ms consultants, inc.

engineers, architects, planners

One South Main Street Suite 801 Akron, Ohio 44308-1864 p 330.258.9920 f 330.258.9921 www.msconsultants.com

June 28, 2024

Mr. Jared Knerr, PE, PS Licking County Transportation Improvement District 20 S. Second Street Newark, OH 43055

RE: **10-Minute Travel Time Group**

Six Points Traffic Analysis – (US 62 & Duncan Plains Road/Clover Valley Road)

Traffic Analysis of Potential Alternatives

Dear Mr. Knerr:

ms consultants has conducted a preliminary analysis of two potential Clover Valley Road realignment projects near the Intel site & New Albany Technology Manufacturing District (NATMD). This memo provides a preliminary assessment of the two alternatives, and the level of improvement they might provide over the existing roadway network. Goals in the development of alternatives are to improve traffic operations, safety, and roadway geometry of the US 62/Duncan Plains Road/Clover Valley Road intersections, referred to as "Six Points".

Background

The 10-Minute Travel Time Study (April 2023) developed planning-level traffic forecasts for the area surrounding the Intel plant and New Albany Technology Manufacturing District (NATMD). The study findings showed that large increases in traffic volumes were predicted for nearly every major roadway in the study area, including US 62, Duncan Plains Road, and Clover Valley Road west of Johnstown.

These roadways currently form three closely-spaced intersections. The US 62/Duncan Plains Road is a signalized intersection with left turn lanes on each approach. Clover Valley Road is discontinuous through this area, creating 3-leg intersections at US 62 and at Clover Valley Road. Both Clover Valley Road intersections are located within 500 feet of the US 62/Duncan Plains Road signal. The US 62/Clover Valley Road intersection is unsignalized with a westbound left turn lane on US 62. The Duncan Plains/Clover Valley Road intersection is unsignalized with no turn lanes. Thus, proposed alternatives have been proposed to provide more direct travel paths and improved geometry. These proposed alternatives are shown on Figure 1.

Alternatives Analyzed

Alternative CV-1

This alternative would realign Clover Valley Road south of Duncan Plains Road. The US 62/Clover Valley Road intersection would be relocated west approximately 1,000', creating more distance away from the US 62/Duncan Plains Road signal. The intersection would become a 4-leg design, with a new segment of Clover Valley Road extending north to Duncan Plains Road.

The realigned Clover Valley Road would effectively become a southwest bypass of the US 62/Duncan Plains Road signal. The new Clover Valley Road intersections would have the ability to be closer to 90-degree intersections than the current skewed intersections. A conceptual alignment for Alternative CV-1 is shown on Figure 1. Because this area is expected to experience rapid development in coming years and/or annexation, it is assumed that a 35-45mph design speed would be appropriate. It is assumed that portion east of US 62 would have three lanes (one through lane in each direction plus center turn lane), consistent with the NATMD TIS findings for Green Chapel Road. A five-lane section is also assumed west of US 62 due to its location within the NATMD commercial/retail area.

Alternative 1 would eliminate the US 62/Clover Valley Road intersection. Clover Valley Road would cul-de-sac south of US 62 and be used only for local access trips. County Line Road would be reconstructed and widened to a 3-lane section between Fancher Road and Duncan Plains Road.

Alternative CV-2

This alternative would construct the same Clover Valley Road realignment as in Alternative CV-1 but would also realign the portion of Clover Valley Road north of Duncan Plains Road. The existing Duncan Plains Road/Clover Valley Road intersection would be eliminated, with the new intersection being located about 1,000 feet west of the current location. Both new Clover Valley Road intersections would be closer to 90-degree angles, creating an improvement over the existing skewed intersections.

Improved No-Build

In order to help provide better context of how Alternatives CV-1 and CV-2 would perform, an Improved No-Build concept was also analyzed. The Improved No-Build would widen existing roadways in lieu of building new alignments. The Improved No-Build includes double left turn lanes at each intersection on US 62, plus additional turn lanes on Duncan Plains Road and Clover Valley Road.

Traffic Volumes

Opening Year (2027) and Design Year (2050) traffic projections from the 10-Minute Travel Time Study were used as a baseline. Opening Year was shifted to 2027 to reflect the recently announced schedule delay in completion of the Intel chip manufacturing facility. Traffic volumes were then generated for the two build alternatives. **Figure 2** summarizes the projections for each alternative.

In the Opening Year, Alternative CV-1 is expected to divert about 3,000 vehicles per day onto the new Clover Valley Road connection and away from the US 62/Duncan Plains Road signal. Alternative CV-2 is expected to divert a few additional vehicles from the US 62/Duncan Plains Road signal in Opening Year – approximately 4,000 per day total. By the Design Year, Alternative CV-1 is expected to divert over 9,000 vehicles per day, while Alternative CV-2 is expected to divert nearly 13,000 vehicles per day.

The projected diversion represents approximately 15% reduction in overall volume at the US 62/Duncan Plains Road signal, including a majority of the eastbound left turns at that location. Alternative CV-1 would reduce eastbound left turns by over 70%, while Alternative CV-2 would reduce eastbound left

Mr. Jared Knerr, P.E., P.S. June 28, 2024 Page 3 of 6

turns by over 95%. The reduction of eastbound left turns would help allow the US 62/Duncan Plains Road intersection to operate safer and more efficiently.

It should be noted that the expected traffic diversion for Alternative CV-1 would be especially sensitive to the distance away from existing Clover Valley Road, as well as the congestion levels at the US 62/Duncan Plains Road signal. The further west the CV-1 alignment is placed, traffic to/from the north leg of Clover Valley Road will require longer backtracking and be more likely to continue using the US 62/Duncan Plains Road signal.

Traffic Operations

The projected ADTs for the alternatives were converted into peak hour volumes. Synchro was used to estimate level-of-service (LOS) for the study area intersections. In the Opening Year, both alternatives would greatly improve traffic operations at the US 62/Clover Valley Road intersection (in addition to removing the existing skewed intersection). The Opening Year analysis is shown in **Table 1**:

Table 1: Level-of-Service (LOS) and Average Vehicle Delay (in sec./veh.)

		Opening Year (2027	7)
	No-Build	Alternative CV-1	Alternative CV-2
US 62 &	F*	C	С
Clover Valley Road	160	30	20
US 62 &	С	C	С
Duncan Plains Road	30	20	20
Duncan Plains Road &	C*	C*	B*
Clover Valley Road	20	20	10

^{*}unsignalized intersection – value represents highest delay of stopped approaches

For the purpose of the Design Year analyses (Table 2), several assumptions were made:

- US 62 is widened to five lanes (two through lanes each direction) in the No-Build condition, as traffic volumes on US 62 are anticipated to exceed 30,000 vehicles per day in the Design Year
- Duncan Plains Road would remain unchanged at US 62, with left turn lanes on each approach
- All intersections are eventually signalized in the Design Year, even in the No-Build condition, to more safely accommodate future volumes

Table 2: Level-of-Service (LOS) and Average Vehicle Delay (in sec./veh.)

	Assuming 5	0	ear (2050) 52 (2 through lanes ea	ach direction)
	No-Build	Improved No-Build (turn lanes)	Alternative CV-1	Alternative CV-2
US 62 &	F	E	E	E
Clover Valley Road	180	60	70	60
US 62 &	F	F	F	F
Duncan Plains Road	290	120	150	130
Duncan Plains Road &	F	Е	D*	Е
Clover Valley Road	340	70	50	60

^{*}Results shown for existing intersection. The relocated intersection would have additional 20 seconds of delays expected for Clover Valley traffic having to pass through both intersections.

Mr. Jared Knerr, P.E., P.S. June 28, 2024 Page 4 of 6

By the Design Year, Alternatives CV-1 and CV-2 are expected to provide substantial congestion benefits, reducing delays by half, getting US 62 closer to acceptable LOS ranges. An Improved No-Build was also analyzed in the Design Year to compare how traditional intersection widening would compare to the alternatives with new alignments. The Synchro analysis predicts similar delay benefits for each of the three concepts. However, the close proximity of the study area intersections (each ~500' apart) would present complications for an Improved No-Build condition, resulting in likely worse LOS than reported in Table 3. The primary concerns with an Improved No-Build condition would be:

- Storage and queuing on US 62 between Clover Valley Road and Duncan Plains
 - o High through volumes on US 62 causing queuing/blcoking issues in this short distance
 - o High traffic volumes projected for both the eastbound left turn onto Duncan Plains Road and the westbound left turn onto Clover Valley Road.
 - Side-by-side double left turn lanes are assumed to be necessary in this area
- Long eastbound queues on Duncan Plains Road extending from US 62 and blocking the Clover Valley north intersection.
- Westbound queues on Duncan Plains Road extending from Clover Valley north and blocking the US 62 intersection.

Synchro analyses indicate that queue lengths from all these intersections are likely to extend into each other, exacerbating congestion and creating safety issues. Thus, Alternative CV-1 and CV-2 are expected to provide overall better operations than widening existing intersections.

Cost Estimates

Conceptual cost estimates were developed for the build alternatives. Unit costs per lane-foot of pavement were used as the basis for these estimates. A higher unit cost was used for the portion of relocated Clover Valley Road south of Duncan Plains Road, where it is assumed that lighting, sidewalks, or other more urban infrastructure would be included. Lower unit costs were used for relocated Clover Valley Road north of Duncan Plains Road, as this would likely remain a more rural design without aesthetic enhancements. Right-of-way costs were based on recent sale prices in the study area and do not include costs associated with any potential displacements. As stated in the Traffic Operations section, all alternatives assume that US 62 has been widened to five lanes prior to the Design Year, thus is not included in the costs.

Alternative CV-1 is expected to have a total project cost of approximately \$22 million. Alternative CV-2 is expected to have a total project cost of approximately \$26 million. It should be noted that Alternative CV-1 includes costs for improvements at the existing Duncan Plains Road/Clover Valley Road intersection, which are not needed in Alternative CV-2. The Improved No-Build cost is expected to be approximately \$14 million. Details on the cost estimates are attached in the appendix.

<u>Alternative Summary</u> Some key study findings are shown in **Table 3**:

Table 3: Alternative Summary

		table 5. Alternative Summa	J I	I
	No-Build	Improved No-Build	Alternative CV-1	Alternative CV-2
Traffic Operations – Opening Year	One LOS F location	LOS C or better at all locations	LOS C or better at all locations	LOS C or better at all locations
Traffic Operations – Design Year	Three LOS F locations	One LOS F location	One LOS F location	One LOS F location
US 62/Duncan Plains Intersection Traffic	70,000 veh. per day in Design Year	No change	13% reduction in traffic volume	18% reduction in traffic volume
Intersection Spacing	All intersections ~500' apart Queues from each intersection expected to adversely impact adjacent intersections	All intersections ~500' apart Queues from each intersection expected to adversely impact adjacent intersections	US 62 intersections can be spaced >1,000' apart Some queuing issues on Duncan Plains Road	US 62 intersections and Duncan Plains Road intersections can be spaced >1,000' apart No queuing interaction expected
Number of Anticipated Signals on US 62	2	2	2	2
Number of Skewed Intersections	3	3	2	1
Construction Cost*	Routine Maintenance	\$13M	\$17 M	\$19 M
Right-of-Way**	None	\$1M	\$5 M	\$7 M

^{*}Current year dollars including 30% contingency, 15% engineering, and 8% for construction administration

^{**}Right-of-Way costs based on \$300,000/acre valuation. Does not include potential for damages/relocations. Alternatives CV-1 and CV-2 offer more flexibility on alignments to minimize potential damages/relocations. Damages/relocations could be higher in Improved No-Build because widening existing roadways offers limited flexibility in alignments.

Mr. Jared Knerr, P.E., P.S. June 28, 2024 Page 6 of 6

Conclusions & Summary

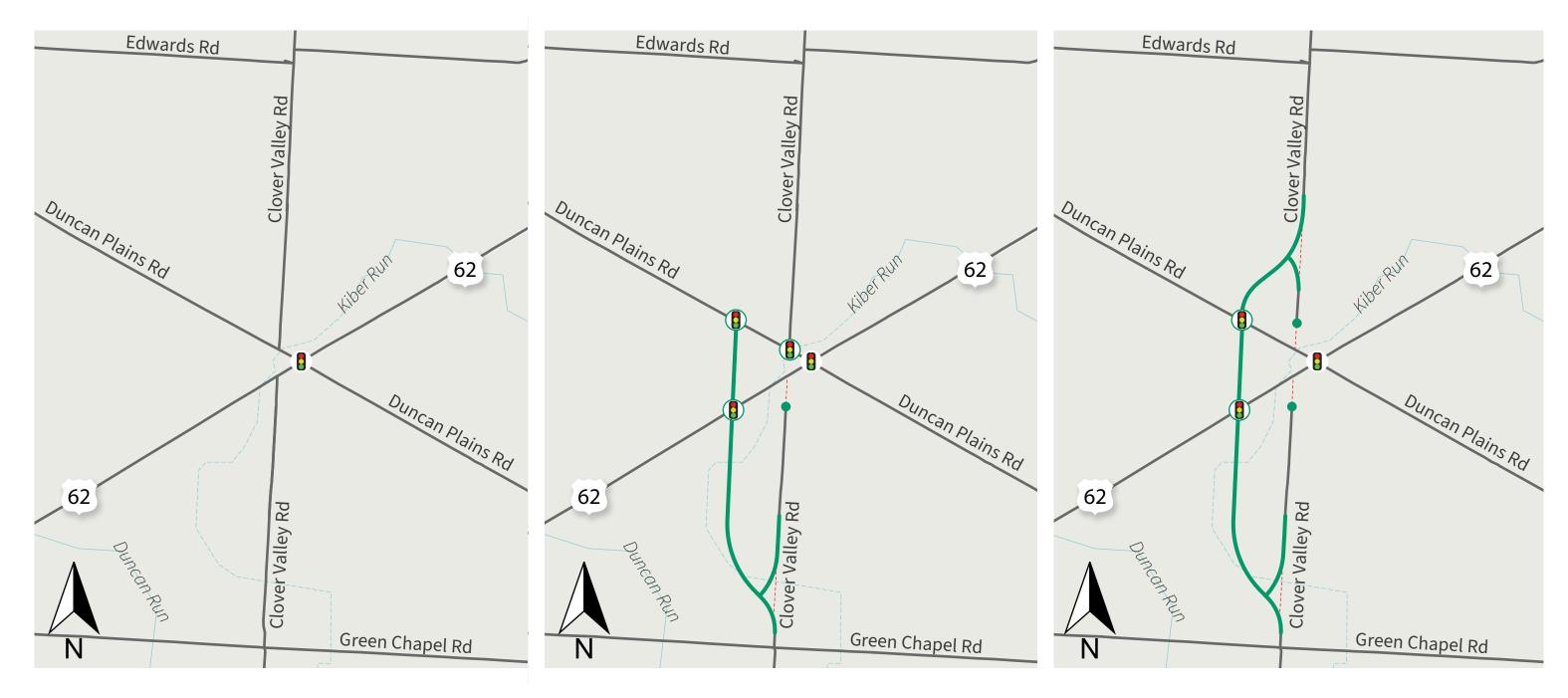
This study analyzed the potential effects of two new road network alternatives for the US 62/Duncan Plains Road/Clover Valley Road intersection areas (a.k.a. "Six Points") in western Licking County. Alternative CV-1 would realign Clover Valley Road south of Duncan Plains Road, while Alternative CV-2 would realign Clover Valley Road both north and south of Duncan Plains Road.

Key findings of the study include:

- Both Alternative CV-1 and Alternative CV-2 are expected to divert substantial traffic away from the US 62/Duncan Plains signal
- Both Alternative CV-1 and Alternative CV-2 are expected to greatly improve operations in the Six Points area, particularly in the Design Year
- Widening existing roadways for additional turn lanes (Improved No-Build) can achieve similar LOS/delay benefits, but queuing and blocking is expected to be an issue due to the close proximity of the existing intersections.
- Alternative CV-1 and Alternative CV-2 would offer the ability to create much better intersection/signal spacing on US 62, while eliminating skewed intersection(s).
- Alternative CV-2 would offer the ability to create much improved intersection/signal spacing on Duncan Plains Road, while also providing somewhat more delay benefits than Alternative CV-1.
- The potential traffic diversion and benefits of Alternative CV-2 would not be sensitive to the exact alignment of the relocated Clover Valley Road
 - o The traffic diversion and benefits of Alternative CV-1 would be sensitive to the specific alignment chosen. The further west the realigned Clover Valley is placed, the fewer vehicles will divert away from the US 62/Duncan Plains Road signal.

Please feel free to contact me anytime to discuss any questions you have regarding this study.

Sincerely,


Ryan Bush, P.E., AICP Traffic Engineer

 $N: \\03\\06\\010xxx_LCTID_IntelTrafficStudy\\00_Six\ Points\ Intersection\ Study\\2024-06-28_SixPoints_TrafficAnalysis.docx$

Existing Roadway:

Alternative CV-1:

Alternative CV-2:

Legend:

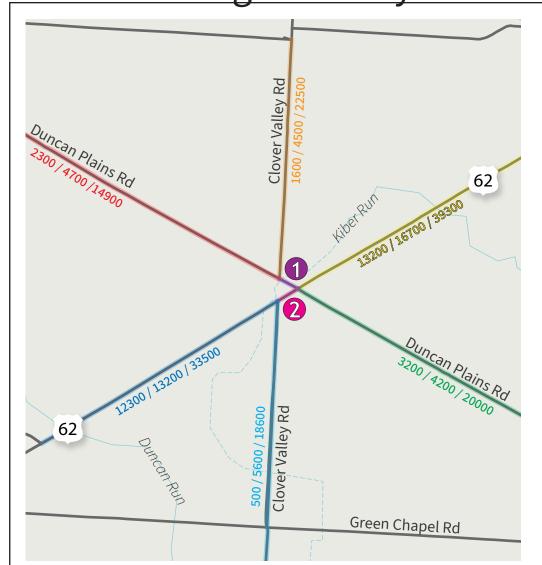
Existing Roadway

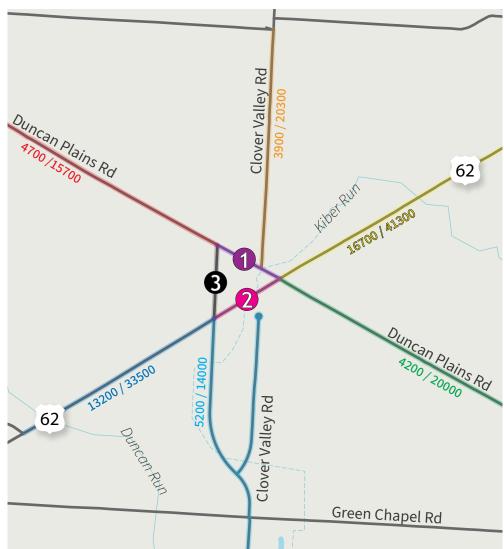
New road alignment

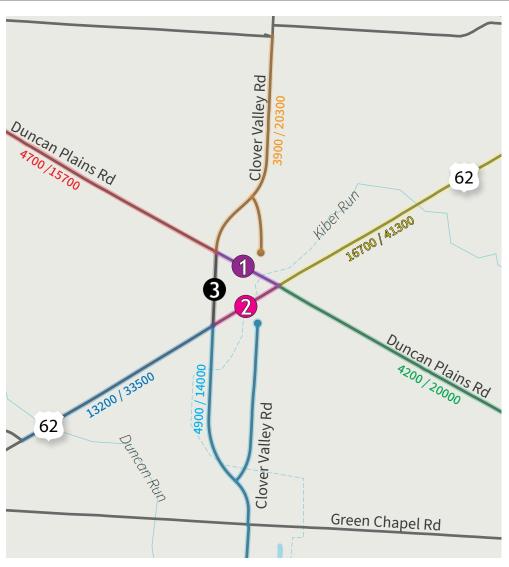
Existing road to be removed

New signal (or roundabout)

Existing signal






Existing Roadway:

Alternative CV-1:

Alternative CV-2:

Existing Volumes: Current Year / Opening Year (2027) / Design Year (2050)

Build Alternative Volumes: Opening Year (2027) / Design Year (2050)

Traffic Volumes (ADT)

Commont Name	Current	Ор	ening Year (20	27)	De	esign Year (20!	50)
Segment Name	Year	No-Build	Alternative CV-1	Alternative CV-2	No-Build	Alternative CV-1	Alternative CV-2
Duncan Plains Road between Clover Valley Road and U.S. 62	3,500	8,400	5,100	4,000	35,800	25,800	22,000
2 <u>U.S. 62</u> between Clover Valley Road and Duncan Plains Road	12,800	18,500	15,200	14,100	43,800	34,700	30,900
3 <u>Clover Valley Road Extension</u> between U.S. 62 and Duncan Plains Road	NA	NA	3,300	4,400	NA	9,100	12,950

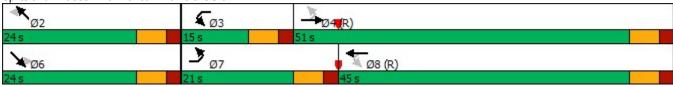
	>	\rightarrow	~	•	\	×	*	×	
Lane Group	EBL	EBT	WBL	WBT	SEL	SET	NWL	NWT	
Lane Configurations	7	f)	7	f)	7	ĵ.	*	7	
Traffic Volume (vph)	255	676	67	534	45	73	97	67	
Future Volume (vph)	255	676	67	534	45	73	97	67	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases	7	4	3	8		6		2	
Permitted Phases	4		8		6		2		
Detector Phase	7	4	3	8	6	6	2	2	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	24.0	24.0	24.0	24.0	24.0	
Total Split (s)	21.0	51.0	15.0	45.0	24.0	24.0	24.0	24.0	
Total Split (%)	23.3%	56.7%	16.7%	50.0%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	
Act Effct Green (s)	64.5	54.3	53.5	46.2	13.0	13.0	13.0	13.0	
Actuated g/C Ratio	0.72	0.60	0.59	0.51	0.14	0.14	0.14	0.14	
v/c Ratio	0.63	0.73	0.20	0.77	0.59	0.53	0.64	0.75	
Control Delay	13.3	20.3	7.1	26.9	62.8	30.3	53.5	31.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.3	20.3	7.1	26.9	62.8	30.3	53.5	31.5	
LOS	В	С	Α	С	Е	С	D	С	
Approach Delay		18.5		25.1		38.2		37.7	
Approach LOS		В		С		D		D	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 25.2

Intersection LOS: C Intersection Capacity Utilization 90.0% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Duncan Plains & US 62

Synchro 11 Report 06/27/2024

Intersection						
Int Delay, s/veh	4.5					
	CDI	CDD	CEI.	CET	NI\A/T	NIMD
Movement	SBL	SBR	SEL	SET	NWT	NWR
Lane Configurations	Y			4	4	0.40
Traffic Vol, veh/h	197	6	5	178	233	240
Future Vol, veh/h	197	6	5	178	233	240
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	214	7	5	193	253	261
IVIVIII I IOW	217		0	155	200	201
Major/Minor	Minor2		Major1	<u> </u>	Major2	
Conflicting Flow All	587	384	514	0	_	0
Stage 1	384	-	_	-	_	-
Stage 2	203	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	-	1.12	_	_	_
Critical Hdwy Stg 2	5.42	_			_	_
			2 240	-		
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	472	664	1052	-	-	-
Stage 1	688	-	-	-	-	-
Stage 2	831	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	470	664	1052	-	-	-
Mov Cap-2 Maneuver	470	-	-	-	-	-
Stage 1	685	-	-	-	-	-
Stage 2	831	_	-	_	_	_
	30 1					
Approach	SB		SE		NW	
HCM Control Delay, s	19		0.2		0	
HCM LOS	С					
Minardan (NA 1 NA	-1	NIVA/T	NIVA/ID	051	OFT	ODI 4
Minor Lane/Major Mvn	nt	NWT		SEL		SBLn1
Capacity (veh/h)		-	-		-	474
HCM Lane V/C Ratio		-	-	0.005	-	0.466
HCM Control Delay (s)	-	-	8.4	0	19
HCM Lane LOS		-	-	Α	Α	С
HCM 95th %tile Q(veh	1)	-	-	0	-	2.4
	,					

06/28/2024 Synchro 11 Report Page 1

Intersection						
Int Delay, s/veh	16.8					
		EDD	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	600	0	242	†	10	000
Traffic Vol, veh/h	690	9	212	682	12	293
Future Vol, veh/h	690	9	212	682	12	293
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	150	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	4	2	2	4	2	2
Mvmt Flow	750	10	230	741	13	318
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	760	0	1956	755
Stage 1	-	-	700	U	755	755
Stage 2	-	_	-	-	1201	-
	-	-	4.12	-	6.42	6.22
Critical Hdwy	-	-	4.12	-	5.42	0.22
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2	-	-	0.040	-	5.42	2 240
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	852	-	70	409
Stage 1	-	-	-	-	464	-
Stage 2	-	-	-	-	285	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	852	-	51	409
Mov Cap-2 Maneuver	-	-	-	-	51	-
Stage 1	-	-	-	-	464	-
Stage 2	-	-	-	-	208	-
Approach	EB		WB		NB	
	0		2.6		97.2	
HCM Control Delay, s HCM LOS	U		2.0		91.Z	
HOW LOS					Г	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		320	-	-	852	-
HCM Lane V/C Ratio		1.036	-	-	0.27	-
HCM Control Delay (s)		97.2	-	-		-
HCM Lane LOS		F	-	_	В	-
HCM 95th %tile Q(veh)		11.9	-	-	1.1	-

06/28/2024 Synchro 11 Report Page 2

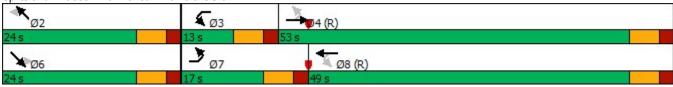
	>	-	~	←	\	×	*	×	
Lane Group	EBL	EBT	WBL	WBT	SEL	SET	NWL	NWT	
Lane Configurations	7	13	7	f.	7	13	7	T ₃	
Traffic Volume (vph)	59	676	67	534	45	73	97	67	
Future Volume (vph)	59	676	67	534	45	73	97	67	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases	7	4	3	8		6		2	
Permitted Phases	4		8		6		2		
Detector Phase	7	4	3	8	6	6	2	2	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	24.0	24.0	24.0	24.0	24.0	
Total Split (s)	17.0	53.0	13.0	49.0	24.0	24.0	24.0	24.0	
Total Split (%)	18.9%	58.9%	14.4%	54.4%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	
Act Effct Green (s)	60.4	54.6	60.1	54.5	12.9	12.9	12.9	12.9	
Actuated g/C Ratio	0.67	0.61	0.67	0.61	0.14	0.14	0.14	0.14	
v/c Ratio	0.15	0.73	0.20	0.66	0.27	0.53	0.65	0.43	
Control Delay	6.9	15.9	6.0	17.2	36.3	30.5	54.1	29.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.9	15.9	6.0	17.2	36.3	30.5	54.1	29.1	
LOS	Α	В	Α	В	D	С	D	С	
Approach Delay		15.2		16.2		31.9		40.7	
Approach LOS		В		В		С		D	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 20.0 Intersection LOS: B
Intersection Capacity Utilization 78.7% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Duncan Plains & US 62

Intersection						
Int Delay, s/veh	5.2					
-	NBL	NBR	SET	SER	NI\A/I	NWT
Movement Lang Configurations	MBL	NBK		SEK	NWL	
Lane Configurations		100	120	62	72	4
Traffic Vol, veh/h	94	102	129	63	73	156
Future Vol, veh/h	94	102	129	63 0	73 0	156 0
Conflicting Peds, #/hr			0			
Sign Control RT Channelized	Stop	Stop None	Free	Free	Free	Free
			-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	102	111	140	68	79	170
Major/Minor M	inor1	ı	Major1		Major2	
Conflicting Flow All	502	174	0	0	208	0
Stage 1	174		-	-	-	-
Stage 2	328	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	- 1.12	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
		3.318	_	_	2.218	_
Pot Cap-1 Maneuver	529	869	_	_	1363	_
Stage 1	856	-	_	_		_
Stage 2	730	_	_		_	_
Platoon blocked, %	700					
Mov Cap-1 Maneuver	495	869	<u>-</u>	_	1363	_
Mov Cap-1 Maneuver	495	- 009	-	-	1000	
•	856		-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	683	-	-	-	-	-
Approach	NB		SE		NW	
HCM Control Delay, s	13.4		0		2.5	
HCM LOS	В					
Minor Lane/Major Mvmt		NDI 51	NIVA/I	NI\A/T	CET	CED
	ı	NBLn1	NWL	NWT	SET	SER
			1 46 4	-	-	-
Capacity (veh/h)		638	1363			
Capacity (veh/h) HCM Lane V/C Ratio		0.334	0.058	-	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.334 13.4	0.058 7.8	0	-	-
Capacity (veh/h) HCM Lane V/C Ratio		0.334	0.058			- - -

06/28/2024 Synchro 11 Report Page 1

Intersection						
Int Delay, s/veh	5.4					
Movement	SBL	SBR	SEL	SET	NWT	NWR
		ODK	JEL			INVVIX
Lane Configurations	07	.00	107	4104	150	00
Traffic Vol, veh/h	97	80	107	124	150	98
Future Vol, veh/h	97	80	107	124	150	98
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	105	87	116	135	163	107
IVIVIII(I IOW	100	01	110	100	100	107
Major/Minor	Minor2		Major1	<u> </u>	Major2	
Conflicting Flow All	584	217	270	0		0
Stage 1	217			-	_	_
Stage 2	367	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	0.22	7.12	_	_	_
, ,	5.42		_	-		
Critical Hdwy Stg 2		-	0.040	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	474	823	1293	-	-	-
Stage 1	819	-	-	-	-	-
Stage 2	701	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	428	823	1293	-	-	-
Mov Cap-2 Maneuver	428	-	-	-	-	-
Stage 1	740	_	_	-	_	_
Stage 2	701	_	_	_	_	_
Olugo Z	701					
Approach	SB		SE		NW	
HCM Control Delay, s	15.1		3.7		0	
HCM LOS	С					
110111 200						
Minor Lane/Major Mvn	nt	NWT	NWR	SEL	SET	SBLn1
Capacity (veh/h)		-	-	1293	-	547
HCM Lane V/C Ratio		-	-	0.09	-	0.352
HCM Control Delay (s))	_	-	8.1	0	15.1
HCM Lane LOS		-	-	Α	A	С
HCM 95th %tile Q(veh)	_	-	0.3	-	1.6
TOWN OUT TOUR WIND	7			0.0		1.0

06/28/2024 Synchro 11 Report Page 2

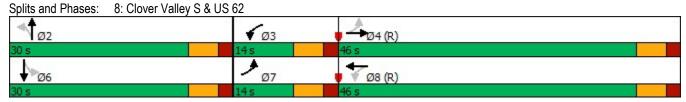
	•	\rightarrow	1	•	1	1	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	7	13	7	1→	7	13	7	13	
Traffic Volume (vph)	44	646	111	648	12	152	5	101	
Future Volume (vph)	44	646	111	648	12	152	5	101	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases	7	4	3	8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	7	4	3	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	20.0	13.0	20.0	20.0	20.0	20.0	20.0	
Total Split (s)	14.0	46.0	14.0	46.0	30.0	30.0	30.0	30.0	
Total Split (%)	15.6%	51.1%	15.6%	51.1%	33.3%	33.3%	33.3%	33.3%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	
Act Effct Green (s)	52.6	45.4	56.1	51.2	18.8	18.8	18.8	18.8	
Actuated g/C Ratio	0.58	0.50	0.62	0.57	0.21	0.21	0.21	0.21	
v/c Ratio	0.13	0.77	0.36	0.68	0.05	0.79	0.05	0.38	
Control Delay	7.8	27.0	10.1	19.1	26.2	42.3	28.6	28.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	7.8	27.0	10.1	19.1	26.2	42.3	28.6	28.5	
LOS	Α	С	В	В	С	D	С	С	
Approach Delay		25.8		17.8		41.7		28.5	
Approach LOS		С		В		D		С	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 65


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.79 Intersection Signal Delay: 25.3

Intersection Capacity Utilization 72.3%

Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service C

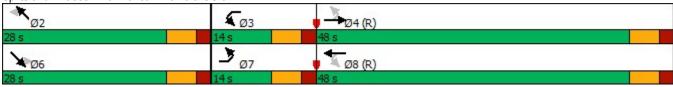
	>	\rightarrow	~	•	\	×	1	×	
Lane Group	EBL	EBT	WBL	WBT	SEL	SET	NWL	NWT	
Lane Configurations	7	13	7	f)	7	T ₂	7	f)	
Traffic Volume (vph)	12	676	67	534	45	73	97	67	
Future Volume (vph)	12	676	67	534	45	73	97	67	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases	7	4	3	8		6		2	
Permitted Phases	4		8		6		2		
Detector Phase	7	4	3	8	6	6	2	2	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	24.0	24.0	24.0	24.0	24.0	
Total Split (s)	14.0	48.0	14.0	48.0	28.0	28.0	28.0	28.0	
Total Split (%)	15.6%	53.3%	15.6%	53.3%	31.1%	31.1%	31.1%	31.1%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	
Act Effct Green (s)	59.9	54.3	64.0	62.4	13.0	13.0	13.0	13.0	
Actuated g/C Ratio	0.67	0.60	0.71	0.69	0.14	0.14	0.14	0.14	
v/c Ratio	0.03	0.73	0.20	0.57	0.26	0.52	0.65	0.31	
Control Delay	7.8	18.3	5.9	11.6	36.0	29.5	53.5	32.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	7.8	18.3	5.9	11.6	36.0	29.5	53.5	32.8	
LOS	Α	В	Α	В	D	С	D	С	
Approach Delay		18.1		11.0		31.1		44.3	
Approach LOS		В		В		С		D	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 80


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 19.1 Intersection LOS: B
Intersection Capacity Utilization 78.7% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Duncan Plains & US 62

Intersection												
Int Delay, s/veh	12.1											
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	*	î,		*	4			4			4	
Traffic Vol, veh/h	94	149	5	63	108	6	5	115	63	5	150	51
Future Vol, veh/h	94	149	5	63	108	6	5	115	63	5	150	51
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	150	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	102	162	5	68	117	7	5	125	68	5	163	55
Major/Minor	Major1		ı	Major2			Minor2			Minor1		
	124	0		167	^		735	628	121	722	629	165
Conflicting Flow All		0	0		0	0	257	257	121	369	369	100
Stage 1 Stage 2	-	-	-	-	-	-	478	371	-	353	260	-
Critical Hdwy	4.12	-	_	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12	-	-	4.12	-	-	6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2			-	-	-		6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-		2.218	-	-	3.518		3.318	3.518	4.018	
Pot Cap-1 Maneuver	1463		_	4444	_	-	335	4.010	930	342	399	879
Stage 1	1403	-	_	-	-	_	748	695	930	651	621	019
Stage 2	-	_	_	_			568	620	_	664	693	_
Platoon blocked, %		_	_		_	_	300	020		004	030	
Mov Cap-1 Maneuver	1463			1411	_		184	354	930	211	353	879
Mov Cap-2 Maneuver	-	_	_	-	_	_	184	354	-	211	353	-
Stage 1	_	_	_	_	_	_	696	662	_	605	578	_
Stage 2	_	_	_	_	_	_	355	577	_	475	660	_
J. 1390 Z							300	511			300	
				0.5						N 10.51		
Approach	NB			SB			SE			NW		
HCM Control Delay, s	2.9			2.7			20			24.1		
HCM LOS							С			С		
Minor Lane/Major Mvm	nt	NBL	NBT	NBRN	WLn1	SELn1	SBL	SBT	SBR			
Capacity (veh/h)		1463	-	-	407	436	1411	-	-			
HCM Lane V/C Ratio		0.07	_	_		0.456		_	_			
HCM Control Delay (s)		7.6	_	-	24.1	20	7.7	_	-			
HCM Lane LOS		A	-	-	С	C	Α	-	-			
HCM 95th %tile Q(veh))	0.2	-	-	3.2	2.3	0.2	-	-			
222 7000 21(100)												

06/28/2024 Synchro 11 Report Page 1

	•	-	1	←	1	1	1	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	*	f)	*	f)	7	13	*	1	
Traffic Volume (vph)	71	619	98	627	12	172	5	115	
Future Volume (vph)	71	619	98	627	12	172	5	115	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	Perm	NA	
Protected Phases	7	4	3	8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	7	4	3	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	20.0	13.0	20.0	20.0	20.0	20.0	20.0	
Total Split (s)	13.0	50.0	13.0	50.0	27.0	27.0	27.0	27.0	
Total Split (%)	14.4%	55.6%	14.4%	55.6%	30.0%	30.0%	30.0%	30.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag					
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	
Act Effct Green (s)	54.6	49.0	54.8	49.1	18.5	18.5	18.5	18.5	
Actuated g/C Ratio	0.61	0.54	0.61	0.55	0.21	0.21	0.21	0.21	
v/c Ratio	0.21	0.69	0.29	0.70	0.06	0.82	0.05	0.49	
Control Delay	7.8	21.4	8.0	20.3	27.9	47.9	28.2	31.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	7.8	21.4	8.0	20.3	27.9	47.9	28.2	31.1	
LOS	Α	С	Α	С	С	D	С	С	
Approach Delay		20.0		18.7		47.1		31.0	
Approach LOS		С		В		D		С	

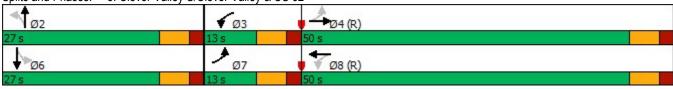
Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.82

Intersection Signal Delay: 24.8
Intersection Capacity Utilization 71.0%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 8: Clover Valley S/Clover Valley & US 62

	>	-	-	~	•	*_	\	×	1	×	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	NWL	NWT	
Lane Configurations	7	^	7	7	^	7	7	13	7	7	
Traffic Volume (vph)	732	1460	150	181	1139	438	381	521	113	528	
Future Volume (vph)	732	1460	150	181	1139	438	381	521	113	528	
Turn Type	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	5	3	8	1	1	6	5	2	
Permitted Phases			4	8		8	6		2		
Detector Phase	7	4	5	3	8	1	1	6	5	2	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	13.0	24.0	13.0	13.0	24.0	13.0	24.0	
Total Split (s)	30.0	50.0	13.0	13.0	33.0	17.0	17.0	44.0	13.0	40.0	
Total Split (%)	25.0%	41.7%	10.8%	10.8%	27.5%	14.2%	14.2%	36.7%	10.8%	33.3%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	C-Max	None	None	None	None	None	
Act Effct Green (s)	24.0	44.0	57.0	34.0	27.0	44.0	49.0	38.0	41.0	34.0	
Actuated g/C Ratio	0.20	0.37	0.48	0.28	0.22	0.37	0.41	0.32	0.34	0.28	
v/c Ratio	2.25	1.22	0.20	1.19	1.56	0.71	1.85	1.96	0.75	1.49	
Control Delay	585.3	127.0	5.3	159.9	289.0	29.8	421.7	462.4	50.9	263.2	
Queue Delay	0.0	0.9	0.0	0.0	0.5	0.0	0.0	0.3	70.7	0.0	
Total Delay	585.3	127.9	5.3	159.9	289.5	29.8	421.7	462.7	121.7	263.2	
LOS	F	F	Α	F	F	С	F	F	F	F	
Approach Delay		263.1			211.4			451.7		243.8	
Approach LOS		F			F			F		F	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

Natural Cycle: 150


Control Type: Actuated-Coordinated

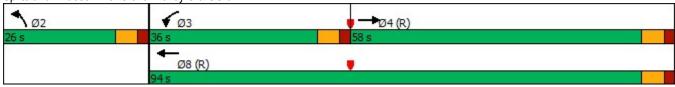
Maximum v/c Ratio: 2.25

Intersection Signal Delay: 288.4 Intersection LOS: F
Intersection Capacity Utilization 157.2% ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 3: Duncan Plains & US 62

	J _k	•	×	×	
Lane Group	SBL	SEL	SET	NWT	
Lane Configurations	¥		र्स	1	
Traffic Volume (vph)	824	19	604	724	
Future Volume (vph)	824	19	604	724	
Turn Type	Prot	Perm	NA	NA	
Protected Phases	4		6	2	
Permitted Phases		6			
Detector Phase	4	6	6	2	
Switch Phase					
Minimum Initial (s)	7.0	7.0	7.0	7.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	
Total Split (s)	34.0	56.0	56.0	56.0	
Total Split (%)	37.8%	62.2%	62.2%	62.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	C-Max	C-Max	C-Max	
Act Effct Green (s)	28.0		50.0	50.0	
Actuated g/C Ratio	0.31		0.56	0.56	
v/c Ratio	1.67		1.48	1.78	
Control Delay	333.4		248.5	374.7	
Queue Delay	0.0		0.0	0.0	
Total Delay	333.4		248.5	374.7	
LOS	F		F	F	
Approach Delay	333.4		248.5	374.7	
Approach LOS	F		F	F	
Intersection Summary					
Cycle Length: 90					
Actuated Cycle Length: 90					
Offset: 0 (0%), Referenced		·NIWT and	16.SETI	Start of (Proen
Natural Cycle: 140	r to pridoc z	.ivvi and	u 0.0L 1 L,	Otartor	Siddi
Control Type: Actuated-Co	ordinated				
Maximum v/c Ratio: 1.78	ordinated				
Intersection Signal Delay:	338 3			lr	ntersection LOS: F
Intersection Capacity Utiliz		0/2			CU Level of Service H
Analysis Period (min) 15	auon 151.7	70		10	50 Level of Service 11
randing of the a (min)					
Splits and Phases: 6: Du	uncan Plains	s & Clove	r Valley N		
Ø2 (R)					4 Ø4
56 s					34 s
Ø6 (R)					
56 s					


06/28/2024 Synchro 11 Report Page 2

	→	1	←	1	
Lane Group	EBT	WBL	WBT	NBL	
Lane Configurations	† }	*	^	W	
Traffic Volume (vph)	1656	511	1530	115	
Future Volume (vph)	1656	511	1530	115	
Turn Type	NA	Prot	NA	Prot	
Protected Phases	4	3	8	2	
Permitted Phases					
Detector Phase	4	3	8	2	
Switch Phase					
Minimum Initial (s)	7.0	7.0	7.0	7.0	
Minimum Split (s)	24.0	13.0	24.0	24.0	
Total Split (s)	58.0	36.0	94.0	26.0	
Total Split (%)	48.3%	30.0%	78.3%	21.7%	
Yellow Time (s)	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	
Lead/Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	C-Max	None	C-Max	None	
Act Effct Green (s)	52.0	30.0	88.0	20.0	
Actuated g/C Ratio	0.43	0.25	0.73	0.17	
v/c Ratio	1.24	1.26	0.64	1.96	
Control Delay	145.5	150.4	13.8	460.9	
Queue Delay	0.7	0.0	48.8	1.1	
Total Delay	146.2	150.4	62.6	462.0	
LOS	F	F	Е	F	
Approach Delay	146.2		84.6	462.0	
Approach LOS	F		F	F	
Intersection Summary					ĺ
Cycle Length: 120					
Actuated Cycle Length: 12	20				
Offset: 62 (52%), Referen		4:EBT a	nd 8:WBT	. Start of	(
Natural Cycle: 140				, 510	
Control Type: Actuated-C	oordinated				
Maximum v/c Ratio: 1.96					
Intersection Signal Delay:	175.2			lr	1
intersection orginal belay:		1/			

Splits and Phases: 8: Clover Valley S & US 62

Intersection Capacity Utilization 141.8%

Analysis Period (min) 15

ICU Level of Service H

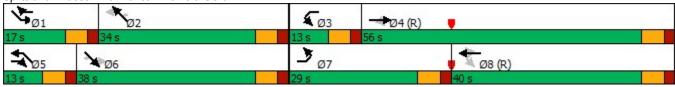
Synchro 11 Report 06/28/2024

	>	→	-	~	•	*_	\	×	4	*	×	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	14.14	^	7	1	^	7	7	†	7	7	^	7
Traffic Volume (vph)	732	1460	150	181	1139	438	381	521	515	113	528	181
Future Volume (vph)	732	1460	150	181	1139	438	381	521	515	113	528	181
Turn Type	Prot	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4	5	3	8	1	1	6		5	2	
Permitted Phases			4	8		8	6		6	2		2
Detector Phase	7	4	5	3	8	1	1	6	6	5	2	2
Switch Phase												
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	24.0	13.0	13.0	24.0	13.0	13.0	24.0	24.0	13.0	24.0	24.0
Total Split (s)	29.0	56.0	13.0	13.0	40.0	17.0	17.0	38.0	38.0	13.0	34.0	34.0
Total Split (%)	24.2%	46.7%	10.8%	10.8%	33.3%	14.2%	14.2%	31.7%	31.7%	10.8%	28.3%	28.3%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	None	None	C-Max	None	None	None	None	None	None	None
Act Effct Green (s)	23.0	50.0	63.0	41.0	34.0	51.0	43.0	32.0	32.0	35.0	28.0	28.0
Actuated g/C Ratio	0.19	0.42	0.52	0.34	0.28	0.42	0.36	0.27	0.27	0.29	0.23	0.23
v/c Ratio	1.21	1.08	0.19	1.19	1.24	0.63	1.85	1.14	0.83	0.75	1.32	0.38
Control Delay	136.8	67.1	5.7	160.1	152.1	23.3	411.8	114.7	24.3	54.8	197.9	8.1
Queue Delay	2.2	10.1	0.0	0.0	0.2	1.8	0.0	0.2	2.3	70.7	0.0	0.0
Total Delay	139.0	77.2	5.7	160.1	152.3	25.1	411.8	114.9	26.6	125.5	197.9	8.1
LOS	F	Е	Α	F	F	С	F	F	С	F	F	Α
Approach Delay		92.0			121.4			162.6			146.1	
Approach LOS		F			F			F			F	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

Natural Cycle: 150


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.85

Intersection Signal Delay: 122.9 Intersection LOS: F
Intersection Capacity Utilization 121.3% ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 3: Duncan Plains & US 62

	J _k	w	•	×	×	*
Lane Group	SBL	SBR	SEL	SET	NWT	NWR
Lane Configurations	*	7	*	†	↑	7
Traffic Volume (vph)	824	22	19	604	724	974
Future Volume (vph)	824	22	19	604	724	974
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	4			6	2	
Permitted Phases		4	6			2
Detector Phase	4	4	6	6	2	2
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	61.0	61.0	59.0	59.0	59.0	59.0
Total Split (%)	50.8%	50.8%	49.2%	49.2%	49.2%	49.2%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
, ,						
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag						
Lead-Lag Optimize?			0.11	0.11	0.14	0.14
Recall Mode	None	None	C-Max	C-Max	C-Max	C-Max
Act Effct Green (s)	55.0	55.0	53.0	53.0	53.0	53.0
Actuated g/C Ratio	0.46	0.46	0.44	0.44	0.44	0.44
v/c Ratio	1.10	0.03	0.34	0.80	0.96	0.93
Control Delay	96.3	10.0	41.1	37.8	41.1	21.3
Queue Delay	1.8	0.0	0.0	6.4	43.6	39.7
Total Delay	98.1	10.0	41.1	44.1	84.7	61.0
LOS	F	В	D	D	F	Е
Approach Delay	95.8			44.0	71.1	
Approach LOS	F			D	Е	
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	20					
Offset: 0 (0%), Referenced		NIMT and	16.SETI	Start of	Green	
Natural Cycle: 90	u to priase 2.	INVVI CIIC	JU.OLIL,	otal tol	Oleen	
	oordinated					
Control Type: Actuated-Co	oordinated					
Maximum v/c Ratio: 1.10	70.0				. f C .	100 5
Intersection Signal Delay:					ntersectio	
Intersection Capacity Utiliz	zation 93.8%			Į!	CU Level	of Service
Analysis Period (min) 15						
Splits and Phases: 6: D	uncan Plains	& Clove	r Vallev N	Ì		
The art of the control of the contro	arroarr rame	<i>-</i> -	i vanoj i	•	N.	
Ø2 (R)					0	04
59 s					61s	4 1
√					VI VI	
■ Ø6 (R)					_	
59 s						

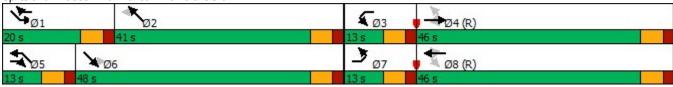
	-	•	•	1	/	
Lane Group	EBT	WBL	WBT	NBL	NBR	
Lane Configurations	↑ ↑	ሻሻ	^	7	77	
Traffic Volume (vph)	1656	511	1530	115	707	
Future Volume (vph)	1656	511	1530	115	707	
Turn Type	NA	Prot	NA	Prot	pm+ov	
Protected Phases	4	3	8	2	3	
Permitted Phases					2	
Detector Phase	4	3	8	2	3	
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	24.0	13.0	24.0	24.0	13.0	
Total Split (s)	63.0	29.0	92.0	28.0	29.0	
Total Split (%)	52.5%	24.2%	76.7%	23.3%	24.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lag	Lead			Lead	
Lead-Lag Optimize?	Yes	Yes			Yes	
Recall Mode	None	None	None	C-Max	None	
Act Effct Green (s)	57.6	22.4	86.0	22.0	50.4	
Actuated g/C Ratio	0.48	0.19	0.72	0.18	0.42	
v/c Ratio	1.12	0.87	0.66	0.39	0.65	
Control Delay	93.4	37.2	15.3	47.1	30.5	
Queue Delay	0.5	0.0	21.5	0.0	0.6	
Total Delay	93.9	37.2	36.8	47.1	31.1	
LOS	F	D	D	D	С	
Approach Delay	93.9		36.9	33.3		
Approach LOS	F		D	С		
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 120	n					
Offset: 0 (0%), Referenced		MRI and	6. Start	of Groon		
Natural Cycle: 110	to priase 2.	INDL allu	u., Start (Ji Gittil		
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 1.12	orumateu					
	57 Q			l.	ntersectio	100·E
Intersection Signal Delay: 5						
Intersection Capacity Utiliza	au011 04.4%			10	JU Level	of Service E
Analysis Period (min) 15						
Splits and Phases: 8: Clo	over Valley	S & US 6	2			
• (an (n)	1			93-		
7 Ø2 (R)	∀ (′	2 3			- Ø4	
28 S	29 S				63 s	

	>	-	-	~	•	*_	\	×	1	×	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	NWL	NWT	
Lane Configurations	*	^	7	7	^	7	7	13	7	1→	
Traffic Volume (vph)	205	1460	150	181	1139	438	381	521	113	528	
Future Volume (vph)	205	1460	150	181	1139	438	381	521	113	528	
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+pt	NA	
Protected Phases	7	4	5	3	8	1	1	6	5	2	
Permitted Phases	4		4	8		8	6		2		
Detector Phase	7	4	5	3	8	1	1	6	5	2	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	13.0	24.0	13.0	13.0	24.0	13.0	24.0	
Total Split (s)	13.0	46.0	13.0	13.0	46.0	20.0	20.0	48.0	13.0	41.0	
Total Split (%)	10.8%	38.3%	10.8%	10.8%	38.3%	16.7%	16.7%	40.0%	10.8%	34.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lead	Lag	Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	None	C-Max	None	None	None	None	None	
Act Effct Green (s)	47.0	40.0	53.0	47.0	40.0	60.0	55.0	42.0	42.0	35.0	
Actuated g/C Ratio	0.39	0.33	0.44	0.39	0.33	0.50	0.46	0.35	0.35	0.29	
v/c Ratio	1.35	1.35	0.21	1.19	1.05	0.57	1.54	1.14	0.75	1.45	
Control Delay	197.3	194.7	8.0	157.7	79.5	20.3	287.0	106.7	50.0	243.9	
Queue Delay	1.4	0.0	0.0	0.0	0.0	0.3	0.0	0.6	0.0	0.0	
Total Delay	198.7	194.7	8.0	157.7	79.5	20.6	287.0	107.3	50.0	243.9	
LOS	F	F	Α	F	Е	С	F	F	D	F	
Approach Delay		179.8			72.9			172.5		217.2	
Approach LOS		F			E			F		F	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 150


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.54

Intersection Signal Delay: 149.5 Intersection LOS: F
Intersection Capacity Utilization 130.3% ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 3: Duncan Plains & US 62

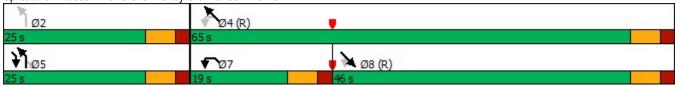
	ሻ	۴	×	>	•	×	
Lane Group	NBL	NBR	SET	SER	NWL	NWT	Ø2
Lane Configurations	7	7	↑	7	7	^	
Traffic Volume (vph)	179	347	502	121	245	567	
Future Volume (vph)	179	347	502	121	245	567	
Turn Type	pm+pt	Perm	NA	pm+ov	pm+pt	NA	
Protected Phases	5		8	5	7	4	2
Permitted Phases	2	5		8	4		
Detector Phase	5	5	8	5	7	4	
Switch Phase							
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	13.0	13.0	20.0	13.0	13.0	20.0	20.0
Total Split (s)	25.0	25.0	46.0	25.0	19.0	65.0	25.0
Total Split (%)	27.8%	27.8%	51.1%	27.8%	21.1%	72.2%	28%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag			Lag		Lead		
Lead-Lag Optimize?			Yes		Yes		
Recall Mode	None	None	C-Max	None	None	C-Max	Max
Act Effct Green (s)	19.0	19.0	42.2	67.2	59.0	59.0	
Actuated g/C Ratio	0.21	0.21	0.47	0.75	0.66	0.66	
v/c Ratio	0.52	0.60	0.62	0.11	0.56	0.50	
Control Delay	37.3	7.8	22.4	0.9	11.2	9.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.3	7.8	22.4	0.9	11.2	9.8	
LOS	D	Α	С	Α	В	Α	
Approach Delay	17.9		18.2			10.2	
Approach LOS	В		В			В	
Internación Comercia							

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 4:NWTL and 8:SET, Start of Green

Natural Cycle: 60


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 14.8 Intersection LOS: B
Intersection Capacity Utilization 64.9% ICU Level of Service C

Analysis Period (min) 15

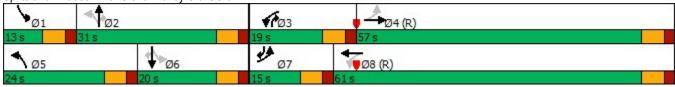
Splits and Phases: 6: Clover Valley S & Duncan Plains

	•	-	1	•	1	†	1	1	↓	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	↑ ↑	7	†	7	↑	7	7	↑	7	
Traffic Volume (vph)	178	1479	278	1396	115	349	358	20	233	133	
Future Volume (vph)	178	1479	278	1396	115	349	358	20	233	133	
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	pm+ov	pm+pt	NA	pm+ov	
Protected Phases	7	4	3	8	5	2	3	1	6	7	
Permitted Phases	4		8		2		2	6		6	
Detector Phase	7	4	3	8	5	2	3	1	6	7	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	24.0	24.0	24.0	13.0	13.0	20.0	13.0	
Total Split (s)	15.0	57.0	19.0	61.0	24.0	31.0	19.0	13.0	20.0	15.0	
Total Split (%)	12.5%	47.5%	15.8%	50.8%	20.0%	25.8%	15.8%	10.8%	16.7%	12.5%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lead	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	60.0	51.0	68.0	55.0	37.7	30.2	49.2	27.1	20.1	35.1	
Actuated g/C Ratio	0.50	0.42	0.57	0.46	0.31	0.25	0.41	0.23	0.17	0.29	
v/c Ratio	0.98	1.14	1.18	0.95	0.44	0.81	0.55	0.11	0.81	0.26	
Control Delay	89.2	103.4	138.1	31.9	35.6	58.3	24.0	30.6	69.8	8.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	89.2	103.4	138.1	31.9	35.6	58.3	24.0	30.6	69.8	8.0	
LOS	F	F	F	С	D	Е	С	С	Е	Α	
Approach Delay		101.9		49.4		40.2			46.5		
Approach LOS		F		D		D			D		

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 145


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.18 Intersection Signal Delay: 67.2 Intersection Capacity Utilization 103.2%

Intersection LOS: E ICU Level of Service G

Analysis Period (min) 15

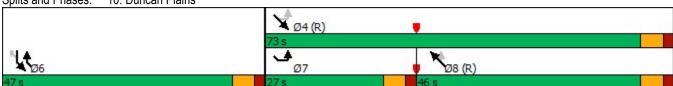
8: Clover Valley S & US 62 Splits and Phases:

	Į,	₩ J	•	×	×	*
Lane Group	SBL	SBR	SEL	SET	NWT	NWR
Lane Configurations	7	7	7	^	^	7
Traffic Volume (vph)	579	267	366	482	545	626
Future Volume (vph)	579	267	366	482	545	626
Turn Type	Prot	Perm	pm+pt	NA	NA	pm+ov
Protected Phases	6		7	4	8	6
Permitted Phases		6	4			8
Detector Phase	6	6	7	4	8	6
Switch Phase						
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0
Minimum Split (s)	20.0	20.0	13.0	20.0	20.0	20.0
Total Split (s)	47.0	47.0	27.0	73.0	46.0	47.0
Total Split (%)	39.2%	39.2%	22.5%	60.8%	38.3%	39.2%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Recall Mode	None	None	None	C-Max	C-Max	None
Act Effct Green (s)	41.0	41.0	67.0	67.0	40.0	87.0
Actuated g/C Ratio	0.34	0.34	0.56	0.56	0.33	0.72
v/c Ratio	1.04	0.42	1.07	0.50	0.95	0.58
Control Delay	86.9	9.0	101.9	18.4	37.5	13.1
Queue Delay	24.2	0.0	0.0	0.9	16.5	1.9
Total Delay	111.1	9.0	101.9	19.3	54.0	15.0
LOS	F	Α	F	В	D	В
Approach Delay	78.9			55.0	33.2	
Approach LOS	Е			D	С	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:SETL and 8:NWT, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.07

Intersection Signal Delay: 53.1 Intersection LOS: D
Intersection Capacity Utilization 96.0% ICU Level of Service F

Analysis Period (min) 15

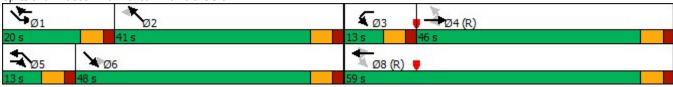
Splits and Phases: 10: Duncan Plains

	>	-	-	~	•	*_	\	×	*	×	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	NWL	NWT	
Lane Configurations	7	^	7	7	^	7	7	13	7	1→	
Traffic Volume (vph)	24	1460	150	181	1139	438	381	521	113	528	
Future Volume (vph)	24	1460	150	181	1139	438	381	521	113	528	
Turn Type	Perm	NA	pm+ov	pm+pt	NA	pm+ov	pm+pt	NA	pm+pt	NA	
Protected Phases		4	5	3	8	1	1	6	5	2	
Permitted Phases	4		4	8		8	6		2		
Detector Phase	4	4	5	3	8	1	1	6	5	2	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	24.0	24.0	13.0	13.0	24.0	13.0	13.0	24.0	13.0	24.0	
Total Split (s)	46.0	46.0	13.0	13.0	59.0	20.0	20.0	48.0	13.0	41.0	
Total Split (%)	38.3%	38.3%	10.8%	10.8%	49.2%	16.7%	16.7%	40.0%	10.8%	34.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lag	Lag	Lead	Lead		Lead	Lead	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	
Recall Mode	C-Max	C-Max	None	None	C-Max	None	None	None	None	None	
Act Effct Green (s)	40.0	40.0	53.0	53.0	53.0	73.0	55.0	42.0	42.0	35.0	
Actuated g/C Ratio	0.33	0.33	0.44	0.44	0.44	0.61	0.46	0.35	0.35	0.29	
v/c Ratio	0.35	1.35	0.21	1.19	0.79	0.48	1.54	0.90	0.71	1.45	
Control Delay	46.9	194.7	7.4	157.1	33.4	12.4	287.3	55.9	44.1	243.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	46.9	194.7	7.4	157.1	33.4	12.4	287.3	55.9	44.1	243.9	
LOS	D	F	Α	F	С	В	F	Е	D	F	
Approach Delay		175.3			40.9			151.7		216.4	
Approach LOS		F			D			F		F	

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 150


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.54

Intersection Signal Delay: 131.6 Intersection LOS: F Intersection Capacity Utilization 130.3% ICU Level of Service H

Analysis Period (min) 15

3: Duncan Plains & US 62 Splits and Phases:

Synchro 11 Report 06/26/2024

	ሻ	†	L.	Ţ	•	×	>	•	×	*	
Lane Group	NBL	NBT	SBL	SBT	SEL	SET	SER	NWL	NWT	NWR	
Lane Configurations	*	13	7	1	7	^	7	1	↑	7	
Traffic Volume (vph)	179	529	448	376	19	482	121	10	545	444	
Future Volume (vph)	179	529	448	376	19	482	121	10	545	444	
Turn Type	pm+pt	NA	pm+pt	NA	Perm	NA	pm+ov	Perm	NA	pm+ov	
Protected Phases	5	2	1	6		8	5		4	1	
Permitted Phases	2		6		8		8	4		4	
Detector Phase	5	2	1	6	8	8	5	4	4	1	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	20.0	20.0	20.0	20.0	20.0	13.0	20.0	20.0	20.0	
Total Split (s)	16.0	34.0	24.0	42.0	32.0	32.0	16.0	32.0	32.0	24.0	
Total Split (%)	17.8%	37.8%	26.7%	46.7%	35.6%	35.6%	17.8%	35.6%	35.6%	26.7%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag			Lead			Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes			Yes			Yes	
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	37.2	28.0	52.0	36.8	26.0	26.0	41.2	26.0	26.0	50.0	
Actuated g/C Ratio	0.41	0.31	0.58	0.41	0.29	0.29	0.46	0.29	0.29	0.56	
v/c Ratio	0.43	1.01	1.11	0.57	0.26	0.97	0.17	0.13	1.10	0.52	
Control Delay	13.7	73.6	103.7	24.3	34.2	66.4	3.1	28.7	101.5	12.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.7	73.6	103.7	24.3	34.2	66.4	3.1	28.7	101.5	12.3	
LOS	В	Е	F	С	С	Е	Α	С	F	В	
Approach Delay		58.6		66.3		53.1			61.1		
Approach LOS		Е		Е		D			Е		

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.11

Intersection Signal Delay: 60.3 Intersection LOS: E Intersection Capacity Utilization 97.0% ICU Level of Service F

Analysis Period (min) 15

6: Clover Valley S & Duncan Plains Splits and Phases:

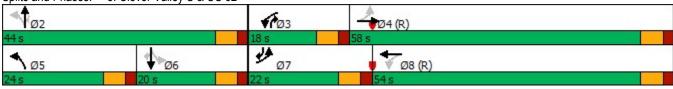
Synchro 11 Report 06/26/2024

	٠	→	•	+	1	†	-	-	ļ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	†	*	↑ ↑	*	†	7	1	↑	7	
Traffic Volume (vph)	292	1364	234	1310	115	416	291	20	277	220	
Future Volume (vph)	292	1364	234	1310	115	416	291	20	277	220	
Turn Type	pm+pt	NA	pm+pt	NA	pm+pt	NA	pm+ov	Perm	NA	pm+ov	
Protected Phases	7	4	3	8	5	2	3		6	7	
Permitted Phases	4		8		2		2	6		6	
Detector Phase	7	4	3	8	5	2	3	6	6	7	
Switch Phase											
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	13.0	24.0	13.0	24.0	24.0	24.0	13.0	20.0	20.0	13.0	
Total Split (s)	22.0	58.0	18.0	54.0	24.0	44.0	18.0	20.0	20.0	22.0	
Total Split (%)	18.3%	48.3%	15.0%	45.0%	20.0%	36.7%	15.0%	16.7%	16.7%	18.3%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lead	Lag	Lead	Lag	Lead		Lead	Lag	Lag	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max	None	C-Max	None	None	None	None	None	None	
Act Effct Green (s)	68.0	52.0	60.0	48.0	38.0	38.0	56.0	20.0	20.0	42.0	
Actuated g/C Ratio	0.57	0.43	0.50	0.40	0.32	0.32	0.47	0.17	0.17	0.35	
v/c Ratio	1.07	1.03	1.06	1.02	0.52	0.77	0.42	0.17	0.97	0.38	
Control Delay	105.2	66.1	111.9	48.1	38.5	47.0	21.3	48.8	95.5	16.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	105.2	66.1	111.9	48.1	38.5	47.0	21.3	48.8	95.5	16.0	
LOS	F	Е	F	D	D	D	С	D	F	В	
Approach Delay		72.6		57.7		36.8			59.8		
Approach LOS		Е		E		D			E		

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 4:EBTL and 8:WBTL, Start of Green

Natural Cycle: 145


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.07 Intersection Signal Delay: 59.8 Intersection Capacity Utilization 101.1%

Intersection LOS: E ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 8: Clover Valley S & US 62

Assume: US 62 already widened to 5 lanes

Assume urban design for relocated Clover Valley South

Assume rural design for relocated Clover Valley North (CV-2 portion)

100 foot RW for relocated Clover Valley Road

120 foot RW of relocated Clover Valley Road in vicinity of US 62

80 foot RW for improved existing Clover Valley Road or Duncan Plains Road

ms consultants, inc.

\$300 Rural roadway widening/reconstruction (per lane-foot) \$350 Suburban new roadway (per lane-foot)

\$ 150,000 Traffic signal cost

								30%		15%	8%		Right-of-W	ay				
County Li	ne Road Improvements - South	Length	# of Lanes	Unit Cost	9	Subtotal	Co	ntingency	Eng	gineering	CA/CI	Total	Length	New width	New Area	Cost/Acre	Tot	tal Cost
	New alignment - 5 lanes	800	5	\$350	\$	1,400,000	\$	420,000	\$	210,000	\$ 110,000	\$ 2,140,000	800	120	2.20	\$ 300,000	\$ (660,00
	New alignment - 3 lanes	3200	3	\$350	\$	3,360,000	\$	1,010,000	\$	500,000	\$ 270,000	\$ 5,140,000	3200	100	7.35	\$ 300,000	\$ 2,3	200,000
	Existing roadway tie-in	500	2	\$300	\$	300,000	\$	90,000	\$	50,000	\$ 20,000	\$ 460,000	500	50	0.57	\$ 300,001	\$:	170,000
	cul-de-sac	250	2	\$300	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000	250	20	0	\$ 300,000	\$	30,000
	structure over Kiber Run	50	60	\$150	\$	450,000	\$	140,000	\$	70,000	\$ 40,000	\$ 700,000						
	structure over Kiber Run	50	60	\$150	\$	450,000	\$	140,000	\$	70,000	\$ 40,000	\$ 700,000						
	structure over Kiber Run	50	40	\$150	\$	300,000	\$	90,000	\$	50,000	\$ 20,000	\$ 460,000						
County Li	ne Road Improvements - Middle																	
	New alignment - 5 lanes	900	5	\$350	\$	1,580,000	\$	470,000	\$	240,000	\$ 130,000	\$ 2,420,000	900	120	2.48	\$ 300,000	\$ 7	740,000
	New alignment - 4 lanes	700	4	\$350	\$	980,000	\$	290,000	\$	150,000	\$ 80,000	\$ 1,500,000	700	100	1.61	\$ 300,000	\$ 4	480,000
	Traffic signal at US 62	1	1	\$150,000	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000						
Duncan P	lains Road @ existing Clover Valley Road (nort	h)																
	Reconstruct DP for turn lanes between CV and CV	800	3	\$300	\$	720,000	\$	220,000	\$	110,000	\$ 60,000	\$ 1,110,000	800	20	0.37	\$ 300,000	\$:	110,000
	Westbound right turn lane	400	1	\$300	\$	120,000	\$	40,000	\$	20,000	\$ 10,000	\$ 190,000	400	20	0.18	\$ 300,000	\$	60,000
	Turn lanes on CV north leg	400	1	\$300	\$	120,000	\$	40,000	\$	20,000	\$ 10,000	\$ 190,000	400	20	0.18	\$ 300,001	\$	60,000
	Traffic signal at exist Clover Valley	1	1	\$150,000	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000						
	structure over Kiber Run	50	50	\$150	\$	375,000	\$	110,000	\$	60,000	\$ 30,000	\$ 575,000						
Duncan P	lains Road @ relocated Clover Valley Road																	
	Eastbound right turn lane	400	1	\$300	\$	120,000	\$	40,000	\$	20,000	\$ 10,000	\$ 190,000	400	40	0.37	\$ 300,000	\$:	110,000
	Reconstruct for turn lane tapers	500	2	\$300	\$	300,000	\$	90,000	\$	50,000	\$ 20,000	\$ 460,000	500	10	0.11	\$ 300,000	\$	30,000
	Traffic signal at relocated Clover Valley	1	1	\$150,000	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000						

Construction Cost \$ 17,155,000 Right-of-Way Cost \$ 4,650,000

Total Project Cost including R/W
Alternative CV-1 \$ 21,810,000

Assume: US 62 already widened to 5 lanes

Assume urban design for relocated Clover Valley South

Assume rural design for relocated Clover Valley North (CV-2 portion)

100 foot RW for relocated Clover Valley Road

120 foot RW of relocated Clover Valley Road in vicinity of US 62

80 foot RW for improved existing Clover Valley Road

						30%		15%	8%	
County Line Road Improvements - South	Length	# of Lanes	Unit Cost	 Subtotal	Co	ontingency	Er	ngineering	CA/CI	Total
New alignment - 5 lanes	800	5	\$350	\$ 1,400,000	\$	420,000	\$	210,000	\$ 110,000	\$ 2,140,000
New alignment - 3 lanes	3200	3	\$350	\$ 3,360,000	\$ /	1,010,000	\$	500,000	\$ 270,000	\$ 5,140,000
Existing roadway tie-in	500	2	\$300	\$ 300,000	\$	90,000	\$	50,000	\$ 20,000	\$ 460,000
cul-de-sac	250	2	\$300	\$ 150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000
structure over Kiber Run	50	60	\$150	\$ 450,000	\$	140,000	\$	70,000	\$ 40,000	\$ 700,000
structure over Kiber Run	50	60	\$150	\$ 450,000	\$	140,000	\$	70,000	\$ 40,000	\$ 700,000
structure over Kiber Run	50	40	\$150	\$ 300,000	\$	90,000	\$	50,000	\$ 20,000	\$ 460,000
County Line Road Improvements - Middle										
New alignment - 5 lanes	900	5	\$350	\$ 1,580,000	\$	470,000	\$	240,000	\$ 130,000	\$ 2,420,000
New alignment - 4 lanes	700	4	\$350	\$ 980,000	\$	290,000	\$	150,000	\$ 80,000	\$ 1,500,000
Traffic signal at US 62	1	1	\$150,000	\$ 150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000
County Line Road Improvements - North of Duncan Pl	lains									
New alignment - 3 lanes	500	3	\$300	\$ 450,000	\$	140,000	\$	70,000	\$ 40,000	\$ 700,000
New alignment - 2 lanes	2000	2	\$300	\$ 1,200,000	\$	360,000	\$	180,000	\$ 100,000	\$ 1,840,000
Existing roadway - tie in	500	2	\$300	\$ 300,000	\$	90,000	\$	50,000	\$ 20,000	\$ 460,000
cul-de-sac	250	2	\$300	\$ 150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000
Duncan Plains Road @ relocated Clover Valley Road										
Reconstruct for turn lanes @ relocated CV	700	4	\$300	\$ 840,000	\$	250,000	\$	130,000	\$ 70,000	\$ 1,290,000
Reconstruct for turn lane tapers	700	2	\$300	\$ 420,000	\$	130,000	\$	60,000	\$ 30,000	\$ 640,000
Traffic signal at relocated Clover Valley	1	1	\$150,000	\$ 150,000	\$	50,000	\$	20,000	\$ 10,000	\$ 230,000

\$300

\$350

150,000 Traffic signal cost

Rural roadway widening/reconstruction (per lane-foot)

Suburban new roadway (per lane-foot)

Total Project Cost including R/W
Alternative CV-2 \$ 25,770,000

Assume: US 62 already widened to 5 lanes

120 foot RW of future existing US 62 R/W

80 foot RW for improved existing Clover Valley Road or Duncan Plains Road

\$300 Rural roadway widening/reconstruction (per lane-foot) \$350 140 foot RW for widened US 62 btw CV and DP

\$ 150,000 Traffic signal cost

Suburban new roadway (per lane-foot)

ms consultants, inc. engineers, architects, planners
--

							30%		15%	8%			Ri	ght-of-W	ay				
County Line Road Improvements - South		# of Lanes	Unit Cost	Subtotal		Contingency		Engineering		CA/CI		Total	L		New width	New Area	Cost/Acre		
Northbound RT lane	500	1	\$300	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$	230,000		500	10	0.11	\$ 300,000	:	5
Resurfacing	500	2	\$20	\$	20,000	\$	10,000	\$	3,000	\$ 2,000	\$	35,000		500		0.00	\$ 300,000	:	Ş
US 62 Improvements (beyond 5-lane cross-section)																			
Approach taper west of CV	1000	5.5	\$350	\$	1,930,000	\$	580,000	\$	290,000	\$ 150,000	\$	2,950,000		1000	10	0.23	\$ 300,000	:	5
Nine-lane section - CV to DP	500	9	\$350	\$	1,580,000	\$	470,000	\$	240,000	\$ 130,000	\$	2,420,000		500	20	0.23	\$ 300,000	:	\$
Westbound LTL @ Duncan Plains	400	1	\$350	\$	140,000	\$	40,000	\$	20,000	\$ 10,000	\$	210,000		400	20	0.18	\$ 300,000	:	ò
Approach taper east of DP	1000	5.5	\$350	\$	1,930,000	\$	580,000	\$	290,000	\$ 150,000	\$	2,950,000		1000	10	0.23	\$ 300,000	:	
Resurfacing	2500	5	\$20	\$	250,000	\$	80,000	\$	40,000	\$ 20,000	\$	390,000							
Traffic signal upgrades	2	1	\$150,000	\$	300,000	\$	90,000	\$	50,000	\$ 20,000	\$	460,000							
structure widening over Kiber Run	50	40	\$150	\$	300,000	\$	90,000	\$	50,000	\$ 20,000	\$	460,000							
incan Plains Road Improvements																			
Approach taper west of CV	500	1	\$300	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$	230,000		500	20	0.23	\$ 300,000	:	\$
Eastbound LT lane	300	1	\$300	\$	90,000	\$	30,000	\$	10,000	\$ 7,000	\$	137,000		300	20	0.14	\$ 300,000	:	ŝ
Five-lane section - CV to 62	500	5	\$350	\$	880,000	\$	260,000	\$	130,000	\$ 70,000	\$	1,340,000		500	40	0.46	\$ 300,000	:	\$
Westbound RT lane at 62	300	1	\$300	\$	90,000	\$	30,000	\$	10,000	\$ 10,000	\$	140,000		300	20	0.14	\$ 300,000	:	Ş
Resurfacing	1000	2.5	\$20	\$	50,000	\$	20,000	\$	10,000	\$ 4,000	\$	84,000							
Traffic signal at exist Clover Valley	1	1	\$150,000	\$	150,000	\$	50,000	\$	20,000	\$ 10,000	\$	230,000							
structure over Kiber Run	50	75	\$150	\$	562,500	\$	170,000	\$	80,000	\$ 50,000	\$	862,500							
lover Valley Road Improvements - North																			
Southbound right turn lane	400	1	\$300	\$	120,000	\$	40,000	\$	20,000	\$ 10,000	\$	190,000		400	20	0.18	\$ 300,000	:	\$

Construction Cost \$ 13,088,500 Right-of-Way Cost \$ 650,000

Total Project Cost including R/W Improved No-Build \$ 13,740,000