

STRUCTURE FOUNDATION EXPLORATION REPORT

LAK-20-19.59 PID: 108665 LAKE COUNTY, OHIO

SME Project Number: 080953.01 February 4, 2022

9375 Chillicothe Road Kirtland, OH 44094-8501

T (440) 256-6500

www.sme-usa.com

February 4, 2022

Mr. William D. Baker, Jr., P.E. Principal CT Consultants, Inc. 8150 Sterling Court Mentor, Ohio 44060

Via Email: <u>bbaker@ctconsultants.com</u> (PDF file)

RE: Structure Foundation Exploration Report LAK-20-19.59 PID 108665 Lake County, Ohio SME Project No. 080953.01

Dear Mr. Baker:

We have completed the structure foundation exploration for the culvert and retaining wall replacements along US-20 in Lake County, Ohio. The attached report presents the results of our subsurface investigation and our recommendations for design and construction of these structures.

We appreciate the opportunity to work with you on this project. If you have questions, please call.

Sincerely,

SME

Brendan P. Lieske, PE Project Manager

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
1. INTRODUCTION	2
2. GEOLOGY AND OBSERVATIONS	2
3. EXPLORATION	2
3.1 FIELD EXPLORATION	2
3.2 LABORATORY TESTING	3
4. FINDINGS	3
5. ANALYSES AND RECOMMENDATIONS	3
5.1 CULVERT	3
5.2 RETAINING WALLS	4
6. SIGNATURES	5

APPENDIX A

BORING LOCATION PLANS BORING LOG TERMINOLOGY SME BORING LOGS HISTORIC BORING LOGS

APPENDIX B

RETAINING WALL CALCULATIONS

APPENDIX C

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL ENGINEERING REPORT

EXECUTIVE SUMMARY

This report presents the results of our structure foundation exploration for the culvert and retaining walls planned as part of the pavement replacement project along Ridge Road (US-20) from SR-2 to SR-528 in Perry and Madison, Lake County, Ohio. The exploration and analysis were conducted in general accordance with the January 2021 version of ODOT's Specifications for Geotechnical Engineering (SGE).

ODOT plans to replace the existing 4-foot by 3-foot box culvert located near Station 254+00 with a 6-foot diameter Type A pipe culvert near Station 253+75. The culvert's invert will be near elevation 659 feet. Two replacement retaining walls and one new wall are also planned, each about 100 feet in length with exposed heights of about 6 feet and 2-foot minimum embedment. The walls will have about 1 to 3-foot tall back slopes, at approximately 3H:1V slope ratios or flatter.

Subsurface conditions were identified by 40-foot deep borings for the culvert and 15-foot deep borings for the retaining walls. Soils encountered in the area of the culvert consisted of very loose to medium dense sand over very stiff to hard sandy silt or silt and clay. Bearing soils encountered in the area of the retaining walls consisted of medium dense gravel with stone fragments and sand.

The culvert should be designed to resist the vertical load from the backfill soil plus the effect of traffic surcharge. The excavation for the culvert will extend through OSHA Type C soils. OSHA Type C soils require a layback of 1½ feet horizontally for each foot vertically (1½ H:1V) and would result in a large excavation. Thus, it is likely a braced excavation will be used for construction of the culvert. The excavation should be checked for bottom heave and piping and may require temporary dewatering. Based on the sandy soils encountered, we recommend using vacuum well points for dewatering or driving the vertical sheets deep enough to cut off seepage and maintain trench bottom stability. This will likely require driving the sheeting into the deeper till, then dewatering the interior of the excavation. If the sheeting is driven deep enough to cut off groundwater, it should be sufficient to pump from shallow sumps to maintain a stable bottom to the excavation.

The retaining walls should be designed using a factored bearing resistance of 4,500 psf. Backfill behind the retaining walls should consist of clean, free draining, compacted, crushed aggregate meeting an AASHTO #8 or #57 gradation wrapped in a non-woven geosynthetic separating fabric. The free-draining fill should be capped at the surface with 1-foot of compacted soil followed by topsoil.

The summary presented above includes selected elements of our findings and recommendations and is provided as an overview. It does not present details needed for the proper application of our findings and recommendations.

1. INTRODUCTION

This report presents the results of our structure foundation exploration for the culvert and retaining walls planned as part of the pavement replacement project along Ridge Road (US-20) from SR-2 in Perry to SR-528 in Madison, Lake County, Ohio. We performed this work in accordance with our proposal dated April 17, 2020, which was authorized on May 15, 2020. We understand that ODOT plans to replace the existing 4-foot by 3-foot box culvert near Station 254+00 with a 6-foot diameter Type A pipe culvert near Station 253+75. The culvert's invert will be near elevation 659 feet. Two replacement retaining walls and one new retaining wall are also planned, each about 100-feet in length with exposed heights of about 6-feet and 2-foot minimum embedment. The walls have 1 to 3-foot high back slopes at approximately 3H:1V slope ratios or flatter. Retaining Wall 1 will be located from approximately Station 300+25 to Station 301+25. Retaining Wall 2 will be located from approximately Station 305+25 to Station 306+25. Retaining Wall 3 was initially to be located between Station 320+25 and Station 326+00. Based on the revised grading plan, the wall was shortened and will now be between Station 325+00 and Station 326+00. The retaining walls will be modular block construction.

2. GEOLOGY AND OBSERVATIONS

The project site is located along the northernmost beach ridge in Lake County, Ohio. Beach ridges in this area consist of fine to coarse sand with some gravel deposited in ridges that can be 5 to 30 feet high. The ridges are above and adjacent to lacustrine plain deposits of silt and sand followed by glacial till deposits. Geologic references indicate that bedrock consisting of Ohio Shale is about 50 feet below the surface in this area.

The existing wall at Retaining Wall 1 consists of dry stacked cut stone blocks and the existing wall at Retaining Wall 2 consists of cast-in-place concrete. Retaining Wall 3 is new.

3. EXPLORATION

3.1 FIELD EXPLORATION

Subsurface conditions within the project limits were identified by a field exploration program consisting of Standard Penetration Test (SPT) borings at nine locations. B-016-1-19 and B-016-2-19 were drilled to depths of 40 feet below existing grade in opposite traffic lanes and on each side of the planned culvert. B-022-1-19 and B-022-2-19 were drilled to depths of 15 feet below existing grade at proposed Retaining Wall 1 and Retaining Wall 2, respectively. Borings B-024-1-19, B-024-2-19, B-025-1-19, B-025-2-19, and B-025-3-19 were drilled to 15 feet below existing grade along the original alignment of Retaining Wall 3. With the reduced length of this wall, only boring B-025-3-19 remains within the length of the wall. The approximate boring locations are shown on the attached boring location diagrams, Figure 2 for Wall 1, Figure 3 for Wall 2, and Figure 5 for Wall 3.

SME mobilized to the site on July 13, 2020, and again on April 26, 2021, to drill the borings. At each location, we augured through the existing pavement, measured thicknesses of the pavement materials then obtained SPT samples at 2.5-foot depth intervals. At completion, the boreholes were backfilled with a blend of soil cuttings and bentonite chips. We patched the pavement with cold-mix asphalt. The field-measured SPT blow counts are corrected to N_{60} based on energy measurements obtained from hammer calibrations made on July 30, 2020.

3.2 LABORATORY TESTING

Soil samples were taken to our laboratory for visual classification and testing in accordance with Section 600 of the ODOT Specifications for Geotechnical Explorations (SGE), updated July 2020. The soil samples were visually inspected for the presence of gypsum. A representative portion from each split-spoon sample was tested for its water content. We performed 22 complete classifications on soil samples, including visual classification, and moisture content, Atterberg limits, and particle size distribution tests. The results of our field exploration are presented on the enclosed boring logs.

4. FINDINGS

The pavement section at the boring locations consists of 3 to 7 inches of asphalt over 6 to 9 inches of concrete. No base material was encountered. The subgrade generally consists of beach ridge deposits of sand with some gravel over glacial till.

At B-016-1-19 and B-016-2-19, we generally encountered loose to medium dense coarse and fine sand (A-3a) or fine sand (A-3). Very loose sands were encountered at or just below the groundwater table. The sands transition to glacial till near elevations 655 feet and 650 feet at B-016-1-19 and B-016-2-19, respectively. The till consists of very stiff to hard sandy silt (A-4a) or silt and clay (A-6a). At B-022-1-19 and B-022-2-19, we encountered medium dense to dense gravel and gravel with sand (A-1-a and A-1-b) with layers of fine sand (A-3). Borings at the location of Retaining Wall 3 encountered medium dense to very dense gravel and stone fragments with sand (A-1-b) followed by loose to medium dense coarse to fine sand and fine sand (A-3a and A-3). At B-025-1-19, we encountered stiff to very soft sandy silt (A-4b).

We encountered groundwater between depths of 11 and 13 feet (elevations 645-655 feet near the retaining walls and elevation 665 feet near the culvert) except at B-022-1-19 and B-024-2-19 where groundwater was not encountered. Groundwater conditions indicated by the borings represent conditions at the time the readings were taken. Groundwater levels at the time of construction may vary from the conditions described.

5. ANALYSES AND RECOMMENDATIONS

5.1 CULVERT

Based on the feasibility study plan and profile sheets provided by CT Consultants, the planned culvert's invert will be at elevation 659 feet. We anticipate this culvert will be constructed in an open cut excavation. Based on our findings, we anticipate the trenches for the open cut will extend through very loose to medium dense A-3 and A-3a soils. These should be considered OSHA Type C soil. Type C soils should be sloped at a ratio of 1½ feet horizontally for each foot of vertical change (1½ H:1V) or a braced excavation should be used. The shoring system should be designed for a uniform lateral pressure of 30 pcf above the groundwater level and 75 pcf below the groundwater level, plus the effect of surcharges from construction equipment and stored or stockpiled materials. Surcharges would result in a uniform lateral loading on the wall equal to 0.33 times the vertical surcharge.

Groundwater was encountered in both borings at approximately elevation 665 feet. Therefore, seepage into excavations is expected and dewatering will be needed. Based on the sandy soils encountered, we recommend using vacuum well points for dewatering or driving sheeting deep enough to maintain trench bottom stability. We recommend driving sheeting into the glacial till, below elevation 650 feet, to reduce the potential for bottom heave, instability, or piping. For either approach, contractors should also be prepared to use conventional sumps and pumps to remove any water that seeps into the excavation.

After the trench is excavated to the planned subgrade elevation, the trench bottom should be compacted prior to the placement of pipe bedding. Bedding and initial backfill surrounding the pipe and at least 12 inches above the pipe, should consist of either structural backfill, in accordance with ODOT 703.11, or low strength mortar, in accordance with ODOT 613. If structural backfill is used, the bedding and initial backfill should be wrapped entirely with Type A geotextile fabric to prevent the migration of fines, in accordance with ODOT 611.06. Densify the bedding and initial backfill surrounding the culvert until no further densification is observed. Compaction equipment should be sized to avoid damage to the culvert pipe during construction.

Above the initial backfill, at least 12 inches above the top of the pipe, the final backfill should meet the requirements of ODOT 203. Based on the borings, we anticipate the soils excavated for the trench will consist of fine sand (A-3) and coarse and fine sand (A-3a). These soil types are suitable for reuse as final backfill material. Backfill uniformly on both sides of the culvert to avoid displacement or damage to the pipe. Hand compact fill placed below the spring line of the pipe to provide uniform support.

5.2 RETAINING WALLS

Based on the findings, we anticipate the walls will bear on medium dense to very dense gravel and stone fragments or gravel and stone fragments with sand (A-1-a or A-1-b). Based on the borings, it seems reasonable to expect that loose sand may also be encountered within the length of the walls. We recommend using a factored bearing resistance of 4,500 psf to design the retaining walls. Calculations for the bearing resistance are included in Appendix B. Groundwater was encountered between 11 and 13 feet below the pavement surface at most borings but was not encountered at B-022-1-19 and B-024-2-19. Therefore, design should assume no groundwater effects. The following soil properties should be considered for the retaining wall design.

DESCRIPTION	FRICTION ANGLE (DEGREES)	COHESION (PSF)	TOTAL UNIT WEIGHT (PCF)
Foundation Soils (A-1-a, A-1-b, and A-3a soils)	33	0	125
Granular Level Pad	34	0	120
Backfill/Retained Soils	30	0	120

Table 1. Properties of soil types for retaining wall design.

The retaining walls should be backfilled with clean, free draining, compacted, crushed aggregate meeting an AASHTO #8 or #57 gradation. Do not use slag products or shale. The free draining fill should be wrapped in a non-woven geosynthetic separating fabric to prevent finer soils from being transported into the pore space of the drainage fill. The free-draining fill should be capped at the surface with 1 foot of compacted soil compatible with the surrounding soils followed by topsoil. Grade the surface to direct surface water away from the wall.

The zone of free draining fill should, as a minimum, begin at the base of the wall and extend upward and outward at a 2V:1H slope. A drain should be placed at the bottom of the free draining fill. The drainage backfill should be placed in lifts and consolidated until no further densification is noted. Compaction equipment should be sized so the walls are not damaged during construction.

Since the walls are planned on the cut side of the road, we do not anticipate traffic surcharges affecting the walls. Surcharges were not considered in our stability calculations. If any surcharges are close enough to impact the walls, we should be contacted to review and amend our calculations.

SME performed external stability analyses to evaluation overturning, eccentricity, sliding, and overall (global) stability based on the latest design drawings prepared by CT Consultants, provided to us on October 19, 2021. Calculations are included in Appendix B. Based on our analyses, an R-60B block should be used in place of the R-41B for Section B-B (the 7.5 foot tall wall section) to meet sliding stability requirements. Our calculations are based on the assumption that this change is made. If so, our analysis indicates this wall meets the LRFD requirements for overturning, eccentricity, sliding, and overall (global) stability. Our calculations show that the shorter walls in Sections A-A and C-C meet the stability requirements as currently designed.

6. SIGNATURES

Report Prepared by:

Report Reviewed by:

Brendan P. Lieske, PE Senior Project Engineer Alan J. Esser, PE, D.GE Chief Consultant

APPENDIX A

BORING LOCATION DIAGRAMS BORING LOG TERMINOLOGY SME BORING LOGS HISTORIC BORING LOGS

1) STRENGTH OF SOIL:

Non-Cohesive (granul	ar) Soils - Compactness
Description	Blows Per Ft.
Very Loose	<u><</u> 4
Loose	5 – 10
Medium Dense	11 – 30
Dense	31 – 50
Very Dense	> 50

2) COLOR:

If a color is a uniform color throughout, the term is single, modified by an adjective such as light or dark. If the predominate color is shaded by a secondary color, the secondary color procedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled"

3) PRIMARY COMPONENT

Use **DESCRIPTION** from ODOT Soil Classification Chart on Back

Cohesive (fine grained) Soils - Consistency

Description	Qu (TSF)	Blows Per Ft.	Hand Manipulation	4)	COMPONENT M	ODIFIERS:
Very Soft	<0.25	<2	Easily penetrates 2" by fist		Description	Percentage By Weight
Soft	0.25-0.5	2 - 4	Easily penetrates 2" by thumb		Trace	0% - 10%
Medium Stiff	0.5-1.0	5 - 8	Penetrates by thumb with moderate effort		Little	10% - 20%
Stiff	1.0-2.0	9 - 15	Readily indents by thumb, but not penetrate		Some	20% - 35%
Very Stiff	2.0-4.0	16 - 30	Readily indents by thumbnail		"And"	35% -50%
Hard	>4.0	>30	Indent with difficulty by thumbnail			

		o) Relative v	Isual Moisture	
5) Soil Organi	c Content		Criteria	
Description	% by Weight	Description	Cohesive Soil	Non-cohesive Soils
Slightly Organic	2% - 4%	Dry	Powdery; Cannot be rolled; Water content well below the plastic limit	No moisture present
Moderately Organic	4% - 10%	Damp	Leaves very little moisture when pressed between fingers; Crumbles at or before rolled to ¹ / ₈ "; Water content below plastic limit	Internal moisture, but no to little surface moisture
Highly Organic	> 10%	Moist	Leaves small amounts of moisture when pressed between fingers; Rolled to $\frac{1}{8}$ " or smaller before crumbling; Water content above plastic limit to -3% of the liquid limit	Free water on surface, moist (shiny) appearance
		Wet	Very mushy; Rolled multiple times to $1/8$ " or smaller before crumbles;	Voids filled with free water, can be poured from split spoon.

6) Relative Visual Moisture

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	otion OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limi† (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments	Α-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and∕or Stone Fragments with Sand	Α-	1-Ь		50 Max.	25 Max.		6 Max.	0	
F.S.	Fine Sand	А	- 3		51 Min.	10 Max.	NON-P	ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
0.00 0.00 0.00 0.00 0.00	Gravel and/or Stone Fragments with Sand and Silt	– A – A	2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
	Gravel and/or Stone Fragments with Sand, Silt and Clay	– A – A	2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less †han 50% sil† sizes
$ \begin{array}{r} + + + + + + + + + + + + + + + + + + + $	silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	А	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Cloy	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A -	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MA	TERIAL	CLASS	SIFIED B'	Y VISUAL	INSPEC	TION			
	Sod and Topsoil $\land \lor > \lor$ Pavement or Base $\land \lor \land$ $\lor \lor \lor$ $\lor \lor$ $\lor \lor \lor$ $\lor \lor$	Uncon Fill ([trolled)escribe)		Bouldery	/ Zone		P	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

PROJECT: LAK-20-19.59 DRILLING FIRM / OPER		SME / JH	I/RM		L RIG:	2	93-CME5	5-TRK		STAT		/ OFF	SET		53+4	2, 16'	LT.	EXPLOR B-016	ATION ID 3-1-19
Ø PID: 108665 SEN:		31VIE / 3	F		RRATI			/30/20	<u>_N</u>	FLF		ואיו אוי	677 1		J. <u>J.</u> 1) F	=0B·	40	0 ft	PAGE
START: 7/13/20 END: 7/13/20 SAMPLING METHOD:		SPT			RGYR	ATIO	(%) [.]	82.5		I AT /		IG [.]	011.	41 7	7732	9 -81	15570)1	1 OF 2
	ELEV/												3		EPR				
Z AND NOTES	677.4	DEPT	HS	ROD	N ₆₀	(%)		(tef)	GR		ES						WC.	CLASS (GI)	DONED
AND NOTED				1.QD		(70)		(131)	ÖN		10	0.	02						××××××
	6/6.3	_	F 1 -																
© TRACE GRAVEL, DAMP				9	34	67	SS-1	_	_	_	-	-	-	_	-	-	5	A-3 (V)	TL TL
	0744		<u> </u>	11		<u> </u>											Ŭ		
	674.1	_	- 3 -	-															1272
SAND. LITTLE GRAVEL, LITTLE SILT. TRACE CLAY				6															JLV JL
				6	15	78	SS-2	-	18	16	49	12	5	NP	NP	NP	7	A-3a (0)	4>14
000			5 - 5																11111
			6 - 6 -	2															JLV JL
	670.1			2	6	78	SS-3A	-	-	-	-	-	-	-	-	-	11	A-3a (V)	<1 1<1 >
LOOSE, BROWN, FINE SAND, TRACE SILT, TRACE CLAY,			_ ′ T	2			SS-3B	-	-	-	-	-	-	-	-	-	-	A-3 (V)	TLV TL
			- 8 -																4 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
	s.		- 9 -	2	6	70	CC 4										0	A 2 A A	7272
				² 2	0	/8	55-4	-	-	-	-	-	-	-	-	-	9	A-3 (V)	JLV JL
	666.6																		4>14>
Ø VERY LOOSE, BROWN, COARSE AND FINE SAND, LITTLE			- 11 -	1															7676
		₩ 665.1	L 12 -	1	3	100	SS-5	-	0	11	73	12	4	NP	NP	NP	23	A-3a (0)	<. v <.
			- <u> </u>	1															-
			- 13 -																_
4			- 14 -	0	1	100	SS 6										21	A 20 () ()	
			L 15	1		100	33-0	-	-	-	-	-	-	-	-	-	21	A-3a (V)	
15-																			
	660.6		¹⁶ T	1			SS-7A	-	-	-	-	-	-	-	-	-	21	A-3a (V)	
			- 17 -	4 7	15	100	SS-7B	-	-	-	-	-	-	-	-	-	-	A-3a (V)	
GRAVEL TRACE ORGANICS DAMP			- 18 -																-
	658 1			2			88-22	_	_	-		_			_		32	$A_3 (1/)$	-
LOOSE, GRAY, FINE SAND, SOME SILT, TRACE CLAY,	000.1	-	- 19 -	2	6	100		-	-		-	-	-	-	-	-	52	A-3a(v)	-
TRACE GRAVEL, WET				2			33-0D	-	-	-	-	-	-	-	-	-	-	A-3 (V)	4
ō. الم	Ş.		- 21																
हा <u>हि</u>	655 1		F ²¹ 7	4	0	100	SS-9A	-	-	-	-	-	-	-	-	-	20	A-3 (V)	
Y VERY STIFE TO HARD GRAY SANDY SILT AND TO SOME		-	- 22 -	33	0	100	SS-9B	3.00	-	-	-	-	-	-	-	-	-	A-4a (V)	-
			- 23 -															. ,	
				5															-
			- 24 -	6	21	78	SS-10	4.50	2	3	6	46	43	27	19	8	17	A-4a (8)	
			- 25 -	9															-
			- 26 -							<u> </u>									
				5	21	78	SS-11A	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	
8			27 -	8			SS-11B	4.50	-	-	-	-	-	-	-	-	-	A-4a (V)	
			- 28 -	-															
			L 20 1	4															
			+	79	22	100	SS-12	4.50	-	-	-	-	-	-	-	-	14	A-4a (V)	

	PID: 108665	SFN:		PROJECT:	LAK-	20-19.59	S	TATION /	OFFSE	Г:	253+4	2, 16' LT.	S ⁻	TART	: _7/1	13/20	_ EN	ND:	7/1:	3/20	_ P	G 2 OF	= 2 B-01	6-1-19
2		MAT	ERIAL DESCRIPT	TION		ELEV.		ue	SPT/	м	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	ABAN-
9 L			AND NOTES			647.1	DEPT	HS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	wc	CLASS (GI)	DONED
WAI	VERY STIFF TO) HARD, G	RAY, SANDY SIL	T, AND TO SOME					_															
g	CLAY, TRACE	GRAVEL, L	DAMP (continued)					- 31 T	4															-
AN								- 32 -	7	23	100	SS-13	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	
ШШ									10															
959 F								- 33 -																-
0-10								- 34 -	9 10	33	100	SS-14	4.50	8	8	14	43	27	24	17	7	14	A-4a (7)	
¥ Y									14					-	-									-
- -									-															
53.0								³⁶ [−]	8															
809								- 37 -	11	32	100	SS-15	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	
917 1							7 639.1	- 38 -	- 12															
l G									Q															-
AT/								- 39 -	1 0	33	100	SS-16	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	
5						637.1	EOB-	40	14															
ŝ																								
R H H																								
33.0																								
809																								
P/O																								
Ň																								
lC\P																								
- ⊔																								
\\S\\																								
15 -																								
;; ;;																								
6/21																								
- 5/2																								
Ц																								
5.5																								
ă																								
ē																								
]																								
3.5 X																								
5																								
2																								
Ĭ																								
ΒÖ																								
ğ																								
DTS																								
ğ																								
B																								
7DV																								
STA																								
ſ	NOTES: NON	E																						
L	ABANDONMEN	IT METHO	DS, MATERIALS, (QUANTITIES: AU	GER C	UTTINGS;	BENTON	ITE CHIF	PS; SAI	ND														

	PROJECT: LAK-20-19.59 DRILLING FI	M / OPER		SME / JH	/RM	DRIL	L RIG	2	93-CME5	5-TRK		STAT		/ OFF	SET	: _2	54+4	5, 16'	RT.	EXPLOR B-016	ATION ID
GPJ	TYPE: RETAINING WALL SAMPLING F	RM / LOGO	3ER:	SME / J	F		MER:				<u>-R</u>	ALIG		NI: _	070		J.S. 2	20	40		PAGE
ALL	PID: 108005 SFN: DRILLING MI		3	0.75 HSA 9DT					ATE: <u>/</u>	130/20 82 5				איז: וכי	676.4	4 (IVIS 41 7	L) t 7736	ΞΟΒ: 2 91	40	$\frac{0.0 \text{ ft.}}{0.0 \text{ ft.}}$	1 OF 2
≷_	<u>START: //13/20</u> END. <u>//13/20</u> SAMIFLING IN								70).	02.5					1	41.7		3, -01	. 15550	19	
Ž	MATERIAL DESCRIPTION		ELEV.	DEPT	HS		N ₆₀	REC (%)	SAMPLE	(tof))N (%) 				WC	ODOT CLASS (GI)	
Į			676.4			RQD		(70)	U	(เรา)	GR	03	FO	31			FL		WC		
Щ. Н	4 ASI HALLAND & CONCLETE (DIRIELER'S DESCRIPTION		675.6	-																	
1950	SAND LITTLE SILT TRACE CLAY TRACE GRAVEL DAM					9	14	100	SS-1	_	-	_	_	_	- I	- I	- I	- I	5	A-3a (V)	TLV TL
-20-						4		100											Ŭ	// 04 (1)	$\langle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle$
LAK			•		- 3 -																1242
.01					- 4 -	2	<u> </u>	100	00.0		-	10	F 4	10	-				0	A 0 - (0)	17LV 7L
0953						2	ю	100	55-2	-	· /	18	54	16	5				9	A-3a (0)	$ <, \vee <, $
T/08					F 5 -																17 L 7 L 1 > L 1 >
ND					6	2			SS-3A	-	-	-	-	-	-	-	-	-	-	A-3a (V)	JLV JL
ATA/					- 7 -	2	7	100	SS-3B	-	-	-	-	-	-	-	-	-	10	A-3a (V)	$ <, \vee <, $
Z Z																				()	1 L 1 L 1 > 1 > 1 >
Ц					- 0	2															JLV JL
2RO					9 -	23	8	89	SS-4	-	-	-	-	-	-	-	-	-	11	A-3a (V)	1>11>
01/1			665.9		- 10 -	3															1212
J953	LOOSE TO MEDIUM DENSE, BROWN, COARSE AND FIN		000.0		- 11 -																JLV JL
v/08(SAND, SOME SILT, TRACE CLAY, TRACE GRAVEL, MOIS	Г		W 664 4		10	14	56	SS-5	_	_			_					11	Δ_3 (\/)	1>11>
MIP	TO WET			W 004.4	12 -	4	14	50					_	_			_	_		A-3 (V)	
C/PZ					- 13																
N N					- 14 -	3	10								_						
SME					- <u>-</u>		10	56	SS-6	-	0	0	12	23	5	NP	NP	NP	20	A-3a (0)	
2 - 1			660.9	4	- 15 -																-
13:1	VERY LOOSE, BROWN, COARSE AND FINE SAND, AND				- 16 -	2															-
3/21	SIET, TRACE CEAT, TRACE GRAVEL, WET				- 17 -	1	4	67	SS-7	-	-	-	-	-	-	-	-	-	35	A-3 (V)	
5/26			658.4																		-
Ь	VERY LOOSE, GRAY, FINE SAND, TRACE SILT, TRACE				- 18 -	2															-
D.T.	CLAY, TRACE GRAVEL, WET				- 19 -	2	4	100	SS-8	-	-	-	-	-	-	-	-	-	33	A-3 (V)	
Ц			655.9		- ₂₀	2														. ,	-
ġ-	MEDIUM DENSE TO DENSE, GRAY, COARSE AND FINE		000.0	-	- 21 -																
1	SAND, LITTLE SILT, TRACE TO LITTLE GRAVEL, TRACE				- 21	4 5	17	100	SS 0										30	A 2 (\/)	
3.5 X	CLAY, WET				22 -	7	17	100	33-9	-	-	-	-	-	-	-	-	-	52	A-3 (V)	
5					- 23 -																
0 LO					21	5															-
RINC					- 24	11	33	100	SS-10	-	-	-	-	-	-	-	-	-	13	A-3a (V)	
BO			0.50		25	- 13						1									
ğ	VEDV STILE CDAY SILT AND CLAY TRACE SAND TRA		650.4	4	26 -	4															-
016	GRAVEL, MOIST		1		- 27 -	5	17	100	SS-11	3.50	-	-	-	-	-	-	-	-	21	A-6a (V)	
00		V//			⊢ <u></u>	7															-
ARC			1		28 -																_
AND					- 29 -	3	15	100	SS-12	3.00	0	2	6	37	55	34	20	14	24	A-6a (10)	
			3			7			50-12	0.00	ľ	1		01			20	'-	27	/ -oa (10)	

	PID: <u>108665</u>	SFN:	PROJECT:	LAK-	20-19.59		STATION	/ OFFSE	ET:	254+4	5, 16' RT.	S ⁻	TART	: _7/*	13/20	_ EI	ND:	7/1:	3/20	_ P(G 2 OF	2 B-01	6-2-19
З		MATERIAL DESCRI	PTION		ELEV.			SPT/	N	REC	SAMPLE	HP	(GRAD	ATIO	N (%))	ATT	ERBE	RG		ODOT	ABAN-
ں ۲		AND NOTES			646.4		EPINS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	DONED
M				 //	645.9	-	_	_															
В	DAMP	SANDI SILI, SUIVE CLAI	, TRACE GRAVEL,				31 -	2															
AIN	2, 11					V 64	44.4 - 32 -	6	21	100	SS-13	4.50	6	9	13	45	27	24	17	7	15	A-4a (7)	
RET							- 22 -																
959							- 55	1															
20-1							34 -	7	22	100	SS-14	4.25	-	-	-	-	-	-	-	-	15	A-4a (V)	
AK.							- 35 -	9															
-							- 26	_															
953.(- 30	7	30	56	SS 15	1 50									15	A 40 (\/)	
080							37 -	<u> </u>		50	33-13	4.50	-	-	-	-	-	-	-	-	15	A-4a (V)	
Ē							- 38 -	_															
A/G							- 20 -	9															
DAT					636.4		- 39	9	21	100	SS-16	4.50	-	-	-	-	-	-	-	-	15	A-4a (V)	
5 0					000.4	EO	в——40-	0															
ПО С																							
ΡR																							
3.0																							
809																							
P0																							
NZ N																							
IC/P																							
≦ ⊔																							
\\S\\																							
15 -																							
ξ																							
6/21																							
- 5/2																							
Ē																							
Ð.F.																							
Ĕ																							
ō																							
7																							
.5 X																							
8) 19																							
2																							
NN NN																							
BQ																							
Ы																							
DT S																							
ğ																							
D2																							
₽ΩN																							
STA																							
	NOTES: NON	<u>E</u>																					
[ABANDONMEN	IT METHODS, MATERIALS	, QUANTITIES: AU	GER C	UTTINGS;	BEN	FONITE CHI	PS; SA	AND														

	PROJECT: LAK-20-19.59 DRIL	LLING FIRM / OPERATOR:	SME / JH/RM	DRILL	RIG:	2	93-CME55	-TRK	_	STATI	ON /	OFF	SET:	3	00+79	9, 17'	RT.	EXPLOR	ATION ID
GPJ	TYPE: RETAINING WALL SAM	SME / JF		MER:			AMME	R			NT:	070 5		J.S. 2	0		<u>Б-022</u>	PAGE	
ALL.(PID: <u>108665</u> SFN: DRIL START: 7/12/20 END: 7/12/20 SAM						ATE:	30/20				N: _6	673.5	(MS	L) E	:OB:	14022	<u>.0 ft.</u>	1 OF 1
N N			3F1					52.5 LID				G)	41.7		5, -01	. 14033		
NIN	AND NOTES	673.5	DEPTHS	RQD	N ₆₀	(%)		⊓⊢ (tsf)	GR		FS	SI) CL			PI	wc	ODOT CLASS (GI)	DONED
ETAI	4" ASPHALT AND 6" CONCRETE (DRILLER'S DES	SCRIPTION)				(/0)		(10.)	-	_			-						
59 R	MEDIUM DENSE TO DENSE, BROWN, GRAVEL A	AND STONE	- 1 -	12															$\neg L^{\vee} \neg L$
0-19	FRAGMENTS WITH SAND, TRACE SILT, TRACE	CLAY,	- 2 -	12	36	56	SS-1	-	42	39	8	9	2	NP	NP	NP	4	A-1-b (0)	<1 1 < 1
4K-2	DAMP			14															7676
1				8															JLV JL
953.0		00		9	25	56	SS-2	-	-	-	-	-	-	-	-	-	2	A-1-b (V)	< L 1 < L
080			- 5 -	9															7676
LNT:			- 6 -	a															$\tilde{\gamma} L^{\vee} \tilde{\gamma} L$
TA/0				12	39	33	SS-3	-	-	-	-	-	-	-	-	-	4	A-1-b (V)	< ,
T DA			- ' -	16															7676
JEC.				10															$\tilde{\gamma} L^{\vee} \tilde{\gamma} L$
PRO			- 9 -	19	40	56	SS-4	-	24	51	14	9	2	NP	NP	NP	6	A-1-b (0)	$\langle \rangle \langle \rangle$
3.01			- 10 -	10															<1>1/1>
3095			- 11 -	10															7676
IP/08		000	- 12 -	9	25	0	SS-5	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	JLV JL
M\Z₀				9															$< L^{1} < L$
NC				6															7676
ME-I				້ 5	18	22	SS-6	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	$\frac{1}{7}L^{V}\frac{1}{7}L^{V}$
- //S		C.0C0 Py 18	—EOB—15—	8															1>1.1>
13:15																			
3/21																			
5/26																			
DT-																			
0T.G																			
РD																			
) - O																			
X 11																			
(8.5																			
LOG																			
ЫG																			
BOR																			
0IL																			
OTS																			
0D																			
ARC																			
LAND																			
ŝ	NOTES: NONE																		
	ABANDONMENT METHODS MATERIALS OLIAN																		

	PROJECT: LAK-20-19.59 DF	RILLING FIRM / OPERAT	TOR:	SME / JH/RM	DRIL	L RIG:	2	93-CME55	5-TRK		STAT	ION /	OFF	SET:	3	05+59	9, 17'	RT.	EXPLOR	ATION ID
βЪ	TYPE: RETAINING WALL SA	AMPLING FIRM / LOGGE	ER:	SME / JF	HAM	MER:	AUTO	DMATIC H	AMME	R	ALIG	NME	NT: _		ι	J.S. 2	0		B-022	2-2-19
EL.G	PID: DF	RILLING METHOD:	3.	75" HSA	CALI	BRATI	ON DA	ATE:	/30/20		ELEV	ATIO	N: _(668.5	(MS	L) E	OB:	15	.0 ft.	
WA	START: <u>7/13/20</u> END: <u>7/13/20</u> SA	AMPLING METHOD:		SPT		RGY R	ATIO (%):	82.5		LAT /	LON	G:	. 1	41.7	84035	5, -81	.13894	7	TOFT
NING	MATERIAL DESCRIPTION	1	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	(GRAD)N (%		ATT	ERBE	RG		ODOT	ABAN-
TAIN			668.5		RQD		(%)	U	(tsr)	GR	CS	F5	51	CL	LL	PL	PI	WC	01.00 (0.)	
9 RE	A ASPHALT AND 8 CONCRETE (DRIELER'S D		607.8																	\leq
-1959	CLAY, TRACE GRAVEL, MOIST		666.5		6	15	78	SS-1A	-	-	-	-	-	-	-	-	-	15	A-3 (V)	7272
<-20-	MEDIUM DENSE TO DENSE, BROWN, GRAVE	L AND STONE			5			SS-1B	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	7LV 7L
ĽÝ	FRAGMENTS, AND SAND, TRACE SILT, TRACE	E CLAY, $[^{\circ}O]$		_ 3 _																
3.01		00		- 4 -	5	10	11	55-2		50	33	Q	7	2	ND	ND		7	$A_{-1} = 2$ (0)	7272
3095		0 O 9			8	15	44	00-2	_	50	55	0	'	2			INI	'	A-1-a (0)	JLV JL
1T/08		00																		1>1,1>
<td></td> <td>000</td> <td></td> <td></td> <td>12</td> <td>22</td> <td>0</td> <td>00.0</td> <td></td> <td>A 4 - 0.0</td> <td>12 72</td>		000			12	22	0	00.0											A 4 - 0.0	12 72
DATA		Polo		- 7 -	16	აა	0	55-3	-	-	-	-	-	-	-	-	-	4	A-1-a (V)	JLV JL
CTD		°Õ {		- 8 -																<, v <, ·
OUE					12															7272
I/PR					6	19	50	SS-4	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	JLV JL
53.0		[• Od		- 10 -																-
809		00		- 11 -	6															7272
VIP/C				- 12 -	6	21	17	SS-5	-	-	-	-	-	-	-	-	-	5	A-1-a (V)	TLV TL
PΖ\			655.5	655.5	9															
INC/	DENSE, BROWN, FINE SAND , SOME GRAVEL,	, TRACE SILT,			7															<1>1/1>
ME-	TRACE CLAY, WET	FS	650 F	- 14 -	11	41	44	SS-6	-	31	8	55	4	2	NP	NP	NP	17	A-3 (0)	TLYTL
- //S		•••••	053.5	EOB-15-15-	19															121 12
<u>)</u> Т - 5/26/21 13:																				
<u>ו טט HO</u>																				
(8.5 X 11) -																				
ING LUG																				
SOIL BUH																				
) ODOT &																				
-ANDARL																				
S																				
	ARANDONMENT METHODS MATERIALS OUT		TINGS																	
	ADAINDUNIVIENTIVIETRUDS, IVIATERIALS, QUA	AUGER CUI	CONIL																	

ſ	PROJECT	:	LAK-20	-19.59	DRILLING FIRM / O	PERA		SME / JH	I/RM	DRIL	L RIG:	2	93-CME5	5-TRK		STAT		/ OFF	SET:	3	19+8	2, 16'	RT.	EXPLOR B-024	ATION ID 1-1-19
	PID: 10	18665	SEN:	VVALL	DRILLING METHOD	.OGG	ER:	<u>SIVIE / A</u> 4" SSA	PF		MER: BRATI			/30/20		ALIG	NME ATIC	NT: _ NN·	656 5	5 (MS	J.S. 2	20 =08·	14	0 ft	PAGE
	START:	4/26/2	1 END:	4/26/21	SAMPLING METHO	 D:		SPT			RGY R	ATIO	(%):	82.5		LAT		IG:	000.0	41.7	8559	_0.D. 581	.1342	53	1 OF 1
ł			MATE	RIAL DESCRIP	TION		ELEV.			SPT/		REC	SAMPLE	HP		GRAD	DATIC	DN (%	5)	ATT	ERB	ERG			ABAN-
GPJ				AND NOTES	-		656.5	DEP	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	si	CL	LL	PL	PI	wc	CLASS (GI)	DONED
GS.	3" ASPH/	ALT AND	7" CONC	RETE		\bigotimes	655.6			-															
Ĩ	DENSE, I	BROWN	, GRAVEL	AND/OR STON	E FRAGMENTS	þγ(1		14															A F and
RAF	WITH SA	ND, TRA	ACE SILT, "	TRACE CLAY, N	NOIST	βĽ			- 2 -	16	47	56	SS-1	-	49	13	27	8	3	NP	NP	NP	6	A-1-b (0)	ALLENT
DTD							050.0		- 3 -																12125
BO		DENSE			ARSE AND FINE	- <u> </u>	653.0		† , I	4															TETE
3.01	SAND, LI	ITTLE SI	LT, TRACE	E CLAY, TRACE	GRAVEL, MOIST					3	14	78	SS-2	-	-	-	-	-	-	-	-	-	6	A-3a (V)	7 - 7
0953									- 5 -																
NT/8									6 - 6 -	5															JJ JZ
A/GI										8	22	100	SS-3	-	-	-	-	-	-	-	-	-	9	A-3a (V)	X X X
DAT									- ' L	8															
СH									8-	<u> </u>															440° ada 13 North
SOJE									- 9 -	13	36	100	SS-4	_	- 1	- I	-	-	- I	-	-	_	8	A-3a (V)	Sal L
11/PF										13													-	- ()	
53.0							645.5	W 645.5																	A VIII
0809	MEDIUM	DENSE	TO DENS	E, GRAY, COAF	RSE AND FINE				F''7	7	26	100	99 F										25	A 30 (\/)	The THE
VIP/	SAND, LI	IIILE SI	LI, IRACE	- CLAY, TRACE	GRAVEL, MOIST				- 12 -	<u>11</u>	20	100		-	_	-	-	-	-	_	-	-	23	A-3a (V)	NOD 1 X
//Z//									- 13	-															47 ann 44 13 > 14 ann 44
NC									- 14 -	17	44	100	00.0				00	10					00	A 0 - (0)	7 6 7 6
SME							641.5			14	41	100	55-0	-	1	14	63	18	4	NP	INP	NP	22	A-3a (0)	47 J X
ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 6/7/21 11:																									
STANDARD	NOTES:	NONE	METHOD																						
L	ABANDO	INMENT	METHODS	5, MATERIALS,	QUANTITIES: ASPH	ALI P	ATCH; A	UGER CU	I TINGS N	IIXED V	VIIH	RFNI	UNITE CH	IIPS											

ſ	PROJECT: LAK-20-19.59 DRILLING FIRM /	OPERA	TOR:	SME / JH/	/RM	DRIL	L RIG:	2	93-CME5	5-TRK		STAT	ION /	/ OFF	SET:	3	21+1:	3, 18'	RT.	EXPLOR	ATION ID
	TYPE: RETAINING WALL SAMPLING FIRM	LOGG וחע	ER:	SME / AP	°F		MER:				R		NME	NT: _	650.2		J.S. 2		10	D-02	PAGE
	START: 4/26/21 FND: 4/26/21 SAMPLING METHO	ט. סס [.]		<u>4 55A</u> SPT			RGY R		۲۱۲: <u>/</u> (%) [.]	<u>/30/20</u> 82 5	_	LEV		IG:	000.0	41.7	L) E 85642	=ОБ. 2 -81	13378	30	1 OF 1
ł		<u> </u>	ELEV.			SPT/		RFC	SAMPLE	HP		GRAD	ATIC) N (%)	ATT	ERB	ERG			ARAN-
5	AND NOTES		658.3	DEPTH	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	DONED
ġ	3" ASPHALT AND 7" CONCRETE		657.4			-															
	DENSE, BROWN, GRAVEL AND/OR STONE FRAGMENTS					12	24	70	00.4												9 L
E E	WITH SAND, TRACE SILT, TRACE CLAY, DAMP				- 2 -	15	34	/8	55-1	-	-	-	-	-	-	-	-	-	4	A-1-D (V)	ALLE T
5		۵Õ۲	Į		- 3 -																27 X
2		β C			- 4 -	15	40												_		
0.00			1			15	43	39	55-2	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
1008		0 Co	652.3																		A LY COL
Z S	MEDIUM DENSE, BROWN, COARSE AND FINE SAND,		002.0		6 7	6	00								_						1
Ā	SOME SILT, TRACE CLAY, DAMP				- 7 -	8	22	89	SS-3	-	0	1	66	26	1	NΡ	NP	NP	9	A-3a (0)	J Z J Z
Ì					- 8 -																AUX AN
					- 9 -	9	10	07											40		
Ĕ L					- 10 -	67	18	67	SS-4	-	-	-	-	-	-	-	-	-	10	A-3a (V)	A LAND
0.00			647.3																		A Valance
2008	DENSE, GRAY, COARSE AND FINE SAND, LITTLE TO SOME				- 11 -	9	40	00	00.5										00	A Q = (1.0)	
	SILT, TRACE CLAY, TRACE GRAVEL, MOIST				- 12 -	14 17	43	89	55-5	-	-	-	-	-	-	-	-	-	20	A-3a (V)	X L Carl
×7					- 13																AND A
					- 14 -	9	12	100	55.6		1	•	65	20	6				21	A 20 (0)	
			643.3	FOB-		16	40	100	33-0	-		0	05	20	0	INF			21	A-3a (0)	1 2 COTTAGE < 2
- 62.1																					
17/1																					
) - -																					
5																					
50																					
-																					
< 0.0																					
2																					
ב פ																					
ă L																					
0																					
3																					
ļ																					
5																					
┢	NOTES: NONE																				
L	ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASP	HALIP	ATCH; A	JGER CUT	HINGS N	IIXED V	VIIH	RENI	UNITE CH	IIPS											

ſ	PROJECT: LAK-20-19.59	DRILLING FIRM / OPERA	TOR:	SME / JH/RM		L RIG:		93-CME55	5-TRK	:R	STAT		/ OFF	SET:	3	23+55	5, 19' 0	RT.	EXPLOR B-025	ATION ID 5-1-19
	PID: 108665 SFN:	DRILLING METHOD:	LIN	4" SSA	CALI	BRATI		ATE: 7/	/30/20		ELEV		DN: _	661.9	(MS	L) E	OB:	15	5.0 ft.	PAGE
	START: <u>4/26/21</u> END: <u>4/26/21</u> S	SAMPLING METHOD:		SPT	ENE	RGY R	ATIO ((%):	82.5		LAT /	LON	IG: _		41.7	85714	1, -81	.13290	00	1 OF 1
GPJ	MATERIAL DESCRIPTIC AND NOTES	DN	ELEV. 661.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR (GRAD cs	ATIC FS	DN (% si) CL	ATT LL	ERBE PL	ERG PI	WC	ODOT CLASS (GI)	ABAN- DONED
j S	3" ASPHALT AND 7" CONCRETE	\times	661.0																	
	DENSE, BROWN, FINE SAND , TRACE GRAVI SILT, TRACE CLAY, DAMP	EL, TRACE		- 1 -	22 12 18	41	56	SS-1	-	-	-	-	-	-	-	-	-	10	A-3 (V)	
		· · · · · · · · · · · · · · · · · · ·			12															
0953.01				- 5 -	16 18	47	56	SS-2	-	8	9	74	7	2	NP	NP	NP	6	A-3 (0)	
I A/GIN I /8	STIFF, GRAY, SANDY SILT, SOME CLAY, WE	ET	655.9	- 6 -	5	12	78	SS-3	2.00	-	-	-	-	-	-	-	-	28	A-4b (V)	
	VERY SOFT BROWN SANDY SILT SOME C	14Y WET	653.9	- 8 -																27 27 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1/PROJE			651 4	- 9 - - 10 -	5 6 6	17	67	SS-4	0.10	-	-	-	-	-	-	-	-	34	A-4b (V)	
0.566080	MEDIUM DENSE TO DENSE, BROWN, SAND CLAY, WET	Y SILT, TRACE	031.4	- 11 -	10	41	0	<u>88-5</u>		_		_	_	_		_	_		A-4a (\/)	A LAND
				W 649.4 - 12 - 13 - 13 -	12		0	00-0		_			_	_	_				/(+a (V)	
			646.9		5 5 9	19	72	SS-6	-	0	1	55	36	8	NP	NP	NP	25	A-4a (2)	
11:29 - \\\				EOB13						-										
1 - 6///21																				
19.10 <u>1</u>																				
- (I.I.																				
JG (8.5 X																				
NING LC																				
SULL BC																				
IANUAR																				
ν.	NOTES: NONE																			
t	ABANDONMENT METHODS, MATERIALS, QU	JANTITIES: ASPHALT P	ATCH; Al	JGER CUTTINGS M	IIXED V	VITH	BENT	ONITE CH	IPS											

	PROJECT: LAK-20-19.59 DRILLING FIRM / OPE	RATOR:	SME / JH/RM	DRIL	L RIG:	2	93-CME55	5-TRK		STAT	ION	/ OFF	SET:	3	24+49	9, 18'	RT.	EXPLOR	ATION ID
	TYPE: RETAINING WALL SAMPLING FIRM / LO	GGER:	SME / APF	HAM	MER:	AUT			R_	ALIG	NME	NT: _	000 4		J.S. 2	0		<u>Б-02</u> ;	PAGE
ļ	PID: 1000005 SFN: Image: Display to the second		<u>4" 55A</u>		BRAII	UN DA	AIE: <u>/</u>	130/20 82 5		LLEV		NN: _(663.4	+ (MS 1 7	L) L	±UB: 7 . ⁰1	13255	5.U ft.	1 OF 1
	MATERIAL DESCRIPTION	ELEV/						02.J				NI (%)	41.7	EPRI	7, -01 ERG	. 13230		
<u>r</u>	AND NOTES	663.4	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	SI SI)) CL		PL	PI	wc	CLASS (GI)	DONED
20	8" ASPHALT AND 2.5" CONCRETE	662 5																	
2	DENSE TO VERY DENSE, BROWN, GRAVEL AND/OR			44															CAL STAND
₽₽	STONE FRAGMENTS WITH SAND, TRACE SILT, TRACE	\Box	- 2 -	32 50	113	44	SS-1	-	-	-	-	-	-	-	-	-	4	A-1-b (V)	and a sugar
) (- 3 -	0															
Ď		<u>C</u> q		18															7 L 7 L
33.01				17 15	44	44	SS-2	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
808		(657 A	- 5 -																
N.	MEDIUM DENSE, BROWN, FINE SAND, SOME SILT, TRACE	037.4	6 - 6 -	8															1
A	CLAY, DAMP	-s-l	- 7 -	75	17	78	SS-3	-	0	1	66	26	7	NP	NP	NP	6	A-3a (0)	The second
A N		654.0	- 8 -																AND AD
UEC.	MEDIUM DENSE, BROWN, SANDY SILT, TRACE CLAY, WET			4															
L L				3 4	10	78	SS-4	-	-	-	-	-	-	-	-	-	10	A-4a (V)	AND THE
3.01																			ういない
GRUS			W 032.4 11 -	5	10								_						A Val
24			- 12 -	67	18	78	SS-5	-	0	0	64	29	7	NP	NP	NP	28	A-4a (0)	XCON
א_Z 4			- 13 -																The way to
-NC			- 14 -	8_															
SME		648.4		/ 9	22	/8	55-6	-	-	-	-	-	-	-	-	-	32	A-4a (V)	47 J X <1700 < 2
R			LOB 15																
Z:LL																			
121																			
/0																			
<u>פ</u>																			
2																			
E D H																			
Ê																			
х. С. С.																			
e S																			
2																			
≦¥0																			
Ř																			
2 N																			
אַר																			
2																			
	NOTES: NONE																		
l	ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASPHAL	I PAICH; A	UGER CUTTINGS M	IXED W	VIIH	RFNI	UNITE CH	IIPS											

ſ	PROJECT: LAK-20-19.59 DRILL	ING FIRM / OPERATOR:	:	SME / JH/	RM	DRIL	L RIG:	2	93-CME55	-TRK		STAT		OFF	SET:	3	25+90), 18'	RT.	EXPLOR B-025	ATION ID 5-3-19
	PID: 108665 SEN: DRILL	'LING FIRM / LOGGER: _	4	SIVIE / API	F		MER: BRATI			AIVIIVIE 30/20	<u>-</u>			NI:	665.8		J.S. 2		15	0 ft	PAGE
	START: 4/26/21 END: 4/26/21 SAMP			SPT		FNFF		ATIO ((/L/	<u>30/20</u> 82 5	_	LLLV	ION	G' <u>(</u>	005.0	41 7	<u>-)</u> - 85789	9 -81	13204	5	1 OF 1
ł			FV	0. 1		SPT/		REC	SAMPLE	HP		GRAD		N (%)	ATT	FRB	-RG			ARAN_
25	AND NOTES	665	5.8	DEPTH	IS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	si	CL	LL	PL	PI	wc	CLASS (GI)	DONED
o D	2.75" ASPHALT AND 9" CONCRETE	664	1.8	-																	
4	MEDIUM DENSE TO DENSE, BROWN, GRAVEL AI		7.0	-	- 1 -	11															BAN S
Į	FRAGMENTS WITH SAND, TRACE SILT, TRACE C	LAY,			- 2 -	16 12	39	78	SS-1	-	37	25	26	9	3	NP	NP	NP	5	A-1-b (0)	
	DAMP			ļ	- 3 -																1/1
Š				-	Ī	4															1 E 1 E
2.UT		o d		-	- 4 -	5	14	44	SS-2	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
2080				-	- 5 -																
ž			9.8	-	- 6 -	4															12 12
A/G	LITTLE SILT, TRACE CLAY, TRACE GRAVEL, DAM	IP			- 7 -	5	15	78	SS-3	-	-	-	-	-	-	-	-	-	6	A-3a (V)	X V X
PA				-	_ · L	6															
С Ц				-	- 8 -	1															740 40
S					- 9 -	4	12	78	SS-4	-	4	2	75	15	4	NP	NP	NP	11	A-3a (0)	Z Z Z L
4/10		655	5.3	-	- 10 -	5															
953.	LOOSE TO MEDIUM DENSE, BROWN, COARSE A	ND FINE			- 11 -	0															The state
1080	SAND, LITTLE SILT, TRACE CLAY, TRACE GRAVE	L, WET			- 10	3	8	78	SS-5	-	-	-	-	-	-	-	-	-	34	A-3a (V)	7-6 7 6
1			ŀ	₩ 653.3	12	3														. ,	
24.0					- 13	_															17 > 2015 B
Ž-I				-	- 14 -	8	21	78	SS-6	-	-	-	-	-	-	-	-	-	26	A-3a (V)	
No//		650	0.8	—ЕОВ—		8															<07750 < 1
- 87																					
_																					
7110																					
-																					
5																					
3																					
Ş																					
Ē																					
0.0																					
ر و																					
נ פ																					
E E																					
ñ L																					
S																					
2																					
AUA																					
R N																					
ſ	NOTES: NONE																				
L	ABANDONMENT METHODS, MATERIALS, QUANTI	ITIES: ASPHALT PATCH	H; AU	GER CUTT	INGS N	IXED W	VITH	BENT	ONITE CH	IPS											

				TEST BORING	log		E	3-04	9-0-9	92
ACT F	20.15		O .	9209.27 BORING NO.	-49	. <u> </u>	SHEET	1 OF _	1	
CLIEN	vT:			CT CONSULTANTS		E DRILI	LED:	11-10-	92	
PROJ	ECT:			"LAK" 20-18.40 - STATE ROUTE 20 1	SUI	RFACE	ELEVATI	ON:	77.66'	
DRILI	ING	метн	IOD:	ROTARI DRIVE - INCLUSA OTTATI					·····	<u></u>
SA	MPLE		ğ	SAMPLE IDENTIFICATION	BLOW COUNT	- w	1	PROPERTI	4u	4p
Depth (Ft.)	No.	Туре	SYM.		ON \$5/6"	(%)		(PCF)	(KSF)	(TŚF)
0 -				4" Asobalt						
-			4	5" Concrete	<u> </u>					1
2.5	1	ss		Brown coarse to fine sand, little gravel. Medium dense to loose. Moist. (A-3a) (Visual)	11-12-8	8.1				
	2	55			2-2-2	11.7				
5.0	3	55			2-3-5	11.5				
7.5										
10.0	4	ss			6-7-6	10.5				_
10.0				END OF BORING @ 10.0'	-					
					-					
					-					
	-									
[<u> </u>	1	<u> </u>				<u> </u>

GROUNDWATER

 AS - Auger Sample

ST - Shelby Tube Sample

SS - 2" O.D. Split Spoon Sample

W - Moisture Content

LL/PI - Liquid Limit/Plasticity Index

yd - Dry Density

q_U - Unconfined Strength

qp - Pocket Penetrometer Reading

					TEST BORING	LOG			B-06	1-0-9	92
	ACT S	20.0	ECT N	in	9209.27 BORING NOB	-61	<u> </u>	SHEET	1 OF _1		
	CLIEN	NT:	201 1		CT CONSULTANTS	DAT	e drili	LED: _	11-10-5	2	
1	PROJ	ECT:			"LAK" 20-18.40 - STATE ROUTE 20 1	IMPROVEMEN	IS			573 731	
	DRILL	ING	МЕТ⊦	IOD:	ROTARY DRIVE - HOLLOW STEM AUGERS	<u>S</u> SUF	RFACE E	LEVAII	UN:		
F				E I				1	ROPERTIE	s	
┠╴	Depth (EL)	No.	Туре	SYMBC	SAMPLE IDEN'TIFICATION	ON SS/6"	W (%)	LL/PI	7d (PCF)	q _u (KSF)	qр (TSF)
. -	<u>, , , , , , , , , , , , , , , , , , , </u>										
	1			A . V	<u>3" Asphalt</u>	-					
	-			• 2							
		1	55	•••	Brown coarse and fine sand, trace gravel and silt. Medium dense to loose. Moist. (A-3a) (Visual)	5-6-5	9.6				
	2.5										
	1.1.1	z	ST			- Rec.21"	7.8		105.7		
	5.0=					<u>ا</u>	-				
	-	з	ss			5-4-4	6.1				
•	~							1			
I.	-]					i i
	7.5			• •							
	_										
	_			• •		4	7.8				
	-	4	55			4-4-5	6.0				
	-10,0				END OF BORING @ 10.0'	+					
	-	1						1			
						4					
	-	4				-					
	-	{	1			1		1			
	-	1				1					
	-]	1						· ·		
	•					-		1			
	-	ł				-					
	-	1				-			1		1
	-	4	1	E E	· ·	-	ł				

GROUNDWATER

ENCOUNTERED AT:	NONE NONE	
AFTER: REMARKS:		

AS - Auger Sample

ST - Shelby Tube Sample

SS - 2" O.D. Split Spoon Sample W - Moisture Content LL/PI - Liquid Limit/Plasticity Index y_d - Dry Density q_u - Unconfined Strength q_p - Pocket Penetrometer Reading

TEST BORING LOG

B-067-0-92

ACT PROJECT NO	9209.27	BORING NOB-67	SHEELIOF	
	CT CONSULTANTS		DATE DRILLED:	16-92
	"LAK" 20-18.40	- STATE ROUTE 20 IMPROV	FMENTS	
	DODADY DOTAT	HOLLOW STEM MIGERS	SUBFACE ELEVATION:	666.351
DHILLING METHOU: _	TOTHUT DUTAD	<u>nonan nanan</u>		

			7				P	ROPERTIE	S	
Depth (Ft.)	No.	Туре	SYMBC	SAMPLE IDENTIFICATION	BLOW COUNT ON SS/6"	₩ (%)	ll/pi	7d (PCF)	q _u (KSF)	qр (TSF)
0 -				5" Coarse sand and gravel.						
-	1	55		Brown coarse and fine sand, some gravel, trace silt. Loose to medium dense. Moist.	5-5-4	9.1				-
2.5	2	55		(A-3a) (Visual)	3-3-5	6.8				-
5.01										
-	3	55			1-3-9	10.0				-
7.5										-
-	4	55	•••		9-6-7	7.6				-
10.0				END OF BORING @ 10.0'						-
					-					
					-					-
1		1			J			1		

GROUNDWATER

AS - Auger Sample ST - Shelby Tube Sample SS - 2" O.D. Split Spoon Sample W - Moisture Content LUPI - Liquid Limit/Plasticity Index yd - Dry Density

q_u - Unconfined Strength q_p - Pocket Penetrometer Reading

APPENDIX B RETAINING WALL CALCULATIONS

080953.01+020422+SFE

Date: December 27, 2021 Project Number: 080953.01 Project Name: LAK-20-19.59 Client: CT Consultants

Bearing and sliding check at bottom of granular leveling pad (GLP)

Sliding, overturning, and eccentricity at bottom of base block:

Retaining Wall 1 (A-A)

Date: December 27, 2021 Project Number: 080953.01	Computed By: Jalal Fatemi Checked By: Alan J. Esser, PE, DGE
Project Name: LAK-20-19.59 Client: CT Consultants	
Material Properties:	

$\gamma_{CIR} = 120 \ pcf$	Granular leveling pad unit weight - BDM Table 307-1	
IGLP		

$\phi'_{GLP} \coloneqq 34 \ deg$ Granular leveling pad friction angle - BDM Table 307-1

Foundation Soil Properties:

A-1-b soil with average	N60= 29 per B-022-1-19
$\gamma_s \coloneqq 125~{\it pcf}$	Unit weight - GB-7, Table 1
$\phi'_s \coloneqq 33 \ deg$	Friction angle - GB-7, Table 2
$c_s' \coloneqq 0 \ ksf$	Cohesion

Backfill and Retained Soils Properties:

$\gamma_{backfill}$:=120 pcf	Backfill unit weight - BDM Table 307-1
$\phi'_{backfill}$:=30 deg	Backfill friction angle - BDM Table 307-1
$\delta_a \coloneqq 0.7 \cdot \phi'_{backfill} = 21 \; de_s$	g Soil-structure interface friction angle - BDM Article 307.1.1
$\gamma_{retained}$:=120 pcf	Retained soil unit weight - BDM Table 307-1
$\phi'_{retained} \coloneqq 30 \; deg$	Retained soil friction angle - BDM Table 307-1

Load Combinations and Load Factors (AASHTO Tables 3.4.1-1 and 3.4.1-2):

Strength I	DC> Min. = 0.9 ; Max. = 1.25 EH> Min. = 0.9 ; Max. = 1.5 EV> Min. = 1.0 ; Max. = 1.35
Service I	DC> 1.0 EH> 1.0
	EV> 1.0

Retaining Wall 1 (A-A)

Strength Limit State Resistance Factors:			
$\varphi_b\!\coloneqq\!0.55$	Bearing capacity - AASHTO Table 11.5.7-1 and C10.5.5.2.2		
$\varphi_{\tau 1}\!\coloneqq\!1.00$	Sliding (soil on soil) - ASHTO Table 11.5.7-1 and and C10.5.5.2.2		
$\varphi_{\tau 2}\!\coloneqq\!1.00$	Sliding (precast concrete on soil) - AASHTO Table 11.5.7-1 and C10.5.5.2.2		
$\varphi_{passive} \coloneqq 0.50$	Passive pressure for sliding - AASHTO Table 10.5.5.2.2-1 and C10.6.3.4		

Prefabricated Modular Blocks Info (Cobble/Limestone):

		Cenetr of gravity	
	Weight	(From the back of blocks)	Block width
R-28T:	$W_{R28T} \coloneqq 1230 \ lbf$	$c_{R28T} \coloneqq 14.9$ in	$d_{R28T} \coloneqq 28$ in
R-28M.	$W_{-} = 1610 \ lbf$	<i>c</i>	$d_{-\cdots} = 28 in$
1 2011.	<i>W</i> R28M - 1010 10 J	$c_{R28M} = 10.5$ ere	$a_{R28M} \sim 20$ th
R-41M:	W_{R41M} :=2310 lbf	c_{R41M} := $20.4~{m in}$	$d_{R41M} \coloneqq 40.5$ in
D 41D.			
K-41D:	W _{R41B} ≔ 2440 loj	$c_{R41B} \coloneqq 20.7$ in	$a_{R41B} \coloneqq 40.5 \ in$
Design Load	ls:		
Assumption	ns:		
1. Passive	resistance in front of the	e wall is neglected.	
2. Forces a	are calculated for a block	c with a length of 46-1/8 in (3.84 f	t).
3. Groundy	water table, even though	deeper than base of the wall, is a	assumed to be at
the wall ba	ise. No water pressure v	vill be appled to the wall assuming	drained conditions.

Active Earth Pressure:

Bottom of g	anular leveling pad (GLP):		
$\theta_1 \coloneqq \operatorname{atan}$	$\left(\frac{13 \text{ in} + 3 \cdot 18 \text{ in} + 12 \text{ in}}{12 \text{ in} + 12.5 \text{ in}}\right)$	$\left(\frac{\mathbf{n}}{2}\right) = 72.77 \ deg$	$\beta \coloneqq \operatorname{atan}\left(\frac{1}{2}\right) = 26.565 \ \boldsymbol{deg}$	

Created with PTC Mathcad Express. See www.mathcad.com for more information.

Retaining Wall 1 (A-A)

$$\begin{split} & \Gamma_1 \coloneqq \left(1 + \left(\frac{\sin\left(\phi_{backfill} + \delta_a\right) \cdot \sin\left(\phi_{f} + \beta_a\right)}{\sin\left(\theta_1 - \delta_a\right) \cdot \sin\left(\theta_1 + \beta\right)}\right)^{0.5}\right)^2 = 1.55 \\ & K_{a1} \coloneqq \frac{\left(\sin\left(\theta_1 + \phi_{backfill}\right)\right)^2}{\Gamma_1 \cdot \left(\sin\left(\theta_1\right)\right)^2 \cdot \sin\left(\theta_1 - \delta_a\right)} = 0.856 \\ & \Gamma_1 \cdot \left(\sin\left(\theta_1\right)\right)^2 \cdot \sin\left(\theta_1 - \delta_a\right) = 0.856 \\ & \Gamma_1 = 13 \ in + 3 \cdot 18 \ in + 12 \ in = 6.583 \ ft \\ & L \coloneqq 3.84 \ ft \\ & Block \ length \ 46 \cdot 1/8 \ in \\ & P_{a1} \coloneqq 0.5 \cdot K_{a1} \cdot \gamma_{backfill} \cdot H_1^2 \cdot L = 8.549 \ kip \\ & P_{a1H} \coloneqq P_{a1} \cdot \cos\left(90 \ deg - \theta_1 + \delta_a\right) = 6.716 \ kip \\ & P_{a1H} \coloneqq P_{a1} \cdot \sin\left(90 \ deg - \theta_1 + \delta_a\right) = 5.291 \ kip \\ & Bottom \ of \ base \ block: \\ & \theta_2 \coloneqq a \tan\left(\frac{13 \ in + 3 \cdot 18 \ in}{12.5 \ in}\right) = 79.432 \ deg \\ & \Gamma_2 \coloneqq \left(1 + \left(\frac{\sin\left(\phi_{backfill} + \delta_a\right) \cdot \sin\left(\phi_{backfill} - \beta_b\right)}{\sin\left(\theta_2 - \delta_a\right) \cdot \sin\left(\theta_2 + \beta\right)}\right)^{0.5}\right)^2 = 1.534 \\ & K_{a2} \coloneqq \frac{\left(\sin\left(\theta_2 + \phi_{backfill}\right)\right)^2}{\sum \sin\left(\theta_2 - \delta_a\right)} = 0.697 \\ & \Gamma_1 \cdot \left(\sin\left(\theta_2\right)\right)^2 \cdot \sin\left(\theta_2 - \delta_a\right) = 4.264 \ kip \\ & P_{a2H} \coloneqq P_{a2} \cdot \cos\left(90 \ deg - \theta_2 + \delta_a\right) = 4.264 \ kip \\ & P_{a2H} \coloneqq P_{a2} \cdot \sin\left(90 \ deg - \theta_2 + \delta_a\right) = 2.62 \ kip \\ & Soil \ on \ Soil \ Friction: \\ & \delta_p \coloneqq 0.67 \cdot \phi_s' = 22.11 \ deg \\ & Soil \ on \ Soil \ Friction: \\ & \delta_p \coloneqq 0.67 \cdot \phi_s' = 22.11 \ deg \\ & Soil \ on \ soil \ interface \ friction \ angle - BDM \ Article \ 307.1.1 \\ & \phi_s' = 33 \ deg \\ & \end{array}$$

Sliding:			
C := 1.0	For crushed	l stone on so	pil - AASHTO Article 10.6.3.4
$R_{R1} \coloneqq \varphi_{\tau 1} \cdot C \cdot q$	$(DC + P_{a1V} + W)$	$V_{GLP} + W_{Soil}$	$_{Wedge}) \cdot \tan \left(\phi'_{GLP} \right) = 11.195 \left(kip \right)$
$R_{R1} = 11.195$	$(kip) > P_{a1H} =$	6.716 <i>kip</i>	>OK
Popring			
bearing.	[1 .] (0 .] (0		
$e_1 \coloneqq \frac{M}{DC + P}$	$\frac{1+M2+M3}{+W}$	=0.2	262 <i>ft</i>
	$7 \pm m_{GLP} \pm m_{S}$	oilWedge	
$B \coloneqq B_{GLP} = 5.3$	575 ft	$\frac{e_1}{B} = 0.049$	<1/3>OK Per AASHTO Article 11.6
$B' \!\! \coloneqq \!\! B \! - \! 2 \boldsymbol{\cdot} e_1 \!\! \equiv \!\!$	=4.851 ft	AA	SHTO Eq. 10.6.1.3-1
$A' \coloneqq B' \cdot L = 18$.627 ft^2	AA	SHTO Article 10.6.1.3
$DC + P_{a1}$	$_{V}+W_{GLP}+W_{S}$	SoilWedge	201 haf
	A'		591 NS
For $\frac{e_1}{B} = 0.049$	0 < 1/6:		
$\sigma_{\text{max}} \coloneqq \frac{DC + I}{I}$	$P_{a1V} + W_{GLP} +$	$W_{SoilWedge}$.	$\left(1+6\cdot\frac{e_1}{2}\right)=1.039$ ksf
- omax	$B \cdot L$		
$\sigma_{vmin} \coloneqq \frac{DC + D}{DC + D}$	$P_{a1V} + W_{GLP} + $	$W_{SoilWedge}$.	$\left(1-6\cdot\frac{e_1}{R}\right)=0.569 \ ksf$
	$B \cdot L$		
$L' \coloneqq 100 \ ft$			Total length of the wall
$\gamma_s = 125 \ pcf$	$\phi'_s = 33 deg$	$c_s' = 0$ ksf	Foundation soil properties
$D_f \coloneqq 3 \ ft$			

Created with PTC Mathcad Express. See www.mathcad.com for more information.

 $R_{R1} = 6.178 \ (kip) > P_{a2H} = 4.264 \ kip ----> OK$

Overturning:	
$0.9 \cdot M1_{R1} + 1.5 M1_R$ $1.5 \cdot M1_D$	$\frac{32+M1_{R3}}{M} = 2.138$ >1.0>OK
Eccentricity:	
$1.5 \cdot M2_1 + 0.9$	$9 \cdot M_{2_2} + M_{2_3} = 0.558$ ft
$\varepsilon_2 := \overline{0.9 \cdot DC + 1.5 \cdot P}$	$P_{a2V} + W_{SoilWedge} = 0.558 \text{ JV}$
$B \coloneqq d_{R41B} = 3.375 \; ft$	$\frac{e_2}{B} = 0.165 < 1/3> OK$ Per AASHTO Article 11.6.3.3
$B' \coloneqq B - 2 \cdot e_2 = 2.258$	AASHTO Eq. 10.6.1.3-1
$A' \coloneqq B' \cdot L = 8.672 \ \mathbf{ft}^2$	² AASHTO Article 10.6.1.3
$\sigma_v \coloneqq \frac{0.9 \cdot DC + 1.5 \cdot F}{A'}$	$\frac{P_{a2V}}{=} = 1.241 \ ksf$
For $\frac{e_2}{B} = 0.165 < 1/$	/6:
$\sigma_{vmax} \coloneqq \frac{0.9 \cdot DC + 1.5}{2}$	$\frac{5 \cdot P_{a2V} + W_{SoilWedge}}{P_{a2V} + W_{SoilWedge}} \cdot \left(1 + 6 \cdot \frac{e_2}{P_a}\right) = 1.845 \text{ ksf}$
$\sigma_{vmin} \coloneqq \frac{0.9 \cdot DC + 1.5}{2}$	$\frac{5 \cdot P_{a2V} + W_{SoilWedge}}{P} \cdot \left(1 - 6 \cdot \frac{e_2}{P}\right) = 0.007 \text{ ksf}$
congth $I_{-}b$ (DC-1.2	$B \cdot L \qquad (B)$
	25, EN=1.5, EV=1.5, VVSoilWedge=1.55).
Sliding:	
C:=0.8 For	^r precast footing - AASHTO Article 10.6.3.4
$R_{B1} \coloneqq \varphi_{\tau 2} \cdot C \cdot (1.25 \cdot I)$	$DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 8.143 \ kip$
R = 8.143 kin > 1	$15 \cdot P = -6.305 him \dots > 0K$
$10_{R1} - 0.145 \text{ wep } > 1$	
Overturning:	
$\frac{1.25 \cdot M1_{R1} + 1.5 \ M1}{1.5 \ M1}$	$\frac{M_{R2} + 1.35 \cdot M1_{R3}}{1} = 2.57$ >1.0>OK

Modular Wall Unit Weight:

$V_{R28T} \coloneqq 8.$.57 ft ³	V_{R^4}	$_{41M} := 16.1$	4 ft ³		
$V_{R28M} \coloneqq 1$	1.28 ft ³	V_{R^4}	$_{41B} \coloneqq 17.0$	6 ft ³		
$\gamma_{ModularWall}$:=	$=\frac{W_{R28T} + W_{R2}}{V_{R28T} + V_{R2}}$	$_{8M} + W_{R41M}$ $_{8M} + V_{R41M}$	$+W_{R41B}$ $+V_{R41B}$	=143.073 j	ocf	

Date: February 3, 2022 Project Number: 080953.01 Project Name: LAK-20-19.59 Client: CT Consultants

Bearing and sliding check at bottom of granular leveling pad (GLP)

Sliding, overturning, and eccentricity at top of concrete leveling pad (CLP)

Date: February 2, 2022 Project Number: 080953.01 Project Name: LAK-20-19.59 Client: CT Consultants **Computed By**: Brendan P. Lieske, PE **Checked B**y: Alan J. Esser, PE, DGE

Material Properties:

$\gamma_a \coloneqq 145 \ pcf$	Concrete unit weight - AASHTO Table 3.5.1-1
$\gamma_{GLP} \coloneqq 120~{\it pcf}$	Granular leveling pad unit weight - BDM Table 307-1

 $\phi'_{GLP} = 34 \ deg$ Granular leveling pad friction angle - BDM Table 307-1

Foundation Soil Properties:

A-1-a and A-3 soils with	average N60= 28 per B-022-2-19
$\gamma_s \coloneqq 125 \ pcf$	Unit weight - GB-7, Table 1
$\phi'_s \coloneqq 33 \ deg$	Friction angle - GB-7, Table 2
$c_s' \coloneqq 0 \; \boldsymbol{ksf}$	Cohesion

Backfill and Retained Soils Properties:

$\gamma_{backfill} \coloneqq 120 \ pcf$	Backfill unit weight - BDM Table 307-1
$\phi'_{backfill}$:=30 deg	Backfill friction angle - BDM Table 307-1
$\delta_a \coloneqq 0.7 \cdot \phi'_{backfill} = 21 \ deg$	Soil-structure interface friction angle - BDM Article 307.1.1
$\gamma_{retained} \coloneqq 120 \ pcf$	Retained soil unit weight - BDM Table 307-1
$\phi'_{retained} \coloneqq 30 \; deg$	Retained soil friction angle - BDM Table 307-1

Load Combinations and Load Factors (AASHTO Tables 3.4.1-1 and 3.4.1-2):

Strength I	DC> Min. = 0.9 ; Max. = 1.25 EH> Min. = 0.9 ; Max. = 1.5 EV> Min. = 1.0 ; Max. = 1.35
Service I	DC> 1.0 EH> 1.0 EV> 1.0

Strength Limit State R	esistance Factors:
$\varphi_b \! \coloneqq \! 0.55$	Bearing capacity - AASHTO Table 11.5.7-1 and C10.5.5.2.2
$\varphi_{\tau 1}\!\coloneqq\!1.00$	Sliding (soil on soil) - ASHTO Table 11.5.7-1 and and C10.5.5.2.2
$\varphi_{\tau 2} \! \coloneqq \! 1.00$	Sliding (precast concrete on soil) - AASHTO Table 11.5.7-1 and C10.5.5.2.2
$arphi_{passive}$:= 0.50	Passive pressure for sliding - AASHTO Table 10.5.5.2.2-1 and C10.6.3.4

Prefabricated Modular Blocks Info (Cobble/Limestone):

	Weight	Center of gravity (From the back of blocks)	Block width
D 20T.		140.	
R-281:	$W_{R28T} := 1230 \ lbf$	$c_{R28T} \coloneqq 14.9 \ \boldsymbol{in}$	$d_{R28T} \coloneqq 28 in$
R-28M:	$W_{R28M} \coloneqq 1610 \ lbf$	$c_{R28M} \coloneqq 13.9 \; \textit{in}$	d_{R28M} := 28 in
R-41M:	W_{R41M} :=2310 lbf	c_{R41M} := 20.4 in	$d_{R41M} \coloneqq 40.5 \; \textit{in}$
R-60B:	$W_{R60B} \coloneqq 3420 \ \textit{lbf}$	$c_{R60B} \coloneqq 31.6 \; in$	d_{R60B} := 60 in
Design Loa	ds:		
Accumpti	ongi		
Assumption	uns: prosistanco in front of th	as wall is period	
2 Forces	are calculated for a bloc	The wall is frequencied. The with a length of $46-1/8$ in (3.8)	24 ft)
3 Ground	water table even thour	the wall	is assumed to be at
the wall h	ase No water pressure	will be appied to the wall assume	and drained conditions
Active Earth	Droceuro		

Active Editin Pre		
Bottom of gr	nular leveling pad (GLP):	
$\theta_1 \coloneqq \operatorname{atan}$	$\frac{13 in + 4 \cdot 18 in + 6 in + 12 in}{100} = 66.869 deg \beta := \operatorname{atan}\left(\frac{1}{100}\right) = 2$	8.565 deg
	12 in + 32 in) (2)	

Bearing and Sliding (bottom of GLP):

$$DC := W_{R28T} + W_{R28M} + 2 \cdot W_{R41M} + W_{R60B} = 10.88 \ kip$$
 Vertical Dead Loads
$$P_{a1H} = 12.563 \ kip$$
 $W_{GLP} = 3.226 \ kip$
$$P_{a1V} = 12.188 \ kip$$
 $W_{CLP} = 1.81 \ kip$ $W_{SoilWedge} = 5.421 \ kip$

$$\begin{array}{l} \text{Moments:} \\ M1 \coloneqq P_{a1H} \cdot \frac{H_1}{3} - P_{a1V} \cdot \left(\frac{B_{GLP}}{2} - \frac{H_1}{3} \tan \left(90 \ \textit{deg} - \theta_1 \right) \right) = 8.183 \ \textit{ft} \cdot \textit{kip} \\ M2_{R28T} \coloneqq -W_{R28T} \cdot \left(\frac{B_{GLP}}{2} - \left(c_{R28T} + d_{R60B} - d_{R28T} + 1 \ \textit{ft} \right) \right) = 1.732 \ \textit{ft} \cdot \textit{kip} \\ M2_{R28M} \coloneqq - \left(W_{R28M} \cdot \left(\frac{B_{GLP}}{2} - \left(c_{R28M} + d_{R60B} - d_{R28M} + 1 \ \textit{ft} \right) \right) \right) = 2.133 \ \textit{ft} \cdot \textit{kip} \\ M2_{R41M} \coloneqq - \left(2 \cdot W_{R41M} \cdot \left(\frac{B_{GLP}}{2} - \left(c_{R41M} + d_{R60B} - d_{R41M} + 1 \ \textit{ft} \right) \right) \right) = 3.812 \ \textit{ft} \cdot \textit{kip} \end{array}$$

$$M2_{R60B} \coloneqq -W_{R60B} \cdot \left(\frac{B_{GLP}}{2} - c_{R60B} - 1 \ ft\right) = 0.456 \ ft \cdot kip$$
$$M2 \coloneqq M2_{R28T} + M2_{R28M} + M2_{R41M} + M2_{R60B} = 8.133 \ ft \cdot kip$$

$$\begin{split} i_{\gamma} &:= 1 \quad i_{q} := 1 \quad i_{c} := 1 \\ s_{c} &:= 1 + \left(\frac{B'}{L'}\right) \cdot \frac{N_{q}}{N_{c}} = 1.046 \qquad s_{q} := 1 + \left(\frac{B'}{L'} \tan\left(\phi'_{s}\right)\right) = 1.044 \\ s_{\gamma} &:= 1 - 0.4 \left(\frac{B'}{L'}\right) = 0.973 \\ d_{q} &:= 1 + 2 \tan\left(\phi'_{s}\right) \left(1 - \sin\left(\phi'_{s}\right)\right)^{2} \left(\operatorname{atan}\left(\frac{D_{f}}{B'}\right)\right) = 1.112 \\ D_{w} &:= 0 \ ft \qquad \cdots > \quad C_{wq} := 0.5 \quad C_{w\gamma} := 0.5 \quad \operatorname{Assumed}_{\mathsf{AASHTO}} \operatorname{LRFD} \mathsf{Table} \ 10.6.3.1.2\mathsf{a}\text{-}2 \\ q_{n} &:= \left(\frac{1}{2} \cdot \gamma_{s} \cdot B' \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma} \cdot C_{w\gamma}\right) + \left(\gamma_{backfill} \cdot D_{f} \cdot N_{q} \cdot s_{q} \cdot d_{q} \cdot i_{q} \cdot C_{wq}\right) + \left(c_{s}' \cdot N_{c} \cdot s_{c} \cdot i_{c}\right) = 12.737 \ ksf \\ q_{R} := \varphi_{b} \cdot q_{n} = 7.005 \ ksf \qquad > \ \sigma_{vmax} = 1.755 \ ksf \qquad \cdots > > \mathsf{OK} \end{split}$$

Eccentricity, Sliding and Overturning (top of CLP):

 $DC = 10.88 \ kip$ Vertical Dead Loads $W_{SoilWedge} = 5.421 \ kip$ $P_{a2H} = 8.159 \ kip$ $P_{a2V} = 7.251 \ kip$ Moments for point of rotation 1: $M1_D := P_{a2H} \cdot \frac{H_2}{3} = 19.263 \ ft \cdot kip$ **Driving Moment** $M1_{R1R28T} := W_{R28T} \cdot (d_{R28T} - c_{R28T}) = 1.343 \ ft \cdot kip$ $M1_{R1R28M} := W_{R28M} \cdot (d_{R28M} - c_{R28M}) = 1.892 \ \textit{ft} \cdot \textit{kip}$ $M1_{R1R41M} = 2 \cdot W_{R41M} \cdot (d_{R41M} - c_{R41M}) = 7.739 \ ft \cdot kip$ $M1_{R1R60B} := W_{R60B} \cdot (d_{R60B} - c_{R60B}) = 8.094 \ ft \cdot kip$ **Resisting Moment 1** $M1_{R1} \coloneqq M1_{R1R28T} + M1_{R1R28M} + M1_{R1R41M} + M1_{R1R60B} = 19.067 \ ft \cdot kip$ $M1_{R2} \coloneqq P_{a2V} \cdot \left(d_{R60B} - \frac{H_2}{3} \tan(90 \ deg - \theta_2) \right) = 29.81 \ ft \cdot kip$ **Resisting Moment 2**

$$\begin{split} M1_{R3} &:= W_{SoilWedge} \cdot \left(d_{R60B} - C_{SoilWedge} \right) = 21.046 \ \textit{ft} \cdot \textit{kip} \\ \text{Resisting Moment 3} \\ \\ \text{Moments for point of rotation 2:} \\ M2_1 &:= P_{a2H} \cdot \frac{H_2}{3} - P_{a2V} \cdot \left(\frac{d_{R60B}}{2} - \frac{H_2}{3} \tan \left(90 \ \textit{deg} - \theta_2 \right) \right) = 7.581 \ \textit{ft} \cdot \textit{kip} \\ M2_{2R28T} &:= W_{R28T} \cdot \left(\frac{d_{R60B}}{2} - (c_{R28T} + d_{R60B} - d_{R28T}) \right) = -1.732 \ \textit{ft} \cdot \textit{kip} \\ M2_{2R28M} &:= W_{R28M} \cdot \left(\frac{d_{R60B}}{2} - (c_{R28M} + d_{R60B} - d_{R28M}) \right) = -2.133 \ \textit{ft} \cdot \textit{kip} \\ M2_{2R41M} &:= 2 \cdot W_{R41M} \cdot \left(\frac{d_{R60B}}{2} - (c_{R41M} + d_{R60B} - d_{R41M}) \right) = -3.812 \ \textit{ft} \cdot \textit{kip} \\ M2_{2R60B} &:= W_{R60B} \cdot \left(\frac{d_{R60B}}{2} - c_{R60B} \right) = -0.456 \ \textit{ft} \cdot \textit{kip} \\ M2_2 &:= -M2_{2R28T} - M2_{2R28M} - M2_{2R41M} - M2_{2R60B} = 8.133 \ \textit{ft} \cdot \textit{kip} \\ M2_3 &:= -W_{SoilWedge} \cdot \left(\frac{d_{R60B}}{2} - C_{SoilWedge} \right) = -7.494 \ \textit{ft} \cdot \textit{kip} \\ Service I (load factors=1.0): \\ Sliding: \\ \end{split}$$

$$C \coloneqq 0.8$$
 For precast footing - AASHTO Article 10.6.3.4

 $\phi'_{cc} = 35 \ deg$ Concrete to concrete interface friction angle

$$R_{R1} \coloneqq \varphi_{\tau 2} \cdot C \cdot \left(DC + P_{a2V} + W_{SoilWedge} \right) \cdot \tan \left(\phi'_{cc} \right) = 13.193 \ \left(kip \right)$$

$$R_{R1} = 13.193 \ (kip) > P_{a2H} = 8.159 \ kip ----> OK$$

Overturning:

$$\frac{M1_{R1} + M1_{R2} + M1_{R3}}{M1_D} = 3.63 > 1.5 ----> \mathsf{OK}$$

Eccentricity:

$$e_2 \coloneqq \frac{M2_1 + M2_2 + M2_3}{DC + P_{a2V} + W_{SoilWedge}} = 0.349 \; \textit{ft}$$

$$B := d_{R60B} = 5 \ ft \qquad \frac{e_2}{B} = 0.07 < 1/3 \dots > OK \ Per \ AASHTO \ Article \ 11.6.3.3$$

$$B' := B - 2 \cdot e_2 = 4.302 \ ft \qquad AASHTO \ Eq. \ 10.6.1.3 \cdot 1 \\ A' := B' \cdot L = 16.52 \ ft^2 \qquad AASHTO \ Article \ 10.6.1.3 \cdot 1 \\ A' := B' \cdot L = 16.52 \ ft^2 \qquad AASHTO \ Article \ 10.6.1.3 \cdot 1 \\ A' := B' \cdot L = 16.52 \ ft^2 \qquad AASHTO \ Article \ 10.6.1.3 \cdot 1 \\ \sigma_{vinax} := \frac{DC + P_{a2V} + W_{SoilWedge}}{A'} = 1.426 \ ksf \qquad For \ \frac{e_2}{B} = 0.07 < 1/6; \\ \sigma_{vinax} := \frac{DC + P_{a2V} + W_{SoilWedge}}{B \cdot L} \cdot \left(1 + 6 \cdot \frac{e_2}{B}\right) = 1.74 \ ksf \qquad \\ \sigma_{vinax} := \frac{DC + P_{a2V} + W_{SoilWedge}}{B \cdot L} \cdot \left(1 - 6 \cdot \frac{e_2}{B}\right) = 0.713 \ ksf \qquad \\ \sigma_{vinax} := \frac{DC + P_{a2V} + W_{SoilWedge}}{B \cdot L} \cdot \left(1 - 6 \cdot \frac{e_2}{B}\right) = 0.713 \ ksf \qquad \\ Strength \ I \cdot a \ (DC = 0.9; \ EH = 1.5; \ EV = 1.5; \ W_{soilWedge} = 1.0): \\ Sliding: \\ C := 0.8 \qquad For \ precast \ footing \cdot AASHTO \ Article \ 10.6.3.4 \ R_{R1} := \varphi_{72} \cdot C \cdot (0.9 \cdot DC + 1.5 \cdot P_{a2V} + W_{SoilWedge}) \cdot tan \ (\phi'_{cc}) = 14.614 \ kip \\ R_{R1} = 14.614 \ kip > 1.5 \cdot P_{a2H} = 12.238 \ kip - \cdots > OK \ Overturning: \\ \hline \frac{0.9 \cdot MI_{R1} + 1.5 \ MI_{R2} + MI_{R3}}{1.5 \cdot MI_D} = 2.87 \qquad > 1.0 \cdots > OK \\ \hline Eccentricity: \\ e_2 := \frac{1.5 \cdot M2_1 + 0.9 \cdot M2_2 + M2_3}{0.9 \cdot DC + 1.5 \cdot P_{a2V} + W_{SoilWedge}} = 0.429 \ ft$$

 $B := d_{R60B} = 5 ft$ $\frac{e_2}{B} = 0.086 < 1/3 - ---> OK$ Per AASHTO Article 11.6.3.3

 $B' := B - 2 \cdot e_2 = 4.142 ft$ AASHTO Eq. 10.6.1.3-1

$$A' := B' \cdot L = 15.904 \ ft^2$$
 AASHTO Article 10.6.1.3

 $\sigma_v := \frac{0.9 \cdot DC + 1.5 \cdot P_{a2V} + W_{SoilWedge}}{A'} = 1.64 \ ksf$

 For $\frac{e_2}{B} = 0.086 \ <1/6$:

 $\sigma_{vmax} := \frac{0.9 \cdot DC + 1.5 \cdot P_{a2V} + W_{SoilWedge}}{B \cdot L} \cdot \left(1 + 6 \cdot \frac{e_2}{B}\right) = 2.059 \ ksf$
 $\sigma_{vmin} := \frac{0.9 \cdot DC + 1.5 \cdot P_{a2V} + W_{SoilWedge}}{B \cdot L} \cdot \left(1 - 6 \cdot \frac{e_2}{B}\right) = 0.659 \ ksf$

 Strength I-b (DC=1.25; EH=1.5; EV=1.5; W_{SoilWedge}=1.35):

 Sliding:

 $C := 0.8$
 For precast footing - AASHTO Article 10.6.3.4

$$R_{R1} \coloneqq \varphi_{\tau 2} \cdot C \cdot \left(1.25 \cdot DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge} \right) \cdot \tan\left(\phi_{cc}^{\prime}\right) = 17.81 \ kip$$

$$R_{R1} = 17.81 \ kip > 1.5 \cdot P_{a2H} = 12.238 \ kip ----> OK$$

Overturning:

$$\frac{1.25 \cdot M1_{R1} + 1.5 \ M1_{R2} + 1.35 \cdot M1_{R3}}{1.5 \cdot M1_D} = 3.356 > 1.0 - --- > \mathsf{OK}$$

Eccentricity:

$$e_2 \coloneqq \frac{1.5 \cdot M2_1 + 1.25 \cdot M2_2 + 1.35 \cdot M2_3}{1.25 \cdot DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge}} = 0.359 \text{ ft}$$

 $B := d_{R60B} = 5 ft$ $\frac{e_2}{B} = 0.072 < 1/3 - \cdots > OK$ Per AASHTO Article 11.6.3.3 $B' := B - 2 \cdot e_2 = 4.282 ft$ AASHTO Eq. 10.6.1.3-1

$$\begin{aligned} A' &:= B' \cdot L = 16.441 \; \textit{ft}^2 & \text{AASHTO Article 10.6.1.3} \\ \sigma_v &:= \frac{1.25 \cdot DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge}}{A'} = 1.934 \; \textit{ksf} \end{aligned}$$

Modular Wall Unit Weight:

Date: December 27, 2021 Project Number: 080953.01 Project Name: LAK-20-19.59 Client: CT Consultants

Bearing and sliding check at bottom of granular leveling pad (GLP)

Sliding, overturning, and eccentricity at bottom of base block:

Date: December 27, 2021	Computed By: Jalal Fatemi
Project Number: 080953.01	Checked By: Alan J. Esser, PE, DGE
Project Name: LAK-20-19.59	
Client: CT Consultants	

Material Properties:

$\gamma_{CIP} \coloneqq 120 \ pcf$	Granular leveling pad unit weight - BDM Table 307-1
$\phi'_{GLP} \coloneqq 34 \ deg$	Granular leveling pad friction angle - BDM Table 307-1

Foundation Soil Properties:

A-1-b and A-3a soils	with average N60= 14 per B-025-3-19
$\gamma_s \coloneqq 125~{\it pcf}$	Unit weight - GB-7, Table 1
$\phi'_s \coloneqq 33 \ deg$	Friction angle - GB-7, Table 2
$c_s' \coloneqq 0 \ ksf$	Cohesion

Backfill and Retained Soils Properties:

$\gamma_{backfill}$:=120 pcf	Backfill unit weight - BDM Table 307-1
$\phi'_{backfill}$:=30 deg	Backfill friction angle - BDM Table 307-1
$\delta_a \! \coloneqq \! 0.7 \boldsymbol{\cdot} \phi'_{backfill} \! = \! 21 deg$	g Soil-structure interface friction angle - BDM Article 307.1.1
$\gamma_{retained} \coloneqq 120 \ pcf$	Retained soil unit weight - BDM Table 307-1
$\phi'_{retained} \coloneqq 30 {oldsymbol deg}$	Retained soil friction angle - BDM Table 307-1

Load Combinations and Load Factors (AASHTO Tables 3.4.1-1 and 3.4.1-2):

Strength I	DC> Min. = 0.9 ; Max. = 1.25 EH> Min. = 0.9 ; Max. = 1.5
	EV> Min. = 1.0 ; Max. = 1.35
Service I	DC> 1.0 EH> 1.0
	EV> 1.0

Strength Limit State R	esistance Factors:
$\varphi_b \! := \! 0.55$	Bearing capacity - AASHTO Table 11.5.7-1 and C10.5.5.2.2
$arphi_{ au 1} \! \coloneqq \! 1.00$	Sliding (soil on soil) - ASHTO Table 11.5.7-1 and and C10.5.5.2.2
$\varphi_{\tau 2}\!\coloneqq\!1.00$	Sliding (precast concrete on soil) - AASHTO Table 11.5.7-1 and C10.5.5.2.2
$\varphi_{passive} \coloneqq 0.50$	Passive pressure for sliding - AASHTO Table 10.5.5.2.2-1 and C10.6.3.4

Prefabricated Modular Blocks Info (Cobble/Limestone):

	Woight	Cenetr of gravity	Pleak width
	weight	(ITOIL THE BACK OF DIOCKS)	
R-28T:	$W_{R28T} \coloneqq 1230 \ \textit{lbf}$	$c_{R28T} \coloneqq 14.9 \ \textit{in}$	d_{R28T} :=28 in
R-28M:	$W_{R28M} {\coloneqq} 1610 \; \textit{lbf}$	c_{R28M} := 13.9 in	d_{R28M} :=28 in
R-41M:	$W_{R41M} \coloneqq 2310 \ \textit{lbf}$	c_{R41M} :=20.4 in	d_{R41M} := 40.5 in
R-41B:	$W_{R41B} \coloneqq 2440 \ lbf$	c_{R41B} :=20.7 in	d_{R41B} :=40.5 <i>in</i>
Design Load	s:		
Assumptior 1. Passive I 2. Forces a	ns: resistance in front of the re calculated for a block	e wall is neglected. with a length of 46-1/8 in (3.84	ft).
3. Groundv the wall ba	vater table, even though se. No water pressure w	deeper than base of the wall, is vill be appied to the wall assumin	assumed to be at g drained conditions.
Active Earth P	ressure:		

Bottom of granular leveling pad (GLP):

$\theta_1 := \operatorname{atan}$	$(13 in + 2 \cdot 18 in + 12 in)$	$=68.118 \ deg$	$\beta = \operatorname{atan}\left(\frac{1}{2}\right) = 26.565 \ deg$	
	(12 in + 12.5 in))	$\binom{2}{2}$	

$$M_{3} = W_{R28T} = W_{R28T} \cdot \left(\frac{B_{GLP}}{2} - (c_{R28T} + d_{R41B} - d_{R28T} + 1 \ ft)\right) = -0.733 \ ft \cdot kip$$

$$M_{2_{R28M}} = W_{R28M} \cdot \left(\frac{B_{GLP}}{2} - (c_{R28M} + d_{R41B} - d_{R28M} + 1 \ ft)\right) = -0.825 \ ft \cdot kip$$

$$M_{2_{R41B}} = W_{R41B} \cdot \left(\frac{B_{GLP}}{2} - c_{R41B} - 1 \ ft\right) = -0.091 \ ft \cdot kip$$

$$M2 \coloneqq -M2_{R28T} - M2_{R28M} - M2_{R41B} = 1.65 \ ft \cdot kip$$

$$M3 \coloneqq W_{GLP} \cdot \left(\frac{B_{GLP}}{2} - \frac{B_{GLP}}{2}\right) - W_{SoilWedge} \cdot \left(\frac{B_{GLP}}{2} - \left(\frac{d_{R41B} - d_{R28T}}{2} + 1 \ ft\right)\right) = -1.447 \ ft \cdot kip$$

$$\begin{array}{l} \mbox{Moments for point of rotation 1:} \\ \mbox{M1}_{D} := P_{a2H} \cdot \frac{H_2}{3} = 3.29 \ ft \cdot kip \\ \mbox{M1}_{R2ST} := W_{R2ST} \cdot (d_{R2ST} - c_{R2ST}) = 1.343 \ ft \cdot kip \\ \mbox{M1}_{R2SM} := W_{R2SM} \cdot (d_{R2SM} - c_{R2SM}) = 1.892 \ ft \cdot kip \\ \mbox{M1}_{R11D} := W_{R4LD} \cdot (d_{R11D} - c_{R11D}) = 4.026 \ ft \cdot kip \\ \mbox{M1}_{R11D} := W_{R4LD} \cdot (d_{R11D} - c_{R11D}) = 4.026 \ ft \cdot kip \\ \mbox{M1}_{R11} := M_{1R2ST} + M_{1R2SM} + M_{1R41B} = 7.261 \ ft \cdot kip \\ \mbox{Resisting Moment 1} \\ \mbox{M1}_{R2} := P_{a2V} \cdot (d_{R11D} - \frac{H_2}{3} \tan (90 \ deg - \theta_2)) = 5.185 \ ft \cdot kip \\ \mbox{Resisting Moment 2} \\ \mbox{M1}_{R3} := W_{SoffWedge} \cdot (d_{R41B} - \left(\frac{d_{R41B} - d_{R2ST}}{2}\right)) = 3.539 \ ft \cdot kip \\ \mbox{Moments for point of rotation 2:} \\ \mbox{M2}_{1} := P_{a2H} \cdot \frac{H_2}{3} - P_{a2V} \cdot \left(\frac{d_{R41D}}{2} - \frac{H_2}{3} \tan (90 \ deg - \theta_2)}{2}\right) = 0.995 \ ft \cdot kip \\ \mbox{M2}_{R2ST} := W_{R2ST} \cdot \left(\frac{d_{R41D}}{2} - (c_{R2ST} + d_{R41D} - d_{R2ST})\right) = -0.733 \ ft \cdot kip \\ \mbox{M2}_{R2ST} := W_{R2ST} \cdot \left(\frac{d_{R41D}}{2} - (c_{R2SM} + d_{R41D} - d_{R2ST})\right) = -0.825 \ ft \cdot kip \\ \mbox{M2}_{R2RST} := W_{R2BV} \cdot \left(\frac{d_{R41D}}{2} - c_{R41D}\right) = -0.091 \ ft \cdot kip \\ \mbox{M2}_{2} := -M2_{R2ST} - M2_{R2SM} - M2_{R41B} = 1.65 \ ft \cdot kip \\ \mbox{M2}_{2} := -M2_{R2ST} - M2_{R2M} - M2_{R41B} = 1.65 \ ft \cdot kip \\ \mbox{M2}_{2} := -W_{SoffWedge} \cdot \left(\frac{d_{R41B}}{2} - \frac{d_{R41D} - d_{R2ST}}{2}\right) = -1.447 \ ft \cdot kip \\ \mbox{Service I (load factors=1.0): \\ \mbox{Sliding:} \\ \mbox{C:= 0.8 For precast footing - AASHTO Article 10.6.3.4 \\ \mbox{R}_{R1} := \varphi_{r2} \cdot C \cdot (DC + P_{a2V} + W_{SoffWedge}) \cdot \tan (\phi'_{GL}) = 4.442 \ (kip) \\ \mbox{R}_{R1} := 4.442 \ (kip) > P_{a2H} = 2.417 \ kip - \cdots > OK \\ \mbox{Overturning:} \\ \mbox{M1}_{R1} := M_{R1} + M_{R2} + M_{R3} \\ \mbox{M1}_{R3} = 4.858 \ > 1.5 - \cdots > OK \\ \mbox{M1}_{R1} := M_{R1} + M_{R2} + M_{R3} \\ \mbox{M1}_{R3} = 4.858 \ > 1.5 - \cdots > OK \\ \mbox{M1}_{R1} := M_{R1} + M_{R2} + M_{R3} \\ \mbox{M1}_{R3} = 4.858 \ > 1.5 - \cdots > OK \\ \mbox{M1}_{R3} = M_{R3} + M_{R3} + M_{R3} \\ \mbox{M1}_{$$

$e_2 := - M 2_1 + M 2_2 + M 2$	$\frac{M2_3}{M2_3} = 0.146 \ ft$
$DC + P_{a2V} + W_{So}$	ilWedge
$B \coloneqq d_{R41B} = 3.375 \ ft$	$\frac{e_2}{B} = 0.043 < 1/3> OK$ Per AASHTO Article 11.6.3
$B'\!\coloneqq\!B\!-\!2\!\cdot\!e_2\!=\!3.084$	<i>ft</i> AASHTO Eq. 10.6.1.3-1
$A' := B' \cdot L = 11.842 \ ft$	AASHTO Article 10.6.1.3
$\sigma_v \coloneqq \frac{DC + P_{a2V} + W_{Sd}}{A'}$	$\frac{delwedge}{de} = 0.695 \ ksf$
For $\frac{e_2}{R} = 0.043 < 1/6$	
B $DC + P_{aW} + 1$	$W_{\text{SpilWedge}} \left(e_2 \right)$
$\sigma_{vmax} \coloneqq \frac{B \cdot I}{B \cdot I}$	$\frac{1}{2} \cdot \left(1 + 6 \cdot \frac{2}{B}\right) = 1.023 \text{ ksf}$
$DC + P_{a1V} + V$	$W_{SoilWedge} \begin{pmatrix} e_2 \end{pmatrix} = 0.602$ hof
$\sigma_{vmin} \coloneqq B \cdot I$	$\frac{1}{B} = 0.602 \text{ ksj}$
trength I-a (DC=0.9 Sliding:	; EH=1.5; EV=1.5; W _{SoilWedge} =1.0):
trength I-a (DC=0.9 Sliding:	; EH=1.5; EV=1.5; W _{soilWedge} =1.0):
Sliding: For C := 0.8 For	; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4
trength I-a (DC=0.9 Sliding: $C \coloneqq 0.8$ For $R_{R1} \coloneqq \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D)$; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge}) \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$
trength I-a (DC=0.9 Sliding: C := 0.8 For $R_{R1} := \varphi_{\tau_2} \cdot C \cdot (0.9 \cdot Decouple)$ $R_{R1} = 4.619 \ kip > 1.6$; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip>OK$
trength I-a (DC=0.9 Sliding: $C \coloneqq 0.8$ For $R_{R1} \coloneqq \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619 \ kip > 1.0$ Overturning:	; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge}) \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip> OK$
trength I-a (DC=0.9) Sliding: $C := 0.8$ For $R_{R1} := \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619$ kip > 1.0 Overturning:	; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip> OK$
trength I-a (DC=0.9 Sliding: C := 0.8 For $R_{R1} := \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619 \ kip > 1.0$ Overturning: $0.9 \cdot M1_{R1} + 1.5 \ M1_{R2}$; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip>OK$
trength I-a (DC=0.9) Sliding: $C := 0.8$ For $R_{R1} := \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619 \ kip > 1.6$ Overturning: $0.9 \cdot M1_{R1} + 1.5 \ M1_{R2}$ $1.5 \cdot M1_D$; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip> OK$
trength I-a (DC=0.9) Sliding: $C := 0.8$ For $R_{R1} := \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619 \ kip > 1.6$ Overturning: $0.9 \cdot M1_{R1} + 1.5 \ M1_{R2}$ $1.5 \cdot M1_D$ Eccentricity:	; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip> OK$
trength I-a (DC=0.9 Sliding: C := 0.8 For $R_{R1} := \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619 \ kip > 1.0$ Overturning: $\frac{0.9 \cdot M1_{R1} + 1.5 \ M1_{R2}}{1.5 \cdot M1_D}$ Eccentricity: $e_2 := \frac{1.5 \cdot M2_1 + 0.9}{0.9 \cdot DC + 1.5 \cdot P_2}$; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C + 1.5 \cdot P_{a2V} + W_{SoilWedge} \cdot \tan(\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip>OK$ $2 + M1_{R3} = 3.617 > 1.0>OK$ $2 + M2_2 + M2_3 = 0.179 \ ft$ $a_2V + W_{SoilWedge} = 0.179 \ ft$
trength I-a (DC=0.9 Sliding: C := 0.8 For $R_{R1} := \varphi_{\tau 2} \cdot C \cdot (0.9 \cdot D0)$ $R_{R1} = 4.619 \ kip > 1.0$ Overturning: $\frac{0.9 \cdot M1_{R1} + 1.5 \ M1_{R2}}{1.5 \cdot M1_D}$ Eccentricity: $e_2 := \frac{1.5 \cdot M2_1 + 0.9}{0.9 \cdot DC + 1.5 \cdot P_0}$; EH=1.5; EV=1.5; WsoilWedge=1.0): precast footing - AASHTO Article 10.6.3.4 $C+1.5 \cdot P_{a2V} + W_{SoilWedge}$ $\cdot \tan (\phi'_{GLP}) = 4.619 \ kip$ $.5 \cdot P_{a2H} = 3.626 \ kip> OK$ $2 + M1_{R3} = 3.617 > 1.0> OK$ $2 - M2_2 + M2_3$ $a_{2V} + W_{SoilWedge} = 0.179 \ ft$
Created with PTC Mathcad Express. See www.mathcad.com for more information.

Retaining Wall 3 (C-C)

$$\begin{aligned} A' &:= B' \cdot L = 11.825 \ \textit{ft}^2 & \text{AASHTO Article 10.6.1.3} \\ \sigma_v &:= \frac{1.25 \cdot DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge}}{A'} = 0.917 \ \textit{ksf} \\ \hline \\ \text{For } \frac{e_2}{B} &= 0.044 \ < 1/6: \\ \sigma_{vmax} &:= \frac{(1.25 \cdot DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge})}{B \cdot L} \cdot \left(1 + 6 \cdot \frac{e_2}{B}\right) = 1.056 \ \textit{ksf} \\ \sigma_{vmin} &:= \frac{(1.25 \cdot DC + 1.5 \cdot P_{a2V} + 1.35 \cdot W_{SoilWedge})}{B \cdot L} \cdot \left(1 - 6 \cdot \frac{e_2}{B}\right) = 0.617 \ \textit{ksf} \end{aligned}$$

Modular Wall Unit Weight:

$$V_{R28T} \coloneqq 8.57 \ ft^3$$
 $V_{R41M} \coloneqq 16.14 \ ft^3$ $V_{R28M} \coloneqq 11.28 \ ft^3$ $V_{R41B} \coloneqq 17.06 \ ft^3$

$$\gamma_{ModularWall} \coloneqq \frac{W_{R28T} + W_{R28M} + W_{R41B}}{V_{R28T} + V_{R28M} + V_{R41B}} = 143.051 \ \textbf{pcf}$$

Created with PTC Mathcad Express. See www.mathcad.com for more information.

APPENDIX C

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL ENGINEERING REPORT

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are <u>not</u> building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

Passionate People Building and Revitalizing our World

