

Established 1927

March 10, 2023 Revised June 9, 2023

IBI Group 23 Triangle Park Drive Cincinnati, Ohio 45246

Attention:	Mr. Steven Butler, P.E.
	Associate – Manager, Transportation Engineering

Reference:	Geohazard Exploration Report - Final
	PIK-772-14.10 Slide Repair
	PID: 115993
	Pike County, Ohio
	CTL Project No. 23050003COL

Dear Mr. Butler:

CTL Engineering, Inc. has completed the Geohazard Exploration for the above referenced project. Enclosed is the digital (pdf) copy of the Final report.

Thank you for the opportunity to work with you on this project. If you have any questions or need further information, please feel free to contact our office.

Respectfully Submitted

CTL ENGINEERING, INC.

loco

Joe Grani, P.E. Project Engineer

GEOTECHNICAL SUBSURFACE EXPLORATION - FINAL

PIK-772-14.10 SLIDE REPAIR PID: 115993 PIKE COUNTY, OHIO CTL PROJECT NO. 23050003COL

PREPARED FOR:

IBI GROUP 23 TRIANGLE PARK DRIVE CINCINNATI, OHIO 45246

PREPARED BY:

CTL ENGINEERING, INC. 2860 FISHER ROAD COLUMBUS, OHIO 43204 Phone 614-276-8123 Fax 614-276-6377

> March 10, 2023 Revised June 9, 2023

TABLE OF CONTENTS

PAGE

I.	EXECUTIVE SUMMARY	1
II.	INTRODUCTION	1
III.	GEOLOGY AND OBSERVATIONS OF THE PROJECT	2
IV.	EXPLORATION	2
	A. Test Borings	2
	B. Geophysical Testing	3
V.	FINDINGS	3
	A. Test Borings	3
VI.	ANALYSES AND RECOMMENDATIONS	4
	A. Global Stability Analysis	4
	B. Initial Slope Repair Alternatives	5
	C. Drilled Shaft Analysis	5
	D. Culvert Replacement	7
VII.	CHANGED CONDITIONS	7
VIII.	TESTING AND OBSERVATION	8
IX.	CLOSING	8

APPENDIX A	GEOTECHNICAL PLAN AND PROFILE SHEETS
APPENDIX B	TEST BORING RECORDS
APPENDIX C	GEOPHSYICAL TEST RESULTS
APPENDIX D	GLOBAL STABILITY ANALYSIS
APPENDIX E	DRILLED SHAFT ANALYSES

CTL Project No. 23050003COL March 10, 2023 Revised June 9, 2023 Page 1

I. EXECUTIVE SUMMARY

The project involves the exploration of a landslide near mile marker 14.10 of State Route 772 (SR 772) in Pike County, Ohio. Within the project limits, the SR 772 southwest/westbound lanes and guardrail are experiencing instability consisting of rotational/translational movement with a head scarp developed within the roadway pavement (near the centerline of the road) and into the slope below the roadway.

A total of four (4) test borings were performed for this project. Three (3) borings were performed within the southwest/westbound lane of SR 772, and one (1) boring was performed within the northeast/eastbound lane. All four borings were extended into the underlying bedrock. The top of bedrock was encountered at depths ranging from 8.5 to 17.4 feet below existing grade. The top of bedrock elevations range from 818.9 to 837.2 feet.

Slope stability and drilled shaft analyses were performed at the critical section (Station 1406+75) along SR 772. Based on the results of the analyses, the following drilled shaft retaining wall with plug piles is recommended:

- 3.0-foot diameter reinforced shafts installed at a 5.5-foot center to center spacing with W24x131 steel piles.
- 3.0 feet diameter plug (unreinforced) shafts installed between the structural shafts at an offset along the proposed centerline of the reinforced drilled shafts.
- Minimum bedrock embedment length of reinforced shafts of 15.0 feet.
- Constructed at a 23.0-foot offset (left) from the centerline of SR 772.

II. <u>INTRODUCTION</u>

The project involves the exploration of a landslide near mile marker 14.10 of SR 772 in Pike County, Ohio. The length of the project is approximately 386 feet.

The purpose of this report is to provide findings from the subsurface exploration performed by ODOT and to provide recommendations for the repair of the landslide. This is a Final Report.

III. GEOLOGY AND OBSERVATIONS OF THE PROJECT

According to the Ohio Department of Natural Resources, Physiographic Regions of Ohio Map, the site is located within the Shawnee-Mississippian Plateau, which is an unglaciated portion of the Alleghney Plateau. Bedrock below the site generally consists of Mississippian-age shale, siltstone and sandstone.

According to web based mapping from *United States Department of Agriculture, Natural Resources Conservation Service,* the project area contains one primary soil:

1. Trappist-Shelocta Association, Steep (TsF): Weathered bedrock residuum, 25 to 40 percent slopes, well-drained, very low to moderately high hydraulic conductivity (0.0 to 0.2 in/hr).

According to the Ohio Department of Natural Resources (ODNR) Ohio Karst Areas map, no karst features have been mapped near the project site.

According to mapping from the ODNR Website, No underground mines have been mapped in the project area.

A site visit was performed by ODOT and CTL Engineering personnel on December 1, 2022. SR 772 is a rural minor collector road with a design and posted speed limit of 55 mph and approximately 9-foot wide travel lanes with little to no existing paved shoulders. A major portion of the distresses appeared to be in the southwest/westbound lane of SR 772. Tension cracks were noted within the pavement extending to near the centerline of the road. An existing pile wall was observed near the northern side of the existing guardrail within the project limits. Shale bedrock was exposed on the uphill side of SR 772. An existing culvert was located within the project limits.

IV. <u>EXPLORATION</u>

A. <u>Test Borings</u>

A total of four (4) test borings were performed for this project by ODOT between September 12 and October 2, 2018. Three (3) borings were performed within the southwest/westbound lane of SR 772, and one (1) boring was performed within the northeast/eastbound lane. The test boring records were provided to CTL to be utilized for this report.

The test borings were performed with a truck mounted drill rig, utilizing 3.25-inch hollow stem augers (HSA), between September 12 and October 2, 2018. Rock coring was performed in all four borings, using an NQ-size core barrel. The hammer system used was calibrated on April 2, 2018. The hammer system had a drill rod energy ratio of 87.0 percent.

Split spoon soil samples were collected at 2.5-foot intervals until split spoon refusal was encountered. Representative soil samples were subjected to laboratory testing including moisture content, hand penetrometer, grain size distribution and Atterberg limits.

Rock from the coring operation was visually classified. The Rock Quality Designation (RQD) and percent core loss values were determined. Representative samples of the recovered rock were subjected to compressive strength testing.

Latitude and Longitude coordinates and ground surface elevations of the test boring locations were included on the test boring records when provided to CTL.

B. <u>Geophysical Testing</u>

In addition to the test borings performed by ODOT, geophysical testing was also performed by ODOT for this project within the area of the landslide. The results of this testing were provided to CTL. The geophysical test results are located in Appendix C of this report.

V. <u>FINDINGS</u>

A. <u>Test Borings</u>

The borings were drilled through the existing pavement of SR 772. The borings exhibited pavement compositions consisting of 12 to 42 inches of asphalt.

Beneath the existing pavement borings B-011-0-18 and B-013-0-18 encountered gravel and/or stone fragments with sand (A-1-b) to depths of 6.0 and 3.5 feet respectively. These materials exhibited N_{60} values ranging from 6 to 12 blows per foot (bpf), with natural moisture content values ranging from 3 to 11 percent.

Below the stone fragments in borings B-011-0-18 and B-013-0-18, and below the pavement in B-010-0-18 and B-012-0-18, the borings exhibited layers of sandy silt (A-4a) and silt and clay (A-6a). A layer of stone fragments with sand and silt (A-2-4) with cobbles and boulders was encountered in boring B-11-0-18 between depths of 11.0 and 17.0 feet. These soils exhibited N₆₀ values ranging from 4 blows per foot (bpf) to 60 blows for 6 inches of penetration, and natural moisture content values ranging from 9 to 24 percent.

Below the soils in borings B-010-0-18 and B-012-0-18, augerable shale bedrock was encountered at depths ranging from 8.5 to 11.0 feet. These depths correspond to elevations ranging from 837.2 to 818.9 feet. The augerable bedrock exhibited N_{60} values ranging from 77 bpf to 48 blows for 6 inches of penetration.

CTL Project No. 23050003COL March 10, 2023 Revised June 9, 2023 Page 4

Below the soil overburden or below the augerable bedrock, the borings exhibited coreable bedrock. The recovered bedrock from the coring operations was described as shale or interbedded shale and sandstone. The bedrock recovered from the coring operations exhibited Rock Quality Designation (RQD) values ranging from 0 to 50 percent, and core recovery values ranging from 35 to 100 percent.

No groundwater was encountered during drilling and sampling of the test borings.

VI. <u>ANALYSES AND RECOMMENDATIONS</u>

A. <u>Global Stability Analyses</u>

A global stability analysis was performed to estimate the shape and depth of the failure surface for the existing site conditions. The stability of the existing slope was evaluated using the *Rocscience Slide* computer program, and the analysis was based on the Morgenstern-Price method. The slope on the northern side of SR 772 was used in the analysis.

Cross sections within the area of the slip were prepared by IBI Group, and were provided to CTL Engineering. The stability analysis was performed using the most critical cross section (Station 1406+75).

The stability of the slope was evaluated from laboratory test results, parameters provided in ODOT's Geotechnical Design Manual (GDM) and engineering judgment. Soil and rock strength parameters used in the analysis are summarized in Table 1.

Material	γ _T	Effective Stre	Motorial Types	
No.	(pcf)	C (psf)	Ø (deg)	Wraterrar Types
1	145	50*	0	Pavement
2	122	50*	32	A-1-b
3	118	150	22	A-6a
4	130	275	28	A-4a
5	140	0	20	Soft Rock
6	140	2000	40	Firm Rock

Table 1 – Soil and Rock Parameters

* A low value for cohesion was used so that the analysis would not exhibit shallow sloughing in these layers.

Results of the global stability analysis are provided in Appendix D. During the site reconnaissance visit, cracking from the head scarp extended to near the centerline of SR 772. Therefore, the shear surface was estimated to intercept the ground surface at the observed head scarp for the global stability model. The failure surface is also assumed to travel along top of rock and exit near the toe of slope.

CTL Project No. 23050003COL March 10, 2023 Revised June 9, 2023 Page 5

B. <u>Initial Slope Repair Alternatives</u>

Based upon the conditions encountered in our exploration, the existing grades and results of the slope stability analysis, it is CTL's opinion that the slope repair could be performed by installing a retaining wall system on the northern downslope side of SR 772. The retaining wall should be extended into the underlying competent bedrock. The following retaining wall is being considered for this project:

Drilled Shaft Retaining Wall with Plug Piles– Under this retaining wall type, the roadway can be supported by installing row of structural drilled shafts at an offset location from the edge of roadway. The structural drilled shafts should be reinforced with steel pile sections, and then filled to their full length with structural concrete. The structural shafts should be socketed into competent bedrock. The plug piles (non-reinforced shafts), should be installed between the structural shafts and should extend down to the top of rock, and serve the purpose of lagging between the structural (reinforced) shafts.

C. <u>Drilled Shaft Analysis</u>

Drilled shaft analyses were also performed at the critical section of the proposed wall alignment, which was estimated to be at Station 1406+75.

The analyses were performed to determine the steel size that will be required for the project. The following assumptions were used in the analyses:

- 3.0-foot diameter reinforced shafts will be installed at a 5.5-foot center to center spacing.
- 3.0 feet diameter plug (unreinforced) shafts will be installed between the structural shafts at an offset along the proposed centerline of the reinforced drilled shafts.
- The retaining wall is assumed to be constructed at a 23.0-foot offset from the centerline of SR 772.

UA SLOPE Analysis

The shear plane surface obtained from the *SLIDE* analysis was input into the *UA Slope Program Version 2.3* software. The model was initially checked to verify the FS of existing conditions closely resembled the results from the *SLIDE* analysis, which was at 1.0. The output of this initial run is provided in Appendix E.

The analysis then involves modeling drilled shafts at a 23.0-foot offset (left) from the centerline of SR 772. The output of the *UA Slope Program* showing the force per shaft value at this assumed drilled shaft location is attached to this report in Appendix E.

L-Pile Analysis

The force per shaft value obtained from the *UA Slope Program* was then entered into the L-pile program to estimate the deflection, shear, and moments within the shafts. Procedures outlined in the ODOT GDM along with AASHTO and LRFD manuals were followed while performing the L-pile analyses.

Design checks per the ODOT GDM were performed for each case. Based on the analyses, the steel section that satisfied the necessary design checks is provided in Table 2.

Description	Wall Location	Force per Shaft (lbs)	Diameter of Shaft (feet)	Center to Center Spacing (feet)	Recommended Steel Section
Plug Pile Retaining Wall	23.0-foot offset from the centerline of SR 772	76,196	3.0	5.5	W24x131

Table 2- Steel Section

Results of the L-pile analyses are provided in Appendix E. The bedrock encountered at the project site consisted of shale or interbedded shale and sandstone. The upper several feet of bedrock was either augerable or exhibited a relatively low RQD value. Therefore, the upper several feet of bedrock may not be relied upon for bedrock resistance even though it was identified as bedrock on the test boring records. Although the LPILE analysis indicated that a 10-foot rock socket would be adequate for the design, CTL recommends utilizing a deeper rock socket depth of 15.0 feet to ensure adequate rock socket is achieved.

The failure plane at the shaft location along Station 1406+75 is estimated to extend approximately 24.3 feet below the top of proposed wall, which is near the estimated top of bedrock at the proposed wall location. Therefore, it is our recommendation that non-reinforced shafts (plugs) should extend to the top of bedrock.

Based on the analyses, it is CTL's opinion that the steel section provided in Table 2 can be used for the entire length of the project (Station 1404+86.12 to 1408+72.14) provided that the recommended drilled shaft retaining wall configuration is selected for this project.

Table 3 below shows the estimated top of rock elevations at the location of the proposed wall.

Station	Boring	Estimated Top of Bedrock Elevation at Proposed Wall Location (23-foot Offset)
1405+10.28	B-010-0-18	812.6
1406+68.10	B-011-0-18	815.6
1407+42.02	B-012-0-18	825.2
1407+93.65	B-013-0-18	829.2

I able 5- Estimated 1 op of Bedrock Elevations at Proposed wall Locate	Table 3-	Estimated T	op of Bedrock	Elevations at Pro	oposed Wall Locatio
--	----------	--------------------	---------------	-------------------	---------------------

The top of rock elevations at the proposed wall location were estimated assuming a 22 degree slope rate of the bedrock and the top of bedrock elevations encountered at the test boring locations for borings B-010-0-18 through B-013-0-18.

Additional L-Pile analyses were performed at the critical section (Station 1406+75) assuming a maximum depth of bedrock at the proposed wall location of 30.0 feet below the top of proposed wall. This was done to verify that the proposed retaining wall would properly function if bedrock is encountered deeper than (up to 30 feet below the top of the wall) what is shown on the plans.

D. <u>Culvert Replacement</u>

It is understood a new 18-inch CPP culvert is to be constructed within the project site crossing SR 772. Based on preliminary information provided by IBI Group, it is understood the wall configuration at the location where the culvert will cross through the wall will consist of two consecutive 3.0-foot diameter plug piles below the culvert, and two consecutive 3.0-foot diameter reinforced shafts on both ends, creating a 3'-8" opening in the wall. The proposed configuration at this location along the wall is acceptable using W24x131 piles in the reinforced shafts.

VII. <u>CHANGED CONDITIONS</u>

The evaluations, conclusions, and recommendations in this report are based on our interpretation of the field and laboratory data obtained during the exploration, our understanding of the project and our experience with similar sites and subsurface conditions using generally accepted geotechnical engineering practices. Although individual test borings are representative of the subsurface conditions at the boring locations on the dates drilled, they are not necessarily representative of the subsurface conditions between boring locations or subsurface conditions during other seasons of the year.

In the event that changes in the project are proposed, additional information becomes available, or if it is apparent that subsurface conditions are different from those provided in this report, CTL Engineering should be notified so that our recommendations can modified, if required.

VIII. TESTING AND OBSERVATION

During the design process, it is recommended that CTL Engineering work with the project designers to confirm that the geotechnical recommendations are properly incorporated into the final plans and specifications, and to assist with establishing criteria for the construction observation and testing.

CTL Engineering is not responsible for independent conclusions, opinions and recommendations made by others based on the data and recommendations provided in this report.

IX. <u>CLOSING</u>

This report has been prepared for the exclusive use by the client for use only on this project. Our services have been performed in accordance with generally accepted Geotechnical Engineering principles and practices. No warranty is either expressed or implied.

CTL Engineering's assignment does not include, nor does this geotechnical report address the environmental aspects of this particular site.

Specific design and construction recommendations have been provided in this report. Therefore, the report should be used in its entirety.

Respectfully Submitted,

CTL ENGINEERING, INC.

4m Holard

Evan Holcombe, P.E. Senior Geotechnical Engineer

laco

Joe Grani, P.E. Project Engineer

APPENDIX A GEOTECHNICAL PLAN AND PROFILE SHEETS

PROJECT DESCRIPTION

EXPLORATION OF SLOPE INSTABILITY ALONG SR 772 IN PIKE COUNTY NEAR MILE MARKER 14.10. THE SLOPE INSTABILITY EXTENDS FOR APPROXIMATELY 390 FEET. A NEW RETAINING WALL IS PLANNED TO BE CONSTRUCTED ALONG THE AFFECTED ALIGNMENT.

HISTORIC RECORDS

NO HISTORIC BORINGS WERE FOUND FOR THIS PROJECT.

GEOLOGY

ACCORDING TO PHYSIOGRAPHIC MAPS (ODNR, 1998), THE PROJECT SITE LIES WITHIN THE SHAWNEE-MISSISSIPPIAN PLATEAU, WHICH IS AN UNGLACIATED PORTION OF THE ALLEGHENY PLATEAU. ACCORDING TO BEDROCK GEOLOGIC MAP OF OHIO (2006), THE BEDROCK UNDERLYING THE SITE CONSISTS OF SHALE, SANDSTONE AND SILTSTONE OF THE MISSISSIPPIAN-AGE FORMATION.

RECONNAISSANCE

A FIELD RECONNAISSANCE WAS PERFORMED ON JANUARY 5, 2023. THE LANDSLIDE IS OCCURING WITHIN THE SOUTHWEST- BOUND LANE OF TRAFFIC. TENSION CRACKS AND SETTLEMENT WERE OBSERVED WITHIN THE PAVEMENT OF SR 772. AN EXISTING PILE WALL WAS OBSERVED ALONG THE NORTHERN EDGE OF THE EXISTING GUARDRAIL WITHIN THE PROJECT LIMITS. SHALE BEDROCK WAS EXPOSED ON THE UPHILL SIDE OF THE ROAD. AN EXISTING CULVERT WAS LOCATED WITHIN THE PROJECT LIMITS. THE SURROUNDING LAND WAS RURAL.

SUBSURFACE EXPLORATION

FOUR BORINGS WERE ADVANCE ALONG THE AFFECTED ALIGNMENT FOR THIS PROJECT LABELED B-010-0-18 THROUGH B-013-0-18. THE BORINGS WERE DRILLED USING A TRUCK MOUNTED ROTARY DRILL RIG AND 3.25-INCH I.D. HOLLOW STEM AUGERS TO ADVANCE THE BORINGS THROUGH THE SOIL. THE HAMMER SYSTEM USED WAS LAST CALIBRATED ON APRIL 2, 2018, AND THE AVERAGE DRILL ROD RATIO (ER) WAS 87 PERCENT. DISTURBED SAMPLES WERE COLLECTED IN ACCORDANCE WITH THE STANDARD PENETRATION TEST (AASHTO T206) AT 2.5- FOOT INTERVALS FOR THE SOIL DEPTH OF THE BORINGS. THE BORINGS WERE ADVANCE INTO BEDROCK AND SAMPLED (AASHTO T225) USING AN NQ WIRELINE CORE BARREL.

EXPLORATION FINDINGS

THE FOUR BORINGS DRILLED WITHIN THE LIMITS OF THIS PROJECT WERE DRILLED IN THE PAVEMENT AND ENCOUTNERED APPROXIMATELY 12 TO 42 INCHES OF ASPHALT PAVEMENT. BORINGS B-011-0-18 AND B-013-0-18 ENCOUNTERED A LAYER OF GRANULAR MATERIAL (A-1-b) DIRECTLY BENEATH THE ASPHALT PAVEMENT TO DEPTHS OF 3.5 TO 6.0 FEET BELOW GRADE. PRIMARILY COHESIVE SOILS (A- 4a, A- 6a) WHICH WERE MEDIUM STIFF TO HARD WERE OBSERVED UNDERLYING THESE SURFACE MATERIALS. SHALE AND INTERBEDDED SHALE AND SANDSTONE BEDROCK WAS ENCOUNTERED AT DEPTHS RANGING FROM 8.5 TO 17.4 FEET BELOW GRADE. THE SHALE WAS DESCRIBED AS BROWN TO GRAY, SEVERELY TO MODERATELY WEATHERED AND VERY WEAK TO WEAK AND THE SANDSTONE WAS DESCRIBED AS MODERATELY TO HIGHLY WEATHERED AND SLIGHTLY TO VERY STRONG.

THE BORINGS DID NOT ENCOUNTERED GROUNDWATER DURING DRILLING.

SPECIFICATIONS

THIS GEOTECHNICAL EXPLORATION WAS PERFORMED IN ACCORDANCE WITH THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, OFFICE OF GEOTECHNICAL ENGINEERING, SPECIFICATIONS FOR GEOTECHNICAL EXPLORATIONS, DATED JANUARY 2023.

AVAILABLE INFORMATION

THE SOIL, BEDROCK, AND GROUNDWATER INFORMATION COLLECTED FOR THIS SUBSURFACE EXPLORATION THAT CAN BE CONVENIENTLY DISPLAYED ON THE SOIL PROFILE SHEETS HAS BEEN PRESENTED. GEOTECHNICAL REPORTS, IF PREPARED, ARE AVAILABLE FOR REVIEW ON THE OFFICE OF CONTRACT SALES WEBSITE.

LE	GEND			
	DESCRIPTION	ODOT CLASS	CLASSI MECH./V	FIED ISUA
0°00 0°00	GRAVEL AND/OR STONE FRAGMENTS WITH SAND	A-1-b (0)	1	1
	GRAVEL AND/OR STONE FRAGMENTS W/SAND AND SILT	A-2-4	0	1
	SANDY SILT	A-4a (2)	4	5
	SILT AND CLAY	A-6a (2)	3	1
		TOTAL	8	8
	BOULDERS	VISUAL		
	SANDSTONE	VISUAL		
	SHALE	VISUAL		
XXXXX	PAVEMENT OR BASE = X = APPROXIMATE THICKNESS	VISUAL		
•	EXPLORATION LOCATION - PLAN VIEW			
	DRIVE SAMPLE AND/OR ROCK CORE BORING PLOTTED TO V HORIZONTAL BAR INDICATES A CHANGE IN STRATIGRAPHY	/ERTICAL SC	ALE ONLY	
WC	INDICATES WATER CONTENT IN PERCENT.			
N 60	INDICATES STANDARD PENETRATION RESISTANCE NORMALIZED TO 60% DRILL ROD ENERGY RATIO.			
W	INDICATES FREE WATER ELEVATION.			
X/Y/D"	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST (X= NUMBER OF BLOWS FOR 6 INCHES (UNCORRECTED).	SPT):		
SS	INDICATES A SPLIT-SPOON SAMPLE.			
TR	INDICATES TOP OF ROCK.			
NP	INDICATES A NON-PLASTIC SAMPLE.			

BED ROCK TEST SUMMARY SAMPLE ELEVATION BORING ID SAMPLE DEPTH QU (PSI) LITHOLOGY B-010-0-18 23.6' - 24.1' 38 SHALE 806 3' - 805 8' B-010-0-18 800.9' - 800.3' 29.0' - 29.6' 273 SHALE B-012-0-18 9.6' - 10.0' 17,479 SANDSTONE 836 1' - 835 7' B-012-0-18 832.3' - 831.9' 13.4' - 13.8' 20,328 SANDSTONE 827.4' - 827.0' SANDSTONE B-012-0-18 18.3' - 18.7' 27,884 B-013-0-18 835.2' - 834.8' 14.0' - 14.4' 15.391 SANDSTONE B-013-0-18 827.5' - 827.2' 21.7' - 22.0' 4.273 SANDSTONE

12' COBBLES BOULDERS

RECON. -

d

USER:

17:04:55

TIME:

PIK-772-13.77 MODEL: CLP_772 - Plan 1 PAPERSIZE: 17x11 (in.) DATE: 09-03-2023 TIME: 16:07:26 USER: D: UPron Box(CT: 2023)March/23050003COL, ODOT/Mod 09:03.221159936F90014gn

ę

MODEL: 142+00.00 Drawing Model PAPERSIZE: 17x11 (in.) DATE: 09-03-2023 TIME: 16:50:11 USER: hp D:NDrop Box/CTL 2023/March/23050003C0L.0D0T/Mod.09.03.23/115993XS001.dgn

PIK-772-13.77 MODEL: 142+00.00 Drawing Model PAPERSIZE: [7811(11.) DATE: 09-03-2023 T

MODEL: 142+00.00 Drawing Model PAPERSIZE: 17x11(in.) DATE: 09-03-2023 TIME: 16:53:06 USER: hp D:NDrop BoxNCTL 2023/March/23050003C0L_0D0T/Mod_09.03.23/115993XS002.dgn

PIK-772-13.77

PIK-772-13.77

MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 08-06-2023 TIME: 13:00:54 USER: hp D:Drop BoxICTL 2023/June/Dept 05/COL\Evan\23050003COL_ODOT\MOD_08.06.231115993ZL001.dgn

PROJECT: PIK-772-13.77	DRILLING FIRM / OF	PERATO	DR: <u>ODOT / C</u>	AREY	DRIL	L RIG	: CME	55 TF	RUCK	<	STA	TION	/ OF	FSE	T: _	1405	+10, 9	RT. EXF	LORA	TION ID
TYPE:RETAINING WALL	SAMPLING FIRM / L	OGGEF	R: ODOT / MCI	ITOSH	HAMMER: <u>CME AUTOMATIC</u>					<u> </u>	ALIGNMENT:									
PID: <u>104155</u> SFN: <u>0.18.18</u>	- DRILLING METHOD):	3.25" HSA / NG	!	CALIBRATION DATE: 4-2-18					- ELEVATION: 829.3 (MSL) EC					EOB:	30.0 ft.		1 OF 1		
			361		ENE				٥ <i>١</i>			/ LOI		ATT	S9.		Jo, -o:	0.120710		
AND NOTES		829.3	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI) CL		PL	PI	wc	CLASS (GI)	SO4 ppm	ABAN- DONED
ASPHALT (42")		020.0	-	-				()												Ser Ser
			- 1																	CARDON AND
			- 2	23	59	100	SS_1												-	1
		075 0	- 3	12	00	100	00-1				_			-						TET
MEDIUM STIFF, BROWN, SANDY SILT,		025.0	E,	2									-							
CLAY, TRACE STONE FRAGMENTS, NO	OT ENOUGH			1	6	11	SS-2	0.50	-	-	-	-	-	Ξ.	-	-	24	A-4a (V)	-	
MATERIAL TO TEST, MOIST TO WET			- 5	-																H L CA
@6.0'; ENCOUNTERED SANDSTONE FI	RAGMENTS		6	3	_									_						XX
			- 7	23	7	11	SS-3	-	-	-	-	-	-	-	-	-	9	A-4a (V)	-	K X
02 CF		820 8	F 8	-																740 4
g VERY STIFF, YELLOWISH BROWN, SIL	T AND	020.0	- 9	3	10	07	00.4	0.00	47	_		~	~	~	10	10		A 0 - (0)		A WAY
ピー CLAY, "AND" STONE FRAGMENTS, LIT	TLE SAND,		- 10	4 7	16	67	55-4	2.00	47	8	4	21	20	31	18	13	11	A-6a (2)	-	A Varia
		818.3		-																
SHALE, BROWN WITH GRAY, SEVERE			TR	18	77	100	00 F										10	Deek () ()		AND I
NIGHLY WEATHERED, VERY WEAK, LA			- 12	25	11	100	55-5	-	-	-	-	-	-	-	-	-	10	ROCK (V)	-	STAN
			- 13																	RINA &
2390			- 14	30	1.1.1	100	<u> </u>											Deek (A)		4
202		814.3	- 15	44 53	141	100	33-0	-	-	-	-	-	-	-	-	-	0	ROCK (V)	-	A L
SHALE, GRAY, HIGHLY TO MODERATE			- 10			25												CODE		A ALL
THIN BEDDED, SLIGHTLY CALCAREOU	JS, BLOCKY,		- 10			35	NQ-1											CORE		1 1 4
彩 FAIR; RQD 37%, REC 100%. 9 @15.4' - 17.8': CONTAINS CLAY SEAM)			- 17																	1 DR
			- 18	- 0		50	NQ-2											CORE		AL AN
			- 19			10	10.0						-					00055		
			- 20	0		40	NQ-3						_					CORE		121
٥ -			- 21																	all and
Ê	日本			H																Salt a
			- 22	50		100	NQ-4											CORE		
			- 23																	HANNE T
@ 23.6' - 24.1'; γ = 149 pcf; Qu = 38 psi	三三三		- 24	H																4 LY
			- 25																	North Res
			26																	NOR
			- 27																	and the
ă			- 27	12		100	NQ-5											CORE		The st
AKU			- 28																	ATTA A
@ 29.0' - 29.6'; y = 164 pcf; Qu = 273 ps		700.0	29																	9 L 00
NOTES		799.3	EOB																	ex, que
NOTES.			HU		DEFU	RE UU	KING.													

ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 1 BAG HOLE PLUG

SHEET	SUBSET 6	PROJECT ID 115	REVIE	DESIGNER	DESIGN AGE
TOTAL	TOTAL 11	993	EWER 6-08-23	<.S	INCY

ROCK CORE PHOTO FOR B-010-0-18 (CONTINUED)

GEOTECHNICAL PROFILE - LANDSLIDE

PIK-772-13.77

MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 08-06-2023 TIME: 13:06:21 USER: hp D:\Drop Box\CTL 2023\June\Dept 05\COL\Evan\23050003COL_ODOT\MOD_08.06.23\115993ZL003.dgn

PROJECT: PIK-772-13.77	DRILLING FIRM /	OPERATO	DR: ODOT / C	AREY	DRIL	L RIG	CME	55 TF	RUCK	<	STA	TION	N / OF	FSE	T: _	1406	+68, 6	'LT. EXF		
TYPE: <u>RETAINING WALL</u>		/ LOGGEF		ITOSH	HAM	MER:				C o		SNMI	ENT:	920	0 /M	SR 7	72 FOR:	27.0.ft	B-011-0	PAGE
START: 9-18-18 END: 9-27-18	SAMPLING METH	10D:	SPT E		ENERGY RATIO (%): 87			5	LAT / LONG:				. 9 (101 39.1	<u>0901</u> 2	сов. 2783	7, -83.128173		OF 1		
MATERIAL DESCRIPTION	N	ELEV.	DEDTUO	SPT/		REC	SAMPLE	HP	Ģ	RAD	ATIO	N (%	5)	ATT	ERB	ERG	,	ODOT	SO4	ABAN-
AND NOTES		839.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	DONED
ASPHALT (36")	\otimes	3	-	-																
	\otimes	3	F	40																Extra 1
	\otimes	836.9	- 2	28	58	100	SS-1	-	-	-	-	-	-	-	-	-	-		-	2 MAR
MEDIUM DENSE, BROWN AND REDDISH	I BROWN,		- 3	5																
LITTLE SILT, TRACE CLAY, DAMP	SAND,		- 4	3	12	22	SS-2	-	54	12	11	17	6	NP	NP	NP	11	A-1-b (0)	-	A LAND
	0.0		- 5	-																Y L
STIFF, BROWN AND DARK BROWN, SIL		833.9	6	2																XXX
CLAY, "AND" STONE FRAGMENTS, LITTL	E SAND,		- 7	2 4	9	44	SS-3	2.00	40	10	6	24	20	32	21	11	23	A-6a (2)	-	A X
		831.4	- 8	-																12
VERY DENSE, REDDISH BROWN, SAND			- 9	4 31	55	56	SS-4	-	43	7	8	31	11	NP	NP	NP	16	A-4a (1)	-	A A A
8 MOIST			- 10	7								•.						,, ia (i)		A Day
		828.9	- 11	-																The Van
ଞ୍ଚା VERY DENSE, REDDISH BROWN, STONI ଷ୍ୱା FRAGMENTS WITH SAND AND SILT , TRAG	CE CLAY,		- 12	5 4	-	50	SS-5	-	-	-	-	-		-	-	-	13	A-2-4 (V)	-	NOR J
			- 12																	STANDY STAN
BOULDERS/COBBLES	ÞČ	N S	- 13																	TH TH
2023			14 · -	- 0		40	NQ-1											CORE		
- - -		9	- 15 ·																	CARDON AND
10:10			- 16																	471
6-23		822.5																		TERT
INTERBEDDED SHALE (60%) AND SANDS (40%) ROD 4% REC. 98%:	TONE	:	- 18	+																2 2
SHALE, GRAY, HIGHLY WEATHERED	, WEAK,	:	- 19																	< > > <
THICKNESS FROM 0.25 INCHES TO 1.5 I	NCHES:	:	- 20	8		100	NQ-2											CORE		1 N
	WN,	:1	- 21																	THE T
STRONG, VERY FINE GRAINED, LAMINA	TED TO		- 22																	AND A
THIN VERY BEDDED, RANGES IN THICK	NESS		- 22	- 0		100	NQ-3											CORE		
			- 23																	A A A
			- 24	T I																A LANG
			- 25	0		96	NQ-4											CORE		The T
			- 26																	San I
		•] 812.9	ЕОВ 27-		L															10 - 2000
				E 0 0 1			DING													-
ABANDONMENT METHODS, MATERIALS	QUANTITIES: A	UGER CU	HOL TTINGS MIXED V		BEFOR BAG H		LUG													

PIK 772 - 13.77 B-OII - O - 18 RI 12'-17' Rec 40'! Rab O R2 17'-22' Rec 100'! Rab 87.

SHEET	SUBSET 8	PROJECT ID 115	REVIE	DESIGNER	DESIGN AGE
TOTAL	TOTAL 11	993	EWER 6-08-23	<.S	NCY

ROCK CORE PHOTO FOR B-011-0-18 (CONTINUED)

GEOTECHNICAL PROFILE - LANDSLIDE

PIK-772-13.77

STAN

NOTES:

MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 08-06-2023 TIME: 13:12:49 USER: hp D:Drop BoxICTL 2023/June/Dept 05/COL\Evan/23050003COL_ODOTMOD_08.06.23/115993ZL005.dgn

HOLE DRY BEFORE CORING ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 1 BAG HOLE PLUG

SHEET	SUBSET 10	PROJECT ID 115	REVIE	DESIGNER	DESIGN AGE	
TOTAL	TOTAL 11	993	EWER 6-08-23	<.S	NCY	

ROCK CORE PHOTO FOR B-012-0-18 (CONTINUED)

GEOTECHNICAL PROFILE - LANDSLIDE

PIK-772-13.77

MODEL: Sheet PAPERSIZE: 11x17 (in.) DATE: 08-06-2023 TIME: 13:18:32 USER: hp D:\Drop Box\CTL 2023\une\Dept 05\COL\Evan\23050003COL_ODOT\MOD_08.06.23\115993ZL007.dgr

PROJECT: PIK-772-13.77	DRILLING FIRM / C	PERATO	DR: ODOT	/ CARE	Y	DRIL	L RIG:	CME	55 TF	RUCK	(STA		1/0	FSE	T:	1407	+94, 8	LT. EXI	PLORA	TION IC
TYPE: RETAINING WALL	SAMPLING FIRM /	LOGGEF	R: ODOT / M	ICINTO	SH	HAM	MER:	CME A	UTO	MATIO	0	ALIC	GNM	ENT:	-		SR 7	72		B-013-0	0-18
PID: <u>104155</u> SFN:	DRILLING METHOD	D:	3.25" HSA /	/ NQ		CALI	BRAT	ION DATE	E:	1-2-18	8	ELE	VATI	ION:	849.	.3 (M	SL)	EOB:	24.0 ft	<u> </u>	
START: <u>10-2-18</u> END: <u>10-2-18</u>	SAMPLING METHO	DD:	SPT			ENEF	RGY F	RATIO (%)	:	87		LAT	/ LO	NG:		39.0	09010	09, -83	.127735		1 OF 1
MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS		SPT/	Neo	REC	SAMPLE	HP	Ģ	RAD	ATIO	N (%	5)	ATT	ERB	ERG		ODOT	SO4	ABAN-
AND NOTES		849.3	- 1947 WA & \$185040	F	RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	SUTTRE .
ASPHALT(10)			-	1																	4 Lan
LOOSE BLACK STONE EPAGMENTS W		847.8	-	. 9																	action 1
LITTLE SILT, TRACE CLAY, ASPHALT G	RINDINGS,		F	2 -	3	6	44	SS-1	-	-		-	-	- 1	-	- 2	-	3	A-1-b (V)	-	47
DAMP	00	845.8	Ŀ	3 –	1																A > C
STIFF, BROWN WITH GRAY, SANDY SIL	T, SOME		-	4 - 3	1	6	44	SS-2	1 50	25	5	5	39	26	27	17	10	19	A-4a (6)		
CLAY, SOME STONE FRAGEMENTS, MC			Ē	5	3	Ŭ		002	1.00	20	Ŭ	Ŭ	00	20	21		10	10	77 40 (0)		
			-																		12
			F	0 2	2	9	44	SS 2	2.00									20	A 40 ()/)		2 Val
2			Ŀ	7 -	3	9	44	33-3	2.00	-	-	-	_	-	-	-	-	20	A-4a (V)	-	and and
5.00		840.8	-	8 —																	1 - 1 - 1
STIFF, BROWN, SANDY SILT, "AND" STC	NE IIIII		Ē	9 2	~			00.4	4.50	45	_		05	10	~	47	-	45	A 4- (4)		A del
FRAGMENTS, LITTLE CLAY, DAMP			-		2	4	44	55-4	1.50	45	8	6	25	16	24	17	· /	15	A-4a (1)	-	antimo -
			F																		State -
			Ŀ	11 4																	700 1
0072			F	12 -	5	10	56	SS-5	2.00	-	-	-	-	- 1	-	-2	-	14	A-4a (V)	-	STATE
			Ŀ	13																	23 > 200
		835.3	-		0	-	100	SS-6	4 00		-	-	-	-	-		-	13	A-4a (V)	-	7 2
INTERBEDDED SHALE (60%) AND SANDS				14			100		1.00									10	<u>// iu(//</u>		4990 V
(40%), BLOCKY, FAIR, RANGES IN THICH	(NESS		-	15 -																	C Barrow
FROM 0.25 INCHES TO 1 INCH, RQD 229	6, REC. 86%;		Ē	16 -																	ALLE T
LAMINATED TO VERY THIN BEDDED:	, WEAK,		E	17																	and and a
SANDSTONE, GRAY AND BROWNISH	GRAY, 트클		F																		7 SP
	, SLIGHTLY		E	18 -																	a Lain
LAMINATED TO VERY THIN BEDDED BI	OCKY		F	19 -	22		86	NQ2-1											CORE		
FAIR, RANGES IN THICKNESS FROM 0.2	25 INCHES		-	20				00 000000000 00													JZT .
			F	20 -																	XXX
CALCAREOUS			E	21 -																	2×
@ 14.0' - 14.4'; γ = 169 pcf; Qu = 15,391 p	osi 📃		E.	22 -																	ALL A
@ @16.6' - 18.0; SANDSTONE LAYER, MOD	ERATELY 특별		E	22																	A COMP
2 021 6' - 22 9'' SANDSTONE LAYER MOD		825.3	F	23																	A A A A
STRONG TO STRONG, SLIGHTLY CALC	AREOUS	020.0	EOB	-24																	L<.V
$[\infty] 21.7' - 22.0'; \gamma = 164 \text{ pcf; } Qu = 4,273 \text{ ps}$	si																				
4 0																					
NOTES:				HOLE D	DRY B	EFOF	RE CO	RING.													
ABANDONMENT METHODS, MATERIALS	<u>S, QUANTITIES: AU</u>	GER CU	TTINGS MIXE	ED WIT	<u>H1B</u>	AG H	OLE P	LUG													

BORING LOG AND ROCK CORE PHOTO FOR B-013-0-18

GEOTECHNICAL PROFILE - LANDSLIDE

APPENDIX B TEST BORING RECORDS

P	PROJECT: PIK-772-13.77	DRILLING FIRM / OPER				DRIL		: _ (ME 55 TH	RUCK		STAT		/ OFF	SET	: _1	405+	10, 9'	RT.	EXPLOR B-01(ATION ID
	PE: <u>RETAINING WALL</u> PD: 104155 SEN [:]	DRILLING METHOD	GER: 0	"HSA / NO			NER: BRAT			4/2/18		FL F			829 3	3 (MS	SR / /) 0 ft	PAGE
s	START: 9/12/18 END: 9/18/18	SAMPLING METHOD:	0.20	SPT	×	ENE	RGY F	RATIO	(%):	87		LAT /	LON	IG:	020.0	39.0	9020	883	3.1287	<u>.0 n.</u> 18	1 OF 1
	MATERIAL DESCRIP	TION	ELEV.	DEDT		SPT/		REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERB	ERG			ABAN-
	AND NOTES		829.3	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	DONED
	ASPHALT (42")	\sim																			A Land
2																					A ATRIA
00.00		\otimes	\$		- 2 -	23	59	100	SS-1	_	_	-	_	-	_	_	-		_		7-1-
cnno			825.8			12															TETE
	MEDIUM STIFF, BROWN, SANDY SILT, L	ITTLE CLAY,	025.0			2															
-7	TRACE STONE FRAGMENTS, NOT ENO	UGH MATERIAL				1 3	6	11	SS-2	0.50	-	-	-	-	-	-	-		24	A-4a (V)	
	TO TEST, MOIST TO WET				- 5 -															,	H L apl
GNI	@6.0'; ENCOUNTERED SANDSTONE FF	RAGMENTS			6 1	3	_												-		X X X
E					- 7 -	23	1	11	SS-3	-	-	-	-	-	-	-	-	-	9	A-4a (V)	AL CK
, OL			820.8		8 -																All All
	VERY STIFF, YELLOWISH BROWN, SIL	FAND CLAY,	020.0			3								-							- ~ × ~ 4
nene	"AND" STONE FRAGMENTS, LITTLE SA	ND, DAMP				4 7	16	67	SS-4	2.00	47	8	4	21	20	31	18	13	11	A-6a (2)	
ZICO.			818.3		- 10 -																THE ADD
	SHALE, BROWN WITH GRAY, SEVEREL			TR-	<u>+</u> 11 _−	18							·						10	-	740 7 6
NCZ0	WEATHERED, VERY WEAK, LAMINATE				- 12 -	25 28	11	100	SS-5	-	-	-	-	-	-	-	-		10	Rock (V)	Stand B
	BEDDED.				- 13 -																
É CO					L 14	30			1.2.2.1.2										-		1 1 1 1 X
21			814.3			44 53	141	100	SS-6	-	-	-	-	-	-	-	-		8	Rock (V)	A Land
	SHALE, GRAY, HIGHLY TO MODERATEI	Y WEATHERED,			- 19 -																A ALLEN
C:+-	VERY WEAK, LAMINATED TO VERY TH SLIGHTLY CALCAREOUS, BLOCKY, FAI	IN BEDDED,			- 16 -	0		35	NQ-1											CORE	1-1-
2710	100%.				- 17 -								1								-1 EN ZE
C/C -	@15.4' - 17.8'; CONTAINS CLAY SEAM V				- 18 -	0		50	NQ-2											CORE	
en					- <u>19</u> -																2
2		- E			- 20	0		40	NQ-3											CORE	12 12
					F 20 T																XXXXX
- (21 -																A X X
< 0					- 22 -	FO		100												CODE	AND AND
0					- 23 -	50		100	NQ-4											CORE	X X X
	@ 23.6' - 24.1'; y = 149 pcf; Qu = 38 psi				- 24 -																
	 A second s		-		- 25																State and
					- 23 -																76 7 6
De l					26 -																Strain 4
					- 27 -	12		100	NO 5											CORE	CALLER South
2 2 2					- 28 -	12		100	NQ-0											UURE	1 1
NUA		屋			- 29 -																A L AS
A IO	@ 29.0' - 29.6'; γ = 164 pcf; Qu = 273 psi		799.3	FOR-	-																A ALEIT
	NOTES:			HO	LE DRY	BEFOR	RECO	RING													
	ABANDONMENT METHODS, MATERIAL	S, QUANTITIES: AUGER	CUTTING	GS MIXED	WITH 1	BAG H	OLE F	PLUG													

ſ	PROJECT: PIK-772-13.77	DRILLING FIRM / OPER		ODOT / C	AREY	DRIL	L RIG	: _ C	ME 55 TH	RUCK	_	STAT	FION	/ OFI	FSET	ſ: _1	406+	68, 6	LT.	EXPLOR B-011	ATION ID
	PID: 104155 SEN:	DRILLING METHOD	JER: <u>01</u>	JOT / MCIP	NIOSH		MER:			MATIC 4/2/18		ALIG		NI: NI:	830 0		SR / I	2 - OB·	2	7.0 ft	PAGE
I	START: 9/18/18 END: 9/27/18	SAMPLING METHOD:	0.20	SPT		ENE	RGY F	RATIO	(%):	87	-	LAT		IG:	000.0	39.0	9012	7, -83	3.1281	73	1 OF 1
ł	MATERIAL DESCRIPT		ELEV.	DEDT		SPT/		REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERB	ERG		ODOT	ABAN-
L	AND NOTES		839.9	DEPTI	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	DONED
	ASPHALT (36")		*																		4 L al
		\sim				40															K FR
			00000		_ 2 _	28	58	100	SS-1	=	-	-	-	-	-	-	-	-	-		3>1
	MEDIUM DENSE BROWN AND REDDISE		836.9		— 3 —	12				-		-									TETE
	GRAVEL AND STONE FRAGMENTS WITH	SAND, LITTLE			- 4 -	5	12	22	SS-2	_	54	12	11	17	6	NP	NP	NP	11	A_{-1} -h (0)	
7	SILT, TRACE CLAY, DAMP					5	12	~~~	00-2		04	12			U	1.11	INC			A-1-0 (0)	S V S
		0	833.9		6 -																LT TY
	STIFF, BROWN AND DARK BROWN, SIL	T AND CLAY,				2	9	44	SS-3	2.00	40	10	6	24	20	32	21	11	23	A-6a (2)	ALL THE
	AND STONE HAGMENTS, ETTLE SA				- ' T	4												30.000		()	AND AND
			831.4		- 8 -																
	VERY DENSE, REDDISH BROWN, SAND STONE FRAGMENTS LITTLE CLAY DAM	Y SILT, "AND" MP TO MOIST			- 9 -	⁴ 31	55	56	SS-4	_	43	7	8	31	11	NP	NP	NP	16	A-4a (1)	A PART
nezio	······································				- 10 -	7							-								in Variance
	VERY DENCE DEDDICU DROWN STON		828.9		- 11 -	7			tote tot											10 II	A VIE
	WITH SAND AND SILT, TRACE CLAY, DA	MP TO MOIST			- 12 -	54	-	50	SS-5	-	н	-	-	-	8 - 6	-	<i>i</i> -	-	13	A-2-4 (V)	NOD 1 X
	@11.5' - 17.4'; ENCOUNTERED BOULDE	RS/COBBLES			- 12 -																Alling &
					- 13 -																
					- 14 -	0		40	NQ-1											CORE	STA C
					- 15 -															ACTIVITIES INCOME	ABON S
4.00					— <mark>1</mark> 6 —																ALID 1 -
2710			822.5	-	- 17 -																TE TE
Cic -	INTERBEDDED SHALE (60%) AND SANDS	STONE (40%),		TR	- 18																
20	RQD 4%, REC. 98%; SHALE, GRAY, HIGHLY WEATHERED	WEAK			- 10 -																220 1>
2	LAMINATED TO THIN BEDDED, RANGES	IN THICKNESS				8		<u>100</u>	NQ-2											CORE	H L apl
5	SANDSTONE LIGHT GRAY WITH BRO	DWN.			- 20 -																X X Y Y
	MODERATELY TO HIGHLY WEATHERED), SLIGHTLY			_ 21 _																
	VERY BEDDED, RANGES IN THICKNESS	S FROM 0.25			- 22 -	0		100		-										0005	AND ADD
	INCHES TO 0.5 INCHES.				- 23 -	0		100	NQ-3											CORE	XXXXX
					- 24 -																A LAND
					- 25 -	0		06	NO 4											CORE	STAR AND
					- 23 -	0		90	NQ-4											CORE	THE TE
00			812.0		- 26 -																AND TH
		[012.3	EOB-	27							1					1				Con Star Ba
\mathbf{F}	NOTES:		CUITTING			BEFOR		DRING	•)												
L	ADAINDUNIVIENT IVIETHUDS, IVIATERIALS	, QUANTITIES: AUGER	CUTTINC	33 IVIIXED	VVIIHI	DAG H	ULEF	LUG													

ſ	PROJECT:PIK-772-13.77 D TYPE:RETAINING WALLS	RILLING FIRM / OPERA	ATOR:	ODOT / C	AREY	DRIL	L RIG	:C				STAT ALIG		/ OFI NT:	FSET	: <u>1</u>	407+ SR 77	42, 7' 72	'RT.	EXPLOR/ B-012	ATION ID 2-0-18
	PID: <u>104155</u> SFN: D	RILLING METHOD:	3.25	" HSA / NO	2	CALI	BRAT	ION D	ATE: 4	1/2/18		ELE\	ATIC	DN:	845.8	(MS	SL) E	OB:	24	1.5 ft.	PAGE
	START: <u>10/1/18</u> END: <u>10/2/18</u> S	AMPLING METHOD:	/	SPT		ENE	RGY F	RATIO	(%):	87	_	LAT	LON	IG:		39.0	9007	1, -83	3. <mark>127</mark> 9	18	1 OF 1
	MATERIAL DESCRIPTIO AND NOTES	N	ELEV.	DEPT	HS	SPT/ RQD	N ₆₀	REC	SAMPLE	HP (tsf)	GR	CS	ATIC ES	N (%	o) Cl		ERBI	ERG PI	WC	ODOT CLASS (GI)	ABAN- DONED
ł	ASPHALT (12")	\times	045.0		L -			(70)	10	(101)	on			0.	02						SP S
2	MEDIUM DENSE, BROWN, SANDY SILT, "AN	ND" GRAVEL	044.0		- 1 -																ABADA S
5 2 5.G	AND STONE FRÁGMENTS, LITTLE CLAY, D	OAMP TO MOIST			- 2 -	8 8	22	56	SS-1	-	39	8	13	29	11	NP	NP	NP	13	A-4a (1)	1 - 12
16005			842.3			7															TETE
14.10	VERY STIFF TO HARD, BROWN WITH GRA	Y, SILT AND			- 4 -	8 7	20	56	SS-2	2 50	30	5	7	30	19	27	16	11	15	A-6a (3)	
-711-	CLAT, AND STONE FRAGMENTS, LITTLE	SAIND, DAIVIP				7	20	00	002	2.00	00	Ŭ	<u> </u>	00	10	21	10		10		S LV COL
XIU/					- 6 -	7															L L L
-SIG					- 7 -	10	30	83	SS-3	4.50	-	-	-	-	-	-	-	- 27	14	A-6a (V)	
			007.0			11															And and
030	SHALE BROWN SEVERELY WEATHERED	VFRY	837.3	TR		20		117	88.4										10	Peek (\/)	A A A
20201	WEAK, LAMINATED.		836.3			48	-	117	33-4	-	-	-	-	-	-	-	-	-	10	ROCK (V)	
Z\G0-	INTERBEDDED SHALE (60%) AND SANDSTO BLOCKY, FAIR, RANGES IN THICKNESS FF	NE (40%) , ROM 0.25			- 10 -																The state
COL	INCHES TO 2 INCHES, RQD 21%, REC. 87%				- 11 -																AND JX
2023	LAMINATED TO VERY THIN BEDDED;				- 12 -																AND B
ECI	SANDSTONE, LIGHT GRAY WITH BROW MODERATELY TO HIGHLY WEATHERED. S				- 13 -																TL TL
0YC	STRONG, VERY FINE GRAINED, LAMINATE	D TO VERY			- 14 -	24		82	NO-1											CORE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1:0 -	INCHES TO 35 INCHES.				- 15 -	24		02	NG-1											CORE	A L AND
14:35	@9.6' - 10.2'; SANDSTONE LAYER, VERY S	TRONG			- 16 -																
0/23	@12.1' - 15.0'; SANDSTONE LAYER, VERY \$	STRONG			- 17 -																
- 5/3	@13.4' - 13.8'; γ = 161 pct; Qu = 20,328 psi @17.5' - 18.8'; SANDSTONE LAYER, VERY \$				- 18 -																
GDI	@ 18.3' - 18.7'; γ = 164 pcf; Qu = 27,884 psi				- 19 -																
2					20 -																12112
HO -					21																A ANT
(11)					- 21	0		100												CODE	Auto ada
(G.S)					- 22 -	U		100	NQ-2											CORE	< , V < ,
500	@23.1' - 23.5'; SANDSTONE LAYER				- 23 -																A CONTRACT
PNP			821.3	EOB-	- 24 -																A Langing
²																					
SOIL																					
KD C																					
ANDF																					
2	NOTES:					DEFO															
ŀ	ABANDONMENT METHODS MATERIALS (CUTTING	S MIXED	WITH 1	BEFUI															

ſ	PROJECT: PIK-772-13.77	DRILLING FIRM / OPER			AREY	DRIL	L RIG	:	CME 55 TH	RUCK		STAT	FION	/ OFI	FSET	Г: <u>1</u>	407+	94, 8	LT.	EXPLOR B-013	ATION ID
	PID: 104155 SEN:	DRILLING METHOD	GER: 0	DOT / MCI	NIOSH		MER:			VIATIC 4/2/18	;	ALIG		NI: NI:	849	3 (MS	SR //	(2 =0B·	24	10 ft	PAGE
	START: 10/2/18 END: 10/2/18	SAMPLING METHOD:	0.20	SPT	×	ENE	RGY F	RATIO	(%):	87		LAT	LON	IG:	010.0	39.0	9010	9, -83	3.1277	35	1 OF 1
t	MATERIAL DESCRIPT		ELEV.	DEDT		SPT/	N	REC	SAMPLE	HP		GRAD	ATIC	N (%	b)	ATT	ERB	ERG		ODOT	ABAN-
L	AND NOTES		849.3	DEPT	HS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	DONED
2	ASPHALT (18")		847 8		- 1 -																S S S S S
19.0000	LOOSE, BLACK, STONE FRAGMENTS WI LITTLE SILT, TRACE CLAY, ASPHALT GR	TH SAND, RINDINGS, DAMP			- 2 -	9 3 1	6	44	SS-1	-	-	-	-	÷	-	-	-	-	3	A-1-b (V)	1
10/00	STIFF, BROWN WITH GRAY, SANDY SIL	T, SOME CLAY,	845.8			3															
1-711-0	SOME STONE FRAGEMENTS, MOIST					1 3	6	44	SS-2	1.50	25	5	5	39	26	27	17	10	19	A-4a (6)	2777 2777 2777
					- 6 - - 7 -	2 3 3	9	44	SS-3	2.00	-	-	-	-		-	-		20	A-4a (V)	
13005			840.8		8 -	2															
Innenezie	FRAGMENTS, LITTLE CLAY, DAMP				- 9 - - - 10 -	2 1	4	44	SS-4	1.50	45	8	6	25	16	24	17	7	15	A-4a (1)	
12U23/CUL-U					- 11 - - 12 -	4 5 2	10	56	SS-5	2.00	-	-	-	-	-	-	-	-	14	A-4a (V)	
			025.2		- 13 -	00		100		1.00									10		7 4 40
דער טטטו אטור פטור פעניאי געיידער אייטי א געיידער אייטי אייטי אייטי אייזער עער אייטי אייטי אייטי אייער טערער ד ד	INTERBEDDED SHALE (60%) AND SANDS BLOCKY, FAIR, RANGES IN THICKNESS INCHES TO 1 INCH, RQD 22%, REC. 86% SHALE, GRAY, HIGHLY WEATHERED LAMINATED TO VERY THIN BEDDED; SANDSTONE, GRAY AND BROWNISH MODERATELY TO HIGHLY WEATHEREE MODERATELY STRONG, VERY FINE GR LAMINATED TO VERY THIN BEDDED, BL RANGES IN THICKNESS FROM 0.25 INC INCHES. @14.0' - 14.6'; SANDSTONE LAYER, VER CALCAREOUS @14.0' - 14.4'; γ = 169 pcf; Qu = 15,391 p @16.6' - 18.0; SANDSTONE LAYER, MOD STRONG TO STRONG @21.6' - 22.9'; SANDSTONE LAYER, MOD STRONG TO STRONG, SLIGHTLY CALC, @ 21.7' - 22.0'; γ = 164 pcf; Qu = 4,273 ps	TONE (40%), FROM 0.25 , WEAK, GRAY, o, SLIGHTLY TO AINED, OCKY, FAIR, HES TO 17 RY STRONG, DERATELY DERATELY DERATELY AREOUS	825.3	TR	- 14 - - 15 - - 16 - - 17 - - 18 - - 20 - - 21 - - 22 - - 23 - - 23 - - 24 -	22		86	NQ2-1											CORE	
014								-													
┢	ABANDONMENT METHODS MATERIALS	QUANTITIES AUGER	CUTTIN		WITH 1	BAG H		PLUG													

APPENDIX C GEOPHYSICAL TEST RESULTS

INTEROFFICE COMMUNICATION

To:	Justin Gardner P.E., District Geotechnical Engineer, District 9
FROM:	Andrew Jalbrzikowski, Office of Geotechnical Engineering
	P. Paul Painter, Office of Geotechnical Engineering
DATE:	July 8, 2022
SUBJECT:	PIK-772-14.10 PID 115993 Geophysical Exploration Summary

Pursuant to your request, the Office of Geotechnical Engineering (OGE) has completed two geophysical surveys to characterize the subsurface conditions to aid in the determination of the top of rock elevation in the project area.

A previous geotechnical exploration, PIK-772-13.77, was completed with borings advanced within the southbound/westbound lane to evaluate areas of instability. Road construction appears to be through side hill construction methods. Several sections of piling have been installed previously. These piles are typically heavily corroded and partially or fully buried. Borings B-010-0-18 through B-013-0-18 were completed by OGE within the current project area from September 12 to October 2, 2018. Highly variable pavement thickness was noted between 12 and 42-inches underlain by predominately non-cohesive soils appearing to be an aggregate base course. The soils encountered in the borings were a mix of cohesive and non-cohesive appearing to be either residual or side hill fill and included Sandy Silt (A-4a), Silt and Clay (A-6a), Stone Fragments with sand (A-1-b), and Stone Fragments with sand and silt (A-2-4), on top of bedrock comprised of either shale or interbedded shale and sandstone. Bedrock was encountered at elevations ranging from 818.9 in B-010-0-18 to 835.2 in B-013-0-18 or between a depth of 8.5 to 17.4 feet. The bedrock was generally described as highly to moderately weathered and ranged from very weak to slightly strong.

It is understood that construction of a lo drill wall was attempted here by District forces in the summer of 2021, with the depth of rock anticipated at less than 20 feet. The first lo drill shaft did not encounter rock and the construction was halted.

To supplement the boring information and to define the top of rock along the north side of SR 772, two geophysical methods; refraction microtremor (ReMi) and electric resistivity (ER) were utilized. The latitude, longitude, and elevation values used to create the seismic and resistivity profiles are from a Trimble Geo7x GPS. The geophysical field work was completed on May 11, 2022.

The ReMi survey line was completed along the westbound lane guardrail. The geophones were planted into the soil along the east side of the roadway. The ReMi data was collected with a SeismicSource DAQlink III 24 channel seismograph along one survey line using 24 geophones spaced approximately 10 feet apart. The ReMi data consisted of ten 30 second records using a 2-millisecond sampling interval. Data was recorded with a laptop computer using SeismicSource Vibrascope software. The data was processed, and surface elevation corrected by SubTerraSeis using Vibrascope, Geogiga Seismic Pro, and Golden Surfer software packages.

The ReMi 2D profile indicates the top of rock is at an approximate shear wave velocity of 2,000 feet per second as indicated by the yellow to red transition on the figure. The top of rock at the east end of the profile is close to the elevation encountered at B-011-0-18 but it sharply drops to the west, extending as deep as elevation 790. This is nearly 30 feet deeper than what was encountered in B-010-0-18.

The ER data was collected with an Advanced Geosciences Inc. (AGI) SuperSting R8 control unit. For the ER Survey, 56 electrodes were spaced approximately 10 feet apart north of and along the guardrail. The electrodes were used to measure the potential field with Dipole-Dipole and Strong Gradient Arrays. The data was processed, and surface elevation corrected using AGI's EarthImager 2D software.

The ER survey collected extremely noisy data on the east end of the survey line, and various errors, throughout. This is most likely due to high contact resistance along the length of the survey. There is a contrast indicating a dip in the top of rock elevation from 240 feet to 400 feet along the length of the ER profile. The contrast is indicated by the green to yellow/red transition on the figure.

It is recommended that additional geophysical surveys be completed here, including a refraction survey. Down slope surveys perpendicular to the road could help further define the top of rock. Two additional borings are also recommended west of B-010-0-18. The additional borings should be completed on or behind the guardrail line if possible.

Attached are a site plan, overview map, ReMi profile, resistivity profile, boring log and point load testing results.

If you have any questions, please feel free to contact me at 614-275-1305.

Thank you,

AMJ/PPP

PC: Reading File, File

Attachments: Site plan, geophysical exploration results, boring logs.

PIK-772-14.10 Inverted Resistivity Profile

PIK-772-14.10 ReMi Profile

ſ	PROJECT:PIK-772-13.77 DRILLING FIRM / OPERA		ODOT / C	AREY	DRIL	L RIG:		ME 55 TF	RUCK		STATI	N/	OFF	SET:					EXPLOR	ATION ID
	TYPE: RETAINING WALL SAMPLING FIRM / LOGO	ER: 0		TOSH	HAM	MER:		IE AUTON	MATIC	_	ALIGN	MEN	IT:	000 0	S	R 77	2			PAGE
	PID: <u>104155</u> SFN: DRILLING METHOD:	3.25	SPT					ATE:4	87	-			N: _2	\$29.9	30.0	L) E	:OB:	12023	<u>.0 π.</u>	1 OF 1
ŀ	MATERIAL DESCRIPTION	FI EV					REC	SAMPLE	нр				J.		ΔTT	FRB	-03 -RG	.12920		
	AND NOTES	829.9	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	DONED
f	ASPHALT (42")	020.0		L _																Ser S
	\sim			- 1 -																ABOTA S
	\sim	>		- 2 -	23	59	100	SS-1	_			_						_		1-1<
	\sim	000 4			12	00	100	00-1	_	-	-	-	_	-	_	-	_	_		TUTE
-	MEDIUM STIEF BROWN SANDY SILT LITTLE CLAY	820.4		F	2							-		_						RIDAD < C
	TRACE STONE FRAGMENTS, NOT ENOUGH MATERIAL TO			F 4 T	1	6	11	SS-2	0.50	H	-	-	E.	-	-	1-	-	24	A-4a (V)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	TEST, MOIST TO WET			5 -																J L apl
	@6.0': ENCOUNTERED SANDSTONE FRAGMENTS			6 1	3								-							AL TL
				- 7 -	2	7	11	SS-3	-	-	-	-	-	-	-	-	-	9	A-4a (V)	2 2 2 2
		021 4		8 -																AND ADE
	VERY STIFF. YELLOWISH BROWN. SILT AND CLAY, "AND"	021.4			3		-													S N T L
GP.	STONE FRAGMENTS, LITTLE SAND, DAMP			- 9	4 7	16	67	SS-4	2.00	47	8	4	21	20	31	18	13	11	A-6a (2)	A V S
0555		0100																		Soft and
S/60		010.9	TR-	- 11 -	18							-		_						The TE
ECT	WEATHERED, VERY WEAK, LAMINATED TO VERY THIN			- 12 -	25	77	100	SS-5	-	н		-	E.	-	-	l-	-	10	Rock (V)	Sall A
ROJ	BEDDED.			- 13 -																TO > POINTS
NTN					30									_						TLAT
<:\G		814.9		- 14 -	44	141	100	SS-6	-	-	-	-	-	-	-	-	-	8	Rock (V)	KIL K
(-)	SHALE, GRAY, HIGHLY TO MODERATELY WEATHERED,	014.0		- 15 -	- 55															ASSAN \$
3 07:4	VERY WEAK, LAMINATED TO VERY THIN BEDDED,			- 16 -	0		35	NQ-1											CORE	1217
16/18	100%.			- 17 -																TL TL
-11/	@15.4' - 17.8'; CONTAINS CLAY SEAM WITH LOSS			- 18 -	0		50	NO-2											CORE	A > and
GDT		-			Ū		00	HQ L											CONE	AL AL
OT.0				- 19 -	0		40	NQ-3											CORE	I L'appl
HD				20 -																N N N
1) - (- 21 -																
5 X 1				- 22 -																gade ade
3 (8.				- 23 -	50		100	NQ-4											CORE	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LOC				- 20																A A A A A A A A A A A A A A A A A A A
SING	$\underline{a} = 23.6 - 24.1; \mathbf{\gamma} = 149 \text{ pcl}; \mathbf{Q} = 36 \text{ psl}$			- 24 -																A Langthe
BOF				- 25 -																The TE
SOIL				- 26 -																NO IX
OT S				- 27 -																A Starter
DOC				- 29 -	12		100	NQ-5											CORE	7 2
DAR				- 20																
TAN	@ 29.0' - 29.6'; y = 164 pcf; Qu = 273 psi	700.0		- 29 -																ASSAN \$
S	NOTES: LAT/LONG FROM OCE HANDHELD GPS UNIT. FLEV FROM	OSIP DF	EOB		ORE CO		l 5.		1											- August
Ī	ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CU	TTINGS N	IXED WIT	H 1 BAG	HOLE	PLUG														

PROJECT: PIK-772-13.77 DRILLING FIRM / OPER	ATOR:	ODOT / CAREY	DRIL	L RIG:	(CME 55 TF	RUCK		STAT	ION	/ OFF	SET:					EXPLOR	ATION ID			
TYPE: RETAINING WALL SAMPLING FIRM / LOG	GER: OI	DOT / MCINTOSH	HAM	MER:	CN		ATIC		ALIG	NME	NT:	000 5	5	SR 77	2	0	B-01	PAGE			
PID: <u>104155</u> SFN: DRILLING METHOD:	3.25	<u>SPT</u>				AIE:	97		ELEV)N: _	839.5	20 0	L) t	=OB:	12960	7.0 ft.	1 OF 1			
MATERIAL DESCRIPTION	EI EV				PEC						NI /0/)	39.0	EDD	9, -03	0.1200					
AND NOTES	830 5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI			PL	PI	WC	CLASS (GI)	DONED			
ASPHALT (36")	2 055.5				(/*/		(,											STA C			
	3	- 1 -																ABON \$			
	3	- 2 -	40	50	100	00.4												AND TH			
	836.5		28	50	100	55-1	-	-	-	-	-	-	-	-	-	-		IL IL			
MEDIUM DENSE, BROWN AND REDDISH BROWN, GRAVEL	q		5												-			RI > CON			
TRACE CLAY, DAMP			3	12	22	SS-2	-	54	12	11	17	6	NP	NP	NP	11	A-1-b (0)	A LAND			
	T	- 5 -	5															JLV JL			
	833.5	- 6 -	2															XXXXX			
STONE FRAGMENTS, LITTLE SAND, MOIST	1		2	9	44	SS-3	2.00	40	10	6	24	20	32	21	11	23	A-6a (2)	22			
			4							-	-							Fait and			
	831.0		1								-							- Star - L			
STONE FRAGMENTS, LITTLE CLAY, DAMP TO MOIST		- 9 -	³¹	55	56	SS-4	-	43	7	8	31	11	NP	NP	NP	16	A-4a (1)	A MARK			
222°		- 10 -																A Variano			
	828.5	- 11 -	7															A VER			
인 VERY DENSE, REDDISH BROWN, STONE FRAGMENTS		- 12 -	54	-	50	SS-5	-	-		-	-		-	-	-	13	A-2-4 (V)	N Composition			
@11.5' - 17.4'; ENCOUNTERED BOULDERS/COBBLES	D	- 12																A Marine A			
		- 13 -																7 6 70			
		- 14 -	0		10	NO 1											CODE	47 J X			
	Ú.	- 15 -	U		40	NQ-1											CORE	A L AND			
75: 20	0	- 16 -																ALTER TL			
																		1>1 × 4			
	822.1	TR																7 L 7 L			
4%, REC. 98%;		- 18 -																AL AL			
SHALE, GRAY, HIGHLY WEATHERED, WEAK,		- 19 -																5 V 5			
CI LAMINATED TO THIN BEDDED, RANGES IN THICKNESS		- 20 -	8		100	NQ-2											CORE	17 17			
SANDSTONE, LIGHT GRAY WITH BROWN,																		A LAND			
																		Salt S			
BEDDED, RANGES IN THICKNESS FROM 0.25 INCHES TO 0.5		- 22 -	0		100	NO-3											CORE				
INCHES.		- 23 -	•		100	TTQ 0											CORE	A deport he			
		- 24 -																A Dunging			
		- 25 -	0		90	NO 4											COPE	JUAN WIND			
		- 23	0		90	1102-4											CORL	10012			
	0125	- 26 -																Sala to			
	-] 012.5	EOB-27-				I		L	1								I	PA STARD			
LS																					
NOTES: LAT/LONG FROM OGE HANDHELD CPS UNIT. ELEV FROM	OSIP DE	M. HOLE DRY BEF	ORE CO	ORINC	S.																
ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CU	JTTINGS N	IIXED WITH 1 BAG	HOLE	PLUG																	
	PROJECT: PIK-772-13.77 TYPE: RETAINING WALL	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	Tor: Er: Oi	ODOT / CAP	REY TOSH	DRIL	L RIG: MER:	(STAT ALIG		/ OFF NT:	SET:	S	R 77	2		EXPLOR B-012	ATION ID 2-0-18
--------	---	---	----------------	------------	----------------------	-------------	-----------------	-------	--------	-------------	-----	--------------	-------	--------------	---------	------	-------	--------	-------	--------------------	--------------------
	PID: 104155 SFN:	DRILLING METHOD:	3.25	"HSA/NQ		CALI	BRATI	ON DA	ATE: 4	/2/18		ELEV	ATIC	N: 8	845.7	(MS	L)_ E	OB:	2	4.5 ft.	PAGE
	START: <u>10/1/18</u> END: <u>10/2/18</u>	SAMPLING METHOD:		SPT		ENEF	RGY R	ATIO	(%):	87		LAT /	LON	G:		39.0	89992	2, -83	.1284	42	1 OF 1
	MATERIAL DESCRIPT AND NOTES	ION	ELEV.	DEPTH	IS	SPT/ ROD	N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRAL	ES ES	N (%) Cl		ERBE	PI	WC	ODOT CLASS (GI)	ABAN-
ł	ASPHALT (12")	\times	043.7					(70)			OIX		10	01	UL						Ser S
ł	MEDIUM DENSE, BROWN, SANDY SILT, "A	AND" GRAVEL	844.7		- 1 -	-															ABON F
	AND STONE FRÁGMENTS, LITTLE CLAÝ, I	DAMP TO MOIST			- 2 -	8	22	56	SS-1	-	39	8	13	29	11	NP	NP	NP	13	A-4a (1)	
			842.2		_ 3 _	7															TETE
	VERY STIFF TO HARD, BROWN WITH GRA	AY, SILT AND		1 F	- 4 -	8 7	20	56	55-2	2 50	30	5	7	30	19	27	16	11	15	A-62 (3)	2 - 24
	CLAY, AND STONE FRAGMENTS, LITTLE	SAND, DAMP			- ₅ -	7	20	00	00-2	2.00	00		'	00	10	21	10		10	7-00 (0)	S L V SOL
					- 6 -	7															T T T T
					- 7 -	10	30	83	SS-3	4.50	-	-	-	н	-	-	-	-	14	A-6a (V)	A > A >
					_ ′ L	11		1													Fait and
_	SHALE BROWN SEVERELY WEATHERE		837.2	TR		20		117	66.4										10	Deek (1)	XXXXXX
GP.	LAMINATED.		836.2	F	- 9 -	48	-	117	55-4	-	-	-	-	-	-	-	-	-	10	ROCK (V)	A A A A
00555	INTERBEDDED SHALE (60%) AND SANDS 21% REC 87%	TONE (40%), RQD			- 10 -																THE HE
TS/6(SHALE, GRAY, HIGHLY WEATHERED, V	NEAK,			- 11 -																ALL IN
JEC	RANGES IN THICKNESS FROM 0.25 INCH				- 12 -																Stand to
PRC	SANDSTONE, LIGHT GRAY WITH BROW	VN,			- <mark>1</mark> 3 -																The second second
SINT	STRONG VERY FINE GRAINED LAMINAT				- - 14 -																A LA
- X:\C	BEDDED, RANGES IN THICKNESS FROM	0.25 INCHES TO 35			- 15	24		82	NQ-1											CORE	4600
7:44	MCHES. @9.6' - 10.2': SANDSTONE LAYER. VERY S				- 10 -																X Y KIL
18 0	@ 9.6' - 10.0'; γ = 163 pcf; Qu = 17,479 psi			F	- 10 -																1<4
1/16/	@12.1 - 15.0; SANDSTONE LAYER, VERY @13.4' - 13.8': ♥ = 161 pcf: Qu = 20.328 psi	STRONG			- 17 -																1 L TL
T - 1	@17.5' - 18.8'; SANDSTONE LAYER, VERY	STRONG			- 18 -																a Lat
T.GD	(a) 18.3' - 18.7'; γ = 164 pct; Qu = 27,884 ps	' 턑			- 19 -																K V
DO					- 20 -																LT IXL
0-					- 21																THE PARTY
× 11)								100	100											00055	Salt ada
(8.5)					- 22 -	0		100	NQ-2											CORE	
00	@23.1' - 23.5': SANDSTONE LAYER				- 23 -																A LE L
NGL	Constant		821.2	FOR	- <mark>24</mark> -																of White
BOR																					
SOIL																					
OT S																					
D OD																					
DAR																					
STAN																					

	PROJECT: PIK-772-13.77 DRILLING FIRM / OPERATOR: ODOT / CAREY TYPE: RETAINING WALL SAMPLING FIRM / LOGGER: ODOT / MCINTOSH					DRILL RIG: <u>CME 55 TRUCK</u> STATION / OFFSET: <u>HAMMER:</u> CME AUTOMATIC ALIGNMENT: SR 772					EXPLOR B-013	ATION ID 3-0-18									
	PID: 104155 SFN:	DRILLING METHOD:	3.25	"HSA/NQ		CALI	BRATI	ON DA	ATE: 4	/2/18		ELEV	ATIO	N: 8	349.2	(MS	L)_ E	OB:	24	.0 ft.	PAGE
	START: <u>10/2/18</u> END: <u>10/2/18</u>	SAMPLING METHOD:		SPT		ENEF	RGYR	ATIO (%):	87		LAT /	LON	G:		39.0	90023	3, -83	.12826	63	1 OF 1
	MATERIAL DESCRIPTIO AND NOTES	UN	ELEV. 849.2	DEPTH	S	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI) CL		PL	PI	WC	ODOT CLASS (GI)	ABAN- DONED
ĺ	ASPHALT (18")		847 7																		4300 V
ľ	LOOSE, BLACK, STONE FRAGMENTS WITH SILT, TRACE CLAY, ASPHALT GRINDINGS, I	I SAND, LITTLE	945 7		- 2 -	9 3 1	6	44	SS-1	-	-	-	-	-	-	-	-	-	3	A-1-b (V)	
	STIFF, BROWN WITH GRAY, SANDY SILT , S SOME STONE FRAGEMENTS, MOIST	SOME CLAY,	843.7		4 - 5 -	3 1 3	6	44	SS-2	1.50	25	5	5	39	26	27	17	10	19	A-4a (6)	
					6 - 7 -	2 3 3	9	44	SS-3	2.00	-	-	-	-	-	-	-	-	20	A-4a (V)	
555.GPJ	STIFF, BROWN, SANDY SILT , "AND" STONE LITTLE CLAY, DAMP	FRAGMENTS,	840.7		9 - - 10 -	2 2 1	4	44	SS-4	1.50	45	8	6	25	16	24	17	7	15	A-4a (1)	
ROJECTS/600					- 11 -	4 5 2	10	56	SS-5	2.00	-		-	-		-	-	-	14	A-4a (V)	
NPR			835.2		- 13	60	-	100	55-6	4.00		-	_	_		_	-		13	A-12 (\/)	The series
ANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT GDT - 11/16/18 08:02 - X:\GI	INTERBEDDED SHALE (60%) AND SANDST INTERBEDDED SHALE (60%) AND SANDST 22%, REC. 86%; SHALE, GRAY, HIGHLY WEATHERED, W LAMINATED TO VERY THIN BEDDED, BLOC RANGES IN THICKNESS FROM 0.25 INCHES SANDSTONE, GRAY AND BROWNISH GF MODERATELY TO HIGHLY WEATHERED, SI MODERATELY STRONG, VERY FINE GRAIN TO VERY THIN BEDDED, BLOCKY, FAIR, RA THICKNESS FROM 0.25 INCHES TO 17 INCH (@14.0' - 14.6'; SANDSTONE LAYER, VERY S CALCAREOUS (@ 14.0' - 14.4'; γ = 169 pcf; Qu = 15,391 psi (@16.6' - 18.0; SANDSTONE LAYER, MODER TO STRONG (@21.6' - 22.9'; SANDSTONE LAYER, MODER TO STRONG, SLIGHTLY CALCAREOUS (@ 21.7' - 22.0'; γ = 164 pcf; Qu = 4,273 psi	ONE (40%), RQD VEAK, KY, FAIR, S TO 1 INCH; RAY, LIGHTLY TO IED, LAMINATED NGES IN HES. STRONG, CATELY STRONG RATELY STRONG	825.2	EOB	-14 -15 -15 -16 -17 -18 -17 -18 -19	22		86	NQ2-1											CORE	
ST	NOTES: LAT/LONG FROM OGE HANDHEL	D GPS UNIT. FLEV FROM	OSIP DE			ORF CO		}													
ľ	ABANDONMENT METHODS, MATERIALS, Q	UANTITIES: AUGER CU		MIXED WITH	1 BAG	HOLE	PLUG														

The Ohio Department of Transportation Office of Geotechnical Engineering

PROJECT		PIK-77	2-13.77	7		1	DISTRI	CT No.:	9	ļ	PID No	104	155	[Tech:	PPP
Point Load Strength Calc Is = $P / (D_e^2)$ $D_e^2 = 4$			Α/π	A = (W	/D)	Stregnth	= Is $*$ K	K= 12	Sample Pr	reservation	n Method	AR Co	re Box			
Boring #	Sample Depth (ft)	Material Type	Test Type	Moist Cont.	W (in)	W (mm)	D (in)	D (mm) Initial	D (mm) Final	D (mm) Avg	L/D	P: Failure Load (kN)	Is ₅₀ (MPa)	Is ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
B-008-0-18	15.1-16.5	SH	а	ar	1.988	50.5	1.289	35.0	30.5	32.8	0.649	4.324	2.05	298	25	3573
					1.988	50.5	1.102	30.0	26.0	28.0	0.554	4.844	2.69	390	32	4682
					1.988	50.5	0.955	26.5	22.0	24.3	0.480	5.619	3.60	523	43	6270
					1.988	50.5	0.768	21.0	18.0	19.5	0.386	2.971	2.37	344	28	4123
					1.988	50.5	0.6	16.5	14.0	15.3	0.302	2.696	2.75	399	33	4784
					1.988	50.5	1.112	30.5	26.0	28.3	0.559	4.069	2.24	325	27	3898
					1.988	50.5	0.807	22.0	19.0	20.5	0.406	4.344	3.30	478	40	5734
					1.988	50.5	1.22	33.0	29.0	31.0	0.614	4.295	2.15	312	26	3749
					1.988	50.5	1.299	35.5	30.5	33.0	0.653	5.687	2.68	389	32	4664
					1.988	50.5	1.024	28.0	24.0	26.0	0.515	4.726	2.83	410	34	<u>4919</u>
					1.988	50.5	1.014	27.5	24.0	25.8	0.510	4.638	2.80	406	34	4874
					1.988	50.5	1.024	27.0	25.0	26.0	0.515	3.824	2.29	332	27	3980
					1.988	50.5	0.846	23.0	20.0	21.5	0.426	5.727	4.14	601	50	7208
														Avg. Str	ength (psi)	4612
Note: Avg.	Strength ca	lculated wit	h the tw	o highes	st and lo	west valu	es (red)	excluded								

Comments: Test Type: a: axial, d: diameterical; b: block; i: irregular; 1: perpendicular; //: parallel

Rock Type: SS: Sandstone; SH: Shale; LS: Limestone; CLS: Claystone; BLDR: Boulder

Moist. Cont.: s: saturated; ar: as received; ad: air dried; od: oven dried (%)

PIK 772-13.77 B-011-0-18 RI 12'-17' Rec 40% RQD O RZ 17'-22' Rec 100% RGD 8%

PIK 772-13.77 BD12-0-15 RI 9.5'-19.5' Rec 82%. RQD 24%.

PIK-777-13.77 B-013-0-18 14.0'+0 74.0' REC=86% RQD=77%

APPENDIX D GLOBAL STABILITY ANALYSES

APPENDIX E DRILLED SHAFT ANALYSES

PIK-772-14.70 LANDSLIDE REPAIR STATION 1406+75 UASLOPE OUTPUT EXISTING CONDITIONS

File Ru	n Options Help												
Calculated	Results				Chart (Dou	ble-Click for M	ore Options))					
		Factor of Safety: 1.00											
		Force per Shaft: 0.000		lb	0		50	100		150		- X	
Acting Poi	nt X: 98.000	ft Y: 0.00	0	ft	10						-	~	
Analysis U	nit System				20			_					
English		⊖ Metric			30 -								
Number of	Vertical Sections and Soil Lavers				40 -			0.0		—			
Vertical Se	ction Num:	25 Soil Layer N	um:	6	50 °								
Analysis M	ethod				Y								
O Total St	ress	 Effective Stress 	ess										
Soil Prope	rties				Slope Prof	ile Vertical Sec	tions						
	Cohesion (psf)	Friction Angle	Total Unit Weight (pcf)			Section 3	Section 4	Section 5	Section 6	5 Section 7	Section 8	Section 9	Section
► Layer	50.0	0.0	145.0		X (ft)	28.00	37.50	45.00	50.00	54.50	58.50	62.99	63.00
Layer	2 50.0	32.0	122.0		Y1 (ft)	6.00	8.00	14.50	20.00	22.50	20.00	19.00	19.00
Layer	3 150.0	22.0	118.0		Y2 (ft)	6.00	8.00	14.50	20.00	22.50	20.00	19.00	22.00
Layer4	4 300.0	31.0	130.0		Y3 (ft)	6.00	8.00	14.50	20.00	22.50	20.00	19.00	22.00
Layer	5 0.0	20.0	140.0		Y4 (ft)	6.00	8.00	14.50	20.00	22.50	24.00	25.80	25.80
Layer	3 2000.0	40.0	145.0		Y5 (ft)	6.00	8.00	14.50	20.00	22.50	24.00	25.80	25.80
					Y6 (ft)	6. <mark>00</mark>	8.00	14.50	20.00	22.50	24.00	25.80	25.80
					17 (11)	05.00	05.00	05.00	05.00	05.00	05.00	05.00	03.00
					6	_							
					Ľ	Coordinato	of Croat	v. [70.70	e v	10	20 8	_
						Coordinates	sorciest	^	70.70	n 1.	13	.30 1	
Drilled Sha	aft Information				Pore Wate	r Pressure							
Calcul	ate without Drilled Shaft					Pore	Pressure O	ptions: 🔘	No Pore P	ressure			O Con
O Autom	atic Load Transfer Factor		Anchor force: 0.0	00 Ib	-	Point 1 Po	nt 2 Point	3 Point 4	Point 5	Point 6 Poi	nt 7 Point	8 Point 9	Point 10
O Manua	allv Defined Load Transfer Factor		Anchor angle: 0.0	00	► X (ft)	0.00 20.0	0 28.00	37.50	45.00 5	50.00 54.5	63.00	90.00	99.00
Ancho	r (On/Off)		Anchor spacing: 0.0	00 ft	Y (ft)	0.00 4.00	6.00	8.00	14.50 2	20.00 22.5	22.50	23.50	25.00
							_			_	_		
			Auto O On O Off 0.0	00 (n)	Slip Surfac	æ						_	
Auto	Save Data		Xmin 0.00 Diameter: 3.	00 ft		Point 1 Po	nt2 Point	3 Point 4	Point 5	Point 6 Poi	nt 7 Point	8	
			Xmax 0.00 CTC Spacing: 5.	50 ft	• X (ft)	10.44 20.1	2 26.49	95.30	102.80 1	13.56 120	05 127.8	9	
Run			XDelta 0.00 X Coordinate: 98.	00 ft	Y (ft)	19.44 29.	2 30.48	41.42	44.88 4	4/.2	:0 45.30		

10	Sectio	n 11 Se	ction 12	Section 13	Section 14	Section 15	Section 1
	68.00	69.	10	71.70	81.00	90.00	90.01
	19.20	19.	30	19.40	19.70	20.00	20.00
	22.20	22.	30	22.40	22.70	23.00	20.00
	22.20	22.	50	25.00	26.10	25.90	25.90
	27.70	28.	50	28.50	28.60	28.50	28.50
	27.70	28.	5 <mark>0</mark>	28.50	35.50	38.90	38.90
	27.70	28.	50	30.50	37.90	40.90	40.90
	65.00	65.	00	65.00	65.00	65.00	65.00
Coo	ordinates	s of Toe	x :	128.90) ft 1	Y: 45	> .50 ft
stant	Ratio			Spece	cified phreat	tic surface	
P	pint 11	Point 12	Point 1	3 Point 14	Point 15		
11	1.00	121.00	125.00	145.00	190.00		
35	.50	42.50	45.00	47.50	50.00		
_	_	_	_				

PIK-772-14.70 LANDSLIDE REPAIR STATION 1406+75 UASLOPE OUTPUT WITH SHAFTS

File Run	Options Help														
Calculated F	Results						Chart (Dou	ble-Click for M	lore Option:	s)					
		Factor of Safety:	1.76												
		Force per Shaft:	89050.619			lb	0		50	100		150		x	
Acting Point	X: 98.000		ft Y: 35.186			ft	10								
Analysis Uni	t System						20 -								
English		(O Metric				30 -			50					
Number of V	ertical Sections and Soil Layers						40			0	-	-			
Vertical Sect	ion Num:	27	7 Soil Layer Num:			7	60 1								
Analysis Met	thod						Ţ								
O Total Stre	ISS .	(Effective Stress												
0-110							Class Dec								
Soil Properti	es						Slope Pro	ile Vertical Sec	tions						
	Cohesion (psf)	Friction Angle		Total Unit W	eight (pcf)			Section 3	Section 4	Section 5	Section 6	Section 7	Section 8	Section	9 Section
Layer1	150.0	22.0		118.0			X (ft)	28.00	37.50	45.00	50.00	54.50	58.50	10.00	63.00
Layer2	50.0	22.0		145.0			Υ (π)	6.00	0.00	14.50	20.00	22.50	20.00	19.00	19.00
Layers	150.0	22.0		1122.0			12 (II) V2 (H)	6.00	8.00	14.50	20.00	22.50	20.00	19.00	22.00
Layer4	275.0	30.0		130.0			Y4 (#)	6.00	8.00	14.50	20.00	22.50	20.00	19.00	22.00
Layer6	0.0	20.0		140.0			► Y5 (ft)	6.00	8.00	14.50	20.00	22.50	24.00	25.80	25.80
Layer7	2000.0	40.0		145.0			Y6 (ft)	6.00	8.00	14.50	20.00	22.50	24.00	25.80	25.80
							Y7 (ft)	6.00	8.00	14.50	20.00	22.50	24.00	25.80	25.80
							Y8 (ft)	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00
							< <u> </u>	Coordinate	s of Crest	X:	75.02 f	t <u>Y</u> : [19.	44 ft	
Drilled Shaft	Information						Pore Wate	r Pressure							
O Calculat	e without Drilled Shaft							Pore	e Pressure (Options: O	No Pore Pr	essure			O Con
O Automat	ic Load Transfer Factor				Anchor force:	0.00 lb		Point 1 Po	int 2 Poin	t 3 Point 4	Point 5 F	Point 6 Poin	nt 7 Point	B Point 9	Point 10
Manuall	v Defined Load Transfer Factor				Anchor angle:	0.00	► X (ft)	0.00 20.0	28.00	37.50	45.00 5	0.00 54.5	63.00	90.00	99.00
Anchor (On/Off)				Anchor spacing	0.00 ft	Y (ft)	0.00 4.00	0 6.00	8.00	14.50 2	0.00 22.5	22.50	23.50	25.00
								_	_	_	_	_	_	_	_
				Auto O On	Off	0.000 (n)	Slip Surfac	æ						_	
Auto Sa	ave Data			Xmin 0.00	Diameter:	3.00 ft		Point 1 Po	int 2 Poin	t 3 Point 4	Point 5 F	Point 6 Poir	nt 7 Point	3	
				Xmax 0.00	CTC Spacing:	5.50 ft	X (ft)	75.02 79.0	62 87.02	95.30	102.80 1	13.56 120.0	06 127.89		
Run				XDelta 0.00	X Coordinate:	98.00 ft	Y (ft)	19.44 29.1	12 36.48	41.42	44.88 4	3.80 47.2	45.36		

1	10 Section	on 11 S	Section 12	Section 13	Section 14	Section 15	Section 1
	68.00	69	9.10	71.70	81.00	90.00	90.01
	19.20	19	9.30	19.40	19.70	20.00	20.00
	19.20	19	9.30	19.40	19.70	20.00	20.00
	22.20	22	2.30	22.40	22.70	22.70	20.00
	22.20	22	2.50	23.10	26.10	25.90	25.90
	27.70	28	B.50	28.50	28.60	28.50	28.50
	27.70	28	B.50	28.50	35.50	38.90	38.90
	27.70	28	B.50	30.50	37.90	40.90	40.90
	65.00	6	5.00	65.00	65.00	65.00	65.00
							>
	Coordinate	es of Toe	X :	127.89)ft Y:	45	.36 ft
S	tant Ratio			Spece	cified phreati	c surface	
	Point 11	Point 1	2 Point 1	3 Point 14	Point 15		
	111.00	121.00	125.00	145.00	190.00		
	35.50	42.50	45.00	47.50	50.00		

Project: PIK-CR772-14.70 Project No: 23050003OL June 7, 2023

L-PILE Soil Parameters (Station 1406+75)

Artificial Lowering of Ground Surface

The passive resistance from the downhill side soil mass should be ignored. In order to include this in the L-pile soil model, the ground level should be artificially lowered.

To do this, first determine the angle of steepness of the slope - downhill of the drilled shafts - from horizontal (β_{dh}), and then determine the depth to the shear surface at the location of the drilled shafts (d_{τ}). For slopes of steepness from $\beta=0^{\circ}$ to 45° , lower the ground surface by an amount equal to $d_{\tau}TAN(\beta_{dh})$.

For the current project, $\beta_{dh} = 37$ degrees (From cross section at Sta. 1406+75)

Proposed top of pile elevation = 840.0 (Assumed top of wall elevation) Existing grade at pile location = 834.6 (From cross section at Sta. 1406+75) Estimated shear surface elevation at pile location = 815.6 $d_{\tau} = 834.6 - 815.7 = 18.9$ feet

Therefore, $d_{\tau}TAN(\beta_{dh}) = 14.2$ feet.

The first soil layer should start at elevation 834.6 - 14.2 = 820.4

Which is at a depth of 840.0 - 820.4 = 19.6 feet along the shaft

From 19.6' to 24.3'

Use soil type – *Stiff Clay with Free Water (Reese)* Effective Unit Weight (pcf) = 130 pcf – 62.4 pcf = 67.6 pcf N_{60} = 25 bpf (Average blow count in cohesive soils, B-011-0-18 and B-012-0-18) Undrained Cohesion (psf) = $N_{60}/8 = 25/8 = 3,125$ psf Use Strain Factor K_{rm} = 0.005 (From L-pile Technical Manual Table 3-4, stiff clay) Use Subgrade Modulus K_{static} = 1,000 pci (From L-pile Technical Manual Table 3-3)

Below 24.3'

Use soil type – Weak Rock (Reese) Effective Unit Weight (pcf) = 145 pcf – 62.4 pcf = 82.6 pcf Compressive strength (q_u) = 273 psi (B-010-0-18, NQ-2 Compressive Strength Test Result of Shale) Initial Rock Modulus (E_r) = 24,388 psi (Per ODOT OGE, Very Weak to Weak) RQD = 0% (Lowest RQD from Borings B-011-0-18 and B-012-0-18, Estimated Weakest Bedrock Profile) Use Strain Factor K_{rm} = 0.0005 (From L-pile Technical Manual Equation 3-136) Project: PIK-CR772-14.70 Project No: 23050003OL June 7, 2023

P-y Modification Factors

If the drilled shafts are at a center-to-center spacing closer than about $3\frac{1}{2}$ diameters, a reduction in the soil resistance p, for the p-y curve behavior of the soil, must be considered. P- modification factor $\beta_a = 0.64(S/D)^{0.34}$

In which S= Center to Center Spacing between the Piles

D= Diameter of the Shaft

For 36- inch shafts with reinforced shafts placed at 5.5 feet center to center $\beta a = 0.64(5.5/3.0)^{0.34} = 0.79$

No P-Y modification factors are applied to the bedrock layers

STATION 1406+75

LPile 2022.12.07, © 2022 by Ensoft, Inc.

LPile for Windows, Version 2022-12.007

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved

This copy of LPile is being used by:

CTL Engineering, Inc. CTL Engineering, Inc.

Serial Number of Security Device: 224802699

This copy of LPile is licensed for exclusive use by:

CTL ENGINEERING INC, Columbus, OH

Use of this software by employees of CTL ENGINEERING INC other than those of the office site in Columbus, OH is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \PROJECT\2023\COL-05\23050003COL\Design\LPILE\Station 1406+75\

Name of input data file: Station 1406+75.lp12d

Name of output report file: Station 1406+75.lp120

Name of plot output file: Station 1406+75.lp12p

Name of runtime message file: Station 1406+75.lp12r

Date and Time of Analysis

Date: June 7, 2023

Time: 10:35:33

Problem Title

Project Name: PIK-772-14.10

Job Number: 23050003COL

Client: OHIO DEPARTMENT OF TRANSPORTATION

Engineer: CTL ENGINEERING, INC.

Description: STATION 1406+75 DRILELD SHAFT WALL ANALYSIS

Program Options and Settings

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

 Maximum number of iterations allowed 	=	500
- Deflection tolerance for convergence	=	1.0000E-05 in
- Maximum allowable deflection	=	100.0000 in
 Number of pile increments 	=	100

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Analysis uses p-y modification factors for p-y curves

- Analysis uses layering correction (Method of Georgiadis)
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1

- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined=1Total length of pile=39.300 ftDepth of ground surface below top of pile=19.6000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	36.0000
2	39.300	36.0000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile		
Cross-sectional Shape	=	Circular Pile
Length of section	=	39.300000 ft
Width of top of section	=	36.000000 in
Width of bottom of section	=	36.000000 in
Top Area	=	38.500000 sq. in
Bottom Area	=	38.500000 sq. in
Moment of Inertia at Top	=	4020. in^4
Moment of Inertia at Bottom	=	4020. in^4
Elastic Modulus	=	29000000. psi

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is stiff clay with water-induced erosion

Distance from top of pile to top of layer	=	19.600000	ft
Distance from top of pile to bottom of layer	=	24.300000	ft
Effective unit weight at top of layer	=	67.600000	pcf
Effective unit weight at bottom of layer	=	67.600000	pcf
Undrained cohesion at top of layer	=	3125.	psf
Undrained cohesion at bottom of layer	=	3125.	psf
Epsilon-50 at top of layer	=	0.005000	
Epsilon-50 at bottom of layer	=	0.005000	
Subgrade k at top of layer	=	1000.000000	pci
Subgrade k at bottom of layer	=	1000.000000	pci

Layer 2 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer	=	24.300000 ft
Distance from top of pile to bottom of layer	=	50.000000 ft
Effective unit weight at top of layer	=	82.600000 pcf
Effective unit weight at bottom of layer	=	82.600000 pcf
Uniaxial compressive strength at top of layer	=	273.000000 psi
Uniaxial compressive strength at bottom of layer	=	273.000000 psi
Initial modulus of rock at top of layer	=	24388. psi
Initial modulus of rock at bottom of layer	=	24388. psi
RQD of rock at top of layer	=	0.0000 %
RQD of rock at bottom of layer	=	0.0000 %
k rm of rock at top of layer	=	0.0005000
k rm of rock at bottom of layer	=	0.0005000

(Depth of the lowest soil layer extends 10.700 ft below the pile tip)

Summary of Input Soil Properties

Layer Num.	Soil Type Name (p-y Curve Type)	Layer Depth ft	Effective Unit Wt. pcf	Cohesion psf	Uniaxial qu psi	RQD %	E50 or krm	kpy pci	Rock Mass Modulus psi
1	Stiff Clay	19.6000	67.6000	3125.			0.00500	1000.0000	
	with Free Water	24.3000	67.6000	3125.			0.00500	1000.0000	
2	Weak	24.3000	82.6000		273.0000	0.00	5.00E-04		24388.
	Rock	50.0000	82.6000		273.0000	0.00	5.00E-04		24388.

Modification Factors for p-y Curves

Distribution of p-y modifiers with depth defined using 3 points

Point Depth X p-mult y-mult

-t		
19.600	0.7900	1.0000
4.300	0.7900	1.0000
24.300	1.0000	1.0000
	t 9.600 24.300 24.300	-t .9.600 0.7900 24.300 0.7900 24.300 1.0000

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading for Individual Load Cases

Distributed lateral load intensity for Load Case 1 defined using 2 points

Point	Depth X	Dist. Load
No.	ft	lb/in
1	0.000	34.100
2	24.300	610.800

Distributed lateral load intensity for Load Case 2 defined using 2 points

Point	Depth X	Dist. Load
No.	ft	lb/in
1	0.000	59.600
2	24.300	865.100

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 2

Load	Load	(Condition		Condition	Axial Thrust	Compute Top y	Run Analysis
No.	Type		1		2	Force, lbs	vs. Pile Length	
1	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	Yes	Yes
2	1	V =	0.0000 lbs	M =	0.0000 in-1bs	0.000000	Yes	Yes

V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	19.6000	0.00	N.A.	No	0.00	13066.
2	24.3000	4.7000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1 Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-lbs
Axial thrust load on pile head	=	0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	У	Moment	Force	S	Stress	Stiffness	р	Es*H	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	lb/inch
0.00	2,2457	-1.86E-05	2.47E-07	-0.00884	8.34E-08	1.17E+11	0.00	0.00	36,4317
0.3930	2.2040	405.1326	188.3066	-0.00884	1.8140	1.17E+11	0.00	0.00	43.4269
0.7860	2.1623	1776.	415.1005	-0.00884	7.9527	1.17E+11	0.00	0.00	52.7538
1.1790	2.1206	4320.	685.8800	-0.00884	19.3449	1.17E+11	0.00	0.00	62.0806
1.5720	2.0790	8245.	1001.	-0.00884	36.9194	1.17E+11	0.00	0.00	71.4075
1.9650	2.0373	13758.	1359.	-0.00884	61.6050	1.17E+11	0.00	0.00	80.7344
2.3580	1.9956	21067.	1762.	-0.00883	94.3305	1.17E+11	0.00	0.00	90.0613
2.7510	1.9540	30379.	2209.	-0.00883	136.0248	1.17E+11	0.00	0.00	99.3881
3.1440	1.9123	41901.	2700.	-0.00883	187.6166	1.17E+11	0.00	0.00	108.7150
3.5370	1.8707	55841.	3234.	-0.00883	250.0349	1.17E+11	0.00	0.00	118.0419
3.9300	1.8290	72407.	3813.	-0.00883	324.2083	1.17E+11	0.00	0.00	127.3688
4.3230	1.7874	91805.	4436.	-0.00882	411.0658	1.17E+11	0.00	0.00	136.6956
4.7160	1.7458	114243.	5102.	-0.00882	511.5361	1.17E+11	0.00	0.00	146.0225
5.1090	1.7042	139929.	5813.	-0.00882	626.5481	1.17E+11	0.00	0.00	155.3494
5.5020	1.6626	169070.	6568.	-0.00881	757.0305	1.17E+11	0.00	0.00	164.6763
5.8950	1.6211	201874.	7366.	-0.00880	903.9123	1.17E+11	0.00	0.00	174.0031
6.2880	1.5796	238547.	8209.	-0.00879	1068.	1.17E+11	0.00	0.00	183.3300
6.6810	1.5382	279298.	9095.	-0.00878	1251.	1.17E+11	0.00	0.00	192.6569
7.0740	1.4968	324334.	10026.	-0.00877	1452.	1.17E+11	0.00	0.00	201.9838
7.4670	1.4555	373862.	11000.	-0.00876	1674.	1.17E+11	0.00	0.00	211.3107
7.8600	1.4142	428090.	12019.	-0.00874	1917.	1.17E+11	0.00	0.00	220.6375
8.2530	1.3730	487224.	13081.	-0.00872	2182.	1.17E+11	0.00	0.00	229.9644
8.6460	1.3319	551474.	14188.	-0.00870	2469.	1.17E+11	0.00	0.00	239.2913
9.0390	1.2910	621045.	15338.	-0.00868	2781.	1.17E+11	0.00	0.00	248.6182
9.4320	1.2501	696146.	16533.	-0.00865	3117.	1.17E+11	0.00	0.00	257.9450
9.8250	1.2094	776983.	17771.	-0.00862	3479.	1.17E+11	0.00	0.00	267.2719
10.2180	1.1688	863765.	19054.	-0.00859	3868.	1.17E+11	0.00	0.00	276.5988
10.6110	1.1284	956699.	20380.	-0.00855	4284.	1.17E+11	0.00	0.00	285.9257
11.0040	1.0882	1055992.	21751.	-0.00851	4728.	1.17E+11	0.00	0.00	295.2525
11.3970	1.0481	1161851.	23165.	-0.00846	5202.	1.17E + 11	0.00	0.00	304.5794
11.7900	1.0083	1274485.	24623.	-0.00842	5707.	1.17E+11	0.00	0.00	313.9063
12.1830	0.9688	1394100.	26126.	-0.00836	6242.	1.17E+11	0.00	0.00	323.2332
12.5760	0.9295	1520904.	27672.	-0.00830	6810.	1.17E+11	0.00	0.00	332.5600
12.9690	0.8905	1655104.	29263.	-0.00824	7411.	1.17E+11	0.00	0.00	341.8869
13.3620	0.8518	1796908.	30897.	-0.00817	8046.	1.17E+11	0.00	0.00	351.2138
13.7550	0.8134	1946523.	32575.	-0.00809	8716.	1.17E+11	0.00	0.00	360.5407
14.1480	0.7754	2104157.	34297.	-0.00801	9422.	1.17E + 11	0.00	0.00	369.8676
14.5410	0.7379	2270017.	36064.	-0.00792	10164.	1.17E+11	0.00	0.00	379.1944
14.9340	0.7007	2444311.	37874.	-0.00783	10945.	1.17E+11	0.00	0.00	388.5213
15.3270	0.6640	2627246.	39728.	-0.00772	11764.	1.17E+11	0.00	0.00	397.8482
15.7200	0.6279	2819028.	41627.	-0.00761	12623.	1.17E+11	0.00	0.00	407.1751
16.1130	0.5922	3019867.	43569.	-0.00750	13522.	1.17E+11	0.00	0.00	416.5019
16.5060	0.5572	3229969.	45555.	-0.00737	14463.	1.17E+11	0.00	0.00	425.8288

16.8990	0.5227	3449542.	47585.	-0.00723	15446.	1.17E+11	0.00	0.00	435.1557
17.2920	0.4889	3678793.	49659.	-0.00709	16472.	1.17E+11	0.00	0.00	444.4826
17.6850	0.4558	3917930.	51778.	-0.00694	17543.	1.17E+11	0.00	0.00	453.8094
18.0780	0.4235	4167159.	53940.	-0.00677	18659.	1.17E+11	0.00	0.00	463.1363
18.4710	0.3920	4426689.	56146.	-0.00660	19821.	1.17E+11	0.00	0.00	472.4632
18.8640	0.3613	4696727.	58396.	-0.00641	21030.	1.17E+11	0.00	0.00	481.7901
19,2570	0.3315	4977480.	60690.	-0.00622	22287.	1.17F+11	0.00	0.00	491,1170
19,6500	0.3026	5269156	62690	-0.00601	23593	1.17E+11	-143,438	2235	500,4438
20 0430	0.2748	5568772	63832	-0.00579	24935	1.17E+11	-382,353	6563	509,7707
20 4360	0 2480	5871222	64008	-0 00556	26289	1 17E+11	-571 921	10877	519 0976
20.4300	0.2400	6172/97	63395	-0.00532	27638	1.17E+11	-735 /31	15601	528 4245
20.0200	0.1978	6469168	62113	-0.00552	28966	1.17E+11	-874 561	20849	537 7513
21.2220	0.1378	6758348	60274	-0.00500	30261	1.17E+11	-000 185	26750	547 0782
22.0100	0.1740	7027672	E7099	0.00479	21512	1,175,11	1002	20750.	547.0782
22.0000	0.1320	7057075.	5/900.	-0.00452	31312.	1,175,11	-1005.	33437.	550.4051
22.4010	0.1320	7505295.	53505.	-0.00422	32710.	1.17111	-1152.	41157.	505.7520
22.7940	0.1120	7900622	JZJ17.	-0.00392	24028	1.17E+11	-1197.	60297	5/5.0500
23.1870	0.03437	7800033.	49501.	-0.00301	34920.	1,175,11	-1210.	71429	504.5057
23.5800	0.0/86/	8240741	40001.	-0.00329	35943.	1.1/E+11	-1192.	/1428.	593.7126
23.9750	0.06391	8240741.	43977.	-0.00296	37801	1.175.11	-1144.	64398.	202.2027
24.3660	0.050/1	8442123.	27704.	-0.00263	37801.	1.1/E+11	-0003.	610292.	202.3087
24.7590	0.03913	8502047.	-43//.	-0.00228	38069.	1.1/E+11	-7245.	8/3210.	0.00
25.1520	0.02917	8400838.	-39/33.	-0.00194	3/616.	1.1/E+11	-7749.	1252897.	0.00
25.5450	0.02081	812/290.	-//000.	-0.00161	36391.	1.1/E+11	-8056.	1825839.	0.00
25.9380	0.01400	/6/45/3.	-115196.	-0.00129	34364.	1.1/E+11	-8142.	2742959.	0.00
26.3310	0.00866	7040761.	-153191.	-9.91E-04	31526.	1.17E+11	-7971.	4343120.	0.00
26.7240	0.00465	6229676.	-189596.	-7.22E-04	27894.	1.17E+11	-7468.	7568003.	0.00
27.1170	0.00184	5252489.	-222376.	-4.90E-04	23519.	1.17E+11	-6433.	1.65E+07	0.00
27.5100	3.05E-05	4132227.	-237971.	-3.00E-04	18503.	1.17E+11	-180.609	2.79E+07	0.00
27.9030	-9.92E-04	3007948.	-223560.	-1.56E-04	13468.	1.17E+11	6292.	2.99E+07	0.00
28.2960	-0.00144	2023612.	-191069.	-5.42E-05	9061.	1.17E+11	7487.	2.45E+07	0.00
28.6890	-0.00150	1205790.	-154429.	1.12E-05	5399.	1.17E+11	8051.	2.53E+07	0.00
29.0820	-0.00134	567036.	-115903.	4.70E-05	2539.	1.17E+11	8287.	2.93E+07	0.00
29.4750	-0.00106	112597.	-76871.	6.08E-05	504.1640	1.17E+11	8265.	3.68E+07	0.00
29.8680	-7.62E-04	-158015.	-42154.	5.98E-05	707.5277	1.17E+11	6458.	4.00E+07	0.00
30.2610	-4.95E-04	-285000.	-16539.	5.09E-05	1276.	1.17E+11	4405.	4.20E+07	0.00
30.6540	-2.82E-04	-314015.	53.4613	3.88E-05	1406.	1.17E+11	2632.	4.40E+07	0.00
31.0470	-1.29E-04	-284496.	9234.	2.67E-05	1274.	1.17E+11	1262.	4.60E+07	0.00
31.4400	-3.08E-05	-226920.	12948.	1.63E-05	1016.	1.17E+11	313.4156	4.80E+07	0.00
31.8330	2.45E-05	-162374.	13074.	8.44E-06	727.0485	1.17E+11	-259.605	5.00E+07	0.00
32.2260	4.88E-05	-103602.	11194.	3.06E-06	463.8886	1.17E+11	-538.046	5.20E+07	0.00
32.6190	5.33E-05	-56796.	8485.	-1.87E-07	254.3099	1.17E+11	-610.765	5.40E+07	0.00
33.0120	4.70E-05	-23574.	5727.	-1.81E-06	105.5543	1.17E+11	-558.604	5.60E+07	0.00
33.4050	3.62E-05	-2775.	3369.	-2.35E-06	12.4273	1.17E+11	-441.601	5.75E+07	0.00
33.7980	2.49E-05	8201.	1612.	-2.24E-06	36.7228	1.17E+11	-303.466	5.75E+07	0.00
34.1910	1.51E-05	12429.	461.5998	-1.82E-06	55.6524	1.17E+11	-184.409	5.75E+07	0.00
34.5840	7.73E-06	12555.	-195.518	-1.31E-06	56.2175	1.17E+11	-94.267	5.75E+07	0.00
34.9770	2.73E-06	10585.	-496.394	-8.46E-07	47.3951	1.17E+11	-33.332	5.75E+07	0.00
35.3700	-2.44E-07	7873.	-567.965	-4.72E-07	35.2534	1.17E+11	2.9794	5.75E+07	0.00
35.7630	-1.72E-06	5228.	-511.481	-2.07E-07	23.4083	1.17E+11	20.9748	5.75E+07	0.00
36.1560	-2.20E-06	3049.	-398.808	-3.98E-08	13.6521	1.17E+11	26.8084	5.75E+07	0.00
36.5490	-2.10E-06	1466.	-275.349	5.16E-08	6.5655	1.17E+11	25.5492	5.75E+07	0.00
36.9420	-1.71E-06	451.8729	-165.871	9.04E-08	2.0233	1.17E+11	20.8790	5.75E+07	0.00
37.3350	-1.24E-06	-98.194	-80.897	9.75E-08	0.4397	1.17E+11	15.1575	5.75E+07	0.00

37.7280	-7.93E-07	-311.149	-22.367	8.92E-08	1.3932	1.17E+11	9.6644	5.75E+07	0.00
38.1210	-4.01E-07	-309.160	11.9645	7.67E-08	1.3843	1.17E+11	4.8952	5.75E+07	0.00
38.5140	-6.93E-08	-198.299	25.5004	6.64E-08	0.8879	1.17E+11	0.8452	5.75E+07	0.00
38.9070	2.25E-07	-68.641	21.0241	6.10E-08	0.3073	1.17E+11	-2.744	5.75E+07	0.00
39.3000	5.06E-07	0.00	0.00	5.96E-08	0.00	1.17E+11	-6.173	2.88E+07	0.00

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

Pile-head deflection	=	2.24565727	inches
Computed slope at pile head	=	-0.0088366	radians
Maximum bending moment	=	8502047.	inch-lbs
Maximum shear force	=	-237971.	lbs
Depth of maximum bending moment	=	24.75900000	feet below pile head
Depth of maximum shear force	=	27.51000000	feet below pile head
Number of iterations	=	20	
Number of zero deflection points	=	4	
Pile deflection at ground	=	0.30628301	inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear	=	0.	lbs
Moment	=	0.	in-lbs
Axial Load	=	0.	lbs

Pile Length feet	Pile Head Deflection inches	Maximum Moment ln-lbs	Maximum Shear lbs
39.30000	2.24565727	8502047.	-237971.
37.33500	2.29557953	8589262.	-242816.
35.37000	2.25583971	8524176.	-240428.
33.40500	2.25161271	8506195.	-236507.
31.44000	2.28148941	8571222.	-241678.
29.47500	2.41070655	8516366.	-268558.

Computed Values of Pile Loading and Deflection

for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force	e at pile he	ad			=	0.0 lbs				
Applied moment at pile head					=	0.0 in-lbs				
Axial thrus	st load on p	ile head			=	0.0 lbs				
Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.	

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
X	У	Moment	Force	S	Stress	Stiffness	р	Es*H	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	lb/inch
 0 00	3 5911		 0 00	-0 01389	2 50F-07	 1 17E+11	 0 00	 0 00	62 8568
0.00	3 5256	698 9884	319 4714	-0 01389	3 1298	1.17E+11	0.00	0.00	72 6272
0.7860	3 4601	3013	692 6995	-0 01389	13 4922	1.17E+11	0.00	0.00	85 6544
1 1790	3 3946	7233	1127	-0.01389	32 3845	1.17E+11	0.00	0.00	98 6817
1 5720	3, 3291	13647	1623	-0 01389	61 1040	1 17E+11	9.99	9.00	111 7089
1 9650	3 2636	22545	2181	-0 01389	100 9480	1, 17E+11	0.00	0.00	124 7361
2.3580	3,1981	34218.	2800.	-0.01389	153,2139	1.17E+11	0.00	0.00	137,7633
2.7510	3,1326	48954	3480.	-0.01389	219,1989	1.17E+11	0.00	0.00	150,7906
3,1440	3,0671	67045	4222.	-0.01388	300.2004	1.17E+11	0.00	0.00	163,8178
3,5370	3,0017	88779.	5026.	-0.01388	397,5158	1.17E+11	0.00	0.00	176.8450
3,9300	2,9362	114445.	5890.	-0.01388	512,4422	1.17E+11	0.00	0.00	189.8722
4.3230	2.8708	144335.	6816.	-0.01387	646.2771	1.17E+11	0.00	0.00	202.8994
4.7160	2.8054	178738.	7804.	-0.01386	800.3177	1.17E+11	0.00	0.00	215,9267
5.1090	2.7400	217942.	8853.	-0.01386	975.8614	1.17E+11	0.00	0.00	228,9539
5.5020	2.6747	262239.	9963.	-0.01385	1174.	1.17E+11	0.00	0.00	241.9811
5.8950	2.6094	311918.	11135.	-0.01384	1397.	1.17E+11	0.00	0.00	255.0083
6.2880	2.5442	367268.	12369.	-0.01382	1644.	1.17E+11	0.00	0.00	268.0356
6.6810	2.4790	428580.	13663.	-0.01381	1919.	1.17E+11	0.00	0.00	281.0628
7.0740	2.4140	496142.	15020.	-0.01379	2222.	1.17E+11	0.00	0.00	294.0900
7.4670	2.3490	570245.	16437.	-0.01377	2553.	1.17E+11	0.00	0.00	307.1172
7.8600	2.2841	651179.	17916.	-0.01374	2916.	1.17E+11	0.00	0.00	320.1444
8.2530	2.2194	739233.	19457.	-0.01371	3310.	1.17E+11	0.00	0.00	333.1717
8.6460	2.1548	834697.	21059.	-0.01368	3737.	1.17E+11	0.00	0.00	346.1989
9.0390	2.0904	937861.	22722.	-0.01364	4199.	1.17E+11	0.00	0.00	359.2261
9.4320	2.0261	1049014.	24447.	-0.01360	4697.	1.17E+11	0.00	0.00	372.2533
9.8250	1.9620	1168446.	26233.	-0.01356	5232.	1.17E+11	0.00	0.00	385.2806
10.2180	1.8982	1296447.	28081.	-0.01351	5805.	1.17E+11	0.00	0.00	398.3078
10.6110	1.8346	1433307.	29990.	-0.01345	6418.	1.17E+11	0.00	0.00	411.3350
11.0040	1.7713	1579315.	31961.	-0.01339	7072.	1.17E+11	0.00	0.00	424.3622
11.3970	1.7083	1734761.	33993.	-0.01333	7768.	1.17E+11	0.00	0.00	437.3894
11.7900	1.6456	1899935.	36086.	-0.01325	8507.	1.17E+11	0.00	0.00	450.4167
12.1830	1.5833	2075127.	38241.	-0.01317	9292.	1.17E+11	0.00	0.00	463.4439
12.5760	1.5213	2260626.	40457.	-0.01309	10122.	1.17E+11	0.00	0.00	476.4711
12.9690	1.4599	2456721.	42735.	-0.01299	11000.	1.17E+11	0.00	0.00	489.4983
13.3620	1.3988	2663704.	45074.	-0.01289	11927.	1.17E+11	0.00	0.00	502.5256
13.7550	1.3383	2881863.	47475.	-0.01277	12904.	1.17E+11	0.00	0.00	515.5528
14.1480	1.2783	3111489.	49937.	-0.01265	13932.	1.17E+11	0.00	0.00	528.5800
14.5410	1.2190	3352870.	52461.	-0.01252	15013.	1.17E+11	0.00	0.00	541.6072
14.9340	1.1602	3606297.	55046.	-0.01238	16148.	1.17E+11	0.00	0.00	554.6344
15.3270	1.1022	3872060.	57692.	-0.01223	17338.	1.17E+11	0.00	0.00	567.6617
15.7200	1.0449	4150447.	60400.	-0.01207	18584.	1.17E+11	0.00	0.00	580.6889
16.1130	0.9884	4441750.	63169.	-0.01189	19888.	1.17E+11	0.00	0.00	593.7161
16.5060	0.9327	4746257.	66000.	-0.01171	21252.	1.17E+11	0.00	0.00	606.7433
16.8990	0.8779	5064259.	68892.	-0.01151	22676.	1.17E+11	0.00	0.00	619.7706
17.2920	0.8241	5396044.	71845.	-0.01130	24161.	1.17E+11	0.00	0.00	632.7978

17.6850	0.7714	5741904.	74860.	-0.01107	25710.	1.17E+11	0.00	0.00	645.8250
18,0780	0.7197	6102127.	77937.	-0.01083	27323.	1.17E+11	0.00	0.00	658.8522
18,4710	0.6692	6477003.	81075.	-0.01058	29002.	1.17E+11	0.00	0.00	671,8794
18,8640	0.6199	6866823	84274	-0.01031	30747	1.17E+11	0.00	0.00	684,9067
19.2570	0.5719	7271875	87535.	-0.01002	32561.	1.17F+11	0.00	0.00	697,9339
19,6500	0.5254	7692450	90572	-0.00972	34444	1,17F+11	-120,878	1085	710,9611
20 0130	0 1803	8126148	93070	-0 009/0	36386	1, 17E+11	-254 606	2500	723 9883
20.0450	0.4367	8570286	94947	-0.00040	38374	1 175+11	-254.000	4433	727.0156
20.4300	0.4307	0021685	94947.	0.00900	10206	1.17L+11 1 17E+11	595 621	6006	750 0429
20.8290	0.3546	9021085.	90104.	-0.00871	40390.	1.175.11	- 363.021	10608	750.0420
21.2220	0.3540	94/6/41.	96411.	-0.00055	42455.	1.175.11	-797.565	14865	763.0700
21.6150	0.3162	9931029.	95809.	-0.00/94	44467.	1.1/E+11	-996.672	14865.	776.0972
22.0080	0.2/9/	1.04E+07	94402.	-0.00/53	46479.	1.1/E+11	-1165.	19649.	789.1244
22.4010	0.2452	1.08E+07	92331.	-0.00/10	48454.	1.1/E+11	-1304.	25087.	802.1517
22.7940	0.2127	1.13E+07	89736.	-0.00665	50379.	1.17E+11	-1413.	31336.	815.1789
23.1870	0.1824	1.17E+07	86758.	-0.00619	52244.	1.17E+11	-1493.	38598.	828.2061
23.5800	0.1543	1.21E+07	83537.	-0.00571	54043.	1.17E+11	-1542.	47129.	841.2333
23.9730	0.1286	1.25E+07	80219.	-0.00521	55772.	1.17E+11	-1561.	57247.	854.2606
24.3660	0.1052	1.28E+07	60660.	-0.00470	57431.	1.17E+11	-7875.	353189.	286.5478
24.7590	0.08420	1.30E+07	22076.	-0.00418	58334.	1.17E+11	-8775.	491493.	0.00
25.1520	0.06573	1.30E+07	-21001.	-0.00365	58363.	1.17E+11	-9494.	681205.	0.00
25.5450	0.04974	1.28E+07	-67008.	-0.00313	57447.	1.17E+11	-10017.	949701.	0.00
25.9380	0.03621	1.24E+07	-114975.	-0.00262	55533.	1.17E+11	-10326.	1344965.	0.00
26.3310	0.02504	1.17E+07	-163834.	-0.00213	52591.	1.17E+11	-10395.	1958041.	0.00
26.7240	0.01611	1.09E+07	-212363.	-0.00167	48614.	1.17E+11	-10186.	2982447.	0.00
27.1170	0.00925	9742347.	-259089.	-0.00126	43622.	1.17E+11	-9630.	4910473.	0.00
27.5100	0.00425	8413395.	-301974.	-8.90E-04	37672.	1.17E+11	-8557.	9496681.	0.00
27,9030	8.55E-04	6894132.	-334942.	-5.80E-04	30869.	1.17E+11	-5424.	2.99E+07	0.00
28,2960	-0.00122	5254226.	-330783.	-3.35E-04	23526.	1.17E+11	7188.	2.77E+07	0.00
28,6890	-0.00230	3774183.	-292717.	-1.52E-04	16899.	1.17E+11	8956.	1.84E+07	0.00
29,0820	-0.00266	2493321	-248390	-2.52E-05	11164	1.17E+11	9843	1.75E+07	0.00
29 4750	-0 00254	1431373	-200932	5 42E-05	6409	1 17F+11	10283	1 91E+07	0.00
29 8680	-0 00215	598131	-152184	9 52E-05	2678	1 17E+11	10390	2 28E+07	0.00
30 2610	-0.00215	-1022	-103609	1 07E-04	18 0003	1.17E111	10210	2.201107	0.00
30 6540	-0.00104	-379105	-56514	9 955-05	1697	1 17E+11	9763	1 06E±07	0.00
31 0470	7 015 04	-379103.	17265	9.105.05	2405	1.175,11	5705.	4.001+07	0.00
31.0470	2 715 04	- 557050.	-1/505.	5.10E-05	2405.	1.17E+11	2772	4.000+07	0.00
31,4400	-3.71E-04	- 542000.	20140	3.91E-03	2451.	1.175.11	1522	4.00E+07	0.00
31.8330	-1.44E-04	-464802.	20149.	3.886-05	2081.	1.1/E+11	1523.	5.000007	0.00
32.2260	-5.20E-06	-352845.	238/5.	2.22E-05	1580.	1.1/E+11	57.3584	5.202+07	0.00
32.6190	6.59E-05	-239612.	22230.	1.02E-05	10/3.	1.1/E+11	-/55.012	5.400+07	0.00
33.0120	9.13E-05	-1431/1.	17892.	2.49E-06	641.0661	1.1/E+11	-1085.	5.60E+07	0.00
33.4050	8.94E-05	-70858.	12764.	-1.84E-06	317.2726	1.1/E+11	-1090.	5.75E+07	0.00
33.7980	7.39E-05	-22784.	8068.	-3.73E-06	102.0180	1.17E+11	-901.670	5.75E+07	0.00
34.1910	5.42E-05	5236.	4384.	-4.09E-06	23.4437	1.17E+11	-660.424	5.75E+07	0.00
34.5840	3.54E-05	18567.	1810.	-3.61E-06	83.1371	1.17E+11	-431.358	5.75E+07	0.00
34.9770	2.01E-05	22305.	213.7327	-2.78E-06	99.8737	1.17E+11	-245.486	5.75E+07	0.00
35.3700	9.14E-06	20583.	-628.045	-1.91E-06	92.1637	1.17E+11	-111.502	5.75E+07	0.00
35.7630	2.08E-06	16381.	-950.866	-1.17E-06	73.3496	1.17E+11	-25.402	5.75E+07	0.00
36.1560	-1.85E-06	11615.	-957.498	-6.00E-07	52.0059	1.17E+11	22.5896	5.75E+07	0.00
36.5490	-3.57E-06	7350.	-801.512	-2.16E-07	32.9118	1.17E+11	43.5620	5.75E+07	0.00
36.9420	-3.89E-06	4055.	-586.941	1.47E-08	18.1557	1.17E+11	47.4352	5.75E+07	0.00
37.3350	-3.43E-06	1814.	-376.346	1.33E-07	8.1236	1.17E+11	41.8757	5.75E+07	0.00
37.7280	-2.63E-06	505.0875	-201.922	1.80E-07	2.2616	1.17E+11	32.0956	5.75E+07	0.00
38.1210	-1.73E-06	-90.262	-76.391	1.89E-07	0.4042	1.17E+11	21.1405	5.75E+07	0.00

38.5140	-8.53E-07	-215.432	-2.029	1.82E-07	0.9646	1.17E+11	10.3954	5.75E+07	0.00
38.9070	-1.24E-08	-109.401	22.8406	1.76E-07	0.4899	1.17E+11	0.1515	5.75E+07	0.00
39.3000	8.07E-07	0.00	0.00	1.74E-07	0.00	1.17E+11	-9.838	2.88E+07	0.00

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 2:

Pile-head deflection	=	3.59114861	inches		
Computed slope at pile head	=	-0.0138906	radians		
Maximum bending moment	=	13034417.	inch-lbs		
Maximum shear force	=	-334942.	lbs		
Depth of maximum bending moment	=	25.15200000	feet below	pile	head
Depth of maximum shear force	=	27.90300000	feet below	pile	head
Number of iterations	=	22			
Number of zero deflection points	=	4			
Pile deflection at ground	=	0.53130030	inches		

Pile-head Deflection vs. Pile Length for Load Case 2

Boundary Condition Type 1, Shear and Moment

Shear	=	0.	lbs
Moment	=	0.	in-lbs
Axial Load	=	0.	lbs

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
39.30000	3.59114861	13034417.	-334942.
37.33500	3.67562821	13245733.	-341994.
35.37000	3.61039112	13097833.	-338104.
33.40500	3.60671397	13088348.	-339387.
31.44000	3.65289839	13194380.	-337803.
29.47500	6.16406772	13662890.	-453415.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load	Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max Moment
Case	Type	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, 1b	0.00	M, in-lb	0.00	0.00	2.2457	-0.00884	-237971.	8502047.
2	V, 1b	0.00	M, in-lb	0.00	0.00	3.5911	-0.01389	-334942.	1.30E+07

Maximum pile-head deflection = 3.5911486075 inches Maximum pile-head rotation = -0.0138905922 radians = -0.795872 deg.

The analysis ended normally.

LPile for Windows, Version 2022-12.007						
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved						
This copy of LPile is being used by:						
CTL Engineering, Inc. CTL Engineering, Inc.						
Serial Number of Security Device: 224802699						
This copy of LPile is licensed for exclusive use by:						
CTL ENGINEERING INC, Columbus, OH						
Use of this software by employees of CTL ENGINEERING INC other than those of the office site in Columbus, OH is a violation of the software license agreement.						
Files Used for Analysis						
Path to file locations: \PROJECT\2023\COL-05\23050003COL\Design\LPILE\Station 1406+75\						
Name of input data file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12d						
Name of output report file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12o						
Name of plot output file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12p						
Name of runtime message file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12r						
Date and Time of Analysis						
Date: June 7, 2023 Time: 10:26:50						
Ducklaw Titl-						
PLODIEW IICIE						
Project Name: PIK-772-14.10						
Job Number: 23050003COL						
Client: OHIO DEPARTMENT OF TRANSPORTATION						

Engineer: CTL ENGINEERING, INC.

1 2 0.000

39.300

36.0000

36.0000

Description: STATION 1406+75 DRILELD SHAFT WALL ANALYSIS

		Program Opt	ions and Setting	s			
Computational - Convention Engineering U - US Customa	Options: al Analysis nits Used f ry System U	or Data Input nits (pounds,	and Computation feet, inches)	5:			
 Analysis Control Options: Maximum number of iterations allowed Deflection tolerance for convergence Maximum allowable deflection Number of pile increments 						500 00E-05 in 0.0000 in 100	
Loading Type - Static loa	and Number ding specif	of Cycles of ied	Loading:				
 Analysis uses p-y modification factors for p-y curves Analysis uses layering correction (Method of Georgiadis) Analysis includes loading by multiple distributed lateral loads acting on pile Loading by lateral soil movements acting on pile not selected Input of shear resistance at the pile tip not selected Input of moment resistance at the pile tip not selected Computation of pile-head foundation stiffness matrix not selected Push-over analysis of pile not selected Buckling analysis of pile not selected 							
Output Option - Output file - Values of soil react - Printing I - No p-y cur - Print usin	 Output Options: Output files use decimal points to denote decimal symbols. Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. Printing Increment (nodal spacing of output points) = 1 No p-y curves to be computed and reported for user-specified depths Print using wide report formats 						
	Pil	e Structural	Properties and G	eomet	ry		
Number of pile Total length Depth of grou	e sections of pile nd surface	defined below top of	pile	= =	1	1 39.300 ft 9.6000 ft	
Pile diameter	s used for	p-y curve com	putations are de	fined	usin	g 2 point	s.
p-y curves ar the length of	e computed the pile.	using pile di A summary of	ameter values in values of pile d	terpo iamet	lated er vs	with dep . depth f	th over ollows.
D Point No.	epth Below Pile Head feet	Pil Diame inch	e ter es				

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile		
Cross-sectional Shape	=	Circular Pile
Length of section	=	39.300000 ft
Width of top of section	=	36.000000 in
Width of bottom of section	=	36.000000 in
Top Area	=	38.500000 sq. in
Bottom Area	=	38.500000 sq. in
Moment of Inertia at Top	=	4020. in^4
Moment of Inertia at Bottom	=	4020. in^4
Elastic Modulus	=	29000000. psi

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is stiff clay with water-induced erosion

Distance from top of pile to top of layer	=	19.600000 ft	
Distance from top of pile to bottom of layer	=	30.000000 ft	
Effective unit weight at top of layer	=	67.600000 pcf	
Effective unit weight at bottom of layer	=	67.600000 pcf	
Undrained cohesion at top of layer	=	3125. psf	
Undrained cohesion at bottom of layer	=	3125. psf	
Epsilon-50 at top of layer	=	0.005000	
Epsilon-50 at bottom of layer	=	0.005000	
Subgrade k at top of layer	Ξ	1000.000000 pci	
Subgrade k at bottom of layer	=	1000.000000 pci	

Layer 2 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer	=	30.000000 ft
Distance from top of pile to bottom of layer	=	50.000000 ft
Effective unit weight at top of layer	=	82.600000 pcf
Effective unit weight at bottom of layer	=	82.600000 pcf
Uniaxial compressive strength at top of layer	=	273.000000 psi
Uniaxial compressive strength at bottom of layer	=	273.000000 psi
Initial modulus of rock at top of layer	=	24388. psi
Initial modulus of rock at bottom of layer	=	24388. psi
RQD of rock at top of layer	=	0.0000 %
RQD of rock at bottom of layer	=	0.0000 %
k rm of rock at top of layer	=	0.0005000
k rm of rock at bottom of layer	=	0.0005000

(Depth of the lowest soil layer extends 10.700 ft below the pile tip)

	Summa	ary of Input 9	Soil Propertie	25				
Layer	Soil Type	Layer	Effective	Cohesion	Uniaxial		E50	
Roo Num.	ck Mass Name	Depth	Unit Wt.		qu	RQD %	or	kpy
Mo	odulus (p-y Curve Type) psi	ft	pcf	psf	psi		krm	pci

1	 Sti	ff Clay	19.6000	67.6000	3125.			0.00500
1000.0	000 with	 Free Water	30,0000	67,6000	3125.			0.00500
1000.0	000		20,0000	82 6000		272 0000	0.00 5	005.04
2	24388.	weak	50.0000	82.0000		275.0000	0.00 5	.002-04
	24388.	Rock	50.0000	82.6000		273.0000	0.00 5	.00E-04
		Modifica	ation Factors	for p-y Curve	es			
Distri	bution of	p-y modifiers w	with depth de	fined using 3	points			
Point No.	Dept f	hX p-mu ∵t	ult y	-mult				
1	1	9.600 0	.7900	1.0000				
2	2	4.300 0	.7900	1.0000				
3	2	4.300 1.	.0000	1.0000				
			Static Loadi					
				пд туре				
c1 1 1	1				C 11			
Static	loading	criteria were us	sea when comp	uting p-y curv	/es for all	analyses.		
	u 	istributed Later	ral Loading f	or Individual	Load Cases			
Distri	buted lat	eral load intens	sity for Load	Case 1 define	ed using 2	points		
Point		Depth X	Dist. Lo	ad				
No.		ft	lb/in					
1		0.000	34.100					
2		24.300	610.800					
Dictoi	butod lat	onal load inton	ity for load	Casa 2 dafin	ducing 2	nainta		
DISCRI	Duleu Ial	eral load intens	SILY FOR LOAD	Case 2 define	eu using z	points		
Point		Depth X	Dist. Lo	ad				
NO.								
1		0.000	59.600					
2		24.300	865.100					
		Pile-head Load:	ing and Pile-	head Fixity Co	onditions			
Number	of loads	specified = 2						
Load No.	Load Type	Condition 1		Condition 2	А	xial Thrust Force, lbs	Compute Top y vs. Pile Length	Run Analysis

1	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	Yes	Yes
2	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	Yes	Yes

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

Layer No.	Top of Layer Below Pile Head ft	Equivalent Top Depth Below Grnd Surf ft	Same Layer Type As Layer Above	Layer is Rock or is Below Rock Layer	F0 Integral for Layer lbs	F1 Integral for Layer lbs
1	19.6000	0.00	N.A.	No	0.00	57214.
2	30.0000	10.4000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-1bs
Axial thrust load on pile head	=	0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	У	Moment	Force	S	Stress	Stiffness	p	Es*H	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	<pre>lb/inch</pre>
0.00	3.2104	-1.16E-04	0.00	-0.01160	5.21E-07	1.17E+11	0.00	0.00	36,4317
0.3930	3.1557	405.1326	188.3066	-0.01160	1.8140	1.17E+11	0.00	0.00	43.4269
0.7860	3.1009	1776.	415.1005	-0.01160	7.9527	1.17E+11	0.00	0.00	52.7538
1.1790	3.0462	4320.	685.8800	-0.01160	19.3449	1.17E+11	0.00	0.00	62.0806
1.5720	2,9915	8245.	1001.	-0.01160	36,9194	1.17E+11	0.00	0.00	71,4075
---------	---------	----------	---------	----------	-----------	------------	----------	----------	-----------
1,9650	2,9368	13758.	1359.	-0.01160	61,6050	1.17E+11	0.00	0.00	80.7344
2 3580	2 8821	21067	1762	-0 01160	94 3305	1 17E + 11	0 00	0 00	90 0613
2.5500	2.0021	30379	2209	-0.01100	136 02/18	1 17E+11	0.00	0.00	99 3881
2.7510	2.02/4	41001	2205.	-0.01100	197 6166	1.175,11	0.00	0.00	109 7160
5.1440	2.7727	41901.	2700.	-0.01100	167.0100	1.1/2+11	0.00	0.00	108.7150
3.53/0	2./180	55841.	3234.	-0.01159	250.0349	1.1/E+11	0.00	0.00	118.0419
3.9300	2.6634	/240/.	3813.	-0.01159	324.2083	1.1/E+11	0.00	0.00	127.3688
4.3230	2.6087	91805.	4436.	-0.01159	411.0658	1.17E+11	0.00	0.00	136.6956
4.7160	2.5541	114243.	5102.	-0.01158	511.5361	1.17E+11	0.00	0.00	146.0225
5.1090	2.4994	139929.	5813.	-0.01158	626.5481	1.17E+11	0.00	0.00	155.3494
5.5020	2.4448	169070.	6568.	-0.01157	757.0305	1.17E+11	0.00	0.00	164.6763
5.8950	2.3903	201874.	7366.	-0.01157	903.9123	1.17E+11	0.00	0.00	174.0031
6.2880	2.3358	238547.	8209.	-0.01156	1068.	1.17E+11	0.00	0.00	183.3300
6,6810	2,2813	279298.	9095.	-0.01155	1251.	1.17E+11	0.00	0.00	192,6569
7 0740	2,2269	324334	10026	-0.01153	1452	1.17E+11	0.00	0.00	201 9838
7 4670	2.2205	373862	11000	-0 01152	1674	1 17E+11	0.00	0.00	211 3107
7 9600	2.1/25	128000	12010	0.01152	1017	1 175+11	0.00	0.00	222.5107
7.8000	2.1102	428030.	12019.	-0.01130	1917.	1.175.11	0.00	0.00	220.0373
8.2550	2.0640	48/224.	13081.	-0.01149	2182.	1.1/E+11	0.00	0.00	229.9644
8.6460	2.0099	5514/4.	14188.	-0.01146	2469.	1.1/E+11	0.00	0.00	239.2913
9.0390	1.9559	621045.	15338.	-0.01144	2/81.	1.1/E+11	0.00	0.00	248.6182
9.4320	1.9020	696146.	16533.	-0.01141	3117.	1.17E+11	0.00	0.00	257.9450
9.8250	1.8482	776983.	17771.	-0.01138	3479.	1.17E+11	0.00	0.00	267.2719
10.2180	1.7946	863765.	19054.	-0.01135	3868.	1.17E+11	0.00	0.00	276.5988
10.6110	1.7411	956699.	20380.	-0.01131	4284.	1.17E+11	0.00	0.00	285.9257
11.0040	1.6879	1055992.	21751.	-0.01127	4728.	1.17E+11	0.00	0.00	295.2525
11.3970	1.6348	1161851.	23165.	-0.01123	5202.	1.17E+11	0.00	0.00	304.5794
11.7900	1.5820	1274485.	24623.	-0.01118	5707.	1.17E+11	0.00	0.00	313,9063
12,1830	1,5294	1394100.	26126.	-0.01113	6242.	1.17E+11	0.00	0.00	323, 2332
12.5760	1 4770	1520904	27672	-0 01107	6810	1, 17E+11	0.00	0.00	332 5600
12.9700	1 4250	1655104	20263	0.01107	7/11	1 17E+11	0.00	0.00	3/1 8869
12.3630	1 2722	1706009	20205.	0.01100	9046	1 175,11	0.00	0.00	251 2129
12.3020	1.3735	1/90908.	20097.	-0.01095	0040.	1.175+11	0.00	0.00	351.2136
13.7550	1.3219	1946523.	32575.	-0.01086	8/16.	1.1/E+11	0.00	0.00	360.540/
14.1480	1.2709	2104157.	34297.	-0.010//	9422.	1.1/E+11	0.00	0.00	369.86/6
14.5410	1.2202	2270017.	36064.	-0.01069	10164.	1.17E+11	0.00	0.00	379.1944
14.9340	1.1701	2444311.	37874.	-0.01059	10945.	1.17E+11	0.00	0.00	388.5213
15.3270	1.1204	2627246.	39728.	-0.01049	11764.	1.17E+11	0.00	0.00	397.8482
15.7200	1.0711	2819028.	41627.	-0.01038	12623.	1.17E+11	0.00	0.00	407.1751
16.1130	1.0225	3019867.	43569.	-0.01026	13522.	1.17E+11	0.00	0.00	416.5019
16.5060	0.9744	3229969.	45555.	-0.01013	14463.	1.17E+11	0.00	0.00	425.8288
16.8990	0.9269	3449542.	47585.	-0.01000	15446.	1.17E+11	0.00	0.00	435.1557
17,2920	0.8801	3678793.	49659.	-0,00985	16472.	1.17E+11	0.00	0.00	444,4826
17,6850	0 8339	3917930	51778	-0 00970	17543	1.17E+11	0.00	0.00	453 8094
18 0780	0.7886	4167159	539/0	-0 00954	18659	1, 17E+11	0.00	0.00	463 1363
19 4710	0.7000	410/199.	56146	0.0000	10000	1 175+11	0.00	0.00	403.1505
18.4/10	0.7440	4420089.	50140.	-0.00930	19021.	1.175.11	0.00	0.00	472.4032
10.2570	0.7005	4090727.	56596.	-0.00918	21050.	1.17E+11	0.00	0.00	401.1901
19.2570	0.0574	4977460.	60690.	-0.00090	22207.	1.1/E+11	0.00	0.00	491.11/0
19.6500	0.6155	5269156.	62837.	-0.008/8	23593.	1.1/E+11	-81.304	622.9229	500.4438
20.0430	0.5/46	5570154.	64542.	-0.00856	24941.	1.1/E+11	-205.507	1687.	509.//0/
20.4360	0.5348	5877919.	65655.	-0.00832	26319.	1.17E+11	-351.522	3100.	519.0976
20.8290	0.4961	6189411.	66078.	-0.00808	27714.	1.17E+11	-516.430	4909.	528.4245
21.2220	0.4586	6501170.	65730.	-0.00782	29110.	1.17E+11	-697.654	7174.	537.7513
21.6150	0.4223	6809372.	64529.	-0.00755	30490.	1.17E+11	-896.381	10010.	547.0782
22.0080	0.3873	7109806.	62399.	-0.00727	31835.	1.17E+11	-1110.	13518.	556.4051
22.4010	0.3537	7397920.	59360.	-0.00698	33125.	1.17E+11	-1301.	17341.	565.7320
22.7940	0.3215	7669690.	55521.	-0.00668	34342.	1.17E+11	-1468.	21536.	575.0588
23,1870	0.2908	7921596	50989	-0.00636	35470	1.17F+11	-1613.	26168	584.3857
23 5800	0 2615	8150616	45868	-0 00603	36495	1, 17E+11	-1737	31315	593 7126
23.0000	0.2015	0254210	40061	0.00005	27407	1, 175, 11	1020	27065	602 0205
23.9750	0.2556	0534210.	40201.	-0.00370	37407.	1.175.11	-1030.	57005.	202.2093
24.3000	0.20/8	000000.	52103.	-0.00500	20190.	1.1/0+11	-242/.	57697.	202.308/
24.7590	0.1833	865/011.	20960.	-0.00501	38/63.	1.1/E+11	-2500.	64335.	0.00
25.1520	0.1605	8/28054.	9060.	-0.00466	39081.	1.1/E+11	-2546.	/4821.	0.00
25.5450	0.1393	8742468.	-2989.	-0.00431	39145.	1.17E+11	-2564.	86768.	0.00
25.9380	0.1199	8699864.	-15051.	-0.00395	38955.	1.17E+11	-2552.	100393.	0.00
26.3310	0.1020	8600511.	-26959.	-0.00360	38510.	1.17E+11	-2499.	115471.	0.00
26.7240	0.08587	8445587.	-38497.	-0.00326	37816.	1.17E+11	-2394.	131498.	0.00
27.1170	0.07130	8237412.	-49507.	-0.00292	36884.	1.17E+11	-2275.	150471.	0.00
27.5100	0.05831	7978637.	-59922.	-0.00259	35725.	1.17E+11	-2142.	173213.	0.00
27.9030	0.04684	7672229.	-69676.	-0.00228	34353.	1.17E+11	-1995.	200872.	0.00
28.2960	0.03683	7321450.	-78710.	-0.00197	32783.	1.17E+11	-1836.	235104.	0.00

28.6890	0.02822	6929834.	-86968.	-0.00169	31029.	1.17E+11	-1666.	278391.	0.00
29.0820	0.02093	6501167.	-94351.	-0.00141	29110.	1.17E+11	-1465.	330136.	0.00
29.4750	0.01488	6039911.	-100720.	-0.00116	27044.	1.17E+11	-1236.	391519.	0.00
29.8680	0.00999	5551176.	-106020.	-9.26E-04	24856.	1.17E+11	-1012.	477963.	0.00
30.2610	0.00615	5039931.	-118344.	-7.12E-04	22567.	1.17E+11	-4214.	3232416.	0.00
30.6540	0.00327	4434955.	-138157.	-5.20E-04	19858.	1.17E+11	-4188.	6035331.	0.00
31.0470	0.00124	3736829.	-156876.	-3.55E-04	16732.	1.17E+11	-3750.	1.42E+07	0.00
31.4400	-7.43E-05	2955305.	-165017.	-2.19E-04	13233.	1.17E+11	297.0218	1.89E+07	0.00
31.8330	-8.27E-04	2180386.	-155682.	-1.16E-04	9763.	1.17E+11	3662.	2.09E+07	0.00
32.2260	-0.00116	1486916.	-135131.	-4.14E-05	6658.	1.17E+11	5053.	2.05E+07	0.00
32.6190	-0.00122	905827.	-110083.	6.96E-06	4056.	1.17E+11	5570.	2.16E+07	0.00
33.0120	-0.00110	448613.	-83093.	3.44E-05	2009.	1.17E+11	5876.	2.52E+07	0.00
33.4050	-8.94E-04	122091.	-56311.	4.59E-05	546.6772	1.17E+11	5482.	2.89E+07	0.00
33.7980	-6.66E-04	-82513.	-33087.	4.67E-05	369.4615	1.17E+11	4367.	3.09E+07	0.00
34.1910	-4.54E-04	-189983.	-15317.	4.12E-05	850.6702	1.17E+11	3169.	3.29E+07	0.00
34.5840	-2.78E-04	-226979.	-2993.	3.28E-05	1016.	1.17E+11	2058.	3.49E+07	0.00
34.9770	-1.45E-04	-218216.	4536.	2.37E-05	977.0852	1.17E+11	1135.	3.69E+07	0.00
35.3700	-5.38E-05	-184198.	8261.	1.56E-05	824.7670	1.17E+11	444.1719	3.90E+07	0.00
35.7630	2.26E-06	-140302.	9262.	9.04E-06	628.2160	1.17E+11	-19.614	4.10E+07	0.00
36.1560	3.15E-05	-96841.	8538.	4.25E-06	433.6181	1.17E+11	-287.263	4.30E+07	0.00
36.5490	4.23E-05	-59770.	6909.	1.08E-06	267.6274	1.17E+11	-403.647	4.50E+07	0.00
36.9420	4.17E-05	-31676.	4977.	-7.70E-07	141.8338	1.17E+11	-415.618	4.70E+07	0.00
37.3350	3.51E-05	-12826.	3138.	-1.67E-06	57.4296	1.17E+11	-364.289	4.90E+07	0.00
37.7280	2.60E-05	-2078.	1617.	-1.97E-06	9.3031	1.17E+11	-280.830	5.10E+07	0.00
38.1210	1.65E-05	2425.	518.0894	-1.96E-06	10.8569	1.17E+11	-185.164	5.30E+07	0.00
38.5140	7.44E-06	2809.	-123.218	-1.86E-06	12.5773	1.17E+11	-86.807	5.50E+07	0.00
38.9070	-1.06E-06	1263.	-297.808	-1.78E-06	5.6530	1.17E+11	12.7650	5.70E+07	0.00
39.3000	-9.31E-06	0.00	0.00	-1.75E-06	0.00	1.17E+11	113.5318	2.88E+07	0.00

Output Summary for Load Case No. 1:

Pile-head deflection	=	3.21036621	inches
Computed slope at pile head	=	-0.0116007	radians
Maximum bending moment	=	8742468.	inch-lbs
Maximum shear force	=	-165017.	lbs
Depth of maximum bending moment	=	25.54500000	feet below pile head
Depth of maximum shear force	=	31.44000000	feet below pile head
Number of iterations	=	23	
Number of zero deflection points	=	3	
Pile deflection at ground	=	0.62086080	inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear	=	0.	lbs
Moment	=	0.	in-lbs
Axial Load	=	0.	lbs

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
39.30000	3.21036621	8742468.	-165017.
37.33500	3.23205922	8776651.	-166028.
35.37000	3.21308438	8757553.	-166006.
33.40500	3.28770218	8772933.	-180412.

Computed Values of Pile Loading and Deflection

for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-1bs
Axial thrust load on pile head	=	0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	lb/inch
0.00	5.8444	8.85E-05	4.94E-07	-0.02023	3.96E-07	1.17E+11	0.00	0.00	62.8568
0.3930	5.7489	698.9882	319.4713	-0.02023	3.1298	1.17E+11	0.00	0.00	72.6272
0.7860	5.6535	3013.	692.6995	-0.02023	13.4922	1.17E+11	0.00	0.00	85.6544
1.1790	5.5581	7233.	1127.	-0.02023	32.3845	1.17E+11	0.00	0.00	98.6817
1.5720	5.4627	13647.	1623.	-0.02023	61.1040	1.17E+11	0.00	0.00	111.7089
1.9650	5.3673	22545.	2181.	-0.02023	100.9480	1.17E+11	0.00	0.00	124.7361
2.3580	5.2719	34218.	2800.	-0.02023	153.2139	1.17E+11	0.00	0.00	137.7633
2.7510	5.1765	48954.	3480.	-0.02023	219.1989	1.17E+11	0.00	0.00	150.7906
3.1440	5.0811	67045.	4222.	-0.02023	300.2004	1.17E+11	0.00	0.00	163.8178
3.5370	4.9857	88779.	5026.	-0.02022	397.5158	1.17E+11	0.00	0.00	176.8450
3.9300	4.8903	114445.	5890.	-0.02022	512.4422	1.1/E+11	0.00	0.00	189.8/22
4.3230	4.7950	144335.	6816.	-0.02021	646.2771	1.1/E+11	0.00	0.00	202.8994
4./160	4.6997	1/8/38.	7804.	-0.02021	800.31//	1.1/E+11	0.00	0.00	215.9267
5.1090	4.6044	21/942.	8853.	-0.02020	975.8614	1.1/E+11	0.00	0.00	228.9539
5.5020	4.5091	262239.	9963.	-0.02019	11/4.	1.1/E+11	0.00	0.00	241.9811
5.8950	4.4139	311918.	11135.	-0.02018	1397.	1.1/E+11	0.00	0.00	255.0083
6.2880	4.3188	30/208.	12369.	-0.02016	1010	1.1/E+11	0.00	0.00	268.0356
0.0810	4.2238	428580.	15005.	-0.02015	1919.	1.175.11	0.00	0.00	281.0628
7.0740	4.1288	49014Z.	15020.	-0.02013	2222.	1.1/E+11 1 17E+11	0.00	0.00	294.0900
7.4070	2 0201	651170	17016	-0.02011	20016	1.17E+11	0.00	0.00	220 1444
9 2520	2 8445	720222	10457	-0.02008	2910.	1.17E+11 1 17E+11	0.00	0.00	222 1717
8.2330	3 7500	834697	21059	-0.02000	3737	1.17E+11	0.00	0.00	346 1989
9 0390	3 6556	937861	21000.	-0.02002	1199	1.17E+11	0.00	0.00	359 2261
9 4320	3 5614	1049014	24447	-0.01995	4697	1.17E+11	0.00	0.00	372 2533
9,8250	3.4675	1168446	26233	-0.01990	5232	1.17E+11	0.00	0.00	385,2806
10.2180	3,3737	1296447.	28081	-0.01985	5805.	1.17E+11	0.00	0.00	398,3078
10.6110	3,2802	1433307.	29990.	-0.01980	6418.	1.17E+11	0.00	0.00	411, 3350
11,0040	3,1870	1579315.	31961.	-0.01974	7072.	1.17E+11	0.00	0.00	424,3622
11.3970	3.0941	1734761.	33993.	-0.01967	7768.	1.17E+11	0.00	0.00	437.3894
11.7900	3.0015	1899935.	36086.	-0.01960	8507.	1.17E+11	0.00	0.00	450.4167
12.1830	2.9092	2075127.	38241.	-0.01952	9292.	1.17E+11	0.00	0.00	463.4439
12.5760	2.8174	2260626.	40457.	-0.01943	10122.	1.17E+11	0.00	0.00	476.4711
12.9690	2.7260	2456721.	42735.	-0.01933	11000.	1.17E+11	0.00	0.00	489.4983
13.3620	2.6350	2663704.	45074.	-0.01923	11927.	1.17E+11	0.00	0.00	502.5256
13.7550	2.5446	2881863.	47475.	-0.01912	12904.	1.17E+11	0.00	0.00	515.5528
14.1480	2.4547	3111489.	49937.	-0.01900	13932.	1.17E+11	0.00	0.00	528.5800
14.5410	2.3654	3352870.	52461.	-0.01886	15013.	1.17E+11	0.00	0.00	541.6072
14.9340	2.2768	3606297.	55046.	-0.01872	16148.	1.17E+11	0.00	0.00	554.6344
15.3270	2.1888	3872060.	57692.	-0.01857	17338.	1.17E + 11	0.00	0.00	567.6617
15.7200	2.1016	4150447.	60400.	-0.01841	18584.	1.17E+11	0.00	0.00	580.6889
16.1130	2.0152	4441750.	63169.	-0.01824	19888.	1.17E + 11	0.00	0.00	593.7161
16.5060	1.9296	4746257.	66000.	-0.01805	21252.	1.17E+11	0.00	0.00	606.7433
16.8990	1.8449	5064259.	68892.	-0.01785	22676.	1.17E+11	0.00	0.00	619.7706
17.2920	1.7612	5396044.	71845.	-0.01764	24161.	1.17E+11	0.00	0.00	632.7978
17.6850	1.6786	5741904.	74860.	-0.01742	25710.	1.17E+11	0.00	0.00	645.8250
18.0780	1.5970	6102127.	77937.	-0.01718	27323.	1.17E+11	0.00	0.00	658.8522
18.4710	1.5165	6477003.	81075.	-0.01692	29002.	1.17E+11	0.00	0.00	671.8794
18.8640	1.4374	6866823.	84274.	-0.01665	30747.	1.17E+11	0.00	0.00	684.9067
19.2570	1.3595	/2/1875.	8/535.	-0.01637	32561.	1.1/E+11	0.00	0.00	697.9339
19.6500	1.2830	/692450.	90831.	-0.01606	34444.	1.1/E+11	-11.004	40.4465	/10.9611
20.0430	1.2080	8128592.	94098.	-0.015/4	36397.	1.1/E+11	-38.408	149.9449	/23.9883
20.4360	1.1345	85/9982.	9/294.	-0.01541	38418.	1.1/E+11	-6/.137	2/9.0/93	/3/.0156
20.8290	1.0627	90462/0.	10033/.	-0.01505	40506.	1.1/E+11	-129.611	5/5.1924	750.0428
21.2220	0.9926	3020358.	10/353	-0.0140/	42000.	1.175.14	-209.008	13/0.	70.0/0/00
21.6150	0.9243	1.00E+07	104/5/.	-0.01428	44852.	1.1/E+11	-468.566	2391.	//6.09/2

22.0080	0.8579	1.05E+07	105778.	-0.01386	47080.	1.17E+11	-663.953	3650.	789.1244
22.4010	0.7935	1.10E+07	105904.	-0.01343	49319.	1.17E+11	-873.714	5192.	802.1517
22.7940	0.7313	1.15E+07	105073.	-0.01297	51552.	1.17E+11	-1096.	7067.	815.1789
23.1870	0.6712	1.20E+07	103232.	-0.01250	53757.	1.17E+11	-1328.	9334.	828.2061
23.5800	0.6134	1.25E+07	100335.	-0.01200	55912.	1.17E+11	-1570.	12068.	841.2333
23.9730	0.5580	1.30E+07	96348.	-0.01149	57994.	1.17E+11	-1817.	15353.	854.2606
24.3660	0.5051	1.34E+07	88660.	-0.01095	59981.	1.17E+11	-2584.	24131.	286.5478
24.7590	0.4547	1.38E+07	76566.	-0.01040	61739.	1.17E+11	-2831.	29367.	0.00
25.1520	0.4070	1.41E+07	62719.	-0.00984	63215.	1.17E+11	-3041.	35238.	0.00
25.5450	0.3619	1.44E+07	47974.	-0.00926	64388.	1.17E+11	-3212.	41858.	0.00
25.9380	0.3196	1.46E+07	32510.	-0.00868	65241.	1.17E+11	-3346.	49368.	0.00
26.3310	0.2801	1.47E+07	16507.	-0.00808	65761.	1.17E+11	-3441.	57942.	0.00
26.7240	0.2434	1.47E+07	144.3790	-0.00749	65938.	1.17E+11	-3498.	67793.	0.00
27.1170	0.2094	1.47E+07	-16397.	-0.00689	65767.	1.17E+11	-3517.	79188.	0.00
27.5100	0.1783	1.46E+07	-32933.	-0.00630	65245.	1.17E+11	-3496.	92462.	0.00
27.9030	0.1500	1.44E+07	-49278.	-0.00572	64376.	1.17E+11	-3436.	108023.	0.00
28.2960	0.1244	1.41E+07	-65235.	-0.00514	63164.	1.17E+11	-3332.	126317.	0.00
28.6890	0.1015	1.38E+07	-80541.	-0.00458	61621.	1.17E+11	-3159.	146798.	0.00
29.0820	0.08122	1.33E+07	-94796.	-0.00403	59763.	1.17E+11	-2886.	167597.	0.00
29.4750	0.06349	1.29E+07	-107620.	-0.00350	57617.	1.17E+11	-2552.	189559.	0.00
29.8680	0.04821	1.23E+07	-118881.	-0.00299	55218.	1.17E+11	-2224.	217521.	0.00
30.2610	0.03529	1.17E+07	-139507.	-0.00250	52597.	1.17E+11	-6523.	871643.	0.00
30.6540	0.02461	1.10E+07	-171243.	-0.00204	49326.	1.17E+11	-6936.	1328912.	0.00
31.0470	0.01603	1.01E+07	-204355.	-0.00161	45364.	1.17E+11	-7107.	2090179.	0.00
31.4400	0.00939	9088629.	-237578.	-0.00123	40695.	1.17E+11	-6983.	3507396.	0.00
31.8330	0.00448	7890565.	-269226.	-8.82E-04	35331.	1.17E+11	-6439.	6783141.	0.00
32.2260	0.00107	6549294.	-296076.	-5.90E-04	29325.	1.17E+11	-4948.	2.18E+07	0.00
32.6190	-0.00109	5097980.	-294979.	-3.54E-04	22827.	1.17E+11	5413.	2.35E+07	0.00
33.0120	-0.00227	3767048.	-265603.	-1.75E-04	16867.	1.17E+11	7045.	1.46E+07	0.00
33.4050	-0.00274	2592814.	-230256.	-4.64E-05	11610.	1.17E+11	7945.	1.37E+07	0.00
33.7980	-0.00271	1595277.	-191513.	3.83E-05	7143.	1.17E+11	8485.	1.48E+07	0.00
34.1910	-0.00238	786461.	-150861.	8.65E-05	3521.	1.17E+11	8755.	1.74E+07	0.00
34.5840	-0.00189	172359.	-109503.	1.06E-04	771.7564	1.17E+11	8785.	2.19E+07	0.00
34.9770	-0.00138	-246367.	-68540.	1.04E-04	1103.	1.17E+11	8587.	2.94E+07	0.00
35.3700	-9.08E-04	-474114.	-30603.	8.98E-05	2123.	1.17E+11	7502.	3.90E+07	0.00
35.7630	-5.30E-04	-535014.	-2062.	6.94E-05	2396.	1.17E+11	4602.	4.10E+07	0.00
36.1560	-2.53E-04	-493568.	14233.	4.86E-05	2210.	1.17E+11	2309.	4.30E+07	0.00
36.5490	-7.12E-05	-400768.	21278.	3.05E-05	1794.	1.17E+11	678.8757	4.50E+07	0.00
36.9420	3.46E-05	-292870.	22066.	1.65E-05	1311.	1.17E+11	-344.754	4.70E+07	0.00
37.3350	8.45E-05	-192639.	19183.	6.69E-06	862.5632	1.17E+11	-878.031	4.90E+07	0.00
37.7280	9.77E-05	-111936.	14622.	5.26E-07	501.2076	1.17E+11	-1056.	5.10E+07	0.00
38.1210	8.95E-05	-54728.	9759.	-2.84E-06	245.0495	1.17E+11	-1006.	5.30E+07	0.00
38.5140	7.08E-05	-19890.	5438.	-4.35E-06	89.0584	1.17E+11	-826.534	5.50E+07	0.00
38.9070	4.84E-05	-3434.	2109.	-4.83E-06	15.3777	1.17E+11	-585.459	5.70E+07	0.00
39.3000	2.53E-05	0.00	0.00	-4.90E-06	0.00	1.17E+11	-308.837	2.88E+07	0.00

Output Summary for Load Case No. 2:

Pile-head deflection	=	5.84436039	inches		
Computed slope at pile head	=	-0.0202332	radians		
Maximum bending moment	=	14726107.	inch-lbs		
Maximum shear force	=	-296076.	lbs		
Depth of maximum bending moment	=	26.72400000	feet below	pile	head
Depth of maximum shear force	=	32.22600000	feet below	pile	head
Number of iterations	=	33			
Number of zero deflection points	=	2			
Pile deflection at ground	=	1.29273437	inches		

Pile-head Deflection vs. Pile Length for Load Case 2

Boundary Condition Type 1, Shear and Moment

Shear Moment Axial Load	=		0. 0. 0.	lbs in-lbs lbs						
Pile Length feet		Pile Head Deflection inches		Maximum Moment ln-lbs		Maximum Shear lbs				
39.3000 37.3350 35.3700	9 0 0	5.84436039 5.88268972 5.83751236		14726107. 14796501. 14726251.		-296076. -299310. -295458.				
	Sur	nmary of Pil	e-ł	nead Response	es f	or Convent:	ional Ar	nalyses	5	

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load	Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, 1b	0.00	M, in-lb	0.00	0.00	3.2104	-0.01160	-165017.	8742468.
2	V, lb	0.00	M, in-lb	0.00	0.00	5.8444	-0.02023	-296076.	1.47E+07

Maximum pile-head deflection = 5.8443603866 inches Maximum pile-head rotation = -0.0202331845 radians = -1.159276 deg.

The analysis ended normally.

LPile for Windows, Version 2022-12.007
Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved
This copy of LPile is being used by:
CTL Engineering, Inc. CTL Engineering, Inc.
Serial Number of Security Device: 224802699
This copy of LPile is licensed for exclusive use by:
CTL ENGINEERING INC, Columbus, OH
Use of this software by employees of CTL ENGINEERING INC other than those of the office site in Columbus, OH is a violation of the software license agreement.
Files Used for Analysis
Path to file locations: \PROJECT\2023\COL-05\23050003COL\Design\LPILE\Station 1406+75\
Name of input data file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12d
Name of output report file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12o
Name of plot output file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12p
Name of runtime message file: Station 1406+75 Weak Rock WITH UPDATED SRUVEY DATA.lp12r
Date and Time of Analysis
Date: June 7, 2023 Time: 10:23:34
Problem Title
Project Name: PIK-772-14.10
Job Number: 23050003COL

Client: OHIO DEPARTMENT OF TRANSPORTATION

Engineer: CTL ENGINEERING, INC.

1 2 0.000

39.300

36.0000

36.0000

Description: STATION 1406+75 DRILELD SHAFT WALL ANALYSIS

Program Options and Settings									
Computational - Convention Engineering U - US Customa	Options: al Analysis nits Used f ry System U	or Data Input nits (pounds,	and Computation feet, inches)	5:					
Analysis Cont - Maximum nu - Deflection - Maximum al - Number of	rol Options mber of ite tolerance lowable def pile increm	ed ce	= = =	1.00 10	500 00E-05 in 0.0000 in 100				
Loading Type - Static loa	and Number ding specif	of Cycles of ied	Loading:						
 Analysis uses p-y modification factors for p-y curves Analysis uses layering correction (Method of Georgiadis) Analysis includes loading by multiple distributed lateral loads acting on pile Loading by lateral soil movements acting on pile not selected Input of shear resistance at the pile tip not selected Input of moment resistance at the pile tip not selected Computation of pile-head foundation stiffness matrix not selected Push-over analysis of pile not selected Buckling analysis of pile not selected 									
Output Option - Output file - Values of soil react - Printing I - No p-y cur - Print usin	<pre>Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats</pre>								
	Pil	e Structural	Properties and G	eomet	ry				
Number of pile Total length Depth of grou	e sections of pile nd surface	defined below top of	pile	= =	1	1 39.300 ft 9.6000 ft			
Pile diameter	s used for	p-y curve com	putations are de	fined	usin	g 2 point	s.		
p-y curves ar the length of	e computed the pile.	using pile di A summary of	ameter values in values of pile d	terpo iamet	lated er vs	with dep . depth f	th over ollows.		
D Point No.	epth Below Pile Head feet	Pil Diame inch	e ter es						

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile		
Cross-sectional Shape	=	Circular Pile
Length of section	=	39.300000 ft
Width of top of section	=	36.000000 in
Width of bottom of section	=	36.000000 in
Top Area	=	38.500000 sq. in
Bottom Area	=	38.500000 sq. in
Moment of Inertia at Top	=	4020. in^4
Moment of Inertia at Bottom	=	4020. in^4
Elastic Modulus	=	29000000. psi

Soil and Rock Layering Information

The soil profile is modelled using 2 layers

Layer 1 is stiff clay with water-induced erosion

Distance from top of pile to top of layer	=	19.600000 ft
Distance from top of pile to bottom of layer	=	30.000000 ft
Effective unit weight at top of layer	=	67.600000 pcf
Effective unit weight at bottom of layer	=	67.600000 pcf
Undrained cohesion at top of layer	=	3125. psf
Undrained cohesion at bottom of layer	=	3125. psf
Epsilon-50 at top of layer	=	0.005000
Epsilon-50 at bottom of layer	=	0.005000
Subgrade k at top of layer	=	1000.000000 pci
Subgrade k at bottom of layer	=	1000.000000 pci

Layer 2 is weak rock, p-y criteria by Reese, 1997

=	30.000000 ft
=	50.000000 ft
=	82.600000 pcf
=	82.600000 pcf
=	38.000000 psi
=	38.000000 psi
=	3420. psi
=	3420. psi
=	0.0000 %
=	0.0000 %
=	0.0005000
=	0.0005000

(Depth of the lowest soil layer extends 10.700 ft below the pile tip)

	Summary of Input Soil Properties									
Layer	Soil Type	Layer	Effective	Cohesion	Uniaxial		E50			
Ro Num.	ck Mass Name	Depth	Unit Wt.		qu	RQD %	or	kpy		
M	odulus (p-y Curve Type) psi	ft	pcf	psf	psi		krm	pci		

1000.0000	1	 Sti	ff Clay	19.6000	67.6000	3125.			0.00500
1000.0000	1000.0	000 with	 Free Water	30.0000	67.6000	3125.			0.00500
2 3428. 36.0000 82.0000 1 36.0000 0.00 5.001-04 3428. 3428. 3428. 38.0000 0.00 5.001-04 Modification Factors for p-y Curves	1000.0	000		20,0000	82 6000		28,0000	0.00	005.04
Rock 59.0000 82.6000 38.0000 0.00 5.00E-04 3428.	2	3420.	меак	30.0000	82.0000		38.0000	0.00 5	.00E-04
Modification Factors for p-y Curves Distribution of p-y modifiers with depth defined using 3 points Point Depth X p-mult y-mult No. ft 19.600 0.7900 1.0000 2 24.300 0.7900 1.0000 1.0000 3 24.300 1.0000 1.0000 Static Loading Type Static Loading Type Static Loading for Individual Load Cases Distributed Lateral Loading for Individual Load Cases Distributed lateral Loading for Individual Load Cases Point Depth X Dist. Load No. ft Ib/in 1 0.000 34.100 2 24.300 Gi0.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft Ib/in 1 0.000 59.600 2 24.300 865.100 Puls-head Loading and Pils-head Fixity Conditions Number of loads specified = 2 <		3420.	Rock	50.0000	82.6000		38.0000	0.00 5	.00E-04
Modification Factors for p-y Curves Distribution of p-y modifiers with depth defined using 3 points Point p-mult y-mult No. ft 1 19.660 0.7990 2 24.300 0.7990 3 24.300 1.0000 3 24.300 1.0000 5 Static Loading Type Static Loading Type Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Dist. Load No. ft 1b/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft 1b/in									
Distribution of p-y modifiers with depth defined using 3 points Point Depth X p-mult y-mult No. 1 1 19.600 2 24.300 0.7900 1.0000 3 24.300 1.0000 1.0000 3 24.300 1.0000 1.0000 Static Loading Type Static Loading rype Static loading criteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed Lateral Loading for Load Case 1 defined using 2 points Point Depth X Dist. Load No. ft lo/in 1 0.0000 24.300 Distributed Lateral Load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.0000 59.600 2 2.4.300 865.100 Distributed Lateral Loading and Pile-head Fixity Conditions			Modifica [†]	tion Factors	for p-y Curve	es 			
Point Depth X p-mult y-mult 1 19.600 0.7900 1.0000 2 24.300 0.7900 1.0000 3 24.300 1.0000 1.0000 3 24.300 1.0000 1.0000 Static Loading Type	Distri	bution of	p-y modifiers w:	ith depth de	fined using 3	points			
1 19.600 0.7900 1.0000 2 24.300 0.7900 1.0000 3 24.300 1.0000 1.0000 3 24.300 1.0000 1.0000 Static Loading Type	Point No.	Dept f	hX p-muž t	lt y	-mult				
2 24.300 0.7900 1.0000 3 24.300 1.0000 1.0000 Static Loading Type Static Loading criteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed Lateral Loading for Individual Load Cases Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft 1 0.000 2 24.300 2 24.300 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Pile-head Loading and Pile-head Fixity Conditions Pile-head Loading and Pile-head Fixity Conditions Point Condition Condition Axial Thrust Compute Top y Run A Non P	1	1	9.600 0.3	7900	1.0000				
5 24.300 1.0000 Static Loading Type Static Loading riteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. Point Depth X Dist. Load No. THE-head Loading and Pile-head Fixity Conditions Pile-head Loading and Pile-head Fixity Conditions Point Condition Condition Axial Thrust Compute Top y Run A	2	2	4.300 0.1	7900	1.0000				
Static Loading Type Static loading criteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X 1 0.000 2 24.300 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft 1 0.000 2 24.300 59.600 2 2 24.300 865.100	3	2	4.300 1.0	9000	1.0000				
Static Loading Type Static loading criteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft 1 0.000 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions									
Static loading criteria were used when computing p-y curves for all analyses. Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Distributed lateral load intensity for Load Case 2 defined using 2 points 1 0.000 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Dist. 1 0.000 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X 0.01 ft 1 0.000 2 24.300 865.100			-	Static Loadi	ng Type				
Static loading criteria were used when computing p-y curves for all analyses.									
Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions 	Static	loading	criteria w <mark>ere u</mark> se	ed when comp	uting p-y curv	ves for all	analyses.		
Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 									
Distributed Lateral Loading for Individual Load Cases Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run Ar No. Type 1 2 Force, lbs vs. Pile Length									
Distributed lateral load intensity for Load Case 1 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run Ai No. Type 1 2 Force, lbs vs. Pile Length		D	istributed Latera	al Loading f	or Individual	Load Cases			
Point Depth X Dist. Load No. ft lb/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 59.600 2 24.300 865.100 1 0.000 59.600 2 24.300 865.100	Distri	buted lat	eral load intens:	ity for Load	Case 1 define	ed using 2	points		
No. ft lb/in 1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 1 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions	Point		Depth X	Dist. Lo	ad				
1 0.000 34.100 2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft 1b/in 1 0.000 59.600 2 24.300 865.100 Number of loads specified = 2 Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length	No.		ft	lb/in					
2 24.300 610.800 Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft 1b/in	1		0.000	34.100					
Distributed lateral load intensity for Load Case 2 defined using 2 points Point Depth X Dist. Load No. ft lb/in 	2		24.300	610.800					
Point Depth X Dist. Load No. ft lb/in 	Dist.	L		· • · · · · · · · · · · · · · · · · · ·					
Point Depth X Dist. Load No. ft 1b/in 1 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length	DISCUI	Duleu Ial	eral load intens.	ILY FOR LOAD	Case 2 define	ed using 2	points		
No. It ID/In I 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length	Point		Depth X	Dist. Lo	ad				
1 0.000 59.600 2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length	NO.		τι	10/10					
2 24.300 865.100 Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length	1		0.000	59.600					
Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length	2		24.300	865.100					
Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run A No. Type 1 2 Force, lbs vs. Pile Length									
Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length									
Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length									
Number of loads specified = 2 Load Load Condition Condition Axial Thrust Compute Top y Run An No. Type 1 2 Force, lbs vs. Pile Length			Pile-head Loadin	ng and Pile-	head Fixity Co	onditions			
LoadConditionConditionAxial ThrustCompute Top yRun ANo.Type12Force, lbsvs. Pile Length	Number	of loads	<pre>specified = 2</pre>						
	Load No.	Load Type	Condition 1		Condition 2	А	xial Thrust Force, lbs	Compute Top y vs. Pile Length	Run Analysis

1	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	Yes	Yes
2	1	V =	0.0000 lbs	M =	0.0000 in-lbs	0.000000	Yes	Yes

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with

specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Layering Correction Equivalent Depths of Soil & Rock Layers

	Top of Laver	Equivalent Top Depth	Same Layer	Layer is	FØ	F1
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	19.6000	0.00	N.A.	No	0.00	55516.
2	30.0000	10.4000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-1bs
Axial thrust load on pile head	=	0.0 lbs

Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil Spr.	Distrib.
Х	У	Moment	Force	S	Stress	Stiffness	p	Es*H	Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	<pre>lb/inch</pre>
0.00	3.2770	2.33E-05	0.00	-0.01180	1.04E-07	1.17E+11	0.00	0.00	36,4317
0.3930	3.2214	405.1327	188.3066	-0.01180	1.8140	1.17E+11	0.00	0.00	43.4269
0.7860	3.1657	1776.	415.1005	-0.01180	7.9527	1.17E+11	0.00	0.00	52.7538
1.1790	3.1101	4320.	685.8800	-0.01180	19.3449	1.17E+11	0.00	0.00	62.0806

1.5720	3,0545	8245	1001	-0.01180	36,9194	1.17E+11	0.00	0.00	71,4075
1 9650	2 9988	13758	1359	-0 01179	61 6050	1 17E + 11	0 00	0 00	80 7344
2 2590	2.0122	21067	1762	0.01170	04 2205	1 175,11	0.00	0.00	00.0612
2.3380	2.9452	21007.	2200	-0.01179	126 0249	1, 1/L+11 1 175,11	0.00	0.00	00 2991
2.7510	2.8876	30379.	2209.	-0.01179	130.0248	1.1/E+11	0.00	0.00	99.3881
3.1440	2.8320	41901.	2700.	-0.011/9	187.6166	1.1/E+11	0.00	0.00	108./150
3.5370	2.7764	55841.	3234.	-0.01179	250.0349	1.17E+11	0.00	0.00	118.0419
3.9300	2.7208	72407.	3813.	-0.01179	324.2083	1.17E+11	0.00	0.00	127.3688
4.3230	2.6652	91805.	4436.	-0.01178	411.0658	1.17E+11	0.00	0.00	136.6956
4.7160	2.6096	114243.	5102.	-0.01178	511.5361	1.17E+11	0.00	0.00	146.0225
5.1090	2.5541	139929.	5813.	-0.01177	626.5481	1.17E+11	0.00	0.00	155.3494
5.5020	2,4986	169070.	6568.	-0.01177	757.0305	1.17E+11	0.00	0.00	164,6763
5,8950	2,4431	201874	7366	-0.01176	903,9123	1.17F+11	0.00	0.00	174,0031
6 2880	2 3877	238547	8200	-0 01175	1068	1 17E + 11	0.00	0.00	183 3300
6 6910	2.2077	230347.	0205.	0.01173	1000.	1 175,11	0.00	0.00	102 6560
0.0010	2.5525	2/9298.	9095.	-0.01174	1251.	1.1/E+11	0.00	0.00	192.0509
7.0740	2.2769	324334.	10026.	-0.011/3	1452.	1.1/E+11	0.00	0.00	201.9838
7.4670	2.2216	373862.	11000.	-0.01172	1674.	1.17E+11	0.00	0.00	211.3107
7.8600	2.1664	428090.	12019.	-0.01170	1917.	1.17E+11	0.00	0.00	220.6375
8.2530	2.1113	487224.	13081.	-0.01168	2182.	1.17E+11	0.00	0.00	229.9644
8.6460	2.0563	551474.	14188.	-0.01166	2469.	1.17E+11	0.00	0.00	239.2913
9.0390	2.0013	621045.	15338.	-0.01164	2781.	1.17E+11	0.00	0.00	248.6182
9.4320	1.9465	696146.	16533.	-0.01161	3117.	1.17E+11	0.00	0.00	257.9450
9.8250	1,8918	776983.	17771.	-0.01158	3479.	1.17E+11	0.00	0.00	267,2719
10 2180	1 8373	863765	19054	-0 01155	3868	1 17E+11	0 00	9 99	276 5988
10.2100	1 7920	056600	20290	0.01151	1284	1, 175+11	0.00	0.00	270.3900
11.0040	1.7029	10550033.	20300.	-0.01131	4204.	1.175.11	0.00	0.00	205.9257
11.0040	1./28/	1055992.	21/51.	-0.01147	4/28.	1.1/E+11	0.00	0.00	295.2525
11.3970	1.6748	1161851.	23165.	-0.01142	5202.	1.17E+11	0.00	0.00	304.5794
11.7900	1.6210	1274485.	24623.	-0.01137	5707.	1.17E+11	0.00	0.00	313.9063
12.1830	1.5675	1394100.	26126.	-0.01132	6242.	1.17E+11	0.00	0.00	323.2332
12.5760	1.5142	1520904.	27672.	-0.01126	6810.	1.17E+11	0.00	0.00	332.5600
12.9690	1.4613	1655104.	29263.	-0.01120	7411.	1.17E+11	0.00	0.00	341.8869
13.3620	1.4086	1796908.	30897.	-0.01113	8046.	1.17E+11	0.00	0.00	351.2138
13,7550	1,3563	1946523.	32575.	-0.01105	8716.	1.17E+11	0.00	0.00	360,5407
14,1480	1.3044	2104157	34297	-0.01097	9422	1.17E+11	0.00	0.00	369.8676
14 5410	1 2528	2270017	36064	-0 01088	10164	1 17E+11	0.00	0.00	379 1944
14.0240	1 2017	22/001/.	27974	0.01000	10045	1 175,11	0.00	0.00	200 5212
14.9340	1.2017	2444311.	3/8/4.	-0.010/9	10945.	1.1/E+11	0.00	0.00	388.5213
15.3270	1.1511	2627246.	39728.	-0.01068	11/64.	1.1/E+11	0.00	0.00	397.8482
15.7200	1.1010	2819028.	41627.	-0.01057	12623.	1.17E+11	0.00	0.00	407.1751
16.1130	1.0514	3019867.	43569.	-0.01045	13522.	1.17E+11	0.00	0.00	416.5019
16.5060	1.0024	3229969.	45555.	-0.01033	14463.	1.17E+11	0.00	0.00	425.8288
16.8990	0.9540	3449542.	47585.	-0.01019	15446.	1.17E+11	0.00	0.00	435.1557
17.2920	0.9062	3678793.	49659.	-0.01005	16472.	1.17E+11	0.00	0.00	444.4826
17,6850	0.8592	3917930.	51778.	-0.00990	17543.	1.17E+11	0.00	0.00	453,8094
18,0780	0.8129	4167159	53940	-0.00973	18659.	1.17F+11	0.00	0.00	463,1363
18 4710	0 7674	1126689	561/6	-0 00956	10821	1 17E+11	0.00	0.00	172 1632
10.4/10	0.7074	4420085.	50140.	-0.00950	21020	1 175,11	0.00	0.00	472.4032
10.0040	0.7227	4090727.	58590.	-0.00937	21050.	1.175.11	0.00	0.00	401.7901
19.2570	0.6/90	4977480.	60690.	-0.00918	22287.	1.1/E+11	0.00	0.00	491.11/0
19.6500	0.6362	5269156.	62858.	-0.00897	23593.	1.1/E+11	-72.251	535.6155	500.4438
20.0430	0.5944	5570355.	64609.	-0.00875	24942.	1.17E+11	-195.257	1549.	509.7707
20.4360	0.5536	5878550.	65773.	-0.00852	26322.	1.17E+11	-340.224	2898.	519.0976
20.8290	0.5140	6190722.	66251.	-0.00828	27720.	1.17E+11	-504.234	4626.	528.4245
21.2220	0.4756	6503433.	65962.	-0.00802	29120.	1.17E+11	-684.709	6790.	537.7513
21.6150	0.4384	6812875.	64832.	-0.00775	30505.	1.17E+11	-879.326	9460.	547.0782
22.0080	0.4025	7114927.	62775.	-0.00747	31858.	1.17E+11	-1096.	12847.	556.4051
22,4010	0.3679	7404972	59787	-0.00717	33157.	1.17F+11	-1293.	16575.	565,7320
22 7940	0 3348	7678839	55969	-0 00687	34383	1 17E+11	-1467	20662	575 0588
22.1940	0.3031	7032873	51/20	0.00007	35520	1 175+11	-1618	25171	584 3857
23.1870	0.3031	7952875.	16272	-0.000000	35520.	1.176+11	-1018.	20171.	502 7120
23.5800	0.2/30	8163921.	462/3.	-0.00623	30000.	1.1/E+11	-1/4/.	301/7.	593./126
23.9/30	0.2444	8369324.	40606.	-0.00589	3/4/5.	1.1/E+11	-1853.	35/68.	603.0395
24.3660	0.2174	8546917.	32349.	-0.00555	38270.	1.17E+11	-2453.	53224.	202.3087
24.7590	0.1920	8674443.	21069.	-0.00520	38841.	1.17E+11	-2533.	62202.	0.00
25.1520	0.1683	8745640.	9004.	-0.00485	39160.	1.17E+11	-2584.	72399.	0.00
25.5450	0.1463	8759368.	-3235.	-0.00450	39221.	1.17E+11	-2607.	84037.	0.00
25,9380	0.1259	8715126.	-15510.	-0.00414	39023.	1.17E+11	-2599.	97359.	0.00
26.3310	0.1072	8613076.	-27669.	-0.00379	38566.	1,17E+11	-2557.	112498.	0.00
26.7240	0.09013	8454155	-39483	-0.00345	37854	1.17F+11	-2453	128353	0.00
27 1170	0 07/69	8240676	-50757	-0 00311	36800	1 175-11	- 7378	147034	0.00
27 5100	0.07400	7075/15	-61/04	_0 000011	25711	1 175,11	. 2107	160624	0.00
27.0100	0.00000	7575415.	71245	0.002/0	2/205	1 175,11	-210/.	107507	0.00
27.9030	0.04844	/001510.	-/1345.	-0.0024/	54305.	1.1/2+11	-2029.	19/52/.	0.00
28.2960	0.03754	/302492.	-80500.	-0.00216	32698.	1.1/E+11	-1854.	232868.	0.00

28.6890	0.02804	6902239.	-88787.	-0.00188	30906.	1.17E+11	-1661.	279291.	0.00
29.0820	0.01985	6465053.	-96068.	-0.00161	28948.	1.17E+11	-1427.	338991.	0.00
29.4750	0.01290	5996128.	-102145.	-0.00135	26848.	1.17E+11	-1150.	420549.	0.00
29.8680	0.00709	5501618.	-106869.	-0.00112	24634.	1.17E+11	-852.876	567264.	0.00
30.2610	0.00233	4988140.	-109966.	-9.08E-04	22335.	1.17E+11	-460.424	931665.	0.00
30.6540	-0.00148	4464422.	-109925.	-7.17E-04	19990.	1.17E+11	477.6427	1524473.	0.00
31.0470	-0.00443	3951327.	-107108.	-5.47E-04	17693.	1.17E+11	717.2248	762819.	0.00
31.4400	-0.00664	3454183.	-103315.	-3.97E-04	15466.	1.17E+11	891.0977	633197.	0.00
31.8330	-0.00818	2976859.	-98757.	-2.67E-04	13329.	1.17E+11	1042.	600666.	0.00
32.2260	-0.00916	2522707.	-93523.	-1.56E-04	11296.	1.17E+11	1178.	606555.	0.00
32.6190	-0.00965	2094747.	-87680.	-6.25E-05	9379.	1.17E+11	1301.	635547.	0.00
33.0120	-0.00975	1695714.	-81285.	1.42E-05	7593.	1.17E+11	1411.	682971.	0.00
33.4050	-0.00952	1328071.	-74396.	7.53E-05	5947.	1.17E+11	1510.	748243.	0.00
33.7980	-0.00904	994011.	-67072.	1.22E-04	4451.	1.17E+11	1596.	833094.	0.00
34.1910	-0.00836	695449.	-59372.	1.56E-04	3114.	1.17E+11	1669.	941177.	0.00
34.5840	-0.00756	434011.	-51361.	1.79E-04	1943.	1.17E+11	1728.	1078318.	0.00
34.9770	-0.00667	211015.	-43104.	1.92E-04	944.8448	1.17E+11	1773.	1253322.	0.00
35.3700	-0.00575	27458.	-34672.	1.97E-04	122.9448	1.17E+11	1802.	1479570.	0.00
35.7630	-0.00481	-116013.	-26143.	1.95E-04	519.4607	1.17E+11	1815.	1778163.	0.00
36.1560	-0.00390	-219127.	-17603.	1.89E-04	981.1638	1.17E+11	1807.	2184471.	0.00
36.5490	-0.00303	-282041.	-9149.	1.78E-04	1263.	1.17E+11	1778.	2763490.	0.00
36.9420	-0.00222	-305421.	-906.189	1.67E-04	1368.	1.17E+11	1718.	3652157.	0.00
37.3350	-0.00146	-290588.	6954.	1.55E-04	1301.	1.17E+11	1615.	5209215.	0.00
37.7280	-7.61E-04	-239836.	13483.	1.44E-04	1074.	1.17E+11	1154.	7152550.	0.00
38.1210	-1.06E-04	-163412.	16598.	1.36E-04	731.6976	1.17E+11	166.5799	7434265.	0.00
38.5140	5.19E-04	-83285.	14990.	1.31E-04	372.9160	1.17E+11	-848.338	7715980.	0.00
38.9070	0.00113	-22024.	8830.	1.29E-04	98.6161	1.17E+11	-1764.	7383602.	0.00
39.3000	0.00173	0.00	0.00	1.28E-04	0.00	1.17E+11	-1981.	2698125.	0.00

Output Summary for Load Case No. 1:

Pile-head deflection	=	3.27698621	inches
Computed slope at pile head	=	-0.0117958	radians
Maximum bending moment	=	8759368.	inch-lbs
Maximum shear force	=	-109966.	lbs
Depth of maximum bending moment	=	25.54500000	feet below pile head
Depth of maximum shear force	=	30.26100000	feet below pile head
Number of iterations	=	25	
Number of zero deflection points	=	2	
Pile deflection at ground	=	0.64160389	inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear	=	0.	lbs
Moment	=	0.	in-lbs
Axial Load	=	0.	lbs

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
39.30000	3.27698621	8759368.	-109966.
37.33500	3.30227040	8794195.	-108705.
35.37000	3.58934049	8868915.	-121692.

Computed Values of Pile Loading and Deflection

for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head	=	0.0 lbs
Applied moment at pile head	=	0.0 in-lbs
Axial thrust load on pile head	=	0.0 lbs

Depth X	Deflect. V	Bending Moment	Shear Force	Slope S	Total Stress	Bending Stiffness	Soil Res.	Soil Spr. Es*H	Distrib. Lat. Load
feet	inches	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	lb/inch	lb/inch
0.00	6.3664	-3.63E-04	0.00	-0.02160	1.63E-06	1.17E+11	0.00	0.00	62.8568
0.3930	6.2645	698.9881	319.4714	-0.02160	3.1298	1.17E+11	0.00	0.00	72.6272
0.7860	6.1626	3013.	692.6995	-0.02160	13.4922	1.17E+11	0.00	0.00	85.6544
1.1790	6.0608	7233.	1127.	-0.02160	32.3845	1.17E+11	0.00	0.00	98.6817
1.5720	5.9589	13647.	1623.	-0.02160	61.1040	1.17E+11	0.00	0.00	111.7089
1.9650	5.8570	22545.	2181.	-0.02160	100.9480	1.17E+11	0.00	0.00	124.7361
2.3580	5.7552	34218.	2800.	-0.02160	153.2139	1.17E+11	0.00	0.00	137.7633
2.7510	5.6533	48954.	3480.	-0.02160	219.1989	1.17E+11	0.00	0.00	150.7906
3.1440	5.5514	67045.	4222.	-0.02160	300.2004	1.17E+11	0.00	0.00	163.8178
3.5370	5.4496	88779.	5026.	-0.02159	397.5158	1.17E+11	0.00	0.00	176.8450
3.9300	5.3478	114445.	5890.	-0.02159	512.4422	1.17E+11	0.00	0.00	189.8722
4.3230	5.2460	144335.	6816.	-0.02158	646.2771	1.17E+11	0.00	0.00	202.8994
4.7160	5.1442	178738.	7804.	-0.02158	800.3177	1.17E+11	0.00	0.00	215.9267
5.1090	5.0425	217942.	8853.	-0.02157	975.8614	1.17E+11	0.00	0.00	228.9539
5.5020	4.9408	262239.	9963.	-0.02156	1174.	1.17E+11	0.00	0.00	241.9811
5.8950	4.8392	311918.	11135.	-0.02155	1397.	1.17E+11	0.00	0.00	255.0083
6.2880	4.7376	367268.	12369.	-0.02153	1644.	1.17E+11	0.00	0.00	268.0356
6.6810	4.6361	428580.	13663.	-0.02152	1919.	1.17E+11	0.00	0.00	281.0628
7.0740	4.5346	496142.	15020.	-0.02150	2222.	1.17E+11	0.00	0.00	294.0900
7.4670	4.4333	570245.	16437.	-0.02148	2553.	1.17E+11	0.00	0.00	307.1172
7.8600	4.3321	651179.	17916.	-0.02145	2916.	1.17E+11	0.00	0.00	320.1444
8.2530	4.2309	739233.	19457.	-0.02142	3310.	1.17E+11	0.00	0.00	333.1717
8.6460	4.1300	834697.	21059.	-0.02139	3737.	1.17E+11	0.00	0.00	346.1989
9.0390	4.0292	937861.	22722.	-0.02136	4199.	1.17E+11	0.00	0.00	359.2261
9.4320	3.9286	1049014.	24447.	-0.02132	4697.	1.17E+11	0.00	0.00	372.2533
9.8250	3.8281	1168446.	26233.	-0.02127	5232.	1.17E+11	0.00	0.00	385.2806
10.2180	3.7279	1296447.	28081.	-0.02122	5805.	1.17E+11	0.00	0.00	398.3078
10.6110	3.6280	1433307.	29990.	-0.02117	6418.	1.17E+11	0.00	0.00	411.3350
11.0040	3.5283	1579315.	31961.	-0.02111	7072.	1.17E+11	0.00	0.00	424.3622
11.3970	3.4289	1734761.	33993.	-0.02104	7768.	1.17E+11	0.00	0.00	437.3894
11.7900	3.3299	1899935.	36086.	-0.02096	8507.	1.17E+11	0.00	0.00	450.4167
12.1830	3.2312	2075127.	38241.	-0.02088	9292.	1.17E+11	0.00	0.00	463.4439
12.5760	3.1329	2260626.	40457.	-0.02080	10122.	1.17E+11	0.00	0.00	476.4711
12.9690	3.0350	2456721.	42735.	-0.02070	11000.	1.17E+11	0.00	0.00	489.4983
13.3620	2.9376	2663704.	45074.	-0.02060	11927.	1.17E+11	0.00	0.00	502.5256
13.7550	2.8407	2881863.	47475.	-0.02049	12904.	1.17E+11	0.00	0.00	515.5528
14.1480	2.7444	3111489.	49937.	-0.02036	13932.	1.17E+11	0.00	0.00	528.5800
14.5410	2.6487	3352870.	52461.	-0.02023	15013.	1.17E+11	0.00	0.00	541.6072
14.9340	2.5536	3606297.	55046.	-0.02009	16148.	1.17E+11	0.00	0.00	554.6344
15.3270	2.4592	3872060.	57692.	-0.01994	17338.	1.17E+11	0.00	0.00	567.6617
15.7200	2.3655	4150447.	60400.	-0.01978	18584.	1.17E+11	0.00	0.00	580.6889
16.1130	2.2726	4441750.	63169.	-0.01961	19888.	1.17E+11	0.00	0.00	593.7161
16.5060	2.1806	4746257.	66000.	-0.01942	21252.	1.17E+11	0.00	0.00	606.7433
16.8990	2.0894	5064259.	68892.	-0.01922	22676.	1.17E+11	0.00	0.00	619.7706
17.2920	1.9993	5396044.	71845.	-0.01901	24161.	1.17E+11	0.00	0.00	632.7978
17.6850	1.9101	5741904.	74860.	-0.01878	25710.	1.17E+11	0.00	0.00	645.8250
18.0780	1.8221	6102127.	77937.	-0.01854	27323.	1.17E+11	0.00	0.00	658.8522
18.4710	1.7352	6477003.	81075.	-0.01829	29002.	1.17E+11	0.00	0.00	671.8794
18.8640	1.6496	6866823.	84274.	-0.01802	30747.	1.17E+11	0.00	0.00	684.9067
19.2570	1.5653	7271875.	87535.	-0.01773	32561.	1.17E+11	0.00	0.00	697.9339
19.6500	1.4823	7692450.	90831.	-0.01743	34444.	1.17E+11	-11.004	35.0079	710.9611
20.0430	1.4008	8128592.	94098.	-0.01711	36397.	1.17E+11	-38.408	129.3009	723.9883
20.4360	1.3209	8579982.	97294.	-0.01677	38418.	1.17E+11	-67.137	239.6952	737.0156
20.8290	1.2426	9046270.	100415.	-0.01642	40506.	1.17E+11	-96.418	365.9204	750.0428
21.2220	1.1661	9527096.	103385.	-0.01604	42659.	1.17E+11	-157.128	635.4772	763.0700
21.6150	1.0913	1.00E+07	105872.	-0.01565	44872.	1.17E+11	-327.361	1415.	776.0972
22.0080	1.0185	1.05E+07	107576.	-0.01523	47130.	1.17E+11	-515.151	2385.	789.1244

22.4010	0.9477	1.10E+07	108420.	-0.01479	49415.	1.17E+11	-718.362	3575.	802.1517
22.7940	0.8790	1.15E+07	108335.	-0.01434	51709.	1.17E+11	-934.983	5017.	815.1789
23.1870	0.8125	1.21E+07	107263.	-0.01386	53990.	1.17E+11	-1163.	6751.	828.2061
23.5800	0.7482	1.26E+07	105153.	-0.01336	56239.	1.17E+11	-1401.	8830.	841.2333
23.9730	0.6864	1.30E+07	101964.	-0.01284	58431.	1.17E+11	-1647.	11314.	854.2606
24.3660	0.6271	1.35E+07	95103.	-0.01231	60545.	1.17E+11	-2404.	18078.	286.5478
24.7590	0.5703	1.39E+07	83698.	-0.01175	62448.	1.17E+11	-2720.	22487.	0.00
25.1520	0.5163	1.43E+07	70228.	-0.01118	64080.	1.17E+11	-2993.	27340.	0.00
25.5450	0.4649	1.46E+07	55558.	-0.01059	65414.	1.17E+11	-3229.	32751.	0.00
25.9380	0.4163	1.48E+07	39864.	-0.01000	66426.	1.17E+11	-3427.	38817.	0.00
26.3310	0.3706	1.50E+07	23325.	-0.00940	67097.	1.17E+11	-3587.	45651.	0.00
26.7240	0.3277	1.51E+07	6118.	-0.00879	67411.	1.17E+11	-3710.	53392.	0.00
27.1170	0.2877	1.50E+07	-11580.	-0.00818	67356.	1.17E+11	-3795.	62210.	0.00
27.5100	0.2506	1.49E+07	-29588.	-0.00757	66922.	1.17E+11	-3842.	72316.	0.00
27.9030	0.2163	1.48E+07	-47729.	-0.00697	66106.	1.17E+11	-3851.	83971.	0.00
28.2960	0.1848	1.45E+07	-65818.	-0.00638	64907.	1.17E+11	-3821.	97505.	0.00
28.6890	0.1561	1.41E+07	-83669.	-0.00580	63326.	1.17E+11	-3750.	113284.	0.00
29.0820	0.1301	1.37E+07	-100971.	-0.00524	61373.	1.17E+11	-3588.	130069.	0.00
29.4750	0.1067	1.32E+07	-117232.	-0.00469	59062.	1.17E+11	-3308.	146225.	0.00
29.8680	0.08582	1.26E+07	-132029.	-0.00417	56422.	1.17E+11	-2967.	163043.	0.00
30.2610	0.06735	1.19E+07	-141541.	-0.00368	53486.	1.17E+11	-1067.	74731.	0.00
30.6540	0.05115	1.13E+07	-146791.	-0.00321	50444.	1.17E+11	-1159.	106868.	0.00
31.0470	0.03711	1.06E+07	-152401.	-0.00276	47287.	1.17E+11	-1220.	155060.	0.00
31.4400	0.02508	9828420.	-158208.	-0.00235	44008.	1.17E+11	-1243.	233663.	0.00
31.8330	0.01492	9068495.	-163993.	-0.00197	40605.	1.17E+11	-1211.	382711.	0.00
32.2260	0.00650	8281637.	-169398.	-0.00162	37082.	1.17E+11	-1081.	784540.	0.00
32.6190	-3.47E-04	7470737.	-171341.	-0.00130	33451.	1.17E+11	256.6907	3490255.	0.00
33.0120	-0.00577	6665546.	-167817.	-0.00101	29846.	1.17E+11	1238.	1012397.	0.00
33.4050	-0.00991	5887886.	-161301.	-7.60E-04	26364.	1.17E+11	1526.	725679.	0.00
33.7980	-0.01294	5144157.	-153586.	-5.37E-04	23034.	1.17E+11	1746.	636418.	0.00
34.1910	-0.01498	4439261.	-144915.	-3.43E-04	19877.	1.17E+11	1931.	607861.	0.00
34.5840	-0.01618	3777315.	-135432.	-1.77E-04	16913.	1.17E+11	2091.	609433.	0.00
34.9770	-0.01665	3161867.	-125246.	-3.69E-05	14158.	1.17E+11	2229.	631168.	0.00
35.3700	-0.01653	2595992.	-114455.	7.95E-05	11624.	1.17E+11	2347.	669857.	0.00
35.7630	-0.01590	2082326.	-103151.	1.74E-04	9324.	1.17E+11	2447.	725498.	0.00
36.1560	-0.01488	1623076.	-91425.	2.49E-04	7268.	1.17E+11	2526.	800378.	0.00
36.5490	-0.01355	1220007.	-79374.	3.07E-04	5463.	1.17E+11	2585.	899227.	0.00
36.9420	-0.01199	874419.	-67102.	3.49E-04	3915.	1.17E+11	2620.	1030305.	0.00
37.3350	-0.01026	587100.	-54725.	3.79E-04	2629.	1.17E+11	2629.	1208026.	0.00
37.7280	-0.00842	358250.	-42382.	3.98E-04	1604.	1.17E+11	2606.	1459229.	0.00
38.1210	-0.00651	187357.	-30245.	4.09E-04	838.9101	1.17E+11	2541.	1840074.	0.00
38.5140	-0.00457	72975.	-18561.	4.14E-04	326.7536	1.17E+11	2414.	2493060.	0.00
38.9070	-0.00261	12288.	-7737.	4.16E-04	55.0230	1.17E+11	2176.	3935358.	0.00
39.3000	-6.46E-04	0.00	0.00	4.16E-04	0.00	1.17E+11	1105.	4032180.	0.00

Output Summary for Load Case No. 2:

Pile-head deflection	=	6.36638269	inches		
Computed slope at pile head	=	-0.0216017	radians		
Maximum bending moment	=	15055182.	inch-lbs		
Maximum shear force	=	-171341.	lbs		
Depth of maximum bending moment	=	26.72400000	feet below	pile	head
Depth of maximum shear force	=	32.61900000	feet below	pile	head
Number of iterations	=	44			
Number of zero deflection points	=	2			
Pile deflection at ground	=	1.49287444	inches		

Pile-head Deflection vs. Pile Length for Load Case 2

Boundary Condition Type 1, Shear and Moment

Shear = 0.lbs

Moment	=	0.	in-lbs
Axial Load	=	0.	lbs

Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
39.30000	6.36638269	15055182.	-171341.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load	Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max Moment
Case	Туре	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in Pile
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1	V, 1b	0.00	M, in-lb	0.00	0.00	3.2770	-0.01180	-109966.	8759368.
2	V, lb	0.00	M, in-lb	0.00	0.00	6.3664	-0.02160	-171341.	1.51E+07

Maximum pile-head deflection = 6.3663826902 inches Maximum pile-head rotation = -0.0216017315 radians = -1.237688 deg.

Summary of Warning Messages

The following warning was reported 2736 times

**** Warning ****

An unreasonable input value for compressive strength has been specified for a soil defined using the weak rock criteria. The input value is less than 100 psi. Please check your input data for correctness.

The analysis ended normally.

From AASHTO 3.11.5.3, Active Earth Pressure

Where

Angle of back face of the wall to the horizontal (Degrees), Θ =	90
Effective angle of internal friction (degrees), Ø'f=	30 (Assumed)
Friction angle between fill and wall (degrees), δ =	20 (2/3 Ø'f)
Angle of fill to the horizontal , β =	0 Assumed)

Calculation

Sin(Θ-δ)=	0.94	
Sin ² (Θ)=	1.00	
Sin(Θ+Ø' _f)=	0.87	
Sin ² (Θ+Ø' _f)=	0.75	
Sin(Ø' _f -β)=	0.50	
Sin(Θ+β)=	1.00	
Sin(Ø' _f +δ)=	0.77	
Γ=	2.68	
K _a =	0.30	
γ _{Ls} =	125 pcf	(GB7, Section E.7)

Case 1			
Diameter of Shaft=	36	inches	
C/C Spacing (CC)=	5.5	feet	
Therefore for a 36-inch Shaft placed at 5.5 feet center to center			
Surcharge Load q _{LS} ,	34.1	lb/in	$\gamma_{LS}*2*K_a*CC/12$

PIK-772-14.10 SLIDE REPAIR

Conversion of force per Shaft to Distributed Load

The UA Slope 2.3 program calculates the unfactored earth pressure (EH), resultant load per shaft, however, for proper structural analysis of pile reaction, we need to convert this to a realistic load.

The triangular load distribution is a close enough approximation of the actual condition to develop a realistic calculation of distributed shear, moment and displacement in the drilled shaft

Case 1Diameter of Shaft=36 inchesC/C Spacing (CC)=5.5 feetFor a 36-inch shaft at 5.5 feet center to center spacing

Load on Shaft (F _{sw})=	89,051	lbs
Depth of Shear plane at Shaft Location(D_s)=	24.3	feet
The Distibuted Load (F_D) =	576.7	lbs/in

PIK-CR37-05.03 Slide Repair

a) *Following cases were evaluated:*

b) Unfactored Loads

Case	Surchage Loads(lbs/in)	Distributed Load(lbs/in)	Total Unfactored Load (lbs/in)
1	34.1	576.7	610.8

c) Load Factor per AASHTO Table 3.4.1.1 and 3.4.1.2

Load Factor for Surcharge Load (LS) = 1.75Load Factor for Distributed Load (EH) = 1.5

d) Factored Distributed loads

Case	Factored Surcharge Load (lbs/in)	Factored Distributed Loads(lbs/in)	Total Factored Load(lbs/in)
1	59.6	865.1	924.7

e) Limit State Checks

- 1 Use Factored Loads for Strength Limit State and check Moment capacity and Nominal Shear per AASHTO 6.10.8 and 6.10.9
- 2 Use Unfactored Loads for Service Limit State for deflection

f) *L-pile Analysis*

Note:It is assumed that 50 Ksi steel will be used.Section Used=W24x131

Case1: 36 inch diameter Shafts with 5.5 feet center to center spacing

Checks:

Structural Strength Limit State Checks (W24x131 Section)

Calculated Factored Moment(in-lbs)	Factored Nominal Moment Resistance(in-lbs)	Acceptable Or Unacceptable
13,000,000	16,450,000	Acceptable

Calculated Factored Shear (Kips)	Factored Nominal Shear resistance (Kips)	Acceptable Or Unacceptable
334.9	395.8	Acceptable

and for nominal shear resistance calculation Per AASHTO 6.10.9

Service Limit State Checks (W24x131 Section)

Drilled Shaft Length above bedrock= 24.3 feet For the unfactored Service Limit State analysis, the maximum Pilehead deflection must be limited to 1% or less of the drilled shaft length above bedrock (24.3').

Calculated Deflection(in)	Allowable Deflection(in) Per ODOT Recommendations	Acceptable Or Unacceptable
2.2	2.9	Acceptable

PIK-772-14.10 Slide Repair

	Thickness of Flange $(t_f) =$	0.96	in
	Depth (d) =	24.48	in
	Yield Strength of Steel $(F_y) =$	50	Ksi
	$D = d-2t_f =$	22.56	in
	thickness of Web $(t_w) =$	0.605	in
V _n =	$0.58 F_{v}Dt_{w} =$	395.8	Kips
P	Young's Modulus (E) =	29000	Ksi
Assun	ne Unstiffened Web		
	Shear Buckling Coefficient (K) =	5.0	
	$Sqrt(EK/F_y) =$	53.9	Equation 1
	$1.12*Sqrt(EK/F_v) =$	60.3	Equation 2
	1.4*Sqrt(EK/F _y) =	75.4	Equation 3
	$D/t_w =$	37.3	
	Since, $D/t_w \le Equation 1$, C =	1.0	
There	fore.		
Nominal Shear Resistance $(V_n) = CV_n$		395.8	Kips
$\phi_{\rm v} =$		1.0	1
Factored Shear Resistance $(V_u) = \phi_v V_n$		395.8	Kips

<u>W24x131</u>

PIK-772-14.10 Slide Repair

W24x131

Per AASHTO, 6.10.8

For Continously Braced Flanges in Tension or Compression

 $f_{bu} \le \oint_f R_h F_{yf}$ Equation 1

Where $f_{bu} =$ Factored Bending Moment Obtained in Strength Limit State

$\phi_{\rm f} =$	Flexural Resistance Factor		
$R_h =$	Hybrid Factor		
$F_{yf} =$	f _y * S _{x-x}		
$f_y =$	Yield Strength of Steel		
$S_{x-x} =$	Section Modul	us of Steel Section	
$\phi_{\rm f} =$	1.0	Per AASHTO 6.5.4.2	
$R_h =$	1.0	Per AASHTO 6.10.1.10.1	
$S_{x-x} =$	329.0	In ³	
$f_y =$	50.0	ksi	
$F_{yf} =$	16,450,000	lb-in	