

ROADWAY SUBGRADE INVESTIGATION REPORT SUM-77-0958L DESIGN BUILD AKRON, SUMMIT COUNTY, OHIO S&ME Project No. 1179-14-011

Prepared for: ODOT District 4 Akron, Ohio

Prepared by: S&ME, Inc. Cleveland, Ohio

October 1, 2014

October 1, 2014 1179-14-011

Mr. Thomas J. Powell, P.E. ODOT District 4 2088 S. Arlington Road Akron, Ohio 44306

Re: District 4 Geotechnical Services No. 2014-2 PID No. 90210 Agreement No. 18032 Task Order 04-4

> **Geotechnical Exploration** SUM-77-0958L Design Build PID #98061

Summit County, Ohio

Dear Mr. Powell:

In accordance with our revised proposal dated June 5, 2014, and formal authorization by ODOT on June 25, 2014 (Encumbrance Number 726983), S&ME, Inc. (S&ME) has completed a roadway subgrade investigation and embankment and bridge widening borings for the SUM-77-0958L Design Build project in Summit County, Ohio. This report contains the information obtained from the borings as well as analyses and recommendations for design and construction of the roadway widening and remediation of the roadway subgrade. As requested by ODOT District 4, borings were performed but no recommendations were provided for the embankment widening or bridge widening. Preparation of soil plan and profile sheets was not authorized as a part of this task order.

We appreciate the opportunity to be of service. Please do not hesitate to contact our office if you have any questions concerning this report.

Respectfully submitted, **S&ME, Inc.**

Kyle J. Dohlen, P.E. Project Engineer

Eric A. Angyal, P.E. Senior Reviewer

Submitted: One (1) copy via email in pdf format

TABLE OF CONTENTS

1.0		INTRODUCTION		
2.0		GEOLOGY AND OBSERVATIONS OF THE PROJECT	1	
2	2.1	Geology	1	
2	2.2	Site Reconnaissance	1	
3.0		EXPLORATION	1	
3	8.1	Available Information	1	
3	3.2	Field Exploration	2	
3	3.3	Laboratory Testing Program	3	
4.0		EXPLORATION FINDINGS	4	
4	1.1	Existing Pavement Thicknesses and Surficial materials	4	
4	.2	General Subsurface Conditions		
5.0		ANALYSES AND RECOMMENDATIONS	4	
5	5.1	Roadway Subgrade	5	
		5.1.1 Subgrade Support Parameters	5	
		5.1.2 Unsuitable Subgrade Materials	5	
		5.1.3 ODOT GB1 Subgrade Remediation Analyses and Recommendations.	5	
6.0		FINAL CONSIDERATIONS	8	

TABLE OF APPENDICES

Plate No.

Appendix AGeneral Project Information and Boring Logs

Vicinity Map	1
Plan of Borings	2
Explanation of Symbols and Terms Used on Boring Logs for Soil	3
Explanation of Symbols and Terms Used on Boring Logs for Rock	4
Logs of Borings	5-27
Summary of Pavement Core Measurements	
Pavement Core Photos	29 - 33
Rock Core Unconfined Compression Test Results	34 - 40
TxDOT-145-E Test Results	41

Appendix B Calculations

Subgrade Analysis Spreadsheet v.12.00 (ODOT GB1 Spreadsheet) - Global	1
Subgrade Analysis Spreadsheet v.12.00 (ODOT GB1 Spreadsheet) - Ramp B	2
Subgrade Analysis Spreadsheet v.12.00 (ODOT GB1 Spreadsheet) - Ramp B2	3

Appendix C ODOT OGE Design Checklists

Subgrade Checklist 1	1-:	2	2
----------------------	-----	---	---

1.0 INTRODUCTION

S&ME understands that ODOT District 4 (D-4) is requesting a geotechnical exploration for pavement replacement and widening of existing Ramp B-2 which connects northbound I.R. 77 with westbound I.R. 277 in Summit County, Ohio. The ramp includes an existing three-span, H-pile supported, fly-over bridge that will also be widened. Some widening may also occur along the west side of northbound I.R. 77, just south of the I.R. 277 bridge over I.R. 77, and on the north side of westbound I.R. 277 where Ramp B-2 connects to I.R. 277. Since this is a Design Build project, proposed regrading is currently unavailable for the project. The existing fly-over bridge deck is about 20 to 22 feet above southbound I.R. 77. There is currently about 20 to 36 feet of vertical grade change along the northwestern portion of the project alignment in an area where the existing embankment may need to be widened to the west into a wooded, low-lying area containing a creek. It is anticipated that little to no grade change will occur along northbound I.R. 77 to the south of I.R. 277. The project site is located in northern Summit County, Ohio. The approximate site location is provided on the Vicinity Map submitted as Plate 1 in Appendix A.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Geology

According to available resources, the project site is located within the Akron-Canton Interlobate Plateau region noted for numerous glacial remnant features. Areas containing thin to thick Wisconsinan-age glacial drift and sand deposits over Devonian to Pennsylvanian age shale, sandstone and conglomerates may also be encountered within the project limits and in the nearby vicinity. The Summit County Soil Survey (accessed through the Web Soil Survey website) information indicates that the near surface soils are identified by C.F. which is assumed to be either Construction Fill or Controlled Fill over the entire project area.

Topography maps indicate the existing ground surface elevation varies from about Elevation (El.) 1017 (MSL) to about El. 1048 (MSL) within project limits. Bedrock topography maps and a previous investigation performed by others indicate the uppermost bedrock may be encountered between El. 950 (MSL) and El. 1000 (MSL). Exposed bedrock was observed in the creek bed in the northwest portion of the site.

2.2 Site Reconnaissance

Site reconnaissance visits were made by S&ME personnel on May 23, June 3, June 14 and June 15, 2014, to observe the proposed project alignment and to field mark the borings and pavement core locations at the project site. The existing I.R. 77 ramp pavement is in fair condition, with many longitudinal and perpendicular cracks.

3.0 EXPLORATION

3.1 Available Information

S&ME was provided with a general description of the work to be performed and a handmarked drawing identifying the proposed work areas during the preparation of our cost proposal. These were received via email on May 16, 2014. Several other documents were also provided for preparation of the proposal, which also included the SUM-8-0932 Bridge Plan Set and the SUM-277-0.00 Plan Set.

3.2 Field Exploration

From July 21 through July 25, 2014, a total of seventeen (17) borings were performed to investigate the existing soils along the project alignment. The borings were performed to evaluate the existing subgrade of the I.R 77 ramp and to provide information for others to evaluate the global stability of the ramp embankment and to design foundations for the bridge widening. The borings were advanced to termination depths ranging from about 10.0 feet to 56.0 feet below the existing ground or pavement surface.

Boring B-001-0 through B-004-0 and B-007-0 through B-011 were advanced to evaluate the roadway subgrade. Two of the borings (Borings B-004-0 and B-007-0) along with Borings B-005-0 and B-006-0 were drilled to provide information for the proposed bridge widening. Borings B-003-1, B-007-1, B-008-1, B-009-1, B-009-2 and B-010-1 were drilled to assist with evaluating the global stability of the embankment widening along with seven (7) of the roadway subgrade borings.

In addition to the soil borings, pavement cores were performed at nine (9) locations to determine the thickness of the existing pavement sections and to help advance the borings through the pavements. The pavement cores were performed prior to soil sampling at each boring location using a portable generator powered coring machine. The pavement cores were performed with a 6-inch diameter diamond impregnated tip bit using water as a circulating/cooling fluid. The core bit was advanced through the pavement materials to the top of the existing aggregate base material. The pavement was temporarily filled with granular backfill after coring. The core holes after completion of drilling and sampling were backfilled with an equivalent thickness of asphalt and/or concrete patch that matched the surrounding pavement thickness. A table of pavement thicknesses obtained from the cores is included as Plate 28 in Appendix A.

S&ME field marked the seventeen (17) boring locations. Surveyed locations of all of the borings and cores were provided to S&ME by ODOT and the survey data has been included on the boring logs provided in Appendix A as Plates 5 through 27. These borings were performed in general accordance with the August 2013 update of the ODOT *"Specifications for Geotechnical Explorations"* (*SGE*). A Plan of Borings showing the locations of the borings is included as Plate 2 of Appendix A.

The borings were drilled with a truck or an ATV-mounted drill rig using 3-¼ I.D. hollow stem augers or 4-½-inch O.D. continuous flight augers. When bedrock was encountered in the four (4) structure borings a NQ2 rock core barrel was used to core the bedrock. Disturbed, but representative, samples were procured by lowering a 2-inch O.D. splitbarrel sampler to the bottom of the boring and then driving the sampler into the soil with blows from a 140-pound hammer freely falling 30 inches (ASTM D 1586 – Standard Penetration Test, SPT). Bedrock was cored in four (4) borings of the seventeen (17) borings. Bedrock and SPT samples were examined immediately after recovery and representative portions were preserved in storage boxes or airtight glass jars, as

applicable. Six (6) feet of continuous SPT sampling was attempted beginning beneath the existing pavement section or at the existing ground surface in nine (9) of the borings used for pavement subgrade recommendations SPT samples were then obtained at 2.5-foot followed by 5-foot sampling intervals until auger refusal occurred or bedrock coring was attempted.

Upon completion of each boring, water levels and/or seepage observations were measured and the borings were backfilled and/or sealed in accordance with ODOT *SGE* requirements. As previously noted for all borings that were advanced through existing pavements, the pavement was repaired with an equal thickness of asphalt patch and/or quickset concrete.

In the field, experienced personnel performed observed the following specific duties: observed pavement coring operations performed by others; preserved all recovered samples; prepared a log of each boring and core; made seepage and groundwater observations; obtained hand-penetrometer measurements in soil samples exhibiting cohesion; and coordinated with the Project Engineer so that the program of explorations could be modified, if necessary, because of unanticipated conditions. All samples were transported to the laboratory of S&ME for further identification and testing.

3.3 Laboratory Testing Program

In the laboratory, all soil samples were visually identified and tested for natural moisture content, with liquid/plastic limit determinations, grain-size analyses and/or Loss-on-Ignition (LOI) tests being performed on selected samples from each boring. TEX-145-E sulfate tests were performed on nine (9) roadway subgrade samples by Advanced Analytics Laboratories, Inc. The results of laboratory index tests are recorded numerically on individual boring logs. The sulfate test results are included on the boring logs and on Plate 41 in Appendix A.

The bedrock cores were identified in the laboratory and seven (7) unconfined compressive strength tests were performed on portions of the cores. There are submitted as Plate 34 through 40 in Appendix A. Photos of the nine (9) retrieved asphalt cores are submitted as Plates 29 through 34 in Appendix A.

Based on the results of the laboratory testing program, soil and bedrock descriptions contained on the field logs of the borings were modified, as necessary, and laboratory-corrected boring logs are included as Plates 5 through 27 in Appendix A. Shown on these logs are: descriptions of the soil and rock stratigraphy encountered; depths from which samples were preserved; sampling efforts (blow-counts) required to obtain the specimens in the borings; calculated N_{60} values; laboratory testing results; seepage and groundwater observations; and, values of hand-penetrometer measurements made in soil samples exhibiting cohesion. For your reference, hand-penetrometer values are roughly equivalent to the unconfined compressive strength of the cohesive fraction of the soil sample. Percent recovery, RQD, and unconfined compression strength test results are shown for the bedrock cores.

Soils have been classified in general accordance with Section 603 of the ODOT *SGE*, and described in general accordance with Section 602. An explanation of the symbols and terms used on the boring logs, definitions of the special adjectives used to denote the minor soil components, and information pertaining to sampling and identification are presented on Plate 3 of Appendix A. Group Indices (ODOT Classification) determined from the results of the laboratory testing program are also provided on the boring logs. Plate 4 of Appendix A shows symbols and terms used for the bedrock cores.

4.0 EXPLORATION FINDINGS

Please refer to the boring logs, pavement core photographs, and summary table submitted in Appendix A for a summary of the pavement, soil, bedrock and groundwater/seepage conditions encountered at the boring locations. Inferences should not be made to the subsurface conditions in the areas between or away from the borings and cores without performance of additional borings or other field verification.

4.1 Existing Pavement Thicknesses and Surficial materials

Three (3) to seven (7) inches total of sod and topsoil were encountered at the ground surface at Boring B-001-0, B-003-1, B-005-0, B-007-1, B-008-1, B009-1, B-009-2, and B-010-1. The roadway pavements generally consisted of 3 to 9 inches of asphalt overlying 3 to 12 inches of granular base. In Borings B-003-0 and B-006-0, 8 to 8.5 inches of concrete was encountered between the asphalt and granular base layers. A summary of the pavement material encountered at each location is included in the Table of Pavement Thicknesses presented on Plate 28 in Appendix A as well as on the individual boring logs.

4.2 General Subsurface Conditions

Beginning beneath the pavement/base or topsoil layers, soils visually identified as fill were encountered in 14 of the borings and the fill generally consisting of stiff to hard SANDY SILT (A-4a), SILT (A-4b) and/or SILT AND CLAY (A-6a) with occasional medium-dense to very-dense GRAVEL WITH SAND (A-1-b) and/or COARSE AND FINE SAND (A-3a). Fill or possible fill soils were encountered to depths ranging from three (3) to 38 feet below existing grades.

Soils identified as being natural generally consisted of stiff to hard SANDY SILT (A-4a), SILT (A-4b) and/or SILT AND CLAY (A-6a) with occasional medium-dense to verydense GRAVEL WITH SAND (A-1-b), GRAVEL WITH SAND AND SILT (A-2-4), FINE SAND (A-3) and/or COARSE AND FINE SAND (A-3a) to the boring termination depths, auger penetration refusal or until bedrock was encountered. Cobbles and/or boulders were encountered at various depths at many of the boring locations.

Bedrock was encountered in six (6) borings at depths ranging from 12.5 to 41 feet below existing grades. Four (4) additional borings are assumed to have encountered refusal in bedrock, however, no recovery was obtained in attempted samples to verify this assumption. Those four borings include B-007-1, B-008-0, B-008-1 and B-009. Borings that were extended into bedrock generally encountered either sandstone or sandstone interbedded with shale. Boring B-004-0 encountered a void in the bedrock during coring from 47 to 49 feet depth.

Seepage or groundwater was encountered during drilling in eight (8) borings ranging between 1.5 and 19.9 feet below existing grade. See the boring logs in Appendix A for additional notes regarding observed water levels in the borings.

5.0 ANALYSES AND RECOMMENDATIONS

5.1 Roadway Subgrade

5.1.1 Subgrade Support Parameters

The recommendations provided in this section are in accordance with the August 2013 update of the ODOT Office of Geotechnical Engineering (OGE) GB1 document and are for roadway areas where less than 3 feet of new fill will be required to attain the proposed subgrade level. The Subgrade Analysis table, submitted as Plate 1 in Appendix B of this report, was developed using the GB1 spreadsheet (Ver. 12.00, updated 12/30/11) distributed by (OGE), to summarize the soil type by ODOT/HRB classification, group indices, depth, SPT blow-counts, and Atterberg Limit values for the soils encountered in the nine (9) borings performed for this investigation to develop roadway recommendations.

The average California Bearing Ratio (CBR) is computed by the ODOT GB1 spreadsheet for the anticipated subgrade soils encountered in the roadway borings during this investigation. S&ME calculated the CBR values for the overall project area and for both of the ramps that will be involved in the widening. The results of the GB1 spreadsheets are included in the following table. S&ME recommends that the following CBR values, based on the GB1 spreadsheet output, be used for pavement design. Based on the provided CBR values and using equation 203.1 of Section 203.1 of the 2008 ODOT <u>Pavement Design Manual</u>, the following value of Resilient Modulus (M_R) should be used during new pavement section design for this project:

Alignment	CBR	Resilient Modulus (M _R), psi
Global	8	9,600
Ramp B	8	9,600
Ramp B2	9	10,800

These subgrade support values may be used during the pavement design for this project provided that the entire proposed pavement subgrade is prepared in strict accordance with Item 204 of the 2013 ODOT "*Construction and Materials Specifications*" (CMS) and that all borrow soil placed within 3 feet of the final subgrade level of a new fill embankment is capable of providing average subgrade support parameters which meet or exceed the above values.

5.1.2 Unsuitable Subgrade Materials *Silt* (A-4b)

Soil samples which were classified as silt (A-4b) were encountered in Boring B-008 within the first sample of the boring and extended to a depth of 2.5 feet. According to the ODOT GB1 document, silt deposits should be removed to a depth of at least three (3) feet below the anticipate subgrade level and replaced with Item 204 embankment. Silt was also encountered at various depths in three (3) other borings on site, but not within three (3) feet of proposed subgrade. If, during construction, silt deposits are encountered within the project limits during earthwork or proof rolling operations, S&ME recommends that test pits or hand sampling methods be used to further investigate and delineate the extent and depth of the silt deposits so that they can be properly removed. According to GB1, if the embankment is chemically (cement) stabilized to a depth of 16 inches, the A-4b soils may not have to be removed.

Organic Soil (A-8a or A-8b)

No soil samples encountered within this investigation were classified as A-8a or A-8b. If soils identified as organic are encountered during construction, the ODOT GB1 document recommends that any organic A-8a or A-8b soils should be completely removed. If complete undercut and replacement is not feasible, a minimum undercut of 24 inches is permitted depending on the subgrade stability. The undercut soils should be replaced with properly compacted new fill in accordance with ODOT Item 204 Embankment.

Rock, Shale or Coal

No rock samples were encountered within the expected roadway profile in this investigation. Rock was encountered in the borings for the structure widening investigation for this project. At the time of this investigation the proposed roadway profile was unavailable to S&ME. However, GB1 states that if rock is encountered within 24 inches of the bottom of the pavement, it is to be removed according to Item 204.05 and replaced with Item 204 Embankment.

5.1.3 ODOT GB1 Subgrade Remediation Analyses and Recommendations

In accordance with Section C of the 2013 ODOT GB1, a comparison of the laboratorymeasured moisture content with the estimated optimum moisture content of the subgrade soil is an indicator of the need for subgrade treatment, in addition to the classification of the soils encountered at and slightly below the anticipated subgrade elevation. However, Figure B of the GB1 document and the GB1 spreadsheet (made available by ODOT on their website) do not generally incorporate this moisture content comparison into the recommended undercuts or chemical stabilization treatment depths. To reduce the subgrade soil moisture content, GB1 recommends establishing drainage for new construction areas and re-establishing drainage in pavement rehabilitation areas. ODOT also recommends consideration be given to installing new underdrains in advance of or at the start of rehabilitation projects. According to the Subgrade Analysis spreadsheet in Appendix B, three (3) of the borings contained samples with the existing moisture contents of the subgrade soils exceeding the estimated optimum moisture contents by more than 3%. GB1 specifies that the average of the lowest N_{60} value for each boring be used to select the method and depth of subgrade remediation. GB1 currently describes two acceptable options to remediate the soil subgrade: 1) undercutting; and, 2) chemical stabilization. The Subgrade Analysis spreadsheet in Appendix B summarizes the laboratory-measured moisture content for samples within each boring location with respect to the estimated optimum moisture contents, the lowest N_{60} value obtained from the Standard Penetration Tests performed at each boring and the depth of undercut/replacement recommended per GB1 guidelines. Based on the results from the GB1 spreadsheet, S&ME recommends that undercuts of the magnitude listed in Table 5-1 be used for cost estimating and plan design purposes.

Alignment	Estimated Begin Station	Estimated End Station	Road	Undercut (Remove & Replace) Depth (in)	Cement Stabilization Depth (in)
I.R. 77	496+50	500+50	IR 77 NB	24	16
	470130	500150	Median	27	10
I.R. 77,	6+60	7 - 57**	IR 77 NB	27	16
Ramp B2	0+00	7+37**	Ramp B2	21	10
I.R. 77,	10+05	12+82	IR 77 NB	20*	16
Ramp B2	10+93 12+82 Ramp B2 30*		30.	10	
I.R. 77,	20 59	22 57	IR 77 NB	14	10
Ramp B	20+38	22+37	Ramp B	14	12

Table 5-1 Local Stabilization Options

*A-4b (Silt) encountered. Either cement stabilize or undercut where within 36 inches of proposed subgrade.

Note: Areas requiring no stabilization per GB1 should be reworked to provide a stable subgrade in accordance with Item 204.

Estimate undercuts vary from 14 to 30 inches within the different portions of the alignment included in this investigation. Actual depths required to be undercut should be based on proof-roll tests completed in accordance with Item 204. Consideration could be given to the use of geogrid where undercutting depths are in excess of 12 inches or where shallow underground utilities may exist. Generally, 12 inches of reduction of undercutting depth may be achieved if geogrid is used. The GB1 document indicates that for undercuts greater than 16 inches, a geotextile fabric is to be placed at the base of the excavation, with the geogrid placed in the middle of the granular material. However, undercuts with geogrid should be no less than 12 inches deep. Geogrid cannot be used in the area of B-008 due to the A-4b soils.

The GB1 document also recommends that global stabilization be considered if more than 30% of the subgrade area will require stabilization. This approach should be considered as approximately 44% of the borings suggest the subgrade area requires stabilization. Based on information contained in the GB1 spreadsheet, the site has an average low SPT blowcount (N_{60L}) of 10.8 for the entire project site. Using the average project N_{60L} value, and considering the presence of A-4b soils, a global cement stabilization depth of 16 inches is recommended.

Regarding chemical stabilization, the ODOT GB1 document restricts the use of any kind of chemical stabilization in soils with sulfate contents greater than 3,000 ppm. No subgrade samples tested for this project had a sulfate content higher than 3,000 ppm in an area where the GB1 analysis indicated the need for stabilization, thus it appears that chemical stabilization (cement) may be used for global stabilization of the project alignment due to the range of plasticity indexes for the encountered soils.

If global stabilization is selected, localized areas may require additional depth of undercut and/or chemical stabilization. These areas should be identified during proof-rolling operations. While the average N_{60L} for the project is above the typical range generally assumed to benefit from the use of geogrid (i.e. N_{60L} of 6 or less), consideration could be given to the use of geogrid (where allowed) to reduce the depth of undercut required to stabilize the subgrade, as determined during proof-roll test results. Areas demonstrating rutting or squeezing should be undercut and replaced with approved Item 204 material. Throughout the entire project area final determination of the depth and limits of the undercut required will be determined based on the results of proof-rolling, it is recommended that undercut quantities deeper than that required for global stabilization be included in the construction documents as a contingency quantity.

6.0 FINAL CONSIDERATIONS

The recommendations submitted in this report are based on the available subsurface information obtained by S&ME and the project information provided by ODOT District 4. If deviations from the subsurface conditions noted in this report or any subsequent reports are encountered during construction, S&ME should be notified immediately to determine if changes to our recommendations are required. If S&ME is not notified of such changes, S&ME cannot be responsible for the impact of those changes on the project.

APPENDIX A

APPENDIX A

Plate No.

Appendix A General Project Information and Boring Logs

Vicinity Map	1
Plan of Borings	2
Explanation of Symbols and Terms Used on Boring Logs for Soil	3
Explanation of Symbols and Terms Used on Boring Logs for Rock	4
Logs of Borings	
Summary of Pavement Core Measurements	
Pavement Core Photos	
Rock Core Unconfined Compression Test Results	
TxDOT-145-E Test Results	

File Last Updated: Sep 04, 2014 Plot Info: 9-4-2014 @ 10:29am By: kdohlen S&ME Filename: Q:/DEPTS/CADD/Drawings/Projects - BST2014/1179-14-011 - SUM-77-0958L Widening/PLANS/Proposed POB.dwg Layout V-Map Plot File

TOPO! map_Akron_West. TIF

Z

n2240495.tif

z

Images: Xrefs:

PР 201

-011	Drawn By: KJD		
4-2014	Approved By: EAA		
10-2014	Scale: GRAPHIC	1:1	

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Indicates sample was attempted within this depth interval.

- The number of blows required for each 6-inch increment of penetration of a "Standard"
 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer freely falling 30 inches (SPT). The raw "blowcount" or "N" is equal to the sum of the second and third 6-inch increments of penetration.
- N₆₀ Corrected Blowcount = [(Drill Rod Energy Ratio) / (0.60 Standard)] X N
- SS Split-barrel sampler, any size.
- ST Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-0.3' Number of blows (50) to drive a split-barrel sampler a certain distance (0.3 feet), other than the normal 6-inch increment.

DEPTH DATA

- W Depth of water or seepage encountered during drilling.
- ▼ AD Depth to water in boring after drilling (AD) is terminated.
- ▼ 5 days Depth to water in monitoring well or piezometer in boring a certain number of days (5) after termination of drilling.
 - TR Depth to top of rock.

SOIL DESCRIPTIONS

Soils have been classified in general accordance with Section 603 of the most recent ODOT SGE, and described in general accordance with Section 602, including the use of special adjectives to designate approximate percentages of minor components as follows:

Adjective	Percent by Weight
trace	1 to 10
little	10 to 20
some	20 to 35
"and"	35 to 50

The following terms are used to describe density and consistency of soils:

<u>Term (Granular Soils)</u>	Blows per foot (N60)
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF ROCK

SAMPLING DATA

 SPT/ ROD
 When bedrock is encountered and rock core samples are attempted, the length of core recovered and lost during the core run is reported in the "REC" column. The type of rock core barrel utilized is recorded under the heading "Sampling Method" at the top of the boring log, and also in the "SAMPLE ID" column. Rock-core barrels can be of either single- or double-tube construction, and a special series of double-tube barrels, designated by the suffix M, may also be used to obtain maximum core recovery in very-soft or fractured rock. Four basic groups of barrels are used most often in subsurface investigations for engineering purposes, and these groups and the diameters of the cores obtained are as follows:

AX, AW, AXM, AWM	-	1-1/8 inches
BX, BW, BXM, BWM	-	1-5/8 inches
NX, NW, NXM, NWM	-	2-1/8 inches
NQ, NQ2	-	1-7/8 inches

Rock Quality Designation (RQD) is expressed as a percentage and is obtained by summing the total length of all core pieces which are at least 4 inches long and then dividing this sum by, either, the total length of core run or the length of the core run in a particular bedrock stratum. The RQD value is reported as a percentage in the "SPT/RQD" column. It has been found that there is a reasonably good relationship between the RQD value and the general quality of rock for engineering purposes. This relationship is shown as follows:

<u>RQD - %</u>	General Quality
0 - 25	Very-poor
25 - 50	Poor
50 - 75	Fair
75 - 90	Good
90 - 100	Excellent

ROCK HARDNESS

Recovered bedrock samples are described in general accordance with Section 605 of the 2007 ODOT SGE and subsequent revisions, where necessary. The following terms are used to describe rock hardness:

Term	Meaning
Very Weak	Rock can be excavated readily with the point of a pick and carved with a knife. Pieces 1 inch or greater in thickness can be broken by finger pressure. Can be scratched with a fingernail.
Weak	Rock can be grooved or gouged readily by a knife or pick, and can be excavated in small fragments with moderate blows from a pick point. Small, thin pieces may be broken with finger pressure.
Slightly Strong	Rock can be grooved or gouged 0.05 inches deep with firm pressure from a knife or pick point, and can be excavated in small chips to pieces of 1 inch maximum size using hard blows from the point of a geologist's pick.
Moderately Strong	Rock can be scratched with a knife or pick. Grooves or gouges to ¹ / ₄ inch deep can be excavated by hard blows of a geologist's pick. Requires moderate hammer blows to detach a hand specimen.
Strong	Rock can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach a hand specimen. Sharp and resistant edges are present on hand specimens.
Very Strong	Rock cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires repeated hard blows of a geologist's hammer.
Extremely Strong	Rock cannot be scratched by a knife or sharp pick. Chipping of hand specimens requires repeated hard blows of a geologist's hammer.

PROJECT: SUM-77-0958L WIDENING DRILLING FIRM / OPERA TYPE: ROADWAY SAMPLING FIRM / LOGG PID: 98061 BR ID: N/A START: 7/21/14 END: 7/21/14	TOR: <u>S</u> ER: <u>S</u> 4	&ME / D. GODWIN &ME / D. FRITZE .5" CFA SPT	_ DRIL _ HAM _ CALI _ ENEI	l Rig: Mer: Brati Rgy R		TRUCK 55 AFETY HAN ATE:2 (%):	(AW) MMER /19/13 76		STAT ALIG ELE\ LAT /	FION / NMEI /ATIC / LON	/ OFF NT: _)N: _1 IG:	SET: 031.2	1 2 (MS 1.024	94+47 .R. 77 SL) E 237 N	7, 15.0 7 50B: 1, 81.	0 LT 1(49971	EXPLOR B-00').0 ft. 7 W	ATION ID 1-0-14 PAGE 1 OF 1
AND NOTES	1031.2	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	SI) CL		PL	PI	wc	ODOT CLASS (GI)	FILL
TOPSOIL - 6 INCHES	1030.7	-	-															7 L ^V 7 L
FILL: Very-stiff to hard brown mottled with gray SANDY SILT , little to some clay, trace to little fine gravel, contains few roots and few coal fragments, dry.		- 1 -	6 9 11	25	67	SS-1	3.5- 4.5+	13	9	22	33	23	26	16	10	12	A-4a (4)	
	1027.2	- 3 -	8 9 12	27	100	SS-2	3.5- 4.5+	8	8	25	39	20	23	16	7	14	A-4a (5)	
Very-stiff to hard brown becoming gray SANDY SILT , little clay, little fine to coarse gravel, damp.		_ 4	4 5 5	13	94	SS-3	2.5- 4.5+	-	-	-	-	-	-	-	-	17	A-4a (V)	
		▼ AD 6 - 6 - 7	4 5 5	13	67	SS-4	3.5- 4.5+	20	7	20	38	15	18	15	3	12	A-4a (4)	1>1 1> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
		w 8	-															$\begin{vmatrix} \zeta \\ \gamma \\$
	1021.2	EOB-10-	3 5 6	14	100	SS-5	4.0- 4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	

NOTES: - Seepage encountered at 8.5' during drilling. - After removal of augers, boring caved at 8.0' and water was

measured at 6.5'.

- Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 399 ppm.

NOTES: SEE ABOVE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED SOIL CUTTINGS

		1				-														-	
PROJECT: SUM-77-0958L	WIDENING	DRILLING FIRM / OPER	ATOR: S	&ME / D. G	ODWIN	DRIL	L RIG	:1	RUCK 55	5 (AW)		STAT	ION	OFF	SET:	498	8+45.	4, 21	.8 LT	EXPLOR	ATION ID
TYPE: ROADWA	Y	SAMPLING FIRM / LOG	GER: S	&ME / D. F	RITZE	HAM	MER:	SA	FETY HA	MMER		ALIG	NME	NT:			.R. 77	7		B-002	2-0-14
PID: 98061 BR ID:	N/A	DRILLING METHOD:	4	.5" CFA		CALI	BRATI		ATE: 2	2/19/13		ELEV	ATIC) N: 1	035.	2 (MS	SL) E	OB:	1().0 ft.	PAGE
START: 7/21/14 END:	7/21/14	SAMPLING METHOD:		SPT		ENEF	RGY R	RATIO	(%):	76		LAT /	LON	G:	4	1.025	5052 N	N, 81.	50067	8 W	1 OF 1
MATER	IAL DESCRIPT	TION	ELEV.	DEDT		SPT/	NI	REC	SAMPLE	HP	(GRAD	ATIC)N (%)	ATT	ERBE	ERG		ODOT	BACK
	ND NOTES		1035.2	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
GRAVEL	- 12 INCHES	\times	1034.2																		JLV JL
FILL: Stiff to verv-stiff brown		ittle clav little fine	1004.2	w	- 1 -	2				4.5											$ < \sqrt{<} $
gravel, contains few roots and	few coal fragm	ents, damp.			- 2 -	3	8	67	SS-1	1.5- 2.5	12	14	31	30	13	20	16	4	14	A-4a (2)	12 12
					_ 3 _	2				15											JLV JL
			1031.2			23	6	100	SS-2	2.8	-	-	-	-	-	-	-	-	14	A-4a (V)	- 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
Hard brown SANDY SILT, "an	d" fine to coars	e gravel, little clay,			- 4 -	7	22	100	<u> </u>	4.0-	44	2	15	26	15	22	10	6	11	A 40 (1)	1 2 7 4
5 contains few roots and few sha	ale fragments, o	damp.			- 5 -	° 9	22	100	33-3	4.5+	41	3	15	20	15	22	10	0	11	A-4a (1)	$\int L^{V} \tilde{J} L$
					- 6 -	9	56	100	66 A	4.0-									12	A 40 () ()	$ \langle V \rangle \rangle $
			1028.2			32	50	100	33-4	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V)	12712
Very-stiff to hard gray SILT A	ND CLAY, som	e fine gravel, little			F ' -																JLV JL
fine to coarse sand, contains f	ew silt seams, o	damp.			- 8 -																1>1-1>
2					- 9 -	4	10	100	SS F	3.5-	27		6	21	27	20	17	12	0	A 60 (6)	7676
			1025.2	FOR	10	8	10	100	33-3	4.5+	21	9	o	51	21	30	17	13	9	A-0a (0)	
í l				LOB																	

NOTES:

Seepage encountered at 1.5' during drilling.
 After removal of augers, boring caved at 8.5' and was observed

- Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 71.0 ppm.

NOTES: SEE ABOVE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED SOIL CUTTINGS

	PROJECT: SUM-77-0958L WIDENING TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	TOR: _S ER:S	&ME / D. GODWIN &ME / D. FRITZE	DRIL HAM	l Rig: Mer:	T SA	RUCK 55 Fety Han	(AW) /MER		STAT ALIGI	ION / NMEN		SET:	4- R/	+66.1 Amp I	, 15.7 B2	' RT	EXPLOR B-00	ATION ID 3-0-14
	PID: <u>98061</u> BR ID: <u>N/A</u>	DRILLING METHOD:	4	.5" CFA	CALI	BRATI	ON DA	ATE:	19/13		ELEV	ATIO	N: <u>1</u>	043.8	8 (MS	<u>SL)</u> E	OB:	15	5.0 ft.	PAGE
2	START: //21/14 END: //21/14	SAMPLING METHOD:				KGY R		(%):	76		LAI /	LUN	G:	4	1.026	500 ľ	N, 81.	50240	6 W	
11.G	MATERIAL DESCRIP AND NOTES	ION	ELEV.	DEPTHS	SP1/ RQD	N ₆₀	(%)	ID	HP (tsf)	GR		FS	SI) CL		PL	PI	wc	ODOT CLASS (GI)	HOLE
S\1179-14-(ASPHALT - 5 7/8 INCHE CONCRETE - 8 1/2 INCH GRANULAR BASE - 5 1/2 IN	S ES CHES	1043.3 1042.6 1042.1	- 1 -																$\bigvee_{<\\ 7\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
PROJECT	Very-stiff to hard brown mottled with gray SIL "and" fine to coarse sand, little fine gravel, cc organic pockets (slightly organic) and few iro	T AND CLAY, ntains few decayed		- 3 -	3 6 8	18	67	SS-1	3.5- 4.5+	11	8	30	31	20	25	14	11	12	A-6a (4)	
GINTWI	damp. - Encountered possible cobbles at 4.0'.		1038.8	- 4 - - - 5 -	7	20	100	SS-2	2.5- 4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	4 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
RY\02 -	Very-dense brown COARSE AND FINE SAN coarse gravel trace silt trace clay dry	D, some fine to	1037.3	6	34 17	65	100	SS-3		30	7	48	9	6	NP	NP	NP	6	A-3a (0)	$\begin{array}{c} \stackrel{<}{7} \stackrel{\vee}{L} \stackrel{\vee}{7} \stackrel{\vee}{L} \\ \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{L} \\ \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{2} \\ \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \\ \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \\ \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \stackrel{\vee}{7} \\ \stackrel{\vee}{7} \vee$
BORATO	Dense brown SANDY SILT , little to some cla coarse gravel, dry.	γ, little fine to	1035.3	- 7 - - - 8 -	/ 16 20	46	67	SS-4		-	-	-	-	-	-	-	-	9	A-4a (V)	7 L 7 L 7 > N 7 > 7 L 7 L
E0\01 - LAI	Medium-dense brown GRAVEL WITH SANE clay, contains few iron-stained pockets, dry.	, little silt, trace		- 9 - - 10 -	10 17 14	39	100	SS-5		46	7	27	12	8	NP	NP	NP	6	A-1-b (0)	
SOURCES/G	Very-stiff brown SANDY SILT , little fine grave contains few silty clay seams, damp.	l, trace clay,	1032.8	- 11 - - 12 -	18 9 11	25	100	SS-6		-	-	-	-	-	-	-	-	9	A-4a (V)	
13:53 - M:\RE			1028.8	W - 13 - 14 - 14 - 14 - 15 - 15 - 15 - 15 - 15	5 8 5	16	67	SS-7	3.0- 3.5	-	-	-	-	-	-	-	-	14	A-4a (V)	
- H PLATES - OH DOT.GDT - 9/29/14	NOTES: - Seepage encountered at 14.5' during drilling - After removal of augers, boring caved at 13 - Encountered possible cobbles at 4.0'. - Loss on Ignition for Sample SS-2 = 2.23% - Sulfate content (per TEX-145-E) performed sampling interval = 94.4 ppm.	l. 0'. on sample from first																		

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS

	PROJECT:	SUM-77	7-0958L	WIDENING	DRILLING FIRM / OPE	HEIDERE	R DRIL	L RIG:		ATV D50 (AW)		STAT		/ OFF	SET:	6	+60.2	., 51.4	RT	EXPLOR			
					SAMPLING FIRM / LO	GGER: S	8ME / J. P	ENNELL		MER:			ATIC				NT: _	1020	R.		B2	20		PAGE
	TART: 7	01 DR 7/22/14		7/22/14	SAMPLING METHOD.		<u>9.20 ПЭА</u> SPT					۹۱E. <u>2</u> / (%)۰	77				אוע והי	1039. 4	0 (IVIC 1 026	<u>SL)</u> [SGN 8	LUD.	50280	3.W	1 OF 2
Ъ.	<u></u>	122/14				ELEV					REC	(70). SAMDI E	нр				N (%			FRB		00200		
11.0				AND NOTES		1030 8	DEF	THS	RQD	N ₆₀	(%)		(tsf)	GR		FS	SI SI	CL		PL	PI	wc	CLASS (GI)	SEALED
4-1-			TOPSO	IL - 3 INCHES	\wedge	/1039.5	~				(11)													JLV JL
179-	FILL: Very-	-stiff dark b	prown SI	LT AND CLAY	, some fine to			- 1 -	2															4>14
TS/1	coarse sand	d, some fin kets, damr	e to coa	rse gravel, cont	tains few roots and	1027 3		- 2 -	2	10	44	SS-1	2.0-	21	8	19	30	22	30	17	13	14	A-6a (5)	7676
ЯĻ	Medium-de	nse to den	se browr	GRAVEL WI	TH SAND trace to		-	_ 2 _	0															JLV JL
PRC	little clay, tr	ace silt, da	mp.		,	10g		I	10															$\neg \land \neg \land \neg \land$
≶Ľ,	- Encounter	red possibl	e cobble	s at 2.5'.				_ 4 _	16	36	67	SS-2		-	-	-	-	-	-	-	-	10	A-1-b (V)	7 2 7 4
5					0	Cd		_ 5 _	12															TLV TL
/02						20		- 6 -	6															1 > 1
OR					Č.	$\mathcal{O}_{\mathcal{A}}$		- 7 -	10	31	56	SS-3		-	-	-	-	-	-	-	-	10	A-1-b (V)	7272
RAT						5 0			14															- 7 LV 7 L
ABC					à	<u>Ŏ</u> (W	- 8 -	10															
1-L						10g		- 9 -	12	26	56	SS-4		44	7	31	8	10	NP	NP	NP	10	A-1-b (0)	1>11>
МОШ						<u>, 1029.5</u>		- 10 -	10															-7LV 7L
S/G	Stiff to hard	I gray and	brown S	ILT AND CLA	<i>I</i> , trace fine to			- 11 -																
IRCE	few fine sar	nd pockets	e gravei, . damp te	o moist.	on-stained pockets,			- 10	4	8	89	SS-5	1.0-	-	-	-	-	-	-	-	-	19	A-6a (V)	4>14
sou			,					- 12 T	3				3.0											TL TL
Ξ¥.								- 13 -																
3 - N								- 14 -	3 7	21	78	55-6	4.5+	5	3	6	35	51	33	18	15	16	A-6a (10)	1>1-1>
13:5:						1024.5		_ 15 _	9		10	000	4.01	Ľ	Ŭ	Ŭ	00					10	// 04 (10)	7676
9/14	Stiff to very	-stiff browr	n SAND'	Y SILT, little cla	ay, trace fine gravel,		w	- 10																TLV TL
- 9/2(contains fev	w iron-stair	ned pock	ets, wet.				- 16 -	4	٥	67	SS 7	1.5-									10	A 42 () ()	
- LO								_ 17 -	4	3	07		2.0	_	-	-	-	-	_	-	-	19	A-4a (V)	7676
OT.0								- 18 -																JLV JL
Д Ц								- 19 -	2	40	00	<u> </u>	1 3-	10		04	40	47		10	_	10	A 4= (C)	< L 1 < L
0								- 20	46	13	89	55-8	2.5	10	6	21	40	17	20	18	2	19	A-4a (6)	12 12
ATE								_ 20																JLV JL
ЧЪГ								21																$ \langle V \rangle \rangle $
Ξ×	Medium-de	nse grav C	OARSE	AND FINE SA	ND. little fine	1017.9	-	- 22 -	-															7272
с b	gravel, trace	e silt, trace	clay, we	et.	,			- 23 -	1															7 LV 7 L
1) LC									3															$ 1 \rangle 1 \rangle$ $ 1 \rangle 1 \rangle$
5X1									6 8	18	33	SS-9		-	-	-	-	-	-	-	-	12	A-3a (V)	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
Е (8								25	0															17 LV 7 L
S&M								- 26 -	1															111<
<i>"</i>					• • •	1012 2		- 27 -	1															7272
러	Hard grav S		CLAY. s	ome fine to coa	arse sand, trace fine	///	1																	TLV TL
4	gravel, cont	ains many	shale fr	agments, dry.	-,				18															2 > 1. 2 >
8								29	15	36	72	SS-10	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)	12112
						//// 1009.8	EOB-		ı 13															$ < , \lor < ,$

NOTES: SEE ABOVE			
ABANDONMENT METHODS, MATERIALS, QUANTITIES:	PLACED	PLASTIC HOLE PLUG DEVICE; PLACED	SOIL CUTTINGS

PID:	98061	BR ID:	N/A	PROJECT:	SUM-77-0958L WIDENING	STATION	/ OFFSE	Г:	6+60.2,	51.4 RT	S1	FART:	7/2	2/14	EN	ID: _	7/22	/14	PG	32 OF	2 B-0	03-1-1
		МА	TERIAL DESCRIP	TION	ELEV.		SPT/	N	REC S	SAMPLE	HP	G	RAD	ATION	N (%))	ATTE	ERBEF	łG		ODOT	HOLE
			AND NOTES		1009.8	JEF I III S	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI) SEALE

NOTES:

Seepage encountered at 8.5' and 16.0' during drilling.
After removal of augers, boring caved at 14.0' and was observed to be dry.
Encountered possible cobbles at 2.5'.

PROJE	ECT:	SUM-77-0958		DRILLING FIRM / OF	PERA		&ME / D. GODWIN				FRUCK 55	(AW)		STAT		/ OFF	SET	7-	+57.7	, 17.1	I RT	EXPLOR	ATION ID
DID:	08061		7702671	DRILLING METHOD	UGG	3 25			VIER: RDATI			VIIVIER				NT:	1054	R/ 7 (MS		BZ BZ	50	0 ff	PAGE
START	- 7/2		7/22/14	SAMPLING METHOD		<u>5.25</u>	SPT / NQ2				(%) [.]	76		LLL		IG [.]	4	1 026	965 I	N 81	50328	2 W	1 OF 2
2		ΜΔΤΕ	RIAL DESCRIPT			FLEV				REC		HP		GRAF)N (%			FRB	FRG			HOLE
11.0			AND NOTES			1054 7	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	si	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
-4-		ASPHA	LT - 5 1/2 INCHES	S _	\times	1054.2	_																******
179		GRANULA	R BASE - 12 INCH	HES	XX	1053.2	- 1 -	-															
FILL:	Very-st	iff dark gray S	ANDY SILT, little	to some clay, little			_ 2 -																
I fine gr	ravel, sli	ghtly organic,	contains few slag	and coal fragments,			- 3 -	1				2.1											-
								2 3	6	33	SS-1	3.0	11	9	29	29	22	26	17	9	17	A-4a (3)	
Š,							4 -	2	~	07	00.0	2 5-			07	04	10		45			A 4 - (0)	
ਦੂ - Loss	s-on-Igni	tion for Sampl	e SS-1 = 2.87%.			1049.2	- 5 -	22	5	67	55-2	3.0	14	9	27	31	19	23	15	8	14	A-4a (3)	
§ FILL:	Medium	n-stiff gray and	d brown SANDY S	ILT, little clay,			- 6 -	0	3	100	66.3	0.6-									20	A 40 (\/)	
frace t	tine grav	el, contains fe	ew organic pockets	s, moist.		1047.7	- 7 -	1	5	100		1.0		<u> </u>	_	_	_		_		20	+α (V)	
FILL:	Medium	n-stiff to stiff b	rown SANDY SIL	T, little clay, little				1	4	67	SS-4	0.7-	12	9	30	29	20	24	16	8	15	A-4a (3)	
	avel, co	IIIdill'S IEW Sid	g and coar nagine	115, 110151.			- 8 -	2		.		1.0	·	Ľ									
1-L							_ 9 -	1	3	33	SS-5	1.0-	-	-	-	-	-	-	-	-	15	A-4a (V)	
EO/C							- 10 -	1				1.0											
SIG							- 11 -																-
비 또 - Grav	/el encoi	intered at 11	5'				- 10	0	5	100	SS-6	1.0-	-	-	-	-	-	-	-	_	17	A-4a (V)	
sol						1041 7	- 12 -	3				1.5										- ()	
FILL:	Very-st	iff to hard brow	vn SANDY SILT, I	little to some clay,		1041.7	- 13 -	-															
≥ little fi	ne grave	el, contains fev	w sandstone and c	coal fragments,			- 14 -	9	46	67	SS-7	4.0-	_	_	_	_	_	_	_	_	12	A-4a (V)	
ې damp.						1030.2	- 15 -	23				4.5+										/ · · · · · · · · · · · · · · · · · · ·	
Dense	e to verv	-dense brown	GRAVEL WITH S	SAND, trace silt,	٩Ų.	1033.2	- 16 -																
5 trace of	clay, cor	ntains large bro	oken gravel pieces	s, damp.	\mathcal{S}			16	63	67	55-8		44	7	35	8	6	NP	NP	NP	8	A-1-h (0)	
DI						k D	- 17 -	19			00.0			ļ '		Ŭ					Ŭ	// 10(0)	
0T.0					\circ		- 18 -	-															
DH							- 19 -	30	30	67	66.0										Q	A 1 h () ()	
s-0					$a \downarrow c$		- 20 -	13	55	07	00-9			<u> </u>	_	_	_	_	_		0	A-1-0 (V)	
ATE						k	- 20	-															
НЫ					٥Q	4	- 21 -	14	20	67	CC 10		45	7	25	6	7				_	A 1 h (0)	
TIN .					90		22 -	10	30	07	55-10		45	<u> </u>	35	0	<u> </u>	INP	INP	INP	9	A-1-0 (0)	
ບໍ່ Dece		odium donoo	at 22.0'			k T	- 23 -	-															
☐ - Decc	Jining m	eulum-uense	dl 23.0.		\circ		- 24 -	10	45														
.5X1					ا کر ا	Ż		84	15	67	SS-11		-	-	-	-	-	-	-	-	8	A-1-b (V)	
9 U U U U U U U U U U U U U U U U U U U				nee eend de	\sim	1029.2	- 25 -																
Hard (gray SIL	I AND CLAY	, some fine to coa	rse sana, ary.		1028.2	26 -	8	-	100	SS-12A	4.5	-	-	-	-	-	-	-	-	13	A-6a (V)	
Very-s	stiff to ha	ard brown SIL	T AND CLAY, sor	ne fine to coarse]	- 27 -	12 12	30	50	SS-12B	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
pocket	ts and fe	e graver, siign ew iron-staine	d pockets, damp.	ns iew gray Slit		1	- 28 -	- '5															
			. / ۲					6															
3						1	- 29 -	10	32	100	SS-13	4.5+	5	4	17	42	32	29	16	13	13	A-6a (9)	

MATERIAL DESCRIPTION AU ELEV. U24,7 DEPTHS RVT RU Na REC SMUE IP RV LIP PI Na RCC SMUE IP RV LIP PI Na RCC SMUE IP RV LIP PI Na RCC SMUE IP RV CLOSE (SMUE) IP RV		PID:	98061	BR ID:	7702	2671	PROJ	ECT: S	SUM-77	-0958		NING	ST	ATION /	OFFSE	ET:	7+57.	7, 17.1 RT	S [.]	TART	: 7/2	21/14	_ El	ND:	7/2	2/14	_ P	G 2 OI	= 2 B-00	4-0-14
AND NOTES 1024.7 Def HS RCD No (E) D D D D <thd< th=""> D D</thd<>				MAT	TERIAL	DESCRIP	TION				ELEV.				SPT/	N	REC	SAMPLE	HP	(GRAD	OITA	N (%	»)	ATT	ERB	ERG		ODOT	HOLE
Very-dense brown GRAVEL WTH SAND, possible highly 1015.7 1015.7 1015.7 1015.7 Very-dense brown GRAVEL WTH SAND, possible highly 1015.7 1015.7 1015.7 1015.7 SANDSTONE, light brown, slightly weathered, moderately factured, find graphs, find yourgestion hest on sample from 46.4' to 47.0' = 1015.7 1013.3 40 NO2-16 10 10 1016.7 Unconfined compression hest on sample from 46.4' to 47.0' = 1013.8 10 50 NO2-16 10 10 10 1003.8 42%, LOSS = 1%, sandstine, grap, slightly weathered, moderately factured, find unrow slaghtly weathered, moderately factured, find unrow slowed aureact. 1003.8 10 50 NO2-16 10 10 1003.8 42%, LOSS = 1%, sandstine, grap, slightly weathered, moderately factured, find unrow slowed aureact, way weak thinly bedded, areasous, fractured areasous, fractured areasous, fractured areasous, fractured areasous, fractured areasous, fractured areasous, bring unrow slowed at 24.5 and was observed areasous, bring unrow slowed at 24.5 and was observed areasous, bring unrow of 30.97.5 and 30.5 and 30.					AND	NOTES					1024.7	U	EPII	13	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
Wery-dense brown GRAVEL WITH SAND, possible highly weathered sandstone betrock, moist. 1016.7 TR 41 4<	\\1179-14-011.GPJ	Very- sand pock	-stiff to har , trace fine ets and fev	d brown SI gravel, slig v iron-stain	ILT AND ghtly org led pock	CLAY, so anic, conta ets, damp.	ome fine ains few . <i>(contini</i>	to coars gray silt <i>led</i>)	e					- 31 - - 32 - - 33 -	4															-
Wey-dense brown GRAVEL WITH SAND, possible highly weathered, moderately stored, regrand, very thickly bedded, so degree bedding angle, moderately stored, regrand, very thickly bedded, 35 degree bedding angle, moderately fractured, RQD = 11%, LOSS = 57%. 1013.7 TR 11 10 50 NQ2-16 Image: Construction of the store of the stor	02 - GINTWIPROJECTS										1016.7			- 34 - - 35 - - 36 - - 37 - - 38 -	⁴ 8 8	20	100	SS-14	3.5- 4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	-
ANOSTONE . July trown. slightly weathered. moderately strong, fing rained, very linking bedded. 354 degree bedding angle, moderately fractured; RQD = 11%, LOSS = 57%. - Unconfined compression test on sample from 46.4' to 47.0' = 3.867 psi. - 44 - 42 - 43 - 42 - Unconfined compression test on sample from 46.4' to 47.0' = 3.867 psi. - 46 - 47 - 48 - 48 - Encountered void from 47.0' to 49.0'. - 48 - 10 50 NQ2-17 Reck (V) - Unconfined compression test on sample from 52.2' to 55.7' = 3.867 - 48 - 53 - 42 - 98 NQ2-18 Reck (V) - Unconfined compression test on sample from 55.2' to 55.7' = 3.42 - 98 NQ2-18 Reck (V) Reck (V) - Unconfined compression test on sample from 55.2' to 55.7' = 3.42 - 98 NQ2-18 Reck (V) - Unconfined compression test on sample from 55.2' to 55.7' = 3.66 - 56 - 56 - 56 - 56 - Unconfined compression test on sample from 55.2' to 55.7' = 3.66 - 56 - 56 - 56 - 56 - 56 - 00 receiver of uning cover un from 47.0' to 49.0' - 56 - 56 - 56 - 56 - 56 - 00 receiver of uning cover un from 47.0' to 49.0' - 56 - 56 - 56 - 56 <td>ABORATORY</td> <td>Very- weat</td> <td>-dense bro hered sand</td> <td>wn GRAVE Istone bedr</td> <td>EL WITH rock, mo</td> <td>i SAND, pi ist.</td> <td>ossible h</td> <td>nighly</td> <td></td> <td></td> <td>1013.7</td> <td></td> <td>_</td> <td>- 39 - - 40 -</td> <td>11 21 20</td> <td>52</td> <td>67</td> <td>SS-15</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>12</td> <td>A-1-b (V)</td> <td>-</td>	ABORATORY	Very- weat	-dense bro hered sand	wn GRAVE Istone bedr	EL WITH rock, mo	i SAND , pi ist.	ossible h	nighly			1013.7		_	- 39 - - 40 -	11 21 20	52	67	SS-15		-	-	-	-	-	-	-	-	12	A-1-b (V)	-
 Unconfined compression test on sample from 46.4' to 47.0' = 3.967 psi. - Encountered void from 47.0' to 49.0'. Interbedded SANDSTONE (77%) and SHALE (23%); RQD = 42%, LOSS = 1%; sandstone, gray, slightly weathered, moderately strong, very fine to fine, moderately fractured; shale gray, weathered, very weak, thinly bedded, arenaceous, fractured. - Unconfined compression test on sample from 55.2' to 55.7' = - Unconfined compression test on sample from 55.2' to 55.7' = - No seepage encountered during drilling. - After removal of augers, boring caved at 24.5' and was observed to be dry. - Encountered void from 47.0' to 49.0'. Loss on Ignition for Sample SS-1 = 2.87%. - Suffate content (per TEX-145-E) performed on sample from first sampling interval = 144 ppn. 	M:\RESOURCES\GEO\01 - L	SAN stron mode	DSTONE, g, fine gra erately frac	light brown ined, very t tured; RQE	n, slightly hickly be D = 11%	weathere edded, 35 (, LOSS = :	d, mode degree b 57%.	rately edding a	ngle,				{	- 41 - - 42 - - 43 - - 44 - - 45 - - 45 -	10		50	NQ2-16											Rock (V) CORE	-
Interbedded SANDSTONE (77%) and SHALE (23%); RQD = 42%, LOSS = 1%; sandstone, gray, slightly weathered, moderately storing, very fine to fine, moderately factured; shale gray, weathered, very weak, thinly bedded, arenaceous, fractured. Unconfined compression test on sample from 55.2' to 55.7' = 4.409 psi. OTES: • Unconfined during drilling. • Atter removal of augers, boring caved at 24.5' and was observed to be dry. • Encountered void during core run from 47.0' to 49.0'. • Loss on Ignition for Sample SS-1 = 2.87%. • Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 144 ppm.	DOT.GDT - 9/29/14 13:53 -	- Uno 3,967 - Eno	confined co 7 psi. countered v	ompression void from 4	n test on 7.0' to 4	sample fro 9.0'.	om 46.4'	to 47.0'	=		1003.8			- 40 - 47 - - 48 - - 49 - - 50 -	13		40	NQ2-17											Rock (V) CORE	
 - Uncommend compression test on sample from 55.2 to 55.7 - 998.7 EOB 56 NOTES: - No seepage encountered during drilling. - After removal of augers, boring caved at 24.5' and was observed to be dry. - Encountered void during core run from 47.0' to 49.0'. - Loss on Ignition for Sample SS-1 = 2.87%. - Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 144 ppm. 	OG - WITH PLATES - OH	Interi 42%, mode gray,	bedded SA LOSS = 1 erately stro weathered	NDSTONE %; sandsto ng, very fin d, very wea	E (77%) : one, gray ne to fine k, thinly	and SHAL y, slightly v e, moderate bedded, a	.E (23%) weathere ely fractu irenaceo	; RQD = ed, ured; sha us, fractu	le ıred.					- 51 - - 52 - - 53 - - 54 - - 55 -	42		98	NQ2-18											Rock (V) CORE	-
NOTES: SEE ABOVE	11 Same (8.5X11) L	A,409 A,409 - No - Afte to be - Eno - Los - Sult samp	B psi. B psi. ES: seepage e er removal dry. countered v s on Ignitic fate conter bling interv	ncountered of augers, void during on for Sam ti (per TEX al = 144 pp	d during o boring c core rur ple SS-1 (-145-E) pm.	drilling. aved at 24 n from 47.(= 2.87%. performed	4.5' and v 0' to 49.0 d on sam	was obse o'.	/ rved first		998.7	LEO	B	<u> </u>				<u> </u>							1					

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PUMPED BENTONITE AND CEMENT GROUT MIXTURE; PLACED PLASTIC HOLE PLUG DEVICE

	PROJECT: <u>SUM-77-0958L WIDENING</u> DRILLING FIRM	/ OPEF	ATOR:S&	ME / B. SCHEIDERE		L RIG		ATV D50 ((AW)		STAT	ION	/ OFF	SET	8	+39.4	, 44.4	RT	EXPLOR	ATION ID
	TYPE: BRIDGE WIDENING SAMPLING FIR		GER: <u>S</u>	ME / J. PENNELL		MER:			MATIC		ALIG		NT:	1000	R		B2		<u>Б-005</u>	PAGE
	71D: <u>98061</u> BR 1D: <u>702671</u> DRILLING MET START: 7/22/14 END: 7/22/14 SAMPLING MET	10D: 'HOD:	3.25	" HSA / NQ2 SPT / NO2		BRATI		ATE: <u>2</u>	77	_	ELEV)N: _ IG·	1030. 4	8 (IVI: 1 027	<u>5L)</u> E 7114 I	EOB:	35 50354	5.8 π. 7 W	1 OF 2
Γď		<u>1100.</u>	FLEV				REC	SAMPLE	HP		GRAD)N (%	<u>,</u>		FRB	FRG	00004		HOLE
011.0	AND NOTES		1030.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	si	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
-14-(TOPSOIL - 3 INCHES	_/ħì	1030.5	-																
1179	FILL: Hard brown SANDY SILT , some clay, little fine to coarse				3															-
CTS	organic pokcets, dry.			- 2 -	10	28	72	SS-1	4.5+	19	9	26	25	21	24	16	8	11	A-4a (2)	
SOJE	Stiff to very-stiff gray SANDY SILT little clay little fine gravel		1027.9	- 3 -	-															
MPR	moist.			- 4 -	4	10	50	00.0	1.0-	10	-	22	24	10	00	4.5	_	45	A 4= (0)	
			1025 6		54	12	00	55-2	2.5	13		33	31	10	20	15	5	15	A-4a (2)	
0 - 0	Very-stiff to hard brown mottled with gray SILT AND CLAY,				-															
RY/0	some fine to coarse sand, trace fine to coarse gravel, contains many gray and orange silt pockets few decayed organic pockets			- 0 -	2	۹	80	55-3	2.0-	_	_	_	_	_	_	_	_	10	A-62 (\/)	
ATC	few sand pockets, damp.	,		- 7 -	<u></u> 5	Ŭ	03	00-0	3.6				_				_	13	A-0a (V)	-
ABOF				8 -																
1-1				- 9 -	5	17	94	SS-4	3.0-	8	5	16	42	29	33	19	14	20	A-6a (9)	
0/0			1020.8	- 10 -	7		<u> </u>		4.5+	Ľ							· · ·			-
:S/GI	fine gravel, damp to moist.			W 11 -																
IRCE				10	3	18	33	SS-5	0.0-	-	-	-	-	-	-	-	-	18	A-4a (V)	
SOL			1017.8		9				1.0										. ,	-
M:\RE	Hard brown SANDY SILT , some clay, trace fine gravel, damp.			- 13 - -	2															
53 - N				14 -	6	21	100	SS-6	4.0-	4	6	23	46	21	21	18	3	17	A-4a (6)	
4 13:			1015 1	- 15 -	10				1.0											
29/1	Dense to very-dense brown GRAVEL WITH SAND , trace silt,			- 16 -	13															-
T - 9/	possible broken up sandstone bedrock, moist.	lo [∑	2	- 17 -	20	42	78	SS-7		-	-	-	-	-	-	-	-	16	A-1-b (V)	
L.GD		aC	• (- 18 -	13															-
DO		\$C	29		15															-
HO -		o C	0	- 19 -	49	110	89	SS-8		-	-	-	-	-	-	-	-	15	A-1-b (V)	
TES		Č (Sq	20 -																-
I PLA		00	U d	21 -																
ΤΙΛ		م ~ ا ہ (v a	- 22 -	-															
90		6	D.	- 23 -																
1) LC				- 21 -	34															-
.5X1				- 24	24 18	54	78	SS-9		-	-	-	-	-	-	-	-	18	A-1-b (V)	
AE (8		aC A	1005.0																	
S&A	SANDSTONE, light brown, slightly weathered, moderately			26 -																
ᆔ	iron-stained, fractured to moderately fractured, RQD = 45%,		•	27 -																
۶	LOSS = 4%.			- 28 -	48		94	NQ2-10											Rock (V) CORF	
픱			:		-														C OIL	
12				-																

	PID:	98061	BR ID:	7702671	PROJECT:	SUM-77-095	8L WIDEN	ING	STATION /	OFFSE	T:	8+39.4	4, 44.4 RT	s	TART	7/2	2/14	EN	1D: _	7/22	2/14	_ P ⁽	G 2 OF	2 B-00	5-0-14
			MAT	ERIAL DESCRIP	TION		ELEV.	DI	PTHS	SPT/	Nee	REC	SAMPLE	HP	(GRAD		l (%)	,	ATT	ERBE	RG		ODOT	HOLE
				AND NOTES			1000.8			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	SEALED
ECTS\1179-14-011.GPJ	SANE fine to fractu 33.4; - Unc 5 439	DSTONE, I o fine, very ired, dark (RQD = 70 confined co	ight gray, u thickly beo gray arenao %, LOSS = mpression	inweathered, mode ded, iron-stained, eous shale and se = 0%. test on sample frc	erately strong, fractured to sl am from 33.1	very lightly to 4' =	1000.7		- 31 - - 32 - - 33 - - 34 -	72		100	NQ2-11											Rock (V) CORE	
PROJ	2,100					995.0		335	38		100	NQ2-12											Rock (V)		

NOTES:

Seepage encountered at 11.0' during drilling.
Groundwater encountered at 16.5' during drilling.
After removal of augers, boring caved at 11.5'.
Encountered auger penetration refusal at 25.8'.

NOTES: SEE ABOVE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED BENTONITE AND CEMENT GROUT MIXTURE

	PROJECT:	SUM-77	-0958		DRILLING FIRM / OF	PERA		&ME /	D. GODV	VIN	DRIL	L RIG:	T	RUCK 55	(AW)		STAT	ION	/ OFF	SET:	9	+10.4	, 36.8	B RT	EXPLOR/	TION ID
		BRIDG		ENING	SAMPLING FIRM / L	OGG	ER: S	&ME /	D. FRITZ	E		IMER:			MMER				NT:	1026	R		B2		D-000	PAGE
	900. 900 START	7/24/14	ID. END:	7/26/1	SAMPLING METHOD).	<u>3.2</u> 5					RGY R		\IE. <u>∠</u> %)∙	76	-			את והי	1030. 4	1 (1013	<u>2130 I</u>	L 81	50382	3 W	1 OF 2
G,	01AN1.					·			QZ				REC		нр				N (%	ب		FRB		00002		
11.0				AND NOTES			1036 1	D	EPTHS		RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI SI	CL		PL	PI	wc	CLASS (GI)	SEALED
4- -	、 、	A	SPHAL	T - 6 1/8 INCHES	S _	\times	1035.6		_	_			. /													******
179		C	ONCR	ETE - 8 INCHES		XX	1034.9	-		1 —																
TS/	\	GRA	NULAF	R BASE - 3 INCH	ies /	ÎΠ	1034.6	1	- :	2 -	7	15	22	00.4	4.0-									40	A 4= 0.0	
JEC	FILL: Hard	brown SA	NDY S	ILT, some fine to	coarse gravel,				E.	2	4 8	15	33	55-1	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	
PRC	pockets, da	amp.	DIICK	fragments and re	W DIACK SAILU				- '	. –																
≶.										4 1	4	00	400		4.5.				0.5	4-			10	40		
۲D ۱										5 -	98	22	100	SS-2	4.5+	23	9	26	25	17	24	14	10	10	A-4a (1)	
,02 		FUL 11-	-1 In				1030.1	-	(6 —																
OR	fine gravel.	contains fe	a brow w iron	-stained pockets.	damp.				<u> </u>	7 -	5															
RAT	- Encounte	red possibl	e cobbl	le at 6.0'.	P.				-	-	9 15	30	67	SS-3		-	-	-	-	-	-	-	-	11	A-4a (V)	
ABO										8 -																
							1026.6		- !	9 Т	6	-	100	SS-4A	4.5+	9	6	28	30	27	24	15	9	11	A-4a (4)	
00	Dense light	t brown CC	ARSE	AND FINE SAND) , trace fine gravel,				- 1	0 -	9	41	100	SS-4B		-	-	-	-	-	-	-	-	8	A-3a (V)	
S/GI	trace silt, tr	ace clay, d	ry.				1025.1		- 1	1																
RCE	Very-stiff to	hard gray	becom	ning brown SAND	Y SILT, some						3															
sou	iron-staine	fine gravei, d pockets. (contai	ns many gray siit o moist.	pockets and few				- 1	2 -	8	22	100	SS-5	4.5+	1	7	24	39	29	27	17	10	14	A-4a (7)	
/RE(a poonoto, ·	p						- 1	3⊥	9															
Σ									- 1	4 -	2															
3:53								V		5	6	19	100	SS-6	2.5-	-	-	-	-	-	-	-	-	12	A-4a (V)	
/14 1							1020 1		- '	5	9				4.51										. ,	
9/29	Very-stiff to	hard brow	n SIL	T, some clay, little	e fine to coarse	++++	+		- 1	6 -																
- L	sand, trace	fine grave	, conta	ins few iron-stain	ed pockets and few	+ + + - + + + -	+		- 1	7 –	2 3	11	67	SS-7	3.0-	-	-	-	-	-	-	-	-	20	A-4b (V)	
DT.G	gray and bi	own sitty c	ay sea	ins, damp to mos	SL.	+ + + - + + + -	• • •		- 1	8	6	i	-		3.5											
Д						+ + + - + + + -	+		- 1	0 _ _																
ō						+ + + + + + + + + + + + + + + + + + + +	• •	w	- '	9	2	14	100	85-8	3.5-	8	7	12	50	23	25	20	5	21	Δ_4h (8)	
TES						+ + + - + + + - + + + -	+		2	20 -	7	· · ·	100	000	4.0	Ŭ	ļ '	12		20	20	20	Ŭ	21	7(40(0)	
ΡΓγ						+ + + + + + + + + + + + + + + + + + + +	+		- 2	1																
HTIV						+ + + - + + + - + + + -	+ + +		- 2	2 -	2	11	33	0.22	4.5									17		
- ن						+ + + -	+			3	5		55	33-9	4.5	-	-	-	-	-	_	-	-	17	A-40 (V)	
Õ_	Stiff grav S		F som	e clav, trace fine	aravel contains	†.†.†.i	1012.6	w																		
X11	few fine sa	nd seams,	damp.	e clay, trace fille	gravei, contains			- m	2	²⁴ T	1	_			1 0-											
(8.5		,	•						- 2	5 -	24	8	100	SS-10	2.0	-	-	-	-	-	-	-	-	14	A-4a (V)	
&ME							1000 6		⊢ 2	6 —																
٥F	SANDSTO	NE, brown	and pir	nk severelv weath	nered.		1009.4/	TF	₹	7	<u> 50-0.2'</u> /	+	∖100 A	SS-11	╞━━		<u>k - </u>		┢		-	┢			A-1-b (V)	
פ	SANDSTO	NE, light br	own in	terbedded with re	eddish-brown,		1			.'																
잌	unweather	ed, slightly	strong,	well cemented, v	very fine to fine, very	••••	1		<u>⊢</u> 2	8																
π	thin seam of	of coarse s	and and	d fine gravel at 34	1.9'; RQD = 63%		Į		- 2	9 +	55		97	NQ2-12											Rock (V)	
۶L	10SS = 29	6		<u>-</u>	.,,	•	•						0,												ČŎŔĔ	

	PID:	98061	BR ID:	7702671	PROJECT:	SUM-77-)958L V	VIDENII	NG	STATION	OFFSE	T:	9+10.4	4, 36.8 RT	S	TART	: _7/2	24/14	ΕN	ND: _	7/24	4/14	_ P	G 2 OI	2 B-00	6-0-14
			MAT	TERIAL DESCRIP AND NOTES	TION		El 10	_EV. 06.1	DE	PTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD CS	FS	<mark>l (%</mark>) si) CL	ATT LL	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
NTW/PROJECTS/1179-14-011.GPJ	- Und 3,252 SANI unwe thickl thin s LOSS - Und 3,289	confined co 2 psi. DSTONE , I eathered, sl y bedded, o seam of coa S = 2%. (co confined co 9 psi.	mpression ight brown ightly stror conglomeri arse sand a ontinued) mpression	test on sample from interbedded with r ng, well cemented, itic, fractured to me and fine gravel at 3 test on sample from	om 27.4' to 27. reddish-brown very fine to fir oderately fract 84.9'; RQD = 6 om 34.1' to 34.	.9' = , ne, very ured, 53%, .8' =	99	99.3	—EOB	- 31 - - 32 - - 33 - - 34 - - 35 - - 36 -	70		100	NQ2-13											Rock (V) CORE	
Ū																										

NOTES:

S&ME (8.5X11) LOG - WITH PLATES - OH DOT.GDT - 9/29/14 13:53 - M:/RESOURCES/GEO/01 - LABORATORY/02

PLATE 15

Seepage encountered at 24.0'.
Groundwater encountered at 19.9' during drilling.
After removal of augers water was measured at 14.8'.
Encountered possible cobbles at 6.0'.

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PUMPED BENTONITE AND CEMENT GROUT MIXTURE; PLACED PLASTIC HOLE PLUG DEVICE

PRO		SUM-77-09	58L WIDENING	DRILLING FIRM / OPE	RATO	R: <u>Sa</u>	ME / D. GODWIN		L RIG:		RUCK 55	(AW)		STAT		OFF	SET:	9	+94.8	, 17.2	RT	EXPLOR/	ATION ID
	9806		7702671	DRILLING METHOD	GGER	: <u>50</u> 3 25"	ME / D. FRITZE		MER: BRATI			VIMER /10/13			ΝΜΕΙ ΔΤΙΩ	NT: NN· 1	058	R/ 4 (MS	AMP I	50B.	5/		PAGE
STAF	3000 RT·7/2	22/14 FN	$\frac{7702071}{1}$	SAMPLING METHOD		<u> </u>	PT / NQ2		RGYR	ATIO	(%) [.]	76		LLLV		G'	4'	1 027	<u>, 1 080</u>	N 81	50415	0 W	1 OF 2
G	<u> </u>	<u></u>	TERIAI DESCRIPT		F	IFV				REC		HP		GRAC)N (%)		FRB	FRG			HOLE
011.0			AND NOTES		1	058.4	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
<u>+</u> -		ASF	HALT - 3 INCHES	/\}	≈ 1	058.1/																	******
1179		GRANU	_AR BASE - 9 INCH	IES /	<u> 1</u>	057.4	- 1 -	1															
FILL	: Mediu	m-dense brov	wn COARSE AND I	FINE SAND, little			- 2 -	3	15	67	CC 1		12	11	46	17	10				10	A 2c (0)	
iron	ittie ciay, ∙stained r	ockets, dam	ivel, contains few ro d.	oots and few	1	055.4	- 3 -	6	15	07	33-1		13	11	40	17	13	INP	INP	INP	10	A-38 (0)	
FILL	: Very-s	tiff to hard br	own SANDY SILT,	little clay, little fine				6 5	15	100	SS-2	3. <u>5</u> -	_	_	-	_	-	_	_	_	12	A-4a (\/)	
≧ to co	barse gra	vel, contains	few sand seams, da	amp.			_ 4 _	7				4.5											
5 D							- 5 -	23	13	67	SS-3	4.0-	18	7	33	25	17	23	14	9	11	A-4a (1)	
		C.C. Is and he		AV	1	052.4	- 6 -	6 7				4.5+										()	
	se sand.	little fine to c	coarse gravel, contai	ins few iron-stained			- 7 -	5	14	100	SS-4	3.0-	-	-	-	-	-	-	-	-	12	A-6a (V)	
bock	kets and	gray fine san	d pockets, damp.				_ ′	6				4.0											
ABC							- 8 -	_															
				E.			- 9 -	5	14	0			-	-	-	-	-	-	-	-	-		
0,0							- 10 -	6		100	SS 5	2.0									12	A 62 (\/)	
S/GI							_ 11 _			100		2.0	-	-	-	_	-	-	-	-	12	A-0a (V)	
RCE								3	11	33	SS-6	4.0-	14	8	23	31	24	28	16	12	13	A-6a (5)	
NOS						045 4	12	5			000	4.5+				01	27	20		12	10	// 00 (0)	
EILI	· Stiff to	hard brown		ttle fine to coarse		045.4	- 13 -	-															
san	d, trace fi	ne gravel, mo	pist.				- 14 -	2	٥	100	SS 7	2.6-									12	A 62 (\/)	
3:53							- 15 -	4	3	100		4.5	_	-	-	-	-	-	-	_	15	A-0a (V)	
/14 1								-															
9/29					// 1	041.9	- 16 -	2	-	100	SS-8A	1.0-	-	-	-	-	-	-	-	-	14	A-6a (V)	
	.: Very-s	tiff to hard br	own SANDY SILT,	little clay, little fine			- 17 -	4 6	13	100	SS-8B	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V)	
je grav	p.		Tew Silt pockets an	u fille sallu seallis,			- 18 -																
DG							_ 10 _	3				25											
ō							- 19	4 5	11	67	SS-9	4.5+	11	6	34	33	16	18	15	3	13	A-4a (3)	
TES							20																
PLA							- 21 -	3															
HTN							- 22 -	4	13	67	SS-10	2.0-	-	-	-	-	-	-	-	-	13	A-4a (V)	
> '																							
	· Vory e	tiff to bard br		little clay, little fine	1	034.9	- 23	2															
	el, conta	ins few roots	few coal fragments	s, and few sandstone			- 24 -	7	19	100	SS-11	3.5-	-	-	-	-	-	-	-	-	12	A-4a (V)	
ω frag	ments, d	amp.	- 3				- 25 -	8					-										
&ME							- 26 -	-															
Ś								′ 9	25	67	SS-12	4.5+	13	6	28	33	20	22	15	7	12	A-4a (4)	
<u>v</u>							<u> </u>	11														. /	
							- 28 -																
ή							- 29 -	3	16	67	SS-13	3.5-	_	_	_	_	_	_	_		14	A-4a (V)	
<u>م</u>								<u>8</u> آ		0,		4.5+											

	PID:98061	BR ID:	7702671	PROJECT:	SUM-77-0	958L WIDE	NING	STATION	/ OFFSE	ET:	9+94.8	8, 17.2 RT	S	TART	: _7/2	22/14	_ E!	ND:	7/2	2/14	_ P	G 2 OI	2 B-0)7-0-14
		MAT	ERIAL DESCRIP AND NOTES	TION		ELEV	D	EPTHS	SPT/ RQD	N ₆₀	REC	SAMPLE ID	HP (tsf)	GR	GRAE cs	ATIC FS	N (% SI) CL			ERG PI	wc	ODOT CLASS (GI)	HOLE
179-14-011.GPJ	FILL: Very-stiff gravel, contains fragments, dam	to hard bro few roots, p. <i>(continue</i>	wn SANDY SILT, few coal fragment ed)	little clay, litt s, and few sa	le fine andstone	1020.2		- 31 32 33	-								0.							
GINTW/PROJECTS/1	Hard dark-brown topsoil pockets,	n SANDY S strong che	SILT, some clay, c mical odor, damp.	ontains possi	ible	1021.4		- 34 - 35 - 36 - 37	6 10 13 -	29	33	SS-14	2.0- 4.5+	-	-	-	-	-	-	-	-	8	A-4a (V)	-
LABORATORY/02 - (little clay, trace t	ine gravel,	contains many gra	ay silt seams	, moist.	1017.4		- 38 - 39 - 40	3 5 6	14	100	SS-15	2.5- 3.0	3	4	24	49	20	23	17	6	19	A-4a (7)	-
URCES/GEO/01 - I	SANDSTONE, r	ed and pin	k, severely weathe	ered.		ו • • • • • •		- 41 - 42 - 43 - 43 - 44	- 50-0.1/	<u> </u>	100/	SS-16	/		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		A-3a (V)	7
1/14 13:53 - M:\RESC	SANDSTONE, r moderately stroi bedded, fracture - Unconfined co	reddish-bro ng, well cer ed; RQD = mpression	wn, slightly weath nented, fine to coa 13%, LOSS = 23% test on sample fro	ered, slightly arse, very thic %. om 47.4' to 47	to ckly 7.9' =			- 45 - 46 - 47 - 48	10		93	NQ2-17											Rock (V) CORE	
OH DOT.GDT - 9/25	 2,752 psi. Unconfined co 3,766 psi. Poorly cement disintegrating to 	mpression ed from 49 fine sand	test on sample fro .5' to 53.9' with so	om 49.4 to 49 ome portions).8' =			- 49 - 50 - 51																-
WITH PLATES - (- Vertical fractur	re from 50.2	2' to 50.6'.		•	1004.0		- 52 - 53 - 54	15		62	NQ2-18											Rock (V) CORE	

NOTES:

S&ME (8.5X11) LOG - 1

PLATE 17

No seepage encountered during drilling.
After removal of augers, boring caved at 43.4'.
Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 241 ppm.

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PUMPED BENTONITE AND CEMENT GROUT MIXTURE; PLACED PLASTIC HOLE PLUG DEVICE

PROJ TYPE:	ECT: S	SUM-77-09 BANKMEN	958L W NT WIE	VIDENING DENING	DRILLING FIRM / (SAMPLING FIRM /)PERA LOGG	ATOR:S&N BER:	1e / B. Scheideref Me / J. Pennell	drill Hamn	. RIG /IER:	CN	ATV D50 (//E AUTON	AW) 1ATIC		STAT ALIGI	ion / Nmen	OFF NT:	SET:	11 R/	+23.8 Amp I	8, 93.6 B2	6 RT	EXPLOR B-007	ATION ID 7-1-14
PID:	98061	BR ID:		N/A	DRILLING METHO	D:	3	25" HSA	CALIE	RATI	ON DA	ATE:	19/13	_	ELEV	ATIO	N: _1	027.2	2 (MS	<u>SL)</u> E	EOB:	15	5.8 ft.	PAGE
	I: <u>//2</u> 2	/14 EN	ID:	//22/14	SAMPLING METHO)D:		SPI	LENER	GY F	AHO	(%):	//		LAI/	LON	G:	4	1.027	201 1	N, 81.	50471	6 W	
<u>5</u> .		MA		L DESCRIPT	ION		ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAD	ATIO	N (%))	ATT	ERBE	ERG		ODOT CLASS (GI)	BACK
		то					1027.2		RQD		(%)	שו	(tsr)	GR	CS	F5	51	UL	LL	PL	PI	WC	02/00 (0)	FILL
FILL: FILL: little o	Very-stif clay, conta	f to hard b ins few ro	rown S ots and	SANDY SILT , st d few coal frag	some fine gravel, ments, damp.		1026.9	- 1 -	5 6 8	18	61	SS-1	2.5- 4.5+	25	9	27	23	16	21	15	6	12	A-4a (1)	
							1022.2	- 3	7 5 3	10	39	SS-2	3.5- 4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	
O Nedir	um-dense damp.	brown GR		WITH SAND,	trace silt, trace			- 6 -	3 5 13	23	61	SS-3		48	14	24	9	5	NP	NP	NP	9	A-1-b (0)	
Stiff t	o very-stif	f brown S	ANDY	SILT, some cl	ay, some fine to		1018.5	- 8 -	3 6 8	18	33	SS-4	1.5- 3.6	-	-	-	-	-	-	-	-	14	A-4a (V)	
Very- damp	dense bro	wn GRAV	'EL WI	TH SAND AN	D SILT, trace clay,			- 10 - - 11 - - 12 -	6 18 48	85	100	SS-5		32	3	46	12	7	NP	NP	NP	8	A-2-4 (0)	
3:53 - M:\RES								- 13	37 38 25	81	94	SS-6		-	-	-	-	-	-	-	-	9	A-2-4 (V)	
9/29/14 1;							1011.4	EOB - 15 -	<u>50-0.1</u> /	<u> </u>	<u> </u>				<u> </u>	/				<u> </u>				

NOTES:

No seepage encountered during drilling.
After removal of augers, boring caved at 6.5' and was observed to be dry.
Encountered possible cobbles at 7.2'.
Encountered auger penetration refusal at 15.8'.

S&ME (8.5X11) LOG - WITH PLATES - OH DOT.GDT

PLATE 18

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS

PF	OJECT:	S	UM-77-	0958L	WIDENING	DRILLING FIRM / O	PERA	TOR: S	&ME / D. GO	DWIN	DRIL	L RIG:	٦	RUCK 55	(AW)		STAT	ION	OFF	SET:	12	+81.	5, 17.4	4 RT	EXPLOR/	TION ID
TY	PE:		RO	ADWA	Y	SAMPLING FIRM / L	OGG	ER:	&ME / D. FRI	TZE	HAM	MER:	SA	FETY HA	MMER		ALIG	NME	NT: _		R/	AMP	B2		B-008	-0-14
PII	D: <u>98</u>	061	_ BR II	D:	N/A	DRILLING METHOD):	3	.25" HSA		CALI	BRATI		ATE: <u>2</u>	/19/13		ELEV	ATIC	N: <u>1</u>	052.	7 (MS	<u>SL)</u> E	EOB:	40	0.0 ft.	
2 31	ART:	1/23	/ <u>14</u>		7/23/14	SAMPLING METHO	D:				ENE	KGY R		(%): 	76				G:	4	1.026		N, 81.	50513	7 VV	1012
11.G			N	AIERI A	AL DESCRIPT	ION		ELEV.	DEPTH	s	SP1/ ROD	N ₆₀	(%)		HP (tsf)	GR		FS	NN (%)) CI		PI	PI	wc	ODOT CLASS (GI)	HOLE SEALED
4-0			AS	PHALT	- 4 1/2 INCHES	S 7	\bigotimes	_ <u>1052.7</u> √1052.3⁄					(70)			0.1			0.	02						
⁴ 2			GRAM	IULAR	BASE - 7 INCH	IES /	++++	-1051.7	-	- 1 -	2															
F∐ST	LL: Very	y-stif	brown	SILT, s	ome clay, some	e fine to coarse	+ + + + + + + + + + + + + + + + + + + +	1050.0		- 2 -	4	14	100	SS-1	2.0- 3.0	3	4	19	51	23	26	17	9	22	A-4b (8)	
	and, trace	e fine	gravel,	contain	s few gray silt s	seams, damp.	aUt	1050.2	-	2	15															
or di	amp.	ise bi	own Gr	AVEL	WITH SAND, I	the sint, trace clay,	$\[\circ\] \cap$	1048 7	-	- 3 -	20 12	41	100	SS-2		34	24	25	11	6	NP	NP	NP	8	A-1-b (0)	
≦ F	LL: Stiff	f brov	vn SAN	DY SIL	r, some clay, tr	ace fine gravel,	T	1010.1	1	- 4 -	2_12	40			1 0-										• • • • •	
S C	ontains fe	ew sa	ind sear	ns and	few organic poo	ckets, damp.		1047.2	-	- 5 -	7	19	67	SS-3	2.0	-	-	-	-	-	-	-	-	15	A-4a (V)	
õ F	LL: Mec	dium-	dense b	rown G	RAVEL WITH	SAND, little clay,	601		1 –	- 6 -	8 7	19	67	SS 4										10	A 1 6 () ()	
fr of the second	ace silt, c	damp	•				D'C				7	10	07			-	-	-	-	-	-	-	-	12	A-1-0(V)	
IRAT							00(1044.7	-	<u> </u>																
B ABC	LL: Very	y-stif	to hard	brown	SILT, some cla	y, little fine to	+ + + + + + + + + + + + + + + + + + + +		1 F	- 8	4															
C	barse sar	nd, tra	ace fine	gravel,	contains few r	oots, damp.	+++++++++++++++++++++++++++++++++++++++			- 9 -	1	9	33	SS-5	4.5+	-	-	-	-	-	-	-	-	13	A-4b (V)	
ШО							++++		-	- 10 -	6															
SIG							+ + + + + + + + + + + + + + + + + + +			- 11 -	•															
RCE							+++++++++++++++++++++++++++++++++++++++		-	10	35	18	100	SS-6	4.0-	2	4	16	54	24	25	19	6	16	A-4b (8)	
sol							+ + + + + + + +	1039 7	-	- '2 T	9				4.5+											
₽ F	LL: Har	d bro	wn SAN	IDY SIL	T, little to some	e clay, little fine	++++	1000.7	1 -	- 13 -																
≥ ຕ່	avel, cor	ntains	few fin	e sand	seams and few	gray silt seams, few			-	- 14 -	10 11	32	100	SS-7	4.5+	-	_	-	-	-	-	_	_	11	A-4a (V)	
13:5	ery-sun z	ones	, damp.							- 15 -	14	-														
9/14										- 16 -																
- 9/2									-		6	22	100	SS-8	4.5+	12	10	29	29	20	25	15	10	13	A-4a (3)	
SDT										- 17 -	11		100		1.0			20	20			10			// 14 (0)	
OT.O										- 18 -																
HD										- 19 -	4	22	100	55-9	2.5-	_	_	_	_	_	_	_	_	12	A-4a (\/)	
										- 20	11	~~~	100	00-0	4.5+		_	_	_		_	_		12	-+α (v)	
-ATE									-																	
ЧЫ											3 5	16	67	SS-10	4.0-	13	8	26	32	21	23	14	٥	11	$A_{-12}(1)$	
IN.								4000 7		- 22 -	8	10	07	00-10	4.5+	13	0	20	52	21	25	14	3		A-4a (4)	
ő F		v_stif	to hard	brown	hecoming dark		++++++	1029.7		- 23																
Ē s	LL. very	ie cla	y, trace	fine gra	vel, contains fe	w coal fragments				- 24 -	3	10	67	CC 11	4 5 1									10	A 40 () ()	
aا کړ	nd few sla	ag fra	agments	, damp						- 25 -	9	19	67	55-11	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	
ЛЕ ({									F	20 -		7														
S&A										- 26 -																
									-	- 27																
ĕ										- 28 -																
										- 20 -	6				35											
	_oss-on-	Igniti	on for S	ample S	SS-12 = 3.41%.				-	2.5	7 8	19	67	SS-12	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V)	

F	PID:9806	61	BR ID:	N/A	PROJECT:	SUM-77-095	8L WIDEN	IING	STATION /	OFFSE	T:1	12+81.	5, 17.4 RT	S	TART	: _7/2	23/14	_ EN	ND: _	7/23	3/14	_ P	G 2 OI	2 B-00	8-0-14
			MAT	TERIAL DESCRIP AND NOTES	TION		ELEV. 1022.7	DE	PTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIO FS	N (% si) CL	ATT LL	ERBE	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
179-14-011.GPJ	FILL: Very- SILT, some and few sla	r-stiff t e clay, ag frag	to hard bro , trace fine gments, da	own becoming dar egravel, contains f amp. <i>(continued)</i>	k brown SANE iew coal fragm)Y ents	1019.2		- 31 - - 32 - - 33 -	-															
- GINTW/PROJECTS/1	FILL: Stiff t gravel, cont	to ver tains f	y-stiff bro few slag, v	wn SANDY SILT, wood and brick fra	little clay, little gments, damp	fine	1014 7		- 34 - 35 - 36 - 37 - 37	3 4 4	10	67	SS-13	1.5- 2.5	13	9	24	37	17	30	22	8	20	A-4a (4)	
DRATORY/02	Very-dense bedrock or (e brow cobble	rn GRAVE e.	EL WITH SAND, p	ossible sandst	one	1012.7	FOF	- 38 -	<u>50-0.3'</u> _		-100-	SS-14							_	-			A-1-b (V)	
- LABC	NOTEO							LUI	y 40																

NOTES:

No seepage encountered during drilling.
After removal of augers, boring caved at 37.5' and was observed to be dry.

- Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 285 ppm.

- Loss-on-Ignition for Sample SS-12 = 3.41%

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PUMPED BENTONITE AND CEMENT GROUT MIXTURE; PLACED PLASTIC HOLE PLUG DEVICE

	PROJECT: SUM-77-0958L WIDENING DRILLING FIRM TYPE: EMBANKMENT WIDENING SAMPLING FIRM	/ OPER/ 1 / LOGO	ATOR: SER:	&ME / D. G &ME / D. F	ODWIN	DRILI HAMI	L RIG: MER:	T SA	RUCK 55	(AW) MMER		STAT ALIGI	'ION / NMEI	/ OFF NT: _	SET:	: <u>12</u> F	+37.7 RAMP	, 171 B	.1 RT	EXPLOR B-008	ation ID 3-1-14
	PID: 98061 BR ID: N/A DRILLING MET	IOD:	4	.5" CFA					ATE: 2	/19/13		ELEV)N: _1	1015. ⊿	9 (MS	<u>3L)</u> E	EOB:	13	3.5 ft.	PAGE 1 OF 1
GPJ			ELEV.			SPT/		REC	SAMPLE	HP		GRAD	ATIC	DN (%	- - 5)	ATT	ERBI	ERG	50010		BACK
t-011.	AND NOTES		1015.9	DEPT	HS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
1-9-12	FILL: Verv-stiff brown SILT AND CLAY, some fine to coarse	\rightarrow	1015.3			2									<u> </u>	<u> </u>					$\overline{1}L^{\vee}\overline{1}L$ $\overline{1}Z^{\vee}\overline{1}L$
:TS/11	sand, trace fine gravel, contains few iron-stained pockets and fe	v ///			- 2 -	32	8	67	SS-1	2.5- 4.0	7	8	24	37	24	30	16	14	16	A-6a (7)	12 LV 12 L
OJEC	gray sin poorers, damp.				- 3 -	- 4															TLV TL
MPR					- 4 -	2	6	67	<u> </u>	3.0-									14	A 60 (\)	$\begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
GINT			1010.4		_ ₅ _	<u></u> 3	U	07	33-2	3.7	-	-	-	-	-	<u> </u>	-	-	14	A-0a (v)	1>N 1> - 5 LV 5 L
<u>102 -</u>	FILL: Medium-dense brown GRAVEL WITH SAND, trace silt,				- 6 -	7									<u> </u>	_					
TORY	trace clay, contains few glass fragments and few brick fragment damp.		k		- 7 -	7 8	19	100	SS-3		36	14	37	9	4	NP	NP	NP	6	A-1-b (0)	1272
30RA	Describe Fills Medium dense brown COADSE AND FINE	Q₀ ≏	1007.9	-	- 8 -																$\left \frac{1}{2}L^{\vee},\frac{1}{2}L^{\vee}\right $
I - LAF	SAND, some fine to coarse gravel, trace silt, trace clay, contains				- 9 -	8 5	13	67	<u>SS-4</u>		30	15	42	q	4		NP	NP	12	A-3a (0)	1 LV 7 L
EO\0	few organic pockets, moist.		1005.4		- 10	5	10	01	00-4			10							12	A-00 (0)	JLV JL
ES/G	Dense brown GRAVEL WITH SAND, little silt, little clay, wet.		4	w	- 	4									<u> </u>	<u> </u>	<u> </u>				$-\frac{1}{7}L^{\vee}\frac{1}{7}L$
OURC			L L		- 12 -	9 21	38	67	SS-5		-	-	-	-	-	-	-	-	17	A-1-b (V)	1 > 1
RESC		م) ا ((1 1002.4	500	- 13 -																
S&ME (8.5X11) LOG - WITH PLATES - OH DOT.GDT - 9/29/14 13:54 - M:	<u>NOTES:</u> - Seepage encountered at 11' during drilling. - After removal of augers, boring caved at 7.1' and was observed to be dry. - Encountered auger penetration refusal at 13.5'.			L-EOB-																	

PLATE 21

	PROJECT:	SUM-77-0958L	WIDENING	DRILLING FIRM / OF	PERATOR:	S&	ME / D. G	ODWIN	DRIL	L RIG:	T	RUCK 55	(AW)		STAT	ION /	OFF	SET:	14	+72.0	6, 28.	2 LT	EXPLOR/	TION ID
	ГҮРЕ:	ROADWAY	Y	SAMPLING FIRM / L	OGGER:	S&	ME / D. FI	RITZE	HAM	MER:	SA	FETY HAI	MMER		ALIGN	ME	NT: _		R	AMP	В		B-009	-0-14
	PID:9806	1 BR ID:	N/A	DRILLING METHOD:		3.2	5" HSA		CALI	BRATI	ON DA	TE:2	/19/13		ELEV	ATIO	DN: _1	046.4	4 (MS	<u>SL)</u> E	EOB:	26	6.1 ft.	PAGE
	START:	<u>24/14</u> END:	7/25/14	SAMPLING METHOD):		SPT		ENE	RGY R	ATIO (%):	76		LAT /	LON	G: _	4	1.025	929 I	N, 81.	50601	9 W	1 OF 1
Ъ		MATERI	AL DESCRIPT	ION	ELE	V.	DEDT	це	SPT/	N	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERB	ERG		ODOT	HOLE
011.		A	ND NOTES		104	6.4	DEFI	13	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
4		ASPHAL	T - 9 INCHES		XX 104	5.6			-															*******
179		GRANULAR	BASE - 9 INCH	IES	XX 104	4.9		- 1 -	-															
TS/1	FILL: Very-s	stiff to hard brown	SANDY SILT,	little to some clay,	ĬIIĬII			- 2 -	2	07	400	00.4		4.0		~		10		10	_		• • • • • •	
EC	trace fine to	coarse gravel, con	tains few coal,	brick and siltstone				-	516	21	100	SS-1	4.5+	10	8	24	39	19	23	16	1	11	A-4a (5)	
Q,	tragments, to	ew fine sand seam	is, tew gray slit	seams, damp.				_ 3 _	7															
ΜF								- 4 -	16	47	100	SS-2	4.5+	-	-	-	-	-	-	-	-	8	A-4a (V)	
INT								_ 5 _	14				3.0-		_									
2-0								- 1	12	30	67	SS-3	4.5+	3	5	25	46	21	22	16	6	11	A-4a (6)	
37.0								6 -	6															
TOF								- 7 -	4	10	0	SS		-	-	-	-	-	-	-	-	-		
ORA									8	-	100	SS-4	3.0-	-	-	-	-	-	-	-	-	15	A-4a (V)	
AB									4				¥.5+/											
- L								- 9 -	⁴ 5	19	100	SS-5	2.5-	-	-	-	-	-	-	-	-	16	A-4a (V)	
0/0								- 10 -	10				4.51											
s/GE									1															
ŠČE								- 11 -	3	14	100	00.0	4 -	10		20	40			47	_	40	A 4= (C)	
OUF								- 12 -	4 7	14	100	55-0	4.5+	10	4	20	40	20	22	17	5	13	A-4a (6)	
RES								- 13 -																
M:\F									7															
54 -								14	10	28	100	SS-7	4.0-	-	-	-	-	-	-	-	-	15	A-4a (V)	
13:					103	19		- 15 -	12															
9/14	Medium-den	se light brown CO	ARSE AND FI	NE SAND, little				- 16 -	1															
- 9/2	fine to coars	e gravel, little silt, t	race clay, dam	p.				- "	4	22	67	SC 8		15	11	54	12	0				6	A 3a (0)	
μ								- 17 -	9	~~	07	00-0		15		54	12	0				0	A-34 (0)	
D.F.	L I a seal factoria a					3.4		- 18	-															
DO	few iron-stai	SANDY SILI SOM	e clay, trace fin	e gravei, contains				40	3				4.0											
ġ_					102	5.9		- 19 -	6	18	100	SS-9	4.0-	-	-	-	-	-	-	-	-	12	A-4a (V)	
SЭ	Very-dense I	ight brown COAR	SE AND FINE 3	SAND, some fine				- 20 -	• •															
LA			e ciay, damp.					- 21 -																
Ξ									8	54	67	SS-10		34	1	54	6	5	NP	NP	NP	4	A-3a (0)	
N								22 -	25	•••	01	0010		•		<u> </u>	Ŭ	Ŭ					// 64 (6)	
ő								- 23 -	-															
1) L(_ 24 _	7															
5X1								- 24	22	66	67	SS-11		-	-	-	-	-	-	-	-	8	A-3a (V)	
8)								25																
&ME	\/am / alam I			na anta) da mar	102).4	—EOB—		50-0 17		1007	SS-12											A-1-2 (\/)	
S	very-dense l	DIOWN GRAVEL (S	andstone tragn	nents) damp.	102	5.5			<u>vo 0.1</u>	ت		00-12	,	ت	<u> </u>		ت	ت	ت	<u> </u>	<u> </u>	ل	(v)	
믿	NOTES:																							
⊳∣	- No seepage	e encountered duri	ing drilling.	an annula francist																				
H	- Suitate con sampling inte	iterit (per TEX-145 erval = 374 nom	-	on sample from first																				
22																								

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS WITH CEMENT

PROJ	ECT: S	SUM-77	7-0958L	WIDENING	DRILLING FIRM / O	PERA	ATOR:S&N	IE / B. SCHEID	DERE		L RIG	:	ATV D50 ((AW)		STAT	ION /	OFF	SET:	14	+76.7	7, 72.	8 LT	EXPLOR	
TYPE:	EM	BANKN	ЛENT W	IDENING	SAMPLING FIRM / I	OGG	GER: <u>S8</u>	ME / J. PENN	ELL	HAM	MER:	CI	ME AUTON	MATIC		ALIG	NME	NT: _		R	AMP	В		B-00	9-1-14
PID:	98061	BR	ID:	N/A	DRILLING METHOD):	4	.5" CFA		CALI	BRAT	ON D/	ATE: 2	/19/13		ELEV	ΑΤΙΟ	N: 1	035.3	3 (MS	L) E	OB:	1	5.0 ft.	PAGE
STAR	Г: 7/21	/14	END:	7/21/14	SAMPLING METHO	D:		SPT		ENE	RGY F	ATIO	(%):	77		LAT /	LON	G:	4	1.025		N. 81.	50590	1 W	1 OF 1
2			MATED				EL EV			CDT/		DEC		ЦD				NI /%)	ΔΤΤ				0007	
-				AL DESCRIPT			1005.0	DEPTHS		SP1/	N ₆₀	(%)		(tef)	CP (SI (70					we	CLASS (GI)	
							1035.3			NQD		(/0)	ID	((5))	GI	03	13	51	UL	LL	ΓL	FI	WC	. ,	
	- 4: 66 4 - 1		100501		lau littla Cara		1035.0		-																11 11
very-	stiff to ha	tow of	n SAND	Y SILI, some o	clay, little fine					5															<, v <,
		51000 5			staineu pockets,			-	2 -	8	23	72	SS-1	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V)	12712
	-							-	_ L	10															JLV JL
Ŷ									3	_															1>1/1>
ž									4 +	5	15	100	<u> </u>	2.5-	11		20	40	01	22	17	G	15	A 40 (E)	1 LV 7 L
z								-	_ 1	6	15	100	33-2	4.0		0	20	40	21	23	17	0	15	A-4a (3)	1>11>
פ י									5 -																7476
02									6 -	~															1< 1 <
ΥΥΥ Υ								-	_ 1	о 8	19	67	SS-3	2.5-	_	_	_	_	_	_	-	_	16	A-4a (\/)	7676
AIC							1027 5		7 -	7		01	000	3.5									10	π +α (ν)	
2 Mediu	ım_dense	light g	av FINE	SAND some f	ine to coarse		1027.5		8 —																12712
	I. trace sil	t. trace	clav. drv	/.				-		8															5 LV 5 L
- 9.0.0	.,	.,	o.c.,, c.,			FS			9 -	12	24	67	SS-4		32	0	59	6	3	NP	NP	NP	9	A-3 (0)	1>11
							1025.0		10	7														. ,	- 1 LV 7 L
9 Mediu	um-dense	brown	GRAVE	L WITH SAND	trace silt, trace	hΥ.	1 .0_0.0	1 –	-																1>11>
diay,	dry.			,		PO	q	-	11 –	8															7174
¥						0,1	1 1000 0		12	6	18	56	SS-5		-	-	-	-	-	-	-	-	6	A-1-b (V)	1>1/1>
						₽Ŷ	1022.8	TR		8															71 74
SANI	DSTONE,	red, se	everely w	eathered.					13 —																$ < , \lor < ,$
Σ						1.7			14	4															17 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
. 40							1020.2		14	5	31	56	SS-6		50	1	42	4	3	NP	NP	NP	9	Visual (V)	
2						17.7.	1020.3	EOB	15	19	L														1 - 7 -
1																									

NOTES: - No seepage encountered during drilling. - After removal of augers, boring caved at 7.8' and was observed to be dry. - Encountered possible cobbles at 7.3'.

PLATE 23

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS

EXPLORATION ID PROJECT: SUM-77-0958L WIDENING DRILLING FIRM / OPERATOR:S&ME / B. SCHEIDERER DRILL RIG: ATV D50 (AW) STATION / OFFSET: 16+67.3, 23.0 RT B-009-2-14 RAMP B TYPE: EMBANKMENT WIDENING SAMPLING FIRM / LOGGER: S&ME / J. PENNELL HAMMER: CME AUTOMATIC ALIGNMENT: PAGE PID: 98061 BR ID: N/A DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 2/19/13 ELEVATION: 1039.8 (MSL) EOB: 18.2 ft. 1 OF 1 7/22/14 SAMPLING METHOD: SPT 41.025648 N, 81.506644 W START: 7/22/14 END: ENERGY RATIO (%): 77 LAT / LONG: MATERIAL DESCRIPTION ELEV. SPT/ REC SAMPLE HP **GRADATION (%)** ATTERBERG HOLE ODOT DEPTHS N₆₀ CLASS (GI) RQD (%) GR CS FS SI CL LL PL ΡI WC SEALED AND NOTES ID (tsf) 1039.8 **TOPSOIL - 4 INCHES** $\frac{1}{2}L^{\vee}$ 1039.5/ <17L FILL: Very-stiff to hard brown SANDY SILT, some clay, little 3 $\frac{1}{7}L^{V}$ $\frac{1}{7}$ fine gravel, contains few gray and brown silt pockets, few roots, 5 14 89 SS-1 4.5 +_ -_ _ _ _ 13 A-4a (V) _ _ 2 $\neg < \nu$ iron-stained pockets and slag fragments, dry to damp. 1. JLV $\frac{<}{7}$ 3 $\neg < ho$ 1> JLV $\frac{<}{7}$ 3.0-4.5+ 4 5 15 SS-2 9 100 11 22 34 24 24 16 8 12 A-4a (5) 1>112 $\frac{1}{2}L^{V}$ $\tilde{\tau}$ 5 1 < 1 1: 6 JLV 37 100 SS-3 12 4.5+ 11 A-4a (V) -_ -_ _ -_ 1 > 1 1. 7 17 JLV 1031.8 8 1 > 1 1. Hard brown SANDY SILT, little clay, little fine gravel, contains JLV $\frac{1}{7}$ few silt pockets and few iron-stained pockets, damp. 9 $\neg > \lor$ 46 17 100 SS-4 4.5+ A-4a (V) _ -_ _ -11 1> --- $\frac{1}{2}L^{V}$ 19 10 $\neg < \lor$ 1> $\frac{<}{1}$ $\frac{1}{7}L^{V}$ 11 12 $\neg > \lor$ 1> 37 22 12 100 SS-5 4.5 +14 8 28 30 20 14 8 10 A-4a (3) 12 $\frac{1}{7}L^{V}$ 17 1026.8 1>1 13 13 JLV < 1 Medium-dense brown SILT. little fine to coarse sand. little clav. trace fine gravel, contains few silty clay seams, dry to damp. 1>1 1: 14 + + + + + + + + + + + + 19 39 SS-6 8 A-4b (V) 4 --_ _ -_ - $\frac{1}{7}L^{V}$ $\frac{<}{7}$ 11 15 1 < L 1> $\frac{1}{2}L^{V}$ $\stackrel{<}{_{7}}$ 16 12112 6 19 SS-7 5 3 14 63 15 23 22 22 JLV J 44 1 A-4b (8) 17 1022.1 <1 1 < L 1021.6 $<, \sqrt{} <$ SANDSTONE 18 -EOB 50-0.0 -

NOTES:

- No seepage encountered during drilling.

- After removal of augers, boring caved at 9.5' and was observed

to be dry.

- Encountered auger penetration refusal at 18.2'.

- Depth to top of rock based on driller observation. Attempted

sample at 18.2' with no recovery.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS

ЧÖ

GINTW/PROJECTS/1

- LABORATORY/02

M:\RESOURCES\GEO\01

13:54

9/29/14

DT

HC

WITH PLATES

S&ME (8.5X11) LOG

PLATE

24

PROJECT: <u>SUM-77-0958L WIDENING</u> DRILLI TYPE: ROADWAY SAMPI	LING FIRM / OPERAT PLING FIRM / LOGGE	TOR: <u>S8</u> ER: S8	ME / D. GODWIN ME / D. FRITZE		. RIG: /IER:	T SA	RUCK 55 (FETY HAM	(AW) /MER		STAT ALIGI	ION /	OFF	SET:	18 	8+58.3 AMP	3, 21.0 B	0 LT	EXPLOR B-010	ATION ID)-0-14
PID: 98061 BR ID: N/A DRILLI	LING METHOD:	4	.5" CFA	CALIE	BRATI	ON DA	ATE: 2/	19/13		ELEV	ATIO	N: 1	040.	5 (MS	SL) E	OB:	19	.6 ft.	PAGE
START: 7/24/14 END: 7/24/14 SAMPI	PLING METHOD:		SPT	ENER	GY R	ATIO ((%):	76	_	LAT /	LON	G:	4	1.025	282 1	N, 81.	50716	1 W	1 OF 1
MATERIAL DESCRIPTION		ELEV.	DEDTUO	SPT/		REC	SAMPLE	HP		GRAD	ATIO	N (%)	ATT	ERBE	ERG			HOLE
AND NOTES		1040.5	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
ASPHALT - 6 3/4 INCHES		1039.9																	
GRANULAR BASE - 9 INCHES		1039.1	- 1 -																
FILL: Hard brown SANDY SILT , some clay, little fine to contains few iron-stained pockets, damp.	e gravel,		- 2 -	3 6 9	19	100	SS-1	4.5+	11	11	26	29	23	24	16	8	11	A-4a (3)	7 LV 7 L 7 N 7 V
			- 3 - - - 4 -	21 26 34	76	100	SS-2	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
			- 5 -	26 26 26	66	100	SS-3	4.5+	12	10	24	31	23	24	15	9	11	A-4a (4)	
		1022 E	- 7 -	8 14 16	38	100	SS-4	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	
EILL: Hard brown and dray SANDY SILT some clay	/ little fine	1032.5	- 8 -																7676
gravel, contains few coal fragments, damp.			- 9 -	10 11 11	28	67	SS-5	4.0- 4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	
		1030.0																	1 L 1 L
contains few iron-stained pockets, damp.			11 - 12	11 10 7	22	100	SS-6	3.0- 4.5	11	13	38	23	15	17	14	3	8	A-4a (1)	7 LV 7 L 1 > C 1 >
		1027.5	- 13 -																71474
Very-stiff gray SANDY SILT, some clay, little fine grav	ivel, damp.		14	4 5 _	14	100	SS-7	2.0- 4.0	-	-	-	-	-	-	-	-	13	A-4a (V)	
2		1025.0	15	0															$-\frac{1}{1}L^{*}\frac{1}{1}L$
Hard brown SANDY SILT , some clay, little fine gravel, few shale fragments and few iron-stained pockets, dar	I, contains amp.	1023.0	- 16 - - 17 -	4 9 40	62	100	SS-8	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	
Very-dense brown SANDY SILT , trace clay, trace fine damp.	e gravel,		18																
		1020.9		30 36 50-0.1	-	100	SS-9		8	5	42	36	9	NP	NP	NP	10	A-4a (2)	1>r 1> < v <

NOTES:

S&ME (8.5X11) LOG - WITH PLATES

PLATE 25

No seepage encountered during drilling.
 After removal of augers, boring caved at 14.8' and was observed

-Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 128 ppm.

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS WITH CEMENT

																	V		
	DRILLING FIRM / OPERA						ATV D50 ((AW)		STAT			SET	2	0+64	, 39.1 B	RT	EXPLOR B-010	ATION IE D-1-14
	SAMPLING FIRM / LOGG	ER. 30										NI							PAGE
PID: <u>98061</u> BR ID: <u>N/A</u>	DRILLING METHOD:	3	.25" HSA	CALI	BRAII	ON D	AIE: 2	/19/13		ELEV		N: 1	1036.	4 (MS	SL) E	EOB:	2	0.5 ft.	
START: <u>7/22/14</u> END: <u>7/22/14</u>	SAMPLING METHOD:		SPT	ENE	RGY R	ATIO	(%):	77		LAT /	LON	G: _	4	1.025	5280 I	N, 81.	50793	33 W	TOFT
MATERIAL DESCRIP	ΤΙΟΝ	ELEV.	DEDTUO	SPT/		REC	SAMPLE	HP	(GRAD	OATIO	N (%))	ATT	ERB	ERG		ODOT	HOLE
AND NOTES		1036.4	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALE
		1036.0				(,,,)	.=	(101)											<, v <
Hard brown SILT AND CLAX some fine to c	oarso sand traco		_ 1 _																1271
fine gravel contains few roots few light brow	n silt nockets and	1		5_	4.4		00.4	4 0-									45		< v <
few iron-stained pockets damp	IT SIIL POCKELS, AITU	1	- 2 -	5	14	33	55-1	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	1211
		1		0															
		1	3																1761
		1	- 4 -	5	~~~		00.0			_				07	10				5 LV 5
				8	22	78	SS-2	4.5+	8	5	22	41	24	27	16	11	14	A-6a (6)	1>11
5		1031.1	- 5 -	9															- 7 LV 7
Stiff to very-stiff brown SILT AND CLAY, little	e fine to coarse	1																	$r \prec r$
sand, trace fine gravel, contains few silt pock	ets, few iron-stained	1	- 0	7	10	_													7 LV 7
pockets, and few fine sand seams, damp to r	noist.	1	- 7 -	7 _	18	0			-	-	-	-	-	-	-	-	-		1>11
		1		<u>a</u> /	-	100	55-3	16-	-	_	_	-	-	_	-	-	15	A-62 (\/)	- 7 LV 7
		1	- 8 -	5		100	00-5	12.5/	_	_	_	_		_	_	_	15		- 1 > 1 - 1
		1		3				20											7147
				3	9	89	SS-4	3.0	-	-	-	-	-	-	-	-	15	A-6a (V)	1211
		1026.0	- 10 -	4															747
Hard brown SANDY SILT, some clay, trace fi	ne gravel, contains		1																1211
few siltstone fragments and few iron-stained	pockets, damp.			6															7147
			- 12 -	8	22	100	SS-5	4.5+	6	7	17	45	25	25	17	8	15	A-4a (7)	
				9															
			- 13																<, < <
				7															
			- 14	12	33	89	SS-6	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	< v <
			- 15 -	14															7 4 7
																			SLV S
		1019.9	- 16 -	7	-	100	SS-7A	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V)	1 1 2 1
Medium-dense brown COARSE AND FINE S	AND, some silt,		17	7	18	67	SS-7B	-	3	2	66	23	6	NP	NP	NP	15	A-3a (0)	
trace clay, trace fine gravel, damp.		1018 5		7	10	01	00-70			-	00	20						7-00 (0)	17<1
Stiff grav SANDY SILT some clay little fine	nravel moist		- 18																1 LV 7
				3															1-1<1
5				5	12	0			-	-	-	-	-	-	-	-	-		1 LV 7
		1015 0	- 20 -	- 4		100	- CC 0	10									12	A 40 (1)	1>11
		1015.9		5	-	100	22-8	T P.A.	-	-	-	-	-	-	-	-	13	<u> A-4a (V)</u>	$ <, \vee <$

1.0-

NOTES:

S&ME (8.5X11) LOG - WITH PLATES -

PLATE 26

- No seepage encountered during drilling.

- After removal of augers, boring caved at 10.6' and was observed to be dry.

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS

S&ME JOB: 1179-14-011

PROJEC TYPE:	T: SUM-77-0958L WIDENING EMBANKMENT WIDENING	_ DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	ATOR: <u>S</u> ER: <u>S</u>	&ME / D. GODWIN &ME / D. FRITZE	DRILL RIG HAMMER:	: SA	TRUCK 55 AFETY HAN	(AW) MMER		STAT ALIGI	ION / NMEN	OFFS	ET: _	22+57 RAMF	′.4, 5.′ P B	I RT	EXPLOR B-01	ATION ID -0-14
PID: 9	<u>98061</u> BR ID: <u>N/A</u>	_ DRILLING METHOD:	4	1.5" CFA	CALIBRAT	ION D	ATE:	/19/13	_	ELEV	ATIO	N: <u>10</u>	33.2 (MSL)	EOB:	1	5.0 ft.	
SIARI:	<u></u>	_ SAMPLING METHOD:		SPI	ENERGY		(%):	76		LAI /	LON	G:	41.()25112	N, 81	.50859	<u>8 W</u>	
1.0	MATERIAL DESCRI	PTION	ELEV.	DEPTHS	SPT/ N ₆₀	REC	SAMPLE	HP		JRAD		N (%)					ODOT	
			1033.2		KQD ···	(%)	U	(tsr)	GR	LS	F5	51 0	/L L			WC	02.00 (0.)	SEALED
R/			1032.4															\neg L^{\vee} \neg L
Very-stif	f to hard brown becoming dark grav	SANDY SILT, little	1032.2	_ 2 _	4 3 11 6	67	SS-1	4.0- 4.5+	9	8	19	46 ⁻	8 2	22 17	5	15	A-4a (6)	1 > L V 1 > L 7 L V 1 L
decayed	l organic pockets, damp.			- 3 -	3 4 11 5	33	SS-2	2.5- 4.5+	-	-	-	-	-	- -	-	12	A-4a (V)	
≥			1020.2	- 4 -	4 -	100	SS-3A	3.5-	5	8	32	36 ⁻	9 2	29 21	8	19	A-4a (4)	JLV JL
5 Medium	stiff to stiff brown SANDY SILT s	me clay, trace fine	1020.2	- 5 -	⁵ 6 ¹⁴	100	SS-3B	1.0	-	-	-	-	-	- -	-	19	A-4a (V)	1>1-1>
gravel, c pockets,	contains few iron-stained pockets ar , damp to moist.	Id few decayed organic		6 -	2 2 3 6	67	SS-4	1.6	-	-	-	-	-		-	14	A-4a (V)	
ABURAL				- 8 -	-													
- 0/01 - L/			1022.7	W - 9 - 10 -	2 2 6 3	67	SS-5	0.8- 1.0	-	-	-	-	-		-	-	A-4a (V)	
Hard bro	own SANDY SILT some clay trace	fine gravel contains	1022.7															7676
few gray	<i>i</i> silty clay seams and few iron-stain	ed pockets, dry.		11	3 8 20 8	100	SS-6	3.0- 4.5+	-	-	-	-	-		-	17	A-4a (V)	
XEX			1019.7	- 13														12 12
Medium- trace cla	-dense brown FINE SAND , some c ay, trace fine gravel, wet.	parse sand, trace silt,	1018.2		7 8 20 8	100	SS-7		1	33	56	5	5 N	NP NP	NP	16	A-3 (0)	
4				200 10														ŀ

NOTES:

Seepage encountered at 9.5' during drilling.
After removal of augers, boring caved at 12.1' and was observed to be dry.
Sulfate content (per TEX-145-E) performed on sample from first sampling interval = 163 ppm.

NOTES: SEE ABOVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED ASPHALT PATCH; PLACED PLASTIC HOLE PLUG DEVICE; PLACED SOIL CUTTINGS

Identified by: KJD		PAVEM Project Nun	ENT CORE	MEASUREMENT SHEET	♦S&ME
Date Identified: 7/24/2014		Project Nan	ne:	SUM-77-0958L	Client: ODOT
		S&ME, In	c Cleveland 8555 S	weet Valley Drive, Suite S Valley View, Ohio 44125-4210	
Boring / Core ID	Asphalt (in.)	Concrete (in.)	Total Core Length (in.)	Notes: (slag concrete, reinforced concrete	e, # of courses, highly broken up, etc.)
B-003-0-14	5 7/8	8 1/2	14 3/8	4 Asphalt Courses, Reinforced Concrete	
B-004-0-14	5 1/2	0	5 1/2	2 Asphalt Courses	
B-006-0-14	6 1/8	8	14 1/8	2-3 Asphalt Courses	
B-007-0-14	3	0	3	2 Asphalt Courses	
B-008-0-14	4 1/2	0	4 1/2	2-3 Asphalt Courses	
B-009-0-14	9	0	9	Approximately 5 Asphalt Courses, Last Course Highly Brok	ken up
B-010-0-14	6 3/4	0	6 3/4	Approximately 3 Asphalt Courses	
B-010-1-14	9	0	9	Approximately 4 Asphalt Courses	
B-011-0-14	8 3/4	0	8 3/4	4 Asphalt Courses	

		<u> 179-</u> 5070- Boring No.	14 - 011A 77-0958 5 B-00		
Phot	ographer	K.ID		1 town in the	
6 0	ographer. ato Takon:	7/24/2014	Remarks:	Asphalt Pavement Core	
	ocation / (Drientation:		B-009-0-14	
				D-003-0-14	PLATE 31

		No Photo Taken
10	Photographer: Date Taken:	Remarks:
	Location / Orientation:	

PLATE 37

PLATE 39

ADVANCED ANALYTICS LABORATORIES, INC. 1025 CONCORD AVENUE

COLUMBUS, OHIO 43212 (614) 299-9922 FAX (614) 299-4002 Analysis & Testing - Quality Control Programs - Research & Development

S&ME, Inc. [Cleveland) 8555 Sweet Valley Drive, Suite S Valley View, OH 44125

Project:	1179-14-017	Date Received:	8/5/14
P.O. Number:	[none]	Date Reported:	8/14/14
Project Manager:	Brian Sears		

ANALYTICAL RESULTS

Sulfate by TxDOT-145-E

TxDOT-145-E

				Reporting	Date	Date	
AALI I.D.	Client I.D.	Sulfate	Units	Limit	Collected	Analyzed	Notes
1408023-01	B-001-0-14	399	mg/kg	10.0	7/21/14	8/13/14	
1408023-02	B-002-0-14	71.0	mg/kg	10.0	7/21/14	8/13/14	
1408023-03	B-003-0-14	94.4	mg/kg	10.0	7/21/14	8/13/14	
1408023-04	B-004-0-14	144	mg/kg	10.0	7/21/14	8/13/14	
1408023-05	B-007-0-14	241	mg/kg	10.0	7/22/14	8/13/14	
1408023-06	B-008-0-14	285	mg/kg	10.0	7/23/14	8/13/14	
1408023-07	B-009-0-14	374	mg/kg	10.0	7/24/14	8/13/14	
1408023-08	B-010-0-14	128	mg/kg	10.0	7/24/14	8/13/14	
1408023-09	B-011-0-14	163	mg/kg	10.0	7/22/14	8/13/14	

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

Advanced Analytics Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

L. Evertameter

L. Eve Karnitis, President

Page 1 of 1

APPENDIX B

APPENDIX B

Plate No.

Calculations

Rig ER	е « а с	ں م د	J LL (IJ I		Analysis						Exc. To 24" or	Cement Stabilization to	16"				Eve To 07" or	Cement	Stabilization to	16"				Eve To 30" or	Cement	Stabilization to 16"									xc./Replace 14"	or Cement	
% Surface	44% 11% 44%		C @ Surface	20.8 36	12	Undercuts	UC UC			12		18 24	i					24	27	3 40 3 40	40				36 12			36 16		15	2				14	14 E	12	24
% Borings	<pre>0L<= 5 11%</pre> <pre></pre>	>=20 07% M+ 67%				Problem	w w lass MN 0			MM		zz	:					z	z	zz	z				4b MN		Σ	4b N		z	Σ				z	z	MM	zz
Surface Class	4b 1 11%	2-5 0 7-6 0	8a 0	0 0 0 0		Comments	0	Sulfate = 300 ppm				Sulfate = 71 ppm			sulfate = 94.9 ppm			Sulfate = 144 ppm				Sulfate = 241 ppm			Sulfate = 285 ppm			Sulfate = 374 ppm	_			Sulfate = 128 ppm			Sulfate = 163 ppm			
7 6 0 0 b	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MoPT GI	10.5 4.09 16 8	0	ure Class	M _{OPT} DOT GI	11 40 A	11 4a 5	10 4a 5 10 4a	10 4a	11 4a 2 3	11 4a 1	10 4a 14 6a	14 6a 4 S	14 6a 8 8 3a 0	10 4a 5	0 10 12 4a 3 <mark>S</mark>	10 4a 3	10 4a 5 11 4a 3	10 4a	8 3a 0 S	10 4a 5 10 4a 1	14 6a 8 14 6a	12 4b 8 S	6 1b 10 0	10 4a 5	10 40 11 4a 5 S	10 4a 5	11 4a 6 10 4a 5	10 4a	11 4a 3 S	10 4a 5	10 4a 5	12 4a 6 S	10 4a 5	10 4a 5	10 4a 5 10 4a
60 Gh 7 E	5 0 0	89%	Clay M M	17.7 12.8 27 74 22	9 6 15 6	eristics Moist	% P Clay 200 M M	10 22 EE 12	20 59 14	17 15 53 12	<u></u> б	0 13 43 14 14	s 15 41 11	27 58 9	20 51 12	0 6 15 6	0	22 51 17	19 50 14	20 49 15	15	13 30 10	i 17 42 11	12	23 74 22	6 17 8	12	13 19 58 11	ω	5 21 67 11 15	16) 23 52 11	23 54 11	10	5 18 64 15	12 10 10	19	14
Counts by Sample	7 48 40 5 34 2 0	14% 4%	E	30 21 13 51	18 14 3 9	Physical Charact	L PL PI Silt	06 16 10 33	23 16 7 39	18 15 3 38		20 16 4 30	22 16 6 26	30 17 13 31	25 14 11 31	4P NP NP		26 17 9 29	23 15 8 31	24 16 8 29		VP NP NP 17	23 14 9 25		26 17 9 51	VP NP NP 11		23 16 7 39		22 16 6 46		24 16 8 29	24 15 9 31		22 17 5 46	00 00 00	00	
Classification	-7 0-7 C-7 F-7	,0	N ₆₀ N _{60L}	Z1.8 10.8 76 19 :	3 3	enetration	Rig N ₆₀ N _{60L} LI	A 25	27	13	14 13	ی م بو ۲	22	56 18 6	A 18	20	46	A 6 18 N	ۍ ۱	ω 4	3 3	A 15 N	15	14 13	A 14	41	18	9 9 A 27 3	47	30	19 10	A 19 36	02	38 20 10	A 11 13	÷ ;	14	99
4h 20	10 3 38 3 0 2 30 2	1% 4%	[Average Maximum	Minimum	Standard Pe	n ₂ n ₃ N	0 11 20	9 12 21	5 5 10 5 5 10	5 6 11	a a a a a	8 9 17	12 32 44 6 8 14	6 8 14	7 9 16 34 17 51	16 20 36	1/ 14 31 2 3 5	2 2 4	1 2 2 2 2 2 2 2 2	1 1 2	6 6 12	5 7 12 3 7 10	5 6 11	4 7 11	20 12 32 7 0 12 32	7 7 14	1 6 / 5 16 21	16 21 37	12 12 24 8 8	5 10 15	6 9 15 76 34 60	26 26 52	14 16 30	3 6 9 3 6	4 5 6 7 7 9	5 6 11	2 3 2 2
- - -	20 20 20	%0	-			Subgrade	ut ill Depth To	10 25	2.5 4.0	4.0 5.5 5.5 7.0	8.5 10.0	0 1.0 2.5 2.5 4.0	4.0 5.5	5.5 7.0 8.5 10.0	.5 0.5 2.0	2.0 3.5 3.5 5.0	5.0 6.5	.0 0.5 2.0	2.0 3.5	3.5 5.0 5.0 6.5	6.5 8.0	.5 0.0 1.5	1.5 3.0 3.0 4.5	4.5 6.0 7.0 8.5	.0 0.0 1.5	1.5 3.0	3.0 4.5 4.5 6.0	1.5 0.0 1.5	1.5 3.0	3.0 4.5 4.5 6.0	7.0 8.5	.5 0.0 1.5	3.0 4.5	4.5 6.0	.5 -0.5 1.0	1.0 2.5	3.0 4.0	4.0 5.5 7.0 8.5
lobal Options	CS Option	LS No Denth 11			Ohio	(Depth To F	10 25 0	2.5 4.0	4.0 5.5 5.5 7.0	8.5 10.0	1.0 2.5 0 2.5 4.0	4.0 5.5	5.5 7.0 8.5 10.0	2.0 3.5 -1	3.5 5.0 5.0 6.5	6.5 8.0	2.5 4.0 -2	4.0 5.5	5.5 7.0 7.0 8.5	8.5 10.0	1.5 3.0 -1	3.0 4.5 4.5 6.0	6.0 7.5 8.5 10.0	1.0 2.5 -1	2.5 4.0	4.0 5.5 5.5 7.0	8.5 10.0 1.5 3.0 -1	3.0 4.5	4.5 6.0 6.0 7.5	8.5 10.0	1.5 3.0 -1	4.5 6.0	6.0 7.5 e 10.0	1.0 2.5 -1	2.5 4.0	4.5 5.5	5.5 7.0 8.5 10.0
Analysis	12/30/11 206	8		9 98061	Akron, (Boring	Boring Location	ID 77 NB Modian	Sta 494+47.0, 15.0' LT	N: 496176.79 E: 2244487.71		IR 77 NB Median Sta 498+45.4. 21.8' I T	N: 496470.45	E: 2244219.22	IR 77 NB, Ramp B2	Sta 4+66.1, 15.7' KI N: 496992.73	E: 2243736.44	IR 77 NB, Ramp B2	Sta 7+57.7, 17.1' RT	N: 497159.27 E: 2243492.72		IR 77 NB, Ramp B2	Sta 9+94.8, 17.2' RT N: 497198.38	E: 2243252.8	IR 77 NB, Ramp B2	Sta 12+81.5, 17.4' RT	N: 49/066.05 E: 2242981.75	IR 77 NB. Ramp B	Sta 14+72.6, 28.2' LT	N: 496773.24 F: 2242742 08		IR 77 NB, Ramp B	N: 496533.95	E: 2242429.71	IR 77 NB, Ramp B	Sta 22+57.4, 5.1' RT	E: 2242033.74	
Subgrade A	V. 12.00	Design		Fotal Borings	Location		# B#	1 B 001 0 14				2 B-002-0-14			3 B-003-0-14			4 B-004-0-14				5 B-007-0-14			6 B-008-0-14			7 B-009-0-14				8 B-010-0-14			9 B-011-0-14			

Rig ER	A 76	В	C		шц	_ (דני	:	Analysis							To 04" or		Cernerit Stabilization to	Jiaumzauon to 16"												vr /Renlace 14"	or Cement	stabilization 12"		
% Surface	120%	0% 40%			000 J 100 S		3.2 18	0	Undercuts	UC UC Class MN			ç	7		18	24	-						15						14	14	1	0.	24	24
% Borings	$N_{60L} <= 5 0\%$	<=10 60%	>=20 0%	M+ 80%	R 0%				Problem	w/ w/ Class MN			NAN	NIN		z	z							zΣ						z	z			z	z
Surface Class	2-5 0	4b 0	5 0	7-5 0	7-6 0	gi U	0 C 0 C	, ;	Comments			Sulfate = 399 ppm				Sulfate = 71 ppm					Sulfate = 374 ppm				Sulfate = 128 ppm					Sulfate = 163 ppm					
	8a 8b	0			ē	5	4.21 6	0	Class	Ohio DOT GI		43	4a 40	14	4a 4a	4a 2	4a 5	4a 1	4a	6a	4a 5	4a 5	4a 6	4a 5 4a	4a 3	4a 5	4a 4	4a 5	4a	4a 6	4a 5	4a 4	4a 0	4a 5	4a
	7-5 7-6	0		¢	M M		12.8 10.8 19 16	8 10	Moisture	M M _{OPT}			14		01 01 01 01	14 11	14 10	11 11	13 10	9 14	11 11	8	11 11	15 16 10	11 11	12 10	11 10	10 10	11 10	15 12	12 10	19 16	19	14 10	10
	6a 6b	1 0	4%	100%	Ne ^C	Ciay 10 1	19.7 67	5 13 41	eristics	% P Clay 200	01 00	00 77 00	9 20 59		5G CL 93	13 43		15 41		27 58	119 58 58		21 67		23 52		23 54			<mark>3 18</mark> 64		<mark>3 19 55</mark>			
ts by Sample	4b 5	0	6		ā		1 13 46	5 3 26	sical Charact	- PI Silt	0,00	0 0	6 7 36	0 0	ກ ດ	6 4 3C		6 6 26		7 13 31	<mark>6 7 3</mark> 6		6 6 46		6 8 20		5 9 31			7 5 46		1 8 36			
ication Coun	-6 2-7 48	0 25	96			201	1.8 19 30 3	6 18 1	Phy			8	Z3		13 18	20 1		22		6 30 1	23 1		22	10	24 1		24 1		19	22		29			6
Classif	2-4 2-5 2	0 0			N	091	Z4.0 10 76	9	netration	Rig N ₆₀ N		C7	27	2 4	5 <u>4</u>	A 8	9	22	56	18	A 27	47	30	10	A 19	76	66	38	28	A 11	11	14	14	9	9
	3 3a	0 0		%0		Γ	ge	E E	Standard Pe	z u ³			12 21 50	0 L	0 11 0 12	3 6	3 3	9 17	32 44	8 14	16 21	21 37	12 24	10 15 15	9 15	34 60	26 52	16 30	11 22	9 0	5 9	6 11	6 11	3	3 5
	a 1b	0				•	Maxim	Minim	n	o n ₂	(ת ס	6 4 0 4		0.0	3	0	5 8	0 12	.0	5 5	0 16	5 12	0 0 2 0	5 6	0 26	5 26	0 14	5 11	3	5	0	0	5	5 2
	я 5	0 0		%0					Subgrad	Depth To		N. I.	2.5	4 r 0 r	., c.c 8.5 10	1.0 2.	2.5 4.	4.0 5.	5.5 7.	8.5 10	0.0 1.	1.5 3.	3.0 4.	4.5 6. 7.0 8.	0.0 1.	1.5 3.	3.0 4.	4.5 6.	7.0 8.	-0.5 1.	1.0 2.	2.5 3.	3.0 4.	4.0 5.	7.0 8.
	•	ion	•	•	4					Cut Fill		0.0				0.0					-1.5				-1.5					-1.5					
Options	2	opi	z	z	t L					h To	L (0.7	0.4 7	0.0	10.0	2.5	4.0	5.5	7.0	10.0	3.0	4.5	6.0	7.5	3.0	4.5	6.0	7.5	10.0	2.5	4.0	4.5	5.5	7.0	10.0
Global	0 R&R	e CS	S	R	6 Dep			n, Ohio		Dept			.1 2.5	4 r D r	0.0 8.5	1.0	T 2.5	4.0	5.5	8.5	1.5	T 3.0	4.5	6.0 8.5	1.5	Г 3.0	4.5	6.0	8.5	1.0	- 2.5	4.0	4.5	5.5	8.5
A uchicic	Analysis 32(12/30/11 20t		×	<u>Š</u>	ľ	5 98061	Akror	Boring	Boring Location		IK // NB Median	Sta 494+47.0, 15.0' L	T. 004407 74	E: 224448/./1	IR 77 NB Median	Sta 498+45.4, 21.8' L	N: 496470.45	E: 2244219.22		IR 77 NB, Ramp B	Sta 14+72.6, 28.2' L	N: 496773.24	E: 2242742.08	IR 77 NB, Ramp B	Sta 18+58.3, 21.0' Lī	N: 496533.95	E: 2242429.71		IR 77 NB, Ramp B	Sta 22+57.4, 5.1' RT	N: 496467.44	E: 2242033.74		
0.152240	subgrade	V. 12.00		esign	BR		otal Borings	ocation		# B #		B-001-0-14				2 B-002-0-14					3 B-009-0-14				4 B-010-0-14					5 B-011-0-14					

2 @ Surface 5.5 G 36 H Analysis
M+ 50% R 0% Proham
7-6 0 8a 0 8b 0 8 0 8 0 8 0 70mmetrs
M M _{OPT} GI 7 2.28 10.3 3.63 4 222 144 8 222 144 8 Moisterna Class
PI Clay M 9.0 15.4 12.8 11 51 23 74 22 8 9 6 15 6 Main
Ven Neit. Pl 9.1 10.8 9.0 65 18 26 17 11 3 3 23 14 8 20 Physical (7
Average [19.1] Maximum [55 Minimum 33 Standard Panatration
Mini
kron, Ohio
Boring

APPENDIX C

APPENDIX C

Plate No.

ODOT OGE Design Checklists

Subgrade Checklist 1	1-2	2
----------------------	-----	---

III.C. Subgrade Checklist

C-R-S: SUM-77-0958L	PID: 98061	Reviewer: KJD	Date: 9-17-2014

If you do not have any subgrade work on the project, you do not have to fill out this checklist.

Y	N	Х	1	Has the subsurface investigation adequately characterized the soil or rock according to <u>Geotechnical Bulletin 1: Plan Subgrades (GB1)?</u>	
Y	N	X	2	If soils classified as A-2-5, A-4b, A-5, A-7-5, A-8a, or A-8b, or having a LL>65, are present at the proposed subgrade (soil profile), do the plans specify that these materials need to be removed and replaced or chemically stabilized?	A-4b materials were identified in one boring in the expected subgrade profile. Plan information will be provided by ODOT to contractors.
Y	Ν	X		a If these materials are to be removed and replaced, have the station limits, depth, and lateral limits for the planned removal been provided?	The contractors for this design build project will be determining this information.
Y	N	Х	3	If there is any rock, shale, or coal present at the proposed subgrade (CMS 204.05), do the plans specify the removal of the material?	Bedrock was not encountered within the expected subgrade profile of the roadway borings.
Y	N	X		a If removal of any rock, shale, or coal is required, have the station limits, depth, and lateral limits for the planned removal of the material at proposed subgrade been provided?	N/A
Y	N	Х	4	In accordance with GB1, do the SPT values and existing moisture contents for the proposed subgrade soils indicate the need for subgrade stabilization?	Areas were identified that will require remediation. See GB1 Table in Appendix B.
Y	Ν	X		a If removal and replacement is applicable, has the detail of subgrade removal been shown on the plans, including depth of removal, station limits, lateral extent, replacement material, and plan notes (Item 204 – Subgrade Compaction and Proof Rolling)?	The contractors for this design build project will be determining this information.
Y	N	X		b If chemical stabilization is applicable, has the detail of this treatment been shown on the plans, including depth, percentage of chemical, station limits, lateral extent, and plan notes?	To be performed by others. See GB1 Table in Appendix B.
				Indicate type of subgrade treatment specified:	Materials to be used will be identified by the
				□ cement treatment □ lime treatment	contractor. Cement is a feasible option per GB1.
				□ lime kiln dust □ other	
Y	N	X	5	If drainage or groundwater is an issue with the proposed subgrade, has an appropriate drainage system (e.g., pipe, underdrains) been provided?	Groundwater was not encountered in significant quantities during our exploration.
Y	Ν	Х	6	Has an appropriate quantity of Proof Rolling been included in the plans (CMS 204.06)?	The contractors for this design build project will be determining this information.
Y	Ν	Х	7	Has a design CBR value been provided?	A CBR value of 9 has been recommended.

III.C. Subgrade Checklist

Notes:

Stage 1: