SUBGRADE EXPLORATION

Proposed Intersection Improvements WYA-23-0.04, PID 109362

US Route 23 from Township Road 68 to Township Road 62

Antrim and Pitt Townships, Wyandot County, Ohio

Submitted to DGL Consulting Engineers, LLC Date *August 2020*

1915 North 12th Street Toledo, OH 43604-5305 T 419-324-2222 F 419-241-1808 www.ttlassoc.com

August 6, 2020

TTL Project No. 1906601

Mr. Richard J. McGuckin, P.E., CPESC DGL Consulting Engineers, LLC 3455 Briarfield Boulevard, Suite E Maumee, Ohio 43537

Draft Report Subgrade Exploration Proposed Intersection Improvements WYA-23-0.04, PID 109362 US Route 23 from Township Road 68 to Township Road 62 Antrim and Pitt Townships, Wyandot County, Ohio

Dear Mr. McGuckin:

Following is the report of our Subgrade Exploration performed by TTL Associates, Inc. (TTL) for the referenced project. This study was performed in accordance with TTL Proposal No. 1906601R, dated January 27, 2020, and was authorized by DGL via a subconsultant service agreement, dated April 30, 2020, referencing prime agreement No. 34061.

This report contains the results of our study, our engineering interpretation of the results with respect to the project characteristics, and our recommendations for design and construction of pavements as well as potential modifications to subgrade soils. Subgrade evaluations were performed in accordance with ODOT GB-1 "Plan Subgrades." In accordance with ODOT protocol, this report is being submitted as "Draft" pending questions and comments by DGL and ODOT. However, the report is considered complete and comprehensive with respect to the requested scope of work.

Should you have any questions regarding this report or require additional information, please contact our office.

Sincerely,

TTL Associates, Inc.

Jucip Holmes

Luke G. Holmes, EIT Staff Geotechnical Professional

AP.J

Christopher P. Iott, P.E. Chief Geotechnical Engineer

c.c.: Ms. Amy Zimmerman – DGL Consulting Engineers, LLC

T:\Geotech\Projects 2019\1906601...\Report\1906601 TTL DRAFT Geotech Report WYA-23-0.04 Intersection Improvements.docx

DRAFT REPORT SUBGRADE EXPLORATION PROPOSED INTERSECTION IMPROVEMENTS WYA-23-0.04, PID 109362 US ROUTE 23 FROM TOWNSHIP ROAD 68 TO TOWNSHIP ROAD 62 ANTRIM AND PITT TOWNSHIPS, WYANDOT COUNTY, OHIO

FOR

DGL CONSULTING ENGINEERS, LLC 3455 BRIARFIELD BOULEVARD, SUITE E MAUMEE, OHIO 43537

SUBMITTED

AUGUST 6, 2020 TTL PROJECT NO. 1906601

TTL ASSOCIATES, INC. 1915 NORTH 12TH STREET TOLEDO, OHIO 43604 (419) 324-2222 (419) 321-6257 FAX

EXECUTIVE SUMMARY

This subgrade exploration report has been prepared for the proposed intersection improvements along US Route 23, at intersections from Township Road 68 (TR 68) to County Road 62/Township Road 62 (CR 62/TR 62), in Antrim and Pitt Townships, Wyandot County, Ohio. The site starts approximately 4 miles southeast of Upper Sandusky, Ohio, and ends at the boarder of Marion County. This exploration included 14 test borings and 8 stand-alone pavement cores, for the evaluation of existing pavement sections and subgrade conditions in areas of proposed roadway construction. Subgrade evaluations were performed in accordance with ODOT GB-1 "Plan Subgrades" (January 18, 2019). A summary of the conclusions and recommendations of this study are as follows:

- 1. The borings were performed in grass medians, existing pavement shoulders, and connectors. The borings performed in pavements generally encountered asphalt underlain by crushed stone. However, the two cores performed at the intersection of US 23 with CR 62/TR 62 encountered a layer of concrete between the asphalt and the crushed stone.
- 2. Granular existing **fill** materials were encountered in Boring B-016 underlying the pavement cross section to depth of 5 feet below existing grade. The granular fill materials consisted of predominantly gravel (ODOT A-1-a). Cohesive existing **fill** materials were encountered underlying the surface and granular fill materials in multiple borings. These cohesive fill materials consisted of predominantly silty clay (ODOT A-6b) and clay (ODOT A-7-6), and contained varying amounts of crushed stone.
- 3. Native soils consisted of predominantly medium stiff to very stiff cohesive soils encountered underlying the surface and fill materials. The cohesive soils consisted of silt and clay (ODOT A-6a), silty clay (ODOT A-6b), as well as clay (ODOT A-7-6). Interbedded **loose** to medium dense granular soils were encountered in half of the borings. The granular soils consisted of coarse and fine sand (ODOT A-3a).
- 4. Based on the limited data available, such as the soil characteristics and the groundwater conditions encountered in the borings, it is our opinion that the "normal" groundwater level may be encountered at depths on the order of 4 feet or greater below existing pavement grades. However, for the partial R-cut planned east of State Route 294, in the area of Borings B-010 through B-012, the "normal" water level may approach 2 feet below pavement grade (possibly due to the 8 to 10 feet of cut that was performed for the original US Route 23 construction in this area. Based on the "normal" groundwater level anticipated generally 4 feet or deeper below existing grades at the site, adequate control of seasonal groundwater seepage, perched water, and surface water run-off into shallow excavations should be achievable by minor dewatering systems, such as pumping from prepared sumps. If excavations extend into granular soils below the groundwater level, installation of multiple point wells would likely be required in addition to pumping from prepared sumps.

- 5. Based on the GB-1 analysis performed separately for each intersection, design CBR values of 6 percent and 7 percent were determined for the SR 294 and CR 113/TR 124 intersections, respectively, with planned partial R-cuts. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an **average** Group Index of all the evaluated samples from the specific intersection. GB-1 analyses performed for the two cul-de-sac locations at the northern two intersections associated with this project indicated a design CBR value of 5 percent. The higher Group Indices associated with the cohesive soils that were prominent in the borings performed at these two intersections would correlate with a CBR value of 3 to 4 percent. Therefore, we recommend design consider a CBR value of 4 percent for the TR 65 and CR 62/TR 62 cul-de-sacs.
- 6. Based on the GB-1 analysis results, subgrade modification may consider global chemical stabilization (typically using lime to depths of 12 to 14 inches), or over-excavation and replacement with new granular engineered fill. This new pavement project includes relatively small areas of new pavement at various widespread intersections. Therefore, we anticipate over-excavation and replacement will be the more economical subgrade stabilization method for this project. If global chemical stabilization is still considered, it should be noted that the sulfate contents for the tested Boring B-011 subgrade soil samples were greater than 8,000 parts per million (ppm), which is not conducive for chemical stabilization in the area of this boring. GB-1 indicates that the District Geotechnical Engineer should be contacted to discuss options including stabilization as needed using excavate and replace methods.

This executive summary highlights our evaluations and recommendations and should only be utilized in conjunction with the accompanying report, including the detailed findings, analysis and recommendations, and qualifications presented herein.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Purpose and Scope of Exploration	
	1.2 Proposed Construction	
2.0	GEOLOGY AND OBSERVATIONS OF THE PROJECT	
	2.1 General Geology and Hydrogeology	
	2.2 Site Reconnaissance	
3.0	EXPLORATION	6
	3.1 Historic Borings	
	3.2 Project Exploration Program	7
	3.3 Boring Methods	
	3.4 Laboratory Testing Program	
4.0	FINDINGS	
	4.1 General Site Conditions	
	4.2 General Soil Conditions	
	4.3 Groundwater Conditions	
	4.4 Remedial Measures	14
5.0	ANALYSES AND RECOMMENDATIONS	
	5.1 GB-1 "Plan Subgrades" Evaluation	
	5.2 Flexible (Asphalt) Pavement Design	
	5.3 Site and Subgrade Preparation	
	5.4 Groundwater Control	
	5.5 Excavations and Slopes	
	5.6 Fill	
6.0	Qualification of Recommendations	

TABLE OF CONTENTS (Cont.)

PLATES

1.0 Site Location Map2.1 through 2.3 Test Boring and Core Location Plans

FIGURES

Logs of Test Borings Legend Key Grain Size Distribution Pavement Core Photographic Logs

APPENDICES

Appendix A:	Engineering Calculations (including GB-1 Spreadsheets)
Appendix B:	Geotechnical Engineering Design Checklists
Appendix C:	Historic Borings

1.0 INTRODUCTION

This subgrade exploration report has been prepared for the proposed intersection improvements along US Route 23, at intersections from Township Road 68 (TR 68) to County Road 62/Township Road 62 (CR 62/TR 62), in Antrim and Pitt Townships, Wyandot County, Ohio. The site starts approximately 4 miles southeast of Upper Sandusky, Ohio, and ends at the boarder of Marion County as shown on the Site Location Map (Plate 1.0).

This study was performed in accordance with TTL Proposal No. 1906601R, dated January 27, 2020, and was authorized by DGL via a subconsultant service agreement, dated April 30, 2020, referencing prime agreement No. 34061.

1.1 <u>Purpose and Scope of Exploration</u>

The purpose of this exploration was to evaluate the subsurface conditions and laboratory data relative to the design and construction of pavements for the referenced project. To accomplish this, TTL performed 14 test borings and 8 stand-alone pavement cores, laboratory soil testing, a geotechnical engineering evaluation of the test results, and review of available geologic and soils data for the project area.

This report summarizes our understanding of the proposed construction, describes the investigative and testing procedures utilized to evaluate the subsurface conditions at the site, and presents our findings from the field and laboratory testing. This report also presents our evaluations and conclusions in accordance with ODOT GB-1 "Plan Subgrades" (January 18, 2019) and provides our design and construction recommendations for pavements.

This report includes:

- A description of the existing surface materials, subsurface soils, and groundwater conditions encountered in the borings.
- Design recommendations for pavements.
- Recommendations concerning soil and groundwater-related construction procedures such as subgrade preparation in accordance with ODOT GB-1 criteria, earthwork, pavement construction, and related field testing.

1.2 <u>Proposed Construction</u>

The project is planned to include removal of at-grade crossings along US 23 at TR 68, County Road 74 (CR 74), TR 72, TR 65, and CR 62/TR 62. At the US 23 intersections with State Route 294 (SR 294) and CR 113/TR 124, it is planned to provide partial R-cuts. Final site grades are anticipated to approximate existing site grades. Information regarding traffic loads was not provided at the time of this report.

We have assumed that final roadway grades will approximate existing roadway grades and consist of asphalt pavements. Existing pavement cross-sections encountered in the borings performed for this exploration were on the order of 11 to 32½ inches in thickness. For subgrade evaluations, we have assumed that the new pavement cross-section will be on the order of 18 inches (1½ feet) in thickness. Final roadway grades are assumed to approximate existing roadway grades.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 <u>General Geology and Hydrogeology</u>

Published geologic maps from the Ohio Department of Natural Resources (ODNR) indicate that the project site is located in the Central Ohio Clayey Till Plains Region of the Till Plains Section. The project site is also located in part through Lake Basin deposits outside the Huron-Erie Lake Plains section. Within this section of Lake Basin deposits, the upper profile geology includes predominantly silty and sandy lacustrine deposits, formed in historic glacial lakes following retreat and melting of glacial ice. The lacustrine soils are underlain by glacial till deposits. Within Central Ohio Clayey Till Plains, the upper profile geology includes predominantly clayey Wisconsinan-age till over Silurian-age rock.

The lacustrine soils consist of predominantly sands and sandy silts, and may exhibit alternating thin layers of interbedded silts and clays known as varves. Varved soils are characteristic of lacustrine deposits, and the thin layering is typically attributed to seasonal or other cyclic variations of sedimentation in the lake waters.

The glacial till, also referred to as moraine, was deposited by the advance and retreat of glacial ice. Due to the weight of the ice mass, the till deposits are moderately to highly over-consolidated, that is, the existing soil deposits have experienced a previous vertical stress significantly higher than the present effective vertical stress due to the remaining overlying soil strata in the profile. The till may contain cobbles and/or boulders in the till soil matrix. Additionally, seams of granular soils may be encountered within glacial tills. These granular seams may or may not be water bearing.

On the "Geologic Map of Ohio," the southeastern portion of the project site is mapped as bedrock consisting of Devonian-age Columbus and Delaware limestone and shale, transitioning to Monroe limestone in the northwestern portion of the project area. Bedrock across the site is mapped at Elevs. $850\pm$ to $820\pm$, corresponding to depths varying from approximately 90 feet below existing grades in the southeast to 30 feet in the middle portion, then deeper to approximately 65 feet in the northwestern portion.

The USDA Natural Resource Conservation Service (NRCS) Web Soil Survey indicates that soils in the project area are predominantly mapped as a variety of loams at each of the intersections. Details of mapped near surface soils are summarized in the table below.

Table 2.1 NRCS Web Soil Survey Summary by Intersection						
Intersection/ Connector	Identification	Comprised Of	Formation	Drainage	Permeability	
CR 62/ TR 62	Milford silty clay loam (Mh)	Lacustrine Deposits	Lake Plains	Poorly Drained	Moderately High	
TR 65	Tiro silt loam (TrA)	Lacustrine Deposits overlying Wisconsin Till	Ground Moraines	Somewhat Poorly Drained	Moderately Low to Moderately High	
CR 113/	Glynwood silt loam (Gwg1B2) Northwest of Intersection	Wisconsin Till	Current Monsings	Moderately	Low to	
TR 124	Glynwood clay loam (Gwg5C2) Southeast of Intersection	Clayey Till	Ground Moraines	Well Drained	Moderately High	
SR 294	Blount silt loam (Blg1A1) North of Intersection	Wisconsin Till	Ground Moraines	Somewhat Poorly Drained	Low to	
SK 294	Glynwood silt loam (Gwg1B2) South of Intersection	wisconsin Thi	Ground Moranies		Moderately Well Drained	Moderately High
TR 72	Blount silt loam (Blg1A1)	Wisconsin Till	Ground Moraines	Somewhat Poorly Drained	Low to Moderately High	
CR 74	Luray silty clay loam (Lu)	Lacustrine Deposits	Flats	Very Poorly Drained	Moderately High	
TR 68	Glynwood clay loam (Gwd5C2)	Clayey Till	End Moraines	Moderately Well Drained	Low to Moderately High	

2.2 <u>Site Reconnaissance</u>

TTL performed a site reconnaissance on May 8, 2020. The site is located in a predominantly rural/agricultural area.

In the areas of the intersections/connectors, the existing roadway pavements consisted of asphalt with longitudinal and transverse cracks. The cracks along US Route 23 (US 23) were generally sealed, however, cracks in the connectors were generally not sealed.

Grades along the pavement at individual intersections were generally flat but varied between intersections.

Review of the Ohio Department of Natural Resources (ODNR) Map of Mines indicates multiple active surface mines in the vicinity of the project area. With the closest mine approximately 1,000 feet north of the intersection of US 23 and County Road 124 (CR 124).

3.0 EXPLORATION

3.1 <u>Historic Borings</u>

Review of ODOT records for the project area indicated numerous historic auger borings had been performed along US Route 23 (US 23) in 1964 for WYA-23-0.00. Ten borings were performed near the intersections pertinent to this project. Since the historic borings were hand auger borings that did not include Standard Penetration Tests, they were not utilized for GB-1 evaluations for this project and are not shown on the test boring location plans. However, the cover sheet, as well as the pertinent plan-and-profile drawings from the historic Soil Profile, are included in Appendix C of this report.

The historic borings were not numerated. For designation within this report, these borings were numerated as B-CCC-D-EE as follows:

- B = Boring.
- CCC = Whole historic station number (181 for Sta. 181+50, etc.).
- D = Number of times offset from original boring location (0 since none were offset).
- EE = Date which the borings were performed (64 for 1964).

The locations of the historic borings located within and just beyond the extents of the project intersection areas are summarized in the following table:

	Table 3.1. Historic Boring Information					
Boring Number	US 23 Station (feet)	Approximate Offset (feet)	Ground Surface Elevation (feet)	Boring Termination Depth (feet)		
B-181-0-64	181+50	CL	879.9	4		
B-183-0-64	183+00	CL	876.9	5		
B-188-0-64	188+65	CL	884.5	30		
B-193-0-64	193+00	CL	882.6	22		
B-227-0-64	227+00	CL	869.1	5		
B-230-0-64	230+00	CL	884.2	5		
B-233-0-64	233+50	CL	893.1	15		
B-238-0-64	238+40	CL	882.6	10		
B-240-0-64	240+75	CL	864.3	231/2		
B-297-0-64	297+58	CL	902.5	10		

The soils encountered in the historic borings at the currently planned subgrade elevation consisted of predominantly cohesive soils including silt and clay (ODOT A-6a), silty clay (ODOT A-6b), and clay (ODOT A-7-6). Layers of sandy silt (ODOT A-4a) and silt (ODOT A-4b) soils were also encountered in multiple borings, albeit approximately 10 feet below currently planned top of pavement of deeper. Therefore, these materials are not anticipated to be within the upper 3 feet of the subgrade.

We have assumed that the information provided in the historic borings was accurate and correct, at the time of those respective explorations, but cannot guarantee as such. Additionally, subgrade soil conditions may have changed or may have been modified due to construction performed following completion of the historic subsurface explorations.

3.2 <u>Project Exploration Program</u>

This exploration included 14 test borings, 10 of which were extended through existing pavements and included pavement cores, as well as 8 stand-alone pavement cores. The stand-alone pavement cores were designated as Cores X-001-0-19 through X-006-0-19, X-019-0-19, and X-021-0-19, and the test borings were designated as Borings B-007-0-19 through B-018-0-19, B-020-0-19, and B-022-0-19. The cores and borings were performed by TTL during the period from May 19 to June 11, 2020. These cores and borings are fully designated as in accordance with ODOT protocol, however the "-0-19" portion of the nomenclature is generally omitted for ease of identification in the discussions within this report. The cores and borings were located in the field by TTL based on a site plan provided by DGL. The approximate locations of the cores and borings are shown on the Test Boring and Core Location Plans (Plates 2.1 through 2.3).

Stationing and offsets at the core and boring locations were estimated to the nearest 5-foot increment based on the site plan provided by DGL. Latitude, Longitude, and ground surface elevations were surveyed by TTL via a hand held GPS. The accuracy from the handheld GPS device was generally found to be approximately 2 to 6 inches horizontal, and approximately 4 to 12 inches vertical. These data are presented on the logs of test borings as well as in the table below.

	Table 3.2 General Boring and Coring Location Information					
Boring (B)/ Core (X) Number	Corresponding Intersection/ Connector	Alignment and Station (feet)	Offset (feet)	Ground Surface Elevation (feet)	Latitude (Degrees)	Longitude (Degrees)
X-001-0-19	TR 68	US 23 (BACK) ¹ , Sta. 1054+00	70' LT	940.1	40.702689	-83.161688
X-002-0-19	TR 68	US 23 (BACK) ¹ , Sta. 1053+75	80' RT	940.8	40.702885	-83.161221
X-003-0-19	CR 74	US 23, Sta. 68+10	65' LT	912.2	40.716232	-83.177680
X-004-0-19	CR 74	US 23, Sta. 68+00	65' RT	911.7	40.716442	-83.177270
X-005-0-19	TR 72	US 23, Sta. 103+25	65' LT	891.3	40.723072	-83.186609
X-006-0-19	TR 72	US 23, Sta. 102+95	65' RT	891.8	40.723244	-83.186159
B-007-0-19	SR 294	US 23, Sta. 180+70	CL	881.1	40.737114	-83.207481
B-008-0-19	SR 294	US 23, Sta. 182+00	55' RT	883.1	40.737477	-83.207712
B-009-0-19	SR 294	US 23, Sta. 182+00	20' LT	883.4	40.737330	-83.207904
B-010-0-19	SR 294	US 23, Sta. 191+00	25' RT	874.6	40.739085	-83.210158
B-011-0-19	SR 294	US 23, Sta. 191+00	55' LT	874.3	40.738931	-83.210348
B-012-0-19	SR 294	US 23, Sta. 192+50	CL	870.5	40.739335	-83.210640
B-013-0-19	CR 113/TR 124	US 23, Sta. 227+05	CL	873.9	40.745739	-83.219786
B-014-0-19	CR 113/TR 124	US 23, Sta. 228+60	20' RT	880.1	40.746118	-83.220100
B-015-0-19	CR 113/TR 124	US 23, Sta. 228+60	55' LT	879.2	40.745948	-83.220265
B-016-0-19	CR 113/TR 124	US 23, Sta. 237+60	25' RT	881.6	40.747338	-83.222932
B-017-0-19	CR 113/TR 124	US 23, Sta. 237+60	55' LT	881.5	40.747153	-83.223062
B-018-0-19	CR 113/TR 124	US 23, Sta. 239+00	CL	877.1	40.747474	-83.223451
X-019-0-19	TR 65	US 23, Sta. 297+05	60' RT	905.3	40.760052	-83.234381
B-020-0-19	TR 65	US 23, Sta. 297+95	60' LT	904.5	40.760168	-83.234905
X-021-0-19	CR 62/TR 62	US 23, Sta. 294+75	60' RT	893.6	40.774462	-83.241156
B-022-0-19	CR 62/TR 62	US 23, Sta. 295+75	65' LT	892.3	40.774595	-83.241701

¹Note: All core and borings reference the "AHEAD" stationing used in the site plan provided by DGL with the exception of Cores X-001 and X-002. These cores reference the "BACK" stationing. The equivalency equation provided by the plans is as follows: Station 323+27.93 BACK = Station 265+18.48 AHEAD (+) 5809.45 linear feet.

In accordance with the ODOT Specifications for Geotechnical Explorations (SGE), the borings were performed as ODOT Type A borings to a depth of at least 6 feet below top of subgrade, and were generally extended to depths on the order of 7 to 8¹/₂ feet below top of existing grade.

Experience indicates that the actual subsoil conditions at a site could vary from those generalized on the basis of test borings made at specific locations, especially at previously developed sites such as this site. Therefore, it is essential that a geotechnical engineer be retained to provide soil engineering services during the site preparation and pavement construction phases of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations, and to allow design changes in the event subsurface conditions differ from those anticipated prior to the start of construction.

3.3 Boring Methods

Cores were obtained using a nominal 4-inch diameter core barrel.

The test borings performed during this exploration were drilled with a GeoProbe® 7822DT with drilling capabilities. The borings were extended utilizing solid-stem augers. Samples were generally obtained continuously using 18-inch split-spoon (SS) sample drives. The samples were sealed in jars and transported to our laboratory for further classification and testing.

Split-spoon soil samples were obtained by the Standard Penetration Test Method (ASTM D 1586). The Standard Penetration Test (SPT) consists of driving a 2-inch outside diameter split-spoon sampler into the soil with a 140-pound weight falling freely through a distance of 30 inches. The sampler was driven in three successive 6-inch increments, with the number of blows per increment being recorded. The number of blows per increment was recorded at each depth interval, and these data are presented under the "SPT" column on the Logs of Test Borings attached to this report. The sum of the number of blows required to advance the sampler the second and third 6-inch increments is termed the Standard Penetration Resistance, or N_m -value, and is typically reported in blows per foot (bpf). The N_m -values were corrected to an equivalent rod energy ratio of 60 percent, N_{60} . The hammer/rod energy ratio for the GeoProbe® 7822DT was 97.0 percent, and was last calibrated on November 11, 2019. This energy ratio is limited to an upper bound of 90 percent for the purposes of analyses and reporting in accordance with the ODOT Specification for Geotechnical Explorations (SGE). The N_{60} -values are presented on the attached Logs of Test Borings.

Soil conditions encountered in the test borings are presented in the Logs of Test Borings, along with information related to sample data, SPT results, water conditions observed in the borings, and laboratory test data. In conjunction with published data and typical correlations,

the N_{60} -values can be evaluated as a measure of soil compactness/consistency as well as shear strength.

Field and laboratory data were incorporated into gINTTM software for presentation purposes. It should be noted that these logs have been prepared on the basis of laboratory classification and testing as well as field logs of the encountered soils.

3.4 <u>Laboratory Testing Program</u>

All samples were visually classified in accordance with the ODOT Soil Classification System. All recovered samples of the subsoils were also tested in our laboratory for moisture content (ASTM D 2216). Unconfined compressive strength estimates were obtained for the intact cohesive samples using a calibrated hand penetrometer. These test results are presented on the Logs of Test Borings.

Laboratory testing was performed in accordance with GB-1 "Plan Subgrades" criteria, including mechanical soil classification consisting of an Atterberg limits test (ASTM D 4318) and a particle size analysis (ASTM D 6913 and D 7928) for at least two samples from each boring within 6 feet of the proposed subgrade. These test results are presented on the Logs of Test Borings and Grain Size Distribution sheets.

Sulfate content determinations (ODOT Supplement 1122) were performed on one sample from each boring, generally within 3 feet of the proposed subgrade. However, surface elevations for the borings performed in the US Route 23 median at the CR 113/TR 124 intersection were approximately 3 to 4½ feet lower than the anticipated subgrade elevation. In any case, a sample within the upper 3 feet of each of these borings was tested for sulfate content. These test results are presented on the Logs of Test Borings.

4.0 FINDINGS

4.1 <u>General Site Conditions</u>

At the time of this exploration, the project vicinity consisted of primarily rural and agricultural areas. Grades at individual intersections were relatively flat with elevation changes generally on the order of one foot or less. Over the entire project area, ground surface elevations varied from Elevs. $871\pm$ to $941\pm$.

The borings were performed in grass medians, existing pavement shoulders, and connectors. The borings in grass medians encountered topsoil on the order of 3 to 4 inches in thickness. The borings performed in pavements encountered surface materials consisting of asphalt with thicknesses generally ranging from of 4 to 12¹/₂ inches, underlain by crushed stone with thicknesses of generally varying from 4 to 24¹/₂ inches. However, two cores performed at the intersection of US 23 with CR 62/TR 62 encountered a layer of concrete between the asphalt and the crushed stone, with thickness concrete on the order of 6¹/₂ inches and 9¹/₂ inches. Additionally, two borings/cores encountered a secondary pavement cross section underling the first. A summary of the encountered pavement sections is summarized in the following table.

	Table 4.1. Summary of Encountered Pavement Section				
Boring Number	Asphalt Thickness (inches)	Concrete Thickness (inches)	Crushed Stone Thickness (inches)		
X-001	91/2	-	5 ³ ⁄ ₄		
X-002	7	-	8		
X-003	111⁄4	-	6 ³ ⁄4		
X-004	91/2	-	6		
X-005	131/2	-	6		
X-006	121/2	-	6½		
B-008	43⁄4	-	71⁄4		
B-009	7	-	191⁄2		
B-010	8	-	241/2		
B-011	2 ¹ / ₂ (Note 1)	-	- (Note 1)		
B-014	4	-	10		
B-015	6	-	211/4		
B-016	8	-	21		
B-017	5 ³ ⁄4	-	81⁄4		
X-019	23/4 (Note 2)	-	³ ⁄ ₄ (Note 2)		
B-020	91⁄4	-	14¾		
X-021	7	6½	4		
B-022	61/2	91/2	5		

"-" = Not encountered

Note: See next page

Note: 1 - Boring B-011 encountered a ³/₄ inch void underlying the asphalt, all of which was underlain with a second pavement cross-section consisting of 4¹/₂ inches of asphalt underlain by 16 inches of crushed stone.

2 - Core X-019: Underlying the upper indicated pavement cross-section, a second pavement cross-section was encountered consisting of $4\frac{1}{2}$ inches of asphalt underlain by 5 inches of crushed stone.

Granular existing **fill** materials were encountered in Boring B-016 underlying the pavement cross section to depth of 5 feet below existing grade (Elev. $877\pm$). The granular fill materials consisted of predominantly gravel (ODOT A-1-a). An SPT N₆₀-value of 18 blows per foot (bpf) and a moisture of 9 percent were determined for the recovered sample.

Cohesive existing **fill** materials were encountered underlying the surface and granular fill materials in the borings listed below. These cohesive fill materials consisted of predominantly silty clay (ODOT A-6b) and clay (ODOT A-7-6), and contained varying amounts of crushed stone. SPT N₆₀-values ranged from 6 to 14 bpf. Unconfined compressive strengths ranged from 3,000 pounds per square foot (psf) to 5,500 psf. Moisture contents ranged from 13 to 23 percent.

- In Boring B-008, cohesive fill extended to a depth of 2.5 feet (Elev. 881±).
- In Boring B-016, cohesive fill extended to a depth of approximately 6¼ feet (Elev. 875±) underlying granular fill materials.
- In Boring B-017, cohesive fill extended to a depth of approximately 2³/₄ feet (Elev. 879±).
- In Boring B-020, cohesive fill extended to a depth of approximately 3¹/₄ feet (Elev. 901±).
- In Boring B-022, cohesive fill extended to a depth of 2¹/₂ feet (Elev. 890±).

4.2 <u>General Soil Conditions</u>

Based on the results of our field and laboratory tests, the subsoils encountered underlying the surface and fill materials can generally be characterized as predominantly native cohesive soils interbedded with isolated zones of granular soils.

Native soils consisted of predominantly medium stiff to very stiff cohesive soils encountered underlying the surface and fill materials in the borings listed in Table 4.2. The cohesive soils consisted of silt and clay (ODOT A-6a), silty clay (ODOT A-6b), as well as clay (ODOT A-7-6). SPT N₆₀-values generally varied from 6 to 30 blows per foot (bpf). However, higher SPT N₆₀-values were also encountered, indicative of a hard consistency. Unconfined compressive strengths varied from 1,000 pound per square foot (psf) to greater than 9,000 psf

(maximum reading obtainable via a calibrated hand penetrometer). Moisture contents varied from 13 to 30 percent.

Granular soils were encountered underlying the surface and fill materials, as well as interbedded within the native cohesive soils in the borings listed in Table 4.2. The granular soils ranged from consisted of coarse and fine sand (ODOT A-3a). SPT N_{60} -values ranged from 8 to 30 bpf, indicating **loose** to medium dense compactness. Moisture contents ranged from 16 to 24 percent.

Table 4.2. General Depths of Native Soils					
	Cohe	sive Soils	Interbedded Granular Soils		
Boring Number	Approximate Depth Range (feet)	Approximate Elevation Range (feet)	Approximate Depth Range (feet)	Approximate Elevation Range (feet)	
B-007	$\frac{1}{2} - 7\frac{1}{2}$	$881{\pm}-874{\pm}$	-	_	
B-008	$2^{1/2} - 7$	$881{\pm}-876{\pm}$	_	_	
B-009	$2^{1/4} - 8^{1/2}$	$881\pm-875\pm$	$3 - 4^{3}/_{4}$	$880{\pm}-879{\pm}$	
B-010	$2^{3}/_{4} - 8^{1}/_{2}$	$872 \pm -866 \pm$	5-6	$870{\pm}-869{\pm}$	
B-011	2 - 6	$872 \pm -868 \pm$	$6 - 8\frac{1}{2}$	$868 \pm -866 \pm$	
B-012	$1\frac{1}{2} - 7\frac{1}{2}$	$869 \pm - 863 \pm$	$\frac{1}{4} - \frac{1}{2}$	$870{\pm}-869{\pm}$	
B-013	$\frac{1}{4} - 7\frac{1}{2}$	$874 \pm -866 \pm$	-	_	
B-014	$1^{1/4} - 4^{1/2}$	$879 \pm -876 \pm$	41/2-7	$876 \pm -873 \pm$	
B-015	$2^{1/4} - 8^{1/2}$	$877\pm-871\pm$	_	_	
B-016	-	_	61/4 - 111/2	$875{\pm}-870{\pm}$	
B-017	2³⁄4 – 7	$879{\pm}-875{\pm}$	_	_	
B-018	1/4 - 71/2	$877\pm-870\pm$	-	_	
B-020	$3^{1}/_{4} - 8^{1}/_{2}$	$901 \pm -896 \pm$	_	_	
B-022	$2^{1/2} - 8^{1/2}$	$890 \pm -884 \pm$	$4^{1}/_{4} - 4^{3}/_{4}$	888±	

Additional descriptions of the stratigraphy encountered in the borings are presented on the Logs of Test Borings.

4.3 Groundwater Conditions

Groundwater was initially encountered during drilling operations in Borings B-007, B-009 through B-012, B-015, and B-016 at depths ranging from less than 1 foot below existing grade to approximately 7 feet. Groundwater was only observed upon completion of drilling in Borings B-007 and B-012. In these two borings, which were performed in the median, ponded water was present at the ground surface. It should be noted that the boreholes were drilled and backfilled within the same day, and stabilized water levels may not have occurred over this limited time period.

Based on the limited data available, such as the soil characteristics and the groundwater conditions encountered in the borings, it is our opinion that the "normal" groundwater level may be encountered at depths on the order of 4 feet or greater below existing pavement grades. However, for the partial R-cut planned east of State Route 294, in the area of Borings B-010 through B-012, the "normal" water level may approach 2 feet below pavement grade (possibly due to the 8 to 10 feet of cut that was performed for the original US Route 23 construction in this area. This exploration did not include research of possible hydrological influences at the project site. It should be noted that groundwater elevations can fluctuate with seasonal and climatic influences. In particular, "perched" water may be encountered in native granular soils, crushed stone pavement base materials, or granular fill materials that are underlain by relatively impermeable native cohesive soils. Therefore, groundwater conditions may vary at different times of the year from those encountered during our exploration.

4.4 <u>Remedial Measures</u>

Based on the GB-1 "Subgrade Analysis" worksheet (V14.5, 01/18/19), 7 of the 14 borings contained subgrade soils within the upper profile which indicated subgrade modification is likely to be required. Based on the GB-1 analysis results, subgrade modification may consider global chemical stabilization (typically using lime to depths of 12 to 14 inches), or over-excavation and replacement with new granular engineered fill. This new pavement project includes relatively small areas of new pavement at various widespread intersections. Therefore, we anticipate over-excavation and replacement will be the more economical subgrade stabilization method for this project. If global chemical stabilization is still considered, it should be noted that the sulfate contents for the tested Boring B-011 subgrade soil samples were greater than 8,000 parts per million (ppm), which is not conducive for chemical stabilization in the area of this boring. GB-1 indicates that the District Geotechnical Engineer should be contacted to discuss options including stabilization as needed using excavate and replace methods.

The scope of this study did not include an environmental assessment of the surface or subsurface materials at this site.

5.0 ANALYSES AND RECOMMENDATIONS

The following analysis and recommendations are based on our understanding of the proposed construction and on the data obtained during our field exploration. If the project alignment or subgrade depth should change significantly, a review of these recommendations should be made by TTL.

5.1 <u>GB-1 "Plan Subgrades" Evaluation</u>

An evaluation of the subgrade soils was completed in general accordance with ODOT Geotechnical Bulletin GB-1 "Plan Subgrades" (January 18, 2019). As part of this evaluation, the ODOT "Subgrade Analysis" worksheet (V14.5, 01/18/19) was completed for the entire project as well as for individual intersections. A total of five "Subgrade Analysis" worksheets are attached to this report.

Existing pavement cross-sections encountered in the borings performed for this exploration were on the order of 11 to $32\frac{1}{2}$ inches in thickness. For subgrade evaluations, we have assumed that the new pavement cross-section will be on the order of 18 inches ($1\frac{1}{2}$ feet) in thickness, and that final pavement grades will approximate existing pavement grades. Based on lower grades in the existing medians, we anticipate approximately $\frac{1}{2}$ foot to $4\frac{1}{2}$ feet of fill will be required to achieve design subgrade elevations.

Based on GB-1, soils classified as ODOT A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, or rock have been designated as being problematic with respect to pavement subgrade support. None of these soil types were encountered at planned subgrade elevations in the borings performed for this exploration. The subgrade materials encountered in the borings located within the project area included granular and cohesive soils consisting of ODOT A-1-a, A-1-b, A-2-6, A-3a, A-6a, A-6b, and A-7-6 soils.

Based on GB-1 criteria, subgrade soils with moisture contents greater than 3 percent above optimum likely indicate the presence of unstable subgrade that may require some form of subgrade modification. Moisture contents for approximately half of the tested subgrade soil samples were greater than 3 percent above the optimum as determined using GB-1 criteria. It should be noted that approximately three quarters of the evaluated samples with moisture contents greater than 3 percent above optimum had moisture contents equal to or greater than 5 percent above optimum. Thus, where moisture contents were wet of optimum, they were appreciably wet of optimum. The encountered granular subgrade soils should be generally conducive for subgrade modification consisting of scarification, aeration, and in-place

re-compaction, provided weather conditions and construction schedule will allow for these activities. However, scarification and aeration methods may not be feasible to achieve satisfactory proof rolling and stabilization of the cohesive subgrades.

The type and thickness of subgrade modification is determined by GB-1 criteria based on the average, low SPT N_{60} -value (N_{60L}) of the subgrade soils in a particular portion of the project area, hand penetrometer values, soil type, and moisture content. Based on these criteria, 7 of the 14 borings contained subgrade soils within the upper profile which indicated subgrade modification is likely to be required. Based on the GB-1 analysis results, subgrade modification may consider global chemical stabilization using lime (with cement being an additional alternative for the CR 113/TR 124 intersection), or over-excavation and replacement with new granular engineered fill. The GB-1 prescribed type and depth of global chemical stabilization for each intersection is summarized in the following table.

Table 5.1.A. GB-1 Recommended Type and Depth of Global Chemical Stabilization				
Location Chemical Type Stabilization Depth (Inches)				
SR 294	Lime	12		
CR 113/TR 124	Lime or Cement	14		
TR 65	Lime	12		
CR 62/TR 62	Lime	14		

As required by GB-1, sulfate content tests (ODOT Supplement 1122) were performed on a sample within the upper 3 feet of anticipated subgrade elevation from each boring. The sulfate content test results are summarized in the following table.

Table 5.1.B. Sulfate Content				
Boring Number	Sulfate Content (ppm)	Boring Number	Sulfate Content (ppm)	
B-007	<100	B-014	150	
B-008	290	B-015	1,470	
B-009	1,450	B-016	1,500	
B-010	445	B-017	380	
B-011	>8,000	B-018	1,470	
B-012	<100	B-020	190	
B-013	270	B-022	595	

With the exception of the test results for Boring B-011, based on GB-1 criteria, sulfate content would not be restrictive to considering global chemical stabilization. However, this new pavement project includes relatively small areas of new pavement at various widespread intersections. Therefore, we anticipate over-excavation and replacement will be the more economical subgrade stabilization method for this project.

If global chemical stabilization is still considered, it should be noted that the sulfate contents for the tested Boring B-011 subgrade soil samples were greater than 8,000 parts per million (ppm). GB-1 indicates that chemical stabilization cannot be utilized when sulfate contents for the majority of the samples exceed 3,000 parts per million (ppm), or individual soil samples exhibit sulfate contents of greater than 5,000 ppm. GB-1 indicates that the District Geotechnical Engineer should be contacted to discuss options including stabilization as needed using excavate and replace methods.

A summary of the depths of undercut indicated by GB-1 analyses is presented in the following table.

Table 5.1.C. GB-1 Recommended Depth of Undercut and Replacement with Granular Engineered Fill			
Intersection Location	Area at Intersection	Boring Number	GB-1 Recommended Depth of Undercut and Replacement with Granular Engineered Fill (inches)
	Median	B-007	3
SR 294 (South Partial R-cut)	NB Outside Shoulder	B-008	None
(South Partial K-cut)	SB Inside Shoulder	B-009	12
	NB Inside Shoulder	B-010	None
SR 294 (North Partial R-cut)	SB Outside Shoulder	B-011	12
	Median	B-012	None
	Median	B-013	None
CR 113/TR 124	NB Outside Shoulder	B-014	12
(South Partial R-cut)	SB Inside Shoulder	B-015	None
	NB Inside Shoulder	B-016	None
CR 113/TR 124 (North Partial R-cut)	SB Outside Shoulder	B-017	16
	Median	B-018	None
TR 65	Cul-De-Sac	B-020	12
CR 62/TR 62	Cul-De-Sac	B-022	12

Where undercut and replacement is utilized, all fill should consist of ODOT Item 304 Aggregate Base or Item 703.16C, Granular Material Type B or Type C. It is recommended that geotextile fabric (referenced in ODOT Item 204, and specified as ODOT Item 712.09, Type D) be utilized on the subgrade at the bottom of the undercut zone. If particularly unstable subgrades are encountered during construction, or undercuts exceed approximately 18 inches, a geogrid could be used to reduce the total undercut and replacement of the unsuitable soils by 6 inches.

It should be noted that GB-1 analyses are used as a pre-construction tool to plan subgrade modification alternatives. Actual subgrade modification will depend on field observations of proof-rolling conditions at the time of construction. Changes in soil moisture content could create more or less favorable subgrade conditions that may result in adjustments to subgrade modification or soil stabilization requirements at the time of construction.

5.2 <u>Flexible (Asphalt) Pavement Design</u>

Based on the GB-1 analysis, a design CBR of 6 percent was determined for the entire project, considering all borings performed at all four intersections. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an average Group Index of all the evaluated samples from each intersection of the project. Additional GB-1 analyses were performed by separating the boring data into the four intersections, since they are relatively widespread. The design CBR values determined by GB-1 analyses performed at each individual intersection are summarized in the following table.

Table 5.2 GB-1 CBR Results by Intersection				
Intersection/ Connector Borings GB-1 Calculated Design CBR				
SR 294	B-007 through B-012	6		
CR 113/TR 124	B-013 through B-018	7		
TR 65	B-020	5 (TTL Recommends 4)		
CR 62/TR 62	B-022	5 (TTL Recommends 4)		

As indicated by the results tabulated based on separate project intersection locations, the design CBR value may range from 4 to 7.

Subgrade conditions at County Road 62/Township Road 62 (CR 62/TR 62) and Township Road 65 (TR 65) intersections are indicated to be slightly less favorable as compared to the overall project average design CBR of 6. For each of these intersections, Group Indices for the tested samples varied from 0 to 17, which would correlate with a CBR value of 3 to

12 percent. The higher Group Indices associated with the cohesive soils that were prominent in the borings performed at these intersections would correlate with a CBR value of 3 to 4 percent. Therefore, we recommend design consider a CBR value of 4 percent for the TR 65 and CR 62/TR 62 cul-de-sacs. It should be noted that GB-1 analyses indicate planned 12 inches of undercut and backfill using granular engineered fill based on the boring performed at each of these cul-de-sac locations. If the undercut and backfill with granular engineered fill is made a requirement for these two project intersections, the design CBR value of 5 percent could be utilized.

It should also be noted that the design CBR values are based on subgrades compacted to at least 100 percent of the maximum dry density as determined by ASTM D 698 (Standard Proctor) or verified as stable through proof-rolling in accordance with Section 5.3 of this report.

All pavement design and paving operations should conform to ODOT specifications. The pavement and subgrade preparation procedures outlined in this report should result in a reasonably workable and satisfactory pavement. It should be recognized, however, that all pavements need repairs or overlays over time as a result of progressive yielding under repeated loading for a prolonged period.

It is recommended that proof rolling, placement of aggregate base, and placement of asphalt be performed within as short a time period as possible. Exposure of the aggregate base to rain, snow, or freezing conditions may lead to deterioration of the subgrade and/or base materials due to excessive moisture conditions and to difficulties in achieving the required compaction.

5.3 <u>Site and Subgrade Preparation</u>

Site and subgrade preparation activities should conform to ODOT Construction and Materials Specifications (CMS) Item 204 specifications. Site preparation activities should include the removal of vegetation, topsoil, root mats, pavements, and other deleterious non-soil materials from all proposed roadway areas. The actual amount of required stripping should be determined in the field by a geotechnical engineer or qualified representative.

Upon completion of the clearing and undercutting activities, all areas that are to receive fill, or that have been excavated to proposed final subgrade elevation, should be inspected by a

geotechnical engineer. Pavement subgrades should be proof rolled in accordance with ODOT CMS 204.06.

Any unsuitable materials observed during the inspection and proof-rolling operations should be undercut and replaced with compacted fill, or stabilized in place utilizing conventional remedial measures such as discing, aeration, and recompaction. As stated previously, based on the conditions encountered during our exploration, where subgrade soil moisture contents were wet of optimum, they were significantly wet of optimum. The encountered granular subgrade soils should be generally conducive for subgrade modification consisting of scarification, aeration, and in-place re-compaction, provided weather conditions and construction schedule will allow for these activities. However, scarification and aeration methods may not be feasible to achieve satisfactory proof rolling and stabilization of the cohesive subgrades.

The GB-1 analysis indicates options for "planned" subgrade modification consisting of global chemical stabilization (typically using lime to depths of 12 to 14 inches), or over-excavation of unsuitable subgrade soils and replacement with new granular engineered fill. This new pavement project includes relatively small areas of new pavement at various widespread intersections. Therefore, we anticipate over-excavation and replacement will be the more economical subgrade stabilization method for this project.

5.4 <u>Groundwater Control</u>

As previously mentioned, groundwater was initially encountered during drilling operations in Borings B-007, B-009 through B-012, B-015, and B-016 depths ranging from less than 1 foot below existing grade to approximately 7 feet. Groundwater was only observed upon completion of drilling in Borings B-007 and B-012. In these two borings, which were performed in the median, ponded water was present at the ground surface. Based on the limited data available, such as the soil characteristics and the groundwater conditions encountered in the borings, it is our opinion that the "normal" groundwater level may be encountered at depths on the order of 4 feet or greater below existing pavement grades. However, for the partial R-cut planned east of State Route 294, in the area of Borings B-010 through B-012, the "normal" water level may approach 2 feet below pavement grade (possibly due to the 8 to 10 feet of cut that was performed for the original US Route 23 construction in this area. It should be noted that "perched" water may be encountered in native granular soil, crushed stone pavement base materials, or granular fill materials that are underlain by relatively impermeable cohesive soils.

Based on the "normal" groundwater level anticipated generally 4 feet or deeper below existing grades at the site, adequate control of seasonal groundwater seepage, perched water, and surface water run-off into shallow temporary excavations extending even a couple feet below the groundwater level in cohesive soils should be achievable by minor dewatering systems, such as pumping from prepared sumps. If excavations extend below the groundwater level in granular soils, installation of multiple point wells would likely be required in addition to pumping from prepared sumps.

5.5 <u>Excavations and Slopes</u>

The sides of temporary excavations for construction should be adequately sloped to provide stable sides and safe working conditions. Otherwise, the excavation must be properly braced against lateral movements. In any case, applicable Occupational Safety and Health Administration (OSHA) safety standards must be followed.

Based on the test borings, the soils likely to be encountered in shallow excavations may include:

- OSHA Type A soils (cohesive soils with unconfined compressive strengths of 3,000 pounds per square foot (psf) or greater),
- OSHA Type B soils (cohesive soils with unconfined compressive strengths greater than 1,000 psf but less than or equal to 3,000 psf), and
- OSHA Type C soils (existing fill materials and granular soils).

Temporary excavations in Type A, B, and C soils should be constructed no steeper than ³/₄ horizontal to 1 vertical (³/₄H:1V), 1H:1V, and 1¹/₂H:1V, respectively. For situations where a higher strength soil overlies a lower strength soil, and the excavation extends into the lower strength soil, the slope of the entire excavation is governed by that required for the lower strength soil. In all cases, flatter slopes may be required if lower strength soils or adverse seepage conditions are encountered during construction.

For permanent excavations and slopes, we recommend that grades generally be no steeper than 3H:1V. It should be noted that ODOT routinely uses 2H:1V slopes for roadway embankments. While these steeper slopes may be used, it is our experience that the embankment faces on these slopes are more prone to erosion and sloughing.

5.6 <u>Fill</u>

Material for engineered fill or backfill required to achieve design grades should meet ODOT Item 203 "Embankment Fill" placement and compaction requirements. In general, suitable fills may consist of any non-organic soils having a maximum dry density as determined by the Standard Proctor (ASTM D 698) of 90 pounds per cubic foot (pcf) or greater. Additionally, fill utilized to achieve design grades should consist of granular materials similar to, or better than, the on-site soils. Otherwise, a reduced CBR value may be required for pavement design.

On-site soils may be used as engineered fill materials provided that they are free of organic matter, debris, excessive moisture, and rock or stone fragments larger than 3 inches in diameter. Depending on seasonal conditions, the on-site soils may be wet of optimum and may require scarification and aeration to achieve satisfactory compaction. However, if the construction schedule does not allow for scarification and aeration activities, it may be more practical or economical to utilize imported granular fill.

Fill should be placed in uniform layers not more than 8 inches thick (loose measure) and adequately keyed into stripped and scarified soils. All fill placed within pavement areas should be compacted to a dry density consistent with the requirements of ODOT Item 203, based on the maximum dry density as determined by ASTM D 698.

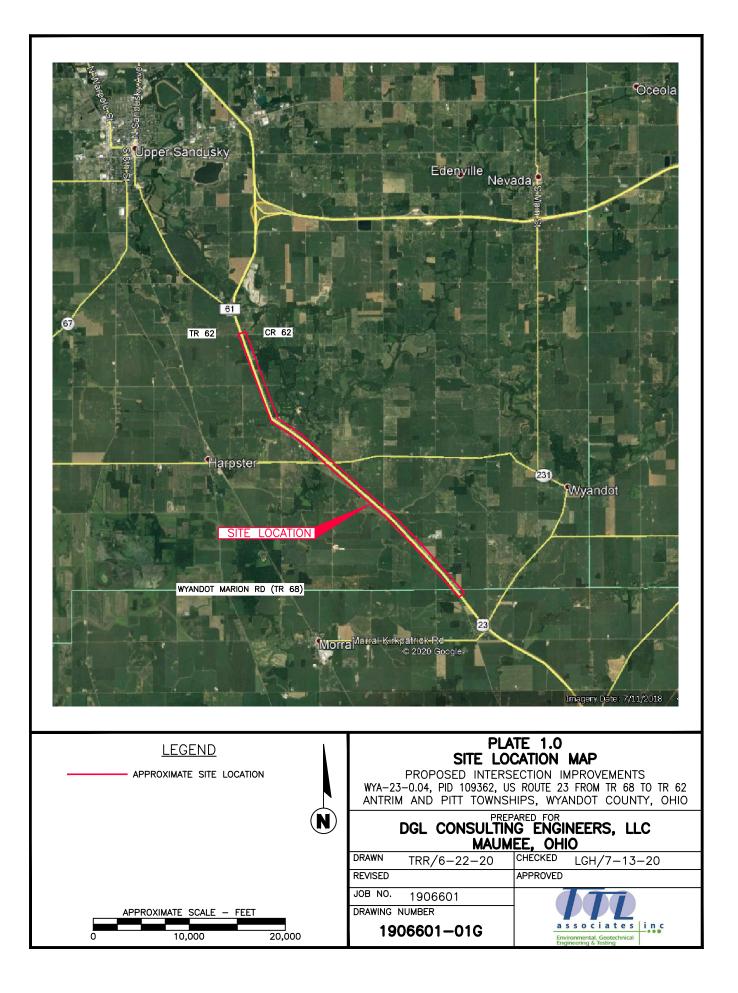
The on-site soils consist of predominantly cohesive existing fill materials and native cohesive soils, although, existing granular fill material and native granular soils were encountered in approximately one third of the borings. For native granular soil, granular fill, or dense-graded aggregate pavement base materials, a vibratory smooth-drum roller would be required to provide effective compaction. For the cohesive soils, a sheepsfoot roller should provide the most effective soil compaction.

Scarified subgrade soils and all fill material should be within 3 percent of the optimum moisture content to facilitate compaction. Furthermore, fill material should not be frozen or placed on a frozen base. It is recommended that all earthwork and site preparation activities be conducted under adequate specifications and properly monitored in the field by a qualified geotechnical testing firm.

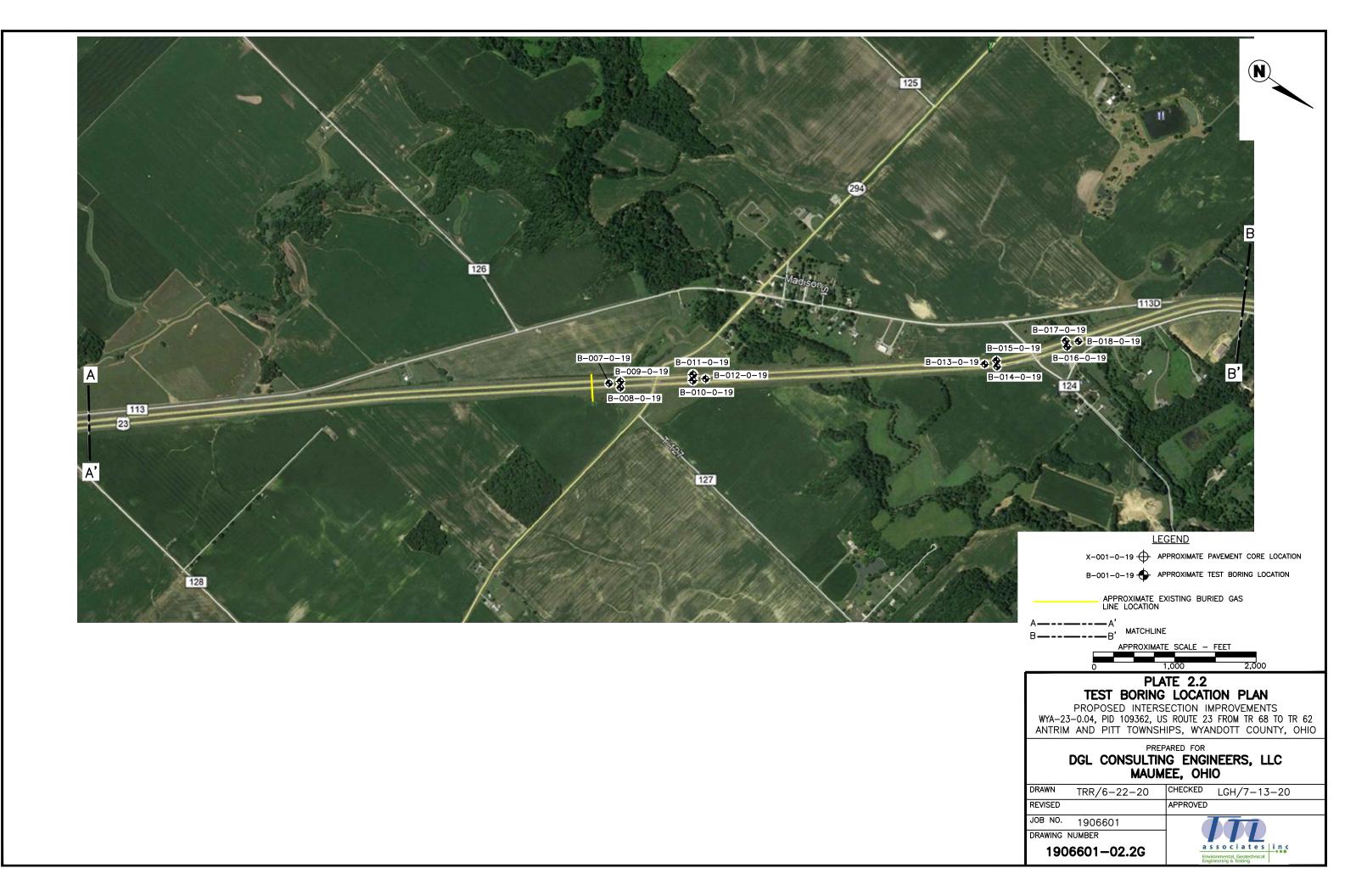
6.0 QUALIFICATION OF RECOMMENDATIONS

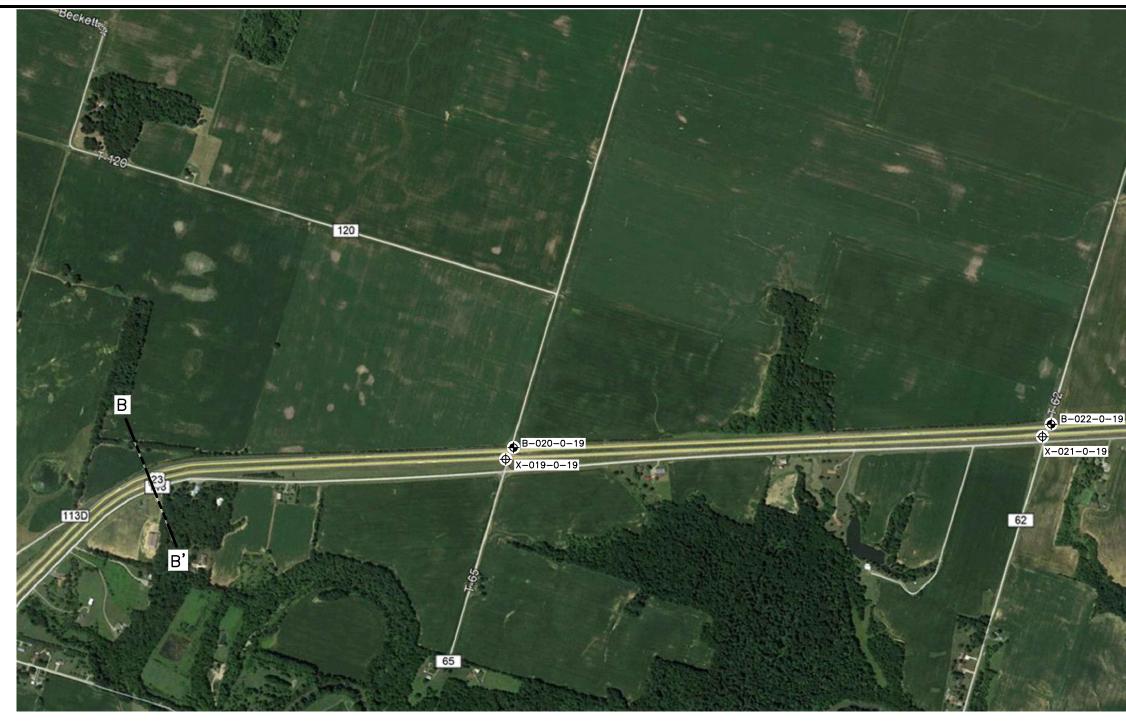
Our evaluation of the pavement design and construction conditions has been based on the data obtained during our field exploration, as well as the criteria in ODOT Geotechnical Bulletin GB-1 "Plan Subgrades" (January 18, 2019). The general subsurface conditions were based on interpretation of the subsurface data at specific boring locations. Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions between borings will differ from those at the boring locations, that conditions at the time of construction are not as anticipated by the designers, or that the construction process has altered the soil conditions. This is especially true for previously developed sites. Therefore, experienced geotechnical engineers should observe earthwork and pavement construction to confirm that the conditions anticipated in design are noted. Otherwise, TTL assumes no responsibility for construction compliance with the design concepts, specifications, or recommendations.

The design recommendations in this report have been developed on the basis of the previously described project characteristics and subsurface conditions. If project criteria or locations change, TTL should be permitted to determine whether the recommendations must be modified. The findings of such a review will be presented in a supplemental report.


The nature and extent of variations between the borings may not become evident until the course of construction. If such variations are encountered, it will be necessary to reevaluate the recommendations of this report after on-site observations of the conditions.

Our professional services have been performed, our findings derived, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties either expressed or implied. TTL is not responsible for the conclusions, opinions, or recommendations of others based on this data.


PLATES



X-001-0-19 B-001-0-19 A AF A AF AF AF A AF AF AF AF AF AF AF	GEND PROXIMATE PAVEMENT CORE LOCATION PROXIMATE TEST BORING LOCATION E SCALE - FEET 000 2,000 TE 2.1				
TEST BORING AND CORE LOCATION PLAN PROPOSED INTERSECTION IMPROVEMENTS WYA-23-0.04, PID 109362, US ROUTE 23 FROM TR 68 TO TR 62 ANTRIM AND PITT TOWNSHIPS, WYANDOTT COUNTY, OHIC PREPARED FOR					
DGL CONSULTIN MAUM	G ENGINEERS, LLC EE, OHIO				
DRAWN TRR/6-22-20	CHECKED LGH/7-13-20				
REVISED JOB NO. 1906601	APPROVED				
JOB NO. 1906601 DRAWING NUMBER					
1906601-02.1G	a s s o c i a t e s i n c Environmental Geotechnical Engineering & Testing				

$\frac{EGEND}{FOOTO-0-19 + PPROXIMATE PAVEMENT CORE LOCATION}$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$ $B = -001 - 0 - 19 + PPROXIMATE TEST BORING LOCATION$	
0 1,000 2,000 PLATE 2.3 TEST BORING LOCATION PLAN PROPOSED INTERSECTION IMPROVEMENTS WYA-23-0.04, PID 109362, US ROUTE 23 FROM TR 68 TO TR 62 ANTRIM AND PITT TOWNSHIPS, WYANDOTT COUNTY, OHIO	
PREPARED FOR DGL CONSULTING ENGINEERS, LLC MAUMEE, OHIO	
DRAWN TRR/6-22-20 REVISED	CHECKED LGH/7-13-20 APPROVED
JOB NO. 1906601	
DRAWING NUMBER 1906601-02.3G	associates inc
	Environmental, Geotechnical Engineering & Testing

FIGURES

	RM / OPERATO FIRM / LOGGEF				.L RIG IMER:	GEOPF	-	-		STA ⁻ ALIG					1054+ 3 23 (E	/	<u> </u>	PLORA X-001	ATION ID -0-19
PID: 109362 SFN: DRILLING M START: 5/20/20 END: 5/20/20 SAMPLING	ETHOD:	3.5" SSA PAVEMENT CORE		CALI	BRAT	ON DATE: ATIO (%):	11	/11/1 90*		-	VATIO	ON: 9		(NA\	/D88)	EOB:			PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 940.1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAE cs	ATIO FS	N (% si) CL	ATT LL	ERB PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
ASPHALT - 9.5 INCHES CRUSHED STONE - 5.75 INCHES	939.3		-																

TYPE: ROADWAY S PID: 109362 SFN: D	DRILLING FIRM / OF SAMPLING FIRM / L DRILLING METHOD: SAMPLING METHOD	OGGER:			HAM CALI	BRATI	<u>GEOPF</u> <u>AUTOMA</u> ON DATE: ATIO (%):	TIC H		ER	STA ALIG ELE	SNME VATI(ENT: ON: 9		US (NAV	23 (E /D88)	75, 80 BACK) EOB: 35, -83		X-002-	TION ID 0-19 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV. 940.8	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE	HP (tsf)	GR	GRAD CS	ATIO FS	N (% si) CL	ATT LL	ERB	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
ASPHALT - 7 INCHES CRUSHED STONE - 8 INCHES		940.2 939.5	– – – – – – – – – – – – – – – – – – –																	

PROJECT: <u>WYA-23-00.04</u> TYPE: <u>ROADWAY</u> PID: 109362 SFN:	DRILLING FIRM / O SAMPLING FIRM / L DRILLING METHOD	OGGER		<u>FL / CW</u> _ / KKC		HAM		GEOPR AUTOMA ON DATE:	TIC H	AMM	ER	STA ⁻ ALIG	INME	ENT:			US 2	0, 65' 3 EOB:		X-003-	ATION ID -0-19 PAGE
START: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METHO		PAVEMEN					ATIO (%):		90*		LAT		-	12.2				.177680		1 OF 1
MATERIAL DESCRIPTIO	N	ELEV.	DEPTH	IC	SPT/	N	REC	SAMPLE	ΗP	Ģ	GRAD	OATIO	N (%)	ATT	ERBE	RG		ODOT	SO4	BACK
AND NOTES		912.2	DEFIL	10	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	ppm	FILL
ASPHALT - 11.25 INCHES CRUSHED STONE - 6.75 INCHES		<u>911.2</u> 910.7	FOB																		

TYPE: ROADWAY SAMPLING FIRM / LOGGER: TTL / K PID: 109362 SFN: DRILLING METHOD: 3.5" SSA			/IER:	AUTOMA	TIC HA	MME	R	ALIG	IMEN	T:		US 2	3		X-004-0)-19
START: 5/20/20 END: 5/20/20 SAMPLING METHOD: PAVEMENT CO		CALIE	BRATI	ON DATE: ATIO (%):	11/	11/19 90*)		ATION	I: 9 <u>11.7</u>		VD88)	EOB:	1.3 ft. 3.177270		PAGE 1 OF 1
MATERIAL DESCRIPTIONELEV.AND NOTES911.7	SPT/ RQD	N.	REC (%)	SAMPLE ID	-			ATION FS		AT	TERE PL	BERG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
ASPHALT - 9.5 INCHES 910.9 CRUSHED STONE - 6 INCHES 910.4	- 1															

PROJECT: TYPE: PID: 109362	WYA-23-00.04 ROADWAY SFN:		DRILLING FIRM / O SAMPLING FIRM / L DRILLING METHOD	OGGER			HAM		AUTOMA	TIC H	-	ER	STATI ALIGN ELEV/	MEN	Г: <u> </u>		US 2	-		X-005	ATION ID -0-19 PAGE
START:5/19/			SAMPLING METHO		PAVEMENT CORE				ATIO (%):		90*		LAT /						3.186609		1 OF 1
	MATERIAL DES	SCRIPTION	1	ELEV.	DEPTHS	SPT/	N.	REC	SAMPLE	ΗP		GRAD	ATION	(%)	AT	TERB	ERG		ODOT	SO4	BACK
	AND NO	TES		891.3	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI C	L LL	PL	PI	wc	CLASS (GI)	ppm	FILL
ASPHALT - 13.	5 INCHES			890.2	1 -	-															
CRUSHED STO	ONE - 6 INCHES			889.7	EOB																

PROJECT: WYA-23-00.04 TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / I		-	TL / CW `L / KKC			L RIG		-	-		STA ALIO		/ OFI ENT:	FSET		02+9 US 2	95, 65' 3	RT. E	XPLOR X-006	ATION ID 5-0-19
PID: <u>109362</u> SFN: START: <u>5/21/20</u> END: <u>5/21/20</u>	DRILLING METHOD SAMPLING METHO):	3.5" S PAVEMEN	SA		CALI	BRATI	ON DATE: ATIO (%):	11	I/11/1 90*			VATI	ON: 8	91.8	(NAV	D88)	EOB:	1.6 ft 1.86159		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	N	ELEV.	DEPT	HS	SPT/ RQD	N ₆₀	REC	SAMPLE ID	HP (tsf)	GR (GRAE cs	DATIO	N (% SI)		ERBE	RG	wc	ODOT CLASS (GI	SO4	
ASPHALT - 12.5 INCHES CRUSHED STONE - 6.5 INCHES		<u>891.8</u> <u>890.8</u> <u>890.2</u>	FOB		-							10	5	UL	LL	1 2		wo			

ROJECT: YPE:	WYA-23-00.04 ROADWAY	DRILLING FI				TTL / CW TL / KKC				GEOPF AUTOMA					TION GNME				180 US 2	+70, (23	<u>CL</u> EX	PLORAT B-007-0)-19
ID: 109362	SFN:	DRILLING ME			3.5" S					ON DATE:											7.5 ft.		PAG
TART: <u>5/19/2</u>	0 END: <u>5/19/20</u>	SAMPLING M	/IETHO	D:	SF	РТ		ENE	RGY R	ATIO (%):		90*		LAT	/ LOI	NG:		40.	7371 <i>′</i>	14, -83	3.207481	1	I OF
	MATERIAL DESCRIPTION AND NOTES	1		ELEV. 881.1	DEPT	ΉS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			DATIC FS	N (% si			ERBI PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	B/ F
	HES CLAY, SOME SILT, LITTLE GANICS, MOIST	SAND,		880.8	881.1	- 1 -	0 3 3	9	100	SS-1	3.00	0	3	12	27	58	43	19	24	22	A-7-6 (14)	<100	
VERY STIFF, BR IRACE GRAVEL	OWN, SILTY CLAY , SOME , MOIST	SAND AND		879.1		- 2 -	8 8 9	26	100	SS-2	4.25	-	-	-	-	-	-	-	-	20	A-6b (V)	-	
						- - - 4 -	999	27	100	SS-3	4.25	4	13	20	27	36	29	12	17	15	A-6b (8)	-	
						- 5 -	8 9 8	26	100	SS-4	4.50	-	-	-	-	-	-	-	-	14	A-6b (V)	-	
@6.5': HARD				873.6	ЕОВ-	- 7 -	⁸ 12 12	36	100	SS-5	4.50	-	-	-	-	-	-	-	-	15	A-6b (V)	-	

PID: <u>109362</u> SFN: START: <u>5/19/20</u> E	ND: <u>5/19/20</u>	SAMPLING F				_ / KKC			IVIER:	AUTOMA	ATIC H	AIVIIVI	ЕК І	ALIG	INIVIE	NI.			US 2			D 000	0-19
START: <u>5/19/20</u> E MAT	ND: <u>5/19/20</u>	-	EIHOD):	3.5" SS					ON DATE:							3.1 (7.0 ft.		PAG
MAT		SAMPLING N			SPT					ATIO (%):		90*			/ LON						3.207712		1 OF
	ERIAL DESCRIPTIO			ELEV.			SPT/			SAMPLE	_			ATIO			ATTE			.,	ODOT	S04	BA
ASPHALT - 4.75 INCHE	AND NOTES	•		883.1	DEPTH	IS	RQD	N ₆₀	(%)	ID				FS				PL		wc		ppm	FI
			\times	003.1					(70)	10													
				882.7																			
CRUSHED STONE - 7.2	25 INCHES				F																		
				882.1																			
STIFF, TAN/BROWN, S	ILTY CLAY, LITTLE	SAND AND				- 1 T																	
CRUSHED STONE, DA	MP FILL																						
						- 1	6	11	70	00.4	0.00									40			
						- 2 -	63	14	78	SS-1	2.00	-	-	-	-	-	-	-	-	13	A-6b (V)	-	
						- 2																	
				880.6																			
STIFF, BROWN, SILTY	CLAY, SOME SAND	, MOIST																					
					Ļ	- 3 -																	
						-	4	12	89	SS-2	4.00	0	10	15	25	50	39	16	23	21	A-6b (13)	290	
					F		4			. –			-	-	-			-	-				
						- 4 -																	_
					-	- +	4																
							4	12	100	SS-3	2.00	0	7	15	25	53	39	17	22	21	A-6b (13)	-	
					F	- 5 -	4																
				877.6																			
HARD, BROWN, SILTY	CLAY, LITTLE SAN	D AND		01110		- 1																	-
TRACE GRAVEL, MOIS																							
						- 6 -	5	17	100	CC 4	2 00									10			
							5		100	SS-4	3.00	-	-	-	-	-	-	-	-	18	A-6b (V)	-	
				876.1	EOB																		
NOTES: NONE																							

The product of the state o	COJECT: WYA-23-00.04 'PE: ROADWAY	DRILLING FIRM			TL / CW 'L / KKC				GEOPF				ALIG	NME	NT:			US 2			(PLORA B-009-(0-19
MATERIAL DESCRIPTION DEVINE INVOLUTION DEPTHS STIF RED CALL POID Cold Cold<												9				83.4					•	
AND NOTES BB3.4 DEPTHS ROD No (%)		=		SP												ATT			30, -83 I	1	L	-
ASPHALT - 7 INCHES CRUSHED STONE - 19.5 INCHES STIFF, BROWINIGRAY, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST MARD, GRAY/BROWIN, CLAY, SOME SILT AND LITTLE @6.5: SOME SAND HARD, GRAY/BROWIN, CLAY, SOME SAND AND TRACE GRAVEL, MOIST MARD, BROWIN, SILTY CLAY, SOME SAND AND MARD, BR		JN		DEPT	HS	RQD	N ₆₀												wc			BA FI
STIFF, BROWNVGRAY, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST MEDIUM DENSE, BROWN, COARSE AND FINE SAND, LITTLE SILT, CLAY, AND TRACE GRAVEL, MOIST 880.4 MARD, GRAY/BROWN, CLAY, SOME SILT AND LITTLE SAND, MOIST 876.9 HARD, BROWN, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST 876.9 HARD, BROWN, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST	SPHALT - 7 INCHES		\otimes	₩ 882.8																		
TRACE GRAVEL, MOIST 880.4 MEDIUM DENSE, BROWN, COARSE AND FINE SAND, LITTLE SILT, CLAY, AND TRACE GRAVEL, MOIST 34 18 100 SS-2 2.25 1 10 15 24 50 32 9 23 17 $A-6b$ (13) $-$ HARD, GRAY/BROWN, CLAY, SOME SILT AND LITTLE SAND, MOIST 878.7 -5 -6 112 47 100 $SS-3$ 3.75 0 66 13 25 56 43 16 27 22 $A-7-6$ (15) 1500 66 156 17 50 100 $SS-4$ 3.75 0 66 13 25 56 43 16 27 22 $A-7-6$ (15) 1500 876.9 876.9 876.9 156 100 $SS-4$ 3.75 -5 -5 -5 -156 13 25 56 43 16 27 22 $A-7-6$ (V) -7 876.9 876.9 77 77 77 77 77 77			881.2		_	7		100	SS-1	NP	-	-	-	-	-	-	-	-	10	A-2-6 (V)	-	
LITTLE SILT, CLAY, AND TRACE GRAVEL, MOIST HARD, GRAY/BROWN, CLAY, SOME SILT AND LITTLE G5.5: SOME SAND HARD, BROWN, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST HARD, BROWN, SILTY CLAY, SOME SAND AND HARD, BROWN, SILTY CLAY, S	RACE GRAVEL, MOIST		880.4	-	- 3 -	3																
HARD, GRAY/BROWN, CLAY, SOME SILT AND LITTLE SAND, MOIST @5.5': SOME SAND HARD, BROWN, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST HARD, BROWN, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST					- 4 -		18	100	SS-2	2.25	1	10	15	24	50	32	9	23	17	A-6b (13)	-	
HARD, BROWN, SILTY CLAY, SOME SAND AND TRACE GRAVEL, MOIST		AND LITTLE	878.7	-	- 5 -	12	47	100	SS-3	3.75	0	6	13	25	56	43	16	27	22	A-7-6 (15) 1500	
TRACE GRAVEL, MOIST 7 15 10			876.9	-	- 6 - -	16	50	100	SS-4	3.75	-	-	-	-	-	-	-	-	19	A-7-6 (V)	_	
					- 7 -		45	100	SS-5	4.50	_		_						16	A-6b (V)		-
874.9 EOB EOB EOB			874.9	EOB-	- 8 -		-10	100	00-0	4.50						_			10	A-00 (V)		

YPE:	WYA-23-00.04 ROADWAY	SAMPLING F		PERATO LOGGER		ΓΤL / C\ ΓL / KK(GEOPI AUTOMA				STA ALIC	TION GNME				<u>191+(</u> US 2			PLORA B-010-0	
PID: 109362		DRILLING M								ON DATE											8.5 ft.		PAG
	/20 END: 5/22/20	SAMPLING			SF					ATIO (%):		90*			/ LOI		-				3.210158		1 OF
	MATERIAL DESCRIPTI			ELEV.			SPT/		REC	SAMPLE			GRAF				ΔΤΤ	ERB			ODOT	S04	BA
	AND NOTES			874.6	DEPT	ΉS	RQD	N ₆₀	(%)		(tsf)			FS						wc	CLASS (GI)	ppm	F
ASPHALT - 8 II			\times	074.0					(,,,)	10													
	NONEO -																						
				873.9		\vdash	-																
CRUSHED STO	ONE - 24.5 INCHES			0.0.0																			~
						<u> </u> − 1 ·																	-
						\vdash	11																
							8	21	100	SS-1	NP	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	
						- 2 -	6	i l															
				871.9		-																	-
FRY STIFE	GRAY, SILTY CLAY , TRACE		-	071.5	-																		
AOIST		- OAND,				- 3 -	9																
							7	24	100	SS-2	3.25	0	2	6	24	68	35	12	23	20	A-6b (13)	450	
						-	9																
						- 4			_														_
@4': BROWN/0	GRAY, SOME SAND																						
						F	7																
							6 9	27	100	SS-3	1.00	-	-	-	-	-	-	-	-	25	A-6b (V)	-	
				869.6	-	- 5			100		1.00									20			
	SE, BROWN, COARSE AND	D FINE SAND,																					
LITTLE SILT A	ND CLAY, MOIST					F	-		_														_
				868.6	-	- 6																	
	GRAY, SILTY CLAY , LITTLE	E SAND,					5 7	24	100	SS-4	1.75	- 1	_	-	-	-	-	_	-	18	A-6b (V)	-	
MOIST						F	9																
				867.6	₩ 867.6	+ 7 -	-		_														_
/ERY STIFF, C	GRAY, Sandy Silt , Trace	E CLAY, WET																					
						L																	
							6 10	30	100	SS-5	NI	0	5	49	42	4	NP	NP	NP	21	A-4a (2)	-	
						- 8 -	1 40					-	-			-							
				866.1																			1

TYPE:	WYA-23-00.04 ROADWAY	DRILLING F				TTL / CW TL / KKC				GEOPF AUTOMA				STA ALIC					US 2		<u>'LT.</u> EX	PLORAT B-011-0	
PID: 109362										ON DATE:											8.5 ft.	F	PA
	/20 END: 5/19/20	SAMPLING			SF					ATIO (%):		90*	-		/LO						3.210348	1	1 0
<u> </u>	MATERIAL DESCRIPTI			ELEV.	DEPT		SPT/	N	REC	SAMPLE	HP	(DATIO	N (%)		ERB	ERG		ODOT	SO4	В
	AND NOTES			874.3			RQD	. 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
ASPHALT - 2.5			_ 🗚 🗙	874.1																			\otimes
VOID - 0.75 IN				874.0																			×
ASPHALT - 4.5	5 INCHES			873.6																			×
CRUSHED ST	ONE - 16 INCHES			1		- 1 -																	
				2			4	9	100	SS-1	4.50	-	-	-	-	-	-	-	-	15	A-6b (V)	>8000	
			XXX	872.3		- 2 -			100	00 1	1.00										/ (05 (1)		
MEDIUM STIF	F, GRAY, SILTY CLAY , TR/	ACE SAND																					
AND GRAVEL,	MOIST					-																	_
						- 3 -	3																
							3	11	100	SS-2	4.25	1	2	3	27	67	35	15	20	18	A-6b (12)	>8000	,
						-	4																
						- 4 -																	-
						-	3																
							3	12	100	SS-3	1.00	0	2	7	23	68	39	12	27	28	A-6b (15)	>8000	1
						- 5 -	_ 5																
						-																	-
				868.3	W 868.3																		
LOOSE, GRAY	, COARSE AND FINE SAN	D, SOME SILT		000.0		6 -	5																
AND TRACE G		,					3	9	100	SS-4	NP	-	-	-	-	-	-	-	-	19	A-3a (V)	-	
						-																	
						- 7 -																	1
@7.5': MEDIUI	M DENSE						3	15	100	SS-5	NP	-	-	-	-	-	-	-	-	24	A-3a (V)	-	
						- 8 -			100	00-0		- I	-	-	-	-	-	-	-	24	7-3a (V)	-	
@8': LITTLE C	LAY																						
				865.8	L_EOB_																		

ID: <u>109362</u> SFN: TART: <u>5/20/20</u> EN MATE TOPSOIL - 3 INCHES			FIRM / L	PERATO		<u>TL / CW</u> `L / KKC				GEOPF AUTOMA				STA ⁻ ALIG			SET		192 US 2	<u>+50, (</u> 3	<u>L</u> EXI	PLORAT B-012-0	
TART: <u>5/20/20</u> EN MATE TOPSOIL - 3 INCHES		DRILLING N			3.5" S					ON DATE:						-	70 5 (7.5 ft.	F	PAC
MATE		SAMPLING			SP					ATIO (%):		90*	<u> </u>	LAT			0.0 (.210640	1	0
TOPSOIL - 3 INCHES	ERIAL DESCRIPTION			ELEV.			SPT/			SAMPLE	_	-		DATIO			ΔΤΤ	ERBE		,			
	AND NOTES	v		870.5	E DEPT	HS	RQD	N ₆₀	(%)	ID	⊓⊢ (tsf)							PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	B
	ANDINOTES				870.5		T.Q.D		(70)		(131)	OIX	00	10	0,	02							
SAND, SOME SILT ANE	·	Γ		870.2 869.0	070.0	- 1 -	1 3 4	11	100	SS-1	NP	0	10	55	31	4	NP	NP	NP	21	A-3a (0)	<100	
STIFF, GRAY, Silty Ci	.AY , TRACE SAND,	WET		867.3		- 2 - - - 3 -	4 - 3	12	100	SS-2	1.25	-	-	-	-	-	-	-	-	23	A-6b (V)	-	_
stiff, gray, silt ani	D CLAY, LITTLE SAM	ND, WET		866.0		- 4 -	³ 3 4	11	100	SS-3	0.75	0	2	11	23	64	25	14	11	24	A-6a (8)	-	
MEDIUM STIFF, GRAY, MOIST	SILTY CLAY, LITTL	e sand,				- 5 -	1 1 3	6	100	SS-4	0.50	-	-	-	-	-	-	-	-	21	A-6b (V)	-	
stiff, gray, silty ci gravel, moist	_AY , SOME SAND A	ND TRACE		864.2	EOB	- 7 -	3 3 6	14	100	SS-5	2.00	-	-	-	-	-	-	-	-	16	A-6b (V)	-	

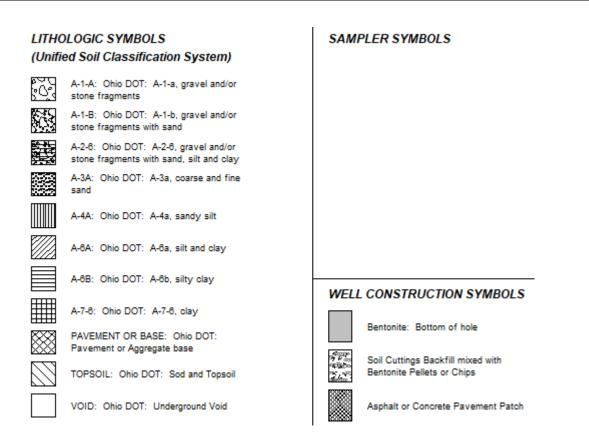
PROJECT: TYPE:	WYA-23-00.04 ROADWAY	DRILLING FI				_ / CW / KKC				GEOPF						I / OF ENT:		T:	227 US 2	7+05, (23			ATION ID 3-0-19
PID: 109362		DRILLING ME			3.5" SSA			CALI	IBRATI	ON DATE:	11							(NAV		EOB:	7.5 f	t.	PAGE
START:6/11/	20 END: <u>6/11/20</u>	SAMPLING M	IETHOD:		SPT			ENE	RGY F	ATIO (%) :		90*		LAT	/LO	NG:		40.	7457	39, - 83	8.219786		1 OF 1
	MATERIAL DESCRIPTION AND NOTES	N		LEV. 73.9	DEPTHS	6	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAE CS	FS	DN (% SI		ATT LL	FERB PL	-	wc	ODOT CLASS (G) SO4 ppm	FILL
	CHES 7, BROWN, SILTY CLAY , SO L, AND ORGANICS, DAMP	ME SAND,	8	73.6	-	- 1 -	2 2 2	6	100	SS-1	>4.5	5	15	12	23	45	40	19	21	18	A-6b (11) 27	
	I/GRAY, SILTY CLAY , LITTLI EL, AND IRON OXIDE STAIN			572.1	-	- 2	4 4 4	12	100	SS-2	>4.5	3	7	9	22	59	35	19	16	15	A-6b (10) -	
SAND AND TRA	ROWN/GRAY, SILTY CLAY , ACE GRAVEL, DAMP	LITTLE			-	- 3	3 5 7	18	100	SS-3	>4.5	-	-	-	-	-	-	-	-	18	A-6b (V)	_	
@4.5': TRACE (ORGANICS				-	- 5 -	7 7 7	21	100	SS-4	2.75	-	-	-	-	-	-	-	-	16	A-6b (V)	_	
			8	66.4	- EOB	- 6	5 7 8	23	100	SS-5	3.00	-	-	-	-	-	-	-	-	15	A-6b (V)	-	
NOTES: NON																							
ABANDONMEN	IT METHODS, MATERIALS, (QUANTITIES:	AUGER (<u>CUTTING</u>	S MIXED \	<u>WITH (</u>).5 BAC	<u>BEN</u>	<u>TONIT</u>	E CHIPS													

PID: T03362 SF SA CALIBRE THOD: 35" SSA CALIBRE TOD DATE: 11/11/19 ELEXTICN 880.1 (NAVD88)-08: 7.0 ft. P1 ELEXTICN 10/12 ELEXTICN 880.1 (NAVD88)-08: 7.0 ft. P1 P
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
AND NOTES B80.1 DEPINS RQD No (%) ID (isf) GR CS FS SI CL L PL PI WC CLASS (6) ppm ASPHALT - 4 INCHES 879.8 879.8 879.8 879.8 879.8 1
ASPHALT - 4 INCHES AND ASP (ALT - 4 INCHES) ASP (ALT - 4 INCH
CRUSHED STONE - 10 INCHES 0000 878.9 STIFF, BROWN, SILT AND CLAY, "AND" SAND, MOIST 878.9 B77.1 5 3 9 100 SS-1 2.25 0 18 27 26 29 24 11 13 15 A-6a (5) 150 VERY STIFF, GRAY/BROWN, SILT AND CLAY, "AND" 877.1 -
STIFF, BROWN, SILT AND CLAY, "AND" SAND, MOIST 877.1 VERY STIFF, GRAY/BROWN, SILT AND CLAY, "AND" 877.1 9 100 SS-1 2.25 0 18 27 26 29 24 11 13 15 A-6a (5) 150 VERY STIFF, GRAY/BROWN, SILT AND CLAY, "AND" 877.1 3 5 6 17 100 SS-2 3.75 0 16 27 25 32 27 14 13 15 A-6a (6) - 94: VERY STIFF, BROWN, TRACE GRAVEL, SHALE 875.6 17 100 SS-2 3.75 0 16 27 25 32 27 14 13 15 A-6a (6) - 64: VERY STIFF, BROWN, TRACE GRAVEL, SHALE 875.6 7 11 27 100 SS-3 4.00 - - - - 19 A-6a (V) - FRAGMENTS 873.1 100 SS-4 NP - - - 12 A-3a (V) - 873.1 10 30 100 SS-4 NP </td
VERY STIFF, GRAY/BROWN, SILT AND CLAY, "AND" SAND, MOIST @4: VERY STIFF, BROWN, TRACE GRAVEL, SHALE # <
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $
873 1 873 1
EOB 7

PROJECT: YPE:		DRILLING				TL / CN L / KKC				GEOPF				STA ALIC					228+6 US 2	<u>60, 55'</u> 3	LT. EX	PLORA B-015-	
PID: 109362		DRILLING I								ON DATE:								(NAV	/D88)	EOB:	8.5 ft.		PA
START: 5/22	2/20 END: 5/22/20	SAMPLING	METHC	D:	SP	Г				ATIO (%):		90*		LAT	/ LOI	NG:		40.	74594	18, -83	.220265		10
	MATERIAL DESCRIPTIC AND NOTES	N		ELEV. 879.2	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	(GR		DATIO			ATT	ERB	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	B
ASPHALT - 6 I							RQD		(70)				00	10	01	OL							
CRUSHED STO	ONE - 21.25 INCHES			878.7	₩ 878.7	_ 1 -																	
				876.9		- 2 -	18 11 9	30	89	SS-1	NP	-	-	-	-	-	-	-	-	8	A-1-b (V)	-	AR DO AR
	GRAY/BROWN, SILT AND C GRAVEL, ORGANICS, MOI					- 3 -	6 7 9	24	100	SS-2	3.50	1	21	29	30	19	24	11	13	13	A-6a (4)	-	MAN AN WALL
@4': GRAY, LI	TTLE SAND					4 - - 5 -	5 8 9	26	100	SS-3	3.25	-	_	_	-	-	-	-	-	20	A-6a (V)	-	ANK AN GUN
HARD, GRAY, GRAVEL, MOI	SILTY CLAY, SOME SAND ST	AND TRACE		873.7		- 6 -	10 11 11	33	100	SS-4	1.50	1	13	9	25	52	35	9	26	22	A-6b (14)	1500	LAKANA ANAVA
@7': DARK BR	ROWN			870.7		7 - - 8 -	12 11 11	33	100	SS-5	2.00	-	-	-	-	-	-	-	-	18	A-6b (V)	-	NEPX-MARDA

ID: <u>109362</u> TART: <u>5/22</u>	SFN: 2/20 END:5/22/20	DRILLING ME			3.5" SS SP1					on date: Atio (%):		<u>/11/1</u> 90*	9		vatio / Lon	_	81.6				<u>11.5 ft.</u> .222932		PA0 1 O
	MATERIAL DESCRIPTIO AND NOTES	N		ELEV. 881.6	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE	HP (tsf)		GRAD cs	_		,	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	SO4 ppm	B
ASPHALT - 8 I	NCHES		\bigotimes	880.9	₩ 880.9																		
	ONE - 21 INCHES			879.1		- 1 - - - 2 -	12 11 11	33	89	SS-1	NP	65	17	7	10	1	NP	NP	NP	4	A-1-a (0)	-	L B B JAK B B B JA
	SE, BROWN, GRAVEL , SOM SILT. AND CLAY, WET FILL	E				- 3 - 	7 6 6	18	89	SS-2	NP	-	-	-	-	-	-	-	-	9	A-1-a (V)	-	AL NON Y AN. P
	F, BROWN, SILTY CLAY , SC RUSHED STONE, MOIST FIL			876.6		- 5 -	6 3 3	9	100	SS-3	2.50	12	11	16	26	35	31	11	20	18	A-6b (9)	1500	N + B AB AP AV AP
	SE, BROWN, COARSE AND LITTLE SILT, AND TRACE GF	FINE SAND,		875.3		- 6	4 4 4	12	100	SS-4	NP	-	-	-	-	-	-	-	-	18	A-3a (V)	-	C N. A H. B. A. W. C.
@7': SOME SI	LT, LITTLE CLAY			072.4		- 7 - - 8 -	4 4 4	12	100	SS-5	NP	-	-	-	-	-	-	-	-	18	A-3a (V)	-	A B A A A A A A
.00se, brov Clay, little	VN, COARSE AND FINE SAN SILT, TRACE GRAVEL, WET	D, SOME		873.1		- 9 - - 9 -	3 3 3	9	100	SS-6	NP	-	-	-	-	-	-	-	-	16	A-3a (V)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
@10': SOME S	SILT, LITTLE CLAY			870.1	EOB	- 10 - - - 11 -	2 2 3	8	100	SS-7	NP	-	-	-	-	-	-	-	-	16	A-3a (V)	-	ANK 4 CANNE

ID: 100382 SFN: CRLLING METHOD: 3.5" SSA CALLBRATION DATE: 11/11/19 ELEVATION: 881.5 (NAVD88) EOB: 7.0 ft. F START: 5/19/20 END: 5/11/10 END: END: 100 10<	PID: 103362 SFN: OPRILING METHOD: 3.5" SSA CALIBRATION DATE: 11/11/19 ELEVATON: 881.5 (NAVD88) EOB: 7.0 ft. P1O START: 5/19/20 SAMPLING METHOD: SPT SPT SPT LEVAT/LON: 881.5 (NAVD88) EOB: 7.0 ft. P1 MATERIAL DESCRIPTION AND NOTES ELEV. AND NOTES SAMPLING METHOD: SPT SPT PEC SAMPLING (%): START: OPPTHINS START: OPPTHINS START: CL U: PL PIO CALABRATION 1/8 (%): ATTERBENC OPPTHINS START: OPPTHINS START: No. REC SAMPLE (%) ATTERBENC OPPTHINS START: No. REC SAMPLE (%) ATTERBENC OPPTHINS START: No. REC SAMPLE (%) ATTERBENC OPPTHINS NO. REC SAMPLE (%) ATTERBENC OPPTHINS NO. REC SAMPLE (%) ATTERBENC OPPTHINS NO. NO. REC SAMPLE (%) ATTERBENC NO. RO.	PROJECT: WYA-23-00.04 TYPE: ROADWAY	DRILLING FIRM / (SAMPLING FIRM /						GEOPF				STAT ALIG					237+6 US 2	<u>60, 55'</u> 3	<u>'LT.</u> EX	PLORA B-017-	
Intra- Order Output	OTN: OTION	PID: 109362 SFN:		-																7.0 ft.		PAC
AND NOTES DEPTHS RQD No. (%) ID (ist) GR CS FS SI CL LL PL PL <th< td=""><td>AND NOTES BB1.5 DEPTHS RQD No.6 (%) ID (ts) GR CS FS SI CL LP PI VC CLASS (d) ppm ASPHALT - 5.75 INCHES 881.0 881.0 881.0 880.3 -</td><td></td><td>SAMPLING METH</td><td>DD:</td><td>SPT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td></th<>	AND NOTES BB1.5 DEPTHS RQD No.6 (%) ID (ts) GR CS FS SI CL LP PI VC CLASS (d) ppm ASPHALT - 5.75 INCHES 881.0 881.0 881.0 880.3 -		SAMPLING METH	DD:	SPT																	10
ASPHALT - 5.75 INCHES 881.0 CRUSHED STONE - 8.25 INCHES 880.3 MEDIUM STIFF, BROWN, SILTY CLAY, LITTLE SAND, TRACE CRUSHED STONE, AND ORGANICS, MOIST 880.3 BTIFF, BROWN, CLAY, SOME SILT, TRACE SAND, AND GRAVEL, MOIST 877.3 BTRACE GRAVEL, MOIST 877.3 VERY STIFF, BROWN, SLIT AND CLAY, SOME SILT, SAND, AND GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SILT, SAND, AND GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SILT, SAND, AND GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SILT, SAND, AND TRACE GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SILT, SAND, AND TRACE GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SAND, AND TRACE GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SAND, AND TRACE GRAVEL, MOIST 876.0 BTIFF, BROWN, SLIT AND CLAY, SOME SAND 876.0 BTIFF, BROWN	ASPHALT - 5.75 INCHES 881.0 CRUSHED STONE - 8.25 INCHES 880.3 MEDIUM STIFF, BROWN, SILTY CLAY, LITTLE SAND, TRACE CRUSHED STONE, AND ORGANICS, MOIST 880.3 STIFF, BROWN, CLAY, SOME SILT, TRACE SAND, AND GRAVEL, MOIST 878.7 877.3 877.3 VERY STIFF, BROWN, CLAY, SOME SILT, SAND, AND TRACE GRAVEL, MOIST 877.3 9 9 100 SS-1 2.75 - - - 2 4 - - - - 2 4 2 2 6 100 SS-1 2.75 - - - - 2 3 - - - - 2 3 - - - - 2 3 - - - - - 2 3 - - - - 2 3 - - - - 2 3 - - - - 2 3 - - - 2 3 - - 2 3 - - 2 3 - - 1 - - <td></td> <td>I</td> <td></td> <td>DEPTHS</td> <td>SPT/ RQD</td> <td>N₆₀</td> <td></td> <td>wc</td> <td></td> <td></td> <td>B</td>		I		DEPTHS	SPT/ RQD	N ₆₀												wc			B
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MEDIUM STIFF. BROWN, SILTY CLAY, LITTLE SAND, TRACE CRUSHED STONE, AND ORGANICS, MOIST 880.3 -1																					
TRACE CRUSHED STONE, AND ORGANICS, MOIST FIL 878.7 STIFF, BROWN, CLAY, SOME SILT, TRACE SAND, AND GRAVEL, MOIST 877.3 VERY STIFF, BROWN, CLAY, SOME SILT, SAND, AND TRACE GRAVEL, DAMP 876.0 <t< td=""><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\$</td><td>CRUSHED STONE - 8.25 INCHES</td><td></td><td>880.3</td><td>- 1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ $	CRUSHED STONE - 8.25 INCHES		880.3	- 1 -																	
STIFF, BROWN, CLAY, SOME SILT, TRACE SAND, AND GRAVEL, MOIST -3 -3 -4 100 SS-2 4.50 4 4 2 25 65 42 17 25 21 A-7-6 (14) - VERY STIFF, BROWN, CLAY, SOME SILT, SAND, AND TRACE GRAVEL, DAMP -5 -7 6 20 100 SS-2 4.50 4 4 2 25 65 42 17 25 21 A-7-6 (14) - VERY STIFF, BROWN, CLAY, SOME SILT, SAND, AND TRACE GRAVEL, DAMP -5 -7 6 20 100 SS-3 2.75 - - - - - - - 16 A-7-6 (V) - VERY STIFF, BROWN, SILT AND CLAY, SOME SAND AND TRACE GRAVEL, MOIST -5 -7 6 20 100 SS-3 2.75 - - - - 16 A-7-6 (V) - 0 -5 -6 -6 -7 20 100 SS-4 4.00 3 13 19 22 43 27 13 14 15 A-6a (8) 380	STIFF, BROWN, CLAY, SOME SILT, TRACE SAND, AND GRAVEL, MOIST $=$	TRACE CRUSHED STONE, AND ORGANICS			- 2 -			100	SS-1	2.75	-	-	-	-	-	-	-	-	23	A-6b (V)	-	MAR DA BURN
VERY STIFF, BROWN, CLAY, SOME SILT, SAND, AND TRACE GRAVEL, DAMP 677.3 WERY STIFF, BROWN, SILT AND CLAY, SOME SAND AND TRACE GRAVEL, MOIST 876.0 $6 - 6$ $7 - 6$ $20 - 100$ $SS-3$ 2.75 $- 5 - 5$	VERY STIFF, BROWN, CLAY, SOME SILT, SAND, AND 077.3 TRACE GRAVEL, DAMP 677.6 20 100 SS-3 2.75 $ -$ <		SAND,	878.7	-	4		100	SS-2	4.50	4	4	2	25	65	42	17	25	21	A-7-6 (14)	-	R WAR WAY
$\begin{bmatrix} -6 & -6 & -6 & -6 & -6 & -6 & -6 & -6 $	VERY STIFF, BROWN, SILT AND CLAY , SOME SAND AND TRACE GRAVEL, MOIST 874 5				_	7		100	SS-3	2.75	-	-	-	-	-	-	-	-	16	A-7-6 (V)	-	VAR AF AVE DEA
874.5		VERY STIFF, BROWN, SILT AND CLAY , SC AND TRACE GRAVEL, MOIST			_	7		100	SS-4	4.00	3	13	19	22	43	27	13	14	15	A-6a (8)	380	A A A


ROJECT: YPE:	WYA-23-00.04 ROADWAY	DRILLING F				_ / CW / KKC				GEOPF				STA ⁻ ALIG				-	239 US 2	+00, 0 23	<u>CL</u> EX	PLORA B-018-0	
ID: 109362		DRILLING N			3.5" SSA					ON DATE:										EOB:	7.5 ft.		PA
	1/20 END: 6/11/20	SAMPLING	METHC	D:	SPT					ATIO (%):		90*		LAT							3.223451		10
	MATERIAL DESCRIPTION AND NOTES	I		ELEV. 877.1	DEPTHS	6	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS			ATT LL	ERBE PL		WC	ODOT CLASS (GI)	SO4 ppm	B
TOPSOIL - 4 I	NCHES		\sim	876.8																			Å
STIFF, BROW LITTLE GRAV	(n, Silty Clay , Some Sand El, Moist	AND			_	- 1	3 3 3	9	100	SS-1	3.25	-	-	-	-	-	-	-	-	20	A-6b (V)	-	AR DIRLAR A
				874.1	-		3 4 4	12	100	SS-2	3.25	13	9	12	20	46	36	18	18	21	A-6b (9)	1500	AN LEN X CAL
	(N, SILTY CLAY , LITTLE SANE D IRON OXIDE STAIN SEAM, N				-	- 3	2 4 5	14	100	SS-3	1.50	4	7	12	23	54	34	17	17	26	A-6b (11)	-	AN AL CANAR AN
					-		5 5 5	15	100	SS-4	4.25	-	-	-	-	-	-	-	-	17	A-6b (V)	-	ALAN ALAGY
@6.5': VERY \$	STIFF, DAMP			869.6	-	- 6	5 7 8	23	100	SS-5	4.00	-	-	-	-	-	-	-	-	16	A-6b (V)	-	LANA & BAN ZIAN

PROJECT: WYA-23-00.04 TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / L					.L RIG: MER:	GEOPR	-	-						297+0 US 2) <u>5, 60'</u> 3	RT. E	(PLORA X-019-	TION ID 0-19
PID: <u>109362</u> SFN: START: <u>5/21/20</u> END: <u>5/21/20</u>	DRILLING METHOD SAMPLING METHO		3.5" SSA PAVEMENT CORI	<u> </u>	-		ON DATE: ATIO (%):		/11/1 90*		ELEVAT AT / LO		-				<u>1.1 ft</u> 3.234381		PAGE 1 OF 1
MATERIAL DESCRIPTIO AND NOTES	N	ELEV. 905.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRADA CS F	TION (' ⁼s si	%) CL	ATT LL	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
ASPHALT - 2.75 INCHES CRUSHED STONE - 0.75 INCHES ASPHALT - 4.5 INCHES CRUSHED STONE - 5 INCHES		905.1 905.0 904.6 904.2	- - EOB - 1	_															

PID: 109362	WYA-23-00.04 ROADWAY	DRILLING FIR				TL / CW L / KKC				GEOPF						/ OFI		-	297+9 US 2	95, 60' 23	LT. EX	PLORA B-020-	
		DRILLING ME								ON DATE:			9			_	04.5			EOB:			PAGE
START:5/19/		SAMPLING M	ETHO		SP			ENE		ATIO (%):		90*		LAT						58, -83	3.234905		1 OF 1
	MATERIAL DESCRIPTIO AND NOTES	N		ELEV. 904.5	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD					ERBE PL	ERG	wc	ODOT CLASS (GI)	SO4 ppm	BACł FILL
ASPHALT - 9.2			\boxtimes	904.5					(70)			0.1	00		0.	01							
			\bigotimes																				
			\bigotimes	903.7																			
CRUSHED STO	ONE - 14.75 INCHES		\bigotimes			- 1 -																	- 4 C - 2 1 - 2
			\bigotimes																				X A
			\bigotimes			-	5 4	11	89	SS-1	1.75	-	-	_	-	-	_	-	_	20	A-7-6 (V)		1<
			\mathbb{X}	902.5		- 2 -	3			00-1	1.75	_	_	_	-	_	-	_		20		_	T L T L R T L
	N/BLACK, CLAY, SOME SILT CRUSHED STONE, AND OF																						Alland A
MOIST FILL	,					-																	
						- 3 -																	121
STIFE BROWN	N/GRAY, CLAY, SOME SILT,			901.3		Ŭ	4	12	100	SS-2	2.00	1	3	8	20	68	44	18	26	24	A-7-6 (15)	190	
	GRAVEL, AND ORGANICS,					-	4																á and
				900.5																			< _ V
	BROWN/GRAY, CLAY, SOME					- 4 -																	
LITTLE SAND,	AND TRACE GRAVEL, MOIS	51				-	6																S LA
							5	21	100	SS-3	2.50	2	5	8	25	60	44	14	30	22	A-7-6 (17)	-	N. V
						- 5 -	9																a set
						_																	<i>≨as</i> ≈< 5
@5.5': GRAY/B	BROWN																						1 L
						- 6 -	10																AND A
							8	24	100	SS-4	1.50	-	-	-	-	-	-	-	-	24	A-7-6 (V)	-	A Sport
						- 7 -																	
						-	7	18	100	SS-5	2.50					_		-		24	A-7-6 (V)		all a
						- 8 -	6	10	100	33-0	2.50	-	-	-	-	-	-	-	-	24	A-7-0 (V)	-	Sector L
				206.0		-																	N N
				896.0	-EOB	- 8 -	_ 6																

PROJECT: WYA-23-00.04 TYPE: ROADWAY	DRILLING FIRM / O SAMPLING FIRM / I					l rig: Mer:	GEOPF AUTOMA	-	-		STA ALIG			FSET		294+7 US 2	' <u>5, 60'</u> 3	RT. E		ATION ID 1-0-19
PID: <u>109362</u> SFN:	DRILLING METHOD		3.5" SSA		-		ON DATE:		/11/19				-	93.6			EOB:		t	PAGE 1 OF 1
START: <u>5/21/20</u> END: <u>5/21/20</u>	SAMPLING METHO	D:	PAVEMENT CORE	<u> </u>	ENE	KGY R	ATIO (%):		90*		LAT	/ LOI	NG:		40.	//446	52, -83	3.241156		1011
MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	C	RAD	ATIO	N (%)	ATT	ERBE	ERG		ODOT	SO4	
AND NOTES		893.6	DLI IIIO	RQD	¹ 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G) ppm	ו FILL
ASPHALT - 7 INCHES		893.0		_																
CONCRETE - 6.5 INCHES		892.5	- 1 -	-																
CRUSHED STONE - 4 INCHES		892.1	ЕОВ																	

ГҮРЕ:	WYA-23-00.04 ROADWAY	SAMPLING		PERATOR		L / CW / KKC				GEOPF AUTOMA				STA ALIG				-	295+7 US 2	75, 65 3		PLORA B-022-	
PID: 109362		DRILLING N			3.5" SS/					ON DATE								(NAV	D88)	EOB:	8.5 ft.		PAC
START: 5/19		SAMPLING			SPT					ATIO (%):		90*		LAT							3.241701		1 0
	MATERIAL DESCRIPTIO	-		ELEV.			SPT/			SAMPLE							ΛΤΤ	ERBE		,	1		
	AND NOTES				DEPTH	S	RQD	N ₆₀	(%)	ID	(tsf)		CS					PL		wc	ODOT CLASS (GI)	SO4 ppm	B
ASPHALT - 6.5				892.3			RQD		(70)			GIV	03	13	51	UL		ΓL.	FI	WC	· · · ·		
ASPHALI - 0.3	INCHES		\otimes	001 0																			
			-	891.8	-	-	-																×
CONCRETE - 9	9.5 INCHES																						A W
					-	- 1 -																	-22
				891.0																			di V
CRUSHED STO	ONE - 5 INCHES				-		18																WT
				890.5			3	9	67	SS-1	1.50	-	-	-	-	-	-	-	-	22	A-6b (V)	-	R
	N/BLACK, SILTY CLAY, LITT				-	- 2 -	3																10
	HED STONE, AND ORGANIC	CS, MOIST																					ast i
FILL				889.8	-																		T.
	N/GRAY, CLAY, SOME SILT	, TRACE																					X
SAND, AND OF	RGANICS, MOIST				L	- 3 -																	The second
						Ť	2 3	11	100	SS-2	2.75	0	1	2	24	73	48	20	28	27	A-7-6 (17)	_	8
					Ļ		4					ľ	'	-	- ·	. 🇸							2
																							<
						- 4 -																	Å
				888.0		4																	9
LOOSE, BROW	VN, COARSE AND FINE SAM	ND, LITTLE																					97 Y
SILT, CLAY, AN	ND GRAVEL, MOIST			887.6			3	8	100	SS-3	1.50	0	2	2	23	73	16	14	32	20	A-7-6 (17)	600	P A
	F, BROWN/GRAY, CLAY , SO	DME SILT,	- ++++			- 5 -	2 3	0	100	33-3	1.50		2	2	23	13	40	14	32	30	A-7-0 (17)	000	4
TRACE SAND,	AND ORGANICS, MOIST					- 5 -																	1
																							1
																							\$
						- 6 -																	4
				886.1		- 0 -	6	15	100	SC 4	1 75	_								07			N N
	BROWN, SILTY CLAY , LITTL	E SAND,					55	15	100	SS-4	1.75	-	-	-	-	-	-	-	-	27	A-6b (V)	-	
MOIST					Γ		Ĭ																8
				885.3		-																	R
MEDIUM STIFF	F, BROWN, SILTY CLAY, LI	ITLE SAND,				- 7 -																	7
MOIST																							at
					F		3																Ť
							2	8	100	SS-5	0.75	-	-	-	-	-	-	-	-	30	A-6b (V)	-	Z
					F	- 8 -	1																H.
				883.8	_EOB																		A Constant

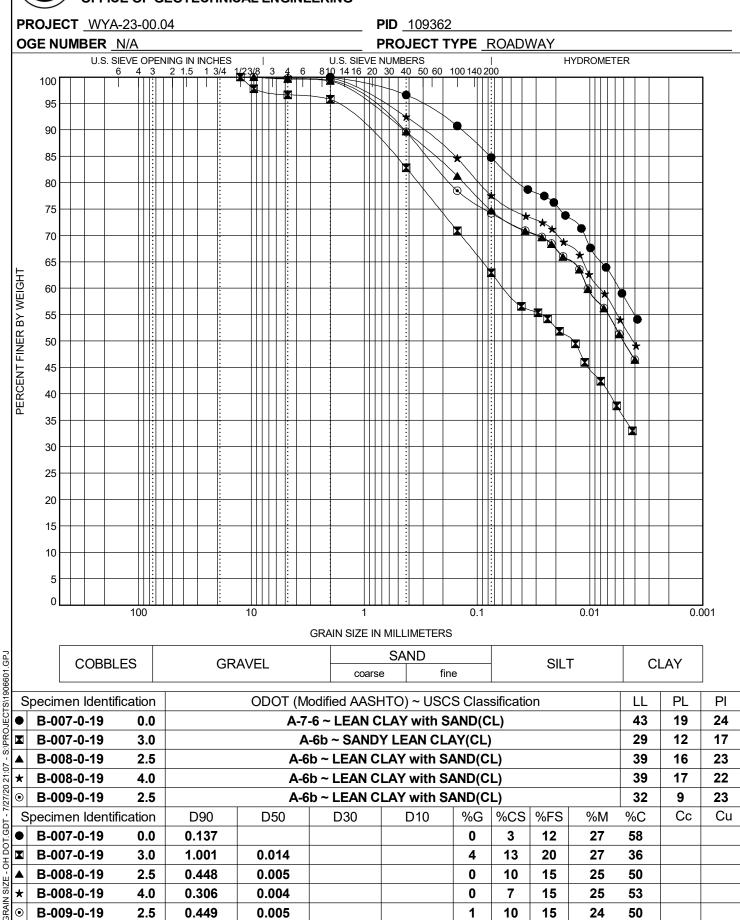
Notes:

- 1. Exploratory borings were drilled during the period from May 19 to June 11, 2020., utilizing solid-stem augers. Pavement cores were performed during this period using a nominal 4-inch diameter core barrel.
- 2. These logs are subject to the limitations, conclusions, and recommendations in the report and should not be interpreted separate from the report.
- 3. Stationing and offsets at the boring locations were estimated to the nearest 5-foot increment based on the site plan provided by DGL. Latitude, Longitude, and ground surface elevations were surveyed by TTL via a hand held GPS. The accuracy from the handheld GPS device was found to be approximately 2 to 6 inches horizontal, and approximately 4 to 12 inches vertical.

4. HP (tsf): Hand Penetrometer Readings. NP = Non-Plastic. NI = Not Intact

 \odot

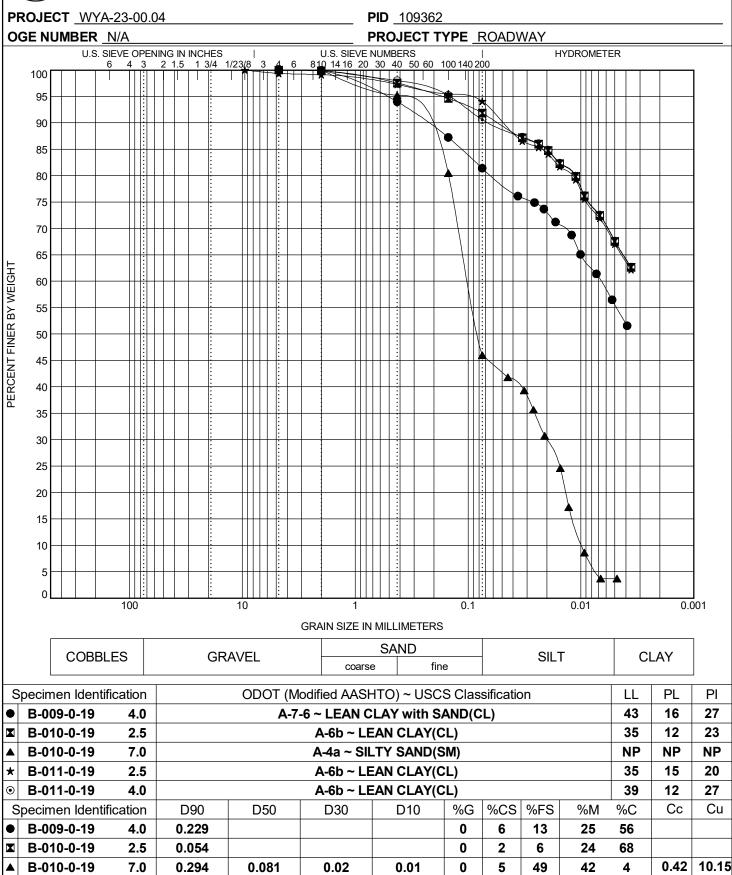
B-009-0-19


2.5

0.449

0.005

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING


1

10

15

24

50

2

2

1

0

3

7

27

23

67

68

GRAIN SIZE DISTRIBUTION

*

 \odot

B-011-0-19

B-011-0-19

2.5

4.0

0.048

0.064

PROJECT <u>WYA-23-00.04</u> PID 109362 OGE NUMBER N/A PROJECT TYPE ROADWAY HYDROMETER U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS <u>810 14 16 20 30 40 50 60 100 140 200</u> 1/23/8 3 6 4 3 2 1.5 1 3/4 4 6 100 +X 95 90 85 X Ø 80 X 75 70 X 65 Y PERCENT FINER BY WEIGHT 60 55 0 50 Q 45 40 \! 35 Ø 30 $\mathbf{\overline{o}}$ 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT fine coarse LL PL ΡI Specimen Identification ODOT (Modified AASHTO) ~ USCS Classification • B-012-0-19 0.0 A-3a ~ SILTY SAND(SM) NP NP NP 25 14 11 B-012-0-19 3.0 A-6a ~ LEAN CLAY(CL) 0.0 40 19 21 B-013-0-19 A-6b ~ SANDY LEAN CLAY(CL)

A-6b ~ LEAN CLAY with SAND(CL)

A-6a ~ SANDY LEAN CLAY(CL)

D10

0.014

%G

0

0

5

3

0

%CS

10

2

15

7

18

%FS

55

11

12

9

27

D30

0.036

0.005

GRAIN SIZE DISTRIBUTION

35

24

%C

4

64

45

59

29

%M

31

23

23

22

26

19

11

Cc

0.54

16

13 Cu

11.63

3RAIN SIZE - OH DOT.GDT - 7/27/20 21:07 - S:/PROJECTS/1906601.GP.

*

۲

★ ⊙ B-013-0-19

B-014-0-19

B-012-0-19

B-012-0-19

B-013-0-19

B-013-0-19

B-014-0-19

Specimen Identification

1.5

1.0

0.0

3.0

0.0

1.5

1.0

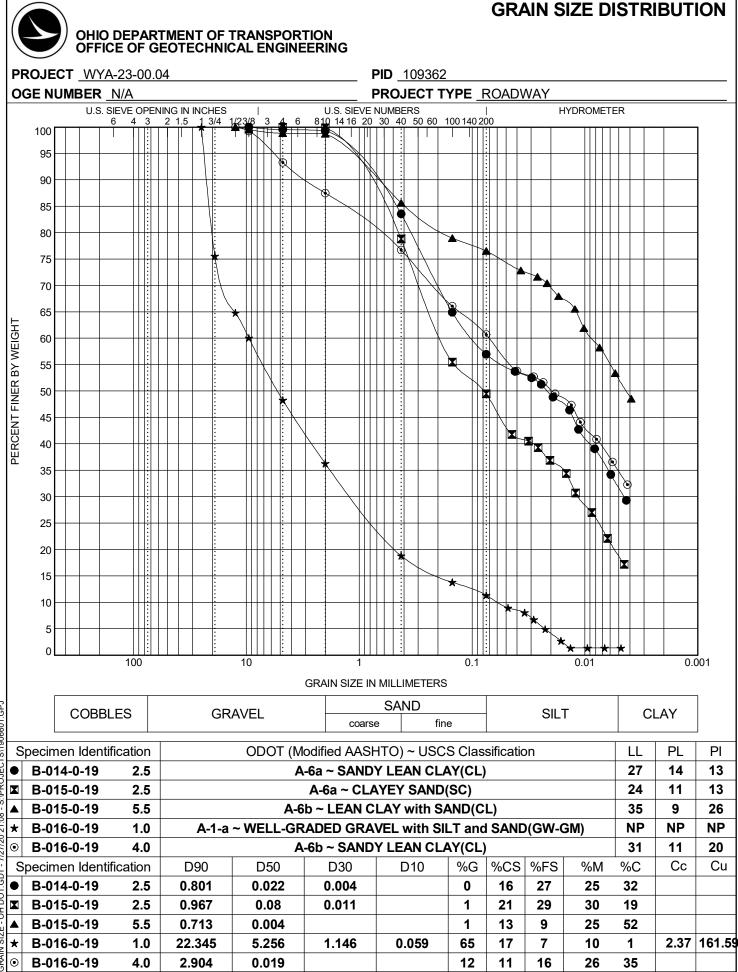
D90

0.423

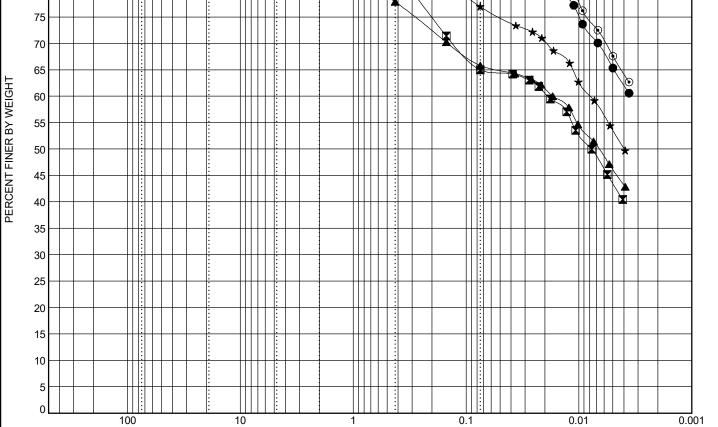
0.095

1.202

0.404


0.88

D50


0.12

0.007

0.029

PROJECT <u>WYA-23-00.04</u> PID 109362 OGE NUMBER N/A PROJECT TYPE ROADWAY U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 HYDROMETER U.S. SIEVE OPENING IN INCHES 4 3 2 1.5 1/23/8 3 6 6 1 3/4 4 Π Т 0 l ۲ * **(**) : \odot X ★ ÷ * X ★ ¢ ★ X . : ${igle}$

GRAIN SIZE IN MILLIMETERS

Γď		COBBL			AVEL		SAND			SILT	-	C	AY]
601.0		COBBL	.E3	GR	AVEL	coarse	e fii	ne		SILI				
S:\PROJECTS\1906601.GPJ	s	pecimen Identif	ication		ODOT (Mod	dified AASH	ITO) ~ USC	S Clas	sificatio	on		LL	PL	PI
JECT	•	B-017-0-19	2.5		(EAN CLAY					42	17	25
PRO		B-017-0-19	5.5		A-6	a ~ SAND	Y LEAN CL	AY(CL))			27	13	14
- i -		B-018-0-19	1.5		A-6	b ~ SAND	Y LEAN CL	AY(CL))			36	18	18
0 21:08	*	B-018-0-19	3.0		A-6b	~ LEAN C	LAY with S	AND(C	L)			34	17	17
7/27/20	\odot	B-020-0-19	2.5			A-7-6 ~ LE	EAN CLAY(CL)				44	18	26
	S	pecimen Identif	ication	D90	D50	D30	D10	%G	%CS	%FS	%M	%C	Сс	Cu
DT.GI	•	B-017-0-19	2.5	0.071				4	4	2	25	65		
OH DOT.GDT		B-017-0-19	5.5	0.896	0.008			3	13	19	22	43		
		B-018-0-19	1.5	3.651	0.007			13	9	12	20	46		
GRAIN SIZE	*	B-018-0-19	3.0	0.498	0.004			4	7	12	23	54		
GRA	۲	B-020-0-19	2.5	0.104				1	3	8	20	68		

100

95

90

85

80

GRAIN SIZE DISTRIBUTION

PROJECT <u>WYA-23-00.04</u> PID 109362 PROJECT TYPE ROADWAY OGE NUMBER N/A U.S. SIEVE OPENING IN INCHES HYDROMETER U.S. SIEVE NUMBERS 810 14 16 20 30 40 50 60 100 140 200 1/23/8 3 4 6 1 3/4 6 4 3 2 1.5 100 ð ۲ 95 : 90 × 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** SAND COBBLES GRAVEL CLAY SILT fine coarse ODOT (Modified AASHTO) ~ USCS Classification LL PL ΡI Specimen Identification • B-020-0-19 4.0 A-7-6 ~ LEAN CLAY(CL) 44 14 30 B-022-0-19 2.5 A-7-6 ~ LEAN CLAY(CL) 48 20 28 B-022-0-19 4.0 A-7-6 ~ LEAN CLAY(CL) 46 14 32 %CS %FS Сс Cu Specimen Identification D90 D50 D30 D10 %G %M %C B-020-0-19 4.0 0.188 2 5 8 25 60 B-022-0-19 2.5 0.032 1 2 0 24 73 B-022-0-19 4.0 2 2 23 0.033 0 73

GRAIN SIZE DISTRIBUTION

GRAIN SIZE - OH DOT.GDT - 7/27/20 21:08 - S:/PROJECTS/1906601.GP.

CORE LOG for X-001-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 20, 2020

ASPHALT THICKNESS (in)	=	9.5
STONE THICKNESS (in)	=	5.75
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Core broken at approximately 4 inches below top of pavement.

Apparent delamination at approximately 5 inches.

CORE LOG for X-002-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 20, 2020

ASPHALT THICKNESS (in)	=	7.0
STONE THICKNESS (in)	=	8.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent layering at approximately 2.5 inches and 3.5 inches.

CORE LOG for X-003-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 21, 2020

ASPHALT THICKNESS (in)	=	11.25
STONE THICKNESS (in)	=	6.75
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent layering approximately every inches below top of pavement from 2 inches to 6 with an apparent delamination at approximately 5 inches.

CORE LOG for X-004-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 20, 2020

ASPHALT THICKNESS (in)	=	9.5
STONE THICKNESS (in)	=	6.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent delamination at approximately 3.75 inches below

top of pavement.

CORE LOG for X-005-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	13.5
STONE THICKNESS (in)	=	6.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent delamination at approximately 6.25 inches and 7.5 inches below top of pavement.

CORE LOG for X-006-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 21, 2020

ASPHALT THICKNESS (in)	=	12.5
STONE THICKNESS (in)	=	6.5
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent delamination at approximately 5.5 inches below top of pavement.

CORE LOG for B-008-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	4.75
STONE THICKNESS (in)	=	7.25
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Pavement core appeared in good condition.

CORE LOG for B-009-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 22, 2020

ASPHALT THICKNESS (in)	=	7.0
STONE THICKNESS (in)	=	19.5
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Only 2.75 inches of the core recovered.

CORE LOG for B-010-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 22, 2020

ASPHALT THICKNESS (in)	=	8.0
STONE THICKNESS (in)	=	24.5
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent delamination at approximately 3 inches and 5.5 inches below top of pavement.

CORE LOG for B-011-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	* 2.5
STONE THICKNESS (in)	=	* -
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Only 2.5 inches of the core recovered. 0.75 inch void underlying the

surface asphalt. * Secondary pavement cross section encountered

underlying the surface pavement consisting of 4.5 inches of asphalt underlain by 16 inches of stone.

CORE LOG for B-014-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	4.0
STONE THICKNESS (in)	=	10.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Pavement core appeared in good condition.

CORE LOG for B-015-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 22, 2020

ASPHALT THICKNESS (in)	=	6.0
STONE THICKNESS (in)	=	21.25
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent layering at approximately 2.5 inches as well as a horizontal fracture at approximately 4.5 inches.

CORE LOG for B-016-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 22, 2020

ASPHALT THICKNESS (in)	=	8.0
STONE THICKNESS (in)	=	21.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Pavement core in pieces from 2.5 to 7 inches below top of pavement.

CORE LOG for B-017-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	5.75
STONE THICKNESS (in)	=	8.25
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Pavement core broken at approximately 3.25 inches below top of pavement.

CORE LOG for X-019-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 21, 2020

ASPHALT THICKNESS (in)	=	* 2.75
STONE THICKNESS (in)	=	* 0.75
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

* Secondary pavement cross section encountered underlying the surface pavement consisting of 4.5 inches of asphalt underlain by 5 inches of stone.

CORE LOG for B-020-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	9.25
STONE THICKNESS (in)	=	14.75
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent delamination at approximately 4 inches below top of pavement.

CORE LOG for X-021-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 21, 2020

ASPHALT THICKNESS (in)	=	7.0
CONCRETE THICKNESS (in)	=	6.5
STONE THICKNESS (in)	=	4.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent delamination at approximately 4.5 inches and 6 inches below top of pavement. Concrete fragmented into four pieces.

CORE LOG for B-022-0-19

Project: Proposed Intersection Improvements PID 109362 Project Location: WYA-23-0.04, Wyandot County, Ohio TTL Project No. 1906601 Core Date: May 19, 2020

ASPHALT THICKNESS (in)	=	6.5
CONCRETE THICKNESS (in)	=	9.5
STONE THICKNESS (in)	=	5.0
CORE BARREL DIAMETER (in)	=	4.0

VISUAL DESCRIPTION:

Apparent layering at approximately 3.75 inches below top of pavement. Only approximately 4.5 inches of the cored concrete recovered.

Appendix A: Engineering Calculations (Including GB-1 Spreadsheets)

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

WYA-23-0.04

109362

Proposed Intersection Improvements - US Route 23 from Township Road 68 to Township Road 62

TTL Associates, Inc.

Prepared By:Christopher P. lott, P.E.Date prepared:Friday, July 24, 2020Christopher P. lott, P.E.TTL Associates, Inc.1915 N. 12th StreetToledo, Ohio 43606419-214-5020ciott@ttlassoc.com

NO. OF BORINGS:

14

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-007-0-19	US Route 23	180+70	0	Centerline	Geoprobe 7822DT	90*	881.1	881.6	0.5 F
2	B-008-0-19	US Route 23	182+00	55	Right	Geoprobe 7822DT	90*	883.1	881.6	1.5 C
3	B-009-0-19	US Route 23	182+00	20	Left	Geoprobe 7822DT	90*	883.4	881.9	1.5 C
4	B-010-0-19	US Route 23	191+00	25	Right	Geoprobe 7822DT	90*	874.6	873.1	1.5 C
5	B-011-0-19	US Route 23	191+00	55	Left	Geoprobe 7822DT	90*	874.3	872.8	1.5 C
6	B-012-0-19	US Route 23	192+50	0	Centerline	Geoprobe 7822DT	90*	870.5	873.0	2.5 F
7	B-013-0-19	US Route 23	227+05	0	Centerline	Geoprobe 7822DT	90*	873.9	878.4	4.5 F
8	B-014-0-19	US Route 23	228+60	20	Right	Geoprobe 7822DT	90*	880.1	878.6	1.5 C
9	B-015-0-19	US Route 23	228+60	55	Left	Geoprobe 7822DT	90*	879.2	877.7	1.5 C
10	B-016-0-19	US Route 23	237+60	25	Right	Geoprobe 7822DT	90*	881.6	880.1	1.5 C
11	B-017-0-19	US Route 23	237+60	55	Left	Geoprobe 7822DT	90*	881.5	880.0	1.5 C
12	B-018-0-19	US Route 23	239+00	0	Centerline	Geoprobe 7822DT	90*	877.1	880.1	3.0 F
13	B-020-0-19	US Route 23	297+95	60	Left	Geoprobe 7822DT	90*	904.5	903.0	1.5 C
14	B-022-0-19	US Route 23	295+75	65	Left	Geoprobe 7822DT	90*	892.3	890.8	1.5 C

Subgrade Analysis

1/18/2019

V. 14.5

#	Boring	Sample	Sam De	nple pth	-	rade pth	Stan Penet		НР		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	Морт	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.3	2.0	0.8	2.5	9		3	43	19	24	27	58	85	22	18	A-7-6	14	<100		N ₆₀ & Mc		12''	3''
	007-0	SS-2	2.0	3.0	2.5	3.5	26		4.25							20	16	A-6b	16			Mc			204 Geotextile
	19	SS-3	3.0	4.5	3.5	5.0	27		4.25	29	12	17	27	36	63	15	16	A-6b	8						
		SS-4	4.5	6.5	5.0	7.0	26	9	4.5							14	16	A-6b	16						
2	В	SS-1	1.0	2.5	-0.5	1.0	14		2							13	16	A-6b	16						
	008-0	SS-2	2.5	4.0	1.0	2.5	12		4	39	16	23	25	50	75	21	16	A-6b	13	290		N ₆₀ & Mc		12''	
	19	SS-3	4.0	5.5	2.5	4.0	12		2	39	17	22	25	53	78	21	16	A-6b	13						
		SS-4	5.5	7.0	4.0	5.5	17	12	3							18	16	A-6b	16						
3	В	SS-1	0.6	2.2	-0.9	0.7	15		NP							10	10	A-2-6	4						12"
	009-0	SS-2	2.2	3.0	0.7	1.5	9		2.25	32	9	23	24	50	74	17	16	A-6b	13			N ₆₀		12''	204 Geotextile
	19	SS-3A	3.0	4.7	1.5	3.2	18		NP								8	A-3a	0						
		SS-3B	4.7	5.5	3.2	4.0	47	9	3.75	43	16	27	25	56	81	22	18	A-7-6	15	1450					
4	В	SS-1	0.7	2.7	-0.8	1.2	21		NP							10	6	A-1-b	0						
	010-0	SS-2	2.7	4.0	1.2	2.5	24		3.25	35	12	23	24	68	92	24	16	A-6b	13	445		Mc			
	19	SS-3A	4.0	5.0	2.5	3.5	27		1							27	16	A-6b	16			HP & Mc			
		SS-3B	5.0	6.0	3.5	4.5	27	21	NP								8	A-3a	0						
5	В	SS-1A	0.7	2.0	-0.8	0.5	9		NP								6	A-1-b	0						12"
	011-0	SS-1B	2.0	2.5	0.5	1.0	9		4.5							15	16	A-6b	16	>8000		N ₆₀		12''	204 Geotextile
	19	SS-2	2.5	4.0	1.0	2.5	11		4.25	35	15	20	27	67	94	18	16	A-6b	12	>8000		N ₆₀		12''	
	ľ	SS-3	4.0	6.0	2.5	4.5	12	9	1	39	12	27	23	68	91	28	16	A-6b	15	>8000					
6	В	SS-1	0.3	1.5	2.8	4.0	11		NP	NP	NP	NP	31	4	35	21	8	A-3a	0	<100					
	012-0	SS-2	1.5	3.2	4.0	5.7	12		1.25							23	14	A-6a	10						
	19	SS-3	3.2	4.5	5.7	7.0	11		0.75	25	14	11	23	64	87	24	16	A-6b							
	ľ	SS-4	4.5	6.3	7.0	8.8	6	11	0.5							21	16	A-6b							
7	В	SS-1	0.3	1.8	4.8	6.3	6		4.5	40	19	21	23	45	68	18	16	A-6b	11	270					
	013-0	SS-2	1.8	3.0	6.3	7.5	12		4.5	35	19	16	22	59	81	15	16	A-6b							
	19	SS-3	3.0	4.5	7.5	9.0	18		4.5							18	16	A-6b							
		SS-4	4.5	6.0	9.0	10.5	21	6	2.75							16	16	A-6b							
8	В	SS-1	1.2	3.0	-0.3	1.5	9		2.25	24	11	13	26	29	55	15	14	A-6a	5	150		N ₆₀		12''	12"
	014-0	SS-2	3.0	4.0	1.5	2.5	17		3.75	27	14	13	25	32	57	15	14	A-6a	6						204 Geotextile
	19	SS-3	4.0	4.5	2.5	3.0	27		4							19	14	A-6a	10			Mc			
		SS-4	4.5	7.0	3.0	5.5	30	9	NP							12	8	A-3a	0						
9	В	SS-1	0.5	2.3	-1.0	0.8	30		NP							8	6	A-1-b	0						
	015-0	SS-2	2.3	4.0	0.8	2.5	24		3.5	24	11	13	30	19	49	13	14	A-6a	4						
	19	SS-3	4.0	5.5	2.5	4.0	26		3.25							20	14	A-6a	10						
		SS-4	5.5	7.0	4.0	5.5	33	24	1.5	35	9	26	25	52	77	20	16	A-6b	14	1470					

Subgrade Analysis

1/18/2019

V. 14.5

_																									
#	Boring	Sample	Sam Dep	-	Subg De	rade pth		dard ration	НР		P	hysica	al Chara	cteristics	-	Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1	0.7	2.5	-0.8	1.0	33		NP	NP	NP	NP	10	1	11	4	6	A-1-a	0						
	016-0	SS-2	2.5	5.0	1.0	3.5	18		NP							9	6	A-1-a	0						
	19	SS-3	5.0	6.3	3.5	4.8	9		2.5	31	11	20	26	35	61	18	16	A-6b	9	1500					
		SS-4&5	6.3	8.5	4.8	7.0	12	9	NP							18	8	A-3a	0						
11	В	SS-1	1.2	2.8	-0.3	1.3	6		2.75							23	16	A-6b	16			N ₆₀ & Mc		18''	16"
	017-0	SS-2	2.8	4.2	1.3	2.7	14		4.5	42	17	25	25	65	90	21	18	A-7-6	14			N ₆₀ & Mc			204 Geotextile
	19	SS-3	4.2	5.5	2.7	4.0	20		2.75							16	18	A-7-6	16						
-		SS-4	5.5	7.0	4.0	5.5	20	6	4	27	13	14	22	43	65	15	14	A-6a	8	380					
12	В	SS-1	0.3	1.5	3.3	4.5	9		3.25							20	16	A-6b	16						
	018-0	SS-2	1.5	3.0	4.5	6.0	12		3.25	36	18	18	20	46	66	21	16	A-6b	9	1470					
	19	SS-3	3.0	4.5	6.0	7.5	14		1.5	34	17	17	23	54	77	26	16	A-6b							
		SS-4	4.5	6.5	7.5	9.5	15	9	4.25							17	16	A-6b							
13	В	SS-1A	0.8	2.0	-0.7	0.5	11		NP								6	A-1-b	0					4011	12"
	020-0	SS-1B	2.0	3.2	0.5	1.7	11		1.75							20	18	A-7-6	16			N ₆₀		12''	204 Geotextile
	19	SS-2	3.2	4.0	1.7	2.5	12		2	44	18	26	20	68	88	24	18	A-7-6	15	190		N ₆₀ & Mc			
		SS-3	4.0	5.5	2.5	4.0	21	11	2.5	44	14	30	25	60	85	22	18	A-7-6	17						
14	В	SS-1	1.8	2.5	0.3	1.0	9	1	1.5							22	16	A-6b	16			HP & Mc		12"	12" 201 Contentile
	022-0	SS-2	2.5	4.3	1.0	2.8	11	l	2.75	48	20	28	24	73	97	27	18	A-7-6	17			N ₆₀ & Mc		12''	204 Geotextile
	19	SS-3A	4.3	4.7	2.8	3.2	8	ļ	NP								8	A-3a	0						
1		SS-3B	4.7	6.2	3.2	4.7	8	8	1.5	46	14	32	23	73	96	30	18	A-7-6	17	595		1			

Ohio Department of **Transportation**

PID: 109362

County-Route-Section: WYA-23-0.04 No. of Borings: 14

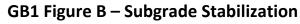
Geotechnical Consultant:TTL Associates, Inc.Prepared By:Christopher P. lott, P.E.Date prepared:7/24/2020

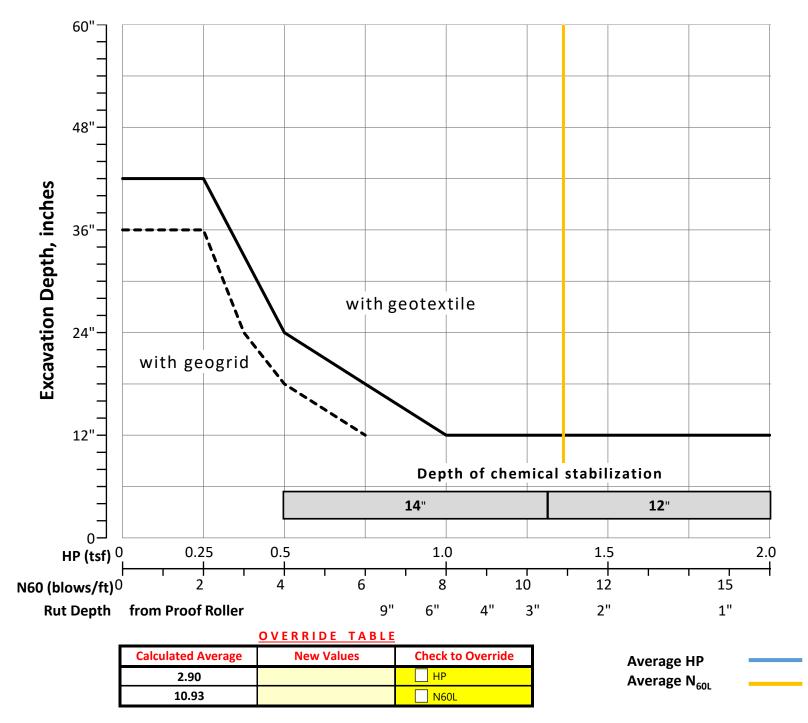
C	Chemical Stabilization Option	IS						
320	Rubblize & Roll	No						
206	6 Cement Stabilization							
	Lime Stabilization	Option						
206	Depth	14"						

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0''
.	

Design CBR	6
---------------	---

% Sampl	es within	6 feet of subg	rade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	35%	0.5 < HP ≤ 1	6%
12 ≤ N ₆₀ < 15	20%	1 < HP ≤ 2	18%
N ₆₀ ≥ 20	35%	HP > 2	51%
M+	22%		
Rock	0%		
Unsuitable	0%		


Excavate and Replace at Surface										
Average	6"									
Maximum	16"									
Minimum	0"									


% Proposed Subgrade Su	irface
Unstable & Unsuitable	50%
Unstable	50%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	17	11	2.90	36	15	21	24	49	73	19	14	10
Maximum	47	24	4.50	48	20	32	31	73	97	30	18	17
Minimum	6	6	0.50	24	9	11	10	1	11	4	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	2	4	0	0	1	0	0	6	0	0	0	7	27	0	9	0	0	56
Percent	0%	4%	7%	0%	0%	2%	0%	0%	11%	0%	0%	0%	13%	48%	0%	16%	0%	0%	100%
% Rock Granular Cohesive	0%					23%					77%								100%
Surface Class Count	0	2	4	0	0	1	0	0	1	0	0	0	5	12	0	7	0	0	32
Surface Class Percent	0%	6%	13%	0%	0%	3%	0%	0%	3%	0%	0%	0%	16%	38%	0%	22%	0%	0%	100%

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

WYA-23-0.04 109362

Proposed Intersection Improvements - US Route 23 at State Route 294

	TTL Associates, Inc.							
Prepared By:	Christopher P. lott, P.E.							
Date prepared:	Friday, July 24, 2020							
	Christopher P. lott, P.E. TTL Associates, Inc. 1915 N. 12th Street Toledo, Ohio 43606 419-214-5020 ciott@ttlassoc.com							
NO. OF BORINGS:	6							

 \geq

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-007-0-19	US Route 23	180+70	0	Centerline	Geoprobe 7822DT	90*	881.1	881.6	0.5 F
2	B-008-0-19	US Route 23	182+00	55	Right	Geoprobe 7822DT	90*	883.1	881.6	1.5 C
3	B-009-0-19	US Route 23	182+00	20	Left	Geoprobe 7822DT	90*	883.4	881.9	1.5 C
4	B-010-0-19	US Route 23	191+00	25	Right	Geoprobe 7822DT	90*	874.6	873.1	1.5 C
5	B-011-0-19	US Route 23	191+00	55	Left	Geoprobe 7822DT	90*	874.3	872.8	1.5 C
6	B-012-0-19	US Route 23	192+50	0	Centerline	Geoprobe 7822DT	90*	870.5	873.0	2.5 F

Subgrade Analysis

1/18/2019

V. 14.5

#	Boring	Sample	Sam De	nple pth	Subg De	rade pth	Stan Penet		HP		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.3	2.0	0.8	2.5	9		3	43	19	24	27	58	85	22	18	A-7-6	14	<100		N ₆₀ & Mc		12''	3''
	007-0	SS-2	2.0	3.0	2.5	3.5	26		4.25							20	16	A-6b	16			Mc			204 Geotextile
	19	SS-3	3.0	4.5	3.5	5.0	27		4.25	29	12	17	27	36	63	15	16	A-6b	8						
		SS-4	4.5	6.5	5.0	7.0	26	9	4.5							14	16	A-6b	16						
2	В	SS-1	1.0	2.5	-0.5	1.0	14		2							13	16	A-6b	16						
	008-0	SS-2	2.5	4.0	1.0	2.5	12		4	39	16	23	25	50	75	21	16	A-6b	13	290		N ₆₀ & Mc		12''	
	19	SS-3	4.0	5.5	2.5	4.0	12		2	39	17	22	25	53	78	21	16	A-6b	13						
		SS-4	5.5	7.0	4.0	5.5	17	12	3							18	16	A-6b	16						
3	В	SS-1	0.6	2.2	-0.9	0.7	15		NP							10	10	A-2-6	4						12"
	009-0	SS-2	2.2	3.0	0.7	1.5	9		2.25	32	9	23	24	50	74	17	16	A-6b	13			N ₆₀		12''	204 Geotextile
	19	SS-3A	3.0	4.7	1.5	3.2	18		NP								8	A-3a	0						
		SS-3B	4.7	5.5	3.2	4.0	47	9	3.75	43	16	27	25	56	81	22	18	A-7-6	15	1450					
4	В	SS-1	0.7	2.7	-0.8	1.2	21		NP							10	6	A-1-b	0						
	010-0	SS-2	2.7	4.0	1.2	2.5	24		3.25	35	12	23	24	68	92	24	16	A-6b	13	445		Мс			
	19	SS-3A	4.0	5.0	2.5	3.5	27		1							27	16	A-6b	16			HP & Mc			
		SS-3B	5.0	6.0	3.5	4.5	27	21	NP								8	A-3a	0						
5	В	SS-1A	0.7	2.0	-0.8	0.5	9		NP								6	A-1-b	0						12"
	011-0	SS-1B	2.0	2.5	0.5	1.0	9		4.5							15	16	A-6b	16			N ₆₀		12''	204 Geotextile
	19	SS-2	2.5	4.0	1.0	2.5	11		4.25	35	15	20	27	67	94	18	16	A-6b	12	>8000		N ₆₀		12''	
		SS-3	4.0	6.0	2.5	4.5	12	9	1	39	12	27	23	68	91	28	16	A-6b	15						
6	В	SS-1	0.3	1.5	2.8	4.0	11		NP	NP	NP	NP	31	4	35	21	8	A-3a	0	<100					
	012-0	SS-2	1.5	3.2	4.0	5.7	12		1.25							23	14	A-6a	10						
	19	SS-3	3.2	4.5	5.7	7.0	11		0.75	25	14	11	23	64	87	24	16	A-6b							
		SS-4	4.5	6.3	7.0	8.8	6	11	0.5							21	16	A-6b							

PID: 109362

County-Route-Section: WYA-23-0.04 No. of Borings: 6

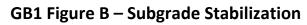
Geotechnical Consultant:TTL Associates, Inc.Prepared By:Christopher P. lott, P.E.Date prepared:7/24/2020

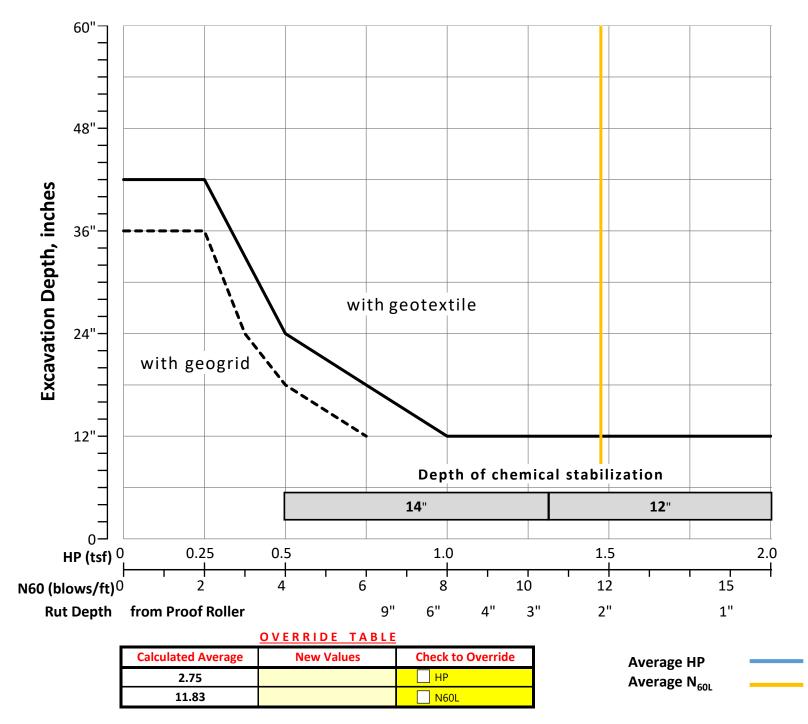
Chemical Stabilization Options								
320	Rubblize & Roll	No						
206	Cement Stabilization	No						
	Lime Stabilization	Option						
206	Depth	12"						

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0''
Average(HP):	0''

Design CBR	6
---------------	---

% Samples within 6 feet of subgrade								
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%					
N ₆₀ < 12	30%	0.5 < HP ≤ 1	13%					
12 ≤ N ₆₀ < 15	22%	1 < HP ≤ 2	13%					
N ₆₀ ≥ 20	35%	HP > 2	48%					
M+	22%							
Rock	0%							
Unsuitable	0%							


Excavate and Replace at Surface						
Average	5"					
Maximum	12"					
Minimum	0"					


% Proposed Subgrade Su	irface
Unstable & Unsuitable	53%
Unstable	53%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	Mc	M _{opt}	GI
Average	17	12	2.75	36	14	22	26	52	78	19	14	10
Maximum	47	21	4.50	43	19	27	31	68	94	28	18	16
Minimum	6	9	0.50	25	9	11	23	4	35	10	6	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	2	0	0	1	0	0	3	0	0	0	1	15	0	2	0	0	24
Percent	0%	0%	8%	0%	0%	4%	0%	0%	13%	0%	0%	0%	4%	63%	0%	8%	0%	0%	100%
% Rock Granular Cohesive	0%		25%											100%					
Surface Class Count	0	0	2	0	0	1	0	0	1	0	0	0	0	10	0	1	0	0	15
Surface Class Percent	0%	0%	13%	0%	0%	7%	0%	0%	7%	0%	0%	0%	0%	67%	0%	7%	0%	0%	100%

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

WYA-23-0.04

109362

Proposed Intersection Improvements - US Route 23 at County Road 113 / Township Road 124

	TTL Associates, Inc.
Prepared By:	Christopher P. lott, P.E.
Date prepared:	Friday, July 24, 2020
	Christopher P. lott, P.E. TTL Associates, Inc. 1915 N. 12th Street Toledo, Ohio 43606 419-214-5020 ciott@ttlassoc.com
NO. OF BORINGS:	6

 \geq

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-013-0-19	US Route 23	227+05	0	Centerline	Geoprobe 7822DT	90*	873.9	878.4	4.5 F
2	B-014-0-19	US Route 23	228+60	20	Right	Geoprobe 7822DT	90*	880.1	878.6	1.5 C
3	B-015-0-19	US Route 23	228+60	55	Left	Geoprobe 7822DT	90*	879.2	877.7	1.5 C
4	B-016-0-19	US Route 23	237+60	25	Right	Geoprobe 7822DT	90*	881.6	880.1	1.5 C
5	B-017-0-19	US Route 23	237+60	55	Left	Geoprobe 7822DT	90*	881.5	880.0	1.5 C
6	B-018-0-19	US Route 23	239+00	0	Centerline	Geoprobe 7822DT	90*	877.1	880.1	3.0 F

Subgrade Analysis

Ohio Department of Transportation
TRANSPORTATION

1/18/2019

#	Boring	Sample	Sam De		Subg De	rade oth	Stan Penet		HP		Pł	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate and Replace (Item 204)		Recommendation (Enter depth in
'n			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.3	1.8	4.8	6.3	6		4.5	40		21	23	45	68	18	16	A-6b	11	270					
	013-0	SS-2	1.8	3.0	6.3	7.5	12		4.5	35	19	16	22	59	81	15	16	A-6b							
	19	SS-3	3.0	4.5	7.5	9.0	18		4.5							18	16	A-6b	<u> </u>						
		SS-4	4.5	6.0	9.0	10.5	21	6	2.75							16	16	A-6b							
2	В	SS-1	1.2	3.0	-0.3	1.5	9		2.25	24	11	13	26	29	55	15	14	A-6a	5	150		N ₆₀		12''	12"
	014-0	SS-2	3.0	4.0	1.5	2.5	17		3.75	27	14	13	25	32	57	15	14	A-6a	6						204 Geotextile
	19	SS-3	4.0	4.5	2.5	3.0	27		4							19	14	A-6a	10			Mc			
		SS-4	4.5	7.0	3.0	5.5	30	9	NP							12	8	A-3a	0						
3	В	SS-1	0.5	2.3	-1.0	0.8	30		NP							8	6	A-1-b	0						
	015-0	SS-2	2.3	4.0	0.8	2.5	24		3.5	24	11	13	30	19	49	13	14	A-6a	4						
	19	SS-3	4.0	5.5	2.5	4.0	26		3.25							20	14	A-6a	10						
		SS-4	5.5	7.0	4.0	5.5	33	24	1.5	35	9	26	25	52	77	22	16	A-6b	14	1470					
4	В	SS-1	0.7	2.5	-0.8	1.0	33		NP	NP	NP	NP	10	1	11	4	6	A-1-a	0						
	016-0	SS-2	2.5	5.0	1.0	3.5	18		NP							9	6	A-1-a	0						
	19	SS-3	5.0	6.3	3.5	4.8	9		2.5	31	11	20	26	35	61	18	16	A-6b	9	1500					
		SS-4&5	6.3	8.5	4.8	7.0	12	9	NP							18	8	A-3a	0						
5	В	SS-1	1.2	2.8	-0.3	1.3	6		2.75							23	16	A-6b	16			N ₆₀ & Mc		18''	16"
	017-0	SS-2	2.8	4.2	1.3	2.7	14		4.5	42	17	25	25	65	90	21	18	A-7-6	14			N ₆₀ & Mc			204 Geotextile
	19	SS-3	4.2	5.5	2.7	4.0	20		2.75							16	18	A-7-6	16						
		SS-4	5.5	7.0	4.0	5.5	20	6	4	27	13	14	22	43	65	15	14	A-6a	8	380					
6	В	SS-1	0.3	1.5	3.3	4.5	9		3.25							20	16	A-6b	16						
	018-0	SS-2	1.5	3.0	4.5	6.0	12		3.25	36	18	18	20	46	66	21	16	A-6b	9	1470					
	19	SS-3	3.0	4.5	6.0	7.5	14	1	1.5	34	17	17	23	54	77	26	16	A-6b							
		SS-4	4.5	6.5	7.5	9.5	15	9	4.25							17	16	A-6b							

PID: 109362

County-Route-Section: WYA-23-0.04 No. of Borings: 6

Geotechnical Consultant:TTL Associates, Inc.Prepared By:Christopher P. lott, P.E.Date prepared:7/24/2020

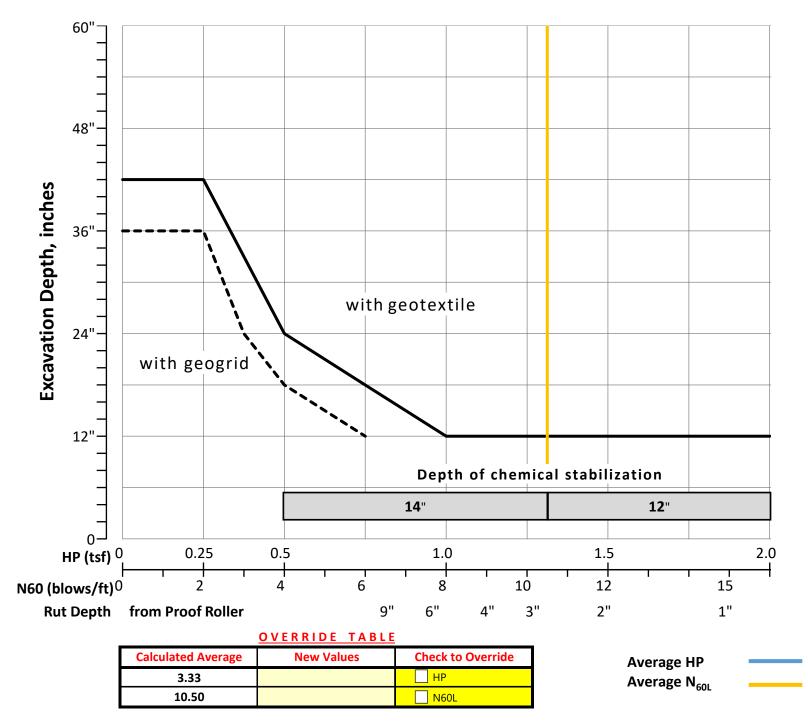
Chemical Stabilization Options												
320 Rubblize & Roll No												
206	206 Cement Stabilization											
	Lime Stabilization	Option										
206	Depth	14"										

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	12"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0''

Design CBR	7
---------------	---

% Sampl	% Samples within 6 feet of subgrade														
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%												
N ₆₀ < 12	25%	0.5 < HP ≤ 1	0%												
12 ≤ N ₆₀ < 15	20%	1 < HP ≤ 2	10%												
N ₆₀ ≥ 20	45%	HP > 2	65%												
M+	15%														
Rock	0%														
Unsuitable	0%														


Excavate and Replace at Surface										
Average	5"									
Maximum	16"									
Minimum	0"									


% Proposed Subgrade Surface											
Unstable & Unsuitable	36%										
Unstable	36%										
Unsuitable	0%										

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	18	11	3.33	32	14	18	23	40	63	17	14	8
Maximum	33	24	4.50	42	19	26	30	65	90	26	18	16
Minimum	6	6	1.50	24	9	13	10	1	11	4	6	0

					Class	ificat	ion C	count	ts by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	2	1	0	0	0	0	0	2	0	0	0	6	11	0	2	0	0	24
Percent	0%	8%	4%	0%	0%	0%	0%	0%	8%	0%	0%	0%	25%	46%	0%	8%	0%	0%	100%
% Rock Granular Cohesive	0%		21% 79%													100%			
Surface Class Count	0	2	1	0	0	0	0	0	0	0	0	0	5	1	0	2	0	0	11
Surface Class Percent		18%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	45%	9%	0%	18%	0%	0%	100%

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

WYA-23-0.04 109362

Proposed Intersection Improvements - US Route 23 at Township Road 65

TTL Associates, Inc.Prepared By:
Date prepared:Christopher P. lott, P.E.
Friday, July 24, 2020Christopher P. lott, P.E.
TTL Associates, Inc.
1915 N. 12th Street
Toledo, Ohio 43606
419-214-5020
ciott@ttlassoc.comNO. OF BORINGS:1

V. 14.5 1/18/2019

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig			Proposed Subgrade EL	Cut Fill
1	B-020-0-19	US Route 23	297+95	60	Left	Geoprobe 7822DT	90*	904.5	903.0	1.5 C

#	Boring	Sample	Sam De	•		rade pth		Standard Penetration HP			, Physical Characteristics						Moisture Oh			Sulfate Content			Excavate and Replace (Item 204)		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchoo)
1	В	SS-1A	0.8	2.0	-0.7	0.5	11		NP								6	A-1-b	0						12"
	020-0	SS-1B	2.0	3.2	0.5	1.7	11		1.75							20	18	A-7-6	16			N ₆₀		12"	204 Geotextile
	19	SS-2	3.2	4.0	1.7	2.5	12		2	44	18	26	20	68	88	24	18	A-7-6	15	190		N ₆₀ & Mc			
		SS-3	4.0	5.5	2.5	4.0	21	11	2.5	44	14	30	25	60	85	22	18	A-7-6	17						

PID: 109362

County-Route-Section: WYA-23-0.04 No. of Borings: 1

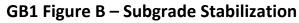
Geotechnical Consultant:TTL Associates, Inc.Prepared By:Christopher P. lott, P.E.Date prepared:7/24/2020

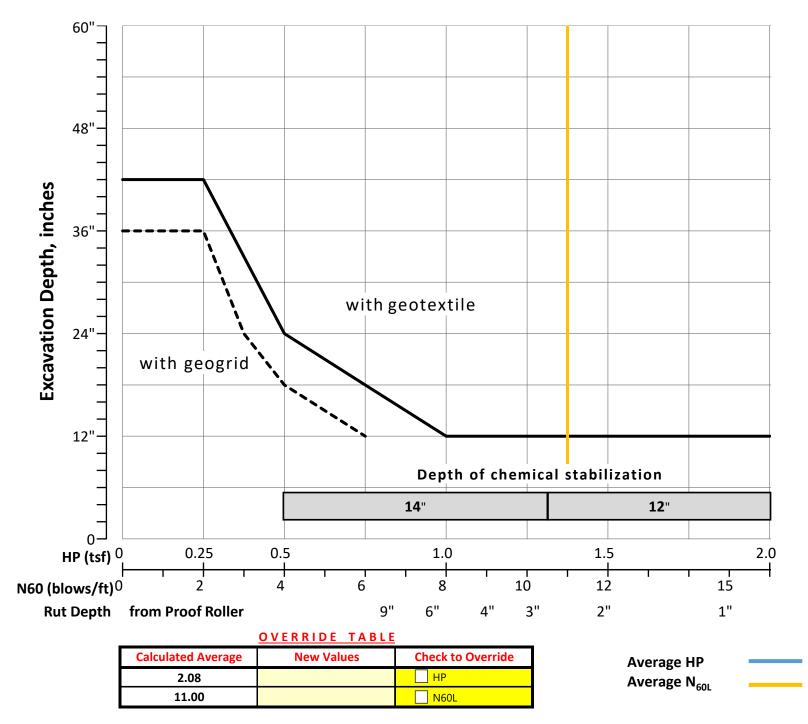
Chemical Stabilization Options											
320	320 Rubblize & Roll No										
206	Cement Stabilization	No									
	Lime Stabilization	Option									
206	Depth	12"									

Excavate and Replace											
Stabilization Option	ons										
Global Geotextile											
Average(N60L):	12"										
Average(HP):	0''										
Global Geogrid											
Average(N60L):	0"										
Average(HP):	0''										
.											

Design CBR	5
---------------	---

% Sampl	% Samples within 6 feet of subgrade													
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%											
N ₆₀ < 12	50%	0.5 < HP ≤ 1	0%											
12 ≤ N ₆₀ < 15	25%	1 < HP ≤ 2	50%											
N ₆₀ ≥ 20	25%	HP > 2	25%											
M+	25%													
Rock	0%													
Unsuitable	0%													


Excavate and Replace at Surface										
Average	12"									
Maximum	12"									
Minimum	12"									


% Proposed Subgrade Surface										
Unstable & Unsuitable	50%									
Unstable	50%									
Unsuitable	0%									

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	14	11	2.08	44	16	28	23	64	87	22	15	12
Maximum	21	11	2.50	44	18	30	25	68	88	24	18	17
Minimum	11	11	1.75	44	14	26	20	60	85	20	6	0

					Class	ificat	ion C	count	ts by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	4
Percent	0%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	75%	0%	0%	100%
% Rock Granular Cohesive	0%					25%								7:	5%				100%
Surface Class Count		0	1	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	4
Surface Class Percent	0%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	75%	0%	0%	100%

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

WYA-23-0.04 109362

Proposed Intersection Improvements - US Route 23 at Township Road 62

TTL Associates, Inc.Prepared By:
Date prepared:Christopher P. lott, P.E.
Friday, July 24, 2020Christopher P. lott, P.E.
TTL Associates, Inc.
1915 N. 12th Street
Toledo, Ohio 43606
419-214-5020
ciott@ttlassoc.comNO. OF BORINGS:1

V. 14.5	1/18/2
1.14.0	171072

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill
1	B-022-0-19	US Route 23	295+75	65	Left	Geoprobe 7822DT	90*	892.3	890.8	1.5 C

OHIO DEPARTMENT OF TRANSPORTATION

#	Boring	Sample	Sam De	•	Ĭ	rade pth	Stan Penet	dard tration	НР		P	hysic	al Chara	haracteristics			Moisture		DOT	Sulfate Content	Problem		Excavate and Replace (Item 204)		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{opt}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.8	2.5	0.3	1.0	9		1.5							22	16	A-6b	16			HP & Mc		12"	12"
	022-0	SS-2	2.5	4.3	1.0	2.8	11		2.75	48	20	28	24	73	97	27	18	A-7-6	17			N ₆₀ & Mc		12"	204 Geotextile
	19	SS-3A	4.3	4.7	2.8	3.2	8		NP								8	A-3a	0						
		SS-3B	4.7	6.2	3.2	4.7	8	8	1.5	46	14	32	23	73	96	30	18	A-7-6	17	595					

PID: 109362

County-Route-Section: WYA-23-0.04 No. of Borings: 1

Geotechnical Consultant:TTL Associates, Inc.Prepared By:Christopher P. lott, P.E.Date prepared:7/24/2020

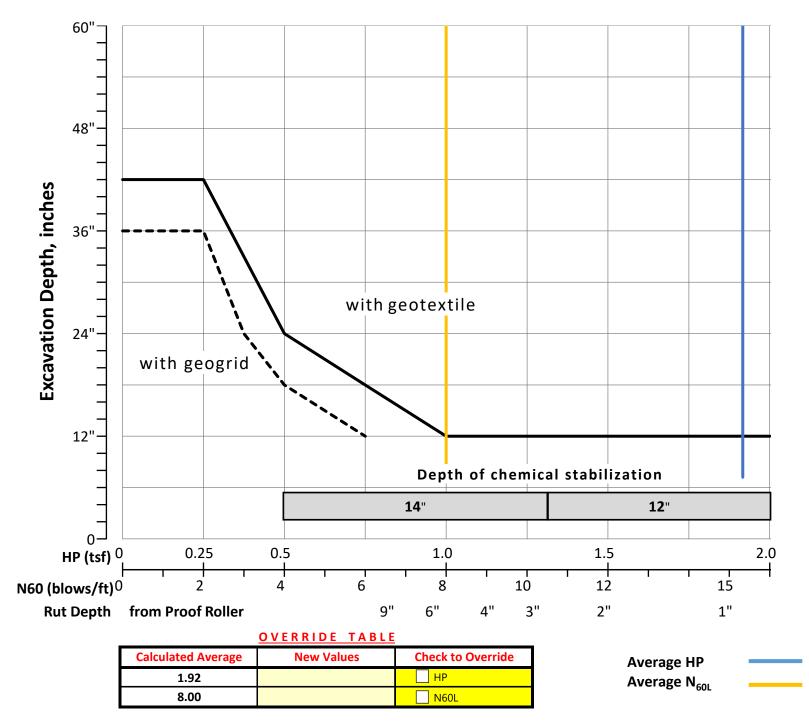
Chemical Stabilization Options							
320 Rubblize & Roll No							
206	Cement Stabilization	No					
	Lime Stabilization	Option					
206	Depth	14"					

Excavate and Replace								
Stabilization Options								
Global Geotextile								
Average(N60L):	12"							
Average(HP):	12"							
Global Geogrid								
Average(N60L):	0"							
Average(HP):	0''							

Design CBR	5
---------------	---

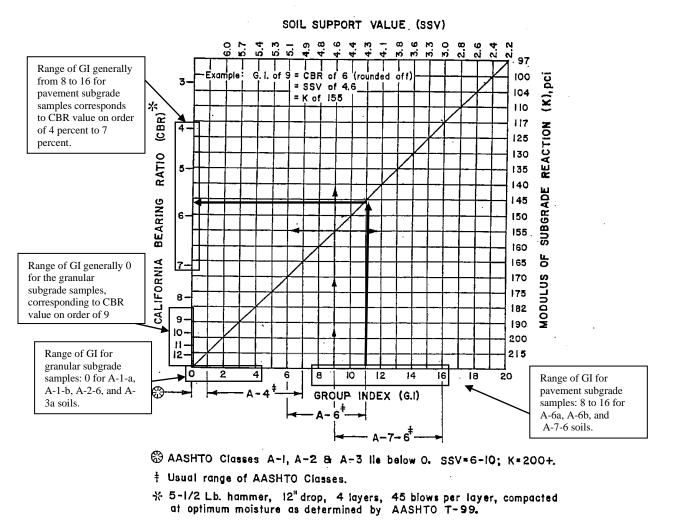
% Samples within 6 feet of subgrade								
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%					
N ₆₀ < 12	100%	0.5 < HP ≤ 1	0%					
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	50%					
N ₆₀ ≥ 20	0%	HP > 2	25%					
M+	50%							
Rock	0%							
Unsuitable	0%							

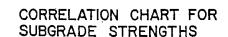
Excavate and Replace at Surface							
Average	12"						
Maximum	12"						
Minimum	12"						


% Proposed Subgrade Surface								
Unstable & Unsuitable	100%							
Unstable	100%							
Unsuitable	0%							

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	9	8	1.92	47	17	30	24	73	97	26	15	13
Maximum	11	8	2.75	48	20	32	24	73	97	30	18	17
Minimum	8	8	1.50	46	14	28	23	73	96	22	8	0

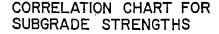
Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	2	0	0	4
Percent	0%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	25%	0%	50%	0%	0%	100%
% Rock Granular Cohesive	0%		25% 75%										100%						
Surface Class Count	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2
Surface Class Percent	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	50%	0%	0%	100%





WYA-23-0.04 PID No. 109362 State Route 294 (SR 294) Intersection

Fig.1301-3 Feb.1978


Based on the GB-1 analysis, a design CBR value of 6 percent was determined for the entire project site, including all intersections. GB-1 analysis for the specific subgrade conditions at the SR 294 intersection also indicated a design CBR value of 6 percent. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an **average** Group Index of all the evaluated samples. Group indices for the tested samples varied from 0 to 16, which would correlate with a CBR value of 4 to 12 percent. The higher Group Indices for the cohesive soils correlated with CBR values ranging from 4 to 7 percent. With the presence also of granular subgrade soils and new engineered fill that will be required to achieve design grades in the existing median areas, it does not appear to be unconservative to use the GB-1 design CBR value of 6 percent, based on the average design value calculations from GB-1.

WYA-23-0.04 PID No. 109362 County Road 113 (CR 133)/Township Road 124 (TR 124) Intersection Fig.1301-3 Feb.1978

SOIL SUPPORT VALUE (SSV) 3.8 5.4 5.3 6,4 4.4 3.6 3.3 2.6 0.0 ÷. 0.5 2.8 2.4 2.2 97 í Range of GI generally G.1. of 9 = CBR of 6 (rounded off) Example : 100 (K), pci from 4 to 16 for 3. = SSV of 4,6_ 104 pavement subgrade = K of 155 samples corresponds >< 110 (CBR) to CBR value on order 117 REACTION of 4 percent to 8 4-125 percent. 130 RATIO 135 140 **IBGRADE** BEARING 145 150 6 155 SU 160 Р CALIFORNIA 165 GI generally 0 for the granular subgrade 170 ODULUS samples, corresponding 175 Л 18 to CBR value on order 182 of 12 percent. 9 190 Σ 10 200 GI for granular 215 12 subgrade samples: 0 0 2 6 4 8 10 12 16 18 20 for A-1-a, A-1-b, and Range of GI for A-3a soils. pavement subgrade A-4 GROUP INDEX (G.I) samples: 4 to 16 for A- 6+--A-6a, A-6b, and A-7-6 soils. - A-7-6[‡]-† Usual range of AASHTO Classes.

☆ 5-1/2 Lb. hammer, 12" drop, 4 layers, 45 blows per layer, compacted at optimum moisture as determined by AASHTO T-99.

Based on the GB-1 analysis, a design CBR value of 6 percent was determined for the entire project site, including all intersections. GB-1 analysis for the specific subgrade conditions at the CR 113 / TR 124 intersection also indicated a design CBR value of 7 percent. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an **average** Group Index of all the evaluated samples. Group indices for the tested samples varied from 0 to 16, which would correlate with a CBR value of 4 to 12 percent. The higher Group Indices for the cohesive soils correlated with CBR values ranging from 4 to 8 percent. With the presence also of granular subgrade soils and new engineered fill that will be required to achieve design grades in the existing median areas, it does not appear to be unconservative to use the GB-1 design CBR value of 7 percent, based on the average design value calculations from GB-1.

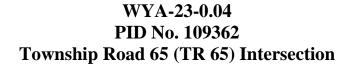
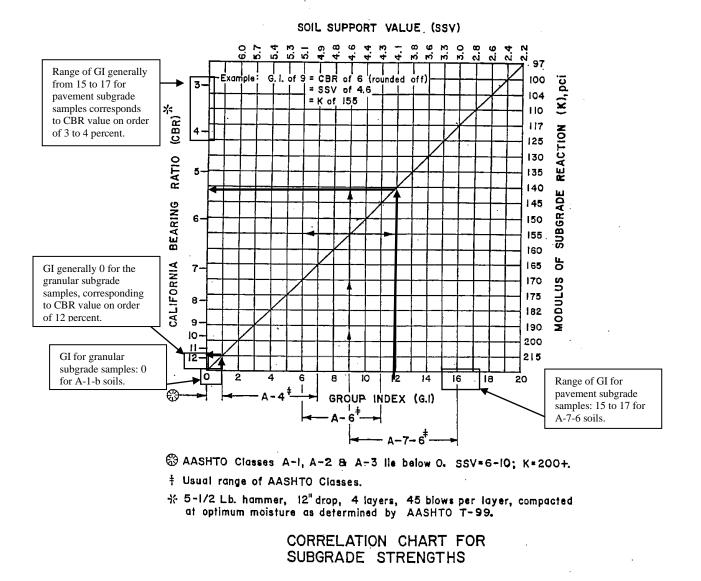
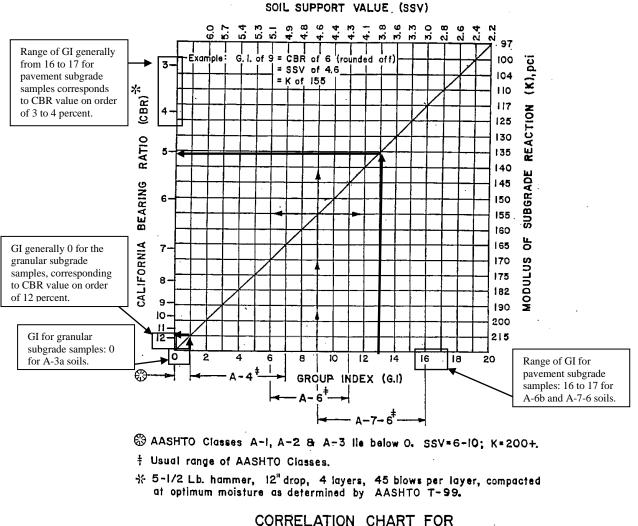



Fig.1301-3 Feb.1978



Based on the GB-1 analysis, a design CBR value of 6 percent was determined for the entire project site, including all intersections. GB-1 analysis for the specific subgrade conditions at the TR 65 intersection indicated a slightly lower design CBR value of 5 percent. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an **average** Group Index of all the evaluated samples. Group indices for the tested samples varied from 0 to 17, which would correlate with a CBR value of 3 to 12 percent. The higher Group Indices associated with the cohesive soils that were prominent in the boring performed at this intersection would correlate with a CBR value of 3 to 4 percent. Therefore, we recommend design consider a CBR value of 4 percent for the TR 65 cul-de-sac. It should be noted that GB-1 analyses indicate planned 12 inches of undercut and backfill using granular engineered fill. If the undercut and backfill with granular engineered fill is made a requirement for this intersection, the design CBR value of 5 percent could be utilized.

WYA-23-0.04 PID No. 109362 County Road 62 (CR 62) Intersection

Fig.1301-3 Feb.1978

SUBGRADE STRENGTHS

Based on the GB-1 analysis, a design CBR value of 6 percent was determined for the entire project site, including all intersections. GB-1 analysis for the specific subgrade conditions at the TR 62 intersection indicated a slightly lower design CBR value of 5 percent. It should be noted that the CBR determination by the GB-1 spreadsheet is based on an **average** Group Index of all the evaluated samples. Group indices for the tested samples varied from 0 to 17, which would correlate with a CBR value of 3 to 12 percent. The higher Group Indices associated with the cohesive soils that were prominent in the boring performed at this intersection would correlate with a CBR value of 3 to 4 percent. Therefore, we recommend design consider a CBR value of 4 percent for the TR 62 cul-de-sac. It should be noted that GB-1 analyses indicate planned 12 inches of undercut and backfill using granular engineered fill. If the undercut and backfill with granular engineered fill is made a requirement for this intersection, the design CBR value of 5 percent could be utilized.

Appendix B: Geotechnical Engineering Design Checklists

I. Geotechnical Design Checklists							
Project: WYA-23-0.04	PDP Path:						
PID: 109362	Review Stage:	1					

Checklist	Included in This Submission
II. Reconnaissance and Planning	\checkmark
III. A. Centerline Cuts	
III. B. Embankments	
III. C. Subgrade	\checkmark
IV. A. Foundations of Structures	
IV. B. Retaining Wall	
V. A. Landslide Remediation	
V. B. Rockfall Remediation	
V. C. Wetland or Peat Remediation	
V. D. Underground Mine Remediation	
V. E. Surface Mine Remediation	
V. F. Karst Remediation	
VI. A. Soil Profile	
VI. D. Geotechnical Reports	\checkmark

II. Reconnaissance and Planning Checklist

C-R-S:	WYA-23-0.04	PID: 10	09362	Reviewer:	LGH	Date:	7/29/2020
Reconr	naissance			(Y/N/X)	Notes:		
1	Based on Section 302.1 in the necessary plans been develop following areas prior to the co the subsurface exploration rec	ed in the ommencen	nent of	N	Replacement brid bridge location. T performed in area	herefore,	exploration
	Roadway plans				-		
	Structures plans						
	Geohazards plans						
2	Have the resources listed in Set the SGE been reviewed as par reconnaissance?			Y			
3	Have all the features listed in the SGE been observed and even the field reconnaissance?			Y			
4	If notable features were disco reconnaissance, were the GPS these features recorded?			х	All items noted w of Sandusky River		ting bridge crossin
				()/////////	Natas		
	ng - General			(Y/N/X)	Notes:		
5	In planning the geotechnical e program for the project, have geologic conditions, the propo- historic subsurface exploration considered?	the specifi osed work,	ic and	Y			
6	Has the ODOT Transportation Mapping System (TIMS) been all available historic boring inf inventoried geohazards?	accessed t	to find	Y			
7	Have the borings been located maximum subsurface informa minimum number of borings, geotechnical explorations to t possible?	Y	No historic boring	s at projec	ct location.		
8	Have the topography, geologic materials, surface manifestatic conditions, and any other spec considerations been utilized in spacing and depth of borings?	on of soil cial design n determin		Y			
9	Have the borings been located adequate overhead clearance equipment, clearance of unde minimize damage to private p minimize disruption of traffic, compromising the quality of th	for the erground u property, an without	tilities, nd	Y			

II. Reconnaissance and Planning Checklist

Planni	ng - General	(Y/N/X)	Notes:
10	Have the scaled boring plans, showing all project and historic borings, and a schedule of borings in tabular format, been submitted to the District Geotechnical Engineer?	N	Boring location plan is included in this report submittal.
	The schedule of borings should present the follow information for each boring:	wing	
а	exploration identification number	Y	
b	. location by station and offset	Y	
С	estimated amount of rock and soil, including the total for each for the entire program.	Y	
Planni	ng – Exploration Number	(Y/N/X)	Notes:
11	Have the coordinates, stations and offsets of all explorations (borings, probes, test pits, etc.) been identified?	Y	
12	Has each exploration been assigned a unique identification number, in the following format X- ZZZ-W-YY, as per Section 303.2 of the SGE?	Y	
13	When referring to historic explorations that did not use the identification scheme in 12 above, have the historic explorations been assigned identification numbers according to Section 303.2 of the SGE?	Y	

II. Reconnaissance and Planning Checklist

Planni	ng – Boring Types	(Y/N/X)	Notes:
14	Based on Sections 303.3 to 303.7.6 of the SGE,	(1/11//)	
14	have the location, depth, and sampling		
	requirements for the following boring types	Y	
	been determined for the project?		
	Check all boring types utilized for this project:		
	Existing Subgrades (Type A)	V	
	Roadway Borings (Type B)		
	Embankment Foundations (Type B1)		
	Cut Sections (Type B2)		
	Sidehill Cut Sections (Type B3)		
	Sidehill Cut-Fill Sections (Type B4)		
	Sidehill Fill Sections on Unstable Slopes		
	(Туре В5)		
	Geohazard Borings (Type C)		
	Lakes, Ponds, and Low-Lying Areas (Type C1)		
	Peat Deposits, Compressible Soils, and Low		
	Strength Soils (Type C2)		
	Uncontrolled Fills, Waste Pits, and		
	Reclaimed Surface Mines (Type C3)		
	Underground Mines (C4)		
	Landslides (Type C5)		
	Rockfall (Type C6)		
	Karst (Type C7)		
	Proposed Underground Utilities (Type D)		
	Structure Borings (Type E)		
	Bridges (Type E1)		
	Culverts (Type E2 a,b,c)]
	Retaining Walls (Type E3 a,b,c)		
	Noise Barrier (Type E4)		
	CCTV & High Mast Lighting Towers]
	(Type E5)		
	Buildings and Salt Domes (Type E6)		

III.C. Subgrade Checklist

C-R-S: WYA-23-0.04	PID: 109362	Reviewer:	LGH	Date:	7/29/2020
If you do not have any sub	grade work on the	e project, you	u do not have to fil	ll out this d	checklist.
Subgrade		(Y/N/X)	Notes:		
1 Has the subsurface exploration characterized the soil or rock a <u>Geotechnical Bulletin 1: Plan S</u>	according to	Y			
 a. Has each sample been visual inspected for the presence o moisture content been perfo sample? 	f gypsum? Has a	Y			
 b. Has mechanical classification (PL), Liquid Limit (LL), and grad been done on at least two sa boring within six feet of the subgrade? 	adation testing) mples from each	Y			
c. Has the sulfate content of at from each boring within 3 fe proposed subgrade been det Supplement 1122, Determin Content in Soils?	et of the termined, per	Y			
d. Has the sulfate content of al exhibit gypsum crystals beer	•	х	No gypsum obser	ved in sam	ples.
e. Have A-2-5, A-4b, A-5, A-7-5, soils within the top 3 feet of subgrade been mechanically	the proposed	x	None present.		
2 If soils classified as A-2-5, A-4k or A-8b, or having a LL>65, are proposed subgrade (soil profil specify that these materials ne removed and replaced or cher	e present at the e), do the plans eed to be	x	None present.		
 a. If these materials are to be r replaced, have the station lir lateral limits for the planned provided? 	nits, depth, and				
3 If there is any rock, shale, or conception of the proposed subgrade (C&MS 20 plans specify the removal of the plane specify	4.05), do the	x	None present.		
 a. If removal of any rock, shale, required, have the station lin lateral limits for the planned material at proposed subgra provided? 	nits, depth, and removal of the				

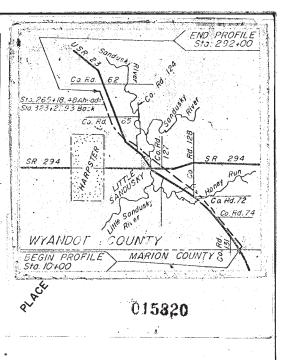
III.C. Subgrade Checklist

Subgra	de	(Y/N/X)	Notes:
4	In accordance with GB1, do the SPT (N ₆₀)/HP values and existing moisture contents for the proposed subgrade soils indicate the need for subgrade stabilization?	Y	
a.	If removal and replacement is applicable, has the detail of subgrade removal been shown on the plans, including depth of removal, station limits, lateral extent, replacement material, and plan notes (Item 204 - Subgrade Compaction and Proof Rolling)?	Y	Depth of removal and replacement material specified. Locations associated with borings with respect to proposed replacement pavement was provided. Stationing not pertinent for these partial R-cuts and cul-de-sac replacements. Plans to be prepared by others.
b.	If chemical stabilization is applicable, has the detail of this treatment been shown on the plans, including depth, percentage of chemical, station limits, lateral extent, and plan notes?	х	Chemical stabilization not anticipated to be economical. Plans to be prepared by others.
	Indicate type of chemical stabilization specified	:	
	cement stabilization	\checkmark	
	lime stabilization	\checkmark	-
5	If removal and replacement has been specified, do the plans include Plan Note G121 from L&D3?	х	This note should be included by plans prepared by others.
6	If drainage or groundwater is an issue with the proposed subgrade, has an appropriate drainage system (e.g., pipe, underdrains) been provided?	х	Plans to be prepared by others.
7	Has an appropriate quantity of Proof Rolling (C&MS 204.06) and has Plan Note G111 from L&D3 been included in the plans?	х	Plans to be prepared by others.
8	Has a design CBR value been provided?	Y	

VI.B. Geotechnical Reports

C-R-S:	WYA-23-0.04	PID:	109362	Reviewer:	LGH	Date:	7/29/2020
					1		
Genera				(Y/N/X)	Notes:		
1	Has an electronic copy of all g submissions been provided to Geotechnical Engineer (DGE)?	the Di		х	This submittal is b Consultant, whom		
2	Has the first complete version report being submitted been	n of a ge		Y	This is the draft su	ıbmittal.	
3	Subsequent to ODOT's review the complete version of the re geotechnical report being sub labeled 'Final'?	evised		х	This is the draft su	ıbmittal.	
4	Has the boring data been sub format that is DIGGS (Data Int Geotechnical and Geoenviron compatable? gINT files may b	erchan mental	ge for)	Ν	For final report su provided.	bmittal, gl	NT files will be
5	Does the report cover format Brand and Identity Guidelines found at http://www.dot.stat oh.us/brand/Pages/default.as	s Report e. spx ?	t Standards	Y			
6	Have all geotechnical reports been titled correctly as prescr 705.1 of the SGE?	-		Y			
Report	Body			(Y/N/X)	Notes:		
7	Do all geotechnical reports be contain the following:	eing sub	omitted				
a.	, 705.2 of the SGE?			Y			
b.	of the SGE?			Y			
C.	the Project," as described in the SGE?	Sectior	n 705.4 of	Y			
d.	a section titled "Exploration Section 705.5 of the SGE?	," as de	scribed in	Y			
e.	a section titled "Findings," a Section 705.6 of the SGE?	s descri	ibed in	Y			
f.	a section titled "Analyses an Recommendations," as desc 705.7 of the SGE?		n Section	Y			
Appen	dices			(Y/N/X)	Notes:		
8	Do all geotechnical reports be contain all applicable Append in Section 705.8 of the SGE?	-		Y			
9	Do the Appendices present a showing all boring locations a Section 705.8.1 of the SGE?		-	Y			

VI.B. Geotechnical Reports


Apper	ndices	(Y/N/X)	Notes:
10	Do the Appendices include boring logs and color pictures of rock, if applicable, as described in Section 705.8.2 of the SGE?	Y	
11	Do the Appendices include reports of undisturbed test data as described in Section 705.8.3 of the SGE?	Y	
12	Do the Appendices include calculations in a logical format to support recommendations as described in Section 705.8.4 of the SGE?	Y	

Appendix C: Historic Borings

Job No. 01412 1964 County WYANDOT Year Changes 015820 WYA-23-0.00 Project Identification EP-163 File No. 18-0-24 Proj. No. _____ Begin Sto. 265418.48 End Sto. 293127.93 Length <u>8.56</u> Miles Drafting By A.E.S. P.W RECON AUGER CORF DRIVE ROD RESISTIVITY Completion Date By JSM A.P. B.D.C. 116/64 Dates 3/17 - 3/0/64 3/30 - 4/2/64 Drafting Hours No. of Holes or Soundings 112 99 Topo Sheet Footage 946.5 Samples Tested 227 Samples Accounted For Transmittal Date 7/9/64 No. of Tracings $_/7$ ____ Filed with year $_5-2-65$ Revisions Remarks 182 FET Refer to _____ DO NOT WRITE IN THIS SPACE Auger Data Core Data Drive Rod Data Resistivity Length No. of No. of Footage No. of Samples Footage No of Holes Samples Footage Holes Soundings Locations 1,56 99 946.5 2.27 -----------* See Reverse Side

, t						
				AMPLES	22	2 .
Samples VOIDED	Auger 3	Driv	/e	Samples USED	Auger 224	
	Т	ΑΤΟ	L	MILEA	GE	
Alignme			F	Station	s To	Mileage
MAINL	INE		10	100-33	3110	5.93
		-	26	6700 -29	3100	,49
SRA	94		59	19+00-103	0 +00	154
PAM	<u>p.A.</u>			2100-86	700	124
TAM	PB.		8.	3700-99	100	,30
CAM	<u>s C</u>		19	1700-20		,23
ICA MA	<u>p D.</u>			7+00-9.		,30
<u>Co le</u>		27		+66-11		, 21
SANdus	Ky Ki	ver	11	100-2	3700	. 23
······································						<u> </u>
		_				
·····						•
				- 1		
		l				

FIELD BORING LO County, Route No., Section 4 Date 4.1 Water E Equipment Crew Depth Field scription Feet Number 503 0.0-TCLAY ð 1.4.9 1. 1. 75 8-34-51 177.34 10 C 25 Use reverse side of this sheet for additional notes.

Section of the sectio FIELD BORING LOG Date 4.6.64 Date <u>H-6-64</u> Crew LJONS FRUBER Water E Equipment SAFF EN Dratting 16 Depth Field Description Feet Number 3 0.0-876 GRN SILTY CLAY 606 diese CLA 520.00 . w 4 in the second Use reverse side of this sheet for additional notes.

884. FIELD BORING LOG County, Route No., Section _// A 23 Station 188+65 Offset_ Elev N - 3 Date Water Elev Crew 🟒 Equipment é Drafting Depth Field Description Feet Number 2 107 0.0-3 FXM 26 65 6/1 SRN ONF 15 N. 822 iO 834 LAR SILTY CLAY 6a. 43 LER FINE SILTY SK 46 8.46 15 85L 4a 20 FRAVE 866 14 da A Crock reverse side of this sheet for additional notes,

FIELD BORING LOG No., Section OT A Offset Elev. Date Water Elev. Equipment LA MAS -INK Drafting, Field Depth Description Feet Number 1013 5.55 a 0.0-LAY SILT MOIST -6 0.16 'oq-16: esto? $c:n\ell$ 22 C/ U. SANOV baratt 5P . SAND M0157 Some 1Gh 4 : 12 Hele Squeazed clev. 364.6 in of NOM. 0 4.0 Use reverse side of this sheet for additional notes,

FIELD BORING LOG 869.1 .00 County, Route No., Section Offsel 0 Station Fle Date. Water Ele Equipment Crew. Drafting Depth Field Description Number Feet MOB 18 4a 5.0 - · . FAAGS ς o 6 - 1 and 1 - 2 <u>তির্বাচ চর্যার্থনির্দ্</u>রমি A segurar and the second র দেহ কানিট \$79. BARAN BULLTINGS TO SHE 20 26 Use reverse side of this sheet for additional notes,

884.2 FIELD BORING LOC 100 Cloubly . I tte No., Se Elev. Stati Date C Water Ele Equilibrinent Crew. ħ Drafting Field Depth Description Feet Nimb 0.0-4015 ----60 REF-15-0 FHE 10103 1, 1, 1, 2, 8, 9 ----115.53 Constants of والمحادير an and a state of a st . 19 10.17 Use reverse side of this sheet for additional notes.

FIELD BORING LOG 8931 County . Route No .: Consection Parties Elev Z Statio Water Elev. Date Equipment WMS-Crew_ Drofting Deph Field Description Feet umb 00 ٥n. CLAYSIL 1010151 20 ED-BR. SILT SAND - MOIST <u>- I Y SAND</u> VE, ð $\ln (\pi^2)$ 10to Do-P 3R. SAND 10157 6 en conteccer. +31. + 80.23 CF PULL AUGEN OULDNIT Use reverse side of this sheet for additional notes.

582.6 FIELD BORING LOG ction 2 County, Route No. Offset Elev.__2 1.11 Station Date. Water Elev. Equipment Willing Crew Drafting, 3 Depth Field Description p.p. Feet Number 12.2 nn **σ**..... 5121 MO15 66 21 SAN LAVSILT DAMI 15 1.3119 BRISAN 110137 COMPLETE 1993010 e de la 🐨 Use reverse side of this sheet for additional notes.

240+75 FIELD BORING LOG 864.3 0.00 County Beats No., Section 44 Elev. Water Elev.= Date___ Equipment UMS Crew. 12 Drafting .5 Depth Field Description Feet Number 0.4 800 00-ORK BR CLAY SILT \$21 11015+ 27 76 12TY CLAY (10151 58-1 5 -6 25 TR. SARIES Light -59.6 0Anno 4q 14 SUTY SPINIS 467 6-1 40 21. 15 ame EARLE FRAGS レンドコレシウ SOME EA rla 21 R. SANDY SILT WORADE 46 10 REF. 23.0 BOULDERS 12.21 10.0 Use reverse side of this sheet for additional notes.

FIELD BORING LOG POL. 5 Back 0.00 County, Rep Offset 311 3 13 Elev 2 Statio Date Water Elev._ Equipment WMS . Crew. Drafting. Depth Field Description Feet Number æ 4 501 <u>oò-</u> 2270157 9.34 30 44 DAmij FRAGS 19 1: oto? COMPHETE 101.154.16.18 umananan hesuba Use reverse side of this sheet for additional notes.

County,	Rt.	No.,	& Section	Wyg-23-000

				1	М	echani	cal An	lvsis		Physi	ical C	haract.	Physical Charact. Density						
Lab. No. So:-	Sample No.	Station		Depth in Feet	Agg.	C Sand	F Sand	1	Clay &	L.L.		Water Cont.		Max. Dry Wt.	SHTL Class	Remarks			
50263	110-P	265+4	ŧ	05-5	0	2		42	49.	3%	16	27			DEB				
4		265+41	<u>75L7</u>	04-4	27	6	8	28	31	36	15	36			PE a.	0			
5	2	270+21	£	04-3	, D	3	26	35	36	37	13	27			pea				
6	3	p	·	3 - 5	28	10	20	20	22	2.9	9	30			040	Q ,			
7	4	273+16	ŧ	04.45	l D	З	4-	42	51	36	13	26		entre la constante	Pla				
8	5	274/+91	ŧ	05-5	0	7	6	33	59	43	19	28			£-7-6				
9	6	2 79+ 91	Ł	05-5	12	1	2	41	44	45	э4	39			A7-6				
22.70	7	284 + 91	¢	05-4-	0	/	_/	63	35	32	10	27			046				
	8	ч		4-6,5	0		2	64	33	31	7	33		·····	046	0			
2	9	291+9/	Ē	05.4	0	0	2	57	47	47	26	29			27-6	V			
273	17.0.P	Ц		4-7	0		6	46	47	-34	10	30			Oka_				
02.86	87.6	18370	¢.	03-5	13	2	6	35	44	39	16	26			peb				
$-\tau$	X8·C	181+50	ŧ	04 - 4	0	3	-77	35	51	40	18	28			1 266				

S0-8

,

County, Rt. No., & Section ______ WyA - 23 - 0.00

	·····	r	<u> </u>	, T					1			 • 4	π	····
Lab. No. So	Sample No.	Station	Depth in Feet	Agg.	C Sand	cal Ana F Sand	1	Clay ¢	L.L.		h <u>aract</u> Water Cont.	Max. Dry Wt.	SHTL Class	Remarks
49807	81-2	188+65 t	03.5	0	5	8	39	48	39	1.9	26	· · · · ·	466	
8	2		5-11	0	1	13	9-1	45	28	11	15		Aba	· · · · · · · · · · · · · · · · · · ·
9	3	**	11-14	0	0	/	42	\$7	35	14	23		sta	
408/0	9-		19-16	0	2	7	79	11	a	P	21		A46	- 0- -
	5	,,	16-23	14.	8	20	29	29	20	5	15		24a	
498IZ	86.6	<u>.</u>	23-30	12	8	12	30	36	23	6	14		040	
<u> 20257</u>	103-P	313+0 t	0.5-5	0	2	8	39	<u>5</u>	39	19	20		PBB	
7	4-		5-10	5	3	8	40	etet	32	12	17		pba	
8	5	318 to 150	104-5	18	5	7	33	37	3.9	20	24		PEB	
9	6		5-9	Ø	3	8	49	40	33	13	19		Dea	
50260	7	11	2-10	0	4.	8	48	40	30		22		Aba:	
1	8	319-10 t	04 - 5	20	2	5	32	41	35	5ر	20		pea	
2	9	¢(5-10	8	4		44	42	31	17	17		oba	

S0-8

Lab.	L .			Danth	M	echani	cal Ang	alysis		Phys:		haract.	Der	sity	SHTL	E S A
No. So	Sample No.	Station		Depth in Feet	Agg. %	C Sand K	F Sand K	Silt %	Clay &	L.L.		Water Cont.	Opt.	Max. Dry Wt.	Class	Rémarks
9635	1-P	193+0	ŧ	0.5-3	. 0	1	3	30	66	49	26	25			P.7.6	
<u>6</u>	Z	H	*****	₹'- <i>\</i> 0	12	5	9	31	43	30	14	16			oba	
7	3	11		10-135	<u>c</u>	0	0	33	67	40	18	20			06b	
8	9-	tr		135-16	0	10	36	33	21	~	<u></u>	21			p4a	- <i>@</i>
9	5	1		16-22	0	.7	17	38	38	2/	5	1-1			D.4a	y
19630	6	196-40	ŧ	05-4	. <u>0</u> .	3	4	35	58	43	2/	24			A-7-6	· · · · · · · · · · · · · · · · · · ·
	7			4-7 <u>5</u>	20	7	14	24	35	31	12	14			plai	i
2	8	и		25-13'	12		16	.30	35	29	11	13			pra	
3	9	196125 .	5017	06.3	<u>, </u>	2	6	76	16	38	18	24-			Ale la	
4	10-P	L.		3-7		9	17	32	33	28		15 .			Plea	F
5	1			51-7	10	8	15	30	37	25		14			pea	
6	2	197-1-0	E	06.35	0	3	10	32	55	45	22	28			A-7-6	

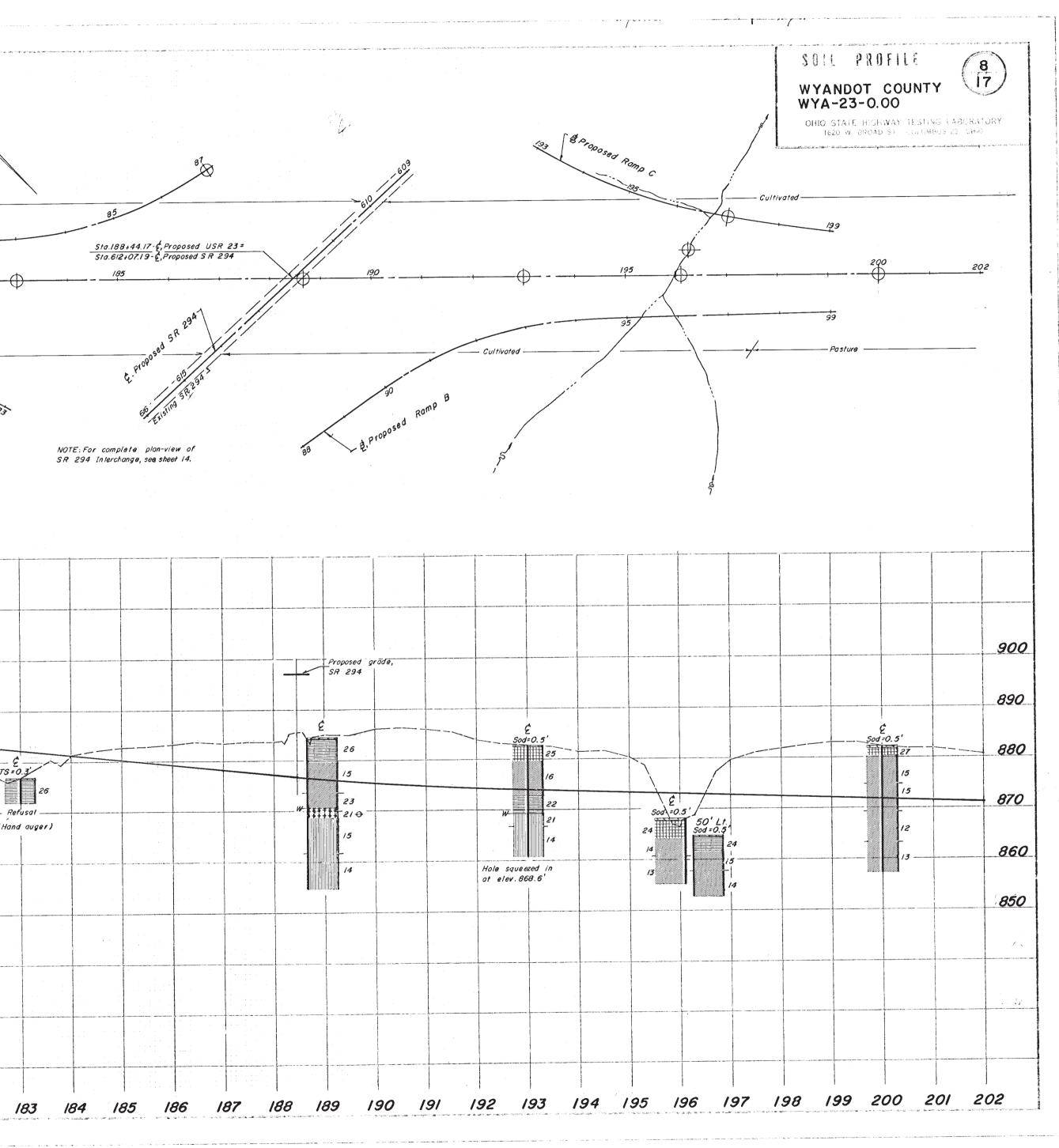
S0-6

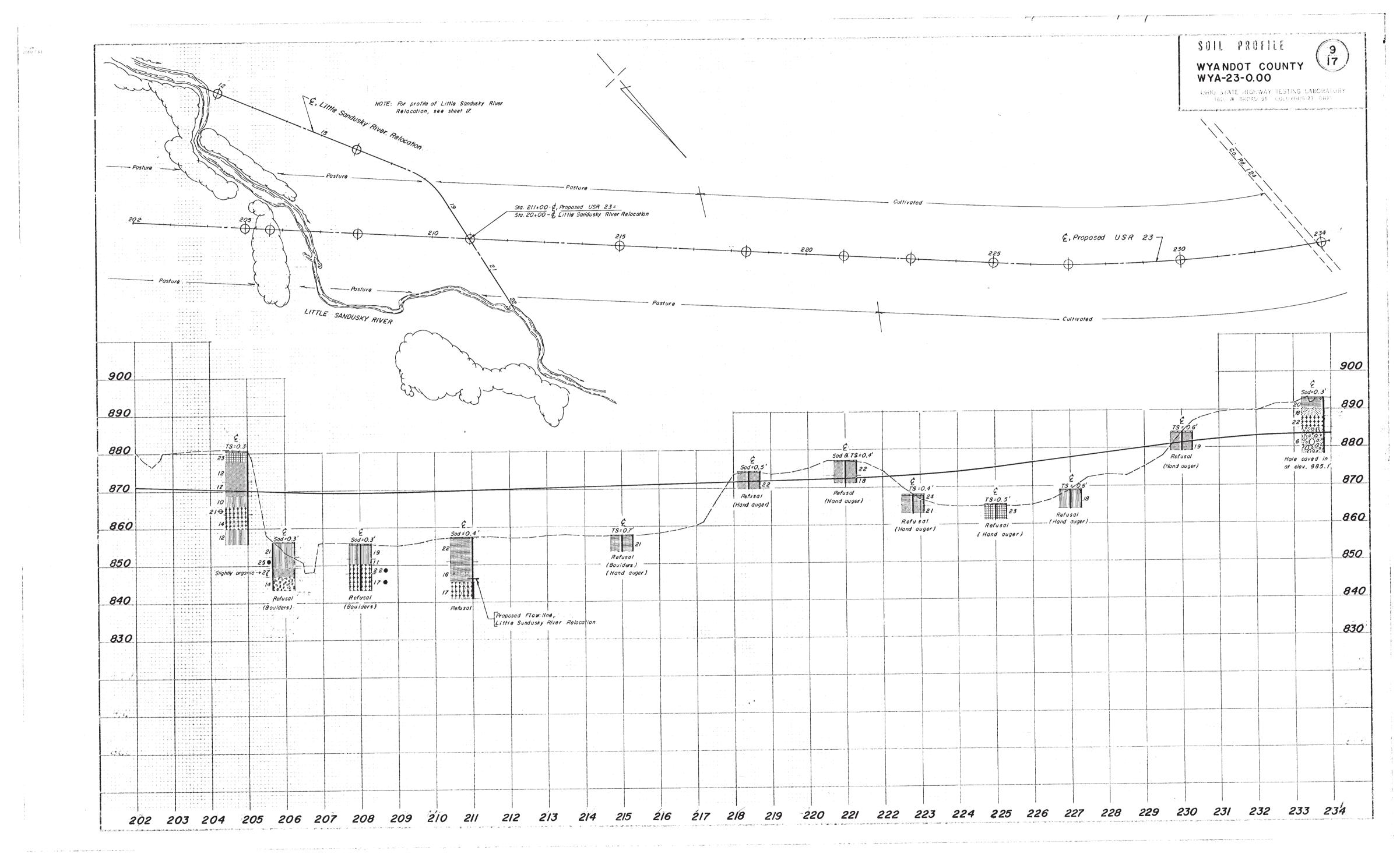
Lab.				Depth		echani	cal Ana	lysis		Phys		haract			SHTL	
No. So	Sample No.	Station		in Feet	Agg. %	C Sandi	F Sand	Silt X	Clay A	L.L.		Water Cont.		Max. Dry <u>Wt</u>	Class	Remarks
49677	63.P	1100	£	11-17.5	O-	Z.	3	576	37	24	4-	.23			A-9-6	0
ß	4	238+40	11	04-4	14	6	13	27	40	37	16	2/	-		Pleb	
9	5	<u></u>		4. 8.5	15	-7	5	90	33	.26	11	15			place	
49680	6			8.5 -10	0	34	32	23	11	dr-	···· g^==>	5			A:3a	
	7	:J90 + 85	ŧ	0.4.4	0	. /	5	37	\$7	4.6	17	27			D-7-6	
2	8			4.7	\sim	ß		37	35	45	21	25			A.7.6	
3	9	×1		7.10	13	5	21	30	3/	24	-7	14-			p4a	
4	.60-P	11		10-16	0	4.	57	28	11	~	3	2/			D:4a	Ð
5				16-20	Gra	1 17	50M			20	4	21			A-4a	•
6	2	z 1	****	20-203	8	6	4	.5%	26	19	3	10			646	
7	3	244-10	£:	04-3	0	0	2	37	61	4-8	25	26			Q-7-6	
8	4-	4		3 - 5	Ő	1	1	<i>\$</i> 3	65	43	18	22			A.7-6	,
9	65 P			5-10		0	0	- (5)	88	50	20	24			27-6	

S0-8

 $\widehat{}$

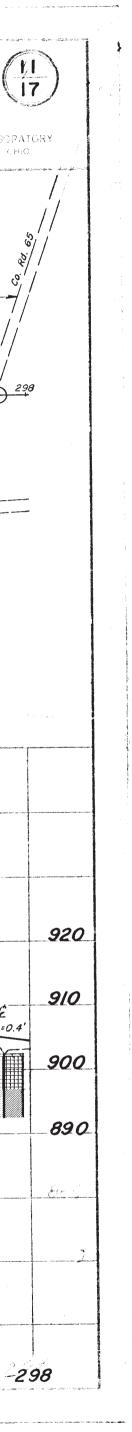
Lab.				Depth	M	echani	cal Ana	lysis		Phys;	ical C	haract.		sity	SHTL	
No. So	Sample No.	Station	L	in Feet	Agg. %	C Sand %	F Sand	Silt R	Clay &	L.L.	P.I.	Water Cont.		Max. Dry <u>Wt.</u>	Class	Remarks
19716	72.P	290+0	É	85-10	7	4-		44-	<i>4</i> - <i>4</i>	27	11	17			oba	
7	3	297158		0,4 - 5.5	0	/	4	.24	71	56	32	30			£7-6	
8	4	d.		s.s' - / ó	. 0	3	9	38	50	31	12	19			ela	
9_	5	302425	_50 R4	05.4	0.	2	8	5Z	38	43	21	26			p.7.6	
49720	6	.,		\$-10	0.	4	5	45	46	33	13	17			pla	
1	7	233-180	ŧ	0.3 - 3	0	5	17	29	49	36	17	20			A6 6	
2	. 8	11	+	3 . 5	0	9	56	1	34	25	8	18			A.3a	
3	9	.υ		5 - 8	\overline{o}	/	16	7/	12			22			2.9.6	
4	100 r	¢1		8-15	,	69	22	-8		N	P	6			A-1-6	<u>CR</u>
5	1	305-150	ŧ	06-5	C.	6	19	.30	45	33	14-	36			Ala	0
29726	102-P	30870	ŧ	05.5	0	4	10	38	48	35	14	28			Aba	
49727	I-L	21+0	ŧ	03-4	7	6	15	30	4Z	33	13.	21			Aba	
8	2			4-10	0	7	10	45	38	26	177	17	1		Aba	


County, Rt. No.. & Section


WVA-23-0.00


S0-8

-90 000 1 62							
					nted		
			A 1168 27	A CARLES AND A CARLES AND A	78	\$0	d Ramp D
	170			175 (<u>}</u>	180	
		د بید در بیدیویشد. در ده دست از در اکساند.		76	•		
				ited	& Proposed	BO Romp A	
						Romp A	
		an a					
						-	ung unpassed to the second of the second
	900						
		E TS=0,3'					
	890	28			<u>E</u> 5 = 0, 3		E
	880	Refusal (Hand ouger)		Re (Han	fusal d auger)		JS=0.4'
	870					(H	Refusal land auger)
	860						te meneraria e antici dagi anganti te a
			Image Image <th< td=""><td></td><td></td><td></td><td></td></th<>				
	850						
							· <u>··</u>
							an an i she shi a dar sa kar i nga na ay ngana
	170			175 176	 77 78 79	0 <i>180 181</i>	182


an apply on the characteristic Part Auto Labor - which also also also an an addition of the association of the

	en lannen mennennen en ersen er men er en er en en energen versen der energen versen der er en er en en ersen e			we we we were able to be able to reproduce the top by the program were reading works to the transmission of the top of the second	SOIL PROFILE WYANDOT COUNT' WYA-23-0.00 ONIG STATE HIGHWAY TESTING
					OHIO STATL HIGHWAY (ES) NG 1620 W BROAD ST COLUMN
Orchord			Cultivated		
		¢,Proposed USR 23	7		
÷ 270		280	285 		295
and a second					/
		,x <u>x</u>	Existing USR 23		
					с. С. С. С
					a An an
	· · · ·				,
920	¢.	E	E TS = 0.5 '	Ê	
910		TS=0.6'		Sod & TS = 0,4'	
900	30 15		Refusal (Hand auger)	19 	
890					

