

EXISTING LEGEND

(A) I"peinforced Portland Cement Concrete Pavement
(B) Subbase.
(C) Waterprooted Aggregate Base
(D) Aggregate Base.
(E) 6"Pipe underdiain
(F) No. 6 Aqgregate

PROPOSED LEGEND
(1) Item 848 1/4"Asphalt Concrete Surface Course Type 1, AC-20
(2) Item 848 IN2"Asphalt Concrete Intermediate Course Type 2, AC-20
(3) Item 407 Tack Coat with Cover Agqregate
(4) Item 617 peconditioning Shoulders haluding Shoulder Preparation
(5) Item 606 Guard Rail Trpe 5

TYPIGAL SECTIONS

US.e. cala interchange Ramps "q" "p"

Deduct for Structure ~Bridge VAN- 30 -1008 ETFansitions

EXISTING LEGEND

(A) $9 "$ Reinforced Portland cement
(B) Subbose
(C) waterproofed Agqregate Base
(D) Agqreqate Base
(E) 6" Pipe Underdrain
(F) No. 6 Agqregate
(6) Portland Cement concrete

PROPOSED LEGEND
(1) Item 848 III" Asphalt Concrete Surface Course, AC.20
(2.) Item $84811 e^{\circ}$ Asphalt Concrete Intermediate Course

3 Iten type 2, AC. 20
3 Item 401 Tock coat with Cover Agqregate
(4) Item 617 Recondifioning shoulders Including (5) Iten bab ardair

STATIONING The Stations within the limits of this proiect have been established from the plans of former
constuction ppojects Copies of these plans are on file at the District one Office of the Ohio Department construction projects Copies or
of transportation, Lima, ohio.
CONTINGENCY QUANUTITIES W The Contractor shall not order materials or perform work for plan ittens set up
to be used as divected by the Engineer unless authorized by the Engineer The actual work locations and quantities used at the Enqineers discretion shall be made a matter of vecord by incorporation into
FIELD OFFICE The Contuactor shall provide a suitable Field Office having a minimum of 800 Sq Ft of
floor space. Payment shall be at the lump sum price bid for ltem 619 Field Office.
pIDE UNDERDRAMS Why Pipe Underdivains, buoken or damaged as a vesult of construction operations shall
be replaced by the Confractor at no cost to the State of chic.
WATERING PERMANENT SEEDED AREAS WTh following estimated quantity, is to be used as divected by the
Engineer to promote growth and to care for the permanent seeded areas as per 659.09 ; 659 water 10 M Gallon.

ITEM 617 WATER (COMPACTING AGGREGATE) An estimated quantity of 50 M . Gal. of water is included in
this item to aid compaction. Its use shall be as divected by the Gigineer.
ITEM 407 TACK COAT- The Tock Coat and Cover Aqqueqate Operation shall be determined as per Spec 40705
Plan quantitive indicate average application ratt of Goio Galons per Square Yard of Tack Coat and Pounds Plon quantities indicate arerage application rate of 010 Gallons par
per square yard of cover Agquegate for estimating purposes only.
ITEM 848 , ASPHALT CONCRETE O O this project Supplemental Specification 848 , Table 2 -2 properties of mixtures
for heary traffic volume shall apply.
GUARO RAIL REPLACEMENT NO hazard shall be left unprotected except for the actual time necessary
 site, veady for installation. Failure to comply with this requirement shall be deemed sufficient cau
work suspended on this project until such time that the Engineer is assured of said compliance.
ELEVATION DATUM The Elevations shown in these plans ave not based on USGS Datum. Pather ther are based
on assumed Bench Mars noted throughout the polans. The Elevations derived from one parficular Bench Mark on assumed Bench Mavks noted throughout the plons. The Elevations derived fwom one particular Bench Mavk
ape not welative to any Elevations devived trom another Bench Mart unless both Bench Marks are in the same ave not velative to any
geneval work areas.
PROFILE~ The Profile of the prooosed Asphalt Concrete shall be approximately $23 / 4{ }^{\circ}$ (inches) above that of the
existing pavement except as otherwise noted. herwise noted.
UTILITY OWNERSHIP o The following Utilities and Owners are located within the work limits of this project.
pipe Line - Michigan \& wiscongin Pipe line Co, 20095 Gilbert Biq Rapids mich 49307 (313) $965-16 / 6$ Pipe Line - Michigan ti wisconbin Pipe line Lo, 20095 Gilbert, Big Rapids Mich. 49307 (31/3) 965-1616
Electuic \& Telephione-Ohio Dept of Transpontation, 2100 N. West St. Rd, Lima, Ohio 45801 (419) 222-9055
UNDERGPOUND UTILITIES. The locations of the underquound Utilities shown on the plans are as obtained from
the owners of the utility as requived by Section 153.64 ORC.
UTILITIES NOTIFICATION At least two working davs prior to commencing construction operations in an area
which may involve underquaund utility facilitles, the Contuactor shall notisy the Puoject Engineet, the reqist-

 utility facilities in the construction area in such manner as to indicate their course together with the approx
imate depth at which they weve installed The marking or locating shall be coordinated to stay approximately
two days ahead of the planned construction.

310 SUBBASE , Iheras of pavement replacement where unsuitable subarade material is encountered is 400 Cu Yo of 310 subbase Guading on to be used as dijected by the Enqineer for subgrade replacement
ine cost of removing and disosing of the unsuitable subgrade and the pestiaping of the subgrade will be in The cost of removing and disposing of the unsuitable subgrade and the reshon
cluded in the unit pilice bid for 318 Subbase, Type! Grading A, as per plan.
ITEM SPECIAL, PAVEMENT SAWING The areas of povement repair shall be outlined genevally rectorqular in shape with paint prion to the stant of pavement sawing The existing wigid pavement shall be sawied full
defth os detailed on sheet a The contractor may elect to make additional cuts to facilitate the vemoval

 ent edition and the application standauds appeaving in these plans ithe contwactorestshall furbinhays place and maintain yellow alternating Flasher Beacon Lights on all "Road Construction Ahead signs when and as dip
ected by Khe Engineer shall be understood that the cost of Electrical Services shall be incuded in the lump

an
The maximum lenqth of any one lane traffic zone shall be two miles. The minimum distance between one
lanes shall be two miles. Iane tuatfic zones shal be two mires Berms shall be peuformed by the Contuactor from 4:00 PM Friday to $6: 00$
No work on 30 pavement or
 lighting, eft. shall be includedthm the lump sum bid Ittem Gia Maintaining signaffic. bavicades, cones, mavkevs, special There shall not be more than one proposed course placed on existring pavement or shoulders before adia
cert ocurges are placed. Permanent pavement marking shall be placed with in three weeks after completion of cent courses are plac
final luntac Couvses.
Al
twaffic shums be equ bupped with tipe "c" steady burn bavricade warning lights in accordance with ane in use by

 Law Enforcement officer with pativol car shall be present to assist in traffic control operations. The
contractor may at his option use such a Law Eiforcement Officer with Patrol Car to assist in Traffic Con contractother times. of option use such a law Entorcement officer with patrol can to assist in tratic con

 While Pavement Repair is being conducted on the ramps at the US 2at interchanqe the vamps shall be
cosed to traffic. No vamp shall be closed tor more than tifteen days. The contractor shall contact the District One Operations Engineer at the ohio Department of Transportation. Lima, Ohio, seven days prior to beqinning ave
ment Repaij on the vamps to allow for defours to be set up. ment Repaii on the ramps to allow for defours to be set ip.
Before removing existing Guard Rail foom the bridge
 of 2750.00 Lin, Ft of Tye 6 Guard Pail has been included in the General Summary for temporary puotection at vides.
and wemove the tempowary Guava' pail as well as the cost of tralfic control in a aministeving the temporwary por install
shall
ALTERNATE METHOOS. If He Contractor so elects, he may submit Alternate Methods for Maintenance of
 n shall
Jonvt
ITEM SPECIAL, PARTIAL DEPTH PAVEMENT REPAIR The small spalling oveas, where full depth pavement
vepaivis is not necessary shall be chipped out cleaned using compressed aik and tacked in acciondance with

general notes

CATCH BASIN, WITHOUT APRON, AS PER PLAN ANy Embantment required around the proposed Catch Basin due
to existing concuete pad vemoval on washout shall be included in the unit price bid fou Catch Basin Sto No. 1 . to existing concuete pad removal or washout shall be included in the unit price bid for Catch Basin Stod No.
(on Std. No. 5), Without Apron, As Per Plan. Topsoil will be used for backfill priou to placing sod around the proposed C. B.
LOCATION of GUARO RAll ~ The locations of Guaud Rail muns as shown in these plans ave subiect to adjust
ment puion to timal acceptance. The Gigineer shall be satistied that all installations will aftomd maximum ment prion to timal ac
CONNECTION TO EXISTING PIPE ~ Where the plans provide for proposed conduit to be connected to or to cuoss
either oven on under an existing sewer, it shall be the responsibility of the contractor to locate the existing
 conduit ltems.

FASTENING OF BRIDGE TERMINAL ASSEMBLIES ~Buidge terminal assemblies which are to be fastened
to existing concuete parapets by steel box blockouts shall be attached by means of through bolts tepansion to existing concuete parapets by steel box blocka
anchou bolts wiln
where self duilling anchiths are permitted and are used the holes shall be duilled with the tubular expansion she sell uather thing anchors whe permitted and are used the holes shall be drilled with the tubular expan-
face of the concrete. face of the concuete. by expansion bolts to a deteriorated concuete sur face would result in a questionable
attachment, Hrough bats shall be veed intead, at the drcietion of the ungee,
GUARO RAIL REMOVEO FOR STORAGE Guavd Rail, including all post and accessories designated tor vemoval on thal not considered saivageable shall be disposed of as divected Allect post holes shall be cavetully Ailled

CATCH BASIN REMOVEO The existing concuete pads avound the Catch Basins to be vemoved ave consideved to be
part of the Catch Basin and will be vemoved with the Catch Basin. The pad sizes ave cenevally exil4 ${ }^{\prime \prime \prime}$ Castings

PRE-CAST CATCH BASINS - In the event the Contractor elects to use Pue-cast Catch Basins it shall be the vespon sibility of the Contractor to determine from the elevations on the plans whether or not the prie-cast catch Basin
top will clear the conduit in the catch Basin. Should adequate cleavance not exist the contractor shall provide clearance by sawing the Pre-cast top to tit over the conduit at no additional expense to the State.

GUARO PAIL TYPE 5 S' $31 / 2$ POST

Remen	state	promer	
5	OHio		

VAN WEPT COUNZ
VAN-30-4.05

When obstacles are less than 4' fuom the face of Guard Rail additional
 Payment for alladitional Guard Pail posts, spacer blocks, hardware and abou necessary to install the additional Guard Rail
For Locations whene additional Guand Pail Posts are necessary, see Sheets 36447 TEMPOPAPY GUARDPAIL PROTECTION AT BPIDGES

MISCELLANEOUS COMPUTATIONS 659 Seeding and Mulching (from Table)= 8773 Sq.yd beduct for Piens. Net Seeding and Mulching
659 Commevcial Fertilizer:
(8745)(9) (IIOOO)(20) (/2000)

BRIDGE GUAPDRAIL POST DETAIL
** The Contractor shall determine

Bridge Guardrail Post Disting anction bot

THE LENGTH OF ALL PAVEMENT REPAIRS WILL BE 10 (TEN)FEET

NOTE: All locations of part't repains will be marked by the "Engineen"
prion to the start of any construction.

EXISTING LEGENO

(A) I"Reinforced Portland cement concrete Pavement
(B) Subbase

PPOPOSED LEGEND
(1) Item sas III"Asphalt Concrete surface Course, Typel, Ac-20
(2) Item 848 IVI?"Asphalt Concrete Intermediate Counse, type 2, AC-20
(3) Item a0r Tack Coot with Coven Aggregate
(6) Item $30515^{\prime \prime}$ Pontland Cement Concrete Base (5ee Proposal Note)

LONGITUDINAL AGGREGATE DRAINS

AGGREGATE DRAIN "AS PER PLAN".

- - The lenath of Hem 301 shall equal the wiath of Hem 605 Aqquegate Drain
as per plan tome of excavation oisposal of materia, them 301 material and Placing of tem 301 material shall all be included in the unit price bid per inear to the Edge of Pavement.
* = Mainline; For location of pipe underdrain on Ramps,
\# = Mainline; $3^{\prime} 0^{\prime \prime}$ on Ramps.
\#\#s The I2"aditional Longitudinal Drain lenath shall apply at

$605 \angle O N G I T U D I N A L ~ A G G R E G A T E ~ D R A I N, ~ A S ~ P E R ~ P L A N ~-~-~$ In addition to the provisions of ltem 605 , the following shall apply to this item.
the cross-hatched avea noted above shall be excavated to a depth d"and back

material shall all ine incuder in the unis price bia per tinear foot or the pavement edge.

PROPOSED LEGEND
(1) Hem 848 Asphalt Concrete Surface Course, Type 1, AC-zo
(2) Hegr 848 Asphalt Concuete intermediate Course, Trpe 2, AC-20
(3) Item 407 Tack Coat with Cover Aggregate.
(4) Item 6in Reconditioning shoulder Including Shoulder Preparation,
(9) Item 605 Loninitudinal Aqquegate Drain, as per plan.
(10) Item 301 Bituminous Aqqregate Base, AC-20, RT-11 or RT-12. (cost Bituminous Agqregate base AC-20, RT-1/ or RT-12. (cost
to be included in the unit price bid of Item 605 Cong-
itudinal Agquegate Drain, as per plan.
(11) Item 301 Bituminous Agquegate Base, AC-20, RT-II on RT-12. (cost

(12) Item 605 Aqquegate Orain as per plan.
(21) Item 605 3"perforated Corrugated Polyethylene Drainage Tubing, 707151 cost asper plan)

PAVEMENT TABLE
 RAMPS \& AT-GRADE INTEREETIONS"

U.S. 30 ~ Mainline
Pavement Factors

$=01851 / 85$ Culd/linf
$=0.22 a 22$
$=$

$=0.030804$ cuyd IUNF
$=0.037037$ cud
$=0.0$

$=0.404341$ Sival linf

Transition Factors

848, Type 2: (1/2)(1.50+10)(1/1) (20)(1)(1/27)
407 Tock cost (10)(1) (1) (0) (0.10)
407 Cover Aggregate: (IIO)(I)(1/1) (7/roa0)

- 0.389661 Curdal Ftor
- 0.07761 cuxtliftor
$=$ =.cz2z2z Width orf or
$=0.082778$ Ton Fht or
wioth

848, Type 2: $(12)(150+10)(112)(25)(1)(1127)=$ width
407 Tack Coat: (137.50) (I) (10) (0.10)
107 Cover Aggregate: $(137.50)(1)(1 / 9)(7)$ (12000) $=0.053122$ Widm

848, $\mathrm{Jype2}:(112)(1.50+1.0)(11 / 2)(25)(1)(1 / 27)$
407 Tock coat: (137.50)(1)(1/0) (0.10)
- 0.487076 culd/ftior
$=1.527778$ Width Ftor
407 Cover Aggregate: (13750)(1) (1/3) (Tl/2000)=0.053472 Tori Fht
 848, Type $\because(1 / 2)(1.50+10)(1 / 1)(6)(1)(1 / 27) \quad=0.023148$ Cu Yod/ftot
407 Trok Coat. (30) (1) (1/0) (0.10)
a32333 Wiath 407 cover Aggregate: (30) (I) (1/1) (7le000)
$=0.01667$ Width Ffor
 - 0.339506 cuvd/Ft.
 607 Trok Coat (1)(70) (119)(0.10) $\quad=0.777778$ of will fit 407 cover Aggregate: (I) (70) (ili) (V/2000) $=0.027228$ Fon Fif

Sta. $212+66.06$ to 5 ta $214+04.16 \sim$ (Transifion)~
Sta. $314+36.44$ to 5 sta $314+06.44 \sim$ (Transition)~ $\begin{aligned} & \text { cength }\end{aligned}=30.00 \mathrm{Lin.F}$.

Pavement~ 848 , Typel: (2) (e4) (0. 106482) 407 lact Coot: (c) (ces) (0.333333) 307 cover Agqregate. inside Shoulderaregate: (c) (ct) (0.01/667) 407 ack coat (outside Shoulider agate: (E)(4)(0.011667) 848, Typel: (2)(8) (0.106488) s48, ype 2: (2) (8) (0.023148) 407 lack Coat: (2)(8) (0.3333333) Shoulder Reconditioning ~ Length: 4 (30 ') Shoulder Preparation: (I20) (O. 44444) $6 / 7$ Compacted Aggregate. (120) (i.046236) (0.046296) Sta 314+00.41 to sta 191+00.03~ Cength

$=2312168 \mathrm{Linf}$
$=837.08$ cuyd
$=1,00451$ cu. 9.
$=0.40 .826215$
$=08.38$ Ins
$=60,4099^{\prime}$

$$
617 \text { Compacted Aggregate: } \begin{aligned}
& (0.444444) \\
& (0.0469 .04) \\
& (0.04629)
\end{aligned}
$$

$=26.875 .105$ s. Y 1 d
= $2,790.47 \mathrm{cu} \mathrm{Yd}$ Sta. $401+06.63$ to 5 ta $401+36.63 \sim$ (Transition)

Sta $491+36.63$ to 5 ta $490+83.37$ ~ Length $=146.74$ un.ft.
 Structure No. NaN-30-0918 4 Et
$\xi \in$ Existing Overlays \sim No work Sta. $492+8.37$ to Sta $493+13.37 \sim$ (Transition)~ $\begin{gathered}\text { Cenath }=30.00 \text { lintt }\end{gathered}$

 407 Cover Aggregate: (2) (24) (0.011667)	$=5.11 \mathrm{cu} \mathrm{yd}$ $=111$ culd $=0.56$ Ton
\%88, Typel: (2)(4)(0.106482)	$=0.85$ cuyd
348 , ype 2: (2) (t) (0.023148)	$=0.15$ cuyd.
7 tack Coat (() (4) (0.333333)	$=2.67$ O.f
(2) (1) $(0.0 \mid 1667)$	$=0.09$
Stypel: (2)(8)(0.10648)	
Type 2: (2) (8) (0.02314	= 0.37 curd.
3 lock Cort. (2) (8) (0.333333)	$=5.330$
O7 Cover Aggreqate: (c)(8) (0.011667)	$=0.19$
ath: 4130	
Shoulder Preparation: (1a)	!
compacted Aggregate: (II2)	
	d
Sta . $493+13.37$ to 5 ta. $510 \times 30.24 \sim$ ceng	-iTle.87 lin. At
Prement 10 (10887)(0185185)	
848, Tyoe 2: (13 1/6.87) (0.222222)	$=38.53 \text { cu:t }$
407 13ck Coat (3110.07$)$ (0.533333)	
407 cover Aggregate: (S \10.87) (0.018667)	= 32.05 Tons.
inside shoul	
Length: 2 (1, 116.87)-488.34-486.86	= $2,458.54 \mathrm{lin}$.f.
848, , Type 1: (2.458.54) (0.015432)	84
848, ypee 2: (2, 558.54) (0.0185)	
407 İck Coot' ($2,450.54$ (0.044444)	
407 Cover Aggregate : (1,458.54) (0.001556)	$=3.83$ Tons
退70	
yoe 2: $(3171.8)(0.0370$	
407 Cover Aggregate: (3171.38) (0.003111)	= 9.87 Tons
cen	
617 Compacted Agqregate: (5630.41)	200.67 cu ld.

PAVEMENT COMPUTATIONS

> Sta $570+01.53$ to 5 sta. $571+56.85 \sim$ Length 10155.32 . in. Ft Pavement~~ (ind)
$\begin{aligned} & \text { Inside Shoulder } \\ & \text { 848, Typel (1125) (112) (155.32)(4)(2)(1127) }=4.79 \text { cuid. }\end{aligned}$
$\begin{aligned} & =\text { erer.09 sq.10. } \\ & =12.94 \text { cuild. }\end{aligned}$
Sta. $571+56.85$ to 5 ta. $572+31.85 \sim$ (Transition)~
$=75.00$ linft

Pavement
sAs, Type
$(20)(125)(1.25)(112)+(9.25+1.25)(112)$

Sta $572+31.05$ to 5 ta $598+62.50 \sim$ Length $=8.330 .05$ cintf

 407 Cover Aggregate. $(5201.30)(0.001550)=219$ Tons

 Shoulder Reconditioning
Length: $5,201.30+2,2154$

 Povementr.

Dimials 1021

 407 Cover Aggregate: $\begin{aligned}(755.14 \\ +13.42)(172000)\end{aligned}{ }^{(157.03}=2.27$ Tons Shoulder Reconditioningr.
Length of 4 'Recondifioning: $300.06+137.39=437.45 \mathrm{limf}$
 617 shoulder Preparation (43745) (0.444444)
$+(1 /(9)+2)(99.79)(1)(19)+(2)(108.60)$ (119) $=25189 \mathrm{spld}$ 617 Compacted Agqregate: $(251.84)(3.75)(1 / 10)=26.23$ Cuyd Sta $446+49.72$ to sta $417+58.69 \sim$ (Transition)
Cength $=110.00 . ~$.in.ft.
 Rest Area~ Ramp "A"~ Summry"
 617 Shoulder Preparation $40,15+533.25+25187=825.44$ Sg
617 Compacted Aggregate: $2.09+55.57+20.23=83.89$ Cu. Rest Area \sim Ramp
St. $452+64.51$ to

U.S.e 30 ~ (Pamps)~

Pamo " " $^{\prime} \sim$ terchange \sim pamp 4 " \sim (Cont)
Shoulders~
 sta. $573+30.32$ (Mainline) $=5 \operatorname{ta} .604+10.40($ Ramp $)$
Area in Curb Removal: (3000 (3 (1) (19) $\quad=100.00$ Sq Y 1
 Ata $661+16.40$ to 5 tt 659×80.00

 $(12 i 5)+10.50)$
Area of 8 " Curb Removal: $(\mathbf{3 9 . 8 0)}+(10017553)=155.38 \mathrm{sq} .1 \mathrm{ld}$
Area of $8^{\prime \prime}$ Curb Removal
$\left.\begin{array}{ll}(39.80) \\ -3.80 \\ \hline 1000\end{array}\right)$
$(39.80 / 2002)(118)$
Sto $659+80.00$ to 5 ta $655+12.00$
Area of shoulders.

$+55.60 \mathcal{J}(\mathrm{H} / 2)(1 / 10)=8.96$ 59.1d.
sta $655+12.00$ to 5 to $654+06.56$
Area: (45.44)(21261(249.11)(3)(116) $=15005101$

Sta. $561+36.32$ (Mainline) to Sta $042+84.50$
Area of full dep th Shoulder. $1006.67+266.6$
$+80.43+312.58$
Area of I"to 3" Variable Thickness: $\begin{gathered}15.06+377.68 \\ 337.50-2,126.0959 .1 d .\end{gathered}$
ar of tickness. $7155.30=19298$ s, 16

 Corer Aggregate: (Tl/2000) ${ }^{(1 / 292.88)}=9.17$ Tons

(70.60/7200)(120)

sta $642+13.87$ to Sta $639+47.87$
structure No. VAN- $30-1008$
Structure
No Work

ta. $654+66.56$ to Sta $642+84.55$
Cength of ?' Recondifioning i $1,066.63$)
$(454.961477 .86)+115.38$
$-10.07453)(15.38 / 200)$
(2.50)

Sta $642+84.55$ to 5 ta $642+13.87 \sim(70$ roper)
Cength of R' Reconditioning in Trasition
 sta $642+13.87$ to $5 t+639+41$
structure No. VaN $-30-1068$
No Work
Sta $639+47.87$ to Sta $638+7775 \sim(10$ ' Toper)
Lenth

S.e z24 Interchange ~Ramp "B"~

Sta $639+47.87$ to sta $642+13.87$
structur
No Wark
5ta. $642+13.87$ to 5 ta $642+83.20 \sim\left(70^{\prime}\right.$ Toper)

Sta $642+83.20$ to 5 ta $654+16.90$

 VAN WERT COU
VAN- $30-4.05$
Pamp " $\mathcal{B}^{\prime} \sim$ (cont)~

Ared: (1/2) (12) (100) (19)

407 cover Ag9regate $(203.32)(712000)=0.71$
shoulders
sta 038777.90 to sta. $639+47.87 \sim(70$ 'Toper $) \sim$

Structure No. VaN- $30-1068$

SVEMENT COMPUTATIONS

PAVEMENT COMPUTATIONS

U.S.R. 30

USR.30~(Iarnas)

- 35.00 Sq. $1 / d$

 $\left.\begin{array}{l}\text { Area: (2atial) }(9) \text { (19) } \\ \text { Sta. } 593+911\end{array}\right)$ Area: (B) (100) (1/19)
- 8889 5a 12

407 cover Ag9regate: (I, 849.65) ($1 / 2000$)

$\begin{aligned} & 407 \text { Cover Aggregate: } 0.71+0.08+0.08 \\ &+547 \\ &=731 \text { Gols }\end{aligned}$

 Cength of 2 ' Reconditioning in Transifion: $109.005(5.52 .08 / 572 e 9.50)=70.15$ lin.t Sto $639+4787$ to Sta $642 t$
Structure No. VaN- $30-1068$
No wort Sta $642+13.87$ to Sta. $642+83.20 \sim(70$ ' Toper)
 Sta. $622+83.20$ to 5 th $654+10.99$
length of 2 Recond itioning: $(11.73+(0.01753)$
 sta. $654+10.90$ to 5 to $655+19.00$ Length of e Reconditioning
$=102.01$ lin.f. Sta $655+19.00$ to Sta $606+41996$
Length of 2 'Recondifioning:
(755.94) 1763.94$)+(150-(0.017453)(150) 2500)$

sta. $603+4496$, oc Sta $667+99.03$

 $\begin{aligned} & \text { Sta } 593+9111 \text { to sta s5at 91.11 } \\ & \text { cength of 4' 'Recondifioning. }\end{aligned}=100.00$ in.Ft.

 Length of Tronsition
Length of ?' Recinditioning in Transitions: $=99.85$ lin.A.
$20.15+70.83=19.98$ lin.Ft.

US.R. 22A Interchange ~Ramp "g"~(cont)~

($3307.07+190.98)(0.225252)$

 202 Wearing Course Removed: (ilit)
=170890 59.Y use cad interchange ~Ramp "c"~
 $=0108$ Sa.1.
$=06.67$ sq. 1 dd.
$=66.67$ s. 18 l
$=177.65$ sayd
18.00 c. Yod

Sta $56(12)(105472))^{2}$

 Sta. $572+30.41$ to $572.573+55.00$
Area. (12at.56t (0.017453) (124.56/250)2 (1le)

$=18942959 . Y \mathrm{Vd}$
$18942959 . Y \mathrm{Vd}$
$=1013 i n$
=1043in sayd.
Area. lemen
Pavement Sub-Summary
Sta. $557+25.00$ (Mainine) to sta $588+16.08($ eamp $v . V) ~$
Sta $557+25.00($ Mainline $)$ to 5 St $588+10.60$
Area. $06.67+127.65+1000.90+189.12+1330.30$
$+20811+209.62+1849.29+104317$

$=24.25$ Tons
Area: (100) (8) (110) 5 ta $550+25.00$
5 ta. $558+25.00$ to
sta $559+20.74$
$=88.8959 .1 \mathrm{Vd}$

use zad interchange \sim Pomp " c " \sim (cont)~
Shouiders \sim Cont)
shoulders ~ Cont) to sta $564+73.81$ ~ (cont.)
sta $563+73.81$ (

$$
\begin{aligned}
& 407 \text { Cover Aggreagate } 9.75+0.43 \\
& \text { hhoulder Reconditioning } \\
& \text { sta. } 557+15.00 \text { to } 57.558+25.00
\end{aligned}
$$

W. Se zat Interchange ~ Ramp "D"~

$$
\begin{aligned}
& \text { Pavement } \\
& \text { Sta } 504+74.72 \text { to, } 5 \text { ta } 567+84.74 \\
& \text { Area. (bv olanimeter) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sta } 564+74.72 \text { to sta } 561+84.14 \\
& \text { Area (by parimete) } \\
& \text { sta } 56 \text { St o4 in to sta } 568+8474
\end{aligned}
$$

$=179.56$ sq. yd .
$=190.5959 .1 / \mathrm{d}$
$=1777.83$ Sq. Yed
$=348.56$ S9. Y d
-10666.6759.1d

Area
Sta 50
Area.

US. 30 ~ (Ramps)
US.e. R2A interchan
Sta
shoulders- (Cont) ~ leamp "n"~ (cont)~
sta $578+75.00$ to Sta. $578+75.00$ to sita $580+58.78 \sim$ ((Iont)
Area in Gore not in Curb Remoral (190.00)
 224.65 sayd

Area in Curb Remoral
$140.60 / 250$
$1(1.03 / 7150)(9.375) 7$
$(3)(19)$
$=50.30$ S9.Yd
 $=266.6759 .4 \%$

 $=1,006.67$ 59 $1 / \mathrm{d}$
 Area of Gore not in Curb Removal: 224.65 $=2,476.79$ Sq.id.

 848, Type $2 \cdot\left(\begin{array}{ll}(150)(130) \\ +42.38)\end{array}(1,476.79+157.80 .15)=124.18\right.$ culd.
 shoulder Recondifioning (7/2000) $=10.64$ Tons
 $250-(0,017253)$
$10(149)+100.03)$

 Sta $508+84.74$ to 5 to $578+7500$
cength of e econditina

1899.97 linff.
sta $580+58.78$ to $5 t a .583+57.78,18.35)=183.16$ linft

use 30 it Grade intersectionsu
intersection of us. 30 and Dixon load~
and
sta $249+55.44$ to 5 to $257+86.94$
arvenentur old plons
Arem
$=137.48$ curd

Should
849, Type 2 $(32.87+24.44)$$(11)(1.0+1.50)$

 intersection of US.R 30 and Colvell laad

intersection of Westbound USPe 30 and
Slwell load \sim (North Side)
Sta $372+22.58$ to 5 ta $573+53.50 \sim$

Type2: $(3.3 .87+24.44)(18)(1.0+1.50)$	
407 lack Coat: (8,49)(0,10) (307/2000)	
Shoulder Reconditioning	
orl Shoulder Preparation: (lacisiatil) $=54.34$ Sq.ild	

intersection of Esstbound US.:. 30 and
Sta $372+66.50$ to Sta. $373+97.42 \sim$

Intersection of Eastbound US.e. 30 and Convo Road
sta. $410+24.14$ to Sta $411+73.13 \sim$ (Cont)

 848,
407
407
510
Ch
Are
840
848
440
4
5
 $=1172$ cuivd
$=4>7$ auld
$=35.98$ Gals. - 15.98 Gals. -126 Tons $=12560$ linft
$=8978$ Sg 1%
 407 Cover Agoreqate: (89?70) (7/2000)
Shoulder Reconditioning~
 intersection of USP 30 and Richey Road Median Crossover~
Sta $493+$ al. 55 to $502+29.53$ ~
Pavement
 Intersection of Westbound US.R 30 and Richey ford
Sta $47+21.93$ to Sta 4.98+53.90~ (North Side)~

Intersection of Westbound USP 30 and Richey Road
sta $497+21.93$ to Sta $498+5390 \sim($ Cont.) Shoulder Recondifioning
oir Shoulder Preparation
 $($ 2ac.276296)
$(0.04 .66$ culy. Intersection of Eastbound Us.e. 30 and Richey Rosd
Sta $497+60.88$ to Sta 498+96.78~
(South Side)~ Parement (T) $)(1 / 2)(75+1250)(141.40)-(3350 / 300)$
Area 1:

intersection of US.e 30 and liberty Road
Intersection of US.e 30 and liberty
Medinn rossover
Sta 552 + 13.93 to 5 Ita $560+50.07 \sim$

Intersection of Westtound U S.e. 30 and Liberty Road
sta $555+49.79$ to Sta $556+80.31 \sim(C 0 n t$) avement Lack Coat: ($114.33+183771(0.10)=29.81$ Gals 407 Cover Aggregate (1118000)) 183.74) $=1.04$ Tons
 A184, Typel: (32.87+ 24.44) (1.25)(130)
$(136)+10.70)(112)(1.20+2.25)$
848, Type 2: $(32.87+24.49)(112)(1.0+1.50)$ 407 Tack Cozt. $(81.49)(0,10)$
407 Cover Agaregate: $(18149)(712000)$ - 3.15 culd. -109 Guyd
$=8.15$.
$=0.29$ Ton
$=0.3$
 Intersection of Eastbound US.e. 30 and Liberty Road
sta $555+82.73$ to $5 t a .557+13.10 \sim$ South side)

 407 Cover Aggregate $(111.24+204.13)=111$ Tons

 tio. 407 Cover Aghegate. (18/49) (7/2000)
shoulder Recondifioning
 Initals

ESTIMATED PAVEMENT REPAIR TABLE

cocation	No	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$				202	305		605		$\begin{gathered} \text { Special } \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \end{gathered}$	
			$\begin{gathered} \text { אo } \\ \text { of } \end{gathered}$			1 0 0 0 0			$\begin{array}{\|ll\|} \hline 10 & 0 \\ 0 & 8 \\ 0 & 8 \\ 0 & 8 \\ 0 & 0 \\ 8 & 0 \\ 80 & 0 \end{array}$	$\begin{aligned} & 80 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
			ft	ft.		Sg Y ${ }^{\text {d }}$	Spivo		Linft	Linft	Linft	
Eastbound USR 30											T1200	
	Oriving	738	10	12		984000	988000			8,1/8:00		
	Passing	259	10	12		345333	345333		2,32400		6816.00	
	Pamps	106	10	16			1.88444			$1 / 166.00$		
	spead traye lera	86	10	12		1/46.67	1/146.67				C,0620	
Sub-Total						VG324.44	Vager 44		9,32400	288800	993840	
Westbound USP30												
	Driving	712	10	12		8.403.33	0,493,33			2832.00		
	Passing	285	10	12		3800,00 36889	$\frac{380009}{136889}$		10,26000	84700	$\frac{6880.00}{6,40400}$	
	Reamps	58	10	12		173.33	773.33			84.00	139200	
	spar											
Sub-Total						$15,435.55$	5,43555		1026000	8,67900	278400	
	Totals to Sheets 23924.											
							3173999	3,759.99.		19,58400	17863.00	$53 / 168.00$

PAVEMENT REPAIR

301
302
30

 203 Subgrade Comppction: E(Sas) (3) tios)

 stetioning)
 $=3500596$

Stons

$$
\begin{aligned}
& \text { The cost of son. Tock coatt and corer } \\
& \text { The }
\end{aligned}
$$

5	SHEET NUMBER																																	$\begin{aligned} & N \\ & N \end{aligned}$	$$	$\stackrel{\star}{\star}$	DESCRIPTION
		6	7		12		21			31	32	33	34	35		36	37	38	39	40	41	42	43	44	45	46	47	48		54	57	58	59				
																															.						
202							3,760														\%	7					76	35						202	3,942	Sq. Yd.	Pavement Removed
202					1358																													202	1,358	Sq. P d	Wearing Course Removed
																																					Wearing Course Remoreo
$\begin{array}{\|l\|} \hline 202 \\ 2022 \end{array}$																		$\frac{451}{205}$				343					$\frac{968}{420}$							202 202	2,362	Linft	
																						230					${ }_{2} 24$	120						202	${ }^{1,056}$	Linft	Curb Removed, as per Pan "
202																											16							202	16	Ezch	Precast Tratfic Dividers Removed, asper plan
														3000		22500								95000	92500		850000										Gurdrail Pemoved for Storael
$\frac{102}{}$																20000								200.00	200.00									202	600.00	Lin.A.	Guardrail, Barrier Design, Remored for Storage
202											,	3	3			4	3	4	$?$	4	2		3	5		3	3	7						202	56	Each	Catch Basin Peemered
											/	3	3			4	\bigcirc	4	c	4	c	6	3	5	5	3	3										Catch Basin Remored
$\begin{array}{\|l\|} \hline 203 \\ \hline 203 \\ \hline \end{array}$			322															69				129.					143	8			-			${ }^{203}$	$\frac{670}{622}$	cuyd	Excaration not including Embankment Construction
203										266								H99				177					45L	35.						203	1368	Sa. Yd	subarade compaction
																25											${ }^{175}$							606	300	Linf.	Guardrai Types as per plan
\% 606																100.00								168804	1000920		281250							6006	1/37794	LinfA	Guardrail, Tyee 5 Sesinn, Type 5
${ }^{606}$?		2								2	2		9							606	17	Each	Anchor Assembly Standard Type A
(006														2		?																		606	23	Each	Anchor Assembly Standard lype 1
																																				tach	Anchor Assembly, Barrier Design, Standard Jype A
606																8								8	8									606	24	Each	Bridge Terminal Assembly Standard Type B
600																											?							${ }_{606} 06$?	Each	Bribge Terminal Assembly Standard type 0
006																																					bridge lerminal assemby, Standard type
517																99.52						,		266.96	318.08									517	684.56	Lin.ft	Railing (Deep Beam Rail with steel tubular bock-up. Type?
																					:										*						posts and Bolts las per plan
																																					EROSION CONTROL
659		10																																659	10	M. 60%	Woter
			8745																															659	8.745	Sq. Yd	Seeding and Mulching,
659			0.79																																		
680											21	63	63	84	34	2	63	84	54	90	42	135	63.	90	99	63	63	21						660	\$170	Sq. Yd	Sodding
																																					DRAINAGE
603											10	10	20	30		10	180	50	\ldots	20		50	30	20	40	10	20	10						603	370	Linft	$0^{\prime \prime}$ Conduit, Type F
603												10		10																	-			603	20	Lin.ft	$8^{\prime \prime}$ Conduit, Jype F
603																								28	8									603	32	Linft	$1{ }^{12}$ "Conduit, ype C
$\frac{603}{603}$											16	24	24	${ }_{8}^{28}$		32	2	32	16	28	16	32	24	8	32	$\mathscr{4}$	16	8						${ }_{6} 003$	378	Cinft	$11^{\prime \prime}$ Conduit type
																						16												603			18 Condut, type C
604											,	3	3	4		4	3	4	2	4	2	4	3	5	5	3	3	/						604	54	Each	Catch Basin, Standard No.4 Without Aoron as per plan
																						2												604	2	Each	Catch Basin, Standard No. 4 , without Hpron as per plan
604																											$?$							609	?	Each	Catch Basin, Aljusted to Grade
605					3366		10581																											605	22950	Linf	ate
605							1/3903															,	-											605	12963	Lin.f.	Congitudinal Aggregate drains, as per plan
																															-						
																					s																
																						,															

GENERAL SUMMARY

PAVEMENT TRANSITION

EXISTING LEGEND

(A) 9"Reinforced Portland Cement Concuete Pavement
(H) asphalt Concuete Ovevilay
(I) $N_{1} \|^{\prime}$ Latex Modified Concuete.

PROPOSED LEGENO
(1) Hem 848 III"Asphatt Conarete Surface Course, Tipe !.
(2) Hem 848 Minsmphatt Concrete intermediate Course, Type 2.
(3) Hem 407 rack Coat with Cover Agquegate.

PPOPOSED LEGEND

Item 898 IIIa"Asphalt Concrete Surface Counse, Typel
(2) Item 818 IV "Asphalt Concrete Intermediate Course, Tipe 2
(3) Item a0n Tack Coat with Coven Aggregote

EXISTING LEGEND

(A) I"Peinforced pontland cement pavement
(() alle"Asphalt concrete Overlay

TPANSITION OETAIL FOP AT GRADE
INTERSECTIONS ON US.R. 30

CURB REMOUAL AT ENTRANCE RAMP

CURB REMOVAL AT ENTRANCE RAMP AS PER PLAN "A"

CURB REMOVAL As per Plan "A"

 se . 224 Interchange Ramp "t"
sta. $577+76.00$ to $512.579+1818$ Ramp

CURB REMOVAL AT ENTRANCE RAMP

CURB REMOVAL AT ENTRANCE RAMP (Constant Wioth 3). Section Applies.
Weigh Station Ramp "B"
Sta $355+50.00$ to Sta. $360+00.00$ Ramp Rest Area Remp "4"
Sta $4.0+$ or.47 to
sta $400+74.47$ Ramp Rest Area Remp "O
sta $457+4$? 200
to
sta $462+1153$ Ramp

 i. 5 ta $579+18.18$ to 5 ta $58.3+58.78$ emp

EXISTING LEGENO

(A) O"Peinforced Portland Cement Concrete Pavement.
(B) Subbase.
(C) Waterprooted Agquegate Base
(D) Agqregate Base

H: 2'0" for us.e azt Interchange Ramp "c"
$H_{t 4}$: 3'shoulder for u.s.e. 2at interchange Ramp "C"

TYPICAL SECTION AT LEFT APPLIES : weigh station Ramp "B"
sto $353+47.00$ to . Sta $355+50.00$ Rest Avea Ramp to sta $416+8600$ Sta. $444+74.47$ to Sta $446+86.00$ Rta $455+26.00$ to sta $457+42.00$
use 224 use 224 interchange Ramp C'
Sta. $572+35.77$ fo Sta $573+52.00$

TYPICAL SECTION AT LEFT APPLIES: use 224 Interchange Ramp "D"
sta. $567+84.74$ to Sta $568+26.54$

PROPOSED LEGEND

```
EXISTING LEGEND
(A) 9"Reinforced portlond cement
(B) Subbase
(C) Waterproofed Aggregate Base
(D) Agqregate Base
```

(1) Iten 848 I"I" Asphalt concrete surface course,
(2) Item 840 III" Asphalt Concrete Intermediate
(3) Item 401 Tock coat with Cover Aggreqate,
(4) Item 617 Reconditioning Shoulders Including Shoulder
Preparation Compacted Agqregale Water
(B) Item 301 9" Bituminous Agqreqate Base, AC-20,
(16) Item 408 Bituminous Prime coat Applied at the
Rate of P. Gals. per Square Yard
(17) Item 304 8" Aggreqate Base
(22) Item 659 Seeding and Mulching

CURB REMOVAL DETAILS

rypical section at left applies
Rest Anea Romp "B"
Sta $455+23.26$ to Sta $455+82.96$
Rest Avea P.inP
Rest Avea Romp C" 4 Tta $446+9074$

Sta $564+13.81$ to 5 ta $561+73.81$
"Sta 224 Interchange Ramp O" $568+26.54$ fo 5 ta $560+84.74$

EXISTING LEGEND
(A)

9" Peinforced portland cement
Concrete pavement
subbase
(C) Waterproofed Agqregate Base
(D) Agqreqate Base

CURB REMOUAL AS PER PLAN " B "

\# : Ramp "A" Pavement for us.e. alt Interchange Ramp "C"
$H H$: 3 " shoulder for US.S. act interchange Ramp "C"

PROPOSED LEGEND
(1) Item 848 IIl Rsphalt Concrete surfoce Course, Type
(2) Item $848112^{\prime \prime}$ Asphalt Concrete intermediate course, Type 2
(3) Item 401 Tack coat with Cover Aggreqate
(16) 1 tem 408
(17) Item 304

Bituminous Prime Coat Applied at the Rate $8^{\prime \prime}$ Agqreqate Base

Seeding and Nulching

MEDIAN CROSSOVER UPGRADE DETAIL

VAN WERT CO
VAN－30－405

PROPOSED LEGEND
（1）Item 848 III＂Asphalt Concrete Surface Course typel
（2）Item 848 IIr＂Asphatt Concuete Intermediate Course，Trpe 2.
（3）Item 407 Tack Coat with Cover Aqquegate．
（16）Item 408 Bituminous Prime Loat Applied at the vate of a．t Gal．per sq．idd．
（18）Item 301 3＂bituminous Agquegate Base，AC－ZO，RTII or RT＝1？．
（19）Item $3046^{\prime \prime}$ Agqregate Base．
（20）Hem 203 Embankment．

> EXISTING LEGENO
（A）I＂Reinforced Pritlond Cement Concuete Buvement．
（B）Subbase．
（C）Waterproofed Agquegate Base
（D）Agqregate Base

station		203			301	304		7	408	659		
				$\begin{aligned} & \text { たた } \\ & \text { だ } \\ & \text { だ } \end{aligned}$			$\begin{aligned} & x_{1}^{\prime} \\ & \text { no } \end{aligned}$		$\begin{gathered} 61 \\ 0.0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { a } \\ & 0 \\ & \text { y } \\ & \text { de } \\ & 0 \\ & 0 \end{aligned}$		
from	To	cuyd．	Sq．yd．	cuyd．	curd	culd．	601	Ton	601	Sq．1d	curd．	cuyd．
221＋89．52	$233+25.85$	72	266.34	22	22.20	44.39	37.06	130	106.54	744.0	22.12	2654
Totals		72	266.34	22	2220	44.39	3706	130	106.54	7440	22／2	26.54
		Quantities for 203 Excavation， 203 Embankment and 659 Seeding and Mulching carried to sheet 7.										

Sta. $560+00$ to 5 ta $584+00$

neral

 naterials

A. Palint

B. Panevent marking tape

 Avement maring tape shall comply with the colo

removable pavement marking tape (type r tape)

$\begin{array}{ll}\text { WHITE } \\ 0.20 .5 & \frac{\text { YELLO }}{0.2} \\ 0.2 & 0.5\end{array}$

 LAYOUT

 PLActment

ant tape markinges.
$\frac{\text { cLass I markings }}{\text { CLass I markings shall be as defined in 621, except as }}$

3. Class il markings

conelieting markings

метнiod of measurement

basis of payment
Pament por Accpred ouantripe compere in place wll be

TEM UNIT DESCRPTION
blace 28.23 mLes

VAN WERT COLNTY
VAN- $30 \pi 4.05$
pil pavenent marking. polyestri, as per plan Ooltustrer payement marings shall conform to gal except as

TEEM 621.02 IS DELETED AND THE FolLowing SUBStituted thaterials
 SPHALT ONCRETE USING EMMLIIFIED ASPHALT

 aterial prequaupication ano samplive

ten 62.05 application is hereeg mortied as follows

 aragraph 4 IS herbey Deleted

ARAGRaph 5 is hereby modifild as follows

 Tlling or fallure of
CEM 621.051 Layout and premarane is moutite by the
A) the gaps vor marke 4s aresut of tewfate use shai
3) "Tp Marking of centerime de pasing zones shall bl

the contractor shali provide a calibrated measuring
Device to measurt the poutyster resin in the tanks.

 EQUPMENT

 pirected by the engineer.
 Gh: its

AUGUST 13, 1979 JANUARY 8,1982

24" BROAD TRANSVERSE LINES		
$\begin{array}{\|l\|} \hline \text { location } \\ \text { Rampscio: } \end{array}$	$5 \frac{\text { station }}{} 584+58 \text { to } 587 \times 10$	Yellow 162
	Total linft	62

ISLAND MARKING(YELLOW)		
LOCATION	STATION	SQ. FT.
RAMPS $C, D\{B, A$	$584+58$ TO $584+63$	40 TOTAL

general notes

847 PREFORMED PLASTIC PAVEMENT MARKINGS

General

The installation of preformed plastic pavement markings shall conform to Supplemental specification 847 andas required herein.

Description

This work shall consist of the application of Department furnished preformed plastic pavement marking material on newly resurfaced pavement surfaces by rolling it into the new surface during the finish rolling operation, in accordance with the lines and dimensions shown on the plans or as described herein.

The Contractor shall furnish all equipment necessary for the required pavement preparation and mark.ing application. All pavement markings shall conform with the requirements of the Ohio Manual of Uniform Traffic Control Devices.
The Engineer will designate the limits of the highway section being marked and will furnish a log or schematic and details of the type
and location of markings to be applied at the pre-construction conference

Materials

The Contractor shall be informed at the pre-construction conference of the location of the Department furnished preformed plastic pave arrangements necessary to facilitate the pick-up of Diepartment furnished preformed plastic pavement marking material at this 10 cation for transport to the work site or the Contractor's storage facility. The Contractor shall notify the Engineer in writing at least 5 calendar days prior to pickup of the preformed plastic pave-
ment marking material. The Contractor shall provide receiving ment marking material. The Contractor shall provide receiving material received. Procedures for documenting receipt will be furnished to the Contractor at the pre-construction conferences. The Contractor shall store and transport the preformed plastic pavement marking materials to the site where used.

Layout and Premarking

The Contractor shayllay out the location of ail Y'nes, Mords and other symbols/ to assure the ir proper placement When applying bongitudigal on transverse Mnes, the Contractor shall use construction joints or prentarking to guide his application equipment.

Premarking shall be located from schematic forms. provided at the pre-construction conference.

The layout and premarkifg lines shavy/be approved by the Engineer befoper marking operations are stakted. Layout and premarking shal be incidental to appbication of mapkings.
Pyacement Tolerance
Line placement tolerance shall conform to 621.052.
Marking oescriptions
Markings applied thder this specification shall conform to applicable portions of 621
Edge Lines.
Edge Lines.
Center lines.
Channelizing Lines......
stop Lines and Crosswalk Lines
ransverse
Lane Arrows...
Word on Pavement
\qquad
\qquad

Dotted Lines.
Railrbad Symbol on Pavement shain conform to

* RAILROAD SYMBOL ON PAVEMENT

The standard Railroad Symbol shall consist of the following items

1. One white $16^{\prime \prime}$ crossbuck and the white letters "RR".
secified.
2. Two 24" solid white transverse lines; one ahead of and one behindithe/ crossbyck.
3. One 24 " solid white stop hine in atvance of the railroad crossing.

Where the word "paint" appears in 621 the words "preformed plastic
Where the word "pa int" appears in be substituted, and application
pates shall not apply to pkeformed plastic material.

Method of Measurement

Preformed plastic pavement markings will be measured complete in olace in the units: designated for preformed plastic pavement marking, installed, inlaid.

Basis of Payment

Payment for accepted quantities complete in place will be made at the contract unit prices bid and shall be full compensation for all labor, incidentals and equipment necessary to inlay the preformed plastic pavement markings.
$\frac{\text { Item }}{847} \quad 826 \frac{\text { Unit }}{\text { Sq. Ft. }} \quad \frac{\text { Description }}{\text { preformed plastic pavement marking, instalited, inlaid }}$

I. THIS WORK AREA TRAFFIC CONTROL APPLICATION SHALL ONLY BE USED WHEN THE DISTANCE " C " IS 100 FEET OR GREATER. WHEN "C" IS LESS THAN IOO FEET, THE TRAFFIC CONTROL SHOWN ON THE "LANE CLOSURE BEFORE EXIT GORE DETAIL SHOULD BE USED, OR THE EXIT SHOULD BE CLOSED, OR THE TRAFFIC CONTROL ON THIS DRAWNG MAY BE USED WITH APPROVAL OF THE ENGINEER. WHEN. THE EXIT IS CLOSED, APPROPRIATE DETOUR SIGNS SHALL BE PROVIDED.
2. WHEN WORK IS BEING PERFORMED IN ONLY THE LANE ADJACENT TO THE MEDIAN ON A DIVIDED HIGHWAY, REFER TO THE TYPICAL WORK AREA TRAFFIC CONTROL SHOWN IN FIGURE C-21 OF THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.
3. THE WORK TRUCK SHOWN AT THE BEGINNING OF THE WORK AREA SHALL BE IN PLACE AND UNOCCUPIED WHENEVER MEN ARE WORKING WITHIN THE WORK AREA. THIS TRUCK SHALL WORKMEN ARE NOT IN THE WORK AREA other protective devices may be used in lieu OF THE WORK TRUCK SHOWN WHEN APPROVED BY THE ENGINEER. A TRUCK MOUNTED IMPACT attenuator may be employed.
4. THE FLASHING OR SEQUENCING ARROW PANEL SHALL BE IN ACCORDANCE WITH TC-35. 10
5. TIIRTEEN (13) DRUMS OR BARRICADES SHALL BE USED TO FORM THE LANE TRANSITION TAPER IN ADVANCE OF THE WORK AREA, FIVE (5) CIIANNELIZING DEVICES SHALL BE USED TO FORMIHE TAPER ON THE SHOULDER DRUMS OR BARRICADES SHALL BE SPACED AT 50 FOOT CENTERS. CONES MAY BE SUBSTITUTED FOR BARRICADES OR DRUMS FOR THE LANE FOR BARRICADES OR DKUMS FOR THE
CLOSURES DURING DAYLIGHT. HOURS ONLY.
6. TYPE C STEADY BURNING BARRICADE WARNING LIGHTS SHALL BE ERECTED ON DRUMS OR BARRICADES FOR NIGHT LANE CLOSURES MAXIMUM SPACING SHALL BE 50^{\prime} CENTER TO CENTER IN ADVANCE OF THE WORK AREA AND 200° CENTER TO CENTER WITHIN THE LIMITS OF THE WORK AREA.
9. THE SPACINGS BETWEEN CONSTRUCTION AND MAINTENANCE SIGNS SHOWN ON THIS DETAIL MAY REQUIRE ADJUSTMENTS (INCREASES OR DECREASES TO ASSURE THAT THEY ARE POSITIONED NO CLOSER BY THE ENGINEER.
7. TAPER FORMULAE:
$L=S \times W$ FOR SPEEDS OF 45 OR MORE.
= $W^{2} / 60$ FOR SPEEDS OF 40 OR LESS
WHERE:
L = MINIMUM LENGTH OF TAPER.
$\mathrm{S}=\mathrm{NUMERICAL}$ VALUE OF POSTED SPEED LIMIT PRIOR TO WORK O
$W=$ WIDTH OF OFFSET.
. WHEN CREATING A TEMPORARY GORE,
CHANNELIZING DEVICES SHOULD BE
TO CREATE A"SOLID GORE" EFFECT.

GENERAL NOTES

1. THIS WORK $\angle R E A$ TRAFFIC CONTROL APPLICATIUN SHALL ONLY BE USED WHEN THE DISTANCE " B " IS 100 FEET OR GREATER. WHEN " B "IS LESS THAN IOO FEET THE TRAFFIC CONTROL SHOWN ON THE "LANE CLOSURE AT EXIT GORE" DETAIL SHOULD BE USED, OR THE EXIT SHOULD BE CLOSED, OR THE TRAFFIC CONTROL ON THIS DRAWING MAY BE USED WITH APPROVAL OF THE ENGINEER. WHEN THE EXIT IS CLOSED, APPROPRIATE DETOUR SIGNS SHALL BE PROyiof $:$
2. WHEN WORK IS BEING PERFORMED IN THE LANE ADJACENT TO THE MEDIAN ON A DIVIDED
HIGHNAY, REFER TO THE TYPICAL WORK AREA TRAFFIC CONTROL SHOWN IN FIGURE C-21 OF THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.
3. THE WORK TRUCK SHOWN AT THE BEGINNING OF THE WORK AREA SHALL BE IN PLACE AND UNOCCUPIED WHENEVER MEN ARE WORKING WITHIN THE WORK AREA. THIS TRUCK SHALL BE MOVED FROM THE PAVEMENT WHENEVER WORKMEN ARE NOT IN THE WORK AREA. OTHER PROTECTIVE DEVICES MAY BE USED IN LIEU OF THE WORK TRUCK SHOWN WHEN APPROVED by THE ENG INEER.

THE FLASHING OR SEQUENCING ARROW PANEL SHAL BE IN ACCORDANCE WITH TC- 35.10 .
5. THIRTEEN (13) DRUMS OR BARRICADES SHALL EE USED TO FORM THE LANE TRANSITION TAPER IN ADVANCE OF THE WORK AREA. FIVE (5) CHANNELIZING DEVICES SHALI BE USED TO FORM THE TAPER ON THE SHOUEDER
DRUMS OR BARRICADES SHALL BE SPACED AT 50 FOOT CENTERS. CONES MAY BE SUBSTITUTED FOR BARRICADES OR DRUMS FOR THE LANE CLOSURES DURING DAYLIGHT HOURS ONLY.
6. TYPE C STEADY BURNING BARRICADE WARNING LIGHTS SHALL BE ERECTED ON DRUMS OR BARRICADES FOR NIGHT LANE CLOSURES. MAXIMUM SPACING SHALL BE 50° CENTER TO CENTER IN ADVANCE OF THE WORK AREA AND 200^{\prime} CENTER TO CENTER WITHIN THE LIMITS OF THE WORK AREA.
7. TAPER FORMULAE
$L=S \times W$ FOR SPEEDS OF 45 OR MORE.
$L=W S^{2} / 60$ FOR SPEEDS OF 40 OR LESS.
WHERE:
L = MINIMUM LENGTH OF TAPER.
S = NUMERICAL VALUE OF POSTED SPEED LIMIT PRIOR TO WORK OR 85 PERCENTILE SPEED.
$W=$ WIDTH OF OFFSET . 8. THE SPACINGS BETWEEN CONSTRUCTION AND
MAINTENANCE SIGNS SHOWN ON THIS DETAIL MAY REQUIRE ADJUSTMENTS (INCREASES OR DECREASES) TO ASSURE THAT THEY ARE POSITIONED NO CLOSER THAN 200 FEET TO EXISTING SIGNS AS DETERMINED BY THE ENGINEER.

OHIO DEPARTMENT OF TRANSPORTATION LANE CLOSURE $\frac{\frac{D A T E}{8 \cdot 3.79}}{}$ BEFORE EXIT GORE
 VAN WERT COCN
VAN $30-405$

* OPTIONAL SIGN ERECTED WITH THE APPROVAL OF THE ENGINEER

GENERAL NOTES.

1. THIS WORK AREA TRAFFIC CONTROL APPLICATION SHALL ONLY APPLLY WHEN THE DISTANCE "A" IS GREATER THAN 100'. WHEN DISTANCE "A" IS LESS THAN 100^{\prime}, THE RAMP SHALL BE CLOSED. WHEN THE RAMP IS CLOSED, THE TRAFFIC CONTROL SHALL INCLUDE DETOUR SIGNING FOR EXIT RAMP CLOSURES IN ACCORDANCE WITH OMUTCD.
2. DRUMS OR BARRICADES SHALL BE SPACED AT 50 FOOT CENTERS. CONES MAY BE SUBSTITUTED FOR BARRICADES OR DRUMS FOR THE LANE CLOSURES DURING DAYLIGHT HOURS ONLY.
3. TYPE C STEADY BURNING BARRICADE WARNING LIGHTS SHALL BE ERECTED ON DRUMS OR BARRICADES FOR NIGHT LANE CLOSURES. MAXIMUM SPACING SHALL BE 50° CENTER TO CENTER IN ADVANCE OF THE WORK AREA AND OF THE WORK ARE
4. THE WORK TRUCK SHOWN AT THE BEGINNING OF the work area shall be in place and unoccupied WHENEVER MEN ARE WORKING WITHIN THE WORK WHENEVER MEN ARE WORKING WITHIN THE WORK THE PAVEMENT WHENEVER WORKMEN ARE NOT IN THE WORK AREA. OTHER PROTECTIVE DEVICES MAY BE USED IN LIEU OF THE WORK TRUCK SHOWN GEN APPROVED BY THE ENG INEER.
5. THE SPACINGS BETWEEN CONSTRUCTION AND MAINTENANCE SIGNS SHOWN ON THIS DETAIL MAY REQUIRE ADJUSTMENTS (INCREASES OR DECREASES) TO ASSURE THAT THEY ARE POSITIONED NO CLOSER THAN 200 FEET TO EXISTING SIGNS AS DETERMINED BY THE ENGINEER.

