W00-582-2.61

SR-582 & SR-64 Safety Study Final Report PID 117091

January 6, 2023

6612 Singletree Drive Columbus, OH 43229 614.656.2424 www.cmtran.com

Table of Contents

	Tuble of Contents	
I.	Executive Summary	1
II.	Purpose and Need	
III.	Existing Conditions	5
A.	Land Use and Development	. 5
В.	Roadway Conditions	. 5
C.	Intersection Conditions	. 5
D.	Field Observations	. 6
E.	Data Collection	. 6
F.	Traffic Volume Development	. 8
IV.	Existing Conditions Analysis	8
Α.	•	
В.	• • •	
C.	,	
D.	•	
E.	· · · · · · · · · · · · · · · · · · ·	
F.	e ,	
G.	·	
Η.		
٧.	Crash Data1	
A.		
В.		-
C.	Safety Analysis	١6
VI.	Countermeasures1	7
A.	Short-Term Countermeasure	L7
В.	Medium-Term Countermeasure	L7
C.	Long-Term Countermeasures2	23
D.	. Countermeasures for Future Consideration	26
VII.	Benefit-Cost Analysis	6
VIII.	Recommendations	8.
	list of Assessing	

List of Appendices

Appendix A	- Count	Data
------------	---------	------

Appendix B – COVID Adjustment Factors, TMACOG Growth Rates, and Volume Calculations

Appendix C – Existing Conditions Capacity Analysis

Appendix D – Sight Distance Exhibits

Appendix E – Turn Lane Warrant Analysis

Appendix F – All-Way Stop-Control Warrant Analysis

Appendix G – Signal Warrant Analysis

Appendix H – Speed Zone Analysis

Appendix I – HSM Outputs and CMFs

Appendix J – Proposed Conditions Capacity Analysis

Appendix K – Cost Estimates

Appendix L – Benefit-Cost Analysis

I. Executive Summary

A. Purpose and Need

The purpose of this study is to analyze existing conditions of the study area and identify potential countermeasures to reduce crash frequency and severity. The study limits include the intersection of SR-582 & SR-64 in the Village of Haskins, Ohio. The study intersection is ranked #97 on the ODOT Rural Intersection HSIP list.

B. Overview of Existing Conditions Analysis

Capacity analysis results show all intersection approaches have generally acceptable capacity based on present and future traffic projections. Sight distance analysis shows sight lines for eastbound and westbound vehicles may be obstructed. The turn lane warrant analysis shows that a 285' southbound left turn lane, inclusive of a 50' diverging taper, is warranted at the study intersection. Signal warrant analysis results show a traffic signal is not warranted based on vehicular volumes per ODOT standards, but crash experience (Warrant 7) is met. Results of the speed zone analysis show calculated speeds ranging from 52-55 MPH south of the study intersection, 45 MPH from the study intersection to the railroad tracks, 30-34 MPH from the railroad tracks to the police station, and 45-47 MPH from the police station to the north.

C. Overview of Safety Issues

Crash data was obtained from ODOT Transportation Information Mapping System (TIMS) for five complete years, 2017-2021. There were 18 crashes in the study area during the five-year study period. Of the 18 crashes that occurred at the intersection, ten were injury crashes (55.6%) and eight were property damage only crashes (44.4%). The primary crash type was angle crashes (72.2%), followed by the secondary crash types of rear end crashes (22.2%) and fixed object crashes (5.6%). Eleven of the angle crashes involved a westbound vehicle striking a southbound vehicle.

D. Recommended Countermeasures and Related Costs

Below is a brief overview of the recommended countermeasures and associated costs. See section **VI Countermeasures** for further details.

Short-term countermeasures:

Revise posted speed limits

Medium-term countermeasures (\$1,705,700):

- Install northbound and southbound left turn lanes
- Add a sidewalk connection and enhanced crossing north of intersection

Long-term countermeasures (\$2,867,800-\$3,096,500):

• Reconfigure intersection to be a roundabout (two configurations were explored)

Countermeasure for future consideration:

Revise Lusher Park infrastructure

It is recommended the short-term countermeasure of revising the posted speed limits be implemented as soon as feasible. It is recommended the installation of a roundabout be further considered/refined, and the sidewalk connection and enhanced crossing north of intersection be installed in conjunction with the proposed roundabout project. The implementation of a roundabout is expected to mitigate this primary crash concern of angle crashes at the intersection.

II. Purpose and Need

The purpose of this study is to analyze existing conditions of the study area and identify potential countermeasures to reduce crash frequency and severity. The study limits include the intersection of SR-582 (Middleton Pike) & SR-64 (Haskins Road) and extend approximately 500' on each intersection approach. A speed study of SR-64 is also included, which extends north of King Road and south of SR-582. The study intersection is ranked #97 on the ODOT Rural Intersection HSIP list. A project location map is provided in **Figure 1**, surrounding area map in **Figure 2**, and study intersection map in **Figure 3**.

Figure 2 – Surrounding Area Map

Figure 3 – Study Intersection Map

III. Existing Conditions

A. Land Use and Development

The study area is located in the Village of Haskins in north Wood County. The cities of Waterville and Perrysburg are to the north, and the City of Bowling Green is to the south. The area surrounding the study intersection includes an ice cream shop (Sundaze) in the northeast corner, some single-family homes, and undeveloped, agricultural land. A constructed channel ditch runs along the north side of SR-582, crosses under the roadway west of SR-64, and continues south along the west side of SR-64.

B. Roadway Conditions

SR-64

SR-64 serves as a north-south connector linking the cities of Waterville and Bowling Green. The roadway is classified as a Rural Major Collector and has a two-lane typical section. Raised pavement markers (RPMs) are present south of the study intersection. Guardrail is present at the study intersection and extends south on the west side of the roadway. Each through lane is approximately 10' wide. A paved shoulder is present on each side of the roadway, approximately 1-2' wide. The roadway generally has no lighting, curb, gutter, rumble strips/stripes, or sidewalk. SR-64 has a posted speed limit of 50 MPH at the study intersection. Additional details of the posted speed limit north and south of the study intersection is provided in *Section IV. F. Speed Zone Analysis*.

SR-582

SR-582 serves as an east-west connector from SR-65 to SR-105, linking IR-75, US-23, and US-20. SR-582 has a posted speed limit of 50 MPH within the study area. The roadway is classified as a Rural Major Collector and has a two-lane typical section. RPMs are present on SR-582. Guardrail is present at the study intersection and extends west on the north side of the roadway. Each through lane is approximately 10' wide. A paved shoulder is present on each side of the roadway, ranging from approximately 1-2' wide. The roadway generally has no lighting, curb, gutter, rumble-strips/stripes, or sidewalk.

C. Intersection Conditions

SR-582 & SR-64 is a four-leg intersection with single-lane approaches. The intersection configuration can be seen in **Figure 3**.

The intersection currently operates as two-way stop-control (TWSC), with the SR-582 approaches being stop-controlled. Each approach has one stop sign with LED blinkers posted in the right-hand corner of the intersection. A yellow "cross traffic does not stop" plaque and signpost reflector is posted below the stop sign for the westbound approach. A white "cross traffic does not stop" is posted below the stop sign for the eastbound approach, with no signpost reflector. Stop ahead warning signs with signpost reflectors are posted on the right side of the road in advance of the intersection on each approach as follows: 750' westbound and 745' eastbound. Two utility poles are located in the northeast corner of the intersection.

D. Field Observations

Field observations were conducted on June 29th and June 30th, 2022. The following observations were noted:

- During peak times, some drivers on the SR-582 approaches to the study intersection experienced longer delays. No excessive delays were noted.
- Sight distance at the study intersection for westbound drivers looking left may be an issue even if the analysis exhibits show otherwise (described later in report). The curvature on the south leg can make opposing vehicles appear to be approaching at a different rate than they are operating.
- Front-in angle parking is provided along the frontage of Lusher Park located approximately ¼ mile north of the study intersection along SR-64. This operates well for vehicles arriving. However, when vehicles are departing, their vision could be blocked by adjacent parked vehicles, and the drivers must blindly back up into traffic on SR-64.
- The SR-64 & Main Street intersection and railroad crossing of north of the study intersection poses potential issues. Atypical geometry and sight distance issues are present. The railroad appears to be relatively active and causes notable queuing when a train is present.

E. Data Collection

Turning movement counts were collected at the study intersection from 6 AM to 6 PM on Tuesday, June 28, 2022. It was determined the AM peak hour is from 7:15-8:15 and the PM peak hour is from 4:30-5:30. See a summary of the data in **Figure 4** and **Figure 5**. Segment count data along SR-64 from 2018 was also obtained from the ODOT Transportation Data Management System (TDMS). All count data is provided in **Appendix A**.

Speed data along SR-64 was collected on June 29-30, 2022. An explanation of this data can be found in *Section IV. F. Speed Zone Analysis*.

Figure 4 – AM Peak Hour Count Data Summary

Figure 5 – PM Peak Hour Count Data Summary

F. Traffic Volume Development

The 2022 count data was compared to 2018 data to determine if adjustments were needed to account for impacts on traffic volumes caused by the COVID-19 pandemic. It was determined that, while the PM peak count data fell within the ODOT accepted range of 15%, the AM peak count data fell outside the range. An adjustment factor of 1.32 was applied to the 2022 AM peak count data to create 2022 adjusted AM peak volumes.

Toledo Metropolitan Area Council of Governments (TMACOG) provided a linear annual growth rate of 0.08% for all approaches to the study intersection. The Opening Year of an assumed improvement project is expected to be 2024. Therefore, a Design Year of 2044 is assumed for analysis purposes. The 2022 volumes were projected to a Design Year of 2044 using the growth rate. COVID adjustment factor calculations, TMACOG growth rate correspondence, and volume calculations are provided in **Appendix B**.

IV. Existing Conditions Analysis

A. Capacity Analysis

Highway Capacity Software (HCS) version 2022 was used to analyze capacity at the study intersection under existing TWSC conditions. AM and PM peak hour volumes for 2022 (Existing Year) and 2044 (Design Year) were used for this analysis.

Existing conditions capacity analysis results for 2022 and 2044 are provided in **Table 1.** In general, a level of service (LOS) of D for the overall intersection, approaches, and individual movements is considered acceptable. Full capacity analysis results are provided in **Appendix C.**

Table 1 – Existing Conditions Capacity Analysis Results

Approach/	2022	2 AM	2022	2 PM	2044	AM	2044 PM				
Movement	Delay a	LOS	Delay ^a	LOS	Delay a	LOS	Delay a	LOS			
Eastbound	21.3	С	15.0	С	21.9	С	15.2	С			
Westbound	14.0	В	14.5	В	14.1	В	14.6	В			
Northbound Left	7.7	Α	7.7	Α	7.8	Α	7.7	Α			
Southbound Left	7.9	A	7.8	A	7.9	A	7.8	A			

a – Average delay in seconds per vehicle

The results show all approaches have acceptable LOS in all scenarios.

B. Sight Distance Analysis

Since the intersection is TWSC, sight distance is generally only a concern for the stop-controlled approaches. Therefore, horizontal intersection sight distance for turning vehicles on the eastbound and westbound approaches was evaluated per methodologies in the ODOT Location and Design (L&D) Manual. Exhibits showing sight triangles for each turning movement for the eastbound and westbound approaches can be found in **Appendix D.**

Based on the analysis, sight distance for eastbound left turning vehicles may be obstructed by signs present in the southwest corner of the intersection. No issues appear to be present for the westbound left turning vehicles. However, based on the crash analysis discussed in the next section, some issues may be present. **Figure 6** shows a photo taken while at the westbound stop line looking right.

Figure 6 – Photo at Westbound Stop Line Looking Right

As shown in the photo, if the vehicles are not pulled up past the stop line, utility poles and signs in the northeast corner of the intersection may be obstructing sight distance. Also, as previously described, at the westbound stop line looking left, the curvature on the south leg can make opposing vehicles appear to be approaching at a different rate than they are operating.

C. Turn Lane Warrant Analysis

A turn lane warrant analysis was conducted assuming the existing, TWSC intersection condition. The analysis was conducted using ODOT standard turn lane warrant graphs and Design Year 2044 data. As stated previously, SR-64 has a posted speed limit of 50 MPH, so a design speed of 55 MPH was utilized for analysis. Results of the turn lane warrant analysis show that a 285' southbound left turn lane, inclusive of a 50' diverging taper, is warranted at the study intersection. Detailed turn lane warrant analysis is provided in **Appendix E.**

D. All-Way Stop-Control (AWSC) Warrant Analysis

An AWSC warrant analysis was performed at the study intersection using methodologies located in the Ohio Manual of Uniform Traffic Control Devices (OMUTCD). In general, AWSC is used where the volume of traffic on the intersecting roads is approximately equal.

The analysis shows that AWSC is not warranted with 2022 traffic volumes. This was expected, as the volume of traffic on SR-64 is about 3-4 times greater than the volume on SR-582. The full AWSC warrant analysis can be seen in **Appendix F.**

E. Signal Warrant Analysis

A signal warrant analysis was performed at the study intersection. Eight-hour, four-hour, and peak hour (Warrants 1, 2, and 3) signal warrant analyses were evaluated per the OMUTCD. Analyses were conducted for 2022 and 2044 volumes without right turn reductions (RTR).

The results show a traffic signal is not warranted per ODOT standards with current traffic volumes. However, crash experience (Warrant 7) is met since five angle crashes occurred in 2017, which could be corrected by a traffic signal installation. This does not necessarily mean a traffic signal is recommended for this intersection. While the installation of a traffic signal would mitigate the noted severe angle crashes, it is expected it would increase the frequency of crashes overall. General practice for District 2 has been that if Warrant 7 is met, at least one of Warrants 1-3 also needs to be met using the 70% volumes to officially consider installing a signal. Since these warrants were not met using 70% volumes, a traffic signal installation was not considered further. The full signal warrant analysis can be seen in **Appendix G.**

F. Speed Zone Analysis

A speed zone study was conducted for SR-64 in accordance with the ODOT Traffic Engineering Manual (TEM) to determine the recommended posted speed limit for SR-64 through Haskins. The data collection and analysis conducted are described below.

Data Collection

Speed data was collected at four locations along the corridor on June 29-30, 2022. A graphic of the data collection locations can be seen in **Figure 7**. The speed data collection outputs are provided in **Appendix H**.

Raw crash data was obtained from ODOT TIMS for use in the analysis. Crashes were reviewed based on the criteria provided. Crashes occurring under inclement pavement conditions (wet, snow, etc.) were reviewed, and crashes caused by pavement conditions were excluded from the analysis. Animal and side street related crashes were also excluded from the analysis. Average daily traffic (ADT) volumes were also obtained from ODOT TIMS.

The typical section characteristics and number/type of access points in the study area was quantified based on the aerial, street-view data from Google Maps, and notes taken during the study site visit. Lane and shoulder widths were averaged throughout the zone segment areas.

The posted speed limits in this area are as follows (also shown in **Figure 7**):

- For northbound vehicles:
 - o 55 MPH posted south of the corporation limits
 - 50 MPH posted at the corporation limits and just north of the intersection of SR-64 & SR-582
 - o 35 MPH posted near the Lusher Park baseball diamond
 - o 25 MPH posted just south of the railroad
 - o 35 MPH posted at SR-64 & Roche De Beouf Street
 - o 50 MPH posted just south of Kingsbury Avenue
 - 55 MPH posted north of the corporation limits
- For southbound vehicles:
 - o Unposted (assumed 55 MPH) speed north of the corporation limits
 - o 35 MPH posted just south of Kingsbury Avenue
 - o 25 MPH posted at High Street
 - o 35 MPH posted just south of the railroad
 - o 50 MPH posted just south of the Lusher Park baseball diamond
 - o 55 MPH posted approximately 0.33 miles south of the corporation limits

The collected 50th and 85th percentile speeds in each direction are summarized in **Figure 7**.

Analysis

The ODOT TEM Form 1296-2 Speed Zone Evaluation Sheet for Non-Freeway and Non-Expressway Highways was used to analyze speeds in the study area. Additionally, each zone segment was analyzed using USLIMITS2. This is a web-based tool created and maintained by the Federal Highway Administration (FHWA) to provide planning-level guidance on possible speed limit recommendations.

Working with ODOT District 2, three different speed zone options were analyzed. This included an analysis of the existing statutory speed limits and two other proposed options. The options and detailed calculation sheets are provided in **Appendix H**.

Figure 7 – Data Collection Locations, Existing Posted Speed Limits, and 50th/85th Percentile Speeds (Collected)

G. Stakeholder Engagement

A kickoff meeting was held at 10 AM on June 27, 2022 with the Village of Haskins, ODOT District 2, and Carpenter Marty Transportation.

The Village of Haskins representatives provided the following key general takeaways:

- The Village is planning to extend Sullivan Drive southwest along the property line to connect to Haskins Road, south of the Lusher Park baseball diamond. The purpose of this project is to provide an additional access to the neighborhood. No expansion of the neighborhood is planned at this time.
- The guardrail surrounding the study intersection gets struck frequently (approximately 2-3 times per year). The guardrail in the southeast corner of the intersection gets struck the most.
- The LED blinker stop signs were implemented in 2019.
- The Sundaze ice cream shop in the northwest corner used to be a bank, but redeveloped in 2018. Patrons at Lusher Park oftentimes walk or drive to Sundaze. There is no sidewalk or pedestrian crossing infrastructure present.
- Farming surrounding the study intersection encroaches into the right-of-way.
- Flooding issues are present surrounding the intersection.

H. Active Transportation Need/Demand Analysis

ODOT TIMS provides an evaluation of the active transportation demand and need. Active transportation planning aims to provide communities safe and convenient access to home, work, school, recreation, and transit via walking and biking. The outputs show the lightest colors available for both demand and need at the study intersection, which shows a low demand and need for active transportation. However, the anecdotal knowledge of people going from the neighborhood and Lusher Park to Sundaze shows a latent demand for pedestrian infrastructure.

V. Crash Data

A. Crash Data Summary

Crash data was obtained from ODOT TIMS for five complete years (2017-2021). A total of 19 crashes were obtained. The OH-1 report for each documented crash was reviewed to correct information, where necessary, and properly locate crashes within the study limits.

The original crash data query included 19 crashes, which was adjusted to 18 crashes after reviewing and relocating crashes. **Table 2** shows a breakdown of the crash data. Crash data for the study intersection was plotted on an aerial map to identify crash patterns and probable causes. The crash diagram for the study intersection is shown in **Figure 8**.

Table 2 - Crash Statistics

Crash Year	Number	Percent
2017	4	22.2%
2018	3	16.7%
2019	7	38.9%
2020	2	11.1%
2021	2	11.1%

Crash Severity	Number	Percent
Injury Crash	10	55.6%
Property Damage Crash	8	44.4%

Crash Type	Number	Percent
Angle	13	72.2%
Rear End	4	22.2%
Fixed Object	1	5.6%

Road Condition	Number	Percent
Dry	13	72.2%
Wet	5	27.8%

Hour of Day	Number	Percent
1:00 AM	1	5.6%
6:00 AM	1	5.6%
7:00 AM	1	5.6%
8:00 AM	2	11.1%
9:00 AM	1	5.6%
11:00 AM	2	11.1%
12:00 PM	1	5.6%
1:00 PM	1	5.6%
2:00 PM	2	11.1%
3:00 PM	1	5.6%
4:00 PM	2	11.1%
5:00 PM	3	16.7%

Day of Week	Number	Percent
Sunday	3	16.7%
Tuesday	4	22.2%
Wednesday	1	5.6%
Thursday	2	11.1%
Friday	5	27.8%
Saturday	3	16.7%

B. Probable Causes

Noteworthy crash patterns in the study area are summarized with supporting details and probable causes as follows:

Angle Crashes

Angle crashes are the most prevalent crash type at the study intersection. A total of 13 angle crashes were reported. Angle crashes represent 72.2% of the total crashes, higher than the statewide average of 29.6%. Eleven of the angle crashes involved a westbound vehicle striking a southbound vehicle. As discussed in the sight distance analysis section, no issues appear to be present for the westbound left turning vehicles. However, site photos show if the vehicles are not pulled up past the stop line, utility poles and signs in the northeast corner of the intersection may obstruct sight lines. The two remaining angle crashes involved an eastbound vehicle striking a northbound vehicle. This is also expected to be due to sight distance obstructions.

Rear End Crashes

Rear end crashes are the second most prevalent crash type at the study intersection. A total of four rear end crashes were reported. Rear end crashes represent 22.2% of the total crashes, which is higher than the statewide average of 12.8%. Two of the crashes occurred on the westbound approach, one occurred on the northbound approach, and one occurred on the southbound approach to the study intersection. These crashes are likely due to drivers not expecting to have to stop and/or not expecting the vehicle in front of them to slow down to make a turn.

C. Safety Analysis

The Highway Safety Manual (HSM) predictive method for rural two-lane, two-way intersections was applied to the study area to determine the potential for safety improvement using the ODOT Economic Crash Analysis Tool (ECAT). See **Appendix I** for an overview of the HSM methodology. The results presented in **Table 3** show the expected crash frequency calculated using HSM predictive method with cleaned crash data and existing conditions for the study area elements.

Table 3 - HSM Results for Existing Conditions for All Crashes (shown in crashes/year)

Tuble 5 Herr Results for Entitling Containing for The Crushes (Shev	vii iii ei asiies, y ear j
Predicted Average Crash Frequency	2.2868
Expected Average Crash Frequency - Existing Conditions	2.5209
Expected Excess Crashes	0.2341
Potential for Improvement	Yes

The results conclude the expected crash frequency is greater than the predicted crash frequency for the study intersection. This suggests the intersection experiences more average crashes per year than its peers and has a potential to reduce crashes based on HSM methodology. HSM output reports is provided in **Appendix I**.

VI. Countermeasures

The following section addresses possible countermeasures to mitigate the prevalent crash types in the study area. The countermeasures listed may be independent solutions and are not necessarily recommended to be implemented concurrently.

A. Short-Term Countermeasure

Revise posted speed limits

It is important that set speed limits are considered reasonable by a majority of drivers. Studies have shown that most drivers tend to drive at a speed with which they are comfortable, so raising or lowering the speed limits does not have a significant effect on speed. However, when the speed limit is set at a level that most drivers consider reasonable, the speed of vehicles is more uniform, which has proven to be a safer traffic pattern.

Based on the speed zone analysis, the existing speed limits currently posted on SR-64 through the Village of Haskins are not in line with the calculated speeds or actual operating speeds of vehicles. Working with ODOT District 2, three different proposed speed zone options were presented. The options are provided in **Appendix H**. It is recommended that the Village work with ODOT District 2 to choose and implement the preferred option. Additionally, an advisory speed zone plaque could be posted prior to the railroad for both directions of traffic.

B. Medium-Term Countermeasure

Install northbound and southbound left turn lanes

The turn lane warrant analysis shows a southbound left turn lane is warranted in the AM peak with existing 2022 traffic volumes. It is recommended that a southbound left turn lane be implemented, along with a northbound left turn lane, to provide a zero offset and acceptable sight lines. The added left turn lanes are expected to mitigate rear end crashes associated with vehicles slowing/stopping to make a left turn.

Capacity analysis was conducted, using HCS with 2022 and 2044 traffic volumes, to assess capacity with the proposed left turn lane installation. LOS and vehicle delay results are summarized in **Table 4**. Detailed capacity analysis results are provided in **Appendix J**.

Table 4 – Proposed Northbound/Southbound Left Turn Lane Addition Capacity Analysis

Approach/	2022	2 AM	2022	2 PM	2044	ł AM	2044 PM			
Movement	Delay a	elay ^a LOS I		elay ^a LOS De		LOS	Delay a	LOS	Delay a	LOS
Eastbound	20.9 C		15.0	В	21.5 C		15.2	С		
Westbound	13.9	В	14.4	В	14.0	В	14.6	В		
Northbound Left	7.7	A	7.7	A	7.8	A	7.7	Α		
Southbound Left	7.9	Α	7.8	Α	7.9	Α	7.8	A		

a – Average total delay in seconds per vehicle

Capacity analysis shows that turn lane installation at the intersection will slightly improve delays on the side street approaches. Overall, the turn lanes are recommended for safety reasons, not capacity reasons. However, this countermeasure is not expected or intended to be the "big fix" that mitigates all crashes shown in the crash history. The countermeasure is expected to improve general safety at the study intersection.

Additionally, it is recommended intersection lighting be implemented with the proposed turn lanes. While the lack of intersection lighting is not considered to be a contributing factor in the frequency of crashes, the implementation of intersection lighting is expected to improve the overall safety of the intersection.

A conceptual, planning-level layout of the proposed left turn lane installation is provided in **Figure 9.**

Figure 9 – Proposed Conceptual Planning-Level Left Turn Lane Installation (proposed sidewalk shown in pink)

Add a sidewalk connection and enhanced crossing north of intersection

There is currently no sidewalk or pedestrian infrastructure near the study intersection. The Village representatives discussed how people are driving, walking, or desiring to walk, from the neighborhoods and Lusher Park south to Sundaze. There is existing sidewalk along the east side of SR-64 that starts near the Lusher Park baseball diamond and extends north to downtown Haskins. It is recommended that the existing sidewalk be extended from its existing terminus south to the study intersection.

Pedestrian crossing enhancement countermeasures were evaluated using Table 1 of the *FHWA Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations,* the existing roadway configuration, ADT data, and posted speed limit. This is shown in **Figure 10** with the appropriate boxes outlined in red, depending on the posted speed limit.

Figure 10 – FHWA Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations

Tigure 10 Til Will dulue	, -					-8						-, -	-										ن			
		Posted Speed Limit and AADT																								
		Ve	ehic	le A	ΙΑD	T <9	,00	0		Vehicle AADT 9,000–15,000									Vehicle AADT >15,000							
Roadway Configuration	≤3	0 m	ph	35	5 m	ph	≥40	0 m	ph	≤3() m	ph	35	i m	oh	≥4	0 mp	h	≤3(0 m	ph	35	mp	h	≥40) mph
2 lanes (1 lane in each direction)	4	2 5	6	0	5	6 9	1	5	6 ②	4	5	6	7	5	6	1	_	5	0 4 7	5	6	① 7	5	6	1	5 6 9
3 lanes with raised median (1 lane in each direction)	4	2 5	3	0	5	3	1	5		① 4 7	5	3	1	5	3	1	5		① 4 7	5	9	1	5	6	①	8 5
3 lanes w/o raised median (1 lane in each direction with a two-way left-turn lane)	1 4 7	2 5	3 6 9	7	5	8 6 9	1	5	8 6 0	① 4 7	5	3 6 9	1	5	3 6 9	1	5	5	① 4 7	5	3 6 9	①	5	3 6 0	① 5	6 0
4+ lanes with raised median (2 or more lanes in each direction)	7	5 8	9	7	5 8	9	1	5	3	① 7	5 8	9	1	5 8	8	1	5		① •	5	0	①	5	3	①	3 5 8 9
4+ lanes w/o raised median (2 or more lanes in each direction)	7	5 8	3 6 9	① 7	5 8	3 6 9	1	5	8 6 9	① 7	5 8	3 3 9	1	5 8	3 3 9	①	5 (3	① •	5	3 3 9	1	5	8 0 0	1	3 5 6 8 9

Given the set of conditions in a cell.

- # Signifies that the countermeasure is a candidate treatment at a marked uncontrolled crossing location.
- Signifies that the countermeasure should always be considered, but not mandated or required, based upon engineering judgment at a marked uncontrolled crossing location.
- O Signifies that crosswalk visibility enhancements should always occur in conjunction with other identified countermeasures.*

The absence of a number signifies that the countermeasure is generally not an appropriate treatment, but exceptions may be considered following engineering judgment.

- High-visibility crosswalk markings, parking restrictions on crosswalk approach, adequate nighttime lighting levels, and crossing warning signs
- 2 Raised crosswalk
- 3 Advance Yield Here To (Stop Here For) Pedestrians sign and yield (stop) line
- 4 In-Street Pedestrian Crossing sign
- 5 Curb extension
- 6 Pedestrian refuge island
- 7 Rectangular Rapid-Flashing Beacon (RRFB)**
- 8 Road Diet
- 9 Pedestrian Hybrid Beacon (PHB)**

Based on the table, countermeasure candidates are as follows:

- High-visibility crosswalk markings, parking restrictions on crosswalk approach, adequate nighttime lighting levels, and crossing warning signs*
- Curb extension
- Pedestrian refuge island
- Rectangular Rapid-Flashing Beacon (RRFB)**
- Pedestrian Hybrid Beacon (PHB)**
- *If posted speed limit is 35 MPH, this countermeasure should be considered. If posted speed limit is equal to or greater than 40 MPH, this countermeasure should always occur in conjunction with other identified countermeasures.
- ** If posted speed limit is 35 MPH, this countermeasure is a candidate. If posted speed limit is equal to or greater than 40 MPH, this countermeasure should always occur in conjunction with other identified countermeasures. Note, PHB and RRFB are not both installed at the same crossing location.

A conceptual, planning-level layout of the proposed sidewalk connection is provided in **Figure 11.** Included in the concept plan are enhanced crossings with continental type crosswalk pavement markings and RRFBs placed at the south end of the baseball diamond and at the south end of the pavilion. This will provide a safe crossing for pedestrians at Lusher Park walking to Sundaze, as well as pedestrians walking from the east neighborhood to Lusher Park. This countermeasure is recommended to be paired with both the medium and long-term countermeasure projects.

Figure 11 – Proposed Conceptual Planning-Level Sidewalk and Crossing Installation (proposed sidewalk shown in pink)

C. Long-Term Countermeasures

Reconfigure intersection to be a roundabout

A roundabout should be considered for implementation at this intersection. The FHWA Office of Safety identified roundabouts as a Proven Safety Countermeasure because of their ability to greatly reduce the types of crashes that result in serious injury or fatality. By reducing the number and severity of conflict points at the intersection, and because of the lower speeds of vehicles moving through the intersection, roundabouts have been proven to be a safer intersection type. There is currently a roundabout on SR-64 less than three miles north of the study intersection, and roundabouts are generally becoming more common throughout Ohio. It is anticipated that traffic driving through the intersection will be familiar with roundabouts.

Capacity analysis was conducted using HCS with 2022 and 2044 traffic volumes to assess the capacity of the proposed roundabout installation. LOS and vehicle delay results are summarized in **Table 5**. Detailed capacity analysis results are provided in **Appendix J**.

Table 5 – Proposed Roundabout Capacity Analysis Results

This is The product the strained out of superiors of the strained													
Approach	2022	2 AM	2022	2 PM	2044	4 AM	2044 PM						
	Delay ^a	LOS	Delay ^a	LOS	Delay a	LOS	Delay a	LOS					
Eastbound	5.1	A	4.0	A	5.2	A	4.1	A					
Westbound	4.2	Α	5.1	Α	4.2	Α	5.1	A					
Northbound	5.3	A	4.7	A	5.4	A	4.7	A					
Southbound	5.2	A	4.8	A	5.2	A	4.8	A					
Total	5.1	A	4.7	A	5.2	A	4.8	A					

a – Average total delay in seconds per vehicle

Capacity analysis shows that a single circulating lane roundabout with single lane approaches will operate with acceptable LOS through 2044. Note, LOS and delays are improved compared to the existing conditions capacity analysis.

Additionally, it is recommended intersection lighting be implemented with the proposed roundabout. While the lack of intersection lighting is not considered to be a contributing factor in the frequency of crashes, the implementation of intersection lighting is expected to improve the overall safety of the intersection. Especially with the implementation of a roundabout.

Two options of roundabout configurations are proposed:

- Modern roundabout, which impacts some Sundaze parking spots
- Peanut roundabout, which avoids impacts to Sundaze parking lot

Conceptual, planning-level layouts of all four proposed roundabout configuration options are provided in **Figure 12** and **13**.

Figure 12 – Proposed Conceptual Planning-Level Modern Roundabout Installation (proposed sidewalk shown in pink, parking lot impacts shown in red hatching)

Figure 13 – Proposed Conceptual Planning-Level Peanut Roundabout Installation (proposed sidewalk shown in pink)

D. Countermeasures for Future Consideration

Revise Lusher Park infrastructure

There is currently no sidewalk within the park to connect the different amenities of the park to each other or to the parking lot/spaces. Additionally, front-in angle parking is provided along the frontage of the park. This operates well for vehicles arriving. However, when vehicles are departing, their vision could be blocked by adjacent parked vehicles, and the drivers must blindly back up into traffic on SR-64. While this segment was not included in the crash analysis study area, it is expected that crashes are associated with this parking along the roadway.

It is recommended that the parking be revised to parallel parking. This enables drivers to see vehicles on SR-64 when departing. However, this would reduce the number of parking spaces on the frontage. If parking space availability is expected to be an issue, back angle parking could be considered instead. The pavement markings would be revised so that drivers are forced to back into the spaces from SR-64. This also enables drivers to see vehicles on SR-64 when departing, and the existing number of parking spaces can be maintained.

Additionally, it is recommended that sidewalk internal to the park be installed to connect the south parking lot, frontage parking, baseball diamond, and pavilion. This will help to funnel pedestrians to their destination, and to the proposed RRFB crossings, while also making the park more ADA compliant.

VII. Benefit-Cost Analysis

Benefit-cost analysis is a tool used to determine the financial benefits of a project by comparing the net present value (NPV) of a project to the NPV of the safety benefit provided by the project. Benefit-cost values greater than one indicate a positive return on the original investment. Preferred countermeasures are those having the highest NPV of safety benefits.

A benefit-cost analysis for the recommended long-term countermeasures was prepared using the ODOT ECAT. Crash modification factors (CMF) were applied for the proposed medium and long-term improvements. This analysis does not account for all recommended improvements and only includes countermeasures that have CMF values.

Cost estimates were prepared for the medium and long-term countermeasures. Note, the sidewalk connection and enhanced crossing north of intersection are included in all countermeasure projects. The construction cost estimates assume the following:

- 15% engineering design
- 30% contingency
- 10% environmental, geotechnical, federal requirements
- 11.7% inflation rate for an estimated 2025 construction year¹

¹ Note, inflation rates have been irregularly high recently. If the proposed project is not immediately moved forward, this cost estimate will likely need revised as time passes.

- Right-of-way impacts
- Utility relocation costs are not included

The estimated costs for the medium and long-term countermeasures are summarized in **Table 6.** Detailed cost estimates are included in **Appendix K.**

Table 6 – Cost Estimates

Countermeasures (including intersection lighting, sidewalk connection, and enhanced crossings)	Total
Install NB and SB left turn lanes	\$1,705,700
Install modern roundabout	\$2,867,800
Install peanut roundabout	\$3,096,500

Crash modification factors (CMF) were applied for the following countermeasures. This analysis does not account for all recommended improvements, rather only those countermeasures that have CMF values.

Install northbound and southbound left turn lanes

- **Install left turn lanes**: A CMF of 0.5200 was included in the project for the implementation of this proposed countermeasure. This is a standard Part C CMF offering in ECAT, which was used to calculate the Combined CMF.
- Add intersection lighting: A CMF of 0.9996 was included in the project for the implementation of this proposed countermeasure. This is a standard Part C CMF offering in ECAT, which was used to calculate the Combined CMF.

Roundabout (same for modern and peanut configurations)

- Convert intersection with minor-road stop control to modern roundabout (rural): A CMF of 0.13 was applied to all crashes except property damage only crashes in which a CMF of 0.29 was applied. This is a standard CMF offering in ECAT.
- Add intersection lighting: A CMF of 0.9996 was included in the project for the implementation of this proposed countermeasure. This is a standard Part C CMF offering in ECAT, which was used to calculate the Combined CMF.

Table 7 summarizes the benefit-cost analysis results. Detailed reports from ECAT are included in **Appendix L**.

Table 7 - Benefit-Cost Analysis

		Countermeasure	S			
	NB & SB left turn lanes	Modern roundabout	Peanut roundabout			
Expected Annual Crash Adjustment	-1.211	-1.956	-1.956			
NPV of Project	\$1,527,031.25	\$2,567,413.50	\$2,772,157.85			
NPV of Safety Benefit	\$851,020.25	\$1,542,179.60	\$1,542,179.60			
Benefit-Cost Ratio	0.56	0.60	0.56			

The benefit-cost ratio for each countermeasure project is less than 1.0. The proposed roundabout configurations are expected to mitigate more crashes compared to the left turn lane installations. While the modern roundabout option has more right-of-way impacts, it is less expensive compared to the peanut roundabout option. Therefore, the modern roundabout option has the most favorable benefit-cost ratio when compared to the other countermeasure projects.

VIII. Recommendations

It is recommended the short-term countermeasure of revising the posted speed limits be implemented as soon as feasible. It is recommended that conversations be had with the landowners of the Sundaze property. If the removal of some parking spots, as proposed with the modern roundabout configuration, would be infeasible, then the peanut roundabout option could be further investigated. Regardless, the roundabout design would need to be further refined when survey data is available and through the detailed design process. It is recommended the sidewalk connection and enhanced crossing north of intersection be installed in conjunction with the proposed roundabout project.

While the cost of both proposed roundabout configuration options is relatively high, the crash history shows a high representation of angle crashes resulting in injury. The implementation of a roundabout is expected to mitigate this primary crash concern of angle crashes at the intersection. Therefore, the roundabout should be further considered regardless of the benefit-cost analysis results. If desired, formal safety funding could be pursued for this improvement.

Additionally, in the future, the Village of Haskins could further consider and investigate options to revise Lusher Park infrastructure, as described.

Appendix A Count Data

SR-582 & SR-64 - TMC

Tue Jun 28, 2022

Full Length (6 AM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements ID: 969775, Location: 41.459279, -83.703318

Provided by: Carpenter Marty (CM) Transportation Inc. 6612 Singletree Drive, Columbus, OH, 43229, US

Leg Direction	SR-582 Eastboui	nd					SR-582 Westbou	nd					SR-64 Northbo	und					SR-64 Southbo	und					
Time	L	T	R	U	App P	ed*	L	T	R	U	App P	ed*	L	T	RU	J	App P	ed*	L	T	R	U	App P	ed*	Int
2022-06-28 6:00AM	4	14	0	0	18	0	1	5	3	0	9	0	0	14	0 (0	14	0	9	7	2	0	18	0	59
6:15AM	4	13	0	0	17	0	1	4	9	0	14	0	0	18	0 (0	18	0	17	19	2	0	38	0	8
6:30AM	5	13	1	0	19	0	0	4	4	0	8	0	0	16	0 (0	16	0	17	19	1	0	37	0	80
6:45AM	1	10	0	0	11	0	2	7	6	0	15	0	0	19	2 (0	21	0	12	26	4	0	42	0	89
Hourly Total	14	50	1	0	65	0	4	20	22	0	46	0	0	67	2 (0	69	0	55	71	9	0	135	0	31
7:00AM	5	10	0	0	15	0	1	3	7	0	11	0	0	26	1 (0	27	0	13	24	0	0	37	0	90
7:15AM	1	20	1	0	22	0	0	3	3	0	6	0	0	22	4 (0	26	0	19	28	2	0	49	0	103
7:30AM	7	14	0	0	21	0	0	4	4	0	8	0	0	45	6 (0	51	0	18	46	0	0	64	0	14
7:45AM	2	10	1	0	13	0	1	5	11	0	17	0	0	38	3 (0	41	0	17	48	3	0	68	0	139
Hourly Total	15	54	2	0	71	0	2	15	25	0	42	0	0	131	14 (0	145	0	67	146	5	0	218	0	470
8:00AM	6	7	1	0	14	0	2	5	5	0	12	0	0	25	5 (0	30	0	17	31	5	0	53	0	109
8:15AM	4	7	0	0	11	0	2	6	7	0	15	0	0	34	2 (0	36	0	15	22	4	0	41	0	103
8:30AM	6	8	3	0	17	0	9	2	4	0	15	0	0	30	1 (0	31	0	5	32	4	0	41	0	10
8:45AM	1	14	1	0	16	0	0	6		0	7	0	0	32		0	34	0	9	35	4	0	48	0	10
Hourly Total	17	36	5	0	58	0	13	19		0	49	0	0	121	10		131	0	46	120	17	0	183	0	42
9:00AM	3	3	0	0	6	0	3	6		0	13	0	0	24		0	27	0	6	20	1	0	27	0	7:
9:15AM	2	5	2		9	0	1	2		0	7	0	1	19	3 (23	0	6	33	2		41	0	8
9:30AM	3	7	0	0	10	0	2	7		0	12	0	0	25	1 (26	0	5	27	0	0	32	0	8
9:45AM	7	5	0	0	12	0	1	7		0	23	0	1	24		0	29	0	6	22	3	0	31	0	9:
Hourly Total	15	20	2		37	0	7	22		0	55	0	2	92	11 (105	0	23	102	6	0	131	0	328
10:00AM	1	1	0	0	2	0	1	2		0	12	0	1	22		0	25	0	3	15	1		19	0	52
10:15AM	2	6	0	0	8	0	4	2		0	10	0	0	34		0	35	0	7	27	2		36	0	89
10:30AM	1	2	0	0	3	0	1	5		0	18	0	1	28		0	31	0	6	22	9	0	37	0	89
10:35AM	2	4	2		8	0	1	4		0	14	0	1	21		0	24	0	8	35	2	0	45	0	9
	6					0	7											-		99				\rightarrow	32
Hourly Total		13	2	0	21			13		0	54	0	3	105			115	0	24		14	0	137	0	
11:00AM	4	7	0	0	11	0	1	2		0	9	0	1	32		0	35	0	7	18	5	0	30	0	8
11:15AM	2	5	1		8	0	1	5		0	14	0	1	30		0	33	0	4	26	1		31	0	80
11:30AM	0	3	2	0	5	0	1	7		0	17	0	1	31		0	37	0	6	26		0	33	0	92
11:45AM	4	1	1		6	0	4	2		0	15	0	0	18	1 (19	0	6	26	4		36	0	70
Hourly Total	10	16	4		30	0	7	16		0	55	0	3	111	10 (124	0	23	96	11		130	0	339
12:00PM	4	4	2		10	0	0	4		0	13	0	1	26		0	28	0	9	29	5	0	43	0	94
12:15PM	2	2	1		5	0	2	3		0	18	0	0	25		0	29	0	6	27	3	0	36	0	8
12:30PM	3	7	0		10	0	2	6		0	18	0	1	20	1 (22	0	12	33	4	0	49	0	99
12:45PM	2	3	2		7	0	1	10		0	15	0	0	37		0	42	0	7	42	3	0	52	0	110
Hourly Total	11	16	5	0	32	0	5	23		0	64	0	2	108	11 (121	0	34	131	15	0	180	0	39
1:00PM	9	4	1	0	14	0	1	3		0	12	0	0	25	3 (28	0	7	22	3	0	32	0	80
1:15PM	8	8	1		17	0	2	5		0	13	0	0	35	1 (36	0	11	22	0		33	0	99
1:30PM	2	10	1	0	13	0	0	4		0	15	0	1	26	2 (0	29	0	6	21	5	0	32	0	8:
1:45PM	3	6	0		9	0	2	10		0	15	0	0	30		0	31	0	4	37		0	45	0	100
Hourly Total	22	28	3	0	53	0	5	22	28	0	55	0	1	116	7 (0	124	0	28	102	12	0	142	0	374
2:00PM	2	10		0	12	0	2	5	10	0	17	0	1	33	3 (37	0	9	33	1	0	43	0	109
2:15PM	0	6	0	0	6	0	4	6	11	0	21	0	0	30	5 (0	35	0	8	31	1	0	40	0	102
2:30PM	5	5	0	0	10	0	0	13	9	0	22	0	2	32	0 (0	34	0	12	32	5	0	49	0	11!
2:45PM	6	9	2	0	17	0	1	12	12	0	25	0	4	50	1 (0	55	0	6	43	7	0	56	0	153
Hourly Total	13	30	2	0	45	0	7	36	42	0	85	0	7	145	9 (0	161	0	35	139	14	0	188	0	479
3:00PM	2	5	3	0	10	0	2	13	8	0	23	0	0	38	5 (0	43	0	6	27	3	0	36	0	112
3:15PM	5	9	0	0	14	0	2	10	16	0	28	0	2	37	8 (0	47	0	11	45	2	0	58	0	14
3:30PM	5	12	3	0	20	0	1	18	13	0	32	0	1	44	1 (0	46	0	6	49	4	0	59	0	15
3:45PM	4	12	0	0	16	0	2	16	13	0	31	0	1	39	6 (0	46	0	15	33	6	0	54	0	14
Hourly Total	16	38	6	0	60	0	7	57	50	0	114	0	4	158	20 (0	182	0	38	154	15	0	207	0	56
4:00PM	2	3	0	0	5	0	1	16	25	0	42	0	0	46	5 (0	51	0	8	51	3	0	62	0	16
4:15PM	5	12		0	18	0	3	21	12	0	36	0	1	47	4 (52	0	10	49		0	66	0	17
4:30PM	5	7		0	12	0	3	15	18		36	0	1	48	5 (54	0	14	52		0	74	0	17
4:45PM	1	6		0	7	0	4	16	22		42	0	1	60	5 (66	0	8	46		0	62	0	17
Hourly Total	13	28		0	42	0	11	68	77		156	0	3	201	19 (223	0	40	198	26		264	0	68
5:00PM	2	10		0	13	0	2	27		0	47	0	2	54	5 (61	0	7	47	10		64	0	18
	_		-			0			-5	_	.,	0		J 1	٠, ٠			J	· '	• • •		Ü		J	1 10

Leg	SR-582	2					SR-582						SR-64						SR-64						
Direction	Eastbou	und					Westbo	und					Northbo	ound					Southbo	ound					
Time	L	T	R	U	App F	ed*	L	T	R	U	App 1	Ped*	L	T	R	U	App P	ed*	L	T	R	U	App P	ed*	Int
5:30PM	4	4	2	0	10	0	4	15	23	0	42	0	1	53	4	0	58	0	8	47	6	0	61	0	171
5:45PM	8	9	2	0	19	0	5	7	21	0	33	0	0	39	2	0	41	0	8	45	5	0	58	0	151
Hourly Total	17	38	8	0	63	0	14	60	86	0	160	0	4	215	15	0	234	0	36	189	25	0	250	0	707
Total	169	367	41	0	577	0	89	371	475	0	935	0	29	1570	135	0	1734	0	449	1547	169	0	2165	0	5411
% Approach	29.3%	63.6%	7.1%	0%	-	-	9.5%	39.7%	50.8%	0%	-	-	1.7%	90.5%	7.8% ()%	-	-	20.7%	71.5%	7.8%	0%	-	-	-
% Total	3.1%	6.8%	0.8%	0% 1	0.7%	-	1.6%	6.9%	8.8%	0%	17.3%	-	0.5%	29.0%	2.5% ()% 3	32.0%	-	8.3%	28.6%	3.1%	0% 4	10.0%	-	-
Lights	164	349	39	0	552	-	78	354	435	0	867	-	28	1537	122	0	1687	-	419	1512	163	0	2094	-	5200
% Lights	97.0%	95.1%	95.1%	0% 9	95.7%	-	87.6%	95.4%	91.6%	0% 9	92.7%	-	96.6%	97.9%	90.4% ()% 9	97.3%	-	93.3%	97.7% !	96.4%	0% 9	6.7%	-	96.1%
Articulated Trucks	1	3	0	0	4	-	8	5	16	0	29	-	0	5	6	0	11	-	7	8	1	0	16	-	60
% Articulated Trucks	0.6%	0.8%	0%	0%	0.7%	-	9.0%	1.3%	3.4%	0%	3.1%	-	0%	0.3%	4.4% ()%	0.6%	-	1.6%	0.5%	0.6%	0%	0.7%	-	1.1%
Buses and Single-Unit Trucks	4	15	2	0	21	_	3	12	23	0	38	_	1	26	7	0	34	-	23	26	5	0	54	_	147
% Buses and Single-Unit																									
Trucks	2.4%	4.1%	4.9%	0%	3.6%	-	3.4%	3.2%	4.8%	0%	4.1%	-	3.4%	1.7%	5.2% (0%	2.0%	-	5.1%	1.7%	3.0%	0%	2.5%	-	2.7%
Bicycles on Road	0	0	0	0	0	-	0	0	1	0	1	-	0	2	0	0	2	-	0	1	0	0	1	-	4
% Bicycles on Road	0%	0%	0%	0%	0%	-	0%	0%	0.2%	0%	0.1%	-	0%	0.1%	0% ()%	0.1%	-	0%	0.1%	0%	0%	0%	-	0.1%
Pedestrians	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Tue Jun 28, 2022

Full Length (6 AM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements

ID: 969775, Location: 41.459279, -83.703318

SR-582 & SR-64 - TMC

Tue Jun 28, 2022

AM Peak (7:15 AM - 8:15 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements

% Bicycles on Crosswalk

ID: 969775, Location: 41.459279, -83.703318

SR-582 SR-582 SR-64 SR-64 Direction Eastbound Westbound Northbound Southbound **App** Ped∗ Int App Ped' App Ped* **App** Ped* Time L Τ U L Т R U L Т R U T R U R L 2022-06-28 7:15AM 20 0 22 0 3 3 0 0 0 22 4 0 19 28 2 0 49 0 103 1 1 0 6 26 0 7:30AM 7 0 0 0 14 0 0 21 0 4 4 0 8 0 45 6 0 51 0 18 46 0 0 64 144 7:45AM 2 10 1 0 13 0 1 5 11 0 17 0 0 38 3 0 41 0 17 48 3 0 68 0 139 8:00AM 7 0 5 0 25 0 0 31 0 109 6 1 0 14 2 5 0 12 0 5 30 17 5 0 53 Total 16 51 3 0 70 0 3 17 23 0 43 0 0 130 18 0 148 0 71 153 10 0 234 0 495 **% Approach** 22.9% 72.9% 4.3% 0% 7.0% 39.5% 53.5% 0% 0% 87.8% 12.2% 0% - 30.3% 65.4% 4.3% 0% 3.4% 3.6% 0% 29.9% 14.3% 30.9% 2.0% 0% **47.3%** % Total 3.2% 10.3% 0.6% 0% 14.1% 0.6% 4.6% 0% 8.7% 0% 26.3% 0.375 0.850 0.523 PHF 0.934 0.797 0.500 - 0.860 $0.571\ 0.638\ 0.750$ - 0.795 0.632 - 0.722 0.750 0.725 0.859 Lights 15 48 17 19 39 129 15 144 151 10 230 478 % Lights 93.8% 94.1% 66.7% 0% **92.9%** 100% 100% 82.6% 0% **90.7%** 0% 99.2% 83.3% 0% **97.3%** 97.2% 98.7% 100% 0% **98.3%** 96.6% Articulated Trucks 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 5.6% 0% **0.7%** % Articulated Trucks 0% 0% 0% 0% 0% 0% 13.0% 0% **7.0%** 0% 0% 0% 0% 0% 0% 0% 0.8% 0% **Buses and Single-Unit** 3 1 0 5 0 1 0 1 0 2 0 3 2 0 0 13 % Buses and Single-Unit 2.8% 2.6% 5.9% 33.3% 0% **7.1%** 0% 0% 0.8% 11.1% 0% 6.3% 0% 4.3% 0% 2.3% 2.0% 1.3% 0% 0% 1.7% Trucks Bicycles on Road 0 % Bicycles on Road 0% Pedestrians 0 0 0 % Pedestrians Bicycles on Crosswalk 0 0 0

0 _

-

_

--

A5 of 10 4 of 9

Provided by: Carpenter Marty (CM)

-

--

-

Transportation Inc.

6612 Singletree Drive,

Columbus, OH, 43229, US

Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Tue Jun 28, 2022

AM Peak (7:15 AM - 8:15 AM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements

ID: 969775, Location: 41.459279, -83.703318

SR-582 & SR-64 - TMC

Tue Jun 28, 2022

Midday Peak (12:30 PM - 1:30 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements

ID: 969775, Location: 41.459279, -83.703318

Provided by: Carpenter Marty (CM) Transportation Inc. 6612 Singletree Drive, Columbus, OH, 43229, US

Leg	SR-582	2				SR-582	2					SR-64						SR-64						
Direction	Eastbo	ınd				Westbo	ound					Northb	ound					Southbo	ound					l
Time	L	T	R	U	App Ped*	L	T	R	U	App	Ped*	L	T	R	U	App P	ed*	L	T	R	U	App P	ed*	Int
2022-06-28 12:30PM	3	7	0	0	10 0	2	6	10	0	18	0	1	20	1	0	22	0	12	33	4	0	49	0	9
12:45PM	2	3	2	0	7 0	1	10	4	0	15	0	0	37	5	0	42	0	7	42	3	0	52	0	11
1:00PM	9	4	1	0	14 0	1	3	8	0	12	0	0	25	3	0	28	0	7	22	3	0	32	0	8
1:15PM	8	8	1	0	17 0	2	5	6	0	13	0	0	35	1	0	36	0	11	22	0	0	33	0	9
Total	22	22	4	0	48 0	6	24	28	0	58	0	1	117	10	0	128	0	37	119	10	0	166	0	40
% Approach	45.8%	45.8%	8.3%	0%		10.3%	41.4%	48.3%	0%	-	-	0.8%	91.4%	7.8%	0%	-	-	22.3%	71.7%	6.0%	0%	-	-	
% Total	5.5%	5.5%	1.0%	0% 1	2.0%	1.5%	6.0%	7.0%	0% 1	14.5%	-	0.3%	29.3%	2.5%	0% 3	32.0%	-	9.3%	29.8%	2.5%	0% 4	1.5%	-	
PHF	0.611	0.688	0.500	- (0.706	0.750	0.600	0.700	-	0.806	-	0.250	0.791	0.500	-	0.762	-	0.771	0.708	0.625	- (0.798	-	0.86
Lights	22	21	4	0	47 -	- 5	22	27	0	54	-	1	114	8	0	123	-	36	113	8	0	157	-	38
% Lights	100%	95.5%	100%	0% 9	7.9%	83.3%	91.7%	96.4%	0% 9	93.1%	-	100%	97.4%	80.0%	0% 9	96.1%	-	97.3% 9	95.0% 8	30.0%	0% 9	4.6%	-	95.3%
Articulated Trucks	0	0	0	0	0 -	1	1	0	0	2	-	0	1	1	0	2	-	0	2	1	0	3	-	
% Articulated Trucks	0%	0%	0%	0%	0% -	16.7%	4.2%	0%	0%	3.4%	-	0%	0.9%	10.0%	0%	1.6%	-	0%	1.7%	10.0%	0%	1.8%	-	1.89
Buses and Single-Unit Trucks	1	1	0	0	1 -	. 0	1	1	0	2	-	0	2	1	0	3	-	1	4	1	0	6	-	1
% Buses and Single-Unit Trucks	1	4.5%	0%	0%	2.1%	0%	4.2%	3.6%	0%	3.4%	-	0%	1.7%	10.0%	0%	2.3%	_	2.7%	3.4%	10.0%	0%	3.6%	-	3.09
Bicycles on Road	0	0	0	0	0 -	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	
% Bicycles on Road	0%	0%	0%	0%	0% -	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	09
Pedestrians	-	-	-	-	- 0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bicycles on Crosswalk	-	-	-	-	- 0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-			-	_	-	-	-	-	-	_	_	-	-	-	-	-	_	-	-	

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

A7 of 10 6 of 9

Tue Jun 28, 2022

Midday Peak (12:30 PM - 1:30 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements

ID: 969775, Location: 41.459279, -83.703318

Provided by: Carpenter Marty (CM) Transportation Inc. 6612 Singletree Drive, Columbus, OH, 43229, US

SR-582 & SR-64 - TMC

Tue Jun 28, 2022

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour

 $All\ Classes\ (Lights,\ Articulated\ Trucks,\ Buses\ and\ Single-Unit\ Trucks,\ Pedestrians,\ Bicycles\ on$

Road, Bicycles on Crosswalk)

All Movements

ID: 969775, Location: 41.459279, -83.703318

Provided by: Carpenter Marty (CM) Transportation Inc. 6612 Singletree Drive, Columbus, OH, 43229, US

Leg	SR-582	!				SR-58	2					SR-64						SR-64						
Direction	Eastbou	ınd				Westb	ound					Northb	ound					Southb	ound					
Time	L	T	R	U	App Ped	L	T	R	U	App	Ped*	L	T	R	U	App I	Ped*	L	T	R	U	App P	ed*	Int
2022-06-28 4:30PM	5	7	0	0	12 () 3	15	18	0	36	0	1	48	5	0	54	0	14	52	8	0	74	0	176
4:45PM	1	6	0	0	7 () 4	. 16	22	0	42	0	1	60	5	0	66	0	8	46	8	0	62	0	177
5:00PM	2	10	1	0	13 () 2	27	18	0	47	0	2	54	5	0	61	0	7	47	10	0	64	0	185
5:15PM	3	15	3	0	21 () 3	11	24	0	38	0	1	69	4	0	74	0	13	50	4	0	67	0	200
Total	11	38	4	0	53	12	69	82	0	163	0	5	231	19	0	255	0	42	195	30	0	267	0	738
% Approach	20.8%	71.7%	7.5% ()%	-	7.4%	42.3%	50.3%	0%	-	-	2.0%	90.6%	7.5% ()%	-	-	15.7%	73.0%	11.2%	0%	-	-	-
% Total	1.5%	5.1%	0.5% ()%	7.2%	1.6%	9.3%	11.1%	0% 2	22.1%	-	0.7%	31.3%	2.6% ()% 3	34.6%	-	5.7%	26.4%	4.1%	0% 3	36.2%	-	
PHF	0.550	0.633	0.333	-	0.631	- 0.750	0.639	0.844	-	0.862	-	0.625	0.837	0.950	-	0.861	-	0.750	0.938	0.750	-	0.902	-	0.921
Lights	11	35	4	0	50	- 11	67	80	0	158	-	5	231	18	0	254	-	40	193	30	0	263	-	725
% Lights	100%	92.1%	100% ()% 9	94.3%	91.7%	97.1%	97.6%	0% 9	96.9%	-	100%	100%	94.7% ()% 9	99.6%	-	95.2%	99.0%	100%	0% 9	98.5%	-	98.2%
Articulated Trucks	0	0	0	0	0	- 1	. 0	0	0	1	-	0	0	0	0	0	-	1	0	0	0	1	-	2
% Articulated Trucks	0%	0%	0% ()%	0%	8.3%	0%	0%	0%	0.6%	-	0%	0%	0% ()%	0%	-	2.4%	0%	0%	0%	0.4%	_	0.3%
Buses and Single-Unit Trucks	0	3	0	0	3	- (2	1	0	3	-	0	0	1	0	1	_	1	2	0	0	3	_	10
% Buses and Single-Unit																							_	
Trucks	0%	7.9%	0% ()%	5.7%	- 0%	2.9%	1.2%	0%	1.8%	-	0%	0%	5.3% ()%	0.4%	-	2.4%	1.0%	0%	0%	1.1%	-	1.4%
Bicycles on Road	0	0	0	0	0	- (0	1	0	1	-	0	0	0	0	0	-	0	0	0	0	0	-	1
% Bicycles on Road	0%	0%	0% ()%	0%	- 0%	0%	1.2%	0%	0.6%	-	0%	0%	0% ()%	0%	-	0%	0%	0%	0%	0%	-	0.1%
Pedestrians	-	-	-	-	- (-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bicycles on Crosswalk	-	-	-	-	- () .	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	
% Bicycles on Crosswalk	-	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

A9 of 10 8 of 9

Tue Jun 28, 2022

PM Peak (4:30 PM - 5:30 PM) - Overall Peak Hour

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks, Pedestrians, Bicycles on Road, Bicycles on Crosswalk)

All Movements

ID: 969775, Location: 41.459279, -83.703318

Provided by: Carpenter Marty (CM)
Transportation Inc.
6612 Singletree Drive,
Columbus, OH, 43229, US

Appendix B
COVID Adjustment Factors,
TMACOG Growth Rates,
& Volume Calculations

Year	Period	Scenario	Plate

۸

Ν

Conclusion: Since the AM Peak is over the 15% acceptable range, a COVID-19 adjustment factor of 1.32 will be applied to the AM Peak counts. The PM Peak is within the 15% acceptable range, and the 2022 counts are higher than the 2018 counts, so no COVID-19 adjustment factor will be applied to the PM Peak counts.

Gina Balsamo

From: Lisa Householder < householder@tmacog.org>

Sent: Friday, July 29, 2022 3:31 PM

To: Gina Balsamo

Cc: Christopher.Waterfield@dot.ohio.gov; Kimberly.Coutcher@dot.ohio.gov;

Zachary.Porter@dot.ohio.gov; Chelsea Cousins; Leiana Yates; Marc VonDeylen; David Gedeon

Subject: RE: D2 Safety Studies; Growth Rates

Follow Up Flag: Flag for follow up

Flag Status: Flagged

Hi Gina,

I wanted to respond with the one location I was able to look at this week – SR 582 at SR 64 in Haskins. I'll continue to review the locations in Toledo next week and get back to you with those additional growth rates.

So, I'm weighing this a little more heavily on the traffic count data at hand, and not as much on forecast results from the travel demand model. That model is currently updated through 2020 for highway network projects (coinciding with our 2045 long range plan update years). However, the demographic and employment data that feeds into the model is now several years old. I think the employment numbers we have dates back to 2015 and I have not incorporated any 2020 Census numbers to update the population and other demographic data inputs. I'm still waiting on all of that data to become available so I can update everything. The current model results show an overall decline in this area, but I don't want to rely on that too much since there is much information that needs to be updated.

In addition to the count data CMT gathered in 2022, I also reviewed the counts obtained by ODOT since 2015 (with physical counts being obtained in 2015, 2018, and 2021). The northern and western parts of the intersection have seen an increase in AADT since 2018, the eastern part has seen a bit of a decline, while the southern part has remained fairly consistent with very little gains in traffic. Maybe you are already aware, but there have been (and currently are) several road projects within the vicinity that will have impacted traffic over the years. We'll need to confirm the dates with ODOT, but some that come to mind are resurfacing on SR 582 within the last couple of years, as well as the Waterville bridge replacement that was under construction for a couple of years and I think opened in 2020 (that would have impacted N/S traffic through Haskins for those wanting to cross the Maumee River in Waterville).

Therefore, I suggest using a conservative annual growth rate around 0.05 to 0.08 percent overall for the intersection. At the current time I am not aware of any large housing developments or major employment opportunities in the immediate vicinity that will produce more traffic through this intersection. But I still want to be mindful that one of the few river crossings in the region is just a couple of miles to the north of the Village, so I don't envision any significant declines in traffic over the next 20-25 years either. The large question looming, however, is how will traffic patterns continue to evolve as we come out of the pandemic years.

Thank you,

Lisa Householder

Transportation Planner/Database Analyst Toledo Metropolitan Area Council of Governments 300 Martin Luther King, Jr. Drive Suite 300 Toledo, OH 43604

www.tmacog.org

TMACOG staff are working a combination of in-office and remotely. Email remains the best way to contact staff. Please visit www.tmacog.org for email addresses, meeting calendar, and log-in information.

From: Gina Balsamo <gbalsamo@cmtran.com>

Sent: Tuesday, July 26, 2022 10:20 AM

To: Lisa Householder <householder@tmacog.org>; Marc VonDeylen <vondeylen@tmacog.org>

Cc: Christopher.Waterfield@dot.ohio.gov; Kimberly.Coutcher@dot.ohio.gov; Zachary.Porter@dot.ohio.gov; Chelsea

Cousins <ccousins@cmtran.com>; Leiana Yates <lyates@cmtran.com>

Subject: D2 Safety Studies; Growth Rates

Lisa/Marc,

We would like to request growth rates for the following locations:

- WOO-582-2.61 [SR-582 (Middleton Pike) & SR-64 (Haskins Road)]
- LUC-24-26.67 [US-24 (Detroit Avenue) & Phillips Avenue]
- LUC-2-15.44 [SR-2 (Airport Highway) intersections with South Avenue and S. Detroit Avenue]

For your reference, attached is the count data we have collected for each study location.

We plan to project the count data to a 2044 Design Year for each location.

Please let me know if you need anything else from us.

Thanks!

Gina Balsamo, PE, PTOE **Project Manager** CARPENTER MARTY 614.656.2429 | www.cmtran.com

Λ Ν SR-64 0.08% 0.08% 0.08% 0.08% 0.08% 0.08% SR-582 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%

Λ Ν SR-64 10 153 71 SR-582 0 130 18 51 =

WOO-582-2.61 Safety Study Traffic Volume Calculations

^ N

Adjustment Factor 1.32

Λ Ν SR-64 13 206 96 SR-582 68 =

Λ Ν SR-64 30 195 13 SR-582 38

Appendix C Existing Conditions Capacity Analysis

	HCS Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	LRY	Intersection	SR-64 & SR-582										
Agency/Co.	CMTran	Jurisdiction	Haskins										
Date Performed		East/West Street	SR-582										
Analysis Year	2022	North/South Street	SR-64										
Time Analyzed	AM Peak - Ex Conditions	Peak Hour Factor	0.86										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	WOO-582-2.61 Safety Study												

Wajor Sueet, North-South																
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		21	67	4		4	22	30		0	172	24		94	202	13
Percent Heavy Vehicles (%)		7	7	7		9	9	9		3				2		
Proportion Time Blocked																
Percent Grade (%)			0				0									
Right Turn Channelized																
Median Type Storage Undivided																
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.17	6.57	6.27		7.19	6.59	6.29		4.13				4.12		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.56	4.06	3.36		3.58	4.08	3.38		2.23				2.22		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			107				65			0				109		
Capacity, c (veh/h)			327				464			1310				1340		
v/c Ratio			0.33				0.14			0.00				0.08		
95% Queue Length, Q ₉₅ (veh)			1.4				0.5			0.0				0.3		
Control Delay (s/veh)			21.3				14.0			7.7	0.0	0.0		7.9	0.8	0.8
Level of Service (LOS)			С				В			А	А	А		А	А	Α
Approach Delay (s/veh)	21.3					14	1.0		0.0				2.9			
Approach LOS	C B A							А								

	HCS Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	LRY	Intersection	SR-64 & SR-582										
Agency/Co.	CMTran	Jurisdiction	Haskins										
Date Performed		East/West Street	SR-582										
Analysis Year	2022	North/South Street	SR-64										
Time Analyzed	PM Peak - Ex Conditions	Peak Hour Factor	0.92										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	WOO-582-2.61 Safety Study												

	wajor sueet. North-South															
Vehicle Volumes and Adju	ustme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		11	38	4		12	69	82		5	231	19		13	195	30
Percent Heavy Vehicles (%)		6	6	6		2	2	2		0				2		
Proportion Time Blocked																
Percent Grade (%)			0			(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.16	6.56	6.26		7.12	6.52	6.22		4.10				4.12		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.55	4.05	3.35		3.52	4.02	3.32		2.20				2.22		
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)			58				177			5				14		
Capacity, c (veh/h)			417				557			1333				1292		
v/c Ratio			0.14				0.32			0.00				0.01		
95% Queue Length, Q ₉₅ (veh)			0.5				1.4			0.0				0.0		
Control Delay (s/veh)			15.0				14.5			7.7	0.0	0.0		7.8	0.1	0.1
Level of Service (LOS)			С				В			А	А	А		А	А	Α
Approach Delay (s/veh)	15.0					14	4.5		0.2				0.5			
Approach LOS	С					В		A			,	Α				

HCS Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	LRY	Intersection	SR-64 & SR-582									
Agency/Co.	CMTran	Jurisdiction	Haskins									
Date Performed		East/West Street	SR-582									
Analysis Year	2044	North/South Street	SR-64									
Time Analyzed	AM Peak - Ex Conditions	Peak Hour Factor	0.86									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	WOO-582-2.61 Safety Study											

Major Street: North-South																
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		21	68	4		4	22	31		0	175	24		96	206	13
Percent Heavy Vehicles (%)		7	7	7		9	9	9		3				2		
Proportion Time Blocked																
Percent Grade (%) 0 0						0										
Right Turn Channelized																
Median Type Storage Undivided																
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.17	6.57	6.27		7.19	6.59	6.29		4.13				4.12		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.56	4.06	3.36		3.58	4.08	3.38		2.23				2.22		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т		108				66			0				112		
Capacity, c (veh/h)			320				460			1305				1336		
v/c Ratio			0.34				0.14			0.00				0.08		
95% Queue Length, Q ₉₅ (veh)			1.5				0.5			0.0				0.3		
Control Delay (s/veh)			21.9				14.1			7.8	0.0	0.0		7.9	0.8	0.8
Level of Service (LOS)	Ì	Ì	С		Ì		В			А	А	А		А	А	А
Approach Delay (s/veh)		2	1.9		14.1			0.0			3.0					
Approach LOS			С			ļ	В			,	Д			,	Ą	

	HCS Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	LRY	Intersection	SR-64 & SR-582										
Agency/Co.	CMTran	Jurisdiction	Haskins										
Date Performed		East/West Street	SR-582										
Analysis Year	2044	North/South Street	SR-64										
Time Analyzed	PM Peak - Ex Conditions	Peak Hour Factor	0.92										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description WOO-582-2.61 Safety Study													

Wajor Sueet, North-South																
Vehicle Volumes and Adj	ustme	nts														
Approach	Π	Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		11	39	4		12	70	83		5	235	19		13	198	31
Percent Heavy Vehicles (%)		6	6	6		2	2	2		0				2		
Proportion Time Blocked																
Percent Grade (%)			0				0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.16	6.56	6.26		7.12	6.52	6.22		4.10				4.12		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.55	4.05	3.35		3.52	4.02	3.32		2.20				2.22		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			59				179			5				14		
Capacity, c (veh/h)			412				551			1329				1287		
v/c Ratio			0.14				0.33			0.00				0.01		
95% Queue Length, Q ₉₅ (veh)			0.5				1.4			0.0				0.0		
Control Delay (s/veh)			15.2				14.6			7.7	0.0	0.0		7.8	0.1	0.1
Level of Service (LOS)			С				В			А	А	А		А	А	Α
Approach Delay (s/veh)	15.2					14	4.6		0.2				0.5			
Approach LOS	C B A							А								

Appendix DSight Distance Exhibits

Appendix E Turn Lane Warrant Analysis

2-Lane Highway Left Turn Lane Warrant

(> 40 mph or 70 kph Posted Speed)

	Design Speed	55	mph	7
	Traffic Control	Unsignalized		
	Cycle Length	Unsignalized		
	Cycles Per Hour	60	Assume 60	7
AM Peak	Turn Lane Volume	0	VPH	7
	Advancing Traffic	199	VPH	7
٦	Opposing Volume	315	VPH	
=	Left Turn Percentage	0%		
≥	Location Type	Through Road		
	Condition	В		
	Vehicles/Cycle	1		
	Turn Lane Length	285		* Turn Lane Length
	Offset Width	12		includes 50 ft diverging
	Approach Taper	660		taper
	Design Speed	55	mph	
	Traffic Control	Unsignalized		
	Cycle Length	Unsignalized		
	Cycles Per Hour	60	Assume 60	
	Turn Lane Volume	5	VPH	<u> </u>
PM Peak	Advancing Traffic	259	VPH	
	Opposing Volume	242	VPH	
	Left Turn Percentage	2%		
>	Location Type	Through Road		
	Condition	В		
	Vehicles/Cycle	1		
	Turn Lane Length	285		* Turn Lane Length
	Offset Width	12		includes 50 ft diverging
	Approach Taper	660		taper
ls Left	Turn Warrant Met	No	No Left Turn Lane Required	

2-Lane Highway Right Turn Lane Warrant

(> 40 mph or 70 kph Posted Speed)

	Design Speed	55	mph	1
~	Traffic Control	Unsignalized		
	Cycle Length	Unsignalized		
AM Pea	Cycles Per Hour	60	Assume 60]
a	Turn Lane Volume	24	VPH]
_	Advancing Traffic	199	VPH	
-	Right Turn Percentage	12%		
	Location Type	Through Road		
⋖	Condition	B or C		
	Vehicles/Cycle	1		
	Turn Lane Length	See Column to Right	285	* Turn Lane Length
	Design Speed	55	mph	includes 50 ft diverging
	Traffic Control	Unsignalized		taper
	Cycle Length	Unsignalized		
O	Cycles Per Hour	60	Assume 60	
\Box	Turn Lane Volume	19	VPH	
	Advancing Traffic	259	VPH	
PM Pea	Right Turn Percentage	7%		
	Location Type	Through Road		
_	Condition	В		
	Vehicles/Cycle	1		
	Turn Lane Length	285		* Turn Lane Length
Is Right Turn Warrant Met		No	No Right Turn Lane	includes 50 ft diverging
			Required	taper

2-Lane Highway Left Turn Lane Warrant

(> 40 mph or 70 kph Posted Speed)

	Design Speed	55	mph	1
AM Peak	Traffic Control	Unsignalized		İ
	Cycle Length	Unsignalized		
	Cycles Per Hour	60	Assume 60	1
	Turn Lane Volume	96	VPH	1
	Advancing Traffic	315	VPH	1
۵	Opposing Volume	199	VPH]
	Left Turn Percentage	30%		
≥	Location Type	Through Road		
	Condition	B or C		
	Vehicles/Cycle	2		
	Turn Lane Length	See Column to Right	285	* Turn Lane Length
	Offset Width	12		includes 50 ft diverging
	Approach Taper	660		taper
	Design Speed	55	mph	
	Traffic Control	Unsignalized		
	Cycle Length	Unsignalized		
	Cycles Per Hour	60	Assume 60]
	Turn Lane Volume	13	VPH]
	Advancing Traffic	242	VPH	
PM Peak	Opposing Volume	259	VPH	
	Left Turn Percentage	5%		
\geq	Location Type	Through Road		
	Condition	В		
	Vehicles/Cycle	1		
	Turn Lane Length	285		* Turn Lane Length
	Offset Width	12		includes 50 ft diverging
	Approach Taper	660		taper
Is Left Turn Warrant Met		Yes	See Above	

2-Lane Highway Left Turn Lane Warrant

(> 40 mph or 70 kph Posted Speed)

	Design Speed	55	mph	1
AM Peak	Traffic Control	Unsignalized		İ
	Cycle Length	Unsignalized		
	Cycles Per Hour	60	Assume 60	1
	Turn Lane Volume	94	VPH	1
	Advancing Traffic	309	VPH	1
ا م	Opposing Volume	196	VPH]
	Left Turn Percentage	30%		
≥	Location Type	Through Road		
	Condition	B or C		
	Vehicles/Cycle	2		
	Turn Lane Length	See Column to Right	285	* Turn Lane Length
	Offset Width	12		includes 50 ft diverging
	Approach Taper	660		taper
	Design Speed	55	mph	
	Traffic Control	Unsignalized		
	Cycle Length	Unsignalized		
	Cycles Per Hour	60	Assume 60]
	Turn Lane Volume	13	VPH]
	Advancing Traffic	238	VPH]
	Opposing Volume	255	VPH	
PM Peak	Left Turn Percentage	5%		
>	Location Type	Through Road		
	Condition	В		
_	Vehicles/Cycle	1		
	Turn Lane Length	285		* Turn Lane Length
	Offset Width	12		includes 50 ft diverging
	Approach Taper	660		taper
Is Left Turn Warrant Met		Yes	See Above	

2-Lane Highway Right Turn Lane Warrant

(> 40 mph or 70 kph Posted Speed)

	Design Speed	55	mph	1
×	Traffic Control	Unsignalized		
	Cycle Length	Unsignalized		
В	Cycles Per Hour	60	Assume 60	1
AM Peak	Turn Lane Volume	13	VPH	1
Д	Advancing Traffic	315	VPH	1
_	Right Turn Percentage	4%		
	Location Type	Through Road		
\triangleleft	Condition	В		
	Vehicles/Cycle	1		
	Turn Lane Length	285		* Turn Lane Length
	Design Speed	55	mph	includes 50 ft diverging
	Traffic Control	Unsignalized		taper
_	Cycle Length	Unsignalized		
ס	Cycles Per Hour	60	Assume 60	
e,	Turn Lane Volume	31	VPH	
PM Peak	Advancing Traffic	242	VPH	
_	Right Turn Percentage	13%		
	Location Type	Through Road		
<u> </u>	Condition	B or C		
	Vehicles/Cycle	1		
	Turn Lane Length	See Column to Right	285	* Turn Lane Length
Is Righ	t Turn Warrant Met	No	No Right Turn Lane	includes 50 ft diverging
			Required	taper

Appendix FAll-Way Stop-Control Analysis

MULTI-WAY STOP MINIMUM VOLUMES

SR-64 & SR-582

WARRANT #1

Major street approach volumes average at least 300 vehicles/hour for any 8 hours of an aveage day

То	Top 8 Hours								
Start Time	NB/SB Volumes								
7:00 AM	363								
8:00 AM	314								
12:00 PM	301								
1:00 PM	266								
2:00 PM	349								
3:00 PM	389								
4:00 PM	487								
5:00 PM	484								
Total	2953								
Average	370								

Average > 300 vehicles/hour? (80%) Average > 240 vehicles/hour? YES YES

WARRANT #2

Combined (vehicle, pedestrian, bike) minor street approach volumes averages at least 200 units/hour for the same 8 hours, with an average delay to minor street vehicular traffic of at least 30 seconds per vehicle during the highest hour

	Top 8 Major Street Hours										
Start Time	EB/WB Vehicle	Ped/Bike	Total								
7:00 AM	113		113								
8:00 AM	107		107								
12:00 PM	96		96								
1:00 PM	108		108								
2:00 PM	130		130								
3:00 PM	174		174								
4:00 PM	198		198								
5:00 PM	223		223								
Total		1149									
Average		144									

Average > 200 units/hour? (80%) Average > 160 units/hour? NO NO

Average delay/vehicle for minor approach =

14.75 sec/veh

Average delay > 30 sec/veh? (80%) Average delay > 24 sec/veh?

NO NO

DOES NOT MEET MULTI-WAY STOP WARRANT

Appendix G Signal Warrant Analysis

STUDY AND ANALYSIS INFORMATION	TRAFFIC SI	GNAL		ANT ANALYSIS FINDINGS		
Municipality: Traffic Volumes Obtained By:	1	Applicable?	Warrant Satisfied?	Notes and Comments:		
Haskins CMTran County: Wood Analysis Date:	Warrant 1, Eight-Hour Vehicular Volume	Yes	No			
ODOT Engineering District: Agency/ Company Name Performing Warrant Analysis: CMTran	Warrant 2, Four-Hour Vehicular Volume	Yes	No			
Analysis Information	Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. Peak Hour 4:45 PM 5:45 PM		
Data Collection Date: 6/28/2022	For Warrants 1-3, new ODOT signals must be based off of 100% volume thresholds (TEM 402-3.2)					
Day of the Week: Tuesday	Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD.		
Is the intersection in a built-up area of an isolated community of <10,000 No	Warrant 5, School Crossing	No		N/A		
Existing Traffic Signal at intersection: No	Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)		
Total Number of Approaches at Intersection: 4	Warrant 7, Crash Experience	No		If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.		
Major Street Information	Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)		
Major Street Name and Route Number: SR-64	Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9		
Major Street Approach Direction: N-Bound S-Bound	Multi-Way Stop Warrant No May be used as an interim measure if traffic signal warrants are satisfied.			satisfied.		
Number of Thru Lanes on Each Major Street Approach: 1 LANE(S)	The satisfaction of a traffic sign	nal warran		ts shall not in itself require the installation of a traffic signal.		
Speed Limit or 85th Percentile Speed on the Major Street*: 50 MPH	If no warrants are satisfied, additi					
*Unknown assumes below 45 mph				d by ODOT for signal design, if approved by the ODOT retention of an existing signal that otherwise does not		
Minor Street Information				tance is a traffic signal in proximity to a railroad crossing		
Minor Street Name and Route Number: SR-582	that serves to reduce queuing ac			ent counts fail to satisfy a signal warrant, it may be		
1 F-Round				d year after project completion. The Modeling and		
Minor Street Approach Configuration: 1 W-Bound	Forecasting Section should prov	vide the pro	jected traffic	c volumes.		
	that does not meet traffic signal v warrants under Sections 4C.05 a fill inputs on PHB Score Sheet	varrants (se nd/or 4C.06 and submi	ee Chapter 4 but a decis t to ODOT.	C of TEM) or at a location that meets traffic signal ion is made to not install a traffic control signal. Please tance generally have not been accepted in lieu of		
Number of Thru Lanes on Each Minor Street Approach: Apply Right Turn Lane Reduction*: No		considerati	ions may all	ow an otherwise unwarranted traffic signal to be retained		
Apply Right Turn Lane Reduction*: No *Right Turn Lane Reduction Shall be used for Warrants 1, 2, & 3 for New ODOT Signals. Please refer to TEM 402-3.2 for clarification and criteria under which Right Turn Reduction is not required.	·			details. a <mark>ll New Traffic Signal</mark>		

Input & Findings Page 1

OMUTCD WARRANT 1, EIGHT-HOUR VEHICULAR VOLUME

Number of Lanes for Moving Traffic on Each Approach

Major Street: 1 Lane

Minor Street: 1 Lane

Built up Isolated Community with Less Than 10,000 Population or Above 40 MPH on Major Street? Yes

*Only applicable after an adequate trial of other alternatives (See section 4C.02.06 of the 2012 OMUTCD)

Lanes	A din	unto d											Co	mbina	tion A	\/ P *		
Major/	Volu	sted imes		Cond	ition A			Condi	tion E	3	Cor	d. A		id. B		nd. A	Con	ıd. B
Minor	Major	Minor	10	0%)%		0%	_	0%)%	_)%	_	6%		5%
1/1	-	X	Maj.		Maj.	Min. 105	Maj.		Maj .	Min. 53	Maj .	Min. 120	Maj .	Min.	Maj .	Min. 84	Maj.	Min.
2+ / 1		Λ	500 600	150 150	350 420	105	750 900	75 75	630	53	480		720	60	336	84	504	42
2+ / 2+			600	200	420	140	900	100	630	70	480	160	720	80	336	112	504	56
1 / 2+			500	200	350	140	750	100	525	70	400	160	600	80	280	112	420	56
12:00 AM	0																	
12:15 AM 12:30 AM	0	0																\vdash
12:45 AM	0	0																
1:00 AM	0	0																
1:15 AM	0	0																
1:30 AM 1:45 AM	0	0																
2:00 AM	0	0																
2:15 AM	0	0																
2:30 AM	0	0																
2:45 AM 3:00 AM	0	0																\vdash
3:15 AM	0	0																
3:30 AM	0	0																
3:45 AM	0	0																
4:00 AM 4:15 AM	0	0																
4:30 AM	0	0	_															
4:45 AM	0	0																
5:00 AM 5:15 AM	0 32	0 18								\vdash								$\vdash\vdash\vdash$
5:30 AM	88	35																
5:45 AM 6:00 AM	141 204	54 65																\square
6:00 AM 6:15 AM	236	62			-					\vdash					\vdash			$\vdash\vdash\vdash$
6:30 AM	255	67																
6:45 AM 7:00 AM	317 363	69 71			1					-					1			
7:15 AM	382	70			·													
7:30 AM 7:45 AM	384 341	59 59													1			
8:00 AM	314	58													1			
8:15 AM	285	50																
8:30 AM 8:45 AM	272 258	48 41								-								
9:00 AM	236																	
9:15 AM 9:30 AM	226 233	54 57																
9:45 AM	243																	
10:00 AM	252																	
10:15 AM 10:30 AM	273 266	51 55																\vdash
10:45 AM	268	54																
11:00 AM 11:15 AM	254 260																	
11:30 AM	261																	
11:45 AM	262	64																
12:00 PM 12:15 PM	301 290	64 63													1			
12:30 PM	294	58																
12:45 PM 1:00 PM	284 266	55 55																
1:15 PM	286	60													1			
1:30 PM	292																	
1:45 PM 2:00 PM	314 349	75 85																
2:15 PM	348	91													1	1		
2:30 PM 2:45 PM	378 400				1					\vdash	1							$\vdash\vdash\vdash$
3:00 PM	389	114																
3:15 PM 3:30 PM	423 436	133 141			1	1									1	1	1	1
3:45 PM	459	141									1	1						
4:00 PM	487	156 161														4	4	
4:15 PM 4:30 PM	499 522	161 163		1	1	1									1	1	1	1
4:45 PM	513	169									1	1						
5:00 PM 5:15 PM	484 359	160 113								\vdash					1	1		$\vdash\vdash\vdash$
5:30 PM	218	75													Ė			
5:45 PM 6:00 PM	99	33 0																Щ
6:00 PM 6:15 PM	0																	$\vdash\vdash$
6:30 PM	0	0																
6:45 PM 7:00 PM	0					<u> </u>											<u> </u>	$\vdash\vdash\vdash$
7:15 PM	0	0																
7:30 PM 7:45 PM	0																	\Box
8:00 PM	0																	Ш
8:15 PM	0	0																
8:30 PM 8:45 PM	0				-					\vdash				_	<u> </u>			$\vdash\vdash$
9:00 PM	0	0																
9:15 PM 9:30 PM	0													_				$\vdash\vdash\vdash$
9:45 PM	0	0																
HOURS MET	A T/0 =		1	1	4	2	0	0	0	0	3	2	0	0	8	4	2	2
WARRANT S	ATISFIL	= D?	N	0	N	0	N	0	N	0		N	0			N	0	

Warrant Met:	No	
Notes:		

OMUTCD WARRANT 2, FOUR-HOUR VEHICULAR VOLUME Warrant 2, Four-Hour Vehicular Volume - 1 lane & 1 lane Number of Lanes for Moving Traffic on 2+ lanes Major & 1 lane minor Total Number of Unique Hours Met on Figure 4C-1 - vp Each Approach 2+ lanes & 2+ lanes 2+ lanes minor & 1 lane major Major street: 1 Lane Total Number of Unique Hours Met on Figure 4C-2 (70% Minor Street Volume Approach Top 4 Hours Minor Street: 1 Lane Built up Isolated Community with Less Than 10,000 Population or Above 40 MPH on Major Street? Yes Raw Traffic Counts Hour Hour Interval Minor Street Major - SR-64 Minor - SR-582 Met? Approach Beginning At Approach Volumes (70% Factor) N-Bound S-Bound W-Bound E-Bound Volumes Higher 255 317 6:15 AM 6:30 AM 6:45 AM 7:00 AM 226 7:15 AM 100 200 300 400 200 500 500 500 800 100/10/20/30/30/40/50/60/50/40/305205205205205 7:30 AM 7:45 AM 8:00 AM **Major Street** 8:15 AM Total of Both Approaches - vph 8:30 AM 236 Top Hours for Figure 4C-1 Start Time | End Time | Major Street | Minor Street 8:45 AM 9:00 AM 9:15 AM 2nd Highest Hour 3:30 PM 4:30 PM 9:30 AM 3rd Highest Hour 2:30 PM 3:30 PM 9:45 AM 4th Highest Hour 7:15 AM 8:15 AM 273 10:00 AM 10:15 AM Top Hours for Figure 4C-2 Start Time | End Time | Major Street | Minor Street 10:30 AM 10:45 AM 2nd Highest Hour 3:45 PM 4:45 PM 11:00 AM 3rd Highest Hour 2:45 PM 3:45 PM 7:15 AM 8:15 AM 11:15 AM 261 4th Highest Hour 11:30 AM 11:45 AM Warrant 2 Four Hour Vehicular Volume (70% Factor) 12:00 PM (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET) 12:15 PM -1 lane & 1 lane 12:30 PM 284 55 55 2 or more lanes major & 1 lane minor 12:45 PM 2 or more lanes minor & 1 lane major 1:00 PM 2 or more and 2 or more 1:15 PM Top 4 Hours 1:30 PM 1:45 PM 2:00 PM 188 161 45 349 85 85 Street Approach -2:15 PM 2:30 PM ٩a 2:45 PM 3:00 PM 3:15 PM 190 233 423 55 Minor (3:30 PM Met 3:45 PM 4:00 PM Higher 4:15 PM 255 267 53 522 4:30 PM Иet 4:45 PM 5:00 PM 5:15 PM n 5:30 PM 19 33 ×00 5:45 PM 6:00 PM Major Street 6:15 PM Total of Both Approaches - vph 6:30 PM 6:45 PM 7:00 PM 7:15 PM n n Are the requirements for Warrant 2 met?: 7:30 PM n n n n 7:45 PM 8:00 PM

Warrant 2 Page 1

OMUTCD WARRANT 3, PEAK HOUR							Hour Vehicular Volume					
	mber of	Lanes for Moving Traffic Approach 1 Lane	on Each	Peak Hour Start time 4:45 PM		Hour Interval Beginning	Major Street Combined Vehicles Per	Highest Minor Street Approach	Sum of Major Street and Highest Minor	Sum of Major Street and Combined		
	r Street:			Peak Hour End Time	5:45 PM	M At	Hour (VPH)	Vehicles Per Hour (VPH)	Street	Minor Street		
						6:00 AM	204	65	269	315		
			Built up Isolate	ed Community with Less Than 10,000	Yes	6:15 AM	236	62	298	346		
			Population	on or Above 40 MPH on Major Street?	res	6:30 AM	255	67	322	362		
						6:45 AM	317	69	386	426		
ls				, such as office complexes, manufacturing		7:00 AM	363	71	434	476		
	piants, ir	idustrial complexes, or mgi	n-occupancy veni	cle facilities that attract or discharge large numbers of vehicles over a short time?		7:15 AM 7:30 AM	382 384	70 59	452 443	495 495		
						7:45 AM	341	59	400	455		
ı	ndicate	whether all three of	the following	g conditions for the same 1 hou	ır (any four	8:00 AM	314	58	372	421		
				s) of an average day are present	, ,	8:15 AM 8:30 AM	285 272	50 48	335 320	385 362		
		l stopped time delay experi	enced by the traff	fic on one minor-street approach (one		8:45 AM	258	48	299	338		
direction	on only) co			ehicle-hours for a one-lane approach or 5		9:00 AM	236	55	291	328		
		vehicle-hour	s for a two-lane a	pproach?		9:15 AM 9:30 AM	226	54	280	313		
Does t			• • •	ection only) equal or exceed 100 vehicles	Yes	9:30 AM 9:45 AM	233 243	57 63	290 306	322 331		
	•	ū		s per hour for two moving lanes?	, 55	10:00 AM	252	54	306	327		
				ual or exceed 650 vehicles per hour for		10:15 AM	273	51	324	354		
inte	ersection v	with three approaches or 80	10 vehicles per ho approaches?	our for intersections with four or more	No	10:30 AM 10:45 AM	266 268	55 54	321 322	351 354		
		*If applicable, at		ng calculations and documentation.		11:00 AM	254	55	309	339		
		.,	.,			11:15 AM	260	59	319	348		
			Are	the requirements for Warrant 3 met?:	No	11:30 AM	261	63	324	350		
	1000		Figure 4C-3.	Warrant 3 Peak Hour		11:45 AM 12:00 PM	262 301	64 64	326 365	357 397		
	1200 7			1 lane & 1 lane		12:15 PM	290	63	353	389		
Ĕ	1000			——2+ lanes minor		12:30 PM	294	58	352	400		
Minor Street- Higher Volume Approach - vph	800			2+ lanes & 2+ la 2+ lanes major		12:45 PM 1:00 PM	284 266	55 55	339 321	390 374		
ج <u>و</u>	000			2 101100 11101	<u> </u>	1:15 PM	286	60	346	397		
활동	600					1:30 PM	292	68	360	400		
roa et	400					1:45 PM 2:00 PM	314 349	75 85	389 434	426 479		
App 4	400					2:15 PM	348	91	439	482		
ō ,	200	-				2:30 PM	378	98	476	527		
Ē	0					2:45 PM 3:00 PM	400 389	108 114	508 503	569 563		
	O I	500	1000	1500 2000	2500	3:15 PM	423	133	556	611		
	·			l of Both Approaches - vph	2300	3:30 PM 3:45 PM	436 459	141 145	577 604	636 655		
			-			4:00 PM	487	156	643	685		
	_	(COMMUNITY LESS T	Warrant 3 P HAN 10 000 POPI	eak Hour (70% Factor) JLATION OR ABOVE 40 MPH ON MAJOR S	TREET)	4:15 PM	499	161	660	710		
	700	(COMMISSION 1 22001	1	1 lane & 1 lane		4:30 PM 4:45 PM	522 513	163 169	685 682	738 733		
-	600			2+ lanes & 1 lane	4	5:00 PM	484	160	644	707		
#	500			2+ lanes & 2+ lanes —— 2+ lanes minor & 1		5:15 PM 5:30 PM	359	113	472	522		
Stre	400			Peak Hour		5:30 PM	218 99	75 33	293 132	322 151		
Minor Street	900					6:00 PM	0	0	0	0		
<u>Ε</u>	300					6:15 PM 6:30 PM	0	0	0	0		
}	200					6:45 PM	0	0	0	0		
	<u> </u>					7:00 PM	0	0	0	0		
=	Ē 0	, ‡				7:15 PM 7:30 PM	0	0	0	0		
1			on 800 900 1	000 1 100 1 200 1 300 1 400 1 500 1 600 1 70	00180019002000	7:45 PM	0	0	0	0		
1		-0 -0 -0 -0	-0 -0 -0	Major Street	00 -00 -00	8:00 PM	0	0	0	0		
			Total of	Both Approaches - vph								

Actual	Actual	Required	Required
Peak	Peak	Peak Hour	Peak Hour
Hour	Hour	Minor	Minor
Major	Minor	Traffic	Traffic
Traffic	Traffic	Volume for	Volume for
Volume	Volume	Fig. 4C-3	Fig. 4C-4
513	169	405 88643	204 25353

	Southbound Approach	Westbound Approach	Northbound Approach	Eastbound Approach	
Start Time	Southbound Right Thru Left U-Turn Peds Ap	Westbound P Right Thru Left U-Turn Peds App Total	Nouthbound Right Thru Left U-Turn Peds App Total	Eastbound Right Thru Left U-Turn Peds App Total	NOTES:
12:00 AM			Total	Total	
12:15 AM 12:30 AM	0		0 0	0 0	It should be noted that if data is copied overtop of the Hourly
12:45 AM	0	0	0	0	Totals or Approach Totals, that the 'AutoSum' Formula will be
Hourly Total 1:00 AM	0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	lost. This should not affect the
1:15 AM 1:30 AM	0		0	0	actual totals if the data was copied from a program that
1:45 AM	0	0	0 0	0	performs the calculations for the user.
Hourly Total 2:00 AM	0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	usor.
2:15 AM	1 0	0	0	0	
2:30 AM 2:45 AM			0 0	0 0	
Hourly Total 3:00 AM	0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	
3:15 AM	0	0	0	0	
3:30 AM 3:45 AM			0 0	0 0	
Hourly Total	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
4:00 AM 4:15 AM	1 0	0	0	0	
4:30 AM 4:45 AM		0	0	0	
Hourly Total	0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	
5:00 AM 5:15 AM	0		0 0	0	
5:30 AM 5:45 AM		0	0	0	
Hourly Total	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
6:00 AM 6:15 AM			0 14 0 14 0 18 0 18	0 14 4 18 0 13 4 17	
6:30 AM	1 1 19 17 37	7 4 4 0 8	0 16 0 16	1 13 5 19	
6:45 AM Hourly Total	9 71 55 0 0 13	5 22 20 4 0 0 46	2 67 0 0 0 69	1 50 14 0 0 65	
7:00 AM 7:15 AM	0 24 13 37	7 7 3 1 11	1 26 0 27 4 22 0 26	0 10 5 15 1 20 1 22	
7:30 AM	0 46 18 64	4 4 0 8	6 45 0 51	0 14 7 21	
7:45 AM Hourly Total	3 48 17 68 5 146 67 0 0 21		3 38 0 41 14 131 0 0 0 145	1 10 2 13 2 54 15 0 0 71	
8:00 AM 8:15 AM	5 31 17 50	3 5 5 2 12	5 25 0 30	1 7 6 14	
8:30 AM	4 32 5 4	4 2 9 15	1 30 0 31	3 8 6 17	
8:45 AM Hourly Total	1 4 35 9 46 17 120 46 0 0 18		2 32 0 34 10 121 0 0 0 131	1 14 1 16 5 36 17 0 0 58	
9:00 AM	1 1 20 6 27	7 4 6 3 13	3 24 0 27	0 3 3 6	
9:15 AM 9:30 AM	0 27 5 32	2 3 7 2 12	3 19 1 23 1 25 0 26	2 5 2 9 0 7 3 10	
9:45 AM Hourly Total	3 22 6 3 ³ 6 102 23 0 0 13	1 15 7 1 23 1 26 22 7 0 0 55	4 24 1 29 11 92 2 0 0 105	0 5 7 12 2 20 15 0 0 37	
10:00 AM	1 15 3 19	9 2 1 12	2 22 1 25	0 1 1 2	
10:15 AM 10:30 AM	2 27 7 36 9 22 6 37	6 4 2 4 10 12 5 1 18	1 34 0 35 2 28 1 31	0 6 2 8 3	
10:45 AM	2 35 8 45	9 4 1 14	2 21 1 24	2 4 2 8	
Hourly Total 11:00 AM		0 6 2 1 9	7 105 3 0 0 115 2 32 1 35	2 13 6 0 0 21 0 7 4 11	
11:15 AM 11:30 AM			2 30 1 33 5 31 1 37	1 5 2 8	
11:45 AM	4 26 6 36	9 2 4 15	1 18 0 19	1 1 4 6	
Hourly Total 12:00 PM	11 96 23 0 0 13 5 29 9 40		10 111 3 0 0 124 1 26 1 28	4 16 10 0 0 30 2 4 4 1 10	
12:15 PM 12:30 PM	3 27 6 36	3 2 18	4 25 0 29 1 20 1 22	1 2 2 5 0 7 3 10	
12:45 PM	3 42 7 52	2 4 10 1 15	5 37 0 42	2 3 2 7	
Hourly Total 1:00 PM	15 131 34 0 0 18 3 22 7 32		11 108 2 0 0 121 3 25 0 28	5 16 11 0 0 32 1 4 9 14	
1:15 PM 1:30 PM	0 22 11 33	3 6 5 2 13 2 11 4 0 15	1 35 0 36 2 26 1 29	1 8 8 17 1 10 2 13	
1:45 PM	4 37 4 45	5 3 10 2 15	1 30 0 31	0 6 3 9	
Hourly Total 2:00 PM	12 102 28 0 0 14 1 33 9 43		7 116 1 0 0 124 3 33 1 37	3 28 22 0 0 53 0 10 2 12	
2:15 PM	1 31 8 40	11 6 4 21	5 30 0 35	0 6 0 6	
2:30 PM 2:45 PM	7 43 6 56	3 12 12 1 25	0 32 2 34 1 50 4 55	0 5 5 10 2 9 6 17	
Hourly Total 3:00 PM	14 139 35 0 0 18 3 27 6 36		9 145 7 0 0 161 5 38 0 43	2 30 13 0 0 45 3 5 2 10	
3:15 PM	1 2 45 11 58	3 16 10 2 28	8 37 2 47	0 9 5 14	
3:30 PM 3:45 PM	6 33 15 54	13 16 2 31	1 44 1 46 6 39 1 46	3 12 5 20 0 12 4 16	
Hourly Total 4:00 PM	15 154 38 0 0 20	7 50 57 7 0 0 114	20 158 4 0 0 182 5 46 0 51	6 38 16 0 0 60 0 3 2 5	
4:15 PM	7 49 10 66	3 12 21 3 36	4 47 1 52	1 12 5 18	
4:30 PM 4:45 PM	8 46 8 62	2 22 16 4 42	5 48 1 54 5 60 1 66	0 7 5 12 0 6 1 7	
Hourly Total	26 198 40 0 0 26	4 77 68 11 0 0 156	19 201 3 0 0 223	1 28 13 0 0 42 1 10 2 13	
5:00 PM 5:15 PM	4 50 13 67	24 11 3 38	4 69 1 74	3 15 3 21	
5:30 PM 5:45 PM			4 53 1 58 2 39 0 41	2 4 4 10 10 19	
Hourly Total	25 189 36 0 0 25	0 86 60 14 0 0 160	15 215 4 0 0 234	8 38 17 0 0 63	
6:00 PM 6:15 PM	0	0	0 0	0 0	
6:30 PM 6:45 PM	1 0	0	0 0	0 0	
Hourly Total	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	
7:00 PM 7:15 PM			0 0	0 0	
7:30 PM	0	0	0	0	
7:45 PM Hourly Total	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	
8:00 PM 8:15 PM			0 0	0 0	
8:30 PM	1 0	0	0	0	
8:45 PM Hourly Total	0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	
9:00 PM	0	0	0	0	
9:15 PM 9:30 PM	0	0	0 0	0	
9:45 PM Hourly Total	0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	
10:00 PM	0	0	0	0	
10:15 PM 10:30 PM			0 0	0 0	
10:45 PM	0	0	0	0	
Hourly Total 11:00 PM	0	0	0 0 0 0 0 0	0 0 0 0 0 0	
11:15 PM 11:30 PM	0	0	0 0	0 0	
11:45 PM	0	0	0	0	
Hourly Total	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	

							Count Data						
Leg		SR-64			SR-582		Count Data		SR-64			SR-582	
Direction		Southbound			Westbound	1			Northbound			Eastbound	
Start Time	Right	Thru	Left	Right	Thru	Left		Right	Thru	Left	Right	Thru	Left
2021-09-14 06:00:00	2	7	9	3	5	1		0	14	0	0	14	4
2021-09-14 06:15:00	2	19	17	9	4	1		0	18	0	0	13	4
2021-09-14 06:30:00	1	19	17	4	4	0		0	16	0	1	13	5
2021-09-14 06:45:00	4	26	12	6	7	2		2	19	0	Ö	10	1
2021 00 14 00.40.00	-	20	12	· ·	•	-		-	10	•	Ū	10	•
2021-09-14 07:00:00	0	24	13	7	3	1		1	26	0	0	10	5
2021-09-14 07:15:00	2	28	19	3	3	0		4	22	0	1	20	1
2021-09-14 07:30:00	0	46	18	4	4	Ö		6	45	0	0	14	7
2021-09-14 07:45:00	3	48	17	11	5	1		3	38	0	1	10	2
2021 00 11 01.10.00	·	.0	••	• •	ŭ	•		Ū	00	ŭ			-
2021-09-14 08:00:00	5	31	17	5	5	2		5	25	0	1	7	6
2021-09-14 08:15:00	4	22	15	7	6	2		2	34	0	0	7	4
2021-09-14 08:30:00	4	32	5	4	2	9		1	30	Ō	3	8	6
2021-09-14 08:45:00	4	35	9	1	6	0		2	32	0	1	14	1
2021 00 11 00.10.00		00	ŭ	•	ŭ	·		_	02	ŭ		• • •	•
2021-09-14 09:00:00	1	20	6	4	6	3		3	24	0	0	3	3
2021-09-14 09:15:00	2	33	6	4	2	1		3	19	1	2	5	2
2021-09-14 09:30:00	0	27	5	3	7	2		1	25	0	0	7	3
2021-09-14 09:45:00	3	22	6	15	7	1		4	24	1	0	5	7
2021 00 11 00:10:00	Ü		ŭ		•	•		•			ŭ	Ü	•
2021-09-14 10:00:00	1	15	3	9	2	1		2	22	1	0	1	1
2021-09-14 10:15:00	2	27	7	4	2	4		1	34	0	0	6	2
2021-09-14 10:30:00	9	22	6	12	5	1		2	28	1	0	2	1
2021-09-14 10:45:00	2	35	8	9	4	1		2	21	1	2	4	2
2021-03-14 10.45.00	2	33	U	3	-			2	21	'	2	7	2
2021-09-14 11:00:00	5	18	7	6	2	1		2	32	1	0	7	4
2021-09-14 11:15:00	1	26	4	8	5	1		2	30	1	1	5	2
2021-09-14 11:30:00	i	26	6	9	7	1		5	31	1	2	3	0
2021-09-14 11:45:00	4	26	6	9	2	4		1	18	0	1	1	4
2021 00 14 11.40.00	-	20	Ü	· ·	-	7		•	10	•		•	-
2021-09-14 12:00:00	5	29	9	9	4	0		1	26	1	2	4	4
2021-09-14 12:15:00	3	27	6	13	3	2		4	25	0	1	2	2
2021-09-14 12:30:00	4	33	12	10	6	2		1	20	1	Ö	7	3
2021-09-14 12:45:00	3	42	7	4	10	1		5	37	0	2	3	2
2021 00 14 12.40.00	O	72	•	-	10			Ü	01	•	-	Ü	-
2021-09-14 13:00:00	3	22	7	8	3	1		3	25	0	1	4	9
2021-09-14 13:15:00	0	22	11	6	5	2		1	35	0	1	8	8
2021-09-14 13:30:00	5	21	6	11	4	0		2	26	1	1	10	2
2021-09-14 13:45:00	4	37	4	3	10	2		1	30	Ö	Ö	6	3
2021 00 14 10.40.00	-	01	7	Ü	10	-		•	00	•	Ū	Ü	Ü
2021-09-14 14:00:00	1	33	9	10	5	2		3	33	1	0	10	2
2021-09-14 14:15:00	1	31	8	11	6	4		5	30	0	0	6	0
2021-09-14 14:30:00	5	32	12	9	13	0		0	32	2	Õ	5	5
2021-09-14 14:45:00	7	43	6	12	12	1		1	50	4	2	9	6
	•		-	· -				-		-	_	-	-
2021-09-14 15:00:00	3	27	6	8	13	2		5	38	0	3	5	2
2021-09-14 15:15:00	2	45	11	16	10	2		8	37	2	0	9	5
2021-09-14 15:30:00	4	49	6	13	18	1		1	44	1	3	12	5
2021-09-14 15:45:00	6	33	15	13	16	2		6	39	1	0	12	4
2021 00 11 10:10:00	·	00	.0			-		·	00	·	ŭ		
2021-09-14 16:00:00	3	51	8	25	16	1		5	46	0	0	3	2
2021-09-14 16:15:00	7	49	10	12	21	3		4	47	1	1	12	5
2021-09-14 16:30:00	8	52	14	18	15	3		5	48	1	0	7	5
2021-09-14 16:45:00	8	46	8	22	16	4		5	60	1	Õ	6	1
	-		-					-			-	-	
2021-09-14 17:00:00	10	47	7	18	27	2		5	54	2	1	10	2
2021-09-14 17:15:00	4	50	13	24	11	3		4	69	1	3	15	3
2021-09-14 17:30:00	6	47	8	23	15	4		4	53	1	2	4	4
2021-09-14 17:45:00	5	45	8	21	7	5		2	39	0	2	9	8
	-	-	-		•	-				-	-		-

STUDY AND ANALYSIS INFORMATION	TRAFFIC SI	GNAL	WARRA	ANT ANALYSIS FINDINGS
Municipality: Traffic Volumes Obtained By: CMTran		Applicable?	Warrant Satisfied?	Notes and Comments:
County: Wood Analysis Date:	Warrant 1, Eight-Hour Vehicular Volume	Yes	No	
ODOT Engineering 2 Agency/ Company Name Performing CMTran Warrant Analysis:	Warrant 2, Four-Hour Vehicular Volume	Yes	No	
Analysis Information	Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. Peak Hour 4:45 PM 5:45 PM
Data Collection Date: 6/28/2022	For Warrants 1-3, new	ODOT signa	ls must be ba	sed off of 100% volume thresholds (TEM 402-3.2)
Day of the Week: Tuesday	Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD.
Is the intersection in a built-up area of an isolated community of <10,000 No	Warrant 5, School Crossing	No		N/A
Existing Traffic Signal at intersection: No	Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)
Total Number of Approaches at Intersection: 4	Warrant 7, Crash Experience	No		If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.
Major Street Information	Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)
Major Street Name and Route Number: SR-64	Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9
Major Street Approach Direction: N-Bound S-Bound	Multi-Way Stop Warrant	No		May be used as an interim measure if traffic signal warrants are satisfied.
Number of Thru Lanes on Each Major Street Approach: 1 LANE(S)	The satisfaction of a traffic sign	nal warran	t or warrant control	is shall not in itself require the installation of a traffic signal.
Speed Limit or 85th Percentile Speed on the Major Street*: 50 MPH	If no warrants are satisfied, additi			
*Unknown assumes below 45 mph				d by ODOT for signal design, if approved by the ODOT retention of an existing signal that otherwise does not
Minor Street Information				tance is a traffic signal in proximity to a railroad crossing
00.500	that serves to reduce queuing ac			ant assume fail to action a simulation of the same has
Minor Street Name and Route Number: SR-582				ent counts fail to satisfy a signal warrant, it may be d year after project completion. The Modeling and
Minor Street Approach Configuration: 1 W-Bound	Forecasting Section should pro-	vide the pro	jected traffic	volumes.
♦ ♦ ♦ • • • • • • • • • • • • • • • • • • 				stallation to facilitate pedestrian crossings at a location C of TEM) or at a location that meets traffic signal
	warrants under Sections 4C.05 a fill inputs on PHB Score Sheet	nd/or 4C.06 and submi	but a decis	ion is made to not install a traffic control signal. Please
1 2 3 4 5 Number of Thru Lanes on Each Minor Street Approach: Apply Right Turn Lane Reduction*: No		considerat	ions may all	tance generally have not been accepted in lieu of ow an otherwise unwarranted traffic signal to be retained details.
*Right Turn Lane Reduction Shall be used for Warrants 1, 2, & 3 for New ODOT Signals. Please refer to TEM 402-3.2 for clarification and criteria		Conclusion:	Do Not Inst	all New Traffic Signal
under which Right Turn Reduction is not required.	Notes: 2044 Data - No RTR			

Input & Findings Page 1

OMUTCD WARRANT 1, EIGHT-HOUR VEHICULAR VOLUME

Number of Lanes for Moving Traffic on Each Approach

Major Street: 1 Lane

Minor Street: 1 Lane

Built up Isolated Community with Less Than 10,000 Population or Above 40 MPH on Major Street? Yes

*Only applicable after an adequate trial of other alternatives (See section 4C.02.06 of the 2012 OMUTCD)

Lanes	Adiu	etod											Co	mbina	ation A	\/R*		
Major/	Volu	sted imes		Cond	ition A			Condi	tion E	3	Cor	d. A		id. B		nd. A	Con	id. B
Minor	Major	Minor		00%)%		0%	_)%)%	_)%	_	6%		5%
1/1	-	X	Maj. 500	Min. 150	Maj. 350	Min. 105	Maj. 750	Min. 75	Maj. 525	Min. 53	Maj .	Min. 120	Maj.	Min.	Maj .	Min. 84	Maj. 420	Min.
2+ / 1	/		600	150	420	105	900	75	630	53	480		720	60	336	84	504	42
2+ / 2+			600	200	420	140	900	100	630	70	480	160	720	80	336	112	504	56
1 / 2+		ı	500	200	350	140	750	100	525	70	400	160	600	80	280	112	420	56
12:00 AM 12:15 AM	0	0																
12:30 AM	0	0	_															
12:45 AM	0	0	_															
1:00 AM	0	0																
1:15 AM 1:30 AM	0	0												_				
1:45 AM	0	0																
2:00 AM	0	0																
2:15 AM	0	0	_															
2:30 AM 2:45 AM	0	0																
3:00 AM	0	0																Н
3:15 AM	0	0																
3:30 AM	0	0																
3:45 AM 4:00 AM	0	0																\vdash
4:15 AM	0		_															
4:30 AM	0	0	_															
4:45 AM	0	0																
5:00 AM 5:15 AM	0 32	0 18		-		<u> </u>											<u> </u>	$\vdash\vdash\vdash$
5:30 AM	88	35																
5:45 AM 6:00 AM	141 204	54 65																
6:15 AM	236	62																
6:30 AM	255	67																
6:45 AM 7:00 AM	319 367	69 71			1										1			
7:15 AM	387	70			'													
7:30 AM 7:45 AM	390														4			
8:00 AM	347 320	59 58													1			
8:15 AM	290	50																
8:30 AM 8:45 AM	277 261	48 41																
9:00 AM	237	55																
9:15 AM	227	54																
9:30 AM 9:45 AM	234 244	57 63																
10:00 AM	254	54																
10:15 AM	276 269	51 55																
10:30 AM 10:45 AM	272	55 54																
11:00 AM	257	55																
11:15 AM 11:30 AM	263 263	59 63																
11:45 AM	264																	
12:00 PM 12:15 PM	305	64													1			
12:15 PM 12:30 PM	293 298	63 58																
12:45 PM	287	55																
1:00 PM 1:15 PM	269 291														1			
1:30 PM	298	68													ı .			
1:45 PM 2:00 PM	322 357	75 85																
2:00 PM 2:15 PM	357 355	85 91			1										1	1		$\vdash\vdash\vdash$
2:30 PM	385	98																
2:45 PM 3:00 PM	407 396	108 114			1	1					1							$\vdash\vdash\vdash$
3:15 PM	431	133			Ė										1	1	1	1
3:30 PM 3:45 PM	444 467	141 145									1	1						igsqcup
4:00 PM	495	156			1	1	L	L		L	<u> </u>	<u> </u>		L	L	L	L	
4:15 PM	507	161		1											1	1	1	1
4:30 PM 4:45 PM	530 521	163 169		-					1	1	1	1						$\vdash\vdash\vdash$
5:00 PM	492	160			1	1					Ė	Ė						
5:15 PM 5:30 PM	365 222	113 75		<u> </u>						<u> </u>					1	1		$\vdash \vdash \vdash$
5:45 PM	101	33																
6:00 PM	0	0																
6:15 PM 6:30 PM	0			-		<u> </u>											<u> </u>	$\vdash\vdash\vdash$
6:45 PM	0	0																
7:00 PM	0																	Ш
7:15 PM 7:30 PM	0																	$\vdash\vdash\vdash$
7:45 PM	0	0																
8:00 PM 8:15 PM	0									<u> </u>				_				$\vdash\vdash\vdash$
8:30 PM	0	0																
8:45 PM	0																	
9:00 PM 9:15 PM	0																	$\vdash\vdash\vdash$
9:30 PM	0	0																
9:45 PM HOURS MET	0	0	1	1	5	3	0	0	1	1	3	2	0	0	8	4	2	2
WARRANT S	ATISFII	ED?		0		0	-	0		0	3		0				0	

Warrant Met:	No	
Notes:		

OMUTCD WARRANT 2, FOUR-HOUR VEHICULAR VOLUME Warrant 2, Four-Hour Vehicular Volume - 1 lane & 1 lane Number of Lanes for Moving Traffic on 2+ lanes Major & 1 lane minor Total Number of Unique Hours Met on Figure 4C-1 - vp Each Approach 2+ lanes & 2+ lanes 2+ lanes minor & 1 lane major Major street: 1 Lane Total Number of Unique Hours Met on Figure 4C-2 (70% Minor Street Volume Approach Top 4 Hours Minor Street: 1 Lane Built up Isolated Community with Less Than 10,000 Population or Above 40 MPH on Major Street? Yes Raw Traffic Counts Hour Hour Interval Minor Street Major - SR-64 Minor - SR-582 Met? Approach Beginning At Approach Volumes (70% Factor) N-Bound S-Bound W-Bound E-Bound Volumes Higher 255 319 6:15 AM 6:30 AM 6:45 AM 7:00 AM 229 7:15 AM 100 200 300 400 200 500 500 500 800 100/10/20/30/30/40/50/60/50/40/305205205205205 7:30 AM 7:45 AM 8:00 AM **Major Street** 8:15 AM Total of Both Approaches - vph 8:30 AM Top Hours for Figure 4C-1 Start Time | End Time | Major Street | Minor Street 8:45 AM 9:00 AM 9:15 AM 2nd Highest Hour 3:30 PM 4:30 PM 9:30 AM 3rd Highest Hour 2:30 PM 3:30 PM 9:45 AM 4th Highest Hour 7:15 AM 8:15 AM 276 10:00 AM 10:15 AM Top Hours for Figure 4C-2 Start Time | End Time | Major Street | Minor Street 10:30 AM 10:45 AM 2nd Highest Hour 3:45 PM 4:45 PM 11:00 AM 3rd Highest Hour 2:45 PM 3:45 PM 7:15 AM 8:15 AM 11:15 AM 263 4th Highest Hour 11:30 AM 11:45 AM Warrant 2 Four Hour Vehicular Volume (70% Factor) 12:00 PM (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET) 12:15 PM -1 lane & 1 lane 12:30 PM 150 287 55 55 2 or more lanes major & 1 lane minor 12:45 PM 2 or more lanes minor & 1 lane major 1:00 PM 2 or more and 2 or more 1:15 PM Top 4 Hours 1:30 PM 1:45 PM 2:00 PM 192 45 357 85 85 Street Approach -2:15 PM 385 2:30 PM ٩a 2:45 PM 3:00 PM 3:15 PM 194 237 431 55 Minor (3:30 PM Met 3:45 PM 4:00 PM Higher 4:15 PM 259 271 53 530 4:30 PM Иet 4:45 PM 5:00 PM 5:15 PM n 5:30 PM 19 101 33 ×00 5:45 PM 6:00 PM Major Street 6:15 PM Total of Both Approaches - vph 6:30 PM Λ 6:45 PM 7:00 PM 7:15 PM n n Are the requirements for Warrant 2 met?: 7:30 PM n n n n 7:45 PM 8:00 PM

Warrant 2 Page 1

	ON	UTCD WARRA	ANT 3, PEAK HOUR			Но	our Vehicular \	/olume	
Majo	mber of Lanes for Moving Approach r Street: 1 Lane	g Traffic on Each	Peak Hour Start time	4:45 PM 5:45 PM	Hour Interval Beginning At	Major Street Combined Vehicles Per Hour (VPH)	Highest Minor Street Approach Vehicles Per	Sum of Major Street and Highest Minor Street	Sum of Major Street and Combined Minor Street
Mino	r Street: 1 Lane				AL	Hour (VFH)	Hour (VPH)	Street	Willion Street
					6:00 AM	204	65	269	315
			ed Community with Less Than 10,000	Yes	6:15 AM	236	62	298	346
		Populati	on or Above 40 MPH on Major Street?	100	6:30 AM	255	67	322	362
					6:45 AM	319	69	388	428
ls			, such as office complexes, manufacturing icle facilities that attract or discharge large		7:00 AM	367	71	438	480
	piants, industrial complexes	s, or night-occupancy veni	numbers of vehicles over a short time?		7:15 AM 7:30 AM	387 390	70 59	457 449	500 501
			numbers of vehicles over a short time.		7:45 AM	347	59	406	461
ı	ndicate whether all th	ree of the followin	g conditions for the same 1 hou	ır (any four	8:00 AM	320	58	378	427
			s) of an average day are present	•	8:15 AM	290	50	340	390
Do			fic on one minor-street approach (one		8:30 AM 8:45 AM	277 261	48 41	325 302	367 341
			ehicle-hours for a one-lane approach or 5		9:00 AM	237	55	292	329
		cle-hours for a two-lane a			9:15 AM	227	54	281	314
Does to	he volume on the same minor	-street approach (one dir	ection only) equal or exceed 100 vehicles	Vec	9:30 AM	234	57	291	323
			s per hour for two moving lanes?	Yes	9:45 AM 10:00 AM	244 254	63 54	307 308	332 329
Does	the total entering volume se	rviced during the hour eq	ual or exceed 650 vehicles per hour for		10:00 AM	276	51	327	357
inte	ersection with three approach	•	our for intersections with four or more	No	10:30 AM	269	55	324	354
	*16 !:-	approaches?			10:45 AM	272	54	326	358
	"іт аррііс	заріе, аттасп ан ѕирропіі	ng calculations and documentation.		11:00 AM 11:15 AM	257 263	55 59	312 322	342 351
		Are	the requirements for Warrant 3 met?:	No	11:30 AM	263	63	326	352
		Figure 4C-3	Warrant 3 Peak Hour		11:45 AM	264	64	328	359
	1200 _F	1 iguio 40 0.			12:00 PM 12:15 PM	305	64	369	401
æ	1000		——1 lane & 1 lane ——2+ lanes minor	& 1 lane major	12:30 PM	293 298	63 58	356 356	392 404
Minor Street- Higher Volume Approach - vph	1000		2+ lanes & 2+ la		12:45 PM	287	55	342	393
<u>ة</u> ج	800		2+ lanes major	& 1 lane minor _	1:00 PM	269	55	324	377
g -	000				1:15 PM 1:30 PM	291	60 68	351	402 406
ac ±	600				1:45 PM	298 322	75	366 397	434
pro e	400				2:00 PM	357	85	442	487
₽ St	000				2:15 PM 2:30 PM	355	91 98	446	489
ē	200	•			2:45 PM	385 407	108	483 515	534 576
Σ	0 -				3:00 PM	396	114	510	570
	0 5	500 1000	1500 2000	2500	3:15 PM 3:30 PM	431 444	133 141	564 585	619 644
	•		I of Both Approaches - vph	_500	3:45 PM	444	141	612	663
			Peak Hour (70% Factor)		4:00 PM	495	156	651	693
	(COMMUNITY		ULATION OR ABOVE 40 MPH ON MAJOR S	TREET)	4:15 PM 4:30 PM	507 530	161 163	668 693	718 746
-	700				4:45 PM	521	169	690	740
4	§ 600 [2+ lanes & 1 lane		5:00 PM	492	160	652	715
ğ	500		2+ lanes & 2+ lane ——2+ lanes minor & 1		5:15 PM 5:30 PM	365 222	113 75	478 297	528 326
Stre	400		Peak Hour		5:45 PM	101	33	134	153
Minor Street	300				6:00 PM	0	0	0	0
Ξį	300				6:15 PM 6:30 PM	0	0	0	0
?	200				6:45 PM	0	0	0	0
1	100				7:00 PM	0	0	0	0
ä	0 -				7:15 PM 7:30 PM	0	0	0	0
		600 700 800 900 1	$1000^{1}100^{1}200^{1}300^{1}400^{1}500^{1}600^{1}70$	0.180.190.200.	7:45 PM	0	0	0	0
	30 -30 -00	-0 -00 -00 -00 -	Major Street	0 -00 -00 -000	8:00 PM	0	0	0	0
		Total o	f Both Approaches - vph						

Actual	Actual	Required	Required
Peak	Peak	Peak Hour	Peak Hour
Hour	Hour	Minor	Minor
Major	Minor	Traffic	Traffic
Traffic	Traffic	Volume for	Volume for
Volume	Volume	Fig. 4C-3	Fig. 4C-4
52	169	400.84092	200.79842

Warrant 3 Page 2

Start Time			oound Approac	h			nd Approach stbound			Northbound Ap				Eastbound A			NOTES:
Start Time	Right		eft U-Turn	Peds Ap	Right	Thru Left		App Total	Right Thru		urn Peds	App Total	Right Thru		J-Turn Pec	ds App Total	NOTES:
12:00 AM 12:15 AM	1			0				_ 0				0				0	It should be noted that if data is copied overtop of the Hourly
12:30 AM 12:45 AM Hourly Total	0	0 /	0 0	0 0		0 0	0 0	_ 0	0 0	0	0 0	0	0 0	0	0 0	0 	Totals or Approach Totals, that the 'AutoSum' Formula will be
1:00 AM 1:15 AM		0 (0 0	0 0 0 0		0 0	0 0	0 0	0 0	0		0	0 0	0	0 0	0	lost. This should not affect the actual totals if the data was
1:30 AM 1:45 AM	1							_ 0				0				_ ;	copied from a program that performs the calculations for the
Hourly Total 2:00 AM	0	0 (0 0	0 0		0 0	0 0	0	0 0	0	0	0	0 0	0	0 0	0 0	user.
2:15 AM 2:30 AM				0				0				0				0 0	
2:45 AM Hourly Total	0	0 (0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0	0 0	0	0 0		
3:00 AM 3:15 AM 3:30 AM	1			0 0 0				_ 0 _ 0				0				0	
3:45 AN		0 (0 0	0 0		0 0	0 0		0 0	0	0 0	0	0 0	0	0 0		
4:00 AN 4:15 AN	1			0				_ 0 0				0				0 0	
4:30 AM 4:45 AM				0				- 0 0				0				0 0	
Hourly Total 5:00 AM	0	0 (0 0	0 0		0 0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	
5:15 AM 5:30 AM 5:45 AM	1			0				_ 0 _ 0				0					
Hourly Total 6:00 AM	0		0 0	0 0	0	0 0 5 1	0 0	0	0 0	0	0 0	0	0 0 0 14	0 4	0 0		
6:15 AM 6:30 AM	2	19 1 19 1	7	38	9 4	4 1 4 0		14 8	0 18 0 16	0		18 16	0 13 1 13	4 5		17 19	
6:45 AN Hourly Total	9	26 1 71 5	2 0	0 13	6 5 22	7 2 20 4	0 0	15 46	2 19 2 67	0	0 0	21 69	0 10 1 50	1 14	0 0	11 65	
7:00 AM 7:15 AM	2	28 1	9	49	3	3 1 3 0		_ 11 _ 6	1 26 4 22	0		27 26	0 10 1 20	5 1		15 22	
7:30 AM 7:45 AM Hourly Total		49 1	7 7 0	65 69 0 22	11	4 0 5 1 15 2	0 0	- 8 17 42	6 46 3 39 14 133	0 0 0	0 0	52 42 147	0 14 1 10 2 54	7 2 15	0 0	21 13 71	
8:00 AN 8:15 AN	5 4	32 1	7	54°	7	5 2 6 2	J 0	_ 12 _ 15	5 25 2 35	0		30 37	1 7 0 7	6 4	0	14 11	
8:30 AN 8:45 AN	4	33 5 36 9	5 9	42	4	2 9 6 0		_ 15 7	1 31 2 33	0		32 35	3 8 1 14	6 1		17 16	
Hourly Total 9:00 AM	17 1 1	20	•	0 18	4	19 13 6 3	0 0	49 13	10 124 3 24	0	0 0	134 27	5 36 0 3	17 3	0 0	6	
9:15 AM 9:30 AM		27	6 5	32	3	2 1 7 2		_ 7 _ 12	3 19 1 25	0		23 26	2 5 0 7	3		9 10	
9:45 AM Hourly Total 10:00 AM	6	22 0 103 2 15 3	23 0	0 13	2 26	22 7	0 0	23 55 12	11 92 2 22	2	0 0	29 105 25	2 20	15	0 0	37 2	
10:15 AM 10:30 AM	2	27 22 (7 6	36	i 4	2 4 5 1		_ 10 _ 18	1 35 2 28	0		36 31	0 6 0 2	2			
10:45 AN Hourly Total	14	36 8 100 2	8 0	0 13	9 8 34	4 1 13 7	0 0	14 54	2 21 7 106	1 3	0 0	24 116	2 4 2 13	2 6	0 0	8 21	
11:00 AM 11:15 AM	1		4	30	8	2 1 5 1		_ 9 _ 14	2 33 2 31	1		36 34	0 7 1 5	2		11 8	
11:30 AM 11:45 AM Hourly Total	1 4 11		6 6 23 0	36 0 13	9	7 1 2 4 16 7	0 0	17 15	5 32 1 18 10 114	0 3	0 0	38 19 127	2 3 1 1 4 16	0 4 10	0 0	5 6 30	
12:00 PM 12:15 PM	5	30 9	9	44 36	9	4 0 3 2	0 0	55 13 18	10 114 1 26 4 25	1 0		28 29	4 16 2 4 1 2	4 2	0 0	10 5	
12:30 PM 12:45 PM	4		2 7	50	10	6 2 10 1		_ 18 _ 15	1 20 5 38	1 0		22 43	0 7	3 2		10 7	
Hourly Total 1:00 PM	15 1 3	22	34 0 7	0 18	8	23 5 3 1	0 0	64 12	11 109 3 25	0	0 0	122 28	5 16 1 4	11 9	0 0	14	
1:15 PM 1:30 PM	5	21 (6	33	11	5 2		_ 13 _ 15	1 36 2 26	1		37 29	1 8	8 2		17	
1:45 PM Hourly Total 2:00 PM	12		4 28 0	0 14 44	3 28	10 2 22 5 5 2	0 0	15 55 17	1 31 7 118 3 34	1	0 0	32 126 38	0 6 3 28 0 10	3 22	0 0	9 53 12	
2:15 PM 2:30 PM	1	32 8	8	4	11	6 4 13 0		_ 17 _ 21 _ 22	5 31 0 33	0 2		36 35	0 6 0 5	0 5			
2:45 PM Hourly Total		44 (6 35 0	0 19	12	12 1 36 7	0 0	25 85	1 51 9 149	4 7	0 0	56 165	2 9 2 30	6	0 0	17 45	
3:00 PM 3:15 PM	2	46 1	6 1	36	16	13 2 10 2		23 28	5 39 8 38	2		44 48	3 5 0 9	<u>2</u> 5		10 14	
3:30 PM 3:45 PM		34 1	5 8 0	60 55 0 21	13	18 1 16 2 57 7	0 0	_ 32 31 114	1 45 6 40	1 1 4	0 0	47 47	3 12 0 12	5 4	0 0	20 16	
Hourly Total 4:00 PM 4:15 PM	3	52 8	8 0 B	0 21 60 67	25	5/ / 16 1 21 3	0 0	114 42 36	20 162 5 47 4 48	0	0 0	186 52 53	6 38 0 3 1 12	16 2 5	0 0	60 5 18	
4:30 PN 4:45 PN	8	53 1 47 8	8	75 63	18	15 3 16 4		36 42	5 49 5 61	1		55 67	0 7 0 6	5 1		12 7	
Hourly Total 5:00 PM	26 1 10	48	40 0 7	0 26 65	8 77 18	68 11 27 2	0 0	156 47	19 205 5 55	3 2	0 0	227 62	1 28 1 10	13	0 0	13	
5:15 PM 5:30 PM	6	48 8	3 B	68	23	11 3 15 4		_ 38 _ 42 _ 33	4 70 4 54	1		75 59	3 15 2 4	3 4		21 10	
5:45 PM Hourly Total 6:00 PM	25		8 86 0	0 25 0 0	4 86	7 5 60 14	0 0	33 160 0	2 40 15 219	0 4	0 0	238 0	2 9 8 38	8 17	0 0	19 63 0	
6:15 PM 6:30 PM	1			0				_ 0				0					
6:45 PN Hourly Total	0	0 (0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	
7:00 PM 7:15 PM	1			0				_ 0				0				0 0	
7:30 PM 7:45 PM Hourly Total		0 (0 0	0 0 0 0		0 0	0 0	_ 0 0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	
8:00 PM 8:15 PM	1	0 (0	0 0		U U	U U	0 0	0	U		0	0 0	U	0 0	0 0	
8:30 PN 8:45 PN	1			0				_ 0				0					
Hourly Total 9:00 PM	0	0 (0 0	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0 0	0	0 0	0 0	
9:15 PM 9:30 PM	1			0				0 0				0				0 0	
9:45 PM Hourly Total 10:00 PM	0	0 (0 0	0 0	0	0 0	0 0	0	0 0	0	0 0	0 0	0 0	0	0 0	0	
10:00 PM 10:15 PM 10:30 PM	1			0				_ 0 _ 0				0					
10:45 PM Hourly Total		0 (0 0	0 0		0 0	0 0	- 0 0	0 0	0	0 0	0	0 0	0	0 0	0	
11:00 PM 11:15 PM	1			0				- °				0				0	
11:30 PM 11:45 PM Hourly Total	1	0 (0 0	0 0		0 0	0 0	0 0 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0 0	

							Count Data						
Leg		SR-64			SR-582		Count Data		SR-64			SR-582	
Direction		Southbound			Westbound	1			Northbound			Eastbound	
Start Time	Right	Thru	Left	Right	Thru	Left		Right	Thru	Left	Right	Thru	Left
2021-09-14 06:00:00	2	7	9	3	5	1		0	14	0	0	14	4
2021-09-14 06:15:00	2	19	17	9	4	1		0	18	0	0	13	4
2021-09-14 06:30:00	1	19	17	4	4	0		0	16	0	1	13	5
2021-09-14 06:45:00	4	26	12	6	7	2		2	19	0	Ö	10	1
2021 00 14 00.40.00	-	20	12	· ·	•	-		-	10	•	Ū	10	•
2021-09-14 07:00:00	0	24	13	7	3	1		1	26	0	0	10	5
2021-09-14 07:15:00	2	28	19	3	3	0		4	22	0	1	20	1
2021-09-14 07:30:00	0	46	18	4	4	Ö		6	45	0	0	14	7
2021-09-14 07:45:00	3	48	17	11	5	1		3	38	0	1	10	2
2021 00 11 01.10.00	·	.0	••	• •	ŭ	•		Ū	00	ŭ			-
2021-09-14 08:00:00	5	31	17	5	5	2		5	25	0	1	7	6
2021-09-14 08:15:00	4	22	15	7	6	2		2	34	0	0	7	4
2021-09-14 08:30:00	4	32	5	4	2	9		1	30	Ō	3	8	6
2021-09-14 08:45:00	4	35	9	1	6	0		2	32	0	1	14	1
2021 00 11 00.10.00		00	ŭ	•	ŭ	·		_	02	ŭ		• • •	•
2021-09-14 09:00:00	1	20	6	4	6	3		3	24	0	0	3	3
2021-09-14 09:15:00	2	33	6	4	2	1		3	19	1	2	5	2
2021-09-14 09:30:00	0	27	5	3	7	2		1	25	0	0	7	3
2021-09-14 09:45:00	3	22	6	15	7	1		4	24	1	0	5	7
2021 00 11 00:10:00	Ü		ŭ		•	•		•			ŭ	Ü	•
2021-09-14 10:00:00	1	15	3	9	2	1		2	22	1	0	1	1
2021-09-14 10:15:00	2	27	7	4	2	4		1	34	0	0	6	2
2021-09-14 10:30:00	9	22	6	12	5	1		2	28	1	0	2	1
2021-09-14 10:45:00	2	35	8	9	4	1		2	21	1	2	4	2
2021-03-14 10.45.00	2	33	U	3	-			2	21	'	2	7	2
2021-09-14 11:00:00	5	18	7	6	2	1		2	32	1	0	7	4
2021-09-14 11:15:00	1	26	4	8	5	1		2	30	1	1	5	2
2021-09-14 11:30:00	i	26	6	9	7	1		5	31	1	2	3	0
2021-09-14 11:45:00	4	26	6	9	2	4		1	18	0	1	1	4
2021 00 14 11.40.00	-	20	Ü	· ·	-	7		•	10	•		•	-
2021-09-14 12:00:00	5	29	9	9	4	0		1	26	1	2	4	4
2021-09-14 12:15:00	3	27	6	13	3	2		4	25	0	1	2	2
2021-09-14 12:30:00	4	33	12	10	6	2		1	20	1	Ö	7	3
2021-09-14 12:45:00	3	42	7	4	10	1		5	37	0	2	3	2
2021 00 14 12.40.00	O	72	•	-	10			Ü	01	•	-	Ü	-
2021-09-14 13:00:00	3	22	7	8	3	1		3	25	0	1	4	9
2021-09-14 13:15:00	0	22	11	6	5	2		1	35	0	1	8	8
2021-09-14 13:30:00	5	21	6	11	4	0		2	26	1	1	10	2
2021-09-14 13:45:00	4	37	4	3	10	2		1	30	Ö	Ö	6	3
2021 00 14 10.40.00	-	01	7	Ü	10	-		•	00	•	Ü	Ü	Ü
2021-09-14 14:00:00	1	33	9	10	5	2		3	33	1	0	10	2
2021-09-14 14:15:00	1	31	8	11	6	4		5	30	0	0	6	0
2021-09-14 14:30:00	5	32	12	9	13	0		0	32	2	Ő	5	5
2021-09-14 14:45:00	7	43	6	12	12	1		1	50	4	2	9	6
	•		-	· -				-			_	-	-
2021-09-14 15:00:00	3	27	6	8	13	2		5	38	0	3	5	2
2021-09-14 15:15:00	2	45	11	16	10	2		8	37	2	0	9	5
2021-09-14 15:30:00	4	49	6	13	18	1		1	44	1	3	12	5
2021-09-14 15:45:00	6	33	15	13	16	2		6	39	1	0	12	4
2021 00 11 10:10:00	·	00	.0			-		·	00	·	ŭ		
2021-09-14 16:00:00	3	51	8	25	16	1		5	46	0	0	3	2
2021-09-14 16:15:00	7	49	10	12	21	3		4	47	1	1	12	5
2021-09-14 16:30:00	8	52	14	18	15	3		5	48	1	0	7	5
2021-09-14 16:45:00	8	46	8	22	16	4		5	60	1	Ő	6	1
	-		-					-			-	-	
2021-09-14 17:00:00	10	47	7	18	27	2		5	54	2	1	10	2
2021-09-14 17:15:00	4	50	13	24	11	3		4	69	1	3	15	3
2021-09-14 17:30:00	6	47	8	23	15	4		4	53	1	2	4	4
2021-09-14 17:45:00	5	45	8	21	7	5		2	39	0	2	9	8
	-	-	-		•	-				-	-		-

							Count Data						
Leg		SR-64			SR-582			SR-64			SR-582		
Direction	5:	Southbound		5: 11	Westbound		5	Northbound		B:	Eastbound		0 " " "
Start Time 2021-09-14 06:00:00	Right 2	Thru 7	Left 9	Right 3	Thru 5	Left 1	Right 0	Thru 14	Left 0	Right 0	Thru 14	Left 4	Growth Rates Southbound 0.08%
2021-09-14 06:05:00	2	19	17	9	4	1	0	18	0	0	13	4	Westbound 0.08%
2021-09-14 06:30:00	1	19	17	4	4	ó	0	16	0	1	13	5	Northbound 0.08%
2021-09-14 06:45:00	4	26	12	6	7	2	2	19	0	ò	10	1	Eastbound 0.08%
	•			-		_	=		-	-			
2021-09-14 07:00:00	0	24	13	7	3	1	1	26	0	0	10	5	Collection Year 2022
2021-09-14 07:15:00	2	28	19	3	3	0	4	22	0	1	20	1	Horizon Year 2044
2021-09-14 07:30:00	0	47	18	4	4	0	6	46	0	0	14	7	
2021-09-14 07:45:00	3	49	17	11	5	1	3	39	0	1	10	2	
2021-09-14 08:00:00	5	32	17	5	5	2	5	25	0	1	7	6	
2021-09-14 08:15:00	4	22	15	7	6	2	2	35	0	0	7	4	
2021-09-14 08:30:00	4	33	5	4	2	9	1	31	0	3	8	6	
2021-09-14 08:45:00	4	36	9	1	6	0	2	33	0	1	14	1	
2021-09-14 09:00:00	1	20	6	4	6	3	3	24	0	0	3	3	
2021-09-14 09:15:00	2	34	6	4	2	1	3	19	1	2	5	2	
2021-09-14 09:30:00	0	27	5	3	7	2	1	25	o o	0	7	3	
2021-09-14 09:45:00	3	22	6	15	7	1	4	24	1	Ö	5	7	
2021 00 11 00.10.00	Ü		Ü	.0	•		·			•	Ü	•	
2021-09-14 10:00:00	1	15	3	9	2	1	2	22	1	0	1	1	
2021-09-14 10:15:00	2	27	7	4	2	4	1	35	0	0	6	2	
2021-09-14 10:30:00	9	22	6	12	5	1	2	28	1	0	2	1	
2021-09-14 10:45:00	2	36	8	9	4	1	2	21	1	2	4	2	
2021-09-14 11:00:00	5	18	7	6	2	1	2	33	1	0	7	4	
2021-09-14 11:15:00	1	26	4	8	5	1	2	31	1	1	5	2	
2021-09-14 11:30:00	1	26	6	9	7	1	5	32	1	2	3	0	
2021-09-14 11:45:00	4	26	6	9	2	4	1	18	0	1	1	4	
2021-09-14 12:00:00	5	30	9	9	4	0	1	26	1	2	4	4	
2021-09-14 12:15:00	3	27	6	13	3	2	4	25	ó	1	2	2	
2021-09-14 12:30:00	4	34	12	10	6	2	1	20	1	Ö	7	3	
2021-09-14 12:45:00	3	43	7	4	10	1	5	38	Ó	2	3	2	
2021-03-14 12.40.00		-10		-	10		•	50		-		-	
2021-09-14 13:00:00	3	22	7	8	3	1	3	25	0	1	4	9	
2021-09-14 13:15:00	0	22	11	6	5	2	1	36	0	1	8	8	
2021-09-14 13:30:00	5	21	6	11	4	0	2	26	1	1	10	2	
2021-09-14 13:45:00	4	38	4	3	10	2	1	31	0	0	6	3	
2021-09-14 14:00:00	1	34	9	10	5	2	3	34	1	0	10	2	
2021-09-14 14:15:00	1	32	8	11	6	4	5	31	0	0	6	0	
2021-09-14 14:30:00	5	33	12	9	13	0	0	33	2	0	5	5	
2021-09-14 14:45:00	7	44	6	12	12	1	1	51	4	2	9	6	
2021-09-14 15:00:00	3	27	6	8	13	2	5	39	0	3	5	2	
2021-09-14 15:15:00	2	46	11	16	10	2	8	38	2	0	9	5	
2021-09-14 15:30:00	4	50	6	13	18	1	1	45	1	3	12	5	
2021-09-14 15:45:00	6	34	15	13	16	2	6	40	i .	Ö	12	4	
	-					_	-		-	-			
2021-09-14 16:00:00	3	52	8	25	16	1	5	47	0	0	3	2	
2021-09-14 16:15:00	7	50	10	12	21	3	4	48	1	1	12	5	
2021-09-14 16:30:00	8	53	14	18	15	3	5	49	1	0	7	5	
2021-09-14 16:45:00	8	47	8	22	16	4	5	61	1	0	6	1	
2021 00 14 17:00:00	10	40	7	18	27	2	5	55	2	1	10	2	
2021-09-14 17:00:00 2021-09-14 17:15:00	10 4	48 51	13	18 24	11	3	5	55 70	1	3	10 15	3	
2021-09-14 17:30:00	6	48	8	23	15	4	4	54	1	2	4	4	
2021-09-14 17:45:00	5	46	8	23 21	7	5	2	40	0	2	9	8	
2021-03-14 17.43.00	3	70	3	21	,		2	70		-	,	U	

Appendix HSpeed Zone Analysis

Location: SR-64, Between High Street and Perry Street @ ~209 N Findlay Road

Date: 6/29/2022 Day: Wednesday County: Wood

Observer: LRY & CMC

Pavement Type: Asphalt Dry: X Wet: Condition: Fair Width: 26'

Weather: Sunny Temperature: 81°F

	South	ound, Tii	me: 1:00-2:00 PM	1		No	orthbound, Tim	e: 2:00-3	:00 PM	
C =	Comme		Vehic	cles	MADIL	Vehic	cles		Comme	C
Com. %	Cum. Total	No.	Passenger	Communicati	MPH	Passenger	Comercancial	No.	Cum. Total	Com. %
70	TOtal		Cars	Commercial		Cars	Commercial		TOtal	70
100.00%	101	0			Over			0	101	100.00%
100.00%	101	0			90			0	101	100.00%
100.00%	101	0			88			0	101	100.00%
100.00%	101	0			86			0	101	100.00%
100.00%	101	0			84			0	101	100.00%
100.00%	101	0			82			0	101	100.00%
100.00%	101	0			80			0	101	100.00%
100.00%	101	0			78			0	101	100.00%
100.00%	101	0			76			0	101	100.00%
100.00%	101	0			74			0	101	100.00%
100.00%	101	0			72			0	101	100.00%
100.00%	101	0			70			0	101	100.00%
100.00%	101	0			68			0	101	100.00%
100.00%	101	0			66			0	101	100.00%
100.00%	101	0			64			0	101	100.00%
100.00%	101	0			62			0	101	100.00%
100.00%	101	0			60			0	101	100.00%
100.00%	101	0			58			0	101	100.00%
100.00%	101	0			56			0	101	100.00%
100.00%	101	0			54			0	101	100.00%
100.00%	101	0			52			0	101	100.00%
100.00%	101	0			50			0	101	100.00%
100.00%	101	0			48			0	101	100.00%
100.00%	101	0			46			0	101	100.00%
100.00%	101	1	I		44	I		1	101	100.00%
99.01%	100	0			42	l		1	100	99.01%
99.01%	100	2	II		40			0	99	98.02%
97.03%	98	3	III		38	II		2	99	98.02%
94.06%	95	16	- -	II	36	III		3	97	96.04%
78.22%	79	17	- - -		34	- - -		15	94	93.07%
61.39%	62	19	- -		32	- - -		15	79	78.22%
42.57%	43	31	- - - -		30	1111-1111-1111-1111		24	64	63.37%
11.88%	12	9	1111-1111		28	- - -	l	16	40	39.60%
2.97%	3	2	II		26	- - -	I	16	24	23.76%
0.99%	1	1	I		24	III		3	8	7.92%
0.00%	0	0			22	III	II	5	5	4.95%
0.00%	0	0			20			0	0	0.00%
0.00%	0	0			18			0	0	0.00%
0.00%	0	0			16			0	0	0.00%
0.00%	0	0			14			0	0	0.00%
0.00%	0	0			Below			0	0	0.00%
		101	99	2	Totals	97	4	101		

SB NB

Percentile	Speed
50th	32
85th	36

Percentile	Speed
50th	30
85th	34

Percentile	Speed			
50th	30			
85th	34			

Location: SR-64, South of Church Street @ Park Parking Lot Access

Date: 6/30/2022 Day: Thursday County: Wood

Observer: LRY & CMC

Pavement Type: Asphalt Dry: X Wet: Condition: Fair Width: 27' (Not inc

Weather: Sunny Temperature: 88°F

Southbound, Time: 1:00-1:50 PM						Northbound, Time: 2:00-2:45 PM				
Cama	om. Cum. Vehicles		MPH	Vehicles			Course	C = 111		
Com.		No.	Passenger		WIPH	Passenger		No.	Cum.	Com.
%	Total		Cars	Commercial		Cars	Commercial		Total	%
100.00%	100	0			Over			0	100	100.00%
100.00%	100	0			90			0	100	100.00%
100.00%	100	0			88			0	100	100.00%
100.00%	100	0			86			0	100	100.00%
100.00%	100	0			84			0	100	100.00%
100.00%	100	0			82			0	100	100.00%
100.00%	100	0			80			0	100	100.00%
100.00%	100	0			78			0	100	100.00%
100.00%	100	0			76			0	100	100.00%
100.00%	100	0			74			0	100	100.00%
100.00%	100	0			72			0	100	100.00%
100.00%	100	0			70			0	100	100.00%
100.00%	100	0			68			0	100	100.00%
100.00%	100	0			66			0	100	100.00%
100.00%	100	0			64			0	100	100.00%
100.00%	100	0			62			0	100	100.00%
100.00%	100	0			60			0	100	100.00%
100.00%	100	0			58			0	100	100.00%
100.00%	100	0			56			0	100	100.00%
100.00%	100	0			54			0	100	100.00%
100.00%	100	0			52			0	100	100.00%
100.00%	100	0			50	I		1	100	100.00%
100.00%	100	0			48	IIII-I		6	99	99.00%
100.00%	100	0			46	IIII-I		6	93	93.00%
100.00%	100	2	II		44	- - -		16	87	87.00%
98.00%	98	5	IIII-		42	- - -		15	71	71.00%
93.00%	93	9	1111-1111		40	- - -		20	56	56.00%
84.00%	84	14	- -		38	- -		13	36	36.00%
70.00%	70	14	- -	I	36	-		9	23	23.00%
56.00%	56	20	- - -	II	34	IIII-		5	14	14.00%
36.00%	36	20	- - -	I	32	IIII		4	9	9.00%
16.00%	16	7	-		30	II		2	5	5.00%
9.00%	9	5	-		28	III		3	3	3.00%
4.00%	4	3	II	I	26			0	0	0.00%
1.00%	1	1	I		24			0	0	0.00%
0.00%	0	0			22			0	0	0.00%
0.00%	0	0			20			0	0	0.00%
0.00%	0	0			18			0	0	0.00%
0.00%	0	0			16			0	0	0.00%
0.00%	0	0			14			0	0	0.00%
0.00%	0	0			Below			0	0	0.00%
		100	95	5	Totals	100	0	100		

SB

Percentile	Speed			
50th	34			
85th	40			

NB						
Percentile	Speed					
50th	40					
85th	44					

Percentile	Speed
50th	38
85th	44

Location: SR-64, South of Kingsbury Avenue

Date: 6/29/2022 Day: Wednesday County: Wood

Observer: LRY & CMC

Pavement Type: Asphalt Dry: X Wet: Condition: Fair Width: 24'

Weather: Partly Cloudy Temperature: 72°F

	Southbound, Time: 10:00-11:00 AM					No	thbound, Time: 10:00-10:50 AM			
Com	Com. Cum. Vehicles		MPH	Vehi		Cura	6			
% %	Total	No.	Passenger Cars	Commercial	IVIPTI	Passenger Cars	Commercial	No.	Cum. Total	Com. %
100.00%	87	0			Over			0	100	100.00%
100.00%	87	0			90			0	100	100.00%
100.00%	87	0			88			0	100	100.00%
100.00%	87	0			86			0	100	100.00%
100.00%	87	0			84			0	100	100.00%
100.00%	87	0			82			0	100	100.00%
100.00%	87	0			80			0	100	100.00%
100.00%	87	0			78			0	100	100.00%
100.00%	87	0			76			0	100	100.00%
100.00%	87	0			74			0	100	100.00%
100.00%	87	0			72			0	100	100.00%
100.00%	87	0			70			0	100	100.00%
100.00%	87	0			68			0	100	100.00%
100.00%	87	0			66			0	100	100.00%
100.00%	87	0			64			0	100	100.00%
100.00%	87	0			62			0	100	100.00%
100.00%	87	1	I		60			0	100	100.00%
98.85%	86	0			58			0	100	100.00%
98.85%	86	0			56			0	100	100.00%
98.85%	86	3	III		54			0	100	100.00%
95.40%	83	2	II		52	II		2	100	100.00%
93.10%	81	7	-		50	II		2	98	98.00%
85.06%	74	4	III	l	48	II		2	96	96.00%
80.46%	70	7	-		46	IIII		4	94	94.00%
72.41%	63	11	- -		44	1111-1111-111	I	14	90	90.00%
59.77%	52	17	- - -		42	- - -	I	17	76	76.00%
40.23%	35	14	- -		40	- -	II	15	59	59.00%
24.14%	21	7	-		38	- - -	II	17	44	44.00%
16.09%	14	5	IIII-		36	- -	II	15	27	27.00%
10.34%	9	7	-		34	IIII-		5	12	12.00%
2.30%	2	2	II		32	IIII		4	7	7.00%
0.00%	0	0			30	III		3	3	3.00%
0.00%	0	0			28			0	0	0.00%
0.00%	0	0			26			0	0	0.00%
0.00%	0	0			24			0	0	0.00%
0.00%	0	0			22			0	0	0.00%
0.00%	0	0			20			0	0	0.00%
0.00%	0	0			18			0	0	0.00%
0.00%	0	0			16			0	0	0.00%
0.00%	0	0			14			0	0	0.00%
0.00%	0	0			Below			0	0	0.00%
		87	86	1	Totals	92	8	100		

SB I

Percentile	Speed
50th	42
85th	50

INL	,
Percentile	Speed
50th	40
85th	44

COIIII	onica
Percentile	Speed
50th	40
85th	46

Location: SR-64, South of Middleton Pike @ ~20760 Haskins Road

Date: 6/30/2022 Day: Thursday County: Wood

Observer: LRY & CMC

Pavement Type: Asphalt Dry: X Wet: Condition: Fair Width: 22'

Weather: Sunny Temperature: 81°F

Southbound, Time: 9:30-10:30 AM						Northbound, Time: 10:30-11:30 AM				
			Vehic		MPH	Vehi				
Com.	Cum.	No.	Passenger		MPH	Passenger		No.	Cum.	Com.
%	Total		Cars	Commercial		Cars	Commercial		Total	%
100.00%	92	0			Over			0	80	100.00%
100.00%	92	0			90			0	80	100.00%
100.00%	92	0			88			0	80	100.00%
100.00%	92	0			86			0	80	100.00%
100.00%	92	0			84			0	80	100.00%
100.00%	92	0			82			0	80	100.00%
100.00%	92	0			80			0	80	100.00%
100.00%	92	0			78			0	80	100.00%
100.00%	92	0			76			0	80	100.00%
100.00%	92	0			74			0	80	100.00%
100.00%	92	0			72			0	80	100.00%
100.00%	92	0			70			0	80	100.00%
100.00%	92	1	1		68			0	80	100.00%
98.91%	91	0			66	I		1	80	100.00%
98.91%	91	0			64			0	79	98.75%
98.91%	91	1	I		62			0	79	98.75%
97.83%	90	1	I		60	II		2	79	98.75%
96.74%	89	4	IIII		58	III		3	77	96.25%
92.39%	85	8	1111-111		56	1111-1111-11		12	74	92.50%
83.70%	77	14	1111-1111-111	l	54	1111-1111		9	62	77.50%
68.48%	63	14	- -	l	52	- - -	II	19	53	66.25%
53.26%	49	21	- - -	II	50	1111-1111-11		12	34	42.50%
30.43%	28	10	- -		48	-	I	8	22	27.50%
19.57%	18	7	IIII-II		46	IIII-I	I	7	14	17.50%
11.96%	11	5	IIII	I	44	IIII-		5	7	8.75%
6.52%	6	2	II		42	II		2	2	2.50%
4.35%	4	2	II		40			0	0	0.00%
2.17%	2	1	I		38			0	0	0.00%
1.09%	1	1	I		36			0	0	0.00%
0.00%	0	0			34			0	0	0.00%
0.00%	0	0			32			0	0	0.00%
0.00%	0	0			30			0	0	0.00%
0.00%	0	0			28			0	0	0.00%
0.00%	0	0			26			0	0	0.00%
0.00%	0	0			24			0	0	0.00%
0.00%	0	0			22			0	0	0.00%
0.00%	0	0			20			0	0	0.00%
0.00%	0	0			18			0	0	0.00%
0.00%	0	0			16			0	0	0.00%
0.00%	0	0			14			0	0	0.00%
0.00%	0	0			Below			0	0	0.00%
		92	87	5	Totals	76	4	80	1	

SB

 Percentile
 Speed

 50th
 50

 85th
 56

NB
Percentile Speed
50th 52
85th 56

Percentile	Speed
50th	52
85th	56

Village of Haskins

SR-64 Speed Zone Proposals

Option 1: Existing Statutory Speed Limits

Village of Haskins

SR-64 Speed Zone Proposals Option 2

Village of Haskins

SR-64 Speed Zone Proposals Option 3

Ohio Department of Transportation

For Highways with less than 50% of all crossroads grade separated

TEM FORM 1296-2

		CON	IPLETE ALI	GREEN S	HADED AR	REAS			
ROUTE NAME: N Findlay St					ROUTE NUMBER: SR-64				
BEGIN STUDY AT:	Greenwoo	d Dr				COUN	TY: Wo	od	
BEGIN LOGPOINT:	: 9.89				TOWNSH	IP / MUNICIPALI	TY: Villa	age of Haskins	
END STUDY AT:	North Corp	oration Limi	t			JURISDICTIO	N: Villa	age of Haskins	
END LOGPOINT:	10.47				EXIS	TING SPEED LIM	IT (MPH):	50	
LENGTH (MILE): 0.58					AVER	AGE DAILY TRAF	FIC (ADT):	3968	
REFER TO SE	ECTION 12	203 OF THE	TRAFFIC	ENGINEER	RING MANU	JAL FOR ADI	DITIONA	L GUIDANCE	
No. of Houses or Farms			23						
No. of Small Businesses,	Apts./Condo	os	0	NAt bassa	l:		-4d:d		
No. of Medium Business	es, Apts./Co	ndos	0	Must have c	irect access to	the roadway being	stualea.		
No. of Major Businesses	, Apts./Cond	os	0						
No. of Minor Street Inte	rsections		1	Subdivision,	Residential, or	Other streets servi	ng the resid	lents of that street.	
No. of Major Street Inte	rsections		1	Streets which	h serve both th	e residents and co	mmuters of	the area.	
No. of Signalized/Round	about Inters	ections	0	Do not inclu	de intersections	s at the beginning o	or end of th	e section.	
No. of Interchange Ramp	ps		0	Do not inclu	de Loop ramps	at the beginning o	end of the	section.	
Lane Width (Round down	to nearest foo	t)	12	General wid	th of through la	ines throughout th	e section.		
Shoulder Width (Round d	own to neares	t foot)	5	General sho	ulder width thro	oughout the sectio	n.		
No. of Property Damage	Only Crashe	es .	4	Latest three years of data					
No. of Injury Crashes			0	Weighted value is 2x that of a Property Damage Only Crash					
No. of Fatal Crashes			0	Weighted va	alue is 4x that o	f a Property Damaរូ	ge Only Cras	sh	
Presence of Vulnerable I	Road Users		Not High	Pedestrians	/ Bicyclists / An	nish Buggies / etc			
Urban Features			No	Sidewalks / Crosswalks / Curb & Gutter / On-Street Parking / Street Lighting / etc					
50 th Percentile Speed			46	Average of all speed samples that were taken.					
85 th Percentile Speed			51	Average of all speed samples that were taken.					
10-mph Pace Speed		42	to	51	Average of a	II speed samples t	nat were tal	ken.	
Roadway Characteristics	5		A1	CATEG	ORIES:	C B3 E	2 B1	A3 A2 A1 D	
Го View Calculation Sheet or E	Examples of Ro	adway Charac	teristics and Cra	ashes to Includ	e , use Buttons E	Below.			
CALCULATI	ON SHEET		ROADWA	AY CHARACT	ERISTICS	CI	RASHES T	O INCLUDE	
CALCULATED SPEED:	51	мрн ч	JSLIMITS2 SI	PEED: 5	0 МРН	REQUESTE	O SPEED:	МРН	
L									
		ADDIT	IONAL CONS	IDERATION	S AND COMI	VIENTS			
STUDY BY:	CMC				DATE:	August 8,	2022		
3100101.['				
	•	*INCLUDE THI				IITTING THIS FOR	RM*		
			BELOW F	OR ODOT U	SE ONLY				
HECKED BY: Waterfield TEST RUN: 53 MPH APPROVED SPEED: 50 MPH									

USLIMITS2 Speed Zoning Report

Project Overview

Project Name: Haskins

Analyst: Waterfield

Basic Project Information

Project Number: 3 Route Name: SR-64

From: 9.89 To: 10.47 State: Ohio

County: Wood County City: Haskins village

Route Type: Road Section in Developed Area

Route Status: Existing

Roadway Information

Section Length: 0.58 mile(s)
Statutory Speed Limit: 50 mph
Existing Speed Limit: 50 mph

Adverse Alignment: No One-Way Street: No

Divided/Undivided: Undivided Number of Through Lanes: 2

Area Type: Residential-Collector/Arterial

Number of Driveways: 25 Number of Signals: 0

Project Description: Greenwood to North Corp Limit

Recommended Speed Limit:

SPEED LIMIT 50

Date: 2022-12-02

Crash Data Information

Crash Data Years: 0 Crash AADT: N/A

Total Number of Crashes: N/A
Total Number of Injury Crashes: N/A

Traffic Information

85th Percentile Speed: 51 mph 50th Percentile Speed: 46 mph

AADT: 3968 veh/day

On Street Parking and Usage: Not High Pedestrian / Bicyclist Activity: Not High

Note: Crash data were not entered for this project. A comprehensive crash study is a critical component of any traffic engineering study. We suggest that you repeat this process when crash data become available.

Disclaimer: The U.S. Government assumes no liability for the use of the information contained in this report. This report does not constitute a standard, specification, or regulation.

Ohio Department of Transportation

For Highways with less than 50% of all crossroads grade separated

TEM FORM 1296-2

		CON	IPLETE ALI	GREEN S	HADED AR	REAS			
ROUTE NAME:	N Findlay					ROUTE NUMI	BER: SR-	64	
BEGIN STUDY AT:	Park Entra					COU	NTY: Wo	od	
BEGIN LOGPOINT:	9.35				TOWNSHI	IP / MUNICIPAL	.ITY: Villa	age of Haskins	
END STUDY AT:	Kingsbury	Ave				JURISDICTI	ON: Villa	age of Haskins	
END LOGPOINT:	10.09				EXIS	TING SPEED LIN	ЛІТ (MPH):	35	
LENGTH (MILE):	0.74				AVERA	AGE DAILY TRA	FFIC (ADT):	5037	
REFER TO SE	ECTION 12	203 OF THE	TRAFFIC	ENGINEER	RING MANU	JAL FOR AD	DITIONA	L GUIDANCE	
No. of Houses or Farms			44						
No. of Small Businesses,	Apts./Condo	os	12	NAat la access al	:				
No. of Medium Business	es, Apts./Co	ndos	0	Must have o	irect access to t	the roadway bein	g studied.		
No. of Major Businesses	, Apts./Cond	os	0						
No. of Minor Street Inte	rsections		6	Subdivision,	Residential, or	Other streets serv	ving the resid	dents of that street.	
No. of Major Street Inte	rsections		0	Streets whic	h serve both th	e residents and co	ommuters of	f the area.	
No. of Signalized/Round	about Inters	ections	0	Do not inclu	de intersections	s at the beginning	or end of th	e section.	
No. of Interchange Ram	ps		0	Do not inclu	de Loop ramps	at the beginning	or end of the	e section.	
Lane Width (Round down	to nearest foo	t)	13	General wid	th of through la	ines throughout t	he section.		
Shoulder Width (Round d	own to neares	t foot)	4	General sho	ulder width thro	oughout the secti	on.		
No. of Property Damage	Only Crashe	es .	0	Latest three	years of data				
No. of Injury Crashes			0	Weighted va	lue is 2x that of	f a Property Dama	age Only Cra	sh	
No. of Fatal Crashes			0	Weighted va	lue is 4x that of	f a Property Dama	age Only Cra	sh	
Presence of Vulnerable I	Road Users		High	Pedestrians	/ Bicyclists / Am	nish Buggies / etc			
Urban Features			Yes	Sidewalks /	Crosswalks / Cu	rb & Gutter / On-	Street Parkir	ng / Street Lighting / et	c
50 th Percentile Speed			37	Average of a	III speed sample	es that were taker	ո.		
85 th Percentile Speed			43	Average of a	II speed sample	es that were taker	ո.		
10-mph Pace Speed		36	to	45	Average of a	II speed samples	that were ta	ken.	
Roadway Characteristics	5		A1	CATEG	ORIES:	С ВЗ	B2 B1	A3 A2 A1	DIV
To View Calculation Sheet or E	Examples of Ro	adway Charac	teristics and Cra	ashes to Includ	e , use Buttons E	Below.			
CALCULATI	ON SHEET		ROADWA	AY CHARACT	ERISTICS		CRASHES T	O INCLUDE	
CALCULATED SPEED:	41	МРН (JSLIMITS2 SI	PEED: 3	5 МРН	REQUESTI	ED SPEED:	МРН	
		ADDIT	IONAL CONS	IDERATION:	S AND COM	MENTS			
STUDY BY-	STUDY BY: CMC DATE: August 8, 2022								
310313[_			'				
		INCLUDE THI				IITTING THIS FO	PRM		
			BELOW	OR ODOT U	SE ONLY				
CHECKED BY:	Waterfield	T	EST RUN:	39	МРН	APPROVED	SPEED:	40 MPF	·

USLIMITS2 Speed Zoning Report

Project Overview

Project Name: Haskins

Analyst: Waterfield

Basic Project Information

Project Number: 2 Route Name: SR-64

From: 9.35 To: 10.09 State: Ohio

County: Wood County City: Haskins village

Route Type: Road Section in Developed Area

Route Status: Existing

Roadway Information

Section Length: .74 mile(s) Statutory Speed Limit: 50 mph Existing Speed Limit: 35 mph Adverse Alignment: No

One-Way Street: No

Divided/Undivided: Undivided Number of Through Lanes: 2

Area Type: Residential-Collector/Arterial

Number of Driveways: 56 Number of Signals: 0

Project Description: Park to Kingsbury

Recommended Speed Limit:

SPEED LIMIT 35

Date: 2022-11-01

Crash Data Information

Crash Data Years: 0 Crash AADT: N/A

Total Number of Crashes: N/A
Total Number of Injury Crashes: N/A

Traffic Information

85th Percentile Speed: 43 mph 50th Percentile Speed: 37 mph

AADT: 5037 veh/day

On Street Parking and Usage: Not High Pedestrian / Bicyclist Activity: High

Note: Crash data were not entered for this project. A comprehensive crash study is a critical component of any traffic engineering study. We suggest that you repeat this process when crash data become available.

Note: The road section is in an area with high pedestrian or bicycle activity. Consider implementing engineering measures to reduce speeds before lowering the recommended speed limit. See Engineering Countermeasures for Speed Management and PedSafe for more guidance.

Disclaimer: The U.S. Government assumes no liability for the use of the information contained in this report. This report does not constitute a standard, specification, or regulation.

Ohio Department of Transportation

For Highways with less than 50% of all crossroads grade separated

TEM FORM 1296-2

		CON	IPLETE ALI	. GREEN S	HADED AF	REAS				
ROUTE NAME: N F	indlay S	it				ROUTE NUMB	SER: SR-6	64		
BEGIN STUDY AT: Par	rk Entra	nce				COUN	ITY: Woo	od		
BEGIN LOGPOINT: 9.3	5				TOWNSH	IP / MUNICIPAL	ITY: Villa	ge of Haskins		
END STUDY AT: Gre	eenwoo	d Dr				JURISDICTI	ON: Villa	ge of Haskins		
END LOGPOINT: 9.8	9				EXISTING SPEED LIMIT (MPH): 35					
LENGTH (MILE): 0.5	4				AVER	AGE DAILY TRAF	FIC (ADT):	5037		
REFER TO SECTI	ON 12	03 OF THE	TRAFFIC	ENGINEER	RING MAN	UAL FOR AD	DITIONA	L GUIDANCE		
No. of Houses or Farms			32							
No. of Small Businesses, Apts	./Condo	s	12	Must have d	iract accors to	the readway being	r studiod			
No. of Medium Businesses, A	pts./Co	ndos	0	iviust nave u	nect access to	the roadway being	g studied.			
No. of Major Businesses, Apts	s./Cond	os	0							
No. of Minor Street Intersecti	ions		5	Subdivision,	Residential, or	Other streets serv	ing the resid	ents of that street.		
No. of Major Street Intersecti	ions		0	Streets whic	h serve both th	ne residents and co	mmuters of	the area.		
No. of Signalized/Roundabou	t Interse	ections	0	Do not inclu	de intersection	is at the beginning	or end of the	e section.		
No. of Interchange Ramps			0	Do not inclu	de Loop ramps	at the beginning o	or end of the	section.		
Lane Width (Round down to nea	arest foot	t)	13	General wid	th of through la	anes throughout th	ne section.			
Shoulder Width (Round down to	o neares	t foot)	4	General sho	ulder width thr	oughout the section	on.			
No. of Property Damage Only	Crashe	s	0	Latest three	years of data					
No. of Injury Crashes			0	Weighted va	lue is 2x that o	of a Property Dama	ge Only Cras	h		
No. of Fatal Crashes			0	Weighted va	lue is 4x that o	of a Property Dama	ge Only Cras	h		
Presence of Vulnerable Road	Users		High	Pedestrians	/ Bicyclists / Ar	mish Buggies / etc.				
Urban Features			Yes	Sidewalks /	Sidewalks / Crosswalks / Curb & Gutter / On-Street Parking / Street Lighting / etc					
50 th Percentile Speed			34	Average of a	Average of all speed samples that were taken.					
85 th Percentile Speed			40	Average of a	ll speed sampl	es that were taken	ı .			
10-mph Pace Speed		30	to	39	Average of	all speed samples t	hat were tak	en.		
Roadway Characteristics			A1	CATEG	ORIES:	C B3 I	B2 B1	A3 A2 A1 DIV		
To View Calculation Sheet or Examp	les of Ro	adway Charac	teristics and Cra	ashes to Includ	e, use Buttons	Below.				
CALCULATION S	HEET		ROADWA	AY CHARACT	ERISTICS	C	RASHES T	O INCLUDE		
CALCIU ATED SPEED.	40	1 A D L L	JSLIMITS2 SI	DEED. 3	E AADU	DEOLIECTE	D CDEED.	a a pu		
CALCULATED SPEED:	40	MPH U	JSLIIVII I SZ SI	PEED: 3	5 МРН	REQUESTE	D SPEED:	МРН		
		ADDIT	IONAL CONS	IDERATIONS	AND COM	MENTS				
STUDY BY: CN	ИC				DATE:	August 8,	2022			
3103131.										
	a	INCLUDE THE	E RELATED RE	SOLUTION(S)	WHEN SUBN	MITTING THIS FO	RM*			
			BELOW F	OR ODOT U	SE ONLY					
CHECKED BY: Wate	erfield		EST RUN:	37	MPH	APPROVED	SDEED.	35 MPH		
VVale	erneit		LJI KUN:	31	IVIFП	AFFRUVED	JEED:	IVIFI		

USLIMITS2 Speed Zoning Report

Project Overview

Project Name: Haskins

Analyst: Waterfield

Basic Project Information

Project Number: 1 Route Name: SR-64

From: 9.35 To: 9.89 State: Ohio

County: Wood County City: Haskins village

Route Type: Road Section in Developed Area

Route Status: Existing

Roadway Information

Section Length: .54 mile(s) Statutory Speed Limit: 50 mph Existing Speed Limit: 35 mph Adverse Alignment: No

One-Way Street: No

Divided/Undivided: Undivided Number of Through Lanes: 2

Area Type: Residential-Collector/Arterial

Number of Driveways: 44 Number of Signals: 0

Project Description: Park to Greenwood

Recommended Speed Limit:

SPEED LIMIT

Date: 2022-11-01

Crash Data Information

Crash Data Years: 0
Crash AADT: N/A

Total Number of Crashes: N/A
Total Number of Injury Crashes: N/A

Traffic Information

85th Percentile Speed: 40 mph 50th Percentile Speed: 34 mph

AADT: 5037 veh/day

On Street Parking and Usage: Not High Pedestrian / Bicyclist Activity: High

Note: Crash data were not entered for this project. A comprehensive crash study is a critical component of any traffic engineering study. We suggest that you repeat this process when crash data become available.

Note: The road section is in an area with high pedestrian or bicycle activity. Consider implementing engineering measures to reduce speeds before lowering the recommended speed limit. See Engineering Countermeasures for Speed Management and PedSafe for more guidance.

Disclaimer: The U.S. Government assumes no liability for the use of the information contained in this report. This report does not constitute a standard, specification, or regulation.

Appendix IHSM Outputs and CMFs

Highway Safety Manual

The predictive method described in Part C of the Highway Safety Manual provides steps to estimate the expected average crash frequency of a site for a given time period, geometric design, traffic control features, and traffic volumes. The expected average crash frequency (Nexpected) is estimated using a predictive model estimate of crash frequency for a specific site type (Npredicted) together with observed crash frequency (where available).

Predicted average crash frequency: This step involves determination of the predicted crash frequency, which reflects how a site would be expected to perform relative to 1,000 similar sites. Calculation of predicted crash frequency utilizes Safety Performance Functions (SPF) for a base condition. Crash Modification Factors (CMF) are applied to account for specific site characteristics that differ from the base condition. A state-level calibration factor is then applied to normalize the base condition to localized conditions. The resulting value is the Predicted Crash Frequency (Npredicted).

Expected average crash frequency: The next step involves calculation of the expected average crash frequency, which reflects average performance of the site over an extended period of time based on actual crash history. This step incorporates the Empirical Bayes (EB) method, which combines actual (observed) crash history of the study site with predicted average crash frequency. These values are weighted based on an over-dispersion parameter (k) that is the measure of the strength of the model (safety performance factors). The resulting value is the expected average crash frequency (Nexpected).

The difference between the predicted and expected average crash frequencies is termed the "Expected Excess Crashes" for the site, as shown in the figure below. If the expected average crash frequency is greater than the predicted average crash frequency, then the site has potential for safety improvement. If expected frequency is less than predicted frequency, then the site is expected to experience fewer crashes per year on average than its peers.

EGAT	Project Informati	ion	
Economic Grash Analysis Tool	General Information	on	
Project Name	WOO-582-2.61	Contact Email	gbalsamo@cmtran.com
Project Description	Safety Study	Contact Phone	614-656-2429
Reference Number	117091	Date Performed	8/11/2022
Analyst	Gina Balsamo	Analysis Year	2021
Agency/Company	Carpenter Marty Transportation		
Perform Benefit Cost Analysis?	Yes		

Do the proposed improvements fundamentally change the conditions of the base safety performance function (SPF),	
Or is crash data unavailable for the analysis condition,	No
Or is only predicted (and not expected) analysis needed for the existing or proposed condition?	

(Examples: unsignalized to signalized, undivided to divided, increase or decrease in the number of lanes, change the number of approaches to an intersection, significant realignment of the roadway)

Project Elements	Project Elements Description Table									
			Location Information							
Project Element ID (Must be Unique)	Site Type	Intersection Control Type	NLFID	Begin Logpoint/ Intersection Midpoint	End Logpoint (Leave blank for Intersection)	Intersection Radius Buffer (mi)	Cross Route NLFID(s)	Common Name		
SR64; 9.16	Rural Two-Lane Two Way Intersection	Unsignalized	SWOOSR00064**C	9.16		0.05	SWOOSR005	SR-64 & SR-582		

Traffic Volume Growth Rate Calculation For Benefit Cost Analysis								
Year AADT								
Present ADT (PADT)			veh / day					
Future ADT (FADT)			veh / day					
Annual Linear Growth Rate		0.0008						

	Select Other Non-Site Characteristic Based Cou	ntermeasure	s For Entire	Project			
CMF Nbr	Countermeasure I I CME R Value I CME C Value I CME O Value I						
CMF 1	Convert intersection with minor-road stop control to modern roundabout (Rural)	0.13	0.13	0.13	0.29	2 / 10	

ECAT	Project Safety	Project Safety Performance Report					
Economic Crash Analysis Tool	Gen	eral Information					
Project Name	WOO-582-2.61	Contact Email	gbalsamo@cmtran.com				
Project Description	Safety Study	Contact Phone	614-656-2429				
Reference Number	117091	Date Performed	8/11/2022				
Analyst	Gina Balsamo	Analysis Year	2021				
Agency/Company	Carpenter Marty Transportation						

Project Summary Results (Without Animal Crashes)									
KA B C O Total									
N _{predicted} - Existing Conditions	0.1669	0.4042	0.2691	1.4466	2.2868				
N _{expected} - Existing Conditions	0.2054	0.4979	0.3315	1.4861	2.5209				
N _{potential for improvement} - Existing Conditions	0.0385	0.0937	0.0624	0.0395	0.2341				
N _{expected} - Proposed Conditions	0.1068	0.2588	0.1723	0.7724	1.3103				

	Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)							
Project Element ID	Common Name	Crash Severity Level						
Project Element ID	Common Name	KA B C O						
SR64; 9.16	SR-64 & SR-582	0.1669 0.4042 0.2691 1.4466 2.2868						

	Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)								
Project Element ID	Common Name	Crash Severity Level							
Project Element ID	Common Name	n Name KA B C O							
SR64; 9.16	SR-64 & SR-582	0.2054							

Exi	Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)								
Project Element ID	Project Element ID Common Name Crash Severity Level								
Project Element ID	Common Name	KA	В	С	vel O	Total			
SR64; 9.16	SR-64 & SR-582	0.0385							

	Proposed Conditions Project Element Expected Crash Summary (Without Animal Crashes)							
Project Element ID	Common Name	Crash Severity Level						
Project Element ID	Common Name	KA	В	С	0	Total		
SR64; 9.16	SR-64 & SR-582	0.1068	0.2588	0.1723	0.7724	1.3103		

ECAT	Project Safety	/ Performance Repo	rt				
Economic Grash Analysis Tool	General Information						
Project Name	WOO-582-2.61	Contact Email	gbalsamo@cmtran.com				
Project Description	Safety Study	Contact Phone	614-656-2429				
Reference Number	117091	Date Performed	8/11/2022				
Analyst	Gina Balsamo	Analysis Year	2021				
Agency/Company	Carpenter Marty Transportation						

Summary by Crash Type								
		Proposed						
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency				
Unknown	0.0086	0.0094	0.0008	0.0022				
Head On	0.0184	0.0217	0.0033	0.0039				
Rear End	0.4581	0.5070	0.0489	0.1186				
Backing	0.0862	0.0909	0.0047	0.0255				
Sideswipe - Meeting	0.0623	0.0700	0.0077	0.0153				
Sideswipe - Passing	0.0969	0.1057	0.0088	0.0262				
Angle	0.8178	0.9335	0.1157	0.1917				
Parked Vehicle	0.0763	0.0813	0.0050	0.0219				
Pedestrian	0.0104	0.0127	0.0023	0.0019				
Animal	0.0000	0.0000	0.0000	0.0000				
Train	0.0003	0.0004	0.0001	0.0001				
Pedalcycles	0.0078	0.0094	0.0016	0.0016				
Other Non-Vehicle	0.0002	0.0002	0.0000	0.0000				
Fixed Object	0.3596	0.3960	0.0364	0.0944				
Other Object	0.0125	0.0134	0.0009	0.0036				
Overturning	0.0216	0.0253	0.0037	0.0046				
Other Non-Collision	0.0285	0.0307	0.0022	0.0080				
Left Turn	0.0779	0.0887	0.0108	0.0184				
Right Turn	0.0000	0.0000	0.0000	0.0000				

	Existing Conditions: General Information and Data for Rural Two-Lane Two-Way Intersection								
General Information					Location Information				
Analyst	Gina Balsamo				Route			SR64	
Agency or Company	Carpenter Marty T	ransportation			Logpoint			9.16	
Date Performed	08/11/22				Common Name			SR-64 & SR-582	
Intersection	SR64; 9.16				Analysis Year			2021	
Signalized/Unsignalized	Unsignalized								
Input Data					Existing Conditions		HSM Base Conditions		
Intersection type (3ST, 4ST, 4S	SG)				4ST				
AADT _{major} (veh/day)		$AADT_{MAX} =$	14,700	(veh/day)		3	3,846		
AADT _{minor} (veh/day)		$AADT_{MAX} =$	3,500	(veh/day)			,270		
Intersection skew angle (degre	es)		NI-	No	Skew for Leg	2	Skew for Leg 2		0
Skew Angle Help	Does skew differ t	for minor legs? Else,	NO.	NO	1 (All):	2	(4ST only):		U
Number of uncontrolled approa	aches with a left-turn lane	(0, 1, 2, 3, 4)				0		0	
Number of uncontrolled approaches with a right-turn lane (0, 1, 2, 3, 4)				0		0			
Intersection lighting (present/not present)				Not Present		Not Present			
Calibration Factor, C _i							1.01		1.00
I ocality:					State System				

Proposed Conditions: Data for Rural Two-Lane Two-Way Intersection							
Input Data				Proposed Conditions	Existing Conditions		
Intersection type (3ST, 4ST, 4SG)				4ST	4ST		
AADT _{major} (veh/day)	AADT _{MAX} =	14,700	(veh/day)	3,846	3,846		
AADT _{minor} (veh/day)	AADT _{MAX} =	3,500	(veh/day)	1,270	1,270		
0 (0 /	or minor legs? Else,	No.	No	Skew for Leg 2 1 (All): Skew for Leg 2 (4ST only): 0	12		
Number of uncontrolled approaches with a left-turn land	e (0, 1, 2, 3, 4)			2	0		
Number of uncontrolled approaches with a right-turn la	ne (0, 1, 2, 3, 4)			0	0		
Intersection lighting (present/not present)				Present	Not Present		
Calibration Factor, C _i				1.01	1.01		
Locality:				State System	State System		

Proposed Conditions: CMFs for Rural Two-Lane Two-Way Intersection							
(1)	(2)	(3)	(4)	(5)			
CMF for Intersection Skew Angle	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF			
CMF _{1i}	CMF 2i	CMF 3i	CMF _{4i}	CMF _{COMB}			
from Equations 10-22 or 10-23	from Table 10-13	from Table 10-14	from Equation 10-24	(1)*(2)*(3)*(4)			
1.0669	0.5200	1.0000	0.9996	0.5546			
	Indicate Belo	ow the Proposed CMFs to be included	d in the Project				
1.0000	0.5200	1.0000	0.9996	0.5198			
	X		X				

Proposed Intersection: Summary Results (Without Animal Crashes) (Crashes/Year)							
KA B C O Total							
N _{predicted}	0.1669	0.4042	0.2691	1.4466	2.2868		
N _{expected} - Existing Condtions	0.2054	0.4979	0.3315	1.4861	2.5209		
N _{potential for improvement} - Existing Conditions	0.0385	0.0937	0.0624	0.0395	0.2341		
N _{expected} - Proposed Conditions Site CMFs	0.1068	0.2588	0.1723	0.7724	1.3103		
N _{expected} - Proposed Conditions All CMFs	0.1068	0.2588	0.1723	0.7724	1.3103		

Roundabout Options

Proposed Conditions: Data for Rural Two-Lane Two-Way Intersection							
Input Data				Proposed Conditions	Existing Conditions		
Intersection type (3ST, 4ST, 4SG)				4ST	4ST		
AADT _{major} (veh/day)	AADT _{MAX} =	14,700	(veh/day)	3,846 3,846			
AADT _{minor} (veh/day)	AADT _{MAX} =	3,500	(veh/day)	1,270	1,270		
Intersection skew angle (degrees) Does skew differ for	or minor legs? Else,	No.	No	Skew for Leg 2 1 (AII): Skew for Leg 2 (4ST only): 0	12		
Number of uncontrolled approaches with a left-turn lane	(0, 1, 2, 3, 4)			0	0		
Number of uncontrolled approaches with a right-turn lan	e (0, 1, 2, 3, 4)			0	0		
Intersection lighting (present/not present)				Present	Not Present		
Calibration Factor, C				1.01	1.01		
Locality:				State System	State System		

Proposed Conditions: CMFs for Rural Two-Lane Two-Way Intersection							
(1)	(2)	(3)	(4)	(5)			
CMF for Intersection Skew Angle	CMF for Left-Turn Lanes	CMF for Right-Turn Lanes	CMF for Lighting	Combined CMF			
CMF _{1i}	CMF _{2i}	CMF _{3i}	CMF 4i	CMF _{COMB}			
from Equations 10-22 or 10-23	from Table 10-13	from Table 10-14	from Equation 10-24	(1)*(2)*(3)*(4)			
1.0669	1.0000	1.0000	0.9996	1.0665			
	Indicate Bel	ow the Proposed CMFs to be included	I in the Project				
1.0000	1.0000	1.0000	0.9996	0.9996			
			X				

Roundabout Options

	Proposed Conditions: Summary of Other CMFs (Without Animal Crashes)								
CMF Nbr	Countermeasure	KA Value	B Value	C Value	O Value	Total			
CMF 1	Convert intersection with minor-road stop control to modern roundabout (Rural)	-0.1786	-0.4330	-0.2883	-1.0547	-1.9546			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
		0.0000	0.0000	0.0000	0.0000	0.0000			
	Total	-0.1786	-0.433	-0.2883	-1.0547	-1.9546			

Proposed Intersection: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	В	С	0	Total	
N _{predicted}	0.1669	0.4042	0.2691	1.4466	2.2868	
N _{expected} - Existing Condtions	0.2054	0.4979	0.3315	1.4861	2.5209	
N _{potential for improvement} - Existing Conditions	0.0385	0.0937	0.0624	0.0395	0.2341	
N _{expected} - Proposed Conditions Site CMFs	0.2053	0.4977	0.3314	1.4855	2.5199	
N _{expected} - Proposed Conditions All CMFs	0.0267	0.0647	0.0431	0.4308	0.5653	

Appendix J Proposed Conditions Capacity Analysis

HCS Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	LRY	Intersection	SR-64 & SR-582					
Agency/Co.	CMTran	Jurisdiction	Haskins					
Date Performed		East/West Street	SR-582					
Analysis Year	2022	North/South Street	SR-64					
Time Analyzed	AM Peak - Add Turn Lanes	Peak Hour Factor	0.86					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	WOO-582-2.61 Safety Study							

Lanes

				Мајо	r Street: Nor	th-South											
ustme	nts																
	Eastb	ound		Westbound					North	bound		Southbound					
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
	0	1	0		0	1	0	0	1	1	0	0	1	1	0		
		LTR				LTR			L		TR		L		TR		
	21	67	4		4	22	30		0	172	24		94	202	13		
	7	7	7		9	9	9		3				2				
		0				0											
			Undi	vided													
eadwa	ys																
	7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1				
	7.17	6.57	6.27		7.19	6.59	6.29		4.13				4.12				
	3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
	3.56	4.06	3.36		3.58	4.08	3.38		2.23				2.22				
d Leve	l of Se	ervice															
Т		107				65			0				109				
		332				469			1310				1340				
		0.32				0.14			0.00				0.08				
		1.4				0.5			0.0				0.3				
		20.9				13.9			7.7				7.9				
		С				В			А				А				
	20).9		13.9				0.0				2.4					
İ	(С				В		A					,	A			
	υ	eadways 7.1 7.17 3.5 3.56 4 Level of See	Eastbound U L T 10 11 0 1 LTR 21 67 7 7 0 0 eadways 7.1 6.5 7.17 6.57 3.5 4.0 3.56 4.06 d Level of Service 107 332 0.32 1.4 20.9	Eastbound U L T R 10 10 11 12 0 0 1 0 LTR 21 67 4 7 7 7 0 0 Undi eadways 7.1 6.5 6.2 7.17 6.57 6.27 3.5 4.0 3.3 3.56 4.06 3.36 d Level of Service 107 107 332 1.4 20.9 C 20.9	### Company of Company	Eastbound Westle U	Eastb∪und Westbound U L T R U L T 10 10 11 12 7 8 0 0 1 0 0 1 LTR	Eastbound Westbound U	Eastbound Westbound U	Eastbound Westbound North	Eastbound Westbound Northbound U	Eastbund Westbund Northbund U	Eastbound Westbound Northbound	Eastbound Westbound Northbound South	Variable Variable		

HCS Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	LRY	Intersection	SR-64 & SR-582								
Agency/Co.	CMTran	Jurisdiction	Haskins								
Date Performed		East/West Street	SR-582								
Analysis Year	2022	North/South Street	SR-64								
Time Analyzed	PM Peak - Add Turn Lanes	Peak Hour Factor	0.92								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	WOO-582-2.61 Safety Study										

Lanes

					Majo	r Street: Nor	th-South												
Vehicle Volumes and Adj	justme	nts																	
Approach		Eastk	oound		Westbound				Northbound				Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0			
Configuration			LTR				LTR			L		TR		L		TR			
Volume (veh/h)		11	38	4		12	69	82		5	231	19		13	195	30			
Percent Heavy Vehicles (%)		6	6	6		2	2	2		0				2					
Proportion Time Blocked																			
Percent Grade (%)			0			(0												
Right Turn Channelized																			
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1					
Critical Headway (sec)		7.16	6.56	6.26		7.12	6.52	6.22		4.10				4.12					
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2					
Follow-Up Headway (sec)		3.55	4.05	3.35		3.52	4.02	3.32		2.20				2.22					
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)	Т		58				177			5				14					
Capacity, c (veh/h)			418				558			1333				1292					
v/c Ratio			0.14				0.32			0.00				0.01					
95% Queue Length, Q ₉₅ (veh)			0.5				1.4			0.0				0.0					
Control Delay (s/veh)			15.0				14.4			7.7				7.8					
Level of Service (LOS)			В		Ì		В			А				А					
Approach Delay (s/veh)		1!	5.0		14.4				0.2				0.4						
Approach LOS			В			ļ	В			,	4			,	Ą				

HCS Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	LRY	Intersection	SR-64 & SR-582								
Agency/Co.	CMTran	Jurisdiction	Haskins								
Date Performed		East/West Street	SR-582								
Analysis Year	2044	North/South Street	SR-64								
Time Analyzed	AM Peak - Add Turn Lanes	Peak Hour Factor	0.86								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	WOO-582-2.61 Safety Study										

Lanes

					Majo	r Street: Nor	th-South												
Vehicle Volumes and Ad	justme	nts																	
Approach		Eastk	oound		Westbound				Northbound				Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6			
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0			
Configuration			LTR				LTR			L		TR		L		TR			
Volume (veh/h)		21	68	4		4	22	31		0	175	24		96	206	13			
Percent Heavy Vehicles (%)		7	7	7		9	9	9		3				2					
Proportion Time Blocked																			
Percent Grade (%)			0			(0												
Right Turn Channelized																			
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1					
Critical Headway (sec)		7.17	6.57	6.27		7.19	6.59	6.29		4.13				4.12					
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2					
Follow-Up Headway (sec)		3.56	4.06	3.36		3.58	4.08	3.38		2.23				2.22					
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)			108				66			0				112					
Capacity, c (veh/h)			325				464			1305				1336					
v/c Ratio			0.33				0.14			0.00				0.08					
95% Queue Length, Q ₉₅ (veh)			1.4				0.5			0.0				0.3					
Control Delay (s/veh)			21.5				14.0			7.8				7.9					
Level of Service (LOS)			С				В			Α				А					
Approach Delay (s/veh)		2	1.5			14.0				0.0				2.4					
Approach LOS			C				В			,	4				Ą				

HCS Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	LRY	Intersection	SR-64 & SR-582								
Agency/Co.	CMTran	Jurisdiction	Haskins								
Date Performed		East/West Street	SR-582								
Analysis Year	2044	North/South Street	SR-64								
Time Analyzed	PM Peak - Add Turn Lanes	Peak Hour Factor	0.92								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	WOO-582-2.61 Safety Study										

Lanes

Major Street: North-South															
Vehicle Volumes and Adjustments Approach Eastbound Westbound Northbound Southbound															
Τ	Eastb	ound			Westl	oound			North	bound			South	bound	
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
	0	1	0		0	1	0	0	1	1	0	0	1	1	0
		LTR				LTR			L		TR		L		TR
	11	39	4		12	70	83		5	235	19		13	198	31
	6	6	6		2	2	2		0				2		
		0			()									
			Undi	ndivided											
Critical and Follow-up Headwa															
	7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
	7.16	6.56	6.26		7.12	6.52	6.22		4.10				4.12		
	3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
	3.55	4.05	3.35		3.52	4.02	3.32		2.20				2.22		
d Leve	l of S	ervice													
Т		59				179			5				14		
		413				552			1329				1287		
		0.14				0.32			0.00				0.01		
		0.5				1.4			0.0				0.0		
		15.2				14.6			7.7				7.8		
		С				В			А				А		
	1!	5.2			14	1.6		0.1				0.4			
	(С			l	3			,	4		A			
	U U	Easth U L 10 0 11 6	Eastbound U L T 10 11 0 1 LTR 11 39 6 6 0 0 eadways 7.1 6.5 7.16 6.56 3.5 4.0 3.55 4.05 d Level of Service 59 413 0.14 0.5 15.2	Eastbund U L T R 10 10 11 12 0 0 1 0 LTR 111 39 4 6 6 6 6 0 0 Undi eadways 7.1 6.5 6.2 7.16 6.56 6.26 3.5 4.0 3.3 3.55 4.0 3.35 d Level of Service 59 413 0.14 0.5 15.2 C 15.2	Eastbound U L T R U 10 11 12 0 1 1 0 LTR 11 39 4 6 6 6 6 0 Undivided eadways 7.1 6.5 6.2 7.16 6.56 6.26 3.5 4.0 3.3 3.55 4.05 3.35 d Level of Service 59 413 0.14 0.5 15.2 C 15.2	Eastbound Westle U L T R U L T	Eastbound Westbound U	Eastbound Westbound U	Eastbound Westbound	Eastbound Westbound North	Eastbound Westbound Northbound	Eastbund Westbund Northbund U	Eastbound Westbound Northbound	Eastbound Westbound Northbound South	Southborne Southborne

				НС	S Rou	ndab	ou	ts Re	port							
General Information						9	Site	Infor	matio	n			_	_		
Analyst	LRY			\neg		4			Inte	rsection			SR-6	4 & SR-	-582	
Agency or Co.	CMTra	an				←			E/W	Street Na	me		SR-5	82		
Date Performed				\neg				\	N/S	Street Na	me		SR-6	4		
Analysis Year	2022				\blacktriangleleft \downarrow \mid	w + s		1 >	Ana	ysis Time	Period, h	rs	0.25			
Time Analyzed	AM P	eak			* \				Peak	Hour Fac	tor		0.86			
Project Description	woo	-582-2.6	i1			→ 	4		Juris	diction			Hask	ins		
Volume Adjustments	s and S	Site C	haract	teristic	s	THE PARTY OF THE P	STATE OF THE PARTY									
Approach		E	:B			WB				N	В				SB	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment		•	נז	ΓR			L	TR		•	LT	R		•		LTR
Volume (V), veh/h	0	21	67	4	0	4	22	30	0	0	172	24	0	94	202	13
Percent Heavy Vehicles, %	7	7	7	7	9	9	9	9	3	3	3	3	2	2	2	2
Flow Rate (VPCE), pc/h	0	26	83	5	0	5	28	38	0	0	206	29	0	111	240	15
Right-Turn Bypass		No	one			None	е		None				None			
Conflicting Lanes		1				1					1		1			
Pedestrians Crossing, p/h	0					0				()				0	
Proportion of CAVs	of CAVs 0															
Critical and Follow-U	Jp Hea	adway	/ Adju	stmen	t											
Approach		Ī		EB		Т		WB			NB				SB	
Lane			Left	Right	Bypass	Left	1	Right	Bypass	Left	Right	Bypa	SS	Left	Right	Bypass
Critical Headway, s				4.9763			4	1.9763			4.9763	3			4.9763	
Follow-Up Headway, s				2.6087			2	2.6087			2.6087	,			2.6087	
Flow Computations,	Capac	ity ar	nd v/c	Ratios												
Approach		П		EB		Т		WB		Π	NB				SB	
Lane			Left	Right	Bypass	Left	- 1	Right	Bypass	Left	Right	Вура	SS	Left	Right	Bypass
Entry Flow (v _e), pc/h				114				71			235			\neg	366	
Entry Volume, veh/h				107				65			228				359	
Circulating Flow (v _c), pc/h				356				232			220				33	
Exiting Flow (vex), pc/h				223				43			270				250	
Capacity (c _{pce}), pc/h				960			T	1089			1103				1334	
Capacity (c), veh/h				897				999			1071				1308	
v/c Ratio (x)				0.12				0.07			0.21				0.27	
Delay and Level of S	ervice															
Approach				EB		П		WB			NB				SB	
Lane			Left	Right	Bypass	Left		Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass
Lane Control Delay (d), s/veh				5.1				4.2			5.3				5.2	
Lane LOS				А				Α			А				Α	
95% Queue, veh				0.4				0.2			0.8				1.1	
Approach Delay, s/veh				5.1			_	4.2			5.3				5.2	
Approach LOS				А		10		Α			А				Α	
Intersection Delay, s/veh LO	S					J6 of 9 5.1										

				HC:	S Rou	ndab	ou [·]	ts Re	port	t							
General Information						_	_	Infor		_							
Analyst	LRY					4			Int	erse	ction		Т	SR-6	4 & SR	-582	
Agency or Co.	CMTra	an				(←			E/\	W Sti	reet Nar	ne		SR-5	82		
Date Performed				\neg				*	N/	'S Str	reet Nan	ne		SR-6	4		
Analysis Year	2022				⋠ ↓ (W + I		1	An	alysi	is Time F	Period, h	rs	0.25			
Time Analyzed	PM Pe	eak			♦ \				Pe	ak H	our Fact	or		0.92			
Project Description	woo	-582-2.6	51			$\overrightarrow{}$	4/		Jur	risdic	ction			Hask	ins		
Volume Adjustments	s and	Site C	harac	teristic	s	Telephone And	1869. ISSN										
Approach			B	$\neg \neg$		WB			Т		NI	3	$\neg \neg$			SB	
Movement	U	L	Т	R	U	L	Т	R	U		L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	T	0	1	0	0	0	1	0
Lane Assignment			Lī	ΓR			L	LTR				LT	R				LTR
Volume (V), veh/h	0	11	38	4	0	12	69	82	0	Т	5	231	19	0	13	195	30
Percent Heavy Vehicles, %	6	6	6	6	2	2	2	2	0		0	0	0	2	2	2	2
Flow Rate (VPCE), pc/h	0	13	44	5	0	13	76	91	0	T	5	251	21	0	14	216	33
Right-Turn Bypass		No	one			None	9			None				None			
Conflicting Lanes	1					1			Т		1		1				
Pedestrians Crossing, p/h	g, p/h 0					0				0						0	
Proportion of CAVs									0								
Critical and Follow-U	Jp Hea	adway	/ Adju	stmen	t												
Approach	•	Ī	<u> </u>	EB		т		WB		Т		NB		Т		SB	
Lane			Left	Right	Bypass	Left		Right	Bypas	is .	Left	Right	Bypas	s l	_eft	Right	Bypass
Critical Headway, s				4.9763	-		+	4.9763		+		4.9763		+		4.9763	
Follow-Up Headway, s				2.6087			2	2.6087				2.6087	,			2.6087	
Flow Computations,	Capac	ity aı	nd v/c	Ratios													
Approach		Ī		EB		т		WB		Т		NB		$\overline{}$		SB	
Lane			Left	Right	Bypass	Left		Right	Bypas	S	Left	Right	Bypas	s L	_eft	Right	Bypass
Entry Flow (v _e), pc/h				62	-		-	180		+		277		+		263	
Entry Volume, veh/h				58				176				277				258	
Circulating Flow (v _c), pc/h				243				269		+		71				94	
Exiting Flow (vex), pc/h				79				114				355				234	
Capacity (c _{pce}), pc/h				1077			T	1049		+		1284				1254	
Capacity (c), veh/h				1016				1028				1284				1229	
v/c Ratio (x)				0.06				0.17		1		0.22				0.21	
Delay and Level of S	ervice																
Approach		\neg		EB		П		WB		Т		NB		Т		SB	
Lane			Left	Right	Bypass	Left		Right	Bypas	S	Left	Right	Bypas	s l	_eft	Right	Bypass
Lane Control Delay (d), s/veh				4.0				5.1		1		4.7				4.8	
Lane LOS				А				Α				А				Α	
95% Queue, veh				0.2				0.6		1		0.8				0.8	
Approach Delay, s/veh				4.0				5.1				4.7				4.8	
Approach LOS				A		17 . 1	. 0	Α		1		Α				Α	
Intersection Delay, s/veh LO	S				4.7 A												

				НС	S Rou	ndab	out	ts Re	port								
General Information						9	ite	Infor	matio	n			_	_			
Analyst	LRY			\neg		4			Inter	section			SR-6	64 & SR-	-582		
Agency or Co.	CMTra	an		\neg		(←			E/W	Street Na	me		SR-5	82			
Date Performed				\neg				\ *	N/S	Street Na	me		SR-6	54			
Analysis Year	2044				∢ ↓ (W + I		1 >	Anal	ysis Time	Period, h	rs	0.25				
Time Analyzed	AM P	eak			* \				Peak	Hour Fac	tor		0.86				
Project Description	woo	-582-2.6	51			→ ▼	*		Juris	diction			Hask	cins			
Volume Adjustments	and S	Site C	haract	teristic	s	Assessment Property	COLOR ESCAPE										
Approach		E	:B			WB				N	В				SB		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	
Lane Assignment			Lī	TR			Ľ	.TR			LT	R				LTR	
Volume (V), veh/h	0	21	68	4	0	4	22	31	0	0	175	24	0	96	206	13	
Percent Heavy Vehicles, %	7	7	7	7	9	9	9	9	3	3	3	3	2	2	2	2	
Flow Rate (VPCE), pc/h	0	26	85	5	0	5	28	39	0	0	210	29	0	114	244	15	
Right-Turn Bypass		No	one			None	9			None				None			
Conflicting Lanes			1			1				,	1		1				
Pedestrians Crossing, p/h		0 0						()		0						
Proportion of CAVs	on of CAVs 0																
Critical and Follow-U	Jp Hea	adway	/ Adiu	stmen	t												
Approach	•	Ī	•	EB		T		WB			NB		т		SB		
Lane			Left	Right	Bypass	Left	F	Right	Bypass	Left	Right	Bypa:	ss	Left	Right	Bypass	
Critical Headway, s				4.9763			_	.9763	<u> </u>		4.9763				4.9763	71	
Follow-Up Headway, s				2.6087			2	2.6087			2.6087	7			2.6087		
Flow Computations,	Capac	city ar	nd v/c	Ratios													
Approach				EB		Τ		WB			NB		Т		SB		
Lane			Left	Right	Bypass	Left	F	Right	Bypass	Left	Right	Bypa	SS	Left	Right	Bypass	
Entry Flow (v _e), pc/h				116				72			239		+		373		
Entry Volume, veh/h				108				66			232				366		
Circulating Flow (v _c), pc/h				363				236			225				33		
Exiting Flow (vex), pc/h				228				43			275				254		
Capacity (c _{pce}), pc/h				953			1	1085			1097	T			1334		
Capacity (c), veh/h				891				995			1065				1308		
v/c Ratio (x)				0.12				0.07			0.22				0.28		
Delay and Level of S	ervice																
Approach				EB				WB			NB		Т		SB		
Lane			Left	Right	Bypass	Left	F	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	
Lane Control Delay (d), s/veh				5.2				4.2			5.4				5.2		
Lane LOS				А				Α			А				Α		
95% Queue, veh				0.4				0.2			0.8				1.2		
Approach Delay, s/veh				5.2				4.2		5.4					5.2		
Approach LOS				A				A			A				A		
Intersection Delay, s/veh LO	S					_ <mark>J8 of</mark> 5.2	9						A				

				HC:	S Rou	ndab	out	ts Re	port								
General Information						_		Infori		n				_			
Analyst	LRY			\neg	,	4			Inter	section			SR-64	4 & SR-	582		
Agency or Co.	CMTra	an		\neg		←			E/W	Street Na	me		SR-58	32			
Date Performed				\neg				\ +	N/S	Street Na	me		SR-64	4			
Analysis Year	2044				< ↓ (W + I		1 >	Anal	ysis Time	Period, h	rs	0.25				
Time Analyzed	PM Pe	eak			∳ \ '				Peak	Hour Fac	tor		0.92				
Project Description	woo	-582-2.6	51			\checkmark	√ /		Juris	diction			Haski	ns			
Volume Adjustments	s and	Site C	harac	teristic	s												
Approach		E	B	$\neg \neg$		WB			П	N	В				SB		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	
Lane Assignment			Lī	ΓR			Ľ	.TR			LT	R				LTR	
Volume (V), veh/h	0	11	39	4	0	12	70	83	0	5	235	19	0	13	198	31	
Percent Heavy Vehicles, %	6	6	6	6	2	2	2	2	0	0	0	0	2	2	2	2	
Flow Rate (VPCE), pc/h	0	13	45	5	0	13	78	92	0	5	255	21	0	14	220	34	
Right-Turn Bypass		N	one			None	9			None				None			
Conflicting Lanes			1	\neg		1				,	1		1				
Pedestrians Crossing, p/h			0	0 0)		0						
Proportion of CAVs									0								
Critical and Follow-U	Jp Hea	adwa	v Adiu	stmen	t												
Approach	•	Ť	•	EB		т		WB			NB		Т		SB		
Lane			Left	Right	Bypass	Left	F	Right	Bypass	Left	Right	Bypass		.eft	Right	Bypass	
Critical Headway, s				4.9763	71		+	.9763	71		4.9763				4.9763	71	
Follow-Up Headway, s				2.6087			2	.6087			2.6087	,			2.6087		
Flow Computations,	Capac	ity aı	nd v/c	Ratios													
Approach		Ī		EB		Т		WB			NB		Т		SB		
Lane			Left	Right	Bypass	Left	F	Right	Bypass	Left	Right	Bypass	L	.eft	Right	Bypass	
Entry Flow (v _e), pc/h				63			+	183			281		т		268		
Entry Volume, veh/h				59				179			281				263		
Circulating Flow (v _c), pc/h				247				273			72				96		
Exiting Flow (vex), pc/h				80				117			360				238		
Capacity (c _{pce}), pc/h		\neg		1073			Τ.	1045			1282	Т			1251		
Capacity (c), veh/h				1012			٠	1024			1282				1227		
v/c Ratio (x)		\neg		0.06				0.18			0.22				0.21		
Delay and Level of S	ervice																
Approach		\neg		EB		П		WB			NB		Т		SB		
Lane			Left	Right	Bypass	Left	F	Right	Bypass	Left	Right	Bypass	L	.eft	Right	Bypass	
Lane Control Delay (d), s/veh				4.1				5.1			4.7				4.8		
Lane LOS				А				А			А				Α		
95% Queue, veh				0.2				0.6			0.8				0.8		
Approach Delay, s/veh				4.1				5.1			4.7				4.8		
Approach LOS				A		10.	0	Α			Α		T		Α		
Intersection Delay, s/veh LO	S				J9 of 9 4.8				A								

Appendix K Cost Estimates

WOO-582-2.61 Left Turn Lane Cost Estimate

Roadway Improvements - Left Turn Lanes

Item	Description	Quantity	Units	Unit Cost	Total Cost
202	Pavement Removed	425	SY	\$ 25.00	\$ 10,625.00
202	Guardrail Removed	200	FT	\$ 5.00	\$ 1,000.00
203	Earthwork	1	LUMP	\$ 100,000.00	\$ 100,000.00
448	Asphalt Overlay	4280	SY	\$ 20.00	\$ 85,600.00
448	Full Depth Pavement (Asphalt)	2500	SY	\$ 100.00	\$ 250,000.00
606	Guardrail , Type MGS	200	FT	\$ 35.00	\$ 7,000.00
608	4" Concrete Walk	1940	SF	\$ 25.00	\$ 48,500.00
609	Concrete Traffic Island	55	SY	\$ 125.00	\$ 6,875.00
611	Drainage	1	LUMP	\$ 30,000.00	\$ 30,000.00
630	Rectangular Rapid Flashing Beacon	4	EACH	\$ 10,000.00	\$ 40,000.00
630	Signage	1	LUMP	\$ 10,000.00	\$ 10,000.00
644	Yield Line	40	FT	\$ 25.00	\$ 1,000.00
644	Crosswalk Line	130	FT	\$ 20.00	\$ 2,600.00
644	Transverse Line	359	FT	\$ 8.00	\$ 2,870.00
644	Center Line	0.51	MILE	\$ 10,000.00	\$ 5,100.00
644	Lane Arrows	6	EACH	\$ 200.00	\$ 1,200.00
644	Edge Line	0.62	MILE	\$ 6,000.00	\$ 3,720.00
659	Seeding and Mulching	1	LUMP	\$ 25,000.00	\$ 25,000.00
832	Erosion Control	1	LUMP	\$ 35,000.00	\$ 35,000.00
		I	temized :	Subtotal	\$ 666,090.00
	Ii				
614	Maintenance of Traffic	1	LUMP	\$ 50,000.00	\$ 50,000.00
623	Construction Layout Stakes	1	LUMP	\$ 5,000.00	\$ 5,000.00
624	Mobilization	1	LUMP	\$ 40,000.00	\$ 40,000.00
		In	cidentals	Subtotal	\$ 95,000.00
			(Contingency (30%)	\$ 228,400.00

Engineering Design (15%) S	148.500.00

Construction Subtotal

Environmental, Geotechnical, Miscellaneous Federal Requirements (10%) \$ 99,000.00 Right-of-Way* (Includes 30% Contingency) \$ 290,000.00

Subtotal \$ 1,527,000.00

Inflation** (11.7%) \$ 178,700.00

Total \$ 1,705,700.00

\$

989,490.00

Note: Cost estimate does not include utility relocation costs.

^{*}Assumes the Villiage of Haskins will donate right-of-way at the park for RRFB updates.

^{**}Inflation based on 2025 Construction

WOO-582-2.61 Left Turn Lane Right-of-Way Cost Estimate

Acquisition	Parcel	Unit (Acreage)	Cost/Unit (\$\$/Acre)	Subtotal Land Value	Structure Value (If Taken)	Damages (Loss in Value to the Residue)	Subtotal Structures & Damages	Total Non-Labor Acquisition Costs	Parcel Count	Total Takes	Partial Takes	No. of Structures Impacted
	610220312002000	0.050	\$258,108	\$12,905	\$0	\$0	\$0	\$12,905				
Residential	610220312003000	0.080	\$242,453	\$19,396	\$0	\$0	\$0	\$19,396	3	0	3	0
	610270000009001	0.150	\$144,800	\$21,720	\$0	\$0	\$0	\$21,720				
Commercial	610220312006000	0.200	\$97,273	\$19,455	\$0	\$0	\$0	\$19,455	1	0	1	0
Industrial		0.000	\$0	\$0	\$0	\$0	\$0	\$0	0	0	0	0
	610220312004000	0.900	\$7,019	\$6,317	\$0	\$0	\$0	\$6,317				
Agricultural	610220309022000	0.700	\$6,539	\$4,577	\$0	\$0	\$0	\$4,577	3	0	3	0
	610270000009000	1.000	\$7,919	\$7,919	\$0	\$0	\$0	\$7,919				
Relocation	Unit (Displa	acement)	RHP/RSP		Move Cost	Re-establishment		Total Non-Labor				essary to relocate all RAP
Residential	Onit (Diopic	uoomont,				rto cotabiloninioni						ntil project wide R/W
Owner Occupant	0		\$34,000		\$6,000				acquisitio	n begins :	=3	
Tenant	0		\$10,000		\$1750			\$0				
Commercial/Farm/NPO			-				•					
Owner	0				\$15,000	\$10,000		\$0				
Tenant	0				\$15,000	\$10,000		\$0				
Personal Property	0				\$1,000			\$0				
[[(total of acquisition cost) x 0.09	9]x0.025] + [[(total of acquisitio	on cost) x 0.15] x 1.20] + [[(total of acquisition	cost) x 0.10] x 1.50	0] =	Continger (Incidentals, Admin. Review		\$30,663	RHP - Re RSP - Re			
						Total Non-Labor	R/W Costs	\$122,952	NPO - No			
Labor (External)	Unit (Pa	rcels)	Unit Price	Total Cost]				1		3	
Titles	7	/	\$1,000	\$7,000				This R/W Cost E	stimate Pr	repared by	/	Date
Appraisals								Carpenter N	Marty Trans	sportation		1/26/2022
Simple	0		\$750	\$0								
Detailed	7		\$4,500	\$31,500								
			, , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,			·!					
Appraisal Review	•											
Simple	0		\$500	\$0								
Detailed	7		\$2,000	\$14,000								
Negotiations	7		\$1,800	\$12,600								
Negotiations Relocations	7		\$1,800	\$12,600								
	7		\$1,800 \$2,000	\$12,600 \$0								
Relocations												
Relocations Personal Property	0		\$2,000	\$0								
Relocations Personal Property Residential Commericial/Farm/NPO	0 0		\$2,000 \$8,000	\$0 \$0								
Relocations Personal Property Residential	0 0		\$2,000 \$8,000 \$6,000	\$0 \$0 \$0			ĺ			Total Lal	oor Costs	\$100,100
Relocations Personal Property Residential Commericial/Farm/NPO Closings	0 0 0 0 7		\$2,000 \$8,000 \$6,000 \$500	\$0 \$0 \$0 \$3,500					Total Nor			
Relocations Personal Property Residential Commericial/Farm/NPO Closings Package Billing & Review	0 0 0 0 7		\$2,000 \$8,000 \$6,000 \$500 \$500	\$0 \$0 \$0 \$3,500 \$3,500						n-Labor R		\$100,100 \$122,952 30%

WOO-582-2.61 Single Lane Roundabout Cost Estimate

Roadway Improvements - Single Lane Roundabout - West Leg Update

Item	Description	Quantity	Units		Unit Cost		Total Cost
202	Pavement Removed	2475	SY	\$	25.00	\$	61,875.00
202	Guardrail Removed	615	FT	\$	5.00	\$	3,075.00
203	Earthwork	1	LUMP	\$	75,000.00	\$	75,000.00
448	Asphalt Overlay	750	SY	\$	20.00	\$	15,000.00
448	Full Depth Pavement (Asphalt)	2975	SY	\$	100.00	\$	297,500.00
452	Full Depth Pavement (Concrete)	290	SY	\$	115.00	\$	33,350.00
606	Guardrail , Type MGS	650	FT	\$	35.00	\$	22,750.00
608	4" Concrete Walk	1940	SF	\$	25.00	\$	48,500.00
609	Concrete Curb	1200	FT	\$	35.00	\$	42,000.00
609	Concrete Traffic Island	355	SY	\$	125.00	\$	44,375.00
611	Drainage	1	LUMP	\$	175,000.00	\$	175,000.00
625	Lighting	1	LUMP	\$	96,000.00	\$	96,000.00
630	Rectangular Rapid Flashing Beacon	4	EACH	\$	10,000.00	\$	40,000.00
630	Signage	1	LUMP	\$	15,000.00	\$	15,000.00
644	Yield Line	105	FT	\$	25.00	\$	2,630.00
644	Crosswalk Line	130	FT	\$	20.00	\$	2,600.00
644	Transverse Line	60	FT	\$	8.00	\$	480.00
644	Edge Line	0.60	MILE	\$	6,000.00	\$	3,600.00
659	Seeding and Mulching	1	LUMP	\$	50,000.00	\$	50,000.00
832	Erosion Control	1	LUMP	\$	50,000.00	\$	50,000.00
		I	temized (Subt	otal	\$	1,078,740.00
		Incidentals					
614	Maintenance of Traffic	1	LUMP	\$	150,000.00	\$	150,000.00
619	Field Office	1	LUMP	\$	10,000.00	\$	10,000.00
623	Construction Layout Stakes	1	LUMP	\$	15,000.00	\$	15,000.00
624	Mobilization	1	LUMP	\$	100,000.00	\$	100,000.00
		In	cidentals	s Sub	total	\$	275,000.00
			(Conti	ingency (30%)	\$	406,200.00
		Cor	ıstructio	n Su	btotal	\$	1,759,940.00
		Cor			btotal g Design (15%)	\$ \$	1,759,940.00 264,000.00

Note: Cost estimate does not include utility relocation costs.

Right-of-Way* (Includes 30% Contingency) \$

Subtotal

Inflation** (11.7%) \$

\$

Total \$

367,400.00

2,567,400.00

300,400.00

^{*}Assumes the Villiage of Haskins will donate right-of-way at the park for RRFB updates.

^{**}Inflation based on 2025 Construction

WOO-582-2.61 Single Lane Roundabout Right-of-Way Cost Estimate

Acquisition	Parcel	Unit (Acreage)	Cost/Unit (\$\$/Acre)	Subtotal Land Value	Structure Value (If Taken)	Damages (Loss in Value to the Residue)	Subtotal Structures & Damages	Total Non-Labor Acquisition Costs	Parcel Count	Total Takes	Partial Takes	No. of Structures Impacted
Residential	610220312002000	0.050	\$258,108	\$12,905	\$0	\$0	\$0	\$12,905	2	0	2	0
residential	610220312003000	0.080	\$242,453	\$19,396	\$0	\$0	\$0	\$19,396		·	-	Ů
Commercial	610220312006000	0.360	\$97,273	\$35,018	\$0	\$50,000	\$50,000	\$85,018	1	0	1	0
Industrial		0.000	\$0	\$0	\$0	\$0	\$0	\$0	0	0	0	0
	610220312004000	0.900	\$7,019	\$6,317	\$0	\$0	\$0	\$6,317				
Agricultural	610220309022000	0.470	\$6,539	\$3,073	\$0	\$0	\$0	\$3,073	4	0	4	0
, ignountairai	610270000009000	0.550	\$7,919	\$4,355	\$0	\$0	\$0	\$4,355			·	ū
	610270000021503	0.500	\$6,826	\$3,413	\$0	\$0	\$0	\$3,413				
Relocation	Unit (Displ	acement)	RHP/RSP		Move Cost	Re-establishment						ssary to relocate all RAP
Residential	S (2.0p.	<u> </u>		•								til project wide R/W
Owner Occupant	0		\$34,000		\$6,000				acquisitio	n begins =	3	
Tenant	0		\$10,000		\$1750			\$0				
Commercial/Farm/NPO			•				•					
Owner	0				\$15,000	\$10,000		\$0				
Tenant	0				\$15,000	\$10,000		\$0				
Personal Property	1				\$1,000			\$1,000				
[[(total of acquisition cost) x 0.0	9]x0.025] + [[(total of acquisit	ion cost) x 0.15] x 1.20] + [(total of acquisitio	n cost) x 0.10] x 1.5	50] =	Continger (Incidentals, Admin. Review		\$45,012	RHP - Re		t Housing mental Pa	
						Total Non-Labor	R/W Costs	\$180,489	NPO - No			
Labor (External)	Unit (Pa	arcels)	Unit Price	Total Cost	1				1			
Titles	7	•	\$1,000	\$7,000				This R/W Cost E	stimate Pr	epared by		Date
Appraisals								Carpenter N	/larty Trans	sportation		1/26/2022
Simple	0		\$750	\$0								
Detailed	7		\$4,500	\$31,500								
								•				
Appraisal Review												
Simple	0		\$500	\$0								
Detailed	7		\$2,000	\$14,000								
M 41 - 41	7	•	\$1.800	\$12,600								
Negotiations	1											
Relocations			4.1000									
	1		\$2,000	\$2,000								
Relocations	1 1 0											
Relocations Personal Property	1		\$2,000	\$2,000								
Relocations Personal Property Residential	1 0		\$2,000 \$8,000	\$2,000 \$0								
Relocations Personal Property Residential Commericial/Farm/NPO	1 0 0		\$2,000 \$8,000 \$6,000	\$2,000 \$0 \$0						Total Lab	or Costs	\$102,100
Relocations Personal Property Residential Commericial/Farm/NPO Closings Package Billing & Review Project Management	1 0 0		\$2,000 \$8,000 \$6,000 \$500	\$2,000 \$0 \$0 \$3,500					Total Nor			\$102,100 \$180,489
Relocations Personal Property Residential Commericial/Farm/NPO Closings Package Billing & Review	1 0 0 0 7 7		\$2,000 \$8,000 \$6,000 \$500 \$500	\$2,000 \$0 \$0 \$3,500 \$3,500						ı-Labor R		

WOO-582-2.61 Peanut Roundabout Cost Estimate

Roadway Improvements -Peanut Roundabout - West Leg Update

Item	Description	Quantity	Units	Unit Cost		Total Cost
202	Pavement Removed	2875	SY	\$ 25.00	\$	71,875.00
202	Guardrail Removed	725	FT	\$ 5.00	\$	3,625.00
203	Earthwork	1	LUMP	\$ 100,000.00	\$	100,000.00
448	Asphalt Overlay	750	SY	\$ 20.00	\$	15,000.00
448	Full Depth Pavement (Asphalt)	3425	SY	\$ 100.00	\$	342,500.00
452	Full Depth Pavement (Concrete)	535	SY	\$ 115.00	\$	61,525.00
606	Guardrail , Type MGS	875	FT	\$ 35.00	\$	30,625.00
608	4" Concrete Walk	1940	SF	\$ 25.00	\$	48,500.00
609	Concrete Curb	1650	FT	\$ 35.00	\$	57,750.00
609	Concrete Traffic Island	335	SY	\$ 125.00	\$	41,875.00
611	Drainage	1	LUMP	\$ 200,000.00	\$	200,000.00
625	Lighting	1	LUMP	\$ 120,000.00	\$	120,000.00
630	Rectangular Rapid Flashing Beacon	4	EACH	\$ 10,000.00	\$	40,000.00
630	Signage	1	LUMP	\$ 15,000.00	\$	15,000.00
644	Yield Line	100	FT	\$ 25.00	\$	2,500.00
644	Crosswalk Line	130	FT	\$ 20.00	\$	2,600.00
644	Transverse Line	60	FT	\$ 8.00	\$	480.00
644	Edge Line	0.68	MILE	\$ 6,000.00	\$	4,100.00
659	Seeding and Mulching	1	LUMP	\$ 50,000.00	\$	50,000.00
832	Erosion Control	1	LUMP	\$ 50,000.00	\$	50,000.00
		It	temized S	Subtotal	\$	1,257,960.00
		Incidentals				
614	Maintenance of Traffic	1	LUMP	\$ 150,000.00	\$	150,000.00
619	Field Office	1	LUMP	\$ 10,000.00	\$	10,000.00
623	Construction Layout Stakes	1	LUMP	\$ 20,000.00	\$	20,000.00
624	Mobilization	1	LUMP	\$ 100,000.00	\$	100,000.00
		In	cidentals	Subtotal	\$	280,000.00
		-	(Contingency (30%)	\$	461,400.00
		Cor	structio	n Subtotal	\$	1,999,360.00
			Engine	ering Design (15%)	\$	300,000.00
				g =g (- 0,0)	T	3-2,22700

Environmental, Geotechnical, Miscellaneous Federal Requirements (10%) \$ 200,000.00

Right-of-Way* (Includes 30% Contingency) \$ 272,700.00

Inflation** (11.7%) \$

Subtotal \$ 2,772,100.00

Total \$ 3,096,500.00

324,400.00

Note: Cost estimate does not include utility relocation costs.

^{*}Assumes the Villiage of Haskins will donate right-of-way at the park for RRFB updates.

^{**}Inflation based on 2025 Construction

Acquisition	Parcel	Unit (Acreage)	Cost/Unit (\$\$/Acre)	Subtotal Land Value	Structure Value (If Taken)	Damages (Loss in Value to the Residue)	Subtotal Structures & Damages	Total Non-Labor Acquisition Costs	Parcel Count	Total Takes	Partial Takes	No. of Structures Impacted
Residential	610220312002000	0.050	\$258,108	\$12,905	\$0	\$0		\$12,905	2	0	2	0
	610220312003000	0.080	\$242,453	\$19,396	\$0	\$0	\$0	\$19,396			_	-
Commercial	610220312006000	0.310	\$97,273	\$30,155	\$0	\$0	\$0	\$30,155	1	0	1	0
Industrial		0.000	\$0	\$0	\$0	\$0	\$0	\$0	0	0	0	0
	610220312004000	0.900	\$7,019	\$6,317	\$0	\$0	\$0	\$6,317				
Agricultural	610220309022000	0.400	\$6,539	\$2,616	\$0	\$0	\$0	\$2,616	4	0	4	0
r ignountaria.	610270000009000	0.950	\$7,919	\$7,523	\$0	\$0	\$0	\$7,523			· .	ŭ
	610270000021503	0.500	\$6,826	\$3,413	\$0	\$0	\$0	\$3,413				
Relocation	Unit (Displ	acement)	RHP/RSP		Move Cost	Re-establishment						essary to relocate all RAP
Residential	O (2.0p.	400		•								ntil project wide R/W
Owner Occupant	0		\$34,000		\$6,000				acquisitio	n begins =	:3	
Tenant	0		\$10,000		\$1750			\$0				
Commercial/Farm/NPO			-				_					
Owner	0				\$15,000	\$10,000		\$0				
Tenant	0				\$15,000	\$10,000		\$0				
Personal Property	0				\$1,000			\$0				
[[(total of acquisition cost) x 0.09	9]x0.025] + [[(total of acquisit	ion cost) x 0.15] x 1.20] +	[[(total of acquisition	n cost) x 0.10] x 1.5	(Incidentals, Admin. Review, & Appropriation)			\$27,352 RHP - Replacement Housing Payment RSP - Rent Supplemental Payment				
						Total Non-Labor	R/W Costs			on-Profit O		
Labor (External)	Unit (Pa	arcels)	Unit Price	Total Cost	·				-			
Titles	7		\$1,000	\$7,000				This R/W Cost E	stimate P	repared by	1	Date
Appraisals								Carpenter N	/larty Tran	sportation		1/26/2022
Simple	0		\$750	\$0								
Detailed	7		\$4,500	\$31,500								
Appraisal Review												
Simple	0		\$500	\$0								
Detailed	7		\$2,000	\$14,000								
Negotiations	7		\$1,800	\$12,600								
Relocations												
Personal Property	0		\$2,000	\$0								
Residential	0		\$8,000	\$0								
Commericial/Farm/NPO	0		\$6,000	\$0								
Closings	7		\$500	\$3,500								
Package Billing & Review	7		\$500	\$3,500						Total Lab	or Costs	\$100,100
Project Management	7		\$4,000	\$28,000					Total No	n-Labor R	/W Costs	\$109,677
Asbestos Testing & Abatement	0	•	\$5,000	\$0						Cor	tingency	30%
	To	tal Labor Costs		\$100,100					TOT	AL R/W	COSTS	\$272,700

Appendix LBenefit-Cost Analysis

Project Cost Estimate								
Project Name	WOO-582-2.61	Contact Email	gbalsamo@cmtran.com					
Project Description	Safety Study	Contact Phone	614-656-2429					
Reference Number	117091	Date Performed	8/11/2022					
Analyst	Gina Balsamo	Analysis Year	2021					
Agency/Company	Carpenter Marty Transportation							

Engineering Design %	15%
Contingency %	30%

Countermeasures	Construction Costs	Right of Way Costs	Engineering Design Costs	Contingency Amount	Total Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value
Install left turn lanes, intersection lighting, sidewalk connection, and RRFBs	\$763,125.00	\$290,000.00	\$157,968.75	\$315,937.50	\$1,527,031.25		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00	_	
	_	_	\$0.00	\$0.00	\$0.00	_	_
Totals	\$763,125.00	\$290,000.00	\$157,968.75	\$315,937.50	\$1,527,031.25	\$0.00	\$0.00

Inflation % 12%

Final Costruction Cost: \$1,705,693.91

*Final construction cost should match the Project Cost Estimate

ECAT	Safety Benefit - Cost Analysis									
Constant Count Assisted Total			Genera	I Information						
Project Name	WOO-582-2.61				Contact Email		gbalsamo@cmtran.o	com		
Project Description	Safety Study				Contact Phone		614-656-2429			
Reference Number	117091			Date Performed			8/11/2022			
Analyst	Gina Balsamo				Analysis Year		2021			
Agency/Company Carpenter Marty Transportation					,					
Select Site Types to be use	ed in Benefit-Cost Analysis:	Comm	ents:							
All Sites										
	C	Counterm	easure Service I	ives, Costs, and	d Safety Benefit	s				
	Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits	
Install left turn lanes, intersect	ion lighting, sidewalk connection, and RRFBs	20	\$1,527,031.25			\$1,527,031.25	\$1,527,031.25			
			\$0.00			\$0.00	\$0.00		****	
			\$0.00			\$0.00	\$0.00	-1.211	\$851,020	
			\$0.00			\$0.00	\$0.00			
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
	Totals	•	\$1,527,031.25	\$0.00	\$0.00	\$1,527,031.25	\$1,527,031.25	-1.211	\$851,020	
· · · · · · · · · · · · · · · · · · ·										
Be	enefit - Cost Calculator			Expected Annual	Crash Adjustment		Comments:			
Net Prese	ent Value of Project \$1,527,031.25		Number of Fa	tal & Incapacitating	-0.099					
Net Present Value	e of Safety Benefits \$851,020.25	Injury Crashes Number of Injury Crashes -0.497								
	Net Benefit (\$676,011.00)				-1.211]				
1	Benefit / Cost Ratio 0.56		Number of Total Crashes -1.211							

Project Cost Estimate								
Project Name	WOO-582-2.61	Contact Email	gbalsamo@cmtran.com					
Project Description	Safety Study	Contact Phone	614-656-2429					
Reference Number	117091	Date Performed	8/11/2022					
Analyst	Gina Balsamo	Analysis Year	2021					
Agency/Company	Carpenter Marty Transportation							

Engineering Design %	15%
Contingency %	30%

Countermeasures	Construction Costs	Right of Way Costs	Engineering Design Costs	Contingency Amount	Total Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
CMF 1 - Convert intersection with minor-road stop control to modern roundabout (Rural)	\$1,403,230.00	\$367,400.00	\$265,594.50	\$531,189.00	\$2,567,413.50		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
Totals	\$1,403,230.00	\$367,400.00	\$265,594.50	\$531,189.00	\$2,567,413.50	\$0.00	\$0.00

Inflation % 12%

Final Costruction Cost: \$2,867,800.88

*Final construction cost should match the Project Cost Estimate

ECAT		s	afety Benef	it - Cost An	alysis					
Brownie Great Analysis Treat			Genera	I Information						
Project Name	WOO-582-2.61				Contact Email		gbalsamo@cmtran.c	om		
Project Description	Safety Study				Contact Phone		614-656-2429			
Reference Number	117091				Date Performed		8/11/2022			
Analyst	Gina Balsamo	A					2021			
Agency/Company	Carpenter Marty Transportation									
Select Site Types to be used	in Benefit-Cost Analysis:	Comm	ents:							
All Sites										
	C	ounterm	easure Service I	ives, Costs, and	d Safety Benefit	s				
c	Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits	
			\$0.00			\$0.00	\$0.00			
			\$0.00			\$0.00	\$0.00	-0.001	\$792	
			\$0.00			\$0.00	\$0.00	-0.001	\$792	
			\$0.00			\$0.00	\$0.00			
CMF 1 - Convert intersection with roundabout (Rural)	n minor-road stop control to modern	20	\$2,567,413.50			\$2,567,413.50	\$2,567,413.50	-1.955	\$1,541,388	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
	Totals		\$2,567,413.50	\$0.00	\$0.00	\$2,567,413.50	\$2,567,413.50	-1.956	\$1,542,180	
	<u> </u>									
Bene	efit - Cost Calculator			Expected Annual	Crash Adjustment		Comments:			
Net Present	Value of Project \$2,567,413.50		Number of Fa	tal & Incapacitating Injury Crashes	-0.179					
Net Present Value o	of Safety Benefits \$1,542,179.60		Numb	er of Injury Crashes	-0.900					
	Net Benefit (\$1,025,233.90)		Numb	er of Total Crashes	-1.956	•				
Ber	nefit / Cost Ratio 0.60			Number of Total Crashes -1.956						

Project Cost Estimate									
Project Name	WOO-582-2.61	Contact Email	gbalsamo@cmtran.com						
Project Description	Safety Study	Contact Phone	614-656-2429						
Reference Number	117091	Date Performed	8/11/2022						
Analyst	Gina Balsamo	Analysis Year	2021						
Agency/Company	Carpenter Marty Transportation								

Engineering Design %	15%
Contingency %	30%

Countermeasures	Construction Costs	Right of Way Costs	Engineering Design Costs	Contingency Amount	Total Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
CMF 1 - Convert intersection with minor-road stop control to modern roundabout (Rural)	\$1,639,133.00	\$272,700.00	\$286,774.95	\$573,549.90	\$2,772,157.85		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
Totals	\$1,639,133.00	\$272,700.00	\$286,774.95	\$573,549.90	\$2,772,157.85	\$0.00	\$0.00

Inflation % 12%

Final Costruction Cost: \$3,096,500.32

*Final construction cost should match the Project Cost Estimate

Safety Benefit - Cost Analysis										
Economic Corol Analysis Tool			Genera	I Information						
Project Name	WOO-582-2.61 Contact Email gbalsamo@cmtran.com									
Project Description	Safety Study				Contact Phone		614-656-2429			
Reference Number	117091				Date Performed		8/11/2022			
Analyst	Gina Balsamo				Analysis Year		2021			
Agency/Company										
				,			l.			
Select Site Types to be used in Benefit-Cost Analysis:			Comments:							
All Sites										
Countermeasure Service Lives, Costs, and Safety Benefits										
Countermeasures		Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits	
			\$0.00			\$0.00	\$0.00			
			\$0.00			\$0.00	\$0.00	-0.001	\$792	
			\$0.00			\$0.00	\$0.00	-0.501	3732	
			\$0.00			\$0.00	\$0.00			
CMF 1 - Convert intersection with minor-road stop control to modern roundabout (Rural)		20	\$2,772,157.85			\$2,772,157.85	\$2,772,157.85	-1.955	\$1,541,388	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
	Totals		\$2,772,157.85	\$0.00	\$0.00	\$2,772,157.85	\$2,772,157.85	-1.956	\$1,542,180	
Benefit - Cost Calculator			Expected Annual Crash Adjustment				Comments:			
Net Present Value of Project \$2,772,157.85			Number of Fatal & Incapacitating -0.179 Injury Crashes							
Net Present Value of Safety Benefits \$1,542,179.60			Number of Injury Crashes -0.900							
Net Benefit (\$1,229,978.25)			Number of Total Crashes -1.956							
Benefit / Cost Ratio 0.56		1								