FINAL REPORT GEOTECHNICAL EXPLORATION REPORT MOT-725-14.41 MONTGOMERY COUNTY, OHIO PID#: 108619

Prepared For:

JMT 2800 Corporate Exchange Drive, Suite 250 Columbus, Ohio 43231

Prepared by:

NATIONAL ENGINEERING & ARCHITECTURAL SERVICES, INC. 2800 Corporate Exchange Drive, Suite 240 Columbus, Ohio 43231

NEAS PROJECT 21-0072

November 22, 2022

EXECUTIVE SUMMARY

The Ohio Department of Transportation (ODOT) has proposed an interchange improvement project (MOT-725-14.41, PID 108619) for State Route 725 (SR -725) and associated ramps with Interstate Route 75 (IR-75) in Montgomery County, Ohio. The overall project objective is to reduce the congestion and improve safety at the existing interchange at IR-75 and SR 725, as well as adding sidewalk alongside SR725 and upgrading the traffic signal at SR-725 and Byers Rd. The improvements proposed to accomplish this objective include: 1) the reconstruction of SR-725 between Byers Road and Mall Woods Drive; 2) the construction/reconstruction of 4 associated ramps (Ramp A, Ramp B, Ramp C, and Ramp D); and, 3) the construction of three retaining walls along the sidewalk and one retaining wall along Ramp B.

National Engineering & Architectural Services (NEAS). Inc. has been contracted to perform geotechnical engineering services for the project. The purpose of the geotechnical engineering services was to perform geotechnical explorations within the project limits to obtain information concerning the subsurface soil and groundwater conditions relevant to the design and construction of the project. Between January 5, 2022, and March 10, 2022, NEAS performed the site reconnaissance and exploration program for the project. The subsequent document presents the results of the subsurface exploration with respect to the proposed roadways and retaining walls. As part of the exploration, NEAS advanced 24 project borings and conducted laboratory testing to characterize the soils for engineering purposes. NEAS also obtained 8 pavement cores through the existing pavement.

The subgrade conditions within the project limits are relatively consistent and are generally comprised of pavement materials underlain by natural soils consisting of primarily cohesive low to moderately plastic sandy silt and silt/clay combinations and minorly granular gravel/stone fragments with sand, silt and clay. The subgrade soils encountered within the project limits are generally classified as either A-1-b, A-2-4, A-2-6, A-4a, A-6a, A-6b and A-7-6 type soils. With respect to sulfate within the subgrade soil, based on the project laboratory testing program, each subgrade soil sample tested was determined to have a sulfate content of less than 5,000 parts per million (ppm) (i.e., lower than the level which ODOT considers high and may prevent the use of chemical stabilization).

The subsurface profile within the proposed project area generally consists of surficial materials comprised of asphalt and base, generally underlain by natural stiff to hard cohesive soils and loose to dense granular soils. The natural stiff to hard cohesive soils encountered at the site of retaining walls consists of Sandy Silt (A-4a), Silt (A-4b) and Silt and Clay (A-6a). The loose to dense granular soils consists of Sandy Silt (A-4a), Silt (A-4b), Course and Fine Sand (A-3a), Gravel and Stone Fragments with Sand (A-1-b), Stone Fragments with Sand and Silt (A-2-4) and Stone Fragments with Sand, Silt and Clay (A-2-6). Bedrock was only encountered in the historical borings near RW 1. In accordance with NEAS's agreement with JMT, dated April 13, 2022, the geotechnical analyses for each wall will be conducted by JMT.

Unstable subgrade conditions that may require stabilization per ODOT's Geotechnical Bulletin 1 (GB1) guidelines were encountered throughout more than 30 percent of the project area. However, Ramp D has sections of proposed full depth pavement that is narrower than 8 ft width which typical chemical stabilization equipment cannot stabilize, NEAS recommend local stabilization in the form of Excavate and Replace using Item 204 Granular Materials Type C for the selected roadway areas that needs stabilization. It is NEAS's opinion that the subgrade soils will provide adequate pavement support assuming it is designed and constructed in accordance with the recommendations provided within this report, as well as all applicable ODOT standards and specifications.

TABLE OF CONTENTS

1. INT	FRODUCTION	4
1.1.	GENERAL	
2. GE	OLOGY AND OBSERVATIONS OF THE PROJECT	
2.1.	GEOLOGY AND PHYSIOGRAPHY	
2.2.	HYDROLOGY/HYDROGEOLOGY	
2.3.	MINING AND OIL/GAS PRODUCTION	5
2.4.	HISTORICAL RECORDS AND PREVIOUS PHASES OF PROJECT EXPLORATION	5
2.5.	SITE RECONNAISSANCE	
2.5.	1. Land Use and Cover	6
2.5.		
2.5.		
2.5.		8
2.5.		10
2.5.		12
3. GE	OTECHNICAL EXPLORATION	14
3.1.	FIELD EXPLORATION PROGRAM	
3.2.	PAVEMENT CORING EXPLORATION PROGRAM	
3.3.	LABORATORY TESTING PROGRAM	
<i>3.3</i> .		
	2. Standard Penetration Test Results	
	OTECHNICAL FINDINGS	
4.1.	CORE RESULTS	
4.2.	EXISTING PAVEMENT	
4.3.	SUBGRADE CONDITIONS	
4.3.		
4.3.		
4.3.		
4.3.	1	
4.3.	1	
4.4.		
	1. Overburden Soil	
	2. Groundwater	
	ALYSIS AND RECOMMENDATIONS	
5.1.		
	1. Pavement Design Recommendations	
5.1.	2. Unsuitable Subgrade	23
5	.1.2.1. Rock	23
5	.1.2.1. ROCK	20
5	1.2.2. Unsuitable Soils	23
5.1.	3. Unstable Soils	23
0.1.		
5	1.3.1. High Moisture Content Soils	24
5.2.	STABILIZATION RECOMMENDATIONS	
5.2.	1. Subgrade Stabilization	24
5.2.	2. Chemical Stabilization	25
5.3.	GENERALIZED SOIL PROFILE FOR ANALYSIS	
5.4.	GENERALIZED SOIL PARAMETERS FOR LATERALLY LOADED SHAFT ANAL	LYSIS
	28	
6. QU	ALIFICATIONS	28

LIST OF TABLES

TABLE 1:	HISTORIC BORING SUMMARY	5
TABLE 2:	PROJECT BORING SUMMARY	5
TABLE 3:	PAVEMENT CORE SUMMARY	7
TABLE 4:	MEASURED PAVEMENT THICKNESS AT BORING LOCATIONS	3
TABLE 5:	PAVEMENT DESIGN VALUES	3
TABLE 6:	UNSTABLE SOIL LOCATIONS SUMMARY	1
TABLE 7:	HIGH MOISTURE CONTENT SOILS LOCATION SUMMARY	1
TABLE 8:	STABILIZATION RECOMMENDATIONS	5
TABLE 9:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-002-0-21	5
TABLE 10:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-003-0-2120	5
TABLE 11:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-005-0-2120	5
TABLE 12:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-006-0-2127	7
TABLE 13:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-007-0-21	7
TABLE 14:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-008-0-21	7
TABLE 15:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-009-0-2127	7
TABLE 16:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-010-0-21	3
TABLE 17:	GENERALIZED SOIL PARAMETERS FOR LATERALLY LOADED SHAFT ANALYSIS	3

LIST OF APPENDICES

APPENDIX A: BORING PLAN APPENDIX B: SOIL BORING LOGS APPENDIX C: PAVEMENT CORES APPENDIX D: SULFATE TESTING RESULTS APPENDIX E: GB1 SPREADSHEETS APPENDIX F: HISTORIC BORINGS

1. INTRODUCTION

1.1. General

NEAS presents our Geotechnical Exploration Report for the proposed interchange improvement project (MOT-725-14.41, PID 108619) for State Route 725 (SR -725) and associated ramps with Interstate Route 75 (IR-75) in Montgomery County, Ohio. The overall project objective is to reduce the congestion and improve safety at the existing interchange at IR-75 and SR 725, as well as adding sidewalk alongside SR725 and upgrading the traffic signal at SR-725 and Byers Rd. The improvements proposed to accomplish this objective include: 1) the reconstruction of SR-725 between Byers Road and Mall Woods Drive; 2) the construction/reconstruction of 4 associated ramps (Ramp A, Ramp B, Ramp C, and Ramp D); and, 3) the construction of three retaining walls along the sidewalk and one retaining wall along Ramp B. This report presents a summary of the encountered surficial and subsurface conditions in accordance with Load and Resistance Factor Design (LRFD) method as set forth in AASHTO's Publication *LRFD Bridge Design Specifications*, 9th Edition with 2020 interim revisions (BDS) (AASHTO, 2020) and *ODOT's 2022 LRFD Bridge Design Manual* (BDM) (ODOT, 2022).

The exploration was conducted in general accordance with National Engineering & Architectural Services Inc. (NEAS) proposal to JMT dated on September 14, 2021, and with the provisions of ODOT's *Specifications for Geotechnical Explorations* (SGE) (ODOT, 2022).

The scope of work performed by NEAS as part of the referenced project included: a review of published geotechnical information; performing 24 test borings and 8 pavement cores; laboratory testing of soil samples in accordance with the SGE; and development of this data summary report.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiography

The project site is located within the Southern Ohio Loamy Till Plain which is characterized as end and recessional moraines, commonly associated with boulder belts, between relatively flat-lying ground moraine, cut by steep-valleyed large streams with surface soils consisting of loamy till. Buried valleys are common and are generally filled with outwash and alternate between broad floodplains and narrows. Elevations of the region ranges from 530 to 1,150 ft amsl, with moderate relief (200 ft). The geology within this region is described as loamy, high-lime Wisconsinan-age till, outwash and loess over Lower Paleozoic-age carbonate rocks (i.e., limestone or dolostone) and, in the east, shales. (ODGS, 1998).

Based on the Quaternary Geology Map of Ohio (Pavey, et, al, 1999) The geology at the project site is mapped as a late Wisconsinan-age ice-deposited soils of end moraine that occur as hummocky ridges higher than adjacent terrain.

Based on the Bedrock Geologic Units Map of Ohio (USGS & ODGS, 2006), bedrock within the project area consists of shale and limestone, of the Drakes, Whitewater, and Liberty formations, Undivided. This unit is comprised of Ordovician-age interbedded shale, and limestone. The interbedded shale and limestone are described as gray to maroon and weathers yellowish gray, planar to irregular to wavy, and thin to thick bedded. Bedrock rises gently from north to south (ODGS, 2003). Based on the ODNR bedrock topography map of Ohio, bedrock elevations at the project site can be expected to be between about 900 and 950 ft

amsl, putting bedrock at a depth ranging from about 40 ft below ground surface (bgs) to about 75 ft below ground surface (bgs).

The soils at the project site have been mapped (Web Soil Survey) by the Natural Resources Conservation Service (USDA, 2015) as primarily Udorthents. Udorthents are soils that have been disturbed by large amounts of cutting and filling and as such are not rated according to the AASHTO method of soil classification. The soils surrounding the project site are mapped as primarily Miamian silt loam or clay loam and are characterized as very deep, well drained soils that are moderately deep or deep to dense till formed in loess and the underlying loamy till on till plains and moraines. The Miamian series is comprised of primarily fine-grained soils and classifies as cohesive A-4, A-6, and A-7 type soils according to the AASHTO method of soil classification.

2.2. Hydrology/Hydrogeology

According to the Water Well Log (ID# 2040231) groundwater at the project site can be expected at an elevation of about 6 ft bgs in the vicinity of the project's boundaries. The water level presented in the water well log may be generally representative of the local groundwater table. However, it should be noted that perched groundwater systems may be existent in areas due to the presence of fine-grained soils making it difficult for groundwater to permeate to the phreatic surface.

The project site is not located within a flood hazard area based on available mapping by the Federal Emergency Management Agency's (FEMA) National Flood Hazard mapping program (FEMA, 2016).

2.3. Mining and Oil/Gas Production

No mines are noted on ODNR's Mines of Ohio Locator in the vicinity of the project site (ODNR [1], 2012).

No oil or gas wells are noted on ODNR's Ohio Oil & Gas Locator in the vicinity of the project site (ODNR [2], 2020).

2.4. Historical Records and Previous Phases of Project Exploration

The following report/plans were available for review and evaluation for this report:

• Project Boring Logs for Structure Foundation Investigation for Project MOT-75-06.035 dated October 23, 1995.

- Project Boring Logs from Geological Report for Project MOT-725-14.10 dated October, 1976.
- Project Boring Logs from Geological Report for Project MOT-25-0374 dated August 4, 1958.

Historical soil borings associated with the above plans were reviewed and attached in the Appendix F. Historic borings were summarized in the Table 1.

Historic Boring Number	Closeby Structure	Latitude	Longitude	Elevation (NGVD 29) (ft)	Elevation (NAVD 88) (ft)	Depth (ft)
B-001-0-76	Retaining Wall #1	39.640652	-84.232594	961.1	-	25.5
B-002-0-76	Retaining Wall #1	39.640387	-84.232651	937.4	-	22.5
B-003-0-76	Retaining Wall #1	39.640124	-84.233082	944.3	-	17.8
B-004-0-76	Retaining Wall #1	39.640691	-84.234549	932.5	-	36.0
B-001-0-58	Retaining Wall #5	39.639188	-84.231203	973.5	-	60.0
B-005-0-76	Retaining Wall #5	39.639167	-84.231497	978.3	-	36.0
B-001-0-95	Retaining Wall #5	39.639119	-84.231410	-	977.7	65.5
B-002-0-95	Retaining Wall #5	39.639320	-84.232005	-	975.7	65.0

Table 1: Historic Boring Summary

2.5. Site Reconnaissance

A field reconnaissance visit for the overall project area was conducted between December 10, 2021, and December 11, 2021, along the SR-725 and IR-75 interchange. Site conditions were noted and photographed during the visit. Photographs of notable geotechnical and drainage observations were taken and a summary of our observations by roadway segment are provided below.

2.5.1. Land Use and Cover

The land use of most of the project area consists of 1) commercial properties; and 2) ODOT ROW.

2.5.2. SR-725

In general, the pavement condition along the project section of SR-725 was observed to be fair with signs of weathering and surface wear. Moderate severity longitudinal and transverse cracking was common along this section, as well as occasional moderate severity wheel track cracking and crack sealing deficiencies (Photograph 1). The roadway in this section is level with the surrounding land in this area and slopes downward from both the east and west to the lowest point being where IR-75 crosses over SR-725. The roadway drained to drainage basins in both shoulders of the roadway as well as basins in the median where the median had a raised curb. The area is lightly vegetated, and signs of standing water were not observed. No signs of geotechnical instability were observed.

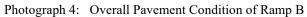
Photograph 1: Overall Pavement Condition of Existing SR-725

2.5.3. Ramp A – Exit Ramp from IR-75 SB to SR-725

In general, the pavement condition of the ramp from IR-75 SB to SR-725 was observed to be fair to good with signs of weathering and surface wear. light severity longitudinal cracking was common along this section as well as wheel track cracking and crack sealing deficiencies (Photograph 2). The roadway in this section is below the surrounding land in this area with slopes of about 3V:1H (3 ft vertical to 1 ft horizontal) leading up to the surrounding land to the west. The roadway itself slopes gently upwards from north to south. The roadway drains to drainage ditches past both shoulders of the roadway. The area is moderately vegetated, and signs of standing water such as cattails and heavy vegetation were observed in the area encompassed by the ramp and IR-75 (Photograph 3).

Photograph 2: Overall Pavement Condition of Ramp

Photograph 3: Signs of Standing Water Observed in Area Encompassed by Ramp A and IR-75


2.5.4. Ramp B – Entrance Ramp from SR-725 to IR-75 SB

In general, the pavement condition along Ramp B was observed to be excellent with almost no signs of weathering or surface wear (Photograph 4). The roadway in this section is below the surrounding land in this area with slopes of about 2.5V:1H (2.5 ft vertical to 1 ft horizontal) leading up to the surrounding land to the west. The roadway itself slopes gently downwards from south to north. The roadway drains to drainage ditches past both shoulders of the roadway which lead to underdrains located about halfway along the ramp and at the northern end of the ramp. These under drains carry water to the area encompassed by the ramp and IR-75. The area is moderately vegetated for the most part, and signs of standing water such

cattails were observed in the western drainage ditch and the area encompassed by the ramp and IR-75. Heavy erosion and degradation of the concrete drainage channel was observed leading away from the Red Roof Inn (Photograph 5).

Photograph 5: Drainage Channel leading away from the Red Roof Inn

Photograph 6: Erosion Observed in Drainage Ditch encompassed by Ramp B and IR-75

2.5.5. Ramp C – Exit Ramp from IR-75 NB to SR-725

In general, the pavement condition of the asphalt portion of Ramp C was observed to be good with few signs of weathering or surface wear. light severity longitudinal and transverse cracking was common along this section (Photograph 7). The concrete portion of the ramp was observed to be fair to good with signs of weathering and surface wear. Moderate severity joint spalling was observed as well as moderate severity D-cracking (Photograph 8). The roadway in this section is below the surrounding land in this area with slopes of about 2.5V:1H (2.5 ft vertical to 1 ft horizontal) leading up to the surrounding land to the east. The roadway itself slopes gently downwards from south to north. The roadway drains to drainage ditches past both shoulders of the roadway. Erosion was observed in the drainage ditch past the eastern shoulder of the ramp (Photograph 9). The area is moderately vegetated, and signs of standing water such as cattails were observed in the eastern drainage ditch.

Photograph 7: Overall Pavement Condition of Asphalt Portion of Ramp C

Photograph 8: Overall Condition of Concrete Portion of Ramp C

Photograph 9: Erosion Observed in Drainage Ditch past Eastern Shoulder of Ramp C

2.5.6. Ramp D – Entrance Ramp from SR-725 to IR-75 NB

In general, the pavement condition of the southern portion of Ramp D was observed to be excellent with no signs of weathering or surface wear (Photograph 10). The pavement condition of the northern portion of the ramp was observed to be fair to good with some signs of weathering and surface wear. moderate severity longitudinal and transverse cracking was common along this section as well as wheel track cracking (Photograph 11). The roadway in this section sits on an embankment above the surrounding land in this area with slopes of about 2V:1H (2 ft vertical to 1 ft horizontal). The roadway itself slopes gently upwards from north to south. The roadway drains to drainage ditches past both shoulders of the roadway. The area is moderately vegetated to the west and heavily vegetated to the east. Signs of standing water such as cattails and heavy vegetation were observed past the eastern shoulder of the ramp.

Photograph 10: Pavement Condition of Ramp from SR-725 to where Ramp intersects with IR-75

Photograph 11: Pavement Condition of Ramp D from where Ramp intersects with IR-75 to Northern Termination

3. GEOTECHNICAL EXPLORATION

3.1. Field Exploration Program

The exploration for these walls was conducted by NEAS between February 23, 2022, and March 10, 2022 and included 24 borings drilled to depths between 7.5 ft to 26.5 ft bgs. The boring locations were selected by NEAS in general accordance with the guidelines contained in the SGE with the intent to evaluate subsurface soil and groundwater conditions. Borings were typically located along/near the proposed wall alignment in locations that were not restricted by maintenance of traffic, underground utilities or dictated by terrain (i.e., steep embankment slopes). Each as-drilled project boring location and corresponding ground surface elevation was surveyed in the field by NEAS following drilling. Each individual project boring log (included within Appendix B) includes the recorded boring latitude and longitude location (based on the surveyed Ohio State Plane South, NAD83, location) and the corresponding ground surface elevation. Latitude, longitude, and elevations of the borings are shown on Table 2 below and the boring locations are depicted on the boring plan provided in Appendix A.

Borings were drilled using a CME 45B truck mounted drilling rig utilizing 3.25-inch diameter hollow stem augers. Soil samples were recovered at intervals of 2.5-ft to end of boring using a split spoon sampler (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils."). The soil samples obtained from the exploration program were visually observed in the field by the NEAS field representative and preserved for review by a Geologist and possible laboratory testing. Standard penetration tests (SPT) were conducted using a CME auto hammer that has been calibrated to be 72.6% efficient as indicated on the boring logs on January 24, 22.

Field boring logs were prepared by drilling personnel, and included lithological description, SPT results recorded as blows per 6-inch increment of penetration and estimated unconfined shear strength values on specimens exhibiting cohesion (using a hand-penetrometer). Groundwater level observations were recorded both during and after the completion of drilling. These groundwater level observations are included on the individual boring logs. After completing the borings, the boreholes were backfilled with either auger cuttings, bentonite chips, or a combination of these materials.

Boring Number	Location (Station /Offset)	Alignment	Latitude	Longitude	Elevation (NAVD 88) (ft)
B-001-0-21	751+28, 1' RT.	EX SR-725	39.640234	-84.235747	971.5
B-002-0-21 / C-005-0-21	754+31, 45' RT.	EX SR-725	39.640073	-84.234692	961.2
B-003-0-21	755+83, 39' RT.	EX SR-725	39.640021	-84.234172	958.1
B-004-0-21	617+97, 11' RT.	PROP. Ramp A East	39.639599	-84.233602	954.0
B-005-0-21 / C-007-0-21	760+55, 48' LT.	EX SR-725	39.639869	-84.232486	951.6
B-006-0-21	761+34, 42' RT.	EX SR-725	39.639566	-84.232321	952.5
B-007-0-21	762+71, 39' RT.	EX SR-725	39.639456	-84.231858	953.7
B-008-0-21	764+84, 40' RT.	EX SR-725	39.639268	-84.231140	958.1
B-009-0-21	766+26, 40' RT.	EX SR-725	39.639146	-84.230662	961.7
B-010-0-21	769+93, 55' RT.	EX SR-725	39.638790	-84.229443	974.2
B-011-0-21	772+20, 50' LT.	EX SR-725	39.638866	-84.228560	980.8
B-012-0-21 / C-008-0-21	775+42, 41' LT.	EX SR-725	39.638563	-84.227486	990.1
B-013-0-21	778+84, 30' LT.	EX SR-725	39.638249	-84.226344	995.4
B-014-0-21	605+63, 22' RT.	PROP. Ramp A East	39.636586	-84.231793	1000.0
B-015-0-21 / C-001-0-21	609+94, 5' LT.	PROP. Ramp A East	39.637589	-84.232618	983.6
B-016-0-21	613+49, 16' RT.	PROP. Ramp A East	39.638467	-84.233175	970.8
B-017-0-21	703+15, 28' RT.	PROP. Ramp B	39.640805	-84.233286	952.2
B-018-0-21 / C-002-0-21	707+07, 16' LT.	PROP. Ramp B	39.641887	-84.233234	945.1
B-019-0-21	806+52, 22' LT.	PROP. Ramp C	39.636790	-84.230610	1000.3
B-020-0-21 / C-003-0-21	810+42, 16' RT.	PROP. Ramp C	39.637849	-84.230370	983.7
B-021-0-21	953+04, 31' LT.	PROP. Ramp D East	39.639969	-84.230209	958.6
B-22-0-21 / C-004-0-21	907+74, 6' RT.	PROP. Ramp D West	39.640962	-84.230697	953.3
B-023-0-21	910+88, 6' RT.	PROP. Ramp D West	39.641666	-84.231336	947.1
B-024-0-21	914+04, 7' RT.	PROP. Ramp D West	39.642484	-84.231661	941.2
C-006-0-21	758+32, 35' RT.	EX SR-725	39.639846	-84.233330	953.3

 Table 2: Project Boring Summary

3.2. Pavement Coring Exploration Program

The coring exploration program for this project was conducted by NEAS on March 14, 2022 and included a total of eight (8) pavement cores. Pavement cores were obtained at seven (7) project boring locations (B-002-0-21, B-005-0-21, B-012-0-21, B-015-0-21, B-018-0-21, B-020-0-21, and B-022-0-21) performed through the existing pavement. In addition to the cores obtained at the indicated boring locations, one (1) additional cores were taken within the shoulder of SR-725. As described in Section 3.1. of this report, the indicated target boring/coring locations were located in the field by NEAS prior to drilling utilizing

handheld GPS equipment in areas that were not restricted by maintenance of traffic efforts or utilities. Measurements, location information, photographs and other details of each core sample can be found in the Pavement Core Logs included within Appendix C. The approximate location for each core is summarized in Table 2.

Cores were drilled using a portable, truck-mounted, electric powered coring drill with a 4-inch (outer diameter) diamond tipped drill bit and utilizing water as the circulating fluid. Asphalt and concrete thicknesses were measured in the field after the cores were extracted and down-hole measurements were made. Each core sample was then photographed, logged, and stored for transportation to NEAS's laboratory. Following field documentation and photographs, the core hole was backfilled to existing grade with either asphalt patch or concrete (as appropriate). Once in the laboratory the cores were: 1) re-measured for thickness verification and photographed; 2) checked for composition; and, 3) reviewed for individual layer identification and subsequent measurements.

3.3. Laboratory Testing Program

The laboratory testing program consisted of classification testing and moisture content determinations. Data from the laboratory-testing program were incorporated onto the boring logs (Appendix B). Soil samples are retained at the laboratory until Stage 2 approval, after which time they will be discarded.

3.3.1. Classification Testing

Representative soil samples were selected for index properties (Atterberg Limits) and gradation testing for classification purposes on approximately 36% of the soil samples obtained. At each boring location, samples were selected for testing with the intent of identification and classification of all significant soil units. Soils not selected for testing were compared to laboratory tested samples/strata and classified visually. Moisture content testing was conducted on all samples. The laboratory testing was performed in general accordance with applicable AASHTO specifications.

A final classification of the soil strata was made in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" once laboratory test results became available. The results of the soil classification are presented on the boring logs in Appendix B.

3.3.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils were performed at varying intervals (i.e., 2.5-ft or 5.0-ft intervals) in the project borings performed. To account for the high efficiency (automatic) hammers used during SPT sampling, field SPT N-values were converted based on the calibrated efficiency (energy ratio) of the specific drill rig's hammer. Field N-values were converted to equivalent rod energy of 60% (N₆₀) for use in analysis or for correlation purposes. The resulting N₆₀ values are presented on the boring logs provided in Appendix B.

4. GEOTECHNICAL FINDINGS

The subsurface conditions encountered during NEAS explorations are described in the following subsections and on each boring log presented in Appendix B. The boring logs represent NEAS interpretation of the subsurface conditions encountered at each boring location based on our site observations, field logs, visual review of the soil samples by NEAS geologist, and laboratory test results.

The lines designating the interfaces between various soil strata on the boring logs represent the approximate interface location; the actual transition between strata may be gradual and indistinct. The subsurface soil and groundwater characterizations included herein, including summary test data, are based on the subsurface findings from the geotechnical explorations performed by NEAS as part of the referenced project, results of historical explorations, and consideration of the geological history of the site.

4.1. Core Results

Thickness measurements were obtained for each of the indicated pavement cores performed for the project. A summary of these measurements along with the material encountered and the associated boring location at which the pavement core was obtained (where applicable) is summarized in Table 3. Laboratory photographs and measurements of each of the cores are presented within the Pavement Core Logs included within Appendix C. Locations of the pavement cores or the boring locations where pavement cores were performed are depicted on the Boring Location Plan included within Appendix B.

Core ID	Alignment	Asphalt Thickness (in)	Concrete Thickness (in)	Total Thickness (in)
C-001-0-21	PROP. Ramp A East	11.25	0.00	11.25
C-002-0-21	PROP. Ramp B	12.00	0.00	12.00
C-003-0-21	PROP. Ramp C	0.00	10.00	10.00
C-004-0-21	PROP. Ramp D West	13.25	0.00	13.25
C-005-0-21	EX. SR-725	14.00	0.00	14.00
C-006-0-21	EX. SR-725	13.00	0.00	13.00
C-007-0-21	EX. SR-725	13.50	0.00	13.50
C-008-0-21	EX. SR-725	12.50	0.00	12.50

Table 3: Pavement Core Summary

4.2. Existing Pavement

The pavement section thicknesses in terms of asphalt, concrete and granular base were measured at representative project subgrade borings during the subsurface exploration for the project and are recorded on the test boring logs provided in Appendix B. A summary of these measurements is provided in Table 4 below.

Boring ID	Proposed Alignment	Drilled Depth (ft)	Asphalt Thickness (in)	Concrete Thickness (in)	Base Thickness (in)	Total Thickness (in)
B-001-0-21	EX. SR-725	7.5	13.0	0.0	5.0	18.0
B-002-0-21	EX. SR-725	26.5	13.0	0.0	5.0	18.0
B-003-0-21	EX. SR-725	26.5	13.0	0.0	5.0	18.0
B-004-0-21	PROP. Ramp A East	10.0	13.0	0.0	5.0	18.0
B-005-0-21	EX. SR-725	26.5	14.0	0.0	5.0	19.0
B-006-0-21	EX. SR-725	26.5	13.0	0.0	6.0	19.0
B-007-0-21	EX. SR-725	26.5	13.0	0.0	6.0	19.0
B-008-0-21	EX. SR-725	26.5	13.0	0.0	6.0	19.0
B-009-0-21	EX. SR-725	25.5	13.0	0.0	6.0	19.0
B-010-0-21	EX. SR-725	26.5	12.0	0.0	6.0	18.0
B-011-0-21	EX. SR-725	7.5	12.0	0.0	7.0	19.0
B-012-0-21	EX. SR-725	7.5	13.0	0.0	6.0	19.0
B-013-0-21	EX. SR-725	7.5	13.0	0.0	6.0	19.0
B-014-0-21	PROP. Ramp A East	10.0	12.0	0.0	6.0	18.0
B-015-0-21	PROP. Ramp A East	7.5	12.0	0.0	6.0	18.0
B-016-0-21	PROP. Ramp A East	11.5	12.0	0.0	7.0	19.0
B-017-0-21	PROP. Ramp B	11.5	12.0	0.0	6.0	18.0
B-018-0-21	PROP. Ramp B	7.5	12.0	0.0	6.0	18.0
B-019-0-21	PROP. Ramp C	7.5	12.0	0.0	7.0	19.0
B-020-0-21	PROP. Ramp C	7.5	9.5	0.0	7.5	17.0
B-021-0-21	PROP. Ramp D East	7.5	13.0	0.0	6.0	19.0
B-022-0-21	PROP. Ramp D West	7.5	13.0	0.0	7.0	20.0
B-023-0-21	PROP. Ramp D West	7.5	13.0	0.0	6.0	19.0
B-024-0-21	PROP. Ramp D West	7.5	13.0	0.0	6.0	19.0

Table 4: Measured Pavement Thickness at Boring Locations

4.3. Subgrade Conditions

The subgrade conditions within the project limits are relatively consistent and are generally comprised of pavement materials underlain by natural soils consisting of primarily cohesive low to moderately plastic sandy silt and silt/clay combinations and minorly granular gravel/stone fragments with sand, silt and clay. The subgrade soils encountered within the project limits are generally classified as either A-1-b, A-2-4, A-2-6, A-4a, A-6a, A-6b and A-7-6 type soils. With respect to sulfate within the subgrade soil, based on the project laboratory testing program, each subgrade soil sample tested was determined to have a sulfate content of less than 5,000 parts per million (ppm) (i.e., lower than the level which ODOT considers high and may prevent the use of chemical stabilization).

The following subsections present a brief summary of the subsurface conditions by ramp/roadway segment with problem areas highlighted where present.

4.3.1. SR-725

The project portions of SR-725 are planned to be reconfigured at the intersection with Byers Rd and add a sidewalk along the eastbound side as well as undergo full depth pavement replacement. The borings performed along this portion of roadway included borings B-001-0-21 through B-003-0-21 and B-005-0-21 through B-013-0-21.

Along SR-725, eighty-one percent (81%) of the soil samples were identified as fine-grained soils and were comprised of: 1) cohesive Sandy Silt (A-4a, 60% of samples); 2) Silt and Clay (A-6a, 13% of samples); and, 3) Clay (A-7-6, 8% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from medium stiff to hard correlating to converted SPT-N values (N_{60}) between 6 and 28 blows per foot (bpf). Natural moisture contents ranged from 9 to 24 percent. Based on Atterberg Limit

tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions of SR-725, the liquid and plastic limits ranged from 19 to 46 percent and from 13 to 19 percent, respectively.

Nineteen percent (19%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 10% of samples); and, 2) Gravel and Stone Fragments with Sand and Silt (A-2-4, 8% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from very loose to very dense correlating to N_{60} values between 2 and 42 bpf. Natural moisture contents ranged from 5 to 24 percent.

4.3.2. Ramp A

Ramp A is the exit ramp for the IR-75 SB which is planned for full depth pavement replacement. The borings performed along Ramp A included borings B-004-0-21 and B-014-0-21 through B-016-0-21.

Sixty-nine percent (69%) of the soil samples taken along the proposed ramp were identified as fine-grained soils and were comprised of: 1) cohesive Sandy Silt (A-4a, 44% of samples); 2) Silt and Clay (A-6a, 13% of samples); and, 3) Clay (A-7-6, 13% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to very stiff correlating to N_{60} values between 10 and 24 bpf. Natural moisture contents ranged from 9 to 22 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portion of Ramp A, the liquid and plastic limits ranged from 21 to 43 percent and from 13 to 21 percent, respectively.

Thirty-one percent (31%) of the samples taken along the proposed ramp were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel and Stone Fragments with Sand and Silt (A-2-4, 19% samples); and, 2) Gravel with Sand (A-1-b, 13% of samples). With respect to the relative density of the coarse-grained soils, the soils can be described as medium dense correlating to N_{60} values of 17 and 27 bpf. Natural moisture contents of the non-cohesive samples were determined to be 3 and 10 percent.

4.3.3. Ramp B

Ramp B are the entrance ramp for the IR-75 SB which is planned for full depth pavement replacement. The borings performed along Ramp included borings B-017-0-21 through B-018-0-21.

Eighty-eight percent (88%) of the soil samples taken along the proposed ramp were identified as finegrained soils and were comprised of: 1) cohesive Sandy Silt (A-4a, 38% of samples); 2) Silt and Clay (A-6a, 38% of samples); and, 3) Silty Clay (A-6b, one sample). With respect to the consistency of the fine-grained soils, the descriptions varied from very stiff to hard correlating to N_{60} values between 16 and 30 bpf. Natural moisture contents ranged from 7 to 21 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portion of Ramp B, the liquid and plastic limits ranged from 19 to 36 percent and from 12 to 17 percent, respectively.

Thirteen percent (13%) of the samples taken along the proposed ramp were classified as coarse-grained, non-cohesive soils and were comprised of Gravel with Sand and Silt (A-2-4, one sample). With respect to the relative density of the coarse-grained soils, descriptions was dense correlating to N_{60} value of 40 bpf. Natural moisture content of the non-cohesive samples was 6 percent.

4.3.4. Ramp C

Ramp C are the entrance ramp for the IR-75 NB which is planned for full depth pavement replacement. The borings performed along Ramp included borings B-009-0-21, B-019-0-21 and B-020-0-21.

Ninety-two percent (92%) of the soil samples taken along the proposed ramp were identified as fine-grained soils and were comprised of: 1) cohesive Sandy Silt (A-4a, 58% of samples); and, 2) Silt and Clay (A-6a, 33% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from very stiff to hard correlating to N_{60} values between 15 and 25 bpf. Natural moisture contents ranged from 9 to 14 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portion of Ramp C, the liquid and plastic limits ranged from 18 to 25 percent and from 13 to 15 percent, respectively.

Eight percent (8%) of the samples taken along the proposed ramp were classified as coarse-grained, non-cohesive soils and were comprised of Gravel with Sand and Silt (A-2-4, one sample). With respect to the relative density of the coarse-grained soils, descriptions was medium dense correlating to N_{60} value of 22 bpf. Natural moisture content of the non-cohesive samples was 9 percent.

4.3.5. Ramp D

Ramp D are the exit ramp for the IR-75 nB which is planned for full depth pavement replacement. The borings performed along Ramp included borings B-021-0-21 through B-024-0-21.

Sixty-nine percent (69%) of the soil samples taken along the proposed ramp were identified as fine-grained soils and were comprised of: 1) Silt and Clay (A-6a, 38% of samples); 2) cohesive Sandy Silt (A-4a, 25% of samples); and, 3) Silty Clay (A-6b, one sample). With respect to the consistency of the fine-grained soils, the descriptions varied from very stiff to hard correlating to N_{60} values between 11 and 40 bpf. Natural moisture contents ranged from 9 to 18 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portion of Ramp D, the liquid and plastic limits ranged from 23 to 38 percent and from 13 to 19 percent, respectively.

Thirty-one percent (31%) of the samples taken along the proposed ramp were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand and Silt (A-2-4, 13% of samples); and, 2) Gravel with Sand, Silt and Clay(A-2-6, 19% of samples). With respect to the relative density of the coarse-grained soils, descriptions was medium dense correlating to N_{60} value between 13 and 21 bpf. Natural moisture contents of the non-cohesive samples ranged from 11 to 23 percent.

4.4. Subsurface Conditions at Retaining Wall Locations

The subsurface profile within the proposed project area generally consists of surficial materials comprised of asphalt and base, generally underlain by natural stiff to hard cohesive soils and loose to dense granular soils. The natural stiff to hard cohesive soils encountered at the site of retaining walls consists of Sandy Silt (A-4a), Silt (A-4b) and Silt and Clay (A-6a). The loose to dense granular soils consists of Sandy Silt (A-4a), Silt (A-4b), Course and Fine Sand (A-3a), Gravel and Stone Fragments with Sand (A-1-b), Stone Fragments with Sand and Silt (A-2-4) and Stone Fragments with Sand, Silt and Clay (A-2-6). Bedrock was only encountered in the historical borings near RW 1.

4.4.1. Overburden Soil

At the proposed RW 1 site, no project boring was drilled. Four historical borings drilled nearby in 1976 indicate that the subsurface profile at the RW 1 site is very consistent. Bedrock was encountered in all the four historical borings at the elevation of between 899.0 ft and 938.1 ft. Two soil strata were encountered above bedrock. The cohesive soils were the primary stratum and were classified on the historical boring logs as Sandy Silt (A-4a), Silt and Clay (A-6a) and Silty Clay (A-6b). Those cohesive soils can be described as stiff to hard consistency correlating to converted SPT-N values (N_{60}) between 7 and 56 bpf. Natural

moisture contents ranged from 6% to 28%. Based on Atterberg Limits test performed on representative samples of this material, the liquid limit is between 19 to 34 percent and plastic limit is between 5 to 17 percent. The granular soil stratum consisted of Sandy Silt (A-4a) and Silt (A-4b) was only encountered in one historical boring. Those granular soils can be described as dense to very dense compactness correlating to converted SPT-N values (N_{60}) between 30 and 44 bpf. Natural moisture contents ranged from 11% to 16%.

At the proposed RW 2 site, two project borings (B-002-0-21 and B-003-0-21) were drilled and indicate that the subsurface profile at the RW 2 site is very consistent. Bedrock was not encountered in neither of the two project borings. Two soil strata were encountered and intersected with each other. The cohesive soils were classified on the project boring logs as Sandy Silt (A-4a). Those cohesive soils can be described as stiff to hard consistency correlating to converted SPT-N values (N₆₀) between 8 and 24 bpf. Natural moisture contents ranged from 10% to 14%. Based on Atterberg Limits test performed on representative samples of this material, the liquid limit is between 16 to 21 percent and plastic limit is between 12 to 14 percent. The granular soil stratum consisted of Course and Fine Sand (A-3a), Stone Fragments with Sand and Silt (A-2-4) and Stone Fragments with Sand, Silt and Clay (A-2-6) was encountered and can be described as medium dense compactness correlating to converted SPT-N values (N₆₀) between 12 and 23 bpf. Natural moisture contents ranged from 10% to 17%.

At the proposed RW 3 site, four project borings (B-006-0-21 to B-009-0-21) were drilled and indicate that the subsurface profile at the RW 3 site is very consistent. Bedrock was not encountered in any of the four project borings. Two soil strata were encountered and intersected with each other. The cohesive soils were classified on the project boring logs as Sandy Silt (A-4a), Silt (A-4b) and Silt and Clay (A-6a). Those cohesive soils can be described as stiff to hard consistency correlating to converted SPT-N values (N_{60}) between 6 and 68 bpf. Natural moisture contents ranged from 10% to 15%. Based on Atterberg Limits test performed on representative samples of this material, the liquid limit is between 19 to 25 percent and plastic limit is between 13 to 14 percent. The granular soil stratum was only encountered at the beginning of wall (B-006-0-21 and B-007-0-21) and consisted of Gravel and Stone Fragments with Sand (A-1-b), Gravel with Sand and Silt (A-2-4) and Sandy Silt (A-4a). The granular soils can be described as loose to dense compactness correlating to converted SPT-N values (N_{60}) between 10 and 42 bpf. Natural moisture contents ranged from 5% to 17%. It should be noted that boulder zone was encountered on the boring B-009-0-21 from 22.5 ft bgs to end of boring (from the elevation of 939.2 ft to 936.2 ft).

At the proposed RW 4 site, one project boring (B-010-0-21) was drilled. Bedrock was not encountered in the project boring. One cohesive soil stratum was encountered at the site of RW 4. The cohesive soils were classified on the project boring logs as Sandy Silt (A-4a). Those cohesive soils can be described as stiff to hard consistency correlating to converted SPT-N values (N_{60}) between 7 and 28 bpf. Natural moisture contents ranged from 11% to 14%. Based on Atterberg Limits test performed on representative samples of this material, the liquid limit is between 20 to 23 percent and plastic limit is between 13 to 15 percent.

4.4.2. Groundwater

Groundwater measurements were taken during the boring drilling procedures and immediately following the completion of each borehole. Groundwater was not observed during drilling and upon completion in none of the structure borings performed as part of the referenced project.

It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration.

5. ANALYSIS AND RECOMMENDATIONS

We understand that reconfiguration the existing interchange at IR-75 and SR-725 as well as adding sidewalk alongside SR-725 are planned as part of the interchange improvement project (MOT-725-14.41, PID 108619). In addition to the roadway reconfiguration, the construction of three retaining walls along SR-725 EB and one retaining wall along IR-75 SB exit ramp is also planned. For this purpose, a geotechnical exploration and subsequent analysis was completed for the referenced project. The analysis completed for the proposed roadway improvements included a subgrade (GB1) analysis as well as the generalized soil profile and soil properties for each wall boring. In accordance with NEAS's agreement with JMT, dated April 13, 2022, the geotechnical analyses for each wall will be conducted by JMT. The subgrade analysis was performed in accordance with ODOT's GB1 criteria utilizing the ODOT provided *GB1: Subgrade Analysis Spreadsheet* (GB1_SubgradeAnalysis.xls, Version 14.5 dated January 18, 2019). The noise wall foundation analysis was performed in accordance with *ODOT's 2020 LRFD Bridge Design Manual* (BDM) (ODOT, 2020), specifically utilizing the methodology presented in Section 802.1.2. Input information for our analyses was based on the soil characteristics gathered during NEAS's geotechnical exploration (i.e., SPT results, laboratory test results, etc.).

Based on our evaluation of the subsurface conditions and our geotechnical engineering analyses of the proposed interchange improvement project, it is our opinion that subgrade conditions are generally satisfactory, and pavement can be supported by the underlying subsurface material utilizing 12-inches of undercut and replace or chemical stabilization (global stabilization) per ODOT's GB1. Further detail regarding our subgrade analysis and the recommended remediation are provided in Section 5.1 and Section 5.2 of this report, respectively. The generalized soil profile and soil properties at each boring location are provided in Section 5.3 and Section 5.4.

5.1. Subgrade Analysis

A GB1 analysis was performed to identify the method, location, and dimensions (including depth) of required subgrade stabilization for the project. In addition to identifying stabilization recommendations, pavement design parameters are also determined to aid in pavement section design. The subsections below present the results of our GB1 analysis including pavement design parameters and unsuitable subgrade conditions identified within the project limits. GB1 analysis spreadsheets are provided in Appendix E.

Again, it should be noted that for the purposes of this report and our analysis, the term 'proposed subgrade' has been assumed to represent soils and/or soil conditions from 1.5 ft below proposed final pavement grades to a depth of 7.5 ft below the proposed pavement grades.

5.1.1. Pavement Design Recommendations

It is our understanding that pavement analysis and design is to be performed to determine the proposed pavement sections for the segments within the project limits to undergo full depth replacement. A GB1 analysis was performed using the subgrade soil data obtained during our field exploration program to evaluate the soil characteristics and develop pavement parameters for use in pavement design. The subgrade parameters recommended for use in pavement design are presented in Table 5 below. Provided in the table are ranges of maximum, minimum and average N_{60L} values for the indicated segments as well as the design CBR value recommended for use in pavement design.

Maximum N _{60L}	Minimum N _{60L}	Average N _{60L}	Average Pl Values	Design CBR
21	2	10	10	8
10	17	13	11	8
18	8	13	11	7
18	15	17	9	8
30	11	18	13	8
30	2	13	11	8
	N _{60L} 21 10 18 18 30	N _{60L} N _{60L} 21 2 10 17 18 8 18 15 30 11	N _{60L} N _{60L} N _{60L} 21 2 10 10 17 13 18 8 13 18 15 17 30 11 18	N _{60L} N _{60L} Values 21 2 10 10 10 17 13 11 18 8 13 11 18 15 17 9 30 11 18 13

Table 5: Pavement Design Values

5.1.2. Unsuitable Subgrade

Per ODOT's GB1, the presence of select subgrade conditions (i.e., unsuitable) are prohibited within the subgrade zone for new pavement construction. These unsuitable subgrade conditions generally include the presence of rock and specific soil types. With respect to the proposed pavement construction and realignment project these subgrade conditions are further discussed in the following subsections.

5.1.2.1. Rock

Rock was not encountered within the subgrade in any boring performed) within the project roadway limits.

5.1.2.2. Unsuitable Soils

Unsuitable soil types per the GB1, which include A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, and soils with liquid limits greater than 65, were not encountered within the subgrade of the referenced project roadway segments.

5.1.3. Unstable Soils

The GB1 recommends subgrade stabilization for soils considered unstable in which the N_{60} value of a particular soil sample (SS) at a referenced boring location is less than 12 bpf and in some cases less than 15 bpf (i.e., where moisture content is greater than optimum plus 3 percent). Based on the specific N_{60} value at the subject boring, *Figure B - Subgrade Stabilization* within the GB1 recommends a depth of subgrade stabilization for ODOT standard stabilization methods. It should be noted that although a soil sample's N_{60} value may meet the criteria to be considered an unstable soil, the depth in which the unstable soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed. For example, if the GB1 recommends an excavate and replace of 12 inches within a weak soil underlying 18 inches of stable material, it would be unreasonable to recommend the removal of both the stable and unstable material for a total of 30 inches of excavate and replace.

Based on N_{60} values encountered within the project borings, our GB1 analysis suggests the need for 12 to 14 inches of chemical treatment, or 12 inches excavate and replace at select locations. A summary of the boring locations where unstable soils were encountered and determined to have a potential impact on subgrade performance are shown in Table 6 below, per the roadway segment for which they were encountered. Also included is the associated GB1 recommended remediation depth at that location.

			Moisture		Remediation Depth (inches)			
Boring ID	Average HP (tsf)	N ₆₀	Above Optimum (%)	Depth Below Subgrade (ft)	Excavate and Replace (Item 204 w/ Geotextile)	Excavate and Replace (Item 204 w/ Geogrid - SS 861)	Chemical Stabilization (Item 206)	
Roadway Segment: SR-725 East								
B-012-0-21	1.25	-	6	0.0 - 1.5	12	-	14	
	Roadway Segment: SR-725 West							
B-002-0-21	-	10	0	1.0 - 2.5	12	-	14	
B-010-0-21	-	7	4	1.0 - 2.5	15	-	14	
B-012-0-21	1.25	-	6	0.0 - 1.5	12	-	14	
	Roadway Segment: Ramp D							
B-022-0-21	-	11	4	0.5 - 2.0	12	-	12	

Table 6:	Unstable Soil Locations Summary
----------	---------------------------------

It should be noted that *Figure B* - *Subgrade Stabilization* does not apply to soil types A-1-a, A-1-b, A-3, or A-3a, nor to soils with N_{60L} values of 15 or more. Per GB1 guidance, *these soils should be reworked to stabilize the subgrade*.

5.1.3.1. High Moisture Content Soils

High moisture content soils are defined by the GB1 as soils that exceed the estimated optimum moisture content (per *Figure A - Optimum Moisture Content* within the GB1) for a given classification by 3 percent or more. Per the GB1, soils determined to be above the identified moisture content levels are a likely indication of the presence of an unstable subgrade and may require some form of subgrade stabilization. Similar to our analysis of unstable soils, although a soil sample's moisture content may meet the criteria to be considered high, the depth in which the high moisture soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed for stabilization recommendations. Summaries of the boring locations where high moisture content conditions were encountered in the top 3 ft of subgrade within the limits of each proposed roadway segment are shown in Table 7 below.

Boring ID	Moisture Content (%)	Optimum Moisture Content (%)	Depth Below Subgrade (ft)				
Roadway Segment: SR-725							
B-013-0-21	13	10	0.5 - 3.0				
	Roadwa	y Segment: Ramp A					
B-015-0-21	22	18	1.5 - 3.0				
	Roadwa	y Segment: Ramp B					
B-017-0-21	19	16	0.0 - 1.4				
	Roadwa	y Segment: Ramp C					
B-020-0-21	14	10	0.6 - 2.1				
Roadway Segment: Ramp D							
B-023-0-21	23	10	0.0 - 1.5				
B-024-0-21	13	10	1.5 - 3.0				

Table 7: High Moisture Content Soils Location Summary

5.2. Stabilization Recommendations

5.2.1. Subgrade Stabilization

Based on the results of our analysis, subgrade soils designated by ODOT's GB1 as "unstable" were present throughout more than 30 percent of the project area. Subgrade soils designated as "unstable" were encountered at the various locations identified in Section 5.1.3 of this report. Guidance from ODOT's GB1 states that "For all other roadways, if it is determined that 30 percent or more of the subgrade area must

be stabilized, consideration should be given to stabilizing the entire project (global stabilization)". However, Ramp D has sections of proposed full depth pavement that is narrower than 8 ft width which typical chemical stabilization equipment cannot stabilize, NEAS recommend local stabilization in the form of Excavate and Replace using Item 204 Granular Materials Type C for the selected roadway areas that needs stabilization. Our recommended limits for the indicated project subgrade stabilization are provided in Table 8 below.

Start Station	End Station	Excavate and Replace w/ Item 204 ⁽¹⁾ (inches)	Chemical Stabilization (inches)	Unsuitable Subgrade Conditions	Borings Considered			
SR-725 West								
Begin Project	455+04	12	14	N/A	B-002-0-21			
468+42	471+45	15	14	N/A	B-010-0-21			
			Ramp D					
905+76	909+31	12	14	N/A	B-022-0-21			
Notes: 1. Excavate and Replace depths for areas where Chemical Stabilization is not feasible.								

Table 8: Stabilization Recommendations

5.2.2. Chemical Stabilization

Another stabilization option is chemical stabilization utilizing Cement as a stabilization chemical. Designer should perform a cost analysis of the stabilization options using bid tabs. Generally, chemical stabilization is more economical when stabilizing large areas (approximately greater than 1 mile of roadway) per ODOT's GB1.

The local chemical stabilization of the referenced mainline and ramp subgrade soils included within this project, should be performed to a minimum depth of 12 inches utilizing cement as the stabilizing chemical. The stabilization efforts should extend a minimum of 18-inches beyond the edge of the paved roadway, shoulder or median. The mix design should be conducted in accordance with ODOT's CMS Supplement 1120 (Mixture Design for Chemically Stabilized Soils). For design purposes it may be assumed that the cement addition will be 5% using the following formula.

Cement:
$$C = 0.75 \times T \times 115 \times 0.05$$

Where:

C = amount of chemical in pounds / square yard and

T = thickness of the treatment zone in inches

A dry density of 115-pounds per cubic foot (pcf) is assumed.

It should be noted that per ODOT's GB1, *typical chemical stabilization equipment cannot stabilize areas less than 8 ft in width.* If it is anticipated that the project will require multiple maintenance of traffic phases, it is recommended that the roadway work is coordinated with the maintenance of traffic schemes in such a way that an 8-ft minimum width for chemical stabilization exists. If areas of less than 8 ft in width are anticipated, subgrade soils may be excavated out, mixed with stabilization chemical, and compacted in place, though this method is not practical for large areas.

5.3. Generalized Soil Profile for Analysis

Each boring log was reviewed, and a generalized material profile was developed for analysis purposes. Utilizing the generalized soil profile, engineering properties for each soil strata were estimated based on the field (i.e., SPT N₆₀ Values, hand penetrometer values, etc.) and laboratory (i.e., Atterberg Limits, grain

size, etc.) test results using correlations provided in published engineering manuals, research reports and guidance documents. The developed soil profile and estimated engineering soil properties for use (with sited correlation/reference material) are summarized within Tables 9 through 16 below.

Retaining Wall: Soil Profile, B-002-0-21								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)		
Sandy Silt Elevation (961.2 ft - 954.2 ft)	108	108	118	1,050	100	22		
Sandy Silt Elevation (954.2 ft - 944.2 ft)	112	112	122	2,300	150	24		
Coarse and Fine Sand Elevation (944.2 ft - 936.7 ft)	115	115	125	-	-	32		
Sandy Silt Elevation (936.7 ft - 934.7 ft)	112	112	122	2,850	150	25		
Notes: 1 Values interpreted from Gentechnical Bulletin 7 Table 1								

Table 9: Soil Profile and Estimated Engineering Properties - At Boring B-002-0-21

Values calculated from Terzaghi and Peck (1967) if N1₆₀<52, else Stroud and Butler (1975) was used.

3. Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 10: Soil Profile and Estimated	Engineering Prop	perties - At Boring B-003-0-21

		Retaining Wal	I: Soil Profile, B-0	03-0-21		
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)
Gravel with Sand and Silt Elevation (958.1 ft - 953.6 ft)	112	112	122	-	-	32
Sandy Silt Elevation (953.6 ft - 951.1 ft)	108	108	118	950	100	22
Gravel with Sand and Silt Elevation (951.1 ft - 948.6 ft)	115	115	125	-	-	32
Sandy Silt Elevation (948.6 ft - 943.6 ft)	110	110	120	2,150	115	24
Gravel with Sand, Silt and Clay Elevation (943.6 ft - 941.1 ft)	115	115	125	-	-	32
Sandy Silt Elevation (941.1 ft - 931.6 ft)	110	110	120	2,100	115	24
Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1.						

Values calculated from Terzaghi and Peck (1967) if N1₆₀<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 11: Soil Profile and Estimated Engineering Properties - At Boring B-005-0-21

Retaining Wall: Soil Profile, B-005-0-21							
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	
Gravel with Sand Elevation (951.6 ft - 944.6 ft)	108	108	118	-	-	28	
Silt and Clay Elevation (944.6 ft - 939.6 ft)	112	112	122	2,400	150	25	
Sandy Silt Elevation (939.6 ft - 929.6 ft)	118	118	128	4,050	200	26	
Sandy Silt Elevation (929.6 ft - 925.1 ft)	125	125	135	-	-	35	
Notes:	estimate Bullatin 7 Tab	- 1					

 Values interpreted from Geotechnical Bulletin 7 Table 1.
 Values calculated from Terzaghi and Peck (1967) if N1 60<52, else Stroud and Butler (1975) was used. 3. Values interpreted from Geotechnical Bulletin 7 Table 2.

T 11 10 C 1		1		D 006 0 01
Table 12: Soil	Profile and Estimate	d Engineering Pro	perties - At Boring	B-006-0-21

Retaining Wall: Soil Profile, B-006-0-21							
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	
Gravel with Sand Elevation (952.5 ft - 945.5 ft)	118	118	128	-	-	35	
Sandy Silt Elevation (945.5 ft - 926 ft)	115	115	125	3,300	180	25	
Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1.							

Values calculated from Terzaghi and Peck (1967) if N1 60<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 13: Soil Profile and Estimated Engineering Properties - At Boring B-007-0-21

Retaining Wall: Soil Profile, B-007-0-21							
Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)		
115	115	125	-	-	33		
115	115	125	3,000	180	25		
115	115	125	-	-	33		
115	115	125	3,400	180	25		
118	118	128	-	-	32		
	(pcf) 115 115 115 115 115	Unit Weight ⁽¹⁾ (pcf) Moist Unit Weight ⁽¹⁾ (pcf) 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115	Unit Weight ⁽¹⁾ Moist Unit Weight ⁽¹⁾ (pcf) Saturated Unit Weight ⁽¹⁾ (pcf) 115 115 125 115 115 125 115 115 125 115 115 125 115 115 125 115 115 125 115 115 125	Unit Weight ⁽¹⁾ (pcf) Moist Unit Weight ⁽¹⁾ (pcf) Saturated Unit Weight ⁽¹⁾ (pcf) Undrained Shear Strength ⁽²⁾ (psf) 115 115 125 - 115 115 125 3,000 115 115 125 - 115 115 125 3,000 115 115 125 - 115 115 125 - 115 115 125 -	Unit Weight ⁽¹⁾ (pcf) Moist Unit Weight ⁽¹⁾ (pcf) Saturated Unit Weight ⁽¹⁾ (pcf) Undrained Shear Strength ⁽²⁾ (psf) Effective Cohesion ⁽³⁾ (psf) 115 115 125 - - 115 115 125 - - 115 115 125 - - 115 115 125 - - 115 115 125 - - 115 115 125 - - 115 115 125 - - 115 115 125 - - 115 115 125 3,400 180		

Values interpreted from Geotechnical Bulletin 7 Table 1.
 Values calculated from Terzaghi and Peck (1967) if N1 60<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 14: Soil Profile and Estimated Engineering Properties - At Boring B-008-0-21

Retaining Wall: Soil Profile, B-008-0-21							
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	
Sandy Silt Elevation (958.1 ft - 943.6 ft)	110	110	120	1,550	115	23	
Sandy Silt Elevation (943.6 ft - 936.1 ft)	115	115	125	3,050	180	25	
Sandy Silt Elevation (936.1 ft - 931.6 ft)	130	130	140	6,650	250	28	
Notes:							

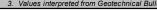

Values interpreted from Geotechnical Bulletin 7 Table 1.
 Values calculated from Terzaghi and Peck (1967) if N1 ₆₀<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 15: Soil Profile and Estimated Engineering Properties - At Boring B-009-0-21

Retaining Wall: Soil Profile, B-009-0-21							
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	
Silt and Clay Elevation (961.7 ft - 944.7 ft)	112	112	122	2,550	150	25	
Silt and Clay Elevation (944.7 ft - 939.2 ft)	120	120	130	4,300	225	27	
Notes:							

Values interpreted from Geotechnical Bulletin 7 Table 1.

Values calculated from Terzaghi and Peck (1967) if N1 60<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Retaining Wall: Soil Profile, B-010-0-21							
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	
Sandy Silt Elevation (974.2 ft - 947.7 ft)	112	112	122	2,400	150	25	
Notes: 1. Values interpreted from Geoter 2. Values calculated from Terzag 3. Values interpreted from Geoter	hi and Peck (1967) if	N1 ₆₀ <52, else Stroud an	d Butler (1975) was used.				

Table 16: Soil Profile and Estimated Engineering Properties - At Boring B-010-0-21

5.4. Generalized Soil Parameters for Laterally Loaded Shaft Analysis

Since RW 2 and RW 4 were proposed as soldier pile lagging wall, deep foundation elements will be subjected to lateral loads. Maximum bending moment, maximum shear force and lateral deflection need to be checked whether the foundation element is structurally capable of resisting the lateral loads. For the purpose of evaluating the shaft resistance in the lateral direction, the generalized soil parameters, to be used to analyze the laterally loaded shaft by the p-y curve method using the software entitled Lpile by Ensoft, Inc., are shown in Table 17 below.

Table 17: Generalized Soil Parameters for Laterally Loaded Shaft Analysis

p-y Curve Model	Elevation (ft)	Undrained Shear Strength, S _u (psf)	Soil Modulus Parameter, k (lb/in ³)	Soil Strain Parameter, E₅₀
	B	002-0-21		
Stiff Clay w/o Water	961.2 - 954.2	1050	281	0.0088
Stiff Clay w/o Water	954.2 - 944.2	2300	813	0.0056
Sand (Reese)	944.2 - 936.7	-	140	-
Stiff Clay with Water	936.7 - 934.7	2850	1000	0.0051
	B	003-0-21		
Sand (Reese)	958.1 - 953.6	-	179	-
Stiff Clay w/o Water	953.6 - 951.1	950	222	0.0095
Sand (Reese)	951.1 - 948.6	-	179	-
Stiff Clay w/o Water	948.6 - 943.6	2150	750	0.0059
Sand (Reese)	943.6 - 941.1	-	140	-
Stiff Clay with Water	941.1 - 931.6	2100	729	0.0060
	B	010-0-21		
Stiff Clay with Water	974.2 - 947.7	2400	833	0.0056

6. QUALIFICATIONS

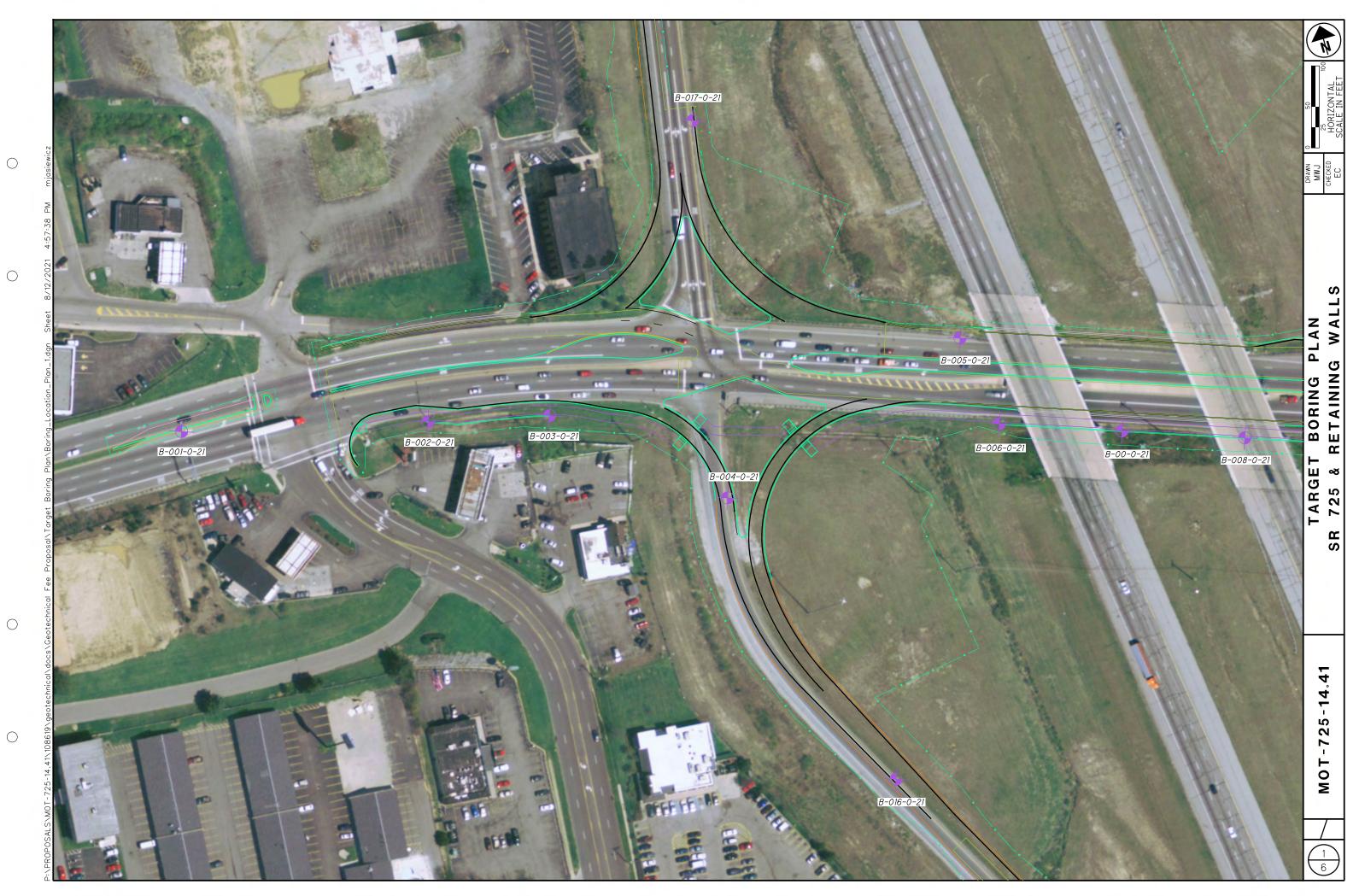
This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subsurface conditions at the site of Retaining Walls for the MOT-725-14.41 (PID 108619) project. This data report has been prepared for JMT, ODOT and their design consultants to be used solely in evaluating the soils underlying the retaining wall site. The assessment of general site environmental conditions or the presence of pollutants in the soil, rock and groundwater of the site was beyond the scope of this geotechnical exploration. Our recommendations are based on the results of our field explorations, and laboratory test results from representative soil samples. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the appendices as noted. This report does not reflect any variations that may occur between the borings or

elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes in the nature, design or location of the proposed retaining walls is made, the conclusions and recommendations contained in this report should not be considered valid until they are reviewed and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to JMT in performing this geotechnical exploration for the MOT-725-14.41 project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted, National Engineering and Architectural Services Inc.

Zhao Mankoci, Ph.D., P.E. Geotechnical Engineer Chunmei (Melinda) He, Ph.D., P.E. Project Manager/Geotechnical Engineer


REFERENCES

- AASHTO. (2020). Standard Specifications for Highway Bridges, 17th Edition. Washington, D.C.: American Association of State Highway and Transportation Officials.
- FEMA. (2019). National Flood Hazard Layer kmz v3.0. Federal Emergency Management Agency.
- ODGS. (1998). Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey. page-size map with text, 2p., scale 1:2,100,00.
- ODGS. (2003). Bedrock-topography data for Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map BG-3, 1 CD-ROM, GIS file formats. Revised January 9, 2004.
- ODNR [1]. (2016). Ohio Abandoned Mine Locator Interactive Map. *Mines of Ohio*. Ohio Department of Natural Resources, Division of Geological Survey & Division of Mineral Resources. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= OhioMines
- ODNR [2]. (2016). Ohio Oil & Gas Locator Interactive Map. *Ohio Oil & Gas Wells*. Ohio Department of Natural Resources, Division of Oil and Gas. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= oilgaswells
- ODOT. (2022). 2022 Bridge Design Manual. Columbus, OH: Ohio Department of Transportation: Office of Structural Engineering. Retrieved from http://www.dot.state.oh.us/Divisions/Engineering/Structures/standard/Bridges/Pages/BDM2004.aspx
- ODOT. (2020). Specifications for Geotechnical Explorations. Ohio Department of Transportation: Office of Geotechnical Engineering.
- Pavey, R. R., Goldthwait, R. P., Brockman, C. S., Hull, D. N., Swinford, E. M., & Van Horn, R. G. (1999). Quarternary geology of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map M-2. 1:500,000-scale map and 1:250,000-scale GIS files.
- USGS & ODGS. (2005, June). Geologic Units of Ohio. ohgeol.kmz. United States Geologic Survey.

APPENDIX A

BORING LOCATION PLAN

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

	TARGET BORING PLAN DRAWN 0 50 MWJ 25 25 100 RAMP B EC SCALE IN FEET
	MOT-725-14.41
B-024-0-21	4

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

	DRAWN MWJ 0 50 MWJ 25 100 CHECKED 25 100 EC SCALE IN FEET
B-03-0-21	TARGET BORING PLAN RAMP D
	9 9 A MOT-725-14.41

APPENDIX B

BORING LOGS

	PROJECT: MOT-725-14.41 TYPE: SUBGRADE	DRILLING FIRM / C		NEA	NS / JL S / JL	_	_L RIG		ME 45 UTON				ION / (NMEN			751+ X. SR	- 1	RT.		ATION ID 1-0-21
.41.GPJ	PID: <u>108619</u> SFN: START: <u>3/10/22</u> END: <u>3/10/22</u>	_ DRILLING METHO	-	3.25" HSA SPT	4			ON DATE: ATIO (%):		24/22 72.6	2		ATION LONG					7.5		PAGE 1 OF 1
-725-14	MATERIAL DESCRIPTI AND NOTES	N	ELEV. 971.5	DEPTHS	SF RG		REC (%)	SAMPLE ID	HP (tsf)		GRAD CS	FS	l (%) si c	_	TERB PL	_	wc	ODOT CLASS (C	GI) SO4	
ES/MO1	13.0" ASPHALT AND 5.0" BASE (DRILLE DESCRIPTION)	RS 💥	970.0	-	1 -															
GINT FIL	STIFF TO VERY STIFF, BROWN, SANDY GRAVEL, LITTLE CLAY, SS-1 CONTAINS SOIL FOR HP READINGS, DAMP				2 - ⁶ 6	5 13	56	SS-1	-	16	20	20	31 1	3 20	13	7	13	A-4a (2	2) 33	747
5-14.41/	SOLLI OKTIL KLADINOS, DAWI			E	3 - 5 - 7 - 7	7 17	44	SS-2	2.00	19	22	19	28 1	2 21	14	7	12	A-4a (1) -	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
MOT-72	MEDIUM DENSE, BROWN, GRAVEL WIT TRACE SILT, TRACE CLAY, DAMP	I SAND,	966.5 965.5		5 4 5	5 11 4	56	SS-3A SS-3B	<u>1.75</u> -	-	-	-	- ·	-	-	-	12 7	A-4a (\ A-1-b (\	<i>,</i>	$ \downarrow \downarrow$
DJECTS	VERY STIFF, BROWN, SANDY SILT , LITT LITTLE GRAVEL, DAMP	LE CLAY,	964.0		7 - 5	6 13	50	SS-4	2.75	-	-	-		-	-	-	11	A-4a (\	/) -	7 - 7
SOIL PR				200																

ROJECT: MOT-725-14.41 PE: RETAINING WALL	DRILLING FIRM		-			L RIG:	CME A	ME 45			STA ⁻ ALIG			FSET			31, 45' -725	RT. EX	PLORA [:] B-002-(
D: 108619 SFN:	DRILLING METH	-	3.25" HSA				ON DATE:							961			EOB:			PAG
ART: 3/7/22 END: 3/7/22	SAMPLING MET		SPT				ATIO (%):		72.6	<u> </u>	LAT		_	301.				20.0 11.		1 OF
	-		351														13, -04 I	r		
MATERIAL DESCRIPTIC AND NOTES	DN	ELEV. 961.2	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	-	ATIO FS	N (% SI	/		ERBE PL	-	wc	ODOT CLASS (GI)	SO4 ppm	B/ F
3.0" ASPHALT AND 5.0" BASE (DRILLEI ESCRIPTION)	rs 🛛	959.7	- - 1 -	-																$\frac{1}{7}$
ERY STIFF TO HARD, GRAY, SANDY SIL LAY, LITTLE GRAVEL, DAMP	.T, SOME		- 2 -	3																7777
			- 3 - - - 4 -	4 4	10	50	SS-1	4.50	15	12	15	37	21	21	14	7	10	A-4a (5)	540	747
			- 5 -	3 3	8	28	SS-2	4.25	_	_	_	-	_	-	_	_	11	A-4a (V)	_	×7 7 7
			- 6 - - - 7 -	4																V77V7
			- 8 - - - 9 -	5 6 8	17	61	SS-3	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7 4 7 7
			- 10 -	4 8	22	72	SS-4	4.25		_	_	_	_		-		12	A-4a (V)		7 4 4 4
			11 - - 12 -	<u>10</u>		12	00-4	7.23	_		-		_	_			12	/~-+a (v)		7 4 7
			- 13 - 14 -	5 6 8	17	78	SS-5	2.75	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7477
			15 - 16 -	7 8 10	22	72	SS-6	2.25	-	-	-	-	-	-	-	-	13	A-4a (V)	-	VF7VF7
IEDIUM DENSE, GRAY, COARSE AND FI OME SILT, TRACE GRAVEL, TRACE CLA		944.2	- 17 -	6																V77V7
IOIST			18 - - 19 -	8 10	22	78	SS-7	-	-	-	-	-	-	-	-	-	17	A-3a (V)	-	7 4
			20 - 21 -	6 9 10	23	72	SS-8	-	-	-	-	-	-	-	-	-	13	A-3a (V)	-	7444
			- 22 -	6																V77V7
		936.7	23 - - 24 -	89	21	67	SS-9	-	-	-	-	-	-	-	-	-	11	A-3a (V)	-	7477
ERY STIFF, GRAY, SANDY SILT, SOME	ULAY,	934.7	- 25 - - 26 -	7 9 11	24	39	SS-10	3.00	3	5	24	43	25	16	12	4	14	A-4a (7)	-	47747

OJECT: MOT-725-14.41 PE: RETAINING WALL	DRILLING F						l Rig: Mer:	-	ME 45 UTON				ION /		SET		755+8 (. SR	33, 39' -725	RT. E	XPLOR/ B-003	
D: 108619 SFN:	DRILLING M			3.25" HSA				ON DATE:							958.´			EOB:	26.5	t.	PAG
ART: <u>3/7/22</u> END: <u>3/8/22</u>	SAMPLING I	METHO	DD:	SPT		ENE	RGY R	ATIO (%):		72.6		LAT	LON	G:		39.6	64002	21, -84	.234172		1 OF
MATERIAL DESCRIPTIO AND NOTES	N		ELEV. 958.1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR (GRAD cs	ATIO FS	N (%) SI			ERBE PL	RG PI	wc	ODOT CLASS (G) SO4 ppm	
3.0" ASPHALT AND 5.0" BASE (DRILLE ESCRIPTION)	RS		956.6	- 1 -	-																× < 7
EDIUM DENSE, BROWNISH GRAY, STC RAGMENTS WITH SAND AND SILT, TRA ONTAINS ASPHALT FRAGMENTS, DAM 'ILL)	ACE CLAY,		953.6	- 2 - - 3 - - 4 -	4 5 5	12	56	SS-1	-	-	-	-	-	-	-	-	-	10	A-2-4 (V) -	
ERY STIFF, BROWNISH GRAY, SANDY LAY, LITTLE GRAVEL, DAMP	SILT, LITTLE		951.1	- - 5 - - 6 - - 7 -	3 3 4	8	61	SS-2	3.00	11	14	17	39	19	20	13	7	12	A-4a (5)	-	VT 7 VT 7
edium dense, gray, gravel and s' Ragments with Sand and Silt , Lit Oist			948.6	- 8 - - 8 - - 9 -	7 5 7	15	50	SS-3	-	-	-	-	-	-	-	-	-	15	A-2-4 (V) -	V77V77V
TIFF TO VERY STIFF, GRAY, SANDY SII LAY, LITTLE GRAVEL, DAMP	_T, SOME			- 10 - - - 11 - - - 12 -	4 6 8	17	56	SS-4	2.00	11	13	18	36	22	21	14	7	13	A-4a (5)	-	V7 7 V7 7 V7
			943.6	L	5 7 9	19	72	SS-5	3.25	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7 7 V 7 V 7
EDIUM DENSE, GRAY, STONE FRAGMI AND, SILT, AND CLAY, MOIST			941.1	15 - 16 - 17 -	5 6 10	19	28	SS-6	-	-	-	-	-	-	-	-	-	15	A-2-6 (V) -	7 4 7 7 7
TIFF TO VERY STIFF, GRAY, SANDY SII LAY, LITTLE GRAVEL, DAMP	_T , LITTLE			18 - 18 - 19 -	5 5 7	15	56	SS-7	1.75	17	12	16	35	20	19	13	6	12	A-4a (4)	-	7 4 7 7 7 7
				- 20 - - 21 - - 22 -	5 6 7	16	78	SS-8	2.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7 4 7 7 7 7
				22 - - - 23 - - - 24 -	6 7 7	17	78	SS-9	3.25	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7 4 7 7 7 7
			931.6	– 25 - – 26 -	5 8 10	22	78	SS-10	2.25	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7 4 7 7 7

	PROJECT: MOT-725-14.41 TYPE: ROADWAY	1 DRILLING FIRM / SAMPLING FIRM		ENEAS / JL NEAS / JL			l Rig: Mer:		ME 45		<u> </u>			/ OF ENT:				97, 11' P A EA		XPLORA B-004	ATION ID -0-21
41.GPJ	PID: <u>108619</u> SFN: START: <u>2/23/22</u> END: <u>2/2</u>	DRILLING METHO		3.25" HSA SPT				ON DATE: ATIO (%):		/24/22 72.6	2		VATI / LOI	-	954.			EOB: 99, -84	10.0 .233602	ft	PAGE 1 OF 1
-725-14.	MATERIAL DES AND NOT		ELEV. 954.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		-	DATIC FS	N (% si) CL	ATT LL	ERBE		wc	ODOT CLASS (G) SO4 ppm	BACK FILL
-ES\MOT	13.0" ASPHALT AND 5.0" BASE (DESCRIPTION)	X	952.5		8																
\GINT FII	HARD, GRAYISH BROWN, SAND LITTLE GRAVEL, DAMP	Y SILT, SOME CLAY,		- 2 -	9	24	67	SS-1	4.50	20	10	16	33	21	21	13	8	8	A-4a (4)	87	
-725-14.41				4	6 7 6	16	72	SS-2	4.50	11	10	16	38	25	23	13	10	10	A-4a (6)	-	
DJECTS/MOT				_ 6 _ _ 6 _ _ 7 _	6 5 4	11	56	SS-3	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)		- 7 < 7 7 - 7 < 7 7 7 - 7 7 < 7 7 7 - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
rive soil pro			944.0	- 8 - - 9 - 	4 5 5	12	61	SS-4	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	- 7 < 7 7 < 7 - 7 < 7 7 < 7 - 7 < 7 7 < 7

PROJECT: TYPE: PID:108619	-	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHOD	LOGGER: _ D:	NEAS / JL NEAS / JL 3.25" HSA		HAMI CALII		CME A ON DATE:	1/	/ATIC /24/22	;	ALIG ELE\	NMEI ⁄ATIC	N: 9	51.6 (I	EX. SF /ISL)	R-725 EOB:		KPLORA B-005	-0-21 PAG
START: <u>3/9/2</u>		SAMPLING METHO		SPT	0.007/		_	ATIO (%):		72.6		LAT /						1.232486	L	1 OF
	MATERIAL DESCRIPTION AND NOTES	v	ELEV. 951.6	DEPTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)			FS	<u> </u>			BERG	wc	ODOT CLASS (GI) SO4 ppm	
DESCRIPTION)	T AND 5.0" BASE (DRILLERS TO LOOSE, BROWNISH GRA SAND, TRACE TO LITTLE S	AY,	950.0	- 1 - - 2 -																V ₁ L 7 V 7 L
CLAY, MOIST T				- 3 - - 4 - - 5 -	4 2 2	5	17	SS-1	-	34	32	19	11	4 N	P NI	P NP	11	A-1-b (0)	60	
	TO VERY STIFF, GRAY ANI		944.6	6 7	1	2	33	SS-2	-	-	-	-	-	-		-	24	A-1-b (V)	-	
SILT AND CLAY MOIST TO DAM	Y, SOME SAND, TRACE GRA IP	AVEL,		- 8 - - 9 - - 10 -	4 5 9	17	61	SS-3	1.00	9	11	16	35	29 2	8 1	5 13	20	A-6a (7)	-	7 4 7 7 7 7
HADD CDAV S	SANDY SILT, SOME CLAY, L		939.6	11	8 8 11	23	72	SS-4	2.25	-	-	-	-	-		-	13	A-6a (V)	-	416446
GRAVEL, DAMF				- 13	7 10 12	27	61	SS-5	4.50	12	9	15	39	25 1	9 12	2 7	12	A-4a (6)	-	7 4 7 7 7
				15 16 17	9 12 13	30	78	SS-6	4.50	-	-	-	-	-		-	11	A-4a (V)	-	7 4 7 7 7 7
				- 18 - - 19 -	10 12 16	34	50	SS-7	4.25	-	-	-	-	-		-	15	A-4a (V)	-	VF7 VF7
	UM STIFF, GRAY, SANDY S		929.6	20 21 22	7 14 22	44	56	SS-8	4.25	-	-	-	-	-		-	14	A-4a (V)	-	VF7VF7
	STONE FRAGMENTS, WET			- 23 24 -	10 18 27	54	17	SS-9	0.50	-	-	-	-	-		-	22	A-4a (V)	-	V 7 V 7 7 V
			925.1	- 25 - - 26 - EOB	11 17 31	58	11	SS-10	0.75	-	-	-	-	-		-	22	A-4a (V)	-	
	<u>UNDWATER NOT ENCOUNT</u> T METHODS, MATERIALS, (IGS											

ECT: MOT-725-14.41 RETAINING WALL	DRILLING FIF					L RIG: MER:		ME 45			STAT ALIG			SET			34, 42' -725	RT. E	XPLORA B-006	
108619 SFN:	DRILLING ME	_	3.25" HSA	<u> </u>			ON DATE:						_	952.			EOB:	26.51	it.	PAG
T: 3/8/22 END: 3/8/22	SAMPLING M		SPT				ATIO (%):		72.6		LAT			002.0				.232321		1 OF
MATERIAL DESCRIPTIO	N	ELEV.	DEDTUO	SPT/		REC	SAMPLE	HP	(GRAD	ATIO			ATT	ERBE			ODOT	SO4	BA
AND NOTES		952.5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI) ppm	F
ASPHALT AND 6.0" BASE (DRILLER CRIPTION) IUM DENSE TO DENSE, BROWN, GRA	AVEL AND	950.9	- - 1 - - 2 -	-																× 77 7
NE FRAGMENTS WITH SAND , LITTLE CE CLAY, CONTAINS ASPHALT FRAG P .)			- - 3 - - 4 -	7 9 8	21	56	SS-1	-	33	32	16	15	4	NP	NP	NP	6	A-1-b (0)	40	
		945.5	- 5 - - 6 - - 7 -	10 15 20	42	11	SS-2	-	-	-	-	-	-	-	-	-	5	A-1-b (V) -	V77V77
D, GRAY, Sandy Silt , Little to so .e gravel, damp	ME CLAY,		- 8 - - 9 -	4 11 11	27	78	SS-3	4.50	18	10	17	35	20	19	13	6	10	A-4a (4)	-	VF7VF7V
			- 10 - - 11 - - 12 -	7 10 12	27	56	SS-4	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	VF7VF7VF
				5 10 13	28	78	SS-5	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	~ 7 V ~ 7 V ~
			- 16 - -	6 9 11	24	72	SS-6	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	7 4 7 7 7
			18 - 18 - 19 -	7 11 12	28	72	SS-7	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7 4 7 7 7
			- 20 - - 21 - - 21 -	7 10 14	29	78	SS-8	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7 4 7 7 7
			22 - 23 - 24 -	8 10 12	27	50	SS-9	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	7 4 7 7 7 7
		926.0	= 25 - - 26 -	- 8 12 14	31	56	SS-10	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	7 4 7 7 7
		926.0	- 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 -	9 11 7 11 12 - 7 7 10 14 8 10 12 - 8 8 10 12 -	28 29 27	72 78 50	SS-7 SS-8 SS-9	4.50 4.50 4.50	-	-	-	-	-	-	-	-	13 13 10	A-4a (V) A-4a (V) A-4a (V)		-

PROJECT: TYPE: PID:108619	RETAINING WALL	DRILLING FIRM SAMPLING FIRM DRILLING METH	/ / LOGGER:	NEAS / JI		HAM	L RIG: MER: BRATI				;	STATI ALIGN ELEVA	MENT	:	E	X. SR	-725		PLORA [:] B-007-(
START: <u>3/8/</u>		SAMPLING MET	-	SPT				ATIO (%):		72.6		LAT / I						.231858		1 OF
	MATERIAL DESCRIPTION AND NOTES	V	ELEV. 953.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATION FS	(%) SI CI		FERB PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BA FI
13.0" ASPHAL DESCRIPTION)	T AND 6.0" BASE (DRILLERS	6 X	952.1	- 1 -	-															
	DIUM DENSE, BROWN, GRA . T , TRACE CLAY, DAMP			- 2 -	15 13 10	28	39	SS-1	-	43	20	11 1	8 8	NP	NP	NP	7	A-2-4 (0)	-	
				- 4 - - 5 - - 6 -	- 2 3 5	10	50	SS-2	-	_	-	-		-	-	-	7	A-2-4 (V)	-	7 4 7 7 7
Hard, gray, s Gravel, dam	SANDY SILT , SOME CLAY, L P TO MOIST	ITTLE	946.7	- 7 -	7 10 8	22	78	SS-3	4.50	11	7	15 3	8 29	9 22	14	8	11	A-4a (6)	_	7 4 7 7 7
				- 9 · - 10 ·	- 3															7 4 7
			941.7_	- 11 · - 12 ·	10 13	28	56	SS-4	4.25	-	-	-		-	-	-	15	A-4a (V)	-	V7 7 V7
	SE, BROWNISH GRAY, SANE TRACE GRAVEL, MOIST	DY SILT,	939.2	13 · 14 ·	5 9 11	24	61	SS-5	-	9	6	23 4	0 22	2 NP	NP	NP	16	A-4a (5)	-	-745745
	AND BROWNISH GRAY, SILT ITTLE SAND, TRACE GRAVE	L, DAMP TO 🕴	+ +	- 15 - 16 - -	6 12 13	30	78	SS-6	4.50	4	4	7 5	0 3	5 22	14	8	15	A-4b (8)	-	777777
		+ + - + - + - + - + - + - + - + - +	+ + + + + + + +	17 - 18 - 19 -	7 11 13	29	72	SS-7	4.25	-	-	-		-	-	-	14	A-4b (V)	-	777777
		+ - + - + - + - + - + - + - + - + -	+ +	20 - 21 -	- 6 10 12	27	72	SS-8	4.50	-	-	-		-	-	-	14	A-4b (V)	-	7477
		+ - + - + - + - + - + - + - + - + - + -	+ +	- 22 - - 23 -	7	28	67	SS-9	4.50	-	-	_		-	-	-	15	A-4b (V)	-	VF7VF7
	IUM STIFF, GRAY, Sandy S Gravel, Moist	ILT, SOME	929.2	- 24 - - 25 -	- 12 - 8				0.50											VF7VF7
			927.2	EOB26 ·	10 14	29	50	SS-10	0.50	-	-	-	- -	-	-	-	17	A-4a (V)	-	
	UNDWATER NOT ENCOUNT																			

DJECT: MOT-725-14.41 E: RETAINING WALL	DRILLING FIRM /					L RIG: MFR [.]	C CME A						/ OFI ENT:				34, 40' -725	RT. EX	PLORA B-008-	
	DRILLING METHO		3.25" HSA				ON DATE:										EOB:			PAG
RT: 3/9/22 END: 3/9/22	SAMPLING METH		SPT				ATIO (%):		72.6			/ LOI	_		-			.231140		1 OF
MATERIAL DESCRIPTIO	-	ELEV.		SDT/			SAMPLE	-			ATIO			ATT				r		
AND NOTES	//4	958.1	DEPTHS	SPT/	N ₆₀	(%)	ID	(tsf)	GR			SI			PL		wc	ODOT CLASS (GI)	SO4 ppm	B/ F
0" ASPHALT AND 6.0" BASE (DRILLE SCRIPTION)	रङ	956.5	- - 1 -	-		(/0)			-	_			_							× 1
IFF TO HARD, GRAYISH BROWN BEC AAY, SANDY SILT , SOME CLAY, LITTLE		x 950.5	- 2 -	5																7 47
MP TO MOIST			- 3 - - - 4 -	8	15	17	SS-1	4.50	14	11	16	35	24	22	14	8	11	A-4a (5)	-	7477
			- 5 - - 6 -	33	6	22	SS-2	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	V77V7
			- 7 -	3																
			- 8 - - - 9 -	5	15	33	SS-3	1.75	-	-	-	-	-	-	-	-	10	A-4a (V)	-	74474
			- 10 - - 11 -	4 5 10	18	67	SS-4	3.00	15	9	18	36	22	20	13	7	12	A-4a (5)	-	47747
			- 12 - 	2																144
			13 - - 14 -	4 6	12	72	SS-5	2.00	-	-	-	-	-	-	-	-	13	A-4a (V)	-	V 7 7 V 7
			- 16 -	6 8 10	22	61	SS-6	1.50	-	-	-	-	-	-	-	-	15	A-4a (V)	-	744744
			- 17 - - - 18 - -	7 11 15	31	78	SS-7	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7447
			Г	10	24	61	SS-8	3.00			_						14	A-4a (V)		V77V7.
			21 - - - 22 -	6 14	24		33-0	5.00	-	-	-	-	-	-	-	-	14	A-44 (V)	-	7447
			- 23 - - 24 -	15 14 24	46	44	SS-9	2.50	-	-	-	-	-	-	-	-	14	A-4a (V)	-	VF 7 VF -
		931.6	- 25 - - - 26 -	12 24 32	68	56	SS-10	4.25	-	-	-	-	-	-	-	-	13	A-4a (V)	-	74777

PE: RETAINING WALL		DPERATOR:				L RIG:		ME 45						FSET	-		26, 40'	RT. E	PLORA B-009	
	SAMPLING FIRM /	_				MER:								061			-725			PAG
	DRILLING METHO		3.25" HSA				ON DATE:			<u> </u>			_	961.	-		EOB:		ι <u>. </u>	1 0
	SAMPLING METHO		SPT		ENE		ATIO (%):		72.6		LAT						46, - 84	.230662		
MATERIAL DESCRIPTION AND NOTES		ELEV. 961.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS	N (% sı	<i>′</i>	ATT LL	ERBE PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	
.0" ASPHALT AND 6.0" BASE (DRILLERS SCRIPTION)		960.1	 _ 1 _	-																× 1
RD, GRAYISH BROWN, SILT AND CLAY , ND, TRACE TO LITTLE GRAVEL, DAMP	SOME		- 2 -	10 7	18	44	SS-1	4.25	12	11	17	35	25	25	14	11	12	A-6a (5)	_	7477
				8	_															VT 7 VT
			6 -	7 9 12	25	56	SS-2	4.50	-	-	-	-	-	-	-	-	11	A-6a (V)	-	7777
			- 7 -	4 7 10	21	61	SS-3	4.25	-	-	-	-	-	-	-	-	12	A-6a (V)	-	V77V7
			- 9 - - 10 -	4		70	SS 4	4.05									11	A 6- // ^		- 7 V 7 V
			- 11 - - 12 -	6 8	17	72	SS-4	4.25	-	-	-	-	-	-	-	-	11	A-6a (V)	-	× 7 7 × 7
			- 13 - 14 -	5 8 10	22	56	SS-5	4.25	-	-	-	-	-	-	-	-	10	A-6a (V)	-	7 4 7 7 7
			- 15 - - 16 -	6 9 12	25	72	SS-6	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	-	7 4 4 7
			- 17 - - - 18 - -	11 13 15	34	78	SS-7	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	-	VF7 VF7
			- 19 - - 20 -	8				4.05									10			V 7 7 V 7
		939.2	21 _ 22 _	12 19	38	50	SS-8	4.25	-	-	-	-	-	-	-	-	12	A-6a (V)	-	7477
OULDERY ZONE			- 23 - 24 -	<u>50/1"</u> /	_ - _/	\100/	<u>SS-9</u>	<u>`-</u> /	/	/)		/	/	<u> </u>	_2_		-	VT 7 VT
-25 CONTAINS NO RECOVERY		936.2		4	-	0	SS-10	-	-	-	-	-	-	-	-	-	-		-	7 4 7

PE: RETAINING WALL	DRILLING FIRM / C					L RIG: MFR [.]	CME A			<u> </u>			/ OFI ENT:				93, 55' -725	<u>RT.</u> EX	PLORA B-010-	
D: 108619 SFN:	DRILLING METHO	_	3.25" HSA				ON DATE:						-				EOB:	<u></u> 26.5 ft		PAG
ART: 2/25/22 END: 2/25/22	SAMPLING METHO		SPT				ATIO (%):		72.6			/ LOI	_	514.1				.229443		1 OF
	-							· · · · · · · · · · · · · · · · · · ·						A T T I			JO, -04 I			
MATERIAL DESCRIPTIC AND NOTES	<i>DN</i>	ELEV. 974.2	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs		IN (% SI			ERBE PL		wc	ODOT CLASS (GI)	SO4 ppm	BA Fil
2.0" ASPHALT AND 6.0" BASE (DRILLE) ESCRIPTION) TIFF TO HARD, BROWN AND GRAY BEC RAY, SANDY SILT, SOME CLAY, TRACE		972.7	- 1 2 -	-																× 1 7 7 7 7
RAVEL, SS-1 CONTAINS ROOTS, DAMF			- 3 -	3 2 4	7	67	SS-1	2.00	17	12	17	33	21	23	15	8	14	A-4a (4)	-	
			- 5 - - 6 - - 7 -	5 9 11	24	67	SS-2	4.25	9	12	17	38	24	21	14	7	12	A-4a (5)	-	
			8 - 8 - 9 -	5 10 10	24	78	SS-3	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7 4 7
			- 11 -	6 11 12	28	33	SS-4	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	VF7VF7VF
			- 12 - - 13 - - 14 -	6 10 11	25	56	SS-5	4.25	12	10	18	37	23	20	13	7	11	A-4a (5)	-	T 7 V 7 V 7 V 7
			- 15 - - 16 - - 17 -	5 8 10	22	67	SS-6	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7747747
			18	6 6 8	17	72	SS-7	3.25	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7 4 7 7 7
			- 21 -	6 7 9	19	78	SS-8	3.00	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7 4 7 4 7 7
			- 22 - - 23 - - 24 -	5 7 6	16	50	SS-9	2.25	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7 4 7 4 7 7
		947.7	-EOB	6 6 9	18	56	SS-10	2.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	

	ROJECT: YPE:	MOT-725-14.41 SUBGRADE	DRILLING FIRM / C SAMPLING FIRM /					L RIG: MER:	-	ME 45			STAT ALIG			SET:	-	2+20, 5 SR-725		(PLORA B-011-	TION ID 0-21
	ID: 108619		DRILLING METHO		3.25" HSA				ON DATE:		24/22					80.8		EOB			PAGE
0	TART: 3/1/22		SAMPLING METHO		SPT				ATIO (%):		72.6		LAT /						4.228560		1 OF 1
5-14		MATERIAL DESCRIPTION	V	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE								RBER		ODOT	SO4	BACK
ES\MOT-725-14		AND NOTES AND 7.0" BASE (DRILLERS		980.8		RQD	. •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL F	WC WC	CLASS (GI) ppm	FILL
S/MC	DESCRIPTION)	AND 7.0 DASE (DRILLER	s		- 1 -																
		SH GRAY BECOMING BRO		979.2	- 2 -	3															$\begin{pmatrix} 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
UID	MOTTLED WITH	I GRAY, SANDY SILT , SOM	E CLAY,			4 6	12	56	SS-1	4.50	16	9	16	36	23	20	13	7 9	A-4a (5)	73	JLV J
1.41/0	IRACE TO LITTI	LE GRAVEL, DAMP	WN E CLAY,		- 3 -	5 7	18	61	SS-2	4.50	-	-	-	-	-	-		. 10	A-4a (V)	_	
25-14					- 4 -	- <u>8</u> 6									_				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	1>11
0T-7					- 5 -	9	23	72	SS-3	4.50	-	-	-	-	-	-	- -	· 10	A-4a (V)	-	× L × 7 7 L × 7 7 > 1 7
TS/M					_ 6 -	10 7															- 1 LV 1
DJEC				973.3	-EOB	10 11	25	78	SS-4	4.50	9	13	17	37	24	25	15 1	0 13	A-4a (5)	-	1 X X X X X X X X X X X X X X X X X X X
SOILF																					
VE S(
ACTIV																					
CTS																					
SOLE																					
/E PF																					
ACTIV																					
-×.																					
15:30																					
4/22																					
- 4/1																					
GDT																					
DOT																					
HO-																					
(11)																					
(8.5)																					
TES																					
JLFA																					
N/SI																					
00																					
2011																					
D OC																					
STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT GDT - 4/14/22 15:30 - X:ACTIVE PROJECTSACTIVE SOIL PROJECTSMOT-725-14.41/GINT																					
STAN																					
		INDWATER NOT ENCOUNT																			
L	ABANDONMENT	METHODS, MATERIALS, C	QUANTITIES: PLAC	ED 0.5 BAG	ASPHALT PATC	CH; SHC	OVELEI	D SO	IL CUTTIN	GS											

PROJECT:	MOT-725-14.41	DRILLING FIF			NEAS /			L RIG:		ME 45						SET:		5+42, 4		XPLORA B-012	TION ID
	SUBGRADE	SAMPLING FI		GER: _		JL		MER:								00.4		SR-725			PAGE
PID: <u>108619</u> START: 3/1/2	-	DRILLING ME SAMPLING M			3.25" HSA SPT		-		ON DATE: ATIO (%):		' <u>24/22</u> 72.6	<u> </u>		/ LON				_ EO	3: <u>7.5 f</u> 84.227486		1 OF 1
	MATERIAL DESCRIPTION			N/	511	CDT			SAMPLE				ATIO				RBER	-			
13.0" ASPHALT DESCRIPTION)	AND NOTES	v	990		DEPTHS	SPT/ RQD		(%)	ID	(tsf)	GR	cs	FS					u wo	ODOT CLASS (G) SO4	BACK FILL
13.0" ASPHALT	AND 6.0" BASE (DRILLERS	S		/.	L			(,,,)	10									-	-		
DESCRIPTION)			988	5	- 1	_															
STIFE TO VERY	STIFF, BROWNISH GRAY,	CLAY		5.5	- 2	4	1.0														- 1 LV 1 1 > N 1
SOME SILT, LIT	TLE SAND, LITTLE GRAVEL	, CONTAINS			-	4	4 10	44	SS-1	1.25	17	6	14	29	34	46	19 2	7 24	A-7-6 (13) 73	JLV J
	GMENTS, MOIST				- 3	4	8	56	<u> </u>	2.05											
6			985	5.6	- 4	3	4	50	SS-2	2.25	-	-	-	-	-	-	-	- 22	2 A-7-6 (V	, -	レイイレ
VERY STIFF, BF	ROWN MOTTLED WITH GRA		985		- 5	+4 4	12	72	SS-3	2.50	6	6	16	33	39	41	18 2	3 22	A-7-6 (13	a -	7 LV 7
TRACE IRON S	ME SAND, TRACE GRAVEL FAINING, MOIST	, CONTAINS			- 6	-	6	12		2.00	•	Ŭ	10					° 22		·/	
						4 6	15	67	SS-4	3.00	-	-	-	-	-	-	-	- 24	A-7-6 (V) -	1711
			982	2.6	_ЕОВ/		6	•••		0.00										/	1 LV 1
Do o																					
AC																					
ХЧ																					
AC																					
× -																					
0.30																					
22																					
/14/																					
- -																					
i.																					
2																					
5																					
-																					
<																					
0																					
< و																					
2																					
	JNDWATER NOT ENCOUNT							S STAI	KED												
	T METHODS, MATERIALS, (IGS											
	METHODO, MATERIALO, C	SOMMITTEO.		0 040		1011, 011		0 00													

PROJECT: TYPE:	MOT-725-14.41 SUBGRADE	DRILLING FIRM / C			AS / JL AS / JL			L RIG:	CME A	ME 45									84, 30'	LT. EX	PLORAT B-013-0	TION ID 0-21
이 아이는 108619		SAMPLING FIRM / DRILLING METHO	-	3.25" H					ON DATE:		24/22		ALIG					(<u>.</u> SR-		 7.5 ft.		PAGE
5 START: 3/1/2		SAMPLING METHO		SPT					ATIO (%):		72.6		LAT							.226344	1	1 OF 1
-14.	MATERIAL DESCRIPTIO	N	ELEV.	DEDTU		SPT/			SAMPLE	-	Ċ	RAD	ATIO	N (%) [ATT	ERBE	RG		ODOT	S04	BACK
-1/20	AND NOTES		995.4	DEPTH	15	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	ppm	FILL
13.0" ASPHALT DESCRIPTION)	AND 6.0" BASE (DRILLER	s	993.8																			$-\frac{1}{7}L^{V}$
VERY STIFE TO) HARD, BROWN, SANDY S (, TRACE TO LITTLE GRAVE	ILT , LITTLE	993.0	-	- 2 -	5 6 5	13	67	SS-1	4.50	10	12	19	37	22	20	13	7	10	A-4a (5)	53	
ال14.41				-	- 3 - - - 4 -	3 5 5	15	72	SS-2	4.25	-	-	-	-	-	-	-	-	13	A-4a (V)	-	
-627-101				-	- 5 -	4 5	15	61	SS-3	3.25	12	12	19	37	20	20	13	7	12	A-4a (4)	-	2 4 7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
JECISW			987.9	-	- 6 - - - 7 -	4 5 6	13	78	SS-4	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	
STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 4/14/22 15:30 - X:ACTIVE PROJECTSACTIVE SOIL PROJECTSMOT-725-14.41/GNT OD SOIT PROJECTSMOT-725-14.41/GNT AMOS OD AMOS OD A AMOS OD AMOS OD AMO																						
XACI																						
2 15:30 -																						
- 4/14/22																						
01.GU1																						
й НО -																						
1.5 X 11)																						
ATES (3																						
W/ SULF																						
T LOG																						
TANUAR																						
	UNDWATER NOT ENCOUNT					BORIN	IG OF	FSFT		ΉOF	F SH)FR									
				G ASPHAL					U.U INUINI	11, UF			/LI\.									

ſ	PROJECT TYPE:	:		T-725-1 ADWAY		DRILLING FI				EAS / JI EAS / JL			L RIG: MER:		ME 45 UTON			STA						63, 22' P A EA	<u></u>	PLORA B-014	ATION ID -0-21
C)	PID: 10 START:)8619 2/23/2	SFN:			DRILLING ME SAMPLING M	ETHOD):	3.25" H SP	ISA		-		ON DATE: ATIO (%):	1/	/24/22 72.6		ELE LAT		-		.0 (M	SL)	EOB:	10.0 ft .231793	·	PAGE 1 OF 1
-725-14.			MAT		DESCRIPTIO NOTES	N		ELEV. 1000.0	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAE cs	DATIO FS	N (% SI) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	SO4 ppm	
ES/MO1	12.0" AS DESCRIF			5.0" BA	SE (DRILLER	S		998.5		- - 1 -	5																
GINT FIL		RAGN			I GRAY, GRA Y AND AND SIL					- 2 -	10 12	27	61	SS-1	-	28	18	22	21	11	NP	NP	NP	7	A-2-4 (0)	60	
T-725-14.41	,							994.5		_ 4 - _ 4 - _ 5 -	5 6 8	17	78	SS-2	-	-	-	-	-	-	-	-	-	10	A-2-4 (V)	-	
OJECTS/MC	Hard, B Sand, Ti				LT AND CLAY IP	, TRACE		992.0		- 6 - - 7 -	6 7 9	19	67	SS-3	4.50	1	2	6	38	53	30	17	13	17	A-6a (9)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TIVE SOIL PR	MEDIUM SILT, TR				VEL WITH SA	AND, LITTLE		992.0	—ЕОВ—	- 8 - - 9 - - 10-	6 8 12	24	72	SS-4	-	-	-	-	-	-	-	-	-	3	A-1-b (V)	-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 4/14/22 15:30 - X:ACTIVE PROJECTS/ACT

SUBGRADE PID: 108619 SFN:	DRILLING FIRM / OPERATOR: SAMPLING FIRM / LOGGER: _ DRILLING METHOD: SAMPLING METHOD:						ALI ELE	ATION GNME EVATI ^I F / LOI	ENT: ON: _	PR	OP. R 6 (MSI	ramf L)_ I	EOB:	AST		
MATERIAL DESCRIPTION AND NOTES		DEPTHS SPT/ RQD	N R	REC SAMPLE	HP	GR	ADATIC	ON (%			ERBEI		wc	ODOT CLASS (GI)	SO4 ppm	BACI
12.0" ASPHALT AND 6.0" BASE (DRILLERS DESCRIPTION)		- 1 -											wo			
MEDIUM DENSE, BROWN, GRAVEL AND S FRAGMENTS WITH SAND, LITTLE SILT, TR	ACE CLAY, 980.6	2 - 5 7	, 17 ·	17 SS-1	-	_		-	-	-	-	-	8	A-1-b (V)	60	$\begin{pmatrix} 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 1 \\ 1 \\ 1 \\$
_ DAMP VERY STIFF, DARK GRAY AND GRAY, CLA SILT, SOME SAND, TRACE GRAVEL, SLIGH	Y, SOME	-3 -5 -4 -4 -4		67 SS-2	3.00	6	5 17	34	38	43	21	22	22	A-7-6 (13)	_	
ORGANIC, SS-3 CONTAINS A 1.0" SILT SEA	M, MOIST 977.6	5 6 7	18 7	72 SS-3	3.50	-		-	-	-	-	-	22	A-7-6 (V)	-	7 L 7 N
VERY STIFF, ORANGISH BROWN AND GRA AND CLAY, LITTLE SAND, TRACE GRAVEL, CONTAINS IRON STAINING, MOIST	AY, SILT	EOB 6 7 - 7 8 - 7 12		67 SS-4	4.00	1	2 14	50	33	27	16	11	20	A-6a (8)	-	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.GPJ	PROJECT: MOT-725-14.41 TYPE: ROADWAY PID: 108619 SFN: START: 2/23/22 END: 2/23/22	DRILLING FIRM / O SAMPLING FIRM / I DRILLING METHOE SAMPLING METHO	_OGGER: _):	NEAS / JI NEAS / JL 3.25" HSA SPT		HAMI CALII			1/			ALIG	SNME VATI(ENT: ON:	PF	ROP. .8 (MS	RAM SL)		<u></u>	B-016	ATION ID -0-21 PAGE 1 OF 1
DESCRIPTION) Image: constraints interbedded Silt seams, DAMP 969.2 MEDIUM DENSE, GRAY, GRAVEL WITH SAND AND SILT, SOME CLAY, DAMP 966.3 MEDIUM DENSE, GRAY, GRAVEL WITH SAND AND SILT, TRACE CLAY, CONTAINS INTERBEDDED SILT SEAMS, DAMP 963.8 VERY STIFF, GRAY, SANDY SILT, SOME CLAY, TRACE GRAVEL, DAMP 963.8	-725-14.4	MATERIAL DESCRIPTIO		ELEV.				REC	SAMPLE	HP	C		ATIO	N (%)		ERB	ERG		ODOT		
MEDIUM DENSE, GRAY, GRAVEL WITH SAND AND SILT, TRACE CLAY, CONTAINS INTERBEDDED SILT SEAMS, DAMP 966.3 VERY STIFF, GRAY, SANDY SILT, SOME CLAY, TRACE GRAVEL, DAMP 963.8	GINT FILES/MOT	DESCRIPTION) HARD, BROWN, SANDY SILT, SOME GRAV				4 7	10	50	SS 1				16	20	15	01	14	7	0	A 45 (2)	40	
VERY STIFF, GRAY, SANDY SILT, SOME CLAY, TRACE GRAVEL, DAMP	CTS\MOT-725-14.41	SILT, TRACE CLAY, CONTAINS INTERBED	AND AND		-	5 8				-	-	-	-	-	-	-	-					
$\begin{bmatrix} 10 & 5 \\ -11 & 4 & 12 & 61 & SS-4 & 2.50 & -1 & -1 & -1 & -12 & A-4a(V) & -14 & $	- PROJI		LAY,		_ 9 _	- ×			-		7	11	17	37	28	21	13				-	

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 4/14/22 15:30 - X:ACTIVE

	_ DRILLING FIRM /				DRILL			ME 45									15, 28'		PLORA B-017-	
YPE: ROADWAY	_ SAMPLING FIRM		NEAS / JL		HAMN	-						SNME					AMP E	<u> </u>		PA
PID: <u>108619</u> SFN:	DRILLING METHC		3.25" HSA				ON DATE		/24/22	2				952.				11.5 ft.		10
START: <u>2/25/22</u> END: <u>2/25/22</u>	SAMPLING METH	OD:	SPT				ATIO (%):	_	72.6			/ LON) <u>5, -8</u> 4	1.233286		10
MATERIAL DESCRIPTIC	ON	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE				DATIO				ERBE			ODOT	SO4	1
AND NOTES		952.2		RQD	•60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
12.0" ASPHALT AND 6.0" BASE (DRILLER	rs 🔀	3		-																
DESCRIPTION)	\otimes	950.7	- 1 -	1																7
VERY STIFF, BROWN, SILTY CLAY, SOM			- 2 -	-																1
TRACE GRAVEL, CONTAINS IRON STAIN			r	4																1
			- 3 -	6	19	61	SS-1	2.50	7	9	17	33	34	36	17	19	19	A-6b (10)	53	7 4 7
		947.7	- 4 -	10																-77
HARD, BROWN, SILT AND CLAY, SOME S	SAND, LITTLE		- 5 -																	
TO SOME GRAVEL, DAMP TO MOIST				5 6	18	78	SS-2	4.50	12	12	20	33	23	25	14	11	12	A-6a (5)	_	1
			6 -	9	10	10	00-2	4.50	12	12	20	00	20	20	14		12	A-04 (0)		1
			- 7 -	-																
			L 。 」	5																7
			- 8 -	5	18	72	SS-3	4.50	-	-	-	-	-	-	-	-	11	A-6a (V)	-	1
			- 9 -	10																-1
			- 10 -																	-77
			I	4 6	16	89	SS-4	4.50	-	_	_	_	-	-	-	-	21	A-6a (V)	-	1
		940.7	-EOB	7		00	00 1	1.00										/(0u(t))		7

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE. DRILLED AS STAKED. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

PROJECT:	MOT-725-14.41	DRILLING FIRM / O	PERATOR:	NEAS / JL		DRIL	L RIG:		ME 45			STAT	ON / C	OFFSE						TION ID
TYPE:	SUBGRADE	SAMPLING FIRM / I					MER:					ALIGN					AMP E	,	B-018-0	
PID: 108619	-	DRILLING METHOD	-	3.25" HSA				ON DATE:	-	24/22	2			: 945						PAGE 1 OF 1
5 START: 2/25/2	22 END: <u>2/25/22</u>	SAMPLING METHO		SPT				ATIO (%):	_	72.6		LAT /					37, -84	.233234		
725-1.	MATERIAL DESCRIPTION	V	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE							FERB	-		ODOT CLASS (GI)	SO4 ppm	BACK FILL
<u></u>	AND NOTES		945.1		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI C	L LL	PL	PI	WC	CLASS (GI)	ppm	1 ILL
12.0" ASPHALT	AND 6.0" BASE (DRILLERS	s 🕅																		
Щ ст			943.6	- 1 -	7															1 LV 1
	NISH GRAY, STONE FRAGN I D SILT , LITTLE CLAY, DAMI			- 2 -	′ 13	40	50	SS-1	-	38	16	12	22 1	2 21	14	7	6	A-2-4 (0)	340	7 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
0			942.1	- 3 -	20													()		727
) HARD, BROWNISH GRAY, D SOME CLAY, LITTLE TO S	SANDY IIIII			΄ 12	30	61	SS-2	4.50	13	15	20	33 1	9 19	12	7	7	A-4a (3)	-	JLV J
ສ່ GRAVEL, DAMF	DOME OFAT, ETTER TO O	SANDY GOME		- 4 -	13													. ,		レコイト
SULFATES (8.5 X 11) - OH DOT.GDT - 4/14/22 15:30 - X:ACTIVE PROJECTSACTIVE SOIL PROJECTSMOT-7				- 5 -	1 0	25	67	SS-3	4.50	-	-	-	- -	. _	-	-	9	A-4a (V)	-	× LV 7 7 L 7 7 X 7
SIMO				- 6 -	4										-					- <i>1 L</i> V <i>1</i>
L'OIL					3	8	89	SS-4	2.25	-	-	-	- -	. _	-	-	12	A-4a (V)	-	L 1 <l< td=""></l<>
			937.6	-EOB	4													,		5 LV 5
SO																				
¥ Z																				
ACT																				
TSV																				
NEC																				
0 NC																				
VE P																				
FO																				
× ×																				
- 06																				
15:																				
4/23																				
- 4/1																				
10 ³																				
0.10																				
ă T																				
ō '																				
11																				
5.5 X																				
(8) (8)																				
ATE																				
01E																				
V/ S																				
00 /																				
00																				
0 Q																				
IDAF																				
STANDARD ODOT LOG W/																				
	JNDWATER NOT ENCOUNT	וופת זאומ או איני			י יופח		SSTAL													
	T METHODS, MATERIALS, (IGS											
	THE THODO, WATERIALO, C	GOMMITTEO. ILAU					- 50													

PROJEC	T:	MOT-725-14.41	DRILLING FIRM					L RIG:		ME 45								+52, 22		PLORA B-019-	TION ID
	09610	SUBGRADE	SAMPLING FIRM					MER:										EOB:			PAGE
G PID: <u>1</u> ₩ START:			DRILLING METH		3.25" HSA SPT				ON DATE: ATIO (%):		24/22 72.6	<u> </u>	LAT /						<u>7.5 ft.</u> 4.230610		1 OF 1
4 01/1(1) -	212012	MATERIAL DESCRIPTION		ELEV.		SPT/			SAMPLE	_					_		RBER		T	L	
725-		AND NOTES	v	1000.3	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)		cs		si si					ODOT CLASS (GI)	SO4 ppm	BACK FILL
2 12.0" A	SPHALT	AND 7.0" BASE (DRILLER	s 🛛 🕅	\times	_	_		()		()											
	IPTION)		×	998.7	- 1 -	-															$-\frac{1}{2}L^{\vee}$
		, BROWNISH GRAY, GRAV	/EL WITH	997.3	- 2 -	6	22	72	SS-1		21	21	24	24	10			9	A 2 4 (0)	67	L 7< L
0		, TRACE CLAY, DAMP		997.3	- 3 -	11		12	33-1	-	21	21	24	24	10			9	A-2-4 (0)	07	7 LV 7
	BROWNI: GRAVEL	SH GRAY, SANDY SILT , LI ⁻	TTLE CLAY,		-	5 7	18	78	SS-2	4.50	12	16	22	34	16	18	13 5	9	A-4a (3)	_	
	GRAVEL	DAMP			- 4 -	8								•							レイトレ
2-10					_ 5 -	5	19	67	SS-3	4.50	-	-	-	-	-	-	- -	10	A-4a (V)	-	× L × 7 7 × 7
SMO					- 6 -	7												_	. ,		LV
ECT					- 7 -	6	21	78	SS-4	4.50	-	-	-	-	-	-	- -	10	A-4a (V)	-	レイイレ
				992.8	-EOB	9															5 LV 5
S																					
AC																					
CTO																					
SOLE																					
Ц																					
S A C																					
-																					
15:3																					
4/22																					
- 4/1																					
LO																					
0.10																					
ă т																					
Ō																					
,																					
8.5																					
ES																					
FAT																					
sul																					
8																					
00																					
LO																					
JAR																					
STANDARD ODOT LOG W/SULFATES (8.5 X 11) - OH DOT.GDT - 4/14/22 15:31 - X:ACTIVE PROJECTSACTIVE SOIL PROJECTSMOT-725																					
	0.000							0 0T · ·	(50												
		NDWATER NOT ENCOUNT																			
ABAND		METHODS, MATERIALS, C	JUANTITES: PL		ASPHALI PAT	<u>сп; энс</u>	VELE	D 50		65											

PROJECT: TYPE:	MOT-725-14.41 SUBGRADE	DRILLING FIRM / C SAMPLING FIRM /					L RIG: MER:	-	ME 45			STAT ALIG						12, 16' Amp C	<u></u>	PLORA B-020-0	TION ID D-21
PID: 108619		DRILLING METHOD	_	3.25" HSA				ON DATE:		24/22								EOB:			PAGE
START:2/23/2	22 END: 2/23/22	SAMPLING METHC	DD:	SPT		ENEF	RGY R	ATIO (%):		72.6		LAT		_		39.6	63784	19, - 84	.230370		1 OF 1
	MATERIAL DESCRIPTION	N	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE								ERBE			ODOT CLASS (GI)	SO4	BACK
9 5" ASPHALT	AND NOTES AND 7.5" BASE (DRILLERS		983.7		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
	•		982.3	- 1 -	-																$\overline{1} L^{V} \overline{1}$
GRAYISH BRO) Hard, Brownish Gray WN, Sandy Silt , Little T(Stone Fragments, Littli	O SOME		- 2 -	7 8 5	16	67	SS-1	4.25	35	9	14	28	14	24	15	9	12	A-4a (1)	133	7 × 1 7 × 1 7 × 1 7 × 1
CLAY, DAMP TO				- 3 - - - 4 -	4 5 7	15	72	SS-2	3.50	12	11	17	37	23	22	13	9	14	A-4a (5)	-	1 V V V V V V V V V V V V V V V V V V V
				- 5 -	5 5 9	17	67	SS-3	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	V L V V V V V V V V V V V V V V V V V V
			976.2	- 6 - - 7 -	6 9 11	24	89	SS-4	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	V V
4/22 10:01 - Y.MC																					
NOTES: GROU	JNDWATER NOT ENCOUNT																				
ABANDONMEN	T METHODS, MATERIALS, (QUANTITIES: PLAC	ED 0.5 BAG	ASPHALT PATO	CH; SHO	VELE	D SO	IL CUTTIN	GS												

PROJECT:	MOT-725-14.41	DRILLING FIRM / C	PERATOR:	NEAS / JI	_	DRIL	L RIG:	C	ME 45	в		STAT	ION /	OFFS	ET:	953+	04, 31			
TYPE:	SUBGRADE	SAMPLING FIRM /						CME A									IP D E		B-021-	
PID: 108619		DRILLING METHOD		3.25" HSA				ON DATE:		24/22	2						EOB:			
START: 3/10/2	22 END: <u>3/10/22</u>	SAMPLING METHC)D:	SPT		ENE		ATIO (%):	_	72.6			LONG				-	4.230209		1 OF 1
	MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE				ATION	<u>`</u>		TERE			ODOT	SO4	BACK
	AND NOTES		958.6		RQD	• 60	(%)	ID	(tsf)	GR	CS	FS	SI C	L LL	PL	PI	WC	CLASS (GI)	ppm	FILL
	AND 6.0" BASE (DRILLER	s 💥			_															
DESCRIPTION)			957.0	- 1 -																$= \frac{1}{7} L^{V}$
	, SANDY SILT, SOME CLAY	', TRACE		- 2 -	12 15	40	56	SS-1	4.50	9	10	17	38 2	6 23	3 14	9	9	A-4a (6)	40	1 > 1 -
GRAVEL, DAMF			955.6	- 3 -	18		50	33-1	4.50	9	10	17	30 2	0 2	14	9	9	A-4a (0)	40	JLV.
	, SILT AND CLAY, SOME SA	AND,		- 3 -	5	33	44	SS-2	4.50	10	12	18	36 2	4 24	13	11	10	A-6a (5)		$\neg \gamma > \Gamma$ $\neg L^{\vee}$
	LE GRAVEL, DAMP			- 4 -	12 15		44	33-2	4.50		12	10	30 2	4 24	13	''	10	A-0a (5)	-	12
				- 5 -	9	35	61	SS-3	1 50		_						10	A 60 (1)		JLV.
					16 13		01	33-3	4.50	-	-	-	- '	- -	-	-	12	A-6a (V)	-	1>1
				6 -	7		00	00.4	4 50									A 0 - () ()		$-\frac{1}{7}L^{V}$
			951.1	- 7 -	8	24	22	SS-4	4.50	-	-	-	- '	· -	-	-	11	A-6a (V)	-	JLV.
			•	-EOB														•		
	JNDWATER NOT ENCOUNT																			
	T METHODS, MATERIALS, (QUANTITIES: PLAC	ED 0.5 BAG	ASPHALT PATC	CH: SHO	VELE	D SO	IL CUTTIN	IGS											

PID: 108619 SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 1/24/22 ELEVATION: 953.3 (M	<u>9.640962, ВЕRG</u> РІ м 9 19 1 7 15 1		7 7 (GI) ppr	
START: 2/24/22 EAMPLING METHOD: SPT ENERGY RATIO (%): T2.6 LAT / LONG: 39 MATERIAL DESCRIPTION AND NOTES ELEV. 953.3 DEPTHS SPT/ RQD N ₆₀ REC (%) SAMPLE ID HP GRADATION (%): ATTERE (%) 13.0" ASPHALT AND 7.0" BASE (DRILLERS DESCRIPTION) 951.6 951.6 1 -<	<u>9.640962, ВЕRG</u> РІ м 9 19 1 7 15 1	84.230697 WC CLASS (18 A-6b (1	r SO (GI) ppr	1 OF 1
MATERIAL DESCRIPTION AND NOTES ELEV. 953.3 DEPTHS SPT/ RQD Ne0 REC (%) SAMPLE ID HP (tsf) GRADATION (%) ATTERE ATTERE GRADATION (%) 13.0" ASPHALT AND 7.0" BASE (DRILLERS DESCRIPTION) 951.6 951.6 951.6 1 -	BERG PI W 19 19 1 7 15 1	ODOT CLASS (18 A-6b (1	r so (GI) ppr	I BAC m FILL
AND NOTES 953.3 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL 13.0" ASPHALT AND 7.0" BASE (DRILLERS DESCRIPTION) 951.6 951.6 951.6 1	. PI W	NC CLASS (18 A-6b (1	(GI) ppr	m FILL
AND NOTES 953.3 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL 13.0" ASPHALT AND 7.0" BASE (DRILLERS DESCRIPTION) 951.6 951.6 951.6 1	. PI W	NC CLASS (18 A-6b (1	(GI) ppr	m FILL
13.0" ASPHALT AND 7.0" BASE (DRILLERS DESCRIPTION)HARD, GRAY, SILTY CLAY, LITTLE SAND, TRACE GRAVEL, DAMP951.6VERY STIFF TO HARD, GRAY, SILT AND CLAY, SOME SAND, TRACE GRAVEL, MOIST950.3 4 947.3 4 5 4 947.3947.3MEDIUM DENSE, GRAY, GRAVEL AND SILT, TRACE CLAY,947.3MEDIUM DENSE, GRAY, GRAVEL AND SILT, TRACE CLAY,947.3 7 6 6 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7	7 15 1		12) 0	<. v
DESCRIPTION) 951.6 $GRAYEL, DAMP$ 951.6 $GRAYEL, DAMP$ 951.6 950.3 951.6 950.3 $1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	7 15 1		12) 0	
HARD, GRAY, SILTY CLAY, LITTLE SAND, TRACE GRAVEL, DAMP951.6 950.3951.6 950.31350SS-14.50361347313819VERY STIFF TO HARD, GRAY, SILT AND CLAY, SOME SAND, TRACE GRAVEL, MOIST947.341144SS-24.259111342253217947.3947.3947.3947.3947.3551267SS-33.75<	7 15 1		12) 0	< , v
HARD, GRAY, SILTY CLAY, LITTLE SAND, TRACE 950.3 GRAVEL, DAMP 950.3 VERY STIFF TO HARD, GRAY, SILT AND CLAY, SOME $3 - 4 - 5 - 4 - 5 - 5 - 5 - 12 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5$	7 15 1		12) 0	71
GRAVEL, DAMP 950.3 VERY STIFF TO HARD, GRAY, SILT AND CLAY, SOME SAND, TRACE GRAVEL, MOIST 947.3 MEDIUM DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY,	7 15 1		,	
VERY STIFF TO HARD, GRAY, SILT AND CLAY, SOME SAND, TRACE GRAVEL, MOIST -4 4 5 11 44 $8S-2$ 4.25 9 11 13 42 25 32 17 947.3 947.3 947.3 -5 5 12 67 $SS-3$ 3.75 $ -$ <		18 4-62 () <i>7 L</i> V 1 > r
947.3 MEDIUM DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY,			8) -	· JLV
947.3 MEDIUM DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY, 045.8 947.3 12 07 35-3 5.73	- 1		,	7<1
947.3 MEDIUM DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY, 045.8 947.3 12 07 35-3 5.73	-			5LV
MEDIUM DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY, 045.8		18 A-6a (v) -	1<1
FRAGMENTS WITH SAND AND SILT, TRACE CLAY, Image: gray bit is g				
	- 1	11 A-2-4 ((V) -	
				<u></u>
IOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE. DRILLED AS STAKED.				

PROJECT:	MOT-725-14.41	DRILLING FIRM / C					L RIG:		ME 45					OFFSE					PLORA B-023-	
	SUBGRADE	SAMPLING FIRM /					MER:							IT: P						PAGE
PID: <u>108619</u>		DRILLING METHOD		3.25" HSA				ON DATE:	-	24/22								7.5 ft.		1 OF 1
START: 2/24/2		SAMPLING METHC		SPT				ATIO (%):	_	72.6		LAT /					-	.231336		
	MATERIAL DESCRIPTION	N	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE							_	BERG	-	ODOT CLASS (GI)	SO4 ppm	BACK FILL
	AND NOTES		947.1		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL LL	PL	PI	WC	OLAGO (GI)	ppin	
DESCRIPTION)	AND 6.0" BASE (DRILLER	s 🕅		- 1 -																
,			945.5		10										_					- 7 LV -
MEDIUM DENSE	BROWN, GRAVEL WITH	SAND AND		- 2 -	12 8	16	61	SS-1	-	25	30	17	20	8 NF	NP	NP	23	A-2-4 (0)	60	J>L JLV
SILT, TRACE CL			944.1	- 3 -	5										_	-		,		- 1 ⁻ L*
HARD, BROWNI	SH GRAY, SANDY SILT , LI ^T LITTLE TO SOME CLAY, D				5 8	21	44	SS-2	4.50	22	10	15	32 2	21 24	14	10	11	A-4a (4)	-	JLV.
	EITTEE TO GOME OEAT, D	TTLE TO DAMP		- 4 -	9										_			. ,		1>1.
				- 5 -	6	23	50	SS-3	4.25	-	-	-	-	- -	-	-	11	A-4a (V)	-	7 LV .
				- 6 -	11										_			. ,		$-\frac{1}{7}L^{V}$
					9	28	56	SS-4	4.50	-	-	-	-	- -	-	-	10	A-4a (V)	-	1>1
			939.6	-EOB	14													()		JLV.
	NDWATER NOT ENCOUNT																			
	METHODS, MATERIALS, C	QUANTITIES: PLAC	ED 0.5 BAG	ASPHALT PATC	CH; SHC	VELE	D SO	IL CUTTIN	GS											

TYPE: SUBGI	725-14.41	DRILLING FI			-			l rig: Mer:		ME 45			STAT				912 P. RAI				EXPLOR B-02	4-0-21
TYPE: <u>SUBGI</u> PID: <u>108619</u> SFN:		SAMPLING F			3.25" HSA				ON DATE:		24/22									<u>=51</u> L 7.5		PAG
			-							-								_				1 OF
START: <u>2/24/22</u> ENI		SAMPLING N			SPT		ENE		ATIO (%):		2.6		LAT /						I, -84.	.231661		
	RIAL DESCRIPTION	V		LEV.	DEPTHS	SPT/	N ₆₀		SAMPLE								RBER			ODOT CLASS ((GI) ppr	
	AND NOTES			941.2		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL I	.L	PL P		WC	CLASS (Gi) ppi	XXX
13.0" ASPHALT AND 6.0	" BASE (DRILLERS	5				-																
DESCRIPTION)				39.6	- 1 -																	$-\frac{1}{1}$
HARD, BROWNISH GRAY	Y, SILT AND CLAY	, SOME			- 2 -	4	15	56	SS-1	4.05	25		40	~	40	1 ·	47 4		10	A C= //	~ 47	1
GRAVEL, SOME SAND, E	DAMP			38.2		7	15	90	33-1	4.25	35	11	12	26	16 3		17 14	+	13	A-6a (2	2) 17	1
MEDIUM DENSE, BROW	NISH GRAY, GRAV	/EL WITH			- 3 -	6								~ ~					10			1:
SAND, SILT, AND CLAY,	DAMP TO MOIST		<u>ولک</u>		- 4 -	6	16	67	SS-2	-	47	10	11	20	12 2	26 ⁻	14 12	2	13	A-2-6 (0) -	× 7 7
					- 5 -	7																- 1 1
					- 5	8	21	56	SS-3	-	-	-	-	-	-	-	- -		15	A-2-6 (V) -	12
					- 6 -	9 7																
					- 7 -	7	18	33	SS-4	-	-	-	-	-	-	-	- -		14	A-2-6 (V) -	1:
				933.7	-EOB	8															,	<

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

APPENDIX C

PAVEMENT CORES

Core Photo: C-001-0-21

	Co	ore Informati	on			
Cor	Core Diameter (in): 4.00					
Core '	Fotal Length	(in):	11	.25		
Layers	Core Com	position & Th	ickness (in)	Remarks/ Condition		
	Asphalt	Concrete	Brick	Condition		
1	1.75			Good		
2	9.50			Good		
3						
4						
Rebar Encountered		N	/A			

Latitude: 39.637589 Longitude: -84.232618 Elevation: 983.6

	Roadway Project	NEAS Project No.:	21-0072
		Date:	3/14/2022
	MOT-725-14.41	Taken By:	LR
National Engineering & Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A

Core Photo: C-002-0-21

	Core Information						
Core	Core Diameter (in):4.00						
Core 7	Fotal Length	(in):	12	.00			
Layers	Core Composition & Thickness (in)						
	Asphalt	Concrete	Brick				
1	12.00			Good			
2							
3							
4							
Rebar Encountered		N	/A				

National Engineering

Latitude:	39.641887 Lo	ongitude:	-84.233234
Elevation:	945.1		

	Roadway Project	NEAS Project No.:	21-0072	
		Date:	3/14/2022	
un 8 Ausbiltentural Comission Inc.	MOT-725-14.41	Taken By:	LR	
ng & Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A	

Core Photo: C-003-0-21

	Core Information						
Core	Core Diameter (in): 4.00						
Core 7	Fotal Length	(in):	10	.00			
Layers	Core Com	position & Thi	ckness (in)	Remarks/ Condition			
	Asphalt	Concrete	Brick				
1		10.00		Good			
2							
3							
4							
Rebar Encountered	3/8" di	ameter at dept	hs of 6.25" ar	nd 7.25"			

National Engineer

Latitude:	39.637849 Longitude:	-84.230370
Elevation:	983.7	

	Roadway Project	NEAS Project No.:	21-0072	
		Date:	3/14/2022	
ering & Architectural Services Inc.	MOT-725-14.41	Taken By:	LR	
ering a Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A	

Core Photo: C-004-0-21

	Core Information						
Core	Core Diameter (in): 4.00						
Core 7	Fotal Length	(in):	13	.25			
Layers	Core Composition & Thickness (in)						
	Asphalt	Concrete	Brick				
1	3.50			Good			
2	9.75			Good			
3							
4							
Rebar Encountered	N/A						

National Engineering

Latitude: 39.640962 Longitude: -84.230697 Elevation: 953.3

	Roadway Project	NEAS Project No.:	21-0072	
		Date:	3/14/2022	
a & Ausbille shared Services Inc.	MOT-725-14.41	Taken By:	LR	
ng & Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A	

Core Photo: C-005-0-21

	Core Information					
Core Diameter (in): 4.00						
Core 7	Fotal Length	(in):	14	.00		
Layers	Core Com	position & Thi	ckness (in)	Remarks/ Condition		
	Asphalt	Concrete	Brick	001010101		
1	1.50			Good		
2	7.00			Good		
3	5.50			Good		
4						
Rebar Encountered	N/A					

Latitude: 39.64007 Longitude: -84.234692 Elevation: 960.2

	Roadway Project	NEAS Project No.:	21-0072
		Date:	3/14/2022
National Engineering & Architectural Services Inc.	MOT-725-14.41	Taken By:	LR
	ODOT PID# 108619	Scale:	N/A

Core Photo: C-006-0-21

Core Information				
Core	Core Diameter (in):		4.00	
Core Total Length (in):		13	3.00	
Layers	Core Composition & Thickness (in)			Remarks/ Condition
	Asphalt	Concrete	Brick	
1	6.75			Good
2	6.25			Good
3				
4				
Rebar Encountered		N	/A	

National Engineering

Latitude: 39.639840 Longitude: -84.233330 Elevation: 953.3

	Roadway Project	NEAS Project No.:	21-0072	
		Date:	3/14/2022	
n 8. Architectural Services Inc.	MOT-725-14.41	Taken By:	LR	
g & Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A	

Core Photo: C-007-0-21

Core Information				
Cor	Core Diameter (in):		4.	.00
Core Total Length (in):		13	3.50	
Layers	Core Composition & Thickness (in)		Remarks/ Condition	
	Asphalt	Concrete	Brick	
1	4.50			Good
2	3.50			Good
3	5.50			Good
4				
Rebar Encountered		N	/A	

National Engineerin

Latitude:	39.639869 Longitude:	-84.232486
Elevation:	951.6	

	Roadway Project	NEAS Project No.:	21-0072	
		Date:	3/14/2022	_
an & Arabitratural Carriers Inc.	MOT-725-14.41	Taken By:	LR	_
ng & Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A	
				_

Core Photo: C-008-0-21

Core Information				
Core	Core Diameter (in):		4.00	
Core Total Length (in):		12.50		
Layers	Core Composition & Thickness (in)		Remarks/ Condition	
	Asphalt	Concrete	Brick	
1	12.50			Good
2				
3				
4				
Rebar Encountered		N	/A	

National Engineering

Latitude: 39.638563 Longitude: -84.227486 Elevation: 990.1

	Roadway Project	NEAS Project No.:	21-0072	
		Date:	3/14/2022	
& Architectural Services Inc.	MOT-725-14.41	Taken By:	LR	
a Architectural Services Inc.	ODOT PID# 108619	Scale:	N/A	
				-

APPENDIX D

SULFATE TESTING RESULTS

DETERMINING SULFATE CONTENT IN SOILS SUPPLEMENT 1122

Project C-R-S:	MOT-725-14.41
PID No:	108619
Report Date:	4/13/2022
Consultant:	NEAS Inc.
Technician:	L. Rosenbeck

						Soaking		Sulfate					
Boring ID & Sample	Station	Offset	Latitude & Long		Elevation	Time		1		2		3	Content
#			Plane Coc	ordinates		(hr)	Dilution	Reading	Dilution	Reading	Dilution	Reading	(ppm)
B-001-0-21 SS-1	751+28	1' R	39.640234	-84.235747	971.5	18.32	20	2	20	1	20	2	33
B-002-0-21 SS-1	754+31	45' R	39.640073	-84.234692	961.2	21.1	20	27	20	25	20	29	540
B-004-0-21 SS-1	617+97	11' R	39.639599	-84.233602	954.0	18.3	20	4	20	4	20	5	87
B-005-0-21 SS-1	760+55	48' L	39.639869	-84.232486	951.6	21.1	20	3	20	3	20	3	60
B-006-0-21 SS-1	761+34	42' R	39.639566	-84.232321	952.5	21.1	20	2	20	2	20	2	40
B-011-0-21 SS-1	772+20	50' L	39.638866	-84.228560	980.8	18.32	20	3	20	4	20	4	73
B-012-0-21 SS-1	775+42	41' L	39.638563	-84.227486	990.1	18.25	20	4	20	5	20	2	73
B-013-0-21 SS-1	778+84	30' L	39.638249	-84.226344	995.4	18.3	20	2	20	4	20	2	53
B-014-0-21 SS-1	605+63	22' R	39.636586	-84.231793	1000.0	20.6	20	4	20	2	20	3	60
B-015-0-21 SS-1	609+94	5'L	39.637589	-84.232618	983.6	18.3	20	3	20	3	20	3	60
B-016-0-21 SS-1	613+49	16' R	39.638467	-84.233175	970.8	18.3	20	2	20	2	20	2	40
B-017-0-21 SS-1	703+15	28' R	39.640805	-84.233286	952.2	20.8	20	3	20	3	20	2	53
B-018-0-21 SS-1	707+07	16' L	39.641887	-84.233234	945.1	20.7	20	17	20	17	20	17	340
B-019-0-21 SS-1	806+52	22' L	39.636790	-84.230610	1000.3	20.5	20	3	20	4	20	3	67
B-020-0-21 SS-1	810+42	16' R	39.637849	-84.230370	983.7	20.4	20	7	20	6	20	7	133
B-021-0-21 SS-1	953+04	31'L	39.639969	-84.230209	958.6	20.4	20	2	20	2	20	2	40
B-022-0-21 SS-1	907+74	6' R	39.640962	-84.230697	953.3	20.4	20	0	20	0	20	0	0
B-023-0-21 SS-1	910+88	6' R	39.641666	-84.231336	947.1	20.4	20	2	20	4	20	3	60
B-024-0-21 SS-1	914+04	7' R	39.642484	-84.231661	941.2	20.4	20	7	20	10	20	9	173

APPENDIX E

GB1 SPREADSHEETS

ENTIRE PROJECT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks

NEAS, Inc.

Prepared By: Zhao Mankoci Date prepared: Thursday, April 28, 2022

> Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

24

2/11/20

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-21	EX. SR-725	751+28	1	Rt	CME 45B	73	971.5	970.0	1.5 C
2	B-002-0-21	EX. SR-725	754+31	45	Rt	CME 45B	73	961.2	960.1	1.1 C
3	B-003-0-21	EX. SR-725	755+83	39	Rt	CME 45B	73	958.1	956.4	1.7 C
4	B-004-0-21	PROP. Ramp A East	617+97	11	Rt	CME 45B	73	954.0	953.0	1.0 C
5	B-005-0-21	EX. SR-725	760+55	48	Lt	CME 45B	73	951.6	949.1	2.5 C
6	B-006-0-21	EX. SR-725	761+34	42	Rt	CME 45B	73	952.5	949.1	3.4 C
7	B-007-0-21	EX. SR-725	762+71	39	Rt	CME 45B	73	953.7	950.3	3.4 C
8	B-008-0-21	EX. SR-725	764+84	40	Rt	CME 45B	73	958.1	954.7	3.4 C
9	B-009-0-21	EX. SR-725	766+26	40	Rt	CME 45B	73	961.7	959.4	2.3 C
10	B-010-0-21	EX. SR-725	769+93	55	Rt	CME 45B	73	974.2	972.1	2.1 C
11	B-011-0-21	EX. SR-725	772+20	50	Lt	CME 45B	73	980.8	979.0	1.8 C
12	B-012-0-21	EX. SR-725	775+42	41	Lt	CME 45B	73	990.1	988.6	1.5 C
13	B-013-0-21	EX. SR-725	778+84	30	Lt	CME 45B	73	995.4	993.9	1.5 C
14	B-014-0-21	PROP. Ramp A East	605+63	22	Rt	CME 45B	73	1000.0	998.5	1.5 C
15	B-015-0-21	PROP. Ramp A East	609+94	5	Lt	CME 45B	73	983.6	982.1	1.5 C
16	B-016-0-21	PROP. Ramp A East	613+49	16	Rt	CME 45B	73	970.8	968.0	2.8 C
17	B-017-0-21	PROP. Ramp B East	703+15	28	Rt	CME 45B	73	952.2	949.6	2.6 C
18	B-018-0-21	PROP. Ramp B East	707+07	16	Lt	CME 45B	73	945.1	943.6	1.5 C
19	B-019-0-21	PROP. Ramp C West	806+52	22	Lt	CME 45B	73	1000.3	998.8	1.5 C
20	B-020-0-21	PROP. Ramp C West	810+42	16	Rt	CME 45B	73	983.7	981.3	2.4 C
21	B-021-0-21	PROP. Ramp D East	953+04	31	Lt	CME 45B	73	958.6	959.5	0.9 F
22	B-022-0-21	PROP. Ramp D West	907+74	6	Rt	CME 45B	73	953.3	950.8	2.5 C
23	B-023-0-21	PROP. Ramp D West	910+88	6	Rt	CME 45B	73	947.1	945.6	1.5 C
24	B-024-0-21	PROP. Ramp D West	914+04	7	Rt	CME 45B	73	941.2	939.7	1.5 C

#	Boring	Sample		nple pth	Subg De	rade pth	Stan Penet		НР		Ρ	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	13			20	13	7	31	13	44	13	10	A-4a	2	33		N ₆₀ & Mc		12''	
	001-0	SS-2	3.0	4.5	1.5	3.0	17		2	21	14	7	28	12	40	12	10	A-4a	1						
	21	SS-3A	4.5	5.0	3.0	3.5	11		1.75							12	10	A-4a	8			N ₆₀			
		SS-3B	5.0	6.0	3.5	4.5	11	11								7	6	A-1-b	0						
2	В	SS-1	2.5	4.0	1.4	2.9	10		4.5	21	14	7	37	21	58	10	10	A-4a	5	540		N ₆₀			
	002-0	SS-2	5.0	6.5	3.9	5.4	8		4.25							11	10	A-4a	8						
	21	SS-3	7.5	9.0	6.4	7.9	17		4.5							12	10	A-4a							
		SS-4	10.0	11.5	8.9	10.4	22	8	4.25							12	10	A-4a							
3	В	SS-1	2.5	4.0	0.8	2.3	12									10	10	A-2-4	0						
	003-0	SS-2	5.0	6.5	3.3	4.8	8		3	20	13	7	39	19	58	12	10	A-4a	5						
	21	SS-3	7.5	9.0	5.8	7.3	15									15	10	A-2-4							
		SS-4	10.0	11.5	8.3	9.8	17	8	2	21	14	7	36	22	58	13	10	A-4a							
4	В	SS-1	1.0	2.5	0.0	1.5	24		4.5	21	13	8	33	21	54	8	10	A-4a	4	87					
	004-0	SS-2	3.5	5.0	2.5	4.0	16		4.5	23	13	10	38	25	63	10	10	A-4a	6						
	21	SS-3	6.0	7.5	5.0	6.5	11		4.5							11	10	A-4a							
		SS-4	8.5	10.0	7.5	9.0	12	11	4.5							10	10	A-4a							
5	В	SS-1	2.5	4.0	0.0	1.5	5			NP	NP	NP	11	4	15	11	6	A-1-b	0	60					
	005-0	SS-2	5.0	6.5	2.5	4.0	2									24	6	A-1-b	0						
	21	SS-3	7.5	9.0	5.0	6.5	17		1	28	15	13	35	29	64	20	14	A-6a							
		SS-4	10.0	11.5	7.5	9.0	23	2	2.25							13	14	A-6a							
6	В	SS-1	2.5	4.0	-0.9	0.6	21			NP	NP	NP	15	4	19	6	6	A-1-b	0	40					
	006-0	SS-2	5.0	6.5	1.6	3.1	42									5	6	A-1-b	0						
	21	SS-3	7.5	9.0	4.1	5.6	27		4.5	19	13	6	35	20	55	10	10	A-4a	4						
		SS-4	10.0	11.5	6.6	8.1	27	21	4.5			-				11	10	A-4a							
7	В	SS-1	2.5	4.0	-0.9	0.6	28			NP	NP	NP	18	8	26	7	10	A-2-4	0						
	007-0	SS-2	5.0	6.5	1.6	3.1	10									7	10	A-2-4	0			N ₆₀			
	21	SS-3	7.5	9.0	4.1	5.6	22		4.5	22	14	8	38	29	67	11	10	A-4a	6						
		SS-4	10.0	11.5	6.6	8.1	28	10	4.25			-			<u> </u>	15	10	A-4a							
8	В	SS-1	2.5	4.0	-0.9	0.6	15		4.5	22	14	8	35	24	59	11	10	A-4a	5						
	008-0	SS-2	5.0	6.5	1.6	3.1	6		4.5							12	10	A-4a	8			N ₆₀			
	21	SS-3	7.5		4.1	5.6	15		1.75							10	10	A-4a	8						
	~	SS-4	10.0			8.1	13	6	3	20	13	7	36	22	58	10	10	A-4a	-						
9	В	SS-1		4.0	0.2	1.7		-	4.25				35	25	60	12	14	A-6a	5						
	009-0	SS-2		6.5		4.2			4.5							11	14	A-6a	i i						
	21	SS-3		9.0	5.2	6.7	21		4.25							12	14	A-6a							
	~1	SS-4		11.5		9.2	17	18	4.25						<u> </u>	11	14	A-6a							
		55 -	10.0	11.5	,.,	5.2	-/	10	1.25						I		1 <u>1</u>	1.00	I		I				

# B 10 B 10 21 11 B 11 B 11 B 12 B 12 B 13 B 14 B 14 B 15 B 15 B 16 B	SS-1 SS-2 SS-3 SS-1 SS-2 SS-3 SS-4 SS-1 SS-3 SS-1 SS-3 SS-4 SS-1 SS-1 SS-1 SS-2 SS-3 SS-4 SS-1 SS-3 SS-4 SS-1 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-4 SS-4 SS-4 SS-4 SS-4 SS-4 SS-4	From 2.5 5.0 7.5 10.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5	To 4.0 6.5 9.0 11.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 7.5 6.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 3.0 7.5 </th <th>From 0.4 2.9 5.4 7.9 -0.3 1.2 2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 3.0 4.5 3.0 4.5 -0.5</th> <th>To 1.9 4.4 6.9 9.4 1.2 2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0</th> <th>N₆₀ 7 24 28 12 18 23 25 10 8 25 10 8 12 15 13 15 15 13</th> <th>N_{60L} 7 12 8</th> <th>(tsf) 2 4.25 4.5 4.5 4.5 4.5 4.5 4.5 2.25 2.5 3 4.5 4.25</th> <th>25 46 41</th> <th>15 14 13 13 15</th> <th>10 27 23</th> <th>% Silt 33 38 36 36 37 29 33</th> <th>% Clay 21 24 23 23 23 23 24 34 34 39</th> <th>P200 54 62 59 61 63 72</th> <th>M_c 14 12 11 9 10 10 13 24 22</th> <th>М_{орт} 10 10 10 10 10 10 10 10 18 18</th> <th>Class A-4a A-4a A-4a A-4a A-4a A-4a A-4a A-4a</th> <th>GI 4 5 5 8 8 8 5 13 13 16</th> <th>Content (ppm) 73 73 73</th> <th>Unsuitable</th> <th>Unstable N₅0 & MC</th> <th>Unsuitable</th> <th>Unstable 15"</th> <th>(Enter depth in inches)</th>	From 0.4 2.9 5.4 7.9 -0.3 1.2 2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 3.0 4.5 3.0 4.5 -0.5	To 1.9 4.4 6.9 9.4 1.2 2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0	N ₆₀ 7 24 28 12 18 23 25 10 8 25 10 8 12 15 13 15 15 13	N _{60L} 7 12 8	(tsf) 2 4.25 4.5 4.5 4.5 4.5 4.5 4.5 2.25 2.5 3 4.5 4.25	25 46 41	15 14 13 13 15	10 27 23	% Silt 33 38 36 36 37 29 33	% Clay 21 24 23 23 23 23 24 34 34 39	P200 54 62 59 61 63 72	M _c 14 12 11 9 10 10 13 24 22	М _{орт} 10 10 10 10 10 10 10 10 18 18	Class A-4a A-4a A-4a A-4a A-4a A-4a A-4a A-4a	GI 4 5 5 8 8 8 5 13 13 16	Content (ppm) 73 73 73	Unsuitable	Unstable N₅0 & MC	Unsuitable	Unstable 15"	(Enter depth in inches)
010-0 21 11 B 011-0 21 12 B 012-0 21 13 B 013-0 21 14 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-3 SS-4 SS-1 SS-3 SS-4 SS-1 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-1 SS-3 SS-4 SS-3 SS-4 SS-3 SS-3 SS-3 SS-3 SS-3	5.0 7.5 10.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 4.5	6.5 9.0 11.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 6.0 7.5	2.9 5.4 7.9 -0.3 1.2 2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 3.0 4.5	4.4 6.9 9.4 1.2 2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5	24 24 28 12 18 23 25 10 8 12 15 13 15 15	12	4.25 4.5 4.5 4.5 4.5 4.5 1.25 2.25 2.5 3 4.5	21 20 25 46 41	14 13 15 19 18	7 7 10 27 23	38 36 37 29	24 23 24 24 34	62 59 61 63	12 12 11 9 10 10 13 24 22	10 10 10 10 10 10 10 18	A-4a A-4a A-4a A-4a A-4a A-4a A-4a	5 5 8 8 5 13						
21 11 B 011-0 21 12 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-3 SS-4 SS-1 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-3 SS-3 SS-3 SS-3 SS-3	7.5 10.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0	9.0 11.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 4.5 3.0 4.5 3.0 4.5 5.0 4.5	5.4 7.9 -0.3 1.2 2.7 4.2 0.0 1.5 3.0 1.5 3.0 1.5 3.0 4.5 3.0 4.5	6.9 9.4 1.2 2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0	24 28 12 18 23 25 10 8 12 15 13 15 15	12	4.5 4.5 4.5 4.5 4.5 1.25 2.25 2.5 3 4.5	20 25 46 41	13 15 19 18	7 7 10 27 23	36 37 29	23 24 34	59 61 63	12 11 9 10 10 13 24 22	10 10 10 10 10 10 18	A-4a A-4a A-4a A-4a A-4a A-4a A-7-6	5 8 8 5 13			HP & Mc		12"	
11 B 11 B 011-0 21 12 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-4 SS-1 SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-3 SS-4 SS-3 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-1 SS-3 SS-4 SS-3 SS-3 SS-3 SS-3 SS-3	10.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 4.5	11.5 3.0 4.5 6.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 7.5 6.0 7.5 6.0 7.5 7.5	7.9 -0.3 1.2 2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 3.0 4.5 3.0 4.5	9.4 1.2 2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5 3.0 4.5	28 12 18 23 25 10 8 12 15 13 15 15	12	4.5 4.5 4.5 4.5 1.25 2.25 2.5 3 4.5	25 46 41	15 19 18	10 27 23	37 29	24 34	61 63	11 9 10 13 24 22	10 10 10 10 10 18	A-4a A-4a A-4a A-4a A-4a A-7-6	8 8 5 13			HP & Mc		12"	
011-0 21 12 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-1 SS-2 SS-3 SS-4 SS-1 SS-3 SS-4 SS-1 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-3 SS-3 SS-3 SS-3	1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0	3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5 6.0 7.5	-0.3 1.2 2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 3.0 4.5	1.2 2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0	12 18 23 25 10 8 12 15 13 15 15	12	4.5 4.5 4.5 1.25 2.25 2.5 3 4.5	25 46 41	15 19 18	10 27 23	37 29	24 34	61 63	9 10 10 13 24 22	10 10 10 10 18	A-4a A-4a A-4a A-4a A-7-6	8 8 5 13			HP & Mc		12"	
011-0 21 12 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-3 SS-4 SS-1 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-3 SS-3	3.0 4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0	4.5 6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5	1.2 2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 3.0 4.5	2.7 4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5	18 23 25 10 8 12 15 13 15 15		4.5 4.5 1.25 2.25 2.5 3 4.5	25 46 41	15 19 18	10 27 23	37 29	24 34	61 63	10 10 13 24 22	10 10 10 18	A-4a A-4a A-4a A-7-6	8 8 5 13			HP & Mc		12"	
21 12 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-1 SS-4 SS-1 SS-3 SS-4 SS-3 SS-3 SS-3 SS-3 SS-3 SS-3 SS-3	4.5 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0	6.0 7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5	2.7 4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5	4.2 5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5	23 25 10 8 12 15 13 15 15		4.5 4.5 1.25 2.25 2.5 3 4.5	46	19 18	27 23	29	34	63	10 13 24 22	10 10 18	A-4a A-4a A-7-6	8 5 13	73		HP & Mc		12"	
12 B 12 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21 21 21	SS-4 SS-1 SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-1 SS-3 SS-4 SS-3 SS-4 SS-3 SS-3 SS-3 SS-4	 6.0 1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0 	7.5 3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5	4.2 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 0.0 4.5 3.0 4.5	5.7 1.5 3.0 4.5 6.0 1.5 3.0 4.5	25 10 8 12 15 13 15 15		4.5 1.25 2.25 2.5 3 4.5	46	19 18	27 23	29	34	63	13 24 22	10 18	A-4a A-7-6	5 13	73		HP & Mc		12"	
13 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-1 SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4 SS-3 SS-4	1.5 3.0 4.5 6.0 1.5 3.0 4.5 6.0	3.0 4.5 6.0 7.5 3.0 4.5 6.0 7.5	0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5	1.5 3.0 4.5 6.0 1.5 3.0 4.5	10 8 12 15 13 15 15		1.25 2.25 2.5 3 4.5	46	19 18	27 23	29	34	63	24 22	18	A-7-6	13	73		HP & Mc		12"	
13 B 012-0 21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-3 SS-3 SS-4	3.0 4.5 6.0 1.5 3.0 4.5 6.0	 4.5 6.0 7.5 3.0 4.5 6.0 7.5 	1.5 3.0 4.5 0.0 1.5 3.0 4.5	3.0 4.5 6.0 1.5 3.0 4.5	8 12 15 13 15 15	8	2.25 2.5 3 4.5	41	18	23				22				73		HP & Mc		12"	
21 13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-3 SS-4 SS-1 SS-2 SS-3 SS-4	4.5 6.0 1.5 3.0 4.5 6.0	6.0 7.5 3.0 4.5 6.0 7.5	3.0 4.5 0.0 1.5 3.0 4.5	4.5 6.0 1.5 3.0 4.5	12 15 13 15 15	8	2.5 3 4.5				33	39	72		18	A-7-6	16						
13 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-4 SS-1 SS-2 SS-3 SS-4	6.0 1.5 3.0 4.5 6.0	7.5 3.0 4.5 6.0 7.5	4.5 0.0 1.5 3.0 4.5	6.0 1.5 3.0 4.5	15 13 15 15	8	3 4.5				33	39	72				10			N ₆₀ & Mc			
013-0 21 14 B 014-0 21 15 B 015-0 21	SS-1 SS-2 SS-3 SS-4	1.5 3.0 4.5 6.0	3.0 4.5 6.0 7.5	0.0 1.5 3.0 4.5	1.5 3.0 4.5	13 15 15	8	4.5	20	13					22	18	A-7-6	13						
14 B 013-0 21 14 B 014-0 21 15 B 015-0 21	SS-2 SS-3 SS-4	3.0 4.5 6.0	4.5 6.0 7.5	1.5 3.0 4.5	3.0 4.5	15 15			20	13	1				24	18	A-7-6	16						
21 14 B 014-0 21 15 B 015-0 21	SS-3 SS-4	4.5 6.0	6.0 7.5	3.0 4.5	4.5	15		4.25			7	37	22	59	10	10	A-4a	5	53					
14 B 014-0 21 15 B 015-0 21	SS-4	6.0	7.5	4.5											13	10	A-4a	8			Мс			
014-0 21 15 B 015-0 21					6.0	10		3.25	20	13	7	37	20	57	12	10	A-4a	4						
014-0 21 15 B 015-0 21	SS-1	1.0	2.5	-05		13	13	4.5							10	10	A-4a	8						
21 15 B 015-0 21				-0.5	1.0	27			NP	NP	NP	21	11	32	7	10	A-2-4	0	60					
15 B 015-0 21	SS-2	3.5	5.0	2.0	3.5	17									10	10	A-2-4	0						
015-0 21	SS-3	6.0	7.5	4.5	6.0	19		4.5	30	17	13	38	53	91	17	14	A-6a	9						
015-0 21	SS-4	8.5	10.0	7.0	8.5	24	17								3	6	A-1-b							
21	SS-1	1.5	3.0	0.0	1.5	17									8	6	A-1-b	0	60					
	SS-2	3.0	4.5	1.5	3.0	10		3	43	21	22	34	38	72	22	18	A-7-6	13			N ₆₀ & Mc			
16 B	SS-3	4.5	6.0	3.0	4.5	18		3.5							22	18	A-7-6	16						
16 B	SS-4	6.0	7.5	4.5	6.0	24	10	4	27	16	11	50	33	83	20	14	A-6a	8						
	SS-1	2.5	4.0	-0.3	1.2	18		4.5	21	14	7	28	15	43	9	10	A-4a	2	40					
016-0	SS-2	5.0	6.5	2.2	3.7	19									10	10	A-2-4	0						
21	SS-3	7.5	9.0	4.7	6.2	15		2.5	21	13	8	37	28	65	13	10	A-4a	6						
	SS-4	10.0	11.5	7.2	8.7	12	15	2.5							12	10	A-4a							
17 В	SS-1	2.5	4.0	-0.1	1.4	19		2.5	36	17	19	33	34	67	19	16	A-6b	10	53		Mc			
017-0	SS-2	5.0	6.5	2.4	3.9	18		4.5	25	14	11	33	23	56	12	14	A-6a	5						
21	SS-3	7.5	9.0	4.9	6.4	18		4.5							11	14	A-6a	10						
	SS-4	-		7.4	8.9	16	18	4.5							21	14	A-6a							
18 B		1.5	3.0	0.0	1.5	40			21	14	7	22	12	34	6	10	A-2-4	0	340					
018-0	SS-1	3.0	4.5	1.5	3.0	30		4.5	19	12	7	33	19	52	7	10	A-4a	3						
21	SS-1 SS-2		6.0	3.0	4.5	25		4.5							9	10	A-4a	8						
		4.5		4.5	6.0	8	8	2.25							12	10	A-4a	8						

#	Boring	Sample	Sam Dej	•	Subg De	rade pth	Stan Penet		HP		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
19	В	SS-1	1.5	3.0	0.0	1.5	22			NP	NP	NP	24	10	34	9	10	A-2-4	0	67					
	019-0	SS-2	3.0	4.5	1.5	3.0	18		4.5	18	13	5	34	16	50	9	10	A-4a	3						
	21	SS-3	4.5	6.0	3.0	4.5	19		4.5							10	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	21	18	4.5							10	10	A-4a	8						
20	В	SS-1	1.5	3.0	-0.9	0.6	16		4.25	24	15	9	28	14	42	12	10	A-4a	1	133					
	020-0	SS-2	3.0	4.5	0.6	2.1	15		3.5	22	13	9	37	23	60	14	10	A-4a	5			Mc			
	21	SS-3	4.5	6.0	2.1	3.6	17		4.5							13	10	A-4a	8						
		SS-4	6.0	7.5	3.6	5.1	24	15	4.5							11	10	A-4a	8						
21	В	SS-1	1.5	3.0	2.4	3.9	40		4.5	23	14	9	38	26	64	9	10	A-4a	6	40					
	021-0	SS-2	3.0	4.5	3.9	5.4	33		4.5	24	13	11	36	24	60	10	14	A-6a	5						
	21	SS-3	4.5	6.0	5.4	6.9	35		4.5							12	14	A-6a							
		SS-4	6.0	7.5	6.9	8.4	24	30	4.5							11	14	A-6a							
22	В	SS-1	1.5	3.0	-1.0	0.5	13		4.5	38	19	19	47	31	78	18	16	A-6b	12	0				12"	
	022-0	SS-2	3.0	4.5	0.5	2.0	11		4.25	32	17	15	42	25	67	18	14	A-6a	8			N ₆₀ & Mc		12.	
	21	SS-3	4.5	6.0	2.0	3.5	12		3.75							18	14	A-6a	10			N ₆₀ & Mc			
		SS-4	6.0	7.5	3.5	5.0	13	11								11	10	A-2-4	0						
23	В	SS-1	1.5	3.0	0.0	1.5	16					NP	20	8	28	23	10	A-2-4	0	60		Mc			
	023-0	SS-2	3.0	4.5	1.5	3.0	21		4.5	24	14	10	32	21	53	11	10	A-4a	4						
	21	SS-3	4.5	6.0	3.0	4.5	23		4.25							11	10	A-4a	8						
24		SS-4	6.0	7.5	4.5	6.0	28	16	4.5	24	47		26	16	10	10	10	A-4a	8	170					
24	В	SS-1	1.5	3.0	0.0	1.5	15		4.25		17	14	26	16	42	13	14	A-6a	2	173					
	024-0	SS-2	3.0	4.5	1.5	3.0	16			26	14	12	20	12	32	13	10	A-2-6	0			Mc			
	21	SS-3	4.5	6.0	3.0	4.5	21	45								15	10	A-2-6	4						
I		SS-4	6.0	7.5	4.5	6.0	18	15								14	10	A-2-6	4						

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 24

Geotechnical Consultant:NEAS, Inc.Prepared By:Zhao MankociDate prepared:4/28/2022

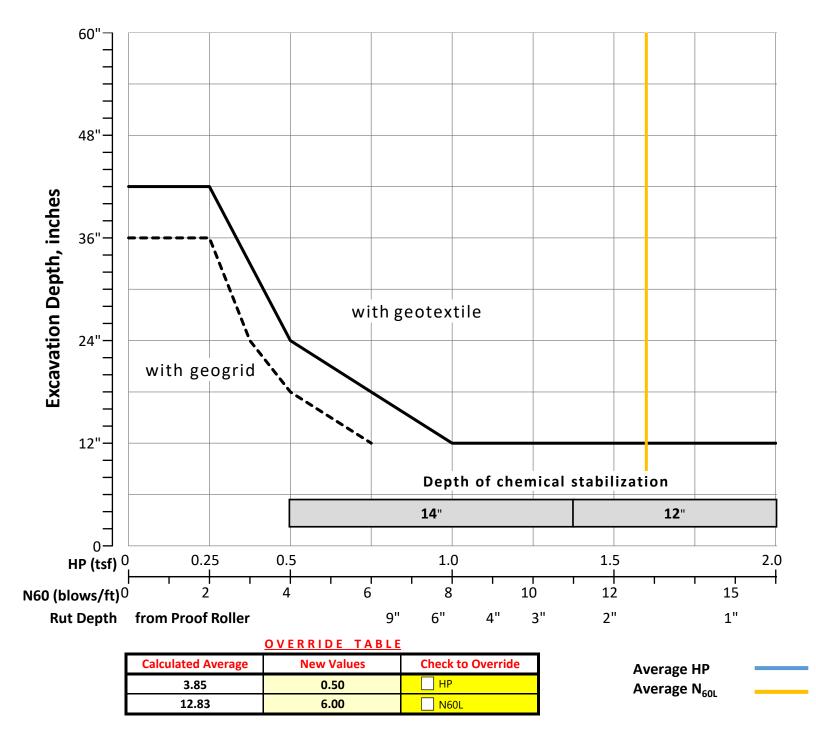
Chemical Stabilization Options									
320	Rubblize & Roll	Option							
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	12"							

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0''

Design CBR	8
---------------	---

% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	2%	HP ≤ 0.5	0%						
N ₆₀ < 12	20%	0.5 < HP ≤ 1	1%						
12 ≤ N ₆₀ < 15	11%	1 < HP ≤ 2	6%						
N ₆₀ ≥ 20	33%	HP > 2	67%						
M+	15%								
Rock	0%								
Unsuitable	0%								


Excavate and Repl at Surface	ace
Average	0"
Maximum	0"
Minimum	0"


% Proposed Subgrade Surface							
Unstable & Unsuitable	34%						
Unstable	34%						
Unsuitable	0%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	18	13	3.85	25	15	11	32	22	54	12	11	5
Maximum	42	30	4.50	46	21	27	50	53	91	24	18	16
Minimum	2	2	1.00	18	12	5	11	4	15	3	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	7	11	0	3	0	0	0	50	0	0	17	2	0	6	0	0	96
Percent	0%	0%	7%	11%	0%	3%	0%	0%	0%	52%	0%	0%	18%	2%	0%	6%	0%	0%	100%
% Rock Granular Cohesive	0%		74%									26%							100%
Surface Class Count	0	0	5	9	0	1	0	0	0	21	0	0	6	2	0	3	0	0	47
Surface Class Percent	0%	0%	11%	19%	0%	2%	0%	0%	0%	45%	0%	0%	13%	4%	0%	6%	0%	0%	100%

SR-725 East

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks - Prop. SR-725 East

NEAS, Inc.

Prepared By: Date prepared: Nizar Altarawneh Friday, November 11, 2022

Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

12

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-21	EX. SR-725	551+28	11	Lt	CME 45B	73	971.5	970.2	1.3 C
2	B-002-0-21	PROP. SR-725 East	554+31	35	Rt	CME 45B	73	961.2	961.6	0.4 F
3	B-003-0-21	PROP. SR-725 East	555+80	29	Rt	CME 45B	73	958.1	957.9	0.2 C
4	B-005-0-21	PROP. SR-725 East	560+67	0	Rt	CME 45B	73	951.6	950.6	1.0 C
5	B-006-0-21	PROP. SR-725 East	561+46	86	Rt	CME 45B	73	952.5	951.0	1.5 C
6	B-007-0-21	PROP. SR-725 East	562+83	83	Rt	CME 45B	73	953.7	952.2	1.5 C
7	B-008-0-21	PROP. SR-725 East	564+96	84	Rt	CME 45B	73	958.1	956.6	1.5 C
8	B-009-0-21	PROP. SR-725 East	566+29	104	Rt	CME 45B	73	961.7	960.2	1.5 C
9	B-010-0-21	PROP. SR-725 East	570+04	54	Rt	CME 45B	73	974.2	973.6	0.6 C
10	B-011-0-21	PROP. SR-725 East	572+46	48	Lt	CME 45B	73	980.8	980.5	0.3 C
11	B-012-0-21	EX. SR-725	775+42	41	Lt	CME 45B	73	990.1	988.6	1.5 C
12	B-013-0-21	EX. SR-725	778+84	30	Lt	CME 45B	73	995.4	993.9	1.5 C

	Boring	Sample	Sam De	•	-	grade pth	Stan Penet		НР		P	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate	Proble	m	Excavate an (Item		Recommendation
#			From		From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	Content (ppm)	Unsuitable	Unstable	Unsuitable		(Enter depth in inches)
1	В	SS-1	1.5	3.0	0.2	1.7	13			20	13	7	31	13	44	13	10	A-4a	2	33		N60 & MC		12''	
	001-0	SS-2	3.0	4.5	1.7	3.2	17		2	21	14	7	28	12	40	12	10	A-4a	1						
	21	SS-3A	4.5	5.0	3.2	3.7	11		1.75							12	10	A-4a	8						
		SS-3B	5.0	6.0	3.7	4.7	11	11								7	6	A-1-b	0						
2	В	SS-1	2.5	4.0	2.9	4.4	10		4.5	21	14	7	37	21	58	10	10	A-4a	5	540					
	002-0	SS-2	5.0	6.5	5.4	6.9	8		4.25							11	10	A-4a							
	21	SS-3	7.5	9.0	7.9	9.4	17		4.5							12	10	A-4a							
		SS-4	10.0	11.5	10.4	11.9	22	8	4.25							12	10	A-4a							
3	В	SS-1	2.5	4.0	2.3	3.8	12									10	10	A-2-4	0						
	003-0	SS-2	5.0	6.5	4.8	6.3	8		3	20	13	7	39	19	58	12	10	A-4a	5						
	21	SS-3	7.5	9.0	7.3	8.8	15									15	10	A-2-4							
		SS-4	10.0	11.5	9.8	11.3	17	8	2	21	14	7	36	22	58	13	10	A-4a							
4	В	SS-1	2.5	4.0	1.5	3.0	5			NP	NP	NP	11	4	15	11	6	A-1-b	0	60					
	005-0	SS-2	5.0	6.5	4.0	5.5	2									24	6	A-1-b	0						
	21	SS-3	7.5	9.0	6.5	8.0	17		1	28	15	13	35	29	64	20	14	A-6a							
		SS-4	10.0	11.5	9.0	10.5	23	2	2.25							13	14	A-6a							
5	В	SS-1	2.5	4.0	1.0	2.5	21			NP	NP	NP	15	4	19	6	6	A-1-b	0	40					
	006-0	SS-2	5.0	6.5	3.5	5.0	42									5	6	A-1-b	0						
	21	SS-3	7.5	9.0	6.0	7.5	27		4.5	19	13	6	35	20	55	10	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	27	21	4.5							11	10	A-4a							
6	В	SS-1	2.5	4.0	1.0	2.5	28			NP	NP	NP	18	8	26	7	10	A-2-4	0						
	007-0	SS-2	5.0	6.5	3.5	5.0	10									7	10	A-2-4	0						
	21	SS-3	7.5	9.0	6.0	7.5	22		4.5	22	14	8	38	29	67	11	10	A-4a							
		SS-4		11.5	8.5	10.0	28	10	4.25							15	10	A-4a							
7	В	SS-1	2.5	4.0	1.0	2.5	15		4.5	22	14	8	35	24	59	11	10	A-4a	5						
	008-0	SS-2	5.0	6.5	3.5	5.0	6		4.5							12	10	A-4a	8						
	21	SS-3	7.5	9.0	6.0	7.5	15		1.75							10	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	18	6	3	20	13	7	36	22	58	12	10	A-4a							
8	В	SS-1	2.5	4.0	1.0	2.5	18		4.25	25	14	11	35	25	60	12	14	A-6a	5						
	009-0	SS-2	5.0	6.5	3.5	5.0	25		4.5							11	14	A-6a	10						
	21	SS-3	7.5		6.0	7.5	21		4.25							12	14	A-6a							
		SS-4			8.5	10.0	17	18	4.25							11	14	A-6a							
9	В	SS-1	2.5	4.0	1.9	3.4	7		2	23	15	8	33	21	54	14	10	A-4a	4			N ₆₀ & Mc			
	010-0	SS-2	5.0	6.5	4.4	5.9	24		4.25	21	14	7	38	24	62	12	10	A-4a	5						
	21	SS-3	7.5	9.0	6.9	8.4	24		4.5							12	10	A-4a							
		SS-4		11.5	9.4	10.9	28	7	4.5							11	10	A-4a							
B																					<u>1</u>				

V. 14.6

2/11/2022

#	Boring	Sample	Sam Dej	-	-	grade pth		dard tration	НР		Ρ	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	•	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1	1.5	3.0	1.2	2.7	12		4.5	20	13	7	36	23	59	9	10	A-4a	5	73					
	011-0	SS-2	3.0	4.5	2.7	4.2	18		4.5							10	10	A-4a	8						
	21	SS-3	4.5	6.0	4.2	5.7	23		4.5							10	10	A-4a	8						
		SS-4	6.0	7.5	5.7	7.2	25	12	4.5	25	15	10	37	24	61	13	10	A-4a							
11	В	SS-1	1.5	3.0	0.0	1.5	10		1.25	46	19	27	29	34	63	24	18	A-7-6	13	73		HP & Mc		12"	
	012-0	SS-2	3.0	4.5	1.5	3.0	8		2.25							22	18	A-7-6	16			N ₆₀ & Mc			
	21	SS-3	4.5	6.0	3.0	4.5	12		2.5	41	18	23	33	39	72	22	18	A-7-6	13						
		SS-4	6.0	7.5	4.5	6.0	15	8	3							24	18	A-7-6	16						
12	В	SS-1	1.5	3.0	0.0	1.5	13		4.5	20	13	7	37	22	59	10	10	A-4a	5	53					
	013-0	SS-2	3.0	4.5	1.5	3.0	15		4.25							13	10	A-4a	8			Мс			
	21	SS-3	4.5	6.0	3.0	4.5	15		3.25	20	13	7	37	20	57	12	10	A-4a	4						
		SS-4	6.0	7.5	4.5	6.0	13	13	4.5							10	10	A-4a	8						

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 12

Geotechnical Consultant:NEAS, Inc.Prepared By:Nizar AltarawnehDate prepared:11/11/2022

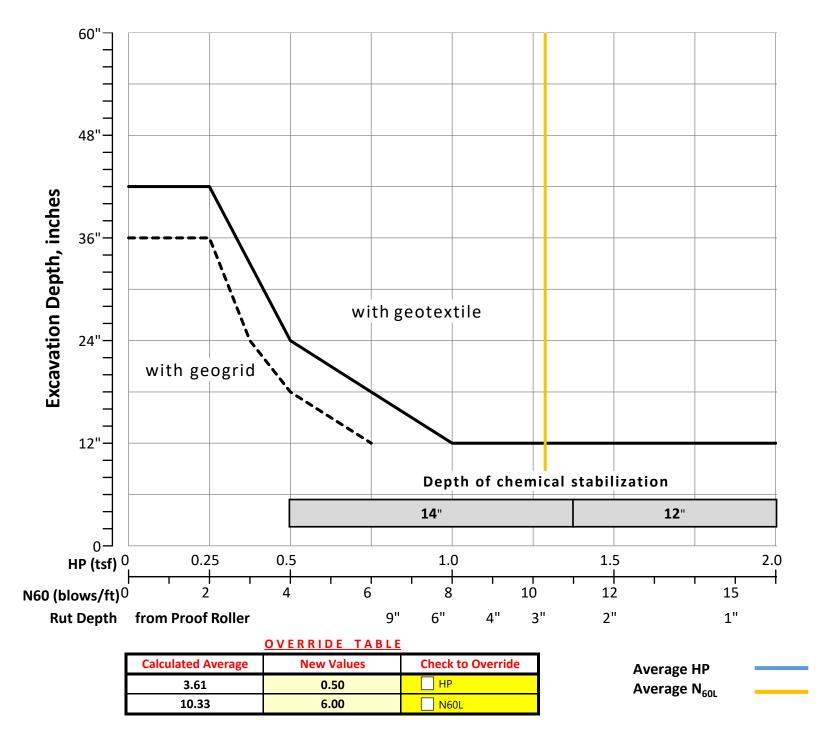
Chemical Stabilization Options								
320	Rubblize & Roll	No						
206	Cement Stabilization	Option						
	Lime Stabilization	No						
206	Depth	14"						

Excavate and Repl	Excavate and Replace				
Stabilization Option	ons				
Global Geotextile					
Average(N60L):	12"				
Average(HP):	0''				
Global Geogrid					
Average(N60L):	0"				
Average(HP):	0"				

Design CBR	8
---------------	---

% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	6%	HP ≤ 0.5	0%						
N ₆₀ < 12	33%	0.5 < HP ≤ 1	0%						
12 ≤ N ₆₀ < 15	17%	1 < HP ≤ 2	14%						
N ₆₀ ≥ 20	28%	HP > 2	61%						
M+	14%								
Rock	0%								
Unsuitable	0%								


Excavate and Replace at Surface						
Average	0"					
Maximum	0"					
Minimum	0"					


% Proposed Subgrade Surface							
Unstable & Unsuitable	33%						
Unstable	33%						
Unsuitable	0%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	17	10	3.61	24	14	10	32	21	53	12	11	5
Maximum	42	21	4.50	46	19	27	39	39	72	24	18	16
Minimum	2	2	1.00	19	13	6	11	4	15	5	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	5	4	0	0	0	0	0	29	0	0	6	0	0	4	0	0	48
Percent	0%	0%	10%	8%	0%	0%	0%	0%	0%	60%	0%	0%	13%	0%	0%	8%	0%	0%	100%
% Rock Granular Cohesive	0%					79%				21%									100%
Surface Class Count	0	0	2	2	0	0	0	0	0	8	0	0	1	0	0	2	0	0	15
Surface Class Percent	0%	0%	13%	13%	0%	0%	0%	0%	0%	53%	0%	0%	7%	0%	0%	13%	0%	0%	100%

SR-725 West

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks - Prop. SR-725 West

NEAS, Inc.

Prepared By: Date prepared: Nizar Altarawneh Friday, November 11, 2022

Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

12

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-21	PROP. SR-725 West	451+28	8	Rt	CME 45B	73	971.5	970.1	1.4 C
2	B-002-0-21	PROP. SR-725 West	454+33	57	Rt	CME 45B	73	961.2	959.7	1.5 C
3	B-003-0-21	PROP. SR-725 West	455+74	55	Rt	CME 45B	73	958.1	956.6	1.5 C
4	B-005-0-21	PROP. SR-725 West	460+75	80	Lt	CME 45B	73	951.6	950.1	1.5 C
5	B-006-0-21	PROP. SR-725 West	461+54	10	Rt	CME 45B	73	952.5	950.6	1.9 C
6	B-007-0-21	PROP. SR-725 West	462+91	7	Rt	CME 45B	73	953.7	951.8	1.9 C
7	B-008-0-21	PROP. SR-725 West	465+04	8	Rt	CME 45B	73	958.1	956.2	1.9 C
8	B-009-0-21	PROP. SR-725 West	466+47	10	Lt	CME 45B	73	961.7	960.9	0.8 C
9	B-010-0-21	PROP. SR-725 West	470+36	67	Rt	CME 45B	73	974.2	972.7	1.5 C
10	B-011-0-21	PROP. SR-725 West	472+54	44	Lt	CME 45B	73	980.8	980.5	0.3 C
11	B-012-0-21	EX. SR-725	775+42	41	Lt	CME 45B	73	990.1	988.6	1.5 C
12	B-013-0-21	EX. SR-725	778+84	30	Lt	CME 45B	73	995.4	993.9	1.5 C

#	Boring	Sample	Sam De	-	Subg De		Stan Penet	dard ration	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
'n			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.1	1.6	13			20	13	7	31	13	44	13	10	A-4a	2	33		N ₆₀ & Mc		12''	
	001-0	SS-2	3.0	4.5	1.6	3.1	17		2	21	14	7	28	12	40	12	10	A-4a	1						
	21	SS-3A	4.5	5.0	3.1	3.6	11		1.75							12	10	A-4a	8						
		SS-3B	5.0	6.0	3.6	4.6	11	11								7	6	A-1-b	0						
2	В	SS-1	2.5	4.0	1.0	2.5	10		4.5	21	14	7	37	21	58	10	10	A-4a	5	540		N ₆₀		12''	
	002-0	SS-2	5.0	6.5	3.5	5.0	8		4.25							11	10	A-4a	8						
	21	SS-3	7.5	9.0	6.0	7.5	17		4.5							12	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	22	8	4.25							12	10	A-4a							
3	В	SS-1	2.5	4.0	1.0	2.5	12									10	10	A-2-4	0						
	003-0	SS-2	5.0	6.5	3.5	5.0	8		3	20	13	7	39	19	58	12	10	A-4a	5						
	21	SS-3	7.5	9.0	6.0	7.5	15									15	10	A-2-4							
		SS-4	10.0	11.5	8.5	10.0	17	8	2	21	14	7	36	22	58	13	10	A-4a							
4	В	SS-1	2.5	4.0	1.0	2.5	5			NP	NP	NP	11	4	15	11	6	A-1-b	0	60					
	005-0	SS-2	5.0	6.5	3.5	5.0	2									24	6	A-1-b	0						
	21	SS-3	7.5	9.0	6.0	7.5	17		1	28	15	13	35	29	64	20	14	A-6a							
		SS-4	10.0	11.5	8.5	10.0	23	2	2.25							13	14	A-6a							
5	В	SS-1	2.5	4.0	0.6	2.1	21			NP	NP	NP	15	4	19	6	6	A-1-b	0	40					
	006-0	SS-2	5.0	6.5	3.1	4.6	42									5	6	A-1-b	0						
	21	SS-3	7.5	9.0	5.6	7.1	27		4.5	19	13	6	35	20	55	10	10	A-4a							
		SS-4	10.0	11.5	8.1	9.6	27	21	4.5							11	10	A-4a							
6	В	SS-1	2.5	4.0	0.6	2.1	28			NP	NP	NP	18	8	26	7	10	A-2-4	0						
	007-0	SS-2	5.0	6.5	3.1	4.6	10									7	10	A-2-4	0						
	21	SS-3	7.5	9.0	5.6	7.1	22		4.5	22	14	8	38	29	67	11	10	A-4a							
		SS-4	10.0	11.5	8.1	9.6	28	10	4.25							15	10	A-4a							
7	В	SS-1	2.5	4.0	0.6	2.1	15		4.5	22	14	8	35	24	59	11	10	A-4a	5						
	008-0	SS-2	5.0	6.5	3.1	4.6	6		4.5							12	10	A-4a	8						
	21	SS-3	7.5	9.0	5.6	7.1	15		1.75							10	10	A-4a							
		SS-4		11.5	8.1	9.6	18	6	3	20	13	7	36	22	58	12	10	A-4a				1			
8	В	SS-1	2.5	4.0	1.7	3.2	18		4.25	25	14	11	35	25	60	12	14	A-6a	5						
	009-0	SS-2	5.0	6.5	4.2	5.7	25		4.5							11	14	A-6a	10						
	21	SS-3	7.5	9.0		8.2	21		4.25							12	14	A-6a				İ			
		SS-4		11.5		10.7	17	18	4.25							11	14	A-6a							
9	В	SS-1	2.5	4.0	1.0	2.5	7			23	15	8	33	21	54	14	10	A-4a	4			N ₆₀ & Mc		15''	
	010-0	SS-2	5.0	6.5	3.5	5.0	24		4.25			7	38	24	62	12	10	A-4a	5						
	21	SS-3	7.5	9.0	6.0	7.5	24		4.5							12	10	A-4a				1			
		SS-4		11.5	8.5	10.0	28	7	4.5							11	10	A-4a	<u> </u>						
																						1			

V. 14.6

2/11/2022

#	Boring	Sample	Sam Dej	-	-	grade pth		dard tration	НР		Ρ	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	•	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1	1.5	3.0	1.2	2.7	12		4.5	20	13	7	36	23	59	9	10	A-4a	5	73					
	011-0	SS-2	3.0	4.5	2.7	4.2	18		4.5							10	10	A-4a	8						
	21	SS-3	4.5	6.0	4.2	5.7	23		4.5							10	10	A-4a	8						
		SS-4	6.0	7.5	5.7	7.2	25	12	4.5	25	15	10	37	24	61	13	10	A-4a							
11	В	SS-1	1.5	3.0	0.0	1.5	10		1.25	46	19	27	29	34	63	24	18	A-7-6	13	73		HP & Mc		12"	
	012-0	SS-2	3.0	4.5	1.5	3.0	8		2.25							22	18	A-7-6	16			N ₆₀ & Mc			
	21	SS-3	4.5	6.0	3.0	4.5	12		2.5	41	18	23	33	39	72	22	18	A-7-6	13						
		SS-4	6.0	7.5	4.5	6.0	15	8	3							24	18	A-7-6	16						
12	В	SS-1	1.5	3.0	0.0	1.5	13		4.5	20	13	7	37	22	59	10	10	A-4a	5	53					
	013-0	SS-2	3.0	4.5	1.5	3.0	15		4.25							13	10	A-4a	8			Мс			
	21	SS-3	4.5	6.0	3.0	4.5	15		3.25	20	13	7	37	20	57	12	10	A-4a	4						
		SS-4	6.0	7.5	4.5	6.0	13	13	4.5							10	10	A-4a	8						

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 12

Geotechnical Consultant:NEAS, Inc.Prepared By:Nizar AltarawnehDate prepared:11/11/2022

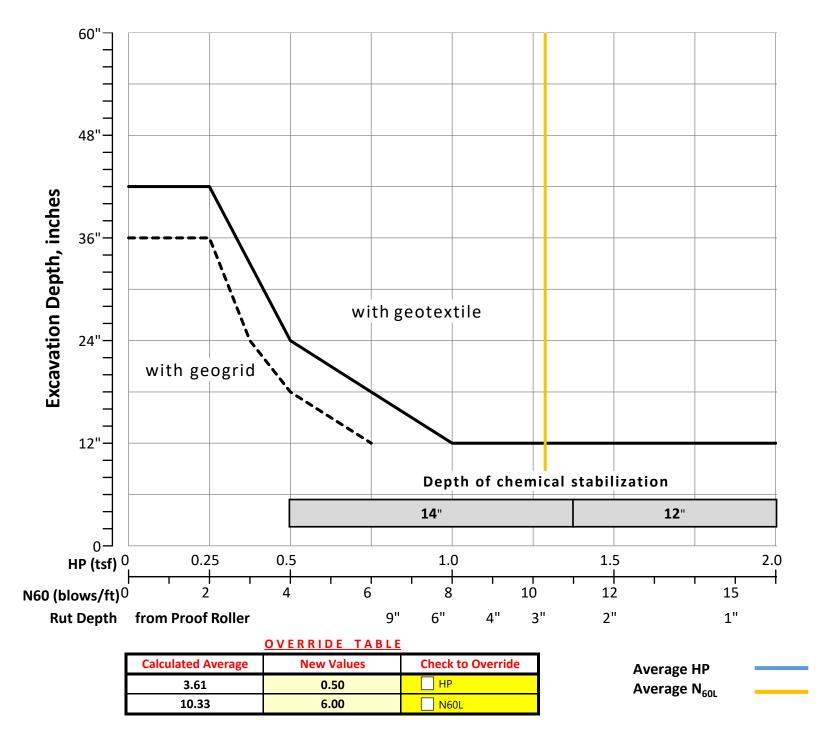
C	Chemical Stabilization Option	IS
320	Rubblize & Roll	No
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	14"

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0"

Design CBR 8

% Samples within 6 feet of subgrade											
N ₆₀ ≤ 5	5%	HP ≤ 0.5	0%								
N ₆₀ < 12	31%	0.5 < HP ≤ 1	3%								
12 ≤ N ₆₀ < 15	15%	1 < HP ≤ 2	13%								
N ₆₀ ≥ 20	26%	HP > 2	59%								
M+	13%										
Rock	0%										
Unsuitable	0%										


Excavate and Repl at Surface	ace
Average	0"
Maximum	0"
Minimum	0"


% Proposed Subgrade Su	irface
Unstable & Unsuitable	38%
Unstable	38%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	17	10	3.61	24	14	10	32	21	53	12	11	5
Maximum	42	21	4.50	46	19	27	39	39	72	24	18	16
Minimum	2	2	1.00	19	13	6	11	4	15	5	6	0

Classification Counts by Sample																			
ODOT Class	ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b														Totals				
Count	0	0	5	4	0	0	0	0	0	29	0	0	6	0	0	4	0	0	48
Percent	0%	0%	10%	8%	0%	0%	0%	0%	0%	60%	0%	0%	13%	0%	0%	8%	0%	0%	100%
% Rock Granular Cohesive	0%					79%								21	L%				100%
Surface Class Count	0	0	2	2	0	0	0	0	0	9	0	0	1	0	0	2	0	0	16
Surface Class Percent	0%	0%	13%	13%	0%	0%	0%	0%	0%	56%	0%	0%	6%	0%	0%	13%	0%	0%	100%

RAMP A

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks - Ramp A

NEAS, Inc.

Prepared By: Zhao Mankoci Date prepared: Thursday, Apri

Thursday, April 28, 2022 Chunmei (Melinda) He, Ph.D, P.E.

2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

4

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig		Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-014-0-21	PROP. Ramp A East	605+63	22	Rt	CME 45B	73	1000.0	998.5	1.5 C
2	B-015-0-21	PROP. Ramp A East	609+94	5	Lt	CME 45B	73	983.6	982.1	1.5 C
3	B-016-0-21	PROP. Ramp A East	613+49	16	Rt	CME 45B	73	970.8	968.0	2.8 C
4	B-004-0-21	PROP. Ramp A East	617+96	11	Rt	CME 45B	73	954.0	953.0	1.0 C

#	Boring	Sample	Sam Dej	-	-	rade pth	Stan Penet		НР		P	hysica	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	Problem		d Replace 204)	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchos)
1	В	SS-1	1.0	2.5	-0.5	1.0	27			NP	NP	NP	21	11	32	7	10	A-2-4	0	60					
	014-0	SS-2	3.5	5.0	2.0	3.5	17									10	10	A-2-4	0						
	21	SS-3	6.0	7.5	4.5	6.0	19		4.5	30	17	13	38	53	91	17	14	A-6a	9						
		SS-4	8.5	10.0	7.0	8.5	24	17								3	6	A-1-b							
2	В	SS-1	1.5	3.0	0.0	1.5	17									8	6	A-1-b	0	60					
	015-0	SS-2	3.0	4.5	1.5	3.0	10		3	43	21	22	34	38	72	22	18	A-7-6	13			N ₆₀ & Mc			
	21	SS-3	4.5	6.0	3.0	4.5	18		3.5							22	18	A-7-6	16						
		SS-4	6.0	7.5	4.5	6.0	24	10	4	27	16	11	50	33	83	20	14	A-6a	8						
3	В	SS-1	2.5	4.0	-0.3	1.2	18		4.5	21	14	7	28	15	43	9	10	A-4a	2	40					
	016-0	SS-2	5.0	6.5	2.2	3.7	19									10	10	A-2-4	0						
	21	SS-3	7.5	9.0	4.7	6.2	15		2.5	21	13	8	37	28	65	13	10	A-4a	6						
		SS-4	10.0	11.5	7.2	8.7	12	15	2.5							12	10	A-4a							
4	В	SS-1	1.0	2.5	0.0	1.5	24		4.5	21	13	8	33	21	54	8	10	A-4a	4	87					
	004-0	SS-2	3.5	5.0	2.5	4.0	16		4.5	23	13	10	38	25	63	10	10	A-4a	6						
	21	SS-3	6.0	7.5	5.0	6.5	11		4.5							11	10	A-4a							
		SS-4	8.5	10.0	7.5	9.0	12	11	4.5							10	10	A-4a							

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 4

Geotechnical Consultant:NEAS, Inc.Prepared By:Zhao MankociDate prepared:4/28/2022

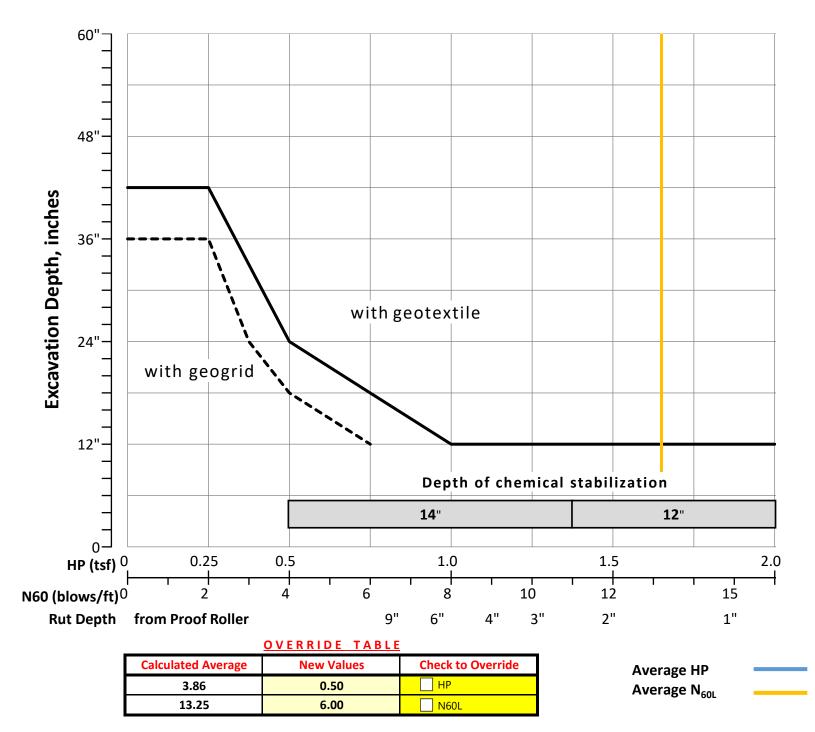
C	Chemical Stabilization Options											
320	Rubblize & Roll	Option										
206	Cement Stabilization	Option										
	Lime Stabilization	No										
206	Depth	12"										

Excavate and Repl	Excavate and Replace										
Stabilization Option	ons										
Global Geotextile											
Average(N60L):	12"										
Average(HP):	0''										
Global Geogrid											
Average(N60L):	0"										
Average(HP):	0"										

Design CBR 8

% Sampl	% Samples within 6 feet of subgrade												
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%										
N ₆₀ < 12	15%	0.5 < HP ≤ 1	0%										
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%										
N ₆₀ ≥ 20	23%	HP > 2	69%										
M+	8%												
Rock	0%												
Unsuitable	0%												

Excavate and Replace at Surface									
Average	0"								
Maximum	0"								
Minimum	0"								


% Proposed Subgrade Surface										
Unstable & Unsuitable 13%										
Unstable	13%									
Unsuitable	0%									

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	18	13	3.86	27	15	11	35	28	63	12	11	5
Maximum	27	17	4.50	43	21	22	50	53	91	22	18	16
Minimum	10	10	2.50	21	13	7	21	11	32	3	6	0

Classification Counts by Sample																			
ODOT Class	ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b														Totals				
Count	0	0	2	3	0	0	0	0	0	7	0	0	2	0	0	2	0	0	16
Percent	0%	0%	13%	19%	0%	0%	0%	0%	0%	44%	0%	0%	13%	0%	0%	13%	0%	0%	100%
% Rock Granular Cohesive	0%		75% 25%											100%					
Surface Class Count	0	0	1	3	0	0	0	0	0	3	0	0	0	0	0	1	0	0	8
Surface Class Percent	0%	0%	13%	38%	0%	0%	0%	0%	0%	38%	0%	0%	0%	0%	0%	13%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

RAMP B

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks - Ramp B

NEAS, Inc.

Prepared By: Zhao Mankoci Date prepared: Thursday, April 28, 2022

> Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

2

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill
1	B-017-0-21	PROP. Ramp B East	703+15	28	Rt	CME 45B	73	952.2	949.6	2.6 C
2	B-018-0-21	PROP. Ramp B East	707+07	16	Lt	CME 45B	73	945.1	943.6	1.5 C

V. 14.6

2/11/2022

#	Boring	Sample	Sam Dej	•	-	rade pth		dard tration	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Problem		Excavate and Replace (Item 204)		Recommendation (Enter depth in	
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unsuitable Unstable		Unstable	inches)	
1	В	SS-1	2.5	4.0	-0.1	1.4	19		2.5	36	17	19	33	34	67	19	16	A-6b	10	53		Мс				
	017-0	SS-2	5.0	6.5	2.4	3.9	18		4.5	25	14	11	33	23	56	12	14	A-6a	5							
	21	SS-3	7.5	9.0	4.9	6.4	18		4.5							11	14	A-6a	10							
		SS-4	10.0	11.5	7.4	8.9	16	18	4.5							21	14	A-6a								
2	В	SS-1	1.5	3.0	0.0	1.5	40			21	14	7	22	12	34	6	10	A-2-4	0	340						
	018-0	SS-2	3.0	4.5	1.5	3.0	30		4.5	19	12	7	33	19	52	7	10	A-4a	3							
	21	SS-3	4.5	6.0	3.0	4.5	25		4.5							9	10	A-4a	8							
		SS-4	6.0	7.5	4.5	6.0	8	8	2.25							12	10	A-4a	8							

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 2

Geotechnical Consultant:NEAS, Inc.Prepared By:Zhao MankociDate prepared:4/28/2022

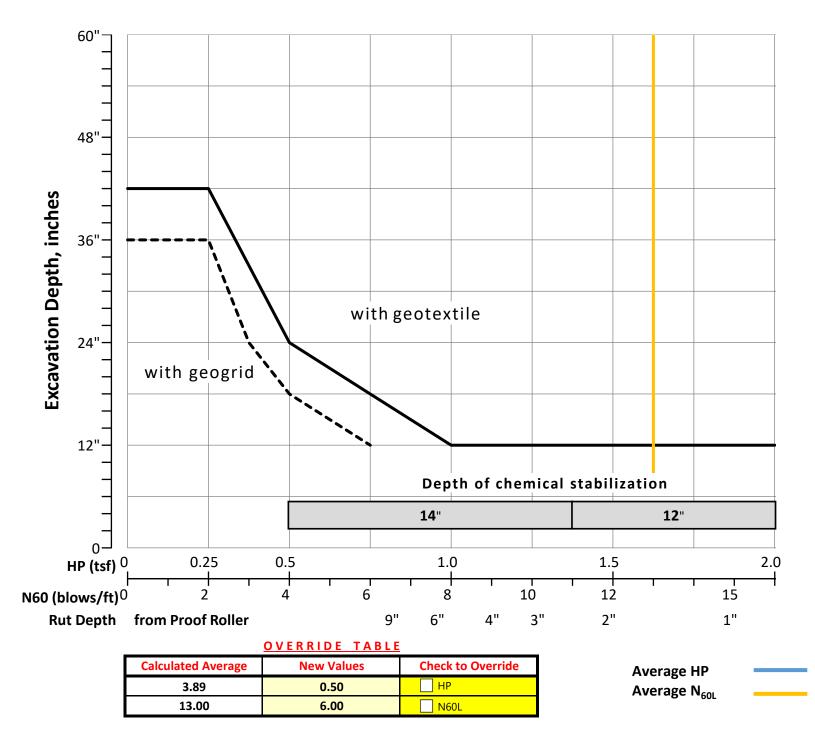
Chemical Stabilization Options											
320	320 Rubblize & Roll										
206	206 Cement Stabilization										
	Lime Stabilization	No									
206	Depth	12"									

Excavate and Replace										
Stabilization Options										
Global Geotextile										
Average(N60L):	12"									
Average(HP):	0''									
Global Geogrid										
Average(N60L):	0''									
Average(HP):	0"									

Design CBR 7

% Samples within 6 feet of subgrade													
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%										
N ₆₀ < 12	14%	0.5 < HP ≤ 1	0%										
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%										
N ₆₀ ≥ 20	43%	HP > 2	86%										
M+	14%												
Rock	0%												
Unsuitable	0%												

Excavate and Replace at Surface								
Average	0"							
Maximum	0"							
Minimum	0"							


% Proposed Subgrade Surface									
Unstable & Unsuitable	25%								
Unstable	25%								
Unsuitable	0%								

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	22	13	3.89	25	14	11	30	22	52	12	12	6
Maximum	40	18	4.50	36	17	19	33	34	67	21	16	10
Minimum	8	8	2.25	19	12	7	22	12	34	6	10	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	1	0	0	0	0	0	3	0	0	3	1	0	0	0	0	8
Percent	0%	0%	0%	13%	0%	0%	0%	0%	0%	38%	0%	0%	38%	13%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					50%								50)%				100%
Surface Class Count	0	0	0	1	0	0	0	0	0	1	0	0	1	1	0	0	0	0	4
Surface Class Percent	0%	0%	0%	25%	0%	0%	0%	0%	0%	25%	0%	0%	25%	25%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

RAMP C

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks - Ramp C

NEAS, Inc.

Prepared By: Zhao Mankoci Date prepared: Thursday, April 28, 2022

> Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

3

V. 14.6	2/11/202
Y. 14.0	2/11/202

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring	Proposed Subgrade EL	Cut Fill
1	B-019-0-21	PROP. Ramp C West	806+52	22	Lt	CME 45B	73	1000.3	998.8	1.5 C
2	B-020-0-21	PROP. Ramp C West	810+42	16	Rt	CME 45B	73	983.7	981.3	2.4 C
3	B-009-0-21	PROP. Ramp C West	815+61	29	Lt	CME 45B	73	961.7	959.4	2.3 C

Subgrade Analysis

V. 14.6 2/11/2022

#	Boring	Sample	Sam De	nple pth	-	rade pth	Stan Penet		НР		Ρ	hysic	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	22			NP	NP	NP	24	10	34	9	10	A-2-4	0	67					
	019-0	SS-2	3.0	4.5	1.5	3.0	18		4.5	18	13	5	34	16	50	9	10	A-4a	3						
	21	SS-3	4.5	6.0	3.0	4.5	19		4.5							10	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	21	18	4.5							10	10	A-4a	8						
2	В	SS-1	1.5	3.0	-0.9	0.6	16		4.25	24	15	9	28	14	42	12	10	A-4a	1	133					
	020-0	SS-2	3.0	4.5	0.6	2.1	15		3.5	22	13	9	37	23	60	14	10	A-4a	5			Mc			
	21	SS-3	4.5	6.0	2.1	3.6	17		4.5							13	10	A-4a	8						
		SS-4	6.0	7.5	3.6	5.1	24	15	4.5							11	10	A-4a	8						
3	В	SS-1	2.5	4.0	0.2	1.7	18		4.25	25	14	11	35	25	60	12	14	A-6a	5						
	009-0	SS-2	5.0	6.5	2.7	4.2	25		4.5							11	14	A-6a	10						
	21	SS-3	7.5	9.0	5.2	6.7	21		4.25							12	14	A-6a							
		SS-4	10.0	11.5	7.7	9.2	17	18	4.25							11	14	A-6a							

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 3

Geotechnical Consultant:NEAS, Inc.Prepared By:Zhao MankociDate prepared:4/28/2022

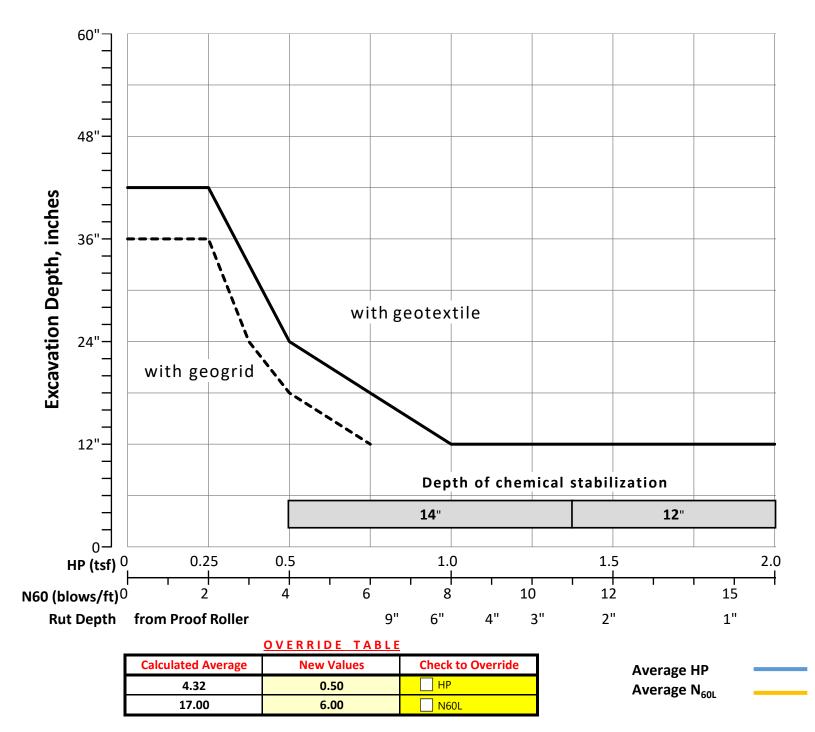
C	Chemical Stabilization Options											
320	Rubblize & Roll	Option										
206	Cement Stabilization	Option										
	Lime Stabilization	No										
206	Depth	NA										

Excavate and Repl	ace									
Stabilization Options										
Global Geotextile										
Average(N60L):	0"									
Average(HP):	0''									
Global Geogrid										
Average(N60L):	0"									
Average(HP):	0"									

Design CBR 8

% Sample	% Samples within 6 feet of subgrade													
N ₆₀ ≤ 5	$N_{60} \le 5$ 0% HP ≤ 0.5 0%													
N ₆₀ < 12	0%	0.5 < HP ≤ 1	0%											
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%											
N ₆₀ ≥ 20	46%	HP > 2	91%											
M+	9%													
Rock	0%													
Unsuitable	0%													

Excavate and Replace at Surface										
Average	0"									
Maximum	0"									
Minimum	0"									


% Proposed Subgrade Surface										
Unstable & Unsuitable	14%									
Unstable	14%									
Unsuitable	0%									

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	19	17	4.32	22	14	9	32	18	49	11	11	6
Maximum	25	18	4.50	25	15	11	37	25	60	14	14	10
Minimum	15	15	3.50	18	13	5	24	10	34	9	10	0

					Class	ificat	ion C	ount	s by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	1	0	0	0	0	0	7	0	0	4	0	0	0	0	0	12
Percent	0%	0%	0%	8%	0%	0%	0%	0%	0%	58%	0%	0%	33%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					67%								33	8%				100%
Surface Class Count	0	0	0	1	0	0	0	0	0	4	0	0	2	0	0	0	0	0	7
Surface Class Percent	0%	0%	0%	14%	0%	0%	0%	0%	0%	57%	0%	0%	29%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

RAMP D

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

MOT-725-14.41 108619

Interchange improvement - new ramp alignments, widened pavements, retaining walls and the addition of sidewalks - Ramp D

NEAS, Inc.

Prepared By: Zhao Mankoci Date prepared: Thursday, April 28, 2022

> Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

4

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-021-0-21	PROP. Ramp D East	953+04	31	Lt	CME 45B	73	958.6	959.5	0.9 F
2	B-022-0-21	PROP. Ramp D West	907+74	6	Rt	CME 45B	73	953.3	950.8	2.5 C
3	B-023-0-21	PROP. Ramp D West	910+88	6	Rt	CME 45B	73	947.1	945.6	1.5 C
4	B-024-0-21	PROP. Ramp D West	914+04	7	Rt	CME 45B	73	941.2	939.7	1.5 C

Subgrade Analysis

V. 14.6 2/11/2022

#	Boring	Sample	Sam De	-	-	grade pth		dard ration	НР		P	hysica	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchoc)
1	В	SS-1	1.5	3.0	2.4	3.9	40		4.5	23	14	9	38	26	64	9	10	A-4a	6	40					
	021-0	SS-2	3.0	4.5	3.9	5.4	33		4.5	24	13	11	36	24	60	10	14	A-6a	5						
	21	SS-3	4.5	6.0	5.4	6.9	35		4.5							12	14	A-6a							
		SS-4	6.0	7.5	6.9	8.4	24	30	4.5							11	14	A-6a							
2	В	SS-1	1.5	3.0	-1.0	0.5	13		4.5	38	19	19	47	31	78	18	16	A-6b	12	0					
	022-0	SS-2	3.0	4.5	0.5	2.0	11		4.25	32	17	15	42	25	67	18	14	A-6a	8			N ₆₀ & Mc		12''	
	21	SS-3	4.5	6.0	2.0	3.5	12		3.75							18	14	A-6a	10			N ₆₀ & Mc			
		SS-4	6.0	7.5	3.5	5.0	13	11								11	10	A-2-4	0						
3	В	SS-1	1.5	3.0	0.0	1.5	16			NP	NP	NP	20	8	28	23	10	A-2-4	0	60		Мс			
	023-0	SS-2	3.0	4.5	1.5	3.0	21		4.5	24	14	10	32	21	53	11	10	A-4a	4						
	21	SS-3	4.5	6.0	3.0	4.5	23		4.25							11	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	28	16	4.5							10	10	A-4a	8						
4	В	SS-1	1.5	3.0	0.0	1.5	15		4.25	31	17	14	26	16	42	13	14	A-6a	2	173					
	024-0	SS-2	3.0	4.5	1.5	3.0	16			26	14	12	20	12	32	13	10	A-2-6	0			Мс			
	21	SS-3	4.5	6.0	3.0	4.5	21									15	10	A-2-6	4						
		SS-4	6.0	7.5	4.5	6.0	18	15								14	10	A-2-6	4						

PID: 108619

County-Route-Section: MOT-725-14.41 No. of Borings: 4

Geotechnical Consultant:NEAS, Inc.Prepared By:Zhao MankociDate prepared:4/28/2022

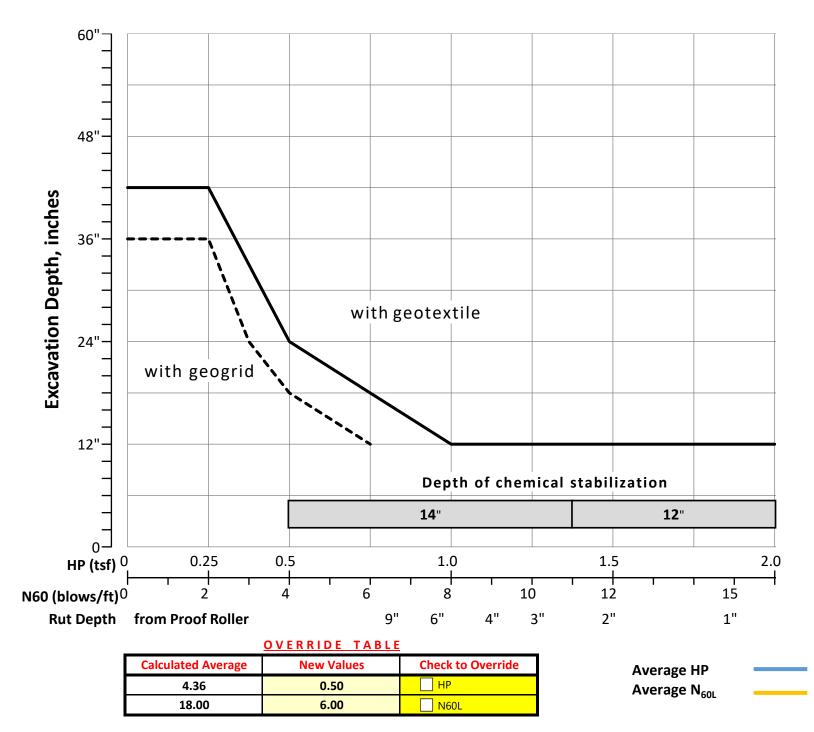
Chemical Stabilization Options												
320	Rubblize & Roll	Option										
206	Cement Stabilization	Option										
	Lime Stabilization	No										
206	Depth	NA										

Excavate and Repl	ace										
Stabilization Options											
Global Geotextile											
Average(N60L):	0"										
Average(HP):	0''										
Global Geogrid											
Average(N60L):	0"										
Average(HP):	0"										

Design CBR 8

% Samples within 6 feet of subgrade												
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%									
N ₆₀ < 12	7%	0.5 < HP ≤ 1	0%									
12 ≤ N ₆₀ < 15	20%	1 < HP ≤ 2	0%									
N ₆₀ ≥ 20	47%	HP > 2	67%									
M+	27%											
Rock	0%											
Unsuitable	0%											

Excavate and Replace at Surface											
Average	0"										
Maximum	0"										
Minimum	0"										


% Proposed Subgrade Surface											
Unstable & Unsuitable	50%										
Unstable	50%										
Unsuitable	0%										

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	21	18	4.36	28	15	13	33	20	53	14	12	5
Maximum	40	30	4.50	38	19	19	47	31	78	23	16	12
Minimum	11	11	3.75	23	13	9	20	8	28	9	10	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	2	0	3	0	0	0	4	0	0	6	1	0	0	0	0	16
Percent	0%	0%	0%	13%	0%	19%	0%	0%	0%	25%	0%	0%	38%	6%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					56%					44%								100%
Surface Class Count	0	0	0	1	0	1	0	0	0	2	0	0	3	1	0	0	0	0	8
Surface Class Percent	0%	0%	0%	13%	0%	13%	0%	0%	0%	25%	0%	0%	38%	13%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

APPENDIX F

HISTORIC BORINGS

918-2-58 B-001-0-58 'n

THE H.C.NUTTING CO. CINCINNATI, OHIO

LABORATORY LOG-SUBSURFACE EXPLORATION

CLIENT Yule, Sticklen, Jordan & McNee PROJECT U.S. Route 25 - Section III ORDER NO. 3636.1 SITE State Route 725 BORING NO. 1

LOCATION Sta. 197413, 139.5' Rt. of C. SURFACE ELEV. 973.5 SHEET _____

e tion	5	oer e	e e e		Classification	Summary of Test Results								
Elev Tev Tev	Casing Blows	Sample Humber	9 Sere Sere Care			1	¥	L.L.	P.1.	Other				
-973.0	4	1	Т	Topsot	LI & Brn. Sandy L	Ban CLAI(CL)	22.5	34.0	£0.2	M.A.				
E2	8	2	4-8-7	Brn.	Gravelly Lean CL4	AX (CL)	23.0	49.0	B0. 6	M.A.				
<u>=971.0</u>	21 .				. 									
	38 42	3	6-11 13	Brn.	Sandy Silty CLAY	(CL-ML)	15.0	20.2	6.1	M.A.				
	38 38					1								
	17 24	4	14-15 8	do	đo	đo	13.0	18.8	5.7	M.A.				
D <u>963.5</u>	27 32 47	S-1			Sandy Silty CLAY		10.9		5.5	M.A. UNC. Cv G				
	58 58	5	6 <u>-1</u> 0 17	Gray	Sandy Lean CLAY ((CL)	13.0	20.9	8.6	M.A.				
	44 41													
	28 37	S - 2		Gray	Sandy Silty CLAY	(CL-ML)	11.4	20.2	7.0	M.A. UNC. Cv G				
	56	6	6-9-11	do	đo	do	12.7	19.3	5.5	M.A.				
កើយកើយកិយកិយកិយកិយក		,				. •								
		7	6-11 13	đo	do	do	13.6	19.4	5.9	M.A.				
28 - - - - - - - - - - - - -	4	8	7 <u>-1</u> 3 17	Gray	Sandy Lean CLAY ((CL)	12.6	20.9	8.5	M.A.				
L						······································								

THE H.C.NUTTING CO.

LABORATORY LOG-SUBSURFACE EXPLORATION

 OLIENT Yule, Sticklen, Jordan & McNee
 PROJECT
 U. S. Route 25 - Section III

 ORDER NO. 3636.1
 SITE
 State Route 725
 BORING NO. 1

 ACCATION Sta. 197/13, 139.5' Rt. of C. SUEFACE
 ELEV.973.5
 SHEET 2
 OF 2

Č. Summary of Test Results Ī **Classification** 1 P.1. Other 1.1. w -32 **-**34 9 6_{-12}_{-17} 14.3/19.7 7.1 M.A. **E**36 Gray Silty CLAY (CL-ML) **L**38 Lo 929.5 18.9 29.8 11.8 10 10-15 Gray Lean CLAY (CL) M.A. 19 42 13.7 24.8 19.8 M.A. Cy G S-3 Gray Sandy Lean CLAY (CL) **二**44年 92月15日 11 13-20 13.2 24.4 do do. 8.5 M.A. do L+6 1111 8 12 11 12 10.9 19.9 7.6 M.A. **_**50 đo đo do 52 E54 Run 60/3 Layered Gray Weathered Shale & **-**56 ľ Fossiliferous LIMESTONE. (Approx. 15-20% Limestone in 1-2" Layers). 58 .5 60 913 Bottom of Boring - 60'0"

918A-2-58

B-001-0-76

State of Ohio Department of Transportation Division of Highways Testing Laboratory

			Testing Laboratory												٣
Date	Storted 1	0/12/76	HOLLOW STEM. LOG OF BORING ————————————————————————————————————	<u>1</u>		0	ninet	lele k			LIO H				
		• • •	953.	1 - 24	HRS.		MOT	laen	725	14	MON 10	1901	<u>NERT</u>		_
Bori	ng No	Statio	n & Offset <u>15+90, 75' RT RAMP A</u> Surface &		003 11	_	_SU8	SLIR	FAC	11	VESTI	GATI	ION		_
Elev.	Depth	Std. Pen.	Description Surrace &					нт .	_						
961.1	0		Description	Field		%	1%	<u>Physi</u> 1%	ical 1%	Charc 1%	L.L	tics_	- <u>-</u>	SHT	
958.6	2			INO.	1405,50	Agg	<u></u>	. <u> F.S.</u>	. Sili	Clay	<u> L.L</u>	<u> Pl</u>	W.C.	Class	-
956.1		5/15/16		1	01073	5	1	10	62	22	NP	NP	16	A-4B	
953.6			BROWN & GRAY CLAYEY SILT	2	01074	0	0	9	67	24	NP	NP	15	A-4B	
951.1	10		BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	3	01075	17	3	21	42	17	NP	NP	14	A-4A	
948.6		2/29/19	BROWN CLAYEY SANDY SILT WITH STONE FRAGMENTS	4	01076	27	12	14	28	19	NP	 NP	11	A-4A	
946.1			BROWN & GRAY SANDY CLAYEY SILT WITH STONE FRAMGENTS	5	01077	27	6	9	24	34	24	9	10	A-4A	
943_6			GRAY CLAYEY, SILT	6	01078	2	1	2	44	51	25	9	11	A-4A	
941.1	20 3/	11/20	GRAY CLAYEY SILT	7	01079	2	1	2	35	60	27	9	13	A-4A	
938.1 i	22 7/	12/23	GRAY CLAYEY SILT	8	01080	8	1	1	32	58	32	10	13	A-4A	
935.6	24 50((0.5')	GRAY WEATHERED CLAY SHALE	9	01081	12	1	1	21	55	30				ł
	28		LBOTTOM OF BORING				-	-		33	<u>3</u> 4		_14	VISUA	
	30								ĺ						
	<u>34</u> 36				ļ								ļ		
Form TE-153 P			2.00	_ 1			- 1								

Form TE-153 Particle Sizes: Agg= >2.00mm, Coarse Sand=2.00-0.42mm, Fine Sand=0.42-0.074mm, Silt=0.074-0.005mm, Clay=< 0.005mm

B	-002	-0-76	State of Ohio Department of Transportation Division of Highways Testing Laboratory												
			HOLLON STEM LOG OF BORING								MONTO	ONE	v		
D-4- 0	1	10/13/76	Sampler: Type Dia Water Elev. 927.0'-1	HRS		Proj	ect Id NOT	entifi 7	icatio	2.10	<u>1000113</u>	10/11C	<u></u>		
Dote S	iarrea iomplete	10/13/1		SUBSURFACE INVESTIGATION											
Date o	ompress			93	7.3'		LIGH	<u>T T(</u>	ONER	<u>s</u>					
Boring	No	Station	8 Offset 204+35 212' RT Surface El			r —	P	twsi C	al C	harac	teristic	s		SHTL	
Ellev.	Depth	Std. Pen.	Description	Field	Lab. Nos.So.	%	2	21	% SH		teristic	PL	w.c.	Class	
937.A	0			No.	1405.30.	AGG	أهمح	العب	300						
	_														
	2													1	
						1				Í					
932.4	-4-														
2.50 C	6		THAT THE THE MAN INTEL STONE EDACHENTS	1	01110	115	8	18	32	27	26	12	7	A-6A	
000 0		12/10/8	BROWN SANDY SILT AND CLAY WITH STONE FRAGMENTS	1.								8	10	A-4A	
929.9	8	6/10/17	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	2	01111	21	7	15	30	27	22	. °	10	A-40	
927.4	10		DAWART STATET CLASS & CONTRACT OF CLASS	ļ		1			1				•		
421.14			A REAL PROPERTY OF A STATE CTORE FOACHENTS	3	01112	17	7	16	33	27	24	8	9	A-4A	
	12	7/9/11	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	-	-							1.0	22	A-68	
924.9		ie (7333)	BROWN SANDY SILT AND CLAY WITH STEINE FRAGMENTS	4	01113	12	5	15	28	40	32	16	~~	A-00	
922.4	14	4 <i>/17/</i> 11	BINNIN STATE STEP						1			1 20	11	A-4A	
922.4	16	4/4/4	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	5	01114	15	9	18	31	27	24	10	1 "	10-40	
· · ·		4							ļ			ł			
919.9	ـقـــا		TRANSPORT OF ANTH ATTA VITE STORE FORCEFUTS	6	01115	115	17	18	31	29	24	8	13	A-4A	
	-	3/A/7	BROWN & GRAY SANDY CLAYEY SILT WITH STONE FRAGMENTS	1				<u>ا</u>				ļ			
917.4	20	21/14/201	(24') BROWN & GRAY SANDY SILT AND CLAY AND ST.FRAGTS	17	01116					2 33		13			
915 ⁵ 4 ¹⁷	22		BROWN - GRAY LIMESBONE AND CLAY SHALE	8	<u>+01117</u>	-49	<u>+-</u> 6	-5	<u>+13</u>	3 <u>+27</u> -	-30-	<u>+1]</u> :	<u>= 18-</u>	<u>†visua</u>	
	-	1 <u>50(0.5')</u>								ł	ł		}		
914.9	24		TOP OF ROCK						1			1			
	-	4				Į					1				
	26	4							i			1		1	
	28	1		1	1					i i	1				
				Į.							ļ	i	1		
1	30	-						Į		i		1			
1	32	-					1			1	1		1		
	1 32	1			1		ļ	}	Į						
	34]				1					ĺ			1	
	—	-					<u> </u>							<u> </u>	
L	36		g= >2.00mm, Coarse Sand=200-0.42mm, Fine Sand=0.42-0.074m	m, Sill	=0.074-	0.005	ómm,	Ckay	/=< (0.005	imm				
Form TE-153	5 Parli	cie Sizes: Agi	1- >2.00mms oduse odus 200 - 100mm	-											

State of Ohio Department of Transportation B-003-0-76 Division of Highways **Testing Laboratory** HOLLOW STEM LOG OF BORING

Date	Started.	10/15/76	HOLLON STEM LOG OF BORING Sompler:Type AUGER Dia Water Elev41_3	<u>'</u>		Pro	ect l	dentif	icati		MONT	GOME	RY	
Date	Complet	ed 10/15	/76 Casing: Length Dia				MOT	- 7	<u>25-1</u>	[4.10	D ESTIG	ATTO	M	
Borin	a No		8 Offset Surface	Elev 94	4:31				OWER			a		
Elev.	Depth	Std. Pen. [N]	Description	Field	Lab	87	67	hysio	ရှိ င	hara	cteristi	CŞ		SHTL
944:3	0			No.	Nos.So.	Aga	ČS.	Е .S.	Silt	Cίσγ	L.L.	Pl.	W.C.	Class
941.8	2													
939.3	4	4/3/6	BROWN & GRAY SANDY SILT AND CLAY (TRACE OF ORGANIC AND WOOD)	1	01089	8	4	17	35	36	34	12	28	A-6A
936.8	6	6/10/16	BROWN SANDY SILT AND CLAY, TRACE OF ORGANIC	2	01090	7	6	19	28	40	33	17	24	A-6B
934.3	10	7/10/16	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	3	01091	19	6	13	34	28	21	7	12	A-4A
931.8	12	15/25/20	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	4	01092	17	6	13	35	29	21	6	13	A-4A
929.3	14	13/17/20	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	5	01093	28	5	8	26	33	24	10	13	A-4A
926.8	6	11/21/34 50/11 311-	BROWN SANDY CLAYEY SILT WITH SURGAE FRAGMENTS GRAY CLAY SHALE	6	01094 + 01095=	14			36 12-		20 _33	6 14-		A-4A A-6A
926.5	20		LEOTTON OF BORING LTOP OF	-										
	22								ĺ					
	24		i.											
	26													-
	28							ŀ						
	30												-	
	32													
	34 36		-											
L	1.30	L			J		1	1	<u> </u>	1	L	L	L	

Farm TE-IS3 Particle Sizes: Agg= >2.00mm, Coarse Sand=200-0.42mm, Fine Sand=0.42-0.074mm, Silt=0.074-0.005mm, Clay=< 0.005mm

B-0	04-0-76	State of Ohio Department of Transportation Division of Highways Testing Laboratory									
Date D ate	Storted 10/14; Completed 10,	HOLLON STEN LOG OF BORING 76 Sampler: Type <u>AllGER</u> Dia Water Elev 74/76 Casing: Length Dia	.				ZS-14	MON TO VVESTI	GOME		
Borin	1g No Sta	ion & Offset 209+65, 173* RT Surfo	ce Elev. 93	2.5'			OWERS			41	
E lev.	Depth Std Pe	Description	Field	Lota Nos.So.	02 1	Physi Z 1 %	col Che	racterist	ics		SHTL
932.5			No.	Nos, So.	Am	<u>.</u> \$ F.\$			PI.	W.C.	Class
927.5											
	<u>6</u> 6/5/14 <u>8</u>	BROWN SANDY CLAYEY SILT WITH STORE FRAGMENTS	1	04132	13	9 17	35 20	5 23	8	10	A-4A
92 2.5											
	_12_6/15/15 _14_	BROWN CLAYEY SANDY SILT WITH STONE FRAGMENTS	2	01133	27	10 17	28 11	3 19	5	8	A-4A
917.5 915.0	16 5/9/12	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	3	01134	15	8 16	37 24	1 21	7	9	A-4A
912.5	18 5/14/26 _20	BROWN SANDY CLAYEY SILT AND SYONE FRAGMENTS	4	01135	40	6 12	20 2	2 23	7	7	A-4Ă
910.0	22 77/14/12	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	5	01136	15	9 17	31 2	3 24	10	11	A-4A
907.5	24 9/12/18 26 16/11/1	BROWN SLAYEY SANDY SILT WITH STONE FRAGMENTS	6	01137		10 20	32 2!		7	6	'A-4A
905.0	28		7	01138	10	8 19	33 3		6	8	A-4A
902.5	9/19/20 20/11/1	BROWN CLAYEY SANDY SILT AND STONE FRAGMENTS BROWN SANDY CLAYEY SILT WITH STRINE FRAGMENTS	8	01139	41 19	8 13 7 16	21 1: 30 2		8	10 24	A-4A A-6a
900.0	32										
899.0 897.5	34 6/50	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS BROWN & GRAY LIMESTONE AND CLAY SHALE	ROEK		34	9 10			9	10	
897.3	36 50(0.2'	BROWN & GRAY LINESTONE AND CLAY SHALE	<u>" [1]</u>	01142	37	13 10	21 1	9 22	6	4	VISUAL

Form TE-153 Porticle Sizes: Agg= >2.00mm, Coarse Sand#200-0.42mm, Fine Sand=0.42-0.074mm, Silt=0.074-0.005mm, Clay=< 0.005mm -BOTTOM OF BORING

S.

8

•

B-00)5-0-	76	State of Ohio Department of Transportation Division of Highways Testing Laboratory												
Date	e Compl		14/26 Casing: Length Dia Water Elev _ 959.	8'		Pr	oject MO	<u> </u>	725-	14.1	0		MERY		
	ing Na_		on & Offset Surface	Elev	978.3'			is <u>ur</u> Ht	EACE Tome	IN RS	(EST)	GAT	LON		
Elev	Depth 0		Description	Fiel				_	_		cteris	tics		SHT	Ē
978.3	_	1		No.	Nos.So	%	l č.s	F.S.	Silt	Cioy	L.L	. Pl.	w.c		- F
973.3	-4	J0/14/16	BROWN & GRAY SANDY CLAYEY SILT WITH STONE FRAGMENTS		01061	13									
	8			' '	01001	13	10	19	29	29	22	8	10	A-4/	٩ļ
968.3	10														
963.3	 	9/10/18 [/]	BROWN CLAYEY SANDY SILT WITH STONE FRAGMENTS	2	01062	17	10	17	37	19	19	3	10	A-4A	
958.3	16 18 20	7/10/13	BROWN & GRAY SANDY CLAYEY SILT WITH STONE FRAGMENTS	3	01063	19	5	12	39	25	23	9	14	A-4A	
										ĺ		Í			ſ
955.8	22	10/10/13	BROWN & GRAY SANDY CLAYEY SILT WITH STONE FRAGMENTS	4	01064	17	6	14	24	<u></u>	20				
	24	12/19/25	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	1			-		34	I	22	8	13	A-4A	
953.3	26		STATISTICS OF ALL STONE TRADENIS	5	01065	13	5	13	34	35	22	7	13	A-4A	
950.8	28	11/14/19	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	6	01066	n	5	12	39	33	22	7	14	A-4A	
948.3	30	9/15/22	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	7	01067	10	1		35						
		9/13/18	BROWN & GRAY SANDY CLAYEY SILT WITH STONE FRAGMENTS	·							21	8	13	A-4A	
945.8			STATE STORE STORE FRAGMENIS	8	01068	8	5	13	39	35	22	8	14	A-4A	
943.3	<u>34</u> 36	10/12/19	BROWN & GRAY SANDY CLAYEY SILT NITH STONE FRAGMENTS	9	01069	9	6	13	42	30	20	7	14	A-4A	
Form TE-153		Sizes: Ace-	>2 00mm Comm Comme Rout 2000 A 44						[

Form TE-153 Particle Sizes: Agg= >2.00mm, Coarse Sand=2.00-0.42mm, Fine Sand=0.42-0.074mm, Silt=0.074-0.005mm, Clay=< 0.005mm

Boring I	No	Station i	B Offset 764+00 , 110' RT	arfoce Elev. <u>978</u>	.31	-Project:	MOT	- 7	25-	14.1	0				(
Elev.	Depth	Std., Pen.	Description		Field	1 - 1		e F	bysi	ငရှင်	harge	teristic	25		SHTL	1
		(N) 9/12/18		0.00	No.									W.C	Class	
940.8	38		BROWN SANDY CLAYEY SILT WITH STONE FRA		10	01070	21	5	•••	33	30	22	7	n	A-4a	
938.3	40	8/13/26	BROWN & GRAY SANDY CLAYEY SILT WITH ST			01071	28	6	13	28	25	20	6	11	A-4A	ŀ
936.8	42	6/11/21	BROWN & GRAY SANDY CLAYEY SILT WITH ST	ONE FRAGMENTS	12	01072	21	5	8	33	33	26	10	14	A-4A	
	44		$\mathcal{L}_{ extsf{BOTTOM}}$ of boring													
	46															
	48															
	50															
	52			-												
	54			-												
	56						-									
	58															
	60															
	62															
	64															
	66															
	68															
	70															
	72 74									-						
	76					1										
	78	-				1										1
	80															

B-001-0-95

State of Ohio Department of Transportation Office of Materia's Management

METRIC PROLECT

LOG OF BORING

 Bate Startes
 10/23/95
 Schoer: Type
 SS
 Dic. 34.93 mmWater Elev.
 Project dentification: MONTGOMERY

 Bate completed
 10/24/95
 Bate starter
 Bate st

STRUCTURE FOUNDATION INVESTIGATION

æ

E.ev.	Cept:	Stc. NPen, Rec. Loss	Description	5атр е	T	20	ysicc	Chor	rcote	er is-	cs –		- 000-
298.00				No.	Aão					L		₩.2.	Cicss '
297.73		AUGERED					<u> </u>	i –	<u> </u>	F== 1			VISUAL
297.24					-							•	
237.63	1.0		<u>R</u>	1									
		_9/9/14	BROWN SANDY SILT	1	• 0	9	20	44	27	- 26	10	19	A-4A
296.48		• 	Production of the second se									· .	
		. 13/15/15	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS' 11 %	2	: -	-	-	-	-	-	-	11	VISUAL
295.71			N - m		:				;				
	3.0	11/10/11	BROWN SANDY CLAYEY SILT WITH STONE FRAGMENTS	3	1	-	-	-	-	-	-	13	VISUAL
294.95													
		6/9/13	(BROWN SANDY SILT	4	0	11	19	44	26	· 20	6	12	A-4A
294.19	4.0				1								
		.14/19/17	BROWN AND GRAY SANDY SILT	, 5	, 0	8	17	50	25	20	6	11	A-4B
293.43					ì				ĺ				
i	5.0	12/12/12	GRAY SANDY SILT	6	0	10	19	47	24	20	6	10	A-4A
292.67					!		ľ						
ł		3/19/11	GRAY SANDY SILT	7	0	9	17	48	26	20	6	10	A-4A
291.90	0.0				•		ĺ						
Í.		.8/19/17	GRAY SANDY SILT	8	0	8	20	45	27	22	8	12	A-4A
	7.0	1		-		_					-		
		1			1								
290.38					1			i i					
-	8.0	11/18/23	GRAY SANDY SILT	G.	0	6	14	46	34	20	e	13	
		11/10/23	and states and	9	v	0	14	40	34	20	6	13	A-4A
:		-			1			i i					
288.86	9.0				i.								
- 5													
	0.0	16/23/29	GRAY SANDY SILT	10	0	8	16	46	30	- 22	8	10	A-4A
	0.0	-			Ì								
287, 33											-		
-		14/29/33	GRAY SANDY SILT	-11	6	9	19	48	24	20	. 7	13	A-4A
لــــــــــــــــــــــــــــــــــــ	Port'	icle Sizes: Ang= >2.00	MMM, Coarse Sand: 2.00-0.42mm, Fine Sand: 0.42-0.07		Acres 200				1 24 Nove		05mm		n-44
Form 75-51	Pevlaes	9/95							,				

В	oring	g No	<u>B-1 !</u> S+	ation	1& 0	offset 5+996.33, 23.7 m RT. APPROX. Surface Elev	·			ec÷: ys'ca						
	Elev.	Depth	Std. Pen. (N)	Rec.	Loss	Description	Samp No.			F.S.	stit		L.L.	P.I.	W.C.	000T C.ass
	35.8 <u>1</u>		12/14/14			GRAY SANDY SILT	, 1	2 0		21		24			15	A-48
2	54.2 <u>\$</u>	ੱ4 . 0	9/14/20			GRAY SILT AND CLAY	1	.3 0	1	2	46	51	29	12 12	12	A-6A
Ż	82.76	15.0 16.0	. 22/30/41			GRAY SILT AND CLAY	1	.4 4	7	11	44	38	27	11	11	·A-6A
2	81 ,24	:7 . 0	Ź9/38/38			GRAY SILT AND CLAY	1	.5 0	7	'n	48	34	29	13	12	A-6A
2	79.56	18.0	70(15)			NO RECOVERY		. .		-	-	_	-	_	-	VISUAL
		19.0		1.46	:05	LIMESTONE, BLACK, FIRM, CRYSTALLINE, FOSSILIFEROU JOINTED NEAR THE TOP; WITH GRAYISH-GREEN, HARD, H SHALE INTERBEDS (.03 m TO .27 m THICK) THAT COMPS	HIGHLY	CALC	AREOU	IS, WI	EATHE	RED	IN P.	ART	4%.	
2	78.04	20.0														
		2!.0 22.0 23.0				BOITCH	OF BC	DRÍNG		,						
		24.0														:

D	\mathbf{n}		\cap	~ ~
- н		12-0		y 5
D -	$\mathbf{v}\mathbf{v}$		U	15

State of Chio Department of Transportation Office of Matericls Management

METRIC PROJECT

LOC OF POPNO

				LOG OF BORING									MON	теом	nv
Dote S	Started <u>10/23/9</u>	95 S	Sampler: Type <u>SS</u>	Dio. <u>34.93_mm</u> wcte	er Elev. <u>— </u> pov	<u> </u>	_ P-	ojec MOT	- ide -75-i	6 03	iee− sikomi	jour <u>j</u>	1, 1%, /1	I GUIN	<u>-KI</u>
Boring	No. <u>⊴8-2</u> S÷c	ation & O	efset (6+018.8, <u>2</u>3.7 m	LT.(REAR ABUT.) Surf	toce Elev.≙	297.401	n	UYL	K ZK	162					
														ESTI	GATION
	Depth Std. (N) Pen.	Reccss	Descrit	ption		Somp:e	- <u>x</u> -	201	ysicc X	Chor TX		r!s-'	CS 51	W.C.	0007 Ciciss
297.40 297.25	AUGERED -		SOD	· <u> </u>		No.	Ağa,	<u>c:s.</u>	F.S.	Siit	Clay	L.L.	P,I.	n.u.	VISUAL
1			-UUC-												
296.6 <u>4</u>	0 i 6/7/8							6			27	20	10	25	A-6B
	i~6///8	l	BROWN SANDY CLAY			.1	-0	6	16	41	37	39	19	.23	- H-D D
295.88	20 0000		BROIRI CTITU DI AV			2				39	-54	40	17	25	A-6B
	2.08/8/11		BROWN SILTY CLAY			2	· 0	1	6	29	-94	40	11	25	H-00
295-11			BROWN SANDY STLT			3	6	14	20	36	30	20	6	0	A-4A
294.35	3.0 + 5/11/13		RECHIN 24MD4 21F1		ļ	3	U	14	20	30	30	20	0	3	- - - - - - - - - - - -
	8/10/11		BROWN SANDY SILT		L	4	0	14	25	36	25	19	5	9	A-4A
293.59	4.0					-							•		
			BROWN SANDY SILT			5	0	13	20	47	20	19	6	11	A-4A
292.83															
292,07	5.0 6/12/19		GRAY SANDY SILT			6	Ð	10	18	43	29	20	7	11	A-4A
						_	_					!			
701 20	6.0 16/21/20		GRAY SANDY SILT			7	0	12	22	48	18	19	6	7	A-4A
274-20	8/9/10		GRAY SANDY SILT			8	0	10	19	-41	30	21	7	10	A-44
	7.0		GIAN SHOUL SILL			0	Ŭ	1.0	1.	71			·		
289.78									:						
i -	8.0 5/12/14		GRAY SANDY SILT			9	.0	9	19	37	35	23	9	13	A-4A
							ĺ		ĺ					:	
288.26	9.0											ł		İ	
288.26											l				
			GRAY SILTY SAND			10	Ð	22	43	23	12	NP	NP	14	'A-3A
	10.0							ľ							
286.73													ł		ĺ
-	I.C 10/14/18		GRAY SANDY SILT			: 11	0	111	26	42	21	NP	NP	15	A-4A

Particle Sizes: Agg= >2.00mm, Coarse Sand= 2.00-0.42mm, Fine Sand= 0.42-0.074mm, Silt= 0.074-0.005mm, Clay= <0.005mm

3

																A
E	Boring	g No.	i≊ B-2 _st	tatior	າ & ບັ	ffset_6+018.8, 23.7 m.LT. Surface Elev	/. <u>297.4</u>	lûm							0375	MI)
	Elev.	Depth	Std. Pen.	Rec.	Loss	Description	Sample No.	Ağg		ysical F.S.					W.C.	0001 Cicss
ł			(N)		- #		1		<u>c.s.</u>	F.S	<u></u>					0,020
									ľ	1						
.	285.21	12.0														
		13.0	.5/7/11			GRAY SANDY SILT	: 12	-0	8	12	35	45	25	9	-14	×A-4A
ĺ		_												1		
-	283.68	14.0	6/11/15			GRAY SANDY CLAY	13	0	9	13	35	43	28	12	-14	A-6A
		15.0							-							
ľ	282.16		7/11/17			GRAY CLAYEY SILT	-14	0	7	111	33	49	24	10	-13	A-48
		16.0				TOP OF ROCK										
	280, 64	7.0														
4	280.19		9/13/60	· .		GRAY SILT AND CLAY GRAY MEATHERED SHALE (DRILLER'S DESCRIPTION)	15	0	10	14	30	46	25	15		A-6A
4	279.88	8.0		0.76	0.00	GRAT NEATHERED SHALE (URILLER S DESCRIPTION)		- 1		 _		-	-	1 -		VISUAL
					<u> </u>	WEATHERED SHALE, GRAYISH-GREEN, FIRM TO HARD, HI										
		9.0		1.49	0.03	WITH CLAY SEAMS, NON WEATHERED IN PLACES; WITH B LIMESTONE INTERBEDS (0.03m TO 0.36m THICK) THAT CO										
İ						HEAVILY CONCENTRATED IN THE TOP HALF. CORE LOSS										
ŕ	277.59	20.0				L. BOTTON OF BORING										
						DULIUN UF DUKING										
		21.0														
		22.0														
		23.0														
		24.0														
				I												

-