	END PROJECT DR-2-3.86 END PROJECT LOR-2-7.97 END PROJECT END PRO
	LOCATION MAP
	LATITUDE: 40°55′38″N LONGITUDE: 81°59′14″ SCALE IN MILES
	0 1 2 3 4
Sheet 5/18/2020 3:08:33 PM ksalay	PORTION TO BE IMPROVED
S	

DEPARTMENT OF TRANSPORTATION

STATE OF OHIO

LOR-2-3.86

CITY OF AMHERST

BROWNHELM TOWNSHIP

LORAIN COUNTY

INDEX OF SHEETS:

1	GUARDRAIL DETAILS	21-29
2-4	PAVEMENT MARKING SUB-SUMMARY	30
5-6	RPM SUB-SUMMARY	31
7 -8	LOOP DETECTOR NOTES & DETAILS	32
9	STRUCTURE SUB-SUMMARY	33
10-12	STRUCTURE NOTES	34
13-15	STRUCTURE DETAILS	
16-17	LOR-2-0459 L&R	35
18	LOR-2-0646 L&R	36
19	LOR-2-0742 L&R	37
20		

CONFORMED SET

	ENGINEERS SEAL:		
	KARLA R.		SUPPLEMENTAL SPECIFICATIONS
UNDERGROUND UTILITIES	A	BP-2.5 7/19/13 MGS-1.1 1/19/18 MT-95.30 7/19/19 TC-41.20 10/18/13	300 7/17/20
Contact Two Working Days	S. KADLA OIL		807 4/17/20
Before You Dig	KARLA		308 1/18/19
	BOHMER		321 4/20/12
			332 10/19/18
HIO811.org	E F-76834		350 4/17/20
	E. P. 9. 83		396 7/21/17
Before You Dig	GISTER WILL		921 4/20/12
		MT-99.20 4/19/19 TC-72.20 7/20/18 MT-101.60 1/17/20 TC-82.10 7/19/19	
OHIO811, 8-1-1, or 1-800-362-2764	STONAL EN MILLIN	MT-101.60 1/17/20 TC-82.10 7/19/19 MT-101.90 7/21/17	SPECIAL
(Non-members must be called directly)		MT-101.30 7/21/17 MT-104.10 10/16/15	PROVISIONS
	VI O. D DA.	MT-105.10 1/17/20	
	SIGNED: Koula R. Bohmer		
	DATE: 5/26/20		

TITLE SHEET

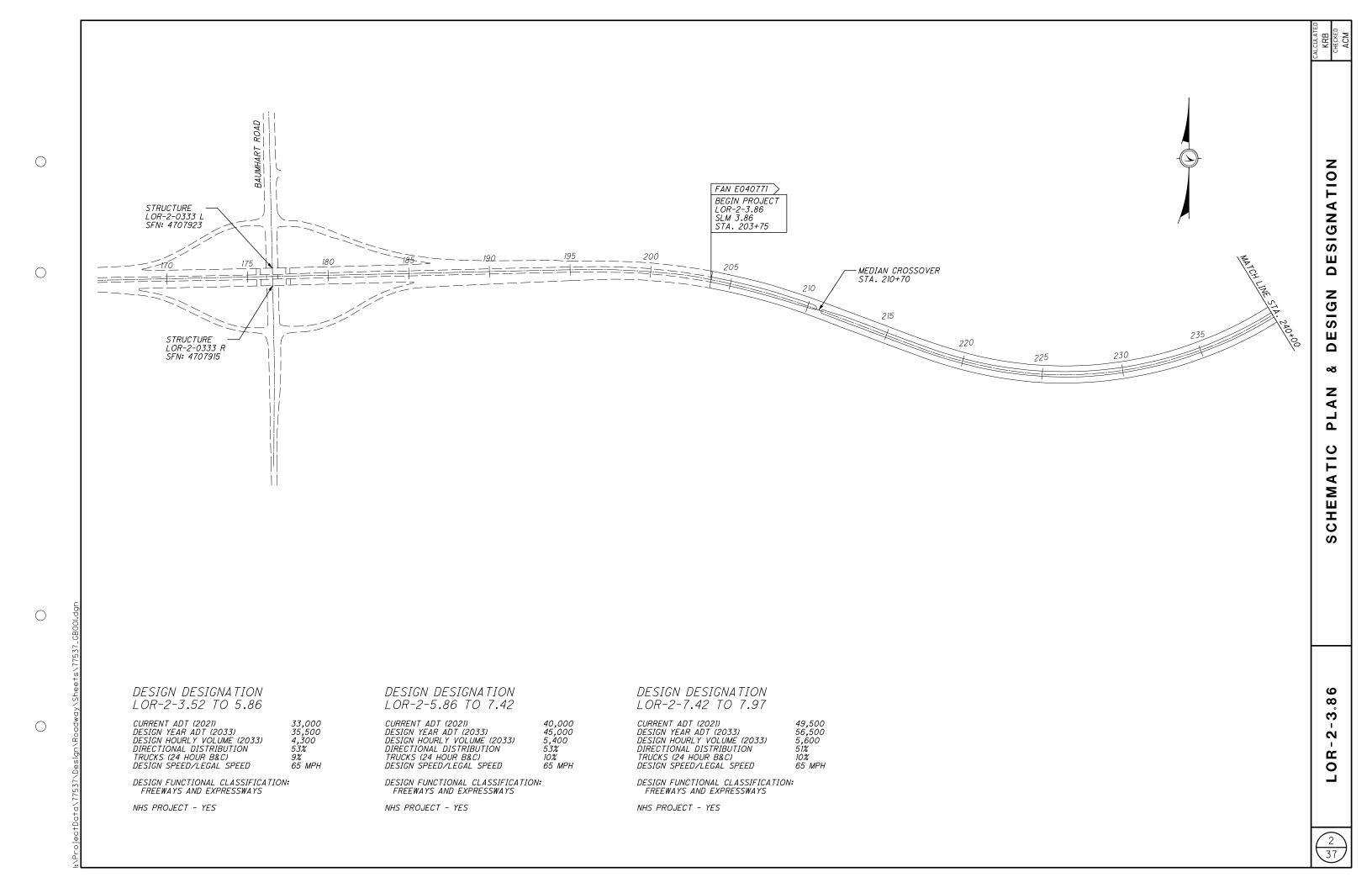
TYPICAL SECTIONS GENERAL NOTES GUARDRAIL NOTES

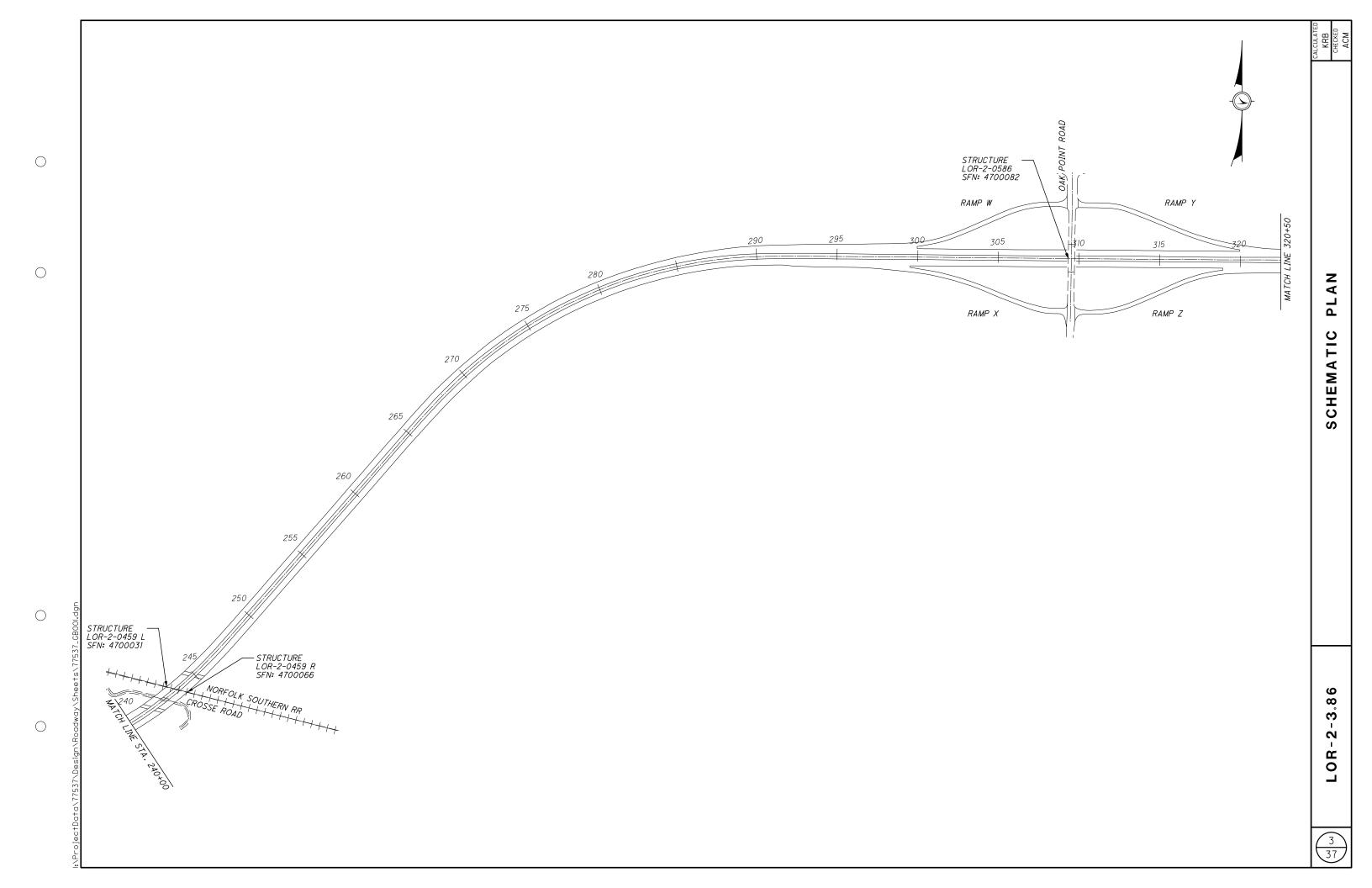
GENERAL SUMMARY

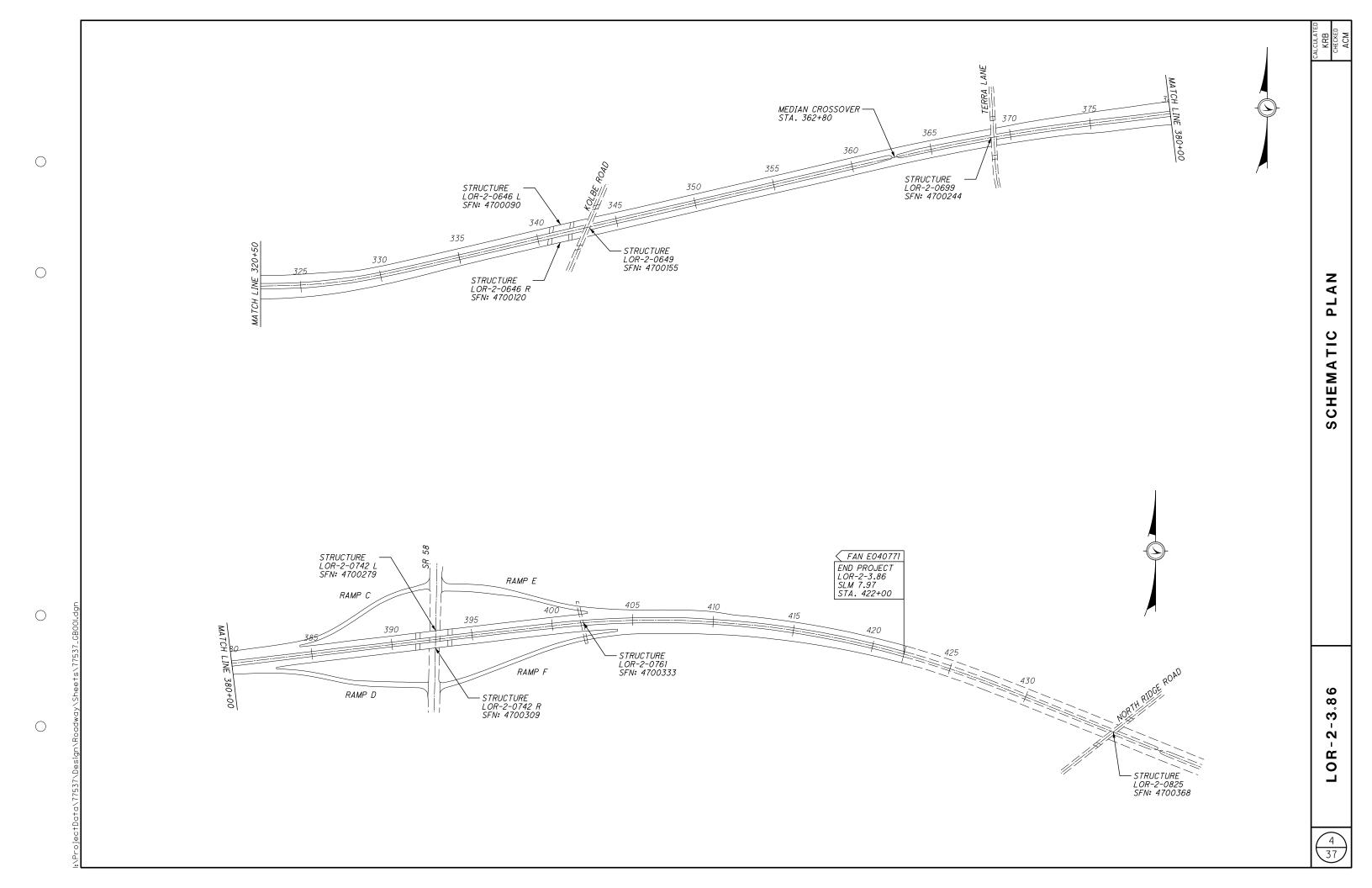
SCHEMATIC PLAN & DESIGN DESIGNATION

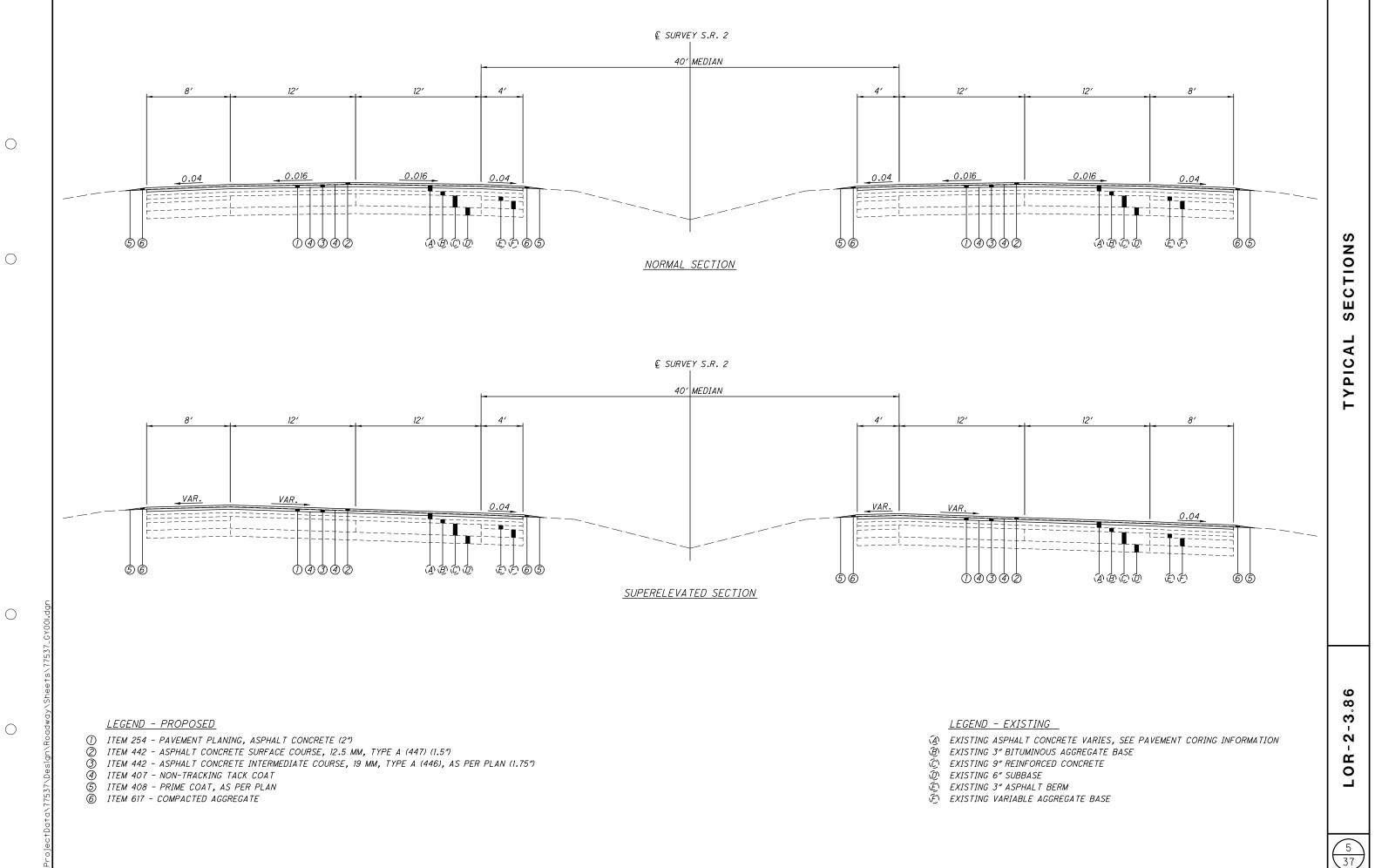
MAINTENANCE OF TRAFFIC NOTES

PAVEMENT & SHOULDER DATA PAVEMENT TRANSITION DETAILS PAVEMENT REPAIR SUB-SUMMARY GUARDRAIL SUB-SUMMARY

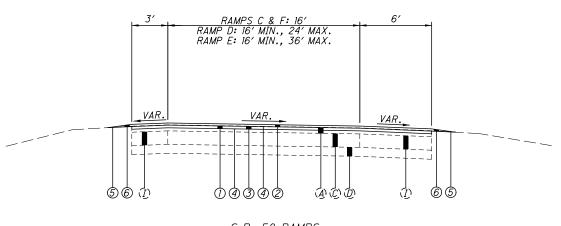

Contract Proposal available @ www.contracts.dot.state.oh.us


LOR - SR-SR 2-03.86 200445 PID - 77537 Dist 3 8/27/2020


Ο


Ο

THIS AND PAV	OJECT DESCRIPTION S PROJECT WILL INCLUDE PAVEMENT REPAIRS, PLANING PAVING WITH ASPHALT CONCRETE, GUARDRAIL REPAIRS, EMENT MARKINGS AND STRUCTURE MAINTENANCE.	FEDERAL PROJECT NO.	E040771
PRO	JECT EARTH DISTURBED AREA: N/A ACRES (MAINTENANCE PROJECT)	_	
	MATED CONTRACTOR EARTH DISTURBED AREA: N/A ACRES (MAINTENANCE PROJECT) TICE OF INTENT EARTH DISTURBED AREA: N/A ACRES (MAINTENANCE PROJECT)	PID NO.	77537
TH OHI SUP	19 SPECIFICATIONS E STANDARD SPECIFICATIONS OF THE STATE OF O, DEPARTMENT OF TRANSPORTATION, INCLUDING PLEMENTAL SPECIFICATIONS LISTED IN THE NS AND CHANGES LISTED IN THE PROPOSAL SHALL	CONSTRUCTION PROJECT NO.	
GOV I HE THE THE	EREBY APPROVE THESE PLANS AND DECLARE THAT MAKING OF THIS IMPROVEMENT WILL NOT REQUIRE CLOSING TO TRAFFIC OF THE HIGHWAY AND THAT DVISIONS FOR THE MAINTENANCE AND SAFETY OF	CONSTRUCT	RN
TRA EST APF DA1 APF	PROVED DIRECTOR, DEPARTMENT OF	RAILROAD INVOLVEMENT	NORFOLK SOUTHER
AL WS (20) /19 /12 /18 (20) /17 /12 /17 /12	PLANS PREPARED BY: Ohio Department of Transportation District Three Engineering		LOR-2-3.86
s		E	1 37



 \bigcirc

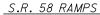
RAMPS W & Z: 16' RAMPS X & Y: 16' MIN., 24' MAX. 6'VAR. VAR. VAR. ____ __!----- -\$6 \$ (A) (G) ふう 65 OAK POINT ROAD RAMPS

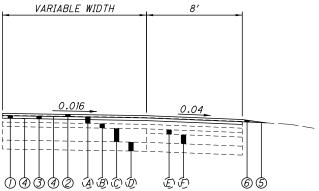
RAMPS W & Z: 16' RAMPS X & Y: 16' MIN., 24' MAX. 6' VAR. VAR. VAR. -----_____ ----· - - -_ _ _ _ . (A) (G) ĤŴ (G)OAK POINT ROAD RAMPS

CURBED SECTION

<u>LEGEND – PROPOSED</u>

- (1) ITEM 254 PAVEMENT PLANING, ASPHALT CONCRETE (2")
- (2) ITEM 442 ASPHALT CONCRETE SURFACE COURSE, 12.5 MM, TYPE A (447) (1.5")
- (3) ITEM 442 ASPHALT CONCRETE INTERMEDIATE COURSE, 19 MM, TYPE A (446), AS PER PLAN (1.75")
- (4) ITEM 407 NON-TRACKING TACK COAT
- (5) ITEM 408 PRIME COAT, AS PER PLAN 6 ITEM 617 - COMPACTED AGGREGATE
- () ITEM 254 PAVEMENT PLANING, ASPHALT CONCRETE (3.25")


(A) EXISTING ASPHALT CONCRETE VARIES: SEE PAVEMENT CORING INFORMATION FOR S.R. 2 MAINLINE 3.5"± S.R. 58 RAMPS D AND E 5.5"± S.R. 58 RAMPS C AND F 5.5"± OAK POINT ROAD RAMPS W, X, Y AND Z (B) EXISTING 3" BITUMINOUS AGGREGATE BASE (C) EXISTING 9" REINFORCED CONCRETE D EXISTING 6" SUBBASE (E) EXISTING 3" ASPHALT BERM (F) EXISTING VARIABLE AGGREGATE BASE © EXISTING 7" BITUMINOUS AGGREGATE BASE $\bar{\mathcal{H}}$ EXISTING 8" BITUMINOUS AGGREGATE BASE (1) EXISTING 9" BITUMINOUS AGGREGATE BASE D EXISTING 3" SUBBASE


 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

S.R. 2 ACCEL./DECEL. LANES

<u>LEGEND - EXISTING</u>

S C TION ш S ∢ YPIC ⊢ ဖ ω Ć 2 £

0

6

37

UTILITIES

LISTED BELOW ARE ALL UTILITIES LOCATED WITHIN THE PROJECT CONSTRUCTION LIMITS TOGETHER WITH THEIR RESPECTIVE OWNERS

THE LOCATION OF THE UNDERGROUND UTILITIES SHOWN ON THE PLANS ARE AS OBTAINED FROM THE OWNERS AS REQUIRED BY SECTION 153.64 O.R.C.

CARLE

CARLE WIDE OPEN WEST 105 BLAZE INDUSTRIAL PKWY BEREA, OH 44017 866.496.9669

CITY CITY OF AMHERST 206 SOUTH MAIN AMHERST, OHIO 44001 440-984-4380

COMMUNICATION CENTURYLINK 175 ASHLAND ROAD, P.O. BOX 3555 MANSFIELD, OH 44907 419.755.7956

COMMUNICATION LEVEL 3 COMMUNICATIONS 106 SOUTH ARLINGTON STREET AKRON, OH 44306 740.275.1133

ELECTRIC OHIO EDISON 1717 ASHLAND ROAD MANSFIELD, OH 44905 419.521.6213

GAS KNOX ENERGY 11872 WORTHINGTON RD PATASKALA. OH 43062 740.927.6731

TRAFFIC ODOT DISTRICT THREE 906 CLARK AVENUE ASHLAND. OH 44805 419.207.7045

5520 WHIPPLE AVENUE NW NORTH CANTON, OH 44720 330.494.9200 CITY OF LORAIN

CHARTER COMMUNICATIONS

200 W. ERIE AVENUE LORAIN, OH 44052 440.204.2003

COMMUNICATION EVERSTREAM SOLUTIONS 800 W ST CLAIR, 2ND FLOOR CLEVELAND, OH 44113 216.581.7972

COMMUNICATION VERIZON BUSINESS 120 RAVINE STREET AKRON, OH 44303 330.253.8267

COLUMBIA GAS OF OHIO 1021 N MAIN STREET MANSFIELD, OH 44903 419.528.1137

GAS TC ENERGY 589 N STATE ROAD MEDINA, OH 44256 330.721.4163

WATER NORTHERN OHIO RURAL WATER P.O. BOX 96 COLLINS. OH 44826 419.668.7213

THE AFOREMENTIONED UTILITY COMPANIES AND AGENCIES HAVE VARIOUS FACILITIES IN THE AREA THAT WILL REMAIN IN PLACE DURING CONSTRUCTION.

EXTREME CAUTION SHOULD BE EXERCISED IN AREAS WITH UTILITIES. SECTIONS 105.07 AND 107.16 OF THE DEPARTMENT OF TRANSPORTATION CONSTRUCTION AND MATERIALS SPECIFICATIONS REQUIRE, AMONG OTHER THINGS, THAT THE CONTRACTOR COOPERATE WITH ALL UTILITIES LOCATED WITHIN THE LIMITS OF THIS CONSTRUCTION PROJECT AND TAKE RESPONSIBILITY FOR THE PROTECTION OF THE UTILITY PROPERTY AND SERVICES.

EXISTING PLANS

EXISTING PLANS ENTITLED LOR-254-0.00 B (LOR-2-3.31-7.97) (1964) MAY BE INSPECTED IN THE ODOT DISTRICT 3 OFFICE IN ASHI AND.

WORK LIMITS

THE WORK LIMITS SHOWN ON THESE PLANS ARE FOR PHYSICAL CONSTRUCTION ONLY. PROVIDE THE INSTALLATION AND OPERATION OF ALL WORK ZONE TRAFFIC CONTROL AND WORK ZONE TRAFFIC CONTROL DEVICES REQUIRED BY THESE PLANS WHETHER INSIDE OR OUTSIDE THESE WORK LIMITS.

ROUTINE MAINTENANCE

BETWEEN THE TIME THAT BIDS ARE TAKEN AND THE START OF CONSTRUCTION. THE MAINTAINING AGENCY MAY ENTER UPON THE PROJECT AND PERFORM ROUTINE MAINTENANCE SUCH AS CRACK SEALING, PATCHING, AND BERM AND SHOULDER REPAIR. THE EFFECTS, IF ANY, OF THE PERFORMANCE OF ROUTINE MAINTENANCE SHALL BE CONSIDERED AS INHERENT IN WORK OF THE CHARACTER PROVIDED FOR IN THE PLAN AND THE RESULTING CONDITIONS SHALL NOT BE CONSIDERED AS DIFFERING MATERIALLY FROM THOSE EXISTING AT THE TIME BIDS WERE TAKEN.

PROFILE AND ALIGNMENT

PLACE THE PROPOSED ASPHALT CONCRETE OVERLAY TO FOLLOW THE ALIGNMENT AND PROFILE OF THE EXISTING PAVEMENT. (PREVIOUS CONSTRUCTION PLANS SHOWING THE ORIGINAL ALIGNMENT AND PROFILE, ARE AVAILABLE FOR INSPECTION AT THE ODOT DISTRICT 3 OFFICE). PLACE THE PROPOSED ASPHALT CONCRETE OVERLAY AS SHOWN ON THE TYPICAL SECTIONS.

ITEM 209 - LINEAR GRADING

THE CONTRACTOR IS REQUIRED TO PERFORM LINEAR GRADING ON THE GRADED SHOULDER. IT IS ANTICIPATED THAT THERE ARE AREAS WHERE THE GRADED SHOULDER IS AT A HIGHER ELEVATION THAN THE ADJACENT PROPOSED PAVEMENT. A 10:1 SLOPE SHALL BE ESTABLISHED, OR AS DIRECTED BY THE ENGINEER, WHEN PERFORMING ITEM 209 LINEAR GRADING. THE INTENT IS TO PROVIDE AN UNOBSTRUCTED AND POSITIVE FLOW OF STORM WATER FROM THE PAVEMENT TO THE DITCH. THE LINEAR GRADING SHALL BE PERFORMED AFTER THE INTERMEDIATE COURSE HAS BEEN COMPLETED AND BEFORE THE SURFACE COURSE IS PLACED. ALL LABOR AND EQUIPMENT NECESSARY TO PERFORM THE ABOVE WORK SHALL BE INCLUDED IN THE UNIT PRICE BID PER MILE FOR ITEM 209 - LINEAR GRADING.

<u>ITEM 251 - PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) ITEM 253 - PAVEMENT REPAIR</u>

THESE ITEMS OF WORK SHALL CONSIST OF THE REMOVAL OF THE EXISTING ASPHALT CONCRETE PAVEMENT IN AREAS OF EXISTING PAVEMENT FAILURE. CORING HAS BEEN PERFORMED TO HELP DETERMINE THE COMPONENTS THAT MAY BE ENCOUNTERED DURING THIS ITEM OF WORK. THE PAVEMENT CORING INFORMATION IS SHOWN ON THIS SHEET.

PAVEMENT REPAIR SHALL BE PERFORMED BEFORE PAVEMENT PLANING AND PLACEMENT OF THE INTERMEDIATE AND SURFACE COURSES. THE DEPTH OF REMOVAL SHALL BE SUFFICIENT TO REMOVE ALL DETERIORATED PAVEMENT WITH AN AVERAGE DEPTH OF 6" FOR ESTIMATING PURPOSES.

THE CONTRACTOR SHALL BE CAPABLE OF PERFORMING PAVEMENT REPAIRS 4 FEET WIDE FOR TRANSVERSE REPAIRS AND 2 FEET WIDE FOR LONGITUDINAL REPAIRS

REPLACEMENT MATERIAL SHALL BE ITEM 301 AND SHALL BE PLACED AND COMPACTED TO FINISH FLUSH WITH THE ADJACENT PAVEMENT SURFACE.

PAYMENT SHALL INCLUDE ALL LABOR, EQUIPMENT, AND MATERIALS NECESSARY TO COMPLETE THE PAVEMENT REPAIR. FOR PAYMENT PURPOSES ITEM 251 PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) IS TO BE A MAXIMUM OF 6" DEEP AND ITEM 253 PAVEMENT REPAIR IS FOR DEPTHS GREATER THAN 6". PAYMENT WILL BE MADE AT THE UNIT BID PRICE PER CUBIC YARD, (BY TICKET WEIGHT CONVERSION), OF ITEM 251 - PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) OR ITEM 253 - PAVEMENT REPAIR.

ITEM 251 - PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE): SEE SHEET 19 FOR ESTIMATED QUANTITIES AND LOCATIONS. THE FINAL LOCATION AND SIZE OF THE REPAIRS ARE TO BE DETERMINED IN THE FIELD BY THE ENGINEER. IN ADDITION TO THE QUANTITIES PROVIDED ON SHEET 19, THE FOLLOWING ADDITIONAL ESTIMATED QUANTITIES ARE PROVIDED IN THE GENERAL SUMMARY TO BE USED AS DIRECTED BY THE ENGINEER: USED ADDITIONAL DEPENDENT DEPUND ACOUNT A CONDECTED AND ITEM 251 - PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) (LONGITUDINAL): 325 CY ITEM 251 - PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) (TRANSVERSE): 100 CY

ITEM 253 - PAVEMENT REPAIR:

THE FOLLOWING RETAINED QUANTITY IS PROVIDED IN THE GENERAL SUMMARY TO BE USED AS DIRECTED BY THE ENGINEER: ITEM 253 - PAVEMENT REPAIR: 100 CY

PAVEMENT CORI

COUNTY	ROUTE	SLM	ASPHAL T	CONCRE TE	BRICK	LOCATION	DIRECTION	YEAR CORED
LOR	2	4.0	9.0	8.0	0.0	LT. WHEEL PATH	EB	2019
LOR	2	4.0	7.5	9.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	4.0	13.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	4.6	8.0	8.5	0.0	CENTER OF LANE	EB	2019
LOR	2	4.6	9.0	9.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	4.6	12.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	5.0	8.0	9.0	0.0	CENTER OF LANE	EB	2019
LOR	2	5.0	10.0	6.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	5.0	10.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	5.7	7.0	9.0	0.0	CENTER OF LANE	EB	2019
LOR	2	5.7	7.0	9.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	5.7	13.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	6.0	7.5	8.0	0.0	CENTER OF LANE	EB	2019
LOR	2	6.0	6.0	8.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	6.0	13.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	6.5	8.0	10.5	0.0	CENTER OF LANE	EB	2019
LOR	2	6.5	8.0	10.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	6.5	15.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	7.1	7.0	8.5	0.0	CENTER OF LANE	EB	2019
LOR	2	7.1	6.5	9.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	7.1	9.0	0.0	0.0	SHOULDER	EB	2019
LOR	2	8.0	5.0	8.5	0.0	CENTER OF LANE	EB	2019
LOR	2	8.0	5.0	9.0	0.0	RT. WHEEL PATH	EB	2019
LOR	2	8.0	6.0	2.5	0.0	SHOULDER	EB	2019

CONCRETE SHALL BE PLACED IN THE REPAIR AREA THE SAME DAY THAT THE EXISTING PAVEMENT IS REMOVED FROM THE REPAIR AREA.

SEAL THE PERIMETER SURFACE OF THE REPAIRED AREAS BY APPLYING A 2 TO 4 INCH WIDE STRIP OF APPROVED 705.04 MATERIAL OR 702.01 APPROVED PG BINDER.

PAYMENT FOR ALL OF THE ABOVE SHALL BE AT THE UNIT PRICE BID PER SQUARE YARD FOR THE ABOVE ITEM, AND WILL INCLUDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS NECESSARY TO COMPLETE THE ABOVE

SEE SHEET 19 FOR ESTIMATED QUANTITIES AND LOCATIONS. THE FINAL LOCATION AND SIZE OF THE REPAIRS ARE TO BE DETERMINED IN THE FIELD BY THE ENGINEER. IN ADDITION TO THE QUANTITIES PROVIDED ON SHEET 19, THE FOLLOWING ADDITIONAL ESTIMATED QUANTITIES ARE PROVIDED IN THE GENERAL SUMMARY TO BE USED AS DIRECTED BY THE ENGINEER:

ITEM 255 - FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS QC MS, AS PER PLAN (OPTION A): 160 SÝ

ITEM 255 - FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS RRCM. AS PER PLAN (OPTION B): 160 SY

ITEM 255 - FULL DEPTH PAVEMENT SAWING: 600 SY

 \bigcirc

 \bigcirc

 \bigcirc

'NG	INFORMATION	

ITEM 255 - FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT. AS PER PLAN

ITEM 255 - FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, AS PER PLAN IS TO BE USED FOR FULL DEPTH RIGID PAVEMENT REPAIRS. PAVEMENT REPAIRS SHALL BE PERFORMED BEFORE PAVEMENT PLANING AND PLACEMENT OF THE INTERMEDIATE AND SURFACE COURSES. CLASS OC MS (OPTION A) OR CLASS RRCM (OPTION B) WILL BE ALLOWED FOR THE REPAIRS.

ш 0 Ζ ∢ Ľ ш Z Ш

G

ŝ

ശ ω က N £ 0

ITEM 254 - PAVEMENT PLANING, ASPHALT CONCRETE

THE INTENT OF THE PLANING IS TO MILL THE SPECIFIED DEPTH AT THE CENTER OF PAVEMENT AT NON-CURBED AREAS. THE PAVEMENT SLOPE SHALL BE 0.010 MINIMUM AND 0.016 PREFERRED, CONTINUOUS BETWEEN THE CROWN AND THE PROPOSED EDGELINE/SHOULDER. THE MILLING DEPTH SHALL BE CONTROLLED FROM THE CENTER OF PAVEMENT IN CONFORMANCE WITH THE ABOVE GUIDELINES.

SPECIAL ATTENTION SHALL BE GIVEN TO SUPERELEVATED CURVES. THE SUPERELEVATION SHALL BE MAINTAINED AND/OR RESTORED, IF NECESSARY, AS DIRECTED BY THE ENGINEER. IF THERE IS NO INFORMATION IN THE PLANS TO CHANGE THE SUPERELEVATION, THE INTENT IS TO MAINTAIN THE EXISTING SUPERELEVATION.

THE CONTRACTOR SHALL MAINTAIN POSITIVE DRAINAGE TO ALL CATCH BASINS AND INLETS.

FOR ANY LOCATIONS WHERE THE PLANING DEPTH WILL EXCEED 3", THE PLANING AND PAVING OPERATIONS SHALL OCCUR IN THE SAME DAY.

THE PROGRESSION OF THE PLANING SHALL PROCEED IN SUCH A MANNER THAT NORMAL TRAFFIC WILL NOT BE REQUIRED TO RUN OVER THE PLANED ROADWAY SURFACE MORE THAN SEVEN (7) CALENDAR DAYS. FOR EACH CALENDAR DAY BEYOND THE 7 DAYS THAT THE ROADWAY REMAINS EXPOSED TO THE PLANED SURFACE, THE CONTRACTOR WILL BE ASSESSED A DISINCENTIVE FEE of \$8000 PER DAY.

PAYMENT SHALL INCLUDE ALL LABOR, EQUIPMENT, AND MATERIALS NECESSARY TO COMPLETE THE PAVEMENT PLANING, ASPHALT CONCRETE. PAYMENT WILL BE MADE AT THE UNIT BID PRICE PER SQUARE YARD OF ITEM 254 - PAVEMENT PLANING, ASPHALT CONCRETE.

ITEM 254 - PAVEMENT PLANING, ASPHALT CONCRETE (CURBED SECTION)

THE INTENT OF THE PLANING IS TO MILL THE SPECIFIED DEPTH ALONG THE CURB CONTINGENT ON THE FOLLOWING: THE MAXIMUM CROSS SLOPE SHALL BE 0.02 WHILE THE MINIMUM CROSS SLOPE SHALL BE 0.01. THE PREFERRED CROSS SLOPE IS 0.016. THE CROWN OF THE PAVEMENT SHALL BE LOCATED BETWEEN THE TRAVELED LANES, OR AS DIRECTED BY THE ENGINEER. THE MILLING DEPTH SHALL BE CONTROLLED FROM THE CURB, TO PRODUCE A CROSS SLOPE IN CONFORMANCE WITH THE ABOVE GUIDELINES.

SPECIAL ATTENTION SHALL BE GIVEN TO SUPERELEVATED CURVES. THE SUPERELEVATION SHALL BE MAINTAINED AND/OR RESTORED, IF NECESSARY, AS DIRECTED BY THE ENGINEER. IF THERE IS NO INFORMATION IN THE PLANS TO CHANGE THE SUPERELEVATION, THE INTENT IS TO MAINTAIN THE EXISTING SUPERELEVATION.

THE CONTRACTOR SHALL MAINTAIN POSITIVE DRAINAGE TO ALL CATCH BASINS AND INLETS.

FOR ANY LOCATIONS WHERE THE PLANING DEPTH WILL EXCEED 3". THE PLANING AND PAVING OPERATIONS SHALL OCCUR IN THE SAME DAY.

THE PROGRESSION OF THE PLANING SHALL PROCEED IN SUCH A MANNER THAT NORMAL TRAFFIC WILL NOT BE REQUIRED TO RUN OVER THE PLANED ROADWAY SURFACE MORE THAN SEVEN (7) CALENDAR DAYS. FOR EACH CALENDAR DAY BEYOND THE 7 DAYS THAT THE ROADWAY REMAINS EXPOSED TO THE PLANED SURFACE, THE CONTRACTOR WILL BE ASSESSED A DISINCENTIVE FEE OF \$8000 PER DAY

PAYMENT SHALL INCLUDE ALL LABOR, EQUIPMENT, AND MATERIALS NECESSARY TO COMPLETE THE PAVEMENT PLANING, ASPHALT CONCRETE. PAYMENT WILL BE MADE AT THE UNIT BID PRICE PER SQUARE YARD OF ITEM 254 - PAVEMENT PLANING, ASPHALT CONCRETE.

ITEM 254 - PATCHING PLANED SURFACE

AN ESTIMATED QUANTITY OF ITEM 254 - PATCHING PLANED SURFACE HAS BEEN SET UP TO BE USED AS DIRECTED BY THE ENGINEER AS DESCRIBED IN CMS 254.04. THE LIMIT OF THE PATCHING DEPTH IS 0 TO 2 IN.

ITEM 408 - PRIME COAT, AS PER PLAN

THE CONTRACTOR SHALL APPLY ONE COAT OF MC-70 (AS PER SECTION 702) AT A RATE OF 0.40 GAL/SY TO THE COMPLETED AGGREGATE SHOULDER (ITEM 617) AS DIRECTED BY THE ENGINEER. THE CONTRACTOR SHALL PROVIDE A SHIELD TO PREVENT THE SPRAYING OR DRIFTING OF LIQUID BITUMINOUS MATERIAL ONTO THE EDGE OF PAVEMENT OR EDGE LINE. THE ATTENTION OF THE CONTRACTOR IS DIRECTED TO 107.10 OF THE SPECIFICATIONS.

<u>ITEM 442 - ASPHALT CONCRETE INTERMEDIATE COURSE, 19.0 MM, TYPE A (446), AS PER PLAN</u>

ON THIS PROJECT SUPPLY A 19MM INTERMEDIATE COURSE MEETING THE REQUIREMENTS OF 442 EXCEPT AS MODIFIED BELOW.

MODIFY TABLE 442.02-2 AS FOLLOWS:

		9.5 mm mix	12.5 mm mix	19 mm mix
Siev	e Size	To	tal Percent Pass	sing
1 1/2 inch	(3.75 mm)	-	-	100
3/4 inch	(19 mm)	-	100	95 to 100
1/2 inch	(12.5 mm)	100	95 to 100	90 to 100
3/8 inch	(9.5 mm)	90 to 100	96 max	96 max
No. 4	(4.75 mm)	70 max	52 to 65	60 max
No. 8	(2.36 mm)	34 to 52	34 to 45	34 to 45
No. 200	(75 µm)	2 to 8	2 to 8	2 to 8

MODIFY TABLE 442.02-3 AS FOLLOWS: APPLY 14.0 FOR A VMA (PERCENT MINIMUM) FOR A 19MM MIX.

APPLY 5.3 PERCENT FOR THE MINIMUM TOTAL ASPHALT BINDER CONTENT FOR A 19MM MIX.

MODIFY THE 442 INTERMEDIATE COURSE REQUIREMENTS OF TABLES 401.04-1 AND 401.04-2 AS FOLLOWS: APPLY 3.5 PERCENT FOR THE TOTAL VIRGIN ASPHALT BINDER CONTENT, MINIMIM

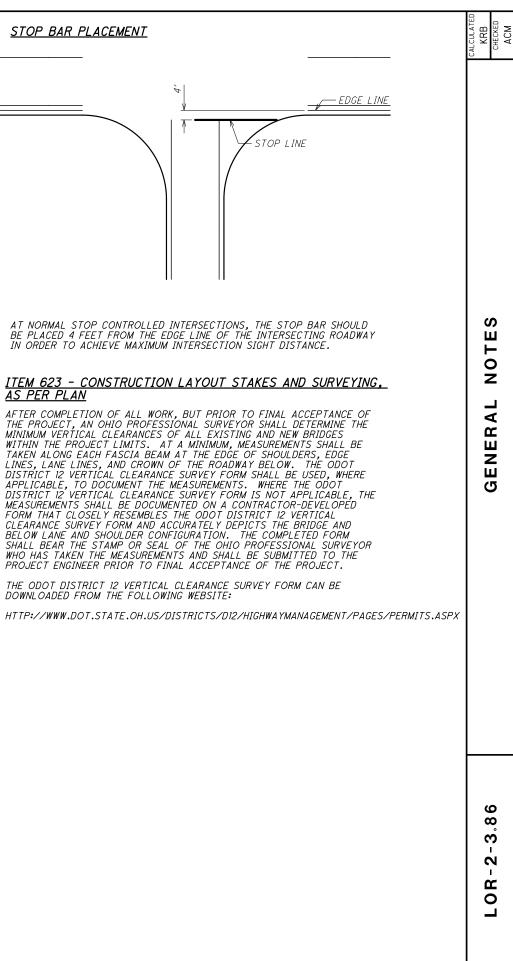
USE A PG 64-22 IF USING 25 PERCENT OR LESS RAP. USE PG 64-28 IF USING GREATER THAN 25 PERCENT RAP.

ITEM 611 - CASTINGS ADJUSTED TO GRADE

THE CASTING TO BE ADJUSTED MAY OR MAY NOT HAVE AN EXISTING FRAME. THE WORK SHALL CONSIST OF ADJUSTING THE EXISTING CASTING TO THE SATISFACTION OF THE ENGINEER. IT IS NOT INTENDED TO PLACE NEW FRAMES WHERE NONE CURRENTLY EXIST. THE CONTRACTOR IS REMINDED TO FIELD CHECK ALL ADJUSTMENT TO GRADE ITEMS PRIOR TO BIDDING, AS NO ADDITIONAL COMPENSATION WILL BE GRANTED FOR LABOR AND MATERIALS REQUIRED TO SATISFACTORILY ADJUST CASTINGS WITHOUT FRAMES.

ITEM 611 - CATCH BASIN ADJUSTED TO GRADE SR 2 EB, AT STRUCTURE 0459 R: 2 EACH SR 2 EB, AT STRUCTURE 0646 R: 2 EACH SR 2 EB, AT STRUCTURE 0742 R: 4 EACH SR 2 EB, SR 58 DECEL. LANE: 1 EACH SR 2 EB, SR 58 ACCEL. LANE: 1 EACH SR 2 WB, AT STRUCTURE 0459 L: 2 EACH SR 2 WB, AT STRUCTURE 0646 L: 2 EACH SR 2 WB. AT STRUCTURE 0742 L: 4 EACH TOTAL = 18 EACH

ITEM 611 - INLET ADJUSTED TO GRADE OAK POINT ROAD RAMP W: 1 EACH TOTAL = 1 FACH


ITEM 611 - MANHOLE ADJUSTED TO GRADE SR 58 RAMP D: 1 EACH SR 58 RAMP C: I EACH TOTAL = 2 EACH

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

37

LOCATIONS OF GUARDRAIL

THE GUARDRAIL PROTECTION PROVIDED IN THIS PLAN SHALL BE LOCATED IN THE FIELD TO ASSURE THAT THE INSTALLATION WILL AFFORD THE MAXIMUM PROTECTION FOR TRAFFIC. THIS LOCATION SHALL BE POSITIONED AS FAR AS POSSIBLE FROM THE EDGE OF PAVEMENT WHILE MAINTAINING PROPER GRADE IN FRONT OF GUARDRAIL AS PER STANDARD DRAWINGS AND PLAN DETAILS.

ITEM 203 - EMBANKMENT, AS PER PLAN

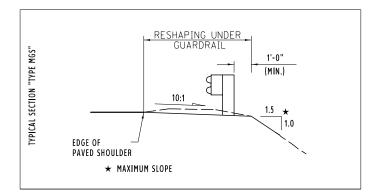
AT SPECIFIED LOCATIONS AND LOCATIONS AS DIRECTED BY THE ENGINEER, EMBANKMENT SHALL BE PLACED AS TO PROVIDE A SUITABLE AREA TO CONSTRUCT GUARDRAIL AND TO PROVIDE STRUCTURAL INTEGRITY OF THE ROADWAY SHOULDER.

AREAS WHERE EMBANKMENT MATERIAL IS TO BE PLACED SHALL BE SCALPED. THE REOUIREMENTS FOR BENCHING SHALL BE WAIVED. THE DEPTH OF LAYERS IN WHICH THE EMBANKMENT IS PLACED SHALL BE LIMITED TO EIGHT (8) INCHES IN THICKNESS. THE METHOD OF COMPACTION AND EQUIPMENT USED SHALL BE PER C&MS 203.07 OR 98% MAXIMUM DRY DENSITY.

AFTER THE EMBANKMENT HAS BEEN PLACED, THE AREAS SHALL BE FERTILIZED, SEEDED, MULCHED, AND WATERED AS PER ITEM 659. THE COST SHALL BE INCLUDED IN THIS ITEM FOR PAYMENT.

THE METHOD OF MEASUREMENT FOR EMBANKMENT MATERIAL SHALL BE BY THE NUMBER OF CUBIC YARDS MEASURED BY LOOSE VOLUME IN THE CARRIER AT THE WORK SITE, IN LIEU OF THE REQUIREMENTS OF 203.09. PAYMENT FOR ACCEPTED QUANTITIES WILL BE MADE AT THE CONTRACT UNIT BID PRICE PER CUBIC YARD FOR ITEM 203 - EMBANKMENT, AS PER PLAN AND SHALL INCLUDE ALL WORK DESCRIBED ABOVE.

ITEM 209 - RESHAPING UNDER GUARDRAIL, AS PER PLAN


THIS ITEM SHALL BE USED AT LOCATIONS INDICATED IN THE PLANS.

THIS WORK SHALL BE COMPLETED AT LOCATIONS SPECIFIED FOR WORK AS WELL AS PER CMS 209.05 AND AS DESCRIBED HEREIN, AND SHALL AT ALL TIMES BE AS DIRECTED BY THE ENGINEER.

THE AREA IN FRONT OF, UNDER, AND BEHIND THE GUARDRAIL SHALL BE GRADED AND RESHAPED TO PROVIDE AN AREA THAT HAS A SLOPE OF 10:1 MAXIMUM (SEE DETAIL BELOW AS WELL AS THE GUARDRAIL DETAIL SHEETS FOR FURTHER DETAILS AND INFORMATION OF THE LIMITS OF THIS WORK). AFTER THE RESHAPING IS COMPLETED, THE AREAS SHALL BE FERTILIZIED, SEEDED, MULCHED, AND WATERED AS PER ITEM 659. THE COST SHALL BE INCLUDED IN THIS ITEM FOR PAYMENT.

EXCESS MATERIAL RESULTING SHALL BE USED ELSEWHERE FOR THIS ITEM IF SO DIRECTED OR DISPOSED OF PROPERLY. IF EXTRA MATERIAL IS REQUIRED IT SHALL BE PAID FOR WITH ITEM 203 - EMBANKMENT, AS PER PLAN. THIS WORK SHALL NOT BE STARTED UNTIL AFTER THE RESURFACING AND BERM WORK HAS BEEN COMPLETED.

THE ABOVE WORK SHALL BE PAID FOR PER STATION WITH ITEM 209, RESHAPING UNDER GUARDRAIL, AS PER PLAN WITH THE EXCEPTION OF ANY EXTRA MATERIAL REQUIRED TO MEET THE SLOPE REQUIREMENTS WHICH SHALL BE PAID BY ITEM 203 - EMBANKMENT, AS PER PLAN.

ITEM 606 - ANCHOR ASSEMBLY, MGS TYPE E

THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING ANY OF THE GUARDRAIL END TERMINALS AS LISTED ON ROADWAY ENGINEERING'S WEB PAGE UNDER ROADSIDE SAFETY DEVICES FOR APPROVED GUARDRAIL END TREATMENTS. INSTALLATION SHALL BE AT THE LOCATIONS SPECIFIED IN THE PLANS, IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

THE FACE OF THE MGS TYPE E IMPACT HEAD SHALL BE COVERED WITH A SHEET OF TYPE G REFLECTIVE SHEETING, PER CMS 730.19.

THE CONTRACTOR MAY USE A SALVAGED EXTRUDER WHEN ASSEMBLING THE ITEM 606 ANCHOR ASSEMBLY, MGS TYPE E. ALL WELDS ON THE EXTERIOR OF THE SALVAGED EXTRUDER SHALL NOT BE DAMAGED AND THE FEEDER SHUTE SHALL NOT BE BENT.

REFER TO THE MANUFACTURER'S INSTRUCTIONS REGARDING THE INSTALLATION OF, AND THE GRADING AROUND, THE FOUNDATION TUBES AND GROUND STRUT. THE TOP OF ANY FOUNDATION TUBE SHOULD BE LESS THAN 4 INCHES ABOVE THE GROUND. THE PLACEMENT OF THE FOUNDATION TUBES SHOULD BE AN APPROPRIATE DEPTH BELOW THE LEVEL LINE IN ORDER TO MAINTAIN THE FINISHED GUARDRAIL HEIGHT OF 31 INCHES FROM THE EDGE OF THE SHOULDER.

ON SITE GRADING IS REQUIRED IF THE TOP OF THE FOUNDATION TUBES OR TOP OF THE GROUND STRUT PROJECT MORE THAN 4 INCHES ABOVE THE GROUND LINE.

PAYMENT FOR THE ABOVE WORK SHALL BE MADE AT THE UNIT PRICE BID FOR ITEM 606, ANCHOR ASSEMBLY, MGS TYPE E, EACH, AND SHALL INCLUDE ALL LABOR, TOOLS, EQUIPMENT AND MATERIALS NECESSARY TO CONSTRUCT A COMPLETE AND FUNCTIONAL ANCHOR ASSEMBLY SYSTEM, INCLUDING ALL RELATED TRANSITIONS, REFLECTIVE SHEETING, HARDWARE, GRADING, EMBANKMENT AND EXCAVATION NOT SEPARATELY SPECIFIED, AS REQUIRED BY THE MANUFACTURER.

ITEM 606 - MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1

ITEM 606 - MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1 WILL REQUIRE 15'-0'/2" LONG NESTED THRIE BEAM SECTIONS AT THE CONNECTION TO THE EXISTING BRIDGE PARAPETS. SEE SCD MGS-3.1 FOR ADDITIONAL DETAILS.

CALCULATED KRB CHECKED ACM
OTES
GUARDRAIL NOTES
GU
3.86
LOR-2-3.86
9 37

NOTIFICATIONS OF TRAFFIC RESTRICTIONS

THROUGHOUT THE DURATION OF THE PROJECT, THE CONTRACTOR SHALL NOTIFY THE PROJECT ENGINEER IN WRITING OF ALL TRAFFIC RESTRICTIONS AND UPCOMING MAINTENANCE OF TRAFFIC CHANGES. THE CONTRACTOR SHALL ENSURE THE WRITTEN NOTIFICATION IS SUBMITTED IN A TIMELY MANNER TO ALLOW THE PROJECT ENGINEER TO MEET THE REQUIRED TIME FRAMES SET FORTH IN THE TABLE BELOW TO INFORM THE SPECIAL HAULING PERMITS SECTION (HAULING.PERMITS@DOT.OHIO.GOV) AND THE DISTRICT PUBLIC INFORMATION OFFICE (PIO). THIS NOTIFICATION SHALL BE RECEIVED BY THE PROJECT ENGINEER PRIOR TO THE PHYSICAL SETUP OF ANY APPLICABLE SIGNS OR MESSAGE BOARDS BOARDS.

INFORMATION SHOULD INCLUDE, BUT IS NOT LIMITED TO, ALL CONSTRUCTION ACTIVITIES THAT IMPACT OR INTERFERE WITH TRAFFIC AND SHALL LIST THE SPECIFIC LOCATION. TYPE OF WORK. ROAD STATUS. DATE AND TIME OF RESTRICTION, DURATION, THE OF WORK, ROAD STATOS, DATE AND TIME OF RESTRICTION, DURATION OF RESTRICTION, NUMBER OF LANES MAINTAINED, NUMBER OF LANES CLOSED, MINIMUM VERTICAL CLEARANCE, MINIMUM WIDTH OF DRIVABLE PAVEMENT, DETOUR ROUTES, IF APPLICABLE, AND ANY OTHER INFORMATION REQUESTED BY THE PROJECT ENGINEER.

	NOTIFICATION TIME TABLE	
<u>ITEM</u>	DURATION OF CLOSURE	NOTICE LEAD TIME REQUIRED*
	TWO WEEKS OR GREATER	21 CALENDAR DAYS
RAMP AND/OR ROAD CLOSURES	12 HOURS TO TWO WEEKS	14 CALENDAR DAYS
	12 HOURS OR LESS	4 BUSINESS DAYS
LANE CLOSURES AND	TWO WEEKS OR GREATER	14 CALENDAR DAYS
RESTRICTIONS	LESS THAN TWO WEEKS	5 BUSINESS DAYS
START OF CONSTRUCTION AND TRAFFIC PATTERN CHANGES	N∕A	14 CALENDAR DAYS PRIOR TO IMPLEMENTATION

* - PRIOR TO CLOSURE DATE. UNLESS NOTED OTHERWISE

ANY UNFORESEEN CONDITIONS NOT SPECIFIED IN THE PLANS REQUIRING TRAFFIC RESTRICTIONS SHALL ALSO BE REPORTED TO THE PROJECT ENGINEER USING THE NOTIFICATION TIME TABLE.

WORKING HOURS RESTRICTION

STATE ROUTE 2 IS A RESTRICTED LANE CLOSURE ROUTE DUE TO HIGH TRAFFIC VOLUME. DURING THE PROJECT DURATION, LANE CLOSURES SHALL BE PERMITTED AS LISTED ON THE ODOT PLCM WEB SITE AT http://plcm.dot.state.oh.us.

LANE CLOSURES ON SR 58 FOR THE STRUCTURE MAINTENANCE WORK ON STRUCTURES LOR-2-0742 L&R SHALL FOLLOW THE PERMITTED LANE CLOSURE RESTRICTIONS FOR SR 2.

RAMP WORK SHALL ONLY BE PERFORMED IN THE EVENINGS FROM 9 PM TO 6 AM. RAMP CLOSURES ARE PERMITTED.

THE ALLOWABLE LANE CLOSURE TIMES ARE TO INCLUDE ANY TIME NEEDED TO IMPLEMENT AND REMOVE ALL MAINTENANCE OF TRAFFIC MEASURES.

LANE CLOSURE DISINCENTIVE

A LANE CLOSURE IS DEFINED AS ANY RESTRICTION OF A LANE OF TRAFFIC INCLUDING, BUT NOT LIMITED AS ANT RESTRICTION OF A LANE OF TRAFFIC INCLUDING, BUT NOT LIMITED TO, SET UP AND TEAR DOWN OF TRAFFIC CONTROL ZONES. THE CONTRACTOR WILL BE ASSESSED A DISINCENTIVE FEE IN THE AMOUNT OF \$235 (FOR SR 2) AND \$135 (FOR SR 58) PER MINUTE THAT LANES ARE CLOSED TO TRAFFIC DURING TIMES DESIGNATED AS "LANE CLOSURE NOT PERMITTED" AS STATED IN THESE PLANS AND ON THE ODOT PLCM WEB SITE AT http://plcm.dot.state.oh.us.

MAINTENANCE OF TRAFFIC FOR MARKING PAVEMENT REPAIRS

PROVIDE LANE CLOSURES AS PER THE MAINTENANCE OF TRAFFIC NOTES IN THESE PLANS A MINIMUM OF 24 HOURS PRIOR TO PERFORMING PAVEMENT REPAIRS TO ALLOW THE ENGINEER TO IDENTIFY AND MARK THE AREAS OF THE PAVEMENT IN NEED OF REPAIRS.

PAYMENT FOR ALL LABOR, EQUIPMENT, MATERIALS, AND INCIDENTALS NEEDED TO PERFORM THE ABOVE LISTED WORK IS CONSIDERED INCIDENTAL TO MAINTAINING TRAFFIC ON THE PROJECT AND WILL BE INCLUDED IN THE LUMP SUM BID PRICE FOR ITEM 614 MAINTAINING TRAFFIC.

BUTT JOINTS

DO NOT CUT BUTT JOINTS AND ALLOW THEM TO BE LEFT OPEN TO TRAFFIC. FILL THE BUTT JOINTS WITH A TEMPORARY ASPHALT CONCRETE WEDGE USING ITEM 614 ASPHALT CONCRETE FOR MAINTAINING TRAFFIC IN ACCORDANCE WITH THE TAPER RATES SET FORTH IN SCD BP-3.1.

ERECT AND MAINTAIN CONSTRUCTION "BUMP" (W8-1-36) AND "ADVISORY SPEED" (W13-1-24) SIGNS DURING THE PERIOD THE BUTT JOINT IS LEFT OPEN. PAYMENT FOR THESE SIGNS WILL BE MADE UNDER THE LUMP SUM BID PRICE FOR ITEM 614 MAINTAINING TRAFFIC.

<u>ITEM 614 - MAINTAINING TRAFFIC</u> (LANES OPEN DURING HOLIDAYS OR SPECIAL EVENTS)

NO WORK SHALL BE PERFORMED AND ALL EXISTING LANES SHALL BE OPEN TO TRAFFIC DURING THE FOLLOWING DESIGNATED HOLIDAYS OR EVENTS:

CHRISTMAS	FOURTH OF JUL
NEW YEARS	LABOR DAY
MEMORIAL DAY	THANKSGIVING

THE PERIOD OF TIME THAT THE LANES ARE TO BE OPEN DEPENDS ON THE DAY OF THE WEEK ON WHICH THE HOLIDAY OR EVENT FALLS. THE FOLLOWING SCHEDULE SHALL BE USED TO DETERMINE THIS PERIOD:

DAY OF HOLIDAY	TIME ALL LANES MUST
OR EVENT	BE OPEN TO TRAFFIC
SUNDA Y MONDA Y TUESDA Y WEDNESDA Y THURSDA Y FRIDA Y SA TURDA Y	12:00N FRIDAY THROUGH 6:00 AM MONDAY 12:00N FRIDAY THROUGH 6:00 AM TUESDAY 12:00N MONDAY THROUGH 6:00 AM WEDNESDAY 12:00N TUESDAY THROUGH 6:00 AM MONDAY 12:00N WEDNESDAY THROUGH 6:00 AM MONDAY 12:00N FRIDAY THROUGH 6:00 AM MONDAY

SHOULD THE CONTRACTOR FAIL TO MEET ANY OF THESE REQUIREMENTS, THE CONTRACTOR SHALL BE ASSESSED A DISINCENTIVE IN THE AMOUNT OF \$235 (FOR SR 2) AND \$135 (FOR SR 58) FOR EACH MINUTE THE ABOVE DESCRIBED LANE CLOSURE RESTRICTIONS ARE VIOLATED.

ITEM 614 - MAINTAINING TRAFFIC: GENERAL

MAINTAIN ONE 11' LANE OF TRAFFIC IN EACH DIRECTION AT ALL TIMES.

SUBMIT, IN WRITING, A SCHEDULE OF OPERATIONS TO THE ENGINEER AND RECEIVE APPROVAL BEFORE WORK IS STARTED ON THE PROJECT. PRIOR TO BEGINNING WORK, COORDINATE THE MAINTENANCE OF TRAFFIC OPERATIONS WITH THE LOCAL STATE HIGHWAY PATROL.

ITEM 614 - MAINTAINING TRAFFIC: GENERAL

ALL WORK AND TRAFFIC CONTROL DEVICES SHALL BE IN ACCORDANCE WITH C&MS 614 AND OTHER APPLICABLE PORTIONS OF THE SPECIFICATIONS, AS WELL AS THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES CURRENT EDITION WITH THE LATEST REVISIONS. PAYMENT FOR ALL LABOR, EQUIPMENT AND MATERIALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT PRICE FOR ITEM 614, MAINTAINING TRAFFIC, UNLESS SEPARATELY ITEMIZED IN THE PLAN.

CONTRACTOR EQUIPMENT ACCESS AND WORK OPERATIONS

IN ADDITION TO THE REQUIREMENTS OF SECTION 614 OF THE CONSTRUCTION AND MATERIAL SPECIFICATIONS THE FOLLOWING SHALL APPLY:

THE CONTRACTOR'S EQUIPMENT SHALL BE OPERATED IN THE DIRECTION OF TRAVEL WHERE PRACTICAL.

THE CONTRACTOR SHALL ARRANGE CONSTRUCTION OPERATIONS SO AS TO PREVENT ANY INTERFERENCE TO THE CONTINUOUS FLOW OF TRAFFIC. ALL VEHICLES, EQUIPMENT, WORKERS AND THEIR ACTIVITIES ARE RESTRICTED AT ALL TIMES TÓ THE CLOSED LANES UNLESS OTHERWISE APPROVED BY THE ENGINEER.

<u>ITEM 614 - MAINTAINING TRAFFIC LANE CLOSURE/REDUCTION</u> REQUIRED

LENGTH AND DURATION OF LANE CLOSURES AND RESTRICTIONS SHALL BE AT THE APPROVAL OF THE ENGINEER. IT IS THE INTENT TO MINIMIZE THE IMPACT TO THE TRAVELING PUBLIC. LANE CLOSURES OR RESTRICTIONS OVER SEGMENTS OF THE PROJECT IN WHICH NO WORK IS ANTICIPATED WITHIN A REASONABLE TIME FRAME, AS DETERMINED BY THE ENGINEER, SHALL NOT BE PERMITTED. THE LEVEL OF UTILIZATION OF MAINTENANCE OF TRAFFIC DEVICES SHALL BE COMMENSURATE WITH THE WORK IN PROGRESS.

FLOODLIGHTING

PAYMENT FOR ALL LABOR, EQUIPMENT AND MATERIALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT UNIT PRICE FOR ITEM 614 - MAINTAINING TRAFFIC.

ITEM 614 - REPLACEMENT DRUM

DRUMS FURNISHED BY THE CONTRACTOR IN ACCORDANCE WITH THE REQUIREMENTS OF THE PLANS, SPECIFICATIONS AND PROPOSAL WHICH BECOME DAMAGED BY TRAFFIC FOR REASONS BEYOND THE CONTROL OF THE CONTRACTOR SHALL BE REPLACED IN KIND WHEN ORDERED BY THE ENGINEER. REPLACEMENT DRUMS SHALL BE NEW.

THIS ITEM IS TO BE CONSIDERED INCIDENTAL TO MAINTAINING TRAFFIC ON THE PROJECT AND WILL BE PAID FOR UNDER THE LUMP SUM CONTRACT BID PRICE FOR ITEM 614 MAINTAINING TRAFFIC. IT SHALL INCLUDE THE COST OF REMOVING AND DISPOSING OF THE DAMAGED DRUM, AND PROVIDING AND MAINTAINING THE REPLACEMENT DRUM IN ACCORDANCE WITH THE CONTRACT REQUIREMENTS FOR THE ORIGINAL DRUM.

OPERATIONALLY NEEDED.

250 CU YD

RAMP WORK LIMITATIONS

THE CONTRACTOR SHALL BE RESPONSIBLE FOR FURNISHING, INSTALLING, MAINTAINING AND REMOVING THE GATES AND BARRICADES AT THE END OF THE WORK AREA AS SHOWN ON STANDARD CONSTRUCTION DRAWING MT-101.60.

THE RAMPS ARE PERMITTED TO BE DETOURED AS FOLLOWS:

OAK POINT RD RAMPS RAMP W: SR 2 EB TO SR 58 TO SR 2 WB RAMP X: SR 2 EB TO SR 58 TO SR 2 WB RAMP X: SR 2 EB TO SR 58 TO SR 2 WB TO OAK POINT RD RAMP Y: SR 2 WB TO BAUMHART RD TO SR 2 EB TO OAK POINT RD RAMP Z: SR 2 WB TO BAUMHART RD TO SR 2 EB

SR 58 RAMPS

THE FOLLOWING ESTIMATED QUANTITY BEEN INCLUDED IN THE GENERAL SUMMARY TO BE USED AS DIRECTED BY THE ENGINEER FOR THE RAMP CLOSURES:

ITEM 614 - PORTABLE CHANGEABLE MESSAGE SIGNS, AS PER PLAN 2 SIGN MONTHS

 \bigcirc

 \bigcirc

 \bigcirc

FLOODLIGHTING OF THE WORK SITE FOR OPERATIONS CONDUCTED DURING NIGHTTIME PERIODS SHALL BE ACCOMPLISHED SO THAT THE LIGHTS DO NOT CAUSE GLARE TO THE DRIVERS ON THE ROADWAY. TO ENSURE THE ADEQUACY OF THE FLOODLIGHT PLACEMENT, THE CONTRACTOR AND THE ENGINEER SHALL DRIVE THROUGH THE WORK SITE EACH NIGHT WHEN THE LIGHTING IS IN PLACE AND OPERATIVE PRIOR TO COMMENCING ANY WORK. IF GLARE IS DETECTED, THE LIGHT PLACEMENT AND SHIELDING SHALL BE ADJUSTED TO THE SATISFACTION OF THE ENGINEER BEFORE WORK PROCEEDS.

<u> ITEM 614 - REPLACEMENT SIGN</u>

FLAT SHEET SIGNS FURNISHED BY THE CONTRACTOR IN ACCORDANCE WITH THE REQUIREMENTS OF THE PLANS, SPECIFICATIONS AND PROPOSAL WHICH BECOME DAMAGED BY TRAFFIC FOR REASONS BEYOND THE CONTROL OF THE CONTRACTOR SHALL BE REPLACED IN KIND WHEN ORDERED BY THE ENGINEER. REPLACEMENT SIGNS SHALL BE NEW. OTHER MATERIALS MAY BE IN USED, BUT GOOD, CONDITION SUBJECT TO APPROVAL BY THE ENGINEER.

THIS ITEM IS TO BE CONSIDERED INCIDENTAL TO MAINTAINING TRAFFIC ON THE PROJECT AND WILL BE PAID FOR UNDER THE LUMP SUM CONTRACT BID PRICE FOR ITEM 614 MAINTAINING TRAFFIC. IT SHALL INCLUDE THE COST OF REMOVING AND DISPOSING OF THE DAMAGED SIGNS, HARWARE AND SUPPORTS, AND PROVIDING THE NECESSARY REPLACEMENT HARDWARE, SUPPORTS, ETC.

ITEM 614 - MAINTAINING TRAFFIC (ESTIMATED QUANTITIES)

THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN INCLUDED IN THE GENERAL SUMMARY FOR USE AS DETERMINED BY THE ENGINEER FOR MAINTENANCE OF TRAFFIC. INCLUDE THE COST FOR THE REMOVAL OF ALL MAINTENANCE OF TRAFFIC MATERIALS IN THE CONTRACT BID PRICE FOR EACH ITEM BELOW. REMOVE THE MATERIALS AT THE DIRECTION OF THE ENGINEER WHEN NO LONGER

ITEM 614 ASPHALT CONCRETE FOR MAINTAINING TRAFFIC

RAMP WORK SHALL ONLY BE PERFORMED IN THE EVENINGS FROM 9 PM TO 6 AM. RAMP CLOSURES ARE PERMITTED. THE CONTRACTOR SHALL ONLY CLOSE ONE RAMP AT A TIME. A RAMP MAY BE CLOSED FOR ONE NIGHT, OPENED IN THE MORNING TO TRAFFIC WHILE MEETING THE DROP OFFS IN WORK ZONE REQUIREMENTS, AND THEN CLOSED AGAIN THE FOLLOWING NIGHT.

RAMP C: SR 2 EB TO MIDDLE RIDGE RD TO SR 2 WB RAMP D: SR 2 EB TO MIDDLE RIDGE RD TO SR 2 WB TO SR 58 RAMP E: SR 2 WB TO OAK POINT RD TO SR 2 EB TO SR 58 RAMP F: SR 2 WB TO OAK POINT RD TO SR 2 FB

ശ ω က N £ 0

10 37

WORK ZONE SPEED ZONES (WZSZS)

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

THE FOLLOWING WORK ZONE SPEED ZONE (WZSZ) SPEED LIMIT REVISION(S) HAVE BEEN APPROVED FOR USE ON THIS PROJECT WHEN WORK ZONE CONDITIONS AND FACTORS ARE MET AS DESCRIBED BELOW:

WZSZ REVISION NUMBER	COUNTY, ROUTE, SECTION	DIRECTION
WZ-20614	LOR-2-3.86 TO 7.97	EB & WB

POTENTIAL WZSZ LOCATIONS SHALL HAVE AN ORIGINAL (PRE-CONSTRUCTION) POSTED SPEED LIMIT OF 55 MPH OR GREATER, A OUALIFYING WORK ZONE CONDITION OF AT LEAST 0.5 MILE IN LENGTH, AN EXPECTED WORK DURATION OF AT LEAST THREE HOURS, AND A WORK ZONE CONDITION IN PLACE THAT REDUCES THE EXISTING FUNCTIONALITY OF THE TRAVEL LANES OR SHOULDERS (I.E., LANE CLOSURE, LANE SHIFT, CROSSOVER, CONTRAFLOW AND/OR SHOULDER CLOSURE). THE LENGTH OF THE WORK ZONE CONDITION IS MEASURED FROM THE BEGINNING OF THE TAPER FOR THE SUBJECT WORK ZONE CONDITION IMPACTING THE TRAVEL LANES AND/OR SHOULDER TO THE END OF THE DOWNSTREAM TAPER, WHERE DRIVERS ARE RETURNED TO TYPICAL ALIGNMENT. AN EXPECTED WORK DURATION OF AT LEAST THREE HOURS IS REQUIRED TO BALANCE THE ADDITIONAL EXPOSURE CREATED BY INSTALLING AND REMOVING WZSZ SIGNING WITH THE TIME NEEDED TO COMPLETE THE WORK.

IF THE WORK ZONE MEETS THESE MINIMUM CRITERIA, IT SHALL BE ANALYZED FURTHER USING TABLE I BELOW TO DETERMINE IF AND WHEN IT QUALIFIES FOR A SPEED LIMIT REDUCTION. DEPENDING ON THE ORIGINAL POSTED SPEED LIMIT, THE TYPE OF TEMPORARY TRAFFIC CONTROL USED, AND WHETHER OR NOT WORKERS ARE PRESENT, A WARRANTED WZSZ WILL VARY IN THE APPROVED SPEED LIMIT TO BE POSTED OVER TIME.

C&MS ITEM 614, PARAGRAPH 614.02(B), INDICATES THAT TWO DIRECTIONS OF A DIVIDIED HIGHWAY ARE CONSIDERED SEPARATE HIGHWAY SECTIONS. THEREFORE, IF THE WORK ON A MULTI-LANE DIVIDED HIGHWAY IS LIMITED TO ONLY ONE DIRECTION, A SPEED LIMIT REDUCTION IN THE DIRECTION OF THE WORK DOES NOT AUTOMATICALLY CONSTITUTE A SPEED LIMIT REDUCTION IN THE OPPOSITE DIRECTION. EACH DIRECTION SHALL BE ANALYZED INDEPENDENTLY FROM EACH OTHER.

ALL WZSZS FLUCTUATE BETWEEN TWO APPROVED REDUCED SPEED LIMITS OR BETWEEN AN APPROVED REDUCED SPEED LIMIT AND THE ORIGINAL POSTED SPEED LIMIT. ONLY ONE OF TWO SIGNING STRATEGIES SHALL BE USED TO IMPLEMENT A WZSZ.

WZSZS USING DSL SIGN ASSEMBLIES SHALL BE IN ACCORDANCE WITH THIS NOTE, APPROVED LIST, SUPPLEMENTAL SPECIFICATION (SS) 808 AND 908, AND TRAFFIC SCD MT-104.10.

ONLY ONE WARRANTED SPEED LIMIT APPLIES AT ANY ONE TIME; SPEED LIMIT REDUCTIONS ARE NOT CUMULATIVE. WZSZS SHALL NOT BE USED FOR MOVING/MOBILE ACTIVITIES, AS DEFINED IN OMUTCD PART 6.

WHEN LOOKING UP THE WARRANTED WORK ZONE SPEED LIMITS, ALWAYS USE THE ORIGINAL, PRECONSTRUCTION, POSTED SPEED LIMIT. DO NOT USE A PRIOR OR CURRENT WORK ZONE SPEED LIMIT AS A LOOK UP VALUE IN THE TABLE. POSITIVE PROTECTION IS GENERALLY REGARDED AS PORTABLE BARRIER OR OTHER RIGID BARRIER IN USE ALONG THE WORK AREA WITHIN THE SUBJECT WARRANTED WORK ZONE CONDITION. WITHOUT POSITIVE PROTECTION IS GENERALLY REGARDED AS USING DRUMS, CONES, SHADOW VEHICLE, ETC., ALONG THE WORK AREA WITHIN THE SUBJECT WARRANTED WORK ZONE CONDITION. WORKERS ARE CONSIDERED AS BEING PRESENT WHEN ON-SITE, WORKING WITHIN THE SUBJECT WARRANTED WORK ZONE CONDITION. WHEN THE WORK ZONE CONDITION REDUCING THE EXISTING FUNCTIONALITY OF THE TRAVEL LANES OR SHOULDERS IS REMOVED, THE SPEED LIMIT DISPLAYED SHALL RETURN TO THE ORIGINAL POSTED SPEED LIMIT.

TABLE I: WARRANTED WORK ZONE SPEED LIMITS (MPH) FOR WORK ZONES ON HIGH-SPEED (55 MPH OR GREATER) MULTI-LANE HIGHWAYS:

	WITH POSITIVE	E PROTECTION	WITHOUT POSITIVE PROTECTION						
ORIGINAL POSTED SPEED LIMIT	WORKERS PRESENT	WORKERS NOT PRESENT	WORKERS PRESENT	WORKERS NOT PRESENT					
70	60	65	55	65					
65	55	60	50	60					
60	55	60	50	60					
55	50	55	45	55					

THE FOLLOWING ESTIMATED QUANTITY HAS BEEN CARRIED TO THE GENERAL SUMMARY:

ITEM 808, DIGITAL SPEED LIMIT (DSL) SIGN ASSEMBLY 25 SIGN MONTHS ASSUMING 5 DSL SIGN ASSEMBLY(IES) FOR 5 MONTH(S) EACH.

ITEM 614 - PORTABLE CHANGEABLE MESSAGE SIGN, AS PER PLAN

THE CONTRACTOR SHALL FURNISH, INSTALL, MAINTAIN AND REMOVE, WHEN NO LONGER NEEDED, A CHANGEABLE MESSAGE SIGN. THE SIGN SHALL BE OF A TYPE SHOWN ON A LIST OF APPROVED PCMS UNITS AVAILABLE ON THE OFFICE OF MATERIALS MANAGEMENT WEB PAGE. THE LIST CONTAINS CLASS A AND B UNITS WITH MINIMUM LEGIBILITY DISTANCES OF 800 FEET AND 650 FEET, RESPECTIVELY.

EACH SIGN SHALL BE TRAILER-MOUNTED AND EQUIPPED WITH A FUNCTIONAL DIMMING MECHANISM, TO DIM THE SIGN DURING DARKNESS, AND A TAMPER AND VANDAL PROOF ENCLOSURE. EACH SIGN SHALL BE PROVIDED WITH APPROPRIATE TRAINING AND OPERATION INSTRUCTIONS TO ENABLE ON-SITE PERSONNEL TO OPERATE AND TROUBLESHOOT THE UNIT. THE SIGN SHALL ALSO BE CAPABLE OF BEING POWERED BY AN ELECTRICAL SERVICE DROP FROM A LOCAL UTILITY COMPANY. THE PCMS SHALL BE DELINEATED IN ACCORDANCE WITH C&MS 614.03.

THE PROBABLE PCMS LOCATIONS AND WORK LIMITS FOR THOSE LOCATIONS ARE SHOWN ON SHEET(S) OF THE PLAN. PLACEMENT, OPERATION, MAINTENANCE AND ALL ACTIVATION OF THE SIGNS BY THE CONTRACTOR SHALL BE AS DIRECTED BY THE ENGINEER. THE PCMS SHALL BE LOCATED IN A HIGHLY VISIBLE POSITION YET PROTECTED FROM TRAFFIC. THE CONTRACTOR SHALL, AT THE DIRECTION OF THE ENGINEER, RELOCATE THE PCMS TO IMPROVE VISIBILITY OR ACCOMMODATE CHANGED CONDITIONS. WHEN NOT IN USE, THE PCMS SHALL BE TURNED OFF. ADDITIONALLY, WHEN NOT IN USE FOR EXTENDED PERIODS OF TIME, THE PCMS SHALL BE TURNED AWAY FROM ALL TRAFFIC.

THE ENGINEER SHALL BE PROVIDED ACCESS TO EACH SIGN UNIT AND SHALL BE PROVIDED WITH APPROPRIATE TRAINING AND OPERATION INSTRUCTIONS TO ENABLE ODOT PERSONNEL TO OPERATE AND TROUBLESHOOT THE UNIT, AND TO REVISE SIGN MESSAGES, IF NECESSARY.

ALL MESSAGES TO BE DISPLAYED ON THE SIGN WILL BE PROVIDED BY THE ENGINEER. A LIST OF ALL REQUIRED PRE-PROGRAMMED MESSAGES WILL BE GIVEN TO THE CONTRACTOR AT THE PROJECT PRECONSTRUCTION CONFERENCE. THE SIGN SHALL HAVE THE CAPABILITY TO STORE UP TO 99 MESSAGES. MESSAGE MEMORY OR PRE-PROGRAMMED DISPLAYS SHALL NOT BE LOST AS A RESULT OF POWER FAILURES TO THE ON-BOARD COMPUTER. THE SIGN LEGEND SHALL BE CAPABLE OF BEING CHANGED IN THE FIELD. THREE-LINE PRESENTATION FORMATS WITH UP TO SIX MESSAGE PHASES SHALL BE SUPPORTED. PCMS FORMAT SHALL PERMIT THE COMPLETE MESSAGE FOR EACH PHASE TO BE READ AT LEAST TWICE.

THE PCMS SHALL CONTAIN AN ACCURATE CLOCK AND PROGRAMMING LOGIC WHICH WILL ALLOW THE SIGN TO BE ACTIVATED, DEACTIVATED OR MESSAGES CHANGED AUTOMATICALLY AT DIFFERENT TIMES OF THE DAY FOR DIFFERENT DAYS OF THE WEEK.

THE PCMS UNIT SHALL BE MAINTAINED IN GOOD WORKING ORDER BY THE CONTRACTOR IN ACCORDANCE WITH THE PROVISIONS OF C&MS 614.07. THE CONTRACTOR SHALL, PRIOR TO ACTIVATING THE UNIT, MAKE ARRANGEMENTS, WITH AN AUTHORIZED SERVICE AGENT FOR THE PCMS, TO ASSURE PROMPT SERVICE IN THE EVENT OF FAILURE. ANY FAILURE SHALL NOT RESULT IN THE SIGN BEING OUT OF SERVICE FOR MORE THAN 12 HOURS, INCLUDING WEEKENDS. FAILURE TO COMPLY MAY RESULT IN AN ORDER TO STOP WORK AND OPEN ALL TRAFFIC LANES AND/OR IN THE DEPARTMENT TAKING APPROPRIATE ACTION TO SAFELY CONTROL TRAFFIC. THE ENTIRE COST TO CONTROL TRAFFIC, ACCRUED BY THE DEPARTMENT DUE TO THE CONTRACTOR'S NONCOMPLIANCE, WILL BE DEDUCTED FROM MONEYS DUE, OR TO BECOME DUE THE CONTRACTOR ON HIS CONTRACT.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR 24-HOUR-PER-DAY OPERATION AND MAINTENANCE OF THESE SIGNS ON THE PROJECT FOR THE DURATION OF THE PHASES WHEN THE PLAN REQUIRES THEIR USE.

PAYMENT FOR THE ABOVE DESCRIBED ITEM SHALL BE AT THE CONTRACT UNIT PRICE. PAYMENT SHALL INCLUDE ALL LABOR, MATERIALS, EQUIPMENT, FUELS, LUBRICATING OILS, SOFTWARE, HARDWARE AND INCIDENTALS TO PERFORM THE ABOVE DESCRIBED WORK.

ITEM 614 - PORTABLE CHANGEABLE MESSAGE SIGN, AS PER PLAN 10 SIGN MONTHS

<u>ITEM 614 - LAW</u> ASSISTANCE DU

USE OF LAW ENFORD USES SPECIFIED BEL SHOULD NOT BE USE

IN ADDITION TO THE UNIFORMED LEO WIT EMERGENCY FLASHIN LAW ENFORCEMENT A CONTROL TASKS:

> DURING THE EN COMPLETE BLC

DURING A TRA FUNCTION OF NEEDS TO BE TO THE SIGNA LIGHT).

ANY TIME TRAF THROUGH AN A

IN ADDITION TO THE UNIFORMED LEO WIT EMERGENCY FLASHIN LAW ENFORCEMENT A CONTROL TASKS AS

> FOR LANE CLO PERIODS, SUBS CLOSURE ARRA CLOSURES/SHI TRAFFIC CONT

IN GENERAL, LEOS S SIDE AS THE LANE F MANUALLY CONTROL IN WORK ZONES.

LEOS SHOULD NOT F APPREHEND MOTORIS MOTORIST'S ACTION THE MOTORIST IS A

THE LEOS WORK AT RESPONSIBLE FOR S APPROPRIATE AGENU WITH RESPECT TO D CONTROL OVER THE ISSUES THAT MAY A

ENSURE PROVIDED L DECISIONS THEY ARE ACCORDANCE WITH C

THE LEO SHALL REP SHIFT, IN ORDER TO ASSIGNMENTS DURIN PROJECT SITE FOR REPORT TO THE COI NECESSARY TO LEAV ENGINEER. THE COMUNICATION DEV THE END OF HIS/HEF

LEOS (WITH PATROL ABOVE SHALL BE PA 614, LAW ENFORCEM. FOLLOWING ESTIMAT SUMMARY.

ITEM 614, LAW ENFO 600 HOURS

THE HOURS PAID SH THE LAW ENFORCEME

ANY ADDITIONAL CO CONTRACTOR TO OB BID UNIT PRICE FOR FOR ASSISTANCE.

<u>ENFORCEMENT OFFICER (WITH PATROL CAR) FOR</u> RING CONSTRUCTION OPERATIONS	CALCULATED KRB CHECKED ACM
RCEMENT OFFICERS (LEOS) BY CONTRACTORS OTHER THAN THE LOW WILL NOT BE PERMITTED AT PROJECT COST. LEOS SED WHERE THE OMUTCD INTENDS THAT FLAGGERS BE USED.	
HE REQUIREMENTS OF C&MS 614 AND THE OMUTCD, A TH AN OFFICIAL PATROL CAR (CAR WITH TOP-MOUNTED NG LIGHTS AND COMPLETE MARKINGS OF THE APPROPRIATE AGENCY) SHALL BE PROVIDED FOR THE FOLLOWING TRAFFIC	
NTIRE ADVANCE PREPARATION AND CLOSURE SEQUENCE WHERE OCKAGE OF TRAFFIC IS REQUIRED.	
AFFIC SIGNAL INSTALLATION WHEN IMPACTING THE NORMAL THE SIGNAL OR THE FLOW OF TRAFFIC, OR WHEN TRAFFIC DIRECTED THROUGH AN ENERGIZED TRAFFIC SIGNAL CONTRARY AL DISPLAY (E.G., DIRECTING MOTORISTS THROUGH A RED	S
AFFIC CONTROL FOR CONSTRUCTION ACTIVITIES IS NEEDED ACTIVE SIGNALIZED INTERSECTION.	OTE
HE REQUIREMENT OF C&MS 614 AND THE OMUTCD, A TH AN OFFICIAL PATROL CAR (CAR WITH TOP-MOUNTED NG LIGHTS AND COMPLETE MARKINGS OF THE APPROPRIATE AGENCY) SHOULD BE PROVIDED FOR THE FOLLOWING TRAFFIC S APPROVED BY THE ENGINEER:	LIC N
OSURES: DURING INITIAL SET-UP PERIODS, TEAR DOWN 35TANTIAL SHIFTS OF A CLOSURE POINT OR WHEN NEW LANE ANGEMENTS ARE INITIATED FOR LONG-TERM LANE 11FTS (FOR THE FIRST AND LAST DAY OF MAJOR CHANGES IN TROL SETUP).	TRAF
SHOULD BE POSITIONED IN ADVANCE OF AND ON THE SAME RESTRICTION OR AT THE POINT OF ROAD CLOSURE, AND TO L TRAFFIC MOVEMENTS THROUGH SIGNALIZED INTERSECTIONS	ЦO
FORGO THEIR TRAFFIC CONTROL RESPONSIBILITIES TO ISTS FOR ROUTINE TRAFFIC VIOLATIONS. HOWEVER, IF A NS ARE CONSIDERED TO BE RECKLESS, THEN PURSUIT OF APPROPRIATE.	ANCE
THE DIRECTION OF THE CONTRACTOR. THE CONTRACTOR IS SECURING THE SERVICES OF THE LEOS WITH THE WCIES AND COMMUNICATING THE INTENTIONS OF THE PLANS DUTIES OF THE LEOS. THE ENGINEER SHALL HAVE FINAL E LEOS' DUTIES AND PLACEMENT, AND WILL RESOLVE ANY ARISE BETWEEN THE TWO PARTIES.	MAINTEN
LEOS HAVE BEEN TRAINED APPROPRIATE TO THE JOB RE REQUIRED TO MAKE WHILE ON THE PROJECT, IN C&MS 614.03.	ΔA
PORT IN TO THE CONTRACTOR PRIOR TO THE START OF THE O RECEIVE INSTRUCTIONS REGARDING SPECIFIC WORK NG HIS/HER SHIFT. THE LEO IS EXPECTED TO STAY AT THE THE ENTIRE DURATION OF HIS/HER SHIFT. THE LEO SHALL ONTRACTOR AT THE END OF HIS/HER SHIFT. SHOULD IT BE IVE THE PROJECT SITE, THE LEO SHALL NOTIFY THE NTRACTOR SHALL PROVIDE THE LEO WITH A TWO-WAY EVICE WHICH SHALL BE RETURNED TO THE CONTRACTOR AT ER SHIFT.	
L CAR) REQUIRED BY THE TRAFFIC MAINTENANCE TASKS AID FOR ON A UNIT PRICE (HOURLY) BASIS UNDER ITEM MENT OFFICER (WITH PATROL CAR) FOR ASSISTANCE. THE TED QUANTITIES HAVE BEEN CARRIED TO THE GENERAL	
ORCEMENT OFFICER WITH PATROL CAR FOR ASSISTANCE	
HALL INCLUDE ANY MINIMUM SHOW-UP TIME REQUIRED BY MENT AGENCY INVOLVED.	86
OSTS (ADMINISTRATIVE OR OTHERWISE) INCURRED BY THE BTAIN THE SERVICES OF AN LEO ARE INCLUDED WITH THE R ITEM 614, LAW ENFORCEMENT OFFICER WITH PATROL CAR	LOR-2-3.
	$\begin{array}{c}11\\37\end{array}$

ITEM 614 - WORKSITE TRAFFIC SUPERVISOR

SUBJECT TO APPROVAL OF THE ENGINEER, THE CONTRACTOR SHALL EMPLOY AND IDENTIFY (SOMEONE OTHER THAN THE SUPERINTENDENT) A PREQUALIFIED WORKSITE TRAFFIC SUPERVISOR (WTS) BEFORE STARTING WORK IN THE FIELD. THE WTS SHALL BE TRAINED IN ACCORDANCE WITH CMS 614.03, SHALL HAVE SUCCESSFULLY COMPLETED ODOT ADMINISTERED WTS TESTING (AND RE-TESTING WHEN APPLICABLE) AND BE LISTED ON THE ODOT PREQUALIFIED WTS ROSTER. PREQUALIFICATION EXPIRES EVERY 5 YEARS. RE-TESTING SHALL BE SUCCESSFULLY REPEATED EVERY 5 YEARS TO REMAIN PREQUALIFIED.

THE NAME OF THE PREQUALIFIED WTS AND RELATED 24-HOUR CONTACT INFORMATION SHALL BE PROVIDED TO THE ENGINEER AT THE PRECONSTRUCTION CONFERENCE. IF THE DESIGNATED WTS WILL NOT BE AVAILABLE FULL TIME (24/7), THE CONTRACTOR MAY DESIGNATE AN ALTERNATE (SECONDARY) WTS TO BE AVAILABLE WHEN THE PRIMARY IS OFF DUTY; HOWEVER THE PRIMARY WTS SHALL REMAIN THE POINT OF CONTACT AT ALL TIMES AND ALTERNATE (SECONDARY) WTS CONTACT AT ALL TIMES. ANY ALTERNATE (SECONDARY) WTS IS SUBJECT TO THE SAME TRANS. ARTENATE (SECONDART) WIS IS SOBLECT TO THE SAME TRAINING, PREQUALIFICATION AND OTHER REQUIREMENTS OUTLINED WITHIN THIS PLAN NOTE. AT ALL TIMES THE ENGINEER, OR ENGINEER'S REPRESENTATIVES, MUST BE INFORMED OF WHO THE PRIMARY WTS (AND SECONDARY WTS, IF APPLICABLE) IS AT THE CURRENT TIME.

THE WTS POSITION HAS THE PRIMARY RESPONSIBILITY OF IMPLEMENTING THE TRAFFIC MANAGEMENT PLAN (TMP), MONITORING THE SAFETY AND MOBILITY OF THE ENTIRE WORK ZONE, AND CORRECTING TEMPORARY TRAFFIC CONTROL (TTC) DEFICIENCIES FOR THE ENTIRE WORK ZONE. THE WTS, AND ALTERNATE WTS WHEN ON DUTY, SHALL HAVE SUFFICIENT AUTHORITY TO EFFECTIVELY CARRY OUT THE IDENTIFIED WTS RESPONSIBILITIES AND DUTIES. THE DUTIES OF THE WTS ARE AS FOLLOWS:

1. BE AVAILABLE ON A 24-HOUR PER DAY BASIS.

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

2. BE ON SITE FOR ALL EMERGENCY TTC NEEDS WITHIN ONE HOUR OF NOTIFICATION BY POLICE OR PROJECT STAFF, AND EFFECT CORRECTIVE MEASURES IMMEDIATELY ON EXISTING WORK ZONE TTC DEVICES.

3. ATTEND PRECONSTRUCTION MEETING AND ALL PROJECT MEETINGS WHERE TTC MANAGEMENT IS DISCUSSED.

4. BE AVAILABLE ON SITE FOR OTHER MEETINGS OR DISCUSSIONS WITH THE ENGINEER UPON REQUEST.

5. BE AWARE OF ALL EXISTING AND PROPOSED TTC OPERATIONS OF THE CONTRACTOR, SUBCONTRACTORS AND SUPPLIERS, AND ENSURE COORDINATION OCCURS BETWEEN THEM TO ELIMINATE CONFLICTING TEMPORARY AND/OR PERMANENT TRAFFIC CONTROL.

6. COORDINATE PROJECT ACTIVITIES WITH ALL LAW ENFORCEMENT OFFICERS (LEOS). THE WTS SHALL ALSO BE THE MAIN CONTACT PERSON WITH THE LEOS WHILE LEOS ARE ON THE PROJECT.

7. COORDINATE AND FACILITATE MEETINGS WITH ODOT PERSONNEL, LEOS AND OTHER APPLICABLE ENTITIES BEFORE EACH PLAN PHASE SWITCH TO DISCUSS THE WORK ZONE TTC FOR IMPLEMENTING THE PHASE SWITCH. SUBMIT A WRITTEN DETAIL OF NOT OPERATIONS AND SCHEDULE OF EVENTS TO IMPLEMENT THE SWITCH BETWEEN PHASE PLANS TO THE ENGINEER 5 CALENDAR DAYS PRIOR TO THIS MEETING.

8. BE PRESENT, ON SITE FOR, AND INVOLVED WITH, EACH TTC SET UP/TAKE DOWN AND EACH PHASE CHANGE IN ACCORDANCE WITH CMS 614.03.

9. ON A CONTINUAL BASIS ENSURE THAT THE TTC ZONE AND ALL RELATED DEVICES ARE INSTALLED, MAINTAINED AND REMOVED IN COMPLIANCE WITH THE CONTRACT DOCUMENTS.

10. ON A CONTINUAL BASIS FACILITATE CORRECTIVE ACTION(S) NECESSARY TO BRING DEFICIENT TTC ZONES AND ALL RELATED DEVICES INTO COMPLIANCE WITH CONTRACT DOCUMENTS IN THE TIMEFRAME DETERMINED BY THE ENGINEER.

11. INSPECT, EVALUATE, PROPOSE NECESSARY MODIFICATIONS TO, AND DOCUMENT THE EFFECTIVENESS OF, THE TTC DEVICES AND TRAFFIC OPERATIONS ON A DAILY BASIS (7 DAYS A WEEK). IN ADDITION, PERFORM ONE WEEKLY NIGHT INSPECTION OF THE WORK ZONE SETUP FOR DAYTIME WORK OPERATIONS; AND ONE DAYTIME INSPECTION PER WEEK FOR NIGHTTIME PROJECTS. THIS SHALL INCLUDE (BUT NOT BE LIMITED TO) DOCUMENTATION ON THE FOLLOWING PROJECT EVENTS:

A. INITIAL TTC SETUP (DAY AND NIGHT REVIEW).

A. INITIAL TTC SETUP (DAY AND NIGHT REVIEW). B. DAILY TTC SETUP AND REMOVAL. C. WHEN CONSTRUCTION STAGING CAUSES A CHANGE IN THE TTC SETUP. D. CRASH OCCURRENCES WITHIN THE CONSTRUCTION AREA AND WITHIN THE INFLUENCE AREA(S) APPROACHING THE WORK ZONE. E. REMOVAL OF TTC DEVICES AT THE END OF A PHASE OR PROJECT. F. ALL OTHER EMERGENCY TTC NEEDS.

ITEM 614 - WORKSITE TRAFFIC SUPERVISOR (CONTINUED)

12. COMPLETE THE DEPARTMENT APPROVED LONG TERM INSPECTION FORM (CA-D-8) AFTER EACH INSPECTION AS REQUIRED IN # 11 AND SUBMIT IT TO THE ENGINEER THE FOLLOWING WORKDAY. THESE REPORTS SHALL INCLUDE A CHECKLIST OF ALL TTC MAINTENANCE ITEMS TO BE REVIEWED. INCLUDE A CHECKLIST OF ALL TIC MAINTENANCE TIEMS TO BE REVIEWED. A COPY OF THE FORM WILL BE PROVIDED AT THE PRE-CONSTRUCTION MEETING. ANY DEFICIENCIES OBSERVED SHALL BE NOTED, ALONG WITH RECOMMENDED OR COMPLETED CORRECTIVE ACTIONS AND THE DATES BY WHICH SUCH CORRECTIONS WERE, OR WILL BE, COMPLETED. A COPY OF THE CURRENT CA-D-8 DOCUMENT CAN BE FOUND ON THE OFFICE OF CONSTRUCTION ADMINISTRATION'S INSPECTION FORMS WEBSITE.

13. HAVE COPIES OF THE ODOT TEMPORARY TRAFFIC CONTROL MANUAL AND CONTRACT DOCUMENTS AVAILABLE AT ALL TIMES ON THE PROJECT.

THE DEPARTMENT WILL DEDUCT:

A. THE PRORATED DAILY AMOUNT OF ITEM 614 MAINTAINING TRAFFIC FOR ANY DAY IN WHICH THE WTS FAILS TO PERFORM THE DUTIES SET FORTH ABOVE. THE PRORATED DAILY AMOUNT WILL BE EQUAL TO THE ORIGINAL BID AMOUNT FOR ITEM 614 MAINTAINING TRAFFIC DIVIDED BY THE DIFFERENCE BETWEEN THE ORIGINAL COMPLETION DATE AND THE FIRST DAY OF WORK, IN CALENDAR DAYS.

B. 1% OF THE ORIGINAL BID AMOUNT FOR ITEM 614 MAINTAINING TRAFFIC FOR ANY DAY THAT A TTC ISSUE IS IDENTIFIED IN THE FIELD AND IS NOT CORRECTED IN THE GIVEN TIMEFRAME PER THE ENGINEER. DEDUCTION B SHALL NOT APPLY TO SITUATIONS COVERED BY DEDUCTION C.

C. 1% OF THE ORIGINAL BID AMOUNT FOR ITEM 614 MAINTAINING TRAFFIC FOR ANY DAY THAT A LANE OR RAMP IS BLOCKED (FULLY OR PARTIALLY) WITHOUT ITC, AS DETERMINED BY THE ENGINEER. THIS DEDUCTION SHALL BE IN ADDITIÓN TO ANY OTHER DISINCENTIVES ESTABLISHED FOR UNAUTHORIZED LANE USE.

FOR DAYS IN WHICH MORE THAN ONE DEDUCTION LISTED ABOVE OCCUR. THE HIGHEST DEDUCTION AMOUNT WILL APPLY.

IF THREE OR MORE TOTAL DAYS RESULT IN TTC ISSUES DESCRIBED IN DEDUCTION B OR C ABOVE, THE PRIMARY WTS SHALL BE IMMEDIATELY REMOVED FROM THE WORK IN ACCORDANCE WITH C&MS 108.05. UPON REMOVAL THE ENGINEER SHALL NOTIFY ODOT CENTRAL OFFICE (WTSPREQUALIFICATION@DOT.OHIO.GOV) TO REGISTER A REMOVAL AGAINST THE STATEWIDE PREQUALIFICATION FOR THE PRIMARY WTS. THREE DEMOVALS SHALL CAUSE STATEWIDE DISCUMPTED TO FOR ANY REMOVALS SHALL CAUSE STATEWIDE DISQUALIFICATION FOR ANY PREVIOUSLY PREQUALIFIED WTS.

PAYMENT FOR THE ABOVE REQUIREMENTS, RESPONSIBILITIES AND DUTIES SHALL BE INCLUDED IN THE LUMP SUM PRICE BID FOR ITEM 614, MAINTAINING TRAFFIC.

<u>INTERIM COMPLETION DATE (FOR FULL DEPTH RIGID REPAIRS EAST OF OAK POINT RD)</u>

THE CONTRACTOR SHALL PERFORM ALL FULL-DEPTH CONCRETE JOINT REPAIRS EAST OF THE OAK POINT/LAKE RD INTERCHANGE PRIOR TO NOVEMBER 23, 2020. THIS DATE SHALL CONSTITUTE AN INTERIM COMPLETION DATE ON THE PROJECT. IF ALL FULL-DEPTH CONCRETE JOINT REPAIRS EAST OF OAK POINT/LAKE RD ARE NOT COMPLETED BY NOVEMBER 23, 2020, A DISINCENTIVE OF \$1,000 PER DAY SHALL BE ASSESSED FOR EACH DAY AFTER NOVEMBER 23, 2020 THAT FULL-DEPTH CONCRETE JOINT REPAIRS ARE NOT COMPLETE. BECAUSE THE CONCRETE JOINT REPAIRS ARE NOT COMPLETE. BECAUSE THE CONCRETE JOINT REPAIRS BEQUIRE CURE TIME TO ACHIEVE STRENCTH PRIOR TO OPENING THE REQUIRE CURE TIME TO ACHIEVE STRENGTH PRIOR TO OPENING THE REPAIRS TO TRAFFIC, THE LANE CLOSURE SCHEDULE BELOW CAN BE USED FOR CONCRETE JOINT REPAIR WORK PERFORMED IN 2020 ONLY.

I OCATION	DIRECTION	ALLOWABLE LANE	CLOSURE TIMES
LOCATION	DIRECTION	WEEKNIGHT	WEEKEND
	FASTBOUND	4 PM - 7 AM	4 PM FRIDAY -
OAK POINT TO SR 58	EASTDOUND	4 FIM - T AIM	7 AM MONDAY
UAK FUINT TU SH 50	WESTBOUND	7 PM - 3 PM	7 PM FRIDAY -
	WESTBOUND	T FIVI - S FIVI	3 PM MONDAY
	FASTBOUND	6 PM - 6 AM	6 PM FRIDAY -
SR 58 TO MIDDLE RIDGE	EASTBOUND	O FIM - O AM	6 AM MONDAY
SR SO TO WIDDLE RIDGE	WESTBOUND	7 PM - 2 PM	7 PM FRIDAY -
	WESTBOUND	i rivi - 2 PM	2 PM MONDAY

HOURLY DISINCENTIVES FOR LANE CLOSURE VIOLATIONS OF \$235 PER MINUTE SHALL BE ASSESSED FOR EACH MINUTE ALL LANES ARE NOT OPEN TO TRAFFIC. THE ABOVE SCHEDULE ALSO APPLIES TO RAMP CLOSURE AND DETOUR TIMES FOR CONCRETE JOINT REPAIR WORK. JOINT REPAIRS MAY BE PERFORMED USING QC MS (OPTION A) OR RRCM (OPTION B) CONCRETE, BUT IN EITHER CASE, ADEQUATE STRENGTH AND/OR CURE TIME SHALL BE ACHIEVED PER THE REQUIREMENTS OF THE CMS PRIOR TO OPENING A CLOSED LANE TO TRAFFIC.

APPROVED MAIN

PORTIONS OF THE BY THE MOT EXCEP WORK ZONES POLIC (123-001(SP)).

APPROVED MOT EX ALLOWABLE LANE C COMPLETION DATE RD) PLAN NOTE ON

A MAINTENANCE OF CALENDAR DAYS PR EXCEPTION. THIS N TRAFFIC MANAGER SUPERVISOR (WTS) TRAFFIC CONTROL

IN ADDITION TO AN IN ADDITION TO AN CONTRACTOR SHALL DAYS IN ADVANCE O EXCEPTION(S) REFE SEND EMAIL NOTIFI STATEWIDE TMC. D BUSINESS DAYS IN MOT EXCEPTION(S) APPROVAL DATED OTHER CORRESPON

ANY CHANGES TO T EXCEPTION(S) LISTE APPLICABLE ODOT THAT SUCH CHANGE. THROUGH THE DISTR OF 30 CALENDAR D. THE DISTRICT AGRE SEEK APPROVAL FR IN THE EVENT THE CLOSURES ARE STIL THIS NOTE PRIOR

WORK ZONE QUE

IF THE CONTRACTO FULL DEPTH RIGID SHALL FURNISH, IN. DETECTION WARNIN SPECIFICATION 896

IT IS EXPECTED TH. BASED ON PLANNED PLACEMENT, OPERA DEVICES BY THE CO

THE FOLLOWING TR. MESSAGE SIGNS (PC

GREATER THAN OR CAUTION MODE

BETWEEN 50 MPH A

BELOW OR EQUAL

FOUR CORNER FLAS ASTERISK IN EACH

XX SHALL BE ROUN OCCUPANCY MAY BE CONDITIONS AND S THRESHOLDS TO BE TO BE USED.

THE FOLLOWING ES GENERAL SUMMARY

ITEM 896 - PORTAL 10 SIGN MONTHS (A

> ITEM 896 - PORTAL 4 SIGN MONTHS (AS

ITENANCE OF TRAFFIC (MOT) POLICY EXCEPTION	ALCULATED KRB CHECKED
MOT PLANS AS DESCRIBED BELOW HAVE BEEN APPROVED TION COMMITTEE (MOTEC) PER TRAFFIC MANAGEMENT IN Y (21-008(P)) AND STANDARD PROCEDURE	CALCULAT KRB CHECKEC
CEPTION(S) INCLUDE: LOSURE TIMES AS DETAILED IN THE INTERIM (FOR FULL DEPTH RIGID REPAIRS EAST OF OAK POINT THIS SHEET.	
TRAFFIC MEETING SHALL BE HELD A MINIMUM OF 7 IOR TO IMPLEMENTATION OF EACH APPROVED MOT WEETING SHALL INCLUDE THE DISTRICT WORK ZONE AS WELL AS THE CONTRACTOR, WORKSITE TRAFFIC AND ANY SUBCONTRACTORS INVOLVED WITH TEMPORARY	
Y NOTIFICATIONS REQUIRED IN OTHER NOTES, THE NOTIFY THE PROJECT ENGINEER AT LEAST 3 BUSINESS FIMPLEMENTATION OF THE APPROVED MOT RENCED ABOVE SO THAT THE PROJECT ENGINEER CAN CATION TO THE OFFICE OF ROADWAY ENGINEERING, WZTM AND SPECIAL HAULING PERMITS AT LEAST 2 ADVANCE OF THE IMPLEMENTATION OF THE APPROVED REFERENCED ABOVE. REFERENCE "EXCEPTION REQUEST B&/27/2020 FOR PID 77537" IN THE NOTIFICATION AND DENCE.	C NOTES
HE MOT THAT IMPACT THE PREVIOUSLY APPROVED MOT ED ABOVE SHALL BE APPROVED IN WRITING BY THE CENTRAL OFFICE COMMITTEE (MOTEC). IN THE EVENT S ARE PROPOSED, THE REQUEST SHALL BE COORDINATED RICT WORK ZONE TRAFFIC MANAGER (DWZTM) A MINIMUM AYS PRIOR TO THE DESIRED IMPLEMENTATION DATE. IF TES WITH THE PROPOSED CHANGES THE DWZTM SHALL OM THE APPLICABLE ODOT CENTRAL OFFICE COMMITTEE. PROPOSED CHANGES ARE APPROVED IN WRITING, THE L SUBJECT TO NOTIFICATION REQUIREMENTS WITHIN TO IMPLEMENTATION.	OF TRAFFI
EUE DETECTION WARNING SYSTEM	Ш С
R ELECTS TO USE CLASS QC MS (OPTION A) FOR THE REPAIRS WITH A WEEKEND CLOSURE, THE CONTRACTOR STALL, AND MAINTAIN AN APPROVED WORK ZONE QUEUE G SYSTEM (WZQDWS) AS PER SUPPLEMENTAL AT THE LOCATIONS OF THE WZQDWS DEVICES WILL VARY OR UNPLANNED PHASE AND TRAFFIC PATTERN CHANGES. TION, MAINTENANCE AND ALL ACTIVATION OF THE DNTRACTOR SHALL BE DIRECTED BY THE ENGINEER. AFFIC SENSOR THRESHOLDS AND PORTABLE CHANGEABLE MS) MESSAGES SHALL BE USED: EQUAL TO 50 MPH - USE FOUR CORNER FLASHING ND 25 MPH - TRAFFIC AHEAD XX MPH / SLOW DOWN TO 25 MPH - TRAFFIC AHEAD XX MPH / PREPARE TO STOP SHING CAUTION MODE SHALL CONSIST OF THE USE OF ONE CORNER OF THE PCMS DISPLAY (4 TOTAL ASTERISKS).	MAINTENAN
DED UP TO THE NEAREST MULTIPLE OF 5 MPH MINUS I. E DIRECTED TO BE USED BASED ON CERTAIN TRAFFIC ECMARIOS. ODOT WILL DIRECT THE CONTRACTOR OF THE USED FOR THOSE AREAS WHERE OCCUPANCY IS DIRECTED	
TIMATED QUANTITIES HAVE BEEN CARRIED TO THE FOR PAVEMENT OPTION A: QC MS FULL DEPTH REPAIRS:	
BLE NON-INTRUSIVE TRAFFIC SENSOR, CLASS II SSUMING 5 SENSORS PER DIRECTION FOR 1 MONTH)	36
SUMING S SENSONS FER DIRECTION FOR FMONTH BLE CHANGEABLE MESSAGE SIGN SUMING 2 PCMS SIGNS PER DIRECTION FOR 1 MONTH)	LOR-2-3.8
	12

	UNIT	GRAND	ITEM	ITEM		PART.							NUM.	SHEET					
	UNIT	TOTAL	EXT	IIEW	03/SAF/0 T	02/NHS/B R	01/NHS/P V	32	31	30	20	19	17	16	12	11	10	8	7
UARDRAIL REMOVED	FT	12,556	38000	202			12,556				12,556								
UARDRAIL REMOVED, BAR		1,531	38300	202			1,531				1,531								
NCHOR ASSEMBLY REMOVE	EACH	16	42010	202			16				16								
NCHOR ASSEMBLY REMOVE		20	42040	202			20				20								
RIDGE TERMINAL ASSEMBL	EACH	21	47000	202			21				21								
IPACT ATTENUATOR REMO	EACH	11	47800	202			11				11								
MBANKMENT, AS PER PLAI ESHAPING UNDER GUARDRA		220 154.95	20001 15001	203 209			220 154.95				220 154.95								
INEAR GRADING		134.95	60500	209 209			18.87				134.33		9.39	9.48					
UARDRAIL, TYPE MGS		12,556	15050	606			12,556				12,556		0.00	0.10					
UARDRAIL, BARRIER DESI	FT	1,531	15550	606			1,531				1,531								
NCHOR ASSEMBLY, MGS T		16	26150	606			16				16								
NCHOR ASSEMBLY, MGS T		20	26550	606			20				20								
<u>GS BRIDGE TERMINAL ASS</u> GS BRIDGE TERMINAL ASS		14 7	35002 35102	606 606			14 7				14 7								
IPACT ATTENUATOR, TYP	EACU	10	60012	606			10				10								
IPACT ATTENUATOR, TYP IPACT ATTENUATOR, TYP	EACH EACH	10 1	60012 60028	606 606			10 1				10 1								
				~~~															
ROSION CONTROL	ЕАСН	1,000	30000	832			1,000												
ATCH BASIN ADJUSTED TO		18	98630	611			18											18	
ILET ADJUSTED TO GRADI		1	99150	611			1											1	
ANHOLE ADJUSTED TO GR	EACH	2	99654	611			2											2	
ARTIAL DEPTH PAVEMENT	CV	0.42	010.42	251			0.40					517							25
ARTIAL DEPTH PAVEMENT ARTIAL DEPTH PAVEMENT	CY CY	842 350	01042 01042	251 251			842 350					250							825 100
AVEMENT REPAIR		100	02000	253			100					200							,0 )0
AVEMENT PLANING, ASPHA		200,836	01000	254			200,836							100,483					-
AVEMENT PLANING, ASPHA	SY	6,041	01000	254			6,041						3,044	2,997					
AVEMENT PLANING, ASPHA	SY	4,994	01000	254			4,994						2,422	2,572					
ATCHING PLANED SURFACE	SY	1,059	01600	254			1,059						, 529	530					
ULL DEPTH PAVEMENT SA		6,240	20000	255			6,240					5,640							00
ON-TRACKING TACK COAT RIME COAT, AS PER PLAN		27,548 8,859	20000 10001	407 408			27,548 8,859						13,759 4,410	13,789 4,449					
,	UAL	,		400										,					
NTI-SEGREGATION EQUIPM	СҮ	13,248	00100	442			13,248						6,618	6,630					
SPHALT CONCRETE INTER SPHALT CONCRETE SURFA	<u>СҮ</u> СҮ	10,303 8,820	10101 10300	442 442			10,303 8,820						5,146 4,404	5,157					
OMPACTED AGGREGATE		8,820 1,224	10300	44Z 617			8,820 1,224						4,404 610	4,416 614					
HOULDER PREPARATION	SY	22,129	20000	617			22,129						11,015	11,114					
UMBLE STRIPS, SHOULDEF		15.98	40600	618			15.98						7.99	7.99					
PAVEME																			
ULL DEPTH PAVEMENT REI	SY	1,664	10161	255			1,664					1,504			10				60
ORTABLE NON-INTRUSIVE ORTABLE CHANGEABLE ME	SNMT	10 	00012 00020	896 896			10 4								10 				
PAVEME ULL DEPTH PAVEMENT REA	SY	1,664	10501	255			1,664					1,504							60
РМ		709	00100	621			709		709										
PM REFLECTOR		16 700	00300	621			<i>16</i>		16 709										
AISED PAVEMENT MARKER ARRIER REFLECTOR, TYPE		709 201	54000 00110	621 626			709 201		103		201								
TOP LINE	FT	240	00500	644			201 240			240	201								
ROSSWALK LINE	FT	683	00600	644			683			683									
RANSVERSE/DIAGONAL LII	FT	1,250	00700	644			1,250			1,250									
ANE ARROW		21	01300	644	0.50		21			21									
ET REFLECTIVE EPOXY P, ET REFLECTIVE EPOXY P,	MILE MILE	0.56 0.28	12010 12110	807 807	0.56 0.28					0.56 0.28									
ET REFLECTIVE THERMOP		19.64	12110	807 807	19.64					19.64									

 $\bigcirc$ 

 $\bigcirc$ 

DESCRIPTION	SEE SHEET NO.	CALCULATED KRB CHECKED ACM
ROADWAY		
R DESIGN		
TYPE T REMOVED		
NEMOVED		
D		
-	9	
, AS PER PLAN	9	
TYPE MGS		
E E (MASH 2016) E T		
BLY, TYPE 1		
BLY, TYPE 2		
		$\succ$
(BIDIRECTIONAL)		Ë
? (BIDIRECTIONAL) (65 MPH/24" WIDE)		IA
		GENERAL SUMMARY
EROSION CONTROL		Σ
		S
DRAINAGE		
RADE		۲L
E		3 4
PAVEMENT		
PAIR (ASPHALT CONCRETE BASE) (LONGITUDINAL)		ш
PAIR (ASPHALT CONCRETE BASE) (TRANSVERSE)		5
		•
CONCRETE (2")		
CONCRETE (TAPER 2" TO 3.25")		
CONCRETE (3.25")		
IG		
•		
	8	
T		
DIATE COURSE, 19 MM, TYPE A (446), AS PER PLAN (PG 64-28)	8	
COURSE, 12.5 MM, TYPE A (447) (PG 70-22)		
SPHALT CONCRETE)		
ISFRALT CONCRETE)		
OPTION A: QC MS FULL DEPTH REPAIRS		
VAL AND RIGID REPLACEMENT, CLASS QC MS, AS PER PLAN	7	
PAFFIC SENSOR, CLASS II		
AGE SIGN		
OPTION B: RRCM FULL DEPTH REPAIRS		36
VAL AND RIGID REPLACEMENT, CLASS RRCM, AS PER PLAN	7	ω
		ဗ
TRAFFIC CONTROL		, N
		L O R - 2 - 3.86
MOVED		R
(BIDIRECTIONAL)		0
MENT MARKING, EDGE LINE, 6"		$\begin{pmatrix} 13 \end{pmatrix}$
MENT MARKING, LANE LINE, 6" STIC PAVEMENT MARKING, EDGE LINE, 6"		3.7
JIIG I AVENNENT NAANNING, EDGE LINE, O		

10	DESCRIPTI	RIPTION SH
10	DESCRIPTI	No
MA	ET REFLECTIVE THERMOPLASTIC PAVEMENT N	MENT MARKING, LANE LINE, 6"
	ET REFLECTIVE THERMOPLASTIC PAVEMENT N	
	ET REFLECTIVE THERMOPLASTIC PAVEMENT N	
	ROOVING FOR 6" RECESSED PAVEMENT MARKI	MARKING (ASPHALT)
	ROOVING FOR 6" RECESSED PAVEMENT MARKI	
	ROOVING FOR 12" RECESSED PAVEMENT MARK	
	ROOVING FOR 6" RECESSED PAVEMENT MARKI	
;NA	TRAFFIC SIGN DETECTOR LOOP. AS PER PLAN	C SIGNALS 3
	ETECTOR LOOF, AS TEN TEAN	
L OF	STRUCTURE REPAIR (Le	AIR (LOR-2-0459 L)
	PEMOVAL MISC.: JOINT SEALER	3
	AWING AND SEALING ASPHALT CONCRETE PAV	
	EALING OF CONCRETE SURFACES (EPOXY-URE	
	REATING CONCRETE BRIDGE DECKS WITH GRA	
CRE	EMOVAL OF EXISTING COATINGS FROM CONC	CONCRETE SURFACES
	EMOVAL OF EXISTING PAVEMENT MARKING	ING
	OINT SEALER	
DR	PATCHING CONCRETE BRIDGE DECK, TYPE B OF	EBORC 3
L OF	STRUCTURE REPAIR (LO	
1/5	REMOVAL MISC .: JOINT SEALER	3
	AWING AND SEALING ASPHALT CONCRETE PAV	
	EALING OF CONCRETE SURFACES (EPOXY-URE REATING CONCRETE BRIDGE DECKS WITH GRA	
	EMOVAL OF EXISTING COATINGS FROM CONC	
,,,,_		
	PEMOVAL OF EXISTING PAVEMENT MARKING	ING
	OINT SEALER	5 5 65 6
)R	ATCHING CONCRETE BRIDGE DECK, TYPE B OF	E B OR C 3
0	STRUCTURE REPAIR (L	AIR (I OR-2-0646 I )
	PEMOVAL MISC.: JOINT SEALER	3
VEI	AWING AND SEALING ASPHALT CONCRETE PAV	E PAVEMENT JOINTS
	EALING OF CONCRETE SURFACES (EPOXY-URE	
4 <i>VI</i>	REATING CONCRETE BRIDGE DECKS WITH GRA	H GRAVITY FED RESIN
CRE	EMOVAL OF EXISTING COATINGS FROM CONC	CONCRETE SURFACES
		140
	PEMOVAL OF EXISTING PAVEMENT MARKING	NG
	OINT SEALER PATCHING CONCRETE STRUCTURE	
)R	ATCHING CONCRETE BRIDGE DECK, TYPE B OF	E B OR C 3
L OF	STRUCTURE REPAIR (LO	4IR (LOR-2-0646 R)
	URB REMOVED	
	PEMOVAL MISC.: JOINT SEALER	3
	AWING AND SEALING ASPHALT CONCRETE PAV	
	EALING OF CONCRETE SURFACES (EPOXY-URE	
4 <i>V I</i>	REATING CONCRETE BRIDGE DECKS WITH GRA	H GRAVITY FED RESIN
CRF	EMOVAL OF EXISTING COATINGS FROM CONC	CONCRETE SURFACES
	EMOVAL OF EXISTING PAVEMENT MARKING	
	OINT SEALER	
	ATCHING CONCRETE STRUCTURE	
)R	ATCHING CONCRETE BRIDGE DECK, TYPE B OF	E B OR C 3
	URB, TYPE 2-A	
LOI	STRUCTURE REPAIR (L	
	PEMOVAL MISC .: JOINT SEALER	3
	AWING AND SEALING ASPHALT CONCRETE PAV	
	EALING OF CONCRETE SURFACES (EPOXY-URE	
	REATING CONCRETE BRIDGE DECKS WITH GRA REMOVAL OF EXISTING COATINGS FROM CONCH	
,πĿ	EMOVAL OF EXISTING COATINGS FROM CONCE	LUNURE LE SURFALES
	EMOVAL OF EXISTING PAVEMENT MARKING	ING
	OINT SEALER PATCHING CONCRETE BRIDGE DECK, TYPE B OP	EBORC 3

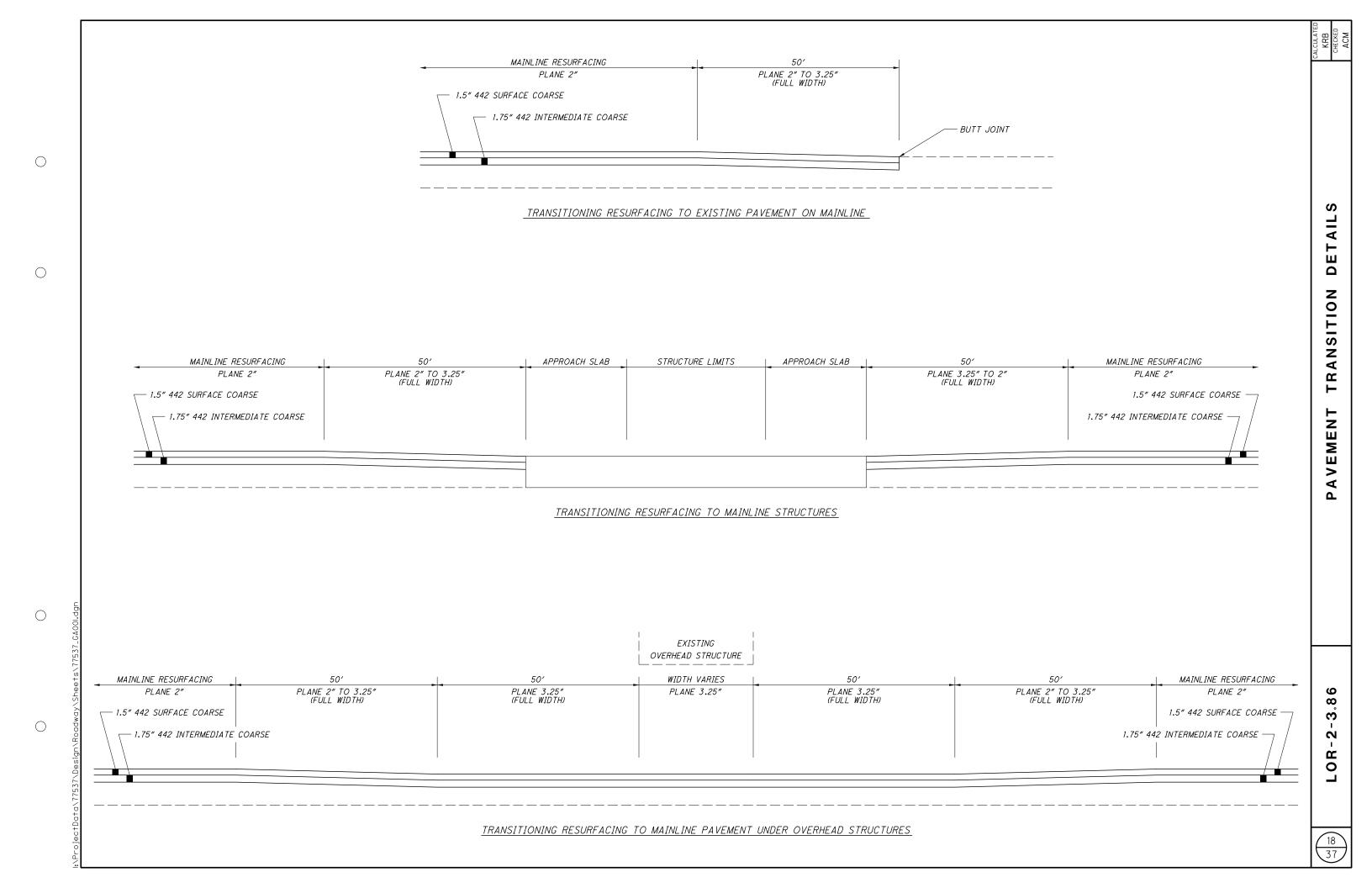
 $\bigcirc$ 

 $\bigcirc$ 

						S	HEET NU	М.						PART.			ITEM	GRAND		
	7	8	10	11	16	17	19	20	30	31	32	33	01/NHS/P V	02/NHS/B R	1 03/SAF/0 T	ITEM	EXT	TOTAL	UNIT	
												78 78		78 78		202 409	98200 30000	78 78	FT FT	REMOVAL MISC.: JOIN SAWING AND SEALING
												341		341		512	10100	341	SY	SEALING OF CONCRET
												954 341		954 341		512 512	73500 74000	954 341	SY SY	TREATING CONCRETE REMOVAL OF EXISTIN
												541		541		512	74000	541	57	
$\bigcirc$												684		684		512	74500	684	FT	REMOVAL OF EXISTIN
												78 8		78 8		516 SPECIAL	31000 51912510	78 8	FT SY	JOINT SEALER PATCHING CONCRETE
				600									600			614	11110	600	HOUR	LAW ENFORCEMENT OI
			250										250			614	13000	250	СҮ	ASPHALT CONCRETE F
			2	10					25.94				12 25.94			614 614	18601 20560	12 25.94	SNMT MILE	PORTABLE CHANGEABL
$\frown$									60.58				60.58			614	22360	60.58	MILE	WORK ZONE LANE LIN WORK ZONE EDGE LIN
$\bigcirc$									11,610				11,610			614	23690	11,610	FT	WORK ZONE CHANNELI
									3,750				3,750			614	25620	3,750	FT	WORK ZONE TRANSVER WORK ZONE STOP LIN
									720 63				720 63			614 614	26610 30650	720 63	FT EACH	WORK ZONE STOP LIN
				25					0.5				25			808	18700	25	SNMT	WORK ZONE ARROW, C DIGITAL SPEED LIMIT
													LS	LS	LS	614	11000	LS		MAINTAINING TRAFFIC
													4 LS	1 LS	LS	619 623	16010 10000	5 LS	MNTH	FIELD OFFICE, TYPE CONSTRUCTION LAYOU
													LS		LS	623	10000	LS		CONSTRUCTION LAYOU
													LS	LS	LS	624	10000	LS		MOBILIZATION
	-																			
0	160°																			
r T																				
-	0 1 0																			
-																				
~	∽ ¤ ≥																			
0																				
	nesi																			
- - -																				
-																				
-	ec 1																			
-																				

DESCRIPTION	SEE SHEET NO.	CALCULATED KRB CHECKED ACM
STRUCTURE REPAIR (LOR-2-0742 R)	7.4	
DINT SEALER	34	
IG ASPHALT CONCRETE PAVEMENT JOINTS		
ETE SURFACES (EPOXY-URETHANE)		
E BRIDGE DECKS WITH GRAVITY FED RESIN		
ING COATINGS FROM CONCRETE SURFACES		
ING PAVEMENT MARKING		
E BRIDGE DECK, TYPE B OR C	34	
MAINTENANCE OF TRAFFIC		
OFFICER WITH PATROL CAR FOR ASSISTANCE		
FOR MAINTAINING TRAFFIC		
ABLE MESSAGE SIGN, AS PER PLAN	11	
INE, CLASS III, 6", 642 PAINT		
INE, CLASS III, 6", 642 PAINT		≻
		ŕ
ELIZING LINE, CLASS III, 12", 642 PAINT		
/ERSE/DIAGONAL LINE, CLASS III, 642 PAINT		1
.INE, CLASS III, 642 PAINT		2
, CLASS III, 642 PAINT		SUMMARY
IT (DSL) SIGN ASSEMBLY		
		S
INCIDENTAL S		
TC		GENERAL
E B		4
OUT STAKES AND SURVEYING		Ľ
OUT STAKES AND SURVEYING, AS PER PLAN	8	ш
		z
		ш
		5
		Ŭ
		9
		æ
		e
		, r
		E E
		_OR-2-3.86
		15

					1 54	IGTH				25	4		407	407	442	442	442	618				209	408	617	617	D TED
		2	LOG	POINT			WIDTH	PAVEMENT	PAVEMENT PLANING,	PAVEMENT PLANING,	PAVEMENT PLANING,	PLANED	NON-TRACKI NG TACK	NON-TRACKI NG TACK	ASPHAL T CONCRE TE	ASPHAL T CONCRETE	ANTI-SEGREGA TION	RUMBLE STRIPS,	SHOL	EGATE JLDER	AGGREGATE SHOULDER	LINEAR GRADING	PRIME COAT, AS	COMPACTED AGGREGATE	SHOULDER PREPARATION	CALCULA CALCULA KRB CHECKE
COUNTY	ROUTE	DIRECTION		10	MILE	FEET	FEET	AREA	ASPHALT CONCRETE	A SPHAL T CONCRE TE	ASPHALT CONCRETE	SURFACE	COAT @ 0.08	COAT @ 0.05	SURFACE COURSE, 12.5 MM, TYPE A	INTERMEDIATE COURSE, 19 MM,	EQUIPMENT	SHOULDER (ASPHAL T		POSED DTH	AREA		PER PLAN		-	
UC	R(	DIRt	LOG	POINT			AVG.		(2″)	(TAPER 2″ TO 3.25″)	(3.25″)		GAL/SY	GAL/SY	(447) (1.5″)	TYPE A (446), AS PER PLAN (1.75″)		CONCRETE)					@ 0.40 GAL/SY	2 INCHES	-	
					_														SL	SR				AVG. THICKNESS		_
			STA	TION				SY	SY	SY	SY	SY	GAL	GAL	СҮ	CY	CY	MILE	FT	FT	SY	MILE	GAL	CY	SY	-
1.00	2		207.75	204/25	0.01	50	70.0	200		200		1	10	10	8	10	12	0.02	2.0	2.0	22	0.02	0	,	22	-
LOR	2	EB EB	203+75 204+25	204+25 241+14	0.01	50 3689	36.0 36.0	200	14,756	200		74	16 1,180	10 738	615	717	12 888	0.02	2.0	2.0 2.0	22 1,640	0.02	9 656	91	22	<b>B</b>
LOR	2	EB	204+25	241+14	0.01	50	36.0	200	14,130	200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	-  ш
	TURE: LOR-2-		241+64	245+16	0.07	352	50.0	200		200		,	10	10	0	10	12	0.02	2.0	2.0	22	0.02		,	22	א  -
LOR	2	EB	245+16	245+66	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	<u>م</u>
LOR	2	EB	245+66	308+27	1.19	6261	36.0	25,044	25,044			125	2,004	1,252	1,044	1,217	1507	2.37	2.0	2.0	2,783	2.37	1,113	155	2,783	- C
LOR	2	EB	308+27	308+77	0.01	50	36.0	200	,	200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	1 ~
	DER STRUCT. I		308+77	310+35	0.03	158	36.0	632			632	3	51	32	26	31	38	0.06	2.0	2.0	70	0.06	28	4	70	∢
LOR	2	EB	310+35	310+85	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	A
LOR	2	EB	310+85	340+19	0.56	2934	36.0	11,736	11,736			59	939	587	489	571	706	1.11	2.0	2.0	1,304	1.11	522	72	1,304	
LOR	2	EB	340+19	340+69	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	~
STRUC	CTURE LOR-2-0	0646 R	340+69	342+24	0.03	155																				Ш
LOR	2	EB	342+24	342+43	0.00	19	36.0	76			76	0	6	4	3	4	5	0.01	2.0	2.0	8	0.01	3	0	8	
PAVING UNI	DER STRUCT. I	LOR-2-0649	342+43	343+91	0.03	148	36.0	592			592	3	47	30	25	29	36	0.06	2.0	2.0	66	0.06	26	4	66	
LOR	2	EB	343+91	344+41	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	_ I
LOR	2	EB	344+41	367+81	0.44	2340	36.0	9,360	9,360			47	749	468	390	455	563	0.89	2.0	2.0	1,040	0.89	416	58	1,040	_  ທ
LOR	2	EB	367+81	368+31	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	ళ
PAVING UNI	DER STRUCT. L	LOR-2-0699	368+31	369+76	0.03	145	36.0	580			580	3	46	29	24	28	35	0.05	2.0	2.0	64	0.05	26	4	64	-  ⊢
LOR	2	EB	369+76	370+26	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	
LOR	2	EB	370+26	391+06	0.39	2080	36.0	8,320	8,320			42	666	416	347	404	501	0.79	2.0	2.0	924	0.79	370	51	924	Ξ
LOR	2	EB	391+06	391+56	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	<u> </u>
STRUC	CTURE LOR-2-0	0742 R	391+56	393+84	0.04	228																				-  ⋖
LOR	2	EB	393+84	394+34	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	_  ≏
LOR	2	EB	394+34	421+50	0.51	2716	36.0	10,864	10,864			54	869	543	453	528	654	1.03	2.0		1,207	1.03	483	67	1,207	_
LOR	2	EB	421+50	422+00	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	_
																										_
	TO OAK POIN	II ROAD				800	16.3	1,449	1,449			7	116	72	60	70	131					0.75	176			-
	ROAD RAMP X	(())				955	26.7	2,833	2,685	148	777	14	227	142	118	138	192		2.0	2.0	424	0.36	170	24	424	-
	ROAD RAMP X	ILUKBEDI				60 e 70	50.0	333	0 707	140	333	2	27	17	14	16	14		2.0	2.0	707	0 77	15 5	21	707	-
	ROAD RAMP Z					870 95	25.5 34.0	2,465	2,323	142	359	12 2	197 29	123 18	103 15	120	140 15		2.0	2.0	387	0.33	155	21	387	-
	FROM OAK PO					95 1500	17.3	2,883	2,883		553	14	29	18	15	140	260									- α α
	TO S.R. 58	JINI TUAU				900	17.5	1,500	1,500			8	120	75	63	73	135									~ ~
.R. 58 RAM						950	29.3	3,093	2,930	163		15	247	155	129	150	191		20	2.0	422	0.36	169	23	422	ן
.R. 58 RAM						1150	25.9	3,309	3,165	144		17	265	165	123	150	185		2.0		511	0.30	204	23	511	
	FROM S.R. 50	8				1600	18.1	3,218	3,218			16	257	161	134	156	290			2.0		0.11	201			
XTRA AREA	FOR MEDIAN C	CROSSOVERS						250	250			1	20	13	10	12										
	ΤΟΤΔΙ ς		 EASTBOUN		4.13	21825		106,052	100,483	2,997	2,572	530	8,485	5,304	4,416	5,157	6,630	7.99			11,114	9.48	4,449	614	11,114	- 16
	101765				7.13	21023		100,002	100,700	2,001	c,012	550	0,700	0,004	טוד, ד	0,101	0,000	1.55			119117	0.70	1,773			$-\frac{16}{37}$


 $\bigcirc$ 

0

					/ EN	GTH				25-	4		407	407	442	442	442	618				209	408	617	617	D TED
			LOG	POINT		0111	WIDTH	PAVEMENT	PAVEMENT	PAVEMENT PLANING,	PAVEMENT	PATCHING PLANED	NON-TRACKI		ASPHALT	A SPHAL T CONCRE TE	ANTI-SEGREGA	RUMBLE		REGATE ULDER	AGGREGATE	LINEAR GRADING	PRIME	COMPACTED AGGREGATE	SHOULDER PREPARATION	ALCULA ^T KRB
17 Y	TE	NOIT		ΤΟ	MILE	FEET	FEET	AREA	PLANING, ASPHALT	ASPHALT	PLANING, ASPHALT	SURFACE	NG TACK COAT @	NG TACK COAT @	CONCRETE SURFACE COURSE,	INTERMEDIATE	TION EQUIPMENT	STRIPS, SHOULDER	PROF	POSED	SHOULDER AREA	GRADING	COAT, AS PER	AGGREGATE	PREPARATION	C
COUNT	ROUTE	DIRECTION	LOG	POINT			AVG.		CONCRETE (2″)	CONCRETE (TAPER 2"	CONCRETE (3.25″)		0.08 GAL/SY	0.05 GAL/SY	12.5 MM, TYPE A (447) (1.5″)	COURSE, 19 MM, TYPE A (446), AS		(ASPHAL T CONCRETE)	W1.	DTH			PLAN @ 0.40	2 INCHES	-	
		2								TO 3.25″)						PER PLAN (1.75")			SL	SR			GAL/SY	AVG. THICKNESS	-	
			STA	TION	-			SY	SY	SY	SY	SY	GAL	GAL	CY	CY	CY	MILE	FT	FT	SY	MILE	GAL	СҮ	SY	1
																										1
LOR	2	WB	203+75	204+25	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	
LOR	2	WB	204+25	241+14	0.70	3689	36.0	14,756	14,756			74	1,180	738	615	717	888	1.40	2.0	2.0	1,640	1.40	656	91	1,640	B
LOR	2	WB	241+14	241+64	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	>
STRUC	TURE: LOR-2-	0459 L	241+64	245+16	0.07	35 <i>2</i>																				<u>0</u>
LOR	2	WB	245+16	245+66	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	0 B
LOR	2	WB	245+66	308+27	1.19	6261	36.0	25,044	25,044			125	2,004	1,252	1,044	1,217	1507	2.37	2.0	2.0	2,783	2.37	1,113	155	2,783	
LOR	2	WB	308+27	308+77	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	Ŭ
PAVING UNL	DER STRUCT. L	LOR-2-0586	308+77	310+35	0.03	158	36.0	632			632	3	51	32	26	31	38	0.06	2.0	2.0	70	0.06	28	4	70	▼ ⊔
LOR	2	WB	310+35	310+85	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	╡峉
LOR	2	WB	310+85	340+19	0.56	2934	36.0	11,736	11,736			59	939	587	489	571	706	1.11	2.0	2.0	1,304	1.11	522	72	1,304	
LOR	2	WB	340+19	340+69	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	۲ ۲
STRUC	TURE LOR-2-0	0646 L	340+69	342+24	0.03	155																				
LOR	2	WB	342+24	342+43	0.00	19	36.0	76			76	0	6	4	3	4	5	0.01	2.0	2.0	8	0.01	3	0	8	I
PAVING UNL	DER STRUCT. L	LOR-2-0649	342+43	343+91	0.03	148	36.0	592			592	3	47	30	25	29	36	0.06	2.0	2.0	66	0.06	26	4	66	
LOR	2	WB	343+91	344+41	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	I
LOR	2	WB	344+41	367+81	0.44	2340	36.0	9,360	9,360			47	749	468	390	455	563	0.89	2.0	2.0	1,040	0.89	416	58	1,040	່ຈ
LOR	2	WB	367+81	368+31	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	ి
	DER STRUCT. L		368+31	369+76	0.03	145	36.0	580			580	3	46	29	24	28	35	0.05	2.0		64	0.05	26	4	64	∣ ⊢
LOR	2	WB	369+76	370+26	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	Z Ш
LOR	2	WB	370+26	391+06	0.39	2080	36.0	8,320	8,320			42	666	416	347	404	501	0.79	2.0	2.0	924	0.79	370	51	924	Ξ Σ
LOR	2	WB	391+06	391+56	0.01	50	36.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	Ш >
	CTURE LOR-2-		391+56	393+84	0.04	228	70.0										10									⋖
LOR	2	WB	393+84	394+34	0.01	50	36.0	200	10.004	200		1	16	10	8	10	12	0.02	2.0		22	0.02	9	1	22	⊢┖
LOR	2	WB	394+34	421+50 422+00	0.51	2716	36.0 36.0	10,864	10,864	200		54	869	543	453	528	654	1.03	2.0		1,207	1.03	483	67	1,207	1
LOR	2	WB	421+50	422+00	0.01	50	56.0	200		200		1	16	10	8	10	12	0.02	2.0	2.0	22	0.02	9	1	22	-
ACCEL LANE	FROM OAK PO	I OINT ROAD				1500	17.7	2,950	2,950			15	236	148	123	143	266									1
	CAD RAMP W					875	27.2	2,550	2,350	151		13	212	140	110	145	140		2.0	2.0	389	0.33	156	22	389	1
	ROAD RAMP W					100	33.0	367	2,100	101	367	2	212	132	15	12.5	140		2.0	2.0	500	0.00				1
	ROAD RAMP Y					1005	27.6	3,082	2,929	153		15	247	154	128	150	202		2.0	2.0	447	0.38	179	25	447	1
	ROAD RAMP Y	(CURBED)				45	35.0	175			175	1	14	9	7	9	11		2.0	2.0		0.00				1
	TO OAK POIN					830	15.7	1,448	1,448			7	116	72	60	70	131									86
	FROM S.R. 5					1500	16.7	2,783	2,783			14	223	139	116	135	251									່ ຕໍ
S.R. 58 RAMP						900	26.0	2,600	2,456	144		13	208	130	108	126	144		2.0	2.0	400	0.34	160	22	400	א   א
S.R. 58 RAMP						920	35.3	3,608	3,412	196		18	289	180	150	175	240		2.0		409	0.35	164	23	409	<b> </b>
DECEL. LANE	TO S.R. 58					925	15.1	1,552	1,552			8	124	78	65	75	140									0   1
EXTRA AREA	FOR MEDIAN (	L CROSSOVERS						250	250			1	20	13	10	12										-
	TOTALS	(LOR-2	 WESTBOUI	L	4.13	21825		105,819	100,353	3,044	2,422	529	8,467	5,292	4,404	5,146	6,618	7.99			11,015	9.39	4,410	610	11,015	17
																										37

 $\bigcirc$ 

 $\bigcirc$ 



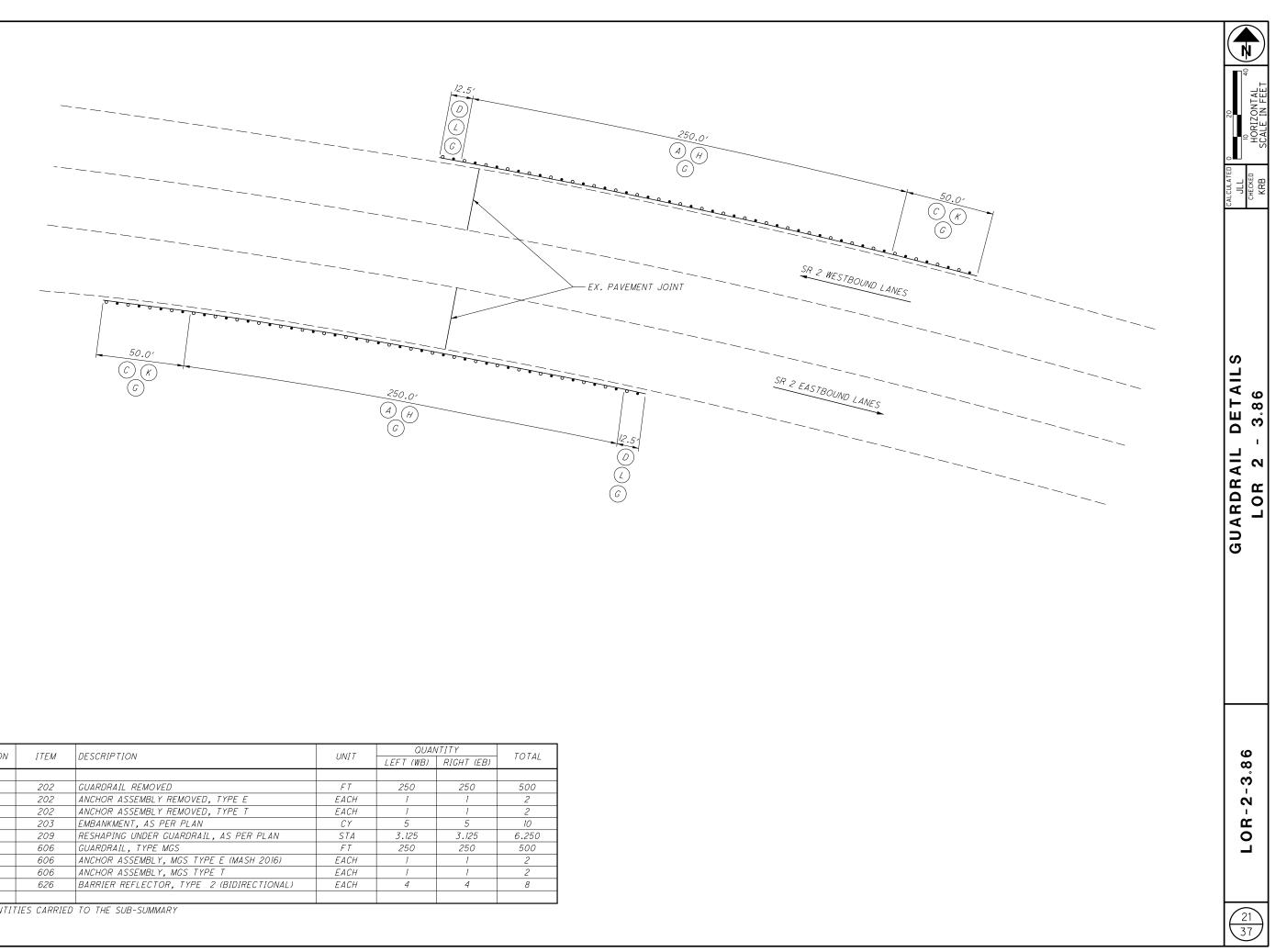
					LOR	-2 EASTB	OUND PAV	EMENT R	PEPAIRS										LOR	-2 WESTBO	OUND PAVI	EMENT R	PEPAIRS				
									251	251	255	255	255										251	251	255	255	255
SL	Μ	LANE	HIDIM	LENGTH	INDIVIDUAL REPAIR AREA	TYPE OF REPAIR	DEPTH	NUMBER OF REPAIRS	PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) (LONGITUDINAL)	PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) (TRANSVERSE)	FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS OC MS, AS PER PLAN (15"	CONCRETE! OF TOW A) FULL DEPTH PAVEMENT REMOVAL AND RIGID ? REPLACEMENT, CLASS RRCM, AS PER PLAN (15" CONCRETE) (OPTION B)	FULL DEPTH PAVEMENT SAWING	Si	_ <i>M</i>	LANE	HIDIM	LENGTH	INDIVIDUAL REPAIR AREA	TYPE OF REPAIR	DEPTH	NUMBER OF REPAIRS	PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) (LONGITUDINAL)	PARTIAL DEPTH PAVEMENT REPAIR (ASPHALT CONCRETE BASE) (TRANSVERSE)	FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS OC MS, AS PER PLAN (15" CONCRETE) (OPTION A) FULL DEPTH PAVEMENT	REMOVAL AND RIGID REMOVAL AND RIGID REPLACEMENT, CLASS RRCM, AS PER PLAN (15" CONCRETE) (OPTION B)	FULL DEPTH PAVEMENT SAWING
BEGIN	END		FT	FT	SY		INCH		СҮ	CY	SY	SY	FT	BEGIN	END		FT	FT	SY		INCH		СҮ	СҮ	SY	SY	FT
3.86	4.00	LT, RT	24	6	16.00	TRANS	15	1			16	16	60	3.86	4.00	LT, RT	24	4	10.67	TRANS	6	4		7	+		
		LT, RT	24	4	10.67	TRANS	6	4		7						LANE LINE	2	50	11.11	LONG	6	2	4				
		LANE LINE	2	100	22.22	LONG	6	2	7																		
					10.00						0.0		700						10.00	704.00							
4.00	5.00	LT, RT	24	6	16.00	TRANS	-	6		07	96	96	360	4.00	5.00	LT, RT	24	6	16.00	TRANS	15	9			144	144	540
		LT, RT	24	4	10.67	TRANS	6	13	1	23						LT, RT	24	4	10.67	TRANS	6	8		14	+		
		RT RT	4	20 50	8.89	LONG	6	3	4							LANE LINE	2	50	11.11	LONG	6	5	9		+		
		RT SHOULDER	4	50 50	22.22 22.22	LONG LONG	6	5 2	19 7							LANE LINE RT	2	100 20	22.22 8.89	LONG LONG	6 6	<u> </u>	    		+		
		NT SHOULDEN	4	50	22.22	LONG	0	2	/							RT	12	20	26.67	LONG	6	2	9		+		
																LT	12	20	26.67	LONG	6	2	9		+		
																RT SHOULDER	4	50	22.22	LONG	6	5	19		+		
5.00	6.00	LT, RT	24	6	16.00	TRANS	15	15			240	240	900	5.00	6.00	LT, RT	24	+ +	16.00	TRANS	15	8	,0		128	128	480
		LT, RT	24	4	10.67	TRANS		21		37						LT, RT	24	4	10.67	TRANS	6	9		16			
		RT	4	50	22.22	LONG	6	8	30							LANE LINE	2	50	11.11	LONG	6	3	6				
		RT	12		26.67	LONG	6	1	4							RT	4	50	22.22	LONG	6	5	19				
		LT	4	50	22.22	LONG	6	3	11							RT SHOULDER	4	50	22.22	LONG	6	2					
		RT SHOULDER	4	50	22.22	LONG	6	2	7																		
6.00	7.00	LT, RT	24	6	16.00	TRANS		10			160	160	600	6.00	7.00	LT, RT	24	6	16.00	TRANS	15	14			224	224	840
		LT, RT	24	4	10.67	TRANS	6	19		34						LT, RT	24	4	10.67	TRANS	6	11		20			
		LANE LINE		20	4.44	LONG	6	3	2							LANE LINE	2		11.11	LONG	6	3	6				
		RT		20	8.89	LONG	6	5	7							RT		50		LONG	6	4	15				
		RT		20	26.67	LONG	6	2	9							RT	-	20		LONG	6	2	9				
		LT		20	8.89	LONG	6	2	3							LT		20	26.67	LONG	6	2	9		+		
				20	26.67	LONG	6	2	9							RT SHOULDER	4	50	22.22	LONG	6	4	15		+		
7.00	7 07	RT SHOULDER	4		22.22	LONG	6	4	15		240	240	000	7.00	7.07		21		16.00	TDANC	15	16			255	25.6	060
7.00	7.97	LT, RT LT, RT	24 24	6 4	16.00 10.67	TRANS TRANS		15 16		28	240	240	900	7.00	7.97	LT, RT LT, RT	24 24	6	16.00 10.67	TRANS TRANS	15 6	16 17		30	256	256	960
		LI, KI LANE LINE		100	22.22	LONG	6	8	30	20						LI, KI LANE LINE	24	50	11.11	LONG	6	4	7	50	+		
		RT	4	<u> </u>	22.22	LONG	6	6	22							LANE LINE	2	100	22.22	LONG	6	6	22		+		
		RT		20	26.67	LONG	6	2	9							RT	4		22.22	LONG	6	5	19		+		
		LT		20	26.67	LONG	6	2	9							RT		20	26.67	LONG	6	2	9		+		
		RT SHOULDER		50	22.22	LONG	6	4	15							LT		20	26.67	LONG	6	2	9		+		
																RT SHOULDER	4	50	22.22	LONG	6	2	7		+		
AK POI	NT ROAD	RAMP X							10					ΟΑΚ ΡΟΙ	NT ROAD	RAMP W							10				
AK POI	NT ROAD	RAMP Z							10					OAK POI	NT ROAD	RAMP Y							10				
	RAMP D								8	8				S. R. 58	RAMP C								8	8			
. R. 58	RAMP F								12	8				S. R. 58	RAMP E	- <u></u>							8	10			
		546		D SUB-	TOTAL				259	145	752	752	2,820						-TOTAL				258		752	752	2820

NOTE: QUANTITIES ARE FOR ESTIMATING PURPOSES ONLY. EXACT LOCATIONS AND QUANTITIES TO BE DETERMINED BY THE PROJECT ENGINEER.

 $\bigcirc$ 

 $\bigcirc$ 

0


 $\bigcirc$ 

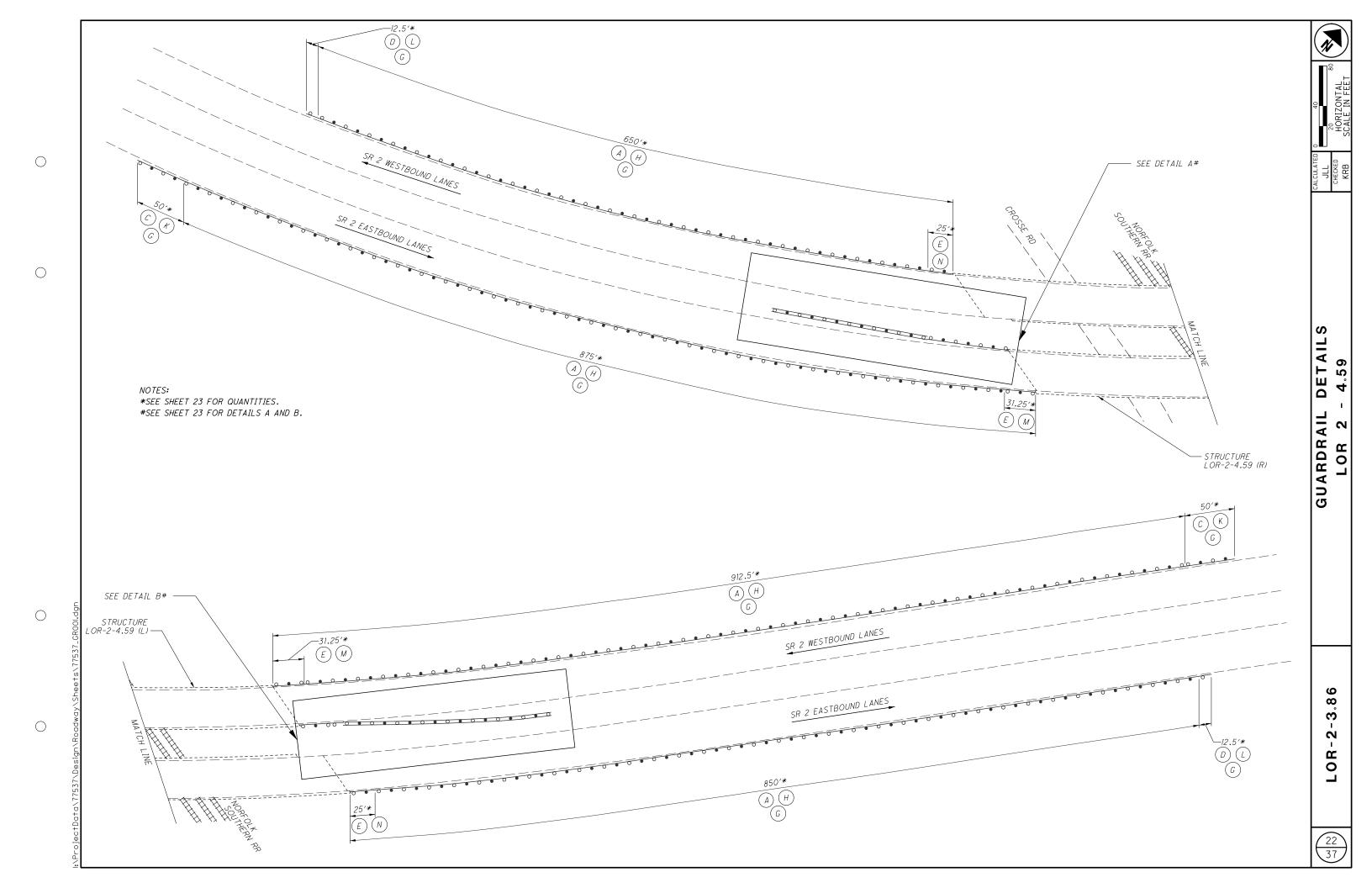
(19) (3.7)

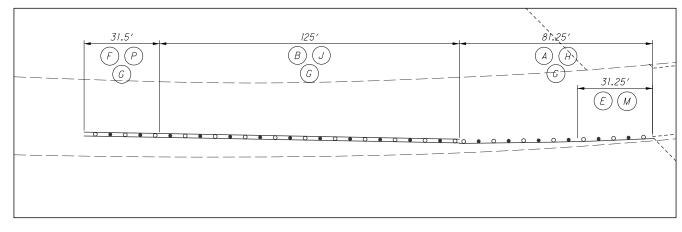
		A	В	С	D	E	F		G	H	J	K	L	М	N	P	Q		:D
		202	202	202	202	202	202	203	209	606	606	606	606	606	606	606	606	626	ALCULATE JLL CHECKED KRB
SHEE T	LOCATION	GUARDRAIL REMOVED	GUARDRAIL REMOVED,	HANCHOR ASSEMBLY REMOVED, TYPE E	HANCHOR ASSEMBLY REMOVED, TYPE T	REMOVED	THE INPACT ATTENUATOR	S EMBANKMENT, AS PER PLAN	RESHAPING UNDER DI GUARDRAIL, AS PER PLAN	GUARDRAIL, TYPE MGS	GUARDRAIL, BARRIER	TYPE E (MASH 2016)	H ANCHOR ASSEMBLY, MGS	THE ASSEMBLY, TYPE I	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2	IMPACT ATTENUATOR, TYPE   I (BIDIRECTIONAL)	IMPACT ATTENUATOR, TYPE   2   H   MPH/24" WIDE	THE STATES STATE	2
		, ,		2/10/7	2,1017	Enon	2/10//					Entern	2/10/1	Enon	Enon	Entern	Enton	Entern	R
21	LOR-2-3.86	500		2	2			10	6.25	500		2	2					8	UMMA
22-23	LOR-2-4.59	3,412.5	300	2	2	6	2	50	39.01	3,412.5	300	2	2	4	2	2		48	-SUN
24	LOR-2-5.86	362.5	250	1	3		2	15	7.63	362.5	250	1	3			2		12	SUB
25	LOR-2-6.46	1,393.75	350	2	2	8	2	35	19.32	1,393.75	350	2	2	5	3	2		30	AIL
26	LOR-2-6.99	250	250	2	3	1	2	20	7.01	250	250	2	3	1		2		12	RDR
27	LOR-2-7.42	3,843.75	206.25	4	5	3	2	45	43.86	3,843.75	206.25	4	5	2	1	1	1	51	GUA
28	LOR-2-7.42	1,268.75	175	1	1	3	1	25	15.38	1,268.75	175	1	1	2	1	1		20	-
29	LOR-2-7.42	1,525		2	2			20	16.50	1,525		2	2					20	-
																			-
6																			-
37_6500L																			
ets/775.																			-
kay / She																			3.86
du / Koad																			R - 2 -
7537\Desi																			LOF
·	CARRIED TO THE GENERAL JMMARY (01/NHS/PV)	12,556.25	1,531.25	16	20	21	11	220	154.95	12,556.25	1,531.25	16	20	14	7	10	1	201	$\begin{array}{c} 20\\ \hline 37 \end{array}$

 $\bigcirc$ 

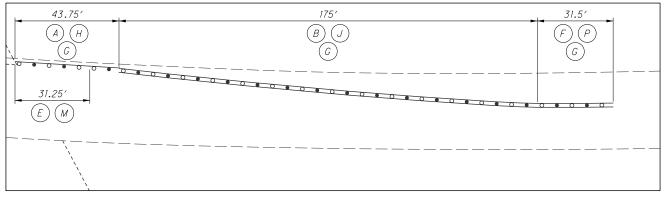
 $\bigcirc$ 




	1751	ACCORDING N		QUAN	ITITY	TOTAL
LOCATION	ITEM	DESCRIPTION	UNIT	LEFT (WB)	RIGHT (EB)	TOTAL
A	202	GUARDRAIL REMOVED	FT	250	250	500
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1	1	2
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH	1	1	2
	203	EMBANKMENT, AS PER PLAN	CY	5	5	10
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	3.125	3.125	6.250
H	606	GUARDRAIL, TYPE MGS	FT	250	250	500
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1	1	2
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH	1	1	2
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	4	4	8


ALL QUANTITIES CARRIED TO THE SUB-SUMMARY

 $\bigcirc$ 


 $\bigcirc$ 

 $\bigcirc$ 

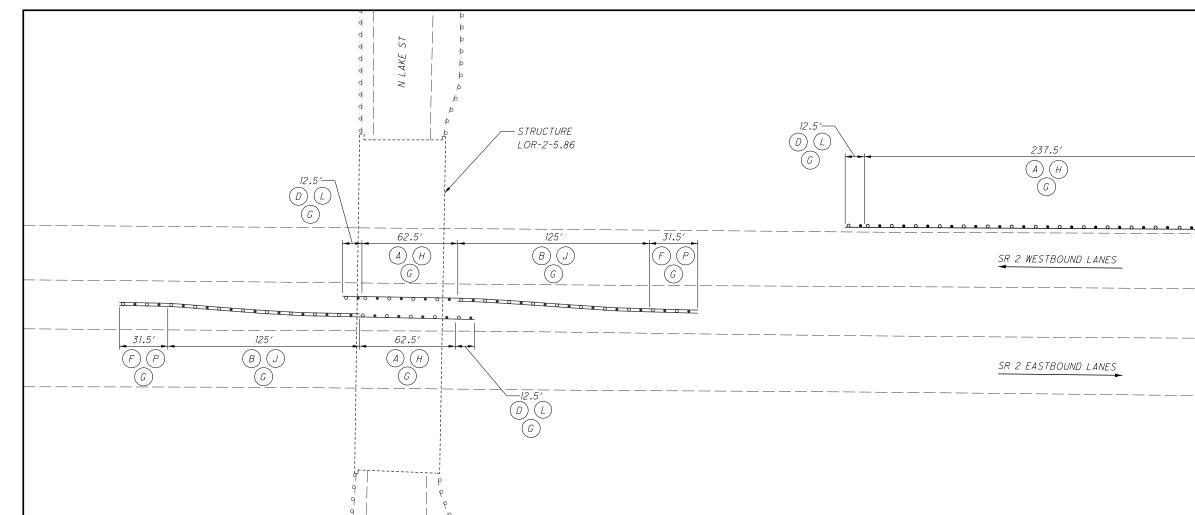




DETAIL A



DETAIL B


LOCATION	ITEM	DESCRIPTION	UNIT		QUAN	ITITY		TOTAL
LOCATION	IIEM	DESCRIPTION	UNIT	LEFT (WB)	RIGHT (EB)	DETAIL A	DETAIL B	TOTAL
A	202	GUARDRAIL REMOVED	FT	1.562.5	1.725	81.25	43.75	3,412.5
B	202	GUARDRAIL REMOVED. BARRIER DESIGN	FT	1,002.0	1,120	125	175	300
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1	1			2
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH	1	1			2
Ε	202	BRIDGE TERMINAL ASSEMBLY REMOVED	EACH	2	2	1	1	6
F	202	IMPACT ATTENUATOR REMOVED	EACH			1	1	2
	203	EMBANKMENT, AS PER PLAN	CY	20	20	5	5	50
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	16.250	17.875	2.378	2.503	39.00
Н	606	GUARDRAIL, TYPE MGS	FT	1,562.5	1,725	81.25	43.75	3,412.
J	606	GUARDRAIL, BARRIER DESIGN, TYPE MGS	FT			125	175	300
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1	1			2
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH	1	1			2
М	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1	EACH	1	1	1	1	4
N	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2	EACH	1	1			2
Р	606	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)	EACH			1	1	2
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	19	21	4	4	48

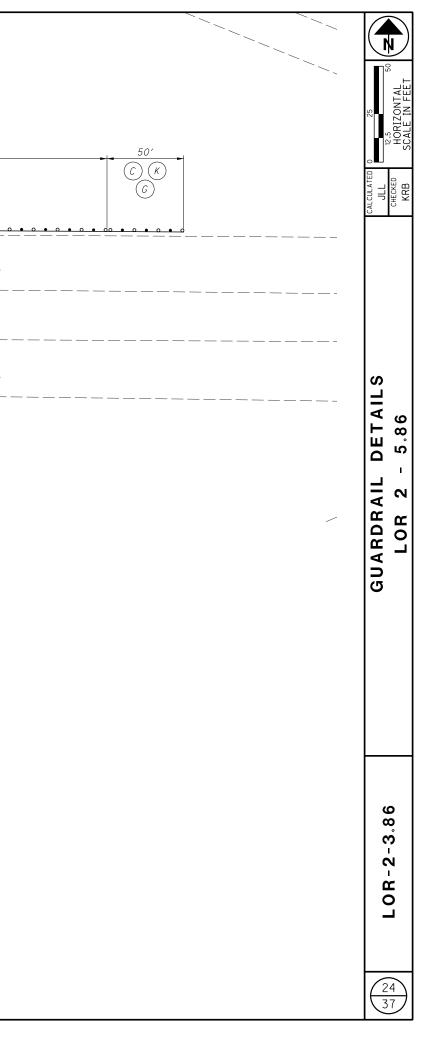
ALL QUANTITIES CARRIED TO THE SUB-SUMMARY

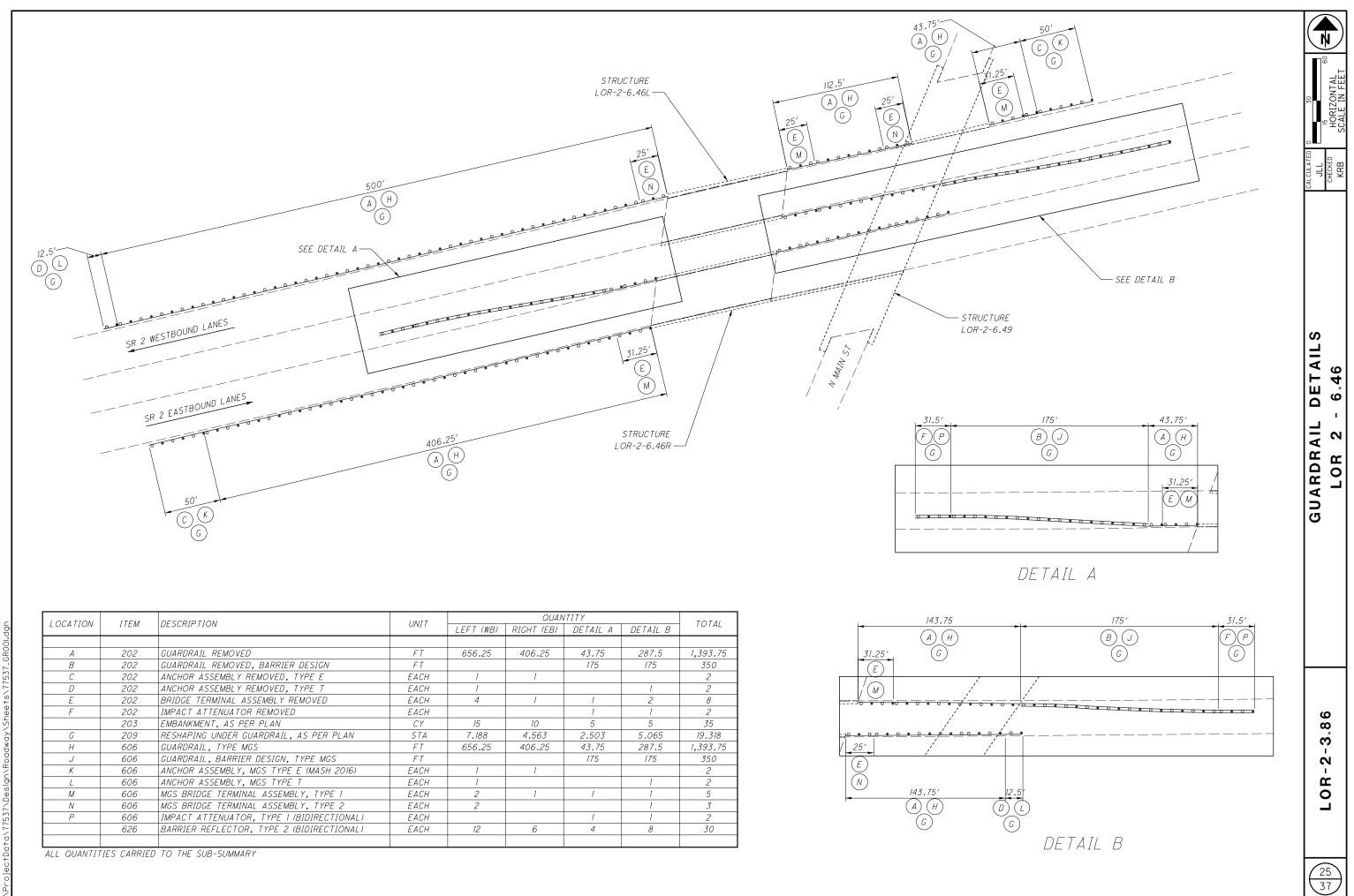
 $\bigcirc$ 

 $\bigcirc$ 

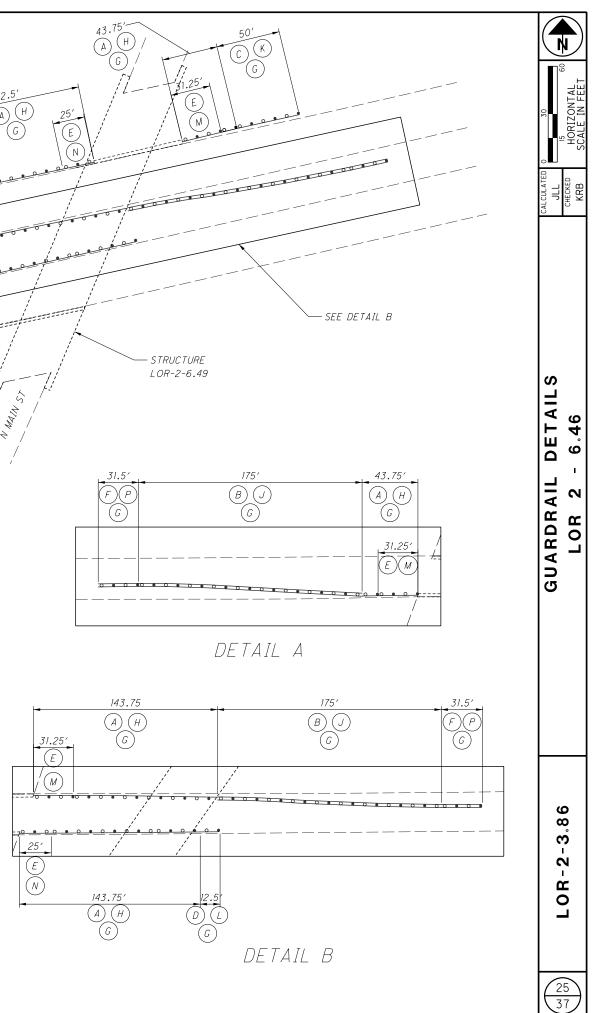





LOCATION	ITEM	DESCRIPTION	UNIT	QUAN	ITITY	τοταί
LOCATION	TIEN	DESCRIPTION	UNIT	LEFT (WB)	MEDIAN	TOTAL
A	202	GUARDRAIL REMOVED	FT	237.5	125	362.5
В	202	GUARDRAIL REMOVED, BARRIER DESIGN	FT		250	250
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1		1
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH	1	2	3
F	202	IMPACT ATTENUATOR REMOVED	EACH		2	2
	203	EMBANKMENT, AS PER PLAN	CY	5	10	15
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	3.000	4.630	7.630
H	606	GUARDRAIL, TYPE MGS	FT	237.5	125	362.5
J	606	GUARDRAIL, BARRIER DESIGN, TYPE MGS	FT		250	250
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1		1
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH	1	2	3
Р	606	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)	EACH		2	2
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	4	8	12


ALL QUANTITIES CARRIED TO THE SUB-SUMMARY

 $\bigcirc$ 


 $\bigcirc$ 

 $\bigcirc$ 



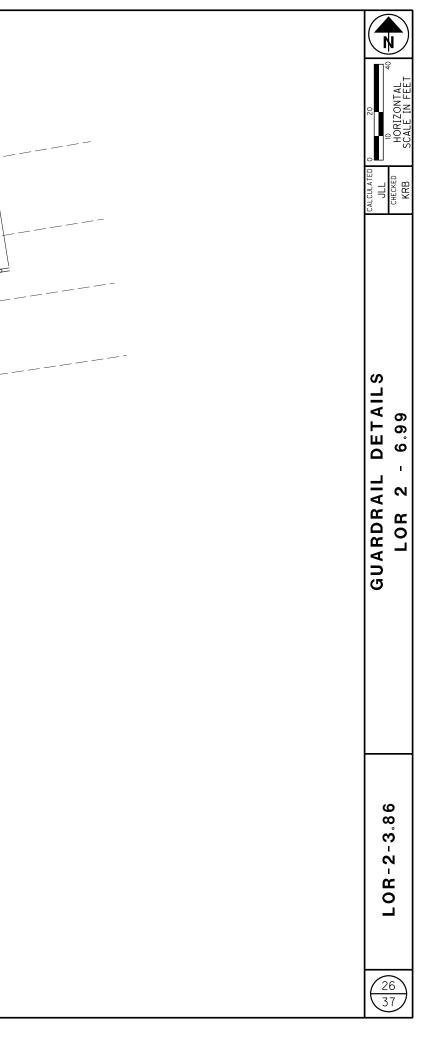


	ITEM	DECODIDITION			QUAN	ITITY		TOTAL
LOCATION	ITEM	DESCRIPTION	UNIT	LEFT (WB)	RIGHT (EB)	DETAIL A	DETAIL B	TOTAL
A	202	GUARDRAIL REMOVED	FT	656.25	406.25	43.75	287.5	1,393.75
В	202	GUARDRAIL REMOVED, BARRIER DESIGN	FT			175	175	350
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1	1			2
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH	1			1	2
Ε	202	BRIDGE TERMINAL ASSEMBLY REMOVED	EACH	4	1	1	2	8
F	202	IMPACT ATTENUATOR REMOVED	EACH			1	1	2
	203	EMBANKMENT, AS PER PLAN	CY	15	10	5	5	35
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	7.188	4.563	2.503	5.065	19.318
H	606	GUARDRAIL, TYPE MGS	FT	656.25	406.25	43.75	287.5	1,393.75
J	606	GUARDRAIL, BARRIER DESIGN, TYPE MGS	FT			175	175	350
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1	1			2
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH	1			1	2
М	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1	EACH	2	1	1	1	5
N	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2	EACH	2			1	3
Р	606	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)	EACH			1	1	2
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	12	6	4	8	30



 $\bigcirc$ 

 $\bigcirc$ 


TERRA LN STRUCTURE LOR-2-6.99 — 50.0' (K) (G 31.5′ ( P` 125′ B 12.5' D (L) G 50.0 0 0 0 0 0 (A) (H)(6 SR 2 WESTBOUND LANES 0 0.000 0 (A) (H)(G) 125 G BU 31.5' (G) (P)SR 2 EASTBOUND LANES (F)6 12.5'  $\mathcal{D}^{(L)}$ 125.0' (G A H G 50.0' C K G

LOCATION	ITEM	DESCRIPTION	UNIT		QUANTITY		TOTAL
LOLATION	IIEN	DESCRIFTION	UNIT	LEFT (WB)	RIGHT (EB)	MEDIAN	TOTAL
A	202	GUARDRAIL REMOVED	FT	25	125	100	250
В	202	GUARDRAIL REMOVED, BARRIER DESIGN	FT			250	250
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1	1		2
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH		1	2	3
E	202	BRIDGE TERMINAL ASSEMBLY REMOVED	EACH	1			1
F	202	IMPACT ATTENUATOR REMOVED	EACH			2	2
	203	EMBANKMENT, AS PER PLAN	CY	5	5	10	20
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	0.750	1.875	4.380	7.005
H	606	GUARDRAIL, TYPE MGS	FT	25	125	100	250
J	606	GUARDRAIL, BARRIER DESIGN, TYPE MGS	FT			250	250
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1	1		2
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH		1	2	3
М	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1	EACH	1			1
Р	606	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)	EACH			2	2
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	3	3	6	12

ALL QUANTITIES CARRIED TO THE SUB-SUMMARY

 $\bigcirc$ 

 $\bigcirc$ 



	ITCH		LINIT			QUANTITY			TOTAL
LOCATION	ITEM	DESCRIPTION	UNIT	LEFT (WB)	RIGHT (EB)	RAMP C	RAMP D	DETAIL A	TOTAL
А	202	GUARDRAIL REMOVED	FΤ	562.5	712.5	1,300	1,225	43.75	3,843.75
В	202	GUARDRAIL REMOVED, BARRIER DESIGN	FT				31.25	175	206.25
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH		1	2	1		4
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH	1		2	2		5
Ε	202	BRIDGE TERMINAL ASSEMBLY REMOVED	EACH	1	1			1	3
F	202	IMPACT ATTENUATOR REMOVED	EACH				1	1	2
	203	EMBANKMENT, AS PER PLAN	СҮ	10	10	10	10	5	45
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	5.750	7.625	14.250	13.728	2.503	43.855
Н	606	GUARDRAIL, TYPE MGS	FΤ	562.5	712.5	1,300	1,225	43.75	3,843.75
J	606	GUARDRAIL, BARRIER DESIGN, TYPE MGS	FΤ				31.25	175	206.25
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH		1	2	1		4
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH	1		2	2		5
М	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1	EACH		1			1	2
Ν	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2	EACH	1					1
Ρ	606	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)	EACH					1	1
Q	606	IMPACT ATTENUATOR, TYPE 2 (BIDIRECTIONAL) (65 MPH/24" WIDE)	EACH				1		1
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	7	9	16	16	3	51

86

(B) (T)

(G)

837.5' (A) (H) (G)

50' (Č) (K

G

31.25'-

6

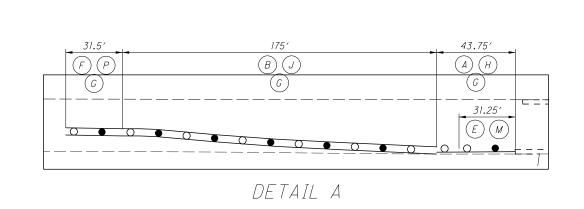
(<del>É</del>

41.5' (F) (Q) (G)

12.

А

-387.5'


( G

D

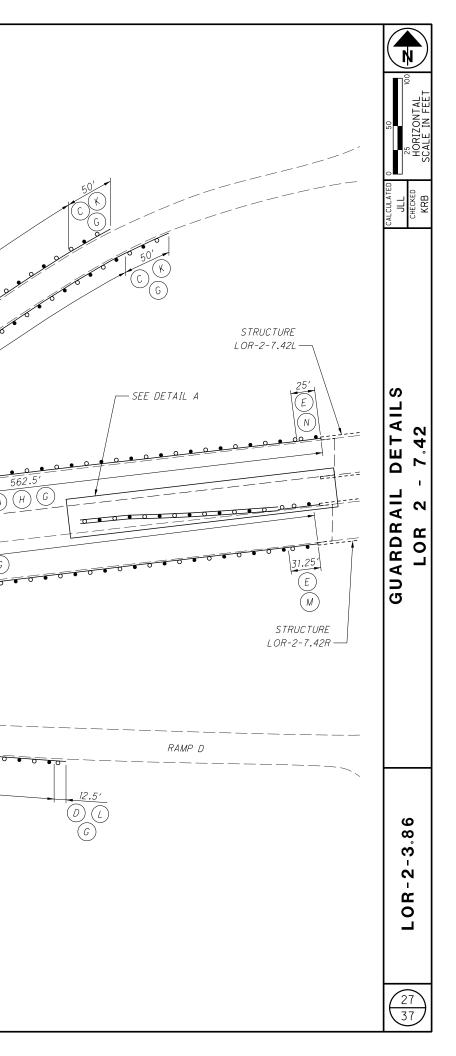
 $\bigcirc$ 

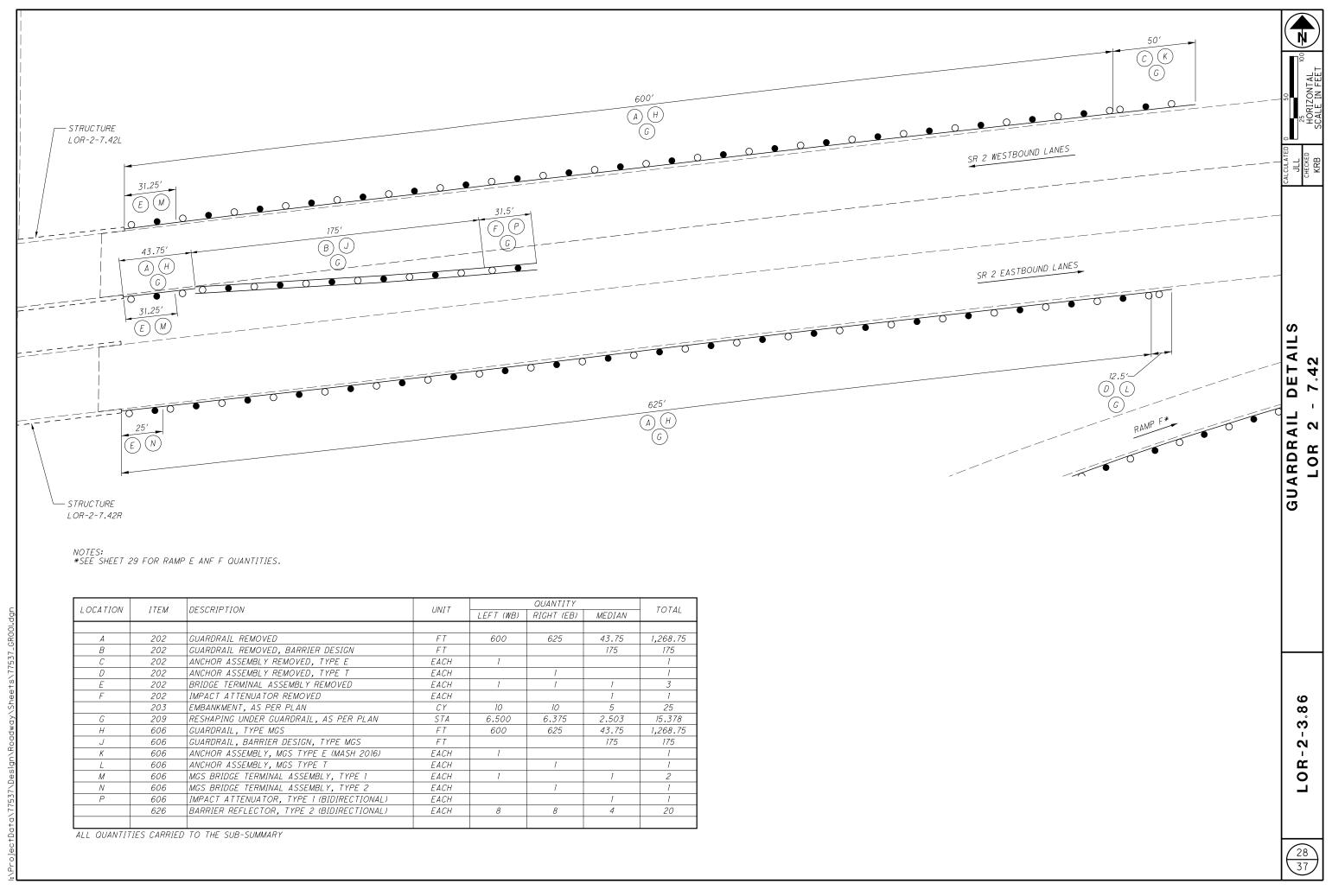
ALL QUANTITIES CARRIED TO THE SUB-SUMMARY

 $\bigcirc$ 



50

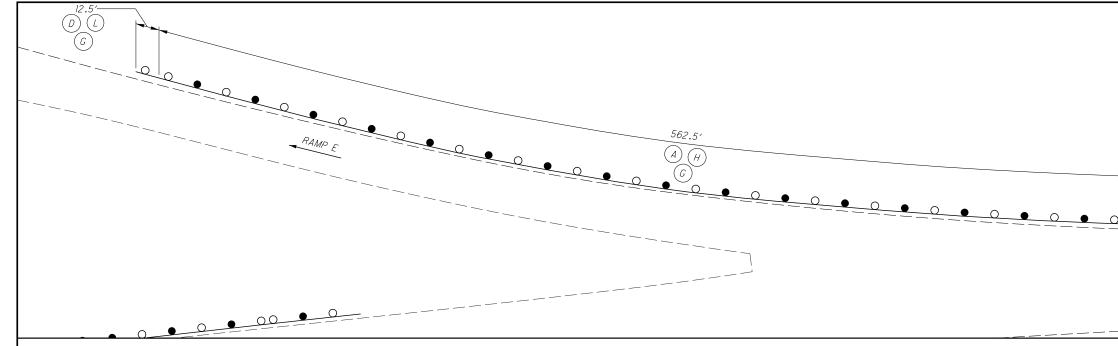

(c) (K)


( G`

12. ( n`

<u>SR 2 WESTBOUND LANES</u>

<u>SR 2 EASTBOUND LANES</u>






 $\bigcirc$ 

 $\bigcirc$ 

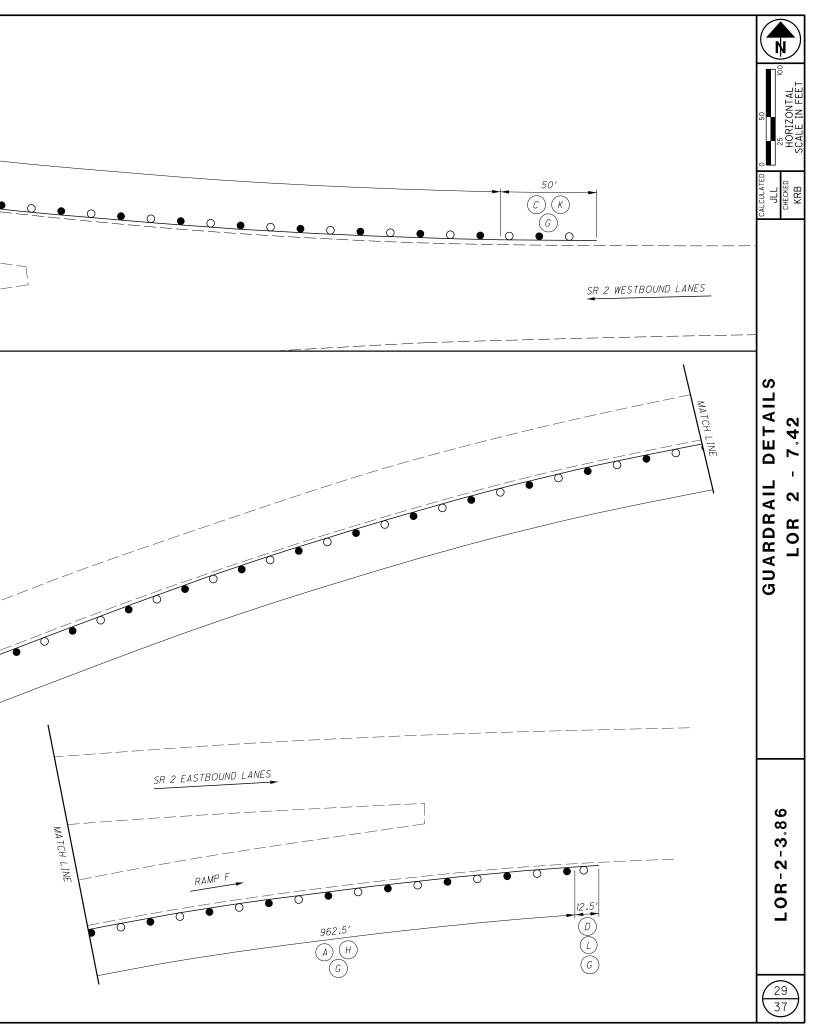
		AFCORINTION	LINIT		QUANTITY		TOTAL
LOCATION	ITEM	DESCRIPTION	UNIT	LEFT (WB)	RIGHT (EB)	MEDIAN	TOTAL
A	202	GUARDRAIL REMOVED	FT	600	625	43.75	1,268.75
В	202	GUARDRAIL REMOVED, BARRIER DESIGN	FT			175	175
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1			1
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH		1		1
E	202	BRIDGE TERMINAL ASSEMBLY REMOVED	EACH	1	1	1	3
F	202	IMPACT ATTENUATOR REMOVED	EACH			1	1
	203	EMBANKMENT, AS PER PLAN	CY	10	10	5	25
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	6.500	6.375	2.503	15.378
H	606	GUARDRAIL, TYPE MGS	FT	600	625	43.75	1,268.75
J	606	GUARDRAIL, BARRIER DESIGN, TYPE MGS	FT			175	175
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1			1
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH		1		1
М	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1	EACH	1		1	2
N	606	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2	EACH		1		1
Р	606	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)	EACH			1	1
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	8	8	4	20



-----

RAMP F

LOCATION	ITEM	DESCRIPTION	UNIT	QUAN	ITITY	TOTAL
LOCATION	ITEN	DESCRIPTION	UNIT	RAMP E	RAMP F	TOTAL
A	202	GUARDRAIL REMOVED	FT	562.5	962.5	1,525
С	202	ANCHOR ASSEMBLY REMOVED, TYPE E	EACH	1	1	2
D	202	ANCHOR ASSEMBLY REMOVED, TYPE T	EACH	1	1	2
	203	EMBANKMENT, AS PER PLAN	CY	10	10	20
G	209	RESHAPING UNDER GUARDRAIL, AS PER PLAN	STA	6.250	10.250	16.500
H	606	GUARDRAIL, TYPE MGS	FT	562.5	962.5	1,525
K	606	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)	EACH	1	1	2
L	606	ANCHOR ASSEMBLY, MGS TYPE T	EACH	1	1	2
	626	BARRIER REFLECTOR, TYPE 2 (BIDIRECTIONAL)	EACH	8	12	20


ALL QUANTITIES CARRIED TO THE SUB-SUMMARY

 $\bigcirc$ 

 $\bigcirc$ 

 $\bigcirc$ 





LINDOD     LINDOD     LINDOD     FROM       IDOR     2     203+75       IDOR     2     RA       IDOR     2     241+64	3+75 422+00 3+75 422+00 T ROAD INTEN RAMP X RAMP X RAMP Y RAMP W	00 EB 00 WB	MILE MILE 4.13 4.13 E 0.19 0.27 0.20 0.27	DESCRIPTION EASTBOUND LONG LINE MARKINGS WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	71.0 71.0   71.0 71.0   71.0 71.0   71.0 71.0   71.0 71.0	24.80 24.80 1.14 1.62	2921 MORK ZONE CHANNELIZING LINE, CLASS 111, 642 PAINT	2511 MORK ZONE TRANSVERSE/DIAGONAL LINE, CLASS III, 642 PAINT	H WORK ZON	WORK ZONE ARROW, CLASS III, 642 PAINT	WET REFLECTIVE THERMOPLASTIC     WET REFLECTIVE THERMOPLASTIC     VET PAVEMENT MARKING, EDGE LINE, 6"     WHITE)		208 108 108 108 108 108 108 108 1	WET REFLECTIVE THERMOPLASTIC PAVEMENT MARKING, CHANNELIZING LINE, 12"		71 72   72 73   74 6ROOVING FOR 6" RECESSED PAVEMENT   75 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   76 74   77 74   77 74	H GROOVING FOR 12" RECESSED PAVEMENT MARKINGS, ASPHAL T	H GROOVING FOR 6" RECESSED PAVEMENT MARKINGS, ASPHALT	AUX AUX S 20b FINE FT	XILIARY XILIARY CLOSSMARK FINE	644 MARKING 2 TRANSVERSE/ DIAGONAL LINE 7 " (WHITE)	LANE AF	COMBINATION	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EPOXY PAVEMENT The MARKING, EDGE LINE, 6" (YELLOW)	WET REFLECTIVE EPOXY PAVEMENT MARKING, LANE LINE, 6"	R GROOVING FOR 6" RECESSED PAVEMENT   R MARKINGS, CONCRETE
LINDOD     LINDOD     LINDOD     FROM       IDOR     2     203+75       IDOR     2     RA       IDOR     2     241+64	TS NOILIFIS NOILIFIS 3+75 422+00 3+75 422+00 3+75 422+00 T ROAD INTER RAMP X RAMP X RAMP Z RAMP Y RAMP W	DO EB DO WB ERCHANG EB EB WB	ТИМ _А КМН- МІ.L.Е 4.13 4.13 Е 0.19 0.27 0.20	EASTBOUND LONG LINE MARKINGS WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	Display="block-style="text-align: center;">CLASS III, 64       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0	08.45   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   1111   1111	2921 MORK ZONE CHANNELIZING LINE, CLA 111, 642 PAINT		MORK ZONE STOP LINE, CLASS III,	The second se	WET REFLECTIVE THERMOPLASTIC   WET REFLECTIVE THERMOPLASTIC   WET PAVEMENT MARKING, EDGE LINE,   WHITF)	WET REFLECTIVE THERMOPLASTIC   E Wet Reflective thermoplastic   E PAVEMENT MARKING, EDGE LINE,   C C	אבר REFLECTIVE THERMOPLASTIC בי הי PAVEMENT MARKINGS, LANE LINE,	WET REFLECTIVE THERMOPLASTIC PAVEMENT MARKING, CHANNELIZING L 12"	WET REFLECTIVE THERMOPLASTIC PAVEMENT MARKING, DOTTED LINE,	R GROOVING FOR 6" RECESSED PAVE   R MARKINGS, ASPHAL T	GROOVING FOR 12" RECESSED MARKINGS, ASPHAL T	GROOVING FOR 6" RECESSED PA MARKINGS, ASPHAL T	STOP LINE	🟹 CROSSWALK LINE	75 TRANSVERSE/ DIAGONAL LINE * (WHITE)	LEFT RIGHT	COMBINATION	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EPOXY MARKING, LANE LINE, 6"	GROOVING FOR 6" RECESSED MARKINGS, CONCRETE
LINDOD     LINDOD     LINDOD     FROM       IDOR     2     203+75       IDOR     2     RA       IDOR     2     241+64	TS NOILIFIS NOILIFIS 3+75 422+00 3+75 422+00 3+75 422+00 T ROAD INTER RAMP X RAMP X RAMP Z RAMP Y RAMP W	DO EB DO WB ERCHANG EB EB WB	ТИМ _А КМН- МІ.L.Е 4.13 4.13 Е 0.19 0.27 0.20	EASTBOUND LONG LINE MARKINGS WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	Display="block-style="text-align: center;">CLASS III, 64       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0       0.7     0	08.45   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   1111   1111	2921 MORK ZONE CHANNELIZING LINE, CLA 111, 642 PAINT		MORK ZONE STOP LINE, CLASS III,	The second se	WET REFLECTIVE THERMOPLASTIC   WET REFLECTIVE THERMOPLASTIC   WET PAVEMENT MARKING, EDGE LINE,   WHITF)	WET REFLECTIVE THERMOPLASTIC   E Wet Reflective thermoplastic   E PAVEMENT MARKING, EDGE LINE,   C C	אבר REFLECTIVE THERMOPLASTIC בי הי PAVEMENT MARKINGS, LANE LINE,	WET REFLECTIVE THERMOPLASTIC PAVEMENT MARKING, CHANNELIZING L 12"	WET REFLECTIVE THERMOPLASTIC PAVEMENT MARKING, DOTTED LINE,	R GROOVING FOR 6" RECESSED PAVE   R MARKINGS, ASPHAL T	GROOVING FOR 12" RECESSED MARKINGS, ASPHAL T	GROOVING FOR 6" RECESSED PA MARKINGS, ASPHAL T	dOIS 24"	CROSSWALK	TRANSVERSE/ DIAGONAL	LEFT RIGHT	COMBINATION	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EPOXY MARKING, LANE LINE, 6"	GROOVING FOR 6" RECESSED MARKINGS, CONCRETE
LINDOD     LINDOD     LINDOD     FROM       IDOR     2     203+75       IDOR     2     RA       IDOR     2     241+64	TS NOILIFIS NOILIFIS 3+75 422+00 3+75 422+00 3+75 422+00 T ROAD INTER RAMP X RAMP X RAMP Z RAMP Y RAMP W	DO EB DO WB ERCHANG EB EB WB	ТИМ _А КМН- МІ.L.Е 4.13 4.13 Е 0.19 0.27 0.20	EASTBOUND LONG LINE MARKINGS WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	DIE CLASS CONE LANE LINE, CLASS DIE PAINT	D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8.45 D8	2921 - 2020 CHANNELIZING LINE, 111, 642 PAINT		H WORK ZONE STOP LINE, CLASS	WORK ZONE ARROW, CLASS III,	WET REFLECTIVE THERMOPLASTIC   WET REFLECTIVE THERMOPLASTIC   WET PAVEMENT MARKING, EDGE LINE,   WHITF)	WET REFLECTIVE THERMOPLASTIC   E Wet Reflective thermoplastic   E PAVEMENT MARKING, EDGE LINE,   C C	אבר REFLECTIVE THERMOPLASTIC בי הי PAVEMENT MARKINGS, LANE LINE,	WET REFLECTIVE PAVEMENT MARKI 12"	WET REFLECTIVE PAVEMENT MARKI	R GROOVING FOR 6" RECESSED PAVE   R MARKINGS, ASPHAL T	GROOVING FOR 12" RECESSED MARKINGS, ASPHAL T	GROOVING FOR 6" RECESSED PA MARKINGS, ASPHAL T	dOIS 24"	CROSSWALK	TRANSVERSE/ DIAGONAL		COMBINATION	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EF MARKING, EDGE LIN	WET REFLECTIVE EPOXY MARKING, LANE LINE, 6"	GROOVING FOR 6" RECESSED MARKINGS, CONCRETE
OR     2     203+75       OR     2     203+75       OAK POINT RC     0       OR     2     RA       CONCRETE STR     2     241+64	3+75 422+00 3+75 422+00 T ROAD INTEN RAMP X RAMP X RAMP Y RAMP W	DO EB DO WB ERCHANG EB EB WB	4.13 4.13 E 0.19 0.27 0.20	WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	MILE 12.40 12.40 0.12 0.12	MILE 24.80 24.80 1.14 1.62	FT ) 1767	FT	FT	EACH	MILE 4.13	MILE 4.13	MILE 4.13			MILE 12.40											
OR     2     203+75       OR     2     203+75       OAK POINT RC     0       OR     2     RA       CONCRETE STR     2     241+64	3+75 422+00 3+75 422+00 T ROAD INTEN RAMP X RAMP X RAMP Y RAMP W	DO EB DO WB ERCHANG EB EB WB	4.13 4.13 E 0.19 0.27 0.20	WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	12.40 12.40 0.12 0.12	24.80 24.80 1.14 1.62	1767				4.13	4.13	4.13			12.40			, ,								
OR     2     203+75       OAK     POINT     RC       OR     2     RA       CONCRETE STR     2       COR     2     241+64	3+75 422+00 T ROAD INTER RAMP X RAMP Z RAMP Y RAMP W	DO WB ERCHANG EB EB WB	4.13 E 0.19 0.27 0.20	WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	12.40 0.12 0.12	24.80 1.14 1.62	1767	1155	010																		
OR     2     203+75       OAK     POINT     RC       OR     2     RA       CONCRETE STR     2       COR     2     241+64	3+75 422+00 T ROAD INTER RAMP X RAMP Z RAMP Y RAMP W	DO WB ERCHANG EB EB WB	4.13 E 0.19 0.27 0.20	WESTBOUND LONG LINE MARKINGS EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	12.40 0.12 0.12	24.80 1.14 1.62	1767	1155	010																		
OR 2 RA OR 2 A	T ROAD INTER RAMP X RAMP Z RAMP Y RAMP W	ERCHANG EB EB WB	E 0.19 0.27 0.20	EB EXIT RAMP TO OAK POINT RD EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	0.12	1.14	1767	1155	010																	L	
OR     2     RA       OR     2     241+64	RAMP X RAMP Z RAMP Y RAMP W	EB EB WB	0.19 0.27 0.20	EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	0.12	1.62		1155	010																		
OR     2     RA	RAMP Z RAMP Y RAMP W	EB WB	0.27 0.20	EB ENTRANCE RAMP FROM OAK POINT RD WB EXIT RAMP TO OAK POINT RD	0.12	1.62		1155	010	-																<del> </del> †	
OR     2     RA       OR     2     RA       S.R. 58 I     0       OR     2     RA	RAMP Y RAMP W	WB	0.20	WB EXIT RAMP TO OAK POINT RD			770		219	6	0.19	0.19	0.04	589	300	0.42	589	300	73		385	2					
OR     2     R.A.       S.R. 58 I     S.R. 58 I       OR     2     RA	RAMP W				0.12		738				0.27	0.27	0.04	246	500	0.58	246	500		110							
S.R. 58 I       OR     2     RA		W B	0 27 1			1.2	2295	900	210	6	0.2	0.2	0.04	765	275	0.44	765	275	70	92	300	2					
OR 2 RA OR 2 RA OR 2 RA OR 2 RA OR 2 RA CONCRETE STR OR 2 241+64			0.21	WB ENTRANCE RAMP FROM OAK POINT RD	0.18	1.62	660				0.27	0.27	0.06	220	500	0.60	220	500									
OR 2 RA OR 2 RA OR 2 RA OR 2 RA OR 2 RA CONCRETE STR OR 2 241+64																										l	
OR     2     RA       OR     2     RA       OR     2     RA       CONCRETE STR     0R     2       OR     2     241+64	58 INTERCHA		0.10		0.01	1.00	0.050		107	- 10				75.0	0.5.0	0.47	75.0	0.5.0			740	$\vdash$				]	└───┤╿
OR 2 RA OR 2 RA CONCRETE STR OR 2 241+64	RAMP D	EB	0.18	EB EXIT RAMP TO S.R. 58	0.21			930	123	12	0.18	0.18	0.07	750	250	0.43	750	250	41	133	310	4				l	└───┤╿
OR     2     RA       CONCRETE STR     R       OR     2     241+64	RAMP F	EB	0.32	EB ENTRANCE RAMP FROM S.R. 58	0.09		720	705	10.0	70	0.32	0.32	0.03	240	700	0.67	240	700		108	055					ļ	
CONCRETE STR .OR 2 241+64	RAMP E RAMP C	WB	0.16	WB EXIT RAMP TO S.R. 58 WB ENTRANCE RAMP FROM S.R. 58	0.21	0.96	-	765	168	39	0.16	0.16	0.07	820	275	0.39	820	275	56	132	255	4 5	4			ļ	┝──┤╿
OR 2 241+64	TAME L	WB	0.24	WE ENTRANCE RAMF FROM S.R. 50	0.09	1.44	720				0.24	0.24	0.03	240	650	0.51	240	650		108		<u> </u>				ļ	├───┤╿
OR 2 241+64	STRUCTURE I	MARKING	35																			<u>                                      </u>				<del> </del>	┝──┤╿
	1+64 245+16		0.07	STRUCTURE LOR-2-0459 R							-0.07	-0.07	-0.07			-0.20								0.07	0.07	0.07	0.20
	1+64 245+16		0.07	STRUCTURE LOR-2-0459 L							-0.07	-0.07	-0.07			-0.20									0.07	0.07	0.20
OR   2  340+69	0+69 342+24		0.03	STRUCTURE LOR-2-0646 R							-0.03	-0.03				-0.09									0.03	0.03	0.09
OR 2 340+65			+ +	STRUCTURE LOR-2-0646 L								-0.03				-0.09										0.03	
	1+56 393+84			STRUCTURE LOR-2-0742 R								-0.04				-0.13											
	1+56 393+84			STRUCTURE LOR-2-0742 L								-0.04				-0.13											
																										ļ	
																										,)	
																										,l	└───┤╿
																							+			]	]╿
	1	_																				$\left  - \right $	+			]	┝──┤╿
TOTALS TO GI					25 01	60 50	2 11 610	3 75/	720	67	9.82	9.82	8 77	3 870	3 150	28 01	3 870	3 150	240	683	1 250	12 5		0.28	0.28	0.28	

 $\bigcirc$ 

 $\bigcirc$ 

0

LOR-2-3.86

30 37

						621	621	621	PRISMATI	C RETRO	)-REFLEC	TOR TYP	FS		DETAIL	DESCRIPTION
						021	021	021			TWO:		LJ		1	MULTILANE UNDIVIDED TYPICAL SPACING
		1	N			L .			ONE-WAY						2	TAPERED ACCEL. LANE
		į	16/	<pre></pre>		<u> </u>		H		8					3	DECELERATION LANE
<7 >	ΊE		Č.	TIC	<i>AIL</i>	10V		10		107					4	PARALLEL ACCEL LANE
OUNT	ROUTE	+	0 1 A 1 1 UN / 5 L M	EC	DETAIL	PAVEMENT REMOVED		EC		YELL OW		RED	Ш	REMARKS	5	MULTILANE DIVIDED/EXPRESSWAY
Ğ	L.	H L	10	DIRECTION	D	04		REFLECTOR			RED	/ RED	BL UE		6	STOP APPROACH
						RAISED . MARKER	2		WHITE	M		МО ТТЭА			7	2 LANE APPR. WITH TURN LANE
						RA. MA.	RPM	RPM	MH	YELL OW	WHITE	077	UE		8	THROUGH APPROACH
		FROM	TO			EACH	EACH	EACH	EACH	, EI	MH	YEI	BL		9	3 LANE APPR. WITH TURN LANE
															10	3 LANE DIVIDED TO 2 LANE TRANSITION
LOR	2	3.86	4.31	BOTH	5	40	40		40					LANE DIVIDED	11	3 LANE UNDIVIDED TO 2 LANE TRANSITION
LOR	2	4.31	7.68	BOTH	2/3/5	640	640		296		144	200		LANE DIVIDED WITH PARTIAL GORES/RAMPS	12	TWO LANE NARROW BRIDGE
OR	2	7.68	7.97	BOTH	5	29	29		29					LANE DIVIDED	13	TWO WAY LEFT TURN LANE
															14	ONE LANE BRIDGE
RETE BR.	IDGE DECKS ,	AND APPR	OACH SLA	4 <i>BS</i>				16	16						15	HORIZONTAL CURVE
															16	HORIZONTAL CURVE ALT.
															17	STOP APPROACH ALT.
															18	FIRE HYDRANT
															GAP	CENTER LINE AT 80 FT. TYP.
	TOTALS TO (	GENERAL S	SUMMARY			709	709	16								NOTES 1) DO NOT REPLACE RPMS ON CONCRETE BRIDGE DECKS OR APPROACH SLABS. FOR ANY EXISTING RPMS ON CONCRETE BRIDGE DECKS AND APPROACH SLABS, ONLY REPLACE THE RPM REFLECTOR.

0

 $\bigcirc$ 

0

 $\bigcirc$ 

LOR-2-3.86

31 37

### ITEM 632- DETECTOR LOOP. AS PER PLAN

AN ESTIMATED QUANTITY OF ITEM 632, DETECTOR LOOP, AS PER PLAN, HAS BEEN PROVIDED FOR THE PURPOSE OF REPLACING DAMAGED DETECTOR LOOPS AND/OR UPGRADING DETECTOR LOOPS TO IMPROVE MOTORCYCLE DETECTION. IT IS IMPERA-TIVE THAT REPLACEMENT OF DETECTOR LOOPS BE INSTALLED AND FULLY FUNCTIONAL IN THE SHORTEST POSSIBLE TIME. THE CONTRACTOR SHALL HAVE REPLACEMENT DETECTOR LOOPS INSTALLED AND FULLY FUNCTIONAL WITHIN 7 CALENDAR DAYS OF DESTRUCTION OF THE EXISTING DETECTOR LOOPS.

THE CONTRACTOR SHALL NOTIFY THE CITY OF AMHERST 5 WORKING DAYS IN ADVANCE OF ANY PLANING OPERATIONS OR PAVEMENT REPAIR WORK THAT WILL DAMAGE DETECTOR LOOP INSTALLATIONS. THIS NOTIFICATION IS NEEDED FOR THE CITY TO SCHEDULE TEMPORARY SIGNAL TIMING MODIFICATIONS FOR THE TIME PERIOD WHEN THE DETECTOR LOOPS ARE OUT OF OPERATION. THE CONTRACTOR SHALL THEN RENOTIFY THE CITY OF AMHERST WITHIN 2 WORKING DAYS AFTER THE DAMAGED DETECTOR LOOPS ARE REPLACED SO THAT HE CAN RESCHEDULE CREWS TO RESTORE SIGNAL TIMINGS TO THE ORIGINAL SETTINGS.

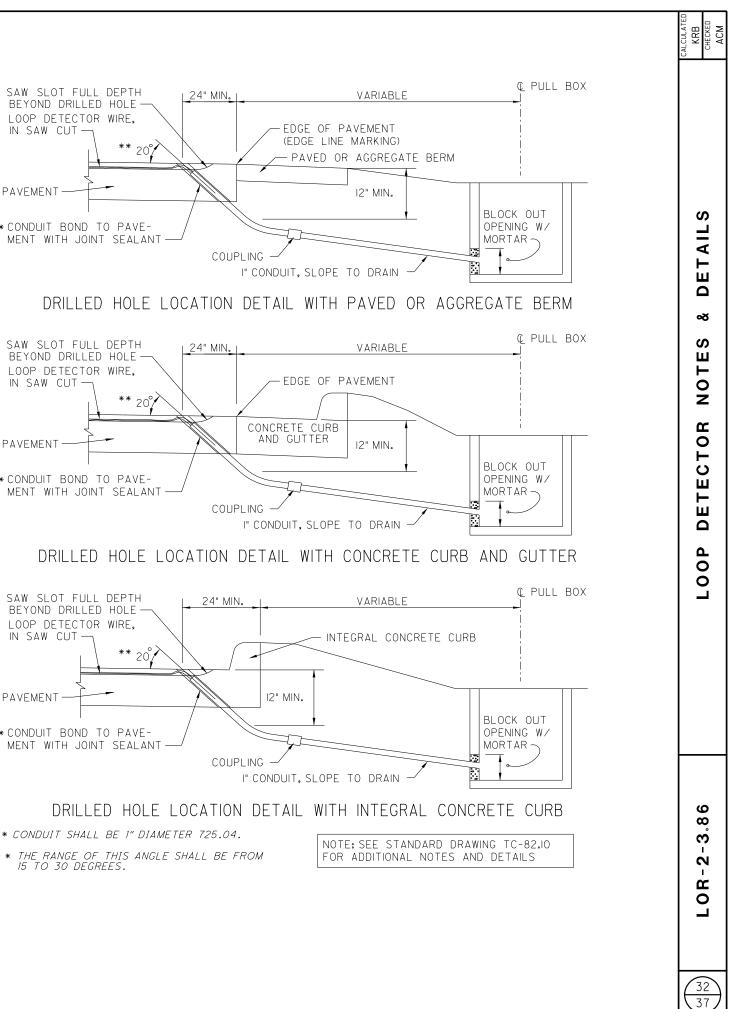
FAILURE TO COMPLY WITH THE ABOVE STATED REQUIREMENTS WILL RESULT IN THE ASSESSMENT OF A DISINCENTIVE FEE OF \$500.00 PER DAY TO THE CONTRACTOR FOR EACH CALENDAR DAY BEYOND THE SPECIFIED LIMIT.

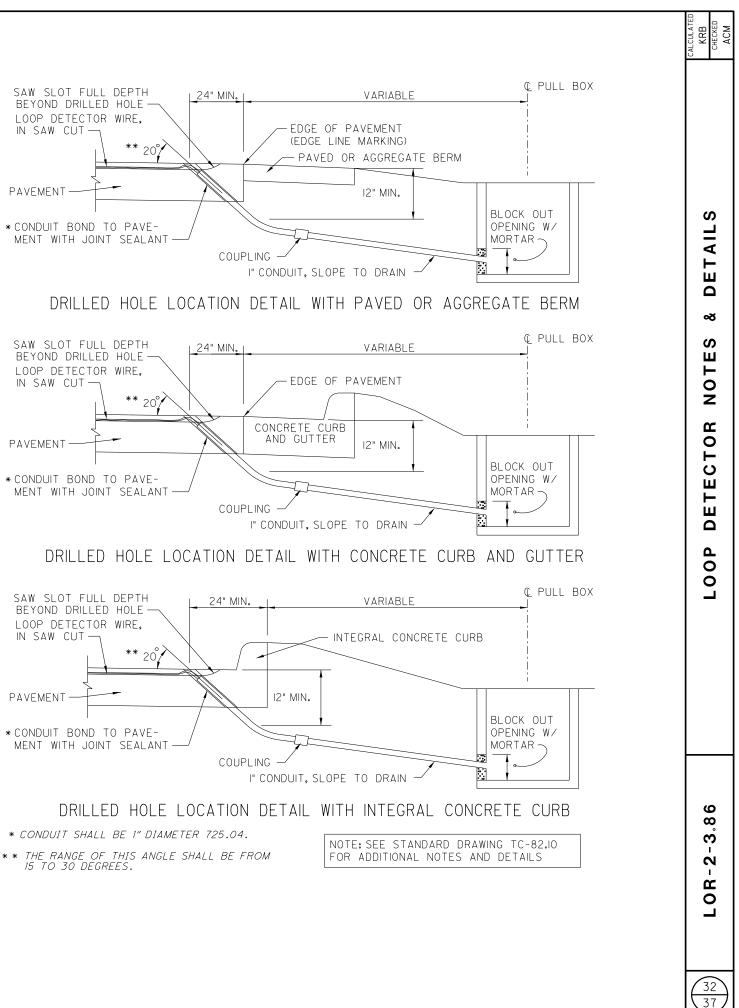
THE NEW DETECTOR LOOPS SHALL BE PLACED AFTER THE PLANING AND PAVEMENT REPAIR OPERATIONS ARE COMPLETED WITHIN THE AFFECTED AREAS. THE DETECTOR LOOPS SHALL NOT BE CUT INTO THE SURFACE COURSE.

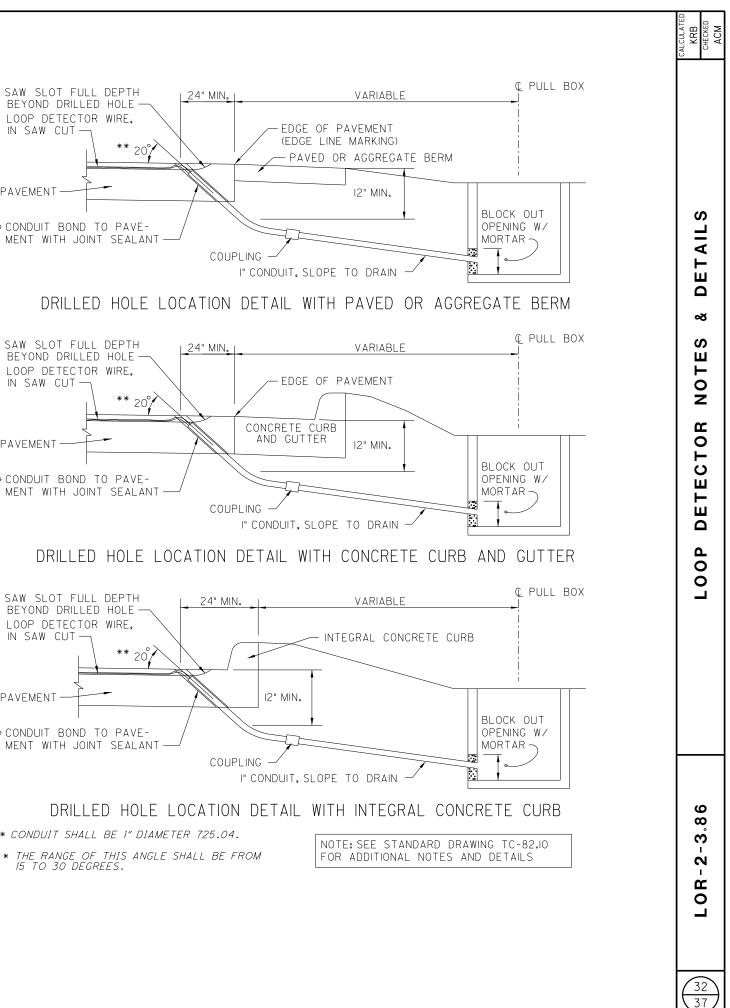
IN ADDITION TO THE REQUIREMENTS OF CMS 632.11, THE CONTRACTOR SHALL PROVIDE A POSITIVE AND EFFECTIVE MEANS FOR REMOVAL OF SOLID RESIDUE RESULTING FROM THE DRY SAW BLADE CUTTING OF LOOP DETECTOR SLOTS IN THE PAVEMENT. THE RESIDUE SHALL BE REMOVED BY VACUUM OR OTHER EFFECTIVE MEANS, BEFORE IT IS BLOWN BY TRAFFIC ACTION OR WIND. RESIDUE FROM DRY CUTTING SHALL NOT BE REMOVED BY COMPRESSED AIR. AS AN ALTERNATE. THE CONTRACTOR MAY USE WET CUTTING.

LOOP DETECTOR WIRE TO LEAD-IN CABLE SPLICES WITHIN EPOXY ENCAPSULATED SPLICE ENCLOSURES SHALL BE JOINED BY AN APPROVED CONNECTOR AND SOLDERED PER CMS 632.23 & 725.15. THE CONNECTOR KIT USED SHALL BE UNFUSED CONFORMING TO 725.15E. IN ADDITION, THE CONNECTOR KIT SHALL HAVE TWO (2) FILL OPENINGS AND THE SPLICE ENCLOSURE SHALL BE A CLEAR TRANSPARENT MATERIAL. THE EPOXY SHALL BE NON-SHRINKING. ALL COSTS ASSOCIATED WITH THIS CONNECTION SHALL BE INCLUDED WITH THIS PAY ITEM.

IF THE PULL BOX IS NOT SPECIFIED IN THE PLANS, THE SPLICE SHALL BE MADE IN THE FIRST ENTERED POLE OR PEDESTAL, EXCEPT WHERE THE CONTROLLER CABINET IS MOUNTED ON THE POLE OR PEDESTAL, IN WHICH CASE THE LOOP WIRES SHALL BE ROUTED DIRECTLY INTO THE CABINET UNLESS SPECIFIED DIFFERENTLY IN THE PLANS. LOOP DETECTOR WIRE ROUTED THROUGH CONDUIT, PULL BOXES, POLES, AND PEDESTALS SHALL BE TWISTED PER CMS 632.23.


FURNISH ALL MATERIALS ACCORDING TO THE DEPARTMENT'S QUALIFIED PRODUCTS LIST (QPL).


SEE DETAILS ON THIS SHEET FOR ADDITIONAL REQUIREMENTS.


PAYMENT FOR ALL OF THE ABOVE SHALL BE INCLUDED IN THE UNIT PRICE BID PER EACH FOR ITEM 632. DETECTOR LOOP. AS PER PLAN.

SR 2 & SR 58 INTERCHANGE:	
RAMP D	3 EACH
RAMP E	4 EACH

ITEM 632 DETECTOR LOOP, AS PER PLAN 7 EACH







 $\bigcirc$ 

 $\bigcirc$ 

				STRUCTURE DESCRIPTION & QUANTITY					
				LOR-2-0459 (L)	LOR-2-0459 (R)	LOR-2-0646 (L)	LOR-2-0646 (R)	LOR-2-0742 (L)	LOR-2-0742 (R)
				SFN: 4700031	SFN: 4700066	SFN: 4700090	SFN: 4700120	SFN: 4700279	SFN: 4700309
				OVER NORFOLK SOUTHERN RR AND T.R. 178	OVER NORFOLK SOUTHERN RR AND T.R. 178	OVER BEAVER CREEK	OVER BEAVER CREEK	OVER S.R. 58	OVER S.R. 58
ITEM	ITEM DESCRIPTION	TOTAL	UNIT						
202	CURB REMOVED	10	FT				10		
202	REMOVAL MISC.: JOINT SEALER	504	FT	94	94	80	80	78	78
409	SAWING AND SEALING ASPHALT CONCRETE PAVEMENT JOINTS	496	FT	94	94	76	76	78	78
512	SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)	1918	SY	414	409	206	206	342	341
512	TREATING CONCRETE BRIDGE DECKS WITH GRAVITY FED RESIN	6174	SY	1483	1465	659	659	954	954
512	REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES	1755	SY	414	409	206	206	179	341
512	REMOVAL OF EXISTING PAVEMENT MARKING	4416	FT	1062	1050	468	468	684	684
516	JOINT SEALER	504	FT	94	94	80	80	78	78
519	PATCHING CONCRETE STRUCTURE	240	SF			130	110		
SPECIAL	PATCHING CONCRETE BRIDGE DECK, TYPE B OR C	18	SY	2	1	1	1	5	8
609	CURB, TYPE 2-A	10	FT				10		

 $\bigcirc$ 

 $\bigcirc$ 

SUB-SUMMARY STRUCTURE

ALCULAT KRB CHECKED ACM

LOR-2-3.86

33 37

#### EXISTING STRUCTURE VERIFICATION

DETAILS AND DIMENSIONS SHOWN ON THESE PLANS PERTAINING TO THE EXISTING STRUCTURES HAVE BEEN OBTAINED FROM PLANS OF THE EXISTING STRUCTURES AND FROM FIELD OBSERVATIONS AND MEASUREMENTS. CONSEQUENTLY, THEY ARE INDICATIVE OF THE EXISTING STRUCTURES AND THE PROPOSED WORK BUT THEY SHALL BE CONSIDERED TENTATIVE AND APPROXIMATE. THE CONTRACTOR IS REFERRED TO CMS SECTIONS 102.05 AND 105.02.

BASE CONTRACT BID PRICES UPON A RECOGNITION OF THE UNCERTAINTIES DESCRIBED ABOVE AND UPON A PREBID EXAMINATION OF THE EXISTING STRUCTURES. HOWEVER, THE DEPARTMENT WILL PAY FOR ALL PROJECT WORK BASED UPON ACTUAL DETAILS AND DIMENSIONS WHICH HAVE BEEN VERIFIED IN THE FIELD.

#### <u>UTILITIES</u>

THERE ARE NO UNDERGROUND UTILITIES SHOWN ON THIS PLAN. THE NATURE OF THE WORK REQUIRED BY THIS PROJECT WILL NOT AFFECT ANY KNOWN UNDERGROUND UTILITIES THAT EXIST UNDER OR ADJACENT TO THE WORK AREA.

#### ROUTINE MAINTENANCE

BETWEEN THE TIME THAT BIDS ARE TAKEN AND THE START OF CONSTRUCTION, THE MAINTAINING AGENCY MAY ENTER UPON THE PROJECT AND PERFORM ROUTINE MAINTENANCE SUCH AS CRACK SEALING, PATCHING AND OTHER REPAIRS. THE EFFECTS, IF ANY, OF THE PERFORMACE OF ROUTINE MAINTENANCE SHALL BE CONSIDERED AS INHERINT IN WORK OF THE CHARACTER PROVIDED FOR IN THE PLAN AND THE RESULTING CONDITIONS SHALL NOT BE CONSIDERED AS DIFFERING MATERIALLY FROM THOSE EXISTING AT THE TIME BIDS WERE TAKEN.

#### EXISTING PLANS

THE FOLLOWING EXISTING PLANS MAY BE INSPECTED IN THE ODOT DISTRICT 3 OFFICE IN ASHLAND, OHIO:

STRUCTURE NAME:	EXISTING PLAN NAME:	DA TE:
LOR-2-0459 L&R	LOR-2-3.50	1994
LOR-2-0586	LOR-2-5.86	1976
LOR-2-0646 L&R	LOR-2-3.50	1994
LOR-2-0649	LOR-254-0.00-B	1964
LOR-2-0699	LOR-254-0.00-B	1964
LOR-2-0742 L&R	LOR-254-0.00-B	1964
LOR-2-0761	LOR-254-0.00-B	1964

### **DESIGN SPECIFICATIONS**

DESIGN SPECIFICATIONS: THIS STRUCTURE CONFORMS TO THE 8TH EDITION OF THE "LRFD BRIDGE DESIGN SPECIFICATIONS" ADOPTED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, 2017, AND THE ODOT BRIDGE DESIGN MANUAL, 2020.

#### DECK PROTECTION METHOD

TREATING CONCRETE BRIDGE DECKS WITH GRAVITY FED RESIN

### <u>PLACING ASPHALT CONCRETE FEATHERING ON</u> <u>APPROACHES TO BRIDGES</u>

SPECIAL CARE SHALL BE TAKEN, WHEN PLACING THE ASPHALT CONCRETE BUTT JOINT TO CREATE A SMOOTH TRANSITION FROM THE EXISTING APPROACH PAVEMENT TO THE BRIDGE DECK OR APPROACH SLAB. THE CONTRACTOR'S ATTENTION IS CALLED TO STANDARD DRAWING BP-3.1 FOR REQUIRED TOLERANCES.

#### IN-STREAM WORK RESTRICTION

THE CONTRACTOR SHALL TAKE ALL PRECAUTIONS TO AVOID CONSTRUCTION IN AND/OR LIMIT DEMOLITION DEBRIS FROM ENTERING STREAMS OR WETLANDS. ANY MATERIAL THAT DOES FALL INTO STREAMS OR WETLANDS SHALL BE REMOVED AS SOON AS POSSIBLE.

ALL PROJECTS INVOLVING JURISDICTIONAL WATERS OF THE UNITED STATES (STREAMS, RIVERS, NON-ISOLATED WETLANDS) AND/OR ISOLATED WETLANDS ARE SUBJECT TO REGULATION UNDER SECTIONS 404 AND 401 OF THE CLEAN WATER ACT, AND POSSIBLY OHIO EPA ISOLATED WETLAND LAW. IT IS ANTICIPATED THAT NO IN-STREAM WORK, OR WORK UNDER THE STREAM'S ORDINARY HIGH WATER MARK (OHWM) WILL BE NEEDED. THEREFORE NO WATERWAY PERMITS HAVE BEEN GRANTED AND NO IN-STREAM WORK IS ALLOWED.

SHOULD WORK (EITHER TEMPORARY OR PERMANENT) IN THE STREAM BE NEEDED; IT WILL REQUIRE A PERMIT AND AUTHORIZATION BY THE UNITED STATES ARMY CORPS OF ENGINEERS (USACE). THE CONTRACTOR SHALL NOT UTILIZE FILLS BELOW OHWM UNTIL SUCH ACTIVITY IS AUTHORIZED BY THE USACE. DETAILS OF THIS REQUIREMENT ARE DESCRIBED IN ODOT'S SUPPLEMENTAL SPECIFICATION 832.09.

USACE DEFINITION OF OHWM - THE ORDINARY HIGH WATER MARK IS THE LINE ON THE SHORES ESTABLISHED BY THE FLUCTUATIONS OF WATER AND INDICATED BY PHYSICAL CHARACTERISTICS SUCH AS A CLEAR, NATURAL LINE IMPRESSED ON THE BANK; SHELVING; CHANGES IN THE CHARACTER OF THE SOIL; DESTRUCTION OF TERRESTRIAL VEGETATION; THE PRESENCE OF LITTER AND DEBRIS; OR THE APPROPRIATE MEANS THAT CONSIDER THE CHARACTERISTICS OF THE SURROUNDING AREAS.

#### ITEM 202 - REMOVAL MISC.: JOINT SEALER

THIS ITEM SHALL BE USED TO REMOVE THE EXISTING JOINT SEALER LOCATED BETWEEN THE APPROACH SLAB AND THE DECK OR BACKWALL.

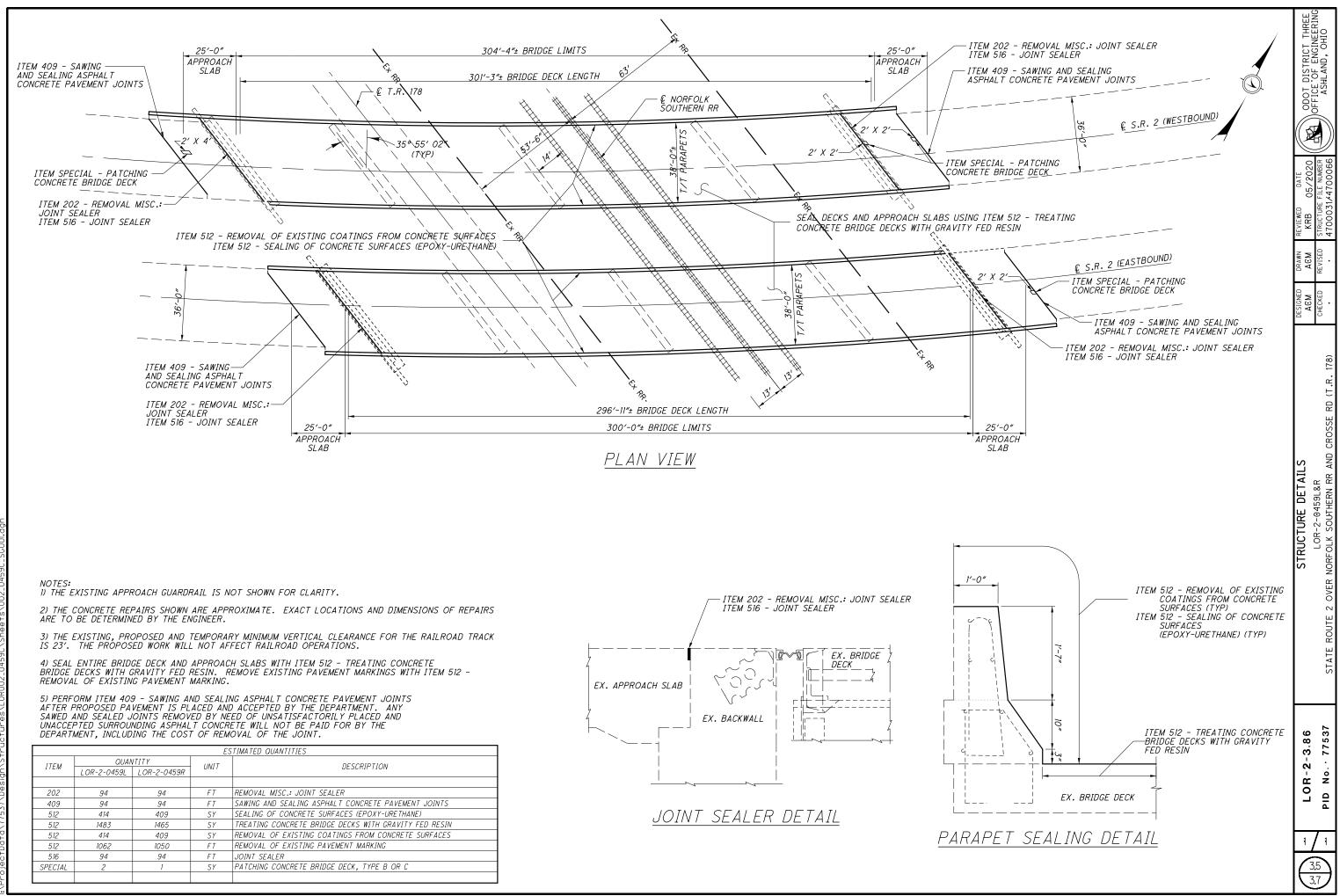
PAYMENT FOR ALL OF THE ABOVE SHALL BE AT THE UNIT PRICE BID PER FOOT FOR THE ABOVE ITEM, WHICH WILL INCLUDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS NECESSARY TO COMPLETE THE ABOVE WORK.

#### ITEM SPECIAL - PATCHING CONCRETE BRIDGE DECK, TYPE B OR C

USE THIS ITEM AT THE LOCATIONS INDICATED IN THE PLANS. QUANTITIES SHOWN IN THE PLANS ARE FOR ESTIMATING PURPOSES ONLY. EXACT DIMENSIONS AND LOCATIONS OF REPAIRS SHALL BE DETERMINED BY THE ENGINEER.

SEE PROPOSAL NOTE 512 FOR ADDITIONAL DETAILS.

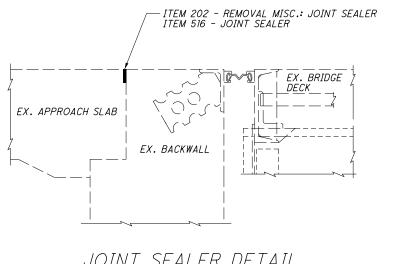
PAYMENT FOR ALL THE ABOVE ITEMS WILL BE MADE AT THE UNIT BID PRICE PER SQUARE YARD AND IS TO INCLUDE ALL LABOR, EQUIPMENT, MATERIALS, AND INCIDENTALS NEEDED TO COMPLETE THE ABOVE WORK.

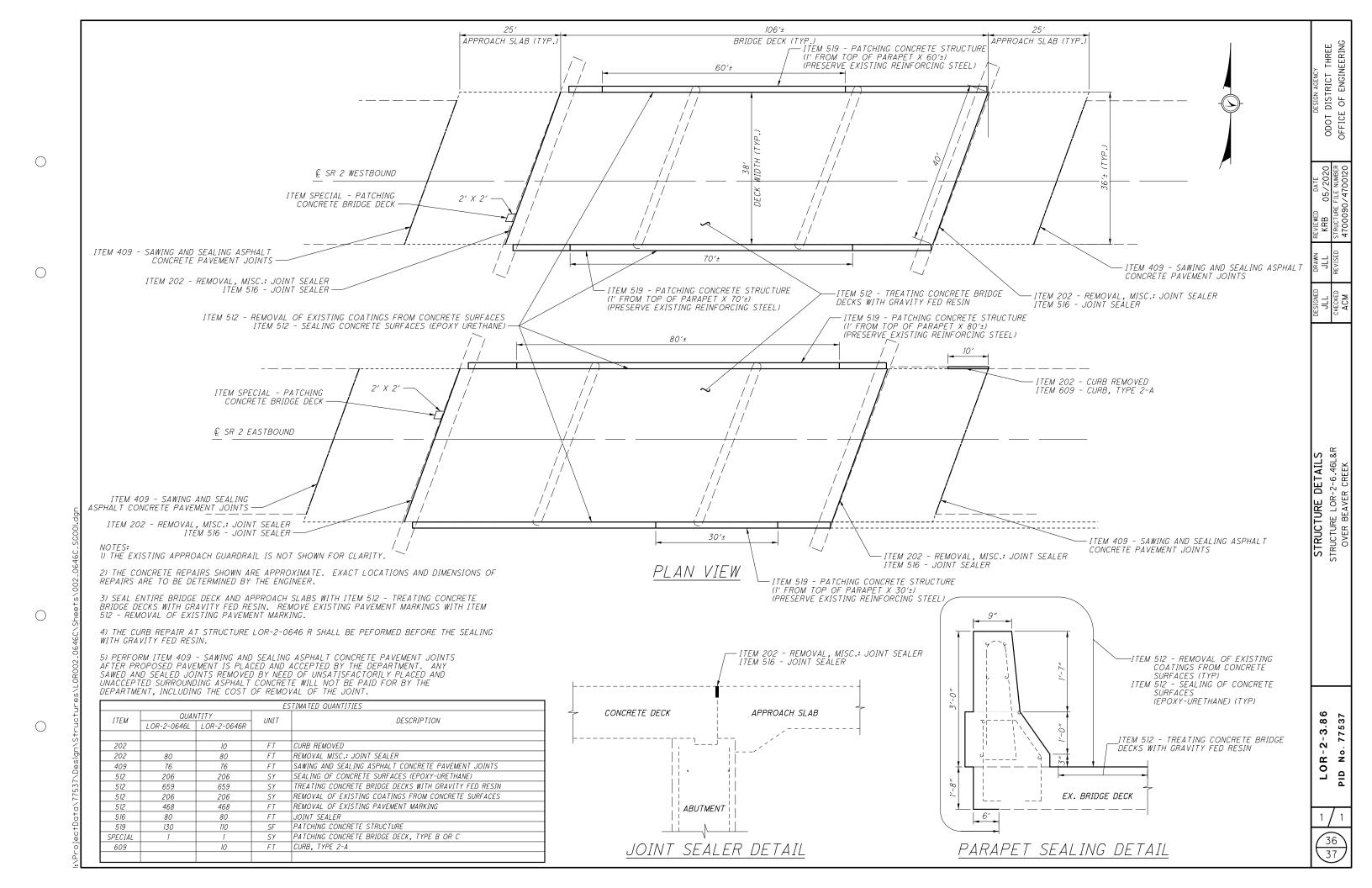

#### ITEM 409 - SAWING AND SEALING ASPHALT CONCRETE PAVEMENT JOINTS

THIS ITEM SHALL BE USED AT LOCATIONS INDICATED IN THE PLAN AND CONSISTS OF SAW CUTTING AND SEALING THE FINISHED SURFACE OF THE ASPHALT CONCRETE PAVEMENT.

PAYMENT FOR ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS NECESSARY TO COMPLETE THE ABOVE WORK SHALL BE INCLUDED IN THE UNIT PRICE BID FOR THE ABOVE ITEM.

 $\bigcirc$ 


CALCULATED KRB CHECKED ACM
TES
STRUCTURE NOTES
STRU
LOR-2-3.86
<b>P</b>




 $\bigcirc$ 

 $\bigcirc$ 

ITEM	QUANTITY			2502207101	
	LOR-2-0459L	LOR-2-0459R	UNIT	DESCRIPTION	
202	94	94	FT	REMOVAL MISC.: JOINT SEALER	
409	94	94	FT	SAWING AND SEALING ASPHALT CONCRETE PAVEMENT JOINTS	
512	414	409	SY	SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)	
512	1483	1465	SY	TREATING CONCRETE BRIDGE DECKS WITH GRAVITY FED RESIN	
512	414	409	SY	REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES	
512	1062	1050	FT	REMOVAL OF EXISTING PAVEMENT MARKING	
516	94	94	FT	JOINT SEALER	
SPECIAL	2	1	SY	PATCHING CONCRETE BRIDGE DECK, TYPE B OR C	





 $\bigcirc$ 

(TYP.) 175′± BRIDGE DECK LENGTH (TYP.) ITEM 512 - SEALING CONCRETE SURFACES (EPOXY URETHANE)-ITEM SPECIAL - PATCHING CONCRETE BRIDGE DECK-17′# ______2' × 2' 4' × 4'  $-4' \times 4'$  $-4' \times 2'$ ITEM 409 - SAWING AND SEALING ASPHALT 78% CONCRETE PAVEMENT JOINTS-ITEM 202 - REMOVAL. MISC.: JOINT SEALER ITEM 516 - JOINT SEALER ITEM 512 - TREATING CONCRETE BRIDGE ITEM 512 - REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES ITEM 512 - SEALING CONCRETE SURFACES (EPOXY URETHANE) /ITEM SPECIAL - PATCHING -CONCRETE BRIDGE DECK DECKS WITH GRAVITY FED RESIN - 1' 6' x 2 £62 2' x  $-4' \times 4$ ITEM 409 - SAWING AND SEALING ASPHALT 18′# CONCRETE PAVEMENT JOINTS /ITEM SPECIAL - PATCHING CONCRETE BRIDGE DECK ITEM SPECIAL - PATCHING CONCRETE BRIDGE DECK-ITEM 202 - REMOVAL, MISC.: JOINT SEALER ITEM 516 - JOINT SEALER PLAN VIEW

25'

APPROACH SLAB

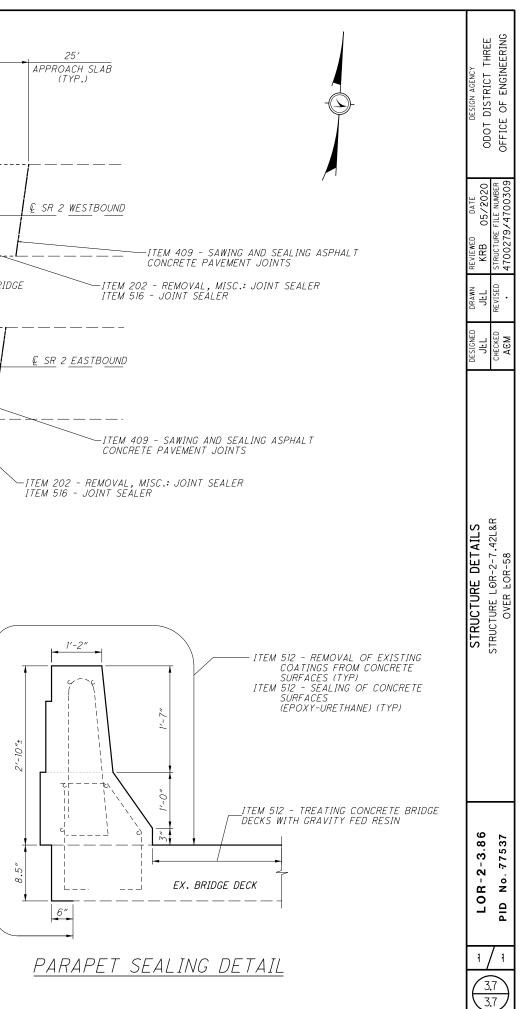
NOTES: I) THE EXISTING APPROACH GUARDRAIL IS NOT SHOWN FOR CLARITY.

2) THE CONCRETE REPAIRS SHOWN ARE APPROXIMATE. EXACT LOCATIONS AND DIMENSIONS OF REPAIRS ARE TO BE DETERMINED BY THE ENGINEER.

3.) # SUSPEND AND RESUME PARAPET SEALING AT OVERHEAD SIGN.

4.) SEAL ENTIRE BRIDGE DECK AND APPROACH SLABS WITH ITEM 512 - TREATING CONCRETE BRIDGE DECKS WITH GRAVITY FED RESIN. REMOVE EXISTING PAVEMENT MARKINGS WITH ITEM 512 - REMOVAL OF EXISTING PAVEMENT MARKING.

5.) PERFORM ITEM 409 - SAWING AND SEALING ASPHALT CONCRETE PAVEMENT JOINTS AFTER PROPOSED PAVEMENT IS PLACED AND SCALING ASPHALT CONCEPTE PAVEMENT JOIN. AFTER PROPOSED PAVEMENT IS PLACED AND ACCEPTED BY THE DEPARTMENT. ANY SAWED AND SEALED JOINTS REMOVED BY NEED OF UNSATISFACTORILY PLACED AND UNACCEPTED SURROUNDING ASPHALT CONCRETE WILL NOT BE PAID FOR BY THE DEPARTMENT, INCLUDING THE COST OF REMOVAL OF THE JOINT.


	ESTIMATED QUANTITIES					
ІТЕМ	QUANTITY		UNIT	DESCRIPTION		
ITEM	LOR-2-0742L	LOR-2-0742R	UNIT	DESCRIFTION		
202	78	78	FT	REMOVAL MISC.: JOINT SEALER		
409	78	78	FT	SAWING AND SEALING ASPHALT CONCRETE PAVEMENT JOINTS		
512	342	341	SY	SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)		
512	954	954	SY	TREATING CONCRETE BRIDGE DECKS WITH GRAVITY FED RESIN		
512	179	341	SY	REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES		
512	684	684	FT	REMOVAL OF EXISTING PAVEMENT MARKING		
516	78	78	FT	JOINT SEALER		
SPECIAL	5	8	SY	PATCHING CONCRETE BRIDGE DECK, TYPE B OR C		

ITEM 202 - REMOVAL MISC.: JOINT SEALER ITEM 516 - JOINT SEALER EX. BRIDGE DECK 10 EX. APPROACH SLAB EX. BACKWALL

177′-6″±

BRIDGE LIMITS (TYP.)

JOINT SEALER DETAIL



 $\bigcirc$