FINAL REPORT STRUCTURE FOUNDATION EXPLORATION BRIDGE OVER TOUSSAINT CREEK OTT-51-03.85 OTTOWA COUNTY, OHIO

Prepared For:

PRIME AE GROUP, INC. 8415 Pulsar Place, Suite 300 Columbus, OH 43240

Prepared by:

NATIONAL ENGINEERING AND ARCHITECTURAL SERVICES INC. 2800 Corporate Exchange Drive, Suite 240 Columbus, Ohio 43231

NEAS PROJECT 22-0027

November 8, 2022

EXECUTIVE SUMMARY

The proposed project includes the design and replacement of the existing the bridge over Toussaint Creek on SR-51 as the proposed project OTT-51-03.85 (PID 80032) 2 miles southeast of the village of Genoa, Ottawa County, Ohio. National Engineering and Architectural Services Inc. (NEAS) has been contracted to perform geotechnical engineering services to supplement the design of the proposed bridge. The purpose of the geotechnical engineering services was to perform geotechnical explorations within the project limits to obtain information concerning the subsurface soil and groundwater conditions relevant to the design and construction of the project.

The subsequent document presents the results of a structure foundation exploration with respect to the proposed construction of the bridge over Toussaint Creek on SR-51. As part of the exploration, NEAS advanced two structure borings, designated B-001-0-21 and B-002-0-21, to a depth of approximately 52.5 feet below the existing ground surface at the rear and forward abutments of the referenced bridge and conducted laboratory testing of collected samples to characterize the soils for engineering purposes. The proposed bridge is a single span bridge with new composite reinforced concrete deck on new integral reinforced concrete abutments with HP pile foundations. The new bridge will be approximately 40 feet wide and 75 feet long.

The subsurface profile at the bridge site is generally consistent with the geological model for the project in regard to the materials encountered. The subsurface profile at the bridge site generally consists of eighteen- to nineteen-inch-thick existing pavement section (asphalt and granular base) underlain by primarily cohesive silty-clay till with minor non-cohesive gravel and stone fragments with sand. Bedrock was encountered within depths of both the borings performed.

Subgrade analyses were performed for the referenced project site to evaluate the soil characteristics for use in pavement design. Unstable subgrade conditions that may require some form of subgrade stabilization within the subgrade per GB1 guidelines were encountered within the project site. The subgrade conditions encountered along SR-51 alignment within the project limits include areas of weak soils and high moisture content soils. Therefore, we recommend spot stabilization in the form of Excavate and Replace (Item 204 with Geotextile) be performed.

Based on the project proposed cross-sections, sidehill fills will be required for the right side embankment slopes at both sides of the bridge. A special benching scheme similar to that shown in Figure 1 of the ODOT GB2 should be used in areas where special benching is recommended. The height and width dimensions of the special benching scheme shown in the figure should be arranged to minimize the required cut and fill quantities, though the height of a single bench shall not exceed 20 ft without a stability analysis and design per OSHA requirements. Additionally, it may be appropriate to adjust the bench slope shown from a 1H:1V to a 1.5H:1V slope since the existing slope is made up of Type C materials. The benched material should be replaced with compacted engineered fill per Item 203 of the ODOT CMS, while proper lift thicknesses and material density should be maintained in the proposed fill per Item 203.06 of the ODOT CMS.

Bridge analyses of deep foundation systems were performed for the two substructure locations for the bridge based on the developed soil profiles at the referenced boring locations. The driven pile foundation system at the proposed substructures will consist of HP steel piles driven to refusal on bedrock. The factored resistance for piles driven to refusal on bedrock is typically governed by structural resistance as opposed to driving resistance for friction piles. Based on our analysis, the deep foundation system will consist of end bearing piles and it is our opinion they will be seated on dolomite bedrock at the approximate elevations of between 568.4 ft and 568.2 ft amsl. Based on the email from Prime AE Group dated November 8, 2022, the scour will not pass through the first layer of the soils at the creek bottom. Therefore, HP piles at both abutments will penetrate at least greater than 15-ft below the maximum estimated scour depth.

Settlement analysis was performed for the proposed rear abutment behind which there will be about 11.8 feet of new embankment fill. Based on our analysis the ground surface at the rear abutment is estimated to experience about 3.5 inches of immediate settlement and 5.6 inches of long-term (consolidation) settlement from the induced loads associated with the 11.8-ft high embankment. The immediate settlement is expected to take place during construction prior to bridge loading and is not anticipated to be a concern; however, ninety percent (90%) of the long-term settlement will take place 260 days following embankment construction. Since the embankment fill above the rear abutment footing (less than 2 ft wide) will be carried by the rear abutment, the surcharge loads will then be transferred from the abutment to the piles; therefore, it is our opinion that the piles will not be subjected to downdrag loads. However, the proposed rear approach slab will experience the above estimated settlement without ground improvement.

Global stability was performed for the proposed bridge abutments for long-term (Effective Stress) and short-term (Total Stress) slope stability. Based on our slope stability analyses for the referenced abutment locations, the minimum slope stability safety factors for short-term (Total Stress) and long-term (Effective Stress) conditions exceeded the desired value of 1.54. It is our opinion that the subsurface conditions encountered at the project site are generally satisfactory and the site can be considered to be stable at short-term and long-term condition.

A seismic site class was also determined at the overall bridge site, in which a Seismic Site Class of E is recommended.

TABLE OF CONTENTS

1. INT	RODUCTION	5
1.1.	GENERAL	5
1.2.	PROPOSED CONSTRUCTION	
2. GE	OLOGY AND OBSERVATIONS OF THE PROJECT	5
2.1.	GEOLOGY AND PHYSIOGRAPHY	
2.2.	HYDROLOGY/HYDROGEOLOGY	6
2.3.	MINING AND OIL/GAS PRODUCTION	
2.4.	HISTORICAL RECORDS AND PREVIOUS PHASES OF PROJECT EXPLORA	TION6
2.5.	SITE RECONNAISSANCE	
3. EXI	PLORATION	
3.1.	FIELD EXPLORATION PROGRAM	
3.2.	LABORATORY TESTING PROGRAM	
3.2.	J	
3.2.2		
3.2	$= 30$, $\dots = 30$, $\dots = 1$	
4. FIN	DINGS	
4.1.	SUBSURFACE CONDITIONS	
4.1.		
4.1.2	2. Groundwater	
4.1	=	
5. ANA	ALYSES AND RECOMMENDATIONS	
5.1.		
0.11	SOIL PROFILE FOR ANALYSIS	
5.2.	PAVEMENT DESIGN AND RECOMMENDATIONS	17
5.2. 5.2.	PAVEMENT DESIGN AND RECOMMENDATIONS 1. Pavement Design Recommendations	
5.2. 5.2. 5.2.	PAVEMENT DESIGN AND RECOMMENDATIONS 1. Pavement Design Recommendations 2. Unsuitable/Unstable Subgrade	
5.2. 5.2. 5.2. 5.2.	PAVEMENT DESIGN AND RECOMMENDATIONS 1. Pavement Design Recommendations 2. Unsuitable/Unstable Subgrade 2.2.1. Rock	
5.2. 5.2. 5.2. 5.2. 5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS 1. Pavement Design Recommendations 2. Unsuitable/Unstable Subgrade 2.2.1. Rock 2.2.2. Prohibited Soils	
5.2. 5.2. 5.2. 5.2. 5. 5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils	17 17 18 18 18 18 18
5.2. 5.2. 5.2. 5. 5. 5. 5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils	
5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 2.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations	
5.2. 5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 2. 5. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 5. 2. 5. 5. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization	17 17 18 18 18 18 18 18 19 19 19
5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization	17 17 18 18 18 18 18 18 19 19 19 19
5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 5. 2. 5. 2.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction Recommendations	17 17 18 18 18 18 18 18 19 19 19 19 19
5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 5. 2. 5. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction RecommendationsBRIDGE FOUNDATION ANALYSIS AND RECOMMENDATIONS	17 17 18 18 18 18 18 18 18 18 18 19 19 19 19 20 20 20
5.2. 5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction RecommendationsBRIDGE FOUNDATION ANALYSIS AND RECOMMENDATIONS1. Pile Foundation Recommendations	17 17 18 18 18 18 18 18 18 19 19 19 19 20 20 20 20
5.2. 5.2. 5.2. 5.2. 5. 5. 5. 5.2. 5. 5.2. 5.3. 5.5. 5.5. 5.5. 5.	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction RecommendationsBRIDGE FOUNDATION ANALYSIS AND RECOMMENDATIONS1. Pile Foundation Recommendations2. Pile Drivability	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.2. 5.2. 5.2. 5.2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction RecommendationsBRIDGE FOUNDATION ANALYSIS AND RECOMMENDATIONS1. Pile Foundation Recommendations2. Pile Drivability3. Settlement	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.2. 5.2. 5.2. 5.2. 5. 5. 5. 5. 5.2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction Recommendations1. Pile FOUNDATION ANALYSIS AND RECOMMENDATIONS1. Pile Foundation Recommendations2. Pile Drivability3. Settlement4. Global Stability	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.2. 5.2. 5.2. 5.2. 5. 5. 5. 5.2. 5. 5. 5.2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	PAVEMENT DESIGN AND RECOMMENDATIONS1. Pavement Design Recommendations2. Unsuitable/Unstable Subgrade2.2.1. Rock2.2.2. Prohibited Soils2.2.3. Weak Soils2.2.4. High Moisture Content Soils3. Stabilization Recommendations2.3.1. Subgrade Stabilization2.3.2. Chemical Stabilization4. Embankment Construction RecommendationsBRIDGE FOUNDATION ANALYSIS AND RECOMMENDATIONS1. Pile Foundation Recommendations2. Pile Drivability3. Settlement	$\begin{array}{c} 17\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 19\\ 19\\ 19\\ 19\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 21\\ 21\\ 21\\ 21\\ 22\\ 22\\ \end{array}$

LIST OF TABLES

TABLE 1:	PROJECT BORING SUMMARY	12
TABLE 2:	SCOUR ANALYSIS PARAMETERS	
TABLE 3:	GROUNDWATER SUMMARY	15
TABLE 4:	BEDROCK SUMMARY	15
TABLE 5:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-001-0-21	16
TABLE 6:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES - AT BORING B-004-0-21	17
TABLE 7:	PAVEMENT DESIGN VALUES	18
TABLE 8:	WEAK SOILS SUMMARY	18
TABLE 9:	HIGH MOISTURE CONTENT SOILS SUMMARY	19
TABLE 10:	STABILIZATION RECOMMENDATIONS	19
TABLE 11:	ESTIMATED HP PILE LENGTHS AND MAXIMUM FACTORED STRUCTURAL RESISTANCE	21
TABLE 12:	GLOBAL STABILITY ANALYSIS SUMMARY	22

LIST OF APPENDICES

APPENDIX A: BORING PLAN APPENDIX B: SOIL BORING LOGS AND TEST RESULTS APPENDIX C: GB1 ANALYSIS APPENDIX D: SETTLEMENT ANALYSIS APPENDIX E: GLOBAL STABILITY ANALYSIS

1. INTRODUCTION

1.1. General

NEAS presents our Structure Foundation Exploration Report to supplement the design and replacement of the existing bridge carrying SR-51 over Toussaint Creek as the proposed project OTT-51-03.85 (PID 80032) 2 miles southeast of the village of Genoa, Ottawa County, Ohio. This report presents a summary of the encountered surficial and subsurface conditions and our recommendations for bridge foundation design and construction in accordance with Load and Resistance Factor Design (LRFD) method as set forth in AASHTO's Publication *LRFD Bridge Design Specifications, 9th Edition* with 2020 interim revisions (BDS) (AASHTO, 2020) and *ODOT's 2022 LRFD Bridge Design Manual* (BDM) (ODOT, 2022).

The exploration was conducted in general accordance with Barr Engineering, Inc.'s DBA NEAS, Inc. proposal to Prime AE Group, Inc., dated November 24, 2021 and with the provisions of ODOT's *Specifications for Geotechnical Explorations* (SGE) (ODOT, 2022). With respect to the proposed bridge replacement project, two structure borings, designated B-001-0-21 and B-002-0-21, were drilled to depths of approximately 52.5 feet below the existing ground surface at the rear and forward abutments of the referenced bridge.

The scope of work performed by NEAS as the referenced project included: a review of published geotechnical information; performing 2 total test borings; laboratory testing of soil samples in accordance with the SGE; performing geotechnical engineering analysis to assess foundation design and construction considerations; and development of this summary report.

1.2. Proposed Construction

The proposed project consists of the replacement of the bridge over Toussaint Creek on SR-51. The existing bridge is a two-span steel multibeam bridge on full height abutments and a wall type pier. The proposed bridge is a single span bridge with reinforced concrete deck on semi-integral abutments on HP piles driven to refusal on bedrock.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiography

The project site lies in the Woodville Lake-Plain Reefs, which is a very low relief lacustrine plain with low dunes and lake-margin features, punctuated by more than 75 ancient bedrock reefs rising 10 feet to 40 feet above the level of the plain and ranging in area from 0.1 to 3.0 square miles. The oblong reefs are thinly draped with drift. The elevation of this region is at the elevation of 600 feet to 775 feet. The till in this region is described as thin to absent Wisconsinan-age wave-planed clay till, lacustrine deposits and sand over Silurian-age reefal Lockport dolomite (ODGS, 1998).

The geology at the project site is mapped as an average of 10 ft of Holocene-age alluvium underlain by an average of 40 ft of Wisconsinan-age silty clay till, all underlain by Silurian-age Dolomite bedrock (ODGS, 2005). The alluvium is described as including a wide variety of textures from silt and clay to boulders; commonly containing organics and generally not compact. The silty clay till is described as

unsorted mix of silt, clay, sand, gravel, and boulders with high carbonate content, may contain silt, sand, and gravel lenses and is very sparsely pebbly. Joints/fractures are common. Differentiated from other till units by having a higher clay content. Silty clay till at depth may include unspecified till units of various lithologies and may include clay and silt beds.

Based on the Bedrock Geologic Units Map of Ohio (USGS & ODGS, 2006), bedrock within the project area consists of Dolomite, of the Lockport Dolomite formation. This formation is comprised of Silurian-age Dolomite. The Dolomite found in this formation is described as shades of white to medium gray in color, medium to massive bedded, fine to coarse crystalline, fossiliferous, and vuggy. The bedrock appears to follow the natural topography of the site which is relatively flat (ODGS, 2003). Based on the ODNR bedrock topography map of Ohio, bedrock elevations at the project site can be expected at about 560 ft amsl, putting bedrock at depths ranging from about 35 ft below ground surface (bgs) to about 40 ft below ground surface (bgs).

The soils at the project site have been mapped (Web Soil Survey) by the Natural Resources Conservation Service (USDA, 2015) as primarily Genesee silt loam. Soils in the Genesee series are characterized as very deep, well drained soils formed in loamy alluvium on flood plains. The Genesee series is comprised of primarily fine-grained soils and classifies as A-4 and A-6 type soils according to the AASHTO method of soil classification.

2.2. Hydrology/Hydrogeology

Groundwater at the project site can be expected at an elevation consistent with that of the nearby Toussaint Creek as it is the most dominant hydraulic influence in the vicinity of the project's boundaries. The water level of the Toussaint Creek may be generally representative of the local groundwater table. However, it should be noted that perched groundwater systems may be existent in areas due to the presence of fine-grained soils making it difficult for groundwater to permeate to the phreatic surface.

The project site is located within a regulatory floodway (Zone AE) based on available mapping by the Federal Emergency Management Agency's (FEMA) National Flood Hazard mapping program (FEMA, 2016).

2.3. Mining and Oil/Gas Production

One active surface mine (ID# IM-0292) is noted on ODNR's Mines of Ohio Locator about 1.25 miles west of the project site (ODNR [1], 2022).

No oil or gas wells are noted on ODNR's Ohio Oil & Gas Locator in the vicinity of the project site (ODNR [2], 2020).

2.4. Historical Records and Previous Phases of Project Exploration

No reports/plans were available for review or evaluation for this report for estimating bedrock elevation according ODOT's Transportation Information Mapping System (TIMS)., therefore; historic borings are not referenced within this report nor within the bridge specific project developed Structure Foundation Exploration Sheets.

2.5. Site Reconnaissance

A field reconnaissance visit for the bridge carrying SR-51 over Toussaint Creek was conducted on May 10, 2022, approximately 2 miles southeast of the village of Genoa in Ottawa County, Ohio. During our field reconnaissance, site conditions were noted and photographed. Land use at the project site can be described as a combination of woodland, agricultural and residential.

The existing bridge carrying SR-51 over Toussaint Creek is a two-span, steel multi-beam bridge with one lane of traffic in each direction on a concrete deck with an asphalt wearing course (Photograph 1). The bridge sits atop full height concrete abutments and a concrete wall type pier with concrete wingwalls. Foundation type was unknown at the time of the site visit. The roadway embankment slopes at the site, generally appeared to be stable with no signs of instability observed during our site visit. The existing roadway embankments appeared to be at about a 2 Horizontal to 1 Vertical (2H:1V) slope and were lightly vegetated. Overall, the bridge appeared to be in fair condition with wear and degradation observed on the bridge superstructure and substructure. Heavy corrosion and section loss was observed in the midspan beam ends and the intersecting stringers (Photograph 2). The midspan expansion joint seal was observed to have failed. The area around the bearing seats of both abutments were observed to have cracking, efflorescence and heavily spalling with exposed corroded rebar (Photograph 3). The southeastern abutment was observed to have a large crack running almost the full height of the abutment on the western end (Photograph 4). A large drainpipe was observed to be running through the northwestern abutment (Photograph 5). The central pier was observed to have cracking and spalling with exposed rebar that was concentrated around the bearing seats and was noted to be especially deteriorated at the eastern end (Photograph 6). Retaining walls were observed past the western ends of both abutments. The retaining wall just past the southeastern abutment was observed to be in markedly worse condition (heavy cracking, spalling and disintegration) (Photograph 7) than the retaining wall just past the northwestern abutment (cracking and light spalling) (Photograph 8). The underside of the bridge deck was observed to be in good condition with the only signs of distress being cracking, spalling and exposed rebar near the guardrail connections. Heavy scour was not observed at the abutments or pier, however the level of the Toussaint Creek made ascertaining the amount of scour difficult. No apparent signs of structural distress of the bridge due to geotechnical concerns were observed during our field reconnaissance visit.

In general, the existing bridge structure appeared to be well drained with no signs of significant erosion at the bridge site. Some erosion of the creek banks was observed west of the existing bridge. The asphalt wearing course was observed to be in poor condition with signs of surface wear. The area around the expansion joints was noted as being especially distressed. Longitudinal and transverse cracking was common in the asphalt wearing course as well as map cracking, raveling, potholing, patching, and crack sealing deficiencies (Photograph 9). Water was directed directly off of either side of the roadway and bridge deck. No signs of standing water were observed.

Photograph 1: Steel Multi-Beam Superstructure of Bridge

Photograph 2: Corrosion and Section Loss at Mid-Span Beam Ends and Stringers

Photograph 3: Heavy Spalling and Exposed Rebar at Southeastern Abutment Bearing Seats

Photograph 4: Large Crack in Southeastern Abutment

Photograph 5: Drainage Pipe Running Through Northwestern Abutment

Photograph 6: Spalling and Exposed Rebar at Eastern End of Pier

Photograph 7: Retaining Wall Connected to the Southeastern Abutment

Photograph 8: Retaining Wall Connected to the Northwestern Abutment

Photograph 9: Asphalt Wearing Course

3. EXPLORATION

3.1. Field Exploration Program

The exploration for proposed bridge was conducted by NEAS between June 1, 2022 and June 3, 2022 and included 2 structure borings drilled to a depth of 52.5 ft bgs. The boring locations were selected by NEAS in general accordance with the guidelines contained in the SGE with the intent to evaluate subsurface soil and groundwater conditions. Borings were typically located near the substructure of the proposed bridge in locations that were not restricted by maintenance of traffic, underground utilities or dictated by terrain (i.e. steep embankment slopes). Each as-drilled project boring location and corresponding ground surface elevation was surveyed in the field by NEAS (project surveyor) following completion. Each individual project boring log (included within Appendix B) includes the recorded boring latitude and longitude location (based on the surveyed Ohio State Plane North, NAD83, location) and the corresponding ground surface elevation. Elevations of the borings are shown on Table 1 below.

Table 1: I	Project Boring	Summary
------------	----------------	---------

Boring Number	Location (Sta/offset)	Latitude	Longitude	Elevation (NAVD 88) (ft)	Depth (ft)	Substructure
B-001-0-21	Sta. 102+78, 14' RT	41.506050	-83.320695	608.9	52.5	Rear Abutment
B-002-0-21	Sta. 104+02, 14' LT	41.506289	-83.321032	608.7	52.5	Forward Abutment

Structure borings were drilled using a CME 55X truck mounted drilling rig utilizing 3.25-inch diameter hollow stem augers. In general, soil samples were recovered continuously to a depth of 7.5 ft bgs, then at intervals of 2.5-ft to a depth of 31.5 ft bgs and at 5.0-ft intervals thereafter using a split spoon sampler (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils."). Both borings encountered bedrock and were advanced for sampling using an NQ2-seris core barrel, water circulation method. The soil samples obtained from the exploration program were visually observed in the field by the NEAS field representative and preserved for review by a Geologist and possible laboratory

testing. Standard penetration tests (SPT) were conducted using a CME auto hammer that has been calibrated to be 79% efficient (indicated on the boring logs) on January 24, 2022.

Field /boring logs were prepared by drilling personnel, and included lithological description, SPT results recorded as blows per 6-inch increment of penetration and estimated unconfined shear strength values on specimens exhibiting cohesion (using a hand-penetrometer). Groundwater level observations were recorded both during and after the completion of drilling. These groundwater level observations are included on the individual boring logs. After completing the borings, the boreholes were backfilled with either auger cuttings, bentonite chips, or a combination of these materials.

3.2. Laboratory Testing Program

The laboratory testing program consisted of classification testing and moisture content determinations. Data from the laboratory-testing program were incorporated onto the boring logs (Appendix B). Soil samples are retained at the laboratory until ODOT Stage 2 approval, after which time they will be discarded.

3.2.1. Classification Testing

Representative soil samples were selected for index properties (Atterberg Limits) and gradation testing for classification purposes on approximately 59% of the samples. At each boring location, samples were selected for testing with the intent of identification and classification of all significant soil units. Soils not selected for testing were compared to laboratory tested samples/strata and classified visually. Moisture content testing was conducted on all samples. The laboratory testing was performed in general accordance with applicable AASHTO specifications.

A final classification of the soil strata was made in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" once laboratory test results became available. The results of the soil classification are presented on the boring logs provided in Appendix B.

3.2.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils were performed at varying intervals (i.e., 2.5-ft or 5.0-ft intervals) in the project borings performed. To account for the high efficiency (automatic) hammers used during SPT sampling, field SPT N-values were converted based on the calibrated efficiency (energy ratio) of the specific drill rig's hammer. Field N-values were converted to an equivalent rod energy of 60% (N₆₀) for use in analysis or for correlation purposes. The resulting N₆₀ values are presented on the boring logs provided in Appendix B.

3.2.3. D₅₀ values for Scour Evaluation

Grain size distribution testing was performed on the obtained streambed samples to develop D_{50} values (i.e., the diameter in the particle-size distribution curve corresponding to 50% finer). Scour critical shear stress and erosion category were determined based upon the equations found in section 1302 of the Geotechnical Design Manual. The calculated D_{50} values as well as the scour critical shear stress and erosion category are shown in Table 2 below and the developed particle-size distribution curves are included with the associated boring logs within Appendix B.

Boring Number	Specimen Elevation (ft)	ODOT (Modified AASHTO) ~ USCS Classification	D50 (mm)	Scour Critical Shear Stress, τc (psf)	Erosion Category (EC)
	590.9' - 588.9'	A-6a ~ Sandy Lean Clay (CL)	0.014	0.156	3.255
B-001-0-21	588.9' - 587.4'	A-4a ~ Lean Clay with Sand (CL)	0.012	0.387	2.754
B-001-0-21	587.4' - 585.9'	A-6a ~ Lean Clay with Sand (CL)	0.010	0.751	3.255
	585.9' - 584.4'	A-6a ~ Lean Clay with Sand (CL)	0.005	0.821	3.337
	590.7' - 589.2'	A-1-b ~ Silty Sand with Gravel (SM)	1.011	0.021	2.206
B-002-0-21	589.2' - 587.7'	A-6a ~ Lean Clay with Sand (CL)	0.010	0.693	3.337
B-002-0-21	587.7' - 586.2'	A-4a ~ Sandy Lean Clay (CL)	0.005	0.966	3.550
	586.2' - 584.7'	A-4a ~ Sandy Lean Clay (CL)	0.032	0.403	2.868

Table 2:Scour Analysis Parameters

4. FINDINGS

The subsurface conditions encountered during NEAS's explorations are described in the following subsections and on each boring log presented in Appendix B. The boring logs represent NEAS's interpretation of the subsurface conditions encountered at each boring location based on our site observations, field logs, visual review of the soil samples by NEAS's geologist, and laboratory test results. The lines designating the interfaces between various soil strata on the boring logs represent the approximate interface location; the actual transition between strata may be gradual and indistinct. The subsurface soil and groundwater characterizations included herein, including summary test data, are based on the subsurface findings from the geotechnical explorations performed by NEAS as part of the referenced project, and consideration of the geological history of the site.

4.1. Subsurface Conditions

The subsurface profile at the bridge site is generally consistent with the geological model for the project in regard to the materials encountered. The subsurface profile at the bridge site generally consists of eighteen- to nineteen-inch-thick existing pavement section (asphalt and granular base) underlain by primarily cohesive silty-clay till with minor non-cohesive gravel and stone fragments with sand. Bedrock was encountered within depths of both the borings performed.

4.1.1. Overburden Soil

At the proposed bridge site, the soils encountered below the pavement section comprised of primarily cohesive silty-clay till to a depth of 36.5 ft bgs (elevation 572 ft asml). The exception that a thin layer of non-cohesive soil classified as Stone Fragments with Sand (A-1-b) was encountered at the depths between 17.4 ft bgs and 19.5 ft bgs (elevations 591.3 ft and 589.2 ft asml, respectively). Below the silty-clay till, a four feet thick granular soil classified as Stone Fragments with Sand (A-1-b) were encountered in both borings.

The cohesive natural silty-clay till encountered are classified on the borings logs as Sandy Silt (A-4a), Silt and Clay (A-6a), Silty Clay (A-6b) and Clay (A-7-6). The soils of this stratum can be described as having a medium stiff to hard consistency based on N_{60} values between 4 and 68 and unconfined compressive strengths (estimated by means of hand penetrometer) between approximately 1.0 and 4.5 ton per square foot (tsf). Natural moisture contents of the cohesive silty-clay till ranged from 10 to 28 percent in moisture. Based on Atterberg Limits test performed on representative samples of the natural till soils, the liquid and plastic limits ranged from 20 to 46 percent and 13 to 23 percent, respectively.

The non-cohesive soils in this stratum are classified on the boring logs as Gravel and Stone Fragments with Sand (A-1-b). These non-cohesive soils are described as very loose to medium dense in compactness correlating to N_{60} values between 3 and greater than 50. The majority natural moisture content of the outwash stratum ranged from 6 to 8 percent.

4.1.2. Groundwater

Groundwater measurements were taken during the boring drilling procedures and immediately following the completion of each borehole. Groundwater was encountered during drilling and after drilling in both bridge borings (see Table 3). Based on these borings, groundwater was encountered between depths of 20.0 and 18.0 ft bgs (elevations 588.9 ft and 590.7 ft amsl, respectively).

It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration.

Boring ID	Free Water Depth (ft)	Free Water Elevation (ft)	Static Water Depth (ft)	Static Water Elevation (ft)
B-001-0-21	20.0	588.9	-	-
B-002-0-21	18.0	590.7	-	-

Table 3:Groundwater Summary

4.1.3. Bedrock

Bedrock was encountered in both project borings performed at the proposed bridge substructures and was classified as Dolomite. Bedrock was presented at a depth of 40.5 ft bgs (elevations 568.4 and 568.2 ft amsl). The top 2 feet of dolomite was observed to be gray, highly weathered, slightly strong. The cored dolomite was observed to be gray and brownish gray, unweathered to slightly weathered, moderately strong to strong, thin to medium bedded. Recovery of the bedrock core runs performed ranged from 97 to 99 percent while the Rock Quality Designation (RQD) values ranged from 80 to 88 percent. A summary of the bedrock data is presented in Table 4 below.

Table 4:Bedrock Summary

Boring Number	Type of Rock	Depth to Bedrock (ft)	Depth to Top of Core Sample (ft)	Top of Rock	Bedrock Recovery (%)	Bedrock RQD (%)
B-001-0-21	Dolomite	40.5	42.5	568.4	99	80
B-002-0-21	Dolomite	40.5	42.5	568.2	97	88

5. ANALYSES AND RECOMMENDATIONS

The proposed project consists of the replacement of the bridge over Toussaint Creek on SR-51 in Ottawa County, Ohio. It is our understanding that the proposed bridge is a single span bridge on new semi-integral reinforced concrete abutments with HP pile foundations.

Based on the above information in addition to: 1) the soil characteristics gathered during the subsurface exploration (i.e., SPT results, laboratory test results, etc.); 2) the developed generalized soil profile and estimated engineering properties and other design assumptions presented in subsequent sections of this report; and, 3) the proposed bridge site plans provided by Prime AE Group, Inc. Geotechnical design elements for the proposed project will include:

- Pavement Design and Recommendations
- **Deep Foundation Analysis**
- Settlement •
- **Global Stability**

The geotechnical engineering analyses were performed in accordance with ODOT's BDM (ODOT, 2022) and AASHTO's LRFD BDS (AASHTO, 2020). Design recommendations are provided in the following sections.

5.1. Soil Profile for Analysis

For analysis purposes, each substructure location (boring log) was reviewed and a generalized material profile was developed for analysis. Utilizing the generalized soil profile, engineering properties for each soil strata were estimated based on the field (i.e., SPT N₆₀ Values, hand penetrometer values, etc.) and laboratory (i.e., Atterberg Limits, grain size, etc.) test results using correlations provided in published engineering manuals, research reports and guidance documents. The developed soil profile and estimated engineering soil properties for use in analysis (with sited correlation/reference material) is summarized within Tables 5 through 6 below.

	OTT-51-03.85 over Toussaint Creek: Rear Abutment, B-001-0-21								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)			
Silt and Clay Elevation (608.9 ft - 600.9 ft)	108	108	118	1,100	100	22			
Sandy Silt Elevation (600.9 ft - 598.4 ft)	102	102	112	450	50	20			
Silt and Clay Elevation (598.4 ft - 595.9 ft)	108	108	118	800	100	21			
Clay Elevation (595.9 ft - 590.5 ft)	112	102	112	500	50	20			
Silt and Clay Elevation (590.5 ft - 588.9 ft)	112	102	112	450	50	20			
Sandy Silt Elevation (588.9 ft - 587.4 ft)	122	112	122	2,500	150	25			
Silt and Clay Elevation (587.4 ft - 581.9 ft)	122	112	122	2,900	150	25			
Sandy Silt Elevation (581.9 ft - 572.4 ft)	130	120	130	5,150	225	27			
Gravel with Sand Elevation (572.4 ft - 568.4 ft)	140	130	140	-	-	37			
Notes: 1 Values interpreted from Geotechnical Bulletin 7 Table 1									

Table 5: Soil Profile and Estimated Engineering Properties - At Boring B-001-0-21

les interpreted from Geotechnical Bulletin 7 Ta

Values interpreted from Geotechnical Bulletin 7 Table 1. Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.

Values interpreted from Geotechnical Bulletin 7 Table 2.

OTT-51-03.85 over Toussaint Creek: Forward Abutment, B-002-0-21								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)		
Silty Clay Elevation (608.7 ft - 600.7 ft)	110	110	120	1,450	115	23		
Clay Elevation (600.7 ft - 598.2 ft)	108	108	118	950	100	22		
Silt and Clay Elevation (598.2 ft - 595.7 ft)	105	105	115	600	75	21		
Sandy Silt Elevation (595.7 ft - 591.3 ft)	118	108	118	800	100	21		
Gravel with Sand Elevation (591.3 ft - 589.2 ft)	128	118	128	-	-	34		
Silt and Clay Elevation (589.2 ft - 587.7 ft)	125	115	125	3,350	180	25		
Silty Clay Elevation (587.7 ft - 586.2 ft)	135	125	135	5,850	250	28		
Sandy Silt Elevation (586.2 ft - 574.7 ft)	130	120	130	4,700	225	27		
Sandy Silt Elevation (574.7 ft - 572.2 ft)	140	130	140	7,950	250	28		
Gravel with Sand Elevation (572.2 ft - 568.2 ft)	140	130	140	-	-	37		
Elevation (572.2 ft - 568.2 ft) 100 110 100 Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1. 2. Values calculated from Terzaghi and Peck (1967) if N1 e0 <52, else Stroud and Butler (1975) was used.								

Table 6:Soil Profile and Estimated Engineering Properties - At Boring B-004-0-21

5.2. Pavement Design and Recommendations

The subgrade analysis was performed in accordance with ODOT's GB1 criteria utilizing the ODOT provided *GB1: Subgrade Analysis Spreadsheet* (GB1_SubgradeAnalysis.xls, Version 14.6 dated February 11, 2022). Input information for the spreadsheet was based on the soil characteristics gathered during NEAS's subgrade exploration (i.e., SPT results, laboratory test results, etc.), and our geotechnical experience. For analysis purposes, the roadway elevations were determined based on the proposed profiles shown in the site plans provided by Prime AE Group, Inc. via email on May 23, 2022.

A GB1 analysis was performed to identify the method, location, and dimensions (including depth) of recommended subgrade stabilization in the referenced project plan. Appropriate stabilization of the subgrade will ensure a constructible pavement buildup, enhance pavement performance over its life, and help reduce costly extra work change orders (ODOT SGE, 2022). In addition to identifying stabilization recommendations, pavement design parameters are also determined to aid in pavement section design. The subsections below present the results of our GB1 analysis including pavement design parameters and unsuitable subgrade conditions if any identified within the project limits. GB1 analysis spreadsheet for the referenced roadway segment is provided in Appendix C.

5.2.1. Pavement Design Recommendations

It is our understanding that pavement analyses and design are to be performed to determine the proposed pavement section of SR-51. GB1 analyses were performed using the subgrade soil data obtained for the referenced roadway segment to evaluate the soil characteristics for use in pavement design. The subgrade analysis parameters recommended for use in pavement design for the referenced roadway segment are presented in Table 7. Provided in the table are average Plasticity Index (PI) values, ranges of maximum, minimum and average N_{60L} values for the indicated segments as well as the design CBR value recommended for use in pavement design.

Table 7:	Pavement Design Values

Segment	Maximum	Minimum	Average	Average PI	Design
	N _{60L}	N _{60L}	N _{60L}	Values	CBR
SR-51	11	5	8	15	6

5.2.2. Unsuitable/Unstable Subgrade

Per ODOT's GB1, the presence of select subgrade conditions may require some form of subgrade stabilization within the subgrade zone for new pavement construction. These unsuitable and unstable subgrade conditions generally include the presence of rock, specific soil types, weak soil conditions, and overly moist soil conditions. With respect to the planned roadways, these subgrade conditions are further discussed in the following subsections.

5.2.2.1. Rock

Rock was not encountered within top 2 ft of the proposed grade in both borings performed; therefore, no specialized remediation efforts are required.

5.2.2.2. Prohibited Soils

Prohibited soil types, per the GB1, include A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, and soils with liquid limits greater than 65. No prohibited soils were encountered within the subgrade of the referenced project roadway.

5.2.2.3. Weak Soils

Soils for which the lowest N_{60} (N_{60L}) at the referenced boring location is less than or equal to 12 bpf and in some cases less than 15 bpf (i.e., where moisture content is greater than optimum plus 3 percent) subgrade stabilization depths are recommended per *Figure B* - *Subgrade Stabilization* within the GB1. It should be noted that for the purposes of this report the term "weak soils" has been assumed to represent subgrade soils of these conditions. At the project site, weak soils were encountered in one project boring B-001-0-21 within the subgrade depth, are summarized in Table 8 below.

			Reme	diation Depth (ir	nches)			
Boring ID	N _{60L}	Subgrade Depth (ft)	Excavate and Replace (Item 204 w/ Geotextile)	Excavate and Replace (Item 204 w/ Geogrid - SS	Chemical Stabilization (Item 206)			
B-001-0-21	13	0.0 - 1.5	12	N/A	14			
Note: N/A, Not A	Note: N/A, Not Applicable based on GB1- Figure B - Subgrade Stabilization							

Table 8:Weak Soils Summary

5.2.2.4. High Moisture Content Soils

High moisture content soils are defined by the GB1 as soils that exceed the estimated optimum moisture content (per *Figure A - Optimum Moisture Content* within the GB1) for a given classification by 3 percent or more. At the project site, high moisture content soils were encountered in one boring B-001-0-21 within the subgrade depth, are summarized in Table 9 below.

	0			J
Boring ID	Soil Type	Moisture Content (%)	Optimum Moisture Content (%)	Depth Below Subgrade (ft)
B-001-0-21	A-6a	17	14	00-15

Table 9:	High Moisture	Content Soils	Summary
----------	---------------	----------------------	---------

5.2.3. Stabilization Recommendations

5.2.3.1. Subgrade Stabilization

Unstable subgrade conditions, specifically weak and high moisture content soils, were encountered in boring B-001 as previously indicated in Section 5.2.2. of this report. Therefore, NEAS recommend spot stabilization in the form of Excavate and Replace as summarized in Table 10 below. Chemical stabilization is not recommended due to chemical stabilization is generally more economical when stabilizing large areas (approximately greater than 1 mile of roadway) per ODOT's GB1. Excavations are estimated to extend to a depth of 12 inches below the proposed subgrade with the excavated material being replaced with material in accordance with Section F "Excavate and Replace (Item 204)" of the ODOT GB1. Stabilization limits should extend 18-inches beyond the edge of the proposed paved roadway, shoulder or median and it is recommended removing any topsoil, existing pavement materials or abandoned structure foundation materials.

Table 10:Stabilization Recommendations

		Remed	liation Depth (inches)									
Segment	Average N _{60L}	Excavate and Replace (Item 204 w/ Geotextile)	Excavate and Replace (Item 204 w/ Geogrid - SS 861)	Chemical Stabilization (Item 206)									
Begin to Sta. 102+93	10	12	N/A	14									
Sta. 104+02 to End	12	N/A	N/A	N/A									
Note: N/A, Not Applicable b	Note: N/A, Not Applicable based on GB1- Figure B - Subgrade Stabilization												

5.2.3.2. Chemical Stabilization

Another alternative is chemical stabilization utilizing cement as the stabilization chemical. Designer should perform a cost analysis of the stabilization options using bid tabs. Generally, chemical stabilization is more economical when stabilizing large areas (approximately greater than 1 mile of roadway) per ODOT's GB1. Additionally, the chemical stabilization of the subgrade soils of the above referenced roadway should be performed to the recommended depths provided in above and extend a minimum of 18-inches beyond the edge of the paved roadway, shoulder or median. The mix design should be conducted in accordance with ODOT's CMS Supplement 1120 (Mixture Design for Chemically Stabilized Soils). For design purposes it may be assumed that the lime addition will be 5% using the following formula.

Cement:
$$C = 0.75 \times T \times 115 \times 0.05$$

Where:

C = amount of chemical in pounds / square yard and

T = thickness of the treatment zone in inches

A dry density of 115-pounds per cubic foot (pcf) is assumed.

5.2.4. Embankment Construction Recommendations

Based on the project proposed cross-sections, sidehill fills will be required for the right side embankment slopes at both sides of the bridge. For sidehill fills planned on existing slopes steeper than 4H:1V, ODOT's GB2 recommends that the embankment slopes be constructed utilizing special benching in order to blend the new embankment with the existing slope to prevent the development of a weak shear plane at the interface between the proposed fill and existing slope material (ODOT [2], 2017). A special benching scheme similar to that shown in Figure 1 of the ODOT GB2 should be used in areas where special benching is recommended. The height and width dimensions of the special benching scheme shown in the figure should be arranged to minimize the required cut and fill quantities, though the height of a single bench shall not exceed 20 ft without a stability analysis and design per OSHA requirements. Additionally, it may be appropriate to adjust the bench slope shown from a 1H:1V to a 1.5H:1V slope since the existing slope is made up of Type C materials. The benched material should be replaced with compacted engineered fill per Item 203 of the ODOT CMS, while proper lift thicknesses and material density should be maintained in the proposed fill per Item 203.06 of the ODOT CMS. In situations where it is not practical to extend the final bench through the existing roadway due to maintenance of traffic concerns, a benching scheme similar to that shown in Figure 1a of the ODOT GB2 can be used in order to avoid impacting the existing roadway, guardrail or shoulder. This scheme results in the placement of a temporary over-steepened fill that can later be "shaved-off" to bring the slope to the final proposed grade.

5.3. Bridge Foundation Analysis and Recommendations

A foundation review was completed for a deep foundation system for the referenced widening bridge based on the following design information: 1) the Site Plan for Bridge No. OTT-51-03.85 conducted by Prime AE Group, Inc.; 2) historical plans; and 3) subsequent conversations with Prime AE. A driven pile foundation system was evaluated for all the substructure locations. The proposed deep foundation systems will be designed according to LRFD and ODOT BDM criteria. The summary and results of our deep foundation evaluation are presented in subsequent sections.

5.3.1. Pile Foundation Recommendations

We recommend that a driven pile foundation be used for support of the abutments, with the piles consisting of steel "H" piles driven to bedrock refusal. Refusal is met during driving when the pile penetration is an inch or less after receiving at least 20 blows from the pile hammer. According to the site plan provided by Prime AE Group, Inc., abutments are going to be supported by HP piles. An "H" pile driven to refusal on bedrock is typically governed by structural resistance as opposed to driving resistance for friction piles. Therefore, the total factored loads for any single steel "H" pile are shown in Table 11 (ODOT, 2022). This total factored load (single pile) for an HP pile may be used to support the abutment foundation under the following conditions: 1) piles are installed in accordance with Sections 507 and 523 of the ODOT Construction and Material Specifications (CMS); 2) the piles are axially loaded pile with negligible moment; 3) steel piles have a yield strength of 50 kips per square inch (ksi); 4) assumed no appreciable loss of section due to deterioration throughout the life of the structure; 5) steel "H" piles are assumed to be subject to damage due to severe driving conditions equating to a structural resistance factor of 0.5; and, 5) the piles are fully braced along their length.

Driven to bedrock refusal, the pile tip elevations for the abutments are estimated to be about the elevations of top of bedrock shown on the boring logs. Pile lengths based on the "Estimated Length" and "Order Length" definitions and formulas presented in Section 305.3.3 "Pile Foundations" of the BDM, are shown in Table 11. Based on the email from Prime AE Group dated November 8, 2022, the scour will not

pass through the first layer of the soils at the creek bottom. Therefore, HP piles at both abutments will penetrate at least greater than 15-ft below the maximum estimated scour depth.

Pile Type	Maximum Factored Structural Resistance (kips)	Bottom of Pile Cap Elevation (ft amsl)	Geotechnical Pile Length (ft)	Estimated Pile Length ⁽²⁾ (ft)	Order Length ⁽²⁾ (ft)
	OTT-51-	03.85 Bridge: Rea	abutment, B-001-0	-21	
HP 10x42	310				
HP 12x53	380	595.36	27	30	35
HP 14x73	530				
	OTT-51-03	3.85 Bridge: Forwa	rd abutment, B-002	-0-21	
HP 10x42	310				
HP 12x53	380	593.28	25	30	35
HP 14x73	530				
Notes: 1. Based on de	finitions and formulas p	resented in Section :	305.3.3 of the 2020 B	DM.	

Table 11: Estimated HP Pile Lengths and Maximum Factored Structural Resistance

5.3.2. Pile Drivability

Pile driveability is highly reliant upon the specific equipment used in construction. Therefore, it is recommended that the contractor provide an analysis to demonstrate that the equipment and piles planned for use are capable to driven to refusal on bedrock without overstressing the piles.

The minimum rated energy of the hammer used to install the piles shall be (43,000) foot-pounds. Ensure that stresses in the piles during driving do not exceed (45,000) pounds per square inch.

5.3.3. Settlement

The planned bridge rear abutment is a semi-integral abutment founded on piles behind which there will be about 11.8 feet of new embankment fill. In order to estimate the maximum total and differential settlement that could result within the subsurface soils supporting the proposed semi-integral rear abutment, NEAS reviewed: 1) the proposed Bridge Site Plan prepared by Prime AE; 2) Service Limit State loading conditions; and, 3) test borings and laboratory data developed as part of this report. Utilizing this information and the software entitled FoSSA 2.0 by ADAMA Engineering, Inc., settlement models were developed and analyzed for both elastic (immediate) and consolidation (long term) settlement.

Based on our analysis the ground surface at the rear abutment is estimated to experience about 3.5 inches of immediate settlement and 5.6 inches of long-term (consolidation) settlement from the induced loads associated with the 11.8-ft high embankment. The settlement analysis results can be found in Appendix D. The immediate settlement is expected to take place during construction prior to bridge loading and is not anticipated to be a concern; however, ninety percent (90%) of the long-term settlement will take place 260 days following embankment construction. Since the embankment fill above the rear abutment footing (less than 2 ft wide) will be carried by the rear abutment, the surcharge loads will then be transferred from the abutment to the piles; therefore, it is our opinion that the piles will not be subjected to downdrag loads. However, the proposed rear approach slab will experience the above estimated settlement without ground improvement.

5.3.4. Global Stability

For purposes of evaluating the stability of the abutments, NEAS reviewed the cross-section and project boring logs to determine the subsurface soil conditions that posed the greatest potential for slope

instability. Based on our review, NEAS developed a representative cross-sectional model at each abutment to use as the basis for global stability analyses. The models were developed from NEAS's interpretation of the available information which included: 1) the Bridge Site Plans prepared by Prime AE Group, Inc.; and, 2) test borings and laboratory data developed as part of this report. With respect to the soil's engineering properties, the provided Soil Profile Estimated Engineering Properties presented in Section 5.1 of this report were used in our analyses.

The above referenced slope stability models were analyzed for long-term (Effective Stress) and shortterm (Total Stress) slope stability utilizing the software entitled Slide 7.0 by Rocscience, Inc. Specifically, the Bishop, Spencer and GLE analysis methods were used to calculate a factor of safety (FOS) for circular type slope failures. The FOS is the ratio of the resisting forces and the driving forces, with the desired safety factor being more than about 1.54 which equates to an AASHTO resistance factor less than 0.65 (per AASHTO, 2017 - the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For this analysis, a resistance factor of 0.65 or lower is targeted as the slope contains or supports a structural element.

Based on our slope stability analyses for the referenced abutment locations, the minimum slope stability safety factors for short-term (Total Stress) and long-term (Effective Stress) conditions exceeded the desired value of 1.54. It is our opinion that the subsurface conditions encountered at the project site are generally satisfactory and the site can be considered to be stable at short-term and long-term condition. The results of the analyses are summarized in Table 12. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix E.

	Global Stabil	ity Analsysis at Brid	dge OTT-51-0	3.85	
Location	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)
Rear Abutment	B-001-0-21	Short Term	4.55	0.22	OK
Real Abutment	B-001-0-21	Long Term	2.95	0.34	ОК
Forward Abutment	B-002-0-21	Short Term	6.25	0.16	OK
Forwaru Abulmeni	B-002-0-21	Long Term	3.62	0.28	OK

Table 12:Global Stability Analysis Summary

5.4. Seismic Design Parameters

It is NEAS's opinion that the subsurface conditions encountered at the proposed Bridge OTT-51-03.85 site are characterized as a Seismic Site Class of E – Soft Clay Soil, with \overline{N} <15 blows/ft, in accordance with Section 3.10.3.1, Method B, of the LRFD BDS.

6. QUALIFICATIONS

This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subsurface conditions at the site of OTT-51-03.85 bridge carrying SR-51 over Toussaint Creek. This report has been prepared for Prime AE, ODOT and their design consultants to be used solely in evaluating the soils underlying the bridge site and presenting geotechnical engineering recommendations specific to this project. The assessment of general site environmental conditions or the presence of pollutants in the soil, rock and groundwater of the site was beyond the scope of this geotechnical exploration. Our recommendations are based on the results of our field explorations,

laboratory tests result from representative soil samples, and geotechnical engineering analyses. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the appendices as noted. This report does not reflect any variations that may occur between the borings or elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes in the nature, design or location of the proposed bridge is made, the conclusions and recommendations contained in this report should not be considered valid until they are reviewed, and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to Prime AE Group, Inc. in performing this geotechnical exploration for OTT-51-03.85 Bridge project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

National Engineering and Architectural Services Inc.

Chunmei He, Ph.D., P.E. Project Manager/Geotechnical Engineer

REFERENCES

- AASHTO LRFD. (2020). *LRFD Bridge Design Specifications, 9th Edition*. The American Association of State Highway and Transportations Officials.
- ATC. (2019, January). ATC Hazards by Location. Retrieved from https://earthquake.usgs.gov/designmaps/us/application.php
- FEMA. (2016). National Flood Hazard Layer kmz v3.0. Federal Emergency Management Agency.
- FEMA. (2019). National Flood Hazard Layer kmz v3.0. Federal Emergency Management Agency.
- ODGS. (1998). Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey. page-size map with text, 2p., scale 1:2,100,00.
- ODGS. (2002). Shaded elevation map of Ohio—earth-tone version: Ohio Departmentof Natural Resources, Division of Geological Survey Map MG-1. generalized page-size version with text, 2 p., scale 1:2,000,000.
- ODGS. (2003). Bedrock-topography data for Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map BG-3, 1 CD-ROM, GIS file formats. Revised January 9, 2004.
- ODGS. (2005). Surficial geology of the western portion of the Lancaster 30 x 60-minute quadrangle: Ohio Division of Geological Survey Map SG-2 Lancaster. scale 1:100,000.
- ODNR [1]. (2022). Ohio Abandoned Mine Locator Interactive Map. *Mines of Ohio*. Ohio Department of Natural Resources, Division of Geological Survey & Division of Mineral Resources. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= OhioMines
- ODNR [2]. (2016). Ohio Oil & Gas Locator Interactive Map. *Ohio Oil & Gas Wells*. Ohio Department of Natural Resources, Division of Oil and Gas. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= oilgaswells
- ODOT [2]. (2021). *Geotechnical Bulletin 1*. Columbus, Ohio: Ohio Department of Transportation: Office of Geotechnical Engineering. Retrieved from https://www.dot.state.oh.us/Divisions/Engineering /Geotechnical/Geotechnical_Documents/GB1_Plan_Subgrades.pdf
- ODOT. (2022). 2020 Edition Bridge Design Manual. Columbus, OH: Ohio Department of Transportation: Office of Structural Engineering.
- ODOT. (2022). *Specifications for Geotechnical Explorations*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- ODOT SGE. (2022). Specifications for Geotechnical Explorations. Ohio Department of Transportation: Office of Geotechnical Engineering.
- USDA. (2015, September). Web Soil Survey. Retrieved from http://websoilsurvey.nrcs.usda.gov

USGS & ODGS. (2005, June). Geologic Units of Ohio. *ohgeol.kmz*. United States Geologic Survey.

USGS & ODGS. (2006, June). Geologic Units of Ohio. *ohgeol.kmz*. United States Geologic Survey.

APPENDIX A

BORING PLAN

APPENDIX B

BORING LOGS AND TEST RESULTS

PROJECT: OTT-51-03.85 TYPE: BRIDGE	BER: NE	EAS / J. HODGES EAS / J. HODGES	DRILL HAMN	AER:	CI	CME 55 ME AUTON	ATIC	_	ALIG	NME	_			SR-5′	1		EXPLOR B-001	-0-21	
PID: <u>80032</u> SFN: <u>6201172</u> START: 6/1/22 END: 6/3/22	DRILLING METHOD: SAMPLING METHOD:		HSA / NQ2	CALIE ENER			ATE: <u>1/</u> (%):	/ <u>24/22</u> 79		ELEV							52 .3206	2.5 ft.	PAGE 1 OF 2
MATERIAL DESCRIPTI		ELEV.					SAMPLE			GRAD					ERBE	-	.3200	ODOT	HOLE
AND NOTES		608.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)			FS	SI	/	LL	-		wc		SEALED
12.0" ASPHALT AND 7.0" BASE (DRILLERS	DESCRIPTION)	607.3	 - 1			, <i>i</i>													
VERY STIFF TO HARD, BROWN AND BROV SILT AND CLAY , SOME TO "AND" SAND, TF GRAVEL, DAMP TO MOIST			- 2 -	5 4 6	13	56	SS-1	4.25	6	6	22	34	32	29	17	12	17	A-6a (7)	-
			- 4	$4 \\ 4 \\ 6 \\ 3$	13	67	SS-2	2.50	-	-	-	-	-	-	-	-	19	A-6a (V)	-
			- 5 - - 6 -	2 2 4	5	44	SS-3	2.50	15	11	30	25	19	28	15	13	15	A-6a (3)	-
	TRACE	600.9	- 7 -	32	7	100	SS-4	2.25	-	-	-	-	-	-	-	-	20	A-6a (V)	-
STIFF, BROWN, SANDY SILT , TRACE CLAY GRAVEL, MOIST	7, IKACE	598.4	- 9 - - 10 -	2 1 2	4	100	SS-5	1.50	-	-	-	-	-	-	-	-	20	A-4a (V)	
STIFF, BROWN AND BROWNISH GRAY, SIL SOME SAND, TRACE GRAVEL, WET	T AND CLAY,	598.4		² 2	7	100	SS-6	1.50	-	-	-	-	-	-	-	-	27	A-6a (V)	-
STIFF TO VERY STIFF, GRAY MOTTLED W AND BLACK, CLAY , "AND" SILT, LITTLE TO		595.9	- 13 - 14	1															-
TRACE GRAVEL, SLIGHTLY ORGANIC, CON FRAGMENTS, MOIST TO DAMP		-	- - 15 - 	2 2	5	100	SS-7	2.00	1	1	20	38	40	46	23	23	28	A-7-6 (14)	-
			16 17	2 1 2	4	100	SS-8	1.50	-	-	-	-	-	-	-	-	23	A-7-6 (V)	
STIFF, GRAY, SILT AND CLAY , SOME SANI GRAVEL, MOIST	D, TRACE	590.5 588.9	- 18 - - 19 - W 588.9 00			100	ST-1	1.50	9	10	13	34	34	30	17	13	18	A-6a (8)	-
HARD, GRAY, SANDY SILT , SOME CLAY, T DAMP	RACE GRAVEL,	587.4		4 7 9	21	100	SS-9	4.50	6	6	12	45	31	23	15	8	13	A-4a (8)	-
HARD, GRAY, SILT AND CLAY , LITTLE TO S TRACE GRAVEL, DAMP TO MOIST	SOME SAND,		22 23	9 10 14 4	32	100	SS-10	4.50	8	7	14	32	39	28	15	13	13	A-6a (8)	-
			- - 24 -	4 8 11	25	100	SS-11	4.50	3	6	11	32	48	31	17	14	14	A-6a (10)	-
		581.9	25 26	3 6 9	20	100	SS-12	4.25	2	5	9	32	52	31	16	15	19	A-6a (10)	
HARD, GRAY, SANDY SILT , SOME CLAY, T SS-14 CONTAINS A 2" STONE FRAGMENT,			27 28 	9 12 17	38	100	SS-13	4.50	4	9	26	38	23	20	13	7	10	A-4a (5)	
			29 - - -	17															

PID: <u>80032</u>	OTT-	51-03.85		STATION	/ OFFSE	T:	102+7	8, 14' RT.	S ⁻	TART	:6/	1/22	_ El	ND:	6/3	/22	_ P	G 2 O	F2 B-00)1-0-2						
	МА	TERIA	L DESCRII	PTION				ELEV.	DE	PTHS	SPT/	N ₆₀		SAMPLE			GRAD				ATT		ERG		ODOT	HOL
			D NOTES					578.9			RQD	•60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEAL
HARD, GRAY, SS-14 CONTA										- 31 - 32 - 33 -	8 12 23	46	100	SS-14	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-
VERY DENSE, WITH SAND, L					AGMEN	TS		572.4	_	- 34 - - 35 - - 36 - - 37 -	- 13 18 - -	45	100	SS-15	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-
DOLOMITE , G STRONG.	RAY, HIGI	HLY WI	EATHEREI	D, SLIGI	HTLY			568.4	TR-	- 38 - - 39 - - 40 - - 41 -		-	50	SS-16	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	-
DOLOMITE , G UNWEATHER								566.4		- 42 - - 43 -	- <u>\$0/2"_</u> _	_ - _/	<u>50</u>	<u>SS-17</u>	<u></u>	<u> </u>	/		/		/		<u> </u>	-	Rock (V)	2
STRONG TO S THIN TO MED DISCONTINUI FRACTURED, VERY ROUGH CONDITION; F @47.0' TO 47. CALCITE @48.7' TO 49. NUMEROUS S	STRONG, ' IUM BEDE TIES: LOV NARROW I, BLOCKY RQD 80%, 3'; LARGE 7'; BECON	VERY F DED, VU V ANGL TO TIO TO TIO TO TIO TO TIO TO TIO TO TIO TO TIO TIO TIO TIO TIO TIO TIO TIO TIO TIO	FINE TO M JGGY, ST LE, FRACT GHT, SLIG D TO VER 9%. PARTIALLY	iedium Ylolitin Fured 1 Shtly R Y Gooe Y Fillee	graine C, Bedi To Slig Ough D Surf D Surf D With	ed, Ding Shtly To Ace				- 44 - - 45 - - 46 - - 47 - - 48 - - 48 - - 49 - - 50 - - 51 -	80		99	NQ2-1											CORE	
								556.4	EOB	- 52 -																

PROJECT: OTT-51-03.85 TYPE: BRIDGE	EAS / J. HODGES EAS / J. HODGES		L RIG: MER:		CME 55 ME AUTON			STAT ALIG			SET:		04+0 SR-5	2, 14' 1	LT.	EXPLOR B-002	-0-21			
PID: 80032 SFN: 6201172	DRILLING METHOD:	-		HSA / NQ2				ATE: <u>1</u>			ELEV								2.5 ft.	PAGE 1 OF 2
START: <u>6/3/22</u> END: <u>6/3/22</u>	SAMPLING METHOD):		PT / NQ2	-	RGY R			79		LAT /				-			.3210	I	. <u> </u>
MATERIAL DESCRIPTI AND NOTES	ION		ELEV. 608.7	DEPTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)		GRAD cs	FS	<u> </u>	/		ERBI	ERG PI	wc	ODOT CLASS (GI)	HOLE
12.0" ASPHALT AND 6.0" BASE (DRILLERS	S DESCRIPTION)	\bigotimes	607.2				(70)													
VERY STIFF TO HARD, BROWN BECOMING CLAY, LITTLE TO SOME SAND, TRACE GR IRON STAINING, DAMP TO MOIST			001.2	- 2 -	4 5 6	14	39	SS-1	4.50	6	7	13	30	44	35	19	16	17	A-6b (10)	
			604.2	4	3 5 5	13	72	SS-2	3.75	1	3	19	38	39	37	17	20	18	A-6b (12)	
MEDIUM STIFF TO STIFF, DARK GRAY, SIL SAND, TRACE GRAVEL, MOIST	.TY CLAY, SOME			- 5 - - - 6 -	2 1 7	11	22	SS-3	1.00	-	-	-	-	-	-	-	-	24	A-6b (V)	-
			600.7	- 7 -	2 3 5	11	44	SS-4	1.25	6	7	21	32	34	35	19	16	23	A-6b (9)	
STIFF TO VERY STIFF, BROWN AND BROV CLAY, SOME SILT, LITTLE SAND, TRACE G	VNISH GRAY, GRAVEL, MOIST		00011	- 8	1 2	8	100	SS-5	2.00	1	3	13	34	49	42	19	23	23	A-7-6 (14)	-
MEDIUM STIFF TO STIFF, BROWNISH GRA			598.2	- 10 -	4															-
SILT AND CLAY, "AND" SAND, LITTLE GRA	VEL, DAMP		595.7	- 12 -	4 2 2	5	89	SS-6	1.00	13	12	29	27	19	27	16	11	16	A-6a (3)	-
LOOSE, GRAY AND BROWN, SANDY SILT , LITTLE CLAY, TRACE GRAVEL, SLIGHTLY CONTAINS TRACE IRON STAINING, WET			000.1	- 13 - - - 14 - - 15 -	2 1 3	5	100	SS-7	-	-	-	-	-	-	-	-	-	24	A-4a (V)	-
			591.3	- 17 -	3 3 4	9	100	SS-8	-	-	-	-	-	-	-	-	-	22	A-4a (V)	
DENSE, GRAY, STONE FRAGMENTS WITH SILT, TRACE CLAY, DAMP	SAND, LITTLE		589.2	₩ 590.7 - 18 - - 19 -	5 9 16	33	44	SS-9	-	41	22	16	16	5	NP	NP	NP	6	A-1-b (0)	-
HARD, BROWN, SILT AND CLAY , LITTLE S. GRAVEL, DAMP			587.7	- 20 - - 21 -	5 8 13	28	100	SS-10	4.50	4	5	14	39	38	31	17	14	15	A-6a (10)	
HARD, BROWN, SILTY CLAY , LITTLE SANE GRAVEL, DAMP			586.2	22	16 17 20	49	100	SS-11	4.25	2	4	8	36	50	35	18	17	18	A-6b (11)	
HARD, GRAY, SANDY SILT , SOME CLAY, T GRAVEL, DAMP	RACE TO LITTLE			23 24	9 10 21	41	100	SS-12	4.25	11	14	17	32	26	24	15	9	12	A-4a (5)	-
				26	6 14 19	43	100	SS-13	4.50	6	9	16	36	33	24	14	10	10	A-4a (7)	-
				27 28 20	8 11 20	41	100	SS-14	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	
				- 29 -	20															

PID: 80032 SFN: 6201172	PROJECT: OT	Г-51-03.85	STAT	ION / OFFSE	T:	104+0)2, 14' LT.	S ⁻	TART	:6/	3/22	_ EI	ND:	6/3	8/22	_ F	PG 2 O	F 2 B-00)2-0-21
MATERIAL DESCRIP	TION	ELEV.	DEPTHS	SPT/	N		SAMPLE	HP	(GRAD	ATIC	DN (%	5)	ATT	ERB	ERG		ODOT	HOLE
AND NOTES		578.7	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALE
HARD, GRAY, SANDY SILT , SOME CLAY, GRAVEL, DAMP (<i>continued</i>)	TRACE TO LITTLE			$31 - 5 \\ 11 \\ 14 \\ 32 - 33 - 33 - 34 \\ - 34 - 34 \\ - 34 - 34 $	33	100	SS-15	4.50	-	-	-	-	-	-	-	-	15	A-4a (V)	-
VERY DENSE, GRAY, GRAVEL AND STO I WITH SAND , LITTLE SILT, TRACE CLAY, I		572.2		$ \begin{array}{c} 34 \\ 35 \\ 36 \\ 22 \\ 23 \\ 29 \\ 37 \\ - \\ \end{array} $	68	100	SS-16	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-
		0 0 0 568.2		38 — 39 — 40 — 50	-	67	SS-17	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-
DOLOMITE , GRAY, HIGHLY WEATHERED STRONG.		∠ ∠ ∠ 566.2	-	41		75 -				-				-		-		Rock (V)	
DOLOMITE, GRAY AND BROWNISH GRAY UNWEATHERED TO SLIGHTLY WEATHER VERY FINE TO MEDIUM GRAINED, VERY BEDDED, VUGGY, STYLOLITIC, BEDDING LOW ANGLE, HIGHLY FRACTURED TO S FRACTURED, NARROW TO TIGHT, SLIGH VERY ROUGH, BLOCKY TO INTACT, GOC SURFACE CONDITION; RQD 88%, REC 93 (@46.8'; 1.25" DIAMETER VUG PARTIALLY CALCITE	RED, STRONG, THIN TO THICK DISCONTINUITIES: LIGHTLY TILY ROUGH TO DD TO VERY GOOD 7%.	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		43 - 44 - 45 - 46 - 47 - 88 49 - 50 - 51 - 52 -		97	NQ2-1											CORE	
NOTES: GROUNDWATER ENCOUNTERI ABANDONMENT METHODS, MATERIALS,																			

100

95

90

85

80

75

70

65

60

55

50

45

40

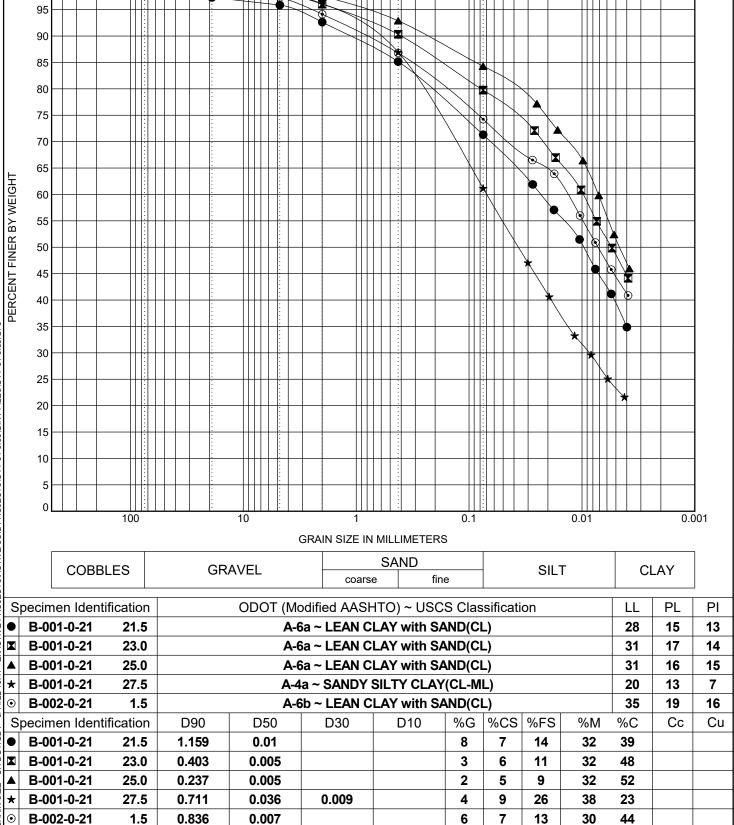
PERCENT FINER BY WEIGHT

PROJECT <u>OTT-51-03.85</u> **PID** 80032 PROJECT TYPE STRUCTURE FOUNDATION OGE NUMBER 0 U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 HYDROMETER 1/23/8 3 6 4 3/4 4 É Å 4 Ś Y X Ø ★ à Ì 闔 X

GRAIN SIZE DISTRIBUTION

2 0	35														
35.GF	55										<u> </u>				
51-3.8	30														
Ě	25														
-ES/C															
Η	20														
5/GIN	15														
1-3.8	40														
PROJECTS/0TT-51-3.85/GINT FILES/0TT-51-3.85.6PJ	10														
CTS/C	5														
ONEC	0														
			100		10	1		0.1			0.01		0.0	001	
SOI						GRAIN SIZE IN		RS							
CTIVE		COBE		CP	AVEL		SAND			SILT	-		LAY		
Z:ACTIVE PROJECTS/ACTIVE SOIL		COB	DLES	GR		coars	e	fine		SILI			LAT]	
n S	pecin	nen Iden	tification		ODOT (Mo	odified AASI	HTO) ~ US	SCS Clas	ssificati	on		LL	PL	PI	
∎ M	B-0	01-0-21	1.5		A-6a ~ SANDY LEAN CLAY(CL)										
ACT	B-0	01-0-21	4.5			A-6a ~ CL/	AYEY SAN	D(SC)				28	15	13	
. i 🔺 i	B-0	01-0-21	13.5		A-7	'-6 ~ LEAN (CLAY with	SAND(C	:L)			46	23	23	
★ 16:17	B-0	01-0-21	18.0		A	-6a ~ SAND	Y LEAN C	LAY(CL)				30	17	13	
6/14/22	B-0	01-0-21	20.0		A-4	ŧa ∼ LEAN C	LAY with	SAND(C	L)			23	15	8	
- I S	pecin	nen Iden	tification	D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Cc	Cu	
OT.GDT	B-0	01-0-21	1.5	0.647	0.021	0.004		6	6	22	34	32			
	B-0	01-0-21	4.5	3.851	0.105	0.017		15	11	30	25	19			
▲	B-0	01-0-21	13.5	0.202	0.009			1	1	20	38	40			
GRAIN SIZ ● ★	B-0	01-0-21	18.0	1.7	0.014			9	10	13	34	34			
0 RAI	B-0	01-0-21	20.0	0.835	0.012	0.005		6	6	12	45	31			

PROJECT _OTT-51-03.85

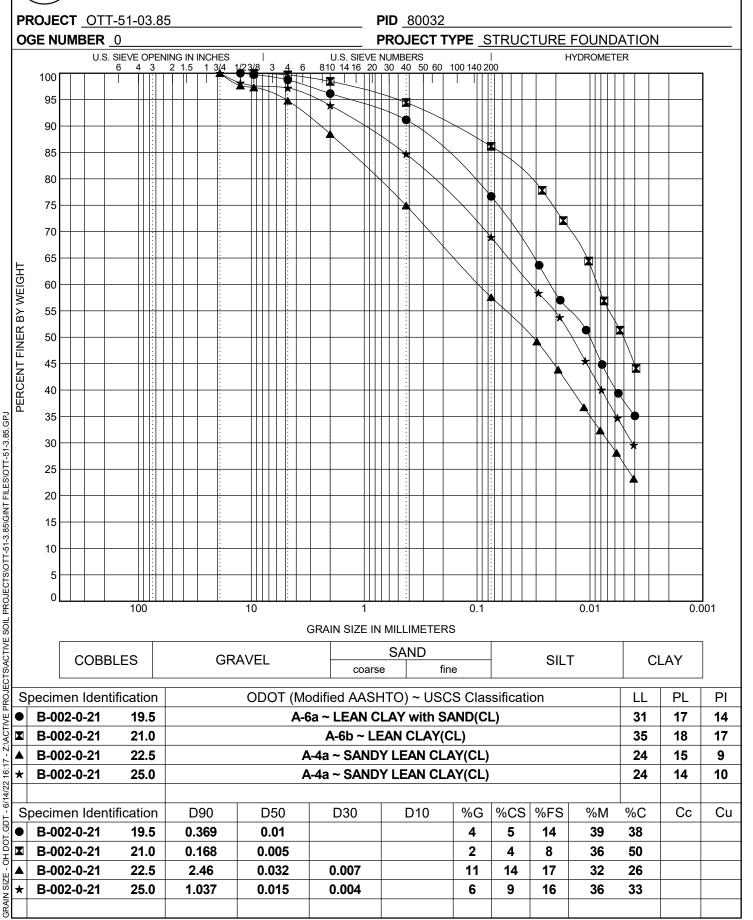

6 4 3

OGE NUMBER 0

100

PID 80032 **PROJECT TYPE** STRUCTURE FOUNDATION U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 3 4 810 14 16 20 30 40 50 60 100 140 200 2 1.5 3/4 1/23/8 6 Ū # Ý

GRAIN SIZE DISTRIBUTION


F SOIL PROJECTS\OTT-51-3.85\GINT FILES\OTT-51-3.85.GPJ

PROJECT <u>OTT-51-03.85</u> **PID** 80032 PROJECT TYPE STRUCTURE FOUNDATION OGE NUMBER 0 U.S. SIEVE OPENING IN INCHES 6 4 3 2 1 5 1 3/4 U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 HYDROMETER 3 4 1 3/4 1/23/8 6 100 11 95 Y ¥ + 90 X 85 Ŕ 80 ÷ 75 × 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 Ò 35 Ň. 30 ★ 25 ... Q 20 × 15 $\mathbf{\hat{o}}$ 10 0 \odot 5 0 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS**

GRAIN SIZE DISTRIBUTION

CTIV		COBBL		GP	AVEL		SAND			SILT	r		LAY	
ECTS\ACTIV		COBBL		GN	AVEL	coarse	e fir	ne		SILI			LAT	
	Specim	nen Identi	fication		ODOT (Mo	dified AASH	ITO) ~ USC	S Clas	sificati	on		LL	PL	PI
	B-00)2-0-21	3.0		A-6	o ~ LEAN C	LAY with S	AND(C	L)			37	17	20
	B-00)2-0-21	6.0		A-	6b ~ SAND	Y LEAN CL	AY(CL)				35	19	16
7 - Z:	B-00	02-0-21	8.5		A-7-	6 ~ LEAN C	LAY with S	AND(C	L)			42	19	23
2 16:17	B-00	02-0-21	11.0		A-6a ~ CLAYEY SAND(SC)								16	11
6/14/22	B-00	02-0-21	18.0		A-1-b	~ SILTY SA	ND with GF	RAVEL(SM)			NP	NP	NP
GDT - 6	Specim	nen Identi [.]	fication	D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Cc	Cu
	B-00	02-0-21	3.0	0.261	0.01				3	19	38	39		
	B-00	B-002-0-21 6.0		0.811	0.017			6	7	21	32	34		
	B-00	02-0-21	8.5	0.195	0.005			1	3	13	34	49		
GRAIN SIZE	B-00	02-0-21	11.0	3.961	0.098	0.015		13	12	29	27	19		
GRAI	• B-002-0-21 18.0			7.277	1.011	0.192	0.016	41	22	16	16	5	1.15	126.04

GRAIN SIZE DISTRIBUTION

Office of Geotechnical Engineering

Office of Geotechnical Engineering

APPENDIX C

GB1 ANALYSIS

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

OTT-51-03.85 80032

Bridge Replacement: OTT-51-03.85 carrying SR-51 over Toussaint Creek

NEAS, INC.

Prepared By: Date prepared:

Melinda He Friday, June 24, 2022

Chunmei (Melinda) He, Ph.D, P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH, 43231 614-714-0299 che@neasinc.com

NO. OF BORINGS:

2

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig			Proposed Subgrade EL	Cut Fill
1	B-001-0-21	SR 51				CME 55X	79	608.9	607.4	1.5 C
2	B-002-0-21	SR 51				CME 55X	79	608.7	607.2	1.5 C

Subgrade Analysis

V. 14.6

2/11/2022

#	Boring	Sample	Sam De	nple pth	-	rade pth		dard tration	НР	Physical Characteristics				Мо	Moisture		DOT	Sulfate Content	Problem		Excavate and Replace (Item 204)		Recommendation (Enter depth in		
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	13		4.25	29	17	12	34	32	66	17	14	A-6a	7			N ₆₀ & Mc		12"	
	001-0	SS-2	3.0	4.5	1.5	3.0	13		2.5							19	14	A-6a	10			N ₆₀ & Mc			
	21	SS-3	4.5	6.0	3.0	4.5	5		2.5	28	15	13	25	19	44	15	14	A-6a	3						
		SS-4	6.0	7.5	4.5	6.0	7	5	2.25							20	14	A-6a	10						
2	В	SS-1	1.5	3.0	0.0	1.5	14		4.5	35	19	16	30	44	74	17	16	A-6b	10						
	002-0	SS-2	3.0	4.5	1.5	3.0	13		3.75	37	17	20	38	39	77	18	16	A-6b	12						
	21	SS-3	4.5	6.0	3.0	4.5	11		1							24	16	A-6b	16						
		SS-4	6.0	7.5	4.5	6.0	11	11	1.25							23	16	A-6b	16						

PID: 80032

 County-Route-Section:
 OTT-51-03.85

 No. of Borings:
 2

Geotechnical Consultant:NEAS, INC.Prepared By:Melinda HeDate prepared:6/24/2022

Chemical Stabilization Options								
320	Rubblize & Roll	No						
206	Cement Stabilization	Option						
	Lime Stabilization	No						
206	Depth	14"						

Excavate and Replace									
Stabilization Options									
Global Geotextile									
Average(N60L):	12"								
Average(HP):	0"								
Global Geogrid									
Average(N60L):	0''								
Average(HP):	0"								

Design CBR	6
---------------	---

% Sampl	% Samples within 6 feet of subgrade										
N ₆₀ ≤ 5	13%	HP ≤ 0.5	0%								
N ₆₀ < 12	50%	0.5 < HP ≤ 1	13%								
12 ≤ N ₆₀ < 15	50%	1 < HP ≤ 2	13%								
N ₆₀ ≥ 20	0%	HP > 2	75%								
M+	25%										
Rock	0%										
Unsuitable	0%										


Excavate and Replace at Surface						
Average	0"					
Maximum	0"					
Minimum	0"					


% Proposed Subgrade Surface							
Unstable & Unsuitable	50%						
Unstable	50%						
Unsuitable	0%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	11	8	2.75	32	17	15	32	34	65	19	15	11
Maximum	14	11	4.50	37	19	20	38	44	77	24	16	16
Minimum	5	5	1.00	28	15	12	25	19	44	15	14	3

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	0	0	0	0	0	0	0	0	0	4	4	0	0	0	0	8
Percent	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	50%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					0%								10	0%				100%
Surface Class Count	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	4
Surface Class Percent	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	50%	0%	0%	0%	0%	100%

APPENDIX D

SETTLEMENT ANALYSIS

OTT-51-03.85

Report created by FoSSA(2.0): Copyright (c) 2003-2012, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title:OTT-51-03.85Project Number:-Client:ODOTDesigner:ZMStation Number:Rear Abutment STA. 103+50

NEAS, Inc.

Description: B-001-0-21

Company's information:

Name: Street:

Telephone #: Fax #: E-Mail:

Original file path and name: C:\Users\s 51\OTT-51-03.85 RearAbut_STA.103+50_B-001-0-21.2ST **Original date and time of creating this file:** 6/23/2022

GEOMETRY: Analysis of a 3D-Approximate geometry

INPUT DATA -- FOUNDATION LAYERS -- 7 layers

	Wet Unit Weight, γ [lb/ft³]	Poisson's Ratio μ	Description of Soil
1	108.00	0.35	A-6a
2	112.00	0.35	A-7-6
3	112.00	0.35	A-6a
4	122.00	0.35	A-4a
5	122.00	0.35	A-6a
6	130.00	0.35	A-4a
7	140.00	0.30	A-1-b

sion 2.0 FoSSA Version 2.0 FoSSA Version 2.0 Fo

INPUT DATA -- EMBANKMENT LAYERS -- 1 layers

Wet Unit	Description
Weight, γ	of Soil
[lb/ft³]	

1 120.00	Embankment Fills
----------	------------------

INPUT DATA OF WATER

Point	Coordinates (X, Z) :							
#	(X) [ft.]	(Z) [ft.]						
1	0.00	588.90						
2	10.00	588.90						
3	25.00	588.90						
4	40.00	588.90						

DRAWING OF SPECIFIED GEOMETRY

Ve

2	rer #	OCR	Cc	Cr	e0	Cv	Drains at :	Shear Str	ength Data	CREEP
	derging nsolidation [Yes/No]	= Pc / Po				[ft ²/day]		S	m	Ca/Cc
1	Yes	1.50	0.145	0.020	0.960	0.3000	Тор	0.250	0.800	0.0500
2	Yes	1.50	0.196	0.036	0.870	0.2000	Bottom	0.250	0.800	0.0500
3	Yes	1.50	0.128	0.014	0.740	0.3000	Top & Bot.	0.250	0.800	0.0500
4	Yes	2.40	0.091	0.007	0.540	0.3000	Тор	0.250	0.800	0.0500
5	Yes	2.40	0.121	0.016	0.580	0.3000	Bottom	0.250	0.800	0.0500
6	Yes	3.00	0.069	0.005	0.420	0.3000	Bottom	0.250	0.800	0.0500
7	No	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

on 2.0 FoSSA Version 2.0 FoSSA Version 2.0

INPUT DATA FOR CONSOLIDATION — $\alpha=1/2$

Secondary Comprassion (Creep) : Settlement is calculated at t2/t1 = 10.0

IMMEDIATE SETTLEMENT, Si

Node #	Settlement ale X	ong section: Y	Layer	Young's Modulus,	Poisson's Ratio,	Settlement of each	Initial Z	Final Z *	Total Settlement Sum of Si(k),
	[ft.]	[ft.]	(k)	E [lb/ft ²]	μ	layer, Si(k) [ft.]	[ft.]	[ft.]	[ft.]
1	-26.00	0.00	1	40000	0.3500	-0.0020	597.60	597.57	0.03
			2	30000	0.3500	0.0025			
			3	30000	0.3500	0.0075			
			4	200000	0.3500	0.0015			
			5	200000	0.3500	0.0074			
			6	300000	0.3500	0.0116			
			7	500000	0.3000	0.0037			
2	-20.80	0.00	1	40000	0.3500	0.0303	597.60	597.38	0.22
			2	30000	0.3500	0.1151			
			3	30000	0.3500	0.0320			
			4	200000	0.3500	0.0048			
			5	200000	0.3500	0.0161			
			6	300000	0.3500	0.0182			
			7	500000	0.3000	0.0050			
3	-15.60	0.00	1	40000	0.3500	0.0333	597.60	597.31	0.29
			2	30000	0.3500	0.1480			
			3	30000	0.3500	0.0458			
			4	200000	0.3500	0.0068			
			5	200000	0.3500	0.0227			
			6	300000	0.3500	0.0240			
			7	500000	0.3000	0.0062			
4	-10.40	0.00	1	40000	0.3500	0.0326	597.60	597.31	0.29
			2	30000	0.3500	0.1442			
			3	30000	0.3500	0.0478			
			4	200000	0.3500	0.0074			
			5	200000	0.3500	0.0256			
			6 7	300000 500000	0.3500 0.3000	0.0279 0.0071			
-	5.20	0.00					507 (0	507.21	0.00
5	-5.20	0.00	1	40000	0.3500	0.0324	597.60	597.31	0.29
			2	30000	0.3500	0.1410			
			3	30000	0.3500	0.0475			
			4	200000	0.3500	0.0074			
			5	200000	0.3500	0.0265			
			6	300000	0.3500	0.0299			
			7	500000	0.3000	0.0077			
6	0.00	0.00	1	40000	0.3500 0.3500	0.0323	597.60	597.31	0.29
			2	30000		0.1400			
			3	30000	0.3500	0.0473			
			4	200000	0.3500 0.3500	0.0074			
			5	200000 300000	0.3500	0.0267			
			6 7	500000	0.3300	$0.0304 \\ 0.0078$			
7	5.20	0.00	1	40000	0.3500	0.0324	597.60	597.31	0.29
,	5.20	0.00	2	30000	0.3500	0.0324	571.00	571.51	0.27
			$\frac{2}{3}$	30000	0.3500	0.0475			
			4	200000	0.3500	0.0475			
			5	200000	0.3500	0.0265			
			6	300000	0.3500	0.0203			
			7	500000	0.3000	0.0077			
<u>*Note:</u> Fi	nal Z is calculated	l assuming on	<u>ly 'Im</u> media	te Settlement' er	xists.				
rsion 2.0 FoSSA Version 2.0 FoS OTT-51-03.	SA Version 2.0 FoSSA Version 2.0 FoSSA Version 2.0	FoSSA Version 2.0 FoSSA Version 2.0 FoS	SA Version 2.0 FoSSA Version 2.0 F	oSSA Version 2.0 FoSSA Version 2.0 FoSSA Ve	rsion 2.0 FoSSA Version 2.0 FoSSA Ver	rsion 2.0 FoSSA Version 2.0 FoSSA Version	2.0 FoSSA Version 2.0 FoSSA Ve	rsion 2.0 FoSSA Version 2.0 FoSSA	Version 2.0 FoSSA Version 2.0 FoSSA Version 2.0 Page 5 of 9
	© 2003-2012 ADAM	A Engineering, I	nc.	www.GeoProgra	ams.com			License n	umber FoSSA-200410

IMMEDIATE SETTLEMENT, Si

Node #	Settlement al X	ong section: Y	Layer (k)	Young's Modulus, E	Poisson's Ratio,	Settlement of each layer, Si(k)	Initial Z	Final Z *	Total Settlement Sum of Si(k),
	[ft.]	[ft.]	(K)	[lb/ft ²]	μ	[ft.]	[ft.]	[ft.]	[ft.]
8	10.40	0.00	1	40000	0.3500	0.0326	597.60	597.31	0.29
			2	30000	0.3500	0.1442			
			3	30000	0.3500	0.0478			
			4	200000	0.3500	0.0074			
			5	200000	0.3500	0.0256			
			6	300000	0.3500	0.0279			
			7	500000	0.3000	0.0071			
9	15.60	0.00	1	40000	0.3500	0.0333	597.60	597.31	0.29
			2	30000	0.3500	0.1480			
			3	30000	0.3500	0.0458			
			4	200000	0.3500	0.0068			
			5	200000	0.3500	0.0227			
			6	300000	0.3500	0.0241			
			7	500000	0.3000	0.0062			
10	20.80	0.00	1	40000	0.3500	0.0302	597.60	597.38	0.22
			2	30000	0.3500	0.1150			
			3	30000	0.3500	0.0320			
			4	200000	0.3500	0.0048			
			5	200000	0.3500	0.0161			
			6	300000	0.3500	0.0182			
			7	500000	0.3000	0.0050			
11	26.00	0.00	1	40000	0.3500	-0.0020	597.60	597.57	0.03
			2	30000	0.3500	0.0025			
			3	30000	0.3500	0.0075			
			4	200000	0.3500	0.0015			
			5	200000	0.3500	0.0074			
			6	300000	0.3500	0.0116			
			7	500000	0.3000	0.0037			

ersion 2.0 FoSSA Version 2.0 FoSSA Version 2.0 FoSS.

*Note: Final Z is calculated assuming only 'Immediate Settlement' exists.

ULTIMATE SETTLEMENT, Sc

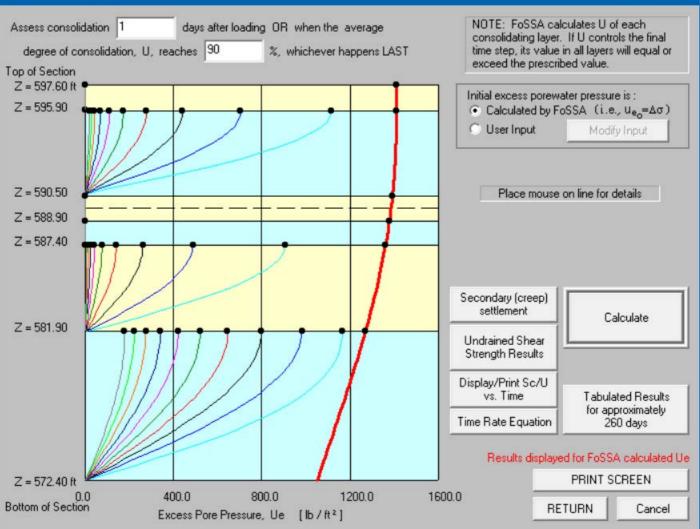
Node	V	V	Original	Settleme	
#	X [ft.]	Y [ft.]	Z [ft.]	Sc [ft.]	Z * [ft.]
1	-26.00	0.00	597.60	0.05	597.55
2	-20.80	0.00	597.60	0.39	597.21
3	-15.60	0.00	597.60	0.46	597.14
4	-10.40	0.00	597.60	0.47	597.13
5	-5.20	0.00	597.60	0.47	597.13
6	0.00	0.00	597.60	0.47	597.13
7	5.20	0.00	597.60	0.47	597.13
8	10.40	0.00	597.60	0.47	597.13
9	15.60	0.00	597.60	0.46	597.14
10	20.80	0.00	597.60	0.39	597.21
11	26.00	0.00	597.60	0.05	597.55

ion 2.0 FoSSA Version 2.0 FoSSA Version 2.0 F

*Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.

O N

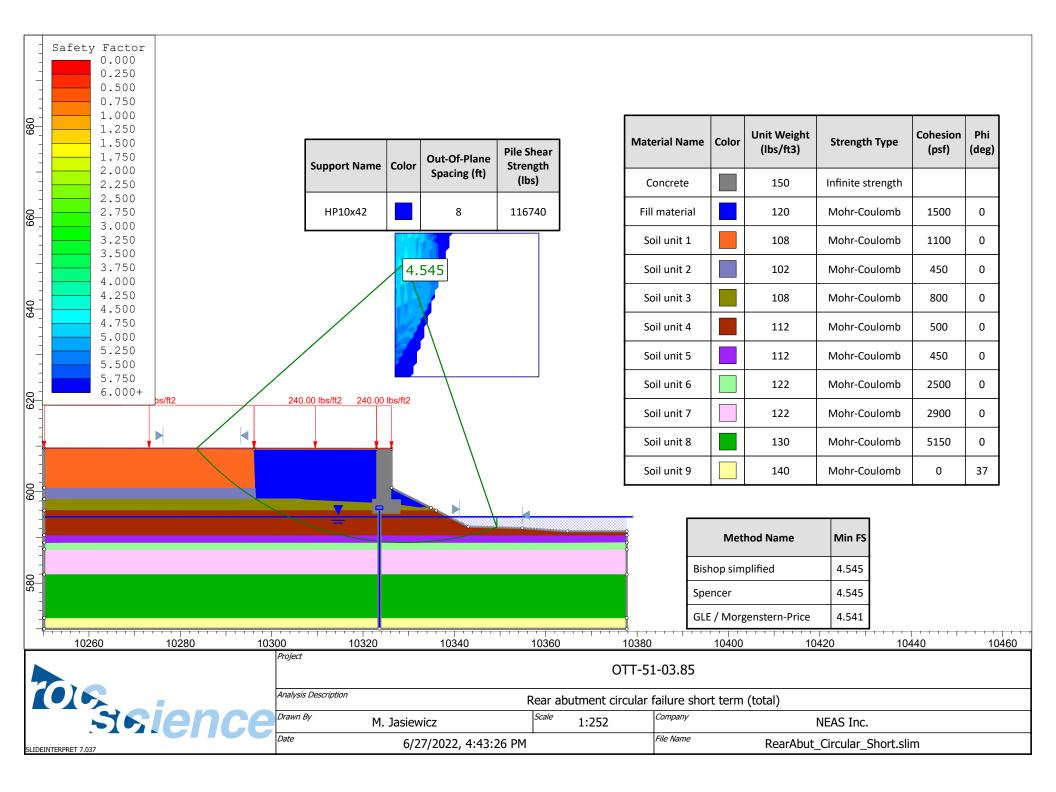
TABULATED GEOMETRY: INPUT OF FOUNDATION SOILS

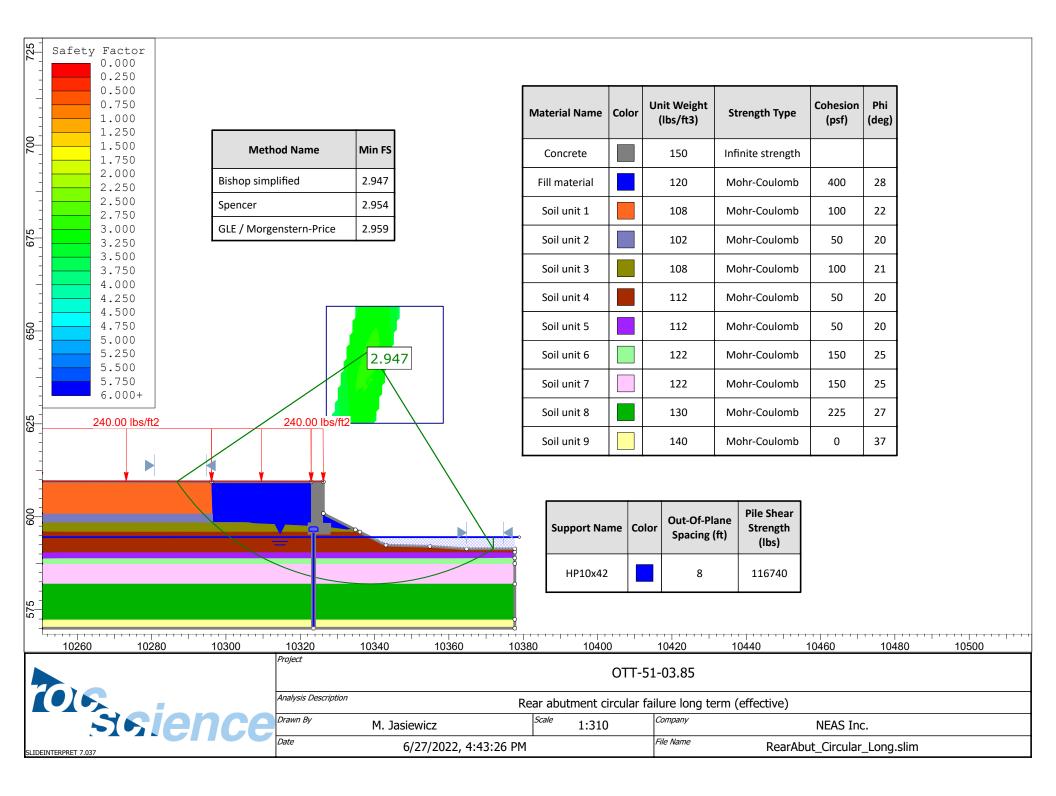

Found. Soil #	Point #	Coordinat (X) [ft.]	es (X, Z) : (Z) [ft.]	DESCRIPTI
1	1	0.00	597.60	A-6a
2	1	0.00	595.90	A-7-6
3	1	0.00	590.50	A-6a
4	1	0.00	588.90	A-4a
5	1	0.00	587.40	A-6a
6	1	0.00	581.90	A-4a
7	1	0.00	572.40	A-1-b

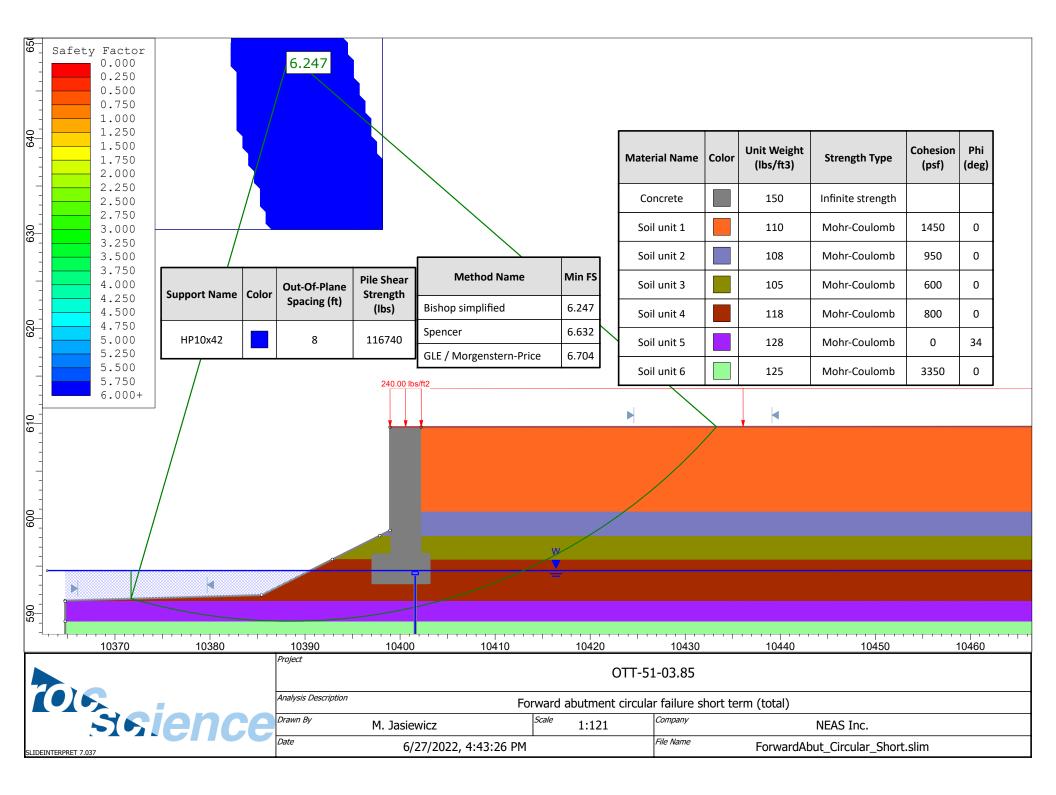
TABULATED GEOMETRY: INPUT OF EMBANKMENT SOILS

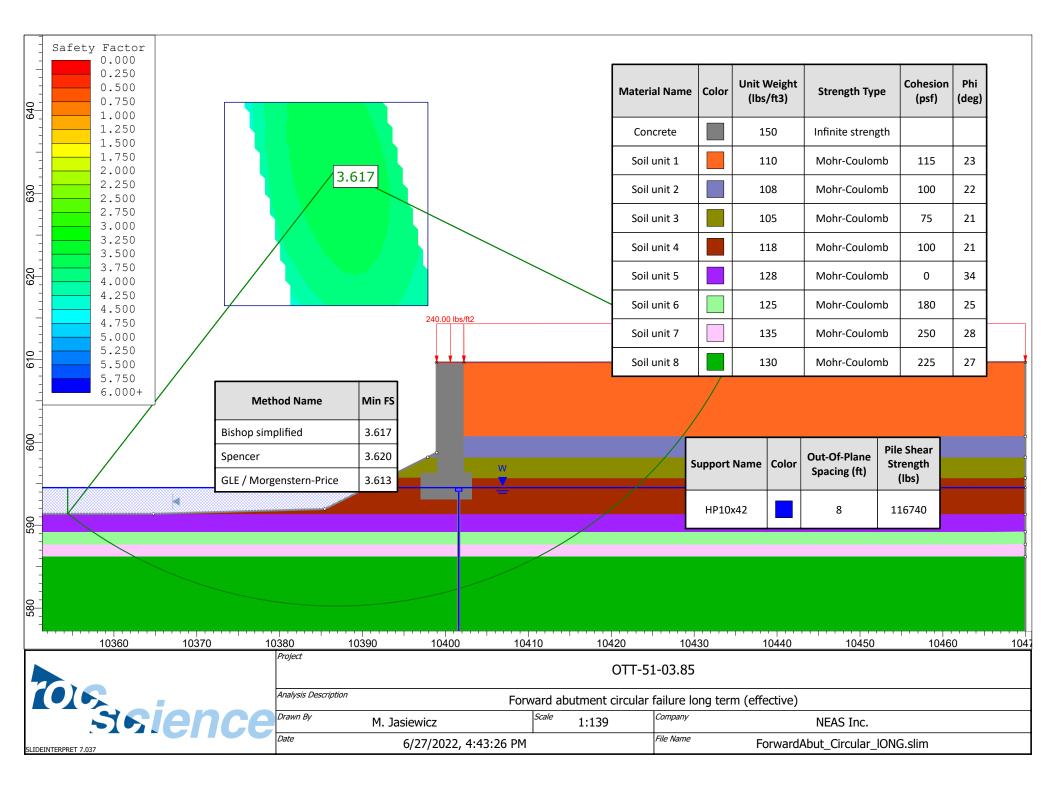
Embank. Point			Coordinat	es (X, Z) :			
Soi	1	#	(X)	(Z)	DESCRIPTION		
#			[ft.]	[ft.]			
1	X1 = -26.00 [ft]	1	-20.00	609.37	Embankment Fills		
	X2 = 26.00 [ft]	2	20.00	609.37			

SA Version 2.0 FoSSA Version 2.0 FoSSA Version 2.0 FoSS


Time Rate Calculations




X


APPENDIX E

GLOBAL STABILITY ANALYSIS

