesive and granular deposits. The natural cohesive soils were described as silt and clay (ODOT A-6a). The natural granular soils were described as gravel with sand, silt and clay (ODOT A-2-6). It should also be noted that rock fragments were encountered in boring B-001-0-19 at depths ranging between approximately 21 feet and 30 feet below the existing ground surface.

Historic boring B-011-0-67 encountered cohesive and granular material identified as clayey sandy gravel (A-6b) and brown and gray sandy gravel and gravelly sand (ODOT A-1-b, A-2-4).

Bedrock was encountered in borings B-001-0-19 and B-001-8-21 at depths of 33.5 feet and 4.5 feet beneath the existing ground surface, or approximately elevation 769.9 feet and 775.4 feet msl. The bedrock was described as slightly to highly weathered black shale. Additionally, historic boring B-011-0-67 reported top of weathered rock (unclassified) was encountered at the completion depth of approximately 25 feet, or approximately elevation 771.

Groundwater was initially encountered during drilling in borings B-001-0-19 at a depth of 36.0 feet below the existing ground surface. Upon completion of drilling, measurable groundwater was observed in boring B-001-0-19 at a depth of 31.6 feet. Groundwater was not encountered in boring B-001-8-21 prior to the introduction of water for rock coring. Groundwater was not reported on the historic log for boring B-011-0-67.

Analyses and Recommendations

Soil Nail Wall Recommendations

The soil nail wall, Wall 1, was analyzed for internal stability using the Snail software analysis program developed by the California Department of Transportation. Based on plan information provided and the soil parameters selected, a vertical spacing of 3.0 feet and horizontal spacing of 5.0 feet was utilized in the analysis, and an inclination of 15° from horizontal was considered. An 8.0-inch diameter augered hole with a No. 8 steel reinforcement bar (1.0 in²) with 60 ksi yield strength was considered for the soil nail cross section. A nail length of 30 feet was analyzed in order to meet stability requirements. The soil nail wall was evaluated for sliding stability, bearing capacity (basal heave), and global stability, and the results of the analyses indicate the proposed configuration is considered satisfactory for stability requirements.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the Phase 2 and 3 of the FRA-70-022.85 project. The project's proposed improvements include the reconfiguration of the north half of the Brice Road interchange and westbound ramps to Interstate 270 (I-270) interchange, replacement of the Brice Road Bridge over Interstate 70 (I-70), a proposed Brice Road Bridge over new WB-CD Ramp, three (3) noise barriers, twelve (12) retaining walls, and five (5) culvert extensions.

This report is a presentation of the structure foundation exploration performed for the proposed retaining wall along Ramp F carrying westbound I-70 to northbound I-270, underneath the existing FRA-70-2293 bridge. The proposed widening of Ramp F will extend into the existing spill through slope and requires a top-down (cut) retaining wall to support the soil in front of the forward abutment of the overhead bridge structure. The limits of the proposed retaining wall structure along the Ramp F baseline extend from station 1533+25 to station 1535+70, for a total length of approximately 245 feet. Due to the limited clearance beneath the existing structure, it is understood that a soil nail wall type is the preferred option.

The exploration was performed within general accordance of the Ohio Department of Transportation (ODOT) Specifications for Geotechnical Explorations (SGE), dated July 2020. The project site and general location of the proposed retaining walls are as shown on the vicinity map and boring plan presented in Appendix I.

2.0 RECONNAISSANCE AND PLANNING

2.1 Site Geology

Physiographically, the site lies within the Columbus Lowland District of the Southern Ohio Loamy Till Plain Region. This region is characterized by relatively flat-lying silty loam till ground moraine, interspersed with end and recessional moraines, outwash and alluvial deposits. Ground moraines are deposited during the retreat of a glacier, resulting in an undifferentiated mixture of clay, silt, sand and gravel. End moraines are normally associated with ice melting that is neither advancing nor retreating for a period of time. Recessional moraines are deposited when the ice sheet is retreating. Both end and recessional moraines are commonly associated with boulder belts. Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range from silty clay to cobble sized deposits, usually deposited in present and former floodplain areas, such as the Big Walnut Creek and its tributaries.

Based on the Bedrock Geology and Bedrock Topography maps of the Columbus area, obtained from Ohio Department of Natural Resources (ODNR), the bedrock at the proposed project site consists of the Upper Devonian-aged Ohio Shale Formation. The Ohio Shale Formation is further subdivided into three primary members, in descending order: the Cleveland, Chagrin, and Huron Members. The Cleveland Member consists of black shale and is thickest in the north-central portion of the state but thins out to the south and east. The Huron Member consists of gray to greenish gray interbedded shale, siltstone, and very fine-grained sandstone, and is thickest in the northeastern portion of the state, thinning out to the southwest. The Chagrin Member grades into the overlying and underlying members and consists of black, carbonaceous shale. The entire Ohio Shale formation ranges from 250 to over 500 feet thick, with generally laminated to thin bedding and fissile partings, and is characterized by such features as having a petroliferous odor and carbonate/siderite concretions.

According to bedrock topography mapping from ODNR, the top of bedrock forms a ridge to the north of the site, generally lying just outside of the I-270 loop, and roughly underlying the cities of Gahanna and Reynoldsburg. The bedrock surface forms a narrow plateau that extends southwest from the south end of this ridge, which projects beneath the I-270 and I-70 interchange. The bedrock surface slopes down to the northwest and to the southeast from this plateau near the interchange, then generally slopes downward to the south and southeast. The bedrock near the interchange and northward along I-270 and eastward along I-70, lies at an approximate elevation of 750 feet mean sea level (msl), or approximately 27 to 33 feet below the ground surface. The bedrock surface gets only slightly deeper moving northward and approximately 50 feet deeper eastward from the interchange near the Brice Road overpass over I-70. The bedrock surface slopes upward moving northward along Brice Road from the Brice Road overpass over I-70.

2.2 Observations of the Project

The site of the proposed FRA-70-22.85 project is located along the east side of Columbus, in Franklin County, Ohio, with the project limits stretching from the east side approximately 1,400 feet east of the existing I-70 exit ramp to Brice Road, and extending westward along I-70 to the I-270 northbound ramp. On the north side, the project extends along Brice Road to the first intersection north of the bridge, and on the south side, the project extends along Brice Road to the intersection of Chantry Drive and Brice Road. Land use surrounding the majority of the project vicinity is predominantly commercial and residential units.

Based on the site reconnaissance of the project area in the vicinity of Wall 1, the existing pavement north of the forward abutment of the bridge over Ramp F appeared to be in fair condition with minor spalling/rutting near the expansion joint of the bridge approach. The existing embankment is approximately 20 feet in height at the forward abutment. The slopes of the embankment, with the exception of the spill through slope which was protected by aggregate, were heavily vegetated.

3.0 EXPLORATION

One (1) boring, identified as B-001-0-19, was performed for Wall 1 on August 4, 2020 to a depth of approximately 38.8 feet beneath the existing ground surface. The boring was performed along the embankment of the I-70 eastbound to I-270 northbound ramp. On November 30, 2021, one (1) additional boring, identified as B-001-8-21, was performed on the east side of the bridge abutment to a depth of 21.4 feet below existing grade. A summary of the borings analyzed for the subject structure is presented in Table 1.

Wall ID	Boring Number	Alignment	Station	Offset	Latitude ¹	Longitude ¹	Ground Elevation (feet) ¹	Boring Depth (feet)
	B-001-0-19	BL Ramp D2	1029+65	6.1 Lt.	39.934994	-82.848710	803.4	38.8
Wall 1	B-001-8-21	BL Ramp D2	1028+81	17.2 Lt.	39.934761	-82.848719	779.9	21.4

Table 1. Summary of FRA-70-22.85 Wall 1 and 7 Borings

1. Ground surface elevations and coordinates were provided by EMH&T survey.

Boring locations were determined and field located by Rii personnel prior to drilling operations. During the field locating and reconnaissance, Rii utilized a handheld GPS mark the boring locations. Coordinates and ground surface elevations of the as drilled boring locations were provided by the EMH&T survey team.

The borings performed for the subject structures were drilled with a truck-mounted rotary drilling machine, utilizing 3.25-inside diameter hollow-stem augers to advance the holes between sampling attempts. Standard penetration testing (SPT) and split spoon sampling were performed at 2.5-foot intervals to a depth of 25 feet below the existing ground surface and at 5.0-foot intervals thereafter to the boring termination depth in boring B-001-0-19 and to split spoon sampler refusal in boring B-001-8-21. Split spoon sampler refusal is defined as exceeding 50 blows with less than 6.0 inches of penetration by the split spoon sampler

The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Driving resistance is recorded on the boring logs in terms of blows per 6-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N_m) values are corrected to an equivalent (60%) energy ratio, N₆₀, by the following equation. Both values are represented on boring logs presented in Appendix III.

(Rev. 1)

3

$$N_{60} = N_m^*(ER/60)$$

Where: N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

Borings B-001-0-19 was performed using the hammer for a truck-mounted CME-55 drill rig operated by Rii, which was calibrated on September 4, 2018, and has a drill rod energy ration of 91.2 percent. The energy ratio was limited to a maximum of 90 percent for evaluation of the SPT blow count data, in accordance with the ODOT SGE. Boring B-001-8-21 was performed using the hammer for a Mobile B-53 drill rig operated by Rii on this project that was calibrated on September 14, 2020, and has a drill rod energy ratio of 83.6 percent.

Hand penetrometer readings, which provide a rough estimate of the unconfined compression strength (UCS) of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N₆₀). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

Following split spoon sampler refusal in boring B-001-8-21, rock coring was performed using a NQ-sized double-tube diamond bit core barrel (utilizing wire line equipment). Coring produced a 1.85-inch diameter core from which the type of rock and its geological characteristics were determined.

The rock cores obtained from the borings were logged in the field and visually classified in the laboratory. The retrieved core was analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

 $RQD = \frac{\sum \text{segments equal to or longer than 4.0 inches}}{\text{core run length}} \times 100$

The RQD value aids in estimating the general quality of the rock and is used in conjunction with other parameters to designate the quality of the rock mass.

Upon completion of drilling, the borings were backfilled with bentonite chips and soil cuttings. Where borings penetrated the existing pavement, an equivalent thickness of cold patch asphalt was used to repair the pavement surface.

During drilling, field personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the recovered soil and rock samples were visually classified, and select samples from the borings performed for the subject structures were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	16
Plastic and Liquid Limits	AASHTO T89, T90	4
Gradation – Sieve/Hydrometer	AASHTO T88	4

Table 2. Laboratory Test Schedule

The tests performed are necessary to classify existing soil according to the ODOT classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the individual boring logs in Appendix III. A description of the soil and rock terms used throughout this report is presented in Appendix II.

3.1 Historical Borings

In addition to the borings performed for this project, Rii utilized historical borings in the area of the proposed structures available through the ODOT Transportation Information Mapping System (TIMS). Boring B-011-0-67 was reportedly performed in the vicinity of the proposed Wall 1. The boring was drilled to a depth of approximately 25 feet. The subsurface profile and material encountered in this boring is described in section 4.2, and a copy of the boring log is presented in Appendix IV.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

The borings were generally performed in the vicinity of the proposed retaining walls. Boring B-001-0-19 encountered 12 inches of asphalt overlying 4 inches of aggregate base material at the existing ground surface. Boring B-001-8-21 encountered 6.0 inches of topsoil at the existing ground surface.

4.2 Subsurface Soils

Boring B-001-0-19 was drilled within the existing embankment for the I-70 eastbound ramp to I-270 northbound and encountered embankment fill material to a depth of approximately 23 feet below the existing ground surface. The embankment fill material consisted of stiff to very stiff silty clay (ODOT A-6b).

Underlying the existing fill material in boring B-001-0-19 and the surface material in boring B-001-8-21, the natural soils encountered consisted of both cohesive and granular deposits. The natural cohesive soils were described as silt and clay (ODOT A-6a). The natural granular soils were described as gravel with sand, silt and clay (ODOT A-2-6). It should also be noted that rock fragments were encountered in boring B-001-0-19 at depths ranging between approximately 21 feet and 30 feet below the existing ground surface.

Historic boring B-011-0-67 encountered cohesive and granular material identified as clayey sandy gravel (A-6b) and brown and gray sandy gravel and gravelly sand (ODOT A-1-b, A-2-4). It should be noted that the ground conditions reported in the historic boring vary from those encountered in project boring B-001-0-19. Based on the available information, boring B-011-0-67 is reportedly approximately 90 feet southwest of boring B-001-0-19 and at approximately elevation 796 feet.

The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soils encountered ranged from stiff (1.0 < HP \leq 2.0 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 2.0 to over 4.5 tsf (limit of instrument). The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soils encountered were considered medium dense (10 < N₆₀ \leq 30 blows per foot [bpf]). Blow counts recorded from the SPT sampling within the granular soil deposits ranged from 13 to 24 bpf.

Natural moisture contents of the soil samples tested ranged from 7 to 26 percent. The natural moisture contents of the cohesive soil samples tested for plasticity ranged from 9 percent below to 9 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be significantly below to significantly above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in borings B-001-0-19 and B-001-8-21 at depths of 33.5 feet and 4.5 feet beneath the existing ground surface, or approximately elevation 769.9 feet and 775.4 feet msl. The bedrock was described as slightly to highly weathered black shale. Additionally, historic boring B-011-0-67 reported top of weathered rock (unclassified) was encountered at the completion depth of approximately 25 feet, or approximately elevation 770.4 feet msl.

4.4 Groundwater

Groundwater was initially encountered during drilling in borings B-001-0-19 at a depth of 36.0 feet below the existing ground surface. Upon completion of drilling, measurable groundwater was observed in boring B-001-0-19 at a depth of 31.6 feet. Groundwater was not encountered in boring B-001-8-21 prior to the introduction of water for rock coring. Groundwater was not reported on the historic log for boring B-011-0-67.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found in the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the drilling and testing program have been used to determine the shear strength parameters for the soil encountered at the site. These parameters have been used to provide recommendations for the design of the retaining wall structures, as well as the construction specifications related to the retaining wall systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed retaining walls were provided the Rii design team. It is understood that the proposed retaining wall for Ramp F (Wall 1) will be a soil nail wall type that will be constructed along the east side of the ramp to accommodate the proposed widening. The proposed wall will be constructed in front of the existing forward abutment of FRA-70-2293, and will require the existing spill through slope to be cut back. Based on proposed plan and profile information provided, the wall height will vary from approximately 5.0 feet to a maximum height of 15.0 feet. The limits of the proposed retaining wall structure extend along the baseline of Ramp F from station 1533+25 to station 1535+70, for a total length of approximately 245 feet.

5.1 Soil Nail Wall Recommendations

The soil nail wall should be designed and constructed in compliance with the specifications outlined in Section 11.12 of the 2020 AASHTO LRFD BDS and FHWA Geotechnical Engineering Circular No. 7 (GEC 7) Soil Nail Walls (FHWA Publication No. FHWA-NHI-14-007).

It should be noted that per ODOT SGE, borings for soil nail walls should be performed both at the location of the wall as well as in the anchor zone. Boring B-001-1-19 was performed in the anchor zone, but no borings were performed along the proposed wall alignment. Therefore, considerations should be given to performing additional borings along the wall alignment and in the anchor zone in order to evaluate soil conditions along the entirety of the wall alignment.

5.1.1 Internal (Snail) Stability Analysis

The soil nail wall was analyzed for internal stability using the Snail software analysis program developed by the California Department of Transportation. The shear strength parameters and nominal bond stresses provided in Table 3 were utilized in the Snail stability analysis for the soil nail wall.

Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	С' ⁽¹⁾ (psf)	$S_u^{(2)}$ (psf)	<i>q_n</i> ⁽³⁾ (psi)
Stiff to Very Stiff Silty Clay (ODOT A-6b)	125	24	100	1,200 to 3,000	8.0
Very Stiff to Hard Silt and Clay (ODOT A-6a)	130	26	150	3,000 to 4,000	10.0
Shale Bedrock	135	32	4,000		18.0

 Table 3. Shear Strength Parameters Utilized in Stability Analyses

1. Strength parameters are based on Section 10.6.4.2 of the 2020 AASHTO LRFD BDS for cohesive soils and engineering judgment.

2. Undrained shear strength based on SPT and HP values, Section 10.6.4.2 of the 2020 AASHTO LRFD BDS and engineering judgment.

3. Per Table C11.9.4.2-2 and C11.9.4.2-3 from Section 11.12 of the 2020 AASHTO LRFD BDS.

The shear strength parameters for the natural soils were assigned using correlations provided in Section 10.6.4.2 of the 2020 AASHTO LRFD BDS, and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles. A drained cohesion of 100 to 150 psf was considered for the upper cohesive soil layers to limit the length and diameter of the nails required. Based on the soil conditions encountered in the borings, the consideration of this magnitude of drained cohesion is reasonable based on testing results on undisturbed soil samples performed for adjacent projects.

Based on plan information provided, a vertical spacing of 3.0 feet and horizontal spacing of 5.0 feet was utilized in the analysis, and an inclination of 15° from horizontal was considered. The nominal bond strength for each soil and rock layer was determined from Section 11.12 of the 2020 AASHTO LRFD BDS. Based on the conditions encountered in the borings, the soils through which the nails will be installed will consist of stiff to hard cohesive soils (ODOT A-6a and A-6b). An 8.0-inch diameter augered hole with a No. 8 steel reinforcement bar (1.0 in²) with 60 ksi yield strength was considered for the soil nail cross section.

The internal stability was evaluated for a critical failure surface that intersected the toe of the wall, as well as for the critical failure surface that passed below the toe of the wall. A nail length of 30 feet was analyzed in order to meet stability requirements.

5.1.2 Pullout Capacity

The pullout capacity of a soil nail installed in a grouted nail hole is affected by the size of the nail (i.e., perimeter and length) and the ultimate bond strength, q_u . The bond strength is the mobilized shear resistance along the soil-grout interface. The bond strength is rarely measured in the laboratory and there is no standard laboratory testing procedure that can be used to evaluate bond strength. Therefore, designs are typically based on conservative estimates of the bond strength obtained from field correlation studies and local experience in similar conditions. Tables C11.12.5.2-1 through C11.12.5.2-3 from Section 11.12 of the 2020 AASHTO LRFD BDS, which reference Tables 4.4a, 4.4b, and 4.5 of GEC 7, provide typical values of the ultimate bond strength for drilled and grouted nails installed in various soils and bedrock and using different drilling methods. As a result of variability in the bond strength and dependency on the installation technique, the contract specifications should include a requirement that some percentage of the soil nails be load tested in the field to verify bond strength design.

Based on the conditions encountered in the borings, the soils through which the nails will be installed will consist of cohesive soil comprised of stiff to hard cohesive soils (ODOT A-6a and A-6b). Utilizing Table C11.12.5.2-2 from Section 11.12 of the 2020 AASHTO LRFD BDS for fine-grained soils comprised of stiff clay, a nominal bond strength of 8.0 to 10.0 psi (1,152 to 1,440 psf) for the cohesive soils was utilized for design of the soil nails. Considering a drilled diameter of 8.0 inches, a nominal pullout capacity of 2.41 and 3.02 kips per lineal foot (klf) was utilized in the analysis.

5.1.3 Sliding Stability

Sliding stability analysis considers the ability of the soil nail wall to resist sliding along the base of the retained system in response to lateral earth pressures behind the soil nails. Sliding failure may occur when additional lateral earth pressures, mobilized by the excavation, exceed the sliding resistance along the base. The sliding resistance consists of two shear strength components, cohesion and internal friction angle as defined in Section 10.6.3.4 of the 2020 AASHTO LRFD BDS. For long-term stability, the effective friction angle, φ ', provided in Table 3 for the appropriate soil type, should be used for design. For short-term stability, the undrained shear strength, *Su*, provided in Table 3 should be used for design where cohesive soils are present along the base of the wall, and the effective friction angle should be used where granular soils are present. Recommended earth pressure coefficients for the soils encountered at the site are presented in Table 6 and Table 7 in Section 5.2.

Due to the required length of the soil nails for internal stability, the overall mass considered for sliding stability was determined by projecting the proposed 2:1 backslope behind the wall up to intersect with the roadway. For this scenario, it is considered that the soil nails will not provide any contribution to the stability of the sliding mass. Based on the soil mass considered and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the resultant horizontal forces on the back of the soil nail wall **will not exceed** the factored shear resistance at the strength limit state under drained and undrained conditions.

5.1.4 Bearing Capacity (Basal Heave)

Bearing capacity analyses are routinely not necessary for cases where soft soils (e.g., $S_u \le 500 \text{ psf}$) are not present at the bottom of the excavation. An exception to this general rule-of-thumb is when large loads are imposed behind the proposed soil nail wall. For this case, since the retaining wall will be supporting the soil beneath a bridge foundation element, a bearing capacity analysis is recommended regardless of the soil conditions. The bearing capacity should be evaluated using the methodology outlined in Section 5.6.6 of GEC 7 using the undrained shear strength parameters provided in Table 3.

Due to the required length of the soil nails for internal stability, the overall mass considered for bearing stability was determined by projecting the proposed 2:1 backslope behind the wall up to intersect with the roadway. Rii performed a verification of the bearing pressure exerted on the subgrade material for the height and width of soil mass considered. Based on the soil mass considered, the factored equivalent bearing pressure exerted below the wall **will not exceed** the factored bearing resistance at the strength limit state under drained or undrained conditions.

5.1.5 Global Stability

A slope stability analysis was performed to check the global stability of the wall along the alignment. As per the 2020 AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state. Soil parameters utilized in global stability analysis are presented in Section 5.1.1. The computer software program Slide manufactured by Rocscience Inc. was utilized to perform the analysis.

Per Section 11.6.3.7 of the 2020 AASHTO LRFD BDS, overall (global) stability for retaining walls that are integrated with or supporting structural foundations or elements is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.65 is greater than 1.0. Therefore, global stability is satisfied when a minimum factor of safety of 1.5 is obtained. Based on the soil nail configuration, the resulting factor of safety under drained conditions (long-term stability) along the alignment was greater than 1.5.

5.1.6 Corrosivity

Corrosivity testing was performed on samples retrieved from boring B-001-0-19 on samples between the depths of 1.0 feet to 20.0 feet below existing grade. The pH of the soils ranged was 7.49. The sulfate concentration 840 parts per million (ppm). The soluble chloride ion content in the soil was 420 mg/kg. The resistivity of the soil 790 ohm-cm. Based on the results of the resistivity, the correlation with ferrous metal and corrosivity category is developed.

Soil Resistivity (ohm – cm)	Corrosivity Category
Greater than 10,000	Mildly corrosive
2,001 to 10,000	Moderately Corrosive
1,001 to 2,000	Corrosive
0 to 1,000	Severely Corrosive

 Table 4. Correlation between Electrical Resistivity and Corrosivity

1. Romanoff, Melvin. Underground Corrosion, NBS Circular 579. Reprinted by NACE. Houston, TX, 1989, pp. 166-167

Based on soil resistivity testing, the soils for this project are considered severely corrosive.

Borings / Sample	Soil Resistivity (ohm-cm)	Corrosivity Category	
B-001-0-19 SS-1 through SS-10	790	Severely Corrosive	

Table 5. Soil Resistivity	and Corrosivity Category

In general, other factors, such as pH, sulfate and moisture content of the soil also affect the corrosion rate of the soil nails. Results of the soil resistivity, sulfate content, and chloride concentration indicate that these levels in the soil are severely corrosive. Based on the results of the corrosivity testing performed, Rii recommends Class A bar encapsulation corrosion protection in accordance with Section 11.12.8 of the 2020 AASHTO LRFD BDS.

5.1.7 Final Evaluation

Based on the results of the internal, external and global stability analysis performed for the soil nail wall, the recommended minimum nail lengths are presented in Section 5.1.1. Internal stability of the soil nail wall with a failure surface extending below the bottom of the wall was the controlling factor in the determination of the recommended nail lengths. Additionally, the controlling component in the internal stability analysis was pullout of the nails. However, it should be noted that yielding of the bar steel may control if a lower grade of steel than 60 ksi or smaller bar diameter is used in the final design.

Calculations for internal (Snail), external (bearing and sliding resistance) and global (Slide) stability of the soil nail wall are provided in Appendix V.

5.2 Lateral Earth Pressure Parameters

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (φ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 6 and Table 7.

Soil Type	γ (pcf) ¹	c (psf)	φ	<i>k</i> _a	k _o	k _p
Stiff Cohesive Soil	120	2,000	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose to Medium Dense Granular Soil	120	0	28°	0.32	0.53	5.07
Dense to Very Dense Granular Soil	130	0	34°	0.25	0.44	8.00
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	120	0	32°	0.27	0.47	6.82

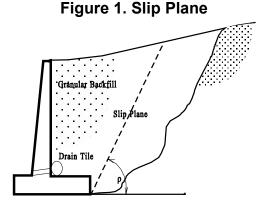
 Table 6. Estimated Undrained Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Soil Type	γ (pcf) ¹	c (psf)	φ'	<i>k</i> _a	k _o	k_p
Stiff Natural Cohesive Soil	112	0	25°	0.36	0.58	4.26
Very Stiff to Hard Natural Cohesive Soil	125	0	27°	0.33	0.55	4.80
Loose to Medium Dense Granular Soil	120	0	28°	0.32	0.53	5.07
Dense to Very Dense Granular Soil	130	0	34°	0.25	0.44	8.00
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	120	0	32°	0.27	0.47	6.82

Table 7. Estimated Drained Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.


These parameters are considered appropriate for the design of subsurface walls and excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions. For proposed wing walls or temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active conditions (k_a) and passive pressure (k_p). The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is assumed). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

In order to alleviate the build-up of hydrostatic pressure behind the walls, a minimum of 2.0 feet of clean free-draining granular fill (i.e., No. 57 gravel) should be placed full depth behind the walls. If granular fill other than No. 57 gravel is used, it should not have more than 8 percent (by weight) passing the No. 200 screen, and should be compacted to 95 percent of the maximum dry density as determined by the Standard Proctor Test (ASTM D698). A perforated, corrugated drain tile, wrapped with filter fabric, should be placed along the perimeter at the base of the walls for drainage purposes. A clay cap (minimum 1.0-foot thick) should be placed overtop the granular backfill to deter inflow of the surface water. The drainage system should properly outlet to a sewer or to a properly sized sump pump system.

Temporary retaining structures should be designed using the undrained soil parameters provided in Table 6, and the design should follow all applicable guidelines for the type of retaining structure utilized. Permanent retaining structures should be designed using the drained soil parameters provided in Table 7. Regardless of whether the retaining structure is temporary or permanent, the effective unit weight ($\gamma' = \gamma - 62.4 \text{ pcf}$) plus the hydrostatic water pressure ($\gamma_w * h_w$, where h_w is the height of water behind the wall above the base of the wall) should be utilized below the design groundwater level. The lateral earth pressure coefficients should only be applied to the horizontal pressure resulting from the effective overburden pressure, and should not be applied to the hydrostatic water pressure.

The 2.0 feet of free draining material placed behind the wall prevents the formation of hydrostatic pressures as noted above. However, unless the free draining granular backfill is placed beyond the slip plane (see Figure 1), it has no influence on the equivalent fluid weight of the soil. If free-draining granular fill (meeting the requirements listed above) is to be placed beyond the slip plane (ρ =45° for at-rest conditions; ρ =45°+ ϕ /2 for active conditions), the values presented for the compacted granular engineered fill can be employed, consequently lowering the pressures on the wall.

Backfill Rankine Zone with Select Backfill

5.3 Construction Considerations

All site work shall conform to local codes, and to the latest ODOT CMS, including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.3.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes			
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage			
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage			
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage			
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None			
Rock to 3.0' +/- below Auger Refusal	0.75 : 1.0	Above Ground Water Table and No Seepage			
Stable Rock	Vertical	Above Ground Water Table and No Seepage			

 Table 8. Excavation Back Slopes

5.3.2 Groundwater Considerations

Based on the groundwater observations made during drilling, groundwater seepage is not anticipated during construction. Where groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

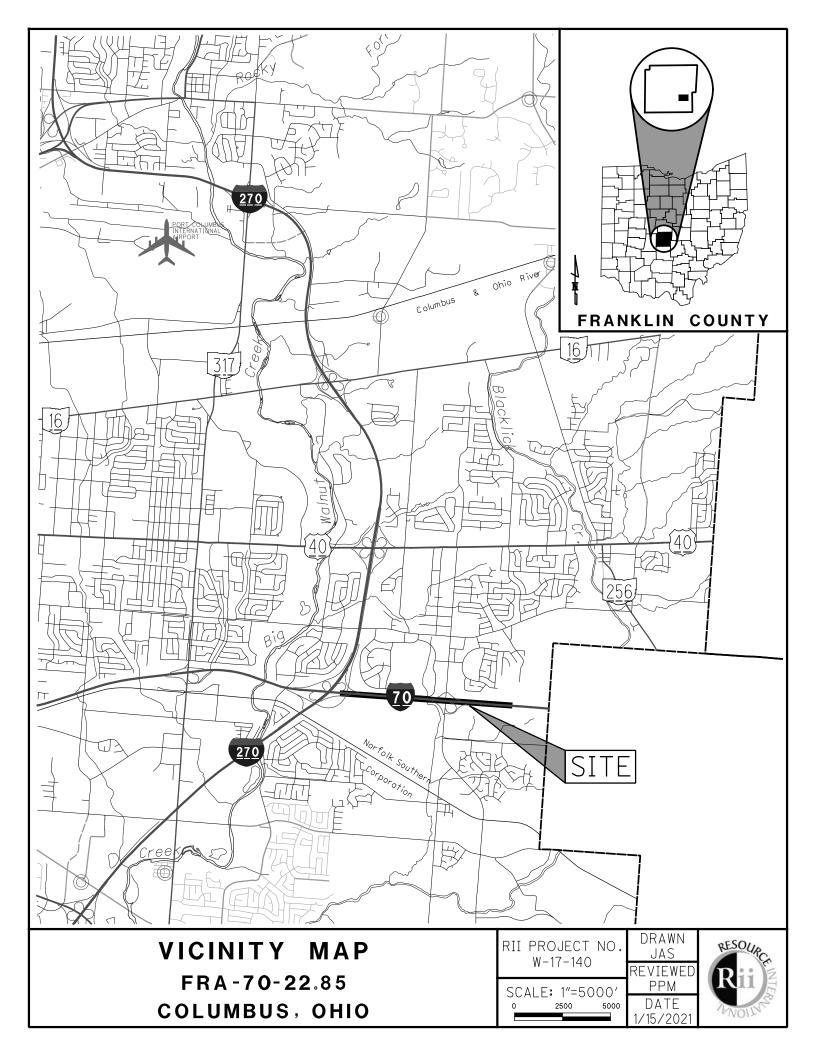
The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of our recommendations.

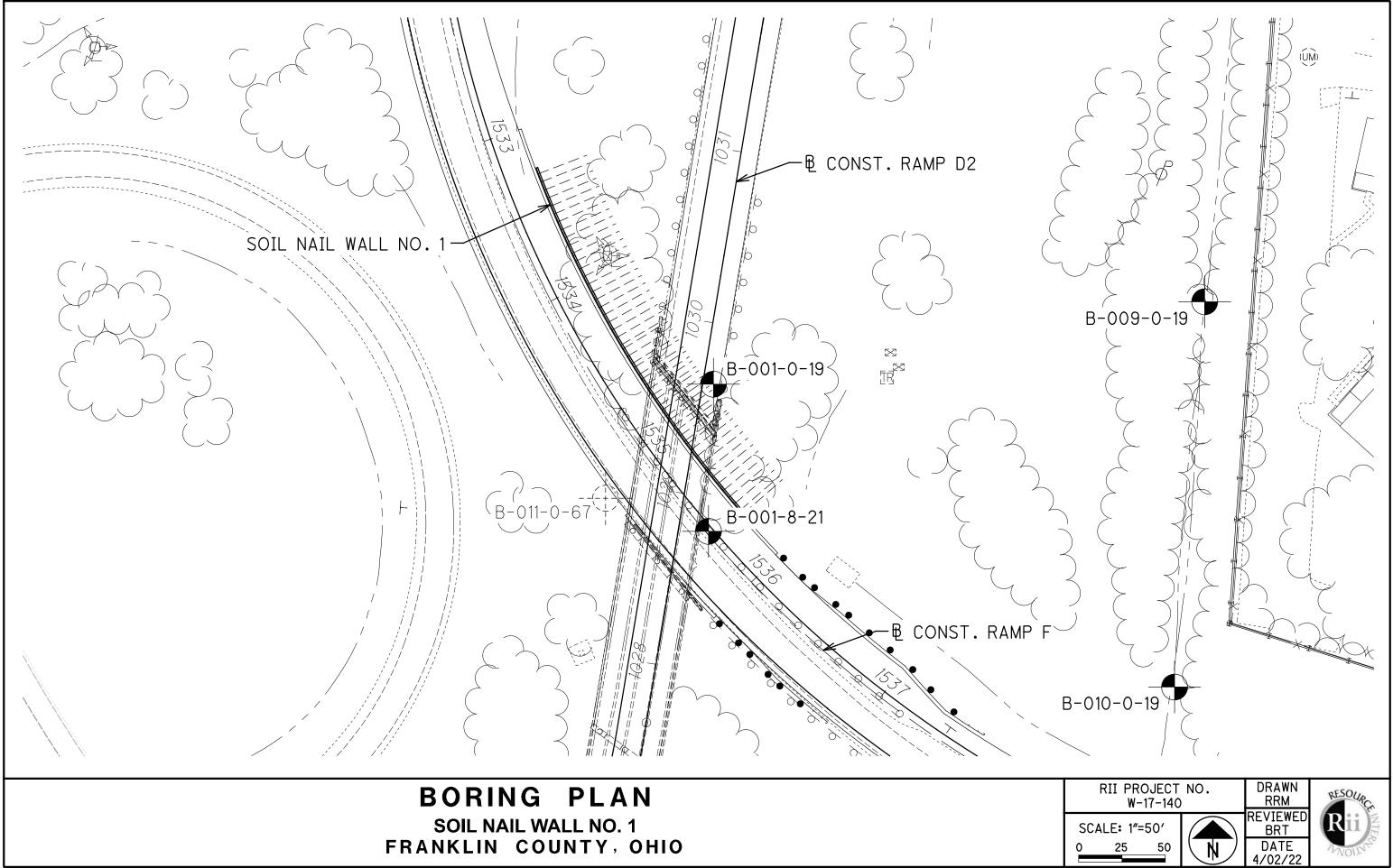
The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil information and the preliminary design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence or hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.


(Rev. 1)


16

VICINITY MAP AND BORING PLAN

APPENDIX I

APPENDIX II

DESCRIPTION OF SOIL AND ROCK TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>Granular Soils</u> - The relative compactness of granular soils is described as: ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

Description	<u>Blows per foot – SPT (N₆₀</u>				
Very Loose	Below		5		
Loose	5	-	10		
Medium Dense	11	-	30		
Dense	31	-	50		
Very Dense	Over		50		

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as: ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

		confin	
<u>Description</u>	<u>Compr</u>	essio	<u>n (tst)</u>
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

Soil Fraction	USCS Size	
Boulders	Larger than 12"	
Cobbles	12" to 3"	
Gravel coar	3" to ¾"	
fine	³ ⁄ ₄ " to 4.75 mm (³ ⁄ ₄ " to #4 Sieve)	
Sand coar	4.75 mm to 2.0 mm (#4 to #10 Sieve)	
med	2.0 mm to 0.42 mm (#10 to #40 Sieve)	
fine	0.42 mm to 0.074 mm (#40 to #200 Sie	ve)
Silt	0.074 mm to 0.005 mm (#200 to 0.005 r	nm)
Clay	Smaller than 0.005 mm	

Modifiers of Components - Modifiers of components are as follows:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	≥ Liquid Limit	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

Term	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

ODOT Size Larger than 12" 12" to 3" 3" to 3/4" 3/4" to 2.0 mm (3/4" to #10 Sieve) 2.0 mm to 0.42 mm (#10 to #40 Sieve)

0.42 mm to 0.074 mm (#40 to #200 Sieve) 0.074 mm to 0.005 mm (#200 to 0.005 mm) Smaller than 0.005 mm

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Description	Field Parameter
Unweathered	No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a right appearance with no discoloration. Fractures show little or not staining on surfaces.
Slightly Weathered	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the rock volume presents alteration.
Moderately Weathered	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15% of the rock volume presents alterations.
Highly Weathered En	tire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.
Severely Weathered	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more resistant rock may be present but the material can generally be molded and crumbled by hand pressures.

Strength of Bedrock – The following terms are used to describe the relative strength of bedrock:

<u>Description</u> Very Weak	<u>Field Parameter</u> Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description	<u>Thickness</u>
Very Thick	Greater than 36 inches
Thick	18 to 36 inches
Medium	10 to 18 inches
Thin	2 to 10 inches
Very Thin	0.4 to 2 inches
Laminated	0.1 to 0.4 inches
Thinly Laminated	Less than 0.1 inches

Fracturing – Describes the degree and condition of fracturing (fault, joint, or shear):

Very Poor Poor Fair Good Very Good

Degree of Fracturing	
Description	<u>Spacing</u>
Unfractured	Greater than 10 feet
Intact	3 to 10 feet
Slightly Fractured	1 to 3 feet
Moderately Fractured	

Aperture Widt	h	Surface Roughness		Surface Roughness	
Description	Width	Description	Criteria		
Open	Greater than 0.2 inches	Very Rough	Near vertical steps and ridges occur on surface		
Narrow	0.05 to 0.2 inches	Slightly Rough	Asperities on the surfaces distinguishable		
Tight	Less than 0.05 inches	Slickensided	Surface has smooth, glassy finish, evidence of Striations		

<u>RQD</u> – Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006): <u>RQD %</u> <u>Rock Index Property Classification (based on RQD, not slake durability index)</u>

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	Cation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments	A-			30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and/or Stone Fragments with Sand	A-	1-Ь		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
<u>4.0.0.0</u> <u>6.0.00</u> <u>6.0.00</u>	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.000 0.000 0.000 0.000 0.000	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + + + + + + + + + + + + + + + $	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Sil†y Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	Sod and Topsoil Pavement or Base MA^{-1} $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$	1	CLASS trolled escribe	SIFIED BY	VISUAL	INSPEC Bouldery			P Pe	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX III

PROJECT BORING LOGS

BORING LOGS

Definitions of Abbreviations

- AS=Auger sampleGI=Group index as determined from the Ohio Department of Transportation classification systemHP=Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LL_o = Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL_o/LL is less than 75 percent, soil is classified as "organic".
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

 \sum segments equal to or longer than 4.0 inches x100

core run length

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m).
- N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
- SS = Split spoon sample
- 2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N₆₀ values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- ▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Gravel
SA	=	% Sand
SI	=	% Silt
CL	=	% Clay

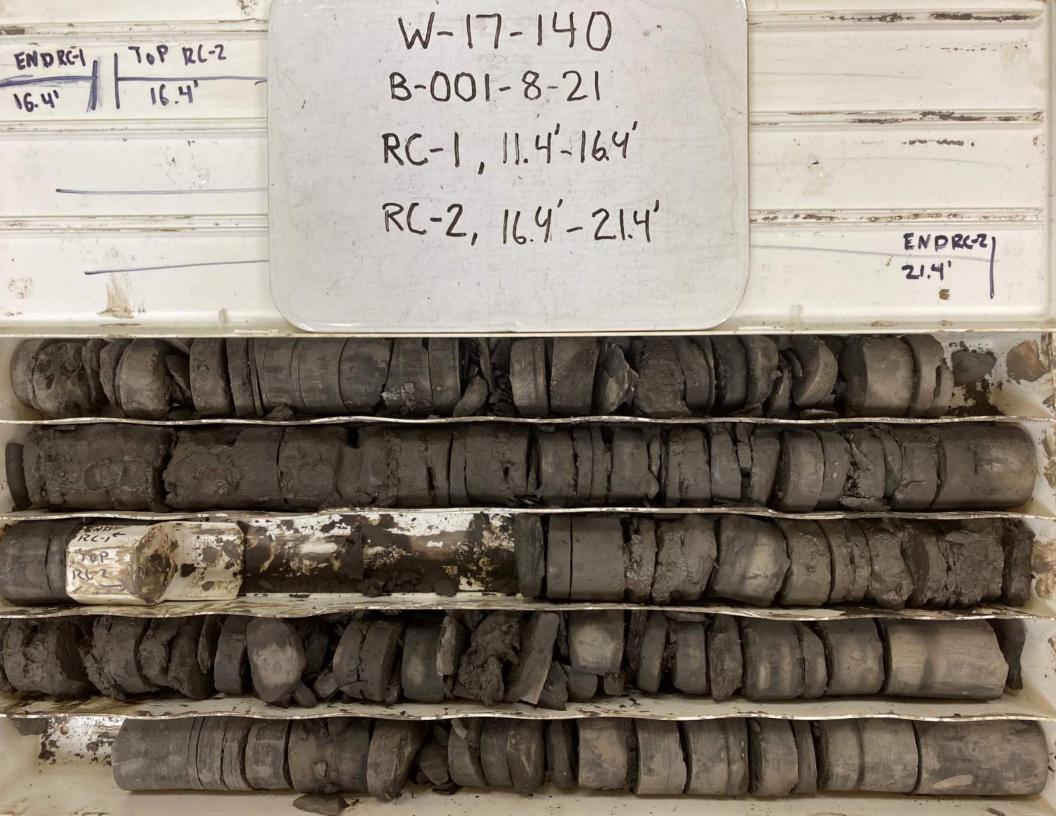
Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
ΡI	=	Plasticity Index

WC = Water content (%)

RESOURCE INTERNATIONAL, INC.

PROJECT: FRA-070-22.85 TYPE: RETAINING WALL	DRILLING FIRM / SAMPLING FIRM				DRILL RIG: CME 55 (386345) HAMMER: AUTOMATIC						TION / NMEN	EXPLORATION B-001-0-19							
PID:98232SFN:N/A	DRILLING METHO	DD:	3.25" HSA	c	CALIBRATION DATE: 9/4/18			ELEV	ATIO	N:	803.4	4 (MSL	RAMP .)		3	- 8.7 ft.	PAGE		
	SAMPLING METHOD:		SPT	E	NERGY F			90		LAT / LONG:							.848710		1 OF 2
MATERIAL DESCRIPTION AND NOTES		ELEV. 803.4	DEPTHS	SPT RQI		REC (%)	SAMPLE ID	HP (tsf)	GR	GRADATI						ERG PI	wc	ODOT CLASS (GI)	BACK
1.0' - ASPHALT (12.0")	XX	X			-	(70)		(101)	OIX	00	10	01	0L						
0.3' - AGGREGATE BASE (4.0")		802.4		5 7	18	50	SS-1	4.00	-	_	-	-	-	-	-	-	18	A-6b (V)	
FILL: STIFF TO VERY STIFF, BROWN, GRAY AND I BROWN SILTY CLAY, SOME COARSE TO FINE SAN TRACE FINE GRAVEL, DAMP TO MOIST.			- 2 + - - 3		5														
			- 4 -	7 3	4 11	44	SS-2	2.00	-	-	-	-	-	-	-	-	24	A-6b (V)	
			- 5 - 6 -	6	-														
			- 7 -	4	5 14	58	SS-3	2.75	-	-	-	-	-	-	-	-	20	A-6b (V)	
			- 8 - - - 9 -	4 4	15	69	SS-4	3.00	7	16	14	30	33	37	19	18	18	A-6b (9)	
			- 10 -		6			0.00	•		· ·			01	10				
			11 - 12	5 6	7 20	92	SS-5	3.50	-	-	-	-	-	-	-	-	15	A-6b (V)	T Land
			- 13 -	4															
			14 15	8	27 10	33	SS-6	3.50	-	-	-	-	-	-	-	-	13	A-6b (V)	
			- 16 - - 17 -	10 9	29	67	SS-7	3.00	-	-	-	-	-	-	-	_	20	A-6b (V)	A L DA
			18		10														
			- 19 - - 20 -	12 15 1	44	61	SS-8	3.00	1	6	14	38	41	38	19	19	17	A-6b (12)	
-TRACE LIMESTONE FRAGMENTS IN SS-9				9			00.0	0.05											
		780.4	- 22 - - - 23 -	15	24 59	33	SS-9	3.25	-	-	-	-	-	-	-	-	14	A-6b (V)	
VERY STIFF TO HARD, BROWN, GRAY AND DARK BROWN TO BLACK SILT AND CLAY , SOME COARS FINE SAND, TRACE FINE GRAVEL, DAMP TO MOIS -LIMESTONE FRAGMENTS IN SS-10	SE ТО		_ 24 - _ 24 - _ 25 -	10 11 1	36	44	SS-10	3.00	2	11	16	37	34	29	16	13	7	A-6a (8)	S Jack
			26 27																JAN JAN
			- 28 -	8															
-SHALE FRAGMENTS IN SS-11			- 29 -	13	35	44	SS-11	-	-	-	-	-	-	-	-	-	10	A-6a (V)	


PID:98232	SFN:	PROJECT:	FRA-070-22.85	STATION	/ OFFSE	T: <u>1</u>	02965	.04, 6' RT	<u> </u>	TART	Г: _8	/4/20	_ E1	ND:	8/4	/20	_ P(G 2 OF	= 2 B-00	01-0-19
	MATERIAL DESCRIP AND NOTES	TION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE		GR	GRAD	ATIC	DN (% SI	5) CL	ATT		ERG	wc	ODOT CLASS (GI)	BACK FILL
BROWN TO E	TO HARD, BROWN, GRAY BLACK SILT AND CLAY , SO RACE FINE GRAVEL, DAN	ME COARSE TO	773.4	<u>∨ 771.8</u> - 31 - 32 - 32 - 33 - 33 - 33 - 33 - 33			(76)		(tsf)	GR	0.5	FS	51	UL		PL	PI	wc		
SHALE : BLAC	CK, HIGHLY WEATHERED.		764.6	₩ 767.4 - 35 - 35 - 36 - 37 - 37 - 38 - 38 - 38 - 38	23	60	69	SS-12 SS-13	-	-	-	-	-	-	-	-	-		Rock (V)	alland < a

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 36.0' AND AT COMPLETION @ 31.6'; CAVE-IN DEPTH @ 34.8' ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 50 LBS. BENTONITE CHIPS AND SOIL CUTTINGS.

RESOURCE INTERNATIONAL, INC.

.0" - TOPSOIL	<u>11/30/21</u> END: <u>11/30/21</u> MATERIAL DESCRIPTION AND NOTES , DARK BROWN GRAVEL WITH S , MOIST.	SAMPLING METH	ELEV. 779.9 779.4	SPT DEPT		SPT/	ERGY F			83.6				J.							
IEDIUM DENSE	, DARK BROWN GRAVEL WITH S	SAND,				RQD		(%)	SAMPLE ID	HP (tsf)		RAD/ cs		N (%) CL	ATT	93476 ERBE PL	ERG PI	WC	ODOT CLASS (GI)	BA FII
ILT, AND CLAY	, MOIST.				- 1 -	3		()		()		_			-						4 C 4 4 5 2 4
					- 2 -	4 7	15	89	SS-1	-	-	-	-	-	-	-	-	-	12	A-2-6 (V)	
HALE : DARK (GRAY, HIGHLY WEATHERED.		775.4	—TR—	4	6 7 9	22	75	SS-2A SS-2B	-	40 -	13 -	12 -	21 -	14 -	28 -	17 -	11 -	14 13	A-2-6 (0) Rock (V)	
						23 27 23	70	100	SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					- 8 -	46 50/5"	-	100	SS-4	-	-	-	-	-	-	-	-	-	-	Rock (V)	
HALE : BLACK,	SLIGHTLY WEATHERED, SLIGH	ITLY	768.5		- 10 - - 11 - - 12 -	50/5"	-	_100_	SS-5	-	-	_	-	-	-		_			Rock (V)	
SHALE : BLACK, SLIGHTLY WEATHERED, SLIGHT STRONG, THIN BEDDED, FISSILE, FRACTURED, NARROW, SLIGHTLY ROUGH, BLOCKY/DISTURBED/SEAMY, GOOD. -CLAY SEAMS PRESENT THROUGHOUT				- 13 - - 13 - - 14 - - 15 - - 16 -	0		84	NQ-6											CORE		
			758.5		- 17 - - 18 - - 19 - - 20 - - 21 -	0		96	NQ-7											CORE	

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 25 LB. BENTONITE CHIPS AND SOIL CUTTINGS

APPENDIX IV

HISTORIC BORING LOGS

and the second		2.5.2.2.1	<u>B-11</u>	Skotion & Offset 1028+78,	28' Lt. (5th Pier)		-	-		-	796.0	extrement of	50000000-0	
Elev.	Depin	Std. Pen. (N)	Rec. Loss	Description	Sam	pie _	× T	and the second states	-	and the second second second	(poteri	CONCERNMENT OF STREET,	the state of the state of the	SH
796.0	٩		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u>, l</u> u	Se lo	<u>.3</u> [f	<u>S. Si</u>	Cig	<u>il L L</u>	. <u>1</u> 71.	W.C.	Ļ
	2													
	Let													
791.0	6	3/4	Brown	layey Sandy Gravel	1	1	39 :	12]	12 1	4 23	40	19	15	A-
				in and and a second									e!	
786.0	R													
00		4/14	Brown f	Hilty Sandy Gravel	2		49 🗄	19]]	13 -	- 41-	NP	NP	11	4-
7835			Brown (Sandy Gravel (Wash Sample)	3		50 :	27]	14 -		NP	NP	15	A-
781.0														
		F	Brown C	Sand- (Wash Sample) (Sample Reave	d 4' in Casing) 4		8	83	8 -	- 1 -	NP	NP	28	4-
778.5	18		Brown (ravelly Sand (Wash Sample)	5		19	70	6 -	-5 -	NP	NP	24	Å-
776.0	20	15/19		ilty Sandy Gravel	STATE PROCESSING 6		48	17]	12 1	5 8			14	

APPENDIX V

CORROSIVITY TEST RESULTS

Engineering Consultants

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Project Name:	FRA-070-22.85	Date:	3/31/2022
Project No.:	W-17-140	Tested b	/: EM
Boring:	B-001-0-19		

pH of Soils (ASTM D4972 - Method A)

				Sieve # 10:	Х
Boring ID	Sample ID	Depth (feet)	pH in water	pH in calcium chloride sol.	Temp. (C)
Composite Sample	SS-1 to SS-9	1.0'-20.0'	8.05	7.49	22.2

RESOURCE INTERNATIONAL, INC. Engineering Consultants 6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Project Name:	FRA-070-22.85	Date:	3/31/2022
Project No.:	W-17-140	Tested by:	EM
Boring:	B-001-0-19		

Minimum Laboratory Soil Resistivity (AASHTO T-288)

Boring ID	Sample ID	Depth (feet)	Resistivity (ohm/cm)
Composite Sample	SS-1 to SS-9	1.0'-20.0'	790

Engineering Consultants

6350 Presidential Gateway Columbus, OH 43231 Phone: (614) 823-4949 Fax: (614) 823-4990

Project Name:	FRA-070-22.85	Date:	3/31/2022
Project No.:	W-17-140	Tested by:	EM
Boring:	B-001-0-19		

Testing for Sulfate Content in Soil (ODOT S 1122)

Boring ID	Sample ID	Depth (feet)	Sulfate content (ppm)	
Composite Sample	SS-1 to SS-9	1.0'-20.0'	840	

Engineering Consultants

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Project Name:	FRA-070-22.85	Date:	3/31/2022
Project No.:	W-17-140	Tested by:	EM
Boring:	B-001-0-19		

Measurement of Oxidation-Reduction Potential (ORP) of Soil

(ASTM C1498 1:1 soil in water mixture)

Boring ID	Sample ID	Depth (feet)	ORP (mV)
Composite Sample	SS-1 to SS-9	1.0'-20.0'	216

Engineering Consultants

6350 Presidential Gateway Columbus, OH 43231 Phone: (614) 823-4949 Fax: (614) 823-4990

Project Name:	FRA-070-22.85	1	Date:	3/31/2022
Project No .:	W-17-140		Tested by:	EM
Boring:	B-001-0-19			

Testing for Water-Soluble Chloride Ion in Soil (AASHTO T-291)

Method of Testing: Method A

Boring ID	Sample ID	Depth (feet)	Water-soluble Chloride Ion in Soil (mg/kg)	
Composite Sample	SS-1 to SS-9	1.0'-20.0'	420	

APPENDIX VI

CALCULATIONS - WALL 1

			======================================		
			Version: 2.2.	2	
		Copyri	ght© State of Ca	lifornia.	
			All rights reser	ved.	
			File Informati		
		Vall 1 - 4 rows,			
Run Date: 12/2 Run Time: 10:2	2/22	VAIL 1 - 10WS,	1910 Gek. 5112		
			======================================	======================================	
Description: Location: EA:	FRA-70-22	2.85			
Project ID: Wall No.:	W-17-140 1				
Structure No.: Station:					
Engineer:	D. Karch Designer				
Comments:					
Soil Nail wall	analysis i	for B-001-0-19			
	=========		Geometry		
Layout:					
Reference Point	:				
At: Toe of Wall Distance From C Elevation Above	rigin:	0.00 feet 776.60 feet			
Wall Dimensions	:				
Wall Height: Facing Angle: Facing Batter:		feet degrees :12 H:V			
Ground Surface:					
Number of lines	that def:	ine the ground s	urface above the	wall: 3	
	Distance feet				
1 0					
2 27 3 0	25.00				
Number of lines	that def:	ine the ground s	urface in front	of the toe: 1	
-	Distance feet				
No. degrees 1 0					
Soil Layers:					
Number of Layer	s: 3				
Layers Below th		er:			
		f the Layer: fee	t		
Pc				Point 2 Elevation	
2	10.00	780.50	30.00	780.50	
3 -	40.00	770.00	30.00	770.00	

Ground Water:

Include Cround Water, Yes				
Include Ground Water: Yes Phreatic Correction: Yes Number of Points: 1				
Distance Elevation No. feet feet				
1 771.50				
	Soil Nat	ils		
Dimensions and Properties:				
Maximum Vertical Spacing: Number of Soil Nail Rows: Soil Nail Design Parameters: Soil Nail Length: Inclination From Horizontal: Vertical Distance from Top of Wall to First Row: Vertical Spacing: Horizontal Spacing H: Nail Bar Diameter Ø: Nail Bar Yield Strength fy:	3.00 feet 4 Uniform TH 30.00 feet 15 degrees 3.50 feet 3.00 feet 5.00 feet 1.000 inches 60.0 ksi	nroughout Cross-S	ection	
Facing Resistance:				
LRFD Factored Facing Resistance:	Temporary Perr 27.2	nanent Seismi 36.8 36.	c 8 kips	
	Soil Proper	rties		
		Friction Angle	Cohesion	
Layer Description	Y pcf	φ' degrees	psf	
1 Embankment Fill 2 V. Stiff Till 3 Shale	125 130 135		150	
	Loads			
Applied Loads:				
Seismic:				
Horizontal Seismic Coefficient Kh:				
External Load:				
Apply external load: No				
Surcharges:				
Apply surcharges: Yes				
Distance from Top of Wall Begin End No. feet feet	Begin	End		
1 27.00 55.00	250			
		ce Factors		
Load Factors:	ile Force (EULTA	CEC No. 7 2015		
Apply Load Factors to: Soil Nail Tens				
Temporary Soil Nail Tensile Force: 1.35	Permanent 1.35	Seismic 1.00		

Temporary Permanent Seismic Pullout (Distal): 0.65 0.65 0.65 Pullout (Proximal): 0.65 0.65 0.65 Nail Bar Yield: 0.75 0.75 0.75 Cohesion: 0.75 0.65 0.90 Friction Angle: 0.75 0.65 0.90										
				Options						
Search Limits:										
Begin: 3.00 feet End: 55.00 feet										
Below Toe Searches (BTS):										
Perform below Toe Search: Yes Number of BTS Points: 5 BTS Depth: 7.00 feet Interface Friction 0.33 Advanced Search Options: 0.33										
Advanced Search	Options:									
Use Advanced Search Options: Yes Inclination of Interslice Force: Use Average Failure Angle										
			Res	sults						
Analysis:										
Method: Scenario: Perma	LRFD									
Capacity/Demand										
Minimum: Found at Search Found at Grid Po Found at Search Load at Soil Nai	int: 1 Level: 5.6	0 1	ow the toe	of the wal	11					
Calculated Servi Load Factor x To Factored Facing F_factored ≥ To_	ce Load at So = To_factore Resistance, F	d:	_	cal), To:	14.2 kij 19.1 kij 36.8 kij	ps				
Nominal Pullout	Resistance:									
Layer Descripti		ullout Res:	istance klf							
1 Embankmen 2 V. Stiff 3 Shale			2.413 3.016 5.429							
Results by Searc	h Level:									
** Indicates Min	imum Capacity	/Demand Rat	tio:							
Search Level: At	the toe of t				18.7 kips					
				e Planes			Reinforc	ement		
Capaci	m Distance ty From Toe		wer Length					Controlling		
Point Ratio	or wall feet	degrees	feet	degrees	feet	Level	ksi	Resistance Failure Mode		
	9 3.00					2	33.3	Bar Yield		
2 1.8	5 8.20	34.87	3.00	69.59	16.46	1 2 3 4	33.3	Bar Yield Bar Yield		

3	2.60	13.40	36.44	6.66	63.08	17.76	1 2 3 4	32.2 33.3 33.3 33.3	Pullout Bar Yield Bar Yield Bar Yield
4	2.19	18.60	0.00	9.30	67.49	24.29	1 2 3 4	25.2 31.2 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
5	2.02	23.80	0.00	7.14	56.41	30.12	1 2 3 4	25.4 32.3 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
6	1.63	29.00	0.00	8.70	52.39	33.26	1 2 3 4	22.3 29.5 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
7	1.42	34.20	0.00	6.84	43.92	37.99	1 2 3 4	22.1 30.1 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
8	1.33	39.40	0.00	7.88	39.90	41.08	1 2 3 4	19.5 28.0 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
9	1.29	44.60	0.00	8.92	36.45	44.36	1 2 3 4	17.1 25.9 32.5 33.3	Pullout Pullout Pullout Bar Yield
10	1.34	49.80	0.00	14.94	37.09	43.70	1 2 3 4	10.5 18.5 24.1 33.3	Pullout Pullout Pullout Bar Yield
11	1.34	55.00	0.00	16.50	34.39	46.65	1 2 3 4	8.0 15.7 21.7 33.3	Pullout Pullout Pullout Bar Yield

Search Level: 1.40 feet below the toe of the wall Facing Design Force = 18.7	kips	(Clouterre)
--	------	-------------

				Failure	e Planes			Reinforce	ement
	Minimum Capacity	Distance From Toe	Lov	ver	Upp	per			Controlling
Search Point	Demand Ratio	of Wall feet	Angle degrees	Length feet	Angle degrees	Length feet	Level	Stress ksi	Resistance Failure Mode
1	1.08	3.00	57.37	3.89	86.08	13.15	1 2 3 4	33.3 33.3 33.3 33.3 33.3	Bar Yield Bar Yield Bar Yield Bar Yield
2	1.49	8.20	20.65	5.26	78.88	17.01	1 2 3 4	33.3 33.3 33.3 33.3	Bar Yield Bar Yield Bar Yield Bar Yield
3	1.60	13.40	21.57	5.76	67.14	20.70	1 2 3 4	31.0 33.3 33.3 33.3	Pullout Bar Yield Bar Yield Bar Yield
4	1.56	18.60	23.13	6.07	58.75	25.10	1 2 3 4	28.9 33.3 33.3 33.3	Pullout Bar Yield Bar Yield Bar Yield
5	1.71	23.80	41.68	31.87	-90.00	5.30	1 2 3 4	27.6 33.3 33.3 33.3	Pullout Bar Yield Bar Yield Bar Yield
6	1.47	29.00	40.38	34.26	62.41	6.26	1 2 3 4	26.9 33.3 33.3 33.3	Pullout Bar Yield Bar Yield Bar Yield

7	1.30	34.20	0.00	6.84	45.41	38.97	1 2 3 4	20.9 28.8 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
8	1.20	39.40	0.00	11.82	45.18	39.12	1 2 3 4	14.8 22.7 27.2 31.7	Pullout Pullout Pullout Pullout
9	1.16	44.60	0.00	13.38	41.63	41.77	1 2 3 4	11.8 19.4 24.4 29.3	Pullout Pullout Pullout Pullout
10	1.18	49.80	0.00	9.96	34.86	48.55	1 2 3 4	13.1 22.1 28.0 33.3	Pullout Pullout Pullout Bar Yield
11	1.19	55.00	0.00	11.00	32.24	52.02	1 2 3 4	10.8 19.6 26.0 32.4	Pullout Pullout Pullout Pullout

Search Level: 2.80 feet below the toe of the wall Facing Design Force = 18.7 kips (Clouterre)

				Failur	e Planes		Reinforcement			
		Distance From Toe	Lo	wer	Upj	per			Controlling	
Search Point	Demand Ratio	of Wall feet	Angle degrees	Length feet	Angle Length degrees feet		Level	Stress ksi	Resistance Failure Mode	
1		3.00					1	33.3	Bar Yield	
							2		Bar ileid	
							3	33.3	Bar Yield Bar Yield	
							4	33.3	Bar Yield	
2	1.29	8.20	44.21	5.72	75.59	16.47	1	33.3	Bar Yield Bar Yield	
							2			
							3		Bar Yield	
							4	33.3	Bar Yield	
3	1.54	13.40	22.85	5.82	68.42	21.86	1	30.6	Pullout	
							2	33.3	Bar Yield	
							3		Bar Yield	
							4	33.3	Bar Yield	
4	1.45	18.60	18.74	7.86	63.84	25.31	1	26.7	Pullout	
							2	33.0	Pullout	
							3		Bar Yield	
							4	33.3	Bar Yield	
5	1.33	23.80	21.34	7.67	56.43	30.13	1	25.4	Pullout	
							2		Pullout	
							3	33.3	Bar Yield	
							4	33.3	Bar Yield	
6	1.19	29.00	18.52	9.18	52.27	33.17	1	22.4	Pullout	
							2	29.6	Pullout	
							3	33.3	Bar Yield	
							4	33.3	Bar Yield	
7	1.12	34.20	23.08	7.44	43.80	37.91	1	22.2	Pullout	
							2	30.2	Pullout	
							3		Bar Yield	
							4	33.3	Bar Yield	
8	1.09	39.40	20.30	8.40	39.77	41.01	1	19.6	Pullout	
							2	28.1	Pullout	
							3		Bar Yield	
							4	33.3	Bar Yield	
9	1.11	44.60	18.10	9.38	36.33	44.29	1	17.2	Pullout	
							2	26.1	Pullout	
							3	32.7	Pullout	
							4	33.3	Bar Yield	
10	1.11	49.80	0.00	14.94	39.90	45.44	1	7.5	Pullout	
							2	14.2	Pullout	
							3	19.4	Pullout	
							4	24.6	Pullout	

11	1.11	55.00	0.00	16.50	37.13	48.29	1	4.6	Pullout
							2	11.0	Pullout
							3	16.6	Pullout
							4	22.2	Pullout

Search Le	eve1: 4.20	feet below	the toe of	the wall	Facing D	esign Force	e = 16.7	кıрs (Cl	outerre)
				Failure	e Planes			Reinforc	ement
		Distance From Toe	Lov	ver		per			 Controlling
Search Point	Demand Ratio		Angle degrees	Length feet		Length	Level	Stress ksi	-
1	1.17	3.00	64.89			13.44	1		
							2 3	33.3 33.3	
								33.3	
2	1.26	8.20	33.05	7.83	84.51	17.15	1	33.2 33.3	Pullout
							3	33.3	
							4	33.3	
3	1.29	13.40	35.61	8.24	70.76	20.33	1	29.9	Pullout
							2	33.3	Bar Yield
							3 4		
							4	33.3	Bar Yield
4	1.42	18.60	25.52	6.18	61.50	27.28	1	27.7	
							2	33.3	
							3 4	33.3 33.3	
									Bar ileiu
5	1.30	23.80	22.30	7.72	57.71	31.18		24.7	Pullout
							2	31.5	Pullout
							3 4	33.3 33.3	
6	1.17	29.00	10.25	0.22	E2 E6	24 10	1	21.6	Dullout
0	1.1/	29.00	19.55	9.22	53.56	34.10	2	21.0	
							3	33.3	
							4	33.3	
7	1.08	34.20	16.58	10.71	48.95	36.46	1	18.2	Pullout
							2	25.7	Pullout
							3	30.6	
							4	33.3	Bar Yield
8	1.03	39.40	14.49	12.21	44.91	38.94		15.0	
							2		Pullout
							3 4	27.6	
							4	32.1	Pullout
9	1.02	44.60	12.86	13.72	41.37	41.60		12.0	
							2 3	19.8 24.8	
							4	24.0	Pullout Pullout
1.0	1 05	10 00	17 05	10 40	21 (1	10 11	1	10 /	Dullout
10	1.05	49.80	17.05	10.42	34.61	48.41	1 2	13.4 22.5	Pullout Pullout
							2	28.5	Pullout
							4	33.3	Bar Yield
11	1.07	55.00	10.49	16.78	35.53	47.31	1	6.5	Pullout
							2	13.7	Pullout
							3	19.5	Pullout
							4	27.2	Pullout

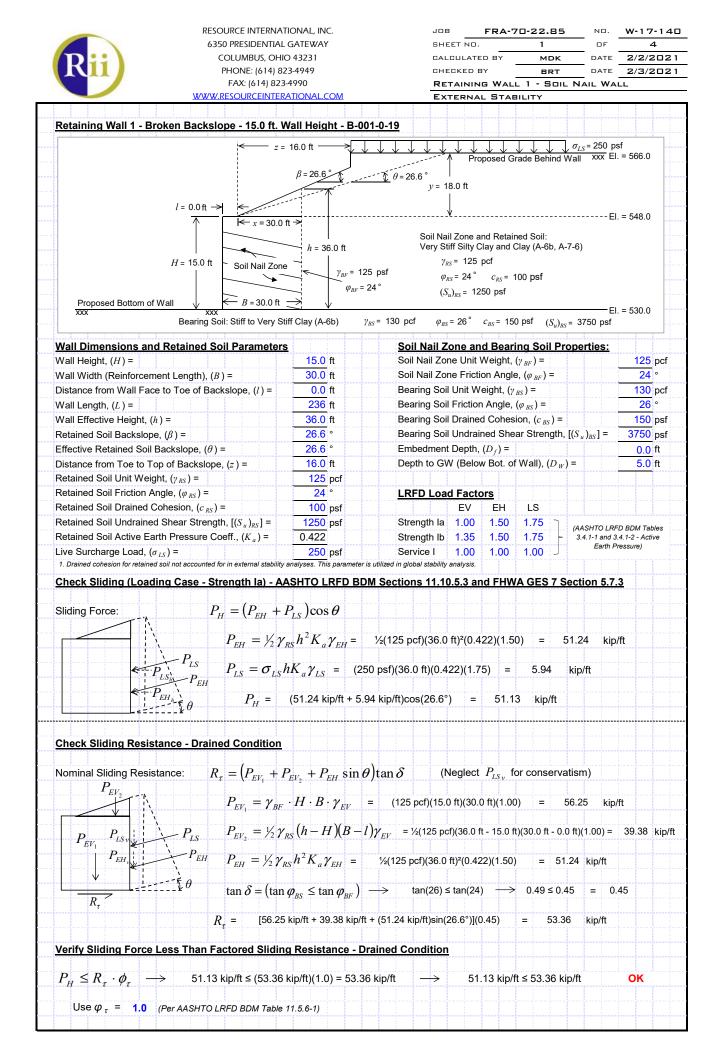
Search Level: 4.20 feet below the toe of the wall Facing Design Force = 16.7 kips (Clouterre)

Search Level: 5.60 feet below the toe of the wall Facing Design Force = 14.2 kips (Clouterre)

				e Planes	Reinforcement					
	Minimum	Distance From Toe	Lower		Upper				Controlling	
Search Point	Capacity Demand Ratio	of Wall feet	Angle degrees	Length feet	Angle degrees	Length feet	Level	Stress ksi	Controlling Resistance Failure Mode	
1	1.31	3.00	66.40	6.74	88.81	14.42	1 2 3 4	33.3 33.3 33.3 33.3 33.3	Bar Yield Bar Yield Bar Yield Bar Yield	
2	1.30	8.20	50.95	11.71	86.56	13.67	1	32.8	Pullout	

							2 3 4	33.3 33.3 33.3	Bar Yield Bar Yield Bar Yield
3	1.33	13.40	32.28	9.51	75.22	21.01	1 2 3 4	28.6 33.3 33.3 33.3	Pullout Bar Yield Bar Yield Bar Yield
4	1.27	18.60	37.01	9.32	63.55	25.05	1 2 3 4	26.8 33.1 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
5	1.24	23.80	40.68	9.42	55.84	29.67	1 2 3 4	25.7 32.6 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
6	1.18	29.00	28.85	6.62	51.10	36.95	1 2 3 4	23.2 30.5 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
7	1.08	34.20	25.04	15.10	51.24	32.78	1 2 3 4	16.5 23.9 28.0 33.3	Pullout Pullout Pullout Bar Yield
8	1.03	39.40	15.13	12.24	46.20	39.84	1 2 3 4	14.0 21.5 25.9 30.3	Pullout Pullout Pullout Pullout
9	1.01	44.60	13.43	13.76	42.65	42.44	1 2 3 4	10.8 18.1 22.9 27.7	Pullout Pullout Pullout Pullout
** 10	1.01	49.80	12.07	15.28	39.52	45.19	1 2 3 4	7.9 14.8 20.0 25.3	Pullout Pullout Pullout Pullout
11	1.01	55.00	10.96	16.81	36.76	48.05	1 2 3 4	5.0 11.7 17.3 23.0	Pullout Pullout Pullout Pullout

Search Level: 7.00 feet below the toe of the wall Facing Design Force = 15.9 kips (Clouterre) _____

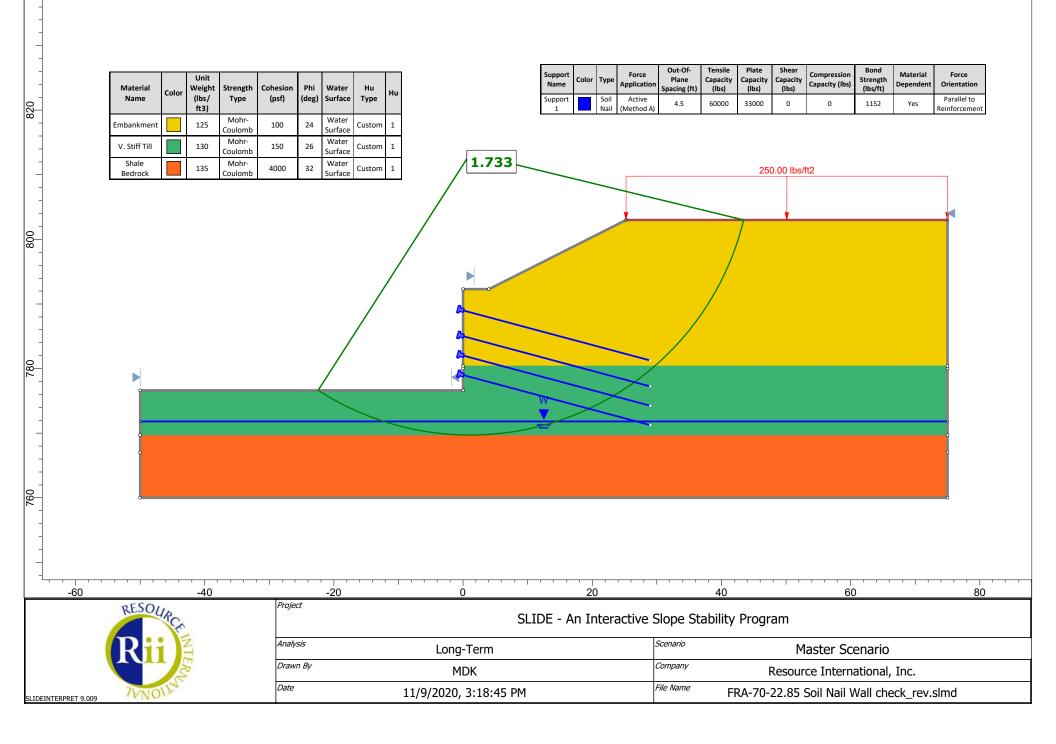


			Failure Planes					Reinforce	ement
	Minimum Capacity	Distance From Toe	Lov	ver	Up <u>r</u>	per			Controlling
Search Point	Demand Ratio	of Wall feet	Angle degrees	Length feet		Length	Level	Stress Resistanc	Resistance Failure Mode
1	2.70	3.00	82.24	22.20	0.00	0.00	1 2 3 4	33.3 33.3 33.3 33.3 33.3	Bar Yield Bar Yield Bar Yield Bar Yield
2	4.54	8.20	0.00	2.46	76.63	24.81	1 2 3 4	33.3 33.3 33.3 33.3	Bar Yield Bar Yield Bar Yield Bar Yield
3	3.18	13.40	12.52	12.35	86.82	24.15	1 2 3 4	25.1 29.6 31.7 32.0	Pullout Pullout Pullout Pullout
4	2.33	18.60	14.78	11.54	74.32	27.52	1 2 3 4	22.5 28.0 30.8 32.3	Pullout Pullout Pullout Pullout
5	1.65	23.80	47.17	35.01	-90.00	6.42	1 2 3 4	23.6 31.3 33.3 33.3	Pullout Pullout Bar Yield Bar Yield
6	1.46	29.00	37.48	10.96	52.73	33.52	1	22.1	Pullout

							2 3 4	29.3 33.3 33.3	Pullout Bar Yield Bar Yield
7	1.33	34.20	33.03	12.24	48.10	35.85	1	18.8	Pullout
							2	26.4	Pullout
							3	31.6	Pullout
							4	33.3	Bar Yield
8	1.28	39.40	22.94	17.11	48.46	35.65	1	12.1	Pullout
							2	19.0	Pullout
							3	23.1	Pullout
							4	29.2	Pullout
9	1.24	44.60	20.50	19.05	44.91	37.79	1	8.8	Pullout
							2	15.2	Pullout
							3	19.7	Pullout
							4	27.1	Pullout
10	1.21	49.80	18.51	21.01	41.76	40.06	1	5.5	Pullout
10	1.21	49.00	10.01	21.01	41.70	40.00	2	11.6	Pullout
							3	16.5	Pullout
							4	25.3	Pullout
11	1.21	55.00	22.01	17.80	34.72	46.84	1	7.5	Pullout
11	1.21	55.00	22.01	17.00	54.72	10.01	2	15.1	Pullout
							3	21.1	Pullout
							4	28.4	Pullout
							-	2011	1 4110 40
				END OF F	======================================				

JOB	FRA-7	0-22.85	ND.	W-17-140
SHEET NO.		2	OF	4
CALCULATE	ED BY	MDK	DATE	2/2/2021
CHECKED I	BY T	BRT	DATE	2/3/2021
Retainin	g Wall	1 - Soil Nai	L WALL	-

Retaining Wall 1 - Broken Backslope Wall Height, (H) =		15.0 ft		nit Weight				125 pc
Wall Width (Reinforcement Length), (<i>B</i>) =		30.0 ft		riction Ang				24 °
Distance from Wall Face to Toe of Backslo		0.0 ft		soil Unit W				130 pc
Wall Length, (L) =		236 ft		Soil Friction				26 °
Wall Effective Height, (<i>h</i>) =		36.0 ft	Ŭ	Soil Draine) =	150 ps
Retained Soil Backslope, (β) =		26.6 °					, gth, [(s _u) _{BS}]	nàmmi jara di m
Effective Retained Soil Backslope, (θ) =		26.6 °		ent Depth,			5 7 [(- 11705]	0.0 ft
Distance from Toe to Top of Backslope, (z)	z) =	16.0 ft		GW (Belov		Wall). (D_w) =	5.0 ft
Retained Soil Unit Weight, (γ_{RS}) =	-	125 pcf				, , , , , , , , , , , , , , , , , , ,	_ " ,	
Retained Soil Friction Angle, $(\varphi_{RS}) =$		24 °	LRFD L	oad Facto	ors			
Retained Soil Drained Cohesion, $(c_{RS}) =$		100 psf		EV	EH	LS		
Retained Soil Undrained Shear Strength, [$[(S_{})_{RS}] =$	1250 psf	Strength		1.50	1.75	٦	
Retained Soil Active Earth Pressure Coeff.		0.422	Strength		1.50	1.75	(AASHI	O LRFD BDM Tables and 3.4.1-2 - Active
ive Surcharge Load, $(\sigma_{LS}) =$., (K _a) –	250 psf	Service I	1.00	1.00	1.00		Earth Pressure)
1. Drained cohesion for retained soil not accounted for in	external stability ana				1.00	1.00	-	
Check Sliding (Loading Case - Stren	ath la) - AAS		M Sections 11	1053 ar	d EHW		7 Section	573 (Continue
meck Shung (Loading Case - Stren			W Sections II	. 10.5.5 ai			7 Section	3.1.3 (Continue
heck Sliding Resistance - Undraine	ed Condition							
	7	~)						
Nominal Sliding Resisting: R	$R_{\tau} = \left(\left(S_u \right)_{BS} \right)$	$< \frac{q_s}{s} \cdot B$						
	$\tau = \left((S_u)_{BS} \right)$	- 2) ²						
	$(S_u)_{BS} =$	3.75 ksf						
	undannus dan mesenangan							
$P_{EV_1} \xrightarrow{P_{LSv}} \xrightarrow{P_{LS}} \xrightarrow{P_{LS}} \xrightarrow{P_{EH}}$	$q_s = \frac{P_v}{B}$	/						
$P_{EV_1} \xrightarrow{P_{LS_v}} \xrightarrow{P_{LS_v}} \xrightarrow{P_{LS_v}} \xrightarrow{P_{LS_v}} \xrightarrow{P_{LS_v}} \xrightarrow{P_{LS_v}} \xrightarrow{P_{LS_v}} \xrightarrow{P_{EH}} \xrightarrow{P_{E}} \xrightarrow{P_{EH}} $	$q_s = \frac{V}{B}$	P						
P _{EH} , EH								
	$P_V = P_{EV}$	$+P_{EV_2}+P_{EH}$	$\sin \theta$					
R_{τ}	$P_{rr} = r$	$\gamma_{BF} \cdot H \cdot B \cdot \gamma_{I}$	= (125 p	cf)(15.0 ft)	(30.0 ft)(1.00)	= 56.25	kip/ft
	<i>Lr</i> ₁	• DF • 1	LV					
(Neglect P_{LSy} for conservatism)	P —	$\frac{1}{2}\gamma_{RS}(h-H)$	$(R-1)\chi = \frac{1}{2}$	125 pcf)(36	0 ft - 15	0 ft)(30 0	ft - 0 0 ft)(1 (00) = 39.38 ki
	$I_{EV_2} - I_2$	$7_2 \gamma_{RS} (n - 11)$	$(D-i)Y_{EV}$	120 poi)(00	.0 11 10.	0 11)(00.0	n 0.0 n/(1.	00.00 KI
	מ	$1/a$ $L^2 V$	- 1//105 -	of)(26.0.ft	2/0 400	(1 50)	- 51.04	1
	$P_{EH} = J$	$\frac{1}{2}\gamma_{RS}h^2K_a\gamma_{EI}$	_H = ½(125 p	ocf)(36.0 ft)²(0.422	(1.50)	= 51.24	kip/ft
		$\frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EI}$ = 56.25 kip/ft						
	P _V	= 56.25 kip/ft -	+ 39.38 kip/ft + (51.24 kip/f				
	P _V		+ 39.38 kip/ft + (t)sin(26.			
	P _V	= 56.25 kip/ft -	+ 39.38 kip/ft + (51.24 kip/f	t)sin(26.			
	P_V $q_s = (1)$	= 56.25 kip/ft -	+ 39.38 kip/ft + (0 ft) = 3.	51.24 kip/f 95 ksf	t)sin(26.	6°) =	118.57	
	P_V $q_s = (1)$	= 56.25 kip/ft 18.57 kip/ft) / (30	+ 39.38 kip/ft + (0 ft) = 3.	51.24 kip/f 95 ksf	t)sin(26.	6°) =	118.57	
	P_{V} $q_{s} = (1)$ $R_{t} = [3.75 \text{ k}]$	= 56.25 kip/ft 18.57 kip/ft) / (30 ksf ≤ (3.95 ksf)/2]	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) =	51.24 kip/f 95 ksf [3.75 ksf	t)sin(26.	6°) =	118.57	
	P_{V} $q_{s} = (1)$ $R_{t} = [3.75 \text{ k}]$	= 56.25 kip/ft 18.57 kip/ft) / (30	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) =	51.24 kip/f 95 ksf	t)sin(26.	6°) =	118.57	
	P_{V} $q_{s} = (1)$ $R_{t} = [3.75 \text{ k}]$	= 56.25 kip/ft 18.57 kip/ft) / (30 ksf ≤ (3.95 ksf)/2]	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) =	51.24 kip/f 95 ksf [3.75 ksf	t)sin(26.	6°) =	118.57	
	P_{V} $q_{s} = (1)$ $R_{t} = [3.75 \text{ k}]$	= 56.25 kip/ft 18.57 kip/ft) / (30 ksf ≤ (3.95 ksf)/2]	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) =	51.24 kip/f 95 ksf [3.75 ksf	t)sin(26.	6°) =	118.57	
	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$	= 56.25 kip/ft · 18.57 kip/ft) / (30 ksf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft)	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25	51.24 kip/f 95 ksf [3.75 ksf kip/ft	t)sin(26.	6°) =	118.57	
	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$	= 56.25 kip/ft · 18.57 kip/ft) / (30 ksf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft)	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25	51.24 kip/f 95 ksf [3.75 ksf kip/ft	t)sin(26.	6°) =	118.57	
/erify Sliding Force Less Than Facto	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F	= 56.25 kip/ft · 18.57 kip/ft) / (3(ksf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Facto	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F	= 56.25 kip/ft · 18.57 kip/ft) / (30 ksf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft)	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57	
/erify Sliding Force Less Than Facto	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F	= 56.25 kip/ft · 18.57 kip/ft) / (3(ksf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Facto	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
Verify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
Verify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
Verify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
Verify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
Verify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Factor $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 51.13$ k	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Factor $P_H^{} \leq R_{\tau} \cdot \phi_{\tau} \longrightarrow 51.13 \mathrm{k}$	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
Verify Sliding Force Less Than Factor $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 51.13$ k	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	
/erify Sliding Force Less Than Factor $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 51.13$ k	P_{r} $q_{s} = (1)$ $R_{\tau} = [3.75 \text{ k}]$ $R_{\tau} = (1)$ ored Sliding F kip/ft ≤ (59.25)	 = 56.25 kip/ft · 18.57 kip/ft) / (30 xsf ≤ (3.95 ksf)/2] 1.98 ksf)(30.0 ft) Resistance - Ui)(1.0) = 59.25 k 	+ 39.38 kip/ft + (0 ft) = 3.](30.0 ft) = = 59.25 <u>ndrained Conc</u>	51.24 kip/f 95 ksf [3.75 ksf kip/ft <u>lition</u>	t)sin(26. ≤ 1.98 k	6°) =	118.57 ft)	kip/ft


JOB FRA-	70-22.85	ND.	W-17-140
SHEET NO.	З	OF	4
CALCULATED BY	мрк	DATE	2/2/2021
CHECKED BY	BRT	DATE	2/3/2021
RETAINING WAL	L 1 - Soil Na	Il Wall	-

		1-0-1! Bearing Soil Properties:
Wall Height, (<i>H</i>) =	<u>15.0</u> ft	Backfill Unit Weight, (γ_{BF}) = 125 pcf
Wall Width (Reinforcement Length), (B) =	36.0 ft	Backfill Friction Angle, $(\varphi_{BF}) = 24^{\circ}$
Distance from Wall Face to Toe of Backslope, $(l) =$	0.0 ft	Bearing Soil Unit Weight, $(\gamma_{BS}) = 130 \text{ pcf}$
Wall Length, (<i>L</i>) =	236 ft	Bearing Soil Friction Angle, $(\varphi_{BS}) = 26^{\circ}$
Wall Effective Height, (<i>h</i>) =	36.0 ft	Bearing Soil Drained Cohesion, $(c_{BS}) = 150$ psf
Retained Soil Backslope, (β) =	<u>26.6</u> °	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] = 3750$ psf
Effective Retained Soil Backslope, (θ) =	26.6 °	Embedment Depth, $(D_f) = 0.0$ ft
Distance from Toe to Top of Backslope, $(z) =$	16.0 ft	Depth to GW (Below Bot. of Wall), $(D_W) = 5.0$ ft
Retained Soil Unit Weight, $(\gamma_{RS}) =$	125 pcf	
Retained Soil Friction Angle, $(\varphi_{RS}) =$	24 °	LRFD Load Factors
Retained Soil Drained Cohesion, $(c_{RS}) =$	100 psf	EV EH LS
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	1250 psf	Strength la 1.00 1.50 1.75 (AASHTO LRFD BDM Tables
Retained Soil Active Earth Pressure Coeff., $(K_a) =$	0.422	Strength lb 1.35 1.50 1.75 - 3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
Live Surcharge Load, (σ_{LS}) = 1. Drained cohesion for retained soil not accounted for in external stability	250 psf	Service I 1.00 1.00 1.00 J
	ngtn ID) - AASH I U	LRFD BDM Section 11.10.5.4 and FHWA GES 7 Section 5.6.6
$q_{eq} =$	P_V	
	/ <i>B</i> '	
$\begin{array}{c c} x_4 \\ \uparrow \end{array} \qquad P_{EV_1} \qquad P_{LS_v} \qquad P_{LS_v} \qquad B' = \\ P_{CS_v} \qquad P_{CS_v} \qquad P_{CS_v} \qquad B' = \\ P_{CS_v} \qquad P_{CS_v} \qquad P_{CS_v} \qquad B' = \\ P_{CS_v} \qquad P_{CS_v} \qquad P_{CS_v} \qquad B' = \\ P_{CS_v} \qquad P_{CS_v$	-R $2a - 36$	0 ft - 2(0.00 ft) = 36.00 ft
$ \begin{array}{c c} & & & \\ \hline \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array}$	-D - 2e - 30	
$P_{EH_{h}}$	$\rho \equiv B/_{-r}$	= (36.0 ft / 2) - 18.78 ft = -0.78 ft (Use 0 ft)
	12	
	$r = \frac{M_V - M_H}{M_V - M_H}$	= (3997.25 kip·ft/ft - 656.67 kip·ft/ft) / 177.86 kip/ft = 18.78
$x_0 \leftarrow \Rightarrow e$	$r_o - P_{\nu}$	
$\leftarrow B_2 \rightarrow \Box$	= (177.86 kip/f	t) / (36 ft) = 4.94 ksf
$\leftarrow B' \rightarrow P' eq$	(111.00 kip/i	
$x_2 \rightarrow x_2$		
Resisting Moment, M_V : $M_V = P_{rr}$	$P_{V_1}(x_1) + P_{EV_2}(x_2)$	$P \sin \theta(R)$
$\frac{1}{2} \frac{1}{2} \frac{1}$	$V_1 (\lambda_1) = I_{EV_2} (\lambda_2)$	
P_{EV_2} $P_{EV} =$	$\gamma - \cdot H \cdot B \cdot \gamma$	= (125 pcf)(15.0 ft)(36.0 ft)(1.35) = 91.13 kip/ft
EV_2	IBF II D IEV	
	$\frac{1}{2} \chi (h - H) (B -$	
	$\frac{1}{2}\gamma_{RS}(h-H)(B-$	I) $\gamma_{EV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$
$P_{II} = P_{II} + \sum_{i=1}^{i} P_{II}$		$I_{VEV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$
$P_{EV_1} \qquad P_{LS_V} \qquad P_{LS} \qquad P_{EH} =$	$\frac{\gamma_2}{\gamma_{RS}} (h - H) (B - $	$I_{VEV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$
$P_{EV_1} \xrightarrow{P_{LS_V}} P_{LS}$ $P_{EH_{V_1}} \xrightarrow{P_{EH_{V_2}}} P_{EH} =$	$\gamma_2 \gamma_{RS} h^2 K_a \gamma_{EH}$	$I_{I}\gamma_{EV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ = $\frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50) = 51.24 \text{ kip/ft}$
$P_{EV_1} \qquad P_{LS_V} \qquad P_{LS} \qquad P_{EH} =$	$\gamma_2 \gamma_{RS} h^2 K_a \gamma_{EH}$	$I_{I}\gamma_{EV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ = $\frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50) = 51.24 \text{ kip/ft}$
$P_{EV_1} \xrightarrow{P_{LS_1}} P_{LS}$ $P_{EH} \xrightarrow{P_{EH}} P_{EH} = 1$ $P_{EH} \xrightarrow{P_{EH}} x_1 = 1$	$\frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EH} = \frac{1}{3} \frac{1}{2} = \frac{1}{3} \frac{1}{2} $	$I_{\ell} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)} = 63.79 \text{ kip}$ = $\frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft}$ = 18.00 ft
$P_{EV_1} \xrightarrow{P_{LS_1}} P_{LS}$ $P_{EH} \xrightarrow{P_{EH}} P_{EH} = 1$ $P_{EH} \xrightarrow{P_{EH}} x_1 = 1$	$\frac{1}{2} \gamma_{RS} h^2 K_a \gamma_{EH} = \frac{1}{3} \frac{1}{2} = \frac{1}{3} \frac{1}{2} $	$I_{I}\gamma_{EV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ = $\frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50) = 51.24 \text{ kip/ft}$
$P_{EV_1} \xrightarrow{P_{LS}} P_{LS}$ $P_{EH} \xrightarrow{P_{EH}} P_{EH} =$ $P_{EH} \xrightarrow{P_{EH}} x_1 = I$ $x_1 = I$ $x_2 = I$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} \frac{1}{2} = \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3$	$J_{FV} = \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ $= \frac{1}{2}(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50) = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{3}{3}(36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft}$
$P_{EV_1} \xrightarrow{P_{LS}} P_{LS}$ $P_{EH} \xrightarrow{P_{EH}} P_{EH} =$ $P_{EH} \xrightarrow{P_{EH}} x_1 = I$ $x_1 = I$ $x_2 = I$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} \frac{1}{2} = \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3$	$I_{\ell} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)} = 63.79 \text{ kip}$ = $\frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft}$ = 18.00 ft
$P_{EV_1} \xrightarrow{P_{LS_1}} P_{LS_2} \xrightarrow{P_{LS}} P_{EH} =$ $P_{EH} \xrightarrow{P_{EH}} x_1 = I$ $x_1 \xrightarrow{P_{EH}} x_2 = I$ $M_V = (91.$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} \frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2 \frac{1}{2} + \frac{1}{2} \frac{1}{3} (B - l) = \frac{1}{3} \frac{1}{13} 1$	$\lambda_{I} \gamma_{EV} = \frac{1}{2} (125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ $= \frac{1}{2} (125 \text{ pcf})(36.0 \text{ ft})^{2}(0.422)(1.50) = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{1}{2} (36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft}$ $33.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft}) \sin(26.6^{\circ})(36 \text{ ft}) = 3997.25 \text{ kip}$
$P_{EV_1} \xrightarrow{P_{LS_1}} P_{LS_2} \xrightarrow{P_{LS}} P_{EH} =$ $P_{EH} \xrightarrow{P_{EH}} x_1 = I$ $x_1 \xrightarrow{P_{EH}} x_2 = I$ $M_V = (91.$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} \frac{1}{2} = \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3$	$\lambda_{I} \gamma_{EV} = \frac{1}{2} (125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ $= \frac{1}{2} (125 \text{ pcf})(36.0 \text{ ft})^{2}(0.422)(1.50) = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{1}{2} (36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft}$ $33.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft}) \sin(26.6^{\circ})(36 \text{ ft}) = 3997.25 \text{ kip}$
$P_{EV_1} P_{LS_1} P_{LS} P_{LS}$ $P_{EH} P_{EH} = P_{EH}$ $x_1 = I$ $x_2 = I$ $M_V = (91.$ Overturning Moment, M_H : $M_H = P_E$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} $	$\chi_{EV} = \frac{1}{2} (125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35) = 63.79 \text{ kip}$ $= \frac{1}{2} (125 \text{ pcf})(36.0 \text{ ft})^2 (0.422)(1.50) = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{3}{3}(36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft}$ $33.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^\circ)(36 \text{ ft}) = 3997.25 \text{ kip}$ $s_s \cos \theta(x_4)$
$P_{EV_1} \qquad P_{LS_1} \qquad P_{LS} \qquad P_{EH} = P_{EH}$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{3}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) =$ $13 \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} \cos \theta(x_{3}) + P_{L}$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$	$\begin{split} &\mathcal{I} \gamma_{EV} = \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft} - 15.0 \text{ ft}) (36.0 \text{ ft} - 0.0 \text{ ft}) (1.35) = 63.79 \text{ kip,} \\ &= \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft})^2 (0.422) (1.50) = 51.24 \text{ kip/ft} \\ &= 18.00 \text{ ft} \\ &0.0 \text{ ft} + \frac{1}{2} (36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft} \\ &53.79 \text{ kip/ft}) (24.0 \text{ ft}) + (51.24 \text{ kip/ft}) \sin(26.6^\circ) (36 \text{ ft}) = 3997.25 \text{ kip} \\ &S \cos \theta(x_4) \\ &= \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft})^2 (0.422) (1.50) = 51.24 \text{ kip/ft} \end{split}$
$P_{EV_1} \qquad P_{LS_1} \qquad P_{LS} \qquad P_{EH} = P_{EH}$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{3}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) =$ $13 \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} \cos \theta(x_{3}) + P_{L}$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$	$\begin{split} &\mathcal{I} \gamma_{EV} = \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft} - 15.0 \text{ ft}) (36.0 \text{ ft} - 0.0 \text{ ft}) (1.35) = 63.79 \text{ kip,} \\ &= \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft})^2 (0.422) (1.50) = 51.24 \text{ kip/ft} \\ &= 18.00 \text{ ft} \\ &0.0 \text{ ft} + \frac{1}{2} (36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft} \\ &53.79 \text{ kip/ft}) (24.0 \text{ ft}) + (51.24 \text{ kip/ft}) \sin(26.6^\circ) (36 \text{ ft}) = 3997.25 \text{ kip} \\ &S \cos \theta(x_4) \\ &= \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft})^2 (0.422) (1.50) = 51.24 \text{ kip/ft} \end{split}$
$P_{EV_{1}} P_{LS_{1}} P_{LS}$ $P_{EH} P_{EH} = P_{EH}$ $x_{1} = I$ $x_{2} = I$ $M_{V} = (91.$ $M_{H} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH}$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{3}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) =$ $13 \text{ kip/ft} (18.00 \text{ ft}) + (l)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{1}{3} \sigma_{LS} h K_{a} \gamma_{LS} =$	$\lambda_{I} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)} = 63.79 \text{ kip}$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{1}{(36.0 \text{ ft} - 0.0 \text{ ft})} = 24.00 \text{ ft}$ $63.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^\circ)(36 \text{ ft}) = 3997.25 \text{ kip}$ $s_{S} \cos \theta(x_{4})$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $(250 \text{ psf})(36.0 \text{ ft})(0.422)(1.75) = 6.64 \text{ kip/ft}$
$P_{EV_{1}} P_{LS_{1}} P_{LS} P_{LS} P_{EH} =$ $P_{EH} P_{EH} =$ $x_{1} = I$ $x_{2} = I$ $M_{V} = (91.$ $M_{H} = P_{EH} =$ $P_{EH} =$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{3}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) =$ $13 \text{ kip/ft} (18.00 \text{ ft}) + (l)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{1}{3} \sigma_{LS} h K_{a} \gamma_{LS} =$	$\lambda_{I} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)} = 63.79 \text{ kip}$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{1}{(36.0 \text{ ft} - 0.0 \text{ ft})} = 24.00 \text{ ft}$ $63.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^\circ)(36 \text{ ft}) = 3997.25 \text{ kip}$ $s_{S} \cos \theta(x_{4})$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $(250 \text{ psf})(36.0 \text{ ft})(0.422)(1.75) = 6.64 \text{ kip/ft}$
$P_{EV_{1}} P_{LS_{1}} P_{LS}$ $P_{EH} P_{EH} = P_{EH}$ $x_{1} = I$ $x_{2} = I$ $M_{V} = (91.$ $M_{H} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH} = P_{EH}$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0.00 $	$\lambda_{I} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.35)} = 63.79 \text{ kip}$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^{2}(0.422)(1.50)}{(1.35)} = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{3}{(36.0 \text{ ft} - 0.0 \text{ ft})}{(24.0 \text{ ft})} = 24.00 \text{ ft}$ $63.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^{\circ})(36 \text{ ft})}{(250 \text{ psf})(36.0 \text{ ft})^{2}(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $= \frac{12.00 \text{ ft}}{(250 \text{ psf})(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft}$
$P_{EV_{1}} P_{LS_{1}} P_{LS}$ $P_{EH} P_{EH} = P_{EH}$ $x_{1} = I$ $x_{2} = I$ $M_{V} = (91.$ $M_{H} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH} = P_{EH}$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0.00 $	$\lambda_{I} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.35)} = 63.79 \text{ kip}$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^{2}(0.422)(1.50)}{(1.35)} = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{3}{(36.0 \text{ ft} - 0.0 \text{ ft})}{(24.0 \text{ ft})} = 24.00 \text{ ft}$ $63.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^{\circ})(36 \text{ ft})}{(250 \text{ psf})(36.0 \text{ ft})^{2}(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $= \frac{12.00 \text{ ft}}{(250 \text{ psf})(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft}$
$P_{EV_{1}} P_{LS_{1}} P_{LS}$ $P_{EH} P_{EH} = P_{EH}$ $x_{1} = I$ $x_{2} = I$ $M_{V} = (91.$ $M_{H} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH} = P_{EH} = P_{EH} = P_{EH}$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{3}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) =$ $13 \text{ kip/ft} (18.00 \text{ ft}) + (l)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} =$ $\frac{1}{3} \sigma_{LS} h K_{a} \gamma_{LS} =$	$\lambda_{I} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.35)} = 63.79 \text{ kip}$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^{2}(0.422)(1.50)}{(1.35)} = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{3}{(36.0 \text{ ft} - 0.0 \text{ ft})}{(24.0 \text{ ft})} = 24.00 \text{ ft}$ $63.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^{\circ})(36 \text{ ft})}{(250 \text{ psf})(36.0 \text{ ft})^{2}(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $= \frac{12.00 \text{ ft}}{(250 \text{ psf})(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft}$
$P_{EV_{1}} \qquad P_{LS_{1}} \qquad P_{LS} \qquad P_{EH} = P_$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} (36.0 \text{ ft}) / 3$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$	$\begin{split} &\mathcal{I} \rangle \gamma_{EV} = \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft} - 15.0 \text{ ft}) (36.0 \text{ ft} - 0.0 \text{ ft}) (1.35) = 63.79 \text{ kip}, \\ &= \frac{1}{2} (125 \text{ pcf}) (36.0 \text{ ft})^2 (0.422) (1.50) = 51.24 \text{ kip/ft} \\ &= 18.00 \text{ ft} \\ &= 18.00 \text{ ft} \\ &= 0.0 \text{ ft} + \frac{3}{2} (36.0 \text{ ft} - 0.0 \text{ ft}) = 24.00 \text{ ft} \\ &= 3997.25 \text{ kip} \\ &= 3997.25 \text{ kip} \\ &= \frac{125 \text{ pcf}}{36.0 \text{ ft}} + \frac{51.24 \text{ kip/ft}}{36.0 \text{ ft}} = 3997.25 \text{ kip} \\ &= \frac{125 \text{ pcf}}{36.0 \text{ ft}} + \frac{51.24 \text{ kip/ft}}{36.0 \text{ ft}} = 51.24 \text{ kip/ft} \\ &= 12.00 \text{ ft} \\ &= 18 \text{ ft} \end{split}$
$P_{EV_{1}} \qquad P_{LS_{1}} \qquad P_{LS} \qquad P_{EH} = P_$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} (36.0 \text{ ft}) / 3$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$	$\lambda_{I} \gamma_{EV} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.35)} = 63.79 \text{ kip}$ $= \frac{1}{(125 \text{ pcf})(36.0 \text{ ft})^{2}(0.422)(1.50)}{(1.35)} = 51.24 \text{ kip/ft}$ $= 18.00 \text{ ft}$ $0.0 \text{ ft} + \frac{3}{(36.0 \text{ ft} - 0.0 \text{ ft})}{(24.0 \text{ ft})} = 24.00 \text{ ft}$ $63.79 \text{ kip/ft})(24.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^{\circ})(36 \text{ ft})}{(250 \text{ psf})(36.0 \text{ ft})^{2}(0.422)(1.50)} = 51.24 \text{ kip/ft}$ $= \frac{12.00 \text{ ft}}{(250 \text{ psf})(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft}$
$P_{EV_{1}} \qquad P_{LS_{1}} \qquad P_{LS} \qquad P_{EH} = P_$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{3}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (l)$ $\frac{1}{2} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (l)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{3} \sigma_{LS} h K_{a} \gamma_{LS} = \frac{1}{3} \sigma_{LS} h K_{a} \gamma_{LS} = \frac{1}{3} (36.0 \text{ ft}) / 3$ $\frac{1}{2} = (36.0 \text{ ft}) / 2$ $\frac{1}{2} 4 \text{ kip/ft} (\cos(26.6^{\circ})) (12)$	$ \frac{1}{\gamma_{EV}} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.25 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft}) - 0.0 \text{ ft}} = 24.00 \text{ ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^\circ)(36 \text{ ft})} = 3997.25 \text{ kip} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{12.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft} $ $ = 18 \text{ ft} $
$P_{EV_{1}} \qquad P_{LS_{1}} \qquad P_{LS} \qquad P_{EH} = P_$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$ $\frac{1}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (0)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} (36.0 \text{ ft}) / 3$ $\frac{1}{2} = \frac{1}{3} (36.0 \text{ ft}) / 2$	$ \frac{1}{\gamma_{EV}} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.25 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft}) - 0.0 \text{ ft}} = 24.00 \text{ ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^\circ)(36 \text{ ft})} = 3997.25 \text{ kip} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{12.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft} $ $ = 18 \text{ ft} $
$P_{EV_{1}} P_{LS_{1}} P_{LS} P_{EH} = P_{EH} = P_{EH}$ $P_{EH} P_{EH} = P_{EH} = P_{EH}$ $x_{1} = P_{EH}$ $x_{2} = P_{EH}$ $M_{V} = (91.$ Overturning Moment, M_{H} : $M_{H} = P_{EH} = P_{EH}$ $P_{EH} = P_{EH}$ $R_{EH} = P_{EH$	$\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2}$ $\frac{3}{2} = \frac{1}{2} (36.0 \text{ ft}) / 2$ $\frac{3}{2} + \frac{2}{3} (B - l) = \frac{1}{3} \text{ kip/ft} (18.00 \text{ ft}) + (l)$ $\frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} \frac{1}{2} \gamma_{RS} h^{2} K_{a} \gamma_{EH} = \frac{1}{2} \frac{1}{3} = \frac{1}{3} (36.0 \text{ ft}) / 3$ $\frac{1}{2} = \frac{1}{2} (36.0 \text{ ft}) / 2$ $\frac{1}{2} + P_{EV_{2}} + P_{EH} \sin \frac{1}{2} \sin \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \sin \frac{1}{2} $	$ \frac{1}{\gamma_{EV}} = \frac{1}{(125 \text{ pcf})(36.0 \text{ ft} - 15.0 \text{ ft})(36.0 \text{ ft} - 0.0 \text{ ft})(1.35)}{(1.25 \text{ pcf})(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft}) - 0.0 \text{ ft}} = 24.00 \text{ ft} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft}) + (51.24 \text{ kip/ft})\sin(26.6^\circ)(36 \text{ ft})} = 3997.25 \text{ kip} $ $ = \frac{18.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})^2(0.422)(1.50)} = 51.24 \text{ kip/ft} $ $ = \frac{12.00 \text{ ft}}{1.25 \text{ pcf}(36.0 \text{ ft})(0.422)(1.75)} = 6.64 \text{ kip/ft} $ $ = 18 \text{ ft} $

JOB F	RA-7	0-22.85	ND.	W-17-140
SHEET NO.		4	OF	4
GALGULATED	BY	мрк	DATE	2/2/2021
CHECKED BY		BRT	DATE	2/3/2021
RETAINING	VALL	1 - Soil Nai	L WALL	-

Retaining Wall 1 - Broken Backslope - 15.	<u>υ π. wall Height - Β-υυ1-υ</u> 15.0 ft	Backfill Unit Weigh		105	nof
Nall Height, $(H) =$ Nall Width (Reinforcement Length), $(B) =$		Backfill Friction Ang		125 24	
Distance from Wall Face to Toe of Backslope, (l)	· · · · · · · · · · · · · · · · · · ·	Bearing Soil Unit W		<u></u> 130	
Wall Length, (L) =) – <u>0.0</u> it 236 ft	Bearing Soil Frictio		26	
Wall Effective Height, $(h) =$	36.0 ft	_	ed Cohesion, $(c_{BS}) =$	150	
Retained Soil Backslope, $(\beta) =$	26.6 °		ined Shear Strength, [(
Effective Retained Soil Backslope, (θ) =	26.6 °	Embedment Depth	การการการการการการการการการการการการการก	0.0	
Distance from Toe to Top of Backslope, $(z) =$	16.0 ft	Depth to GW (Belo	w Bot. of Wall), (D_W) =	= 5.0	ft
Retained Soil Unit Weight, $(\gamma_{RS}) =$	125 pcf				
Retained Soil Friction Angle, (φ_{RS}) =	<u>24</u> °	LRFD Load Fact	ແຮງການເບັ ນສັນແບບເຊັ່ງແບບແຫ່ນແບບແຮ່ງແບບແຫຼ່ນ		
Retained Soil Drained Cohesion, $(c_{RS}) =$	100 psf	EV	EH LS		
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$		Strength la 1.00		(AASHTO LRFD BDM Tab	
Retained Soil Active Earth Pressure Coeff., (K_a)	· · · · · · · · · · · · · · · · · · ·	Strength lb 1.35		3.4.1-1 and 3.4.1-2 - Acti Earth Pressure)	/e
ive Surcharge Load, (σ_{LS}) = 1. Drained cohesion for retained soil not accounted for in external	250 psf stability analyses. This parameter is utili	Service I 1.00 zed in global stability analysis.	1.00 1.00 🖵		
Check Bearing Capacity (Loading Case -			1.10.5.4 and FHWA	GES 7 Section 5.	<u>6.6</u>
Check Bearing Resistance - Drained Con	dition				
Iominal Bearing Resistance: $q_n = cN$	$_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2}$	$\gamma B' N_m C_{wv}$			
$N_{cm} = N_c s_c i_c = 24.53$	$N_{qm} = N_q s_q d_q i_q$		$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 11.3	
$r cm = 1 c c c^{\mu} c c - 2 \tau c c$	1, qm $1, qSq q q q$		$1, \gamma m$ $1, \gamma S \gamma^{\ell} \gamma$		
N _c = 22.3	N_q = 11.9		$N_{\gamma} = 12.5$		
$S_c = 1+(36 \text{ ft}/236 \text{ ft})(11.9/22.3) = 1$	ការពារអត្វិតារាមអន្តិភាពអារម្ភអាមារអត់អាមារអាមារអាមារអាមារអាមារអាមារ	ft)tan(26°) = 1.1	กฐิณาการฐินากกรร้างการกรุ่งการกรรมการสิบา	6 ft/236 ft) = 0	9
$i_c = 1.0$ (Assumed)		-sin(26°)]²tan⁻¹(0.0 ft/36 ft)	$i_{\gamma} = 1.0$ (
	= 1.0		$C_{wy} = 5.0 \text{ft} < 1$		0
	$i_q = 1.0$ (Assu				
	$i_q = 1.0$ (Assu $C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$				
	$C_{wq} = 5.0 \text{ft} > 0.0 \text{ft}$	t = 1.0			
$q_n = (0 \text{ psf})(24.53) + (130 \text{ pcf})(0.0)$	$C_{wq} = 5.0 \text{ft} > 0.0 \text{ft}$	t = 1.0	= 13.16 ksf		
	$C_{wq} = 5.0 \text{ft} > 0.0 \text{ft}$ ft)(13.1)(1.0) + ½(130 pcf)(t = 1.0 36.0 ft)(11.3)(0.5)	= 13.16 ksf		
	$C_{wq} = 5.0 \text{ft} > 0.0 \text{ft}$ ft)(13.1)(1.0) + ½(130 pcf)(t = 1.0 36.0 ft)(11.3)(0.5)	= 13.16 ksf		
	$C_{wq} = 5.0 \text{ft} > 0.0 \text{ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance	a = 1.0 36.0 ft)(11.3)(0.5) <u>P</u>	= 13.16 ksf 4.94 ksf ≤ 8.55 ksf	οκ	
/erify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94$ F	$C_{wg} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5	a = 1.0 36.0 ft)(11.3)(0.5) <u>P</u>			
/erify Equivalent Pressure Less Than Fac	$C_{wg} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5	a = 1.0 36.0 ft)(11.3)(0.5) <u>P</u>		ok	
/erify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94$ F	$C_{wg} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5	a = 1.0 36.0 ft)(11.3)(0.5) <u>P</u>		ok	
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94$ H Use $\varphi_b = 0.65$ (Per AASHTO LRFD I	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1)	a = 1.0 36.0 ft)(11.3)(0.5) <u>P</u>			
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94$ H Use $\varphi_b = 0.65$ (Per AASHTO LRFD I	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1)	a = 1.0 36.0 ft)(11.3)(0.5) <u>P</u>			
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ K}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1)	t = 1.0 36.0 ft)(11.3)(0.5) \underline{B} $5 \text{ ksf} \longrightarrow$			
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \mu$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) Condition	$t = 1.0$ 36.0 ft)(11.3)(0.5) $=$ 5 ksf \rightarrow $(\gamma B' N_{\gamma m} C_{w\gamma})$			
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co lominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf < (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) cm + $\gamma D_f N_{qm} C_{wq} + ½ N_{qm} = N_q s_q d_q i_q$	$t = 1.0$ 36.0 ft)(11.3)(0.5) $=$ 5 ksf \rightarrow $(\gamma B' N_{\gamma m} C_{w\gamma})$	4.94 ksf < 8.55 ksf $N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$		
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf < (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + \gamma D_f N_{qm} C_{wq} + ½N_{qm} = N_q S_q d_q i_q$ $N_q = 1.0$	$t = 1.0$ 36.0 ft)(11.3)(0.5) $=$ 5 ksf \rightarrow $(\gamma B' N_{\gamma m} C_{w\gamma})$	4.94 ksf \leq 8.55 ksf $N_{ym} = N_{y}S_{y}i_{y}$ $N_{y} = 0.0$	= 0.0	
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Jominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$ $S_c = 1+[36 \text{ ft/}(5\cdot236 \text{ ft})] = 1.0$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + \gamma D_f N_{qm} C_{wq} + ½N_{qm} = N_q S_q d_q i_q$ $N_{qm} = 1.0$ $S_n = 1.0$	t = 1.0 36.0 ft)(11.3)(0.5) \underline{B} $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$	4.94 ksf \leq 8.55 ksf $N_{ym} = N_{y}S_{y}i_{y}$ $N_{y} = 0.0$	= 0.0	
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Jominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf < (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + \gamma D_f N_{qm} C_{wq} + ½N_{qm} = N_q S_q d_q i_qN_q = 1.0S_q = 1.0d_q = 1.2 \tan(26^\circ)[1]$	t = 1.0 36.0 ft)(11.3)(0.5) \underline{B} $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$	4.94 ksf \leq 8.55 ksf $N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$ $N_{\gamma} = 0.0$ $S_{\gamma} = 1.0$ $i_{\gamma} = 1.0$ (0)	= 0.0 Assumed)	
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$ $S_c = 1+[36 \text{ ft/}(5-236 \text{ ft})] = 1.0$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + \gamma D_f N_{qm} C_{wq} + \frac{1}{2}$ $N_{qm} = N_q S_q d_q i_q$ $N_q = 1.0$ $S_q = 1.0$ $d_q = 1+2 \tan(26^\circ)[1]$ $= 1.0$	h = 1.0 36.0 ft)(11.3)(0.5) a 5 ksf \rightarrow 7. $\gamma B' N_{\gamma m} C_{w\gamma}$ = 1.0 -sin(26°) ³ tan ⁻¹ (0.0 ft/36 ft)	4.94 ksf \leq 8.55 ksf $N_{ym} = N_{y}S_{y}i_{y}$ $N_{y} = 0.0$	= 0.0 Assumed)	
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Constrained Constrained Bearing Resistance: $q_n = cN$ Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$ $S_c = 1+[36 ft/(5-236 ft)] = 1.0$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + \gamma D_f N_{qm} C_{wq} + ½N_{qm} = N_q S_q d_q i_qN_q = 1.0S_q = 1.0d_q = 1+2 \tan(26^\circ)(1)= 1.0i_q = 1.0 (Assume that the set of $	$\mathbf{t} = 1.0$ 36.0 ft)(11.3)(0.5) \mathbf{g} 5 ksf \rightarrow (2) $\gamma B' N_{\gamma m} C_{w\gamma}$ = 1.0 -sin(26°)] ² tan ⁻¹ (0.0 ft/36 ft) umed)	4.94 ksf \leq 8.55 ksf $N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$ $N_{\gamma} = 0.0$ $S_{\gamma} = 1.0$ $i_{\gamma} = 1.0$ (0)	= 0.0 Assumed)	0
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$ $S_c = 1+[36 \text{ ft/}(5-236 \text{ ft})] = 1.0$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + \gamma D_f N_{qm} C_{wq} + \frac{1}{2}$ $N_{qm} = N_q S_q d_q i_q$ $N_q = 1.0$ $S_q = 1.0$ $d_q = 1+2 \tan(26^\circ)[1]$ $= 1.0$	$\mathbf{t} = 1.0$ 36.0 ft)(11.3)(0.5) \mathbf{g} 5 ksf \rightarrow (2) $\gamma B' N_{\gamma m} C_{w\gamma}$ = 1.0 -sin(26°)] ² tan ⁻¹ (0.0 ft/36 ft) umed)	4.94 ksf \leq 8.55 ksf $N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$ $N_{\gamma} = 0.0$ $S_{\gamma} = 1.0$ $i_{\gamma} = 1.0$ (0)	= 0.0 Assumed)	0
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Jominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c S_c i_c = 5.14$ $N_c = 5.14$ $S_c = 1+[36 \text{ ft/}(5\cdot236 \text{ ft})] = 1.0$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + 2D_f N_{qm}C_{wq} + ½N_{qm} = N_q S_q d_q i_q$ $N_q = 1.0$ $S_q = 1.0$ $d_q = 1+2\tan(26^\circ)(1)$ $= 1.0$ $i_q = 1.0 \text{ (Assuce C_{wq})} = 5.0 \text{ ft} > 0.0 \text{ ft}$	t = 1.0 36.0 ft)(11.3)(0.5) \underline{P} $5 \text{ ksf} \longrightarrow$ $5 \text{ ksf} \longrightarrow$ $(2 \gamma B' N_{\gamma m} C_{w\gamma})$ = 1.0 $-\sin(26^{\circ})^{3} \tan^{-1}(0.0 \text{ ft}/36 \text{ ft})$ $\tan(26^{\circ})^{3} \tan^{-1}(0.0 \text{ ft}/36 \text{ ft})$ $\tan(26^{\circ})^{3} \tan^{-1}(0.0 \text{ ft}/36 \text{ ft})$	4.94 ksf \leq 8.55 ksf $N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$ $N_{\gamma} = 0.0$ $S_{\gamma} = 1.0$ $i_{\gamma} = 1.0$ (0)	= 0.0 Assumed)	0
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Cr Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c s_c i_c = 5.14$ $N_c = 5.14$ $s_c = 1+[36 \text{ ft}/(5\cdot236 \text{ ft})] = 1.0$ $i_c = 1.0$ (Assumed) $q_n = (3750 \text{ psf})(5.14) + (130 \text{ pcf})(0)$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (ssf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + ?D_f N_{qm}C_{wq} + ½N_{qm} = N_q s_q d_q i_qN_q = 1.0s_q = 1.0d_q = 1+2\tan(26^\circ)(1)= 1.0i_q = 1.0 \text{ (Assu}C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft})(1.0)(1.0) + ½(130 pcf)$	t = 1.0 36.0 ft)(11.3)(0.5) 2 5 ksf \rightarrow 5 ksf \rightarrow (.2) $\mathcal{B}^{*} N_{\gamma m} C_{w\gamma}$ = 1.0 -sin(26°) ³ (1an ⁻¹ (0.0 ft/36 ft)) urmed) t = 1.0)(36.0 ft)(0.0)(0.5)	4.94 ksf < 8.55 ksf $N_{ym} = N_y S_y i_y$ $N_y = 0.0$ $s_y = 1.0$ $i_y = 1.0$ ($C_{wy} = 5.0 \text{ ft} < 1$	= 0.0 Assumed)	0
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ k}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I Check Bearing Resistance - Undrained Co Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c s_c i_c = 5.14$ $N_c = 5.14$ $s_c = 1+[36 \text{ ft}/(5\cdot236 \text{ ft})] = 1.0$ $i_c = 1.0$ (Assumed) $q_n = (3750 \text{ psf})(5.14) + (130 \text{ pcf})(0)$ Verify Equivalent Pressure Less Than Fac	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + 2D_f N_{qm}C_{wq} + ½N_{qm} = N_q S_q d_q i_qN_q = 1.0S_q = 1.0d_q = 1+2\tan(26^\circ)(1= 1.0i_q = 1.0 (Assume that the second sec$	t = 1.0 36.0 ft)(11.3)(0.5) \underline{P} 5 ksf \longrightarrow (27B' N _{pm} C _{wp}) = 1.0 -sin(26°)] ² tan ⁻¹ (0.0 ft/36 ft) t = 1.0 (36.0 ft)(0.0)(0.5) \underline{P}	4.94 ksf ≤ 8.55 ksf $N_{ym} = N_{y}S_{y}i_{y}$ $N_{y} = 0.0$ $s_{y} = 1.0$ $i_{y} = 1.0$ (c $C_{wy} = 5.0 \text{ft} < 1$ = 19.28 ksf	= 0.0 Assumed) .5(36 ft) + 0.0 ft =	
Verify Equivalent Pressure Less Than Fac $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 4.94 \text{ H}$ Use $\phi_b = 0.65$ (Per AASHTO LRFD I) Check Bearing Resistance - Undrained Cr Nominal Bearing Resistance: $q_n = cN$ $N_{cm} = N_c s_c i_c = 5.14$ $N_c = 5.14$ $s_c = 1+[36 \text{ ft}/(5\cdot236 \text{ ft})] = 1.0$ $i_c = 1.0$ (Assumed) $q_n = (3750 \text{ psf})(5.14) + (130 \text{ pcf})(0)$	$C_{wq} = 5.0 \text{ ft} > 0.0 \text{ ft}$ ft)(13.1)(1.0) + ½(130 pcf)(ctored Bearing Resistance (sf ≤ (13.16 ksf)(0.65) = 8.5 BDM Table 11.5.6-1) ondition $c_m + 2D_f N_{qm}C_{wq} + ½N_{qm} = N_q S_q d_q i_qN_q = 1.0S_q = 1.0d_q = 1+2\tan(26^\circ)(1= 1.0i_q = 1.0 (Assume that the second sec$	t = 1.0 36.0 ft)(11.3)(0.5) \underline{P} 5 ksf \longrightarrow (27B' N _{pm} C _{wp}) = 1.0 -sin(26°)] ² tan ⁻¹ (0.0 ft/36 ft) t = 1.0 (36.0 ft)(0.0)(0.5) \underline{P}	4.94 ksf < 8.55 ksf $N_{ym} = N_y S_y i_y$ $N_y = 0.0$ $s_y = 1.0$ $i_y = 1.0$ ($C_{wy} = 5.0 \text{ ft} < 1$	= 0.0 Assumed)	0

Rii	RESOURCE INTERNATIONAL, 6350 PRESIDENTIAL GATEW, COLUMBUS, OHIO 43231 PHONE: (614) 823-4949	
	FAX: (614) 823-4990 WWW.RESOURCEINTERATIONA	Retaining Wall 7
	WWW.RESOURCEINTERATIONA	
Retaining Wall 7 - CIP Wall With	<u>n Shear Key - 9.5 ft. Maximu</u>	<u>um Wall Height</u>
		$\sigma_{LS} = 250 \text{ psf}$ Proposed Top of Wall XXX FI. = 803.0
a a	= 1.5 ft> <	Backfill and Retained Soil: Item 203 Embankment
	n - 405	405
	γ_{BF} = 125 pcf φ_{BF} = 30 °	$H = 9.5 \text{ ft} \qquad \qquad \gamma_{RS} = 125 \text{ pcf}$ $= 100 \text{ grs} = 30^{\circ}$
Dreposed Crowned Curfese		$(S_u)_{RS}$ = 2000 psf
Proposed Ground Surface	XXX	
$D_{f} = 3.0 \text{ ft}$ $b = 1.5$ $D_{w} = 8.0 \text{ ft}$ ψ	$i \text{ ft} \iff c = 4.0 \text{ ft}$	
$D_w = 0.0 \text{ m}$	$\leftarrow e = 2.5 \text{ ft} \rightarrow \text{f} = 2.5 \text{ ft}$	EI. = 793.5
↓ Drawing Not to Scale	< B = 7.0 ft	$ d = 2.0 \text{ ft} $ $ \gamma_{BS} = 120 \text{ pcf} \qquad \varphi_{BS} = 28^{\circ} (S_u)_{BS} = 1750 \text{ psf} $
CIP Wall Dimensions and Surch	harge Loading	Bearing and Retained/Backfill Soil Properties:
Wall Height, (<i>H</i>) =	9.5 ft	Bearing Soil Unit Weight, $(\gamma_{BS}) = 120$ pcf
Foundation Width (Entire Base Widt	grinnigninnigninnigninnigninnig	Bearing Soil Friction Angle, (φ_{BS}) = 28 °
Stem Width, $(a) =$	1.5 ft	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] = 1750$ psf
Toe Width, (<i>b</i>) = Heel Width, (<i>c</i>) =	<u>1.5</u> ft 4.0 ft	Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS}) =$ 125 pcf Retained Soil Friction Angle, $(\varphi_{RS}) =$ 30 °
Footing Thickness, (d) =	4.0 it 2.0 ft	Retained Soil Friction Aligie, $(\varphi_{RS}) = \frac{30}{2000}$ psf
Location of Shear Key, $(e) =$	2.5 ft	Active Earth Pressure Coefficient, $(K_a) = 0.297$
Depth of Shear Key, (ƒ) =	2.5 ft	Passive Earth Pressure Coefficient, $(K_p) = 5.580$
Embedment Depth, (D_f) =	<u>3.0</u> ft	LRFD Load Factors
Wall Length, $(L) =$	402 ft	DC EV EH LS EP
Live Surcharge Load, $(\sigma_{LS}) =$ Depth to Groundwater, $(D_w) =$	250 psf 8.0 ft	Strength Ia 0.90 1.00 1.50 1.75 0.90 (AASHTO LRFD BDM Te Strength Ib 1.25 1.35 1.50 1.75 0.90 3.4.1-1 and 3.4.1-2 - Ac
	<u> </u>	Service I 1.00 1.00 1.00 1.00 1.00 <i>Earth Pressure</i>)
		$K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 2.51 \text{ kip/ft}$
\sim	$P_{EH} P_{LS_h} = \sigma_{LS} H K_{A}$	$_{\alpha} \gamma_{LS}$ (250 psf)(9.5 ft)(0.297)(1.75) = 1.23 kip/ft kip/ft + 1.23 kip/ft = 3.74 kip/ft
	$P_{H} = 2.51 \mathrm{k}$	(ip/ft + 1.23 kip/ft = 3.74 kip/ft
Check Sliding Resistance	P_H = 2.51 k Nominal Sliding Resisting:	
	Nominal Sliding Resisting:	
Check Sliding Resistance	Nominal Sliding Resisting: $R_{ep}=\gamma_{BS}D_ffK_p\gamma$	$R_{n} = R_{\tau} + R_{ep}$ $\gamma_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$
Check Sliding Resistance	Nominal Sliding Resisting: $R_{ep}=\gamma_{BS}D_ffK_p\gamma$	$R_n = R_\tau + R_{ep}$
Check Sliding Resistance	Nominal Sliding Resisting: $R_{ep}=\gamma_{BS}D_ffK_p\gamma$	$R_{n} = R_{\tau} + R_{ep}$ $\gamma_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $0.0 \text{ ft}(2.5 \text{ ft})(5.58)(0.90) + \frac{1}{2}(120 \text{ pcf})(2.5 \text{ ft})^{2}(5.58)(0.90) = 6.40 \text{ kip}$
	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition:	$R_{n} = R_{\tau} + R_{ep}$ $\gamma_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $0.0 \text{ ft}(2.5 \text{ ft})(5.58)(0.90) + \frac{1}{2}(120 \text{ pcf})(2.5 \text{ ft})^{2}(5.58)(0.90) = 6.40 \text{ kip}$
Check Sliding Resistance	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$	$R_{n} = R_{\tau} + R_{ep}$ $Y_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $R_{\tau} = P_{V} \tan \delta$
Check Sliding Resistance	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$ (12)	$R_{n} = R_{\tau} + R_{ep}$ $Y_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $0.0 \text{ ft})(2.5 \text{ ft})(5.58)(0.90) + \frac{1}{2}(120 \text{ pcf})(2.5 \text{ ft})^{2}(5.58)(0.90) = 6.40 \text{ kip}$ $R_{\tau} = P_{V} \tan \delta$ $P_{2} + P_{EV} = \gamma_{c} \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{E}$ $[(7.0 \text{ ft})(2.0 \text{ ft}) + (9.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})] (0.90) + = 7.16 \text{ kip/ft}$
Check Sliding Resistance	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$ (12) $\tan \delta = \tan \varphi_{BS}$	$R_{n} = R_{\tau} + R_{ep}$ $\gamma_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $R_{\tau} = P_{V} \tan \delta$ $P_{eV} = \gamma_{c} \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{E}$ $[(7.0 ft)(2.0 ft) + (9.5 ft - 2.0 ft)(1.5 ft)] (0.90) + = 7.16 \text{ kip/ft}$ $P_{EV} = \gamma_{c} \cdot (ft)(4.0 ft)(1.00)$
$Check Sliding Resistance$ $DC_2 \downarrow \downarrow \downarrow \downarrow \downarrow$ $R_{ep} R_{\tau}$	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$ (12) $\tan \delta = \tan \varphi_{BS}$ $R_\tau = (7.16 \text{ ki})$	$R_{n} = R_{\tau} + R_{ep}$ $Y_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $0.0 \text{ ft})(2.5 \text{ ft})(5.58)(0.90) + \frac{1}{2}(120 \text{ pcf})(2.5 \text{ ft})^{2}(5.58)(0.90) = 6.40 \text{ kip}$ $R_{\tau} = P_{V} \tan \delta$ $P_{2} + P_{EV} = \gamma_{c} \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{E}$ $[(7.0 \text{ ft})(2.0 \text{ ft}) + (9.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})] (0.90) + = 7.16 \text{ kip/ft}$ $P_{2} = \tan(28) = 0.53$ $P_{2} = \tan(28) = 0.53$
Check Sliding Resistance $DC_{2} \downarrow P_{EV} \downarrow DC_{1} \downarrow R_{\tau}$ $R_{ep} R_{\tau}$ Verify Sliding Force Less Than	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$ (12) $\tan \delta = \tan \varphi_{BS}$ $R_\tau = (7.16 \text{ ki})$ Factored Sliding Resistance	$R_{n} = R_{\tau} + R_{ep}$ $Y_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $x_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $x_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $x_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $R_{\tau} = P_{V} \tan \delta$ $R_{\tau} = P_{V} \tan \delta$ $R_{\tau} = P_{V} \tan \delta$ $R_{\tau} = \gamma_{c} \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{E}$ $[(7.0 \text{ ft})(2.0 \text{ ft}) + (9.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})] (0.90) + = 7.16 \text{ kip/ft}$ $R_{2} \text{ prof}(9.5 \text{ ft} - 2.0 \text{ ft})(4.0 \text{ ft})(1.00)$ $= \tan(28) = 0.53$ $R_{2} \text{ prov} = 0.53$ $R_{2} \text{ prov} = 0.53$
Check Sliding Resistance $DC_{2} \downarrow P_{EV} \downarrow DC_{1} \downarrow R_{\tau}$ $R_{ep} R_{\tau}$ Verify Sliding Force Less Than	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$ (12) $\tan \delta = \tan \varphi_{BS}$ $R_\tau = (7.16 \text{ ki})$ Factored Sliding Resistance $\phi_\tau \cdot R_\tau + \phi_{ep} \cdot R_{ep} \longrightarrow 3$	$R_{n} = R_{\tau} + R_{ep}$ $Y_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $0.0 \text{ ft})(2.5 \text{ ft})(5.58)(0.90) + \frac{1}{2}(120 \text{ pcf})(2.5 \text{ ft})^{2}(5.58)(0.90) = 6.40 \text{ kip}$ $R_{\tau} = P_{V} \tan \delta$ $P_{2} + P_{EV} = \gamma_{c} \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{E}$ $[(7.0 \text{ ft})(2.0 \text{ ft}) + (9.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})] (0.90) + = 7.16 \text{ kip/ft}$ $P_{2} = \tan(28) = 0.53$ $P_{2} = \tan(28) = 0.53$
Check Sliding Resistance $DC_{2} \downarrow P_{EV} \downarrow \downarrow \downarrow P_{EV} \downarrow \downarrow \downarrow P_{EV} \downarrow$	Nominal Sliding Resisting: $R_{ep} = \gamma_{BS} D_f f K_p \gamma$ $R_{ep} = (120 \text{ pcf})(3)$ Check Drained Condition: $P_V = DC_1 + DC_2$ $P_V = (150 \text{ pcf})$ (12) $\tan \delta = \tan \varphi_{BS}$ $R_\tau = (7.16 \text{ ki})$ Factored Sliding Resistance $\phi_\tau \cdot R_\tau + \phi_{ep} \cdot R_{ep} \longrightarrow 3.$ injeft OK	$R_{n} = R_{\tau} + R_{ep}$ $Y_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $x_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $x_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $x_{ep} + \frac{1}{2} \gamma_{BS} f^{2} K_{p} \gamma_{ep}$ $R_{\tau} = P_{V} \tan \delta$ $R_{\tau} = P_{V} \tan \delta$ $R_{\tau} = P_{V} \tan \delta$ $R_{\tau} = \gamma_{c} \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{E}$ $[(7.0 \text{ ft})(2.0 \text{ ft}) + (9.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})] (0.90) + = 7.16 \text{ kip/ft}$ $R_{2} \text{ prof}(9.5 \text{ ft} - 2.0 \text{ ft})(4.0 \text{ ft})(1.00)$ $= \tan(28) = 0.53$ $R_{2} \text{ prov} = 0.53$ $R_{2} \text{ prov} = 0.53$

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 <u>WWW.RESOURCEINTERATIONAL.COM</u>

JOB FF	RA-70-22.85 FEF	NO.	W-17-140
SHEET NO.	2	OF	6
CALCULATED BY	MDK	DATE	2/1/2020
CHECKED BY	BRT	DATE	2/2/2020
Retaining Wa	ll 7		

Vall Height, (<i>H</i>) =					.5 ft	Bearing So								20 pcf	
oundation Width		se Width),	(B) =		.0 ft	Bearing So					Į			28 °	
Stem Width, $(a) =$.5 ft	Bearing So								50 psf	
foe Width, (b) =					.5 ft	Backfill and					$\gamma_{RS}) =$		_	25 pcf	
Heel Width, (c) =	(1) -				.0 ft .0 ft	Retained S					\ 1-			30 °	
Footing Thickness					.0 n .5 ft	Retained S Active Ear					u]RS] —		0.2	00 psf	
Depth of Shear Ke					.5 n .5 ft	Passive Ea							5.5	ē	
Embedment Depti					.0 ft	LRFD Lo			smolent,	(A p) -			0.0	<u></u>	
Vall Length, (L) =)2 ft		DC	EV	EH	LS	EP				
ive Surcharge Lo		:			50 psf	Strength la		1.00	1.50		0.90	٦			
Depth to Groundw	ater, (D_w)	=			.0 ft	Strength Ib	1.25	1.35	1.50	1.75	0.90	-		1-1 and 3.	D BDM Tab 4.1-2 - Activ
						Service I	1.00	1.00	1.00	1.00	1.00	J		Earth Pr	essure)
<u>Check Sliding (</u>	Loading	<u>Case - St</u>	rength I	la) - AASH	<u>TO LR</u>	FD BDM Sec	tion 10	.6.3.4 (0	ontinued	2					
Phoole Lindraina	d Canditia		• _((s	$(S_n)_{RS} \leq q$.) D)									
Check Undrained		n. л	$\tau_{\tau} = ((c$	$(u)_{BS} \geq q$	$(s) \cdot D$										
			(S_u)	$_{BS} = 1.$	75 k	٨sf									
$DC_2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$															
v v			q_{max}	$= \frac{1}{2}\sigma_{\rm w}$	nax =	(2.26 ksf) / 2	=	1.13	ksf						
	-1			_ 1/ _											
$\begin{array}{c} DC_2 \\ \downarrow \\ \downarrow \\ \downarrow \\ DC \\ R_{ep} \\ \downarrow \\ \hline \end{array}$	$\overline{R_{\tau}}$		q_{min}	$= \gamma_2 \sigma_w$	_{nin} =	(-0.21 ksf) / 2	! =	-0.11	ksf						
$(S_u)_{BS} \leq q$	qmin 🗾		σ	$= P_V$	$\frac{1}{1}$	$\left(-6\frac{e}{B}\right) =$	(7.16 ki	p/ft / 7 (ft)[1 +	6(1.41 f	t / 7.0 f	t)]	_	2.26	ksf
max huliulu			ζ,	vmax /	B(⁺ '	\overline{B}	<u>,</u>	F · · · · · · · · · ·		-,		-11			
$(S_u)_{RS} \leq q$	Su			מ	11	2)									
			σ_{v}	$min = \frac{F_V}{V}$	$ _{B} 1 -$	$-6\frac{e}{B}$ =	(7.16 ki	ip/ft / 7.0) ft)[1 -	6(1.41 f	t / 7.0 ft)]	=	-0.21	ksf
				ğ	- Summer										
					~	ь,									
$R_{\tau} = 0.$.5(1.13 ks	f)[((7.0 ft)		if)) / (1.13 I									=	3.6	
$R_{\tau} = 0.$ /erify Sliding F			(1.13 ks	if)) / (1.13 l	(sf0.	.11 ksf)]								3.6	kip/
/erify Sliding F	orce Les:	s Than Fa	(1.13 ks actored	f)) / (1.13 l Sliding R	(sf0. esistar	.11 ksf)] nce - Undrain	ned Cor	ndition						3.6	
	orce Les:	s Than Fa	(1.13 ks actored	f)) / (1.13 l Sliding R	(sf0. esistar	.11 ksf)] nce - Undrain	ned Cor	ndition						3.6	
Verify Sliding F $P_H \le \phi_n \cdot I$	orce Les:	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\cdot R_x +$	f)) / (1.13 l Sliding R	(sf0. esistar	.11 ksf)] nce - Undrain	ned Cor	ndition						3.6	
Verify Sliding F $P_H \le \phi_n \cdot I$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] nce - Undrain	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\begin{array}{l} & \text{/erify Sliding F} \\ & P_H \leq \phi_n \cdot I \\ & = 3. \end{array}$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\begin{array}{l} & \text{/erify Sliding F} \\ & P_H \leq \phi_n \cdot I \\ & = 3. \end{array}$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\begin{array}{l} & \text{/erify Sliding F} \\ & P_H \leq \phi_n \cdot I \\ & = 3. \end{array}$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\frac{\text{/erify Sliding F}}{P_H} \le \phi_n \cdot I$ $= 3.$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\begin{array}{l} & \text{/erify Sliding F} \\ & P_H \leq \phi_n \cdot I \\ & = 3. \end{array}$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	
$\begin{array}{l} & \text{/erify Sliding F} \\ & P_H \leq \phi_n \cdot I \\ & = 3. \end{array}$	<u>orce Less</u> ζ _n →> 74 kip/ft ≤	s Than Fa $P_H \leq \phi_\tau$	(1.13 ks) actored $\therefore R_x +$	f)) / (1.13 Sliding R $\phi_{ep} \cdot R_{ep}$ OK	(sf0. esistar	.11 ksf)] 1 <u>ce - Undrain</u> 3.74 kip/ft ≤ (;	ned Cor 3.60 kip/	<u>ndition</u> /ft)(1.00) + (6.4(3.6	

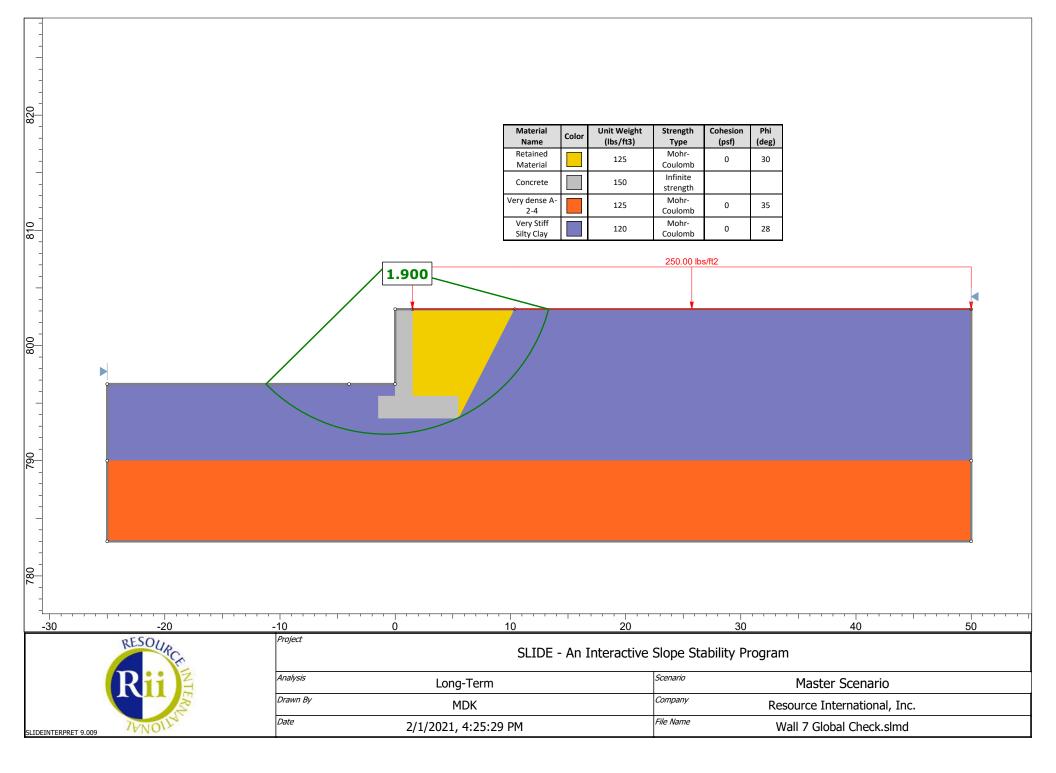
RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

JOB	FRA-70	-22.85 FEF	NO.	W-17-140
SHEET NO		3	OF	6
CALCULAT	ED BY	MDK	DATE	2/1/2020
CHECKED	BY	BRT	DATE	2/2/2020
Retaining	g Wall 7			

CIP Wall Dimensions and Surcharge Loadin	<u>ng</u>	Bearing and Retained/Backfill Soil Properties:	
Wall Height, (<i>H</i>) =	9.5 ft	Bearing Soil Unit Weight, (γ_{BS}) = 1	I20 pcf
Foundation Width (Entire Base Width), (B) =	7.0 ft	Bearing Soil Friction Angle, (φ_{BS}) =	<u>28</u> °
Stem Width, (a) =	1.5 ft		7 <u>50</u> psf
Toe Width, (<i>b</i>) =	1.5 ft	Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS}) = 1$	I25 pcf
Heel Width, (c) =	4.0 ft	Retained Soil Friction Angle, (φ_{RS}) =	<u>30</u> °
Footing Thickness, (<i>d</i>) =	2.0 ft		000 psf
Location of Shear Key, (e) =	2.5 ft		<u>297</u>
Depth of Shear Key, (<i>f</i>) =	2.5 ft	Passive Earth Pressure Coefficient, $(K_p) = 5.5$	580 <u> </u>
Embedment Depth, (D_f) =	3.0 ft	LRFD Load Factors	
Wall Length, (<i>L</i>) =	402 ft	DC EV EH LS EP	
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Strength la 0.90 1.00 1.50 1.75 0.90	SHTO LRFD BDM Tab
Depth to Groundwater, $(D_w) =$	8.0 ft	Strength lb 1.25 1.35 1.50 1.75 0.90 - 34 Service I 1.00 1.00 1.00 1.00 1.00 - 34	I.1-1 and 3.4.1-2 - Acti Earth Pressure)
Check Eccentricity (Loading Case - Strengt	$\frac{\text{th Ia}}{2} - \frac{AASHT}{2}$	D LRFD BDM Section 11.6.3.3	
P_{FV}	$\frac{12}{M}$	M	
$DC_{2} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow P_{LS_{h}}$ $DC_{1} \downarrow \downarrow P_{EH}$ $x_{o} \longleftrightarrow e$ R	$x_o = \frac{m_V}{D}$	$\frac{M_{H}}{28.78} = (28.78 \text{ kip-ft/ft} - 13.80 \text{ kip-ft/ft}) / (7.16 \text{ kip/ft})$ $\frac{28.78 \text{ kip-ft/ft}}{13.80 \text{ kip-ft/ft}} Defined below$ $\frac{13.80 \text{ kip-ft/ft}}{12.80 \text{ kip-ft/ft}} = 2.75 \text{ kip-ft/} + 1.52 \text{ kip-ft/ft}$	= 2.09 ft
	P_{V}		
DC_1 F_{EH}	$M_V =$	28.78 kip·ft/ft Defined below	
	$M_H =$	13.80 kip·ft/ft	
$X_o \longleftrightarrow e$	$P_V = P_{EV}$	$+ DC_1 + DC_2 = 3.75 \text{ kip/ft} + 1.89 \text{ kip/ft} + 1.52 \text{ kip/ft} =$	7.16 kip
R			
B_{2}	e = (7.0 ft)	/ 2) - 2.09 ft = 1.41 ft	
DC_2 DC_1 $DC_1 =$ $DC_2 =$	$\frac{\gamma_c \cdot B \cdot d \cdot \gamma_1}{\gamma_c \cdot (H-d)}$	$\begin{aligned} d \end{pmatrix} \cdot c \cdot \gamma_{EV} &= (125 \text{ pcf})(9.5 \text{ ft} - 2.0 \text{ ft})(4.0 \text{ ft})(1.00) \\ \\ \rho_C &= (150 \text{ pcf})(7.0 \text{ ft})(2.0 \text{ ft})(0.90) &= 1.89 \text{ kip/ft} \\ \\ \cdot a \cdot \gamma_{DC} &= (150 \text{ pcf})(9.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})(0.90) &= \\ \\ &= 1.5 \text{ ft} + 1.5 \text{ ft} + (4.0 \text{ ft}/2) &= 5.0 \text{ ft} \end{aligned}$	= 3.75 kip 1.52 kip/ft
$x_2 = P/$	2 = 7.0 ft	/2 = 3.5 ft	
$x_2 = P/$	2 = 7.0 ft		
$x_2 = 2/2$ $x_3 = b$ $M_V = 0$	2 = 7.0 ft + $a/2 = 1.9$ (3.75 kip/ft)(5.0	/2 = 3.5 ft 5 ft + (1.5 ft / 2) = 2.3 ft ft) + (1.89 kip/ft)(3.5 ft) + (1.52 kip/ft)(2.3 ft) = 28.78	3 kip.ft/ft
$x_{2} = y$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : M_{E}	$\frac{1}{2} = 7.0 \text{ ft}$ $+ \frac{a}{2} = 1.3$ $(3.75 \text{ kip/ft})(5.0)$ $H = P_{EH} (x_2)$ $P_{EH} = \frac{1}{2} \gamma_{RS}$	$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 22$	2.51 kip/ft
$x_{2} = y$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : M_{E}	$\frac{1}{2} = 7.0 \text{ ft}$ $+ \frac{a}{2} = 1.3$ $(3.75 \text{ kip/ft})(5.0)$ $H = P_{EH} (x_2)$ $P_{EH} = \frac{1}{2} \gamma_{RS}$	$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 22$	2.51 kip/ft
$x_{2} = y$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : $M_{LS_{h}}$ $M_{LS_{h}}$	$\frac{1}{2} = 7.0 \text{ ft}$ $+ \frac{a}{2} = 1.9$ $(3.75 \text{ kip/ft})(5.0)$ $H = P_{EH} (x_2)$ $P_{EH} = \frac{1}{2} \gamma_{RS}$ $P_{LS_h} = \sigma_{LS} H$ $x_2 = \frac{H}{3}$	$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 24$ $HK_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$ $= (9.5 \text{ ft}) / 3 = 3.17 \text{ ft}$	2.51 kip/ft
$x_{2} = y$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : $M_{LS_{h}}$ $M_{LS_{h}}$	$\frac{1}{2} = 7.0 \text{ ft}$ $+ \frac{a}{2} = 1.9$ $(3.75 \text{ kip/ft})(5.0)$ $H = P_{EH} (x_2)$ $P_{EH} = \frac{1}{2} \gamma_{RS}$ $P_{LS_h} = \sigma_{LS} H$ $x_2 = \frac{H}{3}$	$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.78$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 24$ $HK_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$	2.51 kip/ft
$x_{2} = y$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : $M_{LS_{h}}$ $M_{LS_{h}}$	$2 = 7.0 \text{ ft}$ $+ \frac{a}{2} = 1.3$ $(3.75 \text{ kip/ft})(5.0)$ $H = P_{EH} (x_2)$ $P_{EH} = \frac{1}{2} \gamma_{RS}$ $P_{LS_h} = \sigma_{LS} H$ $x_2 = \frac{H}{3}$ $x_3 = \frac{H}{2}$	$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 24$ $HK_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$ $= (9.5 \text{ ft}) / 3 = 3.17 \text{ ft}$	2.51 kip/ft kip/ft
$x_{2} = y$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : $M_{LS_{h}}$ $M_{LS_{h}}$	$2 = 7.0 \text{ ft}$ $+ \frac{a}{2} = 1.3$ $(3.75 \text{ kip/ft})(5.0)$ $H = P_{EH} (x_2)$ $P_{EH} = \frac{1}{2} \gamma_{RS}$ $P_{LS_h} = \sigma_{LS} H$ $x_2 = \frac{H}{3}$ $x_3 = \frac{H}{2}$	$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h} (x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 22$ $H K_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$ $= (9.5 \text{ ft}) / 3 = 3.17 \text{ ft}$ $= (9.5 \text{ ft}) / 2 = 4.75 \text{ ft}$	2.51 kip/ft kip/ft
$x_{2} = 2/2$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : M_{H} K_{5} $M_{LS_{h}}$ $P_{LS_{h}}$ M_{EH} M_{H}		$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 22$ $HK_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$ $= (9.5 \text{ ft}) / 3 = 3.17 \text{ ft}$ $= (9.5 \text{ ft}) / 2 = 4.75 \text{ ft}$ $(2.51 \text{ kip/ft})(3.17 \text{ ft}) + (1.23 \text{ kip/ft})(4.75 \text{ ft}) = 13.8$	2.51 kip/ft kip/ft
$x_{2} = 2/2$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : $M_{LS_{h}}$ $P_{LS_{h}}$ P_{EH} Z_{2} Limiting Eccentricity:		$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 22$ $HK_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$ $= (9.5 \text{ ft}) / 3 = 3.17 \text{ ft}$ $= (9.5 \text{ ft}) / 2 = 4.75 \text{ ft}$ $(2.51 \text{ kip/ft})(3.17 \text{ ft}) + (1.23 \text{ kip/ft})(4.75 \text{ ft}) = 13.8$	2.51 kip/ft kip/ft
$x_{2} = \frac{2}{3}$ $x_{3} = b$ $M_{V} = 0$ Overturning Moment, M_{H} : $M_{LS_{h}}$ $P_{LS_{h}}$ P_{EH} E_{EH} $M_{LS_{h}}$ $M_{LS_{h}}$		$/2 = 3.5 \text{ ft}$ $5 \text{ ft} + (1.5 \text{ ft} / 2) = 2.3 \text{ ft}$ $ft) + (1.89 \text{ kip/ft})(3.5 \text{ ft}) + (1.52 \text{ kip/ft})(2.3 \text{ ft}) = 28.76$ $) + P_{LS_h}(x_3)$ $H^2 K_a \gamma_{EH} = \frac{1}{2}(125 \text{ pcf})(9.5 \text{ ft})^2(0.297)(1.50) = 22$ $HK_a \gamma_{LS} = (250 \text{ psf})(9.5 \text{ ft})(0.297)(1.75) = 1.23$ $= (9.5 \text{ ft}) / 3 = 3.17 \text{ ft}$ $= (9.5 \text{ ft}) / 2 = 4.75 \text{ ft}$ $(2.51 \text{ kip/ft})(3.17 \text{ ft}) + (1.23 \text{ kip/ft})(4.75 \text{ ft}) = 13.8$	2.51 kip/ft kip/ft

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

JOB	FRA-70-22.85 FEF	NO.	W-17-140
SHEET NO.	4	OF	6
CALCULATED	BY MDK	DATE	2/1/2020
CHECKED BY	BRT	DATE	2/2/2020
Retaining V	Vall 7		


WWW.RESOU	RCEINTERATION	AL.COM			
CIP Wall Dimensions and Surcharge Loadi	na	Bearing and Reta	ained/Backfill	Soil Properti	es:
Wall Height, (<i>H</i>) =	9.5 ft	Bearing Soil Unit We			120 pcf
Foundation Width (Entire Base Width), (B) =	7.0 ft	Bearing Soil Friction			28 °
Stem Width, $(a) =$	1.5 ft	Bearing Soil Undrain		$[(s_{1})_{RS}] =$	1750 psf
Toe Width, (<i>b</i>) =	1.5 ft	Backfill and Retaine		•	
Heel Width, $(c) =$	4.0 ft	Retained Soil Frictio		ngananing manang maining m	<u> </u>
Footing Thickness, $(d) =$	2.0 ft	Retained Soil Undra			
Location of Shear Key, $(e) =$	2.5 ft	Active Earth Pressu		កកើតការកើតកម្ពុជាកើរការ	0.297
Depth of Shear Key, $(f) =$	2.5 ft	Passive Earth Press			5.580
Embedment Depth, $(D_f) =$	3.0 ft	LRFD Load Facto		(<i>P</i> /	
Wall Length, $(L) =$	402 ft	DC	EV EH	LS EP	
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Strength Ia 0.90	1.00 1.50		ר (
Depth to Groundwater, $(D_w) =$	8.0 ft	Strength lb 1.25 Service I 1.00	1.35 1.50 1.00 1.00		Earth Pressure)
Check Bearing Capacity (Loading Case - St P _{LS} ,	trength Ib) - AA	SHTO LRFD BDM S	Section 11.6.3	<u>2</u>	
	P /				
q_{ea}	$= \frac{P_V}{R'}$				
	, b				
$DC_2 \downarrow \downarrow \downarrow \downarrow$	B' = B - 2e	= 7.0 ft - 2(0.33 ft	:) = 6.3	4 ft	
	r /	$= 7.0 \text{ ff} - 2(0.33 \text{ ff})$ $x_o = (7.0 \text{ ff} / 2)$ $\frac{-M_H}{2} = (54.8)$			
$\begin{array}{c} DC_{1} \\ \hline \\ x_{o} \\ \hline \\ R \\ \hline \\ e^{B_{2}} \\ \hline \\ e^{B_{2}} \\ \hline \\ e^{B_{1}} \\ \hline \end{array}$	$e = \frac{B}{2} + \frac{B}{2}$	$x_o = (7.0 \text{ ft} / 2)$?) - 3.17 ft =	0.33 ff	
	, <i>й</i>	$-M_{\mu}$			
$x_o + + + + - e$	$x_o = -\frac{v}{1}$	$\frac{H}{2} = (54.5)$	56 kip∙ft/ft - 13.	.80 kip·ft/ft) / (12.86 kip/ft) = 3.17 f
	1	V			
$\Leftarrow \tilde{B}' \rightarrow d$	$q_{eq} = (12.86)$	kip/ft) / (6.34 ft) =	2.03 ks	f	
				N	
	$EV(x_1) + P_{LS_v}$	$(x_1) + DC_1(x_2)$	$+ DC_{2}(x_{3})$)	
P_{LS_r}	. (11	71	(405	0.0.61/4.0.6	
$P_{EV} =$	$\gamma_{BF} \cdot (H - a)$	$() \cdot c \cdot \gamma_{EV} =$	(125 pcf)(9.5 π	- 2.0 π)(4.0 π)(1.35) = 5.06 kip/f
	- 7 -	(050		0.000 1.1.16	
$P_{LS_v} = P_{LS_v}$	$\sigma_{LS} \cdot B \cdot \gamma_L$	s = (250 psf)(7.0)	$J \pi$)(1.75) =	3.063 kip/ft	
		(_ (450f)/7)	0 #\/0 0 #\/4 0		D 1.:
$DC_1 = DC_1$	$= \gamma_c \cdot \mathbf{D} \cdot \mathbf{a} \cdot \gamma$	$r_{DC} = (150 \text{ pcf})(7.1)$	υπ)(2.υπ)(1.2	5) = 2.0.	з кір/п
) a a - (150) ====================================	0 ft)/1 E ft)/1	25) = 2.11 kip/ft
$ \xrightarrow{P} x_1 $	$-\gamma_c \cdot (\Pi - a)$	$y \cdot u \cdot \gamma_{DC} = (150)$) pci)(9.5 it - 2.	0 11)(1.5 11)(1.	20) = 2.11 KIP/IT
$ \begin{array}{c} 1 & \neg x_1 \\ \hline & \neg x_2 \end{array} \qquad $	1 h 1 C/	- 15#+15#+/	(40ft/2) -	50 8	
$ \begin{array}{c} 1 \\ \end{array} x_2 \\ \end{array} x_3 \end{array} $	$+ v + \gamma_2$	= 1.5 ft + 1.5 ft + (4.0 It / 2) =	5.υ π	
$1 \sim x_3$	/ _ 70#	/2 = 3.5 ft			
$x_2 = 1$	$2^{2} = 7.0 \mathrm{m}$	/ 2 = 3.5 II			
\sim \sim \sim \sim \sim \sim	+ a/ - 1 =	5 ft + (1.5 ft / 2) =	23 f f		
$x_3 = 0$	$^{-1}/2^{-1.5}$	$(1.5 \times 12) =$	∠.J II		
\mathcal{M} \rightarrow .	(5.06 kip/ft)/5.0.41	+ (3.06 kip/ft)(5.0 ft) + ((263 kin/ft)/2 = 4	() + (2 11 kin/ft))	(2.3 ft) = 54.56 kip·ft
1111 V	(0.00 KIP/IL)(0.0 IL)	· (0.00 kip/it)(0.0 it) + (.2.00 kip/it)(3.3 li	י (ב. דד גוף/ול)(2.0 m – 04.00 KIP11
Overturning Moment, M_H : M_H	$_{H}=P_{EH}\left(x_{4}\right)$	$+ P_{-}(r)$			
	H — I EH \∿4 J	' ' IS _h \^5 /			
B	$P_{-} = \frac{1}{2} \gamma$	$H^2 K_a \gamma_{EH} = \frac{1}{2}$	(125 pcf)(9 5 ft)²(0 297)(1 50) = 2.51 kip/ft
\mathbf{r}	• ЕН — /2 / RS	11 12 al EH - 12		, (0.207)(1.00	, <u></u> , Kip/it
\uparrow	$P_{in} = \sigma_{in} F$	$\mathbb{K}_{a}\gamma_{LS} = (250)$	psf)(9.5 ft)(0 2	97)(1.75)	= 1.23 kip/ft
	$-LS_h \subset LS^{-1}$	a / LS	1	· //··· ··/ /	
	$x_{1} = H/_{2}$	= (9.5 ft)/3 =	3.17 ft		
	4 / 3	= (9.5 ft)/3 = = (9.5 ft)/2 =			
	$x_5 = H/_2$	= (9.5 ft) / 2 =	4.75 ft		
	3 12				
	$M_{\mu} =$	(2.51 kip/ft)(3.17 ft	:) + (1.23 kip/ft)	(4.75 ft)	= 13.8 kip·ft/ft
Vertical Force, P_V :				· · · · ·	
$P_{LS_v} = P_{EV} + I$	$P_{IS} + DC_1 +$	DC_{2}			
$P_{V} = 5.06$	kip/ft + 3.06 kip	o/ft + 2.63 kip/ft + 2.1	1 kip/ft		
$DC = \frac{-k}{k}$					
	12.86 kip/ft				

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

JOB FRA	-70-22.85 FEF	NO.	W-17-140
SHEET NO.	5	OF	6
CALCULATED BY	MDK	DATE	2/1/2020
CHECKED BY	BRT	DATE	2/2/2020
Retaining Wall	7		

120 pcf	<u>il Properti</u> es	ned/Backfill Soi	ind Retaine	<u>Bearing</u> a	ading	P Wall Dimensions and Surcharge Lo
2			il Unit Weigh		9.5 ft	all Height, (H) =
28 °		Angle, $(\varphi_{BS}) =$			7.0 ft	undation Width (Entire Base Width), (<i>B</i>) =
= 1750 psf	n, [(s _u) _{BS}] =	ed Shear Strength	il Undrained	Bearing Se	1.5 ft	em Width, (a) =
	$\left(\gamma_{BF},\gamma_{RS}\right) =$	Soil Unit Weight,			1.5 ft	e Width, (<i>b</i>) =
<u>30</u> °		Angle, $(\varphi_{RS}) =$			4.0 ft	el Width, (<i>c</i>) =
ດ້ຽວການການອື່ນການການອື່ນການການອື່ນການການອື່ນການການອົງການການອົງການການອົງການການອົງການການອົງການການອັງການການອັງການກາ		ned Shear Strengt			2.0 ft	oting Thickness, (d) =
0.297		e Coefficient, (K_a)			2.5 ft	cation of Shear Key, $(e) =$
5.580	_p) =	ure Coefficient, (K			2.5 ft	pth of Shear Key, $(f) =$
£₽	LS EP		DC I		3.0 ft 402 ft	bedment Depth, $(D_f) =$
ר 90	1.75 0.90				<u>402</u> π 250 ps	all Length, (L) = e Surcharge Load, (σ_{LS}) =
(AASHTO LRFD BDM Ta	1.75 0.90 1.75 0.90			Strength II	230 ps 8.0 ft	pth to Groundwater, $(D_w) =$
Earth Pressure)	1.00 1.00			Service I		
	(Continued)	ection 11.6.3.2 (0	D BDM Sec	AASHTO LRF	- Strength Ib) -	eck Bearing Capacity (Loading Case
					<u>ndition</u>	eck Bearing Resistance - Drained Co
			₿'N _{ym} C,	$V_{qm}C_{wq} + \frac{1}{2}$	$V_{cm} + \gamma D_f N$	minal Bearing Resistance: $q_n = c_n$
$s_{\gamma}i_{\gamma} = 16.617$	$=N_{\gamma}s_{\gamma}i_{\gamma}$	N_{m}	16.796	$N_q s_q d_q i_q =$	$N_{qm} =$	$N_{cm} = N_c s_c i_c = 26.035$
.717	$V_{\gamma} = 16.717$	Λ		= 14.72	N_q :	N _c = 25.803
-0.4(6.34 ft/402 ft) = 0.994	$s_{\gamma} = 1-0.4(0$	= 1.008 <i>s</i>		+(6.34 ft/402 f	s _q =	$S_c = 1+(6.34 \text{ ft}/402 \text{ ft})(14.72/25.803)$
000 (Assumed)	$i_{\gamma} = 1.000$	i.0 ft/6.34 ft) i		= 1+2tan(28°)[1-si	$d_q =$	= 1.009
0 ft < 1.5(6.34 ft) + 3.0 ft = 0.	$C_{w\gamma} = 8.0 \text{ft} <$	C		- 1.132		<i>i</i> _c = 1.000 (Assumed)
		<u>,</u>		= 1.000 (Assun = 8.0 ft > 3.0 ft		
				7-1)		Use $\varphi_b = 0.55$ (Per AASHTO LRFinetories) (Peck Bearing Resistance - Undrained (
		С. _{wy}	B'N _{ym} C,	$V_{qm}C_{wq} + \frac{1}{2}$		minal Bearing Resistance: $q_n = c_n$
						$N_{cm} = N_c s_c i_c = 5.186$
$\gamma i_{\gamma} = 0.000$	$=N_{\gamma}s_{\gamma}i_{\gamma}$	$N_{\gamma m}$	1.000	$IV_q S_q \alpha_q \iota_q =$	<i>qm</i>	$IV_{cm} - IV_{c}Sc^{2}c - 5.180$
			1.000	1 1 1 1		
000	$V_{\gamma} = 0.000$	Λ	1.000	= 1.000	N_q	N _c = 5.140
000	$V_{\gamma} = 0.000$	Λ		1 1 1 1	$N_q = 1.009 \qquad S_q = 1.009$	N _c = 5.140
	$V_y = 0.000$ $s_y = 1.000$ $i_y = 1.000$	N S D ft/6.34 ft) <i>i</i>	n(0°)]²tan ⁻¹ (3.0 ft	= 1.000 = 1.000 = 1+2tan(0°)[1-si = 1.000	$\frac{N_q}{d_q} = \frac{1}{2}$	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ ft/[(5)(402 \text{ ft)]})} =$
000 000 000 (Assumed)	$V_y = 0.000$ $s_y = 1.000$ $i_y = 1.000$	0 ft/6.34 ft) i	n(0°)]²tan ⁻¹ (3.0 ff	= 1.000 = 1.000 = 1+2tan(0°)[1-si = 1.000 = 1.000 (Assum	$N_{q} = 1.009$ $S_{q} = d_{q} = \frac{1}{1}$ $I_{q} = 1$	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ ft/[(5)(402 \text{ ft)]})} =$
000 000 000 (Assumed)	$V_y = 0.000$ $s_y = 1.000$ $i_y = 1.000$	0 ft/6.34 ft) i	n(0°)]²tan ⁻¹ (3.0 ff	= 1.000 = 1.000 = 1+2tan(0°)[1-si = 1.000	$N_{q} = 1.009$ $S_{q} = d_{q} = \frac{1}{1}$ $I_{q} = 1$	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ ft/[(5)(402 \text{ ft)]})} =$
000 000 000 (Assumed)	$V_{y} = 0.000$ $S_{y} = 1.000$ $i_{y} = 1.000$ $C_{wy} = 8.0 \text{ft} < 0$	о ft/6.34 ft) 0 ft/6.34 ft) С	(0°)] ² fan ⁻¹ (3.0 ff ed) = 1.000	= 1.000 = 1.000 = 1+2tan(0°)[1-si = 1.000 = 1.000 (Assun = 8.0 ft > 3.0 ft	N_{q} N_{q} $S_{q} = d_{q} = d_{q} = d_{q} = d_{q} = d_{q}$ $i_{q} = C_{wq}$	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ frl}((5)(402 \text{ fr}))) = i_{c} = 1.000 \text{ (Assumed)}$
000 000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0.	$V_{y} = 0.000$ $S_{y} = 1.000$ $i_{y} = 1.000$ $C_{wy} = 8.0 \text{ft} < 0$	о ft/6.34 ft) 0 ft/6.34 ft) С	(0°)] ² fan ⁻¹ (3.0 ff ed) = 1.000	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})(1-si)$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + \frac{1}{2}(12)$	$ \frac{N_{q}}{S_{q}} = \frac{N_{q}}{d_{q}} = \frac{1}{C_{wq}} $ $ \frac{1}{S_{q}} = \frac{1}{C_{wq}} = \frac{1}{C_{wq}} $ $ \frac{1}{S_{q}} = \frac{1}{C_{wq}} = \frac{1}{S_{q}} = \frac{1}{S_{q}}$	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ frl}((5)(402 \text{ fr}))) = i_{c} = 1.000 \text{ (Assumed)}$
000 000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0: 9.44 ksf	$V_{y} = 0.000$ $S_{y} = 1.000$ $i_{y} = 1.000$ $C_{wy} = 8.0 \text{ft} < 0$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	= 1.000 = 1.000 = 1+2tan(0°)[1-si = 1.000 = 1.000 (Assun = 8.0 ft > 3.0 ft)(1.000) + 1/2(12 <u>g Resistance</u>	$N_{q} = N_{q}$ $I.009 \qquad S_{q} = d_{q} = d_{q} = 0$ $I_{q} = C_{wq}$ C_{wq} C_{wq} C_{wq} C_{wq}	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fr}[(5)(402 \text{ fr})]) = i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ ps})(5.186) + (120 p$
000 000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0. 9.44 ksf	$V_{\gamma} = 0.000$ $s_{\gamma} = 1.000$ $i_{\gamma} = 1.000$ $C_{W\gamma} = 8.0 \text{ ft} < 0$ $F_{W\gamma} = 0.000$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})[1-si]$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + 1/2(12)$ g Resistance $f)(0.55) = 5.19$	N_{q} 1.009 $S_{q} = d_{q} = d_{q} = C_{wq}$ cf)(3.0 ft)(1.000 actored Bearin 3 ksf ≤ (9.44 ks)	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fu}[(5)(402 \text{ ft})]) =$ $i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ psf}$
000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0. 9.44 ksf	$V_{\gamma} = 0.000$ $s_{\gamma} = 1.000$ $i_{\gamma} = 1.000$ $C_{W\gamma} = 8.0 \text{ ft} < 0$ $F_{W\gamma} = 0.000$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})[1-si]$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + 1/2(12)$ g Resistance $f)(0.55) = 5.19$	N_{q} 1.009 $S_{q} = d_{q} = d_{q} = C_{wq}$ cf)(3.0 ft)(1.000 actored Bearin 3 ksf ≤ (9.44 ks)	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fu}[(5)(402 \text{ ft})]) = i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ psf})($
000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0.1 9.44 ksf	$V_{\gamma} = 0.000$ $s_{\gamma} = 1.000$ $i_{\gamma} = 1.000$ $C_{W\gamma} = 8.0 \text{ ft} < 0$ $F_{W\gamma} = 0.000$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})[1-si]$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + 1/2(12)$ g Resistance $f)(0.55) = 5.19$	N_{q} 1.009 $S_{q} = d_{q} = d_{q} = C_{wq}$ cf)(3.0 ft)(1.000 actored Bearin 3 ksf ≤ (9.44 ks)	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fu}[(5)(402 \text{ ft})]) =$ $i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ psf}$
000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0.1 9.44 ksf	$V_{\gamma} = 0.000$ $s_{\gamma} = 1.000$ $i_{\gamma} = 1.000$ $C_{W\gamma} = 8.0 \text{ ft} < 0$ $F_{W\gamma} = 0.000$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})[1-si]$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + 1/2(12)$ g Resistance $f)(0.55) = 5.19$	N_{q} 1.009 $S_{q} = d_{q} = d_{q} = C_{wq}$ cf)(3.0 ft)(1.000 actored Bearin 3 ksf ≤ (9.44 ks)	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fu}[(5)(402 \text{ ft})]) =$ $i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ psf}$
000 000 (Assumed) 0 ft < 1.5(6.34 ft) + 3.0 ft = 0.5 9.44 ksf	$V_{\gamma} = 0.000$ $s_{\gamma} = 1.000$ $i_{\gamma} = 1.000$ $C_{W\gamma} = 8.0 \text{ ft} < 0$ $F_{W\gamma} = 0.000$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})[1-si]$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + 1/2(12)$ g Resistance $f)(0.55) = 5.19$	N_{q} 1.009 $S_{q} = d_{q} = d_{q} = C_{wq}$ cf)(3.0 ft)(1.000 actored Bearin 3 ksf ≤ (9.44 ks)	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fu}[(5)(402 \text{ ft})]) =$ $i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ psf}$
000 000 (As 0 ft < 1.5(t	$V_{\gamma} = 0.000$ $s_{\gamma} = 1.000$ $i_{\gamma} = 1.000$ $C_{W\gamma} = 8.0 \text{ ft} < 0$ $F_{W\gamma} = 0.000$	Λ s 0 ft/6.34 ft) i C 00 ft)(0.000)(0.921)	(0°)]²tan⁻¹(3.0 ft ed) = 1.000) pcf)(6.3 ft)	$= 1.000$ $= 1.000$ $= 1+2\tan(0^{\circ})[1-si]$ $= 1.000$ $= 1.000 (Assun)$ $= 8.0 \text{ ft} > 3.0 \text{ ft}$ $)(1.000) + 1/2(12)$ g Resistance $f)(0.55) = 5.19$	N_{q} 1.009 $S_{q} = d_{q} = d_{q} = C_{wq}$ cf)(3.0 ft)(1.000 actored Bearin 3 ksf ≤ (9.44 ks)	$N_{c} = 5.140$ $S_{c} = 1+(6.34 \text{ fu}[(5)(402 \text{ ft})]) =$ $i_{c} = 1.000 \text{ (Assumed)}$ $q_{n} = (1750 \text{ psf})(5.186) + (120 \text{ psf}$

