Ohio Department of Transportation
 Mike DeWine, Governor

PID 106374, MOT-4/444-21.99/00.23L: QUANTITY CALCULATIONS

Calculated by: Dan Grilliot, P.E., Date: 2/22/2023
Checked by: Lawton Gerlinger, P.E., Date: 3/27/2023
Revised by: Dan Grilliot, P.E., Date: 8/8/2023

Roadway

1. Item 201-Clearing and Grubbing (LS)
a. Areas as designated in plan set.
2. Item 202-Pavement Removed (SY)
a. S.B. S.R. 444 STA. $22+80.85$ to STA. 23+05.85, CADD measured 827.94 sq. ft. x (1 sq. yd./9 sq. ft. $)=$ 91.99 sq. yd. = 92 sq. yd.
b. S.B. S.R. 444 STA. $23+05.85$ to STA. $23+30.85$, CADD measured 100.34 sq. ft. Lt. side of Rear Appr. Slab, CADD measured 95.17 sq . ft. Rt. side of Rear Appr. Slab, total $=195.51 \mathrm{sq} . \mathrm{ft} . \mathrm{x}(1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft})=$. 21.72 sq. yd. $=22$ sq. yd.
c. Total = $114 \mathrm{sq} . \mathrm{yd}$.
3. Item 202-Curb Removed (FT)
a. STA. $23+05$ to STA. $23+30=25 \mathrm{ft}$.
4. Item 202-Guardrail Removed (FT)
a. STA. $22+70.93$ to STA. $23+33.34=62.5 \mathrm{ft}$.
b. STA. $22+72.89$ to STA. $23+10.39=37.5 \mathrm{ft}$.
c. Total $=100 \mathrm{ft}$.
5. Item 202-Removal Misc.: Removal of Bridge ID Sign and Reerection (EA)
a. MOT-444-0023L Rear Abutment Guardrail $=1$ each
6. Item 204-Subgrade Compaction (SY)
a. Full Depth Pavement Section, S.B. S.R. 444 STA. $22+80.85$ to STA. 23+10.85, 18" beyond pavement surface (both sides), CADD measured $1079.14 \mathrm{sq} . \mathrm{ft}$. x ($1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . f t.)=119.90 \mathrm{sq} . \mathrm{yd} .=120 \mathrm{sq} . \mathrm{yd}$.
b. Approach Slab S.B. S.R. 444 STA. $23+10.85$ to STA. $23+30.85$, CADD measured 650 sq. ft. x ($1 \mathrm{sq} . \mathrm{yd} / 9$ sq. $f t.)=72.22 \mathrm{sq} . \mathrm{yd} .=73 \mathrm{sq} . \mathrm{yd}$.
c. Total = $193 \mathrm{sq} . \mathrm{yd}$.
7. Item 606-Guardrail, Type 5 (FT)
a. Subsummary STA. $22+70.93$ to STA. $23+33.34=62.5 \mathrm{ft}$.
b. Subsummary STA. $22+72.89$ to STA. $23+10.39=37.5 \mathrm{ft}$.
c. Total $=100 \mathrm{ft}$.

Erosion Control

8. Item 659-Seeding and Mulching (SY)
a. MOT-444-0023L Rear Abutment NW Quadrant $=1821 \mathrm{sq} . \mathrm{ft}$.
b. MOT-4/444-2199/0023L Rear Abutment between bridges $=984 \mathrm{sq} . \mathrm{ft}$.
c. MOT-4-2199 Rear Abutment SW Quadrant = 3366 sq. ft.
d. MOT-444-0023L Fwd. Abutment NE Quadrant $=2311 \mathrm{sq} . \mathrm{ft}$.
e. MOT-4/444-2199/0023L Fwd. Abutment between bridges $=1016$ sq. ft.
f. MOT-4-2199 Fwd. Abutment SE Quadrant $=2565$ sq. ft.
g. Painting Equipment Setup under bridge behind portable barrier $=2400 \mathrm{sq} . \mathrm{ft}$.
h. Total $=14463$ sq. ft. $\times(1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft})=.1607 \mathrm{sq} . \mathrm{yd}$.
9. Item 659-Repair Seeding and Mulching (SY)
a. 5% of permanent per Designer Note
b. Total $=1607$ sy *0.05 = 80 sq. yd.
10. Item 659-Commercial Fertilizer (TON)
a. Rates per Designer Note
b. Perm seed total $=1607$ sy $x 1$ ton/7410sy $=0.22$ ton
11. Item 659-Water (MGAL)
a. Rates per Designer Note
b. Perm seed total $=1607$ sy $x 0.0027 \mathrm{Mgal} /$ sy $\times 2$ applications $=8.68 \mathrm{Mgal}=9 \mathrm{Mgal}$
12. Item 832-Erosion Control (EA)
a. Considered Maintenance Project: \$1,000/bridge x 2 bridges $=\$ 2,000$

Pavement

13. Item 254-Pavement Planing, Asphalt Concrete, $11 / 2$ " Depth (SY)
a. Rear Approach S.B. S.R. 444 STA. $22+30.85$ to STA. $22+80.85$, CADD measured 1734.32 sq. ft. x (1 sq. yd/9 sq. ft.) = 192.70 sq. yd. $=193$ sq. yd.
b. On Ex. Appr. Slab S.B. S.R. 444 STA. $23+05.85$ to STA. $23+30.85$, CADD measured 599.9 sq. ft. x (1 sq. yd. $/ 9 \mathrm{sq} . \mathrm{ft}$.) $=66.66 \mathrm{sq} . \mathrm{yd} .=67 \mathrm{sq} . \mathrm{yd}$.
c. Fwd. Approach S.B. S.R. 444 STA. $26+74.65$ to STA. $27+24.65$, CADD measured 1575.81 sq. ft. x (1 sq . yd. $/ 9$ sq. ft. $)=175.09$ sq. yd. $=175$ sq. yd.
d. Rear Approach N.B. S.R. 444 STA. $22+35.75$ to STA. 22+85.75, CADD measured 1583 sq. ft. x (1 sq. yd. $/ 9$ sq. ft.) $=175.89 \mathrm{sq} . \mathrm{yd} .=176 \mathrm{sq} . \mathrm{yd}$.
e. Fwd. Approach N.B. S.R. 444 STA. $26+29.55$ to STA. $26+79.55$, CADD measured 1663.88 sq. ft. x (1 sq. yd. $/ 9 \mathrm{sq} . \mathrm{ft}.)=184.88 \mathrm{sq} . \mathrm{yd} .=185 \mathrm{sq} . \mathrm{yd}$.
f. Total = 796 sq. yd.
14. Item 302-Asphalt Concrete Base, PG64-22 (449) (8" thick) (CY)
a. Rear Approach S.B. S.R. 444 STA. $22+80.85$ to STA. 23+10.85 (4" beyond surface Rt. Side), CADD measured $994.70 \mathrm{sq} . \mathrm{ft} . \times 8 \mathrm{in} . x(1 \mathrm{ft} . / 12 \mathrm{in}) \times.(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})=.24.56 \mathrm{cu} . \mathrm{yd} .=25 \mathrm{cu} . \mathrm{yd}$.
b. Total = 25 cu . yd.
15. Item 304-Aggregate Base (6" thick) (CY)
a. Rear Approach S.B. S.R. 444 STA. $22+80.85$ to STA. $23+10.85$, CADD measured 1008.58 sq. ft. x 6 in. x (1 ft. $/ 12 \mathrm{in}.) \times(1 \mathrm{cu} . y d . / 27 \mathrm{cu} . \mathrm{yd})=.18.68 \mathrm{cu} . \mathrm{yd} .=19 \mathrm{cu} . \mathrm{yd}$.
b. Appr. Slab S.B. S.R. 444 STA. $23+10.85$ to STA. $23+30.85$, CADD measured $650 \mathrm{sq} . \mathrm{ft} . \mathrm{x} 6 \mathrm{in} . \mathrm{x}(1 \mathrm{ft} . / 12$ in.) $\times(1 \mathrm{cu}$. yd. $/ 27 \mathrm{cu} . \mathrm{ft}$. $)=12 \mathrm{cu} . \mathrm{yd}$.
c. Total = $19 \mathrm{cu} . y d .+12 \mathrm{cu}$. yd. $=31 \mathrm{cu} . \mathrm{yd}$.
16. Item 407-Non-Tracking Tack Coat (GAL)
a. Rear Approach Full Depth S.B. S.R. 444 STA. $22+80.85$ to STA. $23+10.85$ (rate $=0.055$ gal/sq. yd.), CADD measured $988.40 \mathrm{sq} . \mathrm{ft}$. $\times(1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft}.) \times 0.055 \mathrm{gal} / \mathrm{sq} . \mathrm{yd} . \times 3 \mathrm{applications}=18.12 \mathrm{gal}=19 \mathrm{gal}$
b. Rear Approach Resurfacing S.B. S.R. 444 STA. $22+30.85$ to STA. $22+80.85$ (rate $=0.085$ gal/sq. yd.), CADD measured $1729.87 \mathrm{sq} . \mathrm{ft} . \mathrm{x}(1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft}.) \times 0.085 \mathrm{gal} / \mathrm{sq} . \mathrm{yd} .=16.34 \mathrm{gal}=17 \mathrm{gal}$
c. Fwd. Approach Resurfacing S.B. S.R. 444 STA. $26+74.65$ to STA. $27+24.65$ (rate $=0.085 \mathrm{gal} / \mathrm{sq} . \mathrm{yd}$.$) ,$ CADD measured 1575.81 sq . ft. x ($1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft}.) \times 0.085 \mathrm{gal} / \mathrm{sq} . \mathrm{yd} .=14.88 \mathrm{gal}=15 \mathrm{gal}$
d. Rear Approach N.B. S.R. 444 STA. $22+35.75$ to STA. $22+85.75$ (rate $=0.085$ gal/sq. yd.), CADD measured 1583 sq. ft. x (1 sq. yd. $/ 9 \mathrm{sq}$. ft.) x $0.085 \mathrm{gal} / \mathrm{sq} . \mathrm{yd} .=14.95 \mathrm{gal}=15 \mathrm{gal}$
e. Fwd. Approach N.B. S.R. 444 STA. $26+29.55$ to STA. $26+79.55$ (rate $=0.085 \mathrm{gal} / \mathrm{sq}$. yd.) CADD measured
$1663.88 \mathrm{sq} . \mathrm{ft} . \times(1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft}.) \times 0.085 \mathrm{gal} / \mathrm{sq} . \mathrm{yd} .=15.71 \mathrm{gal}=16 \mathrm{gal}$
f. Total = 82 gal
17. Item 441-Asphalt Concrete Surface Course, Type 1 (449), PG70-22M (CY)
a. Rear Approach Resurfacing S.B. S.R. 444 STA. $22+30.85$ to STA. 22+80.85 (1 $1 / 2$ " thick) CADD measured $1729.87 \mathrm{sq} . \mathrm{ft} . x 1.5 \mathrm{in} . x(1 \mathrm{ft} . / 12 \mathrm{in}.) \times 1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft}.)=8 \mathrm{cu} . \mathrm{yd}$
b. Rear Approach Full Depth S.B. S.R. 444 STA. $22+80.85$ to STA. $23+10.85$ (3" thick) CADD measured $988.40 \mathrm{sq} . \mathrm{ft} . \times 3 \mathrm{in} . \times(1 \mathrm{ft} . / 12 \mathrm{in}$.) x ($1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft}$.) $=9.15 \mathrm{cu} . \mathrm{yd} .=10 \mathrm{cu} . \mathrm{yd}$.
c. Fwd. Approach Resurfacing S.B. S.R. 444 STA. $26+74.65$ to STA. $27+24.65$ ($11 / 2$ " thick) CADD measured $1575.81 \mathrm{sq} . \mathrm{ft} . \times 1.5 \mathrm{in} . \times(1 \mathrm{ft} . / 12 \mathrm{in}.) \times 1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft}.)=7.3 \mathrm{cu} . \mathrm{yd} .=8 \mathrm{cu} . \mathrm{yd}$.
d. Rear Approach Resurfacing N.B. S.R. 444 STA. $22+35.75$ to STA. $22+85.75$ ($11 / 2$ " thick) CADD measured $1583 \mathrm{sq} . \mathrm{ft} . \times 1.5 \mathrm{in} . \times(1 \mathrm{ft} . / 12 \mathrm{in}) \times.(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})=.7.33 \mathrm{cu} . \mathrm{yd} .=8 \mathrm{cu} . \mathrm{yd}$.
e. Fwd. Approach Resurfacing N.B. S.R. 444 STA. $26+29.55$ to STA. $26+79.55$ ($11 / 2$ " thick) CADD measured $1663.88 \mathrm{sq} . \mathrm{ft} . \times 1.5 \mathrm{in} . \times(1 \mathrm{ft} . / 12 \mathrm{in}$.) $\mathrm{x}(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft}$. $)=7.7 \mathrm{cu} . \mathrm{yd} .=8 \mathrm{cu} . \mathrm{yd}$.
f. Total $=42 \mathrm{cu} . \mathrm{yd}$.
18. Item 609-Curb, Type 4-C (FT)
a. STA. $23+05$ to STA. $23+30$ LT. $=25 \mathrm{ft}$.

Traffic Control

19. Item 621-Raised Pavement Marker Removed (EA)
a. 27 each (as listed on subsummary for locations)
20. Item 626-Barrier Reflector, Type 2 (One-Way) (EA)
a. STA. $22+70.93$ to STA. $23+22.24$ LT. $=2$ each
b. STA. $22+72.89$ to STA. $23+10.39$ LT. $=2$ each
c. Total $=4$ each
21. Item 646-Edge Line, 6" (MILE)
a. STA. $19+46$ to STA. $20+78,0.03$ mile (white)
b. STA. $21+21$ to STA. $31+08,0.17$ mile (white)
c. STA. $21+24$ to STA. $40+05,0.36$ mile (yellow)
d. STA. $16+80$ to STA. $17+32,0.01$ mile, (white)
e. STA. $20+47$ to STA. $26+88,0.12$ mile, (white)
f. STA. $19+80$ to STA. 29+45, 0.18 mile, (yellow)
g. Total $=0.87$ mile
22. Item 646-Lane Line, 6" (MILE)
a. STA. $21+81$ to STA. $47+97,0.5$ mile
b. STA. $19+78$ to STA. $30+43,0.2$ mile
c. Total $=0.70$ mile
23. Item 646-Channelizing Line, 12" (FT)
a. STA. $20+78$ to STA. $21+81,103 \mathrm{ft}$.
b. STA. $21+36$ to STA. $21+81,45 \mathrm{ft}$.
c. STA. $17+32$ to STA. $19+78,246 \mathrm{ft}$.
d. STA. $18+32$ to STA. $19+78,146 \mathrm{ft}$.
e. Total $=540 \mathrm{ft}$.
24. Item 646-Dotted Line, 6" (FT)
a. STA. $34+23$ to STA. $35+89,166 \mathrm{ft}$.
b. STA. $26+39$ to STA. $28+23,184 \mathrm{ft}$.
c. \quad Total $=350 \mathrm{ft}$.

Structure Repair (MOT-4-2199)

25. Item 202-Portions of Structure Removed, Over 20 Foot Span, As Per Plan (LS)
a. Lump Sum (LS)
26. Item 509-Concrete Reinforcement, Replacement of Existing Concrete Reinforcement, As Per Plan (LB)
a. Total = 100 lbs
27. Item 509-Uncoated Steel Reinforcement (LB)
a. Abutments $=846$ lbs
b. \quad Parapet Rebuild $=306 \mathrm{lbs}$
c. Total $=1152 \mathrm{lbs}$
28. Item 510-Dowel Holes with Nonshrink, Nonmetallic Grout (EA)
a. Abutments $=124$ each
b. Parapet Rebuild $=0$ each
c. Total = 124 each
29. Item 511-Class QC2 Concrete, Superstructure (CY)
a. Backwall $=1.20833 \mathrm{ft} . \times 1.724 \mathrm{ft} . \times 29.36 \mathrm{ft} . \times 2$ ends of bridge $\times(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})=.4.53 \mathrm{cu} . \mathrm{yd}$. $+1.7083 \mathrm{ft} . \times 1.724 \mathrm{ft} . \times(7.03 \mathrm{ft} .+7.03 \mathrm{ft}) \times$.2 ends of bridge $\times(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})=.3.07 \mathrm{cu} . \mathrm{yd} .$,
Total backwall $=7.60 \mathrm{cu} . \mathrm{yd}$.
b. Deck Ends $=7.75$ in $\times 44.65 \mathrm{ft} . \times 2.5 \mathrm{ft} . \times(1 \mathrm{ft} . / 12 \mathrm{in}).(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})$.2 deck ends $=5.34 \mathrm{cu} . \mathrm{yd}$.
c. Parapet on Ends of Bridge $=($ CADD measured $=4.45 \mathrm{sq}$. ft.) \times (lengths of parapet replacement on one end of bridge $=3.0625 \mathrm{ft} .+1.84375 \mathrm{ft} .+3.052 \mathrm{ft} .+2.09 \mathrm{ft}.) \times 2$ bridge ends $\times(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})=$. cu. yd.
d. Total $=16.25 \mathrm{cu} . \mathrm{yd} .=17 \mathrm{cu} . \mathrm{yd}$.
30. Item 512-Concrete Repair by Epoxy Injection (FT)
a. Rear Abutment $=4 \mathrm{ft}$.
b. Fwd. Abutment $=11 \mathrm{ft}$.
c. Total $=15 \mathrm{ft}$.
31. Item 513-Structural Steel for Rehabilitation (LB)
a. From Item 514E00050 calculations, length of end crossframe angles $=8$ each $\times 24.72 \mathrm{ft}$. $/$ unit $=197.76$
ft. x $9.8 \mathrm{lb} / \mathrm{sq} . \mathrm{ft}$. (new 4" x 4" $\times 3 / 8$ " per GSD-1-19 from steel book) $=1938 \mathrm{lb}$
b. Top plates of crossframe unit are included in new expansion joint armor.
c. Bottom plate of crossframe unit is approx. $10 " \times 14 ", 8$ each $\times 19.83 \mathrm{lb} /$ plate $=158.66 \mathrm{lb}$
d. $10 "$ wide plate $\times 1 / 2 "$ thick $=17 \mathrm{lb} / \mathrm{ft} ., 17 \mathrm{lb} / \mathrm{ft} . \times 14 \mathrm{in} . \times(1 \mathrm{ft} . / 12 \mathrm{in})=.19.83 \mathrm{lb}$
e. Total $=1938 \mathrm{lb}+158.66 \mathrm{lb}=2097 \mathrm{lb}$
32. Item 514-Surface Preparation of Existing Structural Steel (SF)
a. Beams (Section \#1 without splice plate) $-W 36 \times 260$ perimeter to paint $=(36.25 "-17 / 16$ ")* $(2$ sides $)+$ $(16.5 "-13 / 16 ")^{*}(2)+16.5 "=9.792 \mathrm{ft}$. , Beam Length $=$ Assume beam is $6 "$ longer past the bearings at the end of the beam, $(0 \mathrm{ft} .-65.583 \mathrm{ft} .=65.583 \mathrm{ft} ., 85.417 \mathrm{ft} .-159.583 \mathrm{ft} .=74.166 \mathrm{ft} ., 179.417 \mathrm{ft} .-253.583 \mathrm{ft} .=$ $74.166 \mathrm{ft} ., 273.417 \mathrm{ft} .-339 \mathrm{ft} .=65.583 \mathrm{ft}$. , Total $=279.498 \mathrm{ft}$.; Beam Lines $=5$, Total Beam Section \#1 to be Painted $=9.792 \mathrm{ft} . \times 279.498 \mathrm{ft} . \times 5$ beam lines $=13684.22 \mathrm{sq} . \mathrm{ft}$.
b. Beams (Section \#2 with splice plate $9^{\prime}-10^{\prime \prime} \times 18^{\prime \prime} \times 3 / 4$ ") $-W 36 \times 260$ perimeter to paint $=(36.25 "-1$
$7 / 16 ")^{*}(2$ sides $)+(16.5 "-13 / 16 ")^{*}(2)+18 "+(2 \times 3 / 4 ")+(2 \times 3 / 4 ")=31.375 \mathrm{in} .+69.625 \mathrm{in} .+18 \mathrm{in} .+1.5 \mathrm{in} .+$ $1.5 \mathrm{in} .=122 \mathrm{in} .=10.17 \mathrm{ft}$., Beam Length $=$ Assume beam is 6 " longer past the bearings at the end of the beam, $(65.583 \mathrm{ft} .-85.417 \mathrm{ft} .=19.834 \mathrm{ft} ., 159.583 \mathrm{ft} .-179.417 \mathrm{ft} .=19.834 \mathrm{ft} ., 253.583 \mathrm{ft} .-273.417 \mathrm{ft} .=$ 19.834 ft ., Total $=59.502 \mathrm{ft}$.; Beam Lines $=5$, Total Beam Section \#2 to be Painted $=10.17 \mathrm{ft}$. x $59.502 \mathrm{ft} . \times 5$ beam lines $=3025.68$ sq. ft.
c. Total Beams $=16709.90$ sq. ft.
d. Intermediate Crossframes-Crossframe unit length $=(8.4303 \mathrm{ft} . \times 2$ each $)+7.9583 \mathrm{ft} .=24.819 \mathrm{ft}$. , $3 " \times 3$ "x5/16" perimeter $=1 \mathrm{ft}$., \# crossframe units $=136$ each, $24.819 \mathrm{ft} . * 1 \mathrm{ft} . * 136$ each $=3375.38 \mathrm{sq} . \mathrm{ft}$. e. End Crossframes-Crossframe unit length $=(4.273 \mathrm{ft} . \times 2)+(3.22 \mathrm{ft} . \mathrm{ft} . \times 2)+9.734375 \mathrm{ft} .=24.72 \mathrm{ft}$., \# crossframe units $=8$ each, 4 " $x 4$ " $x 5 / 16$ " perimeter $=1.33 \mathrm{ft}$., Total End Crossframes $=24.72 \mathrm{ft}$. * 1.33 ft . * 8 each $=263.02$ sq. ft.
f. End Crossframe Plates say top plates $12 " \times 16 "=1 \mathrm{ft} . \times 1.333 \mathrm{ft} .=1.333 \mathrm{sq} . \mathrm{ft}$., say bottom plates 10 " $x 14 "=0.833 \mathrm{ft} . \times 1.167 \mathrm{ft} .=0.972$ sq. ft.; ($1.333 \mathrm{sq} . \mathrm{ft} . \times 2$ plates $)+(0.972 \mathrm{sq} . \mathrm{ft} . x 1$ plate $)=3.64 \mathrm{sq} . \mathrm{ft} . \mathrm{x}$ 2 sides $=7.28$ sq. ft. /crossframe unit; 8 each $x 7.28$ sq. $\mathrm{ft}=58.24 \mathrm{sq} . \mathrm{ft}$.
g. Total End Crossframes $=321.26$ sq. ft.
h. Scuppers-Scupper approx. length to be painted 36.25 in. -1.4375 in. $=34.8125 \mathrm{in} .=2.901 \mathrm{ft}$., 9 " $\times 5$
$1 / 16$ " scupper surface area $=(9 \mathrm{in} . \times 2)+(51 / 16 \mathrm{in} . \times 2)=28.125 \mathrm{in} .=2.34375 \mathrm{ft} ., \#$ of scuppers $=8$
each/quadrant $x 4$ quadrants $=32$ each, $2.901 \mathrm{ft} /$ scupper $* 2.34375 \mathrm{ft}$. ${ }^{*} 32$ scuppers $=217.58 \mathrm{sq} . \mathrm{ft}$.
i. Bearings at Piers $=2$ sq. $\mathrm{ft} * 5$ bearings $/$ pier * 3 piers $=30 \mathrm{sq} . \mathrm{ft}$.
j. Total $=$ Beams + Intermediate Crossframes + End Crossframes + Scuppers + Bearings $=20654.12 \mathrm{sq} . \mathrm{ft} .=$ 20654 sq. ft.
33. Item 514-Field Painting of Existing Structural Steel, Prime Coat (SF)
a. Same as Surface Preparation of Existing Structural Steel $=20654$ sq. ft.
34. Item 514-Field Painting Structural Steel, Intermediate Coat (SF)
a. Same as Surface Preparation of Existing Structural Steel $=20654$ sq. ft.
35. Item 514-Field Painting Structural Steel, Finish Coat (SF)
a. Same as Surface Preparation of Existing Structural Steel $=20654$ sq. ft.
36. Item 514-Grinding Fins, Tears, Slivers on Existing Structural Steel (MNHR)
a. Per 2020 BDM section 404.1.11 1 min ./ft. beam/girder to be painted, 339 ft * 5 beam lines * (1 min. $/ \mathrm{ft}$.) * (1 hr. $/ 60 \mathrm{~min}.)=28.25 \mathrm{hr} .=29 \mathrm{hr}$.
37. Item 514-Final Inspection Repair (EA)
a. Per CMS 514.21: 1 location per 300 ft . of beam length, 2.5% of all crossframe assemblies, 339 ft . * 5 beam lines * (1 each/300 ft. $)+(0.025)$ * (136 intermediate crossframe units +8 end crossframe units $)=5.65$ each +3.6 each $=9.25$ each $=9$ each $=$ total
38. Item 514-Field Painting, Misc.: Zinc Rich Primer (SF)
a. From framing plan sheet in plans: 1 sq. ft. +2 sq. ft. +1 sq. ft. +2 sq. ft. +1 sq. ft. +2 sq. ft. +2 sq. ft. +2 sq. ft. +4 sq. ft. +4 sq. ft. +1 sq. ft. +1 sq. ft. $=23$ sq. ft.
39. Item 516-Structural Expansion Joint Including Elastomeric Strip Seal (FT)
a. T/T barrier $=32.5 \mathrm{ft}$., add 1.25 ft . min. per std. dwg. EXJ $-4-87 \times 2$ ends, $=35 \mathrm{ft} . ; \cos 35.1666=35$
$\mathrm{ft} / \mathrm{x}, \mathrm{x}=42.81 \mathrm{ft} .=43 \mathrm{ft} . \mathrm{x} 2$ ends $=86 \mathrm{ft} .=$ total
40. Item 516-2" Deep Joint Sealer, As Per Plan (FT)
a. \quad T/T parapet $=32.5 \mathrm{ft}$., $\cos 35.1666=32.5 \mathrm{ft} / \mathrm{x}, \mathrm{x}=39.76 \mathrm{ft} . \mathrm{x} 2 \mathrm{ends}=79.51 \mathrm{ft} .=80 \mathrm{ft}$.
41. Item 516-Elastomeric Bearing with Internal Laminates and Load Plate (Neoprene) As Per Plan (Bearing: 11"x13"x3.48", Load Plate: 12"x14"x1.5") (EA)
a. 1 bearing/beam end * 5 beams * 2 beam ends/beam $=10$ each = total
42. Item 516-Jacking and Temporary Support of Superstructure, As Per Plan (LS)
a. Lump Sum (LS)
43. Item 519-Patching Concrete Structure, As Per Plan (SF)
a. Lt. Parapet $=129$ sq. ft. +18 sq. ft. +172 sq. ft. +18 sq. ft. +12 sq. ft. +258 sq. ft. +37 sq. ft. $=644$
sq. ft.
b. Rt. parapet $=75$ sq. ft. Two areas measured 20 sq. ft. and 10 sq. ft. during deck condition survey in March 2021.
c. Total $=719$ sq. ft.
44. Item 844-Concrete Patching with Galvanic Anode Protection, As Per Plan (SF)
a. Rear Abutment $=2$ sq. ft. +1 sq. ft. +1 sq. ft. +1 sq. ft. +8 sq. ft. +6 sq. ft. +11 sq. ft. +2 sq. ft. +6
sq. ft. +2 sq. ft. +7 sq. ft. +4 sq. ft. $=51$ sq. ft.
b. Fwd. Abutment $=5$ sq. ft. +4 sq. ft. +8 sq. ft. +4 sq. ft. +2 sq. ft. +2 sq. ft. +4 sq. ft. $=29$ sq. ft.
c. Total $=80 \mathrm{sq} . \mathrm{ft}$.
45. Item 848-Superplasticized Dense Concrete Overlay Using Hydrodemolition, (2 3/4" thick) (SY)
a. $\quad \mathrm{T} / \mathrm{T}$ parapet $=32.5 \mathrm{ft}$.
b. Length to Overlay $=343.80-(1.20833 \mathrm{ft} \times 2$ walls each end) $-(0.417 \mathrm{ft}$. (5 " joint channel assumed) $\times 2$ ends) $=340.55 \mathrm{ft}$.
c. Total $=340.55 \mathrm{ft} \times 32.5 \mathrm{ft} . \times(1 \mathrm{cu} . y d . / 9 \mathrm{sq} . \mathrm{ft})=.1229.76 \mathrm{sq} . \mathrm{yd} .=1230 \mathrm{sq} . \mathrm{yd}$.
46. Item 848-Surface Preparation Using Hydrodemolition, As Per Plan (SY)
a. Length to hydro $=$ used 848 E 10200 length $-($ deck end replacement length $\times 2$ ends $)=340.55 \mathrm{ft} .-(2.5 \mathrm{ft}$ $\mathrm{x} 2)=335.55 \mathrm{ft}$.
b. T / T parapet $=32.5 \mathrm{ft}$.
c. Total $=335.55 \mathrm{ft} . \times 32.5 \mathrm{ft} . \times(1 \mathrm{cu} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft})=.1211.7 \mathrm{sq} . \mathrm{yd} .=1212 \mathrm{sq} . \mathrm{yd}$.
47. Item 848-Superplasticized Dense Concrete Overlay (Variable Thickness), Material Only (CY)
a. $\quad 7 / 6 / 2021$ measured unsound area $=3409$ sq. ft. $=378.78$ sq. yd.; Overlay deck area $=1229.76$ sq. yd.;
$\%$ unsound $=378.78$ sq. $y d / 1229.76$ sq. yd. $=31 \%$
b. $\quad 4 / 11 / 2023$ measured unsound area $=1123$ sq. ft. $=124.78$ sq. yd.; Overlay deck area $=1229.76$ sq. yd.;
\% unsound $=124.78$ sq. yd. $/ 1229.76$ sq. yd. $=10 \%$
c. $10 / 18 / 2022$ BR86; Wearing Surface (WS) $=$ CS2 + CS3 $=1984+312=2296$ sq. ft. (21%); Floor CS2 + CS3
$=498+490=998$ sq. ft. (8%)
d. Therefore, use $\%$ measured unsound $=(31 \%+21 \%) / 2=26 \%<70 \%$, ok, to cover cracked area variable depth
e. BDM T403-3: \% variable thickness $=55 \%$
f. \quad BDM variable area $=0.55 \times 10905$ sq. ft. $=5998$ sq. ft.
g. BDM Factors
h. $\quad 2^{\text {nd }}$ generation overlay, $M F=1.15$
i. \quad Sale date $=1 / 25 / 2024$ (1 winter), $M F=1.0$
j. D7 Factors (8/7/2018 policy)
k. $\quad 1^{\text {st }}$ overlay (SDC), MF $=1.0$
l. High measured unsound area \%, MF = 1.0 - due to inconsistencies with DCS measurements
m. Adjusted Variable Area $=5998$ sq. ft. $\times 1.15=6898$ sq. ft. (63%)
n. BDM 403.4.1 Variable Depth = 2"
o. Plan Variable Depth $=1 "+0.75 "+0.75 "=2.5 "$, use ($2^{\text {nd }}$ overlay $\&$ transverse bars on top)
p. Variable Volume $=6898 \mathrm{sq} . \mathrm{ft} . \mathrm{x}(2.5 \mathrm{in} . / 12)=1437 \mathrm{cu} . \mathrm{ft} . / 27=53 \mathrm{cu} . \mathrm{yd}$.
48. Item 848-Hand Chipping (SY)
a. 2020 BDM 403.4.1 handchipping area $=10 \%$ of variable thickness area
b. D7 Factors (8/7/2018) policy):
c. Asphalt/green patch, $M F=1.0$
d. $\quad 2^{\text {nd }}$ overlay minimum area $=10 \%$ of hydro area
e. \quad Area $=0.1 \times 6898$ sq. ft. $=690$ sq. ft. $=6 \%<10 \%$, not good
f. \quad use area $=0.1 \times 10905$ sq. ft. $=1091$ sq. ft $/ 9=121$ sq. yd .
49. Item 848-Test Slab (LS)
a. Total = LUMP SUM
50. Item 848-Existing Concrete Overlay Removed, (2" Thick) (SY)
a. Does not include deck end rebuilds. Same area as the hydro as Item 848E20001 = 1212 sq. yd. $=$ total
51. Item 848-Removal of Debonded or Deteriorated Existing Variable Thickness Concrete Overlay (SY)
a. \quad D7 (8/7/2018 policy) $=50 \%$ of handchipping area
b. $\quad 0.5 \times 1091 \mathrm{sq} . \mathrm{ft} .=546 \mathrm{sq} . \mathrm{ft} . / 9=61 \mathrm{sq} . \mathrm{yd}$.

Structure Repair (MOT-444-0023L)

52. Item 202-Portions of Structure Removed, Over 20 Foot Span, As Per Plan (LS)
a. Lump Sum (LS)
53. Item 202-Approach Slab Removed (SY)
a. Rear Approach Slab = 24 ft . wide $x 25 \mathrm{ft}$. long $x(1 \mathrm{sq} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft})=.66.67 \mathrm{sq} . \mathrm{yd} .=67 \mathrm{sq} . \mathrm{yd}$.
54. Item 503-Cofferdams and Excavation Bracing (LS)
a. Total = LUMP SUM
55. Item 503-Unclassified Excavation (LS)
a. Total = LUMP SUM
56. Item 509-Concrete Reinforcement, Replacement of Existing Concrete Reinforcement, As Per Plan (LB)
a. Total = 100 lbs
57. Item 509-Uncoated Steel Reinforcement (LB)
a. Abutments = 1619 lbs
b. Parapet Rebuild = 308 lbs
c. Rear Approach Slab = 9497 lbs
d. Total = 11424 lbs
58. Item 510-Dowel Holes with Nonshrink, Nonmetallic Grout (EA)
a. Abutments = 162 each
b. Parapet Rebuild $=0$ each
c. Total = 162 each
59. Item 511-Class QC2 Concrete, Superstructure (CY)
a. Same quantity as MOT-4-2199 = $17 \mathrm{cu} . \mathrm{yd} .=$ total
60. Item 511-Class Qc1 Concrete, Abutment Not Including Footing 1.70833 ft . wide $\times 125.58 \mathrm{sq} . \mathrm{ft} . \mathrm{x}(1 \mathrm{cu} . \mathrm{yd} . / 27$ cu. ft.) $=7.95 \mathrm{cu} . \mathrm{yd} .=8 \mathrm{cu} . \mathrm{yd} .=$ total
61. Item 512-Concrete Repair by Epoxy Injection (FT)
a. Rear Abutment $=2 \mathrm{ft}$.
b. Fwd. Abutment $=0 \mathrm{ft}$.
c. \quad Total $=2 \mathrm{ft}$.
62. Item 513-Structural Steel for Rehabilitation (LB)
a. Same quantity as MOT-4-2199 = 2097 lb
63. Item 514-Surface Preparation of Existing Structural Steel (SF)
a. Same quantity as MOT-4-2199 = 20654 sq. ft.
64. Item 514-Field Painting of Existing Structural Steel, Prime Coat (SF)
a. Same as Surface Preparation of Existing Structural Steel $=20654$ sq. ft.
65. Item 514-Field Painting Structural Steel, Intermediate Coat (SF)
a. Same as Surface Preparation of Existing Structural Steel = 20654 sq. ft.
66. Item 514-Field Painting Structural Steel, Finish Coat (SF)
a. Same as Surface Preparation of Existing Structural Steel = 20654 sq. ft.
67. Item 514-Grinding Fins, Tears, Slivers on Existing Structural Steel (MNHR)
a. Per 2020 BDM section 404.1.11 $1 \mathrm{~min} . / \mathrm{ft}$. beam/girder to be painted, 339 ft * 5 beam lines * (1 $\mathrm{min} . / \mathrm{ft}$.) * (1 hr. $/ 60 \mathrm{~min}.)=28.25 \mathrm{hr} .=29 \mathrm{hr}$.
68. Item 514-Final Inspection Repair (EA)
a. Per CMS 514.21: 1 location per 300 ft . of beam length, 2.5% of all crossframe assemblies, 339 ft . * 5 beam lines * (1 each/300 ft. $)+(0.025)$ * (136 intermediate crossframe units +8 end crossframe units $)=5.65$ each +3.6 each $=9.25$ each $=9$ each $=$ total
69. Item 514-Field Painting, Misc.: Zinc Rich Primer (SF)
a. From framing plan sheet in plans: 12 sq. ft. +1 sq.
ft. +1 sq. ft. +1 sq. ft. +3 sq. ft. $=23$ sq. ft.
70. Item 516-Structural Expansion Joint Including Elastomeric Strip Seal (FT)
a. $\quad \mathrm{T} / \mathrm{T}$ barrier $=32.5 \mathrm{ft}$., add 1.25 ft . min. per std. dwg. EXJ- $4-87 \times 2$ ends, $=35 \mathrm{ft} . ; \cos 35.1666=35$
$\mathrm{ft} / \mathrm{x}, \mathrm{x}=42.81 \mathrm{ft} .=43 \mathrm{ft} . x 2$ ends $=86 \mathrm{ft} .=$ total
71. Item 516-1" Preformed Expansion Joint Filler
a. Between edge of approach slab and parapet/footer $=(1.0833 \mathrm{ft} . \times 20 \mathrm{ft} . \times 2$ edges $)=43.33 \mathrm{sq} . \mathrm{ft}$.
b. Between end of parapet transition and prop. curb type $4-C=(0.5 \mathrm{ft} . \times 1.333 \mathrm{ft} . \times 2 \mathrm{curbs})=1.33 \mathrm{sq} . \mathrm{ft}$.
c. Total $=44.66$ sq. ft. $=45$ sq. ft.
72. Item 516-2" Deep Joint Sealer, As Per Plan (FT)
a. $\quad \mathrm{T} / \mathrm{T}$ parapet $=32.5 \mathrm{ft}$., $\cos 35.1666=32.5 \mathrm{ft} / \mathrm{x}, \mathrm{x}=39.76 \mathrm{ft} . \mathrm{x} 2 \mathrm{ends}=79.51 \mathrm{ft} .=80 \mathrm{ft}$.
73. Item 516-Elastomeric Bearing with Internal Laminates and Load Plate (Neoprene) As Per Plan (Bearing:

11"x13"x3.48", Load Plate: 12"x14"x1.5") (EA)
a. 1 bearing/beam end * 5 beams * 2 beam ends/beam $=10$ each $=$ total
74. Item 516-Jacking and Temporary Support of Superstructure, As Per Plan (LS)
a. Lump Sum (LS)
75. Item 518-Porous Backfill with Geotextile Fabric (CY)
a. Length $\cos 35.166=32.5 \mathrm{ft} / \mathrm{x}, \mathrm{x}=39.76 \mathrm{ft}$.
b. Avg. height $=3.5 \mathrm{ft} . \times 2 \mathrm{ft}$. wide $\times 39.76 \mathrm{ft} \times(1 \mathrm{cu} . \mathrm{yd} . / 27 \mathrm{cu} . \mathrm{ft})=.10.31 \mathrm{cu} . \mathrm{yd} .=11 \mathrm{cu} . \mathrm{yd}=$ total
76. Item 519-Patching Concrete Structure, As Per Plan (SF)
a. Lt. Parapet $=30$ sq. ft. +45 sq. ft. +3 sq. ft. +3 sq. ft. +5 sq. ft. +45 sq. ft. +18 sq. ft. +36 sq. ft. +

18 sq. ft. +3 sq. ft. +208 sq. ft. $=414$ sq. ft.
b. Rt. parapet $=0$ sq. ft.
c. Total $=414 \mathrm{sq} . \mathrm{ft}$.
77. Item 526-Reinforced Concrete Approach Slabs ($\mathrm{T}=13$ "), As Per Plan
a. $\quad 32.5 \mathrm{ft} . \times 20 \mathrm{ft} . \times(1 \mathrm{sq} . y d . / 9 \mathrm{sq} . \mathrm{ft})=.72.2 \mathrm{sq} . \mathrm{yd} .=73 \mathrm{sq} . \mathrm{yd} .=$ total
78. Item 844-Concrete Patching with Galvanic Anode Protection, As Per Plan (SF)
a. Rear Abutment $=2$ sq. ft.
b. Fwd. Abutment $=8$ sq. ft. +6 sq. ft. +5 sq. ft. +3 sq. ft. +8 sq. ft. +2 sq. ft. +4 sq. ft. +2 sq. ft. +4
sq. ft. $=42$ sq. ft.
c. Total $=44 \mathrm{sq} . \mathrm{ft}$.
79. Item 848-Superplasticized Dense Concrete Overlay Using Hydrodemolition, (2 3/4" thick)
a. \quad T/T parapet $=32.5 \mathrm{ft}$.
b. Length to Overlay $=343.80-(1.20833 \mathrm{ft} \times 2$ walls each end) $-(0.417 \mathrm{ft}$. (5 " joint channel assumed) $\times 2$ ends) $=340.55 \mathrm{ft}$.
c. Total $=340.55 \mathrm{ft} \times 32.5 \mathrm{ft} . \times(1 \mathrm{cu} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft})=.1229.76 \mathrm{sq} . \mathrm{yd} .=1230 \mathrm{sq} . \mathrm{yd}$.
80. Item 848-Surface Preparation Using Hydrodemolition, As Per Plan
a. Length to hydro $=$ used 848 E 10200 length $-($ deck end replacement length $\times 2$ ends $)=340.55 \mathrm{ft} .-(2.5 \mathrm{ft}$ $\mathrm{x} 2)=335.55 \mathrm{ft}$.
b. T / T parapet $=32.5 \mathrm{ft}$.
c. Total $=335.55 \mathrm{ft} . \times 32.5 \mathrm{ft} . \times(1 \mathrm{cu} . \mathrm{yd} . / 9 \mathrm{sq} . \mathrm{ft})=.1211.7 \mathrm{sq} . \mathrm{yd} .=1212 \mathrm{sq} . \mathrm{yd}$.
81. Item 848-Superplasticized Dense Concrete Overlay (Variable Thickness), Material Only (CY)
a. $\quad 7 / 6 / 2021$ measured unsound area $=3086$ sq. ft. $=342.89$ sq. yd.; Overlay deck area $=1229.76$ sq. yd.;
$\%$ unsound $=342.89$ sq. yd/1229.76 sq. yd. $=28 \%$
b. $\quad 4 / 11 / 2023$ measured unsound area $=1568$ sq. ft. $=174.22$ sq. yd.; Overlay deck area $=1229.76$ sq. yd.;
\% unsound $=174.22$ sq. yd. $/ 1229.76$ sq. yd. $=14 \%$
c. $\quad 10 / 18 / 2022$ BR86; Wearing Surface (WS) $=$ CS2 + CS3 $=175+400=575$ sq. ft. (5\%); Floor CS2 + CS3 $=$
$277+195=472$ sq. ft. (4\%)
d. Therefore, use \% measured unsound $=(28 \%+14 \%) / 2=21 \%<70 \%$, ok, to cover cracked area variable
depth
e. BDM T403-3: \% variable thickness = 47.5\%
f. \quad BDM variable area $=0.475 \times 10905$ sq. ft. $=5180$ sq. ft.
g. BDM Factors
h. $\quad 2^{\text {nd }}$ generation overlay, $M F=1.15$
i. \quad Sale date $=1 / 25 / 2024$ (1 winter),$M F=1.0$
j. D7 Factors (8/7/2018 policy)
k. $\quad 1^{\text {st }}$ overlay (SDC), MF $=1.0$
l. High measured unsound area $\%, M F=1.0$ - due to inconsistencies with DCS measurements
m. Adjusted Variable Area $=5180$ sq. ft. x $1.15=5957$ sq. ft. (55\%)
n. BDM 403.4.1 Variable Depth $=2$ "
o. Plan Variable Depth $=1 "+0.75 "+0.75 "=2.5^{\prime \prime}$, use ($2^{\text {nd }}$ overlay $\&$ transverse bars on top)
p. Variable Volume $=5957 \mathrm{sq} . \mathrm{ft} . \mathrm{x}(2.5 \mathrm{in} . / 12)=1241 \mathrm{cu} . \mathrm{ft} . / 27=46 \mathrm{cu} . \mathrm{yd}$.
82. Item 848-Hand Chipping (SY)
a. 2020 BDM 403.4.1 handchipping area $=10 \%$ of variable thickness area
b. D7 Factors (8/7/2018) policy):
c. Asphalt/green patch, MF = 1.0
d. $\quad 2^{\text {nd }}$ overlay minimum area $=10 \%$ of hydro area
e. \quad Area $=0.1 \times 5957$ sq. ft. $=596$ sq. ft. $=5 \%<10 \%$, not good
f. \quad use area $=0.1 \times 10905$ sq. ft. $=1091$ sq. ft $/ 9=121$ sq. yd.
83. Item 848-Existing Concrete Overlay Removed, (2" Thick) (SY)
a. Does not include deck end rebuilds. Same area as the hydro as Item 848E20001 = 1212 sq. yd. $=$ total
84. Item 848-Removal of Debonded or Deteriorated Existing Variable Thickness Concrete Overlay (SY)
a. \quad D7 (8/7/2018 policy) $=50 \%$ of handchipping area
b. $\quad 0.5 \times 1091$ sq. ft. $=546$ sq. ft. / 9 = 61 sq. yd .

Maintenance of Traffic

85. Item 614-Law Enforcement Officer with Patrol Car for Assistance (HOUR)
a. Following are estimates for each and discussion with Area Construction Engineer
b. MOT-4-2199 Phase 1 NB setup/teardown = 16 hr .
c. MOT-444-0023L Phase 1 SB setup/teardown $=16 \mathrm{hr}$.
d. MOT-4-2199 Phase 2 SB setup/teardown $=16 \mathrm{hr}$.
e. MOT-444-0023L Phase 2 SB setup/teardown $=16 \mathrm{hr}$.
f. Painting Nighttime ramp closures = 396 hr.
g. Painting lane closures for falsework installation $=40 \mathrm{hr}$
h. Total $=500 \mathrm{hr}$.
86. Item 614-Increased Barrier Delineation (FT)
a. To be used on the tapered portable barrier runs
b. S.R. 444 STA. $20+73$ to STA. $27+04=140 \mathrm{ft}$.
c. S.R. 444 STA. $22+64$ to STA. $28+89=120 \mathrm{ft}$.
d. S.R. 444 STA. $20+09$ to STA. $28+23=200 \mathrm{ft}$.
e. S.R. 444 STA. $21+81$ to STA. $29+53=200 \mathrm{ft}$.
f. S.R. 444 STA. $22+64$ to STA. $28+35=60 \mathrm{ft}$.
g. \quad Total $=720 \mathrm{ft}$.
87. Item 614-Work Zone Impact Attenuator, 24" Wide Hazards, (Unidirectional) (EA)
a. S.R. 444 STA. $20+73$ to STA. $27+04=1$ each
b. S.R. 444 STA. $22+64$ to STA. $28+89=1$ each
c. S.R. 444 STA. $20+09$ to STA. $28+23=1$ each
d. S.R. 444 STA. $21+81$ to STA. $29+53=1$ each
e. S.R. 444 STA. $22+64$ to STA. $28+35=1$ each
f. Total = 5 each
88. Item 614-Detour Signing (LS)
a. Lump Sum (LS)
89. Item 614-Asphalt Concrete for Maintaining Traffic (CY)
a. Estimate $15 \mathrm{cu} . \mathrm{yd}$. for any pavement patching of existing pavement.
90. Item 614-Barrier Reflector, Type 1 (One Way) (EA)
a. S.R. 444 STA. $20+73$ to STA. $27+04=11$ each
b. S.R. 444 STA. $22+64$ to STA. $28+89=12$ each
c. S.R. 444 STA. $20+09$ to STA. $28+23=14$ each
d. S.R. 444 STA. $21+81$ to STA. $29+53=13$ each
e. S.R. 444 STA. $22+64$ to STA. $28+35=12$ each
f. Total = 62 each
91. Item 614-Object Marker, One Way (EA)
a. S.R. 444 STA. $20+73$ to STA. 27+04 = 14 each
b. S.R. 444 STA. $22+64$ to STA. $28+89=14$ each
c. S.R. 444 STA. $20+09$ to STA. $28+23=18$ each
d. S.R. 444 STA. $21+81$ to STA. 29+53 $=17$ each
e. S.R. 444 STA. $22+64$ to STA. $28+35=13$ each
f. Total = 76 each
92. Item 614-Portable Changeable Message Sign, As Per Plan (SNMT)
a. Placed at ramps to be closed-2 PCMS signs * 4 months $=8$ sign months
b. For painting operation ramp closures $=2$ PCMS signs * 1 month $=2$ sign months
c. Total = 10 sign months
93. Item 614-Work Zone Edge Line, Class I, 6", 740.06, Type 1 (MILE)
a. S.R. 444 STA. $16+80$ to STA. $29+12=0.24$ mile
b. S.R. 444 STA. $16+80$ to STA. $27+04=0.20$ mile
c. S.R. 444 STA. $19+46$ to STA. $31+08=0.22$ mile
d. S.R. 444 STA. $19+46$ to STA. $37+79=0.35$ mile
e. S.R. 444 STA. $18+70$ to STA. $30+43=0.23$ mile
f. S.R. 444 STA. $19+80$ to STA. $29+45=0.19$ mile
g. S.R. 444 STA. $19+45$ to STA. $34+95=0.30$ mile
h. S.R. 444 STA. $21+24$ to STA. $40+05=0.36$ mile
i. S.R. 444 STA. $35+89$ to STA. $47+97=0.23$ mile
j. S.R. 444 STA. $34+23$ to STA. $34+95=0.02$ mile
k. S.R. 444 STA. $19+46$ to STA. $22+64=0.06$ mile
l. S.R. 444 STA. $19+46$ to STA. $35+75=0.31$ mile
m . Total $=2.71$ mile
94. Item 614-Work Zone Dotted Line, Class I, 6", 740.06, Type 1 (FT)
a. S.R. 444 STA. $27+04$ to STA. $28+23=120 \mathrm{ft}$.
b. S.R. 444 STA. $34+95$ to STA. $39+15=420 \mathrm{ft}$.
c. Total $=540 \mathrm{ft}$.
95. Item 622-Portable Barrier, Unanchored (FT)
a. S.R. 444 STA. $20+73$ to STA. $27+04=640 \mathrm{ft}$.
b. S.R. 444 STA. $22+64$ to STA. $28+89=630 \mathrm{ft}$.
c. S.R. 444 STA. $20+09$ to STA. $28+23=820 \mathrm{ft}$.
d. S.R. 444 STA. $21+81$ to STA. $29+53=780 \mathrm{ft}$.
e. S.R. 444 STA. $22+64$ to STA. $28+35=570 \mathrm{ft}$.
f. Total $=3440 \mathrm{ft}$.

Incidentals
96. Item 614-Maintaining Traffic (LS)
a. Lump Sum (LS)
97. Item 619-Field Office, Type B (MNTH)
a. Begin to End Construction Date $=7$ months
98. Item 623-Construction Layout Stakes and Surveying (LS)
a. Lump Sum (LS)
99. Item 624-Mobilization (LS)
a. Lump Sum (LS)

END OF CALCULATIONS

