FINAL REPORT STRUCTURE FOUNDATION EXPLORATION BRIDGE SCI-125-6.26 OVER TURKEY CREEK PID: 119955 SCIOTO COUNTY, OHIO

Prepared For:

American StructurePoint

2550 Corporate Exchange Drive, Suite 300 Columbus, OH 43231

Prepared by:

NATIONAL ENGINEERING AND ARCHITECTURAL SERVICES INC.

2800 Corporate Exchange Drive, Suite 240 Columbus, Ohio 43231

NEAS PROJECT 24-0002

October 6, 2025

EXECUTIVE SUMMARY

The Ohio Department of Transportation (ODOT) District 9 has proposed a bridge replacement project (SCI-125-6.26, PID# 119955) to replace the existing bridge carrying SR-125 over Turkey Creek, Scioto County, Ohio. The report presents a summary of the surficial and subsurface conditions during the investigation, along with our recommendations for the design and construction of the bridge foundation.

National Engineering and Architectural Services Inc. (NEAS) has been contracted to perform geotechnical engineering services for the project. The purpose of the geotechnical engineering services is to perform geotechnical explorations within the project limits to obtain information concerning the subsurface soil and groundwater conditions relevant to the design and construction of the project. As part of the referenced explorations, NEAS advanced two project borings and conducted laboratory testing to evaluate and characterize the soils for engineering purposes. The report provides a summary of the surficial and subsurface conditions encountered and presents our recommendations for the design and construction of the bridge foundation.

The subsurface profile at the bridge site is generally consistent with the geological model for the project in regard to the materials encountered. The subsurface profile generally consists of both soft to hard cohesive fine-grained materials and medium dense to very dense coarse-grained granular materials. Bedrock was encountered in both project borings, ranging from depths of 10.0 ft to 16.0 ft below ground surface (with elevations between 642.1 ft and 645.4 ft above mean sea level).

According to our subgrade analysis, subgrade stabilization is not required per ODOT GDM Section 600.

A foundation review was conducted for the deep foundation system for the referenced replacement bridge, based on the following design information: 1) the Site Plan for the Bridge prepared by American StructurePoint; 2) historical plans and subsurface exploration data; and 3) load and scour information provided by American StructurePoint. Based on this information, NEAS suggests supporting both abutments on HP 14x73 piles installed in prebored holes.

Our analyses of laterally and axially loaded piles indicate that the estimated pile lengths will be governed by ODOT GDM Section 1305.4, which addresses pile scour considerations at both abutment locations. The estimated pile length is 15 ft for both abutments, with pile tip elevations of 632.7 ft at the rear abutment and 631.1 ft at the forward abutment.

TABLE OF CONTENTS

1.	INT	FROD	OUCTION	4
	1.1.		JERAL	
	1.2.		POSED CONSTRUCTION	
2.	GE	OLO	GY AND OBSERVATIONS OF THE PROJECT	4
	2.1.		DLOGY AND PHYSIOGRAPHY	
	2.2.	HYI	DROLOGY/HYDROGEOLOGY	5
	2.3.		TING AND OIL/GAS PRODUCTION	
	2.4.	HIS	TORICAL RECORDS AND PREVIOUS PHASES OF PROJECT EXPLORATION	5
	2.5.	FIEI	LD RECONNAISSANCE	6
3.	GE	OTE	CHNICAL EXPLORATION	9
	3.1.		LD EXPLORATION PROGRAM	
	3.2.	LAE	ORATORY TESTING PROGRAM	10
	3.2.	1.	Classification Testing	10
	3.2.	2.	Standard Penetration Test Results	
	3.2.	<i>3</i> .	D ₅₀ Values for Scour Evaluation	10
	3.2.	4.	Slake Durability Test of Rock Core	11
	3.2.	<i>5</i> .	Unconfined Compressive Strength of Rock Core	11
4.	GE		CHNICAL FINDINGS	12
	4.1.	SUB	SURFACE CONDITIONS	12
	4.1.	1.	Overburden Soil	12
	4.1.	2.	Groundwater	13
	4.1.		Bedrock	
5.	$\mathbf{A}\mathbf{N}$	ALYS	SES AND RECOMMENDATIONS	14
	5.1.		L PROFILE FOR ANALYSIS	
	5.2.	PAV	EMENT DESIGN AND RECOMMENDATIONS	15
	5.2.	1.	Pavement Design Recommendations	15
	5.2.	<i>2</i> .	Unsuitable/Unstable Subgrade	16
	5	.2.2.1	. Rock	16
	5	.2.2.2	Prohibited Soils	16
	5	.2.2.3	. Weak Soils	16
		.2.2.4	O Company of the comp	
	5.2.		Stabilization Recommendations	
	5.3.		DGE FOUNDATION ANALYSIS AND RECOMMENDATIONS	
	5.3.		Pile Scour Consideration	
	<i>5.3</i> .		Axially Loaded Pile Analysis	
	<i>5.3</i> .		Laterally Loaded Pile Analysis	
	<i>5.3</i> .		Pile Foundation Recommendations	
	5.4.	GLC	DBAL STABILITY ANALYSIS	19
6.	OU	ALIF	ICATIONS	19

LIST OF TABLES

TABLE 1:	HISTORICAL AND CURRENT BEDROCK ELEVATION SUMMARY	6
TABLE 2:	PROJECT BORING SUMMARY	
TABLE 3:	D ₅₀ VALUES FOR SCOUR EVALUATION	
TABLE 4:	BEDROCK EQUIVALENT D ₅₀ VALUES AND ERODIBILITY K	11
TABLE 5:	SLAKE DURABILITY INDEX TEST RESULTS	
TABLE 6:	UNCONFINED COMPRESSIVE STRENGTH OF ROCK CORE RESULTS	12
TABLE 7:	B-001-0-23 SOIL PROFILE	
TABLE 8:	B-002-0-23 SOIL PROFILE	
TABLE 9:	LPILE SOIL PARAMETERS – B-001-0-23	
TABLE 10:	LPILE SOIL PARAMETERS – B-002-0-23	
TABLE 11:	PAVEMENT DESIGN VALUES	
TABLE 12:	UNSTABLE SOIL LOCATION SUMMARY	
TABLE 13:	HIGH MOISTURE CONTENT SOILS SUMMARY	
TABLE 14:	AXIALLY LOADED PILE ANALYSIS SUMMARY	
TABLE 15:	LATERALLY LOADED PILE ANALYSIS SUMMARY	19
TABLE 16.	ESTIMATED PILE LENGTHS SUMMARY	19

LIST OF APPENDICES

APPENDIX A: SITE PLAN

APPENDIX B: BORING LOGS AND LABORATORY TEST RESULTS

APPENDIX C: SUBGRADE ANALYSIS APPENDIX D: UPLIFT ANALYSIS APPENDIX E: LPILE ANALYSIS

Structure Foundation Exploration – FINAL SCI-125-6.26 Scioto County, Ohio

PID#: 119955

1. INTRODUCTION

1.1. General

National Engineering and Architectural Services Inc. (NEAS) presents our Structure Foundation Exploration Report for the planned replacement of the existing bridge carrying SR-125 over Turkey Creek in Scioto County, Ohio. The report presents a summary of the encountered surficial and subsurface conditions and our recommendations for bridge foundation design and construction. Our recommendations are in accordance with ODOT's 2020 LRFD Bridge Design Manual (BDM) (ODOT, 2024), ODOT's 2024 Geotechnical Design Manual (GDM) (ODOT, 2024).

The exploration was conducted in general accordance with NEAS, Inc.'s proposal to American StructurePoint dated December 08, 2023, and with the provisions of ODOT's *Specifications for Geotechnical Explorations* (SGE) (ODOT, 2024).

The scope of work performed included: 1) a review of published geotechnical information; 2) performing 2 total test borings; 3) laboratory testing of soil samples in accordance with the SGE; 4) performing geotechnical engineering analysis to assess foundation design and construction considerations; and 5) development of this summary report.

1.2. Proposed Construction

The existing SCI-125-6.26 bridge is a three-span, non-composite, prestressed concrete box beam superstructure supported on reinforced concrete substructure with spread footings. The roadway of the existing bridge is 32 feet wide.

It is our understanding that the proposed structure will be a single-span, composite, prestressed box beam superstructure supported on wall abutments with a pre-bored H-pile foundation. The roadway for the proposed bridge will be 36 feet wide.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiography

The project site is located within the Shawnee-Mississippian Plateau physiographic region part of the Allegheny Plateaus. This area is characterized as a highly dissected plateau of coarse- and fine-grained rock sequences of high-relief (400 to 800 ft) with extensive remnants of ancient lacustrine clay-filled Teays drainage systems present in lowlands and absent in uplands. The geology in this region is characterized as Pleistocene-age sandy outwash in the Scioto River, Teays-age Minford Clay, as well as silt-loam and channery colluvium all atop Devonian- and Mississippian-age shales, siltstones, and locally thick sandstones (ODGS, 1998).

Based on the Quaternary geology map of Ohio, the geology at the project site is mapped as Alluvium and alluvial terraces, deposited in present and former floodplains; ranges from silty clay in areas of fine-grained deposits to coarse sand, gravel, or cobbles in areas of shallow bedrock (Pavey, et al 1999).

Based on the Bedrock Geologic Units Map of Ohio (USGS & ODGS, 2006), bedrock within the project area consists of a combination of, shale, and siltstone, of the Sunbury Shale, Berea Sandstone and Bedford Shale formation. The formation is comprised of Devonian and/or Mississippian-age. This

Structure Foundation Exploration – FINAL SCI-125-6.26

Scioto County, Ohio PID#: 119955

formation is described as upper 10 to 50 feet shale; black to brown, weathers light brown; carbonaceous; thin, planar bedding. Underlain by 10 to 50 feet sandstone; brown, weathers light brown to reddish brown; thin to thick bedded, planar to lenticular bedding; minor shale interbeds. Basal 80 to 100 feet shale and interbedded sandstone; gray to brown, weathers light gray to light brown; thin to medium bedded, planar to lenticular bedding; thick. Interval thickness ranges from 100 to 200 feet.

The bedrock appears to follow the natural topography of the site which slopes upward from east to west. The bedrock is relatively level throughout the project (ODGS, 2003). Based on the ODNR bedrock topography map of Ohio, bedrock elevations at the project site can be expected to be between 666 ft amsl to 674 ft amsl, putting bedrock at depths of between 10 and 16 ft below ground surface (bgs).

The soils at the project site have been mapped (Web Soil Survey) by the Natural Resources Conservation Service (USDA, 2024) as a Skidmore silt loam. Skidmore silt loam series is comprised of both coarse-grained and fine-grained soils and classified as A-1-a, A-2-4, A-2-6, A-2-7, A-4, and A-6 type soils according to the AASHTO method of soil classification.

2.2. Hydrology/Hydrogeology

Groundwater at the project site is expected at an elevation consistent with that of the nearby Turkey Creek as it is the most dominant hydraulic influence in the vicinity of the project's boundaries. The water level of the Roosevelt Lake may also have influence the local groundwater table. However, it should be noted that perched groundwater systems may be existent in areas due to the presence of fine-grained soils making it difficult for groundwater to permeate to the phreatic surface.

The project site is located within a special flood hazard area (Zone A) based on available mapping by the Federal Emergency Management Agency's (FEMA) National Flood Hazard mapping program (FEMA, 2024).

2.3. Mining and Oil/Gas Production

No mines were noted on ODNR's Abandoned Underground Mine Locator in the vicinity of the project site. (ODNR [1], 2024).

No oil or gas wells were noted on ODNR's Oil and Gas Well Locator in the vicinity of the project site (ODNR [1], 2024).

2.4. Historical Records and Previous Phases of Project Exploration

The original bridge site plan, dated November 1931, was available for review and evaluation for this report. Four soundings were conducted during the exploration, with rock elevations ranging from 641.08 feet to 642.59 feet (NGVD 29). Two of the test holes were used for evaluation purposes; test hole # 2 and # 4 and summarized in Table1 below. According to the current exploration, the bedrock elevation is increasing from ease to west. However, these soundings were not utilized in the report or analysis.

Structure Foundation Exploration – FINAL SCI-125-6.26

Scioto County, Ohio

PID#: 119955

Table 1: Historical and Current Bedrock Elevation Summary

Histo	Historical Rock Elevation									
Test ID/ Boring ID	NAVD 88	Difference								
Test Hole 1	642.59	641.968	0.622							
Test Hole 2	641.08	640.458	0.622							
Test Hole 3	641.68	641.057	0.623							
Test Hole 4	641.75	641.127	0.623							
B-001-0-23	-	642.1	-							
B-002-0-23	-	645.4	-							

2.5. Field Reconnaissance

A field reconnaissance visit for the bridge carrying SR-125 over Turkey Creek in Scioto County, Ohio, was conducted on January 31st, 2024. During our field reconnaissance, site conditions were noted and photographed.

Land use at the project site can be described as primarily forested.

The existing bridge is a three-span prestressed concrete box beam bridge with a cast-in-place concrete deck and bituminous wearing surface, supported by concrete gravity-type spread footing abutments and piers.

The roadway embankment slopes at the site generally appeared to be stable, with no signs of instability observed during our site visit. The existing roadway embankments were estimated to have slopes of approximately 2 Horizontal to 1 Vertical (2H:1V) on the north side of bridge and 3H:1V on the south side, and they were vegetated with grass, shrubs, and trees. Overall, the bridge appeared to be in fair condition, with wear and degradation observed on both the superstructure and substructure. Spalling and exposed reinforcing steel were observed on one of the inner box beams (Photograph 1) and on the outer box beams (Photograph 2). Spalling was also observed on both abutments (Photograph 3), and both spalling and exposed reinforcing steel were noted on the piers (Photograph 4). No apparent signs of structural distress related to geotechnical concerns were observed during our field reconnaissance visit.

In general, the existing bridge structure appeared to be well drained, with no signs of significant erosion at the bridge site. The asphalt wearing course was observed to be in good condition, with minor surface wear, including occasional transverse and longitudinal cracking (Photograph 5). No signs of standing water was observed on the bridge.

Scioto County, Ohio PID#: 119955

Photograph 1: Spalling and exposed steel on inner box beam

Photograph 2: Spalling and exposed steel on outer box beam

Photograph 2: Spalling and exposed reinforcing steel on pier

Photograph 5: Pavement condition

3. GEOTECHNICAL EXPLORATION

3.1. Field Exploration Program

The project subsurface exploration was conducted by NEAS on February 09, 2024, and included 2 borings drilled to depths range between 25.3 ft to 31.5 ft below ground surface. The boring locations were selected by NEAS in general accordance with the guidelines contained in the SGE with the intent to evaluate subsurface soil and groundwater conditions. Borings were typically located within the planned project construction areas that were not restricted by underground utilities or dictated by terrain (e.g. steep embankment slopes). Project boring locations were in the field after drilling by project surveyor. Each individual project boring log (included within Appendix B) includes the recorded boring latitude and longitude location and the corresponding ground surface elevation (surveyed by the project surveyors). The boring locations are depicted on the Site Plan provided in Appendix A. Latitude/Longitude, elevations and stationing and offsets of the borings are shown on Table 1 below.

Table 2: Project Boring Summary

Boring Number	Location (Sta/offset)	Latitude	Longitude	Elevation (NAVD 88) (ft)	Depth (ft)	Structure
B-001-0-23	108+87, 18' RT.	38.726340	-83.171250	658.1	31.5	Rear Abutment
B-002-0-23	110+69, 16' LT.	38.726270	-83.170610	655.4	25.3	Forward Abutment
Notes: 1. Stationing	and Offset are in ref	erence to centerline	e of Proposed SR-1	25.		

Project borings were drilled using a D50 SN481 drilling rig utilizing 3.25-inch (inner diameter) hollow stem auger. In general, soil samples were recovered continuously to end of boring, using an 18-inch split spoon sampler (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils."). The soil samples obtained from the exploration program were visually observed in the field by the NEAS field representative and preserved for review by a Geologist for possible laboratory testing. Standard penetration tests (SPT) were conducted using a CME auto hammer calibrated to be 86.8% efficient on March 14, 2022, as indicated on the boring logs.

Structure Foundation Exploration – FINAL SCI-125-6.26

Scioto County, Ohio

PID#: 119955

Field /boring logs were prepared by drilling personnel, and included lithological description, SPT results recorded as blows per 6-inch increment of penetration and estimated unconfined shear strength values on specimens exhibiting cohesion (using a hand-penetrometer). Groundwater level observations were recorded both during and after the completion of drilling. These groundwater level observations are included on the individual boring logs. After completing the borings, the boreholes were backfilled with bentonite grout and patched with cold patch asphalt and/or quickset concrete where necessary and appropriate.

3.2. Laboratory Testing Program

The laboratory testing program consisted of classification testing, moisture content determinations, slake durability index testing, and unconfined compressive strength testing. Data from the laboratory testing program was incorporated onto the boring logs (Appendix B).

3.2.1. Classification Testing

Representative soil samples were selected for index properties (Atterberg Limits) and gradation testing for classification purposes on approximately 33% of the samples. At each boring location, samples were selected for testing with the intent of identification and classification of all significant soil units. Soils not selected for testing were compared to laboratory tested samples/strata and classified visually. Moisture content testing was conducted on all samples. The laboratory testing was performed in general accordance with applicable AASHTO specifications.

A final classification of the soil strata was made in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" once laboratory test results became available. The results of the soil classification are presented on the boring logs provided in Appendix B.

3.2.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils were performed at varying intervals (i.e., continuous, 2.5-ft, or 5.0-ft intervals) in the project borings performed. To account for the high efficiency (automatic) hammers used during SPT sampling, field SPT N-values were converted based on the calibrated efficiency (energy ratio) of the specific drill rig's hammer. Field N-values were converted to an equivalent rod energy of 60% (N₆₀) for use in analysis or for correlation purposes. The resulting N₆₀ values are shown on the boring logs provided in Appendix B.

3.2.3. D_{50} Values for Scour Evaluation

Grain size distribution testing was performed on the obtained streambed samples to develop D_{50} values (i.e., the diameter in the particle-size distribution curve corresponding to 50 % finer). The calculated D_{50} values are shown in Table 2 below and the developed particle-size distribution curves are included with the associated boring log within Appendix B.

Scioto County, Ohio

PID#: 119955

Table 3: D₅₀ Values for Scour Evaluation

Boring Number	Specimen ID	Specimen Elevation (ft)	ODOT (Modified AASHTO) ~ USCS Classification	D ₅₀ (mm)	Scour Critical Shear Stress, τ _c (psf)	D50, equiv (mm)	Erosion Category (EC)
	SS-1	657.2' - 655.7'	A-6a ~ LEAN CLAY with SAND (CL)	0.017	0.809	38.713	3.255
	SS-5	651.1' - 649.6'	A-6a ~ LEAN CLAY(CL)	0.012	0.445	21.325	3.255
B-001-0-23	SS-6	649.6' - 648.1'	A-4b ~ SANDY LEAN CLAY(CL)	0.045	0.078	3.731	2.754
B-00 1-0-23	SS-7	648.1' - 646.6'	A-2-4 ~ SSILTY SAND with GRAVEL (SM)	0.953	0.020	0.953	2.175
	SS-8	646.6' - 645.1'	A-2-4 ~ SSILTY SAND with GRAVEL (SM)	0.767	0.016	0.767	2.062
	SS-10	643.6' - 642.1'	A-4a ~ SANDY SILT with GRAVEL(ML)	0.112	0.048	2.296	2.211
	SS-2	653.9' - 652.4'	A-2-4 ~ SILTY SAND with GRAVEL(SM)	1.102	0.023	1.102	2.251
	SS-3	652.4 - 650.9'	A-4a ~ CLAYEY SAND with GRAVEL(SC)	0.120	0.093	4.450	2.501
B-002-0-23	SS-4	650.9' - 649.4'	A-4a ~ CLAYEY SAND with GRAVEL(SC)	0.206	0.004	0.206	1.377
	SS-5	649.4' - 647.9'	A-4a ~ CLAYEY SAND with GRAVEL(SC)	0.077	0.040	1.909	2.211
	SS-6	647.9' - 646.4'	A-4a ~ SANDY LEAN CLAY(CL)	0.044	0.031	1.501	2.211

Based on our lab testing results, the equivalent D_{50} (mm) values of bedrock were estimated using the methods described in ODOT's BDM Section 305.2.1.2.b and ODOT's GDM Section 1302.1.3. The estimated equivalent D_{50} (mm) and Erodibility Index K for different layers of bedrock for both abutments are listed in Table 3 below. The lab testing results, and the equivalent D_{50} (mm) calculation process are attached in Appendix B.

Table 4: Bedrock Equivalent D₅₀ Values and Erodibility K

Boring Number	Rock Layer	Rock Layer Elevation (ft)	Rock Type	RQD (%)	Equivalent D ₅₀ (mm)	Erodibility Index K
	Layer 1	641.6' - 639.1'	Interbedded Shale and Sandstone	75	518.5	4.20
B-001-0-23	Layer 2	639.1' - 631.6'	Interbedded Shale and Sandstone	48	414.8	2.69
	Layer 3	631.6' - 626.6'	Interbedded Shale and Sandstone	53	435.9	2.97
	Layer 1	645.1' - 640.1'	Interbedded Shale and Sandstone	33	395.4	2.44
B-002-0-23	Layer 2	640.1' - 637.1'	Interbedded Shale and Sandstone	0	26.7	0.01
	Layer 3	637.1' - 630.1'	Interbedded Shale and Sandstone	18	292.0	1.33

3.2.4. Slake Durability Test of Rock Core

Slake Durability Index Test of rock core samples was conducted in accordance with ASTM D4644 "Standard Test Method for Slake Durability of Shales and Other Similar Weak Rocks". The tests were performed on two rock core samples obtained during the exploration program. The results are summarized in Table 4 below and provided in Appendix B.

Table 5: Slake Durability Index Test Results

Boring ID	Sample Number	Depth (ft)	Moisture Content (%)	Retained Material	Slake Durability Index (%)
B-001-0-23	NQ2-2	19.0 - 20.1	5.65	T2	49.8
B-002-0-23	NQ2-2 & NQ2-3	15.4 - 19.4	4.98	T2	47.0

3.2.5. Unconfined Compressive Strength of Rock Core

Unconfined Compressive Strength of rock core samples was conducted in accordance with ASTM D7012 "Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying Sates of Stress and Temperatures". The tests were performed on two rock core samples

obtained during the exploration program. The results are summarized in Table 5 below and provided in Appendix B.

Table 6: Unconfined Compressive Strength of Rock Core Results

Boring ID	Depth (ft)	Elevation (ft)	Unconfined Compressive Strength (psi)	Stain at Failure (%)
B-001-0-23	17.5 - 17.8	642.1 - 626.6	15,386	1.0
B-002-0-23	10.5 - 10.9	645.4 - 630.1	9,869	1.0

4. GEOTECHNICAL FINDINGS

The subsurface conditions encountered during NEAS's explorations are described in the following subsections and/or on each boring log presented in Appendix B. The boring logs represent NEAS's interpretation of the subsurface conditions encountered at each boring location based on our site observations, field logs, visual review of the soil samples by NEAS's geologist, and laboratory test results. The lines designating the interfaces between various soil strata on the boring logs represent the approximate interface location; the actual transition between strata may be gradual and indistinct. The subsurface soil and groundwater characterizations included herein, including summary test data, are based on the subsurface findings from the geotechnical explorations performed by NEAS as part of the referenced project, and consideration of the geological history of the site.

4.1. Subsurface Conditions

The subsurface profile at the referenced site is generally consistent with the geological model for the project in regard to the materials encountered. The subsurface profile at the proposed bridge site generally consists of primarily very stiff to hard cohesive fine materials and some medium dense to very dense granular materials. Bedrock was encountered in both project borings and historic borings, ranging from depths of 10 ft to 31.5 ft below ground surface (with elevations between 642.1 ft and 645.4 ft above mean sea level).

4.1.1. Overburden Soil

At the site of the proposed bridge over Turkey Creek, natural soils were encountered below the surficial pavement.

At the rear abutment location, cohesive soils were encountered, followed by granular soils. The cohesive soils extend from an elevation of 658.1 ft to 648.1 ft amsl, corresponding to a depth from top of the boring to 10 ft below ground surface. The granular soils extend from an elevation of 648.1 ft to 642.1 ft, corresponding to a depth of 10 ft to 16 ft bgs. The cohesive soils are classified as Silt and Clay (A-6a), Silt (A-4b) while the granular materials are classified as Gravel and Stone Fragments with Sand and Silt (A-2-4) and non-cohesive Sandy Silt (A-4a). The cohesive soils can be described as stiff to hard consistency based on N₆₀ values between 6 to 14 blow per feet (bpf) and unconfined compressive strengths (estimated by means of hand penetrometer) between approximately 0.5 and 4.50 tons per square foot (tsf). Based on Atterberg Limits test performed on a representative sample of the cohesive materials, the liquid and plastic limits ranged from 28 to 33 percent and from 17 to 20 percent, respectively. Natural moisture contents of the cohesive soils ranged from 15 to 22 percent. The granular soils have a relative compactness of medium dense to very dense based on N₆₀ values between 22 to 69 bpf. The natural

Structure Foundation Exploration – FINAL SCI-125-6.26

Scioto County, Ohio PID#: 119955

moisture content of the non-cohesive soils ranged from 11 to 14 percent. Rock was encountered at an elevation of 642.1 ft amsl to the end of boring (EOD), corresponding to a depth from 16 ft to 31.5 ft bgs. The rock was classified as Shale and Sandstone. Shale bedrock can be described as slightly to moderately weathered, very weak to weak while the Sandstone can be described as very strong, very fine to fine grained.

At the forward abutment location, the soils encountered are primarily granular material classified as Gravel with Sand (A-1-b), non-cohesive Sandy Silt (A-4a). The granular materials can be described having a relative compactness of medium dense to very dense base on N₆₀ values between 16 bpf to refusal. The natural moisture content of the non-cohesive soils ranged from 3 to 114 percent. A thin layer of cohesive soil was encountered between elevations 652.4 ft and 650.9 ft amsl, corresponding to depths of 3 ft to 4.5 ft bgs. This layer was classified as cohesive sandy silt (A-4a). The material consistency can be described as stiff to very stiff base on N₆₀ value of 6 bpf and unconfined compressive strengths (estimated by means of hand penetrometer) of 2.0 tons per square foot (tsf). Based on Atterberg Limits test performed on a representative sample of the cohesive material, the liquid and plastic limits were 25 percent and 19 percent, respectively. The natural moisture content of the cohesive soil was 17 percent. Rock was encountered at an elevation of 645.4 ft amsl to the end of boring, corresponding to depths from 10 ft to 23.5 ft bgs). The rock was classified as Shale and Sandstone. Shale bedrock can be described as slightly to moderately weathered, very weak to weak while Sandstone can be described as strong and fine grained.

4.1.2. Groundwater

Groundwater measurements were taken during the drilling procedures and/or immediately following the completion of each borehole. Groundwater was not encountered in any of the project borings during drilling.

It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration.

4.1.3. Bedrock

Bedrock was encountered in both project borings. At the rear abutment, bedrock was encountered at a depth of 16 feet below ground surface, corresponding to an elevation of 642.1 feet amsl. At the forward abutment, it was found at a depth of 10 feet below ground surface, corresponding to an elevation of 645.4 feet amsl.

Based on the exploration and testing conducted, bedrock encountered at both abutments was primarily classified as Interbedded Shale and Sandstone. The bedrock was described as slightly to moderately weathered, weak to very weak, highly fractured to slightly fractured, with open to narrow, slightly rough fractures and fair to poor surface condition. An exception was observed at B-002-0-23, where a 2.9-foot thick layer of sandstone was encountered above the Interbedded Shale and Sandstone. The recovery of the bedrock cores ranged from 56 to 100 percent, while the Rock Quality Designation (RQD) values varied from 0 to 75 percent.

5. ANALYSES AND RECOMMENDATIONS

5.1. Soil Profile for Analysis

For analysis purposes, each boring log was reviewed, and a generalized material profile was developed for analysis. Utilizing the generalized soil profile, engineering properties for each soil strata were estimated based on their field (i.e., SPT N₆₀ Values, hand penetrometer values, etc.) and laboratory (i.e., Atterberg Limits, grain size, etc.) test results using correlations provided in published engineering manuals, research reports and guidance documents. The developed soil profile and estimated engineering soil and rock properties (with cited correlation/reference material) used in our evaluation is summarized per boring within Tables 6 and 7 below.

TC 11	$\overline{}$	\mathbf{r}	$\Omega \Omega 1$	\sim	22	C '1	n	C*1	
Table	/:	В-	-()() [-()·	-23	501	l Pi	`OT116	3

Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	Setup Factor
Silt and Clay Depth (658.1 ft - 654.1 ft)	110	110	120	1500	150	23	1.50
Bilt and Clay Depth (654.1 ft - 649.6 ft)	105	105	115	750	75	21	1.50
Sift Depth (649.6 ft - 648.1 ft)	105	105	115	750	75	22	1.50
Gravel with Sand and Silt Depth (648.1 ft - 643.6 ft)	120	120	130			40	1.20
Sandy Silt Depth (643.6 ft - 642.1 ft)	130	130	140		2	40	1.20

Table 8: B-002-0-23 Soil Profile

Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)	Setup Factor
Gravel with Sand Depth (655.4 ft - 653.9 ft)	115	115	125	(*)		40	1.00
Sandy Silt Depth (653.9 ft - 652.4 ft)	115	115	125			32	1.20
Sandy Silt Depth (652.4 ft - 650.9 ft)	105	105	115	750	75	22	1.50
Sandy Silt Depth (650.9 ft - 645.4 ft)	115	115	125	•		32	1.20

Deep foundation element subjected to horizontal loads and/or moments should be analyzed for maximum bending moment, maximum shear force, and lateral deflection. In our design, reactions were calculated by a p-y analysis method. For the purpose of evaluating the lateral resistance, the pile was analyzed by using the software entitled *LPile v2016* by Ensoft, Inc. The generalized soil/rock parameters used to analyze the laterally loaded deep foundation by the p-y curve method are shown in Tables 8 and 9 below.

Table 9: LPILE Soil Parameters – B-001-0-23

	SCI-125-6.26 Bridge Rear Abutment B-001-0-23											
Soil Layer Number (No.)	Top Elev. (ft)	Bottom Elev. (ft)	Layer Depth (ft)	Soil Class	LPILE p-y Model	Soil Strain Parameter £50	Soil Modulus Parameter p-y k (pci)					
1	658.1	654.1	4	A-6a	Stiff Clay w/o Water	0.0073	500					
2	654.1	649.6	8.5	A-6a	Soft Clay	0.0111	139					
3	649.6	648.1	10	A-4b	Soft Clay	0.0115	125					
4	648.1	643.6	14.5	A-2-4	Sand (Reese)		437					
5	643.6	642.1	16	A-4a	Sand (Reese)		437					
Rock Layer Number (No.)	Top Elev. (ft)	Bottom Elev. (ft)	Layer Depth (ft)	Rock Type	LPILE p-y Model	krm	Rock Initial Modulus El (psi)					
1	642.1	626.6	31.5	Shale	Weak Rock	0.00005	1400000					

Table 10: LPILE Soil Parameters - B-002-0-23

		SCI-	125-6.26 Brid	ge Forward Abu	tment B-002-0-23		
Soil Layer Number (No.)	Top Elev. (ft)	Bottom Elev. (ft)	Layer Depth (ft)	Depth Soil Class		Soil Strain Parameter £50	Soil Modulus Parameter p-y k (pci)
1	655.4	653.9	1.5	A-1-b	Sand (Reese)	2	656
2	653.9	652.4	3	A-4a	Sand (Reese)	-	140
3	652.4	650.9	4.5	A-4a	Soft Clay	0.0115	125
4	650.9	645.4	10	A-4a	Sand (Reese)		140
Rock Layer Number (No.)	Top Elev. (ft)	Bottom Elev. (ft)	Layer Depth (ft)	Rock Type	LPILE p-y Model	krm	Rock Initial Modulus Ei (psi)
1	645.4	630.1	25.3	Sandstone	Weak Rock	0.00005	890000

5.2. Pavement Design and Recommendations

The subgrade analysis was performed in accordance with ODOT's GDM criteria utilizing the ODOT provided: *Subgrade Analysis Spreadsheet* (SubgradeAnalysis.xls, Version 14.7 dated November 6, 2024). Input information for the spreadsheet was based on the soil characteristics gathered during NEAS's subgrade exploration (i.e., SPT results, laboratory test results, etc.), and our geotechnical experience. For analysis purposes, the proposed roadway elevations were assumed to be the same as the existing roadway elevations.

A subgrade analysis was performed to identify the method, location, and dimensions (including depth) of recommended subgrade stabilization in the referenced project plan. Appropriate stabilization of the subgrade will ensure a constructible pavement buildup, enhance pavement performance over its life, and help reduce costly extra work change orders (ODOT SGE, 2024). In addition to identifying stabilization recommendations, pavement design parameters are also determined to aid in pavement section design. The subsections below present the results of our subgrade analysis including pavement design parameters and unsuitable/unstable subgrade conditions if any identified within the project limits. Subgrade analysis spreadsheet for the referenced roadway segment is provided in Appendix C.

5.2.1. Pavement Design Recommendations

It is our understanding that pavement analysis and design is to be performed to determine the proposed pavement sections for the segments within the project limits to undergo full depth replacement. A

subgrade analysis was performed using the subgrade soil data obtained during our field exploration program to evaluate the soil characteristics and develop pavement parameters for use in pavement design. The subgrade analysis parameters recommended for use in pavement design are presented in Table 10 below. Provided in the table are ranges of maximum, minimum and average N_{60L} values for the indicated segments as well as the design CBR value recommended for use in pavement design.

Table 11: Pavement Design Values

Segment	Maximum N _{60L}	Minimum N _{60L}	Average N _{60L}	Average PI Value	Design CBR
SR-125	6	6	6	10	7

5.2.2. Unsuitable/Unstable Subgrade

Per ODOT's GDM, the presence of select subgrade conditions may require some form of subgrade stabilization within the subgrade zone for new pavement construction. These unsuitable and unstable subgrade conditions generally include the presence of rock, specific soil types, weak soil conditions, and overly moist soil conditions. With respect to the planned roadways, these subgrade conditions are further discussed in the following subsections.

5.2.2.1. Rock

Rock was not encountered within the top 6 inches of the proposed grade in either of the borings performed; therefore, no specialized remediation efforts are necessary.

5.2.2.2. Prohibited Soils

Prohibited soil types, per the GDM, include A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, and soils with liquid limits greater than 65. No prohibited soils were encountered within the subgrade of the referenced project roadway.

5.2.2.3. Weak Soils

The GDM recommends subgrade stabilization for soils considered unstable in which the N_{60} value of a particular soil sample (SS) at a referenced boring location is less than 12 bpf and in some cases less than 15 bpf (i.e., where moisture content is greater than optimum plus 3 percent). Based on the specific N_{60} value at the subject boring, *Figure 600-1 - Subgrade Stabilization* within the GDM recommends a depth of subgrade stabilization for ODOT standard stabilization methods. It should be noted that although a soil sample's N_{60} value may meet the criteria to be considered an unstable soil, the depth in which the unstable soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed. For example, if the GDM recommends an excavate and replace of 12 inches within a weak soil underlying 18 inches of stable material, it would be unreasonable to recommend the removal of both the stable and unstable material for a total of 30 inches of excavate and replace.

A summary of the boring locations where unstable soils were encountered and determined to have a potential impact on subgrade performance are shown in Table 11 below, per the roadway segment for which they were encountered.

Structure Foundation Exploration – FINAL

SCI-125-6.26 Scioto County, Ohio

PID#: 119955

Table 12: Unstable Soil Location Summary

Boring ID	N _{60L}	Subgrade Depth (ft)
B-001-0-23	10	1.7 - 3.2

It should be noted that *Figure B - Subgrade Stabilization* does not apply to soil types A-1-a, A-1-b, A-3, or A-3a, nor to soils with N_{60L} values of 15 or more. Per GB1 guidance, *these soils should be reworked to stabilize the subgrade*.

5.2.2.4. High Moisture Content Soils

High moisture content soils are defined by the GDM as soils that exceed the estimated optimum moisture content (per Table 600-1 - Optimum Moisture Content within the ODOT GDM) for a given classification by 3 percent or more. Per the GDM, soils determined to be above the identified moisture content levels are a likely indication of the presence of an unstable subgrade and may require some form of subgrade stabilization. Similar to our analysis of unstable soils, although a soil sample's moisture content may meet the criteria to be considered high, the depth in which the high moisture soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed for stabilization recommendations. Summaries of the boring locations where high moisture content conditions were encountered within the limits of each proposed alignment are shown in Table 12 below.

Table 13: High Moisture Content Soils Summary

Boring ID	Soil Type	Moisture Content (%)	Optimum Moisture Content (%)	Depth Below Subgrade (ft)
B-002-0-23	A-4a	14	11	0.8 - 2.3

5.2.3. Stabilization Recommendations

According to our subgrade analysis, subgrade stabilization is not required per ODOT GDM Section 600 (ODOT, 2024). Detailed results of the subgrade analysis are provided in Appendix C.

5.3. Bridge Foundation Analysis and Recommendations

A foundation review was completed for a deep foundation system for the referenced replacement bridge based on the following design information: 1) the Site Plan for the Bridge conducted by American StructurePoint; 2) historical plans and subsurface exploration; and 3) load and scour information provided by American StructurePoint.

5.3.1. Pile Scour Consideration

Based on our lab testing results, the equivalent D_{50} (mm) values were estimated using the methods described in ODOT's BDM Section 305.2.1.2.b and ODOT's GDM Section 1302.1.3. At the rear abutment, the equivalent D_{50} (mm) is estimated to be 440 mm and at the forward abutment, the equivalent D_{50} (mm) is estimated to be 300 mm. Scour analysis was then carried out by American StructurePoint. The lab testing results, and the equivalent D_{50} (mm) calculation process are attached in Appendix C.

According to the scour information provided by American StructurePoint via email on August 2, 2024, the 2% AEP scour is at the elevation of 637.69 ft and 636.06 ft at the rear and forward abutments,

respectively. The results indicate that during the 2% AEP scour event, 4.16 ft piles at the rear abutment and 6.19 ft piles at the forward abutment will become unsupported.

5.3.2. Axially Loaded Pile Analysis

Deep foundations will be used to support the substructures of the proposed SCI-125-06260 bridge over Turkey Creek. According to the site plan provided by American Structurepoint via email on January 7, 2025, the bottom of footing is approximately at the elevations of 641.85 ft and 642.25 ft for the rear and forward abutments, respectively. At the project site, bedrock was encountered in both structural borings at the elevation of 642.1 ft and 645.4 ft at the rear and forward abutments, respectively. HP-piles are usually used as end-bearing piles bearing on bedrock and can provide high axial working capacity. Both abutments will be supported on HP 14x73 piles in prebored holes.

Based on the email from American Structurepoint on January 23, 2025, the Service I and the Strength I axial loads for the abutment piles are 185 kips and 256 kips, respectively. For end-bearing HP-piles, the axial resistance of these foundation elements will be dictated by structural considerations and the maximum factored structural resistances for commonly used HP-piles are provided by the Bridge Design Manual (BDM) (ODOT, 2024) Section 305.3.3. The maximum factored structural resistance of HP 14x73 is 530 kips, which is much larger than the axial load. However, the laterally loaded condition controls the size of HP pile at the proposed project site.

Per CMS 507.11, the prebored holes shall have a diameter from 6 inches less to 2 inches more than the pile's diagonal dimension but shall be such as to produce satisfactory pile driving results. Place Class QC Misc. concrete in the prebored holes to the top of bedrock. Above the top of bedrock, backfill voids between the pile and prebored hole with a granular material satisfactory to the Engineer.

Based on ODOT GDM Section 1305.4, piles placed in prebored holes must extend a minimum of 5 feet below the maximum estimated scour depth when the bedrock unconfined compressive strength is greater than 1,500 psi. Therefore, the bottom of piles should be at the elevation of 632.69 ft and 631.06 ft at the rear and forward abutment, respectively.

According to the pile loads provided by American Structurepoint on January 9, 2025, the Strength I maximum uplift load per pile is 36 kips. Since the proposed bottom of footing is expected to be below top of bedrock, the piles will be installed in prebored holes surrounding by concrete. The uplift analyses were conducted using software entitled Shaft. In these analyses, the prebored hole was assumed to have a diameter of 2 ft. An uplift resistance factor of 0.4, based on the 2020 LRFD Table 10.5.5.2.4-1, was applied in our calculations. The results of the analysis are summarized in Table 13 below. As shown, the uplift capacity significantly exceeds the maximum uplift load when the piles are extended 5 ft below the bottom of the scour zone. The detailed output can be found in Appendix D.

Table 14: Axially Loaded Pile Analysis Summary

Substructure	Bottom of Footing Elevation (ft amsl)	Bottom of Scour Elevation - 2% AEP Scour (ft amsl)	Estimated Top of Bedrock Elevation (ft amsl)	Nearby Boring	Geotechnical Pile Tip Elevation - 5 ft below Bottom of Scour (ft amsl)	Geotechnial Pile Length (ft)	Max Uplift (Strength I) (kips)	Uplift Capacity (kips)							
	Bridge SCI-125-06260 SR-125 over Turkey Creek														
Rear Abutment	641.9	637.7	642.1	B-001-0-23	632.7	9.2	36.0	238.0							
Forward Abutment	642.3	636.1	645.4	B-002-0-23	631.1	11.2	36.0	297.0							

5.3.3. Laterally Loaded Pile Analysis

The lateral loads were provided by American Structurepoint via email on January 9, 2025. The Service I and Strength I shear forces for the abutment piles are 24 kips and 35 kips, respectively, while the corresponding moments are 63 kips-ft and 93 kips-ft.

For laterally loaded conditions, the piles should extend to the specified depth (Second Fixity Point) indicated in Table 14 to limit the pile head lateral deflection. The results of lateral load analyses using LPILE are summarized in Table 14. The LPILE analyses output can be found in Appendix E.

Based on our laterally loaded and axially loaded pile analyses, as can be seen, the estimated pile lengths under the lateral loading condition are shorter than scour condition (5 feet below the maximum estimated scour depth) at both abutment locations. The scour condition will control the pile length design.

Maximum Mom Depth of Maximum Maximum Shear in Depth of Maximum Pile Head Deflection First Fixity Point Location Pile Size Pile - Strenath Limit Bending Moment Pile-Strenath Limit Shear Force below Service Limit State below Pile He Pile Head (ft) State (in-lbs) below Pile Head (ft) State (lbs) (in) Abutment @ B-001-0-23 Rear Abutment HP 14X73 1,116,000 0.0 154.393 0.4 0.00 0.4 1.5 d Abutment @ B-002-0-23 Forward Abutment HP 14X73 1 121 544 0.0 139 073 0.4 0.00 0.4 17

Table 15: Laterally Loaded Pile Analysis Summary

5.3.4. Pile Foundation Recommendations

Pile lengths based on: 1) the "Estimated Length" and "Order Length" definitions and formulas presented in Section 305.3.5.2 "Estimated Pile Length" of the BDM, are shown in Table 15. It is assumed that the piles will be supported from the elevations at the bottom of footing as shown in the site plan provided by American Structurepoint via email on January 7, 2025. The calculated 'estimated' length assumes penetration through a 1 ft embedment into the concrete footing for the abutments, and rounding up to the nearest 5 ft.

Assumed Pile Elevation - 5 ft belov Geotechnial Pile Estimated Pile Order Length Footing Elevation - 2% of Bedrock Substructure Pile Type Cutoff Elevation AEP Scour (ft Elevation (ft (ft amsl) amsl) amsl) amsl) amsl) Bridge SCI-125-06260 SR-125 over Turkey Cree HP 14X73 641.9 643.9 637.7 632.7 9.2 15 20 Forward Abutmen HP 14X73 642.3 644.3 636.1 645.4 B-002-0-23 631.1 11.2 15 20

Table 16: Estimated Pile Lengths Summary

5.4. Global Stability Analysis

Global stability should not be a concern due to shallow bedrock.

6. **QUALIFICATIONS**

This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subsurface conditions at the site of the proposed SCI-125-6.26 (PID# 119955) project. This report has been prepared for American StructurePoint, ODOT and their design consultants to be used solely in evaluating the soils underlying the indicated structures and presenting geotechnical engineering recommendations specific to this project. The assessment of general site environmental conditions or the presence of pollutants in the soil, rock and groundwater of the site was beyond the scope of this geotechnical exploration. Our recommendations are based on the results of our

Structure Foundation Exploration – FINAL SCI-125-6.26 Scioto County, Ohio PID#: 119955

field explorations, laboratory test results from representative soil samples, and geotechnical engineering analyses. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the appendices as noted. This design memo does not reflect any variations that may occur between the borings or elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes occur in the nature, design or location of the proposed structural work, the conclusions and recommendations contained in this memo should not be considered valid until they are reviewed and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to American StructurePoint in performing this geotechnical exploration for the SCI-125-6.26 (PID# 119955) project. Please call if there are any questions, or if we can be of further service.

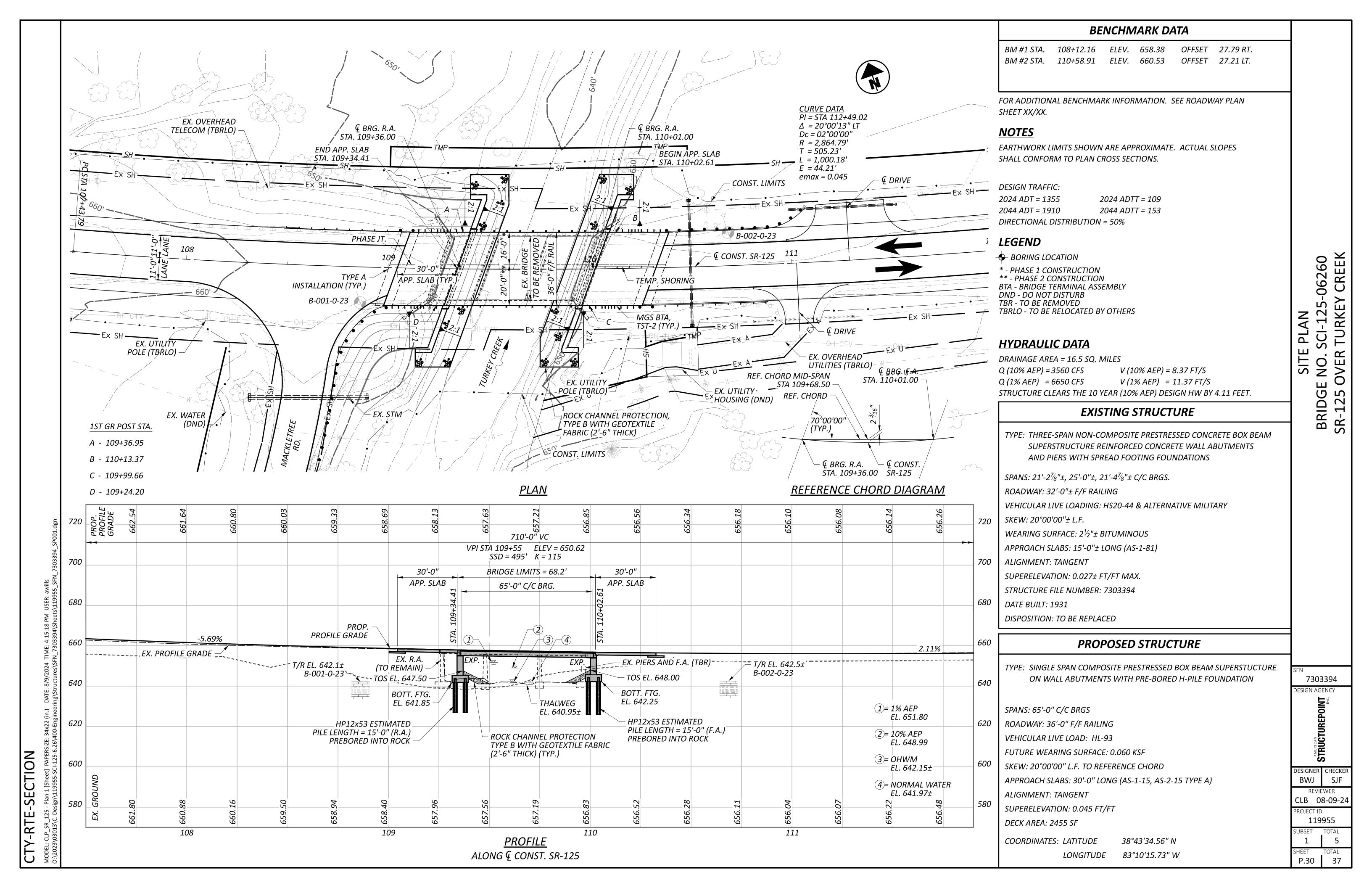
Respectfully Submitted,

Chunmei (Melinda) He, Ph.D., P.E. *Project Manager*

Derar Tarawneh, Ph.D., P.E. Geotechnical Staff Engineer

Structure Foundation Exploration – FINAL

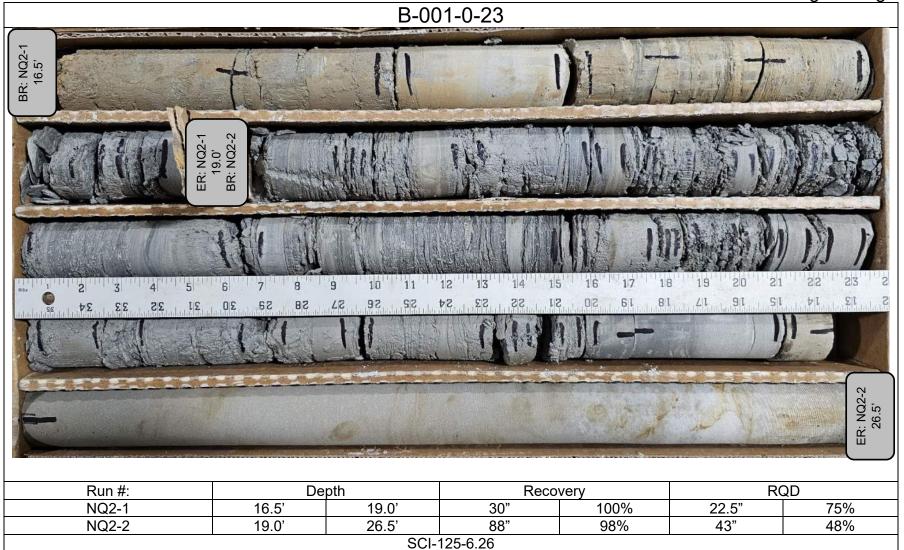
SCI-125-6.26


Scioto County, Ohio PID#: 119955

REFERENCES

- FEMA. (2019, December 6). *FEMA Mapping Information Platform*. Retrieved from NOPAGETAB_NFHLWMS_KMZ: https://hazards.fema.gov/femaportal/wps/portal/NFHLWMSkmzdownload
- ODGS. (1998). Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey. page-size map with text, 2p., scale 1:2,100,00.
- ODNR [1]. (2019, February). *Ohio Abandoned Mine Locator Interactive Map*. Retrieved from ODNR Mines of Ohio Viewer: https://gis.ohiodnr.gov/MapViewer/?config=OhioMines
- ODNR [2]. (2019, February). *Ohio Oil & Gas Locator Interactive Map*. Retrieved from ODNR Oil & Gas Well Viewer: https://gis.ohiodnr.gov/MapViewer/?config=OilGasWells
- ODNR [3]. (n.d.). *ODNR Water Wells Viewer*. Retrieved from ODNR GIS Interactive Maps: https://gis.ohiodnr.gov/MapViewer/?config=WaterWells
- ODNR. (2004, January 9). Bedrock-topography data for Ohio, BG-3, Version 1.1.
- ODOT. (2024). 2020 Bridge Design Manual. Columbus, OH: Ohio Department of Transportation: Office of Structural Engineering.
- ODOT. (2024). *Specifications for Geotechnical Explorations*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- ODOT. (2024). *Bridge Design Manual*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- USDA. (2015, September). Web Soil Survey. Retrieved from http://websoilsurvey.nrcs.usda.gov
- USGS & ODGS. (2005, June). Geologic Units of Ohio. ohgeol.kmz. United States Geologic Survey.

APPENDIX A SITE PLAN & BORING LOCATION PLAN



APPENDIX B BORING LOGS & LABORATORY TEST RESULTS

PROJECT: SCI-125-6.26 TYPE: BRIDGE	DRILLING FIRM / OPER SAMPLING FIRM / LOG	GER:	CS / TS NEAS / LR ' HSA / NQ2	HAM		CN	D50 SN4	MATIC	;	STAT ALIG	NME	NT:		-5	SR-12	25		B-00	RATION ID 1-0-23 PAGE
PID: <u>119955</u> SFN:	DRILLING METHOD: SAMPLING METHOD:		PT / NQ2	- 1		RATIO	OATE:3	86.8	_	LAT		_	008.				<u>۔ </u>	1.5 ft. 50	1 OF 2
MATERIAL DESCRIP	-	ELEV.		SPT/		DEO	SAMPLE			GRAD			o)			ERG	<u> </u>	ODOT	BACK
AND NOTES		658.1	DEPTHS	RQD	I NI	(%)	ID	(tsf)	_		FS		,	LL	PL	PI	wc	CLASS (GI)	
11.0" ASPHALT	\bowtie	657.2																	
STIFF TO HARD, BROWN MOTTLED WI' BROWN AND GRAY, SILT AND CLAY , TF	RACE SAND,		- 1 - - 2 -	10 6 4	14	89	SS-1	4.50	10	3	4	52	31	30	17	13	15	A-6a (9)	
TRACE GRAVEL, IRON STAINING, DAMI	P TO MOIST		- 3 -	3 4 3	10	78	SS-2	3.50	-	-	-	-	-	-	-	-	16	A-6a (V)	4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×
9			- 4 - - 5 -	2 1 3	6	56	SS-3	3.00	-	-	-	-	-	-	-	-	20	A-6a (V)	
			- 6 - - 7 -	3 2 2	6	89	SS-4	2.00	-	-	-	-	-	-	-	-	20	A-6a (V)	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	LITTLE CAND	649.6	- ' - 8 -	2 3	7	17	SS-5	2.50	0	1	2	64	33	33	20	13	21	A-6a (9)	
SOFT TO MEDIUM STIFF, BROWN, SILT LITTLE CLAY, LITTLE GRAVEL, MOIST	, , , , , , , , , , , , , , , , , , ,	648.1	- 9 - - - 10 -	2 2 6	6	89	SS-6	0.50	13	9	8	54	16	28	20	8	22	A-4b (7)	1 de 1 le
MEDIUM DENSE TO VERY DENSE, BRO GRAVEL AND STONE FRAGMENTS WITH SILT, TRACE CLAY, DAMP	SAND AND		- 11 -	7 8	22	78	SS-7	-	42	18	10	21	9	NP	NP	NP	13	A-2-4 (0)	2 1 Andre
A A			12 13	6 30 11	59	78	SS-8	-	42	14	10	26	8	NP	NP	NP	11	A-2-4 (0)	1 1 1 1 X
VEDV DENGE PROMALAND OPANGIOU		643.6	- 14 -	11 10	30	89	SS-9	-	-	-	-	-	-	-	-	-	16	A-2-4 (V) 7 > 4 5 6
Ÿ VERY DENSE, BROWN AND ORANGISH \$ SANDY SILT , SOME STONE FRAGMENT ☑ NEON STAINING, RESIDUAL ROCK, DAN	S, TRACÉ CLAY,	642.1	── 15 - TR 16 -	14 25 23 50/5"	69	89 100	SS-10 SS-11	-	26	12	15	40	7	NP -	NP	NP	12	A-4a (2)	9 Lamb
INTERBEDDED SHALE (69%) AND SANDS	STONE (31%),		17	50/5	_	100	33-11	一	<u> </u>	-	_	_	_	<u> </u>	<u> </u>	<u> </u>	14	NOCK (V	ON SURIE
RQD 54%, REC. 98%; SHALE, GRAY AND LIGHT GRAY, SLI MODERATELY WEATHERED, VERY WE LAMINATED TO THIN BEDDED, THICK B	AK TO WEAK, 🔚		- - 18 -	75		100	NQ2-1											CORE	1
24.3-26.5', CONTAINS INTERBEDDED CI FISSILE, BEDDING DISCONTINUITIES: L HIGHLY FRACTURED TO SLIGHTLY FRA TO NARROW, SLIGHTLY ROUGH, LAMII FROM 24.3-26.5', FAIR TO POOR SURFA SANDSTONE, BROWN AND GRAY, S' FINE TO FINE GRAINED. (2) (2) (2) (3) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	LAY SEAMS, OW ANGLE, ACTURED, OPEN NATED, INTACT ICE CONDITION; ITRONG, VERY		- 19 - - 20 - - 21 - - 22 - - 23 -	48		98	NQ2-2											CORE	
(SANDSTONE)			24 25 26																2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
STANDARD ODG! SOIL BOY			27 28 29	53		97	NQ2-3											CORE	

D: <u>119</u>	9955_	SFN:	PROJECT:	SCI-125-6.26	STATION	/ OFFSI	ET: _	108+8	7, 18' RT.	_ s	TART	Γ: 2/	9/24	EN	D: _	2/9/2	4	PG 2 C	F 2 B-0	01-0-2
	•	MATERIAL DES	CRIPTION	ELEV.	DEDTUG	SPT/		REC	SAMPLE	HP		GRAD.	ATIO	N (%)	- 1	ATTE	RBERG	3	ODOT	BA
		AND NOT		628.1	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)		CS	FS		-		PL PI	_	ODOT CLASS (GI)	FIL
					_										T					Py La
				626.6	- 31 -															(4800)
					EOB													-	ļ	Z q
OTFS:	GRO	I INDWATER NOT EN	NCOUNTERED DURIN	IG DRILLING HOLE	DID NOT CAVE	DRILLE	-D ΔS	STAK	FD											
		NT METHODS, MATE																		

Office of Geotechnical Engineering

Office of Geotechnical Engineering

Objective: To estimate depth of rock scour for foundations (shallow foundations/drilled shafts) in

rock per direction of ODOT.

Method: In accordance with FHWA Publication No. FHWA-HIF-12-003, Hydraulic Engineering

Circular No. 18 (HEC-18) and ODOT's BDM Section 305.2.1.2.b

Erodibility Index (K):

Givens:

ROCk Quality Designation, Unit: Percentage

 $J_n := 1.22$ Rock Joint Set Number (Boring Logs, HEC-18 Table 4.23)

Per ODOT BDM: If Jn, cannot be determined from observation or bore hole data, then assume Jn = 5.

J_r:=1.0 Joint Roughness Number (Boring Logs, HEC-18 Table 4.24)

Per ODOT BDM: If Jr, cannot be determined from observation or bore hole data, then assume Jn = 1.

 $J_a := 13.0$ Joint Alteration Number (Boring Logs, HEC-18 Table 4.25)

Per ODOT BDM: If Ja, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_s := 1.02$ Relative Joint Orientation Parameter

(Boring Logs, HEC-18 Table 4.26)

Per ODOT BDM: If Js, cannot be determined from observation or bore hole data, then assume Jn = 0.4.

Intact Rock Mass Strength Parameter (ODOT BDM, Sect. 305.3.1.2 b. R.6 b.)

305.2.1.2.b.B.6.b)

Analysis:

 $K_b \coloneqq \operatorname{if}\left(RQD = 0, 0.1, \frac{RQD}{J_n}\right) = 61.48$ Block Size Parameter (HEC-18, Eq. 4.18)

 $K_d := \frac{J_r}{J_c} = 0.08$ Shear Strength Parameter (HEC-18, Eq. 4.19)

 $K := M_s \cdot K_b \cdot K_d \cdot J_s = 4.2$ Erodibility Index (HEC-18, Eq. 4.17)

Approach Flow Stream Power (Pa):

Givens:

$$\rho := 1000$$

Mass Density of Water (kg/m^3)

Analysis:

$$\tau c_P a := \rho \cdot \left(\frac{1000 \cdot K^{0.75}}{7.853 \cdot \rho}\right)^{\frac{2}{3}}$$

$$\tau c_Pa = 518.5$$

Critical shear stress (Pa)

$$\tau c_psf := \tau c_Pa \cdot \frac{1}{47.88} psf$$

$$\tau c_psf = 10.8 \ psf$$

Critical shear stress (Psf)

$$D_{50_equivalent} := \tau c_Pa$$

$$D_{50_equivalent} = 518.5$$

Equivalent D50 (mm)

Objective: To estimate depth of rock scour for foundations (shallow foundations/drilled shafts) in

rock per direction of ODOT.

Method: In accordance with FHWA Publication No. FHWA-HIF-12-003, Hydraulic Engineering

Circular No. 18 (HEC-18) and ODOT's BDM Section 305.2.1.2.b

Erodibility Index (K):

Givens:

RQD := 48 Rock Quality Designation, Unit: Percentage

 $J_n := 1.22$ Rock Joint Set Number (Boring Logs, HEC-18 Table 4.23)

Per ODOT BDM: If Jn, cannot be determined from observation or bore hole data, then assume Jn = 5.

J_r:=1.0 Joint Roughness Number (Boring Logs, HEC-18 Table 4.24)

Per ODOT BDM: If Jr, cannot be determined from observation or bore hole data, then assume Jn = 1.

 $J_a := 13.0$ Joint Alteration Number (Boring Logs, HEC-18 Table 4.25)

Per ODOT BDM: If Ja, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_s := 1.02$ Relative Joint Orientation Parameter

(Boring Logs, HEC-18 Table 4.26)

Per ODOT BDM: If Js, cannot be determined from observation or bore hole data, then assume Jn = 0.4.

Intact Rock Mass Strength Parameter (ODOT BDM, Sect. 305.3.1.2 b. R.6 b.)

305.2.1.2.b.B.6.b)

Analysis:

 $K_b \coloneqq \operatorname{if}\left(RQD = 0, 0.1, \frac{RQD}{J_n}\right) = 39.34$ Block Size Parameter (HEC-18, Eq. 4.18)

 $K_d := \frac{J_r}{J_z} = 0.08$ Shear Strength Parameter (HEC-18, Eq. 4.19)

 $K := M_s \cdot K_b \cdot K_d \cdot J_s = 2.69$ Erodibility Index (HEC-18, Eq. 4.17)

NEAS, Inc. Calculated By: ZM Date: 11/18/2024 Checked By: CH

Approach Flow Stream Power (Pa):

Givens:

 $\rho \coloneqq 1000$

Mass Density of Water (kg/m^3)

Analysis:

$$\tau c_P a := \rho \cdot \left(\frac{1000 \cdot K^{0.75}}{7.853 \cdot \rho}\right)^{\frac{2}{3}}$$

 $\tau c_P a = 414.8$

Critical shear stress (Pa)

$$\tau c_psf := \tau c_Pa \cdot \frac{1}{47.88} psf$$

 $\tau c_psf = 8.7 \ psf$

Critical shear stress (Psf)

$$D_{50 \ equivalent} := \tau c_P a$$

 $D_{50 \ equivalent} = 414.8$

Equivalent D50 (mm)

Objective: To estimate depth of rock scour for foundations (shallow foundations/drilled shafts) in

rock per direction of ODOT.

Method: In accordance with FHWA Publication No. FHWA-HIF-12-003, Hydraulic Engineering

Circular No. 18 (HEC-18) and ODOT's BDM Section 305.2.1.2.b

Erodibility Index (K):

Givens:

ROCk Quality Designation, Unit: Percentage

 $J_n := 1.22$ Rock Joint Set Number (Boring Logs, HEC-18 Table 4.23)

Per ODOT BDM: If Jn, cannot be determined from observation or bore hole data, then assume Jn = 5.

J_r:=1.0 Joint Roughness Number (Boring Logs, HEC-18 Table 4.24)

Per ODOT BDM: If Jr, cannot be determined from observation or bore hole data, then assume Jn = 1.

 $J_a := 13.0$ Joint Alteration Number (Boring Logs, HEC-18 Table 4.25)

Per ODOT BDM: If Ja, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_s := 1.02$ Relative Joint Orientation Parameter

(Boring Logs, HEC-18 Table 4.26)

Per ODOT BDM: If Js, cannot be determined from observation or bore hole data, then assume Jn = 0.4.

Intact Rock Mass Strength Parameter (ODOT BDM, Sect. 305.3.1.2 b. R.6 b.)

305.2.1.2.b.B.6.b)

Analysis:

 $K_b \coloneqq \operatorname{if}\left(RQD = 0, 0.1, \frac{RQD}{J_n}\right) = 43.44$ Block Size Parameter (HEC-18, Eq. 4.18)

 $K_d := \frac{J_r}{J_z} = 0.08$ Shear Strength Parameter (HEC-18, Eq. 4.19)

 $K := M_s \cdot K_b \cdot K_d \cdot J_s = 2.97$ Erodibility Index (HEC-18, Eq. 4.17)

NEAS, Inc. Calculated By: ZM Date: 11/18/2024 Checked By: CH

Approach Flow Stream Power (Pa):

Givens:

 $\rho := 1000$

Mass Density of Water (kg/m^3)

Analysis:

$$\tau c_P a := \rho \cdot \left(\frac{1000 \cdot K^{0.75}}{7.853 \cdot \rho}\right)^{\frac{2}{3}}$$

 $\tau c_Pa = 435.9$

Critical shear stress (Pa)

$$\tau c_psf := \tau c_Pa \cdot \frac{1}{47.88} psf$$

 $\tau c_p sf = 9.1 \, psf$

Critical shear stress (Psf)

$$D_{50_equivalent} := \tau c_Pa$$

 $D_{50 \ equivalent} = 435.9$

Equivalent D50 (mm)

١	PROJECT: SCI-125-6.26	DRILLING FIRM / OPER	ATOR:	CS / T	S	DRIL	L RIG	:	D50 SN4	181		STAT	ΓΙΟΝ	/ OFF	FSET	: <u>1</u>	10+6	9, 16'	LT.	EXPLOR	
١	TYPE: BRIDGE					HAMI	MER:	CN	ME AUTON	ЛАТІС		ALIG	NME	NT:		S	SR-12	25		B-002	2-0-23
ı	PID: 119955 SFN:	DRILLING METHOD:	3.25	" HSA / NQ2	2	CALI	BRAT	ION D	ATE: 3	/14/22	2	ELEV	/ATIC	ON: (655.4	(MS	SL) E	OB:	25	5.3 ft.	PAGE
긼	START: 2/9/24 END: 2/9/24		SPT / NQ2		ENERGY RATIO (%): 86.8						LAT / LONG: 38.726270, -83.17061						10	1 OF 1			
9	MATERIAL DESCRIP	TION	ELEV.			SPT/		RFC	SAMPLE	HP	(RAD	ATIC	N (%	₀)	ATT	ERBE	ERG		ODOT	BACK
٥ ٥	AND NOTES		655.4	DEPTH	HS	RQD	N_{60}	(%)	ID	(tsf)				,	CL	LL	PL	PI	wc	CLASS (GI)	
<u>-</u>	8.0" ASPHALT	XX	654.7		_	27		` ′													*********
Š	MEDIUM DENSE, DARK BROWN AND B	LACK GRAVEL	653.9	1 .	– 1 	5	23	44	SS-1	-	-	-	-	-	-	-	-	-	3	A-1-b (V)	*********
ű	WITH SAND , TRACE SILT, TRACE CLAY		000.8	1 1		11 6															1000 C
	MEDIUM DENSE, BROWN, SANDY SILT,	SOME STONE	050.4		_ 2 -	7	16	72	SS-2	-	35	9	11	36	9	NP	NP	NP	14	A-4a (2)	A ALIELLA
5	FRAGMENTS, TRACE CLAY, DAMP	/	652.4		— з 🕂	2															7>17
92	STIFF TO VERY STIFF, BROWN, SANDY	SILT, LITTLE			_ ,	2	6	33	SS-3	2.00	13	14	11	46	16	25	19	6	17	A-4a (5)	1 L 1 L
22	CLAY, LITTLE GRAVEL, DAMP		650.9	. [_ 4]	2															N > Code
į	MEDIUM DENSE TO VERY DENSE, BRO				- 5 	5 4	13	56	SS-4	_	38	9	15	34	4	NP	NP	NP	10	A-4a (1)	2 L 2011
20	SILT, SOME TO "AND" STONE FRAGME CLAY, DAMP	NIS, IRACE			- - 6 -	_ 5						_									
<u>-</u>	OD (1, B) (Wil				-	4 5	20	67	SS-5	_	30	8	12	40	10	NP	NP	NP	14	A-4a (3)	12/ 12
3					_ 7 +	٠ 9		01	00-0		50		12	70	10	141	141	141	17	Λ-τα (0)	No the second
					— в -	6 11	30	56	SS-6		43	7	12	31	7	NP	NP	NP	12	A-4a (1)	
5					- ,	10	30	30	33-0	-	43	′	12	31	′	INF	INF	INF	12	A-4a (1)	Table and
Ņ.			645.4		_ 9 	8 29	_	60	SS-7	_									10	A-4a (V)	< , v < ,
٥	SANDSTONE, BROWN AND ORANGISH	BROWN	645.4	TR-	— 10 -	50/3"_		00	00-1			_					_		10	Λ- 1 α (V)	1 N N N N N N N N N N N N N N N N N N N
<u>۾</u>	SLIGHTLY TO MODERATELY WEATHER	RED. STRONG.	1		- 11 -																S Valence
긻	FINE GRAINED, THIN TO MEDIUM BEDI	DED, BEDDING	:}		- 1																THE STATE
Ź	DISCONTINUITIES: LOW ANGLE, HIGHL]	•	— 12 																7 to 1 to
ļ	MODERATELY FRACTURED, NARROW, □ ROUGH, BLOCKY/DISTURBED/SEAMY,		642.5	4 [13	33		56	NQ2-1											CORE	2 July 1 X
1	CONDITION; RQD 63%, REC 100%.	FAIR SURFACE		-	- 1																2 > MAN 40
Ĭ	\@10.5'-10.9'; Qu = 9869 PSI @ 1.0% STF	RAIN (SANDSTONE)			_ 14 _																1 1 1 1
Š	INTERBEDDED SHALE (73%) AND SANDS	STONE (27%),	1	-	— 15 -																42 1 X
7:44	RQD 10%, REC. 78%;				- 16 -																Py Land
4	SHALE , GRAY AND LIGHT GRAY, SL MODERATELY WEATHERED, VERY WE	IGHTLY TO		-	- '	_		00	NOOO											CODE	AND A
2	LAMINATED TO THIN BEDDED, FISSILE		1		— 17 	0		92	NQ2-2											CORE	7>1 7>
7	INTERBEDDED CLAY SEAMS, BEDDING	=			_ 18 _																1 L 1 L
ادِ	DISCONTINUITIES: LOW ANGLE, HIGHL			-	- 1																2 > mb
2	MODERATELY FRACTURED, OPEN TO SLIGHTLY ROUGH, LAMINATED TO THI		1		_ 19 _																2 L 401111
┨	TO POOR SURFACE CONDITION;	N BEDDED, FAIR			— 20 																2 N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5	SANDSTONE, GRAY, STRONG, FINE	GRAINED.			- ,,																12/12
=					— 21 —																DX IN TO
္ဂါ			1	}	— 22 	18		96	NQ2-3											CORE	
Ö			4		- 23 -																Full actor
3					- 23																
ادِ			1		— 24 																12 MILES
5			630.1		- 25 -																enimo en
וי				EOB—																	
2																					
ξĮ																					

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE. DRILLED AS STAKED.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 3 BAGS HOLE PLUG; SHOVELED SOIL CUTTINGS

SCI-125-6.26

Office of Geotechnical Engineering

SCI-125-6.26

Date: 11/18/2024 Checked By: CH

Objective: To estimate depth of rock scour for foundations (shallow foundations/drilled shafts) in

rock per direction of ODOT.

Method: In accordance with FHWA Publication No. FHWA-HIF-12-003, Hydraulic Engineering

Circular No. 18 (HEC-18) and ODOT's BDM Section 305.2.1.2.b

Erodibility Index (K):

Givens:

ROD := 33 Rock Quality Designation, Unit: Percentage

 $J_n := 1.50$ Rock Joint Set Number (Boring Logs, HEC-18 Table 4.23)

Per ODOT BDM: If Jn, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_r = 1.0$ Joint Roughness Number (Boring Logs, HEC-18 Table 4.24)

Per ODOT BDM: If Jr, cannot be determined from observation or bore hole data, then assume Jn = 1.

 $J_a := 8.0$ Joint Alteration Number (Boring Logs, HEC-18 Table 4.25)

Per ODOT BDM: If Ja, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_s := 1.02$ Relative Joint Orientation Parameter

(Boring Logs, HEC-18 Table 4.26)

Per ODOT BDM: If Js, cannot be determined from observation or bore hole data, then assume Jn = 0.4.

Intact Rock Mass Strength Parameter (ODOT BDM, Sect. 305.3.1.2 b. R.6 b.)

305.2.1.2.b.B.6.b)

Analysis:

 $K_b \coloneqq \operatorname{if}\left(RQD = 0, 0.1, \frac{RQD}{J_n}\right) = 22$ Block Size Parameter (HEC-18, Eq. 4.18)

 $K_d := \frac{J_r}{J_z} = 0.13$ Shear Strength Parameter (HEC-18, Eq. 4.19)

 $K := M_s \cdot K_b \cdot K_d \cdot J_s = 2.44$ Erodibility Index (HEC-18, Eq. 4.17)

NEAS, Inc. Calculated By: ZM Date: 11/18/2024 Checked By: CH

Approach Flow Stream Power (Pa):

Givens:

 $\rho := 1000$

Mass Density of Water (kg/m^3)

Analysis:

$$\tau c_P a := \rho \cdot \left(\frac{1000 \cdot K^{0.75}}{7.853 \cdot \rho}\right)^{\frac{2}{3}}$$

 $\tau c_P a = 395.4$

Critical shear stress (Pa)

$$\tau c_psf := \tau c_Pa \cdot \frac{1}{47.88} psf$$

 $\tau c_psf = 8.3 \ psf$

Critical shear stress (Psf)

$$D_{50 \ equivalent} := \tau c_P a$$

 $D_{50 \ equivalent} = 395.4$

Equivalent D50 (mm)

NEAS, Inc. Calculated By: ZM Date: 11/18/2024 Checked By: CH

Objective: To estimate depth of rock scour for foundations (shallow foundations/drilled shafts) in

rock per direction of ODOT.

Method: In accordance with FHWA Publication No. FHWA-HIF-12-003, Hydraulic Engineering

Circular No. 18 (HEC-18) and ODOT's BDM Section 305.2.1.2.b

Erodibility Index (K):

Givens:

ROCK Quality Designation, Unit: Percentage

 $J_n := 1.50$ Rock Joint Set Number (Boring Logs, HEC-18 Table 4.23)

Per ODOT BDM: If Jn, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_r := 1.0$ Joint Roughness Number (Boring Logs, HEC-18 Table 4.24)

Per ODOT BDM: If Jr, cannot be determined from observation or bore hole data, then assume Jn = 1.

 $J_a := 8.0$ Joint Alteration Number (Boring Logs, HEC-18 Table 4.25)

Per ODOT BDM: If Ja, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_s := 1.02$ Relative Joint Orientation Parameter

(Boring Logs, HEC-18 Table 4.26)

Per ODOT BDM: If Js, cannot be determined from observation or bore hole data, then assume Jn = 0.4.

Intact Rock Mass Strength Parameter (ODOT BDM, Sect. 305.3.1.2 b. R.6 b.)

305.2.1.2.b.B.6.b)

Analysis:

 $K_b \coloneqq \operatorname{if}\left(RQD = 0\,, 0.1\,, \frac{RQD}{J_n}\right) = 0.1$ Block Size Parameter (HEC-18, Eq. 4.18)

 $K_d := \frac{J_r}{J_z} = 0.13$ Shear Strength Parameter (HEC-18, Eq. 4.19)

 $K := M_s \cdot K_b \cdot K_d \cdot J_s = 0.01$ Erodibility Index (HEC-18, Eq. 4.17)

Date: 11/18/2024 Checked By: CH

Approach Flow Stream Power (Pa):

Givens:

 $\rho \coloneqq 1000$

Mass Density of Water (kg/m^3)

Analysis:

$$\tau c_P a := \rho \cdot \left(\frac{1000 \cdot K^{0.75}}{7.853 \cdot \rho}\right)^{\frac{2}{3}}$$

 $\tau c_P a = 26.7$

Critical shear stress (Pa)

$$\tau c_psf := \tau c_Pa \cdot \frac{1}{47.88} psf$$

 $\tau c_p sf = 0.6 \ psf$

Critical shear stress (Psf)

$$D_{50 \ equivalent} := \tau c_P a$$

 $D_{50 \ equivalent} = 26.7$

Equivalent D50 (mm)

Date: 11/18/2024 Checked By: CH

Objective: To estimate depth of rock scour for foundations (shallow foundations/drilled shafts) in

rock per direction of ODOT.

Method: In accordance with FHWA Publication No. FHWA-HIF-12-003, Hydraulic Engineering

Circular No. 18 (HEC-18) and ODOT's BDM Section 305.2.1.2.b

Erodibility Index (K):

Givens:

ROCk Quality Designation, Unit: Percentage

 $J_n := 1.50$ Rock Joint Set Number (Boring Logs, HEC-18 Table 4.23)

Per ODOT BDM: If Jn, cannot be determined from observation or bore hole data, then assume Jn = 5.

J_r:=1.0 Joint Roughness Number (Boring Logs, HEC-18 Table 4.24)

Per ODOT BDM: If Jr, cannot be determined from observation or bore hole data, then assume Jn = 1.

 $J_a := 8.0$ Joint Alteration Number (Boring Logs, HEC-18 Table 4.25)

Per ODOT BDM: If Ja, cannot be determined from observation or bore hole data, then assume Jn = 5.

 $J_s := 1.02$ Relative Joint Orientation Parameter

(Boring Logs, HEC-18 Table 4.26)

Per ODOT BDM: If Js, cannot be determined from observation or bore hole data, then assume Jn = 0.4.

Intact Rock Mass Strength Parameter (ODOT BDM, Sect. 305.3.1.2 b. R.6 b.)

305.2.1.2.b.B.6.b)

Analysis:

 $K_b \coloneqq \operatorname{if}\left(RQD = 0, 0.1, \frac{RQD}{J_n}\right) = 12$ Block Size Parameter (HEC-18, Eq. 4.18)

 $K_d := \frac{J_r}{J_z} = 0.13$ Shear Strength Parameter (HEC-18, Eq. 4.19)

 $K := M_s \cdot K_b \cdot K_d \cdot J_s = 1.33$ Erodibility Index (HEC-18, Eq. 4.17)

NEAS, Inc. Calculated By: ZM Date: 11/18/2024 Checked By: CH

Approach Flow Stream Power (Pa):

Givens:

 $\rho := 1000$

Mass Density of Water (kg/m^3)

Analysis:

$$\tau c_P a := \rho \cdot \left(\frac{1000 \cdot K^{0.75}}{7.853 \cdot \rho}\right)^{\frac{2}{3}}$$

 $\tau c_P a = 292$

Critical shear stress (Pa)

$$\tau c_psf := \tau c_Pa \cdot \frac{1}{47.88} psf$$

 $\tau c_psf = 6.1 \ psf$

Critical shear stress (Psf)

$$D_{50 \ equivalent} := \tau c_P a$$

 $D_{50\ equivalent} = 292$

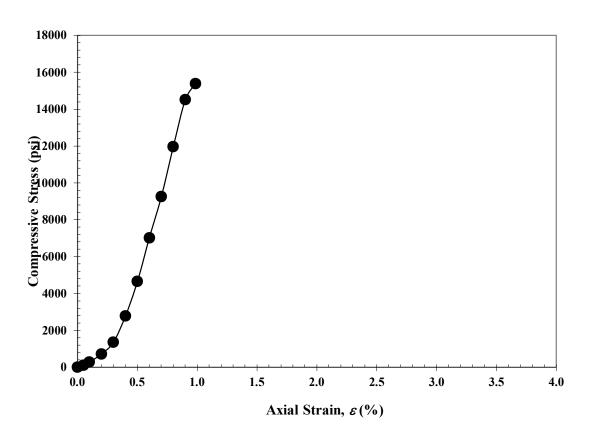
Equivalent D50 (mm)

Unconfined Compressive Strength of Rock Core (ASTM D7012 Method C)

(Project: SCI-125-6.26, Boring Location: B-001-0-23, NQ2-1, Depth: 17.5-17.8ft)

Tested Date: 4/19/2024

Specimen Properties


Average Dia., D_{avg} (in):	1.99
Average Height, H_{avg} (in):	4.16
Length to Diameter Ratio:	2.09
Area, A (in ²):	3.10
Volume, V (in ³):	12.91
Wet Mass of Specimen (lb):	1.2
Moisture Content (%):	1.4
Dry Mass of Specimen (lb):	1.2
Wet Unit Weight, γ (lb/ft ³):	165.7
Dry Unit Weight, γ_d (lb/ft ³):	163.3

Final Specimen Figure

Results

Unconfined Compressive Strength (psi): 15386 106 (MPa)
Strain (%): 1.0

Notes: Sandstone, gray and light brown, slightly weathered, very strong, very fine to fine grained.

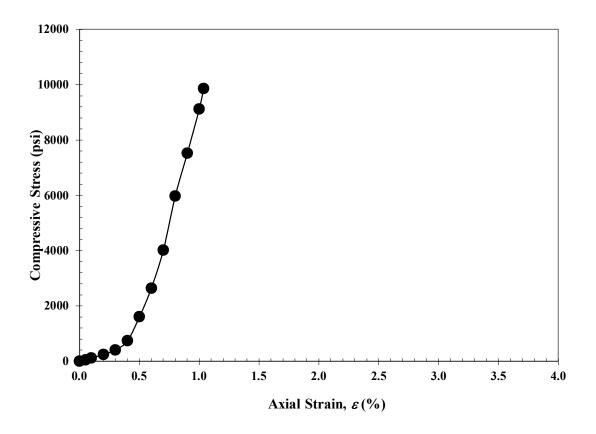
Unconfined Compressive Strength of Rock Core (ASTM D7012 Method C)

(Project: SCI-125-6.26, Boring Location: B-002-0-23, NQ2-1, Depth: 10.5-10.9ft)

Tested Date: 4/19/2024

Specimen Properties

Average Dia., D_{avg} (in):	1.99
Average Height H_{avg} (in):	4.34
Length to Diameter Ratio:	2.18
Area, A (in ²):	3.10
Volume, V (in ³):	13.44
Wet Mass of Specimen (lb):	1.1
Moisture Content (%):	5.9
Dry Mass of Specimen (lb):	1.1
Wet Unit Weight, γ (lb/ft ³):	145.1
Dry Unit Weight, γ_d (lb/ft ³):	137.0


Final Specimen Figure

Results

Unconfined Compressive Strength (psi): 9869 68 (MPa Strain (%): 1.0

Notes: Sandstone, brown and orangish brown, slightly weathered, strong, fine grained.

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

GRAIN SIZE DISTRIBUTION

PROJECT SCI-125-6.26 PID _ **OGE NUMBER** 0 **PROJECT TYPE** U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 810 14 16 20 30 40 50 60 100 140 200 100 95 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 PROJECTS/ACTIVE SOIL PROJECTS/SCI-125-6.26/GINT FILES/SCI-125-6.26.GPJ 35 30 25 20 15 10 5 0.01 0.001 **GRAIN SIZE IN MILLIMETERS** SAND **COBBLES GRAVEL CLAY** SILT fine coarse ODOT (Modified AASHTO) ~ USCS Classification LL PL Ы Specimen Identification B-001-0-23 1.0 A-6a ~ LEAN CLAY with SAND(CL) 30 17 13 33 20 13 \mathbf{X} B-001-0-23 7.0 A-6a ~ LEAN CLAY(CL) B-001-0-23 8.5 A-4b ~ SANDY LEAN CLAY(CL) 28 20 8 A-2-4 ~ SILTY SAND with GRAVEL(SM) NP * B-001-0-23 10.0 NP NP \odot B-001-0-23 11.5 A-2-4 ~ SILTY SAND with GRAVEL(SM) NP NP NP Specimen Identification D90 D50 D30 D10 %G %CS | %FS %M %C Cc Cu B-001-0-23 1.0 1.597 0.017 0.005 10 3 4 52 31 - OH DOT × B-001-0-23 7.0 0.058 0.012 2 0 1 64 33 3.669 B-001-0-23 8.5 0.045 0.019 13 9 8 54 16 B-001-0-23 10.0 21.383 0.953 0.073 0.006 42 18 10 21 9 0.37 338.6

42

0.01

14

10

26

8

0.18 222.88

•

B-001-0-23

11.5

19.693

0.767

0.063

GRAIN SIZE DISTRIBUTION

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING PID _ PROJECT <u>SCI-125-6.26</u> **OGE NUMBER** 0 **PROJECT TYPE** HYDROMETER U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS 1/23/8 3 810 14 16 20 30 40 50 60 100 140 200 100 95 X) 90 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 PROJECTS/ACTIVE SOIL PROJECTS/SCI-125-6.26/GINT FILES/SCI-125-6.26.GPJ 35 30 25 20 15 10 5 0.01 0.001 **GRAIN SIZE IN MILLIMETERS** SAND **COBBLES GRAVEL CLAY** SILT coarse fine LL PL Ы Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification B-001-0-23 14.5 A-4a ~ SILTY SAND with GRAVEL(SM) NP NP NP NP NP NP \mathbf{X} B-002-0-23 1.5 A-4a ~ SILTY GRAVEL with SAND(GM) B-002-0-23 3.0 A-4a ~ SANDY SILTY CLAY(CL-ML) 25 19 6 * B-002-0-23 4.5 A-4a ~ SILTY SAND with GRAVEL(SM) NP NP NP I A-4a ~ SANDY SILT with GRAVEL(ML) NP NP NP B-002-0-23 6.0 Specimen Identification D90 D50 D30 D10 %G %CS %FS %M %C Cc Cu 32.49 B-001-0-23 14.5 10.588 0.112 0.048 0.011 26 12 15 40 7 0.57 - OH DOT \blacksquare B-002-0-23 23.472 0.155 0.007 9 0.37 | 120.38 1.5 0.045 35 9 11 36

2.736

19.059

16.485

0.053

0.296

0.075

0.024

0.056

0.039

13

38

30

0.016

0.005

14

9

8

11

15

12

46

34

40

16

4

10

0.13

1.02

92.64

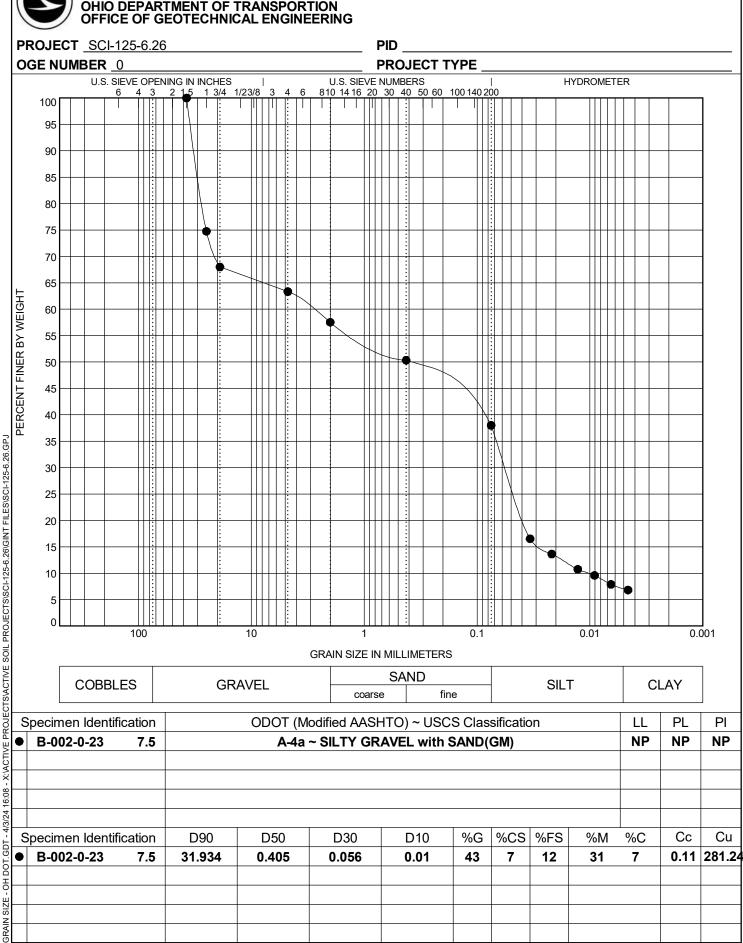
64.56

3.0

4.5

6.0

B-002-0-23


B-002-0-23

B-002-0-23

•

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

GRAIN SIZE DISTRIBUTION

ROCK CORE ID

Job Name:	SCI-125-6.26			: <u>LR</u>		4/17/2024
Boring	Sample	Depth	Description	Cored	Recovery	RQD
B-001-0-23	NQ2-1	16.5-19.0'	Shale interbedded with Sandstone	30"	30"	22.5"
2 33 . 3 23					100%	75%
	NQ2-2	19.0-26.5'		90"	88"	43"
	NQ2-2				98%	48%
	NO2-3	2-3 26.5-31.5'		60"	58"	31.75"
	1402-0			00	97%	53%
				180"	176"	97.25"
				700	98%	54%
			Strength (Ms) = 0.87			
			Joint Set # (Jn) = 1.22			
	bility Inde		Joint Roughness (Jr) = 1.0			
K=(Ms)(R	אט(טוו)(טוי	/Ja)(JS)				
			Joint Alteration (Ja) = 13.0			
			Joint Orientation (Js) = 1.02			

ROCK CORE ID

Job Name:	SCI-125-			/: <u>LR</u>	Date: 4/17/202		
Boring	Sample	Depth	Description	Cored	Recovery	RQD	
B-002-0-23	NQ2-1	10.3-15.3'	Shale interbedded with Sandstone	60"	33.5"	20"	
D-002-0-20	140(2-1	10.5-15.5		00	56%	33%	
	NO2 2	15.3-18.3'		36"	33"	0"	
	NQZ-Z	15.5-16.5		36	92%	0%	
	NQ2-3	18.3-25.3'		84"	81"	15"	
	NQZ-0			04	96%	18%	
				180"	147.5"	35"	
				100	82%	19%	
			Strength (Ms) = 0.87				
Erodability Index (K) K=(Ms)(RQD/Jn)(Jr/Ja)(Js)			Joint Set # (Jn) = 1.50				
			Joint Roughness (Jr) = 1.0				
()(11	~=·•··/(• ·		Joint Alteration (Ja) = 8.0				
			Joint Orientation (Js) = 1.02				

APPENDIX C ROADWAY SUNGRADE ANALYSIS

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Design Manual Section 600

Instructions: Enter data in the shaded cells only. (Enter state route number, project description, county, consultant's name, prepared by name, and date prepared. This information will be transferred to all other sheets. The date prepared must be entered in the appropriate cell on this sheet to remove these instructions prior to printing.)

SCI-125-6.26 119955

Replacement of the bridge carrying SR-125 over Turkey Creek

NEAS,Inc.

Prepared By: Derar Tarawneh, Ph.D., P.E.

Date prepared: Thursday, December 12, 2024

Chunmei (Melinda) He, Ph.D., P.E. 2800 Corporate Exchange Drive Suite 240 Columbus, OH 43231 614.714.0299 Ext 111 che@neasinc.com

NO. OF BORINGS: 2

Subgrade Analysis

¥.14.7

11/6/2024

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig		Boring	Proposed Subgrade EL	Cut Fill
1	B-001-0-23	SR-125	108+87	18	RT	D50 SN481	87	658.1	657.3	0.8 C
2	B-002-0-23	SR-125	110+69	16	LT	D50 SN481	87	655.4	654.6	0.8 C

11/6/2024

#	Boring Samp		Sam De	iple pth	_	rade pth	Stan Penet		НР		Pł	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	L	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.0	2.5	0.2	1.7	14		4.5	30	17	13	52	31	83	15	14	A-6a	9						
	001-0	SS-2	2.5	4.0	1.7	3.2	10		3.5							16	14	A-6a	10			N ₆₀			
	23	SS-3	4.0	5.5	3.2	4.7	6		3							20	14	A-6a	10						
		SS-4	5.5	7.0	4.7	6.2	6	6	2							20	14	A-6a	10						
2	В	SS-1	0.0	1.5	-0.8	0.8	23									3	6	A-1-b	0						
	002-0	SS-2	1.5	3.0	0.8	2.3	16			NP	NP	NP	36	9	45	14	11	A-4a	2			Мс			
	23	SS-3	3.0	4.5	2.3	3.8	6		2	25	19	6	46	16	62	17	14	A-4a	5						
1		SS-4	4.5	6.0	3.8	5.3	13	6		NP	NP	NP	34	4	38	10	11	A-4a	1						

PID: 119955

County-Route-Section: SCI-125-6.26

No. of Borings: 2

Geotechnical Consultant: NEAS,Inc.

Prepared By: Derar Tarawneh, Ph.D., P.E.

Date prepared: 12/12/2024

Chemical Stabilization Options									
320 Rubblize & Roll No									
206	206 Cement Stabilization								
	Lime Stabilization	No							
206	Depth	14"							

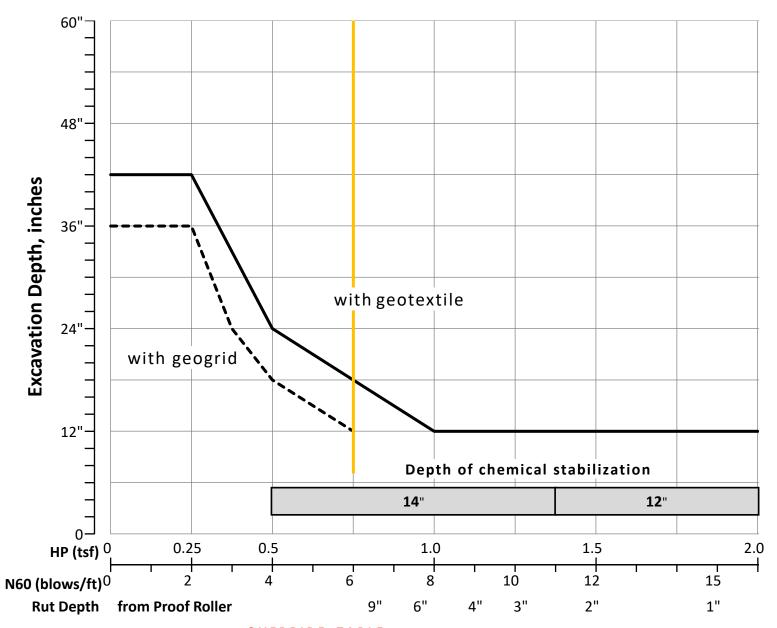
Excavate and Replace Stabilization Options									
									Global Geotextile
Average(N60L):	18"								
Average(HP):	0''								
Global Geogrid									
Average(N60L):	12"								
Average(HP): 0									

Design CBR	7
---------------	---

% Sample	es within	3 feet of subgr	ade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	25%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	13%	1 < HP ≤ 2	13%
N ₆₀ ≥ 20	13%	HP > 2	25%
M+	13%		
Rock	0%		
Unsuitable Soil	0%		

Excavate and Replace at Surface								
Average	0"							
Maximum	0''							
Minimum	0"							

% Proposed Subgrade Surface							
Unstable & Unsuitable 40%							
Unstable 40%							
Unsuitable (Soil & Rock)	0%						


	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M_{c}	M _{OPT}	GI
Average	12	6	3.00	28	18	10	42	15	57	14	12	6
Maximum	23	6	4.50	30	19	13	52	31	83	20	14	10
Minimum	6	6	2.00	25	17	6	34	4	38	3	6	0

Classification Counts by Sample																				
ODOT Class UCF Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b											Totals									
Count	0	0	0	1	0	0	0	0	0	0	3	0	0	4	0	0	0	0	0	8
Percent	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	38%	0%	0%	50%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%	0%					50%								50)%				100%
Surface Class Count	0	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	5
Surface Class Percent	0%	0%	0%	20%	0%	0%	0%	0%	0%	0%	40%	0%	0%	40%	0%	0%	0%	0%	0%	100%

11/6/2024

Fig. 600-1 – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.00	0.50	HP
6.00	6.00	N60L

Average HP Average N_{60L}

APPENDIX D UPLIFT ANALYSIS

SHAFT for Windows, Version 2017.8.12

Serial Number: 156012233

VERTICALLY LOADED DRILLED SHAFT ANALYSIS (c) Copyright ENSOFT, Inc., 1987-2017 All Rights Reserved

Path to file locations : P:\24-0002 SCI-125-6.26 LAW-378-4.84 PID 119955\119955\geotechnical\bridges\SCI-125-6.26\Analysis\Uplift in Prebored Rock\Shaft Files\

Name of input data file : SCI-125_Rear Abut_DS=2ft_B-001_Uplift.sf8d Name of output file : SCI-125_Rear Abut_DS=2ft_B-001_Uplift.sf8o Name of plot output file : SCI-125_Rear Abut_DS=2ft_B-001_Uplift.sf8p Name of runtime file : SCI-125_Rear Abut_DS=2ft_B-001_Uplift.sf8r

Time and Date of Analysis

Date: January 28, 2025 Time: 14:31:27

SCI-125_Rear Abut_B001

PROPOSED DEPTH = 9.2 FT

REDUCTION FACTOR APPLIED FOR UPLIFT FRICTION = 1.000

NUMBER OF LAYERS = 1

WATER TABLE DEPTH = 0.0 FT.

SOIL INFORMATION

LAYER NO 1----STRONG ROCK

AT THE TOP

DIAMETER OF SOCKET, FT	=	0.200E+01
SPACING OF DISCONTINUITIES,FT	=	0.000E+00
THICKNESS OF INDIVIDUAL DISCONTINUITIES, FT	=	0.000E+00
UNIAXIAL COMPRESSION STRENGTH OF ROCK, LB/SQ FT	=	0.222E+07
UNIAXIAL COMPRESSION STRENGTH OF CONCRETE, LB/SQ FT	=	0.576E+06
ELASTIC MODULUS FOR THE INTACT ROCK, LB/SQ IN.	=	0.257E+07
ROCK QUALITY DESIGNATION (RQD) %	=	0.540E+02
DEPTH, FT	=	0.000E+00

AT THE BOTTOM

DIAMETER OF SOCKET, FT	=	0.200E+01
SPACING OF DISCONTINUITIES,FT	=	0.000E+00
THICKNESS OF INDIVIDUAL DISCONTINUITIES,FT	=	0.000E+00
UNIAXIAL COMPRESSION STRENGTH OF ROCK, LB/SQ FT	=	0.222E+07
UNIAXIAL COMPRESSION STRENGTH OF CONCRETE, LB/SQ FT	=	0.576E+06
ELASTIC MODULUS FOR THE INTACT ROCK, LB/SQ IN.	=	0.257E+07
ROCK QUALITY DESIGNATION (RQD) %	=	0.540E+02
DEPTH, FT	=	0.150E+02

LRFD RESISTANCE FA	ACTOR (SIDE FRICTION)	= 0.400E+00
LRFD RESISTANCE FA	ACTOR (TIP RESISTANCE)	= 0.500E+00

INPUT DRILLED SHAFT INFORMATION

```
MINIMUM SHAFT DIAMETER = 2.000 FT.

MAXIMUM SHAFT DIAMETER = 2.000 FT.

RATIO BASE/SHAFT DIAMETER = 0.000 FT.

ANGLE OF BELL = 0.000 DEG.

IGNORED TOP PORTION = 5.000 FT.

IGNORED BOTTOM PORTION = 0.000 FT.

ELASTIC MODULUS, Ec = 0.290E+08 LB/SQ IN
```

COMPUTATION RESULTS

- CASE ANALYZED : 1 VARIATION LENGTH : VARIATION DIAMETER :

DRILLED SHAFT INFORMATION

= 2.000 FT. DIAMETER OF STEM DIAMETER OF BASE = 2.000 FT.
END OF STEM TO BASE = 0.000 FT.
ANGLE OF BELL = 0.000 DEG.
IGNORED TOP PORTION = 5.000 FT.
IGNORED BOTTOM PORTION = 0.000 FT. AREA OF ONE PERCENT STEEL = 4.524 SQ.IN. ELASTIC MODULUS, EC = 0.290E+08 LB/SQ IN VOLUME OF UNDERREAM = 0.000 CU.YDS. SHAFT LENGTH = 9.160 FT.

PREDICTED RESULTS

QS = ULTIMATE SIDE RESISTANCE;

QB = ULTIMATE BASE RESISTANCE; WT = WEIGHT OF DRILLED SHAFT (UPLIFT CAPACITY ONLY); QU = TOTAL ULTIMATE RESISTANCE;

LRFD QS = TOTAL SIDE FRICTION USING LRFD RESISTANCE FACTOR TO THE ULTIMATE SIDE RESISTANCE;

LRFD OB = TOTAL BASE BEARING USING LRFD RESISTANCE FACTOR TO THE ULTIMATE BASE RESISTANCE

LRFD QU = TOTAL CAPACITY WITH LRFD RESISTANCE FACTOR.

LENGTH	VOLUME	QS	WT	QU	LRFD QS	WT	LRFD QU
(FT)	(CU.YDS) (TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)
6.0	0.70	71.54	0.83	72.36	28.62	0.83	29.44
7.0	0.81	143.08	0.96	144.04	57.23	0.96	58.19
8.0	0.93	214.61	1.10	215.72	85.85	1.10	86.95
9.0	1.05	286.15	1.24	287.39	114.46	1.24	115.70
10.0	1.16	357.69	1.38	359.07	143.08	1.38	144.45

SHAFT for Windows, Version 2017.8.12

Serial Number : 156012233

VERTICALLY LOADED DRILLED SHAFT ANALYSIS (c) Copyright ENSOFT, Inc., 1987-2017 All Rights Reserved

Path to file locations : P:\24-0002 SCI-125-6.26 LAW-378-4.84 PID 119955\119955\geotechnical\bridges\SCI-125-6.26\Analysis\Uplift in Prebored Rock\Shaft Files\

Name of input data file : SCI-125_Forw Abut_DS=2ft_B-002_Uplift.sf8d Name of output file : SCI-125_Forw Abut_DS=2ft_B-002_Uplift.sf8o Name of plot output file : SCI-125_Forw Abut_DS=2ft_B-002_Uplift.sf8p Name of runtime file : SCI-125_Forw Abut_DS=2ft_B-002_Uplift.sf8r

Time and Date of Analysis

Date: January 28, 2025 Time: 14:12:44

SCI-125_Forw Abut_B002

PROPOSED DEPTH = 11.2 FT

REDUCTION FACTOR APPLIED FOR UPLIFT FRICTION = 1.000

NUMBER OF LAYERS = 1

WATER TABLE DEPTH = 0.0 FT.

SOIL INFORMATION

LAYER NO 1----STRONG ROCK

AT THE TOP

DIAMETER OF SOCKET, FT = 0.200E+01

SPACING OF DISCONTINUITIES,FT = 0.000E+00

THICKNESS OF INDIVIDUAL DISCONTINUITIES,FT = 0.000E+00

UNIAXIAL COMPRESSION STRENGTH OF ROCK,LB/SQ FT = 0.142E+07

UNIAXIAL COMPRESSION STRENGTH OF CONCRETE,LB/SQ FT = 0.576E+06

ELASTIC MODULUS FOR THE INTACT ROCK, LB/SQ IN. = 0.257E+07

ROCK QUALITY DESIGNATION (RQD) % = 0.630E+02

DEPTH, FT = 0.000E+00

AT THE BOTTOM

DIAMETER OF SOCKET, FT = 0.200E+01
SPACING OF DISCONTINUITIES,FT = 0.000E+00
THICKNESS OF INDIVIDUAL DISCONTINUITIES,FT = 0.000E+00
UNIAXIAL COMPRESSION STRENGTH OF ROCK,LB/SQ FT = 0.142E+07
UNIAXIAL COMPRESSION STRENGTH OF CONCRETE,LB/SQ FT = 0.576E+06
ELASTIC MODULUS FOR THE INTACT ROCK, LB/SQ IN. = 0.257E+07
ROCK QUALITY DESIGNATION (RQD) % = 0.630E+02
DEPTH, FT = 0.160E+02

LRFD RESISTANCE FACTOR (SIDE FRICTION) = 0.400E+00 LRFD RESISTANCE FACTOR (TIP RESISTANCE) = 0.500E+00

INPUT DRILLED SHAFT INFORMATION

MINIMUM SHAFT DIAMETER = 2.000 FT.

MAXIMUM SHAFT DIAMETER = 2.000 FT.

RATIO BASE/SHAFT DIAMETER = 0.000 FT.

ANGLE OF BELL = 0.000 DEG.

IGNORED TOP PORTION = 6.190 FT.

IGNORED BOTTOM PORTION = 0.000 FT.

ELASTIC MODULUS, EC = 0.290E+08 LB/SQ IN

COMPUTATION RESULTS

- CASE ANALYZED : 1 VARIATION LENGTH : VARIATION DIAMETER :

DRILLED SHAFT INFORMATION

= 2.000 FT. DIAMETER OF STEM IGNORED TOP PORTION = 6.190 FT.
IGNORED BOTTOM PORTION = 0.000 FT. AREA OF ONE PERCENT STEEL = 4.524 SQ.IN. ELASTIC MODULUS, EC = 0.290E+08 LB/SQ IN VOLUME OF UNDERREAM = 0.000 CU.YDS. SHAFT LENGTH = 11.190 FT.

PREDICTED RESULTS

QS = ULTIMATE SIDE RESISTANCE; = ULTIMATE BASE RESISTANCE; QB

WT = WEIGHT OF DRILLED SHAFT (UPLIFT CAPACITY ONLY); QU = TOTAL ULTIMATE RESISTANCE;

LRFD QS = TOTAL SIDE FRICTION USING LRFD RESISTANCE FACTOR TO THE ULTIMATE SIDE RESISTANCE;

LRFD OB = TOTAL BASE BEARING USING LRFD RESISTANCE FACTOR TO THE ULTIMATE BASE RESISTANCE

LRFD QU = TOTAL CAPACITY WITH LRFD RESISTANCE FACTOR.

LENGTH	VOLUME	QS	WT	QU	LRFD QS	WT	LRFD QU
(FT)	(CU.YDS	S) (TONS)	(TONS)	(TONS)	(TONS)	(TONS)	(TONS)
7.0	0.81	71.54	0.96	72.50	28.62	0.96	29.58
8.0	0.93	143.08	1.10	144.18	57.23	1.10	58.33
9.0	1.05	214.61	1.24	215.85	85.85	1.24	87.08
10.0	1.16	286.15	1.38	287.53	114.46	1.38	115.84
11.0	1.28	357.69	1.51	359.21	143.08	1.51	144.59

APPENDIX E LPILE ANALYSIS

LPile for Windows, Version 2016-09.003

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2015 by Ensoft, Inc.
All Rights Reserved

This copy of LPile is being used by:

NEAS

Columbus

Serial Number of Security Device: 136151274

This copy of LPile is licensed for exclusive use by:

Barr Engineering, Inc., Cincinna

Use of this program by any entity other than Barr Engineering, Inc., Cincinna is a violation of the software license agreement.

Files Used for Analysis

·------

Path to file locations:

\24-0002 SCI-125-6.26 LAW-378-4.84 PID

Name of input data file:

SCI-125-6.26_Rear Abutment_Service_B-001_HP14X73.lp9d

Name of output report file:

SCI-125-6.26_Rear Abutment_Service_B-001_HP14X73.lp9o

Name of plot output file:

SCI-125-6.26_Rear Abutment_Service_B-001_HP14X73.lp9p

Name of runtime message file:

SCI-125-6.26_Rear Abutment_Service_B-001_HP14X73.lp9r

Date: January 28, 2025 Time: 13:19:33 Problem Title Project Name: SCI-125-6.26 Job Number: Client: American Structurepoint / ODOT Engineer: ZM Description: Rear Abutment - B-001-0-23 Program Options and Settings Computational Options: - Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection 100.0000 in = - Number of pile increments 100

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Use of p-y modification factors for p-y curves not selected
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural	Properties and	Geometry

Number of pile sections defined = 1
Total length of pile = 9.160 ft
Depth of ground surface below top of pile = 0.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

= Strong H-Pile

9.160000 ft

14.600000 in

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	14.6000
2	9.160	14.6000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Flange Width

=	13.600000	in
=	0.505000	in
=	0.505000	in
=	21.400000	sq. in
=	729.000000	in^4
=	29000000.	psi
	= = =	= 13.600000 = 0.505000 = 0.505000 = 21.400000 = 729.0000000 = 290000000.

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees
= 0.000 radians

Pile Batter Angle = 0.000 degrees
= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 1 layers

Layer 1 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 0.0000 ft = 14.160000 ft Distance from top of pile to bottom of layer Effective unit weight at top of layer = 103.700000 pcf Effective unit weight at bottom of layer = 10 Uniaxial compressive strength at top of layer = 103.700000 pcf 15386. psi Uniaxial compressive strength at bottom of layer = 15386. psi
Initial modulus of rock at top of layer = 1400000. psi
Initial modulus of rock at bottom of layer = 1400000. psi = 54.000000 % RQD of rock at top of layer RQD of rock at bottom of layer = 54.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer 0.0000500

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

Summary of Input Soil Properties

Layer	Soil Type	Layer	Effective	Uniaxial	
E50	Rock Mass				
Layer	Name	Depth	Unit Wt.	qu	RQD %
or	Modulus				
Num.	(p-y Curve Type)	ft	pcf	psi	
krm	psi				
1	Weak	0.00	103.7000	15386.	54.0000
5.00E-05	1400000.				
	Rock	14.1600	103.7000	15386.	54.0000
5.00E-05	1400000.				

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load		Condition		Condition	Axial Thrust
Compute No. vs. Pil	Type		1		2	Force, lbs
1	1	V =	24000. lbs	M =	756000. in-lbs	185000.
Yes						

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 24000.0 lbs
Applied moment at pile head = 756000.0 in-lbs
Axial thrust load on pile head = 185000.0 lbs

Depth Res. Soil S		Bending	Shear	Slope	Total	Bending	Soil
		Moment	Force	S	Stress	Stiffness	n
	Lat. L			_	20.000	5 (2)	Р
feet	inches	in-lbs	lbs	radians	psi*	in-lb^2	
lb/inch l							
0.00	4 765 04	75,000	24000	1 025 04	16215	2 445.40	
-64594. 7.		756000.	24000.	-1.82E-04	16215.	2.116+10	
		743391.	-36660	-1 43F-04	16089	2 11F+10	
-45777. 1.			30000.	1.432 04	10005.	2.111.10	
		675465.	-76677.	-1.06E-04	15409.	2.11E+10	
-27034. 1.							
0.2748	6.31E-05	574868.	-97850.	-7.40E-05	14401.	2.11E+10	
-11491. 2.							
		460381.	-103971.	-4.71E-05	13255.	2.11E+10	
353.0100 2			00443	2 645 05	42442	2 445 40	
		346316.	-99113.	-2.61E-05	12113.	2.11E+10	
8488. 2.31		242502.	- 27156	_1 00E_05	11073	2 11E±10	
13267. 2.4			-87150.	-1.081-03	110/5.	2.111+10	
		154716.	-71473.	-4.50E-07	10194.	2.11E+10	
15270. 2.6							
		85377.	-54738.	5.79E-06	9500.	2.11E+10	

15179. 2.77E+08		20070	0.015.06	0000	2 115.10
0.8244 -5.13E-05 13677. 2.93E+08	34377. 0.00	-388/9.	8.91E-06	8989.	2.11E+10
0.9160 -4.06E-05		-25110.	9.80E-06	8646.	2.11E+10
11377. 3.08E+08	0.00	25110.	J.00L 00	00-0.	2.111.10
1.0076 -2.98E-05		-14034.	9.25E-06	8853.	2.11E+10
8775. 3.24E+08	0.00				
1.0992 -2.02E-05		-5782.	7.91E-06	8955.	2.11E+10
6239. 3.39E+08	0.00				
1.1908 -1.24E-05	-33544.	-153.1423	6.23E-06	8981.	2.11E+10
4004. 3.55E+08	0.00				
1.2824 -6.52E-06		3254.	4.54E-06	8958.	2.11E+10
2195. 3.70E+08	0.00				
1.3740 -2.42E-06		4927.	3.04E-06	8909.	2.11E+10
848.5199 3.86E+08	0.00				
1.4656 1.73E-07		5358.	1.83E-06	8850.	2.11E+10
-63.1189 4.01E+08		4000	0 445 07	0704	2 445 40
1.5572 1.60E-06		4992.	9.14E-07	8791.	2.11E+10
-604.4377 4.17E+08 1.6488 2.18E-06	0.00 -9491.	4100	2 075 07	9740	2.11E+10
-857.5445 4.32E+08	-9491. 0.00	4188.	2.87E-07	8740.	2.115+10
1.7404 2.23E-06	-5406.	2210	-1.00E-07	8699.	2.11E+10
-906.3620 4.47E+08	0.00	3219.	-1.001-07	8099.	2.111+10
1.8320 1.96E-06	-2416.	2266.	-3.03E-07	8669.	2.11E+10
-826.3353 4.63E+08	0.00	2200.	J.03L 07	0005.	2.111.10
1.9236 1.56E-06		1439.	-3.77E-07	8649.	2.11E+10
-678.8029 4.78E+08			21112	00.121	
2.0152 1.13E-06		786.2033	-3.69E-07	8652.	2.11E+10
-509.0805 4.94E+08	0.00				
2.1068 7.49E-07	1305.	315.6076	-3.15E-07	8658.	2.11E+10
-347.1707 5.09E+08	0.00				
2.1984 4.40E-07	1442.	9.3526	-2.44E-07	8659.	2.11E+10
-210.0619 5.25E+08	0.00				
2.2900 2.13E-07	1325.		-1.72E-07	8658.	2.11E+10
-104.7521 5.40E+08	0.00				
2.3816 6.20E-08		-238.4700	-1.09E-07	8656.	2.11E+10
-31.3485 5.56E+08	0.00	0.47 0.004		0.550	
2.4732 -2.73E-08		-247.9091	-6.04E-08	8653.	2.11E+10
	0.00	210 2571	2 565 00	9659	2 115,10
2.5648 -7.08E-08 37.7766 5.86E+08		-219.33/1	-2.56E-08	8050.	2.11E+10
2.6564 -8.36E-08		_172 /1200	-3.36E-09	26/12	2.11E+10
45.7882 6.02E+08		-1/3.42/	-3.306-03	8048.	2.111+10
2.7480 -7.82E-08		-124.1259	8.99F-09	8646.	2.11F+10
43.9207 6.17E+08	0.00		01222 02	33.31	
2.8396 -6.39E-08		-79.7799	1.42E-08	8645.	2.11E+10
	0.00	-			_
2.9312 -4.69E-08		-44.3728	1.49E-08	8645.	2.11E+10
	0.00				
3.0228 -3.10E-08	-51.4254	-18.8759	1.31E-08	8645.	2.11E+10

18.7358 6.64E+08	0.00				
3.1144 -1.81E-08		-2.4312	1.02E-08	8645.	2.11E+10
11.1854 6.79E+08	0.00	2.7312	1.021 00	00-5.	2.111.10
3.2060 -8.66E-09		6.7222	7.12E-09	8645.	2.11E+10
5.4693 6.95E+08	0.00	****		00.51	
3.2976 -2.45E-09	-46.0822	10.5985	4.45E-09	8645.	2.11E+10
1.5836 7.10E+08	0.00				
3.3892 1.12E-09	-33.4764	11.0631	2.38E-09	8645.	2.11E+10
-0.7383 7.25E+08	0.00				
3.4808 2.78E-09	-21.7622	9.6290	9.42E-10	8645.	2.11E+10
-1.8710 7.41E+08	0.00				
3.5724 3.19E-09	-12.3084	7.3946	5.61E-11	8645.	2.11E+10
-2.1944 7.56E+08	0.00				
3.6640 2.90E-09	-5.5058	5.0733	-4.07E-10	8645.	2.11E+10
-2.0293 7.69E+08	0.00				
3.7556 2.29E-09	-1.1552	3.0753	-5.80E-10	8645.	2.11E+10
-1.6060 7.69E+08	0.00				
	1.2551	1.5680	-5.78E-10	8645.	2.11E+10
-1.1365 7.69E+08	0.00				
3.9388 1.02E-09	2.2921	0.5492	-4.85E-10	8645.	2.11E+10
-0.7172 7.69E+08	0.00				
4.0304 5.56E-10	2.4626	-0.05903	-3.62E-10	8645.	2.11E+10
-0.3895 7.69E+08	0.00				
4.1220 2.29E-10	2.1625	-0.3613	-2.42E-10	8645.	2.11E+10
-0.1604 7.69E+08	0.00				
4.2136 2.55E-11	1.6685	-0.4593	-1.42E-10	8645.	2.11E+10
-0.01783 7.69E+08	0.00				
4.3052 -8.29E-11	1.1529	-0.4372	-6.86E-11	8645.	2.11E+10
0.05801 7.69E+08	0.00				
4.3968 -1.25E-10	0.7074	-0.3571	-2.02E-11	8645.	2.11E+10
0.08773 7.69E+08	0.00	0.0500		0.4.5	0 11
4.4884 -1.27E-10		-0.2599	7.72E-12	8645.	2.11E+10
0.08915 7.69E+08	0.00	0.4600	2 205 44	0645	2 445 40
	0.1361	-0.1692	2.08E-11	8645.	2.11E+10
0.07585 7.69E+08	0.00	0.00611	2 425 11	0645	2 115.10
4.6716 -8.16E-11		-0.09611	2.43E-11	8645.	2.11E+10
0.05710 7.69E+08	0.00	0.04256	2 225 11	9645	2 115.10
4.7632 -5.50E-11		-0.04356	2.22E-11	8645.	2.11E+10
0.03851 7.69E+08 4.8548 -3.28E-11	0.00 -0.09978	-0.00979	1.77E-11	8645.	2.11E+10
	0.00	-0.00979	1.//⊏-11	0043.	2.115+10
4.9464 -1.62E-11		0.00905	1.25E-11	8645.	2.11E+10
0.01134 7.69E+08	0.00	0.00903	1.256-11	0043.	2.115+10
5.0380 -5.18E-12		0.01727	7 96F ₋ 12	8645.	2.11E+10
0.00362 7.69E+08	0.07505	0.01727	7.50L 12	00-5.	2.111110
5.1296 1.29E-12		0.01877	4.35E-12	8645	2 11F+10
-9.02E-04 7.69E+08		0.010//	12	00 4 5.	
5.2212 4.40E-12		0.01658	1.82F-12	8645.	2.11F+10
-0.00308 7.69E+08		2.3_0.0			_;
5.3128 5.30E-12		0.01285	0.00	8645.	2.11E+10
					

	7.69E+08				0445	0 445 40
	4.92E-12		0.00892	0.00	8645.	2.11E+10
	7.69E+08				0445	0 115 10
	3.96E-12		0.00550	0.00	8645.	2.11E+10
-0.00277		0.00			0.4.5	0 115 10
	2.84E-12		0.00289	0.00	8645.	2.11E+10
-0.00199		0.00				
	1.82E-12		0.00109	0.00	8645.	2.11E+10
-0.00128		0.00			0445	0 115 10
	1.01E-12		6.58E-07	0.00	8645.	2.11E+10
-7.09E-04		0.00				
	0.00		-5.58E-04	0.00	8645.	2.11E+10
-3.08E-04		0.00				
5.9540		0.00289	-7.56E-04	0.00	8645.	2.11E+10
	7.69E+08	0.00				
	0.00	0.00202	-7.39E-04	0.00	8645.	2.11E+10
	7.69E+08					
		0.00126	-6.14E-04	0.00	8645.	2.11E+10
	7.69E+08					
	0.00		-4.53E-04	0.00	8645.	2.11E+10
	7.69E+08	0.00				
	0.00		-3.00E-04	0.00	8645.	2.11E+10
	7.69E+08	0.00				
6.4120			-1.74E-04	0.00	8645.	2.11E+10
9.91E-05		0.00				
	0.00		-8.19E-05	0.00	8645.	2.11E+10
	7.69E+08					
	0.00		-2.20E-05	0.00	8645.	2.11E+10
	7.69E+08					
	0.00		1.21E-05	0.00	8645.	2.11E+10
	7.69E+08					
	0.00		2.77E-05	0.00	8645.	2.11E+10
	7.69E+08					
	0.00		3.13E-05	0.00	8645.	2.11E+10
	7.69E+08					
6.9616			2.83E-05	0.00	8645.	2.11E+10
-4.82E-06		0.00				
7.0532			2.22E-05	0.00	8645.	2.11E+10
-6.13E-06						
7.1448			1.57E-05	0.00	8645.	2.11E+10
-5.84E-06						
7.2364			9.82E-06	0.00	8645.	2.11E+10
-4.77E-06		0.00				
7.3280		2.17E-06	5.28E-06	0.00	8645.	2.11E+10
-3.47E-06	7.69E+08	0.00				
7.4196			2.13E-06	0.00	8645.	2.11E+10
-2.26E-06		0.00				
7.5112			1.80E-07	0.00	8645.	2.11E+10
	7.69E+08					
7.6028	0.00	6.27E-06	-8.47E-07	0.00	8645.	2.11E+10

-5.83E-07	7.69E+08	0.00				
	4 0.00		-1.24E-06	0.00	8645.	2.11F+10
	7.69E+08					
7.786			-1.25E-06	0.00	8645.	2.11E+10
	7.69E+08					
	6 0.00		-1.05E-06	0.00	8645.	2.11E+10
	7.69E+08					
7.9692	2 0.00		-7.89E-07	0.00	8645.	2.11E+10
2.51E-07	7.69E+08	0.00				
8.0608	8 0.00	5.16E-07	-5.29E-07	0.00	8645.	2.11E+10
2.22E-07	7.69E+08	0.00				
8.1524	4 0.00	6.88E-08	-3.13E-07	0.00	8645.	2.11E+10
1.72E-07	7.69E+08	0.00				
8.2440	0.00	-1.71E-07	-1.53E-07	0.00	8645.	2.11E+10
1.19E-07	7.69E+08	0.00				
8.3356	6 0.00	-2.67E-07	-4.67E-08	0.00	8645.	2.11E+10
	7.69E+08					
	2 0.00		1.50E-08	0.00	8645.	2.11E+10
	7.69E+08					
	8 0.00		4.42E-08	0.00	8645.	2.11E+10
	7.69E+08					
	4 0.00		5.21E-08	0.00	8645.	2.11E+10
	7.69E+08					
	0.00		4.78E-08	0.00	8645.	2.11E+10
-7.75E-09						
8.793			3.77E-08	0.00	8645.	2.11E+10
-1.06E-08						
8.8852			2.61E-08	0.00	8645.	2.11E+10
-1.06E-08						
8.9768			1.53E-08	0.00	8645.	2.11E+10
-9.06E-09		0.00				
	4 0.00		6.49E-09	0.00	8645.	2.11E+10
-7.00E-09			0.00	0.00	0645	0.445.40
9.1600	0.00 3.85E+08	0.00	0.00	0.00	8645.	2.11E+10
-4.82E-09	3.85E+08	0.00				

^{*} The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

```
Pile-head deflection
                                      0.00047597 inches
Computed slope at pile head
                                     -0.00018234 radians
                                =
Maximum bending moment
                                         756000. inch-lbs
Maximum shear force
                                        -103971. lbs
Depth of maximum bending moment =
                                        0.000000 feet below pile head
Depth of maximum shear force
                                      0.36640000 feet below pile head
Number of iterations
                                              6
Number of zero deflection points =
                                              10
```

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 24000. lbs
Moment = 756000. in-lbs
Axial Load = 185000. lbs

Pile Length	Pile Head Deflection	Maximum Moment	Maximum Shear
feet	inches	ln-lbs	lbs
9.16000	0.00047597	756000.	-103971.
8.70200	0.00047677	756000.	-103976.
8.24400	0.00047750	756000.	-103499.
7.78600	0.00047817	756000.	-104246.
7.32800	0.00047878	756000.	-104783.
6.87000	0.00047934	756000.	-104622.
6.41200	0.00047983	756000.	-104885.
5.95400	0.00048028	756646.	-105226.
5.49600	0.00048066	757767.	-105171.
5.03800	0.00048100	758693.	-105432.
4.58000	0.00048128	759425.	-105656.
4.12200	0.00048152	759962.	-105740.
3.66400	0.00048170	760304.	-105855.
3.20600	0.00048184	760451.	-105835.
2.74800	0.00048193	760402.	-105968.
2.29000	0.00048197	760158.	-106063.
1.83200	0.00048206	760380.	-106142.
1.37400	0.00048258	760414.	-105823.
0.91600	0.00049654	760377.	-111962.
0.91600	0.000000	905005069.	-4116653332.

Summary of Pile-head Responses for Conventional Analyses

Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Definitions of Pile-head Loading Conditions:

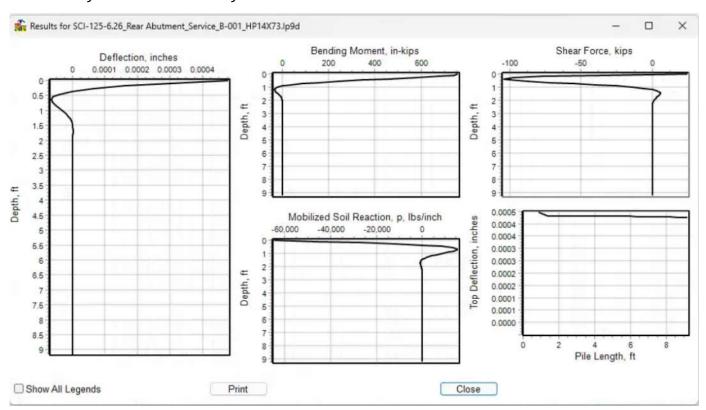
```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
```

Load L	oad		Load		Axial	Pile-head	Pile-head	Max
Shear	Max Mo	oment						
Case T	ype	Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in
Pile	in F	Pile						
No.	1	Load 1	2	Load 2	lbs	inches	radians	lbs
i	n-lbs							
1 V	, lb	24000.	M, in-lb	756000.	185000.	4.76E-04	-1.82E-04	
-10397	1.	756000.						

Maximum pile-head deflection = 0.0004759737 inches

Maximum pile-head rotation = -0.0001823385 radians = -0.010447 deg.

Summary of Warning Messages



The following warning was reported 10000 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 1000 psi. Please check your input data for correctness.

The analysis ended normally.

LPile for Windows, Version 2016-09.003

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2015 by Ensoft, Inc.
All Rights Reserved

This copy of LPile is being used by:

NEAS

Columbus

Serial Number of Security Device: 136151274

This copy of LPile is licensed for exclusive use by:

Barr Engineering, Inc., Cincinna

Use of this program by any entity other than Barr Engineering, Inc., Cincinna is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:

\24-0002 SCI-125-6.26 LAW-378-4.84 PID

Name of input data file:

SCI-125-6.26_Rear Abutment_Strength_B-001_HP 14X73.lp9d

Name of output report file:

SCI-125-6.26_Rear Abutment_Strength_B-001_HP 14X73.lp9o

Name of plot output file:

SCI-125-6.26_Rear Abutment_Strength_B-001_HP 14X73.lp9p

Name of runtime message file:

SCI-125-6.26_Rear Abutment_Strength_B-001_HP 14X73.lp9r

Date: January 28, 2025 Time: 13:26:28 Problem Title Project Name: SCI-125-6.26 Job Number: Client: American Structurepoint / ODOT Engineer: ZM Description: Rear Abutment - B-001-0-23 Program Options and Settings Computational Options: - Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection 100.0000 in = - Number of pile increments 100

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Use of p-y modification factors for p-y curves not selected
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural	Properties and	Geometry

Number of pile sections defined = 1
Total length of pile = 9.160 ft
Depth of ground surface below top of pile = 0.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

= Strong H-Pile

9.160000 ft

14.600000 in

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	14.6000
2	9.160	14.6000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Flange Width

=	13.600000	in
=	0.505000	in
=	0.505000	in
=	21.400000	sq. in
=	729.000000	in^4
=	29000000.	psi
	= = =	= 13.600000 = 0.505000 = 0.505000 = 21.400000 = 729.0000000 = 290000000.

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees
= 0.000 radians

Pile Batter Angle = 0.000 degrees
= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 1 layers

Layer 1 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer 0.0000 ft = 14.160000 ft Distance from top of pile to bottom of layer Effective unit weight at top of layer = 103.700000 pcf Effective unit weight at bottom of layer = 10 Uniaxial compressive strength at top of layer = 103.700000 pcf 15386. psi Uniaxial compressive strength at bottom of layer = 15386. psi
Initial modulus of rock at top of layer = 1400000. psi
Initial modulus of rock at bottom of layer = 1400000. psi = 54.000000 % RQD of rock at top of layer RQD of rock at bottom of layer = 54.000000 % k rm of rock at top of layer = 0.0000500 k rm of rock at bottom of layer 0.0000500

(Depth of the lowest soil layer extends 5.000 ft below the pile tip)

Summary of Input Soil Properties

Layer	Soil Type	Layer	Effective	Uniaxial	
E50	Rock Mass				
Layer	Name	Depth	Unit Wt.	qu	RQD %
or	Modulus	•		•	
Num.	(p-y Curve Type)	ft	pcf	psi	
krm	psi		•	•	
1	Weak	0.00	103.7000	15386.	54.0000
5.00E-05	1400000.				
	Rock	14.1600	103.7000	15386.	54.0000
5.00E-05	1400000.				

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load		Condition		Condition	Axial Thrust
No. vs. Pi	Type		1		2	Force, lbs
1 Yes	_	V =	35000. lbs	M =	1116000. in-lbs	256000.

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 35000.0 lbs

Applied moment at pile head = 1116000.0 in-lbs

Axial thrust load on pile head = 256000.0 lbs

Depth Deflect. Res. Soil Spr. Dis		Shear	Slope	Total	Bending	Soil
X y	Moment	Force	S	Stress	Stiffness	n
Es*h Lat.		. 0. 00	J	30.033	3021111033	Р
feet inches		lbs	radians	psi*	in-lb^2	
lb/inch lb/inch				·		
0.00 7.46E-0		35000.	-2.78E-04	23138.	2.11E+10	
-72300. 5.32E+07		42040		22225	0 445 40	
0.09160 4.73E-0		-43918.	-2.20E-04	23086.	2.11E+10	
-71292. 1.66E+08		407247	4 655 04	22472	2 445 40	
0.1832 2.62E-0		-10/31/.	-1.65E-04	221/2.	2.11E+10	
-44062. 1.85E+08		442544	4 465 04	20725	2 445 40	
0.2748 1.10E-0		-142541.	-1.16E-04	20/25.	2.11E+10	
-20030. 2.00E+08						
0.3664 7.82E-0		-154393.	-7.46E-05	19035.	2.11E+10	
-1535. 2.16E+08						
0.4580 -5.40E-0	5 535657.	-149002.	-4.23E-05	17327.	2.11E+10	
11344. 2.31E+08	0.00					
0.5496 -8.51E-0	5 378735.	-132274.	-1.85E-05	15755.	2.11E+10	
19092. 2.47E+08	0.00					
0.6412 -9.46E-0	5 244876.	-109384.	-2.29E-06	14415.	2.11E+10	
22556. 2.62E+08	0.00					
0.7328 -9.01E-0	5 138266.	-84482.	7.67E-06	13347.	2.11E+10	

22754 2 775.00	0.00				
22754. 2.77E+08		60500	1 205 05	12555	2 115.10
0.8244 -7.78E-05 20721. 2.93E+08		-60588.	1.28E-05	12555.	2.11E+10
0.9160 -6.20E-05		-39642.	1.45E-05	12013.	2.11E+10
17391. 3.08E+08		-39042.	1.456-05	12013.	2.116+10
1.0076 -4.59E-05		-22645.	1.39E-05	12243.	2.11E+10
	0.00	-22043.	1.396-03	12243.	2.111+10
1.0992 -3.15E-05		-9867.	1.20E-05	12411.	2.11E+10
9718. 3.39E+08	0.00	- 3607 .	1.201-05	12411.	2.111+10
1.1908 -1.96E-05		-1051	9.53E-06	12460.	2.11E+10
6322. 3.55E+08	0.00	1051.	J.JJL 00	12400.	2.111.10
1.2824 -1.05E-05		4373	7.02E-06	12434.	2.11E+10
3548. 3.70E+08		4373.	7.022 00	12454.	2.111.10
1.3740 -4.17E-06		7127	4.75E-06	12364.	2.11E+10
1462. 3.86E+08		, 12, •	11,752 00	12301.	2.112.10
1.4656 -9.31E-08		7949.	2.89E-06	12277.	2.11E+10
33.9611 4.01E+08		,,,,,,	2.032 00	,	_,
1.5572 2.19E-06		7512.	1.49E-06	12189.	2.11E+10
-829.2396 4.17E+08		,,,,,	_,,,,	,	
1.6488 3.18E-06		6370.	5.13E-07	12112.	2.11E+10
-1248. 4.32E+08	0.00				
1.7404 3.32E-06		4942.	-9.79E-08	12049.	2.11E+10
	0.00				
1.8320 2.96E-06		3515.	-4.26E-07	12003.	2.11E+10
-1247. 4.63E+08	0.00				
1.9236 2.38E-06	-893.6705	2260.	-5.53E-07	11972.	2.11E+10
-1035. 4.78E+08					
2.0152 1.75E-06	965.7209	1261.	-5.52E-07	11972.	2.11E+10
-783.9786 4.94E+08	0.00				
2.1068 1.17E-06	1878.	532.6462	-4.78E-07	11981.	2.11E+10
-540.4714 5.09E+08	0.00				
2.1984 6.95E-07	2137.	53.1773	-3.73E-07	11984.	2.11E+10
-331.9247 5.25E+08					
			-2.66E-07	11983.	2.11E+10
-170.1390 5.40E+08	0.00				
2.3816 1.11E-07		-347.1323	-1.71E-07	11979.	2.11E+10
-56.1626 5.56E+08	0.00				
2.4732 -2.99E-08		-369.4715	-9.62E-08	11975.	2.11E+10
	0.00				
2.5648 -1.00E-07		-331.4876	-4.25E-08	11971.	2.11E+10
53.5957 5.86E+08					
2.6564 -1.23E-07		-264.9210	-7.71E-09	11968.	2.11E+10
67.5224 6.02E+08		404 5700	4 405 00	44065	2 445 40
2.7480 -1.17E-07		-191.5/02	1.19E-08	11965.	2.11E+10
65.9398 6.17E+08	0.00	124 6216	2 065 00	44063	2 445.40
2.8396 -9.71E-08		-124.6216	2.06E-08	11963.	2.11E+10
	0.00	70 5721	2 225 00	11062) 11E:10
2.9312 -7.20E-08 42.4696 6.48E+08		-/0.5/21	Z,ZZE-Ø8	11303.	2.11E+10
3.0228 -4.82E-08		21 2/10	1.98E-08	11062	2.11E+10
3.0220 -4.82E-08	-/3.6922	-21.2418	1.300-00	11303.	Z.11E+10

20 0022 6 645.00	0.00				
29.0922 6.64E+08 3.1144 -2.85E-08		-5.5656	1.55E-08	11964.	2.11E+10
	0.00	-3.3030	1.556-68	11904.	2.111+10
3.2060 -1.40E-08		8.9865	1.10E-08	11963.	2.11E+10
8.8520 6.95E+08	0.00	0.5005	1.102 00	11000.	2.112.10
3.2976 -4.37E-09		15.4017	6.95E-09	11963.	2.11E+10
2.8205 7.10E+08	0.00		01102		
3.3892 1.27E-09	-51.4811	16.4916	3.79E-09	11963.	2.11E+10
-0.8375 7.25E+08	0.00				
3.4808 3.96E-09		14.5636	1.57E-09	11963.	2.11E+10
-2.6706 7.41E+08	0.00				
3.5724 4.72E-09	-19.4653	11.3108	1.84E-10	11963.	2.11E+10
-3.2479 7.56E+08	0.00				
3.6640 4.37E-09	-8.9946	7.8462	-5.56E-10	11963.	2.11E+10
-3.0560 7.69E+08	0.00				
3.7556 3.50E-09	-2.2160	4.8211	-8.48E-10	11963.	2.11E+10
-2.4481 7.69E+08	0.00				
3.8472 2.50E-09	1.6047	2.5131	-8.64E-10	11963.	2.11E+10
-1.7515 7.69E+08	0.00				
3.9388 1.60E-09	3.3092	0.9354	-7.36E-10	11963.	2.11E+10
-1.1191 7.69E+08	0.00				
4.0304 8.84E-10	3.6616	-0.01984	-5.55E-10	11963.	2.11E+10
-0.6191 7.69E+08	0.00				
4.1220 3.79E-10	3.2659	-0.5060	-3.75E-10	11963.	2.11E+10
-0.2655 7.69E+08	0.00				
4.2136 6.10E-11		-0.6754	-2.23E-10	11963.	2.11E+10
-0.04269 7.69E+08	0.00				
	1.7812	-0.6559	-1.11E-10	11963.	2.11E+10
0.07818 7.69E+08	0.00				
4.3968 -1.83E-10		-0.5427	-3.57E-11	11963.	2.11E+10
0.1278 7.69E+08					
4.4884 -1.90E-10		-0.3993	8.40E-12	11963.	2.11E+10
0.1331 7.69E+08	0.00				
	0.2296	-0.2631	2.97E-11	11963.	2.11E+10
0.1149 7.69E+08	0.00	0.4540	2 525 44	44040	0 445 40
4.6716 -1.25E-10		-0.1519	3.59E-11	11963.	2.11E+10
0.08746 7.69E+08	0.00	0 07400	2 245 44	44063	2 445 40
4.7632 -8.52E-11		-0.07102	3.34E-11	11963.	2.11E+10
0.05966 7.69E+08	0.00	0.01043	2 605 44	11063	2 445.40
4.8548 -5.15E-11		-0.01843	2.69E-11	11963.	2.11E+10
0.03603 7.69E+08	0.00	0 01141	1 025 11	11063	2 115.10
4.9464 -2.61E-11 0.01826 7.69E+08		0.01141	1.93E-11	11963.	2.11E+10
	0.00	0.02489	1.24E-11	11963.	2.11E+10
5.0380 -8.98E-12 0.00628 7.69E+08	0.00	0.02469	1.246-11	11905.	2.115+10
5.1296 1.20E-12		0 02790	6.91E-12	11062	2.11E+10
-8.40E-04 7.69E+08		0.02/09	0.916-12	11303.	2.115710
5.2212 6.22E-12		a a25a2	3.01E-12	11963	2.11E+10
-0.00436 7.69E+08		0.02505	J. OIL - IZ	11707.	2.116710
5.3128 7.82E-12		0.01963	0.00	11963	2.11E+10
J.J120 /.UZL-12	0.00012	0.0100	0.00	11707.	2.111.10

	7.69E+08		0 01377	0.00	11063	2 445.40
	7.40E-12 7.69E+08		0.013//	0.00	11963.	2.11E+10
			0.00061	1 205 12	11062	2.11E+10
-0.00422	6.03E-12		0.00861	-1.38E-12	11963.	2.115+10
	4.37E-12	0.00	0.00461	-1.45E-12	11963.	2.11E+10
	7.69E+08	0.00207	0.00461	-1.436-12	11905.	2.115+10
	2.84E-12		0 00102	-1.26E-12	11963.	2.11E+10
-0.00199		0.00329	0.00103	-1.200-12	11905.	2.115+10
	1.61E-12		1.24E-04	0.00	11963.	2.11E+10
-0.00112		0.00010	1.246-04	0.00	11903.	2.116+10
	0.00		-7.71E-04	0.00	11963.	2.11E+10
	7.69E+08	0.00	-7.71L-04	0.00	11905.	2.111+10
5.9540		0.00441	-0.00111	0.00	11963.	2.11E+10
	7.69E+08	0.00441	-0.00111	0.00	11000.	2.111+10
	0.00	0.00312	-0.00111	0.00	11963.	2.11E+10
	7.69E+08		0.00111	0.00	11000.	2.111110
	0.00	0.00197	-9.32E-04	0.00	11963.	2.11E+10
	7.69E+08		J.J2L 04	0.00	11000.	2.111.10
		0.00107	-6.95E-04	0.00	11963.	2.11E+10
	7.69E+08	0.00	0.732 0.	0.00	22303.	
	0.00		-4.65E-04	0.00	11963.	2.11E+10
	7.69E+08	0.00		0.00	22303.	
6.4120			-2.74E-04	0.00	11963.	2.11E+10
1.52E-04		0.00				
	0.00		-1.33E-04	0.00	11963.	2.11E+10
	7.69E+08					
	0.00		-3.96E-05	0.00	11963.	2.11E+10
6.45E-05	7.69E+08	0.00				
6.6868	0.00	-2.44E-04	1.43E-05	0.00	11963.	2.11E+10
3.36E-05	7.69E+08	0.00				
6.7784	0.00	-2.08E-04	3.97E-05	0.00	11963.	2.11E+10
1.25E-05	7.69E+08	0.00				
	0.00		4.64E-05	0.00	11963.	2.11E+10
-2.43E-07	7.69E+08	0.00				
6.9616	0.00	-1.06E-04	4.26E-05	0.00	11963.	2.11E+10
-6.75E-06		0.00				
7.0532			3.39E-05	0.00	11963.	2.11E+10
-9.02E-06						
7.1448			2.41E-05	0.00	11963.	2.11E+10
-8.77E-06						
7.2364		-1.01E-05	1.53E-05	0.00	11963.	2.11E+10
-7.25E-06		0.00				
7.3280		2.35E-06	8.41E-06	0.00	11963.	2.11E+10
-5.34E-06		0.00				
7.4196			3.54E-06	0.00	11963.	2.11E+10
-3.52E-06		0.00	4 005 05	0.00	11063	2 445.40
7.5112			4.88E-07	0.00	11963.	2.11E+10
	7.69E+08		1 155 06	0.00	11063	2 115.12
7.6028	0.00	9.446-06	-1.15E-06	0.00	11963.	2.11E+10

-9.51E-07	7.69E+08	0.00				
7.6944	0.00	7.60E-06	-1.81E-06	0.00	11963.	2.11E+10
-2.47E-07	7.69E+08	0.00				
7.7860	0.00	5.46E-06	-1.86E-06	0.00	11963.	2.11E+10
1.52E-07	7.69E+08	0.00				
7.8776	0.00	3.51E-06	-1.60E-06	0.00	11963.	2.11E+10
3.32E-07	7.69E+08	0.00				
7.9692	0.00	1.96E-06	-1.21E-06	0.00	11963.	2.11E+10
3.73E-07	7.69E+08	0.00				
8.0608	0.00	8.52E-07	-8.20E-07	0.00	11963.	2.11E+10
3.35E-07	7.69E+08	0.00				
8.1524	0.00	1.53E-07	-4.92E-07	0.00	11963.	2.11E+10
2.62E-07	7.69E+08	0.00				
8.2440	0.00	-2.29E-07	-2.46E-07	0.00	11963.	2.11E+10
1.84E-07	7.69E+08	0.00				
	0.00		-8.17E-08	0.00	11963.	2.11E+10
	7.69E+08					
	0.00		1.55E-08	0.00	11963.	2.11E+10
	7.69E+08					
	0.00		6.29E-08	0.00	11963.	2.11E+10
	7.69E+08					
	0.00		7.72E-08	0.00	11963.	2.11E+10
	7.69E+08					
	0.00		7.21E-08	0.00	11963.	2.11E+10
	7.69E+08					
	0.00		5.77E-08	0.00	11963.	2.11E+10
-1.55E-08						
	0.00		4.04E-08	0.00	11963.	2.11E+10
-1.59E-08						
8.9768			2.41E-08	0.00	11963.	2.11E+10
-1.39E-08						
9.0684			1.04E-08	0.00	11963.	2.11E+10
-1.10E-08		0.00				
9.1600		0.00	0.00	0.00	11963.	2.11E+10
-7.93E-09	3.85E+08	0.00				

^{*} The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

```
Pile-head deflection
                                      0.00074642 inches
Computed slope at pile head
                                      -0.00027820 radians
                                =
Maximum bending moment
                                        1116000. inch-lbs
Maximum shear force
                                        -154393. lbs
Depth of maximum bending moment =
                                        0.000000 feet below pile head
Depth of maximum shear force
                                      0.36640000 feet below pile head
Number of iterations
                                               6
Number of zero deflection points =
                                              10
```

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 35000. lbs
Moment = 1116000. in-lbs
Axial Load = 256000. lbs

Pile Length feet	Pile Head Deflection inches	Maximum Moment ln-lbs	Maximum Shear lbs
9.16000	0.00074642	1116000.	-154393.
8.70200	0.00074930	1116000.	-153753.
8.24400	0.00075164	1116000.	-153948.
7.78600	0.00075347	1117130.	-155087.
7.32800	0.00075477	1118804.	-155221.
6.87000	0.00075552	1120267.	-154649.
6.41200	0.00075574	1121515.	-155837.
5.95400	0.00075544	1122548.	-155585.
5.49600	0.00075462	1123363.	-156250.
5.03800	0.00075330	1123960.	-155878.
4.58000	0.00075473	1124324.	-156433.
4.12200	0.00075597	1124474.	-156638.
3.66400	0.00075583	1124410.	-156688.
3.20600	0.00075528	1124126.	-156908.
2.74800	0.00075614	1123621.	-156991.
2.29000	0.00075614	1124320.	-156987.
1.83200	0.00075642	1124408.	-157183.
1.37400	0.00075744	1124470.	-156695.
0.91600	0.00078923	1124331.	-167365.
0.91600	0.000000	1436436182.	-6534007378.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

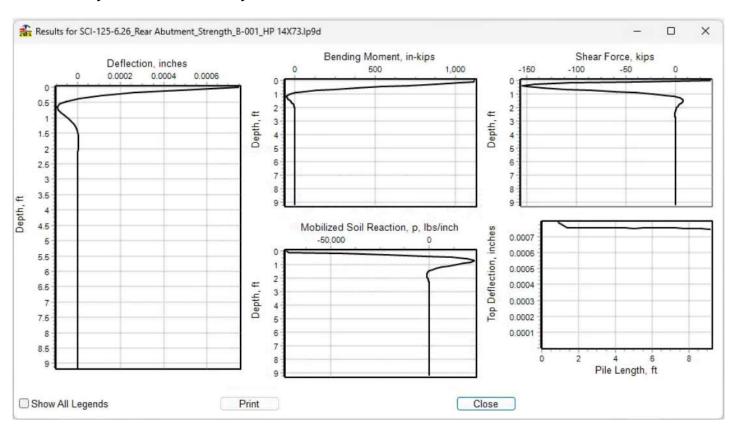
```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians
```

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Momer	nt					
Case Type Pil	le-head Type	Pile-head	Loading	Deflection	Rotation	in
Pile in Pile	5		_			
No. 1 Lo	oad 1 2	Load 2	lbs	inches	radians	lbs
in-lbs						
1 V, lb	35000. M, in-lb	1116000.	256000.	7.46E-04	-2.78E-04	
-154393. 1116	5000.					

Maximum pile-head deflection = 0.0007464247 inches

Maximum pile-head rotation = -0.0002781975 radians = -0.015940 deg.

Summany of Wanning Mossages


Summary of Warning Messages

The following warning was reported 10000 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 1000 psi. Please check your input data for correctness.

The analysis ended normally.

LPile for Windows, Version 2016-09.003

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2015 by Ensoft, Inc.
All Rights Reserved

This copy of LPile is being used by:

NEAS

Columbus

Serial Number of Security Device: 136151274

This copy of LPile is licensed for exclusive use by:

Barr Engineering, Inc., Cincinna

Use of this program by any entity other than Barr Engineering, Inc., Cincinna is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:

\24-0002 SCI-125-6.26 LAW-378-4.84 PID

Name of input data file:

SCI-125-6.26_Forward Abutment_Service_B-002_HP 14X73.lp9d

Name of output report file:

SCI-125-6.26_Forward Abutment_Service_B-002_HP 14X73.lp9o

Name of plot output file:

SCI-125-6.26_Forward Abutment_Service_B-002_HP 14X73.lp9p

Name of runtime message file:

SCI-125-6.26_Forward Abutment_Service_B-002_HP 14X73.lp9r

Date: January 28, 2025 Time: 13:28:58 Problem Title Project Name: SCI-125-6.26 Job Number: Client: American Structurepoint / ODOT Engineer: DT Description: Forward Abutment - B-002-0-23 Program Options and Settings Computational Options: - Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection 100.0000 in = - Number of pile increments 100

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Use of p-y modification factors for p-y curves not selected
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties a	nd Geometry

Number of pile sections defined = 1
Total length of pile = 11.190 ft
Depth of ground surface below top of pile = 0.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

= Strong H-Pile

11.190000 ft

14.600000 in

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	14.6000
2	11.190	14.6000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Flange Width

=	13.600000	in
=	0.505000	in
=	0.505000	in
=	21.400000	sq. in
=	729.000000	in^4
=	29000000.	psi
	= = =	= 13.600000 = 0.505000 = 0.505000 = 21.400000 = 729.0000000 = 290000000.

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees
= 0.000 radians

Pile Batter Angle = 0.000 degrees
= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 1 layers

Layer 1 is weak rock, p-y criteria by Reese, 1997

```
Distance from top of pile to top of layer
                                                                         0.0000 ft
                                                             = 11.190000 ft
Distance from top of pile to bottom of layer
                                                              = 96.500000 pcf
Effective unit weight at top of layer
Uniaxial compressive strength at top of layer = 96.500000 pcf = 9869. psi
Uniaxial compressive strength at top of layer = 9869. psi
Initial modulus of rock at top of layer = 890000. psi
The strength at bottom of layer = 890000. psi
Strength at bottom of layer = 890000. psi
                                                              = 63.000000 %
RQD of rock at top of layer
RQD of rock at bottom of layer
                                                              = 63.000000 %
k rm of rock at top of layer
                                                              = 0.0000500
k rm of rock at bottom of layer
                                                                      0.0000500
```

(Depth of the lowest soil layer extends 0.000 ft below the pile tip)

Summary of Input Soil Properties

Layer	Soil Type	Layer	Effective	Uniaxial	
E50	Rock Mass				
Layer	Name	Depth	Unit Wt.	qu	RQD %
or	Modulus				
Num.	(p-y Curve Type)	ft	pcf	psi	
krm	psi				
1	Weak	0.00	96.5000	9869.	63.0000
5.00E-05	890000.				
	Rock	11.1900	96.5000	9869.	63.0000
5.00E-05	890000.				

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load		Condition		Condition	Axial Thrust
Compute No. vs. Pil	Type		1		2	Force, lbs
1	1	V =	24000. lbs	M =	756000. in-lbs	185000.
Yes						

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 24000.0 lbs

Applied moment at pile head = 756000.0 in-lbs

Axial thrust load on pile head = 185000.0 lbs

Depth Deflect	_	Shear	Slope	Total	Bending	Soil
Res. Soil Spr. Di						
Х у	Moment	Force	S	Stress	Stiffness	р
Es*h Lat.	Load					
feet inches	in-lbs	lbs	radians	psi*	in-lb^2	
lb/inch lb/inch	lb/inch					
0.00 6.37E-	04 756000 .	24000.	-2.12E-04	16215.	2.11E+10	
-40386. 4.26E+07						
0.1119 3.85E-0	04 751864 .	-28946.	-1.64E-04	16174.	2.11E+10	
-38473. 1.34E+08	0.00					
0.2238 1.97E-0	04 678344.	-69457.	-1.18E-04	15438.	2.11E+10	
-21865. 1.49E+08	0.00					
0.3357 6.74E-0	05 565388 .	-89644.	-7.88E-05	14306.	2.11E+10	
-8202. 1.63E+08	0.00					
0.4476 -1.43E-	05 437635 .	-93875.	-4.69E-05	13027.	2.11E+10	
1901. 1.78E+08	0.00					
0.5595 -5.87E-0	05 313302 .	-86940.	-2.31E-05	11782.	2.11E+10	
8428. 1.93E+08	0.00					
0.6714 -7.64E-	05 204160 .	-73362.	-6.66E-06	10689.	2.11E+10	
11795. 2.07E+08	0.00					
0.7833 -7.66E-	05 116284 .	-56937.	3.52E-06	9809.	2.11E+10	
12668. 2.22E+08						
0.8952 -6.69E-	o5 51248.	-40511.	8.84E-06	9158.	2.11E+10	

11797. 2.37E+08	0 00				
1.0071 -5.29E-05		-25945.	1.07E-05	8720.	2.11E+10
9897. 2.51E+08	0.00	23343.	1.072 03	0720.	2.111.10
1.1190 -3.82E-05		-14222.	1.04E-05	8829.	2.11E+10
7564. 2.66E+08	0.00		2.0.2 03	0023.	_,
1.2309 -2.51E-05		-5627.	8.79E-06	8952.	2.11E+10
5238. 2.81E+08	0.00	3027	01/32 00	03321	_,
1.3428 -1.46E-05		40.3644	6.75E-06	8981.	2.11E+10
3203. 2.95E+08	0.00		01722 00	02021	
1.4547 -6.92E-06		3264.	4.71E-06	8951.	2.11E+10
1599. 3.10E+08	0.00				
1.5666 -1.90E-06	-24787.	4646.	2.95E-06	8893.	2.11E+10
459.5837 3.25E+08	0.00				
1.6785 1.01E-06		4783.	1.59E-06	8826.	2.11E+10
-255.0912 3.39E+08	0.00				
1.7904 2.37E-06	-11942.	4192.	6.36E-07	8764.	2.11E+10
-625.5381 3.54E+08	0.00				
1.9023 2.72E-06	-6876.	3271.	3.85E-08	8714.	2.11E+10
-746.1266 3.69E+08	0.00				
2.0142 2.48E-06	-3156.	2296.	-2.80E-07	8676.	2.11E+10
-706.8298 3.83E+08	0.00				
2.1261 1.97E-06	-710.7032	1430.	-4.03E-07	8652.	2.11E+10
-582.4772 3.98E+08	0.00				
2.2380 1.39E-06	684.6500	751.4647	-4.04E-07	8652.	2.11E+10
-428.3491 4.13E+08	0.00				
2.3499 8.81E-07	1308.	275.6580	-3.41E-07	8658.	2.11E+10
-280.3293 4.27E+08	0.00				
2.4618 4.80E-07	1425.	-18.5130	-2.54E-07	8659.	2.11E+10
-157.8164 4.42E+08	0.00				
2.5737 2.00E-07	1258.	-170.0387	-1.69E-07	8657.	2.11E+10
-67.8697 4.57E+08					
2.6856 2.70E-08		-221.9629	-9.78E-08	8655.	2.11E+10
	0.00				
2.7975 -6.30E-08		-213.0044	-4.60E-08	8651.	2.11E+10
	0.00				
2.9094 -9.66E-08		-173.5139	-1.24E-08	8649.	2.11E+10
36.0074 5.01E+08	0.00	404 5000	405.00	04.5	
3.0213 -9.63E-08		-124.5232	6.42E-09	8647.	2.11E+10
36.9605 5.15E+08		70 6055	4 465 00	0645	2 445 40
3.1332 -7.94E-08		-/8.6855	1.46E-08	8645.	2.11E+10
31.3114 5.30E+08		42 1244	1 (15 00	0645	2 115.10
3.2451 -5.71E-08 23.1435 5.45E+08		-42.1244	1.61E-08	8645.	2.11E+10
3.3570 -3.61E-08		16 4022	1 405 00	8645.	2 115:10
15.0337 5.59E+08	0.00	-10.4923	1.400-00	6045.	2.116+10
3.4689 -1.95E-08		-0.8087	1 055 00	8645.	2 115:10
8.3259 5.74E+08		-0.0007	1.07L-00	0040.	Z.11L+10
3.5808 -7.95E-09		7 1204	6.90F-09	8645	2.11F±10
3.4839 5.88E+08		, . <u>1</u> 20 1	0.JUL-UJ	00 4 5.	2,116710
3.6927 -9.54E-10		9 7445	3.92F-09	8645	2.11E+10
J.UJZ, J.JTL-10	+0.5057	J • / T T J	J.JZL 0J	JU7J.	2.111.10

0.4244 5.98E+08		0.2564	1 705 00	0645	2 445.40
3.8046 2.59E-09 -1.1514 5.98E+08		9.2564	1.78E-09	8645.	2.11E+10
3.9165 3.82E-09	0.00 -15.6457	7.3412	4.23E-10	8645.	2.11E+10
-1.7011 5.98E+08	0.00	7.3412	4.236-10	0043.	2.116+10
4.0284 3.72E-09	-7.3215	5.0866	-3.06E-10	8645.	2.11E+10
-1.6570 5.98E+08	0.00	3.0000	J.00L 10	00-5.	2.111.10
4.1403 3.00E-09	-1.9849	3.0779	-6.02E-10	8645.	2.11E+10
-1.3349 5.98E+08	0.00	3.07,5	0.022 20	00.51	2112:10
4.2522 2.11E-09	0.9447	1.5521	-6.35E-10	8645.	2.11E+10
-0.9376 5.98E+08	0.00				
4.3641 1.29E-09	2.1836	0.5358	-5.36E-10	8645.	2.11E+10
-0.5761 5.98E+08	0.00				
4.4760 6.69E-10	2.3838	-0.05079	-3.91E-10	8645.	2.11E+10
-0.2975 5.98E+08	0.00				
	2.0474	-0.3240	-2.50E-10	8645.	2.11E+10
-0.1094 5.98E+08	0.00				
	1.5139	-0.3967	-1.37E-10	8645.	2.11E+10
0.00106 5.98E+08	0.00		44	0.4.5	0 115 10
4.8117 -1.21E-10	0.9822	-0.3597	-5.75E-11	8645.	2.11E+10
0.05404 5.98E+08	0.00	0. 2766	0.065.13	0645	2 115.10
4.9236 -1.57E-10 0.06973 5.98E+08	0.5479 0.00	-0.2766	-8.86E-12	8645.	2.11E+10
5.0355 -1.45E-10	0.2394	-0.1864	1.61E-11	8645.	2.11E+10
0.06463 5.98E+08	0.2394	-0.1004	1.016-11	6043.	2.116+10
5.1474 -1.13E-10		-0.1091	2.52E-11	8645.	2.11E+10
0.05044 5.98E+08	0.00	0.1051	2.526 11	00-5.	2.111.10
5.2593 -7.74E-11		-0.05211	2.51E-11	8645.	2.11E+10
0.03446 5.98E+08	0.00	0000	_,,,	00.01	
5.3712 -4.61E-11		-0.01521	2.04E-11	8645.	2.11E+10
0.02051 5.98E+08	0.00				
5.4831 -2.26E-11	-0.09448	0.00532	1.45E-11	8645.	2.11E+10
0.01007 5.98E+08	0.00				
5.5950 -7.22E-12	-0.07826	0.01424	8.98E-12	8645.	2.11E+10
	0.00				
5.7069 1.50E-12		0.01595	4.71E-12	8645.	2.11E+10
-6.69E-04 5.98E+08	0.00				
5.8188 5.43E-12		0.01387	1.80E-12	8645.	2.11E+10
-0.00242 5.98E+08	0.00	0.04004		0.4.5	0 115 10
5.9307 6.34E-12		0.01036	0.00	8645.	2.11E+10
-0.00282 5.98E+08		0.00670	0.00	9645	2 115.10
6.0426 5.62E-12	-0.00762 0.00	0.00679	0.00	8645.	2.11E+10
-0.00250 5.98E+08 6.1545 4.26E-12		0 00202	-1.04E-12	9615	2 115:10
-0.00189 5.98E+08	0.00	0.00383	-1.04L-12	8043.	2.11L+10
	0.00267	0.00172	9 99	8645.	2 11F+10
	0.00	0.001/2	0.00	5075.	2.11110
6.3783 1.63E-12		3.86E-04	0.00	8645.	2.11E+10
-7.24E-04 5.98E+08		- · - · · ·			: 3
	0.00371	-3.25E-04	0.00	8645.	2.11E+10

2 255 04	5.98E+08	0.00				
6.6021		0.00297	-6.08E-04	0.00	9615	2.11E+10
	5.98E+08		-0.001-04	0.00	8045.	2.111+10
		0.00208	-6.34E-04	0.00	8645.	2.11E+10
	5.98E+08	0.00200	-0.546-04	0.00	8045.	2.111+10
	0.00	0.00127	-5.31E-04	0.00	8645.	2.11E+10
	5.98E+08	0.00	J.JIL 04	0.00	0045.	2.111110
	0.00		-3.86E-04	0.00	8645.	2.11E+10
	5.98E+08	0.00	J.00L 04	0.00	0043.	2.111.10
7.0497		2.34E-04	-2.45E-04	0.00	8645.	2.11E+10
9.62E-05		0.00	21.32 0.	0.00	00151	_,
	0.00		-1.33E-04	0.00	8645.	2.11E+10
	5.98E+08		1,332 0.	0.00	00151	_,
	0.00		-5.52E-05	0.00	8645.	2.11E+10
	5.98E+08					
	0.00		-7.55E-06	0.00	8645.	2.11E+10
	5.98E+08					
	0.00		1.68E-05	0.00	8645.	2.11E+10
1.09E-05	5.98E+08	0.00				
7.6092	0.00	-1.12E-04	2.54E-05	0.00	8645.	2.11E+10
1.99E-06	5.98E+08	0.00				
7.7211	0.00	-7.63E-05	2.50E-05	0.00	8645.	2.11E+10
-2.66E-06	5.98E+08	0.00				
7.8330	0.00	-4.51E-05	2.02E-05	0.00	8645.	2.11E+10
-4.41E-06	5.98E+08	0.00				
7.9449	0.00	-2.19E-05	1.43E-05	0.00	8645.	2.11E+10
-4.46E-06	5.98E+08	0.00				
8.0568			8.81E-06	0.00	8645.	2.11E+10
-3.67E-06	5.98E+08					
	0.00		4.58E-06	0.00	8645.	2.11E+10
-2.63E-06						
	0.00		1.72E-06	0.00	8645.	2.11E+10
-1.65E-06						
8.3925			2.48E-08	0.00	8645.	2.11E+10
-8.75E-07		0.00				
8.5044			-7.94E-07	0.00	8645.	2.11E+10
	5.98E+08	0.00	4 045 04		0445	0 115 10
8.6163			-1.04E-06	0.00	8645.	2.11E+10
	5.98E+08		0.755.07	0.00	0645	2 445.40
	0.00		-9.75E-07	0.00	8645.	2.11E+10
	5.98E+08		7 (55 07	0.00	0645	2 115.10
	0.00		-7.65E-07	0.00	8645.	2.11E+10
	5.98E+08 0.00	0.00 7.27E-07	-5.25E-07	0.00	8645.	2.11E+10
1.75E-07		0.00	-3.236-07	0.00	8043.	2.116+10
9.0639			-3.14E-07	0.00	9615	2 115:10
1.39E-07		0.00	-3.14E-0/	0.00	0043.	2.115710
9.1758		-1.16E-07	-1.56E-07	0.00	8645	2.11F+10
	5.98E+08		1.500 07	0.00	00 7 5.	2.111.10
	0.00		-5.09F-02	0.00	8645	2.11E+10
J. 20//	5.00	2.502 07	J.0JL 00	0.00	50 - 5.	2.111.10

F 00F 00	F 00F.00	0 00				
	5.98E+08 0.00		8.64E-09	0.00	9645	2 115,10
	5.98E+08	0.00	0.046-09	0.00	0045.	2.115+10
	0.00		3.58E-08	0.00	8645.	2.11E+10
	5.98E+08	0.00	3.300-00	0.00	0045.	2.115+10
	0.00		4.23E-08	0.00	8645.	2.11E+10
-7.29E-10			4.236-00	0.00	6045.	2.116+10
	0.00		3.78E-08	0.00	8645.	2.11E+10
-6.01E-09			3.700-00	0.00	0045.	2.115+10
9.8472			2.88E-08	0.00	8645.	2.11E+10
-7.46E-09			2.000-00	0.00	0045.	2.115+10
9.9591			1.92E-08	0.00	8645.	2.11E+10
-6.80E-09			1.926-08	0.00	8045.	2.115+10
10.0710			1.11E-08	0.00	8645.	2.11E+10
-5.25E-09		0.00	1.116-00	0.00	8045.	2.115+10
10.1829		6.22E-09	5.18E-09	0.00	8645.	2.11E+10
-3.55E-09			3.100-09	0.00	0045.	2.115+10
			1.39E-09	0.00	9645	2 115,10
10.2948			1.39E-09	0.00	8645.	2.11E+10
-2.09E-09		0.00 9.96E-09	-6.87E-10	0.00	9645	2 115,10
	0.00		-6.8/E-10	0.00	8645.	2.11E+10
-1.01E-09			1 565 00	0.00	0645	2 445.40
	0.00		-1.56E-09	0.00	8645.	2.11E+10
	5.98E+08		1 705 00	0.00	0645	2 115.10
	0.00		-1.70E-09	0.00	8645.	2.11E+10
	5.98E+08		1 455 00	0.00	0645	2 115.10
	0.00	3.56E-09	-1.45E-09	0.00	8645.	2.11E+10
2.77E-10		0.00	1 055 00	0.00	0645	2 445.40
	0.00	1.87E-09	-1.05E-09	0.00	8645.	2.11E+10
	5.98E+08	0.00	6 265 10	0.00	0645	2 445.40
10.9662			-6.36E-10	0.00	8645.	2.11E+10
	5.98E+08		2 705 40	0.00	0645	2 445.40
	0.00		-2.79E-10	0.00	8645.	2.11E+10
	5.98E+08		0.00	0.00	0645	0 445 40
	0.00	0.00	0.00	0.00	8645.	2.11E+10
1.77E-10	2.99E+08	0.00				

^{*} The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

```
Pile-head deflection
                                      0.00063697 inches
Computed slope at pile head
                                     -0.00021160 radians
                                =
Maximum bending moment
                                         756000. inch-lbs
Maximum shear force
                                         -93875. lbs
Depth of maximum bending moment =
                                        0.000000 feet below pile head
Depth of maximum shear force
                                      0.44760000 feet below pile head
Number of iterations
                                              6
Number of zero deflection points =
                                              11
```

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 24000. lbs
Moment = 756000. in-lbs
Axial Load = 185000. lbs

Pile Length	Pile Head Deflection	Maximum Moment	Maximum Shear
feet	inches	ln-lbs	lbs
11.19000	0.00063697	756000.	-93875.
10.63050	0.00063607	756000.	-94273.
10.07100	0.00063511	756000.	-94211.
9.51150	0.00063720	757121.	-93549.
8.95200	0.00063960	758489.	-94522.
8.39250	0.00064147	759686.	-94853.
7.83300	0.00064279	760709.	-94390.
7.27350	0.00064357	761555.	-95132.
6.71400	0.00064382	762222.	-95027.
6.15450	0.00064354	762709.	-95441.
5.59500	0.00064274	763015.	-95347.
5.03550	0.00064201	763137.	-95422.
4.47600	0.00064366	763070.	-95518.
3.91650	0.00064391	762825.	-95816.
3.35700	0.00064327	762398.	-95844.
2.79750	0.00064394	762996.	-95941.
2.23800	0.00064404	763061.	-96007.
1.67850	0.00064494	763115.	-96016.
1.11900	0.00065217	763040.	-97665.
1.11900	0.000000	798740293.	-2974159565.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

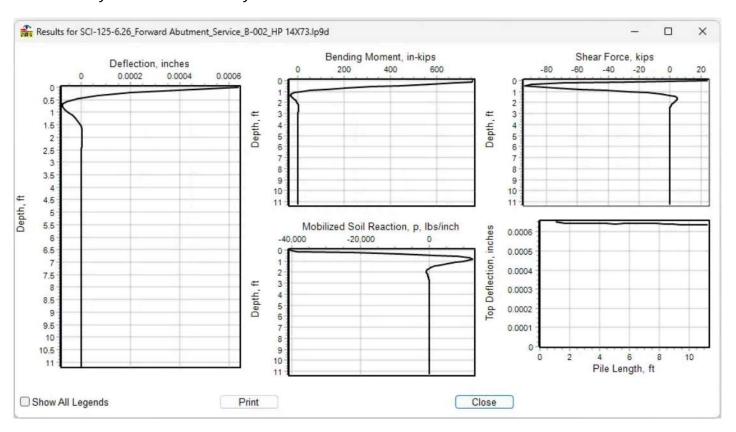
```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians
```

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Moment						
Case Type Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in
Pile in Pile			_			
No. 1 Load 1	2	Load 2	lbs	inches	radians	lbs
in-lbs						
1 V, lb 24000.	M, in-lb	756000.	185000.	6.37E-04	-2.12E-04	
-93875. 756000.	-					

Maximum pile-head deflection = 0.0006369677 inches

Maximum pile-head rotation = -0.0002116041 radians = -0.012124 deg.

Summary of Warning Messages



The following warning was reported 10000 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 1000 psi. Please check your input data for correctness.

The analysis ended normally.

LPile for Windows, Version 2016-09.003

Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
© 1985-2015 by Ensoft, Inc.
All Rights Reserved

This copy of LPile is being used by:

NEAS

Columbus

Serial Number of Security Device: 136151274

This copy of LPile is licensed for exclusive use by:

Barr Engineering, Inc., Cincinna

Use of this program by any entity other than Barr Engineering, Inc., Cincinna is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:

\24-0002 SCI-125-6.26 LAW-378-4.84 PID

Name of input data file:

SCI-125-6.26_Forward Abutment_Strength_B-002_HP 14X73.lp9d

Name of output report file:

SCI-125-6.26_Forward Abutment_Strength_B-002_HP 14X73.lp9o

Name of plot output file:

SCI-125-6.26_Forward Abutment_Strength_B-002_HP 14X73.lp9p

Name of runtime message file:

SCI-125-6.26_Forward Abutment_Strength_B-002_HP 14X73.lp9r

Date: January 28, 2025 Time: 13:30:40 Problem Title Project Name: SCI-125-6.26 Job Number: Client: American Structurepoint / ODOT Engineer: DT Description: Forward Abutment - B-002-0-23 Program Options and Settings Computational Options: - Use unfactored loads in computations (conventional analysis) Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection 100.0000 in = - Number of pile increments 100

Loading Type and Number of Cycles of Loading:

- Static loading specified

- Use of p-y modification factors for p-y curves not selected
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties a	nd Geometry

Number of pile sections defined = 1
Total length of pile = 11.190 ft
Depth of ground surface below top of pile = 0.0000 ft

Pile diameters used for p-y curve computations are defined using 2 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

= Strong H-Pile

11.190000 ft

14.600000 in

	Depth Below	Pile
Point	Pile Head	Diameter
No.	feet	inches
1	0.000	14.6000
2	11.190	14.6000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section Flange Width

=	13.600000	in
=	0.505000	in
=	0.505000	in
=	21.400000	sq. in
=	729.000000	in^4
=	29000000.	psi
	= = =	= 13.600000 = 0.505000 = 0.505000 = 21.400000 = 729.0000000 = 290000000.

Ground Slope and Pile Batter Angles

Ground Slope Angle = 0.000 degrees
= 0.000 radians

Pile Batter Angle = 0.000 degrees
= 0.000 radians

Soil and Rock Layering Information

The soil profile is modelled using 1 layers

Layer 1 is weak rock, p-y criteria by Reese, 1997

```
Distance from top of pile to top of layer
                                                                         0.0000 ft
                                                             = 11.190000 ft
Distance from top of pile to bottom of layer
                                                              = 96.500000 pcf
Effective unit weight at top of layer
Uniaxial compressive strength at top of layer = 96.500000 pcf = 9869. psi
Uniaxial compressive strength at top of layer = 9869. psi
Initial modulus of rock at top of layer = 890000. psi
The strength at bottom of layer = 890000. psi
Strength at bottom of layer = 890000. psi
                                                              = 63.000000 %
RQD of rock at top of layer
RQD of rock at bottom of layer
                                                              = 63.000000 %
k rm of rock at top of layer
                                                              = 0.0000500
k rm of rock at bottom of layer
                                                                      0.0000500
```

(Depth of the lowest soil layer extends 0.000 ft below the pile tip)

Summary of Input Soil Properties

Layer	Soil Type	Layer	Effective	Uniaxial	
E50	Rock Mass				
Layer	Name	Depth	Unit Wt.	qu	RQD %
or	Modulus	·		·	
Num.	(p-y Curve Type)	ft	pcf	psi	
krm	psi		•	•	
1	Weak	0.00	96.5000	9869.	63.0000
5.00E-05	890000.				
	Rock	11.1900	96.5000	9869.	63.0000
5.00E-05	890000.				

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 1

Load	Load		Condition		Condition	Axial Thrust
Compute No. vs. Pil	Type		1		2	Force, lbs
1	1	V =	35000. lbs	M =	1116000. in-lbs	256000.
Yes	;					

V = shear force applied normal to pile axis

M = bending moment applied to pile head

y = lateral deflection normal to pile axis

S = pile slope relative to original pile batter angle

R = rotational stiffness applied to pile head

Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).

Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Avial thrust force values were determined from nile head leading conditions

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Moment-curvature properties were derived from elastic section properties

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head = 35000.0 lbs

Applied moment at pile head = 1116000.0 in-lbs

Axial thrust load on pile head = 256000.0 lbs

Depth Deflect.		Shear	Slope	Total	Bending	Soil
Res. Soil Spr. Distr X y		Force	S	Stress	Stiffness	n
Es*h Lat. Lo		. 0. 22	3	36.633	5011111055	Р
feet inches		lbs	radians	psi*	in-1b^2	
lb/inch lb/inch				•		
0.00 0.00108		35000.	-3.35E-04	23138.	2.11E+10	
-46095. 2.87E+07 0.1119 6.76E-04		27040	2 645 04	22102	2 115,10	
-46310. 9.20E+07		-27040.	-2.04E-04	23193.	2.116+10	
0.2238 3.70E-04		-85642	-1 95F-04	22413	2 11F+10	
-40973. 1.49E+08		030-2.	1.552 04	22413.	2.111.10	
0.3357 1.52E-04		-125612.	-1.33E-04	20892.	2.11E+10	
-18559. 1.63E+08						
0.4476 1.12E-05	706310.	-139073.	-8.27E-05	19035.	2.11E+10	
-1491. 1.78E+08						
0.5595 -6.97E-05		-133353.	-4.38E-05	17152.	2.11E+10	
10011. 1.93E+08						
0.6714 -1.06E-04		-115585.	-1.63E-05	15449.	2.11E+10	
16452. 2.07E+08		01020	1 245 06	14044	2 445.40	
0.7833 -1.14E-04		-91929.	1.34E-06	14044.	2.11E+10	
18783. 2.22E+08		-67136	1 12F_05	12977	2 11F±10	
0.8952 -1.03E-04	101325.	-67136.	1.12E-05	12977.	2.11E+10	

18143. 2.37E+08		44446	4 505 05	42220	2 445 40
1.0071 -8.36E-05		-44446.	1.52E-05	12238.	2.11E+10
15653. 2.51E+08 1.1190 -6.20E-05	0.00	25605	1.55E-05	12142	2.11E+10
1.1190 -6.20E-05 12275. 2.66E+08	-18049. 0.00	-25695.	1.556-05	12143.	2.115+10
1.2309 -4.18E-05		-11580.	1.37E-05	12378.	2.11E+10
8748. 2.81E+08	0.00	-11380.	1.376-03	12378.	2.11L+10
1.3428 -2.53E-05		-1974.	1.08E-05	12455.	2.11E+10
5559. 2.95E+08	0.00	1374.	1.002 03	12433.	2.111.10
1.4547 -1.29E-05		3757.	7.73E-06	12431.	2.11E+10
2977. 3.10E+08		3,3,,	7.732 00		
1.5666 -4.51E-06		6488.	5.00E-06	12354.	2.11E+10
1090. 3.25E+08					
1.6785 5.45E-07		7128.	2.83E-06	12257.	2.11E+10
-137.8208 3.39E+08	0.00		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1.7904 3.09E-06		6487.	1.26E-06	12162.	2.11E+10
-815.5814 3.54E+08	0.00				
	-11957.	5213.	2.52E-07	12082.	2.11E+10
-1082. 3.69E+08	0.00				
2.0142 3.77E-06	-5932.	3764.	-3.16E-07	12022.	2.11E+10
-1076. 3.83E+08	0.00				
2.1261 3.09E-06	-1848.	2426.	-5.63E-07	11981.	2.11E+10
-916.7118 3.98E+08	0.00				
2.2380 2.26E-06	583.5731	1345.	-6.03E-07	11968.	2.11E+10
-693.8954 4.13E+08	0.00				
2.3499 1.47E-06	1764.	563.9927	-5.29E-07	11980.	2.11E+10
-468.6904 4.27E+08	0.00				
2.4618 8.38E-07	2099.	64.1076	-4.06E-07	11984.	2.11E+10
-275.8510 4.42E+08	0.00				
2.5737 3.82E-07	1936.	-208.3912	-2.78E-07	11982.	2.11E+10
-130.0157 4.57E+08	0.00				
2.6856 9.17E-08	1539.	-317.2903	-1.68E-07	11978.	2.11E+10
-32.1813 4.71E+08	0.00				
2.7975 -6.77E-08	1084.	-322.4498	-8.43E-08	11973.	2.11E+10
24.4967 4.86E+08	0.00				
2.9094 -1.35E-07	673.2181	-272.3071	-2.85E-08	11969.	2.11E+10
50.1871 5.01E+08	0.00				
3.0213 -1.44E-07	352.8130	-201.4776	4.12E-09	11966.	2.11E+10
55.3082 5.15E+08	0.00				
3.1332 -1.24E-07		-131.6041	1.95E-08	11964.	2.11E+10
48.7632 5.30E+08	0.00				
3.2451 -9.17E-08	-0.6363	-73.8889	2.37E-08	11963.	2.11E+10
37.1993 5.45E+08	0.00				
3.3570 -5.99E-08		-32.1531	2.16E-08	11963.	2.11E+10
	0.00				
3.4689 -3.38E-08		-5.6910	1.67E-08	11963.	2.11E+10
14.4502 5.74E+08	0.00				
3.5808 -1.51E-08		8.4549	1.13E-08	11963.	2.11E+10
6.6190 5.88E+08					
3.6927 -3.35E-09	-64.3027	13.9007	6.71E-09	11963.	2.11E+10

1.4921 5.98E+08		14 0222	2 265 00	11062	2 115.10
3.8046 2.91E-09 -1.2961 5.98E+08	-44.2932 0.00	14.0323	3.26E-09	11963.	2.11E+10
3.9165 5.40E-09		11.5486	1.01E-09	11963.	2.11E+10
-2.4032 5.98E+08	0.00	11.5460	1.016-09	11903.	2.116+10
4.0284 5.62E-09		8.2566	-2.60E-10	11963.	2.11E+10
-2.5000 5.98E+08	0.00	0.2500	2.001 10	11000.	2.111.110
4.1403 4.70E-09		5.1729	-8.23E-10	11963.	2.11E+10
-2.0928 5.98E+08	0.00	3.1,23	0.232 10	11303.	2.111.10
4.2522 3.41E-09		2.7493	-9.44E-10	11963.	2.11E+10
-1.5169 5.98E+08	0.00				
4.3641 2.17E-09		1.0835	-8.31E-10	11963.	2.11E+10
-0.9643 5.98E+08	0.00				
4.4760 1.18E-09		0.08476	-6.26E-10	11963.	2.11E+10
-0.5232 5.98E+08	0.00				
4.5879 4.85E-10	3.1666	-0.4114	-4.14E-10	11963.	2.11E+10
-0.2159 5.98E+08	0.00				
4.6998 6.45E-11	2.4196	-0.5757	-2.36E-10	11963.	2.11E+10
-0.02872 5.98E+08	0.00				
4.8117 -1.50E-10	1.6208	-0.5502	-1.08E-10	11963.	2.11E+10
0.06660 5.98E+08	0.00				
4.9236 -2.26E-10	0.9420	-0.4381	-2.67E-11	11963.	2.11E+10
0.1004 5.98E+08	0.00				
5.0355 -2.21E-10	0.4442	-0.3046	1.74E-11	11963.	2.11E+10
0.09845 5.98E+08	0.00				
5.1474 -1.79E-10	0.1239	-0.1850	3.54E-11	11963.	2.11E+10
0.07964 5.98E+08	0.00				
5.2593 -1.26E-10	-0.05279	-0.09389	3.77E-11	11963.	2.11E+10
0.05613 5.98E+08	0.00				
5.3712 -7.78E-11	-0.1283	-0.03296	3.19E-11	11963.	2.11E+10
0.03462 5.98E+08	0.00				
5.4831 -4.04E-11	-0.1413	0.00236	2.34E-11	11963.	2.11E+10
	0.00				
	-0.1220	0.01893	1.50E-11	11963.	2.11E+10
0.00671 5.98E+08	0.00				
5.7069 0.00	-0.09050	0.02347	8.25E-12	11963.	2.11E+10
6.12E-05 5.98E+08	0.00				
5.8188 7.08E-12		0.02140	3.50E-12	11963.	2.11E+10
-0.00315 5.98E+08	0.00				
5.9307 9.27E-12	-0.03303	0.01652	0.00	11963.	2.11E+10
-0.00412 5.98E+08	0.00				
6.0426 8.64E-12	-0.01456	0.01117	0.00	11963.	2.11E+10
-0.00384 5.98E+08	0.00				
6.1545 6.77E-12		0.00657	-1.49E-12	11963.	2.11E+10
-0.00301 5.98E+08	0.00				
6.2664 4.64E-12	0.00307	0.00316	-1.49E-12	11963.	2.11E+10
-0.00206 5.98E+08	0.00	0 445 5	4 00=	440	0.44=
	0.00545	9.44E-04	-1.22E-12	11963.	2.11E+10
-0.00123 5.98E+08	0.00	2 02= 2:	2 22	44050	0.44= 45
6.4902 1.37E-12	0.00561	-2.93E-04	0.00	11963.	2.11E+10

_6 10E_0/	5.98E+08	0 00				
6.6021		0.00467	_8 35F_0/	0.00	11063	2.11E+10
	5.98E+08	0.00	0.556 04	0.00	11707.	2.111.10
	0.00		-9.45E-04	0.00	11963.	2.11E+10
	5.98E+08		31.132 0.	0.00		_,
		0.00213	-8.26E-04	0.00	11963.	2.11E+10
	5.98E+08	0.00				
6.9378	0.00	0.00115	-6.19E-04	0.00	11963.	2.11E+10
1.67E-04	5.98E+08	0.00				
7.0497	0.00	4.65E-04	-4.07E-04	0.00	11963.	2.11E+10
1.49E-04	5.98E+08	0.00				
7.1616	0.00	5.32E-05	-2.31E-04	0.00	11963.	2.11E+10
1.13E-04	5.98E+08	0.00				
	0.00		-1.04E-04	0.00	11963.	2.11E+10
	5.98E+08					
	0.00		-2.44E-05	0.00	11963.	2.11E+10
	5.98E+08					
	0.00		1.85E-05	0.00	11963.	2.11E+10
	5.98E+08		2 505 05	0.00	11063	2 445.40
	0.00		3.58E-05	0.00	11963.	2.11E+10
	5.98E+08		2 765 05	0.00	11063	2 115.10
	0.00 5.98E+08		3.76E-05	0.00	11963.	2.11E+10
	0.00		3.17E-05	0.00	11963.	2.11E+10
-6.15E-06		0.00	3.1/6-03	0.00	11905.	2.116+10
7.9449			2.31E-05	0.00	11963.	2.11E+10
-6.68E-06			2.316-03	0.00	11903.	2.116+10
8.0568			1.47E-05	0.00	11963.	2.11E+10
-5.73E-06		0.00	1.472 03	0.00	11000.	2.111.10
	0.00		8.04E-06	0.00	11963.	2.11E+10
-4.23E-06		0.00	0.0.2	0.00		_,
	0.00		3.37E-06	0.00	11963.	2.11E+10
-2.74E-06						
8.3925	0.00	9.30E-06	5.02E-07	0.00	11963.	2.11E+10
-1.53E-06	5.98E+08	0.00				
8.5044	0.00	8.60E-06	-9.68E-07	0.00	11963.	2.11E+10
-6.64E-07	5.98E+08	0.00				
8.6163	0.00	6.70E-06	-1.50E-06	0.00	11963.	2.11E+10
-1.28E-07	5.98E+08					
	0.00		-1.48E-06	0.00	11963.	2.11E+10
	5.98E+08					
	0.00		-1.21E-06	0.00	11963.	2.11E+10
	5.98E+08					
	0.00		-8.54E-07	0.00	11963.	2.11E+10
	5.98E+08	0.00			44040	0 445 40
			-5.29E-07	0.00	11963.	2.11E+10
	5.98E+08		2 775 07	0.00	11063	2 145.42
9.1758			-2.//E-0/	0.00	11963.	2.11E+10
	5.98E+08		1 055 07	0 00	11062	2 115:10
9.28//	0.00	-3.24E-0/	-1.02E-0/	0.00	11903.	2.11E+10

9.88E-08	5.98E+08	0.00				
9.3996	0.00	-3.76E-07	-3.36E-09	0.00	11963.	2.11E+10
5.28E-08	5.98E+08	0.00				
9.5115	0.00	-3.33E-07	4.63E-08	0.00	11963.	2.11E+10
2.11E-08	5.98E+08	0.00				
9.6234	0.00	-2.52E-07	6.18E-08	0.00	11963.	2.11E+10
1.99E-09	5.98E+08	0.00				
9.7353	0.00	-1.67E-07	5.80E-08	0.00	11963.	2.11E+10
-7.57E-09	5.98E+08	0.00				
9.8472	0.00	-9.58E-08	4.57E-08	0.00	11963.	2.11E+10
-1.08E-08	5.98E+08	0.00				
9.9591	0.00	-4.42E-08	3.14E-08	0.00	11963.	2.11E+10
-1.04E-08	5.98E+08					
10.0710			1.89E-08	0.00	11963.	2.11E+10
-8.32E-09						
10.1829			9.40E-09	0.00	11963.	2.11E+10
-5.81E-09		0.00				
10.2948			3.12E-09	0.00	11963.	2.11E+10
-3.54E-09		0.00				
10.4067			-4.71E-10	0.00	11963.	2.11E+10
-1.81E-09						
10.5186			-2.12E-09	0.00	11963.	2.11E+10
	5.98E+08	0.00				
	0.00	9.25E-09	-2.53E-09	0.00	11963.	2.11E+10
	5.98E+08	0.00				
	0.00		-2.26E-09	0.00	11963.	2.11E+10
	5.98E+08					
	0.00		-1.70E-09	0.00	11963.	2.11E+10
4.75E-10		0.00				
	0.00	1.32E-09	-1.07E-09	0.00	11963.	2.11E+10
4.63E-10		0.00				
	0.00		-4.90E-10	0.00	11963.	2.11E+10
	5.98E+08	0.00				
11.1900		0.00	0.00	0.00	11963.	2.11E+10
3.28E-10	2.99E+08	0.00				

^{*} The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

```
Pile-head deflection
                                      0.00107789 inches
Computed slope at pile head
                                      -0.00033476 radians
                                =
Maximum bending moment
                                         1121544. inch-lbs
Maximum shear force
                                         -139073. lbs
Depth of maximum bending moment =
                                      0.11190000 feet below pile head
Depth of maximum shear force
                                      0.44760000 feet below pile head
Number of iterations
                                               6
Number of zero deflection points =
                                              11
```

._____

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

Shear = 35000. lbs
Moment = 1116000. in-lbs
Axial Load = 256000. lbs

Pile Length feet	Pile Head Deflection inches	Maximum Moment ln-lbs	Maximum Shear lbs
11.19000	0.00107789	1121544.	-139073.
10.63050	0.00107456	1123275.	-138634.
10.07100	0.00107325	1124749.	-138655.
9.51150	0.00107832	1125981.	-139775.
8.95200	0.00108203	1127039.	-139825.
8.39250	0.00108380	1127904.	-139109.
7.83300	0.00108360	1128574.	-140455.
7.27350	0.00108145	1129043.	-140306.
6.71400	0.00108027	1129286.	-140936.
6.15450	0.00108375	1129313.	-140383.
5.59500	0.00108372	1129146.	-141061.
5.03550	0.00108245	1128769.	-141340.
4.47600	0.00108418	1128182.	-141316.
3.91650	0.00108398	1128503.	-141525.
3.35700	0.00108382	1129231.	-141633.
2.79750	0.00108436	1129117.	-141611.
2.23800	0.00108434	1129221.	-141777.
1.67850	0.00108635	1129212.	-141756.
1.11900	0.00110741	1129130.	-145902.
1.11900	0.000000	1352318590.	-5035443067.

Summary of Pile-head Responses for Conventional Analyses

Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

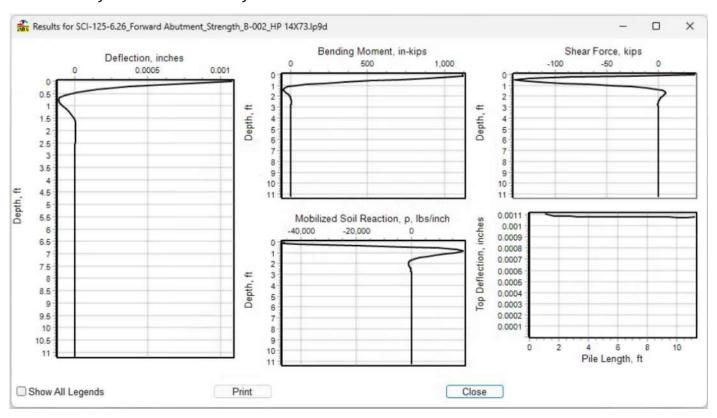
Definitions of Pile-head Loading Conditions:

```
Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians
Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs
```

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Moment						
Case Type Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in
Pile in Pile						
No. 1 Load 1	2	Load 2	lbs	inches	radians	lbs
in-lbs						
1 V, lb 35000.	M, in-lb	1116000.	256000.	0.00108	-3.35E-04	
-139073. 1121544.						

Maximum pile-head deflection = 0.0010778857 inches

Maximum pile-head rotation = -0.0003347569 radians = -0.019180 deg.


Summary of Warning Messages

The following warning was reported 10000 times

**** Warning ****

An unreasonable input value for unconfined compressive strength has been specified for a soil defined using the weak rock criteria. The input value is greater than 1000 psi. Please check your input data for correctness.

The analysis ended normally.

