
DeepEX 2022: Report Output

Copyright@2009 - 2022 Deep Excavation LLC: www.deepexcavation.com. A program for the evaluation of deep excavations Deep Excavation LLC, New York, New York, www.deepexcavation.com

Project: ODOT PID No. 108665; LAK-20-19.59 - WEST

DESIGN\DeepEX 2022\FINAL\Sheeting Design 07-05-2022 with Boring 2.DEEP

ANALYSIS AND CHECKING SUMMARY

The following tables summarize critical resuls for all design sections. These results may include wall moments, shears, displacements, stress checks, wall embedment safety factors, basal & slope stability safety factors, etc.

Culvert at STA. 253	Wall Moment	Wall Shear	Wall Displace	Max Support	Critical Support	Embedment	Comments
0: AASHTO LRFD (201	(k-ft/ft)	(k/ft)	(in)	Reaction (k/ft)	Check	Wall FS	
Culvert at STA. 253	118.56	31.51	0	No supports	No supports	1.517	Calculation successful
0: AASHTO LRFD (201	118.56	31.51	0	No supports	No supports	1.517	Calculation successful
0: AASHTO LRFD (201	224.38	44.84	0	No supports	No supports	1.025	Calculation successful
0: AASHTO LRFD (201	224.38	44.84	0	No supports	No supports	1.025	Calculation successful
0: AASHTO LRFD (201	214.54	43.67	0	No supports	No supports	1.038	Calculation successful

Summary vs Design Section

Extended Summary

Table: Extended summary for all design sections.

Design Section	Calculation Result	Wall Displacement	Settlement
Name		(in)	(in)
Culvert at STA. 253+86 Shoring (Se	Calculation successful	2.21	2.86
0: AASHTO LRFD (2010): Service I	Calculation successful	2.21	2.86
0: AASHTO LRFD (2010): Strength Ia	Calculation successful	5.83	2.95
0: AASHTO LRFD (2010): Strength Ib	Calculation successful	5.83	2.95
0: AASHTO LRFD (2010): Strength II	Calculation successful	5.48	2.9

Table: Extended summary for wall moments and shears for all design sections.

Design Section	Wall Moment	Wall Moment	Wall Shear	Wall Shear
Name	(k-ft/ft)	(k-ft)	(k/ft)	(k)
Culvert at STA. 253+86 Shoring (Serv	118.56	118.56	31.51	31.51
0: AASHTO LRFD (2010): Service I	118.56	118.56	31.51	31.51
0: AASHTO LRFD (2010): Strength Ia	224.38	224.38	44.84	44.84
0: AASHTO LRFD (2010): Strength Ib	224.38	224.38	44.84	44.84
0: AASHTO LRFD (2010): Strength II	214.54	214.54	43.67	43.67

Table: Extended summary for wall stress checks for all design sections.

		0		
Design Section	STR Combined	STR Moment	STR Shear	Wall Concrete Service
Name	Wall Ratio	Wall Ratio	Wall Ratio	Stress Ratio FIC
Culvert at STA. 253+86 Shoring (Serv	0.516	0.516	0.193	N/A
0: AASHTO LRFD (2010): Service I	0.516	0.516	0.193	N/A
0: AASHTO LRFD (2010): Strength Ia	0.976	0.976	0.275	N/A
0: AASHTO LRFD (2010): Strength Ib	0.976	0.976	0.275	N/A
0: AASHTO LRFD (2010): Strength II	0.933	0.933	0.267	N/A

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity). STR Moment : Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

Table: Extended summary for support results for all design sections

	11	0			
Design Section	Max Support	Max Support	Critical	STR Support	Support Geotech
Name	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull
Culvert at STA. 253+86 Shoring (Se	No supports	No supports	No supports	No supports	No supports
0: AASHTO LRFD (2010): Service I	No supports	No supports	No supports	No supports	No supports
0: AASHTO LRFD (2010): Strength Ia	No supports	No supports	No supports	No supports	No supports
0: AASHTO LRFD (2010): Strength Ib	No supports	No supports	No supports	No supports	No supports
0: AASHTO LRFD (2010): Strength II	No supports	No supports	No supports	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity).

Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

Design Section	FS	Toe FS	Toe FS	Toe FS
Name	Basal	Passive	Rotation	Length
Culvert at STA. 253+86 Shoring (Serv	1000	22.79	1.952	1.517
0: AASHTO LRFD (2010): Service I	1000	22.79	1.952	1.517
0: AASHTO LRFD (2010): Strength Ia	1000	11.424	1.051	1.025
0: AASHTO LRFD (2010): Strength Ib	1000	11.424	1.051	1.025
0: AASHTO LRFD (2010): Strength II	1000	11.424	1.074	1.038

Table: Summary for basal stability and wall embedment safety factors from conventional analyses.

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). TOE FS Passive : Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust. TOE FS Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

TOE FS Length : Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0

Table: Summary for wall embedment safety factors from elastoplastic analyses.

Design Section	FS Mobilized	FS
Name	Passive	True/Active
Culvert at STA. 253+86 Shoring (Servi	N/A	N/A
0: AASHTO LRFD (2010): Service I	N/A	N/A
0: AASHTO LRFD (2010): Strength Ia	N/A	N/A
0: AASHTO LRFD (2010): Strength Ib	N/A	N/A
0: AASHTO LRFD (2010): Strength II	N/A	N/A

Table notes:

FS Mobilized Passive : Safety factor= Available horizontal passive resistance/Mobilized passive thrust. FS True/Active : Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust.

Table: Summary for hydraulic safety factors, water flow, and slope stability

Design Section	Hydraulic	Qflow	FSslope				
Name	Heave FS	(ft3/hr)					
Culvert at STA. 253+86 Shoring (Servi	1.615	N/A	2.924				
0: AASHTO LRFD (2010): Service I	1.615	N/A	2.924				
0: AASHTO LRFD (2010): Strength Ia	1.615	N/A	2.874				
0: AASHTO LRFD (2010): Strength Ib	1.615	N/A	2.874				
0: AASHTO LRFD (2010): Strength II	1.615	N/A	2.9				

Critical Items

entited freehos							
	Critical Value	Critical Design Sectio	Critical Stage	Critical Wall	Critical Item Index		
Wall Moment Check	0.976	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	101		
Wall Moment (k-ft/ft)	224.376	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	0		
Wall Moment (k-ft)	224.376	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	0		
Wall Moment Capacity (k-ft/ft)	229.875	4: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	100		
Wall Shear (k/ft)	44.84	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	138		
Wall Shear (k)	44.84	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	138		
Wall Shear Check	0.275	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	138		
Wall Shear Capacity (k/ft)	163.267	4: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	137		
Wall Displacements (in)	5.827	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	N/A		
Surface Settlements (in)	2.946	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	0		
Toe FS Passive (Classic)	11.424	4: 0: AASHTO LRFD (0: Stage 0	1: Wall 1	0		
Toe FS Rotation (Classic)	1.051	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	1		
Toe FS Length (Classic)	1.025	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	1		
FS 1.0 Req. Embed (Classic) (ft)	26.34	3: 0: AASHTO LRFD (1: Stage 1	1: Wall 1	1		
Basal FS (Classic)	1000	4: 0: AASHTO LRFD (0: Stage 0	1: Wall 1	0		

Support Results

	Critical Value	Critical Design Sectio	Critical Stage	Critical Wall	Critical Item Index
Results not available	Results not available	Results not available	Results not available	Results not available	Results not available

Wall Results

	Critical Value	Critical Design Sectio	Critical Stage	Critical Wall	Critical Item Index
Wall Moment ABS (k-ft)	224.376	3: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	0
Wall Moment +M (k-ft)	0	4: 0: AASHTO LRFD (2	0: Stage 0	1: Wall 1	0
Wall Moment -M (k-ft)	-224.376	3: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	0
Wall Moment Check	0.976	3: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	101
Wall Moment Capacity (k-ft/ft)	229.875	4: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	100
Wall Shear (k)	44.84	3: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	138
Wall Shear Check	0.275	3: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	138
Wall Shear Capacity (k/ft)	163.267	4: 0: AASHTO LRFD (2	1: Stage 1	1: Wall 1	137

Max. Moment vs Stage

0					
	Base Model	DS: 1	DS: 2	DS: 3	DS: 4
M stg0 (k-ft/ft)	DS: 0	DS: 1	DS: 2	DS: 3	DS: 4
M stg1 (k-ft/ft)	-118.56	-118.56	-224.38	-224.38	-214.54

Max. Shear vs Stage

	Base Model	DS: 1	DS: 2	DS: 3	DS: 4
V stg0 (k/ft)	DS: 0	DS: 1	DS: 2	DS: 3	DS: 4
V stg1 (k/ft)	-31.51	-31.51	-44.84	-44.84	-43.67

Max. Support F vs Stage

	Base Model	DS: 1	DS: 2	DS: 3	DS: 4
Rmax Stage 0 (k/ft)	DS: 0	DS: 1	DS: 2	DS: 3	DS: 4
Rmax Stage 1 (k/ft)					

STRUCTURAL MATERIALS DATA

Steel

Name	Strength Fy	Fu	Elastic E	Density g
	(ksi)	(ksi)	(ksi)	(kcf)
Fe360	34.1	52.2	29855.1	0.49
Fe510	51.5	73.9	29855.1	0.49
A36	36	58	29000	0.49
A50	50	72.5	29000	0.49
New steel 4	35	60	29855.1	0.49

Concrete

Name	Strength Fc'	Elastic E	Density g	Tension Strength Ft
	(ksi)	(ksi)	(kcf)	(% of Fc')
C20/25	2.9	4342.3	0.1591	10
C25/30	3.6	4561.7	0.1591	10
Fc 3ksi	3	3122	0.15	10

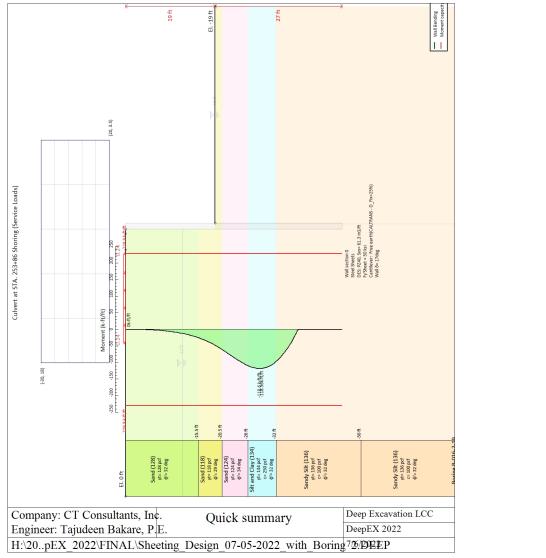
Steel rebar

Name	Strength Fy	Elastic E		
	(ksi)	(ksi)		

Grade 60	60	29000
Grade 75	75	29000
Grade 80	80	29000
Grade 150	150	29000
Strands 270 ksi	270	29000
S410	59.4	30434.8
S500	72.5	30434.8
B450C	65.2	30434.8

Wood

Name	Ultimate Bending Srtength Fbu	Ultimate Tensile Strength Ftu	Ultimate Shear Strength Fvu	Density g	Elastic E
	(ksi)	(ksi)	(ksi)	(kcf)	(ksi)
Construction Timb	1.6	1.4	0.8	0.05	1000
Regular grade	1	1	0.6	0.05	800


STEEL

Name=material name

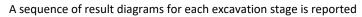
fy=fyk= characteristc resistance for steel (for all the codes) Fu=fuk= ultimate resistence for steel (for all the codes) Elastic E= Elastic modulus Density g= specific weight CONCRETE Name=material name f'c=fck= cylindrical resistance for concrete (for all the codes) Elastic E= Elastic modulus Density g= specific weight Tension strength=ft=fctk= characteristic tension resistance for concrete STEEL REBARS Name=material name fy=fyk= characteristic resistance for steel (for all the codes) Fu=fuk= ultimate resistence for steel (for all the codes) Elastic E= Elastic modulus Density g= specific weight WOOD Name=material name Fb=fbk= Ultimate bending strength Ftu=ftuk= Ultimate tensile strength Fvu=fvuk= Ultimate shear strength Density g= specific weight Elastic E= Elastic modulus

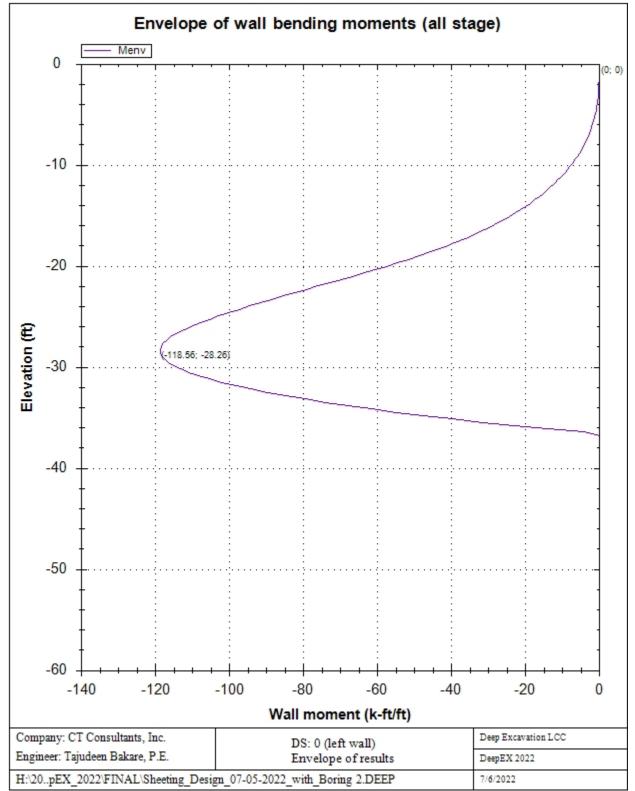
Project: ODOT PID No. 108665; LAK-20-19.59 - WEST Results for Design Section 0: Culvert at STA. 253+86 Shoring (Service Loads)

ANALYSIS AND CHECKING SUMMARY

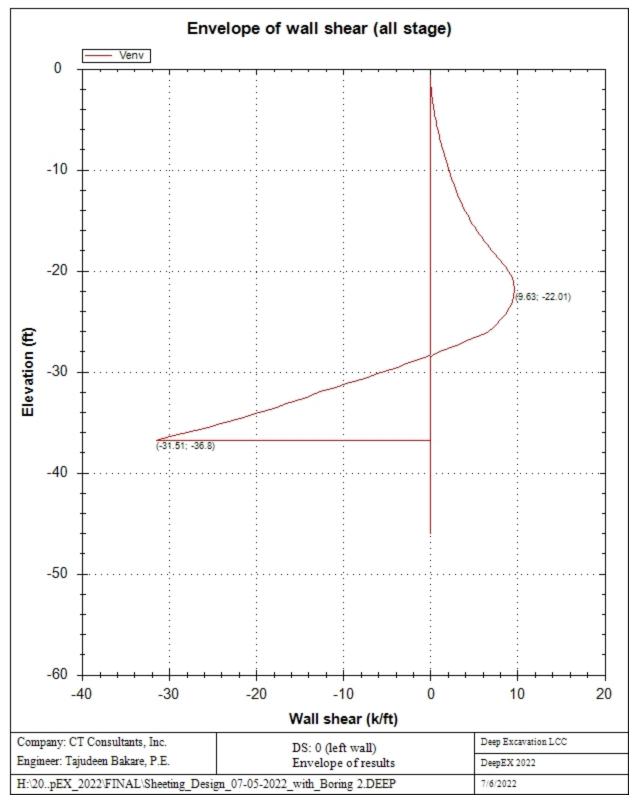
Summary of Wall Moments and Toe Requirements

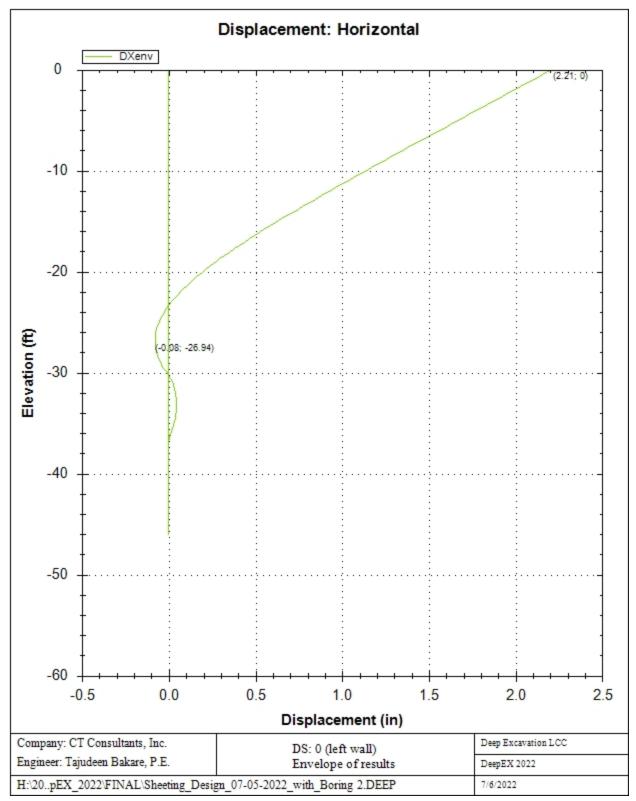
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall section	46	19	0/229.88	118.56/229.88	22.79	1.952	1.517	-36.8	2.924


Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0) @ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.034	12.4	2.924	0.453	12.449	2.924

General assumptions for last stage: Stage 1


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

11/126

Extended vs Stage

	Calculation Result		Wall Dis	splaceme Settleme		ent	Wall Momen	t Wall Moment
			(i	n)	(in)		(k-ft/ft)	(k-ft)
Stage 0	Calculated			0	N/A		0	0
Stage 1	Calculated		2.	21	2.86		118.56	118.56
	Wall Shear	Wall Shear		STR Co	ombined	ST	R Moment	STR Shear
	(k/ft)	(k)		Wall Ratio		Wall Ratio		Wall Ratio
Stage 0	0	0		0		0		0
Stage 1	31.51	31.5	1	0.	516		0.516	0.193

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity). STR Moment : Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

	Max Support	Max Support	Critical	STR Support	Support Geotech	
	Reaction (k/ft)	Reaction (k)	Support Check	oort Check Ratio Cap		
Stage 0	0	0	N/A	No supports	No supports	
Stage 1	0	0	N/A	No supports	No supports	

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity). Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

	FS	Toe FS Toe FS		Toe FS	Zcut	FS Mobilized	FS	
	Basal	Passive	Rotation	Length	(nonlinear)	Passive	True/Active	
Stage 0	1000	22.79	21.628	139.394	N/A	N/A	N/A	
Stage 1	N/A	N/A 1.952		1.517	N/A	N/A	N/A	
		Hydr	aulic	Qfl	ow	FSslope		
		Heav	ve FS	(ft3)	/hr)			
Stag	ge O	2.7	'66	N/	/A	N/C		
Stag	ge 1	1.6	515	N/	/Α	2.924		

Support Force/S vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Support Force vs Stage

Support Force vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	21.628	22.79	21.628	139.394	N/A	N/A
0:Stage 0	1.517	N/A	1.952	1.517	N/A	N/A

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). Wall embedment safety factors from conventional analysis (limit-equilibrium):

FS1 Passive : Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

FS2 Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

FS3 Length : Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0 Wall embedment safety factors from non-linear analysis:

FS4 Mobilized Passive : Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS5 True/Active: Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust.Tables for stress checks follow: Support force/Design capacity

Support Check vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Forces (Res. F, M/Drive F, M)

	FS1 Passive	FS2 Rotation	FS3 Length	FS4 Mobilized Passive	FS5 Actual Drive	Fh EQ Soil	Fh EQ Water
	(FxResist/FxDrive)	(Mresist/Mdrive)	(Embedment/ToeFS=1)	(FxPassive/FxPas_Mobili	/ Theory Active		
Stage 0	504.208/22.124	8302.57/383.88	46/0.33	N/A	N/A	N/A	N/A
Stage 1	N/A	1120.99/308.73	27/17.8	N/A	N/A	N/A	N/A

Reinforcement Requirements

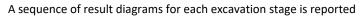
	Parameter Description
Note:	Wall does not use steel reinforcement. Section does not apply.

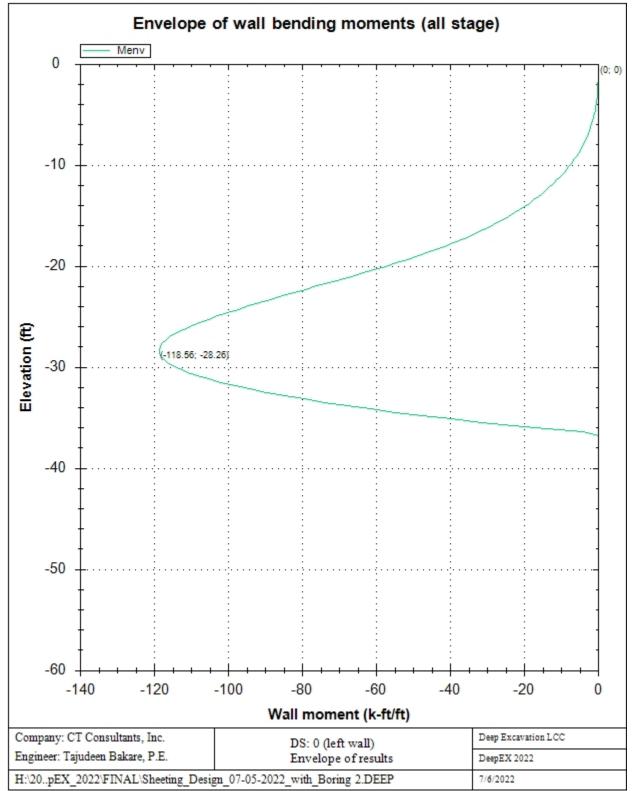
 Wall Bending
Moment capacity El. -19 ft Culvert at STA. 253+86 Shoring (Service Loads) 150 0:2450 Moment (k-ft/ft) -150, 0.240, ... 50, 0k-ft/ft 18.56k-ft/ft -250 -20.5 ft -15.5 ft -26 ft -50 ft -32 ft Boring B-016-2-19 Sand (118) y= 118 pcf y= 219 deg Sand (124) yr= 124 pcf φ= 34 deg yr= 314 pcf y= 314 pcf φ= 32 deg Sandy Silt (136) yt= 136 pcf c= 100 psf ϕ^{t} = 32 deg Sandy Silt (136) γt= 136 pcf c= 100 psf φ'= 32 deg **Sand (128)** yt= 128 pcf \$\$\phi'= 32 deg EI. O ft Company: CT Consultants, Inc. Deep Excavation LCC Quick summary Engineer: Tajudeen Bakare, P.E. DeepEX 2022 H:\20..pEX_2022\FINAL\Sheeting_Design_07-05-2022_with_Boring 2.DEEP 7/6/2022

15/126

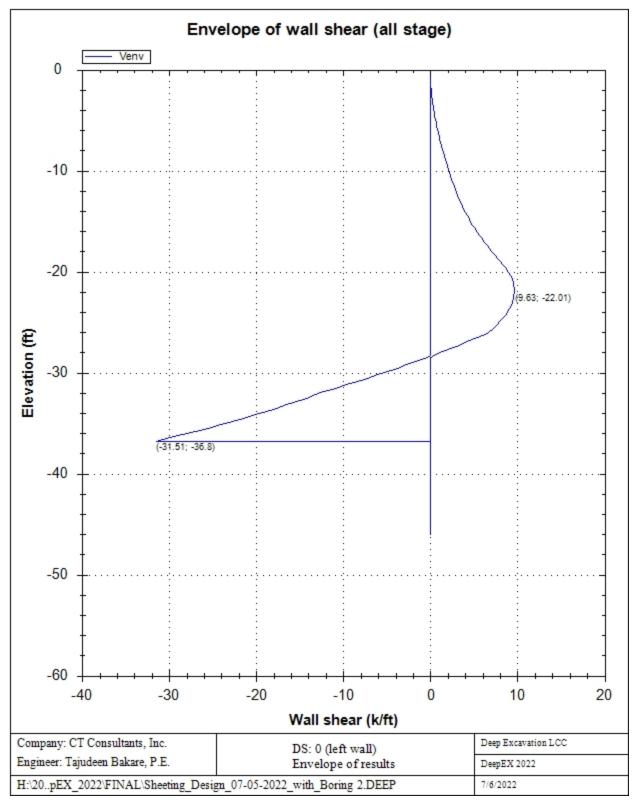
Summary of Wall Moments and Toe Requirements

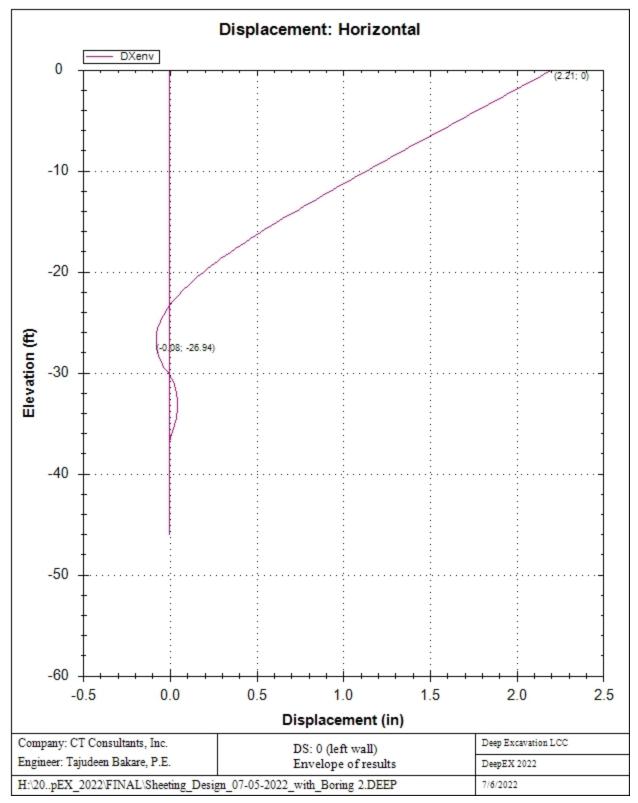
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0 V			0/229.88	118.56/229.88	22.79	1.952	1.517	-36.8	2.924	


Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W


1. FSmin	2. DxMax (in)	xMax (in) 2. Stiffness 2. FSbasal		3. Dx/H (%)	3. Stiffness	3. FSbasal		
@ stage 0	@ stage 0 @ stage 1 @ DxMax		@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max		
1000	1.034	12.4	2.924	0.453	12.449	2.924		

General assumptions for last stage: Stage 1


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

18/126

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following:

Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

St	age	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
		Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
	0	Default	Service Factors	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	Default	Service Factors	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following: Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	Default	Service Factors	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	Default	Service Factors	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

SOIL DATA

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	rEur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(pcf)	(pcf)	(deg)	(psf)	(psf)	(deg)	(deg)	(ksf)	(-)	NL	NL	NL	NL		Model	
Sand (128)	128	120	32	0	N/A	N/A	N/A	300	3	0.31	3.26	N/A	N/A	True	Linear	
Sand (118)	118	118	29	0	N/A	N/A	N/A	300	3	0.35	2.88	N/A	N/A	True	Linear	
Sand (124)	124	124	34	0	N/A	N/A	N/A	300	3	0.28	3.54	N/A	N/A	True	Linear	
Silt and Clay (134	134	32	250	N/A	N/A	N/A	417.54	3	0.31	3.26	N/A	N/A	True	Linear	
Sandy Silt (13	136	136	32	100	N/A	N/A	N/A	400	3	0.31	3.26	N/A	N/A	True	Linear	

21/	126
-----	-----

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(psi)	(psi)	(k/ft3)	(ksi)
Sand (128)	0.35	-	-	0.47	0.8	-	-	0	0	0	-
Sand (118)	0.35	-	-	0.515	0.8	-	-	0	0	0	-
Sand (124)	0.35	-	-	0.441	0.8	-	-	0	0	0	-
Silt and Clay (0.4	-	-	0.47	0.8	-	-	18.1	12.1	30	-
Sandy Silt (13	0.4	-	-	0.47	0.8	-	-	0	0	0	-

gtot = total soil specific weight

gdry = dry weigth of the soil

Frict = friction angle

C' = effective cohesion

Su = Undrained shear strength (only for CLAY soils in undrained conditions, used as a cutoff strength in NL analysis) Evc = Virgin compression elastic modulus

Eur = unloading/reloading elastic modulus

Kap = Peak active thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kpp = Peak passive thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kacv = Constant volume active thrust coeff (only for clays, initial value)

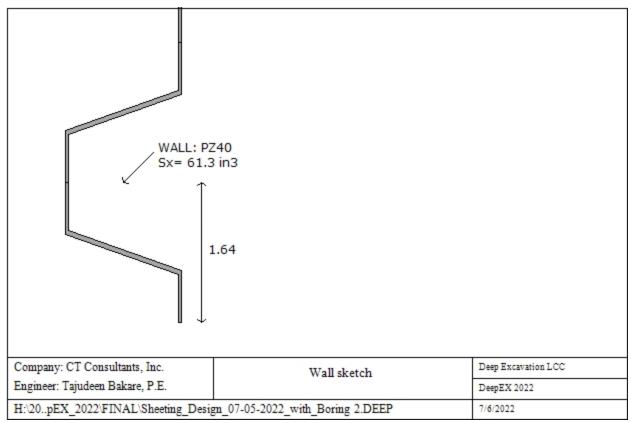
Kpcv = Constant volume passive thrust coeff (only for clays, initial value).

Spring models= spring model (LIN= constant E over the soil layer height , EXP=exponential , SIMC=simplified winkler) LIN= Linear-Elastic-Perfectly Plastic,

EXP: Exponential, SUB: Modulus of Subgrade Reaction

SIMC= Simplified Clay mode

SOIL BORINGS


Top Elev= superior SOil level Soil type= type of the soil (sand , clay , etc) OCR= overconsolidation ratio KO= at rest coefficient

Name: Boring B-016-2-19, pos: (0, 0)

Top elev.	Soil type	OCR	Ко
0	Sand (128)	1	0.47
-15.5	Sand (118)	1	0.52
-20.5	Sand (124)	1	0.44
-26	Silt and Clay (1	1	0.47
-32	Sandy Silt (136	1	0.47
-50	Sandy Silt (136	1	0.47

WALL DATA

Wall section 0: Wall section 0

Wall type: Steel sheet piling

Top wall EI: 0 ft Bottom wall EI: -46 ft

Hor. wall spacing: 1 ft Wall thickness = 1.37 ft

Passive width below exc: 1 ft $\,$ Active width below exc: 1 ft Swater= 1 ft $\,$

Steel members fy = 50 ksi Esteel = 29000 ksi

Wall friction: Constant value = 17 degrees

Steel wall capacities are calculated with ANSI/AISC 360-10

Concrete capacities are calculated with ACI 318-19

Note: With ultimate capacities you may have to use a structural safety factor.

Steel sheet pile properties

Table: Steel Sheet Pile Cross Sectional Properties

DES	Shape	W	А	h	t	b	S	lxx	Sxx
		(plf)	(in^2/ft)	(in)	(in)	(in)	(in)	(in^4/ft)	(in^3/ft)
PZ40	Z	65.6	11.75	16.4	0.5	19.69	0.605	503	61.3

GENERAL WALL DATA

Hor wall spacing= Wall horizontal spacing

Passive width below exc= spacing for passive thrust pressure for classic analysis

f'c=fck= cylindrical concrete resistance

fyk=fy= steel rebar characteristic resistance

Econc= Concrete Elastic modulus

fctk= characteristic Concrete tension

Esteel= steel elastic modulus

TABULAR DATA (principal parameters)

1) Diaphragm wall (rectangular cross section)

N/A= data not available

Fy=fyk

F'c=fck D=wall thickness B=wall width 2)Steel sheet pile DES=shape (Z or U) W=width per unit of length A=area h=height t=horizontal part thickness b=width of the single sheet pile part s=inclined part thickness Ixx=strong axis inertia (per unit of length) Sxx=strong axis section modulus (per unit of length) 3)Secant piles wall, Tangent piles wall, soldier piles, soldier piles and timber lagging W=weight per unit of length A=area D=diameter tw=web thickness tp= pipe thickness bf=flange width tf= flange thickness k= flange thickness+stem base height Ixx= strong axis inertia modulus (per unit of length) Sxx= strong axis section modulus (per unit of length) rx=radius of gyration about X axis ry=radius of gyration about Y axis lyy=weak axis inertia modulus (per unit of length) Syy=weak axis section modulus (per unit of length) rT=radius of gyration for torsion Cw= warping constant

GENERAL ANALYSIS CRITERIA

Summary of stage assumptions

Name	Analysis	Drive	ka-Mult	Htr T/B	Resist	Res	Contle
	Method	Press		(%)	Press	Mult	Method
Stage 0	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth
Stage 1	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth

Name	Support	Axial	Used	Min Toe	Тое	Тое
	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0		N/A	1	21.628	21.628	22.79
Stage 1		N/A	1	1.517	1.952	N/A

Name=excavation stage name

Analysis method

springs = Elastoplastic spring analysis used

DR = Drained condition for CLAY model

- U = Undrained condition for CLAY model for all the soils
- Up = Undrained condition just for selected soil

Limit equilibrium analysis settings

Drive press:

Ka (Active pressure diagram), Ka-Trap = Trapezoid apparent diagram from active pressures x multiplier,

FHWA= Federal Highway Administration apparent pressure diagrams.

Ko = At-rest lateral earth pressures.

Peck = Peck 1969 Apparent earth pressure diagrams.

2 Step rect = Two step rectangular apparent earth pressure diagram.

User def. = User defined apparent earth pressure diagram.

Ka+d (and so on) indicates that wall friction is applied

ka mult = multiplication factor for Ka when Ka-Trap is selected

Htr T/B (%) = trapezoidal pressure scheme, top and bottom triangular percentage of excavation depth H

Resit press = Kp (passive earth pressures)

Res Mult = Safety factor applied directly on resisting pressures (

COntle Method = cantilever analysis method for limit equilibrium analysis.

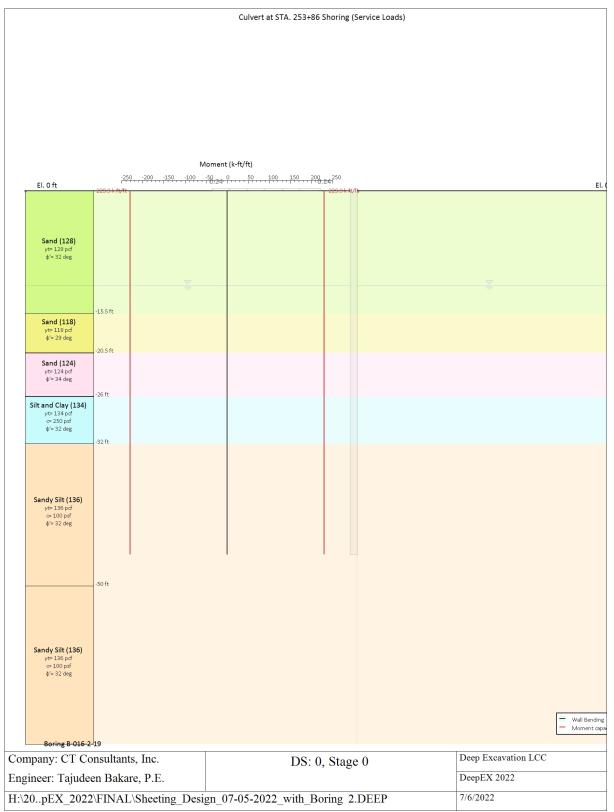
Support Model: Method for calculating support reactions in limit-equilbrium analysis.

Beam= support reactions beam analysis (uses Blum's method).

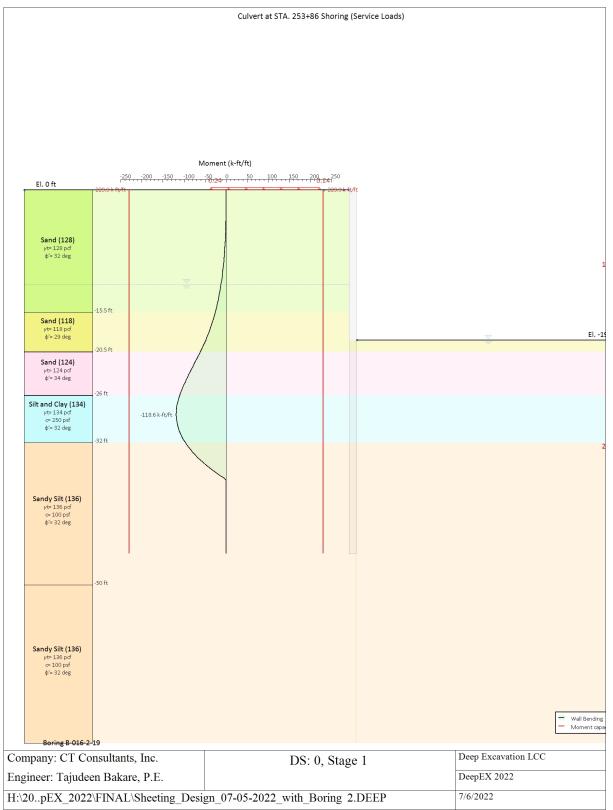
Trib= support reactions from tributary height calculations (Can be applied with apparent diagrams).

Axial Incl = Axial loads included for structural design

Used FS wall = Safety factor for axial+bending wall resistance to divide ultimate wall capacities.


Min FD Toe= embedded minimum safety factor (for limit equilibrium analysis)

Toe FS rot= rotation safety factor (classic for limit equilibrium analysis)


Toe FSpas= driving/resisting pressure safety factor (for limit equilibrium analysis)

EXCAVATION STAGES SKETCHES

A sequence of figures for each excavation stage is reported

26/126

Toe stability

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	21.628	22.79	21.628	139.394	N/A	N/A
Stage 1	1.517	N/A	1.952	1.517	N/A	N/A

Legend: Wall embedment safety factors (toe)

Min Toe FS= Minimum wall embedment safety factor (from all analysis methods)

Limit-equilibrium analysis methods: The following safety factors may not be applicable for all stages.

FS1 Passive: Horizontal force safety factor, FS1= Resisting/Driving force

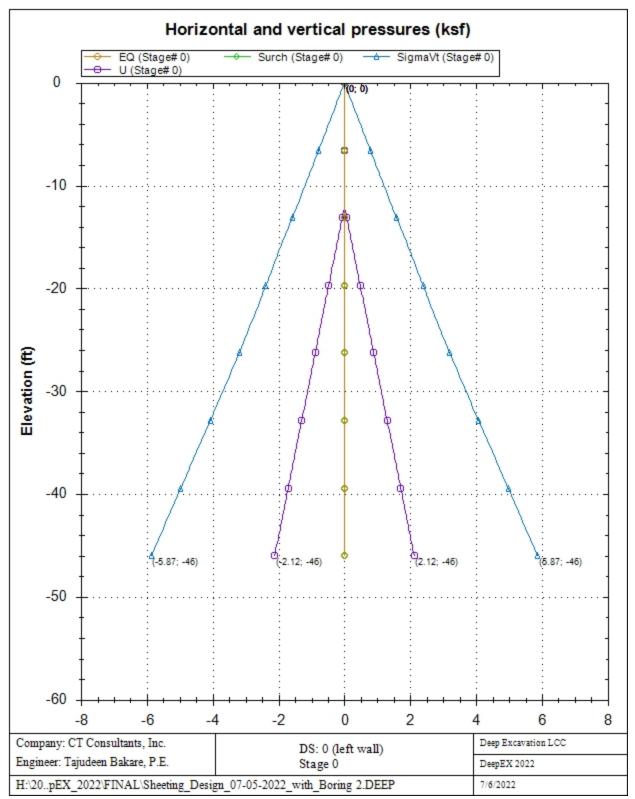
FS2 Rotation: Rotational safety factor about lowest support, FS2= Resisting moment/Driving moment

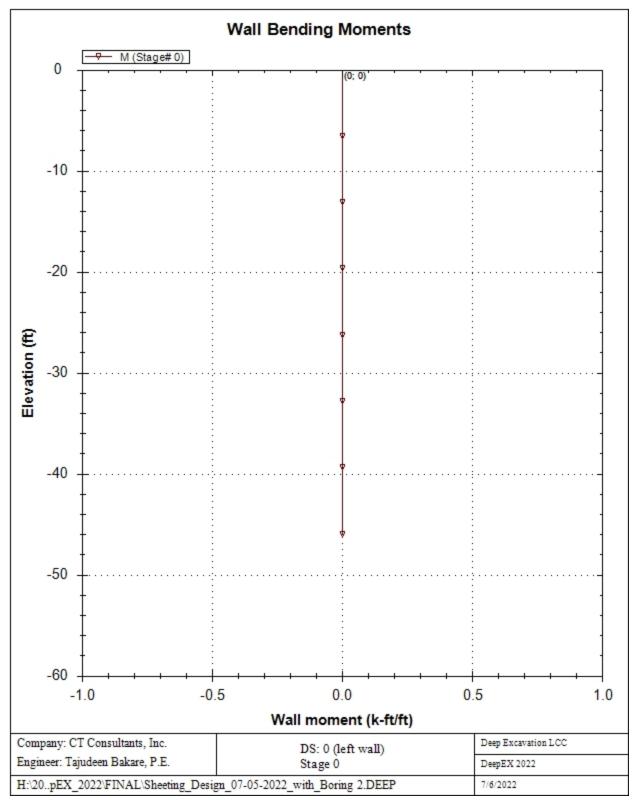
FS3 Length (from FS1, FS2): Program determines maximum required wall embedment for safety factor of 1 for methods FS1 and FS2 (say length LFS1). Then FS length= Provided wall embedment/LFS1.

Non-linear elastoplastic analysis safety factors:

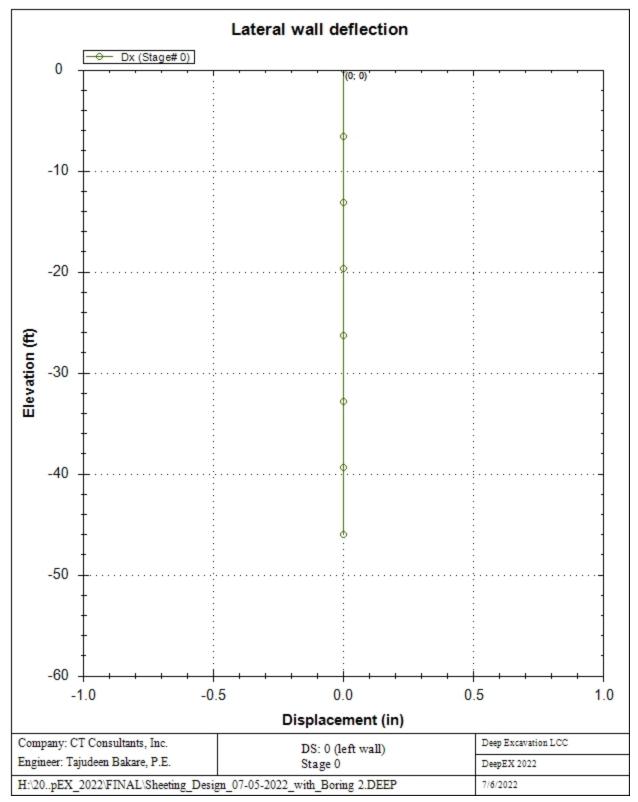
FS4 Mobilized Passive: Safety factor on mobilized passive resistance, FS4= Available passive soil resistance/Mobilized passive soil force on excavation side.

FS5 Active Drive Thrust/Theory Active: Ratio of soil thrust on retained side/ Active condition theoretical minimum thrust. This factor is not as critical, and indicates how close to active conditions the model is.

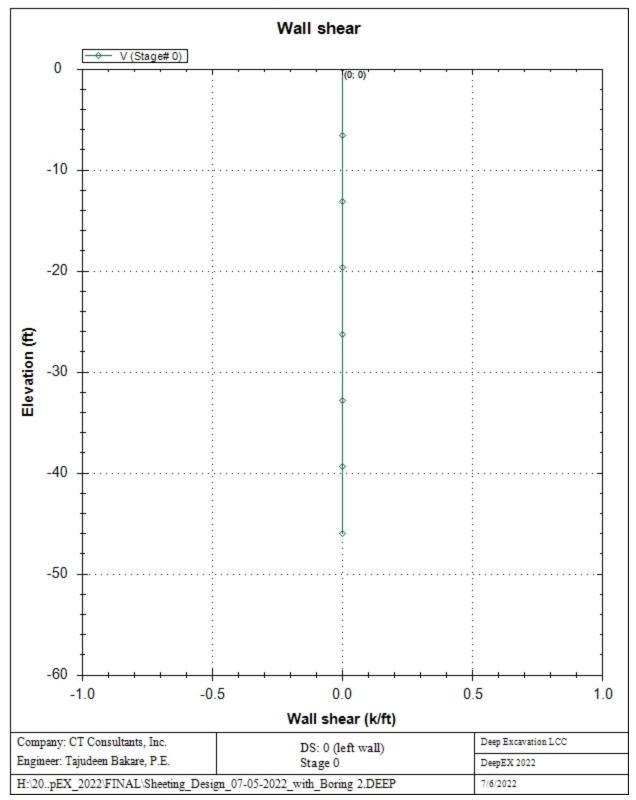

General recommendations on wall embedment (excluding FS5):

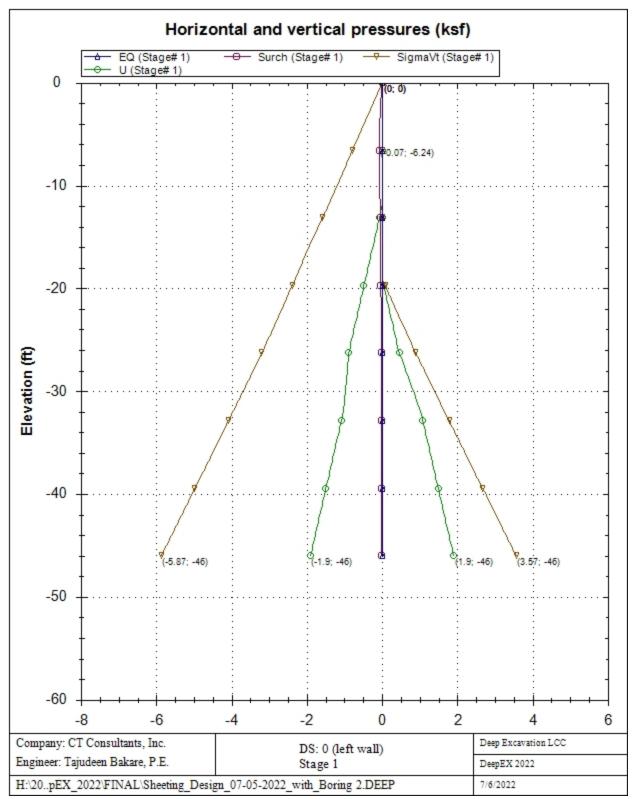

When then excavation is designed with allowable standards, engineers generally use minimum safety factors from 1.2 to 1.5 depending on the level of confidence. A minimum safety factor of 1.2 is generally applied on FS3.

With ultimate limit state designs (such as Eurocode 7, and LRFD) the required safety factor must generally be greater than 1.0. In non-linear solutions it might be impossible to achieve exactly 1 on FS4 as this would likely trigger overall failure.

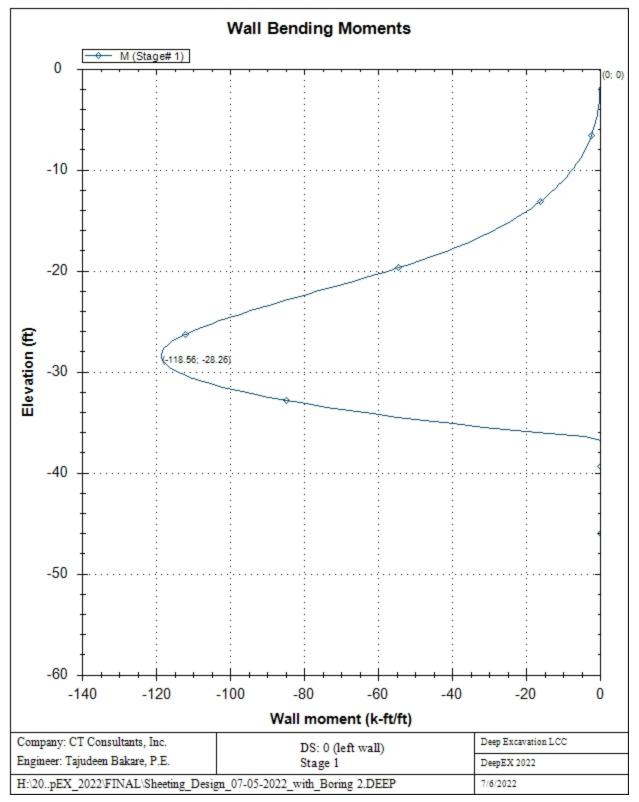

Result diagrams (for walls)

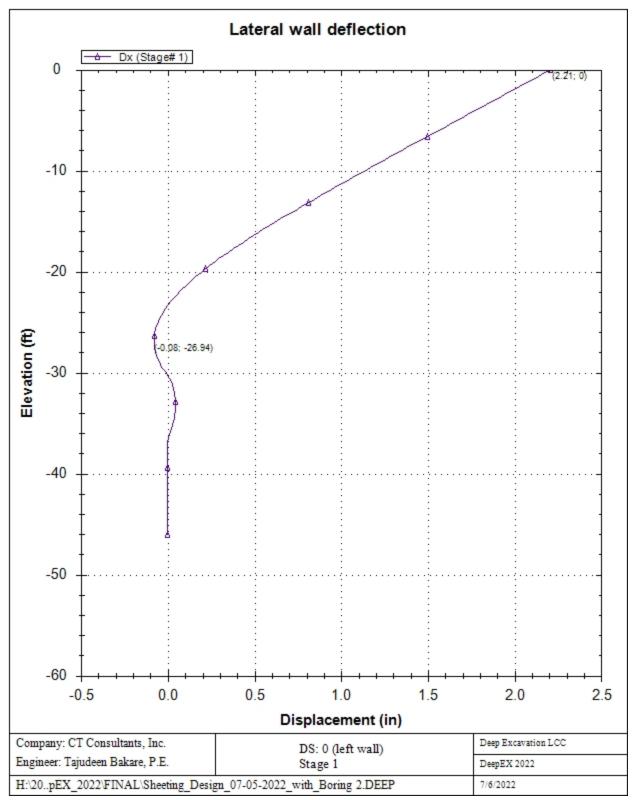
A sequence of result diagrams for each excavation stage is reported

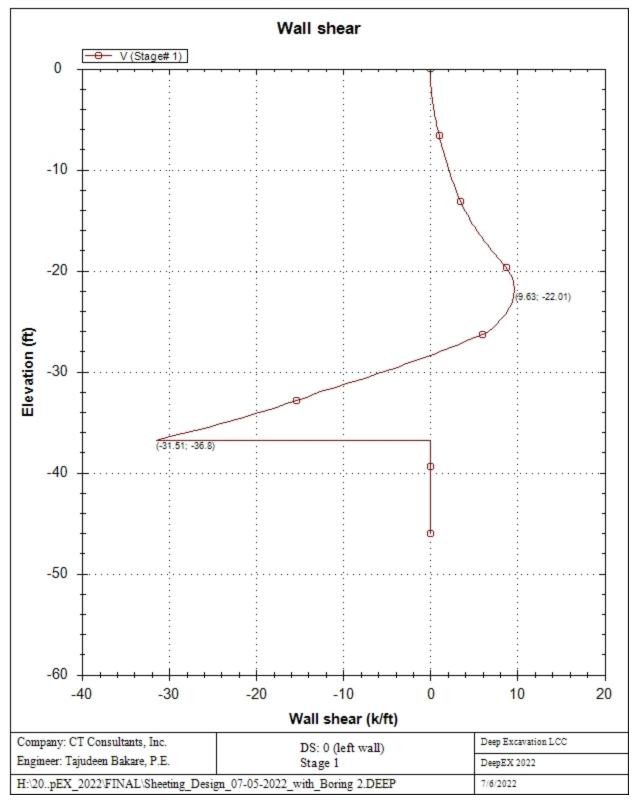




30/126




31/126



33/126

35/126

WALL RESULTS TABLE

2	c I	1	2	<u>_</u>
.≺	h/		1	h
-	~,	_	-	-

Wall 1 Stage: 0

	all 1 Sta						i				i	i			
Wall	EL	Sht L	Sht R	Shs L	Shs R	q	UL	U R	М	V	dx	Mcap L	Mcap R	VcapL	VcapR
Node	(ft)	(ksf)	(ksf)	(ksf)	(ksf)	(ksf)	(ksf)	(ksf)	(k-ft/ft)	(klf)	(in)	(k-ft/ft)	(k-ft/ft)	(klf)	(klf)
0	0	0	0	0	0	0	0	0	0	0	0	229.88	229.88	163.27	163.27
2	-0.66	0.021	0.41	0.021	0.41	0	0	0	0	0	0	229.88	229.88	163.27	163.27
4	-1.31	0.042	0.821	0.042	0.821	0	0	0	0	0	0	229.88	229.88	163.27	163.27
6	-1.97	0.063	1.231	0.063	1.231	0	0	0	0	0	0	229.88	229.88	163.27	163.27
8	-2.63	0.084	1.642	0.084	1.642	0	0	0	0	0	0	229.88	229.88	163.27	163.27
10	-3.29	0.105	2.052	0.105	2.052	0	0	0	0	0	0	229.88	229.88	163.27	163.27
12	-3.94	0.125	2.463	0.125	2.463	0	0	0	0	0	0	229.88	229.88	163.27	163.27
14	-4.6	0.146	2.873	0.146	2.873	0	0	0	0	0	0	229.88	229.88	163.27	163.27
16	-5.26	0.167	3.284	0.167	3.284	0	0	0	0	0	0	229.88	229.88	163.27	163.27
18	-5.91	0.188	3.694	0.188	3.694	0	0	0	0	0	0	229.88	229.88	163.27	163.27
20	-6.57	0.209	4.104	0.209	4.104	0	0	0	0	0	0	229.88	229.88	163.27	163.27
22	-7.23	0.23	4.515	0.23	4.515	0	0	0	0	0	0	229.88	229.88	163.27	163.27
24	-7.89	0.251	4.925	0.251	4.925	0	0	0	0	0	0	229.88	229.88	163.27	163.27
26	-8.54	0.272	5.336	0.272	5.336	0	0	0	0	0	0	229.88	229.88	163.27	163.27
28	-9.2	0.293	5.746	0.293	5.746	0	0	0	0	0	0	229.88	229.88	163.27	163.27
30	-9.86	0.314	6.157	0.314	6.157	0	0	0	0	0	0	229.88	229.88	163.27	163.27
32	-10.51	0.335	6.567	0.335	6.567	0	0	0	0	0	0	229.88	229.88	163.27	163.27
34	-11.17	0.356	6.977	0.356	6.977	0	0	0	0	0	0	229.88	229.88	163.27	163.27
36	-11.83	0.376	7.388	0.376	7.388	0	0	0	0	0	0	229.88	229.88	163.27	163.27
38	-12.49	0.421	7.698	0.391	7.668	0	0.03	0.03	0	0	0	229.88	229.88	163.27	163.27
40	-13.14	0.473	7.964	0.402	7.892	0	0.071	0.071	0	0	0	229.88	229.88	163.27	163.27
40	-13.8	0.526	8.229	0.414	8.117	0	0.112	0.112	0	0	0	229.88	229.88	163.27	163.27
44	-14.46	0.520	8.494	0.425	8.341	0	0.112	0.112	0	0	0	229.88	229.88	163.27	163.27
44	-14.40	0.631	8.76	0.425	8.565	0	0.133	0.133	0	0	0	229.88	229.88	163.27	163.27
40	-15.77	0.737	7.627	0.430	7.391	0	0.134	0.134	0	0	0	229.88	229.88	163.27	163.27
50	-16.43	0.788	7.828	0.501	7.552	0	0.235	0.235	0	0	0	229.88	229.88	163.27	163.27
52	-17.09	0.788	8.029	0.512	7.712	0	0.270	0.270	0	0	0	229.88	229.88	163.27	163.27
				0.525		0	0.317			0	0	229.88		163.27	163.27
54	-17.74	0.892	8.23		7.872	0		0.358	0	0	0		229.88	163.27	
56	-18.4	0.944	8.432	0.545	8.032		0.399	0.399	0			229.88	229.88		163.27
58	-19	0.991	8.615	0.555	8.179	0	0.437	0.437	0	0	0	229.88	229.88	163.27	163.27
60	-19.71	1.048	8.834	0.566	8.353	0	0.481	0.481	0	0	0	229.88	229.88	163.27	163.27
62	-20.5	1.11	9.075	0.579	8.544	0	0.53	0.53	0	0	0	229.88	229.88	163.27	163.27
64	-21.03	1.049	11.996	0.486	11.433	0	0.563	0.563	0	0	0	229.88	229.88	163.27	163.27
66	-21.69	1.1	12.271	0.496	11.667	0	0.604	0.604	0	0	0	229.88	229.88	163.27	163.27
68	-22.34	1.151	12.546	0.506	11.9	0	0.645	0.645	0	0	0	229.88		163.27	
70	-23	1.202	12.82	0.516	12.134	0	0.686	0.686	0	0	0	229.88	229.88	163.27	163.27
72	-23.66	1.253	13.095	0.526	12.367	0	0.727	0.727	0	0	0	229.88	229.88	163.27	
74	-24.31	1.304	13.369	0.535	12.601	0	0.768	0.768	0	0	0	229.88	229.88	163.27	163.27
76	-24.97	1.355	13.644	0.545	12.835	0	0.809	0.809	0	0	0	229.88	229.88	163.27	163.27
78	-25.63	1.406	13.919	0.555	13.068	0	0.85	0.85	0	0	0	229.88	229.88	163.27	163.27
80	-26.29	1.246	14.043	0.355	13.152	0	0.891	0.891	0	0	0	229.88	229.88	163.27	163.27
82	-26.94	1.299	14.329	0.367	13.396	0	0.932	0.932	0	0	0	229.88	229.88	163.27	163.27
84	-27.6	1.353	14.615	0.38	13.641	0	0.973	0.973	0	0	0	229.88	229.88	163.27	163.27
86	-28.26	1.406	14.901	0.392	13.886	0	1.014	1.014	0	0	0	229.88	229.88	163.27	163.27
88	-28.91	1.46	15.187	0.404	14.131	0	1.055	1.055	0	0	0	229.88	229.88	163.27	163.27
90	-29.57	1.513	15.472	0.417	14.376	0	1.096	1.096	0	0	0	229.88	229.88	163.27	163.27
92	-30.23	1.567	15.758	0.429	14.621	0	1.137	1.137	0	0	0	229.88	229.88	163.27	163.27
94	-30.89	1.62	16.044	0.442	14.866	0	1.178	1.178	0	0	0	229.88	229.88	163.27	163.27

	24 54	4 674	46.22	0 45 4	45 444		4 24 0	4 240		0		220.00	220.00		4 62 27
96	-31.54	1.674	16.33	0.454	15.111	0	1.219	1.219	0	0	0	229.88		163.27	
98	-32.2	1.882	15.934	0.621	14.673	0	1.26	1.26	0	0	0	229.88	229.88	163.27	163.27
100	-32.86	1.936	16.227	0.634	14.925	0	1.301	1.301	0	0	0	229.88	229.88	163.27	163.27
102	-33.51	1.99	16.519	0.647	15.177	0	1.342	1.342	0	0	0	229.88	229.88	163.27	163.27
104	-34.17	2.043	16.812	0.66	15.429	0	1.383	1.383	0	0	0	229.88	229.88	163.27	163.27
106	-34.83	2.097	17.105	0.673	15.68	0	1.425	1.425	0	0	0	229.88	229.88	163.27	163.27
108	-35.49	2.151	17.398	0.686	15.932	0	1.466	1.466	0	0	0	229.88	229.88	163.27	163.27
110	-36.14	2.205	17.69	0.698	16.184	0	1.507	1.507	0	0	0	229.88	229.88	163.27	163.27
112	-36.8	2.259	17.983	0.711	16.436	0	1.548	1.548	0	0	0	229.88	229.88	163.27	163.27
114	-37.46	2.313	18.276	0.724	16.687	0	1.589	1.589	0	0	0	229.88	229.88	163.27	163.27
116	-38.11	2.366	18.569	0.737	16.939	0	1.63	1.63	0	0	0	229.88	229.88	163.27	163.27
118	-38.77	2.42	18.861	0.75	17.191	0	1.671	1.671	0	0	0	229.88	229.88	163.27	163.27
120	-39.43	2.474	19.154	0.763	17.442	0	1.712	1.712	0	0	0	229.88	229.88	163.27	163.27
122	-40.09	2.528	19.447	0.775	17.694	0	1.753	1.753	0	0	0	229.88	229.88	163.27	163.27
124	-40.74	2.582	19.739	0.788	17.946	0	1.794	1.794	0	0	0	229.88	229.88	163.27	163.27
126	-41.4	2.636	20.032	0.801	18.198	0	1.835	1.835	0	0	0	229.88	229.88	163.27	163.27
128	-42.06	2.689	20.325	0.814	18.449	0	1.876	1.876	0	0	0	229.88	229.88	163.27	163.27
130	-42.71	2.743	20.618	0.827	18.701	0	1.917	1.917	0	0	0	229.88	229.88	163.27	163.27
132	-43.37	2.797	20.91	0.84	18.953	0	1.958	1.958	0	0	0	229.88	229.88	163.27	163.27
134	-44.03	2.851	21.203	0.852	19.205	0	1.999	1.999	0	0	0	229.88	229.88	163.27	163.27
136	-44.69	2.905	21.496	0.865	19.456	0	2.04	2.04	0	0	0	229.88	229.88	163.27	163.27
138	-45.34	2.959	21.789	0.878	19.708	0	2.081	2.081	0	0	0	229.88	229.88	163.27	163.27
140	-46	3.012	22.081	0.891	19.96	0	2.122	2.122	0	0	0	229.88	229.88	163.27	163.27
W	all 1 Sta	ge: 1													
Wall	EL	Sht L	Sht R	Shs L	Shs R	q	UL	UR	М	V	dx	Mcap L	Mcap R	VcapL	VcapR
Node	(ft)	(ksf)	(ksf)	(ksf)	(ksf)	۹ (ksf)	(ksf)	(ksf)	(k-ft/ft)	(klf)	(in)	(k-ft/ft)		(klf)	(klf)
0	0	0	0	0	0	0	0	0	0	0	2.21	229.88	229.88	163.27	163.27
2	-0.66	0.021	0	0.021	0	0.014	0	0	0	0.01	2.14	229.88	229.88	163.27	163.27
4	-1.31	0.042	0	0.042	0	0.027	0	0	0.02	0.05	2.07	229.88	229.88	163.27	163.27
6	-1.97	0.063	0	0.063	0	0.039	0	0	0.07	0.1	1.99	229.88	229.88	163.27	163.27
8	-2.63	0.084	0	0.084	0	0.035	0	0	0.16	0.18	1.92	229.88	229.88	163.27	163.27
10	-3.29	0.105	0	0.105	0	0.055	0	0	0.31	0.27	1.85	229.88	229.88	163.27	163.27
12	-3.94	0.105	0	0.105	0	0.06	0	0	0.51	0.39	1.78	229.88	229.88	163.27	163.27
14	-4.6	0.125	0	0.125	0	0.064	0	0	0.32	0.52	1.70	229.88	229.88	163.27	163.27
14	-5.26	0.140	0	0.140	0	0.066	0	0	1.21	0.66	1.64	229.88	229.88	163.27	163.27
18	-5.91	0.107	0	0.188	0	0.067	0	0	1.21	0.82	1.57	229.88		163.27	
20	-6.57	0.188	0	0.188	0	0.067	0	0	2.3	1	1.57	229.88	229.88	163.27	163.27
20	-7.23	0.203		0.203	0	0.067	0	0	3.01	1.19		229.88	229.88		163.27
	-7.89		0			0.065		0			1.43			163.27	
24		0.251	0	0.251	0		0		3.86 4.84	1.39	1.36	229.88 229.88	229.88	163.27	163.27 163.27
26	-8.54	0.272	0	0.272	0	0.063	0	0		1.6	1.29		229.88	163.27	
28	-9.2	0.293	0	0.293	0	0.062	0	0	5.97	1.83	1.22	229.88	229.88	163.27	163.27
30	-9.86	0.314	0	0.314	0	0.06	0	0	7.25	2.07	1.15	229.88	229.88	163.27	163.27
32	-10.51	0.335	0	0.335	0	0.058	0	0	8.69	2.32	1.08	229.88	229.88	163.27	163.27
34	-11.17	0.356	0	0.356	0	0.056	0	0	10.3	2.58	1.01	229.88	229.88	163.27	163.27
36	-11.83	0.376	0	0.376	0	0.054	0	0	12.09	2.86	0.94	229.88	229.88	163.27	163.27
38	-12.49	0.421	0	0.391	0	0.052	0.03	0	14.06	3.16	0.88	229.88	229.88	163.27	163.27
40	-13.14	0.473	0	0.402	0	0.049	0.071	0	16.24	3.48	0.81	229.88	229.88	163.27	163.27
42	-13.8	0.526	0	0.414	0	0.047	0.112	0	18.64	3.84	0.75	229.88	229.88	163.27	163.27
44	-14.46	0.578	0	0.425	0	0.045	0.153	0	21.3	4.24	0.68	229.88	229.88	163.27	163.27
46	-15.11	0.631	0	0.436	0	0.044	0.194	0	24.22	4.66	0.62	229.88	229.88	163.27	163.27
48	-15.77	0.737	0	0.501		0.042	0.235	0	27.43	5.13	0.55	229.88	229.88	163.27	163.27

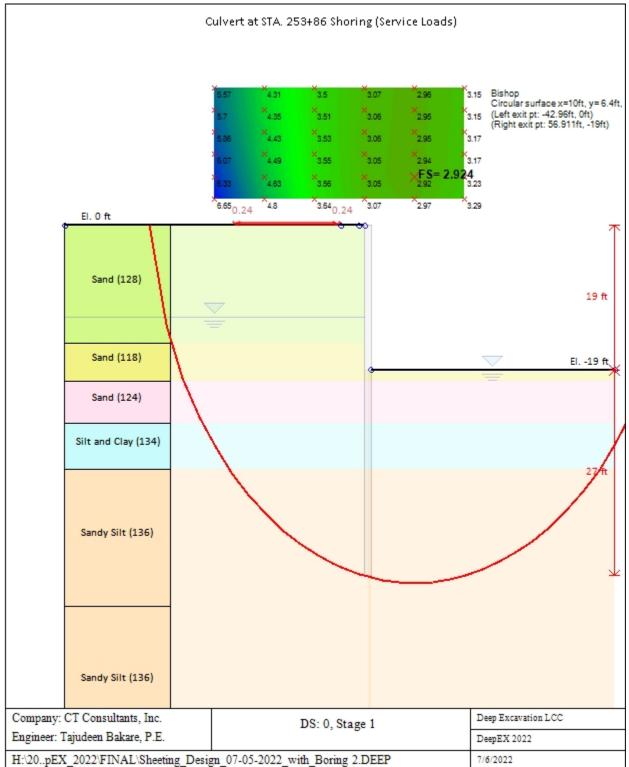
38	/1	2	6
50,	-	~	~

														/	120
50	-16.43	0.788	0	0.512	0	0.04	0.276	0	30.98	5.66	0.49	229.88	229.88	163.27	163.27
52	-17.09	0.84	0	0.523	0	0.038	0.317	0	34.88	6.22	0.43	229.88	229.88	163.27	163.27
54	-17.74	0.892	0	0.534	0	0.036	0.358	0	39.16	6.81	0.38	229.88	229.88	163.27	163.27
56	-18.4	0.944	0	0.545	0	0.035	0.399	0	43.84	7.44	0.32	229.88	229.88	163.27	163.27
58	-19	0.991	0	0.555	0	0.033	0.437	0	48.48	8.04	0.27	229.88	229.88	163.27	163.27
60	-19.71	1.048	0.219	0.566	0.174	0.032	0.481	0.045	54.47	8.71	0.22	229.88	229.88	163.27	163.27
62	-20.5	1.11	0.459	0.579	0.366	0.03	0.53	0.094	61.57	9.32	0.16	229.88	229.88	163.27	163.27
64	-21.03	1.049	0.796	0.486	0.669	0.029	0.563	0.127	66.55	9.52	0.13	229.88	229.88	163.27	163.27
66	-21.69	1.1	1.07	0.496	0.903	0.028	0.604	0.168	72.85	9.63	0.09	229.88	229.88	163.27	163.27
68	-22.34	1.151	1.345	0.506	1.136	0.026	0.645	0.209	79.17	9.59	0.05	229.88	229.88	163.27	163.27
70	-23	1.202	1.62	0.516	1.37	0.025	0.686	0.25	85.42	9.41	0.01	229.88	229.88	163.27	163.27
72	-23.66	1.253	1.894	0.526	1.604	0.024	0.727	0.291	91.5	9.08	-0.01	229.88	229.88	163.27	163.27
74	-24.31	1.304	2.169	0.535	1.837	0.023	0.768	0.332	97.32	8.6	-0.04	229.88	229.88	163.27	163.27
76	-24.97	1.355	2.444	0.545	2.071	0.022	0.809	0.373	102.77	7.97	-0.06	229.88	229.88	163.27	163.27
78	-25.63	1.406	2.718	0.555	2.305	0.021	0.85	0.414	107.76	7.2	-0.07	229.88	229.88	163.27	163.27
80	-26.29	1.238	3.855	0.357	3.39	0.02	0.881	0.465	112.15	5.96	-0.08	229.88	229.88	163.27	163.27
82	-26.94	1.274	4.041	0.376	3.511	0.019	0.898	0.53	115.49	4.2	-0.08	229.88	229.88	163.27	163.27
84	-27.6	1.31	4.226	0.395	3.631	0.019	0.915	0.595	117.65	2.35	-0.08	229.88	229.88	163.27	163.27
86	-28.26	1.346	4.411	0.414	3.752	0.018	0.932	0.66	118.56	0.4	-0.07	229.88	229.88	163.27	163.27
88	-28.91	1.382	4.597	0.433	3.872	0.017	0.949	0.725	118.15	-1.66	-0.05	229.88	229.88	163.27	163.27
90	-29.57	1.418	4.782	0.451	3.992	0.016	0.966	0.79	116.36	-3.81	-0.03	229.88	229.88	163.27	163.27
92	-30.23	1.454	4.967	0.47	4.113	0.016	0.984	0.855	113.12	-6.06	0	229.88	229.88	163.27	163.27
94	-30.89	1.49	5.153	0.489	4.233	0.015	1.001	0.92	108.38	-8.4	0.02	229.88	229.88	163.27	163.27
96	-31.54	1.526	5.338	0.508	4.354	0.014	1.018	0.984	102.06	-10.85	0.03	229.88	229.88	163.27	163.27
98	-32.2	1.721	4.872	0.679	3.83	0.014	1.042	1.042	94.11	-13.23	0.04	229.88	229.88	163.27	163.27
100	-32.86	1.775	5.164	0.692	4.081	0.013	1.083	1.083	84.72	-15.37	0.04	229.88	229.88	163.27	163.27
102	-33.51	1.829	5.457	0.705	4.333	0.013	1.124	1.124	73.87	-17.67	0.04	229.88	229.88	163.27	163.27
104	-34.17	1.883	5.75	0.718	4.585	0.012	1.165	1.165	61.47	-20.12	0.04	229.88	229.88	163.27	163.27
106	-34.83	1.937	6.043	0.731	4.837	0.012	1.206	1.206	47.39	-22.73	0.03	229.88	229.88	163.27	163.27
108	-35.49	1.991	6.335	0.744	5.088	0.011	1.247	1.247	31.55	-25.5	0.02	229.88	229.88	163.27	163.27
110	-36.14	2.044	6.628	0.756	5.34	0.011	1.288	1.288	13.84	-28.43	0.01	229.88	229.88	163.27	163.27
112	-36.8	2.098	6.921	0.769	5.592	0.01	1.329	1.329	0	-31.51	0	229.88	229.88	163.27	163.27
114	-37.46	2.152	7.214	0.782	5.843	0.01	1.37	1.37	0	0	0	229.88	229.88	163.27	163.27
116	-38.11	2.206	7.506	0.795	6.095	0.01	1.411	1.411	0	0	0	229.88	229.88	163.27	163.27
118	-38.77	2.26	7.799	0.808	6.347	0.009	1.452	1.452	0	0	0	229.88	229.88	163.27	163.27
120	-39.43	2.314	8.092	0.821	6.599	0.009	1.493	1.493	0	0	0	229.88	229.88	163.27	163.27
122	-40.09	2.367	8.385	0.833	6.85	0.009	1.534	1.534	0	0	0	229.88	229.88	163.27	163.27
124	-40.74	2.421	8.677	0.846	7.102	0.008	1.575	1.575	0	0	0	229.88	229.88	163.27	163.27
126	-41.4	2.475	8.97	0.859	7.354	0.008	1.616	1.616	0	0	0	229.88	229.88	163.27	163.27
128	-42.06	2.529	9.263	0.872	7.606	0.008	1.657	1.657	0	0	0	229.88	229.88	163.27	163.27
130	-42.71	2.583	9.556	0.885	7.857	0.007	1.698	1.698	0	0	0	229.88	229.88	163.27	163.27
132	-43.37	2.637	9.848	0.897	8.109	0.007	1.739	1.739	0	0	0	229.88	229.88	163.27	163.27
134	-44.03	2.69	10.141	0.91	8.361	0.007	1.78	1.78	0	0	0	229.88	229.88	163.27	163.27
136	-44.69	2.744	10.434	0.923	8.613	0.007	1.821	1.821	0	0	0	229.88	229.88	163.27	163.27
138	-45.34	2.798	10.727	0.936	8.864	0.006	1.862	1.862	0	0	0	229.88	229.88	163.27	163.27
140	-46	2.852	11.019	0.949	9.116	0.006	1.903	1.903	0	0	0	229.88	229.88	163.27	163.27
							•				-				

LEGEND

Wall node=number of the node (0 at top)

EL= Node elevation


Sht L=Total horizontal soil pressure (on the left side of the wall)

Sht R=Total horizontal soil pressure (on the right side of the wall)

Shs L=Effective horizontal soil pressure (on the left side of the wall) Shs R=Effective horizontal soil pressure (on the right side of the wall) q=pressure given by the surcharge U L= Water pressure (on the left side of the wall) U R= Water pressure (on the right side of the wall) M=bending moment (per unit length) V=shear (per unit length) V=shear (per unit length) dx=wall deflection McapL=Ultimate bending moment (on the left side of the wall) McapR=Ultimate bending moment (on the right side of the wall) VcapL=Ultimate resistance shear (on the left side of the wall) VcapR=Ultimate resistance shear (on the right side of the wall) 39/126

EXCAVATION STAGES AND SLOPE STABILITY

Reports a sequence of figures for each stage with slope stability results.

SLOPE STABILITY ANALYSIS: SLICE RESULTS ALL STAGES

Slope stability analysis design section: Culvert at STA. 253+86 Shoring (Service Loads)

Slope stability analysis Stage: 0 Slope stability not analyzed for this stage.

Slope stability analysis Stage: 1

Slope stability calculated for this stage.

Critical point at x= 10 z= 6.4 FS= 2.924

Slice	x1	ZsL	ZtL	x2	ZsR	ZtR	DL	an	Fr	С	Wn	ubL	ubR	tBase	Nr	EiL	EiR	TL	TR	UbF
No.	ft	ft	ft	ft	ft	ft	ft	deg	deg	ksf	k/ft	ksf	ksf	k/ft	k/ft	k/ft	k/ft	k/ft	k/ft	k/ft
0	-42.96	0	0	-39.63	-13.16	0	13.57	75.8	32	0	2.6	0	0.1	1.2	5.8	0	0	0	0	0
1	-39.63	-13.16	0	-36.3	-20.09	0	7.69	64.36	30.5	0	6.7	0.1	0.5	1.9	9.3	0	0	0	0	2.2
2	-36.3	-20.09	0	-32.97	-25.21	0	6.1	56.94	31.5	0	9.1	0.5	0.8	2	9.6	0	0	0	0	4.1
3	-32.97	-25.21	0	-29.64	-29.29	0	5.27	50.83	33	0.12	11.1	0.8	1.1	2.4	9.6	0	0	0	0	5
4	-29.64	-29.29	0	-26.32	-32.68	0	4.75	45.45	32	0.18	12.7	1.1	1.3	2.4	10.1	0	0	0	0	5.6
5	-26.32	-32.68	0	-22.99	-35.52	0	4.38	40.55	32	0.1	14.1	1.3	1.5	2.5	11.2	0	0	0	0	6
6	-22.99	-35.52	0	-19.66	-37.94	0	4.11	35.99	32	0.1	15.3	1.5	1.6	2.6	11.7	0	0	0	0	6.3
7	-19.66	-37.94	0	-16.33	-40	0	3.91	31.67	32	0.1	16.4	1.6	1.7	2.7	11.9	0	0	0	0	6.6
8	-16.33	-40	0	-13	-41.73	0	3.76	27.56	32	0.1	17.2	1.7	1.9	2.7	12.1	0	0	0	0	6.8
9	-13	-41.73	0	-9.67	-43.19	0	3.63	23.59	32	0.1	17.9	1.9	1.9	2.8	12.3	0	0	0	0	6.9
10	-9.67	-43.19	0	-6.34	-44.38	0	3.54	19.74	32	0.1	18.5	1.9	2	2.8	12.5	0	0	0	0	7
11	-6.34	-44.38	0	-4.66	-44.89	0	1.76	16.89	32	0.1	9.6	2	2.1	1.4	6.2	0	0	0	0	3.6
12	-4.66	-44.89	0	-1	-45.8	0	3.77	13.93	32	0.1	21.2	2.1	2.1	3	13.2	0	0	0	0	7.8
13	-1	-45.8	0	0	-46	0	1.02	11.35	32	0.1	5.9	2.1	2.1	0.8	3.6	0	0	0	0	2.2
14	0	-46	0	1.37	-46.24	0	1.39	10.06	32	0.1	8	2.1	1.7	1.2	5.3	0	0	0	0	2.7
15	1.37	-46.24	-19	3.65	-46.57	-19	2.3	8.08	32	0.1	8.2	1.7	1.7	1	4.3	0	0	0	0	3.9
16	3.65	-46.57	-19	6.98	-46.86	-19	3.34	5.05	32	0.1	12.2	1.7	1.7	1.5	6.3	0	0	0	0	5.8
17	6.98	-46.86	-19	10.3	-46.94	-19	3.33	1.46	32	0.1	12.3	1.7	1.7	1.5	6.5	0	0	0	0	5.8
18	10.3	-46.94	-19	13.63	-46.82	-19	3.33	-2.12	32	0.1	12.3	1.7	1.7	1.5	6.5	0	0	0	0	5.8
19	13.63	-46.82	-19	16.96	-46.49	-19	3.35	-5.7	32	0.1	12.2	1.7	1.7	1.5	6.6	0	0	0	0	5.8
20	16.96	-46.49	-19	20.29	-45.94	-19	3.37	-9.31	32	0.1	12	1.7	1.7	1.5	6.7	0	0	0	0	5.7
21	20.29	-45.94	-19	23.62	-45.18	-19	3.42	-12.96	32	0.1	11.7	1.7	1.6	1.5	6.7	0	0	0	0	5.7
22	23.62	-45.18	-19	26.95	-44.18	-19	3.47	-16.66	32	0.1	11.3	1.6	1.6	1.5	6.7	0	0	0	0	5.6
23	26.95	-44.18	-19	30.28	-42.94	-19	3.55	-20.43	32	0.1	10.8	1.6	1.5	1.5	6.6	0	0	0	0	5.4
24	30.28	-42.94	-19	33.61	-41.44	-19	3.65	-24.3	32	0.1	10.1	1.5	1.4	1.5	6.5	0	0	0	0	5.3
25	33.61	-41.44	-19	36.94	-39.65	-19	3.78	-28.3	32	0.1	9.4	1.4	1.3	1.5	6.4	0	0	0	0	5.1
26	36.94	-39.65	-19	40.27	-37.53	-19	3.94	-32.45	32	0.1	8.5	1.3	1.2	1.5	6.2	0	0	0	0	4.8
27	40.27	-37.53	-19	43.59	-35.04	-19	4.16	-36.8	32	0.1	7.5	1.2	1	1.4	5.9	0	0	0	0	4.5
28	43.59	-35.04	-19	46.92	-32.1	-19	4.44	-41.42	32	0.1	6.2	1	0.8	1.3	5.5	0	0	0	0	4
29	46.92	-32.1	-19	50.25	-28.61	-19	4.83	-46.39	32	0.18	4.8	0.8	0.6	1.3	5	0	0	0	0	3.4
30	50.25	-28.61	-19	53.58	-24.36	-19	5.39	-51.88	33	0.12	3.1	0.6	0.3	1.1	3.9	0	0	0	0	2.5
31	53.58	-24.36	-19	56.91	-19	-19	6.31	-58.17	31.5	0	1.1	0.3	0	0.3	1.5	0	0	0	0	1.1

LEGEND

x1 = Left x coordinate

ZsL= Left slice bottom elevation

- ZtL= Left top elevation
- x2 = Right x coordinate

ZsR= Right slice bottom elevation

ZtR= Right top eleevation

DL = Slice base width

an = Base angle

Fr = Average friction angle at base

c = Average cohesion at base (may include undrained clay strengths)

Wn = Total slice weight

ubL= Water pressure at left bottom point

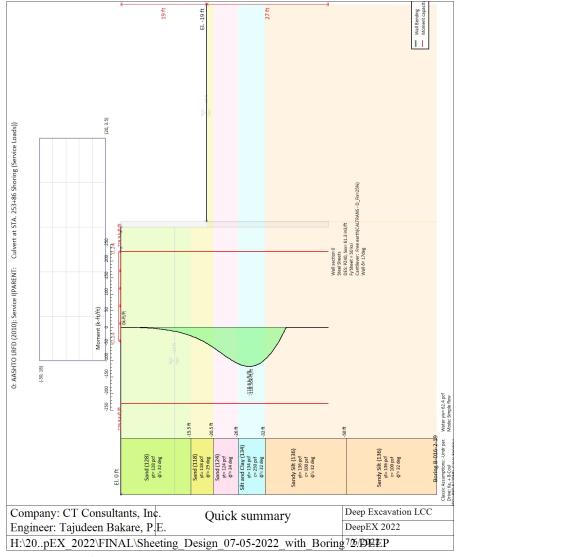
ubR= Water pressure at right bottom point

tBase= Base shear resistance

Nr = Effective normal reaction at bottom of slice

EiL= Lateral interslice force on left face

EiR= Lateral interslice force on right face


TL = Vertical interslice shear on left vertical face

TR = Vertical interslice shear on right vertical face

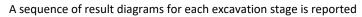
UbF= Normal water force at slice base

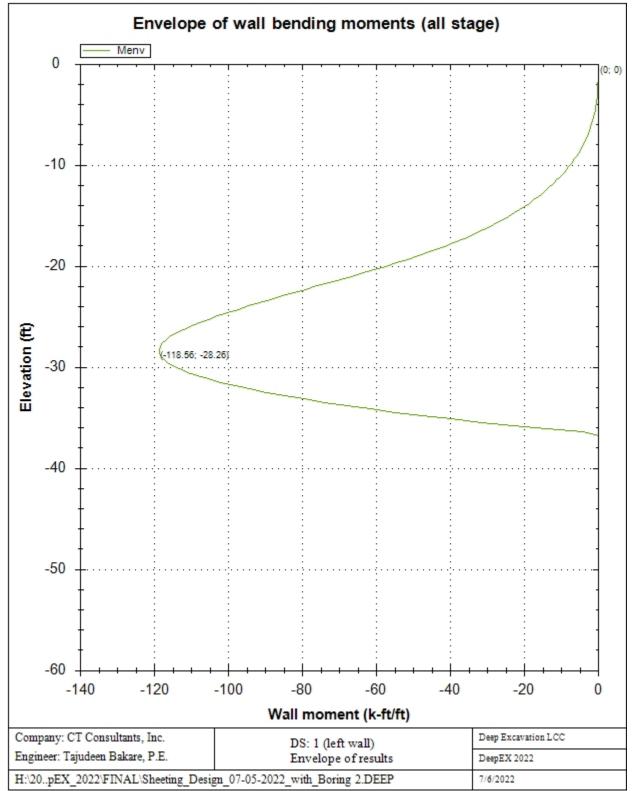
Project: ODOT PID No. 108665; LAK-20-19.59 - WEST Results for Design Section 1: 0: AASHTO LRFD (2010): Service I

ANALYSIS AND CHECKING SUMMARY

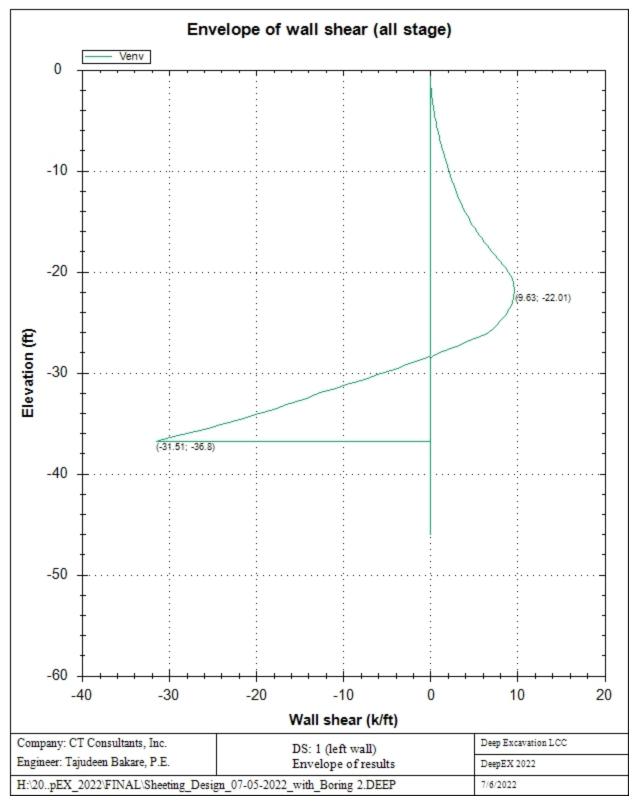
Summary of Wall Moments and Toe Requirements

Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall section	46	19	0/229.88	118.56/229.88	22.79	1.952	1.517	-36.8	2.924


1. FSmin	2. DxMax (in)	2. DxMax (in) 2. Stiffness		3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.034	12.4	2.924	0.453	12.449	2.924


General assumptions for last stage: Stage 1

	45/	1	2	6
--	-----	---	---	---


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot

Envelope of results

47/126

Extended vs Stage

49/	126	

	Calculation Result			placeme	Settlement		Wall Momen	t Wall Moment
				n)	(in)		(k-ft/ft)	(k-ft)
Stage 0	Calculated			0	N/A		0	0
Stage 1	Calculated		2.	21	2.86		118.56	118.56
	Wall Shear Wall Shea		near	STR Co	ombined	ST	R Moment	STR Shear
	(k/ft)	(k)			l Ratio	Wall Ratio		Wall Ratio
Stage 0	0	0			0		0	0
Stage 1	31.51	31.51 31.51		0.	0.516		0.516	0.193

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity). STR Moment : Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

	Max Support	Max Support	Critical	STR Support	Support Geotech
	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull out
Stage 0	0	0	N/A	No supports	No supports
Stage 1	0	0	N/A	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity). Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

	FS	Toe FS	Toe FS	Toe FS	Zcut	FS Mobilized	FS	
	Basal	Passive	Rotation	Length (nonlinear)		Passive	True/Active	
Stage 0	1000	22.79	21.628	139.394	N/A	N/A	N/A	
Stage 1	N/A	N/A	1.952	1.517 N/A		N/A	N/A	
		Hydr	aulic	Qfl	OW	FSslope		
		Heav	ve FS	(ft3)	/hr)			
Stag	ge 0	2.7	'66	N/	/Α	N/C		
Stag	ge 1	1.6	515	N/	/A	2.924		

Support Force/S vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Support Force vs Stage

Support Force vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	21.628	22.79	21.628	139.394	N/A	N/A
0:Stage 0	1.517	N/A	1.952	1.517	N/A	N/A

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). Wall embedment safety factors from conventional analysis (limit-equilibrium):

FS1 Passive : Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

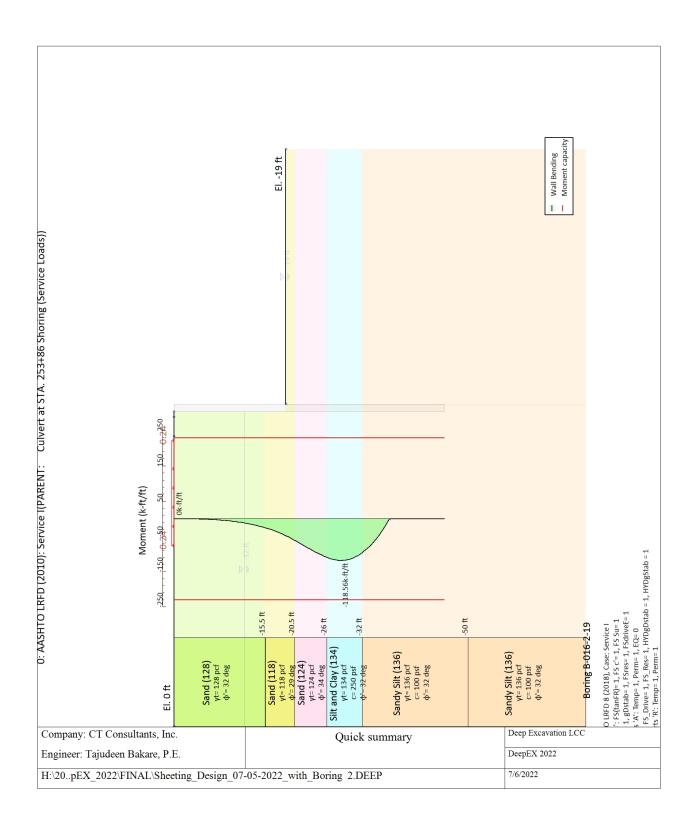
FS2 Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

FS3 Length : Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0 Wall embedment safety factors from non-linear analysis:

FS4 Mobilized Passive : Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS5 True/Active : Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust. Tables for stress checks follow: Support force/Design capacity

Support Check vs Stage


	No Supports
0:Stage 0	No support
1:Stage 1	

Forces (Res. F, M/Drive F, M)

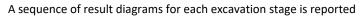
	1 1 1	, ,					
	FS1 Passive	FS2 Rotation	FS3 Length	FS4 Mobilized Passive	FS5 Actual Drive	Fh EQ Soil	Fh EQ Water
	(FxResist/FxDrive)	(Mresist/Mdrive)	(Embedment/ToeFS=1)	(FxPassive/FxPas_Mobili	/ Theory Active		
Stage 0	504.208/22.124	8302.57/383.88	46/0.33	N/A	N/A	N/A	N/A
Stage 1	N/A	1120.99/308.73	27/17.8	N/A	N/A	N/A	N/A

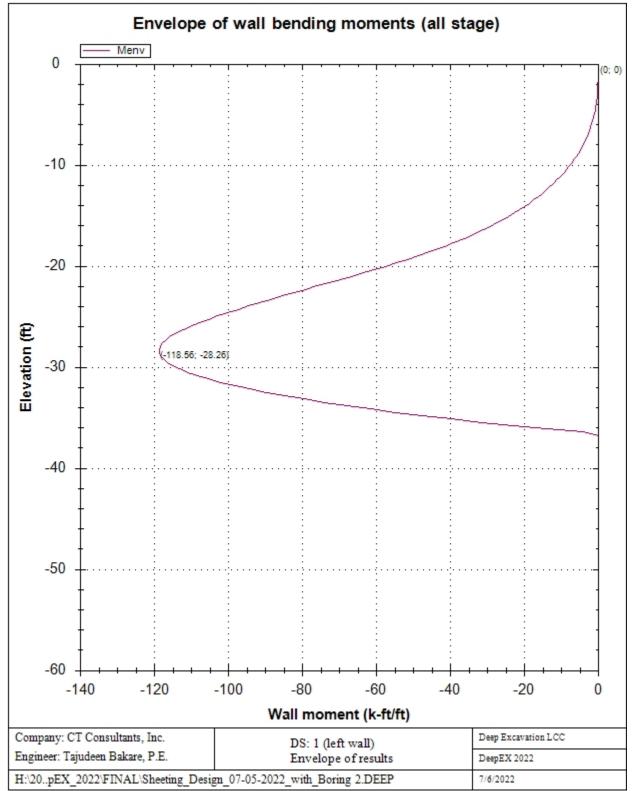
Reinforcement Requirements

	Parameter Description
Note:	Wall does not use steel reinforcement. Section does not apply.

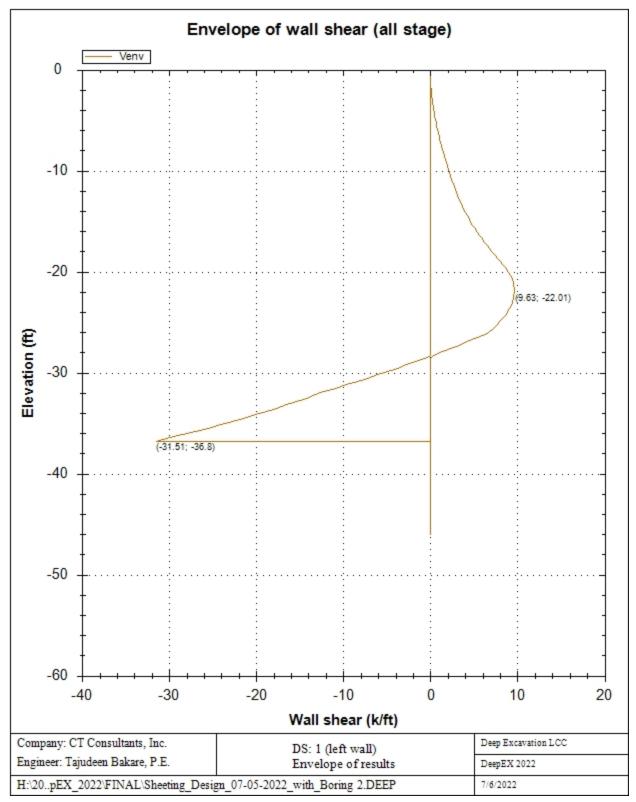
Summary of Wall Moments and Toe Requirements

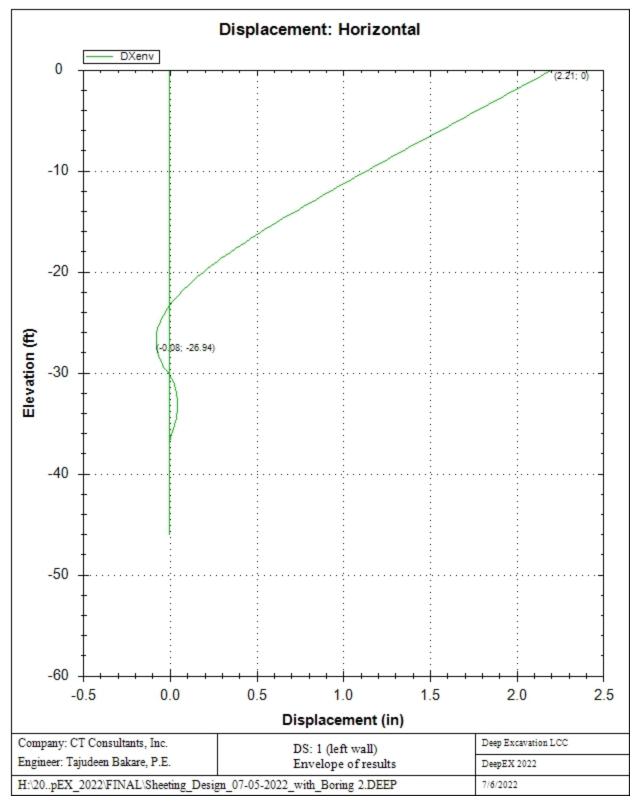
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0 V			0/229.88	118.56/229.88	22.79	1.952	1.517	-36.8	2.924	


Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.034	12.4	2.924	0.453	12.449	2.924

General assumptions for last stage: Stage 1


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

54/126

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following:

Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

St	age	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
		Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
	0	AASHTO LRFD	Service I	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
	1	AASHTO LRFD	Service I	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following: Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Service I	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	AASHTO LRFD	Service I	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1

SOIL DATA

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	rEur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(pcf)	(pcf)	(deg)	(psf)	(psf)	(deg)	(deg)	(ksf)	(-)	NL	NL	NL	NL		Model	
Sand (128)	128	120	32	0	N/A	N/A	N/A	300	3	0.31	3.26	N/A	N/A	True	Linear	
Sand (118)	118	118	29	0	N/A	N/A	N/A	300	3	0.35	2.88	N/A	N/A	True	Linear	
Sand (124)	124	124	34	0	N/A	N/A	N/A	300	3	0.28	3.54	N/A	N/A	True	Linear	
Silt and Clay (134	134	32	250	N/A	N/A	N/A	417.54	3	0.31	3.26	N/A	N/A	True	Linear	
Sandy Silt (13	136	136	32	100	N/A	N/A	N/A	400	3	0.31	3.26	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(psi)	(psi)	(k/ft3)	(ksi)
Sand (128)	0.35	-	-	0.47	0.8	-	-	0	0	0	-
Sand (118)	0.35	-	-	0.515	0.8	-	-	0	0	0	-
Sand (124)	0.35	-	-	0.441	0.8	-	-	0	0	0	-
Silt and Clay (0.4	-	-	0.47	0.8	-	-	18.1	12.1	30	-
Sandy Silt (13	0.4	-	-	0.47	0.8	-	-	0	0	0	-

gtot = total soil specific weight

gdry = dry weigth of the soil

Frict = friction angle

C' = effective cohesion

Su = Undrained shear strength (only for CLAY soils in undrained conditions, used as a cutoff strength in NL analysis) Evc = Virgin compression elastic modulus

Eur = unloading/reloading elastic modulus

Kap = Peak active thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kpp = Peak passive thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kacv = Constant volume active thrust coeff (only for clays, initial value)

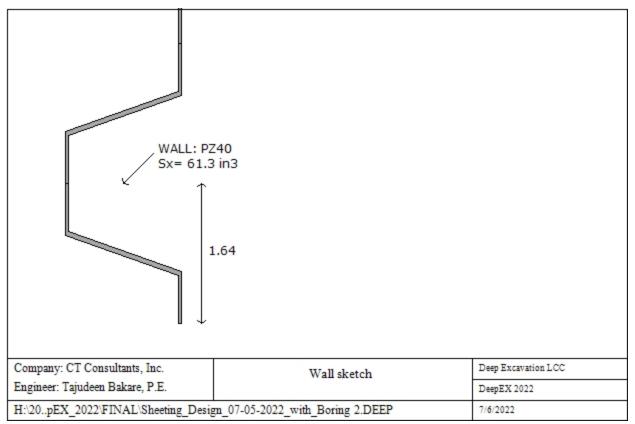
Kpcv = Constant volume passive thrust coeff (only for clays, initial value).

Spring models= spring model (LIN= constant E over the soil layer height , EXP=exponential , SIMC=simplified winkler) LIN= Linear-Elastic-Perfectly Plastic,

EXP: Exponential, SUB: Modulus of Subgrade Reaction

SIMC= Simplified Clay mode

SOIL BORINGS


Top Elev= superior SOil level Soil type= type of the soil (sand , clay , etc) OCR= overconsolidation ratio KO= at rest coefficient

Name: Boring B-016-2-19, pos: (0, 0)

Top elev.	Soil type	OCR	Ко
0	Sand (128)	1	0.47
-15.5	Sand (118)	1	0.52
-20.5	Sand (124)	1	0.44
-26	Silt and Clay (1	1	0.47
-32	Sandy Silt (136	1	0.47
-50	Sandy Silt (136	1	0.47

WALL DATA

Wall section 0: Wall section 0

Wall type: Steel sheet piling

Top wall EI: 0 ft Bottom wall EI: -46 ft

Hor. wall spacing: 1 ft Wall thickness = 1.37 ft

Passive width below exc: 1 ft $\,$ Active width below exc: 1 ft Swater= 1 ft $\,$

Steel members fy = 50 ksi Esteel = 29000 ksi

Wall friction: Constant value = 17 degrees

Steel wall capacities are calculated with ANSI/AISC 360-10

Concrete capacities are calculated with ACI 318-19

Note: With ultimate capacities you may have to use a structural safety factor.

Steel sheet pile properties

Table: Steel Sheet Pile Cross Sectional Properties

DES	Shape	W	А	h	t	b	S	lxx	Sxx
		(plf)	(in^2/ft)	(in)	(in)	(in)	(in)	(in^4/ft)	(in^3/ft)
PZ40	Z	65.6	11.75	16.4	0.5	19.69	0.605	503	61.3

GENERAL WALL DATA

Hor wall spacing= Wall horizontal spacing

Passive width below exc= spacing for passive thrust pressure for classic analysis

f'c=fck= cylindrical concrete resistance

fyk=fy= steel rebar characteristic resistance

Econc= Concrete Elastic modulus

fctk= characteristic Concrete tension

Esteel= steel elastic modulus

TABULAR DATA (principal parameters)

1) Diaphragm wall (rectangular cross section)

N/A= data not available

Fy=fyk

F'c=fck D=wall thickness B=wall width 2)Steel sheet pile DES=shape (Z or U) W=width per unit of length A=area h=height t=horizontal part thickness b=width of the single sheet pile part s=inclined part thickness Ixx=strong axis inertia (per unit of length) Sxx=strong axis section modulus (per unit of length) 3)Secant piles wall, Tangent piles wall, soldier piles, soldier piles and timber lagging W=weight per unit of length A=area D=diameter tw=web thickness tp= pipe thickness bf=flange width tf= flange thickness k= flange thickness+stem base height Ixx= strong axis inertia modulus (per unit of length) Sxx= strong axis section modulus (per unit of length) rx=radius of gyration about X axis ry=radius of gyration about Y axis lyy=weak axis inertia modulus (per unit of length) Syy=weak axis section modulus (per unit of length) rT=radius of gyration for torsion Cw= warping constant

GENERAL ANALYSIS CRITERIA

Summary of stage assumptions

Name	Analysis	Drive	ka-Mult	Htr T/B	Resist	Res	Contle
	Method	Press		(%)	Press	Mult	Method
Stage 0	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth
Stage 1	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth

Name	Support	Axial	Used	Min Toe	Тое	Тое
	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0		N/A	1	21.628	21.628	22.79
Stage 1		N/A	1	1.517	1.952	N/A

Name=excavation stage name

Analysis method

springs = Elastoplastic spring analysis used

DR = Drained condition for CLAY model

- U = Undrained condition for CLAY model for all the soils
- Up = Undrained condition just for selected soil

Limit equilibrium analysis settings

Drive press:

Ka (Active pressure diagram), Ka-Trap = Trapezoid apparent diagram from active pressures x multiplier,

FHWA= Federal Highway Administration apparent pressure diagrams.

Ko = At-rest lateral earth pressures.

Peck = Peck 1969 Apparent earth pressure diagrams.

2 Step rect = Two step rectangular apparent earth pressure diagram.

User def. = User defined apparent earth pressure diagram.

Ka+d (and so on) indicates that wall friction is applied

ka mult = multiplication factor for Ka when Ka-Trap is selected

Htr T/B (%) = trapezoidal pressure scheme, top and bottom triangular percentage of excavation depth H

Resit press = Kp (passive earth pressures)

Res Mult = Safety factor applied directly on resisting pressures (

COntle Method = cantilever analysis method for limit equilibrium analysis.

Support Model: Method for calculating support reactions in limit-equlibrium analysis.

Beam= support reactions beam analysis (uses Blum's method).

Trib= support reactions from tributary height calculations (Can be applied with apparent diagrams).

Axial Incl = Axial loads included for structural design

Used FS wall = Safety factor for axial+bending wall resistance to divide ultimate wall capacities.

Min FD Toe= embedded minimum safety factor (for limit equilibrium analysis)

Toe FS rot= rotation safety factor (classic for limit equilibrium analysis)

Toe FSpas= driving/resisting pressure safety factor (for limit equilibrium analysis)

EXCAVATION STAGES SKETCHES

A sequence of figures for each excavation stage is reported

Toe stability

Embedment FS vs Stage

		Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Sta	nge O	21.628	22.79	21.628	139.394	N/A	N/A
Sta	nge 1	1.517	N/A	1.952	1.517	N/A	N/A

Legend: Wall embedment safety factors (toe)

Min Toe FS= Minimum wall embedment safety factor (from all analysis methods)

Limit-equilibrium analysis methods: The following safety factors may not be applicable for all stages.

FS1 Passive: Horizontal force safety factor, FS1= Resisting/Driving force

FS2 Rotation: Rotational safety factor about lowest support, FS2= Resisting moment/Driving moment

FS3 Length (from FS1, FS2): Program determines maximum required wall embedment for safety factor of 1 for methods FS1 and FS2 (say length LFS1). Then FS length= Provided wall embedment/LFS1.

Non-linear elastoplastic analysis safety factors:

FS4 Mobilized Passive: Safety factor on mobilized passive resistance, FS4= Available passive soil resistance/Mobilized passive soil force on excavation side.

FS5 Active Drive Thrust/Theory Active: Ratio of soil thrust on retained side/ Active condition theoretical minimum thrust. This factor is not as critical, and indicates how close to active conditions the model is.

General recommendations on wall embedment (excluding FS5):

When then excavation is designed with allowable standards, engineers generally use minimum safety factors from 1.2 to 1.5 depending on the level of confidence. A minimum safety factor of 1.2 is generally applied on FS3.

With ultimate limit state designs (such as Eurocode 7, and LRFD) the required safety factor must generally be greater than 1.0. In non-linear solutions it might be impossible to achieve exactly 1 on FS4 as this would likely trigger overall failure.

Result diagrams (for walls)

A sequence of result diagrams for each excavation stage is reported

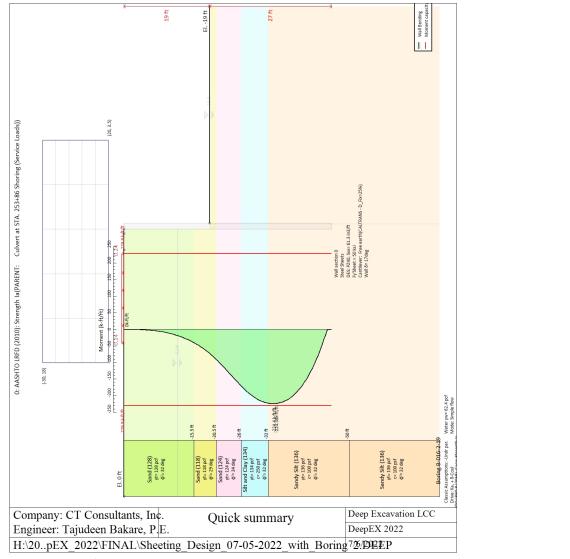
WALL RESULTS TABLE

LEGEND

Wall node=number of the node (0 at top) EL= Node elevation Sht L=Total horizontal soil pressure (on the left side of the wall) Sht R=Total horizontal soil pressure (on the right side of the wall) Shs L=Effective horizontal soil pressure (on the left side of the wall) Shs R=Effective horizontal soil pressure (on the right side of the wall) q=pressure given by the surcharge U L= Water pressure (on the left side of the wall) U R= Water pressure (on the right side of the wall) M=bending moment (per unit length) V=shear (per unit length) dx=wall deflection McapL=Ultimate bending moment (on the left side of the wall) McapR=Ultimate bending moment (on the right side of the wall) VcapL=Ultimate resistance shear (on the left side of the wall) VcapR=Ultimate resistance shear (on the right side of the wall)

EXCAVATION STAGES AND SLOPE STABILITY

Reports a sequence of figures for each stage with slope stability results.


SLOPE STABILITY ANALYSIS: SLICE RESULTS ALL STAGES

Slope stability analysis design section: 0: AASHTO LRFD (2010): Service I

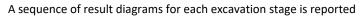
LEGEND x1 = Left x coordinate ZsL= Left slice bottom elevation ZtL= Left top elevation x2 = Right x coordinate ZsR= Right slice bottom elevation ZtR= Right top eleevation DL = Slice base width an = Base angle Fr = Average friction angle at base c = Average cohesion at base (may include undrained clay strengths) Wn = Total slice weight ubL= Water pressure at left bottom point ubR= Water pressure at right bottom point tBase= Base shear resistance Nr = Effective normal reaction at bottom of slice EiL= Lateral interslice force on left face EiR= Lateral interslice force on right face TL = Vertical interslice shear on left vertical face TR = Vertical interslice shear on right vertical face UbF= Normal water force at slice base

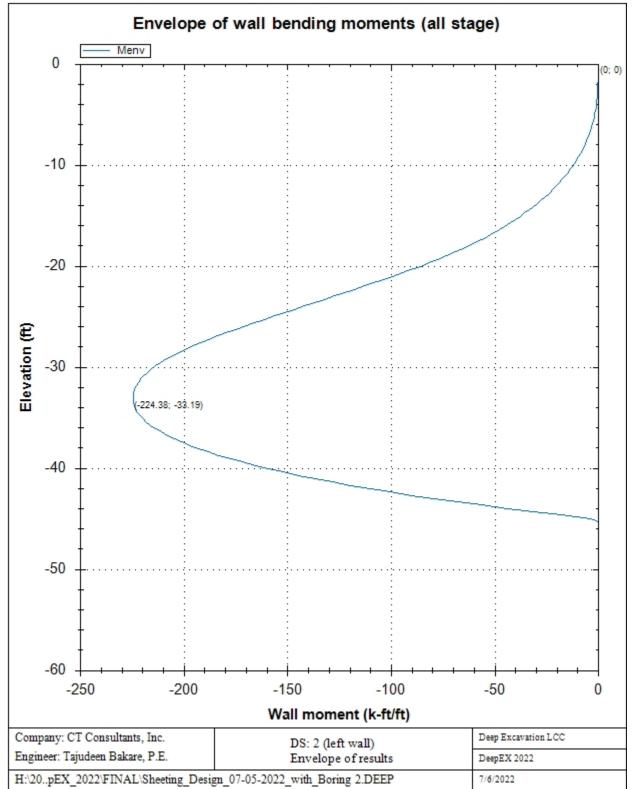
Project: ODOT PID No. 108665; LAK-20-19.59 - WEST Results for Design Section 2: 0: AASHTO LRFD (2010): Strength Ia

ANALYSIS AND CHECKING SUMMARY

Summary of Wall Moments and Toe Requirements

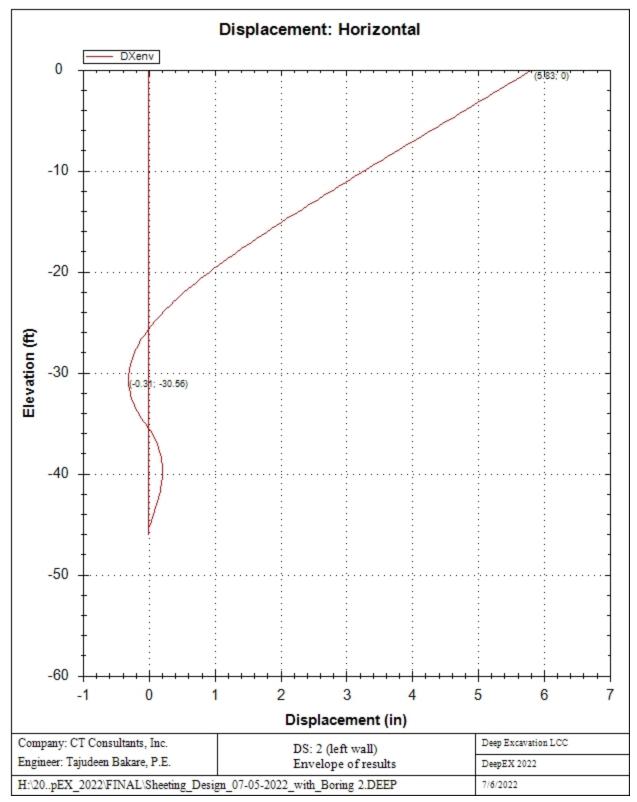
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall section	46	19	0/229.88	224.38/229.88	11.424	1.051	1.025	-45.34	2.874


1. FSmin	1. FSmin 2. DxMax (in)		2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.064	12.4	2.874	0.467	12.449	2.874


General assumptions for last stage: Stage 1

rrl	1	2	^
66/	Т	Z	ь


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

68/126

Extended vs Stage

	Calculation Res	Wall Dis	placeme	Settleme	ent	Wall Momen	t Wall Moment	
			(i	n)	(in)		(k-ft/ft)	(k-ft)
Stage 0	Calculated			0	N/A		0	0
Stage 1	Calculated		5.	.83	2.95		224.38	224.38
	Wall Shear	r Wall Sh		STR Co	ombined	ST	R Moment	STR Shear
	(k/ft)	(k)		Wal	l Ratio	V	Vall Ratio	Wall Ratio
Stage 0	0	0	0		0		0	
Stage 1	44.84	44.8	4	0.	976		0.976	0.275

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity). STR Moment : Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

	Max Support	Max Support	Critical	STR Support	Support Geotech
	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull out
Stage 0	0	0	N/A	No supports	No supports
Stage 1	0	0	N/A	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity). Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

	FS	Toe FS	Toe FS	Toe FS	Zcut	FS Mobilized	FS
	Basal	Passive	Rotation	Length	(nonlinear)	Passive	True/Active
Stage 0	1000	11.424	10.841	139.394	N/A	N/A	N/A
Stage 1	N/A	N/A	1.051	1.025	N/A	N/A	N/A
Hydraulic		aulic	Qflow		FSslope		
		Heave FS		(ft3/hr)			
Stage 0 2.766		N/A		N/C			
Stage 1 1.615		N/A		2.874			

Support Force/S vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Support Force vs Stage

Support Force vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	10.841	11.424	10.841	139.394	N/A	N/A
0:Stage 0	1.025	N/A	1.051	1.025	N/A	N/A

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). Wall embedment safety factors from conventional analysis (limit-equilibrium):

FS1 Passive : Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

FS2 Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

FS3 Length : Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0 Wall embedment safety factors from non-linear analysis:

FS4 Mobilized Passive : Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS5 True/Active: Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust.Tables for stress checks follow: Support force/Design capacity

Support Check vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Forces (Res. F, M/Drive F, M)

	FS1 Passive	FS2 Rotation	FS3 Length	FS4 Mobilized Passive	FS5 Actual Drive	Fh EQ Soil	Fh EQ Water
	(FxResist/FxDrive)	(Mresist/Mdrive)	(Embedment/ToeFS=1)	(FxPassive/FxPas_Mobili	/ Theory Active		
Stage 0	379.104/33.186	6242.54/575.82	46/0.33	N/A	N/A	N/A	N/A
Stage 1	N/A	842.85/417.17	27/26.34	N/A	N/A	N/A	N/A

Reinforcement Requirements

	Parameter Description
Note:	Wall does not use steel reinforcement. Section does not apply.

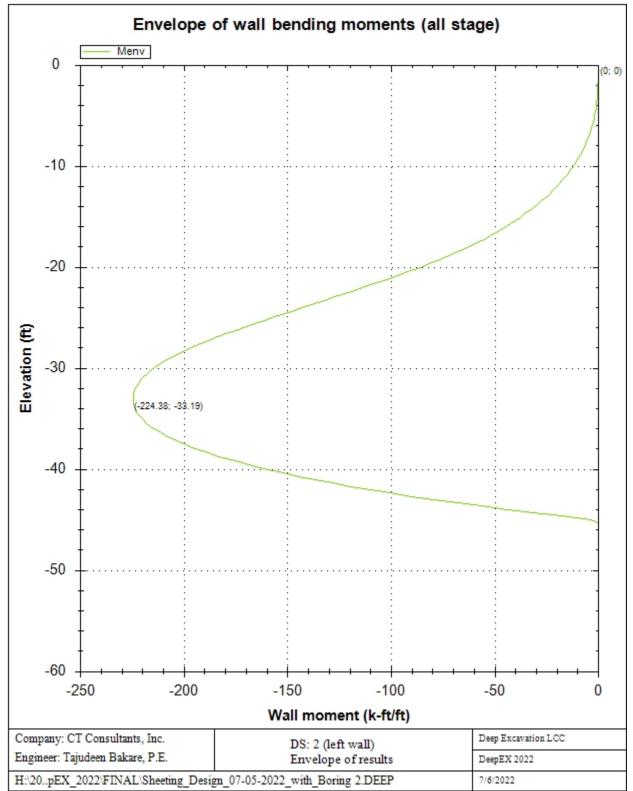
Wall Bending Moment capacity El. -19 ft 1.1 0: AASHTO LRFD (2010): Strength Ia(PARENT: Culvert at STA. 253+86 Shoring (Service Loads)) 150, 0:2450 Moment (k-ft/ft) 50 0k-ft/ft -150, <u>0.2</u>40, 0 LRFD 8 (2018), Case: Strength la ': FS(tanFR)= 1, FS c² = 1, FS Su= 1 1, g05tab=-1, FSres= 1.33, FSdriveE= 1.35 1, r1, rEmp= 1, FSres= 1, FCQ= 0 1, r1, rEmp= 1, FS Res= 1, HY0g05tab = 1, HY0gStab = 1 ts 'Rt: Temp= 1, Perm= 1.11 -250 224.38k-ft/ft -15.5 ft -20.5 ft -50 ft -26 ft -32 ft Boring B-016-2-19 Sand (118) y= 118 pcf y= 219 deg Sand (124) y= 124 pcf φ= 32 deg y= 32 deg φ= 32 deg Sandy Silt (136) yt= 136 pcfc= 100 psf $\phi'= 32 deg$ Sandy Silt (136) yt= 136 pcf c= 100 psf ϕ^{t} = 32 deg **Sand (128)** yt= 128 pcf \$\$\phi'= 32 deg EI. 0 ft Company: CT Consultants, Inc. Deep Excavation LCC Quick summary Engineer: Tajudeen Bakare, P.E. DeepEX 2022 H:\20..pEX_2022\FINAL\Sheeting_Design_07-05-2022_with_Boring 2.DEEP 7/6/2022

72/126

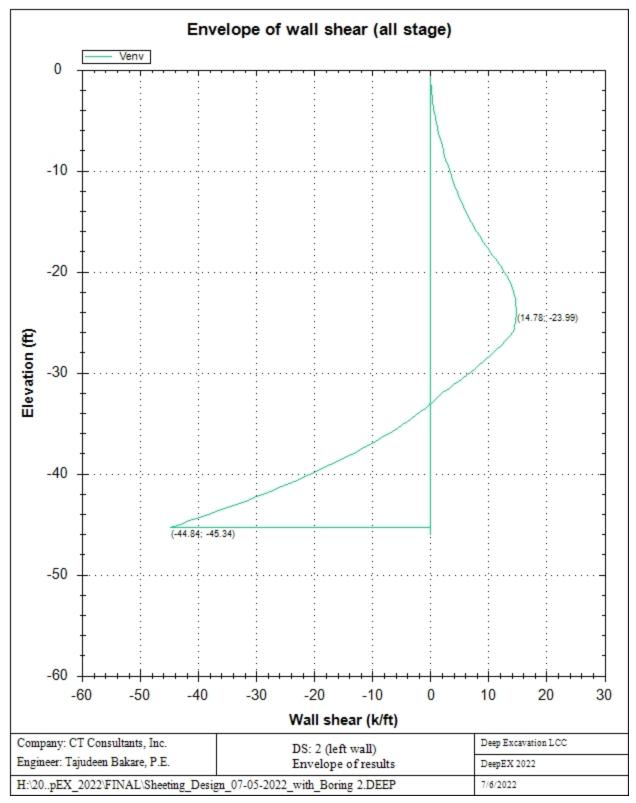
Summary of Wall Moments and Toe Requirements

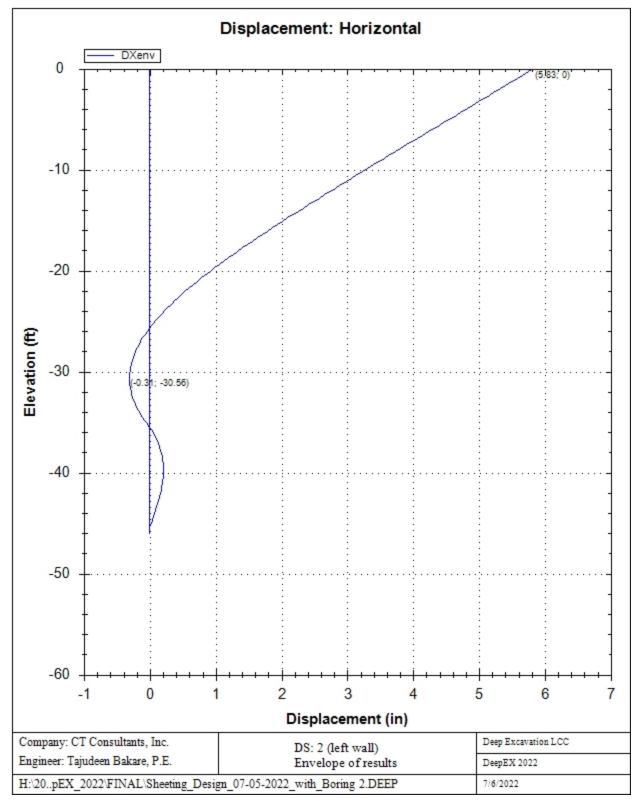
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0 V	Wall section	46	19	0/229.88	224.38/229.88	11.424	1.051	1.025	-45.34	2.874

Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.064	12.4	2.874	0.467	12.449	2.874

General assumptions for last stage: Stage 1


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

A sequence of result diagrams for each excavation stage is reported

75/126

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following:

Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Strength Ia	1	1	1	0	1	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1
1	AASHTO LRFD	Strength Ia	1	1	1	0	1	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following: Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Strength la	1	1	1	0	1	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1
1	AASHTO LRFD	Strength la	1	1	1	0	1	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1

SOIL DATA

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	rEur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(pcf)	(pcf)	(deg)	(psf)	(psf)	(deg)	(deg)	(ksf)	(-)	NL	NL	NL	NL		Model	
Sand (128)	128	120	32	0	N/A	N/A	N/A	300	3	0.31	3.26	N/A	N/A	True	Linear	
Sand (118)	118	118	29	0	N/A	N/A	N/A	300	3	0.35	2.88	N/A	N/A	True	Linear	
Sand (124)	124	124	34	0	N/A	N/A	N/A	300	3	0.28	3.54	N/A	N/A	True	Linear	
Silt and Clay (134	134	32	250	N/A	N/A	N/A	417.54	3	0.31	3.26	N/A	N/A	True	Linear	
Sandy Silt (13	136	136	32	100	N/A	N/A	N/A	400	3	0.31	3.26	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(psi)	(psi)	(k/ft3)	(ksi)
Sand (128)	0.35	-	-	0.47	0.8	-	-	0	0	0	-
Sand (118)	0.35	-	-	0.515	0.8	-	-	0	0	0	-
Sand (124)	0.35	-	-	0.441	0.8	-	-	0	0	0	-
Silt and Clay (0.4	-	-	0.47	0.8	-	-	18.1	12.1	30	-
Sandy Silt (13	0.4	-	-	0.47	0.8	-	-	0	0	0	-

gtot = total soil specific weight

gdry = dry weigth of the soil

Frict = friction angle

C' = effective cohesion

Su = Undrained shear strength (only for CLAY soils in undrained conditions, used as a cutoff strength in NL analysis) Evc = Virgin compression elastic modulus

Eur = unloading/reloading elastic modulus

Kap = Peak active thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kpp = Peak passive thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kacv = Constant volume active thrust coeff (only for clays, initial value)

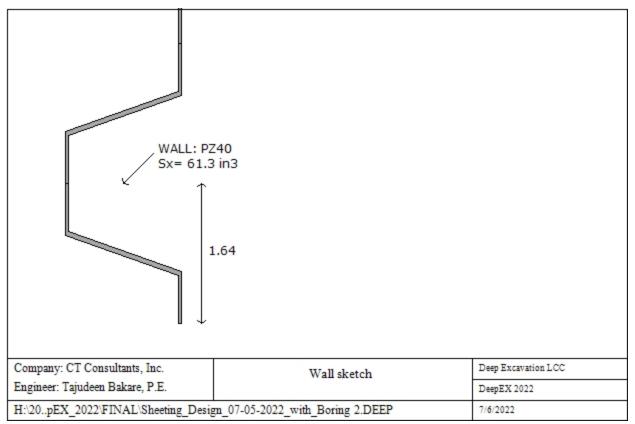
Kpcv = Constant volume passive thrust coeff (only for clays, initial value).

Spring models= spring model (LIN= constant E over the soil layer height , EXP=exponential , SIMC=simplified winkler) LIN= Linear-Elastic-Perfectly Plastic,

EXP: Exponential, SUB: Modulus of Subgrade Reaction

SIMC= Simplified Clay mode

SOIL BORINGS


Top Elev= superior SOil level Soil type= type of the soil (sand , clay , etc) OCR= overconsolidation ratio KO= at rest coefficient

Name: Boring B-016-2-19, pos: (0, 0)

Top elev.	Soil type	OCR	Ко
0	Sand (128)	1	0.47
-15.5	Sand (118)	1	0.52
-20.5	Sand (124)	1	0.44
-26	Silt and Clay (1	1	0.47
-32	Sandy Silt (136	1	0.47
-50	Sandy Silt (136	1	0.47

WALL DATA

Wall section 0: Wall section 0

Wall type: Steel sheet piling

Top wall EI: 0 ft Bottom wall EI: -46 ft

Hor. wall spacing: 1 ft Wall thickness = 1.37 ft

Passive width below exc: 1 ft $\,$ Active width below exc: 1 ft Swater= 1 ft $\,$

Steel members fy = 50 ksi Esteel = 29000 ksi

Wall friction: Constant value = 17 degrees

Steel wall capacities are calculated with ANSI/AISC 360-10

Concrete capacities are calculated with ACI 318-19

Note: With ultimate capacities you may have to use a structural safety factor.

Steel sheet pile properties

Table: Steel Sheet Pile Cross Sectional Properties

DES	Shape	W	А	h	t	b	S	lxx	Sxx
		(plf)	(in^2/ft)	(in)	(in)	(in)	(in)	(in^4/ft)	(in^3/ft)
PZ40	Z	65.6	11.75	16.4	0.5	19.69	0.605	503	61.3

GENERAL WALL DATA

Hor wall spacing= Wall horizontal spacing

Passive width below exc= spacing for passive thrust pressure for classic analysis

f'c=fck= cylindrical concrete resistance

fyk=fy= steel rebar characteristic resistance

Econc= Concrete Elastic modulus

fctk= characteristic Concrete tension

Esteel= steel elastic modulus

TABULAR DATA (principal parameters)

1) Diaphragm wall (rectangular cross section)

N/A= data not available

Fy=fyk

F'c=fck D=wall thickness B=wall width 2)Steel sheet pile DES=shape (Z or U) W=width per unit of length A=area h=height t=horizontal part thickness b=width of the single sheet pile part s=inclined part thickness Ixx=strong axis inertia (per unit of length) Sxx=strong axis section modulus (per unit of length) 3)Secant piles wall, Tangent piles wall, soldier piles, soldier piles and timber lagging W=weight per unit of length A=area D=diameter tw=web thickness tp= pipe thickness bf=flange width tf= flange thickness k= flange thickness+stem base height Ixx= strong axis inertia modulus (per unit of length) Sxx= strong axis section modulus (per unit of length) rx=radius of gyration about X axis ry=radius of gyration about Y axis lyy=weak axis inertia modulus (per unit of length) Syy=weak axis section modulus (per unit of length) rT=radius of gyration for torsion Cw= warping constant

GENERAL ANALYSIS CRITERIA

Summary of stage assumptions

Name	Analysis	Drive	ka-Mult	Htr T/B	Resist	Res	Contle
	Method	Press		(%)	Press	Mult	Method
Stage 0	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth
Stage 1	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth

Name	Support	Axial	Used	Min Toe	Тое	Тое
	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0		N/A	1	10.841	10.841	11.424
Stage 1		N/A	1	1.025	1.051	N/A

Name=excavation stage name

Analysis method

springs = Elastoplastic spring analysis used

DR = Drained condition for CLAY model

- U = Undrained condition for CLAY model for all the soils
- Up = Undrained condition just for selected soil

Limit equilibrium analysis settings

Drive press:

Ka (Active pressure diagram), Ka-Trap = Trapezoid apparent diagram from active pressures x multiplier,

FHWA= Federal Highway Administration apparent pressure diagrams.

Ko = At-rest lateral earth pressures.

Peck = Peck 1969 Apparent earth pressure diagrams.

2 Step rect = Two step rectangular apparent earth pressure diagram.

User def. = User defined apparent earth pressure diagram.

Ka+d (and so on) indicates that wall friction is applied

ka mult = multiplication factor for Ka when Ka-Trap is selected

Htr T/B (%) = trapezoidal pressure scheme, top and bottom triangular percentage of excavation depth H

Resit press = Kp (passive earth pressures)

Res Mult = Safety factor applied directly on resisting pressures (

COntle Method = cantilever analysis method for limit equilibrium analysis.

Support Model: Method for calculating support reactions in limit-equlibrium analysis.

Beam= support reactions beam analysis (uses Blum's method).

Trib= support reactions from tributary height calculations (Can be applied with apparent diagrams).

Axial Incl = Axial loads included for structural design

Used FS wall = Safety factor for axial+bending wall resistance to divide ultimate wall capacities.

Min FD Toe= embedded minimum safety factor (for limit equilibrium analysis)

Toe FS rot= rotation safety factor (classic for limit equilibrium analysis)

Toe FSpas= driving/resisting pressure safety factor (for limit equilibrium analysis)

EXCAVATION STAGES SKETCHES

A sequence of figures for each excavation stage is reported

Toe stability

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	10.841	11.424	10.841	139.394	N/A	N/A
Stage 1	1.025	N/A	1.051	1.025	N/A	N/A

Legend: Wall embedment safety factors (toe)

Min Toe FS= Minimum wall embedment safety factor (from all analysis methods)

Limit-equilibrium analysis methods: The following safety factors may not be applicable for all stages.

FS1 Passive: Horizontal force safety factor, FS1= Resisting/Driving force

FS2 Rotation: Rotational safety factor about lowest support, FS2= Resisting moment/Driving moment

FS3 Length (from FS1, FS2): Program determines maximum required wall embedment for safety factor of 1 for methods FS1 and FS2 (say length LFS1). Then FS length= Provided wall embedment/LFS1.

Non-linear elastoplastic analysis safety factors:

FS4 Mobilized Passive: Safety factor on mobilized passive resistance, FS4= Available passive soil resistance/Mobilized passive soil force on excavation side.

FS5 Active Drive Thrust/Theory Active: Ratio of soil thrust on retained side/ Active condition theoretical minimum thrust. This factor is not as critical, and indicates how close to active conditions the model is.

General recommendations on wall embedment (excluding FS5):

When then excavation is designed with allowable standards, engineers generally use minimum safety factors from 1.2 to 1.5 depending on the level of confidence. A minimum safety factor of 1.2 is generally applied on FS3.

With ultimate limit state designs (such as Eurocode 7, and LRFD) the required safety factor must generally be greater than 1.0. In non-linear solutions it might be impossible to achieve exactly 1 on FS4 as this would likely trigger overall failure.

Result diagrams (for walls)

A sequence of result diagrams for each excavation stage is reported

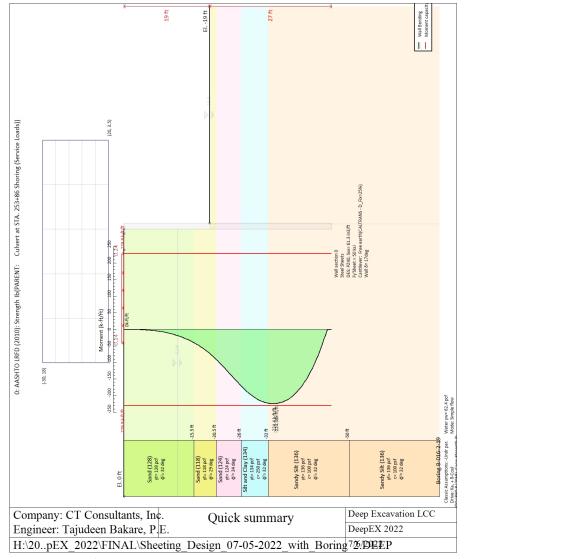
WALL RESULTS TABLE

LEGEND

Wall node=number of the node (0 at top) EL= Node elevation Sht L=Total horizontal soil pressure (on the left side of the wall) Sht R=Total horizontal soil pressure (on the right side of the wall) Shs L=Effective horizontal soil pressure (on the left side of the wall) Shs R=Effective horizontal soil pressure (on the right side of the wall) q=pressure given by the surcharge U L= Water pressure (on the left side of the wall) U R= Water pressure (on the right side of the wall) M=bending moment (per unit length) V=shear (per unit length) dx=wall deflection McapL=Ultimate bending moment (on the left side of the wall) McapR=Ultimate bending moment (on the right side of the wall) VcapL=Ultimate resistance shear (on the left side of the wall) VcapR=Ultimate resistance shear (on the right side of the wall)

EXCAVATION STAGES AND SLOPE STABILITY

Reports a sequence of figures for each stage with slope stability results.


SLOPE STABILITY ANALYSIS: SLICE RESULTS ALL STAGES

Slope stability analysis design section: 0: AASHTO LRFD (2010): Strength Ia

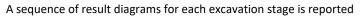
LEGEND x1 = Left x coordinate ZsL= Left slice bottom elevation ZtL= Left top elevation x2 = Right x coordinate ZsR= Right slice bottom elevation ZtR= Right top eleevation DL = Slice base width an = Base angle Fr = Average friction angle at base c = Average cohesion at base (may include undrained clay strengths) Wn = Total slice weight ubL= Water pressure at left bottom point ubR= Water pressure at right bottom point tBase= Base shear resistance Nr = Effective normal reaction at bottom of slice EiL= Lateral interslice force on left face EiR= Lateral interslice force on right face TL = Vertical interslice shear on left vertical face TR = Vertical interslice shear on right vertical face UbF= Normal water force at slice base

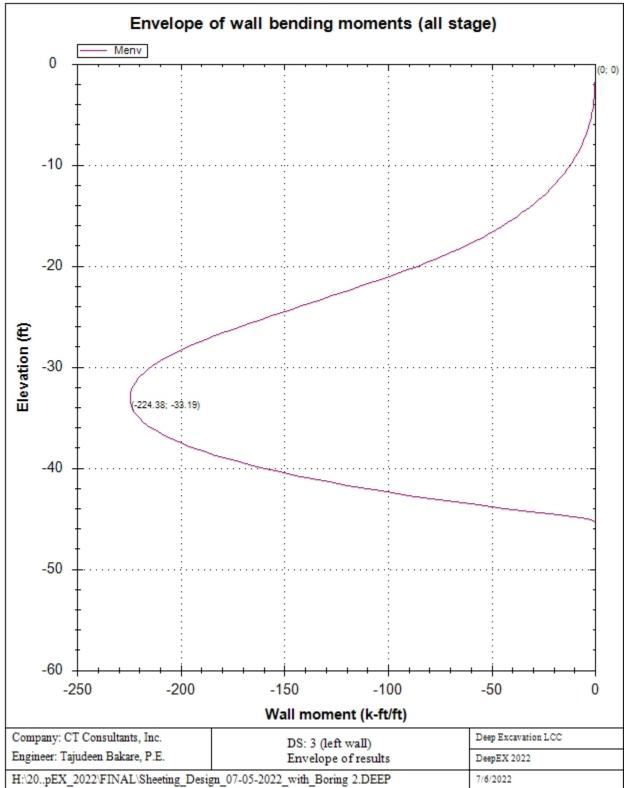
Project: ODOT PID No. 108665; LAK-20-19.59 - WEST Results for Design Section 3: 0: AASHTO LRFD (2010): Strength Ib

ANALYSIS AND CHECKING SUMMARY

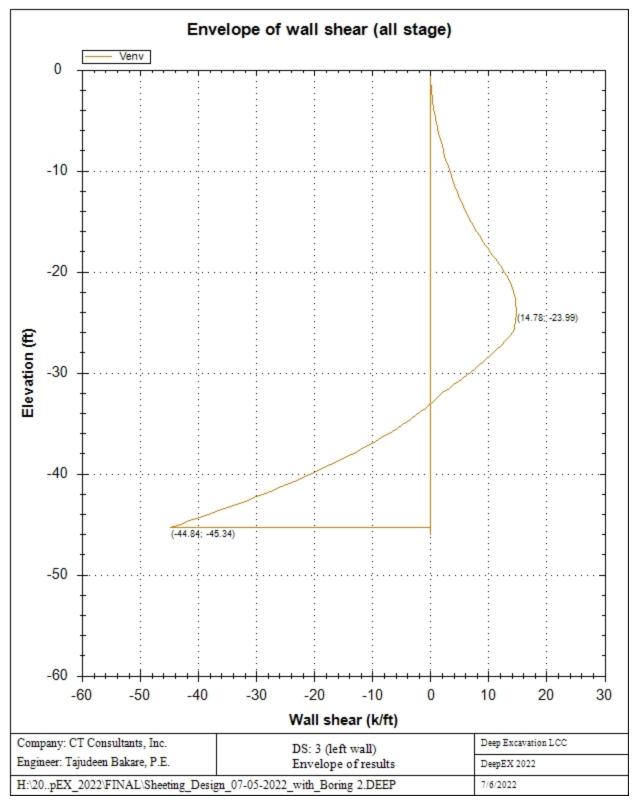
Summary of Wall Moments and Toe Requirements

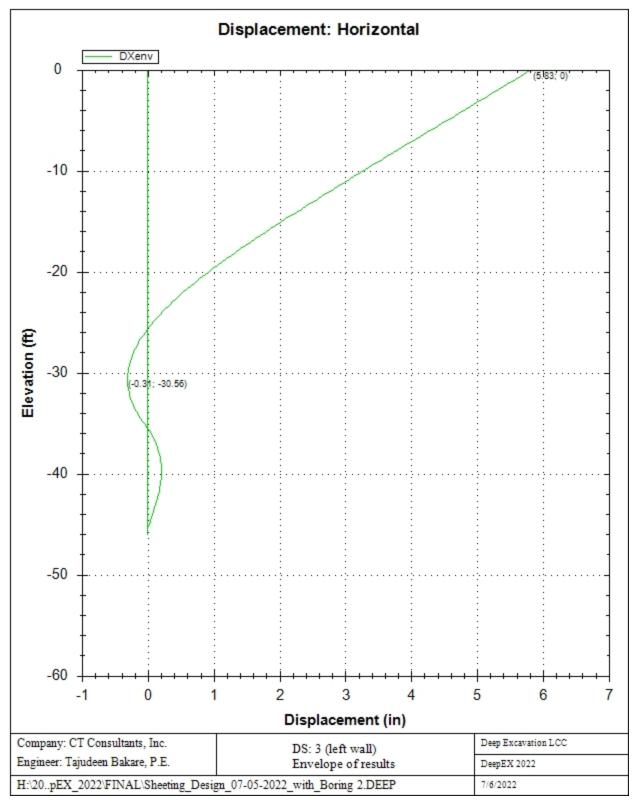
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall section	46	19	0/229.88	224.38/229.88	11.424	1.051	1.025	-45.34	2.874


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.064	12.4	2.874	0.467	12.449	2.874


General assumptions for last stage: Stage 1

87	/1	26
----	----	----


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

89/126

Extended vs Stage

	Calculation Re	Wall Dis	placeme	Settleme	ent	Wall Momen	t Wall Moment	
			(i	n)	(in)		(k-ft/ft)	(k-ft)
Stage 0	Calculated			0	N/A		0	0
Stage 1	Calculated		5.	83	2.95		224.38	224.38
	Wall Shear	Wall Sh	near	STR Co	ombined	ST	R Moment	STR Shear
	(k/ft)	(k)		Wal	l Ratio	V	Vall Ratio	Wall Ratio
Stage 0	0	0			0		0	0
Stage 1	44.84	44.8	4	0.	976		0.976	0.275

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity). STR Moment : Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

	Max Support	Max Support	Critical	STR Support	Support Geotech
	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull out
Stage 0	0	0	N/A	No supports	No supports
Stage 1	0	0	N/A	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity). Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

	FS	Toe FS	Toe FS	Toe FS	Zcut	FS Mobilized	FS
	Basal	Passive	Rotation	Length	(nonlinear)	Passive	True/Active
Stage 0	1000	11.424	10.841	139.394	N/A	N/A	N/A
Stage 1	N/A	N/A	1.051	1.025	N/A	N/A	N/A
		Hydraulic		Qflow		FSslope	
			ve FS	(ft3	/hr)		
Stage 0		2.766		N/A		N/C	
Stage 1		1.615		N/A		2.874	

Support Force/S vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Support Force vs Stage

Support Force vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	10.841	11.424	10.841	139.394	N/A	N/A
0:Stage 0	1.025	N/A	1.051	1.025	N/A	N/A

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). Wall embedment safety factors from conventional analysis (limit-equilibrium):

FS1 Passive : Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

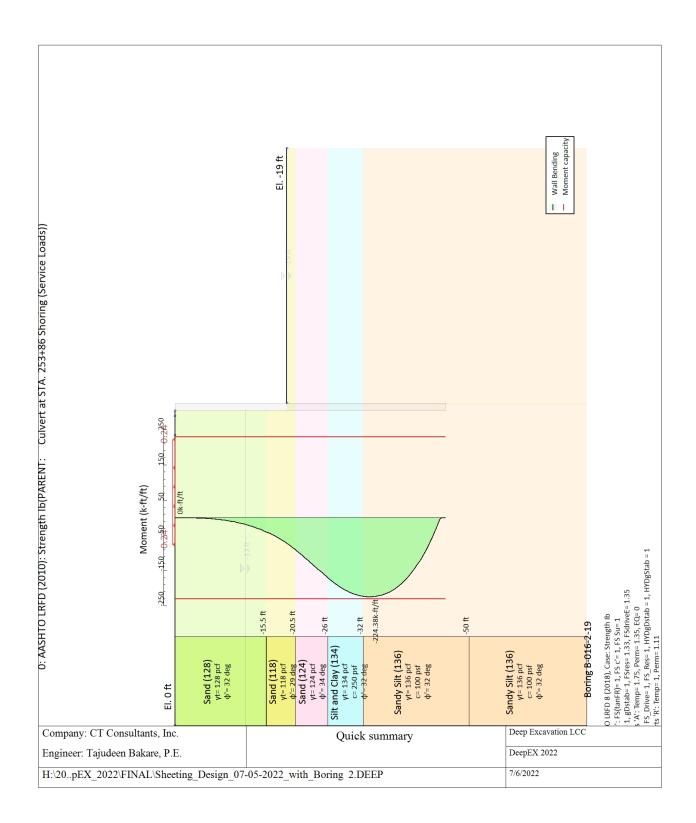
FS2 Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

FS3 Length : Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0 Wall embedment safety factors from non-linear analysis:

FS4 Mobilized Passive : Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS5 True/Active : Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust. Tables for stress checks follow: Support force/Design capacity

Support Check vs Stage


	No Supports
0:Stage 0	No support
1:Stage 1	

Forces (Res. F, M/Drive F, M)

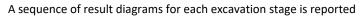
	, , ,	, ,					
	FS1 Passive	FS2 Rotation	FS3 Length	FS4 Mobilized Passive	FS5 Actual Drive	Fh EQ Soil	Fh EQ Water
	(FxResist/FxDrive)	(Mresist/Mdrive)	(Embedment/ToeFS=1)	(FxPassive/FxPas_Mobili	/ Theory Active		
Stage 0	379.104/33.186	6242.54/575.82	46/0.33	N/A	N/A	N/A	N/A
Stage 1	N/A	842.85/417.17	27/26.34	N/A	N/A	N/A	N/A

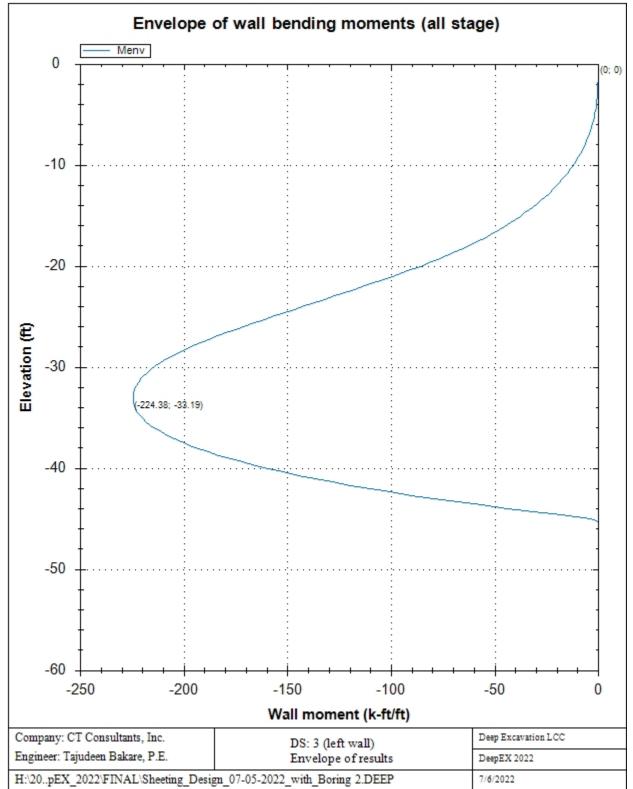
Reinforcement Requirements

	Parameter Description
Note:	Wall does not use steel reinforcement. Section does not apply.

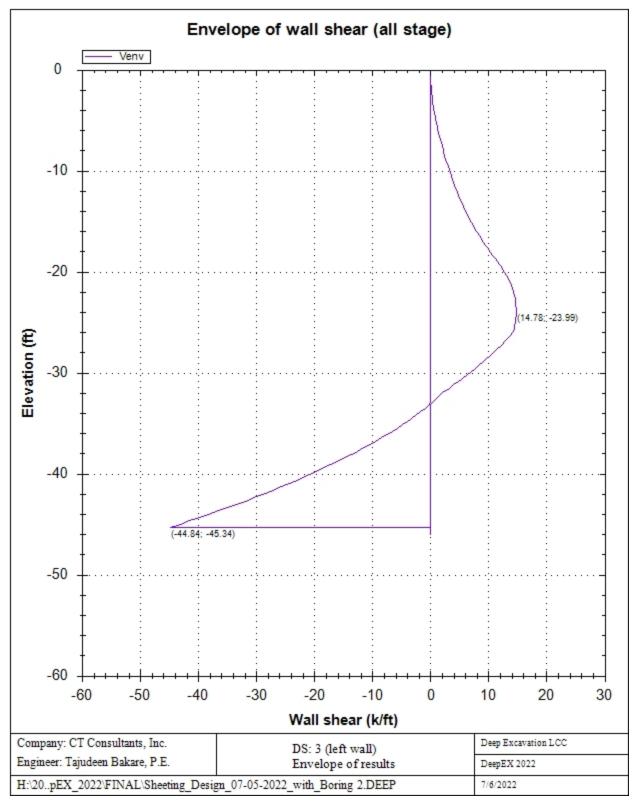
Summary of Wall Moments and Toe Requirements

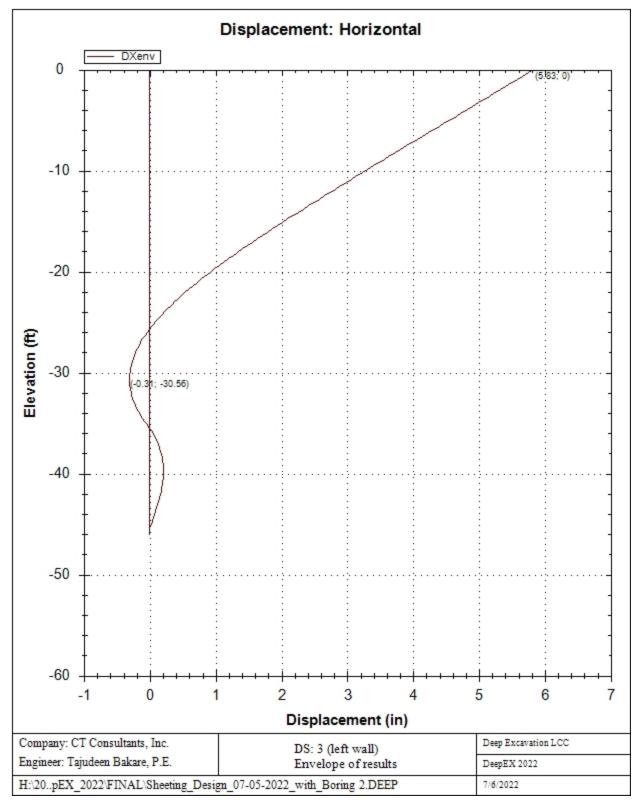
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0 V	Wall section	46	19	0/229.88	224.38/229.88	11.424	1.051	1.025	-45.34	2.874


Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.064	12.4	2.874	0.467	12.449	2.874

General assumptions for last stage: Stage 1


Concrete Code:	ACI 318-19
Steel Code:	ANSI/AISC 360-10
1st Wall Limit Equilibrium	California Shoring Manual-11
Negative moment	20%:
Drain State Clays	Default
Water γ= 62.4 pcf	Simple flow
Drive	Ka, + δ-Coul
Resist	Kp,+ δ-Caquot


Envelope of results

96/126

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following:

Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stag	e Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Strength Ib	1	1	1	0	1.35	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1
1	AASHTO LRFD	Strength Ib	1	1	1	0	1.35	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following: Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Strength Ib	1	1	1	0	1.35	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1
1	AASHTO LRFD	Strength Ib	1	1	1	0	1.35	1.75	1.11	1	1.35	1.33	1	1	1	1	1	1

SOIL DATA

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	rEur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(pcf)	(pcf)	(deg)	(psf)	(psf)	(deg)	(deg)	(ksf)	(-)	NL	NL	NL	NL		Model	
Sand (128)	128	120	32	0	N/A	N/A	N/A	300	3	0.31	3.26	N/A	N/A	True	Linear	
Sand (118)	118	118	29	0	N/A	N/A	N/A	300	3	0.35	2.88	N/A	N/A	True	Linear	
Sand (124)	124	124	34	0	N/A	N/A	N/A	300	3	0.28	3.54	N/A	N/A	True	Linear	
Silt and Clay (134	134	32	250	N/A	N/A	N/A	417.54	3	0.31	3.26	N/A	N/A	True	Linear	
Sandy Silt (13	136	136	32	100	N/A	N/A	N/A	400	3	0.31	3.26	N/A	N/A	True	Linear	

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(psi)	(psi)	(k/ft3)	(ksi)
Sand (128)	0.35	-	-	0.47	0.8	-	-	0	0	0	-
Sand (118)	0.35	-	-	0.515	0.8	-	-	0	0	0	-
Sand (124)	0.35	-	-	0.441	0.8	-	-	0	0	0	-
Silt and Clay (0.4	-	-	0.47	0.8	-	-	18.1	12.1	30	-
Sandy Silt (13	0.4	-	-	0.47	0.8	-	-	0	0	0	-

gtot = total soil specific weight

gdry = dry weigth of the soil

Frict = friction angle

C' = effective cohesion

Su = Undrained shear strength (only for CLAY soils in undrained conditions, used as a cutoff strength in NL analysis) Evc = Virgin compression elastic modulus

Eur = unloading/reloading elastic modulus

Kap = Peak active thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kpp = Peak passive thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kacv = Constant volume active thrust coeff (only for clays, initial value)

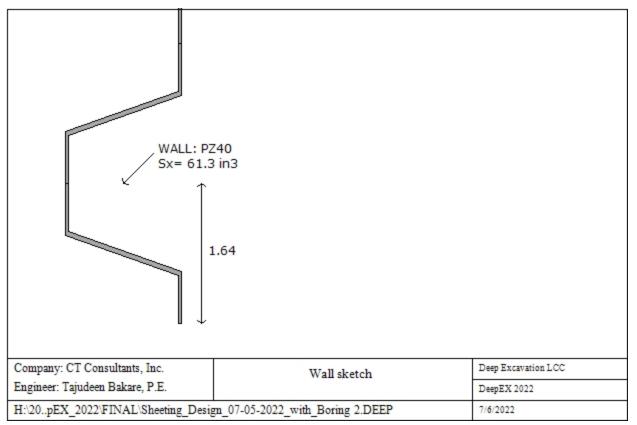
Kpcv = Constant volume passive thrust coeff (only for clays, initial value).

Spring models= spring model (LIN= constant E over the soil layer height , EXP=exponential , SIMC=simplified winkler) LIN= Linear-Elastic-Perfectly Plastic,

EXP: Exponential, SUB: Modulus of Subgrade Reaction

SIMC= Simplified Clay mode

SOIL BORINGS


Top Elev= superior SOil level Soil type= type of the soil (sand , clay , etc) OCR= overconsolidation ratio KO= at rest coefficient

Name: Boring B-016-2-19, pos: (0, 0)

Top elev.	Soil type	OCR	Ко
0	Sand (128)	1	0.47
-15.5	Sand (118)	1	0.52
-20.5	Sand (124)	1	0.44
-26	Silt and Clay (1	1	0.47
-32	Sandy Silt (136	1	0.47
-50	Sandy Silt (136	1	0.47

WALL DATA

Wall section 0: Wall section 0

Wall type: Steel sheet piling

Top wall EI: 0 ft Bottom wall EI: -46 ft

Hor. wall spacing: 1 ft Wall thickness = 1.37 ft

Passive width below exc: 1 ft $\,$ Active width below exc: 1 ft Swater= 1 ft $\,$

Steel members fy = 50 ksi Esteel = 29000 ksi

Wall friction: Constant value = 17 degrees

Steel wall capacities are calculated with ANSI/AISC 360-10

Concrete capacities are calculated with ACI 318-19

Note: With ultimate capacities you may have to use a structural safety factor.

Steel sheet pile properties

Table: Steel Sheet Pile Cross Sectional Properties

DES	Shape	W	А	h	t	b	S	lxx	Sxx
		(plf)	(in^2/ft)	(in)	(in)	(in)	(in)	(in^4/ft)	(in^3/ft)
PZ40	Z	65.6	11.75	16.4	0.5	19.69	0.605	503	61.3

GENERAL WALL DATA

Hor wall spacing= Wall horizontal spacing

Passive width below exc= spacing for passive thrust pressure for classic analysis

f'c=fck= cylindrical concrete resistance

fyk=fy= steel rebar characteristic resistance

Econc= Concrete Elastic modulus

fctk= characteristic Concrete tension

Esteel= steel elastic modulus

TABULAR DATA (principal parameters)

1) Diaphragm wall (rectangular cross section)

N/A= data not available

Fy=fyk

F'c=fck D=wall thickness B=wall width 2)Steel sheet pile DES=shape (Z or U) W=width per unit of length A=area h=height t=horizontal part thickness b=width of the single sheet pile part s=inclined part thickness Ixx=strong axis inertia (per unit of length) Sxx=strong axis section modulus (per unit of length) 3)Secant piles wall, Tangent piles wall, soldier piles, soldier piles and timber lagging W=weight per unit of length A=area D=diameter tw=web thickness tp= pipe thickness bf=flange width tf= flange thickness k= flange thickness+stem base height Ixx= strong axis inertia modulus (per unit of length) Sxx= strong axis section modulus (per unit of length) rx=radius of gyration about X axis ry=radius of gyration about Y axis lyy=weak axis inertia modulus (per unit of length) Syy=weak axis section modulus (per unit of length) rT=radius of gyration for torsion Cw= warping constant

GENERAL ANALYSIS CRITERIA

Summary of stage assumptions

Name	Analysis	Drive	ka-Mult	Htr T/B	Resist	Res	Contle
	Method	Press		(%)	Press	Mult	Method
Stage 0	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth
Stage 1	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth

Name	Support	Axial	Used	Min Toe	Тое	Тое
	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0		N/A	1	10.841	10.841	11.424
Stage 1		N/A	1	1.025	1.051	N/A

Name=excavation stage name

Analysis method

springs = Elastoplastic spring analysis used

DR = Drained condition for CLAY model

- U = Undrained condition for CLAY model for all the soils
- Up = Undrained condition just for selected soil

Limit equilibrium analysis settings

Drive press:

Ka (Active pressure diagram), Ka-Trap = Trapezoid apparent diagram from active pressures x multiplier,

FHWA= Federal Highway Administration apparent pressure diagrams.

Ko = At-rest lateral earth pressures.

Peck = Peck 1969 Apparent earth pressure diagrams.

2 Step rect = Two step rectangular apparent earth pressure diagram.

User def. = User defined apparent earth pressure diagram.

Ka+d (and so on) indicates that wall friction is applied

ka mult = multiplication factor for Ka when Ka-Trap is selected

Htr T/B (%) = trapezoidal pressure scheme, top and bottom triangular percentage of excavation depth H

Resit press = Kp (passive earth pressures)

Res Mult = Safety factor applied directly on resisting pressures (

COntle Method = cantilever analysis method for limit equilibrium analysis.

Support Model: Method for calculating support reactions in limit-equlibrium analysis.

Beam= support reactions beam analysis (uses Blum's method).

Trib= support reactions from tributary height calculations (Can be applied with apparent diagrams).

Axial Incl = Axial loads included for structural design

Used FS wall = Safety factor for axial+bending wall resistance to divide ultimate wall capacities.

Min FD Toe= embedded minimum safety factor (for limit equilibrium analysis)

Toe FS rot= rotation safety factor (classic for limit equilibrium analysis)

Toe FSpas= driving/resisting pressure safety factor (for limit equilibrium analysis)

EXCAVATION STAGES SKETCHES

A sequence of figures for each excavation stage is reported

Toe stability

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	10.841	11.424	10.841	139.394	N/A	N/A
Stage 1	1.025	N/A	1.051	1.025	N/A	N/A

Legend: Wall embedment safety factors (toe)

Min Toe FS= Minimum wall embedment safety factor (from all analysis methods)

Limit-equilibrium analysis methods: The following safety factors may not be applicable for all stages.

FS1 Passive: Horizontal force safety factor, FS1= Resisting/Driving force

FS2 Rotation: Rotational safety factor about lowest support, FS2= Resisting moment/Driving moment

FS3 Length (from FS1, FS2): Program determines maximum required wall embedment for safety factor of 1 for methods FS1 and FS2 (say length LFS1). Then FS length= Provided wall embedment/LFS1.

Non-linear elastoplastic analysis safety factors:

FS4 Mobilized Passive: Safety factor on mobilized passive resistance, FS4= Available passive soil resistance/Mobilized passive soil force on excavation side.

FS5 Active Drive Thrust/Theory Active: Ratio of soil thrust on retained side/ Active condition theoretical minimum thrust. This factor is not as critical, and indicates how close to active conditions the model is.

General recommendations on wall embedment (excluding FS5):

When then excavation is designed with allowable standards, engineers generally use minimum safety factors from 1.2 to 1.5 depending on the level of confidence. A minimum safety factor of 1.2 is generally applied on FS3.

With ultimate limit state designs (such as Eurocode 7, and LRFD) the required safety factor must generally be greater than 1.0. In non-linear solutions it might be impossible to achieve exactly 1 on FS4 as this would likely trigger overall failure.

Result diagrams (for walls)

A sequence of result diagrams for each excavation stage is reported

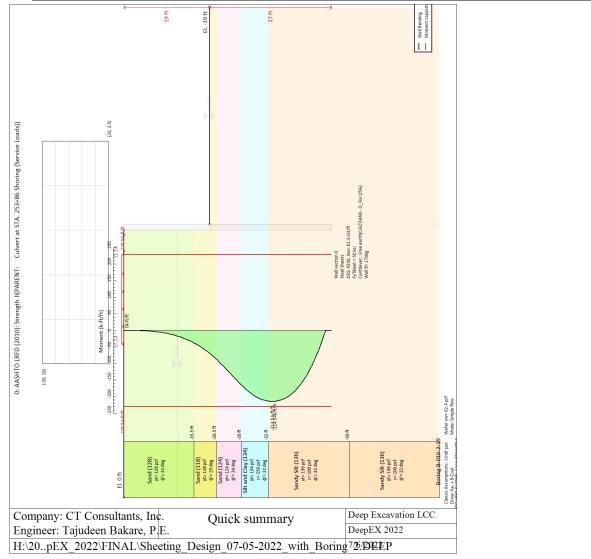
WALL RESULTS TABLE

LEGEND

Wall node=number of the node (0 at top) EL= Node elevation Sht L=Total horizontal soil pressure (on the left side of the wall) Sht R=Total horizontal soil pressure (on the right side of the wall) Shs L=Effective horizontal soil pressure (on the left side of the wall) Shs R=Effective horizontal soil pressure (on the right side of the wall) q=pressure given by the surcharge U L= Water pressure (on the left side of the wall) U R= Water pressure (on the right side of the wall) M=bending moment (per unit length) V=shear (per unit length) dx=wall deflection McapL=Ultimate bending moment (on the left side of the wall) McapR=Ultimate bending moment (on the right side of the wall) VcapL=Ultimate resistance shear (on the left side of the wall) VcapR=Ultimate resistance shear (on the right side of the wall)

EXCAVATION STAGES AND SLOPE STABILITY

Reports a sequence of figures for each stage with slope stability results.


SLOPE STABILITY ANALYSIS: SLICE RESULTS ALL STAGES

Slope stability analysis design section: 0: AASHTO LRFD (2010): Strength Ib

LEGEND x1 = Left x coordinate ZsL= Left slice bottom elevation ZtL= Left top elevation x2 = Right x coordinate ZsR= Right slice bottom elevation ZtR= Right top eleevation DL = Slice base width an = Base angle Fr = Average friction angle at base c = Average cohesion at base (may include undrained clay strengths) Wn = Total slice weight ubL= Water pressure at left bottom point ubR= Water pressure at right bottom point tBase= Base shear resistance Nr = Effective normal reaction at bottom of slice EiL= Lateral interslice force on left face EiR= Lateral interslice force on right face TL = Vertical interslice shear on left vertical face TR = Vertical interslice shear on right vertical face UbF= Normal water force at slice base

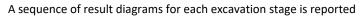
Project: ODOT PID No. 108665; LAK-20-19.59 - WEST Results for Design Section 4: 0: AASHTO LRFD (2010): Strength II

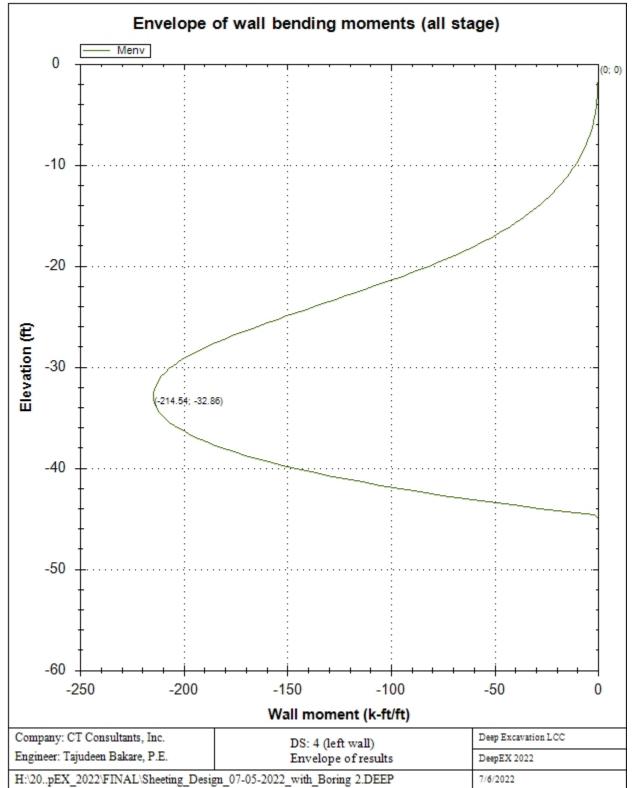
ANALYSIS AND CHECKING SUMMARY

Summary of Wall Moments and Toe Requirements

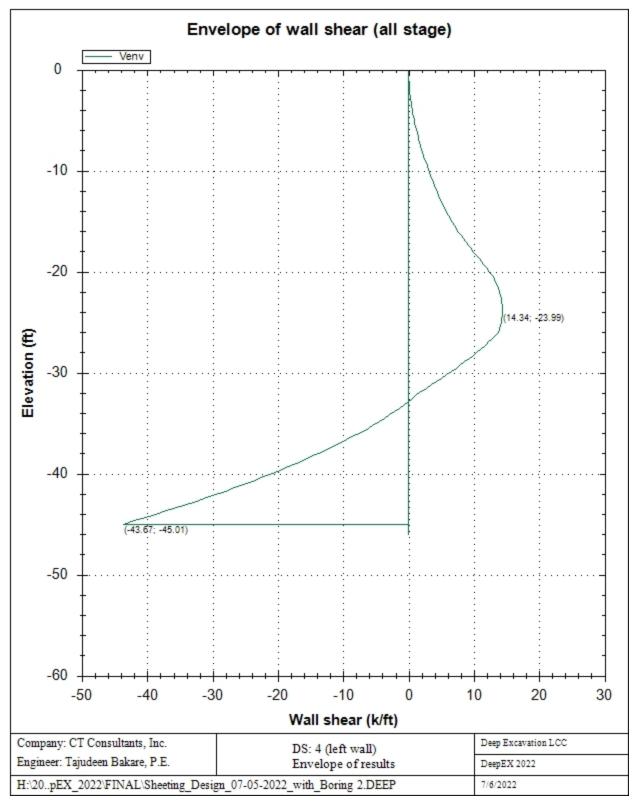
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall section	46	19	0/229.88	214.54/229.88	11.424	1.074	1.038	-45.01	2.9

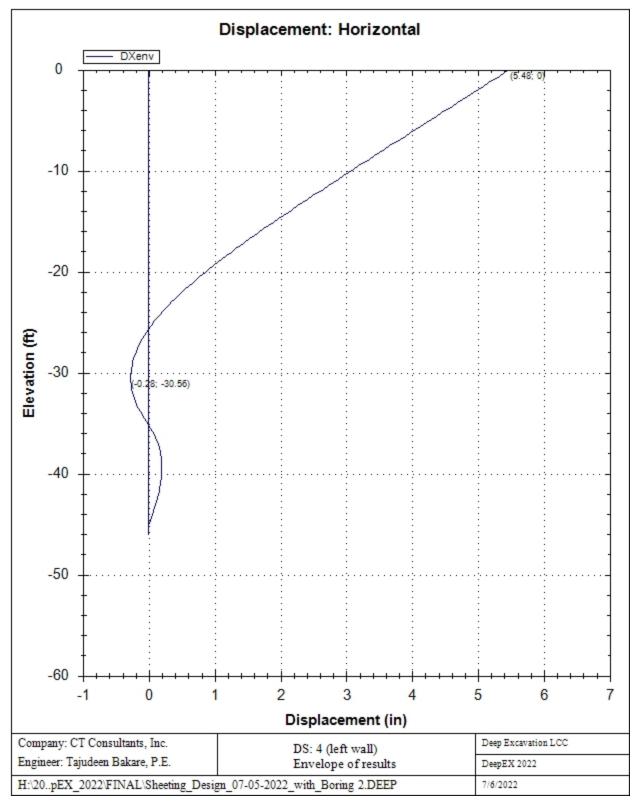
Summary o	f Basal Stability	and Predicted Wall N	Iovements According	g to Clough 1989 Method Wa	ll: W
-----------	-------------------	----------------------	----------------------------	----------------------------	-------


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.048	12.4	2.9	0.46	12.449	2.9


General assumptions for last stage: Stage 1

108/	126	5
------	-----	---


Concrete Code:	ACI 318-19		
Steel Code:	ANSI/AISC 360-10		
1st Wall Limit Equilibrium	California Shoring Manual-11		
Negative moment	20%:		
Drain State Clays	Default		
Water γ= 62.4 pcf	Simple flow		
Drive	Ka, + δ-Coul		
Resist	Kp,+ δ-Caquot		


Envelope of results

110/126

Extended vs Stage

112/126

	Calculation Res	Wall Dis	placeme	Settleme	ent	Wall Momen	t Wall Moment	
			(i	n)	(in)		(k-ft/ft)	(k-ft)
Stage 0	Calculated		0	N/A		0	0	
Stage 1	Calculated		5.	48	2.9		214.54	214.54
	Wall Shear	Wall Sh	near	STR Co	ombined	ST	R Moment	STR Shear
	(k/ft)	(k)		Wall Ratio		Wall Ratio		Wall Ratio
Stage 0	0	0			0		0	0
Stage 1	43.67	43.6	7	0.	933		0.933	0.267

Table notes:

STR Combined: Combined stress check, along eccentricity line considering axial load and moment (demand/capacity). STR Moment : Moment stress check, assuming constant axial load on wall (demand/capacity).

STR Shear : Shear stress check (shear force demand/wall shear capacity).

	Max Support	Max Support	Critical	STR Support	Support Geotech
	Reaction (k/ft)	Reaction (k)	Support Check	Ratio	Capacity Ratio (pull out
Stage 0	0	0	N/A	No supports	No supports
Stage 1	0	0	N/A	No supports	No supports

Table notes:

STR Support ratio: Critical structural stress check for support (force demand/structural capacity). Support geotech capacity ratio: Critical geotechnical capacity stress check (demand/geotechnical capacity). Critical support check: Critical demand/design capacity ratio (structural or geotechnical).

	FS	Toe FS	Toe FS	Toe FS	Zcut	FS Mobilized	FS
	Basal	Passive	Rotation	Length	(nonlinear)	Passive	True/Active
Stage 0	1000	11.424	10.841	139.394	N/A	N/A	N/A
Stage 1	N/A	N/A	1.074	1.038	N/A	N/A	N/A
		Hydraulic		Qflow		FSslope	
		Heav	Heave FS		(ft3/hr)		
Sta	ge O	2.766		N/A		N/C	
Stag	ge 1	1.6	515	N/A		2.9	

Support Force/S vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Support Force vs Stage

Support Force vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	10.841	11.424	10.841	139.394	N/A	N/A
0:Stage 0	1.038	N/A	1.074	1.038	N/A	N/A

Table notes:

FSbasal : Critical basal stability safety factor (relevant only when soft clays are present beneath the excavation). Wall embedment safety factors from conventional analysis (limit-equilibrium):

FS1 Passive : Safety factor for wall embedment based on FS= Available horizontal thrust resistance/Driving hor. thrust.

FS2 Rotation: Safety factor for wall embedment based on FS= Available resisting moment/Driving moment.

FS3 Length : Safety factor for wall embedment based on FS= Available wall embedment/Required embedment for FS=1.0 Wall embedment safety factors from non-linear analysis:

FS4 Mobilized Passive : Safety factor= Available horizontal passive resistance/Mobilized passive thrust.

FS5 True/Active : Soil thrust on retained wall side/Minimum theoretically horizontal active force thrust. Tables for stress checks follow: Support force/Design capacity

Support Check vs Stage

	No Supports
0:Stage 0	No support
1:Stage 1	

Forces (Res. F, M/Drive F, M)

	FS1 Passive	FS2 Rotation	FS3 Length	FS4 Mobilized Passive	FS5 Actual Drive	Fh EQ Soil	Fh EQ Water
	(FxResist/FxDrive)	(Mresist/Mdrive)	(Embedment/ToeFS=1)	(FxPassive/FxPas_Mobili	/ Theory Active		
Stage 0	379.104/33.186	6242.54/575.82	46/0.33	N/A	N/A	N/A	N/A
Stage 1	N/A	842.85/414.29	27/26.01	N/A	N/A	N/A	N/A

Reinforcement Requirements

	Parameter Description
Note:	Wall does not use steel reinforcement. Section does not apply.

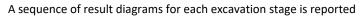
Wall Bending Moment capacity El. -19 ft 1.1 0: AASHTO LRFD (2010): Strength II(PARENT: Culvert at STA. 253+86 Shoring (Service Loads)) 150, 0:2450 Moment (k-ft/ft) 20 0k-ft/ft -150, <u>0.2</u>40, 0 LRFD 8 (2018), Case: Strength II ': FS(tanFR)= 1, FS c² = 1, FS Su= 1 1, B05tab=-1, FSres= 1.35, FSdrweE= 1.35 1, ': Temp= 1.35, Perm= 1.35, EQ= 0 1, ': Temp= 1, FS Ress-1, HY0g05tab = 1, HY0gStab = 1 ts 'Rt: Temp= 1, Perm= 1.11 -250 214.54k-ft/1 -15.5 ft -20.5 ft -50 ft -26 ft -32 ft Boring B-016-2-19 Sand (118) y= 118 pcf y= 219 deg Sand (124) y= 124 pcf φ= 32 deg y= 32 deg φ= 32 deg Sandy Silt (136) $y_{t=136} pcf$ c= 100 psf $\phi'= 32 deg$ Sandy Silt (136) yt= 136 pcf c= 100 psf ϕ^{t} = 32 deg **Sand (128)** yt= 128 pcf \$\$\phi'= 32 deg EI. O ft Company: CT Consultants, Inc. Deep Excavation LCC Quick summary Engineer: Tajudeen Bakare, P.E. DeepEX 2022 H:\20..pEX_2022\FINAL\Sheeting_Design_07-05-2022_with_Boring 2.DEEP 7/6/2022

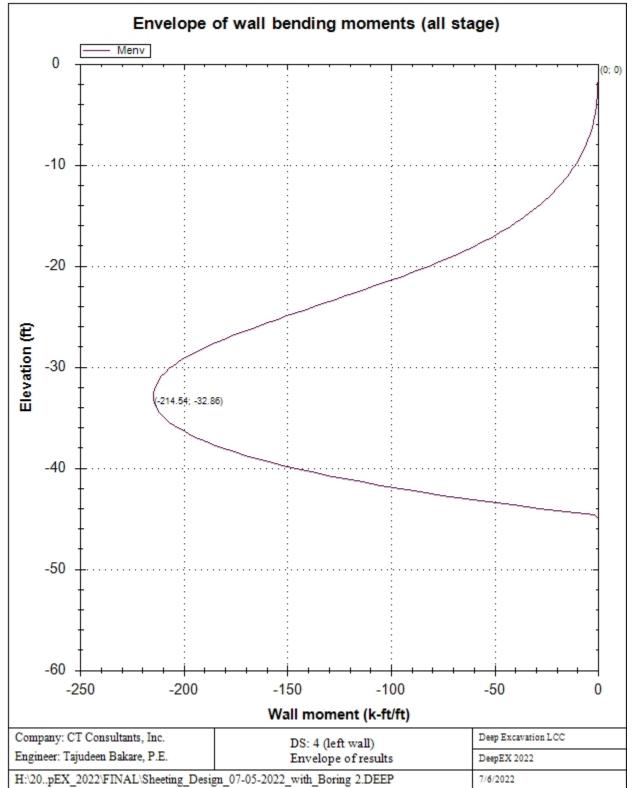
114/126

115/126

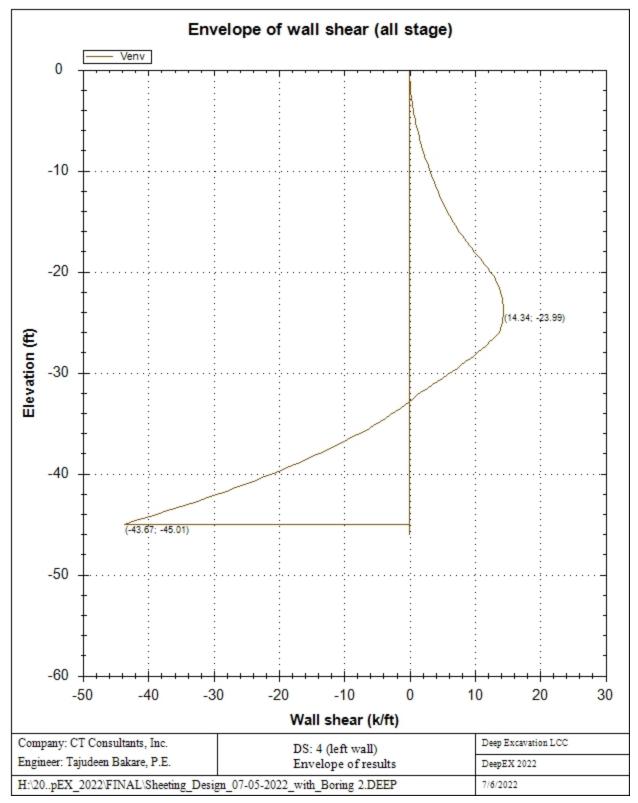
Summary of Wall Moments and Toe Requirements

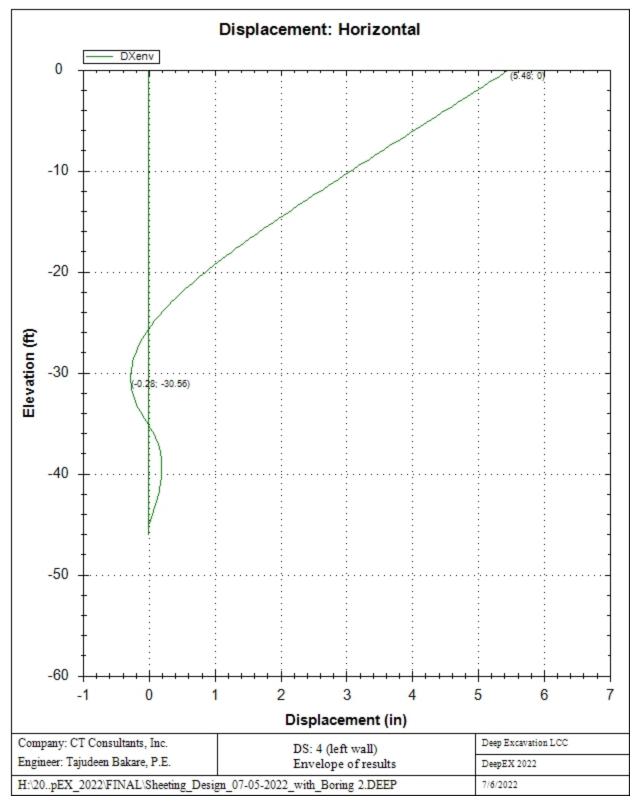
Top Wall	Wall	L-Wall	H-Exc.	Max+M/Cap	Max-M/Cap	FS Toe	FS Toe	FS Toe	FS 1 Toe EL.	Slope
(ft)	Section	(ft)	(ft)	(k-ft/ft)	(k-ft/ft)	Passive	Rotation	Embedment	(ft)	Stab. FS
0	Wall section	46	19	0/229.88	214.54/229.88	11.424	1.074	1.038	-45.01	2.9


Summary of Basal Stability and Predicted Wall Movements According to Clough 1989 Method Wall: W


1. FSmin	2. DxMax (in)	2. Stiffness	2. FSbasal	3. Dx/H (%)	3. Stiffness	3. FSbasal
@ stage 0	@ stage 1	@ DxMax	@ DxMax	@ stage 1	@ Dx/H max	@ Dx/H max
1000	1.048	12.4	2.9	0.46	12.449	2.9

General assumptions for last stage: Stage 1


Concrete Code:	ACI 318-19		
Steel Code:	ANSI/AISC 360-10		
1st Wall Limit Equilibrium	California Shoring Manual-11		
Negative moment	20%:		
Drain State Clays	Default		
Water γ= 62.4 pcf	Simple flow		
Drive	Ka, + δ-Coul		
Resist	Kp,+ δ-Caquot		


Envelope of results

117/126

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following:

Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Strength II	1	1	1	0	1.35	1.35	1.11	1	1.35	1.33	1	1	1	1	1	1
1	AASHTO LRFD	Strength II	1	1	1	0	1.35	1.35	1.11	1	1.35	1.33	1	1	1	1	1	1

DESIGN APPROACHES AND COMBINATION FACTORS

The Design Approaches (from Codes or Customized by the user) and related safety factors are the following: Ftan fr=mult factor for friction angle

F C'= safety factor on effective cohesion (Eurocode 7 methods)

F Su'= safety factof for undrained shear strength (Eurocode 7 methods)

F EQ= Load factor for seismic loads

F perm load= Load factor for permanent loads (dead load, etc)

F temp load= Load factor on live loads and other temporary loads

F perm supp= Reduction factor for resistance for pull out checking of permanent tiebacks

F temp supp= Reduction factor for resistance for pull out checking of temporary tiebacks

F earth Dstab= Load factor for driving earth pressures, unfavorable (on retained side)

F earth stab= Safety factor for passive pressures, favorable (on excavation side)

F GWT Dstab (ground water)= Load factor for driving water pressures, unfavorable

F GWT stab (ground water)= Load factor for resisting water pressure, favorable

F HYD Dstab= Load factor for hydraulic heave, unfavorable (hydraulic checking)

F HYD stab= Resistance factor for hydraulic heave, favorable (hydraulic checking)

F UPL Dstab= Load factor for uplift check, unfavorable

F UPL stab= Resistance factor for uplift check, favorable

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	AASHTO LRFD	Strength II	1	1	1	0	1.35	1.35	1.11	1	1.35	1.33	1	1	1	1	1	1
1	AASHTO LRFD	Strength II	1	1	1	0	1.35	1.35	1.11	1	1.35	1.33	1	1	1	1	1	1

SOIL DATA

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	rEur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(pcf)	(pcf)	(deg)	(psf)	(psf)	(deg)	(deg)	(ksf)	(-)	NL	NL	NL	NL		Model	
Sand (128)	128	120	32	0	N/A	N/A	N/A	300	3	0.31	3.26	N/A	N/A	True	Linear	
Sand (118)	118	118	29	0	N/A	N/A	N/A	300	3	0.35	2.88	N/A	N/A	True	Linear	
Sand (124)	124	124	34	0	N/A	N/A	N/A	300	3	0.28	3.54	N/A	N/A	True	Linear	
Silt and Clay (134	134	32	250	N/A	N/A	N/A	417.54	3	0.31	3.26	N/A	N/A	True	Linear	
Sandy Silt (13	136	136	32	100	N/A	N/A	N/A	400	3	0.31	3.26	N/A	N/A	True	Linear	

120/126

Name	Poisson	Min Ka	Min sh	ko.NC	nOCR	aH.EXP	aV.EXP	qSkin	qNails	kS.nails	PL
	v	(clays)	(clays)	-	-	(0 to 1)	(0 to 1)	(psi)	(psi)	(k/ft3)	(ksi)
Sand (128)	0.35	-	-	0.47	0.8	-	-	0	0	0	-
Sand (118)	0.35	-	-	0.515	0.8	-	-	0	0	0	-
Sand (124)	0.35	-	-	0.441	0.8	-	-	0	0	0	-
Silt and Clay (0.4	-	-	0.47	0.8	-	-	18.1	12.1	30	-
Sandy Silt (13	0.4	-	-	0.47	0.8	-	-	0	0	0	-

gtot = total soil specific weight

gdry = dry weigth of the soil

Frict = friction angle

C' = effective cohesion

Su = Undrained shear strength (only for CLAY soils in undrained conditions, used as a cutoff strength in NL analysis) Evc = Virgin compression elastic modulus

Eur = unloading/reloading elastic modulus

Kap = Peak active thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kpp = Peak passive thrust coefficient (initial value, may be modified on each stage according to analysis settings).

Kacv = Constant volume active thrust coeff (only for clays, initial value)

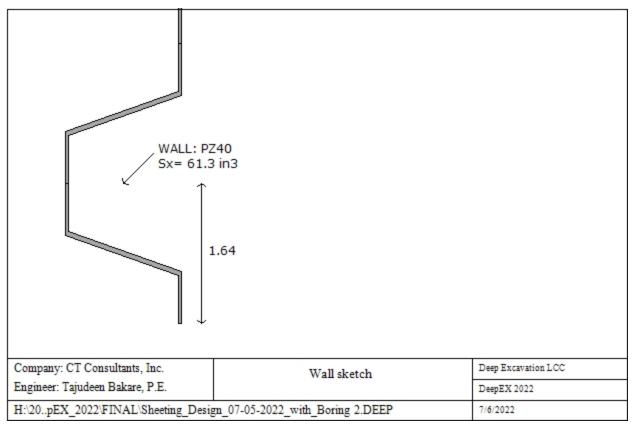
Kpcv = Constant volume passive thrust coeff (only for clays, initial value).

Spring models= spring model (LIN= constant E over the soil layer height , EXP=exponential , SIMC=simplified winkler) LIN= Linear-Elastic-Perfectly Plastic,

EXP: Exponential, SUB: Modulus of Subgrade Reaction

SIMC= Simplified Clay mode

SOIL BORINGS


Top Elev= superior SOil level Soil type= type of the soil (sand , clay , etc) OCR= overconsolidation ratio KO= at rest coefficient

Name: Boring B-016-2-19, pos: (0, 0)

Top elev.	Soil type	OCR	Ко
0	Sand (128)	1	0.47
-15.5	Sand (118)	1	0.52
-20.5	Sand (124)	1	0.44
-26	Silt and Clay (1	1	0.47
-32	Sandy Silt (136	1	0.47
-50	Sandy Silt (136	1	0.47

WALL DATA

Wall section 0: Wall section 0

Wall type: Steel sheet piling

Top wall El: 0 ft Bottom wall El: -46 ft

Hor. wall spacing: 1 ft Wall thickness = 1.37 ft

Passive width below exc: 1 ft $\,$ Active width below exc: 1 ft Swater= 1 ft $\,$

Steel members fy = 50 ksi Esteel = 29000 ksi

Wall friction: Constant value = 17 degrees

Steel wall capacities are calculated with ANSI/AISC 360-10

Concrete capacities are calculated with ACI 318-19

Note: With ultimate capacities you may have to use a structural safety factor.

Steel sheet pile properties

Table: Steel Sheet Pile Cross Sectional Properties

DES	Shape	W	А	h	t	b	S	lxx	Sxx
		(plf)	(in^2/ft)	(in)	(in)	(in)	(in)	(in^4/ft)	(in^3/ft)
PZ40	Z	65.6	11.75	16.4	0.5	19.69	0.605	503	61.3

GENERAL WALL DATA

Hor wall spacing= Wall horizontal spacing

Passive width below exc= spacing for passive thrust pressure for classic analysis

f'c=fck= cylindrical concrete resistance

fyk=fy= steel rebar characteristic resistance

Econc= Concrete Elastic modulus

fctk= characteristic Concrete tension

Esteel= steel elastic modulus

TABULAR DATA (principal parameters)

1) Diaphragm wall (rectangular cross section)

N/A= data not available

Fy=fyk

F'c=fck D=wall thickness B=wall width 2)Steel sheet pile DES=shape (Z or U) W=width per unit of length A=area h=height t=horizontal part thickness b=width of the single sheet pile part s=inclined part thickness Ixx=strong axis inertia (per unit of length) Sxx=strong axis section modulus (per unit of length) 3)Secant piles wall, Tangent piles wall, soldier piles, soldier piles and timber lagging W=weight per unit of length A=area D=diameter tw=web thickness tp= pipe thickness bf=flange width tf= flange thickness k= flange thickness+stem base height Ixx= strong axis inertia modulus (per unit of length) Sxx= strong axis section modulus (per unit of length) rx=radius of gyration about X axis ry=radius of gyration about Y axis lyy=weak axis inertia modulus (per unit of length) Syy=weak axis section modulus (per unit of length) rT=radius of gyration for torsion Cw= warping constant

GENERAL ANALYSIS CRITERIA

Summary of stage assumptions

Name	Analysis	Drive	ka-Mult	Htr T/B	Resist	Res	Contle
	Method	Press		(%)	Press	Mult	Method
Stage 0	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth
Stage 1	Conventional	Ka+δ	N/A	N/A	Kp+ d	N/A	Free Earth

Name	Support	Axial	Used	Min Toe	Тое	Тое
	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0		N/A	1	10.841	10.841	11.424
Stage 1		N/A	1	1.038	1.074	N/A

Name=excavation stage name

Analysis method

springs = Elastoplastic spring analysis used

DR = Drained condition for CLAY model

- U = Undrained condition for CLAY model for all the soils
- Up = Undrained condition just for selected soil

Limit equilibrium analysis settings

Drive press:

Ka (Active pressure diagram), Ka-Trap = Trapezoid apparent diagram from active pressures x multiplier,

FHWA= Federal Highway Administration apparent pressure diagrams.

Ko = At-rest lateral earth pressures.

Peck = Peck 1969 Apparent earth pressure diagrams.

2 Step rect = Two step rectangular apparent earth pressure diagram.

User def. = User defined apparent earth pressure diagram.

Ka+d (and so on) indicates that wall friction is applied

ka mult = multiplication factor for Ka when Ka-Trap is selected

Htr T/B (%) = trapezoidal pressure scheme, top and bottom triangular percentage of excavation depth H

Resit press = Kp (passive earth pressures)

Res Mult = Safety factor applied directly on resisting pressures (

COntle Method = cantilever analysis method for limit equilibrium analysis.

Support Model: Method for calculating support reactions in limit-equlibrium analysis.

Beam= support reactions beam analysis (uses Blum's method).

Trib= support reactions from tributary height calculations (Can be applied with apparent diagrams).

Axial Incl = Axial loads included for structural design

Used FS wall = Safety factor for axial+bending wall resistance to divide ultimate wall capacities.

Min FD Toe= embedded minimum safety factor (for limit equilibrium analysis)

Toe FS rot= rotation safety factor (classic for limit equilibrium analysis)

Toe FSpas= driving/resisting pressure safety factor (for limit equilibrium analysis)

EXCAVATION STAGES SKETCHES

A sequence of figures for each excavation stage is reported

Toe stability

Embedment FS vs Stage

	Min Toe FS	FS1 Passive	FS2 Rotation	FS3 Length (from FS1, FS2)	FS4 Mobilized Passive	FS5 Actual Drive Thrust / Theory
Stage 0	10.841	11.424	10.841	139.394	N/A	N/A
Stage 1	1.038	N/A	1.074	1.038	N/A	N/A

Legend: Wall embedment safety factors (toe)

Min Toe FS= Minimum wall embedment safety factor (from all analysis methods)

Limit-equilibrium analysis methods: The following safety factors may not be applicable for all stages.

FS1 Passive: Horizontal force safety factor, FS1= Resisting/Driving force

FS2 Rotation: Rotational safety factor about lowest support, FS2= Resisting moment/Driving moment

FS3 Length (from FS1, FS2): Program determines maximum required wall embedment for safety factor of 1 for methods FS1 and FS2 (say length LFS1). Then FS length= Provided wall embedment/LFS1.

Non-linear elastoplastic analysis safety factors:

FS4 Mobilized Passive: Safety factor on mobilized passive resistance, FS4= Available passive soil resistance/Mobilized passive soil force on excavation side.

FS5 Active Drive Thrust/Theory Active: Ratio of soil thrust on retained side/ Active condition theoretical minimum thrust. This factor is not as critical, and indicates how close to active conditions the model is.

General recommendations on wall embedment (excluding FS5):

When then excavation is designed with allowable standards, engineers generally use minimum safety factors from 1.2 to 1.5 depending on the level of confidence. A minimum safety factor of 1.2 is generally applied on FS3.

With ultimate limit state designs (such as Eurocode 7, and LRFD) the required safety factor must generally be greater than 1.0. In non-linear solutions it might be impossible to achieve exactly 1 on FS4 as this would likely trigger overall failure.

Result diagrams (for walls)

A sequence of result diagrams for each excavation stage is reported

WALL RESULTS TABLE

LEGEND

Wall node=number of the node (0 at top) EL= Node elevation Sht L=Total horizontal soil pressure (on the left side of the wall) Sht R=Total horizontal soil pressure (on the right side of the wall) Shs L=Effective horizontal soil pressure (on the left side of the wall) Shs R=Effective horizontal soil pressure (on the right side of the wall) q=pressure given by the surcharge U L= Water pressure (on the left side of the wall) U R= Water pressure (on the right side of the wall) M=bending moment (per unit length) V=shear (per unit length) dx=wall deflection McapL=Ultimate bending moment (on the left side of the wall) McapR=Ultimate bending moment (on the right side of the wall) VcapL=Ultimate resistance shear (on the left side of the wall) VcapR=Ultimate resistance shear (on the right side of the wall)

EXCAVATION STAGES AND SLOPE STABILITY

Reports a sequence of figures for each stage with slope stability results.

SLOPE STABILITY ANALYSIS: SLICE RESULTS ALL STAGES

Slope stability analysis design section: 0: AASHTO LRFD (2010): Strength II

LEGEND x1 = Left x coordinate ZsL= Left slice bottom elevation ZtL= Left top elevation x2 = Right x coordinate ZsR= Right slice bottom elevation ZtR= Right top eleevation DL = Slice base width an = Base angle Fr = Average friction angle at base c = Average cohesion at base (may include undrained clay strengths) Wn = Total slice weight ubL= Water pressure at left bottom point ubR= Water pressure at right bottom point tBase= Base shear resistance Nr = Effective normal reaction at bottom of slice EiL= Lateral interslice force on left face EiR= Lateral interslice force on right face TL = Vertical interslice shear on left vertical face TR = Vertical interslice shear on right vertical face UbF= Normal water force at slice base