

STATE OF OHIO DEPARTMENT OF TRANSPORTATION HAM-75-3.84

HAM-52-2044 (BU-18)

HAMILTON COUNTY CITY OF CINCINNATI

INDEX OF SHEETS:

TITLE SHEET	1
GENERAL PLAN	2
GENERAL NOTES	3
PIER 1 LIGHTING DETAILS	4
PIER 1 FIBER WRAP DETAILS	5-7

			STANDADD CONSTRUCTION DDA	WINCC	SI IPPI EM
	03 URBAN INTERSTATE	<i>03 URBAN</i> INTERSTATE	<i>03 URBAN INTERSTATE</i>	SIGNED: Druge flasse DATE: 3/11/19	
	55 MPH	50 MPH	50 MPH		
	60 MPH	50 MPH	50 MPH	SONAL ENGINE	
	0.13	0.03	0.08	PEGISTERE	
	0.73	1.00	1.00	E-59019	
	9,180	4,100	4,380	BRUCE	
	102,000	29,800	29,800	ALL OF OAT	
	88,300	25,300	25,300	$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i$	
	EAST OF BEEKMAN	IR 75 NB TO IR 74 WB	IR 74 EB TO IR 75 SB	FOR ENTIRE PLAN EXCEPT SHEETS 4 THRU 7	
í 		DIRECTIONA			
2	74			ENGINEERS SEAL:	

7/28/00 MH-1.2 1/15/16 RM-4.4 7/21/17 HL-20.13 1/19/18 MT-95.73 1/19/18 TC-16.21 1/19/18 SPECIFIC 7/17/15 RM-4.5 7/21/17 HL-20.21 1/19/18 MT-98.10 1/20/17 TC-21.10 7/21/17 800-2016 7/18/08 DM-1.1 7/21/17 RM-4.6 7/19/13 HL-20.24 1/19/18 MT-98.10 1/20/17 TC-21.00 7/19/18 800-2016 7/18/14 DM-1.2 1/18/13 A-1-69 7/19/02 HL-30.21 1/17/14 MT-98.20 7/18/14 TC-22.00 10/18/13 806 7/18/14 DM-2.1 1/18/13 AS-1-15 7/17/15 HL-30.22 1/17/14 MT-98.20 7/20/17 TC-22.00 10/18/13 806 7/18/18 DM-4.1 1/15/16 AS-2-15 1/19/18 HL-30.31 1/17/14 MT-98.30 7/21/17 TC-41.30 10/18/13 814 7/19/18 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.31 1/17/			STANDAI	RD CONSTR	RUCTION	DRAWINGS					SUPPLE	MEI
7/17/15 RM-4.5 7/21/17 HL-20.21 1/19/18 MT-98.10 1/20/17 TC-21.10 7/21/17 800-2016 7/18/08 DM-1.1 7/21/17 RM-4.6 7/19/13 HL-20.24 1/19/18 MT-98.11 1/20/17 TC-21.20 1/19/18 804 7/18/14 DM-1.2 1/18/13 HL-30.11 1/19/18 MT-98.20 7/18/14 TC-21.20 1/19/18 804 7/18/14 DM-1.2 1/18/13 As-1-65 7/19/02 HL-30.22 1/17/14 MT-98.29 1/20/17 TC-21.20 1/18/13 808 7/19/13 DM-4.1 1/15/16 AS-2-15 1/19/18 HL-30.32 1/17/14 MT-98.30 7/21/17 TC-41.30 10/18/13 814 7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.32 1/17/14 MT-99.30 1/19/18 TC-42.20 10/18/13 832 1/15/16 DM-4.3 1/15/16 CSD-1-96 7/19/02 HL-30.31 1/17/14 MT-99.60 7/15/16 TC-42.20 10/18/13 832 1/15/16 MG-5-1.1	7/28/00	MH-1.2 1/15/	6 RM-4.4	7/21/17	HL-20.13	1/19/18	MT-95.73	1/19/18	TC-16.21	1/19/18	SPECIFI	CAT
7/18/08 DM-1.1 7/21/17 RM-4.6 7/19/13 HL-20.24 1/19/18 MT-98.11 1/20/17 TC-21.20 1/19/18 804 7/18/14 DM-1.2 1/18/13 HL-30.11 1/19/18 MT-98.20 7/18/14 TC-21.20 1/19/18 806 7/19/13 DM-1.3 7/18/14 A-1-69 7/19/02 HL-30.21 1/17/14 MT-98.21 7/18/14 TC-21.20 1/18/18 808 7/18/14 DM-2.1 1/18/14 A-1-69 7/19/02 HL-30.21 1/17/14 MT-98.20 7/18/14 TC-22.10 10/18/13 808 7/18/08 DM-4.1 1/15/16 AS-2-15 1/19/18 HL-30.31 1/17/14 MT-99.30 1/19/18 TC-42.10 10/18/13 814 7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.33 1/17/14 MT-99.30 1/19/18 TC-42.10 10/18/13 832 1/15/16 DM-4.4 1/15/16 FCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/11/14 TC-52.10 10/18/13 832 1/15/16<	7/17/15		RM-4.5	7/21/17	HL-20.21	1/19/18	MT-98.10	1/20/17	TC-21.10	7/21/17	800-2016	1
7/18/14 DM-1.2 1/18/13 HL -30.11 1/19/18 MT-98.20 7/18/14 TC-21.50 7/15/16 806 7/19/13 DM-1.3 7/18/14 A-1-69 7/19/02 HL -30.21 1/17/14 MT-98.21 7/18/14 TC-22.10 10/18/13 808 7/18/14 DM-2.1 1/18/13 AS-1-15 7/17/15 HL -30.22 1/17/14 MT-98.29 1/20/17 TC-22.20 1/17/14 809 7/18/16 DM-4.1 1/15/16 AS-2-15 1/19/18 HL -30.32 1/17/14 MT-98.30 7/21/17 TC-41.30 10/18/13 814 7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL -30.31 1/17/14 MT-99.30 7/18/16 TC-42.10 10/18/13 822 1/15/16 DM-4.3 1/15/16 GSD-1-96 7/19/02 HL -30.31 1/17/14 MT-98.30 7/15/16 TC-42.10 10/18/13 832 1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL -30.41 1/19/18 MT-101.70 1/17/14 TC-52.10 10/18/13 839 <	7/18/08	DM-1.1 7/21/	7 RM-4.6	7/19/13	HL-20.24	1/19/18	MT-98.11	1/20/17	TC-21 . 20	1/19/18	804	1.
7/19/13 DM-1.3 7/18/14 A-1-69 7/19/02 HL-30.21 1/17/14 MT-98.21 7/18/14 TC-22.10 10/18/13 808 7/18/14 DM-2.1 1/18/13 AS-1-15 7/17/15 HL-30.22 1/17/14 MT-98.29 1/20/17 TC-22.20 1/17/14 809 7/19/13 DM-4.1 1/15/16 AS-2-15 1/19/18 HL-30.31 1/17/14 MT-98.30 7/21/17 TC-41.30 10/18/13 814 7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.32 1/11/14 MT-99.30 1/19/18 TC-42.00 10/18/13 821 0/15/16 DM-4.4 1/15/16 GSD-1-96 7/19/02 HL-30.33 1/17/14 MT-99.60 7/15/16 TC-42.20 10/18/13 832 1/15/16 DM-4.4 1/15/16 RE-1-13 1/18/13 HL-30.01 1/20/17 MT-101.70 1/17/14 TC-52.10 10/18/13 832 1/15/16 MGS-1.1 1/19/18 BB-1-55 7/19/13 HL-40.00 1/20/17 MT-101.80 1/16/18 TC-61.30 1/12/14	7/18/14	DM-1.2 1/18/	3		HL-30.11	1/19/18	MT-98.20	7/18/14	TC-21 . 50	7/15/16	806	3
7/18/14 DM-2.1 1/18/13 AS-1-15 7/17/15 HL-30.22 1/17/14 MT-98.29 1/20/17 TC-22.20 1/17/14 809 7/19/13 DM-4.1 1/15/16 AS-2-15 1/19/18 HL-30.31 1/17/14 MT-98.30 7/21/17 TC-41.30 10/18/13 814 7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.32 1/17/14 MT-99.30 1/19/18 TC-42.10 10/18/13 821 DM-4.3 1/15/16 GSD-1-96 7/19/02 HL-30.33 1/17/14 MT-99.60 7/15/16 TC-42.10 10/18/13 832 1/15/16 DM-4.4 1/15/16 FCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/17/14 TC-52.10 10/18/13 839 1/15/16 MGS-1.1 1/19/18 RB-155 7/19/13 HL-40.10 1/20/17 MT-101.75 7/15/16 TC-52.20 1/18/14 840 1/15/16 MGS-3.1 1/19/18 RB-155 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 M20/17	7/19/13	DM-1.3 7/18/	4 A-1-69	7/19/02	HL-30.21	1/17/14	MT-98.21	7/18/14	TC-22.10	10/18/13	808	10,
7/19/13 DM-4.1 1/15/16 AS-2-15 1/19/18 HL-30.31 1/17/14 MT-98.30 7/21/17 TC-41.30 10/18/13 814 7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.32 1/17/14 MT-99.30 1/19/18 TC-42.10 10/18/13 821 DM-4.3 1/15/16 GSD-1-96 7/19/02 HL-30.33 1/17/14 MT-99.60 7/15/16 TC-42.20 10/18/13 832 1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/17/14 TC-52.20 1/19/18 839 1/15/16 MGS-1.1 1/19/18 RB-1-55 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 866 1/15/16 MGS-3.1 1/19/18 SBR-1-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.10 1/17/14 867 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.21 7/15/16 MT-102.10 1/20/17 TC-65.11 7/12/17 902	7/18/14	DM-2.1 1/18/	3 AS-1-15	7/17/15	HL-30.22	1/17/14	MT-98.29	1/20/17	TC-22 . 20	1/17/14	809	1,
7/18/08 DM-4.2 7/20/12 EXJ-4-87 1/19/18 HL-30.32 1/17/14 MT-99.30 1/19/18 TC-42.10 10/18/13 821 DM-4.3 1/15/16 GSD-1-96 7/19/02 HL-30.33 1/17/14 MT-99.60 7/15/16 TC-42.20 10/18/13 832 1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/17/14 TC-52.10 10/18/13 839 1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL-40.10 1/20/17 MT-101.75 7/15/16 TC-52.20 1/19/18 840 1/15/16 MGS-1.1 1/19/18 RB-1-55 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 866 1/15/16 MGS-3.1 1/19/18 SBR-2-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/12/17 902 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 904	7/19/13	DM-4.1 1/15/	6 AS-2-15	1/19/18	HL-30.31	1/17/14	MT-98.30	7/21/17	TC-41 . 30	10/18/13	814	7,
DM-4.3 1/15/16 GSD-1-96 7/19/02 HL-30.33 1/17/14 MT-99.60 7/15/16 TC-42.20 10/18/13 832 1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/17/14 TC-52.10 10/18/13 839 1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/17/14 TC-52.10 10/18/13 839 1/15/16 MCS-1.1 1/19/18 RB-1-55 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 866 1/15/16 MGS-2.1 1/19/18 SBR-1-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/12/17 902 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.12 7/15/16 MT-102.10 1/20/17 TC-72.20 7/15/16 904 1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.	7/18/08	DM-4.2 7/20/	2 EXJ-4-87	1/19/18	HL-30.32	1/17/14	MT-99.30	1/19/18	TC-42.10	10/18/13	821	4/
1/15/16 DM-4.4 1/15/16 PCB-91 1/18/13 HL-30.41 1/19/18 MT-101.70 1/17/14 TC-52.10 10/18/13 839 1/15/16 PSID-1-13 7/15/16 HL-40.10 1/20/17 MT-101.75 7/15/16 TC-52.20 1/19/18 840 1/15/16 MGS-1.1 1/19/18 RB-1-55 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 866 1/15/16 MGS-2.1 1/19/18 SBR-1-13 1/14/14 HL-50.11 1/16/15 MT-101.90 7/21/17 TC-65.10 1/17/14 867 1/15/16 MGS-3.1 1/19/18 SBR-2-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/21/17 902 1/15/16 MGS-3.2 1/18/13 SICD-2-14 7/18/14 HL-60.12 7/15/16 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914		DM-4.3 1/15/	6 GSD-1-96	7/19/02	HL-30.33	1/17/14	MT-99.60	7/15/16	TC-42 . 20	10/18/13	<i>832</i>	1,
1/15/16 PSID-1-13 7/15/16 HL-40.10 1/20/17 MT-101.75 7/15/16 TC-52.20 1/19/18 840 1/15/16 MGS-1.1 1/19/18 RB-1-55 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 866 1/15/16 MGS-2.1 1/19/18 SBR-1-13 1/14/14 HL-50.11 1/16/15 MT-101.90 7/21/17 TC-65.10 1/17/14 867 1/15/16 MGS-3.1 1/19/18 SBR-2-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/21/17 902 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.12 7/15/16 MT-102.20 7/18/14 TC-71.10 1/19/18 904 1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 <	1/15/16	DM-4.4 1/15/	6 PCB-91	1/18/13	HL-30.41	1/19/18	MT-101.70	1/17/14	TC-52.10	10/18/13	839	7.
1/15/16 MGS-1.1 1/19/18 RB-1-55 7/19/13 HL-40.20 1/20/17 MT-101.80 1/16/18 TC-61.30 1/20/17 866 1/15/16 MGS-2.1 1/19/18 SBR-1-13 1/14/14 HL-50.11 1/16/15 MT-101.90 7/21/17 TC-65.10 1/17/14 867 1/15/16 MGS-3.1 1/19/18 SBR-2-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/21/17 902 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.12 7/15/16 MT-102.10 1/19/18 TC-71.10 1/19/18 904 1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 HL-10.11 1/19/18 MT-95.30 7/21/17 MT-105.10 7/17/15 939 1/15/16 <th>1/15/16</th> <th></th> <th>PSID-1-13</th> <th>7/15/16</th> <th>HL-40.10</th> <th>1/20/17</th> <th>MT-101.75</th> <th>7/15/16</th> <th>TC-52.20</th> <th>1/19/18</th> <th>840</th> <th>7/</th>	1/15/16		PSID-1-13	7/15/16	HL-40.10	1/20/17	MT-101.75	7/15/16	TC-52 . 20	1/19/18	840	7/
1/15/16 MGS-2.1 1/19/18 SBR-1-13 1/14/14 HL-50.11 1/16/15 MT-101.90 7/21/17 TC-65.10 1/17/14 867 1/15/16 MGS-3.1 1/19/18 SBR-2-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/21/17 902 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.12 7/15/16 MT-102.20 7/18/14 TC-71.10 1/19/18 904 1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 HL-10.11 1/19/18 MT-95.30 7/21/17 MT-105.10 7/19/13 921 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.31 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 1/15/16 MGS-6.1	1/15/16	MGS-1.1 1/19/	8 RB-1-55	7/19/13	HL-40.20	1/20/17	MT-101.80	1/16/18	TC-61 . 30	1/20/17	866	4.
1/15/16 MGS-3.1 1/19/18 SBR-2-13 1/14/14 HL-50.21 1/19/18 MT-102.10 1/20/17 TC-65.11 7/21/17 902 1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.12 7/15/16 MT-102.20 7/18/14 TC-71.10 1/19/18 904 1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 HL-10.11 1/19/18 HT-95.30 7/21/17 MT-105.10 7/19/13 921 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.31 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 SPEC 1/15/16 MGS-6.1 1/19/18 HL-10.13 1/20/17 MT-95.32 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 1/15/16 FM-1.1<	1/15/16	MGS-2.1 1/19/	8 SBR-1-13	1/14/14	HL-50.11	1/16/15	MT-101.90	7/21/17	TC-65.10	1/17/14	867	4
1/15/16 MGS-3.2 1/18/13 SICD-1-96 7/18/14 HL-60.12 7/15/16 MT-102.20 7/18/14 TC-71.10 1/19/18 904 1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 WF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 HL-10.11 1/19/18 MT-95.30 7/21/17 MT-105.10 7/19/13 921 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.31 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 SPEC 1/15/16 MGS-6.1 1/19/18 HL-10.13 1/20/17 MT-95.32 7/21/17 TC-9.10 1/19/18 ITS-14.11 7/17/15 1/15/16 RM-1.1 7/18/14<	1/15/16	MGS-3.1 1/19/	8 SBR-2-13	1/14/14	HL-50.21	1/19/18	MT-102.10	1/20/17	TC-65.11	7/21/17	902	12
1/15/16 MGS-4.2 7/19/13 SICD-2-14 7/18/14 HL-60.21 1/16/15 MT-103.10 1/19/18 TC-72.20 7/15/16 908 1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 IL I/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 921 1/15/16 MGS-5.3 7/15/16 HL-10.11 1/19/18 MT-95.30 7/21/17 TC-7.65 1/15/16 ITS-13.10 7/17/15 939 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.32 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 SPEC 1/15/16 MG-1.1 7/18/14 HL-10.15 7/17/15 MT-95.32 7/21/17 TC-9.10 1/19/18 ITS-14.11 7/17/15 PROVIS 1/15/16 RM-1.1 7/18/14 HL-10.15 7/17/15 MT-95.40 1/20/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 PROVIS <th>1/15/16</th> <th>MGS-3.2 1/18/</th> <th>3 SICD-1-96</th> <th>7/18/14</th> <th>HL-60.12</th> <th>7/15/16</th> <th>MT-102.20</th> <th>7/18/14</th> <th>TC-71.10</th> <th>1/19/18</th> <th>904</th> <th>7.</th>	1/15/16	MGS-3.2 1/18/	3 SICD-1-96	7/18/14	HL-60.12	7/15/16	MT-102.20	7/18/14	TC-71 . 10	1/19/18	904	7.
1/15/16 MGS-4.3 1/18/13 VPF-1-90 1/19/18 HL-60.31 7/21/17 MT-104.10 10/16/15 TC-73.20 7/21/17 914 MGS-5.2 7/15/16 MT-105.10 7/19/13 921 1/15/16 MGS-5.3 7/15/16 HL-10.11 1/19/18 MT-95.30 7/21/17 TC-7.65 1/15/16 TS-13.10 7/17/15 939 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.31 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 SPEC 1/15/16 MGS-6.1 1/18/14 HL-10.12 1/20/17 MT-95.32 7/21/17 TC-9.10 1/19/18 ITS-14.11 7/17/15 PROVIS 1/15/16 RM-1.1 7/18/14 HL-10.15 7/17/15 MT-95.40 1/20/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 PROVIS 1/15/16 RM-1.1 7/21/17 HL-10.31 1/19/18 MT-95.50 7/21/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 RM-4.1 7/21/17 HL-10.31 1/19/18 MT-95.50	1/15/16	MGS-4.2 7/19/1	3 SICD-2-14	7/18/14	HL-60.21	1/16/15	MT-103.10	1/19/18	TC-72 . 20	7/15/16	908	10/
MGS-5.2 7/15/16 Image: Mage:	1/15/16	MGS-4.3 1/18/	3 VPF-1-90	1/19/18	HL-60.31	7/21/17	MT-104.10	10/16/15	TC-73 . 20	7/21/17	914	7,
1/15/16 MGS-5.3 7/15/16 HL-10.11 1/19/18 MT-95.30 7/21/17 ITS-13.10 7/17/15 939 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.31 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 SPEC 1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.32 7/21/17 TC-9.10 1/19/18 ITS-14.11 7/17/15 SPEC 1/15/16 RM-1.1 7/18/14 HL-10.15 7/17/15 MT-95.40 1/20/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 PROVIS RM-4.1 7/21/17 HL-10.31 1/19/18 MT-95.50 7/21/17 TC-12.30 1/19/18 ITS-15.11 7/17/15		MGS-5.2 7/15/	6				MT-105.10	7/19/13			921	4/
1/15/16 MGS-6.1 1/19/18 HL-10.12 1/20/17 MT-95.31 7/21/17 TC-7.65 1/15/16 ITS-14.10 7/17/15 SPEC 1/15/16 HL-10.13 1/20/17 MT-95.32 7/21/17 TC-9.10 1/19/18 ITS-14.11 7/17/15 PROVIS 1/15/16 RM-1.1 7/18/14 HL-10.15 7/17/15 MT-95.40 1/20/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 PROVIS RM-4.1 7/21/17 HL-10.31 1/19/18 MT-95.50 7/21/17 TC-12.30 1/19/18 ITS-15.11 7/17/15	1/15/16	MGS-5.3 7/15/	6 HL-10.11	1/19/18	MT-95.30	7/21/17			ITS-13 . 10	7/17/15	939	7,
1/15/16 HL-10.13 1/20/17 MT-95.32 7/21/17 TC-9.10 1/19/18 ITS-14.11 7/17/15 PROVIS 1/15/16 RM-1.1 7/18/14 HL-10.15 7/17/15 MT-95.40 1/20/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 PROVIS RM-4.1 7/21/17 HL-10.31 1/19/18 MT-95.50 7/21/17 TC-12.30 1/19/18 ITS-15.11 7/17/15	1/15/16	MGS-6.1 1/19/	8 HL-10.12	1/20/17	MT-95.31	7/21/17	TC-7 . 65	1/15/16	ITS-14 . 10	7/17/15	CPE	CTA
1/15/16 RM-1.1 7/18/14 HL-10.15 7/17/15 MT-95.40 1/20/17 TC-9.30 1/19/18 ITS-15.10 7/17/15 PROVIS	1/15/16		HL-10.13	1/20/17	MT-95.32	7/21/17	TC-9.10	1/19/18	ITS-14 . 11	7/17/15		
RM-4.1 7/21/17 HI -10.31 1/19/18 NT-95.50 7/21/17 TC-12.30 1/19/18 ITS-15.11 7/17/15	1/15/16	RM-1.1 7/18/	4 HL-10.15	7/17/15	MT-95.40	1/20/17	TC-9 . 30	1/19/18	ITS-15 . 10	7/17/15	FROV.	510
		RM-4.1 7/21/1	7 HL-10.31	1/19/18	MT-95.50	7/21/17	TC-12 . 30	1/19/18	ITS-15 . 11	7/17/15		
1/15/16 RM-4.3 7/18/14 HL-20.11 4/21/17 MT-95.45 7/21/17 TC-15.115 10/18/13 ITS-50.10 1/19/18	1/15/16	RM-4.3 7/18/	4 HL-20.11	4/21/17	MT-95.45	7/21/17	TC-15.115	10/18/13	ITS-50.10	1/19/18		

PROJECT DESCRIPTION

THIS IS PHASE 5A OF THE HAMILTON 75 CORRIDOR PROJECTS (MCE). THE PROJECT ADDS A LANE TO IR 75 SB, PROVIDES 4-LANE CONTINUITY NB, AND RECONFIGURES IR 74 EB RAMPS TO IR 75. THE PROJECT ALSO INCLUDES SURFACE COURSE AND ADDITIONAL PAVEMENT WORK TO THE SOUTH AND IMPROVEMENTS TO RAMP A AT THE HOPPLE ST INTERCHANGE. က

0

Ш

67

Q

04

0

Ó

Ŏ

3

 $\boldsymbol{\omega}$

 \frown

6

117 RN

エШ

ΟI

0 ثه ¦

S S

₹×₹

OL SOL

Ğ Ū L

Ê

ΗO

BUILDABLE UNIT 18 DESCRIPTION

THIS BUILDABLE UNIT INCLUDES FIBER WRAPPING AND EPOXY URETHANE SEALING ON THE HAM-52-2044 STRUCTURE OVER IR 75.

LIMITED ACCESS

THIS IMPROVEMENT IS ESPECIALLY DESIGNED FOR THROUGH TRAFFIC AND HAS BEEN DECLARED A LIMITED ACCESS HIGHWAY OR FREEWAY BY ACTION OF THE DIRECTOR IN ACCORDANCE WITH THE PROVISIONS OF SECTION 5511.02 OF THE OHIO REVISED CODE.

2016 SPECIFICATIONS

THE STANDARD SPECIFICATIONS OF THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, INCLUDING SUPPLEMENTAL SPECIFICATIONS LISTED IN THE PLANS AND CHANGES LISTED IN THE PROPOSAL SHALL GOVERN THIS IMPROVEMENT.

I HEREBY APPROVE THESE PLANS AND DECLARE THAT THE MAKING OF THIS IMPROVEMENT WILL NOT REQUIRE THE CLOSING TO TRAFFIC OF THE HIGHWAY AND THAT PROVISIONS FOR THE MAINTENANCE AND SAFETY OF TRAFFIC WILL BE AS SET FORTH ON THE PLANS AND ESTIMATES.

INTAL TIONS		C S X
1/19/18 1/15/16		
3/2/15)/16/15 1/10/18		
7/15/16		8
1/17/14 7/17/15		ကို
7/20/18 4/21/17		75
4/15/16 12/31/12	CONTACT BOTH SERVICES TWO WORKING DAYS BEFORE YOU DIG.	Σ
7/15/16 /20/17		HA
7/15/16 1/20/12 7/17/15	OHIO Utilities Protection Call Before You Dig 1-800-362-2764	
4L	SERVICE (Non-members must be called directly)	
ONS	OIL & GAS PRODUCERS UNDERGROUND PROTECTION SERVICE 1-800-925-0988	$\left \begin{array}{c} 1 \\ 7 \end{array} \right $
I		

PROPOSED WORK:

 \bigcirc

 \bigcirc

1. COMPOSITE FIBER WRAP THE PIER 1 PIER CAP (SOUTH PIER). THE COMPOSITE FIBER WRAP SYSTEM WAS DESIGNED AS PART OF ODOT PID 83723. THE NOTES, DESIGN, AND DETAILS FROM PID 83723 ARE INCLUDED ON SHEETS 4/6 THRU 6/6 FOR COMPLETION OF THE PID 104667 SCOPE OF WORK.

2. APPLY EPOXY URETHANE SEALER TO COMPOSITE FIBER WRAP AND TO PIER CAP AFTER FIBER WRAP IS COMPLETE, PER SHEET 6/6.

3. INSTALL UNDERPASS LIGHTING ON PIER 1 AFTER EPOXY URETHANE APPLICATION IS COMPLETE. LIGHTING DESIGN WAS COMPLETED AS PART OF ODOT PID 76257, BUT WAS NON-PERFORMED. DETAILS FOR THIS WORK FROM PID 76257 ARE INCLUDED ON SHEET 4/6 FOR INFORMATION ONLY. ALL LIGHTING WORK WILL BE COMPLETED AS PART OF BU-19. REFER TO BU-19 FOR ADDITIONAL NOTES AND DETAILS.

UNDERPASS LIGHTING MATERIALS PREVIOUSLY PURCHASED AND STORED AT DISTRICT 8. CONTACT PROJECT ENGINEER FOR PICK-UP.

MAINTENANCE OF TRAFFIC

PROPOSED BU-18 WORK TO BE PERFORMED UNDER NIGHTTIME LANE CLOSURE PER STANDARD DRAWING MT-95.40.

AMERICAN STRUCTUREPOINT IEL 614.001.2256 IEL 614.001.2256 INC. WWW.SEUCHUREPOINT INC.
I REVIEWED DATE RMC 8/28/18 D STRUCTURE FILE NUMBER 3101576
DESIGNED DRAWN CLB DSH CHECKED REVISEI SJF
GENERAL NOTES BRIDGE NO. HAM-52-2044 HOPPLE STREET OVER IR-75 AND CENTRAL PARKWAY
HAM-75-3.84 PID No. 104667
2/6

ITEM SPECIAL - STRUCTURES COMPOSITE FIBER WRAP

SYSTEM DESCRIPTION:

THIS WORK SHALL CONSIST OF PROVIDING A GLASS OR CARBON FIBER REINFORCED COMPOSITE (FRC) STRENGTHENING AND PROTECTION SYSTEM. THE FRC SYSTEM IS TO BE APPLIED TO THE PIER CAP AS DESIGNATED BY THE PROJECT DRAWINGS.

THE CONCRETE IS TO BE CLEANED AND PREPARED TO THE INSTALLER'S SATISFACTION PRIOR TO THE INSTALLATION OF THE FRC SYSTEM.

DESIGN:

THE DESIGN STRENGTH USED FOR EACH LAYER WAS 0.47 KIPS/IN AT THE DESIGN STRAIN OF 0.004. ONE LAYER OF THE FRC SYSTEM SHALL PROVIDE A MINIMUM NOMINAL SHEAR RESISTANCE (TRANSVERSE REINFORCING) FOR THE PIER CAP DEPTH OF 109.5K PER LAYER. SUBMIT CALCULATIONS AND INTERNATIONAL CODE COUNCIL EVALUATION SERVICE REPORT FOR APPROVAL. CALCULATIONS SHALL FOLLOW EITHER ACI 440.2R-08 OR NCHRP REPORT 655.

MATERIALS:

3000-HOUR DURABILITY TESTS FOR 140° F FOR WATER, SALT WATER, ALKALINE SOIL, OZONE, EFFERVESCENCE AND OTHER FACTORS (REFER TO TABLE). THE PROPOSED FRC SHALL HAVE BEEN TESTED BY AN INDEPENDENT AGENCY. FRP MATERIALS SHALL HAVE A CURRENT INTERNATIONAL CODE COUNCIL EVALUATION SERVICE REPORT (ICC ESR #) COMPLIANT WITH THE 2012 IBC. MATERIALS MUST PROVIDE STRUCTURAL AND DURABILITY TESTING AS DEFINED IN ICC AC 125. TO BE AN APPROVED EQUAL THE INSTALLER MUST PROVIDE A HISTORY OF A MINIMUM OF 50 INSTALLATIONS COMPLETED IN THE LAST 5 YEARS, DURABILITY TESTING, INDEPENDENT LABORATORY TESTING FOR TRANSVERSE PIER CAP (SHEAR) REPAIRS, DESIGN EQUIVALENCE TO THE SPECIFIED SYSTEM, AND ALL PROPOSED MATERIAL DATA. POLYESTER OR OTHER RESINS WILL NOT BE ALLOWED AS A SUBSTITUTE TO EPOXY RESINS.

SURFACE PREPARATION:

THE CONCRETE SURFACES OF THE PIER CAP SHALL BE CLEAN AND FREE OF FINS, DEPRESSIONS, OR OTHER CONDITIONS THAT MAY AFFECT THE INTENDED PERFORMANCE OF THE FRC SYSTEM. CORNERS PERPENDICULAR TO THE STRONG FIBER DIRECTION SHALL BE ROUNDED TO A MINIMUM RADIUS OF $\frac{3}{4}$ ". The certified and experienced INSTALLER RESPONSIBLE SHALL VERIFY THAT ALL REQUIRED SURFACE PREPARATION HAS BEEN COMPLETED PROPERLY AND THAT THE FRC SYSTEM IS CLEARED FOR INSTALLATION.

COMPOSITE APPLICATION:

THE FRC COMPOSITE SYSTEM SHALL ONLY BE INSTALLED BY INDIVIDUALS CERTIFIED IN WRITING BY THE MATERIAL SUPPLIER. THE CERTIFIED INSTALLER SHALL HAVE COMPLETED A MINIMUM OF 75 PROJECTS IN THE PAST 2 YEARS. REFERENCES OF THESE INSTALLATIONS INCLUDING DESCRIPTIONS AND CONTACT INFORMATION WILL BE REVIEWED. INSTALLERS WITHOUT THE PROPER CERTIFICATIONS, EXPERIENCE, AND REFERENCES WILL NOT BE ALLOWED TO COMPLETE THIS WORK.

TEMPERATURES OF THE SUBSTRATE TO RECEIVE THE COMPOSITE, AMBIENT TEMPERATURES, AND THE TEMPERATURE OF THE FRC MATERIALS SHALL BE BETWEEN 50°F AND 95°F AT THE TIME OF MIXING OF EPOXY. THE FRC SYSTEM SHALL BE APPLIED WHEN THE RELA TIVE HUMIDITY IS LESS THAN 85% AND THE SUBSTRATE TEMPERATURE IS MORE THAN 5°F ABOVE THE DEW POINT. APPLICATIONS OF THE FRC SHALL BEGIN WITHIN ONE HOUR OF THE MIXING OF EPOXIES.

APPLY A PRIMER COATING OF EPOXY TO SURFACES OF THE SUBSTRATE TO RECEIVE THE FRC SYSTEM. SATURATE THE REINFORCING FIBER IN A DOCUMENTED SUCCESSFUL MANNER THAT ENSURES FULL SATURATION OF THE FIBERS PRIOR TO THE INSTALLATION OF THE FRC. SATURATION OF THE FIBER IN PLACE IS NOT ALLOWED. APPLY THE FRC TO THE PREPARED AND PRIMERED SUBSTRATE USING METHODS THAT PROVED A UNIFORM TENSILE FORCE OVER THE WIDTH OF THE SATURATED GLASS FABRIC. STRONG FIBERS SHALL NOT DEVIATE FROM THE INTENDED FIBER DIRECTION MORE THAN 1/2" PER 12" LENGTH OF COMPOSITE. INSPECTION OF THE INSTALLED COMPOSITE SHALL BE COMPLETED PRIOR TO THE CURING OF THE FRC TO ENSURE THAT ALL EDGES, SEAMS, AND OTHER AREAS ARE PROPERLY ADHERED. DURING THIS INSPECTION PROCESS, RELEASING OF ENTRAPPED AIR AND OTHER IDENTIFIED DEFICIENCIES SHALL BE ADDRESSED.

SYSTEM.

WATSON, INC. P.O. BOX 85

MEASUREMENT AND PAYMENT:

50 10 10 10 a m 30/

THE MANUFACTURER SHALL DESIGNATE THE PROPER MIXING PROCEDURE FOR THE EPOXY RESINS.

AFTER THE FRC SYSTEM HAS BEEN INSTALLED, USE THICKENED EPOXY TO DETAIL ALL EDGES AND SEAMS TO PROVIDE A SMOOTH FINISH. APPLY A FINAL LAYER OF THICKENED EPOXY TO THE INSTALLED FRC SYSTEM FOR PROTECTION.

COATING SYSTEM APPLICATION

AREAS AFTER THE EPOXY SETS YET PRIOR TO THE APPLICATION OF THE URETHANE TOP COAT, ALL DEFECTS (INCLUDING BUBBLES) DELAMINATIONS, AND FABRIC TEARS) MORE THAN 1 SQUARE INCH OF THE SURFACE AREA. OR AS SPECIFIED BY THE PROJECT ENGINEER, SHALL BE REPAIRED AS SUCH:

1) SMALL DEFECTS (ON THE ORDER OF 6" DIAMETER) SHALL BE INJECTED OR BACK FILLED WITH EPOXY.

2) BUBBLES LESS THAN 12" IN DIAMETER SHALL BE REPAIRED BY INJECTING THE EPOXY. TWO HOLES SHALL BE DRILLED INTO THE BUBBLE TO ALLOW INJECTION OF THE EPOXY AND ESCAPE OF THE ENTRAPPED AIR.

3) BUBBLES, DELAMINATIONS, AND FABRIC TEARS GREATER THAN 12" IN DIAMETER SHALL BE REPAIRED BY REMOVING AND REAPPLYING THE REQUIRED NUMBER OF LAYERS OF THE COMPOSITE AND THE REQUIRED FINISH COATINGS. ALL REPAIRS SHALL BE APPROVED BY THE PROJECT ENGINEER.

4) THE URETHANE TOP COAT SHALL THEN BE APPLIED TO THE FINAL EPOXY COAT, AS DETERMINED BY MANUFACTURER.

MATERIALS MANUFACTURER

ONE MANUFACTURER SHALL SUPPLY ALL MATERIALS REQUIRED FOR THE FRC SYSTEM. THE MANUFACTURER SHALL BE ONE OF THE FOLLOWING LISTED BELOW OR APPROVED EQUAL FOR THE FIBER REINFORCED COMPOSITE (FRC) STRENGTHENING AND PROTECTION

TYFO FIBERWRAP COMPOSITE SYSTEM AS SUPPLIED BY R.J.

EAST AMHERST, NEW YORK 14051 (PHONE 716-691-3301)

MANUFACTURER: FYFE COMPANY, LLC 8380 MIRALANI DRIVE, SUITE A SAN DIEGO, CA 92126 (858) 642-0694

MBRACE SYSTEM SUPPLIED BY BASF BUILDING SYSTEMS 889 VALLEY PARK DRIVE SHAKOPEE, MN 55379 (PHONE 800-443-9517)

SIKAWRAP BY SIKA CORPORATION 201 POLITO AVENUE LYNDHURST, NJ 07071 (PHONE 800-933-7452)

THE FRC MATERIAL SUPPLIER SHALL HAVE A HISTORY OF AT LEAST 5 YEARS FOR SUPPLYING THE SPECIFIED MATERIALS.

THIS ITEM WILL BE PAID FOR BY (SQUARE FOOTAGE COVERED X NUMBER OF LAYERS) AND SHALL INCLUDE ALL LABOR. MATERIALS. EQUIPMENT, AND INCIDENTALS NECESSARY TO COMPLETE THE WORK. ALL PAYMENT IS INCIDENTAL TO ITEM SPECIAL -STRUCTURES COMPOSITE FIBER WRAP.

GLASS FIBE	R REINFORCED CO)
PROPERTY	REQUIREMENT	
ULTIMATE TENSILE STRENGTH, PSI, MIN. IN PRIMARY FIBER DIRECTION	66,000 PSI	
ULTIMATE TENSILE STRENGTH, PSI, MIN. IN ORTHOGONAL FIBER DIRECTION	3,000 PSI	
1000 HOURS EXPOSURE TO 100% HUMIDITY	66,000 PSI	
TENSILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE TO OZONE	66,000 PSI	
TENSILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE TO ALKALI	66,000 PSI	
TESNILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE TO SALT	66,000 PSI	
TENSILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE AT 140 DEGREES F.	66,000 PSI	
TENSILE STRENGTH (MIN AFTER TEST) ULTRA VIOLET (UV) EXPOSURE	66,000 PSI	
ELONGATION: PERCENT, MIN PERCENT, MAX	1.7% 5.0%	
TENSILE MODULUS, PSI MIN. OF PRIMARY FIBERS, E	3,000,000	
VISUAL DEFECTS	ACCEPTANCE LEVEL III	
COEFFICIENT OF THERMAL EXPANSION IN PRIMARY DIRECTION	4,300,000 PPM/DEG F (+ 15%)	

		STE 300 HH 43231 901:2236 odht.com
MPOSITE PROPERTIES		CY corporate exchange dr. tel 614.901.2235 PAX 614. www.structure
ASTM TEST METHOD	ams 229 229 229 229	AGEN 2550 INT INC.
D3039, AVERAGE OF 7 1″ BY 10″ NORMALIZED TO 0.80″ THICK .01″ PER MIN. TESTING SPEED	ESIGN AGEN GID Syste Irrock Road, su JMBUS, OHIO 43	DESIGN RUCTUREPOI
D3039, AVERAGE OF 7 1" BY 10" NORMALIZED TO 0.80" THICK .01" PER MIN. TESTING SPEED		TS D
C581		18 Ber
D1149 EXCEPT NOT UNDER STRESS DURING OZONE EXPOSURE	DATE /28/17 E NUMBER 76	DATE 8/28/ FILE NUM 1576
D3083 USING SOIL BURIAL BURIAL – WATER CONTENT	.D 04 310157	EWED MC JCTURE 310
C581 AND D1141 OMITTING ADDITION OF HEAVY METAL	REVIEWE MSL STRUCTU	D STRU
D3045	JDG Revised	DRAWN DSH REVISE
G53 USING FS 40 UV-B BULBS FOR A MINIMUM 38 CYCLES. THE CYCLE SHALL BE 4 HOURS OF CONDENSATE EXPOSURE AT 40 DEGREES C.	ESIGNED FKL PJP	DESIGNED CLB CHECKED SJF
D3039, AVERAGE OF 7 1" BY 10" NORMALIZED TO 0.80" THICK .01" PER MIN. TESTING SPEED		
D2563	<pre>KWAY</pre>	КМАҮ
E1142	al Pari	LS AL PAR
	044 ENTR	ENTR,
	OTES -52-2 VND C	P DE 52-2(ND CF
	L N(HAM- -75 A	WRAI HAM- 75 AI
	NO. NO.	RNO.
	GEN RIDGE	FIB DGE OVEF
	BF	ER 1 BRI REET
	LE S'	PIG STR
	ЧОРР	PPLE PPLE
		РН
	2 L	
	- 3 .8 3723	84 67
	- 7 5 0, 8	5 - 3° 1046
	X Z	l - 7 5 V o. 1
	2 4	
	2243	4 6

<u> ITEM SPECIAL – STRUCTURES COMPOSITE FIBER WRAP (CONT.)</u>

CARBON FIBER REINFORCED COMPOSITE PROPERTIES							
PROPERTY	REQUIREMENT	ASTM TEST METHOD					
ULTIMATE TENSILE STRENGTH, PSI, MIN. IN PRIMARY FIBER DIRECTION	102,000 PSI	D3039, AVERAGE OF 7 1" BY 10" NORMALIZED TO 0.80" .01" PER MIN. TESTING SPEED					
ULTIMATE TENSILE STRENGTH, PSI, MIN. IN ORTHOGONAL FIBER DIRECTION	3,000 PSI	D3039, AVERAGE OF 7 1" BY 10" NORMALIZED TO 0.80" .01" PER MIN. TESTING SPEED					
1000 HOURS EXPOSURE TO 100% HUMIDITY	102,000 PSI	C581					
TENSILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE TO OZONE	102,000 PSI	D1149 EXCEPT NOT UNDER STRESS DURING OZONE EXPOSU					
TENSILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE TO ALKALI	102,000 PSI	D3083 USING SOIL BURIAL BURIAL – WATER CONTENT					
TESNILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE TO SALT	102,000 PSI	C581 AND D1141 OMITTING ADDITION OF HEAVY METAL					
TENSILE STRENGTH (MIN AFTER TEST) 1000 HOURS EXPOSURE AT 140 DEGREES F.	102,000 PSI	D3045					
TENSILE STRENGTH (MIN AFTER TEST) ULTRA VIOLET (UV) EXPOSURE	102,000 PSI	G53 USING FS 40 UV-B BULBS F 38 CYCLES. THE CYCLE SHALL E CONDENSATE EXPOSURE AT 40 L					
ELONGATION: PERCENT, MIN PERCENT, MAX	0.85% 1.7%						
TENSILE MODULUS, PSI MIN. OF PRIMARY FIBERS, E	11,900,000	D3039, AVERAGE OF 7 1" BY 10" NORMALIZED TO 0.80" .01" PER MIN. TESTING SPEED					
VISUAL DEFECTS	ACCEPTANCE LEVEL III	D2563					
COEFFICIENT OF THERMAL EXPANSION IN PRIMARY DIRECTION	3.6 PPM/DEG F (+ 15%)	D696					

CALCUL	ATED BY: P	ЪР		ESTIMATED QUANTITIES - HAM-52-2044 *				CHECKED BY:	BCS
ITEM	ITEM EXT.	TOTAL	UNIT	DESCRIPTION	ABUTMENTS	PIERS	SUPER.	GENERAL	SEE SHEET NO.
512	10100	110	SY	SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)		110			
SPECIAL	53000600	1151	SF	STRUCTURES COMPOSITE FIBER WRAP		1151			2/4

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

10:01:(3\C.De lamsdell 30/2022 \2017\011 BR: Ø

O 0.80″ THICK SPEED
O 0.80″ THICK SPEED
R EXPOSURE
AL NT
G TAL
BULBS FOR A MINIMUM SHALL BE 4 HOURS OF AT 40 DEGREES C.
O 0.80″ THICK SPEED

DESIGN AGENCY	1105 SCHROCK ROAD, SUITE 400 COLUMBUS, OHIO 43229	R AMERICAN STRUCTUREPOINT RELATAON INC.
REVIEWED DATE MSL 04/28/17	structure file number 3101576	REVIEWED DATE RMC 8/28/18 STRUCTURE FILE NUMBE 3101576
JDG	REVISED	DRAWN DSH REVISED
DESIGNED FKL	PJP PJP	DESIGNED CLB CHECKED SJF
GENERAL NOTES AND ESTIMATED QUANTITIES	HOPPLE STREET OVER IR-75 AND CENTRAL PARKWAY	PIER 1 FIBER WRAP DETAILS BRIDGE NO. HAM-52-2044 HOPPLE STREET OVER IR-75 AND CENTRAL PARKWAY
2 HAM-75-3.85	4 PID No. 83723	HAM-75-3.84 PID No. 104667
224	44	5/6

* <u>NOTE</u>: PARTICIPATION SPLIT = 100% MAJOR NEW (MN)

