

ODOT District 5 HSIP Safety Study LIC-310-12.62 - SR 310 & Duncan Plains Road 2021 HSIP Priority List #76 Rural Intersection

Completed By: Joshua Otworth, PE

Completion Date: August 2023

Table of Contents

One Page Project Summary	1
Executive Summary	1
Purpose and Need	1
Background	1
Crash Data	1
Recommended Countermeasures and Related Costs	1
Purpose and Need	2
Existing Conditions	2
Figure 1: SR 310 & Duncan Plains Road intersection (looking southeast)	2
Crash Data	3
Crash Data Summary	3
Crash Analysis	4
Figure 2: SR 310 & Duncan Plains Road intersection (looking south)	5
Other Traffic Analysis	5
Identification of Potential Countermeasures	6
Proposed Conditions Diagram	7
Proposed Countermeasure Evaluation	8
Signalization and Left Turn Lane Widening	8
Roundabout	8
Conclusions	9
Implementation Plan	9

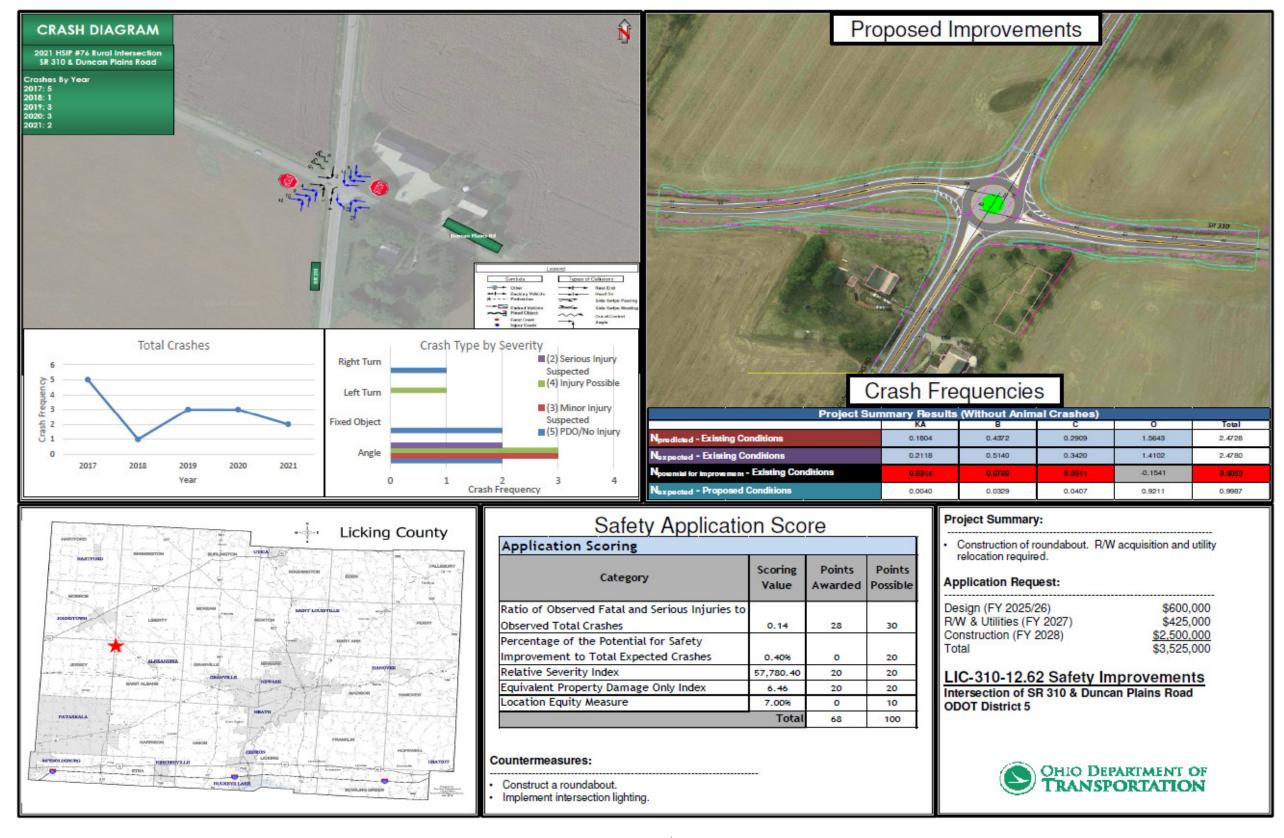
List of Tables

Table 1: Crashes observed by year	3
Table 2: Crashes observed by type and severity	4
Table 3: Capacity Analysis Summary	6

Appendix A: Existing Conditions Diagram

Appendix B: Crash Data and Crash Diagram

Appendix C: Cost Estimate


List of Appendices

Appendix D: ECAT Analysis

Appendix E: Proposed Conditions Diagram

Appendix F: Other Traffic Analysis

One Page Project Summary

Executive Summary

Purpose and Need

The following study provides an overview of the purpose and need, possible causes, recommended countermeasures, and estimated costs from a safety engineering study at the intersection of SR 310 and Duncan Plains Road (CR 33) in Saint Albans Township, Licking County. The study location is ranked the 76th Suburban Intersection on ODOT's 2021 HSIP Priority List.

Background

The intersection of SR 310 and Duncan Plains Road is located approximately 2.5 miles southeast of the City of Johnstown, 3.5 miles northwest of the Village of Alexandria, 8 miles northwest of the City of New Albany and 8 miles northwest of the Village of Granville.

SR 310 runs north/south connecting I-70, US 40, the City of Pataskala and the City of Johnstown. Duncan Plains Road runs northwest/southeast connecting US 62 and SR 37.

SR 310 is classified as a major collector with a 2021 AADT of 3,633 vpd and 10% daily truck percentage. Duncan Plains Road is classified as a minor collector with a 2021 AADT of 1,369 vpd and 9% daily truck percentage. The regulatory speed limit on all intersection approaches is 55 mph.

Crash Data

Crash data from 2017-2021 was compiled and 14 crashes were observed within the study area. A review of the crash data shows:

- Angle crashes were the most prevalent with 10 crashes (71% of total crashes).
 - o 7 of 10 Angle crashes (70%) involved northbound SR 310 vehicles.
- 9 of 14 total crashes (64%) were injury crashes.
 - o There were 2 serious injury crashes both were angle crashes.

An existing conditions safety analysis calculated the predicted average crash frequency of the intersection to be 2.47 crashes per year and the expected crash frequency to be 2.48 crashes per year.

Recommended Countermeasures and Related Costs

From 2017 to 2021, 14 crashes occurred at the intersection including 10 angle crashes with 64% of all crashes resulting in injury. A safety performance analysis of the SR 310 & Duncan Plains Road intersection calculated expected crash frequency with existing site conditions as 2.48 crashes per year.

Converting the intersection to a roundabout would eliminate conflict points while also providing traffic capacity improvements. Roundabouts significantly reduce injury crash frequency and provide traffic capacity comparable to, if not better than, signalized intersections. The roundabout alternative would require right-of-way acquisition and utility relocation. The proposed expected crash frequency is 1.00 crashes per year with an expected reduction of 1.48 crashes per year. The estimated final construction cost (including right-of-way acquisition, utility relocation, design and construction) for the roundabout alternative is \$3,525,000.

Purpose and Need

The following study provides an overview of the purpose and need, possible causes, recommended countermeasures, and estimated costs from a safety engineering study at the intersection of SR 310 and Duncan Plains Road (CR 33) in Saint Albans Township, Licking County. The purpose of this safety study is to evaluate the safety conditions at the intersection and determine crash countermeasures which will mitigate crash frequency and severity. The study location is ranked the 76th Rural Intersection on ODOT's 2021 HSIP Priority List.

Existing Conditions

The intersection of SR 310 and Duncan Plains Road is located approximately:

- 2.5 miles southeast of the City of Johnstown
- 3.5 miles northwest of the Village of Alexandria
- 8 miles northeast of the City of New Albany
- 8 miles northwest of the Village of Granville

SR 310 runs north/south connecting I-70, US 40, the City of Pataskala and the City of Johnstown. Duncan Plains Road runs northwest/southeast connecting US 62 and SR 37.

SR 310 is classified as a major collector with a 2021 AADT of 3,633 vpd and 10% daily truck percentage. Duncan Plains Road is classified as a minor collector with a 2021 AADT of 1,369 vpd and 9% daily truck percentage. The regulatory speed limit on all intersection approaches is 55 mph.

Figure 1: SR 310 & Duncan Plains Road intersection (looking southeast)

The SR 310 and Duncan Plains Road intersection has four legs with each approach having two travel lanes (one shared through-left-right lane and one receiving lane). The traffic control at the intersection

is stop control on the minor road approaches (Duncan Plains Road). There is no existing roadway lighting. Duncan Plains Road intersects SR 310 at an approximate 25-degree skew.

SR 310 has 11-feet lanes with 1-foot unpaved shoulders. SR 310 approaches have Intersection Ahead warning signs. Duncan Plains Road has 10-feet lanes with 1-foot unpaved shoulders. Duncan Plains Road approaches have STOP signs and dual STOP AHEAD warning signs. Roadside objects and hazards adjacent to both roads include ditches, trees and utility poles. Adjacent land use within the study area is primarily residential and agricultural. The existing conditions diagram are presented in **Appendix A**.

Crash Data

Crash Data Summary

Crash data from 2017-2021 was compiled and 14 crashes were observed within the study area. The following tables provide an overview of the crash data:

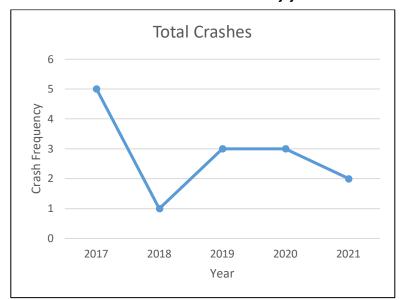


Table 1: Crashes observed by year

Table 2: Crashes observed by type and severity

A complete analysis of the crash data and crash diagram showing the location and severity of each accident can be found in **Appendix B**.

Crash Analysis

A review of the crash data shows:

- Angle crashes were the most prevalent with 10 crashes (71% of total crashes).
 - o 7 of 10 Angle crashes (70%) involved northbound SR 310 vehicles.
- 9 of 14 total crashes (64%) were injury crashes.
 - There were 2 serious injury crashes both were angle crashes.
- Failure to yield was the primary crash contributing factor in 64% of crashes.

An existing conditions safety analysis calculated the predicted average crash frequency of the intersection to be 2.47 crashes per year and the expected crash frequency to be 2.48 crashes per year.

Figure 2: SR 310 & Duncan Plains Road intersection (looking south)

Other Traffic Analysis

An intersection turning movement count was performed on April 18th, 2023. Signal warrant analysis was conducted using guidance from the OMUTCD Chapter 4C and Traffic Engineering Manual Section 402-3. The analysis determined the intersection does not meets any traffic signal warrants. The signal warrant analysis summary is presented in **Appendix F**.

The following traffic operations were analyzed using 2023 peak hour count data and linearly-grown 2028/2048 peak hour traffic volumes:

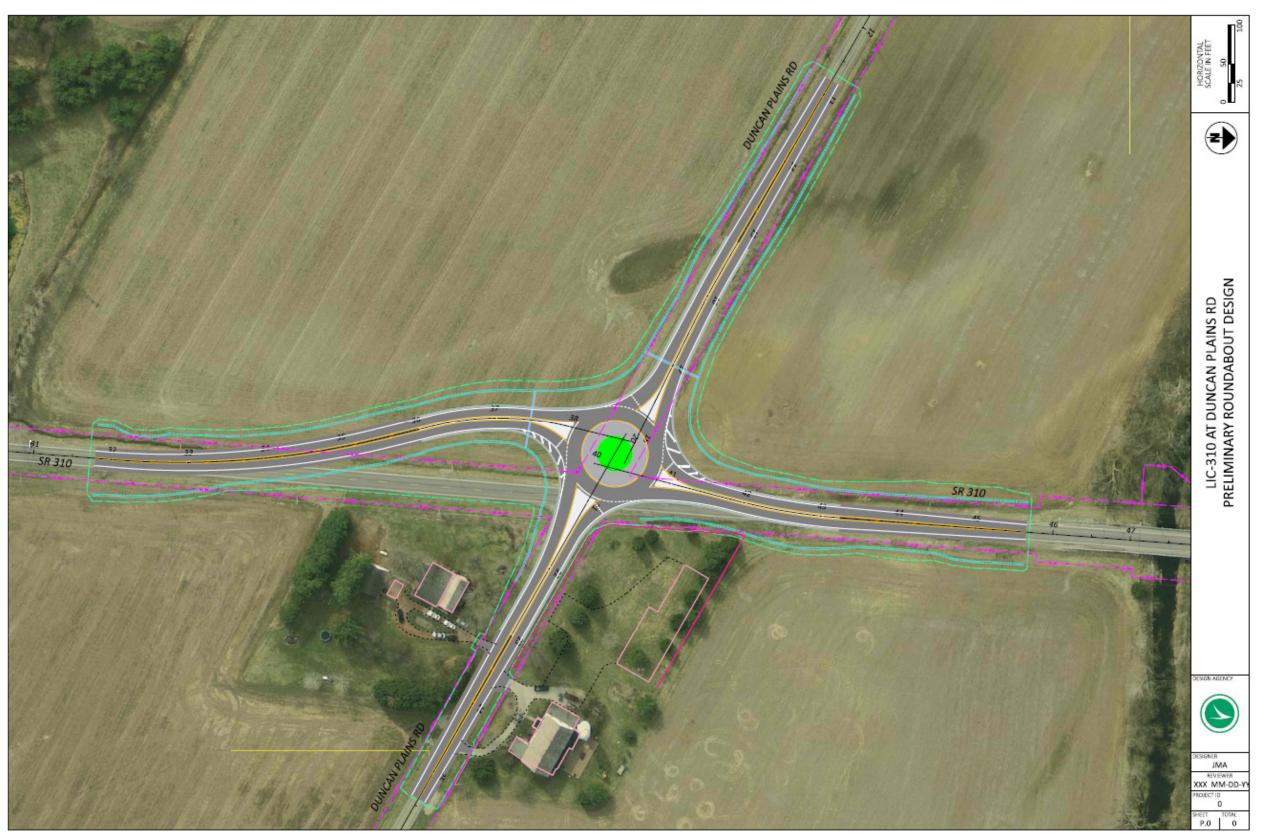
- Two-Way Stop Control (No Build)
- Modern Roundabout

Due to the nearby Intel plant development expected impact on traffic volumes, linear growth rates were produced and provided by MORPC for the study intersection. Linear growth rates were applied to turn movement volumes as follows:

- Duncan Plains Road east of SR 310 2.80%
- SR 310 north of Duncan Plains Road 1.60%
- Duncan Plains Road west of SR 310 2.70%
- SR 310 south of Duncan Plains Road 1.20%

The roundabout alternative results in traffic operations with LOS A in the opening and design years. **Table 3** below shows a summary of the HCS analysis for each of the alternatives. The HCS reports for each analyzed condition and MORPC growth rates documentation can be found in **Appendix F**.

Table 3: Capacity Analysis Summary


Treffic Control Condition	Approach LOS & Delay (s/veh)				Interception IOS & Delevision	
Traffic Control Condition	EB	WB	NB	SB	Intersection LOS & Delay (s/veh)	
Two-Way Stop (TWSC) -	D /11 O\	D /12 1\				
2023	В (11.8)	B (13.1)	1	1	-	
TWSC (No Build) - 2028	B (12.3)	B (13.6)	-	1	-	
Roundabout - 2028	A (4.1)	A (4.1)	A (4.8)	A (4.0)	A (4.4)	
TWSC (No Build) - 2048	C (15.2)	C (16.3)	-	-	-	
Roundabout - 2048	A (4.7)	A (4.6)	A (5.4)	A (4.4)	A (5.0)	

Identification of Potential Countermeasures

Short-term crash countermeasures (signage improvements) have been implemented in the past. Long-term countermeasures could include:

- Left turn lane widening
- Constructing a roundabout
- Installing intersection lighting

Proposed Conditions Diagram

Proposed Countermeasure Evaluation

Signalization and Left Turn Lane Widening

SR 310 left turn lane widening would remove left-turning vehicles from through-traffic stream reducing crash frequency and improving ease of driver gap judgements. Traffic signalization would provide LED signal heads with reflectorized backplates (proven crash countermeasures) and RADAR vehicle detection. Traffic signal timing and/or phasing providing yellow and red clearance intervals per the latest NCHRP guidance will optimize traffic operations and safety while mitigating red light running. The proposed widening would require right-of-way acquisition and utility relocation.

A signalization and left turn lane widening alternative was not formally evaluated because the intersection does not meet traffic signal warrants and the benefit cost ratio for such improvements are not sufficient to justify the alternative's cost.

Roundabout

Converting the intersection to a roundabout would eliminate conflict points while also providing traffic capacity improvements. Roundabouts significantly reduce injury crash frequency and provide traffic capacity comparable to, if not better than, signalized intersections.

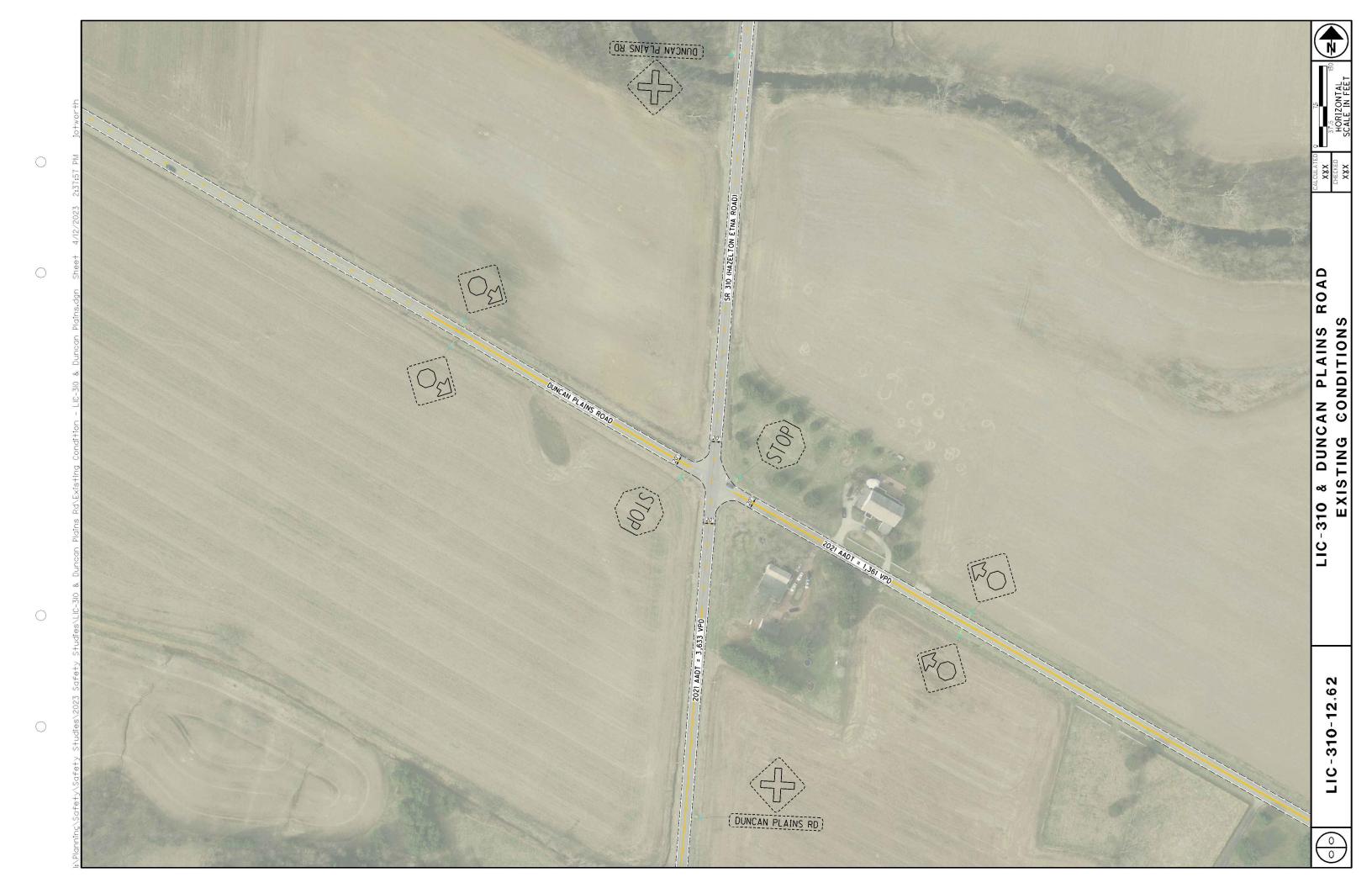
The Office of Roadway Engineering assisted with preliminary engineering for a roundabout alternative at the study intersection. During design, District 5 will evaluate design layout's which will mitigate MOT costs by relocating the intersection outside of the existing SR 310 footprint. But, at this time, the expected MOT alternatives are a full closure with detour *or* maintaining traffic via temporary pavement. While a MOT plan has not been evaluated or selected, district staff wish to include costs to cover the more expensive MOT alternative of maintaining traffic during construction. An additional \$500,000 is included in the project cost estimate beyond the Roadway Engineering \$30,000 MOT estimate (assumed to cover the cost of the full closure with detour). Note a larger inflation adjustment was also used due to the expected construction year having a 6 year horizon (2029) - not 2 years as shown in the Roadway Engineering construction estimate.

The roundabout alternative will require right-of-way acquisition and utility relocation. The estimated final construction cost (including right-of-way acquisition, utility relocation, design and construction) for the roundabout alternative is \$3,525,000. This alternative has a proposed expected crash frequency is 1.00 crashes per year with an expected decrease of 1.48 crashes per year. The net present value of safety benefits was found to be \$2,040,299 and with a safety benefit-cost ratio of 0.58.

Cost estimates are in **Appendix C**, ECAT safety analysis is in **Appendix D and** the proposed condition diagrams are in **Appendix E**.

Conclusions

From 2017 to 2021, 14 crashes occurred at the intersection including 10 angle crashes with 64% of all crashes resulting in injury. A safety performance analysis of the SR 310 & Duncan Plains Road intersection calculated expected crash frequency with existing site conditions as 2.48 crashes per year.


ODOT District 5 has chosen a modern roundabout as the preferred alternative. Converting the intersection to a roundabout would eliminate conflict points while also providing traffic capacity improvements. Roundabouts significantly reduce injury crash frequency and provide traffic capacity comparable to, if not better than, signalized intersections.

The roundabout alternative would require right-of-way acquisition and utility relocation. The proposed expected crash frequency is 1.00 crashes per year with an expected reduction of 1.48 crashes per year. The estimated final construction cost (including right-of-way acquisition, utility relocation, design and construction) for the roundabout alternative is \$3,525,000.

Implementation Plan

Design and other project development services for the preferred countermeasure alternative will need to be performed via consultant services. The estimated start of construction for the project is FY2029.

Appendix A: Existing Conditions Diagram

Appendix B: Crash Data & Crash Diagram

Crash Summary Sheet

Fatalities	0
Serious Injuries	2
Other Injuries	14

Crash Severity	Crashes	%
(2) Serious Injury Suspected	2	14.29%
(3) Minor Injury Suspected	3	21.43%
(4) Injury Possible	4	28.57%
(5) PDO/No Injury	5	35.71%
Grand Total	14	100.00%

Day of Week	Crashes	%
(1) Sunday	1	7.14%
(2) Monday	1	7.14%
(3) Tuesday	2	14.29%
(4) Wednesday	3	21.43%
(5) Thursday	2	14.29%
(6) Friday	3	21.43%
(7) Saturday	2	14.29%
Grand Total	14	100.00%

Hour of Day	Crashes	%
7	1	7.14%
8	3	21.43%
10	2	14.29%
11	1	7.14%
13	2	14.29%
15	2	14.29%
16	1	7.14%
18	1	7.14%
20	1	7.14%
Grand Total	14	100.00%

-	
Crashes Per Year	2.80
Fatal and All Injury Crashes	9
Percent Injury	64.3%
Equivalent PDO Index Value	9.49

Year	Crashes	%
2017	5	35.71%
2018	1	7.14%
2019	3	21.43%
2020	3	21.43%
2021	2	14.29%
Grand Total	14	100.00%

Crash Type	Crashes	%
Angle	10	71.43%
Fixed Object	2	14.29%
Right Turn	1	7.14%
Left Turn	1	7.14%
Grand Total	14	100.00%

Month	Crashes	%
1	3	21.43%
2	1	7.14%
4	1	7.14%
7	2	14.29%
8	1	7.14%
9	1	7.14%
10	1	7.14%
11	2	14.29%
12	2	14.29%
Grand Total	14	100.00%

Crash Summary Sheet

Weather Condition	Crashes	%
Clear	9	64.29%
Cloudy	4	28.57%
Rain	1	7.14%
Grand Total	14	100.00%

Road Condition	Crashes	%
Dry	13	92.86%
Wet	1	7.14%
Grand Total	14	100.00%

Light Condition	Crashes	%
Daylight	11	78.57%
Dark - Roadway Not Lighted	2	14.29%
Dawn/Dusk	1	7.14%
Grand Total	14	100.00%

Number of Units	Crashes	%
2	10	71.43%
1	3	21.43%
3	1	7.14%
Grand Total	14	100.00%

ODOT Location	Crashes	%
Four-Way Intersection	14	100.00%
Grand Total	14	100.00%

Work Zone Related	Crashes	%
No	14	100.00%
Grand Total	14	100.00%

Alcohol Related	Crashes	%
No	14	100.00%
Grand Total	14	100.00%

Drug Related (Inc. Marijuana)	Crashes	%
No	14	100.00%
Grand Total	14	100.00%

Marijuana Related	Crashes	%
No	14	100.00%
Grand Total	14	100.00%

Older Driver (65+)

Roadway Departure	Crashes	%
No	11	78.57%
Yes	3	21.43%
Grand Total	14	100.00%

Grand Total

% 28.57%

10 71.43% 14 100.00%

Contour Straight Grade Straight Level

Intersection Related	Crashes	%
Yes	13	92.86%
No	1	7.14%
Grand Total	14	100.00%

Speed Related	Crashes	%
No	13	92.86%
Yes	1	7.14%
Grand Total	14	100.00%

No	9	64.29%
Yes	5	35.71%
Grand Total	14	100.00%
Young Driver (15-25)	Crashes	%
Young Driver (15-25) No	Crashes 10	% 71.43%

Crashes %

Motorcycle Involved	Crashes	%
No	14	100.00%
Grand Total	14	100.00%

Crash Summary Sheet Unit 1 Summary

Unit 1 Pre-Crash Action	Crashes	%
Straight Ahead	9	64.29%
Making Left Turn	2	14.29%
Other / Unknown	1	7.14%
Entering Traffic Lane	1	7.14%
Making Right Turn	1	7.14%
Grand Total	14	100.00%

Unit 1 Contributing Factor	Crashes	%
Failure to Yield	9	64.29%
Ran Stop Sign	2	14.29%
Improper Turn	1	7.14%
Drove off Road	1	7.14%
Improper Lane Change	1	7.14%
Grand Total	14	100.00%

Unit 1 Object Struck	Crashes	%
Ditch	5	35.71%
Nothing Struck	5	35.71%
Fence	2	14.29%
Tree	1	7.14%
Embankment	1	7.14%
Grand Total	14	100.00%

Unit 1 Traffic Control	Crashes	%
Stop Sign	8	57.14%
No Control	6	42.86%
Grand Total	14	100.00%

Unit 1 Posted Speed	Crashes	%
55	14	100.00%
Grand Total	14	100.00%

Unit 1 Direction From	Crashes	%
East	4	28.57%
South	3	21.43%
West	3	21.43%
Northwest	2	14.29%
North	1	7.14%
Southeast	1	7.14%
Grand Total	14	100.00%

Unit 1 Direction To	Crashes	%
West	7	50.00%
East	3	21.43%
Southeast	2	14.29%
North	1	7.14%
Northwest	1	7.14%
Grand Total	14	100.00%

Crash Summary Sheet Unit 1 Summary

Unit 1 Type	Crashes	%
Passenger Car	6	42.86%
Sport Utility Vehicle	4	28.57%
Pick up	3	21.43%
Passenger Van (minivan)	1	7.14%
Grand Total	14	100.00%

Unit 1 Special Function	Crashes	%
None	14	100.00%
Grand Total	14	100.00%

Crash Summary Sheet

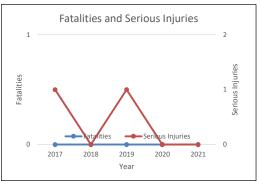
Unit 2 Summary

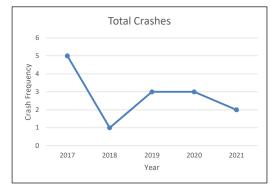
Unit 2 Pre-Crash Action	Crashes	%
Straight Ahead	11	78.57%
	3	21.43%
Grand Total	14	100.00%

Unit 2 Contributing Factor	Crashes	%
None	11	78.57%
	3	21.43%
Grand Total	14	100.00%

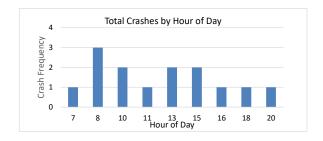
Unit 2 Direction From	Crashes	%
	3	21.43%
North	5	35.71%
South	6	42.86%
Grand Total	14	100.00%

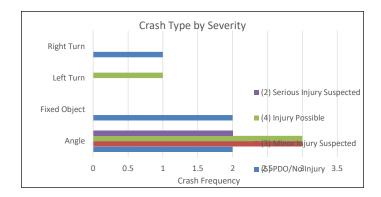
Unit 2 Direction To	Crashes	%
	3	21.43%
North	6	42.86%
South	5	35.71%
Grand Total	14	100.00%


Unit 2 Type	Crashes	%
Pick up	3	21.43%
Sport Utility Vehicle	3	21.43%
Passenger Car	3	21.43%
	3	21.43%
Semi-Tractor	1	7.14%
Passenger Van (minivan)	1	7.14%
Grand Total	14	100.00%


Unit 2 Special Function	Crashes	%
None	11	78.57%
	3	21.43%
Grand Total	14	100.00%

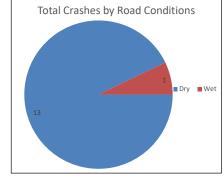
Crash Summary Sheet




Year	Total Crashes	Fatalities	Serious Injuries
2017	5	0	1
2018	1	0	0
2019	3	0	1
2020	3	0	0
2021	2	0	0
Grand Total	14	0	2

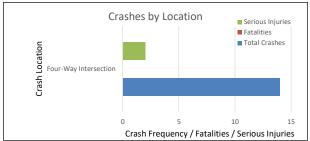
Total Crashes Crash Type	Injury Level (2) Serious Inju	(3) Minor Injury	(4) Injury Possi	(5) PDO/No Ini	Grand Total
Angle	2	3	3	2	10
Fixed Object	0	0	0	2	2
Right Turn	0	0	0	1	1
Left Turn	0	0	1	0	1
Grand Total	2	3	4	5	14

Crash Summary Sheet

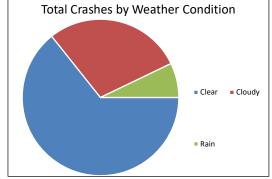

Crashes Per Year 2.80 Percent Injury 64.3% EPDO 9.49

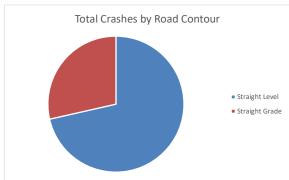
Road Condition	Total Crashes	Fatalities	Serious Injuries
Dry	13	0	2
Wet	1	0	0
Grand Total	14	0	2

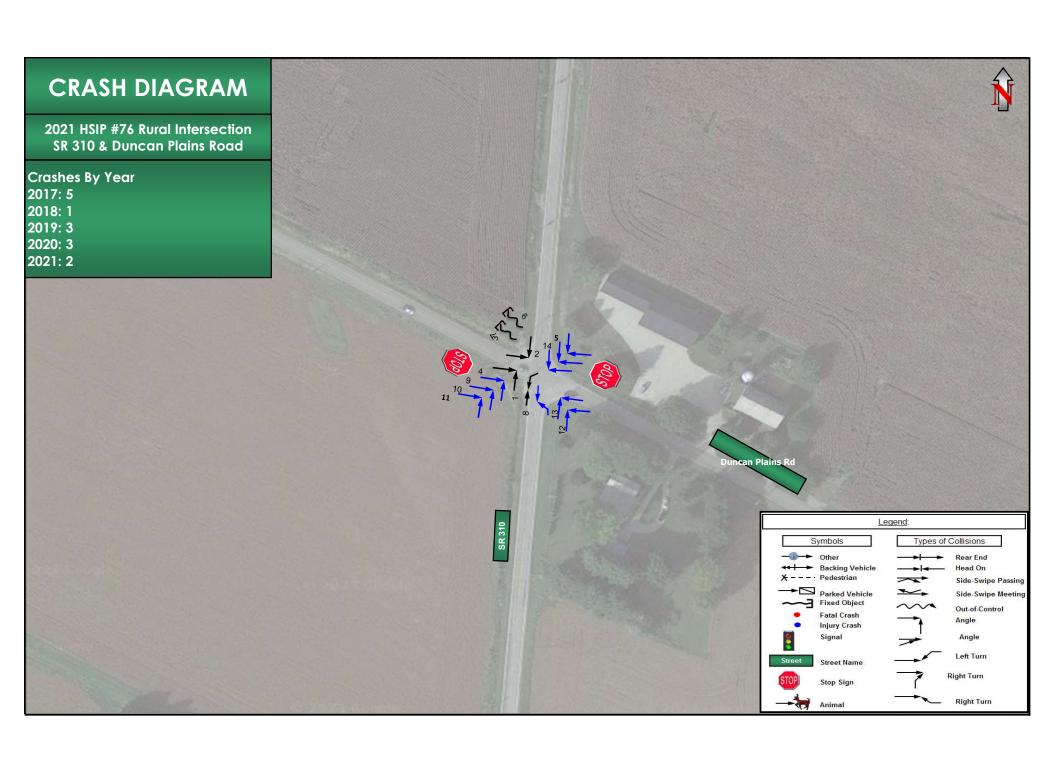
Hour of Day	Total Crashes
7	1
8	3
10	2
11	
13	2 2
15	2
16	1
18	1
20	1
Grand Total	14


Month	Total Crashes
January	3
February	1
April	1
July	2
August	1
September	1
October	1
November	2
December	2
Grand Total	14

Weather	Total Crashes	Fatalities	Serious Injuries
Clear	9	0	1
Cloudy	4	0	1
Rain	1	0	0
Grand Total	14	0	2







Roadway Contour	Total Crashes	Fatalities	Serious Injuries
Straight Level	10	() 1
Straight Grade	4	(1
Grand Total	14		2

Appendix C: Cost Estimate

Preliminary Construction Estimate LIC-310 at Duncan Plains Rd - Roundabout Non-Reinforced Concrete Pavement Sq. Yds. \$86.65 \$34,573 1 Asphalt Surface Cu. Yds. 41 \$383.75 \$15,734 Cu. Yds. Asphalt Intermediate 58 \$395.42 \$22,934 2 Asphalt Base Roadway Pavement Cu. Yds. 198 \$298.68 \$59,139 Aggregate Base Cu. Yds. 198 \$94.00 \$18,612 Planing Sq. Yds. \$0.00 3 \$0 Sq. Yds. 4 Stabilization \$0.00 \$0 5 Excavation Cu. Yds. 5,051 \$20.38 \$102,939 Earthwork 6 Cu. Yds. 3,970 \$14.96 \$59,391 Embankment 7 Curb and Gutter, Type 4 Ft. 1,978 \$50.30 \$99,493 Curb, Type 6 Ft. 143 \$67.06 \$9,590 9 Curb and Gutter, Type 9 Ft. 267 \$35.22 \$9,404 10 Curb, Type 10 Ft. 1,926 \$28.00 \$53,928 Concrete Median Sq. Yds. 646 \$96.63 \$62,423 SUBTOTAL \$548,160 12 Erosion Control ≈ 1% Construction Cost \$15,000 13 Drainage See Quantities Sheet \$419,075 14 Traffic Control See Quantities Sheet \$25,000 Rural ≈ 2% Construction Cost \$30,000 Maintenance of Traffic Lighting \$100/FT (\$85,000/RAB) \$85,000 17 Incidentals See Quantities Sheet \$51,000 18 Utilities (No longer included in PE) \$0 19 Misc. \$0 SUBTOTAL \$625,075 **TOTAL ROADWAY COSTS** \$1,173,235 \$293,000 20 Contingency % of Items 1-19 25.0% 21 Inflation (Assuming 2 years) 6.0% \$87,974 **TOTAL CONSTRUCTION COST** \$1,554,210

Date: August 02, 2023

calculator? Click here.
Today's Date: August 18, 2023
atter Construction Mid-Point Date: annot exceed 08/18/2048) am/dd/yyyy) 7/29/2029 Instruction Mid-Point Date:
ite: 71 Months
flated Dollar Amount:
\$2,502,033.28

Otworth, Joshua

From: Wooldridge, John

Sent:Friday, August 18, 2023 4:14 PMTo:Otworth, Joshua; Schmelzer, EdwardSubject:RE: LIC-310 at Duncan Plains Roundabout

Hi Josh,

Looks like additional:

ALT – Circular Offset Roundabout Option:

- \$115,000.00 R/W Acquisition
- \$60,000.00 R/W Services
- \$250,000.00 R/W Utilities

Total R/W: \$425,000.00 for R/W

Thanks.

Respectfully,

John R. Wooldridge

Real Estate Administrator
ODOT District 5
9600 Jacksontown Road, Jacksontown, OH 43030
740.323.5427
transportation.ohio.gov

From: Otworth, Joshua < Joshua. Otworth@dot.ohio.gov>

Sent: Friday, August 18, 2023 3:17 PM

To: Schmelzer, Edward <Ed.Schmelzer@dot.ohio.gov>
Cc: Wooldridge, John <John.Wooldridge@dot.ohio.gov>
Subject: RE: LIC-310 at Duncan Plains Roundabout

Ed,

Are you saying \$250,000 for utilities only or \$250,000 for the R/W & Utilities total (\$75,000 for utilities)?

Thanks,

Josh Otworth, PE

740.323.5274

From: Schmelzer, Edward < Ed. Schmelzer@dot.ohio.gov >

Sent: Monday, August 14, 2023 12:41 PM

To: Otworth, Joshua <<u>Joshua.Otworth@dot.ohio.gov</u>>; Wooldridge, John <<u>John.Wooldridge@dot.ohio.gov</u>>; Cc: Deitrich, William <<u>William.Deitrich@dot.ohio.gov</u>>; Thompson, Tyrell <<u>Ty.Thompson@dot.ohio.gov</u>>; Morgan,

Douglas < Doug. Morgan@dot.ohio.gov >

Subject: RE: LIC-310 at Duncan Plains Roundabout

Josh,

It appears that all the existing utilities are in road right of way. I think we should estimate \$250,000 in case there is something we are not seeing at this time.

Thanks,

Ed Schmelzer

Utility Relocation Coordinator
ODOT District 5
9600 Jacksontown Road, Jacksontown, Ohio 43030
740-323-5126
740-503-0534
transportation.ohio.gov

From: Otworth, Joshua < Joshua. Otworth@dot.ohio.gov >

Sent: Monday, August 7, 2023 11:15 AM

To: Wooldridge, John < <u>John.Wooldridge@dot.ohio.gov</u>>; Schmelzer, Edward < <u>Ed.Schmelzer@dot.ohio.gov</u>> **Cc:** Deitrich, William < <u>William.Deitrich@dot.ohio.gov</u>>; Thompson, Tyrell < <u>Ty.Thompson@dot.ohio.gov</u>>; Morgan,

Douglas < Doug. Morgan@dot.ohio.gov >

Subject: FW: LIC-310 at Duncan Plains Roundabout

JR & Ed,

I have the RABT exhibit for LIC-310 & Duncan Plains Road for the previously mentioned safety study. Please provide the R/W acquisition and utility relocation cost estimates per usual. Reach out with questions.

Thanks,

Josh Otworth, PE

740.323.5274

From: Thompson, Tyrell < Ty. Thompson@dot.ohio.gov >

Sent: Thursday, August 3, 2023 6:43 AM

To: Alford, Jennifer < Jennifer. Alford@dot.ohio.gov>; Otworth, Joshua < Joshua. Otworth@dot.ohio.gov>; Morgan,

Douglas < Doug. Morgan@dot.ohio.gov>

Cc: Koenig, Adam <Adam.Koenig@dot.ohio.gov>; Yount, Christopher <Chris.Yount@dot.ohio.gov>

Subject: RE: LIC-310 at Duncan Plains Roundabout

Jennifer/Chris/Adam – thanks for the assistance on this intersection, it is greatly appreciated!

Josh – when you have a chance, let's review this application (and the other applications) prior to submittal.

Ty Thompson, P.E.

(p) 740.323.5194

transportation.ohio.gov

From: Alford, Jennifer < Jennifer. Alford@dot.ohio.gov>

Sent: Wednesday, August 2, 2023 2:59 PM

To: Otworth, Joshua <<u>Joshua.Otworth@dot.ohio.gov</u>>; Thompson, Tyrell <<u>Ty.Thompson@dot.ohio.gov</u>>; Morgan,

Douglas < Doug. Morgan@dot.ohio.gov>

Cc: Koenig, Adam Adam Mailto:Koenig@dot.ohio.gov

Subject: LIC-310 at Duncan Plains Roundabout

Citrix Attachments	Expires September 1, 2023
LIC-310 at Duncan Plains RDBT Estimate.pdf	82.7 KB
LIC-310 at Duncan Plains_BP005-layoutpdf	2.3 MB
Download Attachments	
Jennifer Alford uses Citrix Files to share documents secure	ely.

Guys,

Attached is the preliminary layout and cost estimate for the roundabout at the intersection of SR 310 & Duncan Plains Rd. The files are also available on ProjectWise in the folder: <u>LIC-310 at Duncan Plains</u>

Please note that the estimate does not include any r/w or utility work needed as part of the project. Let me know if you have any questions or would like further refinements.

Thanks, Jen

Jennifer M. Alford, PE, PTOE

transportation.ohio.gov

Roadway Section Head Traffic Studies Engineer (Districts 1 and 2) ODOT Office of Roadway Engineering 1980 W. Broad Street, Columbus, Ohio 43223 614.387.2389

Appendix D: ECAT Analysis

Otworth, Joshua

From: Bogard, Brenton

Sent: Tuesday, February 21, 2023 1:31 PM

To: Otworth, Joshua

Cc: Griffith, Caraline; Janek, Drew

Subject: RE: LIC-310 & Duncan Plains Rd ECAT Sanity Check

Hi Josh - I think the results make sense.

Of the crash severities that factor into the B/C ratio (KA, B, C), B & C crashes account for 79% of the reduction in crashes, with A crashes accounting for the other 21%. The crash cost for B & C severities is much lower than KA. This may explain why the safety benefits seem low.

	Reduction in (Crashes	Costs per Crash		
KA	(0.1768)	21%	\$460,098		
В	(0.4062)	49 %	\$66,621		
C	(0.2522)	30%	\$45,156		

Overall, I think the safety benefits are pretty good. I wouldn't get too hung up on the low-ish B/C. The average B/C of approved roundabouts last round was 0.72. I threw this into our roundabout analysis sheet from last Fall's formal app review and this roundabout would have ranked in the middle of the pack of the roundabouts that were approved... so I think this one would be a competitive location.

Let me know if you'd like to discuss further, thanks!

Brenton Bogard, PE

Highway Safety Program - Safety Engineer ODOT Office of Transportation and Economic Development 1980 W. Broad Street, Columbus, OH 43223 614.752.5575 transportation.ohio.gov

From: Otworth, Joshua < Joshua. Otworth@dot.ohio.gov>

Sent: Tuesday, February 21, 2023 10:23 AM

To: Bogard, Brenton <Brenton.Bogard@dot.ohio.gov>; Griffith, Caraline <Caraline.Griffith@dot.ohio.gov>; Janek, Drew <Drew.Janek@dot.ohio.gov>

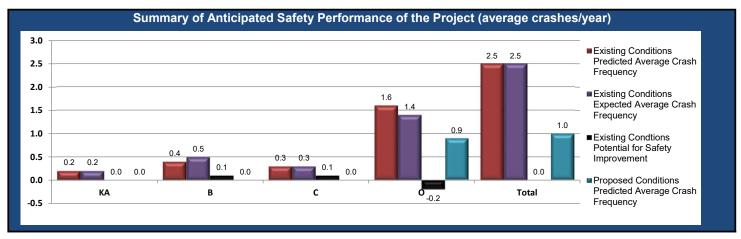
Subject: LIC-310 & Duncan Plains Rd ECAT Sanity Check

FOS,

With the number of injury angle crashes at the subject intersection, I expected the calculated safety benefits (\$1.9M) to be higher for a roundabout alternative.

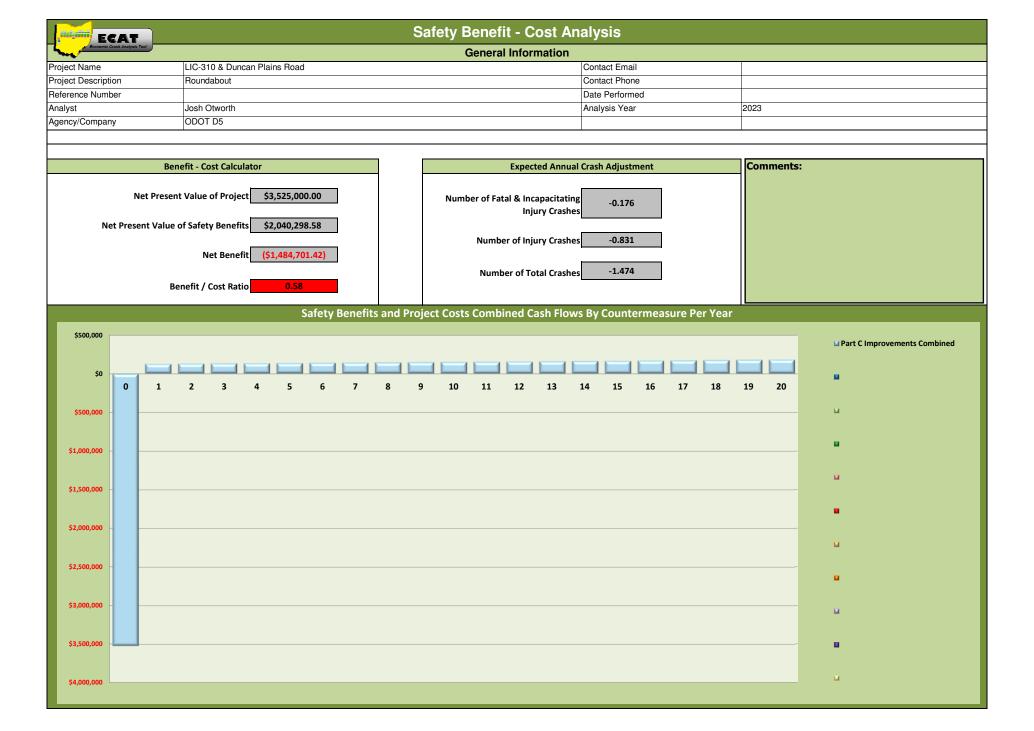
I'm humbly requesting an ECAT sanity check review be conducted with the attached data (no other district staff are trained on the ECAT). FYI This is one of our 2023 sign-off studies so there is no rush.

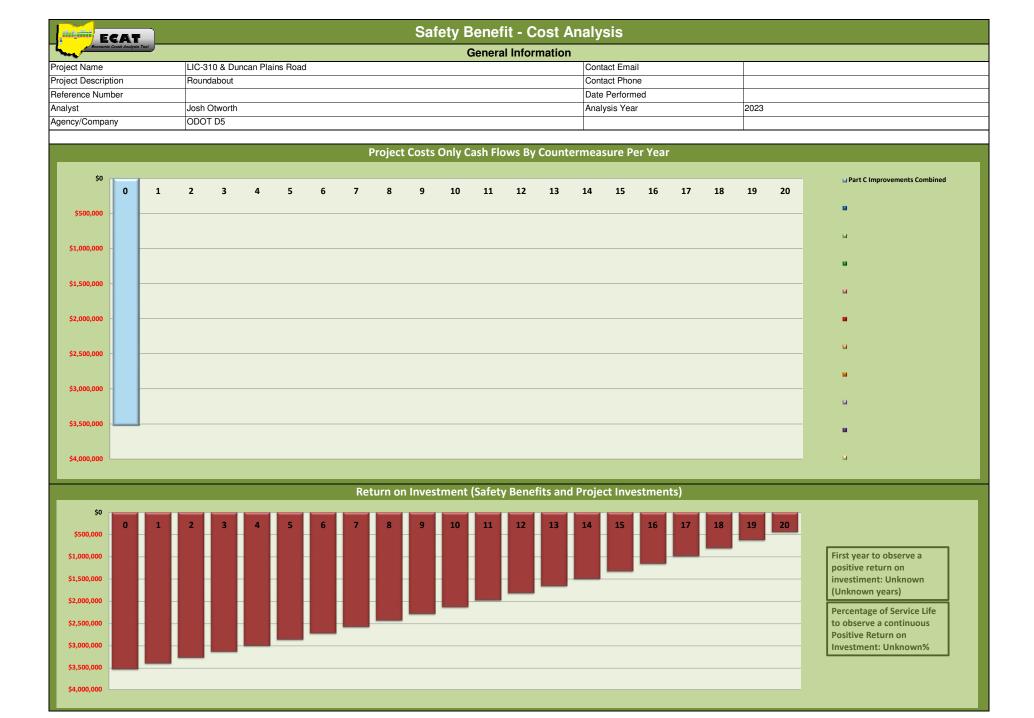
Thank you,


Joshua Otworth, PE

Traffic & Safety Engineer
ODOT District 5 Capital Programs
9600 Jacksontown Road, Jacksontown, Ohio 43030
740.323.5274

transportation.ohio.gov


ECAT	Project Safety Performance Report					
Economic Crash Analysis Tool	General Information					
Project Name	LIC-310 & Duncan Plains Road	Contact Email				
Project Description	Roundabout	Contact Phone				
Reference Number		Date Performed				
Analyst	Josh Otworth	Analysis Year	2023			
Agency/Company	ODOT D5					



Project Summary Results (Without Animal Crashes)								
	KA	В	С	0	Total			
N _{predicted} - Existing Conditions	0.1804	0.4372	0.2909	1.5643	2.4728			
N _{expected} - Existing Conditions	0.2118	0.5140	0.3420	1.4102	2.4780			
N _{potential for improvement} - Existing Conditions	0.0314	0.0768	0.0511	-0.1541	0.0052			
N _{expected} - Proposed Conditions	0.0040	0.0329	0.0407	0.9211	0.9987			

ECAT		S	Safety Benef	it - Cost An	alysis					
Economic Crash Analysis Tool			Genera	I Information						
Project Name	LIC-310 & Duncan Plains Road				Contact Email					
Project Description	Roundabout		Contact Phone							
Reference Number			Date Performed							
Analyst	Josh Otworth				Analysis Year		2023			
Agency/Company	ODOT D5									
Select Site Types to be	used in Benefit-Cost Analysis:	Comm	ents:							
All Sites										
Countermeasure Service Lives, Costs, and Safety Benefits										
	Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits	
Roundabout		20	\$3,525,000.00			\$3,525,000.00	\$3,525,000.00			
			\$0.00			\$0.00	\$0.00		\$2,040,299	
			\$0.00			\$0.00	\$0.00	-1.474		
			\$0.00			\$0.00	\$0.00			
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
			\$0.00			\$0.00	\$0.00	0.000	\$0	
	Totals	,	\$3,525,000.00	\$0.00	\$0.00	\$3,525,000.00	\$3,525,000.00	-1.474	\$2,040,299	

Appendix E: Proposed Conditions Diagram

Appendix F: Other Traffic Analysis

Otworth, Joshua

From: Hwashik Jang <hjang@morpc.org>
Sent: Thursday, May 25, 2023 4:54 PM

To: Otworth, Joshua

Cc: Thompson, Tyrell; Nick Gill

Subject: RE: Growth Rates - LIC-310/Duncan Plains Rd & LIC-37/SR 310

Joshua,

We have completed processing growth rates for your traffic study.

Please use linear annual growth rates as summarized below.

Location	Linear Annual Growth Rate
SR 310 e/o SR 37	3.90%
SR 37 n/o SR 310	1.20%
SR 310 w/o SR 37	1.60%
SR 37 s/o SR 310	1.80%
Duncan Plains Rd e/o SR 310	2.80%
SR 310 n/o Duncan Plains Rd	1.60%
Duncan Plains Rd w/o SR 310	2.70%
SR 310 s/o Duncan Plains Rd	1.20%

Note: The rates provided should only be used for short term growth projections. Although, the planning level model runs used to calculate the rates includes the first phase of Intel area development (that expected to be open in 2025), it does not yet incorporate changes that the townships and local communities have made over the past year (or in process of making) to their visions for their jurisdiction's growth. Thus, applying these growth rates to develop 2047 design traffic will under state the future volumes. MORPC, along with LCATS are working to incorporate these into the development our official forecasts. These should be completed within the next 4-6 weeks to better inform long range traffic projections for this area of the region.

If you have any questions, please let me know.

Thanks,

HWASHIK JANG

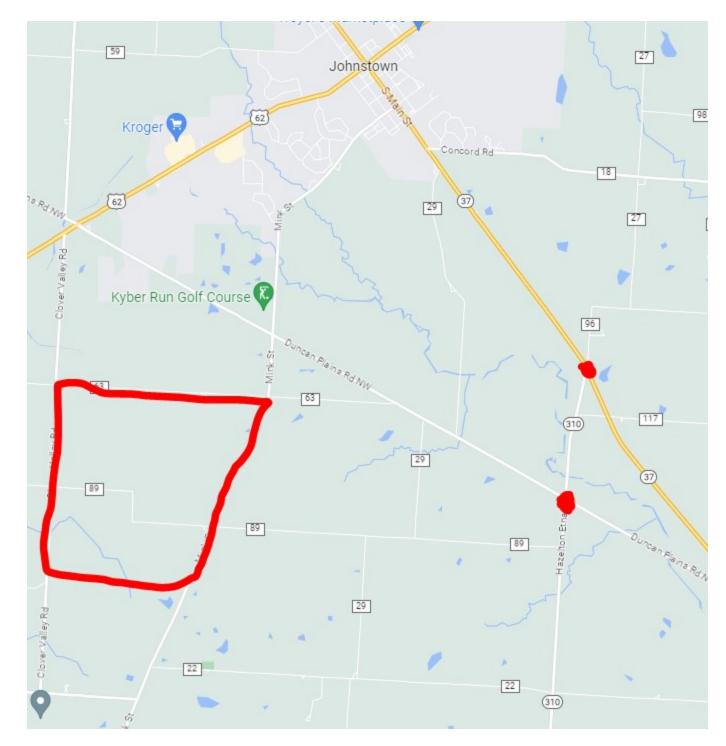
Senior Planner | Mid-Ohio Regional Planning Commission T: 614.233.4145 | hjang@morpc.org 111 Liberty Street, Suite 100 | Columbus, OH 43215

From: Joshua.Otworth@dot.ohio.gov < Joshua.Otworth@dot.ohio.gov >

Sent: Wednesday, May 10, 2023 12:52 PM

To: Nick Gill <NGILL@morpc.org>; Hwashik Jang <hjang@morpc.org>

Cc: Thompson, Tyrell <ty.thompson@dot.ohio.gov>


Subject: Growth Rates - LIC-310/Duncan Plains Rd & LIC-37/SR 310

Caution: This email originated from outside the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe. When in doubt, contact the IT team

Nick,

We are working on safety studies (and some preliminary engineering) at the intersections of SR 310/Duncan Plains Rd (CR 33) and SR 37/SR 310 in Licking County near the Intel site. Due to the anticipated development in this area, we are requesting growth rates for this intersection to project existing turning movement counts to opening year 2027 and design year 2047. You may recall you provided similar rates for a safety study last year for the nearby intersection of Duncan Plains Rd./ Mink St.

I have attached turning movement counts for the both locations. Reach out with questions.

Thanks,

Joshua Otworth, PE

Traffic & Safety Engineer
ODOT District 5 Capital Programs
9600 Jacksontown Road, Jacksontown, Ohio 43030
740.323.5274
transportation.ohio.gov

STUDY AND ANALYSIS INFORMATION Municipality: Traffic Volumes Obtained By: STS County: Licking **Analysis Date:** 5/26/2023 **ODOT Engineering** Agency/ Company Name Performing 5 ODOT D5 **District: Warrant Analysis:** o.gl/maps/3aLjEYov1 Google map link: **Analysis Information Data Collection Date:** 4/18/2023 Day of the Week: Tuesday Is the intersection in a built-up area of an isolated community of <10,000 No population? **Existing Traffic Signal at intersection:** No **Total Number of Approaches at Intersection: Major Street Information** Major Street Name and Route Number: SR 310 (Hazelton Etna Road) N-Bound **Major Street Approach Direction:** S-Bound Number of Thru Lanes on Each Major Street Approach: LANE(S) Speed Limit or 85th Percentile Speed on the Major Street*: 55 MPH *Unknown assumes below 45 mph **Minor Street Information** Minor Street Name and Route Number: Duncan Plains Road E-Bound Minor Street Approach Configuration: W-Bound Number of Thru Lanes on Each Minor Street Approach: LANE(S) Apply Right Turn Lane Reduction*: Yes *Right Turn Lane Reduction Shall be used for Warrants 1, 2, & 3 for New

Aright Turn Lane Reduction Shall be used for Warrants 1, 2, & 3 for New ODOT Signals. Please refer to TEM 402-3.2 for clarification and criteria under which Right Turn Reduction is not required.

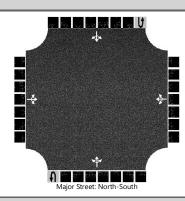
TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS

Warrant

	Applicable?	Satisfied?	Notes and Comments:
Warrant 1, Eight-Hour Vehicular Volume	Yes	No	
Warrant 2, Four-Hour Vehicular Volume	Yes	No	
Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. Peak Hour 3:30 PM 4:30 PM
For Warrants 1-3, new	ODOT signal	s must be bas	sed off of 100% volume thresholds (TEM 402-3.2)
Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD. Peak Hour 3:30 PM 4:30 PM
Warrant 5, School Crossing	No		N/A
Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)
Warrant 7, Crash Experience	Yes	No	If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.
Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)
Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9
Multi-Way Stop Warrant	Yes	Yes	May be used as an interim measure if traffic signal warrants are satisfied.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

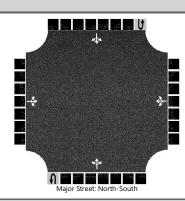
If no warrants are satisfied, additional options may be considered:


- 1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.
- 2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The **Modeling and Forecasting Section** should provide the projected traffic volumes.
- 3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C.05 and/or 4C.06 but a decision is made to not install a traffic control signal. Please fill inputs on PHB Score Sheet and submit to ODOT.

Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at **100 percent** local cost. Please review TEM 402-4 for details.

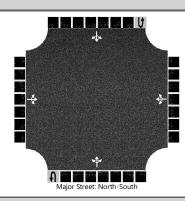
	Conclusion: Do Not Install New Traffic Signal	
Notes:		

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	Josh Otworth	Intersection	SR 310 & Duncan Plains Road
Agency/Co.	ODOT D5	Jurisdiction	
Date Performed	8/18/2023	East/West Street	Duncan Plains Road
Analysis Year	2023	North/South Street	SR 310
Time Analyzed	2023 PM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			


Lanes

Vehicle Volumes and Adj	ustme	nts																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)		18	33	50		6	22	0		51	183	17		0	103	6		
Percent Heavy Vehicles (%)		11	6	2		1	9	0		2				7				
Proportion Time Blocked																		
Percent Grade (%)		0 0																
Right Turn Channelized																		
Median Type Storage	Type Storage Undivided																	
Critical and Follow-up Ho	eadwa	ys																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1				
Critical Headway (sec)		7.21	6.56	6.22		7.11	6.59	6.20		4.12				4.17				
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
Follow-Up Headway (sec)		3.60	4.05	3.32		3.51	4.08	3.30		2.22				2.26				
Delay, Queue Length, and	d Leve	l of S	ervice															
Flow Rate, v (veh/h)			107				30			54				0				
Capacity, c (veh/h)			635				473			1473				1328				
v/c Ratio			0.17				0.06			0.04				0.00				
95% Queue Length, Q ₉₅ (veh)			0.6				0.2			0.1				0.0				
Control Delay (s/veh)			11.8				13.1			7.5	0.3	0.3		7.7	0.0	0.0		
Level of Service (LOS)			В				В			А	А	Α		А	А	А		
Approach Delay (s/veh)		1	1.8			13	3.1			1	.8		0.0					
Approach LOS			В				В			,	4			,	4			

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	Josh Otworth	Intersection	SR 310 & Duncan Plains Road
Agency/Co.	ODOT D5	Jurisdiction	
Date Performed	8/18/2023	East/West Street	Duncan Plains Road
Analysis Year	2023	North/South Street	SR 310
Time Analyzed	2028 PM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			


Lanes

Vehicle Volumes and Adj	ustme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		20	37	57		7	25	0		54	194	18		0	111	6	
Percent Heavy Vehicles (%)		11	6	2		1	9	0		2				7			
Proportion Time Blocked																	
Percent Grade (%)		0 0															
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.21	6.56	6.22		7.11	6.59	6.20		4.12				4.17			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.60	4.05	3.32		3.51	4.08	3.30		2.22				2.26			
Delay, Queue Length, and	d Leve	l of S	ervice														
Flow Rate, v (veh/h)			121				34			57				0			
Capacity, c (veh/h)			616				450			1462				1314			
v/c Ratio			0.20				0.08			0.04				0.00			
95% Queue Length, Q ₉₅ (veh)			0.7				0.2			0.1				0.0			
Control Delay (s/veh)			12.3				13.6			7.6	0.3	0.3		7.7	0.0	0.0	
Level of Service (LOS)			В				В			А	Α	А		А	А	А	
Approach Delay (s/veh)		12	2.3			13	3.6			1	.8		0.0				
Approach LOS			В				В			,	4				4		

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	Josh Otworth	Intersection	SR 310 & Duncan Plains Road
Agency/Co.	ODOT D5	Jurisdiction	
Date Performed	8/18/2023	East/West Street	Duncan Plains Road
Analysis Year	2023	North/South Street	SR 310
Time Analyzed	2048 PM Peak	Peak Hour Factor	0.94
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Adj	ustme	nts																		
Approach		Eastb	ound			Westl	oound			North	bound			South	bound					
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R				
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6				
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0				
Configuration			LTR				LTR				LTR				LTR					
Volume (veh/h)		30	55	84		10	37	0		66	238	22		0	144	8				
Percent Heavy Vehicles (%)		11	6	2		1	9	0		2				7						
Proportion Time Blocked																				
Percent Grade (%)		0 0																		
Right Turn Channelized																				
Median Type Storage	Undivided																			
Critical and Follow-up Ho	eadwa	ys																		
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1						
Critical Headway (sec)		7.21	6.56	6.22		7.11	6.59	6.20		4.12				4.17						
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2						
Follow-Up Headway (sec)		3.60	4.05	3.32		3.51	4.08	3.30		2.22				2.26						
Delay, Queue Length, and	d Leve	l of S	ervice																	
Flow Rate, v (veh/h)			180				50			70				0						
Capacity, c (veh/h)			531				368			1417				1258						
v/c Ratio			0.34				0.14			0.05				0.00						
95% Queue Length, Q ₉₅ (veh)			1.5				0.5			0.2				0.0						
Control Delay (s/veh)			15.2				16.3			7.7	0.5	0.5		7.9	0.0	0.0				
Level of Service (LOS)			С				С			А	А	А		А	А	А				
Approach Delay (s/veh)		1!	5.2	-		16	5.3	•		1	.9		0.0							
Approach LOS			С			(C			,	4			,	A					

				Н	CS Ro	uno	daboı	uts	Rep	ort										
General Information							Sit	e In	forr	natio	n									
Analyst	Josh C	tworth				B	*	I		Inters	section			SI	R 310 &	Dun	can Pla	ins Road		
Agency or Co.	ODOT	D5					+			E/W :	E/W Street Name				uncan F	Plains	Road			
Date Performed	8/18/2	2023					N	Y	1	N/S S	N/S Street Name				SR 310					
Analysis Year	2023				t (WHE) 1						Analysis Time Period, hrs				0.25					
Time Analyzed	2028 1	PM Peak	(Pe						Peak Hour Factor				0.94					
Project Description					Juris						Jurisdiction									
Volume Adjustments	and S	ite Cł	narac	cterist	cs															
Approach	Т	E	В		Т		WB			П	N	В		Т		SI	3			
Movement	U	L	Т	R	U	L	L T		R	U	L	Т	R	ı	J	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	C) 1	Т	0	0	0	1	0	(0	0	1	0		
Lane Assignment				LTR				LTR				Ľ	TR .				ı	LTR		
Volume (V), veh/h	0	20	37	57	0	7	7 25	5	0	0	54	194	18	(0	0	111	6		
Percent Heavy Vehicles, %	3	11	6	2	3	1	1 9		1	3	1	3	1	3	3	1	8	1		
Flow Rate (VPCE), pc/h	0	24	42	62	0	8	3 29	,	0	0	58	213	19	(0	0	128	6		
Right-Turn Bypass		No	one				None				No	ne				No	ne			
Conflicting Lanes		1						1	т	1										
Pedestrians Crossing, p/h		0					0		0					0						
Proportion of CAVs 0																				
Critical and Follow-U	p Head	dway	Adj	ustme	nt															
Approach	Т	E	В		Т		WB				N	В		Т		SI	3			
Lane	Left	Ri	ght	Bypass	Left Right		Right	Вур	oass	Left Ri		Right By		1	Left	Right		Bypass		
Critical Headway, s		4.9	763			\top	4.9763				4.9763			Т		4.97	763			
Follow-Up Headway, s		2.6	087		2.6087						2.6087			2.6087						
Flow Computations,	Capaci	ty an	d v/	c Ratio	s															
Approach	Т	E	В		Т		WB				N	В		Т		SI	3			
Lane	Left	Ri	ght	Bypass	Lef	t	Right	Вур	oass	Left	Rig	jht	Bypass		Left	Rig	ht	Bypass		
Entry Flow (v _e), pc/h		1.	28				37				29	90				13	4			
Entry Volume, veh/h		1.	22				35				28	33				12	4			
Circulating Flow (v _c), pc/h		1.	36				295				6	6				9!	5			
Exiting Flow (vex), pc/h		6	51				93				23	37				19	8			
Capacity (c _{pce}), pc/h		12	201				1021				12	90				12!	53			
Capacity (c), veh/h		11	145				953				12	59				116	63			
v/c Ratio (x)		0.	.11				0.04				0.2	22		Т		0.1	1			
Delay and Level of Se	ervice																			
Approach				EB		П		WE	В			NB					SB			
Lane			Left	Righ	it Вур	ass	Left	Rigl	ht	Bypass	Left	Righ	т Вур	ypass Left Right		light	Bypass			
Lane Control Delay (d), s/veh				4.1				4.1	1			4.8					4.0			
Lane LOS				А				Α				А					Α			
95% Queue, veh	% Queue, veh			0.4				0.1	1			0.9					0.4			
Approach Delay, s/veh LOS 4.1				A 4.1 A				A 4.8 A					4.0 A							
Intersection Delay, s/veh LOS			4.4	4				A												
opyright @ 2022 University of I	-1 ' 1 A 1	I D' I .	_			1665	M Dounds	1 .		. 2022				_		0 (4 0 (0000 4	·20·40 DN		

				НС	:S Rou	ındal	bou	ts Re	port										
General Information							Site	Infor	matio	n									
Analyst	Josh C	tworth				*			Inter	section			SR 3	10 & D	uncan Pl	ains Road			
Agency or Co.	ODOT	D5				•	_ `		E/W	E/W Street Name					ins Road				
Date Performed	8/18/2	2023						1 7	N/S	N/S Street Name					SR 310				
Analysis Year	2023				!	W ÷) † >	Anal	Analysis Time Period, hrs					0.25				
Time Analyzed	2048 F	PM Peak	(*				Peak	Peak Hour Factor					0.94				
Project Description							• •		Juris	diction									
Volume Adjustments	and S	ite Ch	narac	teristic	cs														
Approach		E	B			W	/B		T	N	В				SB				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0			
Lane Assignment				LTR				LTR			Ľ	ΓR				LTR			
Volume (V), veh/h	0	30	55	84	0	10	37	0	0	66	238	22	0	0	144	8			
Percent Heavy Vehicles, %	3	11	6	2	3	1	9	1	3	1	3	1	3	1	8	1			
Flow Rate (VPCE), pc/h	0	35	62	91	0	11	43	0	0	71	261	24	0	0	165	9			
Right-Turn Bypass		No	ne			No	ne			No	ne				None				
Conflicting Lanes			1			1			1					1					
Pedestrians Crossing, p/h		(0			()			0				0					
Proportion of CAVs 0																			
Critical and Follow-U	р Неа	dway	Adjı	ustmer	it														
Approach		E	:B			W	/B		Τ	N	В				SB				
Lane	Left	Rig	ght	Bypass	Left	Rig	ght	Bypass	Left	Right		Bypass	Left		Right	Bypass			
Critical Headway, s		4.9	763			4.9763			4.9	763			4	4.9763					
Follow-Up Headway, s		2.6	087			2.60	2.6087			2.6	087			á	2.6087				
Flow Computations,	Capaci	ty an	d v/c	Ratio	s														
Approach		E	B			W	/B		Т	N	В				SB				
Lane	Left	Rig	ght	Bypass	Left	Rig	ght	Bypass	Left	Rig	ght	Bypass	Left		Right	Bypass			
Entry Flow (v _e), pc/h		18	88			5	4			35	56				174				
Entry Volume, veh/h		1	79			5	0			34	17				162				
Circulating Flow (v _c), pc/h		1	76			36	67			9	7				125				
Exiting Flow (vex), pc/h		8	36			12	23			29	96				267				
Capacity (c _{pce}), pc/h		11	53			94	49			12	50				1215				
Capacity (c), veh/h		10	99			88	35			12	20				1129				
v/c Ratio (x)		0.	16			0.0	06			0.3	28				0.14				
Delay and Level of Se	rvice																		
Approach				EB				WB			NB		П		SB				
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Righ	t Вура	ypass Left Right		Bypass				
Lane Control Delay (d), s/veh				4.7				4.6			5.5				4.4				
Lane LOS				А				Α			А				А				
95% Queue, veh	3% Queue, veh 0.6			0.6				0.2			1.2				0.5				
Approach Delay, s/veh LOS			4	.7	A 4.6 A					A 5.5 A					4.4 A				
Intersection Delay, s/veh LOS	Poson			5.0		outs Var					Α			1.22.2E DM					