

FINAL Report of Roadway Exploration – HAN-US 68/SR 15 Interchange

Findlay, Hancock County, Ohio

November 2, 2023

Prepared for:

Ohio Department of Transportation, District 1

Prepared by:

Stantec Consulting Services Inc. Columbus, Ohio

Table of Contents

1.1
2.1
2.1
2.1
2.1
2.2
3.2
4.3
5.4
5.4
5.4
•

LIST OF APPENDICES

APPENDIX A	PLAN OF EXPLORATION	A.1
APPENDIX B	BORING LOGS	B.2
APPENDIX C	LABORATORY TEST DATA	C.3
APPENDIX D	SUBGRADE ANALYSIS SPREADSHEET	D.4

Executive Summary

Stantec Consulting Services Inc. (Stantec) is performing the engineering design for proposed roadway improvements to the US-68/SR 15 Interchange in Hancock County, south of the city of Findlay. These improvements are to reroute traffic as needed due to permanent road closures associated with the proposed flood mitigation project along Eagle Creek, near the project site. The existing exit ramp from SR 15 SB to US 68 will be relocated, and a roundabout is proposed at the ramp intersection with US 68. The existing SR 15 exit ramp is to be converted into a connector road to Liberty Township Road (TR) 80.

Nine borings were drilled as part of this exploration; four along the dedicated exit ramp, four around the new roundabout, and one near the dedicated TR 80 connection to US 68. Two of the nine borings (B-001-0-22 and B-005-0-22) were completed in the pavement of the existing roadway and were drilled to a depth of 8.0 and 7.5 feet below ground surface respectively. The remainder of the borings were drilled adjacent to the existing roadway to a depth of 11.5 feet. Encountered overburden soils included sandy clays, gravelly clays, lean clays, and gravel and stone fragments with sand. These soils classified as A-1-b, A-3a, A-4a, A-6a, A-6b, and A-7-6 according to the Ohio DOT Classification System. Boring B-004 encountered a layer of Elastic Clay (A-7-5) at the ground surface. Bedrock was not encountered in any of these nine borings.

Based upon the results of the exploration, and the use of ODOT's Subgrade Analysis Spreadsheet, a design CBR of 7 is recommended for the project. Due to high sulfate contents and low N_{60} values, all areas of new pavement subgrade are recommended to be excavated and replace to a maximum depth of 15 inches. A geotextile reinforcement is recommended to be used in conjunction with the placement of suitable subgrade material.

New embankments are expected to be a maximum of 10 feet in height, and are expected to be stable with the proposed side slopes of 3:1 or 2.5:1. Side hill fills are recommended to be benched following the ODOT CMS guidance for standard benching (Section 203.05). Special benching design may be necessary if sidehill fills are expected to be less than 3 feet in width.

INTRODUCTION

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) is performing the engineering design for proposed roadway improvements to the US-68/SR 15 Interchange in Hancock County, south of the city of Findlay. These improvements are to reroute traffic as needed due to permanent road closures associated with the proposed flood mitigation project along Eagle Creek, near the project site. The existing exit ramp from SR 15 SB to US 68 will be relocated, and a roundabout is proposed at the ramp intersection with US 68. The existing SR 15 exit ramp is to be converted into a connector road to Liberty Township Road (TR) 80.

This roadway exploration report was prepared to summarize the exploration and laboratory testing program and the subsurface findings during the exploration. Recommendations related to the design and construction of the roadway improvements are provided based upon the findings during the exploration. The geotechnical exploration was performed in accordance with the ODOT Specifications for Geotechnical Explorations (SGE) dated July, 2022.

2.0 GEOLOGY

2.1 GENERAL

As shown on the <u>Physiographic Regions of Ohio Map</u> (Ohio Department of Natural Resources (ODNR), 1998), the project site is located in Findlay Embayment. This region of the Huron-Erie Lake Plains consists of broadly rolling lacustrine plains having thin drift and very low relief (10 feet). The project also resides in an outwash region with a drift thickness of 0 to 50 feet, according to the <u>Glacial Map of Ohio</u> (Ohio Department of Natural Resources (ODNR), 2005) and <u>Shaded Drift Thickness Map of Ohio</u> (ODNR, 2004).

2.2 SOIL GEOLOGY

Published soils information from the United States Department of Agriculture (USDA) – Natural Resources Conservation Service (NRCS) website (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>) shows primarily Udorthents (UcA) in the project area. This soil contains 0 to 2 percent slopes and is frequently flooded, while being somewhat poorly drained with a moderately high to high hydraulic conductivity.

From the <u>Physiographic Regions of Ohio Map</u> (ODNR, 1998), the project site consists of silty to gravelly Wisconsinanage lacustrine deposits and is near an unmodified Defiance Moraine according to the Glacial Map of Ohio (ODNR, 2005).

2.3 BEDROCK GEOLOGY

The <u>Physiographic Regions of Ohio Map</u> (ODNR, 1998) and Bedrock Geologic Map of Ohio (ODNR, 2006) shows bedrock of the Silurian age consisting of dolomite and shales with some limestone. The bedrock has low relief from its marine origin.

REPORT OF ROADWAY EXPLORATION - HAN-US 68/SR 15 INTERCHANGE

EXPLORATION

The project site is not located within the limits of any known inactive underground mines according to the <u>Mines of Ohio</u> <u>Map</u> (ODNR 2018) and the <u>Abandoned Underground Mines of Ohio Map</u> (ODNR, 2012).

The <u>Ohio Karst Areas Map</u> (ODNR, 2006) shows no known karst areas are in the project vicinity. However it is located in a region with Silurian- and Devonian-age carbonate bedrock overlain by less than 20 feet of glacial drift and/or alluvium which contains some possibility of similar features.

From the <u>Oil and Gas Fields Map of Ohio</u> (ODNR, 1996), oil and gas fields of the Ordovician fractured shale, Trenton Limestone, Black River Group, and Wells Creek Formation are present in the project area.

2.4 HYDROLOGY AND HYDROGEOLOGY

The project site is located near Eagle Creek, which is a tributary to the Blanchard River. The <u>Primary Lithology of the</u> <u>Unconsolidated Deposits of Ohio</u> (ODNR, 2000) reveals the project site to be in an area of containing an alluvial / buried valley unconsolidated aquifer. Yields of upper bedrock stratas in the area result in 0 to 5 gallons per minute (gpm) as shown in the <u>Yields of the Uppermost Bedrock Aquifers of Ohio</u> map (ODNR, 2000).

Published data from (USDA) – (NRCS) website (<u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>) indicates a shallow depth to water table of over 80 inches (>6.5 feet) with a hydrologic soil group class B/D. The project is located in a known frequently flooded location of flat to shallow sloped land. The saturated silt loam soil has a hydraulic conductivity of 0.60 to 2.00 inches per hour (4.2×10^{-4} to 1.4×10^{-3} centimeters per second).

3.0 EXPLORATION

This exploration consisted of nine borings (B-001-0-22 through B-009-0-22); four along the proposed exit ramp, four around the new roundabout, and one near the proposed TR 80 connection to US 68. The locations of the borings are provided in the Plan of Exploration in Appendix A. ODOT's Specification for Geotechnical Explorations (SGE) Section 303 was followed to determine the depth and sample interval of the borings. Two of the borings, B-001 and B-005, were Pavement Subgrade Type A borings, sampled continuously below the existing pavement for four samples. The remainder of the borings were Roadway Type B or embankment Type B1 borings, sampled at 2.5-foot intervals to a minimum depth of 10 feet.

The borings were advanced using a track mounted drill rig using 3.25-inch hollow stem augers. Standard Penetration Test (SPT) samples were conducted using a calibrated automatic hammer with an 87.6% energy ratio. One undisturbed Shelby Tube sample was collected from Boring B-004 for further strength and consolidation characteristic testing. A bulk sample of the auger cutting from the top 3 to 5 feet of each boring was collected for sulfate content testing. Field observations of encountered water and material descriptions were logged during drilling by a Stantec representative.

All samples obtained were transported to Stantec's materials testing laboratory where a visual classification was performed, and water content (WC) measured on all retained soil samples. Engineering classification, consisting of Atterberg Limits (ASTM D 4318 Method A) and Particle Size Analysis (ASTM D 421-422) testing was performed on select soil samples within each boring reflecting the primary soil horizons.

REPORT OF ROADWAY EXPLORATION - HAN-US 68/SR 15 INTERCHANGE

FINDINGS

Upon completion of drilling activities, the boreholes were backfilled in accordance with ODOT SGE requirements using bentonite chips and soil cuttings. Asphalt cold patch was also used in borings drilled through existing pavement.

The boring locations are shown in the Plan of Exploration provided in Appendix A. The boring logs are provided in Appendix B.

4.0 FINDINGS

Detailed descriptions of the encountered subsurface conditions, including the results of the laboratory testing are included in the boring logs presented in Appendix B. Undisturbed sample testing results, consisting of unconfined compressive strength and one-dimensional consolidation testing, are provided in Appendix C.

Two of the borings, B-001 and B-005 were advanced through existing pavement. The pavement thickness was measured as 1.0 feet in both of the borings. Below the pavement, a 1.0- to 1.5-foot-thick layer of gravel was encountered. Boring B-009 was located on the shoulder of the existing exit ramp, and a 6-inch layer of gravel was encountered at the top of the boring.

Granular soil was encountered in several of the other borings at the ground surface, consisting of Gravel with Sand (A-1-b). The granular material was generally one to two feet thick where encountered. Below this layer, or beginning at the ground surface for the remainder of the borings, fine-grained cohesive soil was encountered. This soil layer classified as Silt and Clay (A-6a), Silty Clay (A-6b), Clay (A-7-6), and in B-008, Sandy Silt (A-4a). The fine-grained soils were generally described as medium stiff to very stiff, with some hand penetrometer values falling within the soft and also hard ranges. Hand penetrometer values ranged from 0.5 to 4.5 tons per square foot (tsf). An Unconfined Compressive strength test was performed on a sample collected from B-004, and resulted in an unconfined compressive strength of 1.28 tsf at a depth of 2.7 feet. The samples recovered were generally described as damp to moist, however, the soft zones encountered were described as moist to wet. No static groundwater encountered in the borings.

One boring (B-004) encountered a layer of Elastic Clay (A-7-5) at the ground surface. This layer was measured to be approximately 1.5 feet thick. This soil was described as medium stiff, brown and moist.

Four of the borings (B-002, B-004, B-008 and B-009) encountered a granular layer near the bottom of the drilled depths. This granular layer was first encountered between Elevation 781 and 784 feet. This layer was described as very loose to medium dense Coarse and Fine Sand (A-3a) or non-cohesive Sandy Silt (A-4a), and moist to wet.

Sulfate content was measured from grab samples of the auger cutting from the top 3-5 feet in each boring. The results of the sulfate testing showed a varying amount, from 166 to more than 8,000 parts-per-million (ppm) in the borings. The results of the tests are included on the boring logs in Appendix B, and also the lab data sheet from the testing is included in Appendix C.

Bedrock was not encountered in any of the borings.

Analysis and Recommendations

5.0 ANALYSIS AND RECOMMENDATIONS

These conclusions and recommendations are based on data and subsurface conditions from the borings advanced during this exploration using the degree of care and skill ordinarily exercised under similar circumstances by competent members of the engineering profession. No warranties can be made regarding the continuity of conditions between borings.

5.1 PAVEMENT SUBGRADE

A Subgrade Analysis Spreadsheet (ODOT, 2022) was completed for the project using the data collected during the exploration. The spreadsheet is included as Appendix D. Based upon the results of the spreadsheet, a design CBR value of 7 is recommended for use in pavement design.

Boring B-001-0-22 had a sulfate content test result of greater than 8,000 ppm, and B-005 through B-007 had sulfate content results above 1,000 ppm, with two of them near 3,000 ppm. Boring B-003 also exhibited low N_{60} values within three feet of proposed grade. Based upon these results, it is recommended that Item 204 – Excavate and Replace be performed at any location of new pavement between Stations 612+50 and 615+50. This is generally along the west side of the proposed roundabout. It is recommended that a maximum of 15 inches of subgrade material be removed, and replaced with suitable soil, along with a geotextile reinforcement layer.

While measured moisture contents were generally within acceptable ranges for the soils identified, any wet or saturated soils encountered during subgrade preparation should either be removed or dried in place prior to final subgrade preparation.

5.2 EMBANKMENTS

The proposed new Ramp A will consist of areas of embankment fill to meet the existing grade of US 68. In addition, around the proposed roundabout, new fill will be required. Based upon the proposed finished grade, it is estimated that the new embankments will not exceed 10 feet in height. Side slopes are planned to be 3H:1V or 2.5H:1V.

Based upon the soils encountered during the geotechnical exploration, the geometry of the proposed embankments, and the general recommendations in the ODOT Geotechnical Design Manual, Section 500, new embankments up to a height of 10 feet of new fill are expected to be stable. Areas of sidehill fill are recommended to be benched per the Standard Benching method (ODOT Construction and Materials Specifications Item 203.05). Special benching may be required if the sidehill fill material is less than three feet in width, and recommendations for design will be provided during Stage 2 of the design.

Consolidation settlement due to new embankment loading is expected to be less than three inches due to the limited new fill proposed. If areas of fill are expected to exceed 10 feet in height, an embankment settlement analysis is recommended, utilizing the results of the one-dimensional consolidation testing performed.

Unsuitable soil (Elastic Clay, A-7-5) was encountered in Boring B-004, along the Ramp A alignment. The Elastic Clay was observed in the top 18 inches of the boring. This soil layer was not encountered in the borings on either side of B-004 (B-003 and B-006). The A-7-5 material is unsuitable due to its potential for volume change under changing moisture

REPORT OF ROADWAY EXPLORATION – HAN-US 68/SR 15 INTERCHANGE

Analysis and Recommendations

conditions. It is recommended that this soil layer be removed prior to construction of the proposed Ramp A embankment to the maximum extents of Station 613+50 to 619+00 (Ramp A Centerline). These extents may be reduced based upon observations during construction.

APPENDICES

Appendix A Plan of Exploration

Appendix A PLAN OF EXPLORATION

Alternative 1 HAN-US 68/SR 15 Interchange • PID 112280

Appendix B Boring Logs

Appendix B BORING LOGS

	G FIRM / OPERATO								ľ				FSE		511+2 SR6		<u>'LT.</u> EXF	PLORA B-001-	
		3.25" HSA											796.	0 (MS	SL)	EOB:	8.0 ft.		PAG
SAMPLIN	IG METHOD:	SPT / BULK		ENE	RGY R	RATIO (%)):	87.6		COO	RD:	3	3054	50.59	32 N	l, 163	862.9718 E		10
TION	ELEV.	DEPTHS	SPT/	N.,							· /				RG		ODOT	SO4	В
	796.0		RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	ppm	F
																			×
	794 0		-																7
TH SAND,			17	50	00			07		10	4.5	-	47	45	~	•		0000	
	792.5	- 3 -			93	SP1-1	-	37	28	13	15	1	17	15	2	8	A-1-D (0)	8000	1
	791.8	- 4 -	14	10	40	SDT 2										6	A 2 6 0.0		- V 7 7
D CLAY,		- 5 -	6		40	3F 1-2	-	-	-	-	-	-	-	-	-	0	A-2-0 (V)	-	
WN WITH			-	12	100	SPT-3	1 75	10	10	24	77	29	31	18	13	24	A-6a (5)	-	1
GRAVEL,	789.2	- 6 -	5																77
		- 7 -	5	16				-				-			-		. ,	-	
JCLAI,	788.0	— _{EOB} ——8—	6			3F 1-4D	3.00	-	-	-	-	-	-	-	-	-	A-0a (V)	-	Ĺ
		DRILLING METHOD: SAMPLING METHOD: TION ELEV. 796.0 795.0 795.0 794.0 TH SAND, TH SAND, AND DARK GRAVEL, 789.2	DRILLING METHOD: 3.25" HSA SAMPLING METHOD: SPT / BULK 796.0 DEPTHS 795.0 1 TH SAND, 794.0 794.0 2 794.0 2 3.25" HSA 3 AND DARK 792.5 AND DARK 791.8 GRAVEL, 789.2 OCLAY, 788.0	DRILLING METHOD: 3.25" HSA SAMPLING METHOD: SPT / BULK 796.0 DEPTHS SPT / RQD 795.0 1 - 795.0 2 17 TH SAND, 792.5 3 17 AND DARK 791.8 4 14 DCLAY, 789.2 6 3 DCLAY, 788.0 7 3	DRILLING METHOD: 3.25° HSA CALI SAMPLING METHOD: SPT / BULK ENEL THON ELEV. DEPTHS SPT / RQD 795.0 -1 - 795.0 -1 - 794.0 -2 17 TH SAND, 792.5 -3 17 AND DARK 791.8 -4 14 DCLAY, - - - 788.0 788.0 - -	DRILLING METHOD: 3.25° HSA CALIBRAT SAMPLING METHOD: SPT / BULK ENERGY R THON ELEV. DEPTHS SPT / RQD N ₆₀ (%) 795.0 -1 - - - - (%) TH SAND, 794.0 -2 17 50 93 AND DARK 791.8 -4 14 7 19 40 GRAVEL, 789.2 -7 -3 12 100 OCLAY, 788.0 -7 -3 16 100	DRILLING METHOD: $3.25"$ HSA CALIBRATION DATE SAMPLING METHOD: SPT / BULK ENERGY RATIO (%) THON ELEV. DEPTHS SPT / RQD N ₆₀ REC SAMPLE ID TH SAND, 795.0 -1 - - - - TH SAND, 792.5 -3 -17 50 93 SPT-1 AND DARK 791.8 -4 -14 7 19 40 SPT-2 OWN WITH - - - - - - - - GRAVEL, 788.0 - 7 3 5 16 100 SPT-4A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

PID: 112280_SFN: SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 4/15/21 ELEVATION: 795.2 (MSL) EOB: 11.5 ft. START: 5/2/23 END: 5/2/23 SAMPLING METHOD: SPT / BULK END: 87.6 COORD: 305695.3361 N. 163802.2318 E MATERIAL DESCRIPTION AND NOTES ELEV. 795.2 DEPTHS SPT / ROD Rec (%) SAMPLE (b) HP GRADATION (%) ATTERERGY 305695.3361 N. 163802.2318 E MEDIUM DENSE, LIGHT GRAY, GRAVEL AND/OR STORE FRAGMENTS, DAMP ELEV. 799.7 DEPTHS SPT / ROD Rec (%) SPT.1 - <	PROJECHAN-US 68/SR 15 INTERCHANGE	ÐRILLING FIRM / (SAMPLING FIRM /						C <u>ME 45 T</u> CME A			<u> </u>	r				T:	613+ SR6		9'LT. E		RATIO 02-0-22
MATERIAL DESCRIPTION AND NOTES ELEV. 795.2 DEPTHS SPT/ ROD N ₆₀ REC (%) SAMPLE ID HP (tsf) GRADATION (%) ATTERBERG ATTERBERG ODOT CLASS (GI) SO PP MEDIUM DENSE, LIGHT GRAY, GRAVEL AND/OR STONE FRAGMENTS, DAMP 0 793.7 4 7 16 73 SPT-1 - - - - - 7 A-1-b (V) 18 STIFF, BROWN AND GRAY, CLAY, LITTLE GRAVEL, SOME SAND AND SILT, DAMP 790.2 7 18 100 SPT-2 3.00 14 11 24 21 30 41 22 19 17 A-7-6 (7) STIFF, DARK GRAY, CLAY, TRACE GRAVEL, LITTLE SAND, SOME SILT, DAMP 790.2 5 5 6 7 19 100 SPT-3 4.50 18 6 15 28 33 44 25 19 22 A-7-6 (9) 10 6 7 19 100 SPT-3 4.50 18 6 15 28 33 44 25 19 22 A-7-6 (V) 10 9 3 9 33 SPT-5A	PID: 112280 SFN:	DRILLING METHO	D:	3.25" HSA		CALIE	BRAT	ION DATE	E:4	/15/2	21	ELE	VATI	ION:	795		SL)	EOB:			PAC
AND NOTES 795.2 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI wc CLASS (G) pp MEDIUM DENSE, LIGHT GRAY, GRAVEL AND/OR STORE FRAGMENTS, DAMP 793.7 793.7 793.7 1 7 1 7 1 1 7 1 1 7 1				SPT / BULK				. ,											1		- 1
STONE FRAGMENTS, DAMP 0 0 3 793.7 STIFF, BROWN AND GRAY, CLAY, LITTLE 793.7 GRAVEL, SOME SAND AND SILT, DAMP 1 793.7 STIFF, DARK GRAY, CLAY, TRACE GRAVEL, 790.2 STIFF, DARK GRAY, CLAY, TRACE GRAVEL, 790.2 STIFF, DARK GRAY, CLAY, TRACE GRAVEL, 790.2 TOULL 790.2 STIFF, DARK GRAY, CLAY, TRACE GRAVEL, 790.2 TOULL 790.2 TOULL </td <td>AND NOTES</td> <td></td> <td></td> <td>DEPTHS</td> <td></td> <td>N₆₀</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td><u>``</u></td> <td>ŕ</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>O4 B/ om F</td>	AND NOTES			DEPTHS		N ₆₀						1	<u>``</u>	ŕ		-	-				O4 B/ om F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \circ $	793.7	- 1 -	4 7 4	16	73	SPT-1	-	-	-	-	-	-	-	-	-	7	A-1-b ((V) 1	300 × 7 × 7
-8 -2 3 9 33 SPT-4 4.50 - - - - - - 2 A-7-6 (V) 9 -3 9 33 SPT-5A 1.50 - - - - - 2 A-7-6 (V) 10 -2 - 7 73 SPT-5A 1.50 - - - - - 2 A-7-6 (V) - 10 -2 - 7 73 SPT-5A 1.50 - - - - - 2 A-7-6 (V) - 11 -2 - 7 73 SPT-5A 1.50 - - - - 2 A-7-6 (V) - 11 -2 - 7 73 SPT-5B - - - - - - 2 A-7-6 (V) - 11 -2 - 7 73 SPT-5B - - - - - - 13 A-3a (V) -				- 3 -	7	18	100	SPT-2	3.00	14	11	24	21	30	41	22	19	17	A-7-6 ((7)	
$\frac{1}{1005} = \frac{1}{784.5}$ $\frac{1}{1005} = \frac{1}{783.7}$ $\frac{1}{783.7}$ $\frac{1}{783.7}$ $\frac{1}{783.7}$ $\frac{1}{783.7}$ $\frac{1}{73} = \frac{1}{587.58}$			790.2	6	6	19	100	SPT-3	4.50	18	6	15	28	33	44	25	19	22	A-7-6 ((9)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				- 8 -	2 3 3	9	33	SPT-4	4.50	-	-	-	-	-	-	-	-	22	A-7-6 ((V)	
	LOOSE TAN COARSE AND FINE SAND W	/FT	784.5	H	2	7	73		1.50	-	-	-	-	-	-	-	-		· · · · · · · · · · · · · · · · · · ·	<u> </u>	- 7 - 7 - 7 - 7
				EOB					1	!				-							

ROJECHAN-US 68/SR 15 INTERCHAN YPE: ROADWAY			R:STANTEC / GRE : STANTEC / L. BRO						<u> </u>)STA ALIC				T: _	614+ SR6			PLORA B-003-	
ID: <u>112280</u> SFN:	DRILLING MET		3.25" HSA					1/15/2						.2 (M			11.5 ft		PAG
TART: <u>5/2/23</u> END: <u>5/2/23</u>	SAMPLING ME	-	SPT / BULK			Y RATIO (%		87.6		coc							883.5083 E		10
MATERIAL DESCRIPT	ION	ELEV.		SPT/		C SAMPLE			-	OITA		·		-	ERG	1	ODOT CLASS (GI)	SO4	B
AND NOTES MEDIUM STIFF, BROWN, SILT AND CL	AV SOME	797.2		RQD	IN ₆₀ (%	5) ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	F < 7
GRAVEL, SOME SAND, MOIST			- 1 -	2	7 8	0 SPT-1	2.00	31	11	17	20	21	30	19	11	15	A-6a (1)	170	1
			- 2 -																- < 7 7
			- 3 - 3	6	19 7	3 SPT-2	2.00									14	A 62 (1/)		1
			- 4	6	19 /	5 581-2	2.00	-	-	-	-	-	-	-	-	14	A-6a (V)	-	7 4 7
		792.1																	- 7 V - 7
IEDIUM DENSE, GRAY, GRAVEL WIT I I LT, AND CLAY , MOIST	H SAND,			3	18 9	3 SPT-3	3.00	47	8	12	14	19	37	23	14	19	A-2-6 (1)	-	1
ILI, AND CLAI, MOIOT			_ 7 _	5															-77
EDIUM STIFF, GRAY AND DARK GRA		789.5																	777
LAY, MOIST			- 9 -	2 4	9 8	0 SPT-4	2.00	-	-	-	-	-	-	-	-	33	A-6b (V)	-	1
		787.2																	
OFT, TAN AND GRAY, SILTY CLAY, V	VET			2	6 7	3 SPT-5	0.50	-	-	_	-	-	-	-	-	20	A-6b (V)	-	1
		785.7	EOB	2													- ()		7

SO4 ppm	11.5 ft. 9707 E DOT ASS (GI)	044.9	EOB:	RAME SL) E			NT	NME		r										-			EÐRILLING FIF		CTIAN-US 68/SR 15 II ROADWA
SO4 ppm	DDOT		16/0			791.	ON:					15/2			ION DATE					3.25" H			DRILLING ME		112280SFN:
ppm		O	, 104				_		OOR			87.6		<u> </u>	RATIO (%)		ENE		BULK	SPT /	DD:	VETHC	SAMPLING M		<u> 5/2/23 </u> END:
	(00) (01)				ERB			N (%)		1		1	-		SAMPLE		N ₆₀	SPT/ RQD	HS	DEPTI	ELEV.		v	AL DESCRIPTION	
700			WC	PI	PL	LL	CL			FS	CS	GR	tsf)		ID	(%)		RQD 2			791.8		TRACE	ND NOTES	M STIFF, BROWN, E
	-5 (12)	A-7-	22	19	30	49	36	32) 3	20	6	6	.75	1	SPT-1	60	10	3 4	- 1 -		790.3		HU (OL		EL, SOME SAND, MO
		1							-										- 2 -				RACE	SILTY CLAY, TR	M STIFF, BROWN, S
		+					-							-					- 3 -						DAMP UC=1.28 tsf
-	6b (12)	A-6ł	25	21	17	38	39	58	5	2	1	0	-		ST-2	65									00-1.20 (SI
		—		i										_					- 4 -						
-	6b (V)	A-6		-		-)	-	-	ᆂ	- 1		-	.50		SPT-3A		_	2	- 5 -		786.5				DARK GRAY, SILT A
-	6a (V)	A-6	34	-	-	-	-	-		-	-	-	-	3	SPT-3B	53	6	22	- 6 -				п SAND,	O WET	GRAVEL, MOIST TO
																			- 7 -		784.3				
	0 - 0.0		40						-							100	10	2	- 8 -				IRACE	ILT AND CLAY, T	M STIFF, GRAY, SIL
-	6a (V)	A-6	18	-	-	-	-	-		-	-	-	.50	1	SPT-4	100	10	2 5	- 9 -						EL, MOIST
																					781.8				
	3a (0)		22		NP		E	8		64	22	1	-		SPT-5	73	20	6	- 10 -				NE SAND,		M DENSE, GRAY, CO
-	5a (0)	A-3	22			INF	5	0	*	04	22	1	-		3F1-3	13	20	86	- 11 -	EOB	780.3			ND CLAY, WET	GRAVEL, SILT, AND

ROJECHA <u>N-US 68/SR 15 INTERCHANG</u> /PE: ROADWAY			R:STANTEC / GRI : STANTEC / L. BR								ION / (MENT		ET: _(616+9 SR6		'' <u>RT.</u> EX	PLORA B-005-	
D: 112280 SFN:	DRILLING		3.25" HSA			RATION DA		1/15/2					54 (M			 7.5 ft		PAG
ART: 5/2/23 END: 5/2/23	SAMPLING	-	SPT / BULK			GY RATIO (9		87.6		COO		-				816.5396		1 OF
MATERIAL DESCRIPTIO		ELEV.		SPT/	B	REC SAMPL	<u> </u>		RAD/				ERB		,	ODOT	 SO4	BA
AND NOTES		795.4		RQD		(%) ID	(tsf)				SI CL	_	PL	PI	WC	CLASS (GI)		FI
SPHALT		794.4																8
EDIUM DENSE, LIGHT BROWN AND G			- 1 -															
RAVEL WITH SAND, LITTLE SILT, TRAC		793.0	- 2 -	10 4	12	73 SPT-14	۰ ۱	39	35	9	14 3	16	15	1	10	A-1-b (0)	1100	1:
			- 3 -	4	12	SPT-1E	3 -	-	-	-		-	-	-	-	A-6a (V)	-	17
TIFF TO VERY STIFF, DARK BROWN, S LAY, WITH SAND, DAMP	SILT AND			9 4	13	33 SPT-2	2.00		_	-		_	_	-	16	A-6a (V)	_	7 4
			- 4 -	5			2.00								10	// 04 (1)		1:
			- 5 -	8	28	27 SPT-3	2.00	-	-	-	- -	-	-	-	14	A-6a (V)	_	$\stackrel{<}{7}$
			- 6 -	9														, , , , , , , , , , , , , , , , , , ,
ERY STIFF, BROWNISH GRAY, SILT AN ITTLE GRAVEL AND SAND, MOIST	ND CLAY,			4 8	25	100 SPT-4	4.00	11	5	14	30 40	34	20	14	18	A-6a (9)	-	1
		787.9	-EOB	9														<

D:112280SFN:DRILLING METHOD: 3.25° HSACALIBRATION DATE: $4/15/21$ ELEVATION: $797.3 (MSL)$ EOB: 11.5 ft. PATART: $5/2/23$ END: $5/2/23$ END: $5/2/23$ SMPLING METHOD:SPT / BULKENERGY RATIO (%): 87.6 COORD: $306260.7058 N, 164068.0206 E$ 10MATERIAL DESCRIPTIONMATERIAL DESCRIPTIONELEV.DEPTHSSPT / RQDN ₆₀ RECSAMPLEHPGRADATION (%)ATTERBERGODOTSO4PAMAD NOTESDEPTHSSPT / RQDN ₆₀ RECSAMPLEID(tsf)GRCsFssiCLLLPLPIwcCLASS (GI)ppmFITTLE SILT, TRACE CLAY, DAMP795.8795.8795.8795.8795.8795.81055208134NPNP5A-1-b (0)27007ITTLE GRAVEL, SOME SAND, DAMP795.810101010101010101010101010ITTLE GRAVEL, SOME SAND, DAMP705.8	ROJECHA <u>N-US 68/SR 15 INTERCHANG</u> E YPE: ROADWAY			R:STANTEC / GRE STANTEC / L. BR				C <u>ME 45 T</u> CME A				r	TION				619+4 RAM			PLORA ⁻ B-006-0	
MARTY JELES ONLY OUTLY OUTLY <thoutly< th=""> <thoutly< th=""> <thout< th=""><td>D: <u>112280</u> SFN:</td><td>DRILLING METH</td><td>OD:</td><td>3.25" HSA</td><td></td><td>CALI</td><td>BRATI</td><td>ION DATE</td><td>E:4</td><td>/15/2</td><td></td><td>ELE</td><td>VATI</td><td>ON:</td><td>797</td><td>.3 (M</td><td>SL)</td><td>EOB:</td><td></td><td></td><td></td></thout<></thoutly<></thoutly<>	D: <u>112280</u> SFN:	DRILLING METH	OD:	3.25" HSA		CALI	BRATI	ION DATE	E:4	/15/2		ELE	VATI	ON:	797	.3 (M	SL)	EOB:			
AND NOTES T97.3 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (G) ppm MEDIUM DENSE, GRAY, GRAVEL WITH SAND, ITTLE SILT, TRACE CLAY, DAMP 795.8 795.7 795.7 795.7 795.7 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>l, 164</td> <td></td> <td></td> <td></td>														_				l, 164			
MEDIUM DENSE, GRAY, GRAVEL WITH SAND, ITTLE SILT, TRACE CLAY, DAMP T95.8 795.8 795.8 TITLE SILT, TRACE CLAY, DAMP 795.8 TITLE GRAVEL, SOME SAND, DAMP 795.8 TOFF, GRAY, SILT AND CLAY, SOME SAND, DAMP 795.8 795.8 10 6 18 80 SPT-1 - 55 20 8 13 4 NP NP NP 5 A-1-b (0) 2700 7 2 </th <td></td> <td></td> <td></td> <td>DEPTHS</td> <td>RQD</td> <td>N₆₀</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>,</td> <td></td> <td>-</td> <td>1</td> <td>WC</td> <td></td> <td></td> <td>B. F</td>				DEPTHS	RQD	N ₆₀							<u> </u>	,		-	1	WC			B. F
STIFF, DARK BROWN AND GRAY, SILT AND CLAY, ITTLE GRAVEL, SOME SAND, DAMP 0 10 18 33 SPT-2 4.50 - - - - 13 A-6a (V) - 10 6 18 33 SPT-2 4.50 - - - - - 13 A-6a (V) - 4 6 18 33 SPT-2 4.50 - - - - - 13 A-6a (V) - 6 6 16 20 SPT-3 - - - - - 11 A-6a (V) - 7 - - - - - - - - - 11 A-6a (V) - 7 - - - - - - - - 11 A-6a (V) - 8 4 15 93 SPT-4 3.75 17 8 21 24 30 35 21 14 15 A-6a (S) - - - - - <td>/IEDIUM DENSE, GRAY, GRAVEL WITH S/ .ITTLE SILT, TRACE CLAY, DAMP</td> <td>ND,</td> <td></td> <td>- 1 -</td> <td></td> <td></td> <td>80</td> <td>SPT-1</td> <td>-</td> <td>55</td> <td>20</td> <td>8</td> <td>13</td> <td>4</td> <td>NP</td> <td>NP</td> <td>NP</td> <td>5</td> <td>A-1-b (0)</td> <td>2700</td> <td>1 N .</td>	/IEDIUM DENSE, GRAY, GRAVEL WITH S/ .ITTLE SILT, TRACE CLAY, DAMP	ND,		- 1 -			80	SPT-1	-	55	20	8	13	4	NP	NP	NP	5	A-1-b (0)	2700	1 N .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STIFF, DARK BROWN AND GRAY, SILT AI ITTLE GRAVEL, SOME SAND, DAMP			- 3 -	10 6 6		33	SPT-2	4.50	-	-	-	-	-	-	-	-	13	A-6a (V)	-	747
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				- 5 - 6	6	16	20	SPT-3	-	-	-	-	-	-	-	-	-	11	A-6a (V)	-	74474
GOFT, GRAY, SILT AND CLAY, SOME SAND, MOIST 787.3 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 787.3 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 785.8 10 78				- 8 -	4	15	93	SPT-4	3.75	17	8	21	24	30	35	21	14	15	A-6a (5)	-	V 7 7 V 7
	SOFT, GRAY, SILT AND CLAY, SOME SAN	D, MOIST		- 11 -	1 2 1	4	100	SPT-5	0.50	-	-	-	-	-	-	-	-	25	A-6a (V)	-	-77

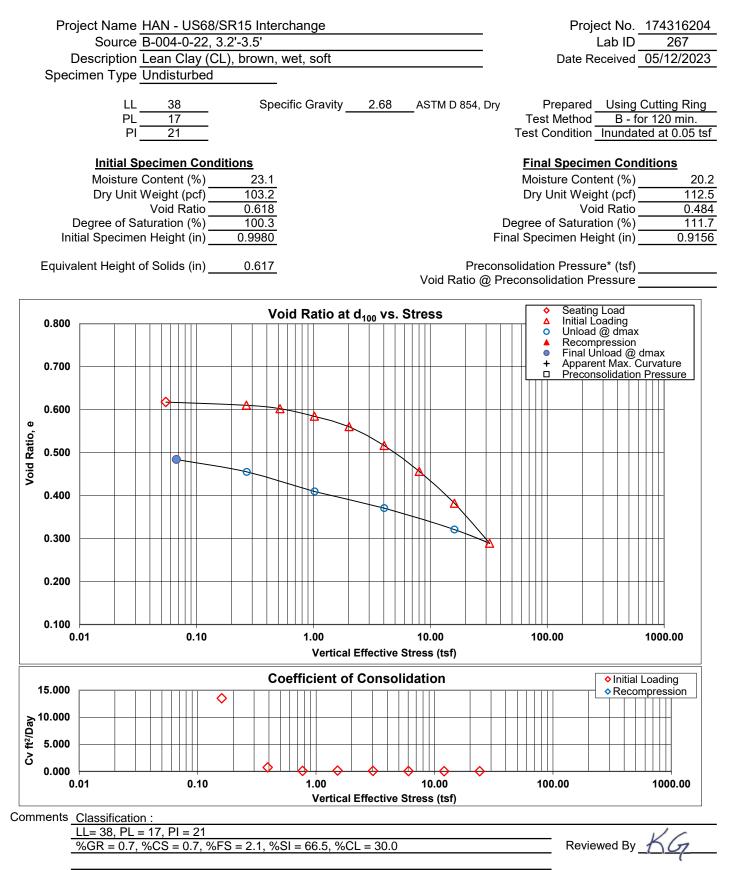
			R:STANTEC / GREG)STAT ALIG			FSE		621+9 RAMI			PLORA ⁻ B-007-(
	DRILLING METH		3.25" HSA					15/2					795.				11.5 ft		PAC
	SAMPLING MET		SPT / BULK	_		RATIO (%)		87.6		C00	-					l, 163	994.7181 E	[′]	1 0
MATERIAL DESCRIPTION AND NOTES	V	ELEV. 795.6	DEPTHS SF	דל א 2D א	N ₆₀ REC (%)	SAMPLE ID		GR		ATIOI	· · · · ·	CL		ERBE PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	B, F
MEDIUM DENSE, BROWN AND GRAY, GR WITH SAND, LITTLE SILT, TRACE CLAY, I		ve ve	- 1 - 3		13 80	SPT-1	-	56	18					NP		9	A-1-b (0)	1600	< 7 7
TIFF TO VERY STIFF, DARK BROWN, S		794.1	- 2 -	_4															V T 7
LAY , TRACE GRAVEL, SOME SAND, DA	MP		- 3 - 2		18 100	SPT-2	-	7	8	18	29	38	33	19	14	15	A-6a (8)	-	444
				7															777
			_ 4	5 1	16 100	SPT-3	-	-	-	-	-	-	-	-	-	19	A-6a (V)	-	×77×7
			- 7 -																
			- 8 - 4	5 1	15 100	SPT-4	-	-	-	-	-	-	-	-	-	20	A-6a (V)	-	7 4 7
																			7 4 4 7
		784.1	— EOB	9 2 10	28 100	SPT-5	-	-	-	-	-	-	-	-	-	15	A-6a (V)	-	× 7

PROJECTIAN-US 68/SR 15 INTERCHANG			OR: <u>STANTEC / GR</u> R: STANTEC / L. BF)STA ALIO			FSE		624+ RAMI		<u>'LT.</u> E>	PLORA B-008-	
PID: SFN:	DRILLING ME		3.25" HSA											794.			EOB:	11.5	ι.	PAG
TART: <u>5/2/23</u> END: <u>5/2/23</u>	SAMPLING M		SPT / BULK		ENE		RATIO (%)	, <u> </u>	87.6		COC						l, 163	239.2379		1 OF
MATERIAL DESCRIPTIO AND NOTES	N	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR		ATIO FS	<u> </u>) CL		ERBE PL		WC	ODOT CLASS (GI	SO4 ppm	B/ F
STIFF TO VERY STIFF, DARK BROWN, S	SANDY	794.3		1																<
SILT, LITTLE GRAVEL, SOME CLAY, DAM	ЛР		- 1 -	35	12	93	SPT-1	4.50	12	7	15	33	33	29	19	10	2	A-4a (6)	2600	4
			- 2 -																	- 7 7
			- 3 -	6 9	25	93	SPT-2	4.25			_			-			15	A-4a (V)		1
sand seam @ 3.5 ft				8		93	5F1-2	4.25	-	-	-	-	-	-	-	-	15	A-4a (V)	-	7 4 7
		789.0																		-7 4 7
SOFT TO MEDIUM STIFF, LIGHT BROWN		///	1	1	4	67	SPT-3	0.50	16	12	23	26	23	29	18	11	20	A-6a (3)	-	4
ORANGE, SILT AND CLAY , LITTLE GRAV SAND, MOIST	'EL, SOME			2														,		×77 77
				1																
SOFT TO MEDIUM STIFF, LIGHT BROWN		786.0	- 8 -	4	10	100	SPT-4A SPT-4B			-	-	-	-	-	-	-	23 21	A-6a (V) A-6a (V)		- V V 7
AND CLAY, MOIST			9 4	3			3F 1-4D	0.25	-	-	-	-	-	-	-	-	21	A-0a (V)		4
			- 10 -	1			007.54										47			777
/ERY LOOSE, GRAY, COARSE AND FINE		783.2	- 11 -	1	3	100	SPT-5A SPT-5B		-	-	-	-	-	-	-	-	17 29	A-6a (V) A-3a (V		-1
VITH GRAVEL, WET			EOB	'							<u> </u>									
VITH GRAVEĹ, WET			EOB					~			<u> </u>									
VITH GRAVEL, WET		<u> </u>	EOB					~												
<u>WITH GRAVEL, WET</u>		<u> </u>	EOB																	
VITH GRAVEL, WET			EOB																	
<u>WITH GRAVEL, WET</u>			EOB																	
<u>MITH GRAVEĹ, WET</u>			EOB																	

P.E. OADUVAT OADUVAT OADUVAT Description Construction	ROJECHAN-US 68/SR 15 INTERCHANGE																		'LT		ORA1	
ART: 5/2/23 SAMPLING METHOD: SIDI T Out of the second seco					ROWN														L			
MATERIAL DESCRIPTION AND NOTES ELEV. 794.9 DEPTHS SPT/ RQD No REC (%) SAMPLE (b) HP (sf) GRADATION (%) ATTERBERG (LL OOOT (LASS (b)) SOOT (CASS (c)) OOOT (CASS (c)) ATTERBERG (c) OOOT (CASS (c)) ATTERBERG (c) OOOT (CASS (c)) ATTERBERG (c) ATTERBERG (c) ATTERBERG (c) <																						
AND NOTES 794.9 DEPTHS RQD N ₀₀ (%) ID (ts) GR CS FS SI CL LL PL					SPT/			()			_		-					.,	1			
RANULAR BASE 794.4 1 4 15 73 SPT-1A - <td></td> <td></td> <td></td> <td>DEPTHS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>'</td> <td></td> <td></td> <td></td> <td>wc</td> <td></td> <td></td> <td></td> <td> '</td>				DEPTHS							-	-		'				wc				'
TIFF TO VERY STIFF, BROWN, SILT AND CLAY, OME GRAVEL, LITTLE SAND, DAMP TIFF TO VERY STIFF, TAN AND GRAY, SILTY A 6a (7) TIFF TO VERY STIFF, TAN AND GRAY, SILTY A 789.9 TIFF TO VERY STIFF, TAN AND GRAY, SILTY A 79 A 7 B 789.9 TIFF TO VERY STIFF, TAN AND GRAY, SILTY A 6a (7) A 7 B 789.9 TIFF TO VERY STIFF, TAN AND GRAY, SILTY LAY, LITTLE GRAVEL, LITTLE SAND, DAMP TO VERY STIFF, TAN AND GRAY, SILTY A 7 B 789.9 TO VERY STIFF, TAN AND GRAY, SILTY LAY, LITTLE GRAVEL, LITTLE SAND, DAMP TIFF TO VERY STIFF, TAN AND GRAY, SANDY SILT, TO VERY STIFF, TAN AND GRAY, SANDY SILT, TO TO VERY STIFF, TAN AND GRAY, SANDY SILT,	RANULAR BASE	×		_		15	70		-	-	-			-		-	-	-	A-1-b ((V)	-	$\frac{1}{7}$
TIFF TO VERY STIFF, TAN AND GRAY, SILTY TAY, LITTLE GRAVEL, LITTLE SAND, DAMP 789.9 780.9 780.9 780.9 780.9 780.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9 783.9		DCLAY,		- · I			73	SPT-1B	4.50	24	6	12	22	36	34	19	15	13	A-6a ((7)	890	1
TIFF TO VERY STIFF, TAN AND GRAY, SILTY LAY, LITTLE GRAVEL, LITTLE SAND, DAMP						18	100	SPT-2	4 50	_	_	_	-	-	_	_	-	16	A-6a (v	-	Ĩź
TIFF TO VERY STIFF, TAN AND GRAY, SILTY LAY, LITTLE GRAVEL, LITTLE SAND, DAMP -7 -6 6 8 20 93 SPT-3 4.50 11 6 13 28 42 37 21 16 17 A-6b (9) - -7 - 15 A-6b (V) - -			780.0															10	7104(477
= 10 - 6 - 8 - 4 - 7 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			/ /09.9		6		93	SPT-3	4.50	11	6	13	28	42	37	21	16	17	A-6b ((9)	-	× 7 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, - , , ,			- I	8																	1
783.9 - <td></td> <td></td> <td></td> <td></td> <td>4 7 9</td> <td>23</td> <td>100</td> <td>SPT-4</td> <td>4.50</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>15</td> <td>A-6b (</td> <td>V)</td> <td>-</td> <td>7 4 4</td>					4 7 9	23	100	SPT-4	4.50	-	-	-	-	-	-	-	-	15	A-6b (V)	-	7 4 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					6																	1
			783.9	- 11 -	8					-	-	-	-	-	-	-	-					

Appendix C Laboratory Test Data

Appendix C LABORATORY TEST DATA


Unconfined Compressive Strength of Cohesive Soil

ASTM D 2166

Project Name <u>HAN - US68</u> Source B-004-0-22, 2.5'-4.5'	/SR15 Intercl	nange				_ Project	t Number Lab ID	1743 ⁻	16204 267
Visual Description Lean Clay (C	CL), grav, mo	st. firm					Labib		201
	, , , ,	,			Re	covered		1'	
					Test	t Interval	2.7'	- 3.2'	
Specimen Type: Undisturbed		38	PL PI	<u>17</u> 21			Extruded		
Initial Wet Density (pcf) Initial Moisture Content (%)		Initial MC	Takon	Before Tes	t From Tr		e Tested	05/24	/2023
Initial Dry Density (pcf)			Taken	Delute 163		IIIIIIIIys			
At Test Moisture Content (%)		At Test MC	Taken	N/A					
At Test Dry Density (pcf)									
Specific Gravity									
Degree of Saturation (%)		U		ed Compres			1.28		
Average Height (in)				Indrained S			0.64		
Average Diameter (in) Height to Diameter Ratio				Strain at Ma rain Rate to		· · · -	4.7 0.99		
Teight to Diameter Matio	2.1		0			///////////////////////////////////////	0.99		
		Stress v	vs. Stra	in					
1.40				<u>^</u>					
1.20									_
1.00									
08.0 (i s)									_
S S S S S S S S S S S S S S S S S S S									
e 0.60									
0.40									_
0.20									
0.00									
0.0 1.0	2.0	3.0 4	.0	5.0	6.0	7.0	8.0	ę	9.0
			Strain	(%)					
	7			. .					
Failure Sketch				Роске		meter Rea	• • •		
		ommonto			Iorvane	e Reading	(kg/cm ⁻)	N/A	
		omments 2.5'-2.7' - NN							
		2.7'-3.2' - UW							
		3.2'-3.5' - cor							
	_	Classification							
		LL= 38, PL =	17, PI =						
	」_	%GR = 0.7, °	%CS = 0	.7, %FS = 2.	1, %SI = 6	6.5, %CL =	30.0		

One Dimensional Consolidation of Soils Using Incremental Loading

ASTM D 2435

Page 1 of 1 Sulfate Content in Soils Colorimetric Method

ODOT Supplement 1122

Project Name HAN-US68/SR15 Interchange

Project Number 173409690

						Reading	Reading	Reading	Reading		Sulfate
Lab			Prep.	Test		1	2	3	Average	Dilution	Concentration
ID	Source	Depth	Date	Date	Tech.	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Factor	(ppm)
1039A	B-001-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	>100	>100	>100	>100	40	>8000
1039B	B-001-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	>100	>100	>100	>100	40	>8000
1039C	B-001-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	>100	>100	>100	>100	40	>8000
1044A	B-002-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	52	55	56	54	20	1087
1044B	B-002-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	62	62	62	62	40	2480
1044C	B-002-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	93	95	97	95	20	1900
1051A	B-003-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	<5	<5	<5	<5	20	<100
1051B	B-003-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	10	10	10	10	20	200
1051C	B-003-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	10	10	10	10	20	200
1057A	B-004-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	47	48	49	48	20	960
1057B	B-004-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	51	52	53	52	20	1040
1057C	B-004-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	<5	<5	<5	<5	20	<100
1063A	B-005-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	47	47	48	47	20	947
1063B	B-005-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	63	63	63	63	20	1260
1063C	B-005-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	47	48	48	48	20	953
1068A	B-006-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	74	74	74	74	40	2960
1068B	B-006-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	66	67	67	67	40	2667
1068C	B-006-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	61	61	61	61	40	2440
1074A	B-007-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	79	80	80	80	20	1593
1074B	B-007-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	80	81	81	81	20	1613
1074C	B-007-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	80	80	80	80	20	1600
1080A	B-008-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	74	74	74	74	40	2960
1080B	B-008-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	57	58	58	58	40	2307
1080C	B-008-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	62	62	62	62	40	2480
1088A	B-009-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	44	44	45	44	20	887
1088B	B-009-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	40	40	41	40	20	807
1088C	B-009-0-22	0.0'-5.0'	05/31/2023	06/02/2023	JP	49	49	50	49	20	987

Comments

Reviewed By RHB

REPORT OF ROADWAY EXPLORATION – HAN-US 68/SR 15 INTERCHANGE

Appendix D Subgrade Analysis Spreadsheet

Appendix D SUBGRADE ANALYSIS SPREADSHEET

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Design Manual Section 600

Instructions: Enter data in the shaded cells only. (Enter state route number, project description,county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

HAN-US 68/SR 15 Interchange 112280

Relocation of existing SR 15 SB exit ramp to US 68, inlcuding a roundabout at the new intersection.

Stantec Consulting Services Inc.

Prepared By: Jared Musselman Date prepared: Monday, June 19, 2023

Jared Musselman

Jared Musselman 1500 Lake Shore Dr. Suite 100 Columbus, OH 43204 614-545-3398 jared.musselman@stantec.com

NO. OF BORINGS:

9

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-22	US 68	611+22	21	Lt	CME 45 Track 815	88	796.0	797.8	1.8 F
2	B-002-0-22	US 68	613+75	59	Lt	CME 45 Track 815	88	795.2	797.2	2.0 F
3	B-003-0-22	US 68	614+22	30	Rt	CME 45 Track 815	88	797.2	797.0	0.2 C
4	B-004-0-22	Ramp A	614+94	15	Rt	CME 45 Track 815	88	791.8	798.6	6.8 F
5	B-005-0-22	US 68	616+96	27	Rt	CME 45 Track 815	88	795.4	795.4	0.0
6	B-006-0-22	Ramp A	619+47	60	Rt	CME 45 Track 815	88	797.3	795.6	1.7 C
7	B-007-0-22	Ramp A	621+97	38	Rt	CME 45 Track 815	88	795.6	795.4	0.2 C
8	B-008-0-22	Ramp A	624+79	6	Lt	CME 45 Track 815	88	794.3	794.9	0.6 F
9	B-009-0-22	TR 80	11+80	15	Lt	CME 45 Track 815	88	794.9	795.4	0.5 F

Subgrade Analysis

V. 14.6

2/11/2022

#	Boring	Sample	Sam De	nple pth	Subg De	rade pth	Stan Penet		HP		Pł	nysica	l Chara	cteristics	-	Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS_1	2.0	3.5	3.8	5.3	50			17	15	2	15	7	22	8	6	A-1-b	0	8000					
	001-0	SS_2	3.5	5.0	5.3	6.8	19									6	10	A-2-6							
	22	SS_3	5.0	6.5	6.8	8.3	12		1.75	31	18	13	27	29	56	24	14	A-6a							
		SS_4	6.5	8.0	8.3	9.8	16	19	3							16	14	A-6a							
2	В	SS_1	0.0	1.5	2.0	3.5	16									7	6	A-1-b	0	1822					
	002-0	SS_2	2.5	4.0	4.5	6.0	18		3	41	22	19	21	30	51	17	19	A-7-6	7						
	22	SS_3	5.0	6.5	7.0	8.5	19		4.5	44	25	19	28	33	61	22	22	A-7-6							
		SS_4	7.5	9.0	9.5	11.0	9	16	4.5							22	18	A-7-6							
3	В	SS_1	0.0	1.5	-0.2	1.3	7		2	30	19	11	20	21	41	15	14	A-6a	1	166		N ₆₀		15"	15"
	003-0	SS_2	2.5	4.0	2.3	3.8	19		2							14	14	A-6a	10						204 Geotextile
	22	SS_3	5.0	6.5	4.8	6.3	18		3	37	23	14	14	19	33	19	10	A-2-6	1						
		SS_4	7.5	9.0	7.3	8.8	9	7	2							33	16	A-6b							
5	В	SS_1	1.5	3.0	1.5	3.0	12			16	15	1	14	3	17	10	6	A-1-b	0	1053					
	005-0	SS_2	3.0	4.5	3.0	4.5	13		2							16	14	A-6a	10						
	22	SS_3	4.5	6.0	4.5	6.0	28		2							14	14	A-6a	10						
		SS_4	6.0	7.5	6.0	7.5	25	12	4	34	20	14	30	40	70	18	15	A-6a							
6	В	SS_1	0.0	1.5	-1.7	-0.2	18			0	0	NP	13	4	17	5	6	A-1-b	0	2689					
	006-0	SS_2	2.5	4.0	0.8	2.3	18		4.5							13	14	A-6a	10						
	22	SS_3	5.0	6.5	3.3	4.8	16									11	14	A-6a	10						
		SS_4	7.5	9.0	5.8	7.3	15	15	3.75	35	21	14	24	30	54	15	16	A-6a							
7	В	SS_1	0.0	1.5	-0.2	1.3	13			0	0	NP	12	5	17	9	6	A-1-b	0	1602					
	007-0	SS_2	2.5	4.0	2.3	3.8	18			33	19	14	29	38	67	15	14	A-6a	8						
	22	SS_3	5.0	6.5	4.8	6.3	16									19	14	A-6a	10						
		SS_4	7.5	9.0	7.3	8.8	15	13								20	14	A-6a							
8	В	SS_1	0.0	1.5	0.6	2.1	12		4.5	29	19	10	33	33	66	2	14	A-4a	6	2582					
	008-0	SS_2	2.5	4.0	3.1	4.6	25		4.25							15	10	A-4a	8						
	22	SS_3	5.0	6.5	5.6	7.1	4		0.5	29	18	11	26	23	49	20	14	A-6a							
		SS_4	7.5	9.0	8.1	9.6	10	4	0.75							23	14	A-6a							
9	В	SS_1	0.0	1.5	0.5	2.0	15		4.5	34	19	15	22	36	58	13	14	A-6a	7	894					
	009-0	SS_2	2.5	4.0	3.0	4.5	18		4.5							16	14	A-6a	10						
	22	SS_3	5.0	6.5	5.5	7.0	20		4.5	37	21	16	28	42	70	17	16	A-6b							
		SS_4	7.5	9.0	8.0	9.5	23	15	4.5							15	16	A-6b							

PID: 112280

County-Route-Section:HAN-US 68/SR 15 InterchangeNo. of Borings:9

Geotechnical Consultant:Stantec Consulting Services Inc.Prepared By:Jared MusselmanDate prepared:6/19/2023

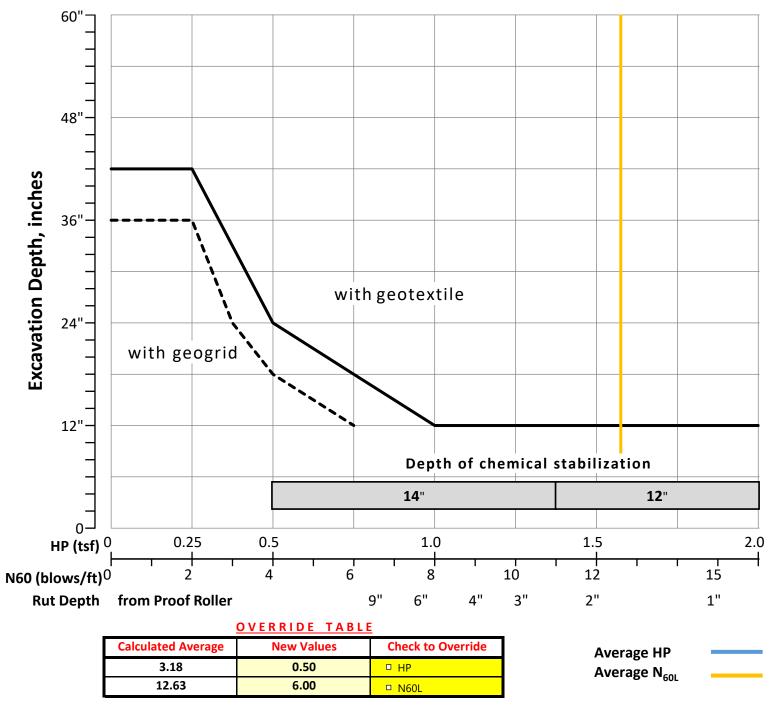
c	Chemical Stabilization Options											
320	Rubblize & Roll	Option										
206	Cement Stabilization	Option										
	Lime Stabilization	No										
206	Depth	12"										

Excavate and Rep	ace									
Stabilization Options										
Global Geotextile										
Average(N60L):	12"									
Average(HP):	0"									
Global Geogrid										
Average(N60L):	0"									
Average(HP):	0"									

Design CBR	7
---------------	---

% Samples within 6 feet of subgrade $N_{60} \le 5$ 4% $N_{co} \le 12$ 9% $0.5 \le HP \le 1$ 0%													
N ₆₀ ≤ 5	4%	HP ≤ 0.5	4%										
N ₆₀ < 12	9%	0.5 < HP ≤ 1	0%										
12 ≤ N ₆₀ < 15	17%	1 < HP ≤ 2	17%										
N ₆₀ ≥ 20	22%	HP > 2	43%										
M+	0%												
Rock	0%												
Unsuitable	0%												

Excavate and Repl at Surface	ace
Average	2"
Maximum	15"
Minimum	0"


% Proposed Subgrade Su	irface
Unstable & Unsuitable	10%
Unstable	10%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	17	13	3.18	30	18	12	23	26	49	16	13	6
Maximum	50	19	4.50	44	25	19	33	42	70	33	22	10
Minimum	4	4	0.50	0	0	1	12	3	17	2	6	0

					Class	ificat	ion C	ount	ts by	Sam	ple								
ODOT Class	ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b														Totals				
Count	0	0	4	0	0	2	0	0	0	2	0	0	17	3	0	3	0	0	31
Percent	0%	0%	13%	0%	0%	6%	0%	0%	0%	6%	0%	0%	55%	10%	0%	10%	0%	0%	100%
% Rock Granular Cohesive	0%					26%								74	1%				100%
Surface Class Count	0	0	4	0	0	0	0	0	0	1	0	0	5	0	0	0	0	0	10
Surface Class Percent	0%	0%	40%	0%	0%	0%	0%	0%	0%	10%	0%	0%	50%	0%	0%	0%	0%	0%	100%

Fig. 600-1 – Subgrade Stabilization

