

Final Structure Foundation Exploration Report

MOE-TR183-0.13

Monroe County, OH March 7, 2023

Prepared for:

Office of the Monroe County Engineer
47134 Moore Ridge Road
Woodsfield, OH 43793

By:

HDR 9999 Carver Road, Suite 210 Blue Ash, OH 45242

Contents

EXEC	CUTIV	/E SUMMARY	1
1	INTR	RODUCTION	2
2	GEO 2.1 2.2 EXPL	DLOGY AND OBSERVATIONS Project Setting Soil and Geologic Setting 2.2.1 Project Soils 2.2.2 Bedrock Geology LORATION Site Reconnaissance	2 3 3
	3.13.23.3	Sile Recomaissance	5
4	FIND	DINGS	6
5	ANAI 5.1 5.2 5.3 5.4	LYSES AND RECOMMENDATIONS Determination of Soil Parameters Bridge Foundations Scour Evaluation Parameters Recommendations 5.4.1 Site Preparation 5.4.2 Settlement	7 8 8
6		TATIONS	
7	REF	Tables	. 10
		Summary of Pavement Subgrade Borings	
		Summary of Groundwater Levels	
		Recommended Design Soil Strength Parameters	
		Scour Analysis Parameters	

Appendices

Appendix A. Exhibits	A-1
Exhibit No. 1: Site Vicinity and Topographic Map	
Exhibit No. 2: Physiographic Regions of Ohio	
Exhibit No. 3: Surficial Geology	
Exhibit No. 4a: Soil Survey Map - Soil Types	
Exhibit No. 4b: Soil Survey Map - Corrosion of Concrete	
Exhibit No. 4c: Soil Survey Map - Corrosion of Steel	
Exhibit No. 4d: Soil Survey Map - pH Levels	
Exhibit No. 5: Bedrock Geology Map	
Exhibit No. 6: Bedrock Topography Map	
Exhibit No. 7: Mines of Ohio Map	
Exhibit No. 8: Boring Location Plan	
Appendix B. Boring Logs and Rock Core Photos	B-1
Appendix C. Laboratory Testing	C-1
Appendix D. Analyses	D-1

This page is intentionally left blank.

EXECUTIVE SUMMARY

This report summarizes the results of the structure foundation exploration program performed in support of the replacement of Bridge No. MOE-TR183-0.13 (SFN 5634504) carrying Paines Run Road, Township Road 183 (TR 183), over Paines Run in Salem Township in eastern Monroe County, just to the northeast of the unincorporated community of Cameron, Ohio.

The report includes the geotechnical information obtained from borings and laboratory testing performed under this study. The exploration, along with the laboratory test results are presented in more detail in Section 3 and Appendices B and C of this report.

Based on HDR's assessment of the borings, the generalized soil profile consists of alluvial sand and gravel deposits overlying shale, claystone, and sandstone bedrock. Further discussion on the encountered subsurface conditions is located in Section 4.

Given the relatively shallow depth to bedrock (approximately 25 feet), it is anticipated that deep foundations will be utilized to support the new bridge structure. The selected design build team will determine the appropriate foundation type. However, given the proximity of Paines Run, the shallow groundwater, and interbedded loose to medium dense sands and gravel deposits within the soil profile, pile foundations are anticipated to be the preferred foundation option. The recommended design parameters for the foundation analyses to be performed by the design build team are provided in Section 5 and in Appendix D.

1 INTRODUCTION

This report summarizes the results of the structure foundation exploration program performed in support of the replacement of Bridge No. MOE-TR183-0.13 (SFN 5634504) carrying Paines Run Road (TR 183) over Paines Run. The MOE-TR183-0.13 project is located in Salem Township in eastern Monroe County, just to the northeast of the unincorporated community of Cameron, Ohio as shown on the Site Vicinity Map (Exhibit No. 1) in Appendix A. The work includes the removal of the existing 49-foot bridge structure and its replacement with a presumed single span box beam structure using the design-build contracting method. Minimal approach work is expected, with a total project length of 200 feet, starting at Straight Line Mileage (SLM) 0.13 and extending to approximate SLM 0.17.

This geotechnical study was authorized by the Ohio Department of Transportation (ODOT) on October 12, 2022, under the VAR-STW Geotechnical Engineering Services CEAO 2023-2 contract. The geotechnical services performed under this task order were carried out in general accordance with ODOT's Specifications for Geotechnical Explorations (SGE) Geotechnical Design Manual (GDM), Bridge Design Manual (BDM), and the Location and Design Manual, Volume 2. All four documents are dated July 2022. The scope of work relative to this exploration report included:

- a visual reconnaissance of the project site,
- review of available soil and geologic information within the project area,
- the development and performance of a subsurface exploration program to evaluate the existing subsurface conditions at the bridge location,
- laboratory testing on selected soil and rock samples in accordance with the requirements of the SGE,
- characterization of a generalized soil profile along with recommended design strength parameters, and
- preparation of this Structure Foundation Exploration report.

This report presents the descriptions and interpretations of the encountered subsurface conditions at the site and provides general geotechnical recommendations to assist in the design of the replacement bridge structure by the selected design build team.

2 GEOLOGY AND OBSERVATIONS

2.1 Project Setting

This project is located within a valley flood plain the northeast portion of Monroe County, Ohio. The rural setting surrounded by wooded hillsides and agricultural parcels. A residential structure, as well as an existing farm equipment supplier and boneyard are located adjacent to the project site. Elevations along the project site range from about El. 690 outside the bridge limits to approximately El. 680 at the stream crossing itself.

2.2 Soil and Geologic Setting

A review of the Physiographic Regions of Ohio map (Ohio Division of Geological Survey, 1998) indicates that the project site is located within the Little Switzerland Plateau region of the Allegheny Plateaus section of the Appalachian Plateaus province (Exhibit No. 2 in Appendix A). The Little Switzerland Plateau region is characterized by highly dissected, high relief valleys of generally 450 ft to 750 feet along the Ohio River. Elevations in this region generally range from 450 to 1,400 feet above sea level. Soils in the Little Switzerland Plateau typically consist of red and brown silty-clay loam colluvium over Pennsylvanian-age upper Conemaugh group through Permian-age Dunkard group cyclic sequences of red and gray shales, and siltstones, sandstones, limestones, and coals.

The project site is directly drained by Paines Run, with the confluence of Paines Run and Sunfish Creek located approximately 900 feet downstream of the project site. Sunfish Creek and its tributaries drain much of the northern part of Monroe County, and eventually drains into the Ohio River, approximately 5 miles east of the project site.

According to the Surficial Geology data from the Ohio Department of Natural Resources (ODNR) Division of Geological Survey (Exhibit No. 3 in Appendix A), surficial soils at the site consist of primarily Holocene-aged alluvial deposits (a) with underlying Wisconsinan-aged sand and gravel (SG). These surficial deposits are underlain by Pennsylvanian bedrock including sandstone, shale, siltstone, clay, limestone, and coal (P). The alluvium develops in floodplains of modern streams with soils ranging from silt to clay to boulders, commonly including organic materials. The sand and gravel deposits consist of intermixed and interbedded sand and gravel, commonly containing thin, discontinuous layers of silt and clay. The deposits may be finely stratified to massive, as well as cross bedded. The thickness of the sand and gravel deposits at the project site is approximately 25 feet.

2.2.1 Project Soils

The USDA Soil Survey of Monroe County indicates the most prevalent surficial soil types within the project limits are the Chagrin (Chg1AF) and Hartshorn (He) silt loams as shown in Exhibit No. 4a.

Soils of the Chagrin silt loam (0 to 3 percent slopes) consist of 95 percent Chagrin soils, and 5 percent minor components. The Chagrin soils generally consist of silt loam and loam overlying stratified gravelly fine sandy loam to silt loam derived from fine loamy alluvium. The well drained soils are typically located in flood plains with a moderately high to high water capacity.

Soils of the Hartshorn silt loam (0 to 2 percent slopes) consist of 100 percent Hartshorn and similar soils. Hartshorn soils generally consist of silt loam, gravelly silt loam, sand and gravel overlying unweathered bedrock derived from alluvium. The well drained soils are typically located in floodplains with a very low to moderately high water capacity.

As shown on Exhibit Nos. 4b through 4d in Appendix A, the soil survey indicates the soils within the project area are considered to have low to moderate risk of corrosion to concrete, high risk of corrosion to steel, and have pH levels of 6.1 to 6.5.

2.2.2 Bedrock Geology

As shown on Exhibit No. 5 (Bedrock Geology Map), the bedrock geology mapped within the project area is the Pennsylvanian age Monongahela Group (IPm). The Permian-Pennsylvanian age Dunkard Group (PIPd) is located at higher elevations on the valley walls and ridges outside of the project area. Bedrock elevations in the project area are less than 700 feet within the Sunfish Creek valley as shown

on Exhibit No. 6 (Bedrock Topography Map), and quickly climbs upon the valley walls to El 750 or higher.

The Upper Pennsylvanian-age Monongahela Group generally consists of shale, siltstone, limestone, sandstone, and coal with laterally extensive nonmarine limestone and coal beds. General features include lenticular, planar, nodular, irregular, and cross bedding, with thin to massive bedding. The sandstones are described as fine to coarse grained, locally calcareous and conglomeratic, thin to massive to cross bedded, and micaceous. Limestone is described as micritic to coarse grained, thin to medium bedding including nodular to irregular bedding. Coals are banded, bituminous, thin to thick bedded with local to regional distribution.

No previous surface or deep mining was mapped at the project site itself. However as shown on the ODNR Mines of Ohio Map (Exhibit No. 7), significant deep mining of the Pittsburgh No. 8 coal seam of the Monongahela group has been performed approximately 0.75 mile northeast of the project site. Additional information provided by ODNR indicates this coal seam to be near El. 450 to El. 500. Several abandoned mine entrances are also located within approximately 0.75 mile to 1.0 mile south and west of the project site. These mine openings are associated with the Meigs Creek No. 9 and Uniontown No. 10 coal seams, also of the Monongahela group. These seams ranged from roughly El. 700 to El. 755 based on available historic mining information provided by the ODNR.

3 EXPLORATION

3.1 Site Reconnaissance

A visual reconnaissance of the project site and surrounding area was performed by an HDR geotechnical engineer during the drilling activities on October 17 and 18, 2022. The project site is located within a relatively wide valley containing Sunfish Creek, near the toe of the valley wall. The existing bridge is a one lane structure carrying TR 183 over Paines Run. This single span structure is supported by two approximately 23-inch deep by 9-inch wide, steel sections spanning between the two bridge abutments. The abutments appear to have been previously constructed of 15-inch by 15-inch by 36-inch stacked stone blocks, which have since been braced and strengthened with a soldier pile and lagging wall along the face of the masonry abutment. The lagging consists of corrugated steel sheeting at the north abutment, and guardrail at the south abutment. Measured from the creek bed to the bridge deck surface, the abutment walls are approximately 9 feet in height along the south abutment and approximately 4.5 feet at the north abutment.

The existing bridge deck consists of approximately 2.5-inch by 3.5-inch wood planks, placed perpendicular to the alignment, supported on six evenly spaced 3-inch wide by 5-inch deep steel sections positioned parallel to the alignment. Multiple gaps and holes were noted near the middle bridge span from apparent rot and decay of the planks. The bridge deck is supported by 10 approximately 6.5-inch wide and 8-inch deep steel sections spanning perpendicular to the alignment and connected to the two 23-inch deep by 9-inch wide steel sections running along the sides of the bridge. The exceptions are the southern and northern most 6.5-inch by 8-inch steel sections. As the bridge is set slightly askew to the creek, these steel sections do not span the entire width of the bridge, but rather intersect their respective abutment. Multiple 6.5-inch by 8-inch steel sections exhibited severe rust and corrosion resulting in section loss of the webbing at several locations.

An approximately 12-inch diameter rubber pipe with a 24-inch diameter corrugated plastic pipe serving as outer casing was observed to be traversing beneath the bridge structure along the south abutment wall. No details on this overland pipe were available at the time of the reconnaissance.

3.2 Subsurface Exploration

Two borings were drilled as part of the geotechnical exploration program to assess the subsurface conditions within the MOE-TR183-0.13 project limits. The locations of the test borings, are shown on the Boring Location Plan (Exhibit No. 8) in Appendix A. These as-drilled locations are reflected on the boring plan, boring logs and Table 3-1.

Table 3-1. Summary of Bridge Structure Borings

Boring Number	Boring Type ¹	Alignment	Station	Offset	Surface (El., feet)	Bottom of Borehole (El., feet)
B-001-0-22	E1	TR 183	9+85	12 LT	687.1	647.1
B-002-0-22	E1	TR 183	10+30	7 RT	688.7	648.8

¹ODOT Boring Designations: Bridge Structure (E1)

The borings were drilled by Central Star Drilling under the supervision of an HDR geotechnical engineer between October 17 and October 18, 2022, with a Diedrich D-50 track rig. The rig was calibrated on March 7, 2022, with an energy ratio of 86.8%. All borings were drilled in general accordance with the *Specifications for Geotechnical Explorations* (ODOT revised July 2022) utilizing 3.25-inch internal diameter hollow stem augers to advance the borings to the top of bedrock. The sampling of the soils was accomplished in accordance with the *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*, ASTM D 1586. In the split-barrel sampling procedure, a standard 2-inch outside diameter split-barrel sampling spoon is driven into the ground with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a typical 18-inch penetration is recorded as the standard penetration test (SPT) resistance or N_{SPT}-value. The N_{SPT}-value is then corrected to an energy ratio of 60%, termed N₆₀, which is used for design. Sampling of the underlying bedrock was performed in accordance with the *Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation*, ASTM D 2113, using an NQ2-size double tube-swivel barrel with a diamond bit. Boring logs and photographs of the recovered rock core samples are provided in Appendix B.

3.3 Laboratory Testing

The obtained soil and rock samples were visually examined by an HDR geotechnical engineer, and representative soil samples selected for laboratory testing to confirm the field classification and to assess the various engineering properties of the soils. Soil index testing performed by HDR included 25 natural moisture content tests (per ASTM D 2216), 13 Atterberg limit determinations (per ASTM D 4318), and 13 grain size analyses (per ASTM D 422). The results of the soil index tests are presented on the final boring logs located in Appendix B. In addition to the soil index testing, 1 unconfined compression test (ASTM D 7012 – Method C) and 3 Point Load Strength Index of Rock (ASTM D 5731) tests were performed on bedrock samples. Results of these tests are presented on the individual laboratory sheets included in Appendix C.

4 FINDINGS

The generalized soil profile as encountered in the borings consists of alluvial sand and gravel deposits overlying shale, claystone, and sandstone bedrock. The upper layers of the granular deposits consisted primarily of loose to medium dense Sandy Silt (A-4a), Gravel with Sand, Silt, and Clay (A-2-6), and Gravel with Sand and Silt (A-2-4). These soils were encountered to a depth of 16 feet below ground surface (bgs) (El. 671.1) in Boring B-001-0-22 and 20 feet bgs (El. 668.7) in Boring B-002-0-22. A thin layer of medium dense Gravel with Sand (A-1-b) was also encountered in Boring B-002-0-22, from 11.5 to 13 feet bgs. The N₆₀-values in the upper soil layers ranged from 4 to 23 blows per foot (bpf).

A significant increase in the relative density of the granular deposits was noted beneath these upper layers, with dense to very dense Gravel and Stone Fragments with Sand (A-1-b) and very dense Gravel and Stone Fragments with Sand, Silt and Clay (A-2-6) encountered. This layer extended to the top of rock at 23.5 feet bgs (El 663.6) in Boring B-001-0-22 and to a very dense Sandy Silt (A-4a) exhibiting relic rock structure at 22.5 feet bgs (El. 666.2) in Boring B-002-0-22. This residual soil extended to the top of rock at 25 feet bgs (El. 663.7). The N_{60} -values in these lower layers ranged from 35 to 91 bpf.

Shale, claystone, and sandstone bedrock was encountered underlying the sand and gravel deposits to the boring termination depths of approximately 40 feet. Shale was encountered from a depth of 23.5 to 29.5 feet bgs (El. 663.6 to El. 657.6) in Boring B-001-0-22 and 25 to 28 feet bgs (El. 663.7 to El. 660.7) in Boring B-002-0-22. The shale was characterized as slightly weathered, very weak to slightly strong with a stratum rock quality designation (SRQD) of 52% to 67%. Claystone was encountered underlying the shale from a depth of 29.5 feet (El 657.6) to 34.7 feet bgs (El. 652.4) in Boring B-001-0-22 and 28 feet bgs (El 660.7) to 36.9 feet bgs (El. 651.8) in Boring B-002-0-22. The claystone was characterized as moderately to slightly weathered and weak to very weak with a SRQD ranging from 49% to 73%. Sandstone was encountered underlying the claystone at depths of 34.7 feet bgs (El 652.4) and 36.9 feet bgs (El 651.8) in Borings B-001-0-22 and B-002-0-22, respectively, to termination. The sandstone was characterized as unweathered to slightly weathered and slightly to moderately strong with a SRQD of 97% to 100%.

Groundwater was encountered in both borings during drilling. As water was introduced during drilling activities to perform rock coring, water levels upon completion were not obtained. Furthermore, the borings were sealed immediately upon completion as the borings were performed in close proximity to the traveled lane, and delayed water readings were not obtained. Groundwater depths and elevations encountered in the borings are tabulated in Table 4-1 and included on the boring logs in Appendix B.

Table 4-1. Summary of Groundwater Levels

Boring	Depth/Elevation During (ft)	Notes
B-001-0-22	12/675.1	Water added at 25.0 feet. Boring completed the same day
B-002-1-22	10/678.7	Water added at 25.5 feet. Boring completed the same day

5 ANALYSES AND RECOMMENDATIONS

5.1 Determination of Soil Parameters

Soil parameters were developed primarily from laboratory tests, supplemented by published correlations with SPT data and plasticity indices and our engineering experience and judgement. A summary of the recommended strength parameters and design profile elevations are provided in Table 5-1. Details of the parameter development are located in Appendix D.

Table 5-1. Recommended Soil Strength Parameters

Recommended	Design Profile	Material Medium Dense Loose Granular Medium Dense Medium Dense (submerged) Dense to Very Dense Granular	Unit Wt. ¹	Undrained Streng		Drained Stren	
Top Elevation (ft)	Bottom Elevation (ft)	Material	γτ (pcf)	S _u (psf)	ф' (°)	c' (psf)	ф' (°)
688	686	Medium Dense	125	0	31	0	31
686	682	Loose Granular	120	0	28	0	28
682	676	Medium Dense	125	0	31	0	31
676	669	=	125	0	31	0	31
669	635.5		135	0	37	0	37

^{1.} Effective unit weights to be used below groundwater (assumed at El 676 in recommended design soil profile).

5.2 Bridge Foundations

The project involves the replacement of an existing single-span structure carrying Paines Run Road (TR 183) over Paines Run. As this will be a design-build project, providing a recommended foundation type is outside the scope of this study. However, given the interbedded layers of loose and medium dense granular soils overlying the site, and the relatively shallow depth to competent bedrock (approximately 25 feet bgs), it is anticipated that deep foundations will be utilized to support the bridge abutments. With the adjacent creek, shallow groundwater, and granular soil encountered within the soil profile, driven or cast-in-place pile foundations rather than drilled shafts are anticipated to be the preferred foundation type to avoid potential complications related to seepage and potential caving of the shaft walls during excavation. As such, Table 5-2 below provides a summary of recommended design parameters for use by the selected design build team for axial and lateral pile analyses using both APILE and LPILE software programs by Ensoft. Any piles spaced closer than five (5) pile widths must also consider group effects.

Table 5-2. Recommended Axial and Lateral Pile Design Parameters

	ded Design ofile		Unit	Wt. ¹		k
Top Elevation (ft)	Bottom Elevation (ft)	Material	γ _T (pcf)	γε _{ff} (pcf)	E50	(pci)
688	686	Medium Dense	125	125	-	90
686	682	Loose Granular	120	120	-	25
682	676	Medium Dense	125	125	-	90
676	669	Medium Dense (submerged)	125	62.6	-	60
669	635.5	Dense to Very Dense Granular	135	72.6	-	125

^{5.3} Scour Evaluation Parameters

Continuous sampling of the soils was conducted within each boring for a length of 6 feet beginning from the approximate elevation of the stream bed for Paines Run to assist with the determination of the scour analysis parameters per Section 1302 of the GDM. Table 5-3 below summarizes the sampling depths and respective scour analysis parameters to be utilized by the selected design build team in determining the predicted scour depth.

Effective unit weights to be used below groundwater (assumed at El 676 in the recommended design soil profile).

Table 5-3: Scour Analysis Parameters

Boring	Sample	Top Elevation (ft)	D50 Value (mm)	Critical Shear Stress, Tc (psf)	Erosion Category, EC (dim)
	SS-5	677.6	4.8348	0.101	3.02
B-001-0-22	SS-6	676.1	3.0327	0.063	2.78
B-001-0-22	SS-7	674.6	2.4802	0.052	2.67
	SS-8	673.1	5.3393	0.112	3.07
	SS-5	678.7	4.2471	0.089	2.95
B-002-0-22	SS-6	677.2	1.3939	0.029	2.37
D-002-0-22	SS-7	675.7	2.6654	0.056	2.71
	SS-8	674.2	3.0839	0.064	2.79

5.4 Recommendations

5.4.1 Site Preparation

 Site preparation activities at the bridge should be performed in accordance with Item 201 and Item 202 of the current edition of the CMS. These activities are anticipated to include removal of the existing bridge structure and possible relocation of existing utilities.

5.4.2 Settlement

• Modifications to the vertical roadway alignment within the project area are expected to be minor and as such, minimal settlement is anticipated to occur. This settlement, within the predominantly granular profile, is anticipated to be immediate and to occur during construction. In addition, any settlement of the bridge structure itself would be limited should the vertical alignment of TR 183 be raised as it is anticipated that the bridge foundations will bear on the underlying competent bedrock encountered at approximately 25 feet below the existing ground surface. However, analyses may need to be conducted if the roadway profile is raised to estimate the magnitude of any drag forces acting on the piles as outlined in section 305.3.2.2 of the ODOT BDM using the neutral plane method considering 100% tip resistance mobilization.

6 LIMITATIONS

This report documents the preliminary findings and conclusions of HDR Engineering, Inc., for the geotechnical aspects related to the planning and design of the MOE-TR183-0.13 project in Monroe County, Ohio. The report has been prepared for the use of the Office of the Monroe County Engineer for specific application to this project, in accordance with generally accepted engineering practice. No warranty, expressed or implied, is made. Any analyses or recommendations submitted are based on the field explorations performed at the locations indicated, on specific laboratory tests on individual samples taken during this exploration, and information obtained from outside sources. The report and analyses do not reflect variation that could occur between borings or at other points in time. Variations in conditions, if any, may become evident during the construction period, at which time, a re-evaluation of the recommendations may become necessary. In the event of such changes, the recommendations and changes should be reviewed by HDR's geotechnical staff.

7 REFERENCES

State of Ohio Department of Transportation (Updated July 2022); "Specifications for Geotechnical Explorations."

State of Ohio Department of Transportation (Updated July 2022); "Geotechnical Design Manual."

State of Ohio Department of Transportation (Updated July 2022); "Bridge Design Manual."

State of Ohio Department of Transportation (July 2022); "Location and Design Manual, Volume 2 – Drainage Design."

United States Department of Agriculture: Natural Resources Conservation Service (2022); "Web Soil Survey". http://websoilsurvey.nrcs.usda.gov/app/"

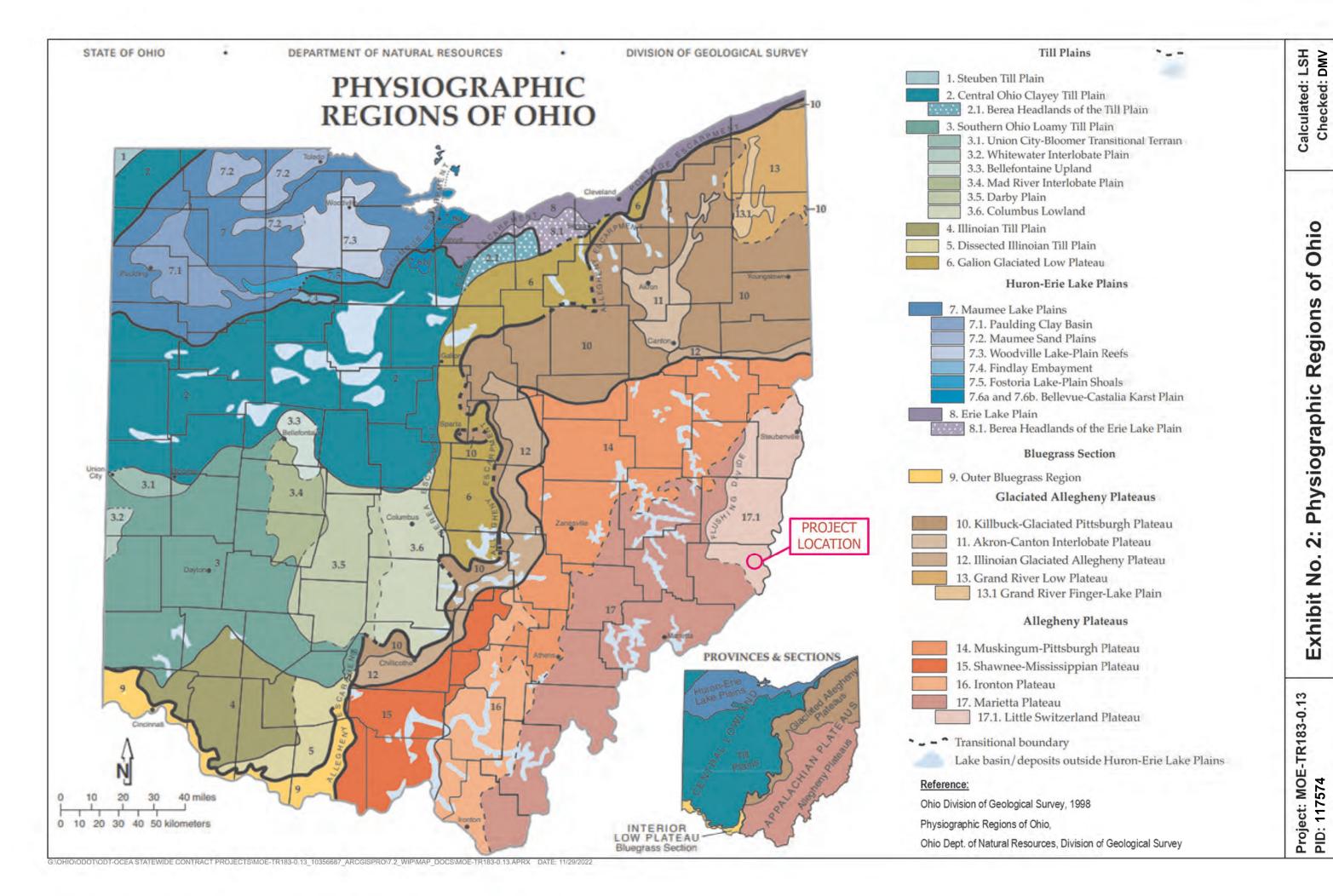
Ohio Department of Natural Resources, Division of Geologic Survey (2022); "Ohio Geology Interactive Map". https://ohiodnr.gov/business-and-industry/services-to-business-industry/gis-mapping-services/ohio-geology-interactive-map

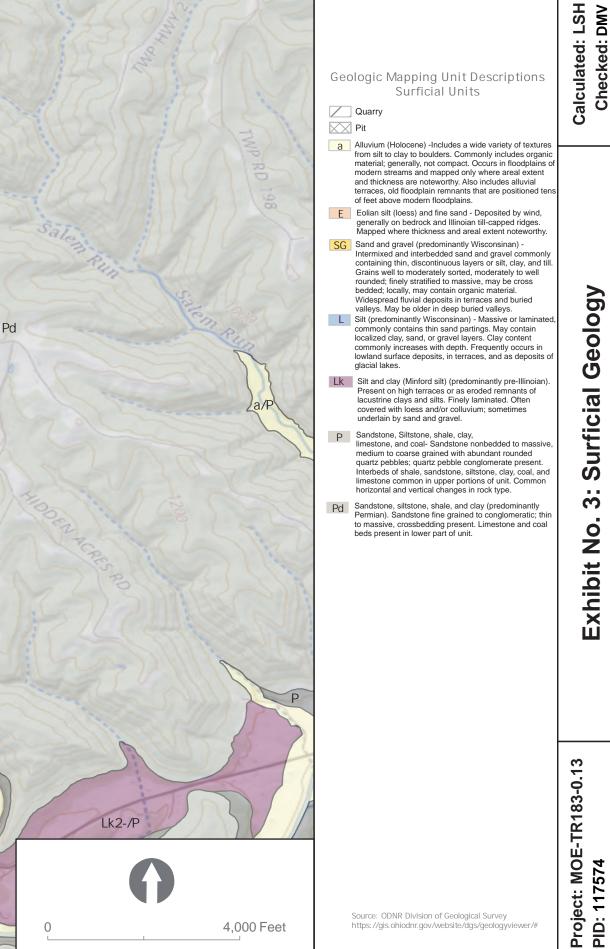
Ohio Division of Geological Survey (1998); *Physiographic regions of Ohio: Ohio Department of National Resources*, Division of Geological Survey, scale 1:2,100,000.

Ohio Department of Natural Resources Division of Geological Survey (2013); "Ohio's Geology in Core and Outcrop: A Field Guide for Citizens and Environmental and Geotechnical Investigators", Information circular 63.

United States Geological Survey Topographic Map, (2019); "Cameron Quadrangle, Ohio."

Ohio Department of Natural Resources, Division of Geologic Survey and Division of Mineral Resources (2022); "Mines of Ohio". https://gis.ohiodnr.gov/MapViewer/?config=OhioMines#


Appendix A. Exhibits


Map **Topographic** and Vicinity Site $\overline{}$ 0 Ž **Exhibit**

Project: MOE-TR183-0.13 PID: 117574

Calculated: LSH Checked: DMV

G:IOHIOIODOTIODT-OCEA STATEWIDE CONTRACT PROJECTSIMOE-TR183-0.13_10356687_ARCGISPRO\7.2_WIPIMAP_DOCSIMOE-TR183-0.13.APRX DATE: 11/29/2022

a/P

Pd

Pd

a/SG/P

PROJECT

LOCATION

cunj ish Creek

(E)/Pd

G\OHIO\ODOT\ODT-OCEA STATEWIDE CONTRACT PROJECTS\MOE-TR183-0.13, 10356687, ARCGISPRO\7,2, WIP\MAP, DOCS\MOE-TR183-0.13, APRX, DATE: 12/1/20

Corrosion of Concrete Map Unit Legend

Chg1AF - Chagrin silt loam, 0 to 3 percent slopes, frequently flooded, Low rating

He - Hartshorn silt loam, Moderate rating

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

Survey **Exhibit No.**

Project: MOE-TR183-0.13 PID: 117574

Corrosion of Steel Map Unit Legend

Chg1AF - Chagrin silt loam, O to 3 percent slopes, frequently flooded, High rating

He - Hartshorn silt loam, High rating

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022

Soil map units are labeled (as space allows) for map scales

Date(s) aerial images were photographed: Oct 8, 2020—Nov 7,

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

pH (1 to 1 Water) Map Unit Legend

Chg1AF - Chagrin silt loam, 0 to 3 percent slopes, frequently flooded, pH rating 6.5

He - Hartshorn silt loam, pH rating 6.4

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15.800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022


Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

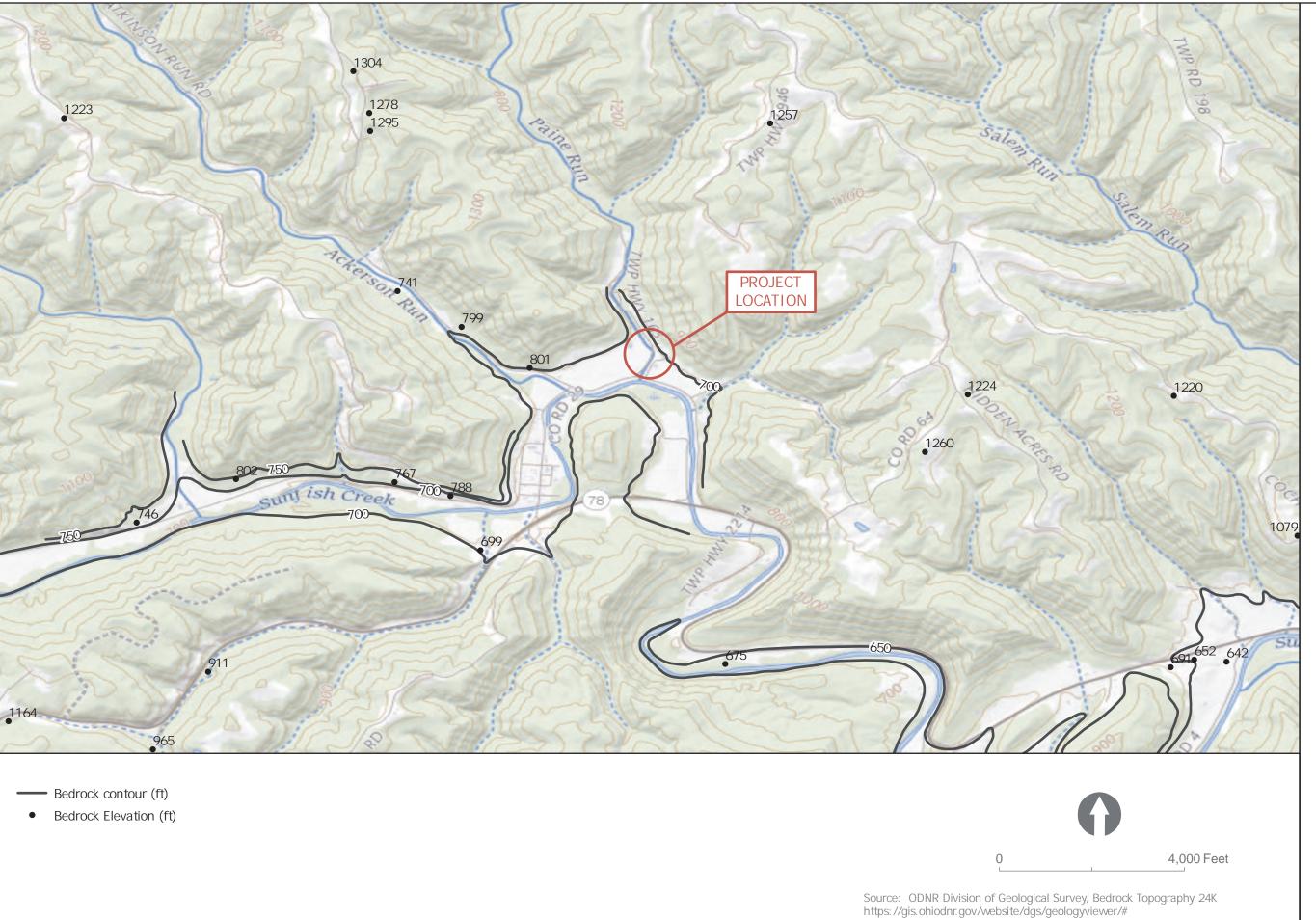
Date(s) aerial images were photographed: Oct 8, 2020—Nov 7,

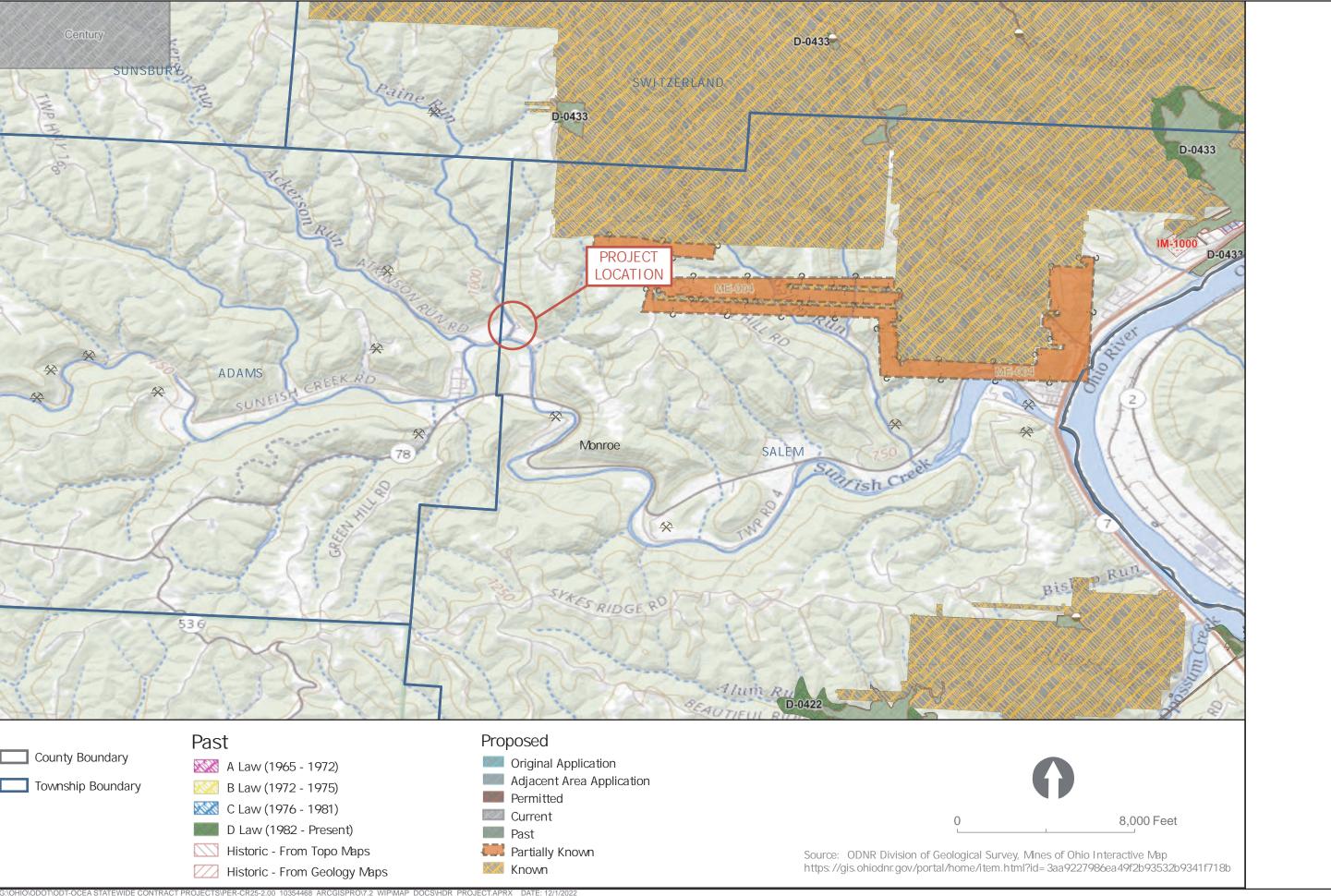
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

100 Feet

Bedrock Geology Map
Calculated: LSH
Checked: DMV

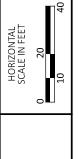

Project: MOE-TR183-0.13 PID: 117574


Exhibit No.

E:IOHIOIODOTIODT-OCEA STATEWIDE CONTRACT PROJECTSIMOE-TR183-0.13_10356687_ARCGISPRO\7.2_WIPIMAP_DOCSIMOE-TR183-0.13.APRX DATE: 11729/20

Calculated: LSH Checked: DMV

Project: MOE-TR183-0.13 PID: 117574



Ohio Map o Mines 7: Exhibit No.

Project: MOE-TR183-0.13 PID: 117574

Calculated: LSH Checked: DMV

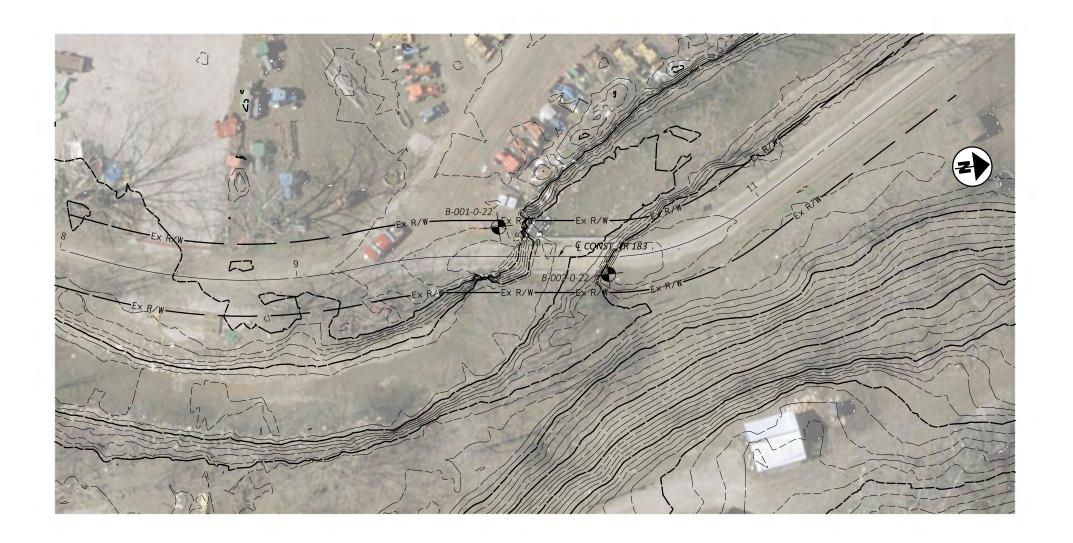
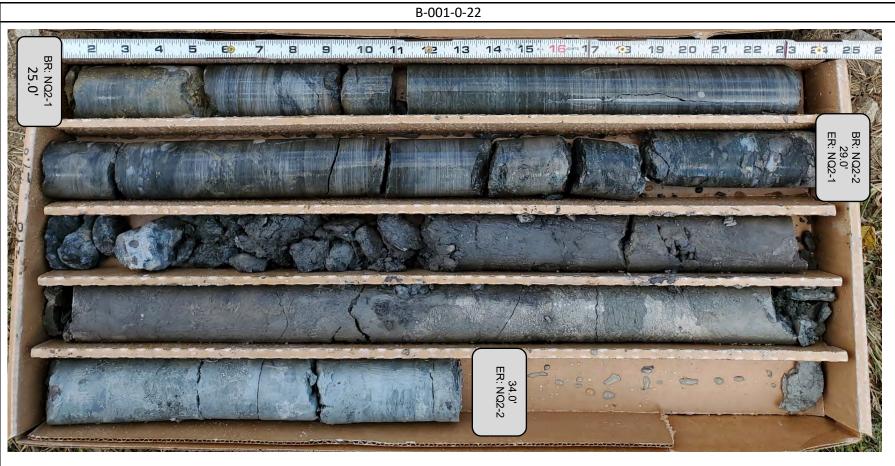


EXHIBIT NO. 8: BORING LOCATION PLAN


FJS

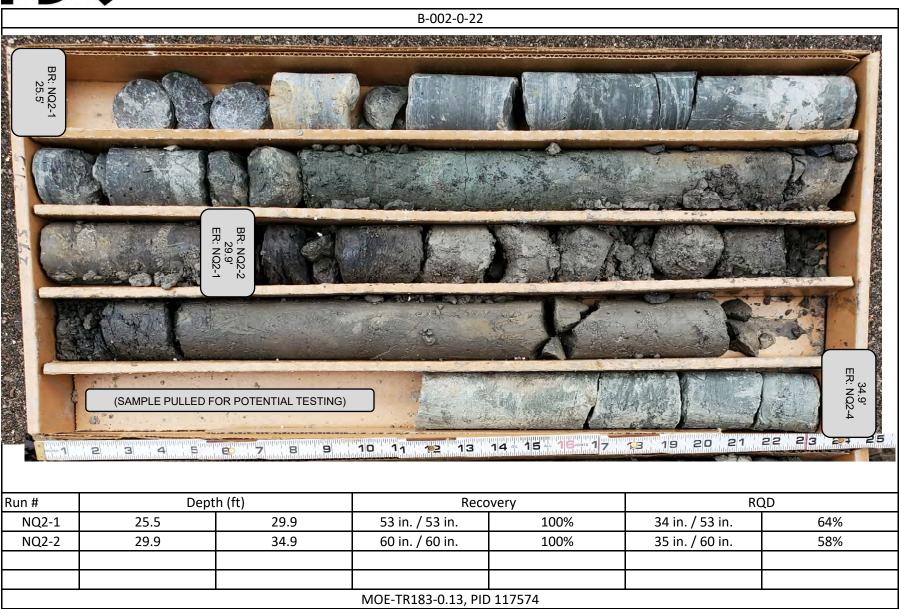
DCM REVIEWER
DMV 12-02-22

Appendix B. Boring Logs and Rock Core Photos

TYPE: BRIDGE	DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO	GER:	HDR / DCM	HAMI	MER:	AUTO	ORICH D-5	IAMME	R	ALIGNMENT: TR183								ATION ID 1-0-22 PAGE	
	DRILLING METHOD: SAMPLING METHOD:		HSA / NQ2 PT / NQ2			ON DA		3/7/22 86.8	_	_ ELEVATION: <u>687.1 (MSL)</u> LAT / LONG: 39.77580								0.0 ft.	1 OF 2
MATERIAL DESCRIPTION	_	T ELEV.					GRADATION (%) ATTE							.55750	ODOT	HOLE			
AND NOTES	···	687.1	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)				_	_	LL	PL	PI	wc	CLASS (GI)	SEALED
MEDIUM DENSE, BROWN, GRAVEL WITH S DAMP	SAND AND SILT,	685.6	- - 1 -	4 4 5	13	17	SS-1	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	
LOOSE TO MEDIUM DENSE, BROWN, SANI GRAVEL, TRACE CLAY, DAMP			- 2 - - 3 -	3 2 2	6	67	SS-2	-	-	-	-	-	-	-	-	-	15	A-4a (V)	-
			5 - 6 -	2 7 7	20	78	SS-3	-	25	21	16	28	10	23	16	7	15	A-4a (1)	-
MEDIUM DENSE, BROWN, GRAVEL WITH S	SAND AND SILT,	679.6	7 -	7															
TRACE CLAY, MOIST			9	10 6	23	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	
LOOSE TO MEDIUM DENISE DECIMAL ORAN		676.1	- 10 - - - 11 -	4 6	14	78	SS-5	-	63	7	20	2	8	31	24	7	16	A-2-4 (0)	
LOOSE TO MEDIUM DENSE, BROWN, GRA ' SAND, SILT, AND CLAY , MOIST TO WET	VEL WIIH		W 675.1 12	⁴ 2 3	7	100	SS-6	-	60	11	8	9	12	40	22	18	27	A-2-6 (0)	
	00		- 13 - - 14 -	2 7 5	13	39	SS-7	-	54	16	11	10	9	29	17	12	20	A-2-6 (0)	_
	0.	671.1	15	4 4	12	50	SS-8	-	62	12	11	7	8	27	13	14	15	A-2-6 (0)	_
DENSE TO VERY DENSE, BROWN, GRAVEI FRAGMENTS WITH SAND, TRACE SILT, TR. MOIST			- 16 - - 17 -	10 11 13	35	67	SS-9	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	
			- 18 - - 19 -	7 9	38	78	SS-10	_	59	12	12	9	8	19	15	4	12	A-1-b (0)	_
			- 20 - - 21 -	9															-
			22	15 21	52	44	SS-11	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	
SHALE, GRAY, MODERATELY WEATHERED	D, VERY WEAK.	663.6	TR——23 —	50/6"	-	100	SS-12	-	-	-	-	-	-	-	-	-	11	Rock (V)	
SHALE, GRAY TO DARK GRAY, SLIGHTLY WEAK, MEDIUM BEDDED, ARENACEOUS, FAND BEDDING DISCONTINUITIES, FRACTU MODERATELY FRACTURED, NARROW APE SLIGHTLY ROUGH, MASSIVE TO BLOCKY, CONDITIONS; RQD 67%, REC 100%.	PYRITIC, JOINT RED TO ERTURE,	657.6	- 25 - - 26 - - 27 - - 28 - - 29 -	75		100	NQ2-1											CORE	-
(Point Load Test)	7/1.7/	337.0	-																

Run #	Dept	h (ft)	Reco	very	RQD					
NQ2-1	25	29	48 in. / 48 in.	100%	36 in. / 48 in.	75%				
NQ2-2	29	34	60 in. / 60 in. 100%		45 in. / 60 in.	75%				

MOE-TR183-0.13, PID 117574



Run #	Dept	h (ft)	Reco	overy	RQD					
NQ2-3	34	40	72 in. / 72 in.	100%	64 in. / 72 in.	89%				
			NAOE TRA02 0 42 DIE	117571						

MOE-TR183-0.13, PID 117574

TYPE: BRIDGE SAMPLING FIRM / LOGGER: HDR / DCM						HAMMER: AUTOMATIC HAMMER ALIGNMENT: TR183 B.									2-0-22				
PID: <u>117574</u> SFN: <u>5634504</u>	DRILLING METHOD:		HSA / NQ2					3/7/22	_				688.7					9.9 ft.	PAGE 1 OF 2
START:10/18/22 _ END:10/18/22	SAMPLING METHOD: _			LE	NERGY F		SAMPLE	86.8		LAT / LONG: 39.775919, -80.937 GRADATION (%) ATTERBERG						.93780		HOLE	
AND NOTES	ION	688.7	DEPTHS	RO		(%)	ID	(tsf)	GR		FS	SI	CL	LL	PL	PI	wc	ODOT CLASS (GI)	SEALE
LOOSE TO MEDIUM DENSE, BROWN, GRASAND, SILT, AND CLAY, DAMP	AVEL WITH		- - 1	3	i 19	67	SS-1	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)	
			- 2 - 3 - 4	5	. 10	67	SS-2	-	57	16	12	- 1	5 -	-	-	-	8	A-2-6 (V)	_
LOOSE, BROWN, GRAVEL WITH SAND AN CLAY, DAMP	ID SILT, TRACE	683.7	5 6	3 2	7 3	67	SS-3	-	69	14	8	5	4	24	17	7	8	A-2-4 (0)	
		680.2	7 - - 8	3 - 2	2 4	83	SS-4A	_	-	-	-	-	-	-	-	-	17	A-2-4 (V)	
VERY LOOSE, DARK GRAY, SANDY SILT , WET 1, @ 8.5' - 9.5' : Final SS-4 hammer blow drove		678.7	W 678.7		1		SS-4B	-	-	-	-	-	-	-	-	-	53	A-4a (V)	
9.5 feet) @ 9.0' - 10.0' : auger drilled LOOSE, BROWN, GRAVEL WITH SAND AN		677.2	- 1	1 - 2	9	33	SS-5	-	60	14	12	8	6	29	19	10	22	A-2-4 (0)	
CLAY, WET MEDIUM DENSE, BROWN, GRAVEL WITH		675.7	1: - 1:	. H '	13	78	SS-6	-	46	20	16	9	9	23	17	6	19	A-1-b (0)	
\SILT, TRACE CLAY, WET MEDIUM DENSE, BROWN, GRAVEL WITH			- - 1.	5	19	50	SS-7	-	54	15	15	9	7	28	20	8	18	A-2-4 (0)	
TRACE CLAY, WET @ 14.5' - 16.0' : Damp			- 1: - - 1:		6 17	56	SS-8	-	56	15	12	11	6	25	17	8	14	A-2-4 (0)	_
			- 1 - - 1 - - 1	6	20	17	SS-9	-	-	-	-	-	-	-	-	-	20	A-2-4 (V)	
VERY DENSE, BROWN, GRAVEL AND STO WITH SAND, SILT, AND CLAY, MOIST	ONE FRAGMENTS	668.7	- 2 - 2 - 2	11 2	4 54 13	67	SS-10	-	62	14	9	9	6	29	18	11	16	A-2-6 (0)	_
VERY DENSE, GRAY TO LIGHT GRAY, SAI	NDY SILT. LITTLE	666.2	- - 2: - 2:	2 —															
CLAY, DAMP (Relic Rock Structure) @ 23.0' - 23.2' : gray stone fragments	·	663.7		4 📙) 91 33	89	SS-11	-	-	-	-	-	-	-	-	-	15	A-4a (V)	
SHALE, GRAY, MODERATELY TO SLIGHTI VERY WEAK.	Y WEATHERED,	= ↓ 663.2 l	TR—— 2	₩ <u>₩</u>	<u>" / </u>	\100/	SS-12	<u> </u>	9	17 /	14 /	34 /	26 /	29	14.	15 /	12/	Rock (V)	7
SHALE, GRAY TO DARK GRAY, SLIGHTLY WEAK TO SLIGHTLY STRONG, THIN TO M JOINT AND BEDDING DISCONTINUITIES, F MODERATELY FRACTURED, TIGHT TO NA APERTURE, SLIGHTLY ROUGH, VERY BLC SURFACE CONDITION: RQD 52%, REC 10	EDIUM BEDDED, FRACTURED TO IRROW DCKY, FAIR	660.7	2 2 2	6	4	100	NQ2-1											CORE	

Appendix C. Laboratory Testing

Unconfined Compressive Strength of Rock (ASTM D7012)

ASTM: D7012-Method C

UNCONFINED COMPRESSION TEST (ROCK CORE)

PROJECT NAME: MOE-TR183-0.13

PROJECT NO.: 10336687 SAMPLE NO.: B-002-0-22 PROJECT COUNTY: Monroe SAMPLE LOC.: RC-1

PROJECT STATE: Ohio

LABORATORY NO.: 10336687

SUBMITTED BY: HDR

SAMPLE DEPTH: 38.3' to 39.3'

DATE TESTED: 11/9/2022

DATE REPORTED: 11/11/2022

ROCK DESCRIPTION: NA

Machine Used: ELE CT-7250

Diameter: 1.98 in Area: 3.08 in²
Height: 4.04 in Volume: 0.0072 ft³

RESULTS:

Air Dry Moisture: 0.6 %
Air-Dry Density: 158.1 lbs/ft.³

Maximum Stress: 10,068 psi Elapsed Time: 6:23 min. Rate of Loading: 90 lb/sec

Comments:

Approved By: Kin E. Walker

Point Load Strength Index of Rock (ASTM D 5731)

ASTM D5731 Point Load Strength Index of Rock

Project Name: MOE-TR183-0.13 Project No.: 10356687 Project County: Monroe Project State: Ohio Laboratory No.: 10356687

Sample Loc.: B-001-0-22

 Sample No.:
 27.3' to 29.0'

 Date Sampled:
 11/9/2022

 Date Tested:
 11/14/2022

 Date Reported:
 11/15/2022

Sample Details:

Sample Depth	Core Size	Test Type	Orientation	Width (w), in	Diameter (d), in	Length (L), in	Load (P), kip	Load (P), kN
27.3	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.126	0.56
27.4	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.148	0.66
27.5	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.182	0.81
27.6	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.229	1.02
27.7	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.382	1.7
27.8	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.292	1.3
27.9	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.209	0.93
28	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.191	0.85
28.1	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.225	1
28.2	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.247	1.1

1,313 psi

Note: min 10 samples required

Testing Machine Serial Number: HDR 1003

Uniaxial Compressive Strength (Bx) 1,313 psi

Point Load Streng	th Index
Mean I _{s(50)}	
Mean I _{s(50)} //	57.11
I _{s(50)}	54.73
I _{a(50)}	1.00

King I

Sampled By:	
Tested By:	Don Schmidt

Average Uniaxial Compressive Strength:

Approved By:

Note: ASTM D5731 applies to medium strength rock having a compresive strength over 2175 psi

ASTM D5731 Point Load Strength Index of Rock

Project Name: MOE-TR183-0.13 Project No.: 10356687 Project County: Monroe Project State: Ohio Laboratory No.: 10356687

Sample Loc.: B-001-0-22

 Sample No.:
 32.5' to 33.4'

 Date Sampled:
 11/9/2022

 Date Tested:
 11/14/2022

 Date Reported:
 11/15/2022

Sample Details:

Sample Depth	Core Size	Test Type	Orientation	Width (w), in	Diameter (d), in	Length (L), in	Load (P), kip	Load (P), kN
32.5	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.038	0.17
32.6	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.029	0.13
32.7	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.020	0.09
32.8	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.070	0.31
32.9	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.054	0.24
33	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.047	0.21
33.1	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.040	0.18
33.2	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.058	0.26
33.3	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.049	0.22
33.4	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.045	0.2

266 psi

Note: min 10 samples required

Testing Machine Serial Number: HDR 1003

Uniaxial Compressive Strength (Bx) 266 psi

Kin E Will

Sampled By:	
Tested By:	Don Schmidt

Average Uniaxial Compressive Strength:

Approved By:

Note: ASTM D5731 applies to medium strength rock having a compresive strength over 2175 psi

ASTM D5731 Point Load Strength Index of Rock

Project Name: MOE-TR183-0.13Sample No.:33.2' to 34.0'Project No.: 10356687Date Sampled:11/9/2022Project County: MonroeDate Tested:11/14/2022Project State: OhioDate Reported:11/15/2022Laboratory No.: 10356687Sample Details:

Sample Loc.: B-002-0-22

Sample Depth	Core Size	Test Type	Orientation	Width (w), in	Diameter (d), in	Length (L), in	Load (P), kip	Load (P), kN
33.2	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.031	0.14
33.3	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.029	0.13
33.4	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.040	0.18
33.5	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.045	0.2
33.6	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.038	0.17
33.7	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.054	0.24
33.8	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.063	0.28
33.9	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.063	0.28
34	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.065	0.29
34.1	Bx (1.65-1.97in)	Diametral Test	Parallel		1.98	0.1	0.049	0.22
2.2) F		•		•			

282 psi

Note: min 10 samples required

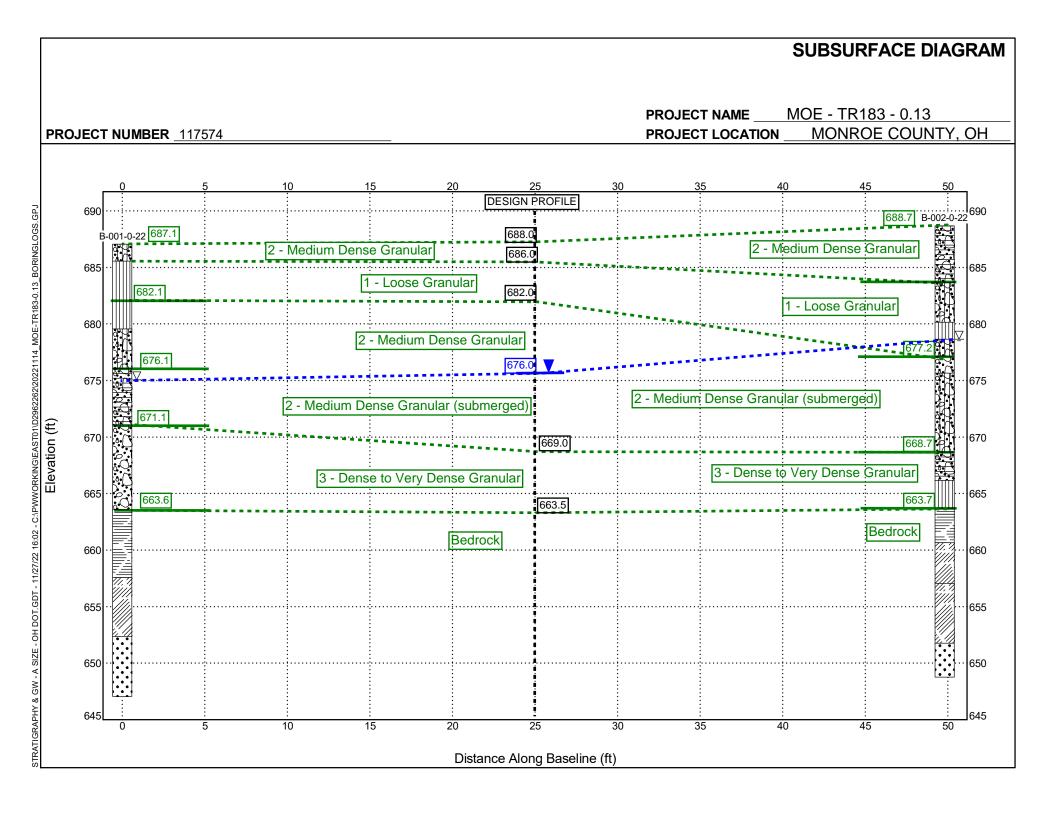
Testing Machine Serial Number: HDR 1003

Uniaxial Compressive Strength (Bx) 282 psi

Point Load Strengt	Point Load Strength Index										
Mean I _{s(50)}											
Mean I _{s(50)} //	12.25										
I _{s(50)}	12.36										
I _{a(50)}	1.00										

Kin E Wall

Sampled By:	
Tested By:	Don Schmidt


Average Uniaxial Compressive Strength:

Approved By:

Note: ASTM D5731 applies to medium strength rock having a compresive strength over 2175 psi

Appendix D. Analyses

Soil Strength Parameter Determination

PROJECT: MOE-TR183-00.13 TYPE: BRIDGE PID: 117574 SFN: 5634504 START: 10/17/22 END: 10/17/22	DRILLING FIRM / OPE SAMPLING FIRM / LOO DRILLING METHOD: _ SAMPLING METHOD:	GGE	ER: 2.25"	ENTRAL ST HDR / DC HSA / NQ2 PT / NQ2	M	HAMMER: AUTOMATIC HAMMER CALIBRATION DATE: 3/7/22					iR_	ALIGNMENT: TR183								B-001	ATION ID -0-22 PAGE 1 OF 2	
MATERIAL DESCRIPTI AND NOTES	ON		ELEV. DEPTHS 687.1		SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (%)		ATT LL	ERBI PL		wc	ODOT CLASS (GI)	HOLE SEALED		
MEDIUM DENSE, BROWN, GRAVEL WITH S DAMP 2 - Medium Dense G	MEDIUM DENSE, BROWN, GRAVEL WITH SAND AND SILT, DAMP 2 - Medium Dense Granular				- - 1 -	4 4 5	13	17	SS-1	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)		
LOOSE TO MEDIUM DENSE, BROWN, SAN GRAVEL, TRACE CLAY, DAMP 1 - Loose Granular			685.6		- 2 - - 3 - - 4 -	3 2 2	6	67	SS-2	-	-	-	-	-	-	-	-	-	15	A-4a (V)		
					_ 5 - _ 6 - 	2 7 7	20	78	SS-3	-	25	21	16	28	10	23	16	7	15	A-4a (1)	-	
MEDIUM DENSE, BROWN, GRAVEL WITH S TRACE CLAY, MOIST			679.6		- 7 - - 8 - - 9 -	7 10 6	23	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	-	
2 - Medium Dense Granu	lar S		676.1		_ 10 - 11 _	5 4 6	14	78	SS-5	-	63	7	20	2	8	31	24	7	16	A-2-4 (0)	-	
LOOSE TO MEDIUM DENSE, BROWN, GRA SAND, SILT, AND CLAY, MOIST TO WET	VEL WITH			W 675.1	W 675.1	11 12	4 2 3	7	100	SS-6	-	60	11	8	9	12	40	22	18	27	A-2-6 (0)	
	0.0				13 - - 14 -	2 7 5	13	39	SS-7	-	54	16	11	10	9	29	17	12	20	A-2-6 (0)	-	
	0.0		671.1		15 _ 16 _	4 4	12	50	SS-8	-	62	12	11	7	8	27	13	14	15	A-2-6 (0)	-	
DENSE TO VERY DENSE, BROWN, GRAVE FRAGMENTS WITH SAND , TRACE SILT, TR MOIST		ζ. 			- 17 -	10 11 13	35	67	SS-9	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	_	
3 - Dense to Very Dense Granu	ılar) 0° 0°			- 18 - - 19 - - 20 -	7 9 17	38	78	SS-10	-	59	12	12	9	8	19	15	4	12	A-1-b (0)	-	
	(a)	70 70 70 70 70			- - 21 - - 22 -	9 15 21	52	44	SS-11	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	-	
SHALE, GRAY, MODERATELY WEATHERED	D, VERY WEAK.		663.6	TR-	23 24 -	50/6"	-	100	SS-12	-	-	-	-	-	-	-	-	-	11	Rock (V)		
SHALE, GRAY TO DARK GRAY, SLIGHTLY WEAK, MEDIUM BEDDED, ARENACEOUS, I AND BEDDING DISCONTINUITIES, FRACTU MODERATELY FRACTURED, NARROW APE SLIGHTLY ROUGH, MASSIVE TO BLOCKY, CONDITIONS; RQD 67%, REC 100%. @ 27.3' - 29.0' : Qu = 1,313 psi (Point Load Test)	WEATHERED, PYRITIC, JOINT IRED TO ERTURE,		662.1 657.6		- 25 26 27 28 29	75		100	NQ2-1											CORE		

PROJECT: MOE-TR: TYPE: BRIDO PID: 117574 SFN: START: 10/18/22 END:	5634504 10/18/22	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHOL SAMPLING METHO	Loggi D:	ER: 2.25" S	ENTRAL STAR / TS HDR / DCM HSA / NQ2 PT / NQ2	HAM CALI	HAMMER: AUTOMATIC HAMMER CALIBRATION DATE: 3/7/22 ENERGY RATIO (%): 86.8					ALIGNMENT: TR183								B-002 0.9 ft. 00	ATION ID 2-0-22 PAGE 1 OF 2
MATE	RIAL DESCRIPT AND NOTES	TION		ELEV. 688.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	FS	N (%	CL	LL	ERBE PL	-RG PI	wc	ODOT CLASS (GI)	HOLE SEALED
LOOSE TO MEDIUM DENS SAND, SILT, AND CLAY, D 2 - Medium				686.2	- - 1 - - - 2 -	3 6 7	19	67	SS-1	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)	
				683.7	- 3 - - 4 -	5 4 3	10	67	SS-2	-	57	16	12	- 1	5 -	-	-	-	8	A-2-6 (V)	-
LOOSE, BROWN, GRAVE CLAY, DAMP		ND SILT, TRACE		003.7	- 5 - - 6 - - 7 -	3 2 3	7	67	SS-3	-	69	14	8	5	4	24	17	7	8	A-2-4 (0)	-
				680.2	- - 8 -	2 2	4	83	SS-4A	-	-	-	-	-	-	-	-	-	17	A-2-4 (V)	-
VERY LOOSE, DARK GRA WET @ 8.5' - 9.5' : Final SS-4 ha		,		678.7	₩ 678.7 10 -	- 1			SS-4B	-	-	-	-	-	-	-	-	-	53	A-4a (V)	-
9.5 feet) 9.0' - 10.0' : auger drilled				677.2	- 11 -	3 3	9	33	SS-5	-	60	14	12	8	6	29	19	10	22	A-2-4 (0)	
\LOOSE, BROWN, GRAVE \CLAY, WET \ MEDIUM DENSE, BROWN		,		675.7	- 12 - - - 13 -	2 2	13	78	SS-6	-	46	20	16	9	9	23	17	6	19	A-1-b (0)	
SILT, TRACE CLAY, WET MEDIUM DENSE, BROWN					14 -	7 8 5	19	50	SS-7	-	54	15	15	9	7	28	20	8	18	A-2-4 (0)	
TRACE CLAY, WET @ 14.5' - 16.0' : Damp		,			- 15 - - 16 -	5 6 6	17	56	SS-8	-	56	15	12	11	6	25	17	8	14	A-2-4 (0)	
2 - Medium Den	se Granular				17 -	-															
					- 18 - - - 19 -	6 6	20	17	SS-9	-	-	-	-	-	-	-	-	-	20	A-2-4 (V)	_
VERY DENSE, BROWN, G	RAVEL AND STO	ONE ERAGMENTS	1 Tra	668.7	20	11															
WITH SAND, SILT, AND C	_AY , MOIST			200.0	21 - 22 -	24 13	54	67	SS-10	-	62	14	9	9	6	29	18	11	16	A-2-6 (0)	_
VERY DENSE, GRAY TO L CLAY, DAMP (Relic Rock S @ 23.0' - 23.2' : gray stone	tructure)	NDY SILT, LITTLE		666.2	23 - 24 -	14 30 33	91	89	SS-11	-	-	-	-	-	-	-	-	-	15	A-4a (V)	_
SHALE, GRAY, MODERAT	FLY TO SLIGHT	Y WEATHERED		663.7 663.2	TR 25	<u>50/1"</u>		\100/	SS-12	/	9	<u>17</u> /	14 A	34./	26	29 /	14	15./	12 /	Rock (V)	
VERY WEAK. SHALE, GRAY TO DARK OF THE STREET OF THE STREE	GRAY, SLIGHTLY DNG, THIN TO M CONTINUITIES, I ED, TIGHT TO NA DUGH, VERY BLO	WEATHERED, IEDIUM BEDDED, FRACTURED TO ARROW DCKY, FAIR		660.7	- 26 - - 27 - - 28 - - 29 -	64		100	NQ2-1											CORE	

		Undr	ained Shear	Strength (Su) (psf)	Dry Unit We	eight (pcf)	Moist Unit Wt. (pcf)			Long-Term	Strength Values		Adopted Long Term Strength
Layer			1	lues	Tested	1 21, 61).g (po.)	moiot oint tru (poi)	Adopted Short Term Parameters		N ₆₀ Value	ODOT GB-7 Co	rrelations	Parameters
-		PPR	Sowers	T and P	Values	Correlation	Tested	Correlation Tested			N ₆₀ value	Cohesion (psf)	phi (deg)	(Back-Calculated from SlopeW)
	Max	N/A	N/A	N/A		120		125		Max	10	N/A	30	
	Min	N/A	N/A	N/A		95		115	$S_u = 0$ psf	Min	4	N/A	28	c' = 0 psf
Layer 1	Average	N/A	N/A	N/A		102		119	Φ = 28 deg	Average	7	N/A	29	Φ' = 28 deg
	Std Dev	N/A	N/A	N/A		9		5		Std Dev	2	N/A	1	
LOOSE GRANULAR									Y _{dry} = 100 pcf					Y _{dry} = 100 pcf
	Avg + Std	N/A	N/A	N/A		111		124	Y _{moist} = 120 pcf	Avg + Std	9	N/A	30	Y _{moist} = 120 pcf
	Avg - Std	N/A	N/A	N/A		93		114		Avg - Std	5	N/A	28	
	Max	N/A	N/A	N/A		110		130	<u></u> .	Max	23	N/A	33	
	Min	N/A	N/A	N/A		100		120	$S_u = 0$ psf	Min	12	N/A	30	c' = 0 psf
Layer 2	Average	N/A	N/A	N/A		107		127	Φ = 31 deg	Average	17	N/A	31	Φ' = 31 deg
	Std Dev	N/A	N/A	N/A		4		4		Std Dev	4	N/A	1	
MEDIUM DENSE GRANULAR									$Y_{dry} = 105$ pcf					$Y_{dry} = 105$ pcf
	Avg + Std	N/A	N/A	N/A		111		131	Y _{moist} = 125 pcf	Avg + Std	20	N/A	32	Y _{moist} = 125 pcf
	Avg - Std	N/A	N/A	N/A		103		123		Avg - Std	13	N/A	31	
	Max	N/A	N/A	N/A		125		140		Max	91	N/A	40	
	Min	N/A	N/A	N/A		120		135	$S_u = 0$ psf	Min	35	N/A	35	c' = 0 psf
Layer 3	Average	N/A	N/A	N/A		123		138	$\Phi = \boxed{37}$ deg	Average	54	N/A	37	Φ' = 37 deg
DENSE TO VERY DENSE	Std Dev	N/A	N/A	N/A		3		3		Std Dev	22	N/A	3	<u> </u>
GRANULAR									$Y_{dry} = 125$ pcf					Y _{dry} = 125 pcf
OKAROLAK	Avg + Std	N/A	N/A	N/A		126		141	Y _{moist} = 135 pcf	Avg + Std	76	N/A	40	Y _{moist} = 135 pcf
	Avg - Std	N/A	N/A	N/A		120		135		Avg - Std	32	N/A	35	

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

			_														Correlated				Correlated	Correlated			
Layer 1														Sho	rt-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
		%	•	%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	10	100	N/A	69	16	12	9	12	40	22	18	53	Max	N/A	N/A	N/A	N/A	30	12.0	685.7	120	125	0.270	2.72	0.787
Min	4	33	N/A	57	11	8	5	4	24	17	7	8	Min	N/A	N/A	N/A	N/A	28	3.0	675.1	95	115	0.126	2.71	0.414
Average	7	70	N/A	62	14	10	7	7	31	19	12	21	Average	N/A	N/A	N/A	N/A	29	7.4	680.8	102	119	0.189	2.71	0.668
Std Dev	2	22	N/A	5	2	2	2	4	8	3	6	16	Std Dev	N/A	N/A	N/A	N/A	1	3.6	3.7	9	5	0.074	0.00	0.136
Avg + Std	9	92	N/A	67	16	12	9	11	39	22	17	37	Avg + Std	N/A	N/A	N/A	N/A	30	11.0	684.5	111	124	0.263	2.72	0.803
Avg - Std	5	47	N/A	56	12	8	5	3	23	17	6	6	Avg - Std	N/A	N/A	N/A	N/A	28	3.8	677.1	93	114	0.115	2.71	0.532

Correlated

Correlated

Correlated

																						Shor	t-Term Cohesio	on (psf)	LT Cohesio	n	Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
TR 183	687.1	B-001-0-22	2.5	-	4	SS-2	6	67	-	-	-	-	-	-	-	-	-	15	A-4a	Granular	1	N/A			_	29	3.0	684.1	95	115		2.72	0.787
TR 183	687.1	B-001-0-22	11	-	12.5	SS-6	7	100	-	60	11	8	9	12	40	22	18	27	A-2-6	Granular	1	N/A				29	12.0	675.1	105	125	0.27	2.71	0.611
TR 183	688.7	B-002-0-22	2.5	-	4	SS-2	10	67	-	57	16	12	-	-	-	-	-	8	A-2-6	Granular	1	N/A				30	3.0	685.7	95	115		2.71	0.780
TR 183	688.7	B-002-0-22	5	-	6.5	SS-3	7	67	-	69	14	8	5	4	24	17	7	8	A-2-4	Granular	1	N/A				29	6.0	682.7	100	120	0.126	2.71	0.691
TR 183	688.7	B-002-0-22	7.5	-	8.5	SS-4A	4	83	-	-	-	-	-	-	-	-	-	17	A-2-4	Granular	1	N/A				28	8.0	680.7	95	115		2.71	0.780
TR 183	688.7	B-002-0-22	8.5	-	9	SS-4B	-	-	-	-	-	-	-	-	-	-	-	53	A-4a	Granular	1	N/A					9.0	679.7	120			2.72	0.414
TR 183	688.7	B-002-0-22	10	-	11.5	SS-5	9	33	-	60	14	12	8	6	29	19	10	22	A-2-4	Granular	1	N/A				30	11.0	677.7	105	125	0.171	2.71	0.611

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 2		%		%	%	%	%	%				%	ſ	Shor	t-Term Cohesi N-values	on (psf)	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	23	100	N/A	63	21	20	28	10	31	24	14	20	Max	N/A	N/A	N/A	N/A	33	18.0	687.7	110	130	0.189	2.72	0.691
Min	12	17	N/A	25	7	11	2	6	23	13	6	9	Min	N/A	N/A	N/A	N/A	30	1.0	670.7	100	120	0.117	2.71	0.537
Average	17	57	N/A	51	15	14	11	8	27	18	9	16	Average	N/A	N/A	N/A	N/A	31	10.4	677.5	107	127	0.149	2.71	0.586
Std Dev	4	26	N/A	13	5	3	8	1	3	3	3	4	Std Dev	N/A	N/A	N/A	N/A	1	5.7	5.5	4	4	0.027	0.00	0.062
Avg + Std	20	84	N/A	64	20	18	19	9	30	21	12	19	Avg + Std	N/A	N/A	N/A	N/A	32	16.0	683.0	111	131	0.177	2.71	0.648
Avg - Std	13	31	N/A	38	10	11	3	7	24	14	6	12	Avg - Std	N/A	N/A	N/A	N/A	31	4.7	672.0	103	123	0.122	2.71	0.524

						Sample		%		%	%	%	%	%				%	ODOT			Sh	ort-Term Cohesi N-values	ion (psf)	LTC	rrelated Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	cs	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P		er GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	Cc	Gravity (G _s)	Ratio (e)
TR 183	687.1	B-001-0-22	0	-	1.5	SS-1	13	17	-	-	-	-	-	-	-	-	-	13	A-2-4	Granular	2	N/A			_		31	1.0	686.1	100	120		2.71	0.691
TR 183	687.1	B-001-0-22	5	-	6.5	SS-3	20	78	-	25	21	16	28	10	23	16	7	15	A-4a	Granular	2	N/A					32	6.0	681.1	105	125	0.117	2.72	0.616
TR 183	687.1	B-001-0-22	8	-	9.5	SS-4	23	100	-	-	-	-	-	-	-	-	-	12	A-2-4	Granular	2	N/A					33	9.0	678.1	105	125		2.71	0.611
TR 183	687.1	B-001-0-22	9.5	-	11	SS-5	14	78	-	63	7	20	2	8	31	24	7	16	A-2-4	Granular	2	N/A					31	10.0	677.1	105	125	0.189	2.71	0.611
TR 183	687.1	B-001-0-22	12.5	-	14	SS-7	13	39	-	54	16	11	10	9	29	17	12	20	A-2-6	Granular	2	N/A					31	13.0	674.1	110	130	0.171	2.71	0.537
TR 183	687.1	B-001-0-22	14	-	15.5	SS-8	12	50	-	62	12	11	7	8	27	13	14	15	A-2-6	Granular	2	N/A					30	15.0	672.1	110	130	0.153	2.71	0.537
TR 183	688.7	B-002-0-22	0	-	1.5	SS-1	19	67	-	-	-	-	-	-	-	-	-	9	A-2-6	Granular	2	N/A					32	1.0	687.7	100	120		2.71	0.691
TR 183	688.7	B-002-0-22	11.5	-	13	SS-6	13	78	-	46	20	16	9	9	23	17	6	19	A-1-b	Granular	2	N/A					31	12.0	676.7	110	130	0.117	2.71	0.537
TR 183	688.7	B-002-0-22	13	-	14.5	SS-7	19	50	-	54	15	15	9	7	28	20	8	18	A-2-4	Granular	2	N/A					32	14.0	674.7	110	130	0.162	2.71	0.537
TR 183	688.7	B-002-0-22	14.5	-	16	SS-8	17	56	-	56	15	12	11	6	25	17	8	14	A-2-4	Granular	2	N/A					31	15.0	673.7	110	130	0.135	2.71	0.537
TR 183	688.7	B-002-0-22	17.5	-	19	SS-9	20	17	-	-	-	-	-	-	-	-	-	20	A-2-4	Granular	2	N/A					32	18.0	670.7	110	130		2.71	0.537

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																		Correlated				Correlated	Correlated			
Layer 3															Shor	t-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
			%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
		N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	(91	89	N/A	62	14	12	9	8	29	18	11	18	Max	N/A	N/A	N/A	N/A	40	23.0	670.1	125	140	0.171	2.72	0.409
Min	1	35	44	N/A	59	12	9	9	6	19	15	4	12	Min	N/A	N/A	N/A	N/A	35	17.0	665.1	120	135	0.081	2.71	0.353
Avera	ige	54	69	N/A	61	13	11	9	7	24	17	8	15	Average	N/A	N/A	N/A	N/A	37	20.4	667.3	123	138	0.126	2.71	0.376
Std D	ev	22	17	N/A	2	1	2	0	1	7	2	5	2	Std Dev	N/A	N/A	N/A	N/A	3	2.4	2.0	3	3	0.064	0.00	0.030
Avg +	Std	76	86	N/A	63	14	13	9	8	31	19	12	17	Avg + Std	N/A	N/A	N/A	N/A	40	22.8	669.3	126	141	0.190	2.72	0.406
Avg -	Std	32	52	N/A	58	12	8	9	6	17	14	3	13	Avg - Std	N/A	N/A	N/A	N/A	35	18.0	665.3	120	135	0.062	2.71	0.346

Correlated

Correlated

Correlated

																						Sho	ort-Term Cohes	sion (psf)	LT Cohes	on	Mid	point	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values		(psf)	р	ni Sa	mple	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-	7 (d	g) Dep	th (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
TR 183	687.1	B-001-0-22	16	-	17.5	SS-9	35	67	-	-	-	-	-	-	-	-	-	15	A-1-b	Granular	3	N/A				3	5 1	7.0	670.1	120	135		2.71	0.409
TR 183	687.1	B-001-0-22	18.5	-	20	SS-10	38	78	-	59	12	12	9	8	19	15	4	12	A-1-b	Granular	3	N/A				3	5 1	9.0	668.1	120	135	0.081	2.71	0.409
TR 183	687.1	B-001-0-22	21	- :	22.5	SS-11	52	44	-	-	-	-	-	-	-	-	-	18	A-1-b	Granular	3	N/A				3	9 2	2.0	665.1	125	140		2.71	0.353
TR 183	688.7	B-002-0-22	20	- :	21.5	SS-10	54	67	-	62	14	9	9	6	29	18	11	16	A-2-6	Granular	3	N/A				3	9 2	1.0	667.7	125	140	0.171	2.71	0.353
TR 183	688.7	B-002-0-22	22.5	-	24	SS-11	91	89	-	-	-	-	-	-	-	-	-	15	A-4a	Granular	3	N/A				4) 2	3.0	665.7	125	140		2.72	0.358

BEDROCK TESTING

Project	Exploration ID	Sample	Sample	Rock	Color	Moist Unit	Compr Strei	essive ngth	Ei Mod		GS	I	Em (Hoek & I Modulu	•	Lesser of Er vs Em
		Depth (ft)	ID	Туре		Weight (pcf)	(psi)	(MPa)	(psi)	(MPa)	Range	USE	(GPa)	(psi)	(psi)
MOE-TR183-0.13	B-001-0-22	27.3		Shale	Gray		1,313	9.1	NA	-	15-25	20	0.5	77602	77602
				Shale	Maximum	-	1313		NA = Not A	vailable			Shale	Maximum	77602
					Minimum	-	1313							Minimum	77602
					Average	-	1313]						Average	77602
					Std Dev	-	-	1						Std Dev	-
				Recon	nmended Value:	150	1300						Recomme	ended Value:	77500

						Noist		essive	Eı		-		Em (Hoek &	•	Lesser of
Project	Exploration ID	Sample	Sample	Rock	Color	Unit	Stre	ngth	Mod	ulus	GS		Modulı	IS	Er vs Em
		Depth (ft)	ID	Туре		Weight (pcf)	(psi)	(MPa)	(psi)	(MPa)	Range	USE	(GPa)	(psi)	(psi)
MOE-TR183-0.13	B-001-0-22	32.5		Claystone	Gray		266	1.8	NA	-	10-20	15	0.2	26193	26193
MOE-TR183-0.13	B-002-0-22	33.2		Claystone	Gray		282	1.9	NA	-	10-20	15	0.2	26969	26969
				Claystone	Maximum	-	282		NA = Not A	vailable			Claystone	Maximum	26969
					Minimum	-	266	1						Minimum	26193
					Average	-	274	1						Average	26581
					Std Dev	-	11	1						Std Dev	549
				Recon	nmended Value:	150	275						Recommo	ended Value:	26000

						Moist	Compr	essive	Eı	•			Em (Hoek & E	Brown)	Lesser of
Project	Exploration ID	Sample	Sample	Rock	Color	Unit	Strer	gth	Mod	ulus	GS	I	Modulu	IS	Er vs Em
		Depth (ft)	ID	Type		Weight (pcf)	(psi)	(MPa)	(psi)	(MPa)	Range	USE	(GPa)	(psi)	(psi)
MOE-TR183-0.13	B-002-0-22	38.3		Sandstone	Gray	159.0	10,068	69.4	NA	-	45-55	50	8.3	1208404	1208404
				Sandstone	Maximum	159.0	10068		NA = Not A	vailable			Sandstone	Maximum	1208404
					Minimum	159.0	10068							Minimum	1208404
					Average	159	10068							Average	1208404
					Std Dev	-	-							Std Dev	-
				Recom	mended Value:	160	10000						Recomme	ended Value:	1208000

: Means deformation after tectonic disturbance

GEOLOGICAL STRENGTH NIDEX FOR JOINTED ROCKS (Hokek and Marinos, 2 From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be a surface of the surf	0000) e e e o 3 at tr. se n e r. s tt e n r e e e stree CONDILIONS	T VERY GOOD Very rough, fresh unweathered surfaces	GOOD Rough, slightly weathered, iron stained surfaces	7 PAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
		DECKE	13110 30	1/	l .	=
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely space discontinuities	d Sa	90			N/A	N/A
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by threintersecting discontinuity sets	% OF ROCK PIE		70 60			
VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	ERLOCKING					
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	SING II				30	
DISINTEGRATED - poorly inter locked, heavily broken rock ma with mixture of angular and rounded rock pieces					20	
LAMINATED/SHEARED - Lack of blockiness due to close spac of weak schistosity or shear pla	ing	N/A	N/A			/ ¹⁰ /

Figure 10.4.6.4-1—Determination of GSI for Jointed Rock Mass (Hoek and Marinos, 2000)

GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH
(Marinos P and Hoek E, 2000)
From a description of the lithology, structure and surface conditions (particularly
of the bedding planes), choose a box in the chart. Locate the position in the box
that corresponds to the condition of the discontinuities and estimate the average
value of GSI from the contours. Do not attempt to be too precise. Quoting a range
from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown
criterion does not apply to structurally controlled failures. Where unfavourably
oriented continuous weak planar discontinuities are present, these will dominate
the behaviour of the rock mass. The strength of some rock masses is reduced by
the presence of groundwater and this can be allowed for by a slight shift to the
right in the columns for fair, poor and very poor conditions. Water pressure does
not change the value of GSI and it is dealt with by using effective stress analysis.

COMPOSITION AND STRUCTURE

A. Thick bedded, very blocky sandstone
The effect of politic coatings on the bedding
planes is minimized by the confinement of
the rock mass. In shallow tunnels or slopes
with sandstone early
thin interior
siltstone
or silty shale
with sandstone and
siltstone in
siltston

 $Figure~10.4.6.4-2 \\ -- Determination~of~\textit{GSI}~for~Tectonically~Deformed~Heterogeneous~Rock~Masses~(Marinos~and~Hock~2000)$

BEDROCK QUALITY

Project	Exploration ID	Rock Type	Depth From	Range (ft.) To	Thickness (ft)	Layer RQD (%)	Weighted RQD*(Length / Total Length)
MOE-TR183-0.13	B-001-0-22	Shale	25	29	4	67	41.2
MOE-TR183-0.13	B-002-0-22	Shale	25.5	28	2.5	52	20.0
				Shale	6.5	RQD SUM	61
				Maximum	4	67	
				Minimum	2.5	52	1
				Average	3.3	59.5	
					Recommo	ended Value:	61

Duelest		Deels Tome	Depth	Range (ft.)	Thickness	Layer RQD	Weighted
Project	Exploration ID	Rock Type	From	То	(ft)	(%)	RQD*(^{Length} / Total Length)
MOE-TR183-0.13	B-001-0-22	Claystone	29.5	34.7	5.2	73	26.9
MOE-TR183-0.13	B-002-0-22	Claystone	28	31.6	3.6	50	12.8
MOE-TR183-0.13	B-002-0-22	Claystone	31.6	36.9	5.3	49	18.4
				Claystone	14.1	RQD SUM	58
				Maximum	5.3	73	
				Minimum	3.6	49	
				Average	4.7	57.3	
					Recommo	ended Value:	58

Project	Exploration	Rock Type	Depth From	Range (ft.) To	Thickness (ft)	Layer RQD (%)	Weighted RQD*(Length / Total Length)
MOE-TR183-0.13	ID B-001-0-22	Sandstone	34.7	40	5.3	100	63.9
MOE-TR183-0.13	B-002-0-22	Sandstone	36.9	39.9	3	94	34.0
				Sandstone	8.3	RQD SUM	98
				Maximum	5.3	100	
				Minimum	3	94	
				Average	4.2	97.0	
					Recomm	ended Value:	98

Table 10.4.6.5-1—Estimation of E_m Based on GSI

Expression	Notes/Remarks	Reference			
$E_m(GPa) = \sqrt{\frac{q_u}{100}} 10^{\frac{GSI-10}{40}} \text{for } q_u \le 100 \text{ MPa}$	Accounts for rocks with $q_u < 100 \text{ MPa}$; notes q_u in MPa	Hoek and Brown (1997); Hoek et al. (2002)			
$E_m(GPa) = 10^{\frac{GSI - 10}{40}} \qquad \text{for } q_u \le 100 \text{ MPa}$					
$E_m = \frac{E_R}{100} e^{\frac{GSI}{21.7}}$	Reduction factor on intact modulus, based on <i>GSI</i>	Yang (2006)			
Notes: E_r = modulus of intact rock, E_m = equivalent rock m strength, and 1 MPa = 2.09 ksf.	nass modulus, GSI = geological strengt	th index, q_u = uniaxial compressive			

Scour Analysis Parameters

Project: Client: Task:

MOE-TR183-0.13 Monroe County Engineer **Scour Analysis**

Calculated By: Checked By: DCM DMV Date: Date: 11/25/2022 12/1/2022

Reference

ODOT Geotechnical Design Manual (GDM)

Critical Shear Stress (Tc)

Cohesive Soils (GDM 1302.1)

 $^{-2.0}$ (PI/100) $^{1.3}$ (qu) $^{0.4}$ Tc =

Tc (Pa) = Critical Shear Stress

w (dim) = Water Content

F (dim) = Fraction of Fine Particles (< 75 um) PI (dim) = Plasticity Index (use min PI = 4) qu (psf) = Unconfined Compressiive Test

> c (psf) = 1/2 qucohesion

0.01 a = unit conversion

0.01 = U.S. Customary units

0.1 = S.I.

Granular Soils (GDM1302.2)

Tc (Pa) = D50 (mm)

Tc (psf) = Critical Shear Stress (Pa)

D50 mean particle grain size (mm), > or = 0.2 mm

Reference

Location and Design Manual - Volume 2: Drainage Design (LDv2)

Erosion Category (EC)

Cohesive Soils (LDv2 C1008.10.4)

 $4.5 - (3 / 1.07^{Pl})$ EC =

where 1.5 < EC < 4.5

PI = Plasticity index (dim)

Granular Soils (LDv2 C1008.10.4)

EC = 1.2 [1.83333+log (D50)]

where $1 \le EC \le 6$

Boring No.	Sample	Eleva	tio	n (ft)	D50	Moisture	Fines (< 75um)	Plasticiy		Compressive th, Qu	Unit conversion	Tc (Pa)	Tc (psf)	EC (dim)
		Тор		Bottom	(mm)	w (dim)	F (dim)	PI (dim)	Qu (psf) ¹	Qu (Pa)	a (dim)			
B-001-0-22	SS-5	677.56	-	676.06	4.8348	16	10	7	GRANULAR	Granular	0.1	4.835	0.101	3.02
	SS-6	676.06	-	674.56	3.0327	27	21	18	GRANULAR	Granular	0.1	3.033	0.063	2.78
	SS-7	674.56	-	673.06	2.4802	20	19	12	GRANULAR	Granular	0.1	2.480	0.052	2.67
	SS-8	673.06	-	671.56	5.3393	15	15	14	GRANULAR	Granular	0.1	5.339	0.112	3.07
B-002-0-22	SS-5	678.66	-	677.16	4.2471	22	14	10	GRANULAR	Granular	0.1	4.247	0.089	2.95
	SS-6	677.16	-	675.66	1.3939	19	18	6	GRANULAR	Granular	0.1	1.394	0.029	2.37
	SS-7	675.66	-	674.16	2.6654	18	16	8	GRANULAR	Granular	0.1	2.665	0.056	2.71
	SS-8	674.16	-	672.66	3.0839	14	17	8	GRANULAR	Granular	0.1	3.084	0.064	2.79

See soil parameter determination sheet summary

0.0208854 psf

3. dim = dimensionless

Project: MOE-TR183-0.13

Client: ODOT

Task: Scour Analysis

then it must be considered cohesive for determination of critical shear stress, regardless of the tested plasticity. For soils tested as non-plastic (NP) or with PI < 4, assume PI = 4 for use in the

1302.1 Cohesive Soils

Determine scour critical shear stress of a cohesive soil through publication FHWA-HRT-15-033, Figure 54, "Equation. Predictive relation for critical shear stress,"

$$\tau_c = \alpha \left(\frac{w}{F}\right)^{-2.0} \left(\frac{PI}{100}\right)^{1.3} q_u^{0.4}$$

cohesive soil critical shear stress equation.

Where:

τ_c = Critical shear stress, psf (Pa)

w = Water content, dimensionless

 $F = Fraction of fine particles (< 75 \mu m)$ by mass, dimensionless

PI = Plasticity index, dimensionless

qu = Unconfined compressive strength, psf (Pa)

α = Unit conversion constant, 0.01 in U.S. customary units and 0.1 in S.I.

For example, if w = 11, F = 60, PI = 7, and $q_u = 6500$ psf = 311,200 Pa, then:

$$\tau_c = 0.1 \times \left(\frac{11}{60}\right)^{-2.0} \times \left(\frac{7}{100}\right)^{1.3} \times (311,200)^{0.4} = 14.77 \ Pa = 0.308 \ psf.$$

1302.2 Granular Soils

Determine scour critical shear stress of a granular soil as a function of the mean particle grain size using the equation in HEC 18 Figure 4.6, "Critical shear stress vs. particle grain size (Briaud et al. 2011)."

$$\tau_c(Pa) = D_{50}(mm)$$

Where:

τ_c = Critical shear stress (Pa)

 D_{50} = mean particle grain size (mm), ≥ 0.2 mm

1302.3 Bedrock

Determine scour critical shear stress of a non-scour resistant bedrock by rearranging HEC 18 Equations 7.38 for 'Critical Stream Power' and 7.39 'Approach Flow Stream Power' to derive the critical shear stress for non-scour resistant bedrock as follows:

$$\tau_c = \rho \left(\frac{1000 K^{0.75}}{7.853 \rho} \right)^{2/3}$$

July 2022 Page 13-2 OHIO DEPARTMENT OF TRANSPORTATION
Geotechnical Design Manual

 Calculated By:
 DCM
 Date:
 11/25/2022

 Checked By:
 DMV
 Date:
 12/1/2022

LD2 - 1000 Drainage Design Criteria

July 2022

dimensionless, where $1 \le EC \le 6$

Where:

EC = Erosion Category, dimensionless

For cohesive soils:

EC = $4.5 - \frac{3}{1.07^{Pl}}$, where $1.5 \le EC \le 4.5$, PI= Plasticity Index, dimensionless

For granular soils:

$$\begin{split} EC &= 1.2~[1.83333 + log(D_{50})],~where~1 \leq EC \leq 6,\\ D_{50} &= mean~particle~grain~size~(mm), \geq 0.1~mm \end{split}$$

To estimate the erosion rate of a bedrock material, treat it as a cohesionless soil. Divide the spacing between horizontal discontinuities by a value of 2.5 to develop an equivalent D_{50} value.

Consider scour depth in the design of the substructures and the location of the bottom of footings and minimum tip elevations for piles and drilled shafts.

All major rehabilitation work requires a scour evaluation.

Provide hand calculations and/or software output along with a narrative of findings and recommended scour countermeasures in the STS. Ignore scour countermeasures in the prediction of scour depths. Include a statement regarding the susceptibility of the stream banks and flow line to scour, and the susceptibility of the piers and abutments to scour.

soil with D₅₀ = 23 mm, with a bed shear stress of

EC = 1.2 (1.83333 + log(23)) = 3.83

 $\alpha = 13/3.83^{0.309} - 7.1363 = 1.45$

 $\begin{array}{l} \beta = 7.377777 \hbox{-} [(1\hbox{-}(3.83\hbox{-}4.5)^2/3.57^2) \hbox{10.377777}^2]^{0.5} \\ = -2.82 \end{array}$

Erosion Rate, $\dot{z} = 10^{(1.45 \log (53.18) - 2.82)} = 10^{-0.3177} = 0.48 \ mm/hr = 0.019 \ in/hr$

For example; if a material has a spacing between horizontal discontinuities of 9 inches, divide by 2.5 = 3.6 inches = 91 mm; use 91 mm as the equivalent Dsa value.

For existing bridges, the scour evaluation may consist of determining what the bridge is founded on. For example, with bridge rehabilitation, noting that the bridge is founded on spread footings on scour resistant bedrock would constitute the scour evaluation.

Axial and Lateral Pile Design Parameter Determination

Project: MOE-TR183-0.13
Client: Monroe County Engineer
Task: Generalized LPILE Parameters

 Calculated By:
 DCM
 Date:
 11/22/2022

 Checked By:
 DMV
 Date:
 12/1/2022

Soil Lateral Design Profile

	Elevation				Unit W	/t (pcf)		
Soil Type	Top (ft)	Bottom (ft)	Cohesion (psf)	Phi (deg)	Total	Effective ¹	ε50	k (pci)
2 - Medium Dense	688	686	0	31	125	125	N/A	90
1 - Loose Granular	686	682	0	28	120	120	N/A	25
2 - Medium Dense	682	676	0	31	125	125	N/A	90
2 - Medium Dense (submerged)	676	669	0	31	125	62.6	N/A	60
3 - Dense to Very Dense Granular	669	635.5	0	37	135	72.6	N/A	125

^{1.} Effective unit weights to be applied below groundwater table (assumed at El 676 in recommended design profile)

ε50 tables from LPile Technical Manual

Consistency of Clay	E50
Soft	0.020
Medium	0.010
Stiff	0.005

Average Undrained Shear Strength	€50
50-100 kPa (1,000-2,000 psf)	0.007
100-200 kPa (2,000-4,000 psf)	0.005
200-400 kPa (4,000-6,000 psf)	0.004

k tables from LPile Technical Manual

Recommended k	Relative Density						
Recommended k	Loose	Medium	Dense				
MN/m ³	5.4	16.3	34				
(pci)	(20.0)	(60.0)	(125.0)				

 $\begin{tabular}{ll} \textbf{Table 3-7 Representative Values of k for Fine Sand Above Water Table for Static and Cyclic Loading \\ \end{tabular}$

Recommended k	Relative Density						
Recommended k	Loose	Medium	Dense				
MN/m ³	6.8	24.4	61.0				
(pci)	(25.0)	(90.0)	(225.0)				