

ABBREVIATED SAFETY STUDY

MAD-665-3.28 SR 665 and Spring Valley Rd Intersection

2021 Suburban Intersection Rank #378

Table of Contents

Purpose and Need	2
Existing Conditions	2
Crash Trends	6
Capacity	7
Recommendations	7
Short Term	7
Long Term	8
Appendix	9
ECAT Crash Data Signal Warrant Capcity Analysis	

Purpose and Need

This study analyzes the intersection of SR 665 and Spring Valley Rd in Madison County. The purpose of this report is to study this location and analyze the crashes to determine what, if any, actions can be taken to reduce the high percentage of angle crashes that have occurred in the study area.

Existing Conditions

The intersection of SR 665 and Spring Valley Rd is a rural 4 legged intersection in central Madison County, about 3 miles east of London. SR 665 is a 2 lane, undivided roadway classified as a rural major collector with a 55 mph speed limit. Spring Valley Rd is a 2 lane, undivided roadway classified as a rural major collector north of the intersection and a rural minor collector south of the intersection with a 55 mph speed limit.

Currently, Spring Valley Rd traffic stops, with dual stop signs and right side LED signs on all approaches. Dual stop ahead signs also exist on both Galena Rd approaches. Daily traffic volumes are around 1,624 on SR 655, and 924 on spring valley road. A turning movement count from 2023 and traffic forecast is available in the appendix.

Most of the land near the 665 intersection is rural, with a farm on the northeast corner and farmland on the other three corners. The nearest driveways are about 300 ft. north, 325 feet west, and 150 ft. east of the intersection.

Existing safety improvements at this intersection include:

- Dual stops and cross traffic does not stop plaques in 2010
- Dual stop ahead warning signs
- LED stops on both approaches
- In 2020, abbreviated safety funds were used to purchase a small piece of right of way on the southeast corner. This removed a fence that was affecting sight distance. The stop signs on the south leg were also moved up, and a field drive was relocated.

FIGURE 1 AERIAL VIEW

FIGURE 2 NORTHBOUND APPROACH

FIGURE 3 SOUTHBOUND APPROACH

FIGURE 4 EASTBOUND APPROACH

FIGURE 5 WESTBOUND APPROACH

FIGURE 6 LOOKING EAST POST ABBREVIATED FUNDING TO REMOVE FENCE

Crash Trends

23 crashes were reported in this area from 2018 to 2022, with 17 involving injuries. Of the 17, 5 were serious injuries. Of these crashes, 22 were angle crashes and one was a left turn crash. These crashes were spread across the approaches, with 8 involving eastbound drivers.

About 80% of the crashes occurred in the afternoon and evening hours. The all but 2 crashes occurred in dry conditions. Crashes spread fairly evenly through the year and days of the week. There was a slight spike in winter months and on Wednesdays- but nothing significant. After LED stops and fence removal to improve sight distance around 2020, crashes did not drop off, suggesting that short term improvements did not solve the crash problem. NB and WB crashes were 4 in 2018, 2 in 2019, 1 in 2020, 4 in 2021, and 0 in 2022. There has been 1 serious injury crash every year from 2018-2022.

Full crash data is available in the appendix.

FIGURE 7 COLLISION DIAGRAM

Capacity

Both roadways are lower volume. AWSC would work capacity wise at LOS A opening and LOS B design year. A roundabout would operate at LOS A opening and LOS A design year.

Recommendations

Short Term

Maintain all existing signs. All Way stop could be considered, but it's not preferred for reasons detailed above. Other short-term signage and sight distance improvements have already been implemented. London is off to the west about 2.5 miles, but to the east there are no stops on 665 until Darbydale, which is 10 miles. For this reason, the county engineer is

concerned about driver expectation with an All-Way Stop. Additional signage upgrades have been made to no avail, so it's not guaranteed that an isolated, rural all way stop would help here. Additionally, it would be cheaper to build a roundabout now, rather than later. We've already completed a project to address site distance here.

Long Term

Install a roundabout at the intersection. This would significantly reduce the angle and left turn crashes, which account for 100% of the crashes at this intersection.

FIGURE 8 CONCEPT SKETCH

Appendix Crash Data

ECAT		S	Safety Benef	it - Cost An	alysis				
Economic Grash Analysis Tool	General Information								
Project Name	MAD-665 at Spring Valley				Contact Email				
Project Description					Contact Phone			-	
Reference Number					Date Performed				
Analyst	Analysis Year								
Agency/Company								-	
Select Site Types to be used in Benefit-Cost Analysis: All Sites									
Countermeasure Service Lives, Costs, and Safety Benefits									
	Countermeasures	Service Life	Initial Cost of	Annual Maintenance &	Salvage Value	Net Present Cost of	Total Cost of	Summary of Annual Crash	Net Present Value

Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits
Site Characteristic Improvements (Please add description about improvements i.e. Lane widening)	20	\$3,500,000.00			\$3,500,000.00	\$3,500,000.00		
Site Characteristic Improvements (Please add description about improvements i.e. Lighting)					\$0.00	\$0.00	2 021	¢2.255.690
Site Characteristic Improvements (Please add description about improvements i.e. Signal Phasing)					\$0.00	\$0.00	-2.021	\$2,255,680
Site Characteristic Improvements (Please add description about improvements i.e. Added Right Turn Lane)					\$0.00	\$0.00		
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
					\$0.00	\$0.00	0.000	\$0
Totals		\$3,500,000.00	\$0.00	\$0.00	\$3,500,000.00	\$3,500,000.00	-2.021	\$2,255,680

ECAT Safety Benefit - Cost Analysis					
Economic Grash Analysis Tool		General Information			
Project Name	MAD-665 at Spring Valley	Contact Email			
Project Description		Contact Phone			
Reference Number		Date Performed			
Analyst		Analysis Year			
Agency/Company					

ECAT	Project Safet	y Performance Report	
Economic Crash Analysis Tool	Ge		
Project Name	MAD-665 at Spring Valley	Contact Email	
Project Description		Contact Phone	
Reference Number		Date Performed	
Analyst		Analysis Year	
Agency/Company			

Project Summary Results (Without Animal Crashes)									
	KA B C O Total								
N _{predicted} - Existing Conditions	0.2117	0.5133	0.3419	1.8371	2.9040				
N _{expected} - Existing Conditions	0.3063	0.7423	0.4943	1.6422	3.1851				
$\mathbf{N}_{\text{potential for improvement}}$ - Existing Conditions	0.0000	0.0000	0.0000	0.0000	0.0000				
N _{expected} - Proposed Conditions	0.0034	0.0277	0.0340	0.8176	0.8827				

ECAT	Project Safety Performance Report					
Economic Crash Analysis Tool	Ge					
Project Name	MAD-665 at Spring Valley	Contact Email				
Project Description		Contact Phone				
Reference Number		Date Performed				
Analyst		Analysis Year				
Agency/Company						

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)								
Droject Element ID	Common Name	Crash Severity Level						
Project Element ID		KA	В	С	0	Total		
SR665; 3.28	Spring Valley Rd	0.2117	0.5133	0.3419	1.8371	2.904		

ECAT	Project Safety Performance Report					
Economic Crash Analysis Tool	Ge					
Project Name	MAD-665 at Spring Valley	Contact Email				
Project Description		Contact Phone				
Reference Number		Date Performed				
Analyst		Analysis Year				
Agency/Company						

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)								
Droject Element ID	Common Name	Crash Severity Level						
Project Element ID		KA	В	С	0	Total		
SR665; 3.28	Spring Valley Rd	0.3063	0.7423	0.4943	1.6422	3.1851		

ECAT	Project Safety Performance Report					
Economic Crash Analysis Tool	Ge					
Project Name	MAD-665 at Spring Valley	Contact Email				
Project Description		Contact Phone				
Reference Number		Date Performed				
Analyst		Analysis Year				
Agency/Company						

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)							
Project Element ID Commo	Common Namo			Crash Severity Level			
	Common Name	KA	В	С	0	Total	
SR665; 3.28	Spring Valley Rd	0.0946	0.229	0.1524	-0.1949	0.2811	

ECAT	Project Safety Performance Report		
Economic Crash Analysis Tool	G	eneral Information	
Project Name	MAD-665 at Spring Valley	Contact Email	
Project Description		Contact Phone	
Reference Number		Date Performed	
Analyst		Analysis Year	
Agency/Company			

Proposed Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Broject Element ID	Common Name	Crash Severity Level				
Project Element ID		KA	В	С	0	Total
SR665; 3.28	Spring Valley Rd	0.0034	0.0277	0.034	0.8176	0.8827

ECAT	Project Safe	ty Performance Report	
Economic Crash Analysis Tool	Gi	eneral Information	
Project Name	MAD-665 at Spring Valley	Contact Email	
Project Description		Contact Phone	
Reference Number		Date Performed	
Analyst		Analysis Year	
Agency/Company			

Summary by Crash Type				
		Proposed		
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Predicted Crash Frequency
Unknown	0.0118	0.0120		0.0255
Head On	0.0249	0.0314		0.0007
Rear End	0.6206	0.6613		0.1332
Backing	0.1168	0.1077		0.0083
Sideswipe - Meeting	0.0844	0.0942		0.0000
Sideswipe - Passing	0.1312	0.1341		0.2780
Angle	1.1082	1.2872		0.2489
Parked Vehicle	0.1033	0.0985		0.0000
Pedestrian	0.0141	0.0193		0.0007
Animal	0.0000	0.0000		0.0090
Train	0.0005	0.0007		0.0000
Pedalcycles	0.0107	0.0139		0.0007
Other Non-Vehicle	0.0002	0.0003		0.0000
Fixed Object	0.4871	0.5122		0.0892
Other Object	0.0170	0.0163		0.0000
Overturning	0.0293	0.0364		0.0007
Other Non-Collision	0.0385	0.0379		0.0172
Left Turn	0.1054	0.1217		0.0192
Right Turn	0.0000	0.0000		0.0604

MAD-665 at Spring Valley Rd (2018-22) Crash Summary Sheet

Fatalities	0
Serious Injuries	9
Other Injuries	20

Crash Severity	Crashes	%
(2) Serious Injury Suspected	5	21.74%
(3) Minor Injury Suspected	5	21.74%
(4) Injury Possible	7	30.43%
(5) PDO/No Injury	6	26.09%
Grand Total	23	100.00%

Day of Week	Crashes	%
(1) Sunday	1	4.35%
(2) Monday	3	13.04%
(3) Tuesday	5	21.74%
(4) Wednesday	7	30.43%
(5) Thursday	3	13.04%
(6) Friday	2	8.70%
(7) Saturday	2	8.70%
Grand Total	23	100.00%

Hour of Day	Crashes	%
6	1	4.35%
9	1	4.35%
10	1	4.35%
11	2	8.70%
12	4	17.39%
13	3	13.04%
14	1	4.35%
15	3	13.04%
16	3	13.04%
17	1	4.35%
18	1	4.35%
19	1	4.35%
20	1	4.35%
Grand Total	23	100.00%

Crashes Per Year	4.60
Fatal and All Injury Crashes	17
Percent Injury	73.9%
Equivalent PDO Index Value	13.01

	Year	Crashes	%
I	2018	5	21.74%
Ī	2019	5	21.74%
I	2020	1	4.35%
Ī	2021	8	34.78%
1	2022	4	17.39%
I	Grand Total	23	100.00%

Crash Type	Crashes	%
Angle	22	95.65%
Left Turn	1	4.35%
Grand Total	23	100.00%

Month	Crashes	%
2	4	17.39%
3	1	4.35%
4	2	8.70%
5	2	8.70%
6	1	4.35%
7	3	13.04%
9	1	4.35%
10	2	8.70%
11	3	13.04%
12	4	17.39%
Grand Total	23	100.00%

MAD-665 at Spring Valley Rd (2018-22) Crash Summary Sheet

Weather Condition	Crashes	%
Clear	12	52.17%
Cloudy	9	39.13%
Snow	1	4.35%
Rain	1	4.35%
Grand Total	23	100.00%

Road Condition	Crashes	%
Dry	21	91.30%
Wet	2	8.70%
Grand Total	23	100.00%

Light Condition	Crashes	%
Daylight	21	91.30%
Dark - Roadway Not Lighted	2	8.70%
Grand Total	23	100.00%

Number of Units	Crashes	%
2	21	91.30%
4	1	4.35%
3	1	4.35%
Grand Total	23	100.00%

ODOT Location	Crashes	%
Four-Way Intersection	17	73.91%
Not An Intersection	5	21.74%
Data Not Valid or Not Provided	1	4.35%
Grand Total	23	100.00%

Work Zone Related	Crashes	%
No	23	100.00%
Grand Total	23	100.00%
Grand Total	20	100.0

Alcohol Related	Crashes	%
No	22	95.65%
Yes	1	4.35%
Grand Total	23	100.00%
Drug Related (Inc. Marijuana)	Crashes	%
No	22	95.65%
Yes	1	4.35%

Grand Total	23	100.00%
Marijuana Related	Crashes	%
No	22	95.65%
Yes	1	4.35%
Grand Total	23	100.00%

Older Driver (65+)	Crashes	%
No	13	56.52%
Yes	10	43.48%
Grand Total	23	100 00%

Young Driver (15-25)	Crashes	%
No	14	60.87%
Yes	9	39.13%
Grand Total	23	100.00%

Motorcycle Involved	Crashes	%
No	22	95.65%
Yes	1	4.35%
Grand Total	23	100.00%

Contour	Crashes	%
Straight Grade	2	8.70%
Straight Level	21	91.30%
Grand Total	23	100.00%

Roadway Departure	Crashes	%
No	23	100.00%
Grand Total	23	100.00%

Intersection Related	Crashes	%
Yes	23	100.00%
Grand Total	23	100.00%

Cread Delated	Craches	0/
Speed Related	Crashes	70
No	20	86.96%
Yes	3	13.04%
Grand Total	23	100.00%

MAD-665 at Spring Valley Rd (2018-22) Crash Summary Sheet Unit 1 Summary

Unit 1 Pre-Crash Action	Crashes	%
Straight Ahead	19	82.61%
Entering Traffic Lane	3	13.04%
Making Left Turn	1	4.35%
Grand Total	23	100.00%

Unit 1 Contributing Factor	Crashes	%
Failure to Yield	17	73.91%
Ran Stop Sign	4	17.39%
Operating Defective Equipment	1	4.35%
Improper Start From a Parked Position	1	4.35%
Grand Total	23	100.00%

Unit 1 Object Struck	Crashes	%
Nothing Struck	20	86.96%
Traffic Sign Post	1	4.35%
Ditch	1	4.35%
Fence	1	4.35%
Grand Total	23	100.00%

Unit 1 Traffic Control	Crashes	%
Stop Sign	22	95.65%
No Control	1	4.35%
Grand Total	23	100.00%

Unit 1 Posted Speed	Crashes	%
55	23	100.00%
Grand Total	23	100.00%

Unit 1 Direction From	Crashes	%
South	13	56.52%
North	7	30.43%
Northwest	1	4.35%
West	1	4.35%
Southeast	1	4.35%
Grand Total	23	100.00%

Unit 1 Direction To	Crashes	%
North	14	60.87%
South	7	30.43%
Southeast	1	4.35%
Northwest	1	4.35%
Grand Total	23	100.00%

MAD-665 at Spring Valley Rd (2018-22) Crash Summary Sheet Unit 1 Summary

Unit 1 Type	Crashes	%
Passenger Car	11	47.83%
Sport Utility Vehicle	5	21.74%
Pick up	3	13.04%
Cargo Van	2	8.70%
Motorcycle 2 Wheeled	1	4.35%
Single Unit Truck	1	4.35%
Grand Total	23	100.00%

Unit 1 Special Function	Crashes	%
None	22	95.65%
Towing	1	4.35%
Grand Total	23	100.00%

MAD-665 at Spring Valley Rd (2018-22) Crash Summary Sheet

Unit 2 Summary

Unit 2 Pre-Crash Action	Crashes	%
Straight Ahead	21	91.30%
Making Left Turn	1	4.35%
Slowing or Stopped In Traffic	1	4.35%
Grand Total	23	100.00%

Unit 2 Contributing Factor	Crashes	%
None	23	100.00%
Grand Total	23	100.00%

Unit 2 Direction From	Crashes	%
East	13	56.52%
North	1	4.35%
West	9	39.13%
Grand Total	23	100.00%

Unit 2 Direction To	Crashes	%
East	9	39.13%
South	2	8.70%
West	12	52.17%
Grand Total	23	100.00%

Unit 2 Type	Crashes	%
Passenger Car	10	43.48%
Pick up	4	17.39%
Passenger Van (minivan)	3	13.04%
Sport Utility Vehicle	3	13.04%
Single Unit Truck	1	4.35%
Cargo Van	1	4.35%
Semi-Tractor	1	4.35%
Grand Total	23	100.00%

Unit 2 Special Function	Crashes	%
None	21	91.30%
Other / Unknown	1	4.35%
Farm	1	4.35%
Grand Total	23	100.00%

MAD-665 at Spring Valley Rd (2018-22)

Total Crashes	Injury Level				
Crash Type	(2) Serious Inju (3	B) Minor Injury (4)	Injury Possil (5)	PDO/No Injı	Grand Total
Angle	4	5	7	6	22
Left Turn	1	0	0	0	1
Grand Total	5	5	7	6	23

MAD-665 at Spring Valley Rd (2018-22) Crash Summary Sheet

Crashes Per Year

4.60	Percent Injury	

13.01

Road Condition	Total Crashes	Fatalities	Serious Injuries
Dry	21	0	8
Wet	2	0	1
Grand Total	23	0	9

Hour of Day	Total Crashes
6	1
9	1
10	1
11	2
12	4
13	3
14	1
15	3
16	3
17	1
18	1
19	1
20	1
Grand Total	23

Crash Location

Not An Intersection

Four-Way Intersection

Month	Total Crashes
February	4
March	1
April	2
May	2
June	1
July	3
September	1
October	2
November	3
December	4
Grand Total	23

73.9% **EPDO**

Weather	Total Crashes	Fatalities	Serious Injuries
Clear	12	0	8
Cloudy	9	0	0
Snow	1	0	1
Rain	1	0	0
Grand Total	23	0	9

Day in Week	Total Crashes
(1) Sunday	1
(2) Monday	3
(3) Tuesday	5
(4) Wednesday	7
(5) Thursday	3
(6) Friday	2
(7) Saturday	2
Grand Total	23

Total Crashes by Road Condit	Dry Wet	Total Crashes by Weather Con
Crashes by Location	 Serious Injuries Fatalities Total Crashes 	Total Crashes by Road Contou

Crash Location	Total Crashes Fatalitie	s Seriou	us Injuries
Four-Way Intersection	17	0	8
Not An Intersection	5	0	1
Data Not Valid or Not Provided	1	0	0
Grand Total	23	0	g

Roadway Contour	Total Crashes	Fatalities	Serious Injuries
Straight Level	21	0	9
Straight Grade	2	0	0
Grand Total	23	0	9

TRAFFIC SI	TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS													
	Applicable?	Warrant Satisfied 2	Notes and Comments:											
	Applicable?	Salished?	Notes and Comments.											
Warrant 1, Eight-Hour Vehicular Volume	Yes	No												
Warrant 2, Four-Hour Vehicular Volume	Yes	No												
Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. 5:30 PM											
For Warrants 1-3, new 0	ODOT signal	s must be bas	sed off of 100% volume thresholds (TEM 402-3.2)											
Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD. Peak Hour 4:15 PM 5:15 PM											
Warrant 5, School Crossing	No		N/A											
Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)											
Warrant 7, Crash Experience	Yes	No	If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.											
Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)											
Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9											
Multi-Way Stop Warrant	No		May be used as an interim measure if traffic signal warrants are satisfied.											

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

If no warrants are satisfied, additional options may be considered:

1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.

2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The **Modeling and Forecasting Section** should provide the projected traffic volumes.

3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C.05 and/or 4C.06 but a decision is made to not install a traffic control signal. **Please fill inputs on PHB Score Sheet and submit to ODOT.**

Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at **100 percent** local cost. Please review TEM 402-4 for details.

	Conclusion:	
Notes:		

		ŀ	ICS ⁻	Two-	Way	Stop	-Cor	ntrol	Repo	ort								
General Information							Site	Inforr	natio	n								
Analyst	1						Inters	ection			SR 66	5 and S	oring Val	lley Rd				
Agency/Co.							Jurisd	liction										
Date Performed	8/28/	2023					East/	West Stre	eet		SR 66	5						
Analysis Year	2023						North	n/South S	Street		Spring Valley Rd							
Time Analyzed	2047	AM					Peak	Hour Fac	ctor		0.92	<u> </u>						
Intersection Orientation	East-	West					Analy	sis Time	Period ((hrs)	0.25							
Project Description	No B	uild																
Lanes																		
					۲. Maj	∳ or Street: Ea	st-West	א גאלי אר ה א										
Vehicle Volumes and Adju	ustme	nts																
Approach		Eastb	ound			West	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0		
Configuration	<u> </u>		LTR				LTR				LTR				LTR			
Volume (veh/h)		10	120	10		10	120	50		20	90	20		40	30	10		
Percent Heavy Vehicles (%)		7				7				7	7	7		7	7	7		
Proportion Time Blocked																		
Percent Grade (%)											0				0			
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up He	eadwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2		
Critical Headway (sec)		4.17				4.17				7.17	6.57	6.27		7.17	6.57	6.27		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3		
Follow-Up Headway (sec)		2.26				2.26				3.56	4.06	3.36		3.56	4.06	3.36		
Delay, Queue Length, and	d Leve	l of Se	ervice	•														
Flow Rate, v (veh/h)		11				11					141				87			
Capacity, c (veh/h)		1360				1411					580				512			
v/c Ratio		0.01				0.01					0.24				0.17			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.9				0.6			
Control Delay (s/veh)		7.7	0.1	0.1		7.6	0.1	0.1			13.2				13.5			
Level of Service (LOS)		А	А	А		А	А	A			В				В			
Approach Delay (s/veh)		0	.6			0	.5			1	3.2			13	3.5			
Approach LOS			Ą				Ą				В				В			

		1			\/\/\\/\	Ston	-Cor	otrol	Pond	ort						
				100-	vvay	Stop			repu							
General Information							Site	Inforr	natio	n						
Analyst							Inters	ection			SR 66	5 and Sp	oring Va	lley Rd		
Agency/Co.							Jurisc	liction								
Date Performed	8/28/	2023					East/	West Str	eet		SR 66	5				
Analysis Year	2023						North	n/South	Street		Sprin	g Valley	Rd			
Time Analyzed	2047	PM					Peak	Hour Fac	ctor		0.92					
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)						
Project Description	No Bi	uild														
Lanes																
Vahiele Valumes and Adi					n f Majr	or Street: Ea	t-West	4 1 X 4 1 L L								
Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	bound		<u> </u>	North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		10	150	30		30	190	60		20	50	20		80	90	10
Percent Heavy Vehicles (%)		7				7				7	7	7		7	7	7
Proportion Time Blocked																
Percent Grade (%)											0			()	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.17				4.17				7.17	6.57	6.27		7.17	6.57	6.27
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.26				2.26				3.56	4.06	3.36		3.56	4.06	3.36
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		11				33					98				196	
Capacity, c (veh/h)		1263				1348					443				410	
v/c Ratio		0.01				0.02					0.22				0.48	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.8				2.5	
Control Delay (s/veh)		7.9	0.1	0.1		7.7	0.2	0.2			15.4				21.6	
Level of Service (LOS)		А	А	А		А	A	А			С				С	
Approach Delay (s/veh)		0	.5			. 1	.0			1!	5.4			. 21	.6	

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

А

Approach LOS

А

С

				Н	CS R	our	ndak	oou [.]	ts Re	ро	ort								
General Information						_		Site	Info	rm	natior	า			_		_		
Analyst	Jerry S	Sanor					*			Т	Inters	ection			SI	R 665	& Spri	ing Vall	ey Road
Agency or Co.	D6						÷	-		ľ	E/W S	treet Na	ime		SI	R 665			
Date Performed	8/28/2	2023			[]		N			÷	N/S S	treet Na	me		S	oring v	alley		
Analysis Year	2047					↓ (w † s	E	† >		Analy	sis Time	Period, h	rs	0.	25			
Time Analyzed	PM Pe	ak									Peak I	Hour Fac	tor		0.	92			
Project Description	MAD	665 at s	pring v	alley rd				• •			Jurisd	iction			0	DOT			
Volume Adjustments	and S	ite Cł	narac	terist	ics														
Approach		E	B				W	В		Τ		Ν	IB				S	БB	
Movement	U	L	Т	R	U		L	Т	R	Τ	U	L	Т	R	ι	J	L	Т	R
Number of Lanes (N)	0	0	1	0	0		0	1	0	Т	0	0	1	0	()	0	1	0
Lane Assignment				LTR					LTR	Τ			LT	R					LTR
Volume (V), veh/h	0	10	150	30	0		30	190	60	Τ	0	20	50	20	0)	80	90	10
Percent Heavy Vehicles, %	8	8	8	8	3	Τ	8	8	8	Τ	3	3	3	3	3	3	1	1	1
Flow Rate (VPCE), pc/h	0	12	177	35	0		35	224	71	Т	0	22	56	22	()	88	99	11
Right-Turn Bypass		No	one				No	ne		Т		No	one				No	one	
Conflicting Lanes			1				1						1					1	
Pedestrians Crossing, p/h			0				0)				()					0	
Proportion of CAVs										0									
Critical and Follow-U	nt																		
Approach		E	B				W	WB				Ν	IB				5	БB	
Lane	Left	Ri	ght	Bypass	Le	ft	Rig	ht	Bypass	;	Left	Right Byp		ypass	l	Left	eft Ri		Bypass
Critical Headway, s		4.9	763			4		763		Τ		4.9	763				4.9	763	
Follow-Up Headway, s		2.6	087				2.60)87		Τ		2.6	087				2.6	087	
Flow Computations, C	Capaci	ty an	d v/e	: Rati	DS														
Approach		E	B				W	В		Т		Ν	IB				5	БB	
Lane	Left	Ri	ght	Bypass	Le	ft	Rig	ht	Bypass	;	Left	Rig	ght B	ypass	I	Left	Ri	ght	Bypass
Entry Flow (v _e), pc/h		2	24				33	0		Т		1(00				1	98	
Entry Volume, veh/h		2	07				30	5		T		9	8				1	95	
Circulating Flow (vc), pc/h		2	22				90	0		Т		2	77				2	81	
Exiting Flow (vex), pc/h		2	87				25	7		Τ		1:	39				1	69	
Capacity (c _{pce}), pc/h		11	100				125	59		Т		10	40				10)36	
Capacity (c), veh/h		10	016				116	62		Т		10	15				10)23	
v/c Ratio (x)		0.	.20				0.2	26		Т		0.	10				0.	19	
Delay and Level of Se	rvice																		
Approach				EE	;		Γ		WB	_			NB		SB				
Lane			Left	Rig	ht By	pass	Le	ft	Right	B	ypass	Left	Right	Вур	ass Left Right By				Bypass
Lane Control Delay (d), s/veh				5.	5				5.5				4.4			5.3			
Lane LOS				A					А				A		A				
95% Queue, veh				0.	3				1.1				0.3		0.7				
Approach Delay, s/veh LOS		5.5 A 5.5 A 4.4					А		5	5.3		А							
Intersection Delay, s/veh LOS						5	5.3				A								

Copyright © 2023 University of Florida. All Rights Reserved.

HCS All-Way Stop Control Report												
General and Site Informatio	n				Lanes							
Analyst	Jerry Sa	nor										
Agency/Co.	D6							14- <u>v</u> 12	<u>a 4</u> 4 ->			
Date Performed	8/28/20	23]	_		¥	4		_	
Analysis Year	2023					- ×						
Analysis Time Period (hrs)	0.25]							
Time Analyzed	PM Peal	ĸ					1			<u>,</u>		
Project Description	2047 PN	1 Peak AW	SC				T			Y		
Intersection	SR 655 a	and Spring	Valley Roa	d	1							
Jurisdiction	ODOT				1							
East/West Street	SR 665				1				•			
North/South Street	Spring \	/alley Road			1		54					
Peak Hour Factor	0.92				1							
Turning Movement Demand	l Volum	ies										
Approach		Eastbound]		Westbound	Ł	r I	Northboun	d	9	Southbour	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	10	150	30	30	190	60	20	50	20	80	90	10
% Thrus in Shared Lane												
Lane Flow Rate and Adjustn	nents											
Approach		Eastbound			Westbound	b	1	Northboun	d	9	Southboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	207			304			98			196		
Percent Heavy Vehicles	8			8			3			1		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.184			0.271			0.087			0.174		
Final Departure Headway, hd (s)	5.25			5.09			5.57			5.50		
Final Degree of Utilization, x	0.301			0.430			0.151			0.299		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, ts (s)	3.25			3.09			3.57			3.50		
Capacity, Delay and Level of	Servic	e										
Approach		Eastbound			Westbound	d	1	Northboun	d	9	Southboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	207			304			98			196		
Capacity (veh/h)	686			708			646			655		
95% Queue Length, Q ₉₅ (veh)	1.3			2.2			0.5			1.3		
Control Delay (s/veh)	10.5			11.9			9.6			10.8		
Level of Service, LOS	В			В			A			В		
Approach Delay (s/veh) LOS	10.5		В	11.9		В	9.6		A	10.8		В
Intersection Delay (s/veh) LOS			1'	1.0	B							

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

HCSTM AWSC Version 2023 AWSC_PM Peak_Design Year_TFMS.xaw Generated: 8/28/2023 5:07:53 PM

				ŀ	102	S Rour	ndak	oou	ts Re	рс	ort								
General Information					_			Site	e Info	rma	atior	ı			_	_	_		
Analyst	Jerry S	Sanor			Т		*			Т	Inters	ection			SR	665 8	& Spri	ng Vall	ey Road
Agency or Co.	D6						÷	-		E	E/W S	treet Na	ime		SR	665			
Date Performed	8/28/2	2023					Ν			*	N/S S	treet Na	me		Sp	oring v	alley		
Analysis Year	2047					\checkmark + (w † s	E	↑ }		Analy	sis Time	Period, h	rs	0.2	25			
Time Analyzed	AM Pe	eak			Ī		Contraction of the local division of the loc				Peak I	Hour Fac	ctor		0.92				
Project Description	MAD	665 at s	spring \	alley ro	k			•			Jurisd	iction			OI	DOT			
Volume Adjustments	and S	ite Cl	harad	teris	tics	5													
Approach			EB		Т		W	В		Т		Ν	IB				S	В	
Movement	U	L	Т	R		U	L	Т	R		U L T		R	U		L	Т	R	
Number of Lanes (N)	0	0	1	0	Ť	0	0	1	0	T	0	0	1	0	0		0	1	0
Lane Assignment				LTR					LTR				LT	R					LTR
Volume (V), veh/h	0	10	120	0		0	50	120	10	Τ	0	20	90	20	0		40	30	0
Percent Heavy Vehicles, %	8	8	8	8	Τ	3	8	8	8	Τ	3	3	3	3	3		1	1	1
Flow Rate (VPCE), pc/h	0	12	141	0	T	0	59	141	12	T	0	22	100	22	0		44	33	0
Right-Turn Bypass		N	one		Τ		Noi	ne		Τ		No	one				No	one	
Conflicting Lanes			1		Τ		1			Τ			1					1	
Pedestrians Crossing, p/h			0			0 0											(0	
Proportion of CAVs										0									
Critical and Follow-U	ent	t																	
Approach			EB		Т	WB					NB						S	В	
Lane	Left	Ri	ght	Вура	s	Left	Rig	ht	Bypass		Left	Ri	ght B	Bypass		Left		ght	Bypass
Critical Headway, s		4.9	9763				4.97	763				4.9	763				4.9	763	
Follow-Up Headway, s		2.6	5087				2.60	87		Τ		2.6	087				2.6	087	
Flow Computations, C	Capaci	ty an	d v/	: Rat	ios														
Approach			EB				W	В				Ν	IB				S	В	
Lane	Left	Ri	ght	Вура	s	Left	Rig	ht	Bypass	;	Left	Ri	ght B	ypass	L	eft	Rig	ght	Bypass
Entry Flow (v _e), pc/h		1	53		Т		21	2		Т		1.	44				7	7	
Entry Volume, veh/h		1	41				19	6		Т		1.	40				7	6	
Circulating Flow (v _c), pc/h		1	36		Т		13	4		Т		1	97				2	22	
Exiting Flow (v _{ex}), pc/h		2	.07		Τ		16	3		Τ		1	24				9	2	
Capacity (c _{pce}), pc/h		13	201		Т		120	04		Т		11	29				11	00	
Capacity (c), veh/h		1	109		Τ		111	11		Т		11	01				10	86	
v/c Ratio (x)		0	.13		Т		0.1	8		Т		0.	13				0.	07	
Delay and Level of Se	rvice												· ·						
Approach				E	B				WB				NB		SB				
Lane			Left	Ri	ght	Bypass	Le	ft	Right	By	ypass	Left	Right	Вур	ass	Left		Right	Bypass
Lane Control Delay (d), s/veh				4	.4				4.8				4.4			3.9			
Lane LOS					A				А				A		A				
95% Queue, veh				C	.4				0.6				0.4		0.2				
Approach Delay, s/veh LOS			4.4 A				A 4.8 A					4.4 A				3.9 A			
Intersection Delay, s/veh LOS						4	4.5								A				

Copyright © 2023 University of Florida. All Rights Reserved.

	HCS All-Way Stop Control Report												
General and Site Informatio	n				Lanes								
Analyst	Jerry Sa	nor											
Agency/Co.	D6								<u>∞</u> 494 →				
Date Performed	8/28/20	23				_		a an	•				
Analysis Year	2023				1								
Analysis Time Period (hrs)	0.25				1								
Time Analyzed	AM Pea	k			1		1			*			
Project Description	2047 AN	A Peak AW	SC		1		7			7			
Intersection	SR 655 a	and Spring	Valley Roa	d	1								
Jurisdiction	ODOT				1								
East/West Street	SR 665								1 -		a <mark>15</mark>		
North/South Street	Spring \	/alley Roac	1		1								
Peak Hour Factor	0.92												
Turning Movement Demand	l Volum	nes											
Approach		Eastbound	1		Westbound	ł	l i	Northboun	d	9	Southbour	d	
Movement	L	Т	R	L	Т	R	L	Т	R	L	T	R	
Volume (veh/h)	10	120	0	50	120	10	20	90	20	40	30	0	
% Thrus in Shared Lane													
Lane Flow Rate and Adjustn	nents					1		1					
Approach		Eastbound	ł		Westbound	ł	, I	Northboun	d	9	Southbour	d	
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	
Configuration	LTR			LTR			LTR			LTR			
Flow Rate, v (veh/h)	141			196			141			76			
Percent Heavy Vehicles	8			8			3			1			
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.126			0.174			0.126			0.068			
Final Departure Headway, hd (s)	4.86			4.80			4.84			5.07			
Final Degree of Utilization, x	0.191			0.261			0.190			0.107			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, t _s (s)	2.86			2.80			2.84			3.07			
Capacity, Delay and Level of	Servic	e		1		1		1	1				
Approach		Eastbound	1		Westbound	ł	, I	Northboun	d	9	Southbour	d	
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3	
Configuration	LTR			LTR			LTR			LTR			
Flow Rate, v (veh/h)	141			196			141			76			
Capacity (veh/h)	740			750			744			710			
95% Queue Length, Q ₉₅ (veh)	0.7			1.0			0.7			0.4			
Control Delay (s/veh)	9.0			9.5			9.0			8.7			
Level of Service, LOS	А			A			A			A			
Approach Delay (s/veh) LOS	9.0		A	9.5	<u> </u>	A	9.0		A	8.7		A	
Intersection Delay (s/veh) LOS			9	.1						A			

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

HCSTM AWSC Version 2023 AWSC_PM Peak_Design Year_TFMS.xaw Generated: 8/29/2023 3:42:15 PM