

FRA-317-10.63 HAMILTON ROAD CORRIDOR PID NO. 95570 CITY OF COLUMBUS, OHIO

ROADWAY EXPLORATION REPORT

Prepared For: ms consultants, inc. 2221 Schrock Road Columbus, OH 43229-1547

Prepared By:
Resource International, Inc.
6350 Presidential Gateway
Columbus, OH 43231

Rii Project No. W-13-155

May 2016

May 26, 2016

Mr. James Villacres, P.E., P.S. ms consultants, inc. 2221 Schrock Road Columbus, OH 43229-1547

Re: Roadway Exploration Report FRA-317-10.63 Hamilton Road Corridor PID No. 95570 City of Columbus, Ohio Rii Project No. W-13-155

Mr. Villacres:

Resource International, Inc. (Rii) is pleased to submit this roadway exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the proposed Hamilton Road Corridor (FRA-317-10.63) project in the City of Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the roadway exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Peyman P. Majidi, E.I.

Staff Engineer

Brian R. Trenner, P.E.

Director – Geotechnical Programming

Enclosure: Roadway Exploration Report

Planning

Engineering

Construction Management

Technology

TABLE OF CONTENTS

Sect	ion		Page
EXE	CUTIV	E SUMMARY	I
	Expl Anal	oration and Findingsysis and Recommendations	i ii
1.0	INTR	RODUCTION	1
2.0	GEO	LOGY AND OBSERVATIONS OF THE PROJECT	1
	2.1 2.2	Site Geology Existing Site Conditions	
3.0	EXP	LORATION	3
4.0	FIND	DINGS	5
	4.1 4.2 4.3	Surface MaterialsSubsurface SoilsBedrock	7
	4.4	Groundwater	
5.0	ANA	LYSES AND RECOMMENDATIONS	8
	5.1	Pavement Subgrade Recommendations	9 10
	5.2	Foundation Recommendations (Culvert under Groves Road) 5.2.1 Sliding Resistance (Headwalls)	12
	5.3	Lateral Earth Pressure Parameters	
	5.4	Construction Considerations	
		5.4.1 Excavation Considerations	16
	5.5	Groundwater Considerations	17
6.0	LIMI	TATIONS OF STUDY	17

APPENDICES

Appendix I Vicinity Map and Boring Plan

Appendix II Description of Soil Terms

Appendix III Boring Logs: B-001-0-15 through B-016-0-15

Appendix IV Pavement Core Data Sheets

Appendix V GB1 Subgrade Stabilization Summary

Appendix VI Shallow Foundation Calculations

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a roadway exploration report for the design and construction of the proposed improvements along the Hamilton Road Corridor from just south of Refugee Road to north of Groves Road as part of the FRA-317-10.63 project in the City of Columbus, Ohio. It is understood that the roadway will be widen to the west along the southbound lane between Kimberly Parkway and Groves Road, and at various other places along the corridor. Access roads will also be constructed within the intersection of Hamilton Road and Groves Road as well as a multiuse path on the west side of Hamilton Road along the entire project length. An existing culvert will be improved along Groves Road, to the west of Hamilton Road. It is understood that the culvert will be extended to the north, including a new headwall.

Exploration and Findings

Between December 15 and 21, 2015, a total of sixteen (16) test borings, designated as B-001-0-15 through B-016-0-15, were drilled to completion depths ranging from 10.0 to 25.0 feet below the existing ground surface at the locations illustrated on the boring plan in Appendix I of the full report. In addition to the aforementioned borings, five (5) pavement cores were also obtained, four (4) within the existing travel lanes of Hamilton Road and one (1) within the existing pavement of Eastland One, to determine the existing pavement thickness and composition.

Borings B-001-0-15, B-002-0-15, B-004-0-15, B-006-0-15, B-010-0-15 and pavement cores C-1, C-3, C-4 and C-5 were performed within the existing pavement along Hamilton road and encountered 4.5 to 9.0 inches of asphalt overlying 6.0 to 12.0 inches of concrete in borings B-001-0-15, B-002-0-15, B-004-0-15 and pavement cores C-4 and C-5. With the exception of borings B-001-0-15 and B-002-0-15, 6.0 to 12.0 inches of aggregate base was encountered below the pavement materials along Hamilton Road. Pavement core C-2 was performed within the existing pavement along Eastland One and encountered 6.5 inches of asphalt overlying 2.0 inches of aggregate base. Borings B-007-0-15 and B-008-0-15 were performed within the existing pavement of Kingsland Avenue and Kimberly Parkway and encountered 6.0 and 4.0 inches of asphalt overlaying 6.0 and 8.0 inches of concrete, respectively. Borings B-011-0-15 and B-016-0-15 were performed within the existing pavement along Groves Road and encountered 6.0 inches of asphalt in each boring overlaying 6.0 inches of concrete in boring B-011-0-15 and 12.0 inches of aggregate base in boring B-016-0-15. Borings B-003-0-15, B-005-0-15, B-009-0-15, B-014-0-15 and B-015-0-15 were performed in the grass adjacent to Hamilton Road and Groves Road and encountered 1.0 to 3.0 inches of topsoil at the ground surface.

Underlying the surficial materials, natural cohesive soils were encountered with intermittent seams and layers of granular material. The cohesive soils were generally described as brown and gray sandy silt, silt and clay, silty clay, and clay (ODOT A-4a, A-6a, A-6b, A-7-6). The granular soils were generally described as brown, gray and

black gravel and sand, gravel with sand and silt, and gravel with sand, silt and clay (ODOT A-1-b, A-2-4, A-2-6).

Bedrock was not encountered in any of the borings performed for this exploration.

Analysis and Recommendations

Pavement Subgrade Recommendations

The subgrade soils along the various alignments, within the project corridor, are anticipated to consist of predominantly cohesive materials comprised of medium stiff to hard sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6a, A-7-6). Based on the results of the GB1 analysis, the overall average site parameters based on all sixteen (16) soil borings performed as part of this exploration are as follows:

Overall Average Site Parameters

Average N _{60L}	Average	Average	Average Optimum	Average	Design	
	PI	Moisture	Moisture	Group Index	CBR	
10	14	15	13	6.5	7	

California Bearing Ratio (CBR) values for the entire project ranged from 4 to 12 with an average of 7. Based on the conditions encountered across the subject site, **it is recommended that pavement design be based on a CBR value of 7** with a corresponding resilient modulus, M_R, of 8,400 psi. Correlation charts indicate a modulus of subgrade reaction (K) of 165 pci and a soil support value (SSV) of 5.0. Station by station and global stabilization options are provided in Section 5.1.1 and 5.1.2 of the full report, respectively.

Foundation Recommendations (Culvert under Groves Road)

It is understood that the existing 54-inch by 96-inch box culvert that crosses under Groves Road at approximately Sta. 103+35 will be extended to the north and a new headwall constructed in order to support the new configuration in this area. It is recommended that the proposed culvert structure and associated headwall be supported on a conventional shallow foundation system bearing on competent natural soils and/or engineered fill. Based on the soil conditions encountered in the borings performed at this site, it is recommended that the shallow spread foundation system bear on the very stiff to hard sandy silt (ODOT A-4a) encountered in boring B-015-0-15 at or below elevation 753.0 feet msl. Footings bearing at or below this elevation may be proportioned for a nominal bearing resistance as follows:

- Nominal bearing resistance of $q_n = 13.0$ ksf at the strength limit state
- LRFD Bearing Resistance Factor of $\varphi = 0.5$ at the strength limit state

For service limit state design, the settlement analysis indicates that a service limit bearing pressure of 2.8 ksf results in a total settlement of approximately 1.0 inch. Please note that the settlement analysis considers a net increase in applied pressure based on an initial overburden stress of 0.69 ksf at the service limit state.

Please note that this executive summary does not contain all the information presented in the report. The unabridged geotechnical exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

This report is a presentation of the roadway exploration performed for the design and construction of the proposed improvements along the Hamilton Road Corridor from just south of Refugee Road to north of Groves Road as part of the FRA-317-10.63 project in the City of Columbus, Ohio. It is understood that the roadway will be widen to the west along the southbound lane between Kimberly Parkway and Groves Road, and at various other places along the corridor. Access roads will also be constructed within the intersection of Hamilton Road and Groves Road as well as a multiuse path on the west side of Hamilton Road along the entire project length. An existing culvert will be improved along Groves Road, to the west of Hamilton Road. It is understood that the culvert will be extended to the north, including a new headwall. The project area is shown on the vicinity map presented in Appendix I.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence. The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Big Walnut Creek, Blacklick Creek, and their tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock is comprised of the Upper Devonian-aged Ohio Shale Formation. The Ohio Shale Formation, which can be further subdivided into three (3) primary members, generally consists of brownish black to greenish gray, laminated to thinly bedded, carbonaceous shale with carbonate/siderite concretions, and ranges from 250 to more than 500 feet thick. Regionally, the bedrock surface forms a broad valley that is roughly aligned southwest-to-northeast beneath Lockbourne, Groveport and Canal Winchester, which branches off into narrower valleys that extend north and east near the Refugee Road

and Hamilton Road interchange. The bedrock surface underlying the project alignment slopes up to the northeast to a small bedrock plateau. The bedrock surface is at an approximate elevation of 650 feet mean sea level (msl) near the I-70 and Hamilton Road interchange and slopes down to an approximate elevation of 550 feet msl near the intersection of Refugee Road and Hamilton Road. According to the bedrock topography mapping, the depth to bedrock ranges from approximately 110 feet below the existing ground surface grade at the north end of the project alignment to 210 feet below the existing ground surface grade at the south end of the project alignment.

2.2 Existing Site Conditions

The project site is located within the southeastern limits of the City of Columbus, Ohio. Within the project corridor, Hamilton Road is aligned in a primarily north-to-south orientation, while Refugee Road and Groves Road are oriented in a primarily east-to-west alignment. The existing Hamilton Road is a composite asphalt and concrete paved roadway that currently maintains two (2) through lanes in both the northbound and southbound direction, with a dedicated central turn lane along the entire project alignment. There are currently six (6) signalized intersections along the project alignment at Refugee Road, two at the entrances to Eastland Mall (Eastland One and Two), Macsway Avenue, Kimberly Parkway and Groves Road. Additional turn lanes are present along Hamilton Road at each of these intersections. The existing pavement along Hamilton Road is in fair condition, with a significant amount of crack sealing evident along the majority of the alignment. Auxiliary lanes that run parallel to Hamilton Road are present along both the east and west sides of the roadway north of Groves Road, and along just the west side of the roadway between Groves Road and Macsway Avenue.

The existing Groves Road is an asphalt paved roadway that currently maintains one (1) lane of traffic in both the eastbound and westbound lanes, with dedicated turn lanes at the intersection with Hamilton Road. The pavement appears to be in fair condition. There is an existing concrete culvert that crosses under Groves Road approximately 365 feet west of Hamilton Road.

Underground utilities are present along the majority of the alignment of Hamilton Road and overhead electric runs along the east side of the roadway. Traffic volume is very high throughout the project corridor. Land use along the project corridor consists primarily of commercially developed properties with parking lots in both side of the street. The existing terrain across the subject site was observed to be relatively flat, with a slight dip in elevation where Hamilton Road crosses under I-270. Surface drainage is directed to grass ditches within that both sides of Hamilton Road.

3.0 EXPLORATION

Between December 15 and 21, 2015, a total of sixteen (16) test borings, designated as B-001-0-15 through B-016-0-15, were drilled to completion depths ranging from 10.0 to 25.0 feet below the existing ground surface. The boring locations are illustrated on the boring plan presented in Appendix I of this report and summarized in Table 1.

Table 1. Test Boring Summary

Table 1. Test borning Summary									
Reference Alignment	Boring Number	Station	Offset	Latitude	Longitude	Ground Elevation ¹ (feet msl)	Boring Depth (feet)		
	B-001-0-15	11+75	25' Rt.	39.916017242	-82.880491784	754.0	10.0		
	B-002-0-15	17+73	33' Lt.	39.917666823	-82.880543863	745.5	10.0		
	B-003-0-15	25+20	53' Lt.	39.919716112	-82.880423368	756.6	12.5		
Ex. CL	B-004-0-15	31+79	49' Lt.	39.921517969	-82.880240405	760.5	10.0		
Hamilton	B-005-0-15	40+07	44' Lt.	39.923785264	-82.880008962	761.4	10.0		
Road	B-006-0-15	44+54	30' Rt.	39.924992915	-82.879632540	762.1	10.0		
	B-009-0-15	52+04	52' Lt.	39.927063353	-82.879729793	760.5	10.0		
	B-010-0-15	56+22	27' Lt.	39.928203253	-82.879533483	756.1	10.0		
	B-014-0-15	65+89	66' Lt.	39.930859056	-82.879423929	763.1	10.0		
Ex. CL Kingsland Avenue	B-007-0-15	86+06	14' Lt.	39.925874798	-82.879276726	760.5	10.0		
Ex. CL Kimberly Parkway	B-008-0-15	82+05	33' Lt.	39.925999966	-82.880699856	760.7	10.0		
	B-011-0-15	114+02	14 ' Lt.	39.930095678	-82.876749784	765.7	10.0		
Ex. CL	B-012-0-15	110+55	58' Lt.	39.930284929	-82.877971440	764.2	10.0		
Groves	B-013-0-15	107+97	237' Lt.	39.930827050	-82.878842016	762.5	10.0		
Road	B-015-0-15	103+63	57' Lt.	39.930422221	-82.880433336	759.0	25.0		
	B-016-0-15	100+57	12' Lt.	39.930362203	-82.881535164	760.0	10.0		

^{1.} Ground surface elevations at the boring locations determined from available topographic mapping provided by ms consultants.

The boring locations were determined and located in the field by Rii representatives prior to the drilling operations. Geographic latitude and longitude coordinates were collected using a handheld GPS device, and ground surface elevations at the boring locations were interpolated using available topographic information provided by ms consultants.

In addition to the aforementioned borings, five (5) pavement cores were also obtained, four (4) within the existing travel lanes of Hamilton Road, and one (1) within the existing pavement of Eastland One. The cores were retained with a portable, 4.0-inch diameter thin-walled, pavement core machine to determine the existing pavement thickness and composition. Photographs of the pavement cores are presented in Appendix IV.

The borings were drilled with a truck-mounted rotary drilling machine, utilizing a 4.5-inch outside diameter, continuous solid flight auger to advance the holes. In general, standard penetration test (SPT) and split spoon sampling were performed at 2.5-foot intervals to the boring termination depth within each of the borings, with the exception of boring B-015-0-15, which was performed at 2.5-foot intervals to a depth of 20.0 feet and at 5.0-foot intervals to the boring termination depth. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blows per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in pavement and foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N₆₀, by the following equation. Both values are represented on boring logs in Appendix III.

$$N_{60} = N_m^*(ER/60)$$

Where:

 N_m = measured N value

ER = drill rod energy ratio, expressed as a percent, for the system used

The hammer for the Mobile B-53 truck-mounted drill rig used for this project was calibrated on May 13, 2015 and has a drill rod energy ratio of 77.1 percent.

Upon completion of drilling, the borings were backfilled with either soil cuttings generated during the drilling process or a mixture of soil cuttings and bentonite hole plug. Where borings and pavement cores penetrated the existing roadway, the pavement surface was patched with an equivalent thickness of quickset concrete

During drilling, Rii personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Table 2. Laboratory Test Schedule

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	75
Plastic and Liquid Limits	AASHTO T89, T90	33
Gradation – Sieve/Hydrometer	AASHTO T88	33
Sulfate Content – Colorimetric Method	TEX-145-E	16

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance for pavement and foundation design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the current version of the ODOT Specifications for Geotechnical Explorations (SGE). The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

A summary of the surficial materials encountered at each boring location is provided in Table 3.

Table 3. Summary of Surface Material Profile

Reference Alignment	Boring Number	Station	Offset	Topsoil (in)	Asphalt Thickness (in)	Concrete Thickness (in)	Aggregate Base Thickness (in)
	C-5	105+98 ¹	33' Rt.	-	4.75	9.0	9.0
	B-001-0-15	11+75	25' Rt.	-	6.0	12.0	-
	B-002-0-15	17+73	33' Lt.	-	6.0	12.0	-
	C-1	25+00	23' Rt.	-	8.75	-	6.0
	B-003-0-15	25+20	53' Lt.	3.0	-	-	-
Ex. CL	B-004-0-15	31+79	49' Lt.	-	6.0	6.0	6.0
Hamilton	B-005-0-15	40+07	44' Lt.	2.0	-	-	-
Road	C-3	42+50	11' Lt.	-	9.0	-	7.0
	B-006-0-15	44+54	30' Rt.	-	6.0	-	12.0
	B-009-0-15	52+04	52' Lt.	1.0	-	-	-
	B-010-0-15	56+22	27' Lt.	-	6.0	-	12.0
	B-014-0-15	65+89	66' Lt.	3.0	-	-	-
	C-4	69+00	33' Lt.	-	4.5	9.5	6.5
EX. CL Eastland One	C-2	44+00	7' Lt.	-	6.5	-	2.0
Ex. CL Kingsland Avenue	B-007-0-15	86+06	14' Lt.	-	6.0	6.0	-
Ex. CL Kimberly Parkway	B-008-0-15	82+05	33' Lt.	-	4.0	8.0	-
	B-011-0-15	114+02	14 ' Lt.	-	6.0	6.0	-
Ex. CL	B-012-0-15	110+55	58' Lt.	-	2.5	9.5	12.0
Groves	B-013-0-15	107+97	237' Lt.	-	2.0	6.0	-
Road	B-015-0-15	103+63	57' Lt.	3.0	-	-	-
	B-016-0-15	100+57	12' Lt.	-	6.0	-	12.0

^{1.} Station equation indicates Sta. 110+00 back equals Sta. 10+00 ahead along the centerline of Hamilton Road.

Borings B-001-0-15, B-002-0-15, B-004-0-15, B-006-0-15, B-010-0-15 and pavement cores C-1, C-3, C-4 and C-5 were performed within the existing pavement along Hamilton road and encountered 4.5 to 9.0 inches of asphalt overlying 6.0 to 12.0 inches of concrete in borings B-001-0-15, B-002-0-15, B-004-0-15 and pavement cores C-4 and C-5. With the exception of borings B-001-0-15 and B-002-0-15, 6.0 to 12.0 inches of aggregate base was encountered below the pavement materials along Hamilton

Road. Pavement core C-2 was performed within the existing pavement along Eastland One and encountered 6.5 inches of asphalt overlying 2.0 inches of aggregate base. Borings B-007-0-15 and B-008-0-15 were performed within the existing pavement of Kingsland Avenue and Kimberly Parkway and encountered 6.0 and 4.0 inches of asphalt overlaying 6.0 and 8.0 inches of concrete, respectively. Borings B-011-0-15 and B-016-0-15 were performed within the existing pavement along Groves Road and encountered 6.0 inches of asphalt in each boring overlaying 6.0 inches of concrete in boring B-011-0-15 and 12.0 inches of aggregate base in boring B-016-0-15. Borings B-003-0-15, B-005-0-15, B-009-0-15, B-014-0-15 and B-015-0-15 were performed in the grass adjacent to Hamilton Road and Groves Road and encountered 1.0 to 3.0 inches of topsoil at the ground surface.

4.2 Subsurface Soils

Underlying the surficial materials, natural cohesive soils were encountered with intermittent seams and layers of granular material. The cohesive soils were generally described as brown and gray sandy silt, silt and clay, silty clay, and clay (ODOT A-4a, A-6a, A-6b, A-7-6). The granular soils were generally described as brown, gray and black gravel and sand, gravel with sand and silt, and gravel with sand, silt and clay (ODOT A-1-b, A-2-4, A-2-6).

The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soils encountered across the site ranged from soft (0.25 < HP \leq 0.5 tsf) to hard (HP \geq 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.5 tsf to over 4.5 tsf (limit of the instrument). The relative density of the granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soils encountered ranged from very loose (N₆₀ < 5 blows per foot [bpf]) to dense (31 \leq N₆₀ \leq 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 4 to 45 blows per foot.

Natural moisture contents of the soil samples tested ranged from 5 to 27 percent. The natural moisture contents of the cohesive soil samples tested for plasticity index ranged from 8 percent below to 10 percent above their corresponding plastic limits. In general, the soils exhibited natural moisture contents estimated to be significantly below to significantly above optimum moisture levels.

Sulfate testing was performed in all of the borings in accordance with the Texas Department of Transportation test method TEX-145-E in the upper soils of the existing subgrade along the proposed alignments, as outlined in the current ODOT SGE and Geotechnical Bulletin GB1: Plan Subgrades (GB1). Based on the results of the testing, the sulfate contents of the subgrade soils range from 60 to 1,200 parts per million (ppm or mg/kg of material). Results of the sulfate testing at each boring location tested are provided on the respective boring log in Appendix III.

4.3 Bedrock

Bedrock was not encountered in any of the borings performed for this exploration.

4.4 Groundwater

Groundwater was encountered initially during drilling in borings B-002-0-15 and B-015-0-15 at a depth of 8.5 and 10.0 feet below the existing ground surface, respectively. At the completion of drilling in borings B-002-0-15 and B-015-0-15, groundwater accumulated in the boreholes to a depth of 7.0 and 9.0 feet below the ground surface, respectively. The remaining borings were observed to be dry, meaning that no measurable amount of water accumulated in the boreholes during or at the completion of drilling prior to backfilling the boreholes. Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the drilling and testing program have been used to determine pavement foundation and support capabilities for the soils encountered at the site. These parameters have been used to provide guidelines for the design of the pavement and foundation systems, as well as the construction specifications related to the placement of the pavement and general earthwork recommendations, which are discussed in the following paragraphs.

5.1 Pavement Subgrade Recommendations

The subgrade soils along the various alignments, within the project corridor, are anticipated to consist of predominantly cohesive materials comprised of medium stiff to hard sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6a, A-7-6). Based on the soil conditions encountered during the drilling phase, it is estimated that the subgrade soils within the upper portions of the proposed subgrade will require some level of stabilization under ODOT GB1. Profile information was not available at the time of this report; however, it is anticipated that the proposed subgrade will match relatively closely with the existing subgrade, and that minor amounts of earthwork cut or fill will be required to achieve the proposed subgrade elevations.

The moisture content of cohesive soil has a significant effect on the physical properties of the material. It must be noted that the moisture contents illustrated on the boring logs and utilized in this analysis represent the conditions during the drilling phase of the

project. The referenced borings for subgrade analysis were drilled between December 15 and 21, 2015. These soil conditions, especially in the surficial soils, may not coincide with the soil conditions that will be encountered during construction. Consequently, the extent/need for subgrade improvement is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction.

5.1.1 Station-By-Station Stabilization Recommendations

It is understood that specific, "station-by-station" recommendations for subgrade stabilization under GB1 are required for anticipated stabilization quantities. Therefore, a summary of recommended undercut and replacement quantities, as well as chemical stabilization quantities, in reference to boring locations are presented in Table 4. A complete GB1 analysis of each soil boring, looking at the proposed subgrade soils at each location, is presented in Appendix V. Please note that the undercut and replacement depths provided in Table 4 are measured from the proposed roadway subgrade, which is anticipated to approximately match the existing roadway subgrade elevation in the existing and widened lanes, as applicable. This elevation was used in the GB1 spreadsheet analysis. If the final design subgrade elevation differs significantly, adjustments to the subgrade analysis will be required to determine the subgrade treatment depth.

Table 4. Station-By-Station Subgrade Treatment Summary

Reference Alignment	From Station ¹	To Station ¹	Length (ft)	Representative Boring(s)	GB1 Subgrade Stabilization
	11+00 (Est. Project Start)	21+50	1,050	B-001-0-15 and B-002-0-15	No stabilization is anticipated. Subgrade should be proof rolled per ODOT Item 204 to verify that the subgrade will not require stabilization.
Ex. CL Hamilton Road	21+50	42+30	2,080	B-003-0-15, B-004-0-15 and B-005-0-15	Proof roll and perform cement stabilization to depth of 14 inches or excavate 18 inches and replace with ODOT Item 703.16C granular material Type B or C, with 712.09 Geotextile Fabric Type D
	42+30	72+50 (Est. Project End)	3,020	B-006-0-15, B-009-0-15, B-010-0-15 and B-014-0-15	No stabilization is anticipated. Subgrade should be proof rolled per ODOT Item 204 to verify that the subgrade will not require stabilization.
Ex. CL Kingsland Avenue	85+00	88+50	350	B-007-0-15	Proof roll and perform cement stabilization to depth of 12 inches or excavate 12 inches and replace with ODOT Item 703.16C granular material Type B or C, with 712.09 Geotextile Fabric Type D

Reference Alignment	From Station ¹	To Station ¹	Length (ft)	Representative Boring(s)	GB1 Subgrade Stabilization
Ex. CL Kimberly Parkway	79+20	85+00	580	B-008-0-15	Proof roll and perform cement stabilization to depth of 14 inches or excavate 18 inches and replace with ODOT Item 703.16C granular material Type B or C, with 712.09 Geotextile Fabric Type D
Ex. CL	100+80	107+00	620	B-015-0-15 and B-016-0-15	No stabilization is anticipated. Subgrade should be proof rolled per ODOT Item 204 to verify that the subgrade will not require stabilization.
Groves Road	107+00	114+05	705	B-011-0-15 and B-012-0-15	Proof roll and perform cement stabilization to depth of 14 inches or excavate 18 inches and replace with ODOT Item 703.16C granular material Type B or C, with 712.09 Geotextile Fabric Type D
Relocated Service Road	Est. Start	Est. End	500	B-012-0-15 and B-013-0-15	Proof roll and perform cement stabilization to depth of 14 inches or excavate 18 inches and replace with ODOT Item 703.16C granular material Type B or C, with 712.09 Geotextile Fabric Type D

^{1.} Station limits estimated based on soil conditions encountered in the borings. Actual limits of stabilization may vary based on the conditions encountered during construction.

Note that the limits of the treatment areas are based upon the "Limitation of the Study", defined in Section 6.0 of this subgrade exploration report.

Please note that the limits and depth of stabilization provided in the table above are estimated based on the soil conditions encountered in the borings performed during the field exploration. Actual limits and depth of stabilization may differ from the recommendations provided. Per ODOT GB1 requirements, if it is elected to perform station by station stabilization, the entire subgrade should be proof rolled to identify the actual limits of unstable subgrade and depth of stabilization required. Upon completion of the stabilization, areas that required stabilization should be proof rolled to verify that stability has been achieved.

5.1.2 Global Stabilization

Based on the ODOT GB1, when approximately 30 percent or more of the subgrade requires stabilization, consideration should be given to utilizing a global stabilization option. For this project, approximately 50 percent of the subgrade is anticipated to require stabilization based on the soil borings performed (8 of 16 borings). Per ODOT GB1, global stabilization recommendations are based upon the overall average site parameters, as noted in Table 5.

Table 5. Average Site Parameters

Average N _{60L}	Average	Average	Average Optimum	Average	Average
	PI	Moisture	Moisture	Group Index	CBR
10	14	15	13	6.5	7

Applying the averages in Table 5, GB1 recommends the following global stabilization options within the project limits:

- Option 1. Chemically stabilize the entire subgrade with 14-inches of cement, as per ODOT Item 206. For estimating purposes, utilize a cement content of 6.0 percent by weight of soil. Actual application rates shall be verified by the contractor under Item 206.06 Mixture Design for Chemically Stabilized Soils.
- Option 2. Stone stabilize the entire subgrade via an 18-inch undercut and replacement with ODOT Item 703.16C granular material, Type B, C or D installed over ODOT Item 712.09 Geotextile Fabric, Type D as detailed in accordance with ODOT Item 204.

Per ODOT GB1 requirements, if it is elected to perform global stabilization, the entire subgrade should be stabilized using one of the global stabilization options provided above. Upon completion of the stabilization, the entire subgrade should be proof rolled to verify that stability has been achieved.

5.1.3 Subgrade Design Considerations

California Bearing Ratio (CBR) values for the entire project ranged from 4 to 12 with an average of 7. Based on the conditions encountered across the subject site, **it is recommended that pavement design be based on a CBR value of 7** with a corresponding resilient modulus, M_R, of 8,400 psi. Correlation charts indicate a modulus of subgrade reaction (K) of 165 pci and a soil support value (SSV) of 5.0.

Per ODOT GB1, soils with sulfate content in excess of 3,000 ppm cannot be chemically stabilized due to the potential for sulfate heave in the soil. Based on the results of the testing, the sulfate contents of the subgrade soils range from 60 to 1,200 ppm. Therefore, soil with a sulfate content greater than 3,000 ppm was not encountered in any boring.

Please note that the recommended CBR values assume that the materials utilized for the roadway subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value of 7.

Pavement design is dependent on the inclusion of adequate surface and subsurface drainage in order to maintain the compacted subgrade near optimum moisture conditions throughout the lifetime of the pavement. If underdrain systems are considered, they should be installed in accordance to the specifications presented in Item 204 of the ODOT Construction and Materials Specifications (CMS).

5.2 Foundation Recommendations (Culvert under Groves Road)

It is understood that the existing 54-inch by 96-inch box culvert that crosses under Groves Road at approximately Sta. 103+35 will be extended to the north and a new headwall constructed in order to support the new configuration in this area. It is recommended that the proposed culvert structure and associated headwall be supported on a conventional shallow foundation system bearing on competent natural soils and/or engineered fill. Based on the soil conditions encountered in the borings performed at this site, it is recommended that the shallow spread foundation system bear on the very stiff to hard sandy silt (ODOT A-4a) encountered in boring B-015-0-15 at or below elevation 753.0 feet msl. Footings bearing at or below this elevation may be proportioned for a nominal bearing resistance as follows:

- Nominal bearing resistance of $q_n = 13.0$ ksf at the strength limit state
- LRFD Bearing Resistance Factor of $\varphi = 0.5$ at the strength limit state

For service limit state design, the settlement analysis indicates that a service limit bearing pressure of 2.8 ksf results in a total settlement of approximately 1.0 inch. Please note that the settlement analysis considers a net increase in applied pressure based on an initial overburden stress of 0.69 ksf at the service limit state. Calculations for bearing resistance and settlement are provided in Appendix VI.

Pursuant to the ODOT "Location and Design Manual, Volume 2 – Drainage Design" manual (Rev. April 2010), arch or flat slab topped culverts supported on spread footings should be founded at a minimum of 4.0 feet below the flowline on competent scour resistant native soils. The requirements in this manual should govern the design of this project.

The footings should be carefully inspected to verify the bearing strata. Footing concrete should be placed as soon as possible following excavation, preferably the same day, in order to avoid degradation of the bearing surface. All bearing surfaces should be free of loose or disturbed material and water prior to placing footing concrete.

5.2.1 Sliding Resistance (Headwalls)

The resistance of the footings for the headwalls to sliding will be dependent on the friction between the concrete footing and bearing surface. For concrete footings bearing on cohesive soil, the sliding resistance is taken as one-half of the normal stress on the

interface between the footing and soil, limited by the undrained shear strength of the bearing soil, multiplied by the width of the footing, as outlined in Section 10.6.3.4 of the 2014 AASHTO LRFD BDS. The undrained shear strength of the cohesive bearing soils is estimated to be 2.5 ksf. A geotechnical resistance factor of $\phi_\tau = 1.0$ should be considered when calculating the factored shear resistance between the soil and foundation for sliding.

5.3 Lateral Earth Pressure Parameters

For the soil types encountered in the borings, the "in-situ" unit weight (γ) , cohesion (c), effective angle of friction (φ') , and lateral earth pressure coefficients for at-rest conditions (k_o) , active conditions (k_a) , and passive conditions (k_p) have been estimated and are provided in Table 6 and Table 7.

Table 6. Estimated Undrained Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ	k_a	k_o	k_p
Soft to Medium Stiff Cohesive Soil	110	750	0°	1.0	1.0	1.0
Stiff Cohesive Soil	115	1,500	0°	1.0	1.0	1.0
Very Stiff to Hard Cohesive Soil	120	3,000	0°	1.0	1.0	1.0
Very Loose to Loose Granular Soil	120	0	28°	0.36	0.53	2.77
Medium Dense Granular Soil	125	0	30°	0.33	0.50	3.00
Dense Granular Soil	130	0	34°	0.28	0.44	3.54
Compacted Cohesive Engineered Fill	120	1,500	0°	1.0	1.0	1.0
Compacted Granular Engineered Fill	130	0	33°	0.30	0.46	3.39

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

Table 7. Estimated Drained Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ'	k_a	k_o	k_p
Natural Cohesive Soil	120	0	26°	0.39	0.56	2.56
Very Loose to Loose Granular Soil	120	0	28°	0.36	0.53	2.77
Medium Dense Granular Soil	125	0	30°	0.33	0.50	3.00
Dense Granular Soil	130	0	34°	0.28	0.44	3.54
Compacted Cohesive Engineered Fill	120	0	28°	0.36	0.53	2.77
Compacted Granular Engineered Fill	130	0	33°	0.30	0.46	3.39

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures, and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For any temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active conditions (k_a) and passive pressure (k_p) . The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is assumed). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

Temporary retaining structures should be designed using the undrained soil parameters provided in Table 6, and the design should follow all applicable guidelines for the type of retaining structure utilized. Permanent retaining structures should be designed using the drained soil parameters provided in Table 7. Regardless of whether the retaining structure is temporary or permanent, the effective unit weight ($\gamma' = \gamma - 62.4$ pcf) plus the hydrostatic water pressure ($\gamma_w * h_w$, where h_w is the height of water behind the wall above the base of the wall) should be utilized below the design groundwater level. The lateral earth pressure coefficients should only be applied to the horizontal pressure resulting from the effective overburden pressure, and should not be applied to the hydrostatic water pressure.

5.4 Construction Considerations

All site work shall conform to local codes and to the latest ODOT CMS, including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

Prior to beginning excavation, grading and/or embankment operations across the site, all necessary clearing and grubbing shall be completed, including the complete removal of all topsoil and unsuitable fill materials (as determined by a geotechnical engineer or an experienced soil technician), vegetation, debris, saturated and/or soft/loose soils and/or existing pavement sections (where applicable) within the footprint of the proposed improvements.

Cohesive soil, primarily those containing silt (ODOT A-4b), tend to become unstable (i.e., soft and flexing) under repeated loading from heavy rubber-tired vehicles. Therefore, heavy vehicle traffic on subgrades should be limited as much as possible during construction. The subgrade should be closely observed to determine if unstable conditions do develop which will require stabilization as determined by the geotechnical engineer.

The proposed subgrade surfaces should be proof rolled with sufficient proof rolling apparatus (preferably a fully-loaded tandem-axle dump truck), prior to placing engineered fill. A geotechnical engineer or an experienced soil technician should be present during proof rolling to determine if soft soil with inadequate stability exists. Subgrade instability encountered during a proof roll is indicated by deflection, cracking or rutting of the surface. Soft soil is generally a result of the presence of very moist to wet cohesive soil. Deflecting subgrades may also be due to the presence of subsurface lenses of silt or fine sand, which typically contain water because the soil exhibits a higher porosity than the overlying and/or underlying cohesive soil. Based on the borings drilled, the moisture contents of the cohesive samples tested are considered to be slightly below to significantly above the corresponding optimum moisture contents. Soil in excess of the optimum moisture content creates the possibility of soft or unstable subgrades. It is likely that cohesive subgrade soil exhibiting natural moisture content in excess of its corresponding plastic limit will require some level of stabilization.

The extent/need for subgrade stabilization is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction. If required, the method of stabilization employed is a function of the type of instability encountered the location (i.e., depth) of the instability and the resources available.

Fine-grained soils, such as silt (ODOT A-4b), have the potential to create a frost-susceptible subgrade. During construction, it is recommended that this type of material, where encountered, be over excavated and completely removed from within 3.0 feet of the proposed finished subgrade elevation. The over-excavation should be backfilled with engineered fill in accordance to the following paragraphs. Based on the soil conditions encountered in the borings performed for this project, fine-grained, frost-susceptible soils are not anticipated to be encountered during construction of the proposed improvements.

Other stabilization options include 1) scarifying, drying and recompacting, 2) mixing wet soil with dry soil, 3) undercutting unsuitable surficial soil and replacing it with controlled density fill, and 4) a geogrid subgrade reinforcement system. Additional methods of subgrade stabilization are available and certainly may be effective (both physically and economically) in stabilizing the soil. The adequacy of any stabilization method should be verified through the construction of a test section. All proposed subgrade surfaces should be shaped to promote positive drainage, with a minimum slope of 2.0 percent or 0.25 inches per foot. Adequate drainage is necessary for maintaining the stability of the subgrade. Care should be taken during final grading so that no areas of potential ponding or standing water remain at the subgrade surface.

Generally, materials utilized for engineered fill should be free of waste construction debris and other deleterious materials and meet the following requirements:

Maximum Dry Density per ASTM D698 > 110 pcf

Liquid Limit < 40Plasticity Index < 15

Organic Matter
 Maximum Particle Size
 Silt Content (between 0.075 and 0.005 mm)
 < 45 percent

Compacted granular fill shall meet the above specification and additionally shall have a maximum 35 percent passing the No. 200 sieve.

It is anticipated that portions of the existing aggregate base material will be able to be reused as new aggregate base. In addition, most of the natural soils encountered on the site are considered suitable for reuse as structural fill for pavement support when compacted at its optimum moisture content. Fill soil placed for pavement support should be placed in loose lifts not to exceed 8.0 inches. All embankment fill should be placed and compacted in general accordance to Item 203 of the ODOT CMS. Fill soil containing excess moisture shall be required to dry prior to or during compaction to a moisture content not greater than 3.0 percent above or below optimum. However, for material that displays pronounced elasticity or deformation under the action of loaded rubber tire construction equipment, the moisture content shall be reduced to optimum if necessary to secure stability. Drying wet soil can be expedited by the use of plows, discs, or by other approved methods. The final determination of whether a material is suitable for reuse as fill should be made by the project geotechnical engineer or a field representative thereof. Fill soil should not be placed in a frozen condition or on a frozen subgrade.

5.4.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Table 8. Excavation Back Slopes

Soil	Maximum Back Slope	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None

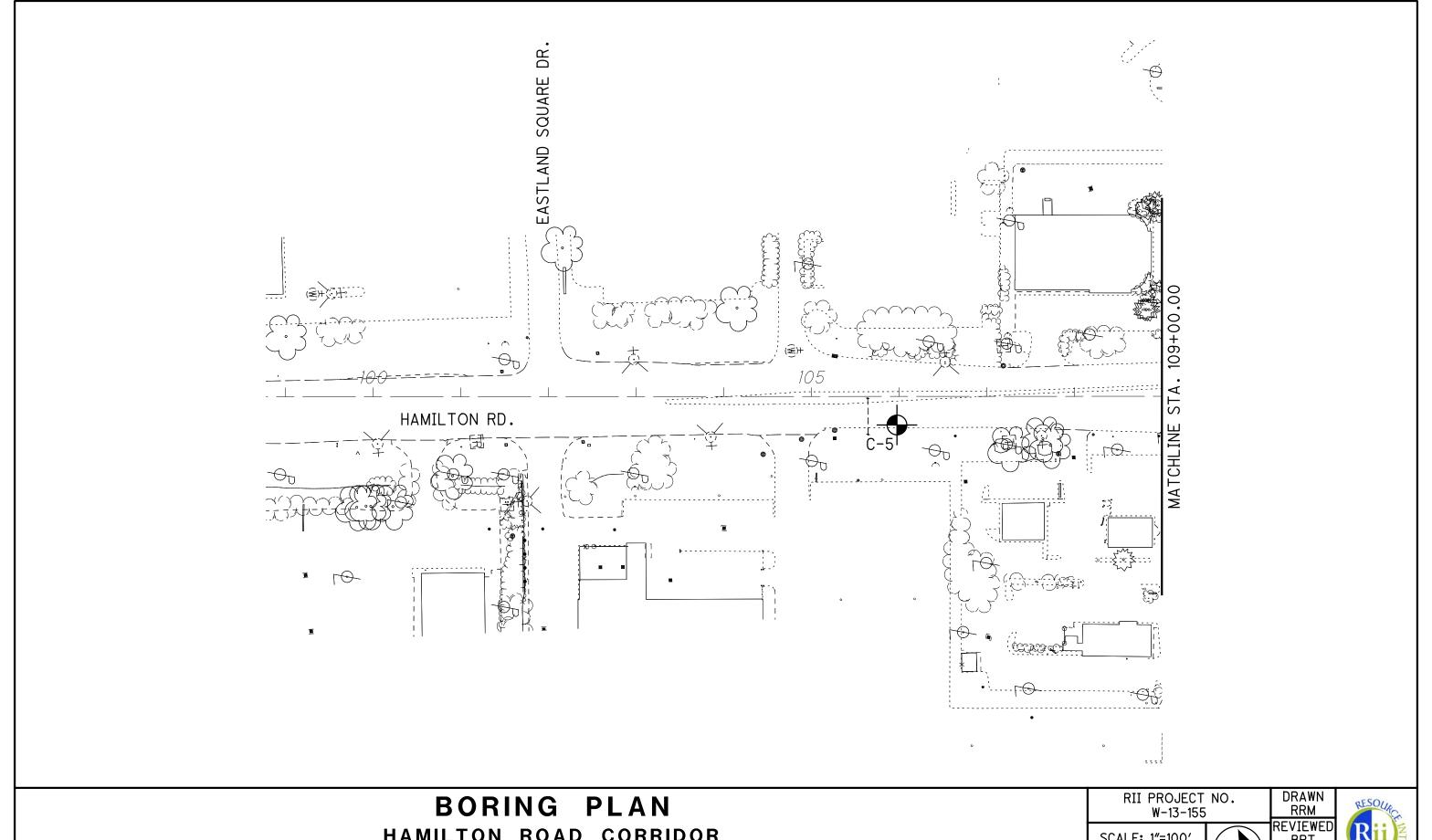
5.5 Groundwater Considerations

Based on the groundwater observations made during drilling, seepage and/or groundwater is not anticipated to be encountered during construction at the site. Where/if groundwater is encountered, proper groundwater control measures should be implemented to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition if soft/loose silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 24.0 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

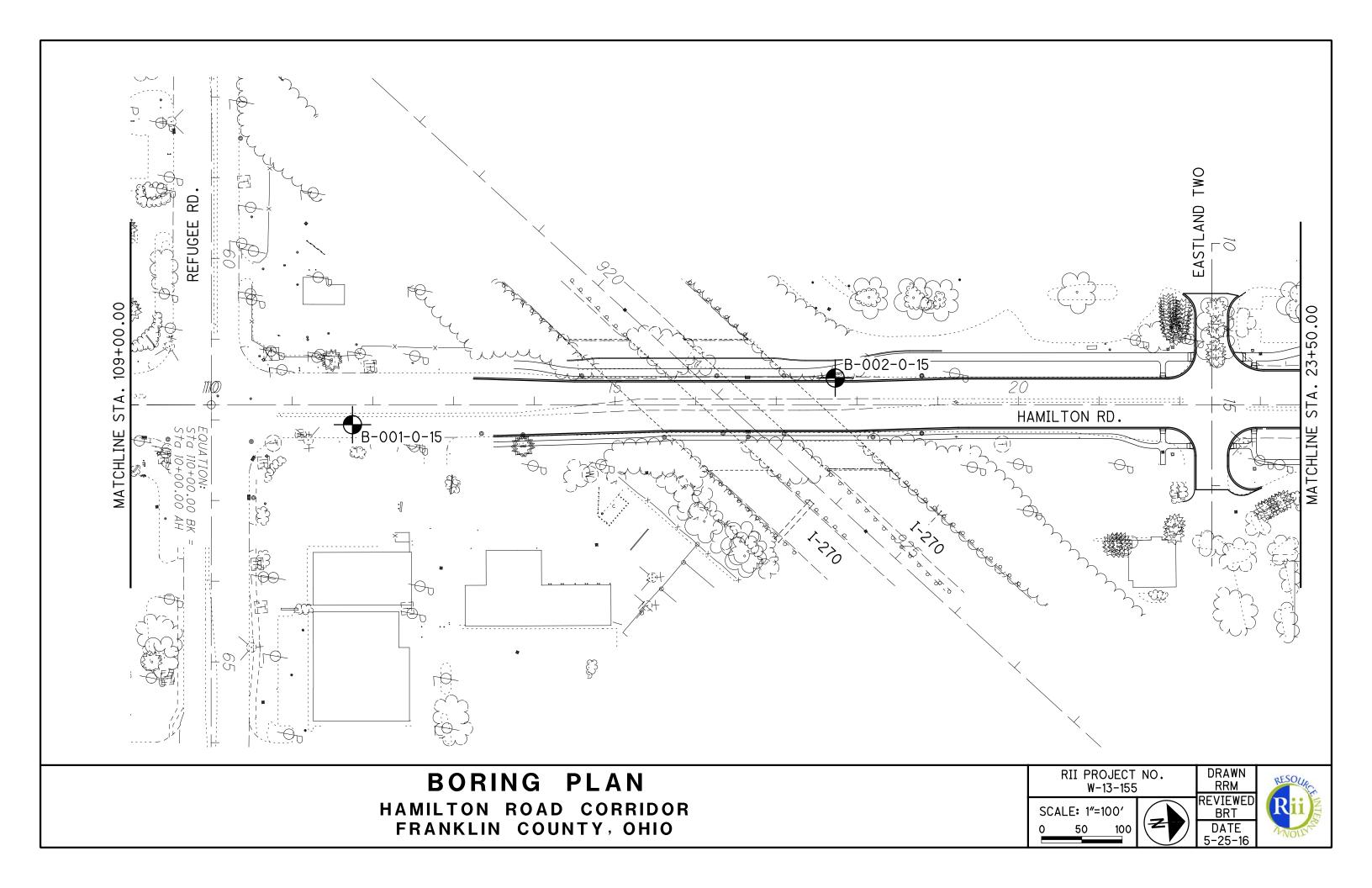

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

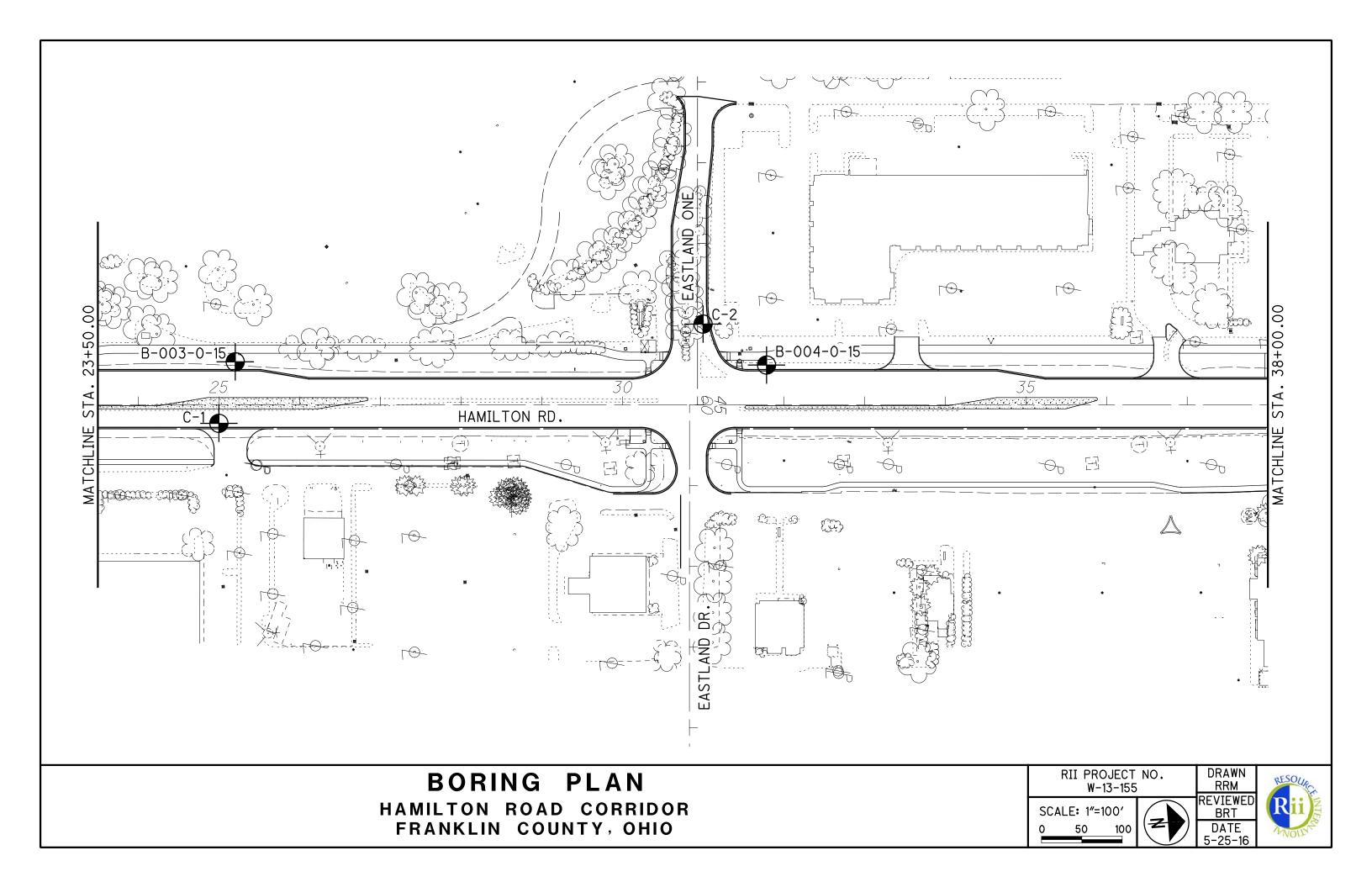
The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

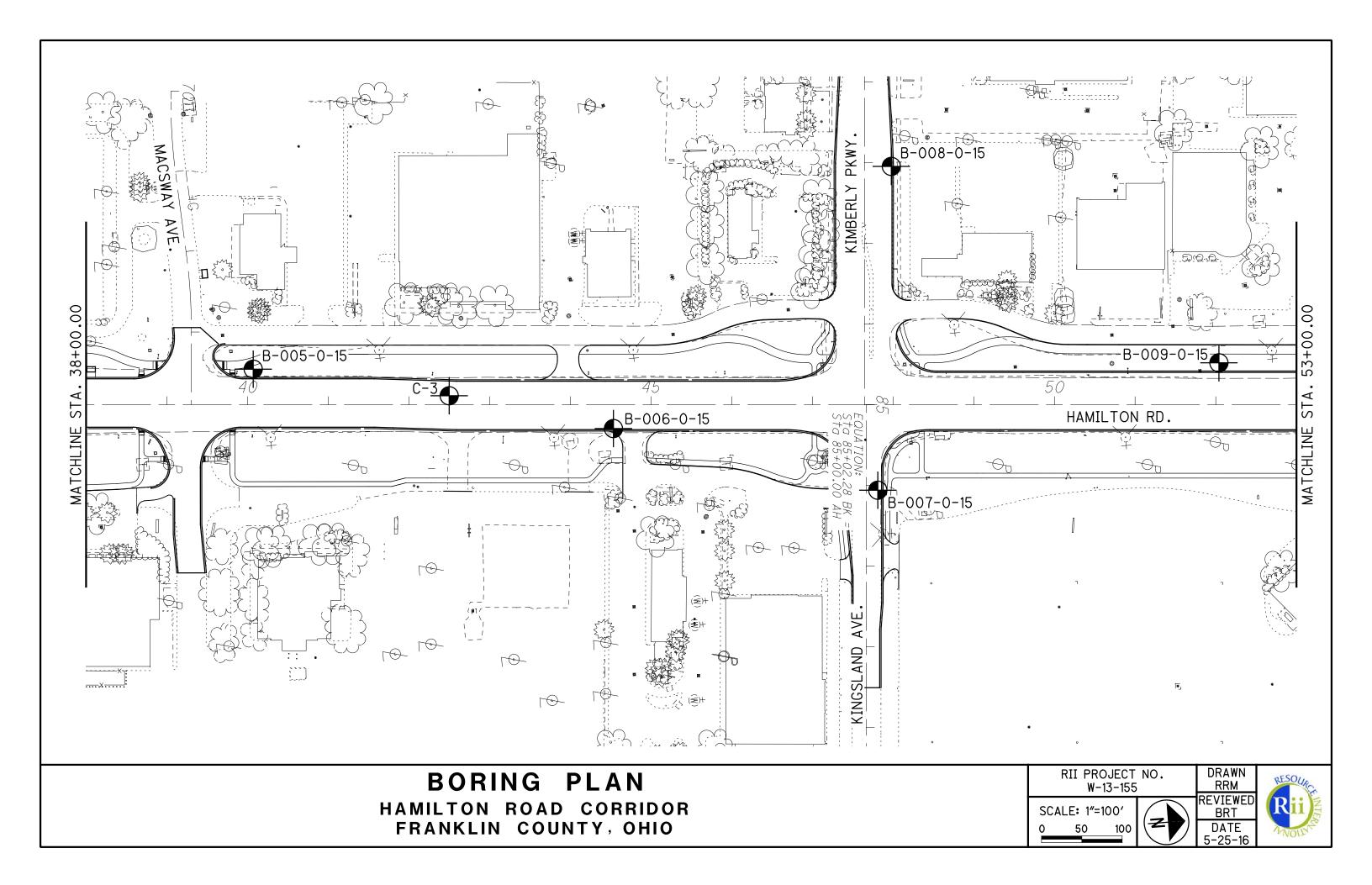
Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

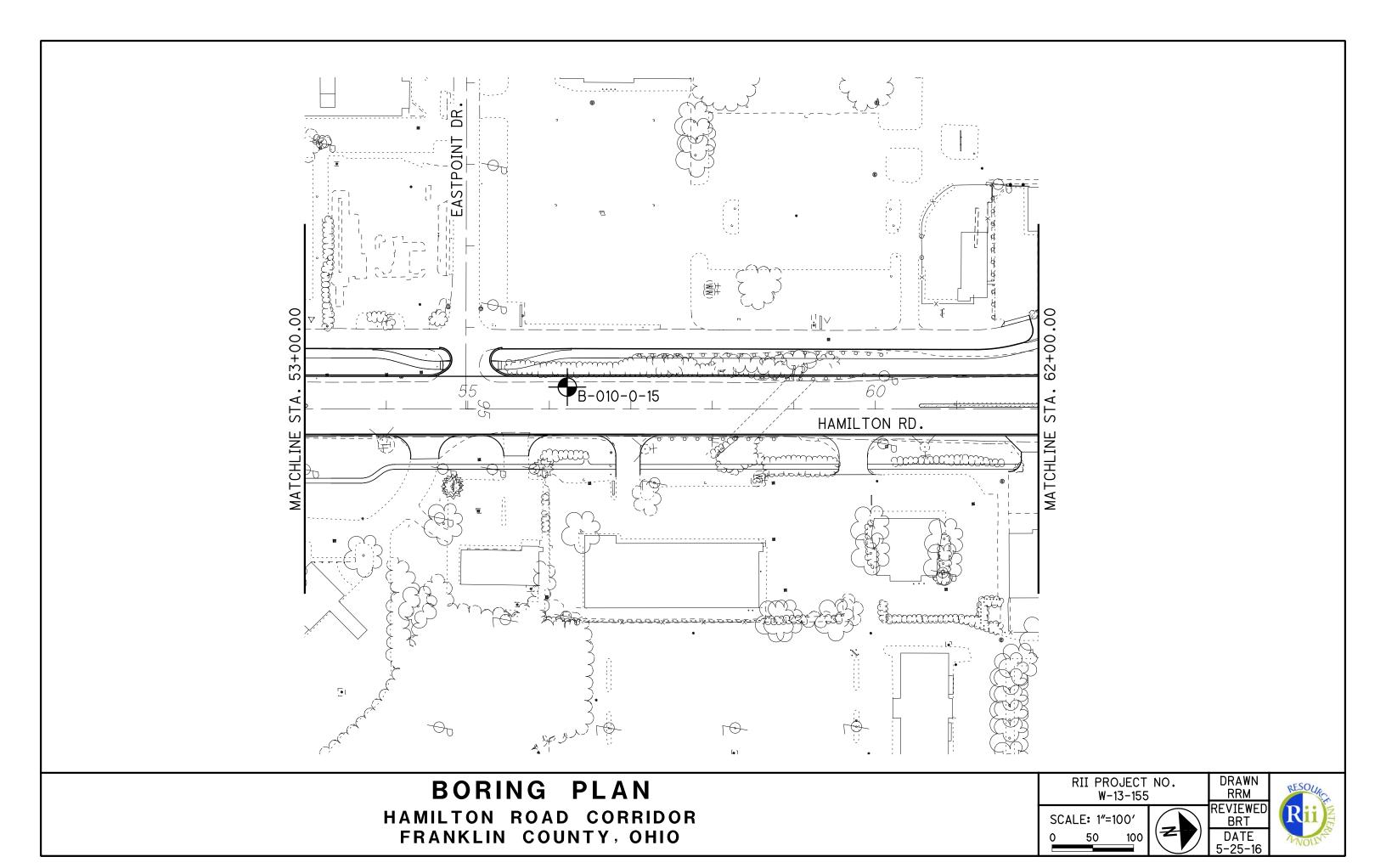
APPENDIX I

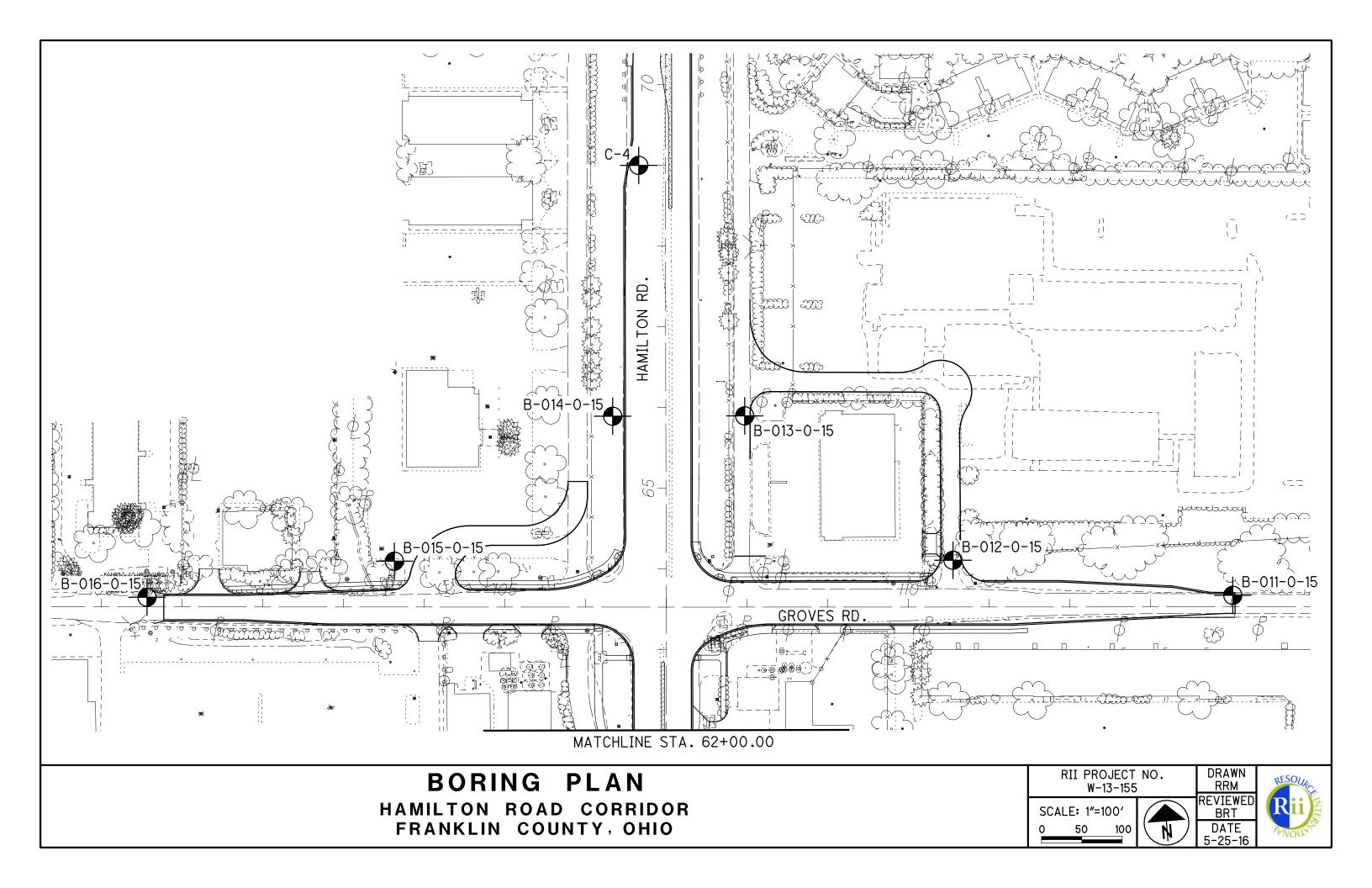
VICINITY MAP AND BORING PLAN


HAMILTON ROAD CORRIDOR FRANKLIN COUNTY, OHIO


SCALE: 1"=100'




REVIEWEI BRT DATE 5-25-16



APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

Granular Soils - The relative compactness of granular soils is described as:

ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

<u>Description</u>	Blows per foot – SPT (N ₆₀)				
Very Loose	Below		5		
Loose	5	-	10		
Medium Dense	11	-	30		
Dense	31	-	50		
Very Dense	Over		50		

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as: ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

				Unconfined				
<u>Description</u>	Blows per foot - SPT (N ₆₀)			Compression (tsf)				
Very Soft	Below		2	UCS ≤ 0.25				
Soft	2	-	4	$0.25 < UCS \le 0.5$				
Medium Stiff	5	-	8	0.5 < UCS ≤ 1.0				
Stiff	9	-	15	1.0 < UCS ≤ 2.0				
Very Stiff	16	-	30	$2.0 < UCS \le 4.0$				
Hard	Over		30	UCS > 4.0				

Gradation - The following size-related denominations are used to describe soils:

Soil Fraction	USCS Size	ODOT Size
Boulders	Larger than 12"	Larger than 12"
Cobbles	12" to 3"	12" to 3"
Gravel coarse	3" to 3/4"	3" to ¾"
fine	3/4" to 4.75 mm (3/4" to #4 Sieve)	3/4" to 2.0 mm (3/4" to #10 Sieve)
Sand coarse	4.75 mm to 2.0 mm (#4 to #10 Sieve)	2.0 mm to 0.42 mm (#10 to #40 Sieve)
medium	2.0 mm to 0.42 mm (#10 to #40 Sieve)	-
fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt	0.074 mm to 0.005 mm (#200 to 0.005 mm)	0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay	Smaller than 0.005 mm	Smaller than 0.005 mm

Modifiers of Components - Modifiers of components are as follows:

Term	<u>Range</u>					
Trace	0%	-	10%			
Little	10%	-	20%			
Some	20%	-	35%			
And	35%	-	50%			

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	³ Liquid Limit	3% below LL to above LL

Organic Content - The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe bedrock hardness:

<u>Term</u>		Blows per	foot - S	PT (N)
Very Soft		Below		50
Soft		50/5"	_	50/6"
Medium Hard		50/3"	_	50/4"
Hard		50/1"	_	50/2"
Very Hard	50/0"			

CLASSIFICATION OF SOILS Online Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

C	055001071011	Classification		LL _O /LL	×	*	Liquid	Plastic	Group	DE111-0-10
SYMBOL	DESCRIPTION	AASHTO	OHIO	× 100*	Pass #40	Pass #200	Liquid Limit (LL)	Index (PI)	Index Max.	REMARKS
0000	Gravel and/or Stone Fragments	Α-	1-a		30 Max.	15 Max.	-	6 Max.	0	Min. of 50% combined grave cobble and boulder sizes
0.000	Gravel and/or Stone Fragments with Sand	Α-	1-b		50 Max.	25 Max.		6 Max.	0	
F.S	Fine Sand	A-3			51 Min.	10 Max.	NON-P	LASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coars and fine sand sizes
	Gravel and/or Stone Fragments with Sand and Silt		2-4			35 Max.	40 Max. 41 Min.	10 Max.	0	
	Gravel and/or Stone Fragments with Sand, Silt and Clay	-	2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
+++++++++++++++++++++++++++++++++++++++	silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	A-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4l
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify a A-5, A-6a, A-6i A-7-5 or A-7-6

MATERIAL CLASSIFIED BY VISUAL INSPECTION

Sod and Topsoil XXXX Pavement or Base

Uncontrolled Fill (Describe)

Bouldery Zone

Peat, S-Sedimentary W-Woody F-Fibrous L-Loamy & etc

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX III

BORING LOGS:

B-001-0-15 through B-016-0-15

BORING LOGS

Definitions of Abbreviations

AS	=	Auger sample
GI	=	Group index as determined from the Ohio Department of Transportation classification system
HP	=	Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
LLo	=	Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL ₀ /LL is less than 75 percent, soil is classified as "organic".
LOI	=	Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
PID	=	Photo-ionization detector reading (parts per million)
QR	=	Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
QU	=	Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
RC	=	Rock core sample
REC	=	Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
RQD	=	Rock quality designation – estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:
		\sum segments equal to or longer than 4.0 inches
		core run length
_		55.5 i si.i i si.i gi.i
S	=	Sulfate content (parts per million)
SPT	=	· ·
-		Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the
SPT	=	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m) . Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following
SPT	=	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m). Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
SPT N ₆₀ SS	= =	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m). Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$ Split spoon sample For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N_{60}
SPT N ₆₀ SS 2S	= = =	Sulfate content (parts per million) Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m). Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$ Split spoon sample For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N_{60} values.

Classification Test Data

=

W

Gradation (as defined on Description of Soil Terms):

Initial water level measured during drilling

Water level measured at completion of drilling

GR = % Gravel SA = % Sand SI = % Silt CL = % Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
PI	=	Plasticity Index

WC = Water content (%)

	ROJECT	:	FRA-317-1			FIRM / OPERATOR:					BILE B-53 (400)	STAT			_			/ 25' F		EXPLORA B-001
	YPE: _		ROADWAY			FIRM / LOGGER:	RII / C.D.		MMER:		AUTOM.			ALIGI						TON F		
			BR ID:	N/A	_	METHOD:	4.5" SFA			ION DA		5/13/15		ELEV						EOB:		10.0 ft.
S	TART: _	12/16/15		12/16/15	SAMPLING	G METHOD:	SPT	ENE	ERGY F	RATIO (77.1		LAT /							88049	1784
			RIAL DESCR			ELEV.	DEPTHS	SPT/			SAMPLE			RAD			,		ERBI			ODOT
			AND NOTES	S		754.0	<i>BEI</i> 1110	RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
).5' - ASPH	ALT (6	5.0")				753.5																l
.0' - CONC	RETE	(12.0")	-																			
		(- /					<u> </u>															
						752.5																
			Y, SOME C		FINE																	
,			'EL, MOIST. NT = 247 PI				− 2 −	4 _	15	C-7	00.4	4.5.	_		40	24	27	20	40	24	40	
-33-1. 30	LLAIE	CONTE	NI - 247 FI	- IVI				5 7	15	67	SS-1	4.5+	5	9	18	31	37	39	18	21	18	A-6b (11)
						751.0		•														
			ROWN SANI		ME		- 3 -															
			EL, DAMP T				-															
							_ 4 _	2														
							•	6	17	100	SS-2	4.00	10	9	22	37	22	24	15	9	14	A-4a (5)
								7														
							− 5 −															
							- 6 - - 1															
							_	3														A 42 ()()
							_	7	32	100	SS-3	4.5+	-	-	-	-	-	-	-	-	15	A-4a(V)
							- 7 -	18														-
							- 4															·
							<u> </u>															-
							− 9 −	4														
								7 10	22	100	SS-4	3.50	-	-	-	-	-	-	-	-	11	A-4a (V)
						744.0		10														
						744.0	—EOB —10—															

FRA-317-10.63 ROADWAY	_		RII / S.B.				,		400)	1			-					EXPLOR B-00	2-0-1
0 BR ID: N/A	DRILLING METHOD):	4.5" SFA	CA	LIBRAT	ION DA	TE:	5/13/15		ELEV	/ATIO	N:	745.5	5 (MSL	_) I	EOB:	1	0.0 ft.	PAG
2/15/15 END: 12/15/15			SPT	_	_			77.1									880543	863	1 OF
			DEPTHS									· —					wc.	ODOT CLASS (GI)	BAC FIL
722	KXX					(/0)		(10.7				-							
0")			- 1 -																××××××××××××××××××××××××××××××××××××××
CONTENT = 240 PPM		743.0	_ 2 -	4 7	27	100	SS-1	4.5+	32	14	14	23	17	26	16	10	11	A-4a (1)	7 4 7 7 7
			_ 3 _	, ''				-	-	-	-	-	-	-	-	-	9	A-1-b (V)	1 > L
			4	10 13 21	44	100	SS-2	-	40	30	12	13	5	23	17	6	7	A-1-b (0)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		,	7	8 9 6	19	100	SS-3	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V
		_\	- 8 - - 9 -	5 6 7	17	67	SS-4	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	1 × 1 × 1 × 1 × 1
	ROADWAY O BR ID: N/A 2/15/15 END: 12/15/15 ATERIAL DESCRIPTION AND NOTES O") OY SILT, SOME FINE GRAVEL CONTENT = 240 PPM DENSE, BROWN GRAVEL AN	ROADWAY O BR ID: N/A DOTILLING METHOD SAMPLING METHOD SAMPLING METHOD SAMPLING METHOD SAMPLING METHOD ATERIAL DESCRIPTION AND NOTES O") OY SILT, SOME FINE GRAVEL,	ROADWAY 0 BR ID: N/A 1/15/15 END: 12/15/15 ATERIAL DESCRIPTION AND NOTES 0") PATERIAL DESCRIPTION AND NOTES 745.5 745.0 TAUTH OF THE GRAVEL, CONTENT = 240 PPM DENSE, BROWN GRAVEL AND RACE CLAY, DAMP TO MOIST.	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D.	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HA	ROADWAY	ROADWAY	ROADWAY	ROADWAY	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HAMMER: AUTOMATIC CALIBRATION DATE: 5/13/15 ENERGY RATIO (%): 77.1	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HAMMER: AUTOMATIC ALIG SUP15/15 END: 12/15/15 END: 12/1	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HAMMER: AUTOMATIC ALIGNMEN ALIGNMEN ALIGNMEN ALIGNMEN ALIGNMEN CALIBRATION DATE: 5/13/15 ELEVATION DA	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HAMMER: AUTOMATIC ALIGNMENT: 0 DEPTHS END: 12/16/15 SAMPLING METHOD: SPT ENERGY RATIO (%): T7.1 LAT / LONG: LAT /	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HAMMER: AUTOMATIC ALIGNMENT: ED	ROADWAY SAMPLING FIRM / LOGGER: RII / C.D. HAMMER: AUTOMATIC CALIBRATICN: T45.5 (MSI LEVATION: T45.5 (M	ROADWAY	ROADWAY SAMPLING FIRM / LOGGER RII / C.D. HAMMER: AUTOMATIC ALIGNMENT: EX.C. HAMILTON F.	ROADWAY SAMPLING FIRM / LOGGER RIJ / C.D. HAMMER: SI313/15 ELEVATION: T45.5FA ALTOMATIC ALIGNMENT: SEX.CL HAMILTON RD-078/15 ELEVATION: T45.5FA ALTOMATIC SPT ELEVATION DATE: S13/15 ELEVATION: T45.5FA SAMPLING METHOD: SPT ELEVATION DATE: S13/15 ELEVATION: T45.5FA SPT / T45.5 SPT	B-00 ROADWAY SAMPLING FIRM/LOGGER RII/C.D. HAMMER AUTOMATIC ALIGNMENT EX-CL HAMILTON RD

	Rii	PROJ TYPE	_		FRA-317-10 ROADWAY	.63	-		OPERATOR:		I / S.B. / C.D.		ILL RIG MMER:		BILE B-53			STATI ALIGN			_		i+20 / 5 MILTOI			RATION ID 03-0-15
		PID: _			R ID:	N/A	DRILLING			4.5" SF			LIBRAT			5/13/15							EO		12.5 ft.	PAGE 1 OF 1
ŀ		STAR		2/17/15		12/17/15	SAMPLIN	G METH		SPT			ERGY F			77.1		LAT /		_				32.8804	T	
			IV		L DESCRI				ELEV. 756.6	DEPT	HS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID			cs RADA		N (%)			RBER PL P		ODOT CLASS (GI)	BACK
ŀ	0.3' - T0	OPSOIL	(3.0")						756.3					(70)		(101)	O.t	-		0.	-			1		1 LV 1 L
	SOME GRAVE	COARS L, MOIS	E TO F ST.	FINE SA		T CLAY , LITT E TO LITTLI M					- 1 - - 1 -	2 3	9	100	SS-1	2.00	4	6	13	39	38 3	30	19 2) 21	A-6b (12	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
											- 2 - - - 3 -	4		100		2.00							10 2		74-05 (12)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ſ											- 4 - - 5 -	1 1 2	4	56	SS-2	0.50	12	10	22	29	27 :	34	16 1	3 23	A-6b (7)	1
.2013\W-13-155.GP.											- 6 - - 7	1 3	9	100	SS-3	2.00	-	-	-	-	-	-		19	A-6b (V)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
U:\GI8\PROJECTS					ENSE, BR ', MOIST.	OWN GRAV	/EL		748.6		7 - - 8 -	-														\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
DT - 2/5/16 18:07 -											- 9 - - - 10 -	1 1 2	4	100	SS-4	-	-	-	-	-	-	-	- -	22	A-2-6 (V))
ID - OH DOT.G											- 11 - -	5 5	19	100	SS-5	_	_	_	_	_	_	_		13	A-2-6 (V)	1
2015-ODOT BORING LOG-BRIDGE ID - OH DOT.GDT - 2/5/16 18:07 - U:\GI8\PROJECTS\2013\W-13-155.GPJ									744.1	– ЕОВ	<u> </u>	5 10		.00											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
2015-ODOT						RED DURING [O WITH 1	THE AUGER	SOIL CU	TTINGS															

RESOURCE INTERNATIONAL, INC.																			
PROJECT: FRA-317-10.63	DRILLING FIRM /	OPERATOR:	RII / S.B.	DR	RILL RIG	: MOE	BILE B-53 (SN 624	400)	STAT	ION /	OFFS	ET:	3	31+79	/ 49' L	_T		RATION IE
TYPE: ROADWAY	SAMPLING FIRM	/ LOGGER:	RII / C.D.	НА	MMER:	-	AUTOMA	TIC		ALIG	NMEN	T:	EX	(CL H	AMIL	TON R	RD	B-00	4-0-15
PID: 95570 BR ID: N/A	DRILLING METHO	DD:	4.5" SFA	CA	LIBRAT	ION DA	ΓE: 5	5/13/15		ELEV	ATION	N:	760.5	(MSL	.) I	EOB:	1	0.0 ft.	PAGE
	SAMPLING METH	IOD:	SPT	EN	IERGY F	RATIO (9	%): 	77.1		LAT /	LONG	3: 	3	9.9215	51796	9, -82.	.880240)405	1 OF 1
MATERIAL DESCRIPTION		ELEV.		SPT/		RFC	SAMPLE	HP	(SRAD	ATIO	N (%		ATTI				ODOT	BACK
AND NOTES		760.5	DEPTHS	RQD		(%)	ID	(tsf)					CL	LL	PL	PI	wc	CLASS (GI)	FILL
0.5' - ASPHALT (6.0")	XX	x				(70)		(10.)											******
` ,	\longrightarrow	760.0																	*******
0.5' - AGGREGATE BASE (6.0")		759.5																	1 L 1
STIFF, DARK BROWN SANDY SILT , SOME CLAY, S	OME IIII		F 1 T																<, v <
FINE GRAVEL, MOIST.			- H	2 _				1.50	30	7	10	31	22	26	16	10	16	A-4a (4)	1>11:
-SS-1A: SULFATE CONTENT = 420 PPM		758.5	— 2 —	5 5	13	67	SS-1												1 LV 7
MEDIUM DENSE, BROWN GRAVEL AND SAND , TRA	ACE			3	ή			-	-	-	-	-	-	-	-	-	5	A-1-b (V)	< , v <
SILT, TRACE CLAY, DAMP.		<u> </u>																	12/1:
VEDVOTIEE DECIMAL OUT AND OLAY COME COME	DOE 22	757.5	— 3 —																< v <
VERY STIFF, BROWN SILT AND CLAY , SOME COAF TO FINE SAND, TRACE FINE GRAVEL, MOIST.	RSE ///	1																	1>11
TO TIME OAND, TRACETIME GRAVEE, MOIOT.		1																	7 LV 7
			- 4 -	3	40				_										1>11:
		1	_ L L	4 5	12	78	SS-2	2.25	7	13	1/	36	27	33	19	14	19	A-6a (7)	12V 1
		1			1														1 LV 5
		1	<u></u> 5 − 5																1>11:
MEDILIN OTIFE DOOMN ON TWO AV COME COAD)OF	755.0																	1 LV 7
MEDIUM STIFF, BROWN SILTY CLAY , SOME COAR TO FINE SAND, TRACE FINE GRAVEL, MOIST.	RSE		6																1>V <
TO TIME SAND, TRACE TIME CRAVEE, MOIST.			— 6 —																7217
			- H	MÕH	_														1 LV 5
			- 7 -	2 2	5	89	SS-3	0.75	-	-	-	-	-	-	-	-	23	A-6b (V)	1>11:
			'	_	-														1 LV 1
MEDIUM STIFF, BROWN SILTY CLAY , SOME COAR TO FINE SAND, TRACE FINE GRAVEL, MOIST.																			< , v < < , v <
			— 8 —																1>11
																			1 LV 5
																			1>11:
			— 9 —	1	_		00.4	4 00									00		1 LV 1
				2 2	5	33	SS-4	1.00	-	-	-	-	-	-	-	-	23	A-6b (V)	1> \ 1 \ 7 \ 7
		750.5		_	-														12/1:
		700.0	—EOB —10—								-								1
NOTES: GROUNDWATER NOT ENCOUNTERED DURING DE																			
ABANDONMENT METHODS, MATERIALS, QUANTITIES: CO	MPACTED WITH	THE AUGER	SOIL CUTTINGS																

	R	1	PROJ TYPE	ECT:			FRA-3		63		-			OPERATOR		II / S.B.			LL RIG		BILE B-	53 (SN OMATI			STAT ALIG						' / 44' L TON F			RATION ID 05-0-15
	The state of the s		PID: _		570		R ID: _		N/A				METH		4.5" SF					ION DA			3/15								EOB:		10.0 ft.	PAGE 1 OF 1
ŀ			STAR				_ END	_	12/16/1	5	SAM	IPLINC	3 METH		SPT				RGY F	RATIO			7.1		LAT /						4, -82. ERG	880008	Ι	<u> </u>
					IVIA I		ID NO		PTION					ELEV. 761.4	DEP1	THS	R	PT/ QD	N_{60}	(%)	SAMF				CS			CL	LL			WC	ODOT CLASS (GI)	BACK
ŀ	0.2' -	TOP	SOIL	(2.0	")							,		761.2						(,,,,			,											1 LV 1 L
	TO SO MOIS	OME T.	COA	RSE	ТО	FINE	SANI), TR	TY CLA ACE F							- - 1																		1 > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-SS-	1: 8	SULF/	AIE (CON	IENI	Γ = 46) PPI	VI							- 2 -		1 2	4	100	SS-	1 1	.00	4	5	12	47	32	33	17	16	27	A-6b (10))
																- 3 - - 4																		
PJ														755.9		- - 5		3 3	8	100	SS-	2 1	.50	8	5	16	35	36	38	17	21	23	A-6b (12)) < L \
3\W-13-155.G									LITTLE DAMP		ARSI	Ē		700.0		- - 6	12																	7
OJECTS/201																- 7		5 10	19	100	SS-	3 2	2.50	-	-	-	-	-	-	-	-	14	A-6a (V)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
77 - U:\GI8\PF																- 8 - - 9																		1 2 1 2 1 >
Г - 2/5/16 18:(751.4	— ЕОВ			4 5	12	100	SS-	4 3	3.00	-	-	-	-	-	-	-	-	16	A-6a (V)	7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×
2015-0DOT BORING LOG-BRIDGE ID - OH DOT.GDT - 2/5/16 18:07 - U.\GI8\PROJECTS\2013\W-13-155.GPJ																																		
	NOTES	S: C	ROU	NDW.	TER	NOT E	NCOU	NTER	ED DUF	RING I	DRILL	NG	_								_													
ſ	ABANE	NOC	/ENT	METH	IODS	MATI	ERIALS	, QUA	NTITIES	S: C	OMPA	CTED	WITH	THE AUGE	R SOIL CL	JTTING	s																	

Rii) TYP	JECT: _		FRA-317-1			FIRM / OPERATOR:		II / S.B.				BILE B-53		400)	STAT			_		14+54			EXPLOR B-000
			ROADWAY		_	FIRM / LOGGER: _		/ C.D.		AMMER:		AUTOM			ALIGN		_			IAMIL			- 🖳
	9557		R ID:	N/A		METHOD:	4.5" SF			ALIBRAT			5/13/15		ELEV								0.0 ft.
STA			END:	12/16/15	SAMPLING	METHOD:	SPT		EI EI	NERGY I		· /	77.1	,	LAT /							879632	2540
	M	IATERIA	AL DESCR	IPTION		ELEV.	DEPT	THE	SPT			SAMPLE			RAD		N (%)	ATT	ERBE	ERG		ODOT
		Al	ND NOTES	3		762.1	DLII	110	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
.5' - ASPHAL	T (6.0"))																					
OL ACCDE	CATED	ACE (4)	2.0"\			761.6		-	_											ı !			
.0' - AGGRE	GATEB	ASE (12	2.0)																				
						×		<u> </u>															
(ED) (OTIEE	TO 114 D	D DD0		V 01 43V 00		760.6		_					-							$\vdash \vdash$			
ERY STIFF									_											ı !			
-SS-1: SULF					WOIST.			_ 2 -	5 5	14	100	SS-1	4.25	9	11	18	31	31	30	18	21	10	A-6b (10)
-00-1. 00Li	AIL O	OIVILIV	1,2001	, 1 IVI				L '		6 17	100	33-1	4.23	9	11	10	31	31	39	10	21	10	A-00 (10)
																				ı !			
								_ 3 _															
								-												\vdash			
								. '															
								- 4 -	7 7	19	100	SS-2	3.75	7	9	21	32	31	30	17	21	10	A-6b (10)
								_ '		3	100	33-2	3.75	l ′	9	21	32	31	30	''	21	10	A-00 (10)
								_ '												ı !			
								− 5 −															
									_											ı !			
																				ı !			
								— 6 –															
								_ '	-2											ı !			
									3	8	100	SS-3	2.50	-	-	-	-	-	-	-	-	19	A-6b (V)
								- 7 -	•	3										1			
								_ '					_							—┤			
						754.1														1			
ERY STIFF,	BROWI	N SII T A	AND CLAY	SOME CC	ARSE	1///		8 -	_														
O FINE SAN					7.1.102															$\vdash \vdash$			
	•			,																1			
								⊢ 9 −	2 _	15	100	00.4	2.75							1 !		4.5	A-6a (V)
								_ '	5.	15	100	SS-4	3.75	-	-	-	-	-	-	-	-	15	A-6a (V)
						752.1				'													
						7/// 132.1	- EOB	 10 															

	CT:	FRA-317-1			FIRM / OPERATO					BILE B-53		400)	STAT			_			/ 14' L		EXPLORA B-007
Rii) TYPE:		ROADWAY			FIRM / LOGGER:			MMER:		AUTOM			ALIG						AND A		
PID: _		_ BR ID:	N/A		METHOD:	4.5" SFA			TION DA		5/13/15		ELEV						EOB:		10.0 ft.
START			12/15/15	SAMPLING	METHOD:	SPT	EN	ERGY I	RATIO (77.1		LAT /							879276	6726
	MATE	RIAL DESCR			ELEV.	DEPTHS	SPT/			SAMPLE	HP		RAD)	ATT	ERBI			ODOT
		AND NOTES	<u>s</u>		760.5	DEI IIIO	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
0.5' - ASPHALT	(6.0")				760.0																l
0.5' - CONCRET	F (6.0")				700.0	-	-														
	` ′				759.5	_ 1															
STIFF, BROWN		ILT, SOME C	CLAY, LITTL	E FINE		'															
GRAVEL, DAMF -SS-1: SULFA	r. TE CONT	FNT = 247 P	PМ				1 3	13	100	SS-1	1.75	15	10	14	33	28	28	21	7	20	A-4a (5)
00 1. 00Li /\	12 00111					<u> </u>	₩ 7	'0	100	00-1	1.75	13	10	'-	55	20	20	21	'	20	A-4a (5)
					757.5																
/ERY STIFF TO	HARD P	ROWN TO F	DARK GRAY	SILT	131.3	- 3	\dashv														
AND CLAY, SON	ME COAR					<u> </u>															
GRAVEL, DAMF	Р.																				
						- 4	1 4	13	100	SS-2	4.25	8	9	17	36	30	27	16	11	15	A-6a (7)
						-	6			55 -	0			-							` '
						_ 5															
						- 6	+														
							1 5														
							6	21	100	SS-3	2.50	-	-	-	-	-	-	-	-	11	A-6a (V)
						- 7	10														
						_	4														
					752.5	– 8															
DENSE, BROWI	N GRAVE	L WITH SAND	D, SILT, AND	CLAY,		0															
MOIST.						_															
						W 9	1 9														
					• S °		14	31	100	SS-4	-	-	-	-	-	-	-	-	-	13	A-2-6 (V)
					750.5		10														
					730.3	—EOB															1

	D	PF	ROJECT PE:	:	FRA	A-317-10 ADWAY					OPERATO		RII / S.B.		RILL RIG		BILE B-53		400)	STAT ALIG			-			6 / 33' L LY PK			RATION ID 08-0-15
	KII	PI	D:	95570	BR ID:		N/A		DRILLIN	G METH	DD:	4.5" S	FA	CA	LIBRAT	ION DA	TE:	5/13/15	;	ELEV	/ATIOI	N:	760.7	7 (MSI	_)	EOB:	1	0.0 ft.	PAGE
L		ST	ART:		6/15 E		12/16/1	5	SAMPLI	NG METH		SP	T		1	RATIO (77.1	Ι,	LAT /							.880699		1 OF 1
				IVIA I	ERIAL D AND N						ELEV. 760.7	DEP	THS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID			cs			, ,	LL	_	ERG	WC	ODOT CLASS (GI)	BACK
	0.3' - A										760.4																		
	0.7' - C	CONC	RETE	(8.0")							759.7			1															7 LV 7 L
	"AND" GRAV	COA EL, M	RSE T OIST.	O FIN	BROWN E SAND, TENT = 9	TRAC	E TO LI				139.1		- 1 - - - 2 - - - 3 -	1 4 4	10	56	SS-1	2.75	11	9	18	29	33	35	17	18	21	A-6b (9)	
GPJ											755.2	W	- 4 - 5 -	1 2 4	8	100	SS-2	1.75	9	11	37	18	25	32	14	18	19	A-6b (4)	1> \ 1 \ 1
OJECTS\2013\W-13-155.	HARD GRAV	, BRC EL, D	OWN S AMP.	ANDY	SILT, LIT	TLE (CLAY, LI	TTLE	FINE				- 6 - - - 7 -	3 6 8	18	100	SS-3	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	1 > \ 1 > \
2/5/16 18:08 - U:\GI8\PR											750.7	—EOB	- 8 - - - 9 -	4 10 18	36	100	SS-4	4.50	-	-	-	-	-	-	_	-	7	A-4a (V)	7 1
					INTERED						THE AUGE		10																

	Ris	PROJEC TYPE:	CT: _	FR	RA-317-10 DADWAY).63	-		OPERATOR		II / S.B. / C.D.		ILL RIG		BILE B-53		400)	STAT			-		52+04 IAMIL				RATION ID 19-0-15
		PID: _	9557			N/A	DRILLING	METHO	D:	4.5" SF	A	CA	LIBRAT	ION DA	TE:	5/13/15		ELEV	/ATIOI	N:	760.5	5 (MSI	_)	EOB:	1	0.0 ft.	PAGE
		START:	_	2/16/15 E		12/16/15	SAMPLIN	G METH		SPT	•	$\overline{}$	_	RATIO (77.1		LAT /							879729		1 OF 1
			IVI	ATERIAL I AND	DESCRI NOTES				ELEV. 760.5	DEPT	HS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID			cs			cL	LL	ERBI		wc	ODOT CLASS (GI)	BACK FILL
	`\0.1' -	TOPSOIL ((1.0")	7.1.12					\760.4/					(70)	1.5	(101)	0.1	00	. 0	О.							1 LV 1 L
						DARSE TO F	INE				-	-															1> \ 1>
	SAND	, TRACE F	-INE (∍RAVEL, L	JAMP.						_ 1 -																1>11>
	-88-	1: SULFA	TE CC	NITENT =	233 DD	M					_	9	4.5		00.4									4.0		• • • •	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-00-	i. Goli A	12 00	JINTEINT -	20011	IVI					_ 2 -	6	15	50	SS-1	4.50	9	10	25	29	27	32	16	16	14	A-6b (7)	7 LV 7 L
												Щ.															1>V 1>
									757.5		_ 3 -																7>1,7>
						AND CLAY , S GRAVEL, D																					17 L 7 L
	00/11	.02 10111	12 0/			OIU WEE, D					4																7 LV 7 L
											_ 4 -	³ 5	15	100	SS-2	2.75	11	8	15	36	30	31	17	14	16	A-6a (8)	1> \ 1>
												7															1>1/>
ر د											<u> </u>																1>117
55.GI												-															12V 12 12V 12
-13-1											- 6 -																- 1 × 1 × 1
13\W											-	4	00														1> \ 1 >
\$\20											- 7 -	8 9	22	100	SS-3	3.50	-	-	-	-	-	-	-	-	14	A-6a (V)	1>1/1>
JECT																											7 LV 7 L
PRO											_ 8 -																TLV TL
:\G18\																											< \ \ < \ \ < \ \ \ \ \ \ \ \ \ \ \ \
8 - U																											7>1,7>
18:0											<u> </u>	3 9	28	100	SS-4	4.5+	-	-	-	-	-	-	-	-	11	A-6a (V)	12/12
/5/16									750.5			13															1 L V 1 L
JT - 2								<u> </u>	730.3	— ЕОВ	10_											!					17>1,1>
JT.GE																											
H DC																											
D-C																											
GE I																											
-BRIC																											
LOG																											
RING																											
r BOF																											
ODC																											
2015-ODOT BORING LOG-BRIDGE ID - OH DOT.GDT - 2/5/16 18:08 - U:\GI8\PROJECTS\2013\W-13-155.GPJ																											
2	NOTES	S: GROUNE	DWATE	ER NOT ENC	COUNTER	RED DURING D	DRILLING																				
	ABAND	ONMENT M	ETHO	DS, MATERI	ALS, QU	ANTITIES: C	OMPACTE	O WITH T	THE AUGER	50 LBS E	BENTON	TE CHIPS	S AND	SOIL C	JTTINGS												

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER SOIL CUTTINGS

	PROJECT:	FRA	A-317-10.	.63	DRILLING I	FIRM	/ OPERATOR	R: R	II / S.B.	DR	ILL RIG	: MOI	BILE B-53 (SN 624	400)	STATI	ON / O	FFSET	-	56	6+22 /	/ 27' L	Т	EXPLO	RATION
IRIH I	TYPE:		ADWAY		-		// LOGGER:		/ C.D.		MMER:		AUTOM		,	ALIGN			_			ON R		B-01	0-0-1
	PID: 9557			N/A	DRILLING I			4.5" SF		CA	LIBRAT	ION DA		5/13/15		ELEVA			6.1 (MSL)	E	EOB:	1	0.0 ft.	PAG
			ND:	12/16/15	SAMPLING			SPT				RATIO (77.1		LAT / I							879533		10
		ATERIAL D					ELEV.			- -		,	SAMPLE			RADA				ATTE			-		DAG
	IVI		VOTES	FIION				DEPT	HS	SPT/ RQD	N ₆₀	(%)	ID			CS		SI C	_			PI	wc	ODOT CLASS (GI)	BA(
0 5' A S D	'HALT (6.0")	AND	IOTES			XX	756.1			TOOL		(/0)	טו	(131)	GR	Co	F-3	31 0		LL	FL	гі	VVC	(- /	*****
	, ,					X	755.6																		
1.0' - AGG	REGATE BA	ASE (12.0"))			\times																			7 LV
						\otimes	X		<u> </u>																1>1
						\longrightarrow	754.6																		1 LV
HARD, LIC	GHT BROWN	N SANDY S	ILT, SC	OME CLAY,	LITTLE																				1 > L
INE GRA	AVEL, DAMP SULFATE CC	NITENT - 1	100 DD!	\ 1					<u></u>	3	14	400	00.4	4.05	40	10	45 ,	, ,	٦ .	20	47	_	40	A 4= (4)	1>1
-33-1. 3	BULFATE CC	/INI⊏INI —	100 FF	VI						6 5		100	SS-1	4.25	18	10	15 3	32 2	5 2	26	17	9	13	A-4a (4)	1 LV
							753.1			ľ															1 > L
STIFF. BF	ROWN SILTY	CLAY. TR	ACE C	OARSE TO	FINE	=			— 3 [⊥]																1 / LV
SAND, TR	RACE FINE G	RAVEL, M	OIST.	•			=		ļ.,										\perp						1 > 1
							752.1							1.75	-	-	-	- -	.	-	-	-	22	A-6b (V)	7 2
	ROWN TO DA			Y SILT, SON	ИΕ				- 4	² 5	22	100	SS-2						T						1 L
INE GRA	AVEL, LITTLE	E CLAY, DA	۱MP.						- !	12			00 2	4.5+	32	12	16 2	25 1	5 2	22	17	5	14	A-4a (1)	1 < 1
									_ 5 _																J'L
									_ 5 -																1 > 1
										-															7 2
									6 7																< / \
									"																1 > 1
									- 1	4 _	4.4		00.0												1 L
									L 7 -	5 6	14	0	SS-3	-	-	-	-	- -	1	-	-	-	-		1 < 1
										1															7 4
										12	_	100	3S-3A	4.5+	_	_	_			_	_	-	10	A-4a (V)	1 > 1 × L V
45511114	DENICE DE	NA/AL OD 41	/FI \4/17	THE CAND O		a.V.	748.1		L 8 →	12		100	33-3A	4.5	_	-	-		4	-	-		10	A-4a (V)	12/
	DENSE, BRO Y , MOIST.	JWN GRAV	/EL WII	IH SAND, S	ILI,	0.0	[1 LV
AND CLA	I, WOIST.					2	747.1	W	-					_	-	_	_		. [_	_	-	8	A-2-6 (V)	1>1
TVDD CE	RAY SILT AN		ITTI E (COADSE TO) EINIE		147.1		<u></u> 9 →	7															11 L
	RACE FINE G			JOANSE TO) I IINL					12	27	100	SS-4	4.5+	_	_	_	_ .			_	_	9	A-6a (V)	1 > 1
, . ,		,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,					746.1							4.51	_	_	-	_ _		-	-	_	٦	A-0a (V)	12/
						V//		EOB	1 40 '																

PROJECT: FRA-317-10.63		FIRM / OPERATOR:	RII / S.B.	_			BILE B-53 (400)			OFFS	_			2 / 14' /EQ DI		EXPLOR B-01	
Rij Type: Roadway		FIRM / LOGGER: _	RII / C.D.	_	MER:		AUTOMA				NMEN	_				/ES RI			F
PID: 95570 BR ID: N/A	DRILLING I		4.5" SFA	_		ION DA		5/13/15			/ATIO				_)			0.0 ft.	1
START: <u>12/17/15</u> END: <u>12/17/</u>	SAMPLING		SPT	-	RGY	RATIO (77.1			/ LON			_			.876749	9784	Ļ—
MATERIAL DESCRIPTION AND NOTES		ELEV. 765.7		SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		cs		N (%	,	ATT LL	ERBI PL		wc	ODOT CLASS (GI)	B
).5' - ASPHALT (6.0")		765.2																	\boxtimes
).5' - CONCRETE (6.0")		764.7																	7 4
/ERY STIFF, MOTTLED GRAY & BROWN CL / SILT, SOME COARSE TO FINE SAND, TRACE GRAVEL, MOIST. -SS-1: SULFATE CONTENT = 600 PPM			- 1 - 2	3 3	8	50	SS-1	3.50	6	7	16	33	38	43	18	25	23	A-7-6 (14)	7 < 7 > 7 < 7 > 7 < 7 > 7 < 7 > 7 < 7 > 7 < 7 <
/ERY STIFF TO HARD, MOTTLED GRAY & BI		762.7	- 3 -																7 1 2 1 2 1 2
AND CLAY , SOME COARSE TO FINE SAND, L GRAVEL, DAMP TO MOIST.	TILE FINE		_ 4 _2	9 7	21	67	SS-2	2.75	15	10	21	31	23	28	15	13	15	A-6a (5)	V 1 7 V 1 7 V 1
			- 5 - - 6 - -																,7 <7 7 <7 7
			- 7 - 2 - 7 - 2 - 8 -	7 5	15	89	SS-3	4.25	-	-	-	-	-	-	-	-	14	A-6a (V)	V77 V77 V7
		755.7	9 -6	8	23	100	SS-4	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	7 < 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 >
			-EOB <u></u> 10																
NOTES: GROUNDWATER NOT ENCOUNTERED DUF	ING DRILLING																		

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER SOIL CUTTINGS

R	PROJE TYPE:	:CT:	FRA-317-1		DRILLING FIRE				II / S.B. / C.D.			ILL RIG MMER:		BILE B-53 (400)	1	TION /		_			5 / 58' I /ES RI			RATION ID 2-0-15
TA		95570		N/A	DRILLING ME			4.5" SF				LIBRAT			5/13/15	;	ELEV		_			_)			0.0 ft.	PAGE
	START	: 12/17	7/15 END: _	12/17/15	SAMPLING ME	ETHO	D:	SPT	-		ENE	ERGY F	RATIO ((%):	77.1		LAT /	LON	G:	3	9.930	28492	9, -82.	877971	440	1 OF 1
		MAT	ERIAL DESCR	RIPTION			ELEV.	DEPT	'HC		PT/			SAMPLE			RAD)	ATT	ERBE	ERG		ODOT	BACK
			AND NOTES	S			764.2	DLFI	113	R	QD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	- ASPHALT				 	*	764.0																			
0.8' -	- CONCRET	E (9.5")			\triangleright	\otimes	762.2																			
1 0'	- AGGREGA	ATE RAS	F (12 0")			\times	763.2		<u> </u>																	1 LV 1 L
1.0	HOOKLO	TIL DAO	L (12.0)		\otimes	\bowtie			_	4																1 2 V 1 > V 1 >
					\triangleright	\otimes	762.2		_ 2																	1>11>
HAR	D, BROWN	SANDY	SILT, LITTLE	CLAY, LITTLE	FINE																					1 LV 1 L
	VEL, DAMF		IST. TENT = 820 PI	PM						2	3	10	78	SS-1	4.5+	15	12	18	35	20	25	17	8	16	A-4a (4)	1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
	-1. OOLI A	TE OON	12111 - 02011	1 101					— 3		٠ 5		70	33-1	4.5	13	12	10	33	20	23	''	0	10	A-4a (4)	1>11>
																										1 LV 1 L
																١										1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
							750.7		- 4	3	3	10	100	SS-2	4.5+	13	11	24	36	16	23	17	6	13	A-4a (3)	1>11>
MED	IIIM STIFF	BROWN	SANDY SILT	TRACE CLA	<u> </u>	₩	759.7		-		5			002	4.00										A 4 = () ()	1 LV 1 L
	CE FINE G			, 110 (02 02)	``,				_ 5						1.00	-	-	-	-	-	-	-	-	23	A-4a (V)	1>1/2
C C							758.7																			1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
			AY SILT AND																							1 LV 1 L
COA	RSE TO FI	NE SANI	D, TRACE FIN	E GRAVEL, D	DAMP.				- 6																	1>11>
N N									-	2																1>N 1>
Ŋ									7		3 4	9	100	SS-3	4.00	-	-	-	-	-	-	-	-	11	A-6a (V)	JLV JL
2									_ ′		4															1>11>
3																										1>V 1>
MED	III IM DENIS	E DADK	GRAY GRAVI	EI WITH SAN	n å	<u> </u>	756.2		– 8																	1 LV 1 L
	, AND CLA			EL WITH SAN	D,	\bigcirc			_	\perp																1>11>
-	•	,			Ż																					1> N 1 > N 1
0.0					Ġ.				— 9 ·	3	5	14	100	SS-4	_	_	_	_	_	_	_	_	_	10	A-2-6 (V)	1 × × × ×
2					<u> </u>				-		6														(1)	1>11>
77					•	3. 7	754.2	 ЕОВ	10-																	1 LV 1 L
-																										
5																										
2																										
Ä																										
Ž																										
5																										
3																										
3																										
2																										
N																										
NOTE	S: GROUN	DWATER	NOT ENCOUNTE	ERED DURING I	DRILLING																					

START:	ROADWAY 5570 BR ID: 12/21/15 END: MATERIAL DESCR AND NOTES 0")	N/A 12/21/15 IPTION COARSE TO FI		M / LOGGER: HOD: THOD: ELEV. 762.5			HAI CAL	MMER: LIBRAT ERGY F	ION DA		ATIC 5/13/15 77.1 HP	GR	STATIC ALIGNM ELEVA LAT / L GRADA CS F	MENT: TION: ONG: TION (762.9 3 %) CL	EX CL 5 (MSL 9.930 ATT LL	GRO\ _) 82705 ERBI PL	/ES RI EOB: 0, -82. ERG PI	1 878842 WC	0.0 ft.	9AG 1 OF BAC
PID:	5570 BR ID: 12/21/15 END: MATERIAL DESCR AND NOTES 0") 6.0") LTY CLAY, SOME CE GRAVEL, MOIST. CONTENT = 60 PP.	N/A 12/21/15 IPTION COARSE TO F	DRILLING METI SAMPLING ME	HOD:	4.5" SF	THS 1 - 1 -	SPT/ RQD	LIBRAT ERGY F	RATIO (*REC (%)	TE: %): SAMPLE ID	5/13/15 77.1 HP (tsf)	GR	ELEVA LAT / L GRADA CS F	TION: _ONG: _TION (762.t	9.930 ATT LL	82705 ERBI PL	EOB: 0, -82. ERG PI	1 878842 WC	0.0 ft. 016	PAG 1 OF BAC FILL
START:	12/21/15 END: MATERIAL DESCR AND NOTES 0") 6.0") LTY CLAY, SOME C E GRAVEL, MOIST. CONTENT = 60 PP	12/21/15 IPTION COARSE TO FI	INE	FHOD: ELEV. 762.5 762.3 761.8	SPT	THS 1 - 1 -	SPT/ RQD	N ₆₀	RATIO (GREC (%)	%): SAMPLE ID	HP (tsf)	G GR	CS F	ONG: TION (%) CL	9.930 ATT LL	82705 ERB	0, -82. ERG PI	878842 WC	016 ODOT	BAC FILL
D.2' - ASPHALT (2. D.5' - CONCRETE STIFF, BROWN SI SAND, TRACE FIN -SS-1: SULFATE	MATERIAL DESCR AND NOTES 0") 6.0") LTY CLAY, SOME C E GRAVEL, MOIST. CONTENT = 60 PP	OARSE TO F	INE	ELEV. 762.5 762.3 761.8		HS 1	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS F	TION (%) CL	ATT LL	PL	ERG PI	WC	ODOT	BAC FILL
0.5' - CONCRETE STIFF, BROWN SI SAND, TRACE FIN -SS-1: SULFATE /ERY STIFF, BRO	AND NOTES 0") 6.0") LTY CLAY, SOME C E GRAVEL, MOIST. CONTENT = 60 PP	OARSE TO F	INE	762.5 762.3 761.8	DEPT	 - 1 -	RQD 3	N ₆₀	(%)	ID	(tsf)	GR	CS F	FS SI	CL	LL	PL	PI			FILL
0.5' - CONCRETE STIFF, BROWN SI SAND, TRACE FIN -SS-1: SULFATE /ERY STIFF, BRO	0") 6.0") LTY CLAY, SOME C E GRAVEL, MOIST. CONTENT = 60 PP	OARSE TO F	INE	762.3 761.8		 - 1 -	3													CLASS (GI)	ŽV.
0.5' - CONCRETE STIFF, BROWN SI SAND, TRACE FIN -SS-1: SULFATE /ERY STIFF, BRO	6.0") LTY CLAY, SOME C E GRAVEL, MOIST. CONTENT = 60 PP	M , SOME COA	INE	761.8		-	3 4 4	10	100	SS-1	1.75	9	10 2	20 27	24	27	47	00			
STIFF, BROWN SI SAND, TRACE FIN -SS-1: SULFATE /ERY STIFF, BRO	LTY CLAY, SOME C E GRAVEL, MOIST. CONTENT = 60 PP WN SILT AND CLAY	M , SOME COA				-	3 4 4	10	100	SS-1	1.75	9	10 3	20 27	24	27	47	00			
SAND, TRACE FIN -SS-1: SULFATE /ERY STIFF, BRO	E GRAVEL, MOIST. CONTENT = 60 PP WN SILT AND CLAY	M , SOME COA		750.5		-	3 4 4	10	100	SS-1	1.75	9	10 3	20 27	24	27	47	00			
-SS-1: SULFATE	CONTENT = 60 PP	M , SOME COA	Dec ///	750.5		- - 2 -	3 4 4	10	100	SS-1	1.75	9	10 2	20 27	, 24	27	47	00			1 LV
/ERY STIFF, BRO	WN SILT AND CLA Y	, SOME COA	Dec //	750.5		_ 2 _	4 4	10	100	SS-1	1.75	9	10 2	20 27	24	27	47	00			1>1
			Dec //	750.5		_ 2 _	4						10 2	.0 21	34	3/	17	20	22	A-6b (9)	1 LV
			Dec //	750.5																	1 > L
			DOE //	750.5																	7 LV
			DOE V/	759.5		_ 3 _															1>V
O FINE SAND, LI	THE FINE GRAVEL		KOE //																		1>1
		, D/ ((VII .																			1 LV
						- 4 -	3														1>1
							5 6	14	100	SS-2	3.25	19	22 1	3 27	19	33	19	14	16	A-6a (3)	1 > L
							U														1 LV
						− 5 −															1 > 1
450U IM DENIOS 3	O DENIOE DECIMA	AND DI AOI		757.0																	7 LV
	O DENSE, BROWN ND AND SILT, TRAC			الأعام] < \ \
MOIST.	ID AND SILI, TRAC	L CLAT, DAIV		.61 I		□ 6 □															12/
			ġ.S				6	27	400	00.0									40	A O 4 () ()	1 LV
			9.			L 7 L	9 12	27	100	SS-3	-	-	-	- -	-	-	-	-	10	A-2-4 (V)	1>1
																					1 × ×
			n i	i d		_															< , v
				ti I		8 –															7 > 1
																					1 LV
				y d																	1>1
				[t]		− 9 +	9 12	33	100	SS-4	_	_	_	_ _	_	_	_	_	8	A-2-4 (V)	7 LV
							14	33	100	33-4	-	_	-	- -	-	-	-	_	0	A-2-4 (V)	1 LV
			11	752.5	FOR	40															1>1
			, joi 1 e		—EOB	-10										•					

	Rii	PROJE	CT:	FR	A-317-10 ADWAY		-		/ OPERATOR // LOGGER:		I / S.B. / C.D.		ILL RIG		BILE B-53 AUTOM		400)	STAT			-			/ 66' L TON F			RATION ID
		PID: _				N/A	DRILLING N			4.5" SF				ION DA		5/13/15		ELEV								10.0 ft.	PAGE 1 OF 1
ŀ		START	_	2/17/15 E		12/17/15	SAMPLING	MET		SPT		-	ERGY F	RATIO (77.1		LAT /							879423	1	1
			IVI	ATERIAL I AND	NOTES				ELEV. 763.1	DEPT	HS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID			cs CS		SI (%		LL	ERB	_	WC	ODOT CLASS (GI)	BACK FILL
ŀ	3.0" - T	OPSOIL	(3.0")		10.20				762.9					(70)		(101)	O. t	00	. 0	0.	0.2						1 LV 1 L
	SILT, LI GRAVE	ITTLE TO EL, DAMF	SON P.		ITTLE '	ARK GRAY TO SOME F					- 1 T	4 .	40	100					10	-							, , , , , , , , , , , , , , , , , , ,
	00 1.	002.71	00	<u>-</u>	02011						_ 2 -	6 9	19	100	SS-1	3.75	13	12	19	31	25	25	15	10	14	A-4a (4)	<pre></pre> <pre><</pre>
											_ _ 4	16 15	33	39	SS-2	4.50	_	_	_	_	_	_	_	_	12	A-4a (V)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5.GPJ											_ ₅ _	11														,	72 77 77 77 77 77 77 77 77 77 77 77 77 7
S\2013\W-13-15											- 6 - - 7 -	3 4 5	12	100	SS-3	2.50	24	14	18	34	10	22	15	7	7	A-4a (2)	1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
GI8/PROJECT8											_ 8 -																\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2/5/16 18:08 - U:\									753.1		9 -	4 7 7	18	100	SS-4	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
2015-ODOT BORING LOG-BRIDGE ID - OH DOT.GDT - 2/5/16 18:08 - U:\GI8\PROJECTS\2013\W-13-155.GPJ										— ЕОВ	10																
۱,	NOTES:	GROUN	DWATE	ER NOT ENC	OUNTER	RED DURING	DRILLING																				
ı	ABANDO	NMENT N	IETHO	OS, MATERI	ALS, QU	ANTITIES: C	OMPACTED \	NITH	THE AUGER	25 LBS E	BENTONI	E CHIPS	S AND S	SOIL CL	JTTINGS												

PROJECT: FRA-317-10.63 TYPE: ROADWAY	DRILLING FIRM /	/ LOGGER	: RII / C.D.		RILL RIG AMMER:		BILE B-53 (400)		TION /	OFFS	-			3 / 57' /ES RI			RATION ID 5-0-15
PID: 95570 BR ID: N/A	DRILLING METH		4.5" SFA SPT		ALIBRAT			5/13/15			/ATIO / LON					EOB:		25.0 ft.	PAGE 1 OF 1
START: 12/21/15 END: 12/21/15 MATERIAL DESCRIPTION	SAMPLING METH	ELEV.		SPT	NERGY F	,	SAMPLE	77.1				o. DN (%				1, -62. ERG	880433		
AND NOTES		759.0		RQE		(%)	ID	(tsf)			FS	SI		LL	PL		wc	ODOT CLASS (GI)	BACK FILL
√0.3' - TOPSOIL (3.0")		758.7				(**)		(/											1 LV 1 L
STIFF TO VERY STIFF, BROWN SILT AND CLAY, COARSE TO FINE SAND, LITTLE FINE GRAVEL, I -SS-1: SULFATE CONTENT = 420 PPM			- 1 - 1 - 2 - 1 - 3 -	4	13	44	SS-1	3.75	14	10	15	32	29	34	19	15	18	A-6a (7)	1
		753.5	- 4 - 1 - 5 -	2 3	9	100	SS-2	1.50	-	-	-	-	-	-	-	-	16	A-6a (V)	, , , , , , , , , , , , , , , , , , ,
VERY STIFF, BROWN SANDY SILT , SOME FINE GRAVEL, LITTLE CLAY, DAMP.		751.0	- 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	· 6	19	100	SS-3	3.00	25	14	15	33	13	21	15	6	11	A-4a (2)	,
MEDIUM DENSE, BLACK, BROWN AND GRAY GR WITH SAND AND SILT, TRACE CLAY, MOIST.	AVEL	748.5	₩ - 10	8	22	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	7
HARD, GRAY SANDY SILT , SOME CLAY, LITTLE F GRAVEL, DAMP.	INE	740.5	- - 11 - - 12 -	10 10 1		100	SS-5	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	7
			- 13 - - 14 - - 15 -	8 14 2		100	SS-6	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			- 16 - 17 - 17 - 18 - 18 - 18 - 18 - 18 - 18	8 12 1	33	100	SS-7	4.5+	11	11	16	40	22	24	14	10	12	A-4a (5)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			- 19 - 19 - 20 - 20 - 10 - 10 - 10 - 10 - 10 - 10	6 9 1	26	67	SS-8	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V)	1 > \ 1 > \
MEDIUM DENSE, GRAY GRAVEL WITH SAND AND TRACE CLAY, MOIST.	SILT,	737.3	- 21 - - 22 - - 23 -																\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		734.0	_ 24 _		27	56	SS-9	-	-	-	-	-	-	-	-	-	15	A-2-4 (V)	1 > V 1 >
NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 1		II ETION O	0.0% CAVE IN DEDTIL	@ 44	O!														

PROJECT:	7/15 END: 12/17/15 FERIAL DESCRIPTION AND NOTES SE (12.0") BROWN TO MOTTLED LAY, SOME COARSE TO AVEL, DAMP TO MOIST	SAMPLING FI DRILLING ME SAMPLING M				HAM CAL ENE SPT/ RQD	MMER: LIBRAT ERGY F	ION DA		ATIC 5/13/15 77.1	G	STATIO ALIGNM ELEVAT LAT / LC RADAT CS F.	ENT: _ ION: _ ING: _ ION (9	760.0 3	X CL (MSL) 9.9300	GROV _) I 362203 ERBI	'ES RI EOB: 3, -82.)	0.0 ft.	PAG 1 OF BAC FILI
PID: 95570 START: 12/1 MAT 0.5' - ASPHALT (6.0") 1.0' - AGGREGATE BAS STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	BR ID: N/A 7/15 END: 12/17/15 FERIAL DESCRIPTION AND NOTES BE (12.0") BROWN TO MOTTLED LAY, SOME COARSE TO EAVEL, DAMP TO MOIST	DRILLING ME SAMPLING M BROWN D FINE	ETHOD:	4.5" SF/	HS	CAL ENE SPT/ RQD	LIBRAT ERGY F	ION DA RATIO (TE: %): SAMPLE	5/13/15 77.1 HP	G	ELEVAT LAT / LO RADAT	ION: _ NG: _ ION (%	760.0 3 (4)	9.9303 ATT	.) 1 36220: ERBE	EOB: 3, -82. ERG	1 881535	0.0 ft. 164 ODOT	PAG 1 OF BAC FILI
START: 12/1 MAT 0.5' - ASPHALT (6.0") 1.0' - AGGREGATE BAS STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	7/15 END: 12/17/15 FERIAL DESCRIPTION AND NOTES SE (12.0") BROWN TO MOTTLED LAY, SOME COARSE TO AVEL, DAMP TO MOIST	SAMPLING M BROWN D FINE	ETHOD: ELEV. 760.0 759.5	SPT	HS - 1 -	SPT/ RQD	ERGY F	RATIO (%): SAMPLE	77.1 HP	G	LAT / LO	NG: _	3 6)	9.9303 ATT	36220: ERBI	3, -82. ERG	881535	164 ODOT	1 OF BAC FILI
0.5' - ASPHALT (6.0") 1.0' - AGGREGATE BAS STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	GE (12.0") BROWN TO MOTTLED LAY, SOME COARSE TO AVEL, DAMP TO MOIST	BROWN D FINE	ELEV. 760.0 759.5		HS - 1 -	SPT/ RQD		REC	SAMPLE	HP	G	RADAT	ION (9	6)	ATT	ERBI	RG		ODOT	BAC FILI
0.5' - ASPHALT (6.0") 1.0' - AGGREGATE BAS STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	AND NOTES SE (12.0") BROWN TO MOTTLED LAY, SOME COARSE TO AVEL, DAMP TO MOIST) FINE	760.0 759.5	DEPT	 - 1 -	RQD 5	N ₆₀							-				WC		FILI
1.0' - AGGREGATE BAS STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	SE (12.0") BROWN TO MOTTLED LAY, SOME COARSE TO LAVEL, DAMP TO MOIST) FINE	759.5		 - 1 -	5	60	(%)	ID	(tst)	GR	CS F	S SI	CL	LL	PL	PI	WC	CLASS (GI)	
1.0' - AGGREGATE BAS STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	BROWN TO MOTTLED LAY, SOME COARSE TO AVEL, DAMP TO MOIST) FINE				5 _														× LV
STIFF TO VERY STIFF, AND GRAY SILT AND C SAND, TRACE FINE GR	BROWN TO MOTTLED LAY, SOME COARSE TO AVEL, DAMP TO MOIST) FINE	758.5			5 _														1 LV.
AND GRAY SILT AND C SAND, TRACE FINE GR	LAY , SOME COARSE TO RAVEL, DAMP TO MOIST) FINE	758.5		_ 2 _	5 _														1>r.
					_ 3 _	5 4	12	72	SS-1	3.75	3	7 1	9 38	33	31	17	14	17	A-6a (9)	17 V 7 7 V 7 7 V 7 7 V 7 7 V 7 V 7 V 7 V
					- 4 - - 5 -	1 2 2	5	100	SS-2	1.25	6	8 1	3 37	31	35	20	15	27	A-6a (9)	7
					- 6 - - 7 - - 7 -	2 3 4	9	94	SS-3	3.00	-		-	-	-	-	-	21	A-6a (V)	77 V 7 7 V 7 7 V 7 V 7 V 7 V 7 V 7 V 7
					- 8 - - I															77 77 7
			750.0	— EOB	- 9 - -	3 6 9	19	44	SS-4	3.50	-	- -	-	-	-	-	-	14	A-6a (V)	V 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

APPENDIX IV

PAVEMENT CORE DATA SHEETS

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Pavement Core Data Summary

PROJECT LOCATION JOB No.

Hamilton Road Corridor

Columbus, Ohio

W-13-155

BORING/CORE No. DATE CORE OBTAINED CORE OBTAINED BY

C-1 1/29/2016

C.D./N.A.

Core	Com	position
------	-----	----------

	00.00	۳							
		Α	sph	alt		se	Ot	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	2.25	✓							
	1.00	✓							
	2.00		✓						
	3.50			✓					
	6.00					✓			
C-1									

Comments/Remarks

- Air voids evident in the top lift of 404 ashalt
- Bottom lift of 404 asphalt appears to be in good condition with only trace air voids evident
- Slight deterioration present along the bottom inch of 301 asphalt
- Difficult to distinguish layer separation between 402 and 301 lifts of asphalt
- Overall condition of asphalt and core is good

Total Pavement Thickness =

8.75

in.

Total Asphalt Thickness =

8.75 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Pavement Core Data Summary

PROJECT LOCATION JOB No. Hamilton Road Corridor

Columbus, Ohio

W-13-155

BORING/CORE No.

DATE CORE OBTAINED

CORE OBTAINED BY

C-2 1/29/2016

C.D./N.A.

Core Composition

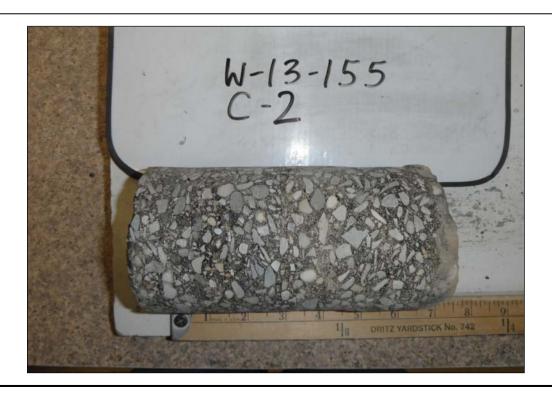
Comments/Remarks

		Α	sph	alt		se	Ot	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	2.00	✓							
	1.00	✓							
	3.50	✓							
	2.00					\			
C-2									
									ĺ

- Core appears to consist of three (3) lifts of 404 asphalt
- Trace air voids present in each lift, with slightly more evident at the base of the top lift
- Some base material still adhered to bottom of core
- Overall condition of asphalt and core is good

Total Pavement Thickness =

6.50


in. Total Asphalt Thickness =

lt 6.50 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Rii

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Pavement Core Data Summary

PROJECT LOCATION JOB No. Hamilton Road Corridor

Columbus, Ohio

W-13-155

BORING/CORE No.

DATE CORE OBTAINED

CORE OBTAINED BY

C-3 1/29/2016

C.D./N.A.

Comments/Remarks

		Α	sph	alt		se	Ot	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	2.00	✓							
	1.75		✓						
	5.25			✓					
	7.00					✓			
C-3									
	1	1	I	ı	1	I	I		1

- Tack coat evident between the 402 and 404 lifts of asphalt
- A vertical crack extends 6.0 inches from top of the core down through the 404 and 402 lifts of asphalt and into the 301 lift of asphalt
- Slight weathering evident within the vertical crack
- Slight deterioration evident along the bottom of 301 asphalt
- Difficult to distinguish layer separation between 402 and 301 lifts of asphalt
- Overall condition of asphalt and core is fair to good

Total Pavement Thickness =

9.00

in.

Total Asphalt Thickness =

9.00 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Pavement Core Data Summary

PROJECT LOCATION JOB No.

Hamilton Road Corridor Columbus, Ohio

W-13-155

BORING/CORE No.

DATE CORE OBTAINED

CORE OBTAINED BY

C-4 1/29/2016

C.D./N.A.

Core Co	mposition
	A 1 14

		A	sph	alt		se	Ot	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.25	✓							
	3.25		✓						
	9.50				✓				
	6.50					✓			
C-4									

Comments/Remarks

- Core is separated between the 404 and 402 lifts of asphalt and also between the asphalt and concrete sections of the core
- Both lifts of asphalt are significantly deteriorated and slightly friable
- Air voids evident throughout asphalt
- Concrete is in fair condition, but has very small vertical and horizontal cracks throughout
- Rebar or wire mesh at 3.5 inches below the top of the concrete section of the core, which appears to be highly corroded and degraded

Total Pavement Thickness =

14.00 in.

Total Asphalt Thickness =

4.50 in.

Total Concrete Thickness =

9.50 in.

Total Base Thickness =

6.50 in.

6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990

Pavement Core Data Summary

PROJECT LOCATION JOB No.

Hamilton Road Corridor Columbus, Ohio

W-13-155

BORING/CORE No.

DATE CORE OBTAINED

CORE OBTAINED BY

C-5 5/12/2016

C.D./S.B.

Core C	Composition

0010 00	Jilip	Ooit	1011					
	A:	sph	alt		se	Ot	her	
Lift Thickness (in.)	₹ 404	402	301	Concrete	Aggregate/Granular Base			
0.75	✓							
1.00	✓							
1.00	✓							
2.00		✓						
9.00				✓				
9.00					✓			

- Core has separated between the lower 404 and 402 lifts of asphalt and between the lower and middle lifts of 404 asphalt, as well as between the asphalt and concrete sections of the core

Comments/Remarks

- The upper two lifts of 404 asphalt have broken apart vertically and the lower lift of 404 asphalt has broken into three pieces
- Some deterioration is evident along the surfaces of the asphalt at all of the breaks
- Concrete has broken into four pieces with deterioration evident at the breaks
- Air voids and stress fractures are evident throughout the concrete
- Base material visually identified as 304 aggregate

Total Pavement Thickness =

Core Number

C-5

13.75

in.

Total Asphalt Thickness =

4.75 in.

Total Concrete Thickness =

9.00 in.

Total Base Thickness =

APPENDIX V

GB1 SUBGRADE STABILIZATION SUMMARY

			G	ilobal Or	ntions							Cli	assifica	tion Co	ounts h	ov Sa	ımple						Surface Class	% Bo	rings	% Sı	ırface	Rig ER
	-	Analysis	320	R&R	N	0	R	1a	1b	3		-4 2-5	2-6	2-7	4a	4b	5	6a	6b		7-6 8a	8b	2-5 0	$N_{60L} <= 5$	5 25%	56	6%	A 77
V. 12	2.00	12/30/11		CS LS	Opt N		0	0	3	0		3 0	3	0	18	0	0	20	16	0	1 0	0	4b 0		63%	0%	56%	B C
Design	1	_		LKD	Opt	-	0%		5%		14%	%	5%		28%			31%	25% 86%		2%		5 0 7-5 0	>=20 M+	0% 81%			D
CBR	-	7	206	Depth		4					, ,												7-6 1 6%	R	0%			E
Total B	loringo	40							Avora	~~		N ₆₀		T	Г	PI 13.7		Clay 25.9	F		М _{ОРТ} 12.9	GI 6.48	8a 0 8b 0			UC @	Surface	F G
PID	orings	16 95570							Avera Maxin			4			21	25		38	79		18	14	8b 0 R 0				0.1	Н
Locatio	n	F	RA-317	-10.63					Minim	ium				21	14	5	13	5	18	7	6	0				1	2	
		Boring		1		0 1	Subg	rade		Stand	dard Per	netration	1	I	Physica	al Ch	aracter		_	Moist		ass	Comments	Prob			ercuts	Analysis
#	В#	Boring Local	tion	Depth	To	Cut Fill	Depth	То	n ₂	n ₃	N F	ig N ₆₀	N _{60L}	LL	PL	ΡI	% Silt	% Clay	P 200	м	Ohio M _{OPT} DOT	GI		w/ Class	w/ MN	UC Class	UC MN	
		Domig Look		Ворит			Борин	10	2	3	., .	9 60	1.460L				0	J.u.,				<u> </u>						
1 B	-001-0-15	11+75, 25' Rt.		1.0	2.5	0.0	1.0	2.5	5	7		A 1:		39	18	21	31	37	68		16 6b	11						
		Ex. CL Hamilton Surface El. = 754		2.5 4.0	4.0 5.5		2.5 4.0	4.0 5.5	6 7	7 18	13 25	1 ⁻ 3:		24	15	9	37	22	59	14 15	10 4a 10 4a	5 5	Sulfate Content = 247 ppm					No Stabilization Anticipated
		Curiaco En = 70	1.0	5.5	7.0		5.5	7.0	7	10	17	2:	2 15							11	10 4a	Ŭ	- 217 ppiii					7 thiospatoa
2 B	-002-0-15	17+73, 33' Lt.	-	1.0	2.5	0.0	1.0	2.5	7	14		A 2		26	16	10 6	23	17	40	11	11 4a	1	0.15-1 011					No Otali ili adia
		Ex. CL Hamilton Surface El. = 74		2.5 4.0	4.0 5.5		2.5 4.0	4.0 5.5	13 9	21 6	34 15	4- 1:		23	17	ь	13	5	18	7 8	6 1b 6 1b	0	Sulfate Content = 240 ppm					No Stabilization Anticipated
		ounded Em Th	0.0	5.5	7.0		5.5	7.0	6	7	13	1								11	6 1b	ŭ	2 :0 pp					, muoipatoa
3 B	-003-015	25+20, 53' Lt.	L 7	1.0	2.5	0.0	1.0	2.5	3	4		Α !		39	19	20	39	38	77 50	21	16 6b	12	Cultata Cantant		N		16	44 in Compant
		Ex. CL Hamilton Surface El. = 756		2.5 4.0	4.0 5.5		2.5 4.0	4.0 5.5	3	2	3 7			34	16	18	29	27	56	23 19	16 6b	7 10	Sulfate Content = 100 ppm		N N		30 16	14 in Cement 18 in Undercut
				5.5	7.0		5.5	7.0	1	2	3		4 4							22	10 2-6				N		30	
4 B	-004-0-15	31+79, 49' Lt.	רם	1.0	2.5	0.0	1.0	2.5	5	5		A 1:		26	16	10	31	22 27	53	16	11 4a	4 7	Cultata Cantant		MN		12	44 in Comont
		Ex. CL Hamilton Surface El. = 760		2.5 4.0	4.0 5.5		2.5 4.0	4.0 5.5	4 2	5 2	9 4	1:	2 5	33	19	14	36	21	63	19 23	14 6a 16 6b	10	Sulfate Content = 420 ppm		MN N		12 27	14 in Cement 18 in Undercut
				5.5	7.0		5.5	7.0	2	2	4		5 5							23	16 6b				N		27	
5 B	-005-0-015	40+07, 44' Lt.	DΨ	1.0	2.5	0.0	1.0	2.5	1	2	3 6	A .		33 38	17	16 21	47 35	32 36	79 71	27 23	16 6b	10	Sulfate Content		N		30	14 in Coment
		Ex. CL Hamilton Surface El. = 76		2.5 4.0	4.0 5.5		2.5 4.0	4.0 5.5	5	10	15	1		30	17	21	33	36	/ 1	14	16 6b 14 6a	12 8	= 460 ppm		N		18	14 in Cement 18 in Undercut
				5.5	7.0		5.5	7.0	4	5	9	1:	2 4							16	14 6a							
6 B	-006-0-15	44+54, 30' Rt. Ex. CL Hamilton	DΑ	1.0 2.5	2.5 4.0	0.0	1.0 2.5	2.5 4.0	5 7	6 8	11 15	A 14 1!		39 38	18 17	21 21	31 32	31 31	62 63	18 18	16 6b 16 6b	10 10	Sulfate Content					No Stabilization
		Surface EL. 762.		4.0	5.5		4.0	5.5	3	3	6	1.		30	17	21	32	31	03	19	16 6b	10	= 1,200 ppm		N		18	Anticipated
				5.5	7.0		5.5	7.0	5	7	12	1:								15	14 6a							
7 B	-007-0-15	86+06, 14' Lt. Ex. CL Kingsland	d Δνα	1.0 2.5	2.5 4.0	0.0	1.0 2.5	2.5 4.0	3	7 6	10 10	A 1; 1;		28 27	21 16	7 11	33 36	28 30	61 66	20 15	16 4a 14 6a	5 7	Sulfate Content		MN		12	12 in Cement
		Surface El. 760.		4.0	5.5		4.0	5.5	6	10	16	2		21	10	• • •	30	50	00	11	14 6a	8	= 247 ppm					12 in Undercut
				5.5	7.0		5.5	7.0	14	10	24	3								13	10 2-6							
8 B	-008-0-15	82+05, 33' Lt. Ex. CL Kimberly	Pkwy	1.0 2.5	2.5 4.0	0.0	1.0 2.5	2.5 4.0	4 2	4	8 6	A 1) B	35 32	17 14	18 18	29 18	33 25	62 43	21 19	16 6b 16 6b	9 ⊿	Sulfate Content		N N		15 18	14 in Cement
		Surface El. 760.		4.0	5.5		4.0	5.5	6	8	14	18	3	02			.5	20	-,5	10	10 4a	5	= 907 ppm		''			18 in Undercut
0.5	000 0 45	52 LOA F2114		5.5	7.0	0.0	5.5	7.0	10	18	28	3		20	40	40	00	07		7	10 4a							
918	-009-0-15	52+04, 52' Lt. Ex. CL Hamilton	Rd.	1.0 2.5	2.5 4.0	0.0	1.0 2.5	2.5 4.0	6 5	6 7	12 12	A 1:		32 31	16 17	16 14	29 36	27 30	56 66	14 16	16 6b 14 6a	/ 8	Sulfate Content					No Stabilization
		Surface El. 760.		4.0	5.5		4.0	5.5	8	9	17	2:		-						14	14 6a	8	= 233 ppm					Anticipated
40.0	040 0 45	50.00.07114		5.5	7.0	0.0	5.5	7.0	9	13	22	2		00	47		20	٥٢		11	14 6a							
TOB	-010-0-15	56+22, 27' Lt. Ex. CL Hamilton	Rd.	1.0 2.5	2.5 4.0	0.0	1.0 2.5	2.5 4.0	6 5	5 12	11 17	A 1-		26 22	17 17	9 5	32 25	25 15	57 40	13 14	12 4a 16 6b	4 1	Sulfate Content					No Stabilization
		Surface El. 756.		4.0	5.5		4.0	5.5	5	6	11	1-	4							10	10 4a	5	= 100 ppm					Anticipated
44 0	-011-0-15	114+02, 14' Lt.		5.5	7.0	0.0	5.5 1.0	7.0	12	9	21 6	2 ⁻		43	18	25	33	38	71	8 23	10 4a 18 7-6	14			N		18	
IIIB	-011-0-15	114+02, 14 Lt. Ex. CL Groves R	₹d.	1.0 2.5	4.0	0.0	2.5	4.0	9	7	16	A 2		43 28	18	13	33	23	71 54	15	18 7-6 14 6a	14 5	Sulfate Content		IN		ıδ	14 in Cement
		Surface El. 765.		4.0	5.5		4.0	5.5	7	5	12	1:	5							14	14 6a	8	= 600 ppm					18 in Undercut
12 0	-012-0-15	110+55, 58' Lt.		5.5 1.0	7.0	0.0	5.5 1.0	7.0	8	10 5	18 8	2: A 1:		25	17	8	35	20	55	10 16	14 6a 12 4a	1		-	N	-	15	
12 0	012-0-10	Ex. CL Groves R	Rd.	2.5	4.0	0.0	2.5	4.0	3	5	8	10		23	17	6	36	16	52	13	12 4a 12 4a	3	Sulfate Content		N		15	14 in Cement
		Surface El. 764.2	2	4.0	5.5		4.0	5.5	3	4	7	!	9							11	14 6a	8	= 820 ppm		N		16	18 in Undercut
				5.5	7.0		5.5	7.0	5	6	11	1-	4 9							10	10 2-6			<u> </u>				

		Boring			Subg	rade	Standard Penetration						Physic	al Ch	aracte	istics		Moisture Class			ass	Comments	Problem		Undercuts		Analysis	
					Cut											%	%	Р			Ohio			w/	w/	UC	UC	
#	B#	Boring Location	Depth	To	Fill	Depth	To	n_2	n_3	Ν	Rig	N ₆₀ N ₆₀	LL	PL	PI	Silt	Clay	200	М	M_{OPT}	DOT	GI		Class	MN	Class	MN	
								-											•									
13	B-013-0-15	107+97, 237' Lt.	1.0	2.5	0.0	1.0	2.5	4	4	8	Α	10	37	17	20	27	34	61	22	16	6b	9			N		15	
		Ex. CL Groves Rd.	2.5	4.0		2.5	4.0	5	6	11		14	33	19	14	27	19	46	16	14	6a	3	Sulfate Content					14 in Cement
		Surface El. 762.5	4.0	5.5		4.0	5.5	9	12	21		27							10	10	2-4	0	= 60 ppm					18 in Undercut
			5.5	7.0		5.5	7.0	12	14	26		33 1	O						8	10	2-4							
14	B-014-0-15	65+89, 66' Lt.	1.0	2.5	0.0	1.0	2.5	6	9	15	Α	19	25	15	10	31	25	56	14	10	4a	4						
		Ex. CL Hamilton Rd.	2.5	4.0		2.5	4.0	15	11	26		33							12	10	4a	5	Sulfate Content					No Stabilization
		Surface El. 763.1	4.0	5.5		4.0	5.5	4	5	9		12	22	15	7	34	10	44	7	10	4a	2	=320 ppm					Anticipated
			5.5	7.0		5.5	7.0	7	7	14		18 1	2						9	10	4a							
15	B-015-0-15	103+63, 57' Lt.	1.0	2.5	0.0	1.0	2.5	4	6	10	Α	13	34	19	15	32	29	61	18	14	6a	7			MN		12	
		Ex. CL Groves Rd.	2.5	4.0		2.5	4.0	3	4	7		9							16	14	6a	8	Sulfate Content		N		16	No Stabilization
		Surface El. 759.0	4.0	5.5		4.0	5.5	6	9	15		19	21	15	6	33	13	46	11	10	4a	2	=420 ppm					Anticipated
			5.5	7.0		5.5	7.0	8	9	17		22	9						12	10	2-4							-
16	B-016-0-15	100+57, 12' Lt.	1.0	2.5	0.0	1.0	2.5	5	4	9	Α	12	31	17	14	38	33	71	17	14	6a	9						
		Ex. CL Groves Rd.	2.5	4.0		2.5	4.0	2	2	4		5	35	20	15	37	31	68	27	15	6a	9	Sulfate Content		N		27	No Stabilization
		Surface El. 760.0	4.0	5.5		4.0	5.5	3	4	7		9							21	14	6a	8	=713 ppm		N		16	Anticipated
			5.5	7.0		5.5	7.0	6	9	15		19	5						11	14	6a							

APPENDIX VI

SHALLOW FOUNDATION CALCULATIONS

W-13-155 FRA-317-10.63 - Hamilton Road Corridor

Shallow Foundation Bearing Resistance - 9.0 ft. x 4.5 ft. Concrete Box Culvert

B =	9.0	ft	
L=	70	ft	
c =	2,500	psf	
γ =	120	pcf	
$D_f =$	0.0	ft	
φ =	0	deg	
$D_w =$	0.0	ft	Below ground surface

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma BN_{\gamma m} C_{w\gamma}$$
 = 13.17 ksf

$$N_{cm} = N_c s_c i_c = 5.27$$
 $N_{qm} = N_q s_q d_q i_q = 1.00$ $N_{\gamma m} = N_\gamma s_\gamma i_\gamma = 0.00$ $N_c = 5.14$ $S_c = 1.025$ $I_c = 1.000$ $S_q = 1.000$ $S_q = 1.000$ $I_q = 1.000$

$$q_R = q_n \cdot \phi_b$$
 = 6.59 ksf φ_b = 0.5

W-13-155 FRA-317-10.63 - Hamilton Road Corridor

Shallow Foundation Settlement - 9.0 ft. x 4.5 ft. Concrete Box Culvert

Calculated By: PM Date: 2/4/2016 Checked By: BRT Date: 2/4/2016

Boring B-015-0-15

B = 9.0 $D_w =$ 0.0 ft

q = 2,775 psf

Applied loading from structure

2,085 psf Net loading from structure (considers initial overburden stress of 690 psf)

Layer	Soil Class.	Soil Type	Layer (f	'	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z_f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-4a	С	0.0	2.0	2.0	1.0	120	240	120	58	2,058	21	0.099	0.010	0.436				0.11	0.996	2,076	2,133	0.024	0.283
2	A-2-4	G	2.0	4.5	2.5	3.3	125	553	396	193	2,193					22	39	128	0.36	0.904	1,885	2,078	0.020	0.242
	A-4a	С	4.5	6.0	1.5	5.3	125	740	646	319	2,319	24	0.126	0.009	0.460				0.58	0.766	1,596	1,915	0.008	0.091
	A-4a	С	6.0	8.5	2.5	7.3	125	1,053	896	444	2,444	24	0.126	0.009	0.460				0.81	0.639	1,332	1,776	0.010	0.117
3	A-4a	С	8.5	11.0	2.5	9.8	125	1,365	1,209	600	2,600	24	0.126	0.009	0.460				1.08	0.518	1,079	1,679	0.007	0.087
	A-4a	С	11.0	13.5	2.5	12.3	125	1,678	1,521	757	2,757	24	0.126	0.009	0.460				1.36	0.430	897	1,654	0.005	0.066
	A-4a	С	13.5	16.0	2.5	14.8	125	1,990	1,834	913	2,913	24	0.126	0.009	0.460				1.64	0.366	764	1,677	0.004	0.051
4	A-2-4	G	16.0	19.0	3.0	17.5	130	2,380	2,185	1,093	3,093					27	33	106	1.94	0.314	654	1,747	0.006	0.069
1. σ _p ' = σ	_{νο} '+σ _{m;} Estima	ate σ_m of 2,0	00 psf for slig	ghtly to mod	erately over	consolidated	soil deposit;	Ref. Table	11.2, Coduto	2003	•					•					•	1.006 in		

^{1.} $\sigma_p' = \sigma_{vo}' + \sigma_{m}$. Estimate σ_m of 2,000 psf for slightly to moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

^{2.} C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

^{3.} $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5

^{4.} e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_c/(1+e_o)](H)\log(\sigma_{v_i}/\sigma_{v_o}) \\ \text{for } \sigma_p^{-} \leq \sigma_{v_o}^{-} < \sigma_{v_o}^{-} \sigma_$

^{10.} $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)