GEOHAZARD REPORT RETAINING WALL FOR LANDSLIDE MITIGATION

PROJECT: FUL-20A-19.20 (PID 119890) FULTON COUNTY, OHIO

Tetra Tech Project No. 100-WTR-T44324 April 21, 2025

FINAL

Prepared for:

Ohio Department of Transportation District 2 317 East Poe Road Bowling Green, OH 43402-1330

Prepared by:

Tetra Tech, Inc. 1899 Powers Ferry Road, Suite 400 Atlanta, GA 30339

Department of Transportation

April 21, 2025

Mr. David Charville, P.E. Senior Project Manager Tetra Tech IEW 420 Madison Ave., Suite 1001 Toledo, OH 43604

Subject: Final Geohazard Report

Retaining Wall for Landslide Mitigation

FUL-20A-19.20 (PID 119890)

Delta, Ohio

Dear Mr. Charville:

The following is a final geotechnical report for landslide mitigation with drilled shaft retaining wall. This report contains a summary of subsurface conditions and laboratory tests, slope stability analysis, p-y analysis, and recommended dimensions of the drilled shaft wall.

Let me know if you have any questions or require additional information.

LAWRENCE

Sincerely,

Brian Lawrence, P.E.

Senior Geotechnical Engineer

Michael Home

Michael A. Brown, P.E.

Dam & Levee National Practice Lead

TABLE OF CONTENTS

		Page
1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	1
3.0	GEOLOGY AND OBSERVATIONS OF THE PROJECT	2
3.1 3.2	General Geology	
4.0	EXPLORATION	3
4.1 4.2	Previous Subsurface Exploration	
5.0	FINDINGS	3
5.1 5.2 5.3 5.4	Subsurface Conditions - Soil Subsurface Conditions - Bedrock Subsurface Conditions - Groundwater Laboratory Testing 5.4.1 Soil - Index Testing 5.4.2 Soil - Shear Strength Testing	4 4 4
6.0	ANALYSES AND RECOMMENDATIONS	6
6.1 6.2 6.3	Soil Design Parameters Slope Stability Analyses. Retaining Wall Analyses 6.3.1 Method of Analysis 6.3.2 Design Requirements 6.3.3 Selected LPILE Profile and Design Loads 6.3.4 Results	
7.0	CONSTRUCTION	11
7.1 7.2	Stability Construction Instrumentation	
8.0	CLOSURE	13
9.0	REFERENCES	14

TABLES

Table 1 – Sum	mary of Laboratory Strength Test Results	5
	cted Stability and LPILE Soil Parameters	
Table 3 – Sum	mary of Slope Stability Analysis for Existing Conditions	7
	d Factor Combinations	
	mary of LPILE Results: Road-Side Retaining Wall	
	mary of Slope Stability Analysis with Wall1	
Table 7 – Sum	mary of Slope Stability Analysis for Construction Conditions	1
FIGURES		
Figure 1 – Loc	cation of inclinometers during construction	6
PHOTOS		
APPENDICE	\mathbf{S}	
* *	Previous Project Plans (1934 and 1961) and Nearby Well Log Geotechnical Data Report (Boring Location Plan, Logs of Borings, Laboratory Test Data Engineering Analyses and Computations Geotechnical Engineering Design Checklist	ι)

1.0 EXECUTIVE SUMMARY

A slope failure occurred at milepost 19.20 on Route U.S. 20A in Delta, Ohio. The town of Delta regraded, placed riprap, and installed sheet pile near the toe of the slope sometime in 2022. Movement of the slope has continued to the present, as evidenced by curved and drooping guardrail, a small head scarp, and separation of curb from the edge of pavement.

The site is located within areas mapped as glacial lake deposits (Ohio Department of Natural Resources (ODNR), 2005) and consist primarily of fine-grained silts and clays. Fill was placed over the Bad Creek in the 1930's to straighten Route U.S. 20A. Four (4) borings were drilled on U.S. Route 20A in July 2024. These explorations primarily encountered soils consisting of medium stiff to hard silty clay to depths of 65 feet. Bedrock is anticipated to be over 100 feet deep. Laboratory soil strength and index testing were performed.

A drilled shaft wall was selected to stabilize the slope. The wall will be placed at the top of the slope. Slope stability analysis of the existing slope indicated a low factor of safety (1.14). Analysis of this wall follows Method 2 from the Ohio DOT Geotechnical Design Manual (GDM), which allows for the slope below the wall to not be improved and assumes future sloughing and slope instability.

A 3-foot diameter drilled shaft wall, with W24x94 reinforcement, was selected after analysis indicated it would meet the 2-inch or less deflection criteria. Shear and moment criteria were also met. The upper 6 feet is not encased in concrete, but act as soldier piles, with panels as lagging. Plug piles extend 9 feet below top of drilled shaft, located between each drilled shaft. The total length of foundation element is 75 feet. This length was selected because bedrock is deep at this site (over 100 feet), the clays vary from medium stiff to hard, the zero crossing of the deflection curve is very gradual and occurs around approximately 60 feet deep, and the exact position of the existing failure surface below ground is not known.

Preliminary stability analysis was performed for construction activities with a surcharge to represent the weight of a typical drilled shaft rig. If the Contractor's equipment loading for drilled shaft installation is greater than assumed in the construction-stage slope stability analysis, or the location of the Contractor's equipment differs from assumptions provided in the geotechnical report, a new slope stability analysis should be run with the specific configuration, weight(s), and location(s) of the Contractor's equipment, prior to beginning construction activities on the site. Inclinometers should be installed to monitor movements during construction and can be left in place to allow for further monitoring of the wall deflections, if any.

2.0 INTRODUCTION

The project consists of a subsurface exploration and geotechnical engineering to mitigate instability caused by a landslide at U.S. 20A (W Main Street) at mile 19.20 in Fulton County, Ohio (FUL-20A-19.20). The landslide is located on the north side of U.S. 20A, east of the intersection of County Road FG and U.S. 20A, and west of the intersection of Highland Avenue with U.S. 20A.

The instability is on the slope between the westbound lane and Bad Creek. The historical slope failure occurred northward with the toe of the failure daylighting across the stream. Erosion on the streambank toe may have been a contributing factor. The current instability appears to be primarily on the embankment slope, but it has affected the edge of roadway pavement, causing separation between the curb and edge of shoulder. There was not visual evidence of slope movement near the toe, likely due to it being obscured by riprap and sheet pile wall. Guardrail has displaced horizontally and vertically. The limits of this project will extend approximately 259 feet, from 1013+73 to 1016+32. This mitigates the historical slope failure and the observed locations with recent slope movement. The slopes outside of these limits may have factors of

safety below minimums, but they are not currently showing signs of distress. Our understanding of the scope of work is to address the actively failing portion of the project and its immediate vicinity.

The exploration and engineering analyses performed for this project have been performed in general accordance with Agreement No. 40382 dated April 24, 2024 to the Ohio Department of Transportation (ODOT). The purpose of this exploration was to; 1) determine the subsurface conditions to the depths penetrated by the borings; 2) evaluate the engineering characteristics of the subsurface materials; and 3) provide information to assist in designing a retaining wall for landslide mitigation.

The geotechnical engineer has planned and supervised the performance of the geotechnical engineering services, has considered the findings, and has prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are made as to the professional advice included in this report.

3.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

3.1 General Geology

The project lies on the border of the Maumee Lake Plains Physiographic Region and the Maumee Sand Plains District of the Huron-Erie Lake Plains Section (ODNR, 1998). The project is within a glacial lake deposit (ODNR, 2005), an area of primarily very fine grained clay- and silt-size deposits. Surficial Geology Stack Map (ODNR, 2024) indicates an upper layer of discontinuous sand, up to 10 feet thick. Below the discontinuous sand is a predominantly Wisconsinan till, consisting of an unsorted mix of silt, clay, sand, gravel, and boulders, with variable carbonate content, deposited directly from several separate ice advances. The till average thickness is 130 feet. Underlying the till is a Devonian shale. The area is not located in an area of known or probable karst (ODNR, 2006).

Construction plans from 1934 (State of Ohio Department of Highways, 1934) show the current alignment was filled to straighten U.S. 20A (then called S.H. No. 20), and a portion of Bad Creek was relocated to the north. Therefore, the current embankment for U.S. 20A is constructed over the former stream channel. A 1961 plan set for road reconstruction (Ohio Department of Highways, 1961) was reviewed, but this only addressed pavement and drainage reconstruction, and bridge wearing surface replacement. No soil information was included in this plan set.

3.2 Site Reconnaissance

A site reconnaissance was conducted by CT Consultants on March 28, 2024 in preparation for the drilling activities. Another site reconnaissance was conducted by Tetra Tech on September 25, 2024.

The slide has deformed the guardrail and separated the curb from the edge of pavement (see Photos 1 and 2). The roadway is about 30 feet above the toe of the slope. The slope between 1013+90 and 1015+20 is primarily covered with riprap, except the upper 5 feet is grass. The slopes east and west of the riprap section are covered with small to medium trees and brush.

A previous remediation effort by the the Town of Delta consisted of installing steel sheet pile between approximate Stations 1013+90 and 1015+20 at the toe of slope (Photo 3). Based on personal communication with Anderzack-Pitzen Construction, the contractor that installed the sheet pile wall, this work was done in 2022, and the sheet pile consists of 35-foot long steel ZZ19-700 sheets. The distance between the sheet pile wall and Bad Creek was approximately 10 feet. Riprap was placed on the surface, both above and below

the sheet pile, up the slope to a point approximately 10 to 20 feet from the guardrail. The uppermost portion of the slope was vegetated.

An 18-inch high head scarp was observed near Station 1014+20, approximately 5 feet downslope from the guardrail (Photo 4).

4.0 EXPLORATION

4.1 Previous Subsurface Exploration

There was no subsurface information available in the 1934 or 1961 plans, but the location of the previous and relocated stream is shown. A well log and drilling report (No. 240994) from approximately ½ mile west of the site shows approximately 100 feet of clay, over 16 feet for fine sand, over 16 feet of clay, over 14.75 feet of gravel, over shale bedrock. The static water level depth was at 57 feet. These documents are presented in Appendix A.

4.2 Current Subsurface Exploration

CT Consultants drilled four (4) borings at the top of the slope on the paved shoulder. No borings were drilled within the unstable slope due to slope safety concerns and difficulty of access. Since the four (4) borings were drilled outside the limits of the failure, no inclinometers were installed. The CT Consultants Report "Landslide Exploration: Slide Repair Along Bad Creek", which includes boring logs and laboratory test results, is presented in Appendix B.

Borings were advanced by a Diedrich D 70 track-mounted drill rigs using 3½-inch inside diameter hollow-stem augers. The upper 3 feet of soil were not sampled, and thereafter samples were obtained continuously to depths of 65 feet below ground surface. SPT N-value data were collected on all soil samples in accordance with ASTM D 1586. The hammer/rod energy ratio for the Diedrich D 70 drill rig was 87.4 percent and was last calibrated on June 11, 2024. Split-spoon samples were retained for index testing. Relatively undisturbed Shelby tube samples were obtained by hydraulically pressing a 3-inch thin-walled sampler in order to obtain samples for laboratory testing. The results of the borings and the laboratory testing are presented on the boring logs and are discussed further in Section 5 of this report.

5.0 FINDINGS

The findings presented in this report are based on the results of the borings conducted for this exploration. General descriptions presented in the following paragraphs. For additional details, please refer to the boring logs and laboratory test reports presented in Appendix B.

5.1 Subsurface Conditions - Soil

The borings encountered roadway pavement materials at the surface. Borings B-1 through B-4 encountered 9.75 to 14.25 inches of asphalt pavement at the ground surface. In borings B-1 through B-3, 6.75 to 7.75 inches of concrete was below the asphalt pavement. In B-4, concrete was not encountered beneath the asphalt, but instead 10 inches of aggregate base was encountered.

Beneath the pavement sections, materials consisted of silts and clays with varying amounts of sand and gravel, and varying consistencies from medium stiff to hard. These were encountered to the maximum boring depths of 65 feet. Borings B-1 and B-4 encountered 1 to 3 feet of very stiff to hard, gray sandy silt at approximately 53 feet deep.

The distinction between fill and natural soils was not clear, however, organic material was encountered in borings B-3 (25.5 to 29 feet bgs) and B-4 (24 to 28 feet bgs), indicating the possible original natural ground surface at those depths. This reasonably correlates to the approximate 25 to 30 feet of elevation difference between the area near the streambed and roadway surface.

5.2 Subsurface Conditions - Bedrock

No bedrock was encountered to the depths of the borings. Geologic publications and well installation logs at nearby sites indicate that bedrock is greater than 100 feet below ground surface.

5.3 Subsurface Conditions - Groundwater

The driller's observations of groundwater are noted on the boring logs. Groundwater was not noted in borings B-2 and B-4. Groundwater in borings B-1 and B-4 was recorded at El. 675.5 and 707.6 (NAVD88), respectively. It is anticipated that the groundwater levels at the site are somewhat influenced by Bad Creek.

5.4 Laboratory Testing

Collected soil samples were visually examined and classified by a geotechnical engineer. Index tests (grain-size and plasticity tests) were performed on selected soil samples. Additionally, shear strength tests were conducted on soil samples. Laboratory strength test results are summarized in Table 1 – Summary of Laboratory Strength Test ResultsTable 1. Additional information can be found on the test reports, presented in Appendix B.

Table 1 – Summary of Laboratory Strength Test Results

Boring	Depth (ft) Elev (ft) Soil Description		Effective Shear Strength		Undrained Shear Strength	
			Description	c' (psf)	φ' (deg)	c (psf)
		Unconfi	ned Compressiv	e Strength		
B-003	25.5–27.5	701.3–699.3	Lean Clay with Sand (CL)	-	-	1,120
			UU Triaxial			
B-001	18.0–20.0	713.3–711.3	Lean Clay with Sand (CL)	-	-	3,312
B-002	13.5–15.5	715.4-713.4	Lean Clay with Sand (CL)	-	-	3,260
B-004	7.0–9.0	716.8-714.8	Lean Clay with Sand (CL)	-	-	1,220
			Direct Shear			
B-002	13.5-15.5	715.4-713.4	Lean Clay with Sand (CL)	118	29.8	-
B-003	25.5-27.5	701.3-699.3	Lean Clay with Sand (CL)	422	27.4	-
B-004	7.0-9.0	716.8-714.8	Lean Clay with Sand (CL)	403	28.4	-

5.4.1 Soil - Index Testing

The general index tests consisted of grain-size with hydrometer, classification, moisture contents, plasticity determinations (Atterberg Limits), and pavement core logs. The results of the index tests are shown on the boring logs and individual test reports in Appendix B.

5.4.2 Soil – Shear Strength Testing

Triaxial shear strength testing was conducted on four (4) relatively undisturbed (Shelby tube) sample collected for this project. Unconfined compressive strength, unconsolidated-undrained triaxial compressive strength, and direct shear strength tests. The results of this test are presented in Appendix B.

6.0 ANALYSES AND RECOMMENDATIONS

A drilled shaft retaining wall will be used to stabilize the slope. The following sections present the engineering evaluations and design recommendations.

If the proposed plan should change in a substantive manner, Tetra Tech should be notified of such changes in order to consider the appropriateness of these recommendations and consider any necessary alterations.

6.1 Soil Design Parameters

Soil strength and weight parameters were determined from soil strength tests, with consideration of SPT and index tests. Design parameters for stability and LPILE analyses are summarized in Table 2. The drained strength parameters were based on laboratory and SPT sampling consistencies and descriptions. Borings describe soils that generally contain little to trace amounts of sand and gravel in the silty clay. However, some samples describe "some" sand or "silty clay and sand". Therefore, three layers were modeled as "sand and clay" with effective strength cohesion 0 psf and friction angle of 30 degrees.

6.2 Slope Stability Analyses

Per ODOT Geotechnical Design Manual, there are three methods of analysis that can be used to design a drilled shaft wall for landslides. Method 1 is the case where the downhill soil mass remains in place and a slope of 2H:1V or flatter. Method 2 is the case where the soil mass downhill of the retaining wall will be left as-is. If the downhill soil mass does not meet the minimum factor of safety of 1.3, an assumption is made that the downhill mass will continue to fall away from the wall, while the wall reains the uphill soil mass, but the ground surface is artificially lowered on the passive side for the LPILE analysis. Method 3 is the case where the downhill soil mass will be regraded to a stable slope (lower at the base of the wall than behind the wall).

The wall for FUL-20A-19.20 will be built above the failed slope. A representative cross-section at Station 1015+25 was selected for analysis. The lowest existing factor of safety downslope is 1.24 for the long term case, which is below the required 1.3. Therefore, Method 2 analysis, with an artificially lowered passive ground surface, was the selected method of analysis. The lowest factor of safety for all cases is 1.0 for the rapid drawdown condition. See Table 3 for a summary of slope stability analyses for existing conditions.

The groundwater level used in design was El 710 (NAVD88).

Stability for existing conditions was analyzed at Stations 1013+75, 1014+00, 1016+00, and 1016+25 to determine the western and eastern termini of the project. Long-term, drained analysis for the western side of the retaining wall resulted in factors of safety of 1.68 and 1.45 for Stations 1013+75 and 1014+00, respectively. For the eastern side, analyses resulted in factors of safety of 1.41 and 1.5 for Stations 1016+00 and 1016+25, respectively.

Table 2 – Selected Stability and LPILE Soil Parameters

Layer	Elev (ft) Unit Weigh		ght (pcf) Effective Strength Parameters		Total Strength Parameters	
		Moist	Effective	c' (psf)	φ' (deg)	c (psf)
Concrete (Drilled Shaft and Pavement)	728 - 726.5	150	-	150,000	0	150,000
Medium stiff silty clay	728 - 723	130	67.6	120	26	800
Sand and Clay	723 – 721	130	67.6	0	30	-
Medium stiff silty clay	721 – 711	130	67.6	120	26	800
Stiff to very stiff silty clay	711 – 702	135	72.6	300	28	1,500
Sand and Clay	702 – 699	130	67.6	0	30	-
Stiff to very stiff silty clay	699 - 680	135	72.6	300	28	1,500
Medium stiff silty clay	680 - 675	130	67.6	120	26	800
Sand and Clay	675 - 670	130	67.6	0	30	-
Very stiff to hard silty clay	< 670	140	77.6	500	30	2,000

Table 3 – Summary of Slope Stability Analysis for Existing Conditions

Station	Case	Required FOS	Calculated FOS
1013+75	Long Term (Effective Stress)	1.5	1.68
	Rapid Drawdown	1.1	1.48
1014+00	Long Term (Effective Stress)	1.5	1.45
	Rapid Drawdown	1.1	1.24
1015+25	Long Term (Effective Stress)	1.5	1.24
	Rapid Drawdown	1.1	1.0
	Short Term (Total Stress)	1.3	1.41
1016+00	Long Term (Effective Stress)	1.5	1.41
	Rapid Drawdown	1.1	1.26
1016+25	Long Term (Effective Stress)	1.5	1.50
	Rapid Drawdown	1.1	1.28

6.3 Retaining Wall Analyses

The following sections provide details regarding the engineering evaluations and results of the analyses for the retaining wall design. For additional information, refer to the exhibits and computations presented in Appendix C.

The engineering evaluations were conducted using LRFD design methodology, substantially in accordance with AASHTO's LRFD Bridge Design Specifications and ODOT's Geotechnical Design Manual Design of Drilled Shafts for Landslide Stabilization.

6.3.1 Method of Analysis

In order to evaluate the proposed retaining walls, the soil-structure interaction program LPILE 2019 was used. This program is capable of computing the mobilized soil resistance in terms of deflection from active pressures by generating p-y curves based on the soil parameters and the bending stiffness of the pile.

The total length of drilled shaft piles is 75 feet. The piles were modeled in the program as an "Round Shaft with Casing and Core Insert" for the lower 69 feet of the piles, and as "Elastic Section (Non-yielding)" for the upper 6 feet of W-beam that acts as a soldier pile. This upper 6 feet of soldier pile will be spanned with panels. In general, the types of retaining walls considered consisted of soldier pile-type walls using drilled shafts with standard formed steel sections as the primary reinforcement. Where it is not practical to install lagging, "plug piles" should be considered. For this analysis, we assumed a plug pile length of 9 feet, measured from top of drilled shaft. Plug piles are, for all intents and purposes, the same as the soldier pile and lagging wall in terms of the technical evaluations.

It was assumed that the steel sections had a minimum yield stress of 50 ksi.

According to guidance provided by Reese (Reese & Van Impe, 2011), the efficiency of side-by-side piles should be reduced for pile spacing closer than $s/b \le 3.75$; where s = spacing and b = pile diameter. The following equation was used to estimate the efficiency of side-by-side piles in soil:

```
e=0.64(s/b)^0.34 for 1 \le s/b \le 3.75
```

The above-referenced efficiency value is taken as the p-y modification factor for group action and is manually input into LPILE in order to account for this reduction for closely spaced piles in soil. No such reduction is taken for shafts in bedrock.

For this project, an efficiency factor of 0.81 was calculated for the shaft diameter and spacing used. A lower efficiency factor of 0.64 was used from the ground surface to the toe depth of plug piles.

When considering the passive-side resistance in the soil, it is reasonable to assume that the lower, unstable slope will continue to fail, thus reducing the available passive resistance. ODOT's guidance for determining the level of the artificially lowered ground surface is generally as follows:

```
For b < 45^{\circ} lower the ground surface by: d_t \tan(\beta_d h)
For b \ge 45^{\circ} lower the ground surface by: d_t
Where: b = angle of downhill slope from horizontal d_t = depth to shear surface at drilled shaft location
```


The original failure condition is no longer visible because work was completed on a portion of this slope in 2022, which included riprap on the surface and sheet pile near the toe of slope. Although a newer looking head scarp is visible at the top of the failure, other potential indications of scarp location are obscured by the riprap covering the slope. The calculated passive reduction was 8 feet, but was conservatively increased to 12 feet due to the uncertainty of the slip surface below ground.

6.3.2 Design Requirements

For the design of the retaining walls considered, the following criteria were used:

Service Limits:

- Deflection of the wall is to be less than or equal to 1 percent of the length of the shaft.
- If the wall is within 10 feet of the road edge, the deflection is limited to 2 inches or less.

Since the wall is within 10 feet of the edge of the road, the deflection criteria is 2 inches or less.

Strength Limits:

- The computed internal shear (from LPILE) should not exceed the factored shear resistance. In this case; Fv = 1.0 as per AASHTO.
- The computed internal bending moment (from LPILE) should not exceed the factored bending resistance. In this case; Fb = 1.0 as per AASHTO.

Geotechnical Strength Limits:

• Per GDM Section 1501.7.9, the wall is geotechnically stable if deflection does not indicate failure (failure of program to converge or very large deflection (i.e. 100 inches).

6.3.3 Selected LPILE Profile and Design Loads

The selected LPILE profiles were developed based on the findings of the borings and are based on effective stress shear strength values. LPILE soil parameters are based on strengths and unit weights shown in Table 1.

The active driving pressures were developed and manually input into the LPILE program. Since the road-side wall does not intercept a known active failure plane, a slightly different approach was used to compute the active pressures acting on this wall. The active pressures were developed based solely on Coulomb's Theory, assuming a level backfill. Additional forces such as hydrostatic loading and traffic loading were also considered. Since the road-side wall could be within 10 feet of the edge of pavement, a traffic surcharge load was assumed. A traffic surcharge of 250 psf was applied at the roadway surface, and pressures on the wall were calculated using the Boussinesq stress distribution formula.

Load Cases Evaluated

LPILE evaluations were conducted for three (3) loading cases: Service, Strength, and Geotechnical.

The loading applied to the pile was scaled by the spacing considered for the structural piles. The scaled load was then converted into a load intensity value in units of pounds per inch depth (lbs/in), which is consistent with the input format in LPILE.

In the Service loading case, the lateral earth pressures, hydrostatic pressures, and surcharge pressures were unfactored. This load case was used to determine the anticipated deflection of the wall. If the estimated deflection exceeded the deflection limit, a "stiffer" section would be used, and the wall would be reevaluated.

The Strength loading case was conducted in order to determine if the pile meets the strength criteria set forth by AASHTO. The individual loads (e.g., EH – lateral earth pressures, LS – live load surcharge, etc.) are factored by their respective load factors and the resultant factored loading is applied to the pile in the evaluation. The load factors considered in these evaluations are presented in Table 4, as per AASHTO Table 3.4.1-1:

Table 4 – Load Factor Combinations

Load Combination Limit State	EH	LS
Service 1	1.00	1.00
Strength 1	1.50	1.75

The Geotechnical loading case was conducted using Strength loading and comparing the deflection to the failure criteria listed in Section 5.2.2 (lack of analysis convergence or deflection over 100 inches).

6.3.4 Results

The results of the retaining wall evaluations are presented in the following paragraphs. The LPile results are presented in Appendix C.

Retaining Wall

For this type of wall, the slope below the roadway could continue to fail and slide toward the creek, while the wall would support the roadway. The drilled shafts should be 36 inches in diameter and use W24x94 steel sections as the drilled shaft reinforcement. The reinforced drilled shaft should be extended to a depth of 75 feet below the top of the wall. The drilled shafts should utilize a center-to-center spacing of 6 feet. Installation of lagging to a full 15 feet below finish grade is not practical at this location, due to the excavation required for installation. Therefore, we recommend that panels be installed in the upper 6 feet and that "plug piles" be installed from the top of drilled shaft to 9 feet below top of drilled shaft. Plug piles are essentially unreinforced drilled shafts that are situated between the reinforced shafts and serve the same purpose as lagging.

The results of the LPILE analyses for this wall are summarized in Table 5. The W24x94 and 36-inch diameter drilled shaft meet the deflection criteria of under 2 inches. Strength limit state shear and bending moment are also within allowable limits. Stability of the critical section with the wall in place have FOS's over 2.0 (see Table 6). Therefore, W24x94 steel sections embedded in 36-inch diameter drilled shafts, at 6-foot spacing and extended to a depth of 75 feet, are recommended.

Since erosion of the streambank can further destabilize the slope, riprap should be placed within the project limits where there is not currently riprap protection.

Table 5 - Summary of LPILE Results: Road-Side Retaining Wall

Section: W24x94				Rock Sock	et Depth: Non	e
Drilled Shaft Dia.: 36 inches				Rock So	cket Dia.: n/a	
LOAD CASE	M _u (in-k)	V _u (kips)		d (in.)	F _b M _n (in-k)	F _v V _n (kips)
Service	4,440	3.	5.4	1.5	12,700	375
Strength	8,104	7	0.4	3.5	12,700	373

Table 6 – Summary of Slope Stability Analysis with Wall

Station	Case	Required FOS	Calculated FOS
1015+25	Long Term (Effective Stress)	1.5	3.18
	Rapid Drawdown	1.1	2.99
	Short Term (Total Stress)	1.3	2.16

7.0 CONSTRUCTION

7.1 Stability

The construction of this wall will require care to prevent unsafe loading of the slope. Analyses were performed which modeled a long reach drilled shaft excavator rig as a surcharge on the road above the slope. Preliminary construction phase stability was performed for Stations 1014+00, 1015+25, and 1016+00. The slope was modeled with a bench near the top of the slope, where excavation will be performed for installation of the drilled shaft wall. For construction, effective stress was analyzed in addition to total stress and rapid drawdown conditions. Although effective stress analysis is typically for long term conditions, it was analyzed for comparison except the required factor of safety was 1.3 because the construction case is a short term condition. This excavation near the top of slope increases the factor of safety somewhat, enabling drilled shafts to be installed. Station 1015+25 had a FOS of 1.35 for drained and 1.56 for undrained conditions during construction, with the excavated bench. Stations 1014+00 and 1016+00 had FOS's over 1.5 for drained and undrained conditions during construction, with the excavated bench. Results of construction phase slope stability are shown in Table 7.

Station 1014+00 is on the west end of the project appears to be the most stable, so construction should proceed from this side. Care should be taken to limit loading to only what is necessary for construction of the drilled shaft wall, and not load any areas to the east of whichever shaft is being constructed as it progresses east. Construction equipment for installing drilled shafts should work from behind an already installed retaining wall and operate from the roadway level (US Route 20A).

Table 7 – Summary of Slope Stability Analysis for Construction Conditions

Station	Case	Required FOS	Calculated FOS
1014+00	Short Term (Effective Stress)	1.3	1.52
	Rapid Drawdown	1.1	1.33
	Short Term (Total Stress)	1.3	1.59
1015+25	Short Term (Effective Stress)	1.3	1.35
	Rapid Drawdown	1.1	1.11
	Short Term (Total Stress)	1.3	1.56
1016+00	Short Term (Effective Stress)	1.3	1.56
	Rapid Drawdown	1.1	1.40
	Short Term (Total Stress)	1.3	1.54

If the Contractor's equipment loading for drilled shaft installation is greater than assumed in the construction-stage slope stability analysis, or the location of the Contractor's equipment differs from assumptions provided in the geotechnical report, a new slope stability analysis should be run with the specific configuration, weight(s), and location(s) of the Contractor's equipment, prior to beginning construction activities on the site.

The maximum safe slope for excavations is 1H:1V per OSHA 1926 Subpart P, Appendices A and B. The soil in the upper 5 to 10 feet, where the excavations will take place, are considered Type B. The Contractor should provide a work plan describing the sequencing of work, equipment used, instrumentation monitoring schedule, and action plans.

7.2 Construction Instrumentation

The slope is currently experiencing horizontal and vertical displacement. Therefore, the slope and will need to be monitored carefully throughout construction since any construction activity will add loading to the area. A construction instrumentation monitoring program will be necessary. Three (3) inclinometers should be installed between the wall and the roadway to monitor movements before and during construction. Inclinometers should be installed to 80 feet below proposed finish grade. Action levels and reporting requirements for inclinometers should be included in the plans (Table 8). Specific locations will need to consider proximity of utilities. Recommended locations are shown in Figure 1.

Inclinometers should be installed prior to beginning excavation or drilling for the drilled shafts and plug walls. Inclinometers should be read daily when construction activities are loading the slope or roadway. The Contractor should alert ODOT immediately if an alert threshold value is reached, and within 24 hours provide an analysis of the instrument response and recommended corrective action if needed.

If an action threshold is reached, the Contractor should immediately stop work and remove personnel from the work area, evaluate the instrument response. Document the following in an action threshold exceedance report: weather, construction activities when the action threshold was reached, analysis of causes of the exceedance, and recommendations for corrective actions. The Contractor should only resume suspended activities after receiving written instruction from the project engineer.

Table 8 – Inclinometer Reading Frequency and Threshold Values

		Threshold Values		
Instrument	Instrument Reading	Unit	Alert Level	Action Level
	Frequency			
Inclinometers	Daily when construction loading	Inch	0.25	0.50
	on roadway or slope.			
	Weekly during periods of no			
	construction activity			

Key locations, such as points in the roadway, survey monuments, and installed drilled shafts, should be surveyed during construction to monitor any surface movements.

8.0 CLOSURE

Tetra Tech has endeavored to perform its evaluation using the degree of care and skill ordinarily exercised under similar circumstances by reputable geotechnical professionals with experience in this area in similar soil conditions. No other warranty, either expressed or implied, is made as to the conclusions and recommendations contained in this report.

We appreciate the opportunity to provide our professional services on this project. If you have any questions regarding this report or if we can be of further service, please do not hesitate to contact the undersigned.

9.0 REFERENCES

Reese, L., & Van Impe, W. (2011). Single Piles and Pile Groups Under Lateral Loading. London: CRC Press.

Ohio Department of Natural Resources (2024). *Ohio Geology Interactive Map, Surficial Stack Map 24k*, https://gis.ohiodnr.gov/website/dgs/geologyviewer/#, accessed September 2024.

Ohio Department of Natural Resources, Division of Geological Survey (2005). Glacial Map of Ohio.

Ohio Department of Natural Resources, Division of Geological Survey (1998). *Physiographic Regions of Ohio*.

Ohio Department of Natural Resources, Division of Geological Survey (2006). *Known and Probable Karst in Ohio*, Division of Geological Survey Map EG-1.

Ohio Department of Transportation (2024). *Geotechnical Design Manual, Section 900 - Design of Drilled Shafts for Landslide Stabilization*, published January 19, 2024.

Ohio Department of Transportation (2024). *Geotechnical Design Manual, Section 1500 – Retaining Walls*, published January 19, 2024.

Ohio Department of Transportation (2024). Bridge Design Manaul, 2020 Edition, published July, 2024.

State of Ohio, Department of Highways (1934). *Toledo-Wauseon Road, S.H. No. 20, Sec. Delta PT*, N.R.M. 555-E, Sheet 3 of 18.

State of Ohio, Department of Highways (1961). FUL-20A (19.11-19.74), York Township and Village of Delta, Sheets 1-22.

Figures

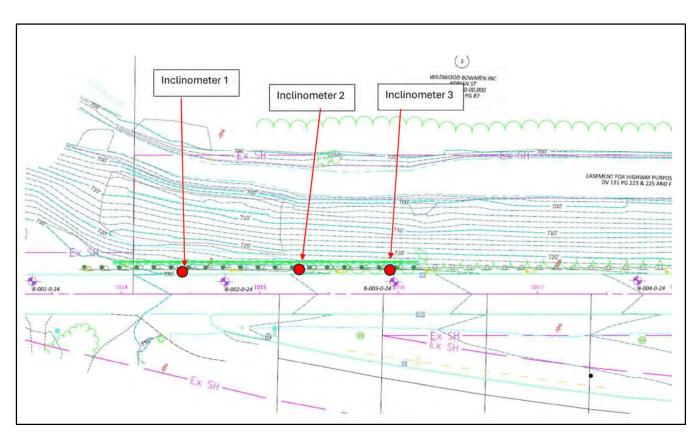


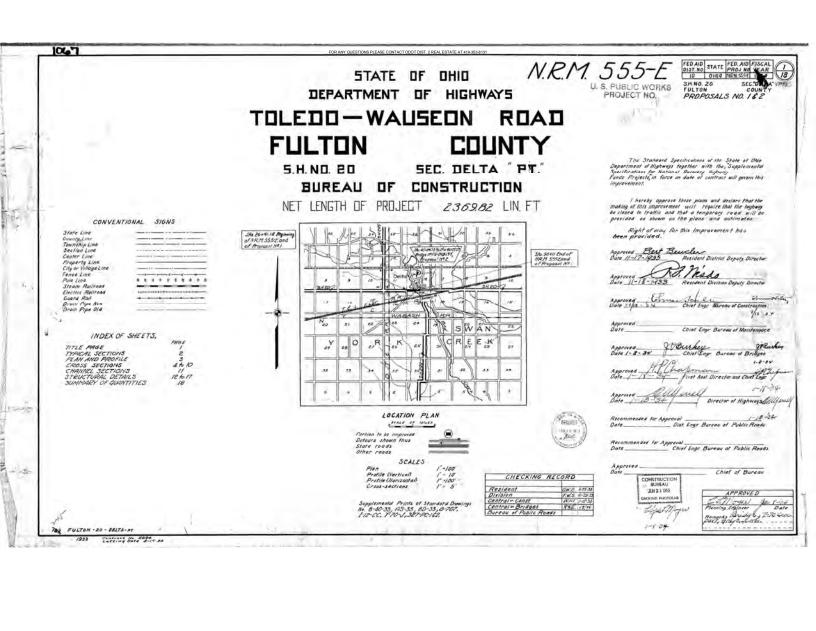
Figure 1 – Location of inclinometers during construction

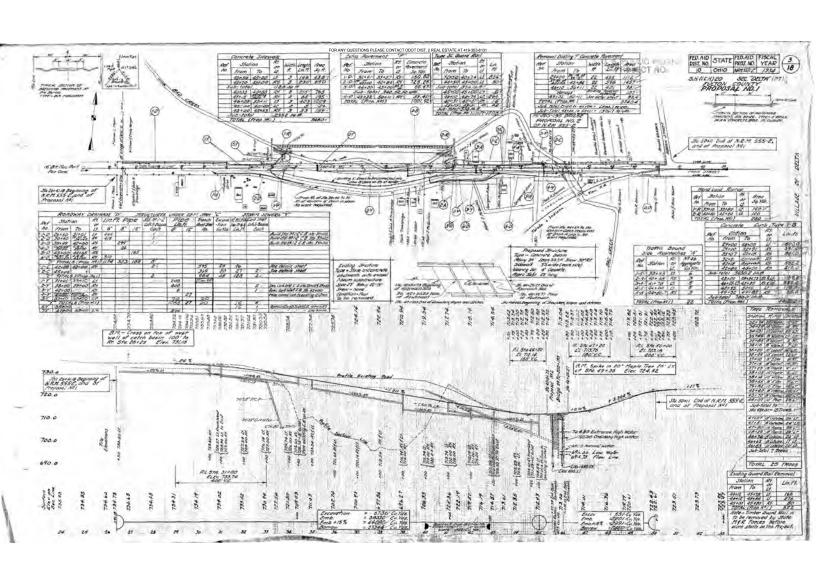
Photos

Photo 1 - Looking northwest toward site, note distorted guardrail near light pole

Photo 2 – Looking west, separation of curb from edge of pavement

Photo 3 - Looking east near toe of slope; stream, sheet pile wall, and riprap surface




Photo 4 - Displacement of approximately 18 inches, apparent head scarp, near top of slope and guardrail

Appendix A Previous Project Plans (1934 and 1961) and Nearby Well Log

WELL LOG AND DRILLING REPORT

State of Ohio

PLEASE USE PENCIL OR TYPEWRITER. DO NOT USE INK.

DEPARTMENT OF NATURAL RESOURCES

Division of Water 1562 W. First Avenue Columbus, Ohio

No. 240994

County Fulton.	Fownship	took	Section of Township
Owner Delto Liv	estel	.	Address Delta, Olis
Location of property Wes	+0,	Sta C	Ohio.
CONSTRUCTION	DETAILS		BAILING OR PUMPING TEST
Casing diameter 5 SIP Leng	gth of casin	g/57/-9	Pumping rate G.P.M. Duration of testhrs.
Type of screenLeng		n	Drawdownft. Date
Type of pump Subness			Developed capacity
Capacity of pump 3 # P	<u> </u>		Static level—depth to water 57 ft Pump installed by Ray Walter
Depth of pump setting 1404			Pump installed by Kay Waller
Date of completion June	<u> </u>	761	0
WELL LO	G		SKETCH SHOWING LOCATION
Formations Sandstone, shale, limestone, gravel and clay	From	To	Locate in reference to numbered State Highways, St. Intersections, County roads, etc.
Clay Sand Glastel B. Shale	0 Feet 95 111 127 157-9	137 Ft. 111 127 151-9	N.
			W. A-20 E.
D	00-		See reverse side for instructions
Drilling Firm	Me		Date Sure 2 176
Address Della, C	<u>Win</u>		Signed

Appendix B Geotechnical Data Report (Boring Location Plan, Logs of Borings, Laboratory Test Data)

LANDSLIDE EXPLORATION

Slide Repair along Bad Creek FUL-20A-19.20, PID 119890

North Side of Route 20A Delta, Fulton County, Ohio

Submitted to Tetra Tech FINAL DATA REPORT Date *April 2025*

Prepared by

April 17, 2025

CT Project No. 241359

Mr. David T. Charville, P.E. Senior Project Manager Tetra Tech 420 Madison Avenue, Suite 1001 Toledo, Ohio 43604

FINAL Data Report
Landslide Exploration
FUL-20A-19.20, PID 119890
Slide Repair along Bad Creek, North side of US Route 20A
Delta, Fulton County, Ohio

Dear Mr. Charville:

Following is the final data report of our landslide exploration performed by CT Consultants, Inc. (CT) for the referenced site. This exploration was performed in accordance with CT Proposal No. 241359, dated April 3, 2024, and was authorized by Tetra Tech with a subconsultant services agreement for Tetra Tech Project No. 200-12914-24001, dated May 2, 2024.

This report contains the investigative procedures, laboratory test results, and logs of test borings for the exploration. In accordance with ODOT protocol, this report was submitted as a "Draft" to Tetra Tech and ODOT for review and comments on October 1, 2024. We were notified that no changes to the report were requested after review of the draft submittal, so this submittal is considered final.

Should you have any questions regarding this report or require additional information, please contact our office.

Sincerely,

CT Consultants, Inc.

Christopher P. lott, P.E.

Chief Geotechnical Engineer

Curtis E. Roupe, P.E. Vice President

 $H:\c 2024\c 241359\c NHASE\c 01\c Geotech\c Reports\c and\c Other\c Deliverables\c 241359\c CT\c FINAL\c Geotech\c Data\c Report\c FUL-20A-19.20\c Slope\c Repair.doc$

FINAL DATA REPORT LANDSLIDE EXPLORATION FUL-20A-19.20, PID 119890 SLIDE REPAIR ALONG BAD CREEK, NORTH SIDE OF US ROUTE 20A DELTA, FULTON COUNTY, OHIO

FOR

TETRA TECH 420 MADISON AVENUE, SUITE 1001 TOLEDO, OHIO 43604

SUBMITTED

APRIL 17, 2025 CT PROJECT NO. 241359

CT Consultants, Inc. 1915 N. 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222

TABLE OF CONTENTS

1.0	INTRODUCTION
1.1 1.2	Purpose and Scope of Exploration Proposed Construction
2.0	GEOLOGY AND OBSERVATIONS OF THE PROJECT
2.1 2.2	General Geology and Hydrogeology
3.0	EXPLORATION
3.1	Historic Borings
3.2	Project Exploration Program
3.3	Boring Methods
3.4	Laboratory Testing Program
4.0	UNDISTURBED SAMPLE TEST RESULTS
4.1	Unconfined Compressive Strength Test Results
4.2	UU Triaxial Test Results
4.3	Direct Shear Test Results
5.0	QUALIFICATIONS
PLATES 1.0 2.0	Site Location Map Test Boring Location Plan

FIGURES

Logs of Test Borings

Legend Key

Grain Size Distribution Curves

Unconfined Compressive Strength Test Results – Undisturbed Sample

UU Triaxial Strength Test Results

Direct Shear Test Results

Pavement Core Photographic Logs

APPENDICES

Appendix A: Geotechnical Engineering Design Checklists

1.0 INTRODUCTION

This landslide exploration data report has been prepared for the proposed slide repair located along the north side of US Route 20A (US20A), approximately 1,000 feet west of Highland Avenue, in Delta, Ohio. This project has been designated as PID 119890, FUL-20A-19.20. The general project area is shown on the attached Site Location Map (Plate 1.0).

This exploration was performed in accordance with CT Proposal No. 241359, dated April 3, 2024, and was authorized by Tetra Tech with a subconsultant services agreement for Tetra Tech Project No. 200-12914-24001, dated May 2, 2024.

1.1 <u>Purpose and Scope of Exploration</u>

The purpose of this exploration was to obtain soils data for evaluation of repair for the landslide. To accomplish this, CT performed four (4) test borings, all of which included a pavement core, laboratory soil testing, and review of available geologic and soils data for the project area.

This data report describes the investigative and testing procedures utilized to provide soils data to evaluate the subsurface conditions at the site, and presents our findings from the field and laboratory testing.

Appendix A includes pertinent ODOT Geotechnical Engineering Design Checklists that apply to the scope of this report.

The scope of this study did not include an environmental assessment of the surface or subsurface materials at this site.

1.2 <u>Proposed Construction</u>

It is our understanding that the project includes slide repair along the north side of US 20A approximately 1,000 feet west of Highland Avenue in Delta, Ohio.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 General Geology and Hydrogeology

Published geologic maps from the Ohio Department of Natural Resources (ODNR) indicate that the project corridor is located on the border of the Maumee Lake Plains Physiographic Region and the Maumee Sand Plains District of the Huron-Erie Lake Plains Section. Within this area, it transitions from late Wisconsinan-age sand over clay till and lacustrine deposits to Pleistocene-age silt, clay, and wave-planed clayey till. The subsoils are underlain by Silurian- and Devonian-age carbonate rocks and shales.

The USDA Natural Resource Conservation Service (NRCS) Web Soil Survey indicates that soils in the project area are predominantly mapped as Glynwood loam. This material consists of till formed on end and ground moraines, and is considered moderately well drained.

Bedrock in the project area is broadly mapped on the "Geologic Map of Ohio" as Olentangy and Ohio shales, of the Devonian-age. Based on a published water well log for a well nearby the project area, bedrock is on the order of 150 feet below existing grades.

Review of the ODNR "Ohio Karst Areas" map indicated that the site is <u>not</u> located in an indicated area of probable karst.

A Review of the ODNR Map of Mines indicated no historic mining activity within the project vicinity.

2.2 <u>Site Reconnaissance</u>

CT performed site reconnaissance on March 28, 2024. The site includes predominantly treed/wooded slope down to Bad Creek. Some areas of previous ballast rock placement was observed and it is understood that this was placed as part of a previous landslide repair effort.

The landslide appeared to be most pronounced in the general area where Boring B-002 was performed. In this area, the curb had pulled away from the edge of pavement and the guardrail had tilted in the area of the landslide.

A stormwater drain and pipe extending down to Bad Creek was present in the middle portion of the project area.

The pavements along US20A were observed to be in generally fair to good condition. Signs of distress were not noticeable throughout much of the pavement areas in the project area.

3.0 EXPLORATION

3.1 <u>Historic Borings</u>

Review of ODOT records indicated that no historic test borings were drilled within the project area.

3.2 Project Exploration Program

This exploration included four (4) test borings, all of which included pavement cores prior to extension of the augers to perform the borings. The cores and borings were performed by TTL Engineering Services, LLC under the direction of CT during the period from July 16, 2024 through July 23, 2024.

The cores/borings were extended through the existing US20A pavements along the westbound lane. All borings were originally requested to be performed beyond the edge of the roadway, but were relocated into the roadway due to steep slopes just beyond the existing edge of roadway, overhead utilities, as well as a gas line that traverses close to the guardrail.

The test borings were designated as Borings B-001-0-24 through B-004-0-24. The borings are fully designated as in accordance with ODOT protocol, however the "-0-24" portion of the nomenclature is generally omitted for ease of identification in the discussions within this report. The borings were located in the field by CT in general accordance with plans provided with the proposal for this project. The approximate locations of the cores/borings are shown on the Test Boring Location Plan (Plate 2.0).

Coordinates were obtained by CT using a handheld GPS unit. Based on the coordinates, Tetra Tech provided Station, Offset, and ground surface elevation. These data are included on the logs of test borings.

In accordance with the ODOT Specifications for Geotechnical Explorations (SGE), the borings were performed as ODOT Type C5 borings to a depth of 30 feet below

estimated failure surface. The estimated failure surface was not expected deeper than 35 feet below existing grade, near the estimated Bad Creek level. As such, the borings were extended to the planned depth of 65 feet below existing grade.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations. Therefore, it is essential that a geotechnical engineer be retained to provide soil engineering services during the site preparation, excavation, and landslide repair phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.3 Boring Methods

Pavement cores were obtained using a nominal 4-inch diameter core barrel at all test boring locations. Pavement core photographic logs are attached to this report.

The borings performed during this exploration were drilled with a Diedrich D 70 track-mounted drill rig utilizing 3¼-inch inside diameter hollow-stem augers. After pavement coring and extension through the surface materials, samples were obtained continuously generally using 18-inch split-spoon (SS) sample drives. The samples were sealed in jars and transported to our laboratory for further classification and testing. Prior to initiation of sampling in Borings B-001 through B-003, the borings were advanced only by augering to a depth of 3 feet due to the presence of the nearby underground utilities.

Split-spoon soil samples were obtained by the Standard Penetration Test Method (ASTM D 1586). The Standard Penetration Test (SPT) consists of driving a 2-inch outside diameter split-spoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch increments, with the number of blows per increment being recorded. The number of blows per increment was recorded at each depth interval, and these data are presented under the "SPT" column on the Logs of Test Borings attached to this report.

The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or Nm-value, and is typically reported in blows per foot (bpf). The Nm-values were corrected to an equivalent rod energy ratio of 60 percent, N_{60} . The hammer/rod energy ratio for the track-mounted Diedrich D 70 drill rig was 87.4 percent, and was last calibrated on June 11, 2024. The N60-values are presented on the attached Logs of Test Borings.

Shelby tube samples, designated ST on the Logs of Test Borings, were obtained at varying depths from selected borings as shown on the attached Logs of Test Borings. The Shelby tube samples were obtained by hydraulically advancing a 3-inch diameter, thin-walled sampler approximately 24 inches beyond the hollow-stem auger into relatively undisturbed soil in accordance with ASTM D 1587. The Shelby tubes were then extracted from the subsoils, and the ends were capped and sealed. The samples were transported to our laboratory where they were extruded, classified, and tested.

Pavement and soil conditions encountered in the test borings are presented in the Logs of Test Borings, along with information related to sample data, SPT results, water conditions observed in the borings, and laboratory test data. In conjunction with published data and typical correlations, the N_{60} -values can be evaluated as a measure of soil compactness/consistency as well as shear strength.

Field and laboratory data were incorporated into gINT™ software for presentation purposes. It should be noted that these logs have been prepared on the basis of laboratory classification and testing as well as field logs of the encountered soils.

3.4 <u>Laboratory Testing Program</u>

All samples were visually classified in accordance with the ODOT Soil Classification System. All recovered samples of the subsoils were also tested in our laboratory for moisture content (ASTM D 2216). Unconfined compressive strength tests (ASTM D 2166) were performed on select split-spoon samples and a Shelby tube sample. Unconfined compressive strength estimates were obtained for the remaining intact

cohesive samples using a calibrated hand penetrometer. These test results are presented on the Logs of Test Borings.

Mechanical soil classification consisting of an Atterberg limits test (ASTM D 4318) and a particle size analysis (ASTM D 6913 and D 7928) was performed for selected samples from each boring. These test results are presented on the Logs of Test Borings and Grain Size Distribution sheets.

One-point unconsolidated-undrained (UU) triaxial compressive strength tests (ASTM D 2850) were performed on selected Shelby tube samples. Each UU test was performed on a specimen tested at a confining pressure approximately equal to the existing overburden pressure at the sample depth. The results of these tests are attached to this report.

Direct shear tests (ASTM D 3080) were performed on selected Shelby tube samples. The direct shear tests were generally performed on specimens tested at confining pressures approximately equal to the existing overburden pressure at the sample depth, as well as half and double that pressure. Suitable intact sample was not available from Boring B-004 (ST-5) to perform the direct shear test using three confining pressures, so two were utilized. The results of these tests are attached to this report.

4.0 UNDISTURBED SAMPLE TEST RESULTS

4.1 <u>Unconfined Compressive Strength Test Results</u>

Results of the unconfined compressive strength test are summarized in the following table.

	Tabl	e 4.1. Uncon	fined Compressi	ive Strength T	est Results	
Boring Number	Sample Number	Depth (ft)	Elev. (ft)	Class.	Unconfined Compressive Strength (tsf)	Dry Density (pcf)
B-003	ST-16	25.5-27.5	701.3-699.3	A-6b (10)	1.12	106.8

4.2 <u>UU Triaxial Test Results</u>

Results of the UU triaxial tests are summarized in the following table.

		Table	4.2. UU Triaxial	Test Results		
Boring Number	Sample Number	Depth (ft)	Elev. (ft)	Class.	Undrained Shear Strength (tsf)	Dry Density (pcf)
B-001	ST-11	18-20	713.3-711.3	A-6b (10)	1.66	117.2
B-002	ST-8	13.5-15.5	715.4-713.4	A-6b (10)	1.63	116.9
B-004	ST-5	7.0-9.0	716.8-714.8	A-6b (10)	0.61	110.0

4.3 <u>Direct Shear Test Results</u>

Results of the direct shear tests are summarized in the following table.

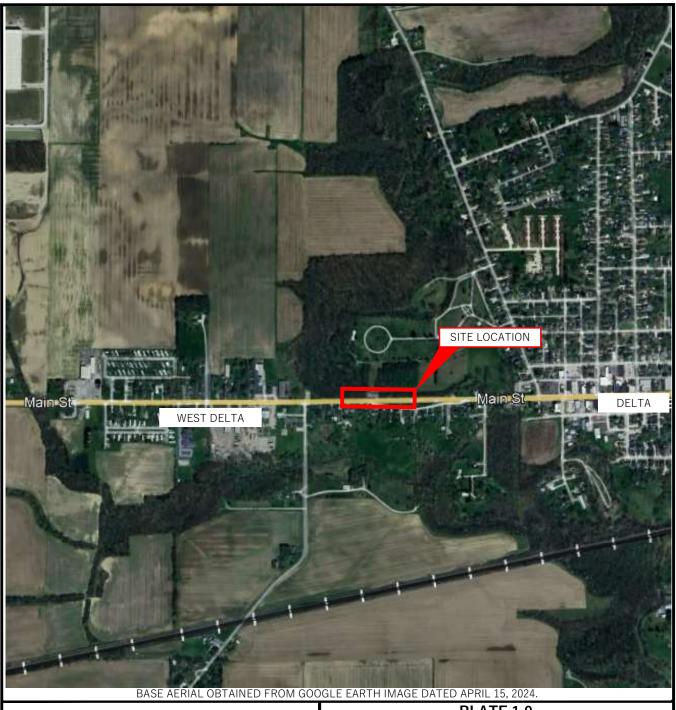
		Tab	le 4.3. Direct Sh	ear Test Resi	ults		
Boring Number	Sample Number	Depth (ft)	Elev. (ft)	Class.	Internal Angle of Friction, deg (φʹ)	Residual Cohesion, c' (psf)	Dry Density (pcf)
B-002	ST-8	13.5-15.5	715.4-713.4	A-6b (10)	29.8	118	108.3
B-003	ST-16	25.5-27.5	701.3-699.3	A-6b (10)	27.4	422	102.0
B-004	ST-5	7.0-9.0	716.8-714.8	A-6b (10)	28.4	403	109.2

5.0 QUALIFICATIONS

The general pavement and subsurface conditions are based on the data obtained at specific pavement core and test boring locations. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between cores/borings will differ from those at the core/boring locations, that conditions are not as anticipated by the designers, or that the construction process has altered the site or soil conditions. This potential is increased for sites with previous construction operations. Therefore, experienced geotechnical engineers should observe slope repair to confirm that the conditions anticipated in design are noted.

If project criteria or locations change, a qualified geotechnical engineer should be permitted to determine whether slope repair recommendations must be modified.

The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate recommendations after on-site observations of the conditions.


Our professional services have been performed in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. CT is not responsible for the conclusions, opinions, or recommendations of others based on this data.

PLATES

Plate 1.0 Site Location Map Plate 2.0 Test Boring Location Plan

APPROXIMATE SITE LOCATION

PLATE 1.0 SITE LOCATION MAP

LANDSLIDE EXPLORATION FUL-20A-19.20, PID 11890 DELTA, FULTON COUNTY, OHIO

PREPARED FOR

TETRA TECH

DRAWN CRO / 10-01-2024	CHECKED CPI / 10-01-2024
REVISED	APPROVED
JOB NO. 241359	Consultants
DRAWING NUMBER	consultants engineers architects planners
241359–01G	a verdantas company

APPROXIMATE SCALE - FEET

0 1,000 2,000

FIGURES

Logs of Test Borings
Legend Key
Grain Size Distribution Curves
Unconfined Compressive Strength Test Results
UU Triaxial Strength Test Results
Direct Shear Test Results
Pavement Core Photographic Logs

PROJECT: FUL-20A-19.20 TYPE: LANDSLIDE	DRILLING FIRM / OPER SAMPLING FIRM / LOG	GGER:	TTL / TB TTL / TB	HAM	MER:	AUTO	DRICH D70	AMME	R	STAT	ME	NT: _		US R	OUTI	E 20A	١	. ——	ATION 1-0-24 PAGE
PID: <u>119890</u> SFN: <u>N/A</u> START: 7/22/24 END: 7/23/24	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT / ST			ON DA ATIO (<u>/11/24</u> 87.4		ELEV.		_					.0161	5.0 ft. 75	1 OF
MATERIAL DESCRIPTION	-	ELEV.		SPT/			SAMPLE		=	GRAD.					ERBI		10101	ODOT	HOL
AND NOTES		731.3	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	SI	_	LL	_		wc	CLASS (GI)	SEALI
ASPHALT - 9.75 INCHES	\bigotimes	730.5																	
CONCRETE - 6.75 INCHES	X	729.9																	
VERY STIFF TO HARD, GRAY/BROWN, SIL LITTLE SAND, TRACE GRAVEL, TRACE CA SEAM, DAMP			- 2 - - 2 - - 3 -	4															
OA 5' PROMIN COME CAND			_ 4 _	4 6 10	23	92	SS-1	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
@4.5': BROWN, SOME SAND			- 5 - - - 6 -	6 9 11	29	67	SS-2	>4.5	5	6	16	27	46	31	19	12	16	A-6a (8)	
@6': GRAY/BROWN		723.8	7	4 9 15	35	83	SS-3	>4.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
HARD, GRAY/BROWN, SILTY CLAY , LITTLE GRAVEL, TRACE IRON OXIDE STAIN SEAN	I, DAMP	722.3	- 8 - - - 9 -	12 15 19	50	83	SS-4	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
VERY STIFF TO HARD, BROWN/GRAY, SIL LITTLE SAND, TRACE GRAVEL, TRACE IRO SEAM, DAMP QU = 4.57 TSF, DD = 118.6 PO	ON OXIDE STAIN		- - 10 -	5 7 9	23	100	SS-5	>4.5	1	-	-	-	-	-	-	-	14	A-6a (V)	
@10.5': GRAY				8 10 12	32	100	SS-6	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
			— 12 — — 13 —	4 5 8	19	100	SS-7	>4.5	-	-	-	-		-	-	-	15	A-6a (V)	
				2 4 7	16	100	SS-8	>4.5	5	5	14	30	46	27	16	11	15	A-6a (8)	
			— 15 — — 16 —	9 11 14	36	100	SS-9	4.00	-	-	-	-	-	-	-	-	15	A-6a (V)	
		713.3	- - 17 -	3 5 9	20	100	SS-10	>4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
VERY STIFF, GRAY, SILTY CLAY , LITTLE S GRAVEL, DAMP @18': UU TRIAXIAL - C = 1 117.2 PCF			- 18 - - 19 -			88	ST-11	3.75	6	5	11	23	55	34	18	16	15	A-6b (10)	
			— 20 — — 21 —	4 6 9	22	100	SS-12	3.25	-	-	-	-	-	-	-	-	15	A-6b (V)	
				5 8 10	26	100	SS-13	4.25	-	-	-	-		-	-	-	16	A-6b (V)	
@23': VERY STIFF TO HARD			23 24	3 6 9	22	100	SS-14	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
@24.5': QU = 3.25 TSF, DD = 115.5 PCF			25	4 6 9	22	100	SS-15	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	

PID: <u>119890</u>	SFN: N/A	PROJECT:	FUL-20	A-19.20	ST	ATION /	OFFSE	T:	1013+	36, 9' LT.		TART	: 7/2	22/24	_ EI	ND: _	7/2	3/24	_ F	G 2 O	F3 B-00	1-0-2
	MATERIAL DESCRIPT	TION		ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE			GRAD				_	ΓERB			ODOT	HOL
	AND NOTES			705.3	DEI II		RQD	1 160	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEAL
GRAVEL, DAMF 117.2 PCF (cont	RAY, SILTY CLAY , LITTLE S P @18': UU TRIAXIAL - C = ' tinued)					_ 27 _	4 7 12	28	100	SS-16	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	-
@27.5': HARD						28 - - 29 -	10 10 13	34	100	SS-17	4.25	-	-	-	-	-	-	-	-	15	A-6b (V)	
@29': VERY ST				700.8		_ 30 -	4 5 9	20	100	SS-18	3.50	-	-	-	-	-	-	-	-	17	A-6b (V)	
GRAVEL, DAMF		·				- 31 - - - 32 -	7 10 13	34	100	SS-19	>4.5	2	6	15	30	47	29	18	11	15	A-6a (8)	
	IFF, QU = 2.61 TSF, DD = 1	12.6 PCF				_ 33 -	3 5 7	17	100	SS-20	3.75	-	-	-	-	-	-	-	-	15	A-6a (V)	
@33.5': VERY S	STIFF TO HARD					- 34 - - - 35 -	3 7 10	25	100	SS-21	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
						_ _ 36 _	.5 8 11	28	100	SS-22	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
				693.3		- 37 - - - 38 -	4 7 8	22	100	SS-23	4.25	-	-	-	-	-	-	-	-	16	A-6a (V)	
DAMP	SILTY CLAY, LITTLE SAND,			691.8		39	12 15 20	51	100	SS-24	>4.5	-	-	-	-	-	-	-	-	12	A-6b (V)	
VERY STIFF TO SAND, TRACE () HARD, GRAY, SILT AND (GRAVEL, DAMP	CLAY, LITTLE				40 41	6 10	23	100	SS-25	>4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
						42	5 7 11	26	100	SS-26	>4.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
						43 - - 44 -	6 8	20	100	SS-27	4.25	-	-	-	-	-	-	-	-	13	A-6a (V)	
045 51 114 55						- 45 -	4 8	17	100	SS-28	4.25	-	-	-	-	-	-	-	-	16	A-6a (V)	_
@45.5': HARD	DAV OLAV COME OUT TO	DACE CAND		684.3		46 - - 47 -	11 16	39	100	SS-29	>4.5	6	4	14	31	45	27	16	11	15	A-6a (8)	
MOIST	RAY, CLAY , SOME SILT, TF		,			- 48 -	7 10	25	100	SS-30	2.75	0	2	4	26	68	42	23	19	31	A-7-6 (12)	-
	TO VERY STIFF, QU = 1.60	19F, DD = 99.3 PC	F			49 - 50	6	15	100	SS-31	3.25	-	-	-	-	-	-	-	-	25	A-7-6 (V)	
@50': VERY ST	IFF					- 51 -	5 5 9	20	100	SS-32	2.50	-	-	-	-	-	-	-	-	26	A-7-6 (V)	
				678.3		52 - 53	5 6 9	22	100	SS-33	3.00	-	-	-	-	-	-	-	-	25	A-7-6 (V)	
						JJ	5															

PII	D: <u>11989</u> 0	0_	SFN: _	N/	/A	PROJECT:	FUL-20	A-19.20	ST	ATION /	OFFSE	:T:	1013+	36, 9' LT.	_ s	ΓART	: <u>7/2</u>	22/24	_ EN	ND: _	7/23	3/24	_ P	G 3 OI	3 B-00)1-0-24
			MA		DESCRI	PTION		ELEV.	DEPTI	HS	SPT/	N ₆₀	l	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERBE	RG		ODOT	HOLE
					NOTES			677.5	DE: 11		RQD		(%)	ID	(tsf)	GR		FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
					. T , SOME	CLAY, TRACE				_ 1	ا ^۱ ۵	23	100	SS-34	3.25	•	-	-	-	-	-	-	-	14	A-4a (V)	
G	RAVEL, M	OIS	i (contin	uea)				675.3	W 675.5	55 - - 56 -	2 4 7	16	100	SS-35	2.50	1	-	ı	-	-	1	-	1	16	A-4a (V)	
	ERY STIFF RAVEL, M					TLE SAND, TRACE 2.9 PCF				_ 57 -	3 5 7	17	100	SS-36	3.75	4	5	14	15	62	24	13	11	14	A-6a (8)	
@)57.5': VER	RY S	TIFF TO	HARD						58 - -	3 8 9	25	100	SS-37	>4.5	-	-	1	-	1	-	-	•	13	A-6a (V)	
@)59': STIFF	-						670.8		59 - 60	3 5 8	19	100	SS-38	>4.5	-	-	1	-	-	-	-	1	15	A-6a (V)	
	ARD, GRA OIST	Y, S	ILTY CL	. AY , LITT	TLE SAND), TRACE GRAVEL,				61 - - 62 -	10 16 21	54	100	SS-39	>4.5	1	-	ı	-	-	-	-	1	15	A-6b (V)	
										_ 63 -	5 8 13	31	100	SS-40	>4.5	1	-	1	-	1	1	-	1	14	A-6b (V)	
								666.3	FOB-	- 64 - 65	7 13 15	41	100	SS-41	4.25	-	-	-	-	-	-	-	-	15	A-6b (V)	

ASPH. CONC MEDIL LITTLI	119890 F: 7/19 MALT - 11 CRETE - UM STIF	INCHES		DRILLING FIRM / C SAMPLING FIRM / DRILLING METHOI SAMPLING METHO	Logg D:	ER:	TTL / T		HAM			ORICH D7			STAT				US R				B-002	2-0-24
ASPH. CONC MEDIL LITTLI	T: 7/19 IALT - 11 CRETE - UM STIF	9/24 END: _ MATER A I INCHES	7/22/24 IAL DESCRIPT	SAMPLING METHO		3.	05" 1104				AUIC			-!\	ALIG	INIVI⊏I	NI.	,	US IN	UU I I	= 204			
ASPH. CONC MEDIL LITTLI	IALT - 11 CRETE - UM STIF	MATER A INCHES	IAL DESCRIPT	SAMPLING METHO			.25" HSA		CALI				/11/24		ELEV	/ATIO	N: 72	1) 8.8	NAVE	088) E	OB:	65	5.0 ft.	PAGE
ASPH. CONC MEDIL LITTLI	IALT - 11 CRETE - UM STIF	MATER A INCHES			JD.		SPT / ST		_		ATIO (87.4		LAT /							.01566	39	1 OF 3
CONC MEDIL LITTLI	CRETE - UM STIF	INCHES		1ON		ELEV.	1		SPT/			SAMPLE	HP		GRAD		_			ERBI			ODOT	HOLE
CONC MEDIL LITTLI	CRETE - UM STIF	INCHES				728.9	DEPT	THS	RQD	N ₆₀	(%)	ID	(tsf)		cs		SI		LL		_	wc	CLASS (GI)	SEALE
MEDIL LITTLI	UM STIF				\times																			******
MEDIL LITTLI	UM STIF				-XXX	728.0		L 1 -																
LITTLI					_XXX	727.4		├ '	4															******
	E CAND	F TO STIFF, BI , TRACE GRAV		SILTY CLAY,				_ 2 -	+															
STIFF	L SAND,	, TRACE GRAV	EL, DAIVIE					١,	1															
STIFF								_ 3 -	2															
STIFF						704.4		<u> </u>	2	6	67	SS-1	3.75	-	-	-	-	-	-	-	-	15	A-6b (V)	
OHER	TO VEE	OV STIEE DOO	MINICEAY CIL	TY CLAY, LITTLE		724.4	-	-	2															-
				DE STAIN SEAM,				- 5 -	2 3	9	78	SS-2	>4.5	_	-	-	-	-	-	_	_	17	A-6b (V)	
DAMP		,		2_ 0 0,				6 -	3		_												- ()	
								"	2															
								- 7 -	3 3	9	44	SS-3	3.75	-	-	-	-	-	-	-	-	18	A-6b (V)	
@7 5'	GRAY	SOME SAND, I	MOIST					-	3															
ω, .υ.	. 0.011,	COME OF THE	VIOIOI					_ 8 -	4	12	33	SS-4	3.25	2	5	24	27	42	35	18	17	20	A-6b (10)	
						719.9		_ 9 -	4															
STIFF	TO VEF	RY STIFF, GRA ÆL, DAMP QU	Y, SILTY CLAY	, LITTLE SAND,				-	3 ,	13	67	SS-5	>4.5	_	_	_	_	_	_		_	16	A-6b (V)	
IRAC	E GRAV	EL, DAIVIP QU	- 3.43 TSF, DL) = 110.1 PCF				- 10 -	4 5	13	07	33-3	74.5	-	-	-	-	-	-	-	-	10	A-00 (V)	
@10 f	6'· VERY	STIFE TO HAR	D TRACE CAI	CITE STAIN SEAM				11	4															
@10.0	O. VLICI		ID, THE IOL OF					11 -	5 _	17	61	SS-6	>4.5	-	-	-	-	-	-	-	-	16	A-6b (V)	
0401	DDOMA	LIODAY						- 12 -	. ′															-
@12"	BROWN	N/GRAY						-	4 5	17	67	SS-7	>4.5	l _	_	_	_	_	۱ ـ	_	_	16	A-6b (V)	
								 13 -	7		0,	00 1	7.0									10	7 (05 ()	
@13.5		RIAXIAL - C = 1						_ 14 -																
400			' = 118 PSF, PI	HI' = 29.8 DEG, DD				- '-			92	ST-8	>4.5	5	4	11	24	56	36	20	16	15	A-6b (10)	
= 108.	.3 PCF (WC=16%)						 15															,	
@15 5	5': VERY	STIFF						10	5															
<u>@</u>								_ 16 -	8	26	83	SS-9	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
								17 -	10															
								-	6 7	23	72	SS-10	>4.5		_				_	_		15	A-6b (V)	
								- 18 -	' 9	20	12	33-10	74.3	-	-	-	-	- 1	-	-	-	13	A-00 (V)	
@18.3	3': STIFF	F, QU = 3.02 TS	F, DD = 115.5	PCF				_ 19 -	3															
								- 19	6	20	100	SS-11	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
								_ 20 -	8															
								-	5 6	22	100	SS-12	>4.5	١.	_	_	_	_	l _	_	_	15	A-6b (V)	
								21 -	9													. •	7100(1)	
								_ 22 -	3				l											
								-	6 0	22	100	SS-13	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
								- 23 -	5															-
						1		-	6	22	100	SS-14	>4.5	-	-	_	-	-	-	_	-	15	A-6b (V)	
								_ 24 -	9						Ш								` '	
						1		_ 25 -	3	15	400	00.45	4.05									4.5	A Ch () ()	
						1		-	4 6	15	100	SS-15	4.25	-	-	-	-	-	-	-	-	15	A-6b (V)	

PID:	119890	SFN: _		N/A		PRO	OJECT:		FUL-2	0A-19.20	s	STATION	/ OFFSE	T:	1014+	75, 9' LT.	=	TART	: <u>7/</u> 1	19/24	_ EI	ND: _	7/2	2/24	_ F	G 2 O	F 3 B-00)2-0-2
		M	4TE	IAL DE	SCRIP	PTION				ELEV.	DED	THS	SPT/	NI	REC	SAMPLE	HP	(GRAD	ATIC	N (%	b)	ΑT٦	ERB	ERG		ODOT	HOL
				AND NO						702.9	DEF	1113	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEAL
TRA (con	FF TO VER ACE GRAVE atinued)	L, DAM	P QU	= 3.43	TSF, D	DD = 1	18.1 PC					_ 27 -	7 10 14	35	100	SS-16	3.00	-	-	-	-	-	-	-	-	16	A-6b (V)	
	7.5': VERY											28 29	3 6 13	28	100	SS-17	4.00	-	-	-	-	-	-	-	-	15	A-6b (V)	
@29 RES	9': DRILLEF SULTING IN	NOTED ONLY 3	PUS 3% I	SHED C RECOVE	OBBLE ERY	E DUR	ING SP	T,				30 -	3 8 11	28	33	SS-18	3.50	-	-	-	-	-	-	-	-	16	A-6b (V)	
												- 31 - - - 32 -	6 6 9	22	100	SS-19	4.00	-	-	-	-	-	-	-	-	15	A-6b (V)	
@32	2': VERY S1	TFF TO	HAR)								33 -	4 7 14	31	100	SS-20	3.75	-	-	-	-	-	-	-	-	15	A-6b (V)	
												- 34 - - - 35 -	6 8 11	28	0	SS-21	-	-	-	-	-	-	-	-	-	-	A-6b (V)	
	2 EL VEDV	OTIFE										_ 36 -	9 12 13	36	61	SS-22	2.50	-	-	-	-	-	-	-	-	16	A-6b (V)	
	6.5': VERY	SIIFF										- 37 - - - 38 -	5 7 9	23	50	SS-23	3.75	-	-	-	-	-	-	-	-	14	A-6b (V)	
	3': HARD											39 -	12 11 13	35	100	SS-24	>4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
	9.5': VERY									687.9		40 41	2 4 7	16	94	SS-25	3.75	-	-	-	-	-	-	-	-	15	A-6b (V)	
	RY STIFF TO ID, TRACE :											42 -	-	19	100	SS-26	>4.5	4	5	9	20	62	28	16	12	15	A-6a (9)	
\)	ND 43 / 42	437	20145	OU T T					684.9		43 44 -	6 7	19	100	SS-27	4.00	-	-	-	-	-	-	-	-	15	A-6a (V)	
MOI					SIL1, T	RACE	: SAND	j				- 45 -	4 4 5	13	100	SS-28	2.25	-	-	-	-	-	-	-	-	22	A-7-6 (V)	
	5.5': VERY		JΗA	KU								46 47	8 10 12	32	100	SS-29	3.50	0	2	6	24	68	50	23	27	29	A-7-6 (17)	
	7': VERY S		CD	V 0" 7	TV CL 4	AV TO	MOT 0	ANID		680.4		- 48 -	3 4 6	15	100	SS-30	3.25	-	-	-	-	-	-	-	-	27	A-7-6 (V)	
MOI										678.9		49 50	5	12	100	SS-31	2.25	0	2	5	25	68	39	20	19	25	A-6b (12)	
= 0.9	RY STIFF, 0 96 TSF (AF	PARENT	ME	DIUM S	TIFF),							- 51 -	3 5	16	100	SS-32	2.50	-	-	-	-	-	-	-	-	27	A-6b (V)	
@51	1.5': LITTLE	SAND,	IRA(E GRA	VEL							52 53	6 7	19	100	SS-33	2.50	-	-	-	-	-	-	-	-	28	A-6b (V)	
										<u> </u>			4					L					<u></u>					

PID: _	119890	SFN:	N/A	PROJECT:	FUL-20	A-19.20	S1	TATION /	OFFSE	ET:	1014+	75, 9' LT.	_ s	TART	: <u>7/1</u>	9/24	_ EN	1D: _	7/22	2/24	_ P	G 3 OF	= 3 B-00	2-0-24
		MA	TERIAL DESC	RIPTION		ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE			GRAD		N (%))	ATT	ERBE	RG		ODOT	HOLE
			AND NOTE	S		675.1	DELL		RQD		(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALE
						674.4			1 4 7	16	100	SS-34	3.00	-	-	-	-	-	-	-	-	26	A-6b (V)	
STIFI	F, GRAY, \$	SILT AND	CLAY, SOME	SAND, MOIST				55 - 56	2 4 5	13	100	SS-35	2.00	0	3	18	26	53	24	13	11	19	A-6a (8)	
						671.9		- - - 57 -	3 5	16	100	SS-36A	-	-	-	-	-	-	-	-	-	-	A-6a (V)	
			GRAY, SILTY (CLAY, LITTLE SAND,				31	6			SS-36B	4.00	-	-	-	-		-	-	-	13	A-6b (V)	-
TRAC	CE GRAVE	EL, DAMP						58 - -	4 6 10	23	100	SS-37	>4.5	-	-	-	-	-	-	-	-	14	A-6b (V)	
								- 59 - - - 60 -	3 6 11	25	100	SS-38	4.25	-	-	-	-	-	-	-	-	14	A-6b (V)	
@60.	5': HARD							61 62	7 10 13	34	100	SS-39	>4.5	-	-	-	-	-	-	-	-	13	A-6b (V)	
								63 -	5 7 13	29	100	SS-40	>4.5	1	-	-	-	-	-	-	•	12	A-6b (V)	
						663.9	EOB-	- 64 - - 65	8 16 21	54	100	SS-41	>4.5	-	-	-	-	-	-	-	-	14	A-6b (V)	

PROJECT: TYPE: PID: 119890	FUL-20A-19.20 LANDSLIDE SFN: N/A	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHOD	LOGGI	ER:	TTL / T TTL / TE .25" HSA		HAM	IMER:	AUT	ORICH D7 OMATIC F	IAMME	R	STAT ALIG ELEV	NMEI	NT: _		US R	OUTE	€ 20A	١	EXPLOR. B-003	ATION 3-0-24 PAGI
START: 7/18/2	_	SAMPLING METHO			SPT / ST		_	RGY F			<u>/11/24</u> 87.4	_	LAT /		_					.0152		1 OF
01ART	MATERIAL DESCRIP	_	, <u>,,, </u>	ELEV.					DEC	SAMPLE	,	-	GRAD				_	ERBE		.0102		1101
	AND NOTES	TION		726.8	DEPT	HS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)		CS	FS	SI	CL		PL	PI	wc	ODOT CLASS (GI)	HOL SEAL
ASPHALT - 14.2				725.6																		
CONCRETE - 7	.75 INCHES			725.0			-															
	TO STIFF, WHITE/DARK (SAND, TRACE CRUSHED S DAMP FILL					- 2 - - 3 7	2															
				722.3		_ 4 -	² 2	6	33	SS-1	2.00	-	-	-	-	-	-	-	-	13	A-6b (V)	
	Y STIFF, GRAY/BROWN, S GRAVEL, CALCITE STAIN					- 5 - - - 6 -	2 4 4	12	67	SS-2	3.50	-	-	-	-	-	-	-	-	16	A-6b (V)	
						7 -	3 3 3	9	89	SS-3	3.75	-	-	-	-	-	-	-	-	18	A-6b (V)	
@7.5': BROWN						- 8 - - - 9 -	1 2 3	7	61	SS-4	3.00	-	-	-	-	-	-	-	-	18	A-6b (V)	
				716.3		_ 10 -	1 2 2	6	83	SS-5	2.75	-	-	1	1	-	-	-	-	18	A-6b (V)	
	Y STIFF, GRAY/BROWN, S GRAVEL, DAMP QU = 3.35					- 11 - - - 12 -	2 4 5	13	100	SS-6	4.00	3	5	12	23	57	39	20	19	17	A-6b (12)	
						- - 13 -	3 5 6	16	78	SS-7	4.00	-	-	•	•	-	-	-	-	16	A-6b (V)	
						- 14 - - - 15 -	3 4 5	13	67	SS-8	4.00	-	-	•	•	-	-	-	-	18	A-6b (V)	
						- - - 16 -	4 5 5	15	78	SS-9	>4.5	-	-	•	•	-	-	-	-	16	A-6b (V)	
				708.8		- 17 - - - 18 -	2 3 4	10	83	SS-10	4.25	-	-	1	1	•	-	-	-	18	A-6b (V)	
SAND, TRACE) HARD, GRAY/BROWN, S GRAVEL, DAMP			707.3		- 18 - - - 19 -	4 5 6	16	78	SS-11	>4.5	-	-	-	1	-	-	-	-	17	A-6b (V)	
STIFF TO VERY SAND, TRACE	Y STIFF, GRAY/BROWN, S GRAVEL, DAMP	ILTY CLAY, LITTLE		705.8		_ 20 -	3 _	12	50	SS-12	3.50	-	-	1	1	•	1	-	-	18	A-6b (V)	
VERY STIFF, G TRACE GRAVE	RAY/BROWN, SILTY CLA Y L, DAMP	, LITTLE SAND,		704.3		21 22 -	1 5	16	83	SS-13	3.50	-	-	-	-	-	-	-	-	18	A-6b (V)	
STIFF TO VERY LITTLE SAND, 7 103.4 PCF	Y STIFF, BROWN/GRAY, S TRACE GRAVEL, DAMP QU	ILT AND CLAY, J = 1.51 TSF, DD =		702.8		- 23 - - 24 -	2 3 4	10	83	SS-14	3.25	2	4	17	25	52	33	18	15	18	A-6a (10)	
	ROWN/GRAY, SILTY CLA Y EL, MOIST	, LITTLE SAND,		701.3		- 24 - - - 25 -	3 5 6	16	100	SS-15	3.00	-	-	-	-	-	-	-	-	19	A-6b (V)	

PID: 119890	SFN:	N/A	PROJECT:	FUL-20	A-19.20	ST	ATION /	OFFSE	T:	1015+	·97, 9' LT.	S	TART	: 7/1	8/24	EN	ND: _	7/19	9/24	_ P	G 2 OI	3 B-00	3-0-24
	MAT	ERIAL DESCRIP	TION		ELEV.	DEDT		SPT/		REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	HOLE
		AND NOTES			700.8	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
SAND, TRACE PCF	GRAVEĹ, I	DAMP QU = 1.12	ILTY CLAY, LITTLE TSF, DD = 106.8				_ 27 -			88	ST-16	2.00	11	4	15	22	48	40	22	18	19	A-6b (10)	
PCF (WC=26% @26.5': GRAY	6) <i>(continue</i> , TRACE GF	d) RAVEL	4 DEG, DD = 102.0		697.8		28 - - 29 -	3 5 7	17	94	SS-17	3.00		-	-	-	-	-	-	-	21	A-6b (V)	
	O HARD, G	RGANIC (LOI = 4 BRAY, SILTY CLA	NY, LITTLE SAND,				30	5 9 9	26	100	SS-18	4.00	-	-	-	-	-	-	-	-	16	A-6b (V)	
							- 31 - - - 32 -	5 9 11	29	83	SS-19	4.25	-	-	-	-	-	-	-	-	17	A-6b (V)	
					693.3		- - 33 -	4 7 10	25	100	SS-20	>4.5		-	-	-	-	•	-	-	14	A-6b (V)	
VERY STIFF T SAND, TRACE		GRAY, SILT AND DAMP	CLAY, LITTLE				34 - 35	5 6 8	20	100	SS-21	>4.5	4	4	11	22	59	31	17	14	15	A-6a (10)	
							_ 36 _	7 10 13	34	100	SS-22	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
<u>o</u>	3.55 TSF, D	D = 122.1 PCF					- 37 - - - 38 -	5 7 10	25	100	SS-23	>4.5	ı	1	-	-	-	•	-	-	15	A-6a (V)	
ECTS/241							_ 39 -	6 10 11	31	100	SS-24	>4.5	1	-	-	-		-	-		12	A-6a (V)	
- X.PROJECTS/241359.							40	4 6 10	23	100	SS-25	>4.5	-	-	-	-		-	-		15	A-6a (V)	
5 07:57 -					684.3		41 - 42	6 9 13	32	100	SS-26	>4.5		-	-	-			-		15	A-6a (V)	
SAND, MOIST	O HARD, G	GRAY, CLAY , SOI	ME SILT, TRACE				43	5 6 7	19	100	SS-27	3.50	0	2	6	24	68	47	25	22	30	A-7-6 (14)	
1 DOT. GDT					681.3		44 - 45	3 4 5	13	100	SS-28	3.25	-	-	-	-	-	-	-	-	29	A-7-6 (V)	
STIFF, GRAY,	SILTY CLA	NY, TRACE SAND	, MOIST		679.8		46 47	4 4 4	12	83	SS-29	1.50	-	-	-	-	-	-	-	-	28	A-6b (V)	
ဖ္ MOIST	RY STIFF, G	GRAY, SILTY CLA	Y, TRACE SAND,				47 - 48	3 4 6	15	100	SS-30	2.75	-	-	-	-	-	-	-	-	26	A-6b (V)	
BORING					676.8		- - - - 50	3 3 4	10	100	SS-31	2.50	-	-	-	-	-	-	-	-	22	A-6b (V)	
	GRAY, CLA	Y, SOME SILT, T	RACE SAND,				50 - 51	5 6 6	17	100	SS-32	2.00	0	2	6	24	68	41	23	18	28	A-7-6 (11)	
@51.5': QU = (106.7 PCF	0.62 TSF (A	PPARENT MEDI	UM STIFF), DD =		673.8		_ _ 52 _	7 7 8	22	100	SS-33	2.50	-	-	-	-	-	-	-	-	23	A-7-6 (V)	
VERY STIFF, (GRAY, SILT	Y CLAY, TRACE	SAND, MOIST				— 53 – –	3															

PI	D: <u>119890</u>	_ SFN: _	N/A	PROJECT:	FUL-20	A-19.20	S1	TATION /	OFFSE	T:	1015+	97, 9' LT.	_ S	ΓART	: 7/1	8/24	EN	ID: _	7/19	9/24	_ P	G 3 OF	3 B-00	3-0-24
		M	ATERIAL DES	SCRIPTION		ELEV.	DEPT	пe	SPT/	N ₆₀	REC	SAMPLE	HP	(GRAD.	ATIO	N (%))	ATT	ERBE	RG		ODOT	HOLE
			AND NO	TES		672.9	DEFI	по	RQD	11160	(%)	ID		GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
	,	GRAY, S	ILTY CLAY, T	RACE SAND, MOIST		672.3			4 5	13	100	SS-34	3.75	-	-	-	-	-	-	-	-	17	A-6b (V)	
VI S	AND, TRAC			AND CLAY, LITTLE				55 - - 56 -	8 10	26	100	SS-35	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	-
(a)56': HARD							- 57 -	4 9 11	29	100	SS-36	>4.5	ı	-	-	-	-	-	-	-	15	A-6a (V)	
								- 58 -	10 13 17	44	100	SS-37	>4.5	4	6	16	25	49	30	17	13	15	A-6a (9)	
						666.3		- 59 - - - 60 -	5 8 11	28	100	SS-38	>4.5	1	-	-	-	-	-	-	-	15	A-6a (V)	
	ARD, GRAY AMP	, SILTY C	LAY, LITTLE S	SAND, TRACE GRAVE	L,	664.8		61 -	13 20 27	68	100	SS-39	>4.5	1	-	-	-	-	•	-		15	A-6b (V)	
			LAY , LITTLE S DD = 112.6 PC	SAND, TRACE GRAVE CF	L,			63	6 9 14	34	100	SS-40	>4.5	-	-	-	-	-	-	-		15	A-6b (V)	
						661.8	—EOB—	64	8 10 16	38	100	SS-41	>4.5	-	-	-	-	-		-		15	A-6b (V)	

TANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 4/18/25 07:57 - X:\P

	FUL-20A-19.20 LANDSLIDE	DRILLING FIRM / C	LOGGER:	TTL / T		HAM	MER:	AUT	ORICH D7	IAMME	R	STAT	NME	NT: _		US F	ROUT	E 20 <i>F</i>	٨	. —	ATION 4-0-24 PAGE
PID: <u>119890</u> START: 7/16/24		DRILLING METHOD SAMPLING METHO		3.25" HSA SPT / ST		- 1	BRATI RGY F			<u>/11/24</u> 87.4		ELEV		_	23.8 (.0145	5.0 ft. 33	1 OF
	MATERIAL DESCRIP	•	ELEV		=: .0	SPT/		_	SAMPLE	,	-	GRAD			5)	_	ΓERB			ODOT	HOLI
	AND NOTES		723.8	DEPT	IHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALE
ASPHALT - 14 INC	CHES		700.0		-	1															
AGGREGATE BA	SE - 10 INCHES		722.6		F 1 T	44 8	19	44	SS-1A	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
	STIFF, BROWN, SILTY CL	AY, LITTLE SAND,	721.0		_ 2 _	5		77	SS-1B	-	-	-	-	-	-	-	-	-	-	A-6b (V)	
TRACE GRAVEL,	DAMP				- 3 -	3 3	9	0	SS-2	3.50	-	-	-	-	-	-	-	-	16	A-6b (V)	
@4': GRAY/BROV	VN, QU = 1.38 TSF, DD =	109.9 PCF			- 4 - - 5 -	3 3	9	44	SS-3	3.25	-	-	-	-	-	-	-	-	19	A-6b (V)	
@5.5': BROWN					- - 6 -	3 3	9	67	SS-4	3.75	-	-	-	-	-	-	-	-	17	A-6b (V)	
	L - C = 0.61 TSF, DD = 11 EAR - C' = 403 PSF, PHI' : 19%)				- 7 - - 8 -			75	ST-5	2.25	3	5	12	21	59	35	19	16	17	A-6b (10)	
@9': GRAY/BROV	VN, MOIST				- 9 - - 10 -	1 2 3	7	67	SS-6	2.25	-	-	-	-	-	-	-	-	19	A-6b (V)	
@10.5': BROWN.	TRACE IRON OXIDE STA	AIN SEAM, DAMP			- - 11 -	3 3	9	56	SS-7	>4.5	-	-	-	-	-	-	-	-	17	A-6b (V)	
@12': BROWN/GI	RAY				- 12 - - - 13 -	3 3	9	56	SS-8	>4.5	-	-	-	-	-	-	-	-	17	A-6b (V)	
@13.5': TRACE C	ALCITE STAIN SEAM		708.8		- 14 -	2	7	72	SS-9	3.50	-	-	-	-	-	-	-	-	17	A-6b (V)	
VERY STIFF TO H SAND, TRACE GR	HARD, BROWN/GRAY, SI I RAVEL, DAMP	LTY CLAY, LITTLE	700.0	W 707.6	- 15 - - 3 - 16 -	4 5	17	78	SS-10	>4.5	-	-	-	-	-	-	-	-	17	A-6b (V)	
					- - 17 -	2 4 5	13	83	SS-11	>4.5	-	-	-	-	-	-	-	-	17	A-6b (V)	
					- 18 - - - 19 -	2 3 4	10	67	SS-12	>4.5	-	-	-	-	-	-	-	-	26	A-6b (V)	
					20	4 5 6	16	100	SS-13	>4.5	-	-	-	-	-	-	-	-	18	A-6b (V)	
@21': QU = 2.49 ⁻	TSF, DD = 111.8 PCF				21 - 22	5	17	100	SS-14	>4.5	-	-	-	-	-	-	-	-	18	A-6b (V)	
			699.8		23	5 7 9	23	100	SS-15	>4.5	-	-	-	-	-	-	-	-	18	A-6b (V)	
STIFF, GRAY, SIL ORGANIC (LOI =	TY CLAY, "AND" SAND, 9 3.3%), MOIST	SLIGHTLY			24 - 25	3 4 4	12	100	SS-16	1.50	0	5	34	29	32	33	17	16	28	A-6b (8)	
@25.5': SLIGHTL	Y ORGANIC (LOI = 3.3%)				<u> </u>	3															

PID: _119890_	SFN:		N/A	_ PRO	DJECT:		FUL-20	A-19.20	S1	TATION /	OFFSE	Τ:1		72, 10' LT.			: <u>7/1</u>			ND: _	7/1	7/24	_ P	G 2 O	F 3 B-00)4-0-2
	MAT		L DESCRI					ELEV.	DEPT	HS	SPT/	N		SAMPLE	1	-	GRAD	ATIC	N (%		ATT	ERB	ERG	4	ODOT	HOL
			D NOTES					697.8	DEFI	110	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEAL
STIFF, GRAY, S ORGANIC (LOI					HTLY					- 27 -	3 3	9	100	SS-17	0.50	-	-	-	-	-	-	-	-	27	A-6b (V)	
VEDV STIFE TO	LIADD C	ים אע	CII TV CI	AV 1 17		ND		695.8	-	- 28 -	4 6 8	20	100	SS-18A SS-18B	- >4.5	-	-	-	-	-	-	-	-	- 16	A-6b (V)	
VERY STIFF TO TRACE GRAVE		ora i ,	SILITUL	-A1, LII	IILE SA	ND,				- - 29 -	3 5	22	100	SS-10B	3.75	_	-	_	_	_	-	_	_	16	A-6b (V)	
@30': VERY ST	TFF									_ 30 -	10 5		400	00.00	. 4 5									40		-
										— 31 – –	9 13 4	32	100	SS-20	>4.5	-	-	-	-	-	-	-	-	16	A-6b (V)	
										- 32 - - - 33 -	7 11	26	0	SS-21	-	-	-	-	-	-	-	-	-	-	A-6b (V)	
										_ 34 -	5 7 10	25	0	SS-22	-	-	-	-	-	-	-	-	-	-	A-6b (V)	
										- 35 - - - 36 -	5 7 9	23	100	SS-23	3.75	-	-	-	-	_	-	_	-	16	A-6b (V)	
								686.3		- 36 - - - 37 -	5 6 11	25	100	SS-24	3.50	-	-	-	-	-	-	-	-	15	A-6b (V)	
STIFF TO VERY SAND, TRACE PCF										- - 38 -	5 7 9	23	100	SS-25	3.25	-	-	-	-	-	-	-	-	29	A-7-6 (V)	
@39': VERY ST	IFF									- 39 - - - 40 -	2 5 7	17	100	SS-26	3.25	1	2	6	23	68	47	25	22	29	A-7-6 (14)	
										- 41 -	5 7 7	20	100	SS-27	2.50	-	-	-	-	-	-	-	-	28	A-7-6 (V)	
@42': STIFF TO	VERY ST	IFF								42 43	3 4 5	13	100	SS-28	2.50	-	-	-	-	-	-	-	-	28	A-7-6 (V)	
										<u>-</u> 44 -	3 4	13	100	SS-29	2.25	-	-	-	-	-	-	-	-	28	A-7-6 (V)	
@45': VERY ST	IFF									45 - - 46 -	3 5	16	100	SS-30	2.50	-	_	-	_	-	_	-	-	24	A-7-6 (V)	
		AND	CLAY, TR	RACE S	SAND, TF	RACE		677.3	_	- 40 - - 47 -	3 5	16	100	SS-31	2.00	_	_	_	_	_	_	_	_	20	A-6a (V)	
_, _ , , , , , , , , , , , , , , , , ,	ERY STIFF, GRAY, SILT AND CLAY , T RAVEL, MOIST			NOL ONNO, IIVOL				- 48 -	3 5	17		SS-32						60	31	20						
								673.8		- 49 - - - 50 -	7 1	17	100	SS-32 SS-33A	2.50	1 -	2	5	24	-	-	20	11		A-6a (8) A-6a (V)	
VERY STIFF, G GRAVEL, MOIS		Y CL	AY, LITTLE	E SANE	D, TRAC	E				50 - 51	4 8	17	100	SS-33B	4.00	-	-	-	-	-	-	-	-	14	A-6b (V)	
HARD, GRAY,	SANDY SIL	_T. SC	OME CLAY	Y. TRAC	CE GRAV	/EL.		671.8	<u> </u>	- - 52 -	5 11 23	50	100	SS-34A SS-34B	-	-	-	-	-	-	-	-	-	- 8	A-6b (V) A-4a (V)	
DAMP				,		,		670.8	1	- - 53 -	8			SS-35A	-	-	-	-	-	-	-	-	-	-	A-4a (V)	
								1		"	10	35	100	SS-35B	>4.5	-	_	-	_	-	-	-	-	14	A-6b (V)	

PID: _	119890	SFN:	N/A	PROJECT:	FUL-20	A-19.20		STATION /	OFFSE	T:	1017+7	72, 10' LT.	S1	TART:	: <u>7/1</u>	6/24	EN	ID: _	7/17	//24	_ P(G 3 OF	3 B-00	4-0-24
		MAT	TERIAL DESCRIP	TION		ELEV.	DEI	PTHS	SPT/ RQD	N ₆₀		SAMPLE ID			GRAD		'			ERBE		wc	ODOT CLASS (GI)	HOLE
LIADI	CDAY (CII TV CL /	AND NOTES	TDACE CDAVE		669.9		F 4	\ 14		(%)	טו	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	02/100 (0.)	SLALLI
	P (continue		AT, LITTLE SAND	, TRACE GRAVEL,				- 55 -	4 7	34	83	SS-36	>4.5	-	-	-	-	-	-	-	-	13	A-6b (V)	
@55.	5': SOME	SAND				666.8		_ 56 -	16 24 26	73	100	SS-37	>4.5	-	-	-	-	-	-	-	-	14	A-6b (V)	
			AY, SOME SAND, D = 123.9 PCF	TRACE GRAVEL,		000.0		57 - 58	6	36	100	SS-38	>4.5	-	-	-	-	-	-	-	-	13	A-6a (V)	
								59 60	5 10 16	38	100	SS-39	>4.5	-	1	-	-	-	-	-	-	15	A-6a (V)	
								61	6 11 16	39	100	SS-40	>4.5	4	4	18	25	49	30	18	12	15	A-6a (9)	
								- 62 -	6 12 17	42	100	SS-41	>4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
						658.8		63 64 	6 9 12 14		100	SS-42	>4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	

LEGEND KEY

LITHOLOGIC SYMBOLS (Unified Soil Classification System)

A-4A: Ohio DOT: A-4a, sandy silt

A-6A: Ohio DOT: A-6a, silt and clay

A-6B: Ohio DOT: A-6b, silty clay

A-7-6: Ohio DOT: A-7-6, clay

PAVEMENT OR BASE: Ohio DOT: Pavement or Aggregate base

SAMPLER SYMBOLS

Thin Walled Undisturbed Sample

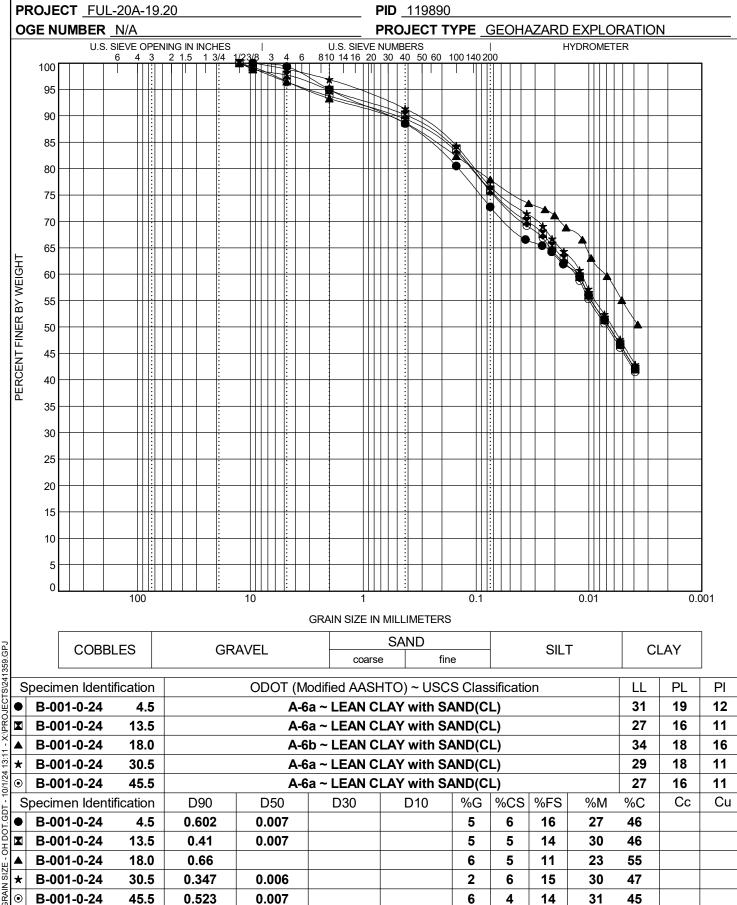
WELL CONSTRUCTION SYMBOLS

Bentonite: Bottom of hole

Asphalt or Concrete Pavement Patch

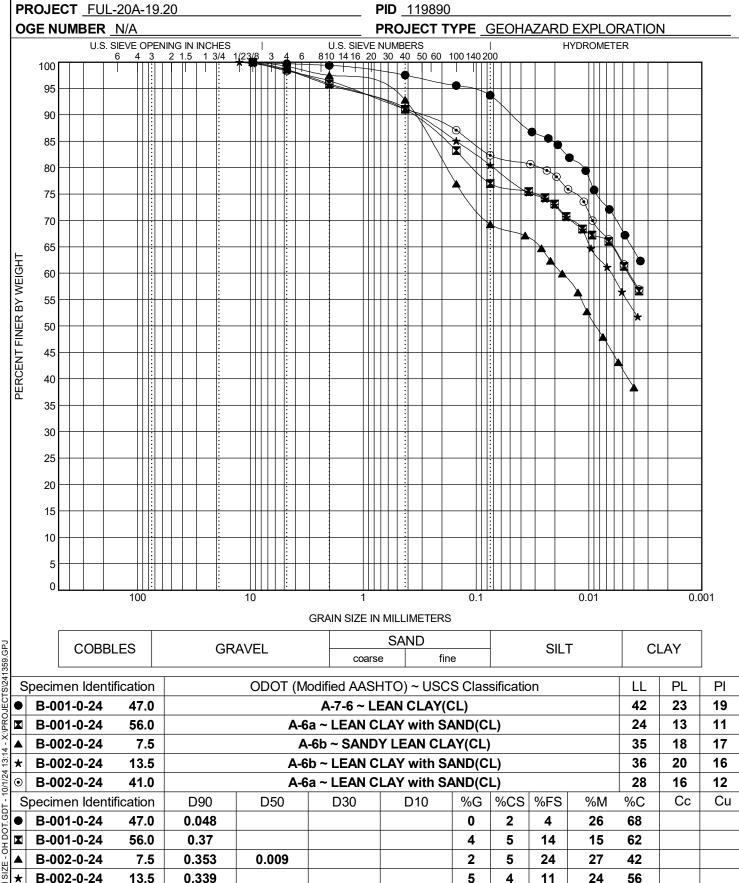
Notes:

- 1. Exploratory borings were drilled on July 16 through 23, 2024, using 3¼-inch inside diameter hollow-stem augers.
- 2. These logs are subject to the limitations, conclusions, and recommendations in the report and should not be interpreted separate from the report.
- 3. The test borings were located in the field by CT Consultants, Inc. based on plan provided with the proposal for this project.
- 4. Latitude and Longitude were obtained by CT using a handheld GPS unit. Station, offset, and ground surface elevation were provided by Tetra Tech.
- Material Description and Notes:
 Qu = unconfined compressive strength test by ASTM D 2166.


UU Triaxial = UU test by ASTM D 2850, with associated DD = Dry Density Direct Shear = Direct Shear by ASTM D 3080, with associated DD = Dry Density

0.523

0.007



6

31

45

4

9

5

20

62

•

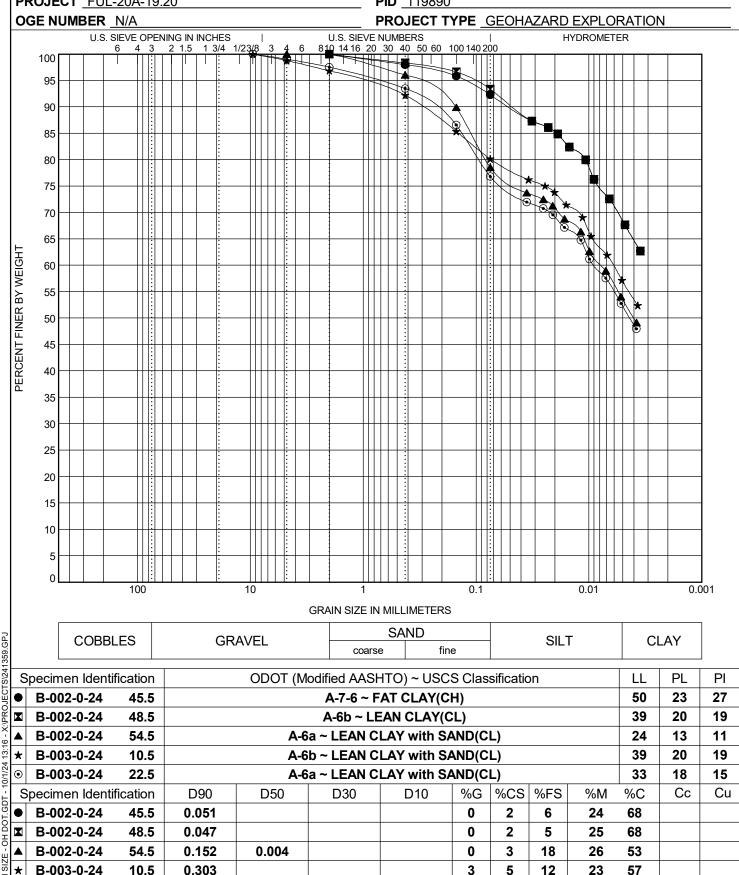
B-002-0-24

41.0

0.319

PROJECT FUL-20A-19.20

•


B-003-0-24

22.5

0.252

0.004

PID 119890

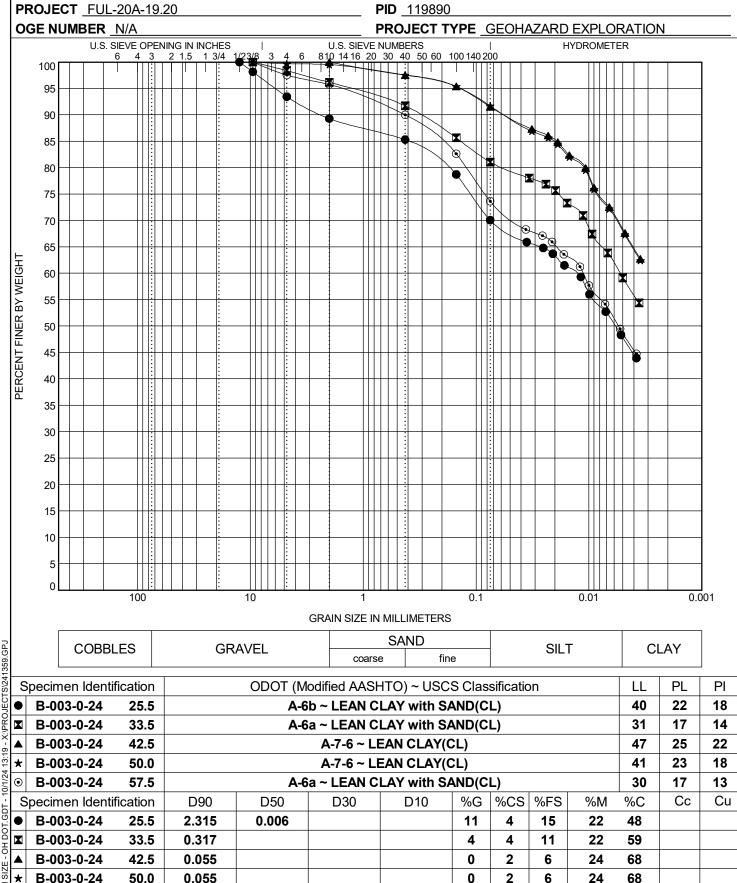
2

4

17

25

52


•

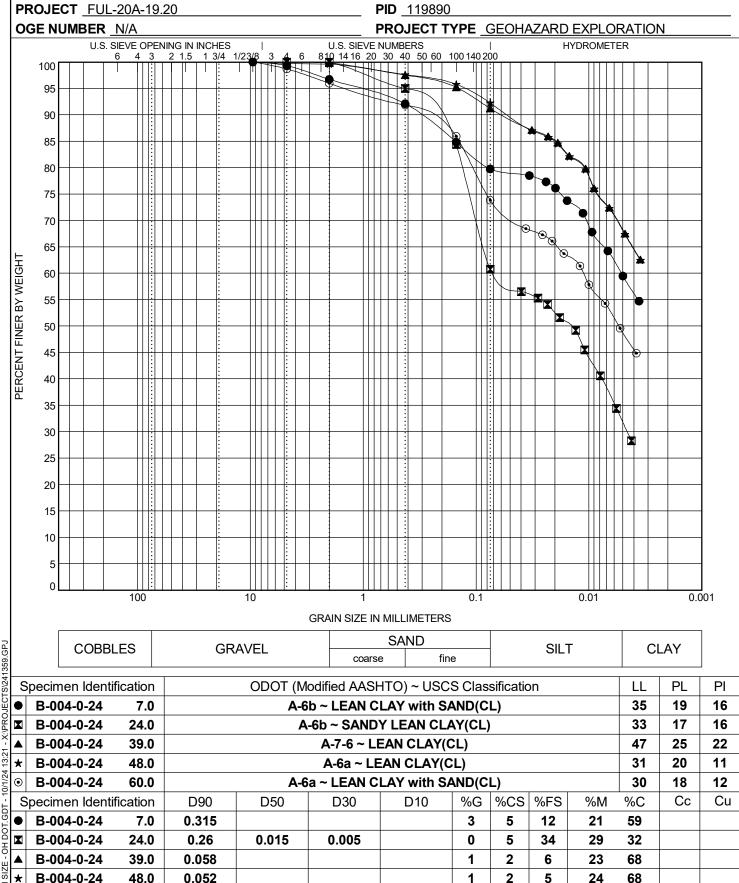
B-003-0-24

57.5

0.425

0.005

4


6

16

25

49

4

4

18

25

49

•

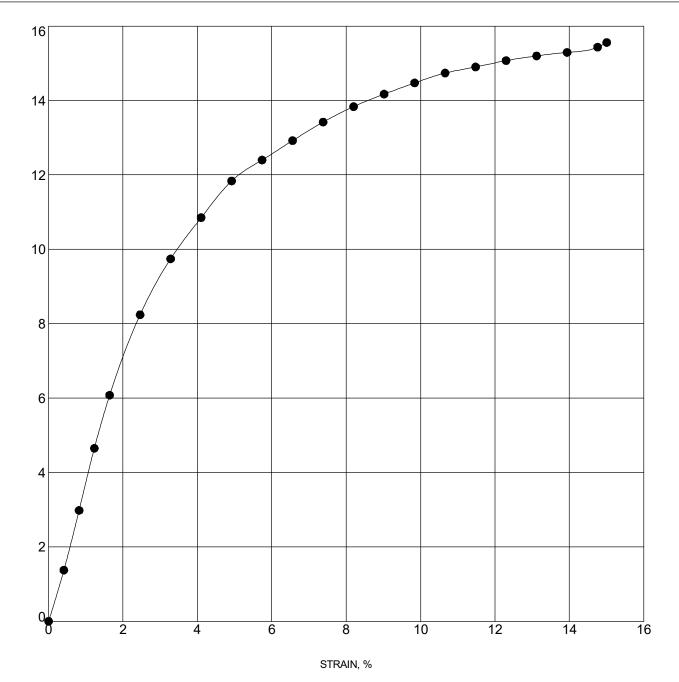
B-004-0-24

60.0

0.307

0.005

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

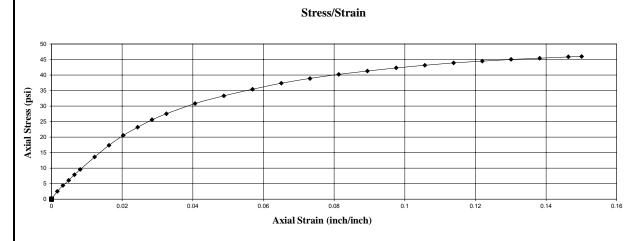

UNCONFINED COMPRESSION TEST

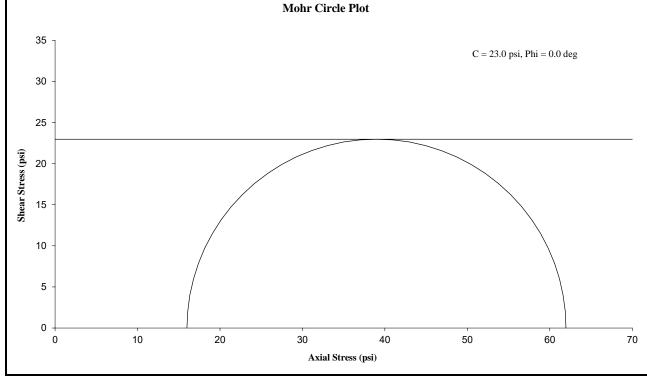
PROJECT FUL-20A-19.20

PID 119890

OGE NUMBER N/A

PROJECT TYPE GEOHAZARD EXPLORATION




3	Specimen Identi	men Identification Classification			
•	B-003-0-24	25.5	A-6b	107	19

UNCONFINED - OH DOT.GDT - 10/1/24 13:24 - X:\PROJECTS\241359.GPJ

STRESS, psi

		ASTM D 2850			
	General Sample Data	Tria	xial Specimen I	Data	
Project No.:	241359	Symbol	•		•
Project:	FUL-20A-19.20	Init. Specimen Height (in.)	6.15	-	-
Sample ID:	B-001-0-24 ST-11	Init. Specimen Diameter (in.)	2.88	-	-
Sample Interval:	18.0 - 20.0'	Init. Moisture Content* (%)	14.5	-	-
	Gray SILTY CLAY, Little Sand, Trace Gravel A-6b	Init. Dry Unit Weight (pcf)	117.2	-	-
Soil Description:				-	-
Liquid Limit:	34	Init. Void Ratio	0.46	-	-
Plastic Limit:	18	Init. Degree of Saturation (%)	86	-	-
Plasticity Index:	16	Minor Principal Stress (psi)	16.0	-	-
Specific Gravity:	2.75 (Assumed)	Deviator Stress at Failure (psi)	46.0	-	-
Rate of Strain:	0.03 Inches per Minute	Major Principal Stress (psi)	62.0	-	-
Failure Criteria:	Peak Deviator Stress or Deviator Stress at 15% Axial S	Strain Axial Strain at Failure (%)	15.0	-	-

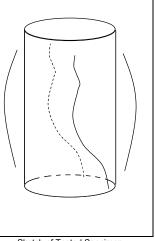
UNCONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 2850)

 Project:
 FUL-20A-19.20
 Date: 7/29/2024

 Client:
 Tetra Tech
 File: 241359B-001-0-24ST-11

 Sample ID:
 8-001-0-24 ST-11
 Depth: 18.0 - 20.0'

 Project No.:
 241359
 Specimen ID: "D" (19.5 - 20.0 Feet)

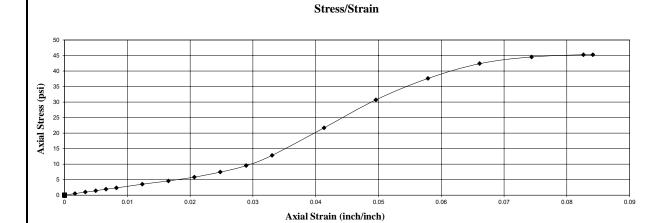

SAMPLE PROPERTIES

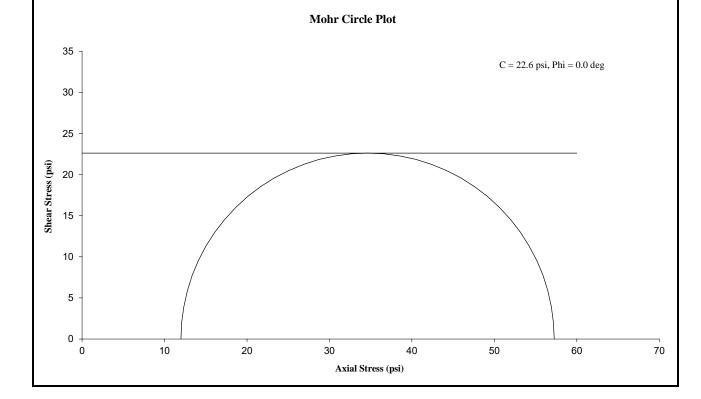
Visual Description: Gray SILTY CLAY, Little Sand, Trace Gravel A-6b (10)

Diameter: 2.88 in. Initial Dry Unit Weight of Sample: 117.2 pcf Area: 6.514 in^2 Initial Moisture Content: 14.5 % Specific Gravity (assumed): 6.15 in. 2.75 Length: Initial Void Ratio: 0.46 Initial Degree of Saturation: 86 % Chamber Pressure: Proving Ring Number: <u>1155-12-13322</u> <u>16</u> psi

STRESS-STRAIN DATA

Speciman Deformation	Vertical Strain	Proving	Piston Load	Corrected Area	Deviator Stress
	Strain	Ring			
(in)		Reading	(lbs)	(in^2)	(psi)
0.000	0.000	0.0	0.0	6.514	0.0
0.010	0.002	24.0	16.5	6.525	2.5
0.020	0.003	42.0	28.8	6.536	4.4
0.030	0.005	58.0	39.8	6.546	6.1
0.040	0.007	75.5	51.8	6.557	7.9
0.050	0.008	91.5	62.8	6.568	9.6
0.075	0.012	130.5	89.5	6.595	13.6
0.100	0.016	167.5	114.9	6.622	17.4
0.125	0.020	199.5	136.9	6.650	20.6
0.150	0.024	225.5	154.7	6.677	23.2
0.175	0.028	250.0	171.5	6.705	25.6
0.200	0.033	270.0	185.2	6.733	27.5
0.250	0.041	305.0	209.2	6.790	30.8
0.300	0.049	332.5	228.1	6.848	33.3
0.350	0.057	356.5	244.6	6.908	35.4
0.400	0.065	379.5	260.3	6.968	37.4
0.450	0.073	398.5	273.4	7.029	38.9
0.500	0.081	415.5	285.0	7.091	40.2
0.550	0.089	430.5	295.3	7.154	41.3
0.600	0.098	445.0	305.3	7.219	42.3
0.650	0.106	458.0	314.2	7.284	43.1
0.700	0.114	470.5	322.8	7.351	43.9
0.750	0.122	481.0	330.0	7.419	44.5
0.800	0.130	491.5	337.2	7.489	45.0
0.850	0.138	500.5	343.3	7.559	45.4
0.900	0.146	510.0	349.9	7.631	45.8
0.923	0.150	513.5	352.3	7.665	46.0




Sketch of Tested Specimen

RESULTS

Maximum Deviator Stress 46.0 psi

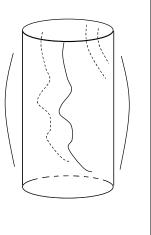
	_	ASTM D 2850										
	General Sample Data	Triaxial Specimen Data Symbol ■										
Project No.:	241359	Symbol	•		•							
Project:	FUL-20A-19.20	Init. Specimen Height (in.)	6.05	-	-							
Sample ID:	B-002-0-24 ST-8	Init. Specimen Diameter (in.)	2.88	-	-							
Sample Interval:	13.5 - 15.5'	Init. Moisture Content* (%)	14.9	-	-							
	Brown/Gray SILTY CLAY, Little Sand, Trace Gravel	Init. Dry Unit Weight (pcf)	116.9	-	-							
Soil Description:	A-6b (10)			-	-							
Liquid Limit:	36	Init. Void Ratio	0.47	-	-							
Plastic Limit:	20	Init. Degree of Saturation (%)	88	-	-							
Plasticity Index:	16	Minor Principal Stress (psi)	12.0	-	-							
Specific Gravity:	2.75 (Assumed)	Deviator Stress at Failure (psi)	45.3	-	-							
Rate of Strain:	0.03 Inches per Minute	Major Principal Stress (psi)	57.3	-	-							
Failure Criteria:	Peak Deviator Stress or Deviator Stress at 15% Axial S	train Axial Strain at Failure (%)	8.3	-	-							

UNCONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 2850)

 Project:
 FUL-20A-19.20
 Date: 7/29/2024

 Client:
 Tetra Tech
 File: 241359B-002-0-24ST-8

 Sample ID:
 B-002-0-24 ST-8
 Depth: 13.5 - 15.5'

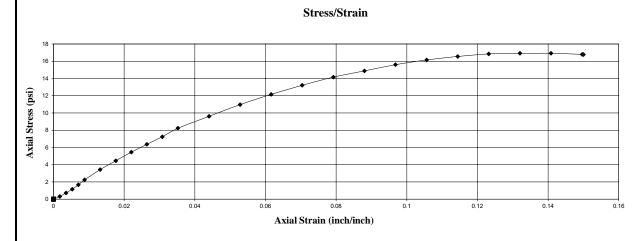

 Project No.:
 241359
 Specimen ID: "D" (15.0 - 15.5 Feet)

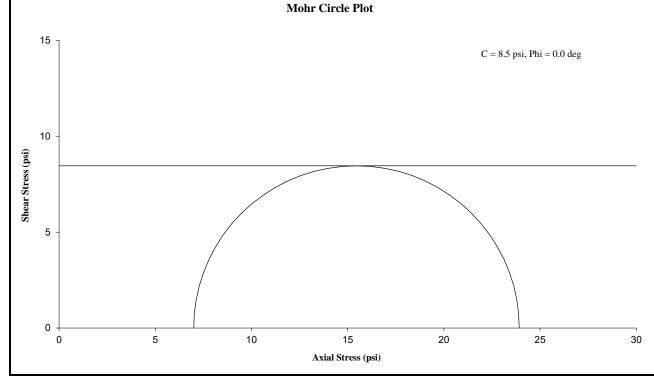
SAMPLE PROPERTIES

Brown/Gray SILTY CLAY, Little Sand, Trace Gravel A-6b (10) Visual Description: Diameter: 2.88 in. Initial Dry Unit Weight of Sample: 116.9 pcf Area: 6.514 in^2 Initial Moisture Content: 14.9 % Specific Gravity (assumed): 6.05 in. 2.75 Length: Initial Void Ratio: 0.47 Initial Degree of Saturation: 88 % Chamber Pressure: Proving Ring Number: 1155-12-13322 12 psi

STRESS-STRAIN DATA

Speciman Deformation	Vertical Strain	Proving Ring	Piston Load	Corrected Area	Deviator Stress	
(in)	Juani	Reading	(lbs)	(in^2)	(psi)	
0.000	0.000	0.0	0.0	6.514	0.0	
0.010	0.002	5.0	3.4	6.525	0.5	
0.020	0.003	9.5	6.5	6.536	1.0	
0.030	0.005	13.5	9.3	6.547	1.4	
0.040	0.007	18.5	12.7	6.558	1.9	
0.050	0.008	22.5	15.4	6.569	2.3	
0.075	0.012	34.0	23.3	6.596	3.5	
0.100	0.017	44.5	30.5	6.624	4.6	,
0.125	0.021	56.5	38.8	6.652	5.8	/
0.150	0.025	72.5	49.7	6.680	7.4	/ /
0.175	0.029	93.0	63.8	6.708	9.5	
0.200	0.033	126.0	86.4	6.737	12.8	
0.250	0.041	215.0	147.5	6.795	21.7	
0.300	0.050	307.0	210.6	6.854	30.7	\
0.350	0.058	379.0	260.0	6.914	37.6	\
0.400	0.066	431.0	295.7	6.976	42.4	\
0.450	0.074	457.0	313.5	7.038	44.5	\
0.500	0.083	468.5	321.4	7.101	45.3	\
0.509	0.084	469.0	321.7	7.113	45.2	
						,
				-		
				-		
				-		C
						SI
				1		
				 		
L		ļ		l		




Sketch of Tested Specimen

RESULTS

Maximum Deviator Stress 45.3 psi

		ASTM D 2850			
	General Sample Data	Tria	xial Specimen D	ata	
Project No.:	241359	Symbol	*		•
Project:	FUL-20A-19.20	Init. Specimen Height (in.)	5.68	-	-
Sample ID:	B-004-0-24 ST-5	Init. Specimen Diameter (in.)	2.88	-	-
Sample Interval:	7.0 - 9.0'	Init. Moisture Content* (%)	17.4	-	-
	Brown SILTY CLAY, Little Sand, Trace Gravel A-6b	Init. Dry Unit Weight (pcf)	110.0	-	-
Soil Description:				-	-
Liquid Limit:	35	Init. Void Ratio	0.56	-	-
Plastic Limit:	19	Init. Degree of Saturation (%)	86	-	-
Plasticity Index:	16	Minor Principal Stress (psi)	7.0	-	-
Specific Gravity:	2.75 (Assumed)	Deviator Stress at Failure (psi)	16.9	-	-
Rate of Strain:	0.03 Inches per Minute	Major Principal Stress (psi)	23.9	i	-
Failure Criteria:	Peak Deviator Stress or Deviator Stress at 15% Axial S	Strain Axial Strain at Failure (%)	14.1	-	-

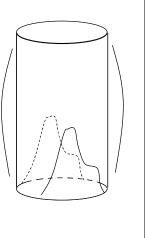
UNCONSOLIDATED, UNDRAINED COMPRESSIVE STRENGTH OF COHESIVE SOILS IN TRIAXIAL COMPRESSION (ASTM D 2850)

 Project:
 FUL-20A-19.20
 Date: 7/31/2024

 Client:
 Tetra Tech
 File: 241359B-004-0-24ST-5

 Sample ID:
 B-004-0-24 ST-5
 Depth: 7.0 - 9.0'

 Project No.:
 241359
 Specimen ID: "B" (7.5 - 8.0 Feet)


SAMPLE PROPERTIES

Visual Description: Brown SILTY CLAY, Little Sand, Trace Gravel A-6b (10)

Diameter: 2.88 in. Initial Dry Unit Weight of Sample: 110.0 pcf Area: 6.514 in^2 Initial Moisture Content: 17.4 % Specific Gravity (assumed): 5.68 in. 2.75 Length: Initial Void Ratio: 0.56 Initial Degree of Saturation: 86 % Chamber Pressure: Proving Ring Number: <u>1155-12-13322</u> 7 psi

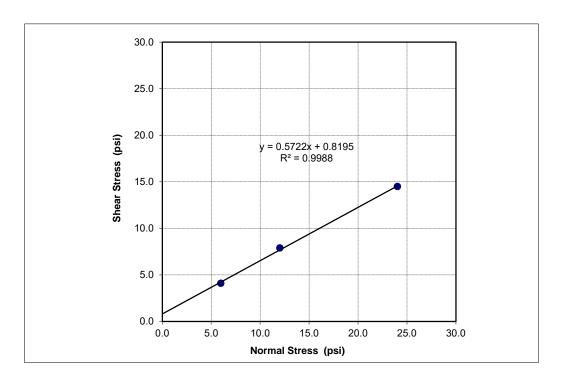
STRESS-STRAIN DATA

Speciman	Vertical	Proving	Piston	Corrected	Deviator
Deformation	Strain	Ring	Load	Area	Stress
(in)		Reading	(lbs)	(in^2)	(psi)
0.000	0.000	0.0	0.0	6.514	0.0
0.010	0.002	3.0	2.1	6.526	0.3
0.020	0.004	7.0	4.8	6.537	0.7
0.030	0.005	11.0	7.5	6.549	1.2
0.040	0.007	16.0	11.0	6.561	1.7
0.050	0.009	21.5	14.7	6.572	2.2
0.075	0.013	33.0	22.6	6.602	3.4
0.100	0.018	43.0	29.5	6.631	4.4
0.125	0.022	53.0	36.4	6.661	5.5
0.150	0.026	62.0	42.5	6.691	6.4
0.175	0.031	71.0	48.7	6.721	7.2
0.200	0.035	81.0	55.6	6.752	8.2
0.250	0.044	95.5	65.5	6.814	9.6
0.300	0.053	110.0	75.5	6.878	11.0
0.350	0.062	123.0	84.4	6.942	12.2
0.400	0.070	135.0	92.6	7.008	13.2
0.450	0.079	146.0	100.2	7.075	14.2
0.500	0.088	155.0	106.3	7.143	14.9
0.550	0.097	164.0	112.5	7.213	15.6
0.600	0.106	171.5	117.6	7.284	16.2
0.650	0.114	177.5	121.8	7.356	16.6
0.700	0.123	182.5	125.2	7.430	16.8
0.750	0.132	185.0	126.9	7.505	16.9
0.800	0.141	187.0	128.3	7.582	16.9
0.850	0.150	187.5	128.6	7.661	16.8
0.852	0.150	187.5	128.6	7.664	16.8

Sketch of Tested Specimen

RESULTS

Maximum Deviator Stress 16.9 psi


DIRECT SHEAR TEST DATA

ASTM D 3080

Project Number: 241359 Boring Number.: B-002-0-24

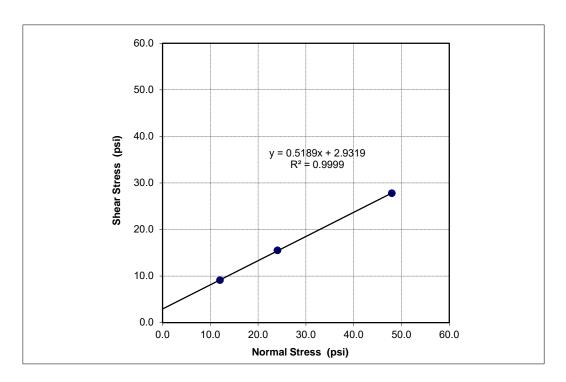
Project Name: FUL-20A-19.20 Sample Number: ST-8

Project Location: Fulton County, OH Sample Depth: 13.5 - 15.5'

Normal		Shear		
Trial	Stress	Stress	φ	
Number	(psi)	(psi)	(degrees)	
1	6.0	4.1		
2	12.0	7.9	29.8	
3	24.0	14.5		

Atterberg Limits: Particle Size Analysis:

Liquid Limit: 36 % Gravel: 5
Plastic Limit: 20 % Sand: 15
Plasticity Index: 16 % Silt: 24


% Clay: 56

Soil Classification: Brown/Gray SILTY CLAY, Little Sand, Trace Gravel A-6b (10)

DIRECT SHEAR TEST DATA

ASTM D 3080

Project Number: 241359 Boring Number.: B-003-0-24
Project Name: FUL-20A-19.20 Sample Number: ST-16
Project Location: Fulton County, OH Sample Depth: 25.5 - 27.5'

	Normal	Shear		
Trial	Stress	Stress	φ	
Number	(psi)	(psi)	(degrees)	
1	12.0	9.1		
2	24.0	15.5	27.4	
3	48.0	27.8		

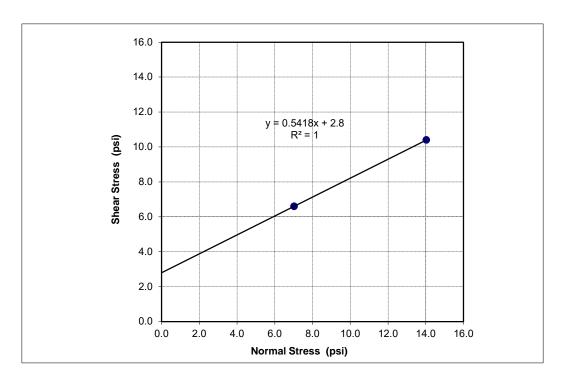
Atterberg Limits: Particle Size Analysis:

 Liquid Limit:
 40
 % Gravel:
 11

 Plastic Limit:
 22
 % Sand:
 19

 Plasticity Index:
 18
 % Silt:
 22

 % Clay:
 48


Soil Classification: Brown/Gray SILTY CLAY, Little Sand, Little Gravel A-6b (10)

DIRECT SHEAR TEST DATA

ASTM D 3080

Project Number: 241359 Boring Number.: B-004-0-24

Project Name: FUL-20A-19.20 Sample Number: ST-5
Project Location: Fulton County, OH Sample Depth: 7.0 - 9.0'

	Normal	Shear		
Trial	Stress	Stress	ф	
Number	(psi)	(psi)	(degrees)	
1	7.0	6.6		
2	14.0	10.4	28.4	
3	-	ı		

Atterberg Limits: Particle Size Analysis:

 Liquid Limit:
 35
 % Gravel:
 3

 Plastic Limit:
 19
 % Sand:
 17

 Plasticity Index:
 16
 % Silt:
 21

 % Clay:
 59

Soil Classification: Brown SILTY CLAY, Little Sand, Trace Gravel A-6b (10)

CORE LOG for B-001-0-24

Project: FUL-20A Slide Repair Project Location: Delta, OH CT Project No. 241359 Core Date: July 22, 2024

ASPHALT THICKNESS (in)	=	9.75
CONCRETE THICKNESS (in)	=	6.75
CORE BARREL DIAMETER (in)	=	4.0

Horizontal crack observed within concrete 3.5 and 5.5	
inches below top of concrete.	

CORE LOG for B-002-0-24

Project: FUL-20A Slide Repair Project Location: Delta, OH CT Project No. 241359 Core Date: July 19, 2024

ASPHALT THICKNESS (in)	=	11
CONCRETE THICKNESS (in)	=	7
CORE BARREL DIAMETER (in)	=	4.0

CORE LOG for B-003-0-24

Project: FUL-20A Slide Repair Project Location: Delta, OH CT Project No. 241359 Core Date: July 18, 2024

ASPHALT THICKNESS (in)	=	14.25
CONCRETE THICKNESS (in)	=	7.75
CORE BARREL DIAMETER (in)	=	4.0

CORE LOG for B-004-0-24

Project: FUL-20A Slide Repair Project Location: Delta, OH CT Project No. 241359 Core Date: July 16, 2024

ASPHALT THICKNESS (in)	=	14
CONCRETE THICKNESS (in)	=	0
CORE BARREL DIAMETER (in)	=	4.0

Horizontal cracks at approximately 5.5 and 10.5
inches below top of pavement.

APPENDIX A

Geotechnical Engineering Design Checklists

I. Geotechnical Design Checklists	
Project: FUL-20A-19.20	PDP Path:
PID: 119890	Review Stage:

Checklist	Included in This Submission
II. Reconnaissance and Planning	✓
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	
IV. A. Foundations of Structures	
IV. B. Retaining Wall	
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Geotechnical Profile	
VI. D. Geotechnical Reports	✓

II. Reconnaissance and Planning Checklist

C-R-S:	FUL-20A-19.20 PID: 11	9890	Reviewer:	CPI	Date:	9/30/2024
			6	I.		
Reconnaissance			(Y/N/X)	Notes:		
1	Based on Section 302.1 in the SGE, have t					a Tech. Site location
	necessary plans been developed in the fo	llowing				Tech and ODOT D2
	areas prior to the commencement of the		N	for the area of	geotechnical (exploration.
	subsurface exploration reconnaissance:					
	Roadway plans			-		
	Structures plans					
	Geohazards plans			1		
2	Have the resources listed in Section 302.2	2.1 of				
	the SGE been reviewed as part of the office	ce	Υ			
	reconnaissance?					
3	Have all the features listed in Section 302	3 of				
	the SGE been observed and evaluated du	ring the	Χ			
	field reconnaissance?	_				
4	If notable features were discovered in the	e field		For geohazard,	anticiapte top	oographic survey
	reconnaissance, were the GPS coordinate	es of	Χ	would identify.		
	these features recorded?					
Plannir	ng - General		(Y/N/X)	Notes:		
5	In planning the geotechnical exploration					
	program for the project, have the specific					
	geologic conditions, the proposed work, a	and	Υ			
	historic subsurface exploration work beer	n				
	considered?					
6	Has the ODOT Transportation Information			None available.		
	Mapping System (TIMS) been accessed to	find all	Υ			
	available historic boring information and		•			
	inventoried geohazards?					
7	Have the borings been located to develop			However no his	storic borings.	
	maximum subsurface information while u	•				
	minimum number of borings, utilizing his		Υ			
	geotechnical explorations to the fullest ex	xtent				
	possible?			<u> </u>		
8	Have the topography, geologic origin of			Borings through		a and nearby
	materials, surface manifestation of soil			drainage struct	ure.	
	conditions, and any other special design		Υ			
	considerations been utilized in determining	ng the				
	spacing and depth of borings?					
9	Have the borings been located so as to pr	ovide				
	adequate overhead clearance for the					
	equipment, clearance of underground uti		W			
	minimize damage to private property, and	a	Υ			
	minimize disruption of traffic, without					
	compromising the quality of the explorati	ion?				
				l		

II. Reconnaissance and Planning Checklist

Planni	ng - General	(Y/N/X)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	Х	Included with proposal uploaded to SAFe for ODOT review.
	The schedule of borings should present the follow information for each boring:	ving	
а	exploration identification number	Υ	
b	location by station and offset	N	
С	estimated amount of rock and soil, including the total for each for the entire program.	Υ	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, soundings, test pits, etc.) been identified?	Υ	
12	Has each exploration been assigned a unique identification number, in the following format X-ZZZ-W-YY, as per Section 303.2 of the SGE?	Υ	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned identification numbers according to Section 303.2 of the SGE?	Х	

II. Reconnaissance and Planning Checklist

Planniı	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,		
	have the location, depth, and sampling		
	requirements for the following boring types		
	been determined for the project?		
	Check all boring types utilized for this project:		
	Existing Subgrades (Type A)		
	Roadway Borings (Type B)		
	Embankment Foundations (Type B1)		
	Cut Sections (Type B2)		
	Sidehill Cut Sections (Type B3)		
	Sidehill Cut-Fill Sections (Type B4)		
	Sidehill Fill Sections on Unstable Slopes (Type		
	B5)		
	Geohazard Borings (Type C)	✓	
	Lakes, Ponds, and Low-Lying Areas (Type C1)		
	Peat Deposits, Compressible Soils, and Low		
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and Reclaimed		
	Surface Mines (Type C3)		
	Underground Mines (C4)		
	Landslides (Type C5)	✓	
	Rock Slope (Type C6)		
	Karst (Type C7)		
	Proposed Underground Utilities (Type D)		
	Structure Borings (Type E)		
	Bridges (Type E1)		
	Culverts (Type E2 a,b,c)		
	Retaining Walls (Type E3 a and b)		
	Noise Barrier (Type E4)		_
	CCTV & High Mast Lighting Towers		
	(Type E5)		_
	Buildings and Salt Domes (Type E6)		

VI.B. Geotechnical Reports

C-R-S:	FUL-20A-19.20 PID: 119890	Reviewer:	CPI	Date: 4/17/2025
Genera	l	(Y/N/X)	Notes:	
1	Has an electronic copy of all geotechnical submissions been provided to the District Geotechnical Engineer (DGE)?	Υ		
2	Has the first complete version of a geotechnical report being submitted been labeled as 'Draft'?	Υ		
3	Subsequent to ODOT's review and approval, has the complete version of the revised geotechnical report being submitted been labeled 'Final'?	Υ	No comments rec report. This is the	ceived on the geotechnical data e final Submittal.
4	Has the boring data been submitted in a native format that is DIGGS (Data Interchange for Geotechnical and Geoenvironmental) compatable? gINT files meet this demand?	Υ	gINT project file is report Submittal.	s being provided with this final
5	Does the report cover format follow ODOT's Brand and Identity Guidelines Report Standards found at http://www.dot.state. oh.us/brand/Pages/default.aspx?	Υ		
6	Have all geotechnical reports being submitted been titled correctly as prescribed in Section 706.1 of the SGE?	Υ	Data report, so so	omewhat modified.
Report	Body	(Y/N/X)	Notes:	
7	Do all geotechnical reports being submitted contain the following:			
a.	an Executive Summary as described in Section 706.2 of the SGE?	N	Data report, so no	ot included.
b.	an Introduction as described in Section 706.3 of the SGE?	Υ		
C.	a section titled "Geology and Observations of the Project," as described in Section 706.4 of the SGE?	Υ		
d.	a section titled "Exploration," as described in Section 706.5 of the SGE?	Υ		
e.	a section titled "Findings," as described in Section 706.6 of the SGE?	N	Undisturbed sam provided instead.	ple laboratory test results
f.	Recommendations," as described in Section 706.7 of the SGE?	Х	Data report, so no	ot included.
Append		(Y/N/X)	Notes:	
8	Do all geotechnical reports being submitted contain all applicable Appendices as described in Section 706.8 of the SGE?	Υ		
9	Do the Appendices present a site Boring Plan showing all boring locations as described in Section 706.8.1 of the SGE?	Υ		

VI.B. Geotechnical Reports

Apper	Appendices		Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 706.8.2 of the SGE?	Υ	
11	Do the Appendices include reports of undisturbed test data as described in Section 706.8.3 of the SGE?	Υ	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 706.8.4 of the SGE?	Х	Data report, so not included.

Appendix C
Engineering Analyses and
Computations

CALCULATION AND DESIGN SUMMARY

(7) ITEM 659 - SEEDING AND MULCHING

TŁ

GCB REVIEWER
DTC MM-DD-Y

119890

P.2 TOTAL

FUL-2	20A-19.20,	Delta,	Ohio
Slide	Mitigation		

Brian Lawrence 11/18/2024

903 LPILE Analysis - Ohio GDM

Loads on shafts determined, find displacement, shear, and moment distributions using p-y software.

Perform p-y analysis in accordance with Section 1501.7, except as modified in Section 903.

903.1 Conversion of Force per Shaft to Distributed Lateral Load.

NOTE: THIS HIGHLIGHTED STEP IS NOT REQUIRED - SEE 903.3.2, METHOD 2, BELOW.

Need to determine:

- 1. Depth to shear surface
- 2. Depth to bedrock
- 3. Single shaft resultant force

Then calculate a triangular distribution of loading, from 0 at GS to maximum depth of shear surface. This horizontal earth pressure (EH) load is solely horizontal, ignore vertical.

In LPILE, distributed load must be converted into units of lbs/in of length along drilled shaft.

Is horizontal distance between drilled shafts and traffic loading less than or equal to half the depth to the shear surface at location of drilled shafts (dT), apply unfactored vehicular live load surcharge of 250 psf per AASHTO LRFD 3.11.6.4.

Do not represent load on shaft as single resultant point load and cut off the top of shaft.

903.2 p-y Modification Factor

$$D \coloneqq 36 \ in$$

$$S = 6$$
 ft

$$P_m = 0.64 \cdot \left(\frac{S}{D}\right)^{0.34} = 0.81$$

For 1<S/D<3.75 where 0.5<Pm<1.0

Use Pm = 0.64 to depth of lowered ground level because plug piles are used to that depth

903.3 Soil Layering and p-y models

LPILE will calculate passive resistance "Mobilized Soil Reaction" for soil mass. Actual passive resistance of downhill soil mass will be reduced, but not usually become zero as full depth crack theories assert.

Method 2 applies for this project.

903.3.2 Method 2

Case where downhill soil mass left as-is, and downhill soil mass does not meet minimum required FS of 1.3

1. Determine angle of steepness of slope from horizontal, downhill of the drilled shafts

$$\beta_{dh} := \operatorname{atan}\left(\frac{1}{1.5}\right) = 33.7 \ \textit{deg}$$
 Average slope approximately 1.7:1, but use steeper 1.5:1 seen in places on slope.

2. Determine depth to shear surface at location of the drilled shafts.

Drilled shafts 23 feet horizontal from CL, 9 feet from pavement edge Estimate shear surface at 12 feet below ground at location of shaft. $d_T = 12 \ ft$

3. Lower ground surface by:

$$GS = 0$$
 f t

$$\Delta GS = GS - d_T \cdot \tan(\beta_{dh}) = -8 ft$$

Conservatively assume 12-foot lowering of ground surface

4. GWT in logs generally below stream level. But B-4 it is at El 708. Assume GWT at El 710.

903.4 Drilled Shaft Length

Embed below in a solid stratum below shear failure, so drilled shaft head displacement within serviceability limits (903.8). Ideally embed in bedrock, but minimum 10 feet below shear surface. Also, must be geotechnically stable (903.9)

903.5 Steel reinforcement

Steel HP or W sections have advantages with installation. Use W-section.

903.6 Section Type, Dimensions, Cross-section properties Choose in accordance with Section 1501.7.5

*Ground surface should be represented as level, not inclined.

Inclining slope is not relevant since we are already discounting soil resistance near the ground surface.*

Use ASTM A709 minimum 50 ksi yield strength for steel reinforcing beam section. Typically use Class QC5 concrete. If shafts are 7 feet or greater diameter, used QC4 concrete.

1501.7.5: For a HP-section or W-section embedded in a concrete drilled shaft, including the portion of a soldier pile embedded in the drilled shaft foundation, analyze the vertical wall element as a "Round Shaft with Casing and Core/Insert" under "Section Type" in LPILE. Set the casing outside diameter to the nominal drilled shaft diameter, set the casing wall thickness to 0 inches unless a permanent steel casing is used, and set the number of bars to "0" for the rebars unless a supplemental reinforcing bar cage is used. For the core/insert type, choose either "Steel H Section Strong Axis" or "Steel AISC Section Strong Axis," depending on whether a HP-section or W-section is being used. This analysis method accounts for the additional stiffness from the composite action of the concrete contained within the web and flanges of the steel section. It will also produce a non-linear non-elastic analysis that accounts for the loss of stiffness from a cracked section with deflections beyond the tensile strain limit for the concrete.

903.7 Pile-Head Loadings and Options
Choose pile-head loadings and options IAW 1051.7.6
Run 2 p-y analyses for each loading case:

- 1. Unfactored loading for Service LS to determine head deflection
- 2. Factored loading for Strength LS check structural and geotechnical resistance

Check that the head deflection of the vertical wall element is less than the required serviceability limit (see Section 1501.6) and check the factored resistance of the vertical wall element versus the calculated factored maximum moment and maximum shear (see BDM Sections 307.6, 307.6.3, and 307.7.1)

1501.7.6 Pile-head Loading and Options
Use Shear = 0 and Moment = 0 at the head.
Set option Compute Top Y vs L to "Yes"

903.8 LPILE Output

Review LPILE for both states IAW 1501.7.7

For Strength LS - pay attention to possible artificial plastic hinging, modify as needed IAW 1501.7.8

If DS within 10 feet of edge of pavement, limit deflection to 2" or less

If fails deflection, resize and run again

1501.7.7 LPILE Output

Top deflection - Service Limit State

$$y_{top} = 1.5 \, in$$

$$y_{limit}\!\coloneqq\!2$$
 in

1501.7.8 Artificial Plastic Hinging

From LPILE plot, plastic hinge would form between 4 and 7 inches displacement. Since maximum displacement is under these values, an artificial plastic hinge does not form.

903.9 Geotechnical Resistance

Check for overturning of DS either with p-y analysis method in LPILE or with moment equilibrium methods.

* Do not use Geotechnical Strength Limit State check per FHWA-NHI-18-024 (GEC 10). Not intended for retaining structures and will be overly conservative*

1501.7.9 Geotechnical Overturning Resistance

Perform Strength Limit State check.

Look at pile-head deflection in Strength LS p-y analysis. If deflection does not indicate failure (failure of program to converge or very large deflection (100 inches) - then it is stable.

903.9.1 LPILE Deflection Analysis

Check geotechnical overturning using p-y methods IAW 1501.7.9 - simpler method to check geotechnical resistance.

Deflection (Strength)

$$\delta_{strength} \coloneqq 3.5 \, \, in$$

904 Steel Beam Section Design

After checking Service LS deflection and Strength LS moment and shear distributions, check that shaft reinforcement capable of resisting calculated factored maximum moment and maximum shear force.

This section gives guidance for using HP or W sections for reinforcement.

ODOT using LRFD methods for design of steel beam sections resisting shear and moment due to lateral earth loadings.

904.1 Minimum Concrete Cover for Reinforcing Steel
For DS up to 4 feet, cover is 3 inches
For DS over 4 feet, cover is 6 inches

904.2 LRFD

Strength LS:

Live load surcharge - 1.75 load factor Horizontal earth pressure - 1.50 load factor

Structural capacity (flexure and shear) of steel beam section.
Flexural resistance 1.0 resistance factor
Shear resistance 1.0 resistance factor

Check flexural resistance of steel beam section according to AASHTO LRFD 6.10.8

Check shear resistance AASHTO 6.10.9

If steel embedded in concrete drilled shaft, assume continuous lateral bracing and transverse stiffening.

If steel section extends above DS and is unbraced (as in a soldier pile wall) analyze steel section for flexural buckling with an unbraced length equal to exposed length per AASHTO 6.9.4.1.2.

Bending and Shear - Strength Limit State

$$V_{max} = 71.3 \; \textit{kip}$$
 $M_{max} = 8091 \; \textit{in} \cdot \textit{kip}$ OK

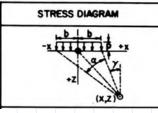
$$Fv*Vn = 375 \text{ kip}$$
 $Fb*Mn = 12,700 \text{ in-kip}$

Surcharge Calculation

FUL-20A-19.20

Brian Lawrence 10.04.24

From NAVFAC DM 7.1-166 - Uniform Strip load, vertical stress


$$b := \frac{55 \ ft}{2} = 27.5 \ ft$$
 $q := 250 \ psf$

surcharge = 0 psf

 $z_{15} = 15$ ft

at z:0 ft (top of wall),

 $K_A = 0.35$

At 15 ft

$$egin{align*} & \gamma_{15} \coloneqq \operatorname{atan}\left(rac{9 \ ft}{z_{15}}
ight) = 0.54 \ & \omega_{15} \coloneqq \operatorname{atan}\left(rac{64 \ ft}{z_{15}}
ight) = 1.341 & lpha_{15} \coloneqq \omega_{15} - \gamma_{15} = 0.8 \ \end{aligned}$$

$$\alpha_{15} \coloneqq \omega_{15} - \gamma_{15} = 0.8$$

$$\sigma_{z15} := \frac{q}{\pi} \cdot (\alpha_{15} + \sin(\alpha_{15}) \cdot \cos(\alpha_{15} + 2 \gamma_{15})) = 46.2 \ psf$$

$$\sigma_{h15} \coloneqq \sigma_{z15} \cdot K_A = 16.2 \ \textit{psf}$$

At 30 ft

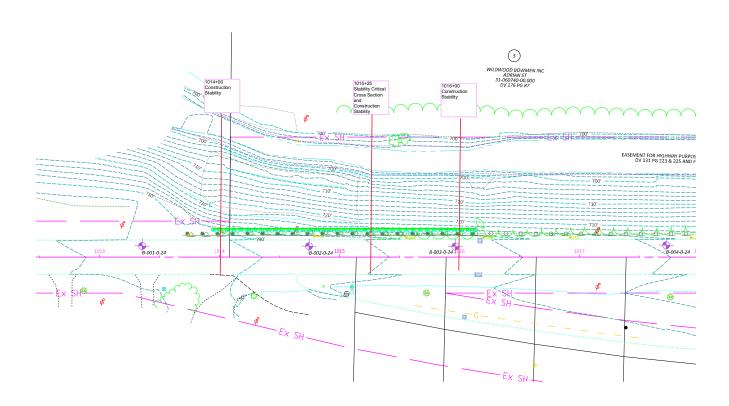
$$z_{30} = 30 \, ft$$

$$\gamma_{30} = \operatorname{atan}\left(\frac{9 \ ft}{z_{30}}\right) = 0.291$$

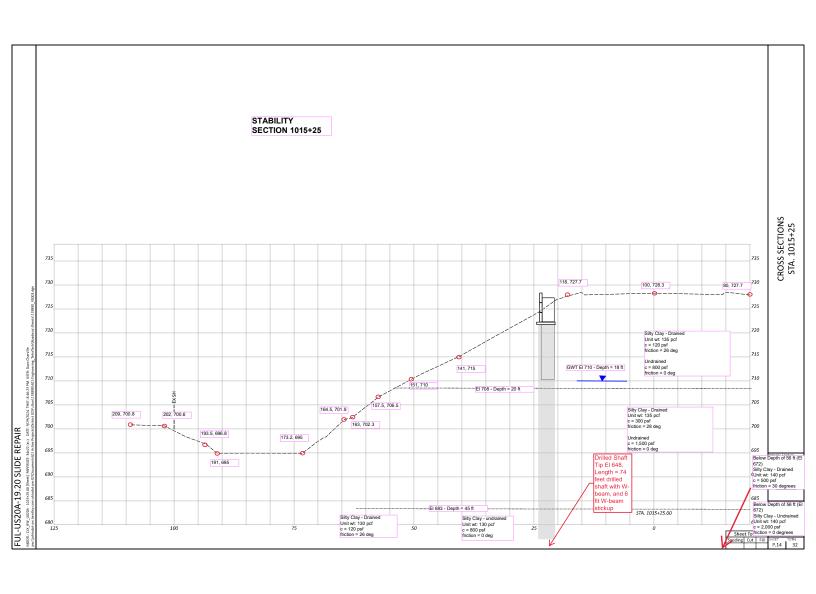
$$\omega_{30} \coloneqq \operatorname{atan}\left(\frac{64 \ ft}{z_{30}}\right) = 1.132$$
 $\alpha_{30} \coloneqq \omega_{30} - \gamma_{30} = 0.841$

$$\alpha_{30} \coloneqq \omega_{30} - \gamma_{30} = 0.841$$

$$\sigma_{z30} := \frac{q}{\pi} \cdot (\alpha_{30} + \sin(\alpha_{30}) \cdot \cos(\alpha_{30} + 2\gamma_{30})) = 75.6 \ psf$$

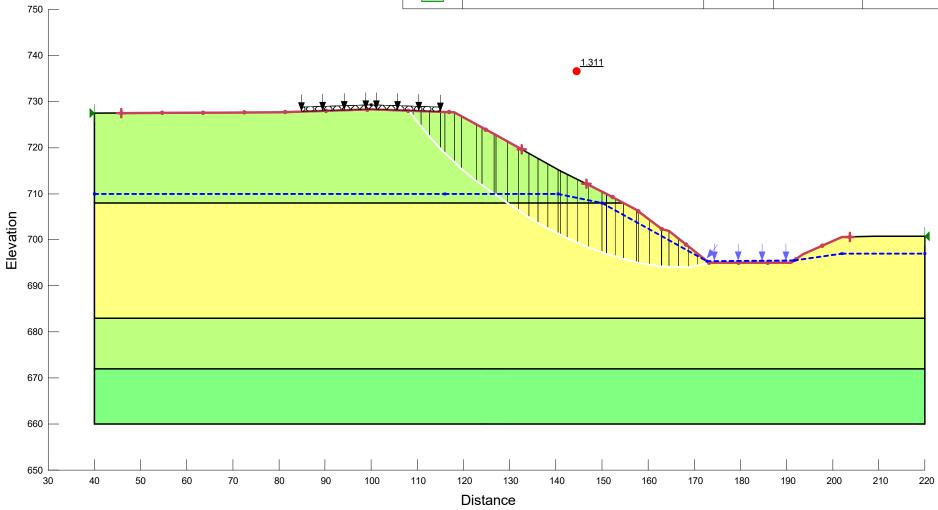

$$\sigma_{h30} \coloneqq \sigma_{z30} \cdot K_A = 26.5 \ \textit{psf}$$

$$z_{45} = 45 \, ft$$

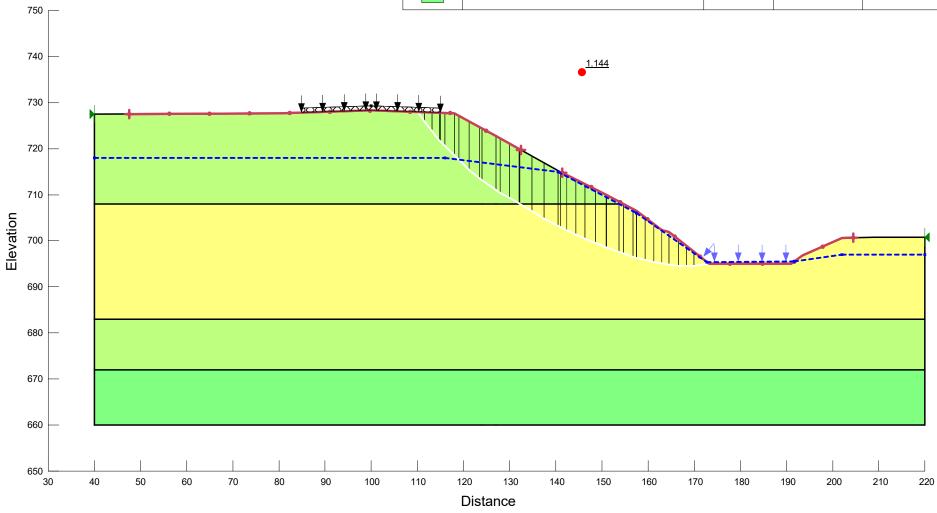

$$\alpha_{45} \coloneqq \omega_{45} - \gamma_{45} = 0.761$$

$$\sigma_{z45} := \frac{q}{\pi} \cdot (\alpha_{45} + \sin(\alpha_{45}) \cdot \cos(\alpha_{45} + 2 \gamma_{45})) = 82.7 \text{ psf}$$

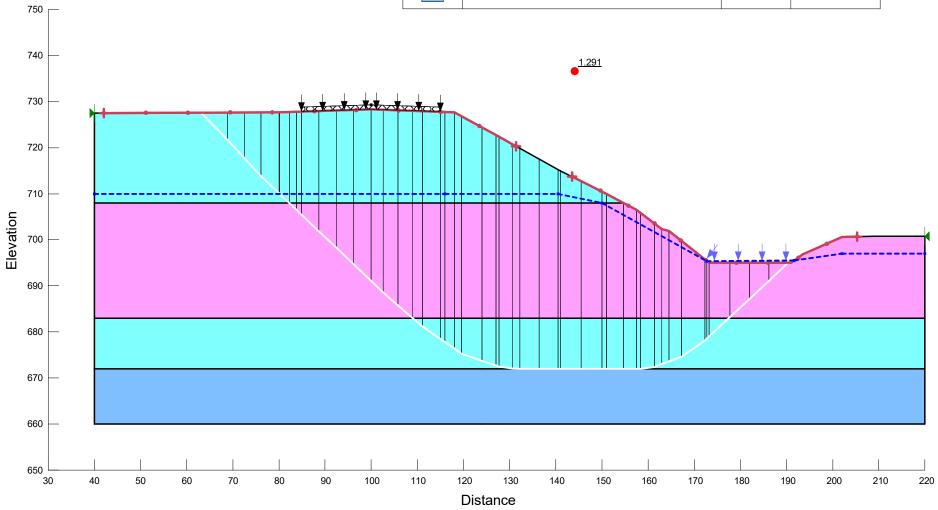
 $\sigma_{h45} \coloneqq \sigma_{z45} \cdot K_A = 28.9 \ \textit{psf}$ Maximum approximately 29 psf vertical for surcharge


STABILITY 1015+25 EXISTING

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Drained	130	120	26
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

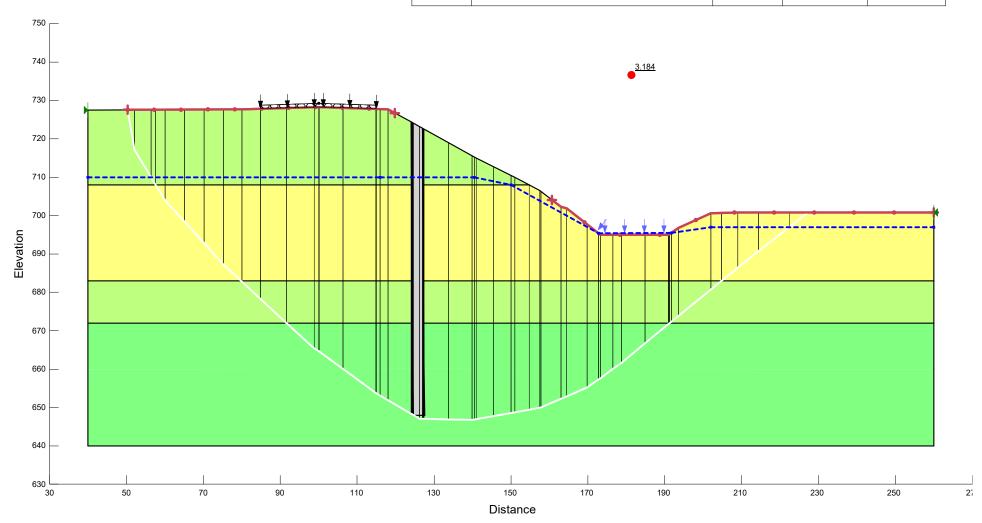

File Name: FUL-20A-19.20 1015+25 Existing.gsz Description: Existing Condition, drained

Surcharge (Unit Weight): 250 pcf

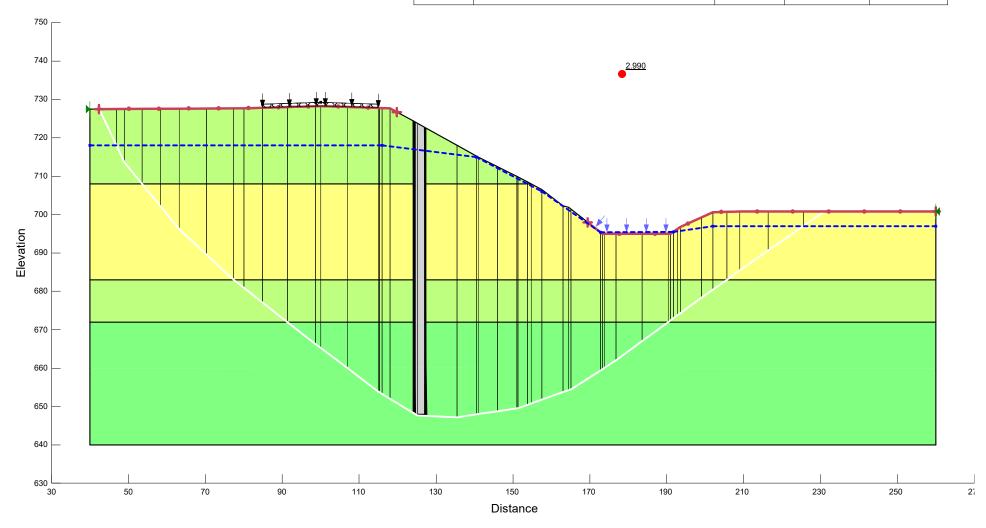

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Drained	130	120	26
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

File Name: FUL-20A-19.20 1015+25 Existing.gsz Description: Existing condition, RDD Surcharge (Unit Weight): 250 pcf

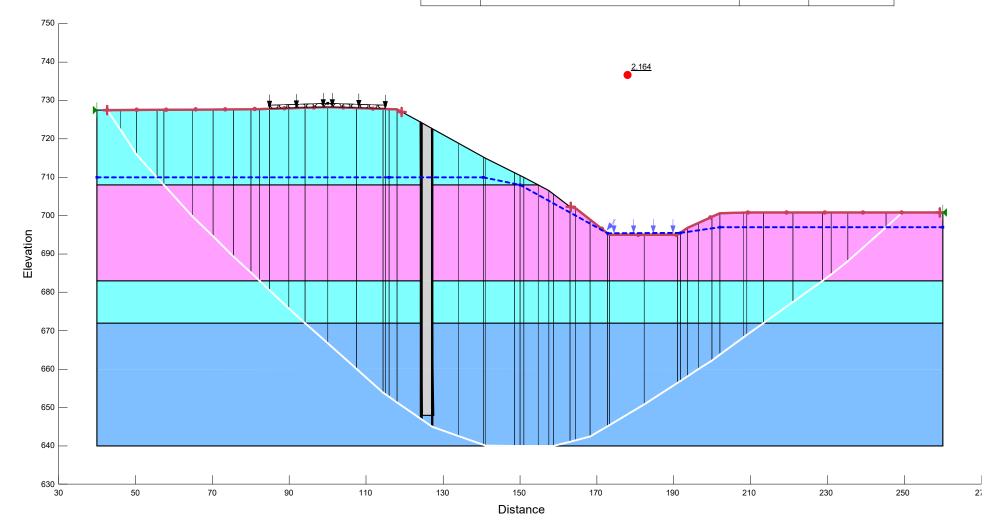
Color	Name	Unit Weight (pcf)	Total Cohesion (psf)
	MStiff Silty Clay - Undrained	130	800
	Stiff to VStiff Silty Clay - Undrained	135	1,500
	VStiff to Hard Silty Clay - Undrained	140	2,000


File Name: FUL-20A-19.20 1015+25 Existing.gsz Description: Existing condition, undrained Surcharge (Unit Weight): 250 pcf

STABILITY 1015+25 WITH DRILLED SHAFT WALL


Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Drilled Shaft	150		
	MStiff Silty Clay - Drained	130	120	26
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

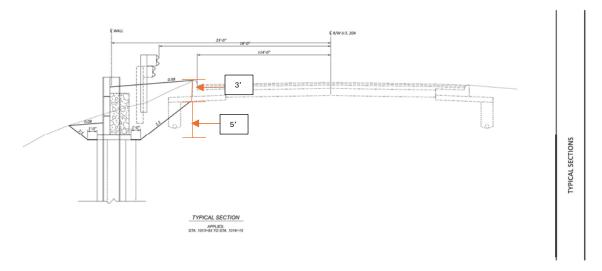
File Name: FUL-20A-19.20 1015+25 Existing.gsz Description: With DS wall, drained Surcharge (Unit Weight): 250 pcf


Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Drilled Shaft	150		
	MStiff Silty Clay - Drained	130	120	26
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

File Name: FUL-20A-19.20 1015+25 Existing.gsz Description: With DS wall, RDD Surcharge (Unit Weight): 250 pcf

Color	Name	Unit Weight (pcf)	Total Cohesion (psf)
	Drilled Shaft	150	
	MStiff Silty Clay - Undrained	130	800
	Stiff to VStiff Silty Clay - Undrained	135	1,500
	VStiff to Hard Silty Clay - Undrained	140	2,000

File Name: FUL-20A-19.20 1015+25 Existing.gsz Description: With DS wall, undrained Surcharge (Unit Weight): 250 pcf


STABILITY DURING CONSTRUCTION FOR DRILLED SHAFT WALL

1014+00

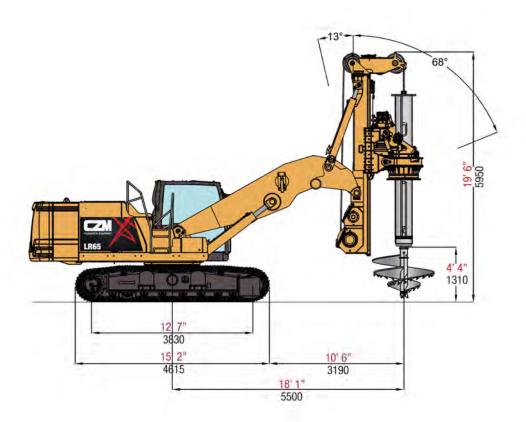
1015+25

1016+00

Typical Section

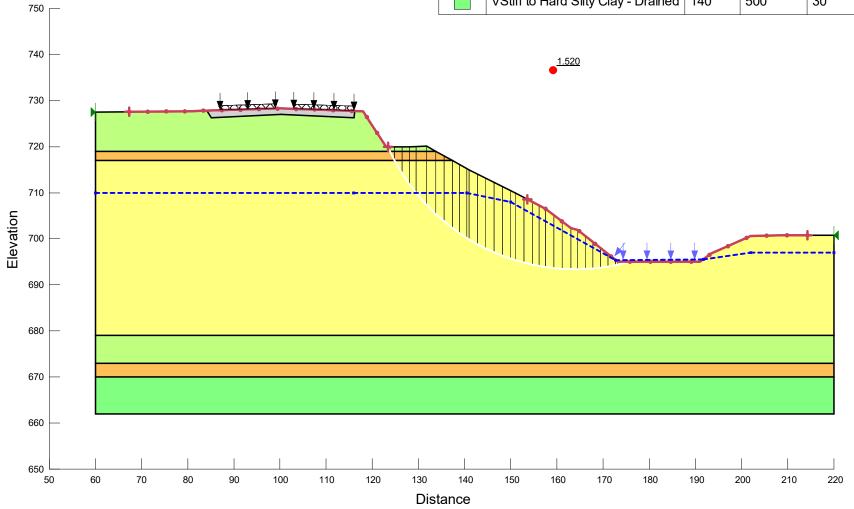
Drilled shaft rig, example dimensions, long-reach rig.

Extended (working) track width - 12'4"

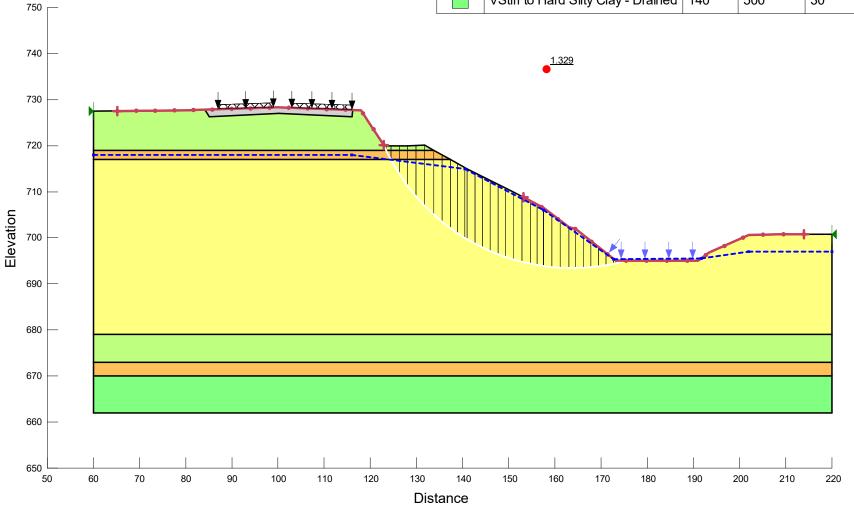

Track length – 12'7"

Weight - 80,000 lbs

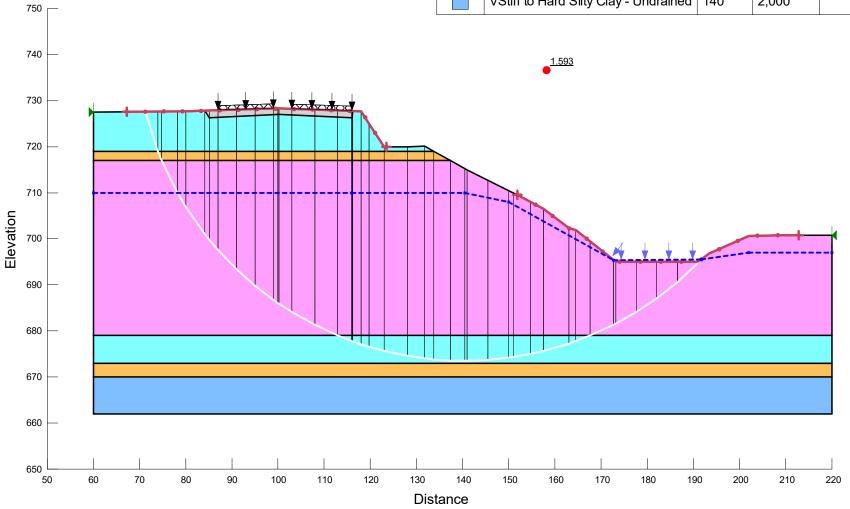
Reach – 10'6" from front of track to center of drilled shaft bit.


Distance from edge of pavement to drilled shaft approximately 9 feet.

Therefore, model as surcharge load 13' wide by 13' long, 1' from crest. Load intensity is 80 kips/(13') = 473 lb/ft – say 500 psf. Draw in SLOPE/W as 500 psf load, 1' high, 13' long from 1' off crest to 14' off crest into roadway.


File Name: FUL-20A-19.20 1014+00 Construction Exc rev.gsz Description: 1014+00 Construction, Drained Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf

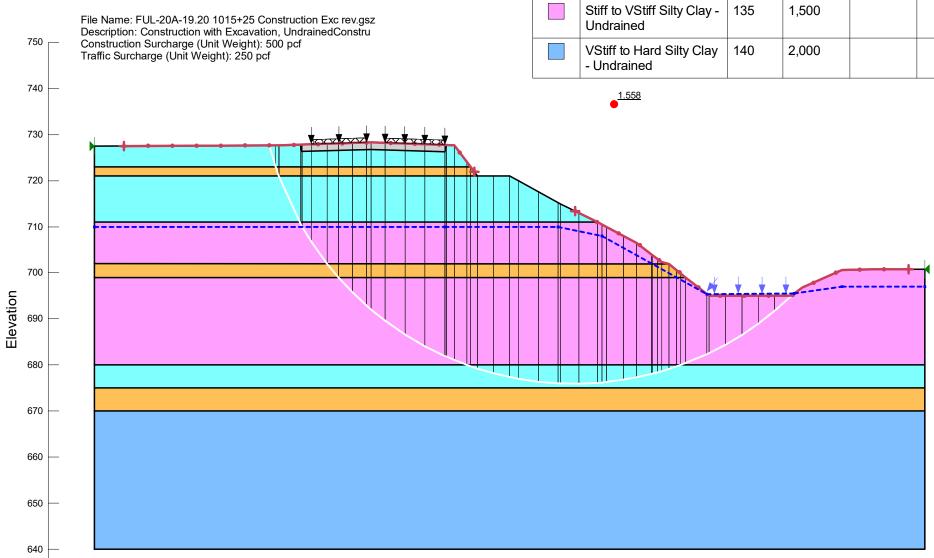
Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Drilled Shaft_Pavement	150	10,000	0
	MStiff Silty Clay - Drained	130	120	26
	Silty Clay and Sand	130	0	30
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30


File Name: FUL-20A-19.20 1014+00 Construction Exc rev.gsz Description: 1014+00 Construction, Rapid DD Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Drilled Shaft_Pavement	150	10,000	0
	MStiff Silty Clay - Drained	130	120	26
	Silty Clay and Sand	130	0	30
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

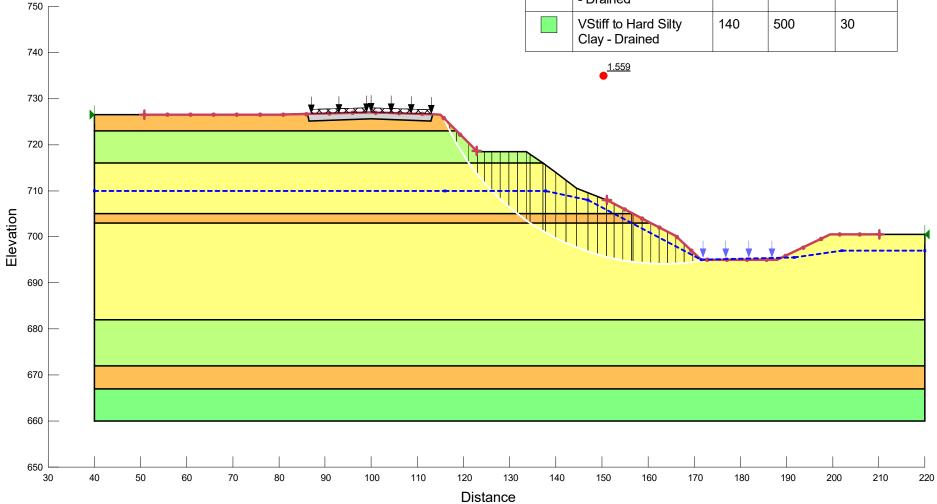
File Name: FUL-20A-19.20 1014+00 Construction Exc rev.gsz Description: 1014+00 Construction, Undrained Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf

Color	Name	Unit Weight (pcf)	Total Cohesion (psf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Drilled Shaft_Pavement	150		10,000	0
	MStiff Silty Clay - Undrained	130	800		
	Silty Clay and Sand	130		0	30
	Stiff to VStiff Silty Clay - Undrained	135	1,500		
	VStiff to Hard Silty Clay - Undrained	140	2,000		


Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Drained	130	120	26
	Pavement	150	10,000	0
	Silty Clay and Sand	130	0	30
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

File Name: FUL-20A-19.20 1015+25 Construction Exc rev.gsz Description: Construction with Excavation, drainedConstru Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf 1.349 Elevation

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Drained	130	120	26
	Pavement	150	10,000	0
	Silty Clay and Sand	130	0	30
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30


File Name: FUL-20A-19.20 1015+25 Construction Exc rev.gsz Description: Construction with Excavation, RDDConstru Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf 1.105 Elevation

Color	Name	Unit Weight (pcf)	Total Cohesion (psf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Undrained	130		800	0
	Pavement	150		10,000	0
	Silty Clay and Sand	130		0	30
	Stiff to VStiff Silty Clay - Undrained	135	1,500		
	VStiff to Hard Silty Clay - Undrained	140	2,000		

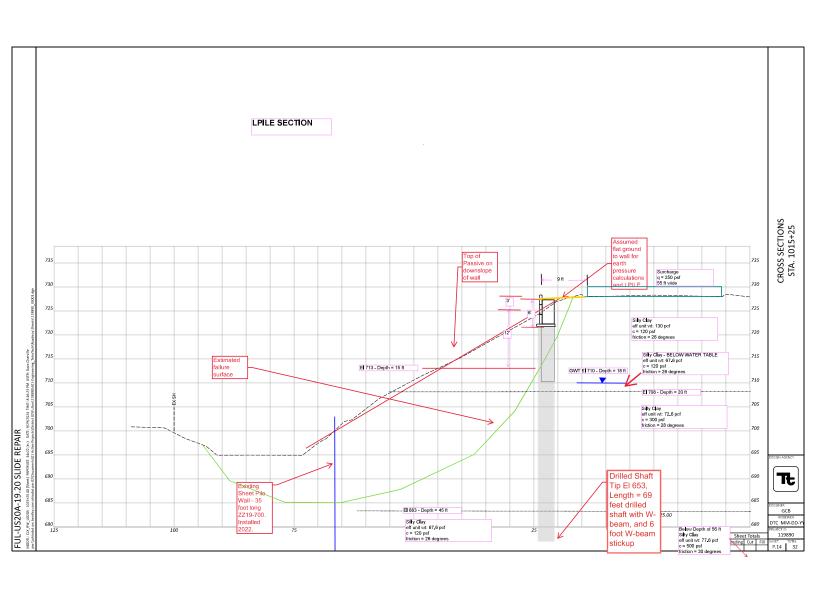
File Name: FUL-20A-19.20 1016+00 Construction Exc rev.gsz Description: Construction with Excavation, drained Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Drained	130	120	26
	Pavement	150	10,000	0
	Silty Clay and Sand	130	0	30
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

File Name: FUL-20A-19.20 1016+00 Construction Exc rev.gsz Description: Construction with Excavation, RDD Construction Surcharge (Unit Weight): 500 pcf Traffic Surcharge (Unit Weight): 250 pcf

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	MStiff Silty Clay - Drained	130	120	26
	Pavement	150	10,000	0
	Silty Clay and Sand	130	0	30
	Stiff to VStiff Silty Clay - Drained	135	300	28
	VStiff to Hard Silty Clay - Drained	140	500	30

Elevation Distance


File Name: FUL-20A-19.20 1016+00 Construction Exc rev.gsz Description: Construction with Excavation, Undrained Construction Surcharge (Unit Weight): 500 pcf

Construction Sur	marge	(Unit	vveigni):	วบ
Traffic Surcharge	(Unit V	Veigh	t): 250 p	cf

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)	Total Cohesion (psf)
	MStiff Silty Clay - Undrained	130			800
	Pavement	150	10,000	0	
	Silty Clay and Sand	130	0	30	
	Stiff to VStiff Silty Clay - Undrained	135			1,500
	VStiff to Hard Silty Clay - Undrained	140			2,000

1.536 Elevation Distance

LPILE 1015+25

FUL-20A-19.20

Active Pressures Used in Design Evaluations

STA 1015+25 Assumed Depth of Active Loading: 15 feet

7.55diffed Depth of Active Loading. 15 feet								
						STRE	NGTH	
Donath	SERVICE				g _p	g _p	g _p	
Depth					1.50	1.00	1.75	
	p _a	p _w	p _{ts}	Sp	g _p p _a	$g_p p_w$	$g_p p_{ts}$	S g _p p
(ft.)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.0	273.0	0.0	3.5	276.5	409.5	0.0	6.1	415.6
15.0	683.0	0.0	16.1	699.1	1024.5	0.0	28.2	1052.7

Spacing: 6 ft
Load below multiplied by spacing (trib area)

		, , ,					
Lpile Input							
Donath	Load Intensity						
Depth	SERVICE	STRENGTH					
(ft)	lb/in	lb/in					
0.0	0.0	0.0					
6.0	138.3	207.8					
15.0	349.6	526.3					

Since LPILE modeled without any soil to 15 feet, add active and traffic surcharge pressure from 15 ft depth to the distributed loads Water load not added because LPILE only looks at effective unit weights and there is no input for water level.

GW is approximately balanced on both sides of wall.

	p _a	p _w	p _{ts}	Sp	g _p p _a	$g_p p_w$	$g_p p_{ts}$	S g _p p
18.0	683.0	0.0	19.3	702.3	1024.5	0.0	33.8	1058.3
30.0	683.0	0	25.1	708.1	1024.5	0.0	43.9	1068.4
45.0	683.0	0	29.0	712.0	1024.5	0.0	50.8	1075.3
80.0	683.0	0	22.5	705.5	1024.5	0.0	39.4	1063.9

SERVICE	STRENGTH
351.2	529.1
354.1	534.2
356.0	537.6
352.8	531.9

SUMMARY OF RESULTS FOR LPILE EVALUATIONS

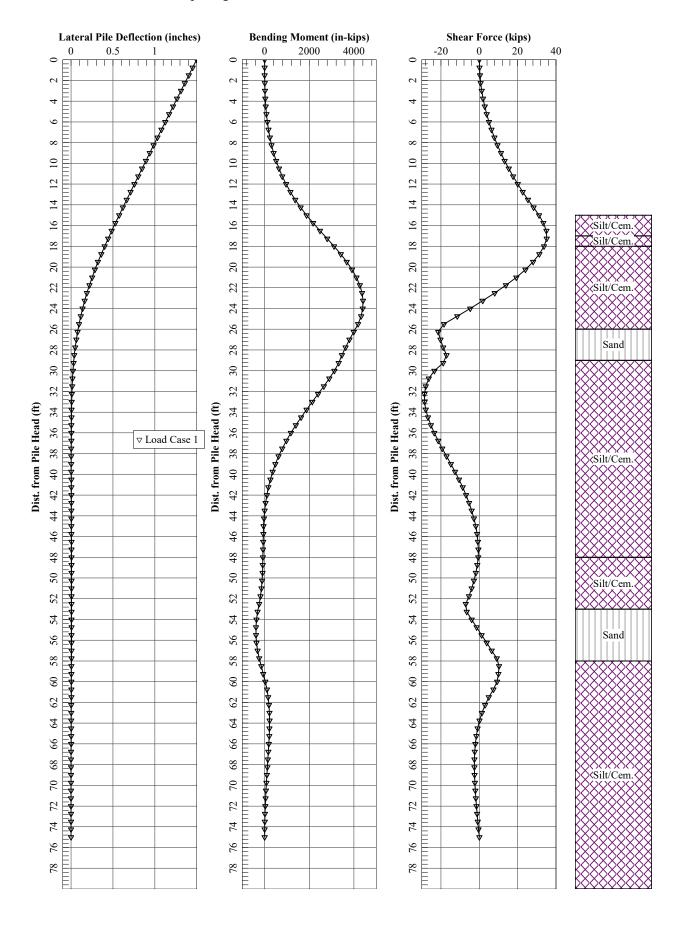
Client: ODOT Project No.: WTR-100-T44324

Project: FUL-20A-19.20 Comp: BKL Check: STA

Subject: Summary of LPile Results Date: 4/17/2025

ROAD-SIDE WALL

RESULTS OF EVALUATIONS


STA 1015+25 W24x94

Depth of Active Loading = 15 ft Shaft Dia. (in.)= 36.0 Pile Spacing = 6 ft

	M _u (in-kips)	V _u - peak (kips)	d (in) - top
SERVICE	4405	35.1	1.5
STRENGTH	8091	71.3	3.5

Section Properties

1.0 Mn, in-k 1.0 Vn, k

LPile for Windows, Version 2022-12.009

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2022 by Ensoft, Inc.
All Rights Reserved

This copy of LPile is being used by:

Tetra Tech Jacksonville

Serial Number of Security Device: 157693794

This copy of LPile is licensed for exclusive use by:

Tetra Tech, GROUP & LPILE, Global Licenses

Use of this software by employees of Tetra Tech other than those of the office site in GROUP & LPILE, Global Licenses is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:

 $\label{thm:lawrence-one-projects-ful-20A-19.20-05 Wall Design Not Revised Analysis for Final Report $$ $$ (Analysis for Final Report) $$ (Analysis for Fi$

Name of input data file:

FUL20A_3ft_6ft_W24x94_Service.lp12d

Name of output report file:

FUL20A_3ft_6ft_W24x94_Service.lp12o

Name of plot output file:

FUL20A_3ft_6ft_W24x94_Service.lp12p

Name of runtime message file:

FUL20A_3ft_6ft_W24x94_Service.lp12r

Date and Time of Analysis Date: April 17, 2025 Time: 15:51:28 Problem Title Project Name: FUL-20A-19.20 Job Number: 100-WTR-T44324 Client: Ohio DOT Engineer: B Lawrence Description: Drilled Shaft Wall, Service Loads Program Options and Settings Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 - Deflection tolerance for convergence = 1.0000E-05 in 100.0000 in - Maximum allowable deflection = - Number of pile increments 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Compute push-over analysis of pile for specified deflections
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural	Properties	and	Geometry

Number of pile sections defined = 2
Total length of pile = 75.000 ft
Depth of ground surface below top of pile = 15.0000 ft

Pile diameters used for p-y curve computations are defined using 4 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	9.0700
2	6.000	9.0700
3	6.000	36.0000
4	75.000	36.0000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Flange Width Section Depth Flange Thickness Web Thickness Section Area Moment of Inertia Elastic Modulus Pile Section No. 2:	= Strong H-Pile = 6.000000 ft = 9.070000 in = 24.300000 in = 0.875000 in = 0.515000 in = 27.485750 sq. in = 2671. in^4 = 29000000. psi
Section 2 is a drilled shaft with casing and	AISC section core/insert
Length of section	= 69.000000 ft
Section Diameter	= 36.000000 in
Core/Insert AISC Section Type	= W
Core/Insert AISC Section Name	= W24X94
Control Data for Pushove	 r Analysis
Pile-head fixity condition	= free and fixed head
Number of pushover points to generate	= 20
Pushover point distribution method	= logarithmic
Minimum pushover pile-head deflection	= 0.0001000 in
Maximum pushover pile-head deflection	= 10.000000 in
Axial Thrust Force Stop Analyis if Second Hinge Developed (Only for	= 0.0000 lbs r Elastoplastic Moment-Curvature)
Soil and Rock Layering Ir	
Joil and Nock Layering in	II OI III CIOII

The soil profile is modelled using 8 layers

Layer 1 is silt/cemented soil

```
Distance from top of pile to top of layer = 15.000000 ft
Distance from top of pile to bottom of layer = 17.000000 ft
Effective unit weight at top of layer = 130.000000 pcf
Effective unit weight at bottom of layer = 130.000000 pcf
Cohesion at top of layer = 120.000000 psf
Cohesion at bottom of layer = 120.000000 psf
Friction angle at top of layer = 26.000000 deg.
Friction angle at bottom of layer = 26.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 2 is silt/cemented soil

```
= 17.000000 ft
Distance from top of pile to top of layer
Distance from top of pile to bottom of layer Effective unit weight at top of layer
                                                       = 18.000000 ft
                                                       = 130.000000 pcf
Effective unit weight at bottom of layer =

Cohesion at top of layer =
                                                             130.000000 pcf
                                                             300.000000 psf
                                                   - 300.000000 psf
= 28.000000 deg.
= 28.00000
Cohesion at bottom of layer
Friction angle at top of layer
Friction angle at bottom of layer
Subgrade k at top of layer
                                                       =
                                                                  0.0000 pci
Subgrade k at bottom of layer
                                                                  0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is silt/cemented soil

```
Distance from top of pile to top of layer
                                                       18.000000 ft
Distance from top of pile to bottom of layer = 26.000000 ft
Effective unit weight at top of layer = 72.600000 pc
                                                   = 72.600000 pcf
Effective unit weight at bottom of layer
                                                  =
                                                         72.600000 pcf
Cohesion at top of layer
                                                   = 300.000000 psf
Cohesion at bottom of layer
                                                   = 300.000000 psf
Friction angle at top of layer
                                                   = 28.000000 deg.
Friction angle at bottom of layer
                                                          28.000000 deg.
Subgrade k at top of layer
                                                          0.0000 pci
Subgrade k at bottom of layer
                                                             0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 4 is sand, p-y criteria by Reese et al., 1974

```
Distance from top of pile to top of layer = 26.000000 ft
Distance from top of pile to bottom of layer = 29.000000 ft
Effective unit weight at top of layer = 67.600000 pcf
Effective unit weight at bottom of layer = 67.600000 pcf
Friction angle at top of layer = 30.000000 deg.
Friction angle at bottom of layer = 30.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for subgrade k will be computed for this layer.

Layer 5 is silt/cemented soil

```
Distance from top of pile to top of layer = 29.000000 ft
Distance from top of pile to bottom of layer = 48.000000 ft
Effective unit weight at top of layer = 72.600000 pcf
Effective unit weight at bottom of layer = 72.600000 pcf
Cohesion at top of layer = 300.000000 psf
Cohesion at bottom of layer = 300.000000 psf
Friction angle at top of layer = 28.000000 deg.
Friction angle at bottom of layer = 28.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 6 is silt/cemented soil

```
Distance from top of pile to top of layer = 48.000000 ft
Distance from top of pile to bottom of layer = 53.000000 ft
Effective unit weight at top of layer = 67.600000 pcf
Effective unit weight at bottom of layer = 67.600000 pcf
Cohesion at top of layer = 120.000000 psf
Cohesion at bottom of layer = 120.000000 psf
Friction angle at top of layer = 26.000000 deg.
Friction angle at bottom of layer = 26.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 7 is sand, p-y criteria by Reese et al., 1974

```
Distance from top of pile to top of layer = 53.000000 ft
Distance from top of pile to bottom of layer = 58.000000 ft
Effective unit weight at top of layer = 67.600000 pcf
Effective unit weight at bottom of layer = 67.600000 pcf
```

Friction angle at top of layer	=	30.000000 deg.
Friction angle at bottom of layer	=	30.000000 deg.
Subgrade k at top of layer	=	0.0000 pci
Subgrade k at bottom of layer	=	0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 8 is silt/cemented soil

Distance from top of pile to top of layer	=	58.000000	ft
Distance from top of pile to bottom of layer	=	80.000000	ft
Effective unit weight at top of layer	=	77.600000	pcf
Effective unit weight at bottom of layer	=	77.600000	pcf
Cohesion at top of layer	=	500.000000	psf
Cohesion at bottom of layer	=	500.000000	psf
Friction angle at top of layer	=	30.000000	deg.
Friction angle at bottom of layer	=	30.000000	deg.
Subgrade k at top of layer	=	0.0000	pci
Subgrade k at bottom of layer	=	0.0000	pci

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

Summary	of	Input	Soil	Properties

Layer	Soil Type	Layer	Effective	Cohesion	Angle of
Num.	Name	Depth	Unit Wt.		Friction
kpy pci	(p-y Curve Type)	ft	pcf	psf	deg.
1 default	Silt/	15.0000	130.0000	120.0000	26.0000
	Cemented Soil	17.0000	130.0000	120.0000	26.0000
default 2 default	Silt/	17.0000	130.0000	300.0000	28.0000
derdare	Cemented Soil	18.0000	130.0000	300.0000	28.0000
default 3 default	Silt/	18.0000	72.6000	300.0000	28.0000
	Cemented Soil	26.0000	72.6000	300.0000	28.0000

default 4 default	Sand	26.0000	67.6000		30.0000
	(Reese, et al.)	29.0000	67.6000		30.0000
default 5 default	Silt/	29.0000	72.6000	300.0000	28.0000
default	Cemented Soil	48.0000	72.6000	300.0000	28.0000
6 default	Silt/	48.0000	67.6000	120.0000	26.0000
default	Cemented Soil	53.0000	67.6000	120.0000	26.0000
7 default	Sand	53.0000	67.6000		30.0000
default	(Reese, et al.)	58.0000	67.6000		30.0000
8 default	Silt/	58.0000	77.6000	500.0000	30.0000
default	Cemented Soil	80.0000	77.6000	500.0000	30.0000

Modification Factors for p-y Curves

Distribution of p-y modifiers with depth defined using 3 points

Point	Depth X	p-mult	y-mult
No.	ft		
1	15.000	0.6400	1.0000
2	18.000	0.6400	1.0000
3	80.000	0.8100	1.0000

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading for Individual Load Cases

Distributed lateral load intensity for Load Case 1 defined using 7 points

Point	Depth X	Dist. Load
No.	ft	lb/in
1	0.000	1.000
2	6.000	138.300
3	15.000	349.600
4	18.000	351.200
5	30.000	354.100
6	45.000	356.000
7	60.000	356.000

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load		Condition		Condition	Axial Thrust
Compute No. vs. Pilo	Type		n Analysis 1		2	Force, lbs
1	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.0000000
Yes			Yes			

V = shear force applied normal to pile axis

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Number of Pile Sections Analyzed = 2

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Pile Section No. 2:

Dimensions and Properties of Drilled Shaft (Bored Pile) with Casing and AISC Strong Axis Core/Insert:

```
Length of Section
                                                        = 69.000000 ft
Outside Diameter of Casing
                                                        = 36.000000 in
Casing Wall Thickness
                                                               0.0000 in
Moment of Inertia of Steel Casing
                                                                0.0000 in^4
                                                       =
                                                       = 9.070000 in
Width Flange of Core/Insert
                                                        = 24.300000 in
Depth of Core/Insert
Flange Thickness of Core/Insert
                                                            0.875000 in
                                                       =
Web Thickness of Core/Insert
                                                             0.515000 in
Moment of Inertia of Steel Core/Insert
                                                       =
                                                                2700. in^4
Yield Stress of Casing
                                                                50000. psi
                                                       =
                                                       = 29000000. psi
Elastic Modulus of Casing
Yield Stress of Core/Insert
                                                       = 50000. psi
= 29000000. psi
Elastic Modulus of Core/Insert
Number of Reinforcing Bars
                                                               0 bars
                                                       =
Gross Area of Pile
                                                        =
                                                                 1018. sq. in.
Area of Concrete
                                                       = 990.390270 sq. in.
                                                       =
Cross-sectional Area of Steel Casing
                                                            0.0000 sq. in.
Cross-sectional Area of Steel Core/Insert = 27.700000 sq. in.

Area of All Steel (Casing, Core/Insert, and Bars) = 27.485750 sq. in.
Area Ratio of All Steel to Gross Area
                                                                  2.70 percent
```

Note that the core is assumed to be void of concrete.

Axial Structural Capacities:

```
Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As = 4751.598 kips

Tensile Load for Cracking of Concrete = -504.501 kips

Nominal Axial Tensile Capacity = -1385.000 kips
```

Concrete Properties:

Modulus of Elasticity of Concrete = 3604997. psi
Modulus of Rupture of Concrete = -474.34165 psi
Compression Strain at Peak Stress = 0.001886
Tensile Strain at Fracture of Concrete = -0.0001154
Maximum Coarse Aggregate Size = 0.750000 in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	kips
1	0.000

Definitions of Run Messages and Notes:

- C = concrete in section has cracked in tension.
- Y = stress in reinforcing steel has reached yield stress.
- T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318-14, Section 21.2.3.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 0.000 kips

Bending Max Conc	Bending Max Steel	Bending Max Casing	Depth to Max Core	Max Comp Run	Max Tens
Curvature	Moment	Stiffness	N Axis	Strain	Strain
Stress	Stress	Stress	Stress	Msg	: n /: n
rad/in. ksi	in-kip ksi	kip-in2 ksi	in ksi	in/in	in/in
6.25000E-07	259.4623491	415139759.	18.0000000	0.00001125	-0.00001125
0.0470966	0.00000	0.00000	0.2185875	0.00001125	-0.00001123
0.00000125	518.0654643	414452371.	18.0000000	0.00002250	-0.00002250
0.0939143	0.00000	0.00000	0.4371750		
0.00000188	775.8093457	413764984.	18.0000000	0.00003375	-0.00003375
0.1404531	0.00000	0.00000	0.6557625		
0.00000250	1033.	413077597.	18.0000000	0.00004500	-0.00004500
0.1867130	0.00000	0.00000	0.8743500		

0.00000313	1289.	412390210.	18.0000000	0.00005625	-0.00005625
0.2326940	0.00000	0.00000	1.0929375		
0.00000375	1544.	411702823.	18.0000000	0.00006750	-0.00006750
0.2783960	0.00000	0.00000	1.3115250		
0.00000438	1798.	411015436.	18.0000000	0.00007875	-0.00007875
0.3238192	0.00000	0.00000	1.5301125		
0.00000500	2052.	410328049.	18.0000000	0.00009000	-0.00009000
0.3689635	0.00000	0.00000	1.7487000		
0.00000563	2304.	409640662.	18.0000000	0.0001012	-0.000101
0.4138288	0.00000	0.00000	1.9672875		
0.00000625	2556.	408953275.	18.0000000	0.0001125	-0.000113
0.4584153	0.00000	0.00000	2.1858750		
0.00000688	2556.	371775704.	11.3948312	0.00007834	-0.000169
0.3203196	0.00000	0.00000	-3.721368 C		
0.00000750	2556.	340794396.	11.3979043	0.00008548	-0.000185
0.3488701	0.00000	0.00000	-4.059006 C		
0.00000813	2556.	314579442.	11.4009832	0.00009263	-0.000200
0.3773252	0.00000	0.00000	-4.396531 C		
0.00000875	2556.	292109482.	11.4040678	0.00009979	-0.000215
0.4056846	0.00000	0.00000	-4.733943 C		
0.00000938	2556.	272635516.	11.4071580	0.0001069	-0.000231
0.4339482	0.00000	0.00000	-5.071241 C		
0.00001000	2556.	255595797.	11.4102541	0.0001141	-0.000246
0.4621159	0.00000	0.00000	-5.408426 C		
0.00001063	2556.	240560750.	11.4133558	0.0001213	-0.000261
0.4901875	0.00000	0.00000	-5.745497 C		
0.00001125	2556.	227196264.	11.4164634	0.0001284	-0.000277
0.5181630	0.00000	0.00000	-6.082454 C		
0.00001188	2556.	215238566.	11.4195768	0.0001356	-0.000292
0.5460420	0.00000	0.00000	-6.419296 C		
0.00001250	2556.	204476637.	11.4226960	0.0001428	-0.000307
0.5738246	0.00000	0.00000	-6.756023 C		
0.00001313	2556.	194739655.	11.4258210	0.0001500	-0.000323
0.6015105	0.00000	0.00000	-7.092634 C		
0.00001375	2556.	185887852.	11.4289520	0.0001571	-0.000338
0.6290996	0.00000	0.00000	-7.429130 C		
0.00001438	2556.	177805772.	11.4320888	0.0001643	-0.000353
0.6565918	0.00000	0.00000	-7.765510 C		
0.00001500	2556.	170397198.	11.4352315	0.0001715	-0.000368
0.6839869	0.00000	0.00000	-8.101774 C		
0.00001563	2556.	163581310.	11.4383802	0.0001787	-0.000384
0.7112848	0.00000	0.00000	-8.437921 C		
0.00001625	2556.	157289721.	11.4415349	0.0001859	-0.000399
0.7384853	0.00000	0.00000	-8.773952 C		
0.00001688	2556.	151464176.	11.4446955	0.0001931	-0.000414
0.7655882	0.00000	0.00000	-9.109865 C		
0.00001750	2565.	146578149.	11.4478622	0.0002003	-0.000430
0.7925935	0.00000	0.00000	-9.445660 C		
0.00001813	2656.	146530823.	11.4510349	0.0002076	-0.000445
0.8195010	0.00000	0.00000	-9.781337 C		
			: -		

0 00001075	2747	146402420	11 4542126	0 0000140	0.000460
0.00001875	2747.	146483420.	11.4542136	0.0002148	-0.000460
0.8463105	0.00000	0.00000	-10.116896 C	0 0001110	0.000476
0.00001938	2837.	146435939.	11.4573985	0.0002220	-0.000476
0.8730218	0.00000	0.00000	-10.452337 C	0 0000000	0.000404
0.00002000	2928.	146388379.	11.4605894	0.0002292	-0.000491
0.8996349	0.00000	0.00000	-10.787658 C	0.0000064	0.000506
0.00002063	3018.	146340740.	11.4637865	0.0002364	-0.000506
0.9261495	0.00000	0.00000	-11.122860 C		
0.00002125	3109.	146293023.	11.4669897	0.0002437	-0.000521
0.9525655	0.00000	0.00000	-11.457943 C		
0.00002188	3199.	146245226.	11.4701991	0.0002509	-0.000537
0.9788828	0.00000	0.00000	-11.792905 C		
0.00002250	3289.	146197349.	11.4734147	0.0002582	-0.000552
1.0051012	0.00000	0.00000	-12.127747 C		
0.00002313	3380.	146149393.	11.4766365	0.0002654	-0.000567
1.0312206	0.00000	0.00000	-12.462468 C		
0.00002375	3470.	146101356.	11.4798646	0.0002726	-0.000582
1.0572407	0.00000	0.00000	-12.797068 C		
0.00002438	3560.	146053239.	11.4830990	0.0002799	-0.000598
1.0831615	0.00000	0.00000	-13.131547 C		
0.00002563	3740.	145956762.	11.4895866	0.0002944	-0.000628
1.1347044	0.00000	0.00000	-13.800138 C		
0.00002688	3920.	145859959.	11.4960997	0.0003090	-0.000659
1.1858479	0.00000	0.00000	-14.468240 C		
0.00002813	4100.	145762829.	11.5026384	0.0003235	-0.000689
1.2365908	0.00000	0.00000	-15.135848 C		
0.00002938	4279.	145665368.	11.5092029	0.0003381	-0.000719
1.2869318	0.00000	0.00000	-15.802960 C		
0.00003063	4458.	145567575.	11.5157934	0.0003527	-0.000750
1.3368696	0.00000	0.00000	-16.469573 C		
0.00003188	4637.	145469446.	11.5224101	0.0003673	-0.000780
1.3864029	0.00000	0.00000	-17.135685 C		
0.00003313	4815.	145370979.	11.5290534	0.0003819	-0.000811
1.4355303	0.00000	0.00000	-17.801291 C		
0.00003438	4994.	145272172.	11.5357232	0.0003965	-0.000841
1.4842506	0.00000	0.00000	-18.466388 C		
0.00003563	5172.	145173022.	11.5424200	0.0004112	-0.000871
1.5325623	0.00000	0.00000	-19.130975 C		
0.00003688	5350.	145073526.	11.5491439	0.0004259	-0.000902
1.5804642	0.00000	0.00000	-19.795047 C		
0.00003813	5527.	144973682.	11.5558951	0.0004406	-0.000932
1.6279549	0.00000	0.00000	-20.458601 C		
0.00003938	5704.	144873487.	11.5626739	0.0004553	-0.000962
1.6750329	0.00000	0.00000	-21.121634 C		
0.00004063	5881.	144772938.	11.5694804	0.0004700	-0.000992
1.7216969	0.00000	0.00000	-21.784143 C		· · · · · ·
0.00004188	6058.	144672033.	11.5763150	0.0004848	-0.001023
1.7679455	0.00000	0.00000	-22.446125 C		- - - -
0.00004313	6235.	144570768.	11.5831779	0.0004995	-0.001053
1.8137773	0.00000	0.00000	-23.107576 C	- -	
,,	2.0000				

0.00004438	6411.	144469142.	11.5900692	0.0005143	-0.001083
1.8591907	0.00000	0.00000	-23.768492 C		
0.00004563	6587.	144367151.	11.5969893	0.0005291	-0.001113
1.9041845	0.00000	0.00000	-24.428871 C		
0.00004688	6762.	144264791.	11.6039384	0.0005439	-0.001144
1.9487570	0.00000	0.00000	-25.088709 C		
0.00004813	6938.	144162062.	11.6109167	0.0005588	-0.001174
1.9929069	0.00000	0.00000	-25.748002 C		
0.00004938	7113.	144058958.	11.6179246	0.0005736	-0.001204
2.0366327	0.00000	0.00000	-26.406747 C		
0.00005063	7288.	143955478.	11.6249621	0.0005885	-0.001234
2.0799328	0.00000	0.00000	-27.064940 C		
0.00005188	7462.	143851618.	11.6320297	0.0006034	-0.001264
2.1228057	0.00000	0.00000	-27.722578 C		
0.00005313	7637.	143747376.	11.6391275	0.0006183	-0.001294
2.1652500	0.00000	0.00000	-28.379657 C		
0.00005438	7811.	143642747.	11.6462559	0.0006333	-0.001324
2.2072640	0.00000	0.00000	-29.036173 C		
0.00005563	7984.	143537729.	11.6534150	0.0006482	-0.001354
2.2488461	0.00000	0.00000	-29.692122 C		
0.00005688	8158.	143432319.	11.6606052	0.0006632	-0.001384
2.2899949	0.00000	0.00000	-30.347502 C		
0.00005813	8331.	143326514.	11.6678268	0.0006782	-0.001414
2.3307087	0.00000	0.00000	-31.002307 C		
0.00005938	8504.	143220310.	11.6750800	0.0006932	-0.001444
2.3709859	0.00000	0.00000	-31.656534 C		
0.00006063	8676.	143113704.	11.6823651	0.0007082	-0.001474
2.4108249	0.00000	0.00000	-32.310179 C		
0.00006188	8849.	143006692.	11.6896824	0.0007233	-0.001504
2.4502241	0.00000	0.00000	-32.963238 C		
0.00006313	9021.	142899271.	11.6970322	0.0007384	-0.001534
2.4891817	0.00000	0.00000	-33.615708 C		
0.00006438	9192.	142791522.	11.7042905	0.0007535	-0.001564
2.5276755	0.00000	0.00000	-34.267815 C		
0.00006563	9364.	142683423.	11.7114967	0.0007686	-0.001594
2.5657100	0.00000	0.00000	-34.919495 C		
0.00006688	9535.	142574918.	11.7187344	0.0007837	-0.001624
2.6032973	0.00000	0.00000	-35.570592 C		
0.00006813	9705.	142466003.	11.7260039	0.0007988	-0.001654
2.6404355	0.00000	0.00000	-36.221101 C		
0.00006938	9876.	142356674.	11.7333056	0.0008140	-0.001684
2.6771231	0.00000	0.00000	-36.871018 C		
0.00007063	10046.	142246929.	11.7406396	0.0008292	-0.001713
2.7133583	0.00000	0.00000	-37.520340 C		
0.00007188	10216.	142136763.	11.7480064	0.0008444	-0.001743
2.7491394	0.00000	0.00000	-38.169061 C		
0.00007313	10386.	142026173.	11.7554062	0.0008596	-0.001773
2.7844646	0.00000	0.00000	-38.817179 C		
0.00007438	10555.	141915155.	11.7628393	0.0008749	-0.001803
2.8193322	0.00000	0.00000	-39.464688 C		

0.00007938	11229.	141466733.	11.7929112	0.0009361	-0.001921
2.9541900	0.00000	0.00000	-42.048555 C		
0.00008438	11898.	141011164.	11.8235419	0.0009976	-0.002040
3.0815791	0.00000	0.00000	-44.622333 C		
0.00008938	12561.	140548189.	11.8547531	0.0010595	-0.002158
3.2013767	0.00000	0.00000	-47.185724 C		
0.00009438	13220.	140077537.	11.8865679	0.0011218	-0.002276
3.3134545	0.00000	0.00000	-49.738412 C		
0.00009938	13670.	137558586.	11.8489463	0.0011775	-0.002400
3.4063567	0.00000	0.00000	-50.000000 CY		
0.0001044	13913.	133297940.	11.7487715	0.0012263	-0.002531
3.4820231	0.00000	0.00000	-50.000000 CY		
0.0001094	14130.	129187288.	11.6495435	0.0012742	-0.002663
3.5512579	0.00000	0.00000	-50.000000 CY		
0.0001144	14325.	125247621.	11.5520683	0.0013213	-0.002796
3.6144861	0.00000	0.00000	-50.000000 CY		
0.0001194	14502.	121484452.	11.4582374	0.0013678	-0.002930
3.6722605	0.00000	0.00000	-50.000000 CY		
0.0001244	14663.	117896074.	11.3681425	0.0014139	-0.003064
3.7248207	0.00000	0.00000	-50.000000 CY		
0.0001294	14810.	114472841.	11.2795224	0.0014593	-0.003198
3.7720717	0.00000	0.00000	-50.000000 CY		
0.0001344	14944.	111207642.	11.1934120	0.0015041	-0.003333
3.8143740	0.00000	0.00000	-50.000000 CY		
0.0001394	15066.	108099638.	11.1110311	0.0015486	-0.003469
3.8520596	0.00000	0.00000	-50.000000 CY		
0.0001444	15180.	105140552.	11.0322650	0.0015928	-0.003605
3.8852571	0.00000	0.00000	-50.000000 CY		
0.0001494	15284.	102322946.	10.9561859	0.0016366	-0.003741
3.9140022	0.00000	0.00000	-50.000000 CY		
0.0001544	15380.	99627242.	10.8809311	0.0016797	-0.003878
3.9382765	0.00000	0.00000	-50.000000 CY		
0.0001594	15469.	97058787.	10.8091013	0.0017227	-0.004015
3.9584453	0.00000	0.00000	-50.000000 CY		
0.0001644	15551.	94609180.	10.7405055	0.0017655	-0.004152
3.9745741	0.00000	0.00000	-50.000000 CY		
0.0001694	15628.	92270875.	10.6749807	0.0018081	-0.004289
3.9867206	0.00000	0.00000	-50.000000 CY		
0.0001744	15700.	90036212.	10.6120192	0.0018505	-0.004427
3.9949251	0.00000	0.00000	-50.000000 CY		
0.0001794	15766.	87893958.	10.5492972	0.0018923	-0.004565
3.9992237	0.00000	0.00000	-50.000000 CY		
0.0001844	15828.	85844132.	10.4893810	0.0019340	-0.004704
3.9969772	0.00000	0.00000	-50.000000 CY		
0.0001894	15885.	83881530.	10.4321928	0.0019756	-0.004842
3.9998118	0.00000	0.00000	-50.000000 CY		
0.0001944	15939.	82001155.	10.3777011	0.0020172	-0.004980
3.9978193	0.00000	0.00000	-50.000000 CY		
0.0001994	15989.	80195264.	10.3253312	0.0020586	-0.005119
3.9999434	0.00000	0.00000	-50.000000 CY		

0.0002044	16036.	78462073.	10.2754001	0.0021000	-0.005257
3.9978483	0.00000	0.00000	-50.000000 CY		
0.0002094	16079.	76796593.	10.2259935	0.0021411	-0.005396
3.9999086	0.00000	0.00000	-50.000000 CY		
0.0002144	16120.	75194131.	10.1779621	0.0021819	-0.005536
3.9970000	0.00000	0.00000	-50.000000 CY		
0.0002194	16157.	73651690.	10.1316367	0.0022226	-0.005675
3.9995928	0.00000	0.00000	-50.000000 CY		
0.0002244	16193.	72170409.	10.0875334	0.0022634	-0.005814
3.9957261	0.00000	0.00000	-50.000000 CY		
0.0002294	16227.	70742291.	10.0450210	0.0023041	-0.005953
3.9985140	0.00000	0.00000	-50.000000 CY		
0.0002344	16258.	69368267.	10.0042016	0.0023447	-0.006093
3.9999648	0.00000	0.00000	-50.000000 CY		
0.0002394	16288.	68043830.	9.9651745	0.0023854	-0.006232
3.9958175	0.00000	0.00000	-50.000000 CY		
0.0002444	16316.	66766204.	9.9274778	0.0024260	-0.006371
3.9988430	0.00000	0.00000	-50.000000 CY		
0.0002494	16343.	65534446.	9.8907619	0.0024665	-0.006511
3.9999878	0.00000	0.00000	-50.000000 CY		
0.0002544	16367.	64341289.	9.8537798	0.0025066	-0.006651
3.9950242	0.00000	0.00000	-50.000000 CY		
0.0002594	16390.	63190041.	9.8181740	0.0025466	-0.006791
3.9982017	0.00000	0.00000	-50.000000 CY		
0.0002644	16412.	62077971.	9.7837372	0.0025866	-0.006931
3.9997949	0.00000	0.00000	-50.000000 CY		
0.0002694	16432.	61001973.	9.7504661	0.0026265	-0.007071
3.9959403	0.00000	0.00000	-50.000000 CY		
0.0002744	16452.	59963095.	9.7187118	0.0026666	-0.007211
3.9960484	0.00000	0.00000	-50.000000 CY		
0.0003044	16551.	54378151.	9.5472479	0.0029059	-0.008052
3.9994904	0.00000	0.00000	-50.000000 CY		
0.0003344	16623.	49713725.	9.3958159	0.0031417	-0.008896
3.9999191	0.00000	0.00000	-50.000000 CY		
0.0003644	16677.	45768736.	9.2671097	0.0033767	-0.009741
3.9996325	0.00000	0.00000	-50.000000 CY		
0.0003944	16719.	42393688.	9.1556383	0.0036108	-0.010587
3.9971665	0.00000	0.00000	-50.000000 CY		
0.0004244	16750.	39469091.	9.0522872	0.0038416	-0.011436
3.9870881	0.00000	0.00000	-50.000000 CY		

Summary of Results for Nominal Moment Capacity for Section 2

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load Axial Thrust Nominal Mom. Cap. Max. Comp. Max.

Tens. No. Strain	kips	in-kip	Strain
1 -0.00838832	0.000	16579.943	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Stiff.	Resist.	Nominal	Nominal	Ult. (Fac)	Ult. (Fac)	Bend.
Load Ult Mom	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No. kip-in^2		kips	in-kips	kips	in-kips	
1 141767436	0.65	0.0000	16580.	0.0000	10777.	
1 140636460	0.75	0.0000	16580.	0.0000	12435.	
1 111735012	0.90	0.0000	16580.	0.0000	14922.	

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	1bs	lbs

1	15.0000	0.00	N.A.	No	0.00	5411.
2	17.0000	1.8881	Yes	No	5411.	7752.
3	18.0000	2.8880	Yes	No	13163.	129086.
4	26.0000	10.8592	No	No	142249.	88785.
5	29.0000	14.9693	No	No	231034.	1561936.
6	48.0000	36.4805	Yes	No	1792970.	636386.
7	53.0000	36.2967	No	No	2429356.	1060475.
8	58.0000	41.4336	No	No	3489831.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

0.00

0.00 86.8125

Shear force at pile head = 0.0 lbs Applied moment at pile head = 0.0 in-lbs Axial thrust load on pile head = 0.0 lbs								
•	Deflect. Spr. Distr	•	Shear	Slope	Total	Bending	Soil	
X	•	Moment	Force	S	Stress	Stiffness	р	
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2		
lb/inch lb/inch lb/inch								
	1.4976 0.00 5.		-1.18E-08	-0.00519	7.57E-09	7.74E+10		
0.7500	1.4509	214.2703	105.5391	-0.00519	0.3639	7.74E+10		
1.5000	0.00 18.1 1.4041 0.00 35.1	1900.	346.2328	-0.00519	3.2260	7.74E+10		
2.2500	1.3574	6446.	741.3891	-0.00519	10.9470	7.74E+10		
3.0000	0.00 52.4 1.3107 0.00 69.6	15245.	1291.	-0.00519	25.8877	7.74E+10		
	1.2639		1995.	-0.00519	50.4088	7.74E+10		

0 00	0 00 103	9750	2854.			7.74E+10
5.2500	1.1706 0.00 121	81050.	3867.	-0.00518	137.6348	7.74E+10
6.0000		120756.	5034.	-0.00517	205.0611	7.74E+10
0.00	0.00 155	.9083	6359.		0.00	4.15E+11
0.00	0.00 173	.5167	7841.		0.00	4.15E+11
0.00	0.00 191	.1250	9482.		0.00	
0.00	0.00 208	7333	11281.			
0.00	0.00 226	.3417	13239.			
0.00	0.00 243	.9500	15355.			4.14E+11
0.00	0.00 261	.5583	17630.			4.14E+11
0.00	0.00 279	.1667	20063.			4.13E+11 4.13E+11
0.00	0.00 296	.7750	22655. 25405.			
0.00	0.00 314	.3833	28314.		0.00	
0.00	0.00 331	9917				
-55.558	871.8345	347.4490	33420.			
-131.170	2231.	350.0000	34968.			
	4180. 0.4415		35135.	-0.00475	0.00	1.46E+11
-438.786 18.0000		350.8000 3112956.	33737.	-0.00457	0.00	1.46E+11
-573.872 18.7500	0.3593	351.1727 3407566.	31316.	-0.00437	0.00	1.46E+11
-666.586 19.5000			28079.	-0.00415	0.00	1.46E+11
-755.783 20.2500			24048.	-0.00392	0.00	1.46E+11
-843.264 21.0000	0.2504	351.7437 4109507.	19285.	-0.00367	0.00	1.46E+11
	0.2186		13895.	-0.00341	0.00	1.46E+11
22.5000	40468. 0.1890 48828. 3	4359624.	8027.	-0.00314	0.00	1.46E+11
1020.	roozo. J.					

	0.1620 59264. 3		1784.	-0.00287	0.00	1.46E+11
24.0000	0.1373 71167. 3	4391735.	-4730.	-0.00260	0.00	1.46E+11
	0.1152		-11469.	-0.00233	0.00	1.46E+11
25.5000		4185296.	-18411.	-0.00207	0.00	1.46E+11
26.2500 -240.774	0.07792		-21408.	-0.00182	0.00	1.46E+11
	0.06267 29758.		-20245.	-0.00158	0.00	1.46E+11
27.7500 -174.583	0.04954 31715.	3623660. 353.5562	-18782.		0.00	1.46E+11
28.5000 -143.796	33685.				0.00	1.46E+11
29.2500 -966.498	297718.	3317088. 353.9188	-18844.	-9.20E-04	0.00	1.46E+11
30.0000 -760.820	313347.	354.0892	-23430.	-7.22E-04	0.00	1.46E+11
30.7500 -592.928	0.01622 329066.	354.1950	-26335.	-5.37E-04	0.00	1.46E+11
31.5000 -466.838	344875.	2648655. 354.2900	-27916.		0.00	1.47E+11
32.2500 -385.348	0.00961 360774.	354.3850	-28562.		0.00	4.09E+11
33.0000 -314.669	0.00752 376763.	354.4800	-28522.		0.00	4.10E+11
33.7500 -254.999	392841.		-27895.		0.00	4.11E+11
34.5000 -206.229	409010.		-26779.		0.00	4.11E+11
35.2500 -167.992	425269.	354.7650	-25270.		0.00	4.12E+11
-139.709 36.7500	0.00285 441617. 0.00237	354.8600		-6.58E-05		4.13E+11
-120.640 37.5000	458056.	354.9550		-4.24E-05 -2.31E-05	0.00	4.13E+11 4.14E+11
-109.927 38.2500	474585. 0.00195	355.0500	-17060.		0.00	4.14E+11
-106.643 39.0000	491203. 0.00195	355.1450	-14837.		0.00	4.14E+11
-109.828 39.7500	507912.	355.2400 361006.	-12667.		0.00	4.15E+11
-118.524 40.5000	524710. 0.00219	355.3350			0.00	4.15E+11
-131.808 41.2500	541598. 0.00240	355.4300			0.00	4.15E+11
-148.814	558576.		2002.		3.00	

42.0000		100729.	-6888.	2.78E-05	0.00	4.15E+11
-168.753 42.7500			-5305.	2.94E-05	0.00	4.15E+11
-190.929 43.5000	592803. 0.00317	355.7150 5232.	-3929.	3.00E-05	0.00	4.15E+11
-214.741 44.2500	610051. 0 00344	355.8100 -24416.	-2771.	2.98E-05	0.00	4.15E+11
-239.691	627389.	355.9050				
45.0000 -265.378	0.00370 644817.	-44651. 355.9881	-1841.	2.90E-05	0.00	4.15E+11
45.7500 -291.493	0.00396 662335.	-57547. 356.0000	-1143.	2.79E-05	0.00	4.15E+11
46.5000	0.00421	-65217.	-680.374	2.66E-05	0.00	4.15E+11
-317.801 47.2500	679943. 0.00444	356.0000 -69793.	-455.058	2.51E-05	0.00	4.15E+11
-344.129	697641.	356.0000				
48.0000 -397.714	0.00466 768317.	-73408. 356.0000	-589.349	2.36E-05	0.00	4.15E+11
48.7500 -424.956	0.00486 786345.	-80402. 356.0000	-1087.	2.19E-05	0.00	4.15E+11
49.5000	0.00505	-92981.	-1828.	2.00E-05	0.00	4.15E+11
-451.669 50.2500	804463. 0.00522	356.0000 -113309.	-2806.	1.78E-05	0.00	4.15E+11
-477.537	822672.	356.0000	4010			
51.0000 -502.087	0.00537 840970.	-143482. 356.0000	-4010.	1.50E-05	0.00	4.15E+11
51.7500 -524.624		-185487.	-5426.	1.14E-05	0.00	4.15E+11
52.5000	0.00558	-241152.	-7032.	6.82E-06	0.00	4.15E+11
-544.182 53.2500	877836. 0.00562		-6572.	8.17E-07	0.00	4.15E+11
-65.610	105124.	356.0000				
54.0000 -66.807		-359444. 356.0000	-3964.	-6.47E-06	0.00	4.15E+11
54.7500 -67.142	0.00550 109857.		-1362.	-1.45E-05	0.00	4.15E+11
55.5000	0.00533	-383968.	1240.	-2.29E-05	0.00	4.15E+11
-66.501 56.2500	112240. 3 0.00509		3853.	-3.09E-05	0.00	4.15E+11
-64.823	114635.	356.0000				
57.0000 -62.104	0.004/8 117042.	-314611. 356.0000	6486.	-3.83E-05	0.00	4.15E+11
57.7500 -58.408	0.00440 119460.		9148.	-4.43E-05	0.00	4.15E+11
58.5000	0.00398	-149952.	10262.	-4.86E-05	0.00	4.15E+11
-405.878 59.2500	918371. 0.00353	356.0000 -59610.	9988.	-5.09E-05	0.00	4.15E+11
-367.185	937356.	356.0000				
60.0000 -325.381	956431.	29826. 178.0000	92/4.	-5.12E-05	0.00	4.15E+11

60.7500 0.00260		7341.	-4.97E-05	0.00	4.15E+11
-282.268 975595.	0.00				
61.5000 0.00217	161958.	4993.	-4.68E-05	0.00	4.15E+11
-239.540 994850.	0.00				
62.2500 0.00176	197190.	3021.	-4.29E-05	0.00	4.15E+11
-198.522 1014195.	0.00				
63.0000 0.00139	216341.	1407.	-3.84E-05	0.00	4.15E+11
-160.193 1033630.	0.00				
63.7500 0.00107		122.6496	-3.37E-05	0.00	4.15E+11
-125.230 1053155.	0.00				
64.5000 7.89E-04		-864.068	-2.89E-05	0.00	4.15E+11
-94.041 1072769.	0.00				
65.2500 5.50E-04	206964.	-1588.	-2.43E-05	0.00	4.15E+11
-66.807 1092474.	0.00				
66.0000 3.52E-04		-2084.	-2.00E-05	0.00	4.15E+11
-43.522 1112268.	0.00				
66.7500 1.91E-04	169445.	-2388.	-1.61E-05	0.00	4.15E+11
-24.029 1132153.	0.00				
67.5000 6.29E-05	146977.	-2533.	-1.26E-05	0.00	4.15E+11
-8.057 1152127.	0.00				
68.2500 -3.65E-05	123856.	-2548.	-9.70E-06	0.00	4.15E+11
4.7492 1172192.	0.00				
69.0000 -1.12E-04	101120.	-2460.	-7.26E-06	0.00	4.15E+11
14.7983 1192346.	0.00				
69.7500 -1.67E-04	79583.	-2292.	-5.30E-06	0.00	4.15E+11
22.5280 1212590.	0.00				
70.5000 -2.07E-04	59870.	-2063.	-3.79E-06	0.00	4.15E+11
28.3825 1232924.	0.00				
71.2500 -2.35E-04	42456.	-1787.	-2.68E-06	0.00	4.15E+11
32.7933 1253349.	0.00				
72.0000 -2.55E-04	27699.	-1477.	-1.92E-06	0.00	4.15E+11
36.1627 1273863.	0.00				
72.7500 -2.70E-04	15870.	-1139.	-1.45E-06	0.00	4.15E+11
38.8487 1294467.	0.00				
73.5000 -2.82E-04	7189.	-779.432	-1.20E-06	0.00	4.15E+11
41.1520 1315161.	0.00				
74.2500 -2.92E-04	1841.	-399.385	-1.10E-06	0.00	4.15E+11
43.3029 1335945.	0.00				
75.0000 -3.01E-04	0.00	0.00	-1.08E-06	0.00	4.15E+11
45.4494 678409.	0.00				

^{*} This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Pile-head deflection = 1.49763285 inches

Computed slope at pile head = -0.0051938 radians

Maximum bending moment = 4404599. inch-lbs

Maximum shear force = 35135. lbs

Depth of maximum bending moment = 23.25000000 feet below pile head

Depth of maximum shear force = 17.25000000 feet below pile head

Number of iterations = 37

Number of zero deflection points = 1

Pile deflection at ground = 0.57352487 inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 0. lbs Moment = 0. in-lbs Axial Load = 0. lbs

Pile Length feet	Pile Head Deflection inches	Maximum Moment ln-lbs	Maximum Shear lbs
75.00000	1.49763285	4404599.	35135.
71.25000	1.50148094	4443602.	35575.
67.50000	1.52324470	4469600.	35743.
63.75000	1.51145826	4418965.	35384.
60.00000	1.50116191	4432601.	35403.
56.25000	1.50404080	4446962.	35575.
52.50000	1.51436213	4436687.	35540.
48.75000	1.48823879	4416459.	35409.
45.00000	1.50483566	4425830.	35575.
41.25000	1.50416652	4451403.	35728.
37.50000	1.53948082	4405660.	-41601.
33.75000	1.88924653	4321256.	-53856.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
```

Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.

Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Moment						
Case Type Pile-head	d Type	Pile-head	Loading	Deflection	Rotation	in
Pile in Pile			_			
No. 1 Load 1	2	Load 2	lbs	inches	radians	1bs
in-lbs						
	-					
1 V, lb 0.00	M, in-lb	0.00	0.00	1.4976	-0.00519	
35135. 4404599.	-					

Maximum pile-head deflection = 1.4976328470 inches

Maximum pile-head rotation = -0.0051938171 radians = -0.297584 deg.

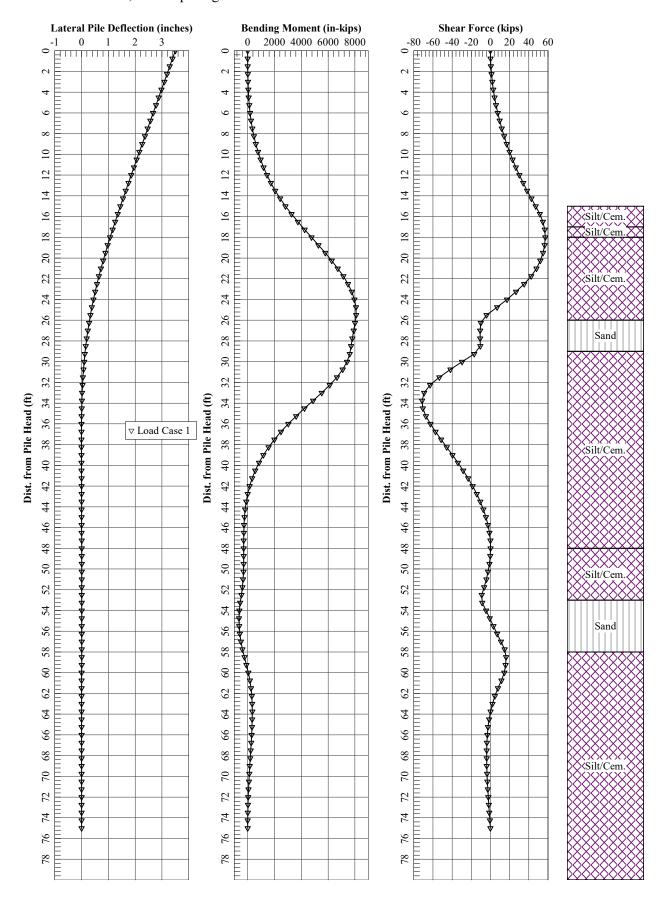
Results of Push-over Analysis

Computation Methods Used for Push-over Analyses:

- Computations use both pinned-head and fixed-head conditions
- Computations use a logarithmic distribution of pile-head deflections

Number of push-over steps = 20
Minimum pushover deflection = 0.0001000 in
Maximum pushover deflection = 10.000000 in
Axial thrust force for pushover analysis = 0.0000 lbs

Pushover	Pile-head	Pile-head	Pile-head	Max Moment	Max Shear	Depth to	Depth to
Point	Fixity	Deflection	Shear	in Pile	in Pile	Max Moment	Max
Shear Number	Condition	inches	lbs	in-lb(abs)	lbs (abs)	feet	feet
1 52.5000	- Pin-head	1.00E-04	-7556.	698522.	8151.	11.2500	
2 30.7500	Pin-head	2.3139	20607.	6349051.	41379.	21.7500	
3	Pin-head	3.6673	30784.	9040401.	66470.	22.5000	
4 32.2500	Pin-head	4.6276	37206.	1.08E+07	83122.	23.2500	
5	Pin-head	5.3725	41620.	1.22E+07	96325.	23.2500	


32.2500 6	Pin-head	5.9811	44844.	1.31E+07	106824.	23.2500
33.0000	PIII-IIEau	3.9611	44044.	1.316+07	100824.	23.2300
7	Pin-head	6.4956	47198.	1.39E+07	115189.	24.0000
33.0000						
8 33.0000	Pin-head	6.9414	48681.	1.44E+07	120152.	24.0000
9	Pin-head	7.3345	49772.	1.47E+07	123608.	24.0000
33.7500						
10 33.7500	Pin-head	7.6862	50605.	1.50E+07	126703.	24.0000
11	Pin-head	8.0044	51189.	1.52E+07	130576.	24.7500
33.7500	T III IICaa	0.0011	31103.	1.322.07	130370.	2117500
12	Pin-head	8.2948	51685.	1.54E+07	133137.	24.7500
33.7500						
13	Pin-head	8.5620	52113.	1.55E+07	134880.	24.7500
33.7500 14	Pin-head	8.8094	52456.	1.56E+07	136154.	24.7500
33.7500	T III IICaa	0.0051	32 130.	1.302.07	130131.	2117500
15	Pin-head	9.0397	52719.	1.57E+07	137258.	24.7500
33.7500						
16	Pin-head	9.2551	52971.	1.58E+07	138193.	24.7500
33.7500 17	Pin-head	9.4575	53182.	1.59E+07	139004.	24.7500
33.7500	T III IICaa	J. 4 J/J	JJ102.	1.552107	155004.	24.7500
18	Pin-head	9.6483	53365.	1.60E+07	139724.	24.7500
33.7500						
19	Pin-head	9.8288	53522.	1.60E+07	140364.	24.7500
33.7500 20	Pin-head	10 0000	53660.	1.61E+07	140940.	24 7500
33.7500	PIN-Neau	10.0000	53000.	1.016+07	140940.	24.7500
21	Fixed-head	1.00E-04	-10546.	613519.	10546.	13.5000
0.00						
22	Fixed-head	2.3139	60288.	1.00E+07	73433.	0.00
15.7500	rid baad	2 6672	05046	1 465.07	00422	0.00
23 15.7500	Fixed-head	3.6673	85046.	1.46E+07	98423.	0.00
24	Fixed-head	4.6276	98670.	1.75E+07	121179.	0.00
34.5000		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2007.00		,	
25	Fixed-head	5.3725	107447.	1.95E+07	137735.	0.00
35.2500						
26 35.2500	Fixed-head	5.9811	113322.	2.10E+07	144876.	0.00
27	Fixed-head	6.4956	117854.	2.23E+07	151653.	0.00
36.0000		07.120				
28	Fixed-head	6.9414	121785.	2.34E+07	155332.	0.00
36.0000		-	40-00:			<u>.</u>
29 26 0000	Fixed-head	7.3345	125001.	2.44E+07	157846.	0.00
36.0000 30	Fixed-head	7.6862	127581.	2.51E+07	159700.	0.00
30	I TVER-HEAR	7.0002	12/ 701.	Z.JILTU/	133700.	0.00

36.0000						
31	Fixed-head	8.0044	129816.	2.58E+07	161009.	0.00
36.0000						
32	Fixed-head	8.2948	131791.	2.63E+07	161949.	0.00
36.0000						
33	Fixed-head	8.5620	133415.	2.68E+07	162656.	0.00
36.0000						
34	Fixed-head	8.8094	134731.	2.72E+07	163209.	0.00
36.0000		0.0207	425756	2 755 27	463635	0.00
35	Fixed-head	9.0397	135756.	2.75E+07	163625.	0.00
36.0000	rid baad	0 2554	126517	2 775.07	162040	0.00
36 36.0000	Fixed-head	9.2551	136517.	2.77E+07	163949.	0.00
30.0000	Fixed-head	9.4575	136963.	2.78E+07	163955.	0.00
36.0000	i ixeu-lieau	9.4373	130903.	2.78L+07	103933.	0.00
38	Fixed-head	9.6483	137266.	2.79E+07	163934.	0.00
36.0000	TIXEG HEGG	3.0103	137200.	2.,,52.0,	103331.	0.00
39	Fixed-head	9.8288	137326.	2.79E+07	163904.	0.00
36.0000						
40	Fixed-head	10.0000	137365.	2.79E+07	163876.	0.00
36.0000						

 $[\]ensuremath{^{*}}$ WARNING: Some values of computed curvature exceeded the maximum curvature calculated or entered by the user Fixed-head Condition

Step = 40 Node = 41

The analysis ended normally.

LPile for Windows, Version 2022-12.009

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2022 by Ensoft, Inc.
All Rights Reserved

This copy of LPile is being used by:

Tetra Tech Jacksonville

Serial Number of Security Device: 157693794

This copy of LPile is licensed for exclusive use by:

Tetra Tech, GROUP & LPILE, Global Licenses

Use of this software by employees of Tetra Tech other than those of the office site in GROUP & LPILE, Global Licenses is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:

 $\label{thm:lawrence-one-projects-ful-20A-19.20-05 Wall Design Not Revised Analysis for Final Report $$ $$ (Analysis for Final Report) $$ (Analysis for Fi$

Name of input data file:

FUL20A_3ft_6ft_W24x94_Strength.lp12d

Name of output report file:

FUL20A_3ft_6ft_W24x94_Strength.lp12o

Name of plot output file:

FUL20A_3ft_6ft_W24x94_Strength.lp12p

Name of runtime message file:

FUL20A_3ft_6ft_W24x94_Strength.lp12r

Date and Time of Analysis Date: April 17, 2025 Time: 15:57:53 Problem Title -----Project Name: FUL-20A-19.20 Job Number: 100-WTR-T44324 Client: Ohio DOT Engineer: B Lawrence Description: Drilled Shaft Wall, Strength Load, 3ft_6ft W24x94 Program Options and Settings Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 - Deflection tolerance for convergence = 1.0000E-05 in 100.0000 in - Maximum allowable deflection = - Number of pile increments 100

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Analysis uses p-y modification factors for p-y curves
- Analysis uses layering correction (Method of Georgiadis)
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Compute push-over analysis of pile for specified deflections
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural	Properties	and	Geometry

Number of pile sections defined = 2
Total length of pile = 75.000 ft
Depth of ground surface below top of pile = 15.0000 ft

Pile diameters used for p-y curve computations are defined using 4 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	9.0700
2	6.000	9.0700
3	6.000	36.0000
4	75.000	36.0000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Flange Width Section Depth Flange Thickness Web Thickness Section Area Moment of Inertia Elastic Modulus Pile Section No. 2:	= Strong H-Pile = 6.000000 ft = 9.070000 in = 24.300000 in = 0.875000 in = 0.515000 in = 27.485750 sq. in = 2671. in^4 = 29000000. psi							
Section 2 is a drilled shaft with casing and	AISC section core/insert							
Length of section	= 69.000000 ft							
Section Diameter	= 36.000000 in							
Core/Insert AISC Section Type	= W							
Core/Insert AISC Section Name	= W24X94							
Control Data for Pushove	 r Analysis							
Pile-head fixity condition	= free and fixed head							
Number of pushover points to generate	= 20							
Pushover point distribution method	= logarithmic							
Minimum pushover pile-head deflection	= 0.0001000 in							
Maximum pushover pile-head deflection	= 10.000000 in							
Axial Thrust Force Stop Analyis if Second Hinge Developed (Only for	= 0.0000 lbs r Elastoplastic Moment-Curvature)							
Soil and Rock Layering Information								
Joil and Nock Layering in	II OI III CIOII							

The soil profile is modelled using 8 layers

Layer 1 is silt/cemented soil

```
Distance from top of pile to top of layer = 15.000000 ft
Distance from top of pile to bottom of layer = 17.000000 ft
Effective unit weight at top of layer = 130.000000 pcf
Effective unit weight at bottom of layer = 130.000000 pcf
Cohesion at top of layer = 120.000000 psf
Cohesion at bottom of layer = 120.000000 psf
Friction angle at top of layer = 26.000000 deg.
Friction angle at bottom of layer = 26.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 2 is silt/cemented soil

```
= 17.000000 ft
Distance from top of pile to top of layer
Distance from top of pile to bottom of layer Effective unit weight at top of layer
                                                       = 18.000000 ft
                                                       = 130.000000 pcf
Effective unit weight at bottom of layer =

Cohesion at top of layer =
                                                             130.000000 pcf
                                                             300.000000 psf
                                                   - 300.000000 psf
= 28.000000 deg.
= 28.00000
Cohesion at bottom of layer
Friction angle at top of layer
Friction angle at bottom of layer
Subgrade k at top of layer
                                                       =
                                                                  0.0000 pci
Subgrade k at bottom of layer
                                                                  0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is silt/cemented soil

```
Distance from top of pile to top of layer
                                                       18.000000 ft
Distance from top of pile to bottom of layer = 26.000000 ft
Effective unit weight at top of layer = 72.600000 pc
                                                   = 72.600000 pcf
Effective unit weight at bottom of layer
                                                  =
                                                         72.600000 pcf
Cohesion at top of layer
                                                   = 300.000000 psf
Cohesion at bottom of layer
                                                   = 300.000000 psf
Friction angle at top of layer
                                                   = 28.000000 deg.
Friction angle at bottom of layer
                                                          28.000000 deg.
Subgrade k at top of layer
                                                          0.0000 pci
Subgrade k at bottom of layer
                                                             0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 4 is sand, p-y criteria by Reese et al., 1974

```
Distance from top of pile to top of layer = 26.000000 ft
Distance from top of pile to bottom of layer = 29.000000 ft
Effective unit weight at top of layer = 67.600000 pcf
Effective unit weight at bottom of layer = 67.600000 pcf
Friction angle at top of layer = 30.000000 deg.
Friction angle at bottom of layer = 30.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for subgrade k will be computed for this layer.

Layer 5 is silt/cemented soil

```
Distance from top of pile to top of layer = 29.000000 ft
Distance from top of pile to bottom of layer = 48.000000 ft
Effective unit weight at top of layer = 72.600000 pcf
Effective unit weight at bottom of layer = 72.600000 pcf
Cohesion at top of layer = 300.000000 psf
Cohesion at bottom of layer = 300.000000 psf
Friction angle at top of layer = 28.000000 deg.
Friction angle at bottom of layer = 28.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 6 is silt/cemented soil

```
Distance from top of pile to top of layer = 48.000000 ft
Distance from top of pile to bottom of layer = 53.000000 ft
Effective unit weight at top of layer = 67.600000 pcf
Effective unit weight at bottom of layer = 67.600000 pcf
Cohesion at top of layer = 120.000000 psf
Cohesion at bottom of layer = 120.000000 psf
Friction angle at top of layer = 26.000000 deg.
Friction angle at bottom of layer = 26.000000 deg.
Subgrade k at top of layer = 0.0000 pci
Subgrade k at bottom of layer = 0.0000 pci
```

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

Layer 7 is sand, p-y criteria by Reese et al., 1974

```
Distance from top of pile to top of layer = 53.000000 ft
Distance from top of pile to bottom of layer = 58.000000 ft
Effective unit weight at top of layer = 67.600000 pcf
Effective unit weight at bottom of layer = 67.600000 pcf
```

Friction angle at top of layer	=	30.000000 deg.
Friction angle at bottom of layer	=	30.000000 deg.
Subgrade k at top of layer	=	0.0000 pci
Subgrade k at bottom of layer	=	0.0000 pci

NOTE: Default values for subgrade k will be computed for this layer.

Layer 8 is silt/cemented soil

Distance from top of pile to top of layer	=	58.000000	ft
Distance from top of pile to bottom of layer	=	80.000000	ft
Effective unit weight at top of layer	=	77.600000	pcf
Effective unit weight at bottom of layer	=	77.600000	pcf
Cohesion at top of layer	=	500.000000	psf
Cohesion at bottom of layer	=	500.000000	psf
Friction angle at top of layer	=	30.000000	deg.
Friction angle at bottom of layer	=	30.000000	deg.
Subgrade k at top of layer	=	0.0000	pci
Subgrade k at bottom of layer	=	0.0000	pci

NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer.

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

Summary	of	Input	Soil	Properties

Layer	Soil Type	Layer	Effective	Cohesion	Angle of
Num.	Name	Depth	Unit Wt.		Friction
kpy pci	(p-y Curve Type)	ft	pcf	psf	deg.
1 default	Silt/	15.0000	130.0000	120.0000	26.0000
	Cemented Soil	17.0000	130.0000	120.0000	26.0000
default 2 default	Silt/	17.0000	130.0000	300.0000	28.0000
derdare	Cemented Soil	18.0000	130.0000	300.0000	28.0000
default 3 default	Silt/	18.0000	72.6000	300.0000	28.0000
	Cemented Soil	26.0000	72.6000	300.0000	28.0000

default 4 default	Sand	26.0000	67.6000		30.0000
	(Reese, et al.)	29.0000	67.6000		30.0000
default 5 default	Silt/	29.0000	72.6000	300.0000	28.0000
default	Cemented Soil	48.0000	72.6000	300.0000	28.0000
6 default	Silt/	48.0000	67.6000	120.0000	26.0000
default	Cemented Soil	53.0000	67.6000	120.0000	26.0000
7 default	Sand	53.0000	67.6000		30.0000
default	(Reese, et al.)	58.0000	67.6000		30.0000
8 default	Silt/	58.0000	77.6000	500.0000	30.0000
default	Cemented Soil	80.0000	77.6000	500.0000	30.0000

Modification Factors for p-y Curves

Distribution of p-y modifiers with depth defined using 3 points

Point	Depth X	p-mult	y-mult
No.	ft		
1	15.000	0.6400	1.0000
2	18.000	0.6400	1.0000
3	80.000	0.8100	1.0000

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading for Individual Load Cases

Distributed lateral load intensity for Load Case 1 defined using 7 points

Point	Depth X	Dist. Load
No.	ft	lb/in
1	0.000	1.000
2	6.000	207.800
3	15.000	526.300
4	18.000	529.100
5	30.000	534.200
6	45.000	537.600
7	60.000	531.900

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load		Condition		Condition	Axial Thrust
Compute No. vs. Pil	Type		n Analysis 1		2	Force, lbs
1	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.0000000
Yes			Yes			

V = shear force applied normal to pile axis

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Number of Pile Sections Analyzed = 2

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Pile Section No. 2:

Dimensions and Properties of Drilled Shaft (Bored Pile) with Casing and AISC Strong Axis Core/Insert:

```
Length of Section
                                                        = 69.000000 ft
Outside Diameter of Casing
                                                        = 36.000000 in
Casing Wall Thickness
                                                               0.0000 in
Moment of Inertia of Steel Casing
                                                                0.0000 in^4
                                                       =
                                                       = 9.070000 in
Width Flange of Core/Insert
                                                        = 24.300000 in
Depth of Core/Insert
Flange Thickness of Core/Insert
                                                            0.875000 in
                                                       =
Web Thickness of Core/Insert
                                                             0.515000 in
Moment of Inertia of Steel Core/Insert
                                                       =
                                                                2700. in^4
Yield Stress of Casing
                                                                50000. psi
                                                       =
                                                       = 29000000. psi
Elastic Modulus of Casing
Yield Stress of Core/Insert
                                                       = 50000. psi
= 29000000. psi
Elastic Modulus of Core/Insert
Number of Reinforcing Bars
                                                               0 bars
                                                       =
Gross Area of Pile
                                                        =
                                                                 1018. sq. in.
Area of Concrete
                                                       = 990.390270 sq. in.
                                                       =
Cross-sectional Area of Steel Casing
                                                            0.0000 sq. in.
Cross-sectional Area of Steel Core/Insert = 27.700000 sq. in.

Area of All Steel (Casing, Core/Insert, and Bars) = 27.485750 sq. in.
Area Ratio of All Steel to Gross Area
                                                                  2.70 percent
```

Note that the core is assumed to be void of concrete.

Axial Structural Capacities:

```
Nom. Axial Structural Capacity = 0.85 Fc Ac + Fy As = 4751.598 kips

Tensile Load for Cracking of Concrete = -504.501 kips

Nominal Axial Tensile Capacity = -1385.000 kips
```

Concrete Properties:

Modulus of Elasticity of Concrete = 3604997. psi
Modulus of Rupture of Concrete = -474.34165 psi
Compression Strain at Peak Stress = 0.001886
Tensile Strain at Fracture of Concrete = -0.0001154
Maximum Coarse Aggregate Size = 0.750000 in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	kips
1	0.000

Definitions of Run Messages and Notes:

- C = concrete in section has cracked in tension.
- Y = stress in reinforcing steel has reached yield stress.
- T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318-14, Section 21.2.3.
- Z = depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature. Position of neutral axis is measured from edge of compression side of pile. Compressive stresses and strains are positive in sign. Tensile stresses and strains are negative in sign.

Axial Thrust Force = 0.000 kips

Bending Max Conc	Bending Max Steel	Bending Max Casing	Depth to Max Core	Max Comp Run	Max Tens
Curvature	Moment	Stiffness	N Axis	Strain	Strain
Stress	Stress	Stress	Stress	Msg	: n /: n
rad/in. ksi	in-kip ksi	kip-in2 ksi	in ksi	in/in	in/in
6.25000E-07	259.4623491	415139759.	18.0000000	0.00001125	-0.00001125
0.0470966	0.00000	0.00000	0.2185875	0.00001125	-0.00001123
0.00000125	518.0654643	414452371.	18.0000000	0.00002250	-0.00002250
0.0939143	0.00000	0.00000	0.4371750		
0.00000188	775.8093457	413764984.	18.0000000	0.00003375	-0.00003375
0.1404531	0.00000	0.00000	0.6557625		
0.00000250	1033.	413077597.	18.0000000	0.00004500	-0.00004500
0.1867130	0.00000	0.00000	0.8743500		

0.00000313	1289.	412390210.	18.0000000	0.00005625	-0.00005625
0.2326940	0.00000	0.00000	1.0929375		
0.00000375	1544.	411702823.	18.0000000	0.00006750	-0.00006750
0.2783960	0.00000	0.00000	1.3115250		
0.00000438	1798.	411015436.	18.0000000	0.00007875	-0.00007875
0.3238192	0.00000	0.00000	1.5301125		
0.00000500	2052.	410328049.	18.0000000	0.00009000	-0.00009000
0.3689635	0.00000	0.00000	1.7487000		
0.00000563	2304.	409640662.	18.0000000	0.0001012	-0.000101
0.4138288	0.00000	0.00000	1.9672875		
0.00000625	2556.	408953275.	18.0000000	0.0001125	-0.000113
0.4584153	0.00000	0.00000	2.1858750		
0.00000688	2556.	371775704.	11.3948312	0.00007834	-0.000169
0.3203196	0.00000	0.00000	-3.721368 C		
0.00000750	2556.	340794396.	11.3979043	0.00008548	-0.000185
0.3488701	0.00000	0.00000	-4.059006 C		
0.00000813	2556.	314579442.	11.4009832	0.00009263	-0.000200
0.3773252	0.00000	0.00000	-4.396531 C		
0.00000875	2556.	292109482.	11.4040678	0.00009979	-0.000215
0.4056846	0.00000	0.00000	-4.733943 C		
0.00000938	2556.	272635516.	11.4071580	0.0001069	-0.000231
0.4339482	0.00000	0.00000	-5.071241 C		
0.00001000	2556.	255595797.	11.4102541	0.0001141	-0.000246
0.4621159	0.00000	0.00000	-5.408426 C		
0.00001063	2556.	240560750.	11.4133558	0.0001213	-0.000261
0.4901875	0.00000	0.00000	-5.745497 C		
0.00001125	2556.	227196264.	11.4164634	0.0001284	-0.000277
0.5181630	0.00000	0.00000	-6.082454 C		
0.00001188	2556.	215238566.	11.4195768	0.0001356	-0.000292
0.5460420	0.00000	0.00000	-6.419296 C		
0.00001250	2556.	204476637.	11.4226960	0.0001428	-0.000307
0.5738246	0.00000	0.00000	-6.756023 C		
0.00001313	2556.	194739655.	11.4258210	0.0001500	-0.000323
0.6015105	0.00000	0.00000	-7.092634 C		
0.00001375	2556.	185887852.	11.4289520	0.0001571	-0.000338
0.6290996	0.00000	0.00000	-7.429130 C		
0.00001438	2556.	177805772.	11.4320888	0.0001643	-0.000353
0.6565918	0.00000	0.00000	-7.765510 C		
0.00001500	2556.	170397198.	11.4352315	0.0001715	-0.000368
0.6839869	0.00000	0.00000	-8.101774 C		
0.00001563	2556.	163581310.	11.4383802	0.0001787	-0.000384
0.7112848	0.00000	0.00000	-8.437921 C		
0.00001625	2556.	157289721.	11.4415349	0.0001859	-0.000399
0.7384853	0.00000	0.00000	-8.773952 C		
0.00001688	2556.	151464176.	11.4446955	0.0001931	-0.000414
0.7655882	0.00000	0.00000	-9.109865 C		
0.00001750	2565.	146578149.	11.4478622	0.0002003	-0.000430
0.7925935	0.00000	0.00000	-9.445660 C		
0.00001813	2656.	146530823.	11.4510349	0.0002076	-0.000445
0.8195010	0.00000	0.00000	-9.781337 C		
			: -		

0 00001075	2747	146402420	11 4542126	0 0000140	0.000460
0.00001875	2747.	146483420.	11.4542136	0.0002148	-0.000460
0.8463105	0.00000	0.00000	-10.116896 C	0 0001110	0.000476
0.00001938	2837.	146435939.	11.4573985	0.0002220	-0.000476
0.8730218	0.00000	0.00000	-10.452337 C	0 0000000	0.000404
0.00002000	2928.	146388379.	11.4605894	0.0002292	-0.000491
0.8996349	0.00000	0.00000	-10.787658 C	0.0000064	0.000506
0.00002063	3018.	146340740.	11.4637865	0.0002364	-0.000506
0.9261495	0.00000	0.00000	-11.122860 C		
0.00002125	3109.	146293023.	11.4669897	0.0002437	-0.000521
0.9525655	0.00000	0.00000	-11.457943 C		
0.00002188	3199.	146245226.	11.4701991	0.0002509	-0.000537
0.9788828	0.00000	0.00000	-11.792905 C		
0.00002250	3289.	146197349.	11.4734147	0.0002582	-0.000552
1.0051012	0.00000	0.00000	-12.127747 C		
0.00002313	3380.	146149393.	11.4766365	0.0002654	-0.000567
1.0312206	0.00000	0.00000	-12.462468 C		
0.00002375	3470.	146101356.	11.4798646	0.0002726	-0.000582
1.0572407	0.00000	0.00000	-12.797068 C		
0.00002438	3560.	146053239.	11.4830990	0.0002799	-0.000598
1.0831615	0.00000	0.00000	-13.131547 C		
0.00002563	3740.	145956762.	11.4895866	0.0002944	-0.000628
1.1347044	0.00000	0.00000	-13.800138 C		
0.00002688	3920.	145859959.	11.4960997	0.0003090	-0.000659
1.1858479	0.00000	0.00000	-14.468240 C		
0.00002813	4100.	145762829.	11.5026384	0.0003235	-0.000689
1.2365908	0.00000	0.00000	-15.135848 C		
0.00002938	4279.	145665368.	11.5092029	0.0003381	-0.000719
1.2869318	0.00000	0.00000	-15.802960 C		
0.00003063	4458.	145567575.	11.5157934	0.0003527	-0.000750
1.3368696	0.00000	0.00000	-16.469573 C		
0.00003188	4637.	145469446.	11.5224101	0.0003673	-0.000780
1.3864029	0.00000	0.00000	-17.135685 C		
0.00003313	4815.	145370979.	11.5290534	0.0003819	-0.000811
1.4355303	0.00000	0.00000	-17.801291 C		
0.00003438	4994.	145272172.	11.5357232	0.0003965	-0.000841
1.4842506	0.00000	0.00000	-18.466388 C		
0.00003563	5172.	145173022.	11.5424200	0.0004112	-0.000871
1.5325623	0.00000	0.00000	-19.130975 C		
0.00003688	5350.	145073526.	11.5491439	0.0004259	-0.000902
1.5804642	0.00000	0.00000	-19.795047 C		
0.00003813	5527.	144973682.	11.5558951	0.0004406	-0.000932
1.6279549	0.00000	0.00000	-20.458601 C		
0.00003938	5704.	144873487.	11.5626739	0.0004553	-0.000962
1.6750329	0.00000	0.00000	-21.121634 C		
0.00004063	5881.	144772938.	11.5694804	0.0004700	-0.000992
1.7216969	0.00000	0.00000	-21.784143 C		· · · · · ·
0.00004188	6058.	144672033.	11.5763150	0.0004848	-0.001023
1.7679455	0.00000	0.00000	-22.446125 C		- - - -
0.00004313	6235.	144570768.	11.5831779	0.0004995	-0.001053
1.8137773	0.00000	0.00000	-23.107576 C	- -	
,,	2.0000				

0.00004438	6411.	144469142.	11.5900692	0.0005143	-0.001083
1.8591907	0.00000	0.00000	-23.768492 C		
0.00004563	6587.	144367151.	11.5969893	0.0005291	-0.001113
1.9041845	0.00000	0.00000	-24.428871 C		
0.00004688	6762.	144264791.	11.6039384	0.0005439	-0.001144
1.9487570	0.00000	0.00000	-25.088709 C		
0.00004813	6938.	144162062.	11.6109167	0.0005588	-0.001174
1.9929069	0.00000	0.00000	-25.748002 C		
0.00004938	7113.	144058958.	11.6179246	0.0005736	-0.001204
2.0366327	0.00000	0.00000	-26.406747 C		
0.00005063	7288.	143955478.	11.6249621	0.0005885	-0.001234
2.0799328	0.00000	0.00000	-27.064940 C		
0.00005188	7462.	143851618.	11.6320297	0.0006034	-0.001264
2.1228057	0.00000	0.00000	-27.722578 C		
0.00005313	7637.	143747376.	11.6391275	0.0006183	-0.001294
2.1652500	0.00000	0.00000	-28.379657 C		
0.00005438	7811.	143642747.	11.6462559	0.0006333	-0.001324
2.2072640	0.00000	0.00000	-29.036173 C		
0.00005563	7984.	143537729.	11.6534150	0.0006482	-0.001354
2.2488461	0.00000	0.00000	-29.692122 C		
0.00005688	8158.	143432319.	11.6606052	0.0006632	-0.001384
2.2899949	0.00000	0.00000	-30.347502 C		
0.00005813	8331.	143326514.	11.6678268	0.0006782	-0.001414
2.3307087	0.00000	0.00000	-31.002307 C		
0.00005938	8504.	143220310.	11.6750800	0.0006932	-0.001444
2.3709859	0.00000	0.00000	-31.656534 C		
0.00006063	8676.	143113704.	11.6823651	0.0007082	-0.001474
2.4108249	0.00000	0.00000	-32.310179 C		
0.00006188	8849.	143006692.	11.6896824	0.0007233	-0.001504
2.4502241	0.00000	0.00000	-32.963238 C		
0.00006313	9021.	142899271.	11.6970322	0.0007384	-0.001534
2.4891817	0.00000	0.00000	-33.615708 C		
0.00006438	9192.	142791522.	11.7042905	0.0007535	-0.001564
2.5276755	0.00000	0.00000	-34.267815 C		
0.00006563	9364.	142683423.	11.7114967	0.0007686	-0.001594
2.5657100	0.00000	0.00000	-34.919495 C		
0.00006688	9535.	142574918.	11.7187344	0.0007837	-0.001624
2.6032973	0.00000	0.00000	-35.570592 C		
0.00006813	9705.	142466003.	11.7260039	0.0007988	-0.001654
2.6404355	0.00000	0.00000	-36.221101 C		
0.00006938	9876.	142356674.	11.7333056	0.0008140	-0.001684
2.6771231	0.00000	0.00000	-36.871018 C		
0.00007063	10046.	142246929.	11.7406396	0.0008292	-0.001713
2.7133583	0.00000	0.00000	-37.520340 C		
0.00007188	10216.	142136763.	11.7480064	0.0008444	-0.001743
2.7491394	0.00000	0.00000	-38.169061 C		
0.00007313	10386.	142026173.	11.7554062	0.0008596	-0.001773
2.7844646	0.00000	0.00000	-38.817179 C		
0.00007438	10555.	141915155.	11.7628393	0.0008749	-0.001803
2.8193322	0.00000	0.00000	-39.464688 C		

0.00007938	11229.	141466733.	11.7929112	0.0009361	-0.001921
2.9541900	0.00000	0.00000	-42.048555 C		
0.00008438	11898.	141011164.	11.8235419	0.0009976	-0.002040
3.0815791	0.00000	0.00000	-44.622333 C		
0.00008938	12561.	140548189.	11.8547531	0.0010595	-0.002158
3.2013767	0.00000	0.00000	-47.185724 C		
0.00009438	13220.	140077537.	11.8865679	0.0011218	-0.002276
3.3134545	0.00000	0.00000	-49.738412 C		
0.00009938	13670.	137558586.	11.8489463	0.0011775	-0.002400
3.4063567	0.00000	0.00000	-50.000000 CY		
0.0001044	13913.	133297940.	11.7487715	0.0012263	-0.002531
3.4820231	0.00000	0.00000	-50.000000 CY		
0.0001094	14130.	129187288.	11.6495435	0.0012742	-0.002663
3.5512579	0.00000	0.00000	-50.000000 CY		
0.0001144	14325.	125247621.	11.5520683	0.0013213	-0.002796
3.6144861	0.00000	0.00000	-50.000000 CY		
0.0001194	14502.	121484452.	11.4582374	0.0013678	-0.002930
3.6722605	0.00000	0.00000	-50.000000 CY		
0.0001244	14663.	117896074.	11.3681425	0.0014139	-0.003064
3.7248207	0.00000	0.00000	-50.000000 CY		
0.0001294	14810.	114472841.	11.2795224	0.0014593	-0.003198
3.7720717	0.00000	0.00000	-50.000000 CY		
0.0001344	14944.	111207642.	11.1934120	0.0015041	-0.003333
3.8143740	0.00000	0.00000	-50.000000 CY		
0.0001394	15066.	108099638.	11.1110311	0.0015486	-0.003469
3.8520596	0.00000	0.00000	-50.000000 CY		
0.0001444	15180.	105140552.	11.0322650	0.0015928	-0.003605
3.8852571	0.00000	0.00000	-50.000000 CY		
0.0001494	15284.	102322946.	10.9561859	0.0016366	-0.003741
3.9140022	0.00000	0.00000	-50.000000 CY		
0.0001544	15380.	99627242.	10.8809311	0.0016797	-0.003878
3.9382765	0.00000	0.00000	-50.000000 CY		
0.0001594	15469.	97058787.	10.8091013	0.0017227	-0.004015
3.9584453	0.00000	0.00000	-50.000000 CY		
0.0001644	15551.	94609180.	10.7405055	0.0017655	-0.004152
3.9745741	0.00000	0.00000	-50.000000 CY		
0.0001694	15628.	92270875.	10.6749807	0.0018081	-0.004289
3.9867206	0.00000	0.00000	-50.000000 CY		
0.0001744	15700.	90036212.	10.6120192	0.0018505	-0.004427
3.9949251	0.00000	0.00000	-50.000000 CY		
0.0001794	15766.	87893958.	10.5492972	0.0018923	-0.004565
3.9992237	0.00000	0.00000	-50.000000 CY		
0.0001844	15828.	85844132.	10.4893810	0.0019340	-0.004704
3.9969772	0.00000	0.00000	-50.000000 CY		
0.0001894	15885.	83881530.	10.4321928	0.0019756	-0.004842
3.9998118	0.00000	0.00000	-50.000000 CY		
0.0001944	15939.	82001155.	10.3777011	0.0020172	-0.004980
3.9978193	0.00000	0.00000	-50.000000 CY		
0.0001994	15989.	80195264.	10.3253312	0.0020586	-0.005119
3.9999434	0.00000	0.00000	-50.000000 CY		

0.0002044	16036.	78462073.	10.2754001	0.0021000	-0.005257
3.9978483	0.00000	0.00000	-50.000000 CY		
0.0002094	16079.	76796593.	10.2259935	0.0021411	-0.005396
3.9999086	0.00000	0.00000	-50.000000 CY		
0.0002144	16120.	75194131.	10.1779621	0.0021819	-0.005536
3.9970000	0.00000	0.00000	-50.000000 CY		
0.0002194	16157.	73651690.	10.1316367	0.0022226	-0.005675
3.9995928	0.00000	0.00000	-50.000000 CY		
0.0002244	16193.	72170409.	10.0875334	0.0022634	-0.005814
3.9957261	0.00000	0.00000	-50.000000 CY		
0.0002294	16227.	70742291.	10.0450210	0.0023041	-0.005953
3.9985140	0.00000	0.00000	-50.000000 CY		
0.0002344	16258.	69368267.	10.0042016	0.0023447	-0.006093
3.9999648	0.00000	0.00000	-50.000000 CY		
0.0002394	16288.	68043830.	9.9651745	0.0023854	-0.006232
3.9958175	0.00000	0.00000	-50.000000 CY		
0.0002444	16316.	66766204.	9.9274778	0.0024260	-0.006371
3.9988430	0.00000	0.00000	-50.000000 CY		
0.0002494	16343.	65534446.	9.8907619	0.0024665	-0.006511
3.9999878	0.00000	0.00000	-50.000000 CY		
0.0002544	16367.	64341289.	9.8537798	0.0025066	-0.006651
3.9950242	0.00000	0.00000	-50.000000 CY		
0.0002594	16390.	63190041.	9.8181740	0.0025466	-0.006791
3.9982017	0.00000	0.00000	-50.000000 CY		
0.0002644	16412.	62077971.	9.7837372	0.0025866	-0.006931
3.9997949	0.00000	0.00000	-50.000000 CY		
0.0002694	16432.	61001973.	9.7504661	0.0026265	-0.007071
3.9959403	0.00000	0.00000	-50.000000 CY		
0.0002744	16452.	59963095.	9.7187118	0.0026666	-0.007211
3.9960484	0.00000	0.00000	-50.000000 CY		
0.0003044	16551.	54378151.	9.5472479	0.0029059	-0.008052
3.9994904	0.00000	0.00000	-50.000000 CY		
0.0003344	16623.	49713725.	9.3958159	0.0031417	-0.008896
3.9999191	0.00000	0.00000	-50.000000 CY		
0.0003644	16677.	45768736.	9.2671097	0.0033767	-0.009741
3.9996325	0.00000	0.00000	-50.000000 CY		
0.0003944	16719.	42393688.	9.1556383	0.0036108	-0.010587
3.9971665	0.00000	0.00000	-50.000000 CY		
0.0004244	16750.	39469091.	9.0522872	0.0038416	-0.011436
3.9870881	0.00000	0.00000	-50.000000 CY		

Summary of Results for Nominal Moment Capacity for Section 2

Moment values interpolated at maximum compressive strain = 0.003 or maximum developed moment if pile fails at smaller strains.

Load Axial Thrust Nominal Mom. Cap. Max. Comp. Max.

Tens. No. Strain	kips	in-kip	Strain
1 -0.00838832	0.000	16579.943	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial Stiff.	Resist.	Nominal	Nominal	Ult. (Fac)	Ult. (Fac)	Bend.
Load Ult Mom	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No. kip-in^2		kips	in-kips	kips	in-kips	
1 141767436	0.65	0.0000	16580.	0.0000	10777.	
1 140636460	0.75	0.0000	16580.	0.0000	12435.	
1 111735012	0.90	0.0000	16580.	0.0000	14922.	

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	1bs	lbs

1	15.0000	0.00	N.A.	No	0.00	5411.
2	17.0000	1.8881	Yes	No	5411.	7752.
3	18.0000	2.8880	Yes	No	13163.	129086.
4	26.0000	10.8592	No	No	142249.	88785.
5	29.0000	14.9693	No	No	231034.	1561936.
6	48.0000	36.4805	Yes	No	1792970.	636386.
7	53.0000	36.2967	No	No	2429356.	1060475.
8	58.0000	41.4336	No	No	3489831.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

0.00

0.00 130.2500

			•	0) 1	,		
Applied mon	e at pile he ment at pile st load on p	head			= = =	0.0 in-lbs	
•	Deflect. Spr. Distr	•	Shear	Slope	Total	Bending	Soil
	у		Force	S	Stress	Stiffness	р
feet	Lat. Lo inches	in-lbs	lbs	radians	psi*	lb-in^2	
	lb/inch						
	3.4971		2.36E-08	-0.01147	1.37E-08	7.74E+10	
0.7500	0.00 7. 3.3939 0.00 26.	302.2312	154.4063	-0.01147	0.5132	7.74E+10	
	3.2907		512.3813	-0.01147	4.7197	7.74E+10	
	0.00 52.						
	3.1875		1103.	-0.01147	16.1750	7.74E+10	
	0.00 78.		1026	0 01147	20 4240	7.74E+10	
	3.0842 0.00 104.		1920.	-0.0114/	30.4349	/./46+10	
	2.9811		2982.	-0.01146	75.0550	7.74E+10	

	2.8779 0.00 156			-0.01146	129.5909	7.74E+10
5.2500	2.7749 0.00 181	121072.	5792.	-0.01144	205.5984	7.74E+10
6.0000	2.6719 0.00 207	180569.	7546.	-0.01143	306.6331	7.74E+10
6.7500		256905.	9536.	-0.01141	0.00	4.15E+11
0.00	0.00 260	.8833		-0.01141		
a aa	0 00 297	1250		-0.01140		4.15E+11
0 00	0 00 212	0667		-0.01139 -0.01137		
0.00	0.00 340	.5083				
0.00	0.00 367	.0500	23068.			4.13E+11
0.00	0.00 393	.5917		-0.01133 -0.01130		
0.00	0.00 420	.1333		-0.01126		
0.00	0.00 446	.6750		-0.01122		
0.00	0.00 473	2167		-0.01117		
0.00	0.00 499	.7583		-0.01106		
0.00	0.00 523	.0698		-0.01087		1.46E+11
16.5000		3748140.		-0.01066	0.00	1.46E+11
17.2500		4253056.	56677.	-0.01041	0.00	1.46E+11
-400.553 18.0000	1.0657	528.4000 4768327.	57159.	-0.01013	0.00	1.45E+11
-549.903 18.7500	0.9759	529.0523 5281910.	56499.	-0.00982	0.00	1.45E+11
-655.172 19.5000 -770.596		529.4188 5785306. 529.7375	54849.	-0.00948	0.00	1.45E+11
20.2500		6269194.	52073.	-0.00910	0.00	1.45E+11
21.0000		6722625.	47993.	-0.00870	0.00	1.44E+11
21.7500		7133059.	42401.	-0.00826	0.00	1.44E+11
22.5000		7485843.	35197.	-0.00781	0.00	1.44E+11

23.2500 0.5082 7766612.	26685.	-0.00733	0.00	1.44E+11
-1534. 27161. 531.3312 24.0000 0.4445 7966180.	17230.	-0.00684	0.00	1.44E+11
-1630. 33015. 531.6500 24.7500 0.3852 8076749. -1718. 40150. 531.9688	6947.	-0.00633	0.00	1.43E+11
25.5000 0.3304 8091226. -1789. 48716. 532.2875	-4045.	-0.00583	0.00	1.43E+11
26.2500 0.2803 8003936. -628.316 20175. 532.6063	-10130.	-0.00532	0.00	1.44E+11
27.0000 0.2346 7908894. -561.010 21518. 532.9250	-10687.	-0.00482	0.00	1.44E+11
27.7500 0.1935 7811576. -529.189 24617. 533.2438	-10795.	-0.00433	0.00	1.44E+11
28.5000 0.1567 7714588. -499.587 28694. 533.5625		-0.00384	0.00	1.44E+11
29.2500 0.1243 7620351. -1961. 142008. 533.8813	-16892.	-0.00336	0.00	1.44E+11
30.0000 0.09614 7410530. -1920. 179735. 534.1814		-0.00289	0.00	1.44E+11
30.7500 0.07218 7088460. -1864. 232372. 534.3700			0.00	1.44E+11
31.5000 0.05221 6658716. -1782. 307224. 534.5400			0.00	1.44E+11
32.2500 0.03597 6127915. -1442. 360774. 534.7100			0.00	1.45E+11
33.0000 0.02317 5523630. -969.787 376763. 534.8800			0.00	1.45E+11
33.7500 0.01345 4884117. -586.958 392841. 535.0500 34.5000 0.00645 4240399.	-71291. -70435.		0.00 0.00	1.45E+11 1.46E+11
-293.149 409010. 535.2200 35.2500 0.00181 3616289.		-4.04E-04	0.00	1.46E+11
-85.599 425269. 535.3900 36.0000 -8.21E-04 3028613.				
40.3094 441617. 535.5600 36.7500 -0.00178 2487581.		-7.89E-05	0.00	4.09E+11
90.4970 458056. 535.7300 37.5000 -0.00224 1997274.		-2.97E-05	0.00	4.10E+11
118.2362 474585. 535.9000 38.2500 -0.00231 1559952.		9.28E-06	0.00	4.12E+11
126.1957 491203. 536.0700 39.0000 -0.00208 1176274.	-39691.	3.92E-05	0.00	4.13E+11
117.1149 507912. 536.2400 39.7500 -0.00161 845517.	-33915.	6.12E-05	0.00	4.14E+11
93.7114 524710. 536.4100 40.5000 -9.74E-04 565801.	-28401.	7.65E-05	0.00	4.14E+11
58.6066 541598. 536.5800 41.2500 -2.30E-04 334294.	-23243.	8.63E-05	0.00	4.15E+11
14.2620 558576. 536.7500				

42.0000		-18515.	9.15E-05	0.00	4.15E+11
-37.070	575645. 536.9200	14260	0 345 05	0.00	4 455.44
42.7500		-14269.	9.31E-05	0.00	4.15E+11
-93.381	592803. 537.0900	10542	0 205 05	0.00	4 155.11
43.5000	0.00226 -109414.	-10542.	9.20E-05	0.00	4.15E+11
-152.923 44.2500	610051. 537.2600 0.00307 -188729.	-7358.	8.87E-05	0.00	4.15E+11
-214.222	627389. 537.4300	-/330.	0.0/6-05	0.00	4.136+11
45.0000	0.00385 -241865.	-4727.	8.41E-05	0.00	4.15E+11
-276.069	644817. 537.5431	-4/2/.	0.416-03	0.00	4.136711
45.7500	0.00459 -273820.	-2652.	7.85E-05	0.00	4.15E+11
-337.511	662335. 537.3150	-2052.	7.0JL-0J	0.00	4.136711
46.5000	0.00527 -289592.	-1126.	7.24E-05	0.00	4.15E+11
-397.822	679943. 537.0300	-1120.	7.24L-03	0.00	4.136711
47.2500	0.00589 -294088.	-138.308	6.60E-05	0.00	4.15E+11
-456.470	697641. 536.7450	130.300	0.002 03	0.00	+.1JL:111
48.0000		157.5013	5.97E-05	0.00	4.15E+11
-550.999	768317. 536.4600	137.3013	3.376 03	0.00	+.1JL:111
48.7500	0.00696 -291253.	-232.785	5.34E-05	0.00	4.15E+11
-608.366	786345. 536.1750	232.703	3.312 03	0.00	1.132.11
49.5000	0.00741 -296272.	-1129.	4.70E-05	0.00	4.15E+11
-662.763	804463. 535.8900	,	, 02 03	3.33	.,132:12
50.2500	0.00781 -311567.	-2501.	4.04E-05	0.00	4.15E+11
-713.772	822672. 535.6050				
51.0000	0.00814 -341295.	-4318.	3.33E-05	0.00	4.15E+11
-760.773	840970. 535.3200				
51.7500	0.00841 -389283.	-6537.	2.54E-05	0.00	4.15E+11
-802.850	859358. 535.0350				
52.5000	0.00860 -458965.	-9110.	1.62E-05	0.00	4.15E+11
-838.685	877836. 534.7500				
53.2500	0.00870 -553266.	-8530.	5.18E-06	0.00	4.14E+11
-101.612	105124. 534.4650				
54.0000	0.00869 -612505.	-4645.	-7.48E-06	0.00	4.14E+11
-103.805	107485. 534.1800				
54.7500	0.00856 -636884.	-776.710	-2.11E-05	0.00	4.14E+11
-104.543	109857. 533.8950				
55.5000		3090.	-3.48E-05	0.00	4.14E+11
-103.671					
56.2500		6970.	-4.79E-05	0.00	4.14E+11
-101.115	114635. 533.3250				
57.0000		10877.	-5.97E-05	0.00	4.14E+11
-96.891	117042. 533.0400				
57.7500		14827.	-6.93E-05	0.00	4.15E+11
-91.115	119460. 532.7550				
58.5000		16362.	-7.60E-05	0.00	4.15E+11
-632.992	918371. 532.4700	45=00	7 055 05	2 25	4 4 5 5 5 5
59.2500		15729.	-7.95E-05	0.00	4.15E+11
-572.452	937356. 532.1850	14463	0 005 05	0.00	4 455.44
60.0000		14463.	-8.00E-05	0.00	4.15E+11
-507.091	956431. 265.9856				

60.7500 0.00406	169384.	11399.	-7.76E-05	0.00	4.15E+11
-439.736 975595. 61.5000 0.00337	0.00 254166.	7742.	-7.30E-05	0.00	4.15E+11
-373.021 994850.	0.00	7742.	-7.30E-03	0.00	4.136+11
62.2500 0.00274	308732.	4672.	-6.69E-05	0.00	4.15E+11
-309.003 1014195.	0.00	.0,2,	0.001	0.00	
63.0000 0.00217	338270.	2160.	-5.99E-05	0.00	4.15E+11
-249.209 1033630.	0.00				
63.7500 0.00166	347621.	162.9436	-5.25E-05	0.00	4.15E+11
-194.690 1053155.	0.00				
64.5000 0.00123	341203.	-1371.	-4.50E-05	0.00	4.15E+11
-146.077 1072769.	0.00				
65.2500 8.54E-04	322952.	-2494.	-3.78E-05	0.00	4.15E+11
-103.649 1092474.	0.00				
66.0000 5.45E-04	296306.	-3264.	-3.11E-05	0.00	4.15E+11
-67.392 1112268.	0.00				
66.7500 2.95E-04	264201.	-3734.	-2.50E-05	0.00	4.15E+11
-37.055 1132153.	0.00				
67.5000 9.54E-05	229094.	-3956.	-1.96E-05	0.00	4.15E+11
-12.210 1152127.	0.00	2074	1 -1- 0-		
68.2500 -5.91E-05	192999.	-3976.	-1.51E-05	0.00	4.15E+11
7.6982 1172192.	0.00	2024			
69.0000 -1.76E-04	157527.	-3836.	-1.13E-05	0.00	4.15E+11
23.3084 1192346.	0.00	2572	0 005 06	0.00	4 455 44
69.7500 -2.62E-04	123943.	-3573.	-8.22E-06	0.00	4.15E+11
35.3038 1212590.	0.00	2244	5 075 06	0.00	4 455.44
70.5000 -3.24E-04	93219.	-3214.	-5.87E-06	0.00	4.15E+11
44.3770 1232924.	0.00	2704	4 445 06	0.00	4 455.44
71.2500 -3.68E-04	66089.	-2784.	-4.14E-06	0.00	4.15E+11
51.2009 1253349.	0.00	2200	2 065 06	0.00	4 155.11
72.0000 -3.98E-04 56.4023 1273863.	43106.	-2300.	-2.96E-06	0.00	4.15E+11
	0.00	1774	2 225 06	0.00	4 155.11
72.7500 -4.21E-04	24692.	-1774.	-2.22E-06	0.00	4.15E+11
60.5387 1294467.	0.00	1212	1 025 06	0.00	/ 1FF.11
73.5000 -4.39E-04 64.0782 1315161.	11182. 0.00	-1213.	-1.83E-06	0.00	4.15E+11
74.2500 -4.54E-04	2862.	-621.231	-1.68E-06	0.00	4.15E+11
67.3793 1335945.	2862. 0.00	-021.231	-1.005-00	0.00	4.130+11
75.0000 -4.69E-04	0.00	0.00	-1.65E-06	0.00	4.15E+11
70.6721 678409.	0.00	6.66	-1.036-00	0.00	4.175+11
70.0721 070403.	0.00				

^{*} This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Pile-head deflection = 3.49711433 inches Computed slope at pile head -0.0114689 radians 8091226. inch-lbs Maximum bending moment Maximum shear force = -71291. lbs

Depth of maximum bending moment = 25.50000000 feet below pile head

Depth of maximum shear force = 33.75000000 feet below pile head Number of iterations 32

Number of zero deflection points = 3 Pile deflection at ground = 1.44886133 inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear 0. lbs Moment 0. in-lbs Axial Load = 0. lbs

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
75.00000	3.49711433	8091226.	-71291.
71.25000	3.46654792	8073035.	-71488.
67.50000	3.45600044	8096062.	-71638.
63.75000	3.53147571	8084389.	-72024.
60.00000	3.48028589	8100260.	-70653.
56.25000	3.45833270	8092216.	-70566.
52.50000	3.51319670	8099099.	-71279.
48.75000	3.46918121	8073759.	-70533.
45.00000	3.51732141	8087643.	-71852.
41.25000	3.49306634	8097743.	-77740.
37.50000	6.45340168	9338060.	-155640.

Summary of Pile-head Responses for Conventional Analyses -----

Definitions of Pile-head Loading Conditions:

```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
```

Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs

Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Moment						
Case Type Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in
Pile in Pile						
No. 1 Load 1	2	Load 2	1bs	inches	radians	lbs
in-lbs						
1 V, lb 0.00	M, in-lb	0.00	0.00	3.4971	-0.01147	
-71291. 8091226.	•					

Maximum pile-head deflection = 3.4971143334 inches

Maximum pile-head rotation = -0.0114689459 radians = -0.657122 deg.

Results of Push-over Analysis

Computation Methods Used for Push-over Analyses:

- Computations use both pinned-head and fixed-head conditions
- Computations use a logarithmic distribution of pile-head deflections

Number of push-over steps = 20
Minimum pushover deflection = 0.0001000 in
Maximum pushover deflection = 10.000000 in
Axial thrust force for pushover analysis = 0.0000 lbs

Pile-head	Pile-head	Pile-head	Max Moment	Max Shear	Depth to	Depth to
Fixity	Deflection	Shear	in Pile	in Pile	Max Moment	Max
Condition	inches	lbs	in-lb(abs)	lbs (abs)	feet	feet
- Pin-head	1.00E-04	-12761.	1184557.	12761.	12.0000	
Pin-head	2.3139	13150.	6010927.	41026.	22.5000	
Pin-head	3.6673	22568.	8634837.	65770.	23.2500	
Pin-head	4.6276	28243.	1.03E+07	83699.	24.0000	
Pin-head	5.3725	32186.	1.16E+07	95501.	24.0000	
	Fixity Condition Pin-head Pin-head Pin-head Pin-head	Fixity Deflection Condition inches Pin-head 1.00E-04 Pin-head 2.3139 Pin-head 3.6673 Pin-head 4.6276	Fixity Deflection Shear Condition inches lbs Pin-head 1.00E-04 -12761. Pin-head 2.3139 13150. Pin-head 3.6673 22568. Pin-head 4.6276 28243.	Fixity Deflection Shear in Pile Condition inches lbs in-lb(abs)	Fixity Deflection Shear in Pile in Pile Condition inches lbs in-lb(abs) lbs (abs) Pin-head 1.00E-04 -12761. 1184557. 12761. Pin-head 2.3139 13150. 6010927. 41026. Pin-head 3.6673 22568. 8634837. 65770. Pin-head 4.6276 28243. 1.03E+07 83699.	Fixity Deflection Shear in Pile in Pile Max Moment Condition inches lbs in-lb(abs) lbs (abs) feet Pin-head 1.00E-04 -12761. 1184557. 12761. 12.0000 Pin-head 2.3139 13150. 6010927. 41026. 22.5000 Pin-head 3.6673 22568. 8634837. 65770. 23.2500 Pin-head 4.6276 28243. 1.03E+07 83699. 24.0000

6	Pin-head	5.9811	35090.	1.25E+07	106263.	24.7500	
33.7500	Pin-head	6.4956	37296.	1.33E+07	115302.	24.7500	
33.7500	Pin-head	6.9414	38941.	1.39E+07	121116.	24.7500	
34.5000	Pin-head	7.3345	40023.	1.42E+07	126109.	25.5000	
34.5000 10	Pin-head	7.6862	40739.	1.45E+07	131208.	25.5000	
34.5000 11 34.5000	Pin-head	8.0044	41310.	1.48E+07	133691.	25.5000	
12 34.5000	Pin-head	8.2948	41792.	1.49E+07	135679.	25.5000	
13 34.5000	Pin-head	8.5620	42178.	1.51E+07	137334.	25.5000	
14 34.5000	Pin-head	8.8094	42505.	1.52E+07	138713.	25.5000	
15 34.5000	Pin-head	9.0397	42808.	1.53E+07	139892.	25.5000	
16 35.2500	Pin-head	9.2551	43063.	1.54E+07	141031.	26.2500	
17 35.2500	Pin-head	9.4575	43270.	1.55E+07	142858.	26.2500	
18 35.2500	Pin-head	9.6483	43439.	1.56E+07	144677.	26.2500	
19 35.2500	Pin-head	9.8288	43628.	1.57E+07	146052.	26.2500	
20 35.2500	Pin-head	10.0000	43800.	1.57E+07	146882.	26.2500	
21 0.00	Fixed-head	1.00E-04	-17828.	1041744.	17828.	13.5000	
22 16.5000	Fixed-head	2.3139	47972.	9057393.	71422.	0.00	
23 34.5000	Fixed-head			1.35E+07		0.00	
24 35.2500	Fixed-head	4.6276	83101.	1.62E+07	121147.	0.00	
25 36.0000	Fixed-head	5.3725	91955.	1.82E+07	137641.	0.00	
26 36.0000	Fixed-head	5.9811	97881.	1.97E+07	145940.	0.00	
27 36.0000	Fixed-head	6.4956	102671.	2.10E+07	150208.	0.00	
28 36.0000	Fixed-head	6.9414	100556.	2.21E+07	153204.	0.00	
29 36.7500	Fixed-head	7.3345	109863.	2.30E+07	156556.	0.00	
30 36.7500	Fixed-head	7.6862	112683.	2.38E+07	158955.	0.00	

31	Fixed-head	8.0044	115005.	2.45E+07	160255.	0.00
36.7500						
32	Fixed-head	8.2948	116868.	2.50E+07	161234.	0.00
36.7500 33	Fixed-head	8.5620	118454.	2.55E+07	162002.	0.00
36.7500	. Inca incad	0.3020	2201311	2.332.07	101001.	0.00
34	Fixed-head	8.8094	119732.	2.59E+07	162600.	0.00
36.7500			400740		442044	
35 36.7500	Fixed-head	9.0397	120760.	2.62E+07	163064.	0.00
36.7500	Fixed-head	9.2551	121569.	2.64E+07	163421.	0.00
36.7500						
37	Fixed-head	9.4575	122184.	2.66E+07	163685.	0.00
36.7500						
38 36.7500	Fixed-head	9.6483	122591.	2.67E+07	163735.	0.00
30.7300	Fixed-head	9.8288	122846.	2.68E+07	163733.	0.00
36.7500	. Inca incad	3.0200	1220.01	2.002.07	203733.	0.00
40	Fixed-head	10.0000	122875.	2.68E+07	163716.	0.00
36.7500						

^{*} WARNING: Some values of computed curvature exceeded the maximum curvature calculated or entered by the user
Fixed-head Condition Step = 40 Node = 42

The analysis ended normally.

Appendix D Geotechnical Engineering Design Checklist

I. Geot	I. Geotechnical Design Checklists				
Project:	FUL-20A-19.20	PDP Path:			
PID:	119890	Review Stage: 3	3		

Checklist	Included in This Submission
II. Reconnaissance and Planning	
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	
IV. A. Foundations of Structures	
IV. B. Retaining Wall	✓
V. A. Landslide Remediation	✓
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Geotechnical Profile	
VI. D. Geotechnical Reports	✓

C-R-S:	FUL-20A-19.20 PID: 119890	Reviewer:	M. Brown	Date:	4/21/2025
	<u> </u>	1		ı	
	If you do not have a retaining wall on the p	roject, you d	lo not have to fill	out this che	ecklist.
Soil Dat	ta and Preliminary Calculations	(Y/N/X)	Notes:		
1	Has a justification study been performed to	(, , ,			
	determine the necessity of a wall as opposed to				
	ROW purchase or other project alternatives?	X			
	, , ,				
2	Have the necessary soil strength parameters and				
	unit weights been determined?	Y			
	Check method used:		1		
	laboratory shear tests	√	1		
	estimation from SPT or field tests	√	1		
3	Has the groundwater elevation been	,,	Groundwater me	easured in b	orings
	determined?	Y			
4	Have the proper loading conditions been	,,			
	determined?	Y			
a.	If yes, check which loading conditions ap	ply:	1		
	Backfill (Active Earth Pressure Loading):	√]		
	Backfill (Apparent Earth Pressure (AEP)		1		
	Loading for Ground Anchors):				
	Backfill (At-Rest Earth Pressure Loading):				
	Backfill (Flat, No Slope):	✓			
	Backfill (Infinite Slope):				
	Backfill (Broken Back Slope):				
	Earth Surcharge:	✓			
	Live Load Surcharge:	√			
	Other (describe):				
5	Have the correct Load Factors, Load		Followed guidan	ce in GDM 9	00 and 1500
	Combinations, and Limit States been considered,	V			
	per AASHTO LRFD 9th Ed. Articles 3.4.1, 10.5,	ī			
	and 11.5?				
6	Are earth pressure loads inclined at the soil-		CHECK		
	structure interaction friction angle, δ and has δ				
	been determined per BDM 307.1.1?				
7	Have the correct Resistance Factors been		Per GDM 900 and	d 15000	
	considered, per AASHTO LRFD 9th Ed. Articles	Υ			
	10.5 and 11.5?				
8	If applicable, has the influence of groundwater		Used saturated u		•
	been taken into account with regards to soil unit	Y	weights, and gro	undwater p	ressure.
	weights and active pressures?	'			
9	Has the Coulomb method been utilized to	Υ			
	determine the lateral earth pressure?	·			

10 For preliminary wall design, have the design criteria and wall type selection process been followed as instructed in BDM 201.1.2.5? 11 Was an economic analysis performed to evaluate the cost benefits of the chosen wall type compared to others? 12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? C. limiting eccentricity and overturning resistance? Analyze moment equilibrium about Y Overturning per GDM 900 and 1500	
followed as instructed in BDM 201.1.2.5? 11 Was an economic analysis performed to evaluate the cost benefits of the chosen wall type compared to others? 12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? X C. limiting eccentricity and overturning Overturning per GDM 900 and 1500	
followed as instructed in BDM 201.1.2.5? 11 Was an economic analysis performed to evaluate the cost benefits of the chosen wall type compared to others? 12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? X C. limiting eccentricity and overturning Overturning per GDM 900 and 1500	
evaluate the cost benefits of the chosen wall type compared to others? 12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? X C. limiting eccentricity and overturning Verturning per GDM 900 and 1500	
evaluate the cost benefits of the chosen wall type compared to others? 12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? X C. limiting eccentricity and overturning Verturning per GDM 900 and 1500	
type compared to others? 12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? X C. limiting eccentricity and overturning V V Overturning per GDM 900 and 1500	
12 Were representative sections analyzed for the entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? C. limiting eccentricity and overturning X X Overturning per GDM 900 and 1500	
entire length of the retaining wall for the following: a. bearing resistance? b. sliding resistance? X c. limiting eccentricity and overturning Y V V Overturning per GDM 900 and 1500	
following: a. bearing resistance? b. sliding resistance? c. limiting eccentricity and overturning Overturning per GDM 900 and 1500	
a. bearing resistance? X b. sliding resistance? X c. limiting eccentricity and overturning Overturning per GDM 900 and 1500	
b. sliding resistance? X c. limiting eccentricity and overturning Overturning per GDM 900 and 1500	
c. limiting eccentricity and overturning Overturning per GDM 900 and 1500	
1	
resistance? Analyze moment equilibrium about Y	
toe for non-gravity cantilever walls.	
d. total and differential settlement? X	
e. overall (global) stability?	
13 If poor foundation soils are present, has a	
solution been determined with respect to the X	
following:	
a. excessive settlement?	
b. inadequate bearing resistance?	
c. inadequate sliding resistance?	
d. overall (global) instability?	
14 For non-proprietary walls, each wall type has	
design recommendations which need to be	
determined. For the wall type being evaluated,	
have the following design recommendations	
been determined by accepted design methods	
or, where applicable, FHWA design guidelines:	
a. Rigid Gravity and Semigravity footing width	
and elevation, maximum factored Service and	
Strength Limit State bearing pressures,	
factored bearing resistance (BDM 307.1.5 &	
307.2)	
b. Drilled Shafts - diameter, spacing, embedment,	
arrangement and percent reinforcement,	
maximum moment and lateral shear,	
maximum deflection (see BDM 307.6)	
c. Soldier Pile -pile size and type, drilled hole	
diameter, embedment, spacing, lagging design,	
facing, maximum moment and lateral shear,	
section modulus, maximum deflection	

Design		(Y/N/X)	Notes:
d.		<u> </u>	
<u>.</u>	moment and lateral shear, section modulus,		
	maximum deflection (BDM 307.7.1)		
	maximum deflection (BDIVI 307.7.1)		
	Collular tune maximum factored Carvice and		
e.	,, ,		
	Strength Limit State bearing pressures,		
	factored bearing resistance, fill material (BDM		
	307.7.2)		
f.	, , ,		
	wale design, anchor inclination and minimum		
	length, type of anchor, pile size, type, spacing,		
	and embedment, maximum moment and		
	lateral shear, section modulus, lagging design,		
	facing (BDM 307.8)		
g.	Soil Nail - nail size, spacing, inclination, and		
	length, loading per nail, facing (BDM 307.9)		
15	Has the need for load testing of the retaining	.,	Load testing not necessary
	wall elements been evaluated?	Χ	
а.	If needed, have details and plan notes for load		
	testing been included in the plans?		
16	Proprietary wall designs require a special process		Not a proprietary wall
	for detail design, as outlined in BDM 307.3 and		
	307.4. Has this procedure been followed for this	Χ	
	project?		
17	Temporary walls - have the same design		Not a temporary wall
1,	requirements as permanent walls of the same		wan a temporary wan
	type been followed, except the design service	X	
	life is no more than three years (BDM 307.10)?	^	
	ille is no more than three years (BDIVI 307.10)!		
10	The process and smallton of materials helpind the		
18	The presence and quality of water behind the		
	wall structure and in the backfill can be a major		
	source of overloading and failure.		
a.	, , ,		Curb and gutter keeps surface water from
	been accounted for in the drainage system?		behind wall. Groundwater can flow between
			drilled shafts.
b.			Curb and gutter.
	included in the detail wall design?		
c.			Groundwater is typically below continuous
	additional drainage been added to control the		retained portion of wall (plug piles).
	effect of this water source on the wall?		
19	Have the effects of the wall design and		
	construction procedure been determined and		
	accounted for on the construction schedule?		
			•

Design		(Y/N/X)	Notes:
20	Has the effect of the wall design and construction been evaluated with regard to structures (e.g., bridges, culverts, buildings, utilities), which may be subject to unusual stresses or require special design or construction considerations?		
Plans a	and Contract Documents	(Y/N/X)	Notes:
21	Have all the necessary notes, specifications, special provisions, and details for the construction of the wall system been included in the plans?	Υ	
22	Have the need, location, type, plan notes, and reading schedule for any instrumentation been determined and included in the plans?	Υ	
	Check the types of instrumentation specified:]
	settlement cells		
	settlement platforms		
	inclinometers	✓]
	monitoring wells / piezometers]
	load cells]
	strain gages]
	other (describe other types)		

C-R-S:	FUL-20A-19.20 PI	D : 119890	Reviewer:	M. Brown	Date:	4/21/2025
	If you do not have a landslide r	emediation on t	he project. v	ou do not have to	fill out this	s checklist.
Explora			(Y/N/X)	Notes:	<i>J • • • • • • • • • • • • • • • • • •</i>	
1	Is the site included in the GHMS/	Collector	(171471)			
	Landslide Inventory?					
	If yes, provide the rating.					
2	Has a site reconnaissance been co	onducted to		Site was previous	ly attempte	ed to be repaired
	define the limits of the landslide?		Y	with riprap and sh		,
	If yes, check the visible signs of	bserved:	<u>!</u>	- i ' '	•	ıring Sep 2024 site
	cracks in pavement			visit.		
	bulging toe			Guardrail signfica	ntly curved	toward downslope
	sloughed slopes		√	and dropped.		
	scarp		√	Curb is separating	g from edge	of pavement.
	stream channel or ditch pinch	es]		
	hydrophytic vegetation]		
	rotated or dropped guardrail		✓			
	bent, cracked, or crushed pipe	, culvert, or				
	other structures					
	water seepage, flow from em	oankment, or				
	ice]		
	leaning, curved, J-shaped, def	ormed, or fallen				
	trees or power poles			_		
	deflection of linear features			1		
	other (describe other visible s		✓			
3	Have a site plan and cross section			1934 plans show	•	
	provided to compare ground surf	ace conditions	Y	creek. Current to	oo and sect	ions provided.
	before and after failure?					
4	Has the history of the landslide a			· '		es taken in 2022 by
	researched, including movement	•	Υ	town to install sho	eet pile and	l riprap on slope.
	maintenance work, pavement dra	ainage, and past				
	corrective measures?					
5	Has a site specific geotechnical ex	•		4 borings drilled in	n July 2024	
	performed to investigate the land	Islide area?	Y			
	Has a groundwater monitoring pr	ogram boon		Groundwater cha	orund durin	ng drilling from
6	performed to identify the phreat	•	NI NI	Groundwater obs		-
	through the landslide area?	c surrace	N	observations duri	O.	
7	Has a landslide failure plane beer	determined		Failure plane esti		
′	from field observations or instrur		Y	scarp and shape of		
	ווסווו וופוע טשאפו אמנוטווא טו ווואנועו	nemanoni	'	Iscarb and snape C	n iailule su	iiace.
				I		

Analysi	is	(Y/N/X)	Notes:
8	Has the landslide mode of failure been	.,	Potential rotational and translational modes
	determined?	Υ	possible.
	Check those that apply:		<u> </u>
	rotational failure	√	1
	translational	✓	7
	block failure		1
	sheet		1
	surface sloughing		7
	slump		1
	other (describe other failure modes)		1
9	Have the subsurface conditions been identified		
	which are the expected source of the failure	Υ	
	mode?		
	Check those that apply:		1
	general shear strength failure of foundation	,	1
	soils	✓	
	loading		1
	along sloped rock surfaces		1
	erosion		1
	through thin, weak soil layers		1
	permeable materials		1
	surface / groundwater		1
	structure		1
	Anthropogenic disturbances		1
	weathering		7
	impeded drainage		1
	other (describe other sources)		1
10	If water (static or flowing) significantly influences		Water in borings is low, no observed seeps on
	the stability of the landslide, has the source of		surface. Potential rapid drawdown scenario
	water been identified, quantified, and water	Υ	could destabilize.
	quality assessed?		
11	Have calculations been performed to determine		FS for stability in existing condition of 1.16,
	the F.S. for stability? Indicate which program and	V	using Spencer method. Preliminary construction
	which analysis method (Spencer, Bishop, etc)	Υ	stability also calculated.
	was used.		
12	Have the following F.S. been met or exceeded,		
	as determined by the calculations, for the given	v	
	stability conditions:	Y	
a.	1.30 for short term (undrained) condition	Υ	2.16
b.	1.30 for long term (drained) condition	Υ	3.18
C.	1.10 for rapid drawdown, flood condition	Υ	2.99
d.		V	2.16 minimum
	structural element	Y	

	andslide Remediation Checklist	/v/N//v\	Notes:
Analys		(Y/N/X)	
13	When differing soil or loading conditions occur		Location with combination of steep slope and
	throughout the landslide area, have sufficient		proximity to observed slope/guardrail
	analyses been completed to evaluate the	Υ	deformation selected.
	stability at locations representative of the most		
	critical conditions?		
Design		(Y/N/X)	Notes:
14	Has a landslide remediation method been	(1/14/7)	Drilled shaft wall with W-beam reinforcement,
1	determined?	Υ	plug piles.
	If yes, check the methods that were		plug plies.
	evaluated and note the chosen remediation:		
	evaluated and note the chosen remediation.		
	benching and regrading (See GDM 800)		
	counter berm and regrading		
	flatten slope]
	geosynthetic reinforced slope]
	install surface / subsurface drainage system		
	shear key (See GDM 800)		
	soil nails or tiebacks		
	walls, sheeting, or drilled shafts	√]
	soil anchoring]
	relocate existing alignments		1
	lightweight fills		1
	soil removal / treatment]
	chemical treatment		1
	Bioengineering		1
	other (describe other methods)		1
15	Based on accepted design practices, and where		Primary design document ODOT GDM Sections
	applicable, adhering to published guidelines and		900 and 1500.
	design recommendations from FHWA, were		
	calculations performed to evaluate the	Υ	
	effectiveness of the chosen solutions?		
16	Has a cost comparison been performed to		
	evaluate a recommended solution compared to	N	
	others?		

Plans a	and Contract Documents	(Y/N/X)	Notes:
17	Have all necessary notes, specifications, and plan details been developed?	Υ	
18	Has the vertical and lateral extent of defined landslide conditions been included on the Cross Sections and Plan and Profile sheets?	Υ	Project limits for landslide remediation included on plans.
19	Has the information obtained from the exploration and analysis been incorporated into the project design?	Υ	
20	Have the need, location, plan notes, and monitoring schedule of instrumentation been determined?	Υ	
21	Have the effects of the stability solution on the construction schedule and maintenance of traffic been accounted for in the plans?	Υ	
22	Have the effects of the original failure and proposed remediation on any structures (e.g., bridges, buildings, culverts, utilities) or adjacent properties been evaluated and solutions to any issues incorporated into final design?		

VI.B. Geotechnical Reports

C-R-S:	FUL-20A-19.20	PID:	119890	Reviewer:	M. Brown	Date:	4/21/2025
Genera				(Y/N/X)	Notes:		
1	Has an electronic copy of all go submissions been provided to Geotechnical Engineer (DGE)?	the Distr		Υ	Final report		
2	Has the first complete version report being submitted been I	of a geot		Y			
3	Subsequent to ODOT's review the complete version of the re report being submitted been I	evised geo	otechnical	Y			
4	Has the boring data been submitted in a native format that is DIGGS (Data Interchange for Geotechnical and Geoenvironmental) compatable? gINT files meet this demand?			Y	gINT files submit	ted with fin	al report
5	Does the report cover format Brand and Identity Guidelines found at http://www.dot.state oh.us/brand/Pages/default.as	Report St e.		Y			
6	Have all geotechnical reports been titled correctly as prescr 706.1 of the SGE?	_		Υ			
Report	Body			(Y/N/X)	Notes:		
7	Do all geotechnical reports be contain the following:	ing subm	itted				
a.	an Executive Summary as de 706.2 of the SGE?	scribed in	n Section	Υ			
b.	an Introduction as described of the SGE?	d in Sectio	on 706.3	Υ			
C.	a section titled "Geology and the Project," as described in the SGE?			Υ			
d.	a section titled "Exploration, Section 706.5 of the SGE?	" as desc	ribed in	Υ			
e.	a section titled "Findings," as Section 706.6 of the SGE?	s describe	ed in	Υ			
f.	a section titled "Analyses and Recommendations," as desc 706.7 of the SGE?		ection	Y			
Append				(Y/N/X)	Notes:		
8	Do all geotechnical reports be contain all applicable Appendi Section 706.8 of the SGE?			Υ			
9	Do the Appendices present a s showing all boring locations as Section 706.8.1 of the SGE?		_	Y			

VI.B. Geotechnical Reports

Appendices		(Y/N/X)	Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 706.8.2 of the SGE?	Υ	No rock
11	Do the Appendices include reports of undisturbed test data as described in Section 706.8.3 of the SGE?	Υ	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 706.8.4 of the SGE?	Υ	