

CONVENTIONAL SIGNS

ity Line	Limited Access（only）
Township Lin	Right of Moy（only）－RW
	Limited Access \＆Right of Way－LA \＆RW
Center Line	Property Line R U Uin existla
Trees \mathfrak{W} ，Stumps 凩，（to be removed）\％	Roiliroad
Utility Poles：Telerihone $\bar{\phi}$ ，Power $\dot{\phi}$ Light	Guordraillexisting）－－－（proposed）

INDEX OF SHEETS

Sian chossouct detill
Shrp paveneett ripan
COOCRETE SHOULOER DETIT
Protection detal
EXISTING PAVEMENT BUILDUP TABLE ．．．．．． 115UNDERDRAIN OUTLET DETAIL ．．．．．．．．．．．．． 16

LINE DATA．

station				$\frac{\text { LENGTH }}{\text { LIM. FI. }}$
Begin	Resume	Suspend	End	
$1835+10.00$		14＋60．00		1779.49
	51＋03．25	$90+23.00$		3999．75．
	$98+00.00$	99＋82．00		182.00
	14482.00	$126+16.00$		1134.00
	$138+92.00$	$141+13.00$	．	22.00
	$153+12.00$	$167+20.00$		1408.00
	$174+73.00$	177＋60．21		287.21
	$180+00.00$		$181+46.00$	146.00
tol Net		＋＝	7.45 LIn	1719

Begin Work $=$ Station $1816+66.00$
End Work $=$ Stotion $216+80.00$
S．R． 2 Net Length of Work $=23,855.45 \mathrm{Lin}$ Ft．or 4.518 Mlles

SIIE ROADS
West River Rd．
Vie millon Rd
Ver millon Rd．
Vermilion
Sumper
Sunyside Rd．
Sunninside Rd．
Clous hoood
Bumbhort

roject ERI／LOR－2－30．51／0．00
Dote of Letting 19 ．Controct No．

VERMILIDN TOWNSHIP

BROWNHELM TOWNSHIP

ERIE AND LDRAIN COUNTIES
LIMITED ACCESS

UNDERGROUND UTILITIES
BEFORE YOU DIG Coll．．．800－362－2764（Toll free）
OHIO UTLLTIES PROTECTION SERVICE MUST BEN CALLED DIRECTLY

LOCATION MAP
SCALE \mathbb{N} MILES
Portion to be Improved
Stote \＆Federol Route

Profiles：－－－－－－－－－Horizontat

Profiles：－－－－Horizontol

TYPICAL SECTIDNS

TYPE 451 ロN 3ロ4

E median width varies from 60° at STA. $143+71.32$ \& S.R. 2 TO 40' AT STA. $157+46.66$. \& S.R. 2. MEDIAN WIDTH REMAINS
A CONSTANT 40^{\prime} (20' Lt. \& Rt. of $£$) FROM STA. $157+46.66$, \& A CONSTANT 40' (20' LT. \& Rt. of q)
S.R. 2 TO STA. $185+50.00$ \& S.R. 2 .
(1) ITEM 451-10" Reinforced Concrete Povement, As Per Pion (See Sheet No. 12
(2) $4^{\prime \prime}$ Base (See Chart Belowl
(2) ${ }^{(3)}$ Base (See Chort Below)
(3) ITEM 408 - Bituminous Prime Coat, Applied at a Rate of 0.40 Gal/s.Y. Where Indicated Below
(4) ITEM 203-Subgrade Compoction
(5) ITEM 304- $6^{\prime \prime}$ Aggregote Base, As Per Plan (See Sheet No. III
(6) ITEM 605-4" Shollow Pipe Underdroin 707.15, As Per' Plan ISee Sheet No. 116
(7) ITEM 65 - Seeding And Mulching (See General Notes Sheet No. 101
(8) ITEM 304 - Aggregote Bose, As Per Plan (Varioble Depth os Shown) (See ITEM 304 Above)
(9) ITEM 451-9"Reinforced Concrete Povement. As Per Plon (See ITEM 451 Above)
(10) Not Used.
(1) iTEM 304-10" Aggregote Base, As Per PIon (See ITEM 304 Abovel
(12) ITEM 452 - Ploin Concrete Povement (Voriable Depth os Shown), As Per Plan (See Sheet No. 12)
(13) ITEM 452-9" Plain Concrete Pavement, As Per Plon (See ITEM 452 Above)
(14) ITEM 605-4" Shollow Pipe Underdroin, 707.I7. ASTM 3034 SDR 35, SS931 or SS944, Perforated as per 707.15
(15) ITEM 606 -Guordrail, Type 5
(AA) Existing Povement, See Toble Sheet No. 115
Existing Base or Subbose, See Toble Sheet No. IIS
(C) Existing Shoulder. See Toble Sheet No. 115
WESTBOUND LANES :
${ }^{*}$ STA. $1835+10.00$ TO STA. $14+60.00=1779.49$ L.F.
ESTA. EO. $1838+29.49$ BK. - STA. $0+00.00$ AHD

* STA. $56+06.25$ TO STA. $90+23.00$ - 3416.75 L.

STA. 99400.00 TO STA. $99+82.00 \quad-182$ L.F.

© STA. $174+73.00$ TO STA. $175+51.71$ - 78.71 L.F
eastbound lanes

* STA. $119+21.00$ TO STA. $126+16.00$ - 695 L.F. \otimes STA. $153+12.00$ TO STA. $167+0200-1408$ L.F.
STA. $180+00000$ TO STA $181+46.00$ - 146 L.F.
STA. $180+00.00$ TO STA $181+46.00=146$ L.F..
For Outside Berm, See Detaiil A; For Inside Berm, See Detail B.
* For Outside Berm. See Detail A; For Inside Berm, See Detail C.

NOTE:
Where ITEM 408 - Bituminous Prime coot is to be opplied. the controctor shall exercise car
to insure that the prime coot is not placed over the widt of the underdroin trench.

DETAIL C

The controctor moy use "Drop-lin" Anchors, Flush type whic conform to Federal Specificictions $F F-5-325$. Group VIII. type
externolly threaded.
stud type Exponsion Bolt Anchors whic exienomy mreoded. Stud typetexponsion Boit Anchors whe
conform to Federal Specificaction FF-S-325, Group II. Spacing Shall be $30^{" M}$ Maximum, center to center. Self Drilling Anchors will not be permitted.

Station		SIDE	LENGTH	(2) 4" Bose	TTEN 408BituminousPrime Cootto be Applied
From	T0				
$1835+10.00$	5+00.00	W.8.	819.49	ITEM 310 - Subbose, As Per PLon	
5+00.00	$14+60.00$	W.B.	960.00	ITEM SPECIAL - Non-Stabilized Drainage Base Type 'IA'	x
$56+06.25$	64+60.00	W.8.	853.75	ITEM 304 - Aggregote Base, As Per Plon	
64+60.00	73+14.00	W.8.	854.00	ITEM SPECIAL - Non-Stabilized drainoge Base Type 'NJ'	x
$73+4.00$	$81+68.00$	w.B.	854.00	ITEM SPECIAL - Asphalt Treated Free Droining Base	x
$81+68.00$	90+23.00	w.B.	855.00	ITEM SPECIAL - Cement Treated Free Droining Bose	χ
98+00.00	99+82.00	W.B.	182.00	ITEM 304 - Aggregote Base, As Per Plan	
$114+82.00$	123+26.00	W.B.	844.00	ITEM 304-Aggregate Base, As Per Plan	
$138+92.00$	$141+13.00$	W.B.	221.00	ITEM 304 - Aggregote Base, As Per Plan	
$174+73.00$	$175+51.71$	w.8.	78.71	ITEM 304 - Aggregate Bose, As Per Plan	
119+21.00	$126+16.00$	E.B.	695.00	ITEM 304-Aggregote Base, As Per Plon	
$153+12.00$	$167+20.00$	E.8.	1408.00	ITEM 304-Aggregote Base, As Per Plon	
$\frac{180+00.00}{\text { Sto. Equot }}$	18ion-186.00		146.00 $8 K=0$	ITEM 304-Aggregate Base, As Per Plan	

ation $-1838+29.49 \mathrm{BK}=0+00 \mathrm{AH}$

DETAIL B

NOTE:
GUAROALL DETAIL
APPLIES EITHER SIDE APPLIES EITHER SIDE
SEE PLAN AND PROFILL SEE PLAN AND PROFILE
SHETS FOR ADOITIONA
INFORMATION.

NOTE:
SEE SHEET NOS. IIT THROUGH $135 A$
FOR UNOERDRAIN LOCATIONS.

en

TYPICAL SECTIDNS

TYPE 451 ON 3ロ4

Median width varies from 60^{\prime} at STA. $143+77.32$, \& S.R. TO 40' AT STA. $157+46.66$. \& S.R. 2. MEDIAN WIDTH REMAINS
A CONSTANT 40'
(20' Lt. \& Rt. of $\&$) FROM STA. $157+46.66$. A CONSTANT $40^{\prime}\left(20^{\prime}\right.$ Lt. \& Rt. of $Q 1$. 2 TO STA. $185+50.00$. \& S.R. 2 .

(1) ITEM' 451-10" Reinforced Concrete Pavement, As Per Plon (See Sheet No. 12
(2) $4^{\prime \prime}$ Base (See Sheet No. 3)
(3) ITEM 408 - Bituminous Prime Coot, Applied at a Rate of 0.40 Gal/S.Y. Where Indicated Below
(4) ITEM 203-Subgrade Compoctio
(5) ITEM. 304-6" Aggregate Bose, As Per Plan ISee Sheet No. III
(6) ITEM 605-4" Shollow Pipe Underdrain 707.15, As Per Plan (See Sheet No. II6)
(7) ITEM 659-Seeding And Mulching (See General Notes̊ Sheet No. 10)
(8) ITEM 304 - Aggregate Base, As Per Plan (Variable Depth as Shown) (See ITEM 304 Above)
(9) ITEM 451-9" Reinforceed Concrete Povement, As Per Plan (See ITEM 451 ADove)
(10) Not Used
(11) ITEM 304-10" Aggregate Base, as Per Plan (See ITEM 304 above)
(12) ITEM 452 - Plain Concrete Povement (Variable Depth os Shown), As Per Plan (See Sheet No. 12)
(13) ITEM 452-9" Plain Concrete Povement, As Per Plan (See ITEM 452 Above)
(14) ITEM 605-4" Shollow Pipe Underdrain, 707.17, ASTM 3034 SDR 35, SS931, or SS944, Perforated os per 707.15
(15) ITEM 606-Guordrail, Type 5
A) Existing Povement, See Toble Sheet No. $1 / 5$

Existing Bose or Subbose, See Table Sheet No. 115
(C): Existing Shoulder, See Toble Sheet No. 115

TOTAL $=28,362.95$ L.F.
note:
(STA. $51+28.25$ TO STA. $55+81.25-$ LOR-2-0097 $L \& R$ R)
expansion anchors
The controctor moy use "Orop-In" Anchors." F/ush type which conform to Federal Specifications FF-S-325, Group vill. type I or
externally threaded. Stud type Exponsion Bolt Anchors which conform to Federal Specification FF - -3 - 325 , Grounh 1 S shich Shall be 30" Maximum, center to center. Self Drilling Anchors sill not be permitted.

TYPICAL SECTIDNS

OHIO

10 | S.B. |
| :--- |
| Sig: |

(1) ITEM 451-10" Reinforced Concrete Pavement, as Per Plon (See Sheet No. 12) (2) $4^{\prime \prime}$ Base (See Sheet No. 3)
(3) ITEM 408-Bituminous Prime Coat, Applied of a Rate of 0.40 Gal/S.Y. Where Indicated Below (4) ITEM 203-Subgrade Compoction
(5) ITEM 304- $6^{\prime \prime}$ Aggregote Bose, As Per Plon (See Sheet No. II)
(6) ITEM 605-4" Shallow Pipe Underdrain 707.15, As Per Plan (See Sheet No. 116)
(7) ITEM 659 - Seeding And Mulching (See General Notes Sheet No. 101
(8) ITEM 304-Aggregate Bose, As Per Plan (Variable Depth as Shown) (See ITEM 304 Above)
(9) ITEM 451-9" Reinforced Concrete Povement, As Per Plon (See ITEM 451 Above)
(10) Not Used
(11) ITEM 304-i0" Aggregate Bose, As Per Plan (See ITEM 304 Above)
(12) ITEM 452 - Plain Concrete Povement (Varioble Depth as Shown), As Per Plan (See Sheet No. 12)
(13). ITEM 452-9" Plain Concrete Povement, As Per Pian (See ITEM 452 Above)
(14) ITEM 605-4" Shallow Pipe Underdroin, 707.I7, ASTM 3034 SOR 35.

SS931, or SS944, Perforated as per 707.15 (See Details this sheet)
(5) ITEM 606 - Guardrail, Type 5
A.) Existing Povement, See Toble Sheet No. 115
(6). Existing Bose or Subbose, See Toble Sheet No. 115
C) Existing Shoulder, See Toble Sheet No. 115

$a-$ Vories $0^{\prime}+$ to 3^{\prime} $b-$ Vories $1 / 2^{\prime \prime}$ fft.

c-1/8"/Ft. Slope
o - Povement Slope
e - Varies $3 / 6$ "ff. to $1 " / f t$.
$f-1 / 2^{\prime \prime}$ /ft. or Povement Slope if Greater
g - Vories 0^{\prime} to 3^{\prime} (see plon sheet for octual shoulder width)
h - Vories 0^{\prime} to 8^{\prime} (see plon sheet for octual shoulder width)

TYPE 451 DN 304

NORMAL SECTION
STA. 176+48.00 TO STA. $176+78.06$ RAMP " G " $=30.06$ L.F.

EXPANSION ANCHORS:
The controctor moy use "Drop-In" Anchors, Flush type, which
conform to Federal Specifications $F F-S-325$, Group VIll type 1 or conform to Federal Specificotions $F F-5-3$-355, Group VIll type 1 or
externally threaded Stud type Expansion Bolt Anchors which externolly threoded, Stud type Exponsion Bolt Anchors which
conform to Federal Specification FF-S 325 Groun conform to Federol. Specificicition $5-\mathrm{S}-325$, Group il. Spocing
Sholl be 30 M Moximum, center to center. Self Drilling Anchor
will not be permitted.

* FOR TYPE D JOINT
OETAIL SEE SHEET NO. 103

NORMAL SECTION

STA. $75+75.00$ TO STA. $80+21.38$ RAMP " Z " STA. $76+00.00$ TO STA. $80+12.56$ RAMP "x" STA. 79+81.03 TO STA. $84+25.00$ RAMP "W" STA. 79+82.1I TO STA. $86+25.00$ RAMP "Y" STA. $90+25.00$ TO STA. $92+00.00$ RAMP ""Y"
STA. $164+50.00$ TO STA, $166+50.00$ PAUP " STA. $164+50.00$ TO STA. $166+50.00$ RAMP " 6 " STA. $171+92.30$ TO STA. $172+57.70$ RAMP " G "
STA. $176+25.00$ TO STA. $176+48.00$ STA. $176+25.00$ To STA. $176+48.00$ RAMP " G ""
TOTAL $=4.672 .60$ L.F.
$=446.38$ L.F.
$=412.56$ L.F.
$=443.97$ L.F. -642.89 L.F.
$=175.00$ L.F. - 175.00 LF . $=65.40$ L.F. 23.00 L.F. - 65.40 L.F.

RAMP UNDERORAIN DETAIL
FOR:SHOULDER REPLACEMENT ONLY

SUPERELEVATED SECTION STA. $27+08.00$ TO STA. $27+59.00$ RAMP "T" $=51.00$ L.F. STA. $168+04.00$ TO STA. $171+84.00$ RAMP "H"" $=380.00$ L.F
TOTAL $=431.00$ L.F

RAMP UNDERDRAIN DETALL
FOR FULL-DEPTH REPLACEMENT

Q RAMP \& \& CONST.
（1）ITEM 451－10＂Reinforced Concrete Povement，As Per Plan（See Sheet No．12）
（2）4＂Bose（See Chart Below）
（3）ITEM 408－Bituminous Prime coot，Applied ot a Rate of 0.40 Gal／s．Y．Where Indicated Below
（4）ITEM 203－Subgrode Compoction
（5）ITEM 304－6＂Aggregate Base．As Per Plan（See Sheet Nö．III）
（5）ITEM－304－6＂Aggregote Base，As Per Plan（See Sheet No．II）
（TTEM $605-4^{\prime \prime}$ Shollow Pipe Underdrain 707．15．As Per Plon（See Sheet No．II6，
（6）ITEM 605－4＂Shallow Pipe Underdrain 707．15，As Per Plon（See S
（7）TTEM 659－Seeding And Mulching（See General Notes Sheet No．10）
（8）ITEM 304 －Aggregote Bose，As Per Plan（Voriable Depth os Shown）（See ITEM 304 Above）
（9）ITEM 451－9＂Reinforceed Concrete Povement，as Per Plon（See item 45l Above）
（10）Not Used
（11）ITEM 304－10＂Aggregote Bose．As Per Plan（See ITEM 304 Above）
（12）ITEM 452 －Ploin Concrete Povement（Varioble Depth os Shown），As Per Plan（See Sheet No．12）
（3）ITEM 452－9＂Plain Concrete Povement，As Per Plon（See ITEM 452 Above）
（14）ITEM 605－4＂Sholliow Pipe Underdrain，707．IT．ASTM 3034 SDR 35.
（15）ITEM 606 －Guordrail，Type 5
（A）Existing Povement，See Toble Sheet No． 115
昜 Existing Base or Subbose，See Toble Sheet No．II 5
（言）Existing Shoulder．See Toble Sheet No． 115

TYPICAL SECTIDNS
蚛

OHIO
FHMA

TYPE 451 DN 3ロ4

SECTION APPLIES：
STA． $159+50.00$ \＆S．R． 2 TO STA． $167+20.00$ \＆S．R． $2-770.00$ L．F．
FOR OUTSIDE BERM，SEE DETAKL A

TYPICAL SECTIDNS

N.S.
(1) ITEM 451 - $10^{\prime \prime}$ Reinforced Concrete Povement, as Per Plan (See Sheet No. 12 (2) $4^{\prime \prime}$ Bose isee Chort Below

ITEM 408 - Bituminous Prime coot, Applied ot o Rote of 0.40 Gal/s.Y. Where Indicated Betow (4) ITEM 203-Subgrade Compoction
5. ITEM 304-6"Aggregate Bose, As Per Plon (See Sheet No. III (See Sheet No. II6)
(7) ITEM 659-Seeding And Mulching (See General Notes Sheet No. 10)
(8) ITEM 304 - Aggregote Bose, As Per Plan (Vorioble Depth'os Shown) (See ITEM 304 Above)
(9) ITEM 451
(0) Not Used

ITEM 304-10" Aggregote Bose, As Per Plon (See ITEM 304 Above)
(2) ITEM 452 - Plain Concrete Pavement (Variable Depth os Shown), As Per Plan (See Sheet No. 12)
(3) ITEM 452-9" Ploin Concrete Povement, As Per Plon (See ITEM 452 Above)
(4) ITEM 605-4" Shallow Pipe Underdrain, 707.17, ASTM 3034 SDR 35

SS931, or SS944, Perforoted As Per 707.15
(5) ITEM 606-Guardrail, Type 5
A) Existing Pavement, See Toble Sheet No. 115

Existing Base or Suboase, See Toble Sheet No. 115
Existing Shoulder, See Toble Sheet No. 115

DETAIL A
** 12 GRADED SHOULDER
APPLIES ONLY WHERE SEE PLAN AND PROFILE SEEETAN AND PDOFILIN information.

EXPANSION ANCHORS
The controctor moy use "Drop-In" Anchors. Flush type which
conform to Federal Specifications $F F$ F-S-325. Group Vill, type I or externally threoded. Stud type Exponsion Bolt Anchors which conform to Federal Specification FF-S-325. Group II. Spocing Sholl be 30 " Moximum, center to center. Self Orilling Anchors will not be permitted.

MEDIAN WIDTH VARIES FROM 60' AT STA. 143771.32. \& S.R. 2 TO 40 AT STA. $157+46.66$. \& S.R: 2. MEDIAN WIDTH REMAINS S.R. 2 TO STA. $185+50.00$, \& S.R. 2 .

STA. $5+50.00$ \& S.R. 2 TO STA. $16+47.00$ \& S.R. 2

SEE SHEET NOS. IIT THROUGH 135 A
SECTION APPLIES:

STA. $16+47.00$ TO STA. $17+34.00$ RAMP "R" - 87.00 L.
OR OUTSIDE BERM. SEE DETALL STA. $17+34.00$ \& S.R. 2 TO STA. $17+50.00$ \& S.R. 2 STA. $40+45.69$ \& S.R. 2 TO STA. $45+00.00$ \& S.R. 2 STA. $57+00.00$ \& S.R. 2 TO STA. $69+00.00$ \& S.R. 2 STA. $88+20.69$ \& S.R. 2 TO STA. $92+75.00$ \& S.R. 2 STA. $95+25.00$ \& S.R. 2 TO STA. $96+25.00$ \& S.R. 2 STA. $152+50.00$ \& S.R. 2 TO STA. $164+50.00$ \& S.R. 2

WESTBOUND (In The Direction of Troffic)

1097.00 L.F. *VARIES FRON 0^{\prime} AT STA. $5+50.00$ TO 23' AT STA. $16+47.00$ - 1004.01 L.F. - 1200.00 L.F. 454.31 L.F. - 100.00 L.F. 1200.00 L.F.

* VARIES FROM FROM 25' AT STA. $17+34.00$ TO 25' AT STA. $17+50.00$ varies from 39' at Sta. 40+45.69 to $12^{\prime \prime}$ at STa. $45+00.00$ varies froul $12^{\prime \prime}$ at sta. $47+50.00$ to 0^{\prime} at Sta. $48+50.00$ VARIES FROM 0^{\prime} AT STA. $57+00.00$ TO 25' AT STA. $69+00.00$
VARIES FROM 39^{\prime} aT STA. $88+20.69$ TO STA. I2' AT STA. 92 $9+75.00$ VARIES FROM 39' AT STA. $88+20.69$ TO STA. 12^{\prime} aT STA. $92+1$

STA. $12+50.00$ \& S.R. 2 TO STA. $13+50.00$ \& S.R. 2 STA. $12+50.00$ \& S.R. 2 TO STA. $13+50.00$ \& S.R. 2
SA. $16+00.00$ \& S.R. 2 TO STA. $20+54.81$ \& S.R. 2 STA. $16+00.00$ \& S.R. 2 TO STA. $20+54.8$ \& S.R. 2
STA. $41+25.00$ \& S.R. 2 TO STA. $5+1+77$ \& S.R. 2 STA. $64+00.00$ \& S.R. 2 TO STA. $65+00.00$ \& S.R. 2 STA. $67+50.00$ \& S.R. 2 TO STA. $72+02.43$ \& S.R. 2 TTA. $92+00.00$ \& S.R. 2 TO STA. 10400.00 \& S.R. 2 STA. $163+1200$ \& S R R 2 TO STA. $167+66.31$ \& S.R. 2
STA. $163+1200$ \& S.R. 2 TO STA. $167+66.31$ \& S.R. 2 - -454.31 L.F.

	ION	SIDE	(2) 4" Bose
$\stackrel{\text { ¢ }}{16+47.00}$	17+34.00	W.b.	ITEM 304 Aggregote Bose, As Per Plon

SECTION APPLIES:

EASTBound

varies from o' at STA. $12+50.00$ to 12^{\prime} at STA. $13+50.00$ * VARIES FROM 12^{\prime} AT STA. $16+00.00$ TO $39^{\prime \prime}$ AT STA. $20+54.81$ * VARIES FROM 49' aT STA. $41+25.00$ TO 4.1^{\prime} AT STA. $51+27.75$ * VARIES FROM 0^{\prime} AT STA. $64+00.00$ TO 12^{\prime} AT STA. $65+00.00$ * VARIES FROM 25' at STA. 92+00.00 TO O' AT STA. $104+00.00$ * varies froul 0^{\prime} at Sta. $159+50.00$ to 12^{\prime} at Sta. $160+50.00$ * VARIES FROM $12^{\prime \prime}$ at STA. $163+12.00$ TO 39 ' at STA. $167+66.3$
total - 8.485.92 l.f.

TYPICAL SECTIONS

LEGEND

(1) ITEM 451-10" Reinforced Concrete Povement, As Per Plan (See Sheet No. 12)
(2) $4^{\prime \prime}$ Bose (See Sheet No. 3)
(3) ITEM 408-Bituminous Prime Coot, Applied at a Rate of 0.40 Gol/S.Y. Where Indicated Below
(4) ITEM 203'- Subgrade Compoction
(5) ITEM 304-6" Aggregate Base, As Per Plan (See Sheet No. II)
(6) ITEM 605-4" Shallow Pipe Underdrain 707.15, As Per Pian (See Sheet No. I16)
(7) ITEM 659-Seeding And Mulching (See General Notes Sheet No. 10)
(8) ITEM 304 - Aggregote Bose, As Per Plan (Vorioble Depth os Shown) (See ITEM 304 Above)
(9) ITEM 45I - -9" Reinforced Concrete Pavement, As Per Plan (SSee ITEM 45I Above)
(9) ITEM 451
(10) Not Used -
(II) ITEM 304 - $10^{\prime \prime}$ Aggregote Base, As Per Plan (See ITEM 304 Above)
(11) ITEM 304-10" Aggregate Base, As Per Plon (See ITEM 304 Above)
(12) ITEM 452 - Ploin Concrete Pavement (Variable Depth os Shown), As Per Plan (See Sheat No. 12)
(3) ITEM 452-9" Ploin Concrete Povement, as Per Plon (See ITEM 452 above)
(44) ITEM 605.- 4" Shallow Pipe Underdroin, 707.IT. ASTM 3034 SOR 35, SS931, or SS944, Perforoted os per 707.15
(15) ITEM 606-Guordrail, Type 5
A) Existing Pavement, See Toble Sheet No. 115
(B). Existing Bose or Subbase, See Toble Sheet No. 115
(C) Existing Shoultar See Toble Sheet No. 115

SECTION APPLIES:
WESTBOUND (In the Direction of Traffic): STA. $45 \cdot 00.00$ \& S.R. 2 TO STA. $47+50.00$ \& S.R. $2-250.00$ L.F STA. $92+75.00$ \& S.R. 2 TO STA. $95+25.00$ \& S.R. 2 - 250.00 L.F. eastbound:
STA. $13+50.00$ \& S.R. 2 TO STA. $16+00.00$ \& S.R. $2,-250.00$ L.F $\begin{array}{llll}\text { STA. } 65+00.00 \text { \& S.R. } 2 \text { TO STA. } 67+50.00 \text { \& S.R. } 2 & -250.00 & \text { L. } \\ \text { STA. } 160+50.00 & \text { \& S.R. } 2 \text { To } & \text { STA. } 163+12.00 \text { \& S.R. } 2 & -262.00 \\ \text { L.F }\end{array}$
median width varies from 60° at STA. 143+71.32. \& S.R. TO 40' AT STA. 157 46.66 . \& S.R. 2. MEDIAN WIDTH REMAINS A CONSTANT 40' (20' LT. \& RT. of \&) FROM STA. 157 +46.66 . S.R. 2 TO STA. $185+50.00$, \& S.R. 2.
**' graded shoulder applies ONLY WHERE GUARDRAIL IS LOCATED. SEE PLAN AND PROFILE SHEETS for adoitional information.

NOTE:
SEE. Sheet nos. IIT Through 135 For underdorain locations.

SECTION APPLIES:

WESTBOUND (In the Direction of Troffic)

STA. $17+50.00$ \& S.R. 2 TO STA. $21+82.00$ \& S.R. 2 STA. $69+000$ \& \&.R. 2 TO STA. ST $2+81.00$ \& S.R. 2
STA. $164+50.00$ \& S.R. 2 TO STA. $168+16.00$ \& S.R. 2
STA. $164+50.00$ \& S.R. 2 TO STA. $168+16.00$ \& S.R. 2
432.00 L.F.
381.00 L.F.
366.00 L.F. EASTBOUND:
STA. $37+33.00$ \& S.R. 2 TO STA. $4+25.00$ \& S.R. 2 - 392.00 L.F. *VARIES FROM $19{ }^{\circ}$ AT STA. $37+33.00$ TO II AT STA $41+25.00$ STA. $88+18.00$ \& S.R. 2 TO STA. $92+00.00$ \& S.R. 2 - 382.00 L.F. *VARIES FROM 19' AT STA. $88+18.00$ TO II' AT STA. $92+00.00$

PLAN VIEW

SECTION A-A total = 1953.00 L.f.

ROUNDING OF CORNERS SHOWN
ON CROSS SECTIONS
THE ROUNDED CORNERS SHOWN ON THE TYPICAL SECTIONS,
APPLY TO ALL CROSS SECTIONS E.VEN THOUGH OTHERWISE SHOWN
ON THESE PLANS.
UNDERGROUND UTILITIES
THE LOCATINS OF THE UNDERGGOUND UTIITIIES SHOWN ON
THE PLANS ARE AS OBTAINED FROM THE OWNERS OF THE UTLITYY as reourred by section 153.64 orc.
UTILITIES OWNERSHIP
THE FOLLOWING UTILITIES AND OWNERS ARE LOCATED WITHIN
THE WORK LIMTS OF THIS PROJECT:

ELECtric:	OHIO EDISON COMPANY 76 SOUTH MAIN STREET AKRON, OHIO 44308 PHONE: 216-384-463
natural gas:	none
telephone:	central telephone company of ohio 1730 WEST I9th STREET LORAIN, OHIO 44052 PHONE: 216-244-8227
SANITARY SEWERS \& water lines:	vermilion city engineer 55II LIBERTY AVENUE VERMILION, OHIO 44089 PHONE: 216-967-0123
water line \& LIGHTING:	ohio department of transportation 906 NORTH CLARK STREET ASHLAND. OHIO 44805 PHONE: 419-281-0513

CONTINGENCY QUANTITIES THE CONTRACTOR SHALL NOT ORDER MATERIALS OR PERFORM
WORK LISTED IN THE GENERAL SUMURY BYK LISTED IN THE GENERAL SUMMARY FOR ITEMS DESIGNATED
BY PLAN NOTE TO BE USED "AS DIRECTED BY THE ENGINEER" UNLESS AUTHORIIED BY THE ENGINEER. THE ACTUAL WORK LOCATIONS
AND OUATTIIIS USED AT THE ENIEERS AND OUANTITIES USED AT THE ENGINEER'S DISCRETION SHALL BE
MAE A ATER OF RECORO BY INCORPORATION INTO THE FINAL CHANGE ORDER GOVERNING COMPLETION OF THIS PROJECT

VARIOUS SECTIONS
 ON THIS PROJECT, IT WAS DEEMED MORE APPROPRIATE TO USE
THE PHRASE "VARIOUS SECTIONS" RATHER THAN CITING SPECIFIC MLLEAGE SECTION NUMBERS FOR THE PROAJCT DEEELLOMENNT
DESIGNATION. THE TABLE SHOWN BELOW INDICATES THE EXACT MILEAGE SECTION NUMBERS WHERE FULL DEPTH PAVEMENT IS
BEING REPLACED. SEE TITLE SHEET FOR STATION EOUATIONS.

STATION				LENGTH
BEGIN PROIECT	RESUME PROJECT	$\begin{aligned} & \text { SUSPEND } \\ & \text { PROJECT } \\ & \hline \hline \end{aligned}$	$\begin{gathered} \text { END } \\ \text { PROJECT } \end{gathered}$	LIN. FT.
$1835+10.00$		$14+60.00$		1779.49
	51*03.25	90+23.00		3999.75
	98+00.00	99+82.00		182.00
	114+82.00	126+16.00		1134.00
	$138+92.00$	$141+13.00$		221.00
	$\begin{array}{r}153+2.00 \\ \hline 17473.00\end{array}$	$\frac{167+20.00}{177+60.21}$		1428.00 287.21
	$180+00.00$		$181+46.00$	146.00

plan elevations
THE ELEVATIONS SHOWN ON THESE PLANS WERE ESTABLISHED FROM THE ORIGINAL PROJECCI CONSTRECTON LLANS AVALLABLE AT THE ODOT DISTRICT OFFICE. THESE ELEVATIONS ARE BELIEVED
TO BE ACCURATE BUT THE CONTRACTOR SHALL FIIELD VERIFY ELEVATIONS ANDOR FLOWLINES AS WECESSARY PRIOR TO PERFORMING WORK OR ORDERIG MATERIAL SUCH AS CATCH BASINS. THE ENGGINE

CLEARING AND GRUBBING
although there are no trees andor stumps specifically MARKED FOR REMOVAL WITHIN THE LIMITS OF THIS PROJECT,

ITEM 203 LINEAR GRADING, AS PER PLAN THIS WORK SHALL CONIST OF REGGADIN THE AREAS BEYOND
BOTH THE INSIDE AND OUTSIDE PAVED SHOULDERS TO CONFORM WITH THE CROSS SLOPES SHOWN ON THE TYPICAL SECTIONS TO IWCLUDE FORESLOPES AND TO INSURE A SMOOTH SURFACE FREE OF ALL
IRREGULARITIES. ANY MATERIAL REOURED TO FILL EXISTING RUTS RREGULARITIES. ANY MATERIAL REOUR ED AFILL EXISTING RUT
SHALL BE APPROVED BY THE ENGINEER AND ANY EXCESS EXCAVATIO SHALL
RESULTING FROM REGRADING SHALL EE DISPOSED OF AS DIRECTED B
THE He ENGINEE
THE UNIT OF MEASUREWENT SHALL BE STATINS AND SHAL INCLLDE BOTH INSIDE AND BOTH OUTSIDE UNPAVED AREAS OUTLINED
ABOVE FOR A DISTANCE OF 100.00 FEET. LINEAR GRADING SHALL be perforued between the following

$$
\frac{\text { MAINLINE S.R. } 2}{S T A .1827+50}
$$

$\frac{\text { MAINLINE S.R. } 2}{\text { STA. } 1827+5.00 \text { TO STA. } 185+50.00=196.29 \text { STATIONS } .}$ ADD FOR STATION EOUATION $=0.06$ STATIONS DEDUCT FOR BRIDGES $=\frac{\text { <7.12 STATIONS> }}{189.23 \text { STATIONS }}$
(TOTAL CARRIED TO GENERAL SUMMARY)
all eouipuent. labor and materials wecessaay to perform THIS WORK SHALL BE INCLUDED IN ${ }^{\top}$
203 LINEAR GRADING, AS PER PLAN.

LOCATION OF GUARDRAIL
THE LOCATIONS OF GUARDRALL RUNS. AS SHOWN IN THESE
 WILL AFFORD MAXIMUM PROTECTION FOR TRAFFIC.

GUARDRAIL REPLACEMENT
NO HAZARD SHALL BE LEFT UNPROTECTED EXCEPT FOR THE ACTUAL TIME NECESSARY TO REMOVE. GRADE AND REINSTALL GUARDRALL IN A CONTINUOUS OPERATION. THE REMOVAA OF
ALL GUARDRAIL SHALL AT ALL TIMES BE AS DIRECTED BY THE ALL GUARDRAIL SHALL AT ALL THES BE AS DIRECTED BY THE
ENGIEER. NO GUARDRAIL SHALL BE REMOVED UNTIL THE REPLACEMENT YATERIAL IS ON THE SITE, REAOY FOR INSTALLATION FALURE TO COMPLY WITH THIS REOUIREMENT SHALL BE DEEME
SUFFIIENT CAUSE TO ORDER WORK SUSPENDED ON THIS PROIJECI UNTL SUCH TIME THAT THE ENGINEER IS ASSURED OF SAID
COMPLINCE.

PROPOSED GUARDRAIL
WHEN IT IS NECESSARY TO SPICE PROPOSED GUARDRAIL TO
EXISTING GUARDRALL, ONLY THE EXISTING GUARDRAIL SHALL BE UT. DRILLED. OR PUNCHED. THE CONNECTION SHALL BE MADL MDE R-I.I. PAYMENT SHALL BE INCLUDED IN THE UNIT PRIIEE BID FO

TEM 606 ANCHOR ASSEMBLY, TYPE E
THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING
ET-2000, OPTION "C", GUARDRAIL END TERUINAL AS MANU ACTREOOX OPTION "C". GUARDRALL END TERMINAL AS MANU
ACTURE BY STEEL COMPANY, ITTO. N. STATE STREET. GIRARD, HIO 4420 (TELEPHONE: $2(6-545-4373$).
THE ANCHOR ASSEMBLY SHALL BE PLACED IN ACCORDANCE
ITH MAUFACTURER'S SPECIFICATIONS AND AT THE LOCATIONS HOWN IN THE PLANS.

PAYMENT FOR THE AOOVE WORK SHALL BE MADE AT THE UNIT
PRICE FOR ITEM 606 . EACH. ANCHOR ASSEMEMAD TYE

INCLUDING ALL RELATED HAROWARE, NOT SEPARATEIY SPECIEIID INCLUDING ALL RELATED HAROWARE, NOT SEPAAATELY SPECIFIIID
AS REOUIRED BY THE MANUFACTURER TO CONSTRUCT A COMPLETE ND FUNCTIONAL ANCHOR ASSEMBCY. THIS ITEM SHALL ALSO INCLUDE PAYMENT OVER AND ABOVE THE COST OF STANDASD TYPE 5
UUARDRAIL FOR INSTALLING TYPE I BREAKAWAY PDSTS CAS PE UARODALL FOR INSTALLING TYPE I BREAKAWAY POSTS (AS PER
STANARD CONSTUCTION DRAWING GRR-I.3) AT THE FOLLOWING OCATIONS: II AT THE POINT WHERE GRE-ANCHOR TE ASEMLLOWING OCATIONS INTO THE GUARDRALL RUN.

TEM SPECIAL IMPACT ATTENUATOR

TYPE I. BIDIRECTIONAL
THIS WORK SHALL CONSIST OF FURNISHING AND INSTALLING E ONE OF THE FOLLOWING:

THE BRAKEMASTER IMPACT ATTENUATING SYSTEM MANU-
FACTURED BY ENERGY ABSORPTION SYSTEMS, INC., ONE EAST
ACTURED BY ENERGY ASSORPTIN SYSTEMS, INC., ONE EAST WACKER DR
$467-6750$).
2. the c.a.t. impact attenuating system manufactured by SYRO STEEL COMPANY, II7O N. STAA,
44420 (TELEPHONE $2 / 6-545-4373$).
the attenuator shall be designed for bidipectional MPACTE AND SHALL BE PLACED IN ACCORDANCE WITH THETIONAL FACTURER'S SPECLIFICATIONS AND AT THE LOCATIONS SHOWN ON ihe nose of the attenuator shall be marked with three, VENLY SPACED. FOUR (4) INCH WIDE HORIZONTAL STRIPES OF hite rie.fle lective material meeting the reouirements of
PAYMENT FOR THE ABOVE WOR SHALL BE MADE AT THE UNIT
II PRICE FOR ITEM SPECIAL EACH
 HIS PRICE SHALL INCLUDE FULL PAYMENT FOR ALL LABOR, TOOLS,
OUIPMENT AND MATERIALS NECESSARY TO COMPLETE THIS ITEM PLACE, INCLUDING ALL RELATEDSAAY TO COOP PECIFIED, AS REQURED BY THE MANUFACTURER TO CONST
COMPLETE AND FUNCTIONAL IMPACT ATTENUATOR SYSTEM.
dUCT-CABLE PROTECTION
ODOT'S RECORDS INDICATE THAT A I-I/2" LIGHTING DUCT-CABLE
INSTALLED IN A $24^{\prime \prime}$ DEEP TRENCH. A IOT. FT. SECTION OF $3^{3 \prime}$ CONDUIT WAS INSTALLED AS A CABLE RACE-WAY IN AREAS WHERE THE LIGHTING DUCT-CABLE RUNS UNOERNEATH THE GUARDRALL. THE
CONTRACTOR SHALL EXERCISE CARE TO AVOID DAMAGE TO THE EXISTING UNDERGROUND DUCT-CABLE IN ALL AREAS INCLUDING where new guardrall and underorain outlets are to be

ITEM SPECIAL RESHAPING BERM EXISTING BERMS ALONG OVERHEAD APPROACH ROADS WHERE THE EXISTNG GUARDRALL IS TO BE REPLACED WITH NEW GUARDRALL SHALL
BE RESHAPEO ACCORDING TO PLAN DETAIL AND/OR AS DIPECTED BY THE ENGINEER TO INSURE A SMOOTH SURFACE FREE OF ALL IRREGULARITIES AND TO PROVIDE POSITIVE SURFACE DRAINAGE. SURPLUS EXCAVATION MATERIAL FROM BERM RESHAPING OPERATIONS
IIF SUCH MATERIAL EXISTS SHALL BE DISPOSED OF AS DIRECTED HESHPDERR. SHALL ME RESEEDEED EERMS ON THE OVERHEAD APPROACH ROADS RESHAPING DETAIL AS SHEWN ON SHEET NO. 105 the method of measureuent wil be TO PLAN DETAL ACT ACLEPGG OF BERM RESHAPED ACCORDING CONTRACT PRICE FOR ITEMTED QUANTITES WILL BE MADE AT THE

SEEDING
OUANTITIES FOR SEEDING ARE CALCULATED FOR THE SOIL
AREAS BETWEEN THE EDGE OF SHOULDER AND IO BEYOND THE AREAS BETTEEN TE EDGE OF SHOULDER AND 10° BEYOND THE
EDGE OF SHOULDR ON THE MAINLINE AND FOR SOIL AREAS BETWEEN EDGE OF SHOULDER ON THE MAIILINE AND FOR SOIL AREAS BETWEEN
THE EDGE OF SHOULDER AND EITHER IO' OR I2' BEYOND THE EDGE OO PAVEMENT ON TUE OVERPASSES DEPENOING ON LOCATON ISEE
SHEET IOS FOR FURHER DETALISI.

Watering permanent seeded areas
THE FOLLOWING ESTIMATED QUANTITY IS TO BE USED AS DRECTED BY THE ENGINEER TO PROMOTE GROWTH AND
FOR THE. PERMANENT SEEDED AREAS, AS PER 659.09:

659 water
240 u.

TEMPORARY SOIL EROSION
AND SEDIMENT CONTROL
THE FOLLOWING ESTIMATED QUANTITIES ARE TO BE USED AS DIRECTED BY THE ENGINERR, FOR TEMPORARY ERESION AND
SEDMENT CONTROL MEASURES AND HAVE BEEN CARIED TO THE GENERAL SUMMARY

[^0]CONNECTION TO EXISTING PIPE
WHERE THE PLANS PROVIDE FOR PROPOSED CONDUIT TO BE
CONNECTED TO. OR TO CROSS EITHER OVER OR UNDER AN EXISTING SEWER. IT SHALL BE THE RESPONSIBILITY OF THE EXITNNG SEWER OCATE THE EXISTING PIPE BOTH AS TO LINE
CONTACTOR TO LOAT
AND GRADE BEFORE HE STARTS TO LAY THE PROPOSED CONDUIT. AND GRAD EBFORE HE STARTS TO LAY THE PROPOSED CONDIIT.
PAPMENT FRR ALL OPERATIONS DESCRIBED ABOVE SHALL BE
INCLUDED IN THE UNIT PRICE BID FOR THE PERTINENT 603 INCLUDED IN TH.
CONDUIT ITEMS.

ITEM $6036^{\prime \prime}$ CONDUIT, TYPE B. BORED OR JACKED, AS PER PLAN

6" CONDUIT

NO TRENCH EXCAVATION OR EOUPMENT SHALL BE CLOSER THAN
TEN (ION FEET TO THE EDGE OF PAVEMENT OF ANY LANE MAHTANING
 TRAFFIC. TRENCHES SHALL BE ADEQUATELY SUPPORTED AND THE
SPECIFICATION REOUREMENT FOR CLASS B BEDOING SHALL BE DISREGARDED. SEE PLAN SHEETS FOR QUANTITIES.

ITEM 604 NO. 5 CATCH BASIN.
AS PER PLAN
THIS' work shall consist of removing and replacing the THIS' WORK SHALL CONSIST OF REMOVING AND REPLACING THE
EXISTING COCRETE APON ACOODING TO STANDRD DAWING CBE
AND THE CATCH BASIN NO. 5. AS PER PLAN DETARLL ON SHEET NO. 116 A. CATCH BASIN NO. 5. AS PER PLAN DETAIL ON SHEET IN CONJUNCTION WITH THIS WORK, THE EXISTING ROADSIDE
DITCH SHALL BE REGADD RROM APPROXIMATELY STA. $33+00$ \& S.R. 2 (RT.) TO THE EXISTING CATCH BASIN. ALL MATERIALS. LABOR AND EOUIPWENT NECESSARY TO PERFORM
THE WORK DESCRIBED ABOVE IS TO BE INCUOED IN THE UNIT
PRICE BID. FOR ITEM 604 NO. 5 CATCH BASIN, AS PER PLAN.

ITEM 604 CATCH BASIN RECONSTRUCTED TO GRADE, AS PER PLAN
THIS WORK SHALL CONSIST OF RECONSTRUCTING THE EXISTING
CATCH BASIN TO GRADE AS PER ITEM 604 AND SHALL INCIUDE CANTALLING A NEW GRATE AND FRAME IN ACCORDANCE WITH
INSTM
STINDRD DA STANDLRD DAAWIIW 2-2-B. ALL EOUIIMENT, LABOR ANODMATERIALS
NECESSARY TO COMPLETE THIS ITEM OF WORR SHALL BE INLLUDED NECESSARY T COMPLETE THIS ITEM OF WORK SHALL BE INCLUDED
ITHE UNNT PRIE BID FOR ITEM 604 CATCH BASIN RECONSTRUCTED
TO GRADE, AS PER PLAN TO GRADE, AS PER PLAN.

ITEM 604 CATCH BASIN ADJUSTED TO GRADE, AS PER PLAN
THIS WORK SHALL CONSIST OF ADJusting the existing catch BASIN TO GRADE AS PER ITEM 604 ANO SHALL INCLLDE ALL
REGRADING NECESSARY TO PROVIDE POSITVE DRAINAGE TO THE REGRADING NECESSARY TO PROVIDE POSITIVE DRAINAGE TO THE
EITITING CATCH BASIN FROM THE SURROUNOING UNPAVED GORE

AGGREGATE FOR ITEM 45I. REINFORCED Concrete pavement. as per plan

THE FINE AGGREGATE TO BE USED IN THE FULL DEPTH
 AND SHALL BE NATURAL SAN BETWEN STATION $160+16.00$ TO
STATION $167+20.00$ AND IS TO BE IN ACCOROANCE WITH SPECLIFICATION STATTON
703.02.

CONTRACTION JOINTS IN PAVEMENT WIDENING where new concrete pavement is placed adjacent to EXISTING CONCRETE PAVEMEN. OL SO RACTION JOWS SHALL BE PROVIDED IN THE NEW PAVEMENT SO AS TO FORM A CONTINUOUS
JOINT WITH THAT IN THE EXISTING PAVEMENT THE MAXIMUM DISTANCE BETWEEN THE JOINTS IN NEW PAVEUENT SHALL BE IN ACCORDANCE WITH STANDARD CONSTRUCTION
DRAWING BP-4. IF NECESSARY, ADOITIONAL JOINTS SHALL BE DRAWING BP-4. I IF NECESSARY ADDITIONAL JOINTS SHALL BE
PROVIDED IN NEW PAVEMENT AT APPROXIIIATELY EOULAL INTERYALS JOINT SEALERS
ALL REFERENCES TO 705.01 OR 705.02, APPEARING ON STANDARD DRAWINGS OR ON THE PLANS, SHALL BE CONSIDERED TO READ 705.04,

ITEM SPECIAL BONDED PATCHING OF RIGID PAVEMENTS, TYPE 1 (SEE PROPOSAL NOTE) AN ESTIMATED OUANTITY OF 500 SO: FT. OF ITEM SPECIAL
ONDED PATCHING OF RIGID PAVEMENTS. TYPE I, HAS BEEN INCLUDED BONDED PATCHING OF RIGID PAVEMENTS. TYPE I. HAS BEE INLLUDED
IN THE GENEAL SUHMAYY TO BE USED FOR THE REPLLCEEENT OF EXIISIING ASPHALT PATCHES AND FOR AREAS REOURRING CENTERLINE
REPARR THROUGOUT THE PROJECT WHOSE LOCATION SHALL BE

ITEM SPECIAL GRINDING PORTLAND CEMENT CONCRETE PAVEMENT

THIS WORK SHALL BE COMPLETED AFTER THE INSTALLATION OF THE FULL DEPTH AND PARTIAL DEPTH REPARES AND BEFORE
THE INSTALLATION OF ANY JOINT AND CRACK SEALANTS. ANY THE NSTALLATION OF ANY JOINT AND CRACK SEALANTS. ANY
GRINDING OF THE SHOUDERS TO MAINTAIN CROSS SLOPES SHALL
BE CONSDERED ICDOENTAL TO THIS WORK SEE PROPOSN BE CONSIDERED INCIDENTAL TO THIS WORK. SEE PROPOSAL NOTE
FOR ADIITIONAL DETALIS.

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT. CLASS C, AS PER PLAN "A"
255 all joints repalrs shall be constructed as per item 25 A ALD BP-13 THE JOINT REPALAS SHALL BE THPE YY-Y UNLESS
OTHERWISE NOTED IN THESE PLANS. THE MAYMUM DISTNCE OTHERWISE NOTED IN THESE PLANS. THE MAXIMUM DISTANCE
BETWEEN ANY TRANSVERSE JOINTS WITHIN THE LIMITS OF THE BEETEEN ANY TRANSVERSE JOINS WITHIN THE LIMITS OF THE
REPARS SHALL BE 30 FETT. JOINT SEALERS SHALL MEET THE
 THE REOUUREMENTS OF BP-II AND ITEM 255. THE SEALANT SHALL
BE TYPE III AND TYPE V VALL COSTS SHALL BE INCUDD IN THE

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
CLASS MSI. AS PER PLAN A
THE CONCRETE USED FOR THESE REPAIRS SHALL CONSIST OF
THE MATERIALL SPECIFIED IN PROPOSAL NOTE

 the locations where this method of joint repair will
be utilzed are shown below:

Station	SIDE	Lane	SIze	so. yo.
96+90	WB	TRAVELLING	$6^{\prime} \times 12^{\prime}$	8
96+96	WB	travelulng	$6^{\prime} \times 12^{\prime}$	
$97+40$	WB	traveluing	$6^{6} \times 12^{\prime}$	8
$97+77$	WB	traveluing	$6^{\prime} \times 1{ }^{\prime} \times 1{ }^{\prime}$	8
100+19	WB	traveluling	$6^{\circ} \times 12^{\prime}$	8
100+67	WB	TRavELLING	$6^{\prime} \times 12^{\prime}$	8
1017+00	WB	TRAVELLING	$6^{6} \times 12^{\prime}$	8
101+43	WB	traveluing	$6^{\prime} \times 1{ }^{\prime}$	8
101+83	WB	traveluling	$6^{\prime} \times 12^{\prime}$	8
102+23	WB	traveluing	$6^{\prime} \times 12^{\prime}$	8
totals carried to general sumuary				
				80

joint sealers shall meet the requirements of SUPPLEMENTAL SPECIFICATION 801 IN LIEU OF THE REQUREMENTS
OF BP-I3 AND ITEM 255. THE SEALANT SHALL BE TYPE III AND TYPE V.
Parment for all equipment, labor, and materials to
PERFORM PERFORM THE WORK OUTLINED ABOVE SHALL BE INCLUDED IN THE REMOVAL AND RIGID REPLACEMENT CLASS USI AS PER PLAN AT

CONTINGENCY QUANTITIES FOR FULL DEPTH JOINT REPAIRS

THE FOLLOWING CONTINGENCY QuANTITIES HAVE BEEN ADDED
TO THE GENERAL SUMMARY TO BE USED BY THE ENGINEER TO TO THE GENERAL SUMMARY TO BE USED BY THE ENGINEER TO
EXTEND THE LITIT O OF THE NOINT REPAIRS SHOWN ON THESE EXTEND THE LIMITS OF THE JOINT REPAIRS SHOWN ON THESE
PLANS ANDIOR TO REMOVE AND REPLACE ADOITIONAL PAVEMENT PLACTIONS FOUND TO BE IN NEED OF REPAIR DURING CONSTRUCTION:
SETIO

255 FULL DEPTH RIGID PAVEMENT
REMOVAL AND RIGID REPLACEMENT,
CLASS C. AS PER PLAN A
FULL DEPH RIGID PAVEMENT
255 FULL DEPTH RIGID PAVEMENT
CLASS C. AS PER PLAN B
FULL DEPTH RIGID PAVEMENT
55 FULL DEPTH RIIID PAVEMENT
CLASS C. AS PER PLAN C
FULI DETH RIGID PAVEUENT
$255 \begin{aligned} & \text { FULL DEPTH RIGID PAVEMENT } \\ & \text { REMOVAL AND RIGID REPLACEMENT. }\end{aligned}$
826 So. yo.
266 SO. YD.
5 SO. yo.
18 so. yo.
$255 \begin{aligned} & \text { CLASS C. AS PER PLAN D } \\ & \text { FULL DEPTH PAVEMENT SAWING }\end{aligned}$
3262 LIN. F
FULL DEPTH JOINT REPAIRS
STENCIL STATIONING
THE STATIONING OF THE JOINT REPAIRS SHOWN IN THESE PLANS WERE DETERMINED FROM STATIONS
PAVEMENT DURING ORIGINAL CONSTRUCTION.

Item 304 aggregate base. AS PER PLAN MATERIALS FURNISHED FOR THIS ITEM SHALL EXCLUDE ALL
SLAG EXCEPT GRANULATED SLAG OR CRUSHED AIR-COOLED BLAST SLag ExAce slag. The maximum total percent passig tha FUUNALE SLAG. THE MAXIMUM YOT AL PERCENT PASSING THE NO
200 SIEVE FOR 304 SHALL
13 PEREENT SHOW PERCENT AS OPPOSED TO THE 200 SIEVE FOR 3O4 SHALL BE
13 PERCENT SHOWN IN 304.02.

ITEM 3 Io SUBBASE, AS PER PLAN MATERIALS FURNISHED FOR THIS ITEM SHALL EXCLUDE ALL
SLAG EXCEPT GRANULATED SLAG OR CRUSHED AIR-COOLED BLAST furnace slag. no broken salvaged road metal tsalvag PAVEMENTS AND BASESI SHALL BE ALLOWED ON THIS PROJECT ALL MATERIALL SUPPLIED FOR THIS ITEM SHALL BE TYPE II AND

> SIEVE SIZE total percent passing

EXISTING SOURCES OF COARSE AGGREGATE THE CONTRACTOR IS AOVISED THAT THE COARSE AGGREGATE
SOURCES FOR THE ORIGINAL CONSTRUCTION OF THIS PROJECT ARE AVALLABLE FROM THE REPORT "THE SIGNIFIICANGE OF PAVEMENT
 TECHNOLOGY LABORAORIISS OF SKOKIE. ILLINOIS. THE
IN THE ORIGINL CONSTRUCTION ARE AS FOLLOWS:
$\begin{array}{lll}\text { SY-2 } & \text { WOOOVILLE LIME AND CHEMICAL COMPANY } \\ \text { Mn3 } & \text { NATINNAL LIME AND STOME AT MAR MARION } \\ \text { SK681 } & \text { CANTON AGGREGATE COMPANY }\end{array}$
SUBBASE/SUBGRADE FAILURES
DURING THE FULL DEPTH JOINT REPAIR OPERATIONS, IF THE
ENGINER DETERUINES THE SUBBASE OR SUBGRADE HAS FAIILD NGINER DETERMINES THE SUBBASE OR SUBGRADE HAS FALLED
R IS PUMPIGG AFTER THE REMOVAL OF THE RIGID PAVEMENT OR IS PUMIN AATER TEE REMOVAL OF THE RIIEID PAVEMENT.
HE SHALL DIRECT THE CONTRACTOR TO EXCAVATE THE UNSUITABLE
WATERILL MATERIAL AND REPLACE IT WITH ITEM 304 AGGREGATE BASE, AS
PER PLAN. THE FOLLOWING OUANTITIES HAVE BEEN CARPIED TO PER PLAN. THE FOLLOWING QUANTITIES HAVE BEEN CARSIED TO
THE GEERRLL SUMMRY AND SHALL ICLDDE PAYENT FOR ALL EOU GEENENT MALERALILS AND LABOR NECESSARY TO PERFORM THE
OPERATIONS OUTLINED ABOVE:

ITEM 407 TACK COAT
the rate of application of the 407 tack coat shall BE SUBJECT TO ADJUSTMENT. AS DIRECTED BY THE ENGINEER.
PLAN OUANTITIES INDICATE AN AVERAGE APPLICATION RATE OF PLAN QUANTITIES INDICATE AN AVERAGE APPLICATION RATE OF
0.10 GALLONS PER SOUARE YARD OF TACK COAT FOR ESTIMATIIG PURPOSES ONLY.

ITEM 801 CRACK SEALING. CLASS I. SILICONE A ouantity of 16600 LIN. FT. HAS BEEN CARRIED TO THE
GEEERAL SUMMARY TO SEAL CRACKS IN THE EXISTING PAVEMENT GENERAL SUMMARY TO SEAL CRACKS IN THE
TO BE USED AS DIRECTED BY THE ENGINEER.

ITEM 451 REINFORCED CONCRETE
PAVENENT, AS PER PLAN
THIS ITEM OF WORK WILL MEET THE REOUREMENTS OF ITEM
45, BP-3 AND BP-4 WITH THE FOLOWING EXCEPTIONS:

1. The haximum spacing between contraction joints shall
BE 2I fT. EXCEPT AS NOTED ON THIS SHEET. THE BE 21 FT. EXCEPT AS NOTED ON THIS SHEET. THE
MAXMUUM SPACING BETWEEN CONTRACTION JOINTS. THE TYPE MAXIMUW SPACING BETWEN CONTRACTION JOINTS, THE TYPE
OF COARS AGGEGATE AND THE TYPE OF FINE AGGREGATE
SHALL BE AS SHOWN IN THE TABLE ON THIS SHEET.
thall beat as shown in the table on this sheet.
2. THE COARSE AGGEGGATE AND FINE AGGREGATE
THE REOUIREMENTS SHOWN ON THIS SHEET.
3. TRANSVERSE JINTS SHALL BE SAWED AND SEALED IN
ACCORDANCE WITH SUPPLEMENTAL SPEIFICETION 801 ACCOROANCE WITH SUPPLEMENTAW SDECIFIICATION 801 ,
TRANSVERSE JOINT SEALING. CLASS III, SIICONE. PAYMENT
 4. MESH SHALL BE RECTANGLLAR AND CENTERED IN EACH
 W8. 5 OR D8. 5 LONGITUDINAL WIRES SPACED $6^{\prime \prime}$ CENTER TO
CENTER AND W4 OR D4 TRANSVERSE WIRES SPACED I2" CENTER AND W4 OR
CENTER TO CENTER.
4. DOWEL ASSEMBLIES PLACED ON STABLIZED BASES SHALL BE HEL FIRMLY IN POSIIIION BY USE OF POWER DRIVEN
FASTTNERS ALD AN APPOPRIATE CLIP AT A MINIMUU OF
SIX LOAS SIX LOCATIONS ALONG THE ASSEMBLY (THREE EACH SIDE
OF THE ASSEMBLY) TO SECURE THE BASKET FROM LATERAL AND VERTICAL OISPLACEMENT DURING CONCRETE PLACEMENT OR AN APPROVED DOWEL BAR INSERTER MAY BE USED.
5. PROPOSAL NOTE "451,452 \& 453 PAVEMENT SURFACE
SHOOTHNESS REOUREMENTS" SHALL APPLY BETWEEN THE
FOLOWING STATIONS:
$\begin{array}{llll}\text { STA. } 1835+10 & \text { TO STA. } \\ \text { STA. } \\ 56+06.25 & \text { TO } \\ \text { STA. } \\ \text { ST } \\ 90+23 & \text { WESTBOUND } \\ \text { WESTBOUND }\end{array}$
STA. $156+06.25$ TO STA. $90+23$ WESTBOUND
STA. $153+12$ TO STA. $167+20$ EASTBOUND
*ALL AREAS FOUND TO BE GREATER THAN 10 INCHES
PER MLE PER O.IO MLIE SECTION BETWEEN STA. $153+12$ TO STA. $167+20$ EASTBOUND SHALL BE RENOVED AND REPLACED AT NO ADDITTONAL COST TO THE IEPARTMENT. NO GRIWDING SHALL BE PERMITTED STATION numbers as per 451.09 shall be watved for
ThIS ITEM.

ITEM 452 PLAIN CONCRETE PAVEMENT AS PER PLAN
THIS ITEM OF WORK WILL HEET THE REQUIREMENTS OF ITE
452, BP-3, AND BP-4 WITH THE FOLLOWING EXCEPTIONS:

1. THE MAXIMUM SPACING BETWEEN CONTRACTION JOINTS SHALL
BE 2I FT. EXCEPT AS NOTED ON THIS SHEET THE
 MAXIMUU SPACIGG BETWEE CONTRACTION JOINTS. THE THPE
OF CARSE AGGEGGTE ANO OHE TYE OF FIIE AGGEGATE
SHAL SHALL BE AS SHOWN IN THE TABLE ON THIS SHEET.
2. THE COARSE AGGREGATE AND FINE AGGREGATE SHALL MEET
THE REOUREMENTS SHOWN ON THIS SHEET.
3. TRANSVERSE JOINTS SHALL BE SAWED AND SEALED IN
ACCORDANCE WITH SUPPLEMENTAL SPECIFICATION BO ACCORDASCE WITH SUPPLEMENTAL SPECII IACATIN 801
TRANSVERSE JOINT SEALIGG, CLASS III, SIIICONE. PAYMENT
SHAL SHALL BE INCLUDED IN THE UNTI PRICE BID FOR ITEM 452
PLAIN CONCRETE PAVEMENT, AS PER PLAN
4. DOWEL ASSEMBLIES PLACED ON STABLIIZED BASES SHAL BE HEL FIIMLL IN POSITION BY THE USE OF POWER DRIVEN
FASTENERS AN AA APPRPPIAE CLIP AT A MINIWUM OF SIX LOCATIONS ALONG THE ASSE MBLY (THAEE EACH SIDE
OF THE ASSEMBLY) TO SECURE THE BASKET FROM LATERAL OF THE ATICAL DISPLACEMENT DURING CONCRETE PLACEMENT OR AN APPROVED DOWEL BAR INSERTER MAY BE USEED.
5. ALL Shoulder transverse contraction/Expansion joints be dowelled as Per 451.08 (B).
6. Pavenent surface variation shall not exceed $1 /{ }^{\prime \prime}$ IN A 10' LENGTH OF PAVEMENT. ALL OTHER PROVIG
45I.I2 AS CALLED FOR IN 452.01 SHALL APPLY.
7. JOINT SPACING, EXCEPT AS NOTED IN THE TABLE ON
THIS SHEET SHALL CONFORM WITH THE DETALLS SHOW THIS SHEET. SHALL
ON SHEET NO. 103 .
8. Where new concrete shoulder is placed adjacent to EXIISTING CONCRETE PAVEWENT, CONT RACTION JOINTS SHAL
BE PROVIDEE IN THE BE PROVIDED IN THE NEW SHOULDER TO FORM A CONTINUOU
JOINT WITH THOSE IN THE EXISTING PAVEMENT.
9. station numbers meeting the requirements of 451.0 SHALL BE IIMPRESSED INTO THE SHOULDER. THE STATIO
NUMERS SHALL BE PLACEO PERPENOICULAR TO THE SHOULDE EDGE AND FACIGG IN THE DIRECTION OF TRAFFIC.
$\triangle T H E$ "ND" and "D" DESIGNATION SHOWN IN THE COARSE AGGREGATE COLUMN SHALL BE NON-"D" CRACKING AND "D" CRACKING SUSCEPTIBLE AGGREGATES RESPECTIVELY. THE COARSE AGGREGATE FOR THIS ITEM. SHALL PASS OR FAIL THE REOUIREMENTS OF PROPOSAL NOTE \oplus ACCORDINGLY ANO SHALL BE LIIITED TO 57 LIMESTOEN OR 57 GRAVEL. THE CONTACTOR MAY CONTACT THE LABORATORY FOR AGGREGAT
SOURCES WHICH HAVE PASSED OR FAILED THIS TEST. A LIST OF"D" CRACKIGG SUSCEPTIBLE AGGREGATES SHON BELOW. THESE ARE SOURCES WHICH HAVE PASSED or FAlLED THIS TEST. A LIST OF "D" CRACKING SUSCEPTIBLE AGGREGATES IS SHOWN BELOW. THESE ARE
ACCEPTABLE SOURCES OF COARSE AGGREGATES TO BE USED IN LIEU OF THE ABOVE TESTING REOUIREMENTS.
$\frac{\text { NoN-" }{ }^{\prime \prime} \text { CRACKING SUSCEPTIBLL AGGREGATES }}{\text { SY-2 }}$

$$
\begin{aligned}
& \frac{\text { " } D^{\prime \prime} \text { "CRACKING SUSCEPTIBLE AGGREGATES }}{\text { NATIINAL LIME AND STONE AT MARION }} \\
& \begin{array}{l}
\text { MN3 } \\
\text { SK6II CANTON AGGREGATE COMPANY }
\end{array}
\end{aligned}
$$

JoInt spacing. fine and coarse aggregate and base type REQUIREMENTS FOR ITEMS 451 AND 452. AS PER PLAN.

LOCATION		SIDE	$\begin{aligned} & \text { BASE } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \text { MAXIMUM } \\ \text { JOINT } \\ \text { SPACING } \\ \text { (FT.) } \\ \hline \end{gathered}$	$\begin{gathered} \text { COARSE } \\ \text { AGGREGATE } \\ \text { TYPE } \triangle \end{gathered}$	FINE AGGREGATE TYPE
FROM.	TO					
$1835+10.00$	1837+05.75	WB	310, AS PE'R PLAN	13	0	703.02
1837+05.75	0 0.0 .91	wB	310. AS PER PLAN	13	0	703.02
0+0.91	2+95.75	WB	3/0. AS PER PLAN	25	ND	703.02
2+95.75	5+00.00	WB	310. As PER PLAN	25	ND	703.02
5+00.00	$7+40.00$	WB	IA	25	ND	703.02
7+40.00	$9+80.00$	WB	IA	25	ND	703.02
9+80.00	12+20.00	wB	IA	13	0	703.02
12+20.00	$14+60.00$	we	IA	13	0	703.02
56+06.25	58+19.69	w	304. AS PER PLAN	13	D	703.02
58+19.69,	60+33.13	wB	304. AS PER PLAN	13	D	703.02
60*33.13	62+46.56	w ${ }^{\text {e }}$	304. AS PER PLAN	25	No	703.02
62+46.56	64460.00	we	304, AS PER PLAN	25	No	703.02
$64+60.00$	$66+73.50$	wB	NJ	25	N0	703.02
$66+73.50$	$68+87.00$	we	NJ	25	ND	703.02
68887.00	71+00.50	wB	NJ	13	0	703.02
$71+00.50$	73+14.00	wB	NJ	13	D	703.02
73*4.00	$75+27.50$	wB		13	D	703.02
75+27.50	77+41.00	w	FASPALTT TREATED	13	0	703.02
77+41.00	$79+54.50$	w	FASPALTT TREATED	25	ND	703.02
$79+54.50$	81/68.00	we	FASPALAT TREATED	25	ND	703.02
81/68.00	$83+81.75$	wB	CREMENT TREATED	25	ND	703.02
83+88.75	85 +95.50	wB	¢ CEMENT TREATED	25	ND	703.02
85+95.50	$88+09.25$	we	(CEMENT TREATED	13	D	703.02
88+09.25	90+23.00	WB	(CEMENT TREATED	13	D	703.02
98+00.00	99+82.00	wB	304, AS PER PLAN	21	ND	703.02
114882.00	118+42.00	we	304. AS PER PLAN	60	No	703.02
118442.00	121+22.00	we	304. AS PER PLAN	40	ND	703.02
121+22.00	122+06.00	WB	304. AS PER PLAN	21	ND	703.02
122+06.00	$122+63.00$	we	304. AS PER PLAN	57	ND	703.02
122+63.00	$123+26.00$	WB	304, AS PER PLAN	21	ND	703.02
$138+92.00$	$141+3.00$	WB	304. AS PER PLAN	21	ND	703.02
174+73.00	175+51.71	we	304. AS PER PLAN	21	ND	703.02
119+21.00	$126+16.00$	EB	304. AS PER PLAN	21	No	703.02
153+12.00	$160+16.00$	EB	304. AS PER PLAN	21	NO	MANU03.
160+16.00	$167+20.00$	EB	304, AS PER PLAN	21	ND	NATURASLSANO
180000.00	181+46.00	EB	304. AS PER PLAN	21	ND	703.02

NDN-STABILIZED DRAINING BASE

february 14, 1992
DESCFIPTION. THIS WORK SHALL CONSIST OF CONSTRUCTING
A NON-STABILIZED DRAINAGE BASE (NSOB) ON A PREPARED NON-STABILIZED DRAINAGE BASE (NSOBS ON A PREPARED
SUBGRADE OR BASE COURSE IN ACCORDANCE WITH THESE SPECIFICATIONS AND IN REASONABLY CLOSE CONFORMITY WITH THE LINES. GRADES. THICKNESS: AND TYPIICAL CROSS SECTINNS
SHOWN ON THE PLANS OR ESTABLISHED BY THE ENGINEER.
 ARE AS FOLLOWS.

AGGREGATES. THE AGGREGATES FOR THE iSDB SHALL BE CRUSHED CARBONATE STONE. CRUSHED GRAVEL. AIR-COOLED BLAST
FURNACE SLAG OR GRANULATEO SLAG MEETIGG THE REOUREMENTS IN MEETING THE FOLLOWING GRADATIONS.

sieve size	total percent passing	
	TYPE 'Nu'	TYPE 'IA
$11 / 2{ }^{\prime \prime}$	100	
	95-100	100
$1 / 2{ }^{\prime \prime}$	60-80	50-80
No. 4	40-55	
No. 8	5-25	10-35
No. 16	0-8	
No. 50	0-5	0-15
No. 200		0-6

IF GRAEL IS UTHIIEED. 95 PERCENT BY COUNT OF THE
GGREGTE RETANED ON THE NUMBER S SEVE SHALL HAVE AT LEAST ONE MECHANICALLY FRACTURED material passing the no. 40 sieve shall be non-plastic
by aashto T-90. UNDER AASHTO T-96. LOS ANGELES ABRASION TEST. 40 PERCENT WEAR SHALL BE THE MAXIMUMM ALLO
AGGREGATES USEO UNDER THIS SPECIFICATION.

COMPOSITIION OF MIXTURES. CONTRACTOR SHALL SUBMIT FOR
PROVAL A GRADATION FOR THE MATERIAL AND A STATEMENT APPROVAL A GRADATION FOR THE MATERIAL
NAMING THE SOURCE OF EACH COMPONENT.
THE GRADATION SHALL ESTABLISH THE PERCENTAGE BY DRY
WEIGHT OF AGGREGATE PASSING EACH REQUIRED SIEVE SIZE WEIEH OF AGREGATE PASSIAG EACH REOURED SIEVE SIZE,
THE VALUES OF PERCENT PASSING EACH SIEVE SIZE SHALL BE WITHIN THE MASTER BAND. THE SUBMITTED GRADATION SHALL

VERIFICATION OF DESIGN. A MINIMUM OF 30 DAYS PRIOR SUBMIT TO THE LABORATORY FOR APPROVAL, THE MIX DESIGN. GRADATION OF THE MIXTURE AND THE FOLLOWING QUANTITIES OF COMPONENS FOR MATERIAL VERIFIIATION THAT THE MIX DESIGN
WILL RESULT IN A MIXTURE HAVING THE REOUIRED GRADATION.

$$
\begin{array}{ll}
\text { BLENDED AGGREGATE } & 200 \text { POUNDS } \\
\text { COMPONENT SIEE } & 100 \text { POUNDS EACh }
\end{array}
$$

THE CONTRACTOR SHALL NOTIFY THE LABORATORY PRIOR
TO THE DELIVERY OF ANY WATERIAL
EOUIPMENT. ALL EQUIPMENT NECESSARY TO MIX. BE APPROVED BEFORE WORK WILL BE PERMITTEAER SHALL BE APPROVED BEFORE WOR WLLL BE PERIIT AED TO START.
SUCH EOUIPMENT SHALL INCLUE A STATIONARY OR PORTABLE CONTINUOUS OR SATCH TYPE PUGMILL MIXER EQUIP PED WITH
COM
BATCIUG OR BATCHING OR METERING DEVICES FOR PROPORTIONING THE BLEND.
OR OTHER APPROVED UNITS CAPABLE OF PROUUCING A BLENDED. MATERIAL CONSISTENTLY MEETNG TELE GRADATION REOUREMENTS,
A TRAVELING PLANT SUCH A TRANELING PLANT SUCH AS A SPREADER BOX OR ASPHAST
PAVERS CAPABLE OF MANTHAINING A UNIFORM RATE OF TRAVEL

WHILE SPREADING ANDIOR LAYING A LIFT OF UNIFORM
CONSISTENCY AND THICKNESS WITH PROPER GRADE CONTRO CONSISTENCY AND THICNESS WITH PROPER GRADE CONTROL,
MOTOR GRADERS, PNEUMATIC-TIRED OR STEEL WHELLED VIBRATORY
 RELUIRED TO PERFORM THE WORK IN A SATTSFACTORY MANNER
THE ROLLERS SHALL CONFORM TO THE REOULPEMENTS OF THE ROLLERS SHALL
SPECIFICATION 40I.II.
uixing and prewetting. the aggregate shall be mixed AND PREWETTED TOGETHER IN THE PROPER PROPORTION AS
SPECIFIED IN THE MIX DESIGN BY UTLIZING A PUGMILL MIXER. THE PUGMLL MIXER SHALL PROVIDE AN ACCURATE CONTROL
OF THE PROPORTIONS OF WATER AND AGGREGATE AND SHATR OF THE PROPORTONN OF WATE AND AGGREGATE AND SHALL
SO DESIGED THAT THE MATERILL CAN EE RETAIED IN THE MIXING CHAMBER UNDER VIGOROUS ACTION FOR AT LEAST IS SECONDS. IF THE MIXER IS OF THE CONTINUOUS-FLLOW TYPE. IT SHALL
HAVE TWIN MIXING SHAFTS AND SHALL BE EQUIPPED WITH A HAVE TWIN MIING SHAFTS AND SHALL BE EOUIPPED WITH A
HOPPER OR BIN AT THE DISCHARGE END OF THE MIER SO
DESIGED AS TO DESIGNED AS TO MINMIZE THE SEGREGATION OF THE MIXED
MTERALL AN OF SUH A CAPACITY AS TO PREVENT THE MAERIALS AND OF SUCH A CAPACITY AS TO PREVENT THE
NECESSITY OF STOPPING THE MIXER BETWEEN THE SECCESSIVE
TRUC TRUCK LOADS. UNDER NORMAL OPERATING CONOITIONS.
THE MIXTURE SHALLBE HANDLED IN SUCH A MANER AS
TO PREVENT CONTAMINATION, DEGRADATION. AND SEREGATION.
transportation of mixture. the blended material SHALL BE HAULED TO THE SITE IN VEHICLES THAT WILL PREVEN
CONTAMINATION, DEGRADATION, AND SEGREGATION OF TH MIITURE. THE MATERIAL SHALL CONTAIN AT LEAST 2\% MOISTURE
CONTENT BY WEIGHT TO MINIIIE SEGREGATON AND DEGRADATON

PREPARATION OF SUBBASE OR BASE COURSE. PREPARATIIN OF THE SUBBASE, ACCORDANE TO THE APLICABLE
SPECIFICATIONS 310 . 203. OR 304.

SPREADING. THE BLENDED MIXTURE SHALL BE DELIVERED TO THE PREPARED SUBBASE. SUBGRADE, OR BASE COURSE AND
SPREAD UIFRRMY WITH MINIUUM MANIPULATION TO PREVENT SEGREGATION. THE AGGREGATE SHALL BE IN COMPACTED LIFTS
NOT TO EXCEED 4 INCHES. SPREADER BOXES OR ASPHALT PAVERS WITH AUTOMATIC GRADE CONTROL SHALL OE USELAL WHEN THE NSOD II PLACED IN AREAS INACCESSIBLE TO SPREADERS, THE NSOB SHALL
APPROVED BY THE ENGINER.

COMPACTION. PNEUMATIC-TIRE ROLLERS, OR VIBRATORY COMPACTION. PNEUMATIC-TIRE ROLLERS, OR VIBRATORY
ROLLERS CONFORMING TO SPECIFICATIO UOI.II SHALL BE USED
TO COMPACT THE NSOB. WHEN THE SOUARE YARDAGE OF NSDB RO COMPACT THE NSOB. WHEN THE SOUARE YARDAGE OF NSDB
EXCEEDS 5,000 ON AROLICCT EXCEEDS 5,000 ON A PROUECT. ONE OR MORE CONTROL STRIPS
SHALL BE CONSTRUCTED AT THE BEGINNING OF THE WORK FOR THS
 AN ADDITIONAL CONTROL STRIP SHALL BE CONSTRUCTED WHEN A
CHANGE IS MADE IN THE SOURCE OR TYPE OF MATERIAL FROA CHANGE IS MADE IN THE SOURCE OR TYPE OF MATERIAL FROM
THE SAME SOUCEE, OR AS DIRECTED BY THE ENGINEER. EACH CONTROL STRIP SHALL CONSIST OF AN AREA AT LEAST 400 SQUARE YARDS. AND SHALL BE OF THE SAME MATERIAL AS THA
SPECIFIED ON THE REMAINDER OF THE PROJECT THE CONTROL STRIP SHALL BE COMPACTED BY A TWO PASSES FOR TPE 'N' AND FOUR PASSES FOR TYPE IIA
WITH THE COMPACTION EOUPMENT. SUR ACE APU WITH THE COMPACTION EQUIPMENT. SURFACE APPLICATION OF
WATER MAY BE REOUIRED, AS DIRECTED BY THE ENGINERR
 WHEEL, A VIBRATORY UNIT OVER THE ENTIRE SURFACE OR TH
LAFER. DENSITY OF THE CONTROL SECTION SHALI LAYER. DENSITY OF THE CONTROL SECTION SHALL BE
DETERMINED IN ACCORDANCE WITH THE CURRENT PROVISIONS
OF AASHTO T-238 METHOD A. OF AASOT T-2SO METHOD
UPON THE COMPLETION OF THE COMPACTION. A MINIWUM OF
TEN TESTS SHALL BE MADE AT RANDOM LOCATIONS. DETERMINED

BY THE ENGINEER. THIS SHALL DETERMINE THE AVERAGE
IW-PLACE DENSITY OF THE CONTROL STRIP. THE VALUE OF THIS
 FOR SHE PURPOSE OF MONITORING CONFORMANCE TO THCT COMPACTION REOUIREMENTS, THE NSDB CONSTTMUCTED ON TH PROJECT SHALL BE DIVIDED INTO LOTS CONSISTING O
APPROIMTELY 5.000 SQUARE YARDS OR LESS IN AREA. THE ENGIMEER SHALL DETERMINE THE AVERAGE LOO DENSITY
OF FIVE RANDOMLY SELECTED LOCATIONS IN THE LOT. THYS OF FIVE RANDOMLY SELECTED LOCATIONS IN THE LOT. THIS
AVERAEE REFERENCE DENSITY SHALL NOT BE LESS THAN 95\% OF THE AVERAGE REFERENCE DENSITY IN THE CONTROL STRIP IF A LOT FALLS TO MEET THLS REQUURE MENT IT SHAL BE
RECOMPACTED BY THE CONTRACTOR, AT NO ADITIONAL COST TO
 ENGINEEA SHALL DEEERMME THE NEW AVERAGE LOT DENSITY
IF THIS DENSITY STLLL FALLS TO MEET 95\% OF THE AVERGE IF THIS DENSITY STILL FALLS TO MEET 95\% OF THE AVERAGE
REFERNCE MAIMUM DENSITY, A NEW CONTROL STRIP SHALL BE CONSTRUCTED. WHEN THE NSDB IS PLACED IN AREAS INACCESSIBLE TO
ROLLLRSTHE NSDB SHALL BE COMPACTED UTLIZING A METHOD ROLLERS. THE NSDB SHALL BE
APROVED BY THE ENGINERR.
SHAPING AND FINISHING. AFTER THE NSDB HAS BEE CoMfacted the surface shall be shaped to the required WHEN THE SHAPING REDUCES THE DENSITY. THE SECTIO Shall be recompacted to conform to the original tested THE COMPAGTION AND SHAPING OF. THE NSOB SHALL PRODUCE Herm densitr ano cross section or the nsob.
LIMITIATIONS ON PLACING OPERATIONS. THE NSDB SHALL
NOT PELACED WHEN RAIN IS FORECAST WITHIN THE INTENDD WORKING PERIOD. IF RAIN OCCURS DURING PLACEWENT OF TH SDB, ALL OPERATHON SHALL CEASE.
THE NSDB SHALL NOT BE PLACED DURING ANY WEATHER CODITIONS THAT WOULD CAUSE ITS DEGRADATION. SEGREGATION

PROTECTION OF THE UNOERDRAINS. UNDER NO CIRCUMSTANC SHALL THE CONTRACTOR'S EOUIPMENT BE ALLOWED TO CRUSH THE
WDERDRAIN PIPE OR SYSTEM, AS A RESULT OF THE PLACEMENT UNDERDRALN PIPE OR SYSTEM. AS A RESULT OF THE PLACEMENT
OR COMSACIIN OF THE NSDB. DAMAGE TO THE UNDERDRAIN PIPE OR COMPACTION OF THE NSDB. DAMAGE TO THE UNDERDRAIN PIPE
OR SYSTEM SHALL BE RELLACED AT TE COTRACTR''S EXPESEE
SHE THE CONTRACTOR SHALL ENSURE A POSITIVE CONNECTIO
REEN ETWEN THE UNOERDRAIN BACKFILL AND THE NSDB REGAROLESS
OF THE SEOUENCE OF CONSTRUCTION CALLED FOR ON THE PLANS. OF THE SEOUENCE OF CONSTR
WOTES AND SPECIFICATIONS.
protection of the nsob. the contractor shall not
 HE NSDB. ONLY THE EOUIPMENT USED TO PLACE THE NEXT AYER SHALL BE ALLOWED ON THE NSOB. ALL HAULING UNITS
CARYYING MATERILL FOR THE NEXT LAYER OF PAVEMENT MUST SIDE DUMP ONTO THE NSDB.
THE NSDB SHALL BE PROTECTED FROM FINE MATERIAL THE NSDB SHALL BE PROTECTED FROM FINE MATERIAL
CONTAMINATION AT ALL TIES. ADEOUATE SURFACE AND SUBSURFACE DRAINAGE SHALL BE
PROVIDED FOR THE NSDB, SUBEASE, AND SUBGRADE AT ALL Imes. WHEN BITUMINOUS CONCRETE PAVEMENT IS CONSTRUCTED ON
THE NSDB; THE FIRST COURSE SHALL BE PLACED USING A PAVE HOUNTED ON TRACKS. THE FIRST COURSE SHALL BE ALLOWED TO URE OVERNIGHT BEFORE PLACING THE SUCCEEDING PAVEMENT
COUSSES. A MIIIUUM OF B". OF ASPHALT CONCRETE SHALL BE REOUIRED ON THE NSOB BEFORE ASPY ALT CONCRETE SHALL BE
nsob thickness tolerances. the maximum compacted DEPTH OF THE NSDB SHALL BE 4 INCHES. THE COMPCTED
THICKNESS SHALL COMPLY WITH THE PLAN TYPICAL SECTION THE THICKNESS TOLERANCE SHALL BE $\pm 1 / 2^{\prime \prime}$. THAL SECTPEAS Shall be Co
COMPACTING.

SURFACE TOLERANCE. THE CONTRACTOR SHALL CHECK THE ORK UNDER THIS ITEM WITH TEMPLATES. SLOPE BOARDS OR DTHER DEVICES SATISFACTORY TO THE ENGINEER. THE
COMPLETED WORK SHALL CONFORM TO THE PLANS WITHIN THE THE
OLOLING TOLERAACE:
THE FIISHED SURFACE SHALL BE UNIFORU AND AT NO PLACE THE FINIIHED SURFACE SHALL BE UNIIFORM AND AT NO PLACE
VARY MORE THAN $1 / 1$ INCH FROM A TN-FOOT STRAGGHT EDOE APPLIED TO THE SURFACE PARALLEL TO THE CENTERLINE OF pavement. areas shall be corrected by adoing material GRADING AND COMPACTING. AT NO ADDITIONAL COST TO THE
DEPARTMENT.
exposure to the elements. any nsob shall be covered b the next pavement course within 40 dars of the THE SHOULDER PAVEMENT SHALL BE PLACED WITHIN 75 days OF THE PLACEMENT OF THE NSDB. THE CONTRACTOR MAY CONSTRUCT THE NSDB AT ANY TIME
THAT COMPLIES WITH THE TEMPERATURE RESTRICTIONS OF THIS SPECIFIIATIN. HOWEVER. THE CONTRACTOR SHALL HAVE THE WITH THE UNDERDRAIRSED WICED THE NEXT LAYER OF PAVEMENT
SND FUNCTONING BEFORE THE ATMOSPHERIC TEMPERATURE IS BELOW $35^{\circ} \mathrm{F}$ FOR ANY LENGTH
OF TIME ALL DAMAGE CAUSED TO THE OVERLAYING PAVEMENT, NSDB.
SUBBASE, SUBGRADE AND UNDERDRAINS BY THE EXPOSURE TO SUBBASE, SUBGRADE AND UNDERDRAINS BY THE EXPOSURE TO
TEMPERATURES BELOW ${ }^{\circ} 5^{\circ}$ SHALL EE THE RESPONSIBLITY OF EME CONTRACTOR. THESE ITEMS SHALL BE PEMOVED AND
THE REPLACED BY THE CONTRACTOR AT NO ADOITIONAL COST TO PARTMENT.
THE NSDB SHALL BE COVERED BY THE NEXT LAYER OF PAVEMENT MAAILLNE AND SHOULDERS) ANO HAVE THE UNDERDRAIN
FUNCTINIIG BY THE END OF THE CONSTRUCTION SEASON IN given calendar year.
METHOD OF MEASUREMENT. THE YAROAGE UNDER THIS TTEM IN PLACE. THE WIDTH FOR MEASUREMENT WIETED AND ACCEPTED THE PAVEMENT SHOWN ON THE TYPICAL SECTIONS OF THE PLANS AND ADDITIINAL WIDENING WHERE CALLED FOR, OR OTHERWISE BE MEASURED HORIZONTALLY ALONG THE CENTERLINE OF EACH ROADWY OR RAMP. THE PLAN OUANTITIES AS ADUUSTED FOR CHANGES. ERRORS, AND DEVIATIONS IN EXCESS OF ALLOWABLE
TOLERANCES WILL BE THE METHOD OF MEASUREMENT.

PAYMENT. THE CONTRACT PRICE PAID PER SQUARE YARD FOR NON-STABILIZED DRAINAGE BASE SHALL INCLUDE FULL
COMPENTAION FOR FURNISHING ALL LABOR, MATERIALS. TOOLS, EOUIPMENT, ANO INCIDENTIALS. AND FOR DOING ALL THE WORK BASE. COMPLETE IN PLACE THE NON-STAALIAS $\frac{\text { ITEM }}{\text { SPECIAL }} \frac{\text { UNIT }}{\text { SOUARE YARD }} \quad$ DESCRIPTION special souare yard 4"non-stablizize 'No Draining base

ASPHALT TREATED FREE DRAINING BASE

ANUARY 24, 1992
DESCRIPTION. THIS WORK SHALL CONSIST OF CONSTRUCTING
N ASPHALT TREATED FREE ORAINING BASE (ATFDB, COUPSE OF AN ASPHALT TREATED FREE DRAINING BASE (ATFDB) COURSE O COARSE AGGREGATE AND ASPHALT CEMENT. MIXED IN A CENTRAL
PLANT AND SPREAD AND COMPACTED ON A PREPARED SURFACE II ACCORDANCE WITH THESE SPECIFICATIONS AND IN REASONABLY COSE CONFORMITY WITH THE LINES. GRADES AND TYPICAL
SECTIONS SHOWN ON THE PLANS OR ESTABLISHED BY THE ENGINEER.
ITEM 301. "EITUMINOUS AGGREGATE BASE," SHALL APPLY giations from these are as follows.
MATERIALS. THE COARSE AGGREGATE SHALL BE CRUSHED
CABONATE STONE, CRUSHED GRAVE AIF-COOLED BLAST FUPUACE SLAG. OR GRANULATED SLAG MEETIMG THE REQUIREMENTS O O3.04 AND MEETING THE GRADATION REQUIREMENTS OF 67 OR OF TABL RACTURED FACES. THE ASPHALT CEMENT SHALL BE AC-20 EETING THE REQUIREMENTS OF 702.01.
UNDER AASHTO T-96. LOS ANGELES ABRASION TEST, 40
EERCENT WEAR SHALL BE THE MAXIMUM ALLOWABLE FOR AL AGGREGATES USED UNDER THIS SPECIFICATION.
composition of haterials. the amount of asphal EEMENT COMBINED WITH THE AGGREGATE SHALL BE I. 5 TO 2.5 EEASED ON YISUAL NSPECTIN. ASPHALT CONTENT SHAL THOROUGHLY COATED AFTER MIXING.
 preparation of waterials. the atfob material shal BE MIXED WTHHN A TEMPERATURE RANGE DESIGNATED BY THE
ABORATORY. THIS MIX SHALL BE IMMEDIATELY LOADED INTD ABORATOCY:

VERIFICATION OF DESIGN. A MINLHUM OF 30 days prion O THE PRODUCTION OF THE ATFDB, THE CONTRAGTOR SHAL TO THE LABORATORY TO PERFORM THE TESTING NECESSARY TO DETERMINE THE MIX DESIGN ACCEPTANCE. THE CONTRACTOA HALL DELIVER TO THE LABORATORY THE NECESSAAY ASPHALT OOR THE DESIGN APPROVAL. THE CONTRACTOR SHALL NOTIFY he laboratory prior to the delivery of any material.
limitations on placing operations. the atfdb shall BE SPREAD ONLY WHEN THE ATMOSPHERIC TEMPERATURE IS
ABOVE 45 ABOVE $45^{\circ} \mathrm{F}$ FOR FIVE DAYS AFTER PLACEUENT
THE ATFOB SHALL NOT BE PLACED WHEN RAIN IS FORECAST THIN THE INTENDED WORKING PERIOD. IF RAIN OCCURS
the atfob shall not be placed during any weathen or contamination hld cause
spreading and coupacting. the spreading operation COMPACTION OPERATION.

- ESSS OTHERWISE DIRECTED, ROLLING SHALL CONSIST OF

SURFACE. THE ATFDB SHALL BE SUFFICIENTLY COMPACTED TO SUPPORT THE WEIGHT OF THE EQUIPMENT THAT WILL PLACE THE NEXT LAYER OF PAVEMENT. OVER COMPACTION OF THE ATFDB
TO THE EXTENT THE AGGREGATE PARTICLES ARE CRUSHED OR TO THE EXTENT THE AGGREGATE PA
BROKEN SHAL NOT BE PERITED.
ROLLING SHALL BE COMPLETED BEFORE THE MIXTURE
TEMPERATURE HAS DROPPED TO LESS THAN 100° F. ATFDB TEMPERATURE HAS DROPPED TO LE
SHALL NOT BE COOLED WTH WATER
TRANSEERSE CONSTRUCTION IOINT
TRANSVERSE CONSTRUCTION JOINTS SHALL BE FORMED BY
CUTING BACK IWTO THE COMPLETEO WORK TO FORM A VERTICAL $\xrightarrow{\text { cuTtin. }}$
LATERAL SUPPORT OF THE ATFDB WILL BE REQURED WHEN
THE ATFDB IS COMPACTED WITH A ROLLER AND SIGNIFICANT breakup of the atfob occurs at Ior near the outer porticn OF A COMPACTED LIFT. EMBANKMENT MATERILL, FORUS OR OTHER METHODS OF LATERAL SUPPORT SHALL BE USED. THIS LATERAL AT NO ADDITIONAL COST TO THE DEPARTMENT. THIS LATERAL AT NO ADIITINAL COST TO THE DEPARTMENT. THIS LATERAL
SUPPORT SHALL NOT CONTAMINATE THE ATFDB. ROLLERS. THE ATFDB SHALL BE COMPACTED UTILIING A METHOD ROLLEVSEDE BY THE ENGINEER.
 DEPTH OF THE ATFDB SHALL BE 4 INCHES. THE COMPACTED THICKNESS SHALL COMPLY WITH THE TYPICAL SECTION. THE CONTAACTOR SHALL ENSURE THE PLACED ATFDB COMPLIES
WITH THE SPECIFIED THICKNESS BY RANDOMLY CHECKING THE THICKNESS DURING CONSTTUCTIIN. ALL SECTION FOUND TO BE
LESS THAN THE SPECIFIED THICKNESS BY HORE THAN LESS THAN THE SPECIIIED THICKNESS BY HORE THAN $1 / 2$ ICNH
SHALL BE REMOVED AND REPLACED WITH ATFDB AT NO ADOITIONAL SHALL BE REWOED AND REPL
COST TO THE DEPARTMENT.

SURFACE TOLERANCE. THE FINISHED SURFACE SHALL BE UNIFORM AND AT NO PLACE VARY WORE THAN $1 / 2$ INCH FROM A
TEN-FOOT STRAIGHT EDGE APPLIED TO THE SURFACE PARALLEL TO THE CENTEPLINE OF THE PAVEMENT.
all sections found to be out of tolerance shall be REMOVED AND REPLACED WITH ATFDB WITHIN THE SPECLFIED

CURING. AFTER COMPACTION HAS BEEN COMPLETED THE ATFDB SHALL BE ALLOWED TO CURE FOR A MINIMUM OF ONE day before placing the next layer of pavement on the
atfob.
 SHALL THE CONTRACTTR'S EOUIPMENS BE ALLOWED TO CRUSSATHE
UNDERDRAIN PIPE OR SYSTEM, AS A RESULT OF THE PLACEMENT UNDERDRAIN PIPE OR SYSTEM. AS
OR COMPACTION OF THE ATFDB.
THE CONTRACTOR SHALL ENSURE A POSITIVE CONNECTION
BETEEN THE UNDERORAIN SYSTEM AND THE ATED RECARS BETWEE THE UNOERORAIN SYSTEM AND THE ATFDB REGAROLESS
OF TE SEOUENCE OF OPERATION ON THE PLANS. NOTES, OR
SPECIFICATONS

PROTECTION OF THE ATFDB. THE CONTRACTOR IS AOVISED THAT THE DEPARTMENT HAS NOT DESIGEND THE ATFDB FOR THE
PURPOSE OF BEING A HAUL ROAD HALNG PURPOSE OF BEING A HAL ROAD. HAULING UNITS AND OTHER
CONSTRUCTON VEHICLES WILL BE ALLOWED TO OPRATE ON THE ATFDB PROVIDED NO SIGNIFICANT DISPLACEMENT, BREAKUP. OR
CONTAMINATION RESUIS. IF THE ENGINEER. D
BREAKUP, OR CONTAMINATION OF THE ATFDB IS DISCLLACEMENT. hauling units and construction vehicles shall cease to
hauling units and construction vehicles shall refra FROM TRAVEL ON THE ATFDB, UNTIL THE CONTRACTOR HAS DISPLACEMENT, BREAKUP. OR CONTAMINATION ENGOT EXPECTED TO RECUR.
THE USE OF THE ATFDB, BY HAULING VEHICLES OA ALL DAMAGE TO THE ATFDB, SUBBASE, SUBGRADE OR UNDDPBRAIS CAUSED BY THE HAULING UNITS ANDIOR CONSTRUCTION VEHICLLS SHALL BE REPAIRED ANDIOR REPLACED BY THE CONTRACTO THE ATFDB SHALL PE PRE DEPARTMENT.
THETETEO FROM FINE MATERIAL CONTAMINATION AT ALL TIMES.
ADEQUATE SURFACE AND SUBSURFACE DRAINAGE SHALL BE
PROVIDED FOR THE ATFDB. SUBBASE, AND SUBGRADE AT AL TIMES.
When asphalt concrete pavement is constructed on th ATFOB: THE FIRST COURSE SHAALL BE PLACED USING A PAVE
WOUNTED ON TRACKS, THE FIPST COURSE SHAL CURE OVERNIGHT BEFORE THE SUCCEEDING PAVEMENT COURSS ARE PLACED.
EXPOSURE TO THE ELEUENTS. THE MEXT LAYER OF MAINLIN
PAVEMENT SHALL BE PLACED PAVEMEST SHALL BE PLACED WITHIN 40 DAYS OF THE END O
THE CURE PERIOD OF THE ATTDB. THE SHOULDER PAVEMENT SHALL BE PLACED WITHIN
OF THE END OF THE CURE PERIOD OF THE ATFDB.
OF THE END OF THE CURE PERIOD OF THE ATFDB. THE CONTRACTOR MAY COMSTRUCT THE ATFDB AT ANY TIME
HAT COMP SPECIFIIATION. HOWEVER. THE CONTRACTOR SHALL HAVE THE
ATFDB COMPLETELY COVERED WITH THE NEXT LAYER OF PAVEUENT ATFDB COMPLETELY COVERED WITH THE NEXT LAYER OF PAVEMEN
ITH THE UNDERORAINS PLACED AND FUNCTIONING BEFORE TH ATMOSPHERIC TEMPERATUAE IS BELOW $35^{\circ} F$ FOR ANY PERIOD F TIME. all damage caused to the atfob, subbase. subgrade 35
35 SHERORAINS BY THE EXPOSURE TO TEMBERETURS BE BELOW
SHE RESPONSIBILITY OF THE THESE ITEMS SHALL BE REMOVED AND THE CONTRACTOR THESE ITEMS SHALL BE REMOVED AND REPLACED BY THE
CONTRACTR AT NO ADOITIONAL COST TO THE DEPARTMENT THE ATFOB SHALL BE COERERD BY THE EEXT LAYER OF PAVEMENT
IMIANLINE AND SHOULDERS AND HAVE THE UNDEROAII SYSTEM (MIALLINE AND SHOULDERS) AND HAVE THE UNDERDRAIN SYSTEM
FUNCIINAL BY THE END OF THE CONSTRUCTION SEASON IN ANY GIVEN CALENDAR YEAR.
hil bethod of heasureiuent. the yardage under this item
 HE PAVEMENT SHOWN ON THE TYPICAL SECTIONE THE WIDTH OF THE PAVEMENT SHOWN ON THE TYPICAL SECTIONS OF THE PLAN
AND ADDITIONAL WIDENING WHERE CALLED FOR, OR OTHERWISE DIRECTED IN WRITING BY THE ENGINEER. THE LENGTH WIL BE MEASURED HORIZONTALLY ALONG THE CENTERLLNE OF EACH HOADWY OR RAMP. THE PLAN QUANTITIES AS ADJUSTED FO
HANGES, ERRORS, AND DEVATION IN EXCESS OF ALLOWABLE OLERANCES WILL BE THE METHOD OF MEASUREMENT.
BASIS OF PAYMENT. PAYMENT FOR ACCEPTED QUAATITIES
OMPLETE IN PLACE. WILL BE MADE AT CNT SUUARE YARD FOR:
ITE:
UNIT $\frac{\text { ITEM }}{\text { SPECIAL }} \frac{\text { UUIT }}{\text { SOUARE YARD }} \quad \frac{\text { DESCRIPTION }}{4^{\prime \prime} A S P H A L T}$ TREATED FREE DRAINIGG BASE

CEMENT TREATED FREE DRAINING BASE

februafy 14, 1992
DESCRIPTION. THIS WORK SHALL CONSIST OF CONSTRUCTING
CREM A CEEMNT TREARED FREE DRANNNG BASE CTFTDB ON A PREPPRED
SUBGRADE OR BASE COURSE IN ACCORDANCE WITH THESE
SPECIII SPECIFICATIONS AND IN REASONABLY CLOSE CONFORMITY WITH
THE LINES. HI ON THE PLANS OR ESTABLISHED BY THE ENGINEER

MATERIALS. CTFDB SHALL CONSIST OF A MIXTURE OF
RABLE AGGREGATE. PORTLAND CEMENT AND WATER. THE DURABLE AGGREGATE. PORTLAND CEMENT AND WATER. THE OR 701.04. POZZOLANS SHALL NOT BE SUBSTITUTED FOR PORTLAND CEMENT. THE AGGREGATE FOR CTFDB SHALL BE
CRUSAED CARBNATE STONE CRUHED GRAVEL, AIR-COOLED BLAST FURNACE SLAG, OR GRANULATED SLAG MEETING REOUIRELENTS OF TO3.02 AND MEETING THE GRADATIONS OF 67 OR 57 IN BY COUNT SHALL HAVE AT LEAST 2 MECHANICALLY FRACTURED
FACES. UNDER AASHTO T-96. LOS ANGELES ABRASION TEST. 40 PERCENT WEAR SHALL BE THE MAXIMUM ALLO
AGGREGATES USED UNDER THIS SPECIFICATION.
proportioning. hiximg, and transporting. proportioning. MIXING, AND TRANSPRTING CTFDB SHALL CONFORM TO 499
EXCEPT THE MIX DESIGN SHALL BE THE RESPONSIBLITY OF THE ONTRACTTR AND SHAL CONEORM WITH THE FOLLOWING REQUIREMENTS:
(1) The minhuum cement content by weight shall be 220
-
(2) THE WATER CEMENT RATIO SHALL BE APPROXIMATELY
O.36. THIS RATIO IS THE AMOUNT OF WATER. EXCLUSIVE OF THAT ABSORBED BY THE AGGREGATESS TO THE AAOUNT
OF CEMENT BY WEIGHT. THIS WATER CEMENT RATIO OF CEMENT BY WEIGHT. THIS WATER CEMENT RATIO
MAY BE CHANGED BY THE COTTRACTOR DEPENDING ON THE WORKABILITY OF THE MIYTURE.
(3) water reoucing aduixtures shall be used as per 499.03. VERIFICATION OF DESIGN. A MINWUM OF 30 DAYS PRIOR TO THE PROOUCTION OF THE CTFDB THE CONTRACTOR SHALL SUBMIT A
COMPUTED BLEND OF AGGREGATES CEMENT CONTENT, ADMIXTURE, AND WATER CONTENT TO THE LABORATORY TO PERFORM THE TESTING NECESSARY TO DETERMINE THE MIX DESIGN ACCEPTANCE. THE
CONTRACTOR SHALL DELVE TO THE LAORATORY THE NECESSARY CEMENT, AGGREGATE AND ADMIXTURE TO MAKE 15 CUBIC FEET OF THE ETF D EOR THE DESIGN APPROVAL. THE CONTPACTOR SHALL
NOTIFY THE LABORATORY PRIOR TO THE DELIVERY OF ANY MATERIAL

EQUIPMENT. ALL EOUIPHENT NECESSARY TO MIX, TRANSPORT. PLACE. COMPACT, AND FURNISH THIS LAYER SHALL BE
BEFORE THE WORK WILL BE PERMITED TO START.

PLACING AND SPREADING CTFOB. IF THE PLAN DOES NOT REOURE THE SUBGRADE OR BASE TO BE PRIMED IT SHALL BE
SPRINKLED WTH WATER AT SUCH TIMES AND IN SUCH MANER AS DIRECTED BY THE ENGINEER, SO IT WILL BE IN A THOROUGHLY
MOISTENED CONOITION WHEN THE CTFDB IS DEPOSITED THEREON. WORKUEN SHALL NOT BE ALLOWED TO WALK IN FRESHLY MIXED
CTFD WITH BOOTS OR SHOES COATED WITH EARTH OR FOREIGN CTFDB WILH BOOTS OR SHOES COATED WITH EARTH OR FOREIGN
MATERIAL. ALL SPREADING OPERATIONS SHALL PRODUCE A SMOOTH
UNIFORM LAYER PRIOR TO THE COMPACTION OPERATION. AN APPROVED SPREADER WILL BE REOUIRED WHEN THE WIDTH

MORE FEET AND THE TOTAL SOUARE YARDAGE OF ANY GIVEN WIDT ON THE PROJECT EXCEEDS 5.OOO. THE ENGINEER SHALL APPROV LIMITATIONS ON PLACING OPERATIONS. THE CTFDB SHAL BE SPREAD ONLY WHEN THE ATMOSPHERIC TEMPERATURE I
ABOVE $45^{\circ} \mathrm{F}$ AND THE PREDICTED TEMPERATURE IS TO PEMA ABOVE 45० FOR FIVE DAYS AFTER PLACEMENT.
WITHIN THE INTENDED WORKING PERIOD. RAIN IS FORECAS DURING PLACEMENT OF THE CTFDB. ALL OPERATIONS SHALL CEASE THE CTFDB SHALL NOT BE PLACED DURING ANY WEATHE OR CONTAMINATION.
compaction and shaping. the compaction and shapiso COMPACTION AND SHAPING. THE COMPACTION AND SHAPING
OF THE CTOB SHALL PROOUCE UNFFRM DENSTI AND CROSS
SECTION. THE METHOD OF COMPACTION SHALL BE APPROVED BY THE ENGINEER. THE CTFDB SHALL BE COMPATED BY STEEL-WHEELLED ROLLERS, WOIF FED SLIPFORM PAVERS (USING VIBRATORY PLATESS), OR
HHGH DENSTY SCREED PAVERS. THIS SHALL BE ACCOMPLISHED BY SEATING THE AGGREGATE, WITHOUT CRUSHING THE AGGREGATE STEEL-WHEELEO ROLLERS USED FOR COMPACTION SHALL WEIG FROM 6 TO 10 TONS. VIBRATORY ROLLERS MEETING THE ABOV
REOUIREMENTS MAY BE USED PROVIDED THE VIBRATORY UNITIS REOUIREMENTS MAY BE USED PROVIDED THE VIBRATORY UNIT
TRNED OFF. ULES OHERWIS OLRECTED, ROLLING SHAL CONSIST OF NOT LESS THAN 2 PASSES OVER ANY GIVEN POIN OHE SURFACE.
COMPACTION CREAIPACIIN SHALL BEGIN WITHIN III HOUR OF THE
SPREAING OPEATION. SUFFICIENT SPREADING AND COMPACTIO EQUPMEN SHALL BE PROVIDED BY THE CONTRACTOR, TO ALLOO FOR NOT WORE THAN $1-1 / 2$ HOURS TO ELAPSE BETWEEN THE TIM
WATER IS ADOED TO THE COMBINED AGGEGATE AND CEMENT AND THE TIME COMPACTION IS COMPLETE.
WHEN UTLIIING THE SLIP FORM OR HIGH DENSITY SCREED
OPERATION AND THE PLACED CTFDB DOES NOT HAVE UNIFOR OPERATION AND THE PLACED CTFDB DOES NOT HAVE UNIFORM
DENSITY AND CROSS SECTION. IT SHALL BE CORRECTED BY UTILIZING A STEEL-WHEELED ROLLER OR OTHER METHOD LATERAL SUPPORT OF THE CTFDB WILL BE REQUIRED WHE THE CTFDB IS COMPACTED WITH A ROLLLER ANO SIGNIFICANT
 OF A COMPACTED LIFT. EMBANKMENT MAAERIAL, FORMS OR OTHE
METHOD OF LATERAL SUPPORT SHALL BE USED. THIS LATERA
SUPPRT SHAL SUPPORT SHALL BE APPROVED BY THE ENGINEER AND PROVIDE
AT NO ADOITINAL COST TO THE DEPARTMENT. THIS LATERAL AUPPORT SHALL NOT CONTAMINATE THE CTFDB. WHEN THE CTFDB IS PLACED IN AREAS INACCESSIBLE TO
ROLLERS. THE CTFDB SHALL BE COMPACTED UTLIZING A METHOD ROLLERS. THE CTFDB SHALL BE COMPACTED UTLIIIING A METHO
APPROVED BY THE ENGINER. CONSTRUCTION JIITS SHALL BE MADE BY CONSTRUCTING AT
THE END OF EACH DAY'S WORK OR WHEN WORK IS SUSPENAT THE END OF EACH DAY'S WORK OR WHEN WORK IS SUSPENDED
FOR MORE THAN 3 HOURS. A STRAIGHT TRANSVERSE CONSTRUCTIO
 VORK TO FORM A VERTICAL FACE. THE CUTTING OF. THE CTFD
SHALL BE DONE BY UTIIIIING A DIAMOND BLAD SAW. SHALL BE DONE BY USEDIING A DIEU OF THIS PROCEDURE.
BULKHEAD MAY BE USD IN
CURING. 6 -MIL WHITE OPAOUE POLYETHYLENE SHEETING CONFORMING TO 705.06 SHALL BE PLACED OVER THE COMPLETED
CTFDB COURSE IMMEDARELY AFTER COMPACTION AND KEPT IN PLACE FOR 4 DAYS FOLLOWING PLACEMENT OF THE CTFDB. CONCRETE CURING MEMBRANES SHALL NOT BE ALLOWED.
TRAFFIC SHALL NOT BE ALLOWED ON THE CTFDB FOR ONE DA

A CURE DAY Shall be defined as a 24 consecutive hour BE MAINTAINED ABOVE TEMPERATURE OF THE CTFDB SHALL OMPLETED. ANY DAY DUVING WHICH THE TEMPERATURE OF THE
TFDD FALLS BELOW 45° F SHALL NOT BE COUNTED AS A CURE DAY.

PROTECTION OF THE UNDERDRAINS. UNDER NO CIRCUMSTANC SHAL THE CONTRACTOR'S EQUIPMENT BE ALLOWED TO CRUSH THE
WDERORAIN PIPE OR SYSTEM. AS A RESULT OF THE PLACEMEN SALLRDAIN PIPE OR SYSTEM. AS A RESULT OF THE PLACEMENT
OR COMPACTION OF THE CTFDB. THE CONTRACTOR SHALL ENSURE A POSITIVE CONNECTION BETWEEN THE UNDERDRAIN ACKFILL AND THE CTFDB REGARDLESS
OF THE SEOUENCE OF CONSTRUCTION CALLED FOR ON THE PLANS, OF THE SEOUENCE OF CONST
NOTES OR SPECIFICATIONS.
PROTECTION OF THE CTFDB. THE CONTRACTOR IS ADVISED HURPOSE OF BEING A HAUL ROAD. HAULING UNITS AND OTHE CONSTRUCTION VEHICLES WILL BE ALLOWED TO OPRATE O OT THE
CTFDB PROVIDED NO SIGNIFICANT DISPLACEMENT BREAKUP OR CONTAMINATION RESULTS. IF THE ENGINEER DETERMINES SIGNIFIIANT DISPLACEMENT, REAKUP. OR CONTAMINATION OF THE CTFDB IS OCCURING, TH OPERAE ONT THE CTFDD.
HAUNG UNTIS AND CONSTRUCTION VEHILLES SHALL REFRAI HAULING UNITS AND CONSTRUCTION VEHICLES SHALL REFRAIN
ROM FURTHER TRAVEL ON THE CTFDB UNTLL THE CONTRACTOR ROM FURTHER TRAVEL ON THE CTFDB. UNTLL THE CONTRACTO
HAS SATISFACTORILY DEMONSTRATED TO THE ENGINEER THAT THAT DISPLACEMENT, BREAKUP OR CONTAMINATION IS NOT XPECTED TO RECUR. CONSTRUCTION EOUIPMENT IS AT THE RISK OF THE CONTRACTOR LL DAMAGE TO THE CTFDB, SUBBASE, SUBGRADE OR UNDERDRAINS AUSED BY THE HAULING UNITS ANDIOR CONSTRUCTIN VEHACLES
HALL BE REPAIRED ANDIOR REPLACED BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE DEPARTMENT. THE CTFDB SHALL BE PROTECTED FROM FINE MATERIAL
CONTAMINTION AT ALL TIMES.
ADEOUATE SURE SUE ADEUATE AT ALFACE TIMES. SUBSURFACE DRAINAGE SHALL BEE
PROIDED FOR THE CTFDB, SUBBASE, AND SUBGRADE AT ALL TIDES PROVIDED FOR THE CTFDB, SUBBASE, AND SUBGRADE AT ALL TIMES.
WHEN BITUMINOUS OONRETE PAVEMENT IS CONSTRUCTED ON THE CTFDB; THE FIRST COUREE SHALL BE PLACED USING A PAVER MOUNTED ON TRACKS. THE FIRTS COURE SHALL BE ALLOWED TO
CURE OVERNIGHT BEFORE PLACING THE SUCCEEDING PAVEMENT CURE OVE
COURSES.

CTFDB THICKNESS TOLERANCES. THE MAXIMUM COMPACTED DEPTH OF THE CTFD SHALL BE 4 INCHES. THE COMPACTED
THICKNESS SHALL COMPLY WITH THE PLAN TYPICAL SECTION. THE CONTRACTOR SHALL ENSURE THE PLACED CTFDB COMPLIES
WITH THE SPECIFIED THICKNESS BY RANOMY CHEKKG THE WITH THE SPECIFIED THICKNESS BY RANDOMLY CHECKING THE
THICKNESS DURING CONSTRUCTION. ALL SECTIONS FOUND TO BE
 HALL BE REMOVED AND REPLACED WTTH CTFOB WITHIN TOLERANCE
T NO ADOITONAL COST TO THE DEPARTUENT. SPECFICATON A N ADDITIONAL COST TO THE DEPARTM
45II 6 SHALL BE WAIVED FOR THIS ITEM.
SURFACE TOLERANCE. THE CONTRACTOR SHALL CHECK THE ORK UNOER THIS ITEM WITH TEMPLATES, SLOPE BOAROS OR OTHER DEVICES SATISFACTORY TO THE ENGIIEER THE
COMPLETED WORK SHALL CONFORM TO THE PLANS WITHIN THE COMPLETED WORK SHALL
OLLOWING TOLERANCE:
the finished surface shall be uniform and at no place ARY MORE THAN $1 / 2$ INCH FROM A TEN-FOOT STRAIGHT EDGE APPLIED TO THE
HE PAVEMENT.

AELL SECTIONS FOUND TO be OUT OF TOLERANCE SHALL BE REMOVED AND REPLACED WITH CTFDB WITHIN THE SPECII
TOLERANCE AT NO ADOITIONAL COST TO THE

EXPosure to the elements. the next layer of mainline
pavement shall be placed within 40 days of the end of the CURE PERIOD OF THE CTFDB.
THE SHOULDER PAVEMENT SHALL BE PLACED WITH 75 DAY
 THAT COMPIIES WITH THE TEMPERATUPE THE CTFDB AT ANY TIME THAT COMPLIES WITH THE TEMPERATURE RESTRICTIONS OF THIS
SPECIFICATION. HOWEVER, THE CONTRACTOR SHALL HAVE THE
 WITH THE UNDERDRAINS PLACED AND FUNCTIONNG BEFORE HE
ATMOSPHERIC TEMPERATURE IS BELOW 35° F FOR ANY PERIOD OF TIME.
ALL DAMAGE CAUSED TO THE CTFDB, SUBBASE, SUBGRADE,
AND UNDERDRAINS BY THE EXPOSURE TO TEMPERATURES BELOW AND UNDERDRAINS BY THE EXPOSURE TO TEMPERATURES BELOW
3DF SHALL BE THE REPONSBIBLITY OF THE CONTRACTOR. THESE ITEMS SHALL BE REMOVVD AND REPLACED BY THE CONTRACTOR
AT NO ADDITIONAL COST TO THE DFARTMENT THE CTFDB SHALL BE COVERED PAVE CTFD SHALL BE COVERED BY THE NEXT LAYER OF
PASINLINE AND SHOULDERSI AND HAVE THE UNDERDRAIN SYSTEM FUNCTIONAL BY THE END OF THE CONSTRUCTION SEASON

Method of measurement. the yaroage under this item WILL BE THE NUMEER OF SOUARE YAROS COMPLETED AND ACCEPTED
IN PLACE. THE WIDTH FOR MEASUREMENT WILL BE THE WIDTH OF THE PAVEMENT SHOW ON THE TYPICAL SECTIONS OF THE PLANS DIRECTED IN WRITING BY THE ENGINEER. THE LENGETWISE BE MAASURED HORIZONTALLY ALONG THE CENTERLINE OF EACH
ROAWAY OR RAMP. THE PLAN OUNTIES AS ADUSTLD FOR ROADWAY OR RAMP. THE PLAN QUANTITIES AS ADJUSTED FOR
CHANGES, ERRORS, AND DEVIATIONS IN EXCESS OF ALLOWABLE CHANGESS ERRORS. AND DEVIATINS IN EXCESS OF ALL
TOLERANCES WILL BE THE METHOD OF MEASUREMENT.
payment. the contract price paid per souare yard FOR CEMENT TREATED FREE DRAINING BASE SHALL INCLUDE FULL
COMPENSATION FOR FURNISHING ALL LABOR, MATERIALS, TOOLS, EOUIPMENT, ANO INCIDENTIALS. AND FOR DOING ALL THE WORK INVOLVED IN CONSTRU,
COMPLETE IN PLACE.
$\frac{\text { ITEM }}{\text { SPECIAL }} \frac{\text { UNIT }}{\text { SOUARE YARD }} \frac{\text { DESCRIPTION }}{4^{\prime \prime} \text { CEMENT TREATED FREE DRAINIGG BASE }}$

MAINTENANCE DF TRAFFIC

6/4 MAINTAINING TRAFFIC

through traffic shall be maintained in each direction at all times except
for the coring in phase two and for the detours as shown on sheets ig ThPOUGH 22. TRAFFIC SHALL BE MAINTAINED AS PER THE SPECIIFICATIONS, PLAN DETALLS, STANDARD DRAWINGS AND AS OUTLINED IN THE CONSTRUCTION AND MAITE ENANCE
OPERATIONS SECTIOA OF THE OHIO MANUAL OF UNFIFPM TRAFFIC CONTROL DEVICES OPERATIONS SECTION OF THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVI
FOR STREETS ANO HIGWAYS, CUREENT EDTION WTH THE LATEST REVISIONS.
A minimum of one lane of through traffic shall be maintained as per plan DETALLS \& NOTES, AND STANDARD
AND PLAN INSERT SHEET 2095.40.
in adoition, the following reouirements shall apply
the contractor shall submit, in writing, a schedule of operations to the DIRECGR AND RECEINE APPRTAL BEFORE WOR D STARTED ON THE PROJECT. PRIJR OPERATIONS WITH THE LOCAL STATE HIGHWAY PATROL

The contractor shall designate a qualif Ied individual subuect to the approval
of the engine mer, To be avallable and on call during The now-working Perioos THAT TRAFFIC IS DIVERTED FRRM ITS NORMAL PATH. THHS IINDIVIDUAL SHALL AT A
MINIUUM OF ONCE EVERY CALENDAR DAY INSPEGT, DOCUMENT REPAIP AND

 CALL AND HAVE SUFFIIIIENT INVENTORY ON HAND TO REPAIR OR REPLACE THE DAMAGED
OR MISSING TRAFFIC CONTROL DEVICES.
maintenance of traffic requirements
THE FOLLOWING IS A LIST OF GENERAL REQuIREMENTS AND INTENTS that mUST be
COMPLIED WITH DURING THE SEQuENCE OF CONSTRUCTION FOR THIS PRONECT.
I.) PLAN INTENT
THE ILTENT OF THIS PLAN IS TO REHABILTATE THE EXIITTING PAVEMENT BY REPLACING
FAllED SLABS AND JOINTS, ADSING CONCRETE SHOULDEPS, GRINING THE PAVENENT AND SEALING CRACKS AND JOINTS. IN ADOTION THIS PPOUECT WIL BE USED TT INTAND

A. SHRP C 206, FAST SET FULL DEPTH REPAIRS. FAST SET REPAIRS WILL BE INSTALLED
IN THE EASTBOUNO DRIVING LAES FROM STATIONS $1828+26$ TO $1832+61$, $58+26$ TO $63+00$, IN HHE EASTBOUNO DRIVING LANES FROM STATTONS $1828+26$ TO $1832+66150+26$ TS $63+00$,
 CHERS, TOM YY FROM ERES CONSULTANTS (217-356-4500) AN THE PORTLAND CEMENT ASSOCIATION, WILL BE COLLECTTNG CONCRETE FOR CASTING APPROXIIMATELL 22 CYYLINDERS
AND 3 BEAMS AT EACH LOCATIN TAKING VIDEOS. ANN TAKING TWO CERES WULIUTEY

 1992. COST FOR THE ADOITIONAL CONCRETE AND ANY ADDITIONAL MATERIALS OR LABOR

B. BASE DRAINAGE LAYERS. FREE DRANING BASES WIL BE INSTALLED IN THE WESTBOUND
LANES FROM STATIONS $1835+10$ TO $14+60$ AND $56+06$ To $90+23$. DR. BRIAN RANDOLPH, THE

 AND COOPERATING WITH THE UNIVERSITY OF TOLEDO DURING CONSTRUCTION. THIS BASE
WILL BE BUIL 3 FEET BEYONO THE CENTERLINE OF THE LANES IN PHASES $2 \& 3$.
C. installation of pavement instrumentation. instrumentation will be installed

 UNIVERSTY. SEE SHEETS 262 -267 FOR ADOITIONAL NOTES AND DETALLS.
D. SKID RESIITANCE TEST. MANUFACTURED SAND SHALL BE USED IN THE CONCRETE

 2.) CLAUS AND SUNNYSIDE ROAD BRIDGES CANNOT BE CLOSED AT THE SAME TIME AND May be closed for a maximum of thirty (30) oays each.
3.) THE WORK ON THE REST AREA RAMPS SHALL BE COMPLETED WITHIN 15 DAYS AND THE RAMPS REOPENED. RAMP "W", RAMP "Z",AND THE VERMLLION IITERCHANGE BRIDGE
SHALL BE DONE AT THE SAME TMME AND WITHIN THIRTY (30) DAYS. RAMPS "X" AND Y" CAN BE CLOSED FOR FIFTEEN II5) DAYS AND MUST BE DONE WTHIN THE CLOSURE

 CLOSED. THE LEFT OUTSIDE LANE OF BAUMHART ROAD SHALL BE CLOSED WHLLE WOR
IS COMPLETED AT THE END OF RAMPS "G" AND"H". THIS LANE CLOSURE SHALL B IMITED TO TWO DAYS.
4.) the work on the mainline in the area of the ramps shall be done at the 5. Time as the ramp. closure.
5.) ALL JOIN REPAIAS GREATER THAN TEN FEET BUT LESS THAN SIXTY FEET SHALL 5. and replaced within the same working day.
6.) two lane closures (right or left) with less than a one mile gap between
maintenance of traffic - closures
Closure limitation and interiu completion date
The following roads and ramps wil reaure the closing of traf fic. these THE FOLLOWING ROADS ADD RAMPS
ROADS ARE IDENTIFIED AS FOLLOWS:

poad name	structure	MAXIMUM LENGTH COONSECUTVE CALENDAR DAYS	LAMIDAATES
Sunnyside road	LOR-2-0223	30 days	\$200 / DAY
ClaUs road	LOR-2-0262	30 days	\$200 / OAY
pest area ramps		15 days	8600 / DAY
RAMPS "W" \& "ح"		30 days	8600 / DAY
RERMILIONX "x" \& ${ }^{\text {a }}$ "YCCHANGE	LOR-2-015	15 dars	\$600 / DAY
RAMP "G"		15 dars	\$600 / DAY
RAMP "H"		15 days	\$600 / DAY
baumhart road		2 dars	8600 / DAY

The maximum length of closure for each individual road or ramp shall not
Exceed The number of consecutve calendar days as shown above. ONCE ClOSURE OF THE ROAD or raMp is made, THE CONTfactor shall dillgently pursue ter

The number of consecuttve calendar days shown above shall be consioerred as an
 dAYs THAT THE ROAD OR RAMP REMAINS ClOSED TO THE TRAFFIC, THE
BE ASSESSED LIOUIDATED DAMGGES, IN THE AMOUNT SHOWN ABOVE.
the contractor shall notify the project engineer and vermilion city engineen AT LEAST SEVEN (T) CALLENDAR DAYS PRIIO TO THE CLOSURE OF ANY ROAD OR RAMM. THE
CONTRACTOR SHALL BE RESPONSIBLE FOR FURNISHING, INSTALLING, MAINTAIING AND contractor shall be responsible for furnishing, installing, maint aining ang
pemoving the gates and barricade (at the approxmate work limis) and The dVance warning signs as shown on standard drawing mt-101.60
the contractor shall also provide, erect, maintain, and remove all sign install
ations on sheets ig thru 22.
gen supports and lights for "road closed to thru traffic" signs shall be as ll permanent traffic control iteus such as signing and pavement markings ALL PERMAAENT TRAFFII CONTROL ITEMS SUCH AS SIGNING AND
SHALL BE IN PLACE PRIOR TO REOPENING ANY ROAD TO TRAFFIC.
the cost to provide, erect, maintain and remove all traffic control devices SHALL Be INClUDED II, THE LUMP SUM A
SEPARATELY ITEMIZD IN THE PLANS.
ITEM $6 / 4$ WORK zONE MARKING SIGNS
he following estimated quantities have been carried to the general summary OR USE AS DIRECTED BY THE ENGIIERE:
ITEM GIA WORK ZONE MARKIGG SIGNS
 ten 014 TEMPORARY PAVENENT MARKIGS

THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN CARRIED TO THE GENERAL SUMMAR
FOR USE AS OIRECTED BY THE ENGINER TO PROVID WORK ZONE PAVEMENT MARKINGS. OR USE AS DIRECTED BY THE ENGINEER TO PROVIDE WORK ZONE PAVEMENT MARKINGS.
 HREE.
ITEM 614
6LEMPORARY LANE LINE, CLASS L, 740.05, TYPE C
7.00 MI .
 W PHASE FOUR
TTEM 614 TEMPORARY CENTERLINES, CLASS II, 740.055 , TYPE C O 0.26 MI.
HESE PAVEMENT MARKINGS SHALL BE USED FOR VERMILION ROAD AND WEST RIER ROAD. item special - replacement signs
LAT SHEET SIGNS ARE FURNISHED BY THE CONTRACTOR IN ACCORDANCE WITH THE
REOUIREMENTS OF THE PLANS, SPECIFICATIONS AND PROPOSAL WHICH BCCOE促 REPLACED IN KIND WHEN ORDERED BY THE ENGINEER. REPLACEMENT SIGNS SHALL BE EEW. OTHER MATERIaLS MAY be uSED but in gooio condition subject to approval
ayment for the new signs shall be made at the bid paice per savare foot OR "TTEM SPECIAL - REPLACEMENT SIGN" AND SHALL INCLUDE THE COST OF REMOVING ND DISPOSING OF THE DAMAGED SIGNS, HARDWARE AND SUPPORTS; AND PROVIDIN

a estimated quantity of 100 sa. ft. has been provided in the general
ITEM SPECIAL - REPLACEMENT DRUMS
drums furnished by the contractor in accordance with the reauirements THE PLANS, SPECIFICATTONS AND PROPOSAL WHICH BECOME DAMAGED BY TRAFFIC
FOR REASONS BEYOND THE CONTROL OF THE CONTPACTOR SHALL BE REPLACED IN KIND hen ordered by the engineer. replacement drums shall be new. PAYMENT FOR THE NEW DRUM SHALL BE MADE AT THE BID PRICE PER EACH FOR "ITEM
SPECIAL - REPLACEMENT DRUM" AND SHALL INCLUDE THE COST OF REEOVM ANO SPECIAL - REPLACEMEN DRUM" AND SHALL INCLUD THE COST OF REMOVING AND DIS-
OSING OF THE DAMGEED DRUM: AND PROVIING ANO MAINTAINING THE REPLACEMENT contract requirements for the original druu. an estimated quantity of 200 each replacement. drums has been provided
in The general summary.

MAINTENANCE DF TRAFFIC

sequence of operations

it is the intent of the following seouence of operations to provide A WORK AREA FOR THE CONTRACTOR WHILE ALSO MAANTAINING TRAFFIC IN A
WANMER WHICH IS SAFE FOR THE TRAVELING PUBLIC; THEREFORE, THE PHASES MANER WHECH IS SAFE FOR THE
SHALL BE STRICTLY ADHERED TO.

ALL TEMporary or pernanent pavement markings shall be in place before
Any paveuent is opene to trafelc.
PhASE ONE
THE CONTRACTOR SHALL REPLACE THE OUTSIDE BERM WITH AN 8' SHOULDER IN THE
DESIGNATED AREAS WITH TEMPORARY PAVEMENT USING A ONE-LANE CLOSURE PER REAS OF SHOULDER REPLACEMENT

Sto. $150+12$ to $S t o .160+10$
so. $167+67$ to $\mathrm{Sta} .175+76.7$
sto. $167+67$ to Sto. $1175+76.71$
sto. $177+55.21$ to sto. $183+56$

WESTBOUND
Sta. $48+90$ to Sta $5+28$.
Sto. $55+81.25$ to Sto.
72
Sta. 95978 to Sto.
Sta. $112+72$ To Sto.
Sta. $136+82$ to Sta.

A Quantity of 9825 S.Y. of ITEM 615 TEMPORARY PAVEMENT, CLASS A, AS PER PLAM
AFTER THE SHOULDER REPLACEMENT WORK IS COMPLETED, THE CONTRACTOR SHALL THEM
PERFROMM THE JOINT REPAIRS IN THE FOLLOWING AREAS:
EASTBound
REA A: STA. $147+97$ TO STA. $150+05$
REA B: STA. $113+12$ TO STA. $115+94$
REA C: STA. $58+26$ TO STA.
ST
PEA D: STA. $1828+26$ TQ STA. $1832+6$

REPAIR	PLAN NOTE
CLASS TYPE	SHEET
HESS	95
FTI	96
RSPCI	97
RSCI	98

WESTBOUND
REA E: STA $103+30$ TO STA 10708 AREA E: STA. $109+40$ TO STAAA. $112+44$
AREA F: STA.
AREA. STA. $129+43$ TO STA. $136+63$

VES
RSPC2
AREA H: STAA. $14+25$ TO STA. $147+82$
Fs
MSU

99
100
101
102
102 A
1

he joint repairs shall be performed in alphabetical order on each side ano Phase two
the contractor shall perform the work on the inside lanes, which shall INCLUDE THE JoINT REPAIR, FULL-DEPTH PAVEMENT, BERM REPLACEMENT. AND
BRIOGE REHABLITATION. THE JOMNT REPAIRS SHALL BE DONE PRIOR TO THE BERM REPLLCE
 DURING THIS PHASE THAT WHLL REOUIRE THE CLOSING OF BOTH LANES FOR A BPIEF PERIOD ODOT WIL PROVIDE TRAFFIC waintenance for the coring procedure.

Phase three
THE CONTRACTOR SHALL PERFORM THE WORK ON THE OUTSIDE LANES, WHICH SHALL INCLUDE THE JOINT REPAIR, FULL-DEPTH PAVEMENT. BERM REPLACEMENT, ANG
BRIDGE REHABIITATION. THE JOONT REPAIRS SHALL BE DONE PRIOR TO THE BERM REPLCE brioge rehablitation. the joint repairs shall be done prior to
went. oetalls for this phase are shown on sheets 38 Thru 52
PHASE FOUR
the contractor shall grino ano seal the pavement using a one-Lane closure
per stanaard drawing ut-95.30. This work shall be perforued on both lanes and PER STANDADD DRAW:

BRIDGES
WEST RIVER ROAD AND VERMILION ROAD BRIDGES WILL BE CONSTRUCTED
 CLAUS ROAD BRIDGES MAY BE CLOSED FOR A MAXIMUM OF 30 DAYS EACH
BUT THEY MAY NOT BE CLOSED AT THE SAME TIME. THE DETOUR PLAN FOR THESE BRIDGES IS SHOWN ON SHEET IS AND 20 . DETALLS FOR THE VERMLION INTERCHANGE bridge closure are shown on sheet 2 .
maintenance of traffic-overpass closures
two lane traffic on the freeway sháll be maintained at all times in each DIRECTION, UNLESS OTHERWISE SHOWN IN THE PLANS, DURING THE REHABILTATION OF THE EXISTING STRUCTURES OVER THE FREEWAY EXCEPT DURING THE RE
A SAFETY NET OR PLATFORM SHALL BE REQURED TO PROTECT THE ROADWAY OF
THE FREEWAY OURING RETROFITITING OF EXISTING CONCRETE PARAPETS. THE THE FREEWAY DURING RETROFITTING OF EXISTING CONCRETE PARAPETS. THE
DESIGN OF THE NET OR PLATFORM SHALL CONFORM WITH OSHA REOUIEEMENTS AND HAVE APPROVAL FROM THE ODOT BRIDGE BUREAL ANO SHALL REMAIN IN PLACE UNTH WORK HAA BEEN COMPLEETED. THE EXIISTING VERTICAL CLEARANCE OVER THE FREEWAY SHALL
BE MAITIANED AT ALL TIWES.

In THE EVENT A Lane Restriction on the freeway is necessary, the method of
Installation and design of temporary lane closure shall be accoroing to the InSTALLATION AND DESIGN OF TEMPORARY LAME ClOSURE SHALL BE ACCORDING TO THE
APPROPRIATE STANDARO DRAWIMG. COST FOR THE ABOVE WORK SHALL BE CONSIOERED APPROPRIATE STANDAAD DRAWING. COST FOR THE ABOVE WORK SHALL BE
INCIDNTAL ANO SHALL BE INCLUEED IN TTEM. GIA MAINTAINNG TRAFFIC.
maintenance of traffic - S. R. 2 over side roads
TWO WAY TRAFFII ON BAUMHART ROAD SHALL BE MAINTAINED AT ALL TIMES DURING
REPLACEMENT OF BEAAINGS AND REHABILITATION OF MAINLINE BAIDGES EXCEPT DURING REPLACEMEN OF BEARINGS AND REHABILITATION O HATMLNE BEAR
THE FOLLOWING OPERATIONS OR AS DIRECTED BY. THE ENGINER:
1.) demolition of the existing bridge patapets
2.) during the construction of the proposed parapet over THE LOCAL ROAD OR STATE ROUTE WHERE THE ENGINEER
BELIEVES TEMPORAAY CLOSURE OF A TRAFFIC LANE IS WARANTED.
a Safetr net or platform shall be reoured to protect the underpass road-war OURING REMOVAL OF EXISTING AND CONSTRUCTION OF NEW CONCRETE PARAPETS. THE DESIGN OF THE NET OR PLATFORM SHALL CONFORM WITH OHSA REOUREMENTS. SHALL
HAVE APPROVAL EROM THE OOOT BUREAU OF BRIDGES AND STRUCTURAL DESIGN, AND SHALL REMAIN IN PLACE UNTLL WORK HAS BEEN COMPLETED. THE EXISTING VERTICAL
 95.30 or MT-97.IO. COST FOR THE ABOVE WORK SHALL BE CONSIDERED IINCIDENTAL TO
NNO SHALL BE INCLUDED IN THE LUMP SUW PRICE BID FOR TIEEM GI4 MAINTAINGG TRAFFIC. temporary pavement. class a, as per plan
the temporary pavement bulldup shall be b"-301 bituminous aggregate base ND $4^{\prime \prime}-304$ AGGREGATE BASE. PAYMENT SHALL INCLUDE ANY ADDITIINAL COST OF ITEM 203 EXCAVATION TO PLACE THE ITE
PAVEMENT SHALL BE REMOVED UNDER ITEM 203.
TEMPORARY PAVEMENT, CLASS A. AS PER PLAN "A"
he temporary pavement bulloup shall be g"-301 bituuinous aggegate base and - 304 AGGREGATE BAS. PAAMEN SHLL

 ShALL REMAIN IN PLLACE.

ITEM 6/4-bARRIER REFLECTORS
hese reflectors and their mountings shall conform to supplemental SPELIFICATION 802 EXCEPT THAT THE SPACING SHALL BE EVERY FIFTY (50)
ON TANGENT SECTIONS AND EVERY TEN (10) FEET ON APPROACH TAPERS.
TTEM 622 - PORTABLE CONCRETE BARRIER, 32", AS PER PLAN PoRTABLE CONCRETE BARBERZ3",AS PER PLAN SHALL BE TIED TOGETHER AS PER SHEE
58. TONGUE AND GPROVE SECTINS WILL NOT BE PERMTTED ON THIS PROJCCT he cost of providing and maintaining all type c steady burn warning lights THE PRICE OLD PER LIWEAR FOOT FOR iTEM 622 - Portable concrete barrier. IN THE PRICE BID
32", AS PER PLAN.
for ouantities. See sheets 23.

alternate methods

If the contractor so elects. he may subuit alternate methods for the main
 ALTERNATE PLAN WHL BE PU
WRETING, BY THE DIRECTOR.
STANDARD DRAWING MT-95.30 \& PLAN INSERT SHEET 2095.40
THE contractor Shall provide. erect. And Mailitain an aditional advance warwing SIGN GROUP AS SHOWN ON MT-99.30 OR PLAN INSERT SHEET 2095.40. THE OW-145A
 SPACiMg Of THE OTHER SIGNS SHALL BE AS SHOWN ON MT-95.30 OR PLAM INSERT SHEET
2095.40. THE AOVANCE WARNMG SIGN GROUP SHALL CONSIST OF TWO OW-I28 (ROAD CONSTRUCTION AHEAD) SIGNS. TWO OW- 122 ((OW-123) (PIGHT (LEFT) LANE CLOSED AHEAD) SIGNS WITH OW-145A DISTANCE PLLTES, AND TWO OW-I6G (WATCH FOR STOPPED TRAFFIC)
 WAIITAIINING TRAFFIC. IN ADDITION THE ADVISORY SPEED SIGN (OW-43-24) WILL NOT BE

TRENCH FOR TEMPORARY PAVEMENTS
TRENCH EXCAVATION FOR TEMPORARY PAVEWENTS Shall be adeouately Maintained
ADD PROTECTED AT ALI TIMES. STANARD RRAWING MT-95. 30 SHALL BE USED FOR AND POTECTED AT ALL TRMES. STANLARD DRAWNG MTME THE TEMPORARY PAVEMENT CONSTRUCTION. PLACEMENT OF THE PROPOSED 301 MATERIAL SHALL FOLLOW AS CLOSELY AS POSSIELE BEHIND THE
EXCAVATION OPERATIONS. THE LENGTH OF TRENCH OPEN AT ANY ONE TIME SHALL BE HELD TO A MINIWUM AND SHALL AT ALL TIMES BE SUBJIETT TO THE APPROVAL OF THE ENGINEER. No ExCAVATION SHALL BE LEFT OPEN OVERNGGT. IN CASE OF EMERGENCY, THE OPE

MAINTENANCE DF TRAFFIC

WORK ZONE SPEED LIMIT SIGN

THE CONTRACTOR SHALL FURISH., IISTALLL MAINTAIN. COVER DURING SUSPENSION
OF WORK. AND REMOLE WORK ZONE SPEED OF WORK. AND REMOVE WORK ZONE SPEED LIMTT SIGNS AND SUPPORTS RE-O-48)
(45 MPH WITHIN THE WORK LIMITS IN ACCORDANCE WITH THE FOLLOWING
REOUREUENTS. REOUIREMENTS.
THE CONTRACTOR SHALL COVER OR REMOVE ANY EXISTING SPEED LIMIT OR
MININUM SPEED SIGNS WITHIN THE REDUCED SPEED ZONE THESE BE RESTORED DURING SUSPENSION OR TERMINATION OF THE REDUCED SPEED LIMIT. THE EXPENSE OF COVERING OR REMOVAL AND RESTORATION OF
OLIS EXISTING SPEED LIIIT OR MININUM SPEED SIGNS IS INCIDENTAL TO THE PAY
ITEM FOR THE WORK ZONE SPEED LIIT SIGNS

The work zone speed limit signs may be erected ano covered prior to STARTING WORK OR MAY BE ERECTED UNCOVERED NO MORE THAN 4 HOURS BEFORE
THE ACTUAL START OF WORK. THE SIGNS SHALL BE REMOVED OR COVERED NO LATER THAN HOUS FOLLOWING RESTORATION OF REM ALLEDES TO TRAFFIC
WITH NO RESTRICTIONS OR SOONER AS DIRECTED BY THE ENGEER
THE CONTRACTOR SHALL ERECT A WORK ZONE SPEED LIMIT SIGN IN ADVANCE OF
ANY LANE RESTRICTION WHICH IS $/$ IILI ANY LANE RESTRICTION WHICH IS $1 / 2$ MILE OR MORE IN LENGTH AND WHICH IS
EXETED TO LAST AT LEAST 30 CONSECUTIVE CALENDAR DAYS OR AS DIRECTED BY THE ENGINERR. THE SIGN SHALL BE MOUNTED ON BOTH SIDES OF DEIVIED
HGHAYS 500 FET IN HIGHWAYS. 500 FEET IN ADVANCE OF THE LANE REDUCTION TAPER. THE SIINS
SHALL BE REPEATED ON BOTH SIDES AND EVERY $1 / 2$ MILE FOR 45 MPH ZONES. THESE SIGNS SHALL ALSO BE ESECTED IMMEDIATELY AATTER EACH OEPN ENTANASE
RAMP WITHIN THE ZONE. A SIGN TO IWDICATE THE RESUMPTION OF THE STATUTORY SPEED RAMP WITHIN THE ZONE. A SIGN TO INIICATE THE RESUMPTION OF THE STATUTORY SPEED
LIMIT SHALL BE ERECTED AT THE END OF AMY REDUCDD SPEED ZONE. THIS SIGN SHALL
BE AN R-84. ${ }_{B E} A N$ R-8A.
THE CONTRACTOR MAY USE SIGNS AND SUPPORTS IN USED BUT GOOD CONDITION
 OF MOUNTED ON TWO (2) ITEM 630 GROUND MOUNTED SUPPORTS, NO. 4 POSTS.
WORK ZONE SPEED LIMIT SIGN AND SUPPORTS WILL BE MEASURED AS THE NUM
BER OF SIGN INSTALLATIONS. INCLUDING BER OF SIGN INSTALLATIONS. INCLUDING THE SIGN AND NECESSARY SUPPORTS.
IF A SIGN AND SUPPORT COMBINATION IS REMOVED AND REE ANOTER LOCATION WITHIN THE PROJECT DUE TO CHANGES IN THE SPEED ZONE

PAYMENT FOR ACCEPTED Quantities, COMPLETE, in PLACE WILL be made a THE CONTRACT UNIT PRICE. PAYMENT SHALL BE FULL COMPENSATION FO ALL MATERIALS. LABOR, INCIDENTALS AND EOUIPMENT FOR FURNISHING,
ERECTION, MAINTENANCE. COVERING DURING SUSPENSION OF WORK, AND REMOVAL OF THE SIGNS AND SUPPROTS.
ITEM 614 - WORR ZONE SPEED LIMIT SIGN

COVERING OF SIGNS
Where the plans call for a permanent sign to be covered, the contractor SHALL DO SO IN SUCH A MANNER SO AS TO AVOID DAMAGING THE PERMANEN STGN USN THE COVER IS REMOVED. THE COVER SHALL BE TOTALLY OPAOUE, STRICTLY PROHIBTIED. THE COST FOR COVERRG OF SIGNS SHALL Be included in

CONTRACTOR'S EQUIPMENT-OPERATION AND STORAGE

in adition to the requirements of section gi4.03a of the construction \&
THE CONTRACTOR'S EQuipment shall be operated in the direction of traffic WUST MERGGE WITHL A FLE TRGER SHALL BE USED WHERE THE CONTRACTOR'S EOUIPUENT MUST MERGE WITH THE TRAFFII STREAM. THE CONTRACTOR'S VEHILLES AND EOUIPUENT
SHALL BE EQUIPPED WITH AT LEAST ONE AMBER FLASHING LIGHT.

EQuIPMENT MAY BE PARKED IN AREAS ALONG THE HIGHWAY WHEN VARIOUS OPERATION ARE SCHEDULED TO CONTINUE THE NEXT WORKDAY. ON WEEKENOS OR AT OTHER TIIES
OF SUSPENION OF WORK. THE EOUUPENT SHALL BE STORED AT A STORAGE AREA
REWOYER REMOVED FROM THE RIGHT- OF-WAY.
 of THE HIGHWAY. ADEQUATE BARRICADES AND LIGHTS SHALL BE PLACED ON THE

Median construction equipment crossings
CONSTRUCTION EOUPMENT SHALL CROSS THE MEDIAN ONLY AT THE EXISTING CROSSOVERS AND AT OTHER ADDITIONAL LOCATIONS APPROVED EY THE ENGGEER. A MAXIMU OF ONE ADOITIINAL EOUIPMENT CROSSING MAY BE ALLOWED BETWEEN THE EXISTING CROSS
OVERS. USE OF ANY EXISTING MEDAAN CROSSOVERISI AND OTHER ADOITIONAL EOUIPMENT

 PRIOR TO HIS WORK OPERATIONS, INCLUDING RESEEDING AS PER 659.

DETOUR FOR CLAUS RD.

DETOUR FOR SUNNYSIDE RD.

MAINTENANCE DF TRAFFIC SUB-SUMMARY

1816 : $\frac{1817}{\square}$
1818 1819
1820 \qquad 1821 1822 1823 \qquad 1824 \qquad
\qquad $======-=1813$

\square

area to be constructed
portable concrete barpier

OHIO OHIO

\square - area to be constructed

- portable concrete barrier

PHASE TWO

area to be constructed
portable concrete barrien

 \qquad

ESTIMATED QUANTITIES
PHASE THREE-STA, $18+00$ TO STA. $31+00$

$\begin{gathered} \text { REF } \\ \text { No. } \end{gathered}$	Station to Station	614			622
				ELCH	LIN FT
PCB-1	$18+00$ T0 $18+55$			6	60
TOTA	LS CARRIED TO SUB-SUMMARY			6	60

 \square

PHASE \qquad | OHIO | 53 |
| :--- | :--- |
| RHEGOAN | | PHASE TWO:

berm in the designated areas. ERIE COUNTY LORAIN COUNTY
MAINTANL TWO-WAY TRAFFIC ON II' MININUM WIDTH LANE ON THE
EASTERLY ONE-HALF OF VERMLION RD. DURING CONSTRUCTION ISHOWN BELOWI.
PHASE THREE:
COMPLETE THE WESTERLY SIDE OF VERMILION RD. USING TRAFFIC CONTROL
SHOWN BUT IN OPPOSTIE DIRECTION.
FOR ADDITIONAL DETAILS SEE STANDARD DRAWING MT-96.II, mT-98.I2, mT-98./3
Y-luminaire 马-signal

ESTIMATED QUANTITIES VERMILION RD.								
$\left\|\begin{array}{c} R E F \\ N o . \end{array}\right\|$		Station to Station	614					
				Tirlipequas sip				
			LIN FT	LIN FT	LIN FT	ECKH	sa Yo	LIN FT
EL-I	2	22+00 7023 2300	100					
EL-I	3	27+00 70280	100					
SL-I		21.50		12				
SL-2		22.50		12				
CL-I	1	20+00 702150			150			
Cl-2	1	28.50 70 O $30+00$			150			
PCB-1	2	22:00 $7027+50$				23		550
PCB-I	3	22:50 702880				23		550
TP-I	1	2150 To 23776 (lt \& ft)					263	
TP-2	1	$26+24$ T0 $28.50 \mathrm{llt} \& \mathrm{ft})$					263	
TOTA	LS	CARRIED TO SUB-SUMMARY	200	24	300	46	526	1100

SEE SHEET 55 FOR TEMPORARY RAISED PaVEment markers.

replace the berm in the designated areas.

PHASE TWO:

MANTAN: TWO-WAY TRAFFIC ON II MININUM WIDTH LANE ON THE
EASTERLY ONE-HALF OF VERMLION RD, DURING CONSTRUCTION (SHOWN BELOW).
PHASE THREE:
COMPLETETHE WESTERLY SIDE OF VERMLIION RD. USING TRAFFIC CONTROL
SHOWN BUT IN OPPOSTIE DIRECTION.
FOR additional details see standard drawing mt-96.II, mt-98.12, mt-98.I3
京-luminaire 品-SIgnal

- area to be constructed
- portable concrete barrier

TEMP. PAVEMENT CLASS A, AS PER PLAN "A" $\begin{aligned} & \text { END WORK } \\ & \text { STA. } 30+25\end{aligned}$
TO BE CONSTRUCTED IN PHASE ONE

SEE SHEET 55 for temporary raised pavement markers

GENERAL

MATERIAL

The refilector shall have an effectue area of 0.3S suanare iches for trpe a or 3.0

 foulowir

	SPECIFIC INTENSITY	
INCIDENCE ANGLE (DEGREES)	white	уeluon
202545	${ }_{0.4}^{1.0}$	${ }_{0}^{0.64}$
	trpe ${ }^{\text {e }}$	
	white	yellow
20	${ }_{1.2}^{3.0}$	${ }_{0.8}^{1.8}$
${ }_{45}^{2}$	0.3	0.2

 asuaning ececforon

 THE MARER SHALL AAVE,
THAM I. SOUAPE ICHES.

NSTALLATION

 Recouve inatious:

The warkers shall be placed accurately to depict stralght or unfoorily curving limes. WHEN USED TO SUPPLEEMENT TEMPORARY PAVE WENT MARKIMGS. THEY SHALL BE PLACED ON OR LUMEDIATELY AJJACENT TO THE PAVEWENT HARKING. LOCATIONS SHALL BE ADJUSTED UP TO ONE FOOT LONGITUDDINALYY OR SIX MCHES LATERALLY TO AVOID PLACEMENT ON JOMTS. OR ON CRACKED O Detzacts frou their abllit To Reluall atracheo to the pavenent.

APPLICATION
1.) when required to supplenent pavenent uarking, teuporafy ralsed pavenent warkers
Shall be placed as follows:

LINE	TYPE	SPACIMG
EOGE LIME	A OR B	$20^{\circ} \mathrm{C} / \mathrm{C}$
lane line	A OR B	$40^{\circ} \mathrm{C} / \mathrm{C}^{*}$
CENTER LINE (SIMGLE / broken)	A OR B	$40^{\circ} \mathrm{C} / \mathrm{C}^{+}$
CENTER LINE (LOUBLL / SOLID)	A OR B	2 UNITS SIDE BY SIDE 4 INCHES APART $20^{\circ} \mathrm{C} / \mathrm{C}$
ChANEELIZING LINE CINCLUDES EXIT GORE NOSEI	A OR B	$10^{\circ} \mathrm{C} / \mathrm{C}$

2.) when useo to simlate treplace pavenent marking, tewpobary raiseo pavenent warkers

LINE	TYPE	SPACING
EDOE LINE	A	$5^{\prime} \mathrm{C} / \mathrm{C}$
Lane line	A	403.33' C/C 30° GAP (40' CYCLE)
CEMTER LINE (DOUBLE / SOLID)	A	2 UNITS SIDE BY SIDE $5^{\prime} \mathrm{C} / \mathrm{C}$
CENTER LINE (SINGLE / brokew)	A	${ }^{403.33^{\prime}} \mathrm{C} / \mathrm{C}$ C 30^{\prime} GAP (40' CYCLE)
Channelizing line (INCLUDES EXIT GORE NOSE)	A	$5^{\prime} \mathrm{C} / \mathrm{C}$
edge line (two color) (WHITE / YELLOW)	A	BACK TO BaCK $5^{\prime} \mathrm{C/C}$

yellow markers used to separate opposite flows of traffic ceenter limes shal include YeLellections for both oirections opother yellow ano white uarkers shall provioe retroREFLECTIONS FOR BOTH OIRECTIONS. ALL

REVOVAL

 signficiantly.

PAVEMENT

 THE JUDGEMENT OF THE ENGGMEER. FALL FOR ANY REASON, EXCEPT DUE TO FALLURE OF THE PNTHE JUOEEMENIT OF THEY ARE ATTACHED.
ITEM

$$
\frac{\text { DESCRIPTION }}{\text { TEWPORAY RAIIED }}
$$

			TYPE A		remarks
sheet	station to station	PHASE	W	r	(LINE TYPE)
48	$21+50$ T0 27*00	2	110	110	EDGE LINE. TYPE A
48	23+00 то 27+00	2	80	80	EDGE LINE, type a
48	27.00 то 28.50	2	8		EDGE LINE. TYPE A
48	23*00 T0 28.50	3	110	110	EDGE LINE, TYPE A
48	23*00 т0 27:00	3	80	80	EDGE LINE, TYPE A
48	21.50 то 23.00	3	8		EDGE LIIE. TYPE A
49	21+90 TO 27+25	2	107	107	EDGE LINE. TYPE A
49	$23 \cdot 40$ то 27×25	2	77	77	EDGE LIne. type a
49	27×25 T0 28 +75	2	8		EDGE LIne. type a
49	23*10 то 28*75	3	107	107	EDGE LINE. TYPe a
49	$23+40$ TO $27+25$	3	77	77	eoge line, type a
48	21+90 To 23*40	3	8		EDGE LIIE. TYPE A
			780	748	
	ALS				

SURFACE PREPARATION

THE FOLLOWING PROCEDURES MUST BE FOLLOWED WHEN INSTALLING PORTABLE CONCRETE BARRIERS. AS PER PLAN.
A. THE SURFACE ON WHICH THE PORTABLE CONCRETE BARRIERS WILL REST, SHALL BE CLEARED OF ALL LOOSE SAND, GRAVEL. DIRT AND DEBRIS.
B. ANY IRREGULARITIES IN THE SURFACE UNLESS JUDGED BY THE ENG INEER TO BE INCONSEQUENTIAL, SHALL BE
LEVELED WITH GROUT ANDIOR ASPHALT.
C. ASPHALT ROLL ROOFING SHALL BE PLACED ON THOSE SURFACES, AS JUDGED BY THE
ENG INEER TO HAVE A SURFACE ROUGHNESS ENGINEER TO HAVE A SURFACE ROUGHNESS
WHICH WOULD INHIBIT FRICTION CONTACT BETWEEN BARRIER SEGMENTS AND THE EXISTING SURFACE.

SECTION A-A

ELEVATION AT JOINT

PORTABLE CONCRETE BARRIER, AS PER PLAN

SEE STANDARD DRAWING MC-9.2
FOR ADITINAL NOTES \& DETAILS
SEE GENERAL NOTE, SHEET 17

TEMPORARY SIGN SUPPORT
 REQUIREMENTS

A．PLACEMENT OF SIGNS WHICH WILL REMAIN MORE THAN ONE DAY： 1）Lateral placement to nearest edge of signs shall ee as follows：
a）ON THE RIGHT SIDE OF THE ROAD FOR APPROACHNG TRAFFIC（EXCEET FOR DUAL MOUNTED
b）Curbed roadway－
minimum 2 ft．behind face of curb．
c）UNCURBED ROADWYY－I2 FT．FROM EDGE Of TRAFFIC LANE OR 6 FT．FROM EOGE
d）BEHino guardrail or barrier－preferably 2 ft．behind face of guardrail （MINIMUM（FT．）FOR SIGNS ON CLASS A SUPPORTS： 4 FT．FOR CLASS B OR C
SUPPORTS IFT．BEHIND FACE OF CONCRETE BARRIER UNLESS BARRIER TOP MOUNTING SUPPORTS IFT．BEHIND FAC
IS REOURED BY THE PLAN．
2）vertical clearance of signs，measured above roadway elevation；shall be
as follows
a）RURal－ 5 fil．when parked cars，construction eouipment，etc will not obscure
b）rural areas with parked cars or construction eouipment－ 7 Ft
c）URBan－ 7 Ft．
d）Care shall be taken to assure that signs will not be obscured by construction EQUPMENT，TREES，WEEDS OR OTHER OOSTACLES．BRUSH，WEEDS OR GRASS WITHN
THE RIIHT OF WAT SHAL BE TRIMMED AS NEESSARY SICNS SHALL NORMALLY＇BE VIIBBLE TO TRAFFIC 400 TO 600 MT ．IN ADVANCE OF THE SIGN．
3）SUPPORTS FOR SIGNS WHICH WIL REMAIN IN PLACE MORE THAN ONE DAY SHALL BE FIXED RATHER THAN PORTABLE EXCEPT IN SITUATIONS WHERE THE SIGN MUST REST ON PERMANENT
PAEMENT OR OTHER SURFACE WHICH WOULD EE DAMAGED BY INEERTIN OF POST TYPE PAVEMENT，
SUPPORTS．
B．PLACEMENT OF SIGNS WHICH WILL REMAIN FOR ONE DAY OR LESS：
1）Same as a－i above execpt that signs may be placed on the roadway only if they do

C．CLASSES OF SUPPORTS：
all temporary sicn supports shall be of the following types：
1）CLASS A： SUPPORTS SHALL BE USED FOR EXPOSED LOCATIONS ON HIGHWAY WHERE TRAFFIC
APPROACH SPEEDS OF 40 MPH AND HICHER ARE ENCOUNTERED．THEY ARE ALSO APPROACH SPEEDS OF 40 MPH AND HIGHER ARE
SUITABLE FOR USE IN ALL OTHER LOCATIONS．
2）CLASS B：
SUPPorts shall be used for exposed locations on hichwars where traffic approach
Spees of less than 40 MPH ARE Encountered．THEY ARE ALSO suitable for use

3）CLASS C：
SUPports may only be used where fulr protected by guardrall，concrete barrier AND IN LOACATONS POSIITIELY PROTECTED FROM TRAFFIC SUCH
OR WHERE TRAFIC APPRACH SPEEDS ARE LESS THAN 25 MPH．

D．TRAFFIC APPROACH SPEEDS：

－APPRoACH SPEED（MPH）	$\begin{aligned} & \text { COMPLETELY } \\ & \text { PROTTCTEED } \\ & \text { BY GUARRRAL } \\ & \text { OR BARRIER } \end{aligned}$	partly PROTECTED B 	greater than 30＇FROM EDCE OF PAVEMENT	WITHIN EDGE OF PAVEMEN
40 ano higher	A，B OR C	A OR B	A OR B $⿻ 丷 木 大^{*}$	A ONLY
26 то 39	A，B or C	A OR b	A OR B	A OR B
0 To 25	A，B．OR C	A，B OR C	A，B OR C	A，B OR C

＊IF SUPPORTS ARE BEHIND CUARDRAIL BUT NOT FULLY 5.55^{\prime} BeHIND FACE OF RAIL OR IF
SICN IS NOT I＇BEHIND FACE OF CONCRETE BARRIER． ＊IF SUPports are behind guarorall sut not fuly
SICN is not rbehino face of concere barrier．
 SUPPORTS ON．THE OUTSIDE OF＇CURVES OR LOL
WILL REOURE USE OF CLASS：A SUPPORTS．＇

E．BALLASTING
BaLLasting of portable supports shall be with sanobags placed within IFt．of the
Ground．in no case shali hard obuect be use for ballast．
F．STRENGTH OF SIGN SUPPORTS
THE CONTRACTOR SHALL CHOOSE SICN SUPPORTS OF ADEOUATE STRENGTH AND WITH ADEQUATE
FOUNDATIONS AND ANCHORAGE TO SUPPORT THE SIGN SIZES ERECTED．PROPRIETARY DEVICES FOUNDATIONS AND ANLHORAGE TO SUPPORT THE SIGN SIIES ERECTED．PROPRIITARY DEVICES
SHALA NOT BE LOADED BEYOND THE LIMTTS RECOMMENOE BY THE MANUFACTURER．SLIP EASE
 CONSISTING OF A IFT．DEEP BY II＇DIAMETER COLLAR．SICN SUPPORTS WHICH FAIL UNDER
TYPICAL WINO LOAD CONOTIONS SHALL EE IMMEDATELY MOOIFIED OR REPLACEO WITH A SUPPORT TYPICAL WIND LOAD CONDIT
OF ADEOUATE STRENGTH．
G．EROHIBITED SUPPORTS
the following support types shall not be permitted on projects：
1）SUPPORTS FABRICATED FROM AUTOMOTIVE AXLE DIFFERENTIAL ASSEMBLIES AND SIMLLARLY 2）SUPPorts Consisting of vertical posts with angled braces made from drivepost

	ERI／LOR－2－30．51／0．00 ERIE COUNTY LORAIN COUNTY	OHIO
	FHWA REGION	

CLASS A SUPPORTS FIXED SUPPORTS

1）ALL＊2，＊3，and＊a post Men instaled singly or in pairs according to THE DETALLS OF TC－41．20．
TC－52．10 AND TC－52．20．
2）THE FOLLOWING POST TYPES，WHEN INSTALLED SINGLY，BY IMBEDMENT OR
a）－UP To $4^{*} \times 4^{4}$ wood
b）－up to 2 inch diameter schedule 40 Steel pipe
c）－up to 3 inch diameter schedle 40 aluminum pipe
d）－up to $21 / 4$ inch souare， 12 gauge wall，punched steel post
e）－up to $6^{\circ} \times 8^{\circ}$ wood with breakaway holes shown below
3）THE FOLLOWING POST TYPES WHEN INSTALLED IN PAIRS wITH LESS THAN 7 FT．BETWEEN
POSTS，BY IMEEDENT OR DRIVNG INTO EARTH TO A DEPTH OF ABOUT 42 INCHES：
a）－UP TO $4^{*} \times 4^{4}$ wood
b）－up to 2 inch diameter schedule 40 Steel pipe
c）－Up to 3 inch diameter schedule 40 aluminum pipe
d）－up to 2 inch souare， 14 gauge wall，punched steel post
4）FixED TYPE III BaRRICADES：
5）ALL RREAKAWAY CONNECTION BEAM SUPPorts，WHEN INSTALLED ACCORDING TO THE PROPER DETALLS SHOWN ON TC－4I．10 WITH A MINIMUM
T FT．FOR SUPPORTS LARGER THAN WG 9.
6）any breanaway post ó post and connection mhich has been crash tested and approved BY THE FHMA AS SATISFFING THE BREAKAWAY CRITERIA DESCRIBED IN 630.06 ．
（CONTINUED ON 59A）

PAVEMENT CALCLLATIDNS

Westbound - mainline

STA. $1835+10$ TO STA. $3+60$ (STA. EO. $1838+29.49$ BK. $=0.00$ AHD. $)$ ITEM $45161^{679.49^{\prime}} \times 24^{\prime}=16307.76$ SO. FT. $19-1811.97$ SO. YD. ITEM $310679.49^{\prime} \times 29^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}-6568.40$ CU. FT. $/ 27$ - 243.3 CU. YD TEM $304679.49^{\prime} \times 26^{\prime} \times\left(6^{\prime \prime}(12)^{\prime}-8833.37\right.$ CU. FT. $/ 27$ - 327.2 Cu. YD $\begin{array}{lll}\text { TEEM } 203 & 679.49^{\prime} \times 26^{\prime}-17666.74 \text { SO. FT. / 9-1963.0 SO. YD. } \\ \text { ITEM } 203 & 679.49^{\prime} \times 24^{\prime} \times\left(5^{\prime \prime} 12\right)^{\prime}-67949^{\prime}\end{array}$ TEEU $279.49^{\prime} \times 24^{\prime} \times\left(5^{\prime \prime} / 12\right)^{\prime}=6794.9 \mathrm{CU} . \mathrm{FT} .127$ - 251.7 CU. yd. $679.49^{\prime} \times 24^{\prime} \cdot 16307.76$ so. FT. $/ 9-1812.0$ so. yo.

STA. $3+60$ TO STA. $4+75$

ITEM 451 115' $\times 24^{\prime}=2760$ SO. FT. $19-306.67$ So. Yo.
ITEM $310{1155^{\prime} \times 29^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}-1111.67 \text { CU. FT. } / 27=41.2 \mathrm{Cu} . \text { YD. }}^{27}$.
TEM $\left.304115^{\prime} \times 26^{\prime} \times 16^{\prime \prime} / 12\right)^{\circ}=1495 \mathrm{CU}$. FT. $/ 27$ - 55.4 CU. Yo.
ITEM 203 II5 $5^{\prime} \times 26^{\prime}-2990$ SO. FT. $/ 9=332.2$ SO. YD.
TTEM $2034^{40^{\prime}} \times 24^{\prime} \times\left(5^{\prime \prime} / 12\right)^{\prime}=400 \mathrm{CU} . \mathrm{FT} .127$ - 14.8 CU. Yo,

TTEM 202 H5' $\times 24^{\prime}$ - 2760 SO. FT. 19 - 3067 SO. YD.
STA. $4+75$ TO STA. $5+50$
TEEM 451-75' x 24' - /800 SO. FT. / 9-200 SO. YO.

ITEM 304 . $50^{\prime} \times 29^{\prime}=1450$ SO. FT. $/ 9$ - 161.1 SO. YD. (N.S.S.B. TYPE ' $1 A^{\prime}$)
TTEM $2037^{75^{\prime}} \times 26^{\prime}-1950$ SO. FT. $19=216.67$ So. Yo.

ITEM $40850^{\circ} \times 26.5^{\prime}-1325$ SO. FT. $/ 9 \times 0.4 \mathrm{GAL} . / \mathrm{SO}$

$$
\text { STA. } 5+50 \text { TO STA. } 7+45
$$

TTEM 451 195' \times 244-4680 SO. FT. / 9 - 520 So. Yo.
TEEM SPEC. $195^{\prime} \times 24^{\prime}=4680$ so. FT. $19-520$ so. YD. (N.S.O.B. TYPE 'IA')
$\begin{array}{ll}\text { TEW } 304 & \left.195^{\prime} \times 24^{\prime} \times 16^{\prime \prime} / 12\right)^{\prime}-2340 \mathrm{CU} . \text { FT. } 127-86.7 \mathrm{CU} \text { YO. } \\ \text { TEM } 203 & 195^{\prime} \times 24^{\prime}-4680 \text {. }\end{array}$

ITEM 202 195' $^{\prime} \times 24^{\prime}=4680$ SO. FT. $/ \mathrm{g}=520$ So. YD. 58.9 CO YD.
ITEM $408195^{\prime} \times 24^{\prime}-4680 \mathrm{SO}$. FT. 19×0.4 GAL./SO. Yo. -208 GAL .

$$
\text { STA } 5+50 \text { TO STA } 14+60 \text { (acceleration Lane) }
$$

TEM 451 910 $\times 9.48^{\prime}-8626.8$ SO. FT. $19=958.5$. SO. YD.
TEM SPEC. $910^{\circ} \times\left(9.48^{\prime}+3^{\prime}\right)=11356.8$ so. FT. 1 g-1261.9 so. yo. (N.S.O.B. TYPE 'IA')
TTEM $\left.304910^{\prime} \times 9.48^{\circ} \times 16^{\prime \prime} 112\right)^{\prime}=4313.4$ CU. FT. $/ 27-159.8 \mathrm{CU}$ YD.
ITEM 203 910' $\times 9.48^{\prime} \times\left(11{ }^{\prime \prime} / 12\right)^{\prime}=7907.9$ CU. FT. $/ 27$. 27.
TEEM 202 و10' $^{\prime} \times 9.48^{\prime}=8626.8$ so. FT. $/ \mathrm{g}=958.5$ so. YD. 29.9 CU. YD.
ITEM 408 910 $\times\left(9.48^{\prime}, 3^{\prime}-2^{\prime \prime}\right)=9536.8$ SO. FT. 1 g - 1059.6 SO. YD. $\times 0.4 \mathrm{GAL} . / \mathrm{SO}$. YD. $=423.9 \mathrm{GAL}$

$$
\text { STA. } 7+45 \text { TO STA. } 14+60
$$

ITEM 451 715' $\times 24^{\prime}=17160$ so. FT. $19=1906.67$ so. yo.
TTEM SPEC. $715^{\prime} \times 26^{\prime}=18590$ SO. FT. $/$ 9-2065.6 SO. YD. (N.S.D.B. TYPE 'IA')
ITEM $304{ }^{3} 75^{\prime} \times 26^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=9295 \mathrm{CU} . \mathrm{FT} .127-344.3 \mathrm{CU}$ YD.
ITEM 203 715' $\times 26^{\prime}$ - 18590 SO. FT. $/ 9$ - 2065.6 so. YD.

TEM $203100^{\prime} \times 24^{\prime} \times\left(12^{\prime \prime} / 12\right)^{\prime}-2400 \mathrm{CU} . \mathrm{FT} . / 27-88.9 \mathrm{CU}$. YD
TEM $202 \mathbf{H}^{\prime} \times 5^{\prime} \times 24^{\prime}=17160$ SO. FT. $/ 9=1906.7$ So. Yo.
TTEM $408715^{\prime} \times 255^{\prime}-182325$ SO. FT. 9×0.4 G4L./SO. YD. -810.3 GAL

STA. $56+06.25$ TO STA. $57+00$

ITEM 203 93.75' $\times 24^{\prime} \times\left(11^{\prime \prime \prime} 12\right)^{\prime}-2062.5 \mathrm{CU}$. FT. $/ 27-76.4 \mathrm{cu}$. yo.
ITEM 202 93.75' $\times 24^{\prime}$ - 2250 SO. FT. / 9-250 SO. YD.

STA. $57+00$ TO STA. $72+81$

ITEM $451 \quad 1585.59^{\prime} \times 24^{\prime}-38054.16$ So. FT. 1 - 4228.24 SO. Yo. ITEM $304766.78^{\prime} \times 26^{\prime} \times\left(4^{\prime \prime} / 12\right)^{-6602.09}$ CU. FT. $127-244.5$ CU. YD.
 ITEM 203 1585.59' $\times 26^{\prime}-41225.34$ So. FT. 1 g -4580.6 So. Yo.
ITEM $2031585.5^{\prime} \times 24 \times\left(12^{\prime \prime} / 12\right)^{\prime}-38054.16 \mathrm{CU}$. FT. 127 - 1409.4 CU. YD.
$\begin{array}{lll}\text { ITEM } 202 & 1585.59^{\prime} \times 24^{\prime}=38054.16 \text { So. FT. } / \mathrm{g}=4228.2 \text { SO. YD. } \\ \text { ITEM } 408 & 823.8 \prime^{\prime} \times 255^{\prime}-2007.16 \text { SO. FT. }\end{array}$

Sta. $57+00$ to STA. $69+00$ (acceleration lane).
ITEM 451 1204.87' $\times 12.5^{\prime}-15060.88$ SO. FT. / 9 - 1673.4 SO. Yo.
ITEM $304762.6^{\prime} \times\left(12.5^{\circ}+3^{\prime}\right) \times\left(4^{\prime \prime} / 12\right)^{\prime}-3940.31$ CU. FT. 127 - 145.9 CU YD.
ITEM $3041204.87 \times\left(12.5^{\prime}\right) \times\left(6^{\prime \prime} / 12\right)-7530.43$ CU. FT. $/ 27-278.9 \mathrm{CU} . Y \mathrm{YO}$.
ITEM SPEC. $442.23^{\prime} \times\left(12.5^{\prime} 3^{3}\right)-6854.57$ SO. FT. $19-761.62$ SO. YD. (N.S.S.B. TYPE 'N')

TTEN 202 120487, $\times 12.5^{\prime}-15060$ 復
$\begin{array}{lll}\text { ITEM } 202 & 1204.87^{\prime} \times 12.5^{\prime}-15060.88 \\ \text { ITEM SO. FT. } 408 & 442.23^{\prime} \times\left(16.54^{\prime}+1^{\prime}\right)-5970.11 \text { so. FT. } / \text { g } & \text { g } 663.3 \text { cu. YD. }\end{array}$

STA. $72+81$ TO STA. $88+20.69$

TTEM SPEC. $1539.86^{\prime} \times 24^{\prime}-36956.64$ SO. FT. / $9=4106.3$ so. Yo.

ITEM $304 \quad 1539.86^{\prime} \times 26^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}-20018.18$ CU. FT. $/ 27-741.4$ CU. YD.
ITEM 203 1539.86' $\times 26^{\prime}=40036.36$ so. FT. $19-4448.5$ so. YD.
ITEM 203 1539.86' $\times 24^{\prime} \times\left(1 I^{\prime \prime} / 12\right)^{\prime}$ - 33876.92 CU. FT. / 27 - 1254.7 CU. YD.
ITEM 202 1539.86' $\times 24^{\prime}=36956.64$ SO. FT. $/ 9=4106.3$ SO. YD.
ITEM $4081539.86^{\prime} \times 26.5^{\prime}-40806.27$ SO. FT. $/ 9 \times 0.4$ GAL./SO. YD. $=1813.6$ GAL

STA. $88+20.69$ TO STA. $90+23$

ITEM $451202.31^{\prime} \times 24^{\prime}-4855.44$ So. FT. 1 g-539.49 so. Yo.
ITEM SPEC. 202.3/' $\times 26^{\prime}-5260.06$ SO. FT. 1 g - 584.5 SO. YD. (C.T.D.B.)

ITEM $203202.31^{\prime \prime} \times 24^{\prime} \times$ (II" /II2 - 4450.82 CU . FT. $/ 27$ - 164.8 cU . YO.
TTEM $202202.3 J^{\prime} \times 24^{\prime}-4855.44$ SO. FT. $/ 9=539.5$ SO. YO.
ITEM $408202.31 \times 25.5^{\prime}=5158.9 /$ SO FT 19×0.4 GAL./SO. YD. $=229.36 \mathrm{AL}$

STA. $88+20.69$ to Sta. $90+23$ (deceleration lane)

TEM 451
TEM 304
TTEM $304202.31^{\prime} \times\left(28.8^{\prime} 3^{\prime}\right) \times\left(4^{\prime \prime} / 12^{\prime}\right)=2145.2 \mathrm{CU}$. FT. $/ 27$ - 79.5 CU . Yo.
TTEM 202 202.31' $\times 28.8^{\prime}$ - 5828.55 SO. FT. / $9-647.62$ so. Yo.

ITEM $203182^{\prime} \times 24^{\prime}-4368$ SO. FT. $19-485.3$ so. YD.

$$
\text { STA. } 114+82 \text { TO STA. } 123+26
$$

TTEM 451-844' $\times 24^{\prime}=20256$ SO. FT. $/ 9=2250.67$ SO. YO.
TTEM $3048^{84} \times 30^{\prime} \times\left(4^{\prime \prime} / 12\right)^{-8}=8440 \mathrm{CU}$. FT. $/ 27$ - 312.6 CU. YD
ТТЕМ $\left.3048^{84} \times 24^{\prime} \times 16^{\prime \prime} / 12\right)^{\prime}-10128 \mathrm{CU}$. FT. $/ 27$ - 375.1 CU Y Y .
TTEM 203 844' $\times 24^{\prime}$ - 20256 SO. FT. / 9 - 2250.7 SO. Yo.
ITEM $2038^{\left.844^{\prime} \times 24^{\prime} \times(11)^{\prime \prime} / 12\right)^{\circ}-18568 \text { CU. FT. } 127-687.7 \text { CU. YD. }}$ $34^{\prime} \times 24^{\prime}-20256$ so. FT. / $9-2250.7$ so. YD.

STA. $138+92$ TO STA. $141+13$

$221^{\prime} \times 24^{\prime}=5304$ SO. FT. / 9-589.33 so. YD. $221^{\prime} \times 30^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}=2210 \mathrm{Cu} . \mathrm{FT} . / 27-81.9 \mathrm{Cu} . \mathrm{yd}$. $221^{\prime} \times 24^{\prime} \times\left(6^{\prime \prime} 12\right)^{-2652}$ CU. FT. $/ 27-98.2$ CU. Yo.
$222^{\prime} \times 24^{\prime}-5304$ So. FT. $/ \mathrm{g}-589.3$ so. YD.
$22^{\prime \prime} \times 24^{\prime} \times\left(11^{\prime \prime} / 12\right)^{\prime}-4862$ CU. FT. $/ 27-180.1 \mathrm{CU}$ YD. 21' $\times 24^{\prime}-5304$ SO. FT. / $9=589.3$ so. Yo.

STA. $174+73$ TO STA. $175+51.71$
ITEM $451-78.71^{\prime} \times 24^{\prime}=1889.04$ SO. FT. / $9=209.89$ SO. YD.
ITEM $304{ }^{-78.71} \times 30^{\prime} \times\left(4^{\prime \prime / 12)}=787.1\right.$ CU. FT. / 27 - 29.2 CU. YD.
ITEM $30478.77^{\prime} \times 24^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}$ - 944.52 CU. FT. 127 - 35.0 CU YO.

eastbound - mainline

$$
\text { STA. } 119+21 \text { TO STA. } 126+16
$$

TEM $45165^{\prime} \times 24^{\prime}=16680$ SO. FT. / 9-1853.33 So. YD.
ITEM $304-695^{\prime} \times 30^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}-6950$ CU. FT. $/ 27-257.4$ CU. YD.
 ITEM $304695^{\prime} \times 24^{\prime} \times\left(66^{\prime \prime} 12\right)^{\prime}=8340 \mathrm{CU}$. FT. 127 - 308.9 CU . YD. TTEM $203695^{\prime} \times 24^{\circ}=16680$ SO. FT. $/ 9=1853.3$ So. YD. TTEM $202-695^{\prime} \times 24^{\prime}=16680$ SO. FT. $/ 9-1853.3$ so. Yo.

PAVEMENT CALCLLATIDNS

STA. $153+12$ TO STA. $159+50$

ITEM 451 638' $\times 24^{\prime}=15312$ So. FT. / 9 - 1701.33 so. YD.
ITEM $304638^{\prime} \times 29^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}-6167.33 \mathrm{CU}$. FT. $/ 27=228.4 \mathrm{CU}$. YD.

ITEW $2036^{638^{\prime}} \times 26^{\prime}-16588$ SO. FT. / 9 - 1843.1 SO. YD.
ITEM $202638^{\circ} \times 24^{\prime}=15312$ SO. FT. $/ 9$ - 1701.3 SO. YD.

$$
\text { STA. } 159+50 \text { TO STA. } 167+20
$$

ITEM 451 770 $\times 24^{\prime}=18480$ SO. FT. / 9-2053.33 SQ. YD.
ITEM $304-770^{\prime} \times 26^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}=6673.33$ CU. FT. $/ 27-247.2 \mathrm{cu} . \mathrm{yd}$
ITEM $304770^{\prime} \times 26^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}-10010 \mathrm{CU}$. FT. 127 - 370.7 CU . YD
ITEN 203 770 $\times 26^{\prime}=20020$ SO. FT. / $9-2224.4$ SO. YD
TTEN 202 770' $\times 24^{\prime}=18480$ SO. FT. $/ 9-2053.3$ SO. YD. CU . YD.

$770^{\circ} \times 17.77^{\prime}$ - 13682.9 so. FT. / g - 1520.3 so. Yo

ITEM $304770^{\prime} \times 17.77^{\prime} \times\left(6^{\prime \prime} 112\right)^{\prime}=6841.5 \mathrm{CU}$. FT. $/ 27=253.4 \mathrm{CU} . Y \mathrm{YD}$.
ITEM $203-770 \times 17.77 \times 13682.9$ so. FI. $/ 9=1520.3$ SO.
ITEW $203-770^{\circ} \times 11.77^{\prime} \times$ (11" 112 - 12542.66 - 1520.3 so YD. 464.5 CU. YD.
ITEM $202770^{\prime} \times 17.77^{\prime}=13682.9$ So. FT. / g - 1520.3 so. yo.

$$
\text { STA. } 180+00 \text { TO STA. } 181+46
$$

ITEM 451 146' $\times 24^{\prime}-3504$ SO. FT. $/ 9=389.33$ SO. YD.
ITEM $304146^{\prime} \times 30^{\prime} \times\left(4^{\prime \prime} / 12\right)^{\prime}-1460 \mathrm{CU}$. FT. $/ 27=54.1 \mathrm{CU}$ YO
ITEM $304146^{\prime} \times 24^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=1752 \mathrm{CU} . \mathrm{FT}, / 27=64.9 \mathrm{cU}$. YO.

ITEM $202146^{\prime} \times 24^{\prime}-3504$ SO. FT. $/ 9-389.3$ so. YD. Cu. Yo.

WEstbound - shoulders
STA. $1827+50$ TO STA. $1827+96$ $46^{\prime} \times 8^{\prime}-368$ So. FT. $/$ g - 40.89 so. Yo.
$46^{\prime} \times 4.50$ So
 HTEM $20346^{\prime} \times 7^{\prime}=322$ SO. FT. / $9-35.8$ SO. YD.

TEEM $4524^{\prime} \times 4^{\prime}-184$ SO. FT. $/ 9-20.44$ SO. Yo.
ITEM $30446^{\prime} \times 1.79$ SO. FT. $=82.43$ CU. FT. $/ 27=3.1 \mathrm{CU}$ YD. ITEM $20346^{\prime} \times 4.92 \mathrm{so}$. FT. - $226.32 \mathrm{CU} . \mathrm{FT} . / 27-8.4 \mathrm{cu}$. YD.

STA. $1835+10$ TO STA. $3+60$ ISTA. EO. $1838+29.49$ BK. $=0.00$ AHD. 1 TTEM $452679.49^{\prime} \times 8^{\prime}-5435.92$ so. FT. $/ 9-603.99$ So. y,
TEEM $304679.49^{\prime} \times 3.42$ SO. FT. - 2322.50 CU. FT. / $27=86.0$ CU. YD. TEEW $203679.49^{\prime} \times 10.25 \mathrm{SO}$. FT. $=6964.77 \mathrm{CU}$. FT. / 27 - $258.0 \mathrm{CU} . \mathrm{YD}$.
ITEM 203 679.49' \times 7' 4756.43 SO. FT. / 9 - 528.5 SO. YD.
ITEM 452 679.49' $\times 4^{\prime}=2717.96$ so. FT. $19-302$ so. yo.

ITEM 203 679.49' $\times 3^{\prime}-2038.47$ SO. FT. / $9=226.5$ SO. YD.

STA. $3+60$ TO STA. $4+75$

TEEM $304115^{\prime} \times 3.42$ SO. FT. -393.3 CU. FT. $/ 27=14.6 \mathrm{CU}$. Yo.
TTEM 203 II $^{\prime} \times 7^{\prime}=805$ SO. FT. / 9 - 89.4 SO. YD.
TEM $203 \| 115^{\prime} \times 10.25$ SO. FT. $=\| 178.75 \mathrm{CU}$. FT. / $27=43.7 \mathrm{CU}$ YD.
TEM $452-115^{\prime} \times$ 4' $^{-1} 460$ SO. FT. / 9 - 51.1 SO. YD.
ITEM $304 \quad 115^{\prime} \times 0.37$ SO. FT. $=42.6 \mathrm{CU} . \mathrm{FT} . / 27-1.6 \mathrm{CU} . \mathrm{YD}$.
TTEM $203{ }^{1115} \times 1{ }^{\prime}=115$ SO. FT. $19-12.8$ SO. Yo.
ITEM 203 /I5' \times 5.16 SO. FT. $=593.4$ CU. FT. / 27-22.0 CU. YD.

$$
\text { STA. } 4+75 \text { TO STA. } 5+50
$$

TTEM $452 \quad 75^{\prime} \times 8^{\prime}=600$ SO. FT. 19 - 66.7 SO. YD.
ITEM 203 75'× $7^{\prime}-525$ SO. FT. / $9-58.3$ so. YD.
ITEM $203 \quad 75^{\prime} \times 10.25$ SO. FT. -768.75 CU. FT. $/ 27=28.5 \mathrm{CU}$. YD.

$$
\text { STA. } 5+50 \text { TO STA. } 7+45
$$

ITEM $452 \quad 195^{\prime} \times 8^{\prime}-1560$ So. Ft. $19-173.3$ so. Yo.
TEEM 304 195' 195 X 3.42 SO. FT. - 666.9 CU . FT. / 27 - 24.7 Cu. YD.
ITEM 203 195' $\times 10.25$ SO. FT. -1998.76 CU FT. $/ 27=74.0 \mathrm{CU}$. YD

$$
\text { STA. } 7+45 \text { TO STA. } 14+60
$$

ITEM 304 7/5' $\times 3.42$ SO. FT. - 2445.3 CU. FT. / 27 - 90.6 CU. YD. ITEM $203 \quad 715^{\prime} \times 7^{\prime}=5005$ SO. FT. 1 g - 556.1 SO. YD.
ITEM $203715^{\circ} \times 10.25 \mathrm{SO}$. FT. $=7328.75 \mathrm{CU} . \mathrm{FT} . / 27-27.4 \mathrm{CU}$. Yo.
ITEM $452-715^{\prime} \times 4^{\prime}-2860$ SO. FT. / $9-317.8$ So. YD.
ITEM $304715^{\prime} \times 0.37$ SO. FT. - 264.6 CU. FT. $/ 27$ - 9.8 cU. YD.

$$
\text { STA. } 14+60 \text { To STA. } 5 /+03.25
$$

ITEM $452 \quad 216.94^{\prime} \times 8^{\prime}=16935.52$ so. FT. / 9-1881.72 so. yo. ITEM 304 2ll6.94' 4.50 SO. FT. $=9526.23$ CU. FT. / 27 - 352.8 CU. YD

ITEM $4523643.25^{\prime} \times 4^{\prime}-14573$ So. FT. 1 g -1619.22 So. YD. ITEM $304-3643.25^{\prime} \times 1.79$ SO. FT. $=6521.42$ CU. FT. $/ 27-241.5$ CU. YD. ITEM 203 3643.25' $\times 492$ SO FT $=17924.79$ CU. FT. / 27 - 663.9 CU. YD.

$$
\text { STA. } 56+06.25 \text { TO STA. } 90+23
$$

ITEN $452-93.75^{\prime} \times 8-750$ SO. FT. 9 - 83.33 So. Yo.
ITEM $30493.75^{\prime} \times 3.42$ SO. FT. - 320.44 CU. FT. $/ 27$ - 11.9 CU. YD.
HEM $203-93.75^{\prime} \times 10.25$ SO. FT. - $960.94 \mathrm{CU} . \mathrm{FT} . / 27=35.6 \mathrm{CU} . Y \mathrm{yD}$
ITEM 452 1539.93' $\times 8^{\prime}-123 / 9.44$ SO. FT. $19=1368.83$ so. Yo.
ITEM $3041539.93^{\prime} \times 3.42$ SO. FT. - 5266.56 CU. FT. $/ 27$ - 195.I CU. YD.
ITEM 203 1539.93' $\times 10.25$ SO. FT. -15784.3 CU . FT. $/ 27-584.6 \mathrm{CU}$. Yo.
ITEM 203 1539.93' $\times 7^{\prime}=10779.51$ So. FT. $/ 9=1197.7$ so. yo.
ITEM $452 \quad 3419.92^{\prime} \times 4^{\prime}-13679.68$ so. FT. $/ 9=1519.96$ so. yd.
$\begin{array}{llll}\text { ITEM } 304 & 3419.92\end{array}$
ІТЕМ 203 3419.92 $\times 1$ - 3419.92 SO. FT. / 9 - 380.0 SO. yo.

$$
\begin{aligned}
& \text { ITEM } 203 \text { TIL' }^{\prime} \times \mathrm{I}^{\prime}=715 \text { SO. FT. } / 9-79.4 \text { SO. YD } \\
& { }_{715}{ }^{\prime} \times 5.16 \text { SO. FT. }-3689.4 \mathrm{cu} . \mathrm{FT} . / 27=136.6 \mathrm{CU} . \mathrm{YD}
\end{aligned}
$$

STA. $90+23$ TO STA. $98+00$

ITEM $452-175^{\prime} \times 8^{\prime} \cdot 1400$ SO. FT. $/ \mathrm{g}=155.56$ SO. YD.
$175^{\prime} \times 4.50$ SO. FT $=787.50 \mathrm{CU}$. FT. $/ 27=29.2 \mathrm{CU} . Y \mathrm{YD}$. TTEM $203175^{\prime} \times 10.33$ SO. FT. $=1807.75 \mathrm{CU} . \mathrm{FT} . / 27$ - 67.0 CU YO. TIEM 203 175 $\times 7^{\prime}-1225$ SO. FT. $/ 9=136.1$ SO. YD
TEEM 452 777' $\times 4^{\prime}$ - 3108 SO. FT. / 9-345.33 SO. YD.
ITEM 304 777' $\times 1.79$ SO. FT. $=1390.83$ CU. FT. $/ 27=51.5 \mathrm{CU}$ YD.
STA. $98+00$ TO STA. $99+82$
ITEM 452 182' X 8' - 1456 SO. FT. $19=161.78$ SO. YD.
ITEM $304 \quad 182^{\prime} \times 3.42$ SO. FT. 622.08 CU. FT. $27-23.0 \mathrm{CU}$ YD.
ILE 203182×10.25 SO. FT. - 1865.5 CU. FT. $127=69.1 \mathrm{CU}$. YD
2 $182 \times 4-728$ SO FT $9=80.89$ SO YO
TEM 304 182' $\times 1.62$ SO. FT. - 293.93 CU. FT. $/ 27$ - 10.9 CU. YD.
$\begin{array}{lllll}\text { ITEM } & 304 & 182^{\prime} & \times 1.62 & \text { SO. FT. } \\ \text { ITEM } 203 & 182^{\prime} & \times & 5.74 & \text { SO. FT. }=1044.68 \text { CU. FT. } / 27-38.7 \\ \text { CU. YO. }\end{array}$
ITEM $203182^{\prime} \times$. $\mathbf{3}^{\prime}-546$ SO. FT. $/ 9=60.7$ SO. YD.

$$
\text { STA. } 99+82 \text { TO STA. } 1 / 14+82
$$

EL $452 \quad 1500 \times 8^{\prime}=12000$ SO. FT. $/ 9=1333.33$ so. YD.
TEM $3041500^{\prime} \times 4.50$ SO. FT. -6750 CU. FT. $/ 27-250$ Cu. YD.
ITEM $203-1500^{\prime} \times 7^{\prime}=10500$ SO. FT. / $9=\| 166.7$ so. YD.
TEEM 452 1500' $\times 4^{\prime}=6000$ SO. FT. / 9 - 666.67 So. YD.
EM 3041500×1.79 SO. FT. - 2688 CU. FT. / 27 - 99.6 cu. yo. TEM 203 " 1500×4.92 SO. FT. $=7380 \mathrm{CU} . \mathrm{FT} . / 27-273.3 \mathrm{CU}$ YD.

$$
\text { STA. } 114+82 \text { TO STA. } 123+26
$$

TEM $203884^{\prime} \times 10.25$ SO. FT. $=865 \mathrm{l}$ CU. FT. $/ 27=320.4 \mathrm{CU}$. Yo.
ІТЕМ $203844^{\prime} \times 7^{\prime}=5908$ SO. FT. $/ 9=656.4$ SO. YD.
TEM $4528^{1} 84^{\prime} \times 4^{\prime}=3376$ SO. FT. / $9-375.11$ SO. Yo.
TTEM $304844^{\prime} \times 1.62$ SO. FT. $=1363.06 \mathrm{CU}$. FT. $/ 27=50.5 \mathrm{CU}$ YD
 844' $\times 3^{\prime}=2532$ SO. FT. $/ 9=281.3$ SO. YD.

$$
\text { STA. } 123+26 \text { TO STA. } 138+92
$$

ITEM $452 \quad 1566^{\prime} \times 8^{\prime}-12528$ SO. FT. $19-1392$ so. Yo.
TEM $3041566^{\prime} \times 4.50$ SO. FT. - 7047 CU. FT. 127 - 261.0 cu. yo.
TEM 203 - $1566^{\prime} \times 10.33$ SO. FT - 11767 CU. FT. 127 - 599./ CU. YD.
ITEM 203 1566' $\times 8^{\prime}-12528$ SO. FT. $19-1392$ so. YD.

$$
\text { STA. } 138+92 \text { TO STA. } \mid 41+13
$$

TEM 452 221 $\times 8^{\prime}=1768$ So. FT. $/ 9=196.44$ So. Yo.
TEM 304221×3.42 SO. FT. $=755.38$ CU. FT. $/ 27$ - 28.0 CU YD.
TEM 203 22I $\times 10.25$ SO. FT. -2265.25 CU. FT. $/ 27-83.9 \mathrm{CU}$. Yo.
203 22!' $\times 7^{\prime}=1547$ So. FT. $/ 9$ - 171.9 So. ro.
SEE SHEET NOS. 82-84 FOR SUB-SUMMARY

STA. $138+92$ TO STA. $141+13$ CCONT.
ITEM $452 \quad 221^{\prime} \times 4^{\prime}=884$ SO. FT. $19=98.22$ SO. YD.
TTEM $304 \quad 221 \times 1.62$ SO. FT. $=356.92$ CU.FT. 1 27 $=13.2 \mathrm{CU}$. YD.
TEM $203221^{\prime} \times 5.74$ SO. FT. -1268.54 CU. FT. $/ 27=47.0 \mathrm{CU}$ YD.
ITEМ 203 221' $\times 3^{\prime}-663$ SO. FT. / $9-73.7$ SO. YD.
STA. $141+13$ TO STA. $174+7$
IEM 452 1794' $\times 8^{\prime}=14352$ so. FT. $/ 9=1594.67$ SO. YD.
TEM 304 1794' $\times 4.50$ SO. FT. $=8073$ CU. FT. $/ 27=299.0 \mathrm{CU} . Y \mathrm{YD}$.
TIEM $2031794^{17} \times 10.33$ SO. FT. $=18532.02 \mathrm{CU}$. FT. $127=686.4 \mathrm{cu} . Y \mathrm{YD}$.
H9 $x \rightarrow$ t 2 S58 so. tr. $9=1$ Hes. so. so.
$\begin{array}{lll}\text { TEM } 452 & 3360^{\prime} \times 4^{\prime}=13440 \text { SO. FT. } / 9=1493.33 \text { So. YD. } \\ \text { TEM } 304 & 3360^{\prime} \times 1.79 \text { SO. FT. }-6021.12 \mathrm{CU} \text { FT. }\end{array}$
$\begin{array}{llll}\text { ITEM } 203 & 3360^{\circ} \times 4.92 \text { SO. FT. }=16531.2 \mathrm{CU} . \mathrm{FT} . / 27 & 27 & =6123 \mathrm{CU} \text { CU. YD. }\end{array}$

$$
\text { STA. } 174+73 \text { TO STA. } 175+51.71
$$

ITEM $452 \quad 78.77^{\prime} \times 8^{\prime}=629.68$ SO. FT. $19=69.96$ SO. YD.
TTEM 30478.71×3.42 SO. FT. -269.03 CU FT. $127=10.0 \mathrm{CU} . \mathrm{YD}$
TEM $20378.77^{\prime} \times 10.25$ SO. FT. $=806.78$ CU. FT. $127=29.9 \mathrm{CU} . Y$

TEM 452 18.71 $\times 4^{-}$- 314.84 So. FT. $19=3.98$ so. Yo
ITEM $30478.77^{\prime} \times 1.62$ SO. FT. $=127.12$ CU. FT. $/ 27=4.7 \mathrm{CU} . Y \mathrm{YD}$.
TIEM 20378.71×5.74 SO. FT. $=451.80 \mathrm{CU}$. FT. $/ 27=16.7 \mathrm{Cu}$. rD.
ITEM 203 .78.71' $\times 3^{\prime}=236.13$ SO. FT. $/ 9=26.2$ so. YD.
STA. I77+60.21 TO STA. $185+50$ ISTA. EO. $185+05.96$ BK. $=185+00$ AHD.
TEM $452795.7^{\circ} \times 8^{\prime}=6366 \mathrm{So}$. FT. $/ 9=707.33$. sa. YD.
TEM $304795.5^{\prime} \times 4.50$ SO. FT. $=3580.88 \mathrm{CU} . \mathrm{FT} . / 27=132.6 \mathrm{CU} . Y \mathrm{YD}$.
EEN 203 795.75' $\times 10.33$ SO. FT. $=8220.10 \mathrm{CU} . \mathrm{FT} . ~ / 27=304.4 \mathrm{CU} . Y \mathrm{YD}$

TEEM $452795.75^{\prime} \times 4^{\prime}=3183$ SO. FT. $19=353.67$ so. YD.
$\begin{array}{lll}\text { TEM } 304 & 795.75^{\prime} \times 1.79 \text { SO. FT. }=1424.39 \mathrm{CU} . \text { FT. } / 27=52.8 \mathrm{CU} \text { YO. } \\ \text { TTEM } 203 & 795.75^{\prime} \times 4.92 \text { SO. FT. }=3915.09 \text { CU. FT. } / 27=1450 \text { CU. YD. }\end{array}$

EAStBOUND - SHOULDERS

STA. $1827+50$ TO STA. $51+03.25$ (STA. EO. $1838+29.49$ BK. $=0.00$ AHD ITEM $452 \quad 5912.74^{\prime} \times 4^{\prime}=23650.96$ SO. FT. 19-2627.88 So. YD.

TTEM 452 3983.18' x $8^{\prime}=31865.44$ SO. FT. $/ 9=3540.60$ SO. Yo.
TEM $304 \quad 3983.18^{\prime} \times 4.50$ SO. FT. $=17924.31 \mathrm{CU}$. FT. $/ 27=663.9 \mathrm{CU} . Y \mathrm{Y}$. TTEM $2033983.18^{\prime} \times 10.33 \mathrm{SO}$. FT. $=40571.38 \mathrm{CU} . \mathrm{FT} .127=1502.6 \mathrm{cu} . \mathrm{YD}$. ITEM 203 3983.18' $\times 7^{\prime}=27882.26$ so. FT. $19=3098.0$ S0. YO. STA. $56+06.25$ TO STA. $119+21$
TEM $4526311.57^{\prime} \times 4^{\prime}=25246.28$ SO. FT. $/ 9=2805.14$ SO. YD.

ITEM 452 3927.53' $\times 8^{\prime}=31420.24$ SO. FT. / $9=3491.14$ SO. YD.
ITEM $3043927.53^{\prime} \times 4.50$ so. FT. $=17673.89 \mathrm{CU}$. FT. $/$ 27 $=654.6 \mathrm{cu} . \mathrm{yd}$.

STA. $119+21$ TO STA. $126+16$

ITEM $4524^{\prime} 5^{\prime} \times 4^{\prime}=1700$ SO. FT. $/ 9=188.89$ SO. YD.
ITEM $3044^{425^{\prime}} \times 1.62$ SO. FT. - 686.38 CU. FT. $/ 27=25.4 \mathrm{CU}$. YD.
$\begin{array}{lll}\text { ITEM } 203 & 425^{\prime} \times 5.74 \text { SO. FT. }-2439.5 \mathrm{CU} . \text { FT. } / 27=90.4 \mathrm{CU} . \text { YD. } \\ \text { ITEM } 203 & 425^{\prime} \times & \times 3^{\prime}-1275 \\ \text { SO. FT. }\end{array}$
ITEM $2034^{425^{\prime}} \times 3^{\prime}-1275$ SO. FT. $/ 9=141.7$ sa. YD.

ITEM $203695^{\prime} \times 10.25$ Sa. FT. $=7123.75 \mathrm{CU}$. FT. $/ 27=263.8 \mathrm{CU}$. Y . ITEM $203695^{\prime} \times 7^{\prime}=4865$ SO. FT. / $9=540.6$ SO. YD.

STA. $126+16$ TO STA. $153+12$

ITEM $4522696^{\prime} \times 4^{\prime}=10784$ SO. FT. $19=1198.22$ SO. YD.
ITEM $3042696^{\prime} \times 1.79$ SO. FT. $=4831.23$ CU. FT. $/ 27-178.9 \mathrm{CU}$. Yo.
ITEM $2032696^{\prime} \times 4.92$ SO. FT. $=13264.32 \mathrm{CU}$. FT. $/ 27-491.3 \mathrm{Cu}$. YD.
$\begin{array}{lllll}\text { ITEM } 452 & 2696^{\prime} & \times 8^{\prime}-21568 \text { SO. FT. } 19=2396.44 \text { So. Yo. } \\ \text { ITEM } 304 & 2696^{\prime} & \times 4.50 \text { SO FT. }\end{array}$

TTEL 20322960×7.33 SO. FT. $=27849.68 \mathrm{CU} . \mathrm{FT} . / 27=1031.5 \mathrm{cu} . Y \mathrm{YD}$ $2696^{\prime} \times 7^{\prime}=18872$ SO. FT. $/ 9=2096.9$ So. YD.

STA. $153+12$ TO STA. $167+20$
TIEM 452 1408' $\times 4^{\prime}-5632$ SO. FT. $/ 9=625.78$ So. Yo.
HEM $304-1408 \times 0.37$ SO. FT. $=513.92 \mathrm{CU} . \mathrm{FT} . / 27=19.0 \mathrm{Cu}$. Yo.
ITEM $2031408^{\prime} \times 5.21$ SO. FT. $=7335.68 \mathrm{CU}$. FT. $/ 27=27.7 \mathrm{CU}$. YO.

ITEM $203638^{\prime} \times 10.25$ so. FT. $=6539.5 \mathrm{cu} . \mathrm{FT} . / 27-242.2 \mathrm{cu}$. YD
ITEM $2033^{\prime} 638^{\prime} \times 7^{\prime}=4466$ SO. FT. $/ 9-496.2$ SO. YD.
STA. $167+20$ To STA. $175+51.71$
ITEM $452831.71 \times 4^{\prime}=3326.84$ SO. FT. $19=369.65$ SO. YD. ITEM 304831.71×1.79 SO. FT. $=1488.76 \mathrm{CU} . \mathrm{FT} . / 27=55.1 \mathrm{CU} . Y \mathrm{YD}$. ITEM 203 831.71 $\times 4.92$ SO. FT. - 4092.01 CU. FT. $/ 27$ - 151.6 CU YD.

HTEM 452 785.40' $\times 8^{\prime}-6283.20$ SO. FT. $/ 9=698.10$ SO. YD.

ITEM 203
$785.40^{\circ} \times 10.33$ SO. FT. $=8113.18 \mathrm{CU}$. FT. $/ 27=300.5 \mathrm{CU} . Y \mathrm{YD}$.
ITEM 203
$785.4^{\prime} \times 7^{\prime}=5498$ SO. FT. $/ \mathrm{g}=610.9$ SO. YD
STA. 177+60.21 TO STA. $180+00$
ITEM $452239.79^{\prime} \times 4^{\prime}=959.16$ SO. FT. $19=106.57$ SO. YD.
ITEM $304239.79^{\prime} \times 1.79$ SO. FT. $=429.22$ CU. FT. $/ 27-15.9$ CU. YD.
THEM 203
ITEM 452

$\begin{array}{ll} \\ & 239.79\end{array} \times 10.33$ so. FT. $=2477.03 \mathrm{Cu}$. FT. $/ 27=91.7 \mathrm{Cu}$. YD.
$239.79^{\prime} \times 7^{\prime}-1678.53$ So. FT. $/ 9-186.5$ So. YD.

STA. $180+00$ TO STA. $181+46$

$\begin{array}{llll}\text { TTEM } 452 & 146^{\prime} & \times 4^{\prime}=584 \text { So. FT. } 19-64.89 \text { so. YD. } \\ \text { ITEM } 304 & 146^{\prime} & \times 1.62 & \text { SO FT. }\end{array}$

TEM $203146^{\prime} \times 5.74$ SO. FT. $=838.04 \mathrm{CU} . \mathrm{FT} . ~ / 27=31.0 \mathrm{CU} . Y \mathrm{YD}$.
ITEM $203146^{\prime} \times 3^{\prime}-438$ SO. FT. $/ 9=48.7$ SO. YO.

ITEM $452-146^{\prime} \times 8^{\prime}=1168$ SO. FT. / 9 - 129.78 SO. Yo.
ITEM $304146^{\prime} \times 3.42$ SO. FT. $=499.03 \mathrm{CU} . \mathrm{FT} . / 27=18.5 \mathrm{CU} . Y \mathrm{YD}$.
ITEM $203146^{\circ} \times 10.25$ SO. FT. $=1496.5 \mathrm{CU}$. FT. $/ 27=55.4 \mathrm{CU} . \mathrm{YD}$
STA. $181+46$ TO STA. $185+50$ (STA. EO. $185+05.96$ BK. $=185+00$ AHD. $)$
ITEM $452 \quad 409.96^{\prime} \times 4^{\prime}=1639.84$ SO. FT. $/ \mathrm{g}=182.20$ SO. YD.

ITEM $452409.96^{\prime} \times 8^{\prime}=3279.68$ SO. FT. $/ 9=364.41$ So. YD.
ITEM $3044099.96^{\prime} \times 4.50$ SO. FT. -1844.82 cu. FT. $/ 27=68.3 \mathrm{cu}$ YD.

> RAMPS "R" \& "Q"

$$
\text { STA. } 16+47 \text { TO STA. } 17+34 \text { (S.R. 21 }
$$

ITEM $451 \quad 87^{\prime} \times 24^{\prime}=2088$ SO. FT. $19=232$ SO. YD
ITEE $30488^{\prime} \times 27^{\prime} \times\left(4^{\prime \prime 1} 12\right)^{\prime}=783 \mathrm{CU}$. FT. $/ 27=29.0 \mathrm{CU}$. YD.

ITEM $2038^{\prime \prime} \times 24^{\prime}-\left(11^{\prime \prime} / 12\right)^{\prime}=1914 \mathrm{Cu} . \mathrm{FT} . / 27=70.9$
ITEM $202 \quad 87^{\prime} \times 24^{\prime}=2088$ SO. FT. $/ 9=232$ sa. YO .
STA. $14+60$ TO STA. $17+50$ (S.R. 21
TTEM $452290^{\prime} \times 8^{\prime}=2320$ SO. FT. 1 9 -257.8 SO. YD.
TEM $304290^{\prime} \times 4.50$ SO. FT. $=$ HO5 CU. FT. $/ 27=48.3 \mathrm{CU}$. YO.

$$
\text { STA. } 17+50 \text { TO STA. } 21+82 \quad \text { (S.R. } 21
$$

ITEM 451 $432^{\prime} \times 15^{\prime}$ (AVG.) $=6480 \mathrm{SO}$. FT. $/ 9=720 \mathrm{SO}$. YD.
ITEM $304432^{\prime} \times 15^{\prime}$ (AVG.) $\times\left(10^{\prime \prime} / 12\right)^{\prime}=5400 \mathrm{CU}$. FT. 1 . 27 - 200.0 CU . YD.

ITEM $203432^{\prime} \times 14^{\prime}($ AVG. $) \times\left(11^{\prime \prime} / 12\right)^{\prime}=5544 \mathrm{CU}$. FT. $127=205.3 \mathrm{cu}$. YD.
STA. $17+35.96$ TO STA. $20+36.02$ (RAMP "R")
$300.06^{\circ} \times 8^{\prime}=2400.48$ so. fT. $/ 9=266.72$ so. ro.
TТЕМ $\left.304-300.06^{\prime} \times 8 \times 16^{\prime \prime} / 12\right)^{-}=1200.24 \mathrm{CU}$. FT. $/ 27=44.5 \mathrm{CU} . Y \mathrm{YD}$.
ITEM $203300.06^{\prime} \times 10$ SO. FT. $=3000.6 \mathrm{CU}$. FT. $/ 27=1 \mathrm{IIII} \mathrm{cU} . \mathrm{YD}$.
ITEM $203300.06^{\prime} \times 7^{\prime}=2100.42$ SO. FT. $/ g=233.4$ SO. Yo.
STA. $16+11.53$ TO STA. $18+66.47$ (RAMP " 0 ")
ITEM $452-253.87^{\prime} \times 8^{\prime}=2030.96$ SO. FT. / 9 925.66 SO. YD.
ITEM $304 \quad 253.87^{\prime} \times 8 \times\left(6^{\prime \prime} / 12\right)^{\prime}=1015.48 \mathrm{CU}$. FT. $127=37.6 \mathrm{CU}$. YD
ITEM 203 253.87 $\times 10$ so. FT. $=2538.7 \mathrm{CU}$. FT. $/ 27$ - 94.0 CU. Yo.
ITEM 203 253.87' $\times 7^{\prime}=1777.09$ SQ. FT. $/ g=197.5$ SO. YD.
STA. $18+66.47$ TO STA. $19+66.47$ (RAMP " 0 ")
TTEM 452 99.43' $\times 5.5^{\prime}(A V G)=$.545.87 SO. FT. $/ g=60.76$ SO. YD.
ITEM $30499.43^{\prime} \times 5.5^{\prime}\left(\right.$ AVG.) $\times\left(3^{\prime \prime} / 12\right)^{\prime}-136.72 \mathrm{CU}$. FT. $/ 27=5.1 \mathrm{CU}$ YD.

STA. $19+66.47$ TO STA. $23+02.62$ (RAMP " 0 ")
ITEM 452

STA. $20+65$ TO STA. $23+02.62$ (RAMP " $0^{\prime \prime}$)
$\begin{array}{llll}\text { TTEM } 452 & 242.01 \\ \text { TEM } 304 & \times 3^{\prime}=726.03 \text { SO. FT. } 19=80.67 \text { SO. YD. }\end{array}$

STA. 22+93 TO STA. $26+20$ (RAMP "R")
ITEM 452 ITEM 304
ITEM 203

STA. $23+19.75$ TO STA. $26+20$ (RAMP " $\mathrm{R}^{\prime \prime}$)
TEEM 452
TTEM 203 $301.02^{\prime} \times 3^{\prime} \times 16^{\prime \prime} 12 Y^{\prime}=451.53 \mathrm{CU}$ FT. $/ 27=16.7 \mathrm{CU} . Y \mathrm{YD}$.
$301.02^{\prime} \times 3.75 \mathrm{SO} . \mathrm{FT}=128.8 \mathrm{CU} . \mathrm{FT} .127=4$.

$$
\text { RAMPS "S" \& " } Q^{\prime \prime}
$$

STA. $45+00$ TO STA. $48+50$ (S.R. 2)
ITEM $452350^{\prime} \times 8^{\prime}=2800$ SO. FT. $19=3$ IIIII SO. YD.
TEEM $304350^{\prime} \times 4.50$ SO. FT. $=1575$ CU. FT. / $27=58.3 \mathrm{CU} . Y \mathrm{Y}$.
ITEM $203350^{\circ} \times 7^{\prime}=2450$ SO. FT. $19=272.2$ SO Yo $133.9 \mathrm{CU} . \mathrm{YD}$

$$
\text { STA. } 40+46.51 \text { TO STA. } 45+00 \text { (RAMP "S") }
$$

ITEM $452 \quad 453.00^{\prime} \times 8^{\prime}=3624.05$ SO. FT. $/ 9=402.67$ SO. YO.
TTEM 304453.01×4.50 SO. FT. $=2038.55 \mathrm{CU}$. FT. $/ 27=75.5 \mathrm{cu}$. Yo.
ITEM 203453.01×10.33 SO. ${ }^{\text {FT. }}=4679.59 \mathrm{CU} . \mathrm{FT} . / 27=173.3 \mathrm{Cu} . \mathrm{YD}$.
STA. $39+46.51$ TO STA. $40+46.51$ (RAMP " S^{\prime} ",

ITEM $2033^{\prime 2} \quad 25^{\prime} \times 6^{\prime}=150$ SO. FT. $/ 9=16.7$ SO. YD.
STA. $34+52.78$ TO STA. $39+46.51$ (RAMP " 0 ")
ITEM 452
TEM $304493.53^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=740.30 \mathrm{CU}$ FT. 1 27 $=27.4 \mathrm{cU} . Y \mathrm{DD}$.
ITEM $203493.53^{\prime} \times 3.75$ SO. FT $=1850.74 \mathrm{CU}$. FT. $/ 27=68.5 \mathrm{CU} . Y \mathrm{YD}$.
STA. $31+64.11$ TO STA. $34+52.78$ (RAMP " 0 ")
TEM 452 287.77' $\times 3^{\prime}=863.31$ SO. FT. $/ 9=95.92$ SO. YD.
TEM $304287.77^{\prime} \times 3^{\prime} \times 16{ }^{\prime \prime} / 121$ ST $=431.66 \mathrm{CU}$. FT. $/ 27=15.9 \mathrm{CU} . Y \mathrm{YD}$. $287.77 \times 3.75 \mathrm{SO}$. FT. $=1079.14 \mathrm{CU} . \mathrm{FT} . / 27=40.0 \mathrm{cu}$. yo.
STA. $31+64.11$ TO STA. $34+52.78$ (RAMP " 0 ")
TEM 452 $299.26^{\prime} \times 3^{\prime}=897.78$ so. FT. $/ 9=99.75$ so. yd.

STA. $33+69$ TO STA. $40+46.51$ (RAMP "S")

TEM $\left.3046677.5^{\prime} \times 3^{\prime} \times 16^{\prime \prime} / 12\right)^{\prime}=1016.27 \mathrm{CU} . \mathrm{FT} . / 27=37.6 \mathrm{CU}$. YD.
ITEM $203677.5^{\prime} \times 3.75$ SO. FT. $=2540.66 \mathrm{CU}$. FT. $/ 27=94.1 \mathrm{Cu}$. Yo.
TEM $45283^{\prime} \times 3^{\prime}=249$ SO. FT. $/ 9=27.67$ Sa YD.
ITEM $\left.3048^{3} \times 3^{\prime} \times 16^{\prime \prime} / 12\right)^{\prime}=124.5 \mathrm{CU}$. FT. $/ 27=4.6 \mathrm{CU}$. YD.
ITEM $20383^{\prime} \times 3.75$ SO. FT. $=311.25 \mathrm{CU} . \mathrm{FT} . / 27=11.5 \mathrm{CU}$. YD.

> RAMPS "T" \& "U"

STA. $12+50$ TO STA. $16+00$ (RAMP "U")
ITEM $452 \quad 350^{\prime} \times 8^{\prime}=2800$ SO. FT. $/ 9=311.11$ SO. YD.

ITEM $203350^{\prime} \times 10.33$ SO. FT. $=3615.5 \mathrm{CU}$. FT. $127=133.9 \mathrm{CU}$. YD.
ITEM $203350^{\prime} \times 7^{\prime}=2450$ SO. FT. $19=272.2$ SO. YD.
STA. $16+00$ TO STA. $20+53.48$ (RAMP " $\mathrm{U}^{\prime \prime}$)
ITEM $452-453.1^{\prime \prime} \times 8^{\prime}=3624.08$ SO. FT. $/ 9=402.68$ SO. YD.

 STA. 20+53.48 TO STA. 21+53.48 (RAMP "U")
$\begin{array}{ll}\text { ITEM } 452 & 100^{\prime} \times 5.5^{\prime}(\text { AVG.) }=550 \text { SO. FT. } 1 \\ \text { ITEM } 304 & 100^{\prime} \times 5.11 \text { so. Yo. }\end{array}$

$25 \times 6=150$ so. FT. $19=16.7$. So. ro.
STA. $21+53.48$ TO STA. $24+55.14$ (RAMP "T")
ITEM $452 \quad$ 301.34' $\times 3^{\prime}=904.02$ SO. FT. $/ 9=100.45$ SO. YD.
TTEM 3043 301.34' $\times 3^{\prime} \times\left(6^{\prime \prime} / 12\right.$) $=452.01 \mathrm{CU}$. FT. $/ 27=16.7 \mathrm{CU}$. YD.
TEM $203301.34^{\prime} \times 3.75$ SO. FT. $=1130.03 \mathrm{CU} . \mathrm{FT} . / 27=41.9 \mathrm{CU} . Y \mathrm{CD}$
STA. $24+55.14$ TO STA. $27+41.18$ (RAMP "T")
ITEM $452 \quad 285.14^{\prime} \times 3^{\prime}=855.42$ SO. FT. $19=95.05$ SO. YD.

STA. $24+56.26$ TO STA. $27+41.18$ (RAMP "T")
ITEM 452
TIEM $304295.36^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} 12\right)^{\prime}=443.04 \mathrm{CU}$. FT. $127=16.4 \mathrm{CU}$ YD.
$\begin{array}{lll}\text { ITEM } 203 & 295.36^{\prime} \times 3.75 \text { SO. FT. }=1107.60 \mathrm{CU} . \text { FT. } / 27=41.02 \mathrm{CU} . \text { YD. }\end{array}$
STA. $20+53.48$ TO STA. $25+70$ (RAMP " U")
ITEM $452^{2} \quad 56.52^{\prime} \times 3^{\prime}=1549.56$ SO. FT. $/ 9=172.17$ SO. Yo.
ITEM $304516.5^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=774.78$ CU. FT. $/ 27=28.7$ CU. YD.
ITEM $203516.52^{\prime} \times 3.75$ SO. FT. $=1936.95$ CU. FT. $/ 27=71.7 \mathrm{Cu}$. YD.
STA. $24+56.26$ TO STA. $25+70$ (RAMP " $U^{\prime \prime}$)
ITEM 452
$113.74^{\prime} \times 3^{\prime}=341.22$ so. FT. $/ 9=37.91$ so. Yo.
ITEM $2031113.74^{\prime} \times 3.75$ SO. FT. $=426.53 \mathrm{CU} . F T . / 27=15.8 \mathrm{CU}$ YO.

STA. $27+08$ TO STA. $27+59$ (RAMP "T") 1047.77 so. FT. $19=116.4$ So. YD. 1047.77' SO. FT. $x\left(4^{\prime \prime} / 12\right)^{\prime}=349.26 \mathrm{CU}$. FT. $/ 27=12.9 \mathrm{Cu}$. YD.
1047.77 SO. FT. $\quad \mathrm{g}=116.4$ SO. YD.

RTAMPS "T" \& "V"
$118.84^{\prime} \times 3^{\prime}=356.52$ so. FT. $/ \mathrm{g}=39.61$ So. YD.

STA. $36+01.65$ TO STA. $37+20.49$ (RAMP "T")

STA. $37+20.49$ TO STA. $39+05.56$ (RAMP "T")

STA. $40+05.56$ TO STA. $42+58.72$ (RAMP "T")
ITEM $452 \quad 253.64^{\prime} \times 8^{\prime}=2029.12$ SO. FT. $/ 9=225.46$ SO. YD.
ITEM $304253.64^{\prime} \times 8^{\prime \prime} \times\left(6^{\prime \prime \prime} / 12\right)^{\prime}=1014.56 \mathrm{CU} . \mathrm{FT} . / 27=37.6 \mathrm{CU}$. YD. ITEM $203253.64^{\prime} \times 8^{\prime}=2029.12$ SO. FT. $/ g=225.46$ SO. YD.

$$
\text { STA. } 33+85 \text { TO STA. } 36+40.00 \quad \text { (RAMP " } V \text { ") }
$$

 ITEH 203258.01×3.75 SO. FT. $=967.54 \mathrm{CU}$. FT. $/ 27=35.8 \mathrm{cu}$ YD

STA. $33+85$ TO STA. $35+95.20$ (RAMP " V ")
ITEM $452 \quad 210.04^{\prime} \times 3^{\prime}=630.12$ SO. FT. $/ 9=70.01$ SO. YD.

STA. $38+53.15$ TO STA. $41+53.22$ (RAMP " $\mathrm{V}^{\prime \prime}$)
ITEM 452
ITEM 304 ITEM 203
$300.07^{\prime} \times 8^{\prime}=2400.56$ so. FT. $19=266.73$ so. YD.
 $300.07^{\prime} \times 7^{\prime}=2100.49$ So. FT. $19=233.4$ so Yo. Yo

STA. $37+33$ TO STA. 41+25 (S.R. 2)

 $392^{\prime} \times 15^{\prime} \times\left(11{ }^{\prime \prime} / 12\right)^{\prime}=5390 \mathrm{Cu} . \mathrm{FT} .127=199.6 \mathrm{Cu}$. Yo. STA. $41+25$ TO STA. $51+28.25$ (S.R. 21ITEM 452ITEM 304ITEM 203
ITEM 203

$1003.25^{\prime} \times 7^{\prime}=7022.75$ so. FT. $/ \mathrm{g}=780.3$ so. yo.

RAMP "Z"

$$
\text { STA. } 57+00 \text { TO STA. } 59+38.68 \quad \text { (S.R. 2) }
$$ITEM 452

ITEM $304238.68^{\prime} \times 8^{\prime}$ - 1909.44 SO. FT. $/ 9=212.16$ so. Yo.

ITEM $203238.68^{\prime} \times 7^{\prime}=1670.76$ SO. FT. $/ \mathrm{g}=185.64$ so. y .

ITEM 452

$$
\text { STA. } 59+38.68 \text { TO STA. } 69+00 \quad \text { (S.R. 2) }
$$

ITEM $203967.03^{\prime} \times 10.25 \mathrm{SO}$. FT. $=9912.06 \mathrm{CU} . \mathrm{FT}, 27=367 \mathrm{Cl}$ CU. YD. ITEM 203 967.03' $\times 77^{\prime}=6769.21$ SQ. FT. $/ 9=752.1$ SO. Y0.

STA. $69+00$ TO STA. $72+81$ (S.R. 2$)$

ITEM $203{ }^{381.47} \times 17^{\prime} \times\left(\right.$ AVG.) $\times\left(10^{\prime \prime \prime} / 12\right)^{\prime}=4768.38 \mathrm{CU} . \mathrm{FT} .127=176.6 \mathrm{CU} . \mathrm{YD}$.
ITEM $203 \quad 381.47^{\prime} \times 15^{\prime} \times\left(11^{\prime \prime}=5\right)^{\prime}=5245.58$ SO. FT. $19=593.4$ SO. YO.
ITEM $202388.47^{\prime} \times 15^{\prime}$ (AVG, $=5722.05$ so. FT. $9=635.8$ so Yo. YO.
STA. $69+00$ TO STA. $72+02.07$ (RAMP " 2 ")
$302.07^{\prime} \times 8^{\prime}=2416.56$ SO. FT. $19=268.51$ so. yo.
ITEM $304302.07^{\prime} \times 8^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=1208.28 \mathrm{CU}$. FT. $127=44.8 \mathrm{CU}$. Yo.
$\begin{array}{ll}\text { ITEM } 203 & 302.07^{\prime} \times 10 \text { SO. FT. }=3020.7 \mathrm{CU} . F T . ~ \\ \text { ITEM } 203 & 27=111.9 \mathrm{CU} . Y \mathrm{YD},\end{array}$
ITEM 203 302.07' $\times 7$ ' $=2114.49$ SO. FT. $1 \quad 9=234.9$ SO. YO.
STA. 72+02.07 TO STA. $73+02.07$ (RAMP " "") $^{\prime \prime}$
ITEM 452 99.63' $\times 7^{\prime}($ AVG. $)=697.41$ SO. FT. $/ 9-77.49$ SO. Yo.

ITEM 203 99.63' $\times 8.75$ SO. FT. (AVG.) -871.76 CU. FT. $127=32.3 \mathrm{cu}$. Yo.
ITEM 203 99.63' $\times 6^{\prime}=597.78$ SO. FT. $/ 9=66.4$ So. ro.
STA. 73+02.07 TO STA. $74+64.02$ (RAMP " $Z^{\prime \prime}$)
ITEM $452 \quad 161.44^{\prime} \times 6^{\prime}=968.64$ SO. FT. $19=107.63$ So. Yo.

ITEM $203161.44^{\prime} \times 5^{\prime}-807.2$ SO. FT. $/ g=89.7$ So. YD. CU . Yo.
STA. $74+64.02$ TO STA. $80+21.38$ (RAMP " $7^{\prime \prime}$)
ITEM 452
ITEM 304
$\begin{array}{lll}\text { ITEM } & 352 & 557.36^{\prime} \times 6^{\prime}=3344.16 \text { So. FT. } / 9=371.57 \text { so. Yo. } \\ 557.6^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=1672.08 & \end{array}$
ITEM 203 557.36' $\times 6^{\prime} \times\left(6^{\prime \prime \prime} / 12\right)^{\prime}=1672.08 \mathrm{CU}$. FT. $/ 27=61.9 \mathrm{CU}$. YD
$\begin{array}{lll}\text { ITEM } 203 & 557.36^{\prime} & \times 7.5 \text { SO. FT. }=4180.2 \mathrm{CU} . \mathrm{FT} . / 27=154.8 \mathrm{CU} . \text { YD. } \\ \text { ITEM } 203 & 557.36^{\prime} \times 5^{\prime}=2786.8 \text { SO. FT. } / g=309.6 \text { SO. YD. }\end{array}$

STA. $73+97$ TO STA. $74+64.02$ (RAMP " $Z^{\prime \prime}$)
ITEM $45268.25^{\prime} \times 3^{\prime}=204.75$ so. FT. $/$ g -22.75 so. yo.
TEEM $30468.25^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=102.38 \mathrm{CU} . \mathrm{FT} . / 27=3.8 \mathrm{CU} . Y \mathrm{YD}$.
$68.25^{\prime} \times 3.75$ SO. FT. $=255.94 \mathrm{CU} . \mathrm{FT} . / 27=9.5 \mathrm{cu} . \mathrm{Yo}$

STA. $74+64.02$ ГO STA. $80+21.96$ (RAMP " $7^{\prime \prime}$ "

$\begin{array}{llll}\text { ITEM } 452 & 557.94^{\prime} \times 3^{\prime}=1673.82 \mathrm{SO} . \mathrm{FT} . / 9=185.98 \mathrm{SO} \text { YO. } \\ \text { ITEM } 304 & 557.4^{\prime} \times 3^{\prime} \times 6{ }^{\prime} & \end{array}$

RAMP "W"

STA. $92+75$ TO STA. $96+25$ (S.R. 2)
ITEM $452350^{\circ} \times 8^{\prime}=2800$ SO. FT. / $9=311 . / 11$ SO. YD.
ITEM $304350^{\prime} \times 4.50$ SO. FT. $=1575$ CU. FT. $127=58.3 \mathrm{Cu}$ yd.
TEM $203350^{\circ} \times 10.33$ SO. FT. $=36 / 5.5 \mathrm{CU}$. FT. $/ 27=133.9 \mathrm{CU} . Y \mathrm{Y}$. TEEM $203350^{\prime} \times 7^{\prime}=2450^{\prime}$ SO. FT. $/ 9=272.2$ so. Yo.

STA. $88+21.52$ TO STA. $92+75$ (RAMP "W")
ITEM 452 453' $\times 8^{\prime}-3624$ SO. FT. $19=402.67$ SO. YD.
ITEM $304453^{\prime} \times 3.42$ SO. FT. $=1549.26 \mathrm{CU}$. FT. $/ 27=57.4 \mathrm{cu}$. yo.
TEM 203 453' $\times 10.25$ SO. FT. $=4643.25 \mathrm{CU} . \mathrm{FT} . / 27=172.0 \mathrm{CU} . Y \mathrm{Y}$.
ITEM 203 453' $\times 7^{\prime}=3$ I7I SO. FT. $19=352.3$ So. yo.
STA. $87+21.52$ TO STA. $88+21.52$ (RAMP " ${ }^{\prime \prime}$ ")
ITEM 452 99.91 $\times 7^{\prime}$ (AVG.) $=699.37$ So. fT. $19=77.71$ so. Yo.

TEM 203 99.91' $\times 8.75$ S. 203 . FT. (AVG.) $=874.21 \mathrm{CU}$. FT. $/ 27=32.4 \mathrm{CU} . Y \mathrm{YD}$.
66.6 so. y .

STA. $84+97.53$ TO STA. $87+21.52$ (RAMP "W")
ITEM $452223.52^{\prime} \times 6^{\prime}=13441 / 12$ SO. FT. $/ 9=149.01$ So. YD.
TTEM $304223.52^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 122^{\prime}=670.56\right.$ CU. FT. $/ 27=24.8 \mathrm{cU}$. YD.
TTEM $203223.55^{\prime} \times 7.5$ SO. FT. $=1676.4 \mathrm{CU}$. FT. $127=62.1 \mathrm{CU} . Y \mathrm{Y}$.
EM $203-223.52^{\prime} \times 5^{\prime}=1117.6$ SQ FT. $/ 9=124.2$ SO.
STA. $79+81.03$ TO STA. 84.97.53 (RAMP "W")
TEM $304-562.5^{\prime} \times 6^{\prime}=3099$ SO. FT. Y = 344.33 SO. YD.

TEM 203 516.5' $\times 5^{\prime}=2582.5$ SO. FT. / $9=286.9$ SO. YD.
STA. $87+21.52$ TO STA. $88+21.52$ (RAMP "W")
TTEM $452100.46^{\prime} \times 3^{\prime}=301.38$ so. FT. $19=33.49$ so. YD.
TEE $304100.46^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=150.69 \mathrm{CU}$. FT. $/ 27=5.6 \mathrm{CU} . Y \mathrm{YD}$. $100.46^{\prime} \times 3.75$ SO. FT. $=376.73 \mathrm{CU}$. FT. $/ 27$ - $14.0 \mathrm{CU} . \mathrm{YD}$.

STA. 84+97.53 TO STA. $87+21.52$ (RAMP "W")

TTEM $452226.73^{\prime} \times 3^{\prime}=680.19$ SO. FT. $/ 9=75.58$ SO. YD.
ITEM $304226.73^{\prime \prime} \times 3^{\prime \prime} \times\left(6^{\prime \prime} 12\right)^{\prime}=340.10 \mathrm{CU}$. FT. $/ 27=12.6 \mathrm{CU}$. Yo. TEM $203226.73^{\prime} \times 3.75$ SO. FT. $=850.24 \mathrm{CU}$. FT. $/ 27=31.5 \mathrm{CU}$. YD. STA. 79+81.03 TO STA. 84+97.53 (RAMP "W") TEEM $4525 / 9.96^{\prime} \times 3^{\prime}=1559.88$ so. FT. $/ 9=173.32$ so. yD. $\begin{array}{lll}\text { ITEM } 304 & \left.519.96^{\prime} \times 3^{\prime} \times 16^{\prime \prime \prime} / 12\right)^{\prime}=779.94 \mathrm{CU} . \text { FT. } / 27=28.8 \mathrm{CU}, \text { YD. } \\ \text { ITEM } 203 & 519.96^{\prime} \times 3.75 \text { SO. FT. }=1949.85 \mathrm{CU} \text {. FT. } / 27=72.2 \mathrm{CU} \text { YD. }\end{array}$

RAMP " $X^{\prime \prime}$

STA. $64+00$ TO STA. $67+50 \quad$ (S.R. 21

ІТЕМ 452
ITEM 30ITEM 452ITEM 30
 x 7.5 so. fr. $=$ so. fl. $/ 9=117.2$ so. ro. STA. $75+10.19$ TO STA. 79+63.76 (RAMP " $x^{\text {" }}$) $453.57^{\prime} \times 5^{\prime}=2267.85$ So. FT. $/ \mathrm{g}=252.0$ so. ro.
STA. $79+63.76$ TO STA. $21+60$ (VERM. INT. RD.) (RAMP " X ") $\begin{array}{lll}\text { ITEM } 452 & 94.20^{\prime} \times 5^{\prime} \text { (AVG.) }-471 \text { SO. FT. } 19=52.33 \text { so. YO. } \\ \text { ITEN } & 304 & 90^{\prime}\end{array}$ ITEM $30494.20^{\prime} \times 5^{\prime}$ (AVG.) $\times\left(6^{\prime \prime} /(12)^{\prime}=235.5 \mathrm{CU}\right.$. FT. $/ 27=8.7 \mathrm{CU}$. YD. ITEM $20394.20^{\prime} \times 6.25$ SO. FT. ANG. $=598.75$ CH. FT. $/ 27=218 \mathrm{CU}$. YD.

STA. 71+98.83 TO STA. $72+98.83$ (RAMP " x ")
$100.61^{\prime} \times 3^{\prime}=301.83$ So. FT. $/ 9=33.54$ SO. YD, $100.6^{\prime} \times 3^{\prime} \times\left(66^{\prime \prime} / 12\right)^{\prime}=150.92 \mathrm{CU} . \mathrm{FT} . / 27=5.6 \mathrm{CU}$ YD.
$100.1^{\prime \prime} \times 3.75 \mathrm{so} . \mathrm{FT}=377.3 \mathrm{CU}$ FT. $/ 27=14.0 \mathrm{CU}$ Yo. STA. $72+98.83$ TO STA. $75+10.19$ (RAMP " x ")

$$
\text { STA. } 75+10.19 \text { TO STA. } 79+44.71 \text { (RAMP " }{ }^{\prime \prime} \text { ") }
$$

ITEM 452 434.52' $\times 3^{\prime}=1303.56$ SO. FT. $/ 9$ - 144.84 SO. YD.

STA. 79+44.71 TO STA. 22+67 (VERM. INT. RD.) (RAMP "X")
ITEM $452 \quad 69.81^{\prime} \times 3^{\prime}=209.43$ So. FT. $/ 9=23.27$ so. Yo.

PAVEMENT CALCULATIDNS

RAMP "Y"
STA. $92+00$ TO STA. $104+00 \quad$ IS.R. 2
TEEM 452 1200' X 8' 9600 SO. FT. 19 - 1066.67 SO. Yo.

STA. $88+18$ TO STA. $92+00$ (RAMP " " ${ }^{\prime \prime}$)
TTEM 451 382' $\times 15^{\prime}($ AVG. $)=5730$ SO. FT. $/ \mathrm{g}=636.67$ SO. YO.
ITEM $304382^{\prime} \times 15^{\prime}($ AVG. $) \times\left(10^{\prime \prime} / 12\right)^{\prime}=4775$ CU. FT. $127=1760^{\circ} \mathrm{CU}$. YD

ITEM $382^{\prime} \times 14^{\prime} \times\left(11^{\prime \prime} / 12\right)^{\prime}=4902.3 \mathrm{CU}$ FT. $/ 27=181.6 \mathrm{CU}$. Y.D 382' $\times 15^{\prime}$ (AVG.) -5730 SO. FT. 19 - 636.7 so. YD.
STA. $88+99.94$ TO STA. $92+00$ (RAMP " " ${ }^{\prime \prime}$ ")
TEM 452
TEM $304304.06 \times 8^{\prime}=2400.48$ So. FT. $/ 9=266.72$ so. Yo.
ITEM $203300.06^{\prime} \times 10$ SO FT $=3000.6 \mathrm{Cu}$. FT. $127=44.5 \mathrm{CU}$. YO.
ІТЕМ $203300.06^{\prime} \times 7^{\prime \prime}=2100.42$ so. FT. $/ \mathrm{g}=233.4$ so. yd.
STA. $87+99.94$ TO STA. $88+99.94$ (RAMP " $\gamma^{\prime \prime}$)
ITEM $452 \quad 99.65^{\prime} \times 7^{\prime}$ (AVG.) $=697.55$ SO. FT. $/ 9=77.51$ SO. YD.
TEM 304 O. $203 \times$ Y
$32.3 \mathrm{cu} . \mathrm{yo}$

STA. $86+51.21$ TO STA. $87+99.94$ (RAMP " γ ")
TEM 452. 148.26' $\times 6^{\prime}=889.56$ SO. FT. $/ 9=98.84$ So. YD.
ITEM $203-148.26^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} 112\right)^{\prime}=444.78 \mathrm{CU} . \mathrm{FT} . / 27=16.5 \mathrm{CU}$. YD.
ITEM 203 1488.26' $\quad 7.5$ SO. FT. $=$ IIII.95 CU. FT. $/ 27=41.2 \mathrm{cU}$. Yo.
$148.26 \times 5=74.3$ Sa. FT. $19=82.4$ so. y
STA. $80+30.24$ TO STA. $86+51.21$ (RAMP "Y")
ITEM $452620.97^{\prime} \times 6^{\prime}=3725.82$ SO. FT. $/ 9=413.98$ so. Yo. TTEM $304620.97^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=1862.91$ CU. FT. $/ 27=69.0 \mathrm{CU}$ YD TEM $203620.97 \times 7.5 \mathrm{SO}$. FT. $=4657.28 \mathrm{CU} . \mathrm{FT} . / 27=172.5 \mathrm{CU}$. YD

STA. $80+30.24$ TO STA. $21+43$ (VERM. INT. RD.) (RAMP "Y")
TTEM 452 94.25' $\times 5^{\prime}$ (AVG.) $=471.25$ SO. FT. $/ 9=52.36$ SO. Yo.

STA. 22+41 (VERM. INT. RO.I) TO STA. 80+41.89 (RAMP "Y")
ITEM $45256.72^{\prime} \times 3^{\prime}=170.16$ so. FT. $19=18.91$ so. Yo.
$\begin{array}{ll}\text { TEM } 304 & 56.72^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=85.08 \mathrm{CU} . \text { FT. } / 27=3.2 \mathrm{CU} . \text { YD. } \\ \text { TEEM } 203 & 56.72^{\prime} \times 3.75 \text { SO. FT. }=212.7 \mathrm{CU} \text { FT. } / 27=7.9 \mathrm{CU} . \text { YD. }\end{array}$
STA. $80+41.89$ TO STA. $86+51.21$ (RAMP "Y")
TEM $452609.3^{\prime} \times 2^{\prime}=1827.96$ so. FT. $19=203.11$ so. YD.

TTEM $203690932^{\prime} \times 3.75$ SO. FT. $=2284.95$ CU FT. $127=84.6$ CU YD.

TEM 452
TEEM 304
TEM 203
STA. 86+51.21 TO STA. $87+00$ (RAMP " " " $^{\prime \prime}$)

RAMP "G

STA. $152+50$ TO STA. $164+50$ (S.R. 21

ITEM 452
TTEM $304-1200^{\prime} \times 8^{\prime}=9600$ SO. FT. $/ 9=1066.67$ SO. YD.

ITEM 203 1200' $\times 7^{\prime}=8400$ SO. FT. $/ 9=933.3$ so. yD.
STA. $164+50$ TO STA. $168+16$ (RAMP " G "

ITEM $20333^{3} 6^{\circ} \times\left(5^{\prime} \times\left(11^{\prime \prime} / 12\right)^{\prime}=5032.5 \mathrm{CU}\right.$ FT, $127=186.4$
ITEM $202366^{\prime} \times 15^{\prime}($ AVG. $)=5490$ SO. FT. $/ \mathrm{g}=610$ so. Yo.
STA. $164+50$ TO STA. $167+50.07$ (RAMP " " 6 ")
ITEM $452 \quad 300.07^{\prime} \times 8^{\prime}=2400.56$ So. FT. $/ 9=266.73$ SO. YD.

$\begin{array}{lll}\text { ITEM } 203 & 300.07^{\prime} \times & \times 10 \\ \text { ITEM } 203 & \text { So. FT. }=3000.7 \text { CU. FT. } / 27=\text { III.I Cu. } \\ 300.07\end{array}$
STA. $167+50.07$ TO STA. $168+50.07$ (RAMP " 6 ")
TTEM 452 99.5" $\times 7^{\prime}$ (AVG.) $=696.57$ SO. FT. / 9 - 77.40 SO. YD.
ITEM 304 99.5 ${ }^{\prime} \times 7^{\prime \prime}$ (AVG.) $\times\left(6^{\prime \prime \prime} / 12\right)^{\prime}=348.29 \mathrm{CU}$. FT. $/ 27=12.9 \mathrm{CU}$. YD.
TTEM 203 99.51' $\times 8.75$ SO. FT. (AVG.) $=870.71$ CU. FT. $/ 27=32.2 \mathrm{CU}$. YD.
STA. $168+50.07$ TO STA. $170+90.66$ (RAMP "c")
ITEM $452 \quad 239.59^{\prime} \times 6^{\prime}=1437.54$ so. FT. $/ 9=159.73$ so. YD.
ITEM $304239.55^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=718.77 \mathrm{CU} . \mathrm{FT} . / 27=26.6 \mathrm{CU} . Y \mathrm{YO}$.
$203239.59^{\prime} \times 7.5$ So. FT. $=1796.93 \mathrm{Cu} . \mathrm{FT} . / 27-66.6 \mathrm{cu}$. yd.
ITEM 203 239.59' $\times 5^{\prime}=1197.95$ sQ. FT. $/ 9=133.1$ so. Yo.
STA. $170+90.66$ TO STA. $173+39.26$ (RAMP " 6 ")
ITEM $452248.60^{\prime} \times 6^{\prime}=1491.60$ SO. FT. $/$ g $=165.73$ so. Yo.

ITEM $203-159.34^{\prime} \times 5^{\prime}=7967$ SO FT. 9 - 88.5 SO YO.II CU. Yo.
ITEM 203 89.26' $\times 6^{\prime}=535.56$ SO. FT. / $9=59.5$ SO. YD.
STA. $173+39.26$ TO STA. $175+76.27$ (RAMP " G ")
ITEM $452 \quad 238.5^{\prime} \times 6^{\prime}=1431$ SO. FT. $19=159$ so. YD
ITEM $304238.50^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=715.5 \mathrm{CU}$. FT. $/ 27=26.5 \mathrm{CU}$. YD. TTEM $203238.50^{\circ} \times 7.5$ SO FT $=1788.75 \mathrm{CH}, \mathrm{FT}, 127=66.3 \mathrm{Cu}$ YO. ITEM $203238.50^{\circ} \times 5^{\prime}=1 / 192.5$ SO. FT. $/ \mathrm{g}=132.5 \mathrm{so}$. YD.

STA. $175+76.27$ TO STA. $211+79.12$ (BAUMhart RO.) (RAMP " G ")
ITEM $452 \quad 124.25^{\prime} \times 6^{\prime}=745.50$ SO. FT. $/ 9=82.80$ So. YD.
ITEM $304124.25^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=372.75 \mathrm{CU}$. FT. 127 - 13.8 CU. YD.
ITEM $2031124.25^{\prime} \times 7.5$ So. FT. $=931.88 \mathrm{CU}$. FT. $/ 27$ - 34.5 CU. YD.
ITEM 203 124.25' $\times 5^{\prime}=621.25$ so. FT. / $9=69.0$ SO. Yo.
STA. $169+16$ TO STA. $170+90.66$ (RAMP " G ")
ITEM 452 I78.93' $\times 3^{\prime}=536.79$ SO. FT. $19=59.64$ Sa. YD.
ITEM 304 178.93' $\times 3^{\prime} \times\left(6^{\prime \prime} /(12)^{-}-268.40\right.$ CU. FT. $/ 27=9.9 \mathrm{CU}$. YD.
ITEM 203 178.93' $\times 3.75$ SO. FT. $=670.99$ CU. FT. $/ 27=24.9$ CU. YO.

STA. $170+90.66$ TO STA. $173+39.26$ (RAMP " G ")
ITEM 452 ITEM 203 $248.60^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=372.9 \mathrm{cU} . \mathrm{FT} .127=13.8 \mathrm{CU} . Y \mathrm{YO}$.

$$
\text { STA. } 173+39.26 \text { TO STA. } 175+76.27 \text { (RAMP " } G \text { ") }
$$

ITEM $452 \quad 228.32^{\prime} \times 3^{\prime}=684.96$ SO. FT. $/ 9=76.11$ SO. YD.
TEM $\left.304228.32^{\prime} \times 3^{\prime} \times 16^{\prime \prime} / 12\right)^{\prime}=342.48 \mathrm{CU} . \mathrm{FT} / 27=12.7 \mathrm{CU} . \mathrm{YO}$. ITEM $203228.32^{\prime} \times 3.75$ SO. FT. $=856.20 \mathrm{CU}$. FT., $27=37.71 \mathrm{CU}$. YD

STA. $175+76.27$ TO STA. $210+86$ (BAUMHART RD.) (RAMP " $\mathrm{G}^{\prime \prime}$)
ITEM $45268.62^{\prime} \times 3^{\prime}=205.86$ So. FT. $/ 9=22.87$ so. yo. ITEM $30468.6^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=102.93 \mathrm{CU}$. FT. $/ 27=3.8 \mathrm{CU} . \mathrm{YO}$. ITEM 203 68.62' $\times 3.75$ SO. FT. $=257.33 \mathrm{CU}$. FT. / $27=9.5 \mathrm{cu}$. YD.

$$
\text { STA. } 176+48 \text { TO STA. } 176+78.06 \text { (RAMP " } G \text { ") }
$$

ITEM 451 2072.67 SO. FT. / 9 $=230.30$ so. YO.
TEM 3042072.67 SO. FT. $X\left(66^{\prime \prime} / 12\right)^{\prime}=1036.34 \mathrm{CU}$. FT. $/ 27=38.4 \mathrm{CU} . Y \mathrm{YD}$.
TTEM 203 2072.67 S0. FT. / $9=230.3$ So. YD.
TTEM 2022072.67 SO. FT. $\quad 9=230.3$ SO. YD. CU. FT. $/ 27=70.4 \mathrm{CU}$, YD 2072.67 So. FT. $/ 9=230.3$ so. ro.

RAMP " $H^{\prime \prime}$

STA. $159+50$ TO STA. $163+12$ (S.R. 2)
ITEM 452 ITEN $3042^{2} \times 8^{\prime}=2896$ so. FT. $19=321.78$ So. YD.
 ITEM 203 362' $\times 7^{\prime}=2534$ SO. FT. / $9=281.6$ SO. YD.

STA. $163+12$ TO STA. $167+65.48$ (RAMP " ${ }^{\prime \prime}$ ")
ITEM $452453^{\prime} \times 8^{\prime}=3624$ SO. FT. 19 - 402.67 so. YD.
ITEM $304453^{\prime} \times 3.42$ SO. FT. $=1549.26 \mathrm{CU} . \mathrm{FT} . / 27=57.4 \mathrm{CU} . \mathrm{YD}$.
ITEM $203453^{\prime} \times 10.25$ SO. FT. $=4643.25 \mathrm{CU}$ FT. $/ 27$. $=172.0 \mathrm{CU}$ YD.

STA. $167+65.48$ TO STA. $168+65.48$ (RAMP "H")

99.9/ $\times{ }^{7}$ (AVG.) - 699.37 So. FT. $/ 9$ - 77.71 SO. YD.

TEM 304 99.9" $\times 7^{\prime}(A V G.) \times\left(6^{\prime \prime} 12\right)^{\prime}=349.69 \mathrm{CU} . \mathrm{FT} .127=13.0 \mathrm{CU} . \mathrm{YD}$.
ITEM 203 99.91' $\times 8.75$ SO. FT. (AVG.) $=874.21 \mathrm{CU}$. FT. $/ 27=32.4 \mathrm{CU}$. YD.
TТЕМ $203-99.91^{\prime} \times 6^{\prime}=599.46$ SO. FT. $19=666$ SO. YO.
STA, $168+65.48$ TO STA, $171+13,26$ (8AuP "4")

ITEM 452

STA. $171+13.26$ TO STA. $173+18.64$ (RAMP "H")
ITEM 452
$205.38^{\prime} \times 6^{\prime}=1232.28$ so. FT. / $9-136.92$ so. Yo.

$6.4^{\prime} \times 6^{\prime}=411.84$ SO. FT. $/ 9=45.8$ SO. yo.

STA. $173+18.64$ TO STA. $175+99.89$ (RAMP " $H^{\prime \prime}$)
\qquad
\qquad
 $282.72^{\prime} \times 5^{\prime}=141.6$ SO. $2120.4 \mathrm{CU} . \mathrm{FT} .127=78.5 \mathrm{CU}$. YD.

STA. $175+99.89$ TO STA. 203+47.90 (BAUMHART RD.) (RAMP "H") ITEM $452 \quad 88.56^{\prime} \times 6^{\prime}=531.36$ so. FT. $/ 9=59.04$ so. YD.
TEE $30488.56^{\prime} \times 6^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=265.68$ CU. FT. $/ 27=9.8 \mathrm{CU}$ YD.

STA. $203+97.90$ TO STA. $203+47.90$ (BAUMHART RD.)
ITEM 452
$50^{\prime} \times 5^{\prime}($ AVG. $)=250$ So. FT. $19=27.78$ so. YD.
ITEM $3045^{50^{\prime}} \times 5^{\prime}\left(\right.$ AVG.) $\times\left(6^{\prime \prime \prime} / 12\right)^{\prime}=125.0 \mathrm{Cu} . \mathrm{FT} . / 27=4.6 \mathrm{CU}$. Yo. ITEM $20350^{\prime} \times 6.25 \mathrm{SO} . \mathrm{FT}$. (AVG.) $=312.5 \mathrm{CU} . \mathrm{FT} .127=41.6 \mathrm{CU} . Y \mathrm{YD}$.

$$
\text { STA. } 167+65.48 \text { TO STA. } 168+65.48 \text { (RAMP " "H") }
$$

ITEM 452
тем 304
 ITEM 203 100.46' $\times 2^{\prime}=200.92$ SO. FT. $/ 9=22.3$ SO. YD.

STA. $168+65.48$ TO STA. $171+\mid 3.26$ (RAMP "H")
ITEM $452 \quad 253.84^{\prime} \times 3^{\prime}=761.52$ SO. FT. $19=84.61$ SO. YD.
$\begin{array}{llll}\text { ITEM } 304 & 253.8^{\prime} & 25.84^{\prime} \times 3^{\prime}= & \times\left(6^{\prime \prime} / 12\right)^{\prime}=380.76 \mathrm{CU} . \mathrm{FT} . / 27=14.1 \mathrm{CU} . \text { YD }\end{array}$ TEM $203253.84^{\circ} \times 3.75 \mathrm{SO}$. FT. $=951.9 \mathrm{CU} . \mathrm{FT} . / 27=35.3 \mathrm{CU} . \mathrm{YD}$. ITEM $203253.84^{\prime} \times 2^{\prime}=507.68$ SO. FT. $/ 9=56.4$ SO. Yo.

$$
\text { STA. } 171+13.26 \text { TO STA. } 173+18.64 \text { (RAMP "H") }
$$

ITEM $304205.38^{\prime} \times 3^{\prime} \times\left(6^{\prime \prime} 112\right)^{\prime}=308.07$ CU. FT. $/ 27=11.4$ CU. YO. TEM $203205.38^{\prime} \times 3.75 \mathrm{SO} . \mathrm{FT} .=770.18 \mathrm{CU} . \mathrm{FT} . / 27=28.5 \mathrm{CU}$. YD. $058^{\prime} \times 2^{\prime}=40.76$ So. FT. $/ 9=45.64$ SO. YD.

STA. $173+18.64$ TO STA. 175+99.87 (RAMP " $\mathrm{H}^{\prime \prime}$)

ITEM $304272.66^{\prime} \times 3^{\prime \prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=408.99$ CU. FT. $/ 27=15.1 \mathrm{CU} . Y \mathrm{YD}$. TTEM 203 272.66' 3.75 SO . FT. $=1022.48 \mathrm{CU} . \mathrm{FT}, 127=37.87 \mathrm{CU} . Y \mathrm{YD}$.

STA. $175+99.87$ TO STA. $204+65$ (BAUMHART RD.) (RAMP " " $H^{\prime \prime}$) 55.20' $\times 3^{\prime}=225.60$ SO. FT. $19=2510$ SO YD

ITEM $452 \quad 75.20^{\prime} \times 3^{\prime}=225.60$ SO. FT. $/ 9=25.10$ SO. YD.

$$
\text { STA. } 168+04 \text { TO STA. } 169+73 \text { (RAMP "H") }
$$ $170.33^{\prime} \times 16^{\prime}=2725.28$ so. FT. $\quad 9=302.81$ so. YD.

ТТЕМ $304170.33^{\prime} \times 16^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=1362.64 \mathrm{CU}$. FT. $/ 27=50.5 \mathrm{CU}$. YD . ITEM 203 170.33' $\times 16^{\prime}=2725.28$ SO. FT. $19=302.8$ SO. YD.

$$
\text { STA. } 169+73 \text { TO STA. } 170+02 \text { (RAMP "H") }
$$

TEM $45129.4^{\prime} \times 16^{\prime}=470.48$ SO. FT. $/ 9=52.3$ so. YD.
ITEM $\left.30429.4^{\prime} \times 16^{\prime} \times 16^{\prime \prime} 12\right)^{\prime}=235.2 \mathrm{CU}$ FT. $/ 27=8.7 \mathrm{CU}$. YD.
ITEM $20329.4^{\prime} \times 16^{\prime}=470.48$ SO. FT. $/ 9=52.3$ So. Yo.
TEEM $20229.4^{\prime} \times 16^{\prime}=470.48$ SO. FT. $/ 9=52.3$ SO. YD. CU.YD.
$29.4^{\prime} \times 16^{\prime}=470.48$ so. FT. $/ 9=52.3$ so. Yo.

STA. $170+02$ TO STA. $171+84$ (RAMP " $H^{\prime \prime}$)
ITEM $451 \quad 183.24^{\prime} \times 16^{\prime}=2931.84$ SO. FT. $19=325.76$ SO YO.
ITEM $304183.24^{\prime} \times 16^{\prime} \times\left(6^{\prime \prime} / 12\right)^{\prime}=1465.92 \mathrm{CU} . \mathrm{FT} . / 27=54.3 \mathrm{CU}$. YD.

$\begin{array}{ll}\text { ITEM } 203 & 183.24^{\prime} \times 16^{\prime} \times\left(1 I^{\prime \prime \prime} / 12 \gamma^{\prime}=2687.52 \text { CU. FT. } / 27=9.5\right. \\ \text { ITEM } 202 & 183.24^{\prime} \times 16^{\prime}=293 / .84 \text { SO. FT. } / \mathrm{g}=325.8 \text { so. Yo. }\end{array}$

FULL DEPTH PAVEMENT JOINT REPAIR CALCULATIONS

FULL DEPTH PAVEMENT JOINT REPAIR CALCULATIONS

FULL DEPTH PAVEMENT JOINT REPAIR CALCULATIONS

FULL DEPTH PAVEMENT JOINT REPAIR CALCULATIDNS

FULL DEPTH PAVEMENT JOINT REPAIR CALCULATIONS

FULL DEPTH PAVEMENT JIINT REPAIR CALCULATIONS

FULL DEPTH PAVEMENT JOINT REPAIR CALCULATIONS

PAVEMENT GFINDING CALCULATIONS

TRANSVERSE INT SEALING CALCULATIONS

item 801 - traverse joint sealing, class ill, silicone
mainline - westbound
Sto. $1827+50$ to Sto. $1827+96$
146.1
\times

- 3 Joints © 24.3
- 73 L.F.

2 Joints - 38 Joints © 36.5°
Sto. $90+23$ to Sto. $98+00$
$1777^{\prime} x<1$ Joint $\left.\div 40^{\prime} 1\right]$
2 Joints - 21 Joints © 24^{\prime}
= 504 L. .
Sto. $99+82$ to Sto. $114+82$
(1500' $x / 1$ Joint $\left.\left.\div 40^{\prime}\right)\right]$

+2 Joi

Joints - 40 Joint

- 960 L.F.

Sto. $123+26$ to $570.138+92$
(1566' \times (1 Joint $\div 40^{\prime \prime 1}+$ +2 Joints - 41 Joints © 24^{\prime} - 984 L.F.

Sta. $141+13$ to Sto. $162+30$
c2117 $\times 11$ Joint $\left.+40^{\prime} 1\right]+2$ Joints $=55$ Joints e $24^{\prime} \quad=1320$ L.F.
Sto. 169975 to Sto. $174+73$
$\left[498^{\prime} \times\left(1\right.\right.$ Joint $\left.\left.\div 40^{\prime}\right]\right]+$ +2 Joints $=15$ Joints e 24^{\prime}

- 360 L.F.
ta. $177+60.21$ to $5+0.185+50$
Sta. Eq. $185+05.96 \quad \mathrm{BK}=185+00 \mathrm{AHD}$

TOTAL $=6 / 16$ L.F.
mainline - eastbound
Sta. $1827+50$ to Sto. $11+05$

+ Joints - 57 Joints © 24 - 1368 L.F.

Sta. $126+16$ to Sto. $153+12$
12696' $\times 11$ Joint $* 401]+2$ Joints -69 Joints e $24^{\prime} \quad-1656$ L.F.
Sto. $169+60$ to 5 Sto. $175+51.71$
$5991.71 \times(11$.
- 408 L.F.

Sto. $177+60.21$ to Sto. $180+00$
[239.79 $\times<1$ Joint $\left.\left.\div 40^{\prime}\right)\right]+2$ Joints $=8$ Joints e $24^{\prime} \quad-192$ L.F.
Sto. $181+46$ to Sto. $185+50$
$\left[409.96 \times(\pm 1)\right.$ Joint $\left.\underset{*}{*} 40^{\prime 1}\right]$ \qquad
\qquad
TOTAL - 7752 L.F.

RAMPS " Q " \& " R "

 - 375 L.F.

Sto. $17+35.96$ to Sto. $26+20.31$
[884.35' $\times 11$ Joint $\left.40^{\circ} 1\right]+$ \qquad - 368 L.F

Sto. $16+11.53$ to Sto. $18+66.47$
[254.94' x (1 Joint $\left.\div 40^{\prime} \%\right]+$ 1 Joint -7 Joints © 8^{\prime} (avg.) - 56 L.F. Sto. $18+66.47$ to Sto. $23+02.62$
$\left[436.15^{\prime} \times\left(1\right.\right.$ Joint $\left.\left.=40^{\prime}\right]\right]+1$

RAMPS " 0 " \& " S "
 Sto. $34+52.78$ to Sto. $39+46.51$
$\left[493.73^{\prime} \times<11\right.$ Joint $\left.\div 40^{\prime \prime} 1\right]+1$

Sto. $33+69$ to 5 Sto. 40×45.69
[676.69' $\times 11$ Joint $\left.\div 40^{\prime \prime}\right]$
Joint - 18 Joints @ 16^{\prime} - 288 L.F.
Sto. 40×45.69 to Sto. $45+00$
$[454.3)^{\prime} \times\left(1\right.$ Joint $\left.\left.\div 40^{\prime}\right]\right]$
Sto. $45+00$ to Sto. $47+50$
$\left[250^{\prime} \times 11\right.$ joint $\left.\div 40^{\prime} 1\right]$
Sto. $\times 47+50$ to sto. $48+50$
$\left[100^{\prime} \times 1\right.$ Joint $\left.\left.=40^{\prime}\right)\right]+$
\qquad84
\qquad $\frac{-24 \text { L.F }}{-1038 \text { L.F. }}$
RAMPS " T " \& " U "
Sto. $12+50$ to $5 t 0.13+50$
$1100^{\prime} \times 11$ joint $\left.\div 40^{\prime} 1\right]$
Sto. $13+50$ to $5 t 0.16+00$
$c 250^{\prime} \times 11$ Joint $\left.\div 40^{\prime \prime 1}\right]$

total
.
sta. $20+54.81$ to sto. $25+70$
[515.19' $\times 11$ Joint $\left.\div 40^{\circ} 1\right]+1$

Joint - 14 (lavg.) $=306$ L.F.

Sto. $24+5.14$ to $5 t 0.27+08$
$1252.86^{\prime} \times 11$ Joint $\div 40^{\prime} 17$
+1 Joint -7 Joints @ 16
TOTAL -894 L.F
RAMPS " T " \& " V "
Sto. $36+01.65$ to 5 Sto. 40.03 .56
[401.91' $\times 11$ Joint $\left.+40^{\prime} 1\right)+1$ Join
Sto. 40.003 .56 to Sto $42+58.72$
[255. $/ 6^{\circ} \times 1$
1 Joint - 7 Joints @ 12^{\prime} (avg.) - 84 L.F. Sto. $33+85$ to Sto $41+53.22$
[768.22' \times \& 11 Joint $\left.\div 40^{\prime} 11\right]$ \qquad

$$
2 \text { Joints }-26 \text { Jointse } 26.5^{\prime} \text { (avg.) } \frac{-689 \text { L.F. }}{\text { TOTAL }}=1269 \text { L.F. }
$$

RAMP " Z "
Sto. $57+00$ to Sto. $69+00$
(1200' $\times 11$ Joint $\left.\div 40^{\prime \prime}\right]+2$ Joints $=32$ Joints e 12.5^{\prime} (avg.) - 400 L.F.

Sto. $69+00$ to Sto. $79+23.59$
(1023.59' $\times 11$ Joint $\div 40^{\prime} 11$

- 448 L.F.

Sto. $79+23.59$ to Sto. $80+21.38$
$197.79^{+} \times 11$ Joint $\div 40^{\circ} 11+1+1$ \qquad 28^{\prime} (avg.) - 84 L.F.

RAMP "W"

Sto. $80+49.40$ to $5 t 0.08+20.69$
[771.29' $\times 11$ Joint $\left.\div 40^{\prime \prime} 1\right]+1$ \qquad
Sto. $88+20.69$ to $5 t 0.92+75$
$\left[454.311 \times \times 11\right.$ doint $\div 40^{\prime} 11+1$ \qquad - 12 Joints e 25.5^{\prime} (revg.)

Sto. $92+75$ to Sto. 95^{25+25}
$\left[250^{\prime} x<11\right.$ Joint $\left.\div 40^{\prime} 11\right]+1$ Joint -7 Joints @ 12^{\prime}
 \qquad
TOTAL $\quad=18$ L.F

RAMP " X "

Sta. $64+00$ to Sta. $65+00$
[100' $\times 11$ Joint $\left.\left.\div 40^{\prime}\right)\right]+$

Sta. $65+00$ to Sto. $67+50$ $\left[250^{\prime} \times\left(1\right.\right.$ Joint $\left.\left.\div 40^{\prime}\right)\right]+1$ Joint $=7$ Joints @ 12^{\prime}	- 84 L.F
Sto. $67+50$ to Sto. $72+02.43$ [452.43' x 11 Joint $+40^{\circ}$ I + 1 Joint - 12 Joints @ 19.5'	- 234 L.F
Sto. 72+02.43 to Sto. 79+44.71 [742.28' x (1 Joint $\left.\left.\div 40^{\prime}\right)\right]$ + 1 Joint - 20 Joints @ 16^{\prime}	- 320 L.
Sta. $79+44.71$ to Sta. $80+12.56$ [67.86' \times (/ Joint $\left.\left.\div 40^{\prime}\right)\right]+1$ Joint $=3$ Joints @ 28^{\prime} (avg.)	

RAMP "Y"

Sta. $92+00$ to Sto. $104+00$
Stion
$\times 11$
Joint $: 40^{\prime} 111$
C1200' $\times 11$ Joint $\div 40^{\prime \prime 11}+2$ Joints -32 Joints e 12.5^{\prime} (cvg.) -400 L.F.
L.F.
$3^{\circ} \times 11$ Joint $\div 40^{\prime \prime} 13$1 Joint - 20 Joints e 16^{\prime}320 L.F.

Sta. 79+44.71 to Sto. $80+12.56$
\qquad

$$
{ }_{\text {Total }}^{28^{\prime} \text { (ovg.) }} \frac{-84 \text { L.F. }}{=740 \text { L.F. }}
$$

RAMP "G"
Sto. $152+50$ to sto. $164+50$
11200' $\times 11$ Joint $\div 40^{\prime} 15+2$ Joints $=32$ Joints © 12.5^{\prime} (avg.) $=400$ L.F. Sto. $164+50$ to Sto. $175+880.04$
[1130.04 $\times\left(1\right.$ Joint $\left.* 40^{\prime}\right)+2$ Joints $=30$ Joints @ $16^{\prime}=480$ L.F.
Sto. $175+80.04$ to 5 sto. $176+48$
[67.96' $\times 11$ Joint $\left.\div 40^{\prime} 1\right]+1$ \qquad
\qquad

RAMP "H"
Sto. $159+50$ to $57 t .160+50$
$1100^{\prime} \times(1)$
Sto. $160+50$ to 5 Sta. $163+12$
$\left[262^{\prime} \times 11\right.$ Joint $\left.\div 40^{\prime} 1\right]+$
Joint - 8 Joints
Sta. $163+12$ to 5 sto. $167+66.31$
$\left[454.31^{\prime} \times\left(1\right.\right.$ doint $\left.\geqslant 40^{\prime}\right]+1$

Sto. $176+16.87$ to Sto. $176+74.89$
L58.02 $\times 11$ Joint $\left.=40^{\prime} 1\right]+1$ Joint $=3$ Joints \& 28^{\prime}

TOTAL $\frac{-84 \text { L.F. }}{-728 \text { L.F. }}$
 (Carried to General Summary)

$$
\text { TOTAL } \overline{-940 ~ L . F . ~}
$$

LDNGITUDINAL JDINT SEALING

 CALCULATIDNS| RAMP "W" | |
| :---: | :---: |
| Sto. $79+84$ to Sto. $88+21.52 \times 840$ L.F. | |
| Sto. 79+93 to Sto. 80+05 | |
| Sto. $74+90$ to Sto. 80+15 | |
| Sto. 79+86 to Sto. 80+36 | |
| Sto. $88+21.52$ to Sto. $89+49$ | |
| Sto. $88+20.69$ to sto. $89+48$. | |
| Sta. 89×49 to Sta. 91+51 | |
| Sto. $88+20.69$ to Sta. $96+25 \times$ - 805 | |
| | TOTAL - 2701 L.F. |
| RAMP " $\chi^{\prime \prime}$ | |
| Sto. 64.00 to Sto. $72+02.43 \times$ - 803 L.F. | |
| Sta. $68+55$ to Sto. $71+98.83$ | |
| Sta. $70+74$ to Sto. $72+02.43 \times \square$ | |
| Sta. 71+98.83 to Sta. 80+10 - 815 L.F | |
| Sta. $79+81$ to Sto. $80+13$ | |
| Sto. 80×08 to Sto. $80+16 \times \square$ | |
| Sto. $79+57$ to Sta. $80 \times 07 \times \square$ | |
| Sta. 79 +79 to Sta. $80 \times 03 \times \square$ | |
| Sta. $79+88$ to sta. $79+99 \times$ - 13 L.F. | |
| | TOTAL - 2230 L.F. |

RAMP "Y"	
Sto. $79+91$ to Sto. $80+10$	21 L.F.
Sto. $79+87$ to Sto. 80+58	
Sta. $79+83$ to Sta. 80+45 . 64 L.F.	
Sto. 79.779 to Sta. $79+97$	
Sto. 79+75 to Sto. 79+83	
Sto. 79+85 to Sto. 92+00 - 1220 L.F.	
Sta. 92+00 to Sta. 97+27	530 L.F.
Sta. 92+00 to Sto. $104+00$	1200 L.F.

RAMP " G "
Sto. $152+50$ to Sta. $164+50$ - 1200 L.F sta. $159+22$ to Sta. $164+5$ 530 L.F. Sta. $164+50$ to sto. $176+48$ - 1200 L.F. Sto. $175+96$ to Sto. $176+48 \quad$ - 54 L.F. Sto. 176+34 to sto. 176+48 TOTAL - 2998 L.F.

RAMP " $H^{\prime \prime}$

Sto. $159+50$ to Sta. $167+66.31$
Sto. $164+35$ to sta. $167+65.48$

132 L.F.

Sta. $167+65.48$ to Sto. $168+04$ - 39 L.F.
Sta. $169+73$ to Sto. $170002 \times \quad+\quad$ - 31 L.F.

sto. $176+62$ to sta. $176+74.89$
Sta. $176+31$ to sta. $176+74.89$ - $\quad 46$ L.F.
Sto. $176+53$ to sto. $176+74.89 \quad$ - 24 L.F.
Sto. $176+65$ to sta. $176+74.89$ - 10 L.F.

westbound - mainline

STA. $1827+50$ TO STA. $17+50$ (STA. EO. $1838+29.49$ BK. $=0.00$ AHD 1
outside $2829.49^{\circ} \times 10^{\prime}=282949$ SO FT. $9=3144$ SO. YD.

STA. $1827+50$ TO STA. $4+75$ (STA. EO. $1838+29.49$ BK. $=0.00$ AHD. $)$ $1554.49^{\prime} \times 10^{\prime}=15544.9$ So. FT. $/ 9=1727$ SO. ro.

STA. $7+45$ TO STA. $13+00$
, 55.0 $\times 10^{\prime}=5550$ so. FT. $19-617$ so. yd.
STA. $13+00$ TO STA. $19+00$
INSIDE $600^{\prime} \times 26^{\prime}=15600$ so. FT. $/ 9=1733$ so. yd.

$$
\text { STA. } 19+00 \text { TO STA. } 51+28.25
$$

INSIDE $\quad 3228.25^{\prime} \times 10^{\prime}=32282.5$ So. FT. $/$ g $=3587$ So. Yo.

$$
\text { STA. } 21+82 \text { TO STA. } 40+45.69
$$

OUTSIDE $1863.6^{\prime} \times 10^{\prime}=18636.9$ SO. FT. $/ 9=2071$ SO. YD.

$$
\text { STA. } 45+00 \text { TO STA. } 51+28.25
$$

OUTSIDE $\quad 628.25^{\prime} \times 10^{\prime}=6282.5$ So. FT. 1 g $=698$ sa. yo.

$$
\text { STA. } 55+81.25 \text { TO STA. } 58+17
$$

OUTSIDE $235.75^{\prime} \times 14^{\prime}$ (AVG.) $=3300.5$ SO. FT. / g - 367 SO. YD.

$$
\text { STA. 58+17 TO STA. } 69+00
$$

OUTSIDE $1083^{\prime} \times 10^{\prime}=10830$ SO. FT. $19=1203$ so. yD.

$$
\text { STA. } 55+81.25 \text { TO STA. } 58+00
$$

INSIDE $218.75^{\prime} \times 18^{\prime}$ (AVG.) $=3937.5$ So. FT. $19=438$ so. yo.

$$
\text { STA. } 58+00 \text { TO STA. } 77+00
$$

$$
1900^{\prime} \times 10^{\prime}=19000 \text { So. FT. } \mathrm{g}=2 \text { III so. Yo. }
$$

$$
\text { STA. } 77+00 \text { TO STA. } 83+00
$$

INSIDE $600^{\prime} \times 26^{\prime}=15600$ Sa. FT. $/ 9=1733$ SO. צס.

$$
\text { STA. } 72+81 \text { TO STA. } 73+12
$$

OUTSIDE $\quad 3 I^{\prime} \times 5^{\prime}(A V E)=$.155 SO. FT. $19=17$ SO. yD.

$$
\text { STA. } 73+12 \text { TO STA. } 80+37
$$

OUTSIDE $\quad 725^{\prime} \times 10^{\prime}-7250$ Sa. FT. / 9-806 SO. YD.

$$
\text { STA. } 80+37 \text { TO STA. } 81+85
$$

OUTSIDE $\quad 148^{\prime} \times 15^{\prime}(A V G)=$.2220 SO. FT. $19=247$ SO. yo. STA. $81+85$ TO STA. $88+20.69$
OUTSIDE $635.9^{\prime} \times 10^{\prime}=6356.9$ SO. FT. $/ \mathrm{g}=706 \mathrm{Sa}$. YD.

STA. $83+00$ TO STA. $114+70$

INSIDE $3170^{\prime} \times 10^{\prime}-31700$ So. FT. $/$ g-3522 so. Yo.

$$
\text { STA. } 114+70 \text { TO STA. } 120+70
$$

INSIDE $\quad 600^{\prime} \times 26^{\prime}=15600$ SO. FT. $/ \mathrm{g}=1733$ Sa. Yo.

OUTSIDE $2530^{\circ} \times 10^{\prime}=25300$ SO. FT. $/ 9=2811$ so. Yo.

$$
\text { STA. } 118+05 \text { TO STA. } 119+53
$$

OUTSIOE $148^{\prime} \times 15^{\prime}($ AVG. $)=2220$ so. FT. $19=247$ so. yd.

$$
\text { STA. } 119+53 \text { TO STA. } 139+10
$$

OUTSIDE $\quad 1957^{\prime} \times 10^{\prime}=19570$ So. FT. $/$ g -2174 So. Yo.

$$
\text { STA. } 120+70 \text { TO STA. } 123+75
$$

INSIDE $\quad 305^{\prime} \times 10^{\prime}=3050$ Sa. FT. $19=339$ SO. yd.

IWSIDE $600^{\circ} \times 26^{\prime}=15600$ so. FT. 1 g -1733 so. YD STA. $139+10$ TO STA. $140+58$
OUTSIDE $148^{\prime} \times 15^{\prime}$ (AVG.) -2220 SO. FT. $19=247$ So. yo.

$$
\text { STA. } 140+58 \text { TO STA. } 164+50
$$

OUTSIDE $2392^{\prime} \times 10^{\prime}=23920$ SQ. FT. $/ 9=2658$ Sa. Yo.

$$
\text { STA. } 141+70 \text { TO STA. } 175+76.71
$$

INSIDE 3406.71' $\times 10^{\prime}=34067.1$ so. FT. $/ 9=3785$ so. yd.

$$
\text { STA. } 168+16 \text { TO STA. } 175 \times 76.71
$$

OUTSIDE $760.71^{\prime} \times 10^{\prime}=7607.1$ SO. FT. $/ \mathrm{g}=845$ so. yo.

$$
\text { STA. } 177+35.21 \text { TO STA. } 179+00
$$

OUTSIDE $164.79^{\prime} \times 15^{\prime}$ (AVG.) $=2471.85$ SO. FT. $19=275$ SO. ro.

$$
\text { STA. } 177+35.21 \text { TO STA. } 179+00
$$

$$
\text { INSIDE } \quad 164.79^{\prime} \times 15^{\prime}(A V G .)=2471.85 \text { so. FT. } 19=275 \text { So. YD. }
$$

STA. $179+00$ TO STA. $185+61$ (STA. EO. $185+05.96$ BK. $=185+00$ AHD. 1 OUTSIDE $666.96^{\prime} \times 10^{\prime}=6669.6$ so. FT . $/ \mathrm{g}=741$ Sa. yo.

STA. $179+00$ TO STA. $185+61$ 'STA. EO. $185+05.96$ BK. $=185+00$ AHD. 1 INSIDE $666.96^{\circ} \times 10^{\prime}=6669.6$ SO. FT. $/ 9=741$ SO. YD.

eastbound - mainline

STA. $1827+50$ TO STA. $2+55$ ISTA. EO. $1838+29.49$ BK. $=0.00$ AHD. INIDE $1334.49^{\prime} \times 10^{\prime}=13344.9$ So. FT. $/ 9=1483$ SO. Yo.

STA. $1827+50$ TO STA. $16+00$ (STA. EO. $1838+29.49$ BK. $=0.00$ AHD. $)$
OUTSIDE $2679.49^{\prime} \times 10^{\prime}=26794.9$ SO. FT. $/ 9=2977$ so. YD.
INSIDE $775^{\prime} \times 10^{\prime}=7750$ STA. $5+25$ TO STA. $13+00$
WIDE $775^{\prime} \times 10^{\prime}=7750$ So. FT. $19=861$ so. yo.
STA. $13+00$ TO STA. $19+00$
INSIDE $600^{\circ} \times 26^{\prime}=15600$ SO. FT. $/ 9=1733$ so.yD. STA. $19+00$ TO STA. $49+00$
INSIDE $3000^{\prime} \times 10^{\prime}=30000$ So. FT. / $9=3333$ So. yo.

$$
\text { STA. } 20+54.81 \text { TO STA. } 37+33
$$

OUTSIDE $1678.19^{\prime} \times 10^{\prime}=16781.9$ SO. FT. $/ 9=1865$ SO. Yo.
OUTSIDE $\quad 113^{\prime} \times 10^{\prime}=1130$ SO. FT. / $9=126$ so. yo.

$$
\text { STA. } 42+38 \text { TO STA. } 44+38
$$

OUTSIDE $200^{\circ} \times 15^{\prime}($ AVG. $)=3000$ SO. FT. $/ \mathrm{g}=333$ so. Yo.

$$
\text { STA. } 44+38 \text { TO STA. } 51+28.25
$$

$$
\text { OUTSIDE } \quad 690.25^{\prime} \times 10^{\prime}=6902.5 \text { So. FT. } 19=767 \text { so. yo. }
$$

$$
\text { STA. } 49+00 \text { TO STA. } 51+28.25
$$

$$
\text { INSIDE } \quad 228.25^{\prime} \times 18^{\prime}(A V G .)=4108.5 \text { so. FT. } 19=457 \text { so. YD. }
$$

$$
\text { STA. } 55+81.25 \text { TO STA. } 67+50
$$

OUTSIDE $\quad 1168.75^{\prime} \times 10^{\prime}=11687.5$ SO. FT. / g = 1299 SO. YD.

$$
\text { STA. } 55+81.25 \text { TO STA. } 77+00
$$

INSIDE $2118.75^{\prime} \times 10^{\prime}=2187.5$ SO. FT. $/ \mathrm{g}=2354$ so. yo.

$$
\text { STA. } 72+02.43 \text { TO STA. } 78+15
$$

OUTSIDE $\quad 612.57^{\prime} \times 10^{\prime}=6125.7$ SO. FT. $/ 9=681$ SO. YD.

$$
\text { STA. } 78+15 \text { TO STA. } 79+63
$$

$$
\text { OUTSIDE } \quad 148^{\prime} \times 15^{\prime}(A V G .)=2220 \text { sa. FT. } 19=247 \text { sa. yo. }
$$

$$
\text { STA. } 79+63 \text { TO STA. } 88+18
$$

OUTSIDE $855^{\circ} \times 10^{\prime}=8550$ SO. FT. $/ 9=950$ SO. Yo.

$$
\text { STA. } 77+00 \text { TO STA. } 83+00
$$

IWSIDE $600^{\prime} \times 26^{\prime}=15600$ So. FT. / $9=1733$ so. Yo.

SEEDING CALCLLATIDNS

STA. $92+00$ TO STA. $115+91$

OUTSIDE $2391^{\circ} \times 10^{\prime}=23910$ SO. FT. $/ \mathrm{g}=2657$ SO. YD.

$$
\text { STA. } 114+70 \text { TO STA. } 120+70
$$

INSIDE $600^{\prime} \times 26^{\prime}=15600$ SQ. FT. $/ 9=1733$ SO. YD.
STA. $120+70$ TO STA. $121+55$
INSIDE $\quad 85^{\prime} \times 10^{\prime}=850$ SO. FT. $/ 9=94$ SO. rD .

$$
\text { STA. } 119+39 \text { TO STA. } 136+77
$$

OUTSIDE $\quad 1738^{\prime} \times 10^{\prime}=17380$ SO. FT. $/ 9=1931$ so. YD.

$$
\text { STA. } 124+25 \text { TO STA. } 135+70
$$

INSIDE $\quad 1 / 45^{\prime} \times 10^{\prime}=11450$ so. FT. / $9=1272$ so. ro.

INSIDE $\quad 600^{\prime} \times 26^{\prime}=15600$ SO. FT. $/ 9=1733$ SO. yo.
STA. $141+70$ TO STA. $174+42$
INSIDE $\quad 3272^{\prime} \times 10^{\prime}=32720$ So. FT. $19=3636$ so. Yo.

$$
\text { STA. } 136+77 \text { TO STA. } 138+25
$$

OUTSIDE $\quad 148^{\prime} \times 15^{\prime}$ (AVG.) $=2220$ SO. FT. $/ \mathrm{g}=247$ SO. YD.

$$
\text { STA. } 138+25 \text { TO STA. } 163+1 /
$$

OUTSIDE $2487^{\prime \prime} \times 10^{\prime}=24870$ So. FT. 1 g $=2763$ So. y d.

$$
\text { STA. } 167+66.31 \text { TO STA. } 174+30
$$

OUTSIDE $\quad 663.69^{\prime} \times 10^{\prime}-6636.9$ SO. FT. $19=737$ so.yo. STA. $174+30$ TO STA. $175+76.71$
OUTSIDE $146.7^{\prime} \times 15^{\prime}(A V G)=$.2200.65 so. FT. $19=245$ SO. YD.

$$
\text { STA. } 174+42 \text { TO STA. } 175+76.71
$$

INSIDE $\quad 134.77^{\prime} \times 18^{\prime}$ (AVG.) $=2424.78$ So. FT. $/ 9=269$ so. yo.
STA. $177+35.21$ TO STA. $185+61$ (STA. EQ. $185+05.96$ BK. $=185+00$ AHD. 1 OUTSIDE $831.75^{\prime} \times 10^{\prime}=8317.5$ SO. FT. $/ 9=924$ SO. YD.
STA. $177+35.21$ TO STA. $185+61$ ISTA. EO. $185+05.96$ BK. $=185+00$ AHD. 1 INSIDE $\quad 831.75^{\circ} \times 10^{\prime}=8317.5$ SO. FT. $19=924$ SO. YD.

RAMPS " 0 " \& " R "
STA. $17+35.96$ TO STA. $20+36.02$
$300.06^{\prime} \times 10^{\prime}=3000.6$ so. FT. $/ \mathrm{g}=333$ So. Yo.

STA. $16+11.53$ TO STA. $23+02.62$

$691.09^{\prime} \times 10^{\prime}=690.9$ SO. FT. $/ 9=768$ SO. YD.
STA. $19+68$ TO STA. $23+02.62$
$334.2^{\prime} \times 10^{\prime}=3346.2$ SO. FT. $/ 9=372$ SO. YD.
STA. $22+93$ To STA. $26+20$
$327^{\prime} \times 10^{\prime}-3270$ So. fT. / g - 363 so. yo.
STA. $21+82$ TO STA. $26+20$
$438^{\prime} \times 10^{\prime}=4380$ SO. FT. $/ \mathrm{g}=487 \mathrm{SO}$. y .

RAMPS " 0 " \& " $S^{\prime \prime}$
STA. $31+64.11$ TO STA. $45+00$
$1335.89^{\circ} \times 10^{\prime}=13358.9$ SO. FT. $/ 9=1484$ SO. YD.
STA. $3 / 64.11$ TO STA. $34+52$
$287.9^{\prime} \times 10^{\prime}=2878.9$ SO. FT. $/ 9=320$ so. Yo.
STA. $33+69$ TO STA. $34+52$
$83^{\prime} \times 6.6^{\prime}(A V E)=$.547.8 SO. FT. $/ 9=61$ SO. Yo.

$$
\text { STA. } 33+69 \text { TO STA. } 39+85
$$

616' $\times 10^{\prime}=6160$ SO. FT. / $9=684$ SO. Yo.

$$
\text { STA. } 39+85 \text { TO STA. } 40+46.51
$$

$61.5^{\prime \prime} \times 5^{\prime}$ (AVE.) -307.6 So. FT. $/ 9-35$ so. yo.

RAMPS "T" \& "U"
STA. $16+00$ TO STA. $27+67.77$
$1167.77^{\prime} \times 10^{\prime}=11677.7$ so. FT. $/ 9=1298$ so. YD.
STA. $20+53.48$ TO STA. $21+20$
$66.52^{\prime} \times 5^{\prime}$ (AVE.) $=332.6$ SO. FT. $/ 9=37$ SO. YD.

$$
\text { STA. } 21+20 \text { TO STA. } 25+70
$$

$450^{\prime} \times 10^{\prime}=4500$ so. FT. $19=500$ so. yo.

$$
\text { STA. } 24+56.26 \text { TO STA. } 25+70
$$

${ }^{113.74^{\prime} \times 6.6^{\prime}(A V E .)}=750.7$ SO. FT. / $9=83$ SO. YD.

STA. $24+56.26$ TO STA. $27+41.18$

$284.92^{\prime} \times 10^{\prime}=2849.2$ so. FT. $19=317$ so. Yo.

RAMPS " T " \& " V "
STA. $36+01.65$ TO STA. $41+25$
$523.35^{\prime} \times 10^{\prime}=5233.5$ So. FT. $/ \mathrm{g}=582$ So. YD.
STA. $36+01.65$ TO STA. $39+04$
$302.35^{\prime} \times 10^{\prime}=3023.5$ SO. FT. $/ 9=336$ SO. Yo.
STA. $33+85$ TO STA. $35+95.20$
$210.20^{\circ} \times 10^{\prime}=2102.0$ SO. FT. $19=234$ SO. Yo.
STA. $33+85$ to sta. $36+90$
305 $\times 10^{\prime}=3050$ so. FT. $/ \mathrm{g}$ - 339 so. yo.
STA. $36+90$ TO STA. $37+33$
$43^{\prime} \times 5^{\prime}$ (AVE) $=215$ SO. FT. $19=24$ SO YD.

RAMP "Z"

STA. $69+00$ TO STA. $80+17.3$
$1117.38^{\prime} \times 10^{\prime}=11173.8$ so. $\mathrm{FT} .19=1242$ so. yo.
STA. $73+13$ TO STA. $80+17.38$
704.38' $\times 10^{\prime}=7043.8$ so. FT. $/ 9=783$ so. YD.

RAMP "W"
STA. 79+85.03 TO STA. 92+75 $1289.97^{\prime} \times 10^{\prime}=12899.7$ So. FT. $/ 9$ - 1433 SO. YD.

STA. 79+85.03 TO STA. $87+60.18$
$775.15^{\prime} \times 10^{\prime}=7751.5$ so. FT. $19=861$ so. yo.
STA. $87+60.18$ TO STA. $88+21.52$
$6134^{\prime} \times 5^{\prime}($ AVE $)=306.7$ SO. FT. $/ 9=34$ SO. YD.

RAMP "X"

STA. $67+50$ TO STA. $80+08.5$
$1258.56^{\prime} \times 10^{\prime}=12585.6$ SO. FT. $/ 9=1398$ SO. YD.
STA. $71+98.83$ TO STA. $72+60.81$ $61.98^{\prime} \times 5^{\prime}($ AVE. $)=309.9$ SO. FT. $/ 9=34$ SO. YD.

STA. $72+60.81$ TO STA. $80+08.56$
$47.75^{\prime} \times 10^{\prime}=7477.5$ So. $\mathrm{FT} . / \mathrm{g}=83 \mathrm{l}$ so. Y y .

RAMP "Y"

STA. 79+86.|l TO STA. 92+00 $213.89^{\prime} \times 10^{\prime}=12138.9$ So. FT. / $9=1349$ So. YO .

STA. $79+86.11$ TO STA. $87+47.87$
$761.76^{\circ} \times 10^{\prime}=7617.6$ SO. FT. $/ 9=846$ SO. YD.
STA. $87+47.87$ TO STA. $88+18$
$70.13^{\prime} \times 5^{\prime}$ (AVE) $=350.7$ SO. FT. / $9=39$ so. yd.

PAMP "G"

STA. $164+50$ TO STA. $176+78.06$
$1228.06^{\prime} \times 10^{\prime}=12280.6$ SO. FT. / $9=1365 \mathrm{So} . \mathrm{yo}$.

$$
\text { STA. } 168+16 \text { TO STA. } 168+87
$$

$7{ }^{\prime} \times 5^{\prime}($ AVE. $)=355$ so. FT. $/ 9=39$ so. Yo.
STA. $168+87$ To STA. $176+78.06$
791.06' $\times 10^{\prime}=7910.6$ SO. FT. $/ \mathrm{g}=879$ so. Yo.

RAMP " $H^{\prime \prime}$

STA. $163+12$ TO STA. $176+74.89$
$1362.89^{\prime} \times 10^{\prime}=13628.9$ SO. FT. $/ 9=1514$ SO. YD.
STA. $167+65.48$ TO STA. $168+28$
$62.2^{\prime} \times 5^{\prime}$ (AVE.) $=312.6$ so. FT. $/ 9=35$ so. yo.
STA. $168+28$ TO STA. $176+74.89$
$846.89^{\prime} \times 10^{\prime} \cdot 8468.9$ SO. FT. $/ g=941$ SO. YD.

FOR ADITIONAL SEEDING QUANTITIES SEE MEDNA CROSSOER DETAIL SHEEET No. II AND
BERM REPLACEMENT DETALI SHEET No. 105.
for seeding sub-sumuary, see sheet no. 88.

GENERAL SUMMARY

GENERAL SLMMARY

SHEET NUMBER																																				ITEM	ITEM	GRAND TOTAL	UNIT	DESCRIPTIDN
	II	67	68	69	70	71	72	73	74	75	76	82	83	84	85	87	89	91	92	93	94	95	96	97	98	99	100	101	102	102 A	105	113	123	135	255					
																																								PAVEMENT
									112368																											SPECIAL	25401400	112368	sa. YD.	GRINOING PORTLAND CEMENT CONCRETE PAVEMENT (NOTE ON SH. II)
																													80							255	10101	80	sa. Yo.	
	80																																			255	10200	80	Sa. Yo.	
	${ }^{826}$	${ }^{1208}$	1234	${ }^{931}$	1760	1427	1043	576																												255	10001	9005	SS. Yo.	
	266	1286	264	1078																																255	10001	2894	Sa, Yo.	FULL DEPTH RIGID PAVEUENT REWOVAL AND RIGID REPLACEUETT, ClLSS C, AS PER Plan "b"
	5																			45																	10001	50.0	so. yo.	
	18																				180															255	10001		so. Yo.	
																						80														255	10200	80	sa. Y0.	
																							80													255	10200	80	Sa. Yo.	
																								80												255	10200	80	Sa, YD.	
																									80	80										255	10200	${ }_{80}^{80}$	Sa. Yo.	
																											80									255	10200	80	sa. YD.	
																												80								255	10200	80	sa. Yo.	
																														80						255	10200	80	Sa. Yo.	
	326	5564	5208	5501	5669	4809	III	1698							80				100	208																255 301	20000	${ }^{35852} 180$	LIN. FT.	FULL DEPTH PAVEMENT SAWING BITUMINOUS AGGREGATE BASEL AC-20
	185											6997	8134	2054	87		149	161			30										73	9				304	20001	17789	cu. YO.	BItuMINOUS AGGREGATE BASE, AC-20 ${ }^{\text {AGGREGATE BASE, AS PER PLAN }}$ (NOTE ON SH. 11)
												294						1																		310	10001	295	cu. yo.	SUBBASE, AS PER PLAN LA - (NOTE ON SH. II)
															${ }^{24}$																					403	20000	24	cu. Yo.	ASPHALT CONCRETE, AC-20
															62																					404	20000	62	CU. YD.	ASPHALT CONCRETE, AC-20
												5409			382			22																		407	10000	$\frac{127}{5813}$	$\frac{6 A L .}{}$ GAL.	TACK COAT
															${ }^{8}$																					409	12000	8	CU. YD.	SEAL COAT COVER AGGREGATE, NO. 8
															284																					${ }_{409}$	20000	$\frac{284}{500}$	SAL GAL .	SEAL COAT BITUMINOUS MATERIAL
	500																																							BoNDED Patching of rigid pavements, TYPE I (SEE PROPOSAL Note)
													117	912																						451	14001	1029	sa. Yo.	$g^{\prime \prime}$ REINFORCEO CONCRETE PAVEMENT, AS PER PLAN (SEE SHEET NO. 12)
												28202	2224	1247																						451	15000	31690	Sa. YD.	10" REINFORCED CONCRETE PAVEMENT, AS PER PLAN (SEE SHEET NO. 12)
													2544	3672				186													381		36	36		${ }^{\text {SPECIAL }}$	130000	${ }^{6783}$	LSN. FT.	PRESSURE RELLEF Joint, TYPE A ${ }^{\prime \prime}$ (PLAIN CONCRETE PAVEMENT, AS PER PLAN (SEE SHEET 12)
													44584	45567				126														65				452	17001	50342	sa. YD.	VARIABLE THICKNESS PLAIN CONCRETE PAVEUENT, AS PER PLAN (SEE SHEET (2)
																															1630					516	13600	1630	Sa. FT.	\|"' PREFORMED EXP. Joint filler
																																			528	609	26000	528	LIN. FT.	CURB, TYPE 6 -
																	848																			611	25000	848	Sa. Yo.	REINFORCED CONCRETE APPROACH SLAB (T-1/")
												3248				578																				${ }^{622}$	24000	578	SiN. FT.	
												4009						55																		SPECIAL	69000110	4064	SQ. YD.	
												2752																								SPECIAL	69000120	2752	Sa. Yo.	4"ASPHALT TREATED FREE DRAINING BASE (NOTES ON SH. 14)
	16600											2688																								$\frac{\text { SPECIAL }}{801}$	${ }^{69000130} 0$	26880	SQ. YD.	4" CEMENT TREATED FREE DRAINNG BASE (NOTES ON SH. 15)
										23176																										801	00300	23176	LIN. FT.	TRANSVERSE JOINT SEALING, CLASS III, SIIICONE
											58301																									801	00500	58301	LIN. FT.	LONGITUDINAL JOINT SEALING, CLASS V, SILICONE

GENERAL SLMMARY

SHEET NUMBER																																	ITEM	ITEM	GRAND	UNIT	DESCRIPTION
									16																		86		192		255				total		
																																					DRAINAGE
																															5		602	20000	5	CU. YO.	CONCRETE MASONRY
																											100						603	00900	100	LIN. FT.	$6^{\prime \prime}$ CONDUIT, TYPE B
																											183						603	00901	133	LIN. FT.	$6^{\prime \prime}$ CONDUIT TYPE B, AS PER PLAN, BORED OR JACKED (SEE SHEET II)
																											3196						603	01500	3196	LIN. FT.	$6^{\prime \prime}$ CONDUUT TYPE F, 707.17 NON-PERFORATED ASTM 3034 SOR 35, SS931 OR SS994
																															1511		${ }_{603}^{603}$	04600 04600	$\frac{215}{1511}$	LIN. FT.	I2"' CONDUIT TYPE C $12^{\prime \prime}$ CONDUIT TYPE C, AS PER 707.13
																											105						603	06100	105	LIV. FT.	${ }^{15 *}$ CONOUIT TYPE C
																															27		${ }_{604}^{604}$	${ }^{00800}$	27 3	EACH	CATCH BASIN NO. 3A
																											1						604	01600	1	EACH	CATCH BASIN, NO. 4, AS PER PLAN (SEE DETAIL SHEET IIIA)
																											5						604	09001	5	EACH	CATCH BASIN ADJUSTED TO GRADE, AS PER PLAN (Sheet II)
																											3						604	09501	3	EACH	CATCH BASIN RECONSTRUCTED TO GRADE, AS PER PLAN (Sheet II)
																											56						SPECIAL6	60436600	56	EACH	PRECAST REINFORCED CONCRETE OUTLET (SEE DETALL ONSH. 116)
																											8680						605	05100	8680	LIN. FT.	$4^{\prime \prime}$ SHALLOW PIPE UNDERDRAIN, 707.IT, ASTM 3034 SDR35, SS931 OR SS944
																																					PERFORATED AS PER 707.15
																											147						605	05200	147	LIN. FT.	
																											633						605	05201	633	LIN. FT.	$4^{\prime \prime}$ UNCLASSIFIED PIPE UNDERDRAIN, AS PER PLAN, 707.15
																																					HALLOW PIPE UNDERDRAIN AS PER PIAN 70715 SSEE
																											74						605	11100	74	LIN. FT.	'6" SHALLOW PIPE UNDERDRAIIN, 707.17, SS944, SS93] OR ASTM 3034 SRO35,
																											${ }^{1466}$						605	11101	1466 30	LIN. FT.	
																											9087						605	13500	9087	LIN. FT.	$6^{\prime \prime}$ ROCK CUT UNDERDRAIN, 707.17, SS944, SS931 OR ASTM 3034 SDR 35
																																					PERFORATED AS PER 707.15
																																					STRUCTURES (UNDER 20^{\prime} SPAN)
																													125				$5 / 9$	1110	125	SQ. FT.	PATCHING CONCRETE STRUCTURE, AS PER PLAN (SEE NOTE SHEET 195)
																													60				SPECIAL	51911502	60	SQ. FT.	PATCHING CONCRETE STRUCTURE WITH TROWELABLE MORTAR
																													190				SPECIAL	51912600	190	LIN. FT.	EPOXY INJECTION
																																					FOR TRAFFIC CONTROL GENERAL SUMMAAY SEE SHEET 172.
																																					FOR RAAFFIC CONTROL GENERAL SUMMARY SEE SHEET 172.
																																					FOR WEIGH-IM-MOTTION INSTRUMENTATION GENERAL SUMMARY SEE SHEET 262.
									LUMP																\checkmark								614	11000	LUMP		FOR LIGHTING GENERAL SUMMARY SEE SHEET 195.
																																	619	15020	${ }_{\text {LUMP }}$		FIELL O OFFICE, TYPE C
																																	623	10000	LUMP		CONSTRUCTION LAYOUT STAKES
																																	624	10000	LUMP		mobilization

		202		203	203	304	310		408		451		SPECIAL	ECIAL	SPECIAL	SPECIAL										
Sheet wo. station to station		$\begin{aligned} & \text { Paveиент } \\ & \text { reйоед } \end{aligned}$					$\begin{gathered} \text { SUBBASE } \\ \text { AS PER } \\ \text { PLAN } \end{gathered}$		Bituungovs PRIINE coat		100° REIWFORCED CONCRETE PAVEUENT. AS PER PLAA				$\begin{gathered} \text { ASPHALT } \\ \text { TPEALED } \\ \text { FREE } \\ \text { DRANING } \\ \text { BASE } \end{gathered}$	CEWENT TREAEED FREE ORAMING SASE										
		SO. YO.		so. Yo.	cu. Yo.	CU. YO.	cu. Yo.		GAL.		SO. Y .		SO. YO.	SO. YO.	So. YD.	SO. YD.										
MAINLINE - WESTBOUND																										
60 STA. $1835+10$ TO STA. $3+60$		18100																								
60 STA. $3+60$ TO STA. $4+75$		306.7		${ }^{19633.0}$	252	327.2 55.4	$\frac{243.3}{41.2}$				${ }^{1812.0} 3$															
60 STA. 4+75 TO STA. $5+50$		200.0		216.7	61.1	36.1	9.0		58.9		200.0		$16, .1$													
60 STA. $5+50$ TO STA. $7+45$		520.0		520.0	158.9	86.7			208.0		520.0		520.0													
60 60 60 STA. $5+50$ TO STA. $14+60$ (ACCEL. LANE)									423.9		${ }^{958.5}$															
60 STA. $7+45$ TO STA. $14+60$		1906.7		2065.6	590.0	344.3			810.3		1906.7		2065.6													
60 STA. $56+06.25$ TO STA. $57+00$		250.0		270.8	76.4	78.7					250.0															
60 STA. $57+00$ TO STA. $69+00$ (ACCEL. LANE)		1673.4		1673.4	511.3	424.8			663.3		1673.4			761.6												
60 STA. 57+00 TO STA. 72+81		4228.2		4580.6	1409.4	1007.9			933.7		4228.2			2379.9												
$60{ }^{60}$ STA. $72+81$ TO STA. $88+20.69$				4448.5							4106.3			106.7	2752.0	2103.1										
		${ }_{5}^{539.5}$		${ }_{5}^{584.5}$	1194.8	197.4 1874			${ }_{2}^{229.3}$		$\frac{539.5}{647}$					584.5										
60 STA. $88+20.69$ TO STA. $90+23$ (DECEL. LANE)		647.6		647.6	197.8	187.4			268.0		647.6											-				
60 STA. $98+00$ TO STA. $99+82$		485.3		485.3	148.3	148.3					485.3											-				
60 STA. $114+82$ TO STA. $123+26$		2250.7		2250.7	687.7	687.7					2250,7															
60 STA. $138+92$ TO STA. $141+13$		589.3		589.3	180.1	180.1					589.3															
60 STA. $174+73$ TO STA. $175+51.71$		209.9		209.9	64.1	64.2					209.9															
MAINLINE - EASTBOUND																										
60 STA. $119+21$ TO STA. $126+16$		1853.3		1853.3	566.3	556.3					1853.3															
61 STA. $153+12$ TO STA. 159+50		1701.3		1843.1	519.9	535.6					1701.3															
61 STA. $159+50$ TO STA. $167+20$		2053.3		2224.4	627.4	657.9					2053.3															
61 STA. 159+50 TO STA. $167+20$ (DECEL. LANE)		1520.3		1520.3	464.5	450.8					1520.3															
61 STA. $180+00$ TO STA. $181+46$		389.3		389.3	119.0	119.0					389.3															
totals		28201.6		29627.0	8422.5	6907.0	293.5		5409.0		28201.6		4008.6	3248.2	2752.0	2687.6										
totals carried to general summary		28202		29627	8423	6907	294		5409		28202		4009	3248	2752	2688										

		202	203	203		304		451	452	452
SHEET	station to station	paveuent rehoved		$\begin{array}{\|c\|} \text { SUввваде } \\ \text { coupaction } \end{array}$		$\begin{gathered} \text { AGGREGATE } \\ \text { AASSE } \\ \text { AS PLRA } \\ \text { PLAA } \end{gathered}$				
		So. YO.	CU. YD.	SO. YO.		CU. YO.		SO. YO.	SO. YD.	SO. YD.
	SHOULDERS - WESTBOUND									
61	STA. $1827+50$ TO STA. $1827+96$		26.0	35.8		10.8				
61	STA. $1835+10$ TO STA. $3+60$		387.8	755.0		95.1			906.0	
61	STA. $3+60$ TO STA. $4+75$		65.7	102.2		16.2			${ }^{153.3}$	
61 61 6	STA. $4+75$ TO STA. $5+50$		28.5 74.0	58.3 15.7		9.5 24.7			${ }^{66.7}$	
61	STA, 7+45 TO STA. $14+60$		408.0	635.5		100.4			${ }_{9553.4}$	
61	STA. $14+60$ TO STA. $51+03.25$		1473.8	1646.5		594.3			3501.0	
61	STA. 56+06.25 TO STA. 90+23		1273.8	1650.6		253.9			2972.1	
61	STA. $90+23$ TO STA. $98+00$		208.6	136.1		80.7			500.9	
61	STA. 98+00 TO STA. $99+82$		107.8	202.3		33.9			242.7	
61	STA. 99+82. TO STA. $114+82$		847.2	1166.7		349.6			2000.0	
61	STA. $114+82$ TO STA. $123+26$		${ }^{499.8}$	937.7		${ }^{157.3}$			1125.3	
61	STA. $123+26$ TO STA. $138+92$		835.3	1392.0		347			1968.0	
61.62	STA. $138+92$ TO STA. $141+13$		130.9	245.6		4.2			294.7	
62	STA. $141+13$ To STA. $174+73$		1298.7	1395.3		522			3088	
62	STA. $174+73$ TO STA. $175+51.71$		46.6	87.4		14.7			105.0	
62	STA. $177+60.21$ TO STA. 185+50		449.4	618.9		185.4			1061	
	SHOULDERS - EASTBOUND									
62	STA. $1827+50$ TO STA. $51+03.25$		2580.0	3098.0		1055.9			6168.5	
62	STA. $56+06.25$ TO STA. $119+21$		2652.7	3054.7		1073			6296.3	
62	STA. $119+21$ TO STA. $126+16$		354.2	682.3		113.4			${ }^{606.7}$	
62	STA. $126+16$ TO STA. $153+12$		1522.8	2096.9		628.2			3594.7	
62	STA. 153+12 TO STA. $167+20$		513.9	965.5		99.8			1192.9	
62	STA. $167+20$ TO STA. $175+51.71$		452.1	610.9		186			1067.8	
62	STA. 177+60.21 TO STA. $180+00$		135.4	186.5		55.9			319.7	
62	STA. 180000 TO STA. $181+46$		86.4	162.3		27.2			194.7	
62	STA. $181+46$ TO STA. $185+50$		231.5	318.9		95.5			546.6	
	RAMPS " $\mathrm{R}^{\prime \prime}$ \& " $0^{\prime \prime}$									
62	STA. $16+47$ TO STA. $17+34$ (S.R. 2)	232	70.9	232		67.7		232		
62	STA. $14+60$ TO STA. $17+50$ (S.R. 2)		11.0	225.6		48.3			257.8	
62	STA. $17+50$ TO STA. 21+82 (S.R. 21$)$	720	205.3	720		200		720		
62	STA. $17+35.96$ TO STA. $20+36.02$ (RAMP R)		III.I	233.4		44.5			266.7	
${ }^{62} 6$	STA. $16+11.53$ TO STA. $18+65.47$ (RAMP Q)		94.0	${ }^{297.5}$		37.6			${ }^{265.7}$	
$\frac{62}{63}$	STA. $18+66.47$ TO STA. $19+66.47$ (RAMP Q)		25.9 46.6	16.7		5.1. 18.6			60.8	
63	STA. $20+65$ TO STA. $23+02.62$ (RAMP a)		${ }^{43.6}$			${ }_{1}^{13.5}$				80.7
63	STA. $22+93$ TO STA. $26+20$ (RAMP R)		45.4			18.2				109.0
63	STA. $23+9.75$ TO STA. $26+20$ (RAMP R)		4.8			16.7				100.3
totals		952.0	17476.5	24018.8		6641.8		952.0	40171.6	401.9

ロVERPASS PAVEMENT SUB-SUMMARY

DRAINAGE SLB-SLMMMAFY

miscellaneous computations: item 659 commercial fertilizer (20 lbs./Iooo so. ft.)
(III,008 $\times 9 \times 20$ (1/160001/12000)-10.00 TONS
ITEM 659 WATER II2O GAL./1000 SO. FT

MAINLINE

APPROACH SLAB DETAILS

 STA. $55+81.25$ to STA. $56+06.25=25.00$ L.F. $\times 2=50.00$ L.F. STA. $175+51.71$ to STA. $175+76.71=25.00$ L.F. $\times 2=50.00$ L.F. STA. $177+35.21$ to STA. $177+60.21=25.00$ L.F. $\times 2=50.00$ L.F. TOTAL $=175.00$ L.F.

> SECTION APPLIES:

EASTBOUND
STA. $51+03.25$ to STA. $51+28.25=25.00$ L.F.

GRAND TOTAL $=200.00$ LIN. FT.

* - I" PREFORMED EXPANSION JOIN filler and joint sealer as PER AS-I-81. (Typ.)

MAINLINE APPROACH SLAB SUB-SUMMARY							
	202	20		304	611		
LOCATION	$\begin{aligned} & \text { Approoch } \\ & \text { Slob } \\ & \text { Romoved } \end{aligned}$		${ }_{\substack{\text { Subrade } \\ \text { Conpoction }}}$				
	sa, ro.	${ }^{\text {cu }}$, Yo.	sa. ro.	${ }^{\text {cu }}$, Yo.	sa. ro.		
Sto. $51+03.25$ to Sto. $51+28.25$ Q S.R. 2 W.B.	${ }^{66.7}$	23.5 23	${ }^{110.7}$	18.5	105.1		
	${ }^{733.3}$	${ }^{23.5}$	${ }^{\text {217. }} 17.3$	19.5 37.0	$\frac{17.6}{210.2}$		
Sto. $175+5.7 .71$ to Sto. 175776.71 Q S.R. 2 W.B. \& E.B.	133.3	46.8	221.3	37.0	210.2		
Sto. $177+35.21$ to sto. $177+60.21$ \& S.R. 2 W.B. \& E.B.	133.3	46.8	221.3	37.0	210.2		
totals carried to general summary	539.7	187.4	891.8	149.0	847.3		

(1) ITEM 6II - 15" Reinforced Concrete Approach Slab
(2) ITEM 304-6" Aggregate Base, As Per Plan
(3) ITEM 202 - Approach Slab Removed
(4) ITEM 203 - Subgrade Compaction

Note: For Additional Details Not Shown
See Standard Drawing AS-1-81.

APPRDACH SLAB DETAILS

SECTION APPLIES:
VERMILION ROAD
STA. $23+51.17$ to STA. $23+76.17=25.00$ L.F. STA. $26+24.12$ to STA. $26+49.12=25.00$ L.F

TOTAL $=50$ L.F.

ISHOULDER TREATMENT AS SHOWN ABOVE APPLIES: STA. $21+50$ TO STA. $23+76.17$

- STA. $26+24.12$ TO STA. $28+501$

GRAND \cdot TOTAL $=250.00$ LIN. FT.

SECTION APPLIES:

WEST RIVER ROAD \triangle
STA. $23+40.58$ to STA. $23+65.58=25.00$ L.F. STA. $26+51.67$ to STA. $26+76.67=25.00$ L.F.

SUNNYSIDE ROAD
STA. $23+57.42$ to STA. $23+82.42=25.00$ L.F.
STA. $26+17.58$ to STA. $26+42.58=25.00$ L.F.

VERMILION.INTERCHANGE ROAD STA. $23+58.00$ to STA. $23+83.00=25.00$ L.F. STA. $23+58.00$ to STA. $23+83.00=25.00$ L.F.

STA. $23+57.07$ to S.TA. $23+82.07=25.00$ l..F. STA. $26+17.93$ to STA: $26+42.93=25.00$ L.F.

LEGEND
(1) ITEM 404-I" Asphalt Concrete, AC-20
(2) ITEM 403-I" Asphalt Conicrete, AC-20
(3) ITEN 202 - Wearing Course Removed
(4) ITEM 301-3" Bituminous Aggregate Base, AC-20
(5) ITEM 304-3" Aggregate Base, As Per Plan
(6) ITEM 203-Subgrade Compaction
(7) ITEM 407-Tock Coat (See General Note)
(8) ITEM 409 - Seal Coot Bituminous Material, Applied At A
(9) ITEM 409 - Seal Coot Cover Agaregate, No. 8, Applied At
(9) ITEM 409- Seal Coot Cover Aggregate, No. 8. Applied At
A Rote of 0.008 Cu. Yd.isq. Yd.
(10) ITEM 408 - Bituminous Prime Coot, Applied At A Rate Of A) Existing $15^{\prime \prime}$ Reinforced Concrete Approach Slab (B), Temporary Pavement, Class A, As Per Plan "A", Installed
In Mointenance of Troffic Phose One, See Sheets 53 And 54.

12'-0" Vermilion Interchange Rood
中: $6^{\prime}-1 l^{\prime \prime}$ West River Rood. Sunnyside Rood, Clous Rood
Δ : Shoulder Treatment As Shown Below Applies: West River Road : STA. $22+00$ to STA. $23+65.58$ STA. $26+51.67$ to STA. $28+75$

MEDIAN CRDSSDVER DETAILS

TYPICAL MEDIAN CROSSOVER DETAIL Applies：Sto． $5+00$ and Sta． $124+00$
Seed Area 10^{\prime} Inside of Paved

Muinline	Medion
Ouonfities	$\begin{array}{l}\text { Ouontities }\end{array}$

Medion	Mainline
Ouantities	Quontities

LEGEND
（1）ITEM 452－9＂＂Ploin Concrete Povement．As Per Plan
（2）ITEM 304－4＂Aggregote Bose，As Per Plon
（3）ITEM 202 －Subgrade Compoction
（4）ITEK 659 －Sueding And Uuction
（0）Transversie eoint with Dowels），As Per Standard
（E）Exponsion Joint（Without Dowels），As Per Stondard
（T）Longitudinol Joint（Tied），As Per Standord
（1）Longitudinol Joint（without Tie－Bers），As Per

MEDIAN CROSSOVER QUANTITIES

	MEDIAN CROSSOVER QUANTITIES											
	ITEM 203	ITEM 304	ITEM 304	ITEM 310	ITEM 408	ITEM 452	ITEM 452	ITEM 659	ITEM 659	ITEM 659	ITEM SPECIAL	ITEW 203
										\％		
	CU．YDS．	CU．YDS．	CU．YDS．	cu．yos．	GAL．	cU．YDS．	cu．YDS．	so．yds．	Tows	$\cdots \mathrm{gal}$ ．	so．yos．	so．yds．
Sta． $2+55$ to Sto． $5+25$ E．8．Shoulder	49.2		17.9				31.3					120.0
Sto． $4+75$ to Sta． 7445 w．B．Shoulder	51.6		13.7	0.6	2.8		31.3				54.44	120.0
Sto． $2+55$ to Sto． $7+45$ Medion Crossover	135.5	42.5				93.0		644.0	0.06	1.4		382.6
Sto．121＋55 to Sto． $124+25$ E．B．Shoulder	57.4		26.2				31.3					120.0
Sto．123＋75 to 126＋45 W．8．Shoulder	49.2		17.9				31.3					120.0
Sta． $121+55$ to Sto． $126+45$ Median Crossover	135.5	42.5				93.0		644.0	0.06	1.4		382.6
Totols	478.4	85.0	75.7	0.6	21.8	186.0	125.2	1288.0	0.12	2.8	54.44	1245.2

PAVEMENT

FOR CONTINUOUSLY REINFORCED CONCRETE PAVEMENT ITEM 255 - FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS C, AS PER PLAN "B"

PAVEMENT
 JロINT REPAIR DETAILS

LONGITUDINAL JOINT REPAIR

FOR REINFORCED CONCRETE PAVEMENT
ITEM 255 - FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS C, AS PER PLAN "C"

PLAN VIEW

APPLIES:
STA 169+60 TO 170+60 \& S.R. 2 - WESTBOUND

$$
\text { TOTAL }=100 \text { L.F. }
$$

SECTION A-A

SECTION B-B

SUB SUMMARY			
LOCATION	size	255	255
			so. ro.
Sto. $169+60$ to Sto. $170+60$ \& S.R. 2 W.B.	$4^{4} \times 100^{\prime}$	208	44.4
Totals corried to General Summary		208	44.4

JロINT REPAIR ロETAILS

LONGITUDINAL JOINT REPAIR

continuously reinforced concrete repairs shall be constructed as PER ITEM 255 EXCEPT AS FOLLOWS
seouence of operations
(1) PARTIAL-DEPTH SAW CUTS (APPROX. DEPTH I") SHALL BE MADE ALONG THE OUTER TRANSVERSE BOUNDARIES OF THE AREA TO BE REPAIRED AS SHOWN
ON THE DETAILS AND AS OUTLINED BY THE ENGINER. CARE SHALL BE TAKEN ON THE DETALLS AND AS OUTLINED
NOT TO CUT THE REINFORCEMENT.
(2) full depth saw cuts shall be made parallel to and $24^{\prime \prime}$ inside of THE PARTIAL-DEPTH SAW CULS WHICH DEFIIE THE TRANSVERSE BOUNDARIIES,
AND ALONG THE LONGITUDINAL BOUNDARIES OF THE AREA TO BE REPAIRED AS SHOWN ON THE DETALLS AND AS AUTIUS OF THE AREA TO BE RE
(3) pavement between the inner full depth saw cuts shall be removed IN ACCORDANCE WITH 255.03.
4) concrete in the two end lap areas shall be carefully removed by USING ONLY JACKHAMMERS (MAX. 15 POUNDSI, PRY BARS. PICKS, SHOVELS
AND OTHER HAND TOOLS. THE REINFORCEMENT SHALL NOT BE BENT TO AND OTHER HAND TOOLS. THE REINFORCEMENT
FACIITATE REMOVAL OF CONCRETE UNDEREATH.
(5) following the removal of pavenent frou the afea, the existing base Shall be removed within the area of repair and restored to grade
as shown on the detalls. a ouantit of 30 cu. yo. of Item 304 , AGGREGATE BASE HAS BEEN CARRIED TO THE GEEERAL SUMMARY FOR THIS PURPOSE. IN LIEU OF REPLACING WITH ITEM 304, THE CONTRACTOR MAY
ELECT TO REPLACE UNSUITABLE SUBBASE WITH CONCRETE AS PER THIS ELECT TIO REPLACE UNSUTTABLE SUBBASE WTH CONCRETE AS MER TMS
SPECIFIC IT IS IMPORTANT THE ENTIRE OPERATION IS EXECUTED IN THIS ORDER
6) SPIICE DEFORMED LOOSE BARS (TO9.OI) WITH EACH MEMBER OF EXISTING THE TYPE OF NEW REHFORCEMENT SHALL MEET THE REQuirements of THE.O2 AND SHALL MATCH THE ORIGINAL IN SIZE, ALL REOUIREMENTS SHALL BE AS PER STANDARD CONSTRUCTION DA WI SO THEIR ENDS ARE AT LEAST THE NEW REINFORCEMENT SHALL-
2 INCHES FROM THE JOINT FACES. TIED SPLICES IN THE LAP EACD SECTIONS SHALL BE A MINIWUM 22 INCHES.
THE LAP SHALL THE LAP SHALL EE SECURED WITH WIRE TIES. NO WELDING IS PERMITTED.
THE REITFORCEMENT SHALL BE FIRMLY SUPPORTED AT THE PROPER ELEVATION ABOVE THE BASE BY APPROVED HIGH CHAIRS.
IF MOVEMEN OO THE PAVEMENT CAUSED BY EXPANSIIN, CAUSES THE
REINFORCEMENT TO BUCKLE, THIS SHALL BE CORRECTED JUST PRIOR TO REINFORCEMENT TO BUCKLE. THIS SHALL BE CORRECTED JUST PRIOR TO
PLACING CONCRETE BY REMOVING AND REPLACING THE WIRE TIE AT LAPS.
(7) joint sealer shall meet the reouirewents of supplemental specification 80I IN LIEU OF THE REQUIREMENTS OF BP-I3 AND TTEM 255. THE SEALANT SHALL BE TYPE III AND V.

THE COST OF ALL LABOR. EQUPMENT. MATERIALS AND INCIDENTALS NECESSARY TO COMPLLTE THE WORK SHALL BE INCLUDED IN THE UNIT PRICE BID FOR ITEM 255 - FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT. CLASS C. AS PER PLAN "D".

FOR CONTINUOUSLY REINFORCED CONCRETE PAVEMENT ITEM 255 - FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS C, AS PER PLAN "D"

SHRP PAVEMENT REPAIR DETAILS

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT. AS PER PLAN A, CLASS HES

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
AS PER PLAN A. CLASS HES
255 AND 499 WITH THE FOLLOWING EXCEPTIONS: h.

IN LIEU OF THE BATCH WeIghts gIVEN In the concrete TABLE IN 499.03. THE BATCH WEIGHTS GIVEN ON THIS SHEET Shall be used. only one mix from this table mar be
placed on any day.
2. portland ceuent shall meet the reauirements of tol.05.
3. 499.031 WILL NOT APPLY FOR THIS MIX
4. the concrete shall be delivered to the site of the WORK WITHIN 30 MINUTES AND DISCHARGE AND FINISHING
SHALL BE COMPLETED WITHIN 60 MINUTES AFTER COMBINING SHALL BE COMPLETED WTTHN 60 MINUTES AFTER COMBINING
THE WATER ANO CEMENT.
5. THIS MIX wILL be used for ten (10) Joint repalrs at THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR TLL TIME HIS OPERATION SUCH THAT WHEN OPENED TO
TRAFFIC, THE REPAIRS WILL BE OF THE AGE INDICATED IN THE TABLE SHOWN AT RIGHT.
6. REPRESENTATIVES FROM CONSTRUCTION TECHNOLOGY LABORATORIES ICTLL OF SKOKIE. ILLINOIS ANO ERES CONSULIANTS
OF SAYOY, ILLINOIS WILL BE ON THE SITE DURIGG CONSTRCTION OF SAYOY, ILLINOIS WILL BE ON THE SITE DURING CONSTRUCTION.
CTL AND ERES WILL BE INSTALING INSTRUNENTATIN CTL AND ERES WILL BE. INSTALLING INSTRUMENTATIN:
SAMPING MATERIALS AND FILMING THE CONSTRUCTION SAMPLING MATERIALS AND FILMING THE CONSTRUCTION
PROCESS. THE CONTRACTOR WILL COOPERATE WITH CTL
AND ERES.
7. ONCE OPENED TO TRAFFIC. THE REPAIRS SHALL REMAIN UNEE TRAFFII FOR A MINIUM PERIOD OF 28 DAYS. IF
IT BECOMES NECESSARY TO COSSE ATEST SECTIO AFTER
28 DAYS. TRAFFIC WILL BE REMOVED FROM ALL REPAIRS WITHIN A TEST SECTION AND THE TIME ANO OURATION OF CLOSURE RECORDED AND REPORTED TO ERES,
8. JoInt Sealer shall meet the requirements of suppleMENTAL SPECIFICATION BOI. CLASS III AND CLAASV. V. IN
IIEU OF THE REOUIREMENTS OF 255.02 AND BP-I3. st for the above will be included in the unit price ald panement removal and

THE LOCATIONS WHERE THIS TYPE OF JOINT

AREA A				
Station	SIDE	lane	SIze	so. yo.
147997.	EB	traveluing	$6^{\prime} \times 12^{\prime}$	8
$148+17$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$148+57$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$148+82$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$149+00$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
149+21	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$149+40$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$149+53$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
149*65	EB	traveluing	$6^{6} \times 12^{\prime}$	8
150+05	EB	travelling	$6^{\prime} \times 12^{\prime}$	

BATCH WEIGHT							
Material. Cubic Yard Basis	RSPCI	RSC1	VES	RSPC2	RSC2	FTI	HES
Cement-1b	710 (11)	750 (2)	960	610 (1)	650 (2)	710	810
Fine Aggregote-10	1400	1100	890	1400	1000	1400	1100
Coorse Aggregote-1b	1360	1700	1750	1700	1800	1360	1720
Woter Reducer-0z/cwt	4.5	-	4.5	-	-	4.5	-
Accelerotor-Gal (non-chloride)	-	-	5.1	-	-	-	6.0
Accelerator (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Woter Reducer-oz/cwt	-	-	18	-	-	-	14
Max w/c Rotio	0.44	0.40	0.34	0.41	0.45	0.44	0.40
(I) Regulated Set Cement Holnam. Inc. P.O. Box 99 Sorotogo, AR 71859 Phone : (800) 874-5756				(2) Rapidset Cement CTS Cement 8700 West Byron-Mawr. *800-S Chicago, IL 60634 Phone : (800) 759-8255			

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repoir Opening Time							
		${ }_{\text {H }}$ H	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\stackrel{6}{6}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	$\begin{aligned} & 26 \\ & H R \end{aligned}$
c	RSPCI	3	4		3				
0	RSCI	3	4		3				
E	vES		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3.	4		3			
H	Fs		3	4		3			
${ }^{8}$	FTI						3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.

```
AS PER PLAN A,
    CLASS FTI
```

ITEM 255 FULI DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT
AS PER PLAN A, CLASS FTI
THIS WORK SHALL BE COMPLETED IN ACCORDANCE WITH ITEMS
255 AND 499 WITH THE FOLLOWING EXCEPTONS.
In IIEU of the batch weights given in the concrete
iAble in 499.03. The batch weight given on this sheet TABLE IN 499.03, THE BATCH WEIGHTS GIVEN ON THIS SHEET
SHALL BE SUED ONLY ONE MIX FROM THIS TABLE MAY BE
PLACED ON ANY DAY.
2. portland cement shall meet the reouirements of 701.05.
3. 499.031 WILL NOT APPLY FOR THIS MIX
4. THE CONCRETE SHALL be delivered to the site of the WRK WITHIN 30 MINUTES AND DISHARGE AND FINISHING
SHALL BE COMPLLTED WITHIN 60 MNUTES AFTER COMINING the water and cement.
5. THIS MIX WILL be uSED FOR TEN (IO) JOINT REPAIRS AT 5. THIS MIX WILL BE USED FOR TEN (10) JOINT REPAIRS AT
THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR
ITS WILL TME HIS OPERATJN SUCH THAT WHEN OPENED TO TRAFFIC. THE REPAARS WILL BE OF THE AGE INDICATED
IN THE TABLE SHOWN AT RIGHT.
6. representatives from construction technology lab-
 OF SAYOY. ILILNOIS WILL BE ON THE SIIE DURING CONSTRUCTION.
CTL ANO ERES WILL BE INSTALLING INSTRUMENTATION. SAMPLING MATERIALS AND FILMING THE CONSTRUCTION PROCESS.
AND ERES.
7. once opened to traffic. the repairs shail remain UNDER TRAFFII FOR A MINIMUM PERIOD OF 28 DAYS. IF
IT BECOMES NECESSAAY TO CIOSE IT BECOMES NECESSARY TO CLOSE A TEST SECTION AFTER
28 DAYS. TRAFFIC WILL BE REMOVED FROM ALL REPAIRS WITHLNA A TEST SECTIIN AND THE TIME AND DURATION OF
8. JOINT SEALER SHALL MEET THE REOUIREMENTS OF SUPPLEMENTAL SPECIFICATION BIT. LLASS III AND CLASS V.II Lost for the abve wil me
COST FOR THE ABOVE WILL BE INCLUDED IN THE UNIT PRICE
BID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT, AS PER PLAN A. CLASS FTI.

HE LOCATIONS WHERE THIS TYPE OF JOINT

AREA B				
station	SIDE	lane	SIIE	so. yo.
113*12	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
113+57	$E B$	traveluing	$6^{\prime} \times 12^{\prime}$	8
113+92	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$114+56$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
114×96	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$115+11$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
${ }_{115} 1137$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$115+52$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$115+77$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
${ }_{115+94}$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
totals carried to general summary				80

BATCH WEIGH							
Moterial, Cubic Yord Basis	RSPCI	RSC1	vES	RSPC2	RSC2	FTI	HES
Cement-1b	710 (1)	750 (2)	960	610 (1)	650 (2)	710	810.
Fine Aggregote-lb	1400	1100	890	1400	1000	1400	1100
Coorse Aggregote-lb	1360	1700	1750	1700	1800	1360	1720
Woter Reducer-oz/cwt	4.5	-	4.5	-	-	4.5	-
$\begin{aligned} & \text { Accelerator-Gol } \\ & \text { (non-chloride) } \end{aligned}$	-	-	5.1	-	-	-	6.0
Accelerator (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Woter Reducer-oz/cwt	-	-	18	-	-	-	14
Max w/c Rotio	0.44	0.40	0.34	0.41	0.45	0.44	0.40

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repair Opening Time							
		$\begin{aligned} & 1 \\ & H R \end{aligned}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\begin{gathered} 6 \\ H R \end{gathered}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	$\begin{aligned} & 26 \\ & H R \end{aligned}$
c	RSPCI	3	4		3				
0	RSCI	3	4		3				
E	ves		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3	4		3			
H	Fs		3	4		3			
B	FTI						3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

TRANSVERSE JOINT REPAIR
ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
AS PER PLAN A,
CLASS RSPCI

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT
AS PER PLAN A, CLASS RSPCI

THIS WORK SHALL BE COMPLETED IN ACCORDANCE WITH ITEMS
AND 499 WITH THE FOLLOWING EXCEPTIONS:

1. IN LIEU OF THE BATCH WEIGHTS GIVEN IN THE CONCRETE ABLE IN 499.03. THE BATCH WEIIGHTS GIVEN ON THIS SHEET
SHALL BE USED. ONLY ONE MIX FROM THIS TABLE MAY BE PLACED ON ANY DAY.
2. REGULATED SET CEment manufactured by holnam, inc.
3. 499.031 WILL NOT APPLY FOR THIS MIX.
4. THE CONCRETE SHALL BE DELIVERED TO THE SITE OF THE WHIL BE COMPLETED ES AND DISCHARGE AND FINISHING THE WATER AND CEMENT. IF 35 MNINUTES AFTER COMBINING THE WATER AND CEMENT. IF AN APPROVED SET-RETARDING
ADMITURE IS USED AT THE CONTRACTOR'S EXPENSE. ADISHARGE AND FINISHING SHALL BE COMPLETEXP WITHIN
DIS 45 MINUES AFTER COMBINNG THE WATER AND CEMENT. A MOBILE MIXER MEETING THE APPROVAL OF THE ENGINEER
MAY BE USED FOR THIS WORK.
5. THIS MIX wILL be used for ten (10) joint repairs at THIS MIX WILL BE USED FOR TEN (IO) JOINT REPAIRS AT
THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR
WILL TIME HIS OPERATION SUCH THAT WHEN OPENED TO TRAFFIC. THE REPAIRS WILL BE OF THE AGE INDICATED in the table shown at righr.
6. REPRESENTATVES FROM CONSTRUCTION TECHNOLOGY LAB-
ORATORIES ICTL OF SKOKIE. ILINOIS ANO ERES CONSULTANTS OF SAYOOR, ILLINOIS WILL BE ON THE SITE DURING CONSTRUCTION CTL AND ERES WILL BE INSTALLING INSTRUMENTATION.
SAMPING MAERISLS SAMPLING MATERIALS AND FILMING THE CONSTRUCTION
PROCESS. THE CONTRACTOR WILL COOPERATE WITH CTL PROCESSS.
AND ERES.
7. ONCE OPENED TO TRAFFIC, THE REPAIRS SHALL REMAIN IT BECOMES NECESSARY TO CLOSE A TEST SECTION AFTER 28 DAYS. TRAFFIC WILL BE REMOVED FROM ALL REPAIRS WITHIN A TEST SECTION AND THE TIME AND DURATION OF
CLOSURE RECOROED AND REPORTED TO ERES.
8. joint sealer shall meet the reouirenents of suppleMENTAL SPECIFICATION BOI, CLASS III AND CLASS V. IN LIEU OF THE REQUIREMENTS OF 255.02 AND BP-13.

COST FOR THE ABOVE WILL BE INCLUDED IN THE UNIT PRICE
FOR ITEM 255 FULL DEPTH RIGD PAVEMENT REMOVAL AND BID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND

HE LOCATIONS WHERE THIS TYPE OF JOINT

AREA C				
station	SIDE	lane	SIze	so. ro.
$58+26$	Eb	travelling	$6^{\prime} \times 12^{\prime}$	8
58+56	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
58+96	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
59*/2	EB	travelling	$6^{\times} \times 12^{\prime}$	8
$59+36$	EB	traveluing	$6^{\prime} \times 12^{\prime}$	8
59+54	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$61+88$	EB	traveluing	$6^{\prime} \times 12^{\prime}$	8
62+18	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$62+29$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
$63+00$	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
totals carried to general sumuary				80

BATCH WEIGHT							
Materiol. Cubic Yard Basis	RSPCI	RSCI	ves	RSPC2	RSC2	FTI	hes
Cement-1b	710 (11	750 (2)	960	610 (1)	650 (2)	710	810
Fine Aggregote-1b	1400	1100	890	1400	1000	1400	1100
Coarse Aggregote-1b	1360	1700	1750	1700	1800	1360	1720
Woter Reducer-0z/cwt	4.5	-	4.5	-	-	4.5	-
Accelerator-Gal (non-chloride)	-	-	5.1	-	-	-	6.0
Accelerator (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Woter Reducer-oz/cwt	-	-	18	-	-	-	14
Mox w/c Ratio	0.44	0.40	0.34	0.41	0.45	0.44	0.40

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repair Opening Time							
		$\begin{aligned} & 1 \\ & H R \end{aligned}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\begin{gathered} 6 \\ H R \end{gathered}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	$\begin{aligned} & 26 \\ & H R \end{aligned}$
C	RSPCI	3	4		3				
o	RSCI	3	4		3				
E	ves		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3	4		3			
H	Fs		3	4		3			
B	FTI						3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

TRANSVERSE JOINT REPAIR
ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
AS PER PLAN A.
CLASS RSCI

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT
AS PER PLAN A. CLASS RSCl
THIS WORK SHALL BE COMPLETED IN ACCORDANCE WITH ITEMS

1. in lieu of the batch weights given in the concrete TABLE IN 499.03. THE BATCH WEIGHTS GIVEN ON THIS SHEET
SHALL BE USED. ONLY ONE MIX FROM THIS TABLE MAY BE SHALL BE USED. ONLY ONE MIX FROM THIS TABLE MAY BE
2. rapioset cement manufactured by cts cement shall BE USED
3. 499.031 WILL NOT APPLY FOR THIS MIX.
4. THE CONCRETE SHALL BE DELIVERED TO THE SITE OF THE HALL BE COMPLETED ES AND DISCHARGE AND FINISHING THE WAEER AND CEMENT IF AN APPROVED SET COETBINING ADMIXTURE IS USED AT THE CONTPACTOR'S EXPENSE. DISHARGE AND FINISHING SHALL BE COMPLETEX WITHIN 5 MINGEES AFTER COMBIING THE WATER AND CEMENT, A MOBLLE MIXER MEETING THE APPROVAL OF THE ENGINEEA
UAY BE USED FOR THIS WORK.
5. this wix with or used for
6. THIS MIX WILL BE USED FOR TEN IIO) JOINT REPAIRS AT THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR
WILL TIME HIS OPERATION SUCH THAT WHEN OPENED TO TRAF TFICE THIS OPERATION SUCH THAT WHEN OPENED TO
THILL BE OF THE AGE INDICATED in the table shown at right.
7. REPRESENTATTVES FROM CONSTRUCTION TECHNOLOGY LAB ORA SAIOY, ILLILOOIS WILL BE ON ON THE SIIE DURIIG CONSTRUCTION. CTL AND ERES WILL BE INSTALLING INSTRUMENTATION, SAMPLING MATERIALS AND FILMING THE CONSTRUCTIO PROCESS.
AND ERES.
8. ONCE OPENED TO TRAFFII. THE REPAIRS SHALL REMAIN IT BECOMES NECESSARY TO CLOSE A TEST SECTION AFTE 28 DAYS. TRAFFIC WILL BE REMOVED FROM ALL REPAIRS WITHIN A TEST SECTION AND THE TIME AND DURATION OF seried ano reported to eres.
B. Joint sealer shall meet the reouirements of suppleMENTAL SPECIFICATION BOI. CLASS III AND CLASS V.
cost for the above will be included in the unit price ID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AN

HE LOCATIONS WHERE THIS TYPE OF JOINT

AREA D				
station	SIDE	lane	SIze	so. yo.
1828+26	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1828+72	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1829+11	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1829+83	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1830+25	EB	travelimg	$6^{\prime} \times 12^{\prime}$	8
1830 +38	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1831/84	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1832+20	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
1832+34	EB	traveling	$6^{6} \times 12^{\prime}$	8
1832+61	EB	travelling	$6^{\prime} \times 12^{\prime}$	8
totals carried to general summary				80

BATCH WEIGHT							
Moterial. Cubic Yard Basis	RSPCI	RSCl	vES	RSPC2	RSC2	FTI	hes
Cement-1b	710 (11)	750 (2)	960	610 (11)	650 (2)	710	810
Fine Aggregate-1b	1400	1100	890	1400	1000	1400	1100
Coarse Aggregate-1b	1360	1700	1750	1700	1800	1360	1720
Woter Reducer-oz/cwt	4.5	-	4.5	-	-	4.5	-
Accelerator-Gal (non-chloride)	-	-	5.1	-	-	-	6.0
Accelerator (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Woter Reducer-oz/cwt	-	-	18	-	-	-	14
Max w/c Ratio	0.44	0.40	0.34	0.41	0.45	0.44	0.40

(i) Regulated Set Cement

Holnom. Inc.
P.O. Box g9

(2) Ropidset Cement
cTs cement

CTS Cement
8700 West Byron-Mowr, •800-S
Chicago. $1 / 60653$
Phone : 1800) $759-8255$

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repoir Opening Time							
		${ }_{\text {HR }}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\begin{gathered} 6 \\ H R \end{gathered}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	26 $H R$
c	RSPCI	3	4		3				
D	RSCl	3	4		3				
E	vES		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3	4		3			
H	Fs		3	4		3			
B	FTI		.				3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

$$
\begin{gathered}
\text { AS PER PLAN A } \\
\text { CLASS VES }
\end{gathered}
$$

ITEM 255 FULL DEPTH RIGID PAVEMENT EMOVAL AND RIGID REPLACEMENT.
as PER PLAN A. CLASS VES
55 AND 499 WITH THE FOLLOWING EXCEPTIONS:
IN LIEU OF THE BATCH WEIGHTS GIVEN IN THE CONCRETE ABLE IN 499.03. THE B ATH WEIGHTS GIVEN ON THIS SHEE SHALL BE USED. ONLY ONE MIX FROW THIS TABLE MAY BE
LLACED ON ANY DAY.
2. portland cement shall meet the reouirements of tou.05
3. 499.031 WILL NOT APPLY FOR THIS MIX.
4. THE CONCRETE SHALL BE DELIVERED TO THE SITE OF THE WORK WITHIN 30 MINUTES AND DISCHARGE AND FINISHING
SHALL BE COMPLETED WITHIN 60 MINUTES AFTER COMBINING SHALL BE COMPLETED. WITHIN 60 MINUTES AFTER COMBINING
THE WATER AND CEMENT.
5. THIS MIX WILL BE USED FOR TEN IIO) JOINT REPAIRS AT
THE LOCATIONS SHOWN ON THIS SHEET THE CONTRACTOA WIL TIME HIS OPERATION SUCH THAT. THE CONTRACTO WILL TIME HIS OPERATION SUCH THAT WHEN OPENED TO
TRAFIC. THE REPAIRS WILL BE OF THE AGE INDICATED IN THE TABLE SHOWN AT RIGHT.
6. REPRESENTATIVES FROM CONSTRUCTION TECHNOLOGY LABORATORIES ICTLL OF SKOKIE, ILLINOIS AND ERES CONSULTANTS OF SAYOY. ILLINOIS WIL BE ON THE SIIE DURIIGG CONSTRUCTINN
CTL AND ERES WILL BE INSTALIING INSTRUMENTATION. CTL AND ERES WILL BE INSTALLING INSTRUMENTATIIN.
SAMPLING MATERIALS AND FIMIN THE CONSTRUCTION
PROCESS THE CONTRACTO WHL CIS PROCESS. THE CONTRACTOR WILL COOPERATE WITH CTL
7. ONCE OPENED TO TRAFFIC. THE REPAIRS SHALL REMAIN UNDER TRAFFIC FOR A MIIIUUM PERIOD OF 28 DAYS. IF
IT EECOMES NECESSARY TO CLOSE A TEST SECTION AFTER IT BECOMES NECESSARY TO CLOSE A TEST SECTION AFTER
28 DAYS. TRAFFIC WILL BE REMOVED FROM ALL REPAIRS WITHIN A TEST SECTION AND THE TIME AND DURATION OF a
8. Joint sealer shall meet the reouirements of supple MENTAL SPECIFICAIION BOI. CLASS III AND CLASS
LIEU OF THE REOUIREMENTS OF 255.02 AND BP-I3.
COST FOR THE Above wILL be included in the unit price BID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND rigid replacement. as per plan a, class ves.

REPAIR LOCATIONS WHERE THIS TYPE OF JOINT

AREA E				
station	SIDE	lane	SIZE	so. YD.
103*30	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
103+87.	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
$104+20$	wв	travelling	$6^{6} \times 12^{\prime}$	8
10465	WB	travelling	$6^{6} \times 12^{\prime}$.	8
$105+04$	WB	travelling	$6^{6} \times 12^{\prime}$	8
$105+44$	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
105+82	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
106+28	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
106+58	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
107*08	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
totals carried to general summary				80

BATCH WEIGHT							
Material. Cubic Yard Basis	RSPCI	RSCI	VES	RSPC2	RSC2	FTI	hes
Cement-10	710 (1)	750 (2)	960	$6 i 0$ (1)	650 (2)	710	810
Fine Aggregote-1b	1400	1100	890	1400	1000	1400	1100
Coarse Aggregate-1b	1360	1700	1750	1700	1800	1360	1720
Woter Reducer-oz/cwt	4.5	-	4.5	-	-	4.5	-
Accelerator-Gal (non-chloride)	-	-	5.1	-	-	-	6.0
Accelerotor (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Woter Reducer-oz/cwt	-	-	18	-	-	-	14
Mox w/c Rotio	0.44	0.40	0.34	0.41	0.45	0.44	0.40

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repoir Opening Time							
		${ }_{H R}^{\prime}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\underset{H R}{6}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	26 $H R$
c	RSPCI	3	4		3				
D	RSCI	3	4		3				
E	VES		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3	4		3			
H	fs		3	4		3			
B	FTI						3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

TRANSVERSE JOINT REPAIR
ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT
AS PER PLAN A,
CLASS RSPC2

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT
AS PER PLAN A. CLASS RSPC2
255 AND 499 WITH THE FOLOWOWNG EXCEPTIONS:
IN LIIEU OF THE BATCH WEIGHTS GIVEN IN THE CONCRETE SABLL BE USED. ONLY ONE MIX FROM THIS TABLE MAY BE placed on any day.
2. regulated set cement manufactured by holnam, inc. SHALL BE USED.
3. 499.031 WILL NOT APPLY FOR THIS MIX.
4. THE CONCRETE SHALL BE DELIVERED TO THE SITE OF TH SHALL BE COMPLETED WITHIN 35 MINUTES AFTER COMBININ HE WATER AND CEMENT. IF AN APPROVED SET-RETARDING ADMIXTURE IS USED AT THE CONTRACTOR'S EXPENSE,
DISCHARGE AND FINISHING SHALL BE COMPLETED WITHIN 45 MINUTES AFTER COMBINNG THE WATER AND CEMENT A MOBILE MIXER MEETING THE APPROVAL OF THE ENGINEE USED FOR THIS WORK
5. THIS MIX WILL BE USED FOR TEN (IO) JOINT REPAIRS AT
THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR WILL TIME HIS OPERATION SUCH THAT WHEN OPENED TO TRAFFIC. THE REPAIRS WILL BE OF THE AGE INOICATED in the table shown at right.
6. REPRESENTATIUES FROM CONSTRUCTION TECHNOLOGY LABOF SAYOY ILLINOIS WILL BE ON THE SITE DURIIGG CONSUTRUCTITI CTL AAOD ERES WILL BE BE INSTALIIIE DURING CONSTRUCTION.
STITRUMENTATION. SAMPLING MATERIALS AND FILMING THE CONSTRUCTION PROCESS.
AND ERES.
. once opened to traffic. the repairs shall remain UNDER TRAFFIC FOR A MINIMUM PERIOD OF 28 DAYS. IF 28 DECOMES TRACESSARY TO CLOSE A TEST SECTIION AFTEA
BE REMOVED FROM ALL REPAIRS WITHIN A TEST SECTION AND THE TIME AND DURATION OF WITIN A TEST SECTION AND THE TDME AND
CLOSURE RECORDED AND REPORTED TO ERES.
8. Joint sealer shall meet the reouirements of supple MENTAL SPECIFICATION BOI, CLASS III AND CLASS
LIEU OF THE REQUIREMENTS OF 255.02 AND BP-13.

COST FOR THE ABOVE WILL BE INCLUDED IN THE UNIT PRICE BID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND

HE LOCATIONS WHERE THIS TYPE OF JOINT

AREA F				
station	SIDE	lane	SIZE	so. yo.
109+40	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
109+91	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
110+29	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$111+07$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$111+24$	wB	travelling	$6^{6} \times 12^{\prime}$	8
$111+45$	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
$111+65$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$111+77$	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
112×02	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
$112+44$	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
totals carried to general summary				80

BATCH WEIGHT							
Moteriol. Cubic Yord Bosis	RSPCI	RSCI	ves	RSPC2	RSC2	FTI	HES
Cement-1b	710 (1)	750 (2)	960	610 (1)	650 (2)	710	810
Fine Aggregote-lb	1400	1100	890	1400	1000	1400	1100
Coorse Aggregote-1b	1360	1700	1750	1700	1800	1360	1720
Woter Reducer-oz/cwt	4.5	-	4.5	-	-	4.5	-
Accelerator-Gol (non-chloride)	-	-	5.1	-	-	-	6.0
Accelerator (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Woter Reducer-oz/cwt	-	-	18	-	-	-	14
Max w/c Ratio	0.44	0.40	0.34	0.41	0.45	0.44	0.40
(1) Regulated Set Cement Holnam, Inc. P.O. Box 99 Saratoga, AR 71859 874-5756				```(2) Rapidset Cement CTS Cement 8700 West Byron-Mowr, *800-S Chicago, IL 60634 Phone : (800) 759-8255```			

AREA	Class	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repoir Opening Time							
		$\underset{H R}{\prime}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\stackrel{6}{6}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	$\begin{aligned} & 26 \\ & H R \end{aligned}$
c	RSPCI	3	4		3				
D	RSCI	3	4		3				
E	ves		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3	4		3			
H	FS		3	4		3			
B	FTI						3	4	3
A	hes						3	4	3

SHRP PAVEMENT REPAIR DETAILS

TRANSVERSE JOINT REPAIR
ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.

$$
\begin{gathered}
\text { AS PER PLAN A } \\
\text { CLASS RSC2 }
\end{gathered}
$$

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT AS PER PLAN A, CLASS RSC2 THIS WORK SHALL BE COMPLETED IN ACCORDANCE WITH ITEMS

1. IN LIEU OF THE BATCH WEIGHTS GIVEN IN THE CONERETE TABLE IN 499.03. THE BATCH WEIGHTS GIVEN ON THIS SHEET SHALL BE USED. ONLY ONE MIX FROM THIS TABLE MAY BE placed on any day.
2. rapidset cement manufactured by cts cement shall
3. 499.031 WILL NOT APPLY FOR THIS MIX
4. THE CONCRETE SHALL BE DELIVERED TO THE SITE OF THE WORK WITHIN 3 O MINUTES AND DICHAAGE AND FINISHING SHALL BE COMPLETED WITHIN 60 MINUTES AFTER COMBINING
THE WATER AND CEMENT. IF AN APPROVED SET-RETARDING THE WATER AND CEMENT. IF AN APPROVED SET-RETARDING
ADMIXTURE IS USED AT THE CONTRACTOR'S EXPENSE. ODISHARGE AND FINISHING SHALL BE COMPLETED WITHIN 75 HINUTES AFTER COMBINING THE WATER AND CEMENT.
A MOBILE MIXER MEETING THE APPROVAL OF THE ENGIWEER A MOBILE MIXER MEETNG THE A
MAY BE USED FOR THIS WORK.
5. THIS MIX WILL BE USED FOR TEN (IO) JoInt repairs at THE LOCATIONS SHOWN ON THIS SHEET. THE CONTRACTOR WILL TIME HIS OPERATION SUCH THAT WHEN OPENED TO TRAFFIC. THE REPAIRS WHLL BE OF THE AGE INDICATED
6. Representatives frou construction technology lab-
 OF SAYOY. ILLLNOIS WILL BE ON THE SITE DURING CONSTRUCTION.
CTL AND ERES WILL BE INSTALING INSTRUMENTATION. SAMPLING MATERIALS AND FILMING THE CONSTRUCTION PROCESSS.
AND ERES.
7. once opened to traffic. the repairs shall remain
 IT BECOMES NECESSARY TO CLOSE A TEST SECTION AFTER
28 DAYS, TRAFFIC WILL BE REMOVED FROM ALL REPAIRS 28 DAYS. TRAFFIC WILL BE REEMOVD FROM ALL REPAIRS
WITHN A TEST SECTION AND THE TIIE AND DURATION OF CLOSURE RECORDED AND REPORTED TO ERES.
8. Joint sealer shall meet the reouirements of suppleMENTAL SPECIFICATION BOI. CLASS III AND CLASS V. IN COST FOR THE ABOVE WILL BE INCLUDED IN THE UNIT PRICE
BID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND BID FOR ITEM 255 FULL DEPTH RIGGD PAVEMENT
RIGID REPLACEMENT, AS PER PLAN A, CLASS RSCZ.

THE LOCATIONS WHERE THIS TYPE OF JOINT REPAIR WILL BE UTILIZED ARE AS FOLLOWS:

AREA G				
station	SIDE	lane	SIze	so. yo.
$129+43$	WB	travelling	$6^{6} \times 12^{\prime}$	8
129+94	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$131+11$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
131+44	wB	traveling	$6^{\prime} \times 12^{\prime}$	8
132+67	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$133+42$	WB	travelling	$6^{\prime} \times 12^{\prime}$	8
$133+69$	WB	traveliing	$6^{\prime} \times 12^{\prime}$	8
$134+73$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$135+70$	wB	travelimg	$6^{\prime} \times 12^{\prime}$	8
136+63	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
totals Carried to general summary				80

BATCH WEIGHT							
Moterial. Cubic Yord Basis	RSPCI	RSCI	ves	RSPC2	RSC2	FTI	hes
Cement-10	710 (11)	750 (2)	960	610 (1)	650 (2)	710	810
Fine Aggregate-Ib	1400	1100	890	1400	1000	1400	1100
Coorse Aggregate-1b	1360	1700	. 1750	1700	1800	1360	1720
Woter. Reducer-oz/cwt	4.5	-	4.5	-	-	4.5	-
Accelerator-Gal (non-chloride)	-	-	5.1	-	-	-	6.0
Accelerator (CaCl) \% wt. of cement	-	-	1.75	-	-	-	-
High-Range Water Reducer-oz/cwt	-	-	18	-	-	-	14
Mox w/c Ratio	0.44	0.40	0.34	0.41	0.45	0.44	0.40

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repair Opening Time							
		$\underset{H R}{\prime}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\underset{H R}{6}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	26 $H R$
c	RSPCI	3	4		3				
D	RSCI	3	4		3				
E	ves		3	4		3			
F	RSPC2		3	4		3			
G	RSC2		3	4		3			
H	fs		3	4		3			
B	FTI						3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
AS PER PLAN A, CLASS FS
IN ADITTIN TO THE REQUREMENTS OF ITEMS 255 AND 499 THE
FOLLOWINS SHAL 1. PORTLAND CEMENT SHALL MEET THE REQUIREMENTS OF TOI.04
2. THIS MIX WILL BE USED FOR TEN (IO) JOINT REPAIRS AT the locatons shown on this sheet. the contractor WILL TIME HIS OPERATION SUCH THAT WHEN OPENED TO TRAFFIC, THE REPAIRS WILL BE OF THE AGE INDICATE
IN THE TABLE SHOWN AT RIGHT
3. representatives from construction technology lab OF SAYOY, ILLINOIS WILL BE ON THE SIIE DURIMG CONSTRUCTIOM CTL AND ERES WIL BE INSTALLING INSTRUMENTATION,
SAMPLING MATERIALS AND FIUING THE CNSTUCTO SAMPLING MATERIALS AND FILMING THE CONSTRUCTIO
PROCESS. THE CONTRACTOR WILL COOPERATE WITH CTL AND ERES.
4. once opened to traffic, the repairs shall remain UNDER TRAFFIC FOR A MINIUUM PERIID OF 28 DAYS. IT BECOMES NECESSARY TO CLOSE A TEST SECTION AFTER
28 DAYS. TRAFFIC WIL BE REMOVED FROM ALL REPAIRS 28 DAYS. TRAFFIC WILL BE REMOVED FROM ALL REPAIRS
WITHIN A TEST SECTION AND THE TIME ANO DURATION OF CLOSURE RECORDED AND REPORTED TO ERES.
5. Joint sealer shall meet the reauirements of supple LIENTL SPECIFICATION BOI, CLASS III AND CLASS V.
LIEU OF THE REOUIREMENTS OF 255.02 AND BP-I COST FOR THE ABOVE WILL BE INCLUDED IN THE UNIT PRIC ID FOR ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND GID PEPLACEMENT, AS PER PLAN A CLASS FS.

THE LOCATIONS WHERE THIS TYPE OF JOINT

AREA H				
Station	SIDE	Lane	SIIE	so. yo.
$144+25$	wB	traveluing	$6^{\prime} \times 12^{\prime}$	8
14464	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$145+04$	WB	traveluing	$6^{\prime} \times 12^{\prime}$	8
145+97	wB	travelling	6×12 !	8
$146+68$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$147+03$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$147+17$	WB	traveluing	$6^{6} \times 12^{\prime}$	8
$147+43$	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
$147+57$.	wB	travelling	$6^{\prime} \times 12^{\prime}$	8
147782	wB	traveluing	$6^{\prime} \times 12^{\prime}$	8
totals carried to general summary				80

AREA	CLASS	NUMBER OF REPAIRS FOR EACH OPENING TIME							
		Nominal Joint Repoir Opening Time							
		$\stackrel{1}{H R}$	$\begin{gathered} 3 \\ H R \end{gathered}$	$\begin{gathered} 5 \\ H R \end{gathered}$	$\stackrel{6}{6}$	$\begin{gathered} 8 \\ H R \end{gathered}$	$\begin{aligned} & 10 \\ & H R \end{aligned}$	$\begin{aligned} & 18 \\ & H R \end{aligned}$	$\begin{aligned} & 26 \\ & H R \end{aligned}$
c	RSPCI	3	4		3				
D	RSCI	3	4		3				
E	ves		3	4		3			
F	RSPC2		3	4		3			
6	RSC2		3	4		3			
H	FS		3	4		3			
B	FTI						3	4	3
A	HES						3	4	3

SHRP PAVEMENT REPAIR DETAILS

TRANSVERSE JOINT REPAIR
ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
AS PER PLAN A.
CLASS MSU

ITEM 255 FULL DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEMENT.
as PER PLAN a, CLASS MSU
in adoition to the reaurrenents of iteus 255 and 499. the following shall apply
f portlano ceuent shall meet the reouriehents of 70.04 .
this mix will be useo for ten (IO) jolnt repalifs at THE LOCATIONS SHOWN ON THIS SHEET.
 BE VARED AS SHONN IW THE TABE ON THIS SHEET. 100\%
IS THE AMOUT OF THE AOUITURE USED IN THE CLASS FS HIX ON THIS PROJECT (SEE SHEET 102.)
4. repressentatives frou michigan state university wil be on the site samplimg materalis durimg construction. THE CONTAACTOR WILL COOPERATE WITH THE REPRESENTatyes frou uichlgan state university.
5. Jont Seler shall uet the reuirewenc of supieOF THE REOUIREUNNTS OF 255.02 AND BPA-13.
Cost for the aboue will be icculoed in the unt price BID FOR ITEM 255 FUH DEPTH RIGID PAVEMENT REMOVAL AND RIGID REPLACEWENT. AS PER PLAN A., class MSU.

THE LOCATIONS WHERE THIS TYPE OF JOINT repair will be utilized are as follows

AREA 1					
Station	SIDE	Lane	SIZE	So. YD.	PERCENT AIR-ENTRAINING ADMIXTURE*
$148+66$	WB	traveluing	$6^{\prime} \times 12^{\prime}$	8	0
149+/4	WB	traveluing	$6^{\prime} \times 12^{\prime}$	8	0
$149+48$	พB	travelling	$6^{\prime} \times 12^{\prime}$	8	20
149+97	WB	travelling	$6^{\prime} \times 12^{\prime}$	8	20
150+28	WB	traveluing	$6^{6} \times 12^{\prime}$	8	40
150+76	we	travelling	$6^{\prime} \times 12^{\prime}$	8	40
151/ 11	we	travelling	$6^{\prime} \times 12^{\prime}$	8	60
152+14	wB	travelling	$6^{\prime} \times 12^{\prime}$	8	60
152+53	WB	traveluing	$6^{\prime} \times 12^{\prime}$	8	80
152+94	WB	travelling	$6^{\prime} \times 12^{\prime}$	8	80
totals carried to general summary				80	

expressed as a percentage of the total amount of admixture used in the Chas fs mix On This froject ISEE SHEET 102

RAMP "T"				
Station	$\begin{gathered} \text { LEFT EDGE } \\ \text { EDGE OF PAVEMENT } \end{gathered}$		© RAMP \& \& CONST. PROFILE GRADE	$\begin{aligned} & \text { RATE OF } \\ & \text { SUPERELEVATION } \end{aligned}$
	OFFSET (FT)	EXISTING ELEVATION	ExISTING elevation	(FT/FT)
$24+00$	12	655.66	655.16	0.042
$24+25$	12	655.72	655.19	0.044
$24+50$	12	655.78	655.22	0.047
PCC 24+55.14	16	656.01	655.23	0.049
$24+75$	16	656.14	655.26	0.055
$25+00$	16	656.32	655.31	0.063
$25+25$	16	656.49	655.38	0.069
$25+50$	16	656.61	655.47	0.071
$25+75$	16	656.71	655.57	0.071
$26+00$	16	656.78	655.69	0.068
$26+25$	16	656.79	655.83	0.060
$26+50$	16	656.76	655.98	0.049
$26+75$	16	656.74	656.14	0.038
$27+00$	16	656.73	656.30	0.027
$\triangle \quad 27+08$	16	656.73	656.35	0.024
$27+25$	16	656.77	656.46	0.019
27+41.18	16	656.83	656.56	0.017
$27+50$	16	656.87	656.62	0.016
- $27+59$	16	656.93	656.68	0.016
PT 2767.77			656.73	

\triangle - beGin full depth pavement replacement STA. $27+08$ ramp " T "

- end full depth pavement replacement Sta. $27+59$ ramp " 7 "

RAMP "H"				
Station	$\begin{gathered} \text { LEFT EDGE } \\ \text { EDGE OF PAVEMENT } \end{gathered}$		$\begin{aligned} & \text { RAMP \& \& CONST. } \\ & \text { PROFILE GRADE } \end{aligned}$	$\begin{gathered} \text { RATE OF } \\ \text { SUPERELEVATION } \end{gathered}$
	OFFSET (FT)	EXISTING	EXISTING	(FT/FT)
$167+00$	12	655.57	655.27	0.025
$167+25$	12	655.93	655.63	0.025
$166+50$	12	656.30	655.98	0.027
$166+75$	16	656.82	656.29	0.033
$168+00$	16	657.23	656.56	0.042
- $168+04$	16	657.29	656.60	0.043
$168+25$	16	657.59	656.79	0.050
$168+50$	16	657.91	656.98	0.058
PCC 168+65.48	16	658.08	657.07	0.063
$168+75$	16	658.19	657.13	0.066
$169+00$	16	658.44	657.24	0.075
$169+25$	16	658.61	657.31	0.081
$169+50$	16	658.67	657.34	0.083
$169+75$	16	658.66	657.33	0.083
$170+00$	16	658.61	657.28	0.083
$170+25$	16	658.52	657.19	0.083
$170+50$	16	658.35	657.06	0.081
170+75	16	658.03	656.89	0.071
$171+00$	16	657.63	656.68	0.059
PT $171+1.26$	16	657.40	656.55	0.053
$177+25$	16	657.19	656.43	0.048
$171+50$	16	656.71	656.14	0.036
$171+75$	16	656.19	655.81	0.024
- $171+84$	16	656.00	655.68	0.020
172+00	16	655.63	655.44	0.012
172+25	16	655.03	655.03	0.000
172+50	16	654.39	654.58	-0.012
172+75	16	653.73	654.11	-0.024
$173+00$	16	653.07	653.64	-0.036

- begin full depth pavement replacement sta. $168+04$ ramp "h"
- - begin full depth pavement replacement Sta. i68.04 Raw ""

CURB REMDVAL
 AND BERM REPLACEMENT

CURB		REMDVAL A		BERM		REPLACEMENT TABLE						
						ITEEM 202	ITEM 202	ITEM 202	ITEM 20	ITEM 452	ITEM 304	ITEM 516
		LOCATION	STATION TO	O STATION	SIDE							
R-1 \& R R-5	1198120	RAMP "R"	${ }_{\text {FROM }}^{\text {F }}$	T10		LIN.FT.	LIN.FT.	SO. YO.	CU. YO.	SO. YO.	CU. YO.	S0.FT.
${ }_{\text {R-1 }}$	120	RAMP "R"	21+50.06 \& S.R. 2	$\frac{21+50.06}{2+82.00}$ \& S.R. S.R. 2	${ }_{\text {LT. }}^{\text {LT. }}$	400.1 31.9						
R-1	120	RAMP "R"	$21+68.00$ RAMP " $\mathrm{R}^{\prime \prime}$	${ }_{2}{ }^{23+19.75 ~ R A M P ~}{ }^{\text {a }}$ " $\mathrm{R}^{\prime \prime}$	RT.		154.2		$\frac{3.2}{22.4}$	$\stackrel{7}{5.6}$	$\frac{1.3}{10.0}$	
R-2	120	RAMP "0"	$18+66.46$ RAMP "0"	$18+78 \pm$ RAMP " $0^{\prime \prime}$ "	${ }^{\text {RT }}$ T.							
R-2	120	RAMP "0"	18+78土 RAMP "0"	19+68.00 RAMP "00"	${ }_{\text {RTI }}$ RT.		$\stackrel{11.8}{92.4}$		2.1 15.8	5.1	0.5	
R-2	120	RAMP "0"	$19+68.00$ RAMP "0"	19+92.00 RAMP "0"	RIT.		${ }^{92.4}$		15.8 5.3	40.0 13.2	7.5 2.4	
R-2	120	RAMP "0"	$19+92.00$ RAMP " 0 "	20.65 RAMP "0"	RT.				13.9	31.7	6.0	
R-1	121	RAMP "V"	$36+40.00$ RAMP "V"	$37+53.00$ RAMP "V"	${ }_{\text {LT }}$.		114.4					
R-1	121	RAMP "V"	$37+53.00$ RAMP "V"	37+64.00 RAMP "V"	LT.		11.0	2.4	${ }^{0.8}$	3.7	${ }_{0} 0.4$	
R-1	$121 \& 122$	RAMP "V"	$37+33.00$ \& S.R. 2	$41+25.00$ \& S.R. 2	RT.	392.0						327
R-2	121	RAMP "T"	38+35.00 RAMP "T"	39+04.00 RAMP "T"	$\underline{L T}$.		71.5		12.8	31.8	6.0	
R-2	121	RAMP "T"	39+04.00 RAMP "T"	39+9It RAMP "T"	LT.		${ }^{89.9}$		${ }_{12.8}^{12.4}$	${ }^{38.9}$	$\frac{6.0}{7.3}$	
R-2	121	RAMP "T"	39+9İ RAMP "T"	$40+03.56$ RAMP "T"	LT.		12.3		1.7	4.3	1.0	
R-1 \& R-4	$124 \& 125$	RAMP " "Z"	$69+00.00$ \& S.R.	$72+81.00$ \& S.R.	LT.	381.0						
R-4	125	RAMP "Z"	72+81.00 RAMP	73+00.00 RAMP	RT.		19.0	4.2	1.4	6.3	1.2	318
R-4	125	RAMP "Z"	$73+00.00$ RAMP " z	73.97.00 RAMP "Z"	RT.		98.9		14.0	33.0	$\frac{1.2}{6.4}$	
R-5	126	RAMP "Y"	$87+00.00$ RAMP "Y"	$88+00.00 \mathrm{RAMP}$ "Y"	LT.		101.7			33.9		
R-5	126		88+00.00 RAMP "Y"	$88+20.38$ RAMP " Y "	LT.		20.7	4.6	1.5	$\frac{3.9}{}$	$\frac{6.6}{1.3}$	
$R-1 \& R-5$	126 \& 127	RAMP " γ "	$88+18.00$ \& S.R. 2	$92+00.00$ \& S.R. 2	RT.	382.0						319
$R-1$	134	RAMP "G"	164500.00 \& S.R. 2		${ }^{\text {LT. }}$	366.0						305
R-1	134	RAMP "G"	$168+14.50$ RAMP " $6^{\prime \prime}$	$168+50.00$ RAMP " $\mathrm{G}^{\prime \prime}$	RT.		36.5	8.1	2.7	12.2	2.4	305
R-1	134	RAMP "G"	168550.00 RAMP " $6^{\prime \prime}$	$169+16.00$ RAMP " $G^{\prime \prime}$	RT.		$\frac{37.5}{67.5}$		9.4	22.5	4.4	
TOTALS CARRIED TO GENERAL SUMMARY						1953.0	926.8	19.3	152.4	380.6	72.8	1630

PRDPDSED DVERPASS SHDLLDER TAPER*

BERM RESHAPING DETAIL
typical berm reshaping detall
FOR OVERPASSES APPLIES
West River Rood
Vermilion Rood
Vermilion Rood
Vermilion Interchonge Rood
Sunnyside Rood Sunnyside Rood
Clous Rood

NORMAL SECTION

superelevated section

CURB REMDVAL DETAILS

DIIIZ」 Existing Aspholt Berm

SECTION C-C
STA. $21+68.00$ RAMP " R " To STA. $23+19.75$ RAMP " R " $=154.21$ L.F.

CURB REMDVAL DETAILS

CURB REMロVAL DETAILS

PIER PRDTECTIDN DETAILS ロபTSIDE PIERS

BRIDGE NO．LOR－2－0IOT VERMILION RD．OVER S．R． 2

BRIDGE	TIEN 452 VARIABLE THICXUESS PLAIN $\operatorname{COCCEFEE}$ AVEMENT． AS PER PLAE	ITEM 304 AGGREGATE BASE as PER PLAN
	So．y D ．	cu．yo．
$\begin{aligned} & \text { LOR-2-0030 } \\ & \text { WEST RIVER RO. } \\ & \text { OVER S.R. } 2 \end{aligned}$	2.94	1
$\begin{aligned} & \text { LOR-2-0107 } \\ & \text { VERMILION RD. } \\ & \text { OVER S.R. } 2 \end{aligned}$	6.39	1
$\begin{aligned} & \text { LOR-2-0151 } \\ & \text { VERMMLION INT. RD. } \\ & \text { OER S.R. } 2 \end{aligned}$	20.00	3
$\begin{aligned} & \text { LOR-2-O223 } \\ & \text { SUNYYIDE RD. } \\ & \text { OVER S.R. } 2 \end{aligned}$	17.33	2.
$\begin{aligned} & \text { LOR-2-O262 } \\ & \text { CLAUS RD. } \\ & \text { OVER S.R. } \end{aligned}$	18.33	2
totals carried to general summary	64.99	9

blagte as per plan
BRIDGE NO．LOR－2－0151 VRMILION INT．RD．OVER S．R． 2

BRIDGE NO．LOR－2－0223 SUNNYSIDE RD．OVER S．R． 2

BRIDGE NO．LOR－2－0262 CLAUS RD．OVER S．R． 2

中 4.5^{\prime} FOR SUNYYIDE AND CLAUS RD，
NODEPASSES． 4.0^{\prime}
FOR VERMIIION UNDERPASSES．4．O＇FOR VERMII
INTERCHANGE RD．UNOERPASS

2．5 FOR SUNNYSIDE AND CLAUS RD UNDERPASSES，2．O＇FOR VERMMLIO
UTERCHANGE RDO UNDRPASS
note：
THESE QUAATTIIES ARE TO BE USED TO PAVE
THE AREAS EETWEEN THE EDGE OF SHOULDE
THE AREAS BETWEEN THE EDGE OF SHOULD
AND THE EDOE OF COOCRETE BARIIER AS ANO THE FOR THE ENTIR LENGTH OF BARIIER．
SHON SHEETS III THROUGH I ISA FOR BARRIE （SEE SHEET
LOCATIONS．）
votes
FOR BARRIER DETALLS NOT SHOWN
SEE STD．DWG．MC－9．2 AND GR－8 FOR GUARDRAML DETALLS NOT
SHOWN SEE STD．OWG．GR－2． SHOR SERU DETAAL N NOT SHOWN，
FER S．R． 2 TYPICAL SECTIONS．

PIER PRDTECTIDN DETAILS

NOTE: Use Type 5 Guordrail with $3^{3}-1 / 2^{\prime \prime}$ post spocing from $2.55^{\text {i }}$ in odvonce of piers
of piers. Include cost in Type 5 price

EXISTING PAVEMENT BUILロUP

UNDERDRAIN ロUTLET DETAILS

ITEM SPECIAL - PRECAST REINFORCED CONCRETE OUTLET

$\ldots 3 \times 3$ Mesh 16 gouge steel

NOTE: The sod shall be in accordance with Item 660 and staked at each corner
approximately 3 Inches in from the appro
edge.

OUTLET DETAILS

NOTE: For underdroin outlets into catch basins the obove Type F Conduit

ロRAINAGE DETAIL

CATCH BASIN NO. 4 \& 5, AS PER PLAN

BAR LOCATION DETAIL

CATCH BASIN No.	TOTAL * OF BARS FOR A	
	STD. APRON	SAG APRON
4	7	14
5	12	16

the furnishing and placing of steel for the $58^{\prime \prime} \times 12$ DOWEL BARS SHALL BE PER 509 REINFORCING STEEL. THE DOWEL BARS SHALL BE EPOXY COATED PER 509.10. THE DOWEL BARS SHALL BE INSTALLED PER $5 I O$ OR CAST INTO THE BASIN. BOLT IN INSERTS MAY BE USED. THE CATCH bASIN SHALL BE PRECAST OR CAST-IN-PLACE CONCRETE. BRICK OR CONCRETE BLOCK WILL NOT BE PERMITTED. THE 6" CONCRETE APRON SHALL BE REINFORCED PER 601.04(3.

NOTE: THE REQUIREMENTS OF ITEM 604 SHALL GOVERN THE REPLACEMENT OF THE EXISTING CATCH BASIN. THE WORK SHALL INCLUDE THE REMOVAL AND DISPOSAL OF THE EXISTING CATCH BASIN AND ITS subsequent replacement. the concrete APRON SHALL BE REPLACED AND BACKFILLED AS SHOWN HERE AND IN THE STANDARD CONSTRUCTION DRAWING CB-4 OR CB-5.

PAYMENT FOR THE ABOVE WORK SHALL BE INCLUDED IN THE UNIT BID PRICE FOR ITEM 604 CATCH BASIN, No. 4 OR 5, AS PER PLAN AND SHALL CONSTITUTE FULL COMPENSATION FOR FURNISHING ALL MATERIAL, LABOR, TOOLS, AND EQUIPMENT INCIDENTAL TO COMPLETE THIS ITEM OF WORK.

NOTE: THIS DETAIL SHALL BE USED
FOR NO. 4 OR NO. 5 CATCH BASINS, AS PER PLAN. FOR DETAILS NOT SHOWN SEE STANDARD CONSTRUCTION DRAWINGS CB-4 OR CB-5.

 to. $16+75$

TEM 202, WEARING COURSE REMOVED. TO BE REPLACED WIT
CONCRETE, AC-20

国

ITEM 202, WEARING COURSE REMOVED
goge

EARTHWORK AT PIERS SUB-SUMMARY				
$\begin{array}{\|c\|c\|} \text { SHEET } \\ \text { NO. } \end{array}$	Station to Station		excavation NOT INCLUDING embankuent construction	еmbankuent
	frour	T0	cu. ro.	${ }^{\text {cu. }}$ Yo.
157	$13+00$ \& S.R. 2	$14+00$ \& S.R. 2	16	161
${ }^{158}$	$\frac{1440 \text { \& S.R. } 2}{14+50 \text { S. } 2}$	$\frac{16+00 ¢ ~ ¢ ~ S . R . ~}{2}$	24 27	117
150	55+90 \& S.R. 2	$57+00$ \& S.R. 2	10	3
161	$77+00$ \& S.R. 2	$78+50$ \& S.R. 2	3	233
162	$79+00$ Q S.R. 2	$80+50$ \& S.R. 2	20	100
163	8100 Q S.R. 2	$83+00$ \& S.R. 2	14	196
164		${ }^{116+50 ¢ S . R .2}$	$\stackrel{42}{77}$	${ }_{4}^{206}$
166	$119+00$ \& S.R. 2	$120+50$ Q S.R. 2	14	148
167	$136+00$ \& S.R. 2	$137+50$ Q S.R. 2	10	195
168	$138+00$ Q S.R. 2	$139+50$ \& S.R. 2	29	84
169	$140+00$ Q S.R. 2	$141+50$ \& S.R. 2	$\stackrel{8}{2}$	142
170	$172+00$ \& S.R. 2		$\stackrel{22}{15}$	171
	$1 s$ Corried to 6	meral Summory	331	2054

$$
a^{-3}
$$

aut fut ory

TRAFFIC CONTRDL SUMMARY

SIGN SUB-SUMMARY

REF.	$\begin{gathered} \text { SHEET } \\ \text { No. } \end{gathered}$	Station	SIDE	CODE	LEVEL	SIzE	$\begin{gathered} \text { Signs } \\ \text { Flot Sheet } \\ \text { Type } 6 . \end{gathered}$	$\begin{gathered} \text { Signs } \\ \text { Extrusheet } \\ \text { Type G. } \end{gathered}$	Removol of Ground Mounted Sign \& Disposol	Renouvol of Ground Hounted Hoior Sign Mojor sigon \& Disposel	Removal of Overheod Uounted Sign \& Disposol	Removol of Post Support \& Disposol					Ground Mounted Support No. 3 Post	Ground Mounted Support No. 4 Pos	$\begin{aligned} & \text { One-Woy } \\ & \text { SSopn } \\ & \text { Support } \\ & \text { No. } 3 \text { Post } \end{aligned}$	Ground Mounfor Suporf Sit BEAM .7				Conorerete Emborddod Foundation	
Is	${ }^{178}$	$1830+00$	Lt.				S.F.	S.F.	Eoch	Each	Eoch	Eoch	Eooh	Eoch	Each	Lin.FT.	Lin.F. F.	Lin.Ft.	Lin.FF.	Lin.FT.	Lin.ft.	Lin.Ft.	Lin.Ft.	CuYd.	Eoch
35	${ }^{178}$	0+00	${ }_{\text {Rt. }}^{\text {Rt. }}$	${ }^{6 P}$	III	$96^{\prime \prime} \times 60^{\prime \prime \prime}$		40.0		1		2									19-20			0.66	2
45	${ }^{178}$	0+00	Rt.	N-41-12		$12^{\prime \prime} \times 24^{\prime \prime}$	2.0		1			1				11									
5S 65 65	178	$\stackrel{\text { O+00 }}{\text { U-Turn }}$	Lt.	${ }_{\text {6 }}^{6 P-19-24}$		$\frac{96^{\prime \prime} \times 60^{\prime \prime}}{} 2^{44^{\prime \prime}} \times 30^{\prime \prime}$		40.0		1		2									19.5-19			0.66	2
75		Medion		$\frac{\text { R-123-36 }}{\text { R-12 }}$		$\frac{24}{36^{\prime \prime}} \times 36^{\prime \prime}$	${ }_{9.0}^{5.0}$		1			1						14							
${ }^{85}$	178	Opening At	Center	$\frac{R-123-36}{}$		$\frac{366^{\prime \prime}}{}{ }^{\prime \prime} \times 36^{\prime \prime}{ }^{\prime \prime} \times 30^{\prime \prime}$	9.0		1			1													
9S 105	178	${ }_{\text {Sto, }}+5000$	Lt.	$\frac{R-19-24}{6 B}$	I	$\frac{24^{\prime \prime} \times 30^{\prime \prime}}{156^{\prime \prime} \times 144^{\prime \prime}}$	5.0					1						14							
-11s	178	${ }^{12+50}$	$\stackrel{L}{\text { Rt. }}$	${ }_{\text {RA-2 }}$	1	132" $\times 60^{\prime \prime}$		${ }_{55.0}^{15.0}$		1		3										19.5-20	28.5-27.5	$\stackrel{2.46}{2.20}$	$\stackrel{2}{2}$
${ }^{125}$	179	${ }^{22+50}$ Romp " $0^{\prime \prime}$	Rt.	N-84-48		$48^{\prime \prime} \times 36^{\prime \prime}$	12.0		1			2						"							
${ }^{135}$	179	23+00 Romp "R"	Lt.	R-2-48		$48^{\prime \prime} \times 48^{\prime \prime} \times 48^{\prime \prime}$	6.0			1		1				14-14									
${ }^{145}$	179	$23+00$	Lt.	W-49R-48		${ }^{48^{\prime \prime} \times 48^{\prime \prime}}$	16.0			1							14-14								
${ }^{155}$	179	$21+10$	Rt.	RA-4		${ }^{72^{\prime \prime}} \times 66^{\prime \prime \prime}{ }^{\prime \prime}$		33.0	1			3								17.5-17.5				0.54	
${ }^{165}$	179	Sign Assembly	Rt.	N-61-24		${ }^{24^{\prime \prime}} \times 24^{\prime \prime}$	4.0													77.5-17.5				0.54	2
175 185 18	179	$\frac{25+00}{29+00}$	$\stackrel{R}{R t .}$		I			I19.0		1												21.5-22.5		2.20	2
$\begin{array}{r}195 \\ \hline 195 \\ \hline\end{array}$	179		$\stackrel{\text { Rt. }}{\text { Rt. }}$	R-2-48		$48^{\prime \prime} \times 48^{\prime \prime} \times 48^{\prime \prime}$	6.0		1	1		1	2			13.5-13.5									
205	179	36+75 Romp "T"	$\stackrel{L}{\text { L }}$.	N-84-48		${ }^{48^{\prime \prime}} \times 3{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$	12.0		1			2						11							
$21 / 5$	179	$\xrightarrow{37+00}$	Rt.	W-49R-48		${ }^{48^{\prime \prime} \times 48^{\prime \prime}}{ }^{\prime \prime} \times 66^{\prime \prime} \times{ }^{\prime \prime}$	16.0		1								14.5-14.5								
$\begin{array}{r}225 \\ \hline 235 \\ \hline\end{array}$	180	${ }_{\text {Sign Assembly }}$	$\stackrel{L}{ }$.	$\frac{R A-4}{N-66-24}$			4.0	33.0	1			3								17.5-17.5				0.54	2
245	180	$45+85$	Rt.	6 B	1	$168^{\prime \prime} \times 102^{\prime \prime}$		119.0															23-24.5	${ }^{2.46}$	
${ }^{255}$				$x-6 L$		$12^{\prime \prime} \times 36^{\prime \prime}{ }^{\prime \prime}$	3.0		1			1				10.5									
${ }^{265}$	180	51\%05	Lt.	$x-6 R$		${ }^{12^{\prime \prime} \times 33^{\prime \prime}}$	3.0		1			1				10.5									
275 285 285	180	49+80	Lt.	$\frac{\text { RA-2 }}{\text { GSF-I-24 }}$		$\frac{132^{\prime \prime} \times 60^{\prime \prime}}{24^{\prime \prime} \times 72^{\prime \prime}}$		55.0		1		3										24.5-21.5		2.20	
${ }^{295}$		Sign Assembly		N-61-24		$24^{\prime \prime} \times 2{ }^{44^{\prime \prime}}$	4.0		1																
$\frac{305}{315}$	180	51+00	$\stackrel{R t}{\text { Rt }}$		III	$108^{\prime \prime} \times 42^{\prime \prime}$		31.5		1		2									18.5-20			0.66	
-325	180	$\frac{56+05}{56+05}$	$\frac{\text { Rt. }}{\text { Lt. }}$	$\frac{N-4 l-12}{N-41-12}$		$\frac{12^{\prime \prime} \times 24^{\prime \prime}}{12^{\prime \prime}} \times 24^{\prime \prime}$	$\stackrel{2.0}{2.0}$		1			1				"I									
${ }^{335}$	180	$56+05$	Lt.	$\frac{x-6 R}{}$		$\frac{12^{\prime \prime}}{} \times 33^{\prime \prime}$	3.0		1			1				10.5									
345 355				$\frac{X-6 L}{}$		$\frac{12^{\prime \prime} \times 36^{\prime \prime}}{36^{\prime \prime}} \times 18^{\prime \prime}$	3.0		1			1				10.5									
${ }^{365}$	180	${ }_{\text {Sign Assembly }}$	$\stackrel{L}{ }$.	$\frac{}{M-40-36}$		$\frac{36^{\prime \prime} \times 18^{\prime \prime}}{36^{\prime \prime}} \times 36^{\prime \prime}$	4.5 9.0		1			1					15-15								
375	180	$64+50$	Rt.		1	$\frac{168^{\prime \prime}}{} \times 102^{\prime \prime}$		119.0		1															
385 395	181	$\begin{array}{\|l\|} \hline 72+50 \\ \text { Sign Assembly } \end{array}$	Rt.	$\frac{R-142-36}{6 F}$			9.0		1			2									19-19			0.66	2
405	181	$77+50$ Ramp "x"		- ${ }^{\text {D }}$ - 4 A	IV			24.0	1																
	18		\ldots.	D-4B	IV	$144^{\prime \prime} \times 48^{\prime \prime}$		48.0		1		了										20.5-21		2.20	2
415	181	$27+40$ ver.Int.Rd.	Lt.	${ }_{\text {CH }}{ }_{\text {R }}$	III	$\frac{96^{\prime \prime} \times 78^{\prime \prime}}{132^{\prime \prime} \times 54^{\prime \prime}}$		52.0 49.5		1	1	2										23.5-22		2.20	
	181	Lor-2-0151	Lt.	$\frac{\text { RA-I }}{6 S F-1-24}$							1			1	1										
445	181	83+00 Romp "W"	Lt.	$\frac{D-4 A}{\text { D-4B }}$	$\stackrel{\text { IV }}{\text { IV }}$			24.0 48.0	1			3										21.5-20		0.66	2
455		22+50 Ver.Int.Rd.		6H	III	108 $108^{\prime \prime \prime} \times 78^{\prime \prime}$		58.5		1															
465	181	$22+50$ ver.Int.Ro.	${ }_{\text {rf. }}$	GH	III	$108^{\prime \prime} \times 78^{\prime \prime}$		58.5		1		2										22-23.5		2.20	
475 485	181	${ }_{\text {dign }}^{\text {8ssembly }}$	Lt.	$\frac{6 F}{\text { R-142-36 }}$			9.0	30.0	1			2								18.5-18.5				0.54	2
495	181	$96+25$	Lt.		I	168"* $102^{\prime \prime}$		19.0		1															
505	182	75+25	Rt.	W-2-36-2		36" ${ }^{\prime \prime} \times 36^{\prime \prime \prime}$	9.0		1			1													
515	182	74900	$\stackrel{L t}{\text { Lt }}$	W-49R-48		$\frac{43^{\prime \prime}}{46^{\prime \prime} \times 48^{\prime \prime \prime}}$	16.0		1			1						14.5-14.5							
525	182		$\stackrel{L T}{L T}$	R-15A-36		$36^{\prime \prime} \times 36^{\prime \prime}$	9.0		1			1					12.5								
535	182	$27+40$ Ver. Int. Rd ${ }^{\text {d }}$	Rt.	R-42-SPEC.		${ }^{42^{\prime \prime}} \times 66^{\prime \prime \prime} \times 1{ }^{\prime \prime}$	17.5																		
545	182	80+25 Romp "W" Sign Assembly	Lt.	$\frac{R-418-36}{R-1-48}$		年 $36^{\prime \prime} \times 36^{\prime \prime} \times 48^{\prime \prime}$	$\frac{9.0}{16.0}$		1			1					14-14								
${ }_{565} 5$		Sign Assembly				${ }^{48^{\prime \prime} \times 18^{\prime \prime}}$	${ }_{6} 6.0$		1																
$\begin{aligned} & 57 \mathrm{~S} \\ & 58 \mathrm{~S} \end{aligned}$	182	80+50 Ramp "W"	Rt.	$\frac{R}{\text { R-418-36 }}$			9.0 6.0		I			1					16		17						
59S	182	${ }^{83}+00$ Romp "W"	${ }_{\text {Lt }}$.	R-4/A-36		${ }^{46^{\prime \prime} \times 24^{\prime \prime}}$	$\frac{6.0}{6.0}$		1			1													
			Rt.	R-41A-36		${ }^{36^{\prime \prime}} \times 22^{\prime \prime}$	6.0		I			1					13								
60 S	182	77+50 Romp "X"	$\stackrel{L t}{\text { Rt. }}$	$R-44 A-36$ $R-4 / 4-36$		$\frac{366^{\prime \prime}}{36^{\prime \prime}} \times 22^{\prime \prime} 4^{\prime \prime}$	6.0 6.0		I			1				12.5-12.5									
	totals carried to traffic control general summary						279.0	1342	38	16	1	59	3	1	1	155	156.5	92	17	107	154	303.5	103.5	23.04	22

															630												
$\begin{gathered} \text { REF. } \\ \text { No. } \end{gathered}$	SHEET	Station	SIDE	CODE	LEVEL	SIZE	$\begin{array}{\|c\|} \hline \text { Signs } \\ \text { Flot Sheet } \\ \text { Type } 6 . \\ \hline \end{array}$	$\begin{gathered} \text { Signs } \\ \text { Extrusheet } \\ \text { Type G. } \end{gathered}$	Removal of Ground Mounted Sign \& Disposel	$\begin{array}{\|c\|} \text { Removol of } \\ \text { Ground Mounted } \\ \text { Mojor Sign } \\ \& \end{array}$	Removol of Overheod Mounted Sign \& Disposal$\|$	$\begin{array}{\|l\|} \text { Removol of } \\ \text { Ground Muouted } \\ \text { Poost Sunotr } \\ \text { PDisposort } \end{array}$	$\left\|\begin{array}{c}\text { Removal of } \\ \text { Ground } \\ \text { Beom Hunted } \\ \text { Beo Mispoport } \\ \text { Disposil }\end{array}\right\|$			Ground Support No. 2 Post		$\left\|\begin{array}{l\|l\|} \hline \text { Ground } \\ \text { Mounted } \\ \text { Support } \\ \text { No. } 4 \text { Post } \end{array}\right\|$		Ground Supfor Suport Si.7 BEAM				$\begin{aligned} & \text { Conorerete } \\ & \text { Emborded } \\ & \text { Foundotion } \end{aligned}$		Signs wired	Removal of \& \& R Re-erection
							S.F.	S.F.	Eoch	Eoch	Eoch	Eoch	Eoch	Eoch	Each	Lin.F.	Lin.F.	Lin.Ft.	Lin.ft.	Lin.ft.	Lin.Ft.	Lin.ft.	Lin.Ft.	CuYd.	Eoch	Eoch	Each
$\frac{61 / 5}{625}$	182	79+50 Ramp "X"	Lt.	$\frac{R-43 L-48}{R-4 l B-36}$		$\frac{48^{\prime \prime}}{36^{\prime \prime} 18^{\prime \prime}} \times 16^{\prime \prime}$	$\stackrel{6.93}{9.0}$		1			1					15.5		16.5								
635		Sign Assembly		R-43R-48		$48^{\prime \prime} \times 18^{\prime \prime}$	6.93		1																		
$\frac{645}{655}$	182	79+63 Romp "X"	${ }^{\text {Rt. }}$	$\frac{R-1-48}{R-418-36}$			16.0 9.0		1			1					14-14										
		${ }^{21+55}$ Verr. Int. Rd.	Lt.	R-42-Spec.		462" $4{ }^{\prime \prime}$	17.5										14.5-14.5										
665	182	$79+76$ Romp "X"	Rt.						1			1															
675	182	87+00	Rt.	W-49R-48		${ }^{48^{\prime \prime \prime} \times 48^{\prime \prime}}$	16.0		1			1						16-16									
685	182	${ }^{80+70}$ Romp "Y"	${ }_{\text {R }}^{\text {Rt. }}$	${ }_{\text {R }} \mathrm{R}-154-36$		$3^{36^{\prime \prime \prime}} \times 3{ }^{\text {a }}$	9.0		1			1					${ }^{12.5}$										
6995	182	${ }^{85+50}$ Ramp "W"	$\stackrel{L}{\text { Lt }}$ Lt.	W-45-48		$\frac{48^{\prime \prime \prime} \times 48^{\prime \prime}}{36^{\prime \prime} \times 36^{\prime \prime}}$	16.0 9.0		I			- 1					${ }^{13.5-13.5}$										
705 715 7	${ }_{183}^{183}$	$86+00$ $105+79$	$\stackrel{L t}{\text { Lt }}$	${ }_{\text {W-2-36-2 }}^{N-4 l-12}$		$\frac{36^{\prime \prime}}{} \times 33^{\prime \prime}{ }^{\prime \prime} \times 24^{\prime \prime}$	9.0 2.0		I			1				"	12.5										
725	183	10579	Lt.	N-41-12		$11^{\prime \prime \prime} \times 24^{\prime \prime}$	2.0		1			1				11											
735	183	108+50	Rt.	M-2-36-2		$36^{\prime \prime} \times 36^{\prime \prime}$	9.0		1			1					15-15										
7745		Sign Assembly	Rt	M-39-36		${ }^{36^{\prime \prime} \times 18^{\prime \prime}}{ }^{204^{\prime \prime} \times 7^{\prime \prime}}$	4.5		1								15-15										
775	183	$\frac{20 r-2-0333}{18+50}$	$\stackrel{\text { Rt. }}{\text { Lt. }}$	${ }_{68}^{68}$	I	$\frac{204^{\prime \prime} \times 72^{\prime \prime}}{168^{\prime \prime} \times 102^{\prime \prime}}$		110.0			1			1	1							25-23.5		2.20			
		U-Turn		${ }_{\text {R-19-24 }}$		$\frac{24^{\prime \prime}}{} \times 3$ 30"	5.0		1																		
${ }_{7}^{785}$	183	Medion	Center	$\frac{R-123-36}{R-123-36}$		$\frac{36^{\prime \prime \prime} \times 36^{\prime \prime}}{36^{\prime \prime} \times 3^{\prime \prime}}$	9.0		1			1						14.5									
$\begin{aligned} & 795 \\ & 805 \end{aligned}$				$\frac{R-123-36}{R-19-24}$		$\frac{36^{\prime \prime} \times 36^{\prime \prime}}{24^{\prime \prime} \times 30^{\prime \prime}}$	$\frac{9.0}{5.0}$		1			1						14.5									
815	183	$127+00$	Lt.							1			2														
825	183	127+00	Rt.	R-10-48		$48^{\prime \prime} \times 60^{\prime \prime}$	20.0		1			2						16.5-16.5									
835	184	${ }^{1359+00}$	$\stackrel{L \text { L. }}{\text { Lt }}$	R-10-48		$48^{\prime \prime} \times 60^{\prime \prime}$	20.0											16.5-16.5									
${ }^{845}$	184	$139+00$		$6 A^{\prime}$	1	$180^{\prime \prime} \times 72^{\prime \prime}$		90.0	1	1		$\frac{2}{3}$									20.5-22			2.20			
855	184	$140+00$	Lt.	$6{ }^{6}$	I	$168^{\prime \prime} \times 102^{\prime \prime}$		119.0															25.5-24.5	2.46	2		
865	184	$145+00$	Rt.	68	1	$204^{\prime \prime} \times 72^{\prime \prime}$		102.0														21.5-23		2.20	2		
8785	184	$148+00$ Sigo Assembly	Lt.	$\frac{M-40-36}{M-2-36-2}$			4.5 9.0		1			1					15-15										
895	184		Lt.	N-41-12		112" $\times 2{ }^{\prime \prime}$	2.0		I			1				II											
905	184	$158+84$	Rt.	N-41-12		$12^{\prime \prime \prime} \times 24^{\prime \prime}$	2.0		1			1				II											
915	184	159+50	Rt.	GE	I	$204^{\prime \prime} \times 72^{\prime \prime}$		102.0		1																	
925	185	$168+15$	Rt.	GF		720"x ${ }^{10^{\prime \prime}}$		30.0	1			2								17-17				0.54	2		
935	185	${ }_{\text {Lor-2-0333 }}$	Lt.	${ }_{6}^{6 H}$				78.0 72.0			1			1	1											1	$\stackrel{2}{1}$
${ }^{9955}$	185	$210+50$ Boumhort Rd.	Rt.	$\frac{6 H}{6 H}$	$\frac{I I}{I I}$			72.0 72.0			1															1	1
965				D-4E	IV	$120^{\prime \prime} \times 3{ }^{\prime \prime}$		30.0	1																		
975	185	Sign Assembly	Rt.	D-4B	IV	$120^{\prime \prime} \times 48^{\prime \prime}$		40.0		1		2									2-22.5			2.20	2		
985 98	185	${ }^{178+00}$ Romp "A"	$\stackrel{L}{\text { L }}$.	${ }^{\text {6 }}$-4E	$\stackrel{I I I}{I N}$			31.5 30.0	1			2								17.0-16.0				0.54			
100s	185	Sign Assembly	${ }_{\text {R }}$ t.	${ }^{\text {D-4E }}$	IV	12001 ${ }^{\prime \prime} \times 48^{\prime \prime \prime}$		40.0		1		3									23-21			2.20	2		
1015	185	$185+50$	Lt.	$6 F$				30.0	1			2								17.5-17.5				0.54	2		
$\frac{1025}{1035}$	185	${ }_{\text {2 }}^{204+85 \text { Boumbort }}$ Rd.	Rt.	$\frac{6 H}{6 H}$	$\frac{I I}{I I}$	(132" ${ }^{136^{\prime \prime}}$		88.0 88.0			!															I	1
1045	185	Lor-2-0333	Rt.	6H	II	$132^{\prime \prime} \times 72^{\prime \prime}$		66.0			1			1	1											1	1
105s	186	$170+00$	Rt.	M-2-36-2		36 $36^{\prime \prime} \times 36^{\prime \prime}$	9.0		1			1					12.5										
1065	186	175+65	Rt.	$\frac{x-6 L}{x-6 R}$			3.0 3.0		1			I				10.5 10.5											
totals carried to traffic control general summary							233.36	1329.5	32	5	7	37	2	3	3	65	197	127	16.5	102	130	93	50	15.08	12	6	7

PAVEMENT MARKING SUB-SUMMARY

mainline pavement marking				642
$\left\lvert\, \begin{gathered} \text { SHEET } \\ \text { NO. } \end{gathered}\right.$	$\begin{gathered} \text { REF. } \\ \text { No. } \end{gathered}$	station to station	SIDE	Lone Lines
				MILE
178	L-1	STA. 1827 +50 TO STA. $20+00$	$\stackrel{L t}{\text { Lt }}$	${ }^{0.583}$
178	${ }_{\text {L-2 }}^{1-3}$	STA. $1827+50$ TO STA. $20+00$	$\stackrel{\text { Lt. }}{\text { Lt }}$	0.061
178	L-4	STA. $15+66$ TO STA. $17+82$	Rt.	0.041
179	L-5	STA. $20+00$ TO STA. $40+00$	Lt.	0.379
179	L-6	STA. $20+00$ TO STA. $40+00$	Rt.	0.379
180	${ }_{\text {L-7 }}^{\text {L-8 }}$	STA. $43+24$ TO STA. $45+24$	$\stackrel{L T}{\text { Lt. }}$	
180	$\frac{L-8}{L-9}$	STA. $44+67$ TO STA. $47+02$	$\stackrel{\text { Rt. }}{\text { Lt. }}$	0.045
180	${ }_{\text {L-10 }}$	STA. $40+00$ TO STA. $70+00$	Lt.	0.568
180	L-11	STA. $40+00$ TO STA. $70+00$	Rt.	0.568
180	L-12	STA. $66+75$ TO STA. $68+60$	Rt.	0.035
181	L-13	STA. $70+00$ TO STA. $101+00$	Lt.	0.587
181	$L_{\text {L-14 }}^{\text {L-15 }}$	STA. $70+00$ TO STA. $101+00$	$\stackrel{\text { Rt. }}{\text { Lt. }}$	0.587
$\frac{181}{181}$	L-15	STA. 91+00 TO STA, 92+85	$\stackrel{L t}{\text { Lt. }}$	
181	L-16	STA. $94+37$ TO STA. $97+37$	Rt.	0.057
183	${ }_{\text {L-18 }}^{L-18}$	STA. $101+00$ To STA. 1 ITI+00	$\frac{L t}{\text { Rt. }}$	${ }_{0}^{0.5668}$
184	$L_{\text {L-19 }}$	STA. $131+00$ TO STA. $161+00$	${ }_{\text {Lt }}$.	0.568
184	L-20	STA. $131+00$ TO STA. $1611+00$	Rt.	0.568
184	L-21	STA. $158+46$ TO STA. $161+00$	$\stackrel{L}{\text { Lt }}$	0.048
185	L-22	STA. $161+00$ TO STA. $162+16$	Lt.	0.022
185	L-23	STA. $161+00$ TO STA. $185+50$	${ }_{\text {Lt }}$ t.	0.465
185 185	L-24	STA. 161100 TO STA. $185+50$	Rt.	0.465
185	L-25	STA. 162+87 TO STA. $164+87$	Rt.	0.038
totals carried to traffic control general summary				7.91

SIDE ROADS PAVEMENT MARKING		642	
station to station	SIDE	$\begin{aligned} & \text { Edge line. } \\ & \text { whito } \end{aligned}$	Center Line, Double Solid
		MILE	MILE
Vermilion Interchonge			
22+41 to $27+46$	Rt.	0.096	
$22+67$ to 27+46	$\stackrel{\text { Lt. }}{\text { coiter }}$	0.091	
$23+21$ to $27+46$	Center		. 080
Sunnyside Rood			
$23+20$ to $26+80$	LT.	0.068	
$23+20$ to $26+80$	$\stackrel{\text { Rt. }}{\text { Ret }}$	0.068	
$23+20$ to $26+80$	Center		0.068
Claus Rood			
$23+18$ to $26+79$	$\stackrel{L T}{\text { Let. }}$	0.068	
$23+20$ to $26+80$	Center		0.068
$23+21$ to $26+82$	Rd.	0.068	
Vermilion Road			
$21+50$ to $28+50$	${ }_{\text {Lt }} \mathrm{t}$.	. 133	
$23+12$ to $26+88$	Center		. 071
$21+50$ to $28+50$	Rt.	133	
W. River Rood			
$19+75$ to $29+24$	Lt.	.178	
$\frac{23+03 \text { to } 27+14}{19+75}$	$\xrightarrow{\text { Center }}$ Rt.		. 078
$19+75$ to $29+12$		1.081	
totals		1.081	0.365

PAVEMENT MARKING SUB-SUMMARY

TRAFFIC CDNTRDL

TRAFFIC CロNTRロL

SR-2 Sta.51+00, Rt.

VERMILION INTERCHANGE RD. Sto.27+40, Lt.

RAMP-W Sta.83+00, Lt.

VERMILION INTERCHANGE RD. Sta.22+50, Rt.

SR-2 Sto./I8+50, Lt.

SR-2 Sta. $138+00, R t$.

SR-2 Sta.145+00, Rt.
wexis beau suppoots

S4x7, beal suppoats
SR-2 Sto. $178+00, L t$.

0

BAUMHART RD. Sta. $218+00$,

SR-2 Sta.168+15, Rt.

SR-2 Sta.185+85, Lt.

NOTES:

ERIE COUNTY

OHIO
HHMA

tem special - epoxy injection

no. Lor re-2-024ablation of the single cell box culvert, bridge A. description

THE WORK CONSISTS OF THE REPAIR OF CONCRETE JOINTS AND
CRACKS BY THE INUECTION OF EPOXY RESIN ADHESIVES.

$$
\begin{aligned}
& \text { BY THESE NOTES. } \\
& \text { IT IS NOT REOUIR }
\end{aligned}
$$

 THE ACTUAL OUANTITY OF REPRAIR WORK WILL BE DETERMINED BY
THE ENGINEER IN THE FIELD.
. certificates of complance
B. CERTIFICATES OF COMPLIANCE
THE CONTRACTOR SHAL FURISH GERT FIIATES REQUIRED FOR
DEMOSTRATING PROOF OF COMPLIANCE IN TRIPLICATE.

 EEARS.
c. hethod of weasurement

THE OUANTTY OF CRACK REPAIR BY EPOXY ADHESIVE INJECTION SHALL
BE HEASRED
AND ACCEPED LINEAL FOOT OF CRACK INECTED. COMPLETED.
D. basis of payment

SHALL BE INC.UDED IN THE COST OF THE REPAIR OF THE CRACK
WIHCH THEY ARE A PART
PAYMENT WILL BE MADE AT THE CONTRACT PRICE BID FOR:

$$
\begin{array}{lll}
\text { ITEM } & \text { UNIT } & \text { DESCRIPIION } \\
\text { SPECIAL } & \text { LIN. FT. } & \text { EPOXY INJECTION }
\end{array}
$$

TEM 519 - PATCHING STRUCTURES, AS PER PLAN

TEM 519 - PAT

3. basis of payment at the contract price bid for:
${ }_{5 / 9}{ }_{5 \times M}$

$$
\begin{array}{ll}
\text { UNIT } & \begin{array}{l}
\text { DESCRIPTION } \\
\text { PATHING CONCRETE STRUCTURES. } \\
\text { AS PER PLAN }
\end{array} \\
\text { SO. FT. }
\end{array}
$$

AS PER PLAN
item special - patching concrete structures with trowelable mortar
A. DESCRIPTION

THIS ITEM CONSIITS O OTHE REMOOLAL OF ALL LOOSE AND DISIN-
TEGATED CONCETE. PREPARATION OF THE SURFACE, AND THE
 AS DRECTED BY THE ELANS AND
TORITY WIH THE AND RECOMMENDATIONS
TOUS

c. renoval of concrete

THE ENGINER SHALL SOUND THE STRUCTURE ANO OUTLINE THE

 CHIPPING HAMMERS
35-POUND CLASS.
d. Surface preparation CLEANIG SHALL PRECEDE APPLICATION OF THE PATCHING MATERIAL
BY NOT MORE THN 24
HOUS
THE SURACE TO
QE PATCHD

 E. CURING

PAFCHES SHAL BE CURED IN ACCOROANCE WITH THE MANUFACTURER's
RECOMMENDATIONS F. protection

OUING SANBBLASTING, CLEANING AND PATCHING OPERATIONS ADJA-
CENT AND NEAABY STRUCTURAL STEEL, INCLUDING DRAINAGE ITEMS,

G. method of measurement

h. basis of payuent

payuent will be made at the contract price bid for 0

ESTIMATED OUANTITIES			
ITEM	UNIT	OUANTITY	DESCRIPTION
SPECIAL	LIN FT	190	EPOXY INJECTION
519	SO FT	125	PATCHING CONCRETE STRUCTURES. AS PER PLAN
spectal	SO FT	60	PATCHING CONCRETE STRUCTURES wITH TROWELABLE MORTAR

Soll

STRUCTURE GENERAL NDTES \& GENERAL SUMMARY

TTEM 607 - FENCE, TYPE CL TPV WITH 6" FABRIC WIDTH REMOVE A 2 INCH BY 2 INCH BLOCK OF ADOITIONAL CONCRETE AT
FEECE SUPPORT LOCATIONS TO PRESET THE ANCHORS. THE LENGTH
 5 OF 5. FENCE DETATIS.

(1)

ITEM 625 - CONDUIT, 2 INCH, 713.04, AS PER PLAN THE EXISTING CONDUIT SHALL BE REPLACED IN THE PARAPET

 DETAIL BELOW. THE LENGTH OF CONDUIT NEEDDD IS FROM THE
DETALL SHOW WHICH MAY VARY BASED ON THE ORIGINAL CONSTRUCTION OF THE WIGGWALL.
THE COST OF ALL LABOR, EQUIPMENT, INCIDENTALS AND MATERIALS
NEEDED SALL BE IICLUDEDIN THE UNI PRICE BID FOR THE
ITEM 625 CONUT th Co 2 INCH IJ.O4, As PER PLAM.
ITEM SPECIAL - REMOVAL OF EXISTING CONDUIT THE EXISTING CONDUIT SHALL BE CUT AT THE LIIITTS OF THE
REMOVAL IN SUCH A WAY THAT THE PROPOSED CONDUI BE CONNECTED TO THAY THAT THE PROPOSED CONDUIT CAN
the existing conduit in the removal apea is either pioid
 FOLLOWING PROCEDURES SHALL BE FOLLOWED FOR THE REMOVAL
OF THE ASBESTOS-CEMENT CONDUIT. THE CONTRACTOR SHAL
 REMOVAL ACLOROING TO OHIO EPA REGULATIONS. THE CONTRACTOR
SHAL NOTIFY OHIO EPA IF CONDITIONS PREVAIL THAT ARE IN SHALL NOTIFY OHIO EPA IF CONDITIIONS PREVAIL THAT ARE IN.
CONLIIT OF AIR POLLTIONHARAROUS MATERIAL REGULATIONS
1926.58 A3. ALL ASBESTOS-CEAENT CONDUIT REMOVED SHALL 1926.58 AS. ALL ASBESTOS-CEMENT CONDUIT REMOVED SHALL
BE DSPOSED OF IN ACORDNCE WIT OHIO EPA OFF STE
BY THE CONTRACTOR. THE BITUHINIZED FIBER CONDUIT SHAL BE DISPOSED OF IN ACCORDANCE WITH OHIO EPA OFF SITE
BY THE CONTAACTOR. THE BITUMINIZED FIBER CONDUIT SHALL
BE REMOVED AND DSPOSED OF ACCORDING TO ITEM 202 BE REMOVED AND DISPOSED OF ACCORDING TO ITEM 202
CONSTRUCTION AND MATERIAL SPECIFICATIONS. HE COST OF ALI LABOR EOULPMENT IMICICNTALS
THE COST OF ALL LABOR, EOUIPMENT. INCIDENTALS AND MATERIALS
SHAL BE INCODO IN THE UNT PRICE BID FOR ITEM SPECIAL
REMOVAL OF EXISTING CONDUIT.
CONDUIT ON STRUCTURE
EXPANSION FITTINGS FOR CONOUIT ON STRUCTURE SHALL BE OZ
(TYPE AX), CROUS-HINS (TTPE XJ-4), SPRING CITY (TYPE AF)
OR EQUAL AS APPROVED (Y THE TP
OR EQUAL AS APPROVED BY THE ENGINEER. EACH EXPANSION FITtING SHALL have a copper external
BONDING JUMPER.

SHEET No.							ITEM	$\begin{aligned} & \text { ITEM } \\ & \text { EXT } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { GRAND } \\ \text { TOTAL } \end{array}$	UNIT	DESCRIPTION
204	216	225	232	239	246	254					
BRIDGE No.											
0030	0098	0107	0151	0223	0262	0333					
											STRUCTURES 20^{\prime} SPAN AND OVER
10	${ }^{26}$	10	9	9	9	17	202	11301	90	cu. Yo.	Portions of Stuuctues renuveo, wicwalls. As PER PLAM.
	25	5	5			25	202	11301		cu. Yo.	portions of stauctues rehoved, backralls, as Per Plan.
${ }^{5}$	10	6	6	5	5	12	202	11301	碞	cu. Yo.	
							202	11301	10	cu. Yo.	pootions of structunes rewove, Parapets, as per plan.
1097	3876	177	1105	901	904	1356	202	23500	10.40	so. Yo.	WEARIMG Counse rehuveo
1097	3876	171	1105	901	904	1356	202	23501	10.410	so. Yo.	WEARIIIS COURSE REMOVESO. AS PER PLAN
		6	2		${ }_{4}$	${ }^{8}$	202	98100	32	EACH	SUUPER RELOVED
	${ }^{27}$					14	${ }^{203}$	12000	4	cu. Yo.	Excavation not Mcluong enuankuent construction
	20.883	5856	5834	5644	5652	10.925	509	15800	6.1013	Pouno	Epoxy coated elinforcimg Stell grad 60
${ }^{752}$	2396	644	612	616	616	800	510	1101	6436	EACH	dowel holes, As PER Plat.
1.8	3.1	1.8	1.8	1.8	1.8	3.9	511	34450		cu. ro.	Class 5 conceete parapet replaceuert. as per plan
13.3	30.3	12.6	12.5	11.8	1.8	21.2	511	34450	13, 5	cu. ro.	CLASS 5 CONCRETE WIMGWALLL AS PEA PLAM.
4.3	24.6	5.3	5.3	4.4	4.4	23.9	511	34450	72.2	cu.ro.	Class 5 concrete bachual. As Per plan
4.9	9.7	6.0	6.0	4.9	4.9	12	511	34450	48.4	cu. Yo.	CLass 5 concrete deck, as PEP PLAA
43.8	139.6	${ }^{37.8}$	${ }^{35.7}$	35.9	36	47.7	511	34450	376.5	cu. y \%.	Class $\frac{1}{}$ Concrete patapets, as Per Plan
527	${ }^{528}$	${ }^{521}$	591	517	$5 / 8$	933	SPECILL	51267502	4/35	so. Yo.	SEALIME OF Concrete surf ices (EPory) (SEE PRoposal mote)
UuP	Luw	Lu\#P	Luw	Uup	Wer	LunP	${ }_{5 / 3}$	21201	${ }_{\text {LUMP }}$		telmulic of bean Env, as Per Plan
67.9											
	15.]	${ }^{83.8}$	${ }^{83,7}$	67.7	68.2	151.3	${ }_{5 / 6}$	1124	673.9	Lim. FT.	
15.584	79,970	${ }_{15.957}$	14,336	1.522	12.372	${ }^{15.236}$	SPECIAL	51400050	*	So. fr.	SUPFACE PREPARATION OF ExITTMG STEEL. SrTtew Ozeu (SEE PRoposal note)
15.584	79,90	${ }_{15,87}$	14.836	12.522	12.372	15.236	SPECIIL	51460056	*	SO. FT.	
15.584	${ }^{79.970}$	${ }_{\substack{15.557 \\ 15.857}}$	${ }_{1}^{14.836}$	${ }_{\text {li, }}^{12522}$	${ }_{\text {12,372 }}^{12372}$	${ }^{15,236}$	${ }_{\text {SPFCILL }}$	${ }^{514400060}$		${ }_{\text {Sol }}^{\text {So. FTT }}$	
15.584 100	79,70	${ }_{1}^{15.85}$	$\stackrel{14.836}{100}$	${ }^{12,522}$	$\stackrel{12,372}{100}$	${ }^{15,236}$	${ }_{\text {SPECICILL }}$	${ }_{5}^{5144000568}$	*	So. FT. MAN HR.	
${ }^{3} 313$		3301	3240	3400	2720	${ }_{3} 880$	${ }_{\text {SPECIILL }}$	514000508	*	LIM. FT.	CRINOING OF FLAAGE EOEES
	20						516	46701	${ }^{20}$	EACH	Reset bearimg. as per plan
${ }_{4}$						${ }_{8}^{8}$	${ }_{5}^{518}$	${ }^{12201}$	${ }^{20}$	EACH	SCUPPER, ITCLUODIGG SUPPORFSS. AS PER PLAA
${ }^{4}$	36 25	5	8		8	14	${ }_{5}^{518}$	12801 21201	${ }_{39}^{73}$	Each	
0.89	${ }^{8.55}$	3.12	3.60	0.56							
1076	${ }^{3808}$	${ }^{1153}$	${ }^{1088}$	884	${ }^{887}$	1332	SPECIAL	51922006	${ }^{22.1288}$	S0. FT.	
"	71	25	${ }^{2}$	12	13	42	${ }_{\text {Sececial }}$	5520200	10.228	So. Yo.	
Luup	LUuP	${ }^{\text {Luw }}$	Luw	Luw	LuMP	Luup	SPECIIL	51922350	${ }_{\text {LuMP }}$		TEST SLAB (SEE PROPOSSAL NOTE)
							60%	2000	248	LIM. FT.	FENCE, TYPE CL. TPV WITH 6^{\prime} FABBIC MOTH
	4						609	26001	4	LIM. FT.	CUUR, TYPE 6. AS PER PLAN
											LIGHting
	Lunp	4	${ }^{\text {Luup }}$			LunP		20298000 6298000	$\frac{\text { LuMP }}{32}$		
	80		60			50	625	25401	${ }_{190}$	LIM. FT.	Convuit 2 IMCH 713.04. AS PER PLAM
	5		2				625	29901	7	EACH	Juncton mox. As PER PLAN

* Each brioge is a separate pay ten

STRUCTURE
ENERAL NOTES \&
GENERAL SUMMARY

ERI/LOR-2-30.51/O
VAROUS SECTIONS

this hiem includes the funnishigg of all maierills, labor, equipment and incidentals
 - Materials and hoxxanship shall meet the revirements of item 607 excepi that aluminum alioy -posis shall not be used, chain link fence shall conform to the construction and materials Specification 710.03. - Aluminum allor fabbic asshio $n-181$, type 111 Shall de used. Posis shall be verical. brace rail shall be parallel to the grade line. felice posts aild rails shall be of nominal inside diameter, standard height aid hall thickness pipe, schedole 40 unless orherhise noted. spring loaded expansion sleeves shall be provided at appooximately 100 foot intervals in all horizontal rails. stretcher bars and miscelaneous hardahe shall ge that of the chaill-link felice indostry standaro. the base plates nay be of any commercially heldable stee having a yield strengit of hot less than 33 kSI. posts shall

 fabrication, fielo welomg shäll not de permitted. paymeet shall de made under:

ITEM 607- FENCE TYPE CL, TPV with 6' FABRIC width

SECTION B-B

BACKWALL PATCHING AREAS SHOWN.
payment under item $5 / 9$ - patching concrete structures,
as Per plan.
STRUCTURE LOR-2-0030 0.89 sQ. YD.

SECTION A-A

abutuent patching details BRIDGE NO. LOR-2-OO3O
UNDER WEST RIVER ROAD

DGR set
TRUCTURE LOR-2-0030

 \qquad
 for adoitional detalls see stanoafo drawing ext--87.

BAR SIZE: THE BAR SIZE IS INDICATED IN THE BAR MARK.
THE FIRST DIGIT WHERE THREE DIGITS ARE USED. THE FIRST THE FIRST DIGIT WHERE THREE DIGITS ARE USED. THE FISST
TWO DIGITS WHERE FOUR ARE USED, INDICATE THE BAR SIIE UUMBER. FOR EXAMPLE: A506 IS A NO. 5 SIZE BAR AND PIIOI IS A NO. II SIZE BAR.

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|c|c|}
\hline W 506 & 12 & 3^{\prime}-7^{\prime \prime \prime} & \text { Str. } & & & \\
\hline W 507 & 12 & 2^{\prime}-102^{\prime \prime} & x & & & \\
\hline & & & & & \\
\hline
\end{array} \\
& \text { DECK }
\end{aligned}
$$

 MARK NO. LENGTH TYPE A A A B

Min
estimated quantities REINFORCING STEEL BRIDGE NO. LOR-2-OOOO
UNDER WEST RIVER ROAD

nollon Portions of Structures Removed

Wote "A": Stiffeners shall hove contoct beering of top and $1 / 8$ "moximum clearance at botiom.
Wote " B^{\prime} : Stiffeners shall hove confoct bearing ot bottom ond $1 / 8$ " maximum clearance at top.

$\begin{gathered} B E A M \\ \text { AREA LEFT } \end{gathered}$	$\begin{gathered} \hline \text { CINCREASE } \\ \text { LEFT } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { BEAMM } \\ \text { AREA AlGHT } \end{gathered}$	$\begin{aligned} & \hline \hline \text { \% INCREASE } \\ & \text { RIGHT } \\ & \hline \end{aligned}$
355,63 S0. fт.	13.7	$35,63 \mathrm{sa}$ fr.	13.7

A typical hounch width of g" shall be used for computing quontity
of concrefete. However the hounch wiath moy vary between $6^{\prime \prime} \& 2^{\prime \prime}$

* This is a nominal Dimension. The quantity of deck concrete to be poid for shall be based on this dimension even though
deviation from it moy be necessory because the top flange of the girder may not hove the exocct comber or conformation required
 mope for the volume of encoseses steed plofoses os per per
of the construction ond Moteriol Specifications.

curve
TAM
sent

EXISTING EXPANSION LOINT SECTION C-C

$\begin{aligned} & \text { REAR ABUTMENT } \\ & \text { 3" Strip Seal Gland } \end{aligned}$		FOREWARD ABUTMENT 4" Strip Seal Gland	
Temperature	Distonce A	Temperature	Distonce A
90°	$11 / 2^{\prime \prime}$	90°	$1 / 2{ }^{\prime \prime}$
80°	$11 / 2{ }^{\prime \prime}$	80°	$11 / 2^{\prime \prime}$
70°	$11 / 2{ }^{\prime \prime}$	70°	$11 / 16$ "
60°	$17 / 32^{\prime \prime}$	60°	$14_{8,2} /$
50°	$111 / 6$	50°	$21 / 8{ }^{\prime \prime}$
40°	${ }^{131 / 16}$	40°	$2^{11 / 32}{ }^{\prime \prime}$
30°	$155 / 6$	30°	2\%/6"

SECTION B-B LEFT BRIDGE SHOWN

EXpansion joint detalls BACKWALL DETALLS
BRIDGE NO. LOR-2-OO98 L..8R.
OVER VERMLION RIVER

BAR SIZE: THE BAR SIZE IS IWDCATED IN THE BAR MARK. TWO DIGITS WHERE FOUR ARE USED. IWOICATE THE BAR SIZE NUMGER. FOR EXAMPIE
IS A NO. $/ 1$ SIZE BAR.
TYPE
TYPE II

TYPE III

TYPE IV
TYPE V

TYPE $I X$
$l^{\prime-6^{\prime \prime}}$

TYPE VI

TYPE VII TYPE VIII

estimated ounatities REINFORCING STEEL BRIDE NO. LOR-2-OOQGL.\&RR.
OVER VERMLION RIVER

backwall patching areas shown.
ELEVATION

Middle Pier-Foreword Column Left Face

SECTION A-A reference chord.

	\%mix mix
Dcom	

BEAM AREA	\% INCREASE
$13,371 \mathrm{SO} . \mathrm{FT}$.	18.6

ELEVATION VIEW 14'-0" WINGWALL A DETAIL

SECTION G-G

wingwall details BRIDGE NO. LOR-2-0107
UNDER VERMLIION ROAD

SAR SIZE : THE BAR SIZE IS INOICATED IN THE BAR MARK,
THE FIRST DIGIT WHERE THREE DIGITS ARE USED THE FIRSI TWO DIGITS WHERE FOUR ARE USED. INDICATE THE BAR SIZE NUMBER. FOR EXAMPLE : A506 IS A NO. 5 SIZE BAR AND PIIOI
IS A NO. II SIZE BAR.

PROFILE ALONG \&

Sto. $80+00.00$ \& SR-2

	\otimes	Sto. $80+00.00$ \& SR-2
		Sto. 25+00.00 \& Vermillion Interchonge Rd.

 TYPE I BRIDGE
TERMINAL ASSEMBLY

\longrightarrow

$$
\begin{aligned}
& -- \\
& +
\end{aligned}
$$

26
\qquad
,

$$
\xi
$$

TERMINAL ASSEMBL

EXISTING STRUCTURE
TPE: Continuous Steel Beam Bridge

LOADING: HS $20-44$
WEARG SURFACE: $2^{\prime \prime}$ Aspholt Concrete
SKEW: None APPROACH SLAB: AS---67 (25'-0" long) ALIGNMENT: Tongent
SUPERELEVVTION: Non

PROPOSED STRUCTUR TYPE: Continuous Steel Beom Bridge
With Reinforced Conc. Deck \& Susitructures
Sint
 ROADWAY: $4 h^{\prime}-10^{\prime \prime}$ T/T Paropets LOADNG: H SRO-44 $21 /{ }^{2 \prime \prime}$ Microsilica Concrete
 ALIGNMENT: Tongent
SUPERELEVGATON: Non

OHIO DEPARTMENT TRANSPORTATION
BUREAU OF
LOCATION AND DESIGN
SITE PLAN
SITE PLAN BRIDGE no. Lor-2-0151
UNDER VERMILION INTERCHANGE ROAD LORAN county
STA. $23+83.00$ S.R. -2
STA. $26+17.00$

This is a nominal dimension. The quantity of deck concrete
to be poid for sholl be bosed upon this dimension, even
 flange of the beom moy not hove the exoct comber or conf
motion reuuireo to place it porallel to to the finished grode.
 as per sec. 511.18 of the Construction and Moterial Specifications.

SECTION B-B

SECTION D-D

SECTION E-E

For Guordroil See Stondard
Drowing $6 R-3.1 / 5-6-91$
ond

SECTION $\mathrm{H}-\mathrm{H}$
cincin
PLAN VIEW
wingwall details BRIDGE No. LOR-2-015i
UNDER VERMIION INTERCHANGE ROAD

BAR SIZE: THE BAR SIZE IS INDICATED IN THE BAR MARK.
THE FIRST DIGIT WHERE THREE DIGTIS ARE USED THE FARST
 NUMBER. FR EXAMPLE: A506 IS A NO. 5 SIZE BAR ANO PIIOI
IS A NO. II SIZE AAR.

ERIILOR-2-30.51/0.00
VARIOUS SECTIONS

| OHIO |
| :--- | :--- |
| FHMA |
| 232 |

Is A No. II SIZE BAR. a no. II SIZE bar.

TYPE I

TYPE II

TYPE III

TYPE V

TYPE VI

TYPE VII
TYPE VIII

estimated ouantities REINFORCING STEEL BRIDGE NO. LOR-2-OI51
INER VERMLION INTERCHANGE ROAD

PROFILE ALONG \& SUNNYSIDE RD.

backwall patching areas shown. patment under item 5ig - patching concrete structures.

$$
\text { STRUCTURE LOR-2-0223 } 0.56 \text { SO. YD. }
$$

Middle Pier-Rear End

SECTION A-A
abutment patching details BRIDGE NO. LOR-2-O223
UNDER SUNYYSIDE ROAD

- This is a nominal dimension. The quantity of deck concrete to be poid for shall be based upon this dimension, even though deviation from it may be necessor beccuse the top
flange of the beam moy not have the excact camber or conforflange of the beam moy not hove the exact camber or confor
motion reevires to place it parallel to to the finished grode. Deduction shall be mode for volume of encosed steel plates
as per sec. 511.18 of the Construction ond Materiol Specifications.

cost of plates shal ie imcluoed in itel sic sifuctuaal Expansion For Aoortional detalls see stanoaro oanucg extar

SUPERSTRUCTURE DETAILS fRAMING PLAN BRIDGE NO. LOR-2-0223
 STRUCTURE LOR-2-0223

BAR SIIE : THE BAR SIZE IS INDICATED IN THE BAR MARK.
THE FIRST DIGIT WHERE THREE DIGATS ARE USED. THE FIRSI
TWO DIGIT WHERE TWO DIGITS WHERE FOUR ARE USED. INDICATE THE BAR SIZE
NUMER. FOR EXAMPLE: A506 IS A NO. 5 SIZE BAR AND PIIOI
IS A NO. II SIZE BAR: IS A NO. II SIZE BAR.

ELEVATION
FORWARD ABUTMENT

ELEVATION
REAR ABUTMENT
backwall patching areas shown.
payment under item 5/g - patching concrete structures.
as per plan
STRUCTURE LOR-2-0262 2.45 SQ. YD.

SIDE VIEW ABUTMENT

Right Pier-Column \#3
Left Face

abutment patching detalls BRIDGE NO. LOR-2-O262
UNDER CLAUS ROAD

Kascs *This is o nominal dimension. The quontity of deck concreta
to be poid for shall be bosed upon this dimension, even to be poid for shall be bosed upon this aimension, even
though deviotion from it may be necessor beccuse the top hougg deviotion from in mot be necessor becouse hor confor
flonge of the beam may not hove the exoct conber or motion required to place it porallel to the finished grode.
Deduction shall be made for volume of encosed steel plates. Deduction sholl be mode for volume of encosed steel plates.
as per sec. $51 / 18$ of the Construction ond Woterial Specifications.

 HALF FRAMING PLAN

SUPERSTRUCTURE DETAIL
FRAMING PLAN
RIDGE NO. LOR-2-O26
UNOER CLAUS ROAD

EXISTING EXPANSION LOINT
SECTION C-C

SECTION B-B

57
EXPANSION JOINT DETAILS BACKWALL DETAILS BRIDGE No. LOR-2-O262
UNDER CLAUS ROAD

SAR SIZE: THE BAR SIZE IS INICATED IN THE BAR NARK THE FIRST DIGIT WHERER ARE USED. INDICATE THE BAR SIIE
TWO DIGITS WHERE FOUR AE TWO DIGITS WHERE FOU
NUMBER. FOR EXAMPLE
IS A NO. II SIZE BAR.

-							

TYPE X

ESTIMATED QUANTITIES REINFORCING STEEL BRIDGE NO. LOR-2-O262
UNDER CLAUS ROAD

EXISTING STRUCTURE
 TYE: Contintuous Steel Reom Bridge With Reinforcried Conc. Deck \& Sustructures SPAN: $33^{-}-6^{\prime \prime} ; 43^{\prime}-6^{\prime \prime} ; 44^{\prime \prime}-6^{\prime \prime} ; 33^{\prime}-6^{\prime \prime} \%$ Brgs.
 LOADNG: HS $20-44$ WEARNG SURFACE: $2^{\prime \prime}$ Aspholt Concrete SKEW: None APPROCHCH SLAB: AS-I-G ALLCNMENT: Tonsent SUPRELEEEVGTION: None
 PROPOSED STRUCTURE
 TYPE: Continuous Steel Beom Bridge With Reinforced Conc. Deck \& Substructures SPAN: $33^{\prime}-6^{\prime \prime} ; 43^{\prime}-6^{\prime \prime} ; 43^{-6} 6^{\prime \prime} ; 33^{\prime}-6^{\prime \prime} \%$ Brgs.
 OADIN: HS $20-44$ " SKEN: None APPROCH SLAB: AS-I-G ALLGMMENT TOngent SUPERELEVYTONU
 OHIO DEPARTMENT TRANSPORTATIO LOCATION AND DESIGN PLAN PREPARATION SECTION
 SITE PLAN bridge no. Lor-2-2033 L.af over baumhat road
 loran county

ELEVATION VIEW

REAR ABUTMENT, RIGHT BRIDGE BOTH SIDES, LEFT BRIDGE NORTH SIDE FOREWARD ABUTMENT, RIGHT BRIDGE SOUTH SIDE, LEFT BRIDGE BOTH SIDES

PLAN VIEW

SECTION C-C

SECTION F-F

SECTION H-H

wingwall details BRIDGE NO. LOR-2-O333 L.CRR. OVER baumhart road							
DCR	Eet				2-28-92		DCA

BAR SIZE : THE BAR SIZE IS INOICATED IN THE BAR MARK,
THE FIRST DIGIT WHERE THREE DIGITS ARE USED. THE FIRST THE FIRST DIGIT WHERE THREE DIGITS ARE USED THE FIRST
TẄO DIGITS WHERE FOUR ARE USED, INICATE THE GAR SIIE WOO DIGITS WHERE FOUR ARE USED. INDICATE THE BAR SIIE
UMBER. FOR EXAMPLE : A506 IS A NO. 5 SIZE BAR ANO PIIO IS A NO. II SIZE BAR.

TYPE II

TYPE VI

TYPE III

TYPE VII

TYPE IV

TYPE VIII

EROSIDN CONTROL SUB-SUMMARY

		Station	offset	604		603				602			609				
REF. No.	SHEET $\begin{gathered}\text { No. }\end{gathered}$			Cotch Bosin $\text { No. } 3 \mathrm{~A}$	$\begin{gathered} \text { Catch Basin } \\ \text { Grote Elevotion } \\ \hline \text { Pipe Flowline } \\ \text { Elevation } \end{gathered}$	$\begin{aligned} & \text { I2" Conduit. } \\ & \text { Type C. 707.13 } \end{aligned}$	Pipe Outlet Elevation	$\begin{aligned} & \text { Elevation } \\ & \text { of Tee } \end{aligned}$	Bends \& Branches	$\begin{aligned} & \text { Concrete } \\ & \text { Masonry } \end{aligned}$	$\begin{aligned} & \text { Rock Chonnel } \\ & \text { Protection Type C } \\ & \text { with Filter } \end{aligned}$	Reinforced Sodding	Curb Type 6				
West River Rd. (Lor-2-0030)				Eoch	Ft.	Lin. Ft.	Ft.			cu. Yd.	Cu. Yd.	Sq. Yd.	Lin. Ft.				
EI	${ }^{148}$			$23+35$	$16.92^{\prime} \mathrm{Lt}$.	1	674.30 671.30	41	656.10		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	43	30		
E2	148	$23+32$	16.92' Rt.	1	674.26 670.80	41	655.80		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2 .	44	30				
E3	149	$26+85$	$16.92^{\prime} \mathrm{lt}$.	1	672.15 668.20	39	655.20		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	40	30				
E4	149	26+82	16.92' Rt.	1	$\frac{672.23}{668.50}$	42	647.5		$1-12^{\prime \prime} \times 30^{\circ}$	0.21	2.2	39	30				
Vermilion Rd. (Llor-2-0107)																	
E5	151	$26+59$	$20.92^{\prime} \mathrm{Lt}$.	1	655.20 652.20	99	626.90			0.21	2.2	9	30				
		$23+33$ to $23+53$	Lt.									9	30				
		$23+30$ to $23+50$	Rt.									9	30				
		$26+49$ to $26+67$	Lt.									7	30				
Vermilion Interchonge Rd. (Lor-2-0151)																	
E6	152	26+48	20.92' Lt .	1	$\frac{671.10}{668.00}$	64	666.00		--	0.21	2.2	40	30				
E7	152	$26+48$	${ }^{20.92^{\prime}} \mathrm{Rt}$.	1	$\frac{007.10}{668.00}$	54	666.00		--	0.21	2.2	30	30				
		23+41 to $23+58$	L.									40	30				
		23+41 to $23+58$	Rt.									40	30				
Sunnyside Rd. (Lor-2-0223)																	
E8	\| 153	23+51	16:92' ${ }^{\text {c }}$ Lt.	1	$\frac{675.37}{672.00}$	58	651.00		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	43	30				
E9	153	23+51	16.92' Rt.	1	675.37 672.30	50	653.30		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	52	30				
ElO	154	$26+49$	16.92' LI.	1	673.88 670.00	54	651.00		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	43	30				
EII	154	$26+49$	16.92' Rt.	1	$\frac{670.88}{670.30}$	49	652.30		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	40	30				
Clous Rd. (Lor-2-0262)																	
E12	155.	$23+48$	$16.92^{\prime} \mathrm{Lt}$.	1	$\begin{aligned} & 676.57 \\ & 674.00 \\ & \hline \end{aligned}$	49	655.00		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	51	30				
E/3	155	$23+53$	16.92' Rt.	1	676.62	52	653.50		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	49	30				
E/4	156	$26+47$	${ }^{16.92^{\prime} \mathrm{Lt}}$.	1	$\begin{aligned} & 6+7.01 \\ & \hline 651.15 \\ & 672.00 \end{aligned}$	48	653.00		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	44	30				
E/5	156	$26+52$	16.92' Rt.	1	$\begin{array}{r} 672.00 \\ \hline 675.06 \\ \hline 671.70 \\ \hline \end{array}$	56	649.70		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	50	30.				
Lor-2-0097																	
E/6	123	50+91	$6^{66.94} \mathrm{Rt}$.	1	620.14 617.14	116	579.50		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	62	20				
EI7	123	50+91	24.37' Rt.	1	$\frac{617.45}{617}$	25		617.20	1-12" $\times 90^{\circ} \mathrm{Tee}$			19	20				
E18	123	50+91	24.37' Lt.	1	$\frac{620.45}{671.45}$	129	585.00		$2-12^{\prime \prime \prime} \times 22.5^{\circ}$	0.21	I.1	19	20				
E19	123	50+91	$63.63^{\prime} \mathrm{Lt}$.	1	$\frac{620.28}{617.28}$	119	583.50		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	56	20				
Lor-2-0333																	
E20	135	175*46	$53.63^{\prime} \mathrm{Rt}$.	1	$\begin{array}{r} 665.57 \\ \hline 662.57 \end{array}$	36	650.00		$1-12^{\prime \prime} \times 22.5^{\circ}$	0.21	2.2	30	15				
E21	135	175+46	14.37' Rt.	1	$\begin{array}{r} 665.70 \\ \hline 662.70 \\ \hline \end{array}$	15		662.55	1-12" ${ }^{\prime \prime}$ ¢ 90° Tee			9	15				
E22	135	175+46	$14.37^{\prime \prime} \mathrm{Lt}$.	1	665.70 662.70	79	647.00		$2-12^{\prime \prime} \times 11.25^{\circ}$	0.21	1.1	9	15				
E23	135	175+46	${ }^{53.63^{\prime} \mathrm{Lt}}$.	1	665.57 662.57	35	646.00		1-12"x 30°	0.21	2.2	38	15				
E24	135	177+67	53.63' Rt.	1	665.56 662.56	37	654.00		$1-12^{\prime \prime} \times 11.25^{\circ}$	0.21	2.2	33	15				
E25	135	177*67	14.37' Rt.	1	665.69 662.69	15		662.54				9	15				
E26	135	177+67	${ }^{14.377^{\prime}} \mathrm{Lt}$.	1	$\begin{array}{r} 002.09 \\ 665.69 \\ 662.69 \end{array}$	80	647.00		$2-12^{\prime \prime} \times 11.25^{\circ}$	0.21	1.1	9	15				
E27	135	177+67	${ }^{53.63^{\prime} \mathrm{Lt}}$.	1	$\begin{array}{r} 665.56 \\ -662.56 \end{array}$	29	648.00		$1-12^{\prime \prime} \times 45^{\circ}$	0.21	2.2	13	15				
totals to general summary.				27		1511				5.04	49.5	1028	800				

Depressed Shoulder

$$
\begin{aligned}
& \begin{array}{r}
7^{\prime \prime}-6^{\prime \prime} \\
+6^{\prime \prime} \\
\hline
\end{array}
\end{aligned}
$$

CROSS SECTIONS

LEGEND

T-Reinforced Sod

NOTE:
DEPRESSED SHOULDER: This porfion of the shoulder sholl
be depressed to ussure positive droinage into the sooded

PLACING REINFOOCED SODOING: Prior to the placement of
sod, galvonized poultry netting shiol be pe paced on the

 Gnd in rows 4 feet opart. The fence shoil be fostened
to the wood stokes with metol stoples. Where the sodding

 PAruENT: poyment for ollt the obove suoll be induldod in
the unit price bid for tem 660 . Squaure Yord, Reinforced

LEGEND

 SUNNYSIDE RD. (North and South of Lor-2-0223. Rt) CLAUS RD. (South of Lor-2-0262, Lt \& Rt)

PROFILE-C

DETAIL-D
SUNNYSIDE RD. (North and South of Lor-2-0223. Lt
CLAUS RD. (North of Lor-2-0262. Lt \& Rt)
VERMILION INTERCHANGE RD. (North of Lor-2-0151, LT \& RT

PROFILE-D
-Reinforced Sod
玉ein -rock Chonnel Protection

NOTES:
FOR EROSION CONTROL NOTES
SEE STANDARD DRAWINGS MC-7
FOR ADDITIONAL DETALLS.

Depressed Shoulder-

${ }_{0-0}$
CROSS SECTIONS

INSTRபMENTATIDN NDTES AND DETAILS

TEM SPECIAL LOADER WITH BACKHOE RENTAL, AS PER PLAN
THE CONTRACTOR SHALL SUPPLY A FRONT END LOADER WITH BACKHOE TO ASSIST THE OHIO UNIVERSITY REPRESENTATIVE II EXCAVATING, PLACING, AND BACKFILLING THE 2" CONDUIT FOR THE
INSTRUMETATION OF THE PAVEMENT. AN ESTIMATED OUATITY INSTRUMETATION OF THE PAVEMENT. AN ESTIMATED QUANTITY
OF 48 HOURS OF LOADER WITH BACKHOE, AS PER PLAN HAS BEE OF 48 HOURS OF LOADER WITH BACKHOE. AS PER PLAN HAS BEEN
INCLUDED IN THE INTTRUENTATION GENERAL SUMMAAY ON SHEET 262.

ITEM 625 GROUND ROD. AS PER PLAN A $1 /{ }^{\prime \prime}$ DIAMETER BY $8^{\prime}-0^{\prime \prime}$ COPPERWELD GROUND ROD SHALL
BE PLACED IN THE TRENCH LINE. A 6 AWG SOLID COPPER WIRE SHALL BE USED TO CONNECT THE GROUND ROD TO THE WIM AND SHALL BE USED TO CONCECT THE GROUND ROD TO THE WII AND
INSTRUMENTATION CABINETS. INSTALLATION FOR THE WIM CABINET
SHATL SHALL BE AS PER RECOMMENDAFILN OF THE WIM VENOR AND
INSTALLATON FER THE INTRUMENATIO CABINET SHALI BE AS INSTALLATION FOR THE INSTRUMENTATION CABINET SHALL
DIRECTED BY THE REPRESENTATVVE OF OHIO UNIVERSTIY.

ITEM 625 POWER SERVICE. AS PER PLAN POWER IS to be supplied B̀ ohio edison company and be $120 / 240$ VOLT. 3 -WIRE. GROUNDED NEUTRAL. CONTACT DAVE MEYERS AT OHIO EDISON COMPANY. WEST RIVER ROAD, ELYRIA, OHIO 44035
(PHONE NUMBER: $216-324-5515$). POWER SERVICE EQUIPMENT SHALL BE INSTALLLED AS SPECIFIED IN THE ODOT CONSTRUCTION AND MATERIAL SPECIFIICATINS AND
ON STANDARD CONSTRUCTION DRAWING HL-40.IO EXCEPT THE ON STANDARD CONSTRUCTION DRAWING LH-4E.IO EXELPT THE
CONTACTOR AND PHOTOELECTRIC CELL SHALL
TE LIMINATED. THE THE METER SHALL BE ORIINTATED SO IT CAN BE READ WHILE
STANIN OUTSIDE THE RIGTT-OF-WAY FENCE. THE CONTRACTOR STAADING OUTSIDE THE RIGHT-OF-WAY FENCE. THE CONTRACTOR
SHALL PAY ANY POWER COHPANF FEES ASSOCIATED WITH THE SHALL PAY ANY POWER COMPANY FEES ASSOCIATED WII
INSTALLATION AND CONNECTION OF THE POWER SERVICE. THE CONTRACTOR SHALL PROVIDE AO ADDIIIONALEL NEMA TYPE
4X ENCOSURE TO HOUSE THE CONTROL CENTER AS SHOWN IN THE WIRING DETALL ON THIS SHEET.
WHEN PLACING TE CONCOETE FOR THE INSTRUMENTATIO
CABINET THE CONTACTOR SHALL STENCI THE PAO
 THE PAD NUMBER SHALL BE IMPRESSED INTO THE FOUNDATION
BEFORE IT TAKES ISS FINAL SET. THE NUMERALS SHALI BE BEFORE IT TAKES ITS FINAL SET. THE NUMERALS SHALL BE
3 TO 4 INCHES IN HEIGHT AND I/4 IWCH IN DEPTH. THE NUMBER SHALL BE PLACED PARALLEL WITH THE FOUNDATION EDGE ADJACENT TO THE WORK PAD. IT SHALL BE CENTERED ON THE FRONT EDGE
OF THE FOUNDATION AND PLACED ON THE CABINET DOOR SIDE.

ITEM 633 CABINET WITHOUT CONTROLLER AS PER PLAN
THE CONTRACTOR SHALL PROVIDE ONE (I) HENNESSY LARGE
SIWGLE DOOR NEMA 3 IR CABIWET CATALOG NO. HPT74426 WITH (4) SHELF KITS CATALOG NO. $23 / 636$ AND (II) THERMOSTATICALLY CONTROLLED COOLING FAN ASSEMBLY CATALOG NO. 230220 WITH MOUNTING HAROWARE OR EOUIVALENT WITH IDENTICAL DIMENSONS AND SIIES INCLUDING
SHELVES AND FAN. THE CABINET SHALL BE INSTALLED ON THE SHELVES AND FAN. THE CABINET SHAAL BE INSTALLED ON THE
CONCEETE CABIAET FOUNDATINE DESIGNATED BY THE ENGEEER
SE DETAL CONCRETE CABINET FOUNOATON DESIGNATED BY THE ENGINEER
SEE DETALL D FOR FURTHER DETAILS. PAYMENT FOR THE ABOVE SHALL BE INCLUDED IN THE PRICE
WITHOUT CONTROLLER, AS PER PLAN.

ITEM 625 TRENCH, 24" DEEP, AS PER PLAN THIS ITEM SHALL BE COMPLETED IN ACCORDANCE WITH THE
PEOUREUENTS OF ITE 625 AND SHALL BE CONSTRUCTED AS PE THIS ITEM SHALL BE COMPLETED IN ACCORDANCE WITH THE
REUREMENTS OF ITEM 625 AND SHALL BE CONSTRUCTED AS PE
THE DETAIL ON THIS SHEET.

CONTROL CENTER WIRING DETAIL

- nema type $4 \times$ enclosure. $\frac{263}{267}$

INSTRUMENTATION FOUNDATION DETAI
SEE WSTRUUENTATOO SIIE PLAN FOR PLLACENENT

$$
\triangle
$$

5. conout shall be capped and wstalleo mth msulated dushmes.

DETAIL E TO POWER SERVICE			
${ }^{3-4}$			
$\xrightarrow[\text { mors Pat }]{1}\}$			
	wIM FOUNDATION DETAIL SEe instrunewtation site plan for placeuent notes		

 3. convort for tilephone drop and crouno roo mil be suppleo by the contraction

5. convui shall ee capee and mstalleo mih nsulaied bushime.

INSTRUMENTATION SITE PLAN
-

ALL COSTS FOR CONNECTION INTO UNDERDRAIN TO BE INCLUDED IN THE UNIT PRICE BID
ITEM SPECIAL WEIGH-IN-MOTION PAVEMENT SYSTEM.

VIEW A-A

PLACEMENT OF WEIGH-IN-MOTION SCALE/FOUNDATION

```
NOTE (*): SUPPLIED AND INSTALLED AS PER WIM MANUFACTURER'S RECOMMENDATION
NOTE (*): SUPPLIED AND (NST'ALLED A 26"\prime) SUPPLIED AND INSTALLED AS PER WIM
                                    MANUFACTURER'S RECOMMENDATION
NOTES : SEE SHEET 265 FOR LOOP INSTALLATION
SEE SHEET 262 FOR INSTRUMENTATION SITE PLAN
SEE SHEET 263 FOR INSTRUMENTATION NOTES AND DETAILS
SEE SHEETS 266 & 267 FOR WEIGH-IN-MOTION PAVEMENT SYSTEM NOTE
``` WIM LロロP INSTALLATIDN = ERIE \& LORAIN COUNTIES \begin{tabular}{l|l|l|}
\hline
\end{tabular}

NOTE (*) : AS RECOMMENDED BY WIM MANUFACTURER
NOTES : SEE SHEET 264 FOR WEIGH-IN-MOTION SCALE INSTALLATION SEE SHEET 262 FOR INSTRUMENTATION SITE PLAN
SEE SHEET 263 FOR INSTRUMENTATION NOTES AND DETAILS
SEE SHEETS 266 \& 267 FOR WEIGH-IN-MOTION PAVEMENT SYSTEM NOTE

Detail L
\[
\frac{\text { Detail L }}{\frac{\text { Plan view of Diagonal }}{\text { Plot at Corners }}}
\]

Section B-B Saw Cut Dimensions

LOOP INSTALLATION NOTES: 1. The loop wiath shall be centered in the wiath of the lane (see loop configuration). The corners of the rectongle shol
be cut at 45 degree ondes (ssee plan view of dicaonal slot be cut of 45 degree ongles (see plan view of diagonal slot of
corners) or core drilled to ovoid undue stress on the wire.
2. If more thon one leod-in is to be placed in the slot, odd
\(1 / 4\) to the minimum slot depth for each odditionol lead-in.
3. Slots shall be washed, blown out, ond tharoughly dried immediafely
monuf octurer.
4. The distance between the side of a loop and a lead-in saw cut from odjacent detectors shall be 2 feet minimum The distonce between odjocent leod-in saw cuts sholl

Contractor will
5. Contractor will notify wIM vendor at leost 2 weeks befor
sowing for sowing for loops.

\section*{ITEM SPECIAL}

THE INTENT IS TO INSTALL A WEIGH-IN-MOTION (WIM) SYSTEM TO WEIGH ALL INDIVIDUAL SINGLEITANDEM WHEELS ON VEHCLES TRAVELING INE BOTH LANES AT THE LOCATION
SPEIFIED IN THE PLANS.

THE CONTRACTOR SHALL FURNISH ALL HAROWARE, SOFTWARE,
BOR, AND IACIDENTALS NECESSARY TO COMPLETE THE WIM LABOR, AND INCIDENTALS NECESSARY TO COMPLETE THE WIM
SYSEM. THE CONTRACTOR SHALL INSTALL WEIGH PLATFORMS In The right lane, and vehicle classification loops. and AXLE DETECTORS IN THE PASSING LANI
COLLECTION/PROCESSING UNIT AT THE SITE.

EOUIPMENT. THE WIM SYSTEM SHALL BE A DAW 200 CENTRAL

 MEET THE REQUIREMENTS OF ASTM E 1318 -90, SECTIONS 4.1, 4.1.I, MED 5 WITH THE FOLLOWING ADOITIONS:

MEANS SHALL BE PROVIDED FOR RECORDING ALL DATA
ITEMS IN TABLE I FOR PERMANENT RECORO.
2. PROVIDE OPTIONS 2 ANDO 3 UNDER 4.I.
3. THE SYSTEM SHALL ALLOW THE USER TO CREATE AND
MOBIFY CLASSIFICATION SCHEMES BASED ON THE NUMBER AND SPACING OF AXIES. THE SOFTWARE WHIL AMBER DEFINITION OF AT LLAST 20 VEHIILLE TYES. THE
CLASSIFICATION SCHEME SHALL BE FHWA SCHEME FAS DEFAULT.
4. EACH TIME A CLASS 4 OR ABOVE VEHICLE CROSSES THE EUGH PADS. RHE SYSTEM SHALL GENERATE AN EXTERNAL
PULSE TO TRIGGER OTHER PAVEMENT INSTRUMENTATION. He TYPE OF CONNECTOR AND PULSE GENERATED SHALL E COORDINATED WITH THE DEPARTMENT.

THE WIM SCALE SHALL CONSFST OF WEIGH PLATES MOUNTED
IN THE PAVEMENT. THE SCALE SHALL CONSIST OF TWO STEEL PLATES WHICH COVER THE ENTIRE LANE WITTH AND WEIGH ALEL INDIVIDUAL SINGLEITANDEM WHEELS CROSSING THE PLATES. SALES SHALL HAVE A SAFE OVERLOAD RATING OF 120,000
POUNDS. THE MEASURED WEIGHT SHALL RETURN TO ZERO BETWEEN tandem axles travelling at speeds up to 70 mph. the SCALE VAULTS SHALL INCORPORATE DRAINAGE TO PREVENT WATER
BUILD-UP UNDER THE SCALE PIATFORUS SCI TTANSUCERS AND MOUUTING HARDWARE SHALL BE OF STEEL OEPARTMENT TO RESIST CORROSION. THE WEIGH SCALES SHALL AND REPLACED.
the wim data collection. system shall collect and SORT RAW DATA INTO SELECTED VEHICLE CLASSIFICATIONS.
FOR VEHICLE CLASSES NOT SELECTED. TABULAR DATA SHALL BE STORED SHOWING THE NUMBER OF VEHICLES IN EACH UNSELECTED
CLASS SER LANE A F CLASS PER LANE. A FIXED ON-SITE SYSTEM SHALL STORE RAW
RECORDS TO THE NEAREST SECOND. THE STORAGE SYSTEM SHALL
PREVEVT AOS OF DITA PREVENT LOSS OF DATA IN THE EVENT THE SASTEE SHUTT DOWN
DUE TO A LOW POWER STATE. THE DATA COLLECTION SYSTEM DUE TL A LOW POWER STATE. THE DATA COLLECTION SYSTEM
SHALL. AT A MINIMUM. STORE THE MOST RECENT GO,OOO VEHLCLLS WHICH PASS OVER THE WIM PLATFORMS AND
CLASSIFICATION EOUIPMENT AT A FIELD UNIT. DATA SHAI CLASSIFICATION EQUIPMENT AT A FIELD UNIT. DATA SHALL BE
STORED IN A COMPRESSED FORMAT FOR EFFICIENT DATA SRANSFER. THE CONTRACTOR SHALL SUBMIT DEFTCILSNT OF OTA
COMPRESSED FORMAT THEY PROPOSE TO USE.
the data collection/processing system shall:
1. BE CAPABLE OF OPERATING between temperatures
OF -40 AND 158 DEGREES
2. CONTAIN COMPONENTS WhICH ARE SECURELY MOUNTED;
fULIY PROTECTED AGAINST OVERLOADS, PoWER SURGES AND LIGHTNING.

BE EQUIPPED WITH A READILY VISIBLE RESET BUTTON
MOUNTED IN THE BOX TO RESTART THE EQUIPNENT MOUNTED IN THE BOX TO REST
SHOULD THE UNIT MALFUNCTION.
4. TRANSMIT DATA AUTOMATICALLY THROUGH VOICE GRADE ELEPHonf chicuis to the central control unit; PROVIDE FOR REVIEW AND ADJUSTMENT OF RAW DATA
THROUGH A MONITOR; EDIT AND PRINT DATA,
5. CONTAIN A TELEPHONE COMMUNICATION MODEM WHICH
6. download to portable data retrieval units.

THE CONTRACTOR SHALL SUPPLY CONOUIT AND ALL OTHER
INCIDENTALS NECFSSARY TO COMPLETE THE INSTALLATION
the supplied communication and analysis software and HAROWARE SHALL OPERATE ON ANY IBM OR COMPATIBLE PERSONAL COMPUTER UNDER MS-DOS. THE COMMUNIICATION SOFTWARE SHALL
ALLOW USER FRIENDLY COMMUNICATION WITH THE SITE SYSTEM AND USER MENU'S. THE ANALYSIS SOFTWARE SHALL ALLOW REAL TIME VIEWING OF VEHIILLE SPEED, CLASSIFICATION, AND
WEIGHT, SELECTABLE BY LANE: OR THE MOST RECENT WEIGHT. SELECT
HISTORICAL DATA.
the contractor shall supply necessary software to PERMIT DATA COLLECTRON AND ANALYSIS ON AN IBM PSII
SYSTEM COMPUTEP. OR COMPATIBLE. LCATFD IN COUMBUS STSTEM COMPUTER, OR COMPATIBLLE, LOCATED IN COLUMBUS,
OHIO. SOFTWARE TO BE FURNISHED FO THIS UNT the following features:
while connected to the field unit via a telephone LINK. THE USER SHALL BE ABL
MINIMUM THE FOLLOWING TASKS:
a. real-time viewing of vehicle speed, classification AND WEIGHT, SELECTABLE BY LANE, WITH OPTION AND WEIGHT SELECT
GRAPHICAL OUTPUT.
B. RESETTILG OF THE SYSTEM CLOCK AND DATE,
c. MONITOR SYSTEM MEMORY IN TERMS OF STORAGE MONITIR STM,
REMAINING,
D. SET up and initiate the generation of sumuary SYSTEM.
E. VIEW GENERATED SUMMARY REPORTS,

EENERATE AND VIEW ERROR REPORTS INCLUDING TIME
DOWN, SYSTEM ACCESS. AUTOCALIBRATION AND IMPROPERLY COMMLETED RECTRDS
T TANSFER SELECTED RAW DATA FILES OR GENERATED
REPORTS FROM THE SITE SYSTEM TO TEF OFIIE REPORTS FROM THE SITE SYSTEM TO THE OFFICE
COMPTER. ALL FRRMATS ARE SPECIFIED IN TABLE A.
. PURGE OLD DATA FILES FROM THE SYSTEM.
- bactors. DISPLAY. MODIFY AND REPLACE ALL SOFTWARE
RESIDENT AT THE FIELD UNIT. ALL ACCUMULATED RESIDENT AT THE FIELD UNIT. ALL ACCUMULATED
DATA SHALL REMAIN IN MEMORY WHILE THIS dATA SHALL REMAIN IN
function IS BEING USED.
2. POLL ANY FIELD STATION AT ANY TIME. THE USER
SHALL be able To SET THE FOLLOWING SYSTEM SARAMETERS:
A. Calling seauence number/polling group
c. COUNTY NUMBER (IINCLUDING
D. STATION NUMBER (5 DIGITS)
E. LOCATION DESCRIPTION (40
E. LOCATION DESCRIPTION (40 CHARACTERS)
G. TIME AND date at which automatic polling will
begin.
3. Software shall provide automatic dial-up capabilities and shall record the following problems:
a. fallure to make connection because of wrong b. fielo station answered but no data transmitted C. TRANSMISSION IN WRONG FORMAT
D. TRANSMISSION OF TOO MUCH DAT
E. TRANSMISSION OF WRONG DATA
E. TRANSMISSION OF WRONG DATA
f. TRANSMISSION OF ONLY A PARTIAL AMOUNT OF DATA
4. THE CONTRACTOR SHALL PROVIDE DIAGNOSTIC SOFTWARE TO COMPLETE THE FOLLO
CENTRAL CONTROL UNIT:
A. TEST THE MEMORY AND DISK SYSTEMS
B. TEST ALL INTERNAL CIRCUITS IN THE FIELD UNIT.
C. TEST THE LOOP DETECTORS, PIEZO-CABLES, AND SCALE OUTPUT. D. PROVIDE DIAGNOSTIC MESSAGES INDICATING THE
DETECTED PROBLEMS FORMATTED FOR OUTPUT VIA DETECTED PROBLEMS FORMATTED FOR OUTPUT VIA
5. DISPLAY AND EDIT RAW VEHICLE RECORD FILES AND GENERATE REPORTS. SOFTWARE SHOULD GENERATE AS
A MINIWUM, THE FOLLOWING DATAFILES ANO REPORTS. DATAFILES
A. TRUCK weight record in the traffic monitoring GUIDE (TMMG) FORMAT (SEE TABLE A).
CSEE TABLE B.).
c. STATION DESCRIPTION RECORD IN THE TMG FORMA
c. STATION DESCRIPTION RECORD IN THE TMG FORMA
D. FOR CLASS 4 AND ABOVE. INDIVIDUAL VEHICLE NEAREST SECOND. VEHICLE SPEED, VEHICL CLASSIFICATION AND INDIVIDUAL SINGLE/TANDE
WHEEL WEIGHTS.

\section*{REPORTS}
the format of the reports shall meet the APPROVAL OF ODOT'S BUEAU OF TRANSORETTATION
TECHNICAL SERVICES (KEN RORNS, PHONE: \(614-466-285\) TECHNICAL SERVICES (SEN CORNS. PHONE \(: 614-466-2852\)
COPIIS OF ALL REPORTS SHALL BE PESETTED TO THE ENGINEER AT THE PRECONSTRUCTLIM
REVIEW AND SUBSEOUENT APPROVAL.
A. Distribution of vehicle classification by hour OF DAY AND EXPRESSED AS
FOR ALL VEHICLE TYPES

REPORTS CON'T
B. DISTRIBUTION OF SPEEDS BY VEHICLE CLASSIFIICATION
C. DISTRIBUTION OF VEHICLE SPEEDS BY HOUR OF DAY
D. WEIGHT VIOLATIONS AND INVALID MEASUREMENTS SOR D. WEIGHT VIOLATIONS AND INVALID MEASUREMENTS FOR TOTAL VIOLATIONS
E. GROSS WEIGHT VIOL
E. GROSS WEIGHT VIOLATIONS BY HOUR OF DAY FOR CLASSES
 4-15 (FOR TANDM. RBIDEE, GROSS AXLE)
G. GROSS WEIGHTS FOR VEHCLI C. AVERAGE WEIGHT FOR EACH
6. the contractor shall install at no adoitional EXPENSE ANY SOFTWARE UPGRADES PRODUCED WITHIN
24 MONTHS AFTER ACCEPTACE OF THIS WIM SYSTEM. THE FIELD UNIT SHALL BE EQUIPPED WITH SURGE PROTECTION
1. DATA LINE PROTECTION
2. LOOP DETECTOR-AMPLIFIER INPUT
3. PIEZO-ELECTRIC SENSORS-AMPLIFI

OPE CONTRACTOR SHALL FURNISH FOUR (4) COMPLETE SETS AND OTHER DOCUMENTATION NECESSARY TO OPERATE AND MATNTIS HE SYSTEM. THE CNTRACTOR SHALL PROVIDE DOCUMENTATIO HOOTING, AND MAINTENANCE OF ALL EOUIP OPERATION. TROUBLE SHOOTING. AND MAINTENANCE OF ALL EOUIPMENT PRIOR TO THE
ACCEPTANCE OF THE UNIT. DOCUMENTATION SHALL CONTAIN:
- maintenance manuals which include schematics CIRCUIT DIAGRAMS, PARTS LISTS, PARTS PRICE LIST,
PARTS LIST WTHH CROSS-REFERENCE OF ALL COMPONENTS PARTS LIST WITH CROSS-REFERENCE OF ALL
BY MANUFACTURERS, AND INSTRUCTIONS.
2. documentation of all software used with the
3. Proposed software licensing agreements.
4. RS-232 SERVICE INTERFACING AND ANY REQUIRED
INTERFACE HAROWARE CABLES AND DEVICE DRIVERS.
installation. the field unit shall be installed and SUCCESSFULLY TESTED FOR 60 CONSECUTVE DAYS OF UNINTERRUPTE
SERVICE BEFORE FINAL ACCEPTANCE BY THE DEPARTMENT.
the contractor shall calibrate the field unit to HIS SATISFACTION AND DELLARE IT REEADY FOR ACCEPTANCE
ESTING. THE SCALE SHALL MEET THE PERFORMACE ROUING. THE SCALE SHALL MEET THE PERFORMANCE
REQUREMENTS GVEN IN TABE 2 OF ASTM E I3IB-9O, ANN HALL ALSO PROPERLY CLASSIFY A MINIMUM OF 90\% OF ALL
EHICLES AND 90\% OF THE 5 AXLE SEMITRALLER TRUCKS.

\section*{ITEM SPECIAL \\ WEIGH-IN-MDTIDN PAVEMENT SYSTEM}

ACCEPTANCE. UPON COMPLETION OF THE CALIBRATIO THE FIELD DATA COLLECTION UAIT SHALL UNDERGO A 60 DAY ACCEPTANCE PERIOD. THIS CONSTITUTES A PERIOD OF 60 INTERPRETATION IS REOUIRED BY THE CONTRACTOR OR ODOT PERSONNEL TO VIEW OR obTAIN DATA AND TABLES WhICH ARE BEING ACCUMULATED. AT THE BEGINNING OF EACH ACCEPTANCC
PERIOD, THE CONTRACTOR SHALL DEMONSTRATE UNIT ACURACY FOR ALL SEHICLE TYPES. WEIGHTS. AND SPEEDS SELECTED BY ODOT. SHOULD THE UNIT NOT PERFORM SATISFACTORILY FOR
THE 60 DAY ACCEPTANCE PERIOD. IT SHALL BE SUBJECTED TO HE 60 DAY ACCEPTANCE PERIOD. IT SHALL BE SUBJECTED TH
ANOTHER 60 DAY ACCEPTANCE TEST AFTER CORECTION OF THE DEFECT. IF THE UNIT DOES NOT PERFORM SATISFACTORILY AFTER THE SECOND ACCEPTANCE TEST. ODOT WILL HAVE THE
OPTION OF CONTINUING WITH FURTHER GO DAY ACCEPTANCE PERIODS OR HAVING THE SYSTEM NONPERFORMED AND THE pavement replaced at the contractors expense,
warranty. the manufacturer shall warranty all HARDWARE AND SOFTWARE FOR A PERIOD OF ONE YEAR AFTER ACCEPTANCE BY THE DEPARTMENT. ANY MALFUNCTIONS WITHIN
THE SYSTEM DURING THE WARPANTY PERIOD SHALL BE CORRECTED THE SHSTEM DUURANG THE WARRANTY PETVER AT NO COST.
payment. unit cost for the weigh-in-motion system SHALL INCLUDE COST OF ALL HAROWARE, SOFTWAAE, LABOR AND INCIDENTALS NECESSARY TO COMPLETE THE WEIGH-IN-MOTION
SYSTEM. TOTALS HAVE. BEEN CARRIED TO GENERAL SUMMARY.
\(\frac{\text { ITEM }}{\text { SPECIAL }}, \frac{\text { TOTAL }}{1} \quad \frac{\text { UNIT. }}{\text { EACH }} \quad \frac{\text { DESCRIPTION }}{\text { WEIGH-IN-MOTION PAVEMENT }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{table a} \\
\hline colunns & \begin{tabular}{c}
no. of \\
coums \\
\hline
\end{tabular} & \multicolumn{2}{|l|}{oescraption} & \(\xrightarrow{\text { TwG ReFE. }}\) \\
\hline & & \multicolumn{3}{|l|}{\(\xrightarrow{\text { THUCR WEIEHT ReCORD COOE (7) }}\)} \\
\hline \({ }_{4}^{2-5}\) & \({ }_{2}^{2}\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 6-8 & 3 & & & \\
\hline 10-11 & & \multicolumn{3}{|l|}{OIRECTION Of TAAEL} \\
\hline \({ }_{\substack{12-13 \\ 1-15}}\) & 2 & \multicolumn{3}{|l|}{Year of data
Houth or oata} \\
\hline 16-17 & 2 & \multicolumn{3}{|l|}{OATE Of yoith} \\
\hline & & \multicolumn{3}{|l|}{VEHCLE TYPE COOE} \\
\hline \({ }^{24-265}\) & \({ }_{1}\) & \multicolumn{3}{|l|}{(encile} \\
\hline & \({ }_{3}^{2}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \({ }_{3}^{35-35}\) & & & & \\
\hline 36-40 & 5 & \multicolumn{3}{|l|}{\begin{tabular}{ll}
(OPEN) & \(5-6-26\) \\
CONNODITY CODE \\
IOPTIONAL)* & \(5-6-27\)
\end{tabular}} \\
\hline 42-45 & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{total welght of thick or coubimation.}} \\
\hline 46 -48 & \({ }^{3}\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \({ }_{\text {cke }}^{52-54}\) & \({ }_{3}\) & & & \\
\hline 55-57 & \({ }^{3}\) & \multicolumn{3}{|l|}{} \\
\hline \({ }_{58-60}\). & 3 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 61-63 & & & & \\
\hline 64.66 & 3 & \multicolumn{3}{|l|}{(A-B) AXLE SPACIMG (fEET AND (EETHS)} \\
\hline \({ }^{67-69}\) & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline (13-76 & & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{total wheelaase (feet and tenths) recoro serial nuuber}} \\
\hline \({ }_{7-79}\) & \({ }_{3}\) & & & \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{80 -}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & & & 5-6-32 \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{countre \({ }^{\text {cosen }}\) a cominvation reco}} \\
\hline & & & & \\
\hline \({ }^{85-88}\) & 4 & \multicolumn{3}{|l|}{} \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
table b \\
vehicle classification record
\end{tabular}} \\
\hline coluns & \begin{tabular}{c}
Mo of \\
coiuns \\
\hline
\end{tabular} & oescription & \(\xrightarrow[\substack{\text { TUG REFE } \\ \text { PAGE }}]{ }\) \\
\hline 2-3 & \({ }_{2}\) & & \\
\hline \({ }_{4-5}^{2-3}\) & \({ }_{2}^{2}\) & & \(\underbrace{\substack{\text { c- }}}_{\substack{5-6-2 \\ 5-6-3}}\) \\
\hline \(\stackrel{6-8}{9}\) & 3 & & \\
\hline 込 & 2 & Year of data & \({ }_{5}^{5-6-6}\) \\
\hline \({ }_{1}^{12-15}\) & \({ }_{2}\) & Youtt of yonth & \({ }_{\substack{\text { c-6,-4 }}}^{\substack{\text { c-7 }}}\) \\
\hline \({ }_{\substack{18-19}}^{16-19}\) & \({ }_{2}^{2}\) & & \(\underset{\substack{5-6-6-14 \\ 5-6-14}}{\substack{\text { a }}}\) \\
\hline \({ }^{20-23}\) & \({ }_{4}^{2}\) & & \(\underset{\substack{5-6-6-14}}{5 \cdot 14}\) \\
\hline 24-26 & 3 & & 5-6-14 \\
\hline & & wuMber of buses & \\
\hline 29-31 & 3 & & \({ }_{5}^{5-6-14}\) \\
\hline \({ }_{\substack{32-33 \\ 34-35}}\) & \({ }_{2}^{2}\) & OF 3-AXLE SIR GULE SINGIE UNIT & \\
\hline 36-37 & 2 & munger of 4 or less axle swle trahler & 5-6-14 \\
\hline 38-40 & \({ }^{3}\) & & \(\underbrace{5-14}_{5-6-6.14}\) \\
\hline 41-42 & 2 & & 5-6-14 \\
\hline 13-44. & 2 & number of 5 or less axte wult-taller & 5-6-14 \\
\hline & \({ }_{2}^{2}\) & & \\
\hline & & & \\
\hline & ' & \begin{tabular}{l}
WOTORCYCLE REPORTING INDICATOR \\
VEHICLE CLASS COMBINATION INDICATOR
\end{tabular} & \({ }_{5}^{5} 5\) \\
\hline & & & \\
\hline & & 1- OUTSISE RRIGGTUOSTI LAAE & \\
\hline & & & \\
\hline \({ }_{5}^{52-56}\) & \({ }_{2}^{5}\) & & \\
\hline \({ }_{\text {cose }}^{60-68}\) & & & \\
\hline - & 4 & class 15 & \\
\hline \(82-84\) & 3 & & \\
\hline \({ }_{86-89} 8\) & 4 & & \\
\hline 90 & & foutre suf fix & \\
\hline 92-95 & 4 & \({ }_{\text {log pount }}\) & \\
\hline
\end{tabular}
CONTINUATION RECORD LUSED ONLY FOR TRUCK COMBINATIONS HAVING
\begin{tabular}{|c|c|c|c|}
\hline colunus & \begin{tabular}{c}
Mo of \\
coiums \\
\hline
\end{tabular} & description & \[
\underset{\substack{T H L_{P A G E} \\ \text { REFF }}}{ }
\] \\
\hline \({ }^{1-28}\) & \({ }^{28}\) & & \\
\hline - & & & 32 \\
\hline \({ }^{35-37}\) & 3 & H-AXLE WEIGHT LHUDORESS Of POUI & \\
\hline 38-40 & 3 & 1 --AxLe weight humoreos of pound & \\
\hline 41-43 & 3 & J-AXLE WEIGHT HuMoresos of pounos) & \\
\hline 11-46 & 3 & & \\
\hline 50-52 & 3 & & \({ }_{5}^{5-6-32}\) \\
\hline \({ }_{\text {ct-55 }}^{53}\) & \({ }^{3}\) & (E-F) AxLE SPACLIMG (fEEET AND TEETHS) & \({ }_{5}^{5-6-32}\) \\
\hline -56-58 & 3 & & \\
\hline \(62-64\) & 3 & & \\
\hline & \({ }^{3}\) & (1-J) AXLE SPACIMG (FEET ANO EETHS) & \({ }_{5-6-32}\) \\
\hline & \({ }_{3}^{3}\) & (1-K) AXLE SPACMG (feti & \\
\hline \({ }_{74-76}\) & & & \({ }_{\substack{5-6-32 \\ 5-6-32}}^{\text {c-32 }}\) \\
\hline & 3 & RecCoro scilil Muser (AME AS face recorol & coccess-6-32 \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
table C \\
station description record
\end{tabular}} \\
\hline colunus & \[
\begin{aligned}
& \text { no. of } \\
& \text { coivurs }
\end{aligned}
\] & description & \\
\hline & \(\frac{1}{2}\) & & \\
\hline \({ }_{\substack{2-3 \\ 4-5}}^{\substack{\text { c- }}}\) & \({ }_{2}^{2}\) & & \\
\hline 6-8 & \({ }^{3}\) & Station IDewitifarion muber & \({ }_{\substack{5 \\ 5-6-3}}^{5-6}\) \\
\hline \(10-11\) & 2 & & \\
\hline \(13-12\) & \(\frac{1}{5}\) & & \({ }_{\substack{5 \\ 5-6-6-7}}^{\substack{\text { c-7 }}}\) \\
\hline coseren & 3 & count coot & \({ }_{\substack{5-6-6 \\ 5}}^{5}\) \\
\hline \({ }_{\substack{2-32 \\ 33}}\) & 12 & & \({ }_{\substack{5 \\ 5-6-7}}^{\substack{-6,7}}\) \\
\hline \({ }_{34-35}\) & 2 & YEAR STATIO WAS ESTABLISHEO & \({ }_{5}^{5-6-8}\) \\
\hline \({ }_{3}^{36}\) & 1 & TrPE OF STIE & \(\substack{5-6-8 \\ 5-6-8}_{\substack{\text { che }}}\) \\
\hline \({ }_{38}^{37}\) & ' & & \({ }_{\substack{5 \\ 5-6-6-8}}^{\substack{-6}}\) \\
\hline & 1 & & \({ }_{5}^{5-6-8}\) \\
\hline & \({ }_{35}^{6}\) & Aadt uost curent figue & \({ }_{5}^{5-6-9}\) \\
\hline & & distance and direction frou nearest & \\
\hline
\end{tabular}```

[^0]: or strinar sezdng ano mulching. 22.942 so. y
 659 COMMERCIAL FERTILIZER
 $\left.659 \begin{array}{l}\text { WATER } \\ \text { REPAIR SEEDUG }\end{array}\right)$
 242 E. Y CH
 2 TN
 50 N
 50 M .6 AL
 $6000 \mathrm{So} . \mathrm{YD}$

