FINAL REPORT GEOTECHNICAL EXPLORATION SUBGRADE AND RETAINING WALLS ROS-159-0.41 ROSS COUNTY, OHIO PID#: 113013

Prepared For:

Burgess & Niple, Inc. 5085 Reed Road Columbus, OH 43220

Prepared by:

NATIONAL ENGINEERING AND ARCHITECTURAL SERVICES INC. 2800 Corporate Exchange Drive, Suite 240 Columbus, Ohio 43231

NEAS PROJECT 22-0019

October 4, 2024

EXECUTIVE SUMMARY

The Ohio Department of Transportation has proposed a safety improvement project (ROS-159-0.41, PID 113013) in Ross County, Ohio. The proposed project is along SR-159 (Bridge Street) south of Riverside Street and North Pawnee Road, and the overall project objective is to improve the safety, congestion and pedestrian connectivity within the project limits. The improvements proposed to accomplish this objective consist of 1) widening of SR 159 and associated side streets; 2) construction of a roundabout at the intersection between Consumer Center Drive and Stewart Road; 3) construction of a modular block wall under US-35 Bridge (Wall 1); 4) construction of one retaining wall at Kroger parking lot (Wall 2); and 5) construction of one retaining wall at McDonald's (Wall 3).

National Engineering & Architectural Services, Inc. (NEAS) has been contracted to perform geotechnical engineering services for the project. The purpose of the geotechnical engineering services was to perform geotechnical explorations within the project limits to obtain information concerning the subsurface soil and groundwater conditions relevant to the design and construction of the project. The scope of work performed by NEAS as part of the referenced project included: a review of published geotechnical information; performing 31 test borings for the for the proposed construction; laboratory testing of soil samples in accordance with the SGE; performing geotechnical engineering analysis to assess subgrade stabilization requirements, pavement design parameters; assess wall design and construction considerations; and development of this summary report.

NEAS understands that the overall project objective is to improve the safety, congestion and pedestrian connectivity along SR-159 (Bridge Street) and improve safety along the US-35 EB exit Ramp. For this purpose, a subgrade exploration and subsequent analysis was completed for the referenced project. Also, NEAS understands that the proposed project improvements include construction of Wall 1 between Sta. 720+52.84 and Sta. 722+50.09 in reference to SR-159, Wall 2 between Sta. 740+40.37 and Sta. 741+80.04 in reference to SR-159 and Wall 3 between Sta. 752+24.74 and Sta. 754+25.00 in reference to SR-159. According to the retaining wall site plan, Wall 1 is a modular block wall, while Wall 2 and Wall 3 are Cast-In-Place concrete walls on spread footing. Wall 1 will be approximately 307.7 ft in length with a maximum wall height of 7.5 ft. Wall 2 will be approximately 142 ft in length with a maximum height of 10.8 ft including footing and a maximum exposed height of 4.9 ft. Wall 3 will be approximately 200 ft in length with a maximum wall height of 10.8 ft including footing.

Based on our subgrade analysis, unstable subgrade conditions, including areas of weak soils and high moisture content soils, were encountered less than 30 percent of the project area. Therefore, NEAS recommends local stabilization in the form of Item 204 Excavate and Replace to a depth of 12 inches along Merietta Connector Road between Station 15+10 and Station 17+58. NEAS believes that the subgrade soils will provide adequate pavement support assuming it is designed and constructed in accordance with the recommendations provided within this report, as well as all applicable ODOT standards and specifications.

For all three retaining walls, geotechnical analyses consisting of external stability (i.e., overall stability, bearing capacity, and sliding) and global stability evaluation were performed. Based on external stability analysis for Wall 1, the CDR ratios of overturning, undrained/drained bearing capacity and sliding check are all greater than 1.0. Based on the site plan provided by Palmer Engineering via email on November 17, 2023, 1 Horizontal: 1 Vertical (1H:1V) excavation cut was proposed for the construction of Wall 1. **Our global stability analysis under construction conditions revealed a minimum factor of safety for the short-term condition is 0.70, indicating potential instability in the excavation cut.** The Means and Methods of constructing the modular block wall can be left up to the discretion of the Contractor as long the depth of the excavation does not exceed 8 feet otherwise temporary shoring details shall be included with the plans.

Based on our external stability analyses for Wall 2 and Wall 3, the CDR ratios of overturning, undrained/drained bearing capacity and sliding check are all greater than 1.0. The minimum slope

stability safety factors for both short-term and long-term conditions at the Wall 2 and Wall 3 sites exceeded the desired value of 1.5 which approximately equates to an AASHTO resistance factor of less than 0.65.

TABLE OF CONTENTS

1.	INT	TRODUCTION	6
	1.1.	GENERAL	
	1.2.	PROPOSED CONSTRUCTION	6
2.	GE	OLOGY AND OBSERVATIONS OF THE PROJECT	
	2.1.	GEOLOGY AND PHYSIOGRAPHY	
	2.2.	HYDROLOGY/HYDROGEOLOGY	8
	2.3.	MINING AND OIL/GAS PRODUCTION	
	2.4.	HISTORICAL RECORDS AND PREVIOUS PHASES OF PROJECT EXPLORATION	8
	2.5.	FIELD RECONNAISSANCE	
	2.5.	3	
	2.5.2	0	
	2.5.		
	2.5.4		
	2.5.3		
	2.5.0		
3.		OTECHNICAL EXPLORATION	
	3.1.	FIELD EXPLORATION PROGRAM	
	3.2.	LABORATORY TESTING PROGRAM	
	3.2.		
	3.2.2		
	3.2.		
		OTECHNICAL FINDINGS	
	4.1.	EXISTING PAVEMENT	
•	4.2.	SUBGRADE CONDITIONS	
	4.2. 4.2.		
	4.2. 4.2.		
	4.2.4		
	4.2 4.2.(1	
	4.2.0		
	4.2.		
	4.2.0	1	
	4.2.		
	4.3.		
-	4.3.		
	4.3.2		
	4.3.		
5.		ALYSIS AND RECOMMENDATIONS	
	5.1.	GENERALIZED SOIL PROFILE FOR ANALYSIS	
	5.2.	SUBGRADE ANALYSIS	
	5.2.		
	5.2.2		
	5.	.2.2.1. Rock	
	5.	.2.2.2. Prohibited Soils	
	5.2.		
	5.	.2.3.1. High Moisture Content Soils	
	5.2.4		
	5.3.	WALL 1	25
		- 3 - NEAS Project	22-001

5.3.1.	Modular Block Wall Design Assumptions	25
5.3.2.	External Stability	
5.3.3.	Global Stability	
5.3.1.	Global Stability for Construction Condition	
5.4. WA	LL 2	
5.4.1.	Cast-In-Place Wall Design Assumptions	
5.4.2.	External Stability	
5.4.3.	Global Stability	
	LL 3	
5.5.1.	External Stability	
5.5.2.	Global Stability	
5.6. EM	BANKMENT STABILITY ANALYSIS	
5.6.1.	Global Stability	31
5.6.1.	Embankment Construction Recommendations	31
5.7. SEI	SMIC SITE CLASS	
6. QUALI	FICATIONS	

LIST OF TABLES

TABLE 1: PROJECT BORING INFORMATION	
TABLE 2: SULFATE TEST SUMMARY BY BORING	
TABLE 3: MEASURED PAVEMENT THICKNESS AT BORING LOCATIONS	
TABLE 4: SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES FOR B-006-0-22	
TABLE 5: SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES FOR B-012-0-22	
TABLE 6: SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES FOR B-014-0-22	
TABLE 7: SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES FOR B-018-0-22	
TABLE 8: SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES FOR B-019-0-22	22
TABLE 9: PAVEMENT DESIGN PARAMETERS.	
TABLE 10: UNSTABLE (WEAK) SOILS LOCATION SUMMARY	
TABLE 11: HIGH MOISTURE SOILS SUMMARY	
TABLE 12: STABILIZATION RECOMMENDATION SUMMARY	25
TABLE 13: DESIGN SOIL PARAMETERS FOR FILL MATERIALS FOR MODULAR BLOCK WALL	25
TABLE 14: EXTERNAL STABILITY SUMMARY FOR WALL 1	
TABLE 15: GLOBAL STABILITY ANALYSIS SUMMARY FOR WALL 1	27
TABLE 16: DESIGN SOIL PARAMETERS FOR FILL MATERIALS FOR CAST-IN-PLACE WALL	
TABLE 17: EXTERNAL STABILITY SUMMARY FOR WALL 2	
TABLE 18: GLOBAL STABILITY ANALYSIS SUMMARY AT WALL 2	
TABLE 19: EXTERNAL STABILITY SUMMARY FOR WALL 3	
TABLE 20: GLOBAL STABILITY ANALYSIS SUMMARY AT WALL 3	31
TABLE 21: GLOBAL STABILITY ANALYSIS SUMMARY FOR THE EMBANKMENT AT LOWE'S	31

LIST OF APPENDICES

APPENDIX A: SITE PLAN
APPENDIX B: SOIL BORING LOGS AND DCP TEST RESULTS
APPENDIX C: SUBGRADE ANALYSES
APPENDIX C: WALL 1 ANALYSES
APPENDIX D: WALL 2 ANALYSES
APPENDIX E: WALL 3 ANALYSES
APPENDIX F: EMBANKMENT SLOPE STABILITY ANALYSIS

1. INTRODUCTION

1.1. General

National Engineering & Architectural Services, Inc. (NEAS) presents our Geotechnical Exploration Report for the Ohio Department of Transportation (ODOT) for the ROS-159-0.41 project along State Route 159 (SR159) (Bridge Street) between south of Riverside Street and North of Pawnee Road in Ross County, Ohio. The overall project objective is to improve safety, congestion, pedestrian connectivity along SR 159 (Bridge Street) and improve safety along the US 35 EB exist ramp. Three walls were proposed, including Wall 1 under the US-35 bridge between Sta. 720+50 and Sta. 722+50 in reference to SR-159, Wall 2 at Kroger between Sta. 740+60 and Sta. 741+80 in reference to SR-159 and Wall 3 at McDonald's between Sta. 752+30 and Sta. 754+20 in reference to SR-159.

This report presents a summary of the encountered surficial and subsurface conditions and our recommendations for the retaining wall design and construction in accordance with Load and Resistance Factor Design (LRFD) method as set forth in AASHTO's Publication LRFD Bridge Design Specifications, 9th Edition (AASHTO LRFD, 2020), ODOT's 2023 Bridge Design Manual (BDM) (ODOT BDM, 2023), and ODOT's 2023 Geotechnical Design Manual (GDM) (ODOT, 2023). This report also presents our recommendations for subgrade stabilization and pavement design parameters for the planned improvements. The pavement subgrade analysis and recommendations presented are in accordance with ODOT's GDM (ODOT, 2023) and *Pavement Design Manual* (PDM) (ODOT, 2022).

The exploration was conducted in general accordance with NEAS's proposal to Burgess & Niple, Inc.(B&N), dated May 26, 2022, and with the provisions of ODOT's *Specifications for Geotechnical Explorations* (SGE) (ODOT, 2023).

The scope of work performed by NEAS as part of the referenced project included: a review of published geotechnical information; performing 31 test borings; laboratory testing of soil samples in accordance with the SGE; performing geotechnical engineering analysis to assess the retaining wall design and construction considerations; assess subgrade stabilization requirements, pavement design parameters and development of this summary report.

1.2. Proposed Construction

NEAS understands that the proposed project improvements include the construction of Wall 1 between Sta. 720+52.84 and Sta. 722+50.09 in reference to SR-159, Wall 2 between Sta. 740+40.37 and Sta. 741+80.04 in reference to SR-159 and Wall 3 between Sta. 752+24.74 and Sta. 754+25 in reference to SR-159. According to the retaining wall site plan, Wall 1 is a modular block wall, while Wall 2 and Wall 3 are Cast-In-Place concrete walls on spread footing. Wall 1 will be approximately 307.7 ft in length with a maximum wall height of 7.5 ft. Wall 2 will be approximately 142 ft in length with a maximum height of 10.8 ft including footing.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiography

The project site is located within the Illinoian Glaciated Allegheny Plateau, part of the Glaciated Allegheny Plateaus (ODGS, 1998). This is a moderate relief, dissected, rugged hilly area comprised of loess and older drift on ridgetops, but absent on bedrock slopes. Dissection is similar to unglaciated regions of the Allegheny Plateau. Soils in this region are characteristically colluvium and Illinoian-age till over Devonian- to Pennsylvanian-age shales, siltstones, and sandstones.

Based on the Quaternary geology map of Ohio, the geology at the project site is mapped as Late Wisconsinan-age Intermediate-level outwash terraces, comprised of sand and gravel. The sand and gravel are underlain by Devonian-age shale bedrock (Pavey, et al 1999).

Based on the Bedrock Geologic Units Map of Ohio (USGS & ODGS, 2006), bedrock within the project area consists of shale, of the Ohio Shale formation. The Ohio Shale formation is comprised of Devonianage shale. The shale in this formation is described as brownish black to greenish gray and weathers brown in color, carbonaceous to clayey, laminated to thin bedded, has fissile partings, has carbonate concretions and a petroliferous odor. The bedrock appears to not follow the natural topography of the site which slopes upward from west to east. The bedrock is relatively level throughout the project (ODGS, 2003). Based on the ODNR bedrock topography map of Ohio, bedrock elevations at the project site can be expected to be around 500 ft amsl, putting bedrock at depths of between 115 and 125 ft below ground surface (bgs).

The soils at the project site have been mapped (Web Soil Survey) by the Natural Resources Conservation Service (USDA, 2015) as primarily a mix of Mentor silt loam and Ockley loam with local concentrations of Rossburg silt loam at the southern end of the project area, and Eldean loam followed by Fitchville silt loam at the northern end of the project area. Soils in the Mentor series are characterized as very deep, well drained soils formed in stratified Wisconsinan-age glaciolacustrine or stream sediments on terraces in valleys on lake plains and outwash plains. The Mentor series is comprised of both coarse- and finegrained soils and classifies as A-1, A-2, A-4, A-6, and A-7 type soils according to the AASHTO method of soil classification. Soils in the Ockley series are characterized as very deep, well drained soils that are deep or very deep to calcareous, stratified sandy and gravelly outwash. These soils formed in loess or silty material and in the underlying loamy outwash on stream terraces and outwash plains, and less commonly on kame moraines and eskers. The Ockley series is comprised of both coarse- and fine-grained soils and classifies as A-1, A-2, A-4, A-6, and A-7 type soils according to the AASHTO method of soil classification. Soils in the Rossburg series are characterized as very deep, well drained soils formed in loamy alluvium on flood plains. The Rossburg series is comprised of both coarse- and fine-grained soils and classifies as A-2, A-4, and A-6 type soils according to the AASHTO method of soil classification. Soils in the Eldean series are characterized as very deep, well drained soils that are moderately deep to calcareous sandy and gravelly material. These soils are formed in outwash materials dominantly of limestone origin on outwash terraces, kames, and moraines. The Eldean series is comprised of both coarse- and fine-grained soils and classifies as A-1, A-2, A-4, A-6, and A-7 type soils according to the AASHTO method of soil classification. Soils in the Fitchville series are characterized as very deep, somewhat poorly drained soils formed in stratified Wisconsinan-age glaciolacustrine sediments on terraces in valleys on till plains and lake plains. The Fitchville series is comprised of primarily finegrained soils and classifies as A-4, A-6, and A-7 type soils according to the AASHTO method of soil classification.

2.2. Hydrology/Hydrogeology

Groundwater at the project site can be expected at an elevation consistent with that of the nearby Scioto River as it is the most dominant hydraulic influence in the vicinity of the project's boundaries. The water level of the Scioto River may be generally representative of the local groundwater table. However, it should be noted that perched groundwater systems may be existent in areas due to the presence of fine-grained soils making it difficult for groundwater to permeate to the phreatic surface.

The southern end of the project up to N Plaza Blvd. is located within a special flood hazard area (Zone A), while the portion of the project north of N Plaza Blvd and west of North Bridge Street. is located within a 0.2% annual chance flood hazard area based on available mapping by the Federal Emergency Management Agency's (FEMA) National Flood Hazard mapping program (FEMA, 2016). The rest of the project site is not located within a flood hazard zone.

2.3. Mining and Oil/Gas Production

One inactive surface mine (ID# IM-0986) is noted on ODNR's Mines of Ohio Locator about 0.43 miles east and 0.3 miles north of the intersection between US-35 and North Bridge Street. One active surface mine (ID# IM-2360) is noted on ODNR's Mines of Ohio Locator about 0.25 miles east 0.85 miles north of the aforementioned intersection. (ODNR [1], 2022).

2.4. Historical Records and Previous Phases of Project Exploration

The following report/plans were available for review and evaluation for this report:

- Project Boring Logs, and Structural Foundation Investigation Sheets for ROS-159-0043, dated March 26, 1999.
- Project Boring Logs, and Soil Profile Sheets for ROS-35-19.93, dated July 10, 1962.

No historical borings were utilized in our analyses.

2.5. Field Reconnaissance

A field reconnaissance visit for the overall project area was conducted on July 20, 2022, along North Bridge Street between Stewart Road and 0.1 miles north of Pawnee Road. Site conditions were noted and photographed during the visit. The land use of most of the project area consists of ODOT right-of-way (ROW) and commercial properties (i.e., businesses, restaurants, warehouses, etc.).

2.5.1. North Bridge Street Near US-35

In general, the pavement condition along the project section of North Bridge Street in the area around the US-35 interchange was observed to be fair to poor with signs of weathering and surface wear. Moderate severity longitudinal and transverse cracking was common along this section, as well as occasional moderate severity wheel track cracking, rutting, patching, and crack sealing deficiencies (Photograph 1). The roadway in this section is level with the surrounding land in this area and slopes downward from both the north and south to the lowest point being where US-35 crosses over N Bridge St. The roadway drained to drainage ditches in both shoulders of the roadway as well as basins in the median. The area is moderately vegetated, and signs of standing water such as heavy vegetation in the drainage ditches was observed.

Photograph 1: Overall Pavement Condition of North Bridge Street near US-35

2.5.2. North Bridge Street between North Plaza Blvd. and Pawnee Road

In general, the pavement condition along this section of North Bridge Street was observed to be good with some signs of weathering and surface wear. Light severity longitudinal and transverse cracking was common along this section, as well as crack sealing deficiencies (Photograph 2). The roadway in this section is level with the surrounding land in this area which itself is relatively flat. The roadway drains to drainage basins on both shoulders of the roadway. The area is lightly vegetated for the most part, and signs of standing water were not observed.

Photograph 2: Overall Pavement condition of N Bridge St Between N Plaza Blvd and Pawnee Rd

2.5.3. North Bridge Street between Pawnee Street and Project End

In general, the pavement condition of this portion of North Bridge Street was observed to be fair with signs of weathering and surface wear. Light severity longitudinal and transverse cracking was common along this section as well as rutting, and wheel track cracking (Photograph 3). The roadway in this section is level with the surrounding land in this area which itself is relatively flat. The roadway drains to a

drainage ditch past the eastern shoulder of the roadway and drainage basins on the western shoulder of the roadway. The area is lightly vegetated for the most part, and signs of standing water were not observed.

Photograph 3: Overall Pavement condition of N Bridge St Betwee

2.5.4. Ramp US-35 EB to North Bridge Street

In general, the pavement condition of the ramp from US-35 EB to North Bridge Street was observed to be good with some signs of weathering and surface wear. Light severity longitudinal and transverse cracking was common along this section as well as crack sealing deficiencies (Photograph 4). The roadway in this section is above the surrounding land on an embankment with slopes of about 3V:1H (3 ft vertical to 1 ft horizontal) leading down to the surrounding land. The roadway itself slopes gently downwards from west to east. The roadway drains to drainage ditches past both shoulders of the roadway. The area is moderately vegetated, and signs of standing water such as cattails and heavy vegetation were observed in the southern drainage ditch. No signs of distress due to geotechnical issues were observed.

Photograph 4: Overall Pavement condition of Ramp US-35 EB

2.5.5. Parking lot East of Marriot Fairfield Inn.

In general, the pavement condition of this portion of the project. was observed to be fair with signs of weathering and surface wear. Moderate longitudinal and transverse cracking was common along this section as well as map cracking and crack sealing deficiencies (Photograph 5). The roadway in this section sits is level with the surrounding land which itself is relatively flat. The roadway drains to drainage basins in the eastern shoulder of the parking lot. The area is lightly vegetated for the most part, and signs of standing water were not observed.

Photograph 5: Overall Pavement condition of Parking Lot

2.5.6. Stewart Street

In general, the pavement condition of this portion of the project was observed to be poor with signs of weathering and surface wear. Moderate longitudinal and transverse cracking was common along this section as well as high severity patching, delamination, raveling, and crack sealing deficiencies (Photograph 6). The roadway in this section is level with the surrounding land which rises gently from south to north. The roadway drains to drainage ditches past both sides of the roadway with drainage basins interspersed at intervals in the ditches, as well as drainage basins where the curbs are raised. The area is lightly vegetated for the most part, and signs of standing water were not observed.

Photograph 6: Overall Pavement condition of Stewart Street

3. GEOTECHNICAL EXPLORATION

3.1. Field Exploration Program

ODOT performed subsurface exploration on October 10, 2021, which include 7 borings (B-001-1-21, B-004-1-21, B-005-1-21, B-007-1-21, B-010-1-21, B-025-1-21 and B-026-1-21) drilled to depths between 1.5 and 3.5 ft bgs. Each ODOT boring was incorporated with Dynamic Cone Penetration (DCP) which are included in Appendix B. In addition, another subsurface exploration was conducted by NEAS between July 26, 2022, and August 22, 2022, and included 31 boring drilled to depths between 7.5 and 41.5 ft bgs. The boring locations were selected by NEAS in general accordance with the guidelines contained in the SGE with the intent to evaluate subgrade soil and groundwater conditions without being restricted by underground utilities or dictated terrain (i.e., steep embankment slopes). Boring locations were located by NEAS prior drilling or ODOT. Each individual project boring log (included within Appendix B) includes the recorded boring latitude and longitude and the corresponding ground surface elevation, as shown on Table 1 below. The boring locations are depicted on the Boring Location Map provided in Appendix A. The boring logs and the DCP test data sheets are provided in Appendix B.

Boring Number	Latitude	Longitude	Elevation (ft)	Depth (ft)	Boring Number	Latitude	Longitude	Elevation (ft)	Depth (ft)
B-001-0-22	39.345260	-82.976167	626.5	11.5	B-016-0-22	39.355746	-82.976310	624.3	11.5
B-001-1-21	39.346136	82.976401	624.1	3.0	B-017-0-22	39.356518	-82.976278	624.0	7.5
B-002-0-22	39.346234	-82.976354	622.5	26.5	B-018-0-22	39.357097	-82.976259	625.3	21.5
B-003-0-22	39.346753	-82.976718	621.8	7.5	B-019-0-22	39.357478	-82.976237	626.5	21.5
B-004-0-22	39.347655	-82.976470	621.3	26.5	B-020-0-22	39.345595	-82.977370	620.9	7.5
B-004-1-21	39.347298	82.976754	623.6	1.5	B-021-0-22	39.345797	-82.975503	620.1	7.5
B-005-0-22	39.348349	-82.976562	619.8	21.5	B-022-0-22	39.345571	-82.974922	617.6	11.5
B-005-1-21	39.348241	82.976615	621.4	3.5	B-023-0-22	39.344821	-82.975057	614.3	7.5
B-006-0-22	39.348564	-82.976366	638.9	41.5	B-024-0-22	39.345945	-82.974075	620.3	7.5
B-007-0-22	39.349001	-82.976696	621.2	7.5	B-025-0-22	39.347938	-82.978248	631.4	25.0
B-007-1-21	39.349168	82.976822	622.4	1.5	B-025-1-21	39.348040	82.978239	634.3	3.0
B-008-0-22	39.349349	-82.976406	617.7	11.5	B-026-0-22	39.347800	-82.976835	623.5	15.0
B-009-0-22	39.349635	-82.976829	621.4	16.5	B-026-1-21	39.347842	82.977079	626.3	2.8
B-010-0-22	39.350320	-82.976506	622.5	11.5	B-027-0-22	39.351374	-82.978031	624.1	7.5
B-011-0-22	39.351186	-82.976446	625.8	7.5	B-028-0-22	39.351932	-82.977605	624.9	7.5
B-012-0-22	39.352752	-82.976421	626.9	16.5	B-029-0-22	39.351854	-82.976898	626.0	7.5
B-013-0-22	39.353280	-82.976398	626.5	16.5	B-030-0-22	39.351722	-82.975857	625.3	7.5
B-014-0-22	39.353908	-82.976376	625.5	16.5	B-031-0-22	39.356192	-82.976760	622.9	7.5
B-015-0-22	39.354875	-82.976342	624.4	7.5					
Notes: 1. Boring loc	ations and correspo	nding ground surface	elevation were sur	veyed in the field.				_	

Table 1: Project Boring Information

Borings drilled by NEAS were drilled using a CME 45B truck-mounted drilling rig utilizing 3.25-inch (inner diameter) hollow stem augers. Soil samples for subgrade borings were recovered continuously thereafter at 2.5 ft interval drilled to end of boring (EOB). Each boring was sampled using an 18-inch split spoon sampler (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils."). The soil samples obtained from the exploration program were visually observed in the field by NEAS field representative and preserved for review by a geologist for possible laboratory testing. Standard penetration tests (SPT) were conducted using a CME auto hammer that has been calibrated to be 72.6 % efficient as indicated on the boring logs (Appendix B).

Field boring logs were prepared by drilling personnel and included pavement description, lithological description, SPT results recorded as blows per 6-inch increment of penetration and estimated unconfined shear strength values on specimens exhibiting cohesion (using a hand-penetrometer). After completing the borings, the boreholes were backfilled with either auger cuttings, bentonite chips, or a combination of these materials and patched accordingly with cold patch asphalt and/or cement when drilling through the roadway.

3.2. Laboratory Testing Program

The laboratory testing program consisted of classification testing and moisture content determinations. Data from the laboratory-testing program were incorporated onto the boring logs (Appendix B). Soil samples are retained at the laboratory after Stage 2 submission.

3.2.1. Classification Testing

Representative soil samples were selected for index properties (Atterberg limits) and gradation testing for classification purposes. At each boring location, the upper two samples obtained below the proposed top of subgrade elevation were generally tested while additional samples in each boring were selected for testing with the intent of properly classifying the subsurface soil and groundwater conditions within the planned project limits. Soils not selected for testing were compared to laboratory tested samples and

classified visually. Moisture content testing was conducted on all samples. The laboratory testing was performed in general accordance with applicable AASHTO specifications and ODOT Supplements.

Final classification of soil strata in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" was made once laboratory test results became available. The results of the soil classification are presented on the boring logs in Appendix B.

3.2.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils were performed at varying intervals (i.e., continuously or at 2.5-ft) in the retaining wall borings performed. To account for the high efficiency (automatic) hammers used during SPT sampling, field SPT N-values were converted based on the calibrated efficiency (energy ratio) of the specific drill rig's hammer. Field N-values were converted to an equivalent rod energy of 60% (N₆₀) for use in analysis or for correlation purposes. The resulting N₆₀ values are presented on the boring logs provided in Appendix B.

3.2.3. Sulfate testing

Sulfate testing was generally performed on one sample from each subgrade/roadway boring performed for pavement/subgrade design purposes. The selected samples were tested in accordance with ODOT Supplement 1122, "Determining Sulfate Content in Soils" dated July 17, 2015. In general, the upper most sample (within 3 ft of the proposed subgrade elevation) from each boring was tested when feasible. Testing results are summarized in Table 2 below, and presented on the boring logs within Appendix B.

Boring ID	Sample	Depth (ft)	Dilution Ratio	Average Sulfate Content (ppm)	Boring ID	Sample	Depth (ft)	Dilution Ratio	Average Sulfate Content (ppm)
B-001-0-22	SS-1	2.5-4.0	20	0	B-017-0-22	SS-1	1.5-3.0	20	0
B-003-0-22	SS-1	1.5-3.0	20	100	B-020-0-22	SS-2	1.5-3.0	20	0
B-007-0-22	SS-1	1.5-3.0	20	60	B-021-0-22	SS-1	1.5-3.0	20	160
B-008-0-22	SS-1	2.5-4.0	20	0	B-022-0-22	SS-1	2.5-4.0	20	20
B-009-0-22	SS-1A	2.5-3.0	20	180	B-023-0-22	SS-1	1.5-3.0	20	0
B-010-0-22	SS-1	2.5-4.0	20	60	B-024-0-22	SS-1	1.5-3.0	20	0
B-011-0-22	SS-1	1.5-3.0	20	0	B-025-0-22	SS-1	1.5-3.0	20	180
B-012-0-22	SS-1	2.5-4.0	20	60	B-026-0-22	SS-1	1.5-3.0	20	20
B-013-0-22	SS-1	2.5-4.0	20	100	B-027-0-22	SS-1	1.5-3.0	20	673
B-014-0-22	SS-1	2.5-4.0	20	20	B-028-0-22	SS-1	0.0-1.5	20	0
B-015-0-22	SS-2	3.0-4.5	20	0	B-029-0-22	SS-1	1.5-3.0	20	40
B-016-0-22	SS-1	2.5-4.0	20	60	B-030-0-22	SS-2	3.0-4.5	20	40
					B-031-0-22	SS-1	1.5-3.0	20	60

Table 2: Sulfate Test Summary by Boring

4. GEOTECHNICAL FINDINGS

The subsurface conditions encountered during NEAS's explorations are described in the following subsections and on each boring log presented in Appendix B. The boring logs represent NEAS's interpretation of the subsurface conditions encountered at each boring location based on our site observations, field logs, visual review of the soil samples by NEAS's geologist, and laboratory test results. The lines designating the interfaces between various soil strata on the boring logs represent the approximate interface location; the actual transition between strata may be gradual and indistinct. The subsurface soil and groundwater characterizations included herein, including summary test data, are based

on the subsurface findings from the geotechnical explorations performed by NEAS as part of the referenced project, and consideration of the geological history of the site. It should be noted that for the purposes of this report and our analysis the term 'subgrade' has been assumed to represent soils and/or soil conditions from 1.5 ft below proposed final pavement grades to a depth of 7.5 ft below the proposed pavement grades.

4.1. Existing Pavement

The pavement section thicknesses in terms of asphalt, concrete and granular base were measured at representative project subgrade borings during the subsurface exploration for the project and are recorded on the test boring logs provided in Appendix B. A summary of these measurements is provided in Table 3 below.

Boring ID	Proposed Alignment	Drilled Depth (ft)	Asphalt Thickness (in)	Concrete Thickness (in)		Total Thickness (in)	Boring ID	Proposed Alignment	Drilled Depth (ft)	Asphalt Thickness (in)	Concrete Thickness (in)	Base Thickness (in)	Total Thickness (in)
B-001-0-22	SR 159	11.5	9.5	0.0	8.5	18.0	B-016-0-22	SR 159	11.5	9.5	0.0	9.5	19.0
B-002-0-22	SR 159	26.5	12.0	0.0	6.0	18.0	B-017-0-22	SR 159	7.5	9.5	0.0	8.5	18.0
B-003-0-22	SR 159	7.5	12.0	0.0	8.0	20.0	B-018-0-22	SR 159	21.5	9.5	0.0	3.5	13.0
B-004-0-22	SR 159	26.5	3.5	9.5	6.0	19.0	B-019-0-22	SR 159	21.5	9.5	0.0	3.5	13.0
B-005-0-22	SR 159	21.5	5.0	8.0	6.0	19.0	B-021-0-22	Stewart Rd.	7.5	4.0	14.0	5.0	23.0
B-007-0-22	Ramp A1	7.5	6.0	7.0	5.0	18.0	B-023-0-22	Consumer Center Dr.	7.5	5.0	0.0	10.0	15.0
B-008-0-22	Ramp A1	11.5	9.5	0.0	8.5	18.0	B-024-0-22	River Trace	7.5	7.0	0.0	10.0	17.0
B-009-0-22	SR 159	16.5	12.0	0.0	6.0	18.0	B-025-0-22	US 35-Ramp C	25	5.0	7.0	6.0	18.0
B-010-0-22	SR 159	11.5	12.0	0.0	6.0	18.0	B-026-0-22	US 35-Ramp C	15.0	6.0	7.0	5.0	18.0
B-011-0-22	SR 159	7.5	6.0	0.0	11.0	17.0	B-027-0-22	Marietta Connector	7.5	6.0	0.0	9.0	15.0
B-012-0-22	SR 159	16.5	9.5	0.0	2.5	12.0	B-029-0-22	Marietta Connector	7.5	5.0	0.0	11.0	16.0
B-013-0-22	SR 159	16.5	9.5	0.0	2.5	12.0	B-030-0-22	Marietta Rd	7.5	9.5	0.0	8.5	18.0
B-014-0-22	SR 159	16.5	12.0	0.0	7.0	19.0	B-031-0-21	Pawnee Rd	7.5	9.5	0.0	8.5	18.0
B-015-0-22	SR 159	7.5	12.0	0.0	6.0	18.0							

Table 3: Measured Pavement Thickness at Boring Locations

4.2. Subgrade Conditions

The subgrade conditions in the project area are relatively consistent and are generally comprised of either fill soils (i.e., embankment/roadway fill) or natural soils. The fill and/or natural soils encountered within the project limits are generally classified as non-cohesive A-1-b, A-1-a, A-2-4, A-2-6, A-3a, and A-4a or cohesive A-4a, A-6a, A-6b, and A-7-6 soil. A brief summary of the subgrade conditions encountered along the project site is below.

4.2.1. SR-159

The borings performed along SR-159 included ODOT borings B-001-1-21, B-004-1-21, B-005-1-21 and B-007-1-21 as well as project borings B-001-0-22 through B-019-0-22 except B-006-0-22 through B-008-0-22.

Along SR 159, forty-nine percent (49%) of the soil samples were identified as fine-grained soils and were comprised of 1) Cohesive Sandy Silt (A-4a, 5% of samples), 2) Silt and Clay (A-6a, 31% of samples) and 3) Silty Clay (A-6b, 13% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to hard correlating to converted SPT-N values (N_{60}) between 4 and 47 blows per foot (bpf). Natural moisture contents ranged from 10 to 27 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project

portions of SR-159, the liquid and plastic limits ranged from 21 to 36 percent and from 14 to 19 percent, respectively.

Fifty-one percent (51%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel (A-1-a, 6% of samples); 2) Gravel with Sand (A-1-b, 24% of samples); 3) Gravel and Stone Fragments with Sand and Silt (A-2-4, 3% of samples); 4) Gravel and Stone Fragments with Sand and Silt (A-2-6, 6% of samples); 5) Coarse and fine sand (A-3a, 6% of samples); and, 6) non-cohesive Sandy Silt (A-4a, 6% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to very dense correlating to N_{60} values between 5 and 56 bpf. Natural moisture contents ranged from 4 to 24 percent.

4.2.2. Connector Road

The borings performed along Connector Road included B-027-0-22 through B-029-0-22.

Along Connector Road, twenty-seven percent (27%) of the soil samples were identified as fine-grained soils and were comprised of Silty Clay (A-6b, 27% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from very stiff to hard correlating to converted SPT-N values (N_{60}) between 8 and 13 blows per foot (bpf). Natural moisture contents ranged from 15 to 18 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions, the liquid and plastic limits are between 32 to 34 percent and 16 to 17 percent, respectively.

Seventy-three percent (73%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 27% of samples); 2) Gravel and Stone Fragments with Sand and Silt (A-2-4, 1 sample); 3) Gravel and Stone Fragments with Sand and Silt (A-2-6, 17% of samples); and, 4) non-cohesive Sandy Silt (A-4a, 18% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to Medium dense correlating to N_{60} values between 7 and 24 bpf. Natural moisture contents ranged from 6 to 16 percent.

4.2.3. Marietta Road

The boring performed along Marietta Road included B-030-0-22.

Along Marietta Road, twenty-five percent (25%) of the soil samples were identified as fine-grained soils and were comprised of Silty Clay (A-6b, 1 sample). With respect to the consistency of the fine-grained soils, the description is very stiff correlating to converted SPT-N values (N_{60}) of 7 blows per foot (bpf). Natural moisture content is 16 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions, the liquid and plastic limits are 34 percent and 16 percent, respectively.

Seventy-five percent (75%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, one sample); and 2) Coarse and fine sand (A-3a, 50% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to Medium dense correlating to N_{60} values between 8 and 21 bpf. Natural moisture contents ranged from 3 to 9 percent.

4.2.4. Pawnee Road

The boring performed along Pawnee Road included B-031-0-22.

One hundred percent (100%) of the samples taken along Pawnee Road were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 75% of samples); and Gravel and Stone Fragments with Sand and Silt (A-2-4, 1 sample). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to dense correlating to N_{60} values between 6 and 67 bpf. Natural moisture contents ranged from 8 to 11 percent.

4.2.5. Ramp A1

The borings performed along Ramp A1 included B-007-0-22 and B-008-0-22.

One hundred percent (100%) of the samples taken along Ramp A1 were classified as coarse-grained, noncohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 50% of samples); 2) Gravel and Stone Fragments with Sand and Silt (A-2-4, 25% of samples); 3) Coarse and fine sand (A-3a, 1 sample) and 4) non-cohesive Sandy Silt (A-4a, 1 sample). With respect to the relative density of the coarse-grained soils, the descriptions varied from very loose to medium dense correlating to N₆₀ values between 4 and 29 bpf. Natural moisture contents ranged from 6 to 17 percent.

4.2.6. River Trace

The boring performed along River Trace Street included B-024-0-22.

Along River Trace Street, fifty percent (50%) of the soil samples were identified as fine-grained soils and were comprised of Sandy Silt (A-4a, 50% of samples). With respect to the consistency of the fine-grained soils, the description is very stiff correlating to converted SPT-N values (N_{60}) ranged from 10 to 25 blows per foot (bpf). Natural moisture contents ranged from 11 to 13 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions, the liquid and plastic limits are 22 to 24 percent and 16 percent, respectively.

Fifty percent (50%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of Gravel and Stone Fragments with Sand and Silt (A-2-4, 50% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from dense to very dense correlating to N_{60} values between 31 and 56 bpf. Natural moisture contents ranged from 7 to 9 percent.

4.2.7. Stewart Road

The borings performed along Stewart Road included B-020-0-22 through B-022-0-22.

Along Stewart Road, sixty-four percent (67%) of the soil samples were identified as fine-grained soils and were comprised of 1) cohesive Sandy Silt (A-4a, 33% of samples), 2)Silt and Clay (A-6a, 25% of samples) and 3) Silty Clay (A-6b, 1 sample) With respect to the consistency of the fine-grained soils, the descriptions varied from very stiff to hard correlating to converted SPT-N values (N_{60}) between 6 and 36 blows per foot (bpf). Natural moisture contents ranged from 10 to 24 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions, the liquid and plastic limits ranged from 26 to 40 percent and from 16 to 20 percent, respectively.

Thirty-three percent (33%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 17% of samples); 2) Coarse and fine sand (A-3a, 16% of samples) With respect to the relative density of the coarse-grained

soils, the descriptions varied from loose to very dense correlating to N_{60} values between 5 and 56 bpf. Natural moisture contents ranged from 5 to 10 percent.

4.2.8. US-35 Ramp C

The borings performed along US-35 Ramp C included two ODOT borings B-025-1-21 and B-026-1-21 as well as project borings B-025-0-22 through B-026-0-22.

Along US-35 Ramp C, thirty-six percent (36%) of the soil samples were identified as fine-grained soils and were comprised of cohesive Silt and Clay (A-6a, 36% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from very stiff to hard correlating to converted SPT-N values (N₆₀) between 8 and 11 blows per foot (bpf). Natural moisture contents ranged from 14 to 21 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions, the liquid and plastic limits ranged from 20 to 32 percent and from 14 to 18 percent, respectively.

Sixty-four percent (64%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 27% of samples); 2) Gravel and Stone Fragments with Sand and Silt (A-2-4, 36% of samples). With respect to the relative density of the coarse-grained soils, the descriptions is medium dense correlating to N_{60} values between 24 and 46 bpf. Natural moisture contents ranged from 6 to 9 percent.

4.2.9. Consumer Center Drive

The boring performed along Consumer Center Drive included B-023-0-22.

Along Consumer Center Drive Segment, fifty percent (50%) of the soil samples were identified as finegrained soils and were comprised of Clay (A-7-6, 50% of samples). With respect to the consistency of the fine-grained soils, the description is very stiff to hard correlating to converted SPT-N values (N_{60}) from 11 to 15 blows per foot (bpf). Natural moisture content ranged from 20 to 24 percent. Based on Atterberg Limit tests performed on representative samples of the fine-grained subgrade soils obtained along the project portions, the liquid and plastic limits are 42 percent and 21 percent, respectively.

Fifty percent (50%) of the samples taken along the proposed roadway were classified as coarse-grained, non-cohesive soils and were comprised of Gravel with Sand (A-1-b, 50% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to Medium dense correlating to N_{60} values between 8 and 11 bpf. Natural moisture contents ranged from 11 to 14 percent.

4.2.10. Groundwater

Groundwater measurements were taken during the boring drilling procedures and/or immediately following the completion of each borehole. Groundwater was not encountered during drilling performed as part of the project.

It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration.

4.3. Subsurface Conditions

4.3.1. Overburden Soil

The subsurface soils encountered at wall 1 can be described using B-006-0-22, while wall 2 can be described using B-014-0-22 and wall 3 can be described using B-018-0-22 and B-019-0-22. The soils encountered at both walls can be described as follows.

At the proposed Wall 1 site, the soil stratum encountered in this boring comprised of both granular and cohesive soil materials. The soil encountered below the topsoil is classified as non-cohesive Sandy Silt (A-4a) to a depth of 7 ft bgs (elevation 631.9 ft amsl) followed by 2.5 ft of cohesive Sandy Silt (A-4a) (elevation 629.4 ft amsl). Then Gravel and Stone Fragment with Sand and Silt (A-2-4) was encountered with a depth of 2.5 ft bgs (elevation 626.9 ft amsl) followed by 12.5 ft bgs of cohesive Sandy Silt (A-4a). At an elevation of 614.4 ft amsl, 5 ft bgs of Gravel and Stone Fragment with Sand and Silt (A-2-4) was encountered followed by cohesive Sandy Silt to the end of boring (EOB). The cohesive soil is described as having a consistency of hard correlating to N_{60} values ranging from 17 to 45 and unconfined compressive strengths (estimated by means of hand penetrometer) of 4.50 tons per square foot (tsf). Natural moisture content of the cohesive soil ranged from 10 to 16 percent. Based on an Atterberg Limits test performed on a representative sample of the cohesive soil material, the liquid and plastic limits values ranged from 20 to 23 percent and 15 to 17 percent, respectively. On the other hand, the non-cohesive soils are described as having a relative compactness ranging from medium dense to dense correlating to N_{60} values ranging from 25 to 52. The natural moisture content of the granular soils ranged from 7 percent to 10 percent.

At the proposed Wall 2 site, the soils encountered below the pavement section comprised of cohesive fine-grained soils to a depth of 7.6 ft bgs (elevation 617.9 ft amsl) followed by granular soils to the terminated boring depth (elevation 609.0 ft amsl). Based on laboratory testing, a visual soil review as well as soil behavior index, the cohesive material is classified as Silt and Clay (A-6a) while the non-cohesive soil is classified as Coarse and Fine Sand (A-3a) and Gravel and Stone Fragments with Sand (A-1-b). The cohesive soil is described as having a consistency of very stiff correlating to N_{60} values of 7 and unconfined compressive strengths (estimated by means of hand penetrometer) ranging from 2.50 to 3.50 tons per square foot (tsf). Natural moisture content of the cohesive soil ranged from 14 to 18 percent. Based on an Atterberg Limits test performed on a representative sample of the cohesive soil material, the liquid and plastic limits values are 31 percent and 13 percent, respectively. On the other hand, the non-cohesive soils are described as having a relative compactness ranging from loose to very loose correlating to N_{60} values ranging from 4 to 8. The natural moisture content of the granular soils ranged from 6 percent to 12 percent.

At the proposed wall 3 site, the soils encountered below the pavement section comprised of cohesive finegrained soils to the depths of between 4.5 ft and 12.0 ft bgs (elevations between 614.5 ft and 620.5 ft amsl) following by granular soils to the terminated boring depth of 21.5 ft bgs. Based on laboratory testing, a visual soil review as well as soil behavior index, the granular material is classified as Sandy Silt (A-4a), Coarse and Fine Sand (A-3a) and Gravel and Stone Fragments with Sand (A-1-b) while the cohesive soils are classified as Silt and Clay (A-6a) and Silty Clay (A-6b). The non-cohesive soils are described as having a relative compactness ranging from loose to medium dense to loose to dense correlating to N₆₀ values ranging from 6 to 41. The natural moisture content of the granular soils ranged from 5 to 14 percent. On the other hand, the cohesive soil is described as having a consistency of very stiff correlating to N₆₀ values ranging from 6 to 13 and unconfined compressive strengths (estimated by means of hand penetrometer) ranging from 3.00 to 4.50 tons per square foot (tsf). Natural moisture contents of the cohesive soils are between 17 and 20 percent. Based on the Atterberg Limits test

performed on a representative sample of the cohesive soil material, the liquid and plastic limits values ranged from 31 to 34 percent and 15 to 19 percent, respectively.

4.3.2. Groundwater

Groundwater measurements were taken during the boring drilling procedures and immediately following the completion of each borehole. Groundwater was not encountered during drilling in any of the structure borings.

It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration.

4.3.3. Bedrock

Bedrock was not encountered in any of the structure borings performed.

5. ANALYSIS AND RECOMMENDATIONS

We understand that the overall project objective is to improve the safety, congestion and pedestrian connectivity along SR-159 (Bridge Street) and improve safety along the US-35 EB exit Ramp. For this purpose, subgrade analysis was performed in accordance with ODOT's GDM criteria utilizing the ODOT provided subgrade analysis spreadsheet (SubgradeAnalysis.xls, version 14.6 dated February 11, 2022). Input information for the spreadsheet was based on the soil characteristics gathered during NEAS's exploration (i.e., SPT results, laboratory test results, etc.).

The proposed project improvements also include the construction of three retaining walls. It is our understanding that wall 1 will be a modular block wall while walls 2 and 3 will be Cast-In-Place concrete wall on spread footing. The proposed retaining walls 1, 2 and 3 will be approximately 231.05 ft, 142 ft and 200 ft in length, respectively with a design height of 7.5 ft, 10.8 ft and 10.8 ft, respectively.

The analyses performed are based on the information: 1) the soil characteristics gathered during the subsurface exploration (i.e., SPT results, laboratory test results, etc.) presented in Section 5.1 of this report; 2) the developed generalized soil profile at the proposed retaining wall locations and other design assumptions presented in subsequent sections of this report; and, 3) the basemap and site plans including the retaining wall details provided by Burgess & Niple Inc. and Palmer Engineering. Geotechnical analyses consisting of subgrade analyses, external stability (i.e., overall stability, bearing capacity, and sliding) analyses, and global stability analyses were performed for the proposed retaining walls. The geotechnical engineering analyses were performed in accordance with LRFD Bridge Design Specifications, (AASHTO LRFD, 2020), ODOT's 2020 Bridge Design Manual (BDM) (ODOT BDM, 2023) and ODOT's 2023 Geotechnical Design Manual (GDM (ODOT GDM, 2023).

5.1. Generalized Soil Profile for Analysis

For analysis purposes, each boring log was reviewed and the engineering properties for each soil strata were estimated based on their field (i.e., SPT N_{60} Values, hand penetrometer values, etc.) and laboratory (i.e., Atterberg Limits, grain size, etc.) test results using correlations provided in published engineering manuals, research reports and guidance documents. Engineering soil properties were estimated for each individual classified layer per boring location. Soil layers with similar behavior (i.e., cohesive or non-cohesive/granular) and characteristics (i.e., relative compactness/consistency, moisture content, etc.) were grouped into generalized soil units (i.e., Soil Types) and weighted average values of the estimated

engineering soil properties were assigned to each Soil Type to develop a generalized soil profile for analysis. The summary of the generalized soil profile including designated Soil Types, elevations, average engineering soil properties per boring location are presented within Table 4 through Table 8 below.

Weight ⁽¹⁾ (pcf) 118 122 112	Moist Unit Weight ⁽¹⁾ (pcf) 118 122 112	Saturated Unit Weight ⁽¹⁾ (pcf) 128 132	Undrained Shear Strength ⁽²⁾ (psf) - -	Effective Cohesion ⁽³⁾ (psf) - -	Effective Friction Angle ⁽³⁾ (degrees) 38 40	Setup Factor (f _{su}) 1.20 1.20
122	122	132	-	-		
			-	-	40	1.20
112	112	100				
		122	2100	200	25	1.20
118	118	128	-	-	35	1.20
118	118	128	3550	300	27	1.50
122	122	132	5000	375	28	1.50
118	118	128	-	-	35	1.20
115	115	125	3300	250	27	1.50
	122 118 115	122 122 118 118 115 115	122 122 132 118 118 128	122 122 132 5000 118 118 128 - 115 115 125 3300	122 122 132 5000 375 118 118 128 - - 115 115 125 3300 250	122 122 132 5000 375 28 118 118 128 - - 35 115 115 125 3300 250 27

Table 4: Soil Profile and Estimated Engineering Properties for B-006-0-22

Values calculated from Terzaghi and Peck (1967) if N160<52, else Stroud and Butler (1975) was used
 Values interpreted from LRFD BDS Table 10.4.6.2.4-1 and ODOT GDM Table 400-3.

Table 5: Soil Profile and Estimated Engineering Properties for B-012-0-22

Embankment Slope: Soil Profile, B-012-0-22									
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)			
Gravel Elevation (626.9 ft - 622.4 ft)	110	110	120	-	-	30			
Silt and Clay Elevation (622.4 ft - 619.9 ft)	108	108	118	800	100	21			
Gravel Elevation (619.9 ft - 617.4 ft)	118	118	128	-	-	35			
Gravel with Sand Elevation (617.4 ft - 610.4 ft)	125	125	135	-	-	37			
tes: 1 Values interpreted from Geotechnical Bulletin 7 Table 1									

Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.

3. Values interpreted from Geotechnical Bulletin 7 Table 2

Table 6: Soil Profile and Estimated Engineering Properties for B-014-0-22

	Wall 2: Soil Profile B-014-0-22										
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	Setup Factor (f _{su})				
Silt and Clay Depth (625.5 ft - 621 ft)	108	108	118	850	100	22	1.50				
Silt and Clay Depth (621 ft - 617.9 ft)	108	108	118	850	100	22	1.50				
Coarse and Fine Sand Depth (617.9 ft - 616 ft)	110	110	120	-	-	30	1.00				
Gravel with Sand Depth (616 ft - 609 ft)	110	110	120	-	-	32	1.00				
Notes:											

Values interpreted from ODOT Geotechnical Design Manual (GDM) Section 405. Values calculated from Terzaghi and Peck (1967) if N160<52, else Stroud and Butler (1975) was used. Values interpreted from LRFD BDS Table 10.4.6.2.4-1 and ODOT GDM Table 400-3. 2.

Wall 3: Soil Profile, B-018-0-22									
Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)				
108	108	118	1,200	100	23				
110	110	120	-	-	29				
112	112	122	-	-	30				
112	112	122	-	-	30				
120	120	130	-	-	35				
	(pcf) 108 110 112 112	Unit Weight ⁽¹⁾ Moist Unit Weight ⁽¹⁾ (pcf) 108 108 110 110 112 112 112 112	Unit Weight(1) (pcf)Moist Unit Weight(1) (pcf)Saturated Unit Weight(1) (pcf)108108118110110120112112122112112122	Unit Weight(1) (pcf)Moist Unit Weight(1) (pcf)Saturated Unit Weight(1) (pcf)Undrained Shear Strength(2) (psf)1081081181,200110110120-112112122-112112122-	Unit Weight(1) (pcf)Moist Unit Weight(1) (pcf)Saturated Unit Weight(1) (pcf)Undrained Shear Strength(2) (psf)Effective Cohesion(3) (psf)1081081181,200100110110120112112122112112122				

Table 7: Soil Profile and Estimated Engineering Properties for B-018-0-22

Values calculated from Terzaghi and Peck (1967) if N1₆₀<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 8: Soil Profile and Estimated Engineering Properties for B-019-0-22

Wall 3: Soil Profile, B-019-0-22									
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)			
Silt and Clay Elevation (626.5 ft - 622 ft)	108	108	118	800	100	21			
Silty Clay Elevation (622 ft - 617 ft)	108	108	118	1,200	100	23			
Silt and Clay Elevation (617 ft - 614.5 ft)	105	105	115	700	75	21			
Gravel with Sand Elevation (614.5 ft - 605 ft)	112	112	122	-	-	30			
2IEVation (614.5 ft - 605 ft) 3s: 1. Values interpreted from Geotechnical Bulletin 7 Table 1. 2. Values calculated from Terzaghi and Peck (1967) if N1 ₆₀ <52, else Stroud and Butler (1975) was used.									

5.2. Subgrade Analysis

A subgrade analysis was performed to identify the method, location, and dimensions (including depth) of required subgrade stabilization for the project. In addition to identifying stabilization recommendations, pavement design parameters are also determined to aid in pavement section design. The subsections below present the results of our subgrade analysis including pavement design parameters and unsuitable subgrade conditions identified within the project limits. The subgrade analysis spreadsheets are provided in Appendix C.

5.2.1. Pavement Design Recommendations

It is our understanding that pavement analysis and design is to be performed to determine the proposed pavement section within the project limits to improve safety. A subgrade analysis was performed using the subgrade soil data obtained during our field exploration program to evaluate the soil characteristics to develop pavement parameters for use in pavement design. The subgrade analysis parameters recommended for use in pavement design are presented in Table 9 below. Provided in the table are ranges of maximum, minimum and average N_{60L} values for the indicated segments as well as the design CBR value recommended for use in pavement design.

Segment	Maximum N _{60L}	Minimum N _{60L}	Average N _{60L}	Average PI Values	Design CBR*
SR 159	30	5	12	14	9
Consumer Center	8	8	8	21	7
Connector Road	8	5	7	16	8
Merietta Rd	7	7	7	18	12*
Pawnee Rd	6	6	6	0	13*
Ramp A1	4	4	4	0	13*
River Trace	10	10	10	7	9
Stewart Rd	15	5	9	14	7
US 35-Ramp C	10	8	9	11	10
Entire Project	30	4	10	13	9
Note: * NEAS recommend using a CBR value of 9 in the pavement design for the side street.					

Table 9: Pavement Design Parameters

Where the CBR values for the side streets are greater than the one for the overall entire project, such as Pawnee Road, NEAS recommend using a CBR value of 9 conservatively since the limited information can be provided from only one boring performed along the side streets.

5.2.2. Unsuitable Subgrade

Per ODOT's GDM, the presence of select subgrade conditions are prohibited within the subgrade zone for new pavement construction. These prohibited subgrade conditions generally include the presence of rock, specific soil types, and soils with a liquid limit greater than 65 percent. With respect to the proposed improvement project these subgrade conditions are further discussed in the following subsections.

5.2.2.1. Rock

Rock was not encountered at or close to subgrade elevation at the boring locations performed within the project limits. Per ODOT's GDM, if rock is encountered within 24 inches of the bottom of the proposed asphalt or concrete pavement it is to be removed in accordance with 204.05 of the ODOT CMS and replaced with Item 204 Embankment.

5.2.2.2. Prohibited Soils

Prohibited soil types per the GDM, which include A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, and soils with liquid limits greater than 65, were not encountered within the subgrade of the project limits.

5.2.3. Unstable Soils

The subgrade analysis recommends subgrade stabilization for soils in which the N_{60} value of a particular soil sample (SS) at a referenced boring location is less than 12 bpf and in some cases less than 15 bpf (i.e., where moisture content is greater than optimum plus 3 percent). Based on the specific N_{60} value at the subject boring, *Figure B - Subgrade Stabilization* recommends a depth of subgrade stabilization for ODOT standard stabilization methods. For the purposes of this report the term 'weak soils' has been assumed to represent subgrade soils of these conditions. It should be noted that although a soil sample's N_{60} value may meet the criteria to be considered a weak soil, the depth in which the weak soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed. For example, if the subgrade analysis recommends an excavate and replace of 12 inches within a weak soil underlying 18 inches of stable material, it would be unreasonable to recommend the removal of both the stable and unstable material for a total of 30 inches of excavate and replace.

Based on N_{60} values encountered within the project borings, our subgrade analysis indicated the need for 14 inches of chemical treatment or excavation and replacement to depths of 12 inches to 18 inches at selected locations. Information on the boring location where weak soils were encountered and determined to have a potential impact on subgrade performance is shown in Table 10 below. Also included is the associated subgrade analysis recommended remediation depth at that location.

	Sample		Moisture	Depth Below	Remediation Depth (inches)		
Boring ID	ID	N ₆₀	Above Optimum (%)	Subgrade (ft)	Excavate and Replace (Item 204 w/ Geotextile)	Excavate and Replace (Item 204 w/ Geogrid - SS 861)	Chemical Stabilization (Item 206)
Connector							
B-028-0-22	SS-2	10	0	(-0.1)-1.4	12	-	14

It should be noted that *Figure B* - *Subgrade Stabilization* does not apply to soil types A-1-a, A-1-b, A-3, or A-3a, nor to soils with N_{60L} values of 15 or more. Per GDM guidance, *these soils should be reworked to stabilize the subgrade*.

5.2.3.1. High Moisture Content Soils

High moisture content soils are defined by the GDM as soils that exceed the estimated optimum moisture content (per *Figure A - Optimum Moisture Content* within the GDM) for a given classification by 3 percent or more. Per the GDM, soils determined to be above the identified moisture content levels are a likely indication of the presence of an unstable subgrade and may require some form of subgrade stabilization. Similar to our analysis of weak soils, although a soil sample's moisture content may meet the criteria to be considered high, the depth in which the high moisture soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed for stabilization recommendations. Based on the subsurface exploration performed, a high moisture content soils within the proposed subgrade of the project were encountered in two borings as shown in Table 11 below.

Boring ID	Sample ID	Moisture Content (%)	Optimum Moisture Content (%)	Moisture Above Optimum (%)	Depth Below Subgrade (ft)	
Ramp A1						
B-007-0-22	SS-2	13	10	3	1.5-3.0	
	River Trace					
B-024-0-22	SS-2	13	10	3	1.5-3.0	
Stewart Road						
B-020-0-22	SS-3	18	10	8	1.5-3.0	
B-021-0-22	SS-2B	13	10	3	2.5-3.0	

Table 11: High Moisture Soils Summary

5.2.4. Stabilization Recommendations

Based on the results of our analysis, subgrade soils designated by ODOT's subgrade analysis as "unstable" were present at various locations throughout the project as mentioned in section 5.1.3 of this report. Also, Subgrade soils designated as "unstable" via high moisture content were encountered in borings described in section 5.1.3.1 in this report. Although these materials were encountered at different locations throughout the project, guidance from ODOTs GBM states that "*if it is determined that 30 percent or more of the subgrade area must be stabilized, consider stabilizing the entire project (global stabilization)*" and since less than 30 % of the soils need to be stabilized, therefore, NEAS recommend local stabilization in the form of Item 204 Excavate and Replace where the unstable subgrade materials are encountered. Excavation limits and depths for each roadway which needs stabilization are

summarized in Table 12 below the proposed subgrade with the excavated material being replaced with Item 204 Granular Material Type C in accordance with Section F "Excavate and Replace (Item 204)" of the ODOT GDM. Stabilization limits should extend 18-inches beyond the edge of the proposed paved roadway, shoulder or median and it is recommended removing any topsoil, existing pavement materials or abandoned structure foundation materials. From L&D3, include plan note G121 in the plans.

Start Station	End Station	Excavate and Replace w/ Item 204 ⁽¹⁾ (inches)	Chemical Stabilization (inches)	Unsuitable Subgrade Conditions	Borings Considered
			Merietta Conr	ector	
15+10	17+58	12	14	-	B-028-0-22

5.3. Wall 1

Wall 1 is a modular block wall approximately 307.7 ft in length. Wall 1 has a maximum wall height of 7.5 ft (from top of wall 627.7 ft to bottom of wall 620.2 ft).

5.3.1. Modular Block Wall Design Assumptions

As the proposed Wall 1 is planned to be a modular block wall, ODOT's BDM and AASHTO's LRFD BDS dictate analysis parameters and design minimums/constraints to be used in the analysis and design process. The referenced parameters and design minimums/constraints that were significant to our analyses consist of the following:

Wall configuration: with respect to design constraints and assumptions specific to the proposed retaining wall, the geometry of the proposed wall (i.e., exposed wall height, existing ground elevation, proposed grade, bottom of wall elevation, etc.) is assumed to be consistent with that shown in the proposed Retaining Wall Plan prepared by Palmer Engineering.

Fill materials: Per the fill materials for modular block wall, retained fill soils will meet the minimum design soil parameters per Table 307-1 of the ODOT BDM as shown in Table 13 below.

Table 13: Design Soil Parameters for Fill Materials for Modular Block Wall

Type of Soil	Soil Unit Weight (pcf)	Friction Angle (°)	Cohesion (psf)
Granular Material Type B, per 703.16.C	120	30	0
Notes: 1. Per Table 307-1 of the ODOT BDM, 2020.			

5.3.2. External Stability

Based on our estimated engineering soil properties and the retaining wall design assumptions provided in section 5.1 and 5.2.1 of this report, external stability analysis was performed for the proposed Wall1 utilizing boring B-006-0-22.

A shallow foundation bearing analyses were first performed for wall 1 under effective (drained) and total (undrained) stress conditions in general accordance with the LRFD Bridge Design Specifications, 9th Edition with 2020 interim revisions. The cross-section was then evaluated for resistance to bearing pressure, sliding force, and overturning at the Strength Limit State in accordance with the AASHTO's LRFD BDS by using the software entitled *Redi-Rock Wall*+ by Redi-Rock, Inc. The capacity to demand

ratios (CDRs) were calculated for the referenced cross-section with respect to bearing, sliding and overturning. The capacity to demand ratios (CDR) larger than 1.0 indicate a safe design. Based on the Wall 1 site plan provided by Palmer Engineering through email on November 17, 2023, the capacity to demand ratios (CDRs) calculated for the referenced cross-section with respect to bearing, sliding and overturning are presented in Tables 14 below for Wall 1 (External Stability and Bearing Resistance Calculation Results can be found in Appendix D).

Wall 1 External Analysis				
Top of Wall (feet)	627.7			
Bottom of Wall (feet)	620.2			
Exposed Wall Height (feet)	6.0			
Design Wall Height (feet)	7.5			
Boring Log Used in Calculation	B-006-0-22			
Capactiy Demand Ratio (CDR)				
Sliding	1.19			
Overturning / Eccentricity	2.34			
Bearing Capacity (Undrained/Drained)	5.3 / 3.4			
Factored Bearing Resistance (ksf) (Undrained/Drained)	9.2 / 5.9			
Notes:				
 Bearing Resistance calculated in accordance to Section 11.10.5.4 of 2020 LRFD BDS and factored using Resistance Factor provided in Table 11.5.7-1 of 2020 				

Table 144: External Stability Summary for Wall 1

5.3.3. Global Stability

For purposes of evaluating the stability of the proposed Wall 1, NEAS developed global stability analyses. The models were developed from NEAS's interpretation of the available information which included: 1) the site plan provided by Palmer Engineering for the retaining wall site; and 2) test borings and laboratory data developed as part of this report. With respect to the soil's engineering properties, the estimated engineering properties of the Soil Profile resented in Section 5.1. of this report were used in our analyses.

The above referenced slope stability models were analyzed for long-term (Effective Stress) and shortterm (Total Stress) slope stability utilizing the software entitled *Slide 2.0* by Rocscience, Inc. Specifically, the Simplified Bishop, Spencer and GLE analysis methods were used to calculate a factor of safety (FOS) for circular type slope failure. The FOS is the ratio of the resisting forces to the driving forces, with the desired safety factor being more than about 1.5 which approximately equates to an AASHTO resistance factor of less than 0.65 (per AASHTO's LRFD BDS, the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For the analysis, a resistance factor of 0.65 or lower is targeted as the slope does support a structural element.

Based on our slope stability analyses for Wall 1, the minimum slope stability safety factor for both shortterm and long-term conditions exceeded the desired value of 1.5. The results of the analyses are summarized in Table 15. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix D.

Global Stability Analsysis For the Modular Block Wall Structure					
Location	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)
Wall 1	B-006-0-22	Effective Stress	1.65	0.61	OK
wan	D-000-0-22	Total Stress	6.72	0.15	OK

 Table 155: Global Stability Analysis Summary for Wall 1

5.3.1. Global Stability under Construction Condition

Global Stability analyses were performed for the construction condition for Wall 1. Based on the site plan provided by Palmer Engineering via email on November 17, 2023, 1 Horizontal: 1 Vertical (1H:1V) cut was proposed for the construction of Wall 1. With respect to the soil's engineering properties, the estimated engineering properties of the Soil Profile presented in Section 5.1. of this report were used in our analyses.

The slope stability model at the construction condition was analyzed for short-term (Total Stress) slope stability utilizing the software entitled *Slide 2.0* by Rocscience, Inc. Specifically, the Simplified Bishop, Spencer and GLE analysis methods were used to calculate a factor of safety (FOS) for circular type slope failure. **Based on the site plan provided by Palmer Engineering via email on November 17, 2023, 1 Horizontal: 1 Vertical (1H:1V) excavation cut was proposed for the construction of Wall 1. Our global stability analysis under construction conditions revealed a minimum factor of safety for the short-term condition is 0.70, indicating potential instability in the excavation cut.** The Means and Methods of constructing the modular block wall can be left up to the discretion of the Contractor as long the depth of the excavation does not exceed 8 feet otherwise temporary shoring details shall be included with the plans. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix D.

5.4. Wall 2

According to Wall 2 site plan prepared by Burgess & Niple, Inc., Wall 2 is Cast-In-Place concrete wall on spread footing. Wall 2 will be approximately 142 ft in length with a maximum height of 10.8 ft including footing and a maximum exposed height of 4.9 ft.

5.4.1. Cast-In-Place Wall Design Assumptions

For the design of the proposed retaining wall, ODOT's BDM, AASHTO's LRFD BDS, and the project conditions dictate analysis parameters and design minimums/constraints are to be used in the analysis and design process. The referenced parameters and design minimums/constraints that where significant to our analyses consist of the following:

- Porous backfill is to be placed from back of the wall extending from top of footing elevation to top of earth backfill with a width not less than 2 feet.
- Retained soils behind the porous backfill are to consist of material placed and compacted in accordance with Item 203, Roadway Excavation and Embankment, of the ODOT Construction and Material Specifications (CMS).
- Retained fill soils will meet the minimum design soil parameters per ODOT's BDM Table 307-1 as shown in Table 15 below.

Table 166: Design Soil Para	meters for Fill Materials	s for Cast-In-Place Wall

Type of Soil	Soil Unit Weight (pcf)	Friction Angle (°)	Cohesion (psf)
On-Site soil varying from sandy lean clay to silty sand, per 703.16.A	120	30	0
Notes: 1.Per Table 307-1 of the ODOT BDM, 2020.			

5.4.2. External Stability

Based on the site plan provided by Burgess & Niple Inc. on November 14, 2023, through email, external stability was evaluated using boring B-014-0-22. The bottom of the footings varies between elevation of 616.0 ft and 618.0 ft amsl. Wall 2 was evaluated for resistance to bearing pressure, sliding force and overturning at the Strength Limit State in accordance with Section 11.5.3 of the AASHTO's LRFD BDS.

Results are expressed in terms of Capacity to Demand Ratios (CDR) that compare the available factored resistances to the factored load. CDRs >=1 indicate a safe design. The CDRs calculated for the referenced cross sections with respect to bearing, sliding and overturning, as well as the calculated factored bearing resistances are presented in Table 17 below (External Stability Results can be found in Appendix E).

CIP Retaining Wall 2				
Station in reference to Wall 2	STA. 0+50			
Top of Wall (feet)	626.80			
Proposed Grade Elevation (feet)	622.90			
Bottom of Footing (feet)	616.00			
Exposed Wall Height (feet)	3.90			
Design Wall Height (feet)	10.80			
Boring Log Used in Calculation	B-014-0-22			
Capactiy Demand Ratio (CDR)				
Sliding (Undrained/Drained)	2.41 / 2.41			
Overturning / Eccentricity	5.83			
Bearing Capacity (Undrained/Drained)	3.78 / 3.78			
Factored Bearing Resistance (ksf) ⁽¹⁾ (Undrained/Drained) 8.1 / 8.1				
Notes:				
 Bearing Resistance calculated in accordance to Section 11.10.5.4 of 2020 LRFD BDS and factored using Resistance Factor provided in Table 11.5.7-1 of 2020 LRFD BDS. 				

Table 177: External Stability Summary for Wall 2

5.4.3. Global Stability

The slope geometry at wall 2 site is assumed to be consistent with that shown in the site plan provided by B&N Inc. ODOT's SGE and AASHTO's LRFD BDS dictate analysis parameters to be used in the analysis process. Based on planned roadway grades and alignment, AASHTO's LRFD BDS dictates that the slopes shall be evaluated for a live load surcharge of 90 pound per square foot (psf).

For the purpose of evaluating the stability of the retaining wall, NEAS developed global stability analyses. The models were developed from NEAS's interpretation of the available information which included: 1) the site plan provided by B&N, Inc. for the retaining wall site; and 2) test borings and laboratory data developed as part of this report. With respect to the soil's engineering properties, the

estimated engineering properties of the Soil Profile resented in Section 5.1. of this report were used in our analyses.

The above referenced slope stability models were analyzed for long-term (Effective Stress) and shortterm (Total Stress) slope stability utilizing the software entitled *Slide 7.0* by Rocscience, Inc. Specifically, the Simplified Bishop, Spencer and GLE analysis methods were used to calculate a factor of safety (FOS) for circular type slope failure. The FOS is the ratio of the resisting forces to the driving forces, with the desired safety factor being more than about 1.54 which approximately equates to an AASHTO resistance factor of less than 0.65 (per AASHTO's LRFD BDS, the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For the analysis, a resistance factor of 0.65 or lower is targeted as the slope does support a structural element.

Based on our slope stability analyses for the referenced retaining wall, the minimum slope stability safety factor for both short-term and long-term conditions exceeded the desired value of 1.5. The results of the analyses are summarized in Table 18. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix E.

Global Stability Analsysis For Retaining Wall 2 at Kroger					
Location	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)
Wall 2	B-014-0-22	Effective Stress	2.07	0.48	OK
		Total Stress	3.23	0.31	OK

 Table 188: Global Stability Analysis Summary at Wall 2

5.5. Wall 3

According to the retaining wall justification study reports, the recommended alternative for wall 3 is Cast-In-Place concrete wall on spread footing. Wall 3 will be approximately 190 ft in length with a maximum wall height of 11 ft including footing.

5.5.1. External Stability

Based on the basemap and site plan provided by B & N on November 14, 2023, through email, external stability was evaluated using boring B-018-0-22 and B-019-0-22. The bottom of the footing at each boring location were similar at an approximate elevation of 616.1 ft amsl. The retaining wall was evaluated for resistance to bearing pressure, sliding force and overturning at the Strength Limit State in accordance with Section 11.5.3 of AASHTO's LRFD BDS.

Results are expressed in terms of Capacity to Demand Ratios (CDR) that compare the available factored resistances to the factored load. CDRs >=1 indicate a safe design. The CDRs calculated for the referenced cross sections with respect to bearing, sliding and overturning, as well as the calculated factored bearing resistances are presented in Table 19 below (External Stability Results can be found in Appendix F).

CIP Retaining Wall 3					
Station in reference to ROS-159	STA. 752+95	STA. 754+25			
Top of Wall (feet)	626.40	627.60			
Proposed Grade Elevation (feet)	622.00	623.30			
Bottom of Footing (feet)	616.00	616.80			
Exposed Wall Height (feet)	4.40	4.30			
Design Wall Height (feet)	10.40	10.80			
Boring Log Used in Calculation	B-018-0-22	B-019-0-22			
Capactiy Demand Ratio (CDR)					
Sliding (Undrained/Drained)	2.48 / 2.48	1.61 / 2.41			
Overturning / Eccentricity	6.50	5.83			
Bearing Capacity (Undrained/Drained)	3.61 / 3.61	1.03 / 1.54			
Factored Bearing Resistance (ksf) ⁽¹⁾ (Undrained/Drained)	7.4 / 7.4	2.2 / 3.3			
Notes: 1. Bearing Resistance calculated in accordance to Section 11.10.5.4 of 2020 LRFD BDS and factored using Resistance Factor provided in Table 11.5.7-1 of 2020 LRFD BDS.					

 Table 1919: External Stability Summary for Wall 3

5.5.2. Global Stability

The slope geometry at wall 3 site is assumed to be consistent with that shown in the site plans provided by B&N Inc. ODOT's SGE and AASHTO's LRFD BDS dictate analysis parameters to be used in the analysis process. Based on planned roadway grades and alignment, AASHTO's LRFD BDS dictates that the slopes shall be evaluated for a live load surcharge of 90 pound per square foot (psf).

For the purpose of evaluating the stability of the retaining wall, NEAS developed global stability analyses. The models were developed from NEAS's interpretation of the available information which included: 1) the site plan provided by B&N, Inc. for the retaining wall site; and 2) test borings and laboratory data developed as part of this report. With respect to the soil's engineering properties, the estimated engineering properties of the Soil Profile presented in Section 5.1. of this report were used in our analyses.

The above referenced slope stability models were analyzed for long-term (Effective Stress) and shortterm (Total Stress) slope stability utilizing the software entitled *Slide 7.0* by Rocscience, Inc. Specifically, the Simplified Bishop, Spencer and GLE analysis methods were used to calculate a factor of safety (FOS) for circular type slope failure. The FOS is the ratio of the resisting forces to the driving forces, with the desired safety factor being more than about 1.5 which approximately equates to an AASHTO resistance factor of less than 0.65 (per AASHTO's LRFD BDS, the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For the analysis, a resistance factor of 0.65 or lower is targeted as the slope does support a structural element.

Based on our slope stability analyses for the referenced retaining wall, the minimum slope stability safety factor for both short-term and long-term conditions exceeded the desired value of 1.5. The results of the analyses are summarized in Table 20. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix F.

Global Stability Analsysis For Retaining Wall 3 at McDonald's						
Location	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)	
Wall 3	B-019-0-22	Effective Stress	2.10	0.48	OK	
		Total Stress	4.81	0.21	ОК	

5.6. Embankment Stability Analysis

At the time of this report, embankment fills, sliver fills, or fills are required for roadway widening purposes for Lowe's parking lot. Based on the proposed cross-sections, NEAS performed overall stability (Global stability) analysis of the embankment fill along the proposed locations.

5.6.1. Global Stability

The slope stability models were analyzed for long-term (Effective Stress) and short-term (Total Stress) slope stability utilizing the software entitled *Slide 7.0* by Rocscience, Inc. Specifically, the Simplified Bishop, Spencer and GLE analysis methods were used to calculate a factor of safety (FOS) for circular type slope failure. The FOS is the ratio of the resisting forces to the driving forces, with the desired safety factor being more than about 1.3 which approximately equates to an AASHTO resistance factor of less than 0.75 (per AASHTO's LRFD BDS, the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For the analysis, a resistance factor of 0.75 or lower is targeted as the slope does support the embankment fills.

Based on our slope stability analyses for the referenced sections, the minimum slope stability safety factor for both short-term and long-term conditions exceeded the desired value of 1.3. The results of the analyses are summarized in Table 21. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix G.

Table 211: Global Stability	Analysis Summary for the Embankment at Lowe's	

Global Stability Analsysis for Embankments					
Location	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)
Lowe's Parking Lot	B-012-0-22	Effective Stress	1.92	0.52	ОК
		Total Stress	2.77	0.36	OK

5.6.1. Embankment Construction Recommendations

In areas where additional embankment material is proposed along existing slopes (i.e., side-hill sliver fills) that are steeper than 8H:1V but flatter than 4H:1V, it is recommended that the proposed embankment be benched into the existing slopes in accordance with Item 203.05 "Embankment Construction Methods" of the ODOT CMS. For areas where additional embankment material is proposed along existing slopes that are steeper than 4H:1V, it is recommended that the proposed embankment be designed and constructed in accordance with ODOT's GDM. For sidehill fills planned on existing slopes steeper than 4H:1V, ODOT's GDM recommends that *the embankment slopes be constructed utilizing special benching in order to blend the new embankment with the existing slope to prevent the development of a weak shear plane at the interface between the proposed fill and existing slope material (ODOT, 2023). As proposed cross-sections are not available at this time, at this stage of the project a special benching scheme similar to that shown in Figures 800-1, 800-3 or 800-4, as appropriate, of the*

ODOT GDM should be used in areas where special benching is recommended. The height and width dimensions of the special benching scheme shown in these figures should be arranged to minimize the required cut and fill quantities, though the height of a single bench shall not exceed 20 ft without a stability analysis and design per OSHA requirements. Additionally, it may be appropriate to adjust the bench slope shown from a 1H:1V to a 1.75H:1V slope if the existing slope is made up of primarily granular materials. The benched material should be replaced with compacted engineered fill per Item 203 of the ODOT CMS, while proper lift thicknesses and material density should be maintained in the proposed fill per Item 203.06 of the ODOT CMS. In situations where it is not practical to extend the final bench through the existing roadway due to maintenance of traffic concerns, a benching scheme similar to that shown in Figure 800-2 of the ODOT GDM can be used in order to avoid impacting the existing roadway, guardrail or shoulder. This scheme results in the placement of a temporary over-steepened fill that can later be "shaved-off" to bring the slope to the final proposed grade.

5.7. Seismic Site Class

Based on the results of the subsurface exploration, laboratory test data, and the AASHTO Site Class Definitions indicated in Table 3.10.3.1-1 of the *LRFD Bridge Design Specifications*, 9^{th} *Edition* (AASHTO LRFD, 2020), the average Standard Penetration Test blow counts for B-014-0-22, B-018-0-22, and B-019-0-22 were found to be 6 blows/ft, 12 blows/ft, and 8 blows/ft respectively. As a result, the boring locations site is classified as Site Class of E, with N<15 blows/ft.

6. QUALIFICATIONS

This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subsurface conditions at the site of proposed retaining walls for the ROS-159-0.41 project. This report has been prepared for Burgess & Niple Inc., ODOT and their design consultants to be used solely in evaluating the soils at the proposed retaining walls site and presenting geotechnical engineering recommendations specific to this project. The assessment of general site environmental conditions or the presence of pollutants in the soil, rock and groundwater of the site was beyond the scope of this geotechnical exploration. Our recommendations are based on the results of our field explorations, laboratory test results from representative soil samples, and geotechnical engineering analyses. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the appendices as noted. This report does not reflect any variations that may occur between the borings or elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes in the nature, design or location of the proposed culverts are made, the conclusions and recommendations contained in this report should not be considered valid until they are reviewed and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to Burgess & Niple Inc. in performing this geotechnical exploration for the ROS-159-0.41 project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

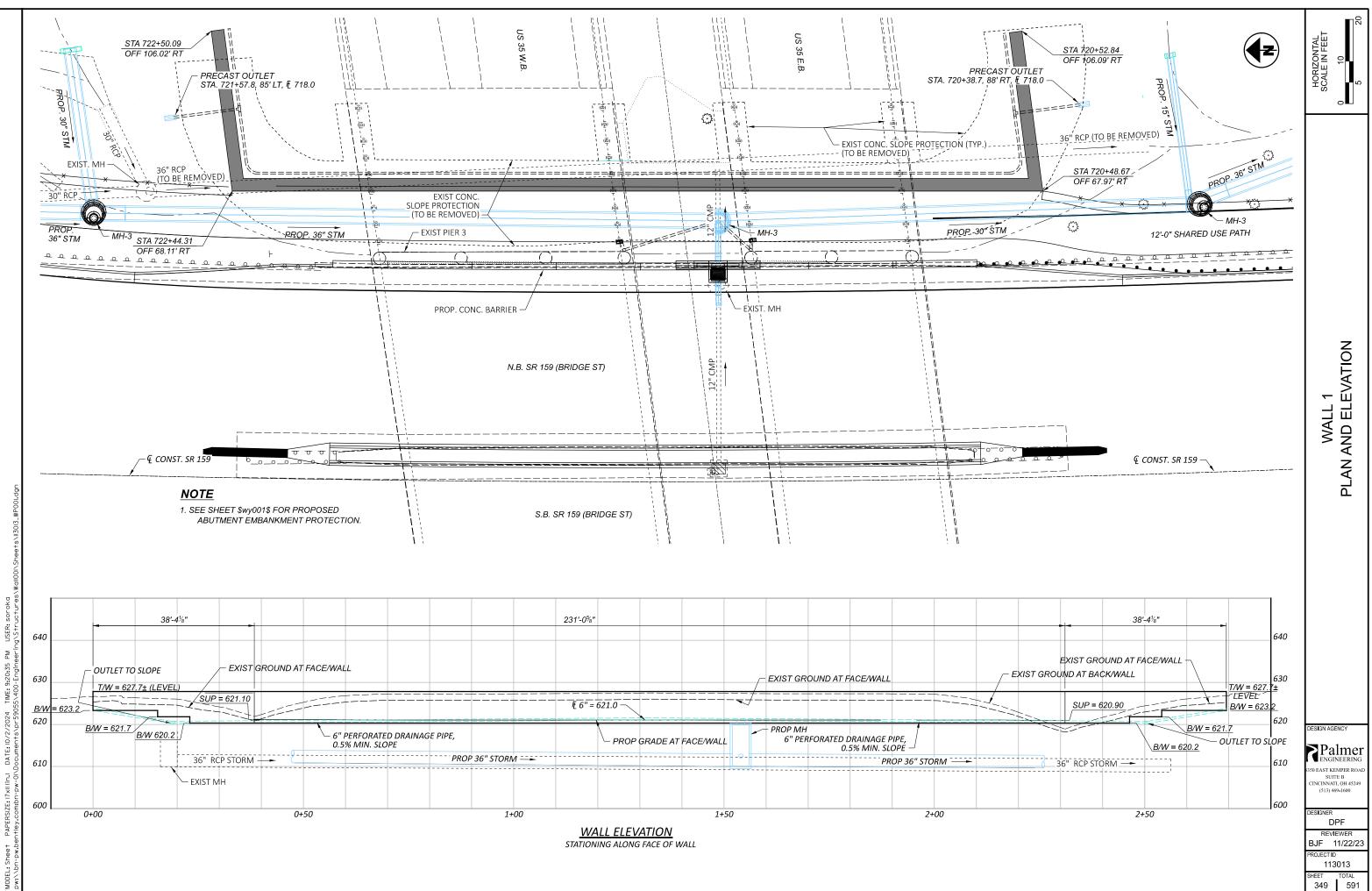
Derar Tarawneh, Ph.D., EIT. *Staff Engineer*

Chunner XO

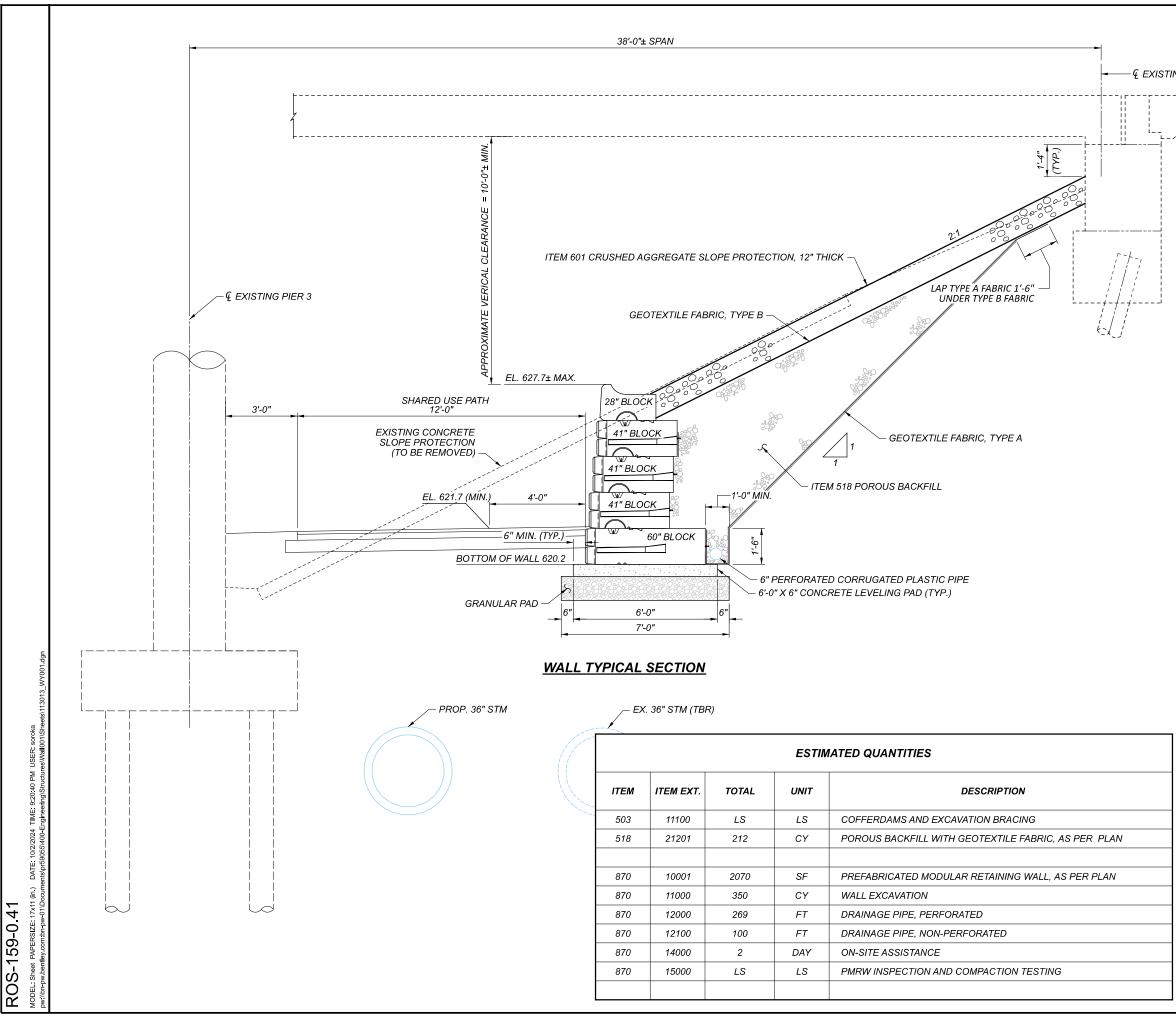
Chunmei He, Ph.D., P.E. *Geotechnical Engineer*

REFERENCES

- AASHTO LRFD. (2020). *LRFD Bridge Design Specifications, 9th Edition*. The American Association of State Highway and Transportations Officials.
- ATC. (2019, January). ATC Hazards by Location. Retrieved from https://earthquake.usgs.gov/designmaps/us/application.php
- FEMA. (2019, February). *FEMA Flood Map Service Center*. Retrieved from FEMA: https://msc.fema.gov/portal/search?AddressQuery=oh-113%20and%20baumhart%20rd#searchresultsanchor
- ODGS. (1998). Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey. page-size map with text, 2p., scale 1:2,100,00.
- ODGS. (2003). Bedrock-topography data for Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map BG-3, 1 CD-ROM, GIS file formats. Revised January 9, 2004.
- ODNR [1]. (2019, February). *Ohio Abandoned Mine Locator Interactive Map*. Retrieved from ODNR Mines of Ohio Viewer: https://gis.ohiodnr.gov/MapViewer/?config=OhioMines
- ODNR [2]. (2019, February). *Ohio Oil & Gas Locator Interactive Map*. Retrieved from ODNR Oil & Gas Well Viewer: https://gis.ohiodnr.gov/MapViewer/?config=OilGasWells
- ODNR. (2006). *Bedrock Geologic Map of Ohio*. Retrieved from Ohio Department of Natural Resources: http://geosurvey.ohiodnr.gov/portals/geosurvey/PDFs/BedrockGeology/BG-1_8.5x11.pdf
- ODNR. (2019, February). *Ohio Water Wells*. Retrieved from ODNR Water Wells Viewer: https://gis.ohiodnr.gov/MapViewer/?config=WaterWells
- ODNR DGS. (2004, January 9). Bedrock-Topography data for Ohio BG-3 Version 1.1.
- ODOT. (2015). *Specifications for Geotechnical Explorations*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- ODOT. (2016). *Location and Design Manual Volume Two Drainage Design*. Columbus, OH: Ohio Department of Transportation: Office of Hydraulic Engineering. Retrieved from https://www.dot.state.oh.us/Divisions/Engineering/Hydraulics/Location and Design Volume 2/LD Volume 2 Archive 12013/ODOT-Location and Design Manual Volume II.pdf
- ODOT. (2022). *Specifications for Geotechnical Explorations*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- ODOT BDM. (2023). Bridge Design Manual 2020 Edition.
- ODOT GDM. (2023). Geotechnical Design Manual 2023 Edition.
- Pavey, R. R., Goldthwait, R. P., Brockman, C. S., Hull, D. N., Swinford, E. M., & Van Horn, R. G. (1999). Quarternary geology of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map M-2. 1:500,000-scale map and 1:250,000-scale GIS files.


USDA. (2015, September). Web Soil Survey. Retrieved from http://websoilsurvey.nrcs.usda.gov

USGS & ODGS. (2006, June). Geologic Units of Ohio. ohgeol.kmz. United States Geologic Survey.



APPENDIX A

SITE PLAN

ROS-159-0.41

- ♀ EXISTING FORWARD ABUTMENT

STANDARD DRAWINGS AND SUPPLEMENTAL SPECIFICATIONS

REFER TO THE FOLLOWING SUPPLEMENTAL SPECIFICATION(S):

870	DATED	7-21-23
878	DATED	1-21-22

ITEM 518 POROUS BACKFILL WITH GEOTEXTILE FABRIC, AS PER PLAN

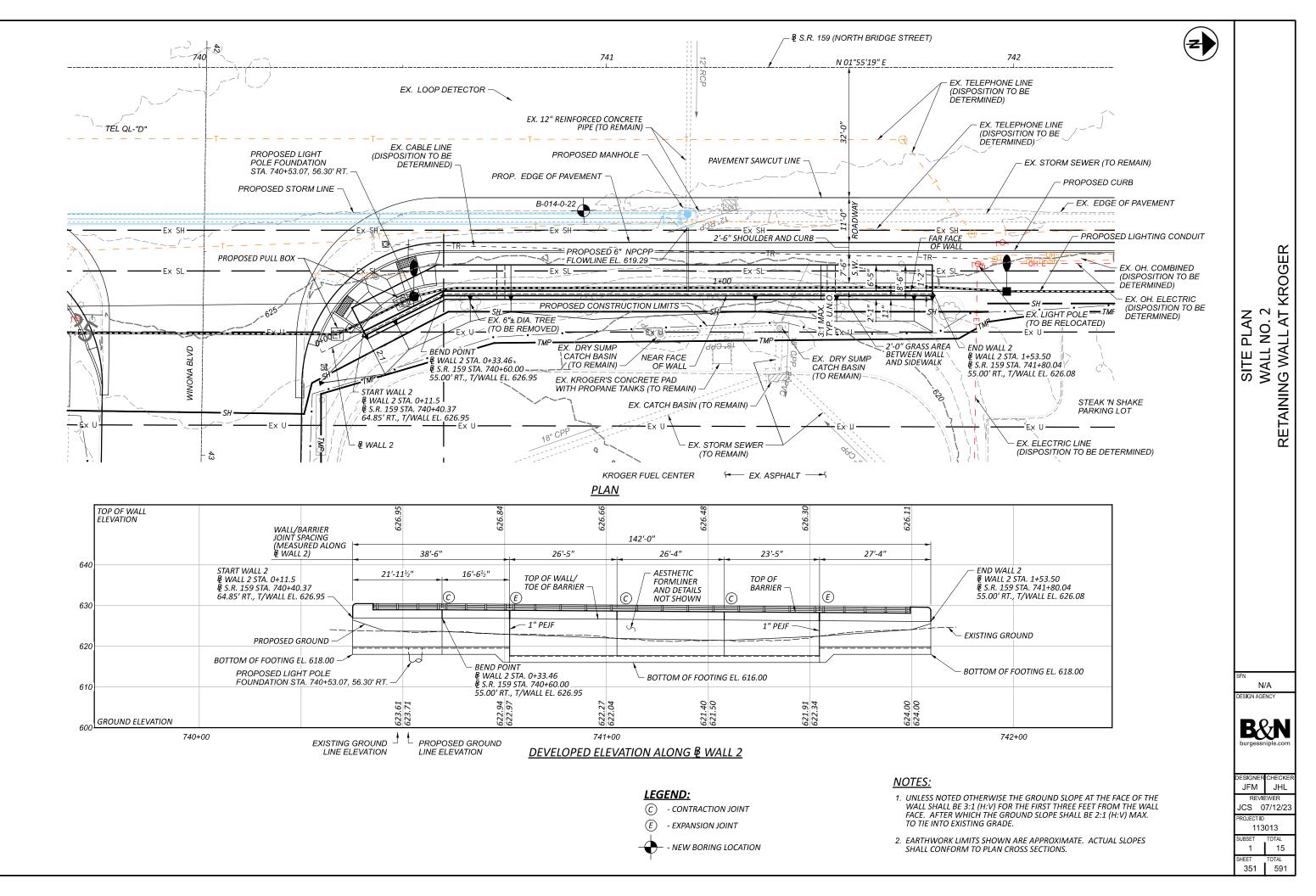
THIS ITEM IS FOR BACKFILL OF THE MODULAR BLOCK RETAINING WALL. USE TYPE A GEOTEXTILE FABRIC.

ITEM 870 PREFABRICATED MODULAR RETAINING WALL, AS PER PLAN

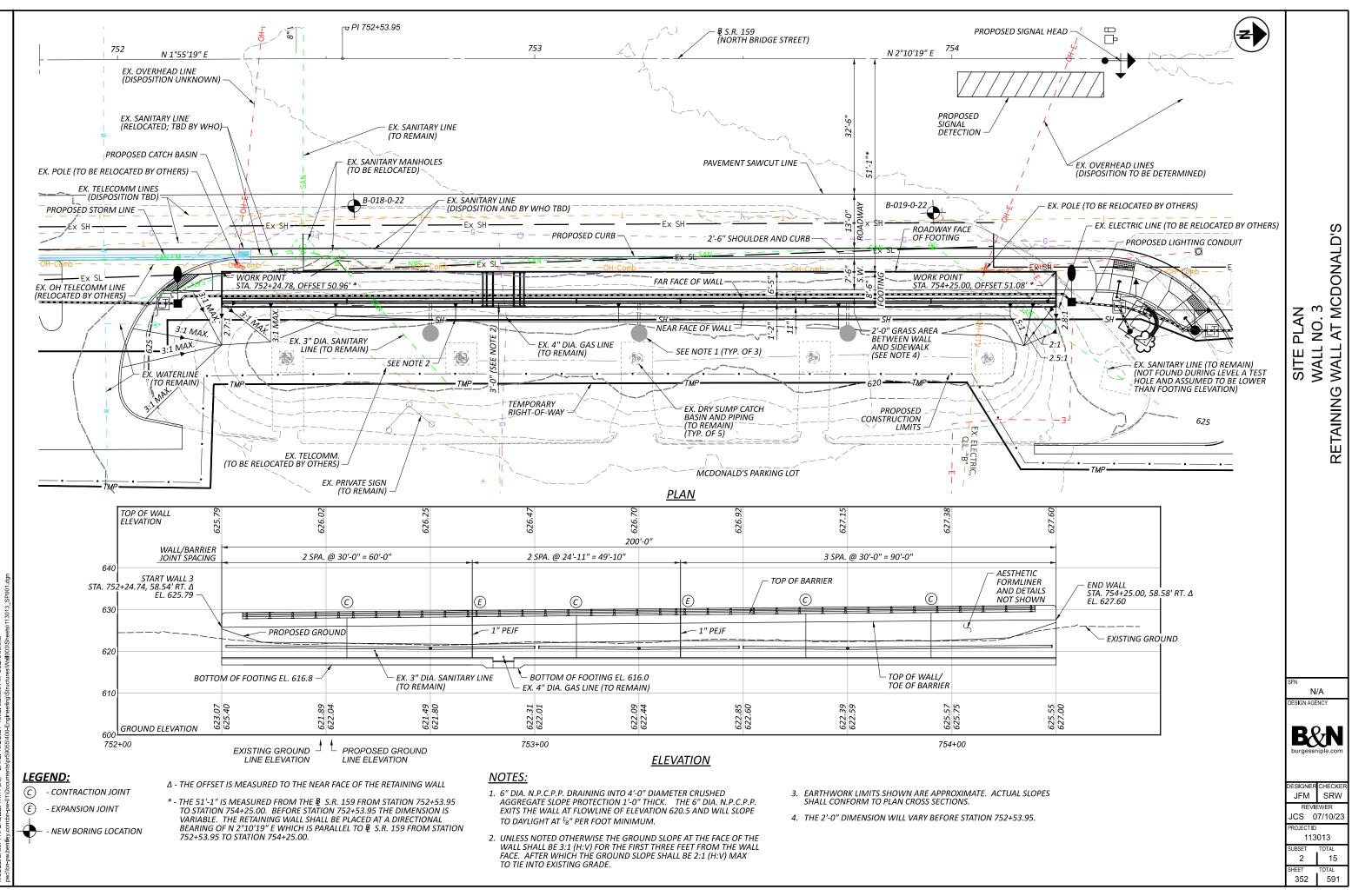
THIS WORK SHALL CONSIST OF PREPARING THE DESIGN, FURNISHING DESIGN COMPUTATIONS, SHOP DRAWINGS, MATERIALS, EQUIPMENT, AND LABOR TO CONSTRUCT A MODULAR BLOCK RETAINING WALL TO THE LIMITS SHOWN IN THE PLANS. REFER TO SUPPLEMENTAL SPECIFICATION 870 FOR SUBMITTAL REQUIREMENTS, INSTALLATION DETAILS, AND OTHER INFORMATION.

INTERLOCKING BLOCKS SHALL BE WET-CAST CONCRETE BY THE MANUFACTURER LISTED BELOW, OR AN APPROVED EQUAL:

REDI-ROCK STRUCTURES (513) 382-5822 JTURTON@REDI-ROCKSTRUCTURES.COM BLOCK FINISH: KINGSTONE


THE FACTORED BEARING RESISTANCE TO BE USED FOR DESIGN PURPOSES IS 3600 PSF.

BACKFILL THE MODULAR BLOCK WALL WITH ITEM 518 POROUS BACKFILL ON TYPE A GEOTEXTILE FABRIC. EXTEND THE TYPE A GEOTEXTILE FABRIC UNDERNEATH THE TYPE B GEOTEXTILE FABRIC OF THE CRUSHED AGGREGATE SLOPE PROTECTION A MINIMUM OF 18". PAYMENT FOR POROUS BACKFILL AND GEOTEXTILE FABRIC IS UNDER A SEPARATE PAY ITEM.


PAYMENT FOR THE PREFABRICATED MODULAR RETAINING WALL INCLUDES MODULAR UNITS, BEARING PADS, JOINT COVERING, MODULAR WALL INFILL MATERIALS, LEVELING PADS, AESTHETIC FINISH AND OTHER ITEMS NECESSARY TO COMPLETE THE WALL INSTALLATION THAT DO NOT HAVE SEPARATE PAY ITEMS. WALL EXCAVATION, DRAINAGE PIPE, AND INSPECTION AND TESTING ARE PAID UNDER SEPARATE PAY ITEMS. INCLUDE PAYMENT FOR ANY NECESSARY EXCAVATION BRACING UNDER ITEM 503 COFFERDAMS AND EXCAVATION BRACING.

SIGN AGENC

ROS-159-0.41 MODEL: Sheet PAPERSIZE: 17X11 (in.) DATE: 10/2/2024 TIME: 9:20:49 PM USER: sonoka pw:Nbn-pw.bentley.comtbn-pw-010bournentsipr590554000-Engineering/Structures/Wall002/Sheets/113013 SP201.dg

ROS-159-0.41 WODEL: Sheet PAPERSIZE: 7771 (In.) DATE: 10/2/2024 TIME: 9:2055 PM USER: 5000

APPENDIX B

SOIL BORING LOGS

PROJECT:			RM / OPERATOR:				L RIG:		ME 45									31, 52'		PLORA B-001-	
YPE:	ROADWAY		IRM / LOGGER:		JL			CME A				-	SNME				SR 1				0-22 PA
PID: <u>113013</u>		DRILLING ME		3.25" HSA				ON DATE:	-	24/22	2				626.			EOB:			10
START: <u>8/2/22</u>		SAMPLING N		SPT				ATIO (%):		72.6			/ LON					50, -82 I	2.976167		
	MATERIAL DESCRIPTION	V	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID			GRAD	ATIO FS	<u> </u>	CL			ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	B
	AND NOTES AND 8.5" BASE (DRILLERS		<u>626.5</u>		RQD		(%)	U	(tsf)	GR	63	FS	51	UL	LL	PL	PI	WC	· · · · · · (· ·)	P.P	
DESCRIPTION)	AND 0.5 DAJE (DRILLERJ		625.0	- 1	_																\otimes
	E. BROWN. COARSE AND F		625.0	-	-																×77
			*****	- 2																	
			_ 3	13	30	61	SS-1	-	13	15	37	23	12	NP	NP	NP	11	A-3a (0)	0	1	
			622.0	- 4	12																- 7 7 7
MEDIUM DENSE	I DENSE TO DENSE, BROWN AND GRAY, 622. AND STONE FRAGMENTS WITH SAND, 5 SILT, TRACE CLAY, DAMP TO MOIST 5		- 5																		
			-	9 10	34	50	SS-2	-	33	22	20	18	7	NP	NP	NP	8	A-1-b (0)	-	4	
LITTLE SILT, TR			- 6 -	18	_												-			× 7 7	
		ēΩ•	- 7	' - <u> </u>																1	
			00	- 8	9 10	28	67	SS-3	-	-	_	-	-	-	-	-	_	11	A-1-b (V)	_	1
				- 9	12		07	00-0		_	_	_	_	_	_				A-1-5 (V)		×77
				- I																	1
				10 	1	20		<u> </u>										10			77
			615.0	-EOB	$1 - 11 \\ 13$	29	56	SS-4	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	7

	DRILLING FIRM	///LOGGER:	NEAS / JL		НАМ	l Rig: Mer:	CME A		IATIC	;	ALIG	SNME	NT:			SR 1			XPLOR B-002	2-0-22
	DRILLING METH		3.25" HSA				ON DATE:	1/	24/22	2				622.			EOB:		ft.	PAC
TART: <u>8/2/22</u> END: <u>8/2/22</u>	SAMPLING MET	HOD:	SPT		ENE	RGY R	ATIO (%):		72.6		LAT	/ LON	NG: _		39.3	34623	<u>84, -82</u>	2.976354		1 OF
MATERIAL DESCRIPTION AND NOTES	1	ELEV. 622.5	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS	N (%) si	/	ATT LL	ERBE PL	-	wc	ODOT CLASS (G	il) SO4	
12.0" ASPHALT AND 6.0" BASE (DRILLERS DESCRIPTION)	È	621.0	- 1 -	-																× 1
Dense, Brown and Gray, Gravel and F ragments with Sand , Little Silt, Tr. Damp			- 2 - - 3 -	21 21 21	41	22	SS-1	-	44	22	14	15	5	NP	NP	NP	7	A-1-b (0) -	- 7 V 7 V 7
		() 617.3	- 4 - - - 5 -	3																
VERY STIFF, DARK BROWNISH GRAY, SIL CLAY, SOME SAND, SOME GRAVEL, DAMF		615.5	6 -	5 5	12	56	SS-2	3.25	22	15	18	28	17	33	18	15	14	A-6a (4) -	
MEDIUM DENSE, BROWNISH GRAY, GRAV SAND AND SILT, TRACE CLAY, MOIST	EL WITH		- 7 -	5 7	11	72	SS-3	-	-	-	-	-	-	-	-	-	16	A-2-4 (\	/) -	V7 7 V7
VERY STIFF TO HARD, BROWNISH GRAY A		613.0	- 9 - - - 10 -	2																7777
DRANGISH BROWN, SILT AND CLAY , SOM IRACE GRAVEL, DAMP TO MOIST	IE SAND,		- 11 -	5 5 6	13	67	SS-4	4.50	7	10	25	33	25	32	18	14	15	A-6a (6) -	7 4 7 7 7
			- 12 - - - 13 - - - 14 -	3 2 4	7	83	SS-5	3.00	-	-	-	-	-	-	-	-	19	A-6a (V) -	7477
OOSE, BROWN, COARSE AND FINE SAND SILT, TRACE GRAVEL, TRACE CLAY, MOIS		608.0	14 15 16	1 3	8	100	SS-6	-	-	-	_	-	-	-	-	-	11	A-3a (V) -	V 7 V 7 7
MEDIUM DENSE TO VERY DENSE, BROWN	, GRAVEL	605.5	17	4																
VITH SAND, TRACE SILT, TRACE CLAY, DA	AMP		18 - 19	4 5 8	16	22	SS-7	-	-	-	-	-	-	-	-	-	7	A-1-b (\	<i>'</i>) -	V 7 V 7 7 V 7
			- 20 - - 21 -	10 13	34	56	SS-8	-	-	-	-	-	-	-	-	-	5	A-1-b (\	/) -	7477
			_ 22 _ _	15																V77V7
			- 23 -																	7477
) [() () () 596.0	25 - - - 26 -	32 31 25	68	61	SS-9	-	-	-	-	-	-	-	-	-	7	A-1-b (\	1) -	VT 7 VT

TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / L	LOGGER: _	NEAS / J. HOD		HAM	L RIG: MER:	CME A		IATIC		STA ALIC	SNME	NT:			SR 1			B-003-	TION ID 0-22 PAGE
	DRILLING METHOD SAMPLING METHO		3.25" HSA SPT				ON DATE: ATIO (%):	-	<u>24/22</u> 72.6	2			_	621			EOB:	<u>7.5 ft.</u> 2.976718		1 OF 1
MATERIAL DESCRIPTION		ELEV.					SAMPLE				ATIO			ΔΤΤ	ERB		55, -62	1		
AND NOTES		621.8	DEPTHS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI) CL		PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
12.0" ASPHALT AND 8.0" BASE (DRILLERS DESCRIPTION)		620.1	- - 1 -	-																$\overline{1}L^{V}$
HARD, BROWN, SANDY SILT , LITTLE CLAY, GRAVEL, DAMP TO MOIST (FILL)	TRACE		- 2 - - - 3 -	14 9 8	21	78	SS-1	4.50	0	11	47	27	15	21	15	6	11	A-4a (1)	100	
		617.3	- 4 - -	6 5	13	100	SS-2	4.50	-	-	-	-	-	-	-	-	17	A-4a (V)	-	
VERY STIFF, BROWNISH GRAY, SILT AND ("AND" SAND, LITTLE GRAVEL, CONTAINS S $_{\rm l}$ DAMP	HELLS,	615.8	- 5 - - - 6 -	6 5 7	13	100	SS-3	3.25	11	10	27	30	22	31	17	14	16	A-6a (5)	-	$\begin{array}{c} \overbrace{7}^{7} L^{V} \overbrace{7}^{7} \\ 1 > \stackrel{1}{>} 1 \\ - \overbrace{7}^{7} L^{V} \overbrace{7}^{7} \end{array}$
\(FILL) DENSE, BLACK AND BROWNISH GRAY, GR \ STONE FRAGMENTS WITH SAND , TRACE S		614.3	-EOB	13 13	41	100	SS-4	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	-	1 > L 1
NOTES: GROUNDWATER NOT ENCOUNTE																				

	DRILLING FIRM / OF SAMPLING FIRM / L		NEAS / JL NEAS / JL			l Rig: Mer:		ME 45			STAT ALIGI			SET		718+0 SR 1		RT. E	KPLOR B-004	ATIO 4-0-22
	DRILLING METHOD:		3.25" HSA				ON DATE:		24/22		ELEV		_	621.3				26.5	ït.	PA
START: <u>8/2/22</u> END: <u>8/2/22</u> S	SAMPLING METHO	D:	SPT		ENEF	RGY R	ATIO (%):		72.6		LAT /	LON	IG: _		39.3	34765	55, -82	2.976470		10
MATERIAL DESCRIPTION AND NOTES		ELEV. 621.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD/ cs		<u> </u>		ATT LL	ERBE PL		wc	ODOT CLASS (G) SO-	
3.5" ASPHALT AND 9.5" CONCRETE AND 6.0 (DRILLERS DESCRIPTION) DENSE TO VERY DENSE, BROWN, GRAVEL		619.7	- 1 - - 2 -																	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SAND, LITTLE SILT, TRACE CLAY, DAMP				8 26 20	56	44	SS-1	-	47	23	13	13	4	NP	NP	NP	4	A-1-b (0	-	
		614.3	- 5 - - 6 - - 7 -	13 14 13	33	83	SS-2	-	-	-	-	-	-	-	-	-	9	A-1-b (V) -	
ARD, BROWN AND DARK GRAY, SILT AND OME TO "AND" SAND, TRACE GRAVEL, DA IOIST			- 8 -	6 5 5	12	89	SS-3	4.50	6	11	27	28	28	31	16	15	14	A-6a (6)	-	
		609.3	- 10 - - 11 - - 12 -	3 3 7	12	100	SS-4	4.50	-	-	-	-	-	-	-	-	23	A-6a (V)	-	
TIFF TO HARD, BROWN, CLAY , "AND" SILT AND, TRACE GRAVEL, DAMP TO MOIST	, TRACE		- - 13 - - 14 -	2 3 5	10	100	SS-5	4.25	1	3	6	46	44	47	23	24	22	A-7-6 (15) -	
			15 16 17	0 3 2	6	100	SS-6	2.75	-	-	-	-	-	-	-	-	25	A-7-6 (V) -	
		603.3	- 18 -	5	16	70		1.25	-	-	-	-	-	-	-	-	25	A-7-6 (V		
IEDIUM DENSE, BROWN, GRAVEL AND ST RAGMENTS WITH SAND AND SILT , TRACE AMP	CLAY,	601.8	- 19 -	6 7	10	72	SS-7B	-	-	-	-	-	-	-	-	-	12	A-2-4 (V) -	
OOSE TO MEDIUM DENSE, BROWN, GRAV TONE FRAGMENTS , SOME SAND, TRACE S RACE CLAY, DAMP TO MOIST			- 20 - - 21 - - 22 -	3 3 2	6	33	SS-8	-	-	-	-	-	-	-	-	-	9	A-1-a (V) -	
			- 23 - - 23 - - 24 -	5																× 7 7 7 7 × 7
		594.8	-EOB	5 4	11	44	SS-9	-	-	-	-	-	-	-	-	-	14	A-1-a (V) -	7 47
NOTES: GROUNDWATER NOT ENCOUNTE						EQET						1171		<u> </u>						
ABANDONMENT METHODS, MATERIALS, QU									100					J.						

AI 5.0" ASPHALT AND 8.0" C (DRILLERS DESCRIPTION)	8/2/22 AL DESCRIPTION ND NOTES	DRILLING M		PERATOR: OGGER: _	NEAS /			l Rig: Mer:		ME 45		;	ALIG	INME	NT:			SR 1			PLORA B-005-	0-22
MATERIA AI 5.0" ASPHALT AND 8.0" C (DRILLERS DESCRIPTION)	AL DESCRIPTION			-	3.25" HSA				ON DATE:		24/22				_	619.8			EOB:			PAG
AI 5.0" ASPHALT AND 8.0" C (DRILLERS DESCRIPTION)		SAMPLING			SPT		ENE	_	ATIO (%):		72.6		LAT					_	9, -82	.976562		1 OF
5.0" ASPHALT AND 8.0" C (DRILLERS DESCRIPTION)	NDNOIES	1		ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			GRAD				ATT				ODOT CLASS (GI)	SO4 ppm	BA FI
(DRILLERS DESCRIPTION)				619.8		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	0EA00 (01)	ppin	
LITTLE SAND, TRACE SILT) AND GRAY, GRA	AVEL,		618.2	- - 1 - 2																	V 7 7 V 7
			0000	615.3	- 3 - 4	6 6 5	13	56	SS-1	-	76	10	5	6	3	NP	NP	NP	6	A-1-a (0)	-	7 4 7
STIFF TO HARD, GRAYISH SILT AND CLAY , SOME SA MOIST TO DAMP					- 5 - 6 - 7	2 7 3	12	67	SS-2	3.75	2	1	27	32	38	32	17	15	18	A-6a (9)	-	V 7 V 7 V
					- 8 - 9	³ 2 7	11	56	SS-3	3.50	-	-	-	-	-	-	-	-	14	A-6a (V)	-	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
					- 10 - 11 - 12	6 2	10	89	SS-4	4.50	-	-	-	-	-	-	-	-	14	A-6a (V)	-	777777
					13 14	5 7 5	15	67	SS-5	2.00	-	-	-	-	-	-	-	-	20	A-6a (V)	-	7 4 7 4 7
					- 15 - 16 - 17	- ⁵ 5	11	94	SS-6	1.75	-	-	-	-	-	-	-	-	22	A-6a (V)	-	7 4 7 7 7
					- 18 19		10	89	SS-7	2.75	-	-	-	-	-	-	-	-	13	A-6a (V)	-	7 4 7 7 7 7
				598.3	-EOB	H ⁴ 7	15	67	SS-8	3.00	-	-	-	-	-	-	-	-	18	A-6a (V)	-	- < 7 / <

	OJECT: ROS-159-0.41 PE: RETAINING WALL	DRILLING FIRM				L RIG: MER:		ME 45 UTON		<u>;</u>		tion Snme		FSEI		′21+4 SR 1	5, 103 59	8' RT. E	KPLORA B-006-	-
	0: <u>113013</u> SFN:	DRILLING MET		3.25" HSA			ON DATE:		24/22	2			_	638.			EOB:		ť	PAGE 1 OF 2
0.41.	ART: <u>8/9/22</u> END: <u>8/9/22</u>	SAMPLING ME		SPT	ENE	1	ATIO (%):		72.6					ΔΤΤ	39. ERBI		-	2.976366		
159-(MATERIAL DESCRIPTIOI AND NOTES	v	ELEV. 638.9	DEPTHS SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)		_	FS	SI) CL		PL		wc	ODOT CLASS (GI) SO4	BACK FILL
	5" TOPSOIL (DRILLERS DESCRIPTION)	1	1038.7			(,,,)		((0))												JLV J
ž Ľ	ENSE TO VERY DENSE, BROWN, SANDY DME GRAVEL, TRACE CLAY, DAMP	'SILT,		1 2																1 > L
0.41/GINT				-3 $-12-4$ -13	33	89	SS-1	-	31	15	16	32	6	NP	NP	NP	7	A-4a (1)	-	
ROS-154-				$5 \frac{11}{20}$	52	67	SS-2	-	-	-	-	-	-	-	-	-	8	A-4a (V)	-	
			631.9	- 7 -																
	ARD, BROWN, SANDY SILT , LITTLE GRA TTLE CLAY, DAMP	VEL,		$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	17	33	SS-3	4.50	18	12	32	21	17	23	17	6	12	A-4a (1)	-	
ACIIVE ACIIVE F	EDIUM DENSE, BROWN, gravel and s Ragments with sand and silt, trad		629.4	- 10 - 5 - 11	25	44	SS-4				_	_		_		_	10	A-2-4 (V		
	AMP		S 626.9			44	33-4	-	-	-	-	-	-	-	-	-	10	A-2-4 (V	-	-1×LV -
	ARD, BROWN AND GRAYISH BROWN, S A			- 12 -																- 7 LV 7
	TTLE TO SOME CLAY, TRACE TO LITTLE AMP	GRAVEL,		-13 -5 10 -14 -13	28	67	SS-5	4.50	1	20	36	24	19	20	15	5	10	A-4a (2)	-	
2 09:30 - X:				-15 $-5-16 -12-14$	31	56	SS-6	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	
- 9/28/24				-17 - -18 - $\frac{5}{10}$	27	72	SS-7	4.50			_	_			_	 -	12	A-4a (V)		
DOT.GD1				- 19 - 12		12		4.00									12	71 44 (V)		
ਤ s	S-8 AND SS-9 BECOME SLIGHTLY ORGA ONTAIN WOOD FIBERS	NIC,		-20 $-10-21$ -12 12 17	35	83	SS-8	4.50	-	-	_	-	-	-	-	-	13	A-4a (V)	-	
8.5 X				- 22 -																
-FALES (614.4	-23 $-1217-24$ -20	45	83	SS-9	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	
≤ 0	EDIUM DENSE TO DENSE, GRAYISH BRO RAVEL AND STONE FRAGMENTS WITH LT, TRACE CLAY, DAMP			-25 -12 -12 -12	30	72	SS-10	-	-	-	-	-	-	-	-	-	7	A-2-4 (V) -	- 1 < L - 1 < L - 1 < L - 1 < L - 1 < L
				20 13 - 27																
STANDAR			0 (0 609.4	-28 -13 -29 -17 -17	36	83	SS-11	-	-	-	-	-	-	-	-	-	10	A-2-4 (V) -	

	PID:	113013	SFN:		PROJECT:	F	ROS-159-0.	.41	STA	FION / C	FFSE	T: 7	21+45, 10	3' RT.	S	START	: _ 8	/9/22	_ E	ND:	8/9	9/22	_ P	PG 2 OF 2	B-006	-0-22
Ŀ			MAT	ERIAL DESCRIPTIO AND NOTES	N		ELEV. 608.9	DEPTHS	6	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIO FS	N (%) si	CL	ATT	ERBE PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
59-0.41.G				DY SILT, LITTLE TO S IP TO MOIST (contine	SOME CLAY, ued)			-	- 31 -	11 12 14	31	83	SS-12	4.50	4	25	32	22	17	23	16	7	12	A-4a (1)	-	× L × L × L × L × T × L × T × T × T × T × T × T × T × T
OS-159-								-	- 32 -																	$\Gamma \neg < \Gamma$
SOIL PROJECTS/ROS-159-0.41/GINT FILES/XROS									- 33 - - 34 -	10 11 11	27	67	SS-13	4.50	-	-	-	-	-	-	-	-	16	A-4a (V)	-	
GINT FI								-	-	12																1 × L × 7 7 L × 7
59-0.41/0									- 36 -	12 10	27	78	SS-14	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	J>NJ JLVJ
DS-15								-	- 37																	
ECTS/R(- 38 - - ₃₉ -	9 13 11	29	67	SS-15	4.50	-	-	-	-	-	-	-	-	17	A-4a (V)	-	
ROJI								F	- 40 T	0																
E SOIL F							597.4	_еов_	- 41 -	7	19	44	SS-16	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	

	PROJECT:	ROS-159-0.41 ROADWAY	DRILLING FIRM / C SAMPLING FIRM /	LOGGER:	NEAS / JL		НАМ	l Rig: Mer:	CME A		IATIC		STAT ALIG	NME	NT:		R	AMP			B-007-	
GPJ	PID: <u>1130</u> START:	013 SFN: 8/2/22 END: 8/2/22	DRILLING METHOD		3.25" HSA SPT				ON DATE: ATIO (%):		24/22 72.6	2	ELE\			621.			EOB:	<u>7.5 ft</u> 976696		PAGE 1 OF 1
0.41.	START.	MATERIAL DESCRIPTION		ELEV.		SPT/			SAMPLE		-					ΔΤΤ	ERBE		· 1, - 02	<u>970090</u> орот	 	BACK
-159-		AND NOTES	•	621.2	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL		PL	PI	wc	CLASS (GI)		FILL
X: ACTIVE PROJECTS/ACTIVE SOIL PROJECTS/ROS-159-0.41/GINT FILES/XROS-15	(DRILLERS MEDIUM D LITTLE SIL (FILL) VERY LOO GRAVEL V MODERAT AND BRICH (FILL) MEDIUM D	AND NOTES ALT AND 7.0" CONCRETE AND 5 DESCRIPTION) ENSE, BROWN, GRAVEL WITH T, TRACE CLAY, DAMP SE TO LOOSE, BROWN AND BL /ITH SAND AND SILT, TRACE CL ELY ORGANIC (4.0%), CONTAIN (FRAGMENTS, DAMP ENSE, ORANGISH BROWN, CO,), LITTLE SILT, TRACE GRAVEL,	ACK, AY, SS-2 IS S ROOTS	619.7 618.2 615.2	- 1 - 2 - 3 - 4 - 5 - 6 7	RQD 5 6 3 2 1 2 3 2 10 15 9	15 4 6 29	(%)28175689	ID SS-1 SS-2 SS-3 SS-4	(tsf) - - -	GR 30 27 -	cs 29 26 -	17	sı 18 23 -	6	NP	PL NP -	PI NP -	wc 8 13 6 16	CLASS (GI) A-1-b (0) A-2-4 (0) A-2-4 (V) A-3a (V)	60	FILL V T J

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 9/28/22 09:30

	DRILLING FIRM / C					L RIG:		ME 45)6, 14'		PLORA B-008-	
TYPE: <u>ROADWAY</u> PID: 113013 SFN:	SAMPLING FIRM /		NEAS / JL 3.25" HSA			MER:			24/22							RAMP	EOB:			PAG
	DRILLING METHOL SAMPLING METHO		SPT				ON DATE: ATIO (%):		<u>24/22</u> 72.6	<u> </u>		/ LOI		017.				1.5 n. 2.976406		1 OF
			<u>- 3F1</u>	0.0.7													+9, -02			1
MATERIAL DESCRIPTION	1	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR		FS	N (%) CL		ERBI	PI	wc	ODOT CLASS (GI)	SO4 ppm	BA FI
AND NOTES 9.5" ASPHALT AND 8.5" BASE (DRILLERS		617.7		NQD		(%)	עו	(tsf)	GR	US	гə	51	UL		PL	PI	WC		PP	
DESCRIPTION) VERY LOOSE TO MEDIUM DENSE, BROWN BLACK, GRAVEL WITH SAND, TRACE SILT,		616.2																		×77 777 777
CLAY, CONTAINS BRICK FRAGMENTS AND SS-2 BECOMES SLIGHTLY ORGANIC, DAM (FILL)	D ROOTS, 🧑 t		- 3 - - 4 - 	5 6 6	15	28	SS-1	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	0	
		610.7	- 5 - - 6 - - 7 -	3 2 1	4	17	SS-2	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	747
LOOSE, BROWN, SANDY SILT , LITTLE CLA GRAVEL, MOIST	IY, TRACE		L . 1	2 3 2	6	56	SS-3	-	1	2	61	24	12	NP	NP	NP	17	A-4a (0)	-	V 7 7 V 7 V
MEDIUM DENSE, GRAY, GRAVEL AND STC FRAGMENTS WITH SAND, LITTLE SILT, TR \DAMP	DNE ACE CLAY,	607.5 606.2	- 10 - - 11 -	10 15 9	29	89	SS-4	-	37	14	26	17	6	NP	NP	NP	8	A-1-b (0)	-	

PROJECT: ROS-159-0.41 TYPE: EMBANKMENT FOUNDATION	DRILLING FIRM / OPERATOR SAMPLING FIRM / LOGGER:			l Rig: Mer:		ME 45 UTON		>	STAT ALIG			FSET		725+3 SR 1	34, 36' 59	LT. E		ATION 9-0-22
PID: 113013 SFN:	DRILLING METHOD:	3.25" HSA			ON DATE:	-	24/22	2			_	621.			EOB:		ť	PAGE
START: <u>8/2/22</u> END: <u>8/2/22</u>	SAMPLING METHOD:	SPT	ENEF		ATIO (%):		72.6		LAT						35, -82 -	.976829		1 OF
MATERIAL DESCRIPTION AND NOTES	V ELEV. 621.4	DEPTHS SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs	ATIO FS	<u> </u>) CL		ERB	ERG PI	wc	ODOT CLASS (GI) SO4	
12.0" ASPHALT AND 6.0" BASE (DRILLER DESCRIPTION)	S 619.9			(70)			OIT	00	10	01	0L							T L
MEDIUM DENSE, BROWN, GRAVEL AND S FRAGMENTS WITH SAND, TRACE SILT, TR DAMP	RACE CLAY, 618.4	-2 -	15	44	SS-1A SS-1B	- 2.75		<u>26</u> 21			5 17	NP 28	<u>NP</u> 17	<u>NP</u>	5 12	<u>A-1-b (0)</u> A-6a (1)		- 1>
STIFF TO VERY STIFF, BROWN, SILT AND "AND" SAND, LITTLE TO SOME GRAVEL, S CONTAINS NO INTACT SOIL FOR HP REAL DAMP	S-2		10															
VERY STIFF, ORANGISH BROWN AND DA	614.4	65 7	12	56	SS-2	-	24	18	18	22	18	27	16	11	11	A-6a (1)	-	
SILTY CLAY, SOME SAND, TRACE GRAVE CONTAINS IRON STAINING, CONTAINS NO SOIL FOR HP READINGS, DAMP	D INTACT 611.9	- 8 - ⁸ 7 - 9 - 7	17	89	SS-3	-	2	3	22	38	35	35	19	16	19	A-6b (10) -	
VERY STIFF, ORANGISH BROWN, SILT AN "AND" SAND, TRACE GRAVEL, IRON STAIN		-10 - 3 $-11 - 5$ 8	16	89	SS-4	3.50	0	1	44	31	24	27	16	11	17	A-6a (4)	-	
	607.6	-12 -13 -13 -11 -13 -11 -13	39	33	SS-5	3.00	-	-	-	-	-	-	-	-	18	A-6a (V)	_	V7 7 V7
DENSE, LIGHT BROWN, GRAVEL AND STO FRAGMENTS WITH SAND , LITTLE SILT, TR DAMP	DNE	-14 $-21-15$ -7		50											10			
	604.9	16 918	33	56	SS-6	-	-	-	-	-	-	-	-	-	10	A-1-b (V) -	42
NOTES: GROUNDWATER NOT ENCOUNT ABANDONMENT METHODS, MATERIALS, C																		

			ENER 	rgy R/		7	GR	BRADA cs	ELEVA	ONG: %) CL	ATT	39.3 ERBE	35032 ERG PI				PAGE 1 OF 1 BACH FILL
MATERIAL DESCRIPTION AND NOTES 12.0" ASPHALT AND 6.0" BASE (DRILLERS DESCRIPTION) VERY STIFF TO HARD, BROWN, SILTY CLAY, SO SAND, LITTLE TO SOME GRAVEL, SS-1 CONTAIN	ELEV. 622.5 621.0 OME	DEPTHS SPT RQI - 1 - - 2 - - 3 - 2 - 4 - - 5 - - 6 - 2 2	7/ N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRADA CS	TION (FS S	%) CL	LL	PL	PI		ODOT	 SO4	BACP FILL
AND NOTES 12.0" ASPHALT AND 6.0" BASE (DRILLERS DESCRIPTION) VERY STIFF TO HARD, BROWN, SILTY CLAY, SO SAND, LITTLE TO SOME GRAVEL, SS-1 CONTAIN	622.5 621.0 OME	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	C ^{1N} 60 6 3	(%)	ID	(tsf)	GR	CS	FS Si	CL	LL	PL	PI	wc			FILL $\leq L^{\vee}$
12.0" ASPHALT AND 6.0" BASE (DRILLERS DESCRIPTION) VERY STIFF TO HARD, BROWN, SILTY CLAY , SO SAND, LITTLE TO SOME GRAVEL, SS-1 CONTAIN	0ME 621.0	$\begin{array}{c} 2 \\ - 2 \\ - 3 \\ - 4 \\ - 5 \\ - 6 \\ - 2 \\ 2 \\ - 4 \\ - 5 \\ - 6 \\ - 2 \\ 2 \\ - 4 \\ - 5 \\ - 2 \\ 2 \\ - 4 \\ - 5 \\ - 2 \\ - 2 \\ - 4 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ - 5 \\ - 2 \\ - 4 \\ - 5 \\ -$	3					40		1 26	26	10					TL
		$\begin{array}{c} - & 3 \\ - & 4 \\ - & - \\ - & 5 \\ - & 6 \\ - & 6 \\ - & 2 \end{array}$	3	33	SS-1	4.00	23	10		1 26	26	10					1 > 1
		6 2					20	10	17 24	+ 20	30	19	17	17	A-6b (5)	60	
		- 7 -	2 5	72	SS-2	3.00	-	-		-	-	-	-	21	A-6b (V)	-	
		8 4 4	5	56	SS-3	4.25	23	11	14 26	3 26	36	18	18	16	A-6b (6)	-	
	611.0	- 10 - 5 - 11 - 4	11 5	44	SS-4	3.00	-	-		-	-	-	-	19	A-6b (V)	-	$\langle L \rangle$ $\langle T \rangle$ $\langle T \rangle$ $\langle T \rangle$ $\langle T \rangle$ $\langle T \rangle$
NOTES: GROUNDWATER NOT ENCOUNTERED ABANDONMENT METHODS, MATERIALS, QUANT							то с	OVERH	IEAD U	TILITI	ES.						

PROJECT: ROS-159-0.41 YPE: ROADWAY	DRILLING FIRM / OPER/	-					C CME A						/ OFI ENT:			7 <u>31+0</u> SR 15) <u>3, 48'</u> 59	RT. E	XPLOR/ B-011	
PID: <u>113013</u> SFN:	DRILLING METHOD:		3.25" HSA			-	ON DATE:		/24/22									L 7.51		PA
START: 8/11/22 END: 8/11/22	SAMPLING METHOD:		SPT				ATIO (%):	-	72.6	<u> </u>	LAT			020.				2.976446		1 C
MATERIAL DESCRIPTIO	-	=\/		SPT/			SAMPLE	_	-		DATIO			ΔΤΤ	ERBE		, <u>02</u>	1		
AND NOTES	625		DEPTHS	RQD		(%)	ID	(tsf)							PL	PI	wc	ODOT CLASS (G	il) SO4	
6.0" ASPHALT AND 11.0" BASE (DRILLER	<u> </u>	5.0		1.QD		(70)		((3))	OIX.	00	10	01	02							×
DESCRIPTION)	624	1 1	- 1 -]																×
, MEDIUM DENSE, BROWN, GRAVEL WITH		+.4		8																-1
LITTLE SILT, TRACE CLAY, DAMP	o Co		_ 2 -	9	24	56	SS-1	-	47	24	12	12	5	NP	NP	NP	10	A-1-b (0) 0	7 4 7
	00		- 3 -	2 11																-
	å∨ \ ∕ d		- 4 -	5	22	28	SS-2	-	-	-	-	-	-	-	-	-	8	A-1-b (V	') -	1
				13 4																
			_ 5 -	7	13	56	SS-3	-	-	-	-	-	-	-	-	-	5	A-1-b (V	クリー -	. 1
		9.8	- 6 -	4 5																-
VERY STIFF, BROWN, SANDY SILT , SOMI TRACE GRAVEL, DAMP			- 7 -	6	12	44	SS-4	3.00	9	15	24	29	23	25	15	10	15	A-4a (3) -	-
	618	8.3	EOB /	4														,	,	4

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

PROJECT: ROS-159-0.41 TYPE: RETAINING WALL PID: 113013 SFN: 0/0/02	DRILLING FIRM / C SAMPLING FIRM / DRILLING METHOL	LOGGER: _ D:	NEAS / JI 3.25" HSA		HAM CALI		CME A ON DATE:	1/	/ATIC /24/22		ALIG ELE\	NME /ATIC	:nt: DN: _		9 (MS	SR 1 SL)	EOB:	16.5 ft.		
START: <u>8/3/22</u> END: <u>8/3/22</u> MATERIAL DESCRIPTION	SAMPLING METHO	DD:	SPT		ENE		ATIO (%): SAMPLE	-	72.6					<u> </u>	39. ERBE		52, -82	.976421		-
AND NOTES		626.9	DEPTHS	SPT/ RQD	N ₆₀	(%)	ID	⊓⊢ (tsf)				<u> </u>	, CL		PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	BAC FILI
9.5" ASPHALT AND 2.5" BASE (DRILLERS DESCRIPTION) LOOSE, BROWN, STONE FRAGMENTS, LIT TRACE SILT, TRACE CLAY, DAMP		625.4		4 2 3	6	11	SS-1	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	60	VT 7 VT 7 VT VT 7 VT 7 VT
VERY STIFF, BROWN, SILT AND CLAY, "AN TRACE GRAVEL, CONTAINS IRON STAININ	ND" SAND, IG, DAMP	619.9		- 2 3 3	7	56	SS-2	3.50	2	29	31	17	21	29	14	15	13	A-6a (2)	-	7 < L > L > L > L > L > L > L > L > L > L
DENSE, BROWN, GRAVEL AND STONE FR LITTLE SAND, TRACE SILT, TRACE CLAY, D		617.4	- 8 · - 9 ·	3 13 14	33	33	SS-3	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	-	
VERY DENSE, BROWN AND GRAY, GRAVE STONE FRAGMENTS WITH SAND , LITTLE S TRACE CLAY, DAMP			- 10 · - 11 · - 12 ·	9 25 20	54	56	SS-4	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	-	
			- 13 - 14 -	16 27 22	59	89	SS-5	-	31	29	19	17	4	NP	NP	NP	4	A-1-b (0)	-	
		610.4	– 15 - – – 16 -	9 22 21	52	67	SS-6	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	-	
NOTES: GROUNDWATER NOT ENCOUNT ABANDONMENT METHODS, MATERIALS, C																				

PROJECT: TYPE:	ROS-159-0.41 RETAINING WALL		RM / OPERATOR: IRM / LOGGER:				.L RIG: MER:		ME 45		<u></u>	STA ⁻ ALIG			FSET		738+6 SR 1	36, 35' 59	RT. EX	PLORA B-013-	
PID: 113013		DRILLING ME		3.25" HSA	<u> </u>			ON DATE:		24/22					626			EOB:			PAG
START: 8/3		SAMPLING M		SPT				ATIO (%):		72.6		LAT		_	020.				2.976398		1 OF
<u> </u>	MATERIAL DESCRIPTIO		ELEV.		SPT/			SAMPLE				ATIO			ΔΤΤ	ERBE		1 	1		
	AND NOTES	N	626.5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)		cs	FS	SI) CL				wc	ODOT CLASS (GI)	SO4 ppm	B/ F
9 5" ASPHAL	T AND 2.5" BASE (DRILLERS	3	××				(,,,)	10	((0))												
DESCRIPTION	4)	-	625.0	<u> </u>	_																×
HARD BROW	N, SILT AND CLAY, "AND" S	AND TRACE	023.0	t a	-																× 7 7
	1 CONTAINS IRON STAINING			- 2																	- ×
MOIST				- 3	4 3	10	100	SS-1	4.25	0	14	40	21	25	28	15	13	14	A-6a (3)	100	1
				– 4	5					-											1
					-																- 7 - 7 - 7
				- 5	2	4.0															77
				- 6	4 9	16	89	SS-2	4.50	-	-	-	-	-	-	-	-	16	A-6a (V)	-	1
				- 7	_																77
			618.5	- ·	9			SS-3A	4.25	-	-	-	-	-	-	-	-	13	A-6a (V)	-	< 7 7
DENSE, BROV	WN AND GRAY, GRAVEL AN	D STONE		- 8	20	47	28	SS-3B	-	-	_	_	-	-	-	-	-	5	A-1-b (V)	_	
	WITH SAND, TRACE TO LIT	ΓLE SILΤ,	8 C	- 9	19			00.05										Ŭ	7(15(0)		- 1
TRACE CLAY,	DAMP			- 10	-																7
			o (Va	-	13 17	38	56	SS-4	_	37	29	14	16	4	NP	NP	NP	4	A-1-b (0)	_	7 4 7
			6.0	- 11	14		00	00 4		01	20	17	10	-				-	// 1 0 (0)		- 1
			n Q n	- 12	_																$\frac{1}{7}$
			6 Ga	- 13	12																-1/
				-	14 15	35	44	SS-5	-	-	-	-	-	-	-	-	-	4	A-1-b (V)	-	V 7 7
				14																	1
			Do d	- 15	12																-1;
				- 16	18	44	56	SS-6	-	-	-	-	-	-	-	-	-	4	A-1-b (V)	-	× 7 7
			<u>a (</u> 610.0	-EOBEOB	18																17.
	OUNDWATER NOT ENCOUN NT METHODS, MATERIALS,								~~												

PROJECT: TYPE:EMB	ROS-159-0.41 BANKMENT FOUNDATION		RM / OPERATOR: RM / LOGGER:				L RIG: MER:		ME 45 UTON		;		TION GNME				740+9 SR 1	94, 35 59	' RT. E	XPLOR/ B-014	-0-22
PID: 113013	B SFN:	DRILLING ME	THOD:	3.25" HSA				ON DATE:	1/	24/22	2				625			EOB:		ft.	PAG
START: <u>8/3</u>	3/22 END: <u>8/3/22</u>	SAMPLING M		SPT				atio (%):		72.6			/ LOI						2.976376		1 OF
	MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAE cs		<u> </u>) CL		ERB PL	ERG PI	wc	ODOT CLASS (GI) SO4	
12 0" ASPHAI	AND NOTES LT AND 7.0" BASE (DRILLER	S	625.5		RQD		(%)	U U	(ISI)	GR	63	гə	51	UL	LL	PL	PI	wc		/	
DESCRIPTION			623.9	- 1 -	1																×
VERY STIFE	BROWN, SILT AND CLAY, SO	OME SAND	CXX 023.9	- 2 -																	1 L 1 X
TRACE GRAV		o o,			4															-	- 14
				- 3 -	3	7	44	SS-1	3.50	6	11	23	37	23	31	18	13	18	A-6a (6)	20	1 >
			621.0	- 4 -																	1>
	ORANGISH BROWN, SILT AI			- 5 -	3																- 14
STAINING, DA	TRACE GRAVEL, CONTAINS	IRON		- 6 -	Č 2 _4	7	56	SS-2	2.50	-	-	-	-	-	-	-	-	14	A-6a (V)	-	17 17 17
,				- 7	4																-1>
			617.9		3																
	WN, COARSE AND FINE SAN CLAY, TRACE GRAVEL, DAM		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 8 -	3	6	89	SS-3	-	-	-	-	-	-	-	-	-	9	A-3a (V)	-	5
			616.0	- 9 -	2																-1>
	TO LOOSE, BROWN, GRAV			- 10 -	3															_	
SILT, TRACE	GMENTS WITH SAND, TRACE CLAY, DAMP	IO LITILE		- 11 -	3	6	56	SS-4	-	25	34	17	17	7	NP	NP	NP	7	A-1-b (0) -	1
, -	-)				2																
			\mathcal{C}	- 12	2																-1:
				- 13 -	1	4	39	SS-5	-	-	-	-	-	-	-	-	-	12	A-1-b (V) -	1
			٩ ٩	- 14 -	2																- 1×
				- 15 -	3															_	-1>
			609.0	- 16 -	3	8	22	SS-6	-	-	-	-	-	-	-	-	-	6	A-1-b (V) -	
			N - 009.0	EOB	4																
NOTES' GP	OUNDWATER NOT ENCOUN																				

	SAMPLING FIRM	- DD:		 	HAMI CALII			1/		;	ALIG	NME /ATIC	: TNT: 		4 (MS	SR 1: SL)	EOB:			
ART: <u>8/3/22</u> END: <u>8/3/22</u> MATERIAL DESCRIPTIC AND NOTES	-	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE	HP	Ċ	GRAD CS	ATIO)	ATT	ERBE		wc	ODOT CLASS (GI)	SO4 ppm	BAC FILI
2.0" ASPHALT AND 6.0" BASE (DRILLEI ESCRIPTION)	rs 🕅	624.4		RQD		(%)	<u></u>	(เรา)	GR	CS	Fð	51	UL	LL	PL	PI	wc			- 7 L
OOSE TO MEDIUM DENSE, BROWN, GR AND, SILT, AND CLAY, CONTAINS ASPI		022.9	2	7 6 6	15	17	SS-1	-	-	-	-	-	-	-	-	-	11	A-2-6 (V)	-	-7L 72 72
RAGMENTS, DAMP TO MOIST			- 3 - - - 4 -	4 7 5	15	28	SS-2	-	31	30	8	19	12	28	15	13	5	A-2-6 (0)	0	
		618.4	- 5 -	3 3 4 4	10	89	SS-3	-	-	-	-	-	-	-	-	-	24	A-2-6 (V)	-	71
ERY STIFF, BROWN, SILTY CLAY , LITTL RACE GRAVEL, MOIST	E SAND,	616.9	EOB - 7 -	4 5 5	12	44	SS-4	3.75	0	5	7	46	42	36	19	17	20	A-6b (11)	-	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

LOOSE, ORANGISH BROWN, COARSE AND FINE SAND, LITTLE CLAY, LITTLE SILT, TRACE GRAVEL, CONTAINS IRON STAINING, DAMP $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PLORATION I B-016-0-21		4, 35' F 59	747+6 SR 15	-	FSET		ATION GNME		2	-	ME 45 AUTON		l Rig: Mer:			NEAS / JI NEAS / JL		DRILLING FIRM / C SAMPLING FIRM /	ROS-159-0.41 ROADWAY	СТ:	PROJE TYPE:
AND NOTES 624.3 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI wc CLASS (GI) 9.5" ASPHALT AND 9.5" BASE (DRILLERS DESCRIPTION) 622.7 622.7 622.7 622.7 622.7 619.8 622.7 619.8 7 2 29 18 20 29 15 14 10 A-6a (2) MAP 619.8 617.3 617.3 617.3 617.3 617.3 617.3 617.3 617.3 617.3 617.3 617.3 617.3 617.3 7 2 8 100 SS-3 - - - - - - 1 - - - - - - - - - - - 1 - <td>t PAGE 1 OF 1</td> <td></td> <td>-</td> <td></td> <td></td> <td>624.</td> <td>-</td> <td></td>	t PAGE 1 OF 1		-			624.	-															
LOOSE, ORANGISH BROWN, COARSE AND FINE SAND, LITTLE CLAY, LITTLE SILT, TRACE GRAVEL, CONTAINS IRON STAINING, DAMP $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO4 BACI ppm FILL		wc				ŕ	<u>`</u>	1 1						N ₆₀		DEPTHS		1			
LOOSE, ORANGISH BROWN, COARSE AND FINE SAND, LITTLE CLAY, LITTLE SILT, TRACE GRAVEL, CONTAINS IRON STAINING, DAMP $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 2 2 2 2 2 2 2 2 2 2 2 2 2															-	- - 1 - - 2 -	622.7	Y, "AND"		RIPTION)	9.5" A DESC HARE
SAND, LITTLE CLAY, LITTLE SILT, TRACE GRAVEL, CONTAINS IRON STAINING, DAMP 617.3 LOOSE TO MEDIUM DENSE, BROWN, SANDY SILT, TRACE GRAVEL, TRACE CLAY, MOIST -8 -2 -3 -2 -5 -8 -2 -5 -8 -2 -5 -8 -2 -5 -8 -2 -5 -8 -2 -5 -5 -89 -5	60 7 LV 7 LV 7 LV 1 > r	A-6a (2)	10	14	15	29	20	18	29	26	7	4.50	SS-1	72	12	7 5 5	- - 3 - - 4 -	619.8		AVEL, CONTAINS IRON S		SAND DAMF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A-3a (0)	9	NP	NP	NP	12	11	42	35	0	-	SS-2	89	5	3 2 2	-		GRAVEL,	AY, LITTLE SILT, TRACE	, LITTLE CL	
		A-4a (V)	17	-	-	-	-	-	-	-	-	-	SS-3	100	8	2 3 4	-		DY SILT,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A-4a (V)	19	-	-	-	-	-	-	-	-	-	SS-4	100	12	4 5 5	- 10 - - EOB	612.8				

STANDARD ODOT LOG W/ SULFATES (8.5 X 11) - OH DOT.GDT - 10/19/22 11:57 - X:\ACTIVE

PROJECT:	ROS-159-0.41		RM / OPERATOR:			DRIL	L RIG:		ME 45			STATIO						' RT. E		
TYPE:	ROADWAY		IRM / LOGGER:	NEAS / JL			MER:					ALIGN				SR 1		L	B-017	PAGE
PID: 113013		DRILLING ME		3.25" HSA				ON DATE:		24/22		ELEVA		624					t	
START: 8/3/22	2 END: <u>8/3/22</u>	SAMPLING M	/IETHOD:	SPT				ATIO (%):		2.6		LAT / L					18, -82	2.976278		1 OF 1
	MATERIAL DESCRIPTIO	V	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE				ATION	%)	ATT	ERB	ERG		ODOT	SO4	BACK
	AND NOTES		624.0		RQD	™ 60	(%)	ID	(tsf)	GR	CS	FS S	I CL	LL	PL	PI	WC	CLASS (GI) ppm	FILL
9.5" ASPHALT A DESCRIPTION)	AND 8.5" BASE (DRILLERS		622.5	-	-															$-\frac{1}{7}L^{V}$
9.5" ASPHALT A DESCRIPTION) MEDIUM DENSE SAND, SILT, AN MEDIUM DENSE AND STONE FR TRACE CLAY, D STIFF TO HARD SAND, TRACE G	E, DARK BROWN, GRAVEL ID CLAY, DAMP	WITH		_ 2 -	8 4	15	89	SS-1	-	34	19	15 1	9 13	31	19	12	12	A-2-6 (0)) 0	
MEDIUM DENSE	E TO DENSE, DARK BROW			- 3 -	8 18 23	48	83	SS-2	-	44	23	13 1	4 6	NP	NP	NP	6	A-1-b (0)) -	- 7 L V - 7 L V - 7 L V
TRACE CLAY, D		TEE OIET,	• C • 0 • 1618.5	- 4 - - - 5 -	17 10 7	12	56	SS-3A	-	-	-		-	-	-	-	14	A-1-b (V	, 	- 1>r - 1>r - 12
STIFF TO HARD	, BROWN, SILT AND CLAY	SOME	010.0	- 6 -	3	12	50	SS-3B	1.50	-	-		-	-	-	-	27	A-6a (V)		-1> -1> -1> -1>
SAND, TRACE G			616.5	-EOB	3 7 4	13	89	SS-4	4.50	-	-	- -	-	-	-	-	24	A-6a (V)	-	7 L. 7 > r 7 _ v
NOTES: GROU	JNDWATER NOT ENCOUNT		G DRILLING HOL		F															

ROJECT: ROS-159-0.4 (PE: RETAINING WALL	L SAN	/IPLING FII	M / OPERATOR RM / LOGGER:	NEAS / JI		HAM	L RIG: MER:	CME A		1ATIC		ALIG	INME	NT:			SR 1			PLORA B-018-	0-22
D: <u>113013</u> SFN: TART: 8/3/22 END: 8		LLING ME [:] /IPLING ME		3.25" HSA SPT				ON DATE:	-	24/22 72.6	2		/ATIC / LON	_	625.			EOB:			PAG 1 OF
MATERIAL DE		/IPLING MI			SPT/			ATIO (%): SAMPLE		-	GRAD				ΔΤΤ	ERBE		97, -02	2.976259	L	
AND NO			625.3	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)			FS				PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	BA F
0.5" ASPHALT AND 3.5" BASE (I DESCRIPTION)			623.7		-																× 1
/ERY STIFF, BROWN, SILTY CL TRACE GRAVEL, TRACE IRON S				- 2 · - 3 · 	6 4 4	10	56	SS-1	3.25	0	4	39	25	32	32	15	17	17	A-6b (7)	-	- 7 < 7 × 7
OOSE TO MEDIUM DENSE, BR SOME CLAY, TRACE TO LITTLE			620.8	- 4 - - - 5 - - - 6 -	- 3 3 2	6	56	SS-2	-	2	11	46	18	23	NP	NP	NP	13	A-4a (1)	-	- 7 V F 7 V F 7
OOSE TO MEDIUM DENSE, BR			617.5		6 6 6	15	11	<u>SS-3A</u> SS-3B	~ -	-			-	-				_146	A-4a (V) A-3a (V)	-	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
CLAY, DAMP				10 · 11 ·	- 4 3 2	6	56	SS-4	-	-	-	-	-	-	-	-	-	7	A-3a (V)	-	V 7 V 7 7
OOSE TO DENSE, BROWN AND AND STONE FRAGMENTS WITH ITTLE SILT, TRACE CLAY, DAM	SAND, TRACE			- 12 · - 13 · - 14 ·	5 3 5	10	44	SS-5	-	58	10	13	14	5	NP	NP	NP	9	A-1-b (0)	-	VF7VF7VF
				- 	4 12 21	40	44	SS-6	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	-	7 4 7 4 7
				- 18 - 18 - 19	16 13 11	29	39	SS-7	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	-	- 7 V F 7 V F
			aO1 ○O ○O 603.8	- 	- 15 18 16	41	44	SS-8	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	-	-74774

ROJECT: ROS-159-0.41 YPE: RETAINING WALL	DRILLING FI			NEAS / JI NEAS / JL			L RIG: MER:		ME 45		<u></u>		TION SNME		FSET	-	753+9 SR 1	96, 37' 59	RT. EX		RATION 9-0-22
D: 113013 SFN:	DRILLING MI		00EN	3.25" HSA				ON DATE:		24/22					626.				21.5 f	t.	PAG
TART: 8/4/22 END: 8/4/22	SAMPLING N			SPT				ATIO (%):		72.6			/ LON	_		· · ·			2.976237		1 OF
MATERIAL DESCRIPTIO	N N	E	ELEV.	DEDTUC	SPT/	N	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBE	ERG		ODOT	SO	4 ВА
AND NOTES		6	626.5	DEPINS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppr	n F
MATERIAL DESCRIPTIO	ITTLE SAND, MOIST ID, TRACE TO MOIST ITTLE SAND, DAMP		LEV.	SPT DEPTHS - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 10 - - 11 - - 12 - - 13 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 11 - - 12 - - 13 - - 14 - - 12 - - 13 - - 12 - - 13 - - 12 - - 13 - - 14 - - 12 - - 13 - - 14 - - 19 - - 12 - - 13 - - 12 - - 13 - - 14 - - 12 - - 13 - - 14 - - 19 - - 12 - - 19 - - 12 - - 13 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - 	SPT/ RQD 10 3 3 7 5 6 5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N ₆₀ 7 13 7 6 17 7	REC	SAMPLE	HP	GR 0		ATIO	N (%)	LL 31 34	ERBE	RG				4 В/

PROJECT: ROS-159-0.41 TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / L	OGGER:				L RIG: MER:		ME 45 AUTON		;	STAT ALIG	NME	NT:		STE	EWAF	7, 36' RT RD		B-020-	
PID: <u>113013</u> SFN: START: 7/27/22 END: 7/27/22	DRILLING METHOD SAMPLING METHO		3.25" HSA SPT				ON DATE: ATIO (%):		24/22 72.6	2	ELEV		_	620.			EOB:	7.5 ft. 2.977370		PAGE 1 OF 1
MATERIAL DESCRIPTION		ELEV.		SPT/			SAMPLE	_		RAD				ATT	ERBE		95, -62	ODOT	 	BACK
AND NOTES		620.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)		CS	FS	<u> </u>	CL	LL	PL	PI	wc	CLASS (GI)	ppm	FILL
HARD, BROWN, SANDY SILT , LITTLE TO S TRACE GRAVEL, SS-1 CONTAINS ROOTS, MOIST			- 1 -	4 9 21	36	100	SS-1	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	$\frac{1}{7}L^{V}\frac{1}{7}$
			- 2 - - - 3 -	14 14 15 5	35	100	SS-2	4.50	1	10	39	31	19	26	16	10	12	A-4a (3)	0	
I VERY SHEE BROWNISH GRAY SILLAND	CLAY	616.4	- 4 -	7 7 2	17	100	SS-3	4.50		-	-	-	-	-	-	-	18	A-4a (V)	-	V 7 7 V V 7 V 7 V 7 V 7 V 7 V 7
"AND" SAND, TRACE GRAVEL, MOIST			- 5 - - - 6 -	2 3 5	6	100	SS-4	3.25		11			21	29	17	12	24	A-6a (5)	-	1>1 J - 1 L V 7
		613.4	-EOB 7 -	5	12	100	SS-5	3.50	-	-	-	-	-	-	-	-	19	A-6a (V)	-	1 × 1 × 1
"AND" SAND, TRACE GRAVEL, MOIST																				
NOTES: GROUNDWATER NOT ENCOUNT																				
ABANDONMENT METHODS, MATERIALS, C	QUANTITIES: PLACE	ED 0.5 BAG	SASPHALT PAT	CH; SHC	VELE	D SO	IL CUTTIN	IGS												

			1				_											
PROJECT:ROS-159-0.41	DRILLING FIRM / OPERATOR					ME 45						FSE			25, 23'		PLORA ⁻ B-021-(
TYPE: ROADWAY	SAMPLING FIRM / LOGGER:		-	IMER:			24/22					620			<u>rt rd</u> Eob:			PAGE
PID: <u>113013</u> SFN: START: 7/28/22 END: 7/28/22		3.25" HSA SPT			ON DATE:			<u> </u>				020				-		1 OF 1
			-	-	ATIO (%):	_	2.6				-				97, -02 I	2.975503	L	-
MATERIAL DESCRIPTIO		DEPTHS SPT/ RQD			SAMPLE	HP (tsf)			DATIO FS				ERB	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
	620.1	RQD	,	(%)	ID	(tsr)	GR	CS	F5	SI	CL	LL	PL	PI	wc	01.00 (0.)	pp	*****
4.0" ASPHALT AND 14.0" CONCRETE AN (DRILLERS DESCRIPTION)	D 5.0" BASE																	
	618.2		_															- JLV
MEDIUM DENSE TO VERY DENSE, BROW			56	50	SS-1	-	46	24	11	14	5	NP	NP	NP	5	A-1-b (0)	160	$ 1\rangle^{\Gamma}$ $ 1\rangle^{\Gamma}$
AND STONE FRAGMENTS WITH SAND, L		- 3 - 2	5															72
TRACE CLAY, RESEMBLES GRANULAR E		□ . □ 17	30	100	SS-2A	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	-	JLV
HARD, BROWN, SANDY SILT, SOME GRA	VEL, LITTLE		8		SS-2B	4.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	7<1
		$-5 - 4'_{5}$	15	100	SS-3	2.75	0	1	15	46	38	40	20	20	22	A-6b (12)	-	$\frac{1}{7}L^{V}$
VERY STIFF, BROWN, SILTY CLAY , LITTI TRACE GRAVEL, MOIST	E SAND,	6	7													. ,		
			16	100	SS-4	2.50	-	-	-	-	-	-	-	-	27	A-6b (V)	-	1 > 1
	612.6		8			2.00												5LV

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

PAMMELING PHW/ LUNG PHW/	PROJECT:		•		NEAS / J. HODG				ME 45						FSET			6, 46'		PLORA B-022-	
CR: TOTO: CR: CR: CR: CR: TOTO: CR: TOTO: CR: C	TYPE:																			-	-
BILLING DESCRIPTION MONOTES ELEX (a) 7.8 DEPTHS SP(7) RC No. REC SAMPLE (b) DEPTHS SP(7) (c) No. REC SAMPLE (c) DEPTHS DEPTHS No. REC SAMPLE (c) DEPTHS No. REC SAMPLE (c) DEPTHS No. REC SAMPLE (c) DEPTHS No. REC SAMPLE (c) DEPTHS REC SAMPLE (c) REC SAMPLE (c) DEPTHS REC SAMPLE (c) DEPTHS REC SAMPLE (c) DEPTHS DEPTHS DEPTHS DEPTHS DEPTHS <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>617.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											2				617.						
AND OTES 617.6 UEP HIS ROD No (%) ID (%) (%) ID (%) <td>START:7/</td> <td><u>/27/22</u> END: <u>7/27/22</u></td> <td>SAMPLING METH</td> <td>10D:</td> <td>SPT</td> <td> EN</td> <td>NERGY F</td> <td>Ratio (%):</td> <td></td> <td>72.6</td> <td></td> <td>LAT</td> <td>/LON</td> <td>NG: _</td> <td></td> <td>39.3</td> <td>34557</td> <td>71, -82</td> <td>2.974922</td> <td></td> <td>1 01</td>	START:7/	<u>/27/22</u> END: <u>7/27/22</u>	SAMPLING METH	10D:	SPT	EN	NERGY F	Ratio (%):		72.6		LAT	/LON	NG: _		39.3	34557	71, -82	2.974922		1 01
AND OTES 617.6 DEPINS ROD N P(%) ID (85) 0E 0F 15 0.1 16 N 0 0.456(6) 0 MME SAND, TRACE GRAVEL, IRON STAINING, DAMP 1 <td< td=""><td></td><td>MATERIAL DESCRIPTIO</td><td>N</td><td>ELEV.</td><td></td><td>SPT/</td><td>REC</td><td>SAMPLE</td><td>HP</td><td></td><td>GRAD</td><td>DATIO</td><td>N (%)</td><td>)</td><td>ATT</td><td>ERBE</td><td>ERG</td><td></td><td>ODOT</td><td>SO4</td><td>В</td></td<>		MATERIAL DESCRIPTIO	N	ELEV.		SPT/	REC	SAMPLE	HP		GRAD	DATIO	N (%))	ATT	ERBE	ERG		ODOT	SO4	В
RY STRET TO HARD. BROWN, SUT AND CLAY, ME SAND, TRACE GRAVEL, IRON STAINING, DAMP OSE, BROWN, COARSE AND FINE SAND, LITTLE 006, BROWN, COARSE AND FINE SAND, LITTLE		AND NOTES		617.6		rqd ^N	60 (%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	ppm	
ME SAND. TRACE GRAVEL, IRON STAINING, DAMP 610.6 610.6 COSE BROWN COARSE AND FINE SAND LITTLE 1, TRACE CLAY, TRACE GRAVEL, DAMP 606.1 COSE BROWN COARSE AND FINE SAND LITTLE 610.6 610.	VERY STIFF	TO HARD, BROWN, SILT AND	D CLAY.																		
OSE_BROWN_COARSE AND FINE SAND_LITTLE 610.6. 006.1 610.6. 006.1 7 006.1 7 006.1 7 006.1 80.6.1 006.1 90.6.1 006.1 90.6.1 006.1 90.6.1 006.1 90.6.1 006.1 90.6.1 006.1																					×
OSE, BROWN, COARSE AND FINE SAND, LITTLE T, TRACE CLAY, TRACE GRAVEL, DAMP 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 606.1 COP 606.1 COP 606.1 COP 606.1 COP 610.6 610																					$\begin{vmatrix} \hat{\zeta} \\ 1 \end{vmatrix}$
00EE BROWN, COARSE AND FINE SAND, LITTLE 610.6 610.6 2 6 100 SS-1 4.50 9 6 24 34 27 34 19 15 16 A-Ga (7) 20 COSE, BROWN, COARSE AND FINE SAND, LITTLE 610.6 2 2 6 100 SS-2 3.50 - - - - 19 A-Ga (7) 20 T. TRACE CLAY, TRACE GRAVEL, DAMP 606.1 2 2 100 SS-3 - 1 12 61 17 9 NP					- 2 -																4:
OSE, BROWN, COARSE AND FINE SAND, LITTLE 					_ 3 _ 8									-							- < 7 7
COSE BROWNL COARSE AND FINE SAND LITTLE T, TRACE CLAY, TRACE GRAVEL, DAMP 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.6 610.5							8 100	55-1	4.50	9	6	24	34	27	34	19	15	16	A-6a (7)	20	7
OSE_ BROWN, COARSE AND FINE SAND, LITTLE 610.6 60.1 7.1 7.1 7.1 7.1 7.1 7.1					- 4 -																
OSE_ BROWN, COARSE AND FINE SAND, LITTLE 610.6 60.1 7.1 7.1 7.1 7.1 7.1 7.1					- 5 -																- 1
OSE: BROWN, COARSE AND FINE SAND, LITTLE 610.6 7 2 1							100	66.2	3 50									10	A 62 () ()		1:
OSE_ BROWN COARSE AND FINE SAMULUTLE Image: control of the samulut of the samulu					- 6 -			00-2	5.50	-	-	-	-	-	-	-	-	13	A-0a (V)	-	7
Cose_ BROWN, COARSE AND FINE SAND, LITTLE T, TRACE CLAY, TRACE GRAVEL, DAMP 0 <td< td=""><td></td><td></td><td></td><td>610.6</td><td>- 7 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7</td></td<>				610.6	- 7 -																7
10000 CGA1, TOOL CHAPLE, DAM					- 3																-7 7 7
000.1 0 <td>SILT, TRACE</td> <td>E CLAY, TRACE GRAVEL, DAM</td> <td>IP</td> <td></td> <td>- 8 - 3</td> <td></td> <td>5 100</td> <td>SS-3</td> <td>-</td> <td>1</td> <td>12</td> <td>61</td> <td>17</td> <td>9</td> <td>NP</td> <td>NP</td> <td>NP</td> <td>10</td> <td>A-3a (0)</td> <td>-</td> <td>7 V 7</td>	SILT, TRACE	E CLAY, TRACE GRAVEL, DAM	IP		- 8 - 3		5 100	SS-3	-	1	12	61	17	9	NP	NP	NP	10	A-3a (0)	-	7 V 7
006.1 EOB - 11 - 4 3 7 100 SS-4 7 A-3a (V) - EOB																			()		7
DIES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.																					$\left \begin{array}{c} \\ 1 \\ 1 \end{array} \right $
TES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.					- 10 - 4																12
TES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.				000 1	- 11 -		100	SS-4	-	-	-	-	-	-	-	-	-	7	A-3a (V)	-	× 7
					208																

PROJECT: ROS-159-0.41					L RIG:		ME 45					OFFSE			26, 2' F	<u></u>	PLORA B-023-	
TYPE: ROADWAY PID: 113013 SFN:	SAMPLING FIRM / LOGGE	:R: <u>NEAS / J. HO</u> 3.25" HSA	JDGES		MER:	CME A ON DATE:		24/22				1: <u>CO</u> I: 614				<u>ER DR</u> 7.5 ft.		PAGE
START: 7/28/22 END: 7/28/22	SAMPLING METHOD:	<u> </u>				ATIO (%):	-	<u>24/22</u> 2.6	<u> </u>	LAT /						2.975057		1 OF 1
						. ,									7	1	L	
MATERIAL DESCRIPTIC AND NOTES		DEPTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	L F	GR		ATION FS	(%) SI C		_	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BAC FILL
5.0" ASPHALT AND 10.0" BASE (DRILLEF	614.3 614.3	3	RQD		(70)		((SI)	GR	03	FO	31 0	,L LL	FL	FI	wc	- (-)		
DESCRIPTION)	613.0		_															
LOOSE TO MEDIUM DENSE, BROWN, GR			2															- 7 LV
SAND, LITTLE SILT, TRACE CLAY, MOIST		_ 2	2	8	17	SS-1	-	28	27	22 [·]	15 8	3 NP	NP	NP	11	A-1-b (0)	0	$ 1> \Gamma$ $\int_{T} L^{V}$
		- 3	2															- 1 > r
			3	11	33	SS-2	-	-	-	-	- -	- -	-	-	14	A-1-b (V)	-	7L
VERY STIFF TO HARD, BROWN, CLAY, "A			6															-
LITTLE SAND, TRACE GRAVEL, IRON STA		5	4	11	100	SS-3	4.50	0	1	15 4	12 4	2 42	21	21	20	A-7-6 (13)	-	7 LV 1 > r
TO MOIST		- 6	3															- JLV
			6	15	72	SS-4	3.00	-	-	-	- -	- -	-	-	24	A-7-6 (V)	-	1 > 1
	606.8	B EOB	6															5LV
NOTES: GROUNDWATER NOT ENCOUN																		
BANDONMENT METHODS, MATERIALS,							<u></u>											
DAINDUNIVIENT WETHUDS, WATERIALS,	QUANTITIES. PLACED 0.5	DAG ASPHALI PA	NICH; SHC	VELE	0 50		60											

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IYPE'	ROS-159-0.41	DRILLING FIRM / C					L RIG:		ME 45					OFFSI					EXPLO B-0	RATIC 24-0-2	
Ind.		ROADWAY		_		JGES																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-												
AND NOTES 620.3 DEPTHS RQD N_{60} (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (G) ppm FI 7.0" ASPHALT AND 10.0" BASE (DRILLERS DESCRIPTION) 618.9 618.9 -1	51ART. 1/20/2				321													-	2.974075		- 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V		DEPTHS		N ₆₀											-				BAC FILL
DESCRIPTION) \bigcirc 618.9 VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, TRACE TO LITTLE GRAVEL, TRACE IRON STAINING, DAMP 615.7 615.7 615.7 DENSE TO VERY DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, DAMP 612.8						RQD		(%)	U	(tst)	GR	CS	FS	SI (PL	PI	wc	02/100 (01) p	> XX	~~~
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DESCRIPTION)	•		1	- 1 -	-															×	888 5 / N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRACE TO LITTI				- 2 -	7 10	25	83	SS-1	3.75	10	18	28	30 1	4 22	2 16	6	11	A-4a (2	2)	4	1 < 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DAMP					2 3	10	100	SS-2	3.75	-	-	-	-		-	-	13	A-4a (V)	- 77	1 > { L
$\begin{bmatrix} -6 & -9 \\ -7 & -7 \\ -7$				615.7		5		28	SS-3	_	38	15	18	18 1	1 24	16	8	9	A-2-4 (0)	4	ξĽ
	CLAY, DAMP	ENTS WITH SAND AND SIL	I, LIIILE		- 6 -	9 15														·	1	ξĽ
				612.8	-FOB	27	50	39	55-4	-	-	-	-	-		-	-		A-2-4 (v)		
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.	NOTES: GROU					/F																

ROJECT: ROS-159-0.41 (PE: EMBANKMENT FOUNDATION	DRILLING FIR SAMPLING FI			NEAS / J NEAS / JL			L RIG: MER:		ME 45		;		tion Snme		FSET			46, 19' AMP C		XPLORA B-025-	
D: 113013 SFN:	DRILLING ME	THOE):	3.25" HSA		CALI	BRATI	ON DATE:		24/22		ELE	VATIO		631.	4 (M	SL)	EOB:	25.0		PAG
TART: <u>8/8/22</u> END: <u>8/8/22</u>	SAMPLING ME	ETHO	D:	SPT		ENE	RGY R	ATIO (%):		72.6		LAT	/ LOI	NG: _		39.	34793	38, -82	2.978248		1 OF
MATERIAL DESCRIPTION AND NOTES	V		ELEV. 631.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAE CS	ATIO FS	N (% si) CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (G) SO4 ppm	BA FI
5.0" ASPHALT AND 7.0" CONCRETE AND DRILLERS DESCRIPTION)	6.0" BASE	\bigotimes	629.9	- - 1 -	-																L
MEDIUM DENSE TO DENSE, BROWN, GRA STONE FRAGMENTS WITH SAND AND SIL CLAY, DAMP		00°		- 2 - - 3 -	25 15 20	42	44	SS-1	-	27	26	20	20	7	NP	NP	NP	6	A-2-4 (0) 180	7 V T
				- 4 -	9 23 15	46	89	SS-2	-	-	-	-	-	-	-	-	-	7	A-2-4 (V) -	
			625.4	- 5 - - - 6 -	11 5 11	19	67	SS-3	-	-	-	-	-	-	-	-	-	7	A-2-4 (V) -	V77V7
HARD, BROWN, SILT AND CLAY , SOME S, "RACE GRAVEL, DAMP	ΑND,		623.4	- 7 -	2 4 4	10	67	SS-4	4.25	2	7	21	37	33	32	18	14	17	A-6a (9)	-	
/ERY STIFF TO HARD, BROWN, SANDY S TO SOME CLAY, TRACE GRAVEL, DAMP T				- 8 -	1 1 5	7	89	SS-5	3.00	-	-	-	-	-	-	_	-	17	A-4a (V)	-	7 4 7 7 7
				10 - 11 -	2																7757
				- 12 - - - 13 -	57	15	67	SS-6	3.25	2	11	36	31	20	25	16	9	14	A-4a (3)	-	V77V7
				- 	3 9 7	19	83	SS-7	4.50	-	-	-	-	-	-	-	-	14	A-4a (V)	-	7 7 7 7 7 7
				- 17 - -	4 7 10	21	72	SS-8	4.25	-	-	-	-	-	-	-	-	16	A-4a (V)	-	774774
				- 18 - - - 19 - - - 20 -	5 7 10	21	83	SS-9	4.50	-	-	-	-	-	-	-	-	15	A-4a (V)	-	7447
HARD, BROWN, CLAY , "AND" SILT, TRACE TRACE GRAVEL, DAMP	SAND,		610.9	- 21 -	- 5 5	13	78	SS-10	4.50	0	0	6	50	44	45	21	24	20	A-7-6 (15	:)	
				22 - 23 -	<u> </u>		10	00-10	4.50	0	0	0	50			~ 1	24	20			- 7 V F 7
			606.4	-EOB	6 9 11	24	89	SS-11	4.25	-	-	-	-	-	-	-	-	20	A-7-6 (V) -	V 7 7 V

	DRILLING FIRM / OPERATOR SAMPLING FIRM / LOGGER:		DRILL		ME 45					I / OF ENT:				46, 11 Amp (XPLORA B-026-	
																ft	PAG
											020						1 OF
					· · · · ·	-	GRAF			-	ΑΤΤ				T		B/
AND NOTES		DEPTHS RQD					-	FS	SI	CL	LL	PL	1	wc			
PID: <u>113013</u> SFN: START: <u>8/8/22</u> END: <u>8/8/22</u> MATERIAL DESCRIPTION	DRILLING METHOD: SAMPLING METHOD: 623.5 .0" BASE CLAY, SOME 622.0 622.0 622.0 622.0 622.0 622.0 622.0 620.5 619.0 H ACE	3.25" HSA SPT DEPTHS SPT/	CALIBF ENERCI N ₆₀ R (24 11 11 11 8 8 12 8 8 8	RATION DATE: SY RATIO (%): REC SAMPLE	:	24/22 72.6 (GR 32 12 - 4 - 0	2 GRAD	ELE LAT ATIO	VATI / LOI N (%	ON: NG:	623 ATTI LL 222 299 - 300 -	.5 (M 39. ERB	SL) 3478 ERG PI 7 13 13 13	EOB: 00, -82	15.0 1 2.976835 ОДОТ) 20 - - - - -	

MATERIAL DESCRIPTION AND NOTESELEV. 624.1DEPTHSSPT/ RQDN60REC (%)SAMPLEHP IDGRADATION (%)ATTERBERG IDODOT CLASS (GI)SODT PILSODT CLASS (GI)SODT CLASS (GI)SODT PILSODT CLASS (GI)SODT PILSODT CLASS (GI)SODT PILSODT CLASS (GI)SODT PILSODT PILSODT PILSODT PILSODT <th>MATERIAL DESCRIPTION AND NOTES ELEV. 624.1 DEPTHS SPT/ RQD N₆₀ REC (%) SAMPLE ID HP GRADATION (%) ATTERBERG L ODOT CLASS (GI) SO4 pm 0" ASPHALT AND 9.0" BASE (DRILLERS (SCRIPTION) 622.8 622.8 1 <</th> <th>PROJECT: TYPE: PID:113013 START: 7/26/</th> <th></th> <th></th> <th></th> <th>NEAS / J. HO NEAS / J. HOE 3.25" HSA SPT</th> <th></th> <th>HAM CALI</th> <th></th> <th>CME A ON DATE:</th> <th>1/</th> <th></th> <th></th> <th>ALIO ELE</th> <th>SNME VATI</th> <th>ENT: ON: _</th> <th>MAF</th> <th>RIETT 1 (MS</th> <th>A CC</th> <th>EOB:</th> <th><u>CTOR</u></th> <th>·</th> <th></th>	MATERIAL DESCRIPTION AND NOTES ELEV. 624.1 DEPTHS SPT/ RQD N ₆₀ REC (%) SAMPLE ID HP GRADATION (%) ATTERBERG L ODOT CLASS (GI) SO4 pm 0" ASPHALT AND 9.0" BASE (DRILLERS (SCRIPTION) 622.8 622.8 1 <	PROJECT: TYPE: PID:113013 START: 7/26/				NEAS / J. HO NEAS / J. HOE 3.25" HSA SPT		HAM CALI		CME A ON DATE:	1/			ALIO ELE	SNME VATI	ENT: ON: _	MAF	RIETT 1 (MS	A CC	EOB:	<u>CTOR</u>	·	
AND NOTES 624.1 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (GI) Ppm FILL 6.0" ASPHALT AND 9.0" BASE (DRILLERS DESCRIPTION) 622.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8	AND NOTES 624.1 DEPTHS RQD N_{60} (%) ID (tsf) GR cs FS SI CL LL PL PI wc CLASS (GI) ppm D' ASPHALT AND 9.0" BASE (DRILLERS (SCRIPTION) 622.8 622.8 622.8 622.8 622.8 622.8 622.8 6 7 27 31 29 32 16 16 15 A-6b (7) 673 ND, TRACE GRAVEL, DAMP TO MOIST 618.1 618.1 618.1 618.1 618.6 7 2 100 SS-2 3.25 0 2 41 28 29 32 16 16 18 A-6b (7) 7 618.1 618.6 7 2 5 100 SS-3 2.50 -	51AN1. <u>1120</u>					SPT/						GRAD				ATT			4, -02	1	L	BACK
DESCRIPTION) Call Call <td>SSCRIPTION) \land 622.8 RY STIFF TO HARD, BROWN, SILTY CLAY, "AND" $1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$</td> <td></td> <td></td> <td></td> <td>624.1</td> <td>DEPTHS</td> <td></td> <td>N₆₀</td> <td></td> <td>wc</td> <td>CLASS (GI</td> <td>ppm</td> <td>FILL</td>	SSCRIPTION) \land 622.8 RY STIFF TO HARD, BROWN, SILTY CLAY, "AND" $1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$				624.1	DEPTHS		N ₆₀												wc	CLASS (GI	ppm	FILL
 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DESCRIPTION) O HARD, BROWN, SILTY CL A	ay , "And"	622.8			13	100	SS-1	4.25	6	7	27	31	29	32	16	16	15	A-6b (7)	673	1>1.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-	4 4 4		100													-	$\neg \gamma > \Gamma$ $\neg L^{\vee}$
STONE FRAGMENTS WITH SAND , TRACE SILT, $\begin{bmatrix} -7 \\ -7 \end{bmatrix}$ $\begin{bmatrix} 7 \\ -7 \end{bmatrix}$ $\begin{bmatrix} 7 \\ -7 \end{bmatrix}$ $\begin{bmatrix} 24 \\ 100 \end{bmatrix}$ SS-4 $\begin{bmatrix} -7 \\ -8 \end{bmatrix}$	ONE FRAGMENTS WITH SAND , TRACE SILT, $\begin{bmatrix} -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 $				618.1	-		5	100	SS-3	2.50	-	-	-	-	-	-	-	-	17	A-6b (V)	-	7 LV .
		STONE FRAGM	MENTS WITH SAND, TRACE		616.6	- 7 -			100	SS-4	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	-	1>r. <_v
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.																							

PROJECT: <u>ROS-159-0.41</u> TYPE: <u>ROADWAY</u> PID: <u>113013</u> SFN: START: 7/26/22 END: 7/26/22	DRILLING FIRM / OPERATOR SAMPLING FIRM / LOGGER: DRILLING METHOD: SAMPLING METHOD:		HAM CALI		-	1			ALIC	SNME VATI	ENT: ON: _	MA	RIET .9 (M	TA CO SL)	EOB:			
MATERIAL DESCRIPTION AND NOTES	ELEV. 624.9	DEPTHS SPT/ RQD		REC (%)	SAMPLE	HP (tsf)	GR (GRAE	DATIO			ATT LL		ERG	-	ODOT	SO4 ppm	BACK FILL
LOOSE TO MEDIUM DENSE, BROWN, SAN LITTLE CLAY, TRACE GRAVEL, CONTAINS DAMP	IDY SILT,	$-1 - \frac{3}{5}$		100	SS-1	-	2	24	34	22	18	NP	NP	NP	9	A-4a (1)	0	
	620.4	$\begin{array}{c} -2 \\ -3 \\ -3 \\ -4 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$	7	28 100	SS-2 SS-3	-	- 6	- 24	- 34	- 18	- 18	- NP	- NP	- NP	10 11	A-4a (V) A-4a (0)	-	
MEDIUM DENSE TO VERY DENSE, BROWN GRAY, GRAVEL AND STONE FRAGMENTS SAND , TRACE SILT, TRACE CLAY, DAMP	NISH	-5 -2 -6 -13	18	83	SS-4	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	-	
	•⊖•∏ •⊖9 617.4		63	100	SS-5	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	-	J>r. JLV
NOTES: GROUNDWATER NOT ENCOUNT																		
ABANDONMENT METHODS, MATERIALS, C			OVELE	D SC	IL CUTTIN	IGS												

PROJECT: ROS-159-0.41	DRILLING FIRM / O	PERATOR:	NEAS / J. HO	DGES	DRILI	L RIG:	С	ME 45	В	:	STATIO	N / OF	FSE	Г:	18+5	8, 21'	RT. EX	(PLORA	
TYPE: ROADWAY	SAMPLING FIRM / I	_OGGER: _		DGES		MER:			ATIC		ALIGNM							B-029-0	
PID: <u>113013</u> SFN:	DRILLING METHOD		3.25" HSA				ON DATE:		24/22				626				7.5 ft		
START: <u>7/26/22</u> END: <u>7/26/22</u>	SAMPLING METHO	D:	SPT				ATIO (%):		2.6		LAT / LO					54, -82	.976898		1 OF 1
MATERIAL DESCRIPTION	V	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE	-			ATION (ERB			ODOT CLASS (GI)	SO4 ppm	BACK FILL
AND NOTES 5.0" ASPHALT AND 11.0" BASE (DRILLERS	s 🕅 🕅	626.0		RQD	00	(%)	ID	(tsf)	GR	CS	FS SI	CL	LL	PL	PI	WC	0EA00 (01)	ppin	
DESCRIPTION)	• XX	624.7	- 1 -	_															
MEDIUM DENSE BROWN GRAVEL AND S	STONE		-	8															- 1 LV 7 1 X 7
FRAGMENTS WITH SAND AND SILT, TRAC	CLAY,	623.0	- 2 -	9	21	39	SS-1	-	25	27	18 21	9	NP	NP	NP	9	A-2-4 (0)	40	
LOOSE TO MEDIUM DENSE, BROWN, GRA		023.0	- 3 -	3															レイイレ
STONE FRAGMENTS WITH SAND, SILT, A			- 4 -	3	8	100	SS-2	-	5	35	26 13	21	34	17	17	15	A-2-6 (1)	-	$\begin{pmatrix} V \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
DAMP	6 N		- 5 -	2															
		620.2	-	5	12	100	SS-3	-	-	-	- -	-	-	-	-	16	A-2-6 (V)	-	$L \neg < L$
MEDIUM DENSE, BROWN, GRAVEL AND S FRAGMENTS WITH SAND, TRACE SILT, TF			6 -	5		100	00.4									0			- 1 LV 1 1 1 1 1 1 1 1
DAMP		618.5	-EOB	7 8	18	100	SS-4	-	-	-		-	-	-	-	6	A-1-b (V)	-	X L V X
			LOB																
5																			
Ś																			
8																			
5																			
-																			
NOTES: GROUNDWATER NOT ENCOUNT	FERED DURING DRIL	LING. HOL	E DID NOT CAV	/E															
ABANDONMENT METHODS, MATERIALS, (VELE	o so	IL CUTTIN	GS											

PROJECT: TYPE:	ROS-159-0.41 ROADWAY	DRILLING FI				NEAS / JI EAS / JL			L RIG: MER:		ME 45		;	STA1 ALIG						8, 29' TA RD		PLORA B-030-	
PID: 113013	_ SFN:	DRILLING M			3.25"	HSA		CALI	BRATI	ON DATE:	1/	24/22		ELE\	/ATIO	ON: _		3 (MS	SL)	EOB:	7.5 ft.		PAGE
START: 7/26/2		SAMPLING N	METHO		SF	PT		ENEF		ATIO (%):		72.6		LAT						22, -82	2.975857		1 OF 1
	MATERIAL DESCRIPTION AND NOTES			ELEV. 625.3	DEPT	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD CS	ATIOI FS	N (% SI) CL		ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BAC FILI
9.5" ASPHALT DESCRIPTION)	AND 8.5" BASE (DRILLERS			623.8		- 1 -	-																
LOOSE, BROW TRACE CLAY, D	n, gravel with Sand , Tr Damp	RACE SILT,		622.3		- 2 -	5 2	8	11	SS-1	-	-	-	-	-	-	-	-	-	3	A-1-b (V)	-	7 L 7 X 7 L
	RANGISH BROWN, SILTY C GRAVEL, CONTAINS IRON S			620.6		- 3 - - 4 -	4 3 3	7	39	SS-2	3.00	1	24	36	16	23	34	16	18	16	A-6b (3)	40	
	E, BROWN, COARSE AND I RACE GRAVEL, TRACE CLA					- 5 -	4 5 4	11	44	SS-3	-	10	26	38	20	6	NP	NP	NP	9	A-3a (0)	-	
				617.8	—ЕОВ—	- 7 -	9 8	21	67	SS-4	-	-	-	-	-	-	-	-	-	7	A-3a (V)	-	7 L 7 Z 7 L
NOTES: GROU	JNDWATER NOT ENCOUN	TERED DURIN	IG DRIL	LING. HOL	E DID N		·E.																

	ROS-159-0.41		RM / OPERATOR:				. RIG:		ME 45			STAT			SET			7, 20'	<u></u>	PLORA) B-031-	
	ROADWAY		IRM / LOGGER:		<u> </u>							ALIG		_	<u> </u>						PA(
PID: <u>113013</u> S START: 8/4/22		DRILLING ME		3.25" HSA SPT				ON DATE: ATIO (%):	-	24/22 72.6	<u> </u>	LAT /			622.9			EOB:	<u>7.5 ft</u> 2.976760		10
	MATERIAL DESCRIPTION		ELEV.	OF I				SAMPLE							ATTE			92, - 02	1		
1	AND NOTES		622.9	DEPTHS	SPT/ RQD		(%)	ID	(tsf)				<u>`</u>	CL			PI	wc	ODOT CLASS (GI)	SO4 ppm	B
9.5" ASPHALT AN DESCRIPTION)	ND 8.5" BASE (DRILLERS			- 1 -	-		(70)			OIT	00	10		UL				wo			8
_OOSE, BROWN,	GRAVEL AND STONE FR			L ·	5 3		33	SS-1	-	42	23	11	14	10	NP	NP	NP	10	A-1-b (0)	60	77777
	GRAVEL AND STONE FR SILT, LITTLE CLAY, DAM			- 3 - - - 4 -	4 3	8	44	SS-2	-	25	22	18	22	13	NP	NP	NP	11	A-2-4 (0)	-	7 4 7
STONE FRAGMEN	DENSE, BROWN, GRAVE		618.4	- - 5 -	7 7 16		56	SS-3	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	
FRACE CLAY, DAN	MP			- 6 - - - 7 -	24 23 25 30		44	SS-4	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	-	4774

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE. BORING OFFSET 9' WEST DUE TO UTILITIES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

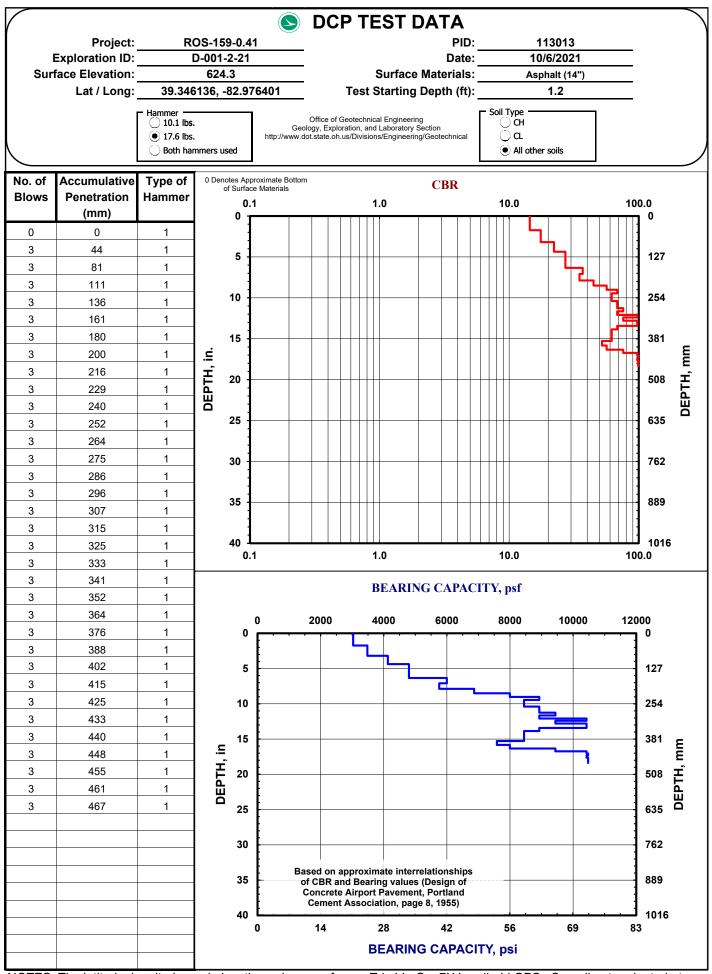
PROJECT: TYPE:	ROS-159-0.41 ROADWAY	DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO		ODOT / BINKLEY ODOT / AJ	DRIL HAM	l rig: Mer:		SIMCO)	_)N / OF /IENT:	FSET		SR 159	9	-	RATION ID 01-1-21
PID: <u>113013</u> START: <u>10/6</u>		DRILLING METHOD:	-	9.5" SSA UTTINGS	-	BRATI RGY F			N/A 60	_	LEVA [:] AT / L	TION: ONG:	624	.1 (ft) 39.34	EO 6136, ·		3.0 ft. 76401	PAGE 1 OF 1
	MATERIAL DESCI AND NOTE		ELEV. 624.1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID				TION (' s si	- <u>í</u>			-	ODOT CLASS (G	BACK
ASPHALT (14") DWN, GRAVEL AND STO		623.0															
SOME SAND, CORING WAT	TRAĆE SILT, TRACE CL/ ER	Y, WET FROM	621.1	EOB 3			-	AS-1	-	55	23 1	09	3	NP	NP N	IP 9	9 A-1-a (0	<1 1 < 1 < 1

PROJECT: ROS-159	-	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODOT / BIN ODOT / J		DRIL	L RIG: MER:		SIMCO)	_		ON / (OFFSE		L SR 1	159			ATION ID I-1-21
PID: <u>113013</u> SFN: START: <u>10/6/21</u> END:	10/6/21	DRILLING METHOD: SAMPLING METHOD:	3	9.5" SSA UTTINGS			BRATI	ON DA ATIO (TE:	N/A 60		ELEV	ATION LONG	: 62	23.6 (ft	:) E	EOB:	1 9767:	. <u>5 ft.</u> 54	PAGE 1 OF 1
	IAL DESCRIPT AND NOTES	70N	ELEV. 623.6	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	- F	GR		ATION FS	(%) SI CL		TERBI	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (3") & CONCRETE	. (9")	\boxtimes	622.6			-														$\frac{1}{7}L^{V}\frac{1}{7}L^{V}$
BROWN, GRAVEL , SOME S, CLAY, DAMP	AND, LITTLE S		622.1	EOB-				-	AS-1	-	64	15	7 ′	1 3	NP	NP	NP	6	A-1-a (0)	

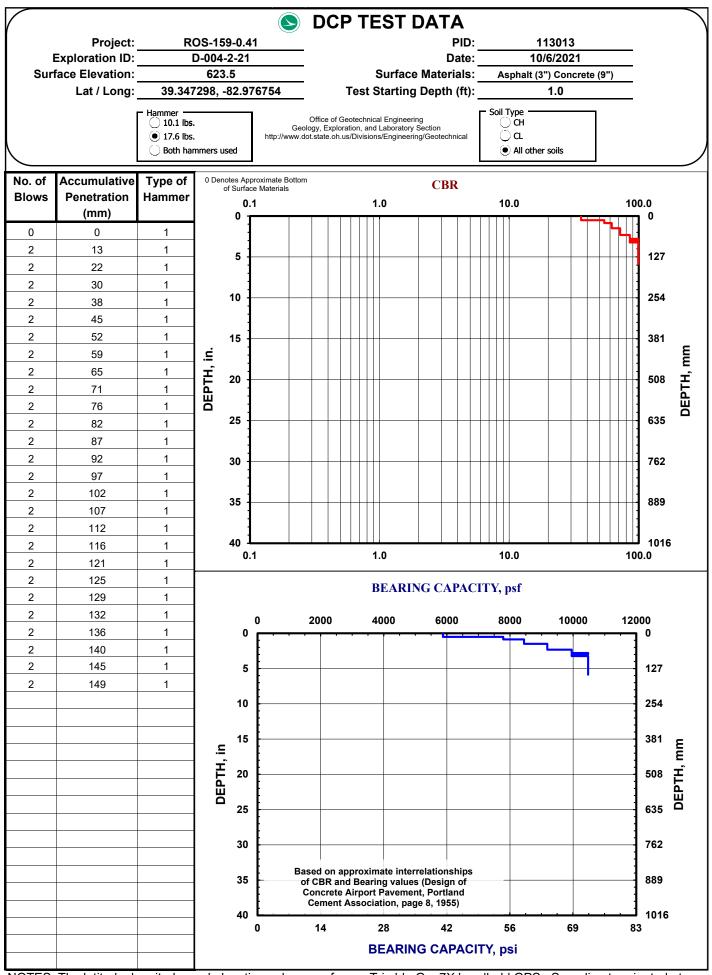
PROJECT: ROS-159-0.41 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODOT / BINKLEY ODOT / AJ	DRIL	L RIG: MER:		SIMCO)		STAT ALIG			SET:		SR 1	59			ATION ID 5-1-21
PID: <u>113013</u> SFN: START: <u>10/6/21</u> END: <u>10/6/21</u>	DRILLING METHOD: SAMPLING METHOD:		UTTINGS		BRATI RGY R		ATE:	N/A 60		ELEV LAT /			-	.4 (ft) 39.34		OB: , -82	3. .97661	.5 ft. 5	PAGE 1 OF 1
MATERIAL DESCRIPT AND NOTES	ION	ELEV. 621.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (%) si) CL	ATT	ERBE	RG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (4") & CONCRETE (9.5")		620.3						<u> </u>											7 LV 7 L 7 > L 7 7 X
DARK BROWN AND GRAYISH BROWN, GR STONE FRAGMENTS WITH SAND AND SIL (AGGREGATE BASE), DAMP		019.9	- 2 -			-	AS-1	-	33	23	15	18	11	21	15	6	9	A-2-4 (0)	$\begin{array}{c} \downarrow \downarrow \downarrow \lor \downarrow \downarrow \lor \downarrow $
DARK BROWN, SILT AND CLAY , SOME SA STONE FRAGMENTS, MOIST	ND, TRACE	617.9	EOB - 3 -			-	AS-2	-	1	3	31	30	35	28	16	12	16	A-6a (7)	42442

NOTES: HOLE DRY UPON COMPLETION. LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP LIDAR DATA. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH SOIL CUTTINGS

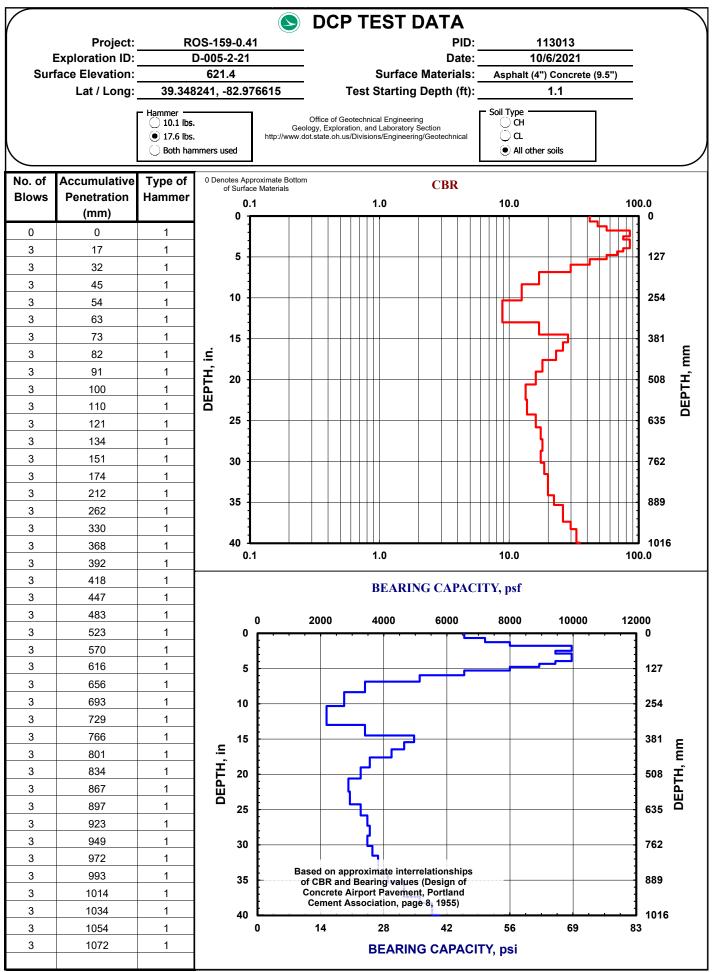
PROJECT: ROS-159-0.41 TYPE: ROADWAY	DRILLING FIRM / OP		ODOT / BINKLEY ODOT / AJ	- DRIL HAM	l Rig: Mer:		SIMCO		_	STATI ALIGN			SET:	CL S	R 15	9		RATION ID 07-1-21
PID: 113013 SFN:	DRILLING METHOD: //6/21 SAMPLING METHOD	3	UTTINGS	CALI	BRATI	ON DA ATIO (ATE:	N/A 60		ELEVA LAT / I		N:	622.4 3	4 (ft)	_ EO	B:	1.5 ft. 76822	PAGE 1 OF 1
	DESCRIPTION NOTES	ELEV. 622.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD/		<mark>∖ (%)</mark> si	CL				ODOT CLASS (G	BACK
ASPHALT (1.5") & CONCRETE (10 BROWN, GRAVEL AND STONE F LITTLE SILT, TRACE CLAY, WET	RAGMENTS WITH SAND,	621.4 620.9	EOB	-		/	AS-1	\/	50	26	10	11	3	NPAI			4 ∧ A-1-b (0	

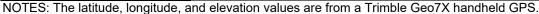

NOTES: HOLE DRY UPON COMPLETION. LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP LIDAR DATA. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH SOIL CUTTINGS

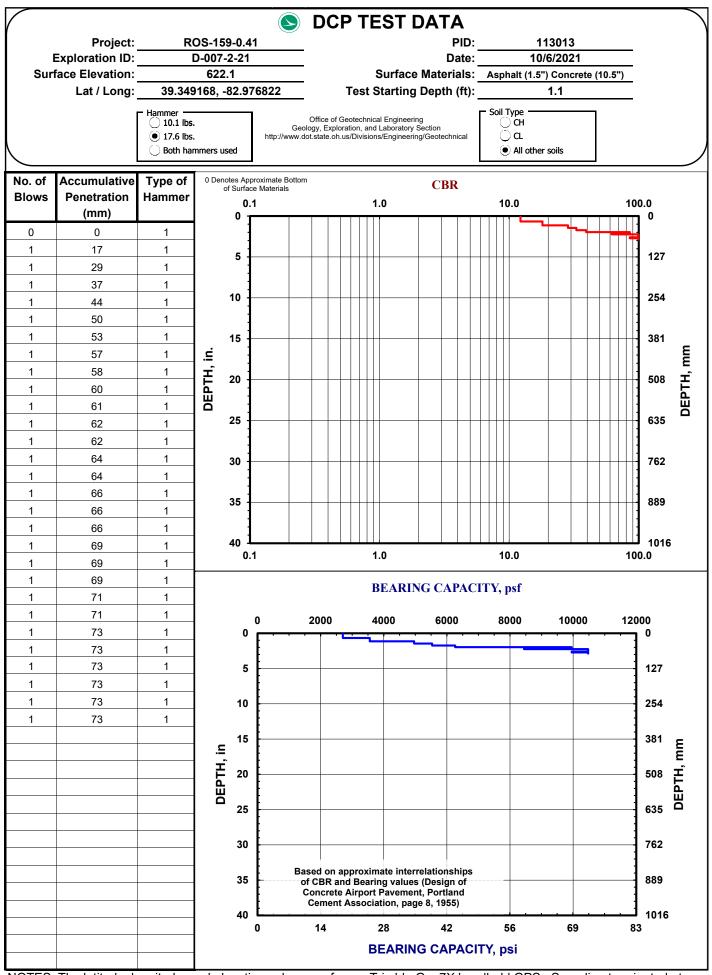
PROJECT: _	ROS-159-0.41 ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODOT / BINKLEY ODOT / AJ	DRILL HAMM			SIMCC)			ION / C			LSR	159		EXPLOR B-010	ATION ID 1-1-21
PID: 11301	-	DRILLING METHOD: SAMPLING METHOD:		3.5" SSA CUTTINGS	CALIB	RATI		ATE:	N/A 60			ATION LONG		623.4 (1	ť) I	EOB:	1 .97657	.2 ft. 79	PAGE 1 OF 1
	MATERIAL DESCRIPT AND NOTES	TON	ELEV. 623.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATION FS	(%) SI 0	AT	TERB	ERG PI		ODOT CLASS (GI)	BACK FILL
ASPHALT (1	0.5") SHALLOW DCP REFUSAL, NO	SAMPLING.	622.5 622.2	EOB1															7 LV 7 L 7 X 7 X

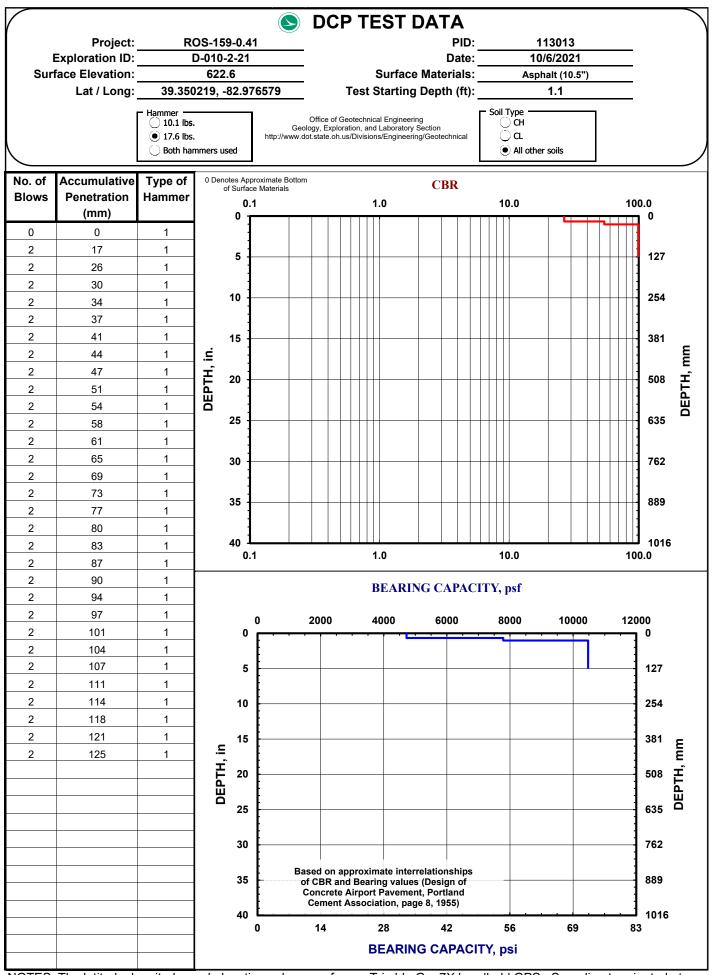

PROJECT: TYPE:	ROS-159-0.41 ROADWAY	_ DRILLING FIRM / OPERA SAMPLING FIRM / LOGO		ODOT / BINKLEY ODOT / AJ	DRIL HAM		:	SIMCO			STAT ALIGI		/ OFF: NT:	SET:	CL	SR 1:	59		-	ATION ID 5-1-21
PID: <u>113013</u> START: <u>10/</u>	3SFN: 6/21END:10/6/21	DRILLING METHOD: SAMPLING METHOD:		9.5" SSA UTTINGS	CALI ENE		ON DA		N/A 60	_	ELEV LAT /				3 (ft) 39.34		OB: , -82.	3. 97823	0 ft. 9	PAGE 1 OF 1
	MATERIAL DESCRI AND NOTES	PTION	ELEV. 634.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (%) si) CL	ATTE	ERBE	RG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (5.5	5") & CONCRETE (9")		633.1																	~LV ~L 7 LV 7 L 7 N 7 N
	AVEL AND STONE FRAGME TRACE CLAY, DAMP		1	- 2 -			-	AS-1	-	39	39	10	8	4	NP	NP	NP	8	A-1-b (0)	
@2.7'; LITTLE	SILT		631.3	ЕОВ			L	AS-2	<u> </u>	57	12	_11	12	8	20	14	6	6	A-1-b (0)	

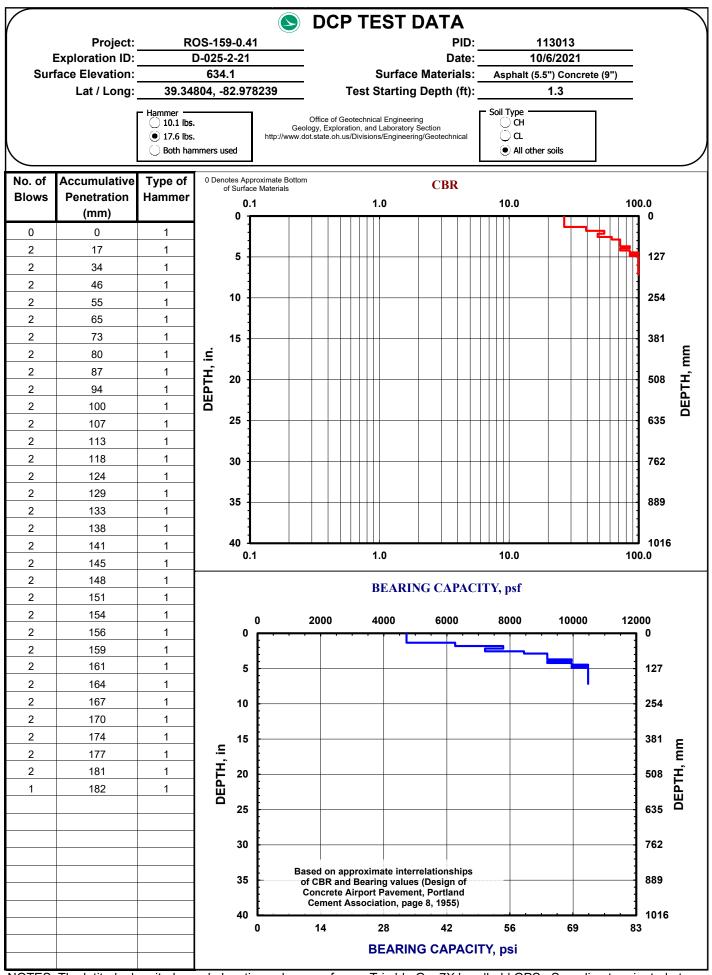
NOTES: HOLE DRY UPON COMPLETION. LAT/LONG FROM OGE HANDHELD GPS UNIT. ELEV FROM OSIP LIDAR DATA. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH SOIL CUTTINGS

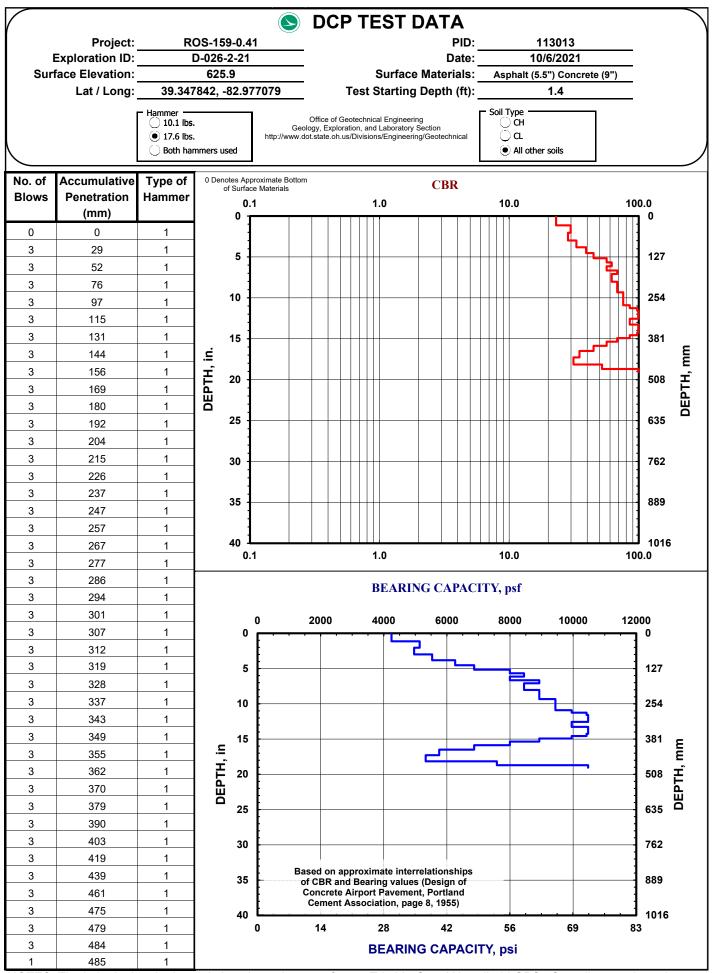

PROJECT: ROS-159-0.41 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODOT / BINKLEY ODOT / AJ		l Rig: Mer:		SIMCC)			ON / C IMENT				159		-	ATION ID 3-1-21
PID: <u>113013</u> SFN: <u></u> START: <u>10/6/21</u> END: <u>10/6/21</u>	DRILLING METHOD: SAMPLING METHOD:	-	.5" SSA UTTINGS	-	BRATI RGY R			N/A 60			ATION: _ONG:		6.3 (ft 39.3	<u> </u>	EOB: 2, -82	2 .9770	.8 ft. 79	PAGE 1 OF 1
MATERIAL DESCRIPT AND NOTES	710N	ELEV. 626.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			TION FS S	(%) SI CL	_	TERB	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT (7") & CONCRETE (8.5")		_6 <u>25.0</u> _																~ L ^V ~ L 7 > ^L 7 >
Brown, gravel with Sand , Little Sil Damp	T, TRACE CLAY,	623.5	EOB 2 -			-	AS-1	-	31	32	18 1	2 7	NP	NP	NP	9	A-1-b (0)	~ LV ~ L 7 LV 7 L 7 N 7 N 7 N 7 N




NOTES: The latitude, longitude, and elevation values are from a Trimble Geo7X handheld GPS. Sounding terminated at refusal.


NOTES: The latitude, longitude, and elevation values are from a Trimble Geo7X handheld GPS. Sounding terminated at refusal.




NOTES: The latitude, longitude, and elevation values are from a Trimble Geo7X handheld GPS. Sounding terminated at refusal.

NOTES: The latitude, longitude, and elevation values are from a Trimble Geo7X handheld GPS. Sounding terminated at refusal.

NOTES: The latitude, longitude, and elevation values are from a Trimble Geo7X handheld GPS. Sounding terminated at refusal.

NOTES: The latitude, longitude, and elevation values are from a Trimble Geo7X handheld GPS. Sounding terminated at refusal.

APPENDIX C

SUBGRADE ANALYSIS

ENTIRE PROJECT

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Entire Project 113013

SR 159 (Bridge Street) Corridor-Widening Project

NEAS, Inc.

Prepared By: Derar M. Tarawneh/ Nizar Altarawneh Date prepared: Friday, May 12, 2023

> Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

36

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-22	SR 159	709+31	52' RT	JL	CME 45B	73	626.5	625.9	0.6 C
2	B-001-1-21	SR 159			Binkley	SIMCO	60	624.1	622.6	1.5 C
3	B-002-0-22	SR 159	712+90	36' RT	JL	CME 45B	73	622.5	622.2	0.3 C
4	B-003-0-22	SR 159	714+89	46'RT	JH	CME 45B	73	621.8	621.8	0.0
5	B-004-1-21	SR 159			Binkley	SIMCO	60	623.6	622.1	1.5 C
6	B-004-0-22	SR 159	718+09	56' RT	JL	CME 45B	73	621.3	621.1	0.2 C
7	B-005-1-21	SR 159			Binkley	SIMCO	60	621.4	619.9	1.5 C
8	B-005-0-22	SR 159	720+66	46' RT	JL	CME 45B	73	619.8	620.6	0.8 F
9	B-007-0-22	Ramp A1	400+67	40' RT	JL	CME 45B	73	621.2	619.7	1.5 C
10	B-007-1-21	SR 159			Binkley	SIMCO	60	622.4	620.9	1.5 C
11	B-008-0-22	Ramp A1	402+06	14' RT	JL	CME 45B	73	617.7	616.2	1.5 C
12	B-009-0-22	SR 159	725+34	36' LT	JL	CME 45B	73	621.4	620.7	0.7 C
13	B-010-0-22	SR 159	727+88	45' RT	JL	CME 45B	73	622.5	622.1	0.4 C
14	B-011-0-22	SR 159	731+03	45' RT	JL	CME 45B	73	625.8	624.7	1.1 C
15	B-012-0-22	SR 159	736+73	35' RT	JL	CME 45B	73	626.9	626.6	0.3 C
16	B-013-0-22	SR 159	738+66	35' RT	JL	CME 45B	73	626.5	626.2	0.3 C
17	B-014-0-22	SR 159	740+94	35' RT	JL	CME 45B	73	625.5	625.1	0.4 C
18	B-015-0-22	SR 159	744+47	35' RT	JL	CME 45B	73	624.4	624.0	0.4 C
19	B-016-0-22	SR 159	747+64	35' RT	JL	CME 45B	73	624.3	623.9	0.4 C
20	B-017-0-22	SR 159	750+46	36' RT	JL	CME 45B	73	624.0	623.7	0.3 C
21	B-018-0-22	SR 159	752+57	35' RT	JL	CME 45B	73	625.3	624.8	0.5 C
22	B-019-0-22	SR 159	753+96	37' RT	JL	CME 45B	73	626.5	626.2	0.3 C
23	B-020-0-22	Stewart Rd.	64+07	36' RT	JH	CME 45B	73	620.9	619.4	1.5 C
24	B-021-0-22	Stewart Rd.	69+25	23' LT	JH	CME 45B	73	620.1	618.6	1.5 C
25	B-022-0-22	Stewart Rd.	70+96	46' RT	JH	CME 45B	73	617.6	616.1	1.5 C
26	B-023-0-22	Consumer Center Dr.	9+26	2' RT	JH	CME 45B	73	614.3	612.8	1.5 C
27	B-024-0-22	River Trace	82+06	18' LT	JH	CME 45B	73	620.3	618.8	1.5 C
28	B-025-1-21	US-35 Ramp C			Binkley	SIMCO	60	634.3	632.8	1.5 C
29	B-025-0-22	US-35 Ramp C	106+46	19' RT	JL	CME 45B	73	631.4	631.3	0.1 C
30	B-026-1-21	US-35 Ramp C			Binkley	SIMCO	60	626.3	624.8	1.5 C
31	B-026-0-22	US-35 Ramp C	112+46	11' RT	JL	CME 45B	73	623.5	622.5	1.0 C
32	B-027-0-22	Marietta Connector	13+62	4' RT	JH	CME 45B	73	624.1	623.2	0.9 C
33	B-028-0-22	Marietta Connector	16+57	0' LT	JH	CME 45B	73	624.9	623.3	1.6 C
34	B-029-0-22	Marietta Connector	18+58	21' RT	JH	CME 45B	73	626.0	625.5	0.5 C
35	B-030-0-22	Marietta Rd.	32+18	29' RT	JL	CME 45B	73	625.3	625.2	0.1 C
36	B-031-0-22	Pawnee Rd.	52+07	20' RT	JL	CME 45B	73	622.9	622.6	0.3 C

V. 14.6 2/11/2022

#	Boring	Sample		nple pth	Subg De		Stan Penet		HP		P	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	2.5	4.0	1.9	3.4	30			NP	NP	NP	23	12	35	11	8	A-3a	0	0					
	001-0	SS-2	5.0	6.5	4.4	5.9	34			NP	NP	NP	18	7	25	8	6	A-1-b	0						
	22	SS-3	7.5	9.0	6.9	8.4	28									11	6	A-1-b							
		SS-4	10.0	11.5	9.4	10.9	29	30								10	6	A-1-b							
2	В	AS-1	2.0	3.0	0.5	1.5				NP	NP	NP	9	3	12	9	6	A-1-a	0						
	001-1																								
	21																								
								0																	
3	В	SS-1	2.5	4.0	2.2	3.7	41			NP	NP	NP	15	5	20	7	6	A-1-b	0						
	002-0	SS-2	5.0	6.5	4.7	6.2	12		3.25	33	18	15	28	17	45	14	14	A-6a	4						
	22	SS-3	7.5	9.0	7.2	8.7	11									16	10	A-2-4							
		SS-4	10.0	11.5	9.7	11.2	13	12	4.5	32	18	14	33	25	58	15	14	A-6a							
4	В	SS-1	1.5	3.0	1.5	3.0	21		4.5	21	15	6	27	15	42	11	10	A-4a	1	100					
	003-0	SS-2	3.0	4.5	3.0	4.5	13		4.5							17	10	A-4a	8						
	22	SS-3	4.5	6.0	4.5	6.0	13		3.25	31	17	14	30	22	52	16	14	A-6a	5						
		SS-4	6.0	7.5	6.0	7.5	41	13		-					-	13	6	A-1-b							
5	В	AS-1	1.0	1.5	-0.5	0.0				NP	NP	NP	11	3	14	6	6	A-1-a	0						
	004-1																								
	21																								
								0																	
6	В	SS-1	2.5	4.0	2.3	3.8	56			NP	NP	NP	13	4	17	4	6	A-1-b	0						
	004-0	SS-2	5.0	6.5	4.8	6.3	33									9	6	A-1-b	0						
	22	SS-3	7.5	9.0	7.3	8.8	12		4.5	31	16	15	28	28	56	14	14	A-6a							
		SS-4	10.0	11.5	9.8	11.3	12	30	4.5	01		10				23	14	A-6a							
7	В	AS-1	1.5	2.5	0.0	1.0				21	15	6	18	11	29	9	10	A-2-4	0			N ₆₀		0''	
	005-1	AS-2	2.5	3.5	1.0	2.0				28	16	12	30	35	65	16	14	A-6a	7			N60		0''	
	21																								
								0														<u> </u>			
8	В	SS-1	2.5	4.0	3.3	4.8	13			NP	NP	NP	6	3	9	6	6	A-1-a	0						
	005-0	SS-2	5.0	6.5	5.8	7.3	12		3.75	32	17	15	32	38	70	18	14	A-6a							
	22	SS-3				9.8	11		2.5							14	14	A-6a				1			
	~~	SS-3 SS-4			8.3 10.8	9.8 12.3	11	12	3.5 4.5							14	14	A-6a							
9	В	SS-1		3.0		1.5	15			NP	NP	NP	18	6	24	8	6	A-1-b	0	60					
	007-0	SS-2		4.5		3.0	4				NP			6	29	13	10	A-2-4				N ₆₀ & Mc			
	22			6.0			6			141			25	0	25	6	10	A-2-4	0						
	22	SS-3 SS-4		6.0 7.5		4.5 6.0	29	4		NP		NP				6 16	10 8	A-2-4 A-3a				<u> </u>			
		33-4	0.0	7.5	4.3	0.0	29	4		INP		INP				10	ō	A-3d	0						

V. 14.6

#	Boring	Sample		nple pth	Subg De	rade pth		dard tration	НР		P	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
#			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	AS-1	1.3	1.5	-0.2	0.0				NP	NP	NP	11	3	14	14	6	A-1-b	0						
	007-1																								
	21																								
								0																	
11	В	SS-1	2.5	4.0	1.0	2.5	15									7	6	A-1-b	0	0					
	008-0	SS-2	5.0	6.5	3.5	5.0	4									10	6	A-1-b	0						
	22	SS-3	7.5	9.0	6.0	7.5	6			NP	NP	NP	24	12	36	17	11	A-4a							
		SS-4	10.0	11.5	8.5	10.0	29	4		NP	NP	NP	17	6	23	8	6	A-1-b							
12	В	SS-1A	2.5	3.0	1.8	2.3	15			NP	NP	NP	10	5	15	5	6	A-1-b	0	180					
	009-0	SS-1B	3.0	4.0	2.3	3.3	15		2.75	28	17	11	24	17	41	12	14	A-6a	1						
	22	SS-2	5.0	6.5	4.3	5.8	12			27	16	11	22	18	40	11	14	A-6a	1						
		SS-3	7.5	9.0	6.8	8.3	17	12		35	19	16	38	35	73	19	16	A-6b							
13	В	SS-1	2.5	4.0	2.1	3.6	6		4	36	19	17	24	26	50	17	16	A-6b	5	60					
	010-0	SS-2	5.0	6.5	4.6	6.1	5		3							21	16	A-6b	16						
	22	SS-3	7.5	9.0	7.1	8.6	11		4.25	36	18	18	26	26	52	16	16	A-6b							
		SS-4	10.0	11.5	9.6	11.1	11	5	3							19	16	A-6b							
14	В	SS-1	1.5	3.0	0.4	1.9	24			NP	NP	NP	12	5	17	10	6	A-1-b	0	0					
	011-0	SS-2	3.0	4.5	1.9	3.4	22									8	6	A-1-b	0						
	22	SS-3	4.5	6.0	3.4	4.9	13									5	6	A-1-b	0						
		SS-4	6.0	7.5	4.9	6.4	12	12	3	25	15	10	29	23	52	15	10	A-4a	3						
15	В	SS-1	2.5	4.0	2.2	3.7	6									7	6	A-1-a	0	60					
	012-0	SS-2	5.0	6.5	4.7	6.2	7		3.5	29	14	15	17	21	38	13	14	A-6a	2						
	22	SS-3	7.5	9.0	7.2	8.7	33									7	6	A-1-a							
		SS-4	10.0	11.5	9.7	11.2	54	6								5	6	A-1-b							
16	В	SS-1	2.5	4.0	2.2	3.7	10		4.25	28	15	13	21	25	46	14	14	A-6a	3	100					
	013-0	SS-2	5.0	6.5	4.7	6.2	16		4.5							16	14	A-6a	10						
	22	SS-3A	7.5	8.0	7.2	7.7	47		4.25							13	14	A-6a							
		SS-3B	8.0	9.0	7.7	8.7	47	10								5	6	A-1-b							
17	В	SS-1	2.5	4.0	2.1	3.6	7		3.5	31	18	13	37	23	60	18	14	A-6a	6	20					
	014-0	SS-2	5.0	6.5	4.6	6.1	7		2.5							14	14	A-6a	10						
	22	SS-3	7.5	9.0	7.1	8.6	6									9	8	A-3a							
		SS-4	10.0	11.5	9.6	11.1	6	7					17	7	24	7	6	A-1-b							
18	В	SS-1	1.5	3.0	1.1	2.6	15									11	10	A-2-6	4						
	015-0	SS-2	3.0	4.5	2.6	4.1	15			28	15	13	19	12	31	5	10	A-2-6	0	0					
	22	SS-3	4.5	6.0	4.1	5.6	10									24	10	A-2-6	4						
		SS-4	6.0	7.5	5.6	7.1	12	10	3.75	36	19	17	46	42	88	20	16	A-6b							

V. 14.6

	#	Boring	Sample		nple pth	Subg De	grade pth	Stan Penet	dard ration	НР		Ρ	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
No. SS2 S3 S3 S </th <th></th> <th></th> <th></th> <th>From</th> <th>То</th> <th>From</th> <th>То</th> <th>N₆₀</th> <th>N_{60L}</th> <th>(tsf)</th> <th>ш</th> <th>PL</th> <th>PI</th> <th>% Silt</th> <th>% Clay</th> <th>P200</th> <th>Mc</th> <th>M_{OPT}</th> <th>Class</th> <th>GI</th> <th></th> <th>Unsuitable</th> <th>Unstable</th> <th>Unsuitable</th> <th>Unstable</th> <th>inches)</th>				From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI		Unsuitable	Unstable	Unsuitable	Unstable	inches)
21 53 75 80 77 78<	19	В	SS-1	2.5	4.0	2.1	3.6	12		4.5	29	15	14	18	20	38	10	14	A-6a	2	60					
Image: sector		016-0	SS-2	5.0	6.5	4.6	6.1	5			NP	NP	NP	11	12	23	9	8	A-3a	0						
10 6 551 15 30 12 27 15 31 19 12 19 13 32 12 10 A26 0		22	SS-3	7.5	9.0	7.1	8.6	8									17	10	A-4a							
Image: biase of the sector of the s			SS-4	10.0	11.5	9.6	11.1	12	5								19	10	A-4a							
12 13 13 13 14 14 14 16 16<	20	В	SS-1	1.5	3.0	1.2	2.7	15			31	19	12	19	13	32	12	10	A-2-6	0	0					
1 1		017-0	SS-2	3.0	4.5	2.7	4.2	48			NP	NP	NP	14	6	20	6	6	A-1-b	0						
21 8 55.1 2.5 4.0 2.0 3.5 10 3.25 3.2 17 2.5 3.7 1 4.6 7 0 Nee 0 22 55.4 7.5 6.5 4.5 6.0 6 4.5 6 6 4 1 1 4.4a 1 0 <		22	SS-3A	4.5	5.5	4.2	5.2	12									14	6	A-1-b	0						
108-0 55-2 5.0 6.5 4.5 6.0 6 6 8 9 N <			SS-3B	5.5	6.0	5.2	5.7	12	12	1.5							27	14	A-6a							
2 55.4 7.5 8.0 7.0 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.7 7.5 7.5 7.5 7.5 7.5 7.5 7.7 7.5	21	В	SS-1	2.5	4.0	2.0	3.5	10		3.25	32	15	17	25	32	57	17	16	A-6b	7			N ₆₀			
1 53.8 8.0 9.0 7.5 8.5 1.5 6 1 0 0 6 8 6.3 0 <th0< th=""> <th0< th=""> 0 <</th0<></th0<>		018-0	SS-2	5.0	6.5	4.5	6.0	6			NP	NP	NP	18	23	41	13	11	A-4a	1						
2 8 551 2.5 4.0 2.2 3.7 7 <th7< th=""> 7</th7<>		22	SS-3A	7.5	8.0	7.0	7.5	15									14	10	A-4a							
1040 552 50 65 4.7 6.2 13 7 6 7.8 7.7 7.8 7.7			SS-3B	8.0	9.0	7.5	8.5	15	6								6	8	A-3a							
1000 1000 100 </td <td>22</td> <td>В</td> <td>SS-1</td> <td>2.5</td> <td>4.0</td> <td>2.2</td> <td>3.7</td> <td>7</td> <td></td> <td>3.5</td> <td>31</td> <td>19</td> <td>12</td> <td>41</td> <td>39</td> <td>80</td> <td>20</td> <td>14</td> <td>A-6a</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22	В	SS-1	2.5	4.0	2.2	3.7	7		3.5	31	19	12	41	39	80	20	14	A-6a	9						
Image: Solution of the system of th		019-0	SS-2	5.0	6.5	4.7	6.2	13		4.5	34	17	17	45	38	83	17	16	A-6b	11						
23 8 SS-1 0.0 1.5 1.5 0.0 3.6 1.5 0.0 3.6 1.5 0.0 3.6 1.5 0.0 3.6 1.5 3.0 0.0 1.5 3.0		22	SS-3	7.5	9.0	7.2	8.7	7		4.5							18	16	A-6b							
020 SS-2 1.5 3.0 0.0 1.5 3.5 4.5 3.0 0.0 1.5 3.5 4.5 3.0 0.0 1.5 3.0 1.7 4.5 0.0 1.5 3.0 1.7 4.5 0.0 1.5 3.0 1.7 4.5 0.0 1.5 3.0 1.7 4.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 0.0 1.5 0.0 <td></td> <td></td> <td>SS-4</td> <td>10.0</td> <td>11.5</td> <td>9.7</td> <td>11.2</td> <td>6</td> <td>7</td> <td>3</td> <td>32</td> <td>17</td> <td>15</td> <td>41</td> <td>36</td> <td>77</td> <td>17</td> <td>14</td> <td>A-6a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			SS-4	10.0	11.5	9.7	11.2	6	7	3	32	17	15	41	36	77	17	14	A-6a							
22 53.3 3.0 4.5 1.5 3.0 1.7 6 3.2 2 1 1 1 1 4.6 5 1 6 0 0 0 1 6 3.2 2 1 1 3 1 4 6 5 1 6 0	23	В	SS-1	0.0	1.5	-1.5	0.0	36		4.5							10	10	A-4a	8						
Image: Section of the secting section of the section of th		020-0	SS-2	1.5	3.0	0.0	1.5	35		4.5	26	16	10	31	19	50	12	11	A-4a	3						
24 8 S5-1 1.5 3.0 0.0 1.5 56 M N <		22	SS-3	3.0	4.5	1.5	3.0	17		4.5							18	10	A-4a	8			Mc			
01-0 55-24 3.0 4.0 1.5 2.5 3.0 4.5 2.5 3.0 4.5 2.5 3.0 4.5 2.5 3.0 4.5 2.5 3.0 4.5 2.5 3.0 4.5 2.5 3.0 4.5 2.5 3.0 3.0 4.5 2.5 3.0 3.0 4.5 2.5 3.0 3.0 4.5 2.5 3.0 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5<			SS-4	4.5	6.0	3.0	4.5	6	6	3.25	29	17	12	33	21	54	24	14	A-6a	5						
Nor Nor No N	24	В	SS-1	1.5	3.0	0.0	1.5	56			NP	NP	NP	14	5	19	5	6	A-1-b	0						
And And <td></td> <td>021-0</td> <td>SS-2A</td> <td>3.0</td> <td>4.0</td> <td>1.5</td> <td>2.5</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>6</td> <td>A-1-b</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		021-0	SS-2A	3.0	4.0	1.5	2.5	30									7	6	A-1-b	0						
25 B SS-1 2.5 4.0 1.0 2.5 1.8 4.5 3.4 9 1.5 3.4 2.7 6.1 1.6 1.4 A-6a 7 1.00 <td< td=""><td></td><td>22</td><td>SS-2B</td><td>4.0</td><td>4.5</td><td>2.5</td><td>3.0</td><td>30</td><td></td><td>4.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>13</td><td>10</td><td>A-4a</td><td>8</td><td></td><td></td><td>Mc</td><td></td><td></td><td></td></td<>		22	SS-2B	4.0	4.5	2.5	3.0	30		4.5							13	10	A-4a	8			Mc			
02-0 SS-2 S.0 6.5 S.5 S.0 S.5 S.5 <td< td=""><td></td><td></td><td>SS-3</td><td>4.5</td><td>6.0</td><td>3.0</td><td>4.5</td><td>15</td><td>15</td><td>2.75</td><td>40</td><td>20</td><td>20</td><td>46</td><td>38</td><td>84</td><td>22</td><td>16</td><td>A-6b</td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			SS-3	4.5	6.0	3.0	4.5	15	15	2.75	40	20	20	46	38	84	22	16	A-6b	12						
22 S5-3 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.5 9.0 6.0 7.0 9.0 6.0 8.0 7.6 9.0 7.0 9.0 7.0 8.0 7.0 8.0 7.0 9.0 <td>25</td> <td>В</td> <td>SS-1</td> <td>2.5</td> <td>4.0</td> <td>1.0</td> <td>2.5</td> <td>18</td> <td></td> <td>4.5</td> <td>34</td> <td>19</td> <td>15</td> <td>34</td> <td>27</td> <td>61</td> <td>16</td> <td>14</td> <td>A-6a</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	25	В	SS-1	2.5	4.0	1.0	2.5	18		4.5	34	19	15	34	27	61	16	14	A-6a	7						
SS-4 100 11.5 8.5 10.0 7.7 5 0		022-0	SS-2	5.0	6.5	3.5	5.0	6		3.5							19	14	A-6a	10						
SS-4 100 11.5 8.5 10.0 7.7 5 0		22	SS-3	7.5	9.0	6.0	7.5	5			NP	NP	NP	17	9	26	10	8	A-3a							
0230 SS-2 3.0 4.5 1.5 3.0 11 M			SS-4	10.0	11.5		10.0	7	5								7	8	A-3a							
22 SS-3 4.5 6.0 3.0 4.5 11 4.5 4.2 2.1 2.1 4.2 4.2 8.4 2.0 1.8 A-7-6 1.3 G.0 G.0 <thg< td=""><td>26</td><td>В</td><td>SS-1</td><td>1.5</td><td>3.0</td><td>0.0</td><td>1.5</td><td>8</td><td></td><td></td><td>NP</td><td>NP</td><td>NP</td><td>15</td><td>8</td><td>23</td><td>11</td><td>6</td><td>A-1-b</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></thg<>	26	В	SS-1	1.5	3.0	0.0	1.5	8			NP	NP	NP	15	8	23	11	6	A-1-b	0						
SS-4 6.0 7.5 4.5 6.0 15 8 3 9 9 9 9 24 18 A-7-6 16		023-0	SS-2	3.0	4.5	1.5	3.0	11									14	6	A-1-b	0						
SS-4 6.0 7.5 4.5 6.0 15 8 3 9 9 9 9 24 18 A-76 16 <		22	SS-3	4.5	6.0	3.0	4.5	11		4.5	42	21	21	42	42	84	20	18	A-7-6	13						
024-0 SS-2 3.0 4.5 1.5 3.0 10 3.75 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7									8																	
	27	В	SS-1	1.5	3.0	0.0	1.5	25		3.75	22	16	6	30	14	44	11	11	A-4a	2	0					
		024-0	SS-2	3.0	4.5	1.5	3.0	10		3.75							13	10	A-4a	8			N ₆₀ & Mc			
		22	SS-3	4.5	6.0	3.0	4.5	31			24	16	8	18	11	29	9	10	A-2-4	0						
SS-4 6.0 7.5 4.5 6.0 56 10 0 0 0 0 0 7 10 A-2-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									10											0						

V. 14.6

#	Boring	Sample		nple pth		rade pth	Stan Penet		НР		Ρ	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
п			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
28	В	AS-1	1.3	2.6	-0.3	1.1				NP	NP	NP	8	4	12	8	6	A-1-b	0						
	025-1	AS-2	2.6	3.0	1.1	1.5				20	14	6	12	8	20	6	6	A-1-b	0						
	21																								
								0																	
29	В	SS-1	1.5	3.0	1.4	2.9	42			NP	NP	NP	20	7	27	6	10	A-2-4	0	180					
	025-0	SS-2	3.0	4.5	2.9	4.4	46									7	10	A-2-4	0						
	22	SS-3	4.5	6.0	4.4	5.9	19									7	10	A-2-4	0						
		SS-4	6.0	7.5	5.9	7.4	10	10	4.25	32	18	14	37	33	70	17	14	A-6a							
30	В	AS-1	1.5	2.8	0.0	1.3				NP	NP	NP	12	7	19	9	6	A-1-b	0						
	026-1																								
	21																								
								0																	
31	В	SS-1	1.5	3.0	0.5	2.0	24			22	15	7	19	11	30	7	10	A-2-4	0	20					
	026-0	SS-2	3.0	4.5	2.0	3.5	11		4	29	16	13	30	27	57	14	14	A-6a	6			N ₆₀			
	22	SS-3	4.5	6.0	3.5	5.0	11		3.5							21	14	A-6a	10						
		SS-4	6.0	7.5	5.0	6.5	8	8	4	30	17	13	30	26	56	16	14	A-6a	5						
32	В	SS-1	1.5	3.0	0.6	2.1	13		4.25	32	16	16	31	29	60	15	16	A-6b	7	673					
	027-0	SS-2	3.0	4.5	2.1	3.6	8		3.25	32	16	16	28	29	57	18	16	A-6b	7						
	22	SS-3	4.5	6.0	3.6	5.1	5		2.5							17	16	A-6b	16						
		SS-4	6.0	7.5	5.1	6.6	24	5								6	6	A-1-b							
33	В	SS-1	0.0	1.5	-1.6	-0.1	13			NP	NP	NP	22	18	40	9	11	A-4a	1	0					
	028-0	SS-2	1.5	3.0	-0.1	1.4	10									10	10	A-4a	8			N ₆₀		12"	
	22	SS-3	3.0	4.5	1.4	2.9	7			NP	NP	NP	18	18	36	11	11	A-4a	0			N ₆₀			
		SS-4	4.5	6.0	2.9	4.4	18	7								7	6	A-1-b	0						
34	В	SS-1	1.5	3.0	1.0	2.5	21			NP	NP	NP	21	9	30	9	10	A-2-4	0	40					
	029-0	SS-2	3.0	4.5	2.5	4.0	8			34	17	17	13	21	34	15	10	A-2-6	1						
	22	SS-3	4.5	6.0	4.0	5.5	12									16	10	A-2-6	4						
		SS-4	6.0	7.5	5.5	7.0	18	8								6	6	A-1-b							
35	В	SS-1	1.0	2.5	0.9	2.4	8									3	6	A-1-b	0						
	030-0	SS-2	3.0	4.5	2.9	4.4	7		3	34	16	18	16	23	39	16	16	A-6b	3	40					
	22	SS-3	4.5	6.0	4.4	5.9	11			NP	NP	NP	20	6	26	9	8	A-3a	0						
		SS-4	6.0	7.5	5.9	7.4	21	7								7	8	A-3a							
36	В	SS-1	1.5	3.0	1.2	2.7	6			NP	NP	NP	14	10	24	10	6	A-1-b	0	60					
	031-0	SS-2	3.0	4.5	2.7	4.2	8			NP	NP	NP	22	13	35	11	10	A-2-4	0						
	22	SS-3	4.5	6.0	4.2	5.7	48									11	6	A-1-b	0						
		SS-4	6.0	7.5	5.7	7.2	67	6								8	6	A-1-b							

PID: 113013

County-Route-Section: ROS-159-0.41-Entire Project No. of Borings: 36

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. Tarawneh/ Nizar AltarawnehDate prepared:5/12/2023

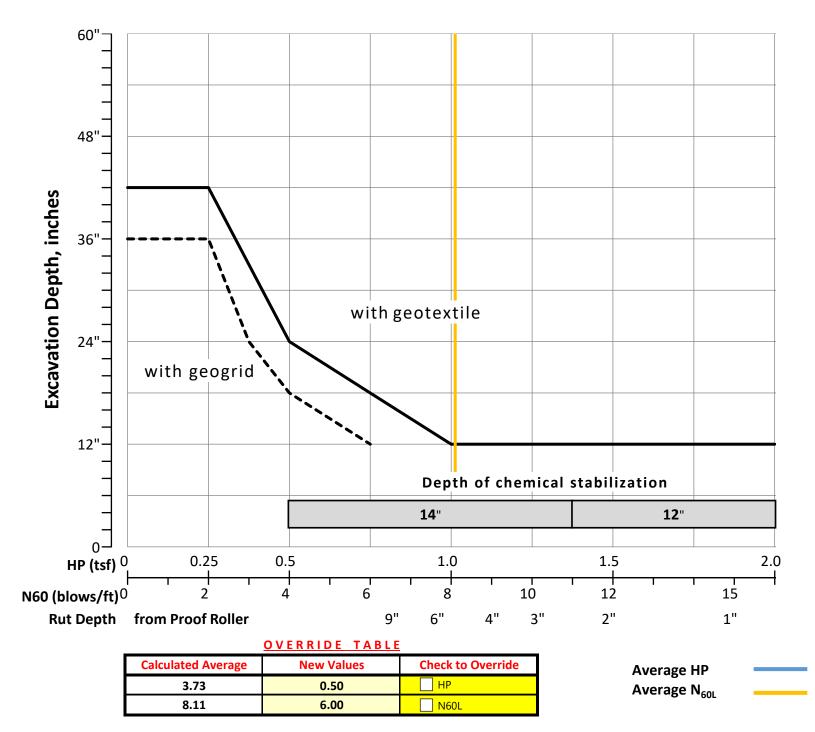
C	Chemical Stabilization Option	IS
320	Rubblize & Roll	No
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	14"

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0"

Design CBR	9
---------------	---

% Sampl	es within	6 feet of subgr	ade
N ₆₀ ≤ 5	6%	HP ≤ 0.5	0%
N ₆₀ < 12	37%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	15%	1 < HP ≤ 2	1%
N ₆₀ ≥ 20	26%	HP > 2	38%
M+	4%		
Rock	0%		
Unsuitable	0%		

Excavate and Repl at Surface	ace
Average	0"
Maximum	0"
Minimum	0"


% Proposed Subgrade Su	irface
Unstable & Unsuitable	19%
Unstable	19%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	18	8	3.73	30	17	13	23	18	42	12	10	3
Maximum	67	30	4.50	42	21	21	46	42	88	27	18	16
Minimum	4	0	1.50	20	14	6	6	3	9	3	6	0

					Class	ificat	ion C	ount	ts by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	4	34	12	0	6	0	0	9	15	0	0	28	14	0	2	0	0	124
Percent	0%	3%	27%	10%	0%	5%	0%	0%	7%	12%	0%	0%	23%	11%	0%	2%	0%	0%	100%
% Rock Granular Cohesive	0%					65%								3	5%				100%
Surface Class Count	0	3	18	6	0	4	0	0	1	10	0	0	8	4	0	0	0	0	54
Surface Class Percent	0%	6%	33%	11%	0%	7%	0%	0%	2%	19%	0%	0%	15%	7%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

SR 159 SEGMENT

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-SR 159 113013

SR 159 (Bridge Street) Corridor- Widening Project

NEAS, Inc.

Prepared By: Derar M. Tarawneh/ Nizar Altarawneh Date prepared: Friday, May 12, 2023

> Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

20

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-001-0-22	SR 159	709+31	52' RT	JL	CME 45B	73	626.5	625.9	0.6 C
2	B-001-1-21	SR 159			Binkley	SIMCO	60	624.1	622.6	1.5 C
3	B-002-0-22	SR 159	712+90	36' RT	JL	CME 45B	73	622.5	622.2	0.3 C
4	B-003-0-22	SR 159	714+89	46'RT	JH	CME 45B	73	621.8	621.8	0.0
5	B-004-1-21	SR 159			Binkley	SIMCO	60	623.6	622.1	1.5 C
6	B-004-0-22	SR 159	718+09	56' RT	JL	CME 45B	73	621.3	621.1	0.2 C
7	B-005-1-21	SR 159			Binkley	SIMCO	60	621.4	619.9	1.5 C
8	B-005-0-22	SR 159	720+66	46' RT	JL	CME 45B	73	619.8	620.6	0.8 F
9	B-007-1-21	SR 159			Binkley	SIMCO	60	622.4	620.9	1.5 C
10	B-009-0-22	SR 159	725+34	36' LT	JL	CME 45B	73	621.4	620.7	0.7 C
11	B-010-0-22	SR 159	727+88	45' RT	JL	CME 45B	73	622.5	622.1	0.4 C
12	B-011-0-22	SR 159	731+03	45' RT	JL	CME 45B	73	625.8	624.7	1.1 C
13	B-012-0-22	SR 159	736+73	35' RT	JL	CME 45B	73	626.9	626.6	0.3 C
14	B-013-0-22	SR 159	738+66	35' RT	JL	CME 45B	73	626.5	626.2	0.3 C
15	B-014-0-22	SR 159	740+94	35' RT	JL	CME 45B	73	625.5	625.1	0.4 C
16	B-015-0-22	SR 159	744+47	35' RT	JL	CME 45B	73	624.4	624.0	0.4 C
17	B-016-0-22	SR 159	747+64	35' RT	JL	CME 45B	73	624.3	623.9	0.4 C
18	B-017-0-22	SR 159	750+46	36' RT	JL	CME 45B	73	624.0	623.7	0.3 C
19	B-018-0-22	SR 159	752+57	35' RT	JL	CME 45B	73	625.3	624.8	0.5 C
20	B-019-0-22	SR 159	753+96	37' RT	JL	CME 45B	73	626.5	626.2	0.3 C

V. 14.6 2/11/2022

#	Boring	Sample		nple pth		grade pth	Stan Penet		НР		P	hysica	al Chara	cteristics	-	Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	Ы	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	2.5	4.0	1.9	3.4	30			NP	NP	NP	23	12	35	11	8	A-3a	0	0					
	001-0	SS-2	5.0	6.5	4.4	5.9	34			NP	NP	NP	18	7	25	8	6	A-1-b	0						
	22	SS-3	7.5	9.0	6.9	8.4	28									11	6	A-1-b							
		SS-4	10.0	11.5	9.4	10.9	29	30								10	6	A-1-b							
2	В	AS-1	2.0	3.0	0.5	1.5				NP	NP	NP	9	3	12	9	6	A-1-a	0						
	001-1																								
	21																								
								0																	
3	В	SS-1	2.5	4.0	2.2	3.7	41			NP	NP	NP	15	5	20	7	6	A-1-b	0						
	002-0	SS-2	5.0	6.5	4.7	6.2	12		3.25	33	18	15	28	17	45	14	14	A-6a	4						
	22	SS-3	7.5	9.0	7.2	8.7	11									16	10	A-2-4							
		SS-4	10.0	11.5	9.7	11.2	13	12	4.5	32	18	14	33	25	58	15	14	A-6a							
4	В	SS-1	1.5	3.0	1.5	3.0	21		4.5	21	15	6	27	15	42	11	10	A-4a	1	100					
	003-0	SS-2	3.0	4.5	3.0	4.5	13		4.5							17	10	A-4a	8						
	22	SS-3	4.5	6.0	4.5	6.0	13	1	3.25	31	17	14	30	22	52	16	14	A-6a	5						
		SS-4	6.0	7.5	6.0	7.5	41	13								13	6	A-1-b							
5	В	AS-1	1.0	1.5	-0.5	0.0				NP	NP	NP	11	3	14	6	6	A-1-a	0						
	004-1																								
	21							1																	
								0																	
6	В	SS-1	2.5	4.0	2.3	3.8	56			NP	NP	NP	13	4	17	4	6	A-1-b	0						
	004-0	SS-2	5.0	6.5	4.8	6.3	33									9	6	A-1-b	0						
	22	SS-3	7.5	9.0	7.3	8.8	12		4.5	31	16	15	28	28	56	14	14	A-6a							
		SS-4	10.0	11.5	9.8	11.3	12	30	4.5							23	14	A-6a							
7	В	AS-1	1.5	2.5	0.0	1.0				21	15	6	18	11	29	9	10	A-2-4	0			N ₆₀		0''	
	005-1	AS-2	2.5	3.5	1.0	2.0				28	16	12	30	35	65	16	14	A-6a	7			N ₆₀		0''	
	21							1																	
								0																	
8	В	SS-1	2.5	4.0	3.3	4.8	13			NP	NP	NP	6	3	9	6	6	A-1-a	0						
	005-0	SS-2	5.0	6.5	5.8	7.3	12]	3.75	32	17	15	32	38	70	18	14	A-6a							
	22	SS-3	7.5	9.0	8.3	9.8	11	1	3.5						İ	14	14	A-6a				1			
		SS-4			10.8			12							<u> </u>	14	14	A-6a				<u> </u>			
9	В	AS-1		1.5									11	3	14	14	6	A-1-b	0						
	007-1																		1						
	21														-		-		-						
	21							0		-															
								Ū							I		L								

V. 14.6 2/11/2022

#	Boring	Sample		nple pth	Subg De	rade pth	Stan Penet	dard ration	HP		Pl	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
'n			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1A	2.5	3.0	1.8	2.3	15			NP	NP	NP	10	5	15	5	6	A-1-b	0	180					
	009-0	SS-1B	3.0	4.0	2.3	3.3	15		2.75	28	17	11	24	17	41	12	14	A-6a	1						
	22	SS-2	5.0	6.5	4.3	5.8	12						22	18	40	11	14	A-6a	6						
		SS-3	7.5	9.0	6.8	8.3	17	12					38	35	73	19	16	A-6b							
11	В	SS-1	2.5	4.0	2.1	3.6	6		4	36	19	17	24	26	50	17	16	A-6b	5	60					
	010-0	SS-2	5.0	6.5	4.6	6.1	5		3							21	16	A-6b	16						
	22	SS-3	7.5	9.0	7.1	8.6	11		4.25	36	18	18	26	26	52	16	16	A-6b							
		SS-4	10.0	11.5	9.6	11.1	11	5	3							19	16	A-6b							
12	В	SS-1	1.5	3.0	0.4	1.9	24			NP	NP	NP	12	5	17	10	6	A-1-b	0	0					
	011-0	SS-2	3.0	4.5	1.9	3.4	22									8	6	A-1-b	0						
	22	SS-3	4.5	6.0	3.4	4.9	13									5	6	A-1-b	0						
		SS-4	6.0	7.5	4.9	6.4	12	12	3	25	15	10	29	23	52	15	10	A-4a	3						
13	В	SS-1	2.5	4.0	2.2	3.7	6									7	6	A-1-a	0	60					
	012-0	SS-2	5.0	6.5	4.7	6.2	7		3.5	29	14	15	17	21	38	13	14	A-6a	2						
	22	SS-3	7.5	9.0	7.2	8.7	33									7	6	A-1-a							
		SS-4	10.0	11.5	9.7	11.2	54	6								5	6	A-1-b							
14	В	SS-1	2.5	4.0	2.2	3.7	10		4.25	28	15	13	21	25	46	14	14	A-6a	3	100					
	013-0	SS-2	5.0	6.5	4.7	6.2	16		4.5							16	14	A-6a	10						
	22	SS-3A	7.5	8.0	7.2	7.7	47		4.25							13	14	A-6a							
		SS-3B	8.0	9.0	7.7	8.7	47	10								5	6	A-1-b							
15	В	SS-1	2.5	4.0	2.1	3.6	7		3.5	31	18	13	37	23	60	18	14	A-6a	6	20					
	014-0	SS-2	5.0	6.5	4.6	6.1	7		2.5							14	14	A-6a	10						
	22	SS-3	7.5	9.0	7.1	8.6	6									9	8	A-3a							
		SS-4	10.0	11.5	9.6	11.1	6	7		NP	NP	NP	17	7	24	7	6	A-1-b							
16	В	SS-1	1.5	3.0	1.1	2.6	15									11	10	A-2-6	4						
	015-0	SS-2	3.0	4.5	2.6	4.1	15			28	15	13	19	12	31	5	10	A-2-6	0	0					
	22	SS-3	4.5	6.0	4.1	5.6	10									24	10	A-2-6	4						
		SS-4	6.0	7.5	5.6	7.1	12	10	3.75	36	19	17	46	42	88	20	16	A-6b							
17	В	SS-1	2.5	4.0	2.1	3.6	12		4.5	29	15	14	18	20	38	10	14	A-6a	2	60					
	016-0	SS-2	5.0	6.5	4.6	6.1	5			NP	NP	NP	11	12	23	9	8	A-3a	0						
	22	SS-3	7.5	9.0	7.1	8.6	8									17	10	A-4a							
		SS-4		11.5		11.1	12	5								19	10	A-4a							
18	В	SS-1	1.5	3.0	1.2	2.7	15			31	19	12	19	13	32	12	10	A-2-6	0	0					
	017-0	SS-2	3.0	4.5	2.7	4.2	48			NP	NP	NP	14	6	20	6	6	A-1-b	0						
	22	SS-3A	4.5		4.2	5.2	12									14	6	A-1-b	0						
		SS-3B	5.5	6.0	5.2	5.7	12	12	1.5							27	14	A-6a							

V. 14.6

#	Boring	Sample	San De	-	-	rade pth	Stan Penet	dard ration	НР		P	hysica	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
19	В	SS-1	2.5	4.0	2.0	3.5	10		3.25	32	15	17	25	32	57	17	16	A-6b	7			N ₆₀			
	018-0	SS-2	5.0	6.5	4.5	6.0	6			NP	NP	NP	18	23	41	13	11	A-4a	1						
	22	SS-3A	7.5	8.0	7.0	7.5	15									14	10	A-4a							
		SS-3B	8.0	9.0	7.5	8.5	15	6								6	8	A-3a							
20	В	SS-1	2.5	4.0	2.2	3.7	7		3.5	31	19	12	41	39	80	20	14	A-6a	9						
	019-0	SS-2	5.0	6.5	4.7	6.2	13		4.5	34	17	17	45	38	83	17	16	A-6b	11						
	22	SS-3	7.5	9.0	7.2	8.7	7		4.5							18	16	A-6b							
		SS-4	10.0	11.5	9.7	11.2	6	7	3	32	17	15	41	36	77	17	14	A-6a							

PID: 113013

County-Route-Section: ROS-159-0.41-SR 159 No. of Borings: 20

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. Tarawneh/ Nizar AltarawnehDate prepared:5/12/2023

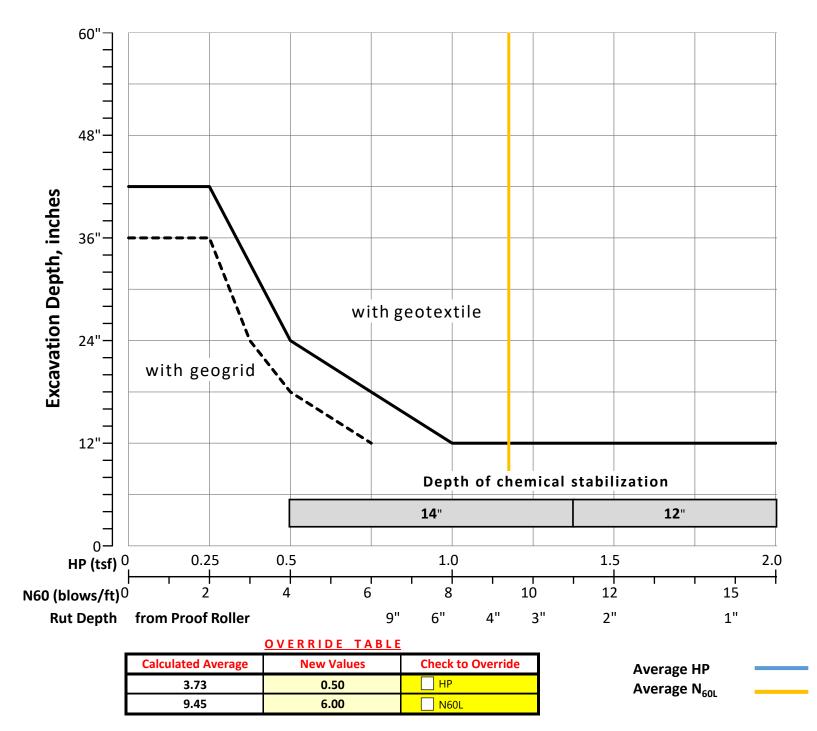
Chemical Stabilization Options											
320	Rubblize & Roll	No									
206	Cement Stabilization	Option									
	Lime Stabilization	No									
206	Depth	14"									

Excavate and Replace											
Stabilization Optic	ons										
Global Geotextile											
Average(N60L):	12"										
Average(HP):	0"										
Global Geogrid											
Average(N60L):	0"										
Average(HP):	0"										

Design CBR	9
---------------	---

% Samples within 6 feet of subgrade													
N ₆₀ ≤ 5	5%	HP ≤ 0.5	0%										
N ₆₀ < 12	27%	0.5 < HP ≤ 1	0%										
12 ≤ N ₆₀ < 15	30%	1 < HP ≤ 2	2%										
N ₆₀ ≥ 20	23%	HP > 2	43%										
M+	0%												
Rock	0%												
Unsuitable	0%												


Excavate and Replace at Surface										
Average	0"									
Maximum	0"									
Minimum	0"									


% Proposed Subgrade Surface										
Unstable & Unsuitable	13%									
Unstable	13%									
Unsuitable	0%									

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	17	9	3.73	30	17	14	24	20	44	13	11	3
Maximum	56	30	4.50	36	19	18	46	42	88	27	16	16
Minimum	5	0	1.50	21	14	6	6	3	9	4	6	0

					Class	ificat	ion C	ount	ts by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	4	16	2	0	4	0	0	4	7	0	0	21	9	0	0	0	0	67
Percent	0%	6%	24%	3%	0%	6%	0%	0%	6%	10%	0%	0%	31%	13%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					55%								4	5%				100%
Surface Class Count		3	7	1	0	3	0	0	1	1	0	0	6	2	0	0	0	0	24
Surface Class Percent	0%	13%	29%	4%	0%	13%	0%	0%	4%	4%	0%	0%	25%	8%	0%	0%	0%	0%	100%

RAMP A1 SEGMENT

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Ramp A1 113013

SR 159 (Bridge Street) Corridor Safety Improvement

NEAS, Inc.

Prepared By: Date prepared: Derar M. Tarawneh Monday, September 26, 2022

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

2

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-007-0-22	Ramp A1	400+67	40' RT	JL	CME 45B	73	621.2	619.7	1.5 C
2	B-008-0-22	Ramp A1	402+06	14' RT	JL	CME 45B	73	617.7	616.2	1.5 C

V. 14.6

#	Boring	Sample	Sam Dej	•	-	rade pth	Stan Penet	dard tration	НР		P	hysic	al Chara	cteristics		Moisture		Ohio DOT		Sulfate Content	Problem		Excavate and Replace (Item 204)		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	15						18	6	24	8	6	A-1-b	0	60					
	007-0	SS-2	3.0	4.5	1.5	3.0	4						23	6	29	13	10	A-2-4	0			N ₆₀ & Mc			
	22	SS-3	4.5	6.0	3.0	4.5	6									6	10	A-2-4	0						
		SS-4	6.0	7.5	4.5	6.0	29	4								16	8	A-3a	0						
2	В	SS-1	2.5	4.0	1.0	2.5	15									7	6	A-1-b	0	0					
	008-0	SS-2	5.0	6.5	3.5	5.0	4									10	6	A-1-b	0						
	22	SS-3	7.5	9.0	6.0	7.5	6						24	12	36	17	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	29	4					17	6	23	8	6	A-1-b							

County-Route-Section: ROS-159-0.41-Ramp A1 No. of Borings: 2

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. TarawnehDate prepared:9/26/2022

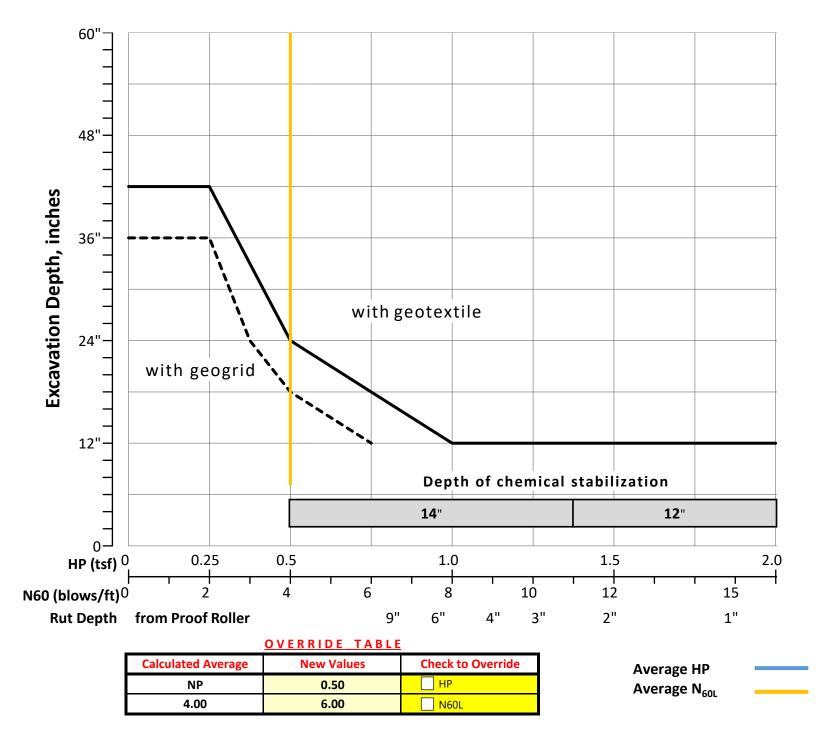
Chemical Stabilization Options									
320	320 Rubblize & Roll								
206	206 Cement Stabilization								
	Lime Stabilization	No							
206	Depth	14"							

Excavate and Replace								
Stabilization Options								
Global Geotextile								
Average(N60L):	24''							
Average(HP):	0''							
Global Geogrid								
Average(N60L):	18"							
Average(HP): 0								

Design CBR 13	
------------------	--

% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	29%	HP ≤ 0.5	0%						
N ₆₀ < 12	57%	0.5 < HP ≤ 1	0%						
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%						
N ₆₀ ≥ 20	14%	HP > 2	0%						
M+	14%								
Rock	0%								
Unsuitable	0%								


Excavate and Replace at Surface							
Average	0"						
Maximum	0"						
Minimum	0"						


% Proposed Subgrade Surface							
Unstable & Unsuitable	33%						
Unstable	33%						
Unsuitable	0%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	14	4	NP	0	0	0	21	8	28	11	8	0
Maximum	29	4	NP	0	0	0	24	12	36	17	10	0
Minimum	4	4	NP	0	0	0	17	6	23	6	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6									A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals		
Count	0	0	4	2	0	0	0	0	1	1	0	0	0	0	0	0	0	0	8
Percent	0%	0%	50%	25%	0%	0%	0%	0%	13%	13%	0%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					100%						0%						100%	
Surface Class Count	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Surface Class Percent	0%	0%	67%	33%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%

STEWART ROAD SEGMENT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Stewart Rd 113013

SR 159 (Bridge Street) Corridor Safety Improvement

NEAS, Inc.

Prepared By: Date prepared: Derar M. Tarawneh Monday, September 26, 2022

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

V. 14.6	2/11/202
---------	----------

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring	Proposed Subgrade EL	Cut Fill
1	B-020-0-22	Stewart Rd.	64+07	36' RT	JH	CME 45B	73	620.9	619.4	1.5 C
2	B-021-0-22	Stewart Rd.	69+25	23' LT	Hſ	CME 45B	73	620.1	618.6	1.5 C
3	B-022-0-22	Stewart Rd.	70+96	46' RT	ΗL	CME 45B	73	617.6	616.1	1.5 C

Subgrade Analysis

#	Boring	Sample	San De	nple pth		grade pth	Stan Penet	dard tration	НР		Pl	hysica	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Problem		Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchos)
1	В	SS-1	0.0	1.5	-1.5	0.0	36		4.5							10	10	A-4a	8						
	020-0	SS-2	1.5	3.0	0.0	1.5	35		4.5	26	16	10	31	19	50	12	11	A-4a	3						
	22	SS-3	3.0	4.5	1.5	3.0	17		4.5							18	10	A-4a	8			Mc			
		SS-4	4.5	6.0	3.0	4.5	6	6	3.25	29	17	12	33	21	54	24	14	A-6a	5						
2	В	SS-1	1.5	3.0	0.0	1.5	56						14	5	19	5	6	A-1-b	0						
	021-0	SS-2A	3.0	4.0	1.5	2.5	30									7	6	A-1-b	0						
	22	SS-2B	4.0	4.5	2.5	3.0	30		4.5							13	10	A-4a	8			Mc			
		SS-3	4.5	6.0	3.0	4.5	15	15	2.75	40	20	20	46	38	84	22	16	A-6b	12						
3	В	SS-1	2.5	4.0	1.0	2.5	18		4.5	34	19	15	34	27	61	16	14	A-6a	7						
	022-0	SS-2	5.0	6.5	3.5	5.0	6		3.5							19	14	A-6a	10						
	22	SS-3	7.5	9.0	6.0	7.5	5						17	9	26	10	8	A-3a							
		SS-4	10.0	11.5	8.5	10.0	7	5								7	8	A-3a							

County-Route-Section: ROS-159-0.41-Stewart Rd No. of Borings: 3

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. TarawnehDate prepared:9/26/2022

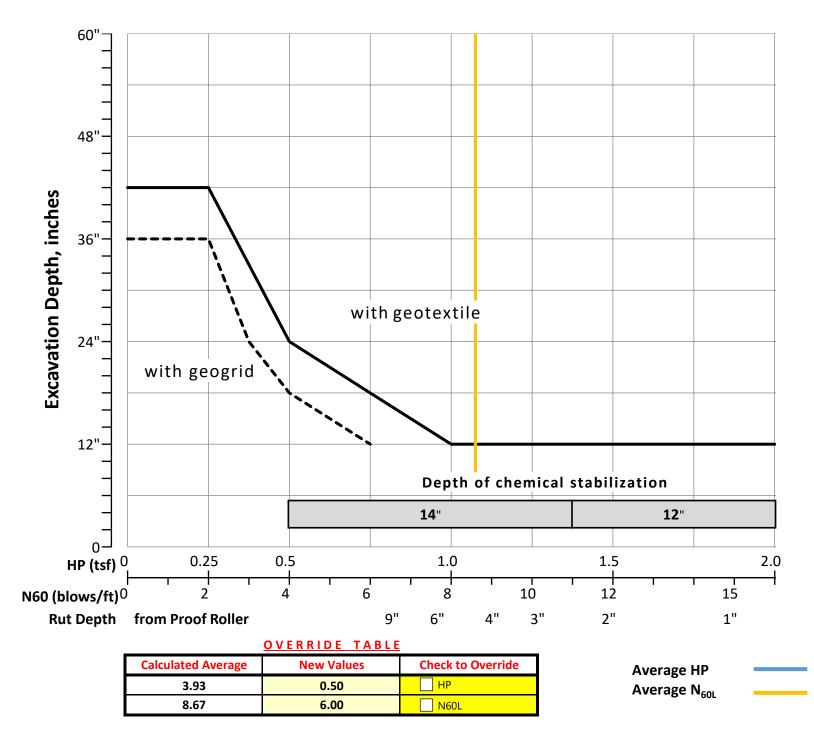
Chemical Stabilization Options									
320	320 Rubblize & Roll								
206	06 Cement Stabilization								
	Lime Stabilization	No							
206	Depth	14"							

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	12"						
Average(HP):	0''						
Global Geogrid							
Average(N60L):	0"						
Average(HP): 0"							

Design CBR 7	
-----------------	--

% Sampl	% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	10%	HP ≤ 0.5	0%							
N ₆₀ < 12	30%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	40%	HP > 2	70%							
M+	20%									
Rock	0%									
Unsuitable	0%									

Excavate and Replace at Surface						
Average	0"					
Maximum	0"					
Minimum	0"					


% Proposed Subgrade Surface						
Unstable & Unsuitable	29%					
Unstable	29%					
Unsuitable	0%					

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	20	9	3.93	32	18	14	29	20	49	14	11	6
Maximum	56	15	4.50	40	20	20	46	38	84	24	16	12
Minimum	5	5	2.75	26	16	10	14	5	19	5	6	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	2	0	0	0	0	0	2	3	0	0	3	1	0	0	0	0	11
Percent	0%	0%	18%	0%	0%	0%	0%	0%	18%	27%	0%	0%	27%	9%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					64%								36	5%				100%
Surface Class Count	0	0	2	0	0	0	0	0	0	4	0	0	1	0	0	0	0	0	7
Surface Class Percent	0%	0%	29%	0%	0%	0%	0%	0%	0%	57%	0%	0%	14%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

CONSUMER CENTER DRIVE SEGMENT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Consumer Center Dr 113013

SR 159 (Bridge Street) Corridor Safety Improvement

NEAS, Inc.

Prepared By: Dera Date prepared: Mon

Derar M. Tarawneh Monday, September 26, 2022

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig		Boring	Proposed Subgrade EL	Cut Fill
1	B-023-0-22	Consumer Center Dr.	9+26	2' RT	JH	CME 45B	73	614.3	612.8	1.5 C

#	Boring	Sample	Sam De	•	Subg De	rade oth		dard ration	НР		Pł	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchos)
1	В	SS-1	1.5	3.0	0.0	1.5	8						15	8	23	11	6	A-1-b	0						
	023-0	SS-2	3.0	4.5	1.5	3.0	11									14	6	A-1-b	0						
	22	SS-3	4.5	6.0	3.0	4.5	11		4.5	42	21	21	42	42	84	20	18	A-7-6	13						
		SS-4	6.0	7.5	4.5	6.0	15	8	3							24	18	A-7-6	16						

County-Route-Section: ROS-159-0.41-Consumer Center Dr No. of Borings: 1

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. TarawnehDate prepared:9/26/2022

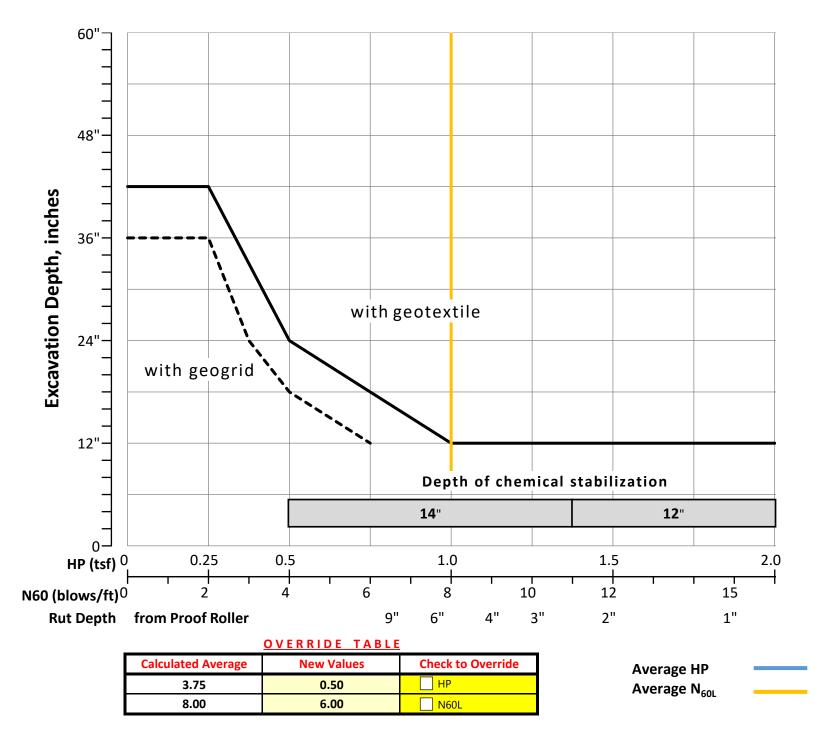
Chemical Stabilization Options							
320 Rubblize & Roll N							
206	Cement Stabilization	No					
	Lime Stabilization	Option					
206	Depth	14"					

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	12"						
Average(HP):	0''						
Global Geogrid							
Average(N60L):	0"						
Average(HP): 0"							

Design CBR	7
---------------	---

% Sampl	% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	75%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	0%	HP > 2	50%							
M+	0%									
Rock	0%									
Unsuitable	0%									


Excavate and Replace at Surface							
Average	0''						
Maximum	0''						
Minimum	0"						


% Proposed Subgrade Surface							
Unstable & Unsuitable	0%						
Unstable	0%						
Unsuitable	0%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	11	8	3.75	42	21	21	29	25	54	17	12	7
Maximum	15	8	4.50	42	21	21	42	42	84	24	18	16
Minimum	8	8	3.00	42	21	21	15	8	23	11	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	4
Percent	0%	0%	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	100%
% Rock Granular Cohesive	0%					50%					50%								100%
Surface Class Count	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Surface Class Percent	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%

RIVER TRACE SEGMENT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-River Trace 113013

SR 159 (Bridge Street) Corridor-Widening Project

NEAS, Inc.

Prepared By: Derar M. Tarawneh/ Nizar Altarawneh Date prepared: Thursday, September 29, 2022

> Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill
1	B-024-0-22	River Trace	82+06	18' LT	JH	CME 45B	73	620.3	618.8	1.5 C

#	Boring	Sample	Sam De	•		rade pth		dard ration	НР		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	25		3.75	22	16	6	30	14	44	11	11	A-4a	2	0					
	024-0	SS-2	3.0	4.5	1.5	3.0	10		3.75							13	10	A-4a	8			N ₆₀ & Mc			
	22	SS-3	4.5	6.0	3.0	4.5	31			24	16	8	18	11	29	9	10	A-2-4	0						
		SS-4	6.0	7.5	4.5	6.0	56	10								7	10	A-2-4	0						

County-Route-Section: ROS-159-0.41-River Trace No. of Borings: 1

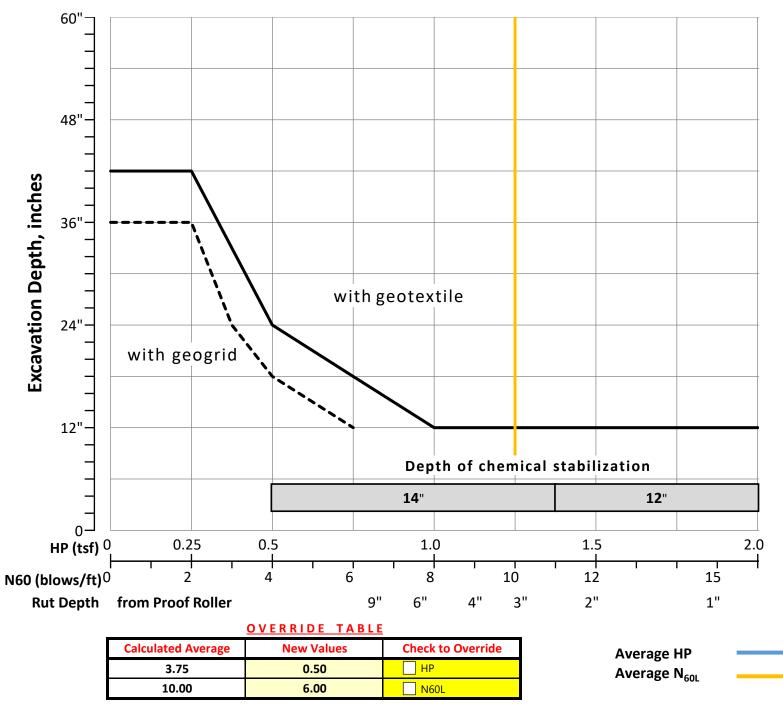
Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. Tarawneh/ Nizar AltarawnehDate prepared:9/29/2022

Chemical Stabilization Options								
320	Rubblize & Roll	No						
206	Cement Stabilization	Option						
	Lime Stabilization	No						
206	Depth	14"						

Excavate and Replace						
Stabilization Options						
Global Geotextile						
Average(N60L):	12"					
Average(HP):	0''					
Global Geogrid						
Average(N60L):	0''					
Average(HP): 0"						

Design CBR	9
---------------	---

% Sampl	% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	25%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	75%	HP > 2	50%							
M+	25%									
Rock	0%									
Unsuitable	0%									


Excavate and Replace at Surface							
Average	0"						
Maximum	0"						
Minimum	0"						

% Proposed Subgrade Surface								
Unstable & Unsuitable	50%							
Unstable	50%							
Unsuitable	0%							

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	31	10	3.75	23	16	7	24	13	37	10	10	3
Maximum	56	10	3.75	24	16	8	30	14	44	13	11	8
Minimum	10	10	3.75	22	16	6	18	11	29	7	10	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	4
Percent	0%	0%	0%	50%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%		100%									0%						-	100%
Surface Class Count	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	2
Surface Class Percent	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

US-35 RAMP C SEGMENT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-US 35 Ramp C 113013

SR 159 (Bridge Street) Corridor-Widening Project

NEAS, Inc.

Prepared By: Derar M. Tarawneh/ Nizar Altarawneh Date prepared: Friday, May 12, 2023

> Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-025-1-21	US-35 Ramp C			Binkley	SIMCO	60	634.3	632.8	1.5 C
2	B-025-0-22	US-35 Ramp C	106+46	19' RT	JL	CME 45B	73	631.4	631.3	0.1 C
3	B-026-1-21	US-35 Ramp C			Binkley	SIMCO	60	626.3	624.8	1.5 C
4	B-026-0-22	US-35 Ramp C	112+46	11' RT	JL	CME 45B	73	623.5	622.5	1.0 C

Subgrade Analysis

#	Boring	Sample	Sam Dej	-		grade pth	Stan Penet	dard tration	НР		P	hysica	al Chara	cteristics		Moi	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	AS-1	1.3	2.6	-0.3	1.1				NP	NP	NP	8	4	12	8	6	A-1-b	0						
	025-1	AS-2	2.6	3.0	1.1	1.5				20	14	6	12	8	20	6	6	A-1-b	0						
	21																								
								0																	
2	В	SS-1	1.5	3.0	1.4	2.9	42			NP	NP	NP	20	7	27	6	10	A-2-4	0	180					
	025-0	SS-2	3.0	4.5	2.9	4.4	46									7	10	A-2-4	0						
	22	SS-3	4.5	6.0	4.4	5.9	19									7	10	A-2-4	0						
		SS-4	6.0	7.5	5.9	7.4	10	10	4.25	32	18	14	37	33	70	17	14	A-6a							
3	В	AS-1	1.5	2.8	0.0	1.3				NP	NP	NP	12	7	19	9	6	A-1-b	0						
	026-1																								
	21																								
								0																	
4	В	SS-1	1.5	3.0	0.5	2.0	24			22	15	7	19	11	30	7	10	A-2-4	0	20					
	026-0	SS-2	3.0	4.5	2.0	3.5	11		4	29	16	13	30	27	57	14	14	A-6a	6			N ₆₀			
	22	SS-3	4.5	6.0	3.5	5.0	11		3.5							21	14	A-6a	10						
		SS-4	6.0	7.5	5.0	6.5	8	8	4	30	17	13	30	26	56	16	14	A-6a	5						

County-Route-Section: ROS-159-0.41-US 35 Ramp C No. of Borings: 4

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. Tarawneh/ Nizar AltarawnehDate prepared:5/12/2023

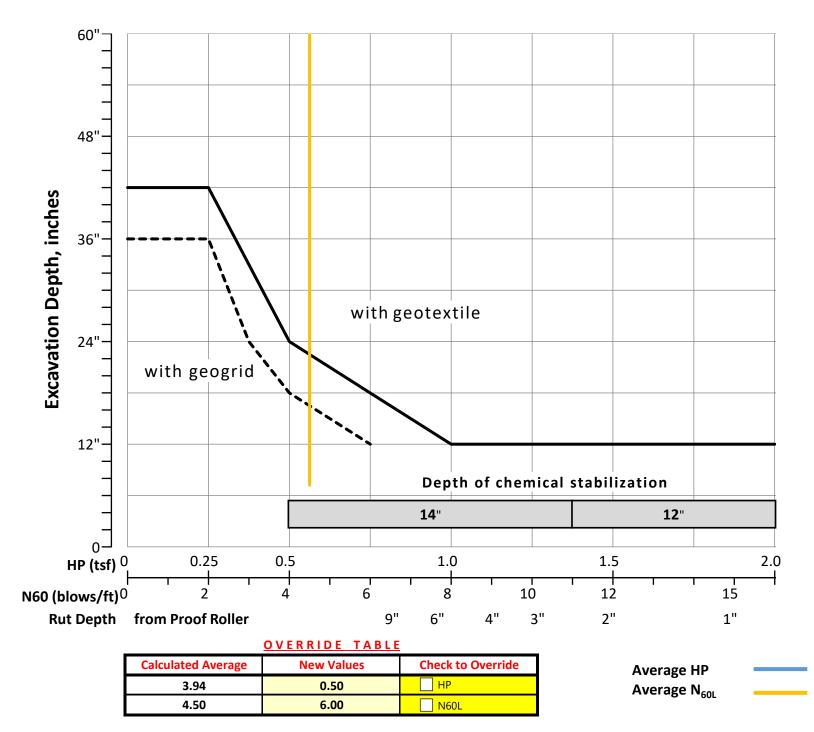
Chemical Stabilization Options									
320	Rubblize & Roll	No							
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	14"							

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	24"						
Average(HP):	0''						
Global Geogrid							
Average(N60L):	18"						
Average(HP):	0''						

Design CBR 10	
------------------	--

% Samples within 6 feet of subgrade										
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	36%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	27%	HP > 2	36%							
M+	0%									
Rock	0%									
Unsuitable	0%									

Excavate and Replace at Surface								
Average	0"							
Maximum	0"							
Minimum	0"							


% Proposed Subgrade Surface								
Unstable & Unsuitable	17%							
Unstable	17%							
Unsuitable	0%							

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	21	5	3.94	27	16	11	21	15	36	11	10	2
Maximum	46	10	4.25	32	18	14	37	33	70	21	14	10
Minimum	8	0	3.50	20	14	6	8	4	12	6	6	0

					Class	ificat	ion C	ount	s by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	3	4	0	0	0	0	0	0	0	0	4	0	0	0	0	0	11
Percent	0%	0%	27%	36%	0%	0%	0%	0%	0%	0%	0%	0%	36%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					64%								30	6%				100%
Surface Class Count	0	0	3	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	6
Surface Class Percent	0%	0%	50%	33%	0%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

MARIETTA CONNECTOR SEGMENT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Marietta Connector 113013

SR 159 (Bridge Street) Corridor Safety Improvement

NEAS, Inc.

Prepared By: D Date prepared: N

Derar M. Tarawneh Monday, September 26, 2022

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring	Proposed Subgrade EL	Cut Fill
1	B-027-0-22	Marietta Connector	13+62	4' RT	JH	CME 45B	73	624.1	622.6	1.5 C
2	B-028-0-22	Marietta Connector	16+57	0' LT	Hſ	CME 45B	73	624.9	623.4	1.5 C
3	B-029-0-22	Marietta Connector	18+58	21' RT	ΗL	CME 45B	73	626.0	624.5	1.5 C

Subgrade Analysis

#	Boring	Sample		nple pth	-	rade pth		dard tration	НР		Pl	hysica	al Chara	cteristics		Moi	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	•	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchos)
1	В	SS-1	1.5	3.0	0.0	1.5	13		4.25	32	16	16	31	29	60	15	16	A-6b	7	673					
	027-0	SS-2	3.0	4.5	1.5	3.0	8		3.25	32	16	16	28	29	57	18	16	A-6b	7			N ₆₀			
	22	SS-3	4.5	6.0	3.0	4.5	5		2.5							17	16	A-6b	16						
		SS-4	6.0	7.5	4.5	6.0	24	5								6	6	A-1-b	0						
2	В	SS-1	0.0	1.5	-1.5	0.0	13						22	18	40	9	10	A-4a	6	0					
	028-0	SS-2	1.5	3.0	0.0	1.5	10									10	10	A-4a	8			N ₆₀		12''	
	22	SS-3	3.0	4.5	1.5	3.0	7						18	18	36	11	10	A-4a	4			N ₆₀			
		SS-4	4.5	6.0	3.0	4.5	18	7								7	6	A-1-b	0						
3	В	SS-1	1.5	3.0	0.0	1.5	21						21	9	30	9	10	A-2-4	0	40					
	029-0	SS-2	3.0	4.5	1.5	3.0	8			34	17	17	13	21	34	15	10	A-2-6	1			N ₆₀ & Mc			
	22	SS-3	4.5	6.0	3.0	4.5	12									16	10	A-2-6	4						
		SS-4	6.0	7.5	4.5	6.0	18	8								6	6	A-1-b	0						

County-Route-Section: ROS-159-0.41-Marietta Connector No. of Borings: 3

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. TarawnehDate prepared:9/26/2022

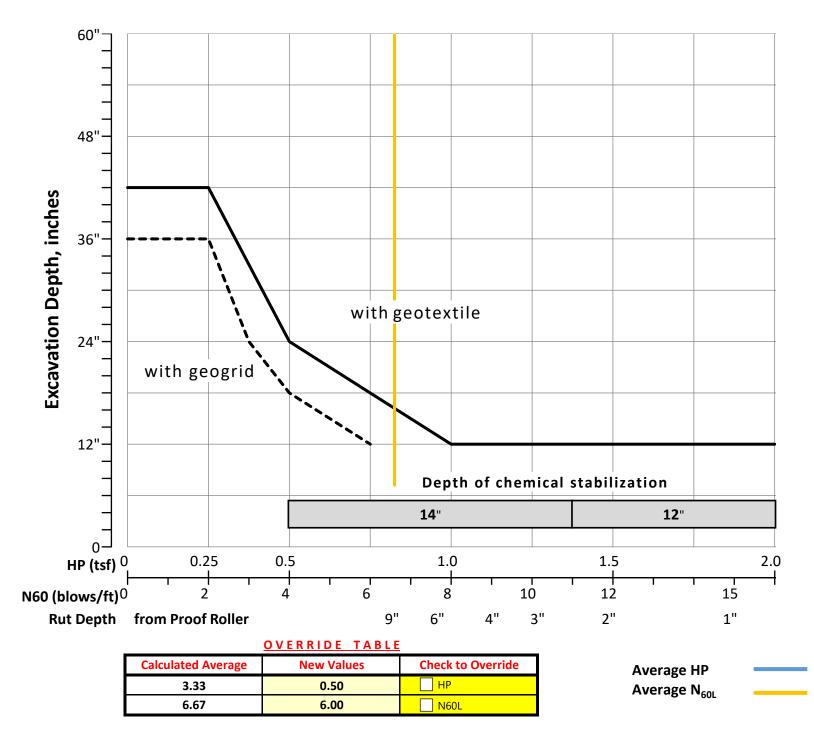
C	Chemical Stabilization Option	S
320	Rubblize & Roll	No
206	Cement Stabilization	Option
	Lime Stabilization	Option
206	Depth	14"

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	18"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0''
Average(HP):	0''

Design CBR 8	
-----------------	--

% Sampl	% Samples within 6 feet of subgrade													
N ₆₀ ≤ 5	9%	HP ≤ 0.5	0%											
N ₆₀ < 12	46%	0.5 < HP ≤ 1	0%											
12 ≤ N ₆₀ < 15	18%	1 < HP ≤ 2	0%											
N ₆₀ ≥ 20	18%	HP > 2	27%											
M+	9%													
Rock	0%													
Unsuitable	0%													

Excavate and Repl at Surface	ace
Average	0"
Maximum	0"
Minimum	0"


% Proposed Subgrade Su	irface
Unstable & Unsuitable	57%
Unstable	57%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	13	7	3.33	33	16	16	22	21	43	12	11	4
Maximum	24	8	4.25	34	17	17	31	29	60	18	16	16
Minimum	5	5	2.50	32	16	16	13	9	30	6	6	0

					Class	ificat	ion C	ount	ts by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	3	1	0	2	0	0	0	2	0	0	0	3	0	0	0	0	11
Percent	0%	0%	27%	9%	0%	18%	0%	0%	0%	18%	0%	0%	0%	27%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					73%								27	7%				100%
Surface Class Count	0	0	0	1	0	1	0	0	0	3	0	0	0	2	0	0	0	0	7
Surface Class Percent	0%	0%	0%	14%	0%	14%	0%	0%	0%	43%	0%	0%	0%	29%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

MARIETTA ROAD SEGMENT

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Marietta Rd 113013

SR 159 (Bridge Street) Corridor Safety Improvement

NEAS, Inc.

Prepared By: Date prepared:

Derar M. Tarawneh Monday, September 26, 2022

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

#	¥	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill	
1	1	B-030-0-22	Marietta Rd.	32+18	29' RT	JL	CME 45B	73	625.3	623.8	1.5 C	

#	Boring	ing Sample		Sample S Depth		Subgrade Depth		Standard Penetration		Physical Characteristics					Moisture		Ohio DOT		Sulfate Content	Problem		Excavate and Replace (Item 204)		Recommendation (Enter depth in	
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchos)
1	В	SS-1	1.0	2.5	-0.5	1.0	8									3	6	A-1-b	0						
	030-0	SS-2	3.0	4.5	1.5	3.0	7		3	34	16	18	16	23	39	16	16	A-6b	3	40		N ₆₀			
	22	SS-3	4.5	6.0	3.0	4.5	11						20	6	26	9	8	A-3a	0						
		SS-4	6.0	7.5	4.5	6.0	21	7								7	8	A-3a	0						

PID: 113013

County-Route-Section: ROS-159-0.41-Marietta Rd No. of Borings: 1

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. TarawnehDate prepared:9/26/2022

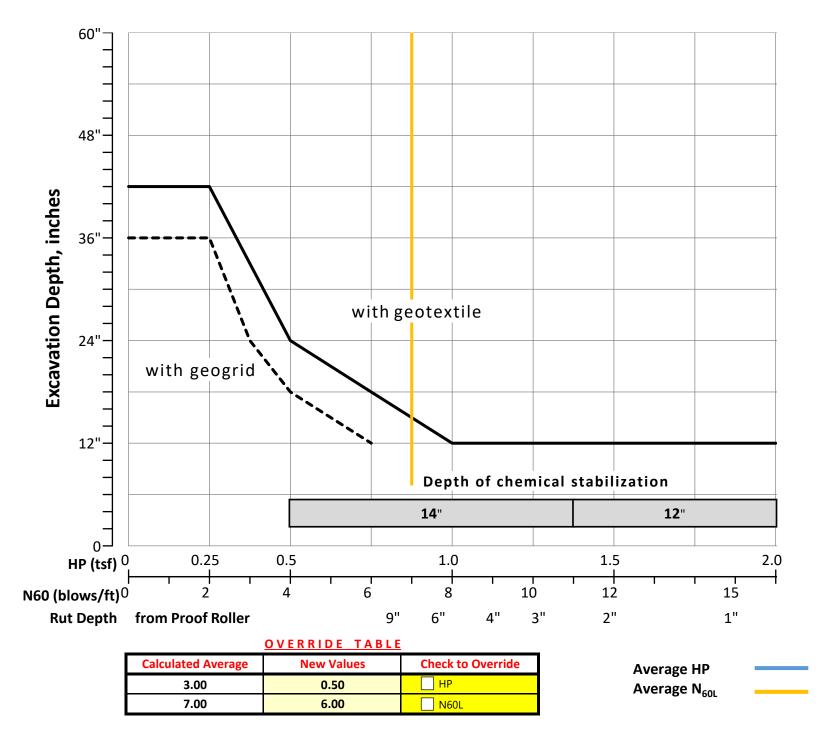
Chemical Stabilization Options								
320	No							
206	Cement Stabilization	Option						
	Lime Stabilization	Option						
206	Depth	14"						

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	15"						
Average(HP):	0''						
Global Geogrid							
Average(N60L):	0"						
Average(HP): 0"							

Design CBR 12

% Samples within 6 feet of subgrade										
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	75%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	25%	HP > 2	25%							
M+	0%									
Rock	0%									
Unsuitable	0%									


Excavate and Replace at Surface							
Average	0"						
Maximum	0"						
Minimum	0"						


% Proposed Subgrade Surface							
Unstable & Unsuitable	50%						
Unstable	50%						
Unsuitable	0%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	12	7	3.00	34	16	18	18	15	33	9	10	1
Maximum	21	7	3.00	34	16	18	20	23	39	16	16	3
Minimum	7	7	3.00	34	16	18	16	6	26	3	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	1	0	0	0	0	0	2	0	0	0	0	1	0	0	0	0	4
Percent	0%	0%	25%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	25%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					75%						25%							100%
Surface Class Count	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
Surface Class Percent	0%	0%	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	100%

PAWNEE ROAD SEGMENT

TRANSPORTATION

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES **Geotechnical Bulletin GB1**

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

ROS-159-0.41-Pawnee Rd 113013

SR 159 (Bridge Street) Corridor Safety Improvement

NEAS, Inc.

Prepared By: Date prepared: Derar M. Tarawneh Monday, September 26, 2022

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS:

1

V. 14.6 2/11/2022

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill
1	B-031-0-22	Pawnee Rd.	52+07	20' RT	JL	CME 45B	73	622.9	621.4	1.5 C

V. 14.6 2/11/2022

#	Boring	Sample	Sam De	•	Subg De	rade pth	Stan Penet		НР		Pl	hysica	al Chara	cteristics		Mo	isture			Sulfate Content	Problem		Problem Excavate and Rep (Item 204)		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchoo)
1	В	SS-1	1.5	3.0	0.0	1.5	6						14	10	24	10	6	A-1-b	0	60					
	031-0	SS-2	3.0	4.5	1.5	3.0	8						22	13	35	11	10	A-2-4	0			N ₆₀			
	22	SS-3	4.5	6.0	3.0	4.5	48									11	6	A-1-b	0						
		SS-4	6.0	7.5	4.5	6.0	67	6								8	6	A-1-b	0						

PID: 113013

County-Route-Section: ROS-159-0.41-Pawnee Rd No. of Borings: 1

Geotechnical Consultant:NEAS, Inc.Prepared By:Derar M. TarawnehDate prepared:9/26/2022

Chemical Stabilization Options									
320	320 Rubblize & Roll								
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	14"							

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	18"						
Average(HP):	0''						
Global Geogrid							
Average(N60L):	12"						
Average(HP): 0"							

Design CBR 13

% Samples within 6 feet of subgrade								
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%					
N ₆₀ < 12	50%	0.5 < HP ≤ 1	0%					
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%					
N ₆₀ ≥ 20	50%	HP > 2	0%					
M+	0%							
Rock	0%							
Unsuitable	0%							

Excavate and Replace at Surface						
Average	0"					
Maximum	0"					
Minimum	0"					

% Proposed Subgrade Surface						
Unstable & Unsuitable	50%					
Unstable	50%					
Unsuitable	0%					

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	32	6	NP	0	0	0	18	12	30	10	7	0
Maximum	67	6	NP	0	0	0	22	13	35	11	10	0
Minimum	6	6	NP	0	0	0	14	10	24	8	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Percent	0%	0%	75%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%		100% 0%							100%									
Surface Class Count	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Surface Class Percent	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%

APPENDIX D

WALL 1 ANALYSES

		of shallow foundation on level soil. Design Manual, 2022 [Sect. 305.2] and LRFD Bridge Design 20, [Sect. 10.6.3.1.2].
Givens:		
4	rameters (Average Below Foot	ting):
C	iditions (Effective Stress):	
$\phi'_{fd} := 27 \ deg$		Effective angle of internal friction
$\gamma_{fd} := 118 \frac{lbf}{ft^3}$ $c'_{fd} := 300 \frac{lbf}{ft^2}$	Ch	Unit weight
$c'_{fd} \coloneqq 300 \ \frac{lbf}{ft^2}$	Pith	Effective Cohesion
Undrained C	<u> Conditions (Total Stress):</u>	
$\phi_{fdu} := 0 deg$	Ύ.	Angle of internal friction (Same as Drained Conditions if Sand)
$Su_{fdu} := 3550$	lbf ft ²	Undrained Shear Strength
Undercut & R	Replacement Design Paramete	rs:
$\phi_{Re} := 34 de_{Re}$	g	Angle of internal friction for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.
$c_{Re} := 0 \ \frac{lbf}{ft^2}$		Cohesion for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.
$\gamma_{Re} := 130 \frac{h}{ft}$	bf t ³	Unit Weight for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.
$\delta_{Re} \coloneqq 0.67 \bullet$	$\phi_{Re} \qquad \delta_{Re} = 22.8 \ deg$	Friction angle between Replacement soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)
$D_{undercut} := 0$	ft	Depth of Undercut below bottom of footing
Foundation S	Surcharge Soil Parameters:	
$\gamma_q := 110 \ \frac{lb_j}{ft^3}$	$\frac{f}{s}$	Unit weight of Soil above bearing depth (Used in Bearing Resistance of Soil Calculation LRFD 10.6.3.1.2a-1)
Footing Geo	metry:	Ő.
$D_f \coloneqq 1.5 \ ft$		Footing cover at Toe Note: Unless on rock, top of footing should be at least 1-ft from soil surface and bottom of footing at least 5-ft from nearest soil surface per BDM 202.2.3.1a
$D_F := D_f + D_{ur}$	ndercut	Embenment Depth at bottom of Undercut Footing base width Footing effective base width Footing effective length Depth of groundwater below ground surface
B := 5 ft		Footing base width
B' := B		Footing effective base width
<i>L'</i> := 269.40 <i>f</i>	t	Footing effective length
$d_w := D_f$		Depth of groundwater below ground surface

Compute Bearing Resistance:

Drained Conditions (Effective Stress): $(\cdot \tan (\phi'_{fd}) \cdot \tan \left(45 \ deg + \frac{\phi'_{fd}}{2}\right)^2, 1.0$ $N_q := if$ $f_{fd} > 0.e$ $N_q = 13.2$ $N_c := if$ $N_c = 23.94$ tan (ø

Compute shape correction factors per LRFD [Table 10.6.3.1.2a-3]:

$$s_{c} := \operatorname{if} \left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'} \right) \cdot \left(\frac{N_{q}}{N_{c}} \right), 1 + \left(\frac{B'}{5 \cdot L'} \right) \right) \qquad s_{c} = 1.01$$

$$s_{q} := \operatorname{if} \left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi'_{fd}\right) \right), 1 \right) \qquad s_{q} = 1.009$$

$$s_{\gamma} := \operatorname{if} \left(\phi'_{fd} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'} \right), 1 \right) \qquad s_{\gamma} = 0.993$$
Load inclination factors:
$$i_{q} := 1$$

$$i_{\gamma} := 1$$

$$i_{c} := 1$$
Assumed to be 1.0, se "Most geotechnical en inclination factors". If c [10.6.3.1.2a-5] thru [10] the second
Load inclination factors:

$i_q := 1$	
$i_{\gamma} := 1$	
$i_c := 1$	

Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a. "Most geotechnical engineers do not used the load inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9].

Compute groundwater depth correction factors per LRFD [Table 10.6.3.1.2a-2]:

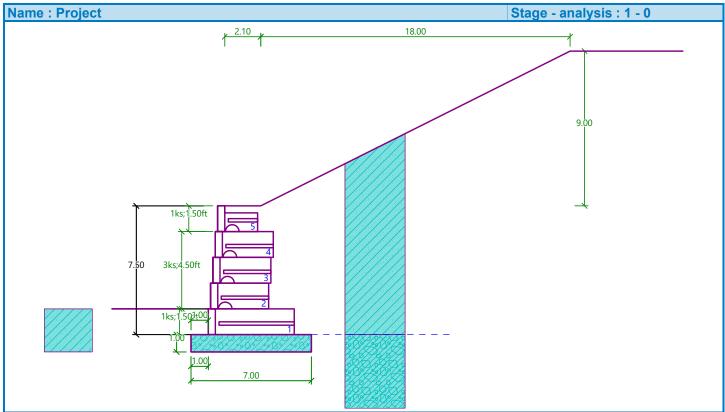
$$C_{wq} := if (d_w \ge D_f, 1.0, 0.5) \qquad C_{wq} = 1$$

$$C_{w7} := if (d_w \ge (1.5 \cdot B) + D_f, 1.0, 0.5) \qquad C_{w7} = 0.5$$
Depth Correction Factor per ODOT BDM 305.2.1:
$$d_q := 1 + 2 \cdot tan (\phi'_{fd}) \cdot (1 - sin (\phi'_{fd}))^2 \cdot atan \left(\frac{D_F}{B'}\right)$$

$$d_q = 1.09$$
Compute modified bearing capacity factors LRFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]:
$$N_{cm} := N_c \cdot s_c \cdot i_c \qquad N_{cm} = 24.187$$

$$N_{qm} := N_q \cdot s_q \cdot d_q \cdot i_q \qquad N_{qm} = 14.504$$

$$N_{ym} := N_y \cdot s_y \cdot i_y \qquad N_{ym} = 14.362$$
Compute nominal bearing resistance at bottom of Undercut & Replacement, LRFD [Eq 10.6.3.1.2a-1]:
$$q_{nd} := c'_{fd} \cdot N_{cm} + \gamma_q \cdot D_F \cdot N_{qm} \cdot C_{wq} + 0.5 \cdot \gamma_{fd} \cdot B' \cdot N_{ym} \cdot C_{wy} \qquad q_{nd} = 11767.7 \frac{lbf}{ft^2}$$


Compute factored bearing resistance, LRFD [Eg 10.6.3.1.1]: $\phi_b := 0.5$ Bearing resistance factor LRFD Table Table 10.5.5.2.2-1 $q_{Rd} := \phi_b \cdot q_{nd}$ $q_{Rd} = 5.9 \ ksf$ Factored bearing resistance Drained Conditions Undrained Conditions (Effective Stress): $N_q := \operatorname{if} \left[\phi_{fdu} > 0, e^{\pi \cdot \tan(\phi_{fdu})} \cdot \tan\left(45 \ deg + \frac{\phi_{fdu}}{2} \right) \right], 1.0$ $N_a = 1$ $N_c \coloneqq \text{if} \left| \phi_{fdu} > 0 \right|,$ $N_c = 5.14$ $N_{v} := 2 \cdot (N_{a} + 1) \cdot \tan(\phi_{fdu})$ $N_{\nu} = 0$ Compute shape correction factors per LRFD [Table 10.6.3.1.2a-3]: $s_c := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'}\right)\right)$ $\frac{N_q}{N_q}$ $s_c = 1.004$ $s_q := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi_{fdu}\right)\right), 1\right)$ $s_q = 1$ $s_{\gamma} := \text{if}\left(\phi_{fdu} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$ $s_{\gamma} = 1$ Load inclination factors Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a. $i_a := 1$ "Most geotechnical engineers do not used the load $i_{v} := 1$ inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9]. $i_c := 1$ Depth Correction Factor per ODOT BDM 305.2.1: $d_q := 1 + 2 \cdot \tan\left(\phi_{fdu}\right) \cdot \left(1 - \sin\left(\phi_{fdu}\right)\right)^2 \cdot \tan\left(\frac{D_F}{B'}\right)$ $d_{a} = 1$ Compute modified bearing capacity factors LRFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]: $N_{cm} := N_c \cdot s_c \cdot i_c$ $N_{cm} = 5.1$ $N_{am} := N_a \cdot s_a \cdot d_a \cdot i_a$ $N_{vm} := N_v \cdot s_v \cdot i_v$ $N_{\nu m} = 0$ Compute nominal bearing resistance at bottom of Undercut & Replacement, LRFD [Eg 10.6.3.1.2a-1 nation, $q_{nu} = 18479.7 \frac{lbf}{ft^2}$ $q_{nu} := Su_{fdu} \cdot N_{cm} + \gamma_a \cdot D_F \cdot N_{am} \cdot C_{wa} + 0.5 \cdot \gamma_{fd} \cdot B' \cdot N_{vm} \cdot C_{wv}$

ø _n = 9,2 kg m _n = 9,2 kg Eatored Bearing resistance Undrained Conditions: <i>a_{tot}</i> = 5,9 kg Undrained Conditions: <i>a_{tot}</i> = 5,9 kg Undrained Conditions: <i>a_{tot}</i> = 5,9 kg Undrained Conditions: <i>a_{tot}</i> = 5,9 kg	Compute factor	red bearing resistance, LRFD [Eq 10.6	<u>6.3.1.1]:</u>		
ne e y n ne e 2.2 M feine Restance Drained vis Undrained Conditions Derete Being Restance Drained vis Undrained Conditions Rule = 2.9 M feine Conditions Rule = 2.2 M feine Conditions Ru	$\phi_b := 0.5$			Bearing res	istance factor LRFD Table 10.5.5.2.2-1
Eatored Bearing Resistance Drained vs. Undrained Conditions: $q_{tw}=5.9 \text{ kg}$ Undrained Conditions: $q_{tw}=9.2 \text{ kg}$	$q_{Ru} := \phi_b \cdot q_{nu}$	$q_{Ru} = 9.2$ ksf		Factored be	earing resistance Undrained
Drained Conditions: q _{bu} =3.2 kg	Factored Beari	ng Resistance Drained vs. Undrained	Conditions:	Conditions	
Undrained Conditions: $q_{kd} = 9.2 \ kg'$	3		Drainad	Conditiona	a = 50 haf
Undrained Conditions: g _{file} =9.2 kg	4		Draineu		$q_{Rd} = 3.9 \text{ ksj}$
Mathcat Hadress. See MMM. Mathcad. com for more information.		Ċ	Undrained	Conditions:	$q_{Ru} = 9.2$ ksf
Retricted total ress. See www.metriced.com.for.more.information.		14			
Incar Hattees. See www.mathcad.com.for.more.information.		Qx.			
ead thopess. see www.matin.ead.com.for.more.information.		·?			
Hores. See www.maincad.com.for.more.information.					
toress. see www.maincad.com.tor.more.information.					
Ess. see www.mathcad.com.for.more.information.		To,			
SS. See www.mathcad.com.for.more.information.		(C)			
See www.matricad.com.for.more.information.		S.			
EE MAAN, MERINGER, COM FOR MORE INFORMATION.		S			
Munumerineed.com.for.more.information.		Č	0		
M. Methore the Comfort more information.			2		
Theircom for more information.			The		
Tatting the comfort more information.			.2		
Inced. Com for more information.				Yx.	
Bet. Com for more information.				5	
t. Com Er more information.				6	
Om Er more information				· · · ·	
Fr more information				Č	
or more information					
nore information					0
					3
					15
					The second se
					Ox.
					C/OA
					2

Analysis of Redi Rock wall

Input data

Description :Drained Condition- EffectiveAuthor :DTDate :11/20/2023Project ID :ROS-159-0.41Project number :Wall 1

Settings

(input for current task)

Wall analysis

Verification methodology :according to LRFDActive earth pressure calculation :CoulombPassive earth pressure calculation :CoulombEarthquake analysis :Mononobe-OkabeShape of earth wedge :Calculate as skewAllowable eccentricity :0.333Internal stability :Standard - straight slip surfaceReduction coeff. of contact first block - base :1.00

Load factors									
Design situation - Strength I									
		Minimum	Maximum						
Dead load of structural components :	DC =	0.90 [–]	1.25 [–]						
Dead load of wearing surfaces :	DW =	0.65 [-]	1.50 [–]						

[Redi-Rock - Redi-Rock Wall + (32 bit) | version 5.2023.63.0 | Copyright © 2023 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Redi-Rock International | (231) 237 - 9500 ext 3010| engineering@redi-rock.com] www.redi-rock.com] 1

Load factors									
Design situation - Strength I									
Earth pressure - active :	EH _A =	0.90	[]		1.50 [–]				
Earth pressure - at rest :	EH _R =	0.90	[]		1.35 [–]				
Earth surcharge load (permanent) :	ES =	0.75	[-]		1.50 [–]				
Vertical pressure of earth fill :	EV =	1.00	[-]		1.35 [-]				
Live load surcharge :	LL =	0.00	[]		1.75 [-]				
Water load :	WA =	1.00	[-]		1.00 [–]				
	Resistance f	actors							
D	esign situation	- Strength I							
Resistance factor on overturning :		φ _o =	:	0.90	[-]				
Resistance factor on sliding :		φ _t =		0.90	[]				
Resistance factor on bearing capacity :		φ _b =		0.45	[]				
Resistance factor on passive pressure :		φ _{VE} =		0.50	[-]				

Blocks

No.	Description	Height	Width	Unit weight
NO.	Description	h [in]	w [in]	γ [pcf]
1	Block 28	18.00	28.00	120.00
2	Block 41	18.00	40.50	120.00
3	Block 60	18.00	60.00	130.00
4	Top block 24 straight	18.00	24.00	108.00
5	Planter 41	18.00	40.50	120.00
6	Planter 60	18.00	60.00	112.00
7	Top block 28	18.00	28.00	120.00
8	Top block 41	18.00	40.50	120.00
9	Top block 24 straight garden	18.00	24.00	80.00
10	Block R-5236 HC	36.00	52.00	110.00
11	Block R-7236 HC	36.00	72.00	110.00
12	Block R-9636 HC	36.00	96.00	110.00
13	Block R-41 HC	18.00	40.50	110.00

No.	Description	Min. shear strength	Max. shear strength	Friction
	•	F _{min} [lbf/ft]	F _{max} [lbf/ft]	f [°]
1	Block 28	6061.00	11276.00	44.00
2	Block 41	6061.00	11276.00	44.00
3	Block 60	6061.00	11276.00	44.00
4	Top block 24 straight	6061.00	11276.00	44.00
5	Planter 41	6061.00	11276.00	44.00
6	Planter 60	6061.00	11276.00	44.00
7	Top block 28	6061.00	11276.00	44.00
8	Top block 41	6061.00	11276.00	44.00
9	Top block 24 straight garden	6061.00	11276.00	44.00
10	Block R-5236 HC	4550.00	12000.00	44.00
11	Block R-7236 HC	4550.00	12000.00	44.00

[Redi-Rock - Redi-Rock Wall + (32 bit) | version 5.2023.63.0 | Copyright © 2023 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Redi-Rock International | (231) 237 - 9500 ext 3010| engineering@redi-rock.com] www.redi-rock.com]

No.	Description	Min. shear strength F _{min} [lbf/ft]	Max. shear strength F _{max} [lbf/ft]	Friction f [°]
12	Block R-9636 HC	4550.00	12000.00	44.00
13	Block R-41 HC	5358.00	12906.00	37.00

Setbacks

No.	Setback s [in]			
1	0.010			
2	0.375			
3	1.625			
4	9.375			
5	16.625			

Geometry

No. group	Description	Count	Setback s [in]
1	Block 60	1	1.62
2	Block 41	3	1.62
3	Top block 28	1	-

Base

Geometry				
Upper setback	a ₁	=	1.00	ft
Lower setback	a ₂	=	1.00	ft
Height	h	=	1.00	ft
Width	b	=	7.00	ft

Material

Soil creating foundation - Leveling **Basic soil parameters**

No.	Name	Pattern	Φ _{ef} [°]	c _{ef} [psf]	γ [pcf]	Ysu [pcf]	δ [°]
1	Soil 1		30.00	0.0	120.00	57.50	20.00
2	Bearing		27.00	300.0	118.00	65.50	18.00
3	Leveling		34.00	0.0	120.00	57.50	22.70

All soils are considered as cohesionless for at rest pressure analysis. **Soil parameters**

Soil 1

Unit weight :	γ =	120.0 pcf
Stress-state :	effectiv	'e
Angle of internal friction :	φ_{ef} =	30.00 °
Cohesion of soil :	c _{ef} =	0.0 psf
Angle of friction strucsoil :	δ =	20.00 °
Saturated unit weight :	γ _{sat} =	120.0 pcf

3

Bearing

Unit weight :	γ =	118.0 pcf
Stress-state :	effectiv	'e
Angle of internal friction :	φ_{ef} =	27.00 °
Cohesion of soil :	c _{ef} =	300.0 psf
Angle of friction strucsoil :	δ =	18.00 °
Saturated unit weight :	γ _{sat} =	128.0 pcf
Leveling		
Unit weight :	γ =	120.0 pcf
Stress-state :	effectiv	'e
Angle of internal friction :	φ_{ef} =	34.00 °
Cohesion of soil :	c _{ef} =	0.0 psf
Angle of friction strucsoil :	δ =	22.70 °
Saturated unit weight :	γ _{sat} =	120.0 pcf

Backfill

Backfill is not considered. Geological profile and assigned soils

No.	Thickness of layer t [ft]	Depth z [ft]	Assigned soil	Pattern
1	7.50	0.00 7.50	Soil 1	
2	-	7.50 ∞	Bearing	

Terrain profile

No.	Coordinates x [ft]	Depth z [ft]
1	0.00	0.00
2	2.10	0.00
3	20.10	-9.00
4	21.10	-9.00

Origin [0,0] is located in upper right edge of construction. Positive coordinate +z has downward direction. Water influence

GWT behind the structure lies at a depth of 7.50 ft Uplift in foot. bottom due to different pressures is not considered. **Resistance on front face of the structure**

Resistance on front face of the structure: not considered Soil on front face of the structure - Soil 1 Soil thickness in front of structure h = 2.50 ft

Terrain in front of structure is flat.

Settings of the stage of construction

Design situation : Strength I Reduction of soil/soil friction angle : reduce to 2/3 ϕ (AASHTO)

Verification No. 1

Forces acting on construction

Name	F _{hor}	App.Pt.	Fvert	App.Pt.	Coeff.	Coeff.	Coeff.
	[lbf/ft]	z [ft]	[lbf/ft]	x [ft]	overtur.	sliding	stress
Weight - wall	0.0	-3.36	3965.6	3.19	0.900	0.900	1.250
Weight - earth wedge	0.0	-4.98	1140.7	5.09	1.000	1.000	1.350
Active pressure	2788.3	-3.23	1905.1	6.28	1.500	1.500	1.500
Water pressure	31.2	-0.33	0.0	4.72	1.000	1.000	1.000
Uplift pressure	0.0	-8.50	0.0	1.96	1.000	1.000	1.000

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 31619.3$ lbfft/ft Overturning moment $M_{ovr} = 13512.9$ lbfft/ft

Capacity demand ratio CDR = 2.34 Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 5012.97$ lbf/ft Active horizontal force $H_{act} = 4213.63$ lbf/ft

Capacity demand ratio CDR = 1.19 Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY Dimensioning No. 1

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[lbf/ft]	z [ft]	[lbf/ft]	x [ft]	overtur.	sliding	stress
Weight - wall	0.0	-0.75	328.1	1.17	0.900	0.900	1.250
Weight - earth wedge	0.0	-1.29	89.9	1.32	1.000	1.000	1.350
Active pressure	52.2	-0.48	22.3	2.32	0.900	1.500	1.500
Water pressure	0.0	-1.50	0.0	2.10	1.000	1.000	1.000

Verification of block No. 5

Check for overturning stability Resisting moment $M_{res} = 458.6$ lbfft/ft

Overturning moment $M_{ovr} = 22.4$ lbfft/ft

Capacity demand ratio CDR = 20.52 Joint for overturning stability is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 5818.84$ lbf/ft Active horizontal force $H_{act} = 78.26$ lbf/ft

Capacity demand ratio CDR = 74.36 Joint for verification is SATISFACTORY

Bearing capacity of foundation soil

Design load acting at the center of footing bottom

No.	Moment [lbfft/ft]	Norm. force [lbf/ft]	Shear Force [lbf/ft]	Eccentricity [–]	Stress [psf]
1	4667.9	9354.68	4213.63	0.071	1558.6
2	4866.5	7567.45	4213.63	0.092	1324.4

Service load acting at the center of footing bottom

No.	Moment [lbfft/ft]	Norm. force [lbf/ft]	Shear Force [lbf/ft]
1	3141.8	7011.46	2819.51

Verification of foundation soil

Stress in the footing bottom : rectangle

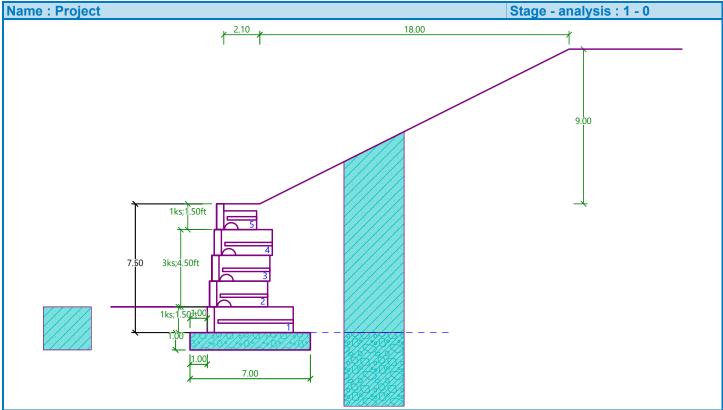
Eccentricity verification

Max. eccentricity of normal force e = 0.092Maximum allowable eccentricity $e_{alw} = 0.333$

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

Bearing capacity of foundation soil	R	=	11767.7	psf
Partial factor on bearing capacity	Ϋ́Rv	=	0.45	
Max. stress at footing bottom	σ	=	1558.6	psf
Bearing capacity of foundation soil	R _d	=	5295.5	psf
Capacity demand ratio	CDR	=	3.4	


Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

Analysis of Redi Rock wall

Input data

Description :Drained Condition- TotalAuthor :DTDate :11/20/2023Project ID :ROS-159-0.41Project number :Wall 1

Settings

(input for current task)

Wall analysis

Verification methodology :	according to LRFD
Active earth pressure calculation :	Coulomb
Passive earth pressure calculation :	Coulomb
Earthquake analysis :	Mononobe-Okabe
Shape of earth wedge :	Calculate as skew
Allowable eccentricity :	0.333
Internal stability :	Standard - straight slip surface
Reduction coeff. of contact first block - base :	1.00

Load factors							
Design situation - Strength I							
Minimum Maximum							
Dead load of structural components :	DC =	0.90 [-]	1.25 [–]				
Dead load of wearing surfaces : DW = 0.65 [-] 1.50 [-]							

[Redi-Rock - Redi-Rock Wall + (32 bit) | version 5.2023.63.0 | Copyright © 2023 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Redi-Rock International | (231) 237 - 9500 ext 3010| engineering@redi-rock.com] www.redi-rock.com] 1

Load factors								
D	Design situation - Strength I							
Earth pressure - active :	EH _A =	0.90	[]		1.50 [–]			
Earth pressure - at rest :	EH _R =	0.90	[]		1.35 [–]			
Earth surcharge load (permanent) :	ES =	0.75	[-]		1.50 [–]			
Vertical pressure of earth fill :	EV =	1.00	[-]		1.35 [-]			
Live load surcharge :	LL =	0.00	[]		1.75 [-]			
Water load :	WA =	1.00	[-]		1.00 [–]			
	Resistance f	actors						
D	esign situation	- Strength I						
Resistance factor on overturning :		φ _o =	:	0.90	[-]			
Resistance factor on sliding :		φ _t =		0.90	[]			
Resistance factor on bearing capacity :		φ _b =		0.45	[]			
Resistance factor on passive pressure :		φ _{VE} =		0.50	[-]			

Blocks

No	Description	Height	Width	Unit weight
No.	Description	h [in]	w [in]	γ [pcf]
1	Block 28	18.00	28.00	120.00
2	Block 41	18.00	40.50	120.00
3	Block 60	18.00	60.00	130.00
4	Top block 24 straight	18.00	24.00	108.00
5	Planter 41	18.00	40.50	120.00
6	Planter 60	18.00	60.00	112.00
7	Top block 28	18.00	28.00	120.00
8	Top block 41	18.00	40.50	120.00
9	Top block 24 straight garden	18.00	24.00	80.00
10	Block R-5236 HC	36.00	52.00	110.00
11	Block R-7236 HC	36.00	72.00	110.00
12	Block R-9636 HC	36.00	96.00	110.00
13	Block R-41 HC	18.00	40.50	110.00

No.	Description	Min. shear strength	Max. shear strength	Friction
	•	F _{min} [lbf/ft]	F _{max} [lbf/ft]	f [°]
1	Block 28	6061.00	11276.00	44.00
2	Block 41	6061.00	11276.00	44.00
3	Block 60	6061.00	11276.00	44.00
4	Top block 24 straight	6061.00	11276.00	44.00
5	Planter 41	6061.00	11276.00	44.00
6	Planter 60	6061.00	11276.00	44.00
7	Top block 28	6061.00	11276.00	44.00
8	Top block 41	6061.00	11276.00	44.00
9	Top block 24 straight garden	6061.00	11276.00	44.00
10	Block R-5236 HC	4550.00	12000.00	44.00
11	Block R-7236 HC	4550.00	12000.00	44.00

[Redi-Rock - Redi-Rock Wall + (32 bit) | version 5.2023.63.0 | Copyright © 2023 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Redi-Rock International | (231) 237 - 9500 ext 3010| engineering@redi-rock.com] www.redi-rock.com]

No.	Description	Min. shear strength F _{min} [lbf/ft]	Max. shear strength F _{max} [lbf/ft]	Friction f [°]
12	Block R-9636 HC	4550.00	12000.00	44.00
13	Block R-41 HC	5358.00	12906.00	37.00

Setbacks

No.	Setback s [in]		
1	0.010		
2	0.375		
3	1.625		
4	9.375		
5	16.625		

Geometry

No. group	Description	Count	Setback s [in]
1	Block 60	1	1.62
2	Block 41	3	1.62
3	Top block 28	1	-

Base

Geometry				
Upper setback	a ₁	=	1.00	ft
Lower setback	a ₂	=	1.00	ft
Height	h	=	1.00	ft
Width	b	=	7.00	ft

Material

Soil creating foundation - Leveling **Basic soil parameters**

No.	Name	Pattern	Φ _{ef} [°]	c _{ef} [psf]	γ [pcf]	Ysu [pcf]	δ [°]
1	Soil 1		30.00	0.0	120.00	57.50	20.00
2	Bearing		27.00	300.0	118.00	65.50	18.00
3	Leveling		34.00	0.0	120.00	57.50	22.70

All soils are considered as cohesionless for at rest pressure analysis. **Soil parameters**

Soil 1

Unit weight :	γ =	120.0 pcf
Stress-state :	effectiv	'e
Angle of internal friction :	φ_{ef} =	30.00 °
Cohesion of soil :	c _{ef} =	0.0 psf
Angle of friction strucsoil :	δ =	20.00 °
Saturated unit weight :	γ _{sat} =	120.0 pcf

3

Bearing

Unit weight :	γ =	118.0 pcf
Stress-state :	effectiv	'e
Angle of internal friction :	φ_{ef} =	27.00 °
Cohesion of soil :	c _{ef} =	300.0 psf
Angle of friction strucsoil :	δ =	18.00 °
Saturated unit weight :	γ _{sat} =	128.0 pcf
Leveling		
Unit weight :	γ =	120.0 pcf
Stress-state :	effectiv	'e
Angle of internal friction :	φ_{ef} =	34.00 °
Cohesion of soil :	c _{ef} =	0.0 psf
Angle of friction strucsoil :	δ =	22.70 °
Saturated unit weight :	γ _{sat} =	120.0 pcf

Backfill

Backfill is not considered. Geological profile and assigned soils

No.	Thickness of layer t [ft]	Depth z [ft]	Assigned soil	Pattern
1	7.50	0.00 7.50	Soil 1	
2	-	7.50 ∞	Bearing	

Terrain profile

No.	Coordinates x [ft]	Depth z [ft]
1	0.00	0.00
2	2.10	0.00
3	20.10	-9.00
4	21.10	-9.00

Origin [0,0] is located in upper right edge of construction. Positive coordinate +z has downward direction. Water influence

GWT behind the structure lies at a depth of 7.50 ft Uplift in foot. bottom due to different pressures is not considered. **Resistance on front face of the structure**

Resistance on front face of the structure: not considered Soil on front face of the structure - Soil 1 Soil thickness in front of structure h = 2.50 ft

Terrain in front of structure is flat.

Settings of the stage of construction

Design situation : Strength I Reduction of soil/soil friction angle : reduce to 2/3 ϕ (AASHTO)

Verification No. 1

Forces acting on construction

Name	F _{hor}	App.Pt.	Fvert	App.Pt.	Coeff.	Coeff.	Coeff.
	[lbf/ft]	z [ft]	[lbf/ft]	x [ft]	overtur.	sliding	stress
Weight - wall	0.0	-3.36	3965.6	3.19	0.900	0.900	1.250
Weight - earth wedge	0.0	-4.98	1140.7	5.09	1.000	1.000	1.350
Active pressure	2788.3	-3.23	1905.1	6.28	1.500	1.500	1.500
Water pressure	31.2	-0.33	0.0	4.72	1.000	1.000	1.000
Uplift pressure	0.0	-8.50	0.0	1.96	1.000	1.000	1.000

Verification of complete wall

Check for overturning stability

Resisting moment $M_{res} = 31619.3$ lbfft/ft Overturning moment $M_{ovr} = 13512.9$ lbfft/ft

Capacity demand ratio CDR = 2.34 Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 5012.97$ lbf/ft Active horizontal force $H_{act} = 4213.63$ lbf/ft

Capacity demand ratio CDR = 1.19 Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY Dimensioning No. 1

Forces acting on construction

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Coeff.	Coeff.	Coeff.
	[lbf/ft]	z [ft]	[lbf/ft]	x [ft]	overtur.	sliding	stress
Weight - wall	0.0	-0.75	328.1	1.17	0.900	0.900	1.250
Weight - earth wedge	0.0	-1.29	89.9	1.32	1.000	1.000	1.350
Active pressure	52.2	-0.48	22.3	2.32	0.900	1.500	1.500
Water pressure	0.0	-1.50	0.0	2.10	1.000	1.000	1.000

Verification of block No. 5

Check for overturning stability Resisting moment $M_{res} = 458.6$ lbfft/ft

Overturning moment $M_{ovr} = 22.4$ lbfft/ft

Capacity demand ratio CDR = 20.52 Joint for overturning stability is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 5818.84$ lbf/ft Active horizontal force $H_{act} = 78.26$ lbf/ft

Capacity demand ratio CDR = 74.36 Joint for verification is SATISFACTORY

Bearing capacity of foundation soil

Design load acting at the center of footing bottom

No.	Moment [lbfft/ft]	Norm. force [lbf/ft]	Shear Force [lbf/ft]	Eccentricity [–]	Stress [psf]
1	4667.9	9354.68	4213.63	0.071	1558.6
2	4866.5	7567.45	4213.63	0.092	1324.4

Service load acting at the center of footing bottom

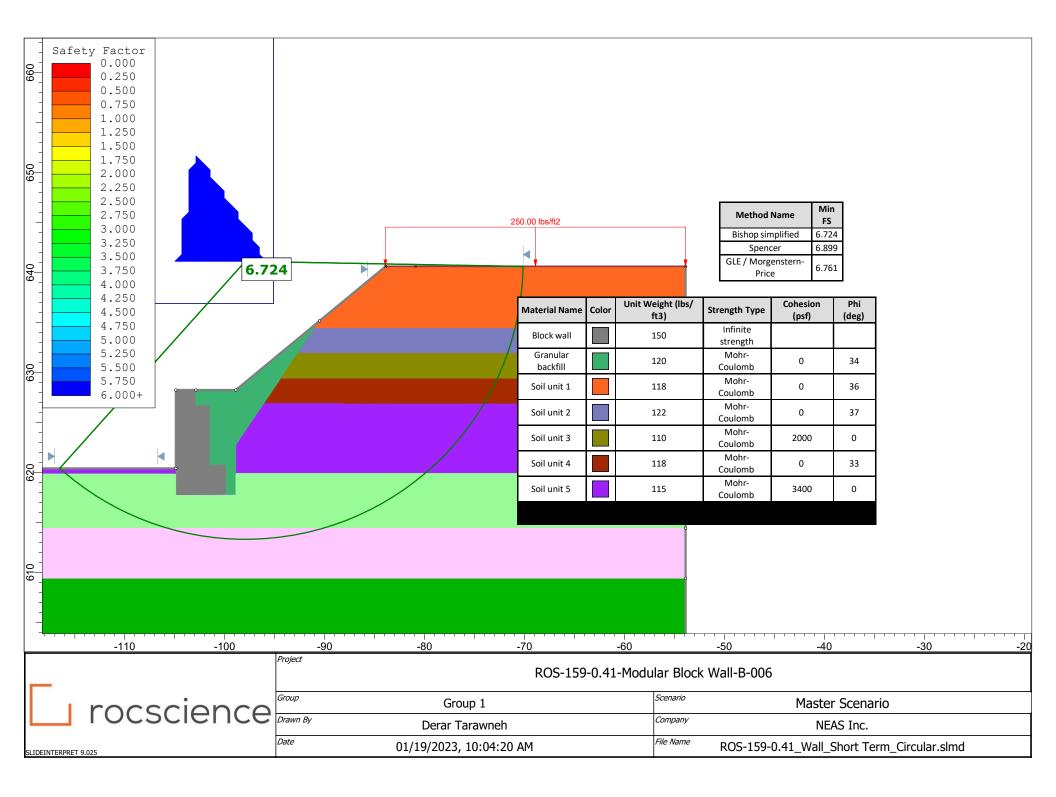
No.	Moment [lbfft/ft]	Norm. force [lbf/ft]	Shear Force [lbf/ft]
1	3141.8	7011.46	2819.51

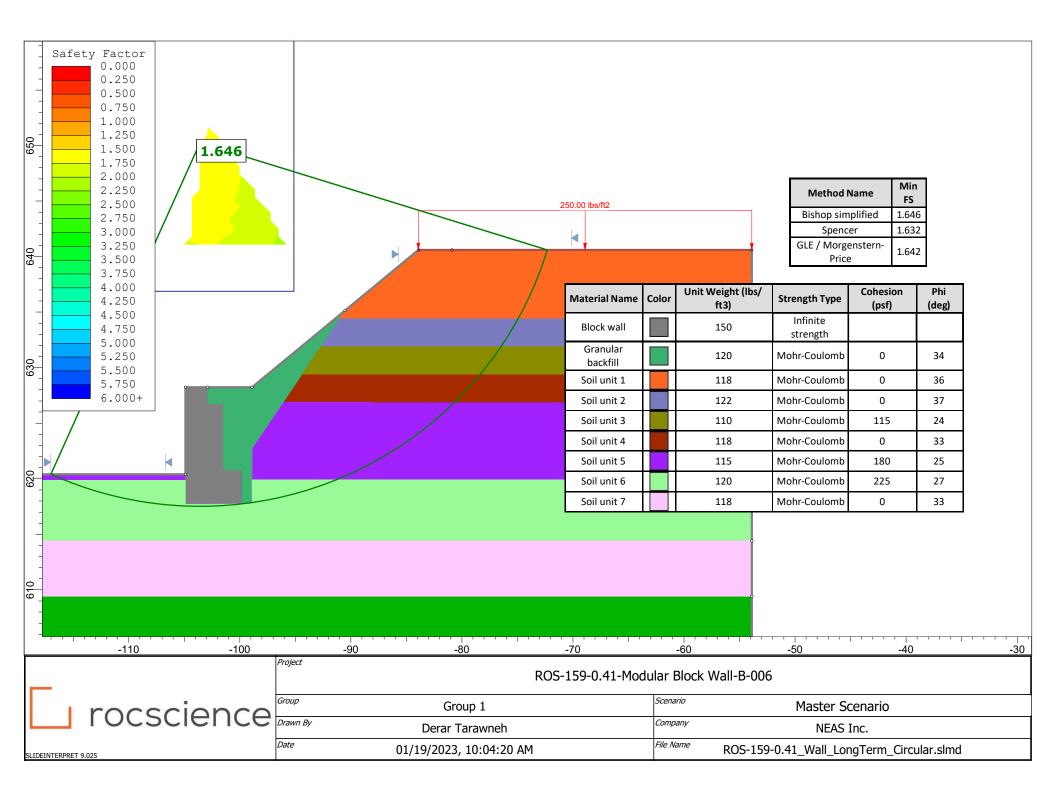
Verification of foundation soil

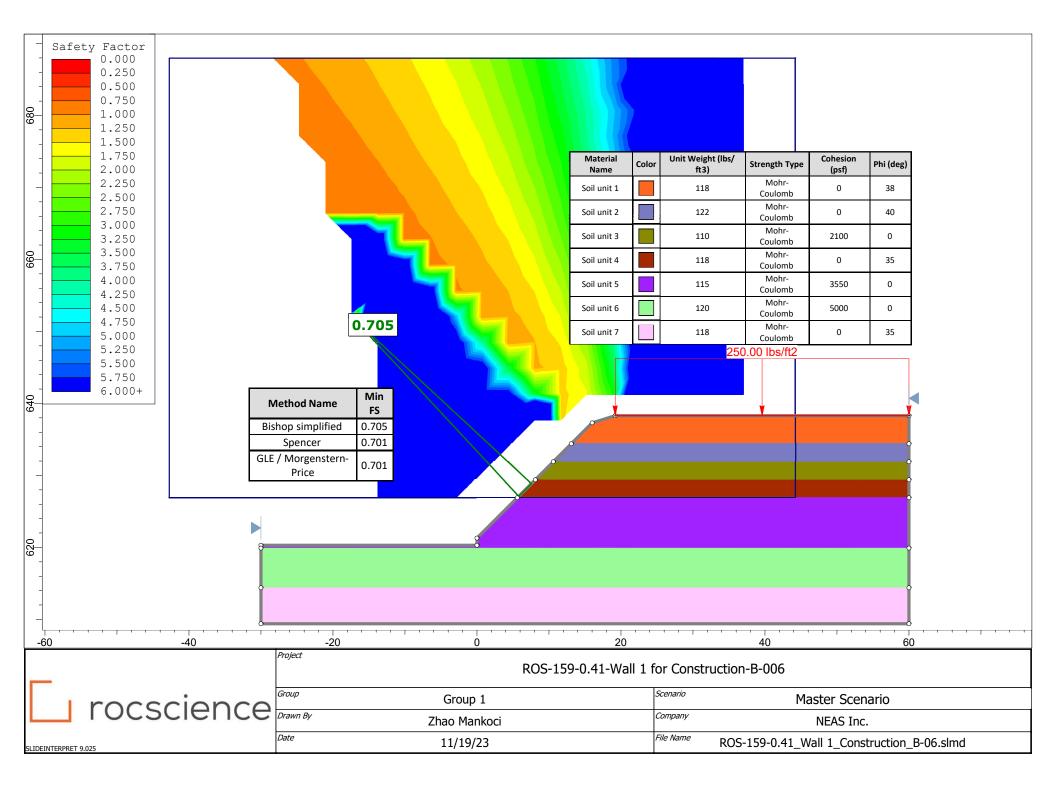
Stress in the footing bottom : rectangle

Eccentricity verification

Max. eccentricity of normal force e = 0.092Maximum allowable eccentricity $e_{alw} = 0.333$


Eccentricity of the normal force is SATISFACTORY

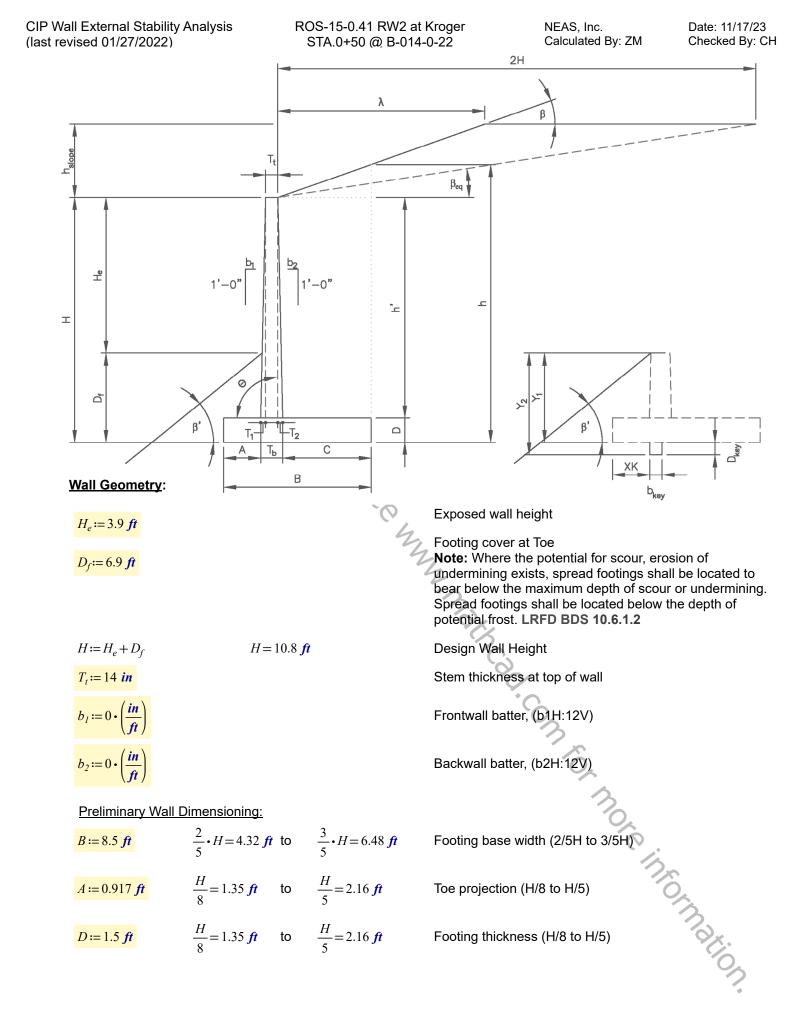

Verification of bearing capacity


Bearing capacity of foundation soil	R	=	18479.7	psf
Partial factor on bearing capacity	Ϋ́Rv	=	0.45	-
Max. stress at footing bottom	σ	=	1558.6	psf
Bearing capacity of foundation soil	R _d	=	8315.9	psf
Capacity demand ratio	CDR	=	5.3	

Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY

APPENDIX E


WALL 2 ANALYSES

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22

NEAS, Inc. Calculated By: ZM

Objective: Method:							
Givens:							
· · · · · · · · · · · · · · · · · · ·	Design Parameters:						
$\phi'_f \coloneqq 30 \ de_f$	g	Effective angle of internal friction					
$\gamma_f \coloneqq 120 \frac{h}{ft}$	<u>9</u> 3	Unit weight					
$c'_f \coloneqq 0 \ \frac{lbf}{ft^2}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Effective Cohesion					
$\delta := 0.67 \bullet \phi$	$\delta'_f \qquad \delta = 20.1 \ deg$	Friction angle between backfill and wall taken as specified in LRFD BDS C3.11.5.3 (degrees)					
Foundation Soil Design Parameters:							
Drained C	conditions (Effective Stress):						
$\phi'_{fd} := 30 \ da$	eg	Effective angle of internal friction					
$\gamma_{fd} := 120 \frac{l}{f}$	$\frac{bf}{r^3}$	Unit weight					
$c'_{fd} \coloneqq 0 \frac{lbj}{ft^2}$	<u>f</u>	Effective Cohesion					
$\delta_{fd} := 0.67 \cdot$	ϕ'_{fd} $\delta_{fd} = 20.1 \ deg$	Friction angle between foundation soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)					
<u>Undrained</u>	d Conditions (Total Stress):	24					
$\phi_{fdu} := 30 \ d$	leg	Angle of internal friction (Same as Drained Conditions if granular soils)					
$Su_{fdu} := 0 \frac{l}{f}$	$\frac{bf}{t^2}$	Undrained Shear Strength					
$\delta_{fdu} := 0.67$		Friction angle between foundation soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)					
Undercut & I	Replacement Design Paramete	ers:					
$\phi_{Re} := 34 de$	-	Angle of internal friction for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.					
$c_{Re} \coloneqq 0 \ \frac{lbf}{ft^2}$	<u>-</u>	Cohesion for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.					
$\gamma_{Re} := 130 - 130$	<u>lbf</u>	Unit Weight for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.					
$\delta_{Re} := 0.67$		Friction angle between Replacement soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)					
$D_{undercut} := 0$	0 ft	Depth of Undercut below bottom of footing Unit weight of Soil above bearing depth (Used in Bearing Resistance of Soil Calculation LRFD 10.6.3.1.2a-1) Concrete Unit weight					
Foundation	Surcharge Soil Parameters:	0					
$\gamma_q := 120 \frac{ll}{fl}$	<u>bf</u>	Unit weight of Soil above bearing depth (Used in Bearing					
fi Other Param		Resistance of Soil Calculation LRFD 10.6.3.1.2a-1)					
$\gamma_c := 150 \frac{ll}{ft}$	$\frac{bf}{b^3}$	Concrete Unit weight					

 $\gamma_c := 150 \ \frac{lbf}{ft^3}$

2 of 13

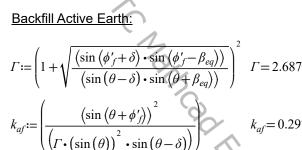
ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22 NEAS, Inc. Calculated By: ZM

Date: 11/17/23 Checked By: CH

Shear Key Dimensioning	:	
$D_{key} := 0 ft$		Depth of shear key from bottom of footing Note: Footings on rock typically require shear key
$b_{key} := 0 ft$		Width of shear key
XK := 0 ft		Distance from toe to shear key
Other Wall Dimensions:		
h' := H - D	h'=9.3 ft	Stem height
$T_1 := b_1 \cdot h'$	$T_I = 0 ft$	Stem front batter width
$T_2 := b_2 \cdot h'$	$T_2 = 0 ft$	Stem back batter width
$T_b := T_1 + T_2 + T_t$	$T_b = 1.167 \ ft$	Stem thickness at bottom of wall
$C \coloneqq B - A - T_b$	C = 6.416 ft	Heel projection
$\theta \coloneqq 90 \ deg$		Angle of back face of wall to horizontal = <i>atan(12/b2)</i>
<i>b</i> := 12 <i>in</i>	b=1 ft	Concrete strip width (for design)
$y_1 := D_f$	$y_1 = 6.9 ft$	Depth to where passive pressure may begin to be utilized in front of wall.
$y_2 := D_f + D_{key}$	$y_2 = 6.9 ft$	Bottom of shear key/footing depth i.e. depth to where passive pressure may no longer be utilized.
Site Grading and Slope D	Dimensions:	
$\beta \coloneqq 0 \ deg$ Inc	clination of ground slope:	Inclination of ground slope behind face of wall. Horizontal backfill behind CIP wall, $\beta = 0$ deg
	 Horizontal: 0 3H:1V: 18.435 	2
$\beta' := 18.435 \ deg$	 2H:1V: 26.565 1.5H:1V: 33.690 	Inclination of ground slope in front of wall. If it is horizontal backfill in front of CIP wall, $\beta' = 0$ deg. A negative angle
		 (-) indicates grades slope up from front of wall. Positive angle (+) indicates grade slope down from wall as shown in above figure.
$\lambda := 0 ft$		Horizontal distance from the back of the wall to point of slope crest .
$L_{Traffic} := 0 ft$		Horizontal distance from assumed traffic surcharge load to Backface of Wall.
$2 \cdot H = 21.6 ft$	IF λ IS GREATER THAN 2*H	- USE INFINITE SLOPE CALCULATION SHEET
		1
$h_{slope} \coloneqq \lambda \cdot \tan\left(\beta\right)$	$h_{slope} = 0 ft$	Height of broken slope behind wall
$\beta_{eq} \coloneqq \operatorname{atan}\left(\frac{h_{slope}}{2 \cdot H}\right) = 0 \ deg$		Equivalent backslope angle
$h \coloneqq \text{if} \left(\lambda \leq T_2 + C, H + h_{slope} \right)$	$_{2}, H+(T_{2}+C)\cdot\tan\left(\beta\right) = 10.8 \ ft$	Equivalent backslope angle Height of retained fill at back of heel

CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22 NEAS, Inc. Calculated By: ZM Date: 11/17/23 Checked By: CH


Live Load Surcharge Parameters:

$$SUR := if\left(L_{Traffic} < \frac{H}{2}, 90 \frac{lbf}{ft^2}, 0 \frac{lbf}{ft^2}\right) = 90 \frac{lbf}{ft^2}$$

Live load surcharge (per LRFD BDS [3.11.6.4])

Note: ,A live load ssurcharge shall be applied where vehicular load is expected to act on the surface of the backfill within a distance equal to one-half the wall height behind the back face of the wall, see LRFD BDS Section 3.11.6.4 and Table 3.11.6.4-2.

Calculations: <u>Earth Pressure Coefficients:</u>

Active Earth Pressure Coefficient (per LRFD Sect. 3.11.5.3)

Foundation Soil Passive Earth:

Drained Conditions assuming($\phi'_{fd} > 0$): Input Parameters for **LRFD Figure 3.11.5.4-2**, assumes θ = 90 degrees

$$\frac{-\beta'}{\phi'_{fd}} = -0.615 \qquad \qquad \frac{-\delta_{fd}}{\phi'_{fd}} = -0.67$$

$$k'_p := 2.8$$

Determine Reduction Factor (R) by interpolation:

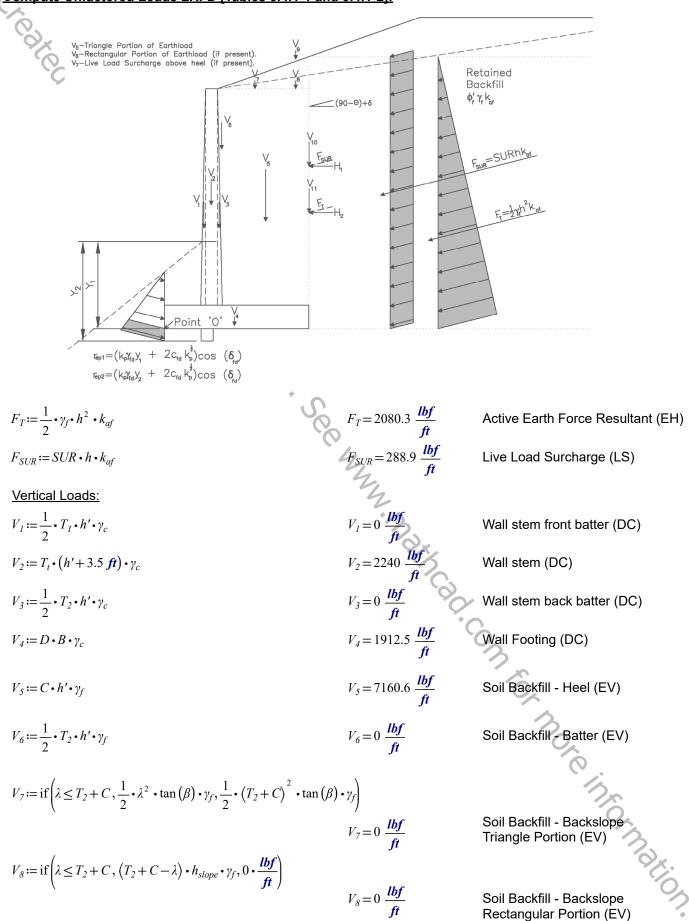
$R_d := 0.878$

Reduction Factor

 $k_{pd} \coloneqq R_d \cdot k'_p \qquad \qquad k_{pd} \equiv 2.458$

Passive Earth Pressure Coefficient for Drained Conditions

Passive Earth Pressure Coefficient from LRFD Figure 3.11.5.4-2


Undrained Conditions ($\phi_{fdu} > 0$): Note: Expand window below to complete calculation

Undrained Conditions:

$$k_{pu} := \text{if}(\phi_{fdu} > 0, k_{pu}, 1)$$
 $k_{pu} = 5.978$

Passive Earth Pressure Coefficient for Resistance Undrained Conditions

Compute Unfactored Loads LRFD [Tables 3.4.1-1 and 3.4.1-2]:

CIP Wall External Stability Analysis (last revised 01/27/2022)

(

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22 NEAS, Inc. Calculated By: ZM

comp. - LS)

component - EH)

Moment:

 $MV_1 \coloneqq V_1 \cdot d_{v_1} = 0$ *lbf*

 $MV_3 \coloneqq V_3 \cdot d_{v3} = 0$ *lbf*

 $MV_6 \coloneqq V_6 \cdot d_{v_6} = 0$ *lbf*

 $MV_7 \coloneqq V_7 \cdot d_{v7} = 0$ *lbf*

 $MV_8 \coloneqq V_8 \cdot d_{v8} = 0 \ lbf$

 $MV_g := V_g \cdot d_{vg} = 3055.9 \ lbf$

 $MV_{10} := V_{10} \cdot d_{v10} = 844 \ lbf$ $MV_{1t} := V_{11} \cdot d_{v11} = 6076.9 \ lbf$

 $MV_2 := V_2 \cdot d_{y_2} = 3360.7 \ lbf$

 $MV_4 := V_4 \cdot d_{v4} = 8128.1 \ lbf$

 $MV_5 := V_5 \cdot d_{v5} = 37892.8$ *lbf*

Live Load Surcharge Above Heel - (LS)

Live Load Surcharge Resultant (vertical

Active earth force resultant (vertical

Date: 11/17/23 Checked By: CH

 $H_2 \coloneqq F_T \cdot \cos\left(90 \cdot deg - \theta + \delta\right) \qquad \qquad H_2 \equiv 1953.6 \frac{lbf}{ft}$

 $d_{hl} = 5.4 \, ft$

 $d_{h2} = 3.6 \, ft$

Moment Arm:

 $d_{hl} \coloneqq \frac{h}{2}$

 $d_{h2} \coloneqq \frac{h}{2}$

Live Load Surcharge Resultant (horizontal comp. - LS) Active Earth Force Resultant (horizontal comp. - EH) <u>Moment:</u> $MH_1 := H_1 \cdot d_{h1}$ $MH_1 = 1465.2 \frac{lbf \cdot ft}{ft}$ $MH_2 := H_2 \cdot d_{h2}$ $MH_2 = 7033.1 \frac{lbf \cdot ft}{ft}$ ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22 NEAS, Inc. Calculated By: ZM

Undecoded by Load Type:

$$v_{BS} = V_1 + V_2 + V_3 + V_4$$
 $V_{DC} = 4152.5 \frac{Mf}{R}$
 $V_{EV} = V_3 + V_6 + V_7 + V_8$
 $V_{EV} = 7160.6 \frac{Mf}{R}$
 $v_{ES,B} = V_B$
 $V_{ES,B} = 99.3 \frac{Mf}{R}$
 $V_{ES,B} = V_9 + V_{10}$
 $V_{ES,B} = 99.3 \frac{Mf}{R}$
 $v_{ent} = V_1$
 $V_{Ent} = 714.9 \frac{Mf}{R}$
 $H_{15} = H_1$
 $H_{15} = 271.3 \frac{Mf}{R}$

 Undecoded Moments by Load Type
 $M_{DC} = 11488.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 271.3 \frac{Mf}{R}$
 $M_{DC} = MV_1 + MV_2 + MV_3$
 $M_{DC} = 11488.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 271.3 \frac{Mf}{R}$
 $M_{DC} = MV_1 + MV_2 + MV_3 + MV_4$
 $M_{DC} = 11488.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 271.3 \frac{Mf}{R}$
 $M_{DC} = MV_1 + MV_2 + MV_3 + MV_4$
 $M_{DC} = 11488.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 271.3 \frac{Mf}{R}$
 $M_{DC} = MV_1 + MV_2 + MV_3 + MV_4$
 $M_{DC} = 11488.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 271.3 \frac{Mf}{R}$
 $M_{DST} = MV_0$
 $M_{DST} = 3899.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 703.3 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 703.3 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 703.3 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 1018.9 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 703.3 \frac{Mf \cdot ft}{R}$
 $M_{DC} = 70.$

CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22

NEAS, Inc. Calculated By: ZM

Load Combination Limit States:

$\eta := 1$	LRFD Load N	Nodifier			
Strength Limit State I:	EV(min) = 1.00 EV(max) = 1.35 EH(min) = 0.90 EH(max) = 1.50 LS = 1.75				
Strength Limit State Ia: (Sliding and Eccentricit		$Ia_{DC} := 0.9$	$Ia_{EV} := 1$	$Ia_{EH} := 1.5$	$Ia_{LS} := 1.75$
Strength Limit State lb: (Bearing Capacity)		<i>Ib</i> _{DC} :=1.25	$Ib_{EV} := 1.35$	$Ib_{EH} \coloneqq 1.5$	$Ib_{LS} \coloneqq 1.75$
Factored Vertical Loa	ds by Limit Sta	<u>ite:</u>			
$V_{la} \coloneqq \eta \cdot \left(\left(Ia_{DC} \cdot V_{DC} \right) + \right)$	$\cdot \left(Ia_{EV} \cdot V_{EV} \right) + \left(A_{EV} \cdot V_{EV} \right)$	$Ia_{EH} \cdot V_{EH} + \langle Ia \rangle$	$V_{LS} \cdot V_{LS_Ia}) $ $V_{Ia} =$	$= 12144 \frac{lbf}{ft}$	

$$V_{Ib} \coloneqq \eta \cdot \left(\left(Ib_{DC} \cdot V_{DC} \right) + \left(Ib_{EV} \cdot V_{EV} \right) + \left(Ib_{EH} \cdot V_{EH} \right) + \left(Ib_{LS} \cdot V_{LS_Ib} \right) \right) \qquad V_{Ib} \equiv 17114.2 \frac{lbf}{ft}$$

$$\frac{Factored Horizontal Loads by Limit State:}{H_{Ia} \coloneqq \eta \cdot \left(\left(Ia_{LS} \cdot H_{LS} \right) + \left(Ia_{EH} \cdot H_{EH} \right) \right) \qquad H_{Ia} \equiv 3405.3 \frac{lbf}{ft}$$

$$H_{Ib} \coloneqq \eta \cdot \left(\left(Ib_{LS} \cdot H_{LS} \right) + \left(Ib_{EH} \cdot H_{EH} \right) \right) \qquad H_{Ib} \equiv 3405.3 \frac{lbf}{ft}$$

Eactored Moments Produced by Vertical Loads by Limit State:

$$MY_{Ia} = \eta \cdot ((la_{DC} \cdot M_{DC}) + (la_{EV} \cdot M_{EV}) + (la_{EH} \cdot M_{EHI}) + (la_{IS} \cdot M_{ISV} \cdot h)) \quad MY_{Ia} = 58825.2 \quad \frac{lbf \cdot ft}{ft}$$

$$MY_{Ib} = \eta \cdot ((lb_{DC} \cdot M_{DC}) + (lb_{EV} \cdot M_{EV}) + (lb_{EH} \cdot M_{EHI}) + (lb_{IS} \cdot M_{ISV} \cdot h)) \quad MY_{Ia} = 81456.6 \quad \frac{lbf \cdot ft}{ft}$$
Eactored Moments Produced by Horizontal Loads by Limit State:

$$MH_{Ia} = \eta \cdot ((lb_{IS} \cdot M_{ISH}) + (la_{EH} \cdot M_{EHI})) \qquad MH_{Ia} = 13113.8 \quad \frac{lbf \cdot ft}{ft}$$

$$MH_{Ib} = 13113.8 \quad \frac{lbf \cdot ft}{ft}$$

$$MH_{Ib} = 13113.8 \quad \frac{lbf \cdot ft}{ft}$$

$$MH_{Ib} := \eta \cdot \left(\left(Ib_{LS} \cdot M_{LSH} \right) + \left(Ib_{EH} \cdot M_{EH2} \right) \right)$$

Compute Bearing Resistance:

Compute Bearing Resistance:		se length (distance from "O") Strength Ib:
Q,		
$\Sigma M_R := M V_{Ib}$	$\Sigma M_R = 81456.6 \frac{lbf \cdot ft}{ft}$	Sum of Resisting Moments (Strength Ib)
$\Sigma M_O := M H_{Ib}$	$\Sigma M_O = 13113.8 \frac{lbf \cdot f}{ft}$	
$\Sigma M_{R} := M V_{Ib}$ $\Sigma M_{O} := M H_{Ib}$ $\Sigma V := V_{Ib}$ $(\Sigma M_{R} - \Sigma M_{O})$	$\Sigma V = 17114.2 \frac{lbf}{ft}$	Sum of Vertical Loads (Strength Ib)
$x \coloneqq \frac{\sqrt{-K}}{\Sigma V}$	x = 4 ft	Distance from Point "O" the resultant intersects the base
$e \coloneqq \left \frac{B}{2} - x \right $	e = 0.26 ft	Wall eccentricity, Note: The vertical stress is assumed to be uniformly distributed over the effective bearing width, B', since the wall is supported by a soil foundation LRFD [11.6.3.2]. The effective bearing width is equal to B-2e.
Foundation Layout at bottom	of Undercut & Replacem	ent:
$B' := B - 2 \cdot e + D_{undercut}$	B'=8 ft	Effective Footing Width, Assumed at the bottom of Undercut and Replacement
<i>L</i> ':= 142 <i>ft</i>	S	Effective Footing Length (Assumed)
$H' := H_{Ib}$	$H' = 3405.3 \frac{lbf}{ft}$ $V' = 17114.2 \frac{lbf}{ft}$	Summation of Horizontal Loads (Strength Ib)
$V' := V_{Ib}$	$V' = 17114.2 \frac{lbf}{ft}$	Summation of Vertical Loads (Strength Ib)
$D_F := D_f + D_{undercut}$	5	Embenment Depth at bottom of Undercut
$d_w := 0 ft$		Depth of Groundwater below ground surface at front of wall.
Drained Conditions (Effective	<u>stress):</u>	
$N_q := \operatorname{if} \left(\phi'_{fd} > 0, e^{\pi \cdot \tan \left(\phi'_{fd} \right)} \cdot \tan \left(e^{\pi \cdot \tan \left(\phi'_{fd} \right)} \right) \right)$	$45 \operatorname{deg} + \frac{\phi'_{fd}}{2} \right)^2, 1.0 \bigg)$	$N_q = 18.4$
$N_c := \mathrm{if}\left(\phi'_{fd} > 0, \frac{N_q - 1}{\tan(\phi'_{fd})}, 5.14\right)$		$N_c = 30.14$
$N_{\gamma} := 2 \cdot \left(N_q + 1\right) \cdot \tan\left(\phi'_{fd}\right)$		$N_{\gamma} = 22.4$
Compute shape correction fa	ctors per LRFD [Table 10	0.6.3.1.2a-3]:
$s_c := \operatorname{if}\left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right)\right)$	$,1+\left(\frac{B'}{5\cdot L'}\right)$	0.6.3.1.2a-3]: $s_c = 1.034$ $s_q = 1.032$ $s_y = 0.978$
$s_q := \operatorname{if}\left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi'_{fd}\right)\right)\right)$	(d), 1)	$s_q = 1.032$
$s_{\gamma} \coloneqq \operatorname{if}\left(\phi_{fd}' > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$)	$s_{\gamma} = 0.978$

CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22 NEAS, Inc. Calculated By: ZM

Load inclination factors: Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a. $i_q := 1$ "Most geotechnical engineers do not used the load $i_{v} := 1$ inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9]. $i_c := 1$ Compute groundwater depth correction factors per LRFD [Table 10.6.3.1.2a-2]: $C_{wq} := \text{if} (d_w \ge D_f, 1.0, 0.5)$ $C_{wq} = 0.5$ $C_{w\gamma} := \text{if} (d_w \ge (1.5 \cdot B) + D_f, 1.0, 0.5)$ $C_{wv} = 0.5$ Depth Correction Factor per ODOT BDM 305.2.1: $d_q \coloneqq 1 + 2 \cdot \tan \left(\phi'_{fd} \right) \cdot \left(1 - \sin \left(\phi'_{fd} \right) \right)^2 \cdot \operatorname{atan}$ $d_a = 1.21$ Compute modified bearing capacity factors LRFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]: $N_{cm} := N_c \cdot s_c \cdot i_c$ $N_{cm} = 31.175$ $N_{am} := N_q \cdot s_q \cdot d_q \cdot i_q$ $N_{am} = 22.906$ $N_{vm} = 21.898$ $N_{vm} := N_v \cdot s_v \cdot i_v$ Compute nominal bearing resistance at bottom of Undercut & Replacement, LRFD [Eg 10.6.3.1.2a-1]: $q_{nd} = 14730.2 \frac{lbf}{ft^2}$ $q_{nd} \coloneqq c'_{fd} \cdot N_{cm} + \gamma_a \cdot D_F \cdot N_{am} \cdot C_{wa} + 0.5 \cdot \gamma_{fd} \cdot B' \cdot N_{vm} \cdot C_{wv}$ Compute factored bearing resistance at bottom of Undercut & Replacement, LRFD [Eq 10.6.3.1.1]: Bearing resistance factor LRFD Table 11.5.7-1. $\phi_h := .55$ Factored bearing resistance Drained Conditions $q_{Rd} = 8.1 \ ksf$ $q_{Rd} := \phi_h \cdot q_{nd}$ Undrained Conditions (Effective Stress): $N_q := \operatorname{if} \left(\phi_{fdu} > 0, e^{\pi \cdot \tan \left(\phi_{fdu} \right)} \cdot \tan \left(45 \ deg + \frac{\phi_{fdu}}{2} \right)^2, 1.0 \right)$ re information $N_c := if\left(\phi_{fdu} > 0, \frac{N_q - 1}{\tan(\phi_{fdu})}, 5.14\right)$ $N_c = 30.14$ $N_{v} := 2 \cdot (N_{a} + 1) \cdot \tan(\phi_{fdu})$ $N_{\nu} = 22.4$

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22

Compute shape correction factors per LRFI	D [Table 10.6.3.1.2a-3]:
$s_c := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right), 1 + \left(\frac{B'}{5 \cdot L'}\right)\right)$	$s_c = 1.034$
$s_q := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi_{fdu}\right)\right), 1\right)$	$s_q = 1.032$
$s_{\gamma} := \operatorname{if}\left(\phi_{fdu} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$	$s_{\gamma} = 0.978$
Load inclination factors:	
$i_q := 1$ $i_y := 1$ $i_c := 1$	Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a . "Most geotechnical engineers do not used the load inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9].
Depth Correction Factor per ODOT BDM 305	.2.1:
$d_q := 1 + 2 \cdot \tan\left(\phi_{fdu}\right) \cdot \left(1 - \sin\left(\phi_{fdu}\right)\right)^2 \cdot \operatorname{atan}\left(\frac{\mathcal{D}_F}{B'}\right)$	
$d_q = 1.21$	
Compute modified bearing capacity factors L	RFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]:
$N_{cm} := N_c \bullet s_c \bullet i_c$	$N_{cm} = 31.175$
$N_{qm} \coloneqq N_q \bullet s_q \bullet d_q \bullet i_q$	$N_{qm} = 22.906$
$N_{\gamma m} := N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma}$	$N_{ym} = 21.898$
Compute nominal bearing resistance at botto	m of Undercut & Replacement, LRFD [Eq 10.6.3.1.2a-1:
$q_{nu} \coloneqq Su_{fdu} \bullet N_{cm} + \gamma_q \bullet D_F \bullet N_{qm} \bullet C_{wq} + 0.5 \bullet \gamma_{fd} \bullet B$	$q_{nu} = 14730.2 \ \frac{lbf}{ft^2}$
Compute factored bearing resistance at bot	tom of Undercut & Replacement, LRFD [Eq 10.6.3.1.1]:
$\phi_b := .55$	Bearing resistance factor LRFD Table 11.5.7-1.
$q_{Ru} \coloneqq \phi_b \cdot q_{nu} \qquad q_{Ru} = 8.1 \ ksf$	Factored bearing resistance Undrained Conditions
Factored Bearing Resistance Drained vs. U	ndrained Conditions:
	Drained Conditions: $q_{Rd} = 8.1 \text{ ksf}$
	Conditions <u>ndrained Conditions</u> : Drained Conditions: $q_{Rd} = 8.1 \text{ ksf}$ Undrained Conditions: $q_{Ru} = 8.1 \text{ ksf}$

ROS-15-0.41 RW2 at Kroger STA.0+50 @ B-014-0-22 NEAS, Inc. Calculated By: ZM

Evaluate External Stability of Wall:

Evaluate External Stability of Wa	<u>all:</u>			
Compute the factored bearing structure $e = 0.26 \ ft$	ress at bottom of Und	ercut & Repla	icement:	
$\sigma_V := \frac{\Sigma V}{B'}$	$\sigma_V = 2.143 \ ksf$			
Bearing Capacity at bottom of Un		ent:Demand I	<u>Ratio (CDR)</u>	
Drained Conditions:	$CDR_{Bearing_D} := \frac{q_{Rd}}{\sigma_V}$	Is the	CDR > or = to 1.0?	$CDR_{Bearing_D} = 3.78$
Undrained Conditions:	$CDR_{Bearing_D} := \frac{q_{Rd}}{\sigma_V}$ $CDR_{Bearing_U} := \frac{q_{Ru}}{\sigma_V}$	Is the	CDR > or = to 1.0?	$CDR_{Bearing_U} = 3.78$
Limiting Eccentricity of Page of M	(clt (Stropath Io))			
Limiting Eccentricity at Base of W				
Compute the resultant location	about the toe "O" of t	he base lengt	<u>:h (distance from Pivot):</u>	
$e_{max} := \frac{B}{3}$	$e_{max} = 2.8 \text{ ft}$ $\Sigma M_R = 58825.2 \frac{lbf}{ft}$ $\Sigma M_O = 13113.8 \frac{lbf}{ft}$ $\Sigma V = 12144 \frac{lbf}{ft}$		Maximum Eccentricity LRI Equals B/3 for soil.	FD [C11.6.3.3.]
$\Sigma M_R := M V_{Ia}$	$\Sigma M_R = 58825.2 \frac{lbf}{ft}$	$\frac{ft}{t}$	Sum of Resisting Moments	s (Strength Ia)
$\Sigma M_O := M H_{la}$	$\Sigma M_O = 13113.8 \frac{lbf}{ft}$	st t	Sum of Overturning Mome	ents (Strength Ia)
$\Sigma V := V_{Ia}$	$\Sigma V = 12144 \frac{lbf}{ft}$	They want	Sum of Vertical Loads (Str	rength la)
$x \coloneqq \frac{\left(\Sigma M_R - \Sigma M_O\right)}{\Sigma V}$	x = 3.8 ft		Distance from Point "O" th intersects the base	e resultant
$e \coloneqq \left \frac{B}{2} - x \right $	e = 0.49 ft	uniformly dis	ricity, Note: The vertical strest stributed over the effective b upported by a soil foundation aring width is equal to B-2e.	pearing width, B', since on LRFD [11.6.3.2]. The
Eccentricity Capacity:Deman	<u>d Ratio (CDR)</u>		0	
$CDR_{Eccentricity} := \frac{e_{max}}{e}$	Is the CDR > or =	to 1.0?	$CDR_{Eccentricity} = 5.83$	
			70	information.
				0
				Dr.
				'On
				*

Sliding Resistance at Base of Wall LRFD [10.6.3.4]:

Factored Sliding Force (Strength Ia):

$$R_u := H_{Ia}$$

$$R_u = 3405.3 \ \frac{lbf}{ft}$$

Drained/Undrained Conditions for Granular Replacement (Effective Stress): Compute passive resistance throughout the design life of the wall LRFD [Eg 3.11.5.4-1]::

$$r_{ep1} \coloneqq (k_{pd} \cdot \gamma_{fd} \cdot y_1 + 2 \cdot c'_{fd} \cdot \sqrt{k_{pd}}) \cdot \cos(\delta_{fd})$$

$$r_{ep2} \coloneqq (k_{pd} \cdot \gamma_{fd} \cdot y_2 + 2 \cdot c'_{fd} \cdot \sqrt{k_{pd}}) \cdot \cos(\delta_{fd})$$

$$R_{ep} \coloneqq \frac{r_{ep1} + r_{ep2}}{2} \cdot (y_2 - y_1)$$

$$R_{ep} = 0 \frac{lbf}{ft}$$

Nominal passive pressure at y1 Nominal passive pressure at y2

Nominal passive resistance Drained Conditions

416 Note: Passive Resistance shall be neglected in stability computations, unless the base of the wall extends below the depth of maximum scour, freeze-thaw or other disturbances. In the latter case, only the embedment below the greater of these depths shall be considered effective LRFD [11.6.3.5].

Compute sliding resistance between soil and foundation:

$$c := 1.0$$

 $R_{\tau} := c \cdot \Sigma V \cdot \tan(\phi_{Re})$

$$\Sigma V := V_{Ia} \qquad \qquad \Sigma V = 12144$$

c = 1.0 for Cast-in-Place c = 0.8 for Precast

Sum of Vertical Loads (Strength Ia)

Nominal sliding resistance Cohesionless Soils

Compute factored resistance against failure by sliding LRFD [10.6.3.4]:

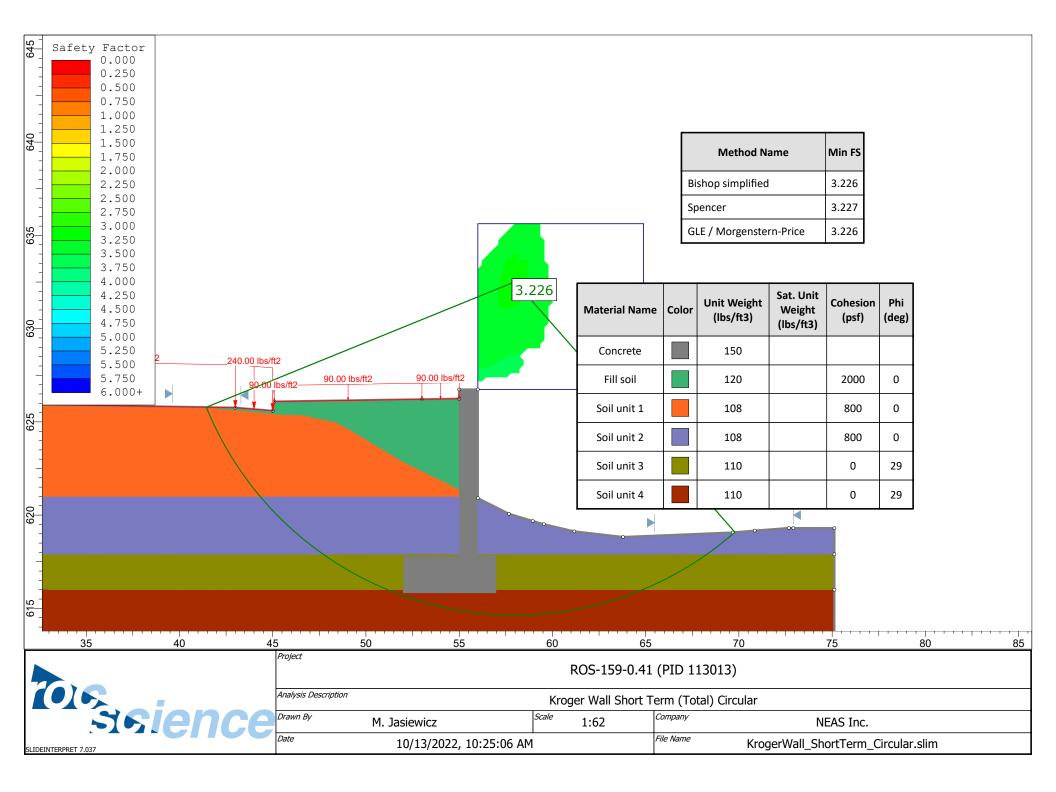
 $R_{\tau} = 8191.3$

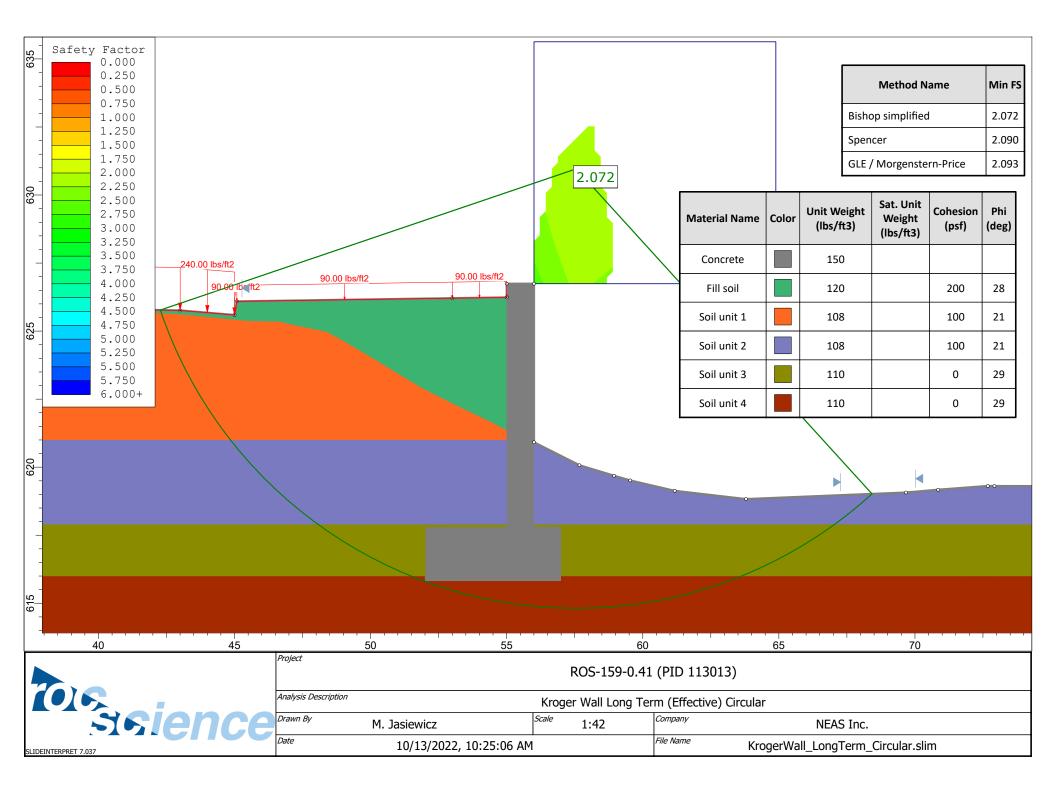
$$\phi_{ep} := 0.5$$
Resistance factor for passive resistance specified in
LRFD Table 10.5.5.2.2-1 $\phi_r := 1.0$ Resistance factor for sliding resistance specified in
LRFD Table 11.5.7-1

LRFD Table 11.5.7-1.

$$PR_n := \phi_\tau \cdot R_\tau + \phi_{ep} \cdot R_{ep}$$

Factored Sliding Resistance to be used in CDR Calculations:

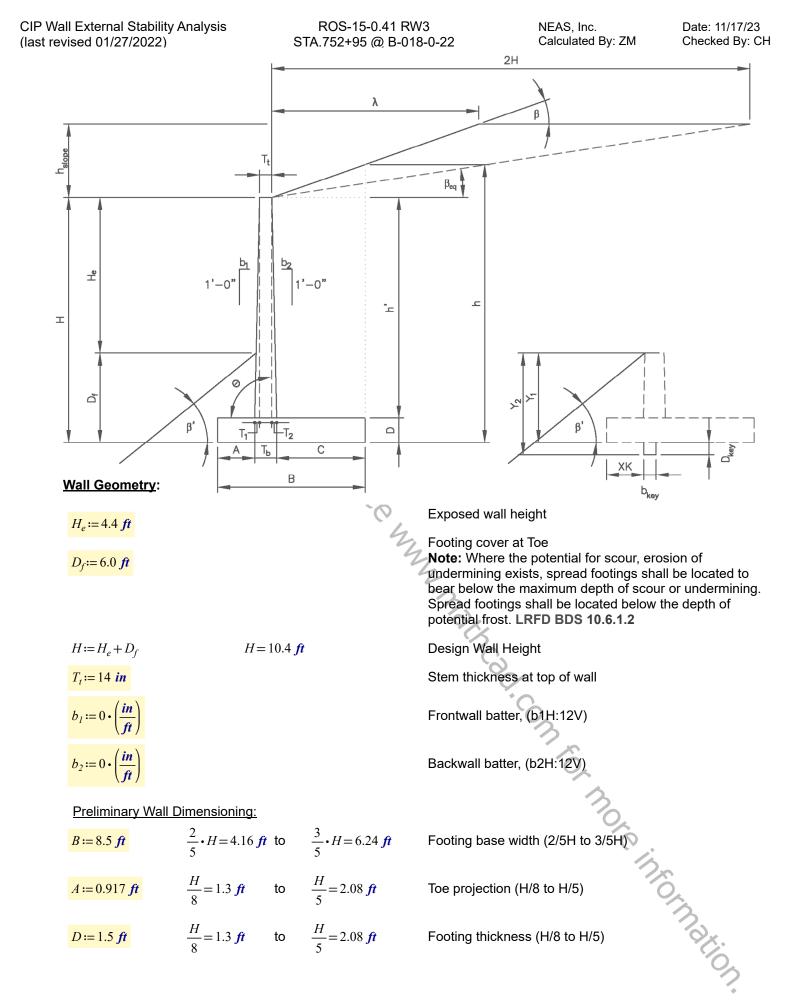

Sliding Capacity:Demand Ratio (CDR)


$$CDR_{Sliding_Base} := \frac{R_R}{R_u}$$
 Is the CDR > or = to 1.0?

$$R_R := \phi R_n$$
$$R_R = 8191.26 \frac{lbf}{ft}$$

 $CDR_{Sliding_Base} = 2.41$

te information



APPENDIX F

WALL 3 ANALYSES

NEAS, Inc. Calculated By: ZM

	· · · ·	
Objective: Method:	In accordance with ODOT Bridg	y of CIP wall design with broken backsloping backfill. je Design Manual, 2021 [Sect. 204.6.2.2] LRFD Bridge Design sect. 11.6.1, Sect. 11.6.2, and Sect. 11.6.3].
Givens:		· · ·
	<u>l Design Parameters:</u>	
$\phi'_f := 30 \ d$		Effective angle of internal friction
$\gamma_f := 120 \frac{l}{f}$	$\frac{bf}{t^3}$	Unit weight
$c'_f \coloneqq 0 \ \frac{lbj}{ft^2}$		Effective Cohesion
$\delta := 0.67 \cdot$	$\phi'_f \qquad \delta = 20.1 \ deg$	Friction angle between backfill and wall taken as specified in LRFD BDS C3.11.5.3 (degrees)
Foundation	Soil Design Parameters:	
Drained (Conditions (Effective Stress):	
$\phi'_{fd} := 30 \ d$	leg	Effective angle of internal friction
$\gamma_{fd} := 122$	Ibf ft ³	Unit weight
$c'_{fd} \coloneqq 0 \frac{lb}{ft}$	<u>of</u> 2	Effective Cohesion
$\delta_{fd} := 0.67$		Friction angle between foundation soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)
<u>Undraine</u>	ed Conditions (Total Stress):	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\phi_{fdu} := 30$	deg	Angle of internal friction (Same as Drained Conditions if granular soils)
$Su_{fdu} := 0$	lbf ft ²	Undrained Shear Strength
$\delta_{fdu} := 0.67$	5	Friction angle between foundation soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)
<u>Undercut &</u>	Replacement Design Paramet	ters:
$\phi_{Re} := 34 \ a$	-	Angle of internal friction for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.
$c_{Re} \coloneqq 0 \ \frac{lb}{ft}$		Cohesion for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.
$\gamma_{Re} := 130$	$\frac{lbf}{ft^3}$	Unit Weight for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.
$\delta_{Re} := 0.67$	$\delta_{Re} = 22.8 \ deg$	Friction angle between Replacement soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)
$D_{undercut} :=$	= 0 <i>ft</i>	Depth of Undercut below bottom of footing
Foundation	Surcharge Soil Parameters:	0
$\gamma_q := 120$	$\frac{lbf}{ft^3}$	 Depth of Undercut below bottom of footing Unit weight of Soil above bearing depth (Used in Bearing Resistance of Soil Calculation LRFD 10.6.3.1.2a-1) Concrete Unit weight
Other Parar	<u>meters</u> :	
$\gamma_c := 150$ –	<u>lbf</u> ft ³	Concrete Unit weight

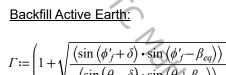
NEAS, Inc. Calculated By: ZM

Date: 11/17/23 Checked By: CH

Shear Key Dimensioning:		
$D_{key} := 0 ft$		Depth of shear key from bottom of footing Note: Footings on rock typically require shear key
$b_{key} := 0 ft$		Width of shear key
XK := 0 ft		Distance from toe to shear key
Other Wall Dimensions:		
h' := H - D	h'=8.9 ft	Stem height
$T_I := b_I \cdot h'$	$T_l = 0 ft$	Stem front batter width
$T_2 := b_2 \cdot h'$	$T_2 = 0 ft$	Stem back batter width
$T_b \coloneqq T_1 + T_2 + T_t$	$T_b = 1.167 \ ft$	Stem thickness at bottom of wall
$C := B - A - T_b$	$C = 6.416 \ ft$	Heel projection
$\theta \coloneqq 90 \ deg$		Angle of back face of wall to horizontal = atan(12/b2)
<i>b</i> := 12 <i>in</i>	b=1 ft	Concrete strip width (for design)
$y_l := D_f$	$y_l = 6 ft$	Depth to where passive pressure may begin to be utilized in front of wall.
$y_2 := D_f + D_{key}$	$y_2=6 ft$	Bottom of shear key/footing depth i.e. depth to where passive pressure may no longer be utilized.
Site Grading and Slope D	limensions:	
$\beta := 0 \ deg$	 Horizontal: 0 	Inclination of ground slope behind face of wall. Horizontal backfill behind CIP wall, $\beta = 0$ deg
	 3H:1V: 18.435 2H:1V: 26.565 1.5H:1V: 33.690 	Inclination of ground slope in front of wall. If it is horizontal backfill in front of CIP wall, $\beta' = 0$ deg. A negative angle (-) indicates grades slope up from front of wall. Positive angle (+) indicates grade slope down from wall as shown in above figure.
$\lambda := 0 ft$		Horizontal distance from the back of the wall to point of slope crest .
$L_{Traffic} := 0 ft$		Horizontal distance from assumed traffic surcharge load to Backface of Wall.
$2 \cdot H = 20.8 ft$	IF λ IS GREATER THAN 2*H -	USE INFINITE SLOPE CALCULATION SHEET
		30
$h_{slope} \coloneqq \lambda \cdot \tan\left(\beta\right)$	$h_{slope} = 0 ft$	Height of broken slope behind wall
$\beta_{eq} \coloneqq \operatorname{atan}\left(\frac{h_{slope}}{2 \cdot H}\right) = 0 \ \operatorname{deg}$		Equivalent backslope angle
$h := \text{if} \left(\lambda \le T_2 + C, H + h_{slope} \right)$	$,H+\left(T_{2}+C\right)\cdot\tan\left(\beta\right) = 10.4 ft$	Equivalent backslope angle Height of retained fill at back of heel

CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW3 STA.752+95 @ B-018-0-22 NEAS, Inc. Calculated By: ZM Date: 11/17/23 Checked By: CH


Live Load Surcharge Parameters:

$$SUR := \text{if}\left(L_{Traffic} < \frac{H}{2}, 90 \frac{lbf}{ft^2}, 0 \frac{lbf}{ft^2}\right) = 90 \frac{lbf}{ft^2}$$

Live load surcharge (per LRFD BDS [3.11.6.4])

Note: ,A live load ssurcharge shall be applied where vehicular load is expected to act on the surface of the backfill within a distance equal to one-half the wall height behind the back face of the wall, see LRFD BDS Section 3.11.6.4 and Table 3.11.6.4-2.

Calculations: <u>Earth Pressure Coefficients:</u>

$$k_{af} \coloneqq \left(\frac{\left(\sin\left(\theta + \phi'_{f}\right) \right)^{2}}{\left(\Gamma \cdot \left(\sin\left(\theta\right) \right)^{2} \cdot \sin\left(\theta - \delta\right) \right)} \right) \qquad k_{af} = 0.297$$

Active Earth Pressure Coefficient (per LRFD Sect. 3.11.5.3)

Foundation Soil Passive Earth:

Drained Conditions assuming($\phi'_{fd} > 0$): Input Parameters for **LRFD Figure 3.11.5.4-2**, assumes θ = 90 degrees

 $\Gamma = 2.687$

$$\frac{-\beta'}{\phi'_{fd}} = -0.615 \qquad \qquad \frac{-\delta_{fd}}{\phi'_{fd}} = -0.67$$

$$k'_p := 2.8$$

Determine Reduction Factor (R) by interpolation:

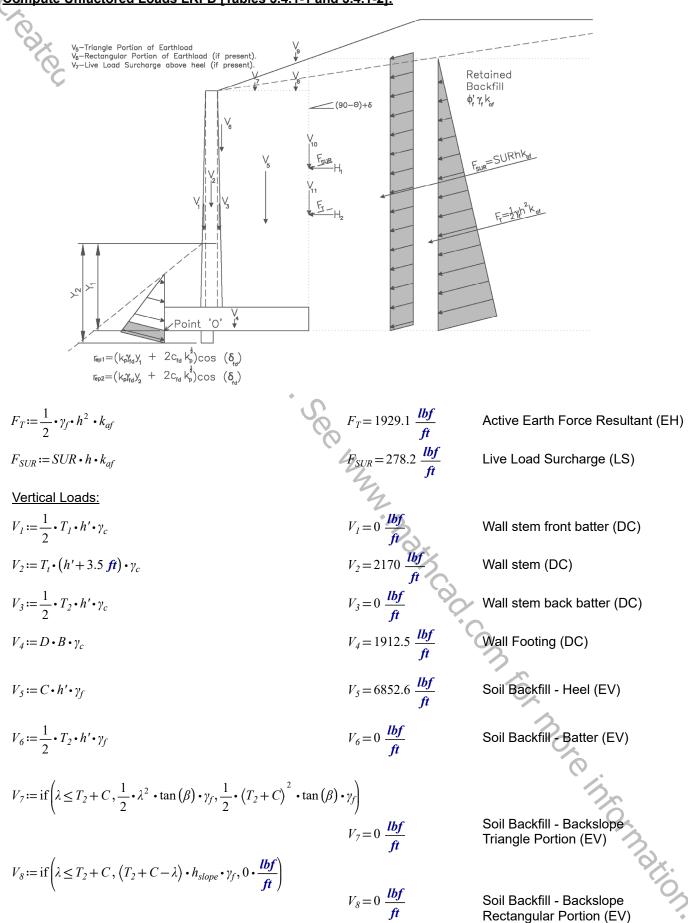
$R_d := 0.878$

Reduction Factor

 $k_{pd} \coloneqq R_d \cdot k'_p \qquad \qquad k_{pd} \equiv 2.458$

Passive Earth Pressure Coefficient for Drained Conditions

Passive Earth Pressure Coefficient from LRFD Figure 3.11.5.4-2


Undrained Conditions ($\phi_{fdu} > 0$): Note: Expand window below to complete calculation

Undrained Conditions:

$$k_{pu} := \text{if}(\phi_{fdu} > 0, k_{pu}, 1)$$
 $k_{pu} = 5.978$

Passive Earth Pressure Coefficient for Resistance Undrained Conditions

Compute Unfactored Loads LRFD [Tables 3.4.1-1 and 3.4.1-2]:

$$P_{12} = if \left(i \le T_2 + C, \left(T_2 + C - i \right) \cdot SUR, 0, 0, \frac{My}{R} \right)$$

$$P_{12} = ST, 5, \frac{My}{R}$$
Live Load Surcharge Above Heel - (LS)
$$P_{12} = F_{SUR} \cdot sin \left(90 \cdot deg - \theta + \delta \right)$$

$$P_{12} = 57, 5, \frac{My}{R}$$
Live Load Surcharge Resultant (vertical comp. - LS)
$$P_{11} = F_{T} \cdot sin \left(90 \cdot deg - \theta + \delta \right)$$

$$P_{12} = 663, \frac{My}{R}$$
Active earth force resultant (vertical component. EH)
$$Moment Amm$$

$$Moment Frideric Produced from vertical loads about Point Of$$

$$d_{11} = A + \frac{2}{3} \cdot T_1 = 0.9 \text{ fr}$$

$$d_{22} = 4 + T_1 + \frac{T_2}{2} = 1.5 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 3255.7 \text{ lbf}$$

$$d_{23} = 4 + T_1 + T_1 + \frac{T_2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 3255.7 \text{ lbf}$$

$$d_{23} = 4 + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{43} = A + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{43} = A + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{43} = A + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{44} = A + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{45} = A + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{45} = A + T_1 + T_1 + \frac{2}{3} = 2.1 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 36263 \text{ lbf}$$

$$d_{45} = A + T_1 + T_1 + \frac{2}{3} = 2.3 \text{ fr}$$

$$M_{12} = T_2 \cdot d_{23} = 3055.9 \text{ lbf}$$

$$d_{45} = A + T_1 + T_1 + \frac{1}{2} + \left(\frac{T_2 + C - \lambda}{2}\right) = 5.3 \text{ fr}$$

$$M_{12} = T_{23} \cdot d_{23} = 3055.9 \text{ lbf}$$

$$d_{41} = 8.5 \text{ fr}$$

$$M_{12} = T_{23} \cdot d_{23} = 35.5 \text{ lbf}$$

$$M_{12} = T_{12} \cdot d_{23} = M_{12} = 32.1 \text{ lbf}$$

$$M_{12} = 181.6 \frac{Mf}{R}$$
Live Load Surcharge Resultant (horizontal comp. - LS)
$$M_{12} = T_{12} \cdot d_{12} = M_{12} - M_{12} = 32.2 \text{ lbf}$$

$$M_{12} = H_{23} \cdot d_{23} = M_{12} - M_{12} - M_{12} = M_{12} - M_{12$$

$$d_{h1} := \frac{h}{2}$$
 $d_{h1} = 5.2 \ ft$
 $d_{h2} := \frac{h}{3}$ $d_{h2} = 3.5 \ ft$

6 of 13

Undecoded by Load Type:

$$v_{1S,h} = V_{1} + V_{2} + V_{3} + V_{4}$$
 $V_{DC} = 4082.5 \frac{lbf}{ft}$
 $V_{SS,h} = V_{2} + V_{3} + V_{7} + V_{5}$
 $V_{EF} = 6852.6 \frac{lbf}{ft}$
 $v_{1S,h} = V_{10}$
 $V_{LS,h} = 95.6 \frac{lbf}{ft}$
 $V_{LS,h} = V_{10}$
 $V_{SS,h} = 50.6 \frac{lbf}{ft}$
 $v_{EH} = V_{11}$
 $V_{EH} = 663 \frac{lbf}{ft}$
 $H_{LS} = H_{1}$
 $H_{LS} = 261.3 \frac{lbf}{ft}$
 $H_{HH} = H_{2}$
 $H_{HH} = 1811.6 \frac{lbf}{ft}$
 $H_{LS} = H_{1}$
 $H_{LS} = 261.3 \frac{lbf}{ft}$

 Undectored Moments by Load Type
 $M_{DC} = 11383.8 \frac{lbf-ft}{h}$
 $H_{LS} = 261.3 \frac{lbf}{ft}$
 $M_{DC} := MV_{1} + MV_{2} + MV_{3} + MV_{4}$
 $M_{DC} = 11383.8 \frac{lbf-ft}{h}$
 $M_{DC} = 11383.8 \frac{lbf-ft}{ft}$
 $M_{LSV} = MV_{10}$
 $M_{LSV} = 812.8 \frac{lbf-ft}{ft}$
 $M_{SV} = 812.8 \frac{lbf-ft}{ft}$
 $M_{SV} = 812.8 \frac{lbf-ft}{ft}$
 $M_{SW} = MV_{10}$
 $M_{LSV} = 812.8 \frac{lbf-ft}{ft}$
 $M_{SW} = 812.8 \frac{lbf-ft}{ft}$
 $M_{SW} = 312.8 \frac{lbf-ft}{ft}$
 $M_{SW} = MW_{10}$
 $M_{SW} = 312.8 \frac{lbf-ft}{ft}$
 $M_{SW} = 503.1 \frac{lbf-ft}{ft}$
 $M_{SW} = 503.2 \frac{lbf-ft}{ft}$
 $M_{SW} = MH_{1}$
 $M_{SW} = 6280.2 \frac{lbf-ft}{ft}$
 $M_{SW} = 10.8 \frac{lbf-ft}{ft}$

NEAS, Inc. Calculated By: ZM

Load Combination Limit States:

η:=	LRFD Load Modifier							
Strength Limit State I:	EV(min) = 1.00 EV(max) = 1.35 EH(min) = 0.90 EH(max) = 1.50 LS = 1.75							
Strength Limit State Ia: (Sliding and Eccentricity	y)	$Ia_{DC} := 0.9$		$Ia_{EV} := 1$		$Ia_{EH} := 1.5$		$Ia_{LS} := 1.75$
Strength Limit State lb: (Bearing Capacity)		<i>Ib</i> _{DC} := 1.25		$Ib_{EV} := 1.35$	5	$Ib_{EH} \coloneqq 1.5$		$Ib_{LS} := 1.75$
Factored Vertical Load	ds by Limit Sta	<u>te:</u>						
$\overline{V_{Ia} \coloneqq \eta \cdot \left(\left(Ia_{DC} \cdot V_{DC} \right) + \left(Ia_{EV} \cdot V_{EV} \right) + \left(Ia_{EH} \cdot V_{EH} \right) + \left(Ia_{LS} \cdot V_{LS} Ia \right) \right) \qquad V_{Ia} \equiv 11688.7 \ \frac{lbf}{ft}$								
$V_{Ib} := \eta \cdot \left(\left(Ib_{DC} \cdot V_{DC} \right) + \left(Ib_{EV} \cdot V_{EV} \right) + \left(Ib_{EH} \cdot V_{EH} \right) + \left(Ib_{LS} \cdot V_{LS_Ib} \right) \right) \qquad V_{Ib} = 16526.5 \frac{lbf}{ft}$								
Factored Horizontal Loads by Limit State:								
$H_{Ia} \coloneqq \eta \cdot \left(\left(Ia_{LS} \cdot H_{LS} \right) + \right)$	$(Ia_{EH} \cdot H_{EH}))$	5			$H_{Ia} = 3$	3174.7 <u><i>lbf</i></u> ft		
$H_{Ib} := \eta \cdot \left(\left(Ib_{LS} \cdot H_{LS} \right) + \right)$	$(Ib_{EH} \cdot H_{EH}))$	S			$H_{Ib} = 3$	3174.7 <u><i>lbf</i></u> ft		

Eactored Moments Produced by Vertical Loads by Limit State:

$$MV_{la} := \eta \cdot ((la_{DC} \cdot M_{DC}) + (la_{EV} \cdot M_{EV}) + (la_{LH} \cdot M_{EHL}) + (la_{LS} \cdot M_{LSV, J_0})) \quad MV_{la} = 56383.5 \quad \frac{lbf \cdot ft}{ft}$$

$$MV_{lb} := \eta \cdot ((lb_{DC} \cdot M_{DC}) + (lb_{EV} \cdot M_{EV}) + (lb_{EH} \cdot M_{EHL}) + (lb_{LS} \cdot M_{LSV, J_0})) \quad MV_{lb} = 78407.7 \quad \frac{lbf \cdot ft}{ft}$$
Eactored Moments Produced by Horizontal Loads by Limit State:

$$MH_{la} := \eta \cdot ((la_{LS} \cdot M_{LSH}) + (la_{EH} \cdot M_{EH2})) \qquad MH_{la} = 11798.1 \quad \frac{lbf \cdot ft}{ft}$$

$$MH_{lb} := \eta \cdot ((lb_{LS} \cdot M_{LSH}) + (lb_{EH} \cdot M_{EH2})) \qquad MH_{lb} = 11798.1 \quad \frac{lbf \cdot ft}{ft}$$

$$MH_{Ib} := \eta \cdot \left(\left(Ib_{LS} \cdot M_{LSH} \right) + \left(Ib_{EH} \cdot M_{EH2} \right) \right)$$

Compute Bearing Resistance:

Compute Bearing Resistance:		
Compute the resultant location	<u>about the toe of the bas</u>	<u>se length (distance from "O") Strength Ib:</u>
$\Sigma M_R := M V_{Ib}$	$\Sigma M_R = 78407.7 \ \frac{lbf \cdot ft}{ft}$	Sum of Resisting Moments (Strength Ib)
$\Sigma M_O := M H_{Ib}$	$\Sigma M_O = 11798.1 \frac{lbf \cdot ft}{ft}$	Sum of Overturning Moments (Strength Ib)
$\Sigma V := V_{Ib}$	$\Sigma M_{O} = 11798.1 \frac{lbf \cdot ft}{ft}$ $\Sigma V = 16526.5 \frac{lbf}{ft}$	Sum of Vertical Loads (Strength lb)
$\Sigma M_{O} := M H_{Ib}$ $\Sigma V := V_{Ib}$ $x := \frac{(\Sigma M_{R} - \Sigma M_{O})}{\Sigma V}$	x=4 ft	Distance from Point "O" the resultant intersects the base
$e := \left \frac{B}{2} - x \right $	e = 0.22 ft	Wall eccentricity, Note: The vertical stress is assumed to be uniformly distributed over the effective bearing width, B', since the wall is supported by a soil foundation LRFD [11.6.3.2]. The effective bearing width is equal to B-2e.
Foundation Layout at bottom of		ent:
$B' := B - 2 \cdot e + D_{undercut}$	B' = 8.1 ft	Effective Footing Width, Assumed at the bottom of Undercut and Replacement
L' := 200 ft	N.	Effective Footing Length (Assumed)
$H' := H_{Ib}$	$H' = 3174.7 \frac{lbf}{ft}$ $V' = 16526.5 \frac{lbf}{ft}$	Summation of Horizontal Loads (Strength lb)
$V' := V_{Ib}$	$V' = 16526.5 \frac{lbf}{ft}$	Summation of Vertical Loads (Strength lb)
$D_F := D_f + D_{undercut}$	·	Embenment Depth at bottom of Undercut
$d_w := 0 ft$		Depth of Groundwater below ground surface at front of wall.
Drained Conditions (Effective	<u>Stress):</u>	
$N_q := \operatorname{if}\left(\phi'_{fd} > 0, e^{\pi \cdot \tan\left(\phi'_{fd}\right)} \cdot \tan\left(4\right)\right)$	$5 \operatorname{deg} + \frac{\phi'_{fd}}{2} \bigg)^2 , 1.0 \bigg)$	$N_q = 18.4$
$N_c := if\left(\phi'_{fd} > 0, \frac{N_q - 1}{\tan(\phi'_{fd})}, 5.14\right)$		$N_c = 30.14$ $N_{\gamma} = 22.4$
$N_{\gamma} := 2 \cdot \left(N_q + 1\right) \cdot \tan\left(\phi'_{fd}\right)$		$N_{y} = 22.4$
Compute shape correction fac	tors per LRFD [Table 10	0.6.3.1.2a-3]:
$s_c := \operatorname{if}\left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right),\right.$	$1 + \left(\frac{B'}{5 \cdot L'}\right)$	D.6.3.1.2a-3]: $s_c = 1.025$ $s_q = 1.023$ $s_y = 0.984$
$s_q := \operatorname{if}\left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi'_{fd}\right)\right)\right)$	\rangle), 1)	$s_q = 1.023$
$s_{\gamma} := \mathrm{if}\left(\phi'_{fd} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$		$s_{\gamma} = 0.984$

NEAS, Inc. Calculated By: ZM

Load inclination factors: Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a. $i_q := 1$ "Most geotechnical engineers do not used the load $i_{v} := 1$ inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9]. $i_c := 1$ Compute groundwater depth correction factors per LRFD [Table 10.6.3.1.2a-2]: $C_{wq} := \text{if} (d_w \ge D_f, 1.0, 0.5)$ $C_{wq} = 0.5$ $C_{w\gamma} := \text{if} (d_w \ge (1.5 \cdot B) + D_f, 1.0, 0.5)$ $C_{wv} = 0.5$ Depth Correction Factor per ODOT BDM 305.2.1: $d_q \coloneqq 1 + 2 \cdot \tan \left(\phi'_{fd} \right) \cdot \left(1 - \sin \left(\phi'_{fd} \right) \right)^2 \cdot \operatorname{atan}$ $d_a = 1.18$ Compute modified bearing capacity factors LRFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]: $N_{cm} := N_c \cdot s_c \cdot i_c$ $N_{cm} = 30.881$ $N_{am} := N_q \cdot s_q \cdot d_q \cdot i_q$ $N_{am} = 22.307$ $N_{vm} = 22.041$ $N_{vm} := N_v \cdot s_v \cdot i_v$ Compute nominal bearing resistance at bottom of Undercut & Replacement, LRFD [Eg 10.6.3.1.2a-1]: $q_{nd} = 13449.7 \frac{lbf}{ft^2}$ $q_{nd} \coloneqq c'_{fd} \cdot N_{cm} + \gamma_a \cdot D_F \cdot N_{am} \cdot C_{wa} + 0.5 \cdot \gamma_{fd} \cdot B' \cdot N_{vm} \cdot C_{wv}$ Compute factored bearing resistance at bottom of Undercut & Replacement, LRFD [Eq 10.6.3.1.1]: Bearing resistance factor LRFD Table 11.5.7-1. $\phi_h := .55$ Factored bearing resistance Drained Conditions $q_{Rd} = 7.4 \ ksf$ $q_{Rd} := \phi_h \cdot q_{nd}$ Undrained Conditions (Effective Stress): $N_q := \operatorname{if} \left(\phi_{fdu} > 0, e^{\pi \cdot \tan \left(\phi_{fdu} \right)} \cdot \tan \left(45 \ deg + \frac{\phi_{fdu}}{2} \right)^2, 1.0 \right)$ re information $N_c := if\left(\phi_{fdu} > 0, \frac{N_q - 1}{\tan(\phi_{fdu})}, 5.14\right)$ $N_c = 30.14$ $N_{v} := 2 \cdot (N_{a} + 1) \cdot \tan(\phi_{fdu})$ $N_{\nu} = 22.4$

Compute shape correction factors per LRFE	<u>) [Table 10.6.3.1.2a-3]:</u>
$s_c := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right), 1 + \left(\frac{B'}{5 \cdot L'}\right)\right)$	$s_c = 1.025$
$s_q := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi_{fdu}\right)\right), 1\right)$	$s_q = 1.023$
$s_{\gamma} := \operatorname{if}\left(\phi_{fdu} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$	$s_{\gamma} = 0.984$
Load inclination factors:	
$i_q := 1$ $i_{\gamma} := 1$ $i_c := 1$	Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a . "Most geotechnical engineers do not used the load inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9].
Depth Correction Factor per ODOT BDM 305	<u>.2.1:</u>
$d_q \coloneqq 1 + 2 \cdot \tan\left(\phi_{fdu}\right) \cdot \left(1 - \sin\left(\phi_{fdu}\right)\right)^2 \cdot \operatorname{atan}\left(\frac{D_F}{B'}\right)$	
$d_q = 1.18$	
Compute modified bearing capacity factors LI	RFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]:
$N_{cm} \coloneqq N_c \bullet s_c \bullet i_c$	$N_{cm} = 30.881$
$N_{qm} \coloneqq N_q \bullet s_q \bullet d_q \bullet i_q$	$N_{qm} = 22.307$
$N_{\gamma m} := N_{\gamma} \bullet s_{\gamma} \bullet i_{\gamma}$	$N_{\gamma m} = 22.041$
Compute nominal bearing resistance at botton	m of Undercut & Replacement, LRFD [Eq 10.6.3.1.2a-1:
$q_{nu} \coloneqq Su_{fdu} \bullet N_{cm} + \gamma_q \bullet D_F \bullet N_{qm} \bullet C_{wq} + 0.5 \bullet \gamma_{fd} \bullet B$	$q_{nu} = 13449.7 \frac{lbf}{ft^2}$
Compute factored bearing resistance at both	om of Undercut & Replacement, LRFD [Eq 10.6.3.1.1]:
$\phi_b := .55$	Bearing resistance factor LRFD Table 11.5.7-1.
$q_{Ru} \coloneqq \phi_b \cdot q_{nu} \qquad q_{Ru} \equiv 7.4 \ ksf$	Factored bearing resistance Undrained Conditions
Factored Bearing Resistance Drained vs. U	ndrained Conditions:
	Drained Conditions: $q_{Rd} = 7.4 \text{ ksf}$
	Undrained Conditions: $q_{Ru} = 7.4 \text{ ksf}$
	Conditions <u>indrained Conditions</u> : Drained Conditions: $q_{Rd} = 7.4 \text{ ksf}$ Undrained Conditions: $q_{Ru} = 7.4 \text{ ksf}$
	*

()

ROS-15-0.41 RW3 STA.752+95 @ B-018-0-22

Evaluate External Stability of V				
Compute the factored bearing s	stress at bottom of Unde	ercut & Repla	acement:	
e = 0.22 ft				
$\sigma_V := \frac{\Sigma V}{B'}$	$\sigma_V = 2.05 \ ksf$			
Bearing Capacity at bottom of U	•	nt:Demand	<u>Ratio (CDR)</u>	
Drained Conditions:	$CDR_{Bearing_D} := \frac{q_{Rd}}{\sigma_V}$ $CDR_{Bearing_U} := \frac{q_{Ru}}{\sigma_V}$	Is the	e CDR > or = to 1.0?	$CDR_{Bearing_D} = 3.61$
Undrained Conditions:	$CDR_{Bearing_U} \coloneqq \frac{q_{Ru}}{\sigma_V}$	Is the	CDR > or = to 1.0?	$CDR_{Bearing_U} = 3.61$
	3			
Limiting Eccentricity at Base of	<u>Wall (Strength Ia):</u>			
Compute the resultant locatio	<u>n about the toe "O" of th</u>	<u>ne base leng</u>	th (distance from Pivot):	
$e_{max} := \frac{B}{3}$	$e_{max} = 2.8 ft$		Maximum Eccentricity LRF Equals B/3 for soil.	D [C11.6.3.3.]
$\Sigma M_R := M V_{Ia}$	$\Sigma M_R = 56383.5 \frac{lbf}{ft}$	<u>ft</u>	Sum of Resisting Moments	(Strength Ia)
$\Sigma M_O := M H_{Ia}$	$e_{max} = 2.8 \text{ ft}$ $\Sigma M_R = 56383.5 \frac{lbf}{ft}$ $\Sigma M_O = 11798.1 \frac{lbf}{ft}$ $\Sigma V = 11688.7 \frac{lbf}{ft}$	<u>ft</u> L	Sum of Overturning Mome	nts (Strength Ia)
$\Sigma V := V_{Ia}$	$\Sigma V = 11688.7 \frac{lbf}{ft}$	They are	Sum of Vertical Loads (Stre	ength la)
$x := \frac{\left(\Sigma M_R - \Sigma M_O\right)}{\Sigma V}$	x = 3.8 ft	2.0	Distance from Point "O" the intersects the base	e resultant
$e \coloneqq \left \frac{B}{2} - x \right $	<i>e</i> = 0.44 <i>ft</i>	uniformly di the wall is s	ricity, Note: The vertical stre stributed over the effective b upported by a soil foundation aring width is equal to B-2e.	earing width, B', since n LRFD [11.6.3.2]. The
Eccentricity Capacity:Dema	and Ratio (CDR)		· Con	
$CDR_{Eccentricity} \coloneqq \frac{e_{max}}{c}$	Is the CDR > or = t	to 1.02	CDR = 6.50	
<i>CDK_{Eccentricity}</i> := <i>e</i>			$CDR_{Eccentricity} = 6.50$	e information.
				12 of 13

NEAS, Inc. Calculated By: ZM

Sliding Resistance at Base of Wall LRFD [10.6.3.4]:

Factored Sliding Force (Strength Ia):

$$R_u := H_{Ia}$$

$$R_u = 3174.7 \frac{lbf}{ft}$$

Drained/Undrained Conditions for Granular Replacement (Effective Stress): Compute passive resistance throughout the design life of the wall LRFD [Eq 3.11.5.4-1]::

$$r_{ep1} \coloneqq (k_{pd} \cdot \gamma_{fd} \cdot y_1 + 2 \cdot c'_{fd} \cdot \sqrt{k_{pd}}) \cdot \cos(\delta_{fd})$$

$$r_{ep2} \coloneqq (k_{pd} \cdot \gamma_{fd} \cdot y_2 + 2 \cdot c'_{fd} \cdot \sqrt{k_{pd}}) \cdot \cos(\delta_{fd})$$

$$R_{ep} \coloneqq \frac{r_{ep1} + r_{ep2}}{2} \cdot (y_2 - y_1)$$

$$R_{ep} = 0 \frac{lbf}{ft}$$

Nominal passive pressure at y1 Nominal passive pressure at y2

Nominal passive resistance Drained Conditions

416 Note: Passive Resistance shall be neglected in stability computations, unless the base of the wall extends below the depth of maximum scour, freeze-thaw or other disturbances. In the latter case, only the embedment below the greater of these depths shall be considered effective **LRFD** [11.6.3.5].

Compute sliding resistance between soil and foundation:

$$c := 1.0$$

 $R_{\tau} := c \cdot \Sigma V \cdot \tan(\phi_{Re})$

$$\Sigma V := V_{Ia} \qquad \qquad \Sigma V = 11688.7$$

Sum of Vertical Loads (Strength Ia)

c = 1.0 for Cast-in-Place

c = 0.8 for Precast

Nominal sliding resistance Cohesionless Soils

Compute factored resistance against failure by sliding LRFD [10.6.3.4]:

 $R_{\tau} = 7884.1$

$$\phi_{ep} := 0.5$$
Resistance factor for passive resistance specified in
LRFD Table 10.5.5.2.2-1 $\phi_{\tau} := 1.0$ Resistance factor for sliding resistance specified in
LRFD Table 11.5.7-1.

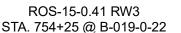
$$\phi R_n := \phi_\tau \cdot R_\tau + \phi_{ep} \cdot R_{ep}$$

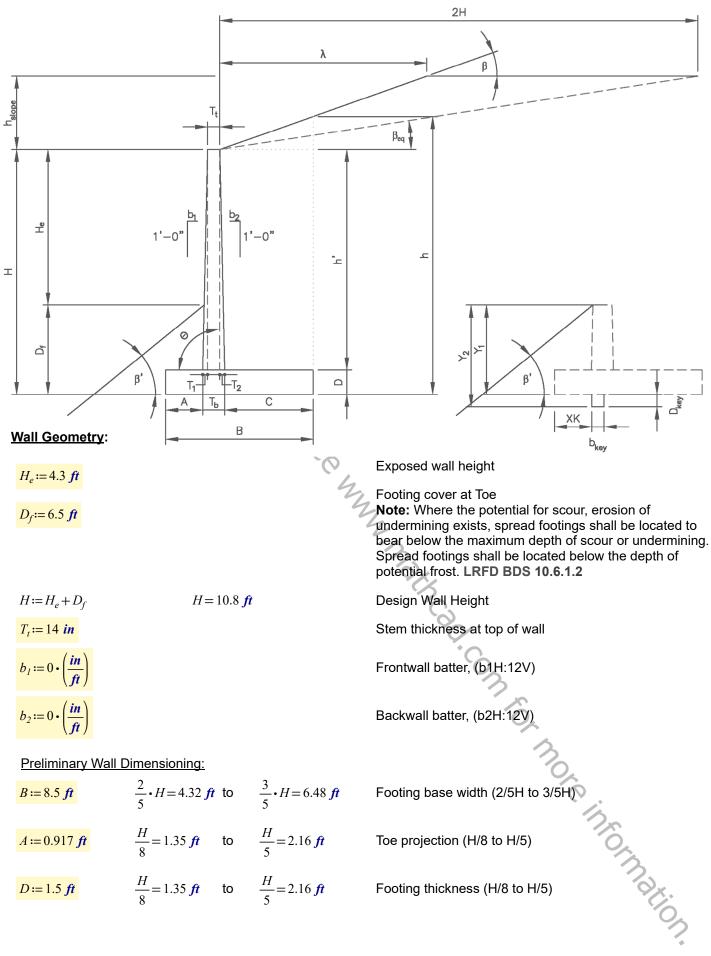
Factored Sliding Resistance to be used in CDR Calculations:

Sliding Capacity: Demand Ratio (CDR)

$$CDR_{Sliding_Base} := \frac{R_R}{R_u}$$
 Is the CDR > or = to 1.0?

$$R_R := \phi R_u$$
$$R_R = 7884.098 \frac{lbf}{6}$$


 $CDR_{Sliding_Base} = 2.48$


te information

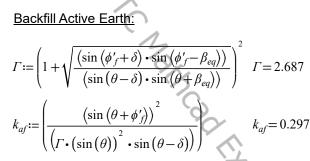
NEAS, Inc. Calculated By: ZM

Objective: Method:					
Givens:					
	Design Parameters:				
$\phi'_f \coloneqq 30 \ de$	g	Effective angle of internal friction			
$\gamma_f \coloneqq 120 \frac{ll}{ft}$	<u>y</u> 3	Unit weight			
$c'_{f} = 0 \frac{lbf}{ft^{2}}$		Effective Cohesion			
$\delta := 0.67 \bullet \phi$	$\delta'_f \qquad \delta = 20.1 \ deg$	Friction angle between backfill and wall taken as specified in LRFD BDS C3.11.5.3 (degrees)			
Foundation	<u>Soil Design Parameters:</u>				
Drained C	Conditions (Effective Stress):				
$\phi'_{fd} := 21 \ d$	eg	Effective angle of internal friction			
$\gamma_{fd} := 115 \frac{l}{f}$	bf t ³	Unit weight			
$c'_{fd} \coloneqq 75 \frac{h}{f}$	$\frac{bf}{t^2}$	Effective Cohesion			
$\delta_{fd} := 0.67 \cdot$	ϕ'_{fd} $\delta_{fd} = 14.1 \ deg$	Friction angle between foundation soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)			
<u>Undrained</u>	d Conditions (Total Stress):	The second secon			
$\phi_{fdu} := 0 de$	g	Angle of internal friction (Same as Drained Conditions if granular soils)			
$Su_{fdu} := 700$	$\frac{bf}{ft^2}$	Undrained Shear Strength			
$\delta_{fdu} := 0.67$	• ϕ_{fdu} $\delta_{fdu} = 0 \ deg$	Friction angle between foundation soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)			
Undercut &	Replacement Design Paramete	ers:			
$\phi_{Re} := 34 \ de$		Angle of internal friction for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.			
$c_{Re} := 0 \frac{lbj}{ft^2}$	<u>f</u>	Cohesion for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.			
$\gamma_{Re} := 130 -$	$\frac{lbf}{tt^3}$	Unit Weight for Replacement soil - Item 203 Granular Material Type C, C&MS 703.16.C. ODOT BDM Table 307-1.			
$\delta_{Re} := 0.67$		Friction angle between Replacement soils and footing taken as specified in LRFD BDS C3.11.5.3 (degrees)			
$D_{undercut} :=$	0 ft	Depth of Undercut below bottom of footing			
Foundation	Surcharge Soil Parameters:	Or			
$\gamma_q := 120 \frac{h}{f}$	<u>bf</u> t ³	 taken as specified in LRFD BDS C3.11.5.3 (degrees) Depth of Undercut below bottom of footing Unit weight of Soil above bearing depth (Used in Bearing Resistance of Soil Calculation LRFD 10.6.3.1.2a-1) Concrete Unit weight 			
Other Param	neters:				
$\gamma_c := 150 \frac{ll}{ft}$	$\frac{bf}{t^3}$	Concrete Unit weight			

Shear Key Dimension	<u>iing:</u>	
$D_{key} := 0 \ ft$		Depth of shear key from bottom of footing Note: Footings on rock typically require shear key
$b_{key} \coloneqq 0 ft$		Width of shear key
XK := 0 ft		Distance from toe to shear key
Other Wall Dimension	<u>IS:</u>	
h' := H - D	h' = 9.3 ft	Stem height
$T_1 := b_1 \cdot h'$	$T_I = 0 ft$	Stem front batter width
$T_2 := b_2 \cdot h'$	$T_2=0 ft$	Stem back batter width
$T_b := T_1 + T_2 + T_t$	$T_b = 1.167 \ ft$	Stem thickness at bottom of wall
$C := B - A - T_b$	C=6.416 <i>ft</i>	Heel projection
$\theta := 90 \ deg$		Angle of back face of wall to horizontal = atan(12/b2)
<i>b</i> := 12 <i>in</i>	b=1 ft	Concrete strip width (for design)
$y_l := D_f$	$y_1 = 6.5 ft$	Depth to where passive pressure may begin to be utilized in front of wall.
$y_2 := D_f + D_{key}$	$y_2 = 6.5 ft$	Bottom of shear key/footing depth i.e. depth to where passive pressure may no longer be utilized.
Site Grading and Slop	be Dimensions:	
$\beta := 0 deg$	Inclination of ground slope: • Horizontal: 0 • 3H:1V: 18.435	Inclination of ground slope behind face of wall. Horizontal backfill behind CIP wall, $\beta = 0$ deg
β':=18.435 <i>deg</i>	 2H:1V: 26.565 1.5H:1V: 33.690 	Inclination of ground slope in front of wall. If it is horizontal backfill in front of CIP wall, $\beta' = 0$ deg. A negative angle (-) indicates grades slope up from front of wall. Positive angle (+) indicates grade slope down from wall as shown in above figure.
$\lambda := 0 \ ft$		Horizontal distance from the back of the wall to point of slope crest .
$L_{Traffic} \coloneqq 0 \ ft$		Horizontal distance from assumed traffic surcharge load to Backface of Wall.
$2 \cdot H = 21.6 ft$	IF λ IS GREATER THAN 2*H	- USE INFINITE SLOPE CALCULATION SHEET
		30
$h_{slope} \coloneqq \lambda \cdot \tan\left(\beta\right)$	$h_{slope} = 0 ft$	Height of broken slope behind wall
$\beta_{eq} := \operatorname{atan}\left(\frac{h_{slope}}{2 \cdot H}\right) = 0 d$	leg	Equivalent backslope angle
$h := \mathrm{if} \left(\lambda \le T_2 + C, H + h \right)$	$h_{slope}, H + (T_2 + C) \cdot \tan(\beta) = 10.8 \ ft$	Equivalent backslope angle Height of retained fill at back of heel

CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW3 STA. 754+25 @ B-019-0-22 NEAS, Inc. Calculated By: ZM Date: 11/17/23 Checked By: CH


Live Load Surcharge Parameters:

$$SUR := if\left(L_{Traffic} < \frac{H}{2}, 90 \frac{lbf}{ft^2}, 0 \frac{lbf}{ft^2}\right) = 90 \frac{lbf}{ft^2}$$

Live load surcharge (per LRFD BDS [3.11.6.4])

Note: ,A live load ssurcharge shall be applied where vehicular load is expected to act on the surface of the backfill within a distance equal to one-half the wall height behind the back face of the wall, see LRFD BDS Section 3.11.6.4 and Table 3.11.6.4-2.

Calculations: <u>Earth Pressure Coefficients:</u>

Active Earth Pressure Coefficient (per LRFD Sect. 3.11.5.3)

Foundation Soil Passive Earth:

Drained Conditions assuming($\phi'_{fd} > 0$): Input Parameters for **LRFD Figure 3.11.5.4-2**, assumes θ = 90 degrees

$$\frac{-\beta'}{\phi'_{fd}} = -0.878 \qquad \frac{-\delta_{fd}}{\phi'_{fd}} = -0.67$$

$$k'_p := 1.35$$

Determine Reduction Factor (R) by interpolation:

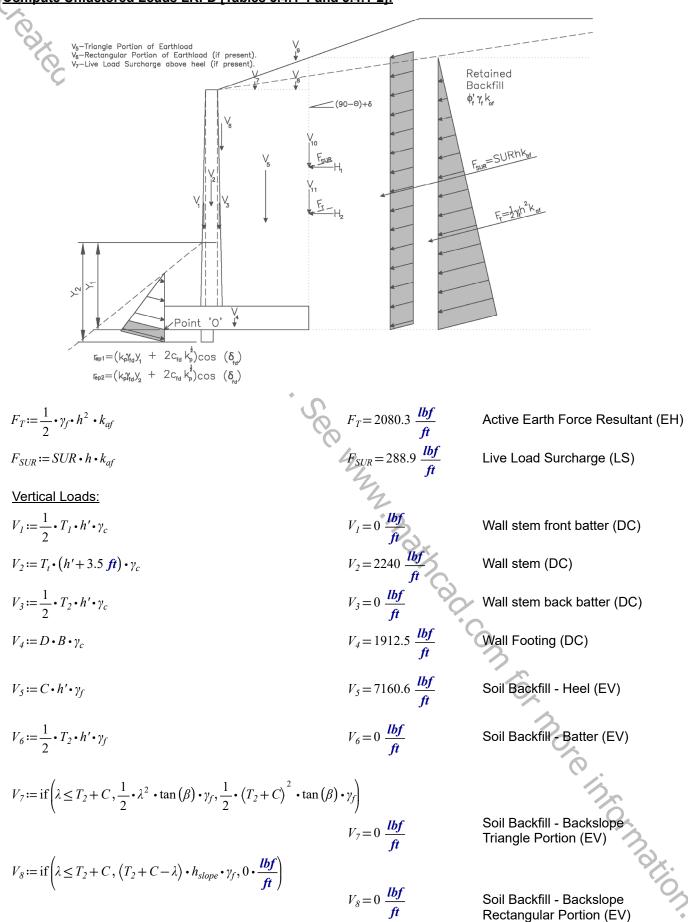
$R_d := 0.9$

Reduction Factor

 $k_{pd} := R_d \cdot k'_p$ $k_{pd} = 1.215$

Passive Earth Pressure Coefficient for Drained Conditions

Passive Earth Pressure Coefficient from LRFD Figure 3.11.5.4-2


Undrained Conditions ($\phi_{fdu} > 0$): Note: Expand window below to complete calculation

Undrained Conditions:

$$k_{pu} := \text{if} (\phi_{fdu} > 0, k_{pu}, 1)$$
 $k_{pu} = 1$

Passive Earth Pressure Coefficient for Resistance Undrained Conditions

Compute Unfactored Loads LRFD [Tables 3.4.1-1 and 3.4.1-2]:

CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW3 STA. 754+25 @ B-019-0-22 NEAS, Inc. Calculated By: ZM

comp. - LS)

component - EH)

Moment:

 $MV_1 \coloneqq V_1 \cdot d_{v_1} = 0$ *lbf*

 $MV_3 \coloneqq V_3 \cdot d_{v3} = 0$ *lbf*

 $MV_6 \coloneqq V_6 \cdot d_{v6} = 0$ *lbf*

 $MV_7 \coloneqq V_7 \cdot d_{v7} = 0$ *lbf*

 $MV_8 \coloneqq V_8 \bullet d_{v8} = 0 \ lbf$

 $MV_9 := V_9 \cdot d_{v9} = 3055.9 \ lbf$

 $MV_2 := V_2 \cdot d_{y_2} = 3360.7 \ lbf$

 $MV_4 := V_4 \cdot d_{v4} = 8128.1$ *lbf*

 $MV_5 := V_5 \cdot d_{v5} = 37892.8 \ lbf$

Live Load Surcharge Above Heel - (LS)

Live Load Surcharge Resultant (vertical

Active earth force resultant (vertical

Date: 11/17/23 Checked By: CH

$$V_{12} = if \left(\lambda \le T_2 + C, (T_2 + C - \lambda) \cdot SUR, 0 \cdot \frac{lbf}{ft} \right)$$

$$V_g = 577.5 \frac{lbf}{ft}$$

$$V_{10} = F_{SUR} \cdot sin (90 \cdot deg - \theta + \delta)$$

$$V_{10} = 99.3 \frac{lbf}{ft}$$

$$V_{11} = F_T \cdot sin (90 \cdot deg - \theta + \delta)$$

$$V_{11} = 714.9 \frac{lbf}{ft}$$
Moment Arm:
Moment Arm:
Moment s produced from vertical loads about Point 'O'

$$d_{v1} = A + \frac{2}{3} \cdot T_1 = 0.9 ft$$

$$d_{v2} = A + T_1 + \frac{T_1}{2} = 1.5 ft$$

$$d_{v3} = A + T_1 + T_1 + \frac{T_2}{3} = 2.1 ft$$

$$d_{v5} = B - \frac{C}{2} = 5.3 ft$$

$$d_{v6} = A + T_1 + T_1 + \frac{2}{3} = 2.1 ft$$

$$d_{v7} = if \left(\lambda \le T_2 + C, A + T_1 + T_1 + \left(\frac{2}{3} (\lambda) \right), A + T_1 + T_1 + \left(\frac{2}{3} (T_2 + C) \right) \right) = 2.1 ft$$

$$d_{v8} = A + T_1 + T_1 + \lambda + \left(\frac{T_2 + C - \lambda}{2} \right) = 5.3 ft$$

 $d_{v10} := B = 8.5 \, ft$

$$d_{v11} := B = 8.5 \, ft$$

Horizontal Loads:

 $H_{l} \coloneqq F_{SUR} \cdot \cos(90 \cdot deg - \theta + \delta) \qquad H_{l} \equiv 271.3 \frac{lbf}{ft}$ $H_{2} \coloneqq F_{T} \cdot \cos(90 \cdot deg - \theta + \delta) \qquad H_{2} \equiv 1953.6 \frac{lbf}{ft}$

Moment Arm:

$$d_{h1} := \frac{h}{2}$$
 $d_{h1} = 5.4 \ ft$
 $d_{h2} := \frac{h}{3}$ $d_{h2} = 3.6 \ ft$

 $MV_{10} \coloneqq V_{10} \cdot d_{v10} = 844 \ lbf$ $MV_{U'} \coloneqq V_{11} \cdot d_{v11} = 6076.9 \ lbf$ Live Load Surcharge Resultant (horizontal comp. - LS) Active Earth Force Resultant (horizontal comp. - EH) <u>Moment:</u> $MH_1 \coloneqq H_1 \cdot d_{h1} \qquad MH_1 = 1465.2 \ \frac{lbf \cdot ft}{ft}$ $MH_2 \coloneqq H_2 \cdot d_{h2} \qquad MH_2 = 7033.1 \ \frac{lbf \cdot ft}{ft}$

Undecoded by Load Type:

$$v_{ab} = V_{i} + V_{i}$$

NEAS, Inc. Calculated By: ZM

Load Combination Limit States:

$\eta = 1$	LRFD Load N	Iodifier			
Strength Limit State I:		00 EV(max) = 1.35 90 EH(max) = 1.50			
Strength Limit State Ia: (Sliding and Eccentricity	y)	$Ia_{DC} := 0.9$	$Ia_{EV} := 1$	$Ia_{EH} := 1.5$	$Ia_{LS} := 1.75$
Strength Limit State lb: (Bearing Capacity))	<i>Ib</i> _{DC} :=1.25	$Ib_{EV} \coloneqq 1.35$	$Ib_{EH} \coloneqq 1.5$	$Ib_{LS} := 1.75$
Factored Vertical Load	ds by Limit Sta	<u>ite:</u>		11-0	

$$V_{Ia} \coloneqq \eta \cdot \left(\left(Ia_{DC} \cdot V_{DC} \right) + \left(Ia_{EV} \cdot V_{EV} \right) + \left(Ia_{EH} \cdot V_{EH} \right) + \left(Ia_{LS} \cdot V_{LS_Ia} \right) \right) \qquad V_{Ia} \equiv 12144 \frac{lbf}{ft}$$

$$V_{Ib} \coloneqq \eta \cdot \left(\left(Ib_{DC} \cdot V_{DC} \right) + \left(Ib_{EV} \cdot V_{EV} \right) + \left(Ib_{EH} \cdot V_{EH} \right) + \left(Ib_{LS} \cdot V_{LS_Ib} \right) \right) \qquad V_{Ib} \equiv 17114.2 \frac{lbf}{ft}$$

$$Factored Horizontal Loads by Limit State:$$

$$H_{Ia} \coloneqq \eta \cdot \left(\left(Ia_{LS} \cdot H_{LS} \right) + \left(Ia_{EH} \cdot H_{EH} \right) \right) \qquad H_{Ia} \equiv 3405.3 \frac{lbf}{ft}$$

$$H_{Ib} \coloneqq \eta \cdot \left(\left(Ib_{LS} \cdot H_{LS} \right) + \left(Ib_{EH} \cdot H_{EH} \right) \right) \qquad H_{Ib} \equiv 3405.3 \frac{lbf}{ft}$$

Factored Moments Produced by Vertical Loads by Limit State:

$$MV_{Ia} \coloneqq \eta \cdot ((Ia_{DC} \cdot M_{DC}) + (Ia_{EV} \cdot M_{EV}) + (Ia_{EH} \cdot M_{EHI}) + (Ia_{LS} \cdot M_{LSV_Ia})) \quad MV_{Ia} = 58825.2 \quad \frac{lbf \cdot ft}{ft}$$

 $MV_{Ib} \coloneqq \eta \cdot ((Ib_{DC} \cdot M_{DC}) + (Ib_{EV} \cdot M_{EV}) + (Ib_{EH} \cdot M_{EHI}) + (Ib_{LS} \cdot M_{LSV_Ib})) \quad MV_{Ib} = 81456.6 \quad \frac{lbf \cdot ft}{ft}$
Factored Moments Produced by Horizontal Loads by Limit State:
 $MH_{Li} \coloneqq \eta \cdot ((Ia_{LS} \cdot M_{LSV}) + (Ia_{EV} \cdot M_{EV}))$

$$MH_{Ia} = \eta \cdot ((Ib_{LS} \cdot M_{LSH}) + (Ib_{EH} \cdot M_{EH2}))$$

$$MH_{Ib} = \eta \cdot ((Ib_{LS} \cdot M_{LSH}) + (Ib_{EH} \cdot M_{EH2}))$$

$$MH_{Ib} = 13113.8 \frac{Ibf \cdot f}{f}$$

Compute Bearing Resistance:

Compute Bearing Resistance:				
Compute the resultant location	n about the toe of the bas	se length (distance from "O") Strength Ib:		
Č,	lhf, fi			
$\Sigma M_{R} := M V_{Ib}$ $\Sigma M_{O} := M H_{Ib}$ $\Sigma V := V_{Ib}$	$\Sigma M_R = 81456.6 \ \frac{lbf \cdot ft}{ft}$	- Sum of Resisting Moments (Strength Ib)		
	ji ne c			
$\Sigma M_O := M H_{lb}$	$\Sigma M_O = 13113.8 \frac{lbf \cdot ft}{ft}$	- Sum of Overturning Moments (Strength Ib)		
Úx,	jt u c			
$\Sigma V := V_{Ib}$	$\Sigma V = 17114.2 \ \frac{lbf}{ft}$	Sum of Vertical Loads (Strength lb)		
	ft			
$x := \frac{\left(\Sigma M_R - \Sigma M_O\right)}{\left(\Sigma M_R - \Sigma M_O\right)}$	4 6	Distance from Daint IOI the moultaint		
$x := \frac{1}{\Sigma V}$	x=4 ft	Distance from Point "O" the resultant intersects the base		
4				
$e := \left \frac{B}{2} - x \right $	e = 0.26 ft	Wall eccentricity, Note: The vertical stress is assumed to be		
		uniformly distributed over the effective bearing width, B', since		
		the wall is supported by a soil foundation LRFD [11.6.3.2]. The		
	^V	effective bearing width is equal to B-2e.		
Foundation Layout at bottom of	of Undercut & Replaceme	ent:		
$B' := B - 2 \cdot e + D_{undercut}$	B'=8 ft	Effective Footing Width, Assumed at the		
unuercui	C	bottom of Undercut and Replacement		
L' := 200 ft	Vic	Effective Footing Length (Assumed)		
	lbf			
$H' := H_{Ib}$	$H' = 3405.3 \frac{lbf}{ft}$	Summation of Horizontal Loads (Strength Ib)		
$V' := V_{Ib}$	$V' = 17114.2 \frac{lbf}{ft}$	Summation of Vertical Loads (Strength Ib)		
$D_F := D_f + D_{undercut}$	Ji	Embenment Depth at bottom of Undercut		
$D_{f} = D_{f} + D_{undercut}$				
$d_w := 0 ft$		Depth of Groundwater below ground surface at		
		front of wall.		
Drained Conditions (Effective	<u>Stress):</u>	Ox.		
	$\left(\frac{d'}{d}\right)^2$	5		
$N_{q} := \mathrm{if}\left(\phi'_{fd} > 0, e^{\pi \cdot \tan{(\phi'_{fd})}} \cdot \tan\left(45 \ deg + \frac{\phi'_{fd}}{2}\right)^{2}, 1.0\right) \qquad \qquad N_{q} = 7.07$				
(2))	$N_q = 7.07$		
$N_{q} = i f \left(\frac{1}{10000000000000000000000000000000000$		15 91		
$N_{c} := \text{if}\left(\phi'_{fd} > 0, \frac{N_{q} - 1}{\tan(\phi'_{fd})}, 5.14\right)$		$V_c = 15.81$		
((,)4) /		3		
$N_{v} \coloneqq 2 \cdot (N_{a} + 1) \cdot \tan(\phi'_{fd})$		$N_{y} = 6.2$		
7 (4) () ()				
Compute shape correction fac	tors per LRFD [Table 10	$N_c = 15.81$ $N_y = 6.2$ 0.6.3.1.2a-3]:		
$s_c := \operatorname{if}\left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right),\right)$	$1 + \left(\underline{B'} \right)$	$s_c = 1.018$		
$(')^{\mu} (L') (N_c)^{\prime}$	$(5 \cdot L'))$			
		5		
$s_q := \operatorname{if}\left(\phi'_{fd} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi'_{fd}\right)\right)\right)$	۵), 1)	$s_q = 1.015$		
$S_q = \prod_{i=1}^{n} \left(\varphi_{ja} \times \varphi_{i} $	() () ()	Sq IIII		
($(p'))$		· · · · · · · · · · · · · · · · · · ·		
$s_{\gamma} := \text{if}\left(\phi'_{fd} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$		$s_{\gamma} = 0.984$		
		2.6.3.1.2a-3]: $s_c = 1.018$ $s_q = 1.015$ $s_{\gamma} = 0.984$		
		ジ		
		¢		

NEAS, Inc. Calculated By: ZM

Load inclination factors: Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a. $i_q := 1$ "Most geotechnical engineers do not used the load $i_{v} := 1$ inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9]. $i_c := 1$ Compute groundwater depth correction factors per LRFD [Table 10.6.3.1.2a-2]: $C_{wq} := \text{if} (d_w \ge D_f, 1.0, 0.5)$ $C_{wq} = 0.5$ $C_{w\gamma} := \text{if} (d_w \ge (1.5 \cdot B) + D_f, 1.0, 0.5)$ $C_{wv} = 0.5$ Depth Correction Factor per ODOT BDM 305.2.1: $d_q \coloneqq 1 + 2 \cdot \tan\left(\phi'_{fd}\right) \cdot \left(1 - \sin\left(\phi'_{fd}\right)\right)^2 \cdot \operatorname{atan}$ $d_a = 1.22$ Compute modified bearing capacity factors LRFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]: $N_{cm} := N_c \cdot s_c \cdot i_c$ $N_{cm} = 16.097$ $N_{am} := N_q \cdot s_q \cdot d_q \cdot i_q$ $N_{am} = 8.729$ $N_{vm} := N_v \cdot s_v \cdot i_v$ $N_{vm} = 6.097$ Compute nominal bearing resistance at bottom of Undercut & Replacement, LRFD [Eg 10.6.3.1.2a-1]: $q_{nd} = 6011.7 \frac{lbf}{ft^2}$ $q_{nd} \coloneqq c'_{fd} \cdot N_{cm} + \gamma_a \cdot D_F \cdot N_{am} \cdot C_{wa} + 0.5 \cdot \gamma_{fd} \cdot B' \cdot N_{vm} \cdot C_{wv}$ Compute factored bearing resistance at bottom of Undercut & Replacement, LRFD [Eq 10.6.3.1.1]: Bearing resistance factor LRFD Table 11.5.7-1. $\phi_h := .55$ Factored bearing resistance Drained Conditions $q_{Rd} = 3.3 \ ksf$ $q_{Rd} := \phi_h \cdot q_{nd}$ Undrained Conditions (Effective Stress): $N_q := \operatorname{if} \left(\phi_{fdu} > 0, e^{\pi \cdot \tan \left(\phi_{fdu} \right)} \cdot \tan \left(45 \ deg + \frac{\phi_{fdu}}{2} \right)^2, 1.0 \right)$ ore information. $N_c := if\left(\phi_{fdu} > 0, \frac{N_q - 1}{\tan(\phi_{fdu})}, 5.14\right)$ $N_c = 5.14$ $N_{v} := 2 \cdot (N_{a} + 1) \cdot \tan(\phi_{fdu})$ $N_{\nu} = 0$

Compute shape correction factors per LRFI	<u>D [Table 10.6.3.1.2a-3]:</u>				
$s_c := \operatorname{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'}\right) \cdot \left(\frac{N_q}{N_c}\right), 1 + \left(\frac{B'}{5 \cdot L'}\right)\right)$	$s_c = 1.008$				
$\begin{split} s_q &:= \mathrm{if}\left(\phi_{fdu} > 0, 1 + \left(\frac{B'}{L'} \cdot \tan\left(\phi_{fdu}\right)\right), 1\right) \\ s_\gamma &:= \mathrm{if}\left(\phi_{fdu} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right) \end{split}$	$s_q = 1$				
$s_{\gamma} := \operatorname{if}\left(\phi_{fdu} > 0, 1 - 0.4 \cdot \left(\frac{B'}{L'}\right), 1\right)$	$s_{\gamma} = 1$				
Load inclination factors:					
$i_q := 1$ $i_{\gamma} := 1$ $i_c := 1$	Assumed to be 1.0, see LRFD BDS C10.6.3.1.2a . "Most geotechnical engineers do not used the load inclination factors". If desired, use LRFD Equations [10.6.3.1.2a-5] thru [10.6.3.1.2a-9].				
Depth Correction Factor per ODOT BDM 305	.2.1:				
$d_q \coloneqq 1 + 2 \cdot \tan\left(\phi_{fdu}\right) \cdot \left(1 - \sin\left(\phi_{fdu}\right)\right)^2 \cdot \operatorname{atan}\left(\frac{D_F}{B'}\right)$					
$d_q = 1$					
	RFD [Equation 10.6.3.1.2a-2 to 10.6.3.1.2a-4]:				
$N_{cm} := N_c \cdot s_c \cdot i_c$	$N_{cm} = 5.181$				
$N_{qm} \coloneqq N_q \bullet s_q \bullet d_q \bullet i_q$	$N_{qm} = 1$				
$N_{\gamma m} := N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma}$	$N_{ym} = 0$				
Compute nominal bearing resistance at botton	m of Undercut & Replacement, LRFD [Eq 10.6.3.1.2a-1:				
$q_{nu} \coloneqq Su_{fdu} \bullet N_{cm} + \gamma_q \bullet D_F \bullet N_{qm} \bullet C_{wq} + 0.5 \bullet \gamma_{fd} \bullet B$	$q_{nu} = 4016.7 \ \frac{lbf}{ft^2}$				
Compute factored bearing resistance at both	om of Undercut & Replacement, LRFD [Eq 10.6.3.1.1]:				
$\phi_b := .55$	Bearing resistance factor LRFD Table 11.5.7-1.				
$q_{Ru} := \phi_b \cdot q_{nu} \qquad q_{Ru} = 2.2 \ ksf$	Factored bearing resistance Undrained Conditions				
Factored Bearing Resistance Drained vs. U	ndrained Conditions:				
	Drained Conditions: $q_{Rd} = 3.3$ ksf				
	Conditions <u>indrained Conditions</u> : Drained Conditions: $q_{Rd} = 3.3 \text{ ksf}$ Undrained Conditions: $q_{Ru} = 2.2 \text{ ksf}$				

()

ROS-15-0.41 RW3 STA. 754+25 @ B-019-0-22

Evaluate External Stability of W	<u>all:</u>						
Compute the factored bearing st	ress at bottom of Und	lercut & Repla	acement:				
e = 0.26 ft							
$\sigma_V := \frac{\Sigma V}{B'}$	$\sigma_V = 2.143 \ ksf$						
Bearing Capacity at bottom of Un	-		<u>Ratio (CDR)</u>				
Drained Conditions:	$CDR_{Bearing_D} \coloneqq \frac{q_{Rd}}{\sigma_V}$	Is the	e CDR > or = to 1.0?	$CDR_{Bearing_D} = 1.54$			
Undrained Conditions: Limiting Eccentricity at Base of V	$CDR_{Bearing_D} \coloneqq \frac{q_{Rd}}{\sigma_V}$ $CDR_{Bearing_U} \coloneqq \frac{q_{Ru}}{\sigma_V}$ $Vall (Strength la):$	Is the	e CDR > or = to 1.0?	$CDR_{Bearing_U} = 1.03$			
Compute the resultant location	about the toe "O" of t	the base leng	th (distance from Pivot):				
$e_{max} := \frac{B}{3}$	$e_{max} = 2.8$ ft		Maximum Eccentricity LR Equals B/3 for soil.	FD [C11.6.3.3.]			
$\Sigma M_R := M V_{Ia}$	$\Sigma M_R = 58825.2 \frac{lbf}{f}$	$\frac{ft}{t}$	Sum of Resisting Moment	s (Strength Ia)			
$\Sigma M_O := M H_{Ia}$	$e_{max} = 2.8 \text{ ft}$ $\Sigma M_R = 58825.2 \frac{lbf}{ft}$ $\Sigma M_O = 13113.8 \frac{lbf}{ft}$ $\Sigma V = 12144 \frac{lbf}{ft}$	<u>ft</u> ì	Sum of Overturning Mome	ents (Strength Ia)			
$\Sigma V := V_{Ia}$	$\Sigma V = 12144 \frac{lbf}{ft}$	They	Sum of Vertical Loads (St	rength la)			
$x := \frac{\left(\Sigma M_R - \Sigma M_O\right)}{\Sigma V}$	x = 3.8 ft	2.0	Distance from Point "O" th intersects the base	ne resultant			
$e := \left \frac{B}{2} - x \right $	e = 0.49 <i>ft</i>	uniformly di the wall is s	ricity, Note: The vertical strustributed over the effective upported by a soil foundation aring width is equal to B-2e	bearing width, B', since on LRFD [11.6.3.2]. The			
Eccentricity Capacity:Demand Ratio (CDR)							
$CDR_{Eccentricity} \coloneqq \frac{e_{max}}{e}$	Is the CDR > or =	to 1.0?	$CDR_{Eccentricity} = 5.83$				
			20	re information.			
				12 of 16			

Sliding Resistance at Base of Wall LRFD [10.6.3.4]:

Factored Sliding Force (Strength Ia):

$$R_u := H_{Ia}$$

$$R_u = 3405.3 \frac{lbf}{ft}$$

Drained/Undrained Conditions for Granular Replacement (Effective Stress): Compute passive resistance throughout the design life of the wall LRFD [Eg 3.11.5.4-1]::

$$r_{ep1} \coloneqq (k_{pd} \cdot \gamma_{fd} \cdot y_1 + 2 \cdot c'_{fd} \cdot \sqrt{k_{pd}}) \cdot \cos(\delta_{fd})$$

$$r_{ep2} \coloneqq (k_{pd} \cdot \gamma_{fd} \cdot y_2 + 2 \cdot c'_{fd} \cdot \sqrt{k_{pd}}) \cdot \cos(\delta_{fd})$$

$$R_{ep} \coloneqq \frac{r_{ep1} + r_{ep2}}{2} \cdot (y_2 - y_1)$$

$$R_{ep} = 0 \frac{lbf}{ft}$$

Nominal passive pressure at y1 Nominal passive pressure at y2

Nominal passive resistance Drained Conditions

416 Note: Passive Resistance shall be neglected in stability computations, unless the base of the wall extends below the depth of maximum scour, freeze-thaw or other disturbances. In the latter case, only the embedment below the greater of these depths shall be considered effective LRFD [11.6.3.5].

Compute sliding resistance between soil and foundation:

$$c := 1.0$$

 $R_{\tau} := c \cdot \Sigma V \cdot \tan(\phi_{Re})$

$$\Sigma V := V_{Ia} \qquad \qquad \Sigma V = 12144$$

c = 1.0 for Cast-in-Place c = 0.8 for Precast

Sum of Vertical Loads (Strength Ia)

Nominal sliding resistance Cohesionless Soils

Compute factored resistance against failure by sliding LRFD [10.6.3.4]:

 $R_{\tau} = 8191.3$

$$\phi_{ep} \coloneqq 0.5$$
Resistance factor for passive resistance specified in
LRFD Table 10.5.5.2.2-1 $\phi_{r} \coloneqq 1.0$ Resistance factor for sliding resistance specified in
LRFD Table 11.5.7-1

LRFD Table 11.5.7-1.

$$R_n := \phi_\tau \cdot R_\tau + \phi_{ep} \cdot R_{ep}$$

Factored Sliding Resistance to be used in CDR Calculations:

Sliding Capacity:Demand Ratio (CDR)

$$CDR_{Sliding_Base} := \frac{R_R}{R_u}$$
 Is the CDR > or = to 1.0?

$$R_R := \phi R_n$$
$$R_R = 8191.26 \frac{lbf}{ft}$$

 $CDR_{Sliding_Base} = 2.41$

the information

 $q_{max} \coloneqq \frac{1}{2} \cdot \sigma_{vmax}$

 $q_{min} := \frac{1}{2} \cdot \sigma_{vmin}$

ROS-15-0.41 RW3 STA. 754+25 @ B-019-0-22

NEAS, Inc. Calculated By: ZM

Undrained Conditions (Total Stress): Compute passive resistance throughout the design life of the wall LRFD [Eg 3.11.5.4-1]:: $r_{epl} := \left(k_{mu} \cdot \gamma_{fd} \cdot y_l + 2 \cdot Su_{fdu} \cdot \sqrt{k_{mu}}\right) \cdot \cos\left(\delta_{fd}\right)$ Nominal passive pressure at y1 $r_{ep2} := \left(k_{pu} \cdot \gamma_{fd} \cdot y_2 + 2 \cdot Su_{fdu} \cdot \sqrt{k_{pu}}\right) \cdot \cos\left(\delta_{fd}\right)$ Nominal passive pressure at v2 $R_{ep} = 0 \frac{lbf}{ft}$ $R_{ep} \coloneqq \frac{r_{ep1} + r_{ep2}}{2} \cdot (y_2 - y_1)$ below the greater of these depths shall be considered effective LRFD [11.6.3.5]. Compute sliding resistance between soil and foundation: c := 1.0c = 1.0 for Cast-in-Place $\Sigma V = 12144 \frac{lbf}{ft}$ c = 0.8 for Precast $\Sigma V := V_{Ia}$ Sum of Vertical Loads (Strength Ia) e = 0.49 ft Wall eccentricity, Calculated in above Limiting Eccentricity at Base of Wall (Strength Ia) Section. B = 8.5 ftFooting base width $\frac{B}{6} = 1.4 \, ft$ If e < B/6 the resultant is in the middle one-third $\sigma_{vmax} := \frac{\Sigma V}{B} \cdot \left(1 + 6 \cdot \frac{e}{B} \right) \qquad \sigma_{vmax} = 1918.7 \frac{lb_{s}}{f^2}$ Max vertical stress (if resultant is in the middle one-third of base) LRFD [11.6.3.2-2]. $\sigma_{vmin} \coloneqq \frac{\Sigma V}{R} \cdot \left(1 - 6 \cdot \frac{e}{R} \right) \qquad \sigma_{vmin} = 938.7 \frac{lbf}{f^2}$

Max verical stress (if resultant is in the middle one-third of base) LRFD [11.6.3.2-2].

Max unit shear resistance as 1/2 max vertical stress LRFD [10.6.3.4].

Minimum unit shear resistance as 1/2 minimum vertical stress LRFD [10.6.3.4]. n Or More information

Determine which Cohesive Soil Resistance Case is Present:

 $q_{max} = 959.4 \frac{lbf}{ft^2}$

 $q_{min} = 469.3 \frac{lbf}{ft^2}$

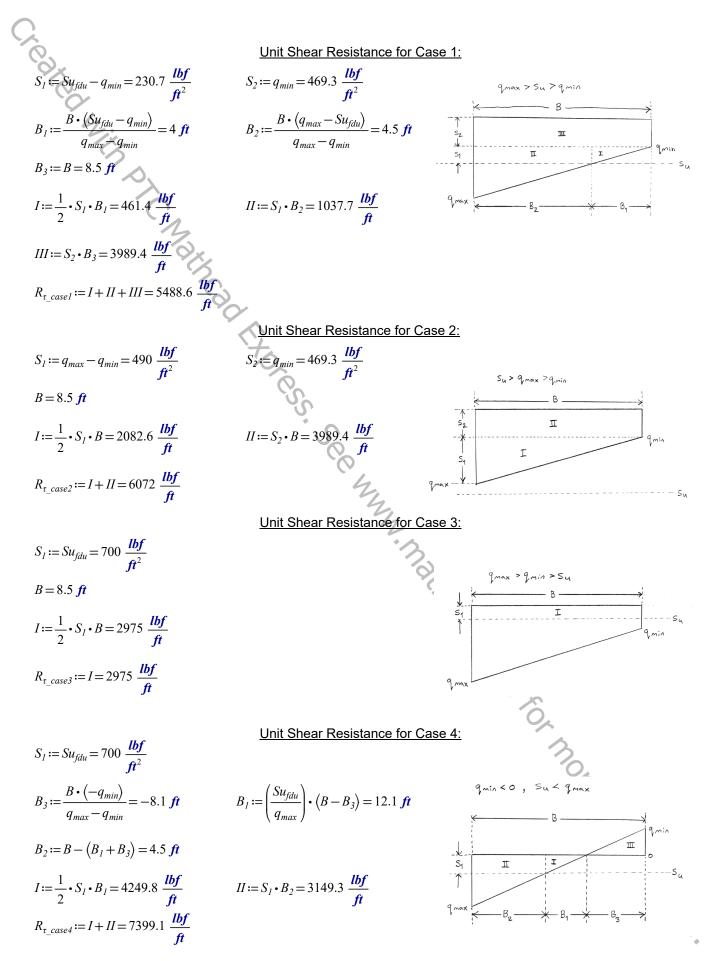
 $Case_{l} := if(q_{max} > Su_{fdu} > q_{min} \ge 0, 1, 0)$ $Case_1 = 1$

$$Case_2 := \text{if} \left(Su_{fdu} > q_{max} > q_{min} \ge 0, 1, 0 \right) \qquad Case_2 = 0$$

 $Case_3 := if(q_{max} > q_{min} > Su_{fdu}, 1, 0)$ $Case_3 = 0$

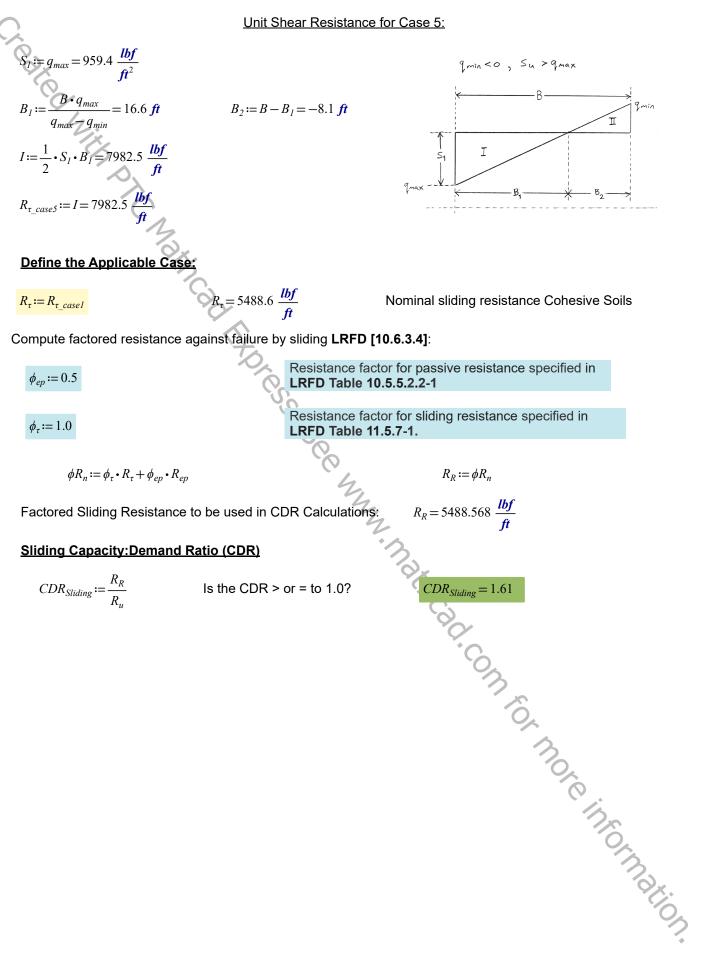
$$Case_4 := if(q_{min} < 0, if(Su_{fdu} < q_{max}, 1, 0), 0)$$
 $Case_4 = 0$

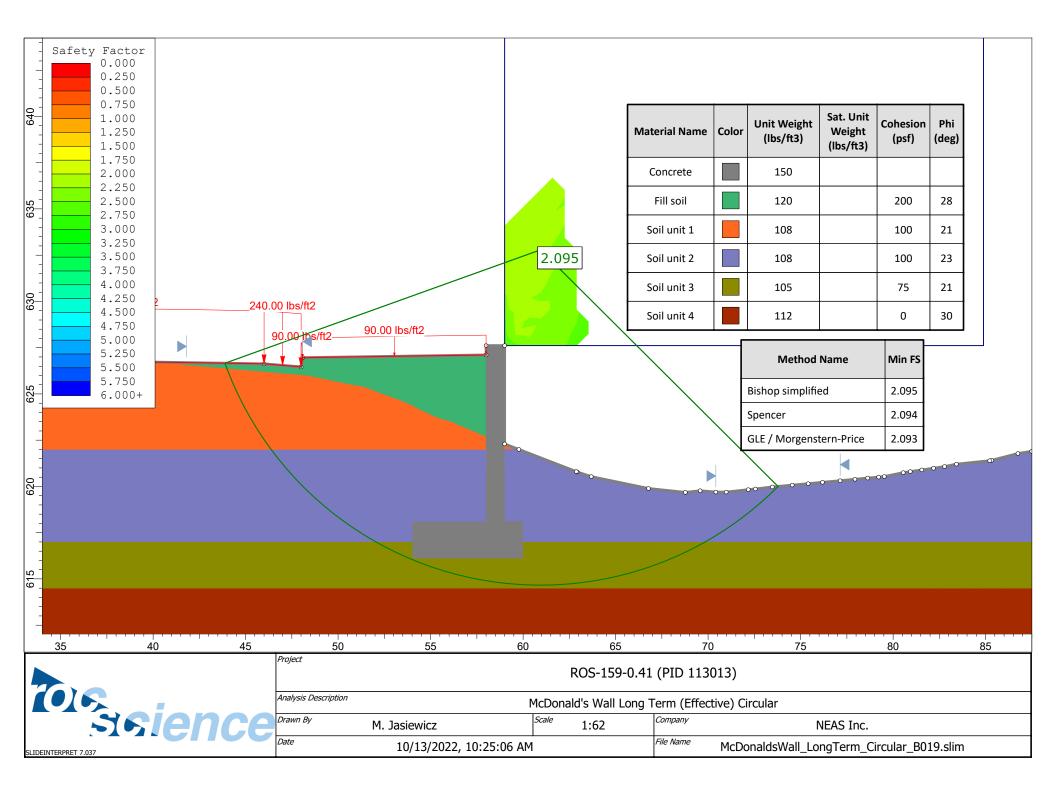
$$Case_{5} \coloneqq if \left(q_{min} < 0, if \left(Su_{fdu} > q_{max}, 1, 0 \right), 0 \right) \qquad Case_{5} \equiv 0$$

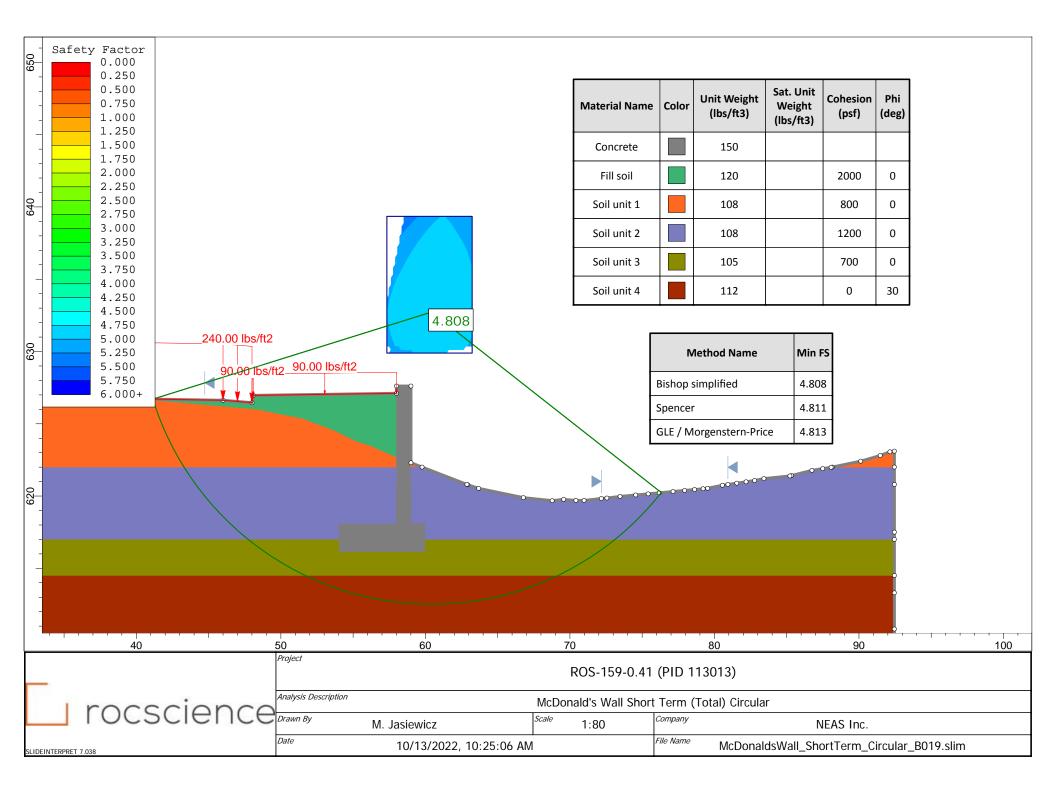

Nominal passive resistance Drained Conditions

416 Note: Passive Resistance shall be neglected in stability computations, unless the base of the wall extends below the depth of maximum scour, freeze-thaw or other disturbances. In the latter case, only the embedment

14 of 16

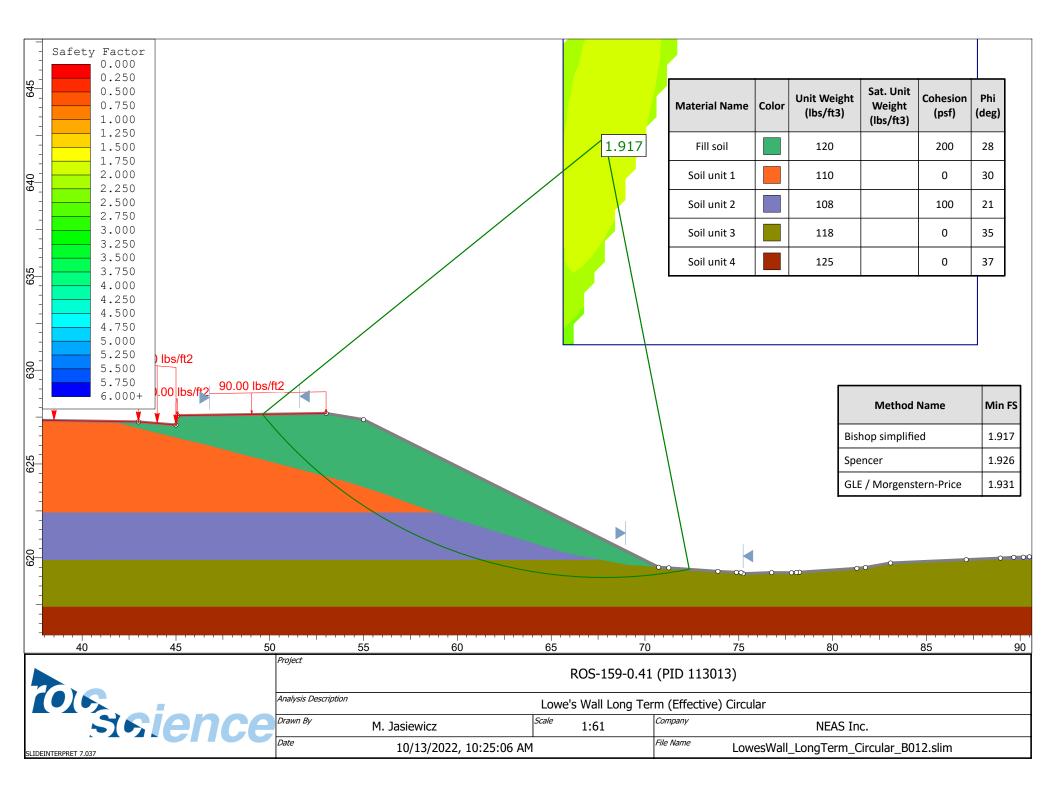

CIP Wall External Stability Analysis (last revised 01/27/2022)

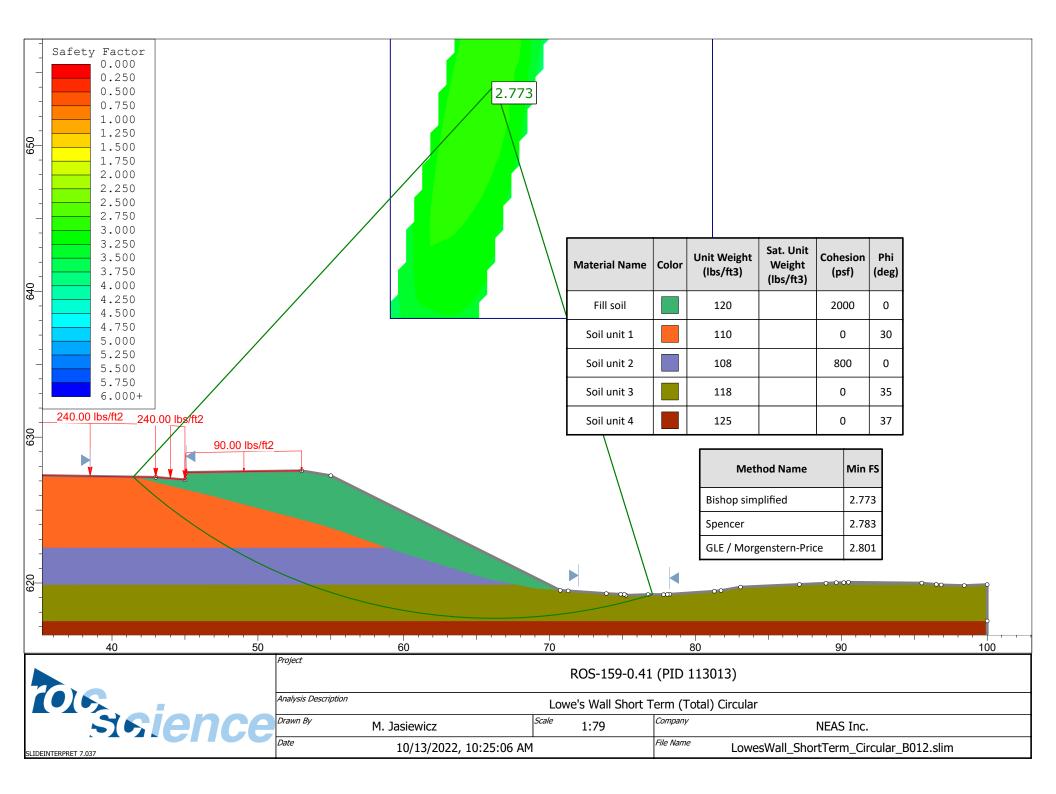

ROS-15-0.41 RW3 STA. 754+25 @ B-019-0-22



CIP Wall External Stability Analysis (last revised 01/27/2022)

ROS-15-0.41 RW3 STA. 754+25 @ B-019-0-22





APPENDIX F

EMBANKMENT STABILTY ANALYSIS

