

CLEVELAND: 26285 Broadway Avenue, Units A-1 & A-2, Cleveland, Ohio 44146 - Phone 440-717-1415

October 11, 2024

Mr. Bob Beasley, P.E. ARCADIS 222 S. Main Street, Suite 200 Akron, OH 44308

Reference: Structure Foundation Exploration Report for Replacement of Bridge Numbers HAM-71-1.80 & HAM-71-10.93 Hamilton County, Ohio PID No.: 102790 PGI's Project No. G23006G

Dear Mr. Beasley:

Enclosed please find our Final Structure Foundation Exploration Report for the above referenced project. Our services included geotechnical field exploration, laboratory testing, engineering analysis, and related design and construction recommendations. These services have been provided in accordance with our proposal dated March 27, 2023. It is important that the items under "Limitations" be precisely followed and complied with.

We appreciate the opportunity of working with you on this project and we invite you to contact us at (440) 717-1415 when we can be of further assistance.

Respectfully,

PRO GEOTECH, INC.

5 Sinne

Shan Sivakumaran, P.E. Project Manager/Geotechnical Engineer

Wall Not

Walid I. Najjar, P.E. Senior Geotechnical Engineer

Enclosure G23006G Report/SS/10/11/2024

FINAL STRUCTURE FOUNDATION EXPLORATION REPORT FOR REPLACEMENT OF BRIDGES HAM-71-1.80 & HAM-22-10.93 HAMILTON COUNTY, OHIO PROJECT NO. G23006G AND PID NO.: 102790

PREPARED FOR:

ARCADIS

PREPARED BY:

PRO GEOTECH, INC.

OCTOBER 11, 2024

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	6
	2.1 Project Description	6
	2.2 Scope of Services	
3.0	GEOLOGY AND OBSERVATIONS OF THE PROJECT	9
	3.1 Geology	9
	3.2 Observation of the Project	
4.0	EXPLORATION	
	4.1 Historic and Project Exploration Program	
	4.2 Laboratory Testing Program	
5.0	FINDINGS	
	5.1 Surficial and Subsurface Soil Conditions	
	5.2 Bedrock Conditions	
	5.3 Groundwater Conditions	
6.0	ANALYSIS AND RECOMMENDATIONS	
	6.1 Structure Foundation Systems	
	6.2 Site Seismic Properties	
	6.3 Groundwater Management	
	6.4 Earthwork and Construction Monitoring	
7.0	LIMITATIONS	

LIST OF TABLES

5.2.1	Bedrock Core Information for Project Borings	16
	Point Load Strength Test Results of Rock Core Specimens	
	Compressive Strength Test Results of Rock Core Specimens	
	Bedrock Core Information for Historic Borings	
	Groundwater Information	
6.1.1	Estimated Design Parameters for Bedrock encountered at Boring Locations	22
6.1.2	Estimated Design Parameters for Proposed Column and Pier Drilled Shafts	23
6.1.3	Estimated Weak Rock Parameters for Lateral Load Analyses	24
6.1.4	Estimated Design Parameters for Bridge Pier 3 Walls Footings	
6.1.5	Estimated Design Parameters for Ramp Abutments/R. Walls Footings	27
6.1.6	Summary of Anticipated Settlement for Ramp Abutment and Retaining Walls Footings	28

LIST OF FIGURES

2.1	Project Site L	ocation Map	7
-----	----------------	-------------	---

APPENDICES

A Boring Location Plan
 Project Test Boring Logs
 Rock Core Photographs
 Point Load Strength Test Results of Rock Core Specimens
 Unconfined Compressive Strength of the Rock Core Specimens
 Historic Test Boring Logs
 Test Boring Profile

B Laboratory Test Results

Rock Mass Rating Spreadsheets OGE - HAM-71-1.81 PID 102790 Bedrock Compressive Strength Spreadsheet OGE - HAM-71-1.81 PID 102790 Drilled Shaft Calculation Check Spreadsheet Estimation of Drilled Shaft Resistance and Settlement in Jointed Rock Spreadsheet Calculation Sheets for Load Transfer of Factored Resistance from Side to Base Bearing Capacity Analysis Spreadsheet for Bridge Pier 3 Footing External Stability Calculation Sheets for Ramp Abutment/Retaining Wall by ARC Bearing Capacity Analysis Spreadsheet for Ramp Abutments/R. Walls Footings Settlement Analyses Spreadsheets for Ramp Abutments/Retaining Wall Footings ODOT Design Checklists Laboratory Test Standards ODOT Soil Classification System Bedrock Descriptions

1.0 EXECUTIVE SUMMARY

This report has been prepared for the proposed design and replacement of Bridge numbers HAM-71-1.80 & HAM-22-10.93 in Cincinnati, Hamilton County, Ohio. The proposed replacement structure will consist of Multistory Ramp/Stairway and Pedestrian Bridge. The Multistory Ramp/Stairway will be reinforced concrete slab on cantilevered concrete beams supported on 13 concrete columns. The Bridge will be three simple spans, prefabricated steel truss with concrete deck supported on three (3) wall-type piers. The total length of the Multistory Ramp will be 675 feet. The total length of the bridge from Pier to existing bridge abutment will be 350 feet.

Exploration: Structure foundation exploration was performed in 1964 under the project designation of HAM-71-0157. A total of five (5) historic test borings identified as B-7-1 (B-007-1-64), B-7-2 (B-007-2-64), B-7-3 (B-007-3-64), R-15-2 (B-015-2-64), and R-16-1 (B-016-1-64) are available for this bridge. A total of six (6) project test borings identified as B-001-0-23 through B-006-0-23 were advanced at the project site. Project test borings B-001-0-23 through B-004-0-23 were advanced at the existing parking lot for Ramp/Stairway foundation design purposes. Project test borings B-005-0-23 and B-006-0-23 were advanced within the ODOT Right of Way on both sides of Interstate-71 for bridge foundation design purposes. These test borings were advanced to approximate depths ranging from 22.0 to 60.0 feet below the existing pavement, riprap, or ground surface.

<u>Findings:</u> The subsurface soils encountered in project test borings consisted of both fill and natural soils above the bedrock. Fill soils were encountered in all project test borings with the exception of B-006-0-23 where bedrock was encountered below topsoil. The fill soils were encountered in project test borings B-001-0-23 through B-005-0-23 to depths ranging from 3.0 feet to 38.5 feet below the existing pavement, riprap stone or concrete surface. The bottom of fill soils layer was encountered at approximate elevations ranging from 496.4 feet to 549.0 feet. Fill soils encountered were both cohesive and non-cohesive and consisted of silty clay (A-6b), silt and clay (A-6a), sandy silt (A-4a), coarse and fine sand (A-3a), gravel and stone fragments with sand (A-1-b), asphalt, cinders, or stone fragments (A-1-a), stone fragments with sand and silt (A-2-4), and multiple combinations of concrete, asphalt, brick and stone fragments with sand. The natural soils encountered below fill soil in the project test borings consisted of silt and clay (A-6a), silty clay (A-6b) and clay (A-7-6). Bedrock consisting of shale interbedded limestone was encountered in all project test borings below approximate depths ranging from 0.25 feet (Elevation 564.5 feet) to 49.5 feet (Elevation 485.4 feet) below the existing surface.

The bedrock core samples consisted of gray shale with interbedded limestone. The shale encountered across the site was thinly laminated, generally highly to moderately fractured, and was calcareous and effervesced freely with dilute hydrochloric acid and ranged from severely to moderately weathered and was very weak to weak. The percent of interbedded limestone encountered in the individual bedrock core runs ranged from 1% to 42% and averaged 13%. The limestone encountered within the shale ranged from gray to black or dark gray to white. White limestone generally indicated the presence of fossils. The limestone ranged from crystalline to clastic and ranged from slightly to highly weathered but was generally moderately weathered and ranged from very weak to moderately strong but was generally moderately strong. The Rock Quality Designation (RQD) obtained for the bedrock core runs. Based on the laboratory testing performed on the rock core samples, the point load strengths of the rock core specimens in these project test borings ranged from 33 psi to 1539 psi which characterizes them as "very weak" to "slightly strong". The compressive strengths of the rock core specimens in these project test borings ranged from 33 psi to 1539 psi which characterizes them as "very weak" to "slightly strong".

Recommendations:

The unit shaft side and tip resistances were calculated based on the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD) Article 10.8.3.5.4. For the calculation of shaft side resistances, Equation 10.8.3.5.4b-1 was used since the shale bedrock encountered in the borings is not expected to cave during construction. For the calculation of shaft tip resistances, Equation 10.8.3.5.4c-1 was used to determine tip resistance because the rock below the bearing elevation is considered tightly jointed and without seams of compressible material. Since there are a lot of compressive strength testing results and a large variation in the results, OGE performed Bedrock Compressive Strength analyses. Due to the scatter of the Compressive Strength test results (particularly towards the lower elevations), these test results were plotted with respect to elevation (different elevation representing different depositional environments and times) there is a distinct pattern, with compressive strength decreasing with increasing elevation. OGE were able to plot a trendline function to estimate compressive strength (Qu, psi) as a function of elevation (E, ft) as Qu = 0.0226E2 - 30.789E + 10282. They have compared this to the actual testing results and find reasonable agreement. However, due to the scatter of the results (particularly towards the lower elevations), they recommend using the minimum of this function or the average of the strength testing

results. Refer to OGE spreadsheet, "HAM-71-1.81 PID 102790 Bedrock Compressive Strength.xlsx," included in Appendix B for full details of this analysis. They recommended their bedrock compressive strength values to be used for design. Table 6.1.1 summarizes the unit tip resistance, unit side resistance, average RQD, and compression strength of bedrock at each test boring location.

Boring No.	Top Bedrock Depth (feet)	Top Bedrock Elevation (ft.)	Average RQD (%)	Middle/Lower Core Layers Compressive Strength (psi)	Intact Rock Modulus E _i (psi)	Unit Side Resistance (ksf)	Unit Tip Resistance (ksf)
			Columns C	4/C3/C9			
B-001-0-23	49.5	485.4±	78	350/550	31,500	10	198
		C	Columns C2	/C10/C13			
B-002-0-23	39.5	495.6±	55	300/550	27,000	9.6	198
		(Columns C	5/C6/C14			
B-003-0-23	27.0	497.3±	59	400/550	36,000	11	198
			Columns	C7/C8			
B-004-0-23	14.5	509.9±	56	485/250	43,650	12	90
		Col	lumn C1/C	11/C12/C15			
B-007-3-64	30.0	509.2±	20*	485/250	43,650	12	90
			Pier	1			
B-004-0-23	14.5	509.9±	56	485/250	43,650	12	90
			Pier	2			
B-005-0-23	13.0	539.0±	71	250/250	22,500	8.7	90

 Table 6.1.1 – Estimated Design Parameters for Bedrock encountered at Boring Locations

*Assumed

The nominal shaft tip resistance was calculated for the selected shaft diameter from the unit tip resistance by multiplying it with the shaft cross-sectional area. The nominal shaft side resistance was calculated for the selected shaft diameter and socket length from the unit side resistance by multiplying it with the shaft length surface area. The tip resistance portion of the factored axial compression resistance is calculated from the nominal shaft tip resistance by multiplying it with a resistance factor of 0.50. The side resistance portion of the factored axial compression resistance is calculated from the nominal shaft tip resistance factor of 0.55. Table 6.1.2 summarizes factored resistance for the selected diameter and socket length at the columns and pier locations. Calculations performed as per GDM Section 1306.3.2 indicate that in this case, it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance.

		Top Bedrock	Shaft Tip	Socket	Socket	Factored Tip
Boring	Substructure	Elevation	Elevation	Diameter	Length	Resistance
No.	Location	(feet)	(feet)	(feet)	(feet)	(kips)
B-001-0-23	C3	487.2±	482.7	4.5	7.0	1575
B-001-0-23	C4	486.0±	481.5	4.5	7.0	1575
B-001-0-23	C9	491.5±	487.0	4.5	7.0	1575
B-002-0-23	C2	494.8±	490.3	4.5	7.0	1575
B-002-0-23	C10	499.0±	494.5	4.5	7.0	1575
B-003-0-23	C5	494.5±	490.0	4.5	7.0	1575
B-003-0-23	C6	$500.5\pm$	496.0	4.5	7.0	1575
B-004-0-23	C7	$506.5\pm$	500.5	4.5	7.0	716
B-004-0-23	C8	510.0±	504.0	4.5	7.0	716
B-007-3-64	C1	$506.5\pm$	501.25	4.5	7.0	716
B-007-3-64	C11	507.0±	501.75	4.5	7.0	715
B-002-0-23	C13	495.0±	490.5	3.5	5.5	952
B-003-0-23	C14	496.0±	491.5	3.5	5.5	952
B-007-3-64	C12	502.0±	497.5	3.5	5.5	433
B-007-3-64	C15	502.5±	498.0	3.5	5.5	433
B-004-0-23	Pier 1	508.9±	502.9	4.0	6.0	565
B-005-0-23	Pier 2	535.0±	529.0	4.0	6.0	565

Table 6.1.2 – Estimated Design Parameters for Column and Pier Drilled Shafts

Bearing resistance for spread footing on weak rock was evaluated in accordance with GDM Section 1303.3.3 for the proposed Pier 3 footing. Table 6.1.4 summarizes the factored bearing resistance for both Pier 3 footings.

Boring No.	Substructure Location	Estimated Top of Bedrock Elev. (feet)	Proposed Bearing Elev. (feet)	Width of Footing (feet)	Factored Bearing Resistance (ksf)
B-006-0-23	Pier 3	564.5±	561.0	10.0	28.8

Table 6.1.4 – Estimated Design Parameters for Bridge Pier 3 Footing

Bearing capacity analysis was performed by using effective stress parameters to estimate the factored bearing resistance for the footing supported on existing fill soils. The Limit Equilibrium bearing resistance analysis performed by ARC personnel and bearing resistance calculation spreadsheet is included in Appendix B. Table 6.1.5 summarizes the factored bearing resistance for the granular fill soils below bearing elevation.

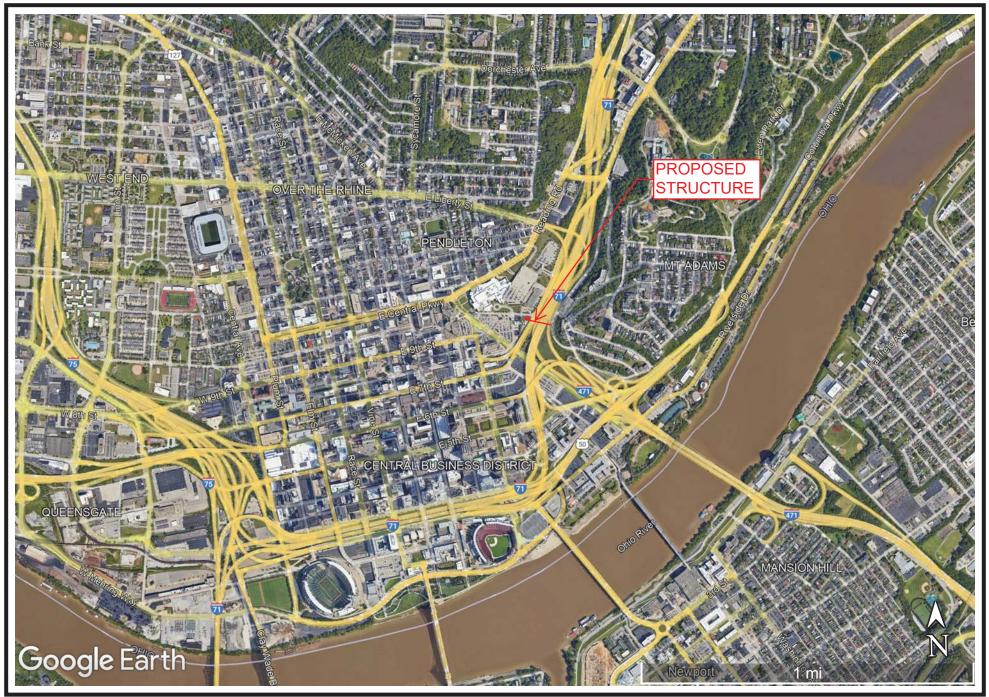
Boring No.	Substructure Location	Estimated Top of Bedrock Elev. (feet)	Proposed Bearing Elev. (feet)	Effective Footing Width (feet)	Factored Bearing Resistance (ksf)
B-002-0-23	East/West Abutments	495.6±	534.0	4.58	4.31
B-002-0-23	Retaining Walls	495.6±	534.0	3.0	4.50

 Table 6.1.5 – Estimated Design Parameters for Ramp Abutment/Retaining Walls Footing

The estimated immediate settlements for the Ramp Abutment and Retaining Walls are summarized in Table 6.1.6. Based on the settlement analyses, the anticipated total settlement on the Ramp Abutment and Retaining Walls footings will be in the order of 0.50 inches and 0.25 inches, respectively. Therefore, it is estimated that the maximum total settlement and differential settlement will not exceed one inch and one-half of an inch, respectively.

 Table 6.1.6–Summary of Anticipated Settlement for Ramp Abutment/Retaining Walls Footing

Boring No.	Footing Sizes (feet)	Settlement Type	Estimated Settlement (inches)
B-002-0-23	R. Wall - 3.0X23.5	Consolidation	0.0
D 002 0 25	K. Wall - 5.0725.5	Immediate	0.24
P 002 0 23	AB Wall -	Consolidation	0.03
B-002-0-23	5.05X14.33	Immediate	0.52


2.0 INTRODUCTION

This report has been prepared for the proposed replacement of Pedestrian Bridge Numbers HAM-71-1.80 & HAM-22-10.93 in Hamilton County, Ohio. It represents the intent of ARCADIS (ARC) the design engineer, and ODOT District 8, the owner, to secure subsurface information at selected locations in accordance with the Ohio Department of Transportation's (ODOT's) *Specifications for Geotechnical Explorations*, and to obtain recommendations regarding geotechnical factors pertaining to the design and construction of this project.

This report has been developed based on the field exploration program, laboratory testing, and information secured for site-specific studies. It must be noted that, as with any exploration program, the site exploration identifies actual subsurface conditions only at those locations where samples were obtained. The data derived through sampling and laboratory testing is reduced by geotechnical engineers and geologists who then render an opinion regarding the overall subsurface conditions and their likely reaction on the site. The actual site conditions may differ from those inferred to exist. Therefore, although a fair amount of subsurface data has been assembled during this exploration, this report may not provide all of the geotechnical data needed for construction of this project. This report was prepared using English units.

2.1 Project Description

Present plans call for the replacement of Pedestrian Bridge Nos. HAM-71-1.80 & HAM-22-10.93 which carries pedestrian traffic from Court Street East, over US 22, I-471 SB, I-71 SB and NB, and I-471 NB to Van Meter Street in Cincinnati Downtown, Ohio. The design information provided by ARC personnel indicates that the existing bridge is a four-span continuous rolled beam with reinforced concrete deck and substructure and single-span plate with reinforced concrete deck and substructure. The total span length of the existing bridges HAM-71-1.80 & HAM-22-10.93 is approximately 318 feet. The proposed replacement structure will consist of Multistory Ramp/Stairway and Pedestrian Bridge. The Multistory Ramp/Stairway will be reinforced concrete slab on cantilevered concrete beams supported on 13 concrete columns. The Bridge will be three simple spans, prefabricated steel truss with concrete deck supported on three (3) wall-type piers. The total length of the bridge from Pier to existing bridge abutment will be 350 feet. The Site Location Map is shown in Figure 2.1.

HAM-71-1.81 & HAM-22-10.93 HIMILTON COUNTY, OHIO SITE LOCATION MAP (FIG. 2.1)

2.2 Scope of Services

The scope of services for this project was in accordance with Pro Geotech, Inc. (PGI) Proposal No. PG23004 dated March 27, 2023, and was governed by ODOT's *Specifications for Geotechnical Explorations* dated January 14, 2022, ODOT's *Bridge Design Manual*, issued in July 2020 and updated in July 2023 including current AASHTO LRFD specifications, hereafter referred to as ODOT Specifications. Our scope of services consisted of the execution of the following phases:

<u>Phase I – Reconnaissance and Planning</u>, which primarily consisted of planning the field portion of our subsurface exploration, performing the site reconnaissance to evaluate the proposed project site from a geotechnical standpoint, reviewing and compiling all existing geology of the project site obtained from ODOT and ODNR sources, marking the test boring locations, obtaining necessary permits, and notifying the Ohio Utility Protection Services (OUPS) about the proposed drilling operations.

<u>Phase II - Test Boring and Sampling Program</u>, which primarily consisted of field verification of the test boring locations with regards to underground utilities, advancing the test borings at the site, conducting field tests, sampling the subsurface materials, and preparing field drilling logs.

Our scope of services included advancing six (6) test borings at the proposed bridge site for structure foundation design purposes. Two (2) of these test borings were to be advanced within the ODOT Right of Way for the pedestrian bridge design purposes. Four (4) of these test borings were to be advanced at the parking lot for the Ramp/Stairway design purposes. These structural test borings were to be advanced to an approximate depth of 25 feet each below the existing ground surface including obtaining rock core from each boring location. The groundwater conditions were monitored during and upon completion of the drilling operations. PGI provided all the traffic control needed during the fieldwork.

<u>**Phase III - Testing Program,</u>** which consisted of performing soil classification and engineering properties tests on selected soil and rock samples and classifying the soils in accordance with the ODOT Soil Classification System.</u>

Phase IV - Geotechnical Exploration Report, which included the following:

- A brief description of the project and our exploration methods
- Geology of the site

- Typed drilling logs and laboratory test results
- A description of subsurface soil, rock, and groundwater conditions
- Boring logs showing soil stratigraphy, depths of samples taken, SPT "N" values, SPT (N60) values, existing groundwater conditions, and laboratory test results.
- Recommendations and discussion pertaining to structure foundation design including shallow and deep foundations
- Discussions pertaining to earthwork considerations, groundwater management, and construction monitoring and recommendations for shoring during construction
- Recommendations for shoring during construction
- Preparation of Geotechnical Exploration Plans

The scope of services did not include any environmental assessments for the presence or absence of wetlands or hazardous or toxic materials in the soil, surface water, groundwater or air, on, below, or around this site. Any statement in this report or on the boring logs regarding odors, colors or unusual or suspicious items or conditions is strictly for the client's information.

3.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

3.1 Geology

Based on information obtained from the Physiographic Regions of Ohio map, the bridge site lies within the Outer Bluegrass Region of the Bluegrass Section at approximate elevations ranging from 455 feet to 1120 feet. This Bluegrass Section is located within the Interior Low Plateau Province. The Outer Bluegrass Region is characterized as a dissected plateau of carbonate rocks with moderately high relief (300') with thin, early drift caps and narrow ridges. The geology of the Bluegrass Region generally consists of silt-loam colluvium over Ordovician- and Silurian-age dolomites, limestones, and calcareous shales.

According to Bulletin 44, *Geology of Water in Ohio*, Cincinnati lies on the dissected Lexington peneplain. The area was glaciated by the Illinoian ice sheet and was much modified by outwash from the Wisconsin ice sheet to the north. Based on the *Quaternary Geology of Ohio* and on the natural soils encountered at the site, the main geologic deposit of the project site consists of Illinoian-age lacustrine deposits consisting of massive or laminated clays and silts with potential loess or colluvial cover. According to the *Soil Survey of Hamilton County, Ohio*, the project site is located within the urban area

and had incurred cut and fill operations due to construction of existing infrastructure. Thus, the composition of the surface and subsurface soils has changed from natural in most areas. Based on information obtained from the Ohio Geological Survey, top of bedrock in the vicinity of the project site is anticipated to be present at approximate elevations ranging from 485 feet 560 feet. At this elevation, bedrock is expected to consist of Upper Ordovician age Kope Formation shale (75%) and interbedded limestone; gray to bluish gray; contains thin to thick planar bedding. This unit contains sparse fossils, is subject to severe surface weathering and landslides are common where unit crops out.

Based on the Ohio Division of Geological Survey Interactive Map of Ohio Mineral Industries, there are no abandoned underground mines recorded in Hamilton County and there are no active sand and gravel surface mines located within an approximate four (4) mile radius of the site in Ohio. Based on the information obtained from the "Karst Interactive Map of Ohio", there are no suspected karst features within an approximate one (1) mile radius of the project site. Based on the Ohio Division of Geological Survey Interactive Map of Ohio Earthquake Epicenters, three (3) earthquake epicenters are shown in the vicinity of downtown Cincinnati, all with non-instrumental magnitudes ranging from 2.0-2.9. Note that these three (3) earthquakes epicenters are dated 1925, 1936 and 1937.

The above soil and bedrock information has been obtained from the Physiographic Regions of Ohio, printed in April, 1998, *Bedrock Geology and Quaternary Geology online maps from ODNR's Ohio Geology Interactive Map Services, Geology of Water in Ohio (Bulletin 44)* issued in 1943 (reprinted in 1968), the *Soil Survey of Hamilton County, Ohio* Web Soil Survey Data Version 22 issued in September 2022 from the *U.S. Department of Agriculture, Natural Resource Conservation Service* website, and the *Covington Quadrangle*, photorevised in 1987.

3.2 Observation of the Project

The reconnaissance of the project site was performed by one of PGI's geotechnical engineers in April 2023. The project site is located in an urban commercial neighborhood with the closest building located within 300 feet from the bridge site. The Ramp/Stairway site area was covered with a concrete slab, asphalt pavement, and riprap stones. Small bushes, shrubs, and a few medium trees were present at the site. The middle and west bridge pier sites will be located in confined areas between Interstate Highways. Buried concrete footings were observed in the vicinity of middle pier site. The concrete pier walls generally appeared to be in fair to good condition. The bottom of the concrete deck generally appeared to be in poor condition. Many areas of spalled concrete and exposed reinforcement were observed. Rust was observed in many places on the exposed steel rebar below the deck.

4.0 EXPLORATION

4.1 Historic and Project Exploration Program

Historical records of geotechnical exploration were available from the ODOT *Transportation Information Mapping System (TIMS)* Website for the existing pedestrian bridge. A Structure foundation exploration was performed in 1964 under the project designation of HAM-71-0157. A total of five (5) historic test borings identified as B-7-1 (B-007-1-64), B-7-2 (B-007-2-64), B-7-3 (B-007-3-64), R-15-2 (B-015-2-64), and R-16-1 (B-016-1-64) are available for this bridge. Locations and ground surface elevations for historic test borings are available. Also, N₆₀-values from SPT tests, soil and rock core descriptions, and rock core recovery were shown on these historic borings. However, RQD information is missing on these historic borings. Still the soil and rock information from historic test borings drilled in the vicinity of proposed bridge will be used to provide recommendations and will be included in Structure foundation exploration sheets. All of the relevant historic information is included in Appendix A.

<u>Current Exploration</u>: In order to explore the subsurface conditions at the project site, drilling, sampling, and field-testing operations were performed in May and June 2023. A total of six (6) project test borings identified as B-001-0-23 through B-006-0-23 were advanced at the project site. Project test borings B-001-0-23 through B-004-0-23 were advanced at the existing parking lot for Ramp/Stairway foundation design purposes. Project test borings B-005-0-23 and B-006-0-23 were advanced within the ODOT Right of Way on both sides of Interstate-71 for bridge foundation design purposes. These test borings were advanced to approximate depths ranging from 22.0 to 60.0 feet below the existing pavement, riprap, or ground surface. All test borings were advanced in accordance with ODOT Specifications for Geotechnical Explorations (SGE). The test boring locations are shown on the "Boring Locations Plan" included in Appendix A.

The test borings were marked in the field by PGI based on boring location plans developed by PGI personnel and approved by ARC personnel. Site geometry, existing structure foundations, utility locations, overhead height, and accessibility were also taken into account when locating the test borings. At the time of test boring location selection, the vertical soil sampling intervals were determined based on the needs for design and construction of the project. A CME 55 ATV mounted drill rig was used to advance the test borings. Borings were advanced using 3.25-inch inside diameter continuous flight hollow stem augers (HSA). Representative disturbed samples of the soils were collected at intervals in accordance with the ODOT Specifications. A standard 2.0-inch outside diameter split-barrel sampler was driven into the soil by means of a 140-lb hammer falling freely through a distance of 30-inches in accordance with the Standard Penetration Test (ASTM D 1586). Where bedrock was encountered, all test borings were

advanced and the rock was sampled using a type NQ2 series core barrel, water method. All project test borings were monitored for the presence of groundwater during drilling operations and before rock coring operations. These test borings were backfilled with soil cuttings, mixture of bentonite/soil cuttings, grout seal. Where the pavement encountered, it was capped with 12 inches of asphalt cold patch upon completion of backfilling operations. A certified traffic control company was hired to provide traffic control needed during drilling for project test borings B-005-0-23 and B-006-0-23.

The N-values (N_m) as measured in the field have been corrected to equivalent rod energy ratio of 60% (N₆₀) in accordance with ODOT's *Specifications for Geotechnical Explorations*. Drill Rig hammer system was calibrated by energy testing in accordance with ASTM D4633 and drill rod energy ratio; ER was determined. Automatic Hammer was calibrated on 1/13/2023 for CME 55 ATV (Track) drill Rig with Drill Rod Energy Ratio of 97.1%. The measured N-values (N_m) were corrected to equivalent rod energy ratio of 60 percent, N₆₀, using the equation: N₆₀ = N_m x (ER/60).

Station, offset and surface elevations at the drilled test boring locations were provided to PGI by ARC personnel. The typed drilling logs are included in Appendix A. These logs show the SPT resistance values (N-values) for each soil sample taken in the test borings and present the classification and description of soils encountered at various depths in the test borings. The sample depth shown on the logs and laboratory test results indicate the top of each sampling or testing interval.

4.2 Laboratory Testing Program

All soil and rock samples obtained during the drilling and sampling operations were returned to PGI's geotechnical soils laboratory in Cleveland, Ohio. Upon arrival, the samples were visually examined and classified by a geotechnical engineer and a geologist to verify the classifications made in the field and to note any additional characteristics which may not have been observed in the field.

Moisture content determination tests were performed on all soil samples as per ODOT specifications. Additional laboratory soil tests were performed on selected soil and rock core samples for the purpose of soil classification and for analysis of engineering characteristics. These tests consisted of Particle Size Analysis and Atterberg Limits. Laboratory rock tests were performed on selected rock core samples. These tests consisted of Compressive Strength of Rock Core and Point Load Strength of Rock Core. All laboratory tests were performed in accordance with the ASTM or other standards listed in "Laboratory Test Standards" located in Appendix B. The results of the laboratory tests are also included in Appendix B. The soils were classified in accordance with the ODOT Soil Classification System, a description of which is also included in Appendix B.

Upon completion of the laboratory testing, all samples were placed in storage at PGI's Cleveland facility. Unless otherwise requested in writing, the soil and bedrock core samples will be retained through completion of ODOT review of Stage 2 plans.

5.0 FINDINGS

5.1 Surficial and Subsurface Soil Conditions

The surficial and subsurface soil conditions in the vicinity of the proposed structures were determined from project test borings B-001-0-23 through B-006-0-23 and historic test borings identified as B-007-1-64, B-007-2-64, B-007-3-64, B-015-2-64, and B-016-1-64.

The surficial soil conditions in the vicinity of the proposed structures were determined from project test borings B-001-0-23 through B-006-0-23. Project test boring B-001-0-23 was advanced through 12 inches of driveway asphalt pavement. Project test boring B-002-0-23 was advanced through riprap stone with the thickness of 12 inches. Project test boring B-003-0-23 and B-005-0-23 were advanced through concrete slab with the thickness 8 inches and 15 inches, respectively. Project test boring B-004-0-23 was advanced through asphalt pavement underlain by aggregate base. The approximate thickness of the asphaltic concrete and aggregate base was 1 inch and 10 inches, respectively. Test boring B-006-0-23 was advanced through 3.0 inches of topsoil.

<u>Project test Borings</u>: The subsurface soils encountered in project test borings consisted of both fill and natural soils above the bedrock. Fill soils were encountered in all project test borings with the exception of B-006-0-23 where bedrock was encountered below topsoil. The fill soils were encountered in project test borings B-001-0-23 through B-005-0-23 to depths ranging from 3.0 feet to 38.5 feet below the existing pavement, riprap stone or concrete surface. The bottom of fill soils layer was encountered at approximate elevations ranging from 496.4 feet to 549.0 feet. Fill soils encountered were both cohesive and non-cohesive and consisted of silty clay (A-6b), silt and clay (A-6a), sandy silt (A-4a), coarse and fine sand (A-3a), gravel and stone fragments with sand (A-1-b), asphalt, cinders, or stone fragments (A-1-a), stone fragments with sand and silt (A-2-4), and multiple combinations of concrete, asphalt, brick and stone fragments with sand. The natural soils encountered below fill soil in the project test borings consisted of silt and clay (A-6a), silty clay (A-6b) and clay (A-7-6). Bedrock consisting of shale interbedded limestone was encountered in all project test borings below approximate depths ranging from 0.25 feet (Elevation 564.5 feet) to 49.5 feet (Elevation 485.4 feet) below the existing surface.

The laboratory test results indicated that the moisture contents of the tested cohesive soil samples obtained from the structure test borings ranged from 5% to 42% and the consistency of these soils ranged from "soft" to "hard" with the majority ranging from "medium stiff" to "hard". The laboratory test results indicated that the moisture contents of the tested non-cohesive soils ranged from 3% to 54% and the relative density of these soils ranged from "very loose" to "dense" with the majority ranging from "loose" to "medium dense". The majority of the cohesive soil samples that were tested for Atterberg limits had natural moisture contents less than their plastic limits, however two samples (B-001-0-23 at 38.5 feet, and B-003-0-23 at 8.5 feet) had moisture contents greater than their plastic limits; and one sample (B-003-0-23 at 16.0 feet) had a moisture content greater than its liquid limit.

<u>Historic Test Borings</u>: The subsurface soil conditions encountered in the vicinity of the proposed structures were determined from the soil information obtained from historic test borings B-007-1-64, B-007-2-64, B-007-3-64, B-015-2-64, and B-016-1-64. Fill soils were encountered in historic test borings B-007-1-64, B-007-2-64, and B-007-3-64 to approximate depths ranging from 1.5 feet to 27.0 feet below the existing concrete or ground surface and no fill soils were encountered in historic test borings B-015-2-64, and B-016-1-64. Fill soils encountered consisted of silty clay (A-6b), silt and clay (A-6a), cohesive sandy silt (A-4a), and combinations of concrete, cinders, and brick with clay. The natural soils encountered below fill soils and above bedrock in the project test borings consisted of silt and clay (A-6a), silty clay (A-6b) and clay (A-7-6). Bedrock consisting of shale interbedded limestone was encountered in all project test borings below approximate depths ranging from 7.5 feet (Elevation 590.6 feet) to 30.0 feet (Elevation 509.2 feet) below the existing ground surface.

The laboratory test results indicated that the moisture contents of the tested cohesive soil samples obtained from the structure test borings ranged from 12% to 25% and the consistency of these soils ranged from "soft" to "hard" with the majority ranging from "medium stiff" to "very stiff". The relative density of these soils ranged from "medium dense" to "very dense". The majority of the cohesive soil samples that were tested for Atterberg limits had natural moisture contents less than their plastic limits, however one sample (B-016-1-64 at 0.5 feet) had a moisture content equal to its plastic limit; one sample (B-007-2-64 at 2.5 feet) had moisture content plastic limit.

General: For specific conditions of the project and historic test borings at various depths, please refer to the individual test boring logs located in Appendix A of this report. For complete moisture contents and Atterberg limit test results for project test borings, refer to the laboratory test results located in Appendix B.

5.2 Bedrock Conditions

Project Test Borings: Bedrock was encountered in all project test borings to the termination depths. Bedrock was split spoon sampled until little or no penetration or recovery was encountered. Generally, coring was attempted when the split-spoon sampler indicated very little penetration and recovery. Bedrock core samples were then obtained using NQ2 diamond impregnated core barrels. The coring operations were performed in accordance with the procedure for Diamond Core Drilling for Site Investigations (ASTM D 2113). The core samples consisted of gray shale with interbedded limestone. The shale encountered across the site was thinly laminated, generally highly to moderately fractured, and was calcareous and effervesced freely with dilute hydrochloric acid and ranged from severely to moderately weathered and was very weak to weak. The percentage of interbedded limestone encountered in the individual bedrock core runs ranged from 1% to 42% and averaged 13%. The limestone encountered within the shale ranged from gray to black or dark gray to white. White limestone generally indicated the presence of fossils. The limestone ranged from crystalline to clastic and ranged from slightly to highly weathered but was generally moderately weathered and ranged from very weak to moderately strong but was generally moderately strong. No slicken sides were observed, and the fractures were typically tight to narrow and slightly rough to very rough. The Rock Quality Designation (RQD) obtained for the bedrock core samples varied from 0 to 92% and the recovery ranged from 43 to 100% for the individual rock core runs. Based on the laboratory testing performed on the rock core samples, the point load strengths of the rock core specimens in these project test borings ranged from 33 psi to 1539 psi which characterizes them as "very weak" to "slightly strong". The compressive strengths of the rock core specimens in these project test borings ranged from 182 psi to 1030 psi which characterizes them as "very weak" to "weak". The Rock Mass Rating for the bedrock core specimens obtained from project test boring B-001-0-23 was 42% and is considered as "fair" rock while the Rock Mass Rating for the bedrock core specimens obtained from project test boring B-002-0-23 was 37% and is considered as "poor" rock. The Rock Mass Rating for the bedrock core specimens obtained from project test borings B-003-0-23 and B-004-0-23 was 42 each and is considered as "fair" rock. The Rock Mass Rating for the bedrock core specimens obtained from project test boring B-005-0-23 was 40% and is considered as "poor" rock while the Rock Mass Rating for the bedrock core specimens obtained from project test boring B-006-0-23 was 31% and is considered as "poor" rock. It appears that the top bedrock surface slopes down from east to west at an approximate angle of 11 degrees. Table 5.2.1 summarizes the elevation, length, recovery, and RQD for each rock core run obtained at the project test borings. Tables 5.2.2 and 5.2.3 summarize the results of compressive strength tests performed at the laboratory on the different rock core specimens at various depths. Refer to the drilling logs, soil profile, and rock core photos in the Appendix for additional bedrock information. Also refer to "Bedrock Descriptions" in Appendix B for general bedrock information.

Boring Number	Rock Core Run No.	Rock Core Elevations (ft)	Rock Core Depths (ft)	Length of Core Run (ft)	Recovery (%)	RQD (%)
	NQ2-1	484.9 to 483.9	50.0 to 51.0	1.0	100	0
B-001-0-23	NQ2-2	483.9 to 478.9	51.0 to 56.0	5.0	82	72
	NQ2-3	478.9 to 474.9	56.0 to 60.0	4.0	92	92
D 002 0 22	NQ2-1	495.1 to 490.1	40.0 to 45.0	5.0	95	47
B-002-0-23	NQ2-2	490.1 to 485.1	45.0 to 50.0	5.0	98	63
	NQ2-1	496.6 to 493.1	27.5 to 31.0	3.5	100	79
B-003-0-22	NQ2-2	493.1 to 488.1	31.0 to 36.0	5.0	85	40
	NQ2-3	488.1 to 486.6	36.0 to 37.5	1.5	100	78
	NQ2-1	509.7 to 508.9	14.7 to 15.5	0.8	60	0
B-004-0-23	NQ2-2	508.9 to 503.9	15.5 to 20.5	5.0	100	62
	NQ2-3	503.9 to 498.9	20.5 to 25.5	5.0	100	63
	NQ2-1	535.0 to 531.0	17.0 to 21.0	4.0	94	69
B-005-0-23	NQ2-2	531.0 to 526.0	21.0 to 26.0	5.0	100	89
	NQ2-3	526.0 to 524.3	26.0 to 27.7	1.7	100	20
	NQ2-1	557.8 to 552.8	7.0 to 12.0	5.0	43	33
B-006-0-23	NQ2-2	552.8 to 547.8	12.0 to 17.0	5.0	100	69
	NQ2-3	547.8 to 542.8	17.0 to 22.0	5.0	100	60

Table 5.2.1 – Bedrock Core Information for Project Test Borings

Elevations were provided by ARC Personnel

Boring No.	Specimen Depth (ft)	Specimen Elevation (ft)	Point Load Index (psi)	UCS (psi)
B-001-0-23	51.0 - 56.0	483.9 - 478.9	128.21	1539
B-001-0-23	56.0 - 60.0	478.9 - 474.9	21.90	263
B-002-0-23	40.0 - 45.0	495.1 - 490.1	21.63	260
B-002-0-23	45.0 - 50.0	490.1 - 485.1	72.27	867
B-003-0-23	27.5 - 31.0	496.6 - 493.1	52.89	635
B-003-0-23	31.0 - 36.0	493.1 - 488.1	95.68	1148
B-004-0-23	15.5 - 20.5	508.9 - 503.9	58.69	704
B-004-0-23	20.5 - 25.5	503.9 - 498.9	15.39	185
B-005-0-23	17.0 - 21.0	535.0 - 531.0	6.07	73
B-005-0-23	21.0 - 26.0	531.0 - 526.0	20.01	240
B-006-0-23	12.0 - 17.0	552.8 - 547.8	2.76	33
B-006-0-23	17.0 - 22.0	547.8 - 542.8	29.18	350

Table 5.2.2 – Point Load Strength Test Results of Rock Core Specimens

UCS - Unconfined Compressive Strength

Table 5.2.3 – Compressive Strength	Test Results of Rock Core Specimens
------------------------------------	-------------------------------------

Boring No.	Specimen Depth (ft)	Rock Type	Unit Weight (pcf)	CS (psi)
B-001-0-23	53.3	Shale	130.1	356
B-001-0-23	59.0	Shale	145.1	872
B-002-0-23	42.7	Shale	130.4	353
B-002-0-23	46.7	Shale	134.8	220
B-003-0-23	28.5	Shale	130.2	182
B-003-0-23	33.0	Shale	146.6	958
B-004-0-23	19.5	Shale	146.7	1030
B-004-0-23	22.8	Shale	140.5	374
B-005-0-23	21.7	Shale	140.9	439
B-005-0-23	24.2	Shale	139.0	359
B-006-0-23	8.5	Shale	133.3	187
B-006-0-23	14.7	Shale	138.1	261

CS - Compressive Strength

<u>Historic Test Borings</u>: Bedrock was encountered in all historic test borings B-007-1-64, B-007-2-64, B-007-3-64, B-015-2-64, and B-016-1-64. The core samples consisted of gray shale with interbedded limestone. The shale encountered was generally gray, weathered and was calcareous and moderately to slightly tough. The percent of interbedded limestone encountered in the individual bedrock core runs ranged from 5% to 27%. The recovery ranged from 43 to 88% for the individual rock core runs. Table 5.2.4 summarizes the elevation, length, and recovery for each rock core run obtained from historic test borings.

Boring Number	Rock Core Run No.	Rock Core Elevations (ft)	Rock Core Depths (ft)	Length of Core Run (ft)	Recovery (%)	RQD (%)
D 007 1 (4	NXM-11	513.8 to 508.8	27.0 to 32.0	5.0	73	
B-007-1-64	NXM-12	508.8 to 503.8	32.0 to 37.0	5.0	72	
D 007 2 (4	NXM-9	521.5 to 516.5	20.0 to 25.0	5.0	67	
B-007-2-64	NXM-10	516.5 to 511.5	25.0 to 30.0	5.0	71	
B-007-3-64	NXM-15	505.2 to 500.2	34.0 to 39.0	5.0	60	
D 015 2 (4	NXM-5	547.5 to 542.5	9.0 to 14.0	5.0	43	
B-015-2-64	NXM-6	542.5 to 537.5	14.0 to 19.0	5.0	75	
	NXM-11	573.1 to 568.1	25.0 to 30.0	5.0	54	
	NXM-12	568.1 to 563.1	30.0 to 35.0	5.0	73	
B-016-1-64	NXM-13	563.1 to 558.1	35.0 to 40.0	5.0	82	
	NXM-14	558.1 to 553.1	40.0 to 45.0	5.0	88	
	NXM-15	553.1 to 548.1	45.0 to 46.5	1.5	83	

Table 5.2.4 – Bedrock Core Information for Historic Test Borings

5.3 Groundwater Conditions

Groundwater levels were measured at the project test boring locations during and upon completion of drilling operations. In project test borings, no readings were taken upon completion of drilling due to water added to the boreholes during the rock coring operations. The results of these measurements are summarized in Table 5.3.1. It should be noted that groundwater elevations are subject to seasonal fluctuations. All test borings were backfilled immediately upon completion of drilling for safety purposes.

Test	Surface	Depth of Gr	oundwater	Groundwater Elevation		
Boring	Elevation (ft)	During Drilling U	Upon Completion	During Drilling	Upon Completion	
B-001-0-23	534.9	22.5'	NR	512.4	NR	
B-002-0-23	535.1	22.0'	NR	513.1	NR	
B-003-0-23	524.1	12.5'	NR	511.6	NR	
B-004-0-23	524.4	Dry	NR	Dry	NR	
B-005-0-23	583.6	Dry	NR	Dry	NR	
B-006-0-23	585.2	Dry.	NR	Dry	NR	

 Table 5.3.1 – Groundwater Information

Elevations were provided by ARC personnel, NR = No Reading

6.0 ANALYSIS AND RECOMMENDATIONS

Based upon the findings of the field exploration program, laboratory testing, and subsequent engineering analysis, the following sections have been prepared to address the geotechnical aspects related to the design and construction of the proposed replacement pedestrian Bridge Nos. HAM-71.1.80 & HAM-22-10.93. Design information provided by the ARC personnel indicates that the proposed replacement structures consisted of Ramp/Stairway and Pedestrian Bridge. Ramp/Stairway consisted of reinforced concrete slab on cantilevered concrete beams on concrete columns and will be used to climb to access the bridge. Pedestrian Bridge will be prefabricated steel truss with concrete deck and will be used to cross over Gilbert Ave., I-471 SB, I-71 SB and NB, and I-471 NB to access the Van Meter Street. Ramp/Stairway structure will be supported on ramp columns identified as C12 through C15 and Pedestrian Bridge will be supported on 3 pier caps and wall identified as Pier 1 through Pier 3. The foundation recommendations are provided in accordance with the ODOT's Bridge Design Manual, issued in July 2020 and updated in July 2023 and AASHTO LRFD Bridge Design Specifications, current Edition.

6.1 Structure Foundation Systems

Drilled Shafts: Soil and bedrock information obtained from test borings from project test borings B-001-0-23 through B-004-0-23 and historic test borings B-007-1-64 and B-007-3-64 were used to provide foundation recommendations for the proposed Ramp/Stairway and Bridge Pier 1 and 2. Project test boring B-001-0-23 was advanced in the vicinity of the proposed Columns C4/C3/C9 while project test boring B-002-0-23 was advanced in the vicinity of the proposed Columns C2/C10/C13. Project test boring B-003-023 was advanced in the vicinity of the proposed Columns C5/C6/C14 while project test boring B-004-0-23 was advanced in the vicinity of the proposed Columns C7/C8/Pier 1. Historic test boring B-007-3-64 was drilled in the vicinity of the proposed Columns C1/C11/C12/C15 while project test boring B-005-0-23 and historic test boring B-015-2-64 were advanced in the vicinity of the proposed Pier 2. As outlined in Section 5.1 - "Subsurface Soil Conditions", overburden soils encountered above the bedrock consisted of both fill soils and natural soils in these project and historic test borings. Fill soils were encountered to depths ranging from 3.0 feet to 38.5 feet below the existing ground surface. Most of the N₆₀ values obtained from Standard Penetration Test in fill soil layers were less than 10 and appeared to be uncontrolled fill. These fill materials should not be used to support the column and pier loads. The top of bedrock was encountered at an approximate depth of 49.5 feet (at elevation of 485.4 feet) below the existing asphalt pavement surface in project test boring B-001-0-23, at an approximate depth of 39.5 feet (at elevation of 495.6 feet) below the existing riprap stone surface in project test boring B-002-0-23, at an approximate depth of 27.0 feet (at elevation of 497.3 feet) below the existing concrete surface in project test boring B-003-0-23, at an approximate depth of 14.5 feet (at elevation of 509.9 feet) below the existing asphalt pavement surface in project test boring B-004-0-23, at an approximate depth of 30.0 feet (at elevation of 509.2 feet) below the existing ground surface in Historic test boring B-007-3-64, and at an approximate depth of 13.0 feet (at elevation of 539.0 feet) below the concrete surface in project test boring B-005-0-23. Bedrock consisted of shale interbedded limestone to termination depth in these project and historic test borings. The Rock Quality Designation (RQD) for the core samples in these project test borings ranged from 55% to 86%. Based on the laboratory testing performed on the rock core samples, the point load strengths of the rock core specimens in these project test borings ranged from 73 psi to 1539 psi which characterizes them as "very weak" to "weak". The compressive strengths of the rock core specimens in these project test borings ranged from 182 psi to 1030 psi which characterizes them as "weak". The Rock Mass Rating for the bedrock core specimens obtained from project test borings ranges from 37 to 42 and is considered as "poor" rock to "fair" rock.

Since bedrock was encountered in most of these project and historic test borings at relatively deeper depths, deep foundation consisting of drilled shafts may be used to transfer the design loads to the underlying competent bedrock at the proposed column and pier locations. Based on the bridge site plan, the bottoms of the shaft caps of proposed columns will be placed at elevations ranging from 523.0 feet to 536.6 feet. Design information provided by ARC personnel indicate that the maximum compression design loads along a vertical axial direction at the Strength and Service Limits will be 170 kips per shaft and 120 kips, respectively at Columns C1 through C13 locations. The maximum compression design

loads along a vertical axial direction at the Strength and Service Limits will be 646 kips per shaft and 628 kips, respectively at Bridge Pier 1 location. The maximum compression design loads along a vertical axial direction at the Strength and Service Limits will be 654 kips per shaft and 641 kips, respectively at Bridge Pier 2 location. The unit shaft side and tip resistances on bedrock were calculated based on the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD) Article 10.8.3.5.4. For the calculation of shaft side resistances, Equation 10.8.3.5.4b-1 was used since the shale bedrock encountered in the borings is not expected to cave during construction. For the calculation of shaft tip resistances, Equation 10.8.3.5.4c-1 was used to determine tip resistance because the rock below the bearing elevation is considered tightly jointed and without seams of compressible material. Based on these equations, unit shaft tip resistance and unit shaft side resistance were calculated for the bedrock encountered at the test boring locations. The rock intact elastic modulus was estimated form equation $E_i = 90 q_u$, based on correlation with Engineering Properties for Intact Rocks (after Deere, 1968; Peck, 1976; and Horvath and Kenney, 1979).

Since there are a lot of compressive strength testing results and a large variation in the results, OGE performed Bedrock Compressive Strength analyses and compared this to the actual testing results in the report, and find reasonable agreement. However, due to the scatter of the results (particularly towards the lower elevations), OGE recommend using the minimum of this function or the average of the strength testing results. Refer to OGE spreadsheet, "HAM-71-1.81 PID 102790 Bedrock Compressive Strength.xlsx," included in Appendix B for full details of this analysis. They recommended their bedrock compressive strength values to be used for design. These values are shown Table 6.1.1. The bedrock was divided into three layers per boring location: an upper highly weathered layer, and middle cored and lower cored layers (each approximately 5 feet long), in accordance with the augered rock and the typical rock core runs, and rock strength testing performed. The upper highly weathered layer will moderate the sudden change in stiffness from soil to bedrock that results in an unrealistic shear stress concentration. The bedrock strength in the upper highly weathered layer was estimated based on the Stark method, in accordance with GDM Section 404.3. The two rock core layers were applicable to the drilled shaft side and tip resistance, respectively. Table 6.1.1 summarizes the unit tip resistance, unit side resistance, average RQD, and compression strength of middle and lower bedrock layer at each test boring location. The unit shaft side resistance and shaft tip resistance calculation spreadsheets performed by OGE and PGI are included in Appendix B.

Boring No.	Top Bedrock Depth (feet)	Top Bedrock Elevation (ft.)	Average RQD (%)	Middle/Lower Rock Layers Compressive Strength (psi)	Intact Rock Modulus E _i (psi)	Unit Side Resistance (ksf)	Unit Tip Resistance (ksf)		
			Columns C	4/C3/C9					
B-001-0-23	49.5	485.4±	78	350/550	31,500	10	198		
		С	Columns C2	/C10/C13					
B-002-0-23	39.5	495.6±	55	300/550	27,000	9.6	198		
	Columns C5/C6/C14								
B-003-0-23	27.0	497.3±	59	400/550	36,000	11	198		
	Columns C7/C8								
B-004-0-23	14.5	509.9±	56	485/250	43,650	12	90		
Column C1/C11/C12/C15									
B-007-3-64	30.0	509.2±	20*	485/250	43,650	12	90		
Pier 1									
B-004-0-23	14.5	509.9±	56	485/250	43,650	12	90		
	Pier 2								
B-005-0-23	13.0	539.0±	71	250/250	22,500	8.7	90		
			*Assum	~d					

Table 6.1.1 – Estimated Design Parameters for Bedrock encountered at Boring Locations	Table 6.1.1 -	Estimated Desig	n Parameters for	[•] Bedrock enco	ountered at Boring	Locations
---	---------------	-----------------	------------------	---------------------------	--------------------	-----------

*Assumed

The nominal shaft tip resistance was calculated for the selected shaft diameter from the unit tip resistance by multiplying it with the shaft cross-sectional area. The nominal shaft side resistance was calculated for the selected shaft diameter and socket length from the unit side resistance by multiplying it with the shaft length surface area. The tip resistance portion of the factored axial compression resistance is calculated from the nominal shaft tip resistance by multiplying it with a resistance factor of 0.50. The side resistance portion of the factored axial compression resistance is calculated from the nominal shaft side resistance by multiplying it with a resistance factor of 0.55. Side resistance from the soil overburden and upper two (2) feet of the bedrock can be ignored. Table 6.1.2 summarizes factored resistance for the selected diameter and socket length at the columns and pier locations. For the Ramp/Stairway Columns and Piers 1 & 2, the factored resistance at the tip was selected for the designing drilled shafts. Based on the factored axial compression resistance for the selected shaft socket length and diameter, the estimated maximum total settlement and differential settlement will not exceed one inch and one-half inch, respectively. The shaft factored resistance calculation spreadsheets are included in Appendix B. Refer to OGE spreadsheet, "HAM-71-1.81 PID 102790 Drilled Shaft Calculation Check" included in Appendix B for a full analysis of the drilled shaft side and tip resistance. Based on the GDM Section 1306.1.2, tip resistance or side resistance must be selected but not both. Calculations performed as per GDM Section 1306.3.2 indicate that in this case, it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. These calculations sheets are included in Appendix B.

D 1		Top Bedrock	Shaft Tip	Socket	Socket	Factored Tip
Boring	Substructure	Elevation	Elevation	Diameter	Length	Resistance
No.	Location	(feet)	(feet)	(feet)	(feet)	(kips)
B-001-0-23	C3	487.2±	482.7	4.5	7.0	1575
B-001-0-23	C4	$486.0\pm$	481.5	4.5	7.0	1575
B-001-0-23	C9	491.5±	487.0	4.5	7.0	1575
B-002-0-23	C2	494.8±	490.3	4.5	7.0	1575
B-002-0-23	C10	499.0±	494.5	4.5	7.0	1575
B-003-0-23	C5	494.5±	490.0	4.5	7.0	1575
B-003-0-23	C6	500.5±	496.0	4.5	7.0	1575
B-004-0-23	C7	506.5±	500.5	4.5	7.0	716
B-004-0-23	C8	510.0±	504.0	4.5	7.0	716
B-007-3-64	C1	$506.5\pm$	501.25	4.5	7.0	716
B-007-3-64	C11	507.0±	501.75	4.5	7.0	715
B-002-0-23	C13	495.0±	490.5	3.5	5.5	952
B-003-0-23	C14	496.0±	491.5	3.5	5.5	952
B-007-3-64	C12	502.0±	497.5	3.5	5.5	433
B-007-3-64	C15	502.5±	498.0	3.5	5.5	433
B-004-0-23	Pier 1	508.9±	502.9	4.0	6.0	565
B-005-0-23	Pier 2	535.0±	529.0	4.0	6.0	565

Table 6.1.2 – Estimated Design Parameters for Column and Pier Drilled Shafts

Drilled shaft socket diameters less than 36 inches are not recommended. The drilled shafts should be spaced at a minimum of 2.5 shaft diameters on center. If drilled shafts are socketed into bedrock, group effect between shafts may be neglected. The diameter of bedrock sockets must be 6 inches less than the diameter of the shaft above bedrock elevation in accordance with Section 305.4.4.2 of the *2020 ODOT Bridge Design Manual*. The drilled shaft supported piers may experience horizontal movement caused by lateral loads and overturning moments. A lateral load analysis should be performed using LPILE computer program by Ensoft or similar computer program for selected shaft diameter and socket length to check whether lateral resistance is adequate to support lateral loads and overturning moments. Table 6.1.3 summarizes the weak rock parameters to perform lateral load analyses by ARC personnel. Refer to OGE spreadsheet, "HAM-71-1.81 PID 102790 Bedrock p-y Properties" included in Appendix B for recommended properties.

Boring No.	Bedrock Layer No.	Top Bedrock Elev.(ft)	Eff. Unit Weight (pcf)	Compressive Strength (psi)	RQD (%)	Joint Condition	E _i Modulus (psi)	E _m Modulus (psi)	K_rm
B-001-0-23	1	485.4±	66.4	190	10	Open	17000	680	0.00050
	2	484.9±	91.8	350	82	Closed	32000	25600	0.00050
	3	479.9±	96.3	550	92	Closed	50000	45000	0.00035
B-002-0-23	1	495.6±	63.7	125	10	Open	11000	440	0.00050
	2	495.1±	76.8	300	47	Closed	27000	3240	0.00050
	3	490.1±	91.7	550	63	Closed	50000	25000	0.00035
B-003-0-23	1	497.3±	62.0	95	10	Open	8550	342	0.00050
	2	496.6±	90.7	400	67	Closed	36000	21600	0.00049
	3	491.6±	82.7	550	51	Closed	50000	7500	0.00035
B-004-0-23	1	509.9±	66.4	190	10	Open	17000	680	0.00050
	2	508.9±	90.7	485	62	Closed	44000	22000	0.00040
	3	503.9±	77.1	250	50	Closed	23000	3450	0.00050
B-005-0-23	1	539.0±	58.6	55	10	Open	4950	198	0.00050
	2	535.0±	88.8	250	75	Closed	23000	17250	0.00050
	3	530.0±	89.3	250	84	Closed	23000	18400	0.00050
B-006-0-23	1	564.5±	55.9	35	10	Open	3150	126	0.00050
	2	561.0±	59.6	64	10	Open	5760	230.4	0.00050
	3	557.8±	71.4	180	33	Closed	16000	1440	0.00050
	4	552.8±	85.4	200	69	Closed	18000	10800	0.00050
	5	547.8±	85.7	250	60	Closed	23000	11500	0.00050
B-007-3-64	1	506.6±	64.4	140	10	Open	13000	520	0.00050
	2	502.6±	90.7	485	60	Closed	44000	22000	0.00040
	3	497.6±	77.1	250	50	Closed	23000	3450	0.00050

 Table 6.1.3 - Estimated Weak Rock Parameters for Lateral Load Analyses

Selecting the construction method for installing the drilled shafts is the responsibility of the contractor. Seepage of water into the drilled shaft holes will occur within the soil overburden during installation. If water is encountered at the bottom of the hole due to seepage, care should be taken to remove all water before placing concrete. The successful performance of a drilled shaft depends on the construction method used as well as the quality of workmanship during installation. Therefore, qualified geotechnical personnel should be present during construction for inspection in order to assure the quality of the drilled shafts and to verify that the rock conditions are as per boring logs. Drilled shaft bottoms should be free of all loose material prior to placement of concrete. For detailed drilled shaft construction, refer to Item 524 – "Drilled Shafts" of the ODOT *Construction and Material Specifications* issued on January 2023. For drilled shafts supporting an axial load, BDM plan note 606.8-1 is needed to include for

drilled shafts socketed into rock. If only tip resistance or side resistance is used in the rock socket, modify BDM plan note 606.8-1 accordingly.

Spread Footing

<u>Pier 3 Footings</u>: Soil and bedrock information obtained from project test boring B-006-0-23 and historic test boring B-016-1-64 was used to provide foundation recommendations for the proposed Bridge Pier 3. Project test boring B-006-0-23 and historic test boring B-016-1-64 were advanced in the vicinity of the proposed Pier 3. As outlined in Section 5.1 - "Subsurface Soil Conditions", the top of bedrock was encountered at an approximate depth of 0.25 feet (at elevation of 564.5 feet) below the existing ground surface in project test boring B-006-0-23 and at an approximate depth of 7.5 feet (at elevation of 590.6 feet) below the existing ground surface in historic test boring B-016-1-64. Bedrock consisted of shale interbedded limestone to termination depth in this project and historic test borings.

Since bedrock was encountered in these project and historic test borings at relatively shallow depth, shallow foundation system consisting of spread footing may be used to transfer the design loads to the underlying competent bedrock at the proposed Pier location. The bottom elevation of spread footing of the proposed Pier will be placed at an elevation 561.0 feet based on the competent bedrock encountered in project test boring B-006-0-23. Design information provided by ARC personnel indicates that the maximum compression design loads along a vertical axial direction at the Service and Strength Limits will be 7.16 ksf and 13.46 ksf, respectively at proposed Pier 3 location. The size of the spread footing will be 9'X23.5'at the proposed Pier 3 location. Bearing resistance for spread footings on rock was evaluated as per GDM Section 1303.3.3. The rock parameters and bearing resistance calculation spreadsheets are included in Appendix B. Table 6.1.4 summarizes the factored bearing resistance on rock below bearing elevation at pier location. A Resistance Factor (ϕ) of 0.45 should be applied to compute the Factored Bearing Resistance at the Strength Limit State. A Resistance Factor (ϕ) of 1.0 should be used to compute the Factored Bearing Resistance at the Strength Limit State.

Settlement of the proposed footing at the pier location will be due to elastic compression of bedrock. Based on the AASHTO LRFD Table C10.6.2.5.1-1, the total settlement is limited to one inch for presumptive bearing resistance of 20 ksf at the Service Limit State for weathered or broken bedrock of shale. This means the factored bearing resistance should be limited by the service limit state with presumptive bearing resistance of 20 ksf and the calculated nominal bearing resistance was exceeded the above value. Therefore, it is estimated that the maximum total settlement and differential settlement will not exceed one inch and one-half of an inch, respectively. Since the proposed spread footing will be

placed on relatively level ground, and shear failure is not anticipated along the foundation bedrock joints, global stability of the footings is not a concern. The proposed footings supported piers may experience sliding caused by lateral loads. Therefore, pier footings should be keyed into bedrock a minimum of 3 inches in accordance with requirements of Section 204.1, 303.4.1.1, and 606.7 of the *2007 ODOT Bridge Design Manual*.

	Substructure	Estimated Top of Bedrock	Proposed Bearing Elev.	Width of Footing	Factored Bearing
Boring No.	Location	Elev. (feet)	(feet)	(feet)	Resistance (ksf)
B-006-0-23	Pier 3	564.5±	561.0	10.0	28.8

Table 6.1.4 – Estimated Design Parameters for Bridge Pier 3 Footing

Ramp Abutment and Retaining Wall Footings: Design information provided by ARC personnel indicate that the maximum compression design loads of the proposed Ramp east/west Abutment footings along a vertical axial direction at the Service and Strength Limits will be 1.82 ksf and 2.65 ksf, respectively. The proposed Ramp Retaining Wall footings along a vertical axial direction at the Service and Strength Limits will be 0.8 ksf and 1.03 ksf, respectively. The physical footing dimensions of the West/East Abutments and Retaining Wall will be 6.5X14.33 feet and 3.0X23.5 feet and the bottom footings will be placed at bearing elevation of 534 feet. The effective footings size of the West/East Abutments and Retaining Wall will be 5.05X14.33 feet and 3.0X23.5 feet based on the external stability calculations. There is no lateral load on the Retaining Wall. It is just to prevent people from accessing under the ramp. Soil and bedrock information obtained from project test boring B-002-0-23 was used to provide foundation recommendations. As outlined in Section 5.1 - "Subsurface Soil Conditions", soils encountered in project test boring B-002-0-23 consisted of predominantly fill soils above the bedrock. These fill soils were encountered to the depth of 28.5 feet below the existing riprap stone. Fill soils encountered consisted of both cohesive and granular foundation soils including brick fragments, cinders, and slag and appeared to be uncontrolled fill. The consistency of the cohesive soils ranged from "medium stiff" to "stiff" and the relative density of the granular soils were "loose". However, none of the soils within the bearing zone of these footings is "very loose". The weakest soil in this profile is a "loose" A-4a sandy silt; however, if they consider the overburden correction for the N_{60} value (conversion to N_{160}), then this material ends up classified as "medium dense", with a friction angle of around 32 degrees. All of the other soils are more capable. While there are cinders and brick identified in Historic Boring B-007-3-64, these all appear to be well-compacted fill materials, with N60 blow counts of 17 or above. None of these could be classified as

"uncontrolled" fill. The bearing resistance of the materials encountered is adequate, and there is no reason for an undercut.

Boring No.	Substructure Location	Estimated Top of Bedrock Elev. (feet)	Proposed Bearing Elev. (feet)	Effective Footing Width (feet)	Factored Bearing Resistance (ksf)
B-002-0-23	East/West Abutments	495.6±	534.0	4.58	4.31
B-002-0-23	Retaining Walls	495.6±	534.0	3.0	4.50

Table 6.1.5 – Estimated Design Parameters for Ramp Abutment/Retaining Walls Footing

Bearing capacity analysis was performed by using effective stress parameters to estimate the factored bearing resistance for the footing supported on existing fill soils. The Ramp Footing and overturning check performed by ARC personnel and bearing resistance calculation spreadsheet are included in Appendix B. Table 6.1.5 summarizes the factored bearing resistance for the existing granular fill soils below bearing elevation. For a maximum bearing pressure of 2.65 ksf at the Strength Limit State from Ramp Footing Bearing check by ARC personnel, this gives us a Capacity-Demand Ratio (CDR) = 4.31/2.65 = 1.63 > 1.00, OK. Settlement analyses were performed on the effective abutment footing size 5.05X14.33 feet and the effective retaining wall footing size 3.0X23.5 feet to estimate the immediate and long-term settlements of the proposed Ramp Abutment and Retaining Walls. The foundation soil profiles below proposed Ramp Abutment and Retaining Walls footings were estimated from project test boring B-002-0-23. The soil parameters for granular soils were estimated from our local experience with similar types of soils. The change in the effective overburden pressure in the foundation soils, which will be caused by the weight of the proposed Ramp Abutment and Retaining Walls, was calculated using the 2(V):1(H) method. The design Factored Load bearing pressure at the Service Limit State will be 1.82 ksf and 0.8 ksf on Abutment and Retaining Wall footings, respectively. Most of the soils within the depth limit of the settlement analyses for the wall footings are granular. The settlement on granular soils will occur during construction. The estimated immediate settlements for the Ramp Abutment and Retaining Walls are summarized in Table 6.1.6. The settlement analyses calculation spreadsheets are included in Appendix B. Based on the settlement analyses, the anticipated total settlement on the Ramp Abutment and Retaining Walls footings will be in the order of 0.50 inches and 0.25 inches, respectively. Therefore, it is estimated that the maximum total settlement and differential settlement will not exceed one inch and one-half of an inch, respectively.

Boring No.	Footing Sizes (feet)	Settlement Type	Estimated Settlement (inches)
B-002-0-23	R. Wall - 3.0X23.5	Consolidation	0.0
B-002-0-23	K. Wall - $5.0A25.5$	Immediate	0.24
B-002-0-23	AB Wall -	Consolidation	0.03
B-002-0-23	5.05X14.33	Immediate	0.52

Table 6.1.6–Summary of Anticipated Settlement for Ramp Abutment/Retaining Walls Footing

All footings must be placed 2.0 feet or greater below the final grade to protect against susceptibility to frost heave. Please note that the top elevation of the shale bedrock may vary with location, and slight adjustments of footing depth may be required in the field. The bedrock footing subgrade should be examined by a competent geotechnical engineer to verify that the maximum factored resistance is being complied with. If any soil or severely weathered bedrock is encountered, it should be removed as directed by an on-site geotechnical engineer and replaced with concrete. The excavated Ramp Abutment and Retaining Walls footing subgrade should be examined by competent geotechnical personnel. If any highly compressible fill materials and/or areas of low bearing capacity with excessive moisture (soft pockets) are encountered, they should be removed as directed by geotechnical personnel. In order to minimize the effects of any slight differential movement that may occur due to variations in the character of the supporting soils and any variations in seasonal moisture contents, it is recommended that all footings be suitably reinforced to make them as rigid as possible.

6.2 Site Seismic Properties

Based on the information obtained from the subsurface soil conditions in the vicinity of the test borings B-001 through B-003, the site class "D" can be assumed and in the vicinity of the test borings B-004 and B-005, the site class "C" can be assumed. These seismic site classes were determined in accordance with BDM Section 305.1.5.

6.3 Groundwater Management

Groundwater was encountered in project test borings B-001-0-23, B-002-0-23, and B-003-0-23 and was measured at approximate depths of 22.5 feet, 22.0 feet, and 12.5 feet below the pavement, riprap stone, or concrete surface during drilling operations. If structure foundation excavations extend below the water level encountered in project test boring locations, water infiltration is anticipated in the proposed excavations. Therefore, low to moderate volume pumping or dewatering may be required during

excavation of structure foundations. Please note that the groundwater levels may vary due to seasonal fluctuations and groundwater may appear during excavation where it was not previously encountered.

6.4 Earthwork and Construction Monitoring

Selecting the construction method for installing the drilled shafts is the responsibility of the contractor. During installation of drilled shaft holes, water seepage into the holes will occur below the water level encountered in project test borings. Therefore, the using casing method may be required to support the overburden soils. The successful performance of a drilled shaft depends on the construction method used as well as the quality of workmanship during installation. Therefore, qualified geotechnical personnel should be present during construction for inspection in order to assure the quality of the drilled shafts and to verify that the rock conditions are as per the boring logs. Drilled shaft construction, refer to Item 524 – "Drilled Shafts" of the ODOT *Construction and Material Specifications* issued in January 2019.

All excavations should comply with all current and applicable local, state, and federal safety codes, regulations and practices, including the Occupational Safety and Health Administration (OSHA). If proposed cut slopes for the structure foundation are to be exposed for an extended period of time, they must be constructed using a two (2) horizontal to one (1) vertical slope for excavation above the water table and a three (3) horizontal to one (1) vertical slope for excavation below the water table or in granular soils. Soil and rock excavations are expected during construction of the project. It is expected that some harder, less weathered bedrock will be present in the drilled shaft and footer excavation. Therefore special drilling equipment should be required.

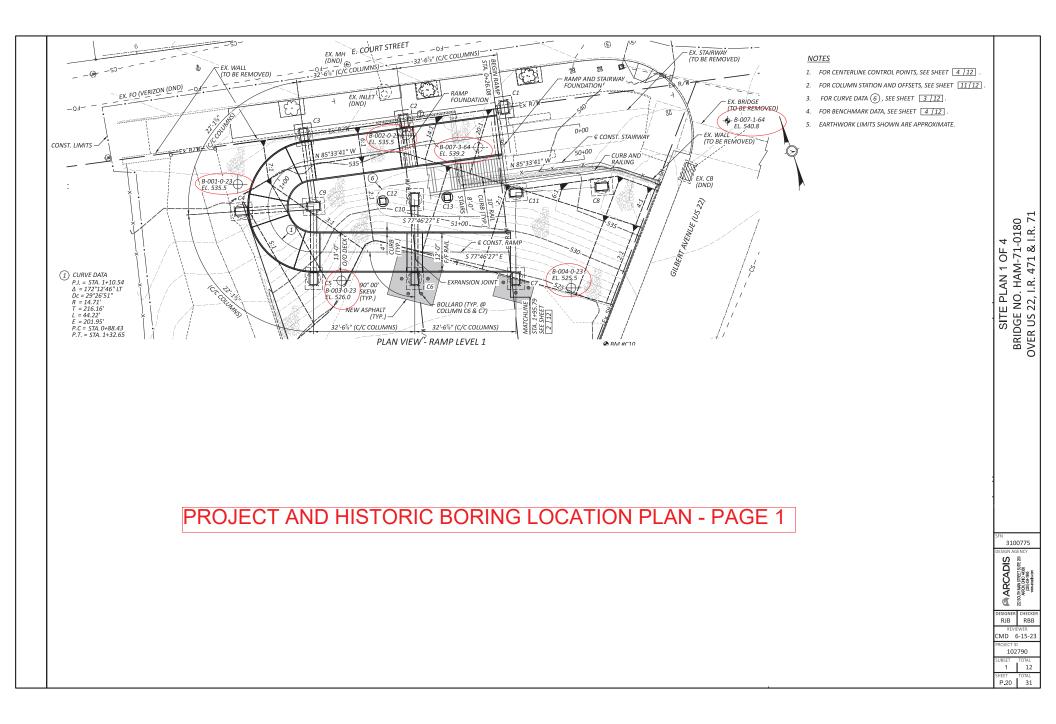
All fill material must be approved by a qualified geotechnical engineer prior to placement. The fill materials should be placed in lifts of eight (8) inches in thickness (loose measure) and be compacted to an unyielding condition in accordance with ODOT 203.07 "Compaction and Moisture Requirements" specifications. The top 12 inches of the fill in pavement subgrade areas should be placed in lifts of eight (8) inches in thickness (loose measure) and be compacted to an unyielding condition in accordance with ODOT 204.03 "Compaction of the Subgrade" specifications. All in-place density tests should be performed as per Supplement 1015 "Compaction Testing of Unbound Materials" during earthwork construction. All earthwork operations should be conducted in accordance with ODOT *Construction and Material Specifications*, Item 203, issued 2019.

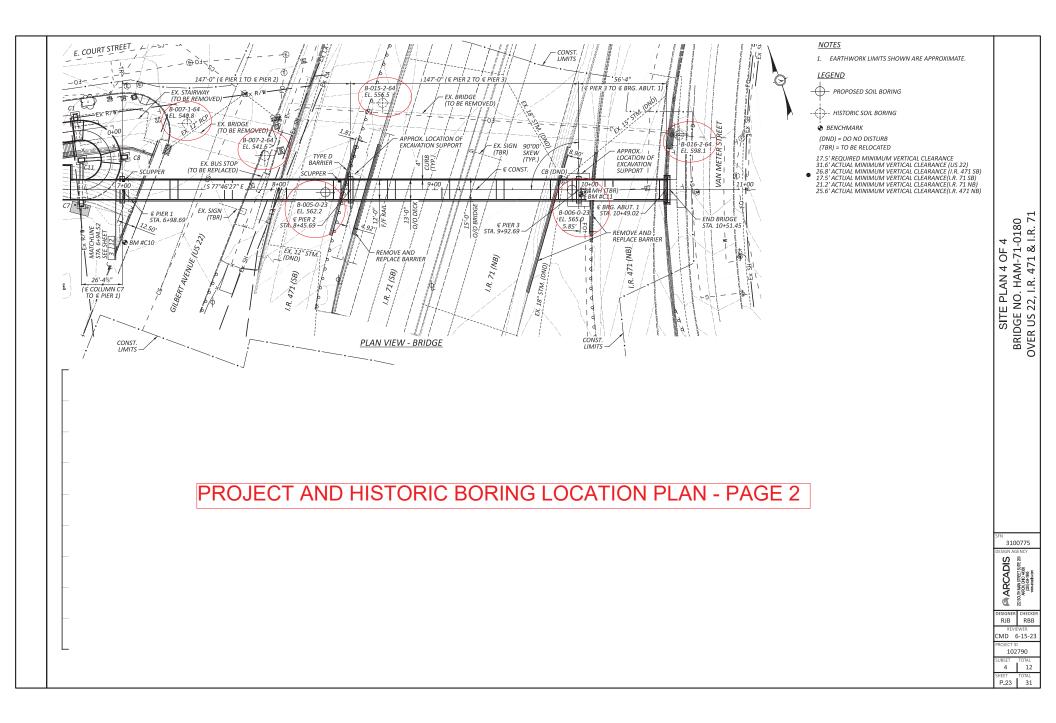
7.0 LIMITATIONS

This report is subject to the following conditions and limitations:

7.1 The subsurface conditions described are based on an examination of the soil and rock samples at the sampling intervals. Varying soil deposits, including fill material, may exist between the sampling intervals and between or beyond the test boring locations. Variation in subsurface conditions from those indicated in this report may become apparent during the earthwork and/or installation of the foundations. Such variations may require changes and/or modifications in our recommendations. Such changes may cause time delays and/or additional costs. Owners must be made aware of these limitations and must incorporate them in the design budget and scheduling of the project.

7.2 The design of the proposed project does not vary from the technical information provided and specified in this report. All changes in the design must be reviewed by our geotechnical engineers. PGI cannot assume any responsibility for interpretations made by others of the subsurface conditions and their behavior based on this report.


7.3 All earthwork and foundation construction must be performed under the supervision of a Professional Engineer in accordance with ODOT Construction Specifications.


7.4 The subsurface exploration for this project is strictly from a geotechnical standpoint. An environmental site assessment was not included in the scope of these geotechnical services.

7.5 All sheeting, shoring, and bracing of trenches, pits and excavations should be made the responsibility of the contractor and should comply with all current and applicable local, state and federal safety codes, regulations and practices, including the Occupational Safety and Health Administration (OSHA).

APPENDICES

APPENDIX A

PE: BRIDGE REPLACEMENT SAMP D: 102790 STR ID: HAM-71-1.80 DRILL	ING FIRM / OPERA LING FIRM / LOGG ING METHOD: LING METHOD:	BER:3		J.H.	Hamn Calie	MER: BRATI	CN			3	STAT ALIGI ELEV COOI	NME ATIC	NT: F	RAMP 534.9	P CON 9 (MS	IST. (L) E	CETE OB:	RLINE	0.0 ft.	ATIO 1-0-23 PAC 1 O
MATERIAL DESCRIPTION	LING METHOD	ELEV.	DEPTHS		SPT/		REC	SAMPLE	HP		GRAD	DATIO		5)	ATT	ERB	ERG		ODOT CLASS (GI)	BA
AND NOTES SPHALT PAVEMENT (12" IN THICKNESS)	\sim	534.9		_	RQD	80	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	JL
EDIUM DENSE, BLACK, ASPHALT & STONE FRA		533.9		- 1 +																1 < L
ILL, DAMP	° ()	532.9	-	-7	6	15	67	SS-1A	-	-	-	-	-	-	-	-	-	3	A-1-a (V)	17 17 17
EDIUM DENSE, BLACK, COARSE AND FINE SAN INES, LITTLE STONE FRAGMENTS, FILL, MOIST		532.4] [- 2 -	4			SS-1B	-	-	-	-	-	-	-	-	-	9	A-3a (V)	
edium dense to loose, brown, gravel ai Ragments with Sand , trace fines, fill, d <i>i</i>	AMP			- 3 -																7 LV 7 7 LV
				- 4 - 4	۱ _۲	45	70	00.0		24	05	24		0	NP			r.		
			-	_	5 5	15	78	SS-2	-	34	25	31	1	9	NP	ΝP	ΝP	5	A-1-b (0)	7 2
				- 5 -																772
26.0'; LOOSE			-	- 6																- 7 L - 7 L - 7 J > 1 - 1 > 1
				- 7	, 5 1	9	67	SS-3	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	V 1 7 V L
		526.9	-																	- 7 L - 7 N - 7 L
DOSE TO VERY LOOSE, BROWN, GRAVEL AND , TONE FRAGMENTS, "AND" SAND, TRACE FINES		a	1	- 8																7 L 7 X 7 L
AMP		c C	-	- 9 - 4	4	10	22	SS-4	-	_	_	-	-	-	-	-	-	7	A-1-a (V)	1>
				- 10 -	3															12 12 12 12
	• () • ()		-	_																17 17 17
211.0'; VERY LOOSE				- 11 -																- 7 > - 7 L
		a X	-	- 12	1 1	3	33	SS-5	-	52	30	12	3	3	NP	NP	NP	6	A-1-a (0)	1 > 1 L
				- 13																- 1 > - 1 L
ERY STIFF TO SOFT, BROWN, SANDY SILT , LIT																				7 × L 7 L 7 Z
DME TO NO BRICK, SOME STONE FRAGMENTS OIST TO DAMP			-	- 14 3	3	8	61	SS-6	-	-	-	-	-	-	-	-	-	14	A-4a (V)	7 4 7
				- 15 🕂	2															× 1 1 L
			-	-																× 1 1
216.0'; SOFT, MOIST				- 16 -																
			-	- 17	1 2	4	56	SS-7	-	-	-	-	-	-	-	-	-	16	A-4a (V)	× 1 1 L
				- 18																
18.5'; STIFF, DAMP			-																	- 7 L 7 >
,				- 19 - 3	3 4	12	44	SS-8	-	-	-	-	-	-	-	-	-	7	A-4a (V)	7 L 7 X
			-	- 20 -	4															-7 L -7 X
			-	- 21 -																7 L 7 X
221.0'; MEDIUM STIFF, DAMP				- 21 - 3		0	44	<u> </u>										F	A 40 (\/)	777
			W	- 22	3 2	8	11	SS-9	-	-	-	-	-	-	-	-	-	5	A-4a (V)	× L 7 2 ×
		511.9	-	- 23 —																
DOSE, BLACK, NON-PLASTIC SANDY SILT , LITTI INDERS AND COAL/STONE FRAGMENTS, FILL, V	WET		-	T.																1 L 1>
				- 24 2	2 1 3	6	0	SS-10	-	-	-	-	-	-	-	-	-	37	A-4a (V)	72
			-	- 25 -																
		508.9		- 26 -																
DOSE TO DENSE, DARK BROWN, STONE FRAG I ITH SAND AND SILT , LITTLE CLAY, FILL, WET	MENTS			- 20 - 3	3	8	89	SS-11	_	36	17	18	14	15	NP	NP	NP	54	A-2-4 (0)	7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4
				- 27 -	ິ 2	5	55	55 11				.0	7	.0			. •1	5-1		72
			[-	- 28																1>
				- 29 - 3	3															- 1 > - 1 > - 1 L
				29 3	3 2	8	61	SS-12	-	-	-	-	-	-	-	-	-	38	A-2-4 (V)	7 × 7 L
				- 30 -																- ~ L ~ L
'31.0'; DENSE				- 31 -																
, DENUE				4	1 16	38	100	SS-13	-	-	-	-	-	-	-	-	-	22	A-2-4 (V)	7 × L 7 × L 7 × Z
		502.4		- 32 -	9														. ,	
OFT TO VERY STIFF, DARK BROWN TO DARK B ND GRAY, SILTY CLAY , LITTLE SAND, LITTLE S ⁻ RAGMENTS, FILL, DAMP TO MOIST			-	- 33 —																7 × L 7 Z
TOWIENTS, FILL, DAWIP TO MOIST				- 34 - 0	,															
					0 2	3	100	SS-14	-	-	-	-	-	-	-	-	-	17	A-6b (V)	7 L 7 X
				- 35 -																- <i>1 L</i> 1 >
236.0'; VERY STIFF, DARK BROWN AND GRAY, N				- 36 -																1 L 1 X
, we it to that, data drowin and gray, N				4	5	21	89	SS-15	2.50	14	6	8	31	41	37	19	18	25	A-6b (11)	7 L 7 X
				- 37 -	9															1 L 1 X
		496.4	-	- 38 —																7 L 7 >
ERY STIFF, BROWN AND GRAY TO BROWN, SIL RACE SAND, MOIST	TY CLAY,		1 [- 39 - 0)															L L
		1			3 5	12	100	SS-16	2.50	0	1	2	48	49	35	18	17	23	A-6b (11)	7 L 1 >

	STR ID: <u>HAM-71-1.80</u>	PROJECT:	HAM-	71-1.80	5	TATION .		:1: _		5, 11' RT.		r	: _5/1		-	_	5/12		_	G 2 O	F2 B-00
	MATERIAL DESCRIP	TION		ELEV.	DEPT	нs	SPT/	N ₆₀		SAMPLE	HP		GRAD					FERB			ODOT
	AND NOTES		-	494.9	20.1		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
TRACE SAND, @40.0'; BROW	ROWN AND GRAY TO BRC MOIST <i>(continued)</i> N (TUBE WAS PUSHED FRO					- 41 - - 42 -			33	ST-17	3.00	-	-	-	-	-	-	-	-	21	A-6b (V)
	D HARD, BROWN, CLAY , TI FRAGMENTS, DAMP	RACE SAND,		491.4		- 43 - - 44 -	- 24	51	56	SS-18	2.00		_	_	_	-			_	10	A-7-6 (V)
						- 45 - - 46 -	- 13 21	51	00	55-16	2.00	-	-	-	-	-	-	-	-	18	A-7-6 (V)
@46.0'; HARD						- 47 - -	-8 15 18	50	100	SS-19	4.5+	-	-	-	-	-	-	-	-	17	A-7-6 (V)
@48.5'; HARD				485.4	—TR	- 48 - - - 49 -	26 48 50/2"	-	14	SS-20A	4.5+	-	-	-	-	-	-	-	-	16	A-7-6 (V)
SHALE, GRAY, H	IIGHLY WEATHERED, VERY V	VEAK TO WEAK.		484.9	TIX .	50				SS-20B	<u>├</u>			-	-		-	-	-	-	Rock (V)
SHALE, GRAY	CHALE (87%) AND LIMESTONE (, SEVERELY TO SLIGHTLY W (, THINLY LAMINATED, CALC/	EATHERED, VERY		483.9		- 50 - - - 51 -	0		100	NQ2-1											Rock (V)
FRACTURED, SI TIGHT APERTUF LIMESTONE, GF MODERATELY S NOTE: BEDROC INTERBEDDED S SHALE, GRAN WEAK TO WEAF MODERATELY F SLICKENSIDED, LIMESTONE, GR MODERATELY S @51.0'- 56.0'; PO	LIGHTLY ROUGH TO SLICKEN RE WIDTH;. RAY, MODERATELY TO SLIGH STRONG. K IS SEVERELY WEATHERED SHALE (88%) AND LIMESTONE (, HIGHLY TO SLIGHTLY WEA (, THINLY LAMINATED, CALC/ RACTURED, SLIGHTLY ROUC TIGHT TO OPEN APERTURE RAY, SLIGHTLY TO MODERAT STRONG. INT LOAD INDEX STRENGTH	NSIDED, OPEN TO HTLY WEATHERED, FROM 50' TO 50.8' (12%); THERED, VERY AREOUS, HIGHLY TO GH TO WIDTH;. ELY WEATHERED, = 1539 PSI				- - 52 - - - 53 - - - 54 - - - - 55 - - -	- 82		82	NQ2-2											Rock (V)
WHICH RANGE FR @53.3'; COMPRI INTERBEDDED SH SHALE, GRAY, I TO WEAK, THINLY SLIGHTLY ROUGH LIMESTONE, GRAY MODERATELY STR @56.0'- 60.0'; PO	N STAINING TYPICALLY PRESENT OM 1/4" TO 2" IN THICKNESS. ESSIVE STRENGTH OF INTAC ALE (92%) AND LIMESTONE (8%) MODERATELY TO SLIGHTLY WEA LAMINATED, CALCAREOUS, MOD TIGHT APERTURE WIDTH;. , MODERATELY TO SLIGHTLY WE ONG. INT LOAD INDEX STRENGTH NE IS GRAY TO WHITE AND (CT ROCK = 356 PSI THERED, VERY WEAK DERATELY FRACTURED, ATHERED, = 263 PSI		474.9	—_EOB—	- - 57 - - 58 - - - 59 -	92		92	NQ2-3											Rock (V)

NOTES: GROUNDWATER WAS ENCOUNTERED AT 22.5' BELOW GROUND SURFACE DURING DRILLING AND NO WATER READING WAS TAKEN UPON COMPLETION BECAUSE WATER WAS USED FOR ROCK CORING OPER ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH SOIL CUTTINGS

COMPANY: PGI		DRILLED BY: TERRACON
PROJECT: PEDESTRIAN BRIDO	GE REPLACEME	NT
BRIDGE NO.: HAM-71-1.80		
BORING: B-001-0-23 BOX 1	L/1	
DATE of CORING: 5/18/23		
RUN-1/NQ2-1: 50.0' - 51.0'	REC: 100%	RQD: 0
RUN-2/NQ2-2: 51.0' - 56.0'	REC: 82%	RQD: 72%
RUN-3/NQ2-3: 56.0' - 60.0'	REC: 92%	RQD: 92%

PROJECT	HAM-71-1.80 STRUCTURE	PGI PROJECT NO.	G23006G	6 DATE	12/19/2023
	STRUCTURE				
			1	BERT AVE, I-471, AND 1-71	
BORING NUMBER	B-001-0-23	TOP DEPTH (FT)	53.25	BOTTOM DEPTH (FT)	53.59
SAMPLE NUMBER	NQ2-2	DISTRICT	8	PID NO.	102790
COUNTY	HAM	ROUTE	71	SECTION	1.81
STATION	1+05	OFFSET	11'	OFFSET DIRECTION	RT
FORMATION S					
				ED, VERY WEAK TO WE RATELY FRACTURED	AK,
MEASUREMENT I	LENGTH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	2.02
1	4.092	2.036		CORRECTION FACTOR	1.00
2	4.120	2.037	Ē	AREA (SQ. INCH)	3.259
3	4.130	2.038		MASS (GRAMS)	457.82
AVERAGE	4.114	2.037	F	UNIT WEIGHT (LBS/FT ³)	130.09
III Dialod		2.007			120.07
MAXIMUM LOAD (LBS) 1159 COMPRESSIVE STRENGTH (PSI) 356 TIME OF TEST (MINUTES) 12:40 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	1320 1160 1000 840 680 520 360 200 40 0.00	3 0.0472 0.09	14 0.135 Position (0.2682
25FEET		4 1 5 9 101 2			9 101
BEI	FORE TESTIN	نا		AFTER FAILURE	

PROJECT	HAM-71-1.80	PGI PROJECT NO.	G23006G	DATE	7/11/2023					
	STRUCTURE	PEDESTRIAN BRIDGE	E OVER GILBE	RT AVE, I-471, AND 1-71						
BORING NUMBER	B-001-0-23	TOP DEPTH (FT)	59	BOTTOM DEPTH (FT)	59.35					
SAMPLE NUMBER	NQ2-3	DISTRICT	8	PID NO.	102790					
COUNTY	HAM	ROUTE	71	SECTION	1.81					
STATION	1+05	OFFSET	11'	OFFSET DIRECTION	RT					
FORMATION										
DESCRIPTION		ATELY TO SLIGHTL NATED, CALCAREOU		ED, VERY WEAK TO V FELY FRACTURED	VEAK,					
MEASUREMENT	LENGTH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	2.08					
1	4.190	2.011	C	CORRECTION FACTOR	1.00					
2	4.170	1.990		AREA (SQ. INCH)	3.170					
3	4.160	2.026		MASS (GRAMS)	503.92					
AVERAGE	4.173	2.009	U	NIT WEIGHT (LBS/FT ³)	145.11					
(LBS) 2765 COMPRESSIVE STRENGTH (PSI) 872 TIME OF TEST (MINUTES) 10:00 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	2683 2183 (q) peo 1683 1183 683 183 0.06	77 0.0927 0.11	Position (in		0.2177					
					4 5					
BE	FORE TESTIN	G		AFTER FAILURE						

			Point	Load 1	Test (A	STM D 5	5731)		
Project:	HAM-7	71-1.80	В	oring No.:	B-0	01-0-23		Date:	12/20/2023
Pr	oject No.:	G23006G	Dep	th Range:	NQ2-2 -	51.0' - 56.0'		Technician:	NA
Rock De	escription:	SHALE, GR	AY, HIGHLY	TO SLIGI	HTLY WEA	THERED, VE	RY WEAK TC	WEAK	
		THINLY LA	MINATED, C	ALCAREC	OUS, HIGH	LY TO MODE	RARELY FRA	CTURED.	
Тур	oe of Test (A	Axial/Block/	Diametral):	Axial					
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	$D_{\mathrm{e}}^{2}(\mathrm{mm}^{2})$	l _s (psi)	F	l _{s(50)} (psi)
1	Axial [⊥]	50.2	17.0	150	222.75	1087	132.18	0.829	109.60
2	Axial [⊥]	49.6	18.0	50	74.25	1136	42.18	0.837	35.32
3	Axial \perp	49.9	22.0	300	445.50	1397	205.67	0.877	180.44
4	Axial \perp	50.0	18.0	200	297.00	1146	167.21	0.839	140.30
5	Axial ⊥	50.4	23.0	200	297.00	1475	129.93	0.888	115.38
6	Axial ⊥	47.8	26.0	230	341.55	1582	139.25	0.902	125.64
7	Axial ⊥	49.8	18.0	250	371.25	1141	209.86	0.838	175.92
8	Axial ⊥	49.9	26.0	300	445.50	1652	173.99	0.911	158.50
9	Axial⊥	49.4	24.0	300	445.50	1509	190.44	0.893	170.00
10 11	Axial⊥ Axial⊥	49.8 50.3	28.0 20.0	150 130	222.75 193.05	1775 1281	80.94 97.24	0.926 0.860	74.95 83.65
Note: Bed	drock in Dry	Condition				Mean Ca Point Load I (p:	ndex I $_{\rm s(50)}$ \perp	128.21	
L = Applie P = Failur L = Load W = Core D = Heigl	Applied Pere Sample Di ht of Sample	e rpendicular te ameter	-			UCS = I _{s(50}		1539	

Point Load Test (ASTM D 5731) Project: HAM-71-1.80 Boring No.: B-001-0-23 **Date:** 12/21/2023 Project No.: G23006G Depth Range: NQ2-3 - 56.0' - 60.0' Technician: NA Rock Description: SHALE, GRAY, MODERATELY TO SLIGHTLY WEATHERED, VERY WEAK TO WEAK THINLY LAMINATED, CALCAREOUS, MODERARELY FRACTURED. Type of Test (Axial/Block/Diametral): Axial D_{ρ}^{2} (mm²) P (lb) No. Type W (mm) D (mm) L (psi) l_s (psi) F I_{s(50)} (psi) Axial ⊥ 1 50.8 25.0 110 163.35 1618 65.15 0.907 59.07 2 Axial ⊥ 50.0 38.0 170 252.45 2419 67.33 0.993 66.83 Axial ⊥ 30 3 51.4 24.0 44.55 1571 18.30 0.901 16.48 Axial ⊥ 49.5 20 29.70 1134 14.14 4 18.0 16.89 0.837 5 Axial ⊥ 51.6 17.0 20 29.70 1117 17.16 0.834 14.31 Axial ⊥ 28.0 20 29.70 1832 10.46 6 51.4 0.932 9.75 Axial ⊥ 7 50.9 19.0 20 29.70 1231 15.56 13.27 0.853 8 Axial ⊥ 50.0 17.0 60 89.10 1082 53.11 44.00 0.828 9 Axial ⊥ 51.8 25.0 20 29.70 1649 11.62 0.911 10.58 Axial ⊥ 51.7 20 1251 15.32 10 19.0 29.70 0.856 13.11 11 Axial ⊥ 51.5 21.0 20 29.70 1377 13.92 0.874 12.17 Note: Bedrock in Dry Condition Mean Corrected Point Load Index $I_{s(50)}$ \perp 21.90 (psi) 1.485 Piston Area = sq. Inches L = Applied Pressure P = Failure Load UCS = $I_{s(50)} \times 12$ (psi) 263 \perp = Load Applied Perpendicular to Bedding W = Core Sample Diameter D = Height of Sample UCS = Unconfined Compressive Strength

PE: BRIDGE REPLACEMENT	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHO SAMPLING METHO	LOGO D:	GER:;	TERRACON TERRACON 3.25" HSA SPT / NQ2		_ HAM _ CALI	MER: BRATI	CN			3	STAT ALIGN ELEV COOF	IMEN ATIO	IT: R	AMP 535.1	CON I (MS	IST. (L) E	CETE EOB:	RLINE	EXPLOR B-002	
MATERIAL DESCRIPTI AND NOTES			ELEV.		IS	SPT/ RQD	N ₆₀		SAMPLE ID			GRAD	-		-			ERG	wc	ODOT CLASS (GI)	B B
IPRAP COVER (5" TO 12" IN DIAMETER W ELOW)	/ITH GEOTEXTILE	°0	535.1					(70)	שו		GR	65	FS	51	CL	LL	PL	PI	wc		74
IEDIUM DENSE, BLACK AND GRAY, CONC	CRETE AND		534.1	-	- 1 -																
TONE FRAGMENTS WITH SAND, LITTLE I AMP					- 2 -	-3 14 6	30	22	SS-1	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
OOSE, BROWN, SANDY SILT, SOME CLA	Y, SOME STONE		532.6	-	.																- 7 L 7 X
RAGMENTS, FILL, DAMP				-	- 3 - - ı																74
OOSE, BROWN, GRAVEL AND STONE FR	AGMENTS WITH		531.1	-	- 4 -	-5 -4	10	44	SS-2	-	-	-	-	-	-	-	-	-	5	A-4a (V)	- 4>
AND, LITTLE FINES, FILL, DAMP					_ ₅ _	3			SS-2	-	27	24	32	8	9	NP	NP	NP	5	A-1-b (0)	
				-		-															, 7 × 7
				-	- 6 - -	3 2	6	28	SS-3A	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	
DOSE, BROWN, STONE FRAGMENTS WI ' I LT , LITTLE CLAY, FILL, DAMP	TH SAND AND		528.1		- 7 -	2		20	SS-3B	-	-	-	-	-	-	-	-	-	-	A-2-4 (V)	
				-	- 8 -	-															V 7 7
					- 9 -	3															71
				-	-	33	9	28	SS-4	-	-	-	-	-	-	-	-	-	9	A-2-4 (V)	
					10 -																
				-	- 11 T	3															- 7 ; - 7 ; 7 ;
				-	- 12 -	2	9	44	SS-5	-	36	19	15	13	17	21	16	5	10	A-2-4 (0)	
					_ I 13																- V V T
TIFF, BROWN, SANDY SILT, SOME CLAY,	, LITTLE STONE		521.6	-	- [- 7 7 - 7 7
ND BRICK FRÄGMENTS, FILL, MOIST				-	- 14 - -	4	8	67	SS-6	-	-	-	-	-	-	-	-	-	15	A-4a (V)	<
					- 15 ⊥																-7 7
					 16																× 7 7 7 7
				-	-	1 2	9	67	SS-7	1.25	-	-	-	-	-	-	-	-	18	A-4a (V)	777
					- 17 - -	4															7 7 7
			516.6	-	- 18 -	_															-7 -7 -7 -7
DOSE TO VERY LOOSE, BLACK, SANDY \$ LAY, LITTLE CINDERS, COAL FRAGS, & G	SILT , LITTLE GRAVEL, FILL,			-	- 19 -	1 2	8	78	SS-8		21	19	23	18	19	NP	NP	NP	30	A-4a (0)	7 4 4
ΙET				-	- - 20	3		70	33-0		21	19	23	10	19				30	A-4a (0)	7 4 7
				-		-															7 4 4
					— 21 — - -																× 7 7
				W	- 22 -	-															477
				-	 - 23 -	-															×77
23.5'; VERY LOOSE				-		2															- 1 - 1 - 1 > - 1 >
				-	24 -	2 1	4	67	SS-9	-	-	-	-	-	-	-	-	-	37	A-4a (V)	7747
				-	_ ₂₅ ⊥																- ' ' 7
				-	- 26 -	-															7 4 4
					- 27	-															7 4 7
				-		-															< 7 7
			506.6	_	28 - r																× 7 7
EDIUM STIFF, BROWN AND DARK BROW TTLE SAND, TRACE STONE FRAGMENTS					- 29 -	2	8	78	SS-10	-	6	6	7	41	40	38	22	16	27	A-6b (10)	× 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
						4															777
			504.1		 31																7747
ARD, BROWN, CLAY , "AND" TO NO LIMES RAGMENTS, TRACE SAND, DAMP	STONE					-															/ / / / / / /
					- 32 -	1															7 4 7
					— 33 —	-															7 4 7 7
					- 34 -	-14															- < 7 7
					-	19 19 27	69	89	SS-11	-	-	-	-	-	-	-	-	-	7	A-7-6 (V)	
					35 -l	-															- <
					- 36 -	-															V 7 7 V
			-		- 37 -																V77V7
			1	1																	11:
																			1		1
238.5'; NO LIMESTONE FRAGMENTS, DAM	ЛР				- 38 - 1	12															V7 7 V7 7

PID: 102790	STR ID: <u>HAM-71-1.80</u>	PROJECT:	HAM-7	'1-1.80	5	TATION /	OFFSE	Т:	0+5	6, 4' RT.	s	TART	: _5/	11/23	_ EN	ID:	5/11	/23	P	G 2 OF	2 B-00)2-0-23
	MATERIAL DESCRIP	TION		ELEV.	DEP	тые	SPT/	N	-	SAMPLE	HP		GRA	DATIC	DN (%)	ATT	ERBE	RG		ODOT	BACK
	AND NOTES			495.1	DEF	1115	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
SHALE, GR/ VERY WEAK T HIGHLY TO MC SLICKENSIDED NOTE: 2.5 INC/ FEET AND 1.5 LIMESTONE, G MODERATELY NOTE: SHALE II EFFERVESCES	SHALE (96%) AND LIMESTONE AY, SEVERELY TO MODERATE O WEAK, THINLY LAMINATED, DDERATELY FRACTURED, SLIC O, OPEN TO TIGHT APERTURE H THICK CLAY/SEVERELY WEA INCH THICK CLAY SEAM AT 41 RAY, MODERATELY TO SLIGH STRONG. S CALCAREOUS THROUGHOU FREELY WITH DILUTE HCL. LI PICALLY AT FEW LIMESTONE	LY WEATHERED, CALCAREOUS, SHTLY ROUGH TO WIDTH;. ATHERED SEAM AT 40 .9 FEET TLY WEATHERED, T RUN & TTLE IRON STAINING		490.1		- - - - - - - - - - - - - - 43 - - - - - 44 - - -	47		95	NQ2-1											Rock (V)	L 1 A C 1 A C 1 A A C 1 A A C 1 A A C 1 A A C 1 A A C 1 A A C 1 A C 1 A A C 1
RANGE IN THIC NOTE: 0.5 INCH 41.9 FEET NOTE: LIMEST RANGINGE IN SEAMS FOSSIL STRONG TO V PRESENT AT L @40.0'- 45.0'; P @42.7'; COMPF INTERBEDDED SHALE, GRE/ MODERATELY	KNESS FROM 1/4" TO 1". I VERTICAL FRACTURE WITH I ONE IS WHITE & GRAY TO GR. THICKNESS FROM 0.25 TO 0.5 IFEROUS AND CRYSTALLINE; ERY STRONG; IRON STAINING IMESTONE SEAMS. OINT LOAD INDEX STRENGTH ESSIVE STRENGTH OF INTAC SHALE (83%) AND LIMESTONE SHALE (83%) AND LIMESTONE AK, THINLY LAMINATED, CALC/ FRACTURED, SLIGHTLY ROUG	RON STAINING AT AY IN SEAMS INCHES; SOME MODERATELY TYPICALLY = 260 PSI TROCK = 353 PSI E (17%); WEATHERED, VERY AREOUS, HIGHLY TO		485.1		45 - - 46 - - - 47 - - - 48 - - - - 49 - - -	63		98	NQ2-2											Rock (V)	
LIMESTONE, GR. WEATHERED, M NOTE: SHALE I EFFERVESCES	RTURE WIDTH: AY TO GRAY & WHITE, SLIGHTLY T DDERATELY STRONG. S CALCAREOUS THROUGHOL S FREELY WITH DILUTE HCL. L (PICALLY AT FEW LIMESTONE	JT RUN & ITTLE IRON STAINING			—EOB—	50												I				<u> </u>

RANGE IN THICKNESS FROM 1/4" TO 1".

NOTE: 0.75 INCH VERTICAL FRACTURE AT 46.3 FEET. @46.7'; COMPRESSIVE STRENGTH OF INTACT ROCK = 220 PSI NOTE: LIMESTONE IS WHITE & GRAY TO GRAY IN SEAMS RANGINGE IN THICKNESS FROM 0.5 TO 7 INCHES; SOME SEAMS FOSSILIFEROUS AND CRYSTALLINE AND STRONG TO VERY STRONG. @45.0'- 50.0'; POINT LOAD INDEX STRENGTH = 867 PSI

NOTES: GROUNDWATER WAS ENCOUNTERED AT 22.0' BELOW GROUND SURFACE DURING DRILLING AND NO WATER READING WAS TAKEN UPON COMPLETION BECAUSE WATER WAS USED FOR ROCK CORING OPER

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH SOIL CUTTINGS MIXED WITH BENTONITE

COMPANY: PGI	DRILLED BY: TERRACON
PROJECT: PEDESTRIAN BRIDGE REP	LACEMENT
BRIDGE NO.: HAM-71-1.80	
BORING: B-002-0-23 BOX 1/1	
DATE of CORING: 5/18/23	
RUN-1/NQ2-1: 40.0' - 45.0' REC:	95% RQD: 47%
RUN-2/NQ2-2: 45.0' - 50.0' REC:	98% RQD: 63%

PROJECT	HAM-71-1.80	PGI PROJECT NO.	G230060		12/27/2023
	STRUCTURE	1	T T	BERT AVE, I-471, AND 1-71	40.00
BORING NUMBER	B-002-0-23	TOP DEPTH (FT)	42.67	BOTTOM DEPTH (FT)	42.98
SAMPLE NUMBER	NQ2-1	DISTRICT	8	PID NO.	102790
COUNTY	HAM	ROUTE		SECTION	
STATION	0+56	OFFSET	4'	OFFSET DIRECTION	RT
FORM					
FORMATION					
DESCRIPTION				IERED, VERY WEAK TO Y TO MODERATELY FRA	
MEASUREMENT	LENGTH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	1.90
1	3.790	1.990		CORRECTION FACTOR	1.01
2	3.760	1.986		AREA (SQ. INCH)	3.096
3	3.770	1.980	1 1	MASS (GRAMS)	399.88
AVERAGE	3.773	1.985	1 1	UNIT WEIGHT (LBS/FT ³)	130.41
IIV LIGIGE	5.115	1.905			150.41
MAXIMUM LOAD (LBS) 1100 COMPRESSIVE STRENGTH (PSI) 353 TIME OF TEST (MINUTES) 12:20 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	1228 1028 828 (jq) peo 428 228 28 28 0.00	5 0.04	0.075 Position	0.11 0.145 (inch)	0.18
B	4 5 6 7	38.9.101		AFTER FAILURE	

		· · · · · ·							
PROJECT	HAM-71-1.80	PGI PROJECT NO.	G23006G	DATE	12/19/2023				
	STRUCTURE	1 1		RT AVE, I-471, AND 1-71					
BORING NUMBER	B-002-0-23	TOP DEPTH (FT)	46.67	BOTTOM DEPTH (FT)	47				
SAMPLE NUMBER	NQ2-2	DISTRICT	8	PID NO.	102790				
COUNTY	HAM	ROUTE	71	SECTION	1.81				
STATION	0+56	OFFSET	4'	OFFSET DIRECTION	RT				
FORMATION									
DESCRIPTION				9, VERY WEAK TO WE. TO MODERATELY FRA					
MEASUREMENT	LENGTH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	1.98				
1	3.920	1.970		CORRECTION FACTOR	1.00				
2	3.880	1.950		AREA (SQ. INCH)	3.038				
3	3.900	1.980		MASS (GRAMS)	419.20				
AVERAGE	3.900	1.967	U	NIT WEIGHT (LBS/FT ³)	134.80				
TIVERIOL	5.700	1.907	0		151.00				
MAXIMUM LOAD (LBS) 670 COMPRESSIVE STRENGTH (PSI) 220 TIME OF TEST (MINUTES) 6:20 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	770 670 570 (fq) 470 90 370 270 170 70 0.00	03 0.013 0.023	0.033 0. Position (inc	043 0.053 0.063 ch)	0.073				
					5 6 3 4 5 e				
BE	FORE TESTING	J		AFTER FAILURE					

			Point	Load T	Test (A	STM D 5	5731)		
Project:	HAM-7	71-1.80	В	oring No.:	B-00	02-0-23		Date:	7/11/2023
Pr	oject No.:	G23006G	Dep	th Range:	NQ2-1 -	40.0' - 45.0'		Technician:	NA
Rock De	escription:	SHALE, GR	AY, SEVER	ELY TO M	ODERATE	LY WEATHER	RED, VERY W	EAK TO WEAK	ζ,
		THINLY LAI	MINATED, C	ALCAREC	US, HIGH	LY TO MODE	RATELY FRA	CTURED.	
Тур	oe of Test (A	Axial/Block/	Diametral):	Axial					
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	D _e ² (mm ²)	l _s (psi)	F	I _{s(50)} (psi)
1	Axial \perp	49.7	24.0	0	0.00	1519	0.00	0.894	0.00
2	Axial⊥	50.2	36.0	100	148.50	2301	41.64	0.982	40.87
3	Axial ⊥	49.8	24.0	35	51.98	1522	22.03	0.894	19.71
4	Axial ⊥	49.6	24.0	300	445.50	1516	189.63	0.894	169.44
5	Axial⊥	49.8	28.0	110	163.35	1775	59.36	0.926	54.96
6 7	Axial⊥ Axial⊥	49.7 49.9	32.0 33.0	5 55	7.43 81.68	2025 2097	2.37 25.13	0.954 0.961	2.26 24.16
8	Axial \perp	<u>49.9</u> 50.1	27.0	40	59.40	1722	23.13	0.901	24.10
9	Axial \perp	50.3	31.0	55	81.68	1985	26.54	0.920	25.20
10	Axial [⊥]	50.1	29.5	10	14.85	1882	5.09	0.938	4.78
11	Axial [⊥]	49.9	32.0	5	7.43	2033	2.36	0.955	2.25
<u>Note: Be</u>	drock in Dry	Condition				Mean C Point Load I (p:	ndex I $_{\rm s(50)}$ \perp	21.63	
L = Applid P = Failur ^L = Load W = Core D = Heigl	Applied Pere Sample Di ht of Sample	e rpendicular t ameter	-			UCS = I _{s(50}	₎ x 12 (psi)	260	

	Point Load Test (ASTM D 5731)											
Project:	HAM-7	71-1.80	В	oring No.:	B-0	02-0-23		Date:	12/26/2023			
Р	roject No.:	G23006G	Dep	th Range:	NQ2-2 -	45.0' - 50.0'		Technician:	NA			
Rock D	escription:	SHALE. GR	AY. MODEF	RATELY TO	HIGHLY	WEATHERED	. VERY WEA	K TO WEAK				
						LY TO MODE						
					,							
Ту	pe of Test (Axial/Block/	Diametral):	Axial								
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	$D_e^2 (mm^2)$	l _s (psi)	F	I _{s(50)} (psi)			
1	Axial⊥	51.6	18.0	5	7.43	1183	4.05	0.845	3.42			
2		50.0	20.0	190	282.15	1273	142.97	0.859	122.83			
3	Axial⊥ Axial⊥	49.8 48.9	21.0	223	331.16	1332 1183	160.45 72.89	0.868	139.25			
4 5	Axial ±	48.9	19.0 23.0	90 40	133.65	1368	28.02	0.845 0.873	61.60 24.47			
6	Axial –	50.6	17.0	100	59.40 148.50	1095	87.48	0.873	72.65			
7	Axial L	50.0	17.0	60	89.10	1033	53.11	0.828	44.00			
8		50.0	20.0	120	178.20	1273	90.30	0.859	77.58			
9	Axial [⊥]	49.1	20.0	160	237.60	1250	122.60	0.856	104.90			
10	Axial [⊥]	50.7	17.0	70	103.95	1097	61.11	0.831	50.78			
11	Axial [⊥]	50.3	29.0	190	282.15	1857	98.01	0.935	91.67			
<u>lote: Be</u>	drock in Dry	Condition				Mean Co Point Load In (p:	ndex I _{s(50)} \perp	72.27				

YPE: BRIDGE REPLACEMENT ID: 102790 STR ID: HAM-71-1.80	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHOL	LOGGI D:	ER:	TERRACO 3.25" HSA	N / J.H.	_ HAM _ CAL	imer: Ibrat			MATIC 1/13/23	3		NMEI /ATIC	NT: F	524.´		NST. (SL) E	CETE EOB:	RLINE	7.5 ft.
TART: <u>5/11/23</u> END: <u>5/11/23</u> MATERIAL DESCRIPTI	SAMPLING METHO)D:	SF ELEV.	PT / ST / NO		ENE	RGYF		(%): SAMPLE	90 HP		GRAD		ON (%	-		7090, TERB		04338	ODOT
AND NOTES			524.1	DEPT	THS	RQD		(%)	ID	(tsf)				SI	-/	LL	1	-	WC	CLÁSS (GI)
CONCRETE SLAB (8" IN THICKNESS) DENSE, BLACK, COARSE AND FINE SAND , LITTLE BRICK AND STONE FRAGMENTS, F			523.5		- - 1 - - 2 -	- 9 12 1(33	78	SS-1	-	-	-	-	-	-	-	-	-	8	A-3a (V)
Medium Dense, Black, Cinders , Some : Fines, Fill, Moist	SAND, LITTLE		521.1		- 3 - - 4 - - 5 -	3 5 5	21	11	SS-2	-	-	-	-	-	-	-	-	-	11	A-1-a (V)
VERY STIFF, BROWN AND DARK BROWN T BROWN, SANDY SILT , SOME CLAY, LITTLE FRAGMENTS, FILL, WET			518.1	_	- - 6 - - 7 -	- 6 6 2	12	78	SS-3	2.50	-	-	-	-	-	-	-	-	24	A-4a (V)
@8.5'; SOFT, DARK BROWN					- 8 - - 9 - - 10 -		3	78	SS-4	0.25	18	15	18	22	27	30	21	9	28	A-4a (3)
NOTE: SHELBY TUBE WAS PUSHED FROM			512.1		- 11 - - 12 -			54	ST-5	-	-	-	-	-	-	-	-	-	22	A-4a (V)
CLAY, LITTLE SAND, TRACE TO LITTLE ST FRAGMENTS, FILL, MOIST TO WET @13.5'; WET				W		2 1 1	3	56	SS-6	0.25	-	-	-	-	-	-	-	-	42	A-6a (V)
@16.0'; WET @17.0'; TRACE STONE FRAGMENTS, WET					- 16 - - 17 -		4	56	SS-7	0.25	7	8	9	45	31	38	26	12	39	A-6a (9)
@18.5'; VERY STIFF, LITTLE STONE FRAGI	MENTS, MOIST				- 18 - - 19 - - 20 -	10 7 7	, 21	67	SS-8	-	-	-	-	-	-	-	-	-	34	A-6a (V)
HARD, BROWN, CLAY , LITTLE SAND, TRAC FRAGMENTS, DAMP	E STONE		503.1	-	- - - 22 - - - 23 -	- 5 10 1 ²	36	100	SS-9	4.5+	-	-	-	-	-	-	-	-	18	A-7-6 (V)
					_ 24 - 25 -	10 23 24	70	100	SS-10	4.5+	1	8	4	29	58	44	24	20	16	A-7-6 (13)
SHALE, GRAY, HIGHLY WEATHERED, VER	Y WEAK TO		497.3 496.6	TR	- 26 - - 27 -	27 40 50/4		100	SS-11A SS-11B	-	-	-	-	-	-	-	-	-	13	A-7-6 (V) Rock (V)
WEAK. NTERBEDDED SHALE (90%) AND LIMESTONE (* SHALE, GRAY, SEVERELY TO MODERATELY /ERY WEAK TO WEAK, THINLY LAMINATED, C/ HIGHLY FRACTURED TO FRACTURED, SLIGHT FO NARROW APERTURE WIDTH;. NOTE: FROM 27.5' TO 28.3', SHALE IS SEVEREL	WEATHERED, ALCAREOUS, LY ROUGH, TIGHT Y WEATHERED				- 28 - - 29 - - 30 -	79		100	NQ2-1											Rock (V)
28.5'; COMPRESSIVE STRENGTH OF INTACT IMESTONE, GRAY, SLIGHTLY TO MODERATEL IODERATELY STRONG. IOTE: SHALE IS CALCAREOUS THROUGHOUT IFFERVESCES FREELY WITH DILUTE HCL. LITT S PRESENT TYPICALLY AT FEW LIMESTONE SI	Y WEATHERED, RUN & LE IRON STAINING		493.1		- 31 - - - 32 - - - 33 -															
ANGE IN THICKNESS FROM 1/4" TO 1". 27.5'- 31.0'; POINT LOAD INDEX STRENGTH = NOTE: FEW THIN LIMESTONE SEAMS ARE GRA GRAY AND FOSSILIFEROUS AND CRYSTALLINE MODERATELY STRONG TO VERY STRONG NOTE: 1/2" VERTICAL FRACTURE WITH IRON S	Y TO WHITE AND AND ARE		488.1		- - 34 - - 35 - - 36 -	40		85	NQ2-2											Rock (V)
NTERBEDDED SHALE (93%) AND LIMESTONE (7 SHALE, GRAY, MODERATELY TO HIGHLY W WEAK TO WEAK, THINLY LAMINATED, CALCAR MODERATELY TO HIGHLY FRACTURED, SLIGH	/%) ; EATHERED, VERY EOUS,		486.6	EOB-	- 37 -	78		100	NQ2-3											Rock (V)
WEAK TO WEAK, THINLY LAMINATED, CALCAR MODERATELY TO HIGHLY FRACTURED, SLIGH TO NARROW APERTURE WIDTH;. NOTE: SHALE IS CALCAREOUS THROUGHOUT EFFERVESCES FREELY WITH DILUTE HCL. NO PRESENT. LIMESTONE, GRAY, SLIGHTLY TO MODERATEL MODERATELY STRONG. 233.0'; COMPRESSIVE STRENGTH OF INTACT 231.0'- 36.0'; POINT LOAD INDEX STRENGTH = NOTE: FEW THIN LIMESTONE SEAMS ARE GR/ GRAY AND FOSSILIFEROUS AND CRYSTALLINI MODERATELY STRONG TO VERY STRONG FR AND RANGE IN THICKNESS FROM 1/4" TO 3/4" NTERBEDDED SHALE (95%) AND LIMESTONE (5	EOUS, TLY ROUGH, TIGHT RUN & IRON STAINING IS LY WEATHERED, ROCK = 958 PSI 1148 PSI AY TO WHITE AND E AND OM 31.3' TO 32.1' 5%);		486.6	EOB-	- 37 -															
SHALE, GRAY, MODERATELY TO HIGHLY W. WEAK TO WEAK, THINLY LAMINATED, CALCAR MODERATELY TO HIGHLY FRACTURED, SLIGH APERTURE WIDTH;. LIMESTONE, GRAY, SLIGHTLY TO MODERATEL MODERATELY STRONG. NOTE: SHALE IS CALCAREOUS THROUGHOUT EFFERVESCES FREELY WITH DILUTE HCL. NO PRESENT.	EOUS, TLY ROUGH, TIGHT _Y WEATHERED, RUN &																			

NOTES: GROUNDWATER WAS ENCOUNTERED AT 12.5' BELOW GROUND SURFACE DURING DRILLING AND NO WATER READING WAS TAKEN UPON COMPLETION BECAUSE WATER WAS USED FOR ROCK CORING OPER ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH SOIL CUTTINGS

COMPANY: PGI		DRILLED BY: TERRACON
PROJECT: PEDESTRIAN BRIDG	E REPLACEME	NT
BRIDGE NO.: HAM-71-1.80		
BORING: B-003-0-23 BOX 1/	/1	
DATE of CORING: 5/11/23		
RUN-1/NQ2-1: 27.5' - 31.0'	REC: 100%	RQD: 79%
RUN-2/NQ2-2: 31.0' - 36.0'	REC: 85%	RQD: 40%
RUN-3/NQ2-3: 36.0' - 37.5'	REC: 100%	RQD: 78%

						1
PROJECT		[-71-1.80	PGI PROJECT NO.	G23006C		
		JCTURE			BERT AVE, I-471, AND 1-71	
BORING NUMBER		03-0-23	TOP DEPTH (FT)	28.5	BOTTOM DEPTH (FT)	
SAMPLE NUMBER		Q2-1	DISTRICT	8	PID NO	
COUNTY		IAM	ROUTE	71	SECTION	
STATION	1	+42	OFFSET	9'	OFFSET DIRECTION	RT
FORMATION		GELERE				11/F) + 17
DESCRIPTION					ERED, VERY WEAK TO Y FRACTURED TO FRAC	
MEASUREMENT	LENG	TH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	2.07
1		.110	1.978		CORRECTION FACTOR	1.00
2	4	.101	1.988	-	AREA (SQ. INCH)	3.098
3	4	.100	1.992	-	MASS (GRAMS)	434.51
AVERAGE	4	.104	1.986	l T	UNIT WEIGHT (LBS/FT ³)	130.21
(LBS) 565 COMPRESSIVE STRENGTH (PSI) 182 TIME OF TEST (MINUTES) 8:20 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	Load (lbf)	645 530 415 300 185 70 0.001	2 0.0172 0.03	32 0.049 Position (0.0972
25FEET	and the second s		4 5 9 101 2 3			4 5
BI	FURE	TESTING	j		AFTER FAILURE	

					•
PROJECT	HAM-71-1.80	PGI PROJECT NO.	G23006G	DATE	7/11/2023
	STRUCTURE			ERT AVE, I-471, AND 1-71	I
BORING NUMBER	B-003-0-23	TOP DEPTH (FT)	33	BOTTOM DEPTH (FT)	33.34
SAMPLE NUMBER	NQ2-2	DISTRICT	8	PID NO.	102790
COUNTY	HAM	ROUTE	71	SECTION	1.81
STATION	1+42	OFFSET	9'	OFFSET DIRECTION	RT
TO DA () TO DA	a				
FORMATION					4.17
DESCRIPTION	-			D, VERY WEAK TO WE ATELY TO HIGHLY FRA	-
MEASUREMENT	LENGTH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	2.08
1	4.100	1.990		CORRECTION FACTOR	1.00
2	4.120	1.990		AREA (SQ. INCH)	3.069
3	4.130	1.960	F	MASS (GRAMS)	486.20
AVERAGE	4.117	1.900	-	UNIT WEIGHT (LBS/FT ³)	146.62
TTT LIVIOL	1.11/	1.777			110.02
MAXIMUM LOAD (LBS) 2940 COMPRESSIVE STRENGTH (PSI) 958 TIME OF TEST (MINUTES) 8:00 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	2883 2583 2283 1983 1683 1683 1083 783 483 183 0.007	79 0.0379 0.067	79 0.0979 Position (i		0.1879
	2 STARLEY 3				4 5
В	EFORE TESTIN	U		AFTER FAILURE	

	HAM-7	71-1.80	B	oring No.:	B-0	03-0-23		Date:	12/19/202				
Р	roject No.:	G23006G	Dep	th Range:	NQ2-1 -	27.5' - 31.0'		Technician:	NA				
Rock D	escription:	SHALE, GR	AY, SEVER	ELY TO M	ODERATE	LY WEATHER	RED, VERY W	EAK TO WEAK					
		THINLY LAI	MINATED, C	ALCAREO	US, HIGH	LY FRACTUR	ED TO FRAC	TURED.					
Type of Test (Axial/Block/Diametral): Axial													
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	D _e ² (mm ²)	I _s (psi)	F	l _{s(50)} (ps				
1	Axial⊥	50.2	26.0	50	74.25	1662	28.83	0.912	26.29				
2	Axial –	49.5	32.0	5	7.43	2017	2.38	0.953	20.29				
3	Axial [⊥]	50.0	17.0	90	133.65	1082	79.67	0.828	65.99				
4	Axial⊥	49.7	31.0	5	7.43	1962	2.44	0.947	2.31				
5	Axial ⊥	49.5	18.0	140	207.90	1134	118.23	0.837	98.97				
6	Axial⊥	50.0	24.0	5	7.43	1528	3.14	0.895	2.81				
7	Axial⊥	49.6	17.0	200	297.00	1074	178.48	0.827	147.57				
8 9	Axial⊥ Axial⊥	50.0 51.5	27.0 21.0	120 5	178.20 7.43	1719 1377	66.89 3.48	0.919 0.874	61.48 3.04				
10	Axial –	49.9	20.0	190	282.15	1271	143.25	0.859	123.04				
11	Axial [⊥]	50.1	27.0	180	267.30	1722	100.13	0.920	92.08				
ote: Be	edrock in Dry	Condition				Mean Co Point Load In (ps	ndex I _{s(50)} \perp	52.89					
		1.485	sq. Inches										

ject No.: scription: of Test (A Type Axial ⊥	G23006G SHALE, GR THINLY LAI	AY, MODEF MINATED, C	th Range: ATELY TO ALCAREC	NQ2-2 - DHIGHLY	31.0' - 36.0'		-	12/25/2023 NA								
e of Test (A	SHALE, GR THINLY LAI Axial/Block/	AY, MODEF MINATED, C	ATELY TO	D HIGHLY			Technician:	NA								
e of Test (A Type Axial⊥	THINLY LAI Axial/Block/	MINATED, C	ALCAREC			o.: <u>G23006G</u> Depth Range: <u>NQ2-2 - 31.0' - 36.0'</u> Technician:										
e of Test (A Type Axial⊥	THINLY LAI Axial/Block/	MINATED, C	ALCAREC				(TO WEAK									
e of Test (A Type	Axial/Block/				ERARELY TO											
Axial [⊥]	W (mm)		Type of Test (Axial/Block/Diametral): Axial													
		D (mm)	L (psi)	P (lb)	D _e ² (mm ²)	l _s (psi)	F	I _{s(50)} (psi)								
	50.0	30.0	360	534.60	1910	180.59	0.941	169.97								
Axial 🕹 🔰	49.8	20.0	190	282.15	1269	143.46	0.941	123.15								
Axial \perp	50.2	20.0	90	133.65	1534	56.21	0.896	50.36								
Axial [⊥]	49.2	29.0	150	222.75	1817	79.11	0.931	73.62								
Axial ⊥	50.1	27.0	100	148.50	1722	55.63	0.920	51.15								
Axial ⊥	50.2	19.0	60	89.10	1214	47.35	0.850	40.25								
Axial ⊥	50.2	21.0	140	207.90	1342	99.97	0.869	86.91								
Axial ⊥	50.6	26.0	200	297.00	1675	114.39	0.914	104.53								
								80.22								
								206.94								
ock in Dry	Condition															
on Aroo –	1 495				Point Load I	ndex I _{s(50)} ⊥	95.68									
d Pressure e Load Applied Per Sample Dia : of Sample	rpendicular t ameter	o Bedding			UCS = I _{s(50}	₎ x 12 (psi)	1148									
	Axial \bot	Axial50.1Axial50.2Axial50.2Axial50.6Axial50.5Axial49.9Axial50.0	Axial 50.1 27.0 Axial 50.2 19.0 Axial 50.2 21.0 Axial 50.6 26.0 Axial 50.5 32.0 Axial 49.9 25.0 Axial 50.0 29.0 Axial 50.0 29.0 ock in Dry Conditionon Area = 1.485 sq. Inchesb PressureLoad	Axial ⊥ 50.1 27.0 100 Axial ⊥ 50.2 19.0 60 Axial ⊥ 50.2 21.0 140 Axial ⊥ 50.6 26.0 200 Axial ⊥ 50.5 32.0 180 Axial ⊥ 49.9 25.0 380 Axial ⊥ 50.0 29.0 250 Axial ⊥ 50.0 29.0 250 ock in Dry Condition 29.0 250 on Area = 1.485 sq. Inches I Pressure Load	Axial \perp 50.1 27.0 100 148.50 Axial \perp 50.2 19.0 60 89.10 Axial \perp 50.2 21.0 140 207.90 Axial \perp 50.5 32.0 180 267.30 Axial \perp 50.5 32.0 180 267.30 Axial \perp 49.9 25.0 380 564.30 Axial \perp 50.0 29.0 250 371.25 ock in Dry Condition on Area = 1.485 sq. Inches d Pressure Load .pplied Perpendicular to Bedding Sample Diameter of Sample	Axial \perp 50.1 27.0 100 148.50 1722 Axial \perp 50.2 19.0 60 89.10 1214 Axial \perp 50.2 21.0 140 207.90 1342 Axial \perp 50.6 26.0 200 297.00 1675 Axial \perp 50.5 32.0 180 267.30 2058 Axial \perp 49.9 25.0 380 564.30 1589 Axial \perp 50.0 29.0 250 371.25 1846 Mean Cd Axial \perp 50.0 29.0 250 371.25 1846	Axial \perp 50.1 27.0 100 148.50 1722 55.63 Axial \perp 50.2 19.0 60 89.10 1214 47.35 Axial \perp 50.2 21.0 140 207.90 1342 99.97 Axial \perp 50.6 26.0 200 297.00 1675 114.39 Axial \perp 50.5 32.0 180 267.30 2058 83.81 Axial \perp 49.9 25.0 380 564.30 1589 229.16 Axial \perp 50.0 29.0 250 371.25 1846 129.73 Mean Corrected Point Load Index I _{s(50)} \perp (psi) UCS = 1.485 sq. Inches I Pressure Load Load UCS = I _{s(50)} x 12 (psi) UCS = I _{s(50)} x 12 (psi)	Axial \perp 50.1 27.0 100 148.50 1722 55.63 0.920 Axial \perp 50.2 19.0 60 89.10 1214 47.35 0.850 Axial \perp 50.2 21.0 140 207.90 1342 99.97 0.869 Axial \perp 50.2 21.0 140 207.90 1342 99.97 0.869 Axial \perp 50.5 32.0 180 267.30 2058 83.81 0.957 Axial \perp 49.9 25.0 380 564.30 1589 229.16 0.903 Axial \perp 50.0 29.0 250 371.25 1846 129.73 0.934 ock in Dry Condition ock in Dry Condition Mean Corrected Point Load Index I ₅₍₅₀₎ \perp 95.68 ock in Dry Condition Mean Corrected Point Load Index I ₅₍₅₀₎ \perp 95.68 ock in Dry Condition UCS = I ₅₍₅₀ × 12 (psi) 1148								

TYPE: BRIDGE REPLACEMENT S	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD:	ER:	TERRACON TERRACON 3.25" HSA		HAM	MER:	C	ME 55/300 ME AUTON ATE:			STAT ALIGI ELEV	NME	NT: R	RAMP	CON	NST.	CETE	RLIN	EXPLOR B-004	ATION 4-0-23 PAC
	SAMPLING METHOD:		SPT / NQ2				RATIO		90		COOF		_					04084		1 OF
MATERIAL DESCRIPTIO	DN	ELEV.	DEPTH	JC	SPT/	N		SAMPLE	HP		GRAD	ATIC)N (%	5)	ATT	ΓERB	BERG		ODOT	BAG
AND NOTES		524.4	DEFIR	13	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	1 1 1
ASPHALT PAVEMENT (1" IN THICKNESS)		524.3	1																	7LV
AGGREGATE BASE (10" IN THICKNESS)		523.5																		$ 1 > \Gamma$ $ 1 < L^{\vee}$
DENSE, BROWN, GRAVEL AND STONE FRA SAND, TRACE FINES, FILL, DAMP		2		- 1 -	3															1<1
SAND, TRACE FINES, FIEL, DAMF		*			10	36	56	SS-1	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	7LV
	\sim			- 2 -	14															J>N J LV
	\circ	•																		7<1
				- 3 -																7LV
		2																		$ 1\rangle^{\wedge}$ $ 1L^{\vee}$
				- 4 -	8								_	_				_		12
	\sim				15 15	45	67	SS-2	-	21	44	25	3	7	NP	NP	NP	7	A-1-b (0)	7 LV
	کی ہے۔ ا	•		_ ₅ _	13															1 < L
		518.9		5																$\begin{vmatrix} \zeta \\ \gamma \\$
MEDIUM DENSE, BROWN, COARSE AND FIN			1		1															JLV
LITTLE FINES, LITTLE STONE FRAGMENTS,	, FILL, MOIST			- 6 -																7< ù
	****** ******				8	18	56	SS-3	<u>-</u>	l _	_	-	_	_	_	_	l _	13	A-3a (V)	7LV
				- 7 -	6															$ 1\rangle^{\wedge}$
																				1 > 1
				- 8	-															7LV
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	515.9																		$ 1> \Gamma$ $ 1> \Gamma$ $ 1> \Gamma$
HARD, BROWN, SILTY CLAY , TRACE TO "AN	ND" SHALE	1		_ 9 _	7															1<
FRAGMENTS, TRACE SAND, DAMP				5	20	68	89	SS-4	-	-	-	-	-	-	-	-	-	13	A-6b (V)	7LV
					25															1<1
		1		- 10 -													1		1	- 7 LV
																				1L
				- 11 -																1< 1
					14	0	100	00.5					00	50		00	47	47		7 L'
				- 12 -	20 24	66	100	SS-5	-	8	5	2	32	53	39	22	17	17	A-6b (11)	1 × L
																				121
				_ 12 _																7LV
				— 13 —]															1<1
@13.5'; "AND" SHALE FRAGMENTS					19															17 L. 17 L
		509.9		- 14 -	37 50/2"	-	100	SS-6A	-	-	-	-	-	-	-	-	-	12	A-6b (V)	7LV
SHALE, GRAY, HIGHLY WEATHERED, VERY		509.7			30/2			SS-6B		-	-		-		-	-	L-	-	Rock (V)	
WEAK.				- 15 -	0		60	NQ2-1											Rock (V)	17LV 17L
INTERBEDDED SHALE (58%) AND LIMESTONE (42		508.9	-																()	- TLV
SHALE, GRAY, MODERATELY TO HIGHLY WEA WEAK TO WEAK, THINLY LAMINATED, CALCARE				- 16 -																1 > 1
MODERATELY TO HIGHLY FRACTURED, SLIGHT				_																$\frac{1}{7}L^{V}$
TO NARROW APERTURE WIDTH;.	ATHERED, VERY OUS, 'LY ROUGH, TIGHT			- 17 -																JLV
LIMESTONE, GRAY TO GRAY & WHITE, VERY W																				1<1
NOTE: SHALE IS CALCAREOUS AND EFFERVESC	CES FREELY WITH			40			100												Deals (1)	7LV
DILUTE HCL. GRAY AND WHITE LIMESTONE FRO	DM 15' TO 15.2'.	1		- 18 -	62		100	NQ2-2											Rock (V)	J>N JZV
INTERBEDDED SHALE (90%) AND LIMESTONE (10		1		╞╴┣	1															1<1
SHALE, GRAY, MODERATELY TO HIGHLY WEA WEAK TO WEAK, THINLY LAMINATED, CALCARE	·			- 19 -	1															7 LV
MODERATELY TO HIGHLY FRACTURED, SLIGHT		1		-																1 > N 7 LV
TO NARROW APERTURE WIDTH;.				- 20 -																1<1
NOTE: 1.5" VERTICAL FRACTURE WITH IRON ST		503.9	4						<u> </u>											- FLV
				- 21 -																1<1
LIMESTONE, GRAY, SLIGHTLY TO MODERATELY MODERATELY STRONG.																				7 LV
	VEATHERED,	1																		72
215.5'- 20.5'; POINT LOAD INDEX STRENGTH = 7		1		- 22 -	1															1<1
IOTE: SHALE IS CALCAREOUS AND EFFERVESO DILUTE HCL. LIMESTONE SEAMS ARE GRAY TO (1L
ND RANGE IN THICKNESS FROM 1/4" TO 2". SO	ME OF	1		- 23 -	50		100	NQ2-3											Rock (V)	1 > 1 7 L
IMESTONE SEAMS ARE FOSSILIFEROUS AND C				-																1<1
RONG TO VERY STRONG.	ROCK = 1030 PSI	1		- 24 -																1L
@19.5'; COMPRESSIVE STRENGTH OF INTACT R																				1<1
NTERBEDDED SHALE (90%) AND LIMESTONE (10 SHALE, GRAY, MODERATELY TO HIGHLY WE		1		- 25 -																7L
VEAK TO WEAK, THINLY LAMINATED, CALCARE		498.9		25																1L
RACTURED TO HIGHLY FRACTURED, SLIGHTL			EOB																-	. /
TO NARROW APERTURE WIDTH;																				
LIMESTONE, GRAY, SLIGHTLY TO MODERATELY	Y WEATHERED,																			
MODERATELY STRONG.																				
NOTE: SHALE IS CALCAREOUS AND EFFERVESO DILUTE HCL. LIMESTONE IS GRAY AND WHITE W																				
SEAMS FOSSILIFEROUS AND CRYSTALLINE AND	D ARE STRONG																			
TO VERY STRONG. SEAMS RANGE IN THICKNES	SS FROM 0.5" TO																			
1.5" WITH OCCASIONAL IRON STAINING.																				
@22.8'; COMPRESSIVE STRENGTH OF INTACT R																				
20.5'- 25.5'; POINT LOAD INDEX STRENGTH = 1																				

NOTES: GROUNDWATER WAS NOT ENCOUNTERED DURING DRILLING AND NO WATER READING WAS TAKEN UPON COMPLETION BECAUSE WATER WAS USED FOR ROCK CORING OPERATIONS.

COMPANY: PGI		DRILLED BY: TERRACON
PROJECT: PEDESTRIAN BRIDG	SE REPLACEMEI	NT
BRIDGE NO.: HAM-71-1.80		
BORING: B-004-0-23 BOX 1	/1	
DATE of CORING: 5/11/23		
RUN-1/NQ2-1: 14.7' - 15.5'	REC: 60%	RQD: 0
RUN-2/NQ2-2: 15.5' - 20.5'	REC: 100%	RQD: 62%
RUN-3/NQ2-2: 20.5' - 25.5'	REC: 100%	RQD: 60%

							-
PROJECT		IAM-71-1.80	PGI PROJECT NO.	G23006		DATE	12/27/2023
		TRUCTURE				Г AVE, I-471, AND 1-71	
BORING NUMBER		B-004-0-23	TOP DEPTH (FT)	19.5		BOTTOM DEPTH (FT)	19.82
SAMPLE NUMBER		NQ2-1	DISTRICT	8		PID NO.	102790
COUNTY		HAM	ROUTE	71		SECTION	1.81
STATION		6+90	OFFSET	12'		OFFSET DIRECTION	RT
FORMATION							
DESCRIPTION						VERY WEAK TO WE ELY TO HIGHLY FRA	
MEASUREMENT	LE	NGTH (INCH)	DIAMETER (INCH)		L	ENGTH/DIAMETER	1.97
1		3.850	1.960			RRECTION FACTOR	1.00
2		3.840	1.940			AREA (SQ. INCH)	2.986
3		3.840	1.950		—	MASS (GRAMS)	442.13
AVERAGE		3.843	1.950		UN	IT WEIGHT (LBS/FT ³)	146.74
TIVERIOL		5.045	1.950		UN		140.74
MAXIMUM LOAD (LBS) 3081 COMPRESSIVE STRENGTH (PSI) 1030 TIME OF TEST (MINUTES) 8:00 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS		3490 2920 2350 1780 1210 640 70 0.004	6 0.0226 0.040	06 0.05 Position		0.0766 0.0946	0.1126
B							4 101 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BI	EFO	RE TESTING	3			AFTER FAILURE	

PROJECT	HAM-7		PGI PROJECT NO.	G23006		DATE	12/19/2023
	STRUC				LBER	T AVE, I-471, AND 1-71	
BORING NUMBER	B-004		TOP DEPTH (FT)			BOTTOM DEPTH (FT)	23.17
SAMPLE NUMBER	NQ2		DISTRICT	8		PID NO.	102790
COUNTY	HA		ROUTE	71		SECTION	1.81
STATION	6+9	90	OFFSET	12'		OFFSET DIRECTION	RT
FORMATION							
DESCRIPTION						VERY WEAK TO WE. ED TO HIGHLY FRAC	
MEASUREMENT	LENGTH	. /	DIAMETER (INCH)		-	ENGTH/DIAMETER	2.05
1	4.02		1.952		CC	DRRECTION FACTOR	1.00
2	4.02		1.962		<u> </u>	AREA (SQ. INCH)	3.025
3	4.02		1.974		 	MASS (GRAMS)	448.71
AVERAGE	4.02	22	1.963		UN	IT WEIGHT (LBS/FT ³)	140.47
(LBS) 1130 COMPRESSIVE STRENGTH (PSI) 374 TIME OF TEST (MINUTES) 10:40 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS		1270 1070 870 670 470 270 70 0.000	3 0.0253 0.0503	0.0753 Position			0.1753
					125		
BI	EFORE T	ESTINC				AFTER FAILURE	

Point Load Test (ASTM D 5731) Project: HAM-71-1.80 Boring No.: B-004-0-23 **Date:** 7/11/2023 Project No.: G23006G Depth Range: NQ2-2 - 15.5' - 20.5' Technician: NA Rock Description: SHALE, GRAY, MODERATELY HIGHLY WEATHERED, VERY WEAK TO WEAK, THINLY LAMINATED, CALCAREOUS, MODERATELY TO HIGHLY FRACTURED. Type of Test (Axial/Block/Diametral): Axial D_{e}^{2} (mm²) P (lb) No. Type W (mm) D (mm) L (psi) l_s (psi) F I_{s(50)} (psi) Axial⊥ 1 50.1 18.0 145 215.33 1148 120.99 0.839 101.56 2 Axial ⊥ 50.2 21.5 60 89.10 1374 41.83 0.874 36.56 Axial ⊥ 3 49.9 30.0 0 0.00 1906 0.00 0.941 0.00 Axial ⊥ 49.7 210 2278 88.32 0.979 86.49 4 36.0 311.85 304.43 5 Axial ⊥ 50.2 32.0 205 2045 96.02 0.956 91.78 Axial ⊥ 49.8 23.0 210 311.85 1458 137.96 122.20 6 0.886 Axial ⊥ 7 50.2 25.0 1598 527.62 0.904 477.07 880 1306.80 8 Axial ⊥ 50.0 22.0 65 96.53 1401 44.46 0.878 39.03 9 Axial ⊥ 49.8 28.0 75 111.38 1775 40.47 0.926 37.47 Axial ⊥ 49.7 29.70 2215 10 35.0 20 8.65 0.973 8.42 11 Axial ⊥ 50.1 30.0 10 14.85 1914 0.942 4.71 5.01 Note: Bedrock in Dry Condition Mean Corrected Point Load Index $I_{s(50)}$ \perp 58.69 (psi) 1.485 Piston Area = sq. Inches L = Applied Pressure P = Failure Load UCS = $I_{s(50)} \times 12$ (psi) 704 \perp = Load Applied Perpendicular to Bedding W = Core Sample Diameter D = Height of Sample UCS = Unconfined Compressive Strength

Point Load Test (ASTM D 5731)													
Project:	HAM-7	71-1.80	B	oring No.:	B-00	04-0-23		Date:	12/26/2023				
Рі	roject No.:	G23006G	Dep	th Range:	NQ2-3 - 2	20.5' - 25.50'		Technician:	NA				
Rock D	escription:	SHALE, GR	AY, MODEF	RATELY TO	HIGHLY	WEATHERED	, VERY WEA	K TO WEAK					
		THINLY LA	MINATED, C	ALCAREC	US, FRAC	TURED TO H	IIGHLY FRAC	TURED.					
Type of Test (Axial/Block/Diametral): Axial													
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	D _e ² (mm ²)	l _s (psi)	F	l _{s(50)} (psi)				
1	Axial [⊥]	50.0	28.0	150	222.75	1783	80.62	0.927	74.71				
2	Axial [⊥]	50.0	22.0	150	222.75	1401	102.61	0.878	90.07				
3	Axial ⊥	48.3	19.0	20	29.70	1169	16.39	0.843	13.81				
4	Axial ⊥	50.5	20.0	20	29.70	1286	14.90	0.861	12.83				
5	Axial ⊥	50.5	19.0	5	7.43	1222	3.92	0.851	3.34				
6 7	Axial⊥ Axial⊥	52.2 50.9	26.0 20.0	5 5	7.43 7.43	1728 1296	2.77 3.70	0.920	2.55 3.19				
8	Axial \perp	50.9	20.0	20	29.70	1290	11.92	0.803	10.79				
9	Axial –	50.3	27.0	5	7.43	1729	2.77	0.900	2.55				
10	Axial [⊥]	50.2	20.0	5	7.43	1278	3.75	0.860	3.22				
11	Axial [⊥]	50.0	18.0	20	29.70	1146	16.72	0.839	14.03				
Note: Be	drock in Dry	Condition				Mean C Point Load I (p	ndex I _{s(50)} \perp	15.39					
L = Appli P = Failu ⊥ = Load W = Core		rpendicular te ameter	sq. Inches o Bedding			UCS = I _{s(50}	₎₎ x 12 (psi)	185					

TYPE: BRIDGE REPLACEMENT		PLING FIRM / LOGGER:			N / K. H. N / J.H.	HAN	DRILL RIG: <u>CME 5</u> HAMMER: <u>CME A</u> CALIBRATION DATE:			AUTOMATIC			STATION / OFFSET: 8+30, 2' RT. EXPLORAT ALIGNMENT: RAMP CONST. CETERLINE B-005-0 ELEVATION: 552.0 (MSL) EOB: 27.7 ft.							
	DRILLING METHOD SAMPLING METHO			3.25" HSA SPT / NQ2		_	-		TION DATE: RATIO (%):										21 03595	7.7 ft.
MATERIAL DESCRIPTIO			ELEV.				N	REC SAMPL (%) ID				GRAD	DATIC		6)	AT		ERG		ODOT CLASS (GI)
AND NOTES CONCRETE SLAB (15" IN THICKNESS)		\mathbb{X}	552.0			RQD		(%)		(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	
					-	-														
AGGREGATE BASE (3" IN THICKNESS)	/		550.7 550.5	-	1 - -															
VERY STIFF, BROWN AND GRAY, SILT AND SAND, TRACE STONE FRAGMENTS, FILL, M					- 2 -	2 3	10	89	SS-1	4.00	_	_	_			_			18	A-6a (V)
			549.0		-		1	03	00-1	4.00			-	-	_	_			10	A-0a (V)
VERY STIFF TO HARD, BROWN, CLAY , TRA FRAGMENTS, TRACE SAND, DAMP	CE STONE				3 -															
FRAGMENTS, TRACE SAND, DAMF					- 4 -	_3 _														
					-	5	3 20	100	SS-2	4.00	-	-	-	-	-	-	-	-	19	A-7-6 (V)
					- 5 -	-														
					6 -]														
@6.0'; HARD					-	-5 _	27	100	SS-3	45.	-	2	2	24	57	42	23	20	10	A 7 C (1)
			-		- 7 -	7 11		100	55-3	4.5+	7	2	3	31	57	43	23	20	19	A-7-6 (13
					-															
					- 8 -]														
@8.5'; HARD					- 9 -	-5 11	38	56	SS-4	4.5+	_	_	_	-		_	_		16	A-7-6 (V)
					+	14		50	00-4	-+.0+		-	-	-	-	-	-		10	(v)
					10 -	_				1										
@11.0': HARD					- 11 -	-	-													
שאוחו, עורו ש <i>ו</i>					F	-9 13	40	100	SS-5	4.5+	2	1	1	34	62	43	23	20	18	A-7-6 (13
					- 12 -	14														
		<u>₩</u>	539.0	TR	- 13 -	_														
INTERBEDDED SHALE (94%) AND LIMESTO SHALE, GRAY, SEVERELY WEATHERED					-	_														
					- 14 -	-32 -36	129	100	SS-6	-	-	-	-	-	-	-	-	-	9	Rock (V)
					- 15 -	- 50	D												-	
					- 15 -	_														
					- 16 -	44		100	SS-6		_	_		-		-	-			Rock (V)
			535.0		-	50/1"	-	100	33-0	-	-	-	-	-	-	-	-	-	-	RUCK (V)
SHALE, GRAY, SEVERELY TO MODERATELY WI VERY WEAK TO WEAK, THINLY LAMINATED, CA	,				- 17 -															
MODERATELY TO HIGHLY FRACTURED, SLIGH TO NARROW APERTURE WIDTH.	,				- 18 -															
NOTE: SHALE IS SEVERELY WEATHERED FROM					+															
REMAINING ROCK HIGHLY TO MODERATELY W					- 19 -	69		94	NQ2-1											Rock (V)
NOTE: SHALE IS VERTICALLY FRACTURED AND FROM 18.1' TO 18.4'	IRON STAINED				_ 20 -															
NOTE: THIN, GRAY AND WHITE AND GRAY, FOS			501 -		-															
CRYSTALLINE LIMESTONE SEAMS RANGING FR IN THICKNESS FROM 20.2' TO 20.9'	ROM 0.25" TO 1.25"		531.0	1	- 21 -		-													
@17.0' - 21.0'; POINT LOAD INDEX STRENGTH =					- 22 -															
NOTE: ALL SHALE AND LIMESTONE EFFERVES DILUTE HCL FROM 17.0' TO 27.7' AND BEDDING					-															
HORIZONTAL INTERBEDDED SHALE (93%) AND LIMESTONE (7					- 23 -															
SHALE, GRAY, MODERATELY TO HIGHLY WE	EATHERED, VERY					- 100		100	NQ2-2											Rock (V)
WEAK TO WEAK, THINLY LAMINATED, CALCAR MODERATELY TO HIGHLY FRACTURED, SLIGH					- 24 -															
TO NARROW APERTURE WIDTH;. @21.7'; COMPRESSIVE STRENGTH OF INTACT I	ROCK = 439 PSI				- 25 -															
LIMESTONE, GRAY & WHITE, VERY WEAK.			526.0		F															
NOTE: GRAY AND WHITE AND GRAY, FOSSILIF CRYSTALLINE, LIMESTONE SEAMS WITH BROW		Ē		1	26 -															
LIME CLAY/SHALE FROM 21.0' TO 21.7'					_ 27 -	20		100	NQ2-3											Rock (V)
@21.0'- 26.0'; POINT LOAD INDEX STRENGTH = NOTE: VERTICAL FRACTURES WITH IRON STAI			524.3	EOB-																
TO 22.5' AND AT 23.5' @24.2'; COMPRESSIVE STRENGTH OF INTACT I				200																
INTERBEDDED SHALE (86%) AND LIMESTONE (1	4%);																			
SHALE, GRAY, MODERATELY TO HIGHLY WE WEAK TO WEAK, THINLY LAMINATED, CALCAR	EOUS,																			
MODERATELY TO HIGHLY FRACTURED, SLIGH TO NARROW APERTURE WIDTH;.	I LY ROUGH, TIGHT																			
LIMESTONE, GRAY & WHITE, VERY WEAK.																				

STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 12/28/23 13:51 - \\GEOT

NOTE: GRAY TO WHITE AND GRAY, FOSSILIFEROUS AND CRYSTALLINE LIMESTONE SEAMS RANGE FROM 0.75" TO 1.25" IN THICKNESS AND ARE STRONG TO VERY STRONG

NOTES: GROUNDWATER WAS NOT ENCOUNTERED DURING DRILLING AND NO WATER READING WAS TAKEN UPON COMPLETION BECAUSE WATER WAS USED FOR ROCK CORING OPERATIONS. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; BACKFILLED WITH BENTONITE GROUT

COMPANY: PGI		DRILLED BY: TERRACON										
PROJECT: PEDESTRIAN BRIDGE REPLACEMENT												
BRIDGE NO.: HAM-71-1.80												
BORING: B-005-0-23 BOX 1/1												
DATE of CORING: 6/8/23												
RUN-1/NQ2-1: 17.0' - 21.0'	REC: 94%	RQD: 69%										
RUN-2/NQ2-2: 21.0' - 26.0'	REC: 100%	RQD: 89%										
RUN-3/NQ2-3: 26.0' - 27.7'	REC: 100%	RQD: 20%										

PROJECT	HAM-71-1.80	PGI PROJECT NO.	G23006		12/19/2023				
	STRUCTURE			BERT AVE, I-471, AND 1-71					
BORING NUMBER	B-005-0-23	TOP DEPTH (FT)		BOTTOM DEPTH (FT)	21.99				
SAMPLE NUMBER	NQ2-1	DISTRICT	8	PID NO.	102790				
COUNTY	HAM	ROUTE	71	SECTION	1.81				
STATION	8+30	OFFSET	2'	OFFSET DIRECTION	RT				
FORMATION									
				HERED, VERY WEAK TO RATELY TO HIGHLY FRA					
MEASUREMENT	LENGTH (INCH)	DIAMETER (INCH)		LENGTH/DIAMETER	2.03				
1	3.890	1.900		CORRECTION FACTOR	1.00				
2	3.870	1.910		AREA (SQ. INCH)	2.865				
3	3.880	1.920		MASS (GRAMS)	411.25				
AVERAGE	3.880	1.910		UNIT WEIGHT (LBS/FT ³)	140.93				
III LIGIOL	2.000				2.0.75				
MAXIMUM LOAD (LBS) 1258 COMPRESSIVE STRENGTH (PSI) 439 TIME OF TEST (MINUTES) 5:00 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	1340 1190 1040 (Jq) peod 740 590 440 290 140 0.002	22 0.0172 0.03	22 0.04 Position		0.0922				
	FORE TESTING								
BE	FURE LESTING	9	AFTER FAILURE						

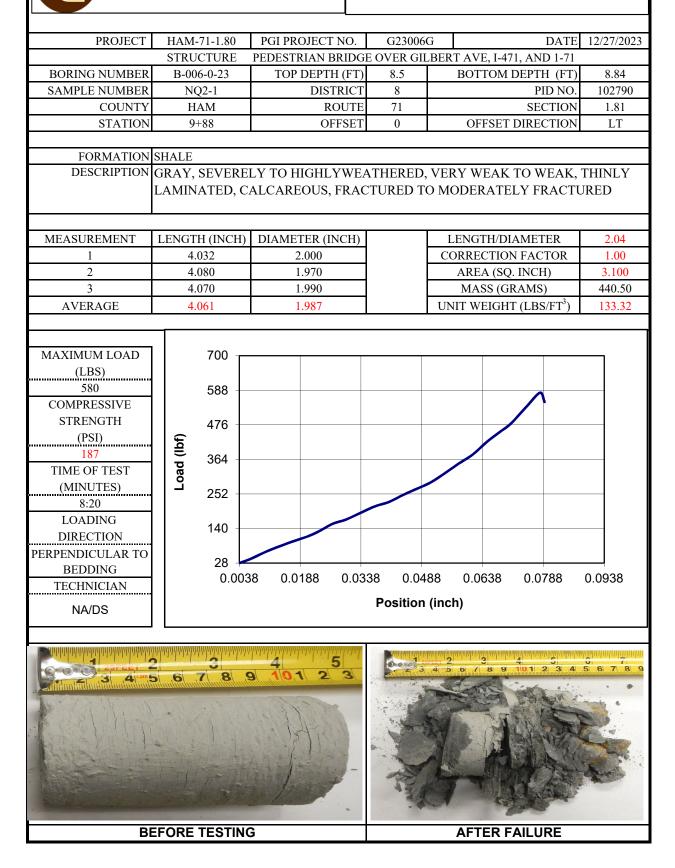
PROJECT	HAM	[-71-1.80	PGI PROJECT NO.	G23006		DATE	12/19/2023				
	STRU	JCTURE			LBER	T AVE, I-471, AND 1-71					
BORING NUMBER		05-0-23	TOP DEPTH (FT)	24.167		BOTTOM DEPTH (FT)	24.492				
SAMPLE NUMBER		Q2-2	DISTRICT	8		PID NO.	102790				
COUNTY		IAM	ROUTE	71		SECTION	1.81				
STATION	8	3+30	OFFSET	2'		OFFSET DIRECTION	RT				
FORMATION											
DESCRIPTION						VERY WEAK TO WE ELY TO HIGHLY FR.					
MEASUREMENT	I ENG	ГН (INCH)	DIAMETER (INCH)		T	ENGTH/DIAMETER	2.01				
1		5.890	1.940			ORRECTION FACTOR	1.00				
2			1.940			AREA (SQ. INCH)	2.956				
3		5.910	1.930			MASS (GRAMS)	420.67				
AVERAGE		.900	1.940		LIN	IT WEIGHT (LBS/FT ³)	139.01				
AVERAGE	3	.900	1.940		UN	II WEIGHT (LDS/FT)	139.01				
MAXIMUM LOAD (LBS) 1060 COMPRESSIVE STRENGTH (PSI) 359 TIME OF TEST (MINUTES) 7:00 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	Load (lbf)	1270 1070 870 670 470 270 70 0.003	3 0.023 0.043	0.063 Position	0.08 (incl		0.143				
BEFORE TESTING											
Bt			נ								

Point Load Test (ASTM D 5731)													
Project: HAM-71-1.80 Boring No.: B-005-0-23 Date:													
Pr	roject No.:	G23006G	Dep	th Range:	NQ2-1 -	17.0' - 21.0'		Technician:	NA				
Rock Description: SHALE, GRAY, SEVERELY TO MODERATELY WEATHERED, VERY WEAK TO WEAK													
THINLY LAMINATED, CALCAREOUS, MODERARELY TO HIGHLY FRACTURED.													
Type of Test (Axial/Block/Diametral): Axial													
No.	No. Type W (mm) D (mm) L (psi) P (lb) D _e ² (mm ²) I _s (psi) F												
1	Axial⊥	50.1	27.5	10	14.85	1754	5.46	0.923	5.04				
2	Axial [⊥]	49.9	28.5	5	7.43	1809	2.65	0.930	2.46				
3	Axial ⊥	50.2	15.0	0	0.00	959	0.00	0.806	0.00				
4	Axial ⊥	49.9	26.0	10	14.85	1652	5.80	0.911	5.28				
5	Axial ⊥	50.0	22.0	20	29.70	1401	13.68	0.878	12.01				
6	Axial⊥	50.3	28.0	25	37.13	1793	13.36	0.928	12.39				
7	Axial ⊥	49.7	24.0	0	0.00	1519	0.00	0.894	0.00				
8 9	Axial⊥ Axial⊥	50.1 50.0	24.0 28.0	0 35	0.00 51.98	1531 1783	0.00 18.81	0.896	0.00				
9 10	Axial -	49.8	26.0	0	0.00	1649	0.00	0.927	0.00				
11	Axial \perp	49.7	20.0	30	44.55	1266	22.71	0.858	19.48				
Note: Ber	drock in Dry	Condition				Mean C Point Load I (p		6.07					
. = Appli ? = Failu - = Load	ston Area = ed Pressure re Load I Applied Pei e Sample Dia	rpendicular t	sq. Inches to Bedding		UCS = I _{s(50}	₎₎ x 12 (psi)	73						

Point Load Test (ASTM D 5731)													
Project: HAM-71-1.80 Boring No.: B-005-0-23 Date: 1													
Pr	oject No.:	G23006G	Dep	th Range:	NQ2-2 -	21.0' - 26.0'		Technician:	NA				
Rock Description: SHALE, GRAY, MODERATELY TO HIGHLY WEATHERED, VERY WEAK TO WEAK													
THINLY LAMINATED, CALCAREOUS, MODERARELY TO HIGHLY FRACTURED.													
Type of Test (Axial/Block/Diametral): Axial													
No. Type W (mm) D (mm) L (psi) P (lb) D _e ² (mm ²) I _s (psi) F I _s													
1	Axial [⊥]	50.1	36.0	150	222.75	2297	62.57	0.981	61.39				
2	Axial ⊥	48.6	23.0	100	148.50	1422	67.39	0.881	59.35				
3	Axial \perp	50.7	30.0	5	7.43	1937	2.47	0.944	2.34				
4	Axial ⊥	50.9	22.0	60	89.10	1426	40.32	0.881	35.53				
5	Axial⊥	50.0	25.0	5	7.43	1590	3.01	0.903	2.72				
6 7	Axial ⊥	50.7	17.0	60	89.10	1097	52.38	0.831	43.52				
7 8	Axial⊥ Axial⊥	50.8 50.4	25.0 22.0	50 5	74.25 7.43	1617 1412	29.62 3.39	0.907 0.879	26.86 2.98				
0 9	Axial \perp	50.4	22.0	5	7.43	1412	2.59	0.934	2.90				
10	Axial –	50.1	18.0	5	7.43	1148	4.17	0.839	3.50				
11	Axial [⊥]	50.0	20.0	5	7.43	1273	3.76	0.859	3.23				
<u>Note: Be</u>	drock in Dry	Condition				Mean C Point Load I (p:	ndex I $_{\rm s(50)}$ \perp	20.01					
L = Applid P = Failur [⊥] = Load W = Core D = Heigl	Applied Per Sample Dia ht of Sample	rpendicular t ameter	-			UCS = I _{s(50}	₎ x 12 (psi)	240					

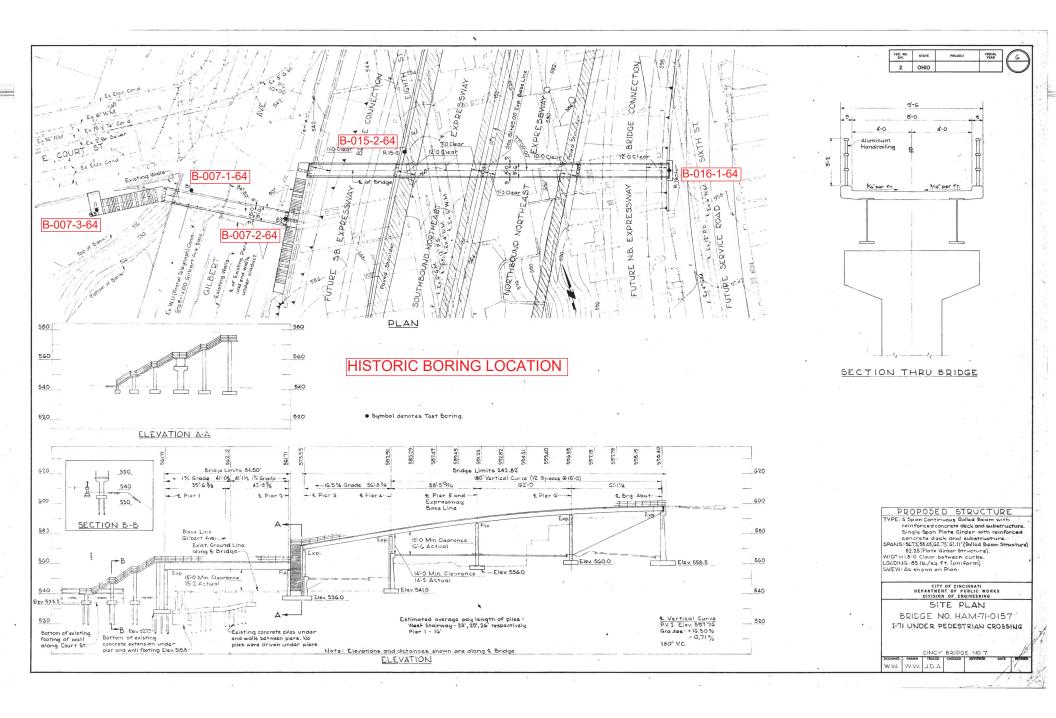
TYPE:		BRIDGE RE	PLA	HAM-22-10.93 CEMENT HAM-71-1.80	•	DRILLING FIRM / OPERATOR: TERRACON / K. H. SAMPLING FIRM / LOGGER: TERRACON / J.H. DRILLING METHOD: 3.25" HSA						DRILL RIG: <u>CME 55/300 ATV/T</u> HAMMER: <u>CME AUTOMATIC</u> CALIBRATION DATE: 1/13/23					ALIGNMENT: RAMP CONST. ELEVATION: 564.8 (MSL)							
STAR				6/7/23	•	SAMPLING METHOD: SPT / NQ2					RGY R			90		COO		···· _						
				RIAL DESCRIP			ELEV.			SPT/			SAMPLE	-		GRAD	-	NI /0/			ERB			ODOT
				AND NOTES	non		564.8	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)		CS	FS	SI SI	CL		PL	PI	wc	CLASS (GI)
TOPS	SOIL (3'	IN THICK	VESS	3)			564.5∠	TR-	-															
SHAL	. E , GR/	AY, SEVER	ELY	WEATHERED,	VERY WEAK.				F	-														
									- 1 -															
									L	4														
									- 2 -	10 22	48	100	SS-1	-	-	-	-	-	-	-	-	-	13	Rock (V)
									2	22														
									Γ															
									- 3 -	-														
									F															
									- 4 -	19 24	100	100	SS-2										10	Deals (\A
									-	43		100	33-2	-	-	-	-	-	-	-	-	-	10	Rock (V)
									- 5 -															
							558.8		_															
-	, -	AY, HIGHLY	′ WE	ATHERED, VE	RY WEAK TO			1	- 6 -	26													_	_
WEA	۲.						557.8		F	26 50	-	100	SS-3	-	-	-	-	-	-	-	-	-	9	Rock (V)
INTEF	BEDDE	D SHALE (9	9%) A	ND LIMESTONE	(1%);		557.0	1	- 7 -		-													
SH	ALE , GF	RAY, SEVER	ELY -	TO MODERATE	Y WEATHERED,				F															
					CALCAREOUS, . SLIGHTLY ROUGH.				- 8 -															
	-				, SLIGHTLT KUUGH,				F															
									- 9 -															
		CK CLAY SE							9			40	NOOA											B 1 0 0
NOTE	: 0.5" TI	HICK GRAY	AND	WHITE LIMESTO	ONE SEAM AT 8.5'				F	- 33		43	NQ2-1											Rock (V)
@8.5'	COMPI	RESSIVE ST	REN	GTH OF INTACT	ROCK = 187 PSI				- 10 -															
									-	-														
NOTE	: ALL SI	HALE AND L	IMES	TONE EFFERVE	SCE FREELY WITH				- 11 -															
			0 22.	0' AND BEDDIN	G IS GENERALLY				L															
HORI	ZONTAL	-					552.8		- 12 -															
			•	32%) AND LIMES	• •				12															
		, ,							- -															
				O WEAK, THINL' TURED TO MOE					- 13 -															
		- / -			ARROW APERTURE				F															
WIDT			ITI V		LY WEATHERED,				- 14 -															
		STRONG.			\sim				F	69		100	NQ2-2											Rock (V)
			REN	GTH OF INTAC	F ROCK = 261 PSI				- 15 -															
	,			DEX STRENGTH		E			L															
	,				FOSSILIFEROUS,				40															
				,	IOUT RUN RANGING				- 16 -															
		3" IN THICKN					547.8		F															
							J41.0	-	- 17 -															
	-								F															
					TO VERY STRONG				- 18 -															
					RTICAL FRACTURES				Ļ															
		-		14.5', 15.0' AND					- 19 -															
			•	AND LIMESTON Y TO MODERATE	()				19-			100												
					AREOUS, HIGHLY				Γ	60		100	NQ2-3											Rock (V)
				RACTURED, SLIG	HTLY ROUGH, TIGHT TO				- 20 -															
			,						F															
		RAY, SLIGHTL' STRONG.	Y TO I	MODERATELY WE	ATHERED,	F			- 21 -															
				DEX STRENGTH	= 350 PSI				F															
	,			WHITE, FOSSIL			542.8	FOB-	L															
		ELIMESTON	E SE	AMS RANGE FR	OM 0.25" TO 5" IN	_			~~~															
	NESS																							
JNWE	ATHER		FER	ATELY WEATHE OUS, CRYSTALI	RED TO INE AND SLIGHTLY																			

STRONG TO VERY STRONG NOTE: 2.5" THICK IRON STAINED SHALE AND LIMESTONE AT 19.3' WITH 10 DEGREE FROM HORIZONTAL BEDDING AT TOP OF 5" THICK LIMESTONE SEAM


NOTES: GROUNDWATER WAS NOT ENCOUNTERED DURING DRILLING AND NO WATER READING WAS TAKEN UPON COMPLETION BECAUSE WATER WAS USED FOR ROCK CORING OPERATIONS. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT

COMPANY: PGI	DRILLED BY: TERRA	CON										
PROJECT: PEDESTRIAN BRIDGE REPLACEMENT												
BRIDGE NO.: HAM-71-1.80												
BORING: B-006-0-23 BOX 1/1												
DATE of CORING: 6/7/23												
RUN-1/NQ2-1: 7.0' - 12.0'	REC: 43%	RQD: 33%										
RUN-2/NQ2-2: 12.0' - 17.0'	REC: 100%	RQD: 69%										
RUN-3/NQ2-3: 17.0' - 22.0'	REC: 100%	RQD: 60%										

Compressive Strength of Rock ASTM D 7012



Compressive Strength of Rock ASTM D 7012

PROJECT	HAM-71-	1.80	PGI PROJECT NO.	G23006	G DATE	12/19/2023
1100201	STRUCT				LBERT AVE, I-471, AND 1-71	12/19/2020
BORING NUMBER	B-006-0-		TOP DEPTH (FT)	14.67	BOTTOM DEPTH (FT)	15
SAMPLE NUMBER	NQ2-2		DISTRICT	8	PID NO.	102790
COUNTY	HAM		ROUTE	71	SECTION	1.81
STATION	9+88		OFFSET	0	OFFSET DIRECTION	LT
FORMATION						
DESCRIPTION	GRAY, SE	VERE	LY TO MODERATEI	LY WEAT	HERED, VERY WEAK TO	WEAK,
	THINLY L	AMIN	ATED, CALCAREOU	US, HIGHL	LY FRACTURED TO MOD	ERATELY
	FRACTUR	ED				
					r	T
MEASUREMENT	LENGTH (DIAMETER (INCH)		LENGTH/DIAMETER	2.00
1	3.920		1.980		CORRECTION FACTOR	1.00
2	3.890		1.990		AREA (SQ. INCH)	2.976
3	3.850		1.870		MASS (GRAMS)	419.20
AVERAGE	3.887		1.947		UNIT WEIGHT (LBS/FT ³)	138.05
MAXIMUM LOAD (LBS) 777 COMPRESSIVE STRENGTH (PSI) 261 TIME OF TEST (MINUTES) 15:00 LOADING DIRECTION PERPENDICULAR TO BEDDING TECHNICIAN NA/DS	7 Foad (Ipt) 3 2	70	8 0.0518 0.10	18 0.15 Position		0.3018
25FEE C A	FORE TE				AFTER FAILURE	

			Point	Load T	est (A	STM D 5	731)		
Project:	HAM-7	71-1.80	В	oring No.:	B-0	06-0-23		Date:	12/26/2023
						12.0' - 17.0'		Technician:	NA
Rock D	escription:	SHALE GR	AY SEVER			I Y WEATHER		EAK TO WEAK	ć
Tvr		Axial/Block/	·		00,11011				
					D (11-)	D^{2} (
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	$D_e^2 (mm^2)$	l _s (psi)	F	l _{s(50)} (psi)
1	Axial⊥	49.0	35.0	5	7.43	2184	2.19	0.970	2.13
2	Axial ⊥	50.2	24.0	5	7.43	1534	3.12	0.896	2.80
3	Axial ⊥	50.9	25.0	5	7.43	1620	2.96	0.907	2.68
4	Axial ⊥	50.2	20.0	5	7.43	1278	3.75	0.860	3.22
5	Axial ⊥	50.0	21.0	5	7.43	1337	3.58	0.869	3.11
6	Axial ⊥	50.3	31.0	5	7.43	1985	2.41	0.949	2.29
7	Axial	51.1	25.0	5	7.43	1627	2.95	0.908	2.67
8 9	Axial⊥ Axial⊥	50.4 49.5	22.0 25.0	5 20	7.43 29.70	1412 1576	3.39 12.16	0.879 0.901	2.98
9 10	Axial -	49.5 50.4	25.0	5	7.43	1733	2.76	0.901	2.55
10	Axial –	50.4	27.0	5	7.43	1736	2.76	0.921	2.53
<u>Note: Be</u>	drock in Dry	Condition				Mean Co Point Load In (p:	ndex I _{s(50)} \perp	2.76	
L = Applie P = Failu [⊥] = Load W = Core D = Heigl	Applied Pereception Applied Pereception Applied Applied Applied Applied Applied Applied Pereception Applied Pereception Applied Pereception Applied Appli	rpendicular to ameter	-			UCS = I _{s(50}	₎ x 12 (psi)	33	

			Point	Load T	Test (A	STM D 5	731)		
Project:	HAM-7	71-1.80	В	oring No.:	B-0	06-0-23		Date:	7/11/2023
Рі	roject No.:	G23006G	Dep	th Range:	NQ2-3 -	17.0' - 22.0'		Technician:	NA
Rock D	escription:	SHALE. GR	AY. SEVER	ELY TO M	ODERATE	LY WEATHER	RED. VERY W	EAK TO WEAK	
	-					LY TO MODE			
Тур			Diametral):						
No.	Туре	W (mm)	D (mm)	L (psi)	P (lb)	D _e ² (mm ²)	l _s (psi)	F	l _{s(50)} (psi
1	Axial⊥	50.0	16.5	65	96.53	1050	59.28	0.823	48.78
2	Axial [⊥]	49.9	26.5	0	0.00	1684	0.00	0.915	0.00
3	Axial ⊥	50.2	27.0	70	103.95	1726	38.86	0.920	35.75
4	Axial \perp	50.2	18.5	60	89.10	1182	48.61	0.845	41.08
5	Axial ⊥	49.3	25.0	75	111.38	1569	45.79	0.901	41.23
6	Axial ⊥	49.7	26.0	50	74.25	1645	29.12	0.910	26.50
7	Axial ⊥	50.2	19.0	50	74.25	1214	39.45	0.850	33.53
8	Axial	50.0	25.0	50	74.25	1592	30.10	0.903	27.19
9		49.9	32.0	100	148.50	2033	47.12	0.955	44.98
10 11	Axial⊥ Axial⊥	50.1 50.0	21.5 28.0	10 5	14.85 7.43	1371 1783	6.99 2.69	0.874 0.927	6.10 2.49
lote: Be	drock in Dry	<u>Condition</u>				Mean Co			
	ston Area =	1.485	sq. Inches			Point Load In (p:	()	29.18	
. = Appli ? = Failu - = Load V = Core	l Applied Pe e Sample Di	rpendicular t ameter	o Bedding			UCS = I _{s(50}	₎ x 12 (psi)	350	
= Appli = Failu - = Load / = Core = Heig	re Load l Applied Pe e Sample Di ht of Sample	rpendicular t ameter	-			UCS = I _{s(50}	₎ x 12 (psi)	350	

	016-59		THE B	I. C.	NUTTING COMPANY	• •					n Road N Offic				2.5
B-	007-	-1-6	4		TESTING ENGINEERS AND SOILS C	_					<u>l of</u>				
	RTED_7/2		SAMPI	LER: TYP	t Spoon & 2"O.D.& ECore Barrel DIA. <u>NXM</u> WATER ELEV. IMMEDIATE		524		NT: <u>Cí</u> ECT: <u>No</u>	ty of rthea	Cinc st Ex	innat	i, Oh		-
BORING	lo. <u>B-7-1</u>	STATIO	N AND OFFSI	ет <u>150-</u>	Stem Augers 86,191'L. BL SURFACE ELEV.	541	.8	541.2		M-71- idge		<u> AM-71</u>	-0157	. •	
ELEV.	DEPTH	SAMPLE No.	STD. PEN. (N)	% REC.	DESCRIPTION	ÅGG.	* c.s	¥	sical Ch % Su.t	1 %		P.L	we	SHTL	7
541.8	P			· · · · ·	0.5'Sonczete		<u> </u>		8161	L CLAY		_ #*.# <u>.</u>	W.G.	CLASS	1
539.3	2	1	3-2-2	8 <u>"</u>	Brown and gray silty clay and cinders (fill), moist - loose	Vist	1 91 c	lassi	ficati	on-No	test	s per	Forme	F111	1
536.8		2	3-3-3	12"	Brown and gray silty clay with rock fragments(fill), moist - medium stiff	Visu	121 0	lassii	Eicati	n-No	test	s per	Forme	F111	
	6	3 、	2-2-3	15"	Brown and gray silty clay with organic matter and cinders (fill), moist - medium stiff	Yis u	al c	lassii	lcati	on-No	test	l per	Forme	Fill	
531.8	10	4	3-4-5	16"	do do	Visu	ual c	lassii	lcati	on-No	test	e per	formed	F111	ţ
	12	5	5-4-6	8 ^{,µ}	Brown and gray silty clay with brick, (fill), moist - stiff	Visu	ial c	lassii	içati	on-No	test	, per	Forme	F111	
526.8	14														
	<u>16</u> 18	6	6-12-40	ייפ	Brick and limestone fragments with clay (fill), moist - very dense		ł	lassif	1.1						
521.8			95	5"	do do	Visu	al c	lassif	lcati	on-No	test	i per	formed	F111	
519.3	22	8	8-12-5	10"	Brick and concrete with clay (fill), wet - medium dense	Visu	al c	lassii	lcati	on-No	test	per	Forme	l, F111	
516.8	24	9	2-2-3	11"	Gray silty clay with brick and organic matter (fill), wet - soft	Visu	al c	lassif	i:ati	on-No	test	per	Eorme	Fill	
514.8		10	9-12-9	10"	Brick and concrete with brown and gray weathered shale, wet - stiff	1	al c	lassif	lcati	on-No	tests	per	forme	Fill	
	28	11	ТХМ	73%	Gray shale, calcareous, moderately tough to tough (1" to 2" pieces averaging 1±" and gray limestone, crystalline, fossiliterous (1±" to 5±" pieces, averaging 4") 77% shale, 23% limestone)								•	
	32			·	averaging 4") 77% shale, 23%limestone										
	34														
			-		UTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES, ALL MUTIAL PROPERTY OF GLIENTS, AND AUTHORIZATION FOR PUBLICATION O ACTO PROF, OR REGARDING OUR REPORTS IS RESERVED PENDING OUR				THE				. <u> </u>		مر

3-()07-	1-6	4		TESTING ENGIN			SUL	_		0.00			······································	·	
				Split	Spoon & 2 CoreBarel DIA. 1	LOG OF B	OKING		Sta	a. &	Offs	set: 7	/+4().40	, 42	.3' L
e stàf	RTED	///_/ 7/27	<u>/04</u> SAMP	LER; TYI	petoreparer DiA	XM WATER	ELEV. IMMEDIATE.		+.3 F111ar	CLIENT I	r: <u>City</u> No	<u>v of Ç</u>	<u>incin</u>	<u>natí,</u>	<u>Ohio</u>	
					GTH DIA3.5' Ster						CT: HA	M-71-	0.93	press	<u>way</u>	
NING N	o. <u>B~7~1</u>	STATIO	N AND OFFS	ET <u>15</u>	0+86,191' L. BL		SURFACE ELEV.	. 541	8 5	41.2	Br	idge	No. H	AM-71	-0157	
LEV.	DEPTH	SAMPLE No.	STD. PEN. (N)	% REC.	DE	SCRIPTION	: .	%	%	Physi %	cal Cha %	racteristi %	C8			SHTL
04.8	34 36	12	NXM	72%	Gray shale, calo 3" pieces avera limestone, crys (1/2"to 4"piece 87% shale, 13%	areous, tou ging 2") an talline,fos s averaging limestone	gh(1/2" to d gray siliferous, 2")	AGG.	C.S.	F.8,	SILT	CLAY	L.L.	<u>P.I.</u>	<u>w.c.</u>	CLASS
	38	· · · · · · · · · · · · · · · · · · ·													•	
	_40				Boring	completed						2.1				. · .
			÷.				· · · ·		· · ·							1. T
	.42								н. 							•
	44		н 1 Н													
	46	· ·	.				•			•						
																· ·.
	48															
										• •						÷ 1 4
	·		•		•										·	
										·						
												· · .				·
													. 1		1	
					·				an an San San San San San San San San San San						.	· · ·
ł									., i							
Ì								[
						,			1							
ſ			О.,		· · · · · · · · · · · · · · · · · · ·				1						•	
+													1			
Ļ		ļ	. K	1				.								
		1														

.	Form No. 530	- '	<u></u>	These 13	. C.	NUTTING COMPANY					RPORT				<u></u>	•
E	3-0C	1 No. 1				TESTING ENGINEERS AND SOILS C LOG OF BORING Split Spoon & 2"O.D.6 Core Barrelpia, NXM water elev. IMMEDIATE	S		& Of	fset	: 7+			2.1' 1, 0h1	LT	
- N	DATE STAR	5	/22/64	,				fille	_ PROJE	:: :CT:N	orthea AM-71	ast B	хргез	Ŧ		•.
	BORING NO	. <u>B-7-2</u>		N AND OFFSE	,150+	75, 124 L. BL SURFACE ELEV.	542	.0	541.4	B	ridge	No.	HAM- 7	1-0157	7	
	ELEV.	DEPTH	SAMPLE No.	STD. PEN. (N)	% REC.	DESCRIPTION	AGG.	c.s.	Phys ¥ F.S.	ical Cha % SILT	eracteris % CLAY		P.I.	w.c.	SHTL	• • • •
	542.0 541.6	•	1	2-9-4	3"	Concrete (0.41) Brown and gray silty clay with gravel	Visu	l cl	ssifi	catic	n-No	tests	рет	ormed	Fill	
	539.5		2	4-9-9	14"	and cinders (fill), moist - soft Brown and gray clay, trace sand, trace	8	6	3	33	50	43	19	25	A-7-6	
		6		8-16-25	13"	gravel with shale and limestone fragme: moist - stiff Brown and grav claw trace and trace	1	2	2	38	57	42	18	13	A-7-6	
	534.5	8	4	8-10-23 19-75	8"	Brown and gray clay, trace sand, trace gravel with limestone fragments, moist very stiff Brown and gray silty clay, trace sand,		5	4	34	46	40	16	16	A-6b	
	532.0	10	F4			little gravel with limestone fragments moist - very stiff			**					14		
		12	5	16-41-77	14"	Brown and gray silt and clay, little sand, trace gravel with limestone fragments, moist - very stiff	3	9	4	32	52	39	15	14	A-64	
	527.0	14	6	76-45-70		Brown and gray silt and clay, trace san trace gravel with limestone fragments,		3	2	36	52	38	14	12	A-6a	
		16	7	23-65-80	16"	Brown and gray weathered shale, hard	V1S	LAL C	lassi	ICATI	IOU-NC		s p∉	IOIMe		
		_18	8	51-70	· 9"	do	. Vi s	al c	assi:	icati	on-No	test	s pe	forme		
	522.0	20	9	NXM	67%	Gray and brown shale, calcareous, moderately tough (1" to 42" pieces			1. 1. 1. 1. 1. 1. 1.							
		22		MAIN		Gray and brown shale, calcareous, moderately tough (1" to 42" pieces averaging 2") and gray limestone, crystalline, fossiliferous (two pieces 4" and 44") 92% shale, 8% limestone										
		26				Gray shale, calcareous, moderately tough with brown and gray weathered zones in the bottom half of the run		· · · ·								• • • •
		28	10	NXM	71%	(1" to 2½" pieces averaging 1½") and gray limestone, crystalline, fossilifer	ous,		0							
	512.0	30				21% limestone	·									•
		32	•			Boring completed		- 6	1.480 P. 1		e a					
		34	ŀ	<u> </u>	CONFIDE	IVTUAL PROTECTION TO CLIENTE, IME MUBLIC, AND OURSELVER, ALL R MTIAL PROPERTY OF CLIENTE, AND AUTHORIZATION FOR PUBLICATION ACTE FROM OR REGARDING QUE REPORTS IS RESERVED MENDING OUT	qif İtate	highlyn, c	CHICLUSIC				4 <u>,</u> 1.			

Form No. 5	1159	•	Тне н	ι . c .	NUTTING COMPOSY					IRPOR				٠
1)7-3			Sp	11t Spoon & 2"O.D. &	a. & (Offs)+33		, 3.1	'LT		
DATE CO	ARTED. <u>9/</u> MPLETED <u>9/</u>	9/64	CASIN	LER: TYÌ G: LEN(STHDIANXMWATER ELEV. IMMEDIAT STHDIA.3.5"I.D.Hollow AFTER 24 Stem Augers	HOURS	514.2		ECT:	Dity o Northe HAM-71	ast E	xpres		hio
BORING	No. <u>B-7-</u>	3 STATIO	N AND OFFSE	22 ' 78	S. of S. Curb E. Court Street W. of W. Curb Gilbert AvenueSURFACE ELEN	537	.2	536	.6 1	Bridge	No.	HAM-7	71-015	7
ELEV.	DEPTH	SAMPLE	STD. PEN. (N)	% REC.	DESCRIPTION	%	1 %	Phy %	sical Ci %	naracteri %	stics	·	1	SHTL
537 2	0					AQG	C.5.	F.S.	<u></u>		<u> </u>	<u></u>	<u>w.c.</u>	CLASS
	2	1	18-17-25	10"	Cinders and brick(fill), moist - dense	Visu	1 cl	essif	icati	on-No	test	per	formed	Fill
	4	2	17-21-7	9"	do do	Visu	l cl	assif	icati	on-No	test	per	formed	F111
	6	3	18-9-12	10"	do	Visu	1 ċ1	ssif	icati	cn-No	test	g per	formed	Fill
	8	4	10-11-9	16"	do do	Visu	1 cl	assif	icati	on-No	test	per	formed	F111
525.2	10	5	6-7-12	15"	do do		l cl	ssif	icati	cn-No	tests	per	formed	F111
	14	6	9-8-10	18"	Brown silty clay with gravel and brich fragments (fill), moist - medium stift	Visu	1 cl	assif:	icati	on-No	tests	per	formed	F111
	16	7	6-7-10	10"	do do	Visu	1 c1	ssif:	icati.	on-No	testa	per	Eprmed	F111
517.2	18	8	10-14-7	9"	do do	Visu	1 c1	ssif:	[catio	on-No	cests	peri	Eprmed	F111
51/ 44	20	9	5-6-9	10"	Dark gray silty clay with brick fragments (fill), moist - stiff	Visu	1 cl.	ssif:	icat i	on-No	este	peri	formed	F111
512.2	24	10	3-4-7	8 ¹¹ .	do do	Visu	1 cl	essif:	[cation	on-No	tests	peri	Eprmed	Fill
J14.4	26	11	4-9-15	14"	Brown and gray clay, trace sand, moist - stiff	0	4	3	38	55	43	18	20	A-7-6
	28	12	15-15-20	17"	Brown and gray clay, trace sand with shale fragments, moist - very stiff	0	1	1	37	61	44	18	16	A-7-6
507.2	30	13	17-19-27	17"	Brown and gray weathered shale, moist very stiff to hard	Visua	l cla	ssifi	catio	n-No	ests	peri	brmed	
	34	- 14	, 100	2.11	do do		1	1 .	ľ	n-No	tests	peri	ormed	
				CONFIDE	NUTUAL PROTECTION TO CLIENYS, THE FUBLIC, AND OURSELVES, ALL NTIAL PROPERTY OF GLIENTS, AND AUTHORIZATION FOR FUBLICATION ACTS FROM OR MEGAROING OUR REPORTS IS REMERVED FEMDING OF	OF STATE	MENTO, C	CONCLUS	THE ONE,					

,

Form No. 530	-16-59	T 1	не н. (C. N	UTTING COMPANY			4120 CINCIN	AIRPO	RT RO/ 26. OH	AD 10			i and in the second	E
R_(107	-3-6			TESTING ENGINEERS AND SOILS CON	SUL	TANI	s	Pa	38 2 o	£ 2			· · · ·	
				Sp				ffset	: 0+	<u>33.3</u>	<u>5. 3</u>	<u>3.1' I</u>			
	bi ever9/	9/64	CASIM		PEOTO BATTODIA. NXM WATER ELEV. IMMEDIATE		ne 14.2			ty of				. O	-
BORING N	lo. 8-7	-3 STATIO	N AND OFFSE	22 27. 78	Stem Augers S. of S. Curb E. Court Street W. of W. Curb Gilbert AvenueSURFACE ELEV.	537.2	5	36.6	HAI	M-71-0 Ldge N	.93			<u>.</u>	•
ELEY.	DEPTH	SAMPLE No.	STD. PEN. (N)	% REC.	DESCRIPTION	%	%	Physi %	cal Cha	racteristi	CS		· · · · · ·	SHTL	· ·
503.2	34					AGG.	<u>C.s.</u>	F.S.	SILT	CLAY	LLL.	P.I.	w.c.	CLASS	
	36 38	15	NXM		Brown and gray weathered shale, moderately tough with soft seams (5" to 35" pieces averaging 2") and gray limest crystalline, fossiliferous (three pieces	2.6			· • •.'						
498.2					$1'' - 1_{2}''$ and 2'') 92% shale, 8% limestone										
	40		- -		Boring completed			na si af s							
	44			•						n n Ang Ang Sagarang					
	46														
	48 50			• • * * *											
	52														
	54														•: •
	56 58					· ·									
	60					E A									
	62														,
	64 66														· .
-	68													ī	در
· · ·					ITUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPO TTAL PROPERTY OF GLIENTS, AND AUTHORIZATION FOR PUBLICATION OF CTS FROM OR REGARDING OUR REPORTS IS RESERVED MENDING OUR W	白アムてきなかが	NTE CON	CT1 11010-004-00							

101.00

B-()15-	-2-6	 Sampl	ER: TY	STIL Spool & 2"0.D. & Logo Logo Logo Logo Logo Logo Logo Lo	Sta.	& C		et: 8-	tv of	Cinc	innat	1'L7 1. 0h	·
	PLETED_7 <u>,R - 15 - 2</u>		CASIN	G: LEN	STHDIA3.5"T.D.HollowFTER Stem Augers 538, 39' L., BLSURFACE ELEV.	Baci HOURS	cfill.	ed PROJ: 559.	ECT: No HA	<u>rthea</u> M-71-	<u>st E</u> 2 0.93	k <u>press</u> all No	3way	
ELEV.	DEPTH	SAMFLE No.	STD. PEN. (N)	% REC.	DESCRIPTION	AGG.	% 	Phys % F.S.	ical Cha % SILT	cLAY		- P.4	w.c.	SHTL
560.0 559.0	0	1	9-8-8	18"	<u>Asphaltic concrete</u> Brown and gray clay, trace sand, trace gravel, moist - very stiff		1	2	33	63	45		21	A-7-0
	6	2	7-9-10 6-6-11	6" 16"	do do Brown and gray clay, trace sand, trace gravel with shale fragments, moist - very stiff	Vieua 1	1 de:	cript 2	10n-N 37	o tes 56	ts pe 42	20	ned 20	A-7-6
551.0	8	4	16-13-19	18"	Very Stiri Brown clay, trace sand with shale fragments, moist - very stiff Brown and gray weathered shale, slightl tough (1" to 2" pieces averaging 11")	0	3	1.	30	66	47	23	21	A-7-6
	12 14	5	NXM	43%	and gray limestone, crystalline, fossiliferous (2" & 1" pieces broken) 95% shale, 5% limestone									
541.0	16 18	6	NXM	75%	Brown and gray weathered shale, slight tough (2" to 2" proces, averaging 14") and gray limestone, crystalline, fossiliferous, jcinted (1" to 3"places averaging 2") 77% shale, 23% limestone	1								
р Г.Т. 2011	20				Boring completed						an a			
	24								يند. چرويلانين در ميلانين					
	26 28													
	30													

Form No. 630-	-1		THE H	. C.	NUTTING COMPANY					ATI 20				•	-
		1-6			Lt Spoon & 2"0.D.& from	r use elev	i in Sta	<u>drill</u> . & (ing 1					5.4' I	
ATE STAR			SAMPL	ER: TYF	COLE Barrel DIA. <u>NXM</u> WATER ELEV. IMMEDIAT	Back IOURS	one fille	L CLIEN	IT: <u>Ci</u> ECT: <u>N</u> (<u>ity of</u> orthea	E Cinc at Es	<u>sinna</u> kpres:	<u>ti. O</u> sway	<u>10</u>	
	:	1.11			Stem Augers +68, 122' Rt. BL SURFACE ELEV.	.*		597.8	11 A 1	4 71 0	0.02				
ELEV.	DEPTH	SAMPLE No,	STD. PEN. (N)	% REC.	DESCRIPTION	AGG.	* c.s.	Phys % F.S.	ilcel Chi % SILT	aracteris 8	tics	P.I.	w.c.	SHTL	
528-4	. 0				0.4' Concrete	U	<u> </u>	F-3-	5101	CLAT	i bala	P.I.	W.C.	CLASS	
<u>- 798-0</u>	2	1	2-2-3	12"	Brown and gray clay, little sand, trace gravel, moist - stiff	6	8		26	56	49	26	23	A-7-6	
•	-4	2	6-9-14	18"	do do	Vis	al c	assi	ficat:	on-No	tes	s pe	form	edA-7-	6
590.9	6	3	6-10-60	16"	Brown and gray clay, trace sand, trace gravel with limestone fragments, moist- very stiff	1	2	2	31	64	45	22	18	A-7-6	
		4	17-17-34	17"	Brown and gray weathered shale, hard	Vis	al c	lassi	ficati	on-No	tes	s pe	form		
	10	5	22-45-75	17"	do.	Vis	al c	lass I	ficat:	on-No	test	6 pe	rform		
							· ·	1				1.50			
	_14	6	17-51-68	17"	do do	Vis	al c	lassi	ficati	on-Ne	test	s pe	form		
	16	7	28-70	13 ¹¹	do do	Vis	al c	assi	acat:	on-No	test	s pe	form	edi	
	18	8	33-74	12"	đo do	Vis	al c	assi	ficat:	on-No	tesi	s pe	form	4	
	20	9	37-90	13"	do do	Vis	al c	assi:	ficati	on-Nc	tesi	S per	form		
:	_22							 		a satel					
573.4	_24	10	41-87	12"	do do	Vis	al c	lassi	icat	on-Ne	test	s per	form		
	_26 28	11	NXM	54%	Gray and brown shale, calcareous, slight tough (weathered in the top 2'of the run (2"to 3" pieces, averaging 1") and gray limestone, crystalline, fossilifem us, (one 12"pieces midway in the run)										
	30 32 34	12	ихи	73%	Gray shale calcareous, moderately tough to tough(2" to 25" pieces, averaging 13" and gray limestone crystalline, fossilifarous, jointed midway in the run (1"to 44"pieces averaging 25") 80% shale 20% limestone										

TE STAR	red <u>7/</u>		, SAMPI	S LER: TYI	ECore Barrel DIA NXM WATER ELEV. IMMEDIATE	ta. 8	<u>k Of</u>	fset:	10-	+57.	08,	35.4		hio
		/22/64 1_ STATION			GTH DIA.3.5"I.D.Hollow AFTER H Stem Augers +68,122'Rt.,BL SURFACE ELEV.		÷	PROJEC		Northe HAM-71 Retain	-0,93	3	1	
ELEV.	DEPTH	SAMPLE No.	STD. PEN. (N)	% REC.	DESCRIPTION	% AGG.	% C.S.	Physic % F.S.	al Chai % SILT	CLAY	C5	P.I.	W.C.	SHTL CLASS
	34 36 38	13	NXM	82%	Gray shale, calcareous, tough, jointed in top 18" (1" to 3" pieces averaging 2") and gray limestone, crystalline, fossiliferous, jointed and iron oxide stained (one 3" piece) 95% shale,5% limestone									· · · · ·
	40	14	NXM	887.	Gray shale, calcareous, tough (1"to3"pieces averaging 2") and gray limestone, crystalline, fossiliferous, jointed (1"to 3" pieces averaging 2½") 83% shale, 17% limestone Gray shale, calcareous, tough (1" to 2½"				0					
551.9	46	15	NXM	83%	pieces, averaging 1½") and gray limestone crystalline, fossiliferous, jointed (two pieces 1½" and 2½") 78% shale, 22% limestone									
					Boring completed									

- \\GEOTECHSERVER\SHARED FOLDERS\COMPANYPUBLIC\PROJECT FILES\23 PROJECTS\G230066- ACADES HAM-71\LAB DATA SHEETS\G3 a_{2602} R-001 B-004-0-23 B-003-0-23 ·21 . 8 .3. ·2·8· 50+ .12 .3 4.2 Elevation 昭知 .8 ... ΗĤ 16 69 ÷ N60 WC 50+ 50+ 1:7 50+ N60 N60 WC N60 WC **Distance Along Baseline** Borehole North East Elev. Depth 19:48 B-001-0-23 534.9 60.0 PRIMENG. PRIMENG.GDT - 7/18/23 B-002-0-23 535.1 50.0 DISTANCES: SOIL/ROCK BORING PROFILE B-003-0-23 524.1 37.5 Beginning B-004-0-23 25.5 524.4 Ending VIEWING ANGLES (degrees): 0.0 HAM-71-1.81 Horizontal Vertical 0.0 HAMILTON COUNTY, OHIO Position North East Left, Front PID # DATE PLATE Right, Front Left, Back Jul 23 Right, Back

DOGG GINT.GP

B-006-0-23 60 80 100 120 140 160 40 ົງຕ 565 565 48 13 1.00. ..10. 560 560 50+ 9 B-005-0-23 555 555 550 10 550 18 20 19 27. .19 545 545 38 16 N60 WC 40 18 ----540 540 129 9 50+ 535 535 Elevation 530 530 B-004-0-23 = 525 525 36 N60 WC 5 45 520 520 18 13 .68 ..13... 515 515 66 17 50+ ..12 510 . . : . . 510 505 505 500 500 N60 WC 495 495 20 40 60 80 100 120 160 0 140 **Distance Along Baseline** Borehole North East Elev. Depth B-004-0-23 1399862 409514 524.4 25.5 B-005-0-23 1400000 409494 552.0 27.7 DISTANCES: SOIL/ROCK BORING PROFILE B-006-0-23 1400155 409462 564.8 22.0 Beginning 0 Ending VIEWING ANGLES (degrees): 0.0 160 HAM-71-1.81 Horizontal Vertical 0.0 HAMILTON COUNTY, OHIO Position North East Left, Front 699931 204758 PID # DATE PLATE Right, Front 700088 204730 Left, Back 699931 204758 102790 Jul 23 2 Right, Back 700088 204730

PROFILE ODDT - PRIMENG. GDT - 7/18/23 19:53 - \\GEOTECHSERVER\SHARED FOLDERS\COMPANYIPUBLIC\PROJECT FILES\23 PROJECTS\G23006G- ACADES HAM-71\LAB DATA SHEETS\G23006G GINT.GP.

APPENDIX B

Boring Number	Sample Number	Depth (ft)	Water Content %	Liquid Limit %	Plastic Limit	Plast. Index	Specific Gravity	Agg. %	Coarse Sand %	Fine Sand %	Silt %	Silt&Clay Comb. %	Clay %	y Soil Description	Class Symbo
3-001-0-23	SS-1A	1.0	3	/0					/0					BLACK ASPHALT AND STONE FRAGMENTS (FILL)	A-1-a (
3-001-0-23	SS-1B	2.0	9											BLK COARSE AND FINE SAND SOME FINES, LITTLE STONE FRAGMENTS (FILL)	A-3a (\
3-001-0-23	SS-2	3.5	5	NP	NP	NP		34	25	31	1	10	9	BROWN GRAVEL & STONE FRAGMENTS WITH SAND, TRACE FINES (FILL)	A-1-b
3-001-0-23	SS-3	6.0	6											BROWN GRAVEL & STONE FRAGMENTS WITH SAND, TRACE FINES (FILL)	A-1-b
3-001-0-23	SS-4	8.5	7											BROWN GRAVEL & STONE FRAGMENTS "AND" SAND, TRACE FINES (FILL)	A-1-a
3-001-0-23	SS-5	11.0	6	NP	NP	NP		52	30	12	3	6	3	BROWN GRAVEL & STONE FRAGMENTS "AND" SAND, TRACE FINES (FILL)	A-1-a
3-001-0-23	SS-6	13.5	14											BROWN SANDY SILT, LITTLE CLAY, SOME BRICK & STONE FRAGS (FILL)	A-4a (
3-001-0-23	SS-7	16.0	16											BROWN SANDY SILT, LITTLE CLAY, SOME BRICK & STONE FRAGS (FILL)	A-4a
3-001-0-23	SS-8	18.5	7											BROWN SANDY SILT, LITTLE CLAY, SOME STONE FRAGMENTS (FILL)	A-4a
3-001-0-23	SS-9	21.0	5											BROWN SANDY SILT, LITTLE CLAY, SOME STONE FRAGMENTS (FILL)	A-4a
3-001-0-23	SS-10	23.5	37											BLK NON-PLASTIC SANDY SILT, LITTLE STONE FRAGMENTS (FILL)	A-4a
8-001-0-23	SS-11	26.0	54	NP	NP	NP		36	17	18	14	29	15	DK BROWN STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY (FILL)	A-2-4
-001-0-23	SS-12	28.5	38											DK BROWN STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY (FILL)	A-2-4
-001-0-23	SS-13	31.0	22											DK BROWN STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY (FILL)	A-2-4
-001-0-23	SS-14	33.5	17											DARK BROWN SILTY CLAY, LITTLE SAND, LITTLE STONE FRAGMENTS (FILL)	A-6b
3-001-0-23	SS-15	36.0	25	37	19	18		13	6	8	31	72	41	DK BR & GRAY SILTY CLAY, LITTLE SAND, LITTLE STONE FRAGMENTS (FILL)	A-6b (
-001-0-23	SS-16	38.5	23	35	18	17		0	1	2	48	97	49	BROWN AND GRAY SILTY CLAY, TRACE SAND	A-6b (
3-001-0-23	ST-17	40.0	21											BROWN SILTY CLAY, TRACE SAND	A-6b
3-001-0-23	SS-18	43.5	18											BROWN CLAY, TRACE SAND, TRACE STONE FRAGMENTS	A-7-6
3-001-0-23	SS-19	46.0	17											BROWN CLAY, TRACE SAND, TRACE STONE FRAGMENTS	A-7-6
3-001-0-23	SS-20A	48.5	16											BROWN CLAY, TRACE SAND, TRACE STONE FRAGMENTS	A-7-6
3-001-0-23	SS-20B	49.5												GRAY HIGHLY WEATHERED SHALE	Rock
-002-0-23	SS-1	1.0	6											BLK AND GRAY CONCRETE AND STONE FRAGS WITH SAND, LITTLE FINES (FILL)	A-1-b
3-002-0-23	SS-2	3.5	5											BROWN SANDY SILT, SOME CLAY, SOME STONE FRAGMENTS (FILL)	A-4a
3-002-0-23	SS-2	4.0	5	NP	NP	NP		27	24	32	8	17	9	BROWN GRAVEL & STONE FRAGMENTS WITH SAND, LITTLE FINES (FILL)	A-1-b
3-002-0-23	SS-3A	6.0	8											BROWN GRAVEL & STONE FRAGMENTS WITH SAND, LITTLE FINES (FILL)	A-1-b
3-002-0-23	SS-3B	7.0												BROWN STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY (FILL)	A-2-4
3-002-0-23	SS-4	8.5	9											BROWN STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY (FILL)	A-2-4
3-002-0-23	SS-5	11.0	10	21	16	5		35	19	15	13	30	17	BROWN STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY (FILL)	A-2-4
P	G	Pr	o C	ieo	ote	ch,	Inc			ENTS, S	50S	OME,	RB-R	ITTLE, S/F-STONE ROADBASE, SIBLE Client: ARCADIS U.S., INC Project: HAM-71-1.80 & HAM-22-10.93 Location: HAMILTON COUNTY, OHIO Pro. Number: G23006G	5

Boring Number	Sample Number	Depth (ft)	Water Content %	Liquid Limit %	Plastic Limit	Plast. Index	Specific Gravity	Agg. %	Coarse Sand %	Fine Sand %	Silt %	Silt&Clay Comb. %	Clay	, Soil Description	Class Symb
3-002-0-23	SS-6	13.5	15	/0	/0			//	/0	/0			/0		A-4a (
3-002-0-23	SS-7	16.0	18											BROWN SANDY SILT, SOME CLAY, LITTLE STONE & BRICK FRAGMENTS (FILL)	A-4a (
3-002-0-23	SS-8	18.5	30	NP	NP	NP		20	19	23	18	37	19	BLACK SANDY SILT, LITTLE CLAY, LI. CINDERS, COAL FRAGS, & GRAVEL (FILL)	A-4a
3-002-0-23	SS-9	23.5	37											BLACK SANDY SILT, LITTLE CLAY, LI. CINDERS, COAL FRAGS, & GRAVEL (FILL)	A-4a
3-002-0-23	SS-10	28.5	27	38	22	16		7	6	7	41	81	40	BROWN & DRK BROWN SILTY CLAY, LITTLE SAND, TRACE STONE FRAGMENTS A-	4-6b (
3-002-0-23	SS-11	33.5	7											BROWN CLAY, "AND" LIMESTONE FRAGMENTS, TRACE SAND	A-7-6
3-002-0-23	SS-12A	38.5	16	41	22	19		0	1	1	34	97	63	BROWN AND GRAY CLAY, TRACE SAND A-	-7-6 (
3-002-0-23	SS-12B	39.5												GRAY HIGHLY WEATHERED SHALE R	Rock
3-003-0-23	SS-1	1.0	8											BLK COARSE & FINE SAND, LITTLE FINES, LITTLE BRICK & STONE FRAGS (FILL)	A-3a
3-003-0-23	SS-2	3.5	11											BLACK CINDERS, SOME SAND, LITTLE FINES (FILL)	A-1-a
3-003-0-23	SS-3	6.0	24											BR. AND DARK BR. SANDY SILT, SOME CLAY, LITTLE STONE FRAGMENTS (FILL)	A-4a
3-003-0-23	SS-4	8.5	28	30	21	9		18	15	18	22	49	27	DK BR. SANDY SILT, SOME CLAY, LITTLE STONE FRAGMENTS (FILL)	A-4a
3-003-0-23	ST-5	10.0	22											DK BR. SANDY SILT, SOME CLAY, LITTLE BRICK AND STONE FRAGMENTS (FILL)	A-4a
3-003-0-23	SS-6	13.5	42											DK BR. SILT AND CLAY, LITTLE SAND, TRACE STONE FRAGMENTS (FILL)	A-6a
3-003-0-23	SS-7	16.0	39	38	26	12		7	8	9	45	76	31	DK BR. SILT AND CLAY, LITTLE SAND, TRACE STONE FRAGMENTS (FILL)	A-6a
3-003-0-23	SS-8	18.5	34											BLACK SILT AND CLAY, LITTLE SAND, LITTLE STONE FRAGMENTS (FILL)	A-6a
3-003-0-23	SS-9	21.0	18											BROWN CLAY, LITTLE SAND, TRACE STONE FRAGMENTS	4-7-6
3-003-0-23	SS-10	23.5	16	44	24	20		1	8	4	29	87	58	BROWN CLAY, LITTLE SAND, TRACE STONE FRAGMENTS A-	-7-6
3-003-0-23	SS-11A	26.0	13											BROWN CLAY, LITTLE SAND, TRACE STONE FRAGMENTS A	4-7-6
3-003-0-23	SS-11B	27.0												GRAY HIGHLY WEATHERED SHALE R	Rock
3-004-0-23	SS-1	1.0	5											BROWN GRAVEL & STONE FRAGMENTS WITH SAND, TRACE FINES (FILL)	4-1-b
3-004-0-23	SS-2	3.5	7	NP	NP	NP		21	44	25	3	10	7	BROWN GRAVEL & STONE FRAGMENTS WITH SAND, TRACE FINES (FILL)	A-1-b
3-004-0-23	SS-3	6.0	13											BROWN COARSE & FINE SAND, LITTLE FINES, LITTLE STONE FRAGS (FILL) A	A-3a
3-004-0-23	SS-4	8.5	13											BROWN SILTY CLAY, TRACE SHALE FRAGMENTS, TRACE SAND	A-6b
3-004-0-23	SS-5	11.0	17	39	22	17		8	5	2	31	85	53	BROWN SILTY CLAY, TRACE SHALE FRAGMENTS, TRACE SAND A-	A-6b (
3-004-0-23	SS-6A	13.5	12											BROWN SILTY CLAY, "AND" SHALE FRAGMENTS, TRACE SAND	A-6b
3-004-0-23	SS-6B	14.5												GRAY HIGHLY WEATHERED SHALE R	Rock
3-005-0-23	SS-1	1.5	18											BROWN AND GRAY SILT AND CLAY, LITTLE SAND, TRACE STONE FRAGS (FILL)	
3-005-0-23	SS-2	3.5	19											BROWN CLAY, TRACE STONE FRAGMENTS, TRACE SAND	A-7-6
F	G	Pr	0 0	iec	ote	ch,	Inc			ENTS, S	50S	OME,	RB-R	SUMMARY OF Laboratory ResultsROADBASE, SIBLEClient: ARCADIS U.S., INC Project: HAM-71-1.80 & HAM-22-10.93 Location: HAMILTON COUNTY, OHIO	

≥ ₹_																
- ACADES I	Boring Number	Sample Number	Depth (ft)	Water Content %	Liquid Limit %	Plastic Limit %	Plast. Index	Specific Gravity	Agg. %	Coarse Sand %	Fine Sand %	Silt %	Silt&Clay Comb. %	Clay		Class. Symbol
990C	-005-0-23	SS-3	6.0	19	43	23	20		7	2	3	31	88	57	BROWN CLAY, TRACE STONE FRAGMENTS, TRACE SAND	4-7-6 (13)
\G23(-005-0-23	SS-4	8.5	16											BROWN CLAY, TRACE STONE FRAGMENTS, TRACE SAND	A-7-6 (V)
ECTS	-005-0-23	SS-5	11.0	18	43	23	20		1	1	1	35	96	62	BROWN CLAY, TRACE SAND, TRACE STONE FRAGMENTS	4-7-6 (13)
ROJ	-005-0-23	SS-6	13.5	9											BROWN SEVERELY WEATHERED SHALE	Rock (V)
V23 P	-005-0-23	SS-6	16.0												GRAY HIGHLY WEATHERED SHALE	Rock (V)
SILES ILES	-006-0-23	SS-1	1.0	13											GRAY SEVERELY WEATHERED SHALE	Rock (V)
E L B	-006-0-23	SS-2	3.5	10											GRAY SEVERELY WEATHERED SHALE	Rock (V)
ROJE	-006-0-23	SS-3	6.0	9											GRAY HIGHLY WEATHERED SHALE F	Rock (V)

	TRTRACE, BRBROWN, LILITTLE, S/F-STONE	Summary of Laboratory Results
	FRAGMENTS SO SOME REPORDERSE	Client: ARCADIS U.S., INC
Pro Geotech, Inc.	NP-NON-PLASTIC, POSS-POSSIBLE	Project: HAM-71-1.80 & HAM-22-10.93
		Location: HAMILTON COUNTY, OHIO
		Pro. Number: G23006G

ROCK	MASS RATING From Table 10.4.6.4-1								
Project: HAM-71-1.8	0 Bridge Replacement Project No.: G23006G								
Structure	e: Pedestrian Bridge over I-71, I-471, and Gilbert Ave								
Boring No.: B-001-0-23 (NQ2-1, 2, & 3 - 50.0' to 60.0') Substru. Unit: Ramp Columns								
	Strength of Intact Rock Material								
Uniaxial Compressive Strength	122 ksf								
Relative Rating	0								
_									
	Drill Core Quality RQD								
RQD	72%								
Relative Rating	12								
Spacing of Jointo	Joint Conditions 2.0" - >1.0'								
Spacing of Joints Relative Rating	2.0 - >1.0								
Conditions of Joints	Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Relative Rating									
i clative rating	12								
	Ground water Conditions								
Relative Rating	7								
Ũ									
	Strike & Dip Orientation of Joint								
Relative Rating	0								
Total Mass Rating	42								
Class No									
Description	Fair Rock								
	(NQ2-1 & 2 - 40.0' to 50.0') Substru. Unit: Ramp Columns								
Boring No.: B-002-0-23									
Uniaxial Compressive Strength	Strength of Intact Rock Material 72 ksf								
Relative Rating	0								
Relative Rating	0								
	Drill Core Quality RQD								
RQD	55%								
Relative Rating	9								
C C									
	Joint Conditions								
Spacing of Joints	2" to 1'								
Relative Rating	9								
Conditions of Joints	Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Relative Rating	12								
	Ground water Conditions								
Relative Rating									
	1								
Strike & Dip Orientation of Joint									
Relative Rating									
Relative Rating									
Relative Rating Total Mass Rating									
	0								

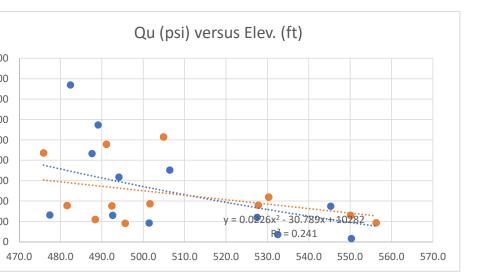
ROCK	MASS RATING From Table 10.4.6.4-1								
Project: HAM-71-1.8	80 Bridge Replacement Project No.: G23006G								
Structur	e: Pedestrian Bridge over I-71, I-471, and Gilbert Ave								
Boring No.: B-003-0-23 ((NQ2-1, 2, & 3 - 27.5' to 37.5') Substru. Unit: Ramp Columns								
	Strength of Intact Rock Material								
Uniaxial Compressive Strength	130 ksf								
Relative Rating	1								
	Drill Core Quality RQD								
RQD	59%								
Relative Rating	10								
	Joint Conditions								
Spacing of Joints	2.0" - > 1.0'								
Relative Rating	12								
Conditions of Joints	Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Relative Rating	12								
3									
	Ground water Conditions								
Relative Rating	7								
	Strike & Dip Orientation of Joint								
Relative Rating	0								
Total Mass Pating	12								
Total Mass Rating 42									
Class No Description	III Fair Rock								
Class No Description	Fair Rock								
Description									
Description	Fair Rock								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength	Fair Rock (NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1								
Description Boring No.: B-004-0-23 (Fair Rock NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength	Fair Rock [NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating	Fair Rock (NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD	Fair Rock (NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD 56%								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating	Fair Rock (NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD 56% 10								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating	Fair Rock [NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD 56% 10 Joint Conditions								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD 56% 10								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD 56% 10 Joint Conditions 2" to >1' 2" to >1'								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD Drill Core Quality RQD Joint Conditions 2" to >1' 12								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD Drill Core Quality RQD Joint Conditions 2" to >1' 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall 12 12								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD 56% Joint Conditions 2" to >1' 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 Drill Core Quality RQD Drill Core Quality RQD Joint Conditions 2" to >1' 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall 12 12								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD 56% Joint Conditions 2" to >1' 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD Joint Conditions Joint Conditions 2" to >1' 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating Relative Rating Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD Drill Core Quality RQD Joint Conditions Joint Conditions 2" to >1' 12 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD Joint Conditions Joint Conditions 2" to >1' 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating Relative Rating Relative Rating Relative Rating Relative Rating	Fair Rock NQ2-1, 2, & 3 - 14.7' to 25.5') Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD Drill Core Quality RQD Joint Conditions 2" to >1' Joint Conditions Joint Conditions Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								
Description Boring No.: B-004-0-23 (Uniaxial Compressive Strength Relative Rating RQD Relative Rating Spacing of Joints Relative Rating Conditions of Joints Relative Rating Relative Rating Relative Rating	Fair Rock Fair Rock Substru. Unit: Ramp Columns & Pier 1 Strength of Intact Rock Material 130 ksf 1 1 Drill Core Quality RQD Drill Core Quality RQD Joint Conditions Joint Conditions 2" to >1' 12 12 Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall								

ROCK	MASS RATING From Table 10.4.6.4-1							
Project: HAM-71-1.8	30 Bridge Replacement Project No.: G23006G							
Structure	e: Pedestrian Bridge over I-71, I-471, and Gilbert Ave							
Boring No.: B-005-0-23 (NQ2-1, 2, & 3 - 17.0' to 27.7') Substru. Unit: Pier 2							
	Strength of Intact Rock Material							
Uniaxial Compressive Strength	58 ksf							
Relative Rating	0							
-								
	Drill Core Quality RQD							
RQD	71%							
Relative Rating	12							
	Joint Conditions							
Spacing of Joints	2.0" - 1.0'							
Relative Rating	9							
Conditions of Joints	Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall							
Relative Rating	12							
	Ground water Conditions							
Relative Rating								
I telative Mating	1							
	Strike & Dip Orientation of Joint							
Relative Rating	0							
0								
Total Mass Rating	40							
Class No	IV							
Description	Poor Rock							
Boring No.: B-006-0-23 (
	Strength of Intact Rock Material							
Uniaxial Compressive Strength	72 ksf							
Relative Rating	0							
	Drill Core Quality RQD							
RQD	54%							
Relative Rating	8							
	Joint Conditions							
Spacing of Joints	2" to 1'							
Relative Rating	7							
Conditions of Joints	' Slightly Rough Surfaces, Separation < 0.05", and soft Joint Wall							
Relative Rating	9							
r colario r talling								
	Ground water Conditions							
Relative Rating	7							
C C								
	Strike & Dip Orientation of Joint							
Relative Rating	0							
U								
-								
Total Mass Rating	31							
-	31 IV Poor Rock							

HAM-71-1.81 PID 102790 Bedrock Compressive Strength

B-006-0-23

Boring Drilled Shafts	Qu 0-5' (psi)	Qu 5-10' (psi)	PL 0-5' (psi)	PL 5-10' (psi)	Top Elev. (ft)	Bot. Elev (ft)
B-001-0-23 C4/C3/C9	356	872	1539	263	484.9	474.9
B-002-0-23 C2/C10/C13	353	220	260	867	495.1	485.1
B-003-0-23 C5/C6/C14	182	958	635	1148	496.6	486.6
B-004-0-23 C7/C8	1030	374	704	185	508.9	498.9
B-007-3-64 C1/C11/C12/0	215				502.6	497.6
B-004-0-23 Pier 1	1030	374	704	185	508.9	498.9
B-005-0-23 Pier 2		439/359	73	240	535.0	525.0


	Qu 0-5' (psi)		Qu 10-15' (psi)	Qu 15-20' (psi)		
Pier 3	31/64	187	261	350	552.8	542.8

	Qu (pci)	Elev.	PL (nci)	Elev.	Side Qu 0-5'	Tip Qu 5-10' (nci)
B-001-0-23	(psi) 356	(ft) 481.6	(psi) 1539	(ft) 482.4	(psi)	(psi)
B-001-0-23	872	481.6 475.9	263	482.4 477.4	350	550
D 000 0 00					200	550
B-002-0-23	353	492.4	260	492.6	300	550
	220	488.4	867	487.6		
B-003-0-23	182	495.6	635	494.1	400	550
	958	491.1	1148	489.1		
B-004-0-23	1030	504.9	704	506.4	485	250
	374	501.6	185	501.4		
B-005-0-23	439	530.3	73	532.5	250	250
	359	527.8	240	527.5		
B-006-0-23	187	556.3	33	550.3	180	200
	261	550.1	350	545.3		
-						
Average	465.9167		524.75			
Std Dev	293.1929		446.2918			
Agv - Std Dev	172.7238		78.45822			

	Fx of Qu		AVG of Qu	and PL	MIN of Fx a	nd AVG	Selected Va	lue	F	Rock Socket	t Side	Rock Socket	t Tip
	Qu 0-5'	Qu 5-10'	Qu 0-5'	Qu 5-10'	Qu 0-5'	Qu 5-10'	Qu 0-5'	Qu 5-10'		Qu 0-5'		Qu 5-10'	
	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)		(psi)		(psi)	
	688.627	734.1146	947.5	567.5	688.627	567.5	675	565		<mark>350</mark>		<mark>550</mark>	
	599.3362	642.5186	306.5	543.5	306.5	543.5	305	545		<mark>300</mark>		<mark>550</mark>	
	586.6018	629.4452	408.5	1053	408.5	629.4452	405	630		<mark>400</mark>		<mark>550</mark>	
	486.0161	526.0797	867	279.5	486.0161	279.5	485	280		<mark>485</mark>		<mark>250</mark>	
	536.845	578.3369	867	279.5	536.845	279.5	485	280		<mark>485</mark>		<mark>250</mark>	
	486.0161	526.0797	867	279.5	486.0161	279.5	485	280		<mark>485</mark>		<mark>250</mark>	
	295.2287	329.3937	256	239.5	256	239.5	256	240		<mark>250</mark>		<mark>250</mark>	
	182.7733	212.9155	224		182.7733	212.9155	180	200		<mark>180</mark>		<mark>200</mark>	
	Sort Elev Hi	gh to Low		Sort Qu Lo	w to High								
	Qu/PL	Elev.		Qu/PL	Elev.								
Ĩ	(psi)	(ft)		(psi)	(ft)								
	187	556.3		33	550.3		Function F	of Qu					

L O'	Qu/PL	Elev.		Qu/PL	Elev.
	(psi)	(ft)	_	(psi)	(ft)
	187	556.3		33	550.3
	33	550.3		73	532.5
	261	550.1		182	495.6
	350	545.3		185	501.4
	73	532.5		187	556.3
	439	530.3		220	488.4
	359	527.8		240	527.5
	240	527.5		260	492.6
	704	506.4		261	550.1
	1030	504.9		263	477.4
	374	501.6		350	545.3
	185	501.4		353	492.4
	182	495.6		356	481.6
	635	494.1		359	527.8
	260	492.6		374	501.6
	353	492.4		439	530.3
	958	491.1		635	494.1
	1148	489.1		704	506.4
	220	488.4		867	487.6
	867	487.6		872	475.9
	1539	482.4		958	491.1
	356	481.6		1030	504.9
	263	477.4		1148	489.1
	872	475.9		1539	482.4
Average	495.3			495.3	
Std Dev	378.7275			378.7275	
Agv - Std Dev	116.6058			116.6058	

y= 0.0226x^2-30.789x+10282

HAM-71-1.81 PID 102790 Drilled Shaft Calculation Check

Table 6.1.1	Table 6.1.1 Excerpt			qs	qp
		(psi)	(ksf)	(ksf)	(ksf)
B-001-0-23	C4/C3/C9	356	51.264	10.42495468	128.16
B-002-0-23	C2/C10	220	31.68	8.195218118	79.2
B-002-0-23	C13	220	31.68	8.195218118	79.2
B-003-0-23	C5/C6	958	137.952	17.10141047	344.88
B-003-0-23	C14	958	137.952	17.10141047	344.88
B-004-0-23	C7/C8	374	53.856	10.68525713	134.64
B-007-3-64	C1/C11	250	36	8.736131867	90
B-007-3-64	C12/C15	250	36	8.736131867	90
B-004-0-23	Pier 1	374	53.856	10.68525713	134.64
B-005-0-23	Pier 2	359	51.696	10.4687879	129.24
B-006-0-23	Pier 3				

Values from "HAM-71-1.81 PID 102790

Bedrock	Compre	ssive Stre	ngth.xls	х"		Factore				
Qu side	Qu tip	Qu side	Qu tip	qs	qp	Load				
(psi)	(psi)	(ksf)	(ksf)	(ksf)	(ksf)	(kips)				
350	550	50.4	79.2	10.3	198	432				
300	550	43.2	79.2	9.57	198	379				
300	550	43.2	79.2	9.57	198	141				
400	550	57.6	79.2	11.1	198	477				
400	550	57.6	79.2	11.1	198	141				
485	250	69.84	36	12.2	90	489				
485	250	69.84	36	12.2	90	349				
485	250	69.84	36	12.2	90	141				
485	250	69.84	36	12.2	90	559				
250	250	36	36	8.74	90	539				
180	200					-				

						φs	ϕ_{p}	P _p Factored Resistance with Load Transfer								
ored						0.55	0.50					fro	m Side to Ba	ase		
bad	Socket L	Socket D	A _p	Rs	Rp	ϕ_sR_s	$\phi_{p}R_{p}$	Ei	RQD	RQD side	RQD tip	E _i RQD	Transfer	Rp	$\phi_{p}R_{p}$	φR
ips)	(ft)	(ft)	(ft²)	(kips)	(kips)	(kips)	(kips)	(psi)	(%)	(%)	(%)	(psi)	to Tip (%)	(kips)	(kips)	(kips)
32	7.00	4.50	15.90431	731	3149	402	1575	31500	82%	82	92	25830	26.85%	268	134	536
79	7.00	4.50	15.90431	676	3149	372	1575	27000	47%	47	63	12690	26.85%	248	124	496
41	5.50	3.50	9.621128	368	1905	203	952	27000	47%	47	63	12690	26.69%	134	67	270
77	7.00	4.50	15.90431	781	3149	430	1575	36000	67%	67.3	51.4	24228	26.85%	287	143	573
41	5.50	3.50	9.621128	425	1905	234	952	36000	67%	67.3	51.4	24228	26.69%	155	77	311
89	7.00	4.50	15.90431	860	1431	473	716	43650	62%	62	50	27063	26.85%	316	158	631
49	7.00	4.50	15.90431	860	1431	473	716	43650	60%	60	50	26190	26.85%	316	158	631
41	5.50	3.50	9.621128	468	866	258	433	43650	60%	60	50	26190	26.69%	170	85	343
59	6.00	4.00	12.56637	612	1131	336.4	565	43650	62%	62	50	27063	27.44%	231	116	452
39	6.00	4.00	12.56637	439	1131	241.5	565	22500	75%	75.2	84	16920	27.44%	166	83	325

resistance.

In accordance with GDM Section 1306.3.2, it can be seen that in this case, it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip

HAM-71-1.81 PID 102790 Bedrock p-y Properties

Soil	Bedrock	Тор	Bottom				LPILE	Unconfined		R	ock Modu	lus	Unit W	/eights
Boring	Layer	Elev.	Elev.	Rock	RQD	Joint	р-у	Qu		Ei	Ratio	E _m	γ _{tot}	γ′ (eff.)
Number	Number	(ft)	(ft)	Туре	(%)	Condition	Model	(psi)	k _{rm}	(psi)	E_m/E_i	(psi)	(pcf)	(pcf)
B-001-0-23	1	485.4	484.9	Shale	10	`	Weak Rock	190	0.00050	17000	0.04	680	129	66.4
	2	484.9	479.9	Shale	82	Closed	Weak Rock	350	0.00050	32000	0.8	25600	154	91.8
	3	479.9	474.9	Shale	92	Closed	Weak Rock	550	0.00035	50000	0.9	45000	159	96.3
B-002-0-23	1	495.6	495.1	Shale	10	Open	Weak Rock	125	0.00050	11000	0.04	440	126	63.7
	2	495.1	490.1	Shale	47	Closed	Weak Rock	300	0.00050	27000	0.12	3240	139	76.8
	3	490.1	485.1	Shale	63	Closed	Weak Rock	550	0.00035	50000	0.5	25000	154	91.7
B-003-0-23	1	497.3	496.6	Shale	10	Open	Weak Rock	95	0.00050	8550	0.04	342	124	62.0
	2	496.6	491.6	Shale	67	Closed	Weak Rock	400	0.00049	36000	0.6	21600	153	90.7
	3	491.6	486.6	Shale	51	Closed	Weak Rock	550	0.00035	50000	0.15	7500	145	82.7
B-004-0-23	1	509.9	508.9	Shale	10	Open	Weak Rock	190	0.00050	17000	0.04	680	129	66.4
	2	508.9	503.9	Shale	62	Closed	Weak Rock	485	0.00040	44000	0.5	22000	153	90.7
	3	503.9	498.9	Shale	50	Closed	Weak Rock	250	0.00050	23000	0.15	3450	139	77.1
B-005-0-23	1	539	535	Shale	10	Open	Weak Rock	55	0.00050	4950	0.04	198	121	58.6
	2	535	530	Shale	75	Closed	Weak Rock	250	0.00050	23000	0.75	17250	151	88.8
	3	530	524.3	Shale	84	Closed	Weak Rock	250	0.00050	23000	0.8	18400	152	89.3
B-006-0-23	1	564.5	561	Shale	10	Open	Weak Rock	35	0.00050	3150	0.04	126	118	55.9
	2	561	557.8	Shale	10	Open	Weak Rock	64	0.00050	5760	0.04	230.4	122	59.6
	3	557.8	552.8	Shale	33	Closed	Weak Rock	180	0.00050	16000	0.09	1440	134	71.4
	4	552.8	547.8	Shale	69	Closed	Weak Rock	200	0.00050	18000	0.6	10800	148	85.4
	5	547.8	542.8	Shale	60	Closed	Weak Rock	250	0.00050	23000	0.5	11500	148	85.7
B-007-3-64	1	506.6	502.6	Shale	10	Open	Weak Rock	140	0.00050	13000	0.04	520	127	64.4
	2	502.6	497.6	Shale	60	Closed	Weak Rock	485	0.00040	44000	0.5	22000	153	90.7
	3	497.6	492.6	Shale	50	Closed	Weak Rock	250	0.00050	23000	0.15	3450	139	77.1

 Q_u per GDM Section 404.3 for weak, augered bedrock

						_
blows	N	ER	N ₉₀	Q _u (ksf)	Q _u (psi)	Average
50/2"	300	90	300	27.60	191.7	
50/3"	200	90	200	18.40	127.8	
50 (41)	450		450	42.00	05.0	
50/4"	150	90	150	13.80	95.8	
50/2"	300	90	300	27.60	191.7	
50/2	500	50	500	27.00	191.7	
36/50	86	90	86	7.91	54.9	
22/6"	44	90	44	4.05	28.1	34.80976
43/6"	86	90	86	7.91	54.9	
50/6"	100	90	100	9.20	63.9	
27/6"	54	60	36	3.31	23.0	139.3
100/2"	600	60	400	36.80	255.6	

after Table	10.4.6.5-1, A	ASHTO LRF	D BDS 6th
RQD	RQD	E _m /E _i	E _m /E _i
(%)	(NUM)	Closed	Open
0	0	0.03	0.03
10	0.1	0.04	0.04
20	0.2	0.05	0.05
25	0.25	0.07	0.06
30	0.3	0.09	0.07
35	0.35	0.1	0.08
40	0.4	0.11	0.09
45	0.45	0.12	0.095
50	0.5	0.15	0.1
55	0.55	0.3	0.105
60	0.6	0.5	0.11
65	0.65	0.6	0.115
70	0.7	0.7	0.12
75	0.75	0.75	0.13
80	0.8	0.8	0.15
85	0.85	0.85	0.18
90	0.9	0.9	0.23
95	0.95	0.95	0.4

100 1 1 0.6

Rock Modulus Ratio (α_E = Em/Ei) after Table 10.4.6.5-1, AASHTO LRFD BDS 6th Ed. (2012)

Bedrock Unit Weight

Rock	Maximum γ	\mathbf{Q}_{u}	Max. Q _u	Typ. Q _u
Туре	(pcf)	(psi)	(psi)	(psi)
Claystone	175	500	1500	500
Dolomite	181	25000	40000	15000
Limestone	170	15000	40000	15000
Mudstone	175	500	1500	500
Sandstone	175	5000	10000	3500
Shale	175	3500	10000	2500
Siltstone	170	5000	10000	3500

Estimation of Drilled Shaft Resistence and Settlement in Jointed Rock (LRFD 10.8.3.5.4)								
				- : : N	0000050			
Project: HAM-71-1.80	D. L.	0		oject No.:	G23005G			
Structure: Pedestr	ian Bridge	over G				20/00		
Boring No.: B-001-0-23			Substruc	ture Unit:	Columns C4/0	53/09		
Unit Cide Desistance (n.). Oto to		- O*D	*0					
Unit Side Resistence (q _s): C*P _a *S	qπ(q _u /P _a) <	57.8°Pa	1"Sqrt(T _c /P _a) (Eq. 10	0.8.3.5.4b-1)				
Uniaxial Comp.Strength of Intact Rock, Q _u Side	e (ksf):	50.4	Atmos	pheric Pres	ssure P _a (ksf):	2.12		
Regression Constant (C): 1.0 (For No	rmal Condi	tions)	Concrete Comp	oressive Str	ength f' _c (ksf):	576		
Unit Side Resistence, qs (ksf): 10.	34 Fro	m Eq 1	0.8.3.5.4b-1 usin	g Uniaxial (Comp.Strength	of Rock		
Assumed Unit Side Resistence	e (ksf):	10.34						
Unit Tip Resistence (q _p): Depth o	f 2B below	base is	s jointed and hav	e random o	rientation (Eq. 10).8.3.5.4c-2)		
GSI =	mi =		(T10.4.6.4-1)	D=				
s = exp[(GSI-100)/(9-3D)]		{1/2+1	/6[(exp((GSI)/(-1	5))-(exp((2	20)/(-3))]}			
From Eq 10.4.64-2		-	From Eq 10.4.64	-3				
	exp[(GSI-	-100)/(2	28–14D)] F	From Eq 10				
S=	a=			mb=				
Vertical Effective Stress (ksf) at Tip = Unit Tip Resistence, qp	(kof):		A=					
Assumed Unit Tip Resistence, q								
Unit Tip Resistence (q _p): 2.5*qu (· /	$54c_{-1}$	(Denth of 2B is	either intac	t or tightly jointe	eq)		
Uniaxial Comp.Strength of Intact Rock, Q _u Tip Unit Tip Resistence, q _p (ksf): 19	· · ·	79.2	 Assumed Unit	Tip Resiste	nce, qp (ksf):	198		
Calculation of Nomina	I Resisten	ce of S	Side and Tip					
Shaft Socket Diameter, Br	(feet):	3.00	3.50	4.00	4.50			
Length of Socket, Dr		4.5	5.5	6.0	7.0			
Perimeter Area of Socket As (23.56	38.48	50.27	70.69			
Cross-Sectional Area of Socket, Ap (7.07	9.62	12.57	15.90			
Nominal Shaft Side Resistence, Rs		243.6	397.9	519.7	730.9			
Nominal Shaft Tip Resistence, Rp Resistence Factor for Side from T. 10.5.5	· · /	1399.6 0.55	1905.0	2488.1 0.55	3149.1			
Resistence Factor for Tip from T. 10.5.5		0.55	0.55	0.55	0.55			
Factored Resistance from Side		134.0	218.9	285.9	402.0			
Factored Resistance from Tip		699.8	952.5	1244.1	1574.5			
Total Factored Resistance		833.8	1171.4	1529.9	1976.5			
Butt settlement of drilled S	Shaft:Q((I	Dr/Ap*l	Ec)+(Ips/Br*Em))					
Axial Load on Top of Socket, Q (kips) for 1.0" Sett								
Concrete Young's Modulus, E		3800	3800	3800	3800			
Shortening of Drilled Shaft (Ir	nches)	0.000	0.000	0.000	0.000			
Dook Mass Modulus F	n (kci)	100.0	100.0	100.0	100.0			
Rock Mass Modulus, Er	n (KSI) Ec/Em	100.0 38.0	100.0 <u>38.0</u>	100.0 <u>38.0</u>	100.0 <u>38.0</u>			
	Dr/Br	1.50	1.57	1.50	1.56			
Influence Coefficient (Ips) from Fig 4.6.5		1.00	1.07	1.00	1.00			
(Modified after Pells and Turner (
Settlement of Base (ir		0.000	0.000	0.000	0.000			
Total Butt Settlement of Shaft (ir	nches)	0.000	0.000	0.000	0.000			

Estimation of Drilled Shaft Resistence and Settlement in Jointed Rock (LRFD 10.8.3.5.4)								
		П	reiset Ne i	0000050				
Project: HAM-71-1.80			roject No.:	G23005G				
Structure: Pedestrian Bri	age over G			0.0.00/	240/042			
Boring No.: B-002-0-23		Substru	cture Unit:	Columns C2/0	510/013			
Unit Cide Desistence (n.). (*D. *Cart/a.)								
Unit Side Resistence (q _s): C*P _a *Sqrt(q _u /	P _a) <7.0 Pa	a Sqrt(1 _c /P _a) (Eq.	10.8.3.5.4b-1)					
Uniaxial Comp.Strength of Intact Rock, Q _u Side (ksf):	43.2	Atmo	snheric Pres	ssure P _a (ksf):	2.12			
	43.2	Auno	spheric r rea		2.12			
Regression Constant (C): 1.0 (For Normal C	onditions)	Concrete Com	pressive Str	enath f'_(ksf):	576			
			1	5 00 /				
Unit Side Resistence, qs (ksf): 9.57	From Eq 1	10.8.3.5.4b-1 usi	ng Uniaxial (Comp.Strength	of Rock			
	- '		0 -	1 3				
Assumed Unit Side Resistence (ksf):	9.57							
		a jointed and ha		rientetien (=				
Unit Tip Resistence (q _p): Depth of 2B be	elow base I				J.8.3.5.4c-2)			
GSI = mi = s = exp[(GSI-100)/(9-3D)]	$a = (1/2 \pm 1)$	(T10.4.6.4-1)						
$S = \exp[(GSI - 100)/(9 - 3D)]$ From Eq 10.4.64-2	a – {1/2+1	/6[(exp((GSI)/(- From Eq 10.4.64		.0)/(-3))]}				
	GSI-100)/(From Eq 10	.4.6.4-4				
s= a=			mb=					
Vertical Effective Stress (ksf) at Tip =		A=						
Unit Tip Resistence, qp (ksf):								
Assumed Unit Tip Resistence, qp (ksf):								
Unit Tip Resistence (q _p): 2.5*qu (Eq. 10	.8.3.5.4c-1) (Depth of 2B is	either intact	t or tightly jointe	ed)			
Uniaxial Comp.Strength of Intact Rock, Q _u Tip (ksf):	70.0							
	79.2							
Unit Tip Resistence, q₀ (ksf): 198		Assumed Unit	Tin Resiste	nce an (ksf).	198			
Calculation of Nominal Resi	stence of			nee, qp (KSI).	150			
Shaft Socket Diameter, Br (feet):		3.50	4.00	4.50				
Length of Socket, Dr (feet) :		5.5	6.0	7.0				
Perimeter Area of Socket As (Sq. ft)	23.56	38.48	50.27	70.69				
Cross-Sectional Area of Socket, Ap (Sq. ft)	7.07	9.62	12.57	15.90				
Nominal Shaft Side Resistence, Rs (kips):		368.3	481.0	676.5				
Nominal Shaft Tip Resistence, Rp (kips):			2488.1	3149.1				
Resistence Factor for Side from T. 10.5.5.2.4-1	0.55	0.55	0.55	0.55				
Resistence Factor for Tip from T. 10.5.5.2.4-1 Factored Resistance from Side (kips)	0.50	0.50	0.50 264.6	0.50 372.1				
Factored Resistance from Tip (kips)	699.8	952.5	1244.1	1574.5				
Total Factored Resistance (kips)		1155.1	1508.6	1946.6				
Butt settlement of drilled Shaft :	Q((Dr/Ap*	Ec)+(Ips/Br*Em))					
Axial Load on Top of Socket, Q (kips) for 1.0" Settlement								
Concrete Young's Modulus, Ec (ksi)		3800	3800	3800				
Shortening of Drilled Shaft (Inches)	0.000	0.000	0.000	0.000				
Dook Maaa Madulua Era (kai)	100.0	100.0	100.0	100.0				
Rock Mass Modulus, Em (ksi) Ec/Em	100.0 <u>38.0</u>	100.0 <u>38.0</u>	100.0 38.0	100.0 <u>38.0</u>				
Dr/Br		1.57	1.50	1.56				
Influence Coefficient (Ips) from Fig 4.6.5.5.2A	1.00	1.01	1.00	1.00				
(Modified after Pells and Turner (1979))								
Settlement of Base (inches)	0.000	0.000	0.000	0.000				
Total Butt Settlement of Shaft (inches)	0.000	0.000	0.000	0.000				

Estimation of Drilled Shaft Resistence and Settlement in Jointed Rock (LRFD 10.8.3.5.4)									
			Droigot No	. 0000050					
Project: HAM-71-1.80	Dridge over (Project No.	G23005G					
Structure: Pedestrian Boring No.: B-003-0-23	blidge over C			: Columns C5/	C6/C14				
BOIIIIg NO B-003-0-23		Substit		. Columns Co/	C6/C14				
Unit Side Resistence (q _s): C*P _a *Sqrt(a/P_) <7.8*P	a*Sort(f'_/P_) (Fo	10 8 3 5 4b-1)						
	9u/ a/ 1.0 i		10.0.0.0.15 1)						
Uniaxial Comp.Strength of Intact Rock, Q _u Side (ks	sf): 57.6	Atm	ospheric Pre	ssure P _a (ksf):	2.12				
			-						
Regression Constant (C): 1.0 (For Norma	I Conditions)	Concrete Con	npressive Str	rength f' _c (ksf):	576				
Unit Side Resistence, qs (ksf): 11.05	From Eq	10.8.3.5.4b-1 us	ing Uniaxial	Comp.Strength	of Rock				
Assumed Unit Side Resistence (ks	sf): 11.1								
	51). 11.1								
Unit Tip Resistence (q _p): Depth of 2E	below base	is jointed and ha	ave random o	prientation (Eq. 1	0.8.3.5.4c-2)				
GSI = mi		(T10.4.6.4-1							
s = exp[(GSI-100)/(9-3D)]	a = {1/2+	1/6[(exp((GSI)/(-	- 15))-(exp((2	20)/(-3))]}					
From Eq 10.4.64-2		From Eq 10.4.6							
	o[(GSI-100)/	(28–14D)]	From Eq 10						
s= Vertical Effective Stress (ksf) at Tip =	a=	۸-	mb=						
Unit Tip Resistence, qp (ks	et).	A=	•						
Assumed Unit Tip Resistence, qp (ks									
Unit Tip Resistence (q _p): 2.5*qu (Eq.) (Depth of 2B i	s either intac	t or tightly joint	ed)				
Uniaxial Comp.Strength of Intact Rock, Q _u Tip (ks Unit Tip Resistence, q _p (ksf): 198	sf): 79.2	Assumed Uni	it Tip Posista	an (kef):	198				
Calculation of Nominal Re	neistanca of		it Tip Resiste	nce, qp (ksi).	190				
Shaft Socket Diameter, Br (fee		3.50	4.00	4.50					
Length of Socket, Dr (fee	1	5.5	6.0	7.0					
Perimeter Area of Socket As (Sq.		38.48	50.27	70.69					
Cross-Sectional Area of Socket, Ap (Sq.	1	9.62	12.57	15.90					
Nominal Shaft Side Resistence, Rs (kip	s): 261.5	427.2	557.9	784.6					
Nominal Shaft Tip Resistence, Rp (kip			2488.1	3149.1					
Resistence Factor for Side from T. 10.5.5.2.4		0.55	0.55	0.55					
Resistence Factor for Tip from T. 10.5.5.2.4		0.50	0.50	0.50					
Factored Resistance from Side (kip	/		306.9	431.5					
Factored Resistance from Tip (kip Total Factored Resistance (kip			1244.1 1550.9	<u>1574.5</u> 2006.1					
	J3) 013.0	1107.4	1000.0	2000.1					
Butt settlement of drilled Sha	ft:Q((Dr/Ap	Ec)+(lps/Br*Em))						
Axial Load on Top of Socket, Q (kips) for 1.0" Settleme			//						
Concrete Young's Modulus, Ec (k		3800	3800	3800					
Shortening of Drilled Shaft (Inche		0.000	0.000	0.000					
Rock Mass Modulus, Em (k	/		100.0	100.0					
Ec/E		38.0	38.0	38.0					
	/Br 1.50	1.57	1.50	1.56					
Influence Coefficient (Ips) from Fig 4.6.5.5.2 (Modified after Pells and Turner (197									
Settlement of Base (inche	11	0.000	0.000	0.000					
Total Butt Settlement of Shaft (inche			0.000	0.000					

Estimation of Drilled Shaft Resistence and Settlement in Jointed Rock (LRFD 10.8.3.5.4)								
				0000050				
Project: HAM-71-1.80	0		roject No.:	G23005G				
Structure: Pedestrian Brid	ge over G			0 1 07/	00/D: 1			
Boring No.: B-004-0-23		Substru	cture Unit:	Columns C7/0	C8/Pier 1			
Unit Cide Desistance (a.). C*D *Sart/a /D								
Unit Side Resistence (q _s): C*P _a *Sqrt(q _u /P	a) <7.8°Pa	(Eq. 1) (Eq. 1)	10.8.3.5.4b-1)					
Uniaxial Comp.Strength of Intact Rock, Q _u Side (ksf):	69.8	Atmo	spheric Pres	sure P _a (ksf):	2.12			
Regression Constant (C): 1.0 (For Normal Co	nditions)	Concrete Com	pressive Stre	ength f' _c (ksf):	576			
Unit Side Resistence, qs (ksf): 12.16	From Eq 1	0.8.3.5.4b-1 usi	ng Uniaxial C	comp.Strength	of Rock			
Assumed Unit Side Resistence (ksf):	12.2							
Unit Tip Resistence (q _p): Depth of 2B bel	ow base i	s iointed and ha	ve random or	ientation (Eq. 10).8.3.5.4c-2)			
GSI = mi =		(T10.4.6.4-1)	D=	(=4. 10				
	a = {1/2+1	/6[(exp((GSI)/(-)/(-3))]}				
From Eq 10.4.64-2		From Eq 10.4.64		(L) - //J				
mb = mi exp[(G			From Eq 10.	4.6.4-4				
s= a=			mb=					
Vertical Effective Stress (ksf) at Tip =		A=						
Unit Tip Resistence, qp (ksf):								
Assumed Unit Tip Resistence, qp (ksf): Unit Tip Resistence (q_p): 2.5*qu (Eq. 10.8	2254a4) (Donth of 2P io	oith or into ot	or tightly igint	ad)			
Uniaxial Comp.Strength of Intact Rock, Q _u Tip (ksf): 	36.0	Assumed Unit	Tip Resister	nce, qp (ksf):	90			
Calculation of Nominal Resis		Side and Tip						
Shaft Socket Diameter, Br (feet):	3.00	3.50	4.00	4.50				
Length of Socket, Dr (feet) :	4.5	5.5	6.0	7.0				
Perimeter Area of Socket As (Sq. ft)	23.56	38.48	50.27	70.69				
Cross-Sectional Area of Socket, Ap (Sq. ft) Nominal Shaft Side Resistence, Rs (kips):	7.07 287.5	9.62 469.5	12.57 613.2	15.90 862.4				
Nominal Shaft Tip Resistence, Rp (kips):	636.2	865.9	1131.0	1431.4				
Resistence Factor for Side from T. 10.5.5.2.4-1	0.55	0.55	0.55	0.55				
Resistence Factor for Tip from T. 10.5.5.2.4-1	0.50	0.50	0.50	0.50				
Factored Resistance from Side (kips)	158.1	258.2	337.3	474.3				
Factored Resistance from Tip (kips)	318.1	433.0	565.5	715.7				
Total Factored Resistance (kips)	476.2	691.2	902.8	1190.0				
Butt settlement of drilled Shaft : (ସ((Dr/Ap*l	Ec)+(Ips/Br*Em))					
Axial Load on Top of Socket, Q (kips) for 1.0" Settlement								
Concrete Young's Modulus, Ec (ksi)	3800	3800	3800	3800				
Shortening of Drilled Shaft (Inches)	0.000	0.000	0.000	0.000				
Rock Mass Modulus, Em (ksi)	100.0	100.0	100.0	100.0				
Ec/Em	38.0	38.0	38.0	38.0				
Dr/Br	1.50	1.57	1.50	1.56				
Influence Coefficient (Ips) from Fig 4.6.5.5.2A		-		-				
(Modified after Pells and Turner (1979))								
Settlement of Base (inches)	0.000	0.000	0.000	0.000				
Total Butt Settlement of Shaft (inches)	0.000	0.000	0.000	0.000				

Estimation of Drilled Shaft Resistence and Settlement in Jointed Rock (LRFD 10.8.3.5.4)								
Ducie of Links					0000050			
Project: HAM-7				roject No.:	G23005G			
	cture: Pedestrian Bridg	je over G			<u> </u>	10 10 10 15		
Boring No.: B-007-3	3-04		Substru	cture Unit:	Columns C1/C11	/C12/C15		
Unit Side Resisten	ce (q_s): C*P _a *Sqrt(q _u /P _a) <7 8*Pa	*Sart(f' /P) (Fa	10 8 3 5 <i>1</i> b 1)				
) 1.010		10.0.3.3.40-1)				
Uniaxial Comp.Strength of Inta	ct Rock, Q _u Side (ksf):	69.8	Atmo	spheric Pres	sure P _a (ksf):	2.12		
Regression Constant (C): 1.	0 (For Normal Cor	nditions)	Concrete Com	pressive Stre	ength f' _c (ksf):	576		
Unit Side Resistence, c	ıs (ksf): <u>12.16</u> F	rom Eq 1	0.8.3.5.4b-1 usi	ng Uniaxial C	comp.Strength	of Rock		
Assumed Unit	Side Resistence (ksf):	12.2						
Unit Tip Resisten	ce (q_p): Depth of 2B belo	ow base is	s jointed and ha	ve random oi	rientation (Eq. 10).8.3.5.4c-2)		
GSI =	mi =		(T10.4.6.4-1)	D=				
s = exp[(GSI-100)/			/6[(exp((GSI)/(-		D)/(-3))]}			
From Eq			From Eq 10.4.6		4044			
	mb = mi exp[(GS	51-100)/(2	28-14D)]	From Eq 10.	4.6.4-4			
s= Vertical Effective Stress (ksf) a	a=		A=	mb=				
	o Resistence, qp (ksf):		<u> </u>					
	o Resistence, qp (ksf):							
Unit Tip Resistend	ce (q_p): 2.5*qu (Eq. 10.8	.3.5.4c-1)	(Depth of 2B is	either intact	or tightly jointe	ed)		
Uniaxial Comp.Strength of Int Unit Tip Resistence, o		36.0	 Assumed Unit	Tin Resister	nce an (ksf):	90		
	ation of Nominal Resist	ence of S						
	et Diameter, Br (feet):	3.00	3.50	4.00	4.50			
	h of Socket, Dr (feet) :	4.5	5.5	6.0	7.0			
Perimeter Are	a of Socket As (Sq. ft)	23.56	38.48	50.27	70.69			
	a of Socket, Ap (Sq. ft)	7.07	9.62	12.57	15.90			
	Resistence, Rs (kips):	287.5	469.5	613.2	862.4			
	Resistence, Rp (kips):	636.2	865.9	1131.0	1431.4			
Resistence Factor for Sic Resistence Factor for T		0.55	0.55	0.55	0.55			
	tance from Side (kips)	158.1	258.2	337.3	474.3			
	istance from Tip (kips)	318.1	433.0	565.5	715.7			
	ored Resistance (kips)	476.2	691.2	902.8	1190.0			
Butt settlen	nent of drilled Shaft:C	Q((Dr/Ap*E	Ec)+(Ips/Br*Em))				
Axial Load on Top of Socket, Q								
	ng's Modulus, Ec (ksi)	3800	3800	3800	3800			
Shortening o	f Drilled Shaft (Inches)	0.000	0.000	0.000	0.000			
Dook M	ass Modulus, Em (ksi)	100.0	100.0	100.0	100.0			
	Ec/Em	38.0	38.0	38.0	38.0			
	Dr/Br	1.50	1.57	1.50	1.56			
Influence Coefficient (Ip								
	ells and Turner (1979))							
Settle	ment of Base (inches)	0.000	0.000	0.000	0.000			
Total Butt Settle	ment of Shaft (inches)	0.000	0.000	0.000	0.000			

Estimation of Drilled Shaft Resistence and Settlement in Jointed Rock (LRFD 10.8.3.5.4)								
		-		0000050				
Project: HAM-71-1.80			Project No.:	G23005G				
Structure: Pedestrian	Bridge over G			Di a o				
Boring No.: B-005-0-23		Substru	cture Unit:	Pier 2				
Unit Side Resistence (q _s): C*P _a *Sqrt(ת /D) ∠7 8*D	o*Sart(f' /D) /⊏~	10 0 2 5 4 1)					
	Чu/Гa) 1.0 Гd	a Sqrt(1 _c /F _a) (Eq.	10.8.3.5.4D-1)					
Uniaxial Comp.Strength of Intact Rock, Q _u Side (ks	sf): 36	Atm	ospheric Pres	sure P _a (ksf):	2.12			
Regression Constant (C): 1.0 (For Norma	I Conditions)	Concrete Con	npressive Stre	ength f' _c (ksf):	576			
Unit Side Resistence, qs (ksf): 8.74	From Eq 1	10.8.3.5.4b-1 us	ing Uniaxial (Comp.Strength	of Rock			
Assumed Unit Side Resistence (ks	sf): 8.7							
Unit Tip Resistence (q _p): Depth of 2E	below base i	s jointed and ha	ave random o	rientation (Eq. 10).8.3.5.4c-2)			
GSI = mi		(T10.4.6.4-1						
s = exp[(GSI-100)/(9-3D)]		/6[(exp((GSI)/(-		0)/(-3))]}				
From Eq 10.4.64-2		From Eq 10.4.6	64-3					
	o[(GSI-100)/(28-14D)]						
	a=	•	mb=					
Vertical Effective Stress (ksf) at Tip = Unit Tip Resistence, qp (ks	γt).	A=	-					
Assumed Unit Tip Resistence, qp (ks								
Unit Tip Resistence (q _p): 2.5*qu (Eq.	/) (Depth of 2B i	s either intact	or tightly jointe	ed)			
Uniaxial Comp.Strength of Intact Rock, Q _u Tip (ks Unit Tip Resistence, q _p (ksf): <u>90</u> Calculation of Nominal Re		Assumed Uni	it Tip Resister	nce, qp (ksf): _	90			
Shaft Socket Diameter, Br (fee		3.50	4.00	4.50				
Length of Socket, Dr (fee		5.25	6.0	4.30 6.8				
Perimeter Area of Socket As (Sq.		35.74	50.27	67.15				
Cross-Sectional Area of Socket, Ap (Sq.		9.62	12.57	15.90				
Nominal Shaft Side Resistence, Rs (kip	1	312.3	439.3	586.9				
Nominal Shaft Tip Resistence, Rp (kip	/	865.9	1131.0	1431.4				
Resistence Factor for Side from T. 10.5.5.2.4		0.55	0.55	0.55				
Resistence Factor for Tip from T. 10.5.5.2.4		0.50	0.50	0.50				
Factored Resistance from Side (kip		171.8	241.6	322.8				
Factored Resistance from Tip (kip Total Factored Resistance (kip		433.0 604.7	<u>565.5</u> 807.1	715.7 1038.5				
		004.7	007.1	1030.5				
Butt settlement of drilled Sha	ft:Q((Dr/Ap*	Ec)+(lps/Br*Em))					
Axial Load on Top of Socket, Q (kips) for 1.0" Settleme			//					
Concrete Young's Modulus, Ec (k		3800	3800	3800				
Shortening of Drilled Shaft (Inche	1	0.000	0.000	0.000				
Rock Mass Modulus, Em (k	/	100.0	100.0	100.0				
Ec/E		38.0	38.0	38.0				
	/Br <u>1.50</u>	1.50	1.50	1.50				
Influence Coefficient (Ips) from Fig 4.6.5.5.2 (Modified after Pells and Turner (197								
Settlement of Base (inche		0.000	0.000	0.000				
Total Butt Settlement of Shaft (inche		0.000	0.000	0.000				

Sub-Structure: C4/C3/C9

Boring: B-001-0-23

Rock socket diameter D = 4.5 feet

Rock socket length is L = 7.0 feet

 $E_i = 31,500$ psi and RQD = 82%

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 31,500 \text{ psi} \times 82\% = 25,830 \text{ psi} < 50,000 \text{ psi}; \text{ therefore,}$

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(7.0/4.5)^{-0.6} = 26.85\%$

The load transfer to the drilled shaft tip = 26.85%

The load transfer to the side = 100% - 26.85% = 73.15%

Total calculated nominal side resistance = 731 kips

Total calculated nominal tip resistance = 3149 kips.

Considering load transfer to base, the nominal tip resistance = $26.85/73.15 \times 731$ kips = 268 kips;

Total combined factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 268 \text{ kips} + 0.55 \times 731 \text{ kips} = 536 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 3149$ kips = 1575 kips.

Sub-Structure: C2/C10

Boring: B-002-0-23

Rock socket diameter D = 4.5 feet

Rock socket length is L = 7.0 feet

 $E_i = 27,000 \text{ psi and } RQD = 47\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 27,000 \text{ psi} \times 47\% = 12,690 \text{ psi} < 50,000 \text{ psi};$ therefore,

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(7.0/4.5)^{-0.6} = 26.85\%$

The load transfer to the drilled shaft tip = 26.85%

The load transfer to the side = 100% - 26.85% = 73.15%

Total calculated nominal side resistance = 676 kips

Total calculated nominal tip resistance = 3149 kips.

Considering load transfer to base, the nominal tip resistance = $26.85/73.15 \times 676$ kips = 248 kips;

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 248 \text{ kips} + 0.55 \times 676 \text{ kips} = 496 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 3149$ kips = 1574 kips.

Sub-Structure: C13

Boring: B-002-0-23

Rock socket diameter D = 3.5 feet

Rock socket length is L = 5.5 feet

 $E_i = 27,000 \text{ psi and } RQD = 47\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 27,000 \text{ psi} \times 47\% = 12,690 \text{ psi} < 50,000 \text{ psi}$; therefore,

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(5.5/3.5)^{-0.6} = 26.69\%$

The load transfer to the drilled shaft tip = 26.69%

The load transfer to the side = 100% - 26.69% = 73.31%

Total calculated nominal side resistance = 368 kips

Total calculated nominal tip resistance = 1905 kips.

Considering load transfer to base, the nominal tip resistance = $26.69/73.31 \times 368$ kips = 134 kips;

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 134 \text{ kips} + 0.55 \times 368 \text{ kips} = 270 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 1905$ kips = 953 kips.

Sub-Structure: C5/C6

Boring: B-003-0-23

Rock socket diameter D = 4.5 feet

Rock socket length is L = 7.0 feet

 $E_i = 27,000 \text{ psi} \text{ and } RQD = 47\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 36,000 \text{ psi} \times 67.3\% = 24,228 \text{ psi} < 50,000 \text{ psi}; \text{ therefore,}$

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(7.0/4.5)^{-0.6} = 26.85\%$

The load transfer to the drilled shaft tip = 26.85%

The load transfer to the side = 100% - 26.85% = 73.15%

Total calculated nominal side resistance = 785 kips

Total calculated nominal tip resistance = 3149 kips.

Considering load transfer to base, the nominal tip resistance = $26.85/73.15 \times 785$ kips = 287 kips;

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 287$ kips $+ 0.55 \times 785$ kips = 573 kips.

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 3149$ kips = 1575 kips.

Sub-Structure: C14

Boring: B-003-0-23

Rock socket diameter D = 3.5 feet

Rock socket length is L = 5.5 feet

 $E_i = 27,000 \text{ psi and } RQD = 47\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 36,000 \text{ psi} \times 67.3\% = 24,228 \text{ psi} < 50,000 \text{ psi}; \text{ therefore,}$

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(5.5/3.5)^{-0.6} = 26.69\%$

The load transfer to the drilled shaft tip = 26.69%

The load transfer to the side = 100% - 26.69% = 73.31%

Total calculated nominal side resistance = 427 kips

Total calculated nominal tip resistance = 1905 kips.

Considering load transfer to base, the nominal tip resistance = $26.69/73.31 \times 427$ kips = 155 kips;

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 155 \text{ kips} + 0.55 \times 427 \text{ kips} = 311 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 1905$ kips = 952 kips.

Sub-Structure: C7/C8

Boring: B-004-0-23

Rock socket diameter D = 4.5 feet

Rock socket length is L = 7.5 feet

 $E_i = 43,650 \text{ psi} \text{ and } RQD = 62\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 43,650 \text{ psi} \times 62.0\% = 27,063 \text{ psi} < 50,000 \text{ psi}; \text{ therefore,}$

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(7.5/4.5)^{-0.6} = 26.85\%$

The load transfer to the drilled shaft tip = 26.85%

The load transfer to the side = 100% - 26.85% = 73.15%

Total calculated nominal side resistance = 862 kips

Total calculated nominal tip resistance = 1431 kips.

Considering load transfer to base, the nominal tip resistance = $26.85/73.15 \times 862$ kips = 316 kips

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 316 \text{ kips} + 0.55 \times 862 \text{ kips} = 631 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 1431$ kips = 716 kips.

Sub-Structure: C1/C11

Boring: B-007-3-64

Rock socket diameter D = 4.5 feet

Rock socket length is L = 7.00 feet

 $E_i = 43,650 \text{ psi} \text{ and } RQD = 60\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 43,650 \text{ psi} \times 60.0\% = 26,090 \text{ psi} < 50,000 \text{ psi};$ therefore,

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(7.00/4.5)^{-0.6} = 26.85\%$

The load transfer to the drilled shaft tip = 26.85%

The load transfer to the side = 100% - 26.85% = 73.15%

Total calculated nominal side resistance = 862 kips

Total calculated nominal tip resistance = 1431 kips

Considering load transfer to base, the nominal tip resistance = $26.85/73.15 \times 862$ kips = 316 kips

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 316 \text{ kips} + 0.55 \times 862 \text{ kips} = 631 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 1431$ kips = 716 kips.

Sub-Structure: C12/C15

Boring: B-007-3-64

Rock socket diameter D = 3.5 feet

Rock socket length is L = 5.5 feet

 $E_i = 43,650 \text{ psi} \text{ and } RQD = 60\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 43,650 \text{ psi} \times 60.0\% = 26,090 \text{ psi} < 50,000 \text{ psi};$ therefore,

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(3.5/5.5)^{-0.6} = 26.69\%$

The load transfer to the drilled shaft tip = 26.69%

The load transfer to the side = 100% - 26.69% = 73.31%

Total calculated nominal side resistance = 470 kips

Total calculated nominal tip resistance = 866 kips.

Considering load transfer to base, the nominal tip resistance = $26.69/73.31 \times 470$ kips = 172 kips

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 172 \text{ kips} + 0.55 \times 470 \text{ kips} = 344 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 866$ kips = 433 kips.

Sub-Structure: Pier 1

Boring: B-004-0-23

Rock socket diameter D = 4.0 feet

Rock socket length is L = 6.0 feet

 $E_i = 43,650 \text{ psi} \text{ and } RQD = 62\%$

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 43,650 \text{ psi} \times 62.0\% = 27,063 \text{ psi} < 50,000 \text{ psi}; \text{ therefore,}$

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(6.0/4.0)^{-0.6} = 27.44\%$

The load transfer to the drilled shaft tip = 27.44%

The load transfer to the side = 100% - 27.44% = 72.56%

Total calculated nominal side resistance = 612 kips

Total calculated nominal tip resistance = 1131 kips.

Considering load transfer to base, the nominal tip resistance = $27.44/72.56 \times 612$ kips = 231 kips

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 231$ kips $+ 0.55 \times 612$ kips = 452 kips.

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 1131$ kips = 565 kips.

Sub-Structure: Pier 2

Boring: B-005-0-23

Rock socket diameter D = 4.0 feet

Rock socket length is L = 6.0 feet

 $E_i = 22,500$ psi and RQD = 75%

 $Q_b/Q_t = 35(L/D)^{-0.6}$, where $E_i \times RQD < 50,000$ psi

 $Q_b/Q_t = 30(L/D)^{-0.8}$, where 50,000 psi $\le E_i \times RQD < 500,000$ psi

 $Q_b/Q_t = 25(L/D)^{-1.1}$, where $E_i \times RQD \ge 500,000$ psi

 $E_i \times RQD = 22,500 \text{ psi} \times 75.0\% = 16,875 \text{ psi} < 50,000 \text{ psi}; \text{ therefore,}$

Select $Q_b/Q_t = 35(L/D)^{-0.6} = 35(6.0/4.0)^{-0.6} = 27.44\%$

The load transfer to the drilled shaft tip = 27.44%

The load transfer to the side = 100% - 27.44% = 72.56%

Total calculated nominal side resistance = 439 kips

Total calculated nominal tip resistance = 1131 kips.

Considering load transfer to base, the nominal tip resistance = $27.44/72.56 \times 439$ kips = 166 kips

Total nominal resistance is $R_P + R_S = 166 \text{ kips} + 439 \text{ kips} = 605 \text{ kips}$.

Total factored resistance is $R_R = \phi_{qp}R_P + \phi_{qs}R_S = 0.50 \times 166 \text{ kips} + 0.55 \times 439 \text{ kips} = 325 \text{ kips}.$

Alternately, given total shear failure of the side of the rock socket, the full tip resistance would be engaged; it would be better to take the tip resistance alone than to count on the side resistance with limited mobilization of the tip resistance. This makes the tip factored resistance $R_R = \phi_{qp}R_P = 0.50 \times 1131$ kips = 565 kips.

Weak and Augered Rock Unconfined Strength Calculations as per GDM Section 404.5

For weak, augered bedrock, use the SPT N-value to estimate the unconfined compressive strength (UCS = Q_u) per publication FHWA-ICT-17-018 "Modified Standard Penetration Test–based Drilled Shaft Design Method for Weak Rocks" (Stark et.al., 2017), Equation 2.2:

UCS (ksf) = 0.092 × (Nrate)90 (bpf).

There are additional possible modifiers to the equation for borehole diameter, sampler liner, and rod length; see FHWA-ICT-17-018, Table Q.1 and Skempton (1986) for additional details.

For a bedrock sampled in Boring B-006-0-23,SS-2 by SPT using a hammer with ER = 90.0, resulting in a blow count value of $100/12^{"}$. The following would be the case:

$$\begin{split} N_{90} &= 100/12'' \times 12'' = 100 \text{ bpf}; \\ N_{90} &= 90/90 \times N_{90} = 1.0 \times 100 \text{ bpf} = 100 \text{ bpf}; \\ Q_u \ (\text{ksf}) &= 0.092 \times N_{90} = 0.092 \times 100 \text{ bpf} = 9.2 \text{ ksf} = 64 \text{ psi.} \end{split}$$

For a bedrock sampled in Boring B-001-0-23,SS-20B by SPT using a hammer with ER = 90.0, resulting in a blow count value of $50/2^{"}$. The following would be the case:

$$\begin{split} N_{90} &= 50/2'' \times 12'' = 300 \text{ bpf}; \\ N_{90} &= 90/90 \times N_{90} = 1.0 \times 300 \text{ bpf} = 300 \text{ bpf}; \\ Q_u \ (\text{ksf}) &= 0.092 \times N_{90} = 0.092 \times 300 \text{ bpf} = 27.6 \text{ ksf} = 192 \text{ psi.} \end{split}$$

For a bedrock sampled in Boring B-002-0-23,SS-12B by SPT using a hammer with ER = 90.0, resulting in a blow count value of 50/3''. The following would be the case:

 $N_{90} = 50/3'' \times 12'' = 200 \text{ bpf};$ $N_{90} = 90/90 \times N_{90} = 1.0 \times 200 \text{ bpf} = 200 \text{ bpf};$ $Q_u \text{ (ksf)} = 0.092 \times N_{90} = 0.092 \times 200 \text{ bpf} = 18.4 \text{ ksf} = 128 \text{ psi.}$

For a bedrock sampled in Boring B-003-0-23,SS-11B by SPT using a hammer with ER = 90.0, resulting in a blow count value of $50/4^{"}$. The following would be the case:

 $N_{90} = 50/4'' \times 12'' = 150$ bpf;

 $N_{90} = 90/90 \times N_{90} = 1.0 \times 150 \text{ bpf} = 150 \text{ bpf};$ $Q_{\mu} (ksf) = 0.092 \times N_{90} = 0.092 \times 150 \text{ bpf} = 13.8 \text{ ksf} = 96 \text{ psi.}$

For a bedrock sampled in Boring B-004-0-23,SS-6B by SPT using a hammer with ER = 90.0, resulting in a blow count value of $50/2^{"}$. The following would be the case:

 $N_{90} = 50/2'' \times 12'' = 300$ bpf;

 $N_{90} = 90/90 \times N_{90} = 1.0 \times 300 \text{ bpf} = 300 \text{ bpf};$

 Q_u (ksf) = 0.092 × N₉₀ = 0.092 × 300 bpf = 27.6 ksf = 192 psi.

For a bedrock sampled in Boring B-005-0-23,SS-6 by SPT using a hammer with ER = 90.0, resulting in a blow count value of 129/12''. The following would be the case:

 $N_{90} = 129/12'' \times 12'' = 129$ bpf;

 $N_{90} = 90/90 \times N_{90} = 1.0 \times 129$ bpf = 129 bpf;

 Q_u (ksf) = 0.092 × N₉₀ = 0.092 × 129 bpf = 11.9 ksf = 82 psi.

Bearing Resistance of Bedrock In accordance with GDM Section 1303.3.3

Project: HAM-71-1.80	Project No.: G23005G
Boring No.: B-006-0-23	Substructure Unit: Pier 3

ALL of the following three conditions were met:

• the bedrock surface under the footing is not steeply sloping such that discontinuities would control the bearing resistance (a bedrock slope of 2H:1V or less),

• the foundation bedrock has a Rock Mass Rating (RMR) ≤ 70, and OHIO DEPARTMENT OF TRANSPORTATION January 2024 Geotechnical Design Manual Page 13-15

• the foundation bedrock is moderately strong or less in strength ($q_u \le 7500 \text{ psi}$),

Drained shear strength properties (c' and ϕ') were calculated in accordance with Bieniawski (1989) and use the Terzaghi/Vesic/Munfakh method to calculate nominal bearing resistance of the bedrock in accordance with AASHTO LRFD Article 10.6.3.1.2a.

The Bieniawski (1989) drained shear strength equations are as follows:

 $c' = [0.104 \times RMR]$ (ksf); $\phi' = [(RMR/2) + 5^{\circ}]$ (degrees)

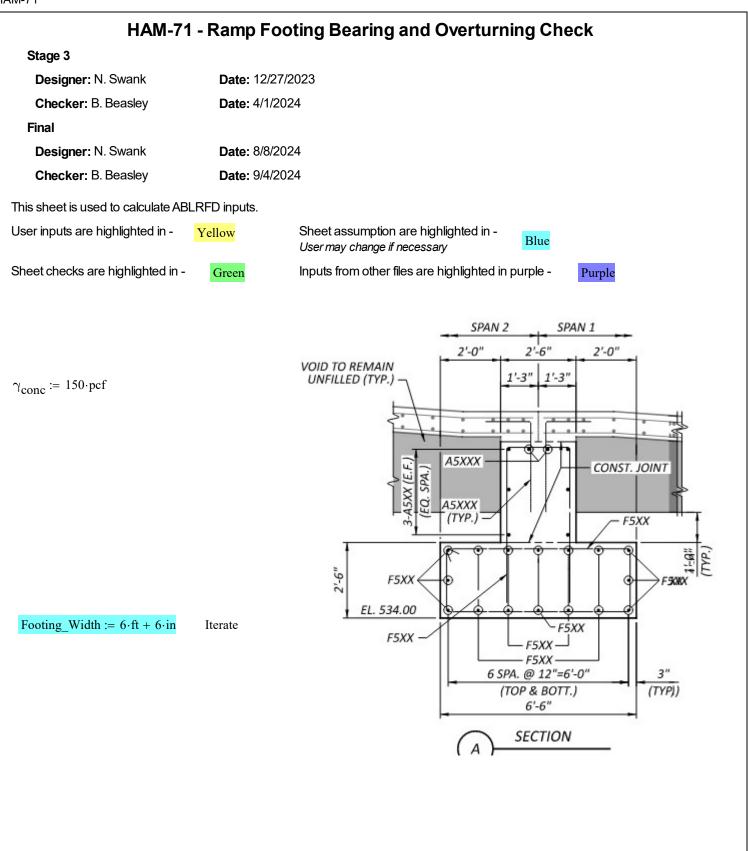
Rock Mass Rating of 31 and considered as "Poor Rock" was obtained as per AASHTO LRFD Table 10.4.6.4-1.

c' = 0.104 X 31 = 3.224 ksf = 3224 psf $\phi' = (31/2) + 5^{\circ} = 21$ Degrees

In determination of the RMR, keep in mind the following.

The Spacing of Joints component of the RMR is not related to bedding, but is related to discontinuities.

Furthermore, similarly to calculation of Rock Quality Designation (RQD), ignore mechanical breaks. For example, a 10-foot run of shale, with bedding of less than an inch could have only 3 or 4 natural, non-mechanical, discontinuities, such that the Spacing of Joints would fall in the 1-to-3-foot range, and not in the < 2-inch range.


If the natural discontinuities do not contain gouge or slickensides, do not rate them within the lowest two categories for Condition of Joints.

Do not use the cases of "Water under moderate pressure" or "Severe water problems." The original intent of the RMR is for stability of the rock in roof-support for tunneling excavations, where moderate to severe water pressures could be encountered in the rock at some depth, and interstitial water pressure can make the rock significantly less stable. The Ground Water component of the RMR is not applicable to considerations of rock stability in shallow bearing considerations for spread footings (or even drilled shafts). In fact, it is recommended in the literature to ignore the Ground Water factor, and always assume "Completely Dry, 10" for surface excavations of the rock; however, we prefer to default to "Moist Only, 7" out of conservatism, unless the rock is indeed completely dry.

AASHTO LRFD Article 10.6.3.1.2c states, "Limit analysis, or limit equilibrium analysis, should be considered to estimate the nominal bearing resistance of footings on or adjacent to slopes composed of soils and/or site conditions that are not consistent with the parameters and conditions described in the reference documents (i.e., embedment >0, layered soils, steeper slopes)." However, there is no reason that bearing resistance calculation by limit equilibrium (LE) analysis need be limited to footings on or adjacent to slopes.

This method particularly lends itself to layered soil systems, which are relatively difficult to analyze by other methods, such as those which are recommended in AASHTO LRFD Articles 10.6.3.1.2d through 10.6.3.1.2f.

BEARING CAPACI	
AASHTO Article 10.6.3.2 an	· · · /
Project HAM-	
Project# G2300 Bore# B-006	-0-23 (Pier 3)
Method AASH	TO 10.6.3.1.2
Foundation D	
Width of Footing (B) (feet)	10.00
Length of Footing (L) (feet)	23.50
Length (L_f)/Width (B_f) (>5 is continous footing)	2.4
Type of Footing	Spread
Footing Bearing Elevation (feet)	561.00
Depth of Footing (D _f) Feet below Proposed Grade	3.0
Depth of groundwater Table (D _w) below Footing (ft)	0.0
Height of Slope (Hs) (feet)	Flat Ground
Soil Paran	
Undrained Shear Strength/Cohesion (psf)	3224
Angle of internal friction (Phi) Degrees	21
Unit Weight of soil above base of footing (pcf)	125
Unit Weight of soil below base of footing (pcf)	140
Bearing Capacity Factors (from AAS	SHTO LRFD Table 10.6.3.1.2a-1)
N _c	15.80
N _q	7.10
Νγ	6.20
Shape Correcti	
s _c	1.19
	1.16
S _q	
s _γ	0.83
ic	1.0
iq	<u> </u>
i _y	
Correction for V D _f +1.5B _f	
· ·	18.0
C _{wq}	0.500
C _{wy}	0.500
Embedment Depth C	orrection Factor
Df/Bf	0.3
d _q	1.0
Bearing Capac	•
Cohesion Term	60680
Surcharge Term	1549
Unit Weight Term	1801
Nominal Bearing Resistence (psf)	64029
Resistance Factor for bearing (per AASHTO Table 10.5.5.2.2-1)	0.45 28813
Factored Bearing Resistence (psf)	20013

Bearing Check

Substructure Deadload

 $Stem_ht := mean(539.75 - 536.50, 539.94 - 536.50) \cdot ft = 3.345 \, ft$

 $\text{Stem}_{\text{wt}} := \text{Stem}_{\text{ht}} \left[2 \cdot (1 \cdot \text{ft} + 3 \cdot \text{in}) \right] \cdot (13 \cdot \text{ft} + 10 \cdot \text{in}) \cdot \gamma_{\text{conc}} = 17.352 \cdot \text{kip}$

 $Footing_{area} \coloneqq (Footing_Width) \cdot [15 \cdot ft + 10 \cdot in - (1 \cdot ft + 0 \cdot in + 6 \cdot in)] = 93.167 \text{ ft}^2$

Footing_{wt} := $(2 \cdot \text{ft} + 6 \cdot \text{in}) \cdot (\text{Footing}_Width) \cdot (14 \cdot \text{ft} + 10 \cdot \text{in}) \cdot \gamma_{\text{conc}} = 36.156 \cdot \text{kip}$

Substructure_{bearing_pressure_ser} := $\frac{\text{Stem}_{wt} + \text{Footing}_{wt}}{\text{Footing}_{area}} = 0.574 \cdot \text{ksf}$

 $Substructure_{bearing_pressure_str} \coloneqq 1.25 \cdot Substructure_{bearing_pressure_ser} = 0.718 \cdot ksf$

'Superstructure' Deadload

$$Span_{1} := (1 \cdot ft + 6 \cdot in) + (1 \cdot ft + 9 \cdot in) + \left(25 \cdot ft + 0\frac{3}{8} \cdot in\right) + 2 \cdot (1 \cdot ft + 3 \cdot in) = 30.781 \text{ ft}$$
$$Span_{2} := 32 \cdot ft + 6\frac{7}{8} \cdot in = 32.573 \text{ ft}$$

Ramp_Width := $(6 \cdot ft + 8 \cdot in) + (7 \cdot ft + 2 \cdot in) = 13.833 \text{ ft}$

 $Ramp_{thick} := 10 \cdot in$

$$\operatorname{Curb}_{\operatorname{area}} := \operatorname{mean}(8 \cdot \operatorname{in}, 1 \cdot \operatorname{ft} + 2 \cdot \operatorname{in}) \cdot 4 \cdot \operatorname{in} = 0.306 \operatorname{ft}^2$$

 $\operatorname{Rail}_{\operatorname{wt}} := 50 \cdot \operatorname{plf}$

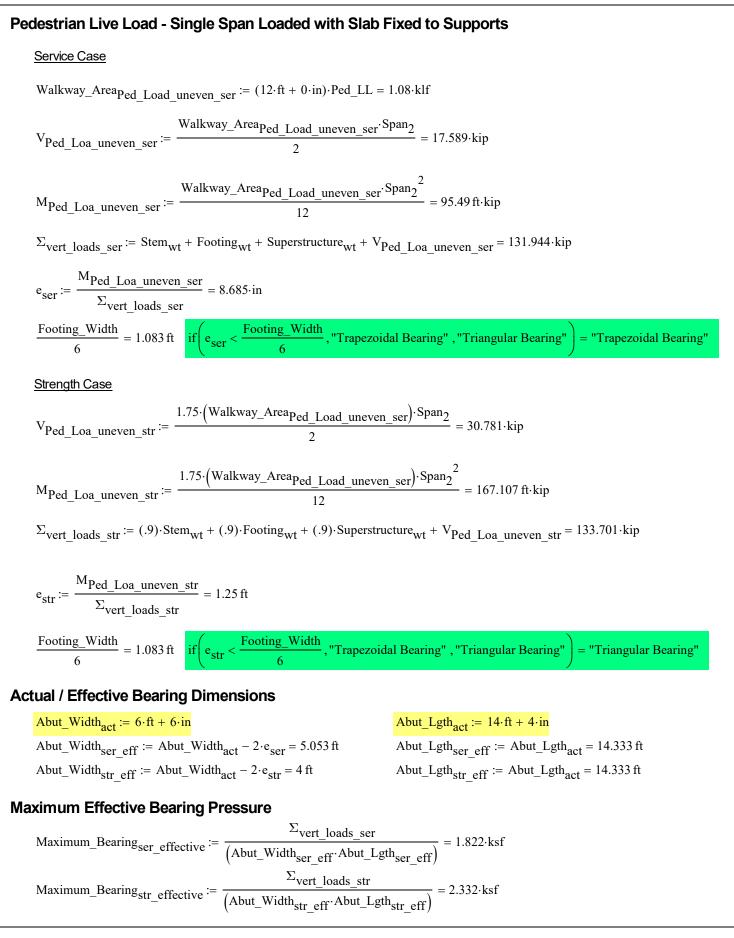
$$Superstructure_{wt} \coloneqq \left(\frac{Span_1}{2} + \frac{Span_2}{2}\right) \cdot \left[\left(Ramp_Width \cdot Ramp_{thick} + 2 \cdot Curb_{area}\right) \cdot \gamma_{conc} + 2 \cdot Rail_{wt}\right] = 60.846 \cdot kip$$

$$Superstructure_{bearing_pressure_ser} \coloneqq \frac{Superstructure_{wt}}{Footing_{area}} = 0.653 \cdot ksf$$

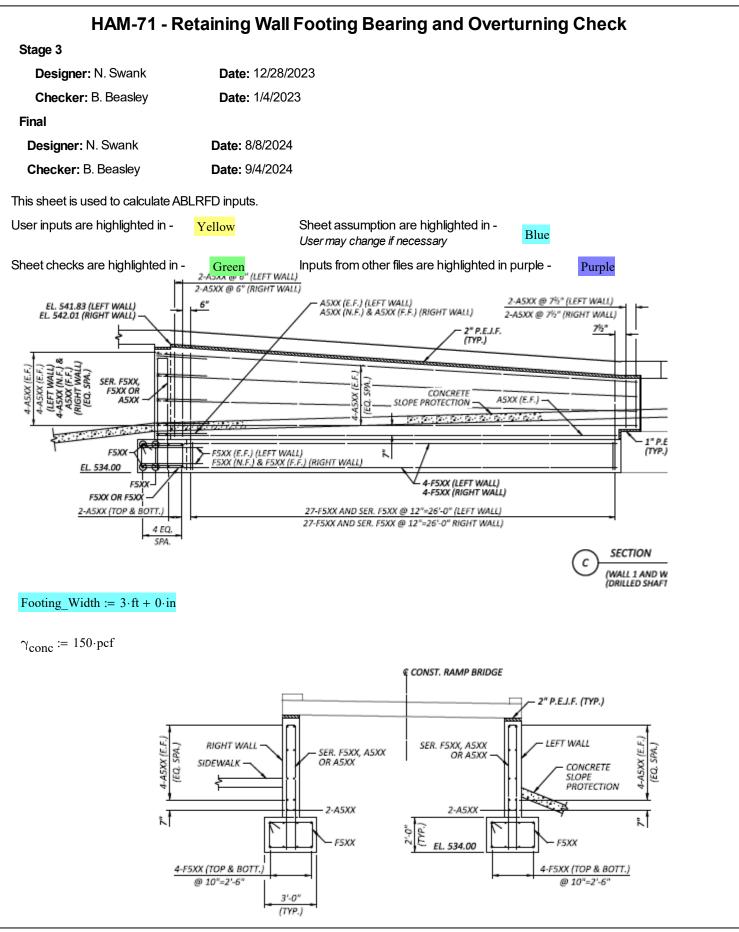
Superstructure_{bearing} pressure str := 1.25·Superstructure_{bearing} pressure ser = 0.816·ksf

Pedestrian Live Load - Both Spans Loaded

 $Ped_LL := 90 \cdot psf$


 $Walkway_Area_{Ped_Load} := \left(\frac{Span_1}{2} + \frac{Span_2}{2}\right) \cdot (12 \cdot ft + 0 \cdot in) \cdot Ped_LL = 34.211 \cdot kip$ $Pedestrian_{bearing_pressure_ser_even} := \frac{Walkway_Area_{Ped_Load}}{Footing_{area}} = 0.367 \cdot ksf$

 $Pedestrian_{bearing_pressure_str_even} \coloneqq 1.75 \cdot Pedestrian_{bearing_pressure_ser_even} = 0.643 \cdot ksf$


Maximum Bearing Pressure- Vertical Only - Zero Eccentricity

Max_Bearing _{ser_even} := Substructure _{bearing_pressure_ser}	= 1.595·ksf
+ Superstructure _{bearing_pressure_ser} ···	
+ Pedestrian _{bearing_pressure_ser_even}	
Max_Bearing_str_even := Substructure_bearing_pressure_str =	= 2.177·ksf
+ Superstructure _{bearing_pressure_str} ···	
+ Pedestrian _{bearing_pressure_str_even}	

Page 3 / 5

Overturning Check 11.6.3.3—Eccentricity Limits 10.6.3.3—Eccentric Load Limitations The eccentricity of loading at the strength limit state, For foundations on soil, the location of the resultant evaluated based on factored loads shall not exceed: of the reaction forces shall be within the middle twothirds of the base width. One-third of the corresponding footing dimension, ٠ For foundations on rock, the location of the resultant B or L, for footings on soils, or 0.45 of the corresponding footing dimensions B or L, for of the reaction forces shall be within the middle ninefootings on rock. tenths of the base width. Eccentricity at Strength Limit State: $e_{str} = 14.998 \cdot in$ Width of Footing: $B := Abut_Width_{act} = 6.5 ft$ if $\left(e_{str} < \frac{B}{3}, "Eccentricity OKAY", "Revise Footing"\right) = "Eccentricity OKAY"$ **Bearing Check** Maximum_Bearing_{str} effective = $2.332 \cdot \text{ksf}$ Final Geotechnical Exploration Rpt for HAM-71-1.81, Table 6.1.5, Factored Bearing Resistance := 4.31 · ksf Dated Sept 3, 2024 if (Maximum_Bearing_{str} effective < Factored_Bearing_Resistance, "Bearing OK", "Bearing NG") = "Bearing OK"

Substructure Deadload

 $\begin{aligned} &\text{Stem_ht} := \text{mean}(541.83 \cdot \text{ft} - 536.00 \cdot \text{ft} - 2 \cdot \text{in}, 540.10 \cdot \text{ft} - 536.00 \cdot \text{ft} - 2 \cdot \text{in}) = 4.798 \, \text{ft} \\ &\text{Stem}_{\text{wt}} := \text{Stem_ht} \cdot (1 \cdot \text{ft} + 0 \cdot \text{in}) \cdot \gamma_{\text{conc}} = 0.72 \cdot \text{klf} \\ &\text{Footing}_{\text{area}} := \text{Footing_Width} = 3 \cdot \frac{\text{ft}^2}{\text{ft}} \\ &\text{Footing}_{\text{wt}} := (2 \cdot \text{ft} + 0 \cdot \text{in}) \cdot (\text{Footing_Width}) \cdot \gamma_{\text{conc}} = 0.9 \cdot \text{klf} \\ &\text{Substructure}_{\text{bearing_pressure_ser}} := \frac{\text{Stem}_{\text{wt}} + \text{Footing}_{\text{wt}}}{\text{Footing}_{\text{area}}} = 0.54 \cdot \text{ksf} \\ &\text{Substructure}_{\text{bearing_pressure_str}} := 1.25 \cdot \text{Substructure}_{\text{bearing_pressure_ser}} = 0.675 \cdot \text{ksf} \end{aligned}$

'Superstructure' Deadload

Ramp_Width := $(6 \cdot ft + 8 \cdot in) + (7 \cdot ft + 2 \cdot in) = 13.833$ ft

 $Ramp_{thick} := 10 \cdot in$

 $\operatorname{Curb}_{\operatorname{area}} := \operatorname{mean}(8 \cdot \operatorname{in}, 1 \cdot \operatorname{ft} + 2 \cdot \operatorname{in}) \cdot 4 \cdot \operatorname{in} = 0.306 \operatorname{ft}^2$

 $Rail_{wt} := 50 \cdot plf$

$$Superstructure_{wt} := \frac{\left[Ramp_{thick} \cdot (Ramp_Width) + 2 \cdot Curb_{area}\right] \cdot \gamma_{conc} + 2 \cdot Rail_{wt}}{4} = 0.48 \cdot klf$$

 $Superstructure_{bearing_pressure_ser} := \frac{Superstructure_{wt}}{Footing_Width} = 0.16 \cdot ksf$

Superstructure_{bearing} pressure str := 1.25·Superstructure_{bearing} pressure ser = 0.2·ksf

Pedestrian Live Load

 $Ped_LL := 90 \cdot psf$

$$Walkway_Area_{Ped_Load} := \frac{(12 \cdot ft + 0 \cdot in) \cdot Ped_LL}{4} = 0.27 \cdot klf$$

$$Pedestrian_{bearing_pressure_ser} := \frac{Walkway_Area_{Ped_Load}}{Footing_Width} = 0.09 \cdot ksf$$

Pedestrian_{bearing} pressure str := 1.75 Pedestrian_{bearing} pressure ser = 0.158 ksf

Maximum Actual Bearing Pressure

Max_Bearing_ser_even := Substructure_bearing_pressure_ser = 0.79 ksf
+ Superstructure _{bearing_pressure_ser} ···
+ Pedestrian _{bearing_pressure_ser}
Max_Bearing_str_even := Substructure_bearing_pressure_str = 1.032 · ksf
+ Superstructure _{bearing_pressure_str} …

+ Pedestrian bearing_pressure_str

Actual / Effective Bearing Dimensions

$e_{ser_{rw}} := 0 \cdot in$	$e_{str_rw} := 0 \cdot ft$	
$RW_Width_{act} := 3 \cdot ft + 0 \cdot in$		$RW_Lgth_{act} := 23 \cdot ft + 6 \cdot in$
$RW_Width_{ser_eff} := RW_Width_{act} - 2 \cdot e_{set}$	$r_rw = 3 ft$	$RW_Lgth_{ser_eff} := RW_Lgth_{act} = 23.5 ft$
$RW_Width_{str_eff} := RW_Width_{act} - 2 \cdot e_{str_str_str_str_str_str_str_str_str_str_$	$_{\rm rw} = 3 {\rm ft}$	$RW_Lgth_{str_eff} := RW_Lgth_{act} = 23.5 ft$

Maximum Effective Bearing Pressure

Max_Bearing _{ser_even_effective} :=	$\frac{\text{Max}_\text{Bearing}_{\text{ser}_\text{even}} \cdot \left(\text{RW}_\text{Width}_{\text{act}} \cdot \text{RW}_\text{Lgth}_{\text{act}}\right)}{\left(\text{RW}_\text{Width}_{\text{ser}_\text{eff}} \cdot \text{RW}_\text{Lgth}_{\text{ser}_\text{eff}}\right)} = 0.79 \cdot \text{ksf}$
Max_Bearing _{str_even_Effective} :=	$\frac{\text{Max}_\text{Bearing}_{\text{str}_\text{even}} \cdot \left(\text{RW}_\text{Width}_{\text{act}} \cdot \text{RW}_\text{Lgth}_{\text{act}}\right)}{\left(\text{RW}_\text{Width}_{\text{str} \text{ eff}} \cdot \text{RW}_\text{Lgth}_{\text{str} \text{ eff}}\right)} = 1.032 \cdot \text{ksf}$

Overturning Check 10.6.3.3—Eccentric Load Limitations 11.6.3.3—Eccentricity Limits The eccentricity of loading at the strength limit state, For foundations on soil, the location of the resultant evaluated based on factored loads shall not exceed: of the reaction forces shall be within the middle twothirds of the base width. One-third of the corresponding footing dimension, . For foundations on rock, the location of the resultant B or L, for footings on soils, or 0.45 of the corresponding footing dimensions B or L, for of the reaction forces shall be within the middle ninefootings on rock. tenths of the base width. Eccentricity at Strength Limit State: $e_{str rw} = 0 \cdot in$ $B := RW_Width_{act} = 3 ft$ Width of Footing: $if\left(e_{str_rw} < \frac{B}{6}, "Eccentricity OKAY", "Revise Footing"\right) = "Eccentricity OKAY"$ **Bearing Check** Max_Bearing_{str} even Effective = 1.032 ksf Final Geotechnical Exploration Rpt for HAM-71-1.81, Table 6.1.5, Factored Bearing Resistance := 4.5 ksf Dated Sept 3, 2024 if (Max_Bearing_str even Effective < Factored_Bearing_Resistance, "Bearing OK", "Bearing NG") = "Bearing OK"

AASHTO Article 11.6.3: ABU	IMENT & RETAINING WALL
	-71-1.80 (Ramp Abutment)
Project# G230	
Bore# B-00	2-0-23 HTO Eqn 10.6.3.1.2a
Foundation I	
Width of Footing (B') (feet)	4.58
Length of Footing (L') (feet)	14.33
Length (L')/Width (B') (>5 is continous footing)	3.1
Type of Footing	Spread
Footing Bearing Elevation (feet)	534.0
Depth of Footing (D _f) Feet below Proposed Grade	3.0
epth of Groundwater Table above Footing (ft)	0.0
Height of Slope (Hs) (feet)	Flat Ground
Soil Para	meters
Ave. Undrained Shear Strength/Cohesion (psf)	0
Angle of internal friction (Phi) Degrees	32
Unit Weight of soil above base of footing (pcf)	120
Unit Weight of soil below base of footing (pcf)	125
Bearing Capacity Factors pe	r LRFD Table 10.6.3.1.2a-1
N _c	35.50
N _q	23.20
Νγ	30.20
Shape Correc	tion Factors
s _c	1.209
s _q	1.200
$\mathbf{s}_{\mathbf{\gamma}}$	0.872
Load Inclinat	
ic	1.0
iq	1.0
iγ	1.0
Correction for D _f +1.5B'	
·	9.9
C _{wq}	0.5
C _{wγ} Embedment Depth	0.5
Df/B'	
d _q	1.16
Bearing Capa	
Cohesion Term	0
Surcharge Term	5811
Unit Weight Term	3767
Nominal Bearing Resistance (psf)	9578
Resistance Factor for bearing (per AASHTO Table 11.5.7-1)	0.45
Factored Bearing Resistence (psf)	4310

	ENT & RETAINING WALL
	I.80 (Ramp Retaining Walls)
Project# G23006G	0
Bore# B-002-0-2 Method AASHTO	
Foundation Dime	
Width of Footing (B') (feet)	3.0
Length of Footing (L') (feet)	23.5
Length (L')/Width (B') (>5 is continous footing)	7.8
Type of Footing	Strip
Footing Bearing Elevation (feet)	534.0
Depth of Footing (D _f) Feet below Proposed Grade	3.0
Pepth of Groundwater Table above Footing (ft)	0.0
Height of Slope (Hs) (feet)	Flat Ground
Soil Paramete	
Ave. Undrained Shear Strength/Cohesion (psf)	0
Angle of internal friction (Phi) Degrees	32
Unit Weight of soil above base of footing (pcf)	120
Unit Weight of soil below base of footing (pcf)	125
Bearing Capacity Factors per LR	
N _c	35.50
N _q	23.20
Νγ	30.20
Shape Correction	
s _c	1.083
Sq	1.080
sγ	0.949
Load Inclination I	Factors
ic	1.0
iq	1.0
iγ	1.0
Correction for Wat	
D _f +1.5B'	7.5
C _{wq}	0.5
C _{wγ}	0.5
Embedment Depth Corr	
Df/B'	1.0
d _q	1.22
Bearing Capacity	
Cohesion Term	0
Surcharge Term	5488
Unit Weight Term	2687
Nominal Bearing Resistance (psf)	8174
Resistance Factor for bearing (per AASHTO Table 11.5.7-1)	0.55
Factored Bearing Resistence (psf)	4496

Project:	HAM-71-1.80		Project #	G23006G		Test Boring #	B-002-0-23		
Type of Foundation	Existing Grade Elev	ation (feet)	535.1 Groundwater Table below existing ground (feet)			Table below existing ground (feet)			
Shallow Foundation (Strip Footing)	Bottom Elev. of Footing (feel		534.0	Unit Weight of Water (pcf)					62.4
Length = 23.5'	Select Granular Fill He	eight (feet)		Pre-	consolidation	Pressure (psf)			
Width = 3.0'	Applied Pressure Top of Foundation	on Soil (psf)	800	Unit Weigł	nt of Fill above t	he Footing (pcf)	128		
Depth Below Leveling Pad (Z)	AVERAGE PROPERTIES	6		CALCULAT	IONS		Total		
D _f =3.0' & Z=0.0'	Thickness of Layer (feet)	1.4	OB Pressure	at the top Layer(psf)		384	Setlement		
D _f = Depth below Prop. Grade	Corrected SPT Value (N)	20	OB Pressure	at the center Layer (ps	sf)	474	(inches)		
Conc & Stone frags w/sand (A-1-b)	Specific Gravity of Soil Solids (G)	2.65	Excess Press	ure At Center Due to a	ppliedLoad	630			
(Above Water Table)	Moisture content (%)	6	Bearing Capa	city Index (C)		95			
Z=0.70' (At Centre of Layer)	Liquid Limit (%)	NP	Immediate Se	ttlement in Foundatior	Soil (inches)	0.06	0.06		
	Plastic Limit (%)	NP	Initial Void Ra	tio (e ₀)		0.56			
	Plasticity Index (%)	NP							
	Unit Weight of soil (pcf)	128							
D _f =4.4' & Z=1.4'	Submerged Unit Weight of Soil (pcf)		OB Pressure	at the bottom Layer (p	sf)	563			
D _f =4.4' & Z=1.4'	Thickness of Layer (feet)	1.5	OB Pressure	at the top Layer(psf)		563	Setlement		
	Corrected SPT Value (N)	20	OB Pressure	at the center Layer (ps	sf)	655	(inches)		
Sandy Silt (A-4a)	Specific Gravity of Soil Solids (G)	2.65	Excess Pressure At Center Due to appliedLoad			427			
(Above Water Table)	Moisture content (%)	5	Bearing Capacity Index (C)			95			
Z=2.15' (At Centre of Layer)	Liquid Limit (%)	NP	Immediate Settlement in Foundation Soil (inches)		0.04	0.04			
	Plastic Limit (%)	NP	Initial Void Ra	tio (e ₀)		0.75			
	Plasticity Index (%)	NP							
	Unit Weight of soil (pcf)	122							
D _f =5.9' & Z=2.9'	Submerged Unit Weight of Soil (pcf)		OB Pressure	at the bottom Layer (p	sf)	746			
D _f =5.9' & Z=2.9'	Thickness of Layer (feet)	3.0	OB Pressure	at the top Layer(psf)		746	Setlement		
Gravel & Ston Frags w/sand (A-1-b)	Corrected SPT Value (N)	8	OB Pressure	sure at the center Layer (psf)		926	(inches)		
	Specific Gravity of Soil Solids (G)	2.65	Excess Press	ure At Center Due to a	ppliedLoad	273			
(Above Water Table)	Moisture content (%)	5	Bearing Capacity Index (C)		52				
Z=4.4' (At Centre of Layer)	Liquid Limit (%)	NP	Immediate Settlement in Foundation Soil (inches)		0.08	0.08			
	Plastic Limit (%)	NP	Initial Void Ra	tio (e ₀)		0.85			
	Plasticity Index (%)	NP							
	Unit Weight of soil (pcf)	120							
D _f =8.9' & Z=5.9'	Submerged Unit Weight of Soil (pcf)		OB Pressure	at the bottom Layer (p	sf)	1106			
D _f =8.9' & Z=5.9'	Thickness of Layer (feet)	6.5	OB Pressure	at the top Layer(psf)		1106	Setlement		
SF with sand and silt (A-2-4)	Corrected SPT Value (N)	9	OB Pressure	at the center Layer (ps	if)	1300	(inches)		
	Specific Gravity of Soil Solids (G)	2.67	Excess Press	ure At Center Due to a	ppliedLoad	142			

SETTLEMENT ANALYSIS FOR RAMP RETAINING WALL AT STA. 0+56

(Below Water Table)	Moisture content (%)	10	Bearing Capacity Index (C)	59	
Z=9.15' (At Centre of Layer)	Liquid Limit (%)	21	Immediate Settlement in Foundation Soil (inches)	0.06	0.06
	Plastic Limit (%)	16	Initial Void Ratio (e ₀)	0.96	
	Plasticity Index (%)	5			
	Unit Weight of soil (pcf)	122			
D _f =15.4' & Z=12.4'	Submerged Unit Weight of Soil (pcf)	59.6	OB Pressure at the bottom Layer (psf)	1494	

Total Settlement: 0.24

Consoilidation Settlement:

Immediate Settlement: 0.24

Test Boring B-002-0-23 (Sta. 0+56) Stress Distribution using 2 V : 1 H Slope Method for Strip footing

3	Length of the footing B (feet)		23.5	App. Design Pressure (psf)		800		
0.7	2.15	4.4	9.15					
630	427	273	142					
	-	0.7 2.15	0.7 2.15 4.4	0.7 2.15 4.4 9.15	0.7 2.15 4.4 9.15	0.7 2.15 4.4 9.15	0.7 2.15 4.4 9.15	0.7 2.15 4.4 9.15

Type of Foundation Existing Grade Elevation (feet) 535.1 Groundwater Table below existing ground (text) 18.5 Shallow Foundation (Spread Footing) Bottom Elev. of Footing (feet) 534.0 Unit Weight of Water (pcf) 62.4 Effective Footing Width = 5.05 Applied Pressure Top of Foundation Soil (psf) 1820 Unit Weight of Fill above the Footing (pcf) 128 Dp=3.07 & 25-0.0 Thickness of Layer (feet) 1.4 OB Pressure at the top Layer(psf) 384 Settlement D,=3.07 & 25-0.0 Thickness of Layer (feet) 1.4 OB Pressure at the center Layer (psf) 384 Settlement Conce & Stone frags wisand (A-1-b) Specific Gravity of Soil Solids (C) 2.65 Excess Pressure At Center Due to applied Load 1526 Liquid Limit (%) NP Initial Void Ratio (e_0) 0.56 0.11 0.11 D=4.4' & Z=1.4' Unit Weight of Soil (pcf) 128 Settlement in Foundation Soil (inches) 0.11 0.11 D=4.4' & Z=1.4' Unit Weight of Soil (pcf) 128 Settlement in Foundation Soil (inches) 0.11 0.11 D=4.4' & Z=1.4' Unit Weight of Soil (pcf) 0 B Press	Project:	HAM-71-1.80		Project #	G23006G	-	Test Boring #	B-002-0-23		
Shatow Foundation (Spread Faoting) Bottom Elev. of Focting (length = 14.32) Select Granular Fill Height (feet) 534.0 Unit Weight of Water (pcf) 62.4 Effective Footing Length = 14.33 Select Granular Fill Height (feet) Pre-consolidation Pressure (psf) Total Depth Below Leveling Pad (2) AVERAGE PROPERTIES CALCULATIONS Total D_=3.0? & Z=0.0° D3.0? & Z=0.0° OB Pressure at the top Layer(psf) 47.4 (inches) 0, -1 Depth below Prop. Grade Corrected SPT Value (N) 20 OB Pressure at the conter Layer (psf) 47.4 (inches) 0, -2 Dopth below Prop. Grade Specific Gravity of Soil Solids (G) 2.65 Excess Pressure At Center Due to applied Load 152.6 (Above Water Table) Moisture content (%) 6 Bearing Capacity Index (C) 95 - D_=4.4' & Z=1.4' Unit Weight of Soil (pcf) NP Initial Void Ratio (e ₀) 0.563 - D_=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) 12.8 OB Pressure at the bottom Layer (psf) 5633 Carcet SPT Value (N) 20 OB Pressure at the conter Layer (psf) 563 Settlement			Existing Grade Elevation (feet)							
Effective Footing Length = 14.33 Select Granular Fill Height (feet) Pre-consolidation Pressure (psf) Effective Footing Width = 5.05 Applied Pressure Top of Foundation Soli (psf) 1820 Unit Weight of Fill above the Footing (pcf) 128 Depth Below Leveling Pad (2) AVERAGE PROPERTIES CALULATIONS Total D_=3.0 * 8.250, *** Thickness of Layer (feet) 1.4 OB Pressure at the top Layer(psf) 384 Settlemen Cone & Stome frags wisand (A-1-b) Specific Gravity of Soil Soilds (G) 2.65 Excess Pressure At Center Due to applied Load 1526 Z=0.70* (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.11 0.11 0.11 D_=4.4 * & Z=1.4* Thickness of Layer (feet) 1.5 OB Pressure at the top Layer(psf) 563 Settlement Sandy Silt (A-4a) Weight of Soil (pcf) 02B Pressure at the conter Layer (psf) 563 Settlement Gave Water Table) Unit Weight of Soil (pcf) 03B Pressure at the conter Layer (psf) 563 Settlement D_=4.4 * & Z=1.4* Thickness of Layer (feet) 1.5 OB Pressure at the conter Layer (psf)										
Effective Footing With = 5.05' Applied Pressure Top of Foundation Soil (pcf) 1820 Unit Weight of Fill above the Footing (pcf) 128 Dep1.30' & Z=0.0' AVERAGE PROPERTIES CALCULATIONS Total D, = 3.0' & Z=0.0' Thickness of Layer (feet) 1.4 OB Pressure at the context Layer(psf) 384 Settlement On, = Depth below Prop. Grade Corrected SPT Value (N) 20 OB Pressure at the center Layer (psf) 474 (inches) Corrected Vater Table) Specific Gravity of Soil Solids (G) 2.65 Excess Pressure AL Center Due to applied Load 1526 Z=0.70' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.11 0.11 0.11 0.11 D,=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) NP Immediate Settlement in Foundation Soil (inches) 563 Settlement Gorrected SPT Value (N) 20 OB Pressure at the bottom Layer (psf) 563 Settlement D,=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) 1.5 OB Pressure at the bottom Layer (psf) 563 Corrected SPT Value (N) 20 OB Pressure a			0 ()		Pre-		· /			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	v		on Soil (psf)	1820	Unit Weigh	t of Fill above th	ne Footing (pcf)	128		
D _i = Depth below Prop. Grade Corrected SPT Value (N) 20 OB Pressure at the center Layer (psf) 474 (inches) Cone & Stone frags wisand (A-1-b) (Above Water Table) Specific Gravity of Soil Soilds (G) 2.65 Excess Pressure At Center Due to applied Load 1526 Z=0.70' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.11 0.11 D _i =4.4' & Z=1.4' Plastic Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.56 D _i =4.4' & Z=1.4' Thickness of Layer (feet) 1.5 OB Pressure at the bottom Layer (psf) 563 D _i =4.4' & Z=1.4' Thickness of Layer (feet) 1.5 OB Pressure at the conter Layer (psf) 563 Submerged Unit Weight of Soil (pCf) 00B Pressure at the conter Layer (psf) 563 (inches) Sandy Sit (A-4a) Specific Gravity of Soil Solids (G) 2.65 Excess Pressure at the conter Layer (psf) 563 Z=2.15' (At Centre of Layer) Moisture content (%) 5 Bearing Capacity Index (C) 95 (inches) D _i =5.9' & Z=2.9' Unit Weight of Soil (pCf) 122 95 (inches) <td>Depth Below Leveling Pad (Z)</td> <td>AVERAGE PROPERTIES</td> <td>6</td> <td></td> <td>CALCULATI</td> <td>ONS</td> <td></td> <td>Total</td>	Depth Below Leveling Pad (Z)	AVERAGE PROPERTIES	6		CALCULATI	ONS		Total		
Conc & Stone frags w/sand (A-1-b) (Above Water Table) Specific Gravity of Soil Solids (G) 2.65 Excess Pressure At Center Due to applied Load 1526 Z=0.70' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.11 0.11 D_=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) NP Initial Void Ratio (e_0) 0.56 D_=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) 0B Pressure at the bottom Layer (psf) 5633 D_=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) 0B Pressure at the center Layer (psf) 5633 Settlement Corrected SPT Value (N) 20 OB Pressure at the center Layer (psf) 6555 (inches) Sandy Sit (A-4a) Specific Gravity of Soil Soilds (G) 2.65 Excess Pressure At Center Due to applied Load 1111 (Above Water Table) Moisture content (%) 5 Bearing Capacity Index (C) 95 (inches) Z=2.15' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.08 0.08 D=5.9' & Z=2.9' Submerged Unit Weight of Soil (pcf) OB Pressure at the bottom Lay		Thickness of Layer (feet)	1.4	OB Pressure	at the top Layer(psf)		384	Settlement		
(Above Water Table) Moisture content (%) 6 Bearing Capacity Index (C) 95 Z=0.70' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.11 0.11 Plastic Limit (%) NP Initial Void Ratio (e ₀) 0.56 Dr=4.4' & Z=1.4' Plastic Limit (%) NP Initial Void Ratio (e ₀) 0.56 Dr=4.4' & Z=1.4' Submerged Unit Weight of Soil (pcf) 128 0 0 Dr=4.4' & Z=1.4' Thickness of Layer (feet) 1.5 OB Pressure at the bottom Layer (psf) 563 Submerged Unit Weight of Soil Soilds (G) 2.65 Excess Pressure At Center Due to applied Load 1111 (Above Water Table) Moisture content (%) 5 Bearing Capacity Index (C) 95 Z=2.15' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.08 Dr=5.9' & Z=2.9' Plastic Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.75 Gravet & Ston Frags w/sand (A-1-b) Corrected SPT Value (N) 8 OB Pressure at the bottom Layer (psf) 746 <td>D_f = Depth below Prop. Grade</td> <td>Corrected SPT Value (N)</td> <td>20</td> <td>OB Pressure</td> <td>at the center Layer (ps</td> <td>f)</td> <td>474</td> <td>(inches)</td>	D _f = Depth below Prop. Grade	Corrected SPT Value (N)	20	OB Pressure	at the center Layer (ps	f)	474	(inches)		
$ Z=0.70^{\circ} (At Centre of Layer) $	Conc & Stone frags w/sand (A-1-b)	Specific Gravity of Soil Solids (G)	2.65	Excess Press	ure At Center Due to a	pplied Load	1526			
Plastic Limit (%) NP Initial Void Ratio (e ₀) 0.56 D_i=4.4' & Z=1.4' Submerged Unit Weight of soil (pcf) 128	(Above Water Table)	Moisture content (%)	6	Bearing Capa	city Index (C)		95			
D_=4.4' & Z=1.4'Plasticity Index (%)NPD_=4.4' & Z=1.4'Unit Weight of Soil (pcf)128D_=4.4' & Z=1.4'Submerged Unit Weight of Soil (pcf)0B Pressure at the bottom Layer (psf)563D_=4.4' & Z=1.4'Thickness of Layer (feet)1.50B Pressure at the center Layer (psf)665Sandy Silt (A-4a)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load1111(Above Water Table)Moisture content (%)5Bearing Capacity Index (C)95Z=2.15' (At Centre of Layer)Plastic Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.08D_=5.9' & Z=2.9'Unit Weight of Soil (pcf)1220B Pressure at the bottom Layer (psf)746D_=5.9' & Z=2.9'Thickness of Layer (feet)3.00B Pressure at the bottom Layer (psf)746Submerged Unit Weight of Soil (pcf)0.00B Pressure at the bottom Layer (psf)746D_=5.9' & Z=2.9'Thickness of Layer (feet)3.00B Pressure at the bottom Layer (psf)746Submerged Unit Weight of Soil (pcf)0.00.080.180.18(Above Water Table)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.18Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.18O_=8.9' & Z=5.9'Moisture content (%)5Bearing Capacity Index (C)650.18D_=8.9' & Z=5.9'Thickness of Layer (feet)6.50B Pressure at the bottom Laye	Z=0.70' (At Centre of Layer)	Liquid Limit (%)	NP	Immediate Se	ttlement in Foundation	Soil (inches)	0.11	0.11		
Dr=4.4' & Z=1.4' Unit Weight of Soil (pcf) 128 Submerged Unit Weight of Soil (pcf) OB Pressure at the bottom Layer (psf) 563 Dr=4.4' & Z=1.4' Thickness of Layer (feet) 1.5 OB Pressure at the top Layer(psf) 563 Settlement Sandy Sit (A-4a) Specific Gravity of Soil Solids (G) 2.65 Excess Pressure At Center Due to applied Load 1111 (Above Water Table) Moisture content (%) 5 Bearing Capacity Index (C) 95 Z=2.15' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.08 0.08 Dr=5.9' & Z=2.9' Unit Weight of Soil (pcf) 122 Dr=5.9' & Z=2.9' Unit Weight of Soil (pcf) 122 Gravel & Ston Frags w/sand (A-1-b) Corrected SPT Value (N) 8 OB Pressure at the other Layer (psf) 746 Settlement Z=4.4' (At Centre of Layer) Excess Pressure At Center Due to applied Load 745 Gravel & Ston Frags w/sand (A-1-b) Corrected SPT Value (N) 8 OB Pressure at		Plastic Limit (%)	NP	Initial Void Ra	itio (e ₀)		0.56			
Dip = 4.4' & Z = 1.4' Submerged Unit Weight of Soil (pcf) OB Pressure at the bottom Layer (psf) 563 Dip = 4.4' & Z = 1.4' Thickness of Layer (feet) 1.5 OB Pressure at the top Layer(psf) 563 Settlement Sandy Silt (A-4a) Specific Gravity of Soil Solids (G) 2.05 Excess Pressure At Center Due to applied Load 1111 (Above Water Table) Moisture content (%) 5 Bearing Capacity Index (C) 95 Z=2.15' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.08 0.08 Dip=5.9' & Z=2.9' Plastici Limit (%) NP Initial Void Ratio (e_0) 0.75 Gravel & Ston Frags wisand (A-1-b) Corrected SPT Value (N) 8 OB Pressure at the top Layer(psf) 746 Settlement Z=4.4' (At Centre of Layer) Thickness of Layer (feet) 3.0 OB Pressure at the conter Layer (psf) 746 Settlement Qravel & Ston Frags wisand (A-1-b) Corrected SPT Value (N) 8 OB Pressure at the conter Layer (psf) 746 Settlement Z=4.4' (At Centre of Layer) Liquid Limit (%) NP Immed		Plasticity Index (%)	NP							
D=4.4' & Z=1.4'Thickness of Layer (feet)1.5OB Pressure at the top Layer(psf)563SettlementSandy Silt (A-4a) (Above Water Table)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load1111Z=2.15' (At Centre of Layer)Moisture content (%)5Bearing Capacity Index (C)95D=5.9' & Z=2.9'Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.080.08D=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)0B Pressure at the top Layer (psf)746D=5.9' & Z=2.9'Thickness of Layer (feet)3.00B Pressure at the top Layer (psf)746Carected SPT Value (N)80B Pressure at the top Layer (psf)746D=5.9' & Z=2.9'Thickness of Layer (feet)3.00B Pressure at the top Layer (psf)746Submerged Unit Weight of Soil (pcf)0B Pressure at the top Layer (psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)80B Pressure at the center Layer (psf)926(inches)Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18D=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)0B Pressure at the bottom Layer (psf)1106SettlementD=8.9' & Z=5.9'Thickness of Layer (feet)6.50B Pressure at the bottom Layer (psf)1106SettlementStwimerged Unit Weight of Soil (pcf)0B0B Pressure at the center Layer (psf)1106Settlement			128							
Sandy Silt (A-4a)Corrected SPT Value (N)20OB Pressure at the center Layer (psf)6655(inches)Sandy Silt (A-4a)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load1111(Above Water Table)Moisture content (%)5Bearing Capacity Index (C)9595Z=2.15' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.080.08Dr=5.9' & Z=2.9'Plastic Limit (%)NPInitial Void Ratio (e_0)0.75100Dr=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)0B Pressure at the bottom Layer (psf)746746Submerged Unit Weight of Soil (pcf)OB Pressure at the center Layer (psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)746Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Moisture content (%)5Bearing Capacity Index (C)5252Dr=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)OB Pressure at the bottom Layer (psf)1106Dr=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the top Layer(p	D _f =4.4' & Z=1.4'	Submerged Unit Weight of Soil (pcf)		OB Pressure	at the bottom Layer (p	sf)	563			
Sandy Silt (A-4a) (Above Water Table)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load1111Z=2.15' (At Centre of Layer)Moisture content (%)5Bearing Capacity Index (C)95Z=2.15' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.080.08Plastic Limit (%)NPInitial Void Ratio (e_0)0.750.750.75Dr=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)12200.75Dr=5.9' & Z=2.9'Thickness of Layer (feet)0.0 B Pressure at the bottom Layer (psf)746Stobmerged Unit Weight of Soil (pcf)OB Pressure at the top Layer(psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)80B Pressure at the center Layer (psf)926(inches)Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Unit Weight of Soil (pcf)120Immediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)120Immediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)120Immediate Settlement in Foundation Soil (inches)1106Dr=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)12	D _f =4.4' & Z=1.4'	Thickness of Layer (feet)	1.5	OB Pressure at the top Layer(psf)		563	Settlement			
(Above Water Table) Z=2.15' (At Centre of Layer)Moisture content (%)5Bearing Capacity Index (C)95Z=2.15' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.080.08Dr=5.9' & Z=2.9'Plastic Limit (%)NPInitial Void Ratio (e_0)0.750.75Dr=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)122		Corrected SPT Value (N)	20	OB Pressure	at the center Layer (ps	f)	655	(inches)		
Z=2.15' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.080.08Plastic Limit (%)NPInitial Void Ratio (e_0)0.750.750.750.75Plastic limit (%)NPInitial Void Ratio (e_0)0.750.750.750.750.75D_i=5.9' & Z=2.9'Unit Weight of Soil (pcf)1220.76<	Sandy Silt (A-4a)	Specific Gravity of Soil Solids (G)	2.65	Excess Pressure At Center Due to applied Load			1111			
Plastic Limit (%)NPInitial Void Ratio (e_0)0.75Plastic Limit (%)NPInitial Void Ratio (e_0)0.75Plasticity Index (%)NPInitial Void Ratio (e_0)0.75Unit Weight of soil (pcf)122Initial Void Ratio (e_0)746Dr=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)OB Pressure at the bottom Layer (psf)746Dr=5.9' & Z=2.9'Thickness of Layer (feet)3.0OB Pressure at the top Layer(psf)746Gravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)926(inches)(Above Water Table)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load745Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Unit Weight of soil (pcf)120Initial Void Ratio (e_0)0.85Initial Void Ratio (e_0)0.85Dr=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the bottom Layer (psf)1106SettlemeniSF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)	(Above Water Table)	Moisture content (%)	5	Bearing Capacity Index (C)			95			
Plasticity Index (%)NPNPDr=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)122Image: Submerged Unit Weight of Soil (pcf)OB Pressure at the bottom Layer (psf)746Dr=5.9' & Z=2.9'Thickness of Layer (feet)3.0OB Pressure at the top Layer(psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)926(inches)(Above Water Table)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load7451mage: Submerged Unit Weight of Soil (pcf)0.180.18Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.180.18Dr=8.9' & Z=5.9'Unit Weight of Soil (pcf)120Image: Submerged Unit Weight of Soil (pcf)0B Pressure at the bottom Layer (psf)1106SettlementDr=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the top Layer(psf)1106SettlementSF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)	Z=2.15' (At Centre of Layer)	Liquid Limit (%)	NP	Immediate Se	ediate Settlement in Foundation Soil (inches) 0.0		0.08	0.08		
Dr=5.9' & Z=2.9'Unit Weight of soil (pcf)122OB Pressure at the bottom Layer (psf)746Dr=5.9' & Z=2.9'Thickness of Layer (feet)3.0OB Pressure at the top Layer(psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)926(inches)(Above Water Table)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load74552Z=4.4' (At Centre of Layer)Moisture content (%)5Bearing Capacity Index (C)5252Dr=8.9' & Z=5.9'Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the top Layer (psf)1106SettlementSF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)		Plastic Limit (%)	NP	Initial Void Ra	itio (e ₀)		0.75			
Dr=5.9' & Z=2.9'Submerged Unit Weight of Soil (pcf)OB Pressure at the bottom Layer (psf)746Dr=5.9' & Z=2.9'Thickness of Layer (feet)3.0OB Pressure at the top Layer(psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)926(inches)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load745(inches)(Above Water Table)Moisture content (%)5Bearing Capacity Index (C)52Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Plasticity Index (%)NPInitial Void Ratio (e_0)0.85Dr=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the top Layer(psf)1106SettlementSF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)		Plasticity Index (%)	NP							
Dr=5.9' & Z=2.9'Thickness of Layer (feet)3.0OB Pressure at the top Layer(psf)746SettlementGravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)926(inches)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load745(inches)(Above Water Table)Moisture content (%)5Bearing Capacity Index (C)5252Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Dr=8.9' & Z=5.9'Plasticity Index (%)NPInitial Void Ratio (e_0)0.851106Dr=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the top Layer(psf)1106SettlementSF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)			122							
Gravel & Ston Frags w/sand (A-1-b)Corrected SPT Value (N)8OB Pressure at the center Layer (psf)926(inches)Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load7456(Above Water Table)Moisture content (%)5Bearing Capacity Index (C)526Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18D=8.9' & Z=5.9'Plasticity Index (%)NPInitial Void Ratio (e_0)0.856D=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)12011066D=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the top Layer (psf)1106SettlementSF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)	D _f =5.9' & Z=2.9'	Submerged Unit Weight of Soil (pcf)		OB Pressure	at the bottom Layer (p	sf)	746			
Specific Gravity of Soil Solids (G)2.65Excess Pressure At Center Due to applied Load745(Above Water Table)Moisture content (%)5Bearing Capacity Index (C)52Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Plastic Limit (%)NPInitial Void Ratio (e_0)0.850.850.85Dr=8.9' & Z=5.9'Unit Weight of soil (pcf)12000Dr=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)0B Pressure at the bottom Layer (psf)1106Dr=8.9' & Z=5.9'Thickness of Layer (feet)6.50B Pressure at the top Layer(psf)1106SF with sand and silt (A-2-4)Corrected SPT Value (N)90B Pressure at the center Layer (psf)1300(inches)	D _f =5.9' & Z=2.9'	Thickness of Layer (feet)	3.0	OB Pressure	at the top Layer(psf)		746	Settlement		
(Above Water Table) Z=4.4' (At Centre of Layer)Moisture content (%)5Bearing Capacity Index (C)52Z=4.4' (At Centre of Layer)Liquid Limit (%)NPImmediate Settlement in Foundation Soil (inches)0.180.18Plastic Limit (%)NPInitial Void Ratio (e_0)0.850.850.85Plasticity Index (%)NPInitial Void Ratio (e_0)0.850.85Df=8.9' & Z=5.9'Submerged Unit Weight of Soil (pcf)12000Df=8.9' & Z=5.9'Thickness of Layer (feet)6.5OB Pressure at the bottom Layer (psf)1106SF with sand and silt (A-2-4)Corrected SPT Value (N)9OB Pressure at the center Layer (psf)1300(inches)	Gravel & Ston Frags w/sand (A-1-b)	Corrected SPT Value (N)	8	OB Pressure	at the center Layer (psf)		926	(inches)		
Z=4.4' (At Centre of Layer) Liquid Limit (%) NP Immediate Settlement in Foundation Soil (inches) 0.18 0.18 Plastic Limit (%) NP Initial Void Ratio (e_0) 0.85 Plastic Limit (%) NP Initial Void Ratio (e_0) 0.85 Plasticity Index (%) NP Initial Void Ratio (e_0) 0.85 D _f =8.9' & Z=5.9' Submerged Unit Weight of Soil (pcf) 0B Pressure at the bottom Layer (psf) 1106 D _f =8.9' & Z=5.9' Thickness of Layer (feet) 6.5 OB Pressure at the top Layer(psf) 1106 SF with sand and silt (A-2-4) Corrected SPT Value (N) 9 OB Pressure at the center Layer (psf) 1300 (inches)		Specific Gravity of Soil Solids (G)	2.65	Excess Press	ure At Center Due to a	ure At Center Due to applied Load				
Plastic Limit (%) NP Initial Void Ratio (e_0) 0.85 Plasticity Index (%) NP 100 100 Df=8.9' & Z=5.9' Submerged Unit Weight of Soil (pcf) 120 1106 Df=8.9' & Z=5.9' Submerged Unit Weight of Soil (pcf) 0B Pressure at the bottom Layer (psf) 1106 SF with sand and silt (A-2-4) Corrected SPT Value (N) 9 0B Pressure at the center Layer (psf) 1300 (inches)	(Above Water Table)	Moisture content (%)	5	Bearing Capa	earing Capacity Index (C)		52			
Plasticity Index (%) NP Df=8.9' & Z=5.9' Unit Weight of soil (pcf) Df=8.9' & Z=5.9' Submerged Unit Weight of Soil (pcf) OB Pressure at the bottom Layer (psf) 1106 Df=8.9' & Z=5.9' Thickness of Layer (feet) 6.5 OB Pressure at the top Layer(psf) 1106 SF with sand and silt (A-2-4) Corrected SPT Value (N) 9	Z=4.4' (At Centre of Layer)	Liquid Limit (%)	NP	Immediate Se	Immediate Settlement in Foundation Soil (inches) 0		0.18	0.18		
Unit Weight of soil (pc) 120 Image: Constraint of the state o		Plastic Limit (%)	NP	Initial Void Ra	itio (e ₀)		0.85			
D _f =8.9' & Z=5.9' Submerged Unit Weight of Soil (pcf) OB Pressure at the bottom Layer (psf) 1106 D _f =8.9' & Z=5.9' Thickness of Layer (feet) 6.5 OB Pressure at the top Layer(psf) 1106 Settlement SF with sand and silt (A-2-4) Corrected SPT Value (N) 9 OB Pressure at the center Layer (psf) 1300 (inches)		Plasticity Index (%)	NP							
D _f =8.9' & Z=5.9' Thickness of Layer (feet) 6.5 OB Pressure at the top Layer(psf) 1106 Settlement SF with sand and silt (A-2-4) Corrected SPT Value (N) 9 OB Pressure at the center Layer (psf) 1300 (inches)			120							
SF with sand and silt (A-2-4) Corrected SPT Value (N) 9 OB Pressure at the center Layer (psf) 1300 (inches)	D _f =8.9' & Z=5.9'	Submerged Unit Weight of Soil (pcf)		OB Pressure	B Pressure at the bottom Layer (psf) 1106					
	D _f =8.9' & Z=5.9'	Thickness of Layer (feet)	6.5	OB Pressure	at the top Layer(psf)		1106	Settlement		
Specific Gravity of Soil Solids (G) 2.67 Excess Pressure At Center Due to applied Load 395	SF with sand and silt (A-2-4)	Corrected SPT Value (N)	9	OB Pressure	at the center Layer (ps	f)	1300	(inches)		
		Specific Gravity of Soil Solids (G)	2.67	Excess Press	ure At Center Due to a	pplied Load	395			

SETTLEMENT ANALYSIS FOR RAMP ABUTMENT WALL AT STA. 0+56

(Below Water Table)	Moisture content (%)	10	Bearing Capacity Index (C)	59	
Z=9.15' (At Centre of Layer)	Liquid Limit (%)	21	Immediate Settlement in Foundation Soil (inches)	0.15	0.15
	Plastic Limit (%)	16	16 Initial Void Ratio (e_0)		
	Plasticity Index (%)	5	5		
	Unit Weight of soil (pcf)	122			
D _f =15.4' & Z=12.4'	Submerged Unit Weight of Soil (pcf)	59.6	OB Pressure at the bottom Layer (psf)	1494	
D _f =15.4' & Z=12.4'	Thickness of Layer (feet)	5.0	OB Pressure at the top Layer(psf)	1494	Settlement
Sandy silt (A-4a Plastic)	Corrected SPT Value (N)	9	OB Pressure at the center Layer (psf)	1633	(inches)
	Specific Gravity of Soil Solids (G)	2.7	Excess Pressure At Center Due to applied Load	226	
(Below Water Table)	Moisture content (%)	17	Compression Index (C _c)	0.17	
Z=14.9' (At Centre of Layer)	Liquid Limit (%)	30	Recompression Index (C _r)	0.017	
	Plastic Limit (%)		Initial Void Ratio (e ₀)	0.67	
	Plasticity Index (%)	9	Settlement due to compression (inches)		
	Unit Weight of soil (pcf)	118	Settlement due to recompression (inches)	0.03	0.03
D _f =20.4' & Z=17.4'	Submerged Unit Weight of Soil (pcf)	55.6	OB Pressure at the bottom Layer (psf)	1772	

Total Settlement: 0.55

Consolidation Settlement: 0.03

Immediate Settlement: 0.52

Test Boring B-002-0-23 (Sta. 0+56) Stress Distribution using 2 V : 1 H Slope Method for Spread footing (Square / Rectangular)

Width of the footing B (feet)	5.05	Length of	the footir	ng B (feet)	14.33	App. Des	sign Pre	ssure (psf)	1822
Depth (Z) below the footing (feet)	0.7	2.15	4.4	9.15	14.9				
Vertical Stress Intensity (psf) at Z	1526	1111	745	395	226				

C-R-S:	HAM-71-1.80	PID: 102790	Reviewer:	SSHAN	Date: 7/18/23
lf	[•] you do not have such a found	ation or structure o	on the projec	-	ave to fill out this checklist.
Soil and	d Bedrock Strength Data		(Y/N/X)	Notes:	
1	Has the shear strength of the f	oundation soils	Y		
	been determined?		•		
	Check method used:				
	laboratory shear tests				
	estimation from SPT or field	d tests	Y		
2	Have sufficient soil shear stren	gth,			
	consolidation, and other paran	neters been	N		
	determined so that the require	ed allowable loads	Y		
	for the foundation/structure ca	an be designed?			
3	Has the shear strength of the f	oundation	Y		
	bedrock been determined?		T		
	Check method used:				
	laboratory shear tests		Y		
	other (describe other meth	ods)			
Spread	Footings		(Y/N/X)	Notes:	
4	Are there spread footings on the	ne project?		Bridge Pier	3
	If no, go to Question 11		Y	5	
5	Have the recommended botto	m of footing			
	elevation and reason for this re	ecommendation	Y		
	been provided?				
a.	Has the recommended botto	m of footing			
	elevation taken scour from st	-	Х		
	water flow into account?				
6	Were representative sections a	analyzed for the			
-	entire length of the structure f	-			
		0			
a.	factored bearing resistance?		Y		
b.	factored sliding resistance?		Х		
C.	eccentric load limitations (ov	erturning)?	Х		
d.	predicted settlement?	0,	Y		
e.			Х		
7	Has the need for a shear key be	een evaluated?	Х		
			~		
a.	If needed, have the details be	en included in			
	the plans?				
8	If special conditions exist (e.g.	geometry, sloping			
	rock, varying soil conditions), v		Х		
	footing "stepped" to accommo		Λ		
1					
9	Have the Service I and Maximu	m Strength Limit			
	States for bearing pressure on	-	Y		
1	provided?				
L	p. 011464.			1	

Spread	Footings	(Y/N/X)	Notes:
10	If weak soil is present at the proposed		
	foundation level, has the removal / treatment of	Х	
	this soil been developed and included in the	Λ	
	plans?		
a.	Have the procedure and quantities related to		
	this removal / treatment been included in the	Ν	
	plans?		
Pile Str	ructures	(Y/N/X)	Notes:
11	Are there piles on the project?	Ν	
	If no, go to Question 17		
12	Has an appropriate pile type been selected?		
	Check the type selected:		
	H-pile (driven)		
	H-pile (prebored)		
	Cast In-place Reinforced Concrete Pipe		
	Micropile		
	Continuous Flight Auger (CFA)		
	other (describe other types)		
13	Have the estimated pile length or tip elevation		
	and section (diameter) based on either the		
	Ultimate Bearing Value (UBV) or the depth to		
	top of bedrock been specified? Indicate method		
	used.		
14	If scour is predicted, has pile resistance in the		
	scour zone been neglected?		
15	Has a wave equation drivability analysis been		
	performed as per BDM 305.4.1.2 to determine		
	whether the pile can be driven to either the		
	UBV, the pile tip elevation, or refusal on bedrock		
	without overstressing the pile?		
16	If required for design, have sufficient soil		
	parameters been provided and calculations		
	performed to evaluate the:		
a.			
	settlement of the piles?		
b.	Nominal unit side resistance for each		
	contributing soil layer and maximum deflection		
	of the piles?		
C.	Downdrag load on piles driven through new		
	embankment or compressible soil layers, as		
	per BDM 305.4.2.2?		
d.			
	from soft foundation soils?		

Pile St	Pile Structures		Notes:
17	If piles are to be driven to strong bedrock (Q _u >7.5 ksi) or through very dense granular soils or overburden containing boulders, have "pile points" been recommended in order to protect the tips of the steel piling, as per BDM 305.4.5.6?		
18	If subsurface obstacles exist, has preboring been recommended to avoid these obstructions?		
19	If piles will be driven through 15 feet or more of new embankment, has preboring been specified as per BDM 305.4.5.7?		

Drilled	l Shafts	(Y/N/X)	Notes:
20	Are there drilled shafts on the project?		
	If no, go to the next checklist.	Y	
21	Have the drilled shaft diameter and embedment	Y	
	length been specified?	ř	
22	Have the recommended drilled shaft diameter		
	and embedment been developed based on the		
	nominal unit side resistance and nominal unit tip	Y	
	resistance for vertical loading situations?		
23	For shafts undergoing lateral loading, have the	Ν	
	following been determined:		
а	. total factored lateral shear?		
b	. total factored bending moment?		
С			
d	5		
24	If a bedrock socket is required, has a minimum		
	rock socket length equal to 1.5 times the rock	Y	
	socket diameter been used, as per BDM 305.5.2?		
25	Generally, bedrock sockets are 6" smaller in		
	diameter than the soil embedment section of	Y	
	the drilled shaft. Has this factor been accounted		
	for in the drilled shaft design?		
26	If scour is predicted, has shaft resistance in the	Х	
	scour zone been neglected?		
27	Has the site been assessed for groundwater	Y	
<u> </u>	influence?		
а	, ,	V	
	concern, does the design address control of	Х	
<u> </u>	groundwater flow during construction?		
28	Have all the proper items been included in the	Ν	
	plans for integrity testing?		
29	If special construction features (e.g., slurry,	Ν	
	casing, load tests) are required, have all the	IN	
	proper items been included in the plans?		
30	If necessary, have wet construction methods	Х	
C	been specified?	11/161/57	Notos
Genera		(Y/N/X)	Notes:
31	Has the need for load testing of the foundations been evaluated?	Ν	
<u> </u>			
а	. If needed, have details and plan notes for load testing been included in the plans?		
	testing been included in the plans:		

VI.B. Geotechnical Reports

C-R-S:	HAM-71-1.81 PID: 102790	Reviewer:	SShan	Date: 4/11/2024
			I	
Genera		(Y/N/X)	Notes:	
1	Has an electronic copy of all geotechnical submissions been provided to the District Geotechnical Engineer (DGE)?	Ν	Will be provided	d by ARC.
2	Has the first complete version of a geotechnical report being submitted been labeled as 'Draft'?	Ν		
3	Subsequent to ODOT's review and approval, has the complete version of the revised geotechnical report being submitted been labeled 'Final'?	Y		
4	Has the boring data been submitted in a native format that is DIGGS (Data Interchange for Geotechnical and Geoenvironmental) compatable? gINT files may be used for this.	Ν		
5	Does the report cover format follow ODOT's Brand and Identity Guidelines Report Standards found at http://www.dot.state. oh.us/brand/Pages/default.aspx ?	Ν		
6	Have all geotechnical reports being submitted been titled correctly as prescribed in Section 705.1 of the SGE?	Y		
Report	Body	(Y/N/X)	Notes:	
7	Do all geotechnical reports being submitted contain the following:			
a.	an Executive Summary as described in Section 705.2 of the SGE?	Y		
b.	an Introduction as described in Section 705.3 of the SGE?	Y		
C.	a section titled "Geology and Observations of the Project," as described in Section 705.4 of the SGE?	Y		
d.	a section titled "Exploration," as described in Section 705.5 of the SGE?	Y		
e.	a section titled "Findings," as described in Section 705.6 of the SGE?	Y		
f.	a section titled "Analyses and Recommendations," as described in Section 705.7 of the SGE?	Y		
Append		(Y/N/X)	Notes:	
8	Do all geotechnical reports being submitted contain all applicable Appendices as described in Section 705.8 of the SGE?	Y		
9	Do the Appendices present a site Boring Plan showing all boring locations as described in Section 705.8.1 of the SGE?	Y		

VI.B. Geotechnical Reports

Apper	Appendices		Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 705.8.2 of the SGE?	Y	
11	Do the Appendices include reports of undisturbed test data as described in Section 705.8.3 of the SGE?	Y	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 705.8.4 of the SGE?	Y	

C-R-S	: HAM-71-1.81	PID: 102790	Reviewer	SShan	Date: 4/11/2024
Comore			()/ (N1 ()/)	Netoci	
	al Presentation		(Y/N/X)	Notes:	
1	Has an electronic copy of all geotechnical submissions been provided to the District Geotechnical Engineer (DGE)?		Ν	Will be provide	d by ARC
2	Have the cadd files been prepared using the appropriate version of the ODOT CADD standards?		Y		
3	Has the geotechnical specificated date) under which the work we been clearly identified on even (reports, plans, etc.)?	as performed	Y		
4	Has the first complete version being submitted been labeled		Y		
5	5 Subsequent to ODOT's review and approval, has the complete version of the revised documents being submitted been labeled as 'Final'?		Y		
a.	. Have the C-R-S, PID number, been included in the folder r	•	Y		
6	If the project includes structure structure explorations been p under the same cover sheet? separate Structure Foundation Sheets)	resented together (Do not create	Y		
7	Has a scale of 1"=1' been used laboratory test data sheets, an sheets, if applicable?	,	Y		
8	Based on the project length, h horizontal scale been used to data?				
	Check scale used:			-	
	1" = 5', 10', 20', 25', 40', or 1500' or less (use largest s present entire plan on one	cale appropriate to	Y		
	1" = 50' projects greater th	nan 1500'		1	
9	Has a scale of 1" = 10' been ut vertical scale of the project da	ilized for the	Y		
10	If the project includes structur and profile view been shown as the Site Plan for the propos when possible?	at the same scale	Y		

General Presentation	(Y/N/X)	Notes:
11 If the project includes culverts, have the plan and profile been presented along the flowline of the culvert?	X	
12 Have the cross-sections been plotted at a scale of 1" = 10' (preferred) or 1" = 20' (for higher or wider slopes)?	Х	
Cover Sheet	(Y/N/X)	Notes:
13 Has the following general information been provided on the cover sheet:	Y	
 Brief description of the project, including the bridge number of each bridge involved in the plan set, if any? 	Y	
 Brief description of historic geotechnical explorations referenced in this exploration? State if no historic records are available. 	Y	
 Generalized information about the geology of the project area, including terrain, soil origin, bedrock types, and age? 	Y	
 Brief presentation of geological and topographical information derived from the field reconnaissance? Include comments on structure and pavement conditions. 	Y	
 Brief presentation of test boring and sampling methods? Include date of last calibration and drill rod energy ratio as a percent for the hammer systems used. 	Y	
f. Summary of general soil, bedrock, and groundwater conditions, including a generalized interpretation of findings?	Y	
g. A statement of which version (date) of the SGE specification the exploration was performed in accordance with?	Υ	
h. Statement of where geotechnical reports are available for review?	Y	
 Initials of personnel and dates they performed field reconnaissance, subsurface exploration and preparation of the soil profile? 	Y	

Cover	Sheet	(Y/N/X)	Notes:
14	Has a Legend been provided?	Y	
15	Have the following items been included in the Legend:		
а	 Symbols and usual descriptions for only the soil and bedrock types presented in the Soil Profile, as per the Soil and Rock Symbology Chart in Appendix D of the SGE? 	Y	
b	. All miscellaneous symbols and acronyms, used on any of the sheets, defined?	Y	
с	The number of soil samples for each classification that were mechanically classified and visually described in the current exploration?	Y	
16	Has a Location Map, showing the beginning and end stations for the project, been shown on the cover sheet, sized per the L&D3 Manual?	Y	
17	Have the station limits for each plan and profile sheet for projects with multiple alignments, or greater than 1500', been identified in a table?	Х	
18	Have the station limits for any cross section sheets been identified in the same table?	Х	
19	Has a list of any structures for which structure foundation explorations been performed been identified in the same table?	Х	
20	If sampling and testing for a scour analysis was performed, has this data been shown in tabular form?	Х	
21	Has a summary table of test data for all roadway and subgrade boring samples been shown?	Х	
22	If borings from previous subsurface explorations are being used, has that data been shown in a separate table?	х	
23	In the summary table, has the data been displayed by roadway and subgrade boring in ascending stationing order for each roadway?	Х	
24	Have the centerline or baseline station, offset, and exploration identification number been provided for each boring presented in the table?	Х	

Cover Sheet	(Y/N/X)	Notes:
25 For each sample, has the following information been provided in the summary table:	Х	
a. Sample depth interval?		
b. Sample number and type?		
c. N ₆₀ ?		
d. Percent recovery?		
e. Hand Penetrometer?		
f. Percentage of aggregate, coarse sand, fine sand, silt, and clay size particles?		
g. Liquid limit, plastic limit, plasticity index, and water content, all rounded to the nearest percent or whole number?		
h. ODOT classification and Group Index?		
 Visual description of samples not mechanically classified, including water content, and estimated ODOT classification with 'Visual' in parentheses? 		
j. Sulfate Content test results?		
26 Have all undisturbed test results been displayed in graphical format on the sheet prior to the plan and profile sheets?		
Surface Data	(Y/N/X)	Notes:
27 Has the following information been shown on each roadway plan drawing:		
a. Existing surface features described in Section 702.5.1?	Y	
b. Proposed construction items, as described in Section 702.5.2?	Y	
c. Project and historic boring locations, with appropriate exploration targets and exploration identification numbers?	Y	
 Notes regarding observations not readily shown by drawings? 	Х	
28 Have the existing ground surface contours been presented?	Y	
29 If cross sections are to be developed for stationing covered on a plan sheet, has an index for the appropriate cross section sheets been included on the plan sheet?	Х	

Subsur	face Data	(Y/N/X)	Notes:
30	Has all the subsurface data been presented in the form of a profile along the centerline or baseline, and on cross sections where applicable?	Y	
31	Have the graphical boring logs been correctly shown, as follows:		
a.	Location and depth of boring indicated by a heavy dashed vertical line?	Y	
b.	Exploration identification number above the boring?	Y	
C.	Logs indicate soil and bedrock layers with symbols 0.4" wide and centered on the heavy dashed vertical line where possible?	Y	
d.	Bedrock exposures with 0.4" wide symbols, but without a heavy dashed vertical line?	Y	
e.	Soil and bedrock symbols as per ODOT Soil and Rock Symbology chart (SGE - Appendix D)?	Y	
f.	Historical borings shown in same manner with the exploration identification number above the boring?	Х	
32	Have the proposed groundline and existing groundline been shown on the profile view, according to ODOT CADD standards?	Y	
33	Have the locations of the proposed structure foundation elements been shown on the profile view?	Y	
34	Have the offsets from centerline or baseline been indicated above the borings in the profile view?	Y	
35	Have borings located immediately adjacent to the centerline or baseline and considered representative of centerline or baseline subsurface conditions been referenced directly to the centerline or baseline?	Х	
36	Have offset borings in or near the same elevation interval of a centerline or baseline boring been plotted either on a cross section or immediately above or below the centerline boring in a box containing an elevation scale?	Y	
37	Have cross-sections been developed to show subsurface conditions disclosed by a series of borings drilled transverse to centerline or baseline?	х	

	(Y/N/X) X X Y	 Have the existing and proposed groundlines been displayed on cross section sheets according to ODOT CADD standards? Have bedrock exposures shown on the cross sections been plotted along the contour of the cross section? Has the following information been provided adjacent to the graphical logs or bedrock exposure: 	38 39 40
	X	 been displayed on cross section sheets according to ODOT CADD standards? Have bedrock exposures shown on the cross sections been plotted along the contour of the cross section? Has the following information been provided adjacent to the graphical logs or bedrock 	39
		to ODOT CADD standards? Have bedrock exposures shown on the cross sections been plotted along the contour of the cross section? Has the following information been provided adjacent to the graphical logs or bedrock	
		Have bedrock exposures shown on the cross sections been plotted along the contour of the cross section? Has the following information been provided adjacent to the graphical logs or bedrock	
		sections been plotted along the contour of the cross section? Has the following information been provided adjacent to the graphical logs or bedrock	
		cross section? Has the following information been provided adjacent to the graphical logs or bedrock	40
	Y	Has the following information been provided adjacent to the graphical logs or bedrock	40
	Y	adjacent to the graphical logs or bedrock	40
	Y		
	Y	exposure:	
	Y		
	Y	, , , , , ,	a.
		or other shallow surface material written	
		above the boring (with corresponding	
		symbology at top of log)?	
		. Moisture content, to nearest whole percent,	b.
	Y	with the bottom of the text aligned with the	
		bottom of the sample? Label this column as	
		'WC' at bottom of the boring.	
		. N ₆₀ , aligned with the bottom of sample? Label	C.
	Y		
		. Free water indicated by a horizontal line with a	d.
	Y	'w' attached, and water level at the end of	
		drilling indicated by an open equilateral	
		triangle, point down?	
		. Complete geologic description of each bedrock	e.
		unit, including unit core loss, unit RQD, SDI,	
		and compressive strength test results? (Do not	
	Y		
	·		
		Visual description of any uncontrolled fill or	f
	Y		· · ·
	NI		-
 	IN		
			n.
	Y		
		-	
1			
			i.
		a_{a} and a_{b} and $a_{b} = 2\Gamma 0/2$ are set of $L_{a} = 400/2$	
	Y	content exceeding 25% or exceeding 19% but	
	Y	appearing wet initially, with a 1/8" open circle	
	Y	appearing wet initially, with a 1/8" open circle with a horizontal line through it adjacent to the	
	Y	appearing wet initially, with a 1/8" open circle	
		appearing wet initially, with a 1/8" open circle with a horizontal line through it adjacent to the moisture content?	j.
	Y	appearing wet initially, with a 1/8" open circle with a horizontal line through it adjacent to the moisture content?	j.
	Y Y N	 column as 'N₆₀' at bottom of boring. Free water indicated by a horizontal line with a 'w' attached, and water level at the end of drilling indicated by an open equilateral triangle, point down? Complete geologic description of each bedrock unit, including unit core loss, unit RQD, SDI, and compressive strength test results? (Do not present geologic descriptions for structure borings for which this information is presented on the boring logs as described in 703.3) Visual description of any uncontrolled fill or interval not adequately defined by a graphical symbol? Organic content with modifiers, per 603.5? Designate a plastic soil with moisture content equal to or greater than the liquid limit minus three with a 1/8" solid black circle adjacent to the moisture content? 	d. e. f. <u>g.</u> h.

Boring	Logs	(Y/N/X)	Notes:
41	Have the boring logs of all structure borings, all		
	geohazard borings, and any roadway borings		
	drilled in the vicinity of the structures or	V	
	geohazard been shown on the boring log sheets	Y	
	following the plan and profile sheets? (Create		
	the logs in accordance with 703.3)		
	<u> </u>		
42	Have the boring logs been developed by		
	integrating the driller's field logs, laboratory test	Y	
	data, and visual descriptions?		
43	(Has the following boring information been)		
	(included in the heading of each boring log:)		
a.	1	Y	
b.		Y	
C.	(11)	Y	
	project type.		
d.		Y	
	and surface elevation?		
e.		Y	
f.	. Method of drilling?	Y	
g.		Y	
h.			
	for backfilling or sealing, including type of	Y	
	instrumentation, if any?		
i.	Date of last calibration and drill rod energy		
	ratio (ER) in percent for the hammer system(s)	Y	
	used?		
44	Has the following boring information been		
	included in each boring log:		
a.	•	Y	
b.	5	Y	
C.		Y	
d.		Y	
e.	. Depth of boulders or cobbles, if encountered?	Х	
f.	. Caving depth?	Х	
g.		Y	
h.		Х	
i.		Х	
j.	-	Х	
k.	. Depth interval represented by sample?	Y	
١.		Y	
m.		Y	
n.		V	
	drive for split spoon samples?	Y	
0.		Y	
p.		Y	
	-		1

Boring L	ogs	(Y/N/X)	Notes:
q.	Particle-size analysis?	Y	
r.	Liquid limit, plastic limit, plasticity index?	Y	
s.	Water content?	Y	
t.	ODOT soil classifications, with "V" in parentheses for those samples that are not mechanically classified?	Y	
u.	Top of bedrock and bedrock descriptions?	Y	
٧.	Run rock core percent recovery?	Y	
w.	Run RQD?	Y	
х.	Unit rock core percent recovery?		
у.	Unit RQD?	Y	
Ζ.	SDI, if applicable?	Y	
aa.	Rock compressive strength test results, if applicable?	Y	

LABORATORY TEST STANDARDS

STANDARD

REFERENCE NUMBER

I. Soil/Rock Testing

Description and Identification of Soils (Visual-Manual Procedures)	ASTM D 2488
Classification of Soils for Engineering Purposes (USCS)	ASTM D 2487
Laboratory Determination of Water (Moisture) Content of Soil and Roch	k ASTM D 2216
Classification for Sizes of Aggregate for Road and Bridge Construction	ASTM D 488
Liquid Limit, Plastic Limit, and Plasticity Index of Soils	ASTM D 4318
Shrinkage Factors of Soils by Mercury Method	ASTM D 427
Moisture, Ash, and Organic Matter of Peat and Other Organic Soils	ASTM D 2974
Specific gravity of Soils	ASTM D 854
Direct Shear Test of Soils under Consolidated Drained Conditions	ASTM D 3080
Particle-Size Analysis of Soils	ASTM D 422
Unconfined Compressive Strength of Cohesive Soils	ASTM D 2166
Compressive Strength of Intact Rock Core Specimens	ASTM D 7012
Slake Durability Index of Shale/Similar Weak Rock Test	ASTM D 4644
Point Load Test of Rock Core Specimens	ISRM* / ASTM D5731
CBR (California Bearing Ration) of Laboratory-Compacted Soils	ASTM D 1883
Laboratory Compaction Characteristics of Soil using Standard Effort	ASTM D 698
Laboratory Compaction Characteristics of Soil using Modified Effort	ASTM D 1557
One-Dimensional Consolidation Properties of Soils	ASTM D 2435
One-Dimensional Swell or Settlement Potential of Cohesive Soils	ASTM D 4546
Ph of Soil	ASTM D 4972

*ISRM -- International Society for Rock Mechanics

II. Concrete Testing

Compressive Strength for Cylindrical Concrete Specimens	ASTM C-39
Acid-Soluble Chloride in Mortar and Concrete	ASTM C 1152

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classif	Т	LLO/LL	% Pass	% Pass	Liquid Limit	Plastic Index	Group Index	REMARKS
		AASHTO	OHIO	× 100*	#40	#200	(LL)	(PI)	Max.	
000 000 000	Gravel and/or Stone Fragments	Α-	1-a	4 	30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
0.0.0 0.0.0 0.0	Gravel and⁄or Stone Fragments with Sand	۵-	1-Ь		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	-3		51 Min.	10 Max.	NON-P	LASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
6.00 0.00 0.00 0.00	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + + + + + + + + + + + + + + + $	silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	А	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	A-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.		- -		W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MAT	ERIAL	CLASS	SIFIED BY	VISUAL	INSPECT	TION			
	Sod and Topsoil Pavement or Base	Uncon Fill (D	trolled escribe	I		Bouldery	Zone			at, S-Sedimentary Woody F-Fibrous Loamy & etc

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX A.1 - ODOT Quick Reference for Visual Description of Soils

1) STRENGTH OF SOIL:

Non-Cohesive (granular) Soils - Compactness			
Description	Blows Per Ft.		
Very Loose	<u><</u> 4		
Loose	5 - 10		
Medium Dense	11 – 30		
Dense	31 – 50		
Very Dense	> 50		

2) COLOR :

If a color is a uniform color throughout, the term is single, modified by an adjective such as light or dark. If the predominate color is shaded by a secondary color, the secondary color procedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled"

3) PRIMARY COMPONENT

Use **DESCRIPTION** from ODOT Soil Classification Chart on Back

Cohesive (fine grained) Soils - Consistency

Description	Qu (TSF)	Blows Per Ft.	Hand Manipulation	4) COMPONENT M	ODIFIERS:
Very Soft	<0.25	<2	Easily penetrates 2" by fist	Description	Percentage By Weight
Soft	0.25-0.5	2 - 4	Easily penetrates 2" by thumb	Trace	0% - 10%
Medium Stiff	0.5-1.0	5 - 8	Penetrates by thumb with moderate effort	Little	10% - 20%
Stiff	1.0-2.0	9 - 15	Readily indents by thumb, but not penetrate	Some	20% - 35%
Very Stiff	2.0-4.0	16 - 30	Readily indents by thumbnail	"And"	35% -50%
Hard	>4.0	>30	Indent with difficulty by thumbnail		

6) Relative Visual Moisture

5) Soil Organic ContentDescription% by WeightSlightly2% - 4%Organic4%Moderately Organic4% - 10%Highly Organic> 10%			Criteria		
Description	% by Weight	Description	Cohesive Soil	Non-cohesive Soils	
Slightly Organic	2% - 4%	Dry	Powdery; Cannot be rolled; Water content well below the plastic limit	No moisture present	
Moderately Organic	4% - 10%	Damp	Leaves very little moisture when pressed between fingers; Crumbles at or before rolled to $1/8$; Water content below plastic limit	Internal moisture, but no to little surface moisture	
Highly Organic	> 10%	Moist	Leaves small amounts of moisture when pressed between fingers; Rolled to $1/8$ " or smaller before crumbling; Water content above plastic limit to -3% of the liquid limit	Free water on surface, moist (shiny) appearance	
	<u> </u>	Wet	Very mushy; Rolled multiple times to ¹ / ₈ " or smaller before crumbles; Near or above the liquid limit	Voids filled with free water, can be poured from split spoon.	

APPENDIX A.2 - ODOT Quick Reference Guide for Rock Description

1) ROCK TYPE: Common rock types are: Claystone; Coal; Dolomite; Limestone; Sandstone; Siltstone; & Shale.

2) COLOR: To be determined when rock is wet. When using the GSA Color charts use only Name, not code.

3) WEATHERING

5) TEXTURE

Description	Field Parameter	Com	ponent	Grain Diameter
Unweathered	No evidence of any chemical or mechanical alternation of the rock mass. Mineral crystals have a bright appearance with no discoloration. Fractures show little or no staining on surfaces.	В	oulder	>12"
Slightly weathered	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the rock volume presents alteration.	Cobble		3"-12"
Moderately	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted		ravel	0.08"-3"
weathered	appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15% of the rock volume presents alterations.		Coarse	0.02"-0.08"
Highly weathered	Entire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.	Sand	Medium	0.01"-0.02"
Severely weathered	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more resistant rock may be present, but the material can generally be molded and crumbled by hand pressures.		Fine	0.005"-0.01"
			Very fine	0.003"-0.005"

4) **RELATIVE STRENGTH**

6) **BEDDING**

Description	Field Parameter	Description	Thickness
Very Weak	Core can be carved with a knife and scratched by fingernail. Can be excavated readily with a point of a pick. Pieces 1 inch or more in thickness can be broken by finger pressure.	Very Thick	>36"
Weak	Core can be grooved or gouged readily by a knife or pick. Can be excavated in small fragments by moderate blows of a pick point. Small, thin pieces can be broken by finger pressure.	Thick	18" – 36"
Slightly Strong	Core can be grooved or gouged 0.05 inch deep by firm pressure of a knife or pick point. Can be excavated in small chips to pieces about 1-inch maximum size by hard blows of the point of a geologist's pick.	Medium	10" – 18"
Moderately Strong	Core can be scratched with a knife or pick. Grooves or gouges to ¹ / ₄ " deep can be excavated by hand blows of a geologist's pick. Requires moderate hammer blows to detach hand specimen.	Thin	2'' - 10''
Strong	Core can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach hand specimen. Sharp and resistant edges are present on hand specimen.	Very Thin	0.4" – 2"
Very Strong	Core cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires hard repeated blows of the geologist hammer.	Laminated	0.1" – 0.4"
Extremely strong	Core cannot be scratched by a knife or sharp pick. Chipping of hand specimens requires hard repeated blows of the geologist hammer.	Thinly Laminated	<0.1"

7) **DESCRIPTORS**

Arenaceous – sandy	Argillaceous - clayey	Brecciated – contains angular to subangular gravel		
Calcareous - contains calcium carbonate	Carbonaceous - contains carbon	Cherty- contains chert fragments		
Conglomeritic - contains rounded to subrounded gravel	Crystalline – contains crystalline structure	Dolomitic- contains calcium/magnesium carbonate		
Ferriferous – contains iron	Fissile – thin planner partings	Fossiliferous – contains fossils		
Friable – easily broken down	Micaceous – contains mica	Pyritic – contains pyrite		
Siliceous – contains silica	Stylolitic – contain stylotites (suture like structure)	Vuggy – contains openings		

8) **DISCONTINUITIES**

a) Discontin	uity Types		b) Degree of Fractu	ring				
Туре	Parameters		Description	Spacing	c) Aperture Width			
Fault	Fracture which expresses displacement parallel to the surface that does not result in a polished surface.		Unfractured	> 10 ft	Description	Spacing		
Joint	<i>pint</i> Planar fracture that does not express displacement. Generally occurs at regularly spaced intervals.		Intact	3 ft. – 10 ft.	Open	> 0.2 in.		
Shear	Fracture which expresses displacement parallel to the surface that results in polished surfaces or slickensides.		Slightly fractured	1 ft – 3 ft	Narrow	0.05 in 0.2 in.		
<i>Bedding</i> A surface produced along a bedding plane.			Moderately fractured	4 in. – 12 in.	Tight	<0.05 in.		
Contact	<i>ntact</i> A surface produced along a contact plane. (generally not seen in Ohio)		Fractured	2 in – 4 in.				
			Highly fractured	< 2 in.				
d) Surface	Roughness							
Description Criteria			10) LOSS					
	Very RoughNear vertical steps and ridges occur on the discontinuity surfaceSlightly RoughAsperities on the discontinuity surface are distinguishable and			$Run Loss = \frac{K}{K} + 100 Umit Loss = \frac{K}{K} + 100 Umit Loss = \frac{L}{K} + 100 Umit Loss = \frac{L}{$				
Slickensid								
9) RQD MF NF NF NF MF Clay L=25 L=0" L=33 L=20 Recoverv 34 " RQD = $\left(\frac{\sum Length \ of \ Pieces > 4inches}{Total \ Length \ of \ Core}\right)*100$ $RQD = \left(\frac{25+33+20+12}{120}\right)*100 = 75\%$,		