

Abbreviated Safety Study

SR 752 and Walnut Creek Pike Intersection

2021 Rural Intersection Rank #116

Table of Contents

Purpose and Need	2
Existing Conditions	2
Crash Trends	6
Recommendations	7
Short Term	7
Long Term	7
Appendix	8
Appendix A - Crash Statistics	9
Appendix B - Traffic Counts	. 15
Appendix C - Traffic Forecast	. 23
Appendix D - Capacity Analysis	. 35
Appendix E - Signal Warrant Results	. 48

Purpose and Need

This study analyzes the intersection of SR 752 and Walnut Creek Pike in Pickaway County. This intersection is ranked 116 on ODOT's 2021 rural intersections list. The purpose of this report is to study this location and analyze the crashes to determine what, if any, actions can be taken to reduce the high percentage of angle crashes that have occurred in the study area.

Existing Conditions

The intersection of SR 752 and Walnut Creek Pike is a rural 4 legged intersection in northeastern Pickaway County. SR 752 is a 2 lane, undivided roadway classified as a major collector with a 55 mph speed limit. Walnut Creek Pike (CR7) is a 2 lane, undivided roadway classified as a rural minor collector with a 55 mph speed limit. This intersection is just over 1 $\frac{1}{2}$ miles northeast of the village of Ashville and just over 1 mile east of Teays Valley High School.

Currently, Walnut Creek Pike traffic stops, with dual stop signs on both approaches. Both stop signs on the righthand side have "cross traffic does not stop" placards, which were added in 2015. Dual stop ahead signs also exist on both approaches. SR 752 has dual intersection ahead warning signs on both approaches. Daily traffic volumes are 3,400 (5.5% trucks) on SR 752, and 2,700 (3.8% trucks) on Walnut Creek Pike. A turning movement count from 2023 is available in the appendix.

Most of the land near the intersection is developed, with single family homes on all four quadrants. There is a creek approximately 800 feet to the west along with some wooded areas. The nearest driveways are about 500 feet east and 200 feet west of the intersection on SR 752 and about 240 feet north and 200 feet south of the intersection on Walnut Creek Pike.

FIGURE 1 AERIAL VIEW

FIGURE 2 NORTHBOUND APPROACH

FIGURE 3 SOUTHBOUND APPROACH

FIGURE 4 EASTBOUND APPROACH

FIGURE 5 WESTBOUND APPROACH

Crash Trends

24 crashes were reported in this area from 2018 to 2022, with 15 involving injuries (63%). Of the 15 injury crashes, 2 were serious injury crashes. Of the 24 crashes, 20 were angle and 1 was a left turn which accounts for 21 of the 24 total crashes (88%). The angle crashes occurred in all 4 directions with 7 northbound/eastbound, 4 northbound/westbound, 5 southbound/westbound and 4 southbound/eastbound. Of the 24 crashes, 12 (50%) occurred between 3PM to 6PM with the majority happening around 4PM or when school was out. The majority of the crashes occurred during the fall with September and October accounting for 11 of the 24 crashes (46%). It should also be noted that 2 of the crashes specifically listed that the driver thought the intersection was a 4-way stop.

Full crash data is available in the appendix.

FIGURE 6 COLLISION DIAGRAM

Recommendations

Short Term

Maintain all existing signs. Given the fairly evenly distributed volumes of the four approaches, built up nature of the area, the existing 4-way stop 1 ¼ miles to the west, and SR 752 traffic stopping 1 ½ miles to the east at the intersection of Circleville- Winchester Road, a 4-way stop could be considered. Capacity analysis shows LOS B in the PM opening year of 2027, yet LOS E in the 2047 design year, with LOS F on the SB movement and LOS E on the EB movement. Due to capacity analysis, this would not be recommended for a long term solution. It also wouldn't be recommended as an interim solution if a roundabout is selected, as that would change the intersection control twice in a short time period.

Long Term

Install a roundabout at the intersection. This would significantly reduce the angle crashes. Also, a roundabout would have significantly less intersection delay compared to the existing two way stop control or a four way stop. A roundabout would perform at LOS A in in both the Opening and Design years while also providing some traffic calming WB towards Teays Valley High School and the existing four way stop at SR 752 and Lockbourne Eastern Rd/Viking Way.

Appendix

Appendix A - Crash Statistics

PIC-752 & Walnut Creek Pike

Crash Summary Sheet

Fatalities	0
Serious Injuries	2
Other Injuries	32

Crash Severity	Crashes	%
(2) Serious Injury Suspected	2	8.33%
(3) Minor Injury Suspected	7	29.17%
(4) Injury Possible	6	25.00%
(5) PDO/No Injury	9	37.50%
Grand Total	24	100.00%

Day of Week	Crashes	%
(2) Monday	5	20.83%
(3) Tuesday	6	25.00%
(4) Wednesday	1	4.17%
(5) Thursday	5	20.83%
(6) Friday	5	20.83%
(7) Saturday	2	8.33%
Grand Total	24	100.00%

Hour of Day	Crashes	%
7	2	8.33%
10	2	8.33%
11	2	8.33%
12	1	4.17%
14	3	12.50%
15	1	4.17%
16	7	29.17%
17	1	4.17%
18	3	12.50%
20	1	4.17%
21	1	4.17%
Grand Total	24	100.00%

Crashes Per Year	4.80
Fatal and All Injury Crashes	15
Percent Injury	62.5%
Equivalent PDO Index Value	7.22

Year	Crashes	%
2018	5	20.83%
2019	4	16.67%
2020	1	4.17%
2021	7	29.17%
2022	7	29.17%
Grand Total	24	100.00%

Crash Type	Crashes	%
Angle	20	83.33%
Rear End	2	8.33%
Left Turn	1	4.17%
Head On	1	4.17%
Grand Total	24	100.00%

Month	Crashes	%
2	1	4.17%
5	4	16.67%
6	1	4.17%
7	1	4.17%
8	2	8.33%
9	4	16.67%
10	7	29.17%
11	1	4.17%
12	3	12.50%
Grand Total	24	100.00%

PIC-752 & Walnut Creek Pike

Crash Summary Sheet

Weather Condition	Crashes	%
Clear	14	58.33%
Cloudy	5	20.83%
Rain	4	16.67%
Fog, Smog, Smoke	1	4.17%
Grand Total	24	100 00%

Road Condition	Crashes	%
Dry	17	70.83%
Wet	6	25.00%
Snow	1	4.17%
Grand Total	24	100.00%

Light Condition	Crashes	%
Daylight	20	83.33%
Dark - Roadway Not Lighted	3	12.50%
Dawn/Dusk	1	4.17%
Grand Total	24	100.00%

Number of Units	Crashes	%
2	23	95.83%
3	1	4.17%
Grand Total	24	100.00%

ODOT Location	Crashes	%
Four-Way Intersection	13	54.17%
Not An Intersection	8	33.33%
Data Not Valid or Not Provided	2	8.33%
T-Intersection	1	4.17%
Grand Total	24	100.00%

Work Zone Related	Crashes	%
No	24	100.00%
Grand Total	24	100.00%
Alcohol Related	Crashes	%
No	24	100.00%
Grand Total	24	100.00%
Drug Related (Inc. Marijuana)	Crashes	%
No	24	100.00%
Grand Total	24	100.00%
cirana i otai		10010070
Marijuana Related	Crashes	%
No	24	100.00%
Grand Total	24	100.00%
Older Driver (65+)	Crashes	%
No	18	75.00%
Yes	6	25.00%
Grand Total	24	100.00%
Young Driver (15-25)	Crashes	%
No	15	62.50%
Yes	9	37.50%
Grand Total	24	100.00%
Motorcycle Involved	Crashes	%
No	24	100.00%
Grand Total	24	100.00%

Contour	Crashes	%
Straight Level	24	100.00%
Grand Total	24	100.00%

Roadway Departure	Crashes	%
No	22	91.67%
Yes	2	8.33%
Grand Total	24	100.00%
Intersection Related	Crashes	%
Yes	22	91.67%
No	2	8.33%
Grand Total	24	100.00%
Speed Related	Crashes	%
No	24	100.00%
Grand Total	24	100.00%

PIC-752 & Walnut Creek Pike Crash Summary Sheet Unit 1 Summary

Unit 1 Pre-Crash Action	Crashes	%
Straight Ahead	20	83.33%
Making Left Turn	2	8.33%
Entering Traffic Lane	1	4.17%
Slowing or Stopped In Traffic	1	4.17%
Grand Total	24	100.00%

Unit 1 Contributing Factor	Crashes	%
Failure to Yield	18	75.00%
Ran Stop Sign	2	8.33%
Following Too Closely/ACDA	2	8.33%
None	2	8.33%
Grand Total	24	100.00%

Unit 1 Object Struck	Crashes	%
Nothing Struck	22	91.67%
Traffic Sign Post	1	4.17%
Other Post, Pole Or Support	1	4.17%
Grand Total	24	100.00%

Unit 1 Traffic Control	Crashes	%
Stop Sign	22	91.67%
No Control	2	8.33%
Grand Total	24	100.00%

Unit 1 Posted Speed	Crashes	%
0	2	8.33%
55	22	91.67%
Grand Total	24	100.00%

Unit 1 Direction From	Crashes	%
North	12	50.00%
South	11	45.83%
West	1	4.17%
Grand Total	24	100.00%

Unit 1 Direction To	Crashes	%
North	12	50.00%
South	11	45.83%
East	1	4.17%
Grand Total	24	100.00%

PIC-752 & Walnut Creek Pike Crash Summary Sheet Unit 1 Summary

Unit 1 Type	Crashes	%
Pick up	7	29.17%
Passenger Car	6	25.00%
Sport Utility Vehicle	5	20.83%
Cargo Van	2	8.33%
Other Vehicle	1	4.17%
Unknown or Hit/Skip	1	4.17%
Single Unit Truck	1	4.17%
Passenger Van (minivan)	1	4.17%
Grand Total	24	100 00%

Unit 1 Special Function	Crashes	%
None	22	91.67%
Towing	1	4.17%
Other / Unknown	1	4.17%
Grand Total	24	100.00%

PIC-752 & Walnut Creek Pike Crash Summary Sheet

Unit 2 Summary

Unit 2 Pre-Crash Action	Crashes	%
Straight Ahead	20	83.33%
Making Left Turn	2	8.33%
Slowing or Stopped In Traffic	2	8.33%
Grand Total	24	100.00%

Unit 2 Contributing Factor	Crashes	%
None	24	100.00%
Grand Total	24	100.00%

Unit 2 Direction From	Crashes	%
East	6	25.00%
North	1	4.17%
South	2	8.33%
West	15	62.50%
Grand Total	24	100.00%

Unit 2 Direction To	Crashes	%
East	14	58.33%
North	2	8.33%
South	1	4.17%
West	7	29.17%
Grand Total	24	100.00%

Unit 2 Type	Crashes	%
Sport Utility Vehicle	10	41.67%
Passenger Car	9	37.50%
Pick up	4	16.67%
Passenger Van (minivan)	1	4.17%
Grand Total	24	100.00%

Unit 2 Special Function	Crashes	%
None	24	100.00%
Grand Total	24	100.00%

Appendix B - Traffic Counts

Count Name: PIC-752-3.54 Site Code: Start Date: 05/10/2023 Page No: 1

Turning Movement Data

			Southbou Sout	nd Approacł hbound	ı				Westbour Wes	nd Approach tbound					Northbour Nortl	nd Approach hbound	ı		Eastbound Approach Eastbound							
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total	
6:00 AM	2	5	0	0	0	7	0	15	2	0	0	17	0	48	21	0	0	69	4	4	2	0	0	10	103	
6:15 AM	0	11	0	0	0	11	3	18	1	0	0	22	1	51	14	0	0	66	5	8	4	0	0	17	116	
6:30 AM	1	15	0	0	0	16	1	15	5	0	0	21	0	50	19	0	0	69	7	10	7	0	0	24	130	
6:45 AM	1	13	1	0	0	15	3	24	5	0	0	32	2	31	19	0	0	52	7	4	2	0	0	13	112	
Hourly Total	4	44	1	0	0	49	7	72	13	0	0	92	3	180	73	0	0	256	23	26	15	0	0	64	461	
7:00 AM	10	9	0	0	0	19	1	26	6	0	0	33	1	47	18	0	0	66	7	9	3	0	0	19	137	
7:15 AM	7	15	0	0	0	22	1	44	1	0	0	46	1	45	26	0	0	72	9	20	9	0	0	38	178	
7:30 AM	5	12	3	0	0	20	0	21	3	0	0	24	2	43	15	0	0	60	6	19	6	0	0	31	135	
7:45 AM	2	8	2	0	0	12	2	21	3	0	0	26	0	40	10	0	0	50	7	12	7	0	0	26	114	
Hourly Total	24	44	5	0	0	73	4	112	13	0	0	129	4	175	69	0	0	248	29	60	25	0	0	114	564	
8:00 AM	5	14	2	0	0	21	2	18	7	0	0	27	1	19	10	0	0	30	8	10	2	0	0	20	98	
8:15 AM	4	14	0	0	0	18	0	18	4	0	0	22	4	20	13	0	0	37	8	13	4	0	0	25	102	
8:30 AM	1	18	1	0	0	20	2	16	0	0	0	18	2	19	9	0	0	30	18	10	2	0	0	30	98	
8:45 AM	2	12	1	0	0	15	1	21	1	0	0	23	2	19	17	0	0	38	10	15	3	0	0	28	104	
Hourly Total	12	58	4	0	0	74	5	73	12	0	0	90	9	77	49	0	0	135	44	48	11	0	0	103	402	
9:00 AM	1	12	0	0	0	13	0	15	1	0	0	16	3	20	12	0	0	35	6	13	2	0	0	21	85	
9:15 AM	3	8	0	0	0	11	2	4	1	0	0	7	1	20	11	0	0	32	7	10	1	0	0	18	68	
9:30 AM	1	11	1	0	0	13	0	6	6	0	0	12	1	8	7	0	0	16	9	15	1	0	0	25	66	
9:45 AM	4	13	0	0	0	17	0	8	3	0	0	11	1	12	5	0	0	18	6	8	5	0	0	19	65	
Hourly Total	9	44	1	0	0	54	2	33	11	0	0	46	6	60	35	0	0	101	28	46	9	0	0	83	284	
10:00 AM	2	9	1	0	0	12	0	6	1	0	0	7	0	15	6	0	0	21	12	6	1	0	0	19	59	
10:15 AM	2	11	2	0	0	15	2	7	1	0	0	10	5	14	4	0	0	23	4	9	2	0	0	15	63	
10:30 AM	3	15	0	0	0	18	1	16	4	0	0	21	2	14	5	0	0	21	8	8	1	0	0	17	77	
10:45 AM	3	5	0	0	0	8	2	8	2	0	0	12	2	8	4	0	0	14	2	14	2	0	0	18	52	
Hourly Total	10	40	3	0	0	53	5	37	8	0	0	50	9	51	19	0	0	79	26	37	6	0	0	69	251	
11:00 AM	5	11	0	0	0	16	1	16	1	0	0	18	1	12	10	0	0	23	7	11	1	0	0	19	76	
11:15 AM	3	11	0	0	0	14	0	10	0	0	0	10	4	9	9	0	0	22	7	7	4	0	0	18	64	
11:30 AM	2	15	1	0	0	18	1	12	1	0	0	14	1	13	5	0	0	19	12	13	4	0	0	29	80	
11:45 AM	3	9	2	0	0	14	1	13	2	0	0	16	0	17	6	0	0	23	7	15	1	0	0	23	76	
Hourly Total	13	46	3	0	0	62	3	51	4	0	0	58	6	51	30	0	0	87	33	46	10	0	0	89	296	
12:00 PM	4	10	0	0	0	14	2	13	3	0	0	18	2	15	7	0	0	24	8	14	8	0	0	30	86	
12:15 PM	2	9	1	0	0	12	2	8	0	0	0	10	0	8	4	0	0	12	5	11	3	0	0	19	53	
12:30 PM	4	13	0	0	0	17	0	14	2	0	0	16	0	10	11	0	0	21	10	14	2	0	0	26	80	
12:45 PM	3	13	0	0	0	16	0	7	3	0	0	10	2	11	5	0	0	18	6	10	3	0	0	19	63	
Hourly Total	13	45	1	0	0	59	4	42	8	0	0	54	4	44	27	0	0	75	29	49	16	0	0	94	282	

1:00 PM	2	12	1	0	0	15	1	10	0	0	0	. 11	1	16	6	0	0	23	2	7	3	0	0	12	61
1:15 PM	3	10	0	0	0	13	0	10	2	0	0	12	1	12	10	0	0	23	10	14	7	0		31	79
1:30 PM	8	13	3	0	0	24	0	12	2	0	0	14	3	13	8	0	0	24	7	11	1	0	0	19	81
1:45 PM	5	22	0	0	0	27	0	11	2	0	0	13	1	21	9	0	0	31	9	23	4	0	0	36	107
Hourly Total	18	57	4	0	0	79	1	43	6		0	50	6	62	33		0	101	28	55	15	0	0	98	328
2:00 PM	Q	10	0	0	0	28	0	22	 	0		22	2	18	11		0	31	10	12	1	0		23	104
2:15 PM	5		3		0	30	1	22	3	0	0	26	1	15	12		0	28	6	16	3	0		25	104
2:10 PM	7		4		0	25	2	14				20	1	10	7		0	20	21	21	5			47	103
2:30 FW	5	42		0	0	52	2	14	 			19	1	7			0	16	21	15		0		41	124
2.45 FW	26	107	12		0	145	6	60			0	00	5	52	20		0	05	50	64	12	0	0	126	121
2:00 PM	20		12		0	67	0	19	- 13 -		0	10	2	16	12		0	21	22	10	- 13		0	130	404
3.00 FM	7		4		0		0	17	. <u> </u>			- 19	2		10		0		14	- 19		0		40 	100
3.15 PM	7			0		 	2	- 1/				24	2	- 2/	10		0	39	14		- /	0			159
3:30 PM	5	40										20	2	10	10		0	30	24	19		0		40	160
3:45 PM	5	- 39	4		0	48		24			0	32	3	14	25		0	42	22		4	0		50	172
Houriy Total	22	1/9	9	0	0	210	4	83	- 16		0	103	10	/5	63		0	148	82	93	18	0	0	193	654
4:00 PM	4	44	0	0	0	48	1	22	6	0		29	0	12	10		0	22	24	30	3	0		5/	156
4:15 PM	13	68	2	0	0	83	0	27	4	0	0	31	2	27	20	0	0	49	28	24	3	0	0	55	218
4:30 PM	5	70	1	0	0	76	1	21	2	0	0	24	3	14	18	0	0	35	30	27	10	0	0	67	202
4:45 PM	12	68	3	0	0	83	0	27	3	0	0	30	0	20	21	0	0	41	26	39	4	0	0	69	223
Hourly Total	34	250	6	0	0	290	2	97	15	0	0	114	5	73	69	0	0	147	108	120	20	0	0	248	799
5:00 PM	5	61	1	0	0	67	2	26	4	0	0	32	1	15	13	0	0	29	38	34	6	0	0	78	206
5:15 PM	7	60	2	0	0	69	0	18	3	0	0	21	5	22	16	0	0	43	20	17	2	0	0	39	172
5:30 PM	10	40	2	0	0	52	2	29	4	0	0	35	0	13	19	0	0	32	32	17	4	0	0	53	172
5:45 PM	5	24	4	0	0	33	1	30	3	0	0	34	2	11	20	0	0	33	18	19	4	0	0	41	141
Hourly Total	27	185	9	0	0	221	5	103	14	0	0	122	8	61	68	0	0	137	108	87	16	0	0	211	691
6:00 PM	13	35	3	0	0	51	1	28	4	0	0	33	1	15	21	0	0	37	18	24	8	0	0	50	171
6:15 PM	7	28	0	0	0	35	0	11	3	0	0	14	0	13	9	0	0	22	17	25	6	0	0	48	119
6:30 PM	2	13	2	0	0	17	0	9	1	0	0	10	0	8	6	0	0	14	12	18	1	0	0	31	72
6:45 PM	3	18	1	0	0	22	0	4	2	0	0	6	0	8	7	0	0	15	7	14	1	0	0	22	65
Hourly Total	25	94	6	0	0	125	1	52	10	0	0	63	1	44	43	0	0	88	54	81	16	0	0	151	427
7:00 PM	1	10	1	0	0	12	0	7	3	0	0	10	1	7	6	0	0	14	8	8	3	0	0	19	55
7:15 PM	5	12	4	0	0	21	0	12	1	0	0	13	0	10	6	0	0	16	20	23	3	0	0	46	96
7:30 PM	4	20	2	0	0	26	0	15	2	0	0	17	1	10	6	0	0	17	12	18	6	0	0	36	96
7:45 PM	5	11	0	0	0	16	0	8	0	0	0	8	0	6	8	0	0	14	9	24	3	0	0	36	74
Hourly Total	15	53	7	0	0	75	0	42	6	0	0	48	2	33	26	0	0	61	49	73	15	0	0	137	321
Grand Total	252	1246	71	0	0	1569	49	909	149	0	0	1107	78	1038	642	0	0	1758	700	885	205	0	0	1790	6224
Approach %	16.1	79.4	4.5	0.0	-	-	4.4	82.1	13.5	0.0	-	-	4.4	59.0	36.5	0.0	-	-	39.1	49.4	11.5	0.0	-	-	-
Total %	4.0	20.0	1.1	0.0	-	25.2	0.8	14.6	2.4	0.0	-	17.8	1.3	16.7	10.3	0.0	-	28.2	11.2	14.2	3.3	0.0	-	28.8	-
Lights	228	1218	64	0	-	1510	42	861	141	0	-	1044	73	1000	621	0	-	1694	674	837	185	0	-	1696	5944
% Lights	90.5	97.8	90.1	-	-	96.2	85.7	94.7	94.6	-	-	94.3	93.6	96.3	96.7	_	-	96.4	96.3	94.6	90.2	-	-	94.7	95.5
Other Vehicles	24	28	7	0	-	59	7	48	8	0	-	63	5	38	21	0	-	64	26	48	20	0	-	94	280
% Other Vehicles	9.5	2.2	9.9	-	-	3.8	14.3	5.3	5.4	-	-	5.7	6.4	3.7	3.3	-	-	3.6	3.7	5.4	9.8	_	-	5.3	4.5
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	_	-
					0				_		0						0				_		0	_	-
Pedestrians	-		-	-	0		-	-		-	0	· ·	-	· · ·	-	. <u> </u>	0		-	-					

Count Name: PIC-752-3.54 Site Code: Start Date: 05/10/2023 Page No: 3

Turning Movement Data Plot

Count Name: PIC-752-3.54 Site Code: Start Date: 05/10/2023 Page No: 4

Turning Movement Peak Hour Data (7:00 AM)

		:	Southboun South	id Approach ibound					Westboun West	d Approach bound			Northbound Approach Northbound							Eastbound Approach Eastbound						
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total	
7:00 AM	10	9	0	0	0	19	1	26	6	0	0	33	1	47	18	0	0	66	7	9	3	0	0	19	137	
7:15 AM	7	15	0	0	0	22	1	44	1	0	0	46	1	45	26	0	0	72	9	20	9	0	0	38	178	
7:30 AM	5	12	3	0	0	20	0	21	3	0	0	24	2	43	15	0	0	60	6	19	6	0	0	31	135	
7:45 AM	2	8	2	0	0	12	2	21	3	0	0	26	0	40	10	0	0	50	7	12	7	0	0	26	114	
Total	24	44	5	0	0	73	4	112	13	0	0	129	4	175	69	0	0	248	29	60	25	0	0	114	564	
Approach %	32.9	60.3	6.8	0.0	-	-	3.1	86.8	10.1	0.0	-	-	1.6	70.6	27.8	0.0	-	-	25.4	52.6	21.9	0.0	-	-	-	
Total %	4.3	7.8	0.9	0.0	-	12.9	0.7	19.9	2.3	0.0	-	22.9	0.7	31.0	12.2	0.0	-	44.0	5.1	10.6	4.4	0.0	-	20.2	-	
PHF	0.600	0.733	0.417	0.000	-	0.830	0.500	0.636	0.542	0.000	-	0.701	0.500	0.931	0.663	0.000	-	0.861	0.806	0.750	0.694	0.000	-	0.750	0.792	
Lights	23	44	5	0	-	72	4	107	13	0	-	124	4	170	67	0	-	241	28	58	20	0	-	106	543	
% Lights	95.8	100.0	100.0	-	-	98.6	100.0	95.5	100.0	-	-	96.1	100.0	97.1	97.1	-	-	97.2	96.6	96.7	80.0	-	-	93.0	96.3	
Other Vehicles	1	0	0	0	-	1	0	5	0	0	-	5	0	5	2	0	-	7	1	2	5	0	-	8	21	
% Other Vehicles	4.2	0.0	0.0	-	-	1.4	0.0	4.5	0.0	-	-	3.9	0.0	2.9	2.9	-	-	2.8	3.4	3.3	20.0	-	-	7.0	3.7	
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Count Name: PIC-752-3.54 Site Code: Start Date: 05/10/2023 Page No: 5

Turning Movement Peak Hour Data Plot (7:00 AM)

Count Name: PIC-752-3.54 Site Code: Start Date: 05/10/2023 Page No: 6

Turning Movement Peak Hour Data (4:15 PM)

			Southbour South	id Approach ibound	ı				Westbound West	d Approach bound			Northbound Approach Northbound							Eastbound Approach Eastbound						
Start Time	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Right	Thru	Left	U-Turn	Peds	App. Total	Int. Total	
4:15 PM	13	68	2	0	0	83	0	27	4	0	0	31	2	27	20	0	0	49	28	24	3	0	0	55	218	
4:30 PM	5	70	. 1	0	0	76	1	21	2	0	0	24	3	14	18	0	0	35	30	27	10	0	0	67	202	
4:45 PM	12	68	3	0	0	83	0	27	3	0	0	30	0	20	21	0	0	41	26	39	4	0	0	69	223	
5:00 PM	5	61	1	0	0	67	2	26	4	0	0	32	1	15	13	0	0	29	38	34	6	0	0	78	206	
Total	35	267	7	0	0	309	3	101	13	0	0	117	6	76	72	0	0	154	122	124	23	0	0	269	849	
Approach %	11.3	86.4	2.3	0.0	-	-	2.6	86.3	11.1	0.0	-	-	3.9	49.4	46.8	0.0	-	-	45.4	46.1	8.6	0.0	-	-	-	
Total %	4.1	31.4	0.8	0.0	-	36.4	0.4	11.9	1.5	0.0	-	13.8	0.7	9.0	8.5	0.0	-	18.1	14.4	14.6	2.7	0.0	-	31.7	-	
PHF	0.673	0.954	0.583	0.000	-	0.931	0.375	0.935	0.813	0.000	-	0.914	0.500	0.704	0.857	0.000	-	0.786	0.803	0.795	0.575	0.000	-	0.862	0.952	
Lights	32	267	7	0	-	306	2	95	13	0	-	110	6	76	71	0	-	153	120	118	21	0	-	259	828	
% Lights	91.4	100.0	100.0	-	-	99.0	66.7	94.1	100.0	-	-	94.0	100.0	100.0	98.6	-	-	99.4	98.4	95.2	91.3	-	-	96.3	97.5	
Other Vehicles	3	0	0	0	-	3	1	6	0	0	-	7	0	0	1	0	-	1	2	6	2	0	-	10	21	
% Other Vehicles	8.6	0.0	0.0	-	-	1.0	33.3	5.9	0.0	-	-	6.0	0.0	0.0	1.4	-	-	0.6	1.6	4.8	8.7	-	-	3.7	2.5	
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Count Name: PIC-752-3.54 Site Code: Start Date: 05/10/2023 Page No: 7

Turning Movement Peak Hour Data Plot (4:15 PM)

Appendix C - Traffic Forecast

OHIO DEPARTMENT OF TRANSPORTATION

TFMS - Segment Forecast Report

Username	Email	Script Import Date	Script Version	Model Version				
Jsanor	Jerry.Sanor@dot.ohio.gov	4/14/2020 5:30:19 PM	2020.001	2023.1900				
Forecast Summary								
Project ID		Project Name	Opening Year	Design Year				
			2027	2047				

Project Description

*Users of this data need to be aware that there are limitations to the forecasts generated by this product that make it suitable only for roadway design projects which are low risk.

Segment Information

Segment ID	LRS ID	BMP	EMP	Length	Latitude	Longitude
1803920	CPICCR00007**C	7.101	10.351	3.250	-82.9156896106166	39.7457377441548
1858124	SPICSR00752**C	3.051	3.529	0.478	-82.9250283430793	39.7228819565485
1858127	SPICSR00752**C	3.529	4.678	1.149	-82.9097905532764	39.7226436178207

Forecast Information

Segment ID	2027 AADT	2047 AADT	DHV-30	K%	D%	T24%	TD%
1803920	2,100	2,500	300	13.0	70.0	0	0
1858124	2,000	2,900	450	15.6	53.5	10	11
1858127	1,900	2,700	400	15.6	53.5	11	12

Definitions:

- AADT Annual Average Daily Traffic
 DHV30 Design Hour Volume for 30th highest hour of the year
 DHV30 K * AADT

- o K % Design Hour Factor
 o D % Peak Direction Factor
 o T24 % Percent Daily Trucks
 o TD % Percent Design Hour Trucks

Forecast Segment ID	Route	BMP	EMP
1803920	CPICCR00007**C	7.101	10.351

			Forecast	:		
Year	K%	T24 % (Existing)	PA AADT	PA Method	PA Growth Rate %	PA Calculated Rate %
2050	13.0	0	2,500	Average	0.900	0.900
AADT	D%	TD % (Existing)	BC AADT	BC Method	BC Growth Rate %	BC Calculated Rate %
2,500	70.0	0	0	Model	-999999.000	0.000

Warning: The growth rate was negative and was capped.

Warning: FORECAST TRUCKS ZERO BECAUSE NO TRUCK COUNTS ON SEGMENT

	Regression								
Metho	d Number		PA AADT		BC AADT		AADT		
	2		2,621				2,621		
			959	% Confidence Min/Ma	ax				
PA Min		PA Max		BC Min		BC Max	Y	⁄ear	
1145		4479	0 68 20		2050				
Method Number	PA Growth %	BC Growth %	PA Drop Count	BC Drop Count	PA AADT	BC AADT	PA Adjustment	PA Adjustment	
1	1.28	0.00	0	0	2,778		2,745		
2	1.06	0.00	4	0	2,597		2,621		
3	1.71	0.00	0	0	3,046		2,986		
4	1.47	0.00	4	0	0 2,858		2,854		
5	1.36	0.00	0	0	0 2,835		2,789		
6	-999999.00	0.00	0	0					

	Adjustment Info							
ID	Adjustment Methods Name	Model vs Count AADT	Adjusted AADT	Model vs Count BC	Adjusted BC	PA Growth Rate %	BC Growth Rate %	
1	DIF	-6,112	3,231	-305	68	2.02	0.00	
2	RAT	0.25	2,321 0.00			0.53	0.00	
3	MRAT	1.15	2,439	1.22	12	0.72	0.00	
4	RAF		2,835		40	1.37	0.00	
A	djust Method AADT		Adjust Method BC		Selected PA Growth Rate %		Selected BC Growth Rate %	
	Model Ratio		Model Ratio		0.700		0.000	

Method 1 - 4 Volume

PA Min Volume	PA Max Volume	BC Min Volume	BC Max Volume	Total Min Volume	Total MaxVolume
2321	3163	0	68	2321	3231

Process Flag:	Adjusted model to counts with process per ODOT 255 spreadsheet
Comment:	
	No Comment

Historical Count								
Year	All	Cars	Trucks					
2009	1,761	1,761						
2013	1,748	1,748						
2016	1,855	1,855						
2019	2,075	2,075						
* 2022	2,020	2,020						

* Pivot Point

Segment ID	LRS ID	BMP	EMP	Length	Yr 2027 AADT	Yr 2047 AADT	DHV30	K %	D %	T24 %	TD %
1803920	CPICCR00007**C	7.101	10.351	3.250	2,100	2,500	300	13.0	70.0	0	0

Forecast Segment ID	Route	BMP	EMP
1858124	SPICSR00752**C	3.051	3.529

Forecast									
Year		K%	T24 % (Existing)	PA AADT	PA Method	PA Growth Rate %	PA Calculated Rate %		
2050	•	15.6	9	2,800	Average	2.800	2.800		
AADT		D%	TD % (Existing)	BC AADT	BC Method	BC Growth Rate %	BC Calculated Rate %		
3,120	•	53.5	9	320	Average	5.500	4.000		

Warning: The truck growth rate was exceeded the maximum and was capped at 5.500%

K/D factors from TCDS were used.

Regression								
Method Number	PA AADT	BC AADT	AADT					
2	2,286	548	2,834					

95% Confidence Min/Max

PA Min PA Max			BC Min		BC Max		٢	Year			
1668	1668 5031			92				928	2	2050	
Method Number	PA Growth	% BC Growth %	PA Drop (Count	BC Drop Count	Р	A AADT	BC AADT	PA Adjustment	PA Adjustment	
1	1.13	5.32	0		0		2,014	368	2,049	371	
2	1.67	9.56	1		1		2,285	570	2,286	548	
3	1.67	9.56	0		0		2,285	570	2,286	548	
4	1.68	8.29	4		5		2,279	496	2,289	495	
5	1.65	10.31	0		0		2,273	604	2,275	579	
6	1.76	9.08	4		5		2,318	532	2,325	528	

	Adjustment Info									
ID	Adjustment Methods Name	Model vs Count AADT	Adjusted AADT	Model vs Count BC	Adjusted BC	PA Growth Rate %	BC Growth Rate %			
1	DIF	-5,452	5,254 -124		223	7.97	1.77			
2	RAT	0.24	2,551 0.55		189	1.85	0.96			
3	MRAT	1.50	3,447 1.27		196	3.89	1.13			
4	RAF		4,350		210	5.92	1.46			
A	Adjust Method AADT		Adjust Method BC		Selected PA Growth Rate % Selected BC Rate %		Selected BC Growth Rate %			
Model Ratio			Average		3.900		1.500			

Method 1 - 4 Volume

PA Min Volume	PA Max Volume	BC Min Volume	BC Max Volume	Total Min Volume	Total MaxVolume
2362	5031	189	223	2551	5254

Process Flag:	Adjusted model to counts with process per ODOT 255 spreadsheet							
Comment:								
	No Comment							

Historical Count									
Year	All	Cars	Trucks						
2007	1,410	1,330	80						
2011	1,289	1,267	22						
2013	1,329	1,306	23						
2016	1,523	1,439	83						
2019	1,622	1,456	166						
* 2022	1,706	1,557	149						

* Pivot Point

Segment ID	LRS ID	BMP	EMP	Length	Yr 2027 AADT	Yr 2047 AADT	DHV30	K %	D %	T24 %	TD %
1858124	SPICSR00752**C	3.051	3.529	0.478	2,000	2,900	450	15.6	53.5	10	11

Forecast Segment ID	Route	BMP	EMP
1858127	SPICSR00752**C	3.529	4.678

Forecast									
Year		K%	T24 % (Existing)	PA AADT	PA Method	PA Growth Rate %	PA Calculated Rate %		
2050	•	15.6	9	2,500	Average	2.300	2.300		
AADT		D%	TD % (Existing)	BC AADT	BC Method	BC Growth Rate %	BC Calculated Rate %		
2,820	•	53.5	9	320	Average	5.900	4.000		

Warning: The truck growth rate was exceeded the maximum and was capped at 5.900%

K/D factors from TCDS were used.

Regression								
Method Number	PA AADT	BC AADT	AADT					
2	2,286	548	2,834					

95% Confidence Min/Max

PA Min PA Max			BC Min				BC Max	Y	Year		
1668	1668 4461			92				928	2	2050	
Method Number	PA Growth	6 BC Growth %	PA Drop C	ount	BC Drop Count	Р	A AADT	BC AADT	PA Adjustment	PA Adjustment	
1	1.13	5.32	0		0		2,014	368	2,049	371	
2	1.67	9.56	1		1		2,285	570	2,286	548	
3	1.67	9.56	0		0		2,285	570	2,286	548	
4	1.68	8.29	4		5		2,279	496	2,289	495	
5	1.65	10.31	0		0		2,273	604	2,275	579	
6	1.76	9.08	4		5		2,318	532	2,325	528	

	Adjustment Info												
ID	Adjustment Methods Name	Model vs Count AADT	Adjusted AADT	Model vs Count BC	Adjusted BC	PA Growth Rate %	BC Growth Rate %						
1	DIF	-5,915	4,706	-10	245	6.66	2.30						
2	RAT	0.22	2,377	0.94	239	1.33	2.16						
3	MRAT	1.39	3,035	1.61	241	2.84	2.21						
4	RAF		3,870		243	4.75	2.25						
Ac	ljust Method AADT		Adjust Method BC		Selected PA Growth Rate %		Selected BC Growth Rate %						
Λ	Iodel Ratio		Average		2.800		2.300						

Method 1 - 4 Volume

PA Min Volume	PA Max Volume	BC Min Volume	BC Max Volume	Total Min Volume	Total MaxVolume
2138	4461	239	245	2377	4706

Process Flag:	Adjusted model to counts with process per ODOT 255 spreadsheet
Comment:	
	No Comment

Historical Count												
Year	All	Cars	Trucks									
2007	1,410	1,330	80									
2011	1,289	1,267	22									
2013	1,329	1,306	23									
2016	1,523	1,439	83									
2019	1,622	1,456	166									
* 2022	1,706	1,557	149									

* Pivot Point

Segment ID	LRS ID	BMP	EMP	Length	Yr 2027 AADT	Yr 2047 AADT	DHV30	K %	D %	T24 %	TD %
1858127	SPICSR00752**C	3.529	4.678	1.149	1,900	2,700	400	15.6	53.5	11	12

Appendix D - Capacity Analysis

HCS Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Jerry Sanor	Intersection	SR 752 & Walnut Creek Pike								
Agency/Co.	D6	Jurisdiction	ODOT								
Date Performed	10/4/2023	East/West Street	SR 752								
Analysis Year	2027	North/South Street	Walnut Creek Pike								
Time Analyzed	AM Peak	Peak Hour Factor	0.92								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	SR 752										

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westb	ound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		30	60	30		10	120	5		70	180	5		10	50	20	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)										0				0			
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He																	
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		33				11					277				87		
Capacity, c (veh/h)		1442				1489					574				588		
v/c Ratio		0.02				0.01					0.48				0.15		
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					2.6				0.5		
Control Delay (s/veh)		7.6	0.2	0.2		7.4	0.1	0.1			17.0				12.2		
Level of Service (LOS)		А	А	А		А	А	А			С		В				
Approach Delay (s/veh)		2.	.0			0.	.6			17	.0			12	2.2		
Approach LOS		A	4			A	4			(E	3		

	HCS Two-Way Stop-Control Report												
General Information		Site Information											
Analyst	Jerry Sanor	Intersection	SR 752 & Walnut Creek Pike										
Agency/Co.	D6	Jurisdiction	ODOT										
Date Performed	10/4/2023	East/West Street	SR 752										
Analysis Year	2047	North/South Street	Walnut Creek Pike										
Time Analyzed	AM Peak	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	SR 752												

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		40	90	40		20	170	10		100	260	10		10	70	30	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)		0)		0				
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up Headways																	
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		43				22					402				120		
Capacity, c (veh/h)		1371				1436					451				450		
v/c Ratio		0.03				0.02					0.89				0.27		
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					9.6				1.1		
Control Delay (s/veh)		7.7	0.3	0.3		7.5	0.1	0.1			50.3				15.9		
Level of Service (LOS)		А	А	А		А	А	А			F		C				
Approach Delay (s/veh)		2.	.0			0	.9			50	.3			15	5.9		
Approach LOS		ŀ	4			ŀ	4			F				(2		

		ŀ	ICS ⁻	Гwo-'	Way	Stop	-Cor	ntrol	Repo	ort								
General Information							Site	Infor	natio	n						_		
Analyst	Jerry	Sanor					Inters	ection			SR 75	2 & Wal	nut Cree	ek Pike				
Agency/Co.	D6						Jurisc	liction			ODO ⁻	Г						
Date Performed	10/4/	2023					East/	West Str	eet		SR 75	2						
Analysis Year	2027						North	n/South :	Street		Waln	ut Creek	Pike					
Time Analyzed	PM P	eak					Peak	Hour Fac	ctor		0.92							
Intersection Orientation	East-	West					Analy	sis Time	Period ((hrs)	0.25	0.25						
Project Description	SR 75	2																
Lanes																		
		_			۲ Maj	ф or Street: Ea	t to st-West	4 4 X 4 4 L U										
Vehicle Volumes and Adju	ustme	nts							-									
Approach		Eastb	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)		20	130	130		10	110	0		80	80	10		10	290	40		
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3		
Proportion Time Blocked																		
Percent Grade (%)											0				0			
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2		
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3		
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33		
Delay, Queue Length, and	l Leve	l of Se	ervice															
Flow Rate, v (veh/h)		22				11					185				370			
Capacity, c (veh/h)		1462				1274					228				505			
v/c Ratio		0.01				0.01					0.81				0.73			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					6.1				6.0			
Control Delay (s/veh)		7.5	0.1	0.1		7.8	0.1	0.1			65.4				29.1			
Level of Service (LOS)		A	А	A		A	A	A			F				D			
Approach Delay (s/veh)		0	.7			0	7 65.4				29	29.1						

А

Approach LOS

F

А

	pp-Control Report																
General Information					_		Site	Inforr	natio	n			_			_	
Analyst	Jerry	Sanor					Inters	ection			SR 75	2 & Wal	nut Cree	ek Pike			
Agency/Co.	D6						Jurisc	liction			ODOT	г					
Date Performed	10/4/	2023					East/	West Str	eet		SR 75	2					
Analysis Year	2027						North	/South	Street		Walnu	ut Creek	Pike				
Time Analyzed	PM P	eak					Peak	Hour Fac	ctor		0.92						
Intersection Orientation	East-	West					Analy	sis Time	Period ((hrs)	0.25						
Project Description	SR 75	2															
Lanes																	
					۲ ۲ Maj	or Street: Ea	t P 7 st-West	4 ↓ X ↔ X U									
Vehicle Volumes and Adju	ustme	nts															
Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	T R		U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		30	190	180		20	150	0		110	110	10		10	300	50	
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)											0			(0		
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33	
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)		33				22			<u> </u>		250				391		
Capacity, c (veh/h)		1410				1151					49				384		
v/c Ratio		0.02				0.02			<u> </u>		5.12				1.02		
95% Queue Length, Q ₉₅ (veh)		0.1				0.1					28.4				12.6		
Control Delay (s/veh)		7.6	0.2	0.2		8.2	0.2	0.2			2020.7				84.8		
Level of Service (LOS)		А	А	А		A	А	А			F				F		
Approach Delay (s/veh)		0	.8			1	1.1 20				20.7		84.8				

А

Approach LOS

F

А

HCS All-Way Stop Control Report												
General and Site Informatio	n				Lanes							
Analyst	Jerry Sa	nor										
Agency/Co.	ODOT				1		<u>1-2</u>	læ <u>, v</u> L	<u></u>			
Date Performed	10/10/2	023			1			×	•			
Analysis Year	2027				1	8						
Analysis Time Period (hrs)	0.25				1						4	
Time Analyzed	AM Pea	k										
Project Description	SR 752	& Walnut (Creek Pike		1		4			*		
Intersection	SR 752	& Walnut (Creek Pike		1							
Jurisdiction	D6				1							
East/West Street	SR 752				1			×				
North/South Street	Walnut	Creek Pike			1			<u> </u>				
Peak Hour Factor	0.92				1							
Turning Movement Demand	l Volum	nes			·							
Approach		Eastbound	1		Westbound	k		Northboun	d	9	Southboun	d
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Volume (veh/h)	30	60	30	10	120	5	70	180	5	10	50	20
% Thrus in Shared Lane												
Lane Flow Rate and Adjustn	nents					<u> </u>	<u> </u>			<u> </u>	<u> </u>	
Approach	Eastbound				Westbound	ł		Northboun	d	9	Southboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	130			147			277			87		
Percent Heavy Vehicles	3			3			3			3		
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20		
Initial Degree of Utilization, x	0.116			0.130			0.246			0.077		
Final Departure Headway, hd (s)	4.98			5.05			4.83			4.92		
Final Degree of Utilization, x	0.181			0.206			0.372			0.119		
Move-Up Time, m (s)	2.0			2.0			2.0			2.0		
Service Time, t _s (s)	2.98			3.05			2.83			2.92		
Capacity, Delay and Level of	Servic	e										
Approach		Eastbound	I		Westbound	b		Northboun	d	9	Southboun	d
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	130			147			277			87		
Capacity (veh/h)	723			713			745			732		
95% Queue Length, Q ₉₅ (veh)	0.7			0.8			1.7			0.4		
Control Delay (s/veh)	9.1			9.4			10.7			8.6		
Level of Service, LOS	А			A			В			A		
Approach Delay (s/veh) LOS	9.1		A	9.4		A	10.7		В	8.6		A
Intersection Delay (s/veh) LOS			9	.8						A		

HCS All-Way Stop Control Report																
General and Site Informatio	n				Lanes											
Analyst	Jerry Sa	nor														
Agency/Co.	ODOT								<u>8</u> 49 ->							
Date Performed	10/10/2	023						×	4							
Analysis Year	2047					, X										
Analysis Time Period (hrs)	0.25				1						4					
Time Analyzed	AM Pea	k					1			*						
Project Description	SR 752	& Walnut (Creek Pike				7			7						
Intersection	SR 752	& Walnut (Creek Pike													
Jurisdiction	D6															
East/West Street	SR 752							×								
North/South Street	Walnut	Creek Pike						<u>e e e</u>								
Peak Hour Factor	0.92															
Turning Movement Demand Volumes																
Approach		Eastbound			Westbound	d	1	Northboun	d	9	Southbour	d				
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R				
Volume (veh/h)	40	90	40	20	170	10	100	260	10	10	70	30				
% Thrus in Shared Lane																
Lane Flow Rate and Adjustn			<u> </u>					<u> </u>								
Approach		Eastbound			Westbound	ł	, I	Northboun	d	9	Southbour	d				
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3				
Configuration	LTR			LTR			LTR			LTR						
Flow Rate, v (veh/h)	185			217			402			120						
Percent Heavy Vehicles	3			3			3			3						
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20						
Initial Degree of Utilization, x	0.164			0.193			0.357			0.106						
Final Departure Headway, hd (s)	5.75			5.76			5.38			5.69						
Final Degree of Utilization, x	0.295			0.348			0.601			0.189						
Move-Up Time, m (s)	2.0			2.0			2.0			2.0						
Service Time, ts (s)	3.75			3.76			3.38			3.69						
Capacity, Delay and Level of	Servic	e														
Approach		Eastbound			Westbound	ł	1	Northboun	d	9	Southbour	d				
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3				
Configuration	LTR			LTR			LTR			LTR						
Flow Rate, v (veh/h)	185			217			402			120						
Capacity (veh/h)	627			625			669			632						
95% Queue Length, Q ₉₅ (veh)	1.2	1.2 1		1.6			4.0			0.7						
Control Delay (s/veh)	11.1			11.8			16.2			10.0						
Level of Service, LOS	В			В			С			В						
Approach Delay (s/veh) LOS	11.1 B 11.8				1.8 B 16.2				С	10.0		В				
Intersection Delay (s/veh) LOS			1	3.3						B						

HCSTM AWSC Version 2023 AWSC_AM Peak_Design-Year.xaw Generated: 12/28/2023 1:56:20 PM

HCS All-Way Stop Control Report																
General and Site Informatio	n				Lanes											
Analyst	Jerry Sa	nor														
Agency/Co.	ODOT				1				x 44 ->							
Date Performed	10/10/2	023			1			×	4							
Analysis Year	2027				1	- ×										
Analysis Time Period (hrs)	0.25				1	245 1										
Time Analyzed	PM Peal	<			1		1		$\{i_{i_1,\ldots,i_n}\}$	λ.						
Project Description	SR 752	& Walnut C	Creek Pike		1	8	T			7						
Intersection	SR 752	& Walnut C	Creek Pike		1											
Jurisdiction	D6				1	- 25			51.548 ³							
East/West Street	SR 752															
North/South Street	Walnut	Creek Pike			1			<u> </u>								
Peak Hour Factor	0.92				1											
Turning Movement Demand Volumes																
Approach		Eastbound			Westbound	ł	I I	Northboun	d	9	Southboun	d				
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R				
Volume (veh/h)	20	130	130	10	110	5	80	80	10	10	290	40				
% Thrus in Shared Lane																
Lane Flow Rate and Adjustn					1	1		<u> </u>								
Approach		Eastbound			Westbound	k	l I	Northboun	d	9	Southboun	d				
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3				
Configuration	LTR			LTR			LTR			LTR						
Flow Rate, v (veh/h)	304			136			185			370						
Percent Heavy Vehicles	3			3			3			3						
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20						
Initial Degree of Utilization, x	0.271			0.121			0.164			0.329						
Final Departure Headway, hd (s)	5.56			6.15			5.98			5.54						
Final Degree of Utilization, x	0.470			0.232			0.307			0.568						
Move-Up Time, m (s)	2.0			2.0			2.0			2.0						
Service Time, t _s (s)	3.56			4.15			3.98			3.54						
Capacity, Delay and Level of	Servic	e														
Approach		Eastbound			Westbound	ł	I I	Northboun	d	9	Southboun	d				
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3				
Configuration	LTR			LTR			LTR			LTR						
Flow Rate, v (veh/h)	304			136			185			370						
Capacity (veh/h)	647			585			602			650						
95% Queue Length, Q ₉₅ (veh)	2.5			0.9			1.3			3.6						
Control Delay (s/veh)	13.4			11.0			11.6			15.6						
Level of Service, LOS	В			В			В			С						
Approach Delay (s/veh) LOS	13.4 B 11.0				11.0 B 11.6 B				В	15.6		C				
Intersection Delay (s/veh) LOS			1	3.6						B						

HCSTM AWSC Version 2023 AWSC_PM Peak_Open_Year.xaw Generated: 12/28/2023 2:01:33 PM

HCS All-Way Stop Control Report																
General and Site Informatio	'n				Lanes											
Analyst	Jerry Sa	nor														
Agency/Co.	ODOT				1				<u></u>							
Date Performed	10/10/2	023			1			Ľ.	A							
Analysis Year	2047				1	X					<u> </u>					
Analysis Time Period (hrs)	0.25				1	- 26										
Time Analyzed	PM Peal	ĸ			1		1			*						
Project Description	SR 752 8	& Walnut (Creek Pike		1		T			T.						
Intersection	SR 752 8	& Walnut (Creek Pike		1											
Jurisdiction	D6				1				S. La							
East/West Street	SR 752				1											
North/South Street	Walnut	Creek Pike			1			6 6 0								
Peak Hour Factor	0.92				1		_									
Turning Movement Demand Volumes																
Approach		Eastbound	1		Westbound	d		Northboun	d	9	Southboun	d				
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R				
Volume (veh/h)	30	190	180	20	150	5	110	110	10	10	400	50				
% Thrus in Shared Lane																
Lane Flow Rate and Adjustn																
Approach		Eastbound	1		Westbound	d		Northboun	d	9	Southboun	d				
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3				
Configuration	LTR			LTR			LTR			LTR						
Flow Rate, v (veh/h)	435			190			250			500						
Percent Heavy Vehicles	3			3			3			3						
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20						
Initial Degree of Utilization, x	0.386			0.169			0.222			0.444						
Final Departure Headway, hd (s)	7.23			8.38			8.08			7.16						
Final Degree of Utilization, x	0.873			0.443			0.561			0.995						
Move-Up Time, m (s)	2.0			2.0			2.0			2.0						
Service Time, t _s (s)	5.23			6.38			6.08			5.16						
Capacity, Delay and Level of	Servic	e														
Approach		Eastbound	1		Westbound	d		Northboun	d	9	Southboun	d				
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3				
Configuration	LTR			LTR			LTR			LTR						
Flow Rate, v (veh/h)	435			190			250			500						
Capacity (veh/h)	498			430			446			502						
95% Queue Length, Q ₉₅ (veh)	9.4			2.2			3.4			13.5						
Control Delay (s/veh)	42.1			17.9			20.9			65.7						
Level of Service, LOS	E			С			С			F						
Approach Delay (s/veh) LOS	42.1		E	17.9	7.9 C 20.9				С	65.7		F				
Intersection Delay (s/veh) LOS			43	3.5						E						

HCS Roundabouts Report																				
General Information							Site	e Info	rma	atior	ı			_	_					
Analyst	Jerry S	anor				*			Γ	Interse	ection			SR 7	752 &	Walnut (Creek P	Pike		
Agency or Co.	ODOT						←			E/W S	treet Na	ime		SR 7	752					
Date Performed	10/10,	/2023			$\left[\right]$		N			N/S St	treet Na	me		Wal	nut Cr	eek Pike				
Analysis Year	2027				× +	W	†Ε S	↑		Analys	sis Time	Period, h	rs	0.25						
Time Analyzed	AM Pe	ak								Peak H	Hour Fac	tor		0.92						
Project Description	SR 752	2 & Wal	nut Cre	eek Pike			→ ▼ *			Jurisdi	iction			D6						
Volume Adjustments	and Si	ite Cł	narac	teristi	cs															
Approach		E	B			١	VB		Т		N	IB				SB				
Movement	U	L	Т	T R		L	Т	R	T	U	L	Т	R	U		L 1		R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	T	0	0	1	0	0		0 1		0		
Lane Assignment				LTR				LTR	T			LTI	र				LTR			
Volume (V), veh/h	0	30	90	30	0	10	120	5	Τ	0	70	180	5	0	1	0 5)	20		
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	T	3	3	3	3	3		3 3		3		
Flow Rate (VPCE), pc/h	0	34	101	34	0	11	134	6	T	0	78	202	6	0	1	1 5	5	22		
Right-Turn Bypass	· · · ·	No	one			N	one		Τ		Nc	one		None						
Conflicting Lanes			1		1							1		1						
Pedestrians Crossing, p/h			0		0						0					0				
Proportion of CAVs									0											
Critical and Follow-Up Headway Adjustment																				
Approach		E	B			١	VB		Т		N	IB				SB				
Lane	Left	Ri	ght	Bypass	Left	R	ght	Bypass	Т	Left	Rig	ght B	ypass	Let	ft	Right	Вур	pass		
Critical Headway, s		4.9	763			4.9	9763				4.9	763				4.9763				
Follow-Up Headway, s		2.6	087			2.6	5087	087			2.6	087				2.6087				
Flow Computations, C	Capaci	ty an	d v/o	: Ratio	s															
Approach		E	B			١	VB		Т		N	IB		SB						
Lane	Left	Ri	ght	Bypass	Left	R	ght	Bypass	Т	Left	Rig	ght B	ypass	Let	ft	Right	Вур	pass		
Entry Flow (v _e), pc/h		1	69			1	51		Τ		28	36				89				
Entry Volume, veh/h		1	64			1	47				27	78				86				
Circulating Flow (v _c), pc/h		7	78			3	14		Τ		14	46				223				
Exiting Flow (vex), pc/h		1	18			2	.34				24	42				101				
Capacity (c _{pce}), pc/h		12	274			1	002				11	89				1099				
Capacity (c), veh/h		12	237			9	73		Т		11	54				1067				
v/c Ratio (x)		0.	13			0	.15		Т		0.	24				0.08				
Delay and Level of Se	rvice																			
Approach				EB		Т		WB				NB				SB				
Lane			Left	Righ	t Bypa	ss L	.eft	Right	Вур	pass	Left	Right	Вура	ss	Left	Right	Ву	pass		
Lane Control Delay (d), s/veh				4.0				5.1				5.3				4.1				
Lane LOS				A				А			A					A				
95% Queue, veh				0.5				0.5				0.9				0.3				
Approach Delay, s/veh LOS	LOS 4.0			A 5.1 A				A 5.3 A				А		4.1		А				
Intersection Delay, s/veh LOS				4.8								A								

HCS Roundabouts Report																		
General Information							Site	e Infor	matic	n								
Analyst	Jerry S	anor				*			Inte	section			SR 75	52 & V	Valnut Cr	eek Pike		
Agency or Co.	ODOT						←		E/W	Street Na	ame		SR 75	52				
Date Performed	10/10,	/2023					N	,),	N/S	Street Na	me		Waln	ut Cre	ek Pike			
Analysis Year	2047					W	f € S	† }	Ana	ysis Time	Period, h	rs	0.25					
Time Analyzed	AM Pe	ak							Peal	Hour Fa	ctor		0.92					
Project Description	SR 752	2 & Wal	nut Cre	eek Pike			→ ▼ *		Juris	diction			D6					
Volume Adjustments	and Si	ite Cł	narac	teristi	cs													
Approach		E	B			١	NB			١	IB				SB			
Movement	U	L	Т	T R		L	Т	R	U	L	Т	R	U	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0		
Lane Assignment				LTR				LTR			LT	२				LTR		
Volume (V), veh/h	0	40	90	40	0	20	170	10	0	100	260	10	0	10	70	30		
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
Flow Rate (VPCE), pc/h	0	45	101	45	0	22	190	11	0	112	291	11	0	11	78	34		
Right-Turn Bypass		No	one			N	one			N	one		None					
Conflicting Lanes			1		1						1		1					
Pedestrians Crossing, p/h			0				0					0						
Proportion of CAVs									0									
Critical and Follow-Up Headway Adjustment																		
Approach		E	B			١	NB			١	IB				SB			
Lane	Left	Ri	ght	Bypass	Left	R	ight	Bypass	Lef	t Ri	ght B	ypass	Left		Right	Bypass		
Critical Headway, s		4.9	763			4.9	9763			4.9	763			4	4.9763			
Follow-Up Headway, s		2.6	087			2.6087				2.6	087			ź	2.6087			
Flow Computations, C	Capaci	ty an	d v/o	: Ratio	s													
Approach		E	B			١	NB			1	1B				SB			
Lane	Left	Ri	ght	Bypass	Left	R	ight	Bypass	Lef	t Ri	ght B	ypass	Left		Right	Bypass		
Entry Flow (v _e), pc/h		1	91			Ĩ	223			4	14				123			
Entry Volume, veh/h		1	85			2	217			4	02				119			
Circulating Flow (v _c), pc/h		1	11			2	148			1	57				324			
Exiting Flow (vex), pc/h		1	23			3	336			3	47				145			
Capacity (c _{pce}), pc/h		12	232			8	374			1'	76				992			
Capacity (c), veh/h		11	96			8	348			1'	42				963			
v/c Ratio (x)		0.	15			C	.26			0	35				0.12			
Delay and Level of Se	rvice																	
Approach				EB				WB			NB				SB			
Lane			Left	Righ	t Bypa	ss L	.eft	Right	Bypass	Left	Right	Вура	ss L	.eft	Right	Bypass		
Lane Control Delay (d), s/veh				4.3				7.0			6.6				4.9			
Lane LOS				A				А			A				А			
95% Queue, veh				0.5				1.0			1.6				0.4			
Approach Delay, s/veh LOS	LOS 4.3			A 7.0 A				A 6.6 A					4.9		А			
Intersection Delay, s/veh LOS						6.0				А								

HCS Roundabouts Report																				
General Information							Site	e Info	orn	natio	ı				_		_			
Analyst	Jerry S	anor				*		1		Inters	ection			SR 7	752 &	Walnut	Cree	ek Pike		
Agency or Co.	ODOT						←			E/W S	Street Na	ime		SR 7	752					
Date Performed	10/10,	/2023			$\left[\right]$		N)	÷	N/S S	treet Na	me		Wal	nut Cr	eek Pike	2			
Analysis Year	2027				× +		Ϋ́Ε S			Analy	sis Time	Period, h	rs	0.25						
Time Analyzed	PM Pe	ak								Peak	Hour Fac	tor		0.92						
Project Description	SR 752	2 & Wal	nut Cre	ek Pike			→ ▼*			Jurisd	iction			D6						
Volume Adjustments	and Si	ite Cł	narac	teristi	cs															
Approach		E	B				WB		٦		Ν	IB				SB				
Movement	U	L	Т	T R		L	Т	R		UL		т	R	U		L	т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0		0	0	1	0	0		0	1	0		
Lane Assignment				LTR				LTR				LTI	र				Ľ	TR		
Volume (V), veh/h	0	20	130	130	0	10	110) 5		0	80	80	10	0	1	0 2	90	40		
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3		3	3	3	3	3	1	3	3	3		
Flow Rate (VPCE), pc/h	0	22	146	146	0	11	123	3 6		0	90	90	11	0	1	1 3	25	45		
Right-Turn Bypass		No	one			١	lone				No	one		None						
Conflicting Lanes			1		1					1					1					
Pedestrians Crossing, p/h			0		0						0					0				
Proportion of CAVs									C)										
Critical and Follow-Up Headway Adjustment																				
Approach		E	B				WB				Ν	IB				SB				
Lane	Left	Ri	ght	Bypass	Left	F	Right	Bypas	s	Left	Rig	ght B	ypass	Let	ft	Right		Bypass		
Critical Headway, s		4.9	763			4.	9763				4.9	763				4.9763				
Follow-Up Headway, s		2.6	087			2.6087					2.6	087				2.6087				
Flow Computations, C	Capaci	ty an	d v/o	: Ratio	s															
Approach		E	B				WB		٦		Ν	IB				SB				
Lane	Left	Ri	ght	Bypass	Left	F	Right	Bypas	s	Left	Rig	ght B	ypass	Let	ft	Right		Bypass		
Entry Flow (v _e), pc/h		3	14				140				19	91				381				
Entry Volume, veh/h		3	05				136				18	35				370				
Circulating Flow (v _c), pc/h		3	47				202				1	79				224				
Exiting Flow (vex), pc/h		1	68				258				1	18				482				
Capacity (c _{pce}), pc/h		9	69			•	123				11	50				1098				
Capacity (c), veh/h		9	40			ŀ	090				11	16				1066	Т			
v/c Ratio (x)		0.	32				0.12				0.	17				0.35	Τ			
Delay and Level of Se	rvice																			
Approach				EB		Т		WB				NB				SB				
Lane			Left	Right	Bypa	ss	Left	Right	E	Bypass	Left	Right	Вура	ss	Left	Righ	t	Bypass		
Lane Control Delay (d), s/veh				7.3				4.4				4.7				6.9				
Lane LOS				A				А				A				A				
95% Queue, veh				1.4				0.4				0.6				1.6				
Approach Delay, s/veh LOS	LOS 7.3			A 4.4 A				A 4.7 A					6.9)		А				
Intersection Delay, s/veh LOS						6.3								A						

HCS Roundabouts Report																				
General Information							Site	e Info	rn	natio	ı				_					
Analyst	Jerry S	anor				*			Τ	Inters	ection			SR 7	752 &	Walnut	Cree	k Pike		
Agency or Co.	ODOT						←		ľ	E/W S	Street Na	ime		SR 7	752					
Date Performed	10/10,	/2023			$\left[\right]$		N		÷	N/S S	treet Na	me		Wal	nut Cı	reek Pike	9			
Analysis Year	2047				\	W	τ E S) † }		Analy	sis Time	Period, h	rs	0.25						
Time Analyzed	PM Pe	ak								Peak	Hour Fac	tor		0.92						
Project Description	SR 752	2 & Wal	nut Cre	ek Pike			→ ▼*	1		Jurisd	iction			D6						
Volume Adjustments	and S	ite Cł	narac	teristi	s															
Approach		E	B			,	WB				Ν	IB				SB				
Movement	U	L	Т	T R		L	Т	R		U	L	T R		U		L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0		0	0	1	0	0		0	1	0		
Lane Assignment				LTR				LTR				LTI	र				Ľ	TR		
Volume (V), veh/h	0	30	190	180	0	20	150) 0		0	110	110	10	0	1	0 4	00	50		
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3		3	3	3	3	3		3	3	3		
Flow Rate (VPCE), pc/h	0	34	213	202	0	22	168	3 0		0	123	123	11	0	1	1 4	48	56		
Right-Turn Bypass		No	one			Ν	lone				Nc	one		None						
Conflicting Lanes			1		1							1		1						
Pedestrians Crossing, p/h			0		0						0					0				
Proportion of CAVs									0)										
Critical and Follow-Up Headway Adjustment																				
Approach		E	B				WB				Ν	IB				SB				
Lane	Left	Ri	ght Bypass		Left	R	ight	Bypas	s	Left	Rig	ght B	ypass	Let	ft	Right		Bypass		
Critical Headway, s		4.9	763			4.	9763				4.9	763				4.9763				
Follow-Up Headway, s		2.6	087			2.6087					2.6	087				2.6087				
Flow Computations, C	Capaci	ty an	d v/o	: Ratio	s															
Approach		E	B				WB				Ν	IB				SB				
Lane	Left	Ri	ght	Bypass	Left	R	ight	Bypas	s	Left	Rig	ght B	ypass	Let	ft	Right		Bypass		
Entry Flow (v _e), pc/h		4	49				190				2	57				515				
Entry Volume, veh/h		4	36				184				2	50				500				
Circulating Flow (vc), pc/h		4	81				280				2	58				313				
Exiting Flow (vex), pc/h		2	35			:	347				1	57				672				
Capacity (c _{pce}), pc/h		8	45			1	037				10	61				1003				
Capacity (c), veh/h		8	20			1	007				10	30				974				
v/c Ratio (x)		0.	53			().18				0.	24				0.51				
Delay and Level of Se	rvice																			
Approach				EB		Τ		WB				NB		Т		SB				
Lane			Left	Right	Вура	ss	eft	Right	B	Bypass	Left	Right	Вура	iss	Left	Righ	t	Bypass		
Lane Control Delay (d), s/veh				11.9				5.3				5.8				10.1				
Lane LOS				В				А				A				В				
95% Queue, veh				3.2				0.7				1.0				3.0				
Approach Delay, s/veh LOS	veh LOS 11.9			B 5.3 A				A 5.8 A				A		10.	1		В			
Intersection Delay, s/veh LOS						9.2								A						

Appendix E - Signal Warrant Results

TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS										
	Applicable?	Warrant Satisfied?	Notes and Comments:							
Warrant 1, Eight-Hour Vehicular Volume	Yes	No								
Warrant 2, Four-Hour Vehicular Volume	Yes	No								
Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. 5:15 PM							
For Warrants 1-3, new 0	ODOT signal	s must be bas	ed off of 100% volume thresholds (TEM 402-3.2)							
Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD. Peak Hour 4:15 PM 5:15 PM							
Warrant 5, School Crossing	No		N/A							
Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)							
Warrant 7, Crash Experience	No		If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.							
Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)							
Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9							
Multi-Way Stop Warrant	Yes	Yes	May be used as an interim measure if traffic signal warrants are satisfied.							

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

If no warrants are satisfied, additional options may be considered:

1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.

2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The **Modeling and Forecasting Section** should provide the projected traffic volumes.

3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C.05 and/or 4C.06 but a decision is made to not install a traffic control signal. **Please fill inputs on PHB Score Sheet and submit to ODOT.**

Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at **100 percent** local cost. Please review TEM 402-4 for details.

Conclusion: Do Not Install New Traffic Signal

Notes: