

ABBREVIATED SAFETY STUDY

MAD-665-3.28
SR 665 and Spring Valley
Rd Intersection
2021 Suburban
Intersection Rank \#378

## Table of Contents

Purpose and Need ..... 2
Existing Conditions ..... 2
Crash Trends ..... 6
Capacity ..... 7
Recommendations ..... 7
Short Term ..... 7
Long Term ..... 8
Appendix ..... 9
ECAT
Crash Data
Signal Warrant
Capcity Analysis

## Purpose and Need

This study analyzes the intersection of SR 665 and Spring Valley Rd in Madison County. The purpose of this report is to study this location and analyze the crashes to determine what, if any, actions can be taken to reduce the high percentage of angle crashes that have occurred in the study area.

## Existing Conditions

The intersection of SR 665 and Spring Valley Rd is a rural 4 legged intersection in central Madison County, about 3 miles east of London. SR 665 is a 2 lane, undivided roadway classified as a rural major collector with a 55 mph speed limit. Spring Valley Rd is a 2 lane, undivided roadway classified as a rural major collector north of the intersection and a rural minor collector south of the intersection with a 55 mph speed limit.

Currently, Spring Valley Rd traffic stops, with dual stop signs and right side LED signs on all approaches. Dual stop ahead signs also exist on both Galena Rd approaches. Daily traffic volumes are around 1,624 on SR 655, and 924 on spring valley road. A turning movement count from 2023 and traffic forecast is available in the appendix.

Most of the land near the 665 intersection is rural, with a farm on the northeast corner and farmland on the other three corners. The nearest driveways are about 300 ft . north, 325 feet west, and 150 ft . east of the intersection.

Existing safety improvements at this intersection include:

- Dual stops and cross traffic does not stop plaques in 2010
- Dual stop ahead warning signs
- LED stops on both approaches
- In 2020, abbreviated safety funds were used to purchase a small piece of right of way on the southeast corner. This removed a fence that was affecting sight distance. The stop signs on the south leg were also moved up, and a field drive was relocated.


Figure 1 Aerial View


Figure 2 Northbound Approach


Figure 3 Southbound Approach


Figure 4 Eastbound Approach


Figure 5 Westbound Approach


Figure 6 Looking east Post Abbreviated funding to remove fence

## Crash Trends

23 crashes were reported in this area from 2018 to 2022, with 17 involving injuries. Of the 17, 5 were serious injuries. Of these crashes, 22 were angle crashes and one was a left turn crash. These crashes were spread across the approaches, with 8 involving eastbound drivers.

About $80 \%$ of the crashes occurred in the afternoon and evening hours. The all but 2 crashes occurred in dry conditions. Crashes spread fairly evenly through the year and days of the week. There was a slight spike in winter months and on Wednesdays- but nothing significant. After LED stops and fence removal to improve sight distance around 2020, crashes did not drop off, suggesting that short term improvements did not solve the crash problem. NB and WB crashes were 4 in 2018, 2 in 2019, 1 in 2020, 4 in 2021, and 0 in 2022. There has been 1 serious injury crash every year from 2018-2022.

Full crash data is available in the appendix.


Figure 7 Collision Diagram

## Capacity

Both roadways are lower volume. AWSC would work capacity wise at LOS A opening and LOS B design year. A roundabout would operate at LOS A opening and LOS A design year.

## Recommendations

## Short Term

Maintain all existing signs. All Way stop could be considered, but it's not preferred for reasons detailed above. Other short-term signage and sight distance improvements have already been implemented. London is off to the west about 2.5 miles, but to the east there are no stops on 665 until Darbydale, which is 10 miles. For this reason, the county engineer is
concerned about driver expectation with an All-Way Stop. Additional signage upgrades have been made to no avail, so it's not guaranteed that an isolated, rural all way stop would help here. Additionally, it would be cheaper to build a roundabout now, rather than later. We've already completed a project to address site distance here.

## Long Term

Install a roundabout at the intersection. This would significantly reduce the angle and left turn crashes, which account for $100 \%$ of the crashes at this intersection.


FIGURE 8 CONCEPT SKETCH


#### Abstract

Appendix Crash Data






Return on Investment (Safety Benefits and Project Investments)


|  | Project Safety Performance Report |  |  |
| :---: | :---: | :---: | :---: |
| Wr | General Information |  |  |
| Project Name | MAD-665 at Spring Valley | Contact Email |  |
| Project Description |  | Contact Phone |  |
| Reference Number |  | Date Performed |  |
| Analyst |  | Analysis Year |  |
| Agency/Company |  |  |  |

Summary of Anticipated Safety Performance of the Project (average crashes/year)


| Project Summary Results (Without Animal Crashes) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | KA | B | C | 0 | Total |
| $\mathbf{N}_{\text {predicted }}$ - Existing Conditions | 0.2117 | 0.5133 | 0.3419 | 1.8371 | 2.9040 |
| $\mathbf{N}_{\text {expected }}$ - Existing Conditions | 0.3063 | 0.7423 | 0.4943 | 1.6422 | 3.1851 |
| $\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| $\mathrm{N}_{\text {expected }}$ - Proposed Conditions | 0.0034 | 0.0277 | 0.0340 | 0.8176 | 0.8827 |







| Summary by Crash Type |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Crash Type | Existing |  |  | Proposed |
|  | Predicted Crash Frequency | Expected Crash Frequency | PSI | Predicted Crash Frequency |
| Unknown | 0.0118 | 0.0120 |  | 0.0255 |
| Head On | 0.0249 | 0.0314 |  | 0.0007 |
| Rear End | 0.6206 | 0.6613 |  | 0.1332 |
| Backing | 0.1168 | 0.1077 |  | 0.0083 |
| Sideswipe - Meeting | 0.0844 | 0.0942 |  | 0.0000 |
| Sideswipe - Passing | 0.1312 | 0.1341 |  | 0.2780 |
| Angle | 1.1082 | 1.2872 |  | 0.2489 |
| Parked Vehicle | 0.1033 | 0.0985 |  | 0.0000 |
| Pedestrian | 0.0141 | 0.0193 |  | 0.0007 |
| Animal | 0.0000 | 0.0000 |  | 0.0090 |
| Train | 0.0005 | 0.0007 |  | 0.0000 |
| Pedalcycles | 0.0107 | 0.0139 |  | 0.0007 |
| Other Non-Vehicle | 0.0002 | 0.0003 |  | 0.0000 |
| Fixed Object | 0.4871 | 0.5122 |  | 0.0892 |
| Other Object | 0.0170 | 0.0163 |  | 0.0000 |
| Overturning | 0.0293 | 0.0364 |  | 0.0007 |
| Other Non-Collision | 0.0385 | 0.0379 |  | 0.0172 |
| Left Turn | 0.1054 | 0.1217 |  | 0.0192 |
| Right Turn | 0.0000 | 0.0000 |  | 0.0604 |

OhiO Defarimeni uf TRANSPORTATION

MAD-665 at Spring Valley Rd (2018-22)
Crash Summary Sheet

| Fatalities Serious Injuries Other Injuries | 0 9 20 |  |
| :---: | :---: | :---: |
| Crash Severity | Crashes | \% |
| (2) Serious Injury Suspected | 5 | 21.74\% |
| (3) Minor Injury Suspected | 5 | 21.74\% |
| (4) Injury Possible | 7 | 30.43\% |
| (5) PDO/No Injury | 6 | 26.09\% |
| Grand Total | 23 | 100.00\% |


| Crashes Per Year <br> Fatal and All Injury Crashes <br> Percent Injury <br> Equivalent PDO Index Value | 4.60 |  |
| :---: | :---: | :---: |
|  | 17 |  |
|  | 73.9\% |  |
|  | 13.01 |  |
| Year | Crashes | \% |
| 2018 | 5 | 21.74\% |
| 2019 | 5 | 21.74\% |
| 2020 | 1 | 4.35\% |
| 2021 | 8 | 34.78\% |
| 2022 | 4 | 17.39\% |
| Grand Total | 23 | 100.00\% |


| Day of Week | Crashes | $\%$ |
| :--- | ---: | ---: |
| (1) Sunday | 1 | $4.35 \%$ |
| (2) Monday | 3 | $13.04 \%$ |
| (3) Tuesday | 5 | $21.74 \%$ |
| (4) Wednesday | 7 | $30.43 \%$ |
| (5) Thursday | 3 | $13.04 \%$ |
| (6) Friday | 2 | $8.70 \%$ |
| (7) Saturday | 2 | $8.70 \%$ |
|  | Grand Total | 23 |


| Hour of Day | Crashes | \% |
| :---: | :---: | :---: |
| 6 | 1 | 4.35\% |
| 9 | 1 | 4.35\% |
| 10 | 1 | 4.35\% |
| 11 | 2 | 8.70\% |
| 12 | 4 | 17.39\% |
| 13 | 3 | 13.04\% |
| 14 | 1 | 4.35\% |
| 15 | 3 | 13.04\% |
| 16 | 3 | 13.04\% |
| 17 | 1 | 4.35\% |
| 18 | 1 | 4.35\% |
| 19 | 1 | 4.35\% |
| 20 | 1 | 4.35\% |
| Grand Total | 23 | 100.00\% |


| Crash Type | Crashes | $\%$ |
| :--- | ---: | ---: |
| Angle | 22 | $95.65 \%$ |
| Left Turn | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| Month | Crashes | $\%$ |
| :--- | ---: | ---: |
| 2 | 4 | $17.39 \%$ |
| 3 | 1 | $4.35 \%$ |
| 4 | 2 | $8.70 \%$ |
| 5 | 2 | $8.70 \%$ |
| 6 | 1 | $4.35 \%$ |
| 7 | 3 | $13.04 \%$ |
| 9 | 1 | $4.35 \%$ |
| 10 | 2 | $8.70 \%$ |
| 11 | 3 | $13.04 \%$ |
| 12 | 4 | $17.39 \%$ |
|  |  | 23 |


| Weather Condition | Crashes | $\%$ |
| :--- | ---: | ---: |
| Clear | 12 | $52.17 \%$ |
| Cloudy | 9 | $39.13 \%$ |
| Snow | 1 | $4.35 \%$ |
| Rain | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| Road Condition | Crashes | $\%$ |
| :--- | ---: | ---: |
| Dry | 21 | $91.30 \%$ |
| Wet | 2 | $8.70 \%$ |
|  | 23 | $100.00 \%$ |


| Light Condition | Crashes | $\%$ |
| :--- | ---: | ---: |
| Daylight | 21 | $91.30 \%$ |
| Dark - Roadway Not Lighted | 2 | $8.70 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Number of Units | Crashes | $\%$ |
| :--- | ---: | ---: |
| 2 | 21 | $91.30 \%$ |
| 4 | 1 | $4.35 \%$ |
| 3 | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| ODOT Location | Crashes | $\%$ |
| :--- | ---: | ---: |
| Four-Way Intersection | 17 | $73.91 \%$ |
| Not An Intersection | 5 | $21.74 \%$ |
| Data Not Valid or Not Provided | 1 | $4.35 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Contour | Crashes | $\%$ |
| :--- | ---: | ---: |
| Straight Grade | 2 | $8.70 \%$ |
| Straight Level | 21 | $91.30 \%$ |
|  | Grand Total | 23 |
|  |  | $100.00 \%$ |


| Work Zone Related | Crashes | $\%$ |
| :--- | ---: | :---: |
| No | 23 | $100.00 \%$ |
|  | 23 | $100.00 \%$ |
|  | Grand Total |  |
|  | Crashes | $\%$ |
| Alcohol Related | 22 | $95.65 \%$ |
| No | 1 | $4.35 \%$ |
| Yes | 23 | $100.0 \%$ |


| Grand Total | 23 | $100.00 \%$ |
| :--- | ---: | ---: |
|  |  |  |
| Drug Related (Inc. Marijuana) | Crashes | $\%$ |
| No | 22 | $95.65 \%$ |
| Yes | 1 | $4.35 \%$ |
|  |  | 23 |


| Marijuana Related | Crashes | $\%$ |
| :--- | ---: | ---: |
| No | 22 | $95.65 \%$ |
| Yes | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| Older Driver (65+) | Crashes | $\%$ |
| :--- | ---: | ---: |
| No | 13 | $56.52 \%$ |
| Yes | 10 | $43.48 \%$ |
|  | 23 | $100.00 \%$ |


| Young Driver (15-25) | Crashes | $\%$ |
| :--- | ---: | :---: |
| No | 14 | $60.87 \%$ |
| Yes | 9 | $39.13 \%$ |
|  | 23 | $100.00 \%$ |


| Motorcycle Involved | Crashes | $\%$ |
| :--- | ---: | ---: |
| No | 22 | $95.65 \%$ |
| Yes | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| Unit 1 Pre-Crash Action | Crashes | $\%$ |
| :--- | ---: | ---: |
| Straight Ahead | 19 | $82.61 \%$ |
| Entering Traffic Lane | 3 | $13.04 \%$ |
| Making Left Turn | 1 | $4.35 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Unit 1 Contributing Factor | Crashes | $\%$ |
| :--- | ---: | ---: |
| Failure to Yield | 17 | $73.91 \%$ |
| Ran Stop Sign | 4 | $17.39 \%$ |
| Operating Defective Equipment | 1 | $4.35 \%$ |
| Improper Start From a Parked Position | 1 | $4.35 \%$ |
| Grand Total |  |  |


| Unit 1 Object Struck | Crashes | $\%$ |
| :--- | ---: | ---: |
| Nothing Struck | 20 | $86.96 \%$ |
| Traffic Sign Post | 1 | $4.35 \%$ |
| Ditch | 1 | $4.35 \%$ |
| Fence | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| Unit 1 Traffic Control | Crashes | $\%$ |
| :--- | ---: | ---: |
| Stop Sign | 22 | $95.65 \%$ |
| No Control | 1 | $4.35 \%$ |
|  | 23 | $100.00 \%$ |


| Unit 1 Posted Speed | Crashes | $\%$ |
| :--- | ---: | :--- |
| 55 | 23 | $100.00 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Unit 1 Direction From | Crashes | $\%$ |
| :--- | ---: | ---: |
| South | 13 | $56.52 \%$ |
| North | 7 | $30.43 \%$ |
| Northwest | 1 | $4.35 \%$ |
| West | 1 | $4.35 \%$ |
| Southeast | 1 | $4.35 \%$ |
|  | Grand Total | 23 |


| Unit 1 Direction To | Crashes | $\%$ |
| :--- | ---: | ---: |
| North | 14 | $60.87 \%$ |
| South | 7 | $30.43 \%$ |
| Southeast | 1 | $4.35 \%$ |
| Northwest | 1 | $4.35 \%$ |
|  |  | 23 |

MAD-665 at Spring Valley Rd (2018-22)

## Crash Summary Sheet

Unit 1 Summary

| Unit 1 Type | Crashes | $\%$ |
| :--- | ---: | ---: |
| Passenger Car | 11 | $47.83 \%$ |
| Sport Utility Vehicle | 5 | $21.74 \%$ |
| Pick up | 3 | $13.04 \%$ |
| Cargo Van | 2 | $8.70 \%$ |
| Motorcycle 2 Wheeled | 1 | $4.35 \%$ |
| Single Unit Truck | 1 | $4.35 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Unit 1 Special Function | Crashes | $\%$ |
| :--- | ---: | ---: |
| None | 22 | $95.65 \%$ |
| Towing | 1 | $4.35 \%$ |
|  | Grand Total | 23 |
|  |  | $100.00 \%$ |

MAD-665 at Spring Valley Rd (2018-22)
Crash Summary Sheet

Unit 2 Summary

| Unit 2 Pre-Crash Action | Crashes | $\%$ |
| :--- | ---: | ---: |
| Straight Ahead | 21 | $91.30 \%$ |
| Making Left Turn | 1 | $4.35 \%$ |
| Slowing or Stopped In Traffic | 1 | $4.35 \%$ |
| Grand Total |  | 23 |


| Unit 2 Direction From | Crashes | $\%$ |
| :--- | ---: | ---: |
| East | 13 | $56.52 \%$ |
| North | 1 | $4.35 \%$ |
| West | 9 | $39.13 \%$ |
|  | Grand Total | 23 |


| Unit 2 Type | Crashes | $\%$ |
| :--- | ---: | ---: |
| Passenger Car | 10 | $43.48 \%$ |
| Pick up | 4 | $17.39 \%$ |
| Passenger Van (minivan) | 3 | $13.04 \%$ |
| Sport Utility Vehicle | 3 | $13.04 \%$ |
| Single Unit Truck | 1 | $4.35 \%$ |
| Cargo Van | 1 | $4.35 \%$ |
| Semi-Tractor | 1 | $4.35 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Unit 2 Contributing Factor | Crashes | $\%$ |
| ---: | ---: | :---: |
| None | 23 | $100.00 \%$ |
| Grand Total | 23 | $100.00 \%$ |


| Unit 2 Direction To | Crashes | $\%$ |
| :--- | ---: | ---: |
| East | 9 | $39.13 \%$ |
| South | 2 | $8.70 \%$ |
| West | 12 | $52.17 \%$ |
|  | 23 | $100.00 \%$ |


| Unit 2 Special Function | Crashes | $\%$ |
| :--- | ---: | ---: |
| None | 21 | $91.30 \%$ |
| Other / Unknown | 1 | $4.35 \%$ |
| Farm | 1 | $4.35 \%$ |
| Grand Total | 23 | $100.00 \%$ |

MAD-665 at Spring Valley Rd (2018-22)


Crash Typ
(2) Serious Inju (3) Minor Injury (4) Injury Possil (5) PDO/No Injı Grand Total


Grand Total


MAD-665 at Spring Valley Rd (2018-22)

| Crash Summary Sheet | Crashes Per Year |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Road Condition | Total Crashes | Fatalities |  | Serious Injuries |
| Dry | 21 |  | 0 | 8 |
| Wet | 2 |  | 0 | 1 |
| Grand Total | 23 |  | 0 | 9 |

 4.60 Percent Injury 73.9\% EPDO 13.01


Total Crashes by Hour of I



Total Crashes by Weather Con


## STUDY AND ANALYSIS INFORMATION



| Traffic Volumes Obtained By: | ODOT |
| :---: | :---: |
| Analysis Date: | 5/18/2023 |
| Agency/ Company Name Performing Warrant Analysis: | ODOT District 6 |

## Analysis Information

| Data Collection Date: | $4 / 18 / 2023$ |
| ---: | :---: |
|  | Day of the Week: |
|  |  |

Is the intersection in a built-up area of an isolated community of <10,000 population?

Existing Traffic Signal at intersection: $\square$ No

Total Number of Approaches at Intersection: $\square$

## Major Street Information

Major Street Name and Route Number: SR 665

Major Street Approach Direction: | E-Bound |
| :---: |
| W-Bound |

Number of Thru Lanes on Each Major Street Approach: 1 LANE(S)
Speed Limit or 85th Percentile Speed on the Major Street*: ${ }^{\star} 55$ MPH
*Unknown assumes below 45 mph
Minor Street Information
Minor Street Name and Route Number: Spring Valley Rd

Minor Street Approach Configuration: | 1 | N-Bound |
| :---: | :---: |
| 1 | S-Bound |



Number of Thru Lanes on Each Minor Street Approach: 1 LANE(S)
Apply Right Turn Lane Reduction*:

*Right Turn Lane Reduction Shall be used for Warrants 1, 2, \& 3 for New ODOT Signals. Please refer to TEM 402-3.2 for clarification and criteria under which Right Turn Reduction is not required.

## TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS



For Warrants 1-3, new ODOT signals must be based off of $100 \%$ volume thresholds (TEM 402-3.2)

| Warrant 4, Pedestrian Volume | No |  | If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4 E of the OMUTCD. | Peak Hour <br> 4:15 PM <br> $5: 15 \mathrm{PM}$ |
| :---: | :---: | :---: | :---: | :---: |
| Warrant 5, School Crossing | No |  | N/A |  |
| Warrant 6, Coordinated Signal System | No |  | (Shall not be used as the sole warrant in the analysis) |  |
| Warrant 7, Crash Experience | Yes | No | If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection. |  |
| Warrant 8, Roadway Network | No |  | (Shall not be used as the sole warrant in the analysis) |  |
| Warrant 9, Intersection Near a Grade Crossing | No |  | Figure 4C-9 |  |
| Multi-Way Stop Warrant | No |  | May be used as an interim measure if traffic signal warrants are satisfied. |  |

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

If no warrants are satisfied, additional options may be considered:

1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.
2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The Modeling and Forecasting Section should provide the projected traffic volumes.
3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C. 05 and/or 4C. 06 but a decision is made to not install a traffic control signal. Please fill inputs on PHB Score Sheet and submit to ODOT.

Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at 100 percent local cost. Please review TEM 402-4 for details.

## Conclusion:

$\square$

## General Information

| Analyst |  | Intersection | SR 665 and Spring Valley Rd |
| :--- | :--- | :--- | :--- |
| Agency/Co. |  | Jurisdiction |  |
| Date Performed | $8 / 28 / 2023$ | East/West Street |  |
| Analysis Year | 2023 | North/South Street | SR 665 |
| Time Analyzed | 2047 AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | No Build |  |  |

Lanes

Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |
| Volume (veh/h) |  | 10 | 120 | 10 |  | 10 | 120 | 50 |  | 20 | 90 | 20 |  | 40 | 30 | 10 |
| Percent Heavy Vehicles (\%) |  | 7 |  |  |  | 7 |  |  |  | 7 | 7 | 7 |  | 7 | 7 | 7 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Critical and Follow-up Headways |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Critical Headway (sec) |  | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 | 6.5 | 6.2 |  | 7.1 | 6.5 | 6.2 |
| Critical Headway (sec) |  | 4.17 |  |  |  | 4.17 |  |  |  | 7.17 | 6.57 | 6.27 |  | 7.17 | 6.57 | 6.27 |
| Base Follow-Up Headway (sec) |  | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 | 4.0 | 3.3 |  | 3.5 | 4.0 | 3.3 |
| Follow-Up Headway (sec) |  | 2.26 |  |  |  | 2.26 |  |  |  | 3.56 | 4.06 | 3.36 |  | 3.56 | 4.06 | 3.36 |

## Delay, Queue Length, and Level of Service



## General Information

| Analyst |  | Intersection | SR 665 and Spring Valley Rd |
| :--- | :--- | :--- | :--- |
| Agency/Co. |  | Jurisdiction |  |
| Date Performed | $8 / 28 / 2023$ | East/West Street |  |
| Analysis Year | 2023 | North/South Street | SR 665 |
| Time Analyzed | 2047 PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | No Build |  |  |

Lanes

Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |  | 0 | 1 | 0 |  | 0 | 1 | 0 |
| Configuration |  |  | LTR |  |
| Volume (veh/h) |  | 10 | 150 | 30 |  | 30 | 190 | 60 |  | 20 | 50 | 20 |  | 80 | 90 | 10 |
| Percent Heavy Vehicles (\%) |  | 7 |  |  |  | 7 |  |  |  | 7 | 7 | 7 |  | 7 | 7 | 7 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Critical and Follow-up Headways |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Critical Headway (sec) |  | 4.1 |  |  |  | 4.1 |  |  |  | 7.1 | 6.5 | 6.2 |  | 7.1 | 6.5 | 6.2 |
| Critical Headway (sec) |  | 4.17 |  |  |  | 4.17 |  |  |  | 7.17 | 6.57 | 6.27 |  | 7.17 | 6.57 | 6.27 |
| Base Follow-Up Headway (sec) |  | 2.2 |  |  |  | 2.2 |  |  |  | 3.5 | 4.0 | 3.3 |  | 3.5 | 4.0 | 3.3 |
| Follow-Up Headway (sec) |  | 2.26 |  |  |  | 2.26 |  |  |  | 3.56 | 4.06 | 3.36 |  | 3.56 | 4.06 | 3.36 |

## Delay, Queue Length, and Level of Service



| HCS Roundabouts Report |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| General Information |  |  | Site Information |  |
| Analyst | Jerry Sanor | 5- | Intersection | SR 665 \& Spring Valley Road |
| Agency or Co. | D6 |  | E/W Street Name | SR 665 |
| Date Performed | 8/28/2023 |  | N/S Street Name | Spring valley |
| Analysis Year | 2047 |  | Analysis Time Period, hrs | 0.25 |
| Time Analyzed | PM Peak |  | Peak Hour Factor | 0.92 |
| Project Description | MAD 665 at spring valley rd |  | Jurisdiction | ODOT |

## Volume Adjustments and Site Characteristics

| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment |  |  | LTR |  |
| Volume (V), veh/h | 0 | 10 | 150 | 30 | 0 | 30 | 190 | 60 | 0 | 20 | 50 | 20 | 0 | 80 | 90 | 10 |
| Percent Heavy Vehicles, \% | 8 | 8 | 8 | 8 | 3 | 8 | 8 | 8 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 |
| Flow Rate (VpCE), pc/h | 0 | 12 | 177 | 35 | 0 | 35 | 224 | 71 | 0 | 22 | 56 | 22 | 0 | 88 | 99 | 11 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Proportion of CAVs | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Critical and Follow-Up Headway Adjustment

| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Left | Right | Bypass |
| Critical Headway, s |  | 4.9763 |  |  | 4.9763 |  |  | 4.9763 |  |  | 4.9763 |  |
| Follow-Up Headway, s |  | 2.6087 |  |  | 2.6087 |  |  | 2.6087 |  |  | 2.6087 |  |

Flow Computations, Capacity and v/c Ratios

| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Left | Right | Bypass |
| Entry Flow (Ve), pc/h |  | 224 |  |  | 330 |  |  | 100 |  |  | 198 |  |
| Entry Volume, veh/h |  | 207 |  |  | 305 |  |  | 98 |  |  | 195 |  |
| Circulating Flow (vc), pc/h | 222 |  |  | 90 |  |  | 277 |  |  | 281 |  |  |
| Exiting Flow (Vex), pc/h | 287 |  |  | 257 |  |  | 139 |  |  | 169 |  |  |
| Capacity ( $\mathrm{cpce}^{\text {) , }} \mathrm{pc} / \mathrm{h}$ |  | 1100 |  |  | 1259 |  |  | 1040 |  |  | 1036 |  |
| Capacity (c), veh/h |  | 1016 |  |  | 1162 |  |  | 1015 |  |  | 1023 |  |
| v/c Ratio (x) |  | 0.20 |  |  | 0.26 |  |  | 0.10 |  |  | 0.19 |  |

## Delay and Level of Service

| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Left | Right | Bypass |
| Lane Control Delay (d), s/veh |  | 5.5 |  |  | 5.5 |  |  | 4.4 |  |  | 5.3 |  |
| Lane LOS |  | A |  |  | A |  |  | A |  |  | A |  |
| 95\% Queue, veh |  | 0.8 |  |  | 1.1 |  |  | 0.3 |  |  | 0.7 |  |
| Approach Delay, s/veh \| LOS | 5.5 |  | A | 5.5 |  | A | 4.4 |  | A | 5.3 |  | A |
| Intersection Delay, s/veh \| LOS | 5.3 |  |  |  |  |  | A |  |  |  |  |  |

## HCS All-Way Stop Control Report

| General and Site Information |  |
| :--- | :--- |
| Analyst | Jerry Sanor |
| Agency/Co. | D6 |
| Date Performed | $8 / 28 / 2023$ |
| Analysis Year | 2023 |
| Analysis Time Period (hrs) | 0.25 |
| Time Analyzed | PM Peak |
| Project Description | 2047 PM Peak AWSC |
| Intersection | SR 655 and Spring Valley Road |
| Jurisdiction | ODOT |
| East/West Street | SR 665 |
| North/South Street | Spring Valley Road |
| Peak Hour Factor | 0.92 |

Lanes


## Turning Movement Demand Volumes

| Approach | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Volume (veh/h) | 10 | 150 | 30 | 30 | 190 | 60 | 20 | 50 | 20 | 80 | 90 | 10 |
| \% Thrus in Shared Lane |  |  |  |  |  |  |  |  |  |  |  |  |

Lane Flow Rate and Adjustments

| Approach | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | L1 | L2 | L3 |
| Configuration | LTR |  |  | LTR |  |  | LTR |  |  | LTR |  |  |
| Flow Rate, v (veh/h) | 207 |  |  | 304 |  |  | 98 |  |  | 196 |  |  |
| Percent Heavy Vehicles | 8 |  |  | 8 |  |  | 3 |  |  | 1 |  |  |
| Initial Departure Headway, hd (s) | 3.20 |  |  | 3.20 |  |  | 3.20 |  |  | 3.20 |  |  |
| Initial Degree of Utilization, x | 0.184 |  |  | 0.271 |  |  | 0.087 |  |  | 0.174 |  |  |
| Final Departure Headway, hd (s) | 5.25 |  |  | 5.09 |  |  | 5.57 |  |  | 5.50 |  |  |
| Final Degree of Utilization, $x$ | 0.301 |  |  | 0.430 |  |  | 0.151 |  |  | 0.299 |  |  |
| Move-Up Time, m (s) | 2.0 |  |  | 2.0 |  |  | 2.0 |  |  | 2.0 |  |  |
| Service Time, $\mathrm{ts}_{\text {s }}(\mathrm{s}$ ) | 3.25 |  |  | 3.09 |  |  | 3.57 |  |  | 3.50 |  |  |

Capacity, Delay and Level of Service

| Approach | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | L1 | L2 | L3 |
| Configuration | LTR |  |  | LTR |  |  | LTR |  |  | LTR |  |  |
| Flow Rate, v (veh/h) | 207 |  |  | 304 |  |  | 98 |  |  | 196 |  |  |
| Capacity (veh/h) | 686 |  |  | 708 |  |  | 646 |  |  | 655 |  |  |
| 95\% Queue Length, $\mathrm{Q}_{95}$ (veh) | 1.3 |  |  | 2.2 |  |  | 0.5 |  |  | 1.3 |  |  |
| Control Delay ( $\mathrm{s} / \mathrm{veh}$ ) | 10.5 |  |  | 11.9 |  |  | 9.6 |  |  | 10.8 |  |  |
| Level of Service, LOS | B |  |  | B |  |  | A |  |  | B |  |  |
| Approach Delay (s/veh) \| LOS | 10.5 |  | , | 11.9 |  |  | 9.6 |  | A | 10.8 |  | B |
| Intersection Delay (s/veh) \| LOS | 11.0 |  |  |  |  |  | B |  |  |  |  |  |


| HCS Roundabouts Report |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| General Information |  |  | Site Information |  |
| Analyst | Jerry Sanor | 5- | Intersection | SR 665 \& Spring Valley Road |
| Agency or Co. | D6 |  | E/W Street Name | SR 665 |
| Date Performed | 8/28/2023 |  | N/S Street Name | Spring valley |
| Analysis Year | 2047 |  | Analysis Time Period, hrs | 0.25 |
| Time Analyzed | AM Peak |  | Peak Hour Factor | 0.92 |
| Project Description | MAD 665 at spring valley rd |  | Jurisdiction | ODOT |

## Volume Adjustments and Site Characteristics

| Approach | EB |  |  |  | WB |  |  |  | NB |  |  |  | SB |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Number of Lanes ( N ) | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| Lane Assignment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Volume (V), veh/h | 0 | 10 | 120 | 0 | 0 | 50 | 120 | 10 | 0 | 20 | 90 | 20 | 0 | 40 | 30 | 0 |
| Percent Heavy Vehicles, \% | 8 | 8 | 8 | 8 | 3 | 8 | 8 | 8 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 |
| Flow Rate (VPCE), pc/h | 0 | 12 | 141 | 0 | 0 | 59 | 141 | 12 | 0 | 22 | 100 | 22 | 0 | 44 | 33 | 0 |
| Right-Turn Bypass | None |  |  |  |
| Conflicting Lanes | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  |
| Pedestrians Crossing, p/h | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  | 0 |  |  |  |
| Proportion of CAVs | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Critical and Follow-Up Headway Adjustment

| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Left | Right | Bypass |
| Critical Headway, s |  | 4.9763 |  |  | 4.9763 |  |  | 4.9763 |  |  | 4.9763 |  |
| Follow-Up Headway, s |  | 2.6087 |  |  | 2.6087 |  |  | 2.6087 |  |  | 2.6087 |  |

Flow Computations, Capacity and v/c Ratios

| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Left | Right | Bypass |
| Entry Flow ( $\mathrm{ve}_{\mathrm{e}}$, pc/h |  | 153 |  |  | 212 |  |  | 144 |  |  | 77 |  |
| Entry Volume, veh/h |  | 141 |  |  | 196 |  |  | 140 |  |  | 76 |  |
| Circulating Flow ( $\mathrm{c}_{\mathrm{c}}$, $\mathrm{pc} / \mathrm{h}$ | 136 |  |  | 134 |  |  | 197 |  |  | 222 |  |  |
| Exiting Flow (vex), pc/h | 207 |  |  | 163 |  |  | 124 |  |  | 92 |  |  |
| Capacity (cpce), pc/h |  | 1201 |  |  | 1204 |  |  | 1129 |  |  | 1100 |  |
| Capacity (c), veh/h |  | 1109 |  |  | 1111 |  |  | 1101 |  |  | 1086 |  |
| v/c Ratio (x) |  | 0.13 |  |  | 0.18 |  |  | 0.13 |  |  | 0.07 |  |

## Delay and Level of Service

| Approach | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | Left | Right | Bypass |
| Lane Control Delay (d), s/veh |  | 4.4 |  |  | 4.8 |  |  | 4.4 |  |  | 3.9 |  |
| Lane LOS |  | A |  |  | A |  |  | A |  |  | A |  |
| 95\% Queue, veh |  | 0.4 |  |  | 0.6 |  |  | 0.4 |  |  | 0.2 |  |
| Approach Delay, s/veh \| LOS | 4.4 |  | A | 4.8 |  | A | 4.4 |  | A | 3.9 |  | A |
| Intersection Delay, s/veh \| LOS | 4.5 |  |  |  |  |  | A |  |  |  |  |  |

## HCS All-Way Stop Control Report

| General and Site Information |  |
| :--- | :--- |
| Analyst | Jerry Sanor |
| Agency/Co. | D6 |
| Date Performed | $8 / 28 / 2023$ |
| Analysis Year | 2023 |
| Analysis Time Period (hrs) | 0.25 |
| Time Analyzed | AM Peak |
| Project Description | 2047 AM Peak AWSC |
| Intersection | SR 655 and Spring Valley Road |
| Jurisdiction | ODOT |
| East/West Street | SR 665 |
| North/South Street | Spring Valley Road |
| Peak Hour Factor | 0.92 |

Lanes


## Turning Movement Demand Volumes

| Approach | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Volume (veh/h) | 10 | 120 | 0 | 50 | 120 | 10 | 20 | 90 | 20 | 40 | 30 | 0 |
| \% Thrus in Shared Lane |  |  |  |  |  |  |  |  |  |  |  |  |

Lane Flow Rate and Adjustments

| Approach | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | L1 | L2 | L3 |
| Configuration | LTR |  |  | LTR |  |  | LTR |  |  | LTR |  |  |
| Flow Rate, v (veh/h) | 141 |  |  | 196 |  |  | 141 |  |  | 76 |  |  |
| Percent Heavy Vehicles | 8 |  |  | 8 |  |  | 3 |  |  | 1 |  |  |
| Initial Departure Headway, hd (s) | 3.20 |  |  | 3.20 |  |  | 3.20 |  |  | 3.20 |  |  |
| Initial Degree of Utilization, x | 0.126 |  |  | 0.174 |  |  | 0.126 |  |  | 0.068 |  |  |
| Final Departure Headway, hd (s) | 4.86 |  |  | 4.80 |  |  | 4.84 |  |  | 5.07 |  |  |
| Final Degree of Utilization, x | 0.191 |  |  | 0.261 |  |  | 0.190 |  |  | 0.107 |  |  |
| Move-Up Time, m (s) | 2.0 |  |  | 2.0 |  |  | 2.0 |  |  | 2.0 |  |  |
| Service Time, $\mathrm{ts}_{\text {s }}(\mathrm{s})$ | 2.86 |  |  | 2.80 |  |  | 2.84 |  |  | 3.07 |  |  |

Capacity, Delay and Level of Service

| Approach | Eastbound |  |  | Westbound |  |  | Northbound |  |  | Southbound |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane | L1 | L2 | L3 |
| Configuration | LTR |  |  | LTR |  |  | LTR |  |  | LTR |  |  |
| Flow Rate, v (veh/h) | 141 |  |  | 196 |  |  | 141 |  |  | 76 |  |  |
| Capacity (veh/h) | 740 |  |  | 750 |  |  | 744 |  |  | 710 |  |  |
| 95\% Queue Length, $\mathrm{Q}_{95}$ (veh) | 0.7 |  |  | 1.0 |  |  | 0.7 |  |  | 0.4 |  |  |
| Control Delay (s/veh) | 9.0 |  |  | 9.5 |  |  | 9.0 |  |  | 8.7 |  |  |
| Level of Service, LOS | A |  |  | A |  |  | A |  |  | A |  |  |
| Approach Delay (s/veh) \| LOS | 9.0 |  | A | 9.5 |  |  | 9.0 |  | A | 8.7 |  | A |
| Intersection Delay (s/veh) \| LOS | 9.1 |  |  |  |  |  | A |  |  |  |  |  |

