Structure Foundation Exploration

Brent Spence Bridge Replacement

Interstate 71/Interstate 75 Cincinnati, Ohio/Covington, Kentucky Project No. N1105070 March 11, 2011

Prepared for: Parsons Brinckerhoff, Inc. Cincinnati, Ohio

Prepared by:

March 11, 2011

Parsons Brinckerhoff 312 Elm Street, Suite 2500 Cincinnati, Ohio 45202

- Attn: Mr. Duane F. Phelps, P.E. P: 513-639-2138 F: 513-421-1040 E:phelpsd@pbworld.com
- Re: Geotechnical Engineering Report Proposed Brent Spence Bridge Replacement Interstate 71/Interstate 75 Corridor Cincinnati, Ohio- Covington, Kentucky HCN/Terracon Project No.: N1105070

Dear Mr. Phelps:

H.C. Nutting, a Terracon Company (HCN) has completed the geotechnical engineering services for the above referenced project. This report presents the findings of the subsurface exploration and provides geotechnical and foundation recommendations regarding the proposed Brent Spence Bridge Replacement project.

We appreciate the opportunity to be of service to you on this exciting project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, H.C. Nutting, a Terracon Company

David W. Westendorf, P.E. Senior Staff Geotechnical Engineer

non naminal /

Śwaminathan Srinivasan, P.E. Senior Vice President/Division Manager

Muck

Aaron J. Muck, P.E. Senior Associate/Department Manager

H.C. Nutting, a Terracon Company 611 Lunken Park Drive Cincinnati, Ohio 45226 P [513] 321 5816 F [513] 321 0294 www.terracon.com

TABLE OF CONTENTS

		Page
EXECI	UTIVE SUMMARY	i
ACRO	NYMS	ii
1.0	INTRODUCTION	1
2.0	GEOLOGY AND OBSERVATIONS	2
	2.1 General Overburden Geology of Southwest Ohio/Northern Kentucky	3
	2.2 General Bedrock Geology of Southwest Ohio/Northern Kentucky	
	2.3 General Seismic Geology of Project Area	
3.0	EXPLORATION	6
	3.1 Test Borings	6
	3.2 Geophysical Testing	8
	3.3 Environmental Screening	
	3.4 Laboratory Testing	
	3.5 Previous Geotechnical Studies	10
4.0	FINDINGS	11
	4.1 Ohio- Land Borings (L-1, L-1A, L-2, L-2A, L-3, and L-3A)	11
	4.2 River Borings (R-1, R-2, R-2A, R-3, R-4, R-5, R-6, R-7, R-8)	15
	4.3 Kentucky- Land Borings (L-4, L-5, L-6, L-7)	18
	4.4 Groundwater	
	4.5 Shear Wave Velocity Profiles	23
	4.6 Previous Geotechnical Studies	23
5.0	ANALYSIS AND RECOMMENDATIONS	24
	5.1 Foundation Discussion	24
	5.2 Drilled Shafts	25
	5.2.1 Design Parameters	
	5.2.1.1 Axial Loading	
	5.2.1.2 Group Effects – Axial Loading	29
	5.2.1.3 Group Effects – Lateral Loading	
	5.2.1.4 Uplift Design	
	5.2.1.5 Downdrag	31
	5.2.2 Scour Considerations	31
	5.2.3 Drilled Shaft- Cofferdams	
	5.2.4 Drilled Shaft – Construction Considerations	
	5.2.4.1 General Discussion	
	5.2.4.2 Drilled Shaft Installation	
	5.2.4.3 Rock Socket Sidewall Disturbance	
	5.2.4.4 Additional Comments/Considerations	
	5.2.5 Drilled Shaft – Quality Control	
	5.2.5.1 Integrity Testina	
	5.2.5.2 Load Testing	
	5.3 Driven Piles	

0.0		- J
6 0	GENERAL COMMENTS	45
	5.4.2 Critical Structure Parameters	44
	5.4.1 Essential Structure Parameters	
		10
	5.4 Seismic Considerations	
	5.3.2 Construction Considerations	41
	5.3.1 Driven Piles- Design	39

Appendix A – Field Exploration

Exhibit A-1	Site Vicinity Map
Exhibit A-2	Test Boring Location Plan
Exhibit A-3	Geotechnical Summary Sheet- Ohio - Land
Exhibit A-4	Geotechnical Summary Sheet- Ohio - River
Exhibit A-5	Geotechnical Summary Sheet- Kentucky- River
Exhibit A-6	Geotechnical Summary Sheet- Kentucky- Land
Exhibit A-7	Subsurface Profile
Boring Logs/Photos	Test Boring Logs L-1 to L-7, L-1A, L-3A, R-1 to R-8, R-2A and Rock Core
Exhibit A-8	Existing Brent Spence Bridge Test Boring Logs (1958)
Exhibit A-9	Queensgate Alignment Test Boring Logs (2007)
Exhibit A-10	Environmental Screening Results
Exhibit A-11	GeoVision Suspension Logging Report
Exhibit A-12	Photo Science Geospatial Solutions Report

Appendix B – Laboratory Testing

Exhibit B-1	Laboratory Test Re	sults (Sieve, Hydrometer	, Atterberg Limits, Moisture)
-------------	--------------------	--------------------------	-------------------------------

- Exhibit B-2 Triaxial Testing Results
- Exhibit B-3 Consolidation Testing Results
- Exhibit B-4 Unconfined Compressive Strength Testing Results & Figures
- Exhibit B-5 Point Load Testing Results
- Exhibit B-6 Elastic Modulus Testing Results
- Exhibit B-7 Slake Durability Testing Results

Appendix C – Supporting Documents

- Exhibit C-1 ODOT Classification
- Exhibit C-2 Drilled Shaft Base & Shaft Resistance Calculations
- Exhibit C-3 Driven Pile Calculations (DRIVEN & GRLWEAP)

Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

EXECUTIVE SUMMARY

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The following provides a brief summary of our exploration, findings, and recommendations.

- This report is intended for use in the bridge foundations only. Grading and earthwork related issues, roadway and embankment design/construction have not been finalized and are not discussed in this report.
- Nineteen (19) test borings were performed for the project; nine (9) test borings were performed in the river with the remaining borings performed on land in Ohio and Kentucky. All borings extended to bedrock with approximately 40 to 80 feet of rock coring performed at each location. The test borings encountered primarily granular overburden soils (both fill and natural) overlying limestone and shale bedrock.
- Geophysical testing consisting of PS Suspension Logging was performed in three (3) of the test borings (L-1, L-4, R-2A) by GeoVision Geophysical Services. The purpose of the geophysical testing was to acquire site specific shear wave velocities and compressional wave velocities as a function of depth to aid in seismic design.
- Given the subsurface conditions and the preliminary design plans provided by Parsons Brinckerhoff, drilled shafts are indicated for the bridge pier foundations. Driven (CIP) piles, H-piles, and drilled shafts could be considered for the approach spans and abutments located on land. Design parameters for drilled shafts and driven piles are provided.
- Several types of cofferdams (if needed) could be considered for the proposed construction; braced, cellular, or double-walled sheet piles. The designer should consider hydrostatic, soil, current, waves, and ice load as well as construction loading. Accidental loading, such as due to a ship strike, and seismic loading may also need to be considered.
- Quality control is critical to the success of the deep foundation system performance. Quality control of drilled shafts can be divided into three categories; diligent inspection, integrity testing and load testing. Besides installation quality control, we recommend both integrity and load testing be included in the specifications for the proposed bridge foundations.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

ACRONYMS

AASHTO - American Association of State Highway Transportation Officials ATH – Ambient Temperature Headspace BSB - Brent Spence Bridge CEUS – Central and Eastern U.S. Seismic Zone CIP - Cast-in-place concrete piles CSL – Crosshole Sonic Logging CT – Crosshole tomography DHC – Downhole Camera FHWA – Federal Highway Administration FID - Flame ionization detector GGL - Gamma-Gamma logging KYTC - Kentucky Transportation Cabinet LRFD – Load and Resistance Factor Design NHI – National Highway Institute ODOT – Ohio Department of Transportation **PB-** Parsons Brinckerhoff PSI – Photo Science, Inc. **REC - Recovery** RMR – Rock mass rating **RQD** - Rock Quality Designation RTK - Real time kinematics SDI - Slake Durability Index SID – Shaft Inspection Device SPT – Standard Penetration Test USGS – U.S. Geological Survey VOC – Volatile organic compounds WOH - Weight of hammer

GEOTECHNICAL ENGINEERING REPORT BRENT SPENCE BRIDGE REPLACMENT INTERSTATE 71 / INTERSTATE 75 CINCINNATI, OHIO-COVINGTON, KENTUCKY Terracon Project No. N1105070 March 11, 2011

1.0 INTRODUCTION

A geotechnical study has been performed for the proposed Brent Spence Bridge (BSB) replacement project by H.C. Nutting, a Terracon Company (HCN) in support of the ongoing design efforts by Parsons Brinckerhoff (PB), the Kentucky Transportation Cabinet (KYTC), and the Ohio Department of Transportation (ODOT). This report includes a description of the field activities, a summary of the encountered subsurface conditions, laboratory test results, and foundation recommendations, along with construction considerations and recommended quality control testing during the project construction phase. Exhibit A-1 in the Appendix provides a general overview map of the project location.

Nineteen (19) test borings were performed for the project; nine (9) test borings were performed in the river with the remaining borings performed on land in Ohio and Kentucky. Each of the test borings was extended to bedrock with approximately 40 to 80 feet of rock coring being performed at each location. Limited environmental screening was performed on soil samples during drilling activities. Shear wave velocity testing was completed at three (3) locations, one (1) within the Ohio River and the remaining two (2) on land. The Suspension P-S velocity logging method was used to measure the seismic wave velocity profiles.

Two (2) previous geotechnical reports were performed by HCN for the BSB replacement project; the 2005 Red Flag study and the 2007 Queensgate alignment study. Six (6) borings were performed as part of the 2007 study. In addition, HCN performed 12 borings for the existing bridge in 1958. These borings have been reviewed as part of this study and have been included in the Appendix.

The existing Brent Spence Bridge links Cincinnati, Ohio and Covington, Kentucky and carries Interstate 75 and Interstate 71 traffic over the Ohio River. The proposed replacement bridge will be located immediately west (downriver) of the existing bridge. At the time this report is being published, three (3) alternatives are being considered for the proposed replacement bridge. The alternatives consist of a tied arch bridge (alternative 1), a two tower cable-stayed bridge (alternative 3), and a single tower cable-stayed bridge (alternative 6). All three (3) alternatives have a main span length of 1,000 to 1,023 feet with the main span piers located near each shore. The roadway will consist of a double-deck truss with six (6) lanes of traffic in each direction as well as shoulders.

Drilled shaft foundations with pier caps extending from the mud line to the waterline are proposed for the bridge replacement. The preliminary drawings provided by PB indicate that minimum 8-foot diameter drilled shafts are anticipated. The following table summarizes the proposed bridge foundations.

Bridge Alternative	River Pier Cap Length (feet)	River Pier Cap Width (feet)	Drilled Shaft Spacing (feet)	Number of Drilled Shafts
Tied Arch (Alt. 1)	328	88	24	52
Two Tower Cable- Stayed (Alt. 3)	236	116	20	72
Single Tower Cable- Stayed (Alt. 6)	356	136	20	126

Table 1, Summary of Proposed Bridge Types

This report focuses on bridge foundations only. Final grading schemes and alignments have not been finalized during this phase of study. Therefore, grading and earthwork related recommendations, along with roadway and embankment design and construction considerations are not discussed further in this report

The following sections include a description of the geology, field activities, encountered subsurface conditions, laboratory test results, and recommendations for drilled pier and driven pile capacities/construction/quality control for the proposed bridge.

2.0 GEOLOGY AND OBSERVATIONS

Currently, the proposed bridge alignment is occupied by a Duke Energy Facility and Substation on the Ohio side of the river. The riverbank is brush and tree covered and relatively steep (approximately 1.5 to 2H:1V). The Kentucky riverbank, also brush and tree covered, extends gradually up from the river's edge to the toe of the levee protecting Covington, Kentucky. On the southern side of the levee, the area is occupied by several small businesses and parking lots.

An overview of the geology in the project area is briefly described below. The subject area lies near the southern extent of the historic glacial progression/regression, which has resulted in a notably variable geology across the region. The general overburden geology is discussed, followed by the bedrock geology in the region. An overview of the seismic geology of the region is also provided. The geology of the region is based on various published and on-line resources and maps, in conjunction with our experience in the general project area.

2.1 General Overburden Geology of Southwest Ohio/Northern Kentucky

An estimated two million years before present time, the first major ice sheet arrived in Southwest Ohio and Northern Kentucky. At the time, the northwesterly-flowing Teays River flowed across West Virginia and entered Ohio near Portsmouth. This ancestral river occurred along with several tributaries, including the north-flowing Licking River. The valleys at that time were only about 150 feet deep, compared with 400 feet deep today.

Between an estimated 1.2 and 2 million years ago, the Kansan and Nebraskan glaciers advanced into Cincinnati and the Northern Kentucky area. At that time, the north-flowing Teays Age Licking River was dammed by the snout of the glacial ice, resulting in deposition of lake clays within the valleys. The base elevation of the lake-filled valley was about elevation 650 feet.

In time, the lake waters rose and eventually overflowed a divide near Madison, Indiana. The glacial meltwaters caused elevated water flow through the new drainage system westward, near Hamilton, Ohio and southwesterly toward Ross and Harrison, Ohio, Lawrenceburg, Indiana, and on to Louisville, Kentucky. The water flow eroded a deep and wide channel, termed the Deep Stage Ohio. The valley bottom was deepened well below today's Ohio, Little Miami, and Great Miami Rivers to about elevation 380 feet.

The Teays Age Licking River abandoned its former course and shifted somewhat westerly, cutting its Deep Stage valley where the present day Licking River occurs. However, in Deep Stage time, the Licking River did not terminate at its present day mouth location. Instead, it continued northerly across the basin of present day downtown Cincinnati, west of Great American Ball Park and northward to what is now called the Mill Creek Valley to join the Deep Stage Ohio River near Norwood, Ohio.

The Illinoian Age glacier then advanced into southwest Ohio about 400,000 years ago. This glacier did not reach Northern Kentucky. The ice dammed the north flowing Deep Stage Ohio River, forming a lake, which extended towards Portsmouth and well into the Deep Stage Licking valley to the south. The resulting deposition above the valley bottom consisted of Deep Stage gravels topped by Illinoian lakebed silts and clays. The lake filled and eventually spilled over directly west from Cincinnati. A new valley was now cut through Anderson Ferry, Saylor Park, and on to North Bend, Ohio. This process created the present day course of the Ohio River. Also occurring at this time, the Illinoian glacier continued to creep southwesterly and deposited till on top of the lake clays.

Over the next 300,000 years, well after the Illinoian glacier retreated, extensive weathering and erosion took place. New valleys were carved by streams, within the partially filled former valleys. The last glacial advance began about 70,000 years ago. This glacier, called the

Wisconsin glacier, retreated slightly and then re-advanced into Northern Hamilton County, Ohio about 18,000 years ago. This glacier left till and then granular outwash from its meltwaters. Subsequent stream erosion has cut terraces into this outwash along many of the valleys.

2.2 General Bedrock Geology of Southwest Ohio/Northern Kentucky

During the Ordovician Period (444 to 448 million years ago), Southwest Ohio, Northern Kentucky and Eastern Indiana was largely covered with a shallow saltwater sea. This environment encouraged the growth of organisms and the precipitation of calcium carbonate that became the dominant source of the calcareous material in the deposits along the sea floor. In the Late Ordovician Period, collisions of eastern North America with ancestral Europe, Africa, and South America caused an upward bulge of the area and formed what is known as the Cincinnati Arch. The Cincinnati Arch is a gentle, wide structure with bedrock inclinations typically less than 1 degree.

Primarily two formations of bedrock are located within the limits of the project and the maximum depth explored; the lower portions of the Point Pleasant Formation and the upper portions of the Lexington Limestone Formation. The Point Pleasant Formation, deposited during the Middle Ordovician, is approximately 90 to 110 feet thick with an upper elevation of approximately 420 feet in Southwestern Ohio. The Point Pleasant Formation consists of interbedded dark argillaceous limestone, brown to black calcareous shales and fossiliferous layers. The amount of limestone increases with depth in this formation. The Point Pleasant Formation and contains appreciably more shale.

The Point Pleasant is underlain by the Lexington Limestone, deposited in the Middle Ordovician, which is approximately 100 feet thick in the Tri-State region. The Lexington Limestone is generally light- to medium-gray limestone. Fossiliferous and argillaceous seams are encountered throughout the formation. Interbeds of shale are encountered in this formation, primarily in the upper portions of the formation.

2.3 General Seismic Geology of Project Area

Plate tectonic theories do not adequately explain the mechanisms associated with intra-plate earthquakes such as those which occur in this area. To our knowledge, there are no mapped faults within the project site area. Further, there are no mapped faults which have experienced surface displacement due to seismic activity during the Holocene Epoch (past 11,000 years) within 100 miles of the project site. The closest mapped fault with such movement is the New Madrid Seismic Zone, which is about 200 miles southwest of the site.

A preliminary seismic hazard analysis was performed for the proposed bridge corridor. The steps for the analysis generally include the identification of the seismic sources capable of

strong motions at the project site, evaluation of the seismic potential for each capable source, and evaluation of the intensity of the design ground motions at the project site.

For this preliminary analysis, the evaluation of the intensity of ground motions was accomplished using U.S. Geological Survey (USGS) published information regarding the seismic hazard for the Central and Eastern United States. This information for the project site is strongly influenced by the New Madrid Seismic Zone in southeastern Missouri. To a lesser degree, historical local seismicity of Ohio, Kentucky and Indiana contribute to the seismic hazard as well. The USGS Internet website seismic hazard mapping tools were used to estimate the potential ground motions for the project site corridor. For the purposes of this analysis, the design event evaluated was an earthquake whose ground motions have a 2 percent probability of exceedance in 50 years (equivalent to a 10 percent probability of exceedance in 250 years, or a recurrence interval of 2475 years). This is consistent with the classification of the Brent Spence Bridge as a "critical structure."

The USGS mapping evaluation uses a database that considers the contribution of all recorded earthquakes that may influence the project site area. The coordinates at the Ohio River were entered to obtain peak ground accelerations and spectral accelerations at the soil-bedrock interface. The following table summarizes the information obtained for each of the locations for the design event:

		Site-Source		Site-S	Site-Source		Relative		CEUS Source	
		Mea	Mean Event Modal Event		Contribution		Mean Event			
Critoria	Accel	NA	D	N/L	D	NMSZ	CEUS	NA	D	
Cillena	(g)	IVI	(km)	IVI	(km)	(%)	(%)	IVI	(km)	
PGA	0.080	6.21	150	7.7	455	14	86	5.94	100	
0.2 sec SA	0.179	6.42	183	7.7	455	18	82	6.13	125	
0.3 sec SA	0.156	6.73	237	7.7	455	28	72	6.33	150	
1.0 sec SA	0.076	7.25	357	7.7	455	51	48	6.74	240	

Table 2, Preliminary Seismic Hazard Data – Ohio River

Notes: Accel.=acceleration value, M=earthquake magnitude, D=distance, NMSZ= New Madrid Seismic Zone, CEUS=Central and Eastern US Seismic Zone, PGA = peak ground accelerations, SA = spectral accelerations

The primary conclusions that may be derived from the information presented above are:

- The relative contribution of the New Madrid Seismic Zone is limited except for the spectral accelerations predicted at a period of 1.0 second.
- The relative contribution of the random seismicity of the Central and Eastern U.S. Seismic Zone (CEUS) appear to be higher for spectral accelerations at the other selected periods and for the peak ground acceleration.

These observations suggest that seismic site response analyses should be performed using a series of several time histories that represent the smaller magnitude earthquakes of the CEUS and at least one time history that represents the New Madrid Zone event.

3.0 EXPLORATION

The exploration performed for this study consisted of a geotechnical test boring program. The test borings were supplemented by environmental screening during our drilling activities at each of the test boring locations and geophysical testing at three (3) selected test boring locations. In addition, the collected soil and rock core samples were subjected to an extensive laboratory testing program, which is further discussed below.

3.1 Test Borings

Nineteen (19) soil borings were performed for this project. Nine (9) of the borings were performed within the Ohio River (R-1 to R-8), six (6) were performed on land in Ohio (L-1 to L-3A), and the remaining four (4) on land in Kentucky (L-4 to L-7). See Exhibit A-2 in the Appendix for a boring location plan.

The boring locations were laid out on-site by PhotoScience Geospatial Solutions. Based on a summary report (Exhibit A-12) provided by PhotoScience Geospatial Solutions, a two-person RTK (real time kinematics) GPS crew was mobilized to the site. The crew was equipped with dual-frequency Trimble 5700 Base, Trimble R8 Rover GPS units, and Trimble TRIMMARK 3 Radio, to establish horizontal and vertical control values for the boring locations. The crew used BSB/PSI's control monuments 11 and 12 as base known positions. Both RTK and traditional surveying techniques were used in locating the borings. Each of the river borings were located with a TOPCON GTS223 Total Station by making use of two control points set by RTK near the river's edge. The elevation of the top of the barge was recorded for each of the river borings. When allowable, boring locations on land were located by direct RTK occupation. If the boring location wasn't suitable for direct occupation, a pair of control points were established nearby and then located with the total station.

The borings were drilled with truck and ATV-mounted rotary drill rigs using continuous flight hollowstem augers to advance the boreholes. The drill rig was placed on a barge to drill the borings located within the Ohio River. The barge was anchored at the boring locations using spuds located at the barge corners. Barge coordination and permitting was performed by HCN. Samples of the soil encountered in the borings were obtained using the split-barrel sampling procedures. Relatively undisturbed samples were obtained by pushing Shelby Tubes into primarily cohesive soils.

Geotechnical Engineering Report

Brent Spence Bridge Replacement - Cincinnati, Ohio-Covington, Kentucky March 11, 2011 - HCN/Terracon Project No. N1105070

In the split barrel sampling procedure, the number of blows required to advance a standard 2 inch O.D. split barrel sampler the last 12 inches of the typical total 18 inch penetration by means of a rope and cathead manual safety hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). For this project, a calibrated automatic SPT hammer was used to advance the split-barrel sampler in the borings performed on this site. A greater efficiency is typically achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This SPT N-value is used to estimate the in-situ relative density of cohesionless soils and consistency of cohesive soils.

Published correlations between the SPT values and soil properties are based on the lower efficiency cathead and rope method. This higher efficiency affects the standard penetration resistance blow count (N) value by generally increasing the penetration per hammer blow over what would be obtained by using the cathead and rope method. The effect of the automatic hammer's efficiency has been considered for the test boring performed. N₆₀ values have been provided on the boring logs.

Rock coring was performed using wireline NQ and HQ size, double-tube core barrels per ASTM D2113. Water was added during coring to cool the bit and clear the cuttings. The rock coring was performed to explore the characteristics and quality of the bedrock. Recovery (REC) and rock quality designation (RQD) values were measured in the field and confirmed in the laboratory for each core run. Recovery is the length of core recovered as a percentage of the core run. RQD is the sum of pieces of solid core that are 4 inches or longer in length measured along the centerline of the core, divided by the length of the core run. Rock core fractures and breaks due to rock coring and retrieval methods were not included in the determination of RQD. Following the measurement of the recovery and RQD, the samples were placed in wooden boxes and wrapped with plastic and aluminum foil to help maintain the integrity and natural moisture content. Photographs were taken of the rock core in the laboratory and have been included in the Appendix following each boring log.

The soil samples were tagged for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. Information provided on the boring logs attached to this report includes soil descriptions, consistency evaluations, boring depths, sampling intervals, and groundwater conditions. The borings were backfilled with cement-bentonite grout prior to the drill crew leaving the site.

A field log of each boring was prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's review of obtained soil samples, driller's field logs, and include modifications based on laboratory tests of the samples.

All borings were backfilled after their completion and patched at surface (if located within the existing paved areas). Excess auger cuttings were disposed of on the site. The borings were

backfilled with a bentonite-cement grout. Details of the backfill materials are included on each boring log.

3.2 Geophysical Testing

Geophysical testing consisting of PS Suspension Logging was performed in three (3) of the test borings (L-1, L-4, R-2A) by GeoVision Geophysical Services. The borings were cored a minimum of an additional 15 feet and cased with 3-inch-diameter PVC pipe for the geophysical testing. Installation of the casing at R-2A encountered an obstruction along the sidewall at 139 feet, which was approximately 50 feet above the total boring depth. The casing was abandoned and grouted in place. The river location was grouted below the mudline and then broken off.

The purpose of the geophysical testing was to acquire compressional (P) wave velocities and shear wave (S_H) velocities as a function of depth. In geophysical testing, a dynamic or vibratory force applied to soil or rock results in wave propagation outward from the source in all directions through that soil and/or rock. In general, three wave types are generated in soil and rock (compressional, shear and Rayleigh waves). A P-wave is a dilational wave that displaces soil or rock particles parallel to the direction of the wavefront and has the highest velocity of the three wave types. An S_H -wave is a distortional wave that displaces soil or rock particles perpendicular to the direction of the wavefront and has a relatively lower wave velocity as compared to the P-wave. For the purposes of this study, the Rayleigh wave is not relevant.

Suspension soil velocity measurements were performed in all borings using the PS suspension logging system, manufactured by OYO Corporation. This system directly determines the average velocity of a 3.3-foot-high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the borehole walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling in the boring and surrounding the source. This pressure wave is converted to P- and S_H -waves in the surrounding soil and rock as it impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, causing pressure waves to be generated in the fluid surrounding the receivers as the soil waves pass their location.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded on disk before moving to the next depth.

Following data collection, the data was analyzed by GeoVision using the program PSLOG and the results were plotted in Excel. The results of the analysis and further details on the testing and analysis are included in the GeoVision report provided in the Appendix (Exhibit A-11).

3.3 Environmental Screening

All samples were screened for volatile organic vapors associated with petroleum products using the Ambient Temperature Headspace (ATH) method. Screening of soil samples was performed with a Foxboro Toxic Vapor Analyzer (TVA) 1000B flame ionization detector (FID). Vapors are measured as present in the soil sample jar head space, which may be a different concentration than the concentration measured in the soil. The FID yields readings of ionizable vapors in parts per million vapor by volume (ppm v/v) present in the soil relative to ambient air and the calibration gas (methane in air). The FID was factory calibrated to methane in air.

The ATH screening method consists of splitting a soil sample and placing it into new, clean jars with lids. One of the split soil samples from each sampling interval is vigorously shaken to aid in releasing organic compounds and allowed to stabilize. The lid of the sample jar is slightly opened, and the organic vapors in the headspace of the sample jar are then screened with the FID. In the event that FID readings above detection limits were observed, an activated charcoal filter tip fitted to the FID was used to screen the soil samples a second time to identify and quantify the presence of ionizable methane and ethane. Methane and ethane are naturally occurring soil gases typically resulting from the decay of organic matter within the soils. FID readings obtained with the charcoal filter tip represent readings of ionizable methane and/or ethane in ppm v/v. A summary of the screening results is provided in Exhibit A-10 in the Appendix.

In summary, elevated readings, particularly in the river borings, generally appeared to be attributable to the presence of methane and organics. However, elevated readings occurring in fill materials are likely partially attributable to something else. The significance of any of the elevated readings is not really determinable at this point since chemical analysis of the collected samples was not performed and is beyond our scope. Based on the overall field screening readings, visual observations, and general lack of odors, it appears unlikely that the samples at the test boring locations are significantly environmentally impacted. It should be noted however, that the presence of heavy metals cannot be determined unless further environmentally-specific exploration and analysis is performed.

3.4 Laboratory Testing

Selected samples were tested in the laboratory to evaluate the engineering properties of the soil and rock. Laboratory testing included:

Geotechnical Engineering Report

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

- Soil Samples
 - Natural Moisture Content (T265/D2216)
 - Atterberg (Liquid/Plastic) Limits (T89/T90/D4318)
 - Organic Content/Loss-on-Ignition (T267/D2974)
 - Sieve/Hydrometer Analysis (T88/D422)
 - Consolidation Testing (T216/D2435)
 - Triaxial Testing (T296/D2850)
- Bedrock Samples
 - Unconfined Compressive Strength (D7012 Method C)
 - Elastic Modulus (D7012 Method D)
 - Point Load Strength (D5731)
 - Slake Durability Index (D4644)

A factory-calibrated hand penetrometer was used to estimate the approximate unconfined compressive strength of cohesive soil samples. The calibrated hand penetrometer has been correlated with unconfined compression tests and provides a better estimate of soil consistency than visual examination alone. The elastic modulus testing was performed by the Earth Mechanics Institute and the Colorado School of Mines. The remaining soil and rock testing was performed by HCN.

Descriptive classifications of the soil and rock are indicated on the boring logs and are in accordance with ODOT Specifications for Geotechnical Explorations (SGE). Classification was performed by both visual examination and laboratory test results. The test results are provided on the boring logs and included in summary tables in Appendix B of this report.

3.5 Previous Geotechnical Studies

Two (2) previous geotechnical reports were performed by H.C. Nutting for the Brent Spence Bridge replacement project; the 2005 Red Flag Study and the 2007 Queensgate alignment study. No borings were performed for the Red Flag Study. Six (6) borings were performed as part of the 2007 study along the proposed Queensgate alignment located approximately 800 to 1200 feet west of the existing bridge. Borings for this study were performed in Kentucky, Ohio, and the Ohio River. The borings ranged in depth from 75 to 121 feet with a minimum of 45 feet or rock core performed at each location. Limited environmental screening was performed at the time of drilling. The boring location plan and boring logs from these boring have been included in Appendix A of this report.

In addition to the 2007 borings, HCN performed 12 borings for the existing Brent Spence Bridge in 1958. Two (2) borings were performed at each abutment in Ohio and Kentucky. Four (4) borings were performed at each pier location in the river. The borings ranged in depth from 79 to 116.5 feet. Rock coring was performed at each of the eight (8) borings located in the river. The boring logs and location plan have been included in Appendix A of this report.

4.0 FINDINGS

In general the test borings encountered primarily granular soils (both fill and natural) overlying limestone and shale bedrock. The proposed bridge project has been separated into four (4) segments for this report: 1) Ohio-Land, 2) Ohio-River, 3) Kentucky-River, and 4) Kentucky-Land. Due to the generally similar materials encountered in the river borings, the Ohio and Kentucky sides have combined in this section. Detailed borings logs and photographs of the rock core, as well as geotechnical summary sheets (Exhibits A-3 to A-6), are included in the Appendix. The following sections provide generalized descriptions for each area of the project.

4.1 Ohio- Land Borings (L-1, L-1A, L-2, L-2A, L-3, and L-3A)

Existing Fill

Vacuum extraction was performed in the upper 4 to 10 feet of each boring in this area to expose possible existing utility conflicts with the test borings. Below the vacuum excavation, existing fill was encountered in the test borings. The fill material consisted of silt, sandy silt, sand, sand and gravel, and rock fragments (A-4b, A-4a, A-3, A-3a, A-1-b, and A-1-a). Variable amounts of brick fragments, concrete, cinders, and occasional organics (topsoil, wood/fibrous material, and/or decayed matter) were observed in the fill materials. Boring L-2 also includes A-6(b) and A-7-6 fill soils. The thickness of fill ranged from approximately 5 feet in L-1 to 60 feet in L-2 near the bank of the Ohio River. It is our understanding that the existing fill in the Duke Energy property is known to be environmentally impacted and will be remediated in-place or excavated and replaced. The areal extent and depth of the removal is unknown at this time.

The consistency of the existing fill ranged from very soft to soft for the cohesive fill and very loose to loose for the granular fill. Blow counts (N-values) in the existing fill ranged from weight-of-hammer (WOH) to as high as 53 blows per foot (bpf). The average N-value was 11 bpf in the fill. N-values in the fill may not be representative of the actual density/stiffness due to obstructions and its non-uniform composition. Moisture contents of both predominantly cohesive and granular materials varied greatly in the fill, ranging from 9% to 65%.

Natural Overburden Soils

Cohesive soils were encountered in the upper portions of the overburden in this area. The cohesive soils consisted primarily of silt with occasional clay and silt layers. A large percentage of sand and gravel was also present in these soils. The cohesive overburden soils were generally medium stiff to stiff in consistency. Underlying the natural cohesive soils, the overburden soils consisted primarily of gravel and stone fragments with sand, sandy silt, silt, and fine sand (A-1-a, A-1-b, A-4a, A-4b, and A-3). These soils were deposited as alluvial soils by the Ohio River, and as glacial outwash in the deeper profile. The consistency of the overburden soils was generally loose to dense with occasional very loose or very dense zones. Typically, the overburden soils became increasingly dense with depth. Blow counts in the overburden soils varied from WOH to over 100 bpf, with an average N-value of 36. The higher

blow counts were encountered just above the bedrock surface or in zones with higher percentages of gravel and rock fragments. Cobbles, boulders, and large rock fragments are likely to be encountered erratically throughout the natural soils and in particular just above the bedrock surface.

Bedrock

Bedrock was encountered in this area at an average elevation of 371 feet. A summary of the depth to bedrock in the test borings is provided in the following table.

Test Boring	Surface Elevation (ft.)	tion Approximate Approximate River Depth Depth to Bedrock (ft.) (ft.) ⁽¹⁾		Approximate Bedrock Elevation (ft.) ⁽²⁾
L-1	493.5	-	127.0	366.5
L-1A	491.5	-	121.0	370.5
L-2	496.3	-	115.0	381.3
L-2A	494.5	-	128.5	366.0
L-3	458.7	15.0	88.2	370.5
L-3A	496.1	-	125.0	371.1

Table 3, Summary of Encountered Bedrock – Ohio Land

(1) The depth to rock indicated in this table is for estimation purposes. Actual depth to rock may vary, as determined by construction conditions and as approved by the engineer based on the encountered field conditions.

(2) Up to 15 feet of variation in the bedrock elevation was observed. We recommend additional test borings be performed during the project design and construction phases to better define the rock surface.

The bedrock consisted primarily of limestone and shale. Interbedded limestone and shale was also encountered primarily in the upper portions of the bedrock. The percentage of limestone in the interbedded zones ranged from approximately 70% to 80%. The percentage of limestone typically increased with depth which is consistent with the gradual transition from the Point Pleasant Formation, which has as much as 50% shale, to the Lexington Limestone Formation, which is primarily limestone. Fossiliferous and argillaceous limestone seams were noted in the bedrock. The thickness of shale seams/layers in the interbedded limestone and shale ranged from approximately 8 inches to less than ¼ inch. Limestone layers ranged from thin partings to 3 feet in thickness, with a typical thickness of approximately 3 to 6 inches.

Rock Quality Designation (RQD) values for the Ohio-Land borings averaged 46% with values generally increasing with depth (see Figure 1). The RQD values ranged from 0% to 100%. The Recovery (REC) values ranged from 40% to 100%, with an average of 97%. The measured RQD and recovery values are summarized in the figure below.

The overall average unconfined compressive strength (q_u) was 10,938 pounds per square inch (psi) for the Ohio-Land portion. Lower values were seen in samples with shale and argillaceous limestone seams while the higher values were measured in predominately limestone samples. Additionally, lower strength values were observed in the shale samples with generally high moisture contents (See Figure 3). Elastic modulus testing was also performed on select limestone samples. An average elastic modulus of 8,608 kips per square inch (ksi) was observed in this testing (see Exhibit B-6). See Figure 2 below for a summary of the unconfined strengths versus elevation.

Figure 2, Bedrock Unconfined Strength Summary – Ohio Land

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

Figure 3, Unconfined Compressive Strength vs. Moisture Content – Ohio Land

Slake durability testing was performed on shale samples to evaluate potential deterioration in the presence of water. Values less than 60% are generally considered susceptible to degradation. The average value was about 77% for this portion of the project. One sample, located at an elevation of 347.2 feet in boring L-2A, had a value less than 60%. The slake durability tests are summarized in Figure 4.

Figure 4, Bedrock Slake Durability Index Summary – Ohio Land

4.2 River Borings (R-1, R-2, R-2A, R-3, R-4, R-5, R-6, R-7, R-8)

Natural Overburden Soils

The borings located within the Ohio River near both the Ohio side (R-1, R-2, R-2A, R-3, and R-4) and Kentucky side (R-5, R-6, R-7, and R-8) encountered predominately granular soils overlying the shale and limestone bedrock. On the Kentucky side, approximately 12 to 30 feet of predominately cohesive soils were encountered above the granular soils. The total thickness of overburden soils ranged from about 51 to 84 feet.

The granular soils encountered in the river borings consisted primarily of sand and gravel (A-1and A-1-b) as well as occasional fine sand (A-3). These granular soils were mostly medium dense in the upper zones grading with depth, to dense and very dense. The cohesive soils encountered in the upper portions of the Kentucky borings consisted of a mixture of silt and clay soils (A-4, A-6, and A-7-6). The consistency of these soils ranged from soft to medium stiff.

Blow counts in the overburden soils ranged from WOH to over 100 bpf. The higher blow counts were encountered just above the bedrock surface or in zones with higher percentages of gravel, cobbles, and rock fragments. Cobbles, boulders, and large rock fragments are likely to be encountered erratically throughout the soil profile particularly just above the bedrock surface. The average blow count was 24 bpf in the river borings. Natural moisture contents in the overburden soils ranged from about 6% to 49%.

Bedrock

Bedrock was encountered on average at elevation 372 feet in the river. This corresponds to a depth of about 84 feet below the normal pool level (456.36 feet) of the Ohio River. The bedrock consisted of primarily limestone, with interbedded limestone and shale being encountered in the upper portions of the borings. A summary of the encountered depth to bedrock is provided in the following table.

Test Boring	Surface Elevation (ft.)Approximate River Depth (ft.)Approximate Depth to Bedrock (ft.)		Approximate Bedrock Elevation (ft.)	
R-1	458.0	32.0	87.0	371.0
R-2	458.1	458.1 29.0 87.0		371.1
R-2A	457.6	29.0	88.0	369.6
R-3	458.0	28.0	86.5	371.5
R-4	458.0 30.5		86.5	371.5
R-5	458.6	16.0	85.0	373.6
R-6	457.0	-	84.0	373.0
R-7	458.5	21.0	82.5	376.0
R-8	455.7	-	80.0	375.7

 Table 4, Summary of Encountered Bedrock – Ohio River

(1) The depth to rock indicated in this table is for estimation purposes. Actual depth to rock may vary, as determined by construction conditions and as approved by the engineer based on the encountered field conditions.

Fossiliferous and argillaceous seams were noted in the bedrock. The percentage of limestone in the interbedded layers ranged from approximately 70% to 80%. The percentage of limestone typically increased with depth. Shale seams and layers within the interbedded limestone and shale typically ranged in thickness from thin partings to 6 inches. Limestone layers ranged from thin partings to 3 feet or more in thickness, with a typical thickness of approximately 4 to 8 inches.

Rock Quality Designation values for the Ohio River borings averaged about 76% on the Ohio side of the river and 77% on the Kentucky side of the river. In both areas the RQD generally increased with depth. The RQD values in the river ranged from 0% to 100% while the rock core recovery values ranged from about 50% to 100%, with an average of about 97%. The figure below summarizes the RQD and Rock Core Recovery of samples obtained within the Ohio River.

Unconfined compressive strength (q_u) testing resulted in an overall average strength of 11,268 psi on the Ohio side of the river and 11,044 psi on the Kentucky side. Higher strengths were seen in the samples that were primarily limestone while the lower strengths were seen in primarily shale samples. Also, lower strengths were correlated with shale samples with a higher natural moisture content (see Figure 7). Elastic modulus testing was also performed on select limestone samples. Elastic modulus testing yielded an average elastic modulus of 7,787 and 7,794 ksi for the Ohio and Kentucky sides, respectively (see Exhibit B-6). A summary of the unconfined compressive strength on tested rock core samples is shown in the figure below.

Geotechnical Engineering Report

Brent Spence Bridge Replacement - Cincinnati, Ohio-Covington, Kentucky March 11, 2011 - HCN/Terracon Project No. N1105070

Figure 6, Bedrock Unconfined Strength Summary – Ohio River

Figure 7, Unconfined Compressive Strength vs. Moisture Content – Ohio River

Slake durability testing was performed on shale samples to evaluate potential deterioration in the presence of water. Values less than 60% are generally considered susceptible to degradation. The average value was 76% for this portion of the project. A total of four (4) shale samples located in borings L-5 and L-6 had a value less than 60%. These values ranged from 36% to 59% and all were in samples above elevation 360 ft., which was within about 10 feet of the bedrock surface.

Figure 8, Slake Durability Index Summary – Ohio River

4.3 Kentucky- Land Borings (L-4, L-5, L-6, L-7)

Existing Fill

Vacuum extraction was performed at L-5, L-6, and L-7 to expose possible underground utility conflicts; vacuum extraction was not performed at L-4 located between the levee and the riverfront. Fill material was encountered to depths of about 10 to 25 feet below existing grade. Fill was not encountered in boring L-6; however, it is likely some fill is present within the depth that was vacuum excavated. The fill consisted of silt, sandy silt, and silt and clay (A-4a, A-4b, A-6a, and A-6b) as well as sand, sand and gravel, and rock fragments (A-1-b). Evidence of fill included slag, wood, organics (topsoil, wood/fibrous material, and/or decayed matter), and concrete fragments.

The consistency of the existing fill was generally very loose to loose in the granular fill and medium stiff to stiff in the cohesive fill. Blow counts ranged from 1 to 18 bpf, with an average of 9 bpf. Natural moisture contents in both the granular and cohesive portions of the fill ranged from 17% to 38%.

Natural Overburden Soils

Overlying the thick granular layers at borings L-5, L-6, and L-7, the natural overburden was typically stiff silty clay (A-6a) and medium dense to dense silt or sandy silt (A-4a and A-4b). These layers were approximately 20 feet thick at borings L-5 and L-7, but were about 72.5 feet thick at boring L-6 where no fill was encountered. At boring L-4, located between the levee and the riverfront, the zone consisted of about 20 feet of soft gray clay (A-7-6).

Geotechnical Engineering Report

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

Underlying these soils was mostly sand (A-3) underlain by varying amounts of gravel and gravel with sand (A-1-a and A-1-b). These layers were medium dense in the top layers grading with depth to dense and very dense. Cobbles, boulders, and large rock fragments are likely to be encountered erratically throughout the soil profile particularly just above the bedrock surface. Blow counts in the natural overburden soils ranged from 3 to over 100 bpf. The average value was 46.

Bedrock

Bedrock was encountered on average at about elevation 372 feet in this area. The bedrock consisted of primarily limestone as well as interbedded limestone and shale in the upper portions of the bedrock. Occasional fossiliferous and argillaceous seams were present in the limestone. The percentage of limestone in the interbedded layers ranged from approximately 70% to 80%. The percentage of limestone typically increased with depth. The thickness of shale seams/layers in the interbedded limestone and shale ranged from approximately 8 inches to less than ¼ inch. Limestone layers ranged from thin partings to 3 feet in thickness with a typical thickness of approximately 3 to 6 inches. A summary of the depth to bedrock is provided in the following table.

Test Boring	ng Surface Elevation (ft.) Approximate Depth to Bedrock (ft.) ⁽¹⁾	Approximate Bedrock Elevation (ft.)	
L-4	480.0	104.0	376.0
L-5	486.3	107.0	379.3
L-6	485.7	108.5	377.2
L-7	484.4	100.0	384.4
(4) The share the	the manufactural sector of the shale	table is for a dimensions .	

Table 5, Summary of Encountered Bedrock – Kentucky Land

(1) The depth to rock indicated in this table is for estimation purposes. Actual depth to rock may vary, as determined by construction conditions and as approved by the engineer based on the encountered field conditions.

Rock Quality Designation values for the Kentucky-Land borings averaged about 53% and ranged from about 0% to 92%. Rock core recovery values ranged from about 17% to 100%, with an average of about 53%. The figure below summarizes the RQD and Rock Core Recovery for samples obtained in the land borings in Kentucky.

Geotechnical Engineering Report

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

Figure 9, Bedrock RQD/REC Summary – Kentucky Land

The overall average unconfined compressive strength (q_u) was 11,989 psi for the Kentucky portion of the project. Figure 6 shows a summary of the unconfined compressive strength test results. Compressive strengths were generally greater in shale samples with lower moisture contents (figure 11) and those samples consisting primarily of limestone. In addition to the strength testing, elastic modulus testing was performed on select limestone samples. The average elastic modulus in this area was 9,104 ksi (see Exhibit B-6).

Figure 10, Bedrock Unconfined Strength Summary – Kentucky Land

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

Figure 11, Unconfined Compressive Strength vs. Moisture Content- Kentucky Land

Slake durability testing was performed on several samples in the Kentucky-Land portion of the project. Values less than 60% are generally considered susceptible to degradation. The average value for this area was 63.3%. Five (5) of the eight (8) samples in this area have slake durability indexes of less than 60%.

Figure 12, Slake Durability Index Summary– Kentucky Land

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

4.4 Groundwater

Groundwater observations were made during drilling. Water level readings are not considered reliable since water was introduced to the borehole during rock coring operations and in granular soils to prevent heave into the augers. Long-term (24-hour) water level observations were not made since the test borings were backfilled immediately upon completion for safety reasons. The groundwater levels measured during drilling may not accurately represent the prevailing groundwater levels at the test boring locations. The groundwater in the boreholes requires sufficient time to stabilize and reach the static groundwater level. To obtain long-term groundwater measurements, it is necessary to install water level observation wells or piezometers.

Perched water may be encountered at higher elevations within the existing fill and at the fill/natural interface. The long-term groundwater levels are influenced by amount of precipitation, degree of surface runoff, and primarily the water level in the Ohio River.

The Ohio River, forming the border between Ohio and Kentucky, is about 1,300 feet wide at the existing Brent Spence Bridge location. The normal pool elevation of the Ohio River in the area of the bridge is about 456 feet. On the Kentucky side of the Ohio River, the nearest tributary is the Licking River, which is located about 1 mile to the east of the existing I-71/I-75 roadway. In Ohio, the nearest tributary is the Mill Creek, which is located about ½ to ¾ of a mile to the west of the existing roadway. The USGS map indicates several smaller water features, including lakes, ponds, and manmade ponds/reservoirs.

Water drainage in the corridor study area is generally achieved by diverting water towards the Ohio River and/or adjacent connecting streams. Due to the relatively large watershed that the Ohio River covers upstream to the north and east, periodic flooding is generally common in low-lying areas along the Ohio River in the Cincinnati/Covington area. The following flood information was obtained from the Louisville District U.S. Army Corp of Engineers for the project location:

- Normal pool Elevation 456.36 feet
- Ordinary High Water Mark Elevation 468.5 feet
- 100 Year Flood Elevation 497.10 feet
- 500 Year Flood Elevation 512 feet

The river level ranged in elevation from a low of 455.1 feet to a high of 465.9 feet during drilling (5/17/2010 to 9/4/2010). At the time the borings located in the river were drilled (6/29/2010 to 9/4/2010), the river elevation ranged between about 455 and 456 feet.

Brent Spence Bridge Replacement - Cincinnati, Ohio-Covington, Kentucky March 11, 2011 - HCN/Terracon Project No. N1105070

4.5 Shear Wave Velocity Profiles

The results of the PS Suspension Logging at test borings (L-1, L-4, and R-2A) were evaluated for the AASHTO seismic Site Class in accordance with AASHTO LRFD 2010 Section 3.10.3.1. The shear wave velocity results for each boring are included in Appendix A as Exhibit A-11. The interval shear wave velocity values were used to calculate the average shear wave velocity of the upper 100 feet. The approach described in Method A of Table C3.10.3.1-1 was used to obtain the following results:

Location	V _s (feet/second)	Site Class
L-1	754	D
L-4	940	D
R-2A	2565	B (C ¹)

Note: 1. Defaults to C since rock is more than 10 feet below bottom of pile cap.

4.6 Previous Geotechnical Studies

Soil borings were performed by H.C. Nutting for both the existing Brent Spence Bridge (1958 study) and the Queensgate alignment (2007 study). The results of these test boring programs were generally consistent with the borings performed for this study. The major differences are the lack of overburden soils in the river and the depth to bedrock is shallower by approximately 50 feet along the Queensgate alignment.

The overburden soils encountered in the 1958 borings consisted of existing fill overlying primarily granular soils. The existing fill consisted of sandy clay, silty clay, sand, gravel, and cinders. Various amounts of brick fragments and organic material were also encountered throughout the fill. Underlying the fill the natural soils were primarily granular consisting of sand and gravel. Silty and sandy clay was also encountered, mostly in the upper 10 to 20 feet of the natural overburden soils. Bedrock was encountered in these borings at elevations ranging from 371 to 375.2 at the river pier locations, 379 to 381 feet at the Ohio abutment, and 382 to 387 feet at the Kentucky abutment. The bedrock encountered consisted of interbedded limestone and shale.

Six (6) borings were performed in 2007 to investigate the subsurface conditions for the proposed Queensgate alignment located approximately 800 to 1200 feet west of the existing bridge. The overburden soils encountered in the land borings were generally consistent with the borings performed for this study. Existing fill consisting of both cohesive and granular soils as well as cinders, brick fragments, and organics was encountered in the borings located on land in Ohio and Kentucky. The natural soils underlying the fill were primarily cohesive in the Kentucky borings and granular in Ohio. The major difference between the 2007 borings and the borings performed in 1958 and 2010 is the lack of overburden soils in the river and the shallower depth

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

to bedrock. At the two (2) borings performed in the river along the Queensgate alignment only 0.5 feet of overburden soils (sand and gravel) were encountered overlying the bedrock. The bedrock at this location was approximately 50 feet higher than at the existing bridge location. This difference in bedrock elevations is consistent with the geology of the area with the existing bridge located within the ancient Deep Stage Licking River.

5.0 ANALYSIS AND RECOMMENDATIONS

The following text provides foundation recommendations for the proposed Brent Spence Bridge project. Details regarding construction considerations and field testing of the foundations are also provided. The provided foundation recommendations and construction considerations are each critical to bridge foundation design and should not be viewed independently. Grading and earthwork plans, along with roadway and embankment alignments have not been finalized at this time. Therefore, details beyond the proposed bridge foundations are not discussed in this report.

Based on review of various foundation types, construction practices, and major river crossing projects, it is our opinion that drilled shafts are an effective and cost-practical foundation for bridge support at both the interior (river) pier and abutment (land) locations. In consideration of the structure type, loads and constructability, it appears that drilled shafts are the preferred foundation choice for this project.

Driven pile types have been considered as a feasible foundation alternative. Both H-piles and CIP piles have been evaluated for the bridge abutments and approach spans. H-piles driven to bedrock have been considered for the river foundations and additional discussion is provided in section 5.3.

The following sections further develop these foundation recommendations. Following the foundation recommendations, detailed discussions regarding quality control during construction and field testing are provided. A well-conceived field testing program and strict quality control during construction are considered part of the foundation design process and are essential to the long-term performance of the foundation system.

5.1 Foundation Discussion

Tower foundations like those expected for the proposed bridge require large compressive, uplift, lateral, and overturning moment capacities. A general subsurface profile of the bridge alignment consists of overburden soils, primarily granular, overlying unweathered shale and limestone bedrock. Based on the limited number of borings, the bedrock surface on the Ohio land side varied by up to 15 feet. Bedrock elevation variation within the Ohio River was typically less than 3 feet. On the Kentucky land side, bedrock elevation varied nearly 10 feet between the test boring locations. We recommend additional test borings be performed during the

project design and construction phases to better define the bedrock surface. The general profile at the project site is considered suitable for consideration of both driven pile and drilled shaft foundation types.

Driven piles could consist of steel pipe piles (CIP) or H-piles. Steel piles can provide highstrength, they are easy to handle, and are capable of carrying large loads to deep loading bearing strata. For depths greater than about 60 feet, splicing of the piles is usually required to achieve the design length. Driven steel piles do not produce excavation spoils requiring disposal. A common problem with driven steel piles is deviation from vertical (lack of plumbness) and loss of load capacity when driving through soils with cobbles, rock fragments, or into an uneven bedrock surface. In addition, battered piles may be required to provide the lateral capacities required for the tower foundations. Driven steel piles could be considered for the bridge particularly on the portions over land. Preliminary design recommendations have been provided for driven piles at the abutment locations on land. If driven piles are deemed viable, further analysis could be performed and detailed recommendations developed.

Drilled shafts consist of cast-in-place, reinforced concrete piers socketed into the bedrock. Drilled shafts are a common type of construction in the area and are familiar to contractors. Drilled shafts allow for a reduction in the pile cap size and the overall number of foundation elements compared to driven piles. The construction of drilled shafts would require steel permanent casing, possible use of slurry, as well as the disposal of the excavated spoils. Drilled shafts are the recommended option for the proposed bridge foundations in the river and can also be used for the land foundations.

5.2 Drilled Shafts

The bridge structure can be supported on a cast-in-place drilled shaft foundation that is sufficiently embedded into shale and limestone bedrock. Drilled shaft performance is strongly related to the effectiveness of the construction technique in preserving the integrity of the bearing materials and ensuring the structural integrity of the reinforced concrete shaft element. The typical construction sequence is anticipated to consist of the following components:

- Install a temporary casing through water and upper overburden soils,
- Using polymer slurry, drill through the overburden soils,
- Place permanent casing into the upper shale bedrock,
- Excavate the bedrock socket under polymer fluid to the design tip elevation,
- Roughen the sidewall bedrock surface to remove any slick or decomposed material,
- Thoroughly clean out the shaft base,
- Place steel reinforcement and concrete

The following sections discuss design recommendations along with certain aspects of the construction sequence for drilled shafts, as they relate to design.

Geotechnical Engineering Report

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011
HCN/Terracon Project No. N1105070

5.2.1 Design Parameters

Given the subsurface conditions and the provided preliminary concept design, drilled shafts are recommended for the bridge foundations. Design parameters for both axial end bearing and side resistance for rock socketed drilled shafts are provided. Shafts will also need to be evaluated for lateral resistance which may control rock socket embedment depths. Strain compatibility when using side and end bearing would need to be evaluated as well as group settlement, as part of final design when the drill shaft geometry and layout are finalized.

5.2.1.1 Axial Loading

The drilled shaft design parameters for axial loading were developed based on the test borings, detailed review of rock cores, laboratory testing, and review of published literature. Design of the drilled shafts can include both base resistance and side resistance in the bedrock. An estimate of the total scour should be performed to determine what side resistance is available from the overburden soils. The load-displacement relationship (strain compatibility) between base and side resistance should be considered in the design since the maximum side resistance typically occurs at a lower displacement than the maximum base resistance.

Reasons cited in published literature for neglecting side resistance of rock sockets include; (1) possibility of strain-softening behavior of the sidewall interface (2) possibility of degradation of material in the borehole wall in argillaceous rock, (3) uncertainty regarding the roughness of the sidewall. Site specific laboratory testing has not been performed to determine load-deformation behavior on the rock/concrete interface. Based on published literature on similar bedrock material as those encountered for this project, strain softening is not commonly observed and therefore strain compatibility should not be a factor in combining side resistance and base resistance. This tendency is likely related to the dilatency of the shaft/rock interface. Field load testing along with careful quality control during construction to confirm sidewall conditions should be performed to confirm and justify our assumption that side resistance can be used in combination with base resistance. Laboratory testing can also be performed in addition to field testing if strain softening is a concern.

Based on the subsurface data collected during field exploration, drilled shafts would be socketed within the Point Pleasant formation or the much deeper Lexington Limestone formation. A detailed discussion of the bedrock geology, bedrock characteristics and strength properties has been presented before. The Point Pleasant formation consists of interbedded limestone and shale. The amount of limestone increases with depth in this formation. The unconfined compressive strengths obtained from intact rock core samples yielded average values of 8,000 to 10,000 psi. However, significant variability was observed with the standard deviation being about 3200 psi. The rock core in the upper 30 ft. exhibited RQD values being less than 50% in many locations. The shale samples were brittle and at many locations could not be tested as they were easily broken and a sufficient length of sample was not available for testing. Considering the low RQD values, rock core recovery, careful review of the rock core, presence of thin soft zones of shale (which could not be tested) and the variability across the site, the unconfined compressive strength $(q_u design)$ suggested for use in design has been

selected to be lower than average tested values. The selected $q_u design}$ value also considers the disturbance and constructability considerations which has a significant impact on design performance of drilled shafts.

The Lexington Limestone is more competent than the Point Pleasant formation. However, this typically occurs 50 to 60 feet below the top of encountered bedrock. Review of the rock core and laboratory testing data indicates that higher base and side resistance is likely available within this formation. However, considering the depth of rock socket needed to bear within the formation, we do not think it will be cost effective to design shafts bearing within this formation.

Using AASHTO LRFD design procedures, the ultimate capacities of the drilled shafts were determined based on unconfined compressive strength of the intact rock and the rock mass rating (RMR). The elastic modulus used in design has been reduced to two-thirds of the average measured value to account for the shale in the rock mass. Most of the elastic modulus tests were performed on limestone specimens. The bridge project was broken into four areas (Ohio-Land, Ohio-River, Kentucky-River, and Kentucky-Land) and recommended values are given for each area. A summary of the recommended values is provided in the following table. Calculations for these values are provided in Exhibit C-2 in the appendix.

rabio o, Brinoa Ghart Boolgin input Valuoo							
Location	Avg. RQD (%) (upper 30 ft.)	Avg. Unconfined Compressive Strength Used In Design (q _u , psi)	Design Elastic Modulus (E _I , ksi) (upper 30 ft.)				
Ohio-Land	38%	4,000	6,043				
Ohio-River	67%	4,800	5,311				
Kentucky-River	59%	4,800	4,757				
Kentucky-Land	49%	4,000	6,073				

Table 6, Drilled Shaft Design Input Values

Table 7, Drilled Shaft Design Parameters

Location	Rock Mass Rating (RMR)		Rock Mass	Nominal SI (q	Nominal Base		
Location			(E _M , ksi)	Rock	<	Concrete	Resistance* (q _P , ksf)
Ohio-Land	42	III (Fair Rock)	1,220	14.3		22.7	350
Ohio-River	57	III (Fair Rock)	1,627	17.7		22.7	350
Kentucky-River	57	III (Fair Rock)	1,627	17.9		22.7	350
Kentucky-Land	42	III (Fair Rock)	1,220	14.3		22.7	350

*Values reported are limiting values (see discussion)

The nominal base resistance is computed using the empirical relationship (FHWA-NH1-10-016):

$$q_{bN} = N^*_{CR} \cdot q_u$$

 N^{*}_{CR} = empirical bearing capacity factor for rock

 $q_u =$ unconfined compressive strength of rock

 q_{bN} = nominal base resistance

Based on various research studies, N^*_{CR} =2.5 is recommended for design when the following conditions are met:

- The shaft is bearing on rock that is either massive or tightly jointed
- No solution cavities or voids exist beneath the base
- A clean base can be achieved and verified using conventional clean-out equipment

The empirical factor N^*cR can vary and be as low as 0.4 if there are joints and discontinuities in the rock mass. O-cell testing data (1995) of the Maysville New US 62/68 Ohio River Bridge on the Point Pleasant Formation bedrock indicated that ultimate end bearing was 160 tsf at 1.0 inch of base movement. A description of O-cell testing is provided in section 5.2.5.2. Displacements required to mobilize the base resistance are related to shaft diameter. The design guidelines for geotechnical strength are based on limiting the displacement at nominal resistance to 2.5% of diameter, considering that larger diameter shafts will be used. We have limited the nominal base resistance to 350 ksf to satisfy the above discussed criterion. Also, for loads greater than 350 ksf, large creep movements are likely. The limiting of base resistance and end bearing and limiting the overall foundation movement to less than 1.0 inch. The bridge structure may be able to tolerate settlements greater than 1.0 inch and the tolerable settlement (total and differential) will need to be determined jointly by the geotechnical and structural engineer. Project specific load testing will be performed to help determine load displacement data and modify design values, as needed.

Additional axial design considerations include:

- Minimum rock socket the greater of 1.5B or 10 feet.
- Per AASHTO section 10.8.3.5.6 and table 10.5.5.2.4-1, resistance factors for axial compression and uplift (socket resistance), considering static load testing is performed, are 0.7 and 0.6, respectively. If applied to a single shaft supporting a bridge pier, then the resistance factors should be reduced by 20 percent (per AASHTO section 10.5.5.2.4).
- Overburden should not be considered to contribute axial capacity due to strain compatibility considerations.
- The base capacity may be limited by allowable shaft movement.

The drilled shafts are expected to be subjected to lateral loads and should be designed accordingly. The shaft lengths should be designed such that the lateral deflections are acceptable due to the anticipated lateral loads. Non-linear p-y analyses can be used to estimate the shear and moment along the length of the shaft. The following table provides recommended LPILE parameters to be used for static lateral analysis of the drilled shafts.

Soil Type	Moist Unit Weight of Soil -γ (pcf)	Buoyant Unit Weight -γ (pcf)	LPILE P- y Modulus – k (pci)	Internal Angle of Friction - φ(°)	Undrained Shear Strength – Su (psf)	Uniaxial Compressive Strength – q _u (psi)	Strain Parameter – ε ₅₀ or k_rm
Cohesive Existing Fill (stiff to very stiff) ¹	120	57.6	500		2,000		0.007
Granular Existing Fill (medium dense to dense) ²	120	57.6	50	32		-	-
Granular Natural Soil (loose to medium dense) ²	125 ²	62.6	80	33			
Granular Natural Soil (dense to very dense) ²	130 ²	67.6	100	36			
Cohesive Natural Soils (medium stiff to stiff) ¹	125	62.6	300		750		0.01
Cohesive Natural Soils (very stiff) ¹	125	62.6	750		3,000		0.006
Limestone Bedrock ³	165	102.6				10,000	0.0005

Table 8, Recommended Soil Parameters for Single Lateral Pier (LPILE) Static Analysis

¹ - Anticipated to be modeled as "stiff clay without free water

² - Anticipated to be modeled as "sand (Reese)"

³- Use a modulus of elasticity value of 8x10⁶ psi for limestone bedrock

The parameters provided in the above table are considered to be "initial" parameters under static loading. The basis of the lateral analyses is soil-structure interaction, and the behavior of the soil is non-linear depending on the loading conditions and the stiffness of the structural element. The reaction/resistance of the soil is dependent on the movement of the structure and hence the input soil properties are not fundamental properties of the soil. Therefore, lateral analysis is an iterative process based on an initial set of soil parameters that may need to be adjusted depending on the initial results and engineering judgment. HCN/Terracon requests the opportunity to review and comment, as necessary, on the lateral analysis results.

5.2.1.2 Group Effects – Axial Loading

Considering that all the drilled shafts will be socketed a sufficient distance in competent bedrock and because the strength of the bedrock is anticipated to be greater than the strength of the

Geotechnical Engineering Report

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

shaft/rock interface, group effects are generally not expected to control design. Superposition of stresses from adjacent drilled shafts may result in increased deformations of group of shafts relative to that of single shafts, however, settlement of drilled shafts founded on bedrock are anticipated to be small and group effects should be minimal. A more detailed analysis of shaft groups will be needed once the shaft diameter, spacing, loading and bedrock embedments have been finalized.

Drilled shafts which develop their capacity from a combination of side resistance and end bearing should be installed with a minimum center-to-center spacing of 2.5 times the shaft diameter. No reduction in individual axial shaft capacity is needed for this spacing. Adjacent shafts should not be constructed on the same day. If the drilled shafts are spaced closer than 2.5D, then further evaluation to determine group effects will be needed.

5.2.1.3 Group Effects – Lateral Loading

The lateral resistance in the scour zone (computed by the design team) should be neglected. When laterally loaded drilled shafts are used in closely spaced groups, a given shaft will deflect further under a given system of loads that if loaded when the neighboring shafts are not present, and bending stresses will be greater. It is therefore recommended to consider group effects due to loading when shaft spacing is less than about six diameters in any direction. A "p-multiplier" to accommodate the group effects can be considered. For group effects, then "Pm" factor provided in this table can be used.

	Design P-multiplier, P _M						
Pile Spacing (c-c)	3D	4D	5D	≥6D			
Lead row	0.7	0.85	1.0	1.0			
2 nd Row	0.5	0.65	0.85	1.0			
3 rd and Higher Rows	0.35	0.5	0.7	1.0			

Table 9, Recommended P-Multiplier, P_M, Values for Design by Row Position

FBPIER, a computer program capable of considering coupled effects of the drilled shafts and pier cap in addition to much more complex three-dimensional group configurations, three-dimensional loading conditions, and GROUP in 2-D and 3-D should be utilized for analyses of pier groups.

5.2.1.4 Uplift Design

The drilled shafts can be subject to uplift loads. The uplift nominal unit side resistance are the same for uplift and compression. However, a lower resistance factor is recommended for uplift than axial compression. The recommended resistance factors for uplift are typically 0.10 less than those for compression.
Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011
HCN/Terracon Project No. N1105070

5.2.1.5 Downdrag

The effects of downdrag should be evaluated as part of the final drilled shaft design. The relative settlement of the soil to the shaft as a function of time and depth must be known in order to determine the magnitude of downdrag. For preliminary considerations, downdrag is not expected to be a significant factor for the river foundations. However, once the grading and bridge foundation details, including installation procedures have been determined, evaluation of downdrag should be performed. The effects of the change in river levels under normal pool and flood conditions will also need to be considered during final design.

5.2.2 Scour Considerations

Bridge scour is the loss of soil by erosion due to flowing water around bridge supports. Scour analysis is being performed by the design team. We would anticipate that the majority of the overburden soils are susceptible to scour. Axial capacity within the overburden soils have been neglected to account for scour, strain compatibility, and other constructability considerations. Effects of scour that must be taken into account for drilled shaft design (FHWA-NHI-10-016) include (1) changes in subsurface stress, (2) reduced embedment and therefore changes in axial and lateral resistances, and (3) possible changes in the structural response and resulting foundation force effects. AASHTO Specifications also require evaluation of bridge foundations for two scour conditions (1) design flood scour condition for foundation strength and service limit state and (2) check flood scour condition for extreme limit state.

Scour should include the general scour and channel construction scour plus local scour immediately around the bridge piers. The effects of the existing Brent Spence Bridge piers relative to scour development should also be considered in the analysis.

The minimum rock sockets for drilled shafts should be designed below the maximum (predicted design) scour elevation in bedrock. Generally, we would anticipate that the limestone and shale bedrock is not erodible. A final determination of the erodibility of shale bedrock would need to be made after detailed scour analyses by the design team. In addition, the estimated scour depths should be considered in the lateral load analysis.

5.2.3 Drilled Shaft- Cofferdams

Construction of the drilled shafts located in the river can be performed in cofferdams. A cofferdam is a temporary structure designed to keep water and/or soil out of the excavation in which a bridge pier or other structure is built. Sheet piling is driven around the work site, seal concrete is placed into the bottom, and the water is pumped out. The concrete seal course is used to seal off the water, resist its pressure, and also can be used to act as a slab to brace against the inward movement of the sheet piles.

Several types of cofferdams could be considered for the proposed construction; braced, cellular, or double-walled sheet piles. The proposed cofferdam will experience several loading conditions. The designer should consider hydrostatic, soil, current, waves, and ice load as well

Brent Spence Bridge Replacement - Cincinnati, Ohio-Covington, Kentucky March 11, 2011 - HCN/Terracon Project No. N1105070

as construction loading. Accidental loading, such as due to a ship strike, and seismic loading may also need to be considered.

As an alternative to a traditional cofferdam the shafts could be installed from a temporary trestle. Then the footing forms would be assembled above the water level and lowered around the shafts to the required level. A tremie seal is then placed, the form dewatered, the shafts cut off at the desired level, and the footing placed. It is our understanding that this option was used successfully on the Audubon Bridge over the Mississippi River in Louisiana. This method can accommodate a wide fluctuation in river levels and may be less costly than cofferdams.

5.2.4 Drilled Shaft – Construction Considerations

5.2.4.1 General Discussion

Drilled shaft construction generally falls into three (3) categories based on the method of construction. These include the dry method, the casing method, and the wet method. Selection of the appropriate method is dependent on the subsurface conditions at a site and is typically the contractor's responsibility to select the appropriate method. Based on the drilled shaft construction extending into bedrock to achieve the desired capacities at locations within the river or in close proximity to the river, we do not anticipate dry construction methods will be feasible. Wet construction methods, including utilization of casing, in combination with drilling slurry, is anticipated at the river and land abutment locations. The following sections further develop feasible construction methods, provide criteria for drilled shaft construction, and address other relevant construction considerations.

Random miscellaneous fill, both manmade and river debris, are anticipated along the river banks. Such deposits may consist of, but not be limited to, abandoned utilities, boulders, foundations, tree trunks, wood, concrete slabs, etc. Dense sands and gravel were encountered in lower portions of the overburden soils. Cobbles and boulders may be encountered in the outwash deposits, which may cause difficulties during drilled shaft construction. Based on discussions with the project team, we understand that the existing fill on the Ohio landside within the existing West End Duke Energy Substation will be environmentally remediated. If the remediation effort includes removal and replacement of the existing fill soils, then the majority of obstructions are anticipated to be removed; however, in-place remediation efforts will not alleviate the presence of the possible obstructions and variable fill. At the time of this report, such environmental remediation evaluation and efforts have not been completed. The presence of the variable fill and associated environmental concerns at all locations should be further evaluated during the final study.

5.2.4.2 Drilled Shaft Installation

Construction of a drilled shaft requires boring a hole of a specified diameter and depth and then backfilling the hole with reinforced concrete. The selection of equipment and procedures for constructing drilled shafts is a function of the shaft dimensions, the subsoil conditions, and the

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

groundwater characteristics. Consequently, the design and performance of drilled shafts can be significantly influenced by the equipment and construction procedures used for construction and also by method of placement and properties of concrete. Construction procedures and methods are of paramount importance to the success of the drilled shaft installation at this project site.

Drilled shaft contractors who participate on this project should be required to demonstrate that they have suitable equipment for this project, and adequate experience in the construction of drilled shafts of the required size and depth, and with similar subsurface conditions. A detailed installation plan along with equipment and methods should be submitted by the contractor for review and approval by the design team.

The installation of the drilled shaft is critical to the successful performance of the shaft. Extending the drilled shaft to the proper depth and careful preparation of the borehole are critical during the drilled shaft construction process. Although construction techniques and methodologies may vary between contractors, the following criteria are considered minimal in the design and construction of the drilled shaft foundations. Project specifications must be developed that present all requirements for drilled shaft construction and address the specific requirements for the project.

- 1) It is recommended that the approximate top of rock and design bottom elevation be shown for each drilled shaft on the plans, with these elevations being determined using the test borings and lateral and axial load analyses. The "minimum lengths" should be based on lateral load requirements, while "estimated lengths" would reflect axial resistance requirements and will be verified by load tests. Minimum lengths should be based on lateral load requirements, while estimated lengths would reflect axial resistance requirements and will be verified by load tests. The final bearing elevation should be determined by inspection of each shaft hole in the field by qualified geotechnical personnel. We recommend additional test borings be performed during the design phase of the project to better define the rock surface due to variations encountered in the borings performed for this study.
- 2) The specifications should be clear that the design bottom of the drilled shaft elevations shown on the plans is for estimation purposes only. Actual determination of the top of rock and bottom elevation will be made from examination of materials brought to the surface on the drilling tools by the project geotechnical engineer. As an additional quality control measure, pre-coring at drilled shaft locations could be performed to assess bedrock quality and conditions.
- 3) The specifications should require that no concrete be placed until the dimensions, bottom elevation, bearing socket depth, and excavation for each shaft has been observed and is to the satisfaction of the geotechnical engineer. A Shaft Inspection Device (SID), mini-SID, or Downhole Camera System (DHC) could be employed for inspection of the drilled shafts prior to concrete placement. This will allow for visual

inspection of the bottom conditions. The mini-SID is a camera, lights, and feelers gauges housed in a steel bell. The bell is pressurized with dry nitrogen as it is lowered in the slurry to keep camera free of slurry. Once at the bottom, water jets are used to clear the lens to expose the shaft bottom for camera inspection.

- 4) Sonic caliper testing should be performed after the shaft base has been cleaned to determine and confirm as-built dimensions and compare them to the planned design dimensions. At a minimum, sonic caliper testing should be performed on technique and test shafts, and some selected production shafts.
- 5) Due to the random nature of the fill at the abutments, and the presence of outwash sand and groundwater, full length temporary steel casing should be used and be available onsite to prevent shaft collapse during drilling and concrete placement. The specifications should state that casings be required to stabilize loose or caving materials, or to seal off any water-bearing zones. A concrete core barrel or other suitable tool should also be available on site, if an obstruction within the fill or in the cobble/boulder zone immediately above the bedrock cannot be penetrated with the drilled shaft equipment.
- 6) The permanent casing should be strong enough to withstand handling stresses, withstand the pressures of concrete and of the surrounding earth and groundwater, and to prevent water seepage.
- 7) A permanent steel casing seated within the upper shale bedrock is recommended for the river drilled shafts. The permanent steel casings provide additional strength, abrasion protection, ductility, and confinement for the bending stresses in the drilled shafts and facilitate construction by providing a stable environment in which to construct rock sockets. If the permanent casing is used for structural support, consideration must be given to corrosion of the steel. Also, the full structural capacity cannot be assumed within a certain development length at the top and bottom of the casing. The casing will provide confinement, and may allow a reduction in the spiral or hoop reinforcement, particularly if large shear reinforcement is found to be necessary. They can also assist in avoiding any significant issues with bottom cleanout or entrapped debris.

If the permanent casing is used for structural support, consideration must be given to corrosion potential of the steel. The structural design should evaluate the effectiveness of the casing to resist bending moment as the full structural capacity cannot be assumed within a certain development length at the top and bottom of the casing. The casing will provide confinement and may allow a reduction in the shear reinforcement.

8) If water exists in amounts greater than three inches in depth or enters at a rate of more than twelve inches per hour then the shaft excavation should be filled with slurry. A positive head of slurry or concrete, relative to water trapped outside the casing, must always be maintained within the casing to reduce the risk of water and/or soil from

infiltrating into the shaft and contaminating the concrete. An improper head balance could potentially cause water and/or soil to flow into the shaft and compromise the concrete integrity.

- 9) It is recommended that the contractor have appropriate equipment on site to facilitate excavation through variable fill and cobble/boulder zones. The contractor should prepare attachments for the drill rig, such as but not limited to, a rock auger and/or core barrel, attachments to break up the hard loam with rock fragments, and a muck/cleanout bucket to clean the bottom of the shaft effectively. The drill rig should have adequate torque and downpressure to facilitate drilling or coring through the variable materials and very dense/hard zone.
- 10) Concrete placement should be continuous and the discharge end should allow the discharged concrete to flow freely in all directions. If concrete placement is interrupted, the water on top of the concrete and all surficial concrete that has become contaminated with water must be completely removed to fresh concrete prior to final concrete placement to complete the drilled shaft. Shaft excavations should not be left open for an extended period of time.
- 11) Crosshole Sonic Logging (CSL) testing should be performed on every production drilled shaft as well as the technique and test shafts. The use of CSL testing will confirm adequate structural integrity of the shafts. A minimum of six (6) inspection tubes measuring 2 inches in diameter should be installed to facilitate CSL testing; however, the actual number of inspection tubes is dependent on shaft diameter. More detail is provided in section 5.2.5.1.
- 12) Due to the urban nature of the surrounding site, and close proximity of the existing bridge and other structures, a preconstruction survey should be performed prior to construction. We recommend that vibration monitoring be performed along the existing bridge during casing installation using vibratory methods. Vibration monitoring should also be considered during construction near sensitive structures and/or underground features.

Due to the potential risk of variable groundwater conditions within the granular zones, full length permanent steel casing will be required to seal off water bearing and saturated granular zones during drilling. We recommend polymer slurry or other type of heavier slurry (bentonite is not recommended) be added to the drilled hole throughout the entire drilled shaft excavation to resist hydraulic head and prevent collapse of side walls.

The bridge test borings encountered wet primarily granular soils overlying the bedrock. For the river borings the use of permanent casing and/or drilling slurry will be necessary for prevention of caving-in of these wet and granular soils and to produce a seal along the soil-rock contact to

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011
HCN/Terracon Project No. N1105070

minimize infiltration of groundwater into the socket. In addition, permanent casing provides confinement and will increase the flexural stiffness and capacity.

5.2.4.3 Rock Socket Sidewall Disturbance

The drilled shafts will be socketed into the underlying bedrock and develop their capacity based on a combination of end bearing and side friction. The condition of the sidewalls of the shaft within the rock socket is critical to the capacity of the drilled shaft. Based on the test borings and recovered bedrock at the land and river boring locations, the predominant bedrock profile consists of shale and/or limestone. Therefore, careful consideration should be given to the construction technique and participation of an experienced contractor. It is recommended that artificial roughening of the rock sockets through use of grooving tools or other measures be used during final pass.

A roughened bedrock sidewall at the concrete-bedrock interface is preferred since increased side resistance develops as opposed to a smooth surface. Smearing of the shale/argillaceous zones in the presence of even minor amounts of water seepage can cause the surface of the rock to become softened. Softening of the sidewall or the creation of a smooth sidewall during drilling can reduce side friction by greater than 50 percent. This effect should be considered during assessment of the contractor's proposed drilled shaft construction method.

5.2.4.4 Additional Comments/Considerations

The slake durability test provides an index for rock that will weather and degrade rapidly by measurement of the physical breakdown of a rock sample after a series of wet/dry cycles with mechanical agitation by tumbling in a drum. Rock with slake durability index less than 60% are considered prone to rapid deterioration and formation of "smear zones" when the borehole well is exposed to water.

Slake durability testing was performed on portions of the shale bedrock. The SDI (slake durability index) ranged from about 40 to 98 percent – averaging about 73 percent. The effect of drilling fluid on maintaining the integrity of the shale during construction has been documented in several studies. These studies showed the use of polymer slurry during SDI testing showed a markedly improved value and is preferred for use during drilling of the rock socket. Additional slake durability testing using riverwater and potential slurry mixes should be performed during the final study or prior to construction to further evaluate the impact that the drilling fluid has on the shale.

5.2.5 Drilled Shaft – Quality Control

The performance of a drilled shaft is dependent on the structural strength, geotechnical strength, deformation properties of the soil and rock, pile-soil/rock interaction, and the applied loads. Quality control is critical to the success of the deep foundation system performance. Quality control of drilled shafts can be divided into three categories; diligent inspection, integrity

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011
HCN/Terracon Project No. N1105070

testing and load testing. We recommend both integrity and load testing be included in the specifications for the proposed bridge foundations.

5.2.5.1 Integrity Testing

Integrity Testing should be employed to assess the structural integrity of the drilled shafts. This testing evaluates the concrete quality, method of placement, construction method, and workmanship. Several methods can be employed including cross-hole sonic logging (CSL), crosshole tomography (CT), and gamma-gamma logging (GGL).

Crosshole sonic logging (CSL) is currently the most commonly used method for quality assurance of drilled shaft concrete. This method provides little indication of concrete soundness outside the cage. The method requires steel (preferred) or plastic tubes installed in the drilled shaft and tied to the rebar cage. One CSL tube should be placed for each foot of shaft diameter. After the shaft is drilled the cage is lowered into the hole and the concrete is placed. The tubes are filled with water as an intermediate medium. After curing for several days, a sound source and receiver are lowered, maintaining a consistent elevation between source and sensor. A signal generator generates a sonic pulse from the emitter which is recorded by the sensor. Relative energy, waveform and differential time are recorded, and logged. This procedure is repeated at regular intervals throughout the shaft and then mapped. The graphs from the various combinations of access tubes are compared and a qualitative idea of the soundness of the concrete throughout the shaft can be established.

Gamma-gamma logging (GGL) can also be performed for evaluation of the drilled shafts. Gammagamma logging uses the same principles as nuclear density testing commonly employed in construction. GGL is performed within PVC inspection tubes cast into the shaft during construction. The tubes can could also be used for CSL testing. The gamma-gamma probe, which consists of a radioactive source and gamma photon detector separated by a length of shielded material, is lowered and raised within the tubes. During the test, gamma particles are emitted into the concrete surrounding the PVC tube. Some of the gamma particles are scattered back to the detector in the instrument. GGL is performed continuously along the shaft length with gamma count rates collected at set intervals. Multiple inspection tubes, placed around the interior of the steel reinforcing cage, are provided within a pile to obtain a representative sample of the shaft. Typically, one inspection tube per 0.3 meter (1 foot) of shaft diameter is used.

Considering the high loads supported by the drilled shafts, it is recommended that 100% of the shafts be tested using crosshole sonic logging. Crosshole tomography should also be used to develop two and three-dimensional images of signal velocities and assist in quality assurance of drilled shaft concrete. Crosshole tomography testing should be performed when CSL testing indicates significant anomalies are present.

5.2.5.2 Load Testing

As a means to demonstrate the installation plan and to verify the adequacy of the construction methods, tools and quality control/assurance procedures, test shafts should be constructed

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

consistent with the planned procedures for production shafts. The test shafts can be used to provide site-specific measurement of axial performance under the as-built conditions.

Site-specific field loading tests offer the potential to improve accuracy of the predictions of performance and reliability of the constructed foundations. Load testing can provide information on base resistance, side resistance (total and as a function of depth), and load versus displacement relationships. Both axial and lateral resistance can be determined using the appropriate type of load tests. Because site-specific field loading tests reduces some of the variability associated with predicting performance, the use of large resistance factors are justified when loading tests are performed. Per AASHTO section 10.8.3.5.6 and table 10.5.5.2.4-1, resistance factors for axial compression and uplift (socket resistance), considering static load testing is performed, are 0.7 and 0.6, respectively. If applied to a single shaft supporting a bridge pier, then the resistance factors should be reduced by 20 percent (per AASHTO section 10.5.5.2.4). The AASTHTO guidelines in section 10.8.3.5.6 should be adhered to when developing the load testing program.

We recommend axial pier load testing be performed for the proposed bridge foundations. Lateral load testing should also be considered based on the design loads compared to the calculated lateral resistance and pier head movement under the design loads.

Axial pier load testing can be performed using static or dynamic methods. Static load testing generally involves the application of the load through the use of a reaction frame anchored by four or more piers. With the large loads expected for the proposed bridge foundations this method may be costly and difficult to perform, particularly for drilled shafts located in the river. Another method that has been successfully used for large diameter shafts and should be considered here is the Osterberg Cell (O-Cell). The Osterberg Cell consists of a sacrificial hydraulic jack(s) attached to the base of the reinforcing cage and placed in the drilled shaft. After the concrete has cured to a specified strength, the cell is pressurized and load is applied bi-directionally; upward against side friction and downwards against the base friction. Instrumentation including tell-tales and strain gages are used to measure deformation and movement of the shaft. The advantages of employing Osterberg testing versus traditional load testing is no reaction frame is required, higher applied loads can usually be applied, and the side and base resistance components are directly measured.

Considering the size of the project and subsurface variations, a minimum of four (4) load tests is recommended. One (1) test should be performed at each of the river piers and at least one (1) at the Ohio approach structures and at least one (1) at the Kentucky approach structures. The load test locations should be selected based on the loading conditions and evaluation of bedrock conditions. It is recommended that the technique shaft(s) be installed prior to the installation of the load test shafts to allow for an assessment, and if necessary, modifications of the contractor's proposed means and methods of drilled shaft construction before starting work on any of the load test shafts. Once load capacities are finalized and construction means/methods are established, a detailed load testing program can be developed.

Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

Where the design of the foundation is controlled by considerations of lateral loading and significant cost savings are possible with an aggressive design model it may be appropriate to consider lateral load tests to validate or improve the design models. As with the axial testing, both static and dynamic methods can be considered. Static methods typically involve using a hydraulic jack to push two adjacent shafts apart. Load cells and displacement gages are placed between the shafts to measure the applied load and lateral deflection of the shaft head. Dynamic lateral load testing can be performed using the Statnamic system applied horizontally to the shaft head. This method can apply loads 1,000 tons or greater and may be more appropriate for considering impact loading such as vessels or ice. Lateral load testing of single piers or group of piers can be performed.

5.3 Driven Piles

5.3.1 Driven Piles- Design

Driven H-piles to rock were considered for the pier locations in the river. The overburden profile is primarily granular in nature. During drilling some large size gravel and cobbles were also noted in the granular profile. There is an approximate average of a 6 to 10 foot thick cobble/boulder zone above bedrock along the entire bridge alignment. Based on our experience and preliminary driveability analyses, H-piles will not be able to be driven to bedrock. Significant pile damage (even with pile points) is likely. Refusal within the cobble layer is likely at variable depths. We do not recommend that H-piles tip in the cobble zone due to long-term creep/settlement concerns and the reliability of mobilizing end bearing within the highly variable cobble zone. Potential scour, lateral loads, buckling potential of piles in the scour zone, the large number of piles in the pile groups, and the size of the pile cap are some other factors that should also be considered.

Pipe piles filled with concrete (CIP piles) or H-piles could be considered only for support of the approach span piers located on land. We have performed a preliminary analysis to evaluate the load capacity and driveability of 14 and 16 inch diameter CIP piles and HP14x73 piles. The piles develop their capacity through a combination of skin friction and end bearing. Per the 2007 ODOT Bridge Design Manual, 14 inch diameter CIP piles (0.25 inch thickness) can be designed for a Nominal Bearing Value, R_{ndr} , of 390 kips while 16 inch diameter CIP piles (0.375 inch thickness) can be designed for 450 kips. HP14x73 piles can be designed for a Nominal Bearing Value of 440 kips.

Using the laboratory testing results and the test boring data, DRIVEN software was used to evaluate the pile capacities. A representative boring was chosen for both the Ohio (L-2A) and Kentucky (L-5) portion of the project for this preliminary analysis. Final driven pile design should consider borings at each approach pier location due to variations in the subsurface conditions. In addition, factors such as settlement/fill placement and pre-drilling through debris in the existing fill would need to be considered in the final design.

Brent Spence Bridge Replacement
Cincinnati, Ohio-Covington, Kentucky March 11, 2011
HCN/Terracon Project No. N1105070

Based on the DRIVEN analysis, we estimate that the maximum R_{ndr} value of 390 kips (14-inch pile), 450 kips (16-inch pile), and 440 kips (HP14x73) can be achieved on the Ohio and Kentucky land portions of the project at the following elevations. These values do not account for any predrilling, negative skin friction or potential scour effects. Negative skin friction will need to be considered if settlement of the soils may occur. In addition, if debris is encountered within the existing fill, then pre-drilling for the pile may be required. If pre-drilling is performed, then adjustments would be required to the design pile length. Final analyses should also consider remediation efforts within the Duke Energy facility on the Ohio land side. A resistance factor (ϕ_{dyn}) of 0.7 should be applied for piles installed per ODOT CMS Items 507 and 523. The minimum pile spacing should be 3 pile diameters such that a group efficiency of 1.0 can be used in axial design.

Location	Pile Dimensions/Type	R _{ndr} (kips) ¹	Estimated Pile Tip Elevation (feet)
Ohio Abutment (L-2A)	14 inch/CIP	390	401
Ohio Abutment (L-2A)	16 inch/CIP	450	407
Ohio Abutment (L-2A)	HP14x73	440	401
Kentucky Abutment (L-5)	14 inch/CIP	390	408
Kentucky Abutment (L-5)	16 inch/CIP	450	411
Kentucky Abutment (L-5)	HP14x73	440	405

 Table 10, Preliminary Driven Pile Recommendations

¹ Confirm by restriking piles

A driveability analysis of these piles was performed using GRLWEAP. The analysis shows that driving of both the 14 and 16 inch CIP piles and the HP14x73 piles is feasible to the recommended tip elevation. GRLWEAP software performs wave equation analysis to assess the ability of the proposed pile driving system to install the piles to the required capacity and desired depth within the allowable driving stresses prior to driving piles in the field. The preliminary analysis was performed using the ICE 40-S model hammer.

The pile driving contractor should provide data for the proposed pile driving system prior to commencement of production piles. WAVE Equation analyses should be utilized to assess the ability of the proposed pile driving system to install the piles to the required capacity and desired depth within the allowable driving stresses prior to driving piles in the field. Approval of the proposed driving system (by the engineer) should be required prior to any field load testing program.

The preliminary calculations and results performed using DRIVEN and GRLWEAP have been included in Appendix C of this report.

Brent Spence Bridge Replacement - Cincinnati, Ohio-Covington, Kentucky March 11, 2011 - HCN/Terracon Project No. N1105070

5.3.2 Construction Considerations

Driven piles for bridge support at the abutments should be installed to depths as required to mobilize design capacities. The capacity of each individual pile should be confirmed during driving using established criteria based on pile load testing. The use of dynamic formulas is a helpful guide but becomes increasingly limited in such soil profiles <u>and is not recommended</u> for use to establish the production pile driving criteria.

Prior to installing production piles, a load testing program should be undertaken. This program should involve both dynamic testing during test pile driving, and static pile load tests. Specifically, we recommend the following:

- Using data provided by the pile driving contractor, use the WAVE Equation analyses (such as GRLWEAP) to assess the ability of the proposed driving system to install piles as to the required capacity and desired penetration depth within the allowable driving stresses. Approval of the proposed driving system (by the Engineer) should be required prior to any field load testing program.
- 2. Dynamic pile testing is recommended on the piles on which static load tests are performed. The indicator (test) pile testing should be performed to monitor hammer and drive system performance, assess pile installation stresses and integrity, as well as to evaluate pile capacity. It is suggested that dynamic testing be performed during both initial and restrike driving. The testing during initial driving is primarily to monitor drive system performance and driving stresses. Dynamic testing during restrike is recommended since it yields a better indication of long-term pile capacity. The dynamic load test data should be analyzed using CAPWAP analyses to determine the actual pile capacity. The final production pile driving criteria and final driving system approval will be based on CAPWAP test results.
- 3. Static loading testing should also be performed per ODOT guidelines. The load testing program should be reviewed by the geotechnical engineer prior to implementing the load testing program to allow for modifications. It is recommended that at least two static pile load (compression) tests for each design capacity be performed on both the Ohio and Kentucky sides of the river. If significant uplift loads are present, the uplift load test(s) should also be performed. Lateral load test(s) may also be needed if large lateral loads are anticipated and based on computed load deflection response.
 - 4. It is recommended that the piles which are statically load tested be restruck with dynamic testing within 48 hours after completion of the static load test so that a correlation between static and dynamic test results can be obtained for reference across the site. The restrike driving sequence should be performed with a warmed up hammer and shall consist of striking the piles for 50 blows or until the pile

penetrates an additional 3 inches, whichever occurs first. Also, CAPWAP analyses of the dynamic pile testing data should be performed on the data obtained from the end of the initial driving and the beginning of restrike of indicator piles. CAPWAP is an analytical method that combines field measured data with wave equation type procedures to predict the pile's static bearing capacity and resistance distribution.

5. Perform dynamic load testing on the first two production piles and about 5 percent of all piles during installation. The production pile driving criteria may continually need to be modified based on the results of these dynamic tests.

The bridge foundation piles should be spaced at least a distance of 3 times the pile width/diameter dimension. This spacing is to eliminate group effects for axially loaded piles. For laterally loaded vertical piles, detailed analyses (such as LPILE and/or GROUP) will be needed to assess pile spacing effects. Additional details regarding spacing are discussed in the drilled shaft section of this report.

The program GROUP was developed to compute the distribution of loads (vertical, lateral, and bending moment) from the pile cap to piles in a symmetrical group. The program also computes deflection, translation, and settlement of the cap. The program generates internally the nonlinear response of the soil, in the form of t-z curves for axial loading and p-y curves for lateral loading. The equations of equilibrium are satisfied, and compatibility is achieved between pile movement and soil response, and between the movement of the cap and pile head movement. Once the pile configurations, pile head fixity, and lateral loads are known, detailed lateral load analyses for pile groups can be performed.

Settlement of pile groups will need to be evaluated once the pile group geometry and loading has been finalized. Downdrag should also be included (if applicable).

Due to the urban nature of the surrounding site, and close proximity of the existing bridge and other structures, a preconstruction survey should be performed prior to construction. We recommend that vibration monitoring be performed along the existing bridge during pile driving. Vibration monitoring should also be considered during construction near sensitive structures and/or underground features.

5.4 Seismic Considerations

We based our approach for the seismic considerations on the following documents:

- AASHTO LRFD Bridge Design Specifications
- AASHTO Guide Specifications for LRFD Seismic Bridge Design
- Recommended LRFD Guidelines for the Seismic Design of Highway Bridges (MCEER/ATC-49)

The AASHTO documents specify designing for the life safety performance objective considering a seismic hazard corresponding to a seven percent probability of exceedance in 75 years (return period of approximately 1,000 years) for an "essential" structure. Life safety for this design event is taken to imply that the bridge has a low probability of collapse, but may suffer significant damage. "Critical" structures (bridges) must remain open to all traffic after the design earthquake and be usable by emergency vehicles and for security/defense purposes immediately after a large earthquake, e.g., a 2500-yr return period event.

5.4.1 Essential Structure Parameters (AASHTO 7% PE in 75 years – 1,000 return period)

If it is determined by the project stakeholders that this bridge design should be considered an "essential" structure, the following ground motion parameters would be used. Considering the 1.0-second spectral acceleration of 0.048g on bedrock for the AASHTO 7% PE in 75 years, and a seismic Site Class D for the overall bridge alignment based on shear wave velocity measurements, under Article 3.10.6 of AASHTO LRFD Bridge Design Specifications, the bridge should be assigned to Seismic Zone 1. Liquefaction evaluation is not required for structures located in Seismic Zone 1.

Code Used	Site Classification
2010 AASHTO LRFD Bridge Design Specifications (AASHTO) ¹	D ²

- In general accordance with the 2010 AASHTO LRFD Bridge Design Specifications, Table 3.10.3.1-1 AASHTO Site Class is based on the characteristics of the upper 100 feet of the subsurface profile.
- The 2010 AASHTO LRFD Bridge Design Specifications (2010 AASHTO) requires a site soil profile determination extending a depth of 100 feet for seismic site classification. Terracon used borehole geophysical logging (Suspension PS Velocity Measurements) as included in Exhibit A-11. The Site Class is based upon the subsurface conditions encountered on the project site and the average shear wave velocity of 847 feet/second derived from our seismic survey data at Locations L-1 and L-4).

Ground Motion Parameter	Value (g)1
PGA	0.048
Ss	0.111
S ₁	0.047
A _s	0.077
S _{DS}	0.177
S _{D1}	0.113

1. Latitude 39.0888 and Longitude -84.5233 degrees (AASHTO Spectrum 7% PE in 75 years)

- 2. $F_{pqa} = 1.60$ from Table 3.10.3.2-1
- 3. $F_a = 1.60$ from Table 3.10.3.2-2
- 4. $F_v = 2.40$ from Table 3.10.3.2-3

5.4.2 Critical Structure Parameters (2% PE in 50 years - 2,475-year return period)

If it is determined by the project stakeholders that this bridge design should be considered an "critical" structure, the following seismic guidelines will apply. Considering the 1.0-second spectral acceleration of 0.076g on bedrock identified in Section 2.3 above, and a seismic Site Class D for the overall bridge alignment based on shear wave velocity measurements, under Article 3.10.6 of AASHTO LRFD Bridge Design Specifications, the bridge should be assigned to Seismic Zone 2. Under Article 10.5.4.1, "where loose to very loose saturated sands are within the subsurface soil profile such that liquefaction of these soils could impact the stability of the structure, the potential for liquefaction in Seismic Zone 2, this is only required if A_s is 0.15g or greater. Under these specifications, a liquefaction evaluation is not required. The following ground motion parameters would be applied if it determined that this is a "critical" structure.

Code Used	Site Classification
2010 AASHTO LRFD Bridge Design Specifications (AASHTO) ¹	D ²
1 In general accordance with the 2010 AASHTO I	PED Bridge Decign Specifications, Table 2 10 2 1

 In general accordance with the 2010 AASHTO LRFD Bridge Design Specifications, Table 3.10.3.1-1 AASHTO Site Class is based on the characteristics of the upper 100 feet of the subsurface profile.

2. The 2010 AASHTO LRFD Bridge Design Specifications (2010 AASHTO) requires a site soil profile determination extending a depth of 100 feet for seismic site classification. Terracon used borehole geophysical logging (Suspension PS Velocity Measurements) as included in Exhibit A-11. The Site Class is based upon the subsurface conditions encountered on the project site and the average shear wave velocity of 847 feet/second derived from our seismic survey data at Locations L-1 and L-2.

Ground Motion Parameter	Value (g)1
PGA	0.080
Ss	0.178
S ₁	0.076
A _s	0.128
S _{DS}	0.285
S _{D1}	0.182

1. Latitude 39.0888 and Longitude -84.5233 degrees (NEHRP Spectrum 2% PE in 50 years)

2. $F_{pga} = 1.60$ from Table 3.10.3.2-1

3. $F_a = 1.60$ from Table 3.10.3.2-2

4. $F_v = 2.40$ from Table 3.10.3.2-3

As noted in Section 4.5, the river pier locations have a distinctly different stratigraphic section than the river banks that will result in different behavior under seismic loads than the abutments. The AASHTO site class and response spectrum approach does not consider such differences

explicitly. Site response analyses should be considered to evaluate the seismic demand on the bridges structural elements and possibly develop time histories for input at each of the abutment and pier locations.

6.0 GENERAL COMMENTS

HCN/Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. HCN/Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either expressed or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

APPENDIX A FIELD EXPLORATION

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

FIGURES

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Project Manage	er:	Project	No.	1	6		Г
	AJM		N1105070				
Drawn by:		Scale:			1.40	CN I	
	DWW		As Shown				
Checked by:		File Na	me:		linemer		
	AJM		A1		A DECEMBA	at souther	
Approved by:		Date:			611 Lunken Park Drive	Cincinnati, Ohio 45226	
	AJM		11/30/2010		PH. (513) 321-5816	FAX. (513) 321-0294	

REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO – COVINGTON , KENTUCKY

510						OHIO - LAND BORINGS	510	CRIPTION
		L-3A STA. 20+86 55′ LT.	L-2 STA. 21+83 55' LT.	L-2A STA. 22+99	L-1 STA. 24+00			DESC
500		PRE-DRILLED=7.0'	PRE-DRILLED=10.0'	PRE-DRILLED=3.0'	ASPHALT=0.4' PRE-DRILLED=5.6'	L-1A STA. 25+59 5/* RT.	500	
490				29 9		PRE-URILLED=5.0	490	DATE BY
		8 7 25 10 22 17 36		45 9 22 46 7 22	W-27 10 10 19	6 mm 29		REV.
480		10 39 6 6 65	10 35 3 37 3 4	6	ST 22 7 23	10 19 6 20 ST 22	480	
470 L-3	1.51	6 4 40 6 43	6 40		7 21		470	
7' R1 7' R1 WATER=1	5.0'	4 62	4 16	7	10 19	S7 22 12 25		PLACE PLACE OFF NTUCI
460		4 47	4 30	17 13	11 28	4 29	460	NICA SE REF
450		8 29	57 36 57 36 57 36	ST 10 10 12 22	10 15	7 + + + + + 26 + + + + + + + + + + + + + + + + + + +	450	ECH BRIDC ICKI NGTO
50/0″		17 27	7	21 15	37 <u>9</u>			ENCE BRID
440 <u>6</u> 294	29	8 18	11 + + + + + + + + + + + + + + + + + +	21 17	20 16	17	440	OF OF OF OP
3 430 1	20	₩— 11 123 29	1 25	31 15	20 1 19	31 18 11 25 Partice 21	430	D BRE RSC
76 76 10	52	22 18	18	39 1 9	42 11	37 34 17		POSE POSE
420 10	25	25 1 20 40 1 19	47	54 57 11	31 75 15	37 20	420	PRO 0
410	5	32 14	32	52 54 52 5 52 5 50 50 50 50 11	37 59 30 22	34 I 14 31 IS 19	410	
20 0100 000 18	24	59 ** :1: 24	29 1 32	56 6 6 8 22	28 🗧 11	31 21		HIO 45226
400 25	21	70 T 18 45 T \$	38 1 20 39 15	43 34 15	26 11	22 14	400	
390 23 Dec	15	28 55 18	21 1 8	43 5 10 89 11 24	75 23 42 23	45 1 20 42 1 15	390	
27 27 27 27 27 27 27 27 27 27 27 27 27 2	$19 \qquad L-3 \qquad CONTINUED = 3.40$	31 14		100 23	53 6 12	42 16	700	
50/0″ 50/0″		50/5" 12	50/5″	50/4" (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		32 9		
370 TR	330	TR-50-24 56 20		134 6 6 6 7 7 134 13 6 6 7 7 13 13 13 13 13 13 13 13 13 13 13 13 13	50/37 10 50/37 10		370	ARK DRIVE
360	320			TR 232			360	LUNKEN P
							500	61
350	310						350	
340							.340	
N ₆₀								
330	290 N ₆₀ WC	N ₆₀ WC					330	EXHIBIT A-3 DESIGNED BY: DW DRAWN BY: KM
320			N ₆₀ WC	N ₆₀ WC	N ₆₀ WC	N ₆₀ WC	320	APPVD. BY: DW SCALE: 1"=50' H DATE: 12/01/2010 JOB NO. N1105070
	20+00	21+00	22+00	23+00	24+00	25+00 26+0	0	ACAD NO. EXHIBIT A-3. SHEET NO. A-3

							NOILE
470		LOG OF OFFSET BORING	R-4 R-	2 2 7+56	LOG OF OFFSET BORING	470	DESCR
460	OHIO - RIVER BORINGS	R-2A STA. 17+10 42' RT. WA TER=29.0'	36' LT. 2'' H WATER=30.5' WATER:	R-1 RT. STA. 17+75 29.0' 42' RT. WATER=32.0'	R-3 STA. 17+79 36'LT. WATER=28.0'	460	
							В
450						450	EV. DATE
440						440	
430						430	≺ MENT
120		98 34 78 76 79 34 78 76 79 34 76	1 5 44 17 23 4 9 43 21	13 17 17 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18		(20)	AL DAT EPLACE HOFF
420		/5 28 22 22 18		10 41 22 15 5 1 23 19 21	13 18 13 19 19 19 25	420	HNIC/ DGE RE KERF TON, KI
410		15 3 17 19 23 29	6 15 15 13 26 15	22 19 20 25 25	10 20 11 19 17	410	COTEC ICE BRI CONNG
400		15 21	24 P 22 27 1 19 1 24 25 1	27 <u>18</u> 21 20 <u>18</u> 26	19 19 22 24 24 19	400	OF GE IT SPEN VS BI
390			31 - 13 28	24 20 55 14	31 9 9 9 10 0 9 10 0 10	390	AARY D BREN RSOI NNATI, (
380		36 \$36 14 \$36 \$36 42 \$36 13		15 37 14 17 28 19	19 6 5 3 16 6 6 5 33 6 6 8 13	380	
770		50/0" 0000000000000000000000000000000000	50/3" [26] 83 [2] [3] [3] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5			770	E E
570							0 45226
360						360	NY NNNATI, OHI
350						350	
340						340	
330			R-2A CONTINUED			330	A Trer A
720						720	LUNKEN PAR
520						520	6111
310						310	
300			280			300	
290			270 N60 WC		N ₆₀ WC	290	EXHIBIT A-4
280			N ₆₀ WC N ₆₀	WC N ₆₀ WC		280	APPVD. BY: DW SCALE: 1"=50" H DATE: 12/01/2010 JOB NO. N1105070
	14+00 15+00	16+00	17+00	18+00	19+00	20+00	ACAD NO. EXHIBIT A-4.

470			LOG OF OFFSET BORING		R-7	IG
				STA. 7+00 41' RT.	STA. 7+85 33' LT. WATER=21.0' 59' PT	
460			41' LT. ASPHALT=0.4'		WATER=16.0'	
	KENTUCKY	- RIVER BORINGS	PRE-DRILLED=5.6'	0 29 4 7 7 32		
450			29 4 28 28	ST 35 W 0::::: 33		
				3 ***** 26 3 24		
440				ST 26		
			4 ## 33 ##	3 48		
430				72 0 80 70 800 30 8 8	50705 33 36 44 10 13 28 10	
420					1/7 $1/7$ $1/2$ 36 $1/7$ 36 $1/7$ 36 $1/7$ 23 $1/7$ 21	
120				25 6 1 3 9	27 51 0 27 14 27 51 0 27 14	
410			39 22 10	28 23 13	39 27 36 23	
			27 4 14	28 28 17	22 0 13 20 16	
400			52 1 2	21 0 0 14		
			56 51 17	28 0 0 22		
390			38 38 14	58 0 15	50/4" 20 13 116 13 7	
			50/2″ °°¢°	55 \$\$\$ 6	50/0" 0 83 16	
380				100/4" 200 6		
370			TR			
510						
360						
350						
340						
330						
720						
520						
310						
300						
290			N60 WC	N ₆₀ WC	N ₆₀ WC N ₆₀ WC	
280	4+00	5+00	6+00	7+00	8+00	9+00

				NOL	
				SCRIP	
			470		
			460		
				→	
				ш	
			450	DAT	
				REV	
			440		
				║│⊢	_
			430		í 🚬
			430	AT	<u>н</u> У
				D N	U D D D D D D D D D D D D D D D D D D D
			420	UA B	H = H = H
				비루 별	ĊIJŚ
			410		NGT OF
				UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	й <mark>Ш</mark> С́
			400	L L L L	호 오 물
			390	IAR BF	
				MN	
			380	US C	, L 🗧
			500	L A	-
			370		
					45226
			360		, OHIC 513) 32
					IY INNATI FAX. (5
			750		
			350		
					5
			340	Ű	
					ן ב ו
			.3.30		AT
			000		I PARK 1-5816
					JNKEN 13) 32-
			320		611 LI PH. (5
			310		
			300		
			500		
			290		BY: DW
				APPVD. BY	KM DW
			280	DATE: JOB NO.	12/01/2010 N1105070
	10+	+00	 	ACAD NO. SHEET NO.:	EXHIBIT A-5.DGN

						z
				KENTLICKY - LAND BORINGS		SCRIPTIO
500	L-7		L-5 ST4, 3+73		500	ä
490	STA. 1+53 1 ⁴ LT. 4 SPHAL T=0.5	51' RT. CONCRETE=0.4'	11' LT. ASPHALT=0.4' PRE-DRILED=4.6'	L-4	490	
	PRE-DRILLED=4.5	PRE-DRILLED=1.1		13' LT.		
480				10 10 10 10 10 10 10 10 10 10 10 10 10 1	480	DATE
	2 19 1 19 1 23	10 21 11 22	10 20 13 21 18 17	17 19 15 26		REV.
470	ST 21 8 27	31 26 8 24	9 9 9 9	18 27 6 13 6 18	470	
460	ST 23 ST 25 8 23	11 25	6 23 ST 25		460	
400	11 30	8 7 27			460	DAT/ ACEM FF UCKY
450	3 24 	× 7 27	4 27		450	AL I SEPL/ HOI KENT
		7 27	ST 31 31 28			
440	46400 23	W 13 21	W 12 13	10 24	440	
	18 00 00 16	27	30 1 18	20 7		BRII
430	31 56 10		45 1 8	45 10	430	OF OF C VT SP NS I
420	31 31 10			39 12	420	RY BREN SOI
420	28 \$ 45 19			43 43 14	420	
410			86 35 12		410	SUI SUI F CIN
		45	53 53 50 10	49 -91-9 17 29 (8) 54 - 91-9 10		L L
400	50/0″ 2429 10	53 53 12	47 6 9 • 6 8	29 29 18	400	
	100/4″ 👫 8	106 9	129 10	49 15		IIO 45226 321-4540
390	126 10	50/5" 57 8	122 7	99 100/39 6 100/100 100 100 100 100 100 100 100 100	390	✓ NATI, OH XX. (513)
700	TR 100/4"		100/4"	100/1" 2 11	300	
		TR-100/1"	TR R			con
370					370	
360						
						NKEN PA
350					350	611 LU
340					240	
		Nee WC	N ₆₀ WC			
330					330	
320				N60 WC	320	EXHIBIT A-6
						DRAWN BY: KM APPVD. BY: DW SCALE: 1"=50" H DATE: 12/01/2010
310	1+00	2+00 3+0	0 4+00	5+00 6+00	7+00	JOB NO. N1105070 ACAD NO. EXHIBIT A-6.DGN SHEET NO. Δ_6

LIMESTONE FORMATION IS GRADUAL AND NOT SUDDEN AS DEPICTED HERE.

		CEMENT BEV DATE BY DESCRIPTION
ELEVATION		SUBSURFACE PROFILE PROPOSED BRENT SPENCE BRIDGE REPLAC PARSONS BRINCKERHOF CINCINNATI, OHIO - COVINGTON, KENTU
		ATERCE COMPANY 611 LUNKEN PARK DRIVE PH. (513) 321-5816 FAX. (513) 321-5816 FAX. (513) 321-5816
	NOTE: DIAGRAM IS FOR GENERAL ILLUSTRATION PURPOSES ONLY AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES. THE STRATIFICATION HAS BEEN INTERPOLATED AND VARIATIONS SHOULD BE EXPECTED.	EXHIBIT A-7 DESIGNED BY: DW DRAWN BY: KM APPVD, BY: DW SCALE: 1 ⁻¹ =300'H DATE: 1203/2010 JOB NO. N1105070 ACAD NO. EXHIBIT A-7.DWG SHEET NO.: A-7

TEST BORING LOGS & ROCK CORE PHOTOGRAPHS

P		DRILLING FIRM / OPE	RATOR:	HCN /	JJ	DRIL		: <u>CM</u>	E 550X A	TV- 93	33_	STAT		/ OFF	SET	: _23	+99.9	9, 84.	1 RT	EXPLOR	ATION IE -1
P	ID: BR ID:	DRILLING METHOD:	GER:	HCN / D\ 5" HSA / N(2 2		MER: BRATI		ATE:	2/4/10		ALIG	NMEI /ATIC	NI: _ DN: _	۲ 494.6	KOP 6 (MS	L) E	D BSE EOB:	B 18	32.5 ft.	PAGE
S	TART:	SAMPLING METHOD:	SF		<u>)</u> гне	ENE		REC	(%): SAMPLE	67.1 HP		COO <u>GRAI</u>	RD: DATIO	<u> 2</u> N (%	39.09 6))3833 AT	610, FERB	-84.5 ERG	22929	0480 ODOT	HOLE
	ASPHALT	X	494.6			RQD	IN ₆₀	(%)	ID	(tsf)	GR	ß	FS	SI	ά.	Ш	R.	PI	WC	CLASS (GI)	SEALE
- \ ((PRE-DRILLED (VACUUM EXCAVATED) VERY STIFF, BROWN, SANDY SILT , TRAC GRAVEL, LITTLE CLAY, TRACE CONCRET (FILL), WET	ZE TO LITTLE TE AND BRICK	488.6	¥		2 1 1 1	2	33	SS-1 SS-2	-	- 17	- 5	- 27	- 36	- 15	- 27	- 17	- 10	17 30	A-4a (V) A-4a (3)	
	MEDIUM STIFF TO STIFF, BROWN, SILT , J SOME SAND, TRACE ORGANICS, LOI=1.6	LITTLE CLAY, 5% (17.5'), MOIST	480.6	-	- 10 - 11 - 12 - 13 - 13 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 10 - 11 - 12 - 11 - 12 - 11 - 12 - 11 - 12 - 11 - 12 - 13 - 12 - 13 - 12 - 13 - 13 - 13 - 14 - 15 - 16 - 17 - 17 - 15 - 17 - 17 - 18 - 17 - 18 - 17 - 18 - 17 - 18 - 18 - 18 - 19 -	³ ⁴ ⁵ ² ³ ³	10 7 7	100 100 100 100	SS-3 ST-4 SS-5 SS-6	2.50 - 1.50 0.50	0	0 - 0	36 - 24 -	47 - 56 -	- -	24 - 27 -	16 - 17 -	8 10 -	19 20 22 23	A-4a (6) A-4a (V) A-4b (8) A-4b (V)	
	MEDIUM STIFF, BROWN, SANDY SILT, LIT	TTLE CLAY,	4/4.6		- 20 -	2	7	100	SS-7	0.75	0	0	13	11	16	20	18	2	21	A-12 (1)	-
	OOSE TO MEDIUM DENSE, BROWN, SAI	NDY SILT, LITTLE	464.6		- 21 - 22 - 23 - 24 - 25 - 26 - 27 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 32	2 2 3 4 2 4 5	8	100	SS-8 SS-9	1.00	-	-	- 36	- 45	18	- 23	- 17	- 6	19	A-4a (V) A-4a (6)	-
	_OOSE, BROWN, GRAVEL AND STONE FI SAND AND SILT, TRACE CLAY, WET	RAGMENTS WITH	454.6		- 33 - - 34 - - 35 - - 36 - - 37 - - 38 - - 39 - - 40 - - 41 - - 42 - - 43 -	3 5 5 4 4 5	11	100	SS-10 SS-11	0.50	- 38	- 19	- 17	- 19	- 7	- 24	- 16	- 8	28	A-4a (V) A-2-4 (0)	
0102/0					- 44																
	VERY DENSE, BROWN, GRAVEL AND ST F RAGMENTS , SOME SAND, TRACE SILT, WET	ONE TRACE CLAY,			- 45 - - 46 - - 47 - - 48 -	25 28 19	53	100	SS-12	-	61	20	11	6	2	NP	NP	NP	10	A-1-a (0)	
	MEDIUM DENSE TO DENSE, BROWN, CO SAND, LITTLE GRAVEL, LITTLE SILT, TRA	ARSE AND FINE		-	- 49	20 18 15	37	33	SS-13	-	-	-	-	-	-	-	-	-	15	A-3a (V)	
					- 56 - - 57 - - 58 - - 58 - - 59 -	5 12	20	67	SS-14	-	11	32	39	14	4	NP	NP	NP	16	A-3a (0)	

PID: BR ID: PR	ROJECT: <u>BRENT SPEN</u>	CE BRID	GE STATION	OFFSE	T: <u>2</u>	23+99.	9, 84.1 RT	S	TART	: <u>7/</u>	16/10	EN	ID: _	7/2	0/10	_ P(G 2 O	F 3	L-1
MATERIAL DESCRIPTIO AND NOTES	DN	ELEV. <u>434</u> .6	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI cs	DATIC FS	DN (% si) a_	AT	TERE RL	BERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
MEDIUM DENSE TO DENSE, BROWN, COAR SAND, LITTLE GRAVEL, LITTLE SILT, TRACE	SE AND FINE CLAY, WET		61	9	20	78	SS-15	-	-	-	-	-	-	-	-	-	19	A-3a (V)	
(continued)			_ 01 62	9															-
			- 63 -	-															
			- 64																
			- 65 -	20															-
			- 66 -	18 15	37	67	SS-16	-	6	27	54	9	4	NP	NP	NP	19	A-3a (0)	
			- 67 -																
			- 68 -																
			69																
			- 70 -	16	40	07	00.47											A 0- 00	-
			71 - 	21	42	67	55-17	-	-	-	-	-	-	-	-	-	11	A-3a (V)	-
			- 72	-															
			- 73 -																
		419.6	75																
DENSE, BROWN, GRAVEL AND STONE FRA WITH SAND, TRACE SILT, TRACE CLAY, WE	GMENTS		- 76 -	15 17 11	31	100	SS-18	-	32	20	38	7	3	NP	NP	NP	15	A-1-b (0)	
			- 77																
			- 78 -																
			- 79 -]															
	e d Q1		- 80 -	24															
			- 81 -	17 16	37	100	SS-19	-	-	-	-	-	-	-	-	-	59	A-1-b (V)	
			- 82 -																
			- 83 -	-															
		409.6	- 84 -	-															
MEDIUM DENSE, BROWN, FINE SAND , SOM	E COARSE	100.0	- 85 -	14 13	30	67	SS-20	_	0	21	71	4	4	NP	NP	NP	22	A-3 (0)	
				14															-
			- 88 -																
			- 89 -																
	₹S.		- 90 -	10															-
			- 91 -	13 12 13	28	67	SS-21	-	-	-	-	-	-	-	-	-	11	A-3 (V)	
			_	-															-
			- 93 -																
			- 94																
MEDIUM DENSE TO DENSE, BROWN, GRAV	EL AND	399.6	95 -	11															-
STONE FRAGMENTS WITH SAND, TRACE SIL CLAY, VERY DENSE BELOW 100', WET	LT, TRACE		96	11 12	26	83	SS-22	-	47	26	20	5	2	NP	NP	NP	11	A-1-b (0)	-
	۲ ۲		- 97 -	-															
			- 98 -	-															
5			- 99 -																
5				17 33	75	100	SS-23	-	-	-	-	-	-	-	-	-	23	A-1-b (V)	
				34															
			- 103-																
	20-1 0-1-44																		
		389.6	- 105-	15															
FRAGMENTS , SOME SAND, TRACE SILT, TR	ACE CLAY,		-106-	18 20	42	67	SS-24	-	-	-	-	-	-	-	-	-	23	A-1-a (V)	
			107																
	Poor		108																
			- 109-																
			110- -	19 23	53	56	55-25	_	58	21	12	7	1				12	A-1-2 (0)	
			111- -	²³ 24	55	50	55-25	-		~ 1	13							- ι-α (U)	
]															
5	000																		
			- 115-																
			- 116-	20 23	70	33	SS-26	-	-	-	-	-	-	-	-	-	10	A-1-a (V)	
			 117	40															
			- 																
	$\sim \bigcirc \bigcirc \bigcirc \bigcirc$		- 																
VERY DENSE, BROWN, GRAVEL AND STON		374.6	- 120-	10															
FRAGMENTS WITH SAND, TRACE SILT, TRA WET	CE CLAY,		-121-	16 31	53	44	SS-27	-	11	52	29	7	1	NP	NP	NP	15	A-1-b (0)	
		1	1	1								1			i .	i i			

	PID: 75119	BR ID:	PROJECT: E	BRENT SPE	ENCE BRI	DGE	STATION	OFFSE	ET:	23+99.	9, 84.1 RT	S	TART	: _7/	16/10	_ EI	ND:	7/2	0/10	_ P	G 3 O	= 3 l	1
		MATERIAL DESCRI	PTION		ELEV.	DE	PTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRAI		<u>SN (%</u>	6) a	AT	TERE	BERG	WC.	ODOT CLASS (GI)	HOLE
	VERY DENSE,	BROWN, GRAVEL AND S			312.1 					(70)		(131)	GI		13	0	u		r.		VVC	(- /	OLALLU
	WET (continue	d)	TRACE CLAY,		þ		-123-																
					d d		-124-																
				00 00	d I		-125-	30		80	66.28										10	A 1 b ()/)	
							-126-	50/3"	, -	00	33-20	-	-	-	-	-	-	-	-	-	10	A-1-0 (V)	
	INTERBEDDE	D LIMESTONE (80%) AND	SHALE (20%);		367.6	TR-	127-																
	THIN BEDDED	E, GRAY, SLIGHTLY WEAT , CRYSTALLINE, FOSSILIF	THERED, STRON FEROUS SEAMS	₩G, ,	₫ 7		-128-															0005	
	FRACTURED, SHALE, GF	LOSS 10%, RQD 39%; RAY, SLIGHTLY WEATHEF	RED, WEAK,	Ž	¥		-129- -	29		86	NQ-1											CORE	
					- I		-130- -	_															
	LS @129.9-13	0.3 QU=10982 PSI			V		-131-																
	SH @ 137.1 S																						
	LS @ 139.5 P	JINT LOAD = 14651 PSI			₹		-133-	0		40	NQ-2											CORE	
	LS @142.7-14	3.2° QU=9375 PSI		Ž	4		-134-																
		JINT LOAD = 15893 PSI			1		135- -												-				
	ST @ 147.7 S						136-																
	LS @150.7-15	1.3 QU-21920 F31		ŧ			-137-																
	LS @156'-157'	OU=12023131		₽	<u> </u>		- 138-	20		80	NQ-3											CORE	
	SH @ 157.0' S	DI = 67.8		¥			- 139-																
	LS/SH @162.5	'-163' QU=8652 PSI.		R	Ž		- 140-																
				Ē	<u> </u>		- 142	52		100	NO 4												
					<u> </u>		- 143-	52		100	NQ-4											CORE	
				Ê	¥ 1		- 145-																
				<u> </u>	Į		- 146-																
					Ž		- 147-																
				₹			- 148-	20		100	NQ-5											CORE	
							- 149-																
				ŧ			- 																
					¥		- 151-																
							- 152-																
				Ŕ	4		- 153-	54		100	NQ-6											CORE	
							- 154-	-															
				<pre></pre>	=} ₹																		
				A																			
				<u> </u>	¥ 		-158-	48		100	NQ-7											CORE	
					₹ ₹		-159-																
				ŧ			-160-																
					<u> </u>																		
S.GPJ				<u></u>	1		-162-																
T LOG				<u> </u>	2		-163-	64		100	NQ-8											CORE	
NODO				Ž	¥ Z		-164																
0\GIN				Ē	7		-165- -																
10507							-166- -	60		98	NQ-9											CORE	
110/N1	BLANK DRILLE	ED FOR SEISMIC TESTING	G		327.3		167- -						-				-						
CTS/2(-															
Щ					1		<u>⊢</u> 169–	1	1	1	1		1				1	1	1				

BORING NO.: L-1 CORE BOX NO.: 1 OF 3 DEPTH (ft.): 127.0-145.5 ELEVATION (ft.): 366.46 1/NQ: 127.0' – 130.5'; REC. 86%, RQD 29% 2/NQ: 130.5' – 135.5'; REC. 40%, RQD 0% 3/NQ: 135.5' – 140.5'; REC. 80%, RQD 20% 4/NQ: 140.5' – 145.5'; REC. 100%, RQD 52%

BORING NO.: L-1 CORE BOX NO.: 2 OF 3 DEPTH (ft.): 145.5-160.5 ELEVATION (ft.): 347.96 5/NQ: 145.5' – 150.5'; REC. 100%, RQD 20% 6/NQ: 150.5' – 155.5'; REC. 100%, RQD 54% 7/NQ: 155.5' – 160.5'; REC. 100%, RQD 48%

BORING NO.: L-1 CORE BOX NO.: 3 OF 3 DEPTH (ft.): 160.5-167.3 ELEVATION (ft.): 332.96 8/NQ: 160.5' 165.5'; REC. 100%, RQD 64% 9/NQ: 165.5'-167.3'; REC. 100%, RQD 61%

BORING

L-1

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core A Date: 9-3-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO

PF TY	ROJECT: <u>BRENT SPENCE BRIDGE</u> (PE: <u>BRIDGE REPLACEMENT</u> D: 75110 PB ID:	DRILLING FIRM / OPER SAMPLING FIRM / LOG	ATOR:	HCN / JJ HCN / DRK/DWW	DRIL HAM	L RIG MER:	: <u>CM</u> CI		TV- 93	33_	STAT ALIG		/ OFF NT: _	-SET	: <u>25</u> PROP	5+58. POSE	6, 50. D BS	9 RT B	EXPLOR	ATION IE 1A PAGE
SI	D. <u>73119</u> BR D ART: <u>7/29/10</u> END: <u>8/1/10</u>	SAMPLING METHOD:	SF	PT / ST / NQ	ENE	RGY F	RATIO	(%):	67.1		COO	RD:	JN	469.1 39.0	94153	<u>62)</u> 1 3260,	=ОВ. -84.5	22842	2640	1 OF 3
	MATERIAL DESCRIP AND NOTES	TION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI cs	DATIO	<u>אכ) NC</u> וצ	6) a.	AT	TERE RL	BERG PI	wc	ODOT CLASS (GI)	HOLE
P	RE-DRILLED (VACUUM EXCAVATED)																			
N C	IEDIUM STIFF TO STIFF, BROWN, SANE ELAY, MOIST	Y SILT, LITTLE	484.7	5	2 2 3	6	100	SS-1	0.50	-	-	-	-	-	-	-	-	29	A-4a (V)	-
			479.7	- 8 -	3 4 5	10	100	SS-2	1.50	0	0	32	49	19	26	16	10	19	A-4a (7)	-
L	oose, Brown, Silt , Some Sand, Lit	FLE CLAY, MOIST	+ + + + + + + + + + + + + + + + + + + +		2 2 3	6	100	SS-3	1.50	0	2	28	52	18	24	16	8	20	A-4b (7)	
	OOSE, GRAY AND BROWN, SANDY SIL	r, LITTLE CLAY,	474.7	13 14 15	3 2	6	75	ST-4	-	-	-	-	-	-	- NP	- NP	- NP	22	A-4b (V)	
S N	TIFF, BROWN, SILT , SOME FINE SAND, IOIST	LITTLE CLAY,	472.2	- 16 - - - 17 - - - 18 - -	² 3 3 3	8	100	SS-6	1.75	-	-		-	-	-	-	-	21	A-4b (V)	
		+ + + + + + + + + + + + + + + + + + +		- 19 - - 20 - - 21 -	3 3 3 3	7	100	SS-7	1.50	0	0	30	51	19	25	16	9	22	A-4b (7)	
			+ + + + + + + + + + + + + + + + + + +	- 22 - 23 - 24			100	ST-8	1.25	-	-	-	-	-	-	-	-	21	A-4b (V)	-
			+ + + + + + + + + + + + + + + + + + + +	- 25 - 26 - - 27	2 4 7	12	100	SS-9	1.00	-	-	-	-	-	-	-	-	25	A-4b (V)	-
			454.7	- 28 - - 29 - - 30 - - 31 - - 32 - - 33 - - 34 -	2 2 2	4	100	SS-10	-	0	0	15	63	22	28	18	10	29	A-4b (8)	-
	oose, gray, silt , some fine sand, Ioist	LITTLE CLAY,		- 35 - - 36 - - 37 - - 38 -	3 3 3	7	100	SS-11	-	0	0	30	54	16	27	20	7	26	A-4b (7)	-
	ERY DENSE, BROWN, GRAVEL AND ST RAGMENTS, SOME SAND, TRACE SILT,	ONE	449.7	→ 39 → - 40 → - 41 →	17 21	59	100	SS-12	-	53	25	9	9	4	NP	NP	NP	8	A-1-a (0)	-
	VET			_ 42 - 42 - 43 - 44 44	32															-
	IEDIUM DENSE TO DENSE, BROWN, CC AND , LITTLE SILT, TRACE TO LITTLE GI LAY, WET	A RSE AND FINE RAVEL, TRACE		45 - 46 - 47 - 47 - 48 - 49 - 50	6 8 5	15	100	SS-13	-	19	27	37	13	4	NP	NP	NP	18	A-3a (0)	-
				51 51 52 53	6 7 8	17	100	SS-14	-	1	22	59	13	5	NP	NP	NP	22	A-3a (0)	-
			100000000	- 54 - 55 - 56 - 57	14 14 14	31	100	SS-15	-	-	-	-	-	-	-	-	-	18	A-3a (V)	-
			429 7																	

PID: PROJECT:	IT SPENCE BR		N / OFFSE	T:	25+58.	6, 50.9 RT	r_s	TART	F: <u>7/</u> 2	29/10)_ E	ND:	8/*	1/10	_ P	'G 2 O	F3L	1A
MATERIAL DESCRIPTION AND NOTES	ELEV. 429.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRA CS	DATI(FS	2N (% si	%) a.	AT LL	TERE PL	BERG PI	WC	ODOT CLASS (GI)	HOLE SEALE[
MEDIUM DENSE TO DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT , TRACE CLAY, WET		- 61	- ⁸ 10 12	25	100	SS-16	-	22	13	34	21	10	NP	NP	NP	21	A-2-4 (0)	-
		- 62	_															
		- 64	_															
		- 65	12											-				-
		- 66	16 17	37	100	SS-17	-	-	-	-	-	-	-	-	-	17	A-2-4 (V)	-
		67	-															
		- 69	_															
DENSE, BROWN, FINE SAND , TRACE SILT AND CLAY,	419.7	70	13												 			-
WET		- 71	14	37	100	SS-18	-	3	32	57	4	4	NP	NP	NP	20	A-3 (0)	-
		- 72	-															
		- 74	_															
		— 75 -	11	34	100	SS-10						_	_			14	Δ_3 (\/)	-
		- 76	15			33-19	-	-	-	-	-	-	-	-	-	14	A-3 (V)	-
		- 78	-															
		- 79																
	F. S.	- 80	8	31	100	SS-20	_	7	28	56	5	4	NP	NP	NP	19	A-3 (0)	-
		- 81	15															-
		- 83	_															
		- 84	_															
		- 85	14 13	31	100	SS-21	-	-	-	-	-	-	-	-	-	21	A-3 (V)	-
		- 87	<u>15</u>															-
		- 88																
	399.7	- 89	_															
MEDIUM DENSE TO DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND, TRACE SILT, TRACE		90	16 10 10	22	56	SS-22	-	38	21	34	4	3	NP	NP	NP	14	A-1-b (0)	
CLAT, WET		92																-
		- 93	-															
		- 94 - - 95	-															_
		- 96	10 22 18	45	100	SS-23	-	-	-	-	-	-	-	-	-	20	A-1-b (V)	
	-0-1 -0-1	97																
		- 98	-															
		- 100)															-
		101	1-1-23 15	42	100	SS-24	-	32	31	28	6	3	NP	NP	NP	15	A-1-b (0)	_
			<u>2</u>															
		-103	3															
		- 105	5- 16											-				-
		106	³ 17 21	42	100	SS-25	-	-	-	-	-	-	-	-	-	16	A-1-b (V)	_
		-107	7															
				30	67	66.00		40	25	10		<u> </u>					A 1 h (0)	
			1-1 18	52	0/	33-26	-	43	35	10	4					9	א- ו-ט (ט)	-
			- 3															
			1-1															
VERY DENSE, BROWN, GRAVEL AND STONE			5 43 30	62	100	SS-27	-	-	-	-	-	-	_	-	-	8	A-1-a (V)	
WET	000		25 7														(-)	
		-118	3-															
	0)															
	₀ ₀ ₀ ○ 368.7		20 48 50/1"	-	92	SS-28	-	74	7	12	5	2	NP	NP	NP	9	A-1-a (0)	
	<u> </u>																	

PID: BR ID: PROJECT:	BRENT SPENCE	BRIDGE	STATION /	OFFSE	T: _2	<u>25+58</u> .	6, 50.9 RT	S	TART	: 7/2	29/10	END):	3/1/10	F	PG 3 0	F3L	-1A
MATERIAL DESCRIPTION	ELE	EV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tof)	5	GRAI		N (%)	/		BERG		ODOT CLASS (GI)	HOLE
INTERBEDDED LIMESTONE (80%) AND SHALE (20%	: 136/	7.8		RQD		(%)		(ISI)	GR	US	F5	51			М	wc	001000(01)	SEALED
LIMESTONE, GRAY, SLIGHTLY WEATHERED, STE THIN BEDDED, ARGILLACEOUS, MODERATELY FRACTURED, LOSS 0%, RQD 36%; SHALE, GRAY, SLIGHTLY WEATHERED, VERY W TO WEAK, LAMINATED, LS @123.1'-123.7' QU=10192 LS @132.3'-132.8' QU=13597 PSI LS @ 140.1' POINT LOAD = 9157 PSI				16		100	NQ-1										CORE	
LS @ 152.6' POINT LOAD = 12346 PSI													_	_	_			-
LS @ 154.5' POINT LOAD = 11932 PSI. (continued)			- 	44		100	NQ-2										CORE	
				24		100	NQ-3										CORE	
	346	6.7		60		100	NQ-4										CORE	
LIMESTONE, GRAY, UNWEATHERED, MODERATELY STRONG TO STRONG, THIN BEDDED, ARGILLACEOU SHALE PARTINGS, LOSS 0%, RQD 67% LS @143'-143.5' QU=5891 PSI LS @150.7'-151.1' QU=13391 PSI.	S,			66		100	NQ-5										CORE	
		6.7		68		100	NQ-6										CORE	
LIMESTONE, GRAY, UNWEATHERED, MODERATELY STRONG, THIN BEDDED, FOSSILIFEROUS, ARGILLAG SEAMS, LOSS 0%, RQD 86% LS @160'-160.5' QU=4409 PSI.	EOUS		- 154 - 154 - 155 - 156 - 156 - 157 - 157	76		100	NQ-7										CORE	
		6.7 F	- 159- 	96		100	NQ-8										CORE	

NOTES: WATER USED BELOW 40 FT. FOR DRILLING/ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (15 BAGS CEMENT/2 BAGS BENTONITE)

BORING NO .: L- 1A CORE BOX NO.: 1 OF 3 DEPTH (ft.): 123.0-138.0 ELEVATION (ft.): 368.45 1/NQ: 123.0' - 128.0'; REC. 100%, RQD 16% 2/NQ: 128.0' - 133.0'; REC. 100%, RQD 44% 3/NQ: 133.0 - 138.0'; REC. 100%, RQD 24%

BORING NO.: L- 1A CORE BOX NO.: 2 OF 3 DEPTH (ft.): 138.0 - 153.0 ELEVATION (ft.): 353.45 4/NQ: 138.0' - 143.0'; REC. 100%, RQD 60% 5/NQ: 143.0'-148.0'; REC. 100%, RQD 66% 6/NQ: 148.0' - 153.0'; REC. 100%, RQD 68%

1. 2 3 4 5 6 7 8 9 10 11 ¹ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*********	
	the start and the	
And the second se	The second s	

BORING NO .: L- 1A CORE BOX NO.: 3 OF 3 DEPTH (ft.): 153.0 - 163.0 ELEVATION (ft.): 333.45 7/NQ: 153.0' – 158.0'; REC. 100%, RQD 76% 8/NQ: 158.0' - 163.0'; REC. 100%, RQD 96%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF Chkd By: DWW	Scale: As Shown File No. Core A	ATTERFACON COMMANY 611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO

L-1A

BORING

PROJECT: BRENT SPENCE BRIDGE	DRILLING FIRM / OPEF SAMPLING FIRM / LOG	RATOR: IGER: H	HCN / . ICN / DRK/	JM /DWW	DRIL HAM	.L RIG MER:	: <u>[</u> CN		D-50 MATIC		STAT ALIG	ΓΙΟΝ NME	/ OFI NT:	FSET F	: <u>2</u> 1 PROF	+82. POSE	9 <u>, 54</u> D BS	.9 LT B	EXPLOR	ATION I -2
PID: 75119 BR ID: 5728/10 END: 6/1/10	DRILLING METHOD:	3.25 SF	5" HSA / NG PT / ST / NG	2 2		BRAT RGY F	ION D. RATIO	ATE: (%):	9/9/10 83.7		ELE\ COO	/atio RD:	- NC:	496.3 39.09	3 (MS 93247	L) E 7060,	EOB: -84.5	<u>16</u> 523175	5560	PAGE 1 OF 3
MATERIAL DESCRIPTIO	ON	ELEV.	DEPT	ΉS	SPT/	N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRAI		ON (%	%) a.	AT LL	TERE	BERG	wc	ODOT CLASS (GI)	HOLE
PRE-DRILLED (VACUUM EXCAVATION)		486.3																		
VERY LOOSE TO LOOSE, BLACK, GRAVEL FRAGMENTS WITH SAND, SOME CINDERS FRAGMENTS (FILL), MOIST TO WET	AND STONE			- 11 - - 12 -	2 1 2	4	67	SS-1	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
				- 13 - - 14 -	1 1 1	3	67	SS-2	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
				- 15 - - 16 - - 17 -	3 4 3	10	100	SS-3	-	-	-	-	-	-	-	-	-	35	A-1-b (V)	-
				- - 18 - - 19 -	2 1 1	3	67	SS-4	-	-	-	-	-	-	-	-	-	37	A-1-b (V)	-
				- 20 - - 21 - - 22 -	2 3 4	10	67	SS-5	-	-	-	-	-	-	-	-	-	34	A-1-b (V)	-
		d D T D 471.3		- 22 - - 23 - - 24 - - 25 -	-															
VERY LOOSE, BROWN, SANDY SILT , TRAC (FILL), WET	E GRAVEL			26 27 28 29	WOR 2 2	6	100	SS-6	-	-	-	-	-	-	-	-	-	40	A-4a (V)	_
MEDIUM STIFF, BROWN, SILTY CLAY , SOM SOME GRAVEL AND BRICK FRAGMENTS, (IE SAND, FILL), MOIST	466.3	_	- 30 - - 31 - - 32 -	3 2 1	4	100	SS-7	1.00	26	23	10	21	20	35	17	18	16	A-6b (3)	-
SOFT, GRAY AND BROWN, CLAY , AND SIL SAND, (FILL), MOIST	T, TRACE FINE	461.3	-	- 33 - - 34 - - 35 - - 36 - - 37 - - 38 - - 39 -	2 1	-	67	SS-8	-	-	-	-	-	-	-	-	-	30	A-7-6 (V)	-
				40 41 42 43 44	2 1 2	4	100	SS-9	-	0	0	8	60	32	48	29	19	38	A-7-6 (13)	-
VERY DENSE, BLACK, GRAVEL AND STON WITH SAND , SOME CINDERS, LITTLE BRICH (FILL), WET	E FRAGMENTS	449.8 N	- - -	45 - 46 - 47 - 48	.16 _24 14	53	78 67	ST-10 SS-11	-	-	-	-	-	-	-	-	-	36 32	A-7-6 (V) A-1-b (V)	-
LOOSE, GRAY AND BROWN, SILT , TRACE TRACE ORGANICS (FILL), WET	FINE SAND,	446.3	-	- 49 - - 50 - - 51 - - 52 -	3 2 3	7	67	SS-12	-	-	-	-	-	-	-	-	-	24	A-4b (V)	-
MEDIUM DENSE, GRAY, GRAVEL AND STO FRAGMENTS , (FILL), WET		441.3	-	53 54 55 56	4 4	11	11	SS-13	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	-
		436.3																		

	PID: BR ID:	PROJECT: BRENT S	PENCE BR	IDGE	STATION /	OFFSE	ET:	21+82.	9, 54.9 LT	S	TART	: 5/2	28/10	_ E	ND:	6/	1/10	_ P	G 2 OI	F 3 I	2
	MATERIAL DESCRII AND NOTES	PTION	ELEV. 436.3	DEF	PTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRA cs	DATI FS	<mark>) NC</mark> SI	%) a.	AT	TERE	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
	LOOSE TO MEDIUM DENSE, BROWN, G STONE FRAGMENTS WITH SAND, TRAC	RAVEL AND CE SILT, TRACE			- 61 -	2 3	10	67	SS-14	-	-	-	-	-	-	-	-	-	22	A-1-b (V)	
	CLAY, WET		D JT		62	4															
			Cs b		- 63 -	-															
					- 64																
			С ТС		- 65 -	WOLL											-				
					- 66 -	1 WOH	1	67	SS-15	-	8	45	38	6	3	NP	NP	NP	25	A-1-b (0)	
			Т.С. Г.С.		- 67 -																
					- 68 -																
			Č		_ 69 _																
			р Д Т		- 70 -	14	10														
			L) D		- 71 -	85	18	11	SS-16	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
			Č.		- 72 -	-															
			р ЭД		- 73 -	-															
			다. 고민 421.3		- 74 -																
	MEDIUM DENSE TO DENSE, BROWN, FI COARSE SAND, TRACE GRAVEL, TRAC	INE SAND, SOME E SILT, TRACE			- 75 - 76 -	6 8	20	28	SS-17	-	-	-	-	-	-	-	-	-	-	A-3 (V)	
	CLAY, WET				_ 77 _	6															
		ء موجع موجع			- 78 -	-															
					- 79 -	-															
					- 80 -	9															
		مود م - م - م م			- 81 -	16 18	47	0	SS-18	-	-	-	-	-	-	-	-	-	-	A-3 (V)	
					- 82 -																
					83 -																
		، • • • • • • •			- 84 -	-															
		د م م م م م			- 85 -	6	22	44	<u> </u>								-			A 2 () ()	
					- 86	13	52		33-19	-	-	-	-	-	-	-	-	-	-	A-3 (V)	
			S		- 87 -	-															
		د و د د د م د م			- 88																
					- 09 -]															
		2			- 91 -	8 10	29	28	SS-20	-	-	-	-	-	-	-	-	-	32	A-3 (V)	
					_ 92																
					- 93 -	-															
					- 94 -																
					95 -	12															
					- 96 -	13 14	38	67	SS-21	-	3	34	54	6	3	NP	NP	NP	20	A-3 (0)	
					97 -	-															
					- 98 -	-															
ſ			396.3		- 99 -	-															
GS.GP.	MEDIUM DENSE TO DENSE, BROWN, C			_	- 100-	13 14	39	56	SS-22	_	_	-	_	_	_	_	-	_	15	A-3a (V)	
DT LO	CAND, HAOL OLL, HAOL ONAVEL, H	NOL OLAT, WET			-101-	14															
VITODU					- 102- 																
120/GIN					- 104-																
N11050					- 105-	0															
\2010\P					- 106	8 8 7	21	11	SS-23	-	-	-	-	-	-	-	-	-	8	A-3a (V)	
JECTS					- 107-																
I:\PRO					- 108-																
:06 - N					-109-																
9/11 10	MEDIUM DENSE, BROWN AND GRAY, G	RAVEL AND	386.3 01	-	-110-	13															
DT - 3/6	STONE FRAGMENTS WITH SAND, WET		LS D			8	22	67	SS-24	-	-	-	-	-	-	-	-	-	19	A-1-b (V)	
OT.GI																					
- OH D			ц ТС		- 113- -	1															
X 17)			다 고 이 381.3	_	- 114-																
0G (11						23 33	105	67	SS-25	-	-	_	-	-	-	-	-	-	-	Rock (V)	
SING L						42									-	-					
IL BOF					- 118-	-															
OT SO					- 119-	-															
ZD OD						50/5"	-	100	SS-26	-	-	-	-	-	-	-	-	-	-	Rock (\/)	
ANDAF					- 121-							-					-				
ST,					F -	1	1			1	1	1	1	1	1	1	1	1		I	

MATERIAL SECKNPTON PS/L4 Depress SK2 No FCC SK2 Depress Depress <thdepres< th=""> Depress Depress<</thdepres<>	PID: BR ID: PROJECT	T: BRENT SPENCE B	RIDGE	STATION /	OFFSE	:T: _2	21+82.	9, 54.9 LT	S	TART	: 5/2	8/10	_ EN	ND: _	6/1	1/10	_ P	G 3 OI	= 3	2
Interpretation of the set of the	MATERIAL DESCRIPTION	ELEV	DE	EPTHS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAE		<u>)N (%</u>) 	AT	TERE	BERG	WC	ODOT CLASS (GI)	
Lagence of water lease in the lease is a lea	INTERBEDDED LIMESTONE (75%) AND SHALE (25	3/4.4 %);	•		RQD		(%)		(ISI)	GR	S	FS	5	u	LL	HL.	м	wc		SEALED
Model Participation 1000 - 1	LIMESTONE, LIGHT GRAY, UNWEATHERED, STE THIN BEDDED, FOSSILIFEROUS, ARGILLACEOUS,	RÓNG,		- 123-	-															
with integration with integration integrati	MODERATELY FRACTURED, LOSS=7%, RQD=18%;			- 124-																-
1000000000000000000000000000000000000	WEATHERED, MODERATELY STRONG, LAMINATED), E		- 125																
La gran 27 du Ungen 193 mo F4 10 <td>MODERATELY FRACTORED</td> <td></td>	MODERATELY FRACTORED																			
La get 301-07 00-01-1165 PSI (2004) Set 901 125 01 1-050 PSI (2004) Set 901 125 00-1263 PSI (2004) Set 904 124 200-1263 PSI (2004	LS @126.7-127 QU=12810 PSI			- 127	16		80	NQ-1											CORE	
Shi 6: 37 SD = 69 24 10	LS @130'-130.7' QU=11050 PSI			- 127																
16 100 10	SH @ 133' SDI = 89.9			- 128-																-
H 9 40 425 201 - 914 -104 -105 <td< td=""><td>LS @137'-137.5' QU=12131 PSI</td><td></td><td></td><td>- 129-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	LS @137'-137.5' QU=12131 PSI			- 129-																
LS @1461-448 00U-1482 F81 SH @142 2501 = 82 2 SH @142 245 00U-1482 F93 LS @1551-355 00U-970 F93 LS @1551-355 00U-970 F93 LS @1551-355 00U-970 F93 LS @1551-106 4 OU 10716 F81 (continued) LS @1551	SH @ 143.5' SDI = 91.4			- 130-																
9 H 40 2 201 - 92 2 -123 -123 -124	LS @144'-144.5' QU=15486 PSI				30		93	NQ-2											CORE	
SN 40 1432 748 2 0 00-4710 PSI 133 133 134 134 134 134 134 135	SH @ 148.2' SDI = 88.2			132																
L3 @153-1332 OU-910 PSI L3 @145-135 OU-920 PSI L3 @145.135 OU-12715 PSI (continued) L3 @145.1105.4 OU-12715 PSI (continued) L3 @145.1105.4 OU-12715 PSI (continued) L3 @145.1105.4 OU-12715 PSI (continued) L4 14 14 14 14 14 14 14 14 14 14 14 14 14	SH @148.2'-148.5' QU=4162 PSI			-133-																
L3 @154.8-169 OU-10065 P31 L3 @154.9-169 OU-226 P31 L3 @155.1-165.4 OU-10715 P3L (continued) L3 @155.1-165.4 OU-10715 P3L (continued) L3 @155.1-165.4 OU-10715 P3L (continued) L3 @155.1-165.4 OU-10715 P3L (continued) L4 H4	LS @153'-153.5' QU=9710 PSI			-134-																
LS Q102.0-082 (Q1-00715 P3) LS Q105.0-10715 P3) (controlled) LS Q105.0-1075 P3 (co	LS @154.5'-155' QU=10865 PSI																			
Li ginta de due data PSI Li ginta de due da	LS @158 5'-158 9' OU=8892 PSI				16		100	NQ-3											CORE	
139 -139				- 																
LS git 05.1-1654 CO-Florido PSI (contracted) -130				- 																
1440- 1442- 1442- 1444- 144-	LS @165.1-165.4 QU=10715 PSI. (continued)																			-
142 0 93 NO.4 0 93 NO.4 0 <td< td=""><td></td><td></td><td></td><td>- 140-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				- 140-																
14 0 93 NO.4 0 00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							00													
142- 143- 144- 145- 146- 146- 146- 146- 146- 146- 146- 146				- 141-	0		93	NQ-4											CORE	
143 144 1				- 142-																
- 1445 - 1445 - 1446 - 146 - 165 - 29 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -				- 143-	<u> </u>															
-146- -146- -146- -146- -146- -146- -146- -146- -146- -146- -146- -146- -146- -146- -146- -163- -163- -163- -163- -163- -163- -163- -163- -163- -164- -165-				- 144-																
-146-18 100 NQ-5 NQ-5 NQ-6 NQ-5 NQ-6 NQ-5 NQ-6				145																
147- -148- -149- -149- -149- -150- -160- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100- -100				-146-	18		100	NQ-5											CORE	
148 - 149 - 160 - 151 - 162 - 155 - 156 - 156 - 157 - 156 - 157 - 156 - 156 - 158 - 156 - 158 - 156 - 158 - 158 - 158 - 158 - 158 - 158 - 158 - 158 - 168 - 16				-147-																
149 149 150 30 97 NQ-8 0 0 0 CORE 152- 153- 154- 154- 0 0 0 0 0 0 154- 156- 29 98 NO-7 0 0 0 0 CORE 156- 159- 159- 159- 159- 0 0 0 0 0 158- 169- 169- 169- 0 0 0 0 0 0 169- 169- 169- 169- 0 0 0 0 0 0 169- 169- 169- 100 NQ-8 0 0 0 0 169- 169- 100 NQ-8 0 0 0 0 169- 169- 100 NQ-8 0 0 0 0 169- 169- 100 NQ-9 0 0 0 0 169- 169- 100 NQ-9 0 0 0 0 0 169- 169- 100 NQ-9 0 0 0 0 0 169- 169-																				
150 30 97 NQ-6 CORE 152 -154 -155 -155 -156 29 98 NQ-7 CORE 159 -156 -166				- 149																
- - 161- -152- -153- -164- -164- -166- -1				- 																
152 152 152 152 152 155 156 29 98 NQ-7 0 0 156 156 156 156 156 156 156 156 156 166 166 160 160 160 160 161 14 100 NQ-8 0 0 166 7 100 NQ-9 0 0					- 30		97	NQ-6											CORE	
102 102 102 102 102 103 104 103 104 103 104 1							01	nice o											CORE	
105 154 155 156 29 98 NQ-7 CORE 156 156 156 156 156 156 156 156				- 152																
154-155-156-29 98 NQ-7 CORE 156-29 98 NQ-7 CORE 157-158-158-158-158-158-158-158-158-158-158				- 153-																-
				- 154-																
- 166- 29 98 NQ-7 - 157- - 158- - 159- - 160- - 100- - 1				- 155-																
				- 156-	29		98	NQ-7											CORE	
				157																
-160- -161- -162- -162- -163- -164- -164- -164- -164- -165- -164- -165- -166- -164- -165- -164- -165- -164- -164- -165- -164- -165- -164- -165- -164- -165- -164- -165- -166- -164- -165- -166- -166- -166- -166- -168-																				
-160- -161- -162- -162- -163- -163- -163- -163- -163- -164- -165- -165- -165- -166- -165- -166- -166- -167- -168- -168- -168- -169- -199																				
-161-14 100 NQ-8 CORE -162- -163- -164- -164- -165- -165- -166-7 100 NQ-9 CORE -166-7 100 NQ-9 CORE -167- -168-				-160-																
162- 163- 164- 164- 165- 165- 165- 165- 165- 165- 166- 167- 168- 168- 168- 168- 168- 168- 168- 169- 100 NQ-9 CORE					14		100	NQ-8											CORE	
-163- -164- -165- -165- -165- -166- -167- -168- -168- -168- -168- -168- -100 NQ-9 -161- -164- -165- -164- -164- -165- -164- -165- -166- -167- -168- -1	Re			- 162																
-164- -164- -165- -166-7 100 NQ-9 CORE	OGS			- 163-																
-165- -165- -166-7 100 NQ-9 CORE	001 L			- 164												-				
-166-7 100 NQ-9 CORE				- 405																
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20/01			- 165-															007-	
	1050			- 166-	7		100	NQ-9											CORE	
	10/N			- 167-																
		327.8	B EOE	168	1															

NOTES: WATER USED BELOW THE SURFACE FOR DRILLING/ROCK CORING PURPOSES. WATER NOTED AT 52 FT. AFTER 24 HRS. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (13 BAGS CEMENT/2 BAGS BENTONITE)

BORING NO.: L- 2 CORE BOX NO.: 1 OF 4 DEPTH (ft.): 124.0-143.5 ELEVATION (ft.): 372.26 1/NQ: 124.0' – 128.5'; REC. 80%, RQD 16% 2/NQ: 128.5' – 133.5'; REC. 94%, RQD 30% 3/NQ: 133.5' – 138.5'; REC. 100%, RQD 16% 4/NQ: 138.5' – 143.5'; REC. 94%, RQD 0%

BORING NO.: L- 2 CORE BOX NO.: 2 OF 4 DEPTH (ft.): 143.5-148.5 ELEVATION (ft.): 352.76 5/NQ: 143.5' – 148.5'; REC. 100%, RQD 18%

BORING NO.: L- 2 CORE BOX NO.: 3 OF 4 DEPTH (ft.): 148.5-163.5 ELEVATION (ft.): 347.76 6/NQ: 148.5' – 153.3'; REC. 96%, RQD 30% 7/NQ: 153.5' – 158.5'; REC. 98%, RQD 29% 8/NQ: 158.5' – 163.5'; REC. 100%, RQD 14%

BORING NO.: L- 2 CORE BOX NO.: 4 OF 4 DEPTH (ft.): 163.5-168.5 ELEVATION (ft.): 332.76 9/NQ: 163.5' – 168.5'; REC. 100%, RQD 7%

2		
Project Mngr.: AJM	PN. N1105070	
Drawn By: TCF	Scale: As Shown	
Chkd By: DWW	File No. Core A	611 LUNKEN PARK DRIVE
Approved By: AJM	Date: 9-3-10	CINCINNATI, OHIO 45226

ROCK CORE PHOTOGRAPHS

BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO BORING

ſ	PROJECT: BRENT SPENCE BRIDGE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGO	ATOR: BER: H	HCN / JM CN / DRK/DWW	DRILL HAMM	RIG: ER:	: CN		D-50 IATIC	_	STAT ALIG	TON /	/ OFF NT:	SET:	: <u>22</u> PROP	2+98.5 POSE	5, 50.0 D BSE	0 RT 3	EXPLOR	ATION ID 2A
	PID:	DRILLING METHOD: SAMPLING METHOD:	3.25 SP	" HSA / NQ T / ST / NQ	CALIB	RATI GY R	ON D/ RATIO	ATE:9 (%):)/9/10 83.7		ELE\ COO	/atio RD: _	N: _4	494.5 39.09	5 (MS 93551	L) E 1680,	OB: -84.5	16 22788	9.0 ft. 620	PAGE 1 OF 3
	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 494.5	DEPTHS	SPT/ RQD	N₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI ന്ദ	DATIC FS	DN (% SI	6) a	AT LL	TERB PL	ERG PI	WC	ODOT CLASS (GI)	HOLE SEALED
-	PREDRILLED (VACUUM EXCAVATED) LOOSE TO MEDIUM DENSE, GRAY AND B SAND, TRACE GRAVEL, TRACE SILT AND LITTLE BRICK FRAGMENTS, TRACE CLAY	Rown, fine Organics, ⁄, (fill), Moist	491.5		7 11 10	29	56	SS-1	_	1	35	54	6	4	NP	NP	NP	9	A-3 (0)	-
				- 5 - - 6 - - 7 -	13 16 16	45	56	SS-2	-	-	-	-	-	-	-	-	-	9	A-3 (V)	
				- 8 9 10	11 9 7	22	100	SS-3	-	-	-	-	-	-	-	-	-	46	A-3 (V)	-
	LOOSE TO MEDIUM DENSE, GRAY, SILT ,	AND SAND, ###	482.0	- 11 - - 12 - - 13 -	3 2 4	7	100	SS-4	-	-	-	-	-	-	-	-	-	22	A-3 (V)	-
	LITTLE CLAY, TRACE BRICK FRAGMENTS ORGANICS, (FILL), LOI=4.9% (18')	, TRACE	+ + + + + + + + + + + + + + + +	- 14	² 2 3 2	6	100	SS-5	_	-	-	-	-	-	-	-	-	15	A-4b (V)	
		$ \begin{array}{c} + & + \\ + $	+ + + + + + + + + + + + + + + + + + +	16 17 18	2	·			-		-	-	-	-			-		(V)	
		+ + + + + +	+ + + + + + + + + + +	- 19 - - 20 - - 21 -	4 3 3	8	79 100	ST-7 SS-8	-	0	0	38 -	50 -	12	NP -	NP -	NP -	33 24	A-4b (5) A-4b (V)	-
		+ + + + + + + + + + + + + + + + + + +	* * * * * * *	- 22 - - 23 - - 24 - - 25 -																
				- 26 - - 27 - - 28 - - 29 -	2 3 5	11	100	SS-9	-	-	-	-	-	-	-	-	-	29	A-4b (V)	-
	LOOSE TO MEDIUM DENSE, GRAY, GRAV FRAGMENTS WITH SAND, TRACE SILT, TI MOIST	EL AND STONE RACE CLAY,	404.3	- 30 - 31 - 32 - 33 - 33 - 34 - 34 - 34 - 35 - 34 - 35 - 34 - 35 - 35	² ² ³	7	100	SS-10	-	-	-	-	-	-	-	-	-	44	A-1-b (V)	-
				- 36 37 -	³ 66	17	67	SS-11	-	48	24	16	9	3	NP	NP	NP	13	A-1-b (0)	-
				- 38 - - 39 - - 40 -																_
	LOOSE TO MEDIUM DENSE, BROWN, GR		453.0	- 41 - - 42 -	2	10	0	ST-12	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
	CLAY, WET	SILI, TRACE			4		55	00-10				-							X-1-0 (V)	-
				- 46 - - 47 - - 48 -	5 7 10	24	56	SS-14	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	-
11/8/6 - 109.100				- 40 - - 49 - - 50 -	5 7	21	89	SS-15		31	30	26	9	4	NP	NP	NP	15	A-1-b (0)	
				- 51 52	8											-				
					6 6 9	21	100	SS-16	-	-	-	-	-	-	-	-	-	17	A-1-b (V)	-
SIANDARD			434.5	59																

PID: BR ID: PROJECT:BR	ENT SP	ENCE BRI	DGE ST	ATION /	OFFSE	T: _2	22+98.	5, 50.0 R	r_ s	TART	: <u>7/</u>	12/10	_ EI	ND:	7/1	5/10	_ P	G 2 O	F3 L	-2A
MATERIAL DESCRIPTION AND NOTES		ELEV.	DEPTH	HS	SPT/ RQD	N ₆₀	REC	SAMPLE ID	HP (tsf)	GR	GRA	DATIO	<u>) NC</u> SI	6) a	AT	TERE	BERG	wc	ODOT CLASS (GI)	HOLE
DENSE, BROWN, FINE SAND , TRACE GRAVEL, TRACE		<u>+0+.0</u>		_	7	31	100	SS-17	-	-	-	_	_	_	_	_	_	15	A-3 (V)	-
SILI, INACE CEAT, WEI				- 61 -	10	•														-
				- 62 -																
				- 64 -																
					7 13	32	100	SS-18	-	-	-	-	-	-	-	-	-	16	A-3 (V)	
					10											-				-
	F S			- 68 -	_															
				_ 00 _	-															
				- 71 -	10 13	39	100	SS-19	-	1	35	54	6	4	NP	NP	NP	19	A-3 (0)	
				_ · · · I	15															-
				 - 73 -	-															
				 - 74	-															
		419.5	-	 - 75 -	12															-
FRAGMENTS WITH SAND, TRACE SILT, TRACE CLAY	b C			- 76	19	54	100	SS-20	-	37	33	21	6	3	NP	NP	NP	11	A-1-b (0)	
	0	U M		- 1																1
				- 78 -	1															
		C .		- 79 -	1															
DENSE TO VERY DENSE BROWN GRAVEL AND STONE		414.5	-	- 80 -	11															
FRAGMENTS, AND SAND, TRACE SILT, TRACE CLAY, WET	00	0		- 81 -	16 21	52	67	SS-21	-	-	-	-	-	-	-	-	-	10	A-1-a (V)	
	00	Č		- 82 -																
	20	0 0		- 83 -																
	60			- 84 -																
	00	Q Q		85 -	9											<u> </u>				-
		0		- 86 -	14 17	43	67	SS-22	-	49	34	10	4	3	NP	NP	NP	11	A-1-a (0)	
		, T		- 87 -	-															
	00	Q		- 88 -	-															
	60	, d		- 89 - -	-															
	00			- 90 -	12	56	100	66.23										22	A 1 2 (V)	-
	Po	0		91	¹⁴ 26	50	100	33-23	-	-	-	-	-	-	-	-	-		A-1-a (V)	-
	00	d		92 -	-															
	00	d T		93 -	-															
		399.5		- 94 -	-															
DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND, TRACE SILT, TRACE CLAY				- 95 -	17 9	43	67	SS-24	-	21	40	29	8	2	NP	NP	NP	15	A-1-b (0)	-
		D T		- 96 -	22										<u> </u>					-
	• (`			 																
	0 0 0																			
Z		D																		
				- 101-	11	43	67	SS-25	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	
		D T		_ 101 L	20															-
		d D		- 103-	-															
	00 70	ld Id		- 	-															
		389.5	-	_ 105_	10															-
GRAVEL, TRACE SILT, TRACE CLAY, WET	-			- 106	18 29 35	89	100	SS-26	-	1	3	80	12	4	NP	NP	NP	24	A-3a (0)	
				_ I 107_																-
				 108																
8				– - – 109–	-															
				 110-	20															-
					30 42	100	100	SS-27	-	-	-	-	-	-	-	-	-	23	A-3a (V)	
				-112-																
5				-113-																
				-114-																
VERY DENSE, BROWN, GRAVEL AND STONE		379.5	-	-115-T	52		<u>.</u>	00.00		 	000		-						A 4 - (0)	
FRAGMENTS, AND SAND, TRACE SILT, TRACE CLAY,	Po	o D		-116-	54 50/4"	-	94	55-28	-	54	22	14	7	3		NP	NP	8	A-1-a (0)	
		J P		-117-																
	Peo	d		-118-	-															
	j.C			-119 	-															
	000	J J		- 120-	19	124	100	66.00										-	A 1 - 00	
		Ď		-121-	30 40	134		33-29	-	<u>-</u>	-	-	-	-	<u> </u>	-	-	L	//////////////////////////////////////	

	PID: 75119 BR ID: PROJECT:	BRENT SPI	ENCE BRI	DGE ST	TATION /	OFFSE	T: 2	22+98.	5, 50.0 RT	- s	TART	: 7/	12/10	E	ND:	7/1	5/10	Р	G 3 O	F3 L	-2A
	MATERIAL DESCRIPTION		ELEV.	DEPT	HS	SPT/	Nm	REC	SAMPLE	HP		GRA	PATIO		(م)	AT	TERE	ERG		ODOT	HOLE
	AND NOTES	p y	372.6		— —	RQD	•••0	(%)	ID	(tsf)	GR	CS	FS	SI	a.	LL	PL	PI	WC	CLASS (GI)	SEALEL
	FRAGMENTS, AND SAND, TRACE SILT, TRACE CLAY,				- 123-	-															
	vvE1 (continued)	°0	J V																		
		0	ţ		- 125-	20 20	-	100	SS-30	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	
					-126-	50/2"														- ()	
		00			-127-																
			366.0																		
	INTERBEDDED LIMESTONE (70%) AND SHALE (30%);		- <u>+</u>		-129-																
	WEATHERED, STRONG, THIN BEDDED, FOSSILIFEROU	is;	4		-130-	10		93	NQ-1											CORE	
	SHALE, GRAY, MODERATELY WEATHERED, WEAK VERY THIN TO THIN BEDDED, LOSS 1%, RQD 34%	, E			-																
	LS @130.1'-130.5' QU=8084 PSI	È	4														-				
			4		- 132-																
		\sum	Į.		- 133-																
	SH @137-137.4 QU=1861 PSI	A statement of the s	ŧ.		-134-	30		100	NQ-2											CORE	
	SH @ 138.1' SDI = 75.3	Ē	¥		—135—																
	LS @ 142.5' POINT LOAD = 12131 PSI	<u> </u>	1		-136-																
	SH @ 147.3' SDI = 40.1		Ŧ		-137-																
	LS @150.9'-151.4' QU=16544 PSI.	Ē	₹																		
		Į	Ž		120	40		100	NO 2											CODE	
		\square	7		- 139-	48		100	NQ-3											CORE	
		Ē	¥		- 140-																
		<u></u> <u></u>	Ţ		-141-																
		\square	Z		-142-																
			Ĭ		-143-																
		Ě	Ţ		- 144-	42		100	NQ-4											CORE	
		R	Z		- 145-																
			4		- 440																
		E E			- 140-												<u> </u>				
		₩ A	Į		- 147-																
			4		-148-																
		ŧ	<u> </u>		-149-	40		100	NQ-5											CORE	
		Ē	Į		-150-																
			4		- 151-																
		Ē	4																		
			ŧ		452																
					- 153-																
		Ē.	4		- 154-	24		98	NQ-6											CORE	
		E	1 1		-155-																
		Ē	338.0		-156-																
					-157-																
	TRACE SHALE PARTINGS TO SEAMS, LOSS 1%, RQD 7	3%																			
	LS @157.8'-158.3' QU=8566 PSI				- 150-	52		100	NO-7											CORE	
	I S @ 165 2' POINT I OAD = 13547 PSI	X			- 100	52														CORE	
		E E			- 160-																
		Ŕ	Ţ		-161-																
S.GP		Ŕ	4		-162-											1					
LOG		Þ	Z		-163-											1					
TOOC		R	d		-164-	80		98	NQ-8							1				CORE	
NTNC		Æ	4		-165-											1					
070/G		Ŕ	4		-166-											1					
1105		E	Z								-										
010/N			T T		- 10/-	100		100	NO-0											CORE	
3TS/2(R	325 5		- 168-				1102-3												
\mathbf{G}			JZ0.0	EOB-	169					1	1		<u> </u>	L	L	1	1	L			

NOTES: WATER USED BELOW 40 FT. FOR DRILLING/ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (14 BAGS CEMENT/2.5 BAGS BENTONITE)

BORING NO.: L- 2A CORE BOX NO.: 1 OF 3 DEPTH (ft.): 128.5-146.5 ELEVATION (ft.): 366 1/NQ: 128.5' – 131.5'; REC. 93%, RQD 10% 2/NQ: 131.5' – 136.5'; REC. 100%, RQD 30% 3/NQ: 136.5' – 141.5'; REC. 100%, RQD 48% 4/NQ: 141.5' – 146.5'; REC. 100%, RQD 42%

BORING NO.: L- 2A CORE BOX NO.: 2 OF 3 DEPTH (ft.): 146.5-161.5 ELEVATION (ft.): 348 5/NQ: 146.5' – 151.5'; REC. 100%, RQD 42% 6/NQ: 151.5' – 156.5'; REC. 98%, RQD 24% 7/NQ: 156.5' – 161.5'; REC. 100%, RQD 52%

BORING NO.: L- 2A CORE BOX NO.: 3 OF 3 DEPTH (ft.): 161.5-169.0 ELEVATION (ft.): 328 8/NQ: 161.5' – 166.5'; REC. 98%, RQD 80% 9/NQ: 166.5' – 169.0'; REC. 100%, RQD 100%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF	Scale: As Shown	(HCN)	BRENT SPENCE BRIDGE REPLACEMENT
Chkd By: DWW	File No. Core A	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF CINCINNATI, OHIO
Approved By ⁻ AJM	Date: 9-3-10	CINCINNATI, OHIO 45226	

L-2A

BORING

PROJECT: BRENT SPENCE BRIDGE	DRILLING FIRM / OPERA	TOR:	HCN / HH		LL RIG	: <u>CM</u>	IE 550X A	TV-72	53	STAT		/ OFF	-SET	: <u>1</u>	9+50 2055	.8, 6.9	9 RT B	EXPLOR	ATION -3
PID: BR ID: START: 7/14/10 END: 7/16/10	DRILLING METHOD:	3.25	" HSA / NQ SPT / NQ		.IBRAT ERGY I	TION D	ATE:	2/4/10 76.3		ELEV	ATIC	DN: _	458.7 39.09	7 (MS	<u>SL)</u> [2590.	EOB: -84.5		58.2 ft.	PAGE 1 OF
MATERIAL DESCRIPT	ION	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRAE	DATIC	<u>วท (</u> %	6)	AT	TERE	BERG	wc	ODOT CLASS (GI)	HOLI
WATER (OHIO RIVER)		458.7	- 1	-		(70)		((31)	GR		13	5	u				we		
				_															
			- 3	-															
			- 4																
			_ 5	_															
			6																
				_															
			- 9	-															
			10																
			- 11																
				_															
			- 14	-															
VERY LOOSE TO LOOSE, DARK BROWN, (GRAVEL	443.7	- 15	50/0"	-		SS-1	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
AND/OR STONE FRAGMENTS WITH SAND, TRACE CLAY, CONCRETE FRAGMENTS FF (FILL) WET	TRACE SILT, ROM 15'-21',		- 16																
				_															
			- 19	-															
			20	-															
		¥ 1	- 21	1 2	6	22	SS-2	_	-	_	_	-	-	-	_	_	29	A-1-b (V)	-
			- 22		3		00 -						_						-
			- 24	2	1 4	67	55-3	-	29	36	24	6	5			NP	26	А-1-б (0)	-
			25	1.	1 3	0	SS-4	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
			- 26																
					1		00.5												-
			- 29	- ·	1	0	55-5	-	-	-	-	-	-	-	-	-	-	A-1-D (V)	-
			30	8	11	00	00.0												-
LOOSE, BROWN, FINE SAND, TRACE GRA	VEL. TRACE	427.2	- 31	4	6	28	55-0	-	-	-	-	-	-	-	-	-	8	A-1-D (V)	-
SILT, TRACE CLAY, WET			- 33	4	4 10	100	SS-7	-	6	26	63	3	2	NP	NP	NP	-	A-3 (0)	_
			- 34	-															
			- 35	4	10	00											50		-
			- 36	4	4	22	55-8	-	-	-	-	-	-	-	-	-	52	A-3 (V)	-
			- 38																
			- 39	-															
			- 40	3	10	56	55.0		1	20	56	· ·	2				25	A 2 (0)	-
			41	4 4	4	50	33-9	-	1	39	50	2	2				25	A-3 (0)	-
			- 42	-															
			- 44	_															
MEDIUM DENSE, BROWN, GRAVEL AND S		413.7	45	10	22	11	SS 10											A 1 0 () ()	-
WET		-	- 46	°	9 22		33-10	-	-	-	-	-	-	-	-	-	5	A-1-a (V)	-
			- 48	-															
			- 49	_															
			- 50	10	28	67	<u> </u>		61	14	16	7	2				10	A 1 a (0)	-
		ł	51		1			-			.0	,						, a (0)	
				_															
		Ţ	- 54	-															
MEDIUM DENSE, BROWN, FINE SAND, TR	ACE TO LITTLE	403.7	55	8	10	67	00.40			20	E A	e						A 2 (0)	
GRAVEL, TRAGE SILT, TRAGE CLAY, WET			- 56		3 3	6/	55-12	-	4	32	5 4	6	4			PMP	24	A-3 (U)	
	FS			_															
		4 4 4	- 59	-															
		1	I E	1	1	1	1	1	1				1	L	1	1	I I	1	

PID: BR ID: PROJECT: BREN	IT SPE	NCE BRI	DGE	STATION /	OFFSE	ET:	19+50).8, 6.9 RT	S	TART	[: <u>7/</u>	14/10	_ E	ND:	7/1	6/10	_ P	G 2 O	F3 !	L-3
MATERIAL DESCRIPTION		ELEV.	DEF	PTHS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAI		<u>) NC</u>	6) 	AT	TERE	BERG		ODOT CLASS (GI)	HOLE
MEDIUM DENSE, BROWN, FINE SAND, TRACE TO LITTLE		398.7			5		(70)		((51)	GR	6	F3	5	u		PL	м	WC		SLALLD
GRAVEL, TRACE SILT, TRACE CLAY, WET (continued)		•		61	9 11	25	67	SS-13	-	11	28	55	4	2	NP	NP	NP	21	A-3 (0)	
		•		- 62 -	-															
	+ 5	•		- 63 -																
				- 64																
		393.7		- 65 -																_
MEDIUM DENSE TO DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND, TRACE SILT, TRACE	$\widetilde{\mathcal{O}}$			- 66 -	16 9	24	67	SS-14	-	27	36	29	5	3	NP	NP	NP	15	A-1-b (0)	
CLAY, WET					10										┢					-
	0			- 0/ -]															
				- 68 -	-															
				- 69 -	-															
				70	11										1			1.0		-
				_ 71 -	99	23	67	SS-15	-	21	58	15	3	3	NP	NP	NP	16	A-1-b (0)	
				- 72 -	-															
				- 73 -	-															
	~ 0			- 74 -	-															
				- 75 -	0										⊢					-
	• C •			- 76 -	9 12	27	67	SS-16	-	9	52	33	4	2	NP	NP	NP	19	A-1-b (0)	
				- I	- 12										-					-
				- 78 -																
				- 70 -																
		378.7		- /9 -]															
MEDIUM DENSE TO DENSE, BROWN, GRAVEL AND				- 80 -	50/0"	<u> </u>		SS-17	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
88.2', AUGER REFUSAL AT 88.2', WET	000	1		- 81 -	-															
		1		- 82 -																
		1		- 83 -																
				- 84 -																
				- 85 -	-															
				- 86 -																
				- 87 -	-															
	000	370.5																		
LIMESTONE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, THIN BEDDED, ARGILLACEOUS,				- 89 -			100	NO 1											CODE	
THIN SHALE SEAMS, LOSS 3%, RQD 51%				- 90 -			100	NQ-1											CORE	
LS @ 93.1' POINT LOAD = 9195 PSI				- 01 -																
LS/SH @ 97.6'-98' QU=3277 PSI				- 02	-															
LS @100.2'-100.4' QU=12940 PSI				- 92 -	62		92	NQ-2											CORE	
LS @103.8'-104.4' QU=13314 PSI				- 93 -																
LS @113.2'-114.2' QU=21169 PSI				- 94 -																
				- 95 -	-										┢	-				-
IS @ 117.6' POINT LOAD = 11786 PSI				- 96 -																
				97 -																
				- 98 -	60		96	NQ-3											CORE	
				- 99 -																
25				-100-																_
				-103-	78		98	NQ-4											CORE	
				-104																
				- 104-																
				- 105-											-					-
				- 106-																
				- 107-	56		100	NO 5											CORE	
				-108-	50			1102-5											CORE	
				109																
				-110-											_					-
※ 二				-111-																
3				-112-	-															
				-113-	34		96	NQ-6											CORE	
				-114-											1					
				-115-																
															1					
					36		100	NQ-7							1				CORE	
				- 118-											1					
				- 119-											1					
		338.5	-	- 120-	-									-	\vdash	-				-
				-121-																

PID: 7	75119	BR ID:	PROJECT:	BRENT SP	ENCE BRI	DGE	STATION	OFFSE	:T:	19+50	.8, 6.9 RT	S	TART	: 7/1	4/10	ENI	D:	16/10)F	PG 3 O	F 3	L-3
		MATERIAL DESCRI	PTION		ELEV.	DEF	PTHS	SPT/	Neo	REC	SAMPLE	HP		GRAC	ATIÇ	N (%)	A	TTER	BERG	5		HOLE
LIMEST		AND NOTES			336.8			RQD		(%)	ID	(tsf)	GR	cs	FS	SI	a u	. PL	. PI	WC	CLASS (GI)	SEALED
BEDDE	ED, ARG	ILLACEOUS, THIN SHALE	PARTINGS,					84		100	NQ-8										CORE	
FOSSIL	LIFEROL	JS SEAMS, LOSS 2%, RQ	D 74%				-															
LS/SH	@121.2	-121.8' QU=6704 PSI			-		-124-															
LS @12	21.8'-12	2.8' QU=13540 PSI																				-
18/54	@124 6	-125 2' OLI= 3054 PSI																				
							-															
LS @ 1	137.2' PC	DINT LOAD = 10439 PSI					- 127	94		100	NQ-9										CORE	
LS @14	45.2'-14	6.2' QU=11537 PSI																				
LS/SH	@145.6	-146.1' QU=9434 PSI					-129-															
15@1	147 8' P()INT I OAD = 10434 PSI					-130-															-
	F0 7 40																					
LS @1	58.7-16	J.2 QU=17189 PSI					- 122															
LS @16	62.8'-16	3.3' QU=12114 PSI					- 132-	86		100	NQ-10										CORE	
LS @10	64.5'-16	5.2' QU=15115 PSI. <i>(contin</i>	ued)				-133-				ing io										00112	
							-134-															
													1							1		
							- 137-	70		100	NO-11										CORE	
							-138-															
							-139-															
							- 141-															
							-															
							- 142-	62		08	NO-12										CORE	
							-143-	02		90	1102-12										CORL	
							-144-															
							-															
							- 14/-	64		100	NO 13										COPE	
							-148-	04			110-13										CORL	
							-149-															
							- 															
							- 151															
								24		00	NO 14										CODE	
							-153-	34		92	NQ-14										CORE	
							-154-															
							- 155-															
							- 156															
				F			- 001						1							1		
																					0005	
							-158-	62		90	INQ-15										CORE	
							-159-															
							- 161															1
2							-101-															
SS.GF							-162-	400		400			1							1	00055	
							-163-	100		100	INQ-16		1							1	CORE	
DOT							-164-						1							1		
2/TN					4								1							1		
70/6							-						1							1		
1050							- 166- -	03		100	NO-17		1							1		
10/N1							-167-	93			1102-17										JURE	
S/20					290.5	L_EOB-	168															
ECT																						

NOTES: WATER USED BELOW 88 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (12 BAGS CEMENT/1.5 BAGS BENTONITE)

BORING NO.: L- 3 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 88.2-105.2 ELEVATION (ft.): 370.46 1/NQ: 88.2' – 90.2'; REC. 100%, RQD 0% 2/NQ: 90.2' – 95.2'; REC. 92%, RQD 62% 3/NQ: 95.2' – 100.7'; REC. 87%, RQD 55% 4/NQ: 100.7' – 105.2'; REC. 100%, RQD 87%

BORING NO.: L- 3 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 105.2-120.2 ELEVATION (ft.): 353.46 5/NQ: 105.2' – 110.2'; REC. 100%, RQD 56% 6/NQ: 110.2' – 115.2'; REC. 96%, RQD 34% 7/NQ: 115.2' – 120.2'; REC. 100%, RQD 36%

611 LUNKEN CINCINNATI, BORING NO.: L- 3 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 120.2-135.2 ELEVATION (ft.): 338.46 8/NQ: 120.2' – 125.2'; REC. 100%, RQD 84% 9/NQ: 125.2' – 130.2'; REC. 100%, RQD 94% 10/NQ: 130.2' – 135.2'; REC. 100%, RQD 86%

BORING

	ROCK CORE PHOTOGRAPHS
COMPANY	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFE
PARK DRIVE	CINCINNATI, OHIO
OHIO 45226	

Project Mngr.: AJM	PN. N1105070
Drawn By: TCF	Scale: As Shown
Chkd By: DWW	File No. Core A
Approved By: AJM	Date: 9-3-10

ΠF

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF	Scale: As Shown	(HCN)	BRENT SPENCE BRIDGE REPLACEMENT
Chkd By: DWW	File No. Core A	A TIEFFRACION COMPANY 611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF CINCINNATI, OHIO
Approved By: AJM	Date: 9-3-10	CINCINNATI, OHIO 45226	

BORING

L-3

PROJECT: BRENT SPENCE BRIDGE TYPE: BRIDGE REPLACEMENT	DRILLING FIRM / OPER	ATOR: GER: H	HCN / JM ICN / DRK/DWV		RILL RIG	G: [DIEDRICH	I D-50 MATIC		STAT ALIG	TON NME	/ OFF NT:	FSET	: <u>2(</u> PROF)+86. POSE	.5, 55 D BS	. <u>1 LT</u> B	EXPLOR	ATION II 3A
PID:	DRILLING METHOD: SAMPLING METHOD:	3.25	5" HSA / NQ SPT / NQ	C/	ALIBRA NERGY	FION D RATIO	ATE: (%):	9/9/10 83.7		ELEV COO	/atic RD:	ON: _	496. 39.0	1 (MS 92603	<u>SL)</u> I 3170,	EOB: -84.5	16 522993	5.0 ft. 3590	PAGE 1 OF 3
MATERIAL DESCRIF AND NOTES	TION	ELEV. 496.1	DEPTHS	SP RC	2T/ N ₆₀	REC (%)	SAMPLE	HP (tsf)	GR	GRAI cs	DATIO FS	ON (% SI	%) a.	AT LL	TERE PL	BERG	wc	ODOT CLASS (GI)	HOLE
PRE-DRILLED (VACUUM EXCAVATION)				1															
LOOSE TO MEDIUM DENSE, BLACK, GR STONE FRAGMENTS WITH SAND , LITTLI TRACE BRICK FRAGMENTS, TRACE SIL ⁷ (FILL), VERY LOOSE FROM 30' TO 40', M	AVEL AND/OR E CINDERS, T, TRACE CLAY, OIST TO WET	489.1		$\begin{array}{c} 6 \\ - \\ 7 \\ - \\ 8 \\ - \\ 9 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	8	67	SS-1	-	-	-	-	-	-	-	-	-	25	A-1-b (V)	-
			- 1 - 1 - 1 - 1 - 1 - 1 - 1	$\begin{vmatrix} 1 \\ 1 \\ 2 \end{vmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	3 4 10 5 7 17	100 67	SS-2 SS-3	-	-	-	-	-	-	-	-	-	22 36	A-1-b (V) A-1-b (V)	-
		9 27 4 9 27 4 9	- 1 - 1 - 1	5 - 2 6 - 3 7 - 2	3 10 4	100	SS-4	-	-	-	-	-	-	-	-	-	39	A-1-b (V)	-
				$\begin{array}{c} 2 \\ 19 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21$	2 6 2 6 2 6 2 2	100	SS-5 SS-6	-	49	-	-	7	4	NP -	NP -	NP -	65 40	A-1-b (0)	-
			- 2 - 2 - 2 - 2 - 2	22															
				26 - 1 27 28 29	3 6	44	SS-7	-	-	-	-	-	-	-	-	-	43	A-1-b (V)	
			3 3 3	30 - 2 31 - 1 32 33 34	2 4	100	SS-8	-	25	32	25	9	9	NP	NP	NP	62	A-1-b (0)	-
			- 3 - 3 - 3 - 3 - 3 - 3	$\begin{array}{c} 35 \\ \hline 1 \\ 36 \\ \hline 1 \\ 37 \\ \hline 37 \\ \hline 38 \\ \hline 38 \\ \hline 39 \\ \hline 39 \\ \hline \end{array}$	2 4	100	SS-9	-	-	-	-	-	-	-	-	-	47	A-1-b (V)	-
VERY LOOSE TO LOOSE, GRAY, COARS SAND , TRACE SILT AND WOOD FRAGM	E AND FINE ENTS, (FILL), WET	456.1		40 - 1 1 - 1 11 - 1 12 13 14	3	44	SS-10	2.00	-	-	-	-	-	-	-	-	86	A-3a (V)	
		******	4 4 4 4	46 - 3 47 - 48 - 48 - 48 - 48 - 48 - 48 - 48 -	8 8	100	SS-11	-	-	-	-	-	-	-	-	-	29	A-3a (V)	
STIFF, LIGHT BROWN, SANDY SILT , SON TO SOME GRAVEL, MOIST	ME CLAY, TRACE	446.1	- 4 - 5 - 5 - 5 - 5 - 5	$\begin{array}{c} 19 \\ 50 \\ 51 \\ 52 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53$	7 17 5	44	SS-12	1.50	17	17	22	24	20	26	17	9	27	A-4a (2)	-
			- 5 - 5 - 5 - 5 - 5 - 5 - 5	55 - 2 56 - 2 57 - 57 - 2	2 4 8	0	SS-13	-	-	-	-	-	-	-	-	-	18	A-4a (V)	-
		436.1	5 5 5	- 58 59 -															

PID: <u>75119</u>	BR ID:	PROJECT: BRE	ENT SPE	NCE BRI	DGE	STATION	/ OFFSE	ET:	<u>20+86.</u>	. <u>5, 55.1 L</u> T	S	TART	: 5/1	7/10	_ EI	ND: _	5/2	0/10	_ P	G 2 O	F3 L	-3A
	MATERIAL DESCRIF AND NOTES	PTION		ELEV. 436.1	DE	EPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI cs	DATIC FS	<u>)N (%</u> si	6) a_	AT	TERE R	BERG PI	wc	ODOT CLASS (GI)	HOLE
VERY STIFF, BL SAND, SOME W	ACK AND BROWN, COA OOD FRAGMENTS, WET	RSE AND FINE				- 61 -	5 4	11	100	SS-14	2.25	-	-	-	-	-	-	-	-	29	A-3a (V)	
						- 62 -	4															
						- 63 -	-															
						- 64 -	-															
	TO DENSE BROWN AN			431.1	W	- 65 -	-															
SAND, AND COA	ARSE SAND, TRACE SIL	T, TRACE CLAY,				- 66 -	4	11	100	SS-15	-	-	-	-	-	-	-	-	-	29	A-3 (V)	
	-,					67 -																
						- 68 -																
						69 -	_															
				1		- 70 -	5		400	00.40										40		
						- 71 - -	8	22	100	SS-16	-	-	-	-	-	-	-	-	-	18	A-3 (V)	
				}		- 72 -	-															
						- 73 -	-															
						- 75 -																
						- 76 -	5	25	100	SS-17	-	7	38	45	5	5	NP	NP	NP	20	A-3 (0)	
						- 77 -																
			FS	ł		- 78 -	-															
						- 79 -	-															
				ļ		- 80 -	 11															
				}		- 81 -	15 14	40	100	SS-18	-	-	-	-	-	-	-	-	-	19	A-3 (V)	
						- 82 -	-															
						- 83 -	-															
				ĺ		- 84 -	-															
						- 85 -	10	32	100	SS-19	_		_	_		_	<u> </u>	_	_	14	A-3 (\/)	
						- 86 -	11		100	00-10				_	_					14	A-5 (V)	
				l I		- 87 -																
						- 89 -																
				406.1		- 90 -	-															
VERY DENSE, B	BROWN, SILT , TRACE SA	AND, WET	+++++++++++++++++++++++++++++++++++++++	-		- 91 -	10 18 24	59	100	SS-20	-	-	-	-	-	-	-	-	-	24	A-4b (V)	
			+++++++++++++++++++++++++++++++++++++++	1 + +		- 92 -	-															
			+++++++++++++++++++++++++++++++++++++++	1 + +		- 93 -	-															
			+++++++++++++++++++++++++++++++++++++++	+ + +		- 94 -	-															
DENSE TO VER	Y DENSE, BROWN, FINE	SAND, TRACE	++++	401.1		_ 95 -	22															
SILT, TRACE CL	.AY, WET					- 96 -	25 25	70	100	SS-21	-	-	-	-	-	-	-	-	-	18	A-3 (V)	
						- 97 -	-															
						- 98 - -	-															
5						- 99 -	-															
D D			.F.S.	[-100-	8 16	45	0	SS-22	-	-	-	-	-	-	-	-	-	-	A-3 (V)	
						-107-	16					-									. ,	
				1		-102-	-															
						-104-	-															
		RAVFI WITH		391.1	-	-105-	10															
SAND, TRACE S	BILT, TRACE CLAY, WET					-106-		28	100	SS-23	-	39	33	23	2	3	NP	NP	NP	18	A-1-b (0)	
				† •		-107-																
				ł		108-	_															
			ĔĊ			-109-	-															
						-110- -	18	31	67	55-24	_	 _		_	_	_	_	_	_	1/	Δ-1-h () ()	
				•			10			00-24	-	- -	-	-	-	-	-	-	-	14	<u>, , , , , , , , , , , , , , , , , , , </u>	
			ĔŎ			-112-	-															
<						- 115-	-															
2						-116-	13 13	35	100	SS-25	-	-	-	-	-	-	-	-	-	17	A-1-b (V)	
						-117-	■ <u> </u>															
			b L	1		- 118-	-															
						-119-	-															
VERY DENSE. B	BROWN, GRAVEL AND S	TONE		376.1	-	-120-	49					-										
FRAGMENTS , S WET	OME SAND, TRACE SILT	T, TRACE CLAY,		1		-121-	49 50/5"	-	106	SS-26	-	59	17	17	4	3	NP	NP	NP	12	A-1-a (0)	

Р	ID: <u>75119</u>	BR ID:	PROJECT: BREN	NT SPE	NCE BRI	DGE S	TATION	OFFSE	ET:	20+86.	5, 55.1 L1	S	TART	:_5/	17/10	E	ND:	5/2	0/10	_ P(G 3 OI	= 3 L	-3A
Γ		MATERIAL DESCRIP	PTION		ELEV.	DEPT	ΉS	SPT/	N ₆₀	REC	SAMPLE	HP		GRA	DATIO) NC	6) ~	AT	TERB	ERG			HOLE
	VERY DENSE.	BROWN. GRAVEL AND S	TONE		374.2			RQD	~	(%)	ID	(tst)	GR	CS	FS	SI	a.		н	н	WC	CLASS (GI)	SEALED
ļ		SOME SAND, TRACE SILT	, TRACE CLAY,					37	74	100	00.07										20	A 1 a () ()	
		(d)		.0				42	/4	100	55-21	-	-	-	-	-	-	-	-	-	20	A-1-a (V)	
				00	371.1		- 124	-															
	NTERBEDDE	D LIMESTONE (75%) AND	SHALE (25%);			TR	+-125- -	-50/2"/	<u>h</u> /	100/	SS-28	卜/	1-	<u> </u>	-	- /	-		-			Rock (V)	
-	THIN BEDDED	, FOSSILIFEROUS, ARGILI	LACEOUS, LOSS				-126-	-															
2	2%, RQD 39%, SHALE, GF	, MODERATELY FRACTUR RAY, UNWEATHERED TO F	ED; HGHLY				-127-																
\	WEATHERED,	WEAK TO SLIGHTLY STR	ONG, LAMINATED,				- 128-	31		83	NQ-1											CORF	
	SH @126.5'-12	26.75' QU=570 PSI																				00.12	
	SH @ 134.25'	SDI = 85.3					- 120																
Ι.	S @ 134 6' P	OINT I OAD = 14846 PSI					- 130-																
`	SH @142.3-14	12.5° QU=4272 PSI					-132-	25		100	NO-2											CORE	
	SH @ 150.5' S	SDI = 97.7		Ē			-133-	- 20			1102 2											CONE	
1	_S @ 152.75' F	POINT LOAD = 12976 PSI					-134-																
l	_S @155'-155.	.5' QU=16975 PSI																					
	SH @157.7'-15	58' QU=2759 PSI.																					
	U						- 130-																
							-137-	35		100	NQ-3											CORE	
							139																
					-		-140-																
							-141-																
							- 1/3-	40		100	NQ-4											CORE	
							-	-															
							- 144-																
							146																
							-147-			100	NO 5											0005	
								50		100	NQ-5											CORE	
							- 																
							- 150-																
							- 150-																
							- 151-																
								40		100	NQ-6											CORE	
							-153-															00112	
							-154-																
				F			-																
							157																
							- 157-	66		100	NQ-7											CORE	
							159																
							-160-																
					<u>+</u>		-161-																
GР																							
OGS.								22		100	NQ-8											CORE	
OT L							-																
DOL					331.1		- 164-																
0/GIN					001.1	EOB-			I	I	<u>I</u>	1		<u>. </u>	1	I	L	I	1		L		
0507																							
0/N11																							
S\201																							
ECT																							

NOTES: WATER USED AT 126 FT. FOR ROCK CORING PURPOSES. WATER NOTED AT 38 FT. AFTER 24 HRS. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (13 BAGS CEMENT/2 BAGS BENTONITE)

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown	(HCN)	BRENT SPENCE BRIDGE REPLACEMENT	1_34
Chkd By: DWW	File No. Core B	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF CINCINNATI, OHIO	
Approved By: AJM	Date: 9-8-10	CINCINNATI, OHIO 45226		

PR	OJECT: BRENT SPENCE BRIDGE	DRILLING FIRM / OPERA	TOR:	HCN /	JM	DRIL	L RIG	:[DIEDRICH	D-50		STAT	ION	/ OFF	SET	: _ 5	+65.5	5, 12.9	9 LT	EXPLORA	
TY PII	PE: <u>BRIDGE REPLACEMENT</u> D: <u>75119</u> BR ID:	SAMPLING FIRM / LOGO DRILLING METHOD:	ER: 3.25	HCN / DV HSA / NC	<u>איא</u> 2	HAM CALI	IMER: IBRAT	<u>CI</u> ION D	ME AUTO ATE:	MATIC 9/9/10		ALIG ELE\	NMEI /ATIC	NT: _)N: _	F 480.0	PROP) (MS	<u>'OSEI</u> L) E	d BSI Eob:	B 15	<u>9.0 ft.</u>	PAGE
ST	ART: <u>6/30/10</u> END: <u>7/7/10</u> MATERIAL DESCRIP	SAMPLING METHOD:	SP FLEV	<u>T / ST / NO</u>	2	ENE	RGY F		(%):	83.7 HP	<u> </u>		RD:		39.08	38805	640,	-84.5	23275	5430	
	AND NOTES		480.0	DEPT	ΉS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS CS	FS	SI	₀) α_		R.	P P	WC	CLASS (GI)	SEALED
S/	EDIUM STIFF, BROWN AND GRAY, SILT AND, TRACE SHALE FRAGMENTS, WOC	DD, ORGANICS,			- 1 -	1 3 4	10	78	SS-1	1.50	-	-	-	-	-	-	-	-	38	A-6a (V)	
	ND GRAVEL (FILL), MOIST				- 2 -																
					- 3 -	4 6	17	89	SS-2	2.00	- I	_	-	-	_	-	_	_	19	A-6a (V)	
					- 4 -	6															
					- 5 -	3															
					- 6 -	5 6	15	100	SS-3	2.25	-	-	-	-	-	-	-	-	26	A-6a (V)	
					- 7 -																
					- 8 -	3 4	18	67	SS-4	2.00	10	24	18	31	17	35	24	11	27	A-6a (3)	
					- 9 -	9															
					- 10 -	2	0														
					- 11 -	3	0	6	55-5	2.50	-	-	-	-	-	-	-	-	13	A-6a (V)	
			467.5		- 12	10															
S	TONE FRAGMENTS WITH SAND, TRACE	E SILT, SLAG,			- 13 -	2	6	33	SS-6	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	
					14 - -																
						3 1	4	0	SS-7	_	-	-	-	-	_	-	_	-	-	A-1-b (V)	
						2															
			X.			2															
			*			2	6	22	SS-8	-	-	-	-	-	-	-	-	-	24	A-1-b (V)	
					- 20 -																
					- 21 -	3	7	39	SS-9	-	-	-	-	-	-	-	-	-	28	A-1-b (V)	
				T	- 22	3															
					- 23																
					- 24																
5	OFT GRAY CLAY AND SILT TRACE OF		455.0		- 25 -	2															
S	AND, LOI=5.4% (25'), MOIST				- 26 -	22	6	67	SS-10	1.25	0	0	2	62	36	50	29	21	44	A-7-6 (14)	
					- 27																
					- 28 -																
					- 29																
				W	- 30 -																
					_ 31 _			83	ST-11	1.50	0	0	1	62	37	46	25	21	37	A-7-6 (14)	
					- 32 -	2															
					- 33 -	1	6	6	SS-12	1.00	-	-	-	-	-	-	-	-	44	A-7-6 (V)	
					- 34 -																
					- 35 -	1	7	100	SS 12	1 50									22	A 7 6 (\)	
					- 36 -	23	, '	100	33-13	1.50	-	-	-	-	-	-	-	-	32	A-7-0 (V)	
					- 37																
SS.GP					- 38																
			-		- 39																
						3 4	10	72	SS-14	-	-	-	-	-	-	-	-	-	24	A-7-6 (V)	
70/GIN					- 42	3															
11050					- 43																
2010/N			-		- 44																
			435.0		- 45 -	7															
BLOAR	EDIUM DENSE TO DENSE, BROWN, GR T ONE FRAGMENTS WITH SAND , TRACE	E SILT, TRACE			- 46 -	/ 8 6	20	28	SS-15	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
	LAT, VERT DENSE AT 05, WET				- 47																
1 10:0					- 48																
- 3/9/					- 49 -																
1.GD1			, T		- 50 -	11															
DO HO					_ 51 -	15 17	45	56	SS-16	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	
17)-(- 52 -																
(11 X					- 53 -																
G LOG			1		- 54 -																
SORIN					55	17	20	50	00.47		_	_	07	7	_				40		
SOILE			•		- 56 -	14	39	90	ວວ-1 <i>1</i>	-	⁵⁴	9	21	/	3				12	A-1-D (U)	
TODO					57 																
IARD (, T		- 58																
STANC					- 59 -																

F	PID: <u>75119</u> BR ID:	PROJECT: BRENT SPE	NCE BRI	DGE ST	TATION /	OFFSE	T:	5+65.	5, 12.9 LT	S	TART	: 6/3	30/10	E	ND:	7/7	7/10	_ P	G 2 O	F 3	L-4
Γ	MATERIAL DESCRIP	PTION	ELEV.	DEPT	HS	SPT/	Neo	REC	SAMPLE	HP		GRA	DATIO) NC	6)	AT	TERE	ERG			HOLE
┢	AND NOTES MEDIUM DENSE TO DENSE, BROWN, GI	RAVEL AND	420.0			18		(%)	U	(tst)	GR	CS	FS	SI	a.		н	н	wc	CLASS (GI)	SEALED
	STONE FRAGMENTS WITH SAND, TRAC	E SILT, TRACE			- 61 -	15 16	43	33	SS-18	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
			\$		- 62 -																
					- 63 -																
						-															
					- 64 -	-															
					65	40	04	00	00.40										_		-
					- 66 -	31 34	91	33	55-19	-	-	-	-	-	-	-	-	-		A-1-D (V)	
					- 67 -																
			X		- 68 -																
			Í		- 69 -																
			410.0			-															
	DENSE TO VERY DENSE, BROWN, GRA					9	40	67	55 20		56	25	12	2	2				11	A 1 a (0)	-
	WET				- 71 -	18	49	07	33-20	-	00	25	13	3	3		INP	INP		A-1-a (0)	
					- 72 -	-															
					- 73 -	-															
					- 74 -																
					- 75 -																
					- 70	11 19	54	56	SS-21	_	-	_	-	-	-	-	-	-	10	A-1-a (V)	
					F /º 7	20															-
					- 77 -																
					- 78 -																
		0			- 79 -																
			400.0		- 80 -					-	<u> </u>	-									-
	DENSE TO VERY DENSE, BROWN TRAC AND STONE FRAGMENTS WITH SAND, 1	FRACE SILT,			- 91 -	9 11	29	67	SS-22	-	20	63	11	3	3	NP	NP	NP	18	A-1-b (0)	
	TRACE CLAY, MEDIUM DENSE AT 80', W	VET bit				10															-
			•		- 82 -																
			1 T		- 83 -																
		Č			- 84 -																
			ý.		- 85 -	Q															-
					- 86 -	18 17	49	6	SS-23	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	
			Ì		– 1 – 87 –																-
						-															
			ł		- 88 -																
					- 89 -																
			Į		- 90 T	31															-
			i		- 91 -	26 45	99	67	SS-24	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
			388.0		- 92 -	24															-
	VERY DENSE, GRAY, STONE FRAGMEN LIMESTONE FRAGMENTS, WET	ITS WITH SAND,			- 03 -	100/3"	-	67	SS-25	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
						-															
					- 94 -																
			X T		95 -	100/1"_/	\ <u>-</u> /		SS-26	<u>h - /</u>	-	<u> </u>	-	-	-		- 1	<u> </u>	11	A-1-b (V)	7
					- 96 -																
			X T		- 97 -	-															
					- 98 -																
					- 99 -																
2			1		- 100	-															
5			l.			100/3"	~-~		SS-27	┝∕	-		-	-	-					A-1-b (V)	
Č			ţ		-101-	1															
nnn					-102-																
					-103-	-															
			376.0	TR	-104-																-
110	LIMESTONE, GRAY, UNWEATHERED		ŧ		-105-																
J/01.0	WEATHERED, STRONG, THIN BEDDED, FOSSILIFEROUS SEAMS, FRACTURED, I	ARGILLACEOUS,			106	0		17	NQ-1											CORE	
18/2	12%; SHALE GRAY SUGHTLY WEATHER		- -		- 100-																
OUEC	LAMINATED, FISSILE,		ŧ		-107-																
Y Y Y	SH @ 108.5' SDI = 59.2		ł		-108-																
- L	LS @116'-116.5' QU=13646 PSI		1		-109-																
	LS @120.4'-120.9' QU=12705 PSI		Ī		-110-	1															
3/9/1	LS @127.5'-128' QU=17130 PSI	美	ŧ																		
	LS @ 132.4' POINT LOAD = 11696 PSI		1																	0005	
			1		- 112-	12		90	NQ-2											CORE	
HO.			ł		-113-	1															
-	LS @143'-143.5' QU=12509 PSI]		-114-																
×	LS @ 141.4' POINT LOAD = 11853 PSI.				-115-																
D D			\$		-116-																
PNIN			ł		-117-						<u> </u>										
Da l																					
soll			Ī		- 118-																
			4 ¥		-119-																
		X			-120-																
AND			Į		-121-																
0			}	I	1	1		1	1	1	1	Í.	1	I.	I	1	1	1	1	i i	

PID: BR ID: PROJECT: _	BRENT SPE	NCE BRID	GE STATI	ON / OFFS	SET:	5+65.	5, 12.9 LT	S [.]	TART	: 6/3	0/10	_ END	7/	7/10	P	G 3 OF	3	L-4
MATERIAL DESCRIPTION AND NOTES		ELEV.	DEPTHS	SPT	/ N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRAE	DATIC	DN (%)	A1		BERG	wc	ODOT CLASS (GI)	HOLE
INTERBEDDED LIMESTONE (75%) AND SHALE (25%)		300.1	_	20	, 	98	NQ-3	((31)			10					110	CORE	
LIMESTONE, GRAY, UNWEATHERED TO SLIGHTLY WEATHERED, STRONG, THIN BEDDED, ARGILLACEO	us,		-1	23-														
FOSSILIFEROUS SEAMS, FRACTURED, LOSS 11%, R 12%;			-1	24-														
SHALE, GRAY, SLIGHTLY WEATHERED, WEAK,			-1	25-														
SH @ 108.5' SDI = 59.2				26-														
LS @116'-116.5' QU=13646 PSI	<u> </u>	-		27	_								_					-
LS @120.4'-120.9' QU=12705 PSI				28-50	_	100	NQ-4						_				CORE	-
LS @127.5'-128' QU=17130 PSI				29-														
LS @ 132.4' POINT LOAD = 11696 PSI				30-														
LS @140.5'-141' QU=13056 PSI				31-														
LS @143'-143.5' QU=12509 PSI			-1	32														
LS @ 141.4' POINT LOAD = 11853 PSI. (continued)			-1	33-0		94	NQ-5										CORF	
				34			na o										CONE	
	1 A A A A A A A A A A A A A A A A A A A			25														
	\square			35-														
				36														
			1 -	37-														
			-1	38									+					-
			-1	39														
	<u>E</u>		-1	40														
			-1	41														
			-1	42-														
				43-21		94	NQ-6										CORE	
				44														
			-	45														
				16														
			F	40														
	E C	332.0	1 -	4/														
BLANK DRILLED FOR SEISMIC TESTING			1 -	48-														
			1 1	49														
			-1	50-														
			-1	51-														
			-1	52														
			-1	53-														
			-1	54														
				55														
			-1	56-														
				57														
			F.															
		321.0	1 -	58														
	I	0-1.0	—EOB———1	59		1		1	I	<u> </u>					1			

NOTES: WATER USED IN DRILLING AT THE SURFACE. WATER NOTED AT 32 FT. AFTER 24 HRS. 3 INCH PVC CASING INSTALLED FROM SURFACE TO 159 FEET. CASING BROKE DURING REMOVAL AN ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (12 BAGS CEMENT/1.5 BAGS BENTONITE)

BORING NO.: L-4 CORE BOX NO.: 1 OF 3 DEPTH (ft.): 104.0-127.0 ELEVATION (ft.): 375.97 1/NQ: 104.0'-107.0'; REC. 17%, RQD 0% 2/NQ: 107.0'-117.0'; REC. 90%, RQD 12% 3/NQ: 117.0'-127.0'; REC. 98%, RQD 20%

BORING NO.: L- 4 CORE BOX NO.: 2 OF 3 DEPTH (ft.): 127.0-138.0 ELEVATION (ft.): 352.97 4/NQ: 127.'-128.0'; REC. 100%, RQD 50% 5/NQ: 128.0'-138.0'; REC. 99%, RQD 0%

BORING NO.: L- 4 CORE BOX NO.: 3 OF 3 DEPTH (ft.): 138.0-148.0 ELEVATION (ft.): 341.97 6/NQ: 138.0'-148.0'; REC. 94%, RQD 21%

BORING

L-4

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core B Date: 9-8-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO

	PROJECT: <u>BRENT SPENCE BRIDGE</u> TYPE: <u>BRIDGE REPLACEMENT</u> PID: <u>75119</u> BR ID:	DRILLING FIRM / OPER SAMPLING FIRM / LOG DRILLING METHOD:	ATOR: GER:+ 3.25	HCN / J. ICN / DRK/D " HSA / NQ	J WW	DRIL HAM	l Rig: Mer: Brati	: <u>CM</u> CN	E 550X AT //E AUTOM ATE:2	TV- 933 MATIC 2/4/10	33	STAT ALIG ELE\	FION NMEI /ATIC	/ OFF NT: _)N: _4	SET: F 486.3	: <u>3</u> PROP 8 (MS	+72.7 OSEI L) E	' <u>, 10.9</u> D BSE OB:	9 LT 3 14	EXPLORA L- 7.0 ft.	ATION ID 5 PAGE
╞	START: <u>6/30/10</u> END: <u>7/2/10</u> MATERIAL DESCRIPT	SAMPLING METHOD: _	SP	T / ST / NQ		ENE		RATIO	(%): SAMPLE	67.1 HP		COO GRAI	RD: _	: DN (%	39.08 ພ	38276 AT	6550, TFRB	-84.5 FRG	23297	<u>орот</u>	1 OF 3 HOLE
ł	AND NOTES		486.3		S	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	a.	LL.	PL	P	WC	CLASS (GI)	SEALED
	PRE-DRILLED (VACUUM EXCAVATED)		481.3		- 1																
	MEDIUM STIFF TO STIFF, BROWN AND G CLAY, LITTLE SAND, TRACE ORGANICS, FRAGMENTS, (FILL), MOIST	RAY, SILT AND TRACE ROCK			- 6 -	5		100	SS-1	1.00	-	-	-	-	-	-	-	-	38	A-6a (V)	
				- - - - -	- 8 - - 9 - - 10 -	2 3 6	10	100	SS-2	1.00	-	-	-	-	-	-	-	-	20	A-6a (V)	
					- 11 - - 12	5 7 4	13	67	SS-3	1.75	-	-	-	-	-	-	-	-	21	A-6a (V)	
				-	- 14 - - 14 - - 15 -	8 8 4	18	100	SS-4	2.00	-	-	-	-	-	-	-	-	26	A-6a (V)	
					- 16 - - 17 - 18	⁴ 4	9	100	SS-5	-	-	-	-	-	-	-	-	-	-	A-6a (V)	
					- 19 - - 20 - - 21 -	2 2 2 2	6	100	SS-7	1.50	-	-	-	-	-	-	-	-	23	A-6a (V)	
					- 22 - 22 - 23																
			461.3		- - 24 - - - 25 -	2		83	ST-8	-	0	0	16	46	38	29	17	12	25	A-6a (9)	
	SAND, MOIST				- 26 - - 27 - - 28 - - 29 - - 30 -	23	6	100	SS-9	2.00	-	-	-	-	-	-	-	-	22	A-6b (V)	
					- 31 - - 32 - - 33 - - 33 -	2 2 2	4	100	SS-10	1.75	-	-	-	-	-	-	-	-	27	A-6b (V)	
-	MEDIUM DENSE, GRAY, SANDY SILT , TRAVERY LOOSE AT 35', MOIST TO WET	ACE GRAVEL,	451.3		- 35 -	2 2 2	4	100	SS-11	-	-	-	-	-	-	-	-	-	27	A-4a (V)	
JT LOGS.GPJ					- 38 - - 39 -			100	ST-12	2.50	0	0	21	48	31	29	19	10	31	A-4a (8)	
02070/GINT/OD0					- 41 - - 42 -	10 13 15	31	100	SS-13	-	-	-	-	-	-	-	-	-	28	A-4a (V)	
JECTS/2010/N11	MEDIUM DENSE, BROWN, COARSE AND	FINE SAND,	441.3		- 43 - 44 - 45 -	4															
11 10:07 - N:\PRO	LITTLE GRAVEL, TRACE SILT, TRACE CLA AT 50', VERY DENSE AT 60', WET	AY, CLAY SEAM			- 46 - - 47 - - 48 -	56	12	56	SS-14	-	-	-	-	-	-	-	-	-	13	A-3a (V)	
<u>(11 X 17) - OH DOT.GDT - 3/9/</u>					- 49	16 7 20	30	100	SS-15	-	-	-	-	-	-	-	-	-	18	A-3a (V)	
SOIL BORING LOC					- 54	22 20 20	45	100	SS-16	-	-	-	-	-	-	-	-	-	8	A-3a (V)	
STANDARD ODOT {					- 57 - 58 - 59 	- - - -															

PID: _75119 BR ID: PROJECT: _BRENT S	PENCE BR	DGE STATI	ION / OF	FSET	:;	3+72.7	7, 10.9 LT	S	TART	: 6/3	30/10	E	ND:	7/2	2/10	_ P	G 2 OI	- 3	L-5
MATERIAL DESCRIPTION AND NOTES	ELEV. 426.3	DEPTHS	SI R(PT/ QD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI cs	DATI(FS	<u>אכ NC)</u> או	6) a.	AT LL	TERE PL	BERG PI	WC	ODOT CLASS (GI)	HOLE SEALED
MEDIUM DENSE, BROWN, COARSE AND FINE SAND , LITTLE GRAVEL, TRACE SILT, TRACE CLAY, CLAY SEAM AT 50', VERY DENSE AT 60', WET <i>(continued)</i>			61 - ¹²	26 27 27	59	100	SS-17	-	-	-	-	-	-	-	-	-	14	A-3a (V)	_
			63 —																
		-	64																
			65 16)))	10	67	SS-18										11	A-3a (\/)	-
			66 - 4	23	49	07	33-10	-	-	-	-	-	-	-	-	-		A-3a (V)	-
			68 -																
			69 —																
			70 13	3	35	67	SS-10				_						11	A-3a (\/)	-
			71	17		07	00-19				_	_		-	-	_		7-5a (V)	-
			73 —																
			74 —																
DENSE TO VERY DENSE, BROWN, GRAVEL AND STONE	$\bigcirc [$		75 23	3 37	86	100	SS-20	_	56	17	17	7	3	NP	NP	NP	12	A-1-a (0)	-
WET			76 – 1 77 –	40															-
			78																
	01		79																
	50		80 18	3	53	67	SS-21	-	-	-	_	-	-	-	-	-	10	A-1-a (V)	-
) Z D			81 -	23	_														-
			83 —																
	Ď		84 —																
	00		85 16) 20	47	100	SS-22	-	-	-	_	_	-	-	-	-	9	A-1-a (V)	-
			87 —	22															-
			88 -																
	0 396.3	- 8	89 —																
VERY DENSE, GRAY AND BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND , TRACE SILT, TRACE COBBLES,			90 91 57 6	, 651	129	100	SS-23	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-
TRACE CLAY, WET			92 —	50															-
			93 —																
	∑d >_D		94 —																
			95 76 96 5) 52 1	122	100	SS-24	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
) O T O T		97 —	57															-
) D O T		98 —																
2 7	Су 2 Ц		99																
	O T		100 <u>39</u> 101-10	00/4"	-	100	SS-25	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
		-1	102-																
) D Q T	-1	103—																
			104	0/2"		400	<u> </u>												
		-1	106-		-	<u>133</u> /	55-20	<u>⊢</u> _∕		<u>↓</u>		<u>↓</u>						(<u>A-1-D (V)</u>	
	<u>379.3</u>		107																-
WEATHERED, STRONG, THIN BEDDED, FOSSILIFEROUS,			108-																
SHALE, GRAY, MODERATELY TO SLIGHTLY WEATHERED, VERY WEAK TO WEAK, LAMINATED,			109- - 3 110	32		100	NQ-1											CORE	
SH @ 109' SDI = 50.9		-1	111-																
LS/SH @113.5'-114' QU=6755 PSI	<u></u>		112-										-		-				
LS @120.2'-120.6' QU=10888 PSI.			113 - 114																
	<u></u>		115	46		100	NQ-2											CORE	
			116-																
	<u></u>		117-						-					\vdash	-				
			118— 119—																
	Ę		120-	38		100	NQ-3											CORE	
			121-																

PID:	BR ID:	PROJECT:	BRENT SPE	NCE BRIDGE	STATION /	OFFSE	T:	3+72.7	7, 10.9 LT	S	TART	: 6/3	0/10	_ EI	ND: _	7/2	2/10	_ P	G 3 OF	= 3 I	5
	MATERIAL DESCRII	PTION		ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRAD	DATIC	ON (% ལ) ()	AT	TERB	ERG	wc	ODOT CLASS (GI)	HOLE
LIMESTONE, C BEDDED, FOS PARTINGS TC LOSS 0%, RQ LS @ 122.7' P LS/SH @130.3	GRAY, UNWEATHERED, S SILIFEROUS, ARGILLACE SEAMS, NOTED CALCITE D=64% DINT LOAD = 14712 PSI '-131' QU=6755 PSI	TRONG, THIN OUS, TRACE : FILLED VUGS	SHALE	364.3		48		100	NQ-4			3		5	8					CORE	
LS/SH @133.3 LS @137.3'-13 LS @ 143.5' P	'-133.8' QU=8455 PSI 8' QU=20794 PSI DINT LOAD = 144 PSI.					58		100	NQ-5											CORE	
						62		100	NQ-6											CORE	
						66		100	NQ-7											CORE	
				339.3		84		100	NQ-8											CORE	

NOTES: WATER USED BELOW 45 FT. FOR DRILLING/ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (11 BAGS CEMENT/1.5 BAGS BENTONITE)

BORING NO.: L- 5 CORE BOX NO.: 1 OF 3 DEPTH (ft.): 107.0-122.0 ELEVATION (ft.): 379.33 1/NQ: 107.0'-112.0'; REC. 100%, RQD 32% 2/NQ: 112.0'-117.0'; REC. 100%, RQD 46% 3/NQ: 117.0'-122.0'; REC. 100%, RQD 38%

BORING NO.: L- 5 CORE BOX NO.: 2 OF 3 DEPTH (ft.): 122.0-135.0 ELEVATION (ft.): 364.33 4/NQ: 122.0'-127.0'; REC. 100%, RQD 48% 5/NQ: 127.0'-132.0'; REC. 100%, RQD 58% 6/NQ: 132.0'-137.0'; REC.100 %, RQD 62%

BORING NO.: L- 5 CORE BOX NO.: 3 OF 3 DEPTH (ft.): 135.0-147.0 ELEVATION (ft.): 351.33 7/NQ: 137.0'-142.0'; REC. 100%, RQD 66% 8/NQ: 142.0'-147.0'; REC. 100%, RQD 84%

BORING

L-5

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF Chkd By: DWW	Scale: As Shown File No. Core B	611 LUNKEN PARK DRIVE	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO
Approved By: AJM	Date: 9-8-10	CINCINNATI, OHIO 45226	

F	PROJECT: BRENT SPENCE BRIDGE YPE: BRIDGE REPLACEMENT	DRILLING FIRM / OPER	ATOR: GER:	HCN / JM HCN / DRK/DWW	DRIL HAM	L RIG MER:	:[Cl		D-50		STA1 ALIG	FION NMEI	/ OFF NT:	SET:	: <u>2</u> Prop	+49.4 POSEI	, <u>51.</u> 4 D BS	4 RT B	EXPLOR	ATION ID -6
F	PID: 75119 BR ID: START: 6/28/10 END: 6/30/10	DRILLING METHOD: SAMPLING METHOD:	3.25 SF	5" HSA / NQ PT / ST / NQ	CALI	BRAT RGY F	ION D. RATIO	ATE: (%):	9/9/10 83.7		ELE\ COO	/ATIC RD:	DN: _	485.7 39.08	7 (MS 37930	<u>L)</u> E	EOB: -84.5	 23068	8.5 ft. 980	PAGE 1 OF 3
	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 485.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI cs	DATIC FS	DN (% si	6) a.	AT LL	TERB PL	ERG PI	WC	ODOT CLASS (GI)	HOLE SEALED
	CONCRETE PRE-DRILLED (VACUUM EXCAVATED)		¥ <u>485.3</u>																	
	STIFF, BROWN, SILT AND CLAY , TRACE	SAND, MOIST	478.2	- 7 - - 8 - - 9 - - 10 -	2 3 4	10	67	SS-1	2.00	-	-	-	-	-	-	-	-	21	A-6a (V)	-
				- 11 - - 12 - - 13 -	23 5	11	83 83	SS-2 ST-3	2.00	0	0	-	-	37	33	-	-	22 26	A-6a (10) A-6a (V)	-
				- 14	3 3 3	8	67	SS-4	2.00	0	0	9	54	37	33	19	14	24	A-6a (10)	-
				- 19 - 20 - 21 - 22 - 22	2 3 5	11	100	SS-5	2.00	-	-	-	-	-	-	-	-	25	A-6a (V)	-
	STIFF, GRAY, SILT AND CLAY , TRACE SII TRACE SAND, MOIST	LT SEAMS,	460.7	- 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 -	2 2 4	8	100	SS-6	1.50	0	0	5	62	33	32	20	12	27	A-6a (9)	-
				- 30	1	0	100	ST-7	1.25	0	0	10	56	34	30	19	11	28	A-6a (8)	-
				- 33 - - - 34 -	2 4	8	100	55-8	1.50	-	-	-	-	-	-	-	-	-	A-6a (V)	-
				- 35 - - 35 -	1 2	7	100	SS-9	2.00	-	-	-	-	-	-	-	-	27	A-6a (V)	-
				- 30 - 37 - 38 	3															-
			440.7	- 41 - - 42 - - 43 - - 44 - - 44 -	23	7	100	SS-10	1.75	-	-	-	-	-	-	-	-	27	A-6a (V)	-
1 - 3/9/11 10:07 - N.YFROJE	MEDIUM DENSE TO DENSE, BROWN, SIL TRACE CLAY, LITTLE GRAVEL, VERY DE	T, LITTLE SAND,	* * * * * * * * * * * * * * * * * * * *	- 46	3 4 5	13	78	SS-11	-	-	-	-	-	-	-	-	-	21	A-4b (V)	-
NG LUG (11 X 17) - UH UUI.GI			* * * * * * * * * * * * * * * * * * * *	- 50	9 10 9	27	67	SS-12	-	14	6	9	57	14	NP	NP	NP	23	A-4b (7)	
			- + + + + + + + + + + + + + + + + + + +	- 55 - 55 - 56 - 57 - 57 - 58 - 58 - 58 - 59 - 59 - 59 - 59 - 59	5 17 18	49	67	SS-13	-	-	-	-	-	-	-	-	-	21	A-4b (V)	

PID:7511	19 BR ID: PROJECT: _BRE	INT SPE	ENCE BRI	DGE S	TATION	/ OFFSE	T:	2+49.4	4, 51.4 RT	s	TART	T: <u>6/</u> 2	28/10	_ E	ND:	6/3	0/10	_ P	G 2 O	F 3	L-6
	MATERIAL DESCRIPTION AND NOTES		ELEV. 425.7	DEPT	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRA ന്ദ	DATIC FS	<u>אכ (%</u> SI	6) a.	AT	TERE PL	BERG PI	wc	ODOT CLASS (GI)	HOLE
MEDIUM D TRACE CL	DENSE TO DENSE, BROWN, SILT , LITTLE SAND, AY, LITTLE GRAVEL, VERY DENSE AT 70', WET	+++++++++++++++++++++++++++++++++++++++	+ + +		- 61 -	15 18	49	33	SS-14	-	-	-	-	-	-	-	-	-	8	A-4b (V)	
(continued))	+++++++++++++++++++++++++++++++++++++++	+ + + +		- 62 -	- 17															1
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 63 -	-															
		+++ +++ +++	+ +		- 64 -	-															
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 65 -	-										<u> </u>					-
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 66 -	11 13 18	43	67	SS-15	-	-	-	-	-	-	-	-	-	16	A-4b (V)	
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 67 -	-	' <u> </u>														1
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 68 -	-															
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 69 -	-															
		+++ +++ +++	+ + +		- 70 -	-										<u> </u>					-
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 71 -	37 34	99	78	SS-16	-	-	-	-	-	-	-	-	-	9	A-4b (V)	
		+++++++++++++++++++++++++++++++++++++++	+ + + +		- 72 -	-															1
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 73 -	-															
		+++++++++++++++++++++++++++++++++++++++	+ + +		_ 74 -	_															
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 75 -	10															-
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 76 -	21 23	61	67	SS-17	-	-	-	-	-	-	-	-	-	11	A-4b (V)	
		+++++++++++++++++++++++++++++++++++++++	+ + +		- 77 -	_															
		+++++++++++++++++++++++++++++++++++++++	+ + + +		- 78 -	_															
		+++++++++++++++++++++++++++++++++++++++	+ + + + 105 7		- 79 - -	_															
DENSE TO	VERY DENSE, BROWN, GRAVEL AND STONE		405.7	-	- 80 -	19	45	70	CC 10										0	A 1 6 0.0	1
WET	ITS WITH SAND, TRACE SILT, TRACE CLAY,				- 81 -	13	40	/0	33-10	-	-	-	-	-	-	-	-	-	9	A-1-D (V)	-
		ě č	.с		- 82 -	-															
		م م	С Т		- 83 - -	-															
			d D		- 84 -	-															
					- 85 -	17	53	67	SS-19	_	_	_	_	_	_	- I	_	_	12	A-1-b (V)	1
					- 86 -	21										-	-				-
			b V		- 87 -	_															
		000]															
			395.7		- 09 -																
VERY DEN WITH SAN	NSE, GRAY, GRAVEL AND STONE FRAGMENTS ID, TRACE SILT, TRACE CLAY, WET		с С		01	26 40	106	67	SS-20	-	31	28	27	10	4	NP	NP	NP	9	A-1-b (0)	
					- 92 -	36										-					-
			d N		- 93 -	_															
			d		- 94 -	_															
					- 95 -	-		80	<u>SS 21</u>										8		_
		6	4 U 1		- 96 -	-			00-21					-						<u> </u>	1
			Ì		- 97 -	-															
					- 98 -	-															
					- 99 -	-															
5					-100-	_ 100/4"	-	75	SS-22	<u> </u>	-	-		_	-	-	-	-	7	A-1-b (V)	
					-101-]															
			d G		-102-																
					-103-	_															
		<u> </u>	Д		-104-	-															
						44		47	66.22										10	A 1 6 0.0	1
02/0					-106-	50/5"	-	47	33-23	-	-	-	-	-	-	-	-	-	10	A-1-D (V)	-
YONEL			4		107- -	-															
	DED LIMESTONE (75%) AND SHALF (25%)	o G	377.2		+ 108-	<u>100</u> /1" /	 <u>\</u> /		<u>S</u> S-24	<u> </u>	<u> </u>	<u>L</u> -	<u> </u>	<u> </u>	<u> </u>	L-	<u> </u>	<u>L</u> -	<u> </u>		=
	TONE, GRAY, UNWEATHERED TO SLIGHTLY ED, MODERATELY STRONG TO STRONG THIN	Þ	4		-109-						-	-	-	-	-	-	-	-	-		
BEDDED,	FOSSILIFEROUS, LOSS 1%, RQD 42%; GRAY, SLIGHTLY WEATHERED. VERY WEAK		4		-110-	44		100													
TO WEAK, SH @ 110	, LAMINATED, FISSILE, SDI = 56.9	Ē							- NQ-1											CORE	
LS/SH @1	12'-112.4' QU=4889 PSI	Ê	4																		
LS @ 114	POINT LOAD = 11720 PSI	<u></u> <u></u>			114						-	-			-		-	-	-		-
SH @ 117	.7' SDI = 55.1	Ŕ	7		115																
LS @120.5	5'-121' QU=14568 PSI	Ż	4		-116-	64		100	NO-2											CORF	
LS @ 126.	3' POINT LOAD = 12087 PSI.	<u></u>	-1		-117-																
		₩.			- 118-																
					-119-						\vdash				\vdash						
		₽ ₽	₹ T		-120-																
NUDAF		Ā	4		-121-	50		100	NQ-3											CORE	
1		₩Ę.	1	1	F	H	1	1		1	1				1	1			1	1	

PID: <u>75119</u>	BR ID:	PROJECT:	BRENT SPE	NCE BRI	DGE	STATION	OFFSE	T:	2+49.4	4, 51.4 RT	S	TART	: 6/2	28/10	_ EN	ND:	6/30	0/10	P	G 3 OF	- 3 I	L-6
	MATERIAL DESCRIP	TION		ELEV.	D	EPTHS	SPT/	Neo	REC	SAMPLE	HP		GRA	DATIO	<u> 20 (%</u>	6)	AT	TERBE	RG		ODOT	HOLE
	AND NOTES			363.8			RQD		(%)	ID	(tsf)	GR	cs	FS	SI	a.	LL	PL	Я	WC	CLASS (GI)	SEALED
LIMESTONE, C	GRAY, UNWEATHERED, MO	DERATELY		302.2	-	- 124-																
STRONG TO S	TRONG, THIN BEDDED, AF	RGILLACEOU				-																
SHALE PARTIN	NGS; LOSS 1%, RQD=68%	O OLANIO, TI				- 125-																
LS @130.5'-13	0.9' QU=9864 PSI						60		100	NQ-4											CORE	
LS @138'-138.	3' QU=25530 PSI					-127-																
	9' OLI-10726 DSI					128-																
L3 @147.5-14	0 QU-10720 F31.																					
						- 130-																
						-															0005	
						- 131-	/6		98	NQ-5											CORE	
						-134-																
						- 136-	56		100												CORE	
						- 130-	50		100	1102-0											CORE	
						-140-																
						- 141-	76		100	NQ-8											CORE	
						- 142															00.12	
						- 142-																
						-143-																-
						- 144-																
						-145-																
							82		100	NQ-7											CORE	
						- 147-																
							-															
				337.2		-148-																

NOTES: WATER USED BELOW 45 FT. FOR DRILLING/ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (12 BAGS CEMENT/1.5 BAGS BENTONITE)

		DRILLING FIRM / OPI	ERA			JJ			: <u>CM</u>		TV- 93	33_	STAT		/ OFF	SET	:	+52.6	6, 0.8	LT	EXPLORA	ATION ID 7
	PID: 75119 BR ID: 0/20/40	DRILLING METHOD:		<u>3.25</u>	<u>" HSA / NC</u>	2		INIER. IBRAT		ATE:2	2/4/10		ELE	ATIC	DN: _	484.4	4 (MS	<u>L)</u> E	EOB:		<u>1.7 ft.</u>	PAGE
F	MATERIAL DESCRIP	TION	:	ELEV.	DEPT	λ HS			REC	(%): SAMPLE	HP		GRA		ON (%	39.00 6)	AT	TERB	-84.5 ERG	23295		HOLE
F	AND NOTES ASPHALT PAVEMENT		\propto	484.4 483.9			RQD		(%)	ID	(tsf)	GR	CS	FS	SI	a.	LL	PL	PI	WC	ULASS (GI)	SEALED
	PRE-DRILLED (VACUUM EXCAVATED)			479.4		- 1 - - 2 - - 3 - - 4 -	- - - - -															
	VERY LOOSE, GRAY AND BLACK, SAND GRAVEL, LITTLE CLAY, TRACE CONCRE ⁻	′ SILT , LITTLE FE (FILL), MOIST		473.4	-	- 5 - - 6 - - 7 -	WOH WOH 1	1	61	SS-1	-	-	-	-	-	-	-	-	-	26	A-4a (V)	
				474.4		- 8 - - 9 -	1 1 1	2	100	SS-2	-	23	17	22	20	18	NP	NP	NP	19	A-4a (1)	
	MEDIUM STIFF, GRAY, SILT AND CLAY , S TRACE ORGANICS, TRACE SAND (FILL),	OME GRAVEL, MOIST				- 10 - - - 11 - - - 12 -	WOH WOH 1	1	100	SS-3	1.00	-	-	-	-	-	-	-	-	23	A-6a (V)	
				469.4		- 13 - - 14 - - 15 -			63	ST-4	-	31	2	8	30	29	29	17	12	21	A-6a (6)	
	STIFF TO VERY STIFF, BROWN AND GRA CLAY, LITTLE SAND, TRACE GRAVEL, MC	Y, Silt and Dist				- 16 - 17	2 3 4	8	100	SS-5	1.00	-	-	-	-	-	-	-	-	27	A-6a (V)	
						- 18 - - 19 - - 20 -	2 4	7	100	SS-6	-	-	-	-	-	-	-	-	-	23	A-6a (V)	
						- 21 - 22 - 23 -	2 3	8	100 33	ST-7 SS-8	1.50 2.50	0	0	18 17	44 48	38 35	31 32	17 18	14 14	25 23	A-6a (10) A-6a (10)	
						23 24 25	4															
						26 - 27 - 28 -	4 6	11	100	55-9	1.00	-	-	-	-	-	-	-	-	30	A-6a (V)	
						29 30 31	1	3	100	SS-10	-	-	-	-	-	-	-	-	-	24	A-6a (V)	
						_ 32 - _ 32 - _ 33 -				07.44					0.5							
_	MEDIUM DENSE, BROWN, GRAVEL AND	STONE		449.4	w	34 - - 35 - -	3		/5	SI-11	-	33	4	14	25	24	31	17	14	25	A-6a (4)	
100.0D	FRAGMENTS, AND SAND, TRACE SILT, T VERY LOOSE AT 45', WET					- 36 - - 37 - - 38 - - 38 -	4	0	100	55-12	-	-	-	-	-	-	-	-	-	22	A-1-a (V)	
						- 40 - 41 - 42 -	3 4 5	10	44	SS-13	-	-	-	-	-	-	-	-	-	27	A-1-a (V)	
						- 43 - - 43 - - 44 - - 45 -																
						- - 46 - - 47 - - 48 -	2 2 2	4	100	SS-14	-	-	-	-	-	-	-	-	-	33	A-1-a (V)	
180-100-100						- 49 - - 50 -	53 9	18	67	SS-15	-	-	_	_	_	_	-	_	-	16	A-1-a (V)	
						_ 52 - _ 52 - _ 53 -	7 - -															
		D D te D					9 11 17	31	100	SS-16	-	-	-	-	-	-	-	-	-	10	A-1-a (V)	
							-															

PID: BR ID: PROJECT: BREN	T SPENCE BR	DGE S	TATION /	OFFSE	T:	1+52.	<u>6, 0.8 LT</u>	s	TART	: 6/2	28/10	_ EI	ND:	6/3	0/10	P(<u>G</u> 2 O	F 3	L-7
MATERIAL DESCRIPTION	ELEV.	DEP	THS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAI) DN (%	6) C	AT	TERB	ERG	we	ODOT CLASS (GI)	
MEDIUM DENSE, BROWN, GRAVEL AND STONE	<u>424.4</u>			13		(70)		(ເຮັ້າ)	ын 		FS	ଧ -	u -	<u> </u>	H.	н	VVC		JLALED
FRAGMENTS, AND SAND, TRACE SILT, TRACE CLAY, VERY LOOSE AT 45', WET (continued)			- 61 -	14 14	31	67	SS-17	-	55	28	10	5	2	NP	NP	NP	10	A-1-a (0)	
			- 62 -	-															
	Pool		- 63 -	-															
	[0, 0]		- 64 -																
			65 -	-															-
	[D		- 66 -	12	28	100	SS-18	-	-	-	-	-	-	-	-	-	19	A-1-a (V)	
	000		- 67 -	13															-
	$\mathcal{P}_{\mathcal{A}}$		- 68 -																
	001		- 00	-															
			- 69 -	-															
			- 70 -	10	30	67	SS-10	_		_	_	_	_		_	_	12	A-1-2 (V)	-
	Pool		- 71 -	14															-
	[0, 0]		- 72 -	4															
			- 73 -	-															
			- 74 -	-															
DENSE, BROWN, GRAVEL AND STONE FRAGMENTS,		-	- 75 -	14															-
SOME SAND, TRACE COBBLES, TRACE SILT, TRACE CLAY, WET			- 76 -	13 15	31	83	SS-20	-	61	18	13	5	3	NP	NP	NP	9	A-1-a (0)	
			- 77 -																
	Poor		- 78 -	-															
	601		- 79 -	-															
	000		- 80 -	20															
			- 81 -	30 27	64	67	SS-21	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	
	500		- 82 -																
			- 83 -	1															
			- 84 -	-															
	<u> </u>	_	- 85 -	100		100	66.00										10		-
SOME SAND, TRACE COBBLES, LITTLE SILT, TRACE CLAY,			- I - 86 -	50/0"_/	-	100	33-22	-	-	-	-	-	-	-	-	-	10	A-1-0 (V)	-
WEI			- 87 -																
			- 88 -																
			- 89 -																
			- 00	_															
				100/4"	-	100	SS-23		52	14_	17		6	NP	NP	NP	8	A-1-b (0)	
			- 91 -	-															
			- 92 -																
	20 H		- 93 -	-															
			- 94 -																
			95 -	37	400	07	00.04										40		-
			- 96 -	53 60	126	67	SS-24	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-
			97 -																
			- 98 -																
			- 99 -	-															
고 양 INTERBEDDED LIMESTONE (75%) AND SHALE (25%)'	384.4			100/4"	-	100	SS-25	-	-	<u> </u>				-	-			Rock (V)	
LIMESTONE, GRAY, UNWEATHERED TO SLIGHTLY			-101-	34		100	NQ-1											CORE	
5 FOSSILIFEROUS, LOSS 0%, RQD 66%; SHALE GRAY SUGHTLY WEATHERED VERY WEAK	$\sum X$		-102-	1															
TO WEAK, LAMINATED, FISSILE,	E C		-103-	1															
C =			-104-	48		100	NQ-2											CORF	
			-105-																
			-106-	1															
αΓ LS (Ψ TIS./ - 114.2 QU-3047 KSI 0 U LS (Φ 116) DOINT LOAD - 10070 DOI			-107-	1					-					-					
				1															
z LS @125.7-126.2' QU=23281 PSI				70		100													
			-110-	,0			11/2-3												
୍ଷ୍ମ SH @ 118.6' SDI = 77.0. ଜୁ			-111-	1															
GDT.	₩		-112																
100			- 112																
	<u> </u>		-															_	
1×17			- 114-	82		100	NQ-4											CORE	
00			- 115-	1															
N010	E I		- 116-	1															
BORI	F		- 117-	1															
			118- -	1															
			- 119-	84		100	NQ-5											CORE	
0 YAD			- 120-	1															
			- 121-																

PID:75119	BR ID:	PROJECT:	BRENT SPE	NCE BRID	GE	STATION	OFFSE	T:	1+52.	6, 0.8 LT	S [.]	TART	: 6/2	28/10	_ El	ND: _	6/30	0/10	_ P	G 3 OI	3	L-7
	MATERIAL DESCRIP	TION		ELEV.	DF	PTHS	SPT/	Neo	REC	SAMPLE	HP		GRA	DATIO	<u> 20 (%</u>	5)	AT	TERB	ERG		ODOT	HOLE
	AND NOTES			362.5			RQD		(%)	ID	(tsf)	GR	CS	FS	SI	a.	LL	PL.	PI	WC	CLASS (GI)	SEALED
						- 	56		100	NQ-6											CORE	
LIMESTONE, (STRONG, AR(TRACE SHALE LS/SH @132.5 LS @ 139.7' P	GRAY, UNWEATHERED, MC GILLACEOUS, FOSSILIFERC E PARTINGS; LOSS 0%, RQ 5'-133.2' QU=4790 PSI OINT LOAD = 11517 PSI.	DDERATELY JUS SEAMS, D=86%		356.4			76		100	NQ-7											CORE	
							92		100	NQ-8											CORE	-
				342.7			90		100	NQ-9											CORE	

NOTES: WATER USED BELOW 35 FT. FOR DRILLING/ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (12 BAGS CEMENT/1 BAGS BENTONITE)

BORING NO.: L- 7 CORE BOX NO.: 1 OF 3 DEPTH (ft.): 100.5-116.7 ELEVATION (ft.): 383.91 1/NQ: 100.5'-101.7'; REC. 100%, RQD 33% 2/NQ: 101.7'-106.7'; REC. 100%, RQD 48% 3/NQ: 106.7'-111.7'; REC. 100%, RQD 70% 4/NQ: 111.7'-116.7'; REC. 100%, RQD 82%

BORING NO.: L- 7 CORE BOX NO.: 2 OF 3 DEPTH (ft.): 116.7-131.7 ELEVATION (ft.): 367.71 5/NQ: 116.7'-121.7'; REC. 100%, RQD 84% 6/NQ: 121.7'-126.7'; REC. 100%, RQD 56% 7/NQ: 126.7'-131.7'; REC. 100%, RQD 76%

BORING NO.: L- 7 CORE BOX NO.: 3 OF 3 DEPTH (ft.): 131.7-141.7 ELEVATION (ft.): 352.71 8/NQ: 131.7'-136.7'; REC. 100%, RQD 92% 9/NQ: 136.7'-141.7'; REC. 100%, RQD 90%

BORING

L-7

Project Mngr.: AJM	PN. N1105070	
Drawn By: TCF	Scale: As Shown	
Chkd By: DWW	File No. Core B	
Approved By: AJM	Date: 9-8-10	

CINCINNATI, OHIO 45226

ROCK CORE PHOTOGRAPHS

BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO

PROJECT		DRILLING FIRM / OPE	RATOR: _	HCN /	HH	DRILL	L RIG:	CM	E 550X A	TV-725	53_	STAT	ION	/ OFF	SET	: <u>17</u> -	+75.2	2, 41.5	52 RT	EXPLOR/	ATION ID
PID:	BRIDGE REPLACEMENT 5119 BR ID:	DRILLING METHOD:	GGER: 3.2	HCN / D' 5" HSA / N	Q	CALIE	MER: BRATI		ATE:2	//ATIC 2/4/10		ELEV	NMEI /ATIC	NI:	۲ 458.0	PROP (MS	L) E	d BSE EOB:	3 17	0.0 ft.	PAGE
START:	7/9/10 END: 7/11/10 MATERIAL DESCRIP	SAMPLING METHOD:		SPT / NQ		ENEF	RGY R	ATIO	(%): SAMPLE	76.3 HP	<u>_ </u>	GRAD	RD:	ON (%	<u>39.09</u> പ)2117 AT	'290, TERP	-84.5	22898	570 ODT	1 OF 3
			458.0	DEP		RQD	N ₆₀	(%)	ID	(tsf)	GR	CS CS	FS	SI	a, a.	LL AI	PL	P	WC	CLASS (GI)	SEALED
WATER	(OHIO RIVER)		458.0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RQD		(%)	ID	(tsf)	GR		FS	SI	a	Ш	<u>R</u>	Π	WC	CLASS (G)	SEALED
LOOSE, LITTLE S 33.5', WI	BROWN, GRAVEL AND STONE F BAND, TRACE SILT, TRACE CLAY ET	RAGMENTS, 0 , VERY DENSE AT 0	426.0		- 32 - 5 - 33 -	4 4 4	10	22	SS-1	-	87	11	2	0	0	NP	NP	NP	12	A-1-a (0)	
					- 34 - 9 - 35 - 2	24 23	60	33	SS-2	-	70	21	7	1	1	NP	NP	NP	13	A-1-a (0)	
MEDIUM	I DENSE BROWN GRAVEL AND	STONE	0 (<u>421.5</u>	_	- 36	3 2 3	6	0	SS-3	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	
	ENTS WITH SAND, TRACE SILT, T DOSE AT 36.5', WET	RACE CLAY,			- 37 - 3	1 2	4	67	SS-4	-	2	64	29	2	3	NP	NP	NP	23	A-1-b (0)	
	TO MEDIUM DENSE, BROWN, FIN	E SAND, TRACE	418.5	_	- 39 - - 40 - 3	66	15	0	SS-5	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
	., TRACE SILT, TRACE CLAY, SAN ED AT 50' DUE TO SAND IN CASII 	APLE NOT NG, WET			- - 41	2 2	5	56 22	SS-6	-	2	24	69	2	3	NP	NP	NP	23	A-3 (0)	
0/090111N					-42- -43-6	⁻¹ 10	10	22		_		_	-	-	_	-	_	_	23	A-3 (V)	
ECI S/2010/					- 44 45 1	8														,,	
LOX41:N - 70:01 11/8/8					- 46 47 48	7 8	19	100	SS-9	-	-	-	-	-	-	-	-	-	20	A-3 (V)	
01.601 -			-5		50				CC 40											A 2 // /	
<u>и и и - (л г</u>					- 51 - - 52 -			U	33-10	-	-	-	-	-	-	-	-	-	-	А-3 (V)	
BORING LUG (11 X					- 53 - - 54 - - 55 - 6	;	40	400													
AKD ODOL SOIL E					56 - 57 - 58 - 58	7	18	100	55-11	-	2	32	61	3	2	NP	NP	NP	21	A-3 (0)	
SIAND					- 59 - 																

PID: <u>75119</u>	BR ID:	PROJECT:	BRENT SPE	NCE BRI	DGE ST	ATION	OFFSE	T: <u>1</u>	7+75.2	2, 41.52 R	T_S	TART	: <u>7</u> /	9/10	_ El	ND:	7/1	1/10	_ P	G 2 O	F3 F	R-1
	MATERIAL DESCRIP AND NOTES	PTION		ELEV. 398.0	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI cs	DATIC FS	DN (% SI	6) a_	AT	TERB	BERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
LOOSE TO ME	EDIUM DENSE, BROWN, FI	NE SAND, TRA	CE			-	5 7	18	67	SS-12	-	_	-	_	-	-	-	-	_	26	A-3 (V)	
OBTAINED AT	50' DUE TO SAND IN CAS	ING, WET				- 61 -	7													_		
(contantacta)			FS			- 62 -																
						- 63 -																
				393.0		- 64 -																
MEDIUM DEN	SE TO DENSE, BROWN, GI MENTS WITH SAND, TRAC	RAVEL AND E SILT, TRACE				65	15 8	20	67	SS-13	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
CLAY, WET	, _	- , -		ł		67	8															
						_ 69 _																
						- 71 -	22 17	37	22	SS-14	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
				ĺ		- 72 -	12															
						- 73 -																
						- 74 -	-															
				1		- 75 -																
						- 76 -	7 15	28	100	SS-15	-	-	-	-	-	-	-	-	-	19	A-1-b (V)	
						- 77 -																
						- 78 -	-															
						- 79 -	-															
				 	-	- 80 -	50/0"	<u> </u>		SS-16	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
				377.0	-	- 81 -	1			-												
						- 82 -	-															
						- 83 -	-															
						- 84 -	-															
						- 85 -	-															
						- 86 -]															
LIMESTONE, (GRAY, UNWEATHERED, MO	ODERATELY		371.0	TR	- 87 -																
STRONG TO S	STRONG, THIN BEDDED, AF US SEAMS, MODERATELY	rgillaceous, Fractured,				- 88 -	50		93	NQ-1											CORF	
LOSS 2%, RQ	D 68%					- 89 -																
LS @91.5'-92.	1' QU=12758 PSI					- 90 -	-															
LS @94.3'-95'	QU=4903 PSI					91 - -																
	$\frac{1}{10455} \frac{1}{10455} \frac{1}{104555} \frac{1}{10455} \frac{1}{10455} \frac{1}{10455} \frac{1}{10455} \frac{1}{10455} 1$					- 92 -	52		96	NQ-2											CORE	
LS @ 104.5-10	00 QU = 3951 PSI					- 93 -																
LS @ 110.2 P	0' 12584 DSI					94 -																
	5' 011-10024 PSI					95 - -																
LS @ 123-123.	OINT OAD = 11103 PSI					- 96 -																
LS @136'-136	5' OI I=14820 PSI					- 97 -	66		100	NQ-3											CORE	
LS @137 7'-13	88 2' OU=15380 PSI					- 98 -																
LS @145.3'-14	5.7' QU=7449 PSI					- 99 -																
LS @ 145.7' P	OINT LOAD = 13095 PSI			•																		
LS @146.5'-14	7' QU=20779 PSI					- 107-																
LS @153'-153.	.6' QU=12853 PSI					-102-	52		100	NQ-4											CORE	
LS @159.1'-15	9.9' QU=11057 PSI					-104-																
LS @ 161.8' P	OINT LOAD = 14614 PSI					-105-																
LS @163.5'-16	64.2' QU=14214 PSI					-106-																
LS @168.2'-16	8.9' QU=13890 PSI.																					
						-108-	66		100	NQ-5											CORE	
2						- 																
2						-110-																
5						-111-	1															
2						-112-				10.5												
						-113-	70		96	NQ-6											CORE	
						-114-																
						-115-						-	-					-				
						-116-																
						-117-	00		100													
						-118-	80			INQ-/												
						-119-																
						-120-						-	-					-				
						-121-																
1				I	1	Г	1	1	1	1	Í.	1	1	1		I I	I I	1	1	1	1	

PID: <u>75119</u>	BR ID:	PROJECT:	BRENT SPENC	E BRIDO	<u>SE</u> STA	TION /	OFFSE	T: <u>1</u>	7+75.2	2, 41.52 R ⁻	<u>r</u> s	TART	:	9/10	EN	D:	7/11	/10	_ P(G 3 OF	-3 F	२-1
	MATERIAL DESCRIF AND NOTES	PTION	E	ELEV.	DEPTH	s	SPT/ RQD	N ₆₀	REC	SAMPLE ID	HP (tsf)	GR	GRAE cs	DATIC FS	<u>)N (%)</u> si	a.	ATT	ERB FL	ERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
LIMESTONE, G	RAY, UNWEATHERED, M			50.2			88		100	NQ-8	((0))				-						CORF	
FOSSILIFEROU	IRONG, THIN BEDDED, AF IS SEAMS, MODERATELY	FRACTURED	, <u> </u>			-123-	00			ind 0											00112	
LOSS 2%, RQD	0.68%					-124-																
LS @91.5'-92.1'	' QU=12758 PSI					-125-										_						
LS @94.3'-95' C	QU=4903 PSI				F	-126																
LS @ 101' POIN	NT LOAD = 10455 PSI					- 127-	04		100													
LS @104.5'-105	5' QU=3951 PSI				-	-128-	84		100	NQ-9											CORE	
LS @ 110.2' PC	DINT LOAD = 1282 PSI				F																	
LS @115'-115.9	9' 12584 PSI				-	-130																
LS @123'-123.5	5' QU=10024 PSI				-	131																
LS @ 129.4' PC	DINT LOAD = 11103 PSI				-	132																
LS @136'-136.5	5' QU=14820 PSI				F		46		100	NQ-10											CORE	
LS @137.7'-138	3.2' QU=15380 PSI				-	134																
LS @145.3'-145	5.7' QU=7449 PSI				-	135																
LS @ 145.7' PC	DINT LOAD = 13095 PSI				-																	
LS @146.5'-147	" QU=20779 PSI				-																	
LS @153'-153.6	5' QU=12853 PSI				L	-138-	72		98	NQ-11											CORE	
LS @159.1'-159	9.9' QU=11057 PSI				-	-130																
LS @ 161.8' PC	DINT LOAD = 14614 PSI				-	- 140																
LS @163.5'-164	I.2' QU=14214 PSI				E																	
LS @168.2'-168	3.9' QU=13890 PSI. (contin	ued)			E																	
-	,	,			F	- 142-	76		100	NQ-12											CORE	
					-	- 143-																
					F	-144																
					F	-145																
					-	-146																
					-		78		100	NQ-13											CORE	
					-	-148																
					-																	
					-	-150																
					F	-151																
					-	-152	80		100	NQ-14											CORE	
					-	-153																
					-	-154																
					-	-155																
					E	-156-																
					-	-157-	82		98	NO-15											CORE	
					Ŀ	-158-	02			NG-10											OUNE	
					F	-159																
						-160										_						
					F	-161-																
					F	-162-			100	NO 10											00055	
					F	- 	74		100	NQ-16											CORE	
					F	- 																
					F	- 						<u> </u>				\downarrow						
					F	- 																
					F	- 																
					F	168	38		86	NQ-17											CORE	

BORING NO.: R-1 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 87.0-105.0 ELEVATION (ft.): 371.04 1/NQ: 87.0'-90.0'; REC. 93%, RQD 50% 2/NQ: 90.0'-95.0'; REC. 96%, RQD 52% 3/NQ: 95.0-100.0'; REC. 100%, RQD 66% 4/NQ: 100.0'-105.0'; REC. 100%, RQD 52%

BORING NO.: R-1 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 105.0-120.0 ELEVATION (ft.): 353.04 5/NQ: 105.0'-110.0'; REC. 100%, RQD 66% 6/NQ: 110.0' – 115.0'; REC. 96%, RQD 70% 7/NQ: 115.0' – 120.0'; REC. 100%, RQD 80%

CELE <u>E</u> CEREMAN AND CONTRACT	H H L C H D T L L L L L L L L L L L L L L L L L L

BORING NO.: R-1 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 120.0-135.0 ELEVATION (ft.): 338.04 8/NQ: 120.0'-125.0'; REC. 100%, RQD 88% 9/NQ: 125.0'-130.0'; REC. 100%, RQD 84% 10/NQ: 130.0'-135.0'; REC. 100%, RQD 46%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORIN
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core C Date: 9-8-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-1

	DRILLING FIRM / OPERA		HCN / HH			: <u>CM</u>		TV-72	53_	STAT		/ OFF	FSET	: <u>17</u>	5+56	.3, 20	.9 RT	EXPLOR	ATION IE 2			
PID:	DRILLING METHOD:	3.25	" HSA / NQ		BRAT		ATE:	2/4/10		ELE		DN: _	458. ⁻	1 (MS	<u>503</u> 5 <u>L)</u> [EOB:	16	<u>9.0 ft.</u>	PAGE			
MATERIAL DESCRIPT	ION	ELEV.	DEPTHS	SPT/		REC	(%). SAMPLE	HP		GRA	DATIC	ON (%	<u>39.0</u>	AT	TERE	-04.0 BERG	22973		HOLE			
AND NOTES WATER (OHIO RIVER)		458.1		RQD		(%)	ID	(tsf)	GR	CS	FS	SI	a	LL	PL	PI	WC	CLASS (GI)	SEALEI			
			- 3 -																			
			4																			
			_ 5 _																			
			- 6																			
			- 7																			
			9																			
			- 10																			
			- 11 -																			
			- 12																			
			- 13 - - 14																			
			 15																			
			- 16																			
			17																			
			- 18 - 19																			
			- 20																			
			21																			
			- 22																			
			- 23																			
			- 25 -																			
			- 26																			
			27																			
		429.1	- 28																			
VERY LOOSE, BROWN, GRAVEL AND STO FRAGMENTS , LITTLE SAND, WET																						
			- 31																			
		ł	- 32 -	1	4	22	<u> </u>		07	11	2	0	0				12	A 1 a (0)	-			
MEDIUM DENSE, BROWN, GRAVEL AND S		424.6	- 33 -	2 3	4	55		-	07		2	0					15	A-1-a (0)	-			
FRAGMENTS WITH SAND, TRACE SILT, TR WET	RACE CLAY,	423.1	- 35 -	6 12	23	67	SS-2	-	22	58	16	2	2	NP	NP	NP	17	A-1-b (0)				
MEDIUM DENSE, BROWN, GRAVEL AND S FRAGMENTS, LITTLE SAND, TRACE SILT, WET	TRACE CLAY,	421.6	- 36 -	6 4	13	33	SS-3	-	62	20	14	2	2	NP	NP	NP	15	A-1-a (0)				
LOOSE, BROWN, FINE SAND , LITTLE GRA'	VEL, TRACE	420.4	37	4	10	100	SS-4	-	23	21	51	2	3	NP	NP	NP	18	A-3 (0)				
LOOSE TO MEDIUM DENSE, BROWN, GRA		420.1	- 38 -	11 9	20	0	SS-5	-	-	_	-	_	_	-	-	_	-	A-1-b (V)				
CLAY, WET			- 39 -	7 4															-			
			- 41 -	55	13	100	SS-6	-	55	13	26	4	2	NP	NP	NP	15	A-1-b (0)	-			
			42	3 5	10	0	SS-7	-	-	-	-	-	-	-	-	-	-	A-1-b (V)				
			- 43																			
		413.1	- 44 45																			
LOOSE TO MEDIUM DENSE, BROWN, FINE SILT, TRACE GRAVEL, TRACE CLAY, WET	SAND, TRACE			2 3 5	10	56	SS-8	-	9	18	69	1	3	NP	NP	NP	22	A-3 (0)				
			- 47																			
			- 48 -	11 6 6	15	33	SS-9	-	-	-	-	-	-	-	-	-	28	A-3 (V)				
			- 49 - 																			
			- 51 -	6 6 6	15	44	SS-10	-	0	6	87	4	3	NP	NP	NP	25	A-3 (0)				
			- 52																			
	• 17 254 • • • • • • • • • •		- 53 -																			
			- 54																			
			- 56 -	15 10	27	44	SS-11	-	-	-	-	-	-	-	-	-	27	A-3 (V)				
			- 57																			
			- 58 -																			
		Į	- 59											1								
PID: 75119	BR ID:	PROJECT:	BRENT SPI	ENCE BRI	DGE	STATION	/ OFFSE	ET: <u>1</u>	75+56	5.3, 20.9 R	T_S	TART	: 7/	4/10	_ EI	ND:	7/5	5/10	_ P	G 2 O	F3 F	२-२
----------------	--	--------------------------	-------------------------	----------	-----	------------	-------------	--------------	-------	-------------	-------	------	------	------	------	-----	-----	------	------	-------	------------	--------
	MATERIAL DESCRIP	PTION		ELEV.	DEF	PTHS	SPT/	Neo	REC	SAMPLE	HP		GRAI) N	6)	AT	TERB	BERG		ODOT	HOLE
			CE K	398.1			RQD	•60	(%)	ID	(tsf)	GR	CS	FS	SI	a	LL	PL	PI	WC	ULASS (GI)	SEALED
SILT, TRACE	GRAVEL, TRACE CLAY, WE	ET (continued)		Į		61 -	10	25	33	SS-12	-	1	12	80	3	4	NP	NP	NP	20	A-3 (0)	
							10															-
				i I		- 62 -	-															
						- 63 -	-															
						- 64 -	_															
						-	-															
			. г. <u>р</u>			- 65 -	11	28	33	SS 13										24	A 3 ()/)	
				3		66 -	11	20	55	33-13	-	-	-	-	-	-	-	-	-	24	A-3 (V)	_
						- 67 -	-															
						- 68 -	_															
							-															
						- 69 -																
MEDIUM DEN	SE. BROWN. GRAVEL AND	OR STONE		388.1	-	- 70 -	6															-
FRAGMENTS	WITH SAND, TRACE SILT,	TRACE CLAY,	\circ \cap	d t		- 71 -	9 16	32	67	SS-14	-	25	46	23	3	3	NP	NP	NP	15	A-1-b (0)	
VVEI			0°	Ì		- 72 -																-
			\circ	q			-															
			Q Q	r T		- 73-	_															
			٥Č	2		- 74 -	-															
			00	Å		- 75 -	-															-
			•C	q		- 70	12 12	31	67	SS-15	_	17	40	37	3	3	NP	NP	NP	17	A-1-b (0)	
			0	2		- 76-	12														,	-
				q		77 -	_															
				k		- 78 -	-															
				d		- 79 -	_															
				378.1		-	-															
VERY DENSE	, GRAY, STONE FRAGMEN	TS WITH SAND), ¢Ç			- 80 -	65	-	0	SS-16	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
LIMESTONE F	LOATERS/COBBLES, WET					- 81 -	-															
			0 o	Į		- 82 -	-															
				7		- 93 -	_															
				Į.		- 03 -	-															
			¢€	q		84 -	_															
				X T		- 85 -	. 50/0"	N - 7		SS-17	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	-
			Č.	d		- 86 -																
			р С	371.1			-															
INTERBEDDE	D LIMESTONE (75%) AND	SHALE (25%);			TR																	-
	IE, LIGHT GRAY, UNWEATH ATHERED STRONG THIN	HERED TO				- 88 -	45		100	NQ-1											CORE	
FOSSILIFERO	US;		🗎	4		- 89 -																-
SHALE, GH	RAY, SLIGHTLY WEATHER D THIN BEDDED. LOSS 5%.	.ED, VERY WE .RQD 78%	AK,			- 00																
		,	R	4		- 90 -																
LS @87.5'-88'	QU=13147 PSI		Ē	¥.		- 91 -	74		100	NO 2											CODE	
SH @ 88.2' SI	DI = 67.9			4		- 92 -	14		100	NQ-2											CORE	
SH @ 89' SDI	= 82.5		Ħ			- 03 -																
	7' 011-0634 DSI		ŧ			- 33	-															
L3 @09.3-09.	7 QU-9034 F31		ZZ			- 94 -																-
LS @90.7'-91.	6' QU=12836 PSI		Ħ	.Y		- 95 -																
SH @ 93.7' SI	DI = 93.6		ŧ	4		- 96 -																
SH @93 7'-94'	QU= 429 PSI			4			- 80		86	NQ-3											CORE	
				4		- 97 -																
LS @99.8'-100	0.1' QU=8025 PSI			4		- 98 -																
SH @ 100.4' S	SDI = 94.1			4		- 99 -																-
LS @ 107.7' P	OINT LOAD = 5783 PSI		l	4		- 100-																
			R	2		-																
2 23 @112.9-11	13.9 QU-14131 F31.		R	4		-101-	- 82		94	NQ-4											CORF	
			Ŧ			-102-	-															
			\square	Ť		-103-																
			Ē			- 101																
						- 104-																
			$\overline{\Box}$	4		105-																
2			<u></u>	ł		-106-																
2				4		- 107-	92		96	NQ-5											CORE	
			ŧ	¥.		-																
			¥	4		-108-																
5				Ĭ		-109-																-
-			¥	4		-110-																
6			Ę	₹		-	H										1					
			₹¥	Ī			74		98	NQ-6							1				CORE	
2			Æ	-		-112-	1										1					
			$\overline{\mathbf{A}}$	Ť		-113-	H										1					
			E	344.1		- 																
<				1		-	H															
				1		115- -	1						[1					
				1		-116-	-		100				[1				0005	
			Ē	1		-117-	•••						[1				CORE	
				1		-	1						[
8				1		-																
				1		-119-																
						-120-																
5				1		-121-	1						[
5				4	1	+	76		94	NQ-8							1			I	CORE	

PID: 75119 BR ID: PROJECT: BRENT	SPEN	ICE BRIL	DGE STATIO	N / OFFS	ET:	175+56	6.3, 20.9 R	T S	TART:	7/4	I/10	END:	7/	5/10	Р	G 3 OI	= 3 F	R-2
MATERIAL DESCRIPTION		ELEV.	DEPTHS	SPT	/ N _m	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	AT	TERE	BERG		ODOT	HOLE
LIMESTONE, GRAY, UNWEATHERED, STRONG, THIN		336.2			, ~	(%)		(tst)	GR	cs	FS	si a		н	н	WC	CLASS (GI)	SEALEL
BEDDED, FOSSILIFEROUS, ARGILLACEOUS, INTERMEDIATE SHALE SEAMS TO PARTINGS, LOSS 1%.				3														
RQD 84%				₁	_													-
LS @119.8'-120.6' QU=13926 PSI			- 	5														
LS @ 130.7' POINT LOAD = 10575 PSI				6														
SH @ 134' SDI = 91.7				, 88		100	NQ-9										CORE	
LS @139'-139.5' QU=7906 PSI			- 12	3														
LS @143.5'-144' QU=13836 PSI			- 120															
LS @ 148.5' POINT LOAD = 12884 PSI. (continued)			-															
			- 13	, I														
			- 13	76		100	NQ-10										CORE	
			-132	<u></u>														
				3														
				1-1														1
				5														
				6 - 86		100	NQ-11										CORE	
			-13	7-														
			-138	3-														
			139															-
)														
			-14			100	NO 40										0005	
				2-1 12		100	NQ-12										CORE	
				3-														
				1- 1	_													-
			- 14	5														
				6-														
				100		100	NQ-13										CORE	
			- 14															
		309.1																
LIMESTONE, GRAY, UNWEATHERED, VERY STRONG, THIN BEDDED, ARGILLACEOUS, LOSS 4%, RQD 83%			-															
LS @155.3'-155.6' QU=26538 PSI			- 15	, I														
I S @ 159 5' POINT I OAD = 12962 PSI			- 15	82		100	NQ-14										CORE	
			- 15															
			- 153	3														
				1-1														-
				5														
			- 150	5 - - 100		100	NQ-15										CORE	
			- 15	7														
			- 158	3-														
			- 159															
)														
			-16														0005	
				2		100	NQ-16										CORE	
000			-16	3-														
			- 164	₁ ▋	_													
			- 16	5-4														
02010			- 16	<u>3</u>														
N1106	F		- 16	, 64		82	NQ-17										CORE	
2010	ĒĦ			3														
ECTS	F	289.1																

NOTES: WATER USED BELOW 87 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (10 BAGS CEMENT/1 BAG BENTONITE)

BORING NO.: R-2 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 87.0-104.0 ELEVATION (ft.): 371.1 1/NQ: 87.0'-89.0''; REC. 100%, RQD 45% 2/NQ: 89.0'-94.0'; REC. 100%, RQD 74% 3/NQ: 94.0'-99.0'; REC. 86%, RQD 80% 4/NQ: 99.0'-104.0'; REC. 94%, RQD 82%

BORING NO.: R-2 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 104.0-114.0 ELEVATION (ft.): 354.1 5/NQ: 104.0'-109.0'; REC. 96%, RQD 92% 6/NQ: 109.0'-114.0'; REC. 98%, RQD 74%

BORING NO.: R-2 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 114.0-134.0 ELEVATION (ft.): 344.1 7/NQ: 114.0'-119.0'; REC. 100%, RQD 88% 8/NQ: 119.0'-124.0'; REC. 94%, RQD 76% 9/NQ: 124.0'-129.0'; REC. 94%, RQD 76% 10/NQ: 129.0'-134.0'; REC. 100%, RQD 76%

Proiect Mnar.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown	Alterracon commer	BRENT SPENCE BRIDGE REPLACEMENT	R-2
Chkd By: DWW	File No. Core C	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF	
Approved By: AJM	Date: 9-8-10	CINCINNATI, OHIO 45226	CINCINNATI, OHIO	

BORING NO.: R-2 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 134.0-144.0 ELEVATION (ft.): 324.1 11/NQ: 134.0'-139.0'; REC. 100%, RQD 86% 12/NQ: 139.0'-144.0'; REC. 100%, RQD 72%

BORING NO.: R-2 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 144.0-154.0 ELEVATION (ft.): 314.1 13/NQ: 144.0'-149.0'; REC. 100%, RQD 100% 14/NQ: 149.0-154.0'; REC. 100%, RQD 82%

BORING NO.: R-2 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 154.0-169.0 ELEVATION (ft.): 304.1 15/NQ: 154.0'-159.0'; REC. 100%, RQD 100% 16/NQ: 159.0'-164.0'; REC. 100%, RQD 86% 17/NQ: 164.0'-169.0'; REC. 100%, RQD 64%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core C Date: 9-8-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-2

PROJECT: BRENT SPENCE BRIDGE D	RILLING FIRM / OPERA					: <u>CM</u>		TV-72	53	STAT		/ OFF	FSET	: <u>17</u>	/+10.4	4, 41.	8 RT	EXPLOR	ATIO
PID: <u>75119</u> BR ID: D	RILLING METHOD:	3.25	5" HSA / HQ		BRAT		ATE:	2/4/10	,	ELE	ATIC	DN: _	457.6	3 (MS	<u>L)</u> E	EOB:	B 19	<u>90.5 ft.</u>	PA 1 O
MATERIAL DESCRIPTIO	ampling method: DN	ELEV.	DEPTHS	SPT/		REC	(%): SAMPLE	76.3 HP		GRAI	DATIC	ON (%	39.0 %)	91939 AT	1445, TERB	-84.5 BERG	22976		
AND NOTES WATER (OHIO RIVER)		457.6		RQD	1 160	(%)	ID	(tsf)	GR	CS	FS	SI	a.	Ш	PL	PI	WC	CLASS (GI)	SEA
			- 5 -																
			- 6																
			8																
			9																
			- 10																
			- 13 -																
			- 14																
			- 15 - 16																
			- 18																
			- 19																
			22																
			- 23																
			- 24																
			26																
			- 27																
	(FL AND 54.)*	428.6	- 28	0															
MEDIUM DENSE TO DENSE, BROWN, GRAV STONE FRAGMENTS WITH SAND, LITTLE SII CLAY, WET			30	3 4 3	9	0	SS-1	-	-	-	-	-	-	-	-	-	21	A-1-b (V)	
	6 () (*)		- 31 -	4 5 9	18	33	SS-2	-	46	37	6	10	1	NP	NP	NP	18	A-1-b (0)	
			- 32 - - - 33 -	5 28 8	46	44	SS-3	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	'
			- 34 -	867	17	0	SS-4	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
			- 35	5 7	19	22	SS-5	-	-	_	-	-	-	-	-	_	16	A-1-b (V)	
			37	8 12	13	33	SS-6			_						_	28	Δ-1-b (\/)	
			- 38 -	4 5		00	00-0										20	A-1-0 (V)	-
			- 39 -	66	15	22	SS-7	-	-	-	-	-	-	-	-	-	27	A-1-b (V)	
			- 40																
			- 42																
			- 43 -	13 10 7	22	22	SS-8	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	
			- 44 - 45 -																
				5 6 6	15	56	SS-9	-	32	36	27	3	2	NP	NP	NP	17	A-1-b (0)	
			- 47																
			- 48	15 6 9	19	0	SS-10	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
			- 49	15															
			- 51 -	9 9	23	33	SS-11	-	-	-	-	-	-	-	-	-	29	A-1-b (V)	
			- 52 -																
			- 53 - - 54 -																
MEDIUM DENSE, BROWN, FINE SAND . TRAC	CE GRAVEL.	402.6	- 55 -	4					-										
TRACE SILT, TRACE CLAY,, WET	——, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 56 -	5	15	67	SS-12	-	3	30	62	3	2	NP	NP	NP	21	A-3 (0)	
	, F.S.		- 57 - 																
			- 59 -																
		1							1	1		[1		[I		

	PID: BR ID:	PROJECT: BREN	T SPE	NCE BRI	DGE S	TATION /	OFFSE	T: _1	17+10.	4, 41.8 R	r_ s	TART	: 8/2	27/10	_ E	ND:	9/2	2/10	_ P	G 2 O	F4 R	R-2A
	MATERIAL DES AND NO	SCRIPTION DTES		ELEV. 397.6	DEPT	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAI	DATIC FS	<mark>DN (</mark> %	6) a.	AT	TERE	BERG PI	wc	ODOT CLASS (GI)	HOLE SEALED
Ī	MEDIUM DENSE, BROWN, FINE SA	(continued)		001.0		-	3	17	100	SS-13	-	-	_	-	_	_	_	-	-	24	A-3 (V)	
		oonandody					7														- ()	-
			FS			- 62 -	1															
						- 63 -	-															
				392.6		- 64 -																
ł	DENSE, BROWN, GRAVEL AND ST	ONE FRAGMENTS,		002.0		- 65 -	17	42	100	SS-14		60	15	17	6	2				13	A-1-2 (0)	
	SOME SAND, TRACE SIET, TRACE	CLAT, WEI	Poor			66	15	-12				00				-					, (i u (0)	-
			• 0 °			- 67 -	-															
			000			- 68 -	-															
			0 0 g			- 69 -																
			000			70	14	20	07	00.45												-
			00			- 71 -	15 13	30	67	55-15	-	-	-	-	-	-	-	-	-	14	A-1-a (V)	
			000			- 72 -	-															
						- 73 -	-															
			[O			- 74 -	-															
			000			- 75 -	12	40												10		
			Polo			- 76 -	18 15	42	33	SS-16	-	-	-	-	-	-	-	-	-	13	A-1-a (V)	
			000			- 77 -	1															
						- 78 -																
			[O]			- 79 -																
ł	VERY DENSE, BROWN AND GRAY,	, GRAVEL AND STONE	000	377.6		- 80 -	50/0"	<u> </u>		SS-17	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	
	FRAGMENTS, SOME COBBLES, LIT	TTLE SAND, WET	000			81-	-															
			00 C			82-	-															
			000			- 83 -	-															
			P.∩d			- 84 -	-															
			000			85 -	50/0"	<u> </u>		SS-18	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	-
			00			86 -																
			000	000.0		- 87 -	-															
ł	INTERBEDDED LIMESTONE (50%)	AND SHALE (50%);	Ħ	309.0	TR	- 88 -																
	WEATHERED, MODERATELY STRC	ERED TO SLIGHTLY DNG, THIN BEDDED,	₩¥			- 89 -																
	ARGILLACEOUS, FOSSILIFEROUS SHALE, GRAY, SLIGHTLY TO MO	SEAMS; ODERATELY	Ħ			- 90 -																
	WEATHERED, VERY WEAK TO WE BEDDED, LOSS 2%, RQD 40%.	AK, LAMINATED TO THIN				91 -															0005	
			₩			92 -	40		100	HQ-1											CORE	
			Ħ			93 -																
						94 -																
			X			- 95 -																
			<u>₹</u>			- 96 -																
			₩			97 -																
			Ħ			- 98 -	40		96	HQ-2											CORE	
			A	358.1		- 99 -																
S.GPJ	LIMESTONE, GRAY, UNWEATHERE BEDDED, ARGILLACEOUS, SHALE	ED, STRONG, THIN PARTINGS,				-100-																
DOG.	FOSSILIFEROUS SEAMS, LOSS 2%	%, RQD 75%				-101-																
lodo)	LS @99.5'-100.1' QU=14410 PSI					-102-																
∖GINT	LS @ 105.1' POINT LOAD = 9027 PS	SI				-103-	66		96	HQ-3											CORE	
05070	LS @111.8'-112.2' QU=12314 PSI					-104-																
0\N11	LS @117.8'-118.2' QU=6058 PSI					-105-																-
S\201	LS/SH @120.5'-121' QU= 4222 PSI					-106-																
DJECT	LS @ 131.5' POINT LOAD = 8142 PS	SI				-107-																
N:\PR(LS @134.4'-134.9' QU=7566 PSI					-108-	64		100	HQ-4											CORE	
:08 -	LS @140'-140.5' QU=7757 PSI					-109-																
3/11 1(LS @ 141.2' POINT LOAD = 11014 F	PSI				-110-																
T - 3/6	LS @148'-148.5' QU=15226 PSI.					-111-																
DT.GD						-112-																
ОН DC						113	70		92	HQ-5											CORE	
17) - (-114																
(11 X			Ē			115																
SLOG						-116-								_								
ORINC			Ħ			-117-																
OIL B						-118-	80		100	HQ-6											CORE	
DOT S						-119-																
RD OL						-120-	L													L		
ANDA						-121-																
ST,			Ļ				1													1		

PID: BR ID:	PROJECT: BRE	NT SPE	NCE BRI	DGE ST	TATION /	OFFSE	T: _1	<u>17+10.</u>	4, 41.8 RT	S	TART	: 8/2	27/10	_ EI	ND: _	9/2	2/10	_ P(G 3 OF	- 4 F	R-2A
MATERIAL DESCRI	PTION		ELEV.	DEPT	ΉS	SPT/	N ₆₀	REC	SAMPLE	HP (tef)	CP	GRAI		ON (% .∾	6)	AT		ERG	wr	ODOT CLASS (GI)	
LIMESTONE, GRAY, UNWEATHERED, ST	rong, thin		335.8					(70)	עו	(ເຮເ)	UR I	US	гð	5				н	VVC		JEALED
BEDDED, ARGILLACEOUS, SHALE PAR FOSSILIFEROUS SEAMS, LOSS 2%. RO	FINGS, D 75%				-123-	88		100	HQ-7											CORE	
IS @99 5'-100 1' OLI=14410 PSI					-124-																
		<u></u> <u> </u>																			-
LS @111.8-112.2' QU=12314 PSI					120																
LS @117.8'-118.2' QU=6058 PSI					- 12/	74														0005	
LS/SH @120.5'-121' QU= 4222 PSI					- 128-	/4		94	HQ-8											CORE	
LS @ 131.5' POINT LOAD = 8142 PSI																					
LS @134.4'-134.9' QU=7566 PSI					-130-																-
LS @140'-140.5' QU=7757 PSI					-131-																
LS @ 141.2' POINT LOAD = 11014 PSI					-132-																
LS @148'-148.5' QU=15226 PSI. (continue	ed)				-133-																
					-134-																
					-135-															00055	
					-136-	66		99	HQ-9											CORE	
					-137-																
					- 140-																
					- 142-																
					-143-																
		F			- 144-																
					- 145-	89		100	HQ-10											CORE	
					-146-																
					-147-																
					-148-																
					-149-																
					-150-																
LIMESTONE GRAY UNWEATHERED ST			306.6																		
MEDIUM BEDDED, CRYSTALLINE, LOSS	6%, RQD 80%	<u> </u>																			
LS @160'-160.5' QU=10770 PSI																					
LS @ 166.9' POINT LOAD = 9985 PSI																					
LS @175.9'-176.3' QU=10382 PSI																					
LS @179.8'-180.3' QU=13212 PSI						90		95	HQ-11											CORE	
LS @183.5'-184' QU=9726 PSI.																					
		Ε.			- 158-																
					- 150																
					100																
					- 100-																-
7					- 161-																
					- 162-																
					- 163-																
					- 164-																
						67		90	HQ-12											CORE	
70601																					
					- 167-																
					168-																
					169																
					-170-																
- 20.					-171-																
					-172-																
- 0 -					-173-																
					-174-																
					- 175-																
5-0					-176-	80		98	HQ-13											CORE	
× =					-177-																
					- 178-																
D Z					170																
					- 1/9																
					-180-																
					- 181-																
DAKL																					

PID: 75119	BR ID:	PROJECT:	BRENT SPE		DGE	STATION /	OFFSE	T:	17+10.	4, 41.8 RT	- s	START	: 8/2	7/10	EN	D:	9/2/2	0	PC	G 4 OF	4 R	R-2A
	MATERIAL DESCRIF AND NOTES	ΤΙΟΝ		ELEV. 273.9	DE	PTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS) <mark>N (%)</mark> SI) a.		RBEI PL	RG PI	wc	ODOT CLASS (GI)	HOLE SEALED
LIMESTONE, MEDIUM BED	GRAY, UNWEATHERED, ST DED, CRYSTALLINE, LOSS	Rong, Thin 6%, RQD 80%	TO																			
LS @160'-160	.5' QU=10770 PSI					- 186-	84		94	HQ-14											CORE	
LS @ 166.9' F	OINT LOAD = 9985 PSI					- 187-																
LS @175.9'-1	76.3' QU=10382 PSI					- 188-																
LS @179.8'-1	30.3' QU=13212 PSI					- 189-																
LS @183.5'-1	34' QU=9726 PSI. <i>(continue</i> a)		267.1		- 190-																

NOTES: WATER USED BELOW 88 FT. FOR ROCK CORING PURPOSES. 3 INCH PVC CASING INSTALLED FROM SURFACE TO 139 FEET. UNABLE TO INSTALL CASING TO FULL DEPTH DUE TO OBSTRUC ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (15 BAGS CEMENT/2.5 BAGS BENTONITE)

BORING NO.: R-2A CORE BOX NO.: 4 OF 9 DEPTH (ft.): 123.5-135.4 ELEVATION (ft.): 334.14 8/NQ: 125.5'-130.5'; REC. 94%, RQD 74% 9/NQ: 130.5'-140.5'; REC. 99%, RQD 66%

BORING NO.: R-2A CORE BOX NO.: 5 OF 9 DEPTH (ft.): 135.4-148.0 ELEVATION (ft.): 321.24 10/NQ: 140.5'-150.5'; REC. 100%, RQD 89%

BORING NO.: R-2A CORE BOX NO.: 6 OF 9 DEPTH (ft.): 148.0-160.5 ELEVATION (ft.): 308.64 11/NQ: 10.5'-160.5'; REC. 95%, RQD 90%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core C Date: 9-8-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-2A

BORING NO.: R-2A CORE BOX NO.: 7 OF 9 DEPTH (ft.): 160.5-176.3 ELEVATION (ft.): 296.14 12/NQ: 160.5'-170.5'; REC. 90%, RQD 67%

BORING NO.: R-2A CORE BOX NO.: 8 OF 9 DEPTH (ft.): 176.3-180.5 ELEVATION (ft.): 280.34 13/NQ: 170.5'-180.5'; REC. 98%, RQD 80%

BORING NO.: R-2A CORE BOX NO.: 9 OF 9 DEPTH (ft.): 180.5-190.5 ELEVATION (ft.): 276.14 14/NQ: 180.5'-190.5'; REC. 94%, RQD 84%

Proiect Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW	Scale: As Shown File No. Core C	611 LUNKEN PARK DRIVE	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-2A

PROJECT: BRENT SPENCE BRIDGE	DRILLING FIRM / OF		OR: R'		HH VW/		L RIG	: <u>CM</u>		<u>TV-72</u>	53	STAT		/ OFF	-SET	: <u>17</u> PROP	7+79 POSEI	1, 35. D BS	. <u>6 LT</u> B	EXPLOR	ATI0 -3
PID: BR ID:	DRILLING METHOD	:	3.25	" HSA / NG	2		BRAT			2/4/10		ELE	ATIC	DN: _	458.0) (MS	<u>53⊏</u> 5 <u>L)</u> E	EOB:	16	35.5 ft.	P/
START: <u>7/12/10</u> END: <u>7/13/10</u> MATERIAL DESCRIPT	SAMPLING METHOD	D:	ELEV	SPT / NQ		ENE	RGY F	RATIO	(%): SAMPI F	76.3	<u>_ </u>	COO	RD: _	<u>)</u> N (%	<u>39.09</u> പ്ര)2137 ∆⊤	7310, TERP	-84.5	23169	9520	1 (H
AND NOTES			458.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS CS	FS	SI	a.		R.	R	wc	CLASS (GI)	SE
WATER (OHIO RIVER)					- 1 -																
					- 2 -																
					- 3 -																
					- 4 -																
					- 5 -																
					- 6 -																
					_ 7 _																
					- 8																
					- 9 - 																
					- 10																
					- 11 																
					- 12 -																
					- 14																
					 _ 16 _																
					- 17 -																
					- 18 -																
					19																
					20																
					21 																
					22 																
					- 23																
					- 24																
					20																
					- 27 -																
			430.0		- 28 -																
TONE FRAGMENTS WITH SAND, TRACE	SILT, TRACE	e C s			- 29 -																
, _ .					_ 30 _																
					- 31 -	1_	-	-			-										
		e Cse			- 32 -	2	5	0	55-1	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
					- 33 -	5 6	14	0	SS-2	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
					- 34 -	3 6	19	67	SS-3	-	39	37	20	3	1	NP	NP	NP	15	A-1-b (0)	
OOSE, BROWN, GRAVEL AND STONE FR	AGMENTS,	<u>ارک</u>	422.5		- 35 -	<u>9</u> 5									- -						
RACE SILT, TRACE CLAY, WET	,		421.0		30	32	6	22	SS-4	-	57	34	6	1	2	NP	NP	NP	17	A-1-a (0)	
.00se, Brown, gravel and stone fr S and , Trace Silt, Trace Clay, Wet	AGMENTS WITH	\circ			- 38 -	2	5	67	SS-5	-	7	69	17	3	4	NP	NP	NP	18	A-1-b (0)	
		ç Q			- 39 -	7	10				\vdash					-				A 4 6 0.0	
			418.0		- 40 -	4 4	10		55-6	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
RACE SILT, TRACE CLAY, WET	AUE GRAVEL,				- 41 -	ئ 5 ج	13	33	SS-7	-	1	39	55	2	3	NP	NP	NP	19	A-3 (0)	
					- 42 -																
		. F .S.			- 43 -	5 7	19	33	SS-8	-	-	-	-	-	-	-	-	-	25	A-3 (V)	
			140.0		- 44 -	8		-			-						-				
OOSE TO MEDIUM DENSE, BROWN, GRA			413.0		- 45 -	4	10	70	<u> </u>			40	20	· ·	_						
LAY, WET	SILI, IRACE				- 46 -	44		18	33-9	-	9	48	39	2					20	(U) a-1-D (U)	
		\circ			⊢ 47 — 	4		-									-				
		00 00 100 100			- 48 -	54	11	67	SS-10	-	25	36	34	2	3	NP	NP	NP	19	A-1-b (0)	
		0,0 0,0			- 49 - 																
					- 51 -	10 6	17	0	SS-11	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	
					_ 52 _	7		-			-										
		0-139 0_0			- 53 -																
		609 609			- 55 -	6											-				
		o C d			- 56 -	ř7 8	19	67	SS-12	-	-	-	-	-	-	-	-	-	22	A-1-b (V)	
					- 57 -																1
		29			_ 58 _																
		$\circ \mathcal{O}_{q}$			_ 59 _																
		p_D			1 .	I		1		1	1	1			1	I .	1	1	1	1	

PID: 75119 B	R ID: PROJ	JECT: BRENT SP	ENCE BRI	DGE S	TATION	OFFSE	T:	17+79.	.1, 35.6 LT	r_s	TART	: 7/	12/10)_ E	ND:	7/1	3/10	_ F	•G 2 0	F 3	R-3
· · · ·	MATERIAL DESCRIPTION		ELEV.	DEP	THS	SPT/	N ₆₀	REC	SAMPLE	HP		GRA		ON (%	%)	AT	TERE	BERG		ODOT	HOLE
LOOSE TO MEDI	UM DENSE, BROWN, GRAVEL	AND	398.0		L	8		(%)		(ISI)	GR	6	FS	5	u		HL	н	wc		SEALEL
STONE FRAGME CLAY, WET (cont	INTS WITH SAND, TRACE SILT, tinued)	, TRACE	5		61 -	9 10	24	89	SS-13	-	31	35	29	2	3	NP	NP	NP	19	A-1-b (0)	
	,		V (V d		- 62 -	-															
			g		- 63 -																
					- 64 -	-															
			393.0	_	- 65 -																-
STONE FRAGME	INTS, SOME SAND, TRACE SIL		Z		- 66 -	12	31	100	SS-14	-	70	13	13	3	1	NP	NP	NP	10	A-1-a (0)	
CLAY, WEI					- 67 -	12															-
			79		- 68 -																
					- 69 -																
		Po			70	-															
			7d 2 (- 70-	15 9	19	67	SS-15	_	57	29	9	3	2	NP	NP	NP	16	A-1-a (0)	
			D			6															-
		50	Z																		
			Ś																		
			7		- 74 -	-															
) (\ {		- 75 -	22	33	56	SS-16	_	53	29	12	3	3				13	$A_{-1} = (0)$	
		Po			- 76 -	12		50	00-10	-	55	23	12	5	5				15	A-1-a (0)	-
		0	79		- 77 -																
			d d		- 78 -																
		60	Z		- 79 -																
					- 80 -	50/0"	<u> </u>		SS-17	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	-
			79		- 81 -																
					- 82 -																
		Po			- 83 -																
			7d 2 (- 84 -																
					- 85 -																
		° Č	371 5		- 86 -	-															
LIMESTONE, GR	AY, UNWEATHERED TO SLIGH			TR	- 87 -																-
MODERATELY F	RONG, THIN BEDDED, ARGILL RACTURED, THIN SHALE SEAN	ACEOUS, MS, LOSS	X		- 88 -																
4%, RQD 75%			Ż		- 89 -	50		80	NQ-1											CORE	
LS @92.3'-92.7' C	QU=9244 PSI	X	Ħ		- 90 -																
LS @93.8'-94.5' G	QU=10241 PSI	X	Ž		01																-
LS @ 98' POINT I	LOAD = 13271 PSI		Ä		- 00																
SH @102.7'-103.1	1' QU=7236 PSI		Ă		- 92 -															0005	
LS @106.5'-107.1	' QU=9187 PSI	<u>A</u>	Å		- 93 -	42		92	NQ-2											CORE	
LS @ 113.3' POIN	NT LOAD = 13042 PSI		À		— 94 –																
LS @ 117.2' POIN	NT LOAD = 10568 PSI	R R R R R R R R R R R R R R R R R R R	Т Т		— 95 –	_															_
LS @123.8'-124.7	" QU=6833 PSI.		Ę		- 96 -																
		X	Ž		97 -																
		X	Å		98 -	62		100	NQ-3											CORE	
		X	Ħ		- 99 -																
5			Z		-100-																
			Ž		-101-																
			Ϋ́,																		
			Ť.			80		100	NQ-4											CORE	
		X																			
			Т Т																		
			Ę		- 106-																-
		X	X		- 107-																
		E E	Ž					00	NOF											0005	
		X	Ħ		- 108-	90		96	NQ-5											CORE	
		X	Ž		- 109-	1															
			ž		110- -																-
			X X		111- -																
		À	Ę																		
					-113-	78		100	NQ-6											CORE	
			т Т		-114-																
			Ę		-115-																
		X	Ŕ		-116-																
			Ž		-117-																
		X	Д		- 118-	96		100	NQ-7											CORE	
5			Ž		- 119-																
			H		-																
2 2			Ă		- 120						-					-					
č		E E	X		-			1													

PID: 75119	BR ID:	_ PROJECT: _	BRENT SPE	NCE BRI	DGE STA	TION /	OFFSE	T:1	17+79.	1, 35.6 LT	S	TART	: 7/1	2/10	_ EN	ND: _	7/1:	3/10	_ P	G 3 OI	F 3	R-3
	MATERIAL DESCRI	IPTION		ELEV.	DEPTH	S	SPT/	N ₆₀	REC	SAMPLE	HP (tef)	CP	GRAD		ON (%	5) 	AT	TERB	BERG	we	ODOT CLASS (GI)	HOLE
	AND NOTES		λX	330.1		- 1			(/0)		(131)	GI	ω	13	31	u	LL	rL		vvc		
					-	-123-	100		100	NQ-8											CORE	
						-124-																
			X	332.5		-125-																
	GRAY, UNWEATHERED, S	TRONG, THIN		002.0		-126-																-
THIN SHALE F	ARTINGS, LOSS 2%, RQE	ROUS SEAMS, 1 D 83%		-	-	-127-																
LS @106'-106	.5' QU=14729 PSI				-	120	02		100												CODE	
LS @136.5'-13	7' QU=24544 PSI				F	- 120-	92		100	NQ-9											CORE	
	5' OLI-0100 PSI				-	-129-																
				-	-	-130-																-
LS @145.5-14	0 QU=11/07 PSI					-131-																
LS @157.3'-15	58' QU=14226 PSI.			-		-132-																
					-	-133-	84		80	NQ-10											CORE	
					-	-134-																
						-135-																
				-		-136-																1
						-137-																
						-138-	90		90	NQ-11											CORF	
				-	_	-130-				ing in											00112	
				-	-	140																
				-		- 140-																-
					-	- 141-																
					-	-142-																
						-143-	86		90	NQ-12											CORE	
						-144-																
				-		-145-																
				_		-146-																
						-147-																
					-	-148-	80		100	NQ-13											CORE	
				-	F	-149-																
						-150-																
				-	-	-151-																1
						-152-																
				-		-153-	68		100	NQ-14											CORE	
						-154																
						-155																
						-156-																1
					_	-157-																
				-	-	157	01		100	NO 15											CODE	
				-	F	150-	04		100	NQ-15											CORE	
				-	-	-159-																
						-160-																-
						-161-																
						-162-																
						-163-	92		100	NQ-16											CORE	
						-164-																
				292.5	EOB	-165-																

NOTES: WATER USED BELOW 86.5 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (10 BAGS CEMENT/1 BAG BENTONITE)

Proiect Mnar.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown	Alterracion commany	BRENT SPENCE BRIDGE REPLACEMENT	R-3
Chkd By: DWW	File No. Core D	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF	
Approved By: AJM	Date: 9-23-10	CINCINNATI, OHIO 45226	CINCINNATI, OHIO	

BORING NO.: R-3 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 130.5-140.5 ELEVATION (ft.): 327.51 10/NQ: 130.5'-135.5'; REC. 80%, RQD 84% 11/NQ: 135.5'-140.5'; REC. 90%, RQD 90%

BORING NO.: R-3 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 140.5-154.8 ELEVATION (ft.): 317.51 12/NQ: 140.5'-145.5'; REC. 90%, RQD 86% 13/NQ: 145.5'-150.5'; REC. 100%, RQD 80% 14/NQ: 150.5'-155.5'; REC. 100%, RQD 68%

3 3 4 5 4 7 8 9 10 11 9 10		
CORDER OF STREET		
CAR MILLION STREET	AL 16 ALITER 19 19 19 19 19 19 19 19 19 19 19 19 19	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE
A Semanning Const		AND

BORING NO.: R-3 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 154.8-166.5 ELEVATION (ft.): 302.51 15/NQ: 155.5'-160.5'; REC. 100%, RQD 84% 16/NQ: 160.5'-165.5'; REC. 100%, RQD 92% 17/NQ: 165.5'-166.5'; REC. 90%, RQD 90%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown	Alteractor convert	BRENT SPENCE BRIDGE REPLACEMENT	R-3
Chkd By: DWW	File No. Core D	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF	
Approved By: AJM	Date: 9-23-10	CINCINNATI, OHIO 45226	CINCINNATI, OHIO	

Proiect Mnar.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown	Alterracion commany	BRENT SPENCE BRIDGE REPLACEMENT	R-3
Chkd By: DWW	File No. Core D	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF	
Approved By: AJM	Date: 9-23-10	CINCINNATI, OHIO 45226	CINCINNATI, OHIO	

BORING NO.: R-3 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 130.5-140.5 ELEVATION (ft.): 327.51 10/NQ: 130.5'-135.5'; REC. 80%, RQD 84% 11/NQ: 135.5'-140.5'; REC. 90%, RQD 90%

BORING NO.: R-3 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 140.5-154.8 ELEVATION (ft.): 317.51 12/NQ: 140.5'-145.5'; REC. 90%, RQD 86% 13/NQ: 145.5'-150.5'; REC. 100%, RQD 80% 14/NQ: 150.5'-155.5'; REC. 100%, RQD 68%

3 3 4 5 4 7 8 9 10 11 9 10		
CORDER OF STREET		
CAR MILLION STREET	AL 16 ALITER 19 19 19 19 19 19 19 19 19 19 19 19 19	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE
A Semanning Const		AND

BORING NO.: R-3 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 154.8-166.5 ELEVATION (ft.): 302.51 15/NQ: 155.5'-160.5'; REC. 100%, RQD 84% 16/NQ: 160.5'-165.5'; REC. 100%, RQD 92% 17/NQ: 165.5'-166.5'; REC. 90%, RQD 90%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown	Alteractor convert	BRENT SPENCE BRIDGE REPLACEMENT	R-3
Chkd By: DWW	File No. Core D	611 LUNKEN PARK DRIVE	PARSONS BRINCKERHOFF	
Approved By: AJM	Date: 9-23-10	CINCINNATI, OHIO 45226	CINCINNATI, OHIO	

PR		DRILLING FIRM / OPE	RATOR:	HCN /	HH		L RIG			TV-725	53_	STAT			SET	: <u>17</u>	+22.	4, 36. D BSE	4 LT	EXPLOR	ATION ID -4
PID	: <u>75119</u> BR ID:	DRILLING METHOD:	3.25	" HSA / NO	2	CALI	BRATI		ATE: <u>2</u>	2/4/10 76.3		ELEV		DN: _4	458.0 39.00	(MS	<u>UUU</u> E 720	EOB: -84 5		5.5 ft.	PAGE 1 OF 3
01/	MATERIAL DESCRIP	TION	ELEV.		THS	SPT/	N _∞	REC	SAMPLE	HP		GRAE		DN (%	6) 0	AT	TERE	ERG	we	ODOT CLASS (GI)	
W	ATER (OHIO RIVER)		458.0			RQD		(70)	ID	((5))	GK	6	Fð	3	u		r.	п	vvc		JEALLE
	OSE TO MEDIUM DENSE, BROWN, GR ONE FRAGMENTS WITH SAND, TRACE AY, WET	AVEL AND	427.5		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
					- 33 -	1															_
					- 34 -	2 2 1	5	44	SS-1	-	17	68	10	3	2	NP	NP	NP	17	A-1-b (0)	
					- 36 -	2 5 7	9	56	SS-2	-	37	52	10	0	1	NP	NP	NP	19	A-1-b (0)	_
GPJ					- 38	7 8 4	19	100	SS-3	-	28	60	9	2	1	NP	NP	NP	14	A-1-b (0)	-
DT LOGS.			y d		- 39 -	5 5 6	13	33	SS-4	-	2	85	11	0	2	NP	NP	NP	21	A-1-b (0)	-
					- 40 -	2 3 2	6	67	SS-5	-	39	42	14	3	2	NP	NP	NP	17	A-1-b (0)	-
105070\C		20 20 20			- 42 -	3 5 3	10	33	SS-6	-	10	55	28	4	3	NP	NP	NP	25	A-1-b (0)	-
\$\2010\N1			D VI		- 43 - - 44 -	23	6	100	SS-7	-	-	-	-	-	-	-	-	-	25	A-1-b (V)	-
ROJECTS	OSE TO MEDIUM DENSE, BROWN, FIN RAVEL, TRACE SILT, TRACE CLAY, WE	IE SAND, TRACE T	<u>413.0</u>		45	1 2	6	33	SS-8	-	5	18	74	1	2	NP	NP	NP	22	A-3 (0)	-
/11 10:08 - N:\F					- 47 - - 48 -	2 2	6	0	SS-9	_	-	-	-	-	-	-	-	-		A-3 (V)	-
GDT - 3/9					- 49 - - 50 -	3															
OH DOT.					- 51 -	4 4 6	13	67	SS-10	-	2	22	72	1	3	NP	NP	NP	26	A-3 (0)	
DARD ODOT SOIL BORING LOG (11 X 17) -					52	8 9 10	24	67	SS-11	-	3	7	82	4	4	NP	NP	NP	22	A-3 (0)	-
STANE					- 59																

PID: 75119	BR ID:	PROJECT:	BRENT SPE	NCE BRI	DGE	STATION	OFFSE	ET:	17+22.	4, 36.4 L	T_S	TART	[: 7/	/7/10	E	ND:	7/9	9/10	_ P	G 2 O	F3 F	R-4
	MATERIAL DESCRI	IPTION		ELEV.	DEF	PTHS	SPT/	N ₆₀	REC	SAMPLE	HP		GRA		ON (%	%)	AT	TERE	BERG		ODOT CLASS (GI)	HOLE
LOOSE TO M	EDIUM DENSE, BROWN, F	FINE SAND, TRA	CE	398.0			5_	10	(%)		((51)	GR	6	Fð	5	l u		<u> </u>	м	wc		SLALLL
GRAVEL, TRA	ACE SILT, TRACE CLAY, W	VET (continued)				- 61 -	6	19	67	SS-12	-	-	-	-	-	-	-	-	-	24	A-3 (V)	
			FQ			62 -																
						- 63 -	-															
						- 64 -	-															
				393.0	-	- 65 -																-
STONE FRAG	SMENTS, SOME SAND, TR	ACE SILT, TRAC	E C	d d		- 66 -	12	31	56	SS-13	-	-	-	-	-	-	-	-	-	13	A-1-a (V)	
CLAY, WET				ł		- 67 -	12															-
			S-O				-															
			00	t		- 68 -	-															
						- 69 -	-															
			00	ţ		- 70 -	14	12	22	00 14		70	12	6	1	2				16	A 1 c (0)	1
						- 71 - -	13	43		33-14	-	/0	13	0		2				10	A-1-a (0)	-
			0	a a		- 72 -	-															
						- 73 -																
			60	d d		- 74 -	-															
				Ì		- 75 -	14				-			-			-					-
						- 76 -	6	15	33	SS-15	-	52	36	7	3	2	NP	NP	NP	16	A-1-a (0)	
			00	ţ		- 77 -																-
						- 78 -	-															
			0	₹		- 79 -																
						- 80 -	50/0"			00.40												_
			0			- 81 -	-20/3/	<u>↑ </u>		55-10		<u> -</u>			<u>↓ </u>					<u>↓</u>	<u>A-1-a (v)</u>	1
						- 22 -	_															
			60	þ		- 02	-															
				ł		- 03 -	-															
						- 84 -	-															
			00	ţ		- 85 -	-															
LIMESTONE				371.5	TR	- 86 -																-
WEATHERED	, MODERATELY STRONG	TO STRONG, TH		Ň		- 87 -																
CRYSTALLINE	GILLACEOUS, SHALE SEA E, FRACTURED, LOSS 8%	, RQD 40%	NGS,	5		- 88 -	0		73	NQ-1											CORE	
LS @ 90.5'-91	I' QU=8320 PSI					- 89 -																
LS @ 95' POII	NT LOAD = 11920 PSI					- 90 -																-
LS @ 95.5'-96	6' QU=5778 PSI.					- 91 -																
			<u> </u>			- 92 -																
				-		- 93 -	56		100	NQ-2											CORE	
				5		- 94 -	-															
				7		- 95 -																
				*		- 96 -																
				Ž		- 97 -																
				7		- 98 -	- 54		100	NQ-3											CORE	
						- 99 -																
	GRAY, UNWEATHERED, S	STRONG, THIN		357.5		- 101-																1
BEDDED, ARG	GILLACEOUS, FOSSILIFEF Y FRACTURED, LOSS 0%,	ROUS SEAMS, RQD 88%		-		-																
LS @ 101' PO)INT LOAD = 13271 PSI			-		- 102	- 04		100												CODE	
E LS @102.8'-10	03.3' QU=2644 PSI			-		- 103-	- 04			1102-4											CORE	
S@1113'-1	11 9' OI I=5958 PSI					- 104-																
	21 3' OI I=19133 PSI			-		- 105-																-
	22.3 QU - 15380 PSI			-		-106-																
	22.3 QU-13009 F31			-		-107-																
						-108-	92		100	NQ-5											CORE	
	40.5 QU=16884 PSI					-109-																
E LS @140.6'-14	41.1' QU=13586 PSI			-		-110-																
ສັ LS @ 147' PO 	DINT LOAD = 12473 PSI					-111-																
ਲ੍ਹ LS @152.8'-1!	53.6' QU=10653 PSI					-112-																
ă LS @ 155.5' P	POINT LOAD = 13035 PSI					-113-	82		100	NQ-6											CORE	
LS @159.6'-10	60.5' QU=15762 PSI.			1		-114-																
×						- 																
LOG						- 		1									1	+				
						- 118-	<u>0</u> ⊿		100	NO.7											CORE	
						- 110																
						- 119-																
DAKL						- 120-						-						-				-
				-		- 121-		1														

PID: <u>75119</u> BR I	D: PROJECT: _	BRENT SPE	NCE BRI	DGE ST	ATION /	OFFSE	T:1	17+22.	4, 36.4 LT	S'	TART	: 7/	7/10	_ EN	ND:	7/9	9/10	P	G 3 OI	= 3 F	R-4
	MATERIAL DESCRIPTION		ELEV.	DEPT	HS	SPT/	N ₆₀	REC	SAMPLE	HP	05	GRAI) NC)	AT	TERBE	RG	140	ODOT	HOLE
LIMESTONE, GRAY,	, UNWEATHERED, STRONG, THIN		336.1		— –	RQD		(%)	U	(tst)	GR	CS	FS	SI	a.		н	н	WC	CLASS (GI)	SEALEL
BEDDED, ARGILLAC	CEOUS, FOSSILIFEROUS SEAMS, CTURED LOSS 0% ROD 88%		-		-123-	96		100	NQ-8											CORE	
	$\Delta D = 13271 PSI$		-																		
			-		- 																
			-																		
LS @111.3-111.9 Q	U=5958 PSI		-		- 127-																
LS @120.6'-121.3' Q	U=19133 PSI		-		- 120	02		100												CORE	
LS @121.9'-122.3' Q	U=15389 PSI		-		- 120	02		100	1102-9											CORL	
LS @129.6'-130' QU:	=5754 PSI		-		129																
LS @139.6'-140.5' Q	U=16884 PSI		-		- 130-																
LS @140.6'-141.1' Q	U=13586 PSI		-		- 131-																
LS @ 147' POINT LC	DAD = 12473 PSI		-																		
LS @152.8'-153.6' Q	U=10653 PSI		-			72		100	NQ-10											CORE	
LS @ 155.5' POINT I	LOAD = 13035 PSI		-		-134-																
LS @159.6'-160.5' Q	U=15762 PSI. (continued)		-		135_																
			-																		
					-137-																
			-		-138-	94		100	NQ-11											CORE	
			-		-139-																
			-		-140-																
			-		- 141-																
			-			90		100	NQ-12											CORE	
			-																		
			-		- 146-																
			-																		
			-		- 147	00		100	NO 12											CODE	
			-			00			NQ-13											CORE	
			-		- 149-																
			-																		
					- 151-																
			-																		
			-			84		100	NQ-14											CORE	
			-		-154-																
			-		155																
					-156-																
					-157-																
					-158-	96		100	NQ-15											CORE	
			-		-159-																
			-		-160-																
					-161-																
GPJ					-162-																
LOGS					-163-	94		98	NQ-16											CORE	
					-164-																
			000 5																		
020/6			292.5	EOB-		I					L	<u> </u>				<u> </u>					
N1105																					
2010																					

NOTES: WATER USED BELOW 86.5 FT. FOR ROCK CORING PURPOSES. GAS POCKET AT 147.0' ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (9 BAGS CEMENT/1 BAG BENTONITE)

BORING NO.: R-4 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 86.5-100.5 ELEVATION (ft.): 371.48 1/NQ: 86.5'-90.5'; REC. 73%, RQD 0% 2/NQ: 90.5'-95.5'; REC. 100%, RQD 56% 3/NQ: 95.5'-100.5'; REC. 100%, RQD 54%

BORING NO.: R-4 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 100.5-115.5 ELEVATION (ft.): 357.48 4/NQ: 100.5-105.5'; REC. 100%, RQD 84% 5/NQ: 105.5'-110.5'; REC. 100%, RQD 92% 6/NQ: 110.5-115.5'; REC. 100%, RQD 82%

BORING NO.: R-4 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 115.5-130.5 ELEVATION (ft.): 342.48 7/NQ: 115.5'-120.5'; REC. 100%, RQD 94% 8/NQ: 120.5'-125.5'; REC. 100%, RQD 96% 9/NQ: 125.5'-130.5'; REC. 100%, RQD 82%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core D Date: 9-23-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-4

ſ		DRILLING FIRM / OPERA	RM / OPERATOR: <u>HCN / HH</u> IRM / LOGGER: <u>HCN / DRK/DWW</u> THOD: <u>3.25" HSA / NQ</u> C/	DRILL RIG: CME 550X ATV-7253 N HAMMER: CME AUTOMATIC					33_ STATION / OFFSET:						EXPLORATION ID R-5					
	PID: BR ID: DRILLING METHOD: START: BR ID: DRILLING METHOD: MATERIAL DESCRIPTION			"HSA / NQ	CALIE	BRAT		ATE:	2/4/10		ELE	ATIC	NT: DN:	۲ 458.6) (MS	L) E	EOB:	3 16	5.4 ft.	PAGE
	START: <u>6/29/10</u> END: <u>7/1/10</u> MATERIAL DESCRIPT	SAMPLING METHOD:	ELEV.		ENER	RGY F	REC	(%): SAMPLE	76.3 HP		COO GRAI	RD: _ DATIC	;) NC	<u>39.08</u> ພ	39400 AT)310, TERB	-84.5 FRG	22990	0520	HOLE
		-	458.6		RQD	N _∞	(%)	ID	(tsf)	GR	ß	FS	SI	a.	LL	R.	P	wc	CLASS (GI)	SEALED
	LOOSE TO MEDIUM DENSE, DARK GRAY, FINE SAND, LITTLE TO SOME GRAVEL, TO TRACE CLAY, WET	, COARSE AND RACE SILT,	442.6		1 3 2	6	22	SS-1	-	19	16	49	10	6	NP	NP	NP	28	A-3a (0)	-
			439.6	- 19 -	4 8	15	44	SS-2	-	30	18	41	7	4	NP	NP	NP	39	A-3a (0)	
	MEDIUM DENSE, GRAY, GRAVEL AND ST FRAGMENTS WITH SAND, TRACE SILT, THE WET	RACE CLAY,	438 1	- 20 -	3 4 ∖_5	11	33	SS-3	-	35	19	36	6	4	NP	NP	NP	40	A-1-b (0)	
	SOFT TO MEDIUM STIFF, GRAY, SILT AND TO SOME SAND, MOIST	D CLAY, TRACE		21	2	5	67	SS-4	1.00	0	1	24	52	23	31	20	11	30	A-6a (8)	
				- 22	4	3	0	SS-5	0.75	_	_	_	-	_	_	-	_	-	A-6a (V)	-
				- 23 24	1 3	5	100		1.00	0	0	٩	54	37	36	21	15	11	A_6a (10)	-
				- 25 -	2 2	5	100		1.00			5	54	57		21			A-0a (10)	-
				_ 26 _	_43	9	33	SS-7	1.00	-	-	-	-	-	-	-	-	49	A-6a (V)	-
	MEDIUM DENSE TO DENSE, GRAY, GRAV FRAGMENTS WITH SAND , TRACE SILT, T WET	VEL AND STONE RACE CLAY,	431.1	27 28 29 30 31	12 13 15 6 11	36 28	33 67	SS-8 SS-9	-	- 45	- 38	- 10	- 4	-	- NP	- NP	- NP	10	A-1-b (V)	
				- 32 - 33 -	11 10 14 14	36	100	SS-10	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	-
				- 34																
				36	5 9 9	23	11	SS-11	-	-	-	-	-	-	-	-	-	21	A-1-b (V)	
JI LUGS.GPJ				- 37 38																
				- 41 - - 41 - - 42 - - 43 - - 43 - - 44 - - 44 -	21 14 7	27	33	SS-12	-	47	30	13	7	3	NP	NP	NP	14	A-1-b (0)	
KUJEL			ł	- 45 - - 46 -	13 14	36	100	SS-13	-	-	-	-	-	-	-	-	-	23	A-1-b (V)	
GDI - 3/9/11 10:08 - N:/F				- 47 48 49	14															
<u>че гое (11 Х 17) - ОН DOI .</u>				- 51 - - 52 - - 53 - - 53 - - 54 - - 54 -	13 8 8	20	44	SS-14	-	44	39	10	5	2	NP	NP	NP	16	A-1-b (0)	
				55	20 16 12	36	44	SS-15	-	-	-	-	-	-	NP	NP	NP	18	A-1-b (V)	-
SIANUARL				- 59																

PID: 75119	BR ID:	PROJECT:	BRENT SP	ENCE BRI	DGE S	TATION	/ OFFSE	ET:	7+85.4	4, 58.4 RT	S	TART	: 6/2	29/10)_ E	ND:	7/*	1/10	_ P	G 2 O	F3 F	२-5
	MATERIAL DESCRI AND NOTES	PTION		ELEV.	DEP	THS	SPT/ ROD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRA	DATI FS	<u>ON (9</u> si	6) a_	AT	TERE	BERG	wc	ODOT CLASS (GI)	HOLE SEALFD
MEDIUM DEN	SE TO DENSE, GRAY, GRA	AVEL AND STO	DNE	390.0		_	11_	15	67	QC 10	((0))	<u> </u>		.0	0	- u				10	Δ.1.6.0.0	
WET (continue	WITH SAND, TRACE SILT,	TRACE CLAY,		b		- 61	6	15	67	55-16	-	-	-	-	-	-	-	-	-	13	A-1-D (V)	-
				1		62	_															
						- 63 -	-															
				d d		- 64 -	-															
	GRAY FINE SAND LITTL			393.6	-	- 65 -	10															-
TRACE SILT,	TRACE CLAY, MEDIUM DE	INSE AT 65', W	/ET			- 66 -	11	28	56	SS-17	-	12	21	59	3	5	NP	NP	NP	19	A-3 (0)	
						- 67 -	-															-
						- 68 -	-															
						- 69 -	-															
			FS			- 70 -	-															
						- 71	20 40	116	67	SS-18	-	-	-	-	-	-	-	-	-	7	A-3 (V)	
						- 72	51															-
						- 73	-															
						- 74	-															
				383.6		- 74	-															
VERY DENSE	, GRAY, STONE FRAGMEN	ITS WITH SAN	D, VET			- 75-	65	-	100	SS-19	-	49	20	11	13	7	NP	NP	NP	16	A-1-b (0)	-
		TEORTERO, V		Ŋ		- 76 -	-															
						- 77 -	-															
			0	D T		- 78 -	-															
			9 C	d N		- 79 -	-															
				Π Π		- 80 -	-															
				b		81	-															
				1		- 82 -	-															
				b		- 83 -	-															
				,d ,d		- 84 -	-															
INTERBEDDE	D LIMESTONE (70%) AND	SHALE (30%).		373.6	π	- 85 -																-
	IE, LIGHT GRAY, UNWEATH	HERED TO		Į		- 86 -																
FOSSILIFERC	US;			Ţ		- 87 -																
WEATHERED	, MODERATELY STRONG, \	VERY THIN TO	тній 🛓	₹		- 88 -	- 25		88	NQ-1											CORE	
BEDDED, LOS	55 3%, RQD 67%		ŧ	4		- 89 -																
LS @85.2'-85.	7' QU=7099 PSI		\sum	<u>7</u>		- 90 -																-
LS @86.4'-86.	8' QU=10809 PSI			7		- 91 -																
LS @90.1'-90.	8' QU=7024 PSI		E E	Ž		- 02																
LS @92.2'-92.	8' QU=118 PSI			<u> </u>		- 02	- 66		100	NQ-2											CORE	
SH @ 92.2' SI	DI = 57.9			Ţ		- 93																
LS @93'-93.8'	QU=14324 PSI			4		- 94 -																
LS @95'-95.3'	QU=8193 PSI					- 95 - -																
SH @ 95.7' SI	DI = 52.5			₹ Ţ		- 96 - -																
LS @ 100.8' F	OINT LOAD = 11011 PSI					- 97 -	- 20		100	NQ-3											CORE	
LS @103'-103	.5' QU=4812 PSI			-} ₩		- 98 -																
LS @103.5'-10	04' QU=14991 PSI		Ŕ			99 -																
LS @ 108' PO	INT LOAD = 16192 PSI		¥	- L		100						-		-			\vdash					
LS @ 118 2' F	OINT LOAD = 11057 PSI			Ž		-101																
IS @128 1'-1'	28 8' QU=19640 PSI		₿	Į		-102	-		400												00055	
			×	<u></u>		-103-	58		100	NQ-4											CORE	
			È	Į		-104																
				1		-105		<u> </u>														
			Þ	<u> </u>		-106																
				ŧ		-107	E .															
			É	1 1		- 108-	- 84		96	NQ-5											CORE	
2			\sum	Ť T		- 100																
00.01				Z		- 110																
1			₩	Ī			A															
				Ţ																		
			Ŕ	T T		112- -	98		100	NQ-6											CORE	
5			È	4		-113- -	f i															
				Į		-114- -																
				¥ 		-115-						1		-	-		-					
				4		-116																
				₹ T		-117-	76		04													
			\ ↓	= 1 ₹		-118			94	1102-7												
			¥.			-119	F															
			₹	Ź		-120	-					-										
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		- 																
			₽_	4		+ -	H										1					

PID: <u>75119</u> BR ID:	PROJECT:	BRENT SPE	NCE BRIE	OGE STA	TION / (OFFSE	T:	7+85.4	1, 58.4 RT	S	TART	: 6/2	9/10	END:	7/1	/10	_ P	G 3 OF	= 3 F	२-5
MATERIA	L DESCRIPTION		ELEV.	DEPTHS	s	SPT/	N ₆₀	REC	SAMPLE	HP (tef)	B	GRAI		DN (%)	AT	TERB	ERG	wc	ODOT CLASS (GI)	
INTERBEDDED LIMESTONE (70%) AND SHALE (30%);	;)	336.7			00		(70)		((3))	GR	ω	гə	31 UL		- r.	п	VVC		JLALLD
LIMESTONE, LIGHT GRAY SLIGHTLY WEATHERED, STR	UNWEATHERED TO ONG, THIN BEDDED,		:	Ē	-123-	00		100	NQ-0										CORE	
FOSSILIFEROUS; SHALE GRAY SUGHTLY				-	-124-															
WEATHERED, MODERATELY	STRONG, VERY THIN TO	THIN		-	-125															
	U			-	-126-															
LS @65.2-65.7 QU=7099 PSI		<u> </u>		-	-127-															
LS @86.4'-86.8' QU=10809 PS	I			-	-128-	94		100	NQ-9										CORE	
LS @90.1'-90.8' QU=7024 PSI				_	120															
LS @92.2'-92.8' QU=118 PSI				-	129-															
SH @ 92.2' SDI = 57.9				-	-130															
LS @93'-93.8' QU=14324 PSI				-	-131															
LS @95'-95.3' QU=8193 PSI				-	-132	36		88	NQ-10										CORE	
SH @ 95.7' SDI = 52.5				_	-133-															
LS @ 100.8' POINT LOAD = 11	011 PSI				-134-															
LS @103'-103.5' QU=4812 PSI		<u>₹</u>		-	-135															
LS @103.5'-104' QU=14991 PS	81			F	-136-															
LS @ 108' POINT LOAD = 161	92 PSI			-	-137-			100	NO 44										0005	
LS @ 118 2' POINT LOAD = 1	057 PSI	Å		-	-138-	96		100	NQ-11										CORE	
LS @128 1'-128 8' OU=19640	PSI (continued)			-	-139-															
		<u></u>	318.6	-	-140															
BEDDED, LOSS 1%, RQD 99%	HERED, STRONG, THIN			_	-141-															
LS @146.2'-147' QU=12179 PS	81			-	-142-															
SH @ 153' SDI = 98.8				_	142	98		100	NQ-12										CORE	
LS @ 156 4' POINT LOAD = 14	1406 PSI			-	143															
				-	-144															
				-	-145															
				-	-146															
				-	-147-	100		100	NQ-13										CORE	
					-148-															
				_	-149															
				-	-150															
				-	-151-															
				-	-152															
				-	-153-	92		92	NQ-14										CORE	
				-	-154															
				-	-155															
				-	-156-															
				-	157															
				-	15/	96		96	NQ-15										CORE	
				-	-158															
				-	-159-															
					-160															
				-	-161-															
					-162-	400		400											00055	
					-163-	100		100	NQ-16										CORE	
				F	-164-															
			293.2		-165-															

NOTES: WATER USED BELOW 85 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (11 BAGS CEMENT/1.5 BAGS BENTONITE)

BORING NO.: R-5 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 75.5-95.0 ELEVATION (ft.): 373.59 1/NQ: 85.0'-90.0'; REC. 88%, RQD 25% 2/NQ: 90.0'-95.0'; REC. 100%, RQD 66% 3/NQ: 95.0'-100.0'; REC. 100%, RQD 20%

BORING NO.: R-5 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 95.0-110.0 ELEVATION (ft.): 363.59 4/NQ: 100.0'-105.0'; REC. 100%, RQD 58% 5/NQ: 105.0'-110.0'; REC. 96%, RQD 84%

BORING NO.: R-5 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 110.0-125.0 ELEVATION (ft.): 348.59 6/NQ: 110.0'-115.0'; REC. 100%, RQD 98% 7/NQ: 115.0'-120.0'; REC. 94%, RQD 76% 8/NQ: 120.0'-125.0'; REC. 100%, RQD 80%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core D Date: 9-23-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-5

BORING NO.: R-5 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 125.0-140.0 ELEVATION (ft.): 333.59 9/NQ: 125.0'-130.0'; REC. 100%, RQD 94% 10/NQ: 130.0'-135.0'; REC. 88%, RQD 36% 11/NQ: 135.0'-140.0'; REC. 100%, RQD 96%

BORING NO.: R-5 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 140.0-150.0 ELEVATION (ft.): 318.59 12/NQ: 140.0'-145.0'; REC. 100%, RQD 98% 13/NQ: 145.0'-150.0'; REC. 100%, RQD 100%

BORING NO.: R-5 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 150.0-165.0 ELEVATION (ft.): 308.59 14/NQ: 150.0'-155.0'; REC. 92%, RQD 92% 15/NQ: 155.0'-160.0'; REC. 96%, RQD 96% 16/NQ: 160.0'-165.0'; REC. 100%, RQD 100%

Proiect Mnar.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF	Scale: As Shown		BRENT SPENCE BRIDGE REPLACEMENT	R-5
Chkd By: DWW	File No. Core D	611 LUNKEN PARK DRIVE	CINCINNATI, OHIO	
Approved By: AJM	Date: 9-23-10	CINCINNATI, OHIO 45226		

PROJ		DRILLING FIRM / OPE		HCN / JJ		L RIG			TV- 93	33_	STAT		/ OFF	-SET		+99.6	<u>), 41. </u> D BS	1 RT	EXPLOR	ATION IE -6
PID:	75119 BR ID:	DRILLING METHOD:	<u>3.25</u>	<u>BINDERNOUWN</u>	CALI	BRAT			2/4/10		ELE		DN: _	457.0	0 (MS	<u>SL)</u> [EOB:	16	4.0 ft.	PAGE
STAR	MATERIAL DESCRIP	TION	ELEV.	DEPTHS	SPT/		REC	(%). SAMPLE	HP		GRAI	DATIC	ON (%	39.00 6)	AT	TERE	-04.0 BERG	23004	ODOT	HOLE
MED	AND NOTES DIUM STIFF, BROWN AND GRAY, SAN	NDY SILT, SOME	457.0		RQD WOH		(%)	ID	(tsf)	GR	CS	FS	SI	a.	LL	PL	PI	wc	CLASS (GI)	SEALED
CLA	Y, TRACE GRAVEL, MOIST		454.5	- 1 -	WOH WOH	0	100	SS-1	0.50	1	1	25	49	24	28	19	9	29	A-4a (8)	-
MED	NUM STIFF, BROWN, Silt and Clay St	, TRACE SAND,	450.0	- 3 -	1 2 2	4	100	SS-2	1.00	0	0	2	67	31	35	22	13	32	A-6a (9)	
MED TRA	DIUM STIFF, BROWN, SILTY CLAY , TF CE SAND, MOIST	RACE GRAVEL,	452.0	- 5 -			100	ST-3	0.50	1	0	6	60	33	38	22	16	35	A-6b (10)	
LOO	SE, BROWN, SILT , SOME SAND, SO	ME CLAY, WET	450.0 + + + + + + + + + + + + + +	7	WOH WOH WOH	0	100	SS-4	-	0	0	22	52	26	30	20	10	33	A-4b (8)	-
MED	DIUM STIFF, BROWN, SILT AND CLAY	r, SOME SAND,	447.0	- 9 10 - 11	1	3	100	SS-5	0.75	0	0	31	42	27	30	17	13	26	A-6a (8)	
MED	NUM STIFF, BROWN AND GRAY, SAN	IDY SILT, SOME	444.5	- 11 -	2															
CLA	Y, WET	,	442.0	- 13 - - 14 - - 15 -	1 2	3	100	SS-6	0.50	0	0	39	39	22	26	17	9	24	A-4a (5)	
MED LITT	DIUM STIFF, BROWN AND GRAY, SIL LE SAND, WET	TAND CLAY,	440.0	- 13 - - 16 - - 17 -			92	ST-7	-	0	0	18	55	27	34	23	11	-	A-6a (8)	
MED GRA	DIUM STIFF, GRAY, Sandy Silt , Litt ,vel, wet	LE CLAY, TRACE			2 2 3	6	100	SS-8	1.00	6	1	43	31	19	26	17	9	26	A-4a (3)	
				- 20 - - 21 -	2 1 2	3	100	SS-9	1.00	0	1	32	40	27	33	23	10	48	A-4a (6)	
				- 22 - - 23 - - 23 -																
MED STO	DIUM DENSE TO DENSE, BROWN, GR NE FRAGMENTS, TRACE TO SOME S	RAVEL AND SAND, TRACE	432.0	- 24 - - 25 - - 26 -	4 5 6	12	56	SS-10	-	85	4	2	6	3	NP	NP	NP	10	A-1-a (0)	-
	, TRACE CLAT, WET		7	- 27																
				- 29 - 30 	8	30	67	<u>ee 11</u>										Q	A 1 2 (V)	-
			200	31 - 32 - 33	16		01	00-11										0		
				 _ 34 _ _ 35 _	16															
			/d D 7d	- 36 - - 37 -	13 26	44	100	SS-12	-	58	20	12	6	4	NP	NP	NP	9	A-1-a (0)	
			79	- 38 - 39 																
			79	- 40 - - - 41 - - - 42	4 7 15	25	67	SS-13	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	
			/a D 7a	- 43 - - 43 - - 44 -																
MED FRA	DIUM DENSE, BROWN, GRAVEL AND G MENTS WITH SAND , TRACE SILT, 1	STONE	0 412.0	45 - - 46 -	13 9 16	28	100	SS-14	-	33	39	20	5	3	NP	NP	NP	13	A-1-b (0)	
N - 00.01		10 25 K		- 47 - 47 - 48 																
MED STO	DIUM DENSE TO DENSE, BROWN, GR NE FRAGMENTS, SOME SAND. TRAC	RAVEL AND CE SILT, TRACE	407.0	- 49 - 50 - 51	9 10	28	72	SS-15	-	56	21	18	3	2	NP	NP	NP	17	A-1-a (0)	
	Y, WET		79	52 53	15															
				- 54 - 54 - 55 -	9	04	400	00.40												
			100	- 56 - - 57 - 57	8 11	21	100	55-16	-	-	-	-	-	-	-	-	-	14	A-1-a (V)	
			2 397.0	- 58 - 59 																

	PID: BR ID:	PROJECT: _	BRENT SPE	NCE BRI	DGE ST	TATION /	OFFSE	:T:	6+99.6	6, 41.1 RT	S	TART	: _7/	6/10	_ El	ND:	7/9	9/10	_ P	G 2 O	F3 F	R-6
	MATERIAL DESCRIF	PTION		ELEV.	DEPT	HS	SPT/	N₀	REC	SAMPLE	HP (tsf)	GR	GRAI		<u>SN (%</u>	6) 	AT		BERG	wr	ODOT CLASS (GI)	
ł	DENSE TO VERY DENSE, BROWN, GRA	VEL AND/OR	0	397.0			12		(70)		((31)	GI	ω	13	0	u				WC		OLALLE
	STONE FRAGMENTS, SOME SAND, TRA TRACE SILT. TRACE CLAY, WET	CE COBBLES,				- 61 -	9 16	28	100	SS-17	-	-	-	-	-	-	-	-	-	22	A-1-a (V)	
			00	ţ		62 -																
						- 63 -																
			00	¢																		
						- 64 -																
			00	ţ		65	25	50	400	00.40		F 4	10		•	_				45	A 4 - (0)	-
						- 66 -	25 27	58	100	55-18	-	54	18	20	6	2	NP	NP	NP	15	A-1-a (0)	
			00	ţ		67 -																
						- 68 -																
			00	ţ		- 69 -																
							-															
			00	ţ			55	EE	100	00.40										6	A 1 - 0.0	-
						- 71 -	23	55	100	SS-19	-	-	-	-	-	-	-	-	-	6	A-1-a (V)	
			00	ţ		- 72	-															
				2		- 73 -																
			00	⊈		- 74																
				2																		
				€		F '37	100 60/3"	-	100	SS-20	-	58	13	17	8	4	NP	NP	NP	9	A-1-a (0)	
				3		- 76 -																
			00	Ç		- 77 -																
						- 78 -																
			00	Q a		- 79 -																
						- 80	400.11		1.00	00.5												
			00	Ų ₽			100/4"	<u>├</u>	100	<u>SS-21</u>	<u>↓ </u>	<u>├</u>	<u>└</u> ──			-	├	<u>├</u>		6	<u>A-1-a (V)</u>	1
						- 81 -	1										1					
			00	4		82-																
				2		- 83 -	-															
				373.0		- 84 -	1															-
	LIMESTONE, LIGHT GRAY, UNWEATH	HALE (40%); HERED TO	E	Ĭ		85																
	SLIGHTLY WEATHERED, STRONG, THIN SHALE GRAY MODERATELY WEATH	BEDDED; HERED VERY		5			48		92	NQ-1											CORE	
	WEAK TO WEAK, LOSS 1%, RQD 53%			- •		- 86 -																-
	LS @84.1'-84.5' QU=5911 PSI		<u>₹</u>	Ī		87 -																
	SH @ 85.1' SDI = 36.9			¥		- 88 -																
				4		- 89 -	48		100	NQ-2											CORE	
				Ĭ		- 90 -																
	LS @ 91.5' POINT LOAD = 11637 PSI		E.	4																		
	SH @ 91.5' SDI = 53.6			Y.																		-
	LS @94.5'-94.9' QU=9745 PSI			Ī		92																
	LS @99.6'-100.1' QU=14253 PSI		ŧ	•		93 -																
	LS @100 1' 100 5' OLI-12605 DSI					- 94 -	44		100	NQ-3											CORE	
				4		95																
	SH @ 100.5' SDI = 91.0.			4		- 96 -																
			<u>}</u>																			-
				Ŧ		F 97 T																
				1		98 -																
			₩ ¥			- 99 -	68		100	NQ-4											CORE	
GPJ				Ĩ		-100-																
OGS.						-101-																
OT L(LIMESTONE, LIGHT GRAY, UNWEATHER	ED, STRONG,		- 355.5																		1
DO/T	THIN BEDDED, FOSSILIFEROUS, INTERN SEAMS TO PARTINGS LOSS 0% ROD 8	MEDIATE SHÂI 1%]																		
0/GIN						- 103-											1					
0507(-104	82		100	NQ-5											CORE	
N111	LS @ 105' POINT LOAD = 12607 PSI			-		-105-											1					
\2010	LS @107.1'-107.5' QU=8745 PSI					-106-											1					
ECTS	LS @114.5'-115' QU=10184 PSI			1		-107-						1					1					
ROJ	LS @ 124.7' POINT LOAD = 11607 PSI.			-		- 102-											1					
- N:\F				-					100								1				0055	
0:08				-		-109-	78		100	NQ-6											CORE	
/11 1				-		-110-																
[⊤] - 3/9						-111-																
.GD				1		-112-						1					1					
LOQ I				-		-113-											1					
HO - (-			00		100												0005	
X 17,]		- 114-	00			INQ-/							1				CORE	
5 (11				1		-115-											1					
3LOC				-		-116-											L					
JRINC						-117-																
IL BC				1		-118-											1					
T SO				-			80		100								1					
ODO						-	02		100	Ŭ-גערו											UCKE	
ARD						- 120-																
TAND.				-		-121-																
Ś				1	1							1					1					

PID: BR ID: PROJECT:BRENT	SPE	NCE BRID	GE ST	ATION /	OFFSE	T:	6+99.6	6, 41.1 RT	S	TART	: 7	/6/10	_ E	ND:	7/9	9/10	_ P	G 3 OF	3	R-6
MATERIAL DESCRIPTION		ELEV.	DEPT	HS	SPT/	N _m	REC	SAMPLE	HP		GRA		<u>) NC</u>	%)	AT	TERB	ERG		ODOT	HOLE
AND NOTES		335.2		<u> </u>	RQD		(%)	ID	(tst)	GR	cs	FS	SI	a	LL	PL	Р	WC	CLASS (GI)	SEALED
THIN BEDDED, FOSSILIFEROUS, INTERMEDIATE SHALE SEAMS TO PARTINGS, LOSS 0%, RQD 81%				- 123-																
LS @100.1'-100.5' QU=12695 PSI					84		100	NQ-9											CORE	
LS @ 105' POINT LOAD = 12607 PSI				125-																
LS @107.1'-107.5' QU=8745 PSI				- 126-	 															-
LS @114.5'-115' QU=10184 PSI				-127-																
LS @ 124.7' POINT LOAD = 11607 PSI. (continued)				128-																
				-129-	72		100	NQ-10											CORE	
				-130-																
		325 5		-131-																
LIMESTONE, GRAY, UNWEATHERED, STRONG, THIN		323.3		-132-																
BEDDED, ARGILLACEOUS, LOSS 2%, RQD 93%				-133-																
LS @136.5'-137.3' QU=11456 PSI				- 134-	76		90	NQ-11											CORE	
LS @ 153.1 POINT LOAD = 13102 PSI				-135-																
LS @158.4'-158.9' QU=22557 PSI				-136-																
LS @159.8'-160.2' QU=8843 PSI.				- 100																-
				-13/-																
				- 138-																
				-139-	84		100	NQ-12											CORE	
				-140-																
				-141-																
				-142-																
				-143-																
				-144-	100		100	NQ-13											CORE	
				145															CONE	
					-															
				- 146-																-
				- 147-																
	F-			-148-																
				-149-	100		100	NQ-14											CORE	
				-150-																
				-151-																
				-152-																-
				-																
				- 154	02		02													
	F-				- 50		90	110-15											CORL	
				- 155-																
				-156-																-
				-157-																
				-158-																
				-159-	100		100	NQ-16											CORE	
	F			-160-																
	<u>⊨</u>			-161-																
	<u>⊨</u>			- 162						-						-				
	HT.				92		92	NQ-17											CORE	
		293.0		- 163-																
			-EOB-			L	L	I	L		L				I					

NOTES: DRILL FLUID USED BELOW 10 FT. WATER USED BELOW 84 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (12 BAGS CEMENT/1.5 BAGS BENTONITE)

BORING NO.: R-6 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 84.0-96.2 ELEVATION (ft.): 373 1/NQ: 84.0'-86.5'; REC. 92%, RQD 48% 2/NQ: 86.5'-91.5'; REC. 100%, RQD 48% 3/NQ: 91.5-96.1'; REC. 50%, RQD 48%

BORING NO.: R-6 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 96.2-111.5 ELEVATION (ft.): 360.8 4/NQ: 96.1'101.5'; REC. 93%, RQD 63% 5/NQ: 101.5'-106.5'; REC.100 %, RQD 82% 6/NQ: 106.5'-111.5'; REC. 100%, RQD 78%

BORING NO.: R-6 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 111.5-125.7 ELEVATION (ft.): 345.5 7/NQ: 111.5'-116.5'; REC. 100%, RQD 86% 8/NQ: 116.5'-121.5'; REC. 100%, RQD 82% 9/NQ: 121.5'-126.5'; REC. 100%, RQD 84%

BORING

R-6

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS
Drawn By: TCF Chkd By: DWW	Scale: As Shown File No. Core D	611 LUNKEN PARK DRIVE	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO

BORING NO.: R-6 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 125.7-140.7 ELEVATION (ft.): 331.3 10/NQ: 126.5'-131.5'; REC. 100%, RQD 72% 11/NQ: 131.5'-136.5'; REC. 90%, RQD 76% 12/NQ: 136.5'-141.5'; REC. 100%, RQD 84%

BORING NO.: R-6 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 140.7-153.9 ELEVATION (ft.): 316.3 13/NQ:141.5'-146.5 '; REC. 100%, RQD 100% 14/NQ: 146.5'-151.6'; REC. 100%, RQD 100%

	1111 <u>1</u>	17. 9: No. 1.3
COM INTERNO		and the second s
	1.41	ITT , and

BORING NO.: R-6 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 153.9-164.0 ELEVATION (ft.): 303.1 16/NQ: 156.5'-161.5'; REC. 83%, RQD 83% 17/NQ: 161.5'-164.0'; REC. 92%, RQD 92%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORIN
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core D Date: 9-23-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-6

PROJECT: <u>BRENT SPENCE BRIDGE</u> TYPE: <u>BRIDGE REPLACEMENT</u>	DRILLING FIRM / OPER SAMPLING FIRM / LOG	ATOR: GER:	HCN / HH ICN / DRK/DWW	DRILL HAMN	L RIG: MER:	_CM CN	e 550x a' Ne auton	TV-725 MATIC	53	STAT ALIGI	ION . NMEI	/ OFF NT: _	SET: P	: <u>7</u> Prop	+85.2 OSE	2, 32.7 D BSE	7 LT 3	EXPLOR	ATION ID -7
PID: <u>75119</u> BR ID: START: <u>7/2/10</u> END: <u>7/4/10</u>	DRILLING METHOD: SAMPLING METHOD:	3.25	i" HSA / NQ SPT / NQ	CALIE ENEF	Brati Rgy F	on d <i>i</i> Atio	ATE:2 (%):	2/4/10 76.3		ELEV COO	/atic RD:	DN: _4	458.5 39.08	5 (MS 39410	L) E)800,	EOB: -84.5	16 23311	230	PAGE 1 OF 3
MATERIAL DESCRIPTI AND NOTES	ON	ELEV. 458.5	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE ന്ദ	DATIC FS	DN (% si	5) a	AT LL	TERB PL	ERG PI	WC	ODOT CLASS (GI)	HOLE SEALED
WATER (OHIO RIVER)		458.5				(70)				3		5	F						
		437.5	- 18 - - 19 - - 20 - - 21 -																
MEDIUM STIFF, GRAY, CLAY , AND SILT, TH ORGANICS, TRACE GRAVEL, TRACE SAND	RACE D, WET		- 21	1 1 2	4	0	SS-1	1.00	-	-	-	-	-	-	-	-	-	A-7-6 (V)	
		434.5	- 23	2 2 2	5	100	SS-2	0.75	5	2	10	45	38	42	22	20	46	A-7-6 (12)	
MEDIUM STIFF, GRAY, SILT AND CLAY , SO SOME SAND, WET	DME GRAVEL,		- 24 - - 25	1 2 2	5	33	SS-3	1.00	33	3	21	25	18	32	18	14	24	A-6a (3)	
			- 26 - 4	4 3 2	6	22	SS-4	1.00	34	4	24	22	16	-	-	-	31	A-6a (V)	
			27	2 3 0	15	33	SS-5	1.00	35	4	21	25	15	-	-	-	33	A-6a (V)	
			- 4 - 29 -	50/0"	-		SS-6	1.25	-	-	-	-	-	-	-	-	-	A-6a (V)	
			- 30 - - - 31 -	9 6	13	0	SS-7	-	-	-	-	-	-	-	-	-	-	A-6a (V)	
MEDIUM DENSE TO DENSE, BROWN, GRA STONE FRAGMENTS , SOME SAND, TRACE CLAY, VERY DENSE AT 60', WET	VEL AND E SILT, TRACE	426.0	- 32 - 33 - - 34 - 35 - 36	9 5 8 16 18 50/0"	17	33	SS-8 SS-9	-	68	19	5	5	3	-	-	-	12	A-1-a (V) A-1-a (V)	
			37 38	7 14 11	32	44	SS-10	-	-	-	-	-	-	-	-	-	10	A-1-a (V)	
			- 39	9 9 12	27	33	SS-11	-	62	16	11	7	4	NP	NP	NP	10	A-1-a (0)	
		000,000	- 42 - 43 - 44 - 44 - 45	12															
		000,000,0	- 46 - - 47 - - 48 - - 49 -	14 15 16	39	56	SS-12	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	
		70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 50 51	16 9 8	22	56	SS-13	-	57	27	8	5	3	NP	NP	NP	13	A-1-a (0)	
SOIL BOKING LOG (11 X 1		ک <u>مہ م</u> مہ میں م		18 12 10	28	44	SS-14	-	-	-	-	-	-	-	-	-	13	A-1-a (V)	
		2000000	- 57 - 58 - 58 - 59 																

ſ	PID: <u>75119</u> BR ID:	PROJECT: B	BRENT SPE	NCE BRI	DGE S	TATION	OFFSE	ET:	7+85.2	2, 32.7 LT	S [.]	TART	: 7/	2/10	_ E	ND:	7/4	4/10	_ P	G 2 O	F3	२-७
	MATERIAL DESCRIF	PTION		ELEV.	DEP	THS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAE		<u>)N (१</u>	%)	AT	TERE	ERG	MC	ODOT CLASS (GI)	
ł	MEDIUM DENSE TO DENSE, BROWN, GI	RAVEL AND	0	398.5		L	24		(%)		(ISI)	GR	6	FS	5	u		HL.	н	VVC		SEALED
	STONE FRAGMENTS, SOME SAND, TRAC CLAY, VERY DENSE AT 60', WET (contin	CE SILT, TRACE ued)				- 61 -	25 26	65	67	SS-15	-	60	16	14	5	5	NP	NP	NP	10	A-1-a (0)	
	,		00			- 62 -	-															
						- 63 -																
						- 64 -																
						65 -																
			0			- 00	45	48	67	SS-16	_	-	-	_	-	-	_	-	-	_	A-1-a (V)	
						- 66 -	18															-
			\circ			- 67 -																
						68 -	1															
			600			- 69 -	-															
╞	VERY DENSE GRAY STONE FRAGMEN	TS LITTLE SAN		388.5	-	- 70 -	.50/4"	-	100	SS-17	-	71	. 12	8	5	4	NP	NP	NP	13	A-1-a (0)	
	TRACE SILT, TRACE CLAY, LIMESTONE	FLOATERS AND	\mathcal{D}			- 71 -	-															
			.0.	}		- 72 -																
						- 73 -																
			0			- 74 -																
						_ 75 _	-															
			0 0 0				50/0"	<u> </u>		SS-18	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	
			Pol			- 76 -	-															
			\circ			- 77 -	-															
						- 78 -	1															
			$[\circ \bigcirc]$			- 79 -	-															
				Į		- 80 -	-															
			00			- 81 -	-															
			0	376.0		- 82 -																
ł	INTERBEDDED LIMESTONE (65%) AND	SHALE (35%);		370.0	TR	- 83 -																-
	LIMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, STRONG, THIN BEDDED,	TO MODERATE	S;	\$		- 84 -	25		85	NQ-1											CORE	
	SHALE, GRAY, MODERATELY WEATH WEAK, LOSS 5%, RQD 26%	HERED, VERY		-		- 05																-
	LS @83 5'-83 9' OLI=8872 PSI		E Contraction of the second se			- 00 -																
			<u>E</u>			- 86 -	1															
			Z			- 87 -	20		94	NQ-2											CORE	
	SH @ 95.7' SDI = 72.8					- 88 -																
	LS @98'-98.5' QU=6802 PSI					- 89 -																
	LS @ 89.7' POINT LOAD = 12982 PSI.		<u></u> ↓			- 90 -	-															
						- 91 -																
				ŧ.		- 92 -	20		94	NQ-3											CORE	
]		- 93 -																
						_ 01 _																
						- 05	-															-
			ŧ			- 95 -																
						- 96 -																
						- 97 -	40		100	NQ-4											CORE	
			Ē			- 98 -																
				359.0		_ 99 -																
GP	INTERBEDDED LIMESTONE (75%) AND S LIMESTONE, LIGHT GRAY, UNWEATH	SHALE (25%); IERED TO	Ē	Ì		-100-	-															
LOGS	SLIGHTLY WEATHERED, STRONG, THIN	BEDDED,		Į		-101-											1					
DOT I	SHALE, GRAY, SLIGHTLY WEATHERF	ED, MODERATE	LY 🕎				72		100	NQ-5											CORE	
0 L L N L N				ŧ		-103-											1					
070/G	LS @ 100.8' POINT LOAD = 11981 PSI																					
111051	SH @ 102' SDI = 92.6		ŧ			-105-	-				-		$\left - \right $									
010/N	LS @106.2'-106.7' QU=16419 PSI					- 100																
CTS/2	SH @ 121.1' SDI = 80.4			ŧ		- 106-			10-								1				00000	
SOJEC	SH @121.1'-121.4' QU=1833 PSI		ŧ	ł		- 107-	92		100	NQ-6							1				CORE	
N:/PF	LS @ 125.9' POINT LOAD = 14914 PSI			ŧ		- 108-	1										1					
- 80:0	LS @128.7'-129.5' QU=8525 PSI.			ŧ		-109-																
/11 1(ŧ	ł		-110-																
T - 3/9				1		-111-											1					
T.GD.]		-112-	92		100	NQ-7											CORE	
ЫDO				}		-113-	1										1					
0-(/				ŧ			1										1					
1× 1×			Ì₹	1		115			-							-						
<u>З</u> С 1				Į		-											1					
NGL				ŧ		- 116-																
BORI				₽			70		92	NQ-8							1				CORE	
SOIL																	1					
100 L				ŧ		119																
KD C			ŧ	ł		-120-									-							
AND/						-121-											1					
5				J	1	Г ⁻	1	1	1	1	1	1	i			1	1	1	1	I I	1	

PID: BR ID:	PROJECT: BRENT S	SPENCE	BRIDO	GE STATION	/ OFFSE	ET:	7+85.2	2, 32.7 LT	S	TART	: 7/	/2/10	END:	7/	4/10	_ P	G 3 OI	= 3 F	R-7
MATERIAL DESCRI	PTION	EL	EV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tsf)	GR	GRA		(%) si a	AT	TERE	BERG	wc	ODOT CLASS (GI)	HOLE SEALEI
INTERBEDDED LIMESTONE (75%) AND	SHALE (25%);	₹	0.0	-	66		100	NQ-9										CORE	010,011
SLIGHTLY WEATHERED, STRONG, THIN	I BEDDED,	<u></u>																	
SHALE, GRAY, SLIGHTLY WEATHER	ED, MODERATELY	X		-124-	_														
STRONG, LOSS 2%, RQD 80%				-125-															
LS @ 100.8' POINT LOAD = 11981 PSI	Ŕ	Ê		-126-															
SH @ 102' SDI = 92.6		¥		-127-	74		100	NQ-10										CORE	
LS @106.2'-106.7' QU=16419 PSI		₹. }		128-															
SH @ 121.1' SDI = 80.4		$\overline{\Delta}$		-129-															
SH @121.1'-121.4' QU=1833 PSI		<u>Z</u>		-130-															
LS @ 125.9' POINT LOAD = 14914 PSI				-131-															
LS @128.7'-129.5' QU=8525 PSI. (continu	ied)	Ð		-132-	96		96	NQ-11										CORE	
				-133-															
	X	32	4.0	-134-															
LIMESTONE, GRAY, UNWEATHERED, S BEDDED, ARGILLACEOUS, LOSS 2%, R	rrong, thin - QD 94% -			135-															
LS @136.6'-137.6' QU=11974 PSI	-																		
LS @ 145.5' POINT LOAD = 13149 PSI				-137-	92		100	NQ-12										CORE	
LS @154.5'-155.1' QU=12586 PSI				-138-															
LS @163.7'-164.5' QU=8772 PSI.				-139-															_
	-			- 140-															
	Ē			- 141-															
					90		96	NQ-13										CORE	
				- 143-															
					-														-
	Ē																		
					100		100	NQ-14										CORE	
	Ē																		
					-														-
				- 152-	90		94	NQ-15										CORE	
	Ē			- 153-															
				- 154-															-
	-			- 155															
				- 157	100		100	NO 16										CORE	
				- 158	100		100											CORE	
	E			- 150															
				- 160		+				-			_						
		i I I I I I I I I I I I I I I I I I I I		- 161-															
7	F			- 162-	94		100	NQ-17										CORF	
				- 163-														00.1	
	-			- 164-															
		29	4.0	-EOB	<u> </u>	I				L						<u> </u>			

NOTES: WATER USED BELOW 82.5 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (10 BAGS CEMENT/1 BAG BENTONITE)

BORING NO.: R-7 CORE BOX NO.: 1 OF 6 DEPTH (ft.): 78.0-96.7 ELEVATION (ft.): 376.0 1/NQ: 82.5'-84.5'; REC. 85%, RQD 25% 2/NQ: 84.5'-89.5'; REC. 94%, RQD 20% 3/NQ: 89.5'-94.5'; REC. 94%, RQD 20% 4/NQ: 94.5'-99.5'; REC. 100%, RQD 40%

BORING NO.: R-7 CORE BOX NO.: 2 OF 6 DEPTH (ft.): 96.7-111.0 ELEVATION (ft.): 357.3 5/NQ: 99.5'104.5'; REC. 100%, RQD 72% 6/NQ: 104.5'-109.5'; REC. 100%, RQD 92% 7/NQ: 109.5-114.5'; REC. 100%, RQD 92%

BORING NO.: R-7 CORE BOX NO.: 3 OF 6 DEPTH (ft.): 111.0-124.5 ELEVATION (ft.): 343 8/NQ: 114.5'-119.5'; REC. 92%, RQD 70% 9/NQ: 119.5'-124.5'; REC. 100%, RQD 66%

Proje	ct Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Draw Chko Appr	n By: TCF By: DWW oved By: AJM	Scale: As Shown File No. Core D Date: 9-23-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-7

BORING NO.: R-7 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 124.5-136.8 ELEVATION (ft.): 329.5 10/NQ: 124.5'-129.5'; REC. 100%, RQD 74% 11/NQ: 129.5'-134.5'; REC. 96%, RQD 96% 12/NQ: 134.5'-139.5'; REC. 100%, RQD 92%

BORING NO.: R-7 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 136.8-149.5 ELEVATION (ft.): 317.2 13/NQ: 139.5'-144.5'; REC. 96%, RQD 90% 14/NQ: 144.5'-149.5'; REC. 100%, RQD 100%

BORING NO.: R-7 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 149.5-164.5 ELEVATION (ft.): 304.5 15/NQ: 149.5'-154.5'; REC. 94%, RQD 90% 16/NQ: 154.5'-159.5'; REC. 100%, RQD 100% 17/NQ: 159.5'-164.5'; REC. 100%, RQD 94%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW	Scale: As Shown File No. Core D	A Terracon comvar 611 LUNKEN PARK DRIVE	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-7
Approved By: AJM	Date: 9-23-10	CINCINNATI, OHIO 45226	,	

	DRILLING FIRM / OPERA					CM			53	STAT			SET		+97.7	7, 41. ⁻	1 LT	EXPLOR/	ATION ID -8
PID:	DRILLING METHOD:	3.25	" HSA / NQ	CALI	VIER. BRATI		ATE:2	2/4/10 70.0		ELEV		N: _	455.7	7 (MS	<u>5L)</u> E	EOB:	16	<u>1.0 ft.</u>	PAGE
MATERIAL DESCRIPT	Sampling method:	ELEV.		SPT/	N _m	REC	(%): SAMPLE	76.3 HP		GRA		DN (%	39.08 6)	AT	TERB	-84.5 ERG	23354	ODOT	HOLE
AND NOTES VERY SOFT TO SOFT, BROWN, SILT AND	CLAY, TRACE	455.7		RQD	. •0	(%)	ID CC 1	(tsf)	GR	cs	FS	SI	a	LL	PL.	PI	wc		SEALED
SAND, MOIST TO WET				0 1	-	44	33-1	0.25	-	-	-	-	-	-	-	-	30	A-68 (V)	-
				0 0	0	33	SS-2	0.25	0	0	6	63	31	36	21	15	33	A-6a (10)	
			4	2 2 2	5	100	SS-3	0.25	-	-	-	-	-	-	-	-	29	A-6a (V)	
			_ 5 _	2 1	4	100	SS-4	0.50	-	-	-	-	-	-	-	-	28	A-6a (V)	-
			- 6 -	2 2 2	5	67	<u>88-5</u>	0.25	_								28	A_62 (\/)	
			- 7 -	2 1		07	00-0	0.20	-	-	-	-	-			-	20	A-0a (V)	
				3 2	6	100	SS-6	0.25	-	-	-	-	-	-	-	-	30	A-6a (V)	
			10	2 2	5	100	SS-7	0.25	-	-	-	-	-	-	-	-	28	A-6a (V)	
			- 11																
				1															-
				1	3	100	SS-8	0.25	-	-	-	-	-	-	-	-	31	A-6a (V)	
SOFT TO MEDIUM STIFF, BROWN, SILT, S	SOME SAND,	440.7	- 15 -	1					_							_			
SOME CLAY, WET	+ + + + + + + + + + + + + + + + + + + +	7 4 4 4	- 16 -	2 1	4	100	55-9	0.50	0	0	24	52	24	30	21	9	40	A-4b (8)	
	+++++++++++++++++++++++++++++++++++++++	4 4 4	- 17 - - - 18 -	1		400	00.42	0.07										A 41 0.0	
	+ + + + + + +		- 19 -	2 1	4	100	55-10	0.25	-	-	-	-	-	-	-	-	36	A-4D (V)	
	+ + + + + + + + + + + + + + + + + + + +	4 4 4	20	1	4	100	00.44	0.05											-
	+ + + + + + + + + + + + + + + + + + + +	9 4 4 4	- 21	2	4	100	55-11	0.25	-	-	-	-	-	-	-	-	33	A-40 (V)	
	+ + + + + + + + + + + + + + + + + + + +	4 4 4	- 22																
	+ + + + + + + + + + + + + + +	4 4 4	- 24																
	+ + + + + + + + + + + + + + + + + + + +	4 4 6	_ 25 _	1	6	100	SS 12	0.25									24		
	+ + + + + + + + + + + + + + + +	4 4 4	- 26 - - - 27 -	23	0	100	33-12	0.25	-	-	-	-	-	-	-	-	- 34	A-40 (V)	
	+ + + + + + + + + + + + + + + + + + + +	4 4 4	- 27																
	+ + + + + + + + + + + + + + + + + + +	9 4 4 4	 - 29																
MEDIUM DENSE TO DENSE, BROWN, GR		425.7	- 30 -	8	13	100	SS 12										0	A 1 h () ()	
CLAY, VERY DENSE AT 55', WET			- 31 - - - 32 -	20	-10	100	33-13	-	-	-	-	-	-	-	-	-	9	A-1-0 (V)	
			34																
			- 35 -	7 14	41	100	SS-14	_	_	_	_	_	_		_	_	10	A-1-b (V)	
			- 36 - - - 37 -	18															
	τ		39																
			- 40 -	3 6	22	100	SS-15	-	39	35	20	4	2	NP	NP	NP	17	A-1-b (0)	
			- 41 - 42	11										-	-				
			43 -																
			44																
		f	- 45 - - - 46 -	10 15	39	100	SS-16	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	
			47 _	16										-	-				
			48 -																
			- 49																
5		f	- 50 - - - 51 -	10 10	27	100	SS-17	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
5			- 52 -	11															
			53 -																
2			- 54																
		f	- 55 -	13 20	52	100	SS-18	-	27	49	15	6	3	NP	NP	NP	12	A-1-b (0)	
			 57	21															
			- 59																

1	PID: 75119 BR I	ID:	PROJECT: BREI	NT SPE	NCE BRI	DGE S	TATION	OFFSE	T:	6+97.	7. 41.1 LT	s	TART	: 9/	3/10	E	ND:	9/4	1/10	Р	G 2 O	= 3	R-8
	<u> </u>	MATERIAL DESCRIP	TION		ELEV.		гне	SPT/	N.	REC	SAMPLE	HP		GRA		- I - ON (%	() ()	AT	TERE	BERG		ODOT .	HOLE
	MEDIUM DENSE TO	DENSE BROWN GE			395.7			RQD	1 160	(%)	ID	(tsf)	GR	cs	FS	SI	a	LL	PL.	PI	WC	CLASS (GI)	SEALED
	STONE FRAGMENT	S WITH SAND, TRACE	E SILT, TRACE	¢ ل م			- 61 -	22	56	100	SS-19	-	-	-	-	-	-	-	-	-	17	A-1-b (V)	
	CLAT, VERT DENSI	EAT 55, WET (CONTINU	lea)	Q.			- 62 -																
				G (24			- 63 -	-															
				Q1			- 03 -	-															
							- 64 -																
							65	12	20	100	00.00										14		-
							66 -	10 20	38	100	55-20	-	-	-	-	-	-	-	-	-	14	A-1-D (V)	
	VERY DENSE, BRO	WN AND GRAY. GRAV	VEL AND STONE	-891	388.7	-	- 67 -	-															
	FRAGMENTS, SOM	E COBBLES, LITTLE S	SAND, WET				- 68 -																
				.00			69 -																
								40															_
							- 71 -	12 50/2"	-	0	SS-21	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	-
							- /2 -	-															
				200			- 73 -																
				000			- 74 -																
							- 75 →	50/0"	<u> </u>		SS-22	-	-	-	-	-	-	-	-	-	-	A-1-a (V)	-
							- 76 -	-															
							- 77 -	1															
				ι Δ			- 78 -																
							- 79 -																
				B Q	375.7			-															
		ESTONE (50%) AND S	SHALE (50%); TO SUGHTLY	Ħ		<u> </u>	- 08	42		100	NQ-1											CORE	
	WEATHERED, STRO	ONG, THIN BEDDED, T	TRACE	₩ <u></u>			- 81 -																
	SHALE, GRAY, S	LAMS; SLIGHTLY WEATHERE	ED, VERY WEAK,	X			- 82 -																
	LAMINATED, LOSS	2%, RQD 41%					- 83 -	13		100	NO-2											CORE	
	LS @87.8'-88.2' QU=	=9645 PSI		<u> </u>			- 84 -	- 43		100	NQ-2											CORL	
	LS @ 96' POINT LO	AD = 10656 PSI.					- 85 -	1															
							- 86 -																-
				É.			87-																
				₩			- 00	-															
							- 88 -	20		94	NQ-3											CORE	
				E.			- 89 -																
							- 90 -																
							- 91 -																-
							- 92 -	-															
				<u></u> <u></u>			- 93 -																
							- 94 -	60		100	NQ-4											CORE	
							- 05																
				₹			- 90 -																
							- 96 -																
				<u> </u>	257 7		- 97 -																
	LIMESTONE, GRAY,	, UNWEATHERED, ST	Rong, Thin to		357.7		- 98 -	68		94	NO-5											CORF	
	MEDIUM BEDDED, A	ARGILLACEOUS, FOS RQD 92%	SILIFEROUS				- 99 -				, ng c											CONE	
GPJ	SH @ 88 /' SDI = 66	3.8					-100-																
OGS.							-101-																-
DTL	LS @100.5-101 QU	=11240 PSI																					
NTO	LS @101.8'-102.3' Q	QU=4944 PSI					-103-																
70/GIN	LS @ 118.6' POINT	LOAD = 10656 PSI					- 103	90		100	NQ-6											CORE	
10507	LS @126.3'-126.7' Q	U=11631 PSI					- 104-																
10/N1	LS @127.8'-128.3' Q	U=10674 PSI					- 105-																
S\201	LS @135.5'-136' QU	=10495 PSI					106																-
JECT	- IS @141'-141 5' QU	=12721 PSI					-107-	-															
NPRO							-108-																
9 - N	LS @149-149.5 QU-	= 12019 PSI						80		100	NQ-7											CORE	
1 10:0	LS @151.8'-152.1' Q	QU=10244 PSI					- 110-																
3/9/1	LS @158.7'-159.2' Q	QU=12011 PSI.					- 111																
DT - C							- 111-																
OT.G								1															
OHD							-113-	92		100	NQ-8											CORF	
17) -							-114-												1				
(11 X							-115-																
LOG							-116-											<u> </u>					-
RING							-117-	1															
LBOF				Ħ			L_110																
T SOIL				Ħ			- 110-	90		96	NQ-9											CORE	
ODO							- 119-	-															
ARD							- 120-	1															
TAND							-121-	-									-	-					
1								-													-		

PID: BR ID: PROJECT:	BRENT SPE	NCE BRID	GE STA	TION / O	FFSE	T:	6+97.7	7, 41.1 LT	S1	ART	: 9/3	8/10	EN	ND:	9/4	/10	_ P	G 3 OF	- 3 F	२-8
MATERIAL DESCRIPTION		ELEV.	DEPTH	S F	SPT/	N ₆₀	REC	SAMPLE	HP (tsf)	CPR	GRAD		N (%	D (%	AT	TERB	ERG	wc	ODOT CLASS (GI)	HOLE
LIMESTONE, GRAY, UNWEATHERED, STRONG, THIN	то	333.8	L	- 1			(70)		(131)	GIV		13	3	u.				vvc	(-)	OLALLD
MEDIUM BEDDED, ARGILLACEOUS, FOSSILIFEROUS SEAMS, LOSS 1%, RQD 92%			L	-123	82		100	NO-10											CORE	
SH @ 88.4' SDI = 66.8				-124	02		100												CORE	
LS @100.5'-101' QU=11240 PSI				-125																
LS @101.8'-102.3' QU=4944 PSI				-126									_							
LS @ 118.6' POINT LOAD = 10656 PSI				-127																
LS @126.3'-126.7' QU=11631 PSI				-128	96		100	NO-11											CORE	
LS @127.8'-128.3' QU=10674 PSI				-129	30		100												CORL	
LS @135.5'-136' QU=10495 PSI				-130-																
LS @141'-141.5' QU=12721 PSI				-131																
LS @149'-149.5 QU=12619 PSI				-132																
LS @151.8'-152.1' QU=10244 PSI			L	-133	100		100	NO 12											CORE	
LS @158.7'-159.2' QU=12011 PSI. (continued)			F	-134	100		100	NQ-12											CORE	
			F	-135																
			E	-136									_							
			-	-137																
			F	-138	100		100	NO 12												
				-139-	100		100	NQ-13											CORE	
			-	-140-																
			F	-141																
			F	-142																
			-	-143																
			-	-144	98		98	NQ-14											CORE	
			-	-145																
			-	-146																
			-	-147																
			-	-148																
			-	-149	98		100	NQ-15											CORE	
			-	-150																
			-	-151																
			-	-152																
			-	-153																
			-	-154	100		100	NQ-16											CORE	
			-	-155																
			-	-156																
				-157																
			L	-158-																
				-159-	98		96	NQ-17											CORE	
				-160-																
		294.7	EOB	161																

NOTES: WATER USED BELOW 80 FT. FOR ROCK CORING PURPOSES. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH BENTONITE GROUT (11 BAGS CEMENT/1 BAGS BENTONITE)

Proiect Mnar.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW	Scale: As Shown File No. Core D	611 LUNKEN PARK DRIVE	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-8

BORING NO.: R-8 CORE BOX NO.: 4 OF 6 DEPTH (ft.): 121.0-134.5 ELEVATION (ft.): 334.7 10/NQ: 121.0'-126.0'; REC. 100%, RQD 82% 11/NQ: 126.0'-131.0'; REC. 100%, RQD 96% 12/NQ: 131.0'-136.0'; REC. 100%, RQD 100%

BORING NO.: R-8 CORE BOX NO.: 5 OF 6 DEPTH (ft.): 134.5-149.0 ELEVATION (ft.): 321.2 13/NQ: 136.0'-141.0'; REC. 100%, RQD 100% 14/NQ: 141.0'-146.0'; REC. 98%, RQD 98% 15/NQ: 146.0'-151.0'; REC. 100%, RQD 98%

(Inter (C		ISTO D	
AREADINE			1210
			M la)
	101.0	APRIL 19 BEFRI D	

BORING NO.: R-8 CORE BOX NO.: 6 OF 6 DEPTH (ft.): 149.0-161.0 ELEVATION (ft.): 306.7 16/NQ: 151.0'-156.0'; REC. 100%, RQD 100% 17/NQ: 156.0'-161.0'; REC. 98%, RQD 98%

Project Mngr.: AJM	PN. N1105070		ROCK CORE PHOTOGRAPHS	BORING
Drawn By: TCF Chkd By: DWW Approved By: AJM	Scale: As Shown File No. Core D Date: 9-23-10	611 LUNKEN PARK DRIVE CINCINNATI, OHIO 45226	BRENT SPENCE BRIDGE REPLACEMENT PARSONS BRINCKERHOFF CINCINNATI, OHIO	R-8

EXHIBIT A-8 EXISTING BRENT SPENCE BRIDGE TEST BORING LOGS (1958)

	<u>BORING - 1</u> SM: 602+05 , 17'Ri	<u>BORING-2</u> S/4 602+63, 6311	<u>BORING - 3</u> Sta 597+787, 218'Rt:	<u>BORING - 4</u> Ska 597+80G, 68.5 'LL	SOIL TEST DATA
Casing 32 Frammer - Split Spec Nerminar - Classificat B: Carp 5 b: sorte g fill, mail-ka Cate 5 and Cate 5 and Cate 5 and	$ \begin{array}{c} 51D \in 25^{\circ}1.0 \\ 60^{\circ} Drap 24 \\ 10^{\circ} Drap 24 \\ 10^{\circ} Drap 32 \\ 10^{\circ} Drap 32$	Casing 25'ID Hammer 300° Drop 24 Split Spean 2" QC Hammer 140° Drop 30 Classification B: fine to coarse sdf 1500° 1900 1 gravel index brick fill 49455 1 B: fine to coarse sdf 1500° 1900 1 gravel index brick fill 49455 1 B: fine to coarse sdf 1500° 1900 1 gravel index brick fill 49455 1 B: fine to coarse sdf 1500° 1900 1 gravel index brick fill 49455 1 B: fine sond, cirders brick fill mist here sond, cirders brick focorse gravel, cirders brick focorse brick fill maist- decorse brick fill brick focorse focors	Cassing 3.5"LD Itammer 300" Orop 24 Solit Spoon 2"CD Itammer 140" Crop 30 Classification	Casing 35" LD Hammer 300" (Prop 24" Split Specin 2:0D Hemmer 140" Drop 30 Crossification	BORING -1 BORING -1 BORING -1 BORING -1 Classic Constraint BORING -1 Classic Constraint Classic Constraint C
Consider and Considered and Consider	$\begin{array}{c} 100, 10160, \\ 100, 2016$	Low to the to model and set of the to model and set of the to model and the the to model and the the to the to the to the total and total and the total and total a	$\begin{array}{c} 4452\\ Barge Well. \\ \\ Woler. \\ \\ Woler. \\ \\ Woler. \\ \\ Woler. \\ \\ \\ Woler. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Barge Well. 4450 Water. 1 Br. fine to corres sci. 4240 4230 C gravel, well medium 4230 dense to dense. 4800 Br. fine so corres sci. 4240 4230 C gravel, well medium 4190 dense to dense. 4100 Br. fine so corres sci. 4100 Br. fine so corres sci. 4100 Br. fine to medium sd with 139006 Br. fine to medium sd with 139006 Br. fine to medium dense 4040.5 Br. fine to corres sci. 3900 Br. fine to corr	<u>NOTES</u> Borings were made in October and by N.G. Nuthing Company of Cacirath, ular samples, rock core samples laboratory samplas have been de Kentusky Department of Highways, Building, Covington, Hantucky, NX - Denotes core sample. S - Denotes undisturbed sealed i S - Denotes undisturbed sealed i Generation of Hill FRANKFORT COUNTY OF KENTON BORINGS 1,2,3 COVINGTON-CINCINNATI OHI ROAD.COVI.
	CINCINIALI CINCINIALI CONCINIALI CINCINIALI CINCINIALI CINCINIALI	Priertt 2-11,92 3. 5. Praect & 4. 6	Dillimentarie in l'hos ⁻ layins 3616 No recovery or sample ⁴ 2 VE.R Bridge & LOCATION PLAN	Linesture Appriz 35 lo 201 linesture in No 100 3017 No recovery on sumple *5 No recovery on sumple *5 Removed States of the second	MODJEŠKI BI MASTERS, ENGINEERS INARRISBURG, PENN ŠYLYANIA Pier IV. Fooling 2.58:44:72.58

.

		······································			· .
	<u>BORING- 9</u> Sta 589 +07.0, 22.4 'Rt.	<u>BORING-10</u> Sta. 529 + 07.5 , 68.5 'L1.	<u></u>	<u>BORING-12</u> Sta 584+740-63'Lt.	SOIL TEST DATA
	Casing 35712 Hammer 300" Drop 24" Split Spear 2" a.D. Hammer 140" Drop 30" Classification	Costory 357.D. Hammer 300" Crop 24" Split Space 2"Q.D. Hammer 140" Drop 30" Unit Split Spl	Casing 35"[D. Hammer 300" Erap 24" Split Spoon 2'0D. Hammer 140" Drop 30 3' Sheiby Tube Classification	Casing 3.5"1.0 1 Hammer 300" Drop24 1 Split Spoon 2"QD, 1 Hammer 140" Drop30" 1 3" Shelby Tube 1 Classification 5	Sample Na. Sample Na. Eleventan Eleventan Rabura (a Ner) Natural (a Ner) Natural Campossie District Campossie Strain Sanglis Sanglis Sanglis Sanglis Sanglis Sanglis
Arviso 1. <u></u>			$\begin{array}{c} 3 \operatorname{cown} silty \ cby \ ond \ \ 486.6 \ \ 7 \ \ 485.6 \ \ 7 \ \ 485.6 \ \ 7 \ \ 485.6 \ \ 7 \ \ \ 7 \ \ \ 7 \ \ \ 7 \ \ \ \ 7 \$	$\begin{array}{c} Gay \ silly \ clay \ claders 1 \ 4843 \ clay \ silly \ clay \ claders 1 \ 4843 \ clay \ silly \ clay \ clay$	51 4856 5775329 113.5 2130 11.8 23 4856 5775329 113.5 2130 11.8 23 4270 BORING-12 9754 52 4803 5633 247 123 5130 9.8 32 3570 123 5130 9.8 32
рили в: <u>Д.М.С.К.</u> 12 иман в: <u>Д.М.С.К.</u> 12 имано ит Д.М.С.К. — 14 октор ит Д.М.С.К.	Barge well, 4445 Water: Be silly clay with again, 4320 Water well very self As sill with flag sand Ansee, moist-soft Be fine to coarse sand t	Borgo well, 4445 Hater Genry sully clay wagenic 4355 mailtor, wol very soft, 4335 Gray sully clay wifere sard Gray sully clay wifere sard Jenses & grandi, wel soft, 4235 4285 Jenses & grandi, wel soft, 4235 4285 Jenses & grandi, wel soft, 4235 4285 Jenses & grandi, wel soft, 4235 Jenses & grandi, 4235 Jenses &	$\begin{array}{c} 461.6 \\ 616.6 \\ 6769 \\ 5769 \\ $	Gray stilly cby with anyonic 4583 SI 273 maller, wet-salt 4563 T 3 3 Gray stilly cby to brownt 4563 T 3 3 3 Gray stilly cby to brownt 4563 T 3 3 3 3 Gray stilly cby to brownt 4563 T 3	-
	Interformed sound for the sound for the sound for the sound formed formed sound formed formed sound formed s	Gray Inte to coarse sant $1/2$	Brown fine to coorse sond 1226 13 12 10 14 1226 13 12 10 14 1226 13 12 10 14 1226 13 12 10 14 1226 13 12 1226 14 - State 1226 14 - State 122 14 123 14 124 14 1256 15 125 14 127 14	4243 17 77 1825 423.3 14 423.3 14 423.3 14 423.3 14 423.3 14 423.3 14 445.3 15 14 10 16 10 17 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 17 10 17 10 17 10 18 10 10 10	For Notes, see Sheet No. 7.
	Gray fine to coorse sand Gravel, maint very dense, 3078 Gray fine to coorse sand Gravel, wet very dense, Gray fine to coorse sand Gravel, wet very dense, Light dense to coorse sand Gray fine t	lo coarse garret moist - 330.5 (1) - 337.5 (2) - 339.0 (1) - 339.5 (2) - 339.0 (1) - 39.5 (2) - 339.0 (1) - 39.5 (2) - 39	$\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	393.3 20 -144	COMMONWEALTH OF DEPARTMENT OF HIG PRAIMFORT COUNTY OF KENTON BORINGS 9,10,1 COVINGTON-CINCINNATI OHIC ROADIOON STATION-5841740 TO GO210.5 PROJEC MODJESKI & MASTERS ENGINEERS HARRISBURG, PENNSTLVANIA
	Gray fine to course sand t garet, wet very dense. Lywred gray kinestone 3749 (pay shrk Gainer 35-52 K masten mt by James 309 Lyinet and for and 502 K masten at by James 309 Lyinet and for any same 309 Lyinet any same same 309 Lyinet any same same same same same same same same	gravel (Kinestone Tragments 3 3835) 12 - 70 18 30 Wed - serve dense. 379 5 13 00 200 Solar (Kinestone Aponi 30:3782) 5 Solar (Kinestone Aponi 30:3782) 5	Brown fine to course 382.5 382.4 22 150 162 sand the guart net course 382.4 22 150 113 Ground - metar elan 486.6 Undisturbed course 382.4 22 150 113 Strand - metar elan 486.6 Undisturbed course 382.6 Table Samples Sample L levin Devid Height Hydroulic Total Time Na (Tools els) Plassure Pressure Pressure Sample Samples St 4556-4555 398.4 04 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 398.4 8 350.4 12 S2 4406 4386 450.4 340.4 395.6 12 340.6 350.4	* For 0.25(1) penetions Ground-water elev. * 464.3 Undistorbed Shelby Tube Samples Sample Elev. Dead Weight Aydraula Total Time Ma. (Tools etc.) Pressue Pressue (Sac) 51 45934933 346* 1220* 1566* 10 32 4993493 398* 1280* 1277* 14 32 4493493 398* 1280* 2777* 14	COVING T STATION-56 MODIESM HARRIS

OHIO RIVER - (Perl Footn Sh 602+11.92 £ Pisr Ⅲ-→ Sta 589+27.0 - & Pier IV Fooliny Sta 584+7258 3 . 5. Praiect 2-7.0 Bridge &---8 LOCATION PLAN

EXHIBIT A-9 QUEENSGATE ALIGNMENT TEST BORING LOGS (2007)

		DO	Ciasa	VISUAL VISUAL	VISUAL.	-7-6(12)	VISUAL	VISUAL	VISILAL	(6)09-1	VISUAL	-7-6(12)		VISUAL	VISUAL	(6)(1)	VISUAL	MSUAL MSUAL	VISUAL	NSUAL	USUAL	USUAL		USUAL VISIAL	USUAL	Line in the second s	VERNAL	USUAL	IISUAL	ASUAL	9/94
	0.22		u Marita Marita	± 1	9	27 	2 4	2 62	16	16	9	 5	L	4	9		5	12 80 12 80		1		-				1	1	-	1		Rovis
	-0.00		12	1 1	ı	8	1 1		ı	5	I	8	 I	1	I	17	1	1 1	1	1	1)		1	ı	I	1	I	I	1	T-15
	-71/7 Mignmy	Silics	F	1 1	I	11	1	· I	I	2	I	Ŧ		1	1	36	I	11	I	1	ı	I		1	1	I	I	ŀ	ı	1	EB
	sgote Signe	<u>, OH/N</u> Minoctasi	S.	1 1	1	54	1	1	1	4	I	82	;	1	1	ន	I	11	1	1	1	I		I	I	J	I	1	J	I	
	rtion: Queen eotechr	<u>vington</u> sical Ct	жġ	1 1	I	32	1	•	1	ន	I	27	1	I	1	ž	-	1 1	·	ı	1	I		1	t	1		I	I	ł	
	dentifica Spence nary G	nati/Co	×ų	1 1	I	2	ı ı	· I	I	~	I	24	•	1	1	4		1	ı	1	1	1		1	8	1	1	1	I	1	
	Prolimi	Cinchun	*3	I I	1	4	11	I	•	8	I	m	•	1	1	מע		3 1	1	1	1	ŀ		I	1	I	•	1	I	1	
	₽	- I 	׺	I I	1	м	1		•	ف	l	<u>م</u>		1	t	26	I	1 1	1	1	1	1		1	1	1	1	I	1	I	
		Sample	ġ	- 7	2	*	S 2	م ک	٢	**	G)		2	E	12	13	14	5	41	8	ē	ន		2	ដ	8	2	53	28	13	
State of Othio Department of Transportation Division of Highways Testing Laboratory Long of EapPives	SS Dia. <u>1.375* 1.D.</u> Water Elev. Immediate <u>462.3 F1.</u> <u>5⁴ HSA</u> Dia. <u>3.375* 1.D.</u> NQ/NX Stae <u>2[*]</u> 0.D.	/ W. 84°51'29.4° Surface Elev. 517 Description		VSPHALI [9] 0.75 - 7.5 [6.75] 0.75 - 7.5 [6.75] Berwar, and brown, and gray sifty cley, 11fte to some sand, 11fte gravel, hace choices and brick fragments (FILL), molst-afff to medium afff	Brick fragments from 2.5" to 4"	7.5-11 (2.5) Brean to group, IMIe sond, trace grovel, cinders and bitck fragments (FIL). mostro-modium AMF	(1.1.), 1704, 1314	Brown Silit Arold CLAY, little sand, trace root matter (WEATHERED TILL), Angle-wer stiff 	brown SLL 1, 145-01 brown SLL 1410 moist—very stiff			25 - 35 (M)	Groy and froe brown CLAY, hruce to Mile sand, hrace gravel (GLACML TIL), maist-stiff to hard		35 – 48.8 (13.8) Groy SLCT CLAY, ittie to some gravel, incee to Ittile sand (GLACIAL TILL), molsi-hard to stiff			48.8 - 50.5 [1.7]	erry CLAT, mine sond, more grovel (SLALAL HLL), moss-nora 30.5 – 55 (4.5) Groy and frace brown SAKDY SILT, some sand and gravel, liftle rock fragments (SLACIAL TLL), very moist-very stiff	55 - 61.5 [6.5] Gray StMLE, some limestone rock fragments, molsi-soft	61.5 — 86.3 [24.8] Interbedded SHALE AND LIMESTONE: Stoble 19 gyr, medium tough to trugh, calcureous, occuptes 52% af matrix, Limestone is light gray, jard, occupienaly fossifikerous and argillaceous,	erenty distributied in 1/2" to 9 1/2" loyers, occupies 48% of matrix.					86.3 — 101.5 [15.2] Gray SHALE, medium bugh to tough, colcareous, occasional limestone earns (best than 1/2")			101.5 – 106.5 [5] Interbaddad Static AND LINESTONE: Studie is gruy: valuety, calcameous, occupies 54% of motify, Linestone is light arrw, hour forstiliterous, evenity distributed in 2° to 8 1/2° knews, occupies	ácž of mártu. Boring completed at 106.5 feet Zama, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm.
	Type Length Type	705'11.9"	(v/v mqq)	18 28/8	1/51	482/290	530/260 60/250		13	7	13		Ω.	'n	ch.	'n	ю	ы	-	ت ت											= 2.00-0.
	Sampler: Casing: Cora Ban	N N N																			0.0	0.0		1.0	0.0	0.0	0.0	0.0	0.0	0.0	Sand
		Rec.	E	0.3	0.5	5	10 10) <u>1</u>	Ξ	1.5	1.5		<u>1</u> ,	1.5	. <u>.</u>	1.5	ŝ	0.7	5	0.2	22.0	20		1	5.0	20	2.0	20	20	20	
	10/4/06 10/6/06	<u>1 Latthude/Lo</u> Std. Pen/	88 1 1 1 1 1 1 1 1 1 1 1 1 1	2/4/5 4/6/6	3/4/4	2/3/3	3 / 6 10	20 / 11 / 10	5 / 10 / 50/0.1	7 / 10 / 11	7 / 6 / 10		3/4/6	11 / 15 / 17	6 / 26 / 42	10 / 20 / 18	3/7/7	SHELBY TUBE	3 / 7 / 10	70/0.3	RQD = 24	RQD = 94		kqb = 77	R00 = 87	88 11 88	RQD = 97	RQD = 96	RQD = 100	KQD = 95	zes: Agg => 2.00mn
74.054	, pieted		E -		• •		9	2	z - 2	1	R R		8 8 8	8 8 8	× ×	8 2		\$		л н н	8883	888	8 8	× × ×	e re 28					8 2 2	106 Itele S1
W.O. 109	Date Sta Date Can	Boring N Elev.	(f) 517.3 516.5		1 1	1	506.3	504.8	<u> </u>	J	_1 .]	492.3	_1		2728 4	<u>I</u> I		468.5	466.8	462.3	455.8	<u> </u>	11	1 1	<u></u>	I		1		415.8	410.8

			ODOT Cluss	VISUAL	VISUAL VISUAL	-7-6(12)	VISUAL	6b(10)	VISUAL	VISUAL	VISUAL	VEUAL	VISUAL	k-6a(9)		VISUAL	4-4a(7)			VISUAL	VISUAL		-2-4(0)	VISUAL	tuti e	VISUAL		VISUAL VISUAL		TYNSIA		TYNSIA	
	0/0.22		W.C.	,	12 IZ	19	9	81	21	12	ដ	8	8	8		52	2	;	*	1	ı		<u>ح</u> ۱	1		• •		1 1		•		1	
	5-0.00		٦ï	1	6)	19	1	16	ı	1	1	1	ı	12		1	9	· · ·	•	I	,		0	ı	c	3 1		1 8		ı	- "	1	
	Alignm	y tudy	ite E I	ı	1 1	4	I	8	ı	1	1	ı	1	31		1	8		ı	1	1		0	ı	q	9 1		1 1		I		1	
	AN 99	, OH	toracter Car	1	1 1	8	1	47	I	1	1	1	1	4		1	a		•	I	1		1	1		1		1 1		I.		1	
	non Queer	eotech vingtos	흥× 승리	1	1 1	3	ı	\$	I	1	1	I	1	Ŕ		1	36		1	1	ı		r 	1		1		1 1		3		I	
	dentific Spence		툴 ×인	I	1	2	1	0	I	1	1	ı	I	8		1	8		'	I	ł		**	1		1		1 1				I	$ \rightarrow$
	Frent Strent	Prelim Cincinr	×č	I	1	•	1	•	I	1	1	I	1	-		1	•		1	1	۱ 		12	1		2 1		1 1		1		I.	_
			×₹			•	1	•	1	I	1	-	1				0	··· - · · ···	1	1	1		10 1	1	i i	S 1		1 1		1		•	_
		5 #	admis F	-	ন র	ñ	4	ů	G	٢	æ	67	9	=		12	13	:	1	5	16		41	8 1	5	<u>n 8</u>		87		ឌ		8	2
State of Dhio Department of Transportation Division of Highways Testing Laboratory Los of Anomus	SS Dia. 1.375 1.0. Value Dia. 465.5 Fl. 5' HSA Dia. 3.375 1.0. Value Lev. Immediate 465.5 Fl.	/ W 84'31'31.7" Surface Elev. 487	Description	0 - 2.5 {2.3]	25 - 3 [0.5] Derive sandy silk, trace cinders and brick fragments (FIL), molet-very	3 - 7.5 [4.5] Brown CLAY, frace sand and root matter (ALLUMUN), slightly molst-very stiff to stiff	7,5 - 17,5 [10] Brown SILTY CLAY, trace to 13the sand (ALLMUW), molet-medium stiff to silif				17.5 – 30 (12.5) Brown Sill AVD GLAY, some sand (ALLIVIUM), very moish-medium stiff to www.enf	reir son Occesional vel sand∕silt seams				30 - 42 (12) Gray SANDY SILT (ALLUMIUM), very mol st ve ry soft to medium siff Coossional vet sand/sift seatms				42 – 45 [3] Brown GRAVEL WITH SAND AND SILT, Mille rock fragments (OUTWASH), weit-medium dense	45 - 50 [5] Brown COARSE AND FINE SAND, 11146 gronel (OUTWASH), wel-wery loose		50 - 55 [5] Brown GRAVEL WITH SAND AND SILT, Nitle rock fragments (OUTWASH), wei-medium dense	55 – 60 [5] Bruwn Graytel With Sand (Outwash), w at-d ense		80 – 60.5 (0.5) Berwin GRAVEL WITH SAND AND SILT (QUTWASH), wel-medium dense 80.5 – 65 (4.5) 80.5 – 6.5 (4.5)	nug summer investment	65 – 81.3. [16.3] Interbedded SHALE AND LIMESTONE; Shale is gray, medium tough to tough, calcareous, occupies 71% of mahix,	Limestone is light gray, noar, rossilinerous and arguitzeous, eventy distributed in 1/2° to 3° koyers, occupies 23% of maritz.				
	er: Type :: Langth	Barrel: Type 39705 [°] 20.0	(10 v/v)	↓ D	⊽⊽	419	σ	19/41	-	<i>छ/</i> रा	21/<1		19/ci	4		on	G			21/c1	7		-	19/<1	,	35/13							
	, Sampl Casing	E Cold	≣€	 	++																1			1				0.3		0.0		0.0	
		butitud	i)	- - -	82	ň	<u>5</u>	<u>بر</u>	<u>ب</u>	5	5	2	ŝ	ŝ		N	<u>1</u>		50	9.6	<u>.</u>		2	9		55		8 9		0.0		0.2	
	واو	thude/1		l m		6		4	-		 _	ĸ	~			8	-		E .	15	-		=										
	9/28/0 10/3/0	5 8	Std. Per	2/5/	10 / 7	6 / 4 /	5 / 6 /	5/4/	2/3/	2/5/	2/3/	SHELBY TU	2/1/	1/15		1/1.0' /	11/1		sheley tu	0 / 15 /	r1/1 / 2		24 / 7 /	5 / 35 /		<u>5</u> / 70/0		RQD = 0 RQD = 26		RQD = 21		RQD = 7	
74.054	bed Pierted	<u>ل</u> ط ا	ŧ€ -		╡	- -		a ;	╡╵╧		2	ຊີ່			8		* **	8 8	42	3	\$	* 5	8 3	8	- x a		1	8	8 8	8	72 22	R 5	₄ ^{──⊥}
w.o. <u>109</u> 7	D ate Storf D ate Com	Boring No.	Elev.		184.5	I							1 1			64 6	485		445.5	2 677	3	437.5	<u> </u>	432.5	427.5	427.0	127.5					I	406.2

			ARSNAF		I I I I I I I I I I I I I I I I I I I	ARNAL	ARRIVE	Form TE-151 Reviewed 2,/94	
	- 12	ı ۲			1	۔ 38	1		
	81.3 - 83.6 [2.3] Grov SHALE, tough, coloursous, occasional limestone seams (less than $1/4^{11}$), soft zone from 83.3 to 83.5 '	83.6 - 93.1 [9.5] Interbacked STALE AND LINESTONE; Studie 1s grov, hough, coleareous, accupies 52% of matrix. Unrestone is light Studies grow, hough, corealised in 1/4" to B" layers, occupies 48% of matrix.	8.1 - 94.9 [1.8]	Light grow INESTONE, hard, angliaceous, occasionally forselliferous, occasional shells sugma (less than 1/4")	94.9 - 110.1 [15.2] Interbacted SHEE AND LINESTONE; Statels gray, hugh, concurrous, occupies 51% of maths. Limestone la light gray, hard, occasionally angillocenous, sholey, and fossiliferous, evenly distributed in 1/4" to 10" layers, occupies 49% of maths.			Boring completed at 110.1 feet Fine Sond = 0.42-4072.mm. Silt = 0.074-0.005.mm. Clay =< 0.005.mm.	MUNICARY - The Summary - Int Summer - The Summer - The - Nee and
	0.0		0.0		0.2	0.1	0.3	2 00-0 20mm	111117-D-DA7
_	2.0	3	20		8.4	5.0	3.8		
	RQD = 70	RQD = 40	RQD = 72		83 = 002	RQ) = 92	KQD = 90	2 Man	sinon fullinning
	8		8 8 3		36 86 B	102	ŝ		ìRhy m
406.2	4 1 U		394.4	392.6				377.4 11-4	

ļ.

Q			0D0T Class			Visual	Visual	Asual	Nsua	Visuai
	0/0.22		¥.C.							
	75-0.0		Ŀ							
	M-71/ Alignr Study	N.V.								
	H H H H H H H H H H	on, OH			· · · · · · · · · · · · · · · · · · ·					
	fication: Ice Que	Covingi	Physical x	5 2						
	ct Identi mf Sper	cinnati/		<u>;</u>						<u> </u>
	Proje Brei		×	R						
		Ŧ	Sample No.			-	7	•	4	'n
		458.0		 						
fion	5.0 Ft.	ace Elev.		 		-	pera	1/fracture Int gray a 8 47.5 enly distri		
hio nsporta atory SORING	45	Surf				lum touc	ghly frac	ional sof ma is lig 72.2°, ev 72.2°, ev		
of Tra of Hig of Labor	ther Ellev.]		vet-med	ous, hiç	, occas Limeste Hites O		
State trment livision Testing	₩	$\ $	[pt]on				, calcar	alcaraou matrix. 1 shaley 2 of ma		
Depar D	575" LI	<u></u>	Descr			aments/	m fough	lit: 69% of rous and 16° to 1 pies 31%		
	는 다 다 다 다 다 다	4 8		! 		one fro	mediu	LIMESTO) o very fo fossilife 7.3, 1/ 3, occup		
		5		 	<u></u>	imes'	, soft t	E AND Indium 1 thick, or sionally 2" layer 2" layer		
	SS 5' HSI	2.6.		- - - - -	hio Rive	15 [1.5] NE. son	35.2 [4. y SHALE	75 [39.8 ed SHAI 9 107, π 10 2 ⁻ 14, occa 14, occa 10 8 1/		
		W 84"31"3		0 - 5 8038 Pl	5 - 29 Mater (0	29 - 30 Grov SHJ	30.5 - Dark gra	35.2 - Interbado Shale is zones ur gray, ha vary ste in 1/2"		
	. ŧ.	70°	П л v/v)			1/3				
	oler. Type ug: Leng	N 39"05	(a)	 						
		jituda ji	SE	 			3.3	0.4	0.0	07
		ide/Long	£€ 			0.8	1.2	ອ ດີ	10.0	<u>ଝ</u> ଚ
	/30/06	ا الا	Pen./			50/0.3'	0 	15 75	= 70	80 II
-		N-	З ^й	 		70/	RQD	8		ROD
0974.05	lorted ompleted	- 	tag €	* ^ 	3 3 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B	8 8	8 8 8 8 8 8 8	84 85 82 25 25 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	 % % % %
w.o. <u>1</u> (Date SI Date C	Boring	Ē,	53.0 -		429.0	2	122.8		
				- v						

ه		1000			Visual	Visual	Ysual	Visual	Prost A	Visual
	0/0.22		u: ₩							
	75-0.00									
	Alignr Study /KY	eristics	<u></u>					· · · · · · · · · · · · · · · · · · ·		
	ensgate thnical on, OH	Charact	ູ້ ອີ							
	fication: ce Que Geotec Covingta	hysical	۲۵ ربز							
	t Hentit It Spen iminary innati/		s.							
	Prei Brei		, B							
	ŧ	Sample	ů.		8	а ю	4	מו	۵	۲
	458.0				7	-{	·····			
State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING	1.375" Water Elev. 453.0 Fi. 3.375" 1.D. 2" 0.D. Surface Elev.	Description			ome sitt (OUTWASH), saturated-very dense	<u>tragments, wet, medium tough</u> strove.	/4" to 10" and the set of the second medium to very tough, calcareous, accasional " thick, accupies 23% of matrix. Linestone is to frequently shaley, fassiliferous from 80° to /4" to 10" layers, accupies 29% of matrix.			
	<u>55 H5A</u> Dia. <u>5' H5A</u> Dia. <u>NQ/NX</u> Size W 84'31'35.9*		0 - 5 [5]	5 - 32.5 [27.5] Water (Ohlo River) 	Brown GRAVEL WITH SAND, so 33 - 35.3 [2.3]	Gray SHALE, 17#16 limestone f 35.3 - 82.3 [47]	Imerceases statt and lates Self fractured zones up to 5 Ight groy, hard, occasionally 82.3', eventy distributed in 1,			
	Type Langth el: Type •05°37.4° /	(v) maa)			80/3					
	ampler: asing: ora Barr a N 39	(E)M				6.0	0.0	0.0	0.2	0.1
	S C C S	, 		g	2	1:2	2.0	0	9 6	4.9
	11/29/06 11/30/06 Lafitude/	ROD ROD			5 / 101	0 = 0	2D = 72	20 = 73	00 = 61	10 = 82
054		PRS E								
10974.	Started Complei				25	- <u>-</u>	8 4 4			3
W.O.	Date Date Borin	ŧ) Eev	458.0	425.5 425.5 425.15		422.7				

E.I

5

			Clans ISUM	INICIAL	UNISI	INISI	ISUAL	TEUM.	TYNS	INIT	ISUAL	SIM	-40(3)	ISUAL	(6)og-	RUAL	TWIS	-40(5)	ISUAL		THIS	1-a(o) ISUML	EUAL		SUML
	0.22		날 ·	 I		- <u>-</u>	- <u>-</u>	-	-		2	1	. ຄ	32	*	2	32	*	>	- <u></u>	> ı	× >	>	>	
	00 01 1 1 1 1 1		12	1	1	ı	1	I	ı	1	1	•	сн (Н	1	12	 	1	œ	1	0	1	Q 1	1	1	I
	11/17 Mignmer	는 물	ı I	Т	1	I	1	I	I	1	1	1	2	1	8	1	1	R	1	•	1	• 1	. 1)	1
		A/K	ਸ਼ਫ਼ੵੑ੶	ı	1	I	1	ı	ı	ı	1	3	34	ı	37	ı	1	8	1	1	1		1	1	1
	ffor: Queen bofechn	ington ised Ch	26時 1	ı	<u> </u>	I	·	1	ı	1	1	,	2	1	36	1	1	*	I	1	ı	Ť,	ı	<u> </u>	I
	Jentifico Spence nory G	Physical Co	×연 1	I	<u> </u>	I	·		ı	I	1	1	2	1	2	1	ı	R	ı	9	1	љ ј	<u> </u>	ı 	ı
	Prelimit	Cincinn	* ¹ 31	1	<u> </u>	I		1	•	1	1	J	£		-0	1	1	**	•	73	1	1 S	1	I	ı
	₽ -11		×§ 1	1	 	1	'	I	I	1	r 	1	9	1	ю 	1	1	•	1	S.	ł	1 5 I	1	1	1
		Simple	-	7	m	+	<u>م</u>		٢	Ð	an .	9	F	12	ŧ	z	5	9	1	æ	5	2 2	ដ	ង	2
State of Ohio Department of Transportation Division of Alghwors Develop Testing Laboratory LLOG OF BORING	<u>55</u> Dic. <u>1.375</u> LD. Waher Elev. Immediate <u>461.5</u> F <u>5' HSA</u> Dic. <u>3.375⁶ LD.</u> <u>NO/NX</u> Stee <u>2' 0.0.</u>	/ W 84/31/35.8" Surface Elev. 46		BOOK COOL (1117), 1105 9 - 146 7 General	5 - 10 [5] recry ground and hatck frugments, some scard (FILL), molsh-nery dense to recry ground and and that frugments.		10 – 20 (10) Bock costs to serv loves on grown, trace brick fragmants (111.), mobil-medium dense				20 - 25 [5] Dork borns sondy sit, those growi, cholers, and brick fragments (FIL), matter modum sits —Painoleum adar from 20' to 21.5'	25 — 30 [5] Black coal, trace gravel (FUL), molei-very base	30 - 35 [5] Dark hown sondy silt, hoes arganics and cluders (FILL), very mo bl-soft Arganic ador	35 - 40 [5] Dark brown and gray SILT AND CLAY, some sand, haze gravel and organics (ALLINULM), very mobil-medium stiff		40 - 45 [5] Derk grov SLI AND CLAY, some arganics and wood fragments (ALLUNUM), mois-medium stiff —Lass-on-kynikon-21%	45 - 55 [10] Dark brown and gray SANDY SILT, frace organics (ALLIMIDA), wry model-ettif to modium stiff		25 – 60 [5] Dark brown SAUDY SILT, MHe grovel, froce wood fragmente (ALLDY164), wry molet-effi Lase-on-tynikon-EX	60 – 65 [5] Brown GRAVEL und aund (OUTRASH), wei looss	ES — 75 [10] Brown to gray GRAVEL, same sand (OUTWASH), wei-wery dense to medium dense		75 - 99 (24) hintbodded Stidle AND Linestone;	Stole is gray, madium lough to happle calcances, competent softward from 19.6 to 74.3, eccenter SX of monts, Limentone in light gray, hard, frequently focultarous and anglacacous, every datifuited in 1/4° to 7° kyers, occuptes 45X of matrix.	
	pler: Type ng: Lunglih Barnuk Type	N 32°05'36.6"	(y) mg()	ž	N	7	8		⊽	8	5	8	570/90	550/105		3040/912	4382/5105	576/705	2015/2660	60/15	315/133	126/58	X		
	555	-2	B																				0.7	15	0.0
		Angitt Rec.	€ ¦⊐	5	6.5	6.5	1.5	5	15	15	т. 	12	2	15	2.0	5:	<u>s</u> .	<u>.</u>	초	ί.	5. 2.	ĩ	0 <u>0</u> 1	ŝ	10.0
	10/4/06 10/6/06	-5 Lathuda Std. Pan./	10 / 20 / 30	88	5	3/5/7	6/4/4	5/7/7	2/2/2	3/7/3	1/2/3	3/2/2	2/1/2	2/2/2	SHELEY TUBE	2/2/3	3/4/6	2/2/4	4/3/7	2/3/4	4/43/2	11 / 14 / 16	50/0.0° RQD = 24	55 11 12 12 12 12 12 12 12 12 12 12 12 12	KQD = 92
74.054			€d		- -		<u>م</u> ا		-	ا ا				8	% S		* *		8 8 8	8 8 3	8 8		2	R 8 8 8 8	* * *
ж.с. <u>10</u> 8	Date Sta Date Com	Borting H	(#) 			1	۲18 4	<u> </u>	l	Ę				2	1 51.5						585 4		416.5 4		

Ì

			DBOT	SUAL	SUAL	4a(7)	TAUR	IMI	6a(10)	SUM	40(7)	SUAL	(†) 14	4a(B)		THUS SUM	SUAL	(0)9-1	3a(0)	SUAL	SUME	TMIS	SIM
	0.22			- > ≷ mo	5	- ∞	5	5	۲. ۲.	×		5 9		 		> 	×	<u> </u>	¥	5	55	<u>۶</u>	<u>></u>
	-0.00/			= ~ ṫ ;	1	-			5		5			 		 	, ,						·
	71/75- ignmer	à	<u> </u>	- } ,	1	54	1	1	31	1	2	1	0	ຄ		1	1	•		-	, ,		1
	HAM-7	ol Stu OH/KY	ucterist X	 हे ।	ı	22	1	1	23	I	8	1				t	1	•			1	 1	1
	m: ueensg	gton,	K Char	売り	ı	Q	ı	1	4	1	ន	1		8		,	1	- =				1	1
	Milleaffo Ince Q	y Geo /Covin	Physic	전 1	1	24	ı	ı	*	ı	8	1	3			1	ı	₽	4	1	1 1		1
	sci ider Spe	<u>Alimina</u> Icianati	×	양 I	J	-	I	I	-		0	ı	~			,	1	ន	ន	1	1 1	I)
	ĒĔ	1212	×	₽ 1	ı	ы	I	1	-	I	0	1	0	0		I	1	23	6	I	1	1	1
	1		elame elame	ž -	8	ю	4	ю	۵	2	m	ص	6	=	:	1	13	4	15	16	2 2	. <u>.</u>	29
		37.1 fi				-																	
State of Ohio Department of Transportation Division of Highways Testling Laboratory LOG DF BORING	SS Dia. <u>1.375* 1.0.</u> Water Elev. Immedicite <u>462.1</u> 5' HSA Dia. <u>3.375* 1.0.</u>	NO/NX 5128 2" 0.D. 514 Surface Elev. 4	Description	0 - 5 [5] Durk brown sitt and clay with brick fragments, little sand and cluders, trace promotios (111), mold-brond		5 - 12.5 [7.5] Dark brown sandy stilt, irace gravel, cinders, and brick fragments (FIL), molet-medium stiff			12.5 – 18 [5.5] Brown and frace gray SILT AND CLAY, frace sand and gravel (ALLIVIUM), molst-stiff to medium stiff		18 – 25 [7] Brown SaNDY SILT (ALWYIUM), mobst-medium stiff		25 – 30 [5] Brown Sandy' Silt (alluvium), wei-ver y kose	30 - 35 [5] Brown Sahidy' Silj (Alluviluk), wet-very loose		35 - 40 [5] Gray Saludy Silt (Alluvuu), v ery mo ist-sofi	40 - 50 [10] Brown GRAVEL WITH SAND, Ittle cloy (OUTWASH), wei-loose to medium dense		50 - 60 [10] Brown COARSE AND FINE SAND, Ithite silt and clay, itace gravel (OUTWASH), wet-medium dense		60 – 60.5 [0.5] Gav SIALE, moist-soff	80.5 - 82.6 [22.3] Interbedder Statte AND UNESTONE: State & gray, medlum bugh to bugh, calcarrous, occupies 73% of matrix, Limetone is light gray, occestionally fastilitienus and argitibosous, evenly distributed in 1/2" to 8" loyens, occupies 25% of matrix.	
	iler: Type g: Length	a	(v/v mdg)	27/12	13	۵		⊽	æ	⊽		⊽	4	⊽		⊽	⊽	⊽	⊽	r)	65/5		
			≣ €	 					1										-		0.8	0.7	80 0
		palitud	ś€	<u> </u> 2	5	5	20	1.5	0.3	Ţ.	2	5.	5.	5		5	8	2.	μ. Έ	7	52		сі 1
	10/2/06 10/3/06	-6 Latitude/	Skd. Pen./	7/24/8	17 / 21 / 21	3/2/3	Shelby Tube	2/2/5	2/4/5	2/3/5	SHELEY TUBE	2/2/3	/ How / How	2/1/1		2/1/2	3/3/4	8 / 6 / 7	11 / 11 / 18	15 / 14 / 11	00 11 00 11 00	22 12 22	
74.054	nted voleted	60 	tag €	- ~	┥	<u> </u>	× 5	2		1	2 8	8 7	% %		*	8 8 9	₹ 2 3	* *	8 8 8			8 3 8 8 8 1	
w.o. <u>10</u> 9	Date Sta Date Con	Borting N	÷.	- 1-14	1.081		1	 8			467.1	I	462.1	457.1	452.1		. .	1	457.1		426.6	_L_ }	

EXHIBIT A-10

ENVIRONMENTAL SCREENING RESULTS

ENIVRONMENTAL SCREENING RESULTS

Boring	Sample Number	Reading (ppm-V/V)
-1	1	2
 -1	2	_ <1
 -1	3	<1
 L-1	4	-
 L-1	5	<1
L-1	6	57/53
L-1	6A	53/13
L-1	7	<1
L-1	7A	<1
L-1	8	1
L-1	9	10/6
L-1	10	8
L-1	11	5
L-1	12	56/21
L-1	13	67/20
L-1	14	19/15
L-1	15	1
L-1	16	45/17
L-1	17	3
L-1	18	5
L-1	19	45/18
L-1	20	1
L-1	21	<1
L-1	22	25/14
L-1	23	77/27
L-1	24	14/12
L-1	25	9
L-1	26	69/16
L-1	27	15/5
L-1	28	8
L-1A	1	<1
L-1A	2	2
L-1A	3	23/22
L-1A	4	-
L-1A	5	45/23
L-1A	6	5

Boring	Sample Number	Reading (ppm-V/V)
L-1A	7	10/13
L-1A	8	-
L-1A	9	9
L-1A	9A	<1
L-1A	10	5
L-1A	11	<1
L-1A	12	82/1
L-1A	13	27/39
L-1A	14	<1
L-1A	15	<1
L-1A	16	<1
L-1A	17	<1
L-1A	18	24/22
L-1A	19	<1
L-1A	20	14/10
L-1A	21	16/1
L-1A	22	<1
L-1A	23	<1
L-1A	24	30/17
L-1A	25	<1
L-1A	26	20/13
L-1A	27	5
L-1A	28	55/17
L-1A	28A	37/40
L-2A	1	5
L-2A	2	3
L-2A	3	158/27
L-2A	4	16/<1
L-2A	5	3
L-2A	6	9
L-2A	7	-
L-2A	8	92/25
L-2A	9	30/20
L-2A	10	3900/3000
L-2A	11	430/514
L-2A	12	-

- -

	Sample	Reading	
Boring	Number	(ppm-V/V)	
L-2A	13	10/8	
L-2A	14	20/9	
L-2A	15	20/6	
L-2A	16	<1	
L-2A	17	8	
L-2A	18	13/1	
L-2A	19	<1	
L-2A	20	77/35	
L-2A	21	16/17	
L-2A	22	33/5	
L-2A	23	22/19	
L-2A	24	36/22	
L-2A	25	27/25	
L-2A	26	32/16	
L-2A	27	42/26	
L-2A	28	39/17	
L-2A	29	43/19	
L-2A	30	6	
L-3	1	-	
L-3	2	2730/1100	
L-3	3	2730/850	
L-3	4	-	
L-3	5	-	
L-3	6	15/4	
L-3	7	3	
L-3	8	<1	
L-3	9	<1	
L-3	10	13/3	
L-3	11	6	
L-3	12	11/2	
L-3	13	16/5	
L-3	14	19/14	
L-3	15	7	
L-3	16	13/4	
L-3	17	-	
L-4	1	648/114	
L-4	2	5	
L-4	3	<1	

Boring	Sample Number	Reading (ppm-V/V)
L-4	4	447/112
L-4	5	47/19
L-4	6	49/23
L-4	7	-
L-4	8	181/48
L-4	9	1914/165
L-4	10	3900/1500
L-4	11	-
L-4	12	1270/819
L-4	13	9
L-4	14	<1
L-4	15	125/69
L-4	16	161/65
L-4	17	2
L-4	18	25/17
L-4	19	82/31
L-4	20	<1
L-4	21	29/13
L-4	22	34/15
L-4	23	11/5
L-4	24	30/10
L-4	25	75/17
L-4	26	-
L-4	27	-
L-5	1	<1
L-5	2	<1
L-5	3	<1
L-5	4	<1
L-5	5	2
L-5	6	2
L-5	7	14/33
L-5	8	108/78
L-5	9	2
L-5	10	15/12
L-5	11	12/7
L-5	12	40/22
L-5	13	13/3
L-5	14	26/7

Boring	Sample Number	Reading (ppm-V/V)
L-5	15	43/20
L-5	16	68/23
L-5	17	5
L-5	18	23/21
L-5	19	31/14
L-5	20	40/29
L-5	21	58/38
L-5	22	-
L-6	1	<1
L-6	2	-
L-6	3	<1
L-6	4	<1
L-6	5	<1
L-6	6	-
L-6	7	2
L-6	8	7
L-6	9	<1
L-6	10	-
L-6	11	<1
L-6	12	<1
L-6	13	<1
L-6	14	<1
L-6	15	<1
L-6	16	<1
L-6	17	<1
L-6	18	-
L-6	19	<1
L-6	20	-
L-6	21	14/5
L-6	22	-
L-7	1	340/190
L-7	2	400/364
L-7	3	54/31
L-7	4	No sample
L-7	5	<1
L-7	6	2
L-7	7	No sample
L-7	8	7

Boring	Sample Number	Reading (ppm-V/V)
L-7	9	2750/2700
L-7	10	2800/2600
L-7	11	No Sample
L-7	12	74/74
L-7	13	2
L-7	14	<1
L-7	15	62/40
L-7	16	50/20
L-7	17	103/66
L-7	18	3
L-7	19	73/42
L-7	20	<1
R-1	1	1
R-1	2	8
R-1	3	-
R-1	4	2
R-1	5	-
R-1	6	1
R-1	7	2
R-1	8	5
R-1	9	6
R-1	10	-
R-1	11	<1
R-1	12	2
R-1	13	8
R-1	14	8
R-1	15	7
R-1	16	
R-2	1	<1
R-2	2	10/6
R-2	3	7
R-2	4	11/5
R-2	5	-
R-2	6	18/11
R-2	7	-
R-2	8	8
R-2	9	9
R-2	10	4

er (ppm-v/v)
24/3
13/11
13/10
3
40/13
64/39
-
3
2
-
2
<u> </u>
1
3
-
3
1
2
5
14/4
-1
11/7
4700/3900
4700/3900
3
3
6
12/14
0
<u> </u>
10/11
18/10

Boring	Sample Number	Reading (ppm-V/V)	
R-4	16	1	
R-5	1	5	
R-5	2	2/4800	
R-5	3	2/6000	
R-5	4	5844/-	
R-5	5	-	
R-5	6	3620/5800	
R-5	7	5700/5900	
R-5	8	154/196	
R-5	9	2	
R-5	10	52/34	
R-5	11	12/13	
R-5	12	104/62	
R-5	13	62/32	
R-5	14	67/33	
R-5	15	95/51	
R-5	16	2	
R-5	17	20.7	
R-5	18	28/23	
R-5	19	27/19	
R-6	1	1	
R-6	2	5	
R-6	3	-	
R-6	4	13/10	
R-6	5	6	
R-6	6	<1	
R-6	7	-	
R-6	8	1	
R-6	9	70/76	
R-6	10	2	
R-6	11	25/17	
R-6	12	58/26	
R-6	13	9	
R-6	14	59/28	
R-6	15	19/7	
R-6	16	40/8	
R-6	17	38/10	
R-6	18	37/14	

Boring	Sample Number	Reading (ppm-V/V)
R-6	19	39/21
R-6	20	43/18
R-6	21	93/43
R-7	2	3500/3000
R-7	3	8300/8300
R-7	4	2500/3576
R-7	5	2100/2200
R-7	6	-
R-7	7	-
R-7	8	21/30
R-7	9	-
R-7	10	28/61
R-7	11	37/101
R-7	12	29/51
R-7	13	64/84
R-7	14	79/142
R-7	15	35/39
R-7	16	50/48
R-7	17	40/27

EXHIBIT A-11

GEOVISION SUSPENSION LOGGING REPORT

SUSPENSION PS VELOCITIES BORINGS L-1, L-4 AND R-2A

BRENT SPENCE BRIDGE REPLACEMENT CINCINNATI, OHIO

Report 10261-01 rev a

September 22, 2010

SUSPENSION PS VELOCITIES BORINGS L-1, L-4 AND R-2A

BRENT SPENCE BRIDGE REPLACEMENT CINCINNATI, OHIO

Report 10261-01 rev a

September 22, 2010

Prepared for:

H.C. Nutting, a Terracon Company 611 Lunken Park Drive Cincinnati, Ohio 45226 (513) 321 5816 ext. 372

Prepared by

GEOVision Geophysical Services 1124 Olympic Drive Corona, California 92881 (951) 549-1234

TABLE OF CONTENTS

TABLE OF CONTENTS	3
TABLE OF FIGURES	4
TABLE OF TABLES	4
INTRODUCTION	5
SCOPE OF WORK	5
INSTRUMENTATION	7
SUSPENSION INSTRUMENTATION	7
MEASUREMENT PROCEDURES	
SUSPENSION MEASUREMENT PROCEDURES	10
DATA ANALYSIS	
SUSPENSION ANALYSIS	11
RESULTS	
SUSPENSION RESULTS	13
SUMMARY	14
DISCUSSION OF SUSPENSION RESULTS QUALITY ASSURANCE SUSPENSION DATA RELIABILITY	

Table of Figures

Figure 1: Concept illustration of P-S logging system	16
Figure 2: Example of filtered (1400 Hz lowpass) record	17
Figure 3. Example of unfiltered record	
Figure 4: Boring L-1, Suspension R1-R2 P- and S _H -wave velocities	19
Figure 5: Boring L-4, Suspension R1-R2 P- and S _H -wave velocities	21
Figure 6: Boring R-2A, Suspension R1-R2 S _H -wave velocities	23

Table of Tables

Table 1 Boring locations and logging dates	5
Table 2. Logging dates and depth ranges	10
Table 3. Boring L-1, Suspension R1-R2 depths and P- and S_H -wave velocities	20
Table 4. Boring L-4, Suspension R1-R2 depths and P- and S _H -wave velocities	22
Table 5. Boring R-2A, Suspension R1-R2 depths and S _H -wave velocities	24
o	

APPENDICES

APPENDIX A SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

APPENDIX B GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION PROCEDURES AND CALIBRATION RECORDS

INTRODUCTION

Boring geophysical measurements were collected in three cased borings for the Brent Spence Bridge Replacement project in Cincinnati, Ohio. Geophysical data acquisition was performed in two on-land borings on August 3, 20010 by Victor Gonzalez and one boring in the Ohio River on September 2, 2010 by Chuck Carter of **GEO***Vision*. Data analysis was performed by Victor Gonzalez and Chuck Carter and reviewed by Robert Steller of **GEO***Vision*. Report preparation was performed by Victor Gonzalez and reviewed by Robert Steller of **GEO***Vision*. The work was performed under subcontract with H.C. Nutting (HCN) with Bill Meadows serving as the point of contact for HCN.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of boring geophysical measurements collected on August 3, 2010 on land and on September 2, 2010 in the Ohio River in three 3-inch PVC cased borings, as detailed in Table 1. The purpose of the study was to acquire shear wave velocities and compressional wave velocities as a function of depth.

		ELEVATION - FEET	COORDINATES – FEET ⁽¹⁾		
BORING	DATES	MSL ⁽¹⁾			
DESIGNATION	LOGGED		NORTHING	EASTING	
L-1	08/03/2010	494.59	39.093833610	84.522929480	
L-4	08/03/2010	479.97	39.088805640	84.523275430	
R-2A	09/02/2010	457.64 (DECK LEVEL)	NA	NA	

⁽¹⁾ Coordinates and elevations provided by HCN

Table 1 Boring locations and logging dates

The OYO Suspension Logging System was used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.6-foot intervals. The acquired data were analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

INSTRUMENTATION

Suspension Instrumentation

Suspension soil velocity measurements were performed in all borings using the PS suspension logging system, manufactured by OYO Corporation. This system directly determines the average velocity of a 3.3-foot high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The total length of the probe as used in these surveys is 19 feet, with the center point of the receiver pair 12.1 feet above the bottom end of the probe.

The probe receives control signals from, and sends the receiver signals to, instrumentation on the surface via an armored 4 or 7 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28-foot circumference sheave fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H -waves in the surrounding soil and rock as it impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil

waves pass their location. Separation of the P and S_H-waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_Hwave signature distinct from the P-wave signal.
- 3. The 6.3-foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H -wave signal, permitting additional separation of the two signals by low pass filtering.
- 4. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe, preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix B.

MEASUREMENT PROCEDURES

Suspension Measurement Procedures

Three 4 7/8-inch borings containing 3-inch schedule 40 PVC casing filled with fresh water were logged. Measurements followed the **GEO***Vision* Procedure for P-S Suspension Seismic Velocity Logging, revision 1.4. Prior to each logging run, the probe was positioned with the top of the probe at the top of the barge deck, ground surface, or other stationary reference point. Subsequently, the electronic depth counter was set to 6.56 feet, the distance between the midpoint of the receiver and the top of the probe, minus the height of the stationary reference point, as verified with a tape measure, and recorded on the field logs. The probe was lowered to the bottom of the boring or until the probe descent was inhibited, stopping at 1.6-foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded on disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the stationary reference point was verified and recorded on the field logs prior to removal from the boring. Field data were backed up to USB flash drive each day upon completion of data acquisition.

BORING NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	DEPTH TO BOTTOM OF BORING (FEET)	SAMPLE INTERVAL (FEET)	DATE LOGGED
L-1	SUSPENSION PS 1	6.56 - 167.32	182	1.6	08/03/2010
L-4	SUSPENSION PS 1	6.56 - 139.44	154	1.6	08/03/2010
R-2A	SUSPENSION PS 1	3.28 - 123.03	139	1.6	09/02/2010

Table 2. Logging dates and depth ranges

DATA ANALYSIS

Suspension Analysis

Using the proprietary OYO program PSLOG.EXE version 1.0, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3-foot segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into an EXCEL template to complete the velocity calculations based on the arrival time picks made in PSLOG.

The P-wave velocity over the 6.33-foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in EXCEL, for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 4.53 feet to correspond to the mid-point of the 6.33-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 4.0 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, using PSLOG, the recorded digital waveforms were analyzed to locate the presence of clear S_H -wave pulses, as indicated by opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering can be used to remove the higher frequency P-wave signal from the S_H -wave signal, if present.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted.
The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H -wave velocity calculated from the travel time over the 6.33-foot interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 4.53 feet to correspond to the mid-point of the 6.33-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H -wave signal at the near receiver and subtracting 4.0 milliseconds, the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact.

These data and analysis were reviewed by Robert Steller as a component of **GEO***Vision*'s inhouse QA-QC program.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.3-foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

RESULTS

Suspension Results

Suspension R1-R2 P-wave and S_H -wave velocities are plotted in Figures 4, 5 and 6. The suspension velocity data presented in these figures are presented in Tables 3, 4 and 5, respectively. These plots and data are included in the EXCEL analysis files in the boring specific directories on the data disk (CD-R) that accompanies this report.

P- and S_H -wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figures A-1 through A-3 to aid in visual comparison. It should be noted that R1-R2 data are an average velocity over a 3.3-foot segment of the soil column; S-R1 data are an average over 6.33 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Tables A-1 through A-3, and included in the EXCEL analysis files.

Calibration procedures and records for the suspension PS measurement system are presented in Appendix B.

SUMMARY

Discussion of Suspension Results

Suspension PS velocity data are ideally collected in an uncased fluid filled boring, drilled with rotary mud (rotary wash) methods. The data collected in these uncased borings were of fair overall quality.

	Criteria	Results for L-1, L-4, and R-2A
1	Consistent data between receiver to receiver $(R1 - R2)$ and source to receiver $(S - R1)$ data.	Data tracks fairly well between R1-R2 and S-R1 data. This correlation is generally degraded slightly in cased borings such as these.
2	Consistency between data from adjacent depth intervals.	All three borings show moderate scatter between adjacent depth intervals. This is expected in thinly interbedded sediments and fractured rock. This may be the case at this site, but the soil logs do not present sufficient detail to ascertain if this is indeed the case.
3	Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)	Relationship between P-wave and S_H –wave is consistent, except above 50 feet in L-1. This drop of P-wave velocity below 5000 feet/sec is indicative of gases trapped in organic materials. Poisson's Ratio is within expected ranges for these materials.
4	Clarity of P-wave and S _H -wave onset, as well as damping of later oscillations.	Clarity of P-wave and S_H -wave onsets are poor in some sections of the softer sediments, which may indicate an enlarged boring filled with grout. Particularly in L-4 above 45 feet, the arrivals are very consistent, which may indicate signal arriving through the grout column. There are no low frequency un-damped signals that would indicate uncoupled casing.
5	Consistency of profile between adjacent borings, if available.	Similar S_H –wave velocity profiles are seen in similar units in all three borings. One exception is the section of bedrock between 104 and 119 feet in L-4. This presents a very low velocity for bedrock, particularly since it is overlaid by a much faster layer of stone fragments with sand. This may be due to weathering of the rock, or the presence of weaker shale. This velocity inversion is present in both P-wave and S_H -wave, and in both R1-R2 and S-R1 data, substantiating its presence.

Suspension PS velocity data quality is judged based upon 5 criteria:

Quality Assurance

These boring geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under **GEO***Vision* quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of velocity data by comparison of receiver-to-receiver and source-to-receiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Suspension Data Reliability

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.3-foot interval of depth. This high resolution results in the scatter of values shown in the graphs. In uncased borings, individual measurements are very reliable, with estimated precision of \pm - 5%. In cased borings, with uncertain grout bond, estimated precision is \pm - 15%. Standardized field procedures and quality assurance checks contribute to the reliability of the data.

Figure 1: Concept illustration of P-S logging system

Figure 2: Example of filtered (1400 Hz lowpass) record

Figure 3. Example of unfiltered record

BRENT SPENCE BRIDGE REPLACEMENT BORING L-1

Figure 4: Boring L-1, Suspension R1-R2 P- and S_H-wave velocities

Donth	Flevation	V	V	Poisson's		Donth	Flevation	V	V	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio		(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
66	488.0	(Ieeusec)	2563	0.48	┝┣─	88.6	406.0	(1000300)	6309	0.49
8.2	486.4	800	2303	0.43		90.2	400.0	754	5561	0.49
9.8	484 7	676	2310	0.45		91.9	402.7	881	5126	0.48
11.5	483.1	650	1745	0.40		93.5	401.1	831	5468	0.49
13.1	481.5	725	2013	0.42		95.1	399.4	1384	6190	0.43
14.8	479.8	795	2090	0.42		96.8	397.8	1122	5965	0.48
16.4	478.2	905	2036	0.38		98.4	396.2	746	5657	0.49
18.0	476.5	725	2144	0.44		100.1	394.5	1600	5468	0.45
19.7	474.9	684	1485	0.37		101.7	392.9	1299	5468	0.40
21.3	473.3	721	1624	0.38		103.3	391.2	899	5468	0.49
23.0	471.6	721	1736	0.40		105.0	389.6	905	5208	0.48
24.6	470.0	625	1727	0.42		106.6	388.0	951	5561	0.48
26.2	468.3	613	1988	0.45		108.3	386.3	899	5561	0.49
27.9	466.7	608	1367	0.38		109.9	384.7	1182	5756	0.48
29.5	465.1	741	1445	0.32		111.5	383.0	1151	6835	0.49
31.2	463.4	781	2343	0.44		113.2	381.4	1161	6309	0.48
32.8	461.8	698	2076	0.44		114.8	379.8	1131	6190	0.48
34.4	460.1	746	1577	0.36		116.5	378.1	1172	6981	0.49
36.1	458.5	702	2232	0.45		118.1	376.5	1262	6076	0.48
37.7	456.9	666	2202	0.45		119.8	374.8	1161	6835	0.49
39.4	455.2	815	1608	0.33		121.4	373.2	841	7132	0.49
41.0	453.6	911	2294	0.41		123.0	371.6	1959	7456	0.46
42.7	451.9	643	1886	0.43		124.7	369.9	1562	7456	0.48
44.3	450.3	875	1953	0.37		126.3	368.3	2573	7456	0.43
45.9	448.7	709	1373	0.32		128.0	366.6	3281	8867	0.42
47.6	447.0	616	2734	0.47		129.6	365.0	3860	9374	0.40
49.2	445.4	781	2929	0.46		131.2	363.4	4525	10936	0.40
50.9	443.7	958	4687	0.48		132.9	361.7	3365	9374	0.43
52.5	442.1	566	6190	0.50		134.5	360.1	3547	8412	0.39
54.1	440.5	616	4261	0.49		136.2	358.4	3977	9374	0.39
55.8	438.8	540	3906	0.49		137.8	356.8	3038	8867	0.43
57.4	437.2	631	4001	0.49		139.4	355.2	3977	9942	0.40
59.1	435.5	576	5657	0.49		141.1	353.5	3052	11313	0.46
60.7	433.9	599	5561	0.49		142.7	351.9	4687	10253	0.37
62.3	432.3	729	5292	0.49		144.4	350.2	3586	11717	0.45
64.0	430.6	628	5468	0.49		146.0	348.6	3750	11717	0.44
65.6	429.0	958	6309	0.49		147.6	347.0	4374	10936	0.40
67.3	427.3	583	5965	0.50		149.3	345.3	3365	9113	0.42
68.9	425.7	852	5756	0.49		150.9	343.7	3125	10583	0.45
70.5	424.1	1017	5965	0.49		152.6	342.0	4687	11717	0.40
72.2	422.4	1274	5965	0.48		154.2	340.4	4654	12151	0.41
73.8	420.8	979	6190	0.49		155.8	338.8	6562	13670	0.35
75.5	419.1	1204	6190	0.48		157.5	337.1	5249	11717	0.37
77.1	417.5	893	6309	0.49		159.1	335.5	5249	10583	0.34
78.7	415.8	1299	6433	0.48		160.8	333.8	6562	15623	0.39
80.1	414.5	1025	4971	0.48		162.4	332.2	6907	16404	0.39
82.0	412.6	1017	5965	0.49		164.0	330.5	7291	15623	0.36
83.7	410.9	1141	5561	0.48		165.7	328.9	7291	14913	0.34
85.3	409.3	1050	5468	0.48		167.3	327.3	7291	15623	0.36
86.9	407.6	663	5561	0.49						

Table 3. Boring L-1, Suspension R1-R2 depths and P- and $S_{\text{H}}\text{-wave velocities}$

BRENT SPENCE BRIDGE REPLACEMENT BORING L-4

Figure 5: Boring L-4, Suspension R1-R2 P- and S_H-wave velocities

Depth	Elevation	Vs	Vp	Poisson's	Depth	Elevation	Vs	Vp	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio	(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
7.2	472.8				88.6	391.4	2224	7291	0.45
8.2	471.8				90.2	389.7	2117	7291	0.45
9.8	470.1				91.9	388.1	2853	8412	0.44
11.5	468.5	754	5378	0.49	93.5	386.5	2625	8002	0.44
13.1	466.8	777	5561	0.49	95.1	384.8	2386	8634	0.46
14.8	465.2	821	5859	0.49	96.8	383.2	3365	8867	0.42
16.4	463.6	786	5965	0.49	98.4	381.5	4101	8412	0.34
18.0	461.9	805	5965	0.49	100.1	379.9	3860	8202	0.36
19.7	460.3	805	5756	0.49	101.7	378.3	3125	7812	0.40
21.3	458.6	805	5292	0.49	103.3	376.6	3454	8002	0.39
23.0	457.0	805	5756	0.49	105.0	375.0	2678	7291	0.42
24.6	455.4	810	5965	0.49	106.6	373.3	670	6190	0.49
26.2	453.7	800	5756	0.49	108.6	371.4	1141	5965	0.48
27.9	452.1	795	6190	0.49	109.9	370.1	1426	5859	0.47
29.5	450.4	781	5965	0.49	111.5	368.4	1215	6696	0.48
31.2	448.8	781	5859	0.49	113.2	366.8	750	6433	0.49
32.8	447.2	759	5561	0.49	114.8	365.1	777	6190	0.49
34.8	445.2	800	5859	0.49	116.5	363.5	1442	6076	0.47
36.1	443.9	875	6076	0.49	118.1	361.9	2983	8867	0.44
37.7	442.2	911	5561	0.49	119.8	360.2	4687	9113	0.32
39.4	440.6	772	5292	0.49	121.4	358.6	6249	10583	0.23
41.0	439.0	777	5126	0.49	123.0	356.9	7720	14913	0.32
42.7	437.3	805	5468	0.49	124.7	355.3	7291	14913	0.34
44.3	435.7	810	6076	0.49	126.3	353.7	7291	15623	0.36
45.9	434.0	759	5657	0.49	128.0	352.0	6562	15623	0.39
47.6	432.4	1058	6433	0.49	129.6	350.4	6249	14913	0.39
49.2	430.8	1151	6309	0.48	131.6	348.4	6249	14265	0.38
50.9	429.1	1122	5378	0.48	133.2	346.8	5965	13670	0.38
52.5	427.5	1172	5965	0.48	134.5	345.5	5706	13123	0.38
54.1	425.8	1215	6562	0.48	136.2	343.8	5047	12151	0.40
55.4	424.5	1161	5859	0.48	137.8	342.2	5047	13123	0.41
57.4	422.6	905	6309	0.49	139.4	340.5	4861	14265	0.43
59.1	420.9	836	6309	0.49					
60.7	419.3	937	5756	0.49					
62.3	417.6	1215	6433	0.48					
64.3	415.7	852	7456	0.49					
65.6	414.4	869	6835	0.49					
67.6	412.4	1339	5657	0.47					
68.9	411.1	951	5859	0.49					
70.5	409.4	501	5657	0.50					
71.9	408.1	1381	6433	0.48					
73.8	406.2	1161	7812	0.49					
75.5	404.5	594	6696	0.50					
77.1	402.9	825	6433	0.49					
78.7	401.2	1620	5756	0.46					
80.4	399.6	1151	5047	0.47					
82.0	397.9	979	6076	0.49					
83.7	396.3	646	4971	0.49					
85.3	394.7	676	5657	0.49					
86.9	393.0	1131	6835	0.49					

Table 4. Boring L-4, Suspension R1-R2 depths and P- and $S_{\text{H}}\text{-wave velocities}$

BRENT SPENCE BRIDGE REPLACEMENT BORING R-2A

Figure 6: Boring R-2A, Suspension R1-R2 S_H -wave velocities

		-		
Depth	Elevation	Vs	Vp	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
33.9	423.7	628	5292	0.49
35.6	422.1	443	5047	0.50
37.2	420.4	741	5126	0.49
38.8	418.8	341	5249	0.50
40.5	417.2	610	4897	0.49
42.1	415.5	352	5292	0.50
43.8	413.9	392	5468	0.50
45.4	412.2	451	5047	0.50
47.0	410.6	443	5423	0.50
48.7	409.0	409	5423	0.50
50.3	407.3	637	5468	0.49
52.0	405.7	462	5468	0.50
53.6	404.0	432	5167	0.50
55.2	402.4	449	5126	0.50
56.9	400.8	581	5047	0.49
58.5	399.1	509	5126	0.50
60.2	397.5	437	5335	0.50
61.8	395.8	554	5335	0.49
63.4	394.2	331	5208	0.50
65 1	392.6	440	5514	0.50
66.7	300.0	037	5965	0.00
68.4	380.3	958	5657	0.49
70.0	309.3	1207	5469	0.49
70.0	307.0	1307	5400	0.47
72.2	380.0	791	5065	0.46
73.3	304.3	690	5279	0.49
76.6	202.7	724	6200	0.49
70.0	301.1	134	6007	0.49
70.2	379.4	1042	6907	0.49
79.9	377.8	1042	6562	0.49
81.5	376.1	2853	7456	0.41
83.1	374.5	3837	8634	0.38
84.8	372.9	3331	7456	0.38
86.4	371.2	2916	7291	0.40
88.1	369.6	2804	8634	0.44
89.7	367.9	4464	9113	0.34
91.3	366.3	3038	9650	0.44
93.0	364.7	3232	10253	0.44
94.6	363.0	3248	9374	0.43
96.3	361.4	4434	8989	0.34
97.9	359.7	4317	10936	0.41
99.5	358.1	4687	10253	0.37
101.2	356.5	4261	10253	0.40
102.8	354.8	4790	4790 11313	
104.5	353.2	4621	11313	0.40
106.1	351.5	6628	14265	0.36
107.7	349.9	7132	15260	0.36
109.4	348.3	5657	14265	0.41
111.0	346.6	4654	10757	0.38
112.7	345.0	5208	10936	0.35
114.3	343.3	5167	11313	0.37

Depth	Elevation	Vs	Vp	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
115.9	341.7	5514	13670	0.40
117.6	340.1	5009	12619	0.41
119.2	338.4	5423	12151	0.38
120.9	336.8	4971	12151	0.40
122.5	335.1	5561	10583	0.31
124.1	333.5	6309	11717	0.30
127.4	330.2	4790	10583	0.37
129.1	328.6	6190	14265	0.38
130.7	326.9	6433	13961	0.37
132.3	325.3	5561	10936	0.33
134.0	323.7	5087	11717	0.38
135.6	322.0	4755	10583	0.37
137.3	320.4	4971	11717	0.39
138.9	318.7	5657	12151	0.36
140.5	317.1	5911	11717	0.33
142.2	315.5	6981	14265	0.34
143.8	313.8	6076	12619	0.35
145.5	312.2	5561	10583	0.31
147.1	310.5	5965	11930	0.33
148.8	308.9	6562	14581	0.37
150.4	307.2	7211	14913	0.35
152.0	305.6	7291	14913	0.34

Table 5.	Boring R-	2A, Suspensio	n R1-R2 depth	ns and S _H -wave	velocities
		, 1			

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

BRENT SPENCE BRIDGE REPLACEMENT BORING L-1

Denth	Elevation	V.	V	Poisson's	Depth	Flevation	V.	V	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Patio	(feet)	(feet)	(feet/sec)	(feet/sec)	Patio
11 7	482.9	751	2236	0.44	93.7	400.9	(1000/300) 650	(Ieeu sec) 5443	0.49
13.4	481.2	735	2134	0.43	95.4	399.2	798	5802	0.49
15.0	479.6	793	1950	0.40	97.0	397.6	731	5662	0.49
16.6	478.0	780	2429	0.44	98.7	395.9	669	5443	0.49
18.3	476.3	735	1696	0.38	100.3	394.3	656	5279	0.49
10.0	470.5	685	1030	0.30	100.5	302.7	633	5051	0.49
21.6	473.0	695	1303	0.43	101.5	301.0	508	5270	0.49
21.0	475.0	713	1395	0.33	105.0	389.4	565	5401	0.49
24.9	471.4	699	2272	0.32	105.2	297.7	500	5401	0.49
24.0	409.0	706	1760	0.43	100.5	296.1	610	5662	0.49
20.0	400.1	100	2400	0.41	110.1	284.5	660	5802	0.49
20.1	400.5	725	2499	0.48	111.9	292.9	1160	5708	0.49
29.0	404.0	600	1//8	0.37	113.4	381.2	1151	6441	0.48
31.4	403.2	580	1546	0.40	115.4	270.5	1170	5709	0.40
34.7	401.0	500	1699	0.42	116.7	277.0	1100	5700	0.40
34.7	459.9	590	1000	0.45	110.7	276.2	1211	6501	0.48
30.3	400.0	603	1950	0.43	110.3	370.3	1211	6301	0.40
30.0	400.0	616	1773	0.43	120.0	374.0	1200	6697	0.46
39.0	455.0	675	1014	0.40	121.0	373.0	1170	6292	0.40
41.2	403.3	0/0	1614	0.39	123.3	371.3	1132	0383	0.46
42.9	451.7	751	1090	0.38	124.9	369.7	1132	7715	0.49
44.5	450.1	802	1978	0.40	126.5	368.0	1325	8164	0.49
46.2	448.4	872	2258	0.41	128.2	366.4	1978	9118	0.48
47.8	440.0	612	2421	0.44	129.8	304.8	3601	0770	0.40
49.4	443.1	619	2755	0.47	131.5	303.1	3200	0001	0.41
52.7	443.5	622	3000	0.40	133.1	301.3	2920	9001	0.44
52.7	441.9	662	3233	0.40	134.7	309.0	2000	9001	0.44
56.0	440.2	699	3070	0.40	130.4	350.2	2242	0770	0.42
50.0	430.0	700	3004	0.40	130.0	350.0	3343	9009	0.44
50.2	430.9	709	3922	0.40	141.2	354.9	3795	10030	0.42
59.5	430.3	733	4000	0.40	141.3	303.3	4001	10479	0.30
60.9	433.7	747	4030	0.49	142.9	351.0	3240	102	0.37
64.2	432.0	762	404Z	0.49	144.0	330.0	4255	10002	0.44
04.Z	430.4	703	5015	0.49	140.2	340.4	4200	10970	0.41
67.5	420.7	700	5951	0.49	147.9	340.7	4300	10802	0.39
60.1	427.1	872	6105	0.49	149.5	242.1	4472	10070	0.40
70.9	423.3	0/2	6105	0.49	152.9	2/1 9	4130	11510	0.42
70.0	423.0	900	6292	0.49	154.4	341.0	4330	12765	0.41
72.4	422.2	933	6383	0.49	154.4	229.5	5201	12105	0.42
74.0	420.5	972	7021	0.49	150.1	336.0	5201	12103	0.39
77.2	410.9	951	6292	0.49	150.4	335.3	5000	13002	0.30
70.0	417.5	972	6105	0.49	161.0	222.6	6105	14042	0.37
80.6	415.0	851	5851	0.49	162.6	332.0	7301	15263	0.35
82.3	4123	767	5708	0.49	164.3	330.3	7301	171203	0.35
83.0	410.7	735	5528	0.49	165.0	328.7	7301	15602	0.39
85.2	409.4	731	5401	0.49	167.6	327.0	7801	15602	0.30
87.2	407.4	731	5088	0.49	169.2	325.4	7801	15602	0.33
88.8	405.8	728	5360	0.49	170.8	323.8	7021	15957	0.38
90.5	404 1	699	5319	0.49	172.5	322.1	7021	15602	0.37
92.1	402.5	611	5617	0.49		022.1	, , , , ,	10002	0.07
02.1	102.0	<u> </u>	0017	0.40		1	1		

Table A-1. Boring L-1, S - R1 quality assurance analysis P- and S_H-wave data

BRENT SPENCE BRIDGE REPLACEMENT BORING L-4

Depth	Elevation	Vs	Vp	Poisson's	Depth	Elevation	Vs	Vp	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio	(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
12.4	467.6	630	5201	0.49	93.7	386.2	3177	7715	0.40
13.4	466.6	638	5201	0.49	95.4	384.6	3026	7801	0.41
15.0	465.0	674	5572	0.49	97.0	383.0	3191	7801	0.40
16.6	463.3	674	5617	0.49	98.7	381.3	3425	7715	0.38
18.3	461.7	675	5528	0.49	100.3	379.7	3177	7715	0.40
19.9	460.1	690	5617	0.49	101.9	378.0	3177	7391	0.39
21.6	458.4	706	5572	0.49	103.6	376.4	2507	7801	0.44
23.2	456.8	709	5572	0.49	105.2	374.8	1734	7801	0.47
24.8	455.1	706	5528	0.49	106.9	373.1	1300	7391	0.48
26.5	453.5	709	5617	0.49	108.5	371.5	1265	7391	0.48
28.1	451.9	713	5755	0.49	110.1	369.8	1138	7021	0.49
29.8	450.2	724	5662	0.49	111.8	368.2	1048	6687	0.49
31.4	448.6	728	5851	0.49	113.7	366.2	918	6687	0.49
33.0	446.9	678	5900	0.49	115.1	364.9	859	7391	0.49
34.7	445.3	709	6383	0.49	116.7	363.3	962	8260	0.49
36.3	443.7	728	5279	0.49	118.3	361.6	1288	9361	0.49
38.0	442.0	709	5360	0.49	120.0	360.0	2006	10802	0.48
39.9	440.0	826	5755	0.49	121.6	358.3	4012	11510	0.43
41.2	438.7	826	5279	0.49	123.3	356.7	7021	13247	0.30
42.9	437.1	826	5401	0.49	124.9	355.1	7021	14042	0.33
44.5	435.4	826	5572	0.49	126.5	353.4	7021	14042	0.33
46.2	433.8	924	5279	0.48	128.2	351.8	7021	14627	0.35
47.8	432.2	1018	5662	0.48	129.8	350.1	6687	14627	0.37
49.4	430.5	996	6105	0.49	131.5	348.5	6687	14627	0.37
51.1	428.9	989	6159	0.49	133.1	346.9	4530	13247	0.43
52.7	427.2	1010	6213	0.49	134.7	345.2	4255	12765	0.44
54.4	425.6	1032	6105	0.49	136.7	343.3	4388	13767	0.44
56.0	424.0	1064	6053	0.48	138.4	341.6	4388	13002	0.44
57.6	422.3	1072	6269	0.48	139.7	340.3	4388	14042	0.45
59.3	420.7	1056	6213	0.49	141.3	338.7	4681	14042	0.44
60.6	419.4	1025	6325	0.49	142.9	337.0	4681	14042	0.44
62.6	417.4	1010	6269	0.49	144.6	335.4	4842	12765	0.42
64.2	415.8	996	6269	0.49					
65.8	414.1	989	6269	0.49					
67.5	412.5	942	6053	0.49					
69.5	410.5	682	5900	0.49					
70.8	409.2	669	5755	0.49					
72.7	407.2	522	5485	0.50					
74.0	405.9	532	5617	0.50					
75.7	404.3	534	5617	0.50					
77.0	403.0	585	5617	0.49					
79.0	401.0	624	5617	0.49					
80.6	399.4	650	5401	0.49					
82.3	397.7	650	5401	0.49					
83.9	396.1	699	5401	0.49					
85.5	394.4	716	5617	0.49					
87.2	392.8	841	6383	0.49					
88.8	391.2	1040	b/51	0.49					
90.5	389.5	1448	7092	0.48					
92.1	381.9	1596	7469	0.48					

Table A-2. Boring L-4, S - R1 quality assurance analysis P- and $S_{\text{H}}\text{-wave data}$

BRENT SPENCE BRIDGE REPLACEMENT BORING R-2A

Depth	Elevation	Vs	Vp	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
39.1	418.6	235	5125	0.50
40.7	416.9	250	5220	0.50
42.4	415.3	264	5201	0.50
44.0	413.6	271	5201	0.50
45.6	412.0	277	5401	0.50
47.3	410.4	284	5401	0.50
48.9	408.7	298	5617	0.50
50.6	407.1	315	5617	0.50
52.2	405.4	323	5464	0.50
53.8	403.8	326	5401	0.50
55.5	402.2	319	5401	0.50
57.1	400.5	317	5401	0.50
58.8	398.9	309	4927	0.50
60.4	397.2	309	5182	0.50
62.0	395.6	327	6105	0.50
63.7	394.0	376	5900	0.50
65.3	392.3	399	5685	0.50
67.0	390.7	429	6687	0.50
68.6	389.0	442	6105	0.50
70.2	387.4	417	6105	0.50
71.9	385.8	397	5851	0.50
73.5	384.1	442	5851	0.50
75.2	382.5	539	6562	0.50
76.8	380.8	592	7021	0.50
78.4	379.2	613	7391	0.50
80.1	377.6	1195	8260	0.49
81.7	375.9	1536	7590	0.48
83.4	374.3	2071	7201	0.45
85.0	372.6	2808	8070	0.43
86.6	371.0	3837	7715	0.34
88.3	369.4	4281	8070	0.30
89.9	367.7	4130	10030	0.40
91.6	366.1	4058	9618	0.39
93.2	364.4	3922	8459	0.36
94.8	362.8	4058	10030	0.40
96.5	361.2	3989	9118	0.38
98.1	359.5	4154	9488	0.38
99.8	357.9	4307	10479	0.40
101.4	356.2	4472	10802	0.40
103.0	354.6	4712	10802	0.38
104 7	353.0	5051	11510	0.38
106.3	351 3	5240	12002	0.38
108.0	349 7	5162	12650	0.40
109.6	348.0	5051	12318	0.40
111 3	346.4	4589	12002	0.41
112.0	344 7	4650	10470	0.38
11/ 5	342.1	4712	1111/	0.30
114.0	3/1 5	4712	11510	0.39
117.2	330.9	5125	11000	0.39
110.5	339.0	5310	11/16	0.39
119.0	000.Z	0010	11410	0.50

Depth	Elevation	Vs	Vp	Poisson's
(feet)	(feet)	(feet/sec)	(feet/sec)	Ratio
121.1	336.5	6053	11800	0.32
122.7	334.9	6624	11234	0.23
124.4	333.3	6562	12105	0.29
126.0	331.6	6325	12765	0.34
127.7	330.0	5900	12318	0.35
129.3	328.3	5485	11605	0.36
132.6	325.1	4910	9751	0.33
134.2	323.4	4416	10802	0.40
135.9	321.8	4559	10802	0.39
137.5	320.1	5125	11510	0.38
139.1	318.5	5755	10802	0.30
140.8	316.9	6269	12105	0.32
142.4	315.2	6325	13247	0.35
144.1	313.6	6213	11900	0.31
145.7	311.9	6269	10802	0.25
147.3	310.3	6325	11900	0.30
149.0	308.7	6441	12318	0.31
150.6	307.0	7021	12883	0.29
152.3	305.4	7238	13502	0.30
153.9	303.7	7238	14329	0.33
155.5	302.1	7238	14476	0.33
157.2	300.5	7391	14476	0.32

APPENDIX B

GEOPHYSICAL LOGGING SYSTEMS – NIST TRACEABLE CALIBRATION PROCEDURES AND CALIBRATION RECORDS

GEOVision SUSPENSION PS SEISMIC LOGGER/RECORDER

CALIBRATION PROCEDURE

Reviewed 7/21/08

Objective

The timing/sampling accuracy of seismic recorders or data loggers is required for several GEOVision field procedures including Seismic Refraction, Downhole P-S Seismic Velocity Logging, and Suspension P-S Seismic Velocity Logging. This procedure describes the method for measuring the timing accuracy of a seismic data logger, such as the OYO Model 170 or OYO/Robertson Model 3403. The objective of this procedure is to verify that the timing accuracy of the recorder is accurate to within 1%.

Frequency of Calibration

The calibration of each GEOVision seismic data logger is twelve (12) months. In the case of rented seismic logger/recorders, calibration must be performed prior to use.

Test Equipment Required

The following equipment is required. Item #2 must have current NIST traceable calibration.

- 1. Function generator, Krohn Hite 5400B or equivalent
- 2. Frequency counter, HP 5315A or equivalent
- 3. Test cables, from item 1 to item 2, and from item 1 to subject data logger.

Procedure

This procedure is designed to be performed using the accompanying Suspension P-S Seismic Logger/Recorder Calibration Data Form with the same revision number. All data must be entered and the procedure signed by the technician performing the test.

- 1. Record all identification data on the form provided.
- 2. Connect function generator to data logger (such as OYO Model 170) using test cable
- 3. Connect the function generator to the frequency counter using test cable.
- 4. Set signal generator to target frequency specified on data form, 0.25 volt (amplitude is approximate, modify as necessary to yield less than full scale waveforms on

Suspension PS Seismic Logger/Recorder Calibration Procedure Revision 2.0 Page 1 logger display) peak sine wave. Verify frequency using the counter and note actual frequency on the data form.

- 5. Set data logger to file length specified on data form and record a data file to disk. Note file name on data form.
- 6. Measure the duration of 9 complete sine wave cycles on the data file. This measurement must be made using the analysis program PSLOG.EXE version 1.00, and saved as a .sps pick file. Note the duration in milliseconds in the spaces provided on the data form. Calculate average recorded sine wave frequency for each channel pair (Hn, Hr, V) by dividing the duration by 9. Note the average frequency of each channel pair on the data form.
- 7. Repeat steps 4 through 6 until all target frequencies have been recorded, producing 6 separate data and pick files.

Criteria

The average frequency for the nine cycles (obtained by dividing 9 cycles by the duration in seconds) must be within plus or minus 1% of the actual frequency for each of the 6 records.

If the results are outside this range, the data logger must be marked with a GEOVision REJECT tag until it can be repaired and retested.

If results are acceptable affix label indicating the initials of the person performing the calibration, the date of calibration, and the due date for the next calibration (12 months).

Procedure Approval

Approved by:

John G. Diehl
Name
an
Signature

President	
Title	
July 21, 2008	
Date	

Calibration Laboratory Approval (if required):

Name

Title

Signature

Date

Vision

Suspension PS Seismic Logger/Recorder Calibration Procedure Revision 2.0 Page 2

MICRO PRECISION CALIBRATION, INC. 12686 HOOVER STREET GARDEN GROVE CA. 92841-1823 714.901.5659

Date: 10/16/2009

Customer:

Lab # AC-1274

Certificate of Calibration

Certificate #: 749437

GEOVISION				
1124 OLYMPIC	DRIVE		Purchase Order:	9333-100601-001
CORONA, CA, 9	92881		Work Order:	61143
MPC Control #:	AM6767		Serial Number:	160023
Asset ID:	160023		Department:	N/A
Gage Type:	LOGGER		Performed By:	KYU HAN
Manufacturer:	OYO		Received Condition:	IN TOLERANCE
Model Number:	3403		Returned Condition:	IN TOLERANCE
Size:	N/A		Cal Date:	October 12, 2009
Temp./RH:	73 °F/45	%	Cal. Interval:	12 MONTHS
			Cal. Due Date:	October 12, 2010

Found conditions meet or exceed manufacturer specifications.

*Calibration Notes:

The UUT (unit under test) was calibrated using the customers procedures in our Garden Grove lab. The UUT was operated by the customers personnel and data collection was observed by MPC personnel. The UUT was found to be in tolerance to customer supplied specifications. The reference standards used are in complience with ISO/IEC 17025:2005, ISO9001:2000, ANSI/NCSL Z540-1-1994 and laboratory accreditiation for lab code 935.11. Frequency is accredited. Measurement uncertainity is 0.2 x E12 Hz. Please see attached data sheet.

Standards Used To Calibrate Equipment

I.D.	Description	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
AM4000	WAVEFORM GENERATOR	33250A	MY40000703	AGILENT	7/15/2010	662404
T1100	COUNTER	53131A	3546A09912	HEWLETT PACKARD	1/12/2010	646688

Calibrating Technician:

ufl

KYU HAN

QC Approval:

Tammy Webster

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025/2005, ISO 9001/2000, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

(CERT, Rev 0)

AM 6767

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT DATA System mfg.: Model no.: 3403 Oyo Serial no .: Calibration date: 10/12/2009 160023 By: Charles Carter Due date: 10/12/2010 Counter mfg .: Hewlett-Packard Model no .: 53131A Serial no .: 3546a09912 Calibration date: 1/12/2009 Microprecision Due date: 1/12/2010 By: Signal generator mfg.: Agilent Model no .: 33250A MY40000703 Serial no .: Calibration date: 7/15/2009 7/15/2010 By: Microprecision Due date: SYSTEM SETTINGS: Gain: Filter 10KHz See sample period in table below Range: Delay: 0 Stack (1 std) 1 10/12/2009 System date = correct date and time PROCEDURE: Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form. Set sample period and record data file to disk. Note file name on data form. Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form. Average frequency must be within +/- 1% of actual frequency at all data points. + 0.20% Maximum error ((AVG-ACT)/ACT*100)% As found + 0.20% As left Target Actual Sample File Time for Average Time for Average Time for Average Frequency requency Period Name 9 cycles Frequency 9 cycles Frequency 9 cycles Frequency Hr (Hz) V (msec) V (Hz) (Hz) (Hz) (microS Hn (msec Hn (Hz) Hr (msec) 50.00 50.00 200 180.2 49.94 179.8 50.06 180.2 49.94 99.9 100.0 100.0 3 90.00 100.0 90.10 90.00 200.0 200.0 50 4 44.95 200.2 44.95 200.2 44.95 200.2 500.0 500.0 20 5 18.00 500.0 18.00 500.0 18.00 500.0 1000 1000 10 6 9.000 1000 8,990 1001.1 9.000 1000.0 2000 5 4.495 2002 4.505 1998 4,500 2000 lis Calibrated by: Charles Carter 10/12/2009 Name Date Signature Witnessed by: Kyu Han 10/12/2009 Name Date Signature Suspension PS Seismic Recorder/Logger Calibration Data Form Rev 2.0 July 21, 2008

GEOVision Report 10261-01 Suspension PS Velocities Brent Spence Bridge rev a September 22, 2010 Page 36 of 36

EXHIBIT A-12

PHOTO SCIENCE GEOSPATIAL SOLUTIONS REPORT

September 14, 2010

REVISED

Survey Report of BSB River Boring Locations

For

Parson Brinckerhoff Americas, Inc. 312 Elm Street Suite 2500 Cincinnati, OH 45202

PSI NO. 7069-005

presented by

2670 Wilhite Drive Lexington, KY 40503 859-277-8700

September 14, 2010 Revision

Report of Field Survey BSB River Boring Locations PSI Project Number 7069-005

Purpose of this revision is to include three additional Borings that were conducted by H.C. Nutting after the original survey report was submitted.

One River Boring (R2-A) and two Land Borings (L1-2 and L1A-2) were surveyed on August 27, 2010.

NAD83 KY Single Zone USFeet NAVD88

	Northing	Easting	Elevation	
L1A-2	4288504.15	5269616.44	489.72	Ground
L1-2	4288344.49	5269644.75	494.59	Ground
R2-A	4287656.44	5269581.56	457.64	Top of Deck

NAD83 Ohio South Zone USFeet NAVD88

	Northing	Easting	Elevation	
L1A-2	404978.23	1394463.06	489.72	Ground
L1-2	404817.69	1394485.67	494.59	Ground
R2-A	404132.45	1394398.08	457.64	Top of Deck

** It should be noted that no Borings were conducted at original sites L1 and L1A. These locations were within Duke Energy's property and not accessible for H.C. Nutting Drilling Rigs.

July 16, 2010

Survey Report of BSB River Boring Locations

For

Parson Brinckerhoff Americas, Inc. 312 Elm Street Suite 2500 Cincinnati, OH 45202

PSI NO. 7069-005

presented by

2670 Wilhite Drive Lexington, KY 40503 859-277-8700

July 16, 2010

Report of Field Survey BSB River Boring Locations PSI Project Number 7069-005

Photo Science, Inc. was given permission to proceed on June 29, 2010 by Duane Phelps of Parsons Brinckerhoff Americas, Inc for field surveying services at the Brent Spence Bridge Boring Site under Task Order 7.1.10.5. The field survey for this project was to locate approximately eighteen boring locations within the project area and a large culvert on the Kentucky side of the Ohio River.

A two-person RTK (real time kinematics) GPS crew was mobilized to the site on July 1, 2010. The crew was equipped with dual-frequency Trimble 5700 Base, Trimble R8 Rover GPS units, and Trimble TRIMMARK 3 Radio, to establish horizontal and vertical control values for the Boring Locations. The crew used BSB/PSI's control monuments 11 and 12 as base known positions.

Both RTK and Traditional surveying techniques were used in locating the Boring's. All River Borings were located with a TOPCON GTS223 Total Station by making use of two control points set by RTK near the River's Edge. When allowable, boring locations on land were located by direct RTK occupation. If the boring location wasn't suitable for direct occupation, a pair of control points were established nearby and then located with the total station.

At this time the culvert on the Kentucky side has not been surveyed. Photo Science is waiting on additional information from Mr. Phelps as to the location of the culvert. The Surveying Crew made a thorough search of the river bank for evidence of said culvert without uncovering any indication of its location. It's possible the culvert is below the waterline or is covered with debris.

Final position summary sheet is provided for both, Kentucky State Plane Single and Ohio South Zones. Also included is a photo of each "survey setup" on the boring locations.

The horizontal datum is based on NAD 83 (2007) while the vertical datum is NAVD 88.

PHOTO SCIENCE, INC. BSB BORE HOLES KENTUCKY-OHIO PSI #7069-005

PT#	Northing(Y)	Easting(X)	Elev(Z)	Description
	(SPC KY SINGLE)	(SPC KY SINGLE)	NAVD 88	
	US FEET	US FEET	US FEET	
- 0	4000404 50			
L2	4288131.73	5269499.24	496.26	L2 GROUND
L2A	4288244.14	5269607.61	494.50	L2A GROUND
L3A	4288035.34	5269496.11	496.05	L3A GROUND
L3B	4287897.88	5269553.98	458.66	L3B TOP OF DECK
L4	4286513.60	5269492.16	479.97	L4 GROUND
L5	4286320.80	5269488.42	486.33	L5 GROUND
L6	4286195.50	5269554.96	485.69	L6 GROUND
L7	4286100.55	5269491.85	484.41	L7 GROUND
R1	4287721.26	5269583.28	458.04	R1 TOP OF DECK
R2	4287702.96	5269562.17	458.10	R2 TOP OF DECK
R3	4287727.53	5269506.27	458.01	R3 TOP OF DECK
R4	4287670.82	5269503.75	457.98	R4 TOP OF DECK
R5	4286731.27	5269570.19	458.59	R5 TOP OF DECK
R6	4286646.07	5269550.32	457.04	R6 GROUND
R7	4286733.89	5269479.10	458.46	R7 TOP OF DECK
R8	4286646.68	5269468.06	455.70	R8 GROUND
PT#	Northing(Y)	Easting(X)	Elev(Z)	Description
	(SPC OH S)	(SPC OH S)		Deberiperon
	(DIC ON D)	(DIC ON D)		
	דעעע אוא איז א	IIS FEFT		
	US FEET	US FEET	US FEEI	
L2	US FEET 404610.28	US FEET 1394332.72	496.26	L2 GROUND
L2 L2A	US FEET 404610.28 404718.74	US FEET 1394332.72 1394445.00	496.26 494.50	L2 GROUND L2A GROUND
L2 L2A L3A	US FEET 404610.28 404718.74 404514.08	US FEET 1394332.72 1394445.00 1394326.17	496.26 494.50 496.05	L2 GROUND L2A GROUND L3A GROUND
L2 L2A L3A L3B	US FEET 404610.28 404718.74 404514.08 404374.67	US FEET 1394332.72 1394445.00 1394326.17 1394379.10	496.26 494.50 496.05 458.66	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK
L2 L2A L3A L3B L4	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14	496.26 494.50 496.05 458.66 479.97	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK L4 GROUND
L2 L2A L3A L3B L4 L5	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55	496.26 494.50 496.05 458.66 479.97 486.33	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK L4 GROUND L5 GROUND
L2 L2A L3A L3B L4 L5 L6	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58	496.26 494.50 496.05 458.66 479.97 486.33 485.69	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK L4 GROUND L5 GROUND L6 GROUND
L2 L2A L3A L3B L4 L5 L6 L7	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK L4 GROUND L5 GROUND L6 GROUND L7 GROUND
L2 L2A L3A L3B L4 L5 L6 L7 R1	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK L4 GROUND L5 GROUND L6 GROUND L7 GROUND R1 TOP OF DECK
L2 L2A L3A L3B L4 L5 L6 L7 R1 R2	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15 404179.62	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10 1394380.36	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04 458.10	L2 GROUND L2A GROUND L3A GROUND L3B TOP OF DECK L4 GROUND L5 GROUND L6 GROUND L7 GROUND R1 TOP OF DECK R2 TOP OF DECK
L2 L2A L3A L3B L4 L5 L6 L7 R1 R2 R3	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15 404179.62 404206.16	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10 1394380.36 1394325.38	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04 458.10 458.01	L2GROUNDL2AGROUNDL3AGROUNDL3BTOPOFDECKL4GROUNDL5GROUNDL6GROUNDL7GROUNDR1TOPOFDECKR2TOPOFDECKR3TOPOF
L2 L2A L3A L3B L4 L5 L6 L7 R1 R2 R3 R4	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15 404179.62 404206.16 404149.58	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10 1394380.36 1394325.38 1394320.85	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04 458.10 458.01 457.98	L2GROUNDL2AGROUNDL3AGROUNDL3BTOPOFDECKGROUNDL5GROUNDL6GROUNDL7GROUNDR1TOPOFDECKR2TOPR4TOPOFDECKR4
L2 L2A L3A L3B L4 L5 L6 L7 R1 R2 R3 R4 R5	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15 404179.62 404206.16 404149.58 403208.43	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10 1394380.36 1394325.38 1394320.85 1394353.84	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04 458.10 458.01 458.01 457.98 458.59	L2 $GROUND$ L2A $GROUND$ L3A $GROUND$ L3B TOP OF L4 $GROUND$ L5 $GROUND$ L6 $GROUND$ L7 $GROUND$ R1 TOP OF R2 TOP OF R3 TOP OF R4 TOP OF DECK $R4$ R5 TOP OF
L2 L2A L3A L3B L4 L5 L6 L7 R1 R2 R3 R4 R5 R6	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15 404179.62 404206.16 404149.58 403208.43 403124.01	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10 1394380.36 1394325.38 1394320.85 1394353.84 1394330.96	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04 458.10 458.01 458.01 457.98 458.59 457.04	L2 $GROUND$ L2A $GROUND$ L3A $GROUND$ L3B $TOP OF$ $DECK$ L4 $GROUND$ L5 $GROUND$ L6 $GROUND$ L7 $GROUND$ R1 $TOP OF$ $DECK$ R2 $TOP OF$ $DECK$ R3 $TOP OF$ $DECK$ R4 $TOP OF$ $DECK$ R5 $TOP OF$ $DECK$ R6 $GROUND$
L2 L2A L3A L3B L4 L5 L6 L7 R1 R2 R3 R4 R5 R6 R7	US FEET 404610.28 404718.74 404514.08 404374.67 402993.71 402801.20 402673.64 402581.01 404197.15 404179.62 404206.16 404149.58 403208.43 403124.01 403214.29	US FEET 1394332.72 1394445.00 1394326.17 1394379.10 1394268.14 1394257.55 1394319.58 1394253.15 1394402.10 1394380.36 1394325.38 1394320.85 1394353.84 1394330.96 1394262.92	496.26 494.50 496.05 458.66 479.97 486.33 485.69 484.41 458.04 458.10 458.10 458.01 458.01 457.98 458.59 457.04 458.46	L2GROUNDL2AGROUNDL3AGROUNDL3BTOPOFL4GROUNDL5GROUNDL6GROUNDL7GROUNDR1TOPOFDECKR3TOPOFDECKR4TOPOFDECKR5TOPOFR7TOPOF

BRENT SPENCE BRIDGE 7/1/10 CORE HOLG L5

	Kentucky Transportation Cabinet Ohio Department of Highways I-75 _I-71 Control Control Monument Information Sheet				A SPORTAL SPOR		
Site/Quad	Station Description (Description is to be complete) (type, size, depth set, etc.)			Station Designation			
Covington	5/8"Rebar			MON 12			
Locality/County	2 1/2" Aluminum Cap			Stamping on Mark			
Hamilton	24" Concrete				I75-I71 CONTROL		
Date Set or Found	Latitude	Longitude	Horiz. I	Datum	Zone	Vert.Datum	
(Date, with S or F)	39ø05'39.45612"N	84ø31'08.62875"W	NAI	083	KY Single	1929	
2/22/2010 S	Northing (KY SP1Z) (US Survey Feet) 4,288,528.22	Easting (KY SP1Z) (US Survey Feet) 5,270,661.40	Eleva 486	ation 5.48	Derived From Level	Order Accuracy 3rd	
Person filling out form	Northing (OH SPSZ)	Easting (OH SPSZ)	Geoid N	Iodel	Ellipsoid Ht.	Other Info.	
AFS	(US Survey Feet) 404965.15	(US Survey Feet) 1395508.02	Geoid	1 09	374.55		
Established by Agency	Project Factor	Back Station I.D.	Datum A	Azimut	th - Distance to	back station	
Photo Science, Inc.			• ' " (ft)				
Scale Factor 1.00013119	Elev. Factor 0.99998212	Ahead Station I.D.	Datum Azimuth - Distance to ahead station ° ' " (ft)				
Kentucky Registered Land Surveyor in charge of monumentation Anthony F. Stith				Ky. Registration No. 1877			
Give a complete sketch and location description so that monument may be recovered by others A) 25.0ft flag pole.							
P 30.0ft NVV corner of sign column. Paul Brown							
C) 3.0ft to edge of sidewalk.							
W MEHRING WAY							
SAM							
C							
A * B W Mon 12							
HILLTOP CONCRETE							

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

APPENDIX B LABORATORY TESTING

EXHIBIT B-1 LABORATORY TEST RESULTS (Sieve, Hydrometer, Atterberg Limits, Moisture)

						Cla	ssificatio	on Test Da	ata					
Denima		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-1	1	6	7.5									17.2		
	2	7.5	9	16.9	4.7	27.3	35.7	15.4	27	17	10	30.4	A-4a(3)	
	3	10	11.5	0.0	0.0	36.5	46.6	16.9	24	16	8	19.0	A-6a(6)	
	5	14	16.5	0.0	0.4	23.9	55.8	19.9	27	17	10	22.4	A-6b(8)	
	6	17.5	19									22.9		1.60
	7	20	21.5	0.0	0.0	43.5	40.3	16.2	20	18	2	20.6	A-6a(4)	
	8	25	26.5									18.9		
	9	30	31.5	0.0	1.4	35.9	44.3	18.4	23	17	6	18.7	A-4a(6)	
	10	35	36.5									27.9		
	11	40	41.5	37.3	19.1	17.3	19.5	6.8	24	16	8	14.5	A-2-4(0)	
	12	45	46.5	61.4	19.7	11.1	6.1	1.7	NP	NP	NP	10.3	A-1-a(0)	
	13	50	51.5									15.1		
	14	55	56.5	11.6	32.1	38.6	13.5	4.2	NP	NP	NP	16.2	A-3a(0)	
	15	60	61.5									18.5		
	16	65	66.5	6.1	27.1	53.9	8.8	4.1	NP	NP	NP	19.1	A-3a(0)	
	17	70	71.5									10.7		
	18	75	76.5	32.5	20.3	37.6	6.2	3.4	NP	NP	NP	15.4	A-1-b(0)	
	19	80	81.5									59.2		
	20	85	86.5	0.9	20.6	70.7	4.1	3.7	NP	NP	NP	21.7	A-3(0)	
	21	90	91.5									11.3		
	20	85	86.5	*										
	21	90	91.5	*										
	22	95	96.5	47.8	25.5	19.9	5.1	1.7	NP	NP	NP	11.4	A-1-b(0)	
	23	100	101.5									23.0		
	24	105	106.5									22.7		
	25	110	11.5	58.0	21.2	12.6	7.1	1.1	NP	NP	NP	12.1	A-1-a(0)	
	26	115	116.5									9.5		
	27	120	121.5	10.5	52.4	29.2	6.6	1.3	NP	NP	NP	15.4	A-1-b(0)	
	28	125	126.5									9.6		

Laboratory Test Results Brent Spence Bridge Replacement Cincinnati, Ohio

March 11, 2011 HCN/Terracon Project No. N1105070

						Cla	ssificatio	on Test Da	ata					
Dering		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-1A	1	5	6.5									28.6		
	2	7.5	9	0.0	0.0	32.4	49.0	18.6	26	16	10	19.4	A-4a(7)	
	3	10	11.5	0.4	1.8	17.8	51.9	18.1	24	16	8	20.0	A-4a(7)	
	5	15	16.5	0.0	2.0	48.2	38.5	11.3	NP	NP	NP	22.0	A-4a(0)	
	6	17.5	19									21.4		
	7	20	21.5	0.0	0.0	29.9	51.1	19.0	25	16	9	21.9	A-4b(7)	
	9	25	26.5									24.9		
	10	30	31.5	0.0	0.0	15.4	62.6	22.0	28	18	10	29.0	A-4b(8)	
	11	35	36.5	0.0	0.0	30.1	54.2	15.7	27	20	7	26.1	A-4b(7)	
	12	40	41.5	52.3	25.1	93.0	9.6	3.7	NP	NP	NP	8.1	A-1-a(0)	
	13	45	46.5	18.6	27.3	36.9	12.8	4.4	NP	NP	NP	17.6	A-3a(0)	
	14	50	51.5	0.6	22.3	59.5	13.1	4.5	NP	NP	NP	22.2	A-3a(0)	
	15	55	56.5									18.3		
	16	60	61.5	21.8	13.3	33.9	20.9	10.1	NP	NP	NP	20.8	A-2-4(0)	
	17	65	66.5									17.4		
	18	70	71.5	2.6	32.2	57.2	3.8	4.2	NP	NP	NP	19.7	A-3(0)	
	19	75	76.5									14.0		
	20	80	81.5	7.3	28.2	55.5	4.9	4.1	NP	NP	NP	18.5	A-3(0)	
	21	85	86.5									20.9		
	22	90	91.5	39.1	20.5	33.8	4.0	2.6	NP	NP	NP	13.9	A-1-b(0)	
	23	95	96.5									20.1		
	24	100	101.5	32.2	30.9	27.9	6.0	3.0	NP	NP	NP	15.1	A-1-b(0)	
	25	105	106.5									15.8		
	26	110	111.5	43.0	34.8	15.9	3.9	2.4	NP	NP	NP	9.2	A-1-b(0)	
	27	115	116.5									8.1		
	28	120	121.5	74.2	7.0	11.6	5.1	2.1	Insu	ufficient Sar	nple	8.5	A-1-a(0)	

						Cla	assificatio	on Test Da	ata					
Poring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-2	3	15	16.5									35.1		
	4	17.5	19									36.9		
	5	20	21.5									34.2		
	6	25	26.5									40.4		
	7	30	31.5	27.0	23.0	9.5	20.5	20.0	35	17	18	15.7	A-6b(3)	
	8	35	36.5									30.3		
	9	40	41.5	0.0	0.2	7.7	60.5	31.6	48	29	19	38.2	A-7-6(13)	
	11	46.5	48									31.6		
	12	50	51.5									23.7		
	14	60	61.5									21.5		
	15	65	66.5	7.8	45.4	37.6	6.1	3.1				24.8	A-1-b(0)	
	17	75	76.5									31.0		
	20	90	91.5									31.7		
	21	95	96.5	3.2	33.7	54.4	5.9	2.8				20.1	A-3(0)	
	22	100	101.5									14.7		
	23	105	106.5									8.3		
	24	110	111.5									19.0		

						Cla	ssificatio	on Test Da	ata					
Destau		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-2A	1	3	4.5									8.8		
	2	5	6.5									9.4		
	3	7.5	9									45.8		
	4	10	11.5									21.9		
	5	12.5	14									14.8		
	6	15	16.5									14.4		
	7	18	20	0.0	0.2	38.1	49.5	12.2	NP	NP	NP	32.4	A-4a(0)	4.90
	8	20	21.5									23.8		
	9	25	26.5									28.6		
	10	30	31.5									44.1		
	11	35	36.5	47.8	23.9	16.5	8.9	2.9	NP	NP	NP	12.6	A-1-b(0)	
	13	41.5	43									21.5		
	14	45	46									7.6		
	15	50	51.5	30.3	30.3	26.0	9.9	3.5	NP	NP	NP	15.0	A-1-b(0)	
	16	55	56.5									16.5		
	17	60	61.5									14.8		
	18	65	66.5									15.7		
	19	70	71.5	0.7	35.3	54.0	5.8	4.2	NP	NP	NP	18.8	A-3(0)	
	20	75	76.5	37.3	32.5	21.3	6.4	2.5				10.5	A-1-b(0)	
	21	80	81.5									9.5		
	22	85	86.5	49.6	34.0	9.8	4.1	2.5	NP	NP	NP	11.3	A-1-b(0)	
	23	90	91.5									22.0		
	24	95	96.5	21.2	39.9	29.2	7.4	2.3				15.4	A-1-b(00	
	25	100	101.5									10.4		
	26	105	106.5	1.0	3.4	79.6	12.2	3.8	NP	NP	NP	23.7	A-3a(0)	
	27	110	111.5									22.7		
	28	115	116.5	53.9	22.1	13.6	7.3	3.1				8.2	A-1-a(0)	
	29	120	121.5									6.8		
	30	125	126.5									6.5		

						Cla	ssificatio	on Test Da	ata					
Poring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-3	2	21	22.5									29.3		
	3	22.5	24	29.1	36.0	24.3	6.1	4.5	NP	NP	NP	25.7	A-1-b(0)	
	6	30	31.5									7.5		
	7	32.5	34	6.1	25.9	63.0	2.6	2.4	NP	NP	NP	23.1	A-3(0)	
	8	35	36.5									52.0		
	9	40	41.5	1.1	38.6	56.3	2.0	2.0	NP	NP	NP	24.6	A-3(0)	
	10	45	46.5									4.6		
	11	50	51.5	61.7	13.8	15.9	6.2	2.4	NP	NP	NP	10.4	A-1-a(0)	
	12	55	56.5	4.1	31.9	54.1	6.0	3.9	NP	NP	NP	24.2	A-3(0)	
	13	60	61.5	11.7	27.9	54.8	3.4	2.2	NP	NP	NP	20.6	A-3(0)	
	14	65	66.5	27.2	36.1	28.9	5.2	2.6	NP	NP	NP	14.5	A-1-b(0)	
	15	70	71.5	21.7	58.0	14.6	3.0	2.7	NP	NP	NP	16.3	A-1-b(0)	
	16	75	76.5	9.3	52.2	32.8	3.5	2.2	NP	NP	NP	18.8	A-1-b(0)	

						Cla	ssificatio	on Test Da	ata					
Baring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
Вогілд No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-3A	1	7.5	9									24.6		
	2	10.0	11.5									21.6		
	3	12.5	14.0									35.8		
	4	15.0	16.5									39.2		
	5	17.5	19.0	49.1	30.5	9.8	6.5	4.1	Insu	ufficient Sar	nple	64.5	A-1-b	
	6	20.0	21.5									39.9		
	7	25.0	26.5									43.3		
	8	30.0	31.5	25.2	32.4	24.6	9.0	8.8	Insu	ufficient Sar	nple	61.8	A-1-b	
	9	35.0	36.5									46.5		
	10	40.0	41.5									85.8		
	11	45.0	46.5									29.1		
	12	50.0	51.5	17.2	17.2	21.5	24.0	20.1	26	17	9	26.6	A-4a(2)	
	14	60.0	61.5									17.9		
	15	65.0	66.5									28.6		
	16	70.0	71.5									17.8		
	17	75.0	76.5	6.6	38.4	45.2	4.6	5.2	NP	NP	NP	20.3	A-3	
	18	80.0	81.5									18.7		
	19	85.0	86.5									14.0		
	20	90.0	91.5									23.6		
	21	95.0	96.5									18.2		
	23	105.0	106.5	38.7	33.1	23.4	1.4	3.4	NP	NP	NP	17.7	A-1-b	
	24	110.0	111.5									14.2		
	25	115.0	116.5									16.7		
	26	120.0	121.5	59.1	17.2	16.8	3.9	3.0	NP	NP	NP	12.2	A-1-a	
	27	122.5	124.0									19.6		

						Cla	ssificatio	on Test Da	ata					
Baring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-4	1	0.0	1.5									37.7		
	2	2.5	4.0									18.7		
	3	5.0	6.5									26.1		
	4	7.5	9.0	10.0	24.1	18.2	31.2	16.5	35	24	11	26.9	A-6a(3)	
	5	10.0	11.5									132.4		
	6	12.5	14.0									17.6		
	8	17.5	19.0									23.5		
	9	20.0	21.5									27.8		
	10	25.0	26.5	0.0	0.2	1.8	61.6	36.4	50	29	21	44.3	A-7-6(14)	5.40
	ST/11	30.0	32.0	0.0	0.0	0.6	62.1	37.3	46	25	21		A-7-6(14)	
	12	32.0	33.5									43.6		
	13	35.0	36.5									31.9		
	14	40.0	41.5									24.4		
	15	45.0	46.5									7.0		
	16	50.0	51.5									10.0		
	17	55.0	56.5	53.4	9.2	27.2	7.2	3.0	NP	NP	NP	12.2	A-1-b(0)	
	18	60.0	61.5									13.5		
	19	65.0	66.5									7.4		
	20	70.0	71.5	56.0	24.5	13.3	3.7	2.5	NP	NP	NP	10.5	A-1-a(0)	
	21	75.0	76.5									9.6		
	22	80.0	81.5	19.1	63.1	11.5	3.4	2.9	NP	NP	NP	17.5	A-1-b(0)	
	23	85.0	86.5									15.2		
	24	90.0	91.5									5.6		
	25	95.0	96.5									11.4		

Brent Spence Bridge Replacement Cincinnati, Ohio March 11, 2011 HCN/Terracon Project No. N1105070

						Cla	ssificatio	on Test Da	ata					
Poring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-5	1	5.0	6.5									37.8		
	2	7.5	9.0									19.6		
	3	10.0	11.5									20.5		
	4	12.5	14.0									16.5		
	5	15.0	16.5									25.8		
	7	20.0	21.5									22.8		
	8	23.0	25.0	0.0	0.2	15.6	45.1	38.1	29	17	12		A-6a(9)	
	9	25.0	26.5									22.1		
	10	30.0	31.5									26.8		
	11	35.0	36.5									27.4		
	12	38.0	40.0	0.0	0.2	20.9	47.7	31.2	29	19	10		A-4a(8)	
	13	40.0	41.5									28.0		
	14	45.0	46.5									13.4		
	15	50.0	51.5									17.7		
	16	55.0	56.5									7.8		
	17	60.0	61.5									13.9		
	18	65.0	66.5									10.8		
	19	70.0	71.5									10.8		
	20	75.0	76.5	55.4	17.5	17.2	6.8	3.1	NP	NP	NP	11.5	A-1-a(0)	
	21	80.0	81.5									10.1		
	22	85.0	86.5									8.6		
	23	90.0	91.5									9.8		
	24	95.0	96.5									7.3		

H.C. Nutting, a Terracon Company 611 Lunken Park Drive, Cincinnati, Ohio 45226 P [513] 321.5816 F [513] 321.4540

						Cla	ssificatio	on Test Da	ata					
Paring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-6	1	7.5	9.0									20.8		
	2	10.0	11.5	0.0	0.0	10.4	53.0	36.6	33	19	14	22.4	A-6a(10)	
	3	12.5	14.5									26.3		
	3/ST	14.5	16.0	0.0	0.0	8.8	54.2	37.0	33	19	14		A-6a(10)	
	4	14.5	16.0									24.2		
	5	20.0	21.5									24.7		
	6	25.0	26.5	0.0	0.0	5.3	61.3	33.4	32	10	12	26.5	A-6a(9)	
	6/ST	30.0	32.0	0.0	0.2	9.6	55.8	34.4	30	19	11		A-6a(8)	
	7	35.0	36.5									26.6		
	8	40.0	41.5									27.1		
	9	45.0	46.5									20.6		
	10	50.0	51.5	13.5	6.0	9.4	57.1	14.0	NP	NP	NP	22.8	A-4b(00	
	11	55.0	56.5									20.5		
	12	60.0	61.5									7.7		
	13	65.0	66.5									15.6		
	14	70.0	71.5									9.3		
	15	75.0	76.5									10.6		
	16	80.0	81.5									8.8		
	17	85.0	86.5									12.3		
	18	90.0	91.5	31.7	28.1	26.5	10.0	3.7	NP	NP	NP	9.0	A-1-b(0)	
	19	95.0	96.5									8.2		
	20	100.0	101.5									7.3		
	21	105.0	106.5									10.2		
	22	108.5	110.0									NO. REC.		

						Cla	assificatio	on Test Da	ata					
Dering		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
L-7	1	5	6.5									25.8		
	2	7.5	9	23.3	17.1	21.6	20.1	17.9	NP	NP	NP	18.9	A-4a(0)	
	3	10	11.5									22.9		
	4	13	15	32.0	1.6	7.5	29.5	29.4	29	17	12		A-6a(6)	
	5	15	16.5									27.2		
	6	17.5	19									22.6		
	7	20	22	0.0	0.0	18.3	43.9	37.8	31	17	14		A-6a(10)	
	8	22	23.5	0.0	0.2	17.1	47.9	34.8	32	18	14	23.4	A-6a(10)	
	9	25	26.5									30.1		
	10	30	31.5									23.7		
	11	33	35	32.3	4.0	14.3	25.6	23.8	31	17	14		A-6a(4)	
	12	35	36.5									22.1		
	13	40	41.5									26.9		
	14	45	46.5									32.6		
	15	50	51.5									15.5		
	16	55	56.5									10.4		
	17	60	61.5	55.4	27.8	10.3	4.1	2.4	NP	NP	NP	10.3	A-1-a(0)	
	18	65	66.5									19.3		
	19	70	71.5									12.3		
	20	75	76.5	60.8	18.4	12.7	5.5	2.6	NP	NP	NP	8.9	A-1-a(0)	
	21	80	81.5									9.0		
	22	85	85.5									103.0		
	23	90	90.4	52.6	14.4	16.5	10.6	5.9	Insi	ufficient Sar	nple	8.2	A-1-b(00	
	24	95	96.5									9.9		
R-1	1	32	33.5									12.0		
	2	32.5	35	69.5	20.8	7.3	1.2	1.2	NP	NP	NP	12.5	A-1-a(0)	
	4	36.5	38	3.1	63.5	28.6	1.9	2.9				23.0	A-1-b(0)	
	6	39.5	41	2.1	23.9	69.1	1.9	3.0	NP	NP	NP	23.0	A-3(0)	
	7	41	42.5									23.2		
	8	42.5	44									20.8		
	9	45	46.5									20.4		
	11	55	56.5	1.7	32.2	61.4	2.3	2.4				21.2	A-3(0)	
	12	60	61.5									25.8		
	13	65	66.5									13.8		
	14	70	71.5									14.0		
	15	75	76.5									18.9		

						Cla	ssificatio	on Test Da	ata					
Boring		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
R-2	1	32	33.5	87.5	10.8	1.5	0.0	0.2	Insu	ufficient Sai	nple	12.6	A-1-a(0)	
	2	33.5	35	21.6	57.9	16.3	2.4	1.8	NP	NP	NP	17.0	A-1-b(0)	
	3	35	36.5	61.8	19.5	14.3	2.0	2.4	Insu	ufficient Sai	nple	14.7	A-1-a(0)	
	4	36.5	38	23.3	20.9	51.0	1.5	3.3	NP	NP	NP	17.6	A-3(0)	
	6	39.5	41	55.1	13.0	26.4	4.0	1.5	NP	NP	NP	14.7	A-1-b(0)	
	8	45	46.5	9.4	17.5	68.8	1.6	2.7	NP	NP	NP	21.5	A-3(0)	
	9	47.5	49									27.6		
	10	50	51.5	0.0	6.6	86.8	3.6	3.0	NP	NP	NP	24.5	A-3(0)	
	11	55	56.5									26.5		
	12	60	61.5	1.0	12.3	80.1	3.1	3.5	NP	NP	NP	20.3	A-3(0)	
	13	65	66.5									24.4		
	14	70	71.5	25.0	46.0	23.3	3.0	2.7	NP	NP	NP	14.9	A-1-b(0)	
	15	75	76.5	17.4	39.6	37.1	2.9	3.0	NP	NP	NP	16.8	A-1-b(0)	

Laboratory Test Results Brent Spence Bridge Replacement Cincinnati, Ohio March 11, 2011 HCN/Terracon Project No. N1105070

						Cla	ssificatio	on Test Da	ata					
Dering		Тор	Bottom		Gr	adation (%)			Atterberg		Moisture	ODOT	
No.	Sample ID	Depth (feet)	Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
R-2A	2	29	30.5									21.2		
	3	30.5	32	45.4	37.2	6.1	10.0	1.3	NP	NP	NP	17.6	A-1-b(0)	
	5	35	36.5									16.4		
	6	36.5	38									27.5		
	7	38	39.5									27.3		
	8	42.5	44									18.1		
	9	45	46.5	32.3	35.6	27.2	3.0	1.9	NP	NP	NP	16.5	A-1-b(0)	
	11	50	51.5									29.3		
	12	55	56.5	3.9	29.6	61.9	2.9	1.7	NP	NP	NP	21.3	A-3(0)	
	13	60	61.5									24.4		
	14	65	66.5	60.6	14.5	16.8	6.3	1.8	NP	NP	NP	13.2	A-1-a(0)	
	15	70	71.5									13.5		
	16	75	76.5									13.2		
R-3	3	34	35.5	38.3	37.3	20.0	3.3	1.1	NP	NP	NP	14.9	A-1-b(0)	
	4	35.5	37	57.8	33.5	5.9	1.3	1.5	NP	NP	NP	16.7	A-1-a(0)	
	5	37	38.5	6.3	68.9	17.5	3.1	4.2	NP	NP	NP	18.1	A-1-b(00	
	6	38.5	40		No	Sample a	at this dep	oth						
	7	40	41.5	1.1	39.2	54.6	2.6	2.5	NP	NP	NP	18.8	A-3(0)	
	8	42.5	44									24.5		
	9	45	46.5	8.4	48.0	39.4	2.5	1.7	NP	NP	NP	20.3	A-1-b(0)	
	10	47.5	49	25.4	36.0	34.1	1.4	3.1	NP	NP	NP	18.7	A-1-b(0)	
	12	55	56.5									22.4		
	13	60	61.5	32.1	34.5	28.6	2.3	2.5	NP	NP	NP	19.2	A-1-b(0)	
	14	65	66.5	70.3	12.6	13.4	2.3	1.4	NP	NP	NP	10.0	A-1-a(0)	
	15	70	71.5	56.7	29.4	9.1	2.6	2.2	NP	NP	NP	15.5	A-1-a(0)	
	16	75	76.5	52.1	29.4	12.1	3.8	2.6	NP	NP	NP	13.0	A-1-a(0)	
	17	80	81.5									No Samp.		

Classification Test Data														
Dering	Sample ID	Top Depth (feet)	Bottom		Gr	adation (%)		Atterberg			Moisture	ODOT	
No.			Depth (feet)	Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
R-4	1	33.5	35	18.0	67.9	9.5	2.9	1.7	NP	NP	NP	17.4	A-1-b(0)	
	2	35	36.5	37.3	51.7	9.7	0.1	1.2	NP	NP	NP	19.4	A-1-b(0)	
	3	36.5	38	28.6	59.6	9.1	1.3	1.4	NP	NP	NP	13.9	A-1-b(0)	
	4	38	39.5	2.1	84.8	11.4	0.2	1.5	NP	NP	NP	21.1	A-3a(0)	
	5	39.5	41	38.1	42.2	14.4	3.2	2.1	NP	NP	NP	16.6	A-1-b(0)	
	6	41	42,5	10.5	54.9	27.9	3.5	3.2	NP	NP	NP	25.3	A-1-b(0)	
	7	42.5	44									25.2		
	8	45	46.5	5.1	17.7	74.4	0.4	2.4	NP	NP	NP	21.8	A-3(0)	
	9	47.5	49									No Samp.		
	10	50	51.5	1.8	22.4	71.7	0.7	3.4	NP	NP	NP	26.0	A-3(0)	
	11	55	56.5	3.5	7.3	81.7	3.5	4.0	NP	NP	NP	21.8	A-3(0)	
	12	60	61.5									23.9		
	13	65	66.5									13.4		
	14	70	71.5	77.8	12.8	6.1	1.6	1.8	NP	NP	NP	16.2	A-1-a(0)	
	15	75	76.5	51.9	36.5	6.9	2.5	2.2	NP	NP	NP	15.8	A-1-a(0)	
	16	80	81.5									No Samp		
R-5	1	16	17.5	18.5	16.3	49.5	9.9	5.8	NP	NP	NP	27.5	A-3a(0)	
	2	17.5	19	30.4	17.6	40.9	6.9	4.2	NP	NP	NP	39.2	A-3a(0)	
	3	19	20.5	36.3	18.5	35.7	5.1	4.4	NP	NP	NP	39.5	A-1-b(0)	
	4	20.5	22	0.0	0.4	24.4	52.3	22.9	31	20	11	30.3	A-6a(8)	
	6	23.5	25	0.0	0.2	9.3	53.5	37.0	36	21	15	43.8	A-6a(10)	
	7	25	26.5									49.2		
	8	27.5	29									10.2		
	9	30	31.5	44.8	38.2	9.7	4.0	3.3	NP	NP	NP	10.2	A-1-b(0)	
	10	32.5	34									7.1		
	11	35	36.5									21.2		
	12	40	41.5	47.5	30.3	12.7	6.3	3.2	NP	NP	NP	13.6	A-1-b(0)	
	13	45	46.5									23.3		
	14	50	51.5	44.2	39.0	10.3	4.1	2.4	NP	NP	NP	16.3	A-1-b(0)	
	15	55	56.5	50.3	30.4	10.2	5.4	3.7	NP	NP	NP	18.1	A-1-a(0)	
	16	60	61.5									12.9		
	17	65	66.5	12.6	20.7	5.9	3.2	4.5	NP	NP	NP	19.4	A-3(0)	
	18	70	71.5									7.3		
	19	75	75.5	49.2	20.4	10.7	13.2	19.7	Insufficient Sample			16.4	A-1-b(0)	

Classification Test Data														
Dering	Sample ID	Top Depth (feet)	Bottom Depth (feet)		Gr	adation (dation (%)		Atterberg			Moisture	ODOT	
No.				Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
R-6	1	0	1.5	0.5	1.3	24.9	49.8	23.5	28	19	9	28.7	A-4a(8)	
	2	2.5	4	0.0	0.2	2.2	67.1	30.5	35	22	13	32.2	A-6a(9)	
	ST/3	5	7	0.3	0.4	5.9	60.5	32.9	38	22	16		A-6b(10)	
	4	7	8.5	0.0	0.2	21.5	52.3	26.0	30	20	10	33.1	A-4b(8)	
	5	10	11.56	0.0	0.2	30.8	41.9	27.1	30	17	13	26.0	A-6a(8)	
	6	12.5	14	0.0	0.0	39.0	38.7	22.3	26	17	9	24.0	A-4a(5)	
	ST/7	15	17	0.0	0.4	18.1	54.9	26.6	34	23	11		A-6a(8)	
	8	17	18.5	5.9	0.8	43.7	42.9	18.8	26	17	9	26.3	A-4a(3)	
	9	20	21.5	0.4	0.6	31.7	40.6	26.7	33	23	10	48.2	A-4a(6)	
	10	25	26.5	84.3	4.4	2.2	6.5	2.6	Insufficient Sample		10.0	A-1-a(0)		
	11	30	31.5									8.4		
	12	35	36.5	58.0	20.2	11.9	6.0	3.9	NP	NP	NP	9.3	A-1-a(0)	
	13	40	41.5									8.5		
	14	45	46.5	33.5	38.8	20.2	4.9	2.6	NP	NP	NP	13.0	A-1-b(0)	
	15	50	51.5	55.9	21.2	18.2	3.1	1.6	NP	NP	NP	17.1	A-1-a(0)	
	16	55	56.5									14.1		
	17	60	61.5									21.7		
	18	65	66.5	54.3	18.4	19.7	5.2	2.4	NP	NP	NP	14.7	A-1-a(0)	
	19	70	71.5									6.4		
	20	75	75.9	57.6	12.6	17.4	8.8	3.6	NP	NP	NP	8.7	A-1-a(0)	
	21	80	80.4									5.8		
	22	84										No Samp.		
R-7	2	22.5	24	5.7	2.0	9.5	44.5	38.3	42	22	20	45.6	A-7-6(12)	
	3	24	25.5	32.9	3.3	20.6	25.3	17.9	32	18	14	24.4	A-6a(3)	
	4	22.5	27	34.5	3.5	23.8	22.0	16.2	Insu	ufficient Sar	nple	31.4	A-4a(0)	
	5	27	28.5	35.5	3.9	20.6	24.8	15.2	Insu	ufficient Sar	nple	33.2	A-4a(0)	
	8	32.5	34	67.8	19.3	5.0	5.3	2.6	Insu	ufficient Sar	nple	12.3	A-1-a(0)	
	9	35	36.2		No	o sample a	at this dep	oth						
	10	37.5	39									10.0		
	11	40	41.5	61.4	16.4	11.0	7.4	3.8	NP	NP	NP	10.2	A-1-a(0)	
	12	45	46.5									7.0		
	13	50	51.5	57.2	26.9	84.0	4.6	2.9	NP	NP	NP	13.1	A-1-a(0)	
	14	55	56.5									13.2		
	15	60	61.5	59.6	15.6	14.5	5.3	5.0	NP	NP	NP	10.0	A-1-a(0)	
	16	65	66.5									83.8		
	17	70	70.4	71.1	12.1	8.2	4.5	4.1	Insufficient Sample			12.8	A-1-a(0)	

Classification Test Data														
Boring No.	Sample ID	Top Bot Depth De (feet) (fe	op Bottom pth Depth eet) (feet)		Gr	adation (%)		Atterberg			Moisture	ODOT	
				Gravel	Coarse Sand	Fine Sand	Silt	Clay	Liquid Limit	Plastic Limit	Plasticity Index	Content (%)	Classification (GI)	LOI (%)
R-8	1	0	1.5									35.7		
	2	1.5	3	0.0	0.2	5.8	62.9	31.1	36	21	15	33.0	A-6a(10)	
	3	3	4.5									29.1		
	4	4.5	6									28.3		
	5	6	7.5									28.0		
	6	7.5	9									29.5		
	7	9	10.5									28.3		
	8	12.5	14									30.7		
	9	15	16.5	0.0	0.4	23.9	51.9	23.8	30	21	9	39.6	A-4a(8)	
	10	17.5	19									35.6		
	11	20	21.5									32.6		
	12	25	26.5									33.9		
	13	30	31.5									8.7		
	14	35	36.5									9.8		
	15	40	41.5	38.3	34.9	20.5	3.9	2.4	NP	NP	NP	17.0	A-1-b(0)	
	16	45	56.5									9.7		
	17	50	51.5									13.9		
	18	55	56.5	27.4	48.7	14.8	6.3	2.8	NP	NP	NP	12.2	A-1-b(0)	
	19	60	61.5									16.7		
	20	65	66.5									13.8		

EXHIBIT B-2 TRIAXIAL TESTING RESULTS

Checked By: GS

_____ Checked By: GS

_____ Checked By: GS

Checked By: GS

_____ Checked By: GS

_ Checked By: GS

_____ Checked By: <u>GS_</u>

Checked By: GS

EXHIBIT B-3 CONSOLIDATION TESTING RESULTS

UNCONFINED COMPRESSIVE STRENGTH TESTING RESULTS AND FIGURES

Unconfined Compressive Strength Distribution

Unconfined Compressive Strength (psi)

Parsons Brinckerhoff
Brent Spence Bridge Replacement
Cincinnati, Ohio March 11, 2011 ■ HCN/Terracon Project No. N1105070

UNCONFINED COMPRESSION TEST RESULTS

Boring	Top Depth (ft.)	Top Elevation (ft.)	Bottom Depth (ft.)	Bottom Elevation (ft.)	Unconfined Strength (psf)	Unconfined Strength (psi)	Water Content (%)	Rock Type
L-1	129.9	363.56	130.3	363.16	1581417	10982	0.2	Limestone
L-1	142.7	350.76	143.2	350.26	1349949	9375	0.4	Limestone
L-1	153.5	339.96	154	339.46	1731345	12023	0.5	Limestone
L-1	156	337.46	157	336.46	1463837	10166	0.2	Limestone
L-1	162.5	330.96	163	330.46	1245899	8652	1.3	Limestone/Shale
L-1A	123.1	368.35	123.7	367.75	1467597	10192	0.1	Limestone
L-1A	132.3	359.15	132.8	358.65	1958018	13597	0.2	Limestone
L-1A	143	348.45	143.5	347.95	848262	5891	1.2	Limestone
L-1A	150.7	340.75	151.1	340.35	1928313	13391	0.2	Limestone
L-1A	160	331.45	160.5	330.95	634960	4409	1.9	Limestone
L-2	126.7	369.56	127	369.26	1844685	12810	2.4	Limestone
L-2	130	366.26	130.7	365.56	1591219	11050	0.8	Limestone
L-2	137	359.26	137.5	358.76	1746923	12131	1.1	Limestone
L-2	144	352.26	144.5	351.76	2229975	15486	1.1	Limestone
L-2	148.2	348.06	148.5	347.76	599284	4162	2.4	Shale
L-2	153	343.26	153.5	342.76	1398280	9710	3.6	Limestone
L-2	154.5	341.76	155	341.26	1564616	10865	1.1	Limestone
L-2	158.5	337.76	158.9	337.36	1280499	8892	1.2	Limestone
L-2	163.6	332.66	164	332.26	899381	6246	1.7	Limestone
L-2	165.1	331.16	165.4	330.86	1542930	10715	1.1	Limestone
L-2A	130.1	364.40	130.5	364.00	1164152	8084	0.1	Limestone
L-2A	131.5	363.00	132.2	362.30	1264643	8782	0.3	Limestone
L-2A	137	357.50	137.4	357.10	267975	1861	4.5	Shale
L-2A	157.8	336.70	158.3	336.20	1233462	8566	0.7	Limestone
L-3	97.6	361.06	98	360.66	471917	3277	1.9	Limestone/Shale
L-3	100.2	358.46	100.4	358.26	1863379	12940	0.7	Limestone
L-3	103.8	354.86	104.4	354.26	1917187	13314	1.4	Limestone
L-3	121.2	337.46	121.8	336.86	965311	6704	1.3	Limestone/Shale
L-3	124.6	334.06	125.2	333.46	569305	3954	1.2	Limestone/Shale
L-3	145.2	313.46	146.2	312.46	1661279	11537	0.7	Limestone
L-3	145.6	313.06	146.1	312.56	1358505	9434	1.5	Limestone/Shale
L-3	158.7	299.96	160.2	298.46	2475252	17189	0.4	Limestone
L-3	162.8	295.86	163.3	295.36	1744346	12114	0.2	Limestone
L-3	164.5	294.16	165.2	293.46	2176614	15115	0.8	Limestone

Boring	Top Depth	Top Elevation	Bottom	Bottom Elevation	Unconfined Strength	Unconfined	Water Content	Rock Type
Bornig	(ft.)	(ft.)	(ft.)	(ft.)	(psf)	(psi)	(%)	NOCK Type
L-3A	126.5	369.55	126.75	369.30	82023	570	6.3	Shale
L-3A	142.3	353.80	142.5	353.55	615192	4272	2	Shale
L-3A	157.7	338.35	158	338.05	397254	2759	0.8	Limestone
L-4	116	363.97	116.5	363.47	1965081	13646	0.5	Limestone
L-4	120.4	359.57	120.9	359.07	1829521	12705	1.1	Limestone
L-4	140.5	339.47	141	338.97	1880122	13056	0.8	Limestone
L-4	143	336.97	143.5	336.47	1801226	12509	0.4	Limestone
L-5	113.5	372.83	114	372.33	972696	6755	2.4	Limestone/Shale
L-5	120.2	366.13	120.6	365.73	1567920	10888	0.2	Limestone
L-5	130.3	356.03	131	355.33	738738	5130	0.3	Limestone/Shale
L-5	133.3	353.03	133.8	352.53	1217480	8455	1.7	Limestone/Shale
L-6	112	373.69	112.4	373.29	703969	4889	0.3	Limestone/Shale
L-6	120.5	365.19	121	364.69	2097849	14568	0.2	Limestone
L-6	130.5	355.19	130.9	354.79	1420383	9864	0.2	Limestone
L-6	147.5	338.19	148	337.69	1544585	10726	0.2	Limestone
L-7	101	383.41	101.5	382.91	1183176	8217	0.3	Limestone
L-7	113.7	370.71	114.2	370.21	842027	5847	0.3	Limestone
L-7	132.5	351.91	133.2	351.21	689715	4790	0.6	Limestone/Shale
R-1	91.5	366.54	92.1	365.94	1837107	12758	0.4	Limestone
R-1	94.3	363.74	95	363.04	706054	4903	2.4	Limestone
R-1	104.5	353.54	105	353.04	568922	3951	2.4	Limestone
R-1	123	335.04	123.5	334.54	1443507	10024	0.8	Limestone
R-1	136	322.04	136.5	321.54	2134074	14820	0.6	Limestone
R-1	145.3	312.74	145.7	312.34	1072646	7449	1.3	Limestone
R-1	153	305.04	153.6	304.44	1850857	12853	0.6	Limestone
R-1	159.1	298.94	159.9	298.14	1592203	11057	0.7	Limestone
R-1	163.5	294.54	164.2	293.84	2046785	14214	1.2	Limestone
R-1	168.2	289.84	168.9	289.14	2000122	13890	1.2	Limestone
R-2	87.5	370.60	88	370.10	1893232	13147	0.2	Limestone
R-2	89.3	368.80	89.7	368.40	1387302	9634	0.6	Limestone
R-2	90.7	367.40	91.6	366.50	1848338	12836	0.4	Limestone
R-2	93.7	364.40	94	364.10	709761	4929	2.2	Shale
R-2	99.8	358.30	100.1	358.00	1155667	8025	0.8	Limestone
R-2	112.9	345.20	113.9	344.20	2034883	14131	0.2	Limestone
R-2	119.8	338.30	120.6	337.50	2005345	13926	0.4	Limestone
R-2	139	319.10	139.5	318.60	1138483	7906	1.2	Limestone
R-2A	99.5	358.14	100.1	357.54	2075031	14410	0.6	Limestone

Boring	Top Depth (ft.)	Top Elevation (ft.)	Bottom Depth (ft.)	Bottom Elevation (ft.)	Unconfined Strength (psf)	Unconfined Strength (psi)	Water Content (%)	Rock Type
R-2A	111.8	345.84	112.2	345.44	1773180	12314	1.1	Limestone
R-2A	117.8	339.84	118.2	339.44	872331	6058	1.9	Limestone
R-2A	120.5	337.13	121	336.64	607979	4222	1.7	Limestone/Shale
R-2A	134.4	323.24	134.9	322.74	1089495	7566	1.2	Limestone
R-2A	140	317.64	140.5	317.14	1117004	7757	0.7	Limestone
R-2A	148	309.64	148.5	309.14	2192551	15226	0.2	Limestone
R-2A	160	297.64	160.5	297.14	1550817	10770	0.6	Limestone
R-2A	175.8	281.84	176.3	281.34	1495031	10382	0.8	Limestone
R-2A	179.8	277.84	180.3	277.34	1902575	13212	0.1	Limestone
R-2A	183.5	274.14	184	273.64	1400566	9726	0.1	Limestone
R-3	92.3	365.71	92.7	365.31	1331115	9244	0.7	Limestone
R-3	93.8	364.21	94.5	363.51	1474639	10241	0.2	Limestone
R-3	102.7	355.31	103.1	354.91	1041933	7236	1.7	Limestone/Shale
R-3	106.5	351.51	107.1	350.91	1322957	9187	2.2	Limestone/Shale
R-3	123.8	334.21	124.7	333.31	983924	6833	0.9	Limestone/Shale
R-3	140	318.01	140.5	317.51	1310334	9100	0.5	Limestone
R-3	145.5	312.51	146	312.01	1694430	11767	1.1	Limestone
R-3	157.3	300.71	158	300.01	2048572	14226	0.5	Limestone
R-4	90.5	367.48	91	366.98	1198015	8320	4.2	Limestone
R-4	95.5	362.48	96	361.98	832099	5778	4.2	Limestone
R-4	102.8	355.18	103.3	354.68	380693	2644	1.9	Limestone/Shale
R-4	111.3	346.68	111.9	346.08	857943	5958	1.5	Limestone
R-4	121.9	336.08	122.3	335.68	2216031	15389	1.1	Limestone
R-4	129.6	328.38	130	327.98	828577	5754	1.5	Limestone
R-4	140.6	317.38	141.1	316.88	1956363	13586	0.4	Limestone
R-4	152.8	305.18	153.6	304.38	1534100	10653	1.1	Limestone
R-4	159.6	298.38	160.5	297.48	2269771	15762	0.5	Limestone
R-5	85.2	373.39	85.7	372.89	1022251	7099	2.9	Limestone
R-5	86.4	372.19	86.8	371.79	1556479	10809	0.3	Limestone
R-5	90.1	368.49	90.8	367.79	1011411	7024	0.5	Limestone
R-5	92.2	366.39	92.8	365.79	16945	118	8.6	Shale
R-5	93	365.59	93.8	364.79	2062678	14324	0.6	Limestone
R-5	95	363.59	95.3	363.29	1179728	8193	0.5	Limestone
R-5	103	355.59	103.5	355.09	692912	4812	1.5	Limestone/Shale
R-5	146.2	312.39	147	311.59	1753704	12179	0.5	Limestone
R-6	84.1	372.94	84.5	372.54	851152	5911	0.6	Limestone
R-6	88.5	368.54	89	368.04	1150291	7988	0.7	Limestone

Unconfined Compression Test Results Parsons Brinckerhoff
Brent Spence Bridge Replacement Cincinnati, Ohio March 11, 2011 HCN/Terracon Project No. N1105070

	Тор	Тор	Bottom	Bottom	Unconfined	Unconfined	Water	
Boring	Depth	Elevation	Depth	Elevation	Strength	Strength	Content	Rock Type
	(π.)	(11.)	(ft.)	(ft.)	(psr)	(psi)	(%)	
R-6	94.5	362.54	94.9	362.14	1403296	9745	0.1	Limestone
R-6	100.1	356.94	100.5	356.54	1828127	12695	0.1	Limestone
R-6	107.1	349.94	107.5	349.54	1259226	8745	0.5	Limestone
R-6	114.5	342.54	115	342.04	1466508	10184	0.2	Limestone
R-6	136.5	320.54	137.3	319.74	1649615	11456	0.3	Limestone
R-6	159.8	297.24	160.2	296.84	1273413	8843	0.8	Limestone
R-7	83.5	374.96	83.9	374.56	1277541	8872	0.3	Limestone
R-7	88.4	370.06	89	369.46	1748783	12144	0.3	Limestone
R-7	98	360.46	98.5	359.96	979514	6802	1.0	Limestone
R-7	121.1	337.36	121.4	337.06	263952	1833	3.5	Shale
R-7	128.7	329.76	129.5	328.96	1227670	8525	0.5	Limestone
R-7	136.6	321.86	137.6	320.86	1724247	11974	0.4	Limestone
R-7	154.5	303.96	155.1	303.36	1812415	12586	0.5	Limestone
R-7	163.7	294.76	164.5	293.96	1263171	8772	0.4	Limestone
R-8	87.8	367.90	88.2	367.50	1388903	9645	0.1	Limestone
R-8	100.5	355.20	101	354.70	1618490	11240	0.6	Limestone
R-8	101.8	353.90	102.3	353.40	711870	4944	1	Limestone/Shale
R-8	126.3	329.40	126.7	329.00	1674834	11631	0.7	Limestone
R-8	127.8	327.90	128.3	327.40	1537026	10674	0.3	Limestone
R-8	135.5	320.20	136	319.70	1511267	10495	0.5	Limestone
R-8	141	314.70	141.5	314.20	1831836	12721	0.3	Limestone
R-8	149	306.70	149.5	306.20	1817085	12619	0.3	Limestone
R-8	151.8	303.90	152.1	303.60	1475126	10244	0.2	Limestone
R-8	158.7	297.00	159.2	296.50	1729572	12011	0.2	Limestone

Checked By: GS

	UNC	ONFIN	JED C	OMPF	RES	SION	TES	г	
2000000								•	
								_	
1500000 Sourcessive Stress Sourcessive Stress Sourcessive Sourcess									
0	0	0,15		0.3		0.45	0.	6	
			Axial	Strain, %					
Sample No.				1		1			
Unconfined strength, psf				124589	9.8				
Undrained shear strength	n, psf			62294	9.9				
Failure strain, %				0.5					
Strain rate, in./min.				0.04	1				
Water content, %				1.3					
Wet density, pcf				167.	0				
Dry density, pcf				164.	9				
Saturation, %				N/A	<u>.</u>				
Vola ratio				N/A					
Specimen beight in				1.98	0				
Height/diameter ratio	<u>.</u>			4.10	v				
Description · LIMESTON	F AND SU		L	2.07	,	.L			
LL = PL =		PI =		Assum	ed GS)=	Type	Limestone and	Shale
Project No.: N1105070		L	Client [.]	PARSONS	RRIN	СКЕВН	OFF		
Date Sampled: 7-29-10							~11		
Remarks: Lab No. 6013			Project	BRENT :	SPENG	CE BRID	GE REPL	ACEMENT	
			Source	of Samp Number	le: L-1 : 11	1 D	epth: 16	2.5-163'	
			• •	UN	CONF	FINED C	OMPRE	SSION TEST	
Figure						H.C.	Nutti	ng	

.

•

_____ Checked By: GS

		UN	CO	NFI	NE	DC	CO	MP	RF	ES	SI	ON	<u>т</u>	'Es	ST	I					
	4000000										<u> </u>		•••	·····							
	1000000									_			<u> </u>								
pressive Stress, psf	750000 500000																	())))			
Con	250000 0	0		0.15		Axia	0.3	ain, 9	/0		0.4				0.6	—1					
Sample No.									4											<u></u>	
Sample No.	ath not							0100	1	7									+		
Undrained stren	gui, psí etronath	, nef						0482 4241	21 4	,					+						
Failure strain %	suengui	i, psi						424	4.1C	ŀ					+						
Strain rate in /mi	 n							0	. 4 \20												
Water content 9/								1.0	<u>עני</u> ר	••••				,							
Wet density not		· · · ·						16	. <u>2</u> 2.0		+				+						
Dry density not			.					10	∠.V ∩.0		+				+						
Saturation %				-				10 N	/A		+				+						
Void ratio								IN N	/A		-				+						
Specimen diamet	er, in		· · · · · · · · · · · ·	•••	,			10	90						+						******
Specimen height								30)20		-			,	+			· .		· · · · · ·	··
Height/diameter	atio						·	درد. ۱۰	97												<u> </u>
Description: LIM	ESTON	E							- 1						l			••••••	l	-	
LL =	PL =		P	<u> </u> =		·	Δ	ssur	ned	GS	3=			Tvi)e:]	Lime	ston	e			
Project No.: N11	05070	,,,,		<u> </u>	C	lient	• PAT	250	JS D	ת קו	- VCV	.ED1		י <u>ז</u> ד				<u> </u>			 7
Date Sampled: 8	-27-10					aviit			ם סי	11.11	1UP	AT AL	IOF	τ.							
Remarks: Lab No. 7317	<u> </u>				P	rojec	:t: BF	REN	Г SP	EN	CEI	BRII	OGE	RE	PLA	CEN	ЛEN	Т			
Figure				S	ourc amp	e of : le Nu	Sam Imbe U	ple: er: 4 NC(L- DNI	1A FIN H	ED (Ppth APF	RES	-14 	3,5' N TE	EST				
rigure											A	erra	<u>con</u>		npa	any _				i	

1

Į.

1

Checked By: GS

-	UNC	ONFIN		OMF	RE	SSIC	ON -	TES	Γ
1000			·····						-
1000						<u> </u>			-
						<u> </u>			
						<u> </u>			
750	000		_			<u> </u>	<u> </u>		
<u>4_</u>					<u> </u> -	<u> </u>			
sd ,									
SSS					M				
Stre					1	∖			
9 500	000			-		1			
SSI				+		┨			
bre			/-						
mo			/			-	+		
0						+++	+		-1
250	200		A +				+ - +		-
			+++						
									-
							~		-
		0.15		0.3		0,45	I	0.6] }
			Axial	Strain,	%				
Sample No.					1				
Unconfined strength, p	osf			634	960.3				
Undrained shear stren	gth, psf			317	480.1				
Failure strain, %				().4				
Strain rate, in./min.			····	0.	039				·····
Water content, %				1	.9				
VVet density, pcf				10	52.7				
Dry density, pct				1.	59.7				
Saturation, %					1/A				
Volu ratio					I/A				
Specimen diameter, In	h			1.	990 000				
Height/diameter ratio	· · · · · · · · · · · · · · · · · · ·	<u></u>		3.	900	_			
	ONE			<u></u>	.90				
		PI =		Acei	med G	iS=		Type	Limestone
Project No : N1105070)		Client	PAPEO				туре. ГГ	
Date Sampled: 8-27-1	0				אם מיו	μησιχέ		1.1.	
Remarks:	-		Project	: BREN	T SPEI	NCE B	RIDG	E REPL	ACEMENT
Lao 190, 7524			Source	of San	nple: L	~1A	D	epth: 1	60-160.5'
			Sample	e Numb	er: 9		D 00		
				L	JUCOL		0000		
l Figure							. .	NUI	ng

Checked By: GS

							1 700		
	UNC	UNFIL		OWP	REC	52101	1152	I	
	2000000]	
			_				_		
		_							
				_				-	
	1500000							-	
St				/					
S,				/					γ
tres									
e N	1000000								`
ssi			/		-			_	
pre								_	
Шо								_	
0			/					-	
	500000							-	
				H				1	
								_	
		\angle	-						
	U	0.5		1		1.5		2	
			Axial	Strain, %	6				
Sample No.	• • • • • • • • • • • • • • • • • • • •			1					
Unconfined streng	gth, psf			15640	516.2	_			
Undrained shear	strength, psf			7823	08,1				
Failure strain, %				1.	1				
Strain rate, in./mi	n			0.0	38				
Water content, %				1.	1				
vvet density, pcf				162	2.7				
Saturation %				16().9 'A	-			
Void ratio			<u> </u>	IN/	<u>л</u> А				
Specimen diamet	er, in.		••••••	2.0	10				
Specimen height,	in.	····		3.8	70				
Height/diameter r	atio		· · · ·	1.9	93				
Description: LIM	IESTONE								
	PL =	PI =		Assun	ned G	S=	Туре	Limestone	
Project No.: N110	05070		Client:	PARSON	IS BRI	NCKERF	IOFF		
Date Sampled: 6	-15-10		Project	• איזעד ס	י פטסאי		ירים הביו	A CIEX AEXIT	
Lab No. 4890				" DLEN I	SLEV	CE BRIL	VIE KEPL	ACEMENI	
]			Source	of Sam	ple: L	-2 [Depth: 15	4.5-155'	
			Sample	Numbe	r: 7/N	Q			
				U	NCON		OMPRE:	SSION TEST	
Figure			[]						

Checked By: GS

						ITEST	-	
					-33101			
2000000								
					• • •			
1500000								
Ssť								
ś					1			
tre								
の 型 1000000								' \]
Ssiv								
bre				-A				1i)
mo	<u> </u>			-/				
	+ + +			/				
500000								
0	L+				0.75			
	0	0.25		0,5	0.75	1		
			Axial	Strain, %				
Sample No.			· · · · · · · · · · · · · · · · · · ·	1				
Unconfined strength, psf				1264643.	3			
Undrained shear strength	n, psf			632321.6	;			
Failure strain, %				0.7				
Strain rate, in./min.		_		0.040				
Water content, %				0.3				
vvet density, pcf				167.7				
Saturation %				167.2 N/A				
Void ratio				N/A			.	
Specimen diameter, in.				1.980				· · · · ·
Specimen height, in.				4.030				
Height/diameter ratio				2.04				
Description: LIMESTON	E		+	·····			· · · · · · · · · · · · · · · · · · ·	
LL = PL =		PI =		Assumed	GS=	Type:	Limestone	
Project No.: N1105070			Client:	PARSONS B	RINCKERI	łOFF		
Date Sampled: 7-28-10			Project	• DDEN TROD	ENICE DDIF	זמיום בא	ለ ርጉር አ ብር እም	
lab No. 5915			Frojeci	. DACNI SP.	LINCE BRIL	AJE KEPL	AUDIVIENI	
			Source	of Sample:	L-2 A	Depth: 13	1.5-132.2'	
			Sample	Number: 2	/NQ			
				UNC			SSION TEST	r T

		1	JN	CC)NF	IN	ΕΓ) (MP	R	E.S	S		N	T	ES	T				<u></u>		
	2000000																	-						
	2000000			_																_				
Stress, psf	1500000																				\ \ 	 		
<u>e</u>	1000000									_				A		\rightarrow	-	-			1	١	١	
Compress	500000								····			Z	/				<u>\</u>		-1			<u> </u>	<u> </u>	
:						_					\square													
						_				\checkmark								_						
						_			4	-														
	0					╼┥╍╸		-		-														
	01	0			0.1	5		1	0.3				0.4	15	.	.	- (),6						
							ŀ	\xia	l Stra	ain, '	%													
Sample No.											1								.					
Unconfined stren	gth, psf					_				1233	462	.3												
Undrained shear	strength	, ps	sf							616	731.	2												
Failure strain, %										0	.5													
Strain rate, in./mi	n.				4					0.)40							-						
<u>Water content, %</u>	b								_	0	.7							ļ						
VVet density, pcf										16	7.6							-						
Dry density, pcf									_	16	6.4							-						
Void ratio											/A //		+	<u>-</u>							· · ·	<u> </u>		
Specimen diame	ter in										7 <u>8</u> 280											-		
Specimen height	. in.								·	4 ()00		+											
Height/diameter	ratio									2	02			· · ·										
Description: LIN	AESTON	E							I									I				I		
LL =	PL =				Pl =				A	ssu	mec	l G	S=			1.	Гур	e: L	ime	ston	e			·
Project No.: N11	05070					1	Cli	ent	: PAI	RSO	NS I	BRI	NC	KE	RH	OFF	7				·			
Date Sampled: 5	5921																							
Remarks: Lab No. 5921	emarks: b No. 5921								e of e Nı	REN San	T SI nple er: '	PEN :: L 7/N	ICE -2A O	BF	ND D	GE :	REP h: 1	LA(57.8	CEN 8-15	4EN 8.3'	Т			
								<u></u>		l	JNC	:ON	- IFIN	IEI	o c	ОМ	PRE	ESS	SION	N TE	ST			
Figure									H	I.C Te	S.	N			g									

.

	UNC	ONFI		СОМ	PRE	SS		I T	EST				
	· · · · · · · · · · · · · · · · · · ·												
200000	/												
1500000											 \		
oressive Stress, ps												/	
500000										1			
0	0	0.25	Axia	0.5 I Strain	, %	0.7	75						
Sample No.					1				<u> </u>				
Unconfined strength, psf				180	53379.2								
Undrained shear strengt	n, psf			93	1689.6							-	
Failure strain, %					0.8								
Strain rate, in./min.				().039								
Water content, %					0.7								
Wet density, pcf					N/A								
Dry density, pcf					N/A								
Saturation, %					N/A								
Void ratio					N/A								
Specimen diameter, in.		_·,			.970								
Specimen height, in.					3.990								
Height/diameter ratio					2.03								
Description: LIMESTON	IE	BI					<u> </u>		_				
		11=		Ass	umed (=3خ			lype:	Limesto	one		· · · · · · · · · · · · · · · · · · ·
Data Sampled: 9.2.10			Client	: PARS	JNS BR	INCI	KERH	IOFI	7				
Remarks: Lab No. 6029			Projec	t: BRE	NT SPE	NCE	BRIE) GE	REPL	ACEME	NT		
			Sourc Sampl	e of Sa le Num	mple: I ber: 3	L-3	[Dept	t h: 100	0.2-100.4	4'		
					UNCO	NFIN	IED C	СОМ	PRES	SION	TEST		
Figure						H	.C. Terra	N con		ng any			

•

ı

Checked By: <u>GS</u>

	I	INCO	ONEI	NFI		ON	IPF	RES	SS		N	TF	-S	г			·	
				· • •						. <u> </u>				•				
	2000000		_											-		_		 -
Compressive Stress, psf	1500000																	
	0		0,25		A	0.5			0.7	75				1				
				I	Axial	Strai	n, %											
Sample No.							1											
Unconfined stren	gth, psf					19	91718	37.9									-	
Undrained shear	strength, ps	F				9	5859	4.0										
Failure strain, %	in						0.7	0									_	
Water content %	ш.						0.03	<u>٥</u>									+	
Wet density not	,						168	3									+	
Dry density, por							165	9	+				-					
Saturation. %		-					N/A	<u>-</u>										
Void ratio							N/A	۱.										
Specimen diame	ter, in.						1.97	5			<u> </u>							
Specimen height	, in.						3.83	0										
Height/diameter i	ratio						1.94	1						····				
Description: LIN	IESTONE							• =				—				·····		
			PI =			As	sum	ed G	iS=			<u> </u>	уре	Liı	meste	one		
Project No.: N11	05070			CI	ient:	PAR	SON	S BR	INC	KE	RH	OFF						
Remarks:	-3-10			P	oject	: BRI	ENT	SPE	٩CE	BR	ND	GE I	REPI	LAC	EME	ENT		
Lab No. 6030								• - •	-		-				10.			
				S(ource	ot S	amp	ne:£ …⊿	,-3		D	ept	n: 1(J 3.8 -	·104.	4'		
				38	ampie	nut		- <u>4</u> ICOI				OM	PRF	SSI	ON '	TEST		
Figure							07		Ļ	Į.C	Ĵ.	N	utt	inc]			
									А	Tei	rrac	<u>on (</u>	om	panĭ	1			

	UNC	ONFIN	IED (RES	SSI	ON	Т	EST	Γ		
10000					<u> </u>				· • •		•		
					+ + -		-//				-		
7500 م ي ي	00												
mpressive Stre	00												
පි 2500	00												
								<u> </u>			1		
	0	0.25		0.5		.	0.75	, I		1] [
			Axia	l Stra	in, %								
Sample No.					1				****				
Unconfined strength, psf				965311.3									
Undrained shear stren	Undrained shear strength, psf			482655.6									
Failure strain, %			0.8						··· · · · · · · · · · · · · · · · · ·				
Strain rate, in./min.			0.039										
Wet density not			165.8										
Dry density, pcf	Dry density pcf			163.6									
Saturation, %			N/A										
Void ratio			N/A										
Specimen diameter, in.			1.975										
Specimen height, in.			3.920										
Height/diameter ratio					1.98	3							
Description: LIMEST	DNE & SHAL	E		· · · ·						-			
LL = PL		11=		Assumed GS= []						ype:	Limestone & Shale		
Date Sampled: 8-3-10	,		lient	PAR	SON	S BR	INCK	EKH	IOFF				
Remarks:			Project: BRENT SPENCE BRIDGE REPLACEMENT										
Lab No. 6033				Source of Sample: L-3 Depth: 121.2-121.8' Sample Number: 7									
				UNCONFINED COMPRESSION TEST									
Figure			H.C. Nutting										

	UNC			OMPRE	SSION	TEST	·				
	600000						·				
)				
						7					
	450000										
	450000										
osť											
res											
St											
sive	300000										
es:											
hpr					/		1				
L N											
I											
	150000										
						_					
			1								
		0,1		0.2	0.3	04					
	-	0.1	A	0,- · · · ·	0.0	0.4					
			Axia	Strain, %							
Sample No.				1							
Unconfined strength, psf				569305.4							
Undrained shear strength, psf				284652.7	,						
Failure strain, %				0.4							
Strain rate, in./min.				0,040							
Water content, %		1.2									
Wet density, pcf		166.8		· ·							
Dry density, pcf				164.7							
Saturation, %				N/A							
Void ratio				N/A							
Specimen diameter, in.				1.975							
Specimen height, in.				4.030							
Height/diameter ratio				2.04							
Description: LIM	ESTONE W/SHAI	E					I				
	PL =	 PI =		Assumed	GS=	Type I	mestone w/Shale				
Project No.: N1105070			Client	Client: PARSONS BRINCKERHOEF							
Date Sampled: 8	3-10			i angung B	MINUNERH	ULL					
Remarks:			Project: BRENT SPENCE BRIDGE REPLACEMENT								
Lab No. 6034											
	Source	Irce of Sample: L-3 Depth: 124.6-125.2									
			Sample								
			Sample	UNC		OMPRESS					

į

ļ

.....

÷

Tested By: <u>SV</u> Checked By: <u>GS</u>
	U		DNFI	NEC) C(OMF	RE	SS	SIO	N	ТΕ	ST	-			
	-															
ðtress, psf	2000000															
Compressive (1000000															
	500000												1			
	0	<u> </u>	0.25	μ	xial S	0.5 Strain,	%	(0.75	L		1	J			
Sample No.							1									
Unconfined stren	gth, psf					166	1279.	5								
Undrained shear	strength, pst	f				830	639.7		•	• • • •				· · · · · ·		
Failure strain, %	_).6									
Strain rate, in./mi	n.				.	0.	040 \7									
Wet density not	1					14	56 7								<u>.</u>	
Dry density, por						11	5.5									
Saturation. %						N	V/A					+				
Void ratio						N	Į/A	Í								· · ··· ·
Specimen diame	ter, in.					1.	975									
Specimen height	, in.					4.	040									
Height/diameter	atio					2	.05									
Description: LIN	IESTONE	r			••••••				•							
	PL =		PI =			Assu	med	GS			T <u>y</u>	/pe:	Limesto	one		<u> </u>
Project No.: N11	05070			Cli	ent: I	PARSO	NS B	RIN	CKE	RHO)FF					
Remarks:	9-3-10			Pro	oject:	BREN	T SP	ENC	E BF	NDO	JE R	EPL	ACEME	NT		
540 110. 0050				So Sa	urce mple	of Sar Numt	nple: per: 1	L-3 2		D	epth	: 14:	5.2-146.	2'		
Figure							UNC	ONF		D C D C	DMP Nu	RES Itti	ssion ⁻ ng	TEST		
· '9""								A Te	rrac	on Č	omp	any				

Tested By: SV Checked By: GS

	NFINED	JUNPRESS	ION TEST	
4000000				
				<u> </u>
	· · · · · · · · · · · · · · · · · · ·			
3000000				
st st				
9 9				
ن ۲ 2000000				
ă – – – – –	-		l	
E E			<u></u>	
о <u>– – – – – – – – – – – – – – – – – – –</u>			+ +	
1000000			┥┥┥┙	
				1
0				,
0	0.25	0.5 0.7	'5 1	
	Axi	al Strain, %		
Sample No		1		
Unconfined strength, psf		2475252.6		
Undrained shear strength, psf		1237626.3		
Failure strain, %		0.8		
Strain rate, in./min.		0.039		
Water content, %		0.4		
Wet density, pcf		165.7		
Dry density, pcf		165.0		
Void ratio	· · ·			
Specimen diameter in		1 080		
Specimen height, in.		3,970		
Height/diameter ratio		2.01		
Description: LIMESTONE				
LL = PL =	Pi =	Assumed GS=	Туре:	Limestone
Project No.: N1105070	Clien	t: PARSONS BRINC	KERHOFF	
Date Sampled: 8-3-10				
Remarks:	Proje	ct: BRENT SPENCE	BRIDGE REPLA	ACEMENT
Lau 110.0040	Sour	ce of Sample: L-3	Depth: 158	8.7-160.2'
	Sam	ble Number: 14		
	II	LINCONEIN		SION TEST
		UNCONFIN		BION TEST

]	JN			FI	NF	=г) (:C)M	IP	RI		S)N	Т	F	ST	-					
					<u> </u>	••••						••					_	•			1					
	2000000																	-								
Compressive Stress, psf	1500000 1000000 500000																									
		_	Ţ_	<u> </u>												-	\square									
	ol (0	=			.25	1			0	.5				L0.	 .75	1	I	<u> </u>	Ц 1	-1					
								A	\xia	I St	trai	n, 9	6													
Sample No.													1			· · · · ·									 	
Unconfined stren	ngth, psf									\perp	1′	744	346	5.8											 	
Undrained shear	strength	, ps	sf							+	8	721	73.	.4												
Failure strain, %	1									+		1	.0				•								 	
Strain rate, in./m	iin. 7											0.0	<u>37</u>							-			·····		 	
Vvater content, %	10											0	2		-										 	
Dry density pof												10	3.1 1 7							+					 	
Saturation %												10 N	+./ /Δ		-			· · · · ·								
Void ratio												N	/A							+						
Specimen diame	eter, in.									+		1.9	80													
Specimen heigh	t, in.										• • •	3.7	760													
Height/diameter	ratio											1.	90													
Description: LI	MESTON	E																		,						
LL =	PL ≃				PI	=					As	sui	ne	d G	iS=				Ту	pe:	Lin	nest	one			
Project No.: NI	105070			Cli	ent	: P/	AR	SOI	NS :	BR	INC	CKF	ERH	IOF	Έ						 					
Date Sampled:	8-3-10		_	_																						
Remarks:				Pro	ojec	ct:]	BR	EN	ſ SI	PEI	VCI	3 B I	RID	GE	RE	EPL	ACE	EME	ENT							
Lad No. 0041								So Sa	urc mp	e o le l	of S Vur	iam nb	iple er:	∎: L 15	,-3		۵	Dep	oth:	162	2.8-1	163.	.3'			
									<u> </u>			ι	INC	100	١FI	NE	DC		MP	RES	ssic	DN .	TES	Т	 •	
Figure	ure														- H	- _(C.	N			ng any					

Tested By: SV Checked By: GS

	U	NCC	DNFI	NE	D C	ON	IPI	RE	S	SIC	ON	[T	Ē	ST					
	4000000			,					·					·					
	4000000					_													
Compressive Stress, psf	3000000																		
	0		0.25		Axial	0.5 Strai	in, %	, , ,		0.75				1	1				
Sample No.						1	1												
Unconfined stren	gth, psf					2	1766	514.	5					\top				-	
Undrained shear	strength, psf					1	0883	307.	3										
Failure strain, %							_0.	7											
Strain rate, in./mi	n.						0.0	40											
Water content, %)						0.	8									-		
Wet density, pcf							164	1. 7						_		-		_	
Dry density, pcf			. .				163	3.5											
Saturation, %							N/	A		.								-	
Void ratio							N/	A		-									
Specimen diame	ter, in.						1.9	70						+					
Specimen height	, IN.						4.0	30		-				_				+	
		·					2.0	13											
			PI =			۸۵	ein	han	G	3=			T	ne'	Lim	esto	ne		
Project No · N11	05070				lient	p A D	SUN		190	NCV	EDI		र नन	<u> </u>					
Date Sampled: 8	3-3-10			_ Ŭ	alent.		JUD	10 12	1711			101	. 1						
Remarks: Lab No. 6042	, , , , , , , , , , , , , , , , , , , ,			₽	rojec	t: BR	ENT	r sp	EN	CE I	3RII	DGI	E RI	EPL.	ACE	EME:	NT		
				s	ource	e of S	Sam	ple	: L-	3		De	pth	: 164	4.5-1	65.2	2'		
				<u> </u> _3	ampi	ษทน	90111]	nt I NC	.0 ON	FIN	ED (00	MP		SSIC)N T	EST	•	
Figure								H	C	. N			ng						

÷.

p

ļ

		ļ	UN	IC	0	NF	IN	ΙE	D	C	ON	ΛP	R	E	S	SI	0	N	T	ES	SТ						
	100000											-1	T			-1				·							
	100000						_	-				-		_													
				_			_		_	_	_		-														
				_	\rightarrow		+	_		+	+			+	+				\rightarrow		_						
					-					-	_		4	-							_						
	75000			_								\vdash	┼┼╴				_	_	-		_						
۵f							-					4	╢		-	+-											
d 's							+-				\star	-	+-}-														_►
les									+	X							+						Ċ	$\{$			
5 5									\mathcal{X}					+									4	1		 	7
sive	50000							7																		Ì	
res							/																		- 2	$\langle \rangle$	
du							/)	\langle	
ပိ			\square			_A_																				L,	
	25000									_		_	_							I		 					
					4						_	_										-1					
				/				_		_	_	_		-	_	_						·					
				4						_	_	_		_				_	_								
			-4-					_	_	_	_	-		+	+												
	0	\mathbb{P}				1					2		I	1		3]				4						
									Axi	al S	Stra	in, '	%														
Sample No.											· •		1													 	
Unconfined streng	yth, psf											820	23	.1							-						
Undrained shear s	strength	1, ps	sf									410)11	.5							_						
Failure strain, %												2	2.5								-					 	
Strain rate, in./mir	ז.											0.0	033	3				·····								 	
Wet density pof												14	9.3 :2.0	<u>ו</u>							+						
Dry density, pcf												12	13.5	1 2							+					 	
Saturation %												14 N	ι	J							+					 	
Void ratio							·					N	/A								+					 	
Specimen diameter	er, in.											1.	96()							+						
Specimen height,	in.										····	3.	370)							\uparrow					 	
Height/diameter ra	atio											1	.72													 •	
Description: GRA	AY MEI	<u>) T</u>	ouc	H S	SH/	ALE																				 	
LL =	Imen height, in. ht/diameter ratio ription: GRAY MED TOUGH SHALF PL = PI =											ssu	me	ed C	GS	=				Тур	e:	Sha	le			 	
Project No.: N110	atio men diameter, in. men height, in. t/diameter ratio ription: GRAY MED TOUGH SHALE PL = PI = ct No.: N1105070													BR	RIN	ICK	EF	RHO	OFI	7							
Date Sampled: 5-	-27-10								. <u>-</u>		_	_					-					_					
Remarks: Lab No. 4190								P S	roje	ect ce	:BF	EN San	T S npl	SPE e:	INC L-3	E E	3R.	ID(JE De	REI pth	PLA : 12	\СЕ 26.5	EME -12	ENT 6.75	;ı		
								s	am	ple	Nu	mb	er:	3A	<u>\-1</u>			_								 <u> </u>	
Figure												ί	JN	со	NF	™ F	ED	C(⊃M N	IPR Ut	es tir	รเด าต	DN .	TES	ST.		
	Figure															ΑŤ	eri	ac	on	Cor	npa	anv					

•

i i i

			JN	СС	DN	FI	NE	ED) (C	N	iΡ	R	E	SS	SIC	DN	7	ΓЕ	S	Т	÷						
	600000																											
		\square																			_							
		\square											ļ				_											
						<u> </u>															_							
	450000														-	_												
·				_								_			_													
bs													-	╬	_	_	_				_							
ss,						_					_	\square					_	_					۱		.		7	-
Stre		\vdash											-	╢						_	_			(
é	300000	┝─┤	_	_	_	-			(-	-								ζ		Ľ		
SSI		\vdash		_		-		\vdash								+					-				γ			
bre		\vdash		_	_	-	\square					<u> </u> .	-					-	_	_	-				1			
шо		\vdash		_	_		\nvdash		-			-	-	++	-	+		+			-							
U U		\vdash			_	+	-					-	+	+	+	+	-	$+ \cdot$					-					
	150000		+			+							\vdash	+	+	+	-	-	+-		-]	
					\forall									+		-	-											
				\mathbf{X}	4		· · ·					1	╞	+	-	┼	-	-	+									
			/	+											_	+	-			-		-1						
		\mathbf{Z}	/+									-				+												
	01	0	I		C	.2.5				0	.5				0).75					1							
								A	∖xia	l S	trai	in, ʻ	%								.,							
Sample No.													1															
Unconfined streng	yth, psf										3	3972	254	1.7														
Undrained shear s	strength	1, ps	sf								1	198	627	7.3	_										_			
Failure strain, %												0).7															
Strain rate, in./mir	า.									_		0.0	045)	-												. <u> </u>	
VVater content, %										_).8	······													<u> </u>	
vvet density, pcf												16	3.2 2 0	<u>'</u>														
Saturation %												10 N	03.8 [/ A	<u> </u>														
Void ratio	·······												1/A															
Specimen diamet	er in									+		1 9	<u>יי היי</u> 991)							\vdash							
Specimen height	in.					<u> </u>	•	•		-		4.	570	,)			• ••											
Height/diameter	atio									+		2	,30	-											- i			
Description: GRA	AY SHA	LE	& L	IMF	STO	ONF						~									·			·				
LL =	PL =				P	=					As	su	me	d (GS	=			T	ур	e: I	.ime	esto	ne				
Project No.: N110	05070				•		Π	Cli	ent	: P	AR	SO	NS	BF	RIN	CK	ERI	HO	FF									<u> </u>
Date Sampled: 5	-27-10																											
Remarks:								Pre	oje	ct:	BR	EN	ΤS	SPE	NC	ΈE	BRII	DG	ΕF	REP	LA	CEN	MEI	NT				
Lab No. 4197								So Sa	ourc	e c	of S Nui	ban mh	npl or	e:	L-3.	A		C)ep	oth:	15	7.7-	158	.0'				
							╟	Ja	ωŅ	10		<u>ريند</u> ا	JN	CO	NF	INF	ED I	CC	M	PRI	ESS	SIO	ΝT	EST				
Figure												Ň	- • •			H.	Ć	<u> </u>	Ņį	ųt!	in	g	1	•1				

		(JN	СС)N	FI	NE	D	C	ON	1P	R	ES	ss	10	N	Ţ	Έ.	ST	-						
	0000000	· · · · ·					,						· · ·	· ····												
	2000000			_						_		<u> </u>														
										/		 									٢				1	
					_					- /														1		
)		l		
	1500000			-						\square		-							· · ·			١	١	1		
sf				+	1				\neg	-													, ,	1		
d s						<u> </u>			1														1	, }		
les								17	+														Í			
<u>र</u>								\mathbf{I}				1								1			1	1		
sive	1000000																		1				(ίÌ		
lesi																							1	11		
du																					l				}	
රි						Ĺ																				
	500000										-															
					4						-		-													
				<u> </u>												-				-1						
				<u>/</u>										.				-		l						
			4		-	-				+	_	-														
	0	K				.5				1			I	1	.5		I		2] ?						
								Ax	ial	Stra	in, '	%														
Sample No.												1									······					
Unconfined stre	nġth, psf									1	829	9521	1.6													
Undrained shea	r strength	1, ps	sf	••							914	760	.8						_							
Failure strain, %)]	1.1							-							
Strain rate, in./m	nin.		····.								.0	037								.	····	·•·				
Water content,	/o										14	[.] (f. 1							-				_			
Dry density, pct											10	23.1 53.1														
Saturation %											10 N	<u>)</u>]/Δ							+							
Void ratio											 N	J/A														
Specimen diame	əter, in.										2.	000)													
Specimen heigh	it, in.										3.	710)	1												
Height/diameter	ratio										1	.85														
Description: LI	MESTON	1E																								
LL =	PL =				Pl	=				A	ssu	me	d G	S=				Ту	pe:	Lin	nest	one				
Project No.: N1	105070	-					Γ	Clie	nt:	PAR	so	NS	BR	INC	CKE	RH	IOF	F]
Date Sampled:	8-23-10							_																		
Remarks:								Proj	ect	; BR	REN	IT S	PE	NCE	3 BJ	RID	GE	E RI	EPL	ACE	EME	ENT				
Lab No. 5988								Sou	rce	of	San	nnle	e. I	_4		F)er	oth	: 12	0.4-	120	91				
								Sam	nple	e Nu	mb	er:	3	<i>.</i> 7			-~1		. 12.	01-4-	. 20	, ,				
												ÜN	100	NFI	NE	DC	o	ИP	RE	ŝsio	NC	TES	эт			
Figure														F	4.0	C.	Ν	lu	tti	na	ļ.					
I ' '9''''	gure													Ā	Тe	rra	cor	īĆ	omp	any	<u>; </u>					

			IN)N	FI	NF	= n		20	M	IP	RI	= <	22		7	1 7		S	Г						
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<u></u>						· I W I			_ \.							•						
	2000000																		1	-							
																 	+	1				ſ				P	
										-						\vdash	<i>\</i>	-			-						
	·						۱.	_								$ \downarrow$		-		•				1	(
	1500000														7	1				+				Ì	Ì		
ßţ				· .											1	\square	+	1	-	-	-				Į		
l 's										•				7		1	1		1-		1	1		1	1		
tree																								{		1	
e S	1000000						:			_			\square				<u> </u>	-						1	ļ		
ssiv				_								4				ļ		- -	-					1	(
bre					<u> </u>						\rightarrow						_	╢	-	-		1		1	(
mox										\rightarrow	\square					\vdash	+	++	-	+	-	Ĺ		<u>,</u> ,		J	
										$ \mid$							+	+	-	+	1						
	500000																		-								
			·				\square										1	Ħ									
							ĺ											1];	1					
				\perp	\square												<u> </u>		_		_						
	ol		\leq			75					5					75											
		0			0,.	20		,		U,:			,		U	.75					I						
								А	xia	151	raii	n, %	6														
Sample No.										Τ		,	1														<u> </u>
Unconfined stren	gth, psf										18	380	122	.7									·				
Undrained shear	strength	, ps	sf								9	400	61.	4													
Failure strain, %												0.	9							_							
Strain rate, in./mi	in.									_		0.0	37														
Wet density not	0							••		+-		0.	.8 6 0												-		
Dry density pcf										+		16	0.2 4 0							+					-	· · · ·	• ···••
Saturation, %						•						N/	<u>нэ</u> (А								·						
Void ratio												N/	/A		\uparrow					.							
Specimen diame	ter, in.											2.0	000														
Specimen height	, in.											3.7	60														
Height/diameter	ratio	·										1.	88														
Description: LIN	AESTON	E		·····											_												
LL =	05070	=	1	<u> </u>	4		AS	sur	nec		S=				<u>[]</u>	pe	Li	mes	ton	e		······					
Date Sampled: S	3-23-10							GIIE	ent	: PA	AK\$	SON	NR 1	BKI		JKI	SKF	101	ተ								
Remarks	. 20 10							Pro	jec	: t:	3RJ	ENI	r si	РΕΝ	1CI	ΞB	RIT)GF	3 R	ЕЫ	AC	EM	EN	Т			
Lab No. 5991															1			~+						-			
								Soi	urc	e o	f S	am	ple	: L	-4		I	Dep	oth	: 14	0.5-	-141	l'				
								Sar	np	le N	lun	nbe	er: I	6 ' ^ ^			D (DC	001			or			
,												0	UNU	, Ur	ירי 1	-1 I	\mathbf{C}	اں۔ ۸	ur Ju	re: ++i	ool na	NU N	11	.01			
Figure	igure														Ā	L.' Te	⊖. ∋rra	l' cor	N U N C	omr	i i C Dani	2					

UNCONFIN	NED COMPRESSION TEST
2000000	
1500000 Sta Sea Sea Sea Sea Sea Sea Sea Se	
	Axial Strain, %
Sample No.	
Unconfined strength, psf	1801226.2
Undrained shear strength, psf	900613.1
Failure strain, %	0.9
Strain rate, in./min.	0.034
Wet density pof	
Dry density, pcf	165.0
Saturation, %	N/A
Void ratio	N/A
Specimen diameter, in.	1.990
Specimen height, in.	3.490
Height/diameter ratio	1.75
Description: LIMESTONE	
	Assumed GS= Type: Limestone
Project No.: N1105070	Client: PARSONS BRINCKERHOFF
Remarks:	Project: BRENT SPENCE BRIDGE REPLACEMENT
1.40 140, 3773	Source of Sample: L-4 Depth: 143-143.5'
	UNCONFINED COMPRESSION TEST
Figure	H.C. Nutting

÷

	UNC	ONFIN	IED (COM	PRE	SSIC	N 1	ES1		
1000		· · · · · · · · · · · · · · · · · · ·						- <u>1</u>	1	
1000			_ <u> </u>							<u> </u>
750 දූ	000									
mpressive Stress,	000									
පී 250	000									
	0	-+-1							1	
	0	0.25		0.5		0.75		1		
			Axia	I Strain,	%					
		· ····						······		
Sample No.					1					
Unconfined strength,	ost			97	2696.1					
Undrained shear stren	igth, pst		<u> </u>	48	6348.0					
Fallure strain, %					0.8					
Strain rate, in./min.		·····	•	C	0.042					
vvater content, %					2.4					
vvet density, pct				1	66.5					
Dry density, pct				1	62.6					
Saturation, %					N/A					
Void ratio					N/A					
Specimen diameter, in	1.			1	.980					
Specimen height, in.				4	.210				.	
Height/diameter ratio					2,13					
Description: GRAY L	IMESTONE V	N/SHALE								
	=	11=	[- <u>-</u>	Assi	umed C	=S=	1	Type:	Limestone v	w/shale
Project No.: N110507	U		Client	PARSO	ONS BR	INCKE	RHOF	řF		
Date Sampled: 7-7-10 Remarks: Lab No, 5574	J		Projec	t: BRE	NT SPE	NCE BF	RIDGE	E REPL.	ACEMENT	
			Sourc Sampl	e of Sa e Num	mple: I ber: 2	L-5	Dep	oth: 113	3.5-114'	
					UNCO	NFINE		MPRES	SION TES	Т
Figure									ng anv	

i

ļ

	UNC	ONFI	NED	со	MP	RE	S	SIC)N	Т	ES	Г		
200000	•···•									••		•		
200000												-		1
1500000 ්ල										/	1	-		
mpressive Stress, p												 		
පි 500000												_		
0	0	0.25	Ax	0.8	5 rain, 9	6		0.75				<i>111</i>		
Sample No.		**				1								
Unconfined strength, psf	· · · · · · · · · · · · · · · · · · ·				1567	920.4	1		•					
Undrained shear strength	n, psf				7839	60.2								
Failure strain, %					0	.9								
Strain rate, in./min.					0.0)44								
Vvater content, %					0	.2								
Dry density, pct					16	7.4					•			
Saturation %					16 אי	/.1 //								
Void ratio					IN. N	/A								
Specimen diameter, in					1.0	280								
Specimen height, in.					4.4	70								
Height/diameter ratio					2.	26								
Description: GRAY LIM	ESTONE										I		·	·······
LL = PL =		PI =			Assur	ned	GS	=		ד	уре	Lim	estone	
Project No.: N1105070			Clie	nt: PA	RSO	VS B	RIN	ICKE	RH	OFF				
Date Sampled: 7-7-10 Remarks:			 Proj	ect: E	BREN	ГSРJ	ENC	CE BI	RIDO	GE I	REPL	ACE	MENT	
Lab No. 5576			Sou Sam	rce of ple N	f Sam lumbo	ple: ər: 4	L-5		D	ept	h: 12	0.2-12	20.6'	
Figure					L	INCO	ЭNF	INE H.(D C C.	OMI N I	PRE Litti	ssio ng	N TES	T T

				<u>`</u>		IN	EL		<u>م</u> ر	٢л	D		= C	20) N			61	r						
	4000000			<u> </u>			يلا مسلا	<u> </u>		TAS			_`					L								
	1000000			-		_	_						•													
	_		_			_													_	-	ſ	1				
	_									_																
			_									_					-	+				ł				
	750000			+								_			A	<u> </u>	<u> </u>					1				
Sf		+	-												1/ -			-		-		}				
ကို	-														/ t							1		١	ł	
tres								-						1						1		1) /L		
ů e	500000													7								1	ر میں میں			
siv		\perp																				11		`۱		
Dres		\perp	_									/	/					ļ			l	1			لا	
d mo	\vdash	+				_						Д			<u> </u>	_			-							
Ŭ							<u> </u>				_/	' 			<u> </u>	 			_	-						
	250000-		_					<u> </u>		_	А	_				 	+	-								
	-									A		_						-		-						
	-						-			$^{\prime}$										-1	1					
	_								\neg									1		1						
	0															1		1		1						
	Ō				0.25			I	0.5	5		1		0.	75	•	.,			1						
							A	λxia	I Sti	air	ז, %	, o														
														F										r		
Sample No.	ath not										1	20											······			
Uncommed streng	stronath	nef								7.	587 602	38.4 60.4	ት ን													
Failure strain %	sirengin,	por									095	8	4													
Strain rate, in /mir	n.										0.0	41														
Water content, %											0.	3									,					
Wet density, pcf											160	5.2														
Dry density, pcf											16:	5.7														
Saturation, %											N/	A														
Void ratio											N/	A														.
Specimen diamet	er, in.				<u> </u>						1.9	80														
Specimen neight,	in. atio										4.1	10														
		<u>የ</u> ተር)NIE	W/C	ЦАТ	<u>г</u>					2,0	νõ												l		
LL =	PL =	510	21 Y L	11/13	PI =	<u>ш</u>				١ss	sun	160	I G	S =				Tν	pe	Li	me	stone	w/s	hale		
Project No.: N110	05070]	Cli	ent	: PA	RS	SON	IS F	3RI	NC	ЖŦ	RF	IOF	·F								
Date Sampled: 7	-7-10																									
Remarks:							Pro	ojeo	et: B	RE	ENI	' SF	PEN	ICE	E B	RID)GE	E RI	EPL	AC	EΝ	1EN	Г			
Lab No. 5578							8-		~ ~ ¹	: c.	• •••	- ام	. т	5			` ~~	. 4 I L .	. 17	0.2	10	11				
							Sa	urc mn	e oi le N	ອະ ມກ	am 1be	pie er: /	: L/ 5	-3		L	ret	זת:	13	∙د.∪	-13	1,				
								P			U	NC		JFI	NE	DC		MP	RE	SSI		I TE	ST			
Figure	qure													H	1.(C.	N	Ju	tti	nc	1					
	gure													_Â_	Тe	rra	cor	i Č	omp	an	Ý					

i

_____ Checked By: GS

					DEC	<u>ei0v</u>	I TES	 Г		
								1		
40	000000]		
					$\parallel \downarrow$					
		<u>↓ </u>			-					
		+						-		
30	.000000	╉┯┿						-		
ۍ ۲	├ - 	+ + + +-						- ! '	1	
ä		+ + +-						- 1	1	
je Si								4 4 6		
t,							+			
<u></u>	000000									
esi					/	+		1		
ā							+ +	-		
ටි								1		
11	00000									
				$A \sqcup$						
			\perp							
		+	+	_		\square	<u> </u>	-		
		/						_		
	0 	0 25		0.5		0.75		<u> </u>		
	·	0.20	Avial	0.0		0.70		I		
			Axiai	Strain, %)					
Sample No.	<u> </u>			1	Herter					
Unconfined strengtl	h, psf		<u>.</u>	20978	49.1	<u> </u>				
Undrained shear st	rength, psf			10489	24.5	<u> </u>		· · · · ·		
Failure strain, %				0.7	7					
Strain rate, in./min.				0.04	41					
Water content, %				0.2	2					
Wet density, pcf				168	.8					
Dry density, pcf				168	.4					
Saturation, %				<u>N//</u>	4					
Void ratio				N//	4					
Specimen height in	<u>r, in.</u>		·	1.95	10					
Height/diameter rat	<u>1.</u> tio			4.10	<u>su</u>					
Description: GRAN	V I IMESTONE			۷.1	0		L			
LL =	PL =	PI =		Assum	ed GS			Limestone	<u> </u>	
Project No.: N1105	5070		Client:	PARSON	S BRIN	ICKERI	<u> </u>			
Date Sampled: 7-7	/-10			1244.000	0 19141	ICINE.	1011			
Remarks;			Project	t: BRENT	SPENC	E BRIE	OGE REPL	ACEMENT		
Lab No. 5558		ļ	Source Sample	e of Samp Numbe	ɔle: L-6 r: 4	5 I	Depth: 12	0.5-121'		
		ļ		1U		INED (COMPRES	SSION TEST	Γ	
Figure						H.C.		ng		

UNCONFIN	NED COMPRESSION TEST
2000000	
1500000	
<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>	
si <u></u>	
9 1000000	
	┥┼┼┼┼┽┤╎╱╎┥╿╏╎┦
о <u> </u>	╶┼╍╋╴╂╴╂╶╂╍╋┉╊╱╎╴┼╶┼═┽╴╢╷┼╌┨
500000	
0	
0 0.25	0.5 0.75 1
	Axial Strain, %
Sample No.	1
Unconfined strength, psf	1420383.4
Undrained shear strength, psf	710191.7
Fallure strain, %	0.9
	0.036
Wet density not	
Drv density, pcf	164.3
Saturation, %	N/A
Void ratio	N/A
Specimen diameter, in.	1.990
Specimen height, in.	3.600
Height/diameter ratio	1.81
Description: GRAY LIMESTONE	
LL = PL = P! =	Assumed GS= Type: Limestone
Project No.: N1105070	Client: PARSONS BRINCKERHOFF
Date Sampleo: 7-7-10	Project: PRENT SPENCE DRIDCE DEBLACENCENT
Kemarks: Lab No. 5560	I FIJEGE DRENT SPENCE BRIDGE KEPLAUEMENT
	Source of Sample: L-6 Depth: 130.5-130.9'
	•
	Sample Number: 6
	Sample Number: 6 UNCONFINED COMPRESSION TEST

•

							TCO	
	UNC	ONFIN	IED C	ОМРЕ	ESS	ION	TES	T
	2000000					<u>г</u> П Т		
	1500000							
b.								
sss,								
Stre						ΗА		
é	1000000					A		
SSI					+/	1		
bre					-A-			
no			- -		4	<u> </u>		-
Ŭ							┨━━-┤──┤	-
	500000							-
								_
							<u> -</u>	-
	0							1
	0	0.25		0.5	0.	75		1
			Axial	Strain, %				
Sample No.								
Unconfined stren	ath nsf			118317	16.0			
Undrained shear	strength psf			59158	8.4			
Failure strain, %	strongart, per			0.8	0,-r			
Strain rate, in./mi	n.	·		0.04	1			
Water content, %)			0.3				
Wet density, pcf			· · · · · · · · · · · · · · · · · · ·	168.	5			
Dry density, pcf				168.0	0			
Saturation, %	· · · · · · · · · · · · · · · · · · ·			N/A				
Void ratio				N/A				
Specimen diamet	ter, in.			1.980)			
Specimen height,	, in.			4,120	2			
Height/diameter r				2.08		<u></u>		
Description: GR.	AY LIMESTONE			A =			-	
Project No + N11	05070	=		ASSUME	a 62=		Туре	: Limestone
Date Sampled: 7	-7-10		Glient:	PARSONS	BRINC	KERH(JFF	
Remarks:	. 7 10	1	Project	: BRENT S	SPENCE	BRIDO	GE REP	LACEMENT
Lau INO, 3304			Source	of Sampl	e. I -7	n	enth: 1/	01-101 5'
			Sample	Number:	1		opui. It	V1-101''
				UN	CONFI	NED CO	OMPRE	SSION TEST
Figure					F	Ι.C.	Nutt	ina 🔤
					À	Terrac	on Com	pany

ł

.

.

.

Tested By: SV Checked By: GS

UNC	ONFINE	ED CO	OMP	RES	SIC)N ⁻	TE	ST			
1000000											
750000											
										<u> </u>	}
	0.25	Axial S	0.5 Strain, %		0.75				1		
Sample No.		· · · ·			T						
Unconfined strength, psf			84202	27.9							
Undrained shear strength, psf			42101	4.0				+			
Failure strain, %	·		0.7	7	1						
Strain rate, in./min.			0.04	10							
Water content, %			0.3	3		//					
Wet density, pcf			166	,4							
Dry density, pcf			165	.9							
Saturation, %			N//	4							
Void ratio			N//	4				<u> </u>	- • •		
Specimen diameter, in.			1.98	30							
Specimen height, in.			4.08	80				_			
Height/diameter ratio			2.0	6							
	DI -		λ		<u> </u>		-		•		
Project No + N1105070	" =		Assum	ed GS)= 	<u></u>	<u> </u>	pe: L	imesto	one	
Date Sampled: 7.7.10	C	Glient: P	AKSON	S BRIN	NCKE	RHO]	FF				
Remarks: Lab No. 5567	F	Project:	BRENT	SPEN	CE BF	RIDG	E RE	PLA	CEME	NT	
	8	Source o Sample	of Samp Number	ole: L-´ r: 4	7	De	pth:	113,	7-114.	2'	
Figure			۱U		H.(NPF Nut n.Co	kess tin mpai	BION 7 G	IES⊺	

ľ

	UNC	ONFIN		OMF	PRE	SS	ION	1 T	ES'	Т		
100000					·					_		
100000						-						
						_				_	 _	
					_					_	1-1-	
750000										_		
											1	
pst												
Ś						411					1	
Ŭ,											1	
の 型 500000												
is is it is												ł
lies											<u> </u>	
d La										_		
ပိ					_							
250000										_		
230000												
0										1		
	0	0.25		0.5		0.7	75			1 ′		
			Axia	Strain,	%							
Sample No.					1		- ***- ****					
Unconfined strength, psf			.	689	715.9							
Undrained shear strengt	n, psf			344	857.9							
Failure strain, %				_	0.7							
Strain rate, in./min.				0	.041							
Water content, %					0.6							
VVet density, pcf				1	67.1							
Dry density, pcf				1	66.1							
Saturation, %				<u>í</u>	N/A							
Void ratio				<u> </u>	√/A							
Specimen diameter, in.				1	.980							
Specimen height, in.				4	.120							
Height/diameter ratio	eight/diameter ratio											
Description: GRAY LIM	ESTONE W	// SHALE			_							
		11=	[Assi	Imed	GS=			Туре	: Lim	estone w	//shale
Project No.: N1105070			Client:	PARSC	NS BI	RINC	KERI	HOF	F			
Date Sampled: 7-7-10								_				
Remarks:			Projec	t: BREN	IT SPE	SNCE	BRII	JGE	REPI	LACE	MENT	
Lad INO, 5571			Source	a of Sar	nnler	I7		Don	fh • 13	17 5 1	22.01	
			Samnl	e Numb	ber: 8	- /		₽dh		1-1	22,00	
						NFIN		CON	IPRE	SSIC	N TEST	Г
Figuro	A118A							N	1 1 ††	na		
rigure						A	Terra	. IN acon	Com	bany		

ŗ

ł

	,	L	JN	co	NF	IN	EC) (0	M	PI	RE	ES	S	IC)N	T	Έ	S1	-						
	0000000	<u></u> -										·····,														
	2000000																				~			·		
Compressive Stress, psf	1500000 1000000 500000																									
																				ļ						
0 0 0.25 0.5 0.75 1 Axial Strain, %																										
Sample No.	ampie No.										1															
Unconfined stren	gth, psf									18	371	07.	7													
Undrained shear	strength,	, ps	f							91	185	53.9)													
Failure strain, %											0.	8		_												
Strain rate, in./m	in.						····				0.0	39		_												
Water content, %	0										0.	4		_												
VVet density, pcf											$\frac{167}{167}$.8		+					+							
Dry density, pcf									-		$\frac{167}{167}$	'.l ^		+												
Void ratio									+		<u>- N/.</u> - N/	A A		+									-			
Specimen diame	ter in								+		אי <u>ר</u> 1 ס	~\ 70								<u> </u>			+			
Specimen height	. in.								_		3.0	20		+							·····					
Height/diameter	ratio										1.9	9		+											,	• • • •
Description: LIN	MESTONE	Ξ		· · ·										I									.,l.		•.	
LL =	PL =		······		PI =	•				Ass	sun	ned	G	S=				Ту	pe:	Lin	nest	one				
Project No.: N11	05070						Cli	ent	: P/	RS	ON	IS E	BRI	NC	KI	ERF	IOI	F								
Date Sampled:	8-13-10																									
Remarks: Lab No. 6052					·		Pro So	ojec urc	e o	BRE F Sa	am	' SP ple	EN	JCE -1	B	RIE)GE Dep	E RI oth	EPL : 91	ACH .5-9:	ЕМН 2.1'	ENT				
Eiguro							Sa	mp	ie N	lun	nbe U	<u>r: 1</u> NC	ON	1F -				MPI JIII	RES ††i	ssic na	NC I	TES	Т			
														A	Τe	erra	cor		Smp	anv						

	UNC	ONFIN	ED C	OM	IPR	RES	SS	10	N [·]	TE	ST	-		-	
	1000000						<u>, </u>					l			
										_					
Compressive Stress, psf															
				_					+	-		1			
	0	0.25	.	0.5	L		0.7	75			1	I			
			Axia	l Strair	n, %										
Sample No	• • • • • • • • • • • • • • • • • • •				1										
Unconfined strend	gth, psf			7	06054	4.5									
Undrained shear s	strength, psf	· · · · · ·		3	5302	7.2									
Failure strain, %	- •				0.8									· · · ·	
Strain rate, in./mir	1.				0.03	9									
Water content, %					2.4										
Wet density, pcf				_	164.	3									
Dry density, pcf	Fit 2				160.	5									
Saturation, %				_	N/A										
Void ratio	· · · · ·		•••	-	N/A	<u> </u>									
Specimen diamete	er, m.	· · · · ·			1.98	0									
Specimen neight,	pecimen height, in.					U									
					2.01						L		l		
	PL =	PI =	-	Δei	sum	ed G	S=			T 1	ne'	Limesto	ne		<u> </u>
Project No.: N110	<u> </u>		Client	PAR		RRI		KBI	RHO)FF	<u> </u>	2010300			
Date Sampled: 8	-13-10			1 7 11 1				121/1	VI IC	11					
Remarks: Lab No. 6053			Projec	t: BRI	ENT S	SPEN	VCE	BR	IDG	ERI	EPL.	ACEMEÌ	Tγ		
			Sourc	e of Si e Nun	amp nber	le: R : 2	R-1		De	epth	: 94.	.3-95'			
					UN	ICON		VED		MP	RES	SION T	EST		
Figure								I.C). racc	Nu on Co	ttii	ng			

.

ţ

,

LINCON		OMPRESS		ст.	
600000					
450000 Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	25		75		
	Axiai			· · · · · · · · · · · · · · · · · · ·	
Sample No.		1	, <u>, , , ,</u>		
Unconfined strength, psf		568922.9			
Undrained shear strength, pst		284461.5			
Strain rate in /min		0.8	· · · ·		
Water content %		2.4			
Wet density, pcf		164.6			
Dry density, pcf		160.7			
Saturation, %		N/A			
Void ratio		N/A			
Specimen diameter, in.		1.970			
Specimen height, in.		3,890			
Height/diameter ratio		1.97			
Description: LIMESTONE	·····		·····		
LL = PL = P :		Assumed GS=	Тур	e: Limestone	
Project No.: N1105070	Client:	PARSONS BRINC	CKERHOFF		
Remarks:	Project	: BRENT SPENCE	E BRIDGE REF	PLACEMENT	
Lab No. 6055	Source Sample	of Sample: R-1 Number: 4	Depth:	104.5-105'	
		UNCONFI	NED COMPR	ESSION TEST	
Figure			H.C. Nut	ting npany	

i

			IN		וואר			n	\mathbf{c}	חר		P	=0	22	IC	١N		-E	e 1	Г						
		Ľ	JIN		/ 1 1 1					J 11				50	IC.			Ľ.,	3							
	2000000]						
																					1	<u> </u>]
	i																			1			١		1	ľ
		\vdash								ļ	-												1	I	1	
	1500000																			-			ſ	1	1	}
	1							_										-		-		l I	l	1	l	1
d i					+ .	-			_					\square				-		-		1	1		1	
ess													-		-	<u> </u>		-	-	-			1		t J	ł
ts l												}	\vdash		$\left - \right $				_	-			Ì		1	1
ive	1000000																	-					1		1	
Se	-									1.		\vdash								1		L			1	5
	-									1	\checkmark				-					1						
Ö										/	1							<u> </u>		1						
	500000									V																
	500000							\perp																		
						4														1						
							.	_												1						
	0 0.25																			-						
	0 0 0.2									<u> </u>					75	I		<u> </u>	<u> </u>	}1 î						
	0 0.25									tro	n 0	1.		•••						•						
	mnla Na								arc	a	· · · , /	0														
Sample No.	mple No. confined strength, psf																	• • • •				••••				
Unconfined streng	mple No. confined strength, psf									1	443.	507	.9													
Undrained shear s	strength	, ps	sf							7	217	54.	0													
Failure strain, %											0	.8														
Strain rate, in./mir	า.										0.0	40							_							
Water content, %											0	8														
Dry density, pcf											16	2.6 1.2					<u>.</u>		+							
Saturation %											10 N	1.3							+		•••					
Void ratio		<u> </u>			-						IN/ N	/A	•						+							•
Specimen diamete	er, in.							-			1.9	80														
Specimen height,	in.										4.0	00		+					+							
Height/diameter ra	eight/diameter ratio										2.	02							+		•					
Description: LIM	ESTON	E																	·				J			
LL =	PL =				PI =					As	sur	ned	G	S=				Ту	pe:	Lin	nest	tone				
Project No.: N110	05070							Clien	t: P	AR	SO	NS E	BRI	NC	KE	RH	IOF	F								
Date Sampled: 8-	-13-10							. -																		
Remarks:							F	roje	ect:	BR	ENT	ΓSF	PEN	ICE	BI	RID	GE	RI	EPL	ACI	EMI	ENT	•			
Lau INO, 0038								Sour	ce 4	of S	am	ple	: R	-1		r)er	oth	: 12	3-10	23.5	1				
								Sam	ple	Nu	nbe	e	7	•		-			2	. 12						
											U	NC	ON	IFIN	١E	D C		ΛP	RES	SSI	NC	TES	SΤ			
Figure														\vdash	Į.(С.	Ν	lu	tti	na						
														A	Te	rrae	con	Co	omp	anv						

÷

Sample No. Unconfined strength, psf 10000000 100000 1000000 1000000 1000000 100000 1000000 1000000 100000 1000000 1000000 1000000 100000 100000 100000 1000000 10000000 100000 100000 10000000 1000000 10000000 1000000								_				~ ~			· · · ·		
4000000 1 </td <td></td> <td>UNCO</td> <td>NFIN</td> <td>ED C</td> <td>;OIV</td> <td>IPR</td> <td>RES</td> <td>SSI</td> <td></td> <td>N</td> <td>ΓE</td> <td>ST</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		UNCO	NFIN	ED C	;OIV	IPR	RES	SSI		N	ΓE	ST	-				
3000000 1 </td <td>4000000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>γ</u></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4000000								<u>γ</u>			<u> </u>					
3000000 3000000 9 2000000 1000000 1000000 1000000 0.5 0.25 0.5 Axial Strain, % Sample No. 1 Undrained shear strength, psf 1007037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE 1.970 L1 = P1 = Assumed GS= Type: Limestone	-			╋━╍╋╌┼										<u> </u>			
300000 300000 1000000 1000000 1000000 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.5 0.75 1000000 1 0.25 0.5 0.5 0.75 Axial Strain, % Sample No. 1 Uncrained shear strength, psf 1067037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pof 165.3 Saturation, % N/A Specimen diameter, in. 1.970 Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE 1.01 L1 = PL = PI = Assumed GS= Type: Limestone															N		
300000 1 <td></td> <td>, ;</td> <td>-</td> <td></td>															, ;	-	
300000 1 1 1 1000000 1000000 1000000 1000000 1000000 1000000 0.25 0.5 0.75 1 1000000 0.25 0.5 0.75 1 1000000 0.25 0.5 0.75 1 1000000 1 1000000 1 1000000 1000000 0.25 0.5 0.75 1 Value 1 1000000 1 1000000 1000000 0.25 0.5 0.75 1 Unconfined strength, psf 1067037.0 10 1000000 Failure strain, % 0.6 0.8 1000000 Strain rate, in/min. 0.039 0.4 0.4 Water content, % 0.6 0.6 0.6 Water content, % 0.6 0.6 0.6 Water content, % 0.6 0.6 0.6 Void ratio N/A N/A 0.6 Specimen diameter, in. 1.970 1.970 1.970 Specimen diameter, in. 3.960															İ	1	
ya ya<	300000													1	í	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	psf														ł	ļ	
Bit Constraint Constraint <td>တ္လွ်</td> <td></td> <td>ł</td> <td>١</td> <td></td>	တ္လွ်														ł	١	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															\	1	
Image: Second	♥ 2000000-								4					ł	١	1	
Image: Second Strength, psf Image: Second Strength, psf <t< td=""><td>ssi</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td>_</td><td>_</td><td></td><td></td><td>•</td><td></td><td></td><td></td></t<>	ssi							4		_	_			•			
Sample No. 1	<u>a</u>						\square				-			L			J
C 1000000 -1 1000000 0.25 0.5 0.75 1 Axial Strain, % Axial Strain, % -1 -1 Sample No. 1 1 -1 -1 Unconfined strength, psf 2134074.0 -1 -1 Unconfined strength, psf 1067037.0 -1 -1 Failure strain, % 0.8 -1 -1 Strain rate, in/min. 0.039	E E						4				_						
1000000	°					А		·		\vdash	_	$\left - \right $					
Sample No. 1 1 Axial Strain, % Axial Strain, % Sample No. 1 1 Unconfined strength, psf 2134074,0 1 Unconfined strength, psf 1067037.0	1000000		_ <u> </u>		+	1				$\left\{ \right\}$	+	+					
Sample No. 1 -1 Unconfined strength, psf 2134074.0 -1 Unconfined strength, psf 1067037.0 -1 Failure strain, % 0.8 -1 Strain rate, in./min. 0.039 -1 Wet density, pcf 166.2 -1 Dry density, pcf 165.3 -1 Saturation, % N/A -1 Void ratio N/A -1 Specimen diameter, in. 1.970 -1 Specimen height, in. 3.960 -1 Height/diameter ratio 2.01 -1 Description: LIMESTONE -1 -1 LL = PL = PI = Assumed GS= Type: Limestone					\wedge	<u> </u>				ł	_	+					
Sample No. 1 Unconfined strength, psf 2134074.0 Unconfined strength, psf 1067037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE PL = LL = PL = PL = PI = Assumed GS= Type: Limestone											+	+	1				
0 0.25 0.5 0.75 1 Axial Strain, % Sample No. 1 1 Unconfined strength, psf 2134074.0 1 Undrained shear strength, psf 1067037.0 1 Failure strain, % 0.8 1 Strain rate, in./min. 0.039 1 Water content, % 0.6 1 Wet density, pcf 166.2 1 Dry density, pcf 165.3 1 Saturation, % N/A 1 Void ratio N/A 1 Specimen diameter, in. 1.970 1 Specimen height, in. 3.960 1 Height/diameter ratio 2.01 1 Description: LIMESTONE 1 1 LL = PL = PI = Assumed GS= Type: Limestone		····				<u>+</u>						+	•				
0 0.25 0.5 0.75 1 Axial Strain, % Sample No. 1 1 1 Unconfined strength, psf 2134074.0 1 Undrained shear strength, psf 1067037.0 1 Failure strain, % 0.8 1 Strain rate, in./min. 0.039 1 Water content, % 0.6 1 Wet density, pcf 166.2 1 Dry density, pcf 165.3 1 Saturation, % N/A 1 Void ratio N/A 1 Specimen diameter, in. 1.970 1 Specimen height, in. 3.960 1 Height/diameter ratio 2.01 1 Description: LIMESTONE LL = PL = PI = Assumed GS= Type: Limestone	0											+					
Axial Strain, % Sample No. 1 Unconfined strength, psf 2134074.0 Undrained shear strength, psf 1067037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE PI = LL = PI = PI = PI = Assumed GS= Type: Limestone	Ő		0.25		0.5			0.7	<i>'</i> 5		-	1					
Sample No. 1				Axial	Strai	n, %											
Sample No. 1 Unconfined strength, psf 2134074.0 Undrained shear strength, psf 1067037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE PL = PL = PI = Assumed GS= Type: Limestone												···					
Uncontined strength, psf 2134074.0 Undrained shear strength, psf 1067037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE PL = LL = PL = PL = PI = Assumed GS= Type: Limestone	Sample No.		·····			1								·			
Undrained shear strength, psr 106/037.0 Failure strain, % 0.8 Strain rate, in./min. 0.039 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE Type: Limestone	Unconfined strength, pst				2	13407	4.0	_									
Strain rate, in /min. 0.39 Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE Image: Limestone LL = PL = PI = Assumed GS= Type: Limestone	Eciluro etroin %	psr				06703	57.0	-	· · · ·	- -							
Water content, % 0.6 Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE Image: split for the split for	Strain rate in /min					0.0	0							<u>.</u>			
Wet density, pcf 166.2 Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE IIMESTONE LL = PL = PI = Assumed GS= Type: Limestone	Water content %	···· ··· ·····························			+	0.05											
Dry density, pcf 165.3 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE Image: Comparison of the second	Wet density, pcf					166	2										
Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE LL = PL = PI = Assumed GS= Type: Limestone	Dry density, pcf					165.	3					+					
Void ratio N/A Image: Marcon Specimen diameter, in. N/A Specimen diameter, in. 1.970 Image: Marcon Specimen height, in. 1.970 Specimen height, in. 3.960 Image: Marcon Specimen height, in. Image: Marcon Specimen height, in. Image: Marcon Specimen height, in. Height/diameter ratio 2.01 Image: Marcon Specimen height, in. Image: Marcon Specimen height, in. Description: LIMESTONE 2.01 Image: Marcon Specimen height, in. Image: Marcon Specimen height, in. LL = PL = PI = Assumed GS= Type: Limestone	Saturation, %				1	N/A											
Specimen diameter, in. 1.970 Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE LL = PL = PL = PI = Assumed GS= Type: Limestone	Void ratio					N/A											
Specimen height, in. 3.960 Height/diameter ratio 2.01 Description: LIMESTONE LL = PL = PL = PI = Assumed GS= Type: Limestone	Specimen diameter, in.					1.97	0										
Height/diameter ratio 2.01 Description: LIMESTONE LL = PL = PI = Assumed GS= Type: Limestone	Specimen height, in.				<u> </u>	3.96	0										
Description: LIMESTONE LL = PL = PI = Assumed GS= Type: Limestone	Height/diameter ratio	leight/diameter ratio									<u> </u>				1		
LL = PL = PI = Assumed GS= Type: Limestone	Description: LIMESTONE	<u>}</u>			······												
		P	- -		As	sum	ed G	<u>S=</u>			Ty	vpe:	Lime	stone		<u>.</u>	·
Project No.: N1105070 Client: PARSONS BRINCKERHOFF	Project No.: N1105070			Client:	PAR	SONS	5 BRI	NCI	KER	HO	FF						ł
	Date Sampled: 8-13-10			Draine	4, DD	ENIT	CDEN	ICP	ימס	'nΩ	יתם	יסם		ADMT			ŀ
Lab No. 6060	Lab No. 6060			FIDJec	G DK	GIN I I	SLEU	NUE	ық	IJÜ	сK	ST L/		(IEIN I			
Source of Sample: R-1 Depth: 136-136.5'				Source	e of S	amp	le: R	-1		De	pth	: 130	5-136.	.5'			
Sample Number: 9				Sampl	<u>e Nur</u>	nber	: 9				-		· •				
UNCONFINED COMPRESSION TEST		UN	CON	IFIN	IED	CC	MP	RES	SION	V TES	T						
Figure H.C. Nutting	Figure							Ĥ			งมู	ttir	าต				

.

ţ

i

					DEC				-07	
	UNC	UNFIN	IED C	UNP	'RE	551	UN		:51	
2000000						T				
						$\uparrow \uparrow$			_	
150000										
bst										
တို့						_				
Stre										
§ 1000000)					-/	1			
SSI						\mathbb{H}	$\left \right $			
bre			_			1				
Jon Jon								$\left \cdot \right $		
Ų					$\not\vdash$					
500000)					<u> </u>		┝━┝╸		
									· .	
										-1
(
	0	0.25		0.5		0.75	0		1	
			Axial	Strain, '	%					
Davada Na										······································
Sample No.	:			1072	1					
Undrained shear strengt	h nef	,		536	202 1			•		
Failure strain. %	n, par			0	8					
Strain rate, in./min.				0.1	038					
Water content, %				1	.3					
Wet density, pcf		, , , ,		16	2.4					
Dry density, pcf				16	0.3					······
Saturation, %				N	/A					
Void ratio				N	/A					
Specimen diameter, in.	-•			1.9	990					
Specimen height, in.				3.	830					
Height/diameter ratio				1.	92					
Description: LIMESTON	1E			A		0-				r •
Project No : N1105070		""		ASSU		19=			ype:	Limestone
Date Sampled: 8-23-10			Client:	PARSO	N2 BK	INCK	EKH	IOFF		
Pomarke			Proiec	t: BREN	T SPEI	NCE F	BRID)GE F	EPI.	ACEMENT
Lab No, 6062								I'		
			Source	e of San	nple: R	k- 1	[Deptl	1: 14:	5.3-145.7'
			Ĺ	NCOL			UMF IN	-RES	SSION TEST	
Figure						П . АТ	し. erra	INI con C	JUU Comp	anv

i

4

	UNCONFI		OMPRES	SION	TEST	,
2000000						
200000						
1500000 Combressive Stress 500000						
C C				1.5		
		Axial	Strain, %			
Sample No.	······		1			······································
Unconfined strength, pst	f		1850857.7			
Undrained shear strengt	h, psf		925428.8			
Failure strain, %			1.2	<u> </u>		
Strain rate, in./min.			0.038			
Wet density not			161.0			
Dry density, por			160.8			
Saturation, %		·	N/A			
Void ratio			N/A			· · · · · · · · · · · · · · · · · · ·
Specimen diameter, in.			2.000			
Specimen height, in.			3.850			
Height/diameter ratio			1.93			
Description: LIMESTON			A		T * 1	
Project No : N1105070	PI =	Olient	Assumed GS		Type: Lime	estone
Date Sampled: 8-23-10			PARSONS BRIN	NUKERHU	L L	
Remarks: Lab No. 6065		Project	BRENT SPENC	CE BRIDG	E REPLACEI	MENT
		Source Sample	of Sample: R- Number: 14	1 De	epth: 153-153	3.6'
			UNCON	FINED CC	MPRESSIO	N TEST
Figure				H.C. I		

ľ

÷

l

	UNC	ONFII		co	MP	RES	SSI			=ST	•	
4000000												
400000						_						
0000000 Compressive Stress, psf 0000000 0		0.25		0.5			0.75					
			Ax	cial Str	ain, %	,						
Sample No.					1							
Unconfined strength, psf					20467	85,9						
Undrained shear strength	, psf				10233	92.9						
Failure strain, %					0,8	3						
Strain rate, in /min.					0.03	38						
Water content, %					1.2	2						
VVet density, pcf					161	.3						
Dry density, pct		<u></u>			159							
Void ratio					<u>N/4</u>							
Specimen diameter in					N/2 1_00	ጓ እስ						
Specimen height in			<u> </u>		1.95	20	+					
Height/diameter ratio			· ·		 1 0	<u>,,,</u> ና		·				
Description: LIMESTON	E		••••••	L	1.7	<u> </u>	I					
LL = PL =		PI =		A	ssum	ed G	S=		ד	ype:	Limestone	
Project No.: N1105070				Client: PARSONS BRINCKERHOFF								
Date Sampled: 8-23-10												
Remarks: Lab No. 6068	Remarks: Lab No. 6068			Project: BRENT SPENCE BRIDGE REPLACEMENT								
· · · ·					Source of Sample: R-1 Depth: 163.5-164.2'							
		UNCONFINED COMPRESSION TEST										
Figure				H.C. Nutting								

;

	UNC	ONFIN	IED C	OMPR	ESS	ION	TES	T					
4								- -					
								_					
Compressive Stress, psf		0.5											
			Axial	Strain, %									
Sample No.	······································			1			1						
Unconfined strengt	h, psf			200012	2.6								
Undrained shear st	rength, psf			100006	1.3			· · · · · · · · · · · · · · · · · · ·					
Failure strain, %				1.0									
Strain rate, in./min.	· · · · · · · · · · · · · · · · · · ·			0.03	5								
Wet density pof				1.2									
Dry density, por	· .			108.0	, ,								
Saturation. %				N/A									
Void ratio				N/A									
Specimen diameter	r, in.			1.990									
Specimen height, i	n			3,810									
Height/diameter rat	tio			1.91									
Description: LIME	STONE												
LL = PL = PI =				Assumed GS= Type: Limestone									
Project No.: N1105	Client: PARSONS BRINCKERHOFF												
Date Sampled: 8-23-10 Remarks:			Project: BRENT SPENCE BRIDGE REPLACEMENT										
Lab No. 6069	Source of Sample: R-1 Depth: 168.2-168.9'												
						UNCONFINED COMPRESSION TEST							
Figure	Figure			H.C. Nutting									

	UNC	ONFIN		201			SSI		ιт	FS	ST		
											_		
	2000000												
Compressive Stress, psf		0.25		0.5			0.75						
			Axia	l Stra	in, %				<u>. </u>		•		
Sample No.					1								
Unconfined streng	gth, psf			1	8932	32.5							
Eailure strain %	strengtn, psr				4661	6.2						<u> </u>	
Strain rate in /mi	n				0.0	0							
Water content, %	· · ·				0.02	2							
Wet density, pcf				167.9									
Dry density, pcf	······································		16			167.7				•			
Saturation, %					N/A								
Void ratio					N/A								
Specimen diamet	er, in.				1.98	0							
Specimen height,	, in.				3.960								
Height/diameter r			·		2.0	0							
Description: LIN	IESTONE	DI –		A -			<u> </u>		- T -	T			
Project No + NU1			Client										
Date Sampled: 7	-20-10		Client	; PAR	SON	S BR.	INCK	ERF	iOFI	1			
Remarks:	Remarks:				Project: BRENT SPENCE BRIDGE REPLACEMENT								
1940 110, 3070	Luo 110. 5070					Source of Sample: R-2 Depth: 87.5-88'							
			Sample Number: 1/NQ										
			UNCONFINED COMPRESSION TEST										
Figure	Figure				H.C. Nutting								

1		- 11									
	UNC	ONFIN	ED C	OMPRE	SSION	TEST					
	2000000										
			P								
1											
	1500000										
4					A + H						
<u> </u>				/	/						
Se							l f				
Str	···										
ě.	1000000										
SSS											
JD Le											
l no				+/							
				/							
	500000										
	0						-1				
	0	0.25		0.5	0.75	1					
			Axial	Strain, %							
			. L.				· · · · · · · · · · · · · · · · · · ·				
Sample No.				1							
Uncontined stren	ngth, pst			1848338.3	-						
Eniluro etroin %	r strengtn, psr	· · ·		924169.1							
Strain rate in /m	hin			0.8							
Water content 9	<u>/////////////////////////////////////</u>			0.039		:					
Wet density, pcf				167.5							
Dry density, por				166.8							
Saturation, %				N/A							
Void ratio				N/A		·					
Specimen diame	eter, in.			1.980							
Specimen heigh	t, in.			3.960							
Height/diameter	ratio			2.00							
Description: LII	MESTONE	· · · · · · · · · · · · · · · · · · ·									
	PL =	PI =		Assumed GS= Type: Limestone							
Project No.: N1	105070		Client:	PARSONS BI	RINCKERH	OFF					
Date Sampled:	7-20-10		 				3893 (F3) (F)				
Remarks:			Project:	Project: BRENT SPENCE BRIDGE REPLACEMENT							
Lau 190, 2002			Source	of Sample:	R-2 D	epth: 90.7-	91.6'				
			Sample	Number: 2/	'nQ						
				UNCC	NFINED C	OMPRESS	ION TEST				
Figure		H.C. Nutting									
					<u> </u>	on Compar	īy				

		l	JN	cc)N	FI	NF	D	С	0	М	P	RF	S	S	IC)N	т	'E	ST	-						
	2000000														_	_	_	•			1						
	2000000	_						_														ſ			·		
Compressive Stress, psf	1500000																							 			
	-						\square																				
	oL ()			0.3	25				0.5].				0.	75		ļ		1	<u> </u>						
								A	cial	Str	ain	ı, %)														
Sample No.				. <u> </u>								1															
Unconfined streng	gth, psf										11	556	67.	4													
Undrained shear	strength	, ps	sf								57	78:	33.7														
Fallure strain, %	n											0.0	3														
Mater content %	<u>n.</u>										1	0.04	+1 >														
Wet density. pcf	,											165	.1		+				· · ·								
Dry density, por										+		163	.8		-									+			
Saturation, %												N/.	Ā		+								•				
Void ratio										1		N/	Ą							1							
Specimen diamet	ter, in.											1.9	75				_										
Specimen height,	in.											4.14	40														
Height/diameter r	atio											2.1	0														
Description: LIM	IESTONI	E		r						•• r								•••••						<u> </u>			
	PL =				P١	=				<u> </u>	SS	um	ned	G	<u>S=</u>				Ту	pe:	Lin	nest	one				
Project No.: N11	05070							Clie	nt:	PA	RS	ON	SΒ	RI	NC	KE	RH	OF	F								
Date Sampled: 7	-20-10							Jrai	60	f• D	8F	NТ	¢D.	EVI	ا م	ים י	יזוק	GP	рг	т	ልሮዩ	21.41	TNT				
Kemarks: Lab No. 5884								Sou	rce	e N	Sa	amj nbe	ole: r: 3	R /N	-2 0	101)ep	oth:	99.	лсе .8-1(. 00					
1												U		DN	<u>ح</u> IFI	NE	DC	;OI	ЛРF	RES	SSIC	DN	TES	T		·	
Figure															H	1.(Te	C.	N	lu [.]		ng		_				

				OME	DREG	20122	NI 7	LE61	 F
400000									1 1
400000									
3000000							-		
psf									
Ś									
Stre									
9 2000000									
ssi				_		1			
bre	┟━┼╶┼╶┼╸					+++	+		
Log Log				+	4	+ $+$ $+$		_	-
Ū					+				
1000000									
		+			-				
0	0	0.25		0.5		0.75			<u>]</u> 1
	-	0.20	Avia	Strain	07.	0,70			
				otrain,	70				
Sample No.					1				
Unconfined strength, psf				203-	1883.4				
Undrained shear strength	n, psf			101	7441.7				
Failure strain, %).7				
Water content %			·····	0	039				
Wet density pcf				1	58 4				
Dry density, pcf					58.1				
Saturation, %	. <u></u>			1	I/A				
Void ratio				1	I/A				
Specimen diameter, in.				1	980				
Specimen height, in.				3	970				
Height/diameter ratio				2	.01				
	<u>Е</u>	DI		A	mad		·r	T	Y
Project No • N1105070	"		Client					iype:	Limestone
Date Sampled: 7-20-10				FARSU	112 RK	INCKE	KHQI	r F	
Remarks:			Projec	t: BREN	T SPEI	NCE BR	IDGE	E REPL	ACEMENT
Lad No. 5887			Source	of Sar	nple: R	-2	Dei	oth: 11	2.9-113.9'
			Sampl	e Numb	er: 6/N	IQ		1	
					JNCO	VFINED	col	MPRES	SSION TEST
							. -		

•

,

ſ			INE	:n (20	N/1 C		ES	22		N	Т	EC	۲	I					
												1								
400000)
		 								-	_							(
	\rightarrow	 											_					ļ	}	
														_			<u>۱</u>)		ł
3000000		 						+						-		1	\mathbf{i}	١	1	1
St							+							—			1	1	1	1
တ္ထိ											-						ł) (1	
te																	ł	1	I	
တ မ 2000000																ľ)	ļ		
S S S S	\square						_	Д	1								1	ł		ł
bre	\rightarrow	 			$\left - \right $											<u> </u>				-
щ						\rightarrow	4						-							
U U	-++		+	<u> </u>		Æ				-	-		-+							
1000000					$ \land$		+	+												
					/		-		1											
			\mathbb{X}																	
o		 <u> </u>													-1					
	J	0.25			0.5	•			0.1	75				1						
				Axia	al Str	ain,	%													
Sample No.		 		-			1													
Unconfined strength, psf		 	•			200	5343	5.4						+						
Undrained shear strength	, psf					100	2672	2.7												
Failure strain, %							0.7													
Strain rate, in./min.		 	•			0	.040)												
Water content, %		 					0.4													
Wet density, pcf						1	69.1							-				_		
Dry density, pct	<u> </u>	 				<u> </u> ``	68.4							+						
Void ratio		 				<u>ז</u> ר	N/A J/A											+-		
Specimen diameter. in.		 				<u> </u>	<u>יי ה</u> 980	}									·			
Specimen height, in.						4	.060	•						-				+	.	
Height/diameter ratio		 				2	2.05							1						
Description: LIMESTON	E	 																		
LL = PL =		PI =			4	โรรเ	me	d G	S=				Тур	e:	Lim	estor	ne			
Project No.: N1105070			0	Clien	t: PA	RSC	NS	BR	INC	KE	RH	OFI	7							
Date Sampled: 7-20-10				 '	-4	D E 1	w c		10-		. Y ~~	~~	·				TE .			
			 	-roje	CT: B	KEN	(T S	FEN	NCE	, BK	aDe	GΕ	KE]	PLI	ACEI	MEN	νT			
Remarks:			11																	
Remarks: Lab No. 5888				Sour	ce of	Sar	nple	e: R	t-2		D)ep	th:	119	8-1	20.6'	I			
Remarks: Lab No. 5888				Sour Samp	ce of ble N	Sar umb	nple per:	e: R 8/N	k-2 IQ		D)ep	th:	119	.8-1	20.6				
Remarks: Lab No. 5888				Soure Samp	ce of ble N	Sar umb	nple per: UN(e: R <u>8/N</u> CON	k-2 IQ NFII	NE)ep ON	th: IPR	ES	9.8-1: SIO	20.6' N TI	EST			

		_			אר	CI	NI	= r	<u> </u>	\sim				= 0	2			т		2т					
		_									- T¥			23	53					<u> </u>					
	2000000				_																				
Compressive Stress, psf	1500000 1000000 500000																				—1		1		
		U			L	1.5		A	\xie	י I St	rai	n, %	6		1.	.5				2					
Sample No.												1													
Unconfined stren	igth, psf									-	1	1384	183	.6									•	1	
Undrained shear	strength	1, p:	sf								5	692	41.	8											
Failure strain, %												1	0												
Strain rate, in./m	in.									_		0.0	40		_										
Water content, %	0											1.	2											-	
Wet density, pcf												16:	5.7		_										
Dry density, pcf										_		16:	3.8							_					
Saturation, %												<u>N/</u>	A		_	-								1	
Specimon diama	tor in									-		N/	A											_	
Specimen diame	in											1,9	70 30												
Height/diameter	ratio									+		-+.U 2 /	50)5		+					_					
Description: LD	MESTON	IE.								1		. ب			- -							· · ·			
LL =	PL =				PI	=					As	sun	nec	I G	S=			.	Tvi	pe:	Lime	estor	ne		
Project No.: N1	05070			1	-		 	Cli	ent	: P/	ARS	SON	18 1	3R1	NC	KF	RH	 OF	<u></u> F						
Date Sampled:	7-20-10											~ ~ 1					1		-						
Remarks: Lab No. 5891								Pro	oje	et: I	3RI	ENI	SF	PEN	ICE	BI	RID	GE	RE	PLA	ACE	MEN	ΝT		
								So Sai	urc mn	e o le N	f S Jur	am nbe	ple r:	e: R 12/1	-2 NO		C	Dep	th:	139	9-139	9.5'			
							╟		<u> </u>			U	NC	ON	IFII	NEI	D C	:ON	/IPF	RES	SIO	ΝΤΙ	EST		
Figure															H	 (Te). Irac	N	lui	tir	ng				

ŗ

.

		ι	JN	СС)NF	=	NE	ED	С	0	٧F	PR	RE	SS	SIC	DN	1 1	ΓE	S	Г						
	4000000		<u> </u>		,,		[T	-		7						
	4000000			<u> </u>									_		-	-	-	_	_	-						
	-							_		_	_		_				1			-	ſ	ĩ		i	*****	
	-				-					_	_		_							-			١	·		l
	-												_		_				_	ł			,	١.		
	3000000	_							-					_	_	_				-			l	١		ĺ
ч …	-								_							_				-			t			1
sd	-	_			·								_			<u> </u> .			_	-			•			
ŝSS	-				<u> </u>				_					_	_								(N		
Stre	-			_				_	_							-	_		-		1		1	'		
ě	2000000			_					_	_	_	1			_	_							1		1	1
ssiv	-					_						4		-	_	1	-	_	1		ļ		1			
D. D. D. D. D. D. D. D. D. D. D. D. D. D	-			_				_	_		\downarrow	_		_		+		_	-	4	L			<u> </u>)
ដ្រី						_			_	\angle					_	_		1		_						
ŏ	ŗ			_				/	4			_		_	-	_	-	_								
	1000000							Ă-			_				_	<u> </u> .				4						
	-			1		_							1		_	_			<u> </u>							
	-				<u> </u>	/	<u> </u>									+				_						
						4							<u> </u>					-								
	-			_	4								1					-		L,	1					
	ol				ГŤ														1	<u>ا</u> '	,					
	L. L.	U			0.3	2				.1					1.5					2						
								Ax	ial	Stra	ain,	%														
Sample No.	· · · ·								••••			1														
Unconfined stren	igth, psf										207:	503	1.3													
Undrained shear	strength	, ps	f								103′	751	5.7											<u> </u>		
Failure strain, %												1.3											,			
Strain rate, in./m	in.								···- ··		0.	.04	5											.,		
Water content, %	6									ļ		0.6	•											ļ		
Wet density, pcf										<u> </u>	10	67.	6													
Dry density, pcf											10	66.	5													
Saturation, %		_									1	√/A														
Void ratio										<u> </u>	1	√/A														
Specimen diame	ter, in.										2.	.38	0													
Specimen height	i, in.										4	.53	0											_		
Height/diameter	ratio						<u> </u>				1	.90)											<u> </u>		
Description: LIN	MESTON	E																								.
<u>LL =</u>	PL =				PI =	:				A	ssu	me	ed (GS:	=			<u></u>	/pe	: Li	mes	tone	; 		<u></u>	
Project No.: N11	05070							Clie	nt:	PAI	RSO	NS	BF	RIN	CKI	ERI	IOI	FF						_		
Date Sampled:	10-5-10																									
Remarks: Lab No. 9697								Proj	eci	t: Bl	REN	IT S	SPE	NC	ΈB	RII	GI	ΞR	EPL	AC	EM	ENT	ſ			
240 110 2021								Sou	rce	e of	Sar	np	le:	R-2	A		D	ep	th:	99.5	5-10	0.1'				
								Sam	pl	e Nu	Imb	<u>per</u>	: 1				200	~	<u> </u>	<u> </u>	<u></u>		<u></u>			<u> </u>
											ļ	UN	CO	NF	INE	.D (20	MР	RE	SSI	ON	ΤE	ST			
															_		_	-								

Tested By: MRE

ı

1

_____ Checked By: GS

UNC	ONFINED	COMPRESSI	ON TEST	
3000000				
2000000				
		/		
			<u> </u>	1
1500000				. \
4				N 1
ess		_/		
St St		/ ┼━┝╴╢		
.≌ 1000000				
	<u> //</u>			i
500000				
0				
0	0.5	1 1.5	2	
	Ax	kial Strain, %		
Sample No.		1		
Unconfined strength, psf		1773180.9		
Undrained shear strength, psf		886590.5		
Failure strain, %	- 41	1.1		
Strain rate, in /min.		0.039		
Water content, %		1.1		
vvet density, pct		169.3		
Seturation %	· · · · ·	<u> </u>		
Void ratio				
Specimen diameter in		N/A		
Specimen beight in		3,970		
Height/diameter ratio		1.67	······································	
Description: LIMESTONE		1,07	1	
LL = PL =	PI =	Assumed GS=	Type: Limestone	
Project No.: N1105070	Clie	nt: PARSONS BRINCK	ERHOFF	1
Date Sampled: 10-5-10				
Remarks:	Proj	ect: BRENT SPENCE E	BRIDGE REPLACEMENT	
Lao 140, 9079	Sou	rce of Sample: R-2A	Depth: 111.8-112.2'	
•	San	ipie Number: 3		
	11	LINICONFINE		
			ED COMPRESSION TEST	

100 Sec.

1

			NEI				лр		C	ei			тс	:0'	r					
									3	31		N		.3						
10000																				
10000 7500 sc. s. s. 5000 2500																				
	0																			
	0		0.25		Axia	^{0.5} I Stra	in, %	, 0		0.78	5				1					
Sample No.																				
Unconfined strength, p	sf	*					8723	31.3											· · · · · · · · · · · · · · · · · · ·	
Undrained shear streng	th, psf						4361	65.7												
Failure strain, %							0.	7												
Strain rate, in./min.							0.0	33												
Water content, %							1.	9												
Wet density, pcf						_	161	.1		-										
Dry density, pcf							158	3.1							<u> </u>			<u> </u>		
Saturation, %							<u>N/</u>	A										_		
Vola ratio							N/	A ao												
Specimen diameter, In							2.3	80 60		-								-		-
Height/diameter ratio						_	<u>د.د</u> ۱ ۱	00 11									· · · ·		<u>. </u>	
Description: LIMDerra	NF			-		<u> </u>	1,4	r 1		1					·				<u> </u>	
LL = PL:			PI =			Δ	sun	ned (GS	3=			Т	vne	: Lin	nesto	ne			
Project No.: N1105070		<u> </u>		C	lient		SON	IS BE	211		(FP	но	1 1FF	100						
Date Sampled: 10-5-10)					- 1 / 1 P	000	יום טו	#11	1013	ы.) IX		a' 1'							
Remarks: Lab No. 9701				P	rojec	t: BR	ENT	SPE	N)	CEI	BRI	DG	E R	EPL	ACI	emei	NT			
				So	ourc ampl	e of \$ le Nu	Sam mbe	ple:∃ ⊧r: 5 NCC	R-				Dep	th:	117.8	8-118 	3,2' 			
Figure							0	INCO	<u>'</u> N	H A			NI Nu		ng	ד אנ	E91			

.

		 					INI	Cr		2	hл			= 0	20	10		т		ет						
		, 												23	ວວ 					51						
	2000000						_																			
			:																			(1		,	
											-		_										١		Ì	
				_	+					_													1			
	1500000					+-				_			_	-												
Sf							+			-									-				۱			
ດ. ຜູ້		-	·· ·				+	-		••••			1									Ì		١		
les							+					/	-											1		
St Ct	4000000										\square						1)		
sive	1000000									/														\		1
Les.									\square																\	
du									\square													۱ <u> </u>				J
ပိ																	ļ									
	500000							1									<u> </u>									
							Į													<u> </u>						
							1																			
					\neq	1-													<u> </u>							
				\neg			-	-	·																	
	0	$ \leq $				0.25		1		0.	5				0.	75			<u> </u>		1					
								Д	xia	l St	rair	ı, %	, D													
Sample No.	· · · · · · · · · · · · · · · · · · ·											1										·				
Unconfined stren	igth, psf										13	31	15	.6												
Undrained shear	strength	<u>ı, p</u> :	sf								6	655	57.3	8										-		
Failure strain, %												0.	6													
Strain rate, in /m	<u>in.</u>									_		0.0	37		_											
<u>Water content, %</u>	0									-		0.	7		_					_				<u> </u>		
Vvet density, pcf										_		164	1.3													
Dry density, pct	-						• •					163	<u>5.2</u>		+											
Void ratio				•									A A		+											
Specimen diame	ter in		-			•						1 0	A 70		-											
Specimen height	. in.											3.7	00		+					+						
Height/diameter	ratio									\top		1.8	38													
Description: LIN	AESTON	Е																		I				<u>_</u>		
LL =	PL =				P	=			•		Ass	sun	ned	I G	S=				Ту	pe:	Lime	estor	ne	•		
Project No.: N11	05070						1	Cli	ent	: P/	ARS	SON	IS E	BRI	NC	KE	RH	OF	F							
Date Sampled: 8	8-3-10																									
Remarks:								Pro	ojec	: t: I	BRF	ENT	SF	PEN	ICE	B	RID	GE	RF	EPLA	ACEI	MEN	ЛТ			
Lab No. 6014								So	ጠቀ	<u>م</u> م	fs	am	nlo	• D	-3 -3		r	Jer	.th.	02	3.02	71				
								Sai	mp	le N	lun	npe J	r:]	. Л І	ر-		L	- G		94.	5-74.	• /				
												U	NC	ON	IFII	NE	DC	:ON	AP	RES	SIO	ΝΤΙ	EST			
Figure															┢	1.(С.	Ν	lu	ttir	าต					
															Ā	Te	rrad	con	Čc	mp	anv					

		ι	JN	СС	DN	FI	NE	D	C	ON	ЛР	R	ES	SS	SIC)N	Т	E:	ST	-						
							,,	····				-T			_				_							
2	2000000										_															
																					C			<u> </u>	-	
	ļ					ļ					_											l		1		
													<u> </u>		ļ							١		(
	1500000 -		-																					ļ		
<u> </u>													<u> </u>					4				ļ		١		
bsi	_										<u> </u>							Ц				ł		ł		
Ś	_																<u>/</u>					I		1		
tre					ļ						ļ			<u> </u>		\square						1	ł	Ì		
() 	000000			_	1						ļ			<u> </u>		1						ł	, (1		
i isi							1								<u> </u>								1	1		
Les les	_													\bigvee				<u> </u>	.			i		\$	ł	
L L	-				_	<u> </u>				_		-	/	1		_			 		l,					
ျ ပိ													1						1							
	500000		.		_							Z	<u> </u>		-											
	50000										\swarrow															
					_																					
																			1	-1						
	ol																									
	C)			0	.15				0.3				0	.45				0.6							
								Ax	ial :	Stra	in, '	%														
Sample No.	•••• <u>•</u>											1											. 1		······	
Unconfined streng	th, psf					<u> </u>				1	474	639	9.5		·									· •		
Undrained shear s	trength	, ps	f								737	319	.7					• • • •							•	
Failure strain, %	<u>v</u>	<u>.</u>									 C).6														
Strain rate, in /min	 .	• •									0.0	- 039	1	\uparrow												
Water content, %											C).2													····	
Wet density, pcf			,								17	0.4							+							
Dry density. pcf											17	10.0)	-												
Saturation, %											N	I/A		\uparrow								·				
Void ratio											N	[/A		\uparrow												
Specimen diamete	ər, in.										1.	970)													
Specimen height,	in.										3.	940)												• •	
Height/diameter ra	atio										2	.00														
Description: LIMI	ESTONI	E								• • • • •											·					
LL =	PL =			1	Pl	=				As	ssu	me	d G	SS=	1			Ту	pe:	Lim	nest	one				
Project No.: N110	5070			4				Clier	nt:	PAF	so	NS	BR	INC	CKF	RH	OF	F								
Date Sampled: 8-	3-10											-														
Remarks:								Proje	ect	: BR	EN	ΤS	PEI	NCI	E BI	RID	GE	RE	EPL.	ACE	EME	ENT				
Lao 190, 0015								Soui	rce	of	San	nple	e: R	{- 3		Ľ	Der	oth:	93	8-94	1.5'					
								Sam	ple	Nu	mb	er:	2			-										
									-		ι	JN		NFI	NE	DC	:ON	ЛР	RES	SSIC	DN .	TES	ЪТ			
Figure														ŀ	H.(С.	Ν	lu	tti	na						
							11							•	· + .			~~		2						

	UNC		FD C	OMPRE	-SSI		FST	
200								
150 Sompressive Stress, psf Compressive Stress, psf 50								
	0							<u> </u> 1
	0	0.15	Axial	^{0.3} Strain, %	0,4	5	0.6	i
Sample No.				1				
Unconfined strength	, psf			983924.	2			
Undrained shear stre	ength, psf			491962.	1			
Failure strain, %	- .			0.4				
Strain rate, in./min.	······································			0.039				
Wet density not				0.9				
Dry density, pci				164.4				
Saturation. %				N/A				
Void ratio				N/A				
Specimen diameter,	in.			1.970				
Specimen height, in.	·	· ·		3.940				
Height/diameter ratio	D			2.00				
Description: LIMES	TONE & SHALE	3						
LL = P	L =	PI =		Assumed	d GS=		Type:	Limestone & Shale
Project No.: N11050)70		Client:	PARSONS I	BRINCH	KERHO	FF	
Date Sampled: 8-3- Remarks:	10		Project	: BRENT SI	PENCE	BRIDG	E REPL	ACEMENT
Lab No. 6022			Source Sample	of Sample Number:	9: R-3	De	epth: 12	3.8-124.7'
				UNC	ONFIN	IED CC	MPRES	SSION TEST
Figure					H	.C. I	Nutti	ng

			UN	ON	IFI	NE	ED) (C	N	IP	R	ΞS	ss	IC)N	т	ES	SТ						٦
	2000000			 		.											-		_						
	2000000			 _	_													_							
Compressive Stress, psf	1500000 1000000 500000																							~	
						\mathbb{Z}																			
	0			 	1					5			ļ		75				_	—1					
		U		ļ	J.25		A	xia	l St	.5 traii	n, %	6		0.	75				1						
Sample No.				 								1													
Unconfined stren	gth, psf			 						1	310	334	.6												
Undrained shear	strength	ı, p:	sf						+	6	551	67.	3						-						
Failure strain, %	in			 					+-		0.	.6							_					•	
Strain rate, In./m	<u></u>		·	 		w					<u>ט.u</u> ה	5						· · · ·	+						
Wet density pof	0										16	 6.3		+					+						
Dry density, por									+		16	5.5		+					+						
Saturation, %		· · ·									N	/A													
Void ratio	_										N	/A													
Specimen diame	ter, in.			 							1.9	970													
Specimen height	, in.										3.9	940													
Height/diameter	ratio										2.	00													
Description: LIN	AESTON	E		-					ł	•			. ~					-							
				P	=	1			1	As	sur	neo	d G	5=				Typ	e:	Lim	esto	one			 <u> </u>
Project No.: N11	05070						Cli	ent	:: P.	AR	SOI	NS .	BR	INC	CKF	RE	lOF	F							
Date Sampled: 8	5-3-10						Pro	ojeo	:t:⊺	BRI	ΕN	гы	PEN	VCF	ΞBI	RJD	GE	RE	PL/	ACE	ME	NT			
Lab No. 6024							So Sa	urc mp	e o le 1	of S Nur	am nbo	iple er:	e: R	-3			Dep	th:	14()-14	0.5'				
Figure											ī	INC	10	NFI H	NĒ ┫.(DC C.		IPR	ES tii	ssic ng	N 1	LES1	-		

			JN	СС	N	FI	NE	D	CO	N	P	RE	ES	S	IC)N	Т	Έ	S	Г						
	2000000	<u> </u>	r_						.								1	<u>, </u>	_	-						
	2000000										\square								-	-						
Compressive Stress, psf	1500000																									
	وا							-												╞	-1					
	(J			0.2	25		A!	0. 	.5		,		0.1	75					1						
								AXI	al St	rai	n, %	0														
Sample No.											1															
Unconfined stren	ngth, psf									10	59 44	130.	.2													
Undrained shear	strength	<u>, ps</u>	sf							8	472	15.	1						\square							
Failure strain, %	•										0.	9												+		
Strain rate, in./m	<u>in.</u>			·					_		0.0	<u>39</u>		_				•						+		
Vvater content, %	΄ο								_		1.	1										•••		_		
Dry density, pct									_		167	/.8 . 0		+												
Saturation %											103 NI/).9 'A		_		••			+							
Void ratio					• • • • •						N/ N/	<u>м</u> А		-												
Specimen diame	eter, in.	<u> </u>									1.9			+												
Specimen heigh	t, in.	· • • • • • •						·			3.9	10														
Height/diameter	ratio										1.9	98							\uparrow						• • • • •	
Description: LI	MESTON	Е				···															• • • •					
LL =	PL =				PI =	-				As	sun	ned	I G	S=				Ту	/pe	: L	ime	sto	ne			
Project No.: N1	105070						C	lien	t: P/	٩R	SON	IS E	BRI	NC	KE	RF	IOF	F								
Date Sampled:	8-3-10							-				_														
Remarks: Lab No. 6025							P	roje oure	ct:] ce o	BRI of S	ENT am	: SF ple	'EN : R	{CE 3	E BI	RIE)GE Der	CRI oth	EPI : 14	_A(15.1	CEN 5-14	ИЕ] 46'	ŇΤ			
							S	amp	ole N	vur	nbe	•r: 1	12	-			ח~-				-					
											U	NC	ON	JF[]	NE	DC	O	ИP	RE	SS	SIO	NT	EST	-		
Figure														 A	 (Te	C.	N			in Dar	g					

ļ

ł

		l	JN	co	N	=	NE	ED) (0	N	IΡ	R	ES	SS		DN	7	Ē	S	Γ						
	1000000	·										-				,					-						
	1000000															<u> </u>											
											• • •										_	ſ					
																								_ .			
																							_				
	750000																	Z							Ì		
	750000																17								l	1	
psf																	X								ł	ļ	
တ်																\bigvee						i			, I		
tre															\bigvee										1	ł	
o م	500000														1]				Į		
sič	500000													1									1		1	ł	
res													[L		1]
du du											Ζ											ſ					
රී										Ζ											1 '						
	250000																										
	250000							Ζ																			
							Ζ																				
					\square																						
	0																										
		0			0.2	5				0.	5				0	.75				· · ·	ī						
								A	xia	I St	rai	n, 🤋	%														
Sample No.												·····	1		••••												
Unconfined stren	gth, psf										8	32()99	.0													
Undrained shear	strength	i, ps	sf								4	160)49	.5													
Failure strain, %												0	.9														
Strain rate, in./mi	<u>n.</u>											0.0)39														
Water content, %	>											4	.2														
Wet density, pcf												15	9.3														
Dry density, pcf												15	2.8														
Saturation, %												N	/A		Ī												
Void ratio												N	/A														
Specimen diame	ter, in.											1,9	990														
Specimen height	, in.											3.9	930														
Height/diameter i	ight/diameter ratio											1.	97														
Description: LIN	<u>1ESTON</u>	Е																									
LL =	= PL = PI = Diect No.: N1105070										As	sui	ne	d G	S=				Ту	pe	Lit	mes	stone	;			
Project No.: N11	05070	_	_	_	_			Clie	ent	: P/	١R	SOI	NS	BR	INC	CKI	ERF	IOF	F								
Date Sampled: 8	8-23-10																										
Remarks: Lab No. 6072								Pro	ojec	:t: I	3R3	ΕN	ГS	PEI	VCI	ΕB	RIE	GE	E RI	EPL	AC	EM	IEN	Г			
240 1,0,0072								Soi	urc	e o	fS	am	ple	e: R	\- 4		I	Der	oth	: 95	.5-9	96'					
								Sar	np	le N	lur	nb	er:	3				-									
	iqure											ι	INC	201	VFI	NE	DC	0	ΜP	RE	SSI	ON	I TE	ST			
Figure															ŀ	-].(C.	N	lu	tti	nc	X					
															A	Ţε	erra	cor	١Č	omr	bany	<u>/</u>				-	

ì

ľ

 Tested By: <u>SV</u>
 Checked By: <u>GS</u>

	-	UNC	ONF	INF		CON	ЛР	RE	ss)N	Т	FS	Т					
4.5												• •		•					
10														_					
									<u> </u>						ſ	~ - , ,	······································		
									_					_		(
										\square				_		t			
7	⁷⁵⁰⁰⁰⁰						+	\rightarrow	1							1			
4-						\square	\square					\dashv		-		1			
, Š	. –					\mid						_		_		`	`		
ess -				-		$\vdash A$							_	_			۱		
Str						/								-			Υ.		
<u>₽</u> 5	500000			+										-			\		
SSS																	``	\mathbf{v}	
a de				++					_					-	L			Ľ	
L LO	-				-/									-					
	-			+							-			-					
2	250000			1			+ -							-					
	-			1/1															
				/	1		1		-					1 '					
	_								1										
	0													1					
	0		0.25			0,5			0.	75	,		••••	1					
					Axia	al Stra	in, %	, 0											
Sample No																			
Unconfined strength	n. psf						8285	77.7	-										
Undrained shear str	rength,	psf					4142	88.9											
Failure strain, %	U .					·····	0.	8											
Strain rate, in /min.					-		0.0	37											
Water content, %							1.	5							•••••				
Wet density, pcf							16),7										· · · · ·	
Dry density, pcf							15	3.3											
Saturation, %							N/	A											
Void ratio							N/	A											
Specimen diameter	; in.						1.9	90											
Specimen height, ir	1.						3.7	70											
Height/diameter rat	io						1.	39											
Description: LIME	STONE		D.						~~~			<u>-</u>	-						
			11 =				sur	ned (=Sد				ype	: Lin	nestc	one			
Project No.: N1105	070			_ (lien	t: PAR	SOM	4S BR	UNC	KE	RH	OFF	i						
Remarks:	9-10 01-C		F	Proje	ct: BR	ENT	SPE	NCE	EBF	۲D	GE	REPI	LACE	eme	NT				
Lab No. 6078				_		_	_												
				Sourc	e of §	Sam	ple:)	R- 4		D)ept	h: 12	29.6-	130'					
				samp	ie Nu	mbe	er: 9	NI		<u> </u>			<u>eel</u>	7 11		.,			
							U	NCO	INF L	NEI J	ט נ ר		₽KE ++:	331(60~		151			
Figure									A	1.\ Je	ј. Irac	IN 2011	ull Com	panv					

.

	UNC		IFD C	OMP	RF	SSIC)N	TES	ST.	· · · · · · · · · · · · · · · · · · ·
000000				· · · · · · · · · · · · · · · · · · ·				·		
200000	J									
150000 Combressive Stress, psf 50000										
									1	
	U	0.25		0.5		0.75			1 '	
			Axial	Strain, 9	%					
Sample No.		· · · · · · · · · · · · · · · · · · ·	•••	· ·	1					
Unconfined strength, ps	f			1534	100.3					
Undrained shear streng	h, psf			7670	050.1					
Failure strain, %				0	.8			· · · ·		
Strain rate, in./min.				0,0)38					
Water content, %			<u> </u>	1	.1					
Wet density, pcf				16	2.0					
Dry density, pct				16	0.3					
Saturation, %				- N	/A					
Specimen diameter in					/A					
Specimen height in		<u>,</u>		1.5	210		·			
Height/diameter ratio				1	91	_				
Description: LIMESTO	NE			1,	<u> </u>	<u> </u>		·		l
LL = PL =		PI =		Assu	ned G	is=		Tyr	e: Lime	stone
Project No.: N1105070	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	Client:	PARSO	NS BR	INCKE	BRHO)FF		· · · · · · · · · · · · · · · · · · ·
Date Sampled: 8-23-10										
Remarks:			Projec	t: BREN'	r spei	NCE B	RIDO	E RE	PLACEM	1ENT
Lab No. 6082			Source Sample	e of Sam e Numbo	i ple: F er: 13	\- 4	D	epth:	152.8-15	3.6'
				L	INCO	NFINE	DC	OMPR	ESSION	N TEST
Figure							C.	Nut	ting	

.

	UNC	ONFI	NED	СС	OMP	RE	SS	SIC)N	Т	ES	Т			
4000000												• 			
400000															
	-											_			
				-			_		<u> </u>			_	,		
							_	_				_	1		
3000000												_			
Š,				—										11	
ပ် တိ												_		1	
le s												-		11	
5 5 5								\checkmark						е (
<u>v</u> 2000000								1						1 (
es							/							11	
du						X							1	11	
ပိ	-					<u> </u>							L		
1000000												_	-		
				4											
			A			· · · ·		-				_			
								-							
0	0	0.25			.5).75	[1 1			
			Ах	dial S ¹	train, '	%									
Sample No.			······			1								·	
Unconfined strength, psf					2269	771.2									
Undrained shear strength	i, psf				1134	885,6									
Failure strain, %					().8									
Strain rate, in./min.					0.	037									
Water content, %					0).5									
vvet density, pct					16	2,3									
Saturation %					16	91.5 17 A									
Void ratio					N	1/A. 1/A						. <u></u>			
Specimen diameter in					2	<u>። </u>	-+								
Specimen height, in.						760	-+							+	
Height/diameter ratio					1	.88									
Description: LIMESTON	E			I		-						·			
LL = PL =		PI =			Assu	med	GS=	=		-	Гуре	: Lime	stone		<u> </u>
Project No.: N1105070			Clie	nt: P/	ARSO	NS BI	RIN	CKE	RH	OFF	?				
Date Sampled: 8-23-10															
Remarks:			Proj	ect: 1	BREN	T SPE	INC	E BI	RID	GE	REP	LACEN	IENT		
Lau 190, 0004		Sou	rce o ple N	of San Numb	iple: er: 15	R-4		C	ept	h: 1	59.6-16	60.51			
				1 214	L L	JNCC	NF	INE	DC	ОМ	PRE	SSIO	N TEST	·	
Figure	gure							H .(5.	N	utt	ing			

İ

			UN	NC	:0	N	FI	NE	ΞΓ) (20)N	1P	R	ES	ss)N	T	Έ	S	Г						
	2000000	·										-								_		•						
	2000000											.																
	1500000																					-			۲ ۲ ۱	}		
oressive Stress, ps	1000000																			-							1	
Com	500000																											
	~						_	-	ļ				+				-	-	-	-	+	╎	-1					
	0	0		F	L	0.	25			1	0	,5			1	0	.75	1	1		<u> </u>	1						
									ŀ	\xia	al S	trai	in, 🤉	%														
Sample No.					·									1														
Unconfined stre	ngth, psf											1	022	251	1.4													
Undrained shea	r strength	ι, p	sf									4	5111	125	.7	_										_		
⊢ailure strain, %											_		0	.8														
Strain rate, in./m	<u>ווח.</u> ע											.	0.0	<u>142</u>							_							
Wet density not	/0										-		14	.9 5 0												-+		
Dry density, pcf													10 16	0.0 0.4		+										-+		
Saturation %											+		N	/A												+		
Void ratio													N	/A		-+										+		
Specimen diame	eter, in.										╈		1,9	964												\top		
Specimen heigh	t, in.												4.2	250)			<u> </u>										
Height/diameter	ratio												2.	16														
Description: LI	MESTON	E																										
LL =	PL =					PI :	=					As	su	me	d G	SS=	:			Ty	pe	: L	ime	sto	ne			
Project No.: N1	105070								Cli	ent	:: P	AR	SO]	NS	BR	IN	CKI	ERF	IOI	ŦF								
Date Sampled:	7-16-10								P۲	പം	ct.	БЪ	FN'	тς	PEI	NC	FP	RIL)CI	ים ג	грт	۵4	ጉርጉ	ЛF.	NT			
Remarks: Lab No. 5840	ab No. 5840									ouro	e o le	of S Nu	Sam mb	npło er:	e: F	λ-5 1Q	<u> </u>		Del	oth	: 85	5.2-	·85.'	7'	1 1 1			
													ι	JNC	CO		NE			MP	RE	SS	101	NT	ES	Т		
Figure	-															L A	┨.(\ Te	ر erra	ך cor		I TTI omr	n(bar	g					

i

ł

	LINC					TEST	
2000							
2000							
15000 کړې من							
pressive Stres	000						
5000							
	0	0.25	Axial	0.5 Strain, %	0.75		-1
Sample No.				1			
Unconfined strength, p	osf			1556479.7	7		
Undrained shear stren	gth, psf			778239.9			
Failure strain, %				0.8			
Strain rate, in./min.				0.039			
Water content, %				0.3			
VVet density, pcf				167.1			
Dry density, pct				166.7			
Void ratio							
Specimen diameter in	· · · · · · · · · · · · · · · · · · ·			IN/A			
Specimen height in				3 070			
Height/diameter ratio				2.01			
Description: LIMEST	ONE					I	
LL = PL	5	PI =		Assumed	GS=	Type: L	imestone
Project No.: N1105070)		Client:	PARSONS B	RINCKERH	 DFF	
Date Sampled: 7-16-1	0						
Remarks: Lab No. 5841			Project	BRENT SPE	ENCE BRID	GE REPLAC	CEMENT
			Source	e of Sample: Number: 1/	к-5 D 'NQ	epth: 86,4-	-86.8'
				UNCC		OMPRESS	ION TEST
Figure					H.C.	Nuttin on Compar	g

							TEQT	
200000								
1500000 Sourcessive Stress br Combressive Stress 500000 500000		0.25		0.5	0.	75		
			Axial	Strain, %				
Sample No.				1				
Unconfined strength, ps	f			10114	11.0			
Undrained shear strengt	h, pst			50570	5.5			
Strain rate in /min	· · · · · · · · · · · · · · · · · · ·			0.8	0			
Water content %				0.04	-0	·····		
Wet density nof				166	3			
Dry density, pcf				165	5			
Saturation, %				N/A	<u>-</u>			
Void ratio		<u></u>		N/A	4			·····
Specimen diameter, in.				1.97	0			
Specimen height, in.				4.06	60			· · · · · · · · · · · · · · · · · · ·
Height/diameter ratio	·····			2.0	6			
Description: LIMESTO	NE			T				
		PI =		Assum	ed GS=		Type:]	Limestone
Project No.: N1105070			Client:	PARSON	S BRINC	CKERHO	FF	
Remarks:			Project	: BRENT	SPENCE	E BRIDG	E REPLA	CEMENT
Lad No. 5842			Source	of Samn	le: R-5	De	enth: 00 1	1-90.8'
			Sample	e Number	: 2/NO		- 00-1 1	
				UN	ICONFI	NED CC	MPRES	SION TEST
Figure					 A		Nuttir	

ļ

,

	UNCO	ONFIN		COMP	RF	SSIC)N	TES	ST	
2	.0000									
Compressive Stress, psf	5000									
		1.5		3		4.5			6	
			Axia	l Strain, '	%					
	·									
Sample No.					1					
Uncontined strength,	pst			169	45.6					
Failure strain %	ngui, psi			84	12.8 2					
Strain rate in /min				4	<u>.4</u>)40		.			
Water content %				0.1	540 6					
Wet density, pcf	· ·			15	0.0				· · · · · · · · · · · · · · · · · · ·	
Dry density, pcf				13	<u>8.1</u>					
Saturation. %				N 13	/A					
Void ratio				<u>м</u>	/A					
Specimen diameter,	in.			1.9	950					
Specimen height, in.				4.	010					
Height/diameter ratio)			2.	06				- ··· ··· · · · · · · · · · · · · · ·	
Description: SHALE	;	·								
LL = Pl	L =	PI =		Assu	ned G	S=		Тур	oe: Shale	
Project No.: N11050'	70	_	Client	PARSO	NS BR	INCKE	RHC)FF		
Date Sampled: 7-16-	-10									
Remarks: Lab No. 5843			Projec	t: BREN e of San	T SPEI I ple: F	NCE BI R-5	RIDO De	E REI	PLACEMENT 92.2-92.8'	
			Samp	<u>e Numb</u>	er: 2/1	<u>IQ</u>	.			
Figure				ι	INCO	NFINEI	D CC C.	ompr Nut	RESSION TEST	

•

ı

		— 	UN	СС	DN	FI	NE	ED) (N	IP	R	ES	ss)N	7	Ē	S	Г						
	4000000								-												-						
	4000000						-													1		ſ			<u>. </u>	<u> </u>	
Compressive Stress, psf	3000000 2000000 1000000																										
	0				· ·									<u> </u>						-							
		0			0,	25				0.	5				0.	75					1 1						
								А	\xia	l St	rai	n, %	6														
Sample No.													1						*****		····						
Unconfined stre	ngth, psf										20	062	678	.8													
Undrained shear	r strength	, ps	sf							-	10	031	339	9.4													
Failure strain, %												0	.9		+												
Strain rate, in./m	<u>in.</u>											0.0)39		+												
Vvater content, 9	/o			•••								0	.6 7 4		+					_							
Dry donaity, pct										+		16	1.4 6 F														
Saturation %				••								<u>וא</u>	0.3 / A		+												
Void ratio					• •					-		N.	/A		+										·		
Specimen diame	eter, in.											1.9)75		+										-		
Specimen heigh	t, in.											3.9	940														
Height/diameter	ecimen height, in. iaht/diameter ratio											1.	99														
Description: LI	MESTON	E										·····									·						
LL =	PL =				PI	=					As	sur	neo	d G	S=				Ту	/pe	: Lir	nes	tone	;			
Project No.: N1	105070						1	Cli	ent	: P/	AR:	SOI	NS I	BRI	INC	KE	RE	[O]	ŦF								
Date Sampled:	e Sampled: 7-16-10 narks:																										
Remarks:	n arks: No. 5844								ojec	et: I	3RI	ENT	ΓS)	PEN	VCE	E BI	RID	GE	E R	EPL	AC	EM	ENJ	ſ			
Lad No. 5844	No. 5844								urc mp	e o le N	f S Iur	am nbe	ıple ər:	:: R 2/N	:-5 IQ		[Dep	pth	; 93	-93,	8'					
1												U	INC	10	١FI	NE	DC	0	MP	RE	SSI	ON	TE	ST		·· ·	
Figure															H	 (C.	N cor		itti	ng	ļ					

		<u> </u>	INC	20			=	C	01	ЛÞ	R		22		M	т	F	۲:						
										11						•)						
	20000001					_														<u> </u>	ĩ	.)	
Compressive Stress, psf	1500000																		1					
	01	_)		<u> </u>	0.25	- Ii		<u>f</u>	0.5		L		0.7	75		1		1						
							Ах	ial :	Stra	in, 9	6													
Sample No.						Þ				,	1							Τ				1		
Unconfined strer	ngth, psf								1	179	728	.7												
Undrained shear	strength	, ps	f							5898	364.	4										<u> </u>	~~~	
Failure strain, %											.9		_					_						
Strain rate, in./m	in. /									0.0)40 7		_		••••••									
Wet density pof	0	·								16	. <u>.</u> 6.0		+					+				- <u>-</u>		
Drv density, per					·	••				16	6 1		+											
Saturation. %		-								01. N	/A		┼					+				+		
Void ratio										N	/A		+					+						
Specimen diame	eter, in.									1.9	968							\top				1		
Specimen height	t, in.									4.()30											1		
Height/diameter	ratio									2.	05													
Description: LIN	MESTONI	3																						
LL =	PL =			F	기 =				As	sur	nec	d G	S=				Тур	e:]	Lime	estor	ıe			
Project No.: N1	105070						Clie	nt:	PAR	SOI	١S	BRI	NC	KE	RH	OFI	ĩ							
Date Sampled: '	7-16-10						n		. n -		n		10-	y		<u>a-</u>	n	D 7	<u> </u>					
Remarks:							Proj	ect	: BR	EN	ΓSI	PEN	ICE	BF	RID	GE	RE.	PLA	CEN	MEN	Τ			
140, J042							Sou	rce	of S	Sam	ple	R R	-5		D)epi	th:	95-0	95.3'					
							Sam	ple	Nu	mbe	er:	3/N	Q				-							
										L	INC	ON	IFIN	VEC.	D C	ОM	IPR	ES	SIO	N TI	EST			
Figure													H	I.(Tei). rrac	N	ut	tir	ng Inv					

					тсот	· · · · · · · · · · · · · · · · · · ·
	JNCONFIN		UNIPRES	210N	1591	
1000000		-				A
750000						
0	0.25	Axial	0.5 Strain, %	0.75		—1
Sample No.			1			·····
Unconfined strength, psf			692912.3			
Undrained shear strength, pa	sf		346456.2			
Failure strain, %			0.7			
Strain rate, in./min.	· · · · · · · · · · · · · · · · · · ·		0.040			
Water content, %			1.5			
VVet density, pcf			167.8	<u> </u>		
Dry density, pct	· · ·		165.2			
Saturation, %			N/A			
Specimen diameter in			IN/A		.	
Specimen height in			4 030			
Height/diameter ratio			2.04			
Description: LIMESTONE				.I	I	I
LL = PL =	PI =		Assumed GS	}=	Type:	Limestone
Project No.: N1105070		Client:	PARSONS BRIN	ICKERHO)FF	
Date Sampled: 7-16-10						
Remarks: Lab No. 5848		Project: Source	BRENT SPENC	CE BRIDO 5 De	E REPLA	ACEMENT -103.5'
		Sample	Number: 3/NQ			
Figure				H.C.	Nuttir	

						SION	TES			
					123			, I		
20	00000									
Compressive Stress, psf 101 50										
								_		
	0	0.25		0.5		0.75		1		
			Axial	Strain, %						
Sample No.				1						
Unconfined strength	ı, psf			115029	91.5					
Undrained shear str	ength, psf			57514	5.7			-		
Failure strain, %				0.7				ļ		
Strain rate, in./min.				0.04	0					
Water content, %				0.7						·.
vvet density, pct	· · · ·			167.	9					
Saturation %				166.	/					
Void ratio					<u> </u>					
Specimen diameter	in.			1 02	<u>.</u> 0					
Specimen height, in	· · · · ·			4.02	0	-				
Height/diameter ratio	0			2.02	 }					
Description: LIMES	STONE								I	
LL = P	PL =	PI =		Assum	ed GS	}=	Тур	e: Limes	tone	
Project No.: N11050	070		Client:	PARSON	S BRII	NCKERH	OFF			
Date Sampled: 7-27	7-10	1								
Remarks: Lah No. 5898			Project	BRENT	SPEN	CE BRID	GE REF	PLACEM	ENT	
240 110, 2020			Source	of Samp	le: R-	6 [Depth: 8	88.5-89'		
			Sample	Number	: 2/NC	2				
				UN	ICON	FINED C	OMPR	ESSION	TEST	
Figure					<u> </u>	H.C. A Terrad	Nut con Con	ting opany		

į,

ł

UNCO	ONFINED C	OMPRESSION	TEST											
2000000	·····		T-T-T-1											
1500000														
وی														
φ. 														
ě – – – – – – – – – – – – – – – – – – –														
, st														
ě – – – – – – – – – – – – – – – – – – –														
50000														
50000														
0														
0	0,25	0.5 0.75	1											
	Axial	Strain, %												
Sample No.	Axial Strain, %													
Unconfined strength psf		1828127.1												
Undrained shear strength psf		914063.6	· · · · · · · · · · · · · · · · · · ·											
Failure strain. %		0.8												
Strain rate, in./min.		0.039												
Water content, %		0,1												
Wet density, pcf		167.8												
Dry density, pcf		167.6												
Saturation, %		N/A												
Void ratio		N/A												
Specimen diameter, in.		1.980												
Specimen height, in.		3.990												
Height/diameter ratio		2.02												
Description: LIMESTONE		A												
LL = PL =		Assumed GS=	I ype: Limestone											
Date Sampled: 7.27.10	Client:	PARSONS BRINCKERH	OFF											
Date Gampieu, 7-27-10	Project	BRENT SPENCE DDIN	GE REDI ACEMENT											
Lab No. 5903		a divent of three drid.	OB ADI DACEMEN I											
	Source	e of Sample: R-6 C	Depth: 100.1-100.5'											
	Sample	e Number: 4/NQ												
		UNCONFINED C	OMPRESSION TEST											
_	(1													

	UNC	ONFIN		OMPR	FSS		FST					
		<u> </u>										
	200000											
Compressive Stress, psf												
	U	0.25	Avial	0.5 Strain %	0.7	75	1					
Sample No.				1			·					
Uncontined stren	Incontined strength, psf 1259226.7 Indrained shear strength, psf 629613.3											
Failure strain %	suengin, psi			029015			·····					
Strain rate, in./mi	in.			0.039)							
Water content. %)			0.5			·					
Wet density, pcf				168.0)							
Dry density, pcf				167.2	2							
Saturation, %				N/A								
Void ratio				N/A								
Specimen diame	ter, in.			1.980)							
Specimen height	, in.			3.980)							
Height/diameter	ratio		;	2.01								
Description: LIN	AESTONE	- D'		I .								
		1 =		Assume	d GS≍		Type: 1	Limestone				
Data Sampled	05070		Client:	PARSONS	BRINC	KERHOF	F					
Remarks:	-27-10		Project	: BRENT S	PENCE	E BRIDGE	E REPLA	CEMENT				
Lab No. 5906			Source	of Sample	e: R-6 6/NO	Dep	oth: 107	.1-107.5'				
				UN	CONFIN	NED CO	MPRES	SION TEST				
Figure					H A	I.C. N Terracor	luttir	ng				

		ľ			אר	FI	NF	n	C	70	1 D	R	F	22	IC) N	T I	F	S 1	-			·			
						••					/			<u> </u>		///		L								
	2000000								_			_	-					_			<u>(</u> -					
stress, psf	1500000																			-	-			L. L. L. L. L. L. L. L. L. L. L. L. L. L	/	
pressive S	1000000																/					 		 		
Control	500000				-								2		/					1						
									7							<u> </u>										
	0											L.		0.	45	1		L_	0.6]						
	ial (Stra	in, ۹	%																						
Sample No.						-1	,	1																		
Unconfined streng	oth, psf									1	466	508	3.1													
Undrained shear s	strength	, ps	sf							7	7332	254.	.1													
Strain roto in /min									-+		0	.6							_							
Water content %	<u>l.</u>			<u> </u>	<u></u>						0.U ^	<u>パイリ</u> っ	· ···	+									_			
Wet density not											16	.∠ 0.2		+					-							
Dry density. pcf											16	2.4 8.9		+					+							
Saturation, %							· · ·				N	/A		+					+							
Void ratio								•			N	/A														
Specimen diamete	er, in.										1,9	980														
Specimen height,	in.										4.0)20														
Height/diameter ra	eight/diameter ratio										2.	03														
Description: LIM	ESTON	E		 т					·	_																
LL =					-11	=		<u></u>		As	sur	neo		5=	.			Ту	pe:	Lin	nest	one			<u></u>	
Date Sampled: 7	.27_10							lier	ιτ: Ι	AR	SOI	NS I	BKI	NC	КE	RH	OF	F								
Remarks: Lab No. 5907	-27°IV						F	Proj∉	ect:	BR	ENI	ΓS)	PEN	ICE	BI	RID	GE	RE	BPL.	ACE	EME	ent				
							S	Sour Sam	ce ple	of S Nui	am mbe	iple er:	:: R 7/N	-6 Q	<u></u>	C)et	oth:	114	4.5-	115'					
Figure											U	INC		IFIN H			NO:	леі I ()	RES ttii	na	DN '	TES	Т			
· · · · · · · · · · · · · · · · · · ·			igure											<u> </u>	Te	rrac	son	č	mp	any						

i.

ŗ

and the second second

UN			ION TEST	W *********								
2000000												
200000	<u> </u>			/								
┃		┨┈┦┈┨─┝╶╎╴╎										
┃		┨╶╎╍┨╍╋╼┽╴╬╶╎										
Í		┨━╍┼╍╌╎╴╎╴╎╴╎╴╷┥										
1500000		+ + + + + + + + + + + + + + + + + + +										
st	+ + + + + + + + + + + + + + + + + + + +	┼┼┼┼┼╱┼	┝╍┼╶╢╲╂╴╂╍┥	1 1 1								
<u>ທີ່</u>												
				$\lfloor i \rfloor$								
Ĕ <u>↓</u>												
й <u>і</u>		l										
500000	/											
	┝┈┝╴┝╴┝╱┝╍┝╌											
	+++	<u>┤</u>	·									
	+ / + + +	┤┤╌┝━╍╎╴┤╶┞	· · · · · · · · · · · · · · · · · · ·									
	++++	┼┈╢━┉╎╴╎╴╎										
	0.25	0.5 0.7	75 1									
	Axia	al Strain, %										
Axial Strain, % Sample No. 1 Unconfined strength, psf												
Unconfined strength, psf		1649615.1										
Undrained shear strength, psf		824807.5										
Failure strain, %		0.8										
Strain rate, in./min.		0.039										
Water content, %		0.3										
VVet density, pct		167.3										
Dry density, pcr		166.7										
Void ratio												
Specimen diameter, in.		1 980										
Specimen height, in.		3.990										
Height/diameter ratio	·····	2.02										
Description: LIMESTONE	· · ·		<u> </u>	<u> </u>								
LL = PL =	PI =	Assumed GS=	Type: 1	Limestone								
Project No.: N1105070	Client	PARSONS BRINCI	KERHOFF									
Date Sampled: 7-27-10												
Remarks: Lab No. 5909												
	Sourc	e of Sample: R-6	Depth: 136	.5-137.3'								
		UNCONFIN	VED COMPRES	SION TEST								
Figure		Ę,	I.C. Nuttin	g								

	UNC	ONFI	NED C	OMPRES	SION	TEST	
200000	· · · · · · · · · · · · · · · · · · ·						
200000							(<u> </u>
1500000							
sť							
က်							
Les Les							
び ゆ 1000000							
Sec							
ů d			/	4			
Ŭ			+				
500000			/			_	
			_/				
				·			
		- - A					1
	0	0.25		0.5	0.75	1	
			Axial	Strain, %			
Sample No.	· · · · · · · · · · · · · · · · · · ·	·····		1			
Unconfined strength, psf				1273413.0			
Undrained shear strength	, psf			636706.5			
Failure strain, %				0.6			
Strain rate, in./min.				0.039			
Water content, %				0.8			
Dry density, pct				167.0			
Saturation %	• •			105.0 N/A			······
Void ratio				N/A N/A			
Specimen diameter. in.				1.980			
				3.930			
Specimen neight, in.			· · · · · · · · · · · · · · · · · · ·	1 98			
Specimen neight, in. Height/diameter ratio				1.70			1
Specimen neight, in. Height/diameter ratio Description: LIMESTON	E			1,70		I	·
Specimen height, in.Height/diameter ratioDescription: LIMESTONLL =PL =	E	PI =		Assumed G	S=	Type:	Limestone
Specimen height, in. Height/diameter ratio Description: LIMESTON LL = PL = Project No.: N1105070	E	PI =	Client:	Assumed GS	S= NCKERHO	Type:	Limestone
Specimen height, in.Height/diameter ratioDescription: LIMESTONLL =PL =Project No.: N1105070Date Sampled: 7-27-10	E	PI =	Client:	Assumed GS	S= NCKERHO	Type:	Limestone
Specimen height, in. Height/diameter ratio Description: LIMESTON LL = PL = Project No.: N1105070 Date Sampled: 7-27-10 Remarks: Lab No. 5912	E	PI =	Client: Project	Assumed GS	S= NCKERHO CE BRIDO	Type: DFF GE REPL4	Limestone
Specimen height, in.Height/diameter ratioDescription: LIMESTONLL =PL =Project No.: N1105070Date Sampled: 7-27-10Remarks:Lab No. 5912	E	PI =	Client: Project Source	Assumed GS PARSONS BRI BRENT SPEN	S= NCKERHO CE BRIDO	Type: DFF DE REPLA	Limestone ACEMENT
Specimen height, in.Height/diameter ratioDescription: LIMESTONLL =PL =Project No.: N1105070Date Sampled: 7-27-10Remarks:Lab No. 5912	E	PI =	Client: Project Source Sample	Assumed GS PARSONS BRI BRENT SPEN of Sample: R- Number: 16/N	$S = \frac{1}{10000000000000000000000000000000000$	Type: DFF GE REPL/ epth: 159	Limestone ACEMENT '.8-160.2'
Specimen height, in. Height/diameter ratio Description: LIMESTON LL = PL = Project No.: N1105070 Date Sampled: 7-27-10 Remarks: Lab No. 5912	E	PI =	Client: Project Source Sample	Assumed GS PARSONS BRI BRENT SPEN of Sample: R- Number: 16/N UNCON	S= NCKERHO CE BRIDO -6 Do NQ FINED CO	Type: DFF BE REPLA epth: 159	Limestone ACEMENT '.8-160.2' SION TEST

i.

ħ

į

UNCONFINED COMPRESSION TEST 1000000 1000000 1000000								TEOT							
1500000 1500000 1500000 1500000 1500000 1000000 1000000 1000000 0 0 0		UNC	ONFIN	IED C	OWPR	ESS	SION	IESI							
1500000 1000000 1000000 1000000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 000000 0.0000 0000000 0.0000 0000000 0.0000 0000000 0.0000 0000000 1000000 10000000 1277541.7 Unconfined strength, psf 1.000000 Failure strain, % 1.0 Strain rate, in/min. 0.0411 Vetar conternt, % 0.33 Wet density, pcf 168.1 Dry density, pcf 168.1 Dry density, pcf 1.07.6 Saturation, % N/A Void ratio N/A Specimen dameter, in. 1.972 Specimen height, in. 4.110 H_C Project: BRENT SPENCE BRIDGE REPLACEMENT <th>2000</th> <th>000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>]</th> <th></th>	2000	000]						
1500000 1500000 10000000 10000000 10000000 10000000 10000000 1000000 10000000 100000000 10000000 10000000															
1500000 10000000 10000000 10000000 10000000 10000000 1000000000 10000000000 100000000000 10000000000000 1000000000000000000 100000000000000000000 1000000000000000000000000000000000000										N N					
1000000 1000000 1000000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 1000000 500000 10000000 500000 100000000 5000000 1000000000000000 5000000000000000000000000000000000000										v il					
1000000 1000000 1 1 1 1000000 0.25 0.5 0.75 1 1000000 0.26 0.5 0.75 1 1000000 0.26 0.5 0.75 1 1000000 0.28 0.5 0.75 1 10000000 0.28 0.5 0.75 1 10000000 0.28 0.5 0.75 1 10000000 0.28 0.5 0.75 1 10000000 1 1 1 1 1 10000000 1.0 1.0 1 1 1 10000000 0.28 0.3 1.0 1 1 10000000 0.3 1.0 1.0 1 </td <td>1500</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Y II</td>	1500									Y II					
3 1000000 1 </td <td>1000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1000														
see 10000000 10000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 1000000 10000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000000	bsd									s il					
9 1000000 1 </td <td>ŚŚ</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>- A</td> <td></td> <td>1 /]</td>	ŚŚ							- A		1 /]					
image: second	Stre					· ·		///		1 /					
Sample No. 1 1 Unconfined strength, psf 1277541.7 1 Undrained shear strength, psf 1277541.7 1 Undrained shear strength, psf 638770.9 1 Failure strain, % 1.0 1 Strain rate, in./min. 0.041 1 Wet content, % 0.3 1 Dry density, pcf 168.1 1 Dry density, pcf 167.6 5 Secription: LIMESTONE 1.972 5 LL = PL = PI = Assumed GS = Type: Limestone Project No.: NI105070 2.08 1 1 1 Date Sampled: 7-19-10 Remarks: 2.08 1 1 Figure Figure Client: PARSONS BRINCKERHOFF 1 1 Figure It. C. Nutting 1 0 1	9 1000	000 000				·		-		1 / 1					
Source Source	SSI.							<u> </u>	-1	1					
Source Axial Strain, % Sample No. 1 Unconfined strength, psf 1277541.7 Undrained shear strength, psf 1000000000000000000000000000000000000	ipre						/								
500000 500000 0.5 0.78 Axial Strain, % Axial Strain, % Sample No. 1 1 Unconfined strength, psf 1277541.7 1 Undrained shear strength, psf 638770.9 1 Failure strain, % 1.0 1 Strain rate, in./min. 0.041 1 Wet density, pof 168.1 1 Dry density, pof 167.6 5 Saturation, % N/A 1 Void ratio N/A 1 Specimen diameter, in. 1.972 5 Specimen height, in. 4.110 1 Height/diameter ratio 2.08 1 Description: LIMESTONE 1 2.08 LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF 1 5.0476 Project: BRENT SPENCE BRIDGE REPLACEMENT Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: I/NQ UNCONFINED COMPRESSION TEST H.C. Nuttting	щ		+ + +			+ -	+/-								
500000 0.5 0.75 1 Axial Strain, % 0.5 0.75 1 Unconfined strength, psf 1277541.7 1 1 Undrained shear strength, psf 638770.9 1 1 Failure strain, % 1.0 1 1 Strain rate, in./min. 0.041 Water content, % 0.3 Water content, % 0.3 167.6 167.6 Saturation, % N/A 1.972 167.6 Void ratio N/A 1.972 1.972 Specimen diameter, in. 1.972 1.972 1.972 Specimen height, in. 1.972 1.972 1.972 Specimen Sight/Unitengeter Pieceter Strengtereter Pieceter Piecete	0														
Sample No. 1 Unconfined strength, psf 1277541.7 Undrained shear strength, psf 638770.9 Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Ory density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE Ital PI = LL = PI = Project No.: N1105070 Client: PARSONS BRINCKERHOPF Date Sampled: 7-19-10 Remarks: Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: L/NQ UNCONFINED COMPRESSION TEST Figure H_LC. Nutting	500	000				$+ \downarrow$	1 -								
Axial Strain, % Sample No. 1 Unconfined strength, psf 1277541.7 Undrained shear strength, psf 638770.9 Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Wet density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen diameter, in. 1.972 Specimen diameter, in. 2.08 Description: LIMESTONE 2.08 LL = PL = PL = PI = Assumed GS= Type: Limestone Project No:: NI105070 2.08 Date Sampled: 7-19-10 Remarks: Lab No: 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: I/NQ UNCOMPRESSION TEST Figure															
Sample No. 1 Unconfined strength, psf 1277541.7 Undrained shear strength, psf 638770.9 Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen height, in. 1.972 Specimen height, in. 1.972 Project No.: N1105070 2.08 Date Sampled: 7-19-10 Remarks: Lab No. 5857 Client: PARSONS BRINCKERHOFF Figure UNCOMPLISED COMPRESSION TEST Figure UNCOMPLISED COMPRESSION TEST															
0 0.25 0.5 0.75 1 Axial Strain, % Sample No. 1															
0 0.25 0.5 0.75 1 Axial Strain, % Sample No. 1		0						- *							
Axial Strain, % Sample No. 1 Unconfined strength, psf 1277541.7 Undrained shear strength, psf 638770.9 Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE LL = PL = PToject No:: N1105070 Date Sampled: 7-19-10 Remarks: Lab No. 5857 Figure Figure	1	0	0,25		0.5	0	.75	1	•						
Sample No. 1 1 Unconfined strength, psf 1277541.7 10 Undrained shear strength, psf 638770.9 10 Failure strain, % 1.0 10 Strain rate, in./min. 0.041 10 Water content, % 0.3 10 Wet density, pcf 168.1 10 Dry density, pcf 167.6 10 Saturation, % N/A 10 Void ratio N/A 10 Specimen diameter, in. 1.972 10 Specimen diameter, in. 1.972 10 Bescription: LIMESTONE 2.08 10 LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF 10 Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: I/NQ UNCONFINED COMPRESSION TEST H.C. Nutting 10		Axial Strain, %													
Sample No. 1 Unconfined strength, psf 1277541.7 Undrained shear strength, psf 638770.9 Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE Client: PARSONS BRINCKERHOFF Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H.C. Nutting		ample No. 1													
Orderlined shear strength, psi 1277541.7 Undrained shear strength, psi 638770.9 Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE Itemstone LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H. C. Nutting	Sample No.				1										
Failure strain, % 1.0 Strain rate, in./min. 0.041 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE LL = PL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure	Unconfined strength, p	DST			1277541	7									
Strain rate, in./min. 0.041 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 1.972 Height/diameter ratio 2.08 Description: LIMESTONE UL = PL = PI = Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H.C. Nutting	Failure strain %	iyin, psi			038770	.9									
Water content, % 0.3 Water content, % 0.3 Wet density, pcf 168.1 Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE 1.10 LL = PL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST H_C. Nutting H.C. Nutting	Strain rate in /min				0.041										
Wet density, pcf 168.1 Dry density, pcf 168.1 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE 2.08 LL = PL = Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST H_C. Nutting H.C. Nutting	Water content. %	<u>,</u>			0.041										
Dry density, pcf 167.6 Saturation, % N/A Void ratio N/A Specimen diameter, in. 1.972 Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE 2.08 LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST H.C. Nutting	Wet density, pcf				168.1										
Saturation, % N/A Image: status of the	Dry density, pcf				167.6										
Void ratio N/A Image: style="text-align: center;">Image: style="text-align: center;">N/A Specimen diameter, in. 1.972 Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style: style="text-align: style="text-align: style="text-al	Saturation, %	······································			N/A										
Specimen diameter, in. 1.972 Image: specimen height, in. 1.972 Specimen height, in. 4.110 Image: specimen height, in. 1.972 Height/diameter ratio 2.08 Image: specimen height, in. 1.972 Description: LIMESTONE 2.08 Image: specimen height, in. 1.972 LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Date Sampled: 7-19-10 Client: PARSONS BRINCKERHOFF Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ Figure UNCONFINED COMPRESSION TEST H.C. Nutting	Void ratio				N/A										
Specimen height, in. 4.110 Height/diameter ratio 2.08 Description: LIMESTONE 2.08 LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Remarks: Source of Sample: R-7 Depth: 83.5-83.9' Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Figure UNCONFINED COMPRESSION TEST H.C. Nutting	Specimen diameter, ir	1			1.972										
Height/diameter ratio 2.08 Description: LIMESTONE Image: Comparison of the state of the stat	Specimen height, in.				4.110										
Description: LIMESTONE LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Client: PARSONS BRINCKERHOFF Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST H.C. Nutting	Height/diameter ratio			2.08				·							
LL = PL = PI = Assumed GS= Type: Limestone Project No.: N1105070 Date Sampled: 7-19-10 Client: PARSONS BRINCKERHOFF Remarks: Lab No. 5857 Project: BRENT SPENCE BRIDGE REPLACEMENT Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H.C. Nutting	Description: LIMEST	ONE	· ·												
Project No.: N1105070 Client: PARSONS BRINCKERHOFF Date Sampled: 7-19-10 Project: BRENT SPENCE BRIDGE REPLACEMENT Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H.C. Nutting			Pi =	-	Assume	d GS=		Type:	Limestone						
Bate Sampled: 7-19-10 Remarks: Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST H.C. Nutting	Project No.: N1105070) A		Client:	PARSONS	BRINC	CKERHO	OFF							
Remarks: Lab No. 5857 Lab No. 5857 Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H.C. Nutting	Date Sampled: 7-19-1	U		Droinet	• DDDNT 01	DENICI	ירוות כ	<u> </u>	ለ ለግሞአ ብጥኑ ነጥ						
Source of Sample: R-7 Depth: 83.5-83.9' Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure H.C. Nutting	Lab No. 5857			Froject	DRENT S	FENCI	2 BRIDO	JE KEPLA	ACEMENT						
Sample Number: 1/NQ UNCONFINED COMPRESSION TEST Figure				Source	of Sample	e: R-7	D	epth: 83.	5-83.9'						
UNCONFINED COMPRESSION TEST Figure				Sample	Number:	1/NQ									
Figure H.C. Nutting					UNC	ONFI		OMPRES	SION TES	Т					
	Figure					Ļ	ι <u>C</u> .	Nutti	ng						

ı

,

	LINC				RES	SIO		LES	Т			
									.			
2	2000000								_	\prod	1	
Compressive Stress, psf												
	0	0.25		0.5		0.75			1			
			Axial	Strain, %	6							
Sample No.							··					
Unconfined streng	th, psf			1748	783.3							
Undrained shear s	trength, psf	-		8743	91.7							
Fallure strain, %					.8						_	
Strain rate, in./min				0.0	29							
Wet density not				16	 8 0							
Dry density por				16	8.4							
Saturation. %				N N	/A	•						
Void ratio				N	·· <u>·</u> /A	-						
Specimen diamete	er, in.			1.9	70							
Specimen height,	in			3.9	30							
Height/diameter ra	atio			1.9	99							
Description: LIM	ESTONE											
LL =	PL =	PI =		Assur	ned G	S=		Туре	e: Lime	stone		
Project No.: N110	5070		Client:	PARSON	IS BRI	NCKE	RHOF	F				
Date Sampled: 7-	19-10								• · · ~=	(T)		
Remarks: Lab No. 5858			Source	: BRENT	DI SPEN	ICE BF -7	UDGF Dej	3 REP pth: 8	LACEN 8.4-89'	MEN T		
		1	Sample	Numbe	er: 2/N					TEOT		
Figure				U	NUUN		$\frac{1000}{2.0}$	Jutt		N IESI		

		U	NCC	DNF	IN	ED	C	ΟĪ	1P	RF	ES	S	0	N	TE	ES	Т											
	0000000												_				-											
	2000000							_										<u> </u>	·	1								
ess, psf	1500000 -																											
npressive Str	1000000 -						·····						1						(
Ö	- 500000 - - -																											
	o L)		0.2	5	A	xial (0.5 Strai	in, %	 		0.7	5															
Sample No.									1			—	•															
Unconfined stren	ample No.1nconfined strength, psf979514.7																											
Undrained shear	nconfined strength, psf979514.7ndrained shear strength, psf489757.3																											
Failure strain, %									0.	8																		
Strain rate, in./m	in.								0.0	39																		
Water content, %	, 0	<u> </u>							1.	0		_																
Wet density, pcf	-								170).6																		
Dry density, pcf									168	3.9																		
Saturation, %									N/	A																		
Volu ratio	tor in								N/	A 70		-																
Specimen beicht	ier, m.							-	2.9	70		+																
Height/diameter	<u>, iii.</u> ratio								צונ <u>.</u> זר	<u>טט</u> 11																		
Description: LIN	JESTONI	7					İ		∡.(/1	<u> </u>	1																
LL =	PL =	-		PI =				As	sun	ned	GS	S=			Т	ype	: Lime	estone		· · · · · · · · · · · · · · · · ·								
Project No.: N11	05070		I]	Clie	nt: 1	PAR	SON	IS B	BRI	NCF	KER	RHC	<u>. </u>													
Date Sampled:	7-19-10																											
Remarks: Lab No. 5862						Pro	ject:	BR	ENT	SP	EN	CE	BR	IDO	E R	EPI	LACEN	MENT										
						Sou San	irce iple	of S <u>Nu</u>	Sam mbe	ple: er: <u>5</u>	: R- 5/N(.7 Q		De	epti	1: 93	8-98.5'											
									U	NC	ON	FIN	ED	СС	DMF	PRE	SSIO	N TES	Γ									
Figure												H	.C ^{Lerr}	acc	Nu on C	utt Som	ing		Figure H.C. Nutting									

I

.

	UNC			OMPR	FSS			ST		<u></u>
	400000									
	400000									
Compressive Stress, psf		0.5				.5				
			Axial	Strain, %						
Sample No.				1						
Unconfined stren	gth, psf			263952	.1					
Undrained shear	strength, psf	· · · · ·		131976	.0					
Failure strain, %				1.4						· ·
Strain rate, in./mi	n			0.039						-
Wet density not	<u>, , , , , , , , , , , , , , , , , , , </u>			161.0						
Dry density, por				155.6				·		-
Saturation, %				N/A						
Void ratio				N/A						
Specimen diame	ter, in.			1.970						
Specimen height	, in.			3.900						
Height/diameter r	atio			1.98						
Description: SHA	ALE	DI -		Δ	100-	,	······································	mar 01	1.	
Project No · N11	L 05070		Client					pe: Sna		······
Date Sampled: 7	-19-10			I ANSUNS	DKINC	ACKH	OLL			
Remarks: Lab No. 5866			Projec	t: BRENT S	PENCE	BRID	GE RE	EPLACE	EMENT	
			Source Sampl	e Number:	9/NQ		Jepth:	121,1-1	121.4	
Figure				UNC		NED C I.C. Terrae			JN TEST	

ļ

	UNC			OMPR	FSS	ION .	TEST							
	2000000													
	2000000							<u> </u>	1					
	1500000							1						
4 <u>-</u>								1						
sd 'i								i						
less			-					,						
e St	1000000													
sive	1000000	· · · · · · · · · · · · · · · · · · ·												
pres				+				- <u> (ny</u>						
mo														
0														
	500000				+ +									
								—1						
	0	0.25		0.5	0.1	75	1							
			Axial	Strain, %										
Sample No.	0 1 1 0 0.25 0.5 0.75 1 Axial Strain, % nple No. 1 1 confined strength, psf 1227670.6 1													
Unconfined stren	ngth, psf			1227670	0.6									
Undrained shear	strength, psf			613835.	.3									
Failure strain, %	in			0.7										
Water content. 9	6		···	0.042										
Wet density, pcf	<u> </u>			165.0										
Dry density, pcf				164.2	· ·									
Saturation, %				N/A										
Void ratio				N/A										
Specimen diame	eter, in.			1.970										
Height/diameter	ratio			4.270										
Description: LIN	MESTONE			L. 2.17	I		l	I						
LL =	PL =	PI =		Assumed	d GS=	·	Type:	Limestone						
Project No.: N1	105070		Client:	PARSONS	BRINC	KERHO	FF							
Date Sampled:	7-19-10													
Remarks:			Project	: BRENT SI	PENCE	BRIDG	E REPLA	ACEMENT						
240 110 2000			Source	of Sample	: R-7	De	pth: 128	3.7-129.5'						
			Sample	Number:	10/NQ									
				UNC			MPRES	SION TEST						
Figure					⊢ A	1.U. ľ Terraco	NUTTIP n Compa	1 g anv						

____ Checked By: GS

		ļ	UN		NC	IFI	NE	ED	C	:0	MI	PF	RE	S	S	IC)N	T	Έ	S	Γ							
	2000000							-					- -						<u> </u>	1	٦							
							+ • +		_		_	+		-					<u> </u>		-		<u> </u>					
							+												+	-	1		ſ	1		1		
						1										/					1			1		1		
	1500000														Ζ									1		ł	1	
	1000000														/				ļ					ļ		۱ ۲		
, bc			.	. -				_						Д										1		ì		
e se				_		_				-			_/	-						-	-		ľ	ł		1		
Stre				_					_				A								-			١		1		
š.	1000000						1					-/	-	-							-			١		י ו		
e SS												\uparrow							\vdash					1				
upr								-			7	/											~					
Cor											Τ																	
	500000									/	/																	
	000000									4																		
									4											-	1							
						_		\square			_	+	_	_					_		-							
		$\left - \right $					\square					_		_				1		-	┢	1						
	01	0			-1-0	.25				0.5				}	0.7	'5				<u> </u>	1							
								A	xial	Stra	ain	%																
										0110	a	, ,,																
Sample No.												1																
Unconfined stren	ample No. 1 nconfined strength, psf 1812415.1																											
Undrained shear	strength	<u>ı, p</u> s	st								90	620	7.5		+-					_					_			
Strain rate in /m	in			•								0.8	0		+					-					+			
Water content %	, , ,									-	<u> </u>	0.03 0.5	<u>9</u>							+	··· ·					·		
Wet density, pcf	· · · · · · · · · · · · · · · · · · ·					•				-	. 1	165.	.8							+					+			
Dry density, pcf											1	165	.0		\uparrow													
Saturation, %												N//	1															
Void ratio												N//	1															
Specimen diame	ter, in.									<u> </u>	1	1.97	0															
Specimen height	<u>, in.</u>									_	3	3.97	0		-					_								
Height/diameter	ratio		· .	····								2.02	2															
	PI =	<u>Ľ</u>		1	PI	=				Λ	e e •		04	64	-			Т	Τ	n c:	т: т:	mag	ater	10				
Project No.: N11	05070							Clie	nt		201		20 2 D	ос рп		ΚÞ	ក្រប		<u>יא</u> ד	he.				10				
Date Sampled:	7-19-10						`	-110		171		UTN.	נו כ	INII	NU I	n L)	171	Ur.	1.									
Remarks:							F	^o ro	jec	t: BI	REI	NT	SPI	EN	CE	BF	UD	GE	RI	EPL	AC	EN	1EN	T				
Lab No. 5871										-	-			_	_													
1								Sou	Irce ant	e of	Sa	mp	le:	R-	7		C)ep	oth:	: 15	4.5	-15	5.1					
1								san	ipi	e Nil	111		: 10 100)N	<u>iV</u> FIN	IFI	<u> </u>	ON			5.51		ј т	FST	•	· .		
Figure												011			Н		20	N	li r	tti	n	יישיי ר	• II					
															A	Te	rrac	in son	Cc	2 mp	an	₹						

ł

	JNCONFIN		OMPRES	SION	TEST							
2000000												
200000						{	<u> </u>					
							1					
1500000												
100000												
sa l												
es so			4									
t d												
<u></u>	·					1						
<u>e</u>						4 3						
d du												
Ŭ 📙												
500000		4										
· · · ·												
0						1						
0	0.5		1	1.5	2	I						
Axial Strain, %												
Sample No. 1 Image: Constraint of the strength of the strengt of the strength of the strengt of the strengt of the st												
Unconfined strength, psf			1263171.1									
Undrained shear strength, ps	sf		631585.6									
Failure strain, %			1.0									
Water content %	·····	.	0.041	-								
Wet density, pcf			165.4	•								
Dry density, pcf			164.6	-	<u> </u>	• ·						
Saturation, %			N/A									
Void ratio			N/A									
Specimen diameter, in.			1.970									
Height/diameter ratio			4.100									
Description: LIMESTONE			2.00	I	I		<u> </u>					
LL = PL =	PI =		Assumed GS	;=	Type: Li	mestone						
Project No.: N1105070	• • • • • • • • • • • • • • • • • • • •	Client:	PARSONS BRIN	ICKERHC	FF							
Date Sampled: 7-19-10												
Remarks:		Project	BRENT SPEN	CE BRIDG	E REPLAC	EMENT						
Lau Inu. 3072		Source	of Sample: R-3	7 D e	pth: 163.7	-164.5'						
		Sample	Number: 17/N	Q								
		1	LINCONT		MODECC							
			UNCONF		NIFRE33							

.

ł

i

	CONFIN		OMP	RES	SION		ст	
						* I L.,		
2000000								······
	0.5				1.5			
		Axial	Strain, %					
Sample No.		·	1					
Unconfined strength, psf			13889	03.4				
Epilure strein %			69443	51.7		·		· · · · · · · · · · · · · · · · · · ·
Strain rate in /min			1.4	2 17				
Water content %			0.01					
Wet density, pcf			166	.9				
Dry density, pcf			166	,8		,,		
Saturation, %			N//	4				
Void ratio			N//	4				
Specimen diameter, in.			1.98	30				
Specimen height, in.			3.75	50				
Height/diameter ratio			1.8	9			I	
Description: LIMESTONE	Dt -	·•·	A	ad 00	2-	—	Y	Limogtona
Project No : N1105070		Client	ASSUM				he: i	
Date Sampled: 10-5-10			PAKSON	9 RKI	NUKERI	JOFF		
Remarks: Lab No. 9682		Project	: BRENT	SPEN	CE BRII	OGE R	EPLA	CEMENT
		Source	of Samp Numbe	ole: R- r: 1	-8	Depth	:87.8	3-88.2'
			U		FINED (COMP	RES	SION TEST
Figure					H.C.		ittin ompa	1 0

,

	UNC	ONFIN	IED C	OM	PRE	ES	SIC	DN	Т	EST	Γ
100000											7
100000											-
750000 500000 250000 250000		0.5					1.5				
			Axial	Strain	, %						
Sample No.					1						·····
Unconfined strength, psf				71	1870,	3					
Undrained shear strength	ı, psf			35	5935.	1					
Failure strain, %					1,4						
Strain rate, in./min.				(0.037						
Water content, %					1.0						
VVet density, pcf					164.3						
Dry density, pcf					162.7					-+	
Void ratio					<u>IN/A</u> N/A					-+	
Specimen diameter in					<u>19/A</u> 1.980						
Specimen height, in.					3.780						
Height/diameter ratio				-	1.91						
Description: LIMESTON	E	<u> </u>								1	I
LL = PL =		PI =		Ass	umec	I GS	S=		ר	ype	: Limestone
Project No.: N1105070			Client:	PARS	ONS I	3RI	NCKI	ERH	OFF		
Date Sampled: 10-5-10											
Remarks: Lab No. 9687			Project 	: BRE	NT SF	PEN	CE B	RID	GE I	REPL	ACEMENT
1			Source	of Sa	mple	R	-8	D)ept	h: 10	1.8-102.3'
			Sample	• Num	ber: (5			<u></u>		
					UNC	ON	FINE		OM	PRE	SSION TEST
Figure							H.	U, errac	NI on (ng

Į

.

l

i

Tested By: MRE Checked By: GS

	UNC	ONFIN	ED C	OM	PRE	SSI	ON	TES	ST			
	××××××××××××××××××××××××××××××××××××××											
2000												
Compressive Stress, psf Compressive Stress, psf 500									1			
	0	0.5		1		15						
	Ū	0.0	Axial	Strain,	%	1.0			۷			
Sample No.		·			1			- -		· · · ·		
Unconfined strength,	psf			167	4834.1					<u>,</u> ,		
Undrained shear stren	ngth, psf			83	7417.0							
Failure strain, %					1.1							
Strain rate, in./min.				0	.039							
Water content, %					0,7							
Wet density, pcf				1	66.4							
Dry density, pcf				1	65.3							
Saturation, %	· · · · · · · · · · · · · · · · · · ·		•••	· · · ·	N/A							
					N/A							
Specimen diameter, il	n				.980						+	
Height/diameter ratio					970 2.01							
Description I IMERT	ONE			J ·	2,01	L					<u> </u>	
		PI =		Ass	umed (GS=)e: Lime	stone		
Project No.: N110507	/0	L	Client	PARSO)NS RR		ERHO)FF		~		
Date Sampled: 10-5-	10							- • •				
Remarks: Lab No. 9690			Project	: BREI	VT SPE	NCE B	BRIDO	JE RE	PLACEN	1 ENT		
			Source Sample	e of Sa ∋ Num	mple: I ber: 9	२-8	D	epth:	126.3-12	26.7'		
					UNCO	NFINE		OMPF	RESSIO	I TEST		
Figure						Η. ΑΤ	C.	<u>Nut</u>	ting mpany			

.

							NIC							-0	0			-	, 	<u> </u>	-					
			Ur		UN		NE	:D	Ū	0	IVI	ΡI	KE	:3	5	IC	N		E	51						
	2000000																	Ĺ								
																					ſ					
																			<u> </u>				ļ			
			<u> </u>			-			_				_										`.	-		
	1500000				_													-						Ì		
<u></u>		-						-+	_		-/ -													ì		
sd 'i				_							H													1		
US CO		_								/	-							—						ł		
St		-							-	\mathcal{A}	-				_									1		
ive	1000000					-				/									<u> </u>					Í		
ess									1		-											,		1		
Idu									/			•									L.	299			ليستجد	
- S	Contraction Contraction																									
	8																									
	000000							_																		
					_	/	<u> </u>																			
						/			_						_						—1					
					\neq																					
	0	6			<u> </u> ().5				1					 1	5				Ļ						
								A	xial	St	rain	ı, %)			-										
Sample No.												1			-											
Unconfined stren	ngth, psf										15	370	26.	1												
Undrained shear	strength	<u>а, р</u>	sf								76	585	13.1													
Failure strain, %	4											1.	1													
Strain rate, in./m	in.											0.0	38													
	0									_		0	3		_								+			
Dry density, pcf												$\frac{166}{166}$.6 : 1							_		<i></i>				
Saturation %						•						100 N/	л. I Л													
Void ratio						•••						N/	A A				-									
Specimen diame	ter. in.									-		1.9	80													
Specimen height	t, in.											3,8'	70													
Height/diameter	ratio											1.9	5		\uparrow											
Description: LIN	MESTON	Е																		,	u .		I			
LL =	PL =				PI	=				4	١ss	um	ned	G	S=				Ту	e:	Limes	stone				
Project No.: N11	05070							Clie	nt:	PA	RS	ON	S B	RI	NC.	KE	RH	OF	F							
Date Sampled:	10-5-10																									
Remarks:								Proj	ect	t: B	RE	NT	SP	EN	CE	BF	RID	GE	RE	PLA	ACEM	IENT				
Lau INO. 9091								Sou	rce	e of	' Sa	լյու	ole:	R-	-8		г)en	th	127	.8-129	8.31				
								San	nple	e N	um	hbe	r: 1	0	2					1 1	.0.12.0	0,0				
												U	VC(ЛС	FIN	IEC	D C	٥N	1PF	RES	SION	ITES	ST .			
Figure	ure														Ĥ	<u>[</u> [С.	Ν	ļų	tir	ng					
	Jre														A	le	rrac	con.	Co	mpa	anī y 📃					

			ONFI	NFC	0.00)ME	PRF	50		N	ТБ	:51	-					
				I 1 Inne Ins		/ 1411						-01						
	2000000					<u> </u>								<u>ر</u>	<u> </u>	- <u>`-</u>		
										-	-	_			ł	ł		
)	1		
	4500000										-					(
	1500000														(١		
bsf	_	_													1	,		
sss,	_				/										ţ	ſ		
Stre				/	/						_ _				\$	1		
si.	1000000 -	<u> </u>		/		+		+-	-						۲	ł	ł	
ess				-/-		+								Ĺ				
ă E								-				1						
ပိ				Д			_											
	500000		+ A				-											:
	_		+															
	-	· · · · · ·																
	!		$f \rightarrow$					-					-1					
	0																	
	0		0.5			1		1	1.5			2						
				Α	xial S	train,	%											
Sample No.							1											
Unconfined stren	ngth, psf					151	1267.5	5										
Undrained shear	strength,	psf				755	633.8											
Failure strain, %							1.0								-			
Water content	<u>iin.</u> 6					0	.038											
Wet density, pcf	•	<u></u>				1	62.5											
Dry density, pcf						1	61.7											
Saturation, %		·				1	N/A											
Void ratio						<u>(</u>	N/A											
Specimen diame	eter, in.						.970											
Specimen neight Height/diameter	ratio					3	.890						_ .					
Description: 1.0	MESTONE						.71								L			
LL =	PL =		PI =			Assu	imed	GS=	:		T	ype:	Lime	estone	;			
Project No.: NI	105070			Cli	ent: P	ARSC	NS B	RINC	CKE	RHC)FF	<u> </u>					·,	
Date Sampled:	10-5-10				_													
Remarks:				Pro	oject:	BREN	IT SPE	ENCI	E BR	RIDC	BE R	EPL	ACEI	MEN	Г			
Lau 190, 7072				So	urce o	of Sar	nple:	R-8		D	eptł	n: 13	5.5-1:	36'				
				Sa	mple	Numk	ber: 11	1										
							UNCC	DNFI	NEC		DMF	PRES	SSIO	N TE	ST			
Figure								1.(j.	INL		ng						

	UNC	ONFIN		:OM	PRI	ESS	SIO	ΝΤ	'ES'	Г
2004										-
2000										_
1500 South Stress, psf Compressive Stress, psf 500										
	0	0.5	<u> </u>	1		,	1.5		J	2
			Axial	Strain	, %					
Sample No.	·····				1				î	
Unconfined strength,	psf			18	31836	.4				
Undrained shear stre	ngth, psf			91	5918.	2				
Failure strain, %					1.1					
Strain rate, in./min.					0,038					
Water content, %				ļ	0.3					
Wet density, pcf					162.5	[
Dry density, pcf					162.0					
Saturation, %					N/A		<u> </u>			
Void ratio		· · · · · · · · · · · · · · · · · · ·			N/A					
Specimen diameter, i	<u>n.</u>				1.980					······
Specimen height, in.					3.850					
Height/diameter ratio					1.94					
Description: LIMES	<u>'ONE</u>							T		
	. =	PI =		Ass	umed	GS=	.		Гуре	Limestone
Project No.: N110507	10		Client:	PARS	ONS E	BRING	CKER	HOF	F	
Remarks:	IV		Projec	t: BRE	NT SF	ENCI	E BRI	DGE	REPL	ACEMENT
Dao 110, 7075			Source	e of Sa	imple	: R-8		Dep	o th: 14	1-141.5'
					UNC	ONFI	NED	CON		SSION TEST
Figure					2,10	- ۱۰۰۰ م		, N	utti	ng

,

		J	IN	<u> </u>		.11				אר		P		20)VI	- -		0 7	-					
						-11				J 11				ວວ 	пС 				3						
	2000000																								
																					ſ		<u> </u>		 ר
					ļ					\perp	1												י י		l
										/	_													, \	
	1500000								ļ.,	4						_				-				1	
4 						_			$\downarrow \downarrow$							ļ								/	
sd .						_			/								-			-	ĺ)	
SS						_		-+/	4		<u> </u>													, I	
Stre				_		-+			_		-					<u> </u>		-		-				1	
é	1000000		· · · ·					<u> </u>	_	_								_						,	
isse								4		+	+												,		
bre														<u> </u>		ŀ					Ĺ.				 ł
L L										-						-	<u> </u>								
					\vdash	/-		+	+.					. <u> </u>		-		<u> </u>		-					
	500000					1													<u> </u>	1					
					1					-															
								· ·-·			11									L					
																-				1					
	0																	-							
		0			0.5					1				1	,5				2						
								Axi	al S	Strai	in, %	6													
Sample No.				··•								1		Т			···• ~····								
Unconfined stren	gth, psf					••••••				1	817	085	.1												
Undrained shear	strength	, ps	f							9	085	542.	5												
Failure strain, %											1	.1													
Strain rate, in./m	in.										0.0)40													
Water content, %	, D										0	.3													
Wet density, pcf											16	0.0													
Dry density, pcf						,		.,			15	9.6													
Saturation, %											N	/A]		
Void ratio											N	/A													
Specimen diame	ter, in.								_		1.9	80													
Specimen height	, I n .		.								4.0)90 0-													
Height/diameter	ratio										2.	07													
Description: LIN	AESTON	E			<u>nı –</u>				- 1 -	N -										x					
Droject No - N11					ri =					AS	sur	nec	1 년	<u>ত</u> =				IY	pe:	Lin	nes	tone			
Date Sampled: 1							∥ ^c	lien	t: P	AR	SO	VS I	ЗRI	NC	KE	RH	OF	F							
Remarks:	10-5-10						P	roje	ct:	BR	ENT	ГSF	PEN	ICE	BI	RID	GE	RE	PL	ACI	EM	ENT	7		
Lab No. 9694										~			-	0		_									
							5 e	our	ce (ale	ot S Nuu	am mh	ple ar	: K	-8		Ĺ	Jeb	th:	14	9-14	19.5	1			
											9011 		1.0 N			D C	10			SIG	<u>-</u> N	TE	<u>ст</u>		 - • - • • • •
Figure	ante										0		0.0		1 1	້	N		, †i i	<u>ח</u> ת	- 14 	·	UT I		
rigure	ure													Å	Te	rrac	on I		ull mp	anv					

.

,

	UNC		IED C	OMPRE	ESSIC	ON T	EST	
	2000000							
	2000000							
npressive Stress, psf	1500000							
Č	500000							
								1
1		0.5		1	1.5		2	
			Axial	Strain, %				
Sample No.				1				
Unconfined stren	ngth, psf			1475126.	5			
Undrained shear	strength, psf			737563.2	2			
Failure strain, %			·	1,1				·····
Strain rate, in./m	iin.			0.037				
Water content, 9	6			0.2				
Dry density, pcf				164.4				
Saturation %			·,	104.2 N/A				
Void ratio				NI/A				
Specimen diame	eter. in.			1.980				
Specimen height	t, in.			3.760			·	
Height/diameter	ratio			1.90				
Description: LIN	MESTONE		<u> </u>	<u></u>	L		· · · · · ·	
LL =	PL =	PI =		Assumed	GS=		Type:	Limestone
Project No.: N1	105070		Client:	PARSONS B	RINCKE	ERHOF	F	
Date Sampled:	10-5-10							
Remarks: Lab No. 9695			Project	: BRENT SP	ENCE BI	RIDGE	REPLA	ACEMENT
			Source	of Sample: Number: 1	: R-8 4	Dep	oth: 151	8-152.1'
				UNC	ONFINE		IPRES	SION TEST
Figure			[H.(C. N		

-

UNCONFI	NED COMPRESSION TEST
2000000	
200000	
1500000 Jac signature 1500000 Jac signature 500000 500000 0 0 0 0 0 0 0 0 0 0 0	Avid Strain 2/
Sample No.	1
Unconfined strength, psf	1729572.6
Eniluro stroin %	864786.3
strain rate in /min	
Water content %	0.039
Wet density, pcf	164.9
Dry density, pcf	164.4
Saturation, %	N/A
Void ratio	N/A
Specimen diameter, in.	1.980
Specimen height, in.	3.920
Height/diameter ratio	1.98
Description: LIMESTONE	
LL = PL = PI =	Assumed GS= Type: Limestone
Project No.: N1105070	Client: PARSONS BRINCKERHOFF
Date Sampled: 10-5-10 Remarks:	Project: BRENT SPENCE BRIDGE REPLACEMENT
Lab No. 9696	Source of Sample: R-8 Depth: 158.7-159.2' Sample Number: 15
Figure	UNCONFINED COMPRESSION TEST H.C. Nutting

i

!

÷

i

Checked By: GS

		ι	JN	CC)NF	=	NE	Đ	С	:01	M	۶F	RE	S	S	10	N	Т	E:	ST							
10																		r		-	1						•
10									\downarrow																		
	-										_											ſ					}
				-	 				_					_											ł		
	-	.				_																			اــ ــ	-	
7	50000			+-				_	-					_												١	
*	\vdash							_																	I	ĺ	
ä	-			_		-		_	-					-+													
S S S	-	-+		+					_				_	_	1											1	
Str	-			+									_	/												·	
<u>,9</u> 5	00000 -	-+				_							-		-								_				
s S O	_			+					+		+		#	-													}
ubr												1								——		-					-
o o	O O O											/	+														
	250000										7										ĺ						
2:	250000										1					 											
										Χ	1										L_1						
									Ζ												'						
								Χ																			
	oL]						
	0)			0.	5				1					1.	5				2							
								Ах	la	Stra	ain,	%															
Sample No	<u></u>											1															
Unconfined strength	n psf									-	60	797	97		-												
Undrained shear str	enath.	DS	f							-	30	398	9.9														
Failure strain, %			<u>.</u>									1.5	;														
Strain rate, in./min.											0	0.03	8												1		
Water content, %												1.7	,		1												
Wet density, pcf											1	62.	.3														
Dry density, pcf											1	59.	.6														
Saturation, %												N/A	1														
Void ratio					-					<u> </u>		N/A	4														
Specimen diameter,	, in.										2	.38	30														
Specimen height, in	l.										3	.83	0		+										_		
Height/diameter rati	0								,			1.6	1														
Description: LIMES	STONE	ΞW	/SH	ALE									<u>-</u>	-					-		v ·			<u> </u>	~ · ·		
	~L =				<u> </u>	•					SSI	um	ed	GS	5=				ľy	pe:	Lin	nes	ston	e w/	Shale		
Project No.: N11050	070						9	Slie	nt:	PA]	RSO	DN:	S B	RII	NC	KE	RH	OF	F								
Pare Sampled: 10-7	/-10						[Proi	90	t: B	ודא	ŇТ	SPI	ΞN	CE	R	מוא	GP	RE	pī	נים	ÈМ	IEN	т			
Lab No, 9702									υV	ы D1	NL)	41	011	N	CI C	רם י	άD	ЧU	- NE		100	IVI	Νاندו	ı			
							5	Sou	rce	e of	Sa	mp	ole:	R-	·2A			De	eptl	n: 1	20.:	51-	121	ı			
								Sam	ıpl	e Nu	ım	bei	r: 6														
												U١	100	DΝ	FIN	١E	С	ON	/IPF	RES	SSI	ЛC	I TE	EST			
1	gure																-	-									

i

		U	JNC	0	NFI	N	EC) (0	M	P	RE	ES	S	10	N	Т	ES	ST							
				, <u> </u>											-	-	_		-							
20	000000																									
															_						<u>.</u>				 ,	
	-					ļ																ſ				
																					Ì	١				
16	500000											_									Ì	١				
4 <u>–</u>						<u> </u>															ľ	}				
sd	-																					1				
ŚŚ	-										-	_		_								1				
Stre	-							•	1			_		.	_							ſ				
9 10	000000-								\mathbb{A}	_				_								١		/		
ŝssi	-								<u> </u>					_					_			١		ì		
bre	-							\square						-+	-				_	1		1_		<u> </u>)	
L Lo	CO											-		\rightarrow												
	8											-+	-+	-+												
3	500000									_				+												
					-7	1								\dashv												
					/									+												
			-		<u> </u>															1						
	n	_	~			1								-						'						
	Ŭ)		I	0.5			·	1					1.0	5		1		2							
							Α	\xia	l St	rair	n, %	, 2														
Sample No.								· · · · ·			1															
Unconfined strength	h, psf									10	894	95.	1													
Undrained shear st	rength,	psf	-							5	447	47.5	5													
Failure strain, %											1.	0		<u> </u>												
Strain rate, in./min.											0.0	43		-												
Water content, %	•••••										1.	2														
Wet density, pcf											162	2.6														
Dry density, pcf											160).7														
Saturation, %									_		N/.	A														
											<u>N/.</u>	A														
Specimen diameter	r, in .					• • • • •					2.3	75							_							
Height/diameter ref	i. io										4,3	00 M							+							
Description: LD 02		,		-							1.8	4	• • • • •											<u> </u>		
		4			기 ==					0er	21117	חסר	69	3=	·			Тул		Lim	oot	me				
Project No · N1105	070					ТГ	CII	ont		100		10U	00		(71 7)	011		<u>י י י י</u> א קעי								
Date Sampled: 10-	7-10							ent	- F <i>P</i>	1175	UN	ъВ	r.11	NU	NE)	1.11	Url									
Remarks: Lab No. 9705							Pro	ojec	t: E	BRE	ENT	SP:	EN	CE	BR	ID	GE	RE	PLA	4CE	ME	NT				
240 1101 27 00	narks: No. 9705											ple:	R-	2A			De	pth	: 1:	34.4	-134	4.9'				
											U		ЛС	FIN	ΙEΓ) C	OM	IPR	ES	SIO	N 1	TEST	-			
Figure	jure										-			H			N	ut	tir	ŋg		• 1				

i

							161	cr	ר ר	- 			D	= 0	20	217	7			ет	-						<u>in an an an an an an an an an an an an an</u>
	2000000	, 						₩ K	, . 	,	/14	ור			ງວ 		יוע 			51							
	2000000							_						<u> </u>			<u> </u>		ļ								
										<u> </u>							ļ										
																						ſ				ļ	
																						-	-)-		L _		
	1500000																						ĺ		1 1		
	100000																					-	~ {-		~¦~	-	
psf														· · ·									1				
Ś																						ł		, ,		~	
Ites														_										l			
ک	4000000														И		1					-		١			
Sive	1000000								1					∇					1					١			
es									1				/	1				-	-			,	5	1			
Idu								1									1							/	- 186	ť	
Dor 10	Co											<u>/</u>		†	╞╼╂		+	+									
Ĭ	ů													<u> </u>		-	-		+								
	500000				+			1	7	r	· ·				$\left \right $		+		+								
								17	\vdash								-		-								
	:							/				-				l—	-		-								
					+		$\left \right $					-		+		·			+		1						
		 			7	4-		+									+		+								
	0	0				0.5			<u> </u>		1			I	1	1.5	<u> </u>			2							
								ŀ	Axia	l S	trai	n, %	6														
Sample No.						•						,	1			,											
Unconfined stren	igth, psf										1	117	004	1.0						_							
Undrained shear	strength	i, p:	sf								5	585	02	.0													
Failure strain, %												1	.5														
Strain rate, in./m	in											0.0	943														
Water content, %	ó											0	.7														
Wet density, pcf												16	2.0														
Dry density, pcf												16	0.9														
Saturation, %												N	/A														
Void ratio												N	A							ĺ							
Specimen diame	ter, in.							-				2.3	80														
Specimen height	;, in.											4.3	20						•								
Height/diameter	ratio											1.	82														
Description: LIN	NESTON	Е								L,										L							
LL =	PL =				F	2 =					As	sur	neo	d G	S=	1			Ty	pe:	Lin	nest	one				
Project No.: N11	05070					···]	Cli	ent	: P/	AR	SOI	VS	BR	INC	CKF	ERF		- F								ن ن
Date Sampled:	10-7-10							_ • •				_ ~ 4							-								
Remarks:								Pro	ojeo	ct:]	BRI	EN	ΓS)	PEN	٩CI	ΕB	RII	OGE	ERF	EPL,	ACE	EME	ENT				
Lad No. 9706								6~			t c	9~	مام	. . D	· ^ ·	٨				h a 1	10 1	140	51				
	10, 9700										u o Vur	aiii nh	an. Bidi	3: Κ 1Ω	-41	4		U	eht	1. 1	40-1	140.	2				
								Jd	mh	10 ľ	111	<u>אות</u> 	NC	10		N⊏		201				אר	TES	т			
Figure												0			 -	-	č	N.	ji r	, L.C tii	nu nu	214	160	1			
rigure	gure														Δ	, <mark>'</mark>	$\mathbf{\mathbf{U}}$	ron Con		mp	цЧ						

:

			UN		٩C	IF	INE	D	CC)N	1P	RE	S	SI	ON	17	٢E	S	Г					·	
	4000000				····	·					, -			-					7						
	4000000						_		_									_			·				1
						_		_	-										4			1			
							+ - + -		-								-		4			١			
					_	_													-			ł			
	3000000			_	_			_	-						_		_	_	-			ł			
'					_									-			_		-			i			
ŭ,				_	_	_								<u> </u>	_		_		-	ľ		ł			
ess S												_	_						-			ļ		ļ	
<i>ts</i>											_				_	_	_	-			I				
.≌ 2000000							+	+		\mathbb{N}				_		-	_	-	ŀ		}				
									-/	[_	_						-							
						+			⊬		-	_	-			-		-	,						
, nă		\vdash		+				_	\forall	\vdash	╞╴┦			-+-					-						ľ
			\square			+-			-	-			+						-						1
	1000000	\vdash						\neg		-									1						
								\bigwedge					•						-						
						-										+			1						
				1					1										-						
	n				丁	7											-	-	1:	1					
	Ū	0			- 1	0.5				1	<u> </u>			1.5			<u></u>		2						
								Axi	al S	trai	n, %	0													
Sample No.								·····			1														
Unconfined stren	igth, psf									2	192.	551.	5												
Undrained shear	strength	1, ps	sf							10	096:	275.	7					$ \rightarrow $							
Failure strain, %	<u> </u>										1	2													
Strain rate, in./m	in.										0.0	48													
Water content, 9	6										0,	2		ļ											
vvet density, pcf											16	<u>3.3</u>													
Dry density, pcf											16'	/.9		-								-			
Void ratio											<u>N/</u>	A						_							
Specimon diama	tor in										N/ 2.2	A 70		_							<u>.</u>				
Specimen heigh	tin		,						+	<u> </u>	4.3 1 0	<u>70</u> 00													
Height/diameter	ratio										4.0 27	12													
neignivalameter ratio											4.1							I.	• • • • •			l.			<u> </u>
LL =	PL =			·····	Ρ	=				As	sun	ned	GS)=			יד	/pe	: Li	mes	tone	<u> </u>	•••••••		
Project No.: N1105070							C	lien	t: P	AR	SON	IS B	RD	VCK	ER	HO	FF								<u> </u>
Date Sampled: 10-7-10													4 4				-								
Remarks							P	roje	ct:	BR	ENI	SP	EN	CE I	BRII	DG	ΕR	EPL	AC	EM	ENT				
Lab No. 9708							s	our	ce c ole	of S Nur	am nbe	ple; er: 1	R-: 2	2A		D)ep	th:	148	-148	.5'				
											U	NC	DNI	FIN	ED	co	MP	RE	SSI	ON	TES	БТ			
Figure								H.C. Nutting																	

		UNC	ONF	INE	ED (CO	MP	RE	S	SIC	DN	T	ES	т		•••			
												•		<u> </u>					
	2000000																	وحج	
Compressive Stress, psf	1500000 1000000 500000		0.5													۰ ۱			
	-				Axia	al Stra	ain, 9	6						-					
Sample No.								1											
Unconfined stren	gth, psf						1550	817.3	3										
Undrained shear	strength, p	osf					7754	08.7											
Failure strain, %							1	.4											
Strain rate, in./mi	n						0.0)48											
Water content, %	•						0	.6											
Wet density, pcf							16	2.0											
Dry density, pcf							16	1.1											
Saturation, %							<u>N</u>	/A									-		
Specimen diamet	or in						<u>N</u>												
Specimen beight	in						Z.3	280									-		
Height/diameter r	atio						-+.0 2	05	<u> </u>										
Description: LIM	IESTONE					l	<i>H</i> 1										_l		
LL =	PL =		PI =			Ā	ssur	ned	GS	3=		1.	Гуре	: Li	mesto	one			
Project No.: N11	Clien	t: PA	RSOI	VS B	RI	VCK	ERH	OFF	7	<u></u>									
Date Sampled: 1																			
Remarks:				F	Proje	ct: Bl	REN	Г SPI	EN	CE B	RID	GE :	REP	LAC	EME	МT			
Lab No. 9709				\$	Sourc Samp	ce of de Nu	Sam umbe	ple: ər: 1	R- 3	2A		De	pth:	160-	-160,:	5'			
					A		L	INCO	ΟN	FINE	DC	ОМ	PRE	SSI	ON 1	FEST			
Figure H.C. Nutting																			

ł

		 I	IN	n	NE	IN	FD	C		/P	R	F	22			т	FC	<u>т</u>							
								<u> </u>				<u> </u>	<u> </u>			•	<u> </u>								
	2000000									<u> </u>					<u> </u>										
					_	_		_	_	Ж				ļ	ļ					(1		.	_J	
				-					_//			-						_			ı I		,		
									-/	+		-											í		
	1500000								\vdash			+-						_					,		
Sf								-	+	+					-			_			1		1		
<u>ດ</u> ທີ	vý – – – – – – – – – – – – – – – – – – –						·	$/ \uparrow$		+							-			1	1		ł		
						+	\uparrow	/			_				<u> </u>						1		1		
5 1000000											-	1									r		I		
						-	1/1											_			Į.		l	\$	
							/														<u> </u>				
du	:																							•	
ပီ ပိ						\downarrow																			
	500000				- <i>,</i>	4																			
					/					_					ļ										
										+		_													
					$\forall \vdash$								-					_							
				+					-	-								[7						
	0			<u>-</u> P	0.5				1			<u> </u>	1	.5	I			2							
							A	xial	Stra	in, '	%														
Sample No.		<u> </u>									1														
Unconfined stren	igth, psf								1	902	575	5.1													
Undrained shear	strength	ı, ps	sf							951:	287	.5									· · · · · · · · ·		-		
Failure strain, %										1	.2							_							
Strain rate, in./m	<u>in.</u>					••••••				0.0	047														
Water content, %	D									0), :5 ~														
Dry density pot										10	13.0 (5.4														
Saturation %						~ · · · ·				10 N	/A		+												
Void ratio										N	/A		+					+							
Specimen diame	ter, in.									2.	. 390		+					+						<u>.</u> .	
Specimen height	, in.									4.	760		╈												
Height/diameter	ratio		 							1	99														
Description: LIN	MESTON	E								_															
_ LL =	PL =				PI =				A	su	me	d G	iS=				Тур	e:	Lim	esto	ne				
Project No.: N1105070							Clie	nt:	PAF	so	NS	BR	INC	KE	RH	OFI	7								1
Date Sampled: 10-7-10							_			_			_												
Remarks:							Pro	ject	:BF	EN	ΤS	PEI	NCE	B	RID	GE	REI	۶Ľ	ACEI	ME	NT				
Lau 110, 9712							Source of Sample: R-2A Depth: 179.8-180.3																		
							Sample Number: 16																		
										ι	JNC	100	١FII	NEI	DC	OM	IPR	ES	SIO	ΝT	EST	•			٦
Figure											ŀ	Į_(С.	Ν	ut	tir	ng								
						L	A Terracon Company									- I'									

				SION	TEGT						
	CONFIN		UWFRES	SION	IEƏI						
2000000											
1500000 1500000 1500000 1500000 10000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000						-1					
0	0.5		1	1.5	2						
		Axial	Strain, %								
Sample No.			1								
Unconfined strength, psf			1400566.4								
Undrained shear strength, psf			700283.2	<u> </u>							
Failure strain, %			1.2								
Strain rate, in./min.			0.046								
Wet density not			0,1								
Dry density pcf			168.2			· · · · · ·					
Saturation %			N/A								
Void ratio			N/A	· · · · ·							
Specimen diameter. in.			2.380								
Specimen height, in.			4.670								
Height/diameter ratio			1.96								
Description: LIMESTONE			· · · · · · · · · · · · · · · · · · ·		I.	· · · · · · · · · · · · · · · · · · ·					
LL = PL =	Pl =		Assumed GS	S=	Type: L	imestone					
Project No.: N1105070		Client:	PARSONS BRII	VCKERHO	OFF						
Date Sampled: 10-7-10											
Remarks:		Project	: BRENT SPEN	CE BRIDO	GE REPLA	CEMENT					
Lau INU. 9713		Source Sample	Source of Sample: R-2A Depth: 183.5-184' Sample Number: 17								
			UNCON	FINED CO	OMPRESS	SION TEST					
Figure		H.C. Nutting									

Geotechnical Engineering Report Brent Spence Bridge Replacement Cincinnati, Ohio-Covington, Kentucky March 11, 2011 HCN/Terracon Project No. N1105070

POINT LOAD TESTING RESULTS

POINT LOAD TEST RESULTS

	Тор	Тор	_	_		
Paring	Depth		Bottom	Bottom	la (nai)	UCS
Богінд	(11.)	(11.)				
L-1	139.5	353.96	140	353.46	733	14651
L-1	145	348.46	145.5	347.96	795	15893
L-1A	140.1	351.35	140.7	350.75	458	9157
L-1A	152.6	338.85	153	338.45	617	12346
L-1A	154.5	336.95	155.3	336.15	597	11932
L-2A	142.5	352.00	142.9	351.60	607	12131
L-2A	165.2	329.30	165.7	328.80	677	13547
L-3	93.1	365.56	93.6	365.06	460	9195
L-3	117.6	341.06	118.4	340.26	589	11786
L-3	137.2	321.46	138	320.66	522	10439
L-3	147.8	310.86	148.3	310.36	522	10434
L-3A	134.6	361.45	135	361.05	742	14846
L-3A	152.75	343.30	153.5	342.55	649	12976
L-4	132.4	347.57	132.9	347.07	585	11696
L-4	141.4	338.57	141.8	338.17	593	11853
L-5	122.7	363.63	123.3	363.03	736	14712
L-5	143.5	342.83	144	342.33	523	10455
L-6	114	371.69	115	370.69	586	11720
L-6	126.3	359.39	126.8	358.89	604	12087
L-7	116	368.41	116.5	367.91	544	10879
L-7	139.7	344.71	140.2	344.21	576	11517
R-1	101	357.04	101.5	356.54	523	10455
R-1	110.2	347.84	110.9	347.14	64	1282
R-1	129.4	328.64	129.8	328.24	555	11103
R-1	145.7	312.34	146.5	311.54	655	13095
R-1	161.8	296.24	162.5	295.54	731	14614
R-2	107.7	350.40	108.5	349.60	289	5783
R-2	130.7	327.40	131.1	327.00	529	10575
R-2	148.5	309.60	149	309.10	644	12884
R-2	159.5	298.60	160.1	298.00	648	12962
R-2A	105.1	352.54	105.5	352.14	451	9027
R-2A	131.5	326.14	132	325.64	407	8142
R-2A	141.2	316.44	141.5	316.14	551	11014
R-2A	166.9	290.74	167.5	290.14	499	9985

Boring	Top Depth (ft.)	Top Elevation (ft.)	Bottom Depth (ft.)	Bottom Elevation (ft.)	ls (psi)	UCS (psi)
R-3	98	360.01	98.7	359.31	664	13271
R-3	113.3	344.71	113.8	344.21	652	13042
R-3	117.2	340.81	117.9	340.11	528	10568
R-4	95	362.98	95.5	362.48	596	11920
R-4	101	356.98	101.6	356.38	664	13271
R-4	147	310.98	147.4	310.58	624	12473
R-4	155.5	302.48	155.9	302.08	652	13035
R-5	100.8	357.79	101.5	357.09	551	11011
R-5	108	350.59	108.5	350.09	810	16192
R-5	118.2	340.39	118.8	339.79	553	11057
R-5	156.4	302.19	157	301.59	720	14406
R-6	91.5	365.54	92	365.04	582	11637
R-6	105	352.04	106	351.04	630	12607
R-6	124.7	332.34	125.1	331.94	580	11607
R-6	153.1	303.94	153.9	303.14	655	13102
R-7	89.7	368.76	90.1	368.36	649	12982
R-7	100.8	357.66	101.6	356.86	599	11981
R-7	125.9	332.56	126.7	331.76	746	14914
R-7	145.5	312.96	146.1	312.36	657	13149
R-8	96	359.70	96.5	359.20	533	10656
R-8	118.6	337.10	119	336.70	533	10656

ELASTIC MODULUS TESTING RESULTS

ELASTIC MODULUS TEST RESULTS

Boring	Top Depth (ft.)	Top Elevation (ft.)	Bottom Depth (ft)	Bottom Elevation (ft)	Unconfined Compressive Strength (psi)	Young's Modulus (ksi)	Rock Type
L-1	150.7	342.76	151.3	342.16	21926	9302	Limestone
L-1A	150	341.45	150.4	341.05	21828	9750	Limestone
L-2A	150.9	343.60	151.4	343.10	16544	8863	Limestone
L-3	113.2	345.46	114.2	344.46	21169	9808	Limestone
L-3	121.8	336.86	122.8	335.86	13540	6323	Limestone
L-3A	155	341.05	155.5	340.55	16975	7601	Limestone
L-4	127.5	352.47	128	351.97	17130	8666	Limestone
L-5	137.3	349.03	138	348.33	20794	9086	Limestone
L-6	138	347.69	138.3	347.39	25530	9219	Limestone
L-7	125.7	358.71	126.2	358.21	23281	9443	Limestone
R-1	115	343.04	115.9	342.14	12584	8636	Limestone
R-1	137.7	320.34	138.2	319.84	15380	6475	Limestone
R-1	146.5	311.54	147	311.04	20779	10022	Limestone
R-2	143.5	314.60	144	314.10	13836	8461	Limestone
R-2	155.3	302.80	155.6	302.50	26538	7518	Limestone
R-2A	112.7	344.94	113.2	344.44	10771	8474	Limestone
R-2A	125.5	332.14	126	331.64	10193	7020	Limestone
R-3	106	352.01	106.5	351.51	14729	6789	Limestone
R-3	136.5	321.51	137	321.01	24544	6685	Limestone
R-4	120.6	337.38	121.3	336.68	19133	10417	Limestone
R-4	139.6	318.38	140.5	317.48	16884	8452	Limestone
R-5	103.5	355.09	104	354.59	14991	5369	Limestone
R-5	128.1	330.49	128.8	329.79	19640	8454	Limestone
R-6	99.6	357.44	100.1	356.94	14253	6276	Limestone
R-6	158.4	298.64	158.9	298.14	22557	9098	Limestone
R-7	106.2	352.26	106.7	351.76	16419	8899	Limestone
R-8	101.5	354.20	102.2	353.50	10883	7995	Limestone
R-8	122.9	332.80	123.3	332.40	14846	8419	Limestone

SLAKE DURABILITY TESTING RESULTS

Boring	Top Depth (ft.)	Top Elevation (ft.)	Bottom Depth (ft.)	Bottom Elevation (ft.)	SDI
L-1	137.1	356.36	137.8	355.66	68
L-1	147.7	345.76	149.2	344.26	67.3
L-1	157	336.46	157.8	335.66	67.8
L-2	133	363.26	133.5	362.76	89.9
L-2	143.5	352.76	144	352.26	91.4
L-2	148.2	348.06	145.5	350.76	88.2
L-2A	138.1	356.40	138.9	355.60	75.3
L-2A	147.3	347.20	147.9	346.60	40.1
L-3A	134.25	361.80	134.5	361.55	85.3
L-3A	150.5	345.55	150.7	345.35	97.7
L-4	108.5	371.47	109.5	370.47	59.2
L-5	109	377.33	109.4	376.93	50.9
L-5	118.5	367.83	118.8	367.53	48.1
L-6	110	375.69	110.4	375.29	56.9
L-6	117.7	367.99	118	367.69	55.1
L-7	105.5	378.91	105.8	378.61	65.9
L-7	107.5	376.91	107.8	376.61	93.3
L-7	118.6	365.81	11.8	472.61	77
R-2	88.2	369.90	88.5	369.60	67.9
R-2	89	369.10	89.3	368.80	82.5
R-2	93.7	364.40	94	364.10	93.6
R-2	100.4	357.70	101.3	356.80	94.1
R-2	134	324.10	134.3	323.80	91.7
R-5	92.2	366.39	92.8	365.79	57.9
R-5	95.7	362.89	95.9	362.69	52.5
R-5	153	305.59	153.5	305.09	98.8
R-6	85.1	371.94	85.6	371.44	36.9
R-6	91.5	365.54	92	365.04	53.6
R-6	100.5	356.54	101	356.04	91
R-7	93.4	365.06	93.6	364.86	79.5
R-7	95.7	362.76	96	362.46	72.8
R-7	102	356.46	102.2	356.26	92.6
R-7	121.1	337.36	121.4	337.06	80.4
R-8	88.4	367.30	88.9	366.80	66.8

SLAKE DURABILITY INDEX TEST RESULTS

APPENDIX C SUPPORTING DOCUMENTS

EXHIBIT C-1 ODOT CLASSIFICATION

SOIL AND ROCK SYMBOLOGY

Ohio Department of Transportation

Soil

EVHDOL		Classification			
SIMBOL	DESCRIPTION	AASHTO	OHIO		
	Gravel and∕or S†one Fragmen†s	A-	A-1-a		
	Gravel and∕or Stone Fragments with Sand	A-	1-b		
FS	Fine Sand	A	-3		
	Coarse and Fine Sand		A-3a		
	Gravel and/or Stone Fragments	A-	2-4		
	with Sand and Silt	A-	2-5		
	Gravel and/or Stone Fragments	A-2-6			
	with Sand, Silt and Clay	A-2-7			
	Sandy Silt	A-4	A-4a		
$ \begin{array}{r} + + + + + \\ + + + + + \\ + + + + + \\ + + + + + \end{array} $	silt	A-4	A-4b		
	Elastic Silt and Clay	A	-5		
	Silt and Clay	A-6	A-6a		
	silty Clay	A-6	A-6b		
	Elastic Clay	Δ-	7-5		
	Clay	Α-	7-6		
+ + + + + + + +	Organic Silt	A-8	A-8a		
	Organic Clay	A-8	A-8b		

VISUALLY CLASSIFIED MATERIALS

ROCK

EXHIBIT C-2 DRILLED SHAFT BASE & SHAFT RESISTANCE CALCULATIONS

Drilled Shaft Side Resistance Calculations

Location	Avg. RQD (%)	Design Unconfined Compressive	Design Elastic Modulus (E _I ,	Ro	ck Mass Rating (RMR) ¹	Rock Mass Modulus	Rock Mass Modulus/ Intact Rock Modulus	Jointed Rock Reduction	Nominal Shaft Resistance (q _s , ksf) ⁴		
	. ,	Strength (q _{u,} psi) ³	ksi)		、	(E _M , ksi) ⁻	(E _M /E _I)	Factor $(\alpha_{E})^{\circ}$	Rock	<	Concrete ⁶
Ohio-Land	38%	4000	6043	47	III (Fair Rock)	1220	0.20	0.63	14.3		22.7
Ohio-River	67%	4800	5311	52	III (Fair Rock)	1627	0.31	0.71	17.7		22.7
Kentucky-River	59%	4800	4757	52	III (Fair Rock)	1627	0.34	0.72	17.9		22.7
Kentucky-Land	49%	4000	6073	47	III (Fair Rock)	1220	0.20	0.63	14.3		22.7

Notes

1 Per AASHTO LRFD Bridge Design Specifications Tables 10.4.6.4-1, 10.4.6.4-2, 10.4.6.4-3

2 Per AASHTO LRFD Bridge Design Specifications Equation 10.4.6.5-1

3 Interpolated From AASHTO LRFD Bridge Design Specifications Table 10.8.3.5.4b-1

4 Per AASHTO LRFD Bridge Design Specifications Equation 10.8.3.5.4b-1, Lower value is selected

5 This is the value used in design computation considering all the variable factors

* Average RQD and elastic modulus values from upper 30 ft. of bedrock

* Example calculation and copies of AASHTO tables provided on following pages

EXAMPLE CALCULATION

(Ohio-River Portion)

Step 1: Obtain average RQD, unconfined compressive strength (q_u) , and elastic modulus (E_M) data from field/lab testing

Avg. RQD (%)=
$$67$$

Design E_M (ksi)= 5311

Step 2: Determine Rock Mass Rating (RMR) using Tables 10.4.6.4-1, 10.4.6.4-2, 10.4.6.4-3 in the AASHTO Manual

Rating <u>Criteria</u>

1) Strength of Rock	2
2) RQD	13
3) Joint Spacing	10
4) Joint Condition	20

5) Groundwater

7 Joint Orientation Adjustment 0

Total (RMR)= 52

Rock Mass Class= III (Fair Rock)

Step 3: Determine Rock Mass Modulus using Equation 10.4.6.5-1

$$E_{M} = 145 \left(10^{\frac{RMR-10}{40}} \right)$$
$$E_{M} = 145 \left(10^{\frac{52-10}{40}} \right) = 1627 \text{ksi}$$

Step 4: Determine Ratio of Rock Mass Modulus (E_M) to Intact Rock Modulus (E_I)

$$\frac{E_M}{E_I} = \frac{1627ksi}{5311ksi} = 0.31$$

Step 5: Interpolate Jointed Rock Reduction Factor from Table 10.8.3.5.4b-1

$$\frac{0.3 - 0.1}{0.7 - 0.55} = \frac{0.3 - 0.31}{0.7 - \alpha_E}$$
$$\alpha_E = 0.71$$

Step 6: Calculate Shaft Resistance using Equation 10.8.3.5.4b-1. Select lower of two values calculated

$$q_s = 0.65 \cdot \alpha_E \cdot p_a \left(\frac{q_u}{p_a}\right)^{0.5} < 7.8 \cdot p_a \left(\frac{f'c}{p_a}\right)^{0.5}$$

p_a=2.12 ksf (Atmospheric Pressure)

f'c= 4 ksi (Concrete Compressive Strength) 1

$$q_{s} = 0.65 \cdot 0.71 \cdot 2.12 \cdot \left(\frac{(4800 \frac{144}{1000})}{2.12}\right) < 7.8 \cdot 2.12 \cdot \left(\frac{4}{2.12}\right)^{0.5}$$
$$q_{s} = 17.7 \, ksf < 22.7 \, ksf$$

Step 7: Calculate Base Resistance using Equation 10.8.3.5.4c-1

$$q_{p} = 2.5 \cdot q_{u}$$

 $q_{p} = 2.5 \cdot (4800 \ psi * \frac{144}{1000})$
 $q_{p} = 1728 \ ksf$

A value of 350 ksf has been recommended for use in the design. See report text.

EXHIBIT C-3 DRIVEN PILE CALCULATIONS (DRIVEN & GRLWEAP)

Ohio-Land

Exhibit C-3

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: N:\PROJECTS\2010\N1105070\DRIVEN\L2A_14.DVN Project Name: BSB Project Date: 12/07/2010 Project Client: PB Computed By: DWW Project Manager: AJM

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	0.00 ft
	- Driving/Restrike	0.00 ft
	- Ultimate:	0.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	12.50 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	17.50 ft	0.00%	120.00 pcf	24.0/24.0	Nordlund
3	Cohesionless	30.00 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
4	Cohesionless	15.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
5	Cohesionless	30.00 ft	0.00%	125.00 pcf	32.0/32.0	Nordlund
6	Cohesionless	23.50 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

ULTIMATE - SKIN FRICTION

÷

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.31 psf	19.99	N/A	0.00 Kips
9.01 ft	Cohesionless	282.01 psf	19.99	N/A	3.17 Kips
12.49 ft	Cohesionless	390.94 psf	19.99	N/A	6.10 Kips
12.51 ft	Cohesionless	782.79 psf	16.00	N/A	6.11 Kips
21.51 ft	Cohesionless	1041.99 psf	16.00	N/A	13 40 Kins
29.99 ft	Cohesionless	1286.21 psf	16.00	N/A	23.58 Kips
30.01 ft	Cohesionless	1790.81 psf	19.99	N/A	23.61 Kips
39.01 ft	Cohesionless	2072.51 psf	19.99	N/A	46.91 Kips
48.01 ft	Cohesionless	2354.21 psf	19.99	N/A	76 53 Kips
57.01 ft	Cohesionless	2635.91 psf	19.99	N/A	112.49 Kips
59.99 ft	Cohesionless	2729.19 psf	19.99	N/A	125.79 Kips
60.01 ft	Cohesionless	3668.79 psf	19.99	N/A	125.88 Kips
69.01 ft	Cohesionless	3927.99 psf	19.99	N/A	170.03 Kips
74.99 ft	Cohesionless	4100.21 psf	19.99	N/A	202.59 Kips
75.01 ft	Cohesionless	4532.81 psf	21.33	N/A	202.71 Kips
84.01 ft	Cohesionless	4814.51 psf	21.33	N/A	270.74 Kips
93.01 ft	Cohesionless	5096.21 psf	21.33	N/A	346.73 Kips
102.01 ft	Cohesionless	5377.91 psf	21.33	N/A	430.68 Kips
104.99 ft	Cohesionless	5471.19 psf	21.33	N/A	460.23 Kips
105.01 ft	Cohesionless	6410.81 psf	22.66	N/A	460.45 Kips
114.01 ft	Cohesionless	6692.51 psf	22.66	N/A	575.21 Kips
123.01 ft	Cohesionless	6974.21 psf	22.66	N/A	699.64 Kips
128.49 ft	Cohesionless	7145.74 psf	22.66	N/A	780.13 Kips

.

ULTIMATE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft	Cohesionless	0.63 psf	30.00	14.24 Kips	0.01 Kips
9.01 ft	Cohesionless	564.03 psf	30.00	14.24 Kips	10.49 Kips
12.49 ft	Cohesionless	781.87 psf	30.00	14.24 Kips	14.24 Kips
12.51 ft	Cohesionless	783.08 psf	13.80	14.24 Kips	5.18 Kips
21.51 ft	Cohesionless	1301.48 psf	13.80	14.24 Kips	8.61 Kips
29.99 ft	Cohesionless	1789.92 psf	13.80	14.24 Kips	10.52 Kips
30.01 ft	Cohesionless	1791.13 psf	30.00	14.24 Kips	14.24 Kips
39.01 ft	Cohesionless	2354.53 psf	30.00	14.24 Kips	14.24 Kips
48.01 ft	Cohesionless	2917.93 psf	30.00	14.24 Kips	14.24 Kips
57.01 ft	Cohesionless	3481.33 psf	30.00	14.24 Kips	14.24 Kips
59.99 ft	Cohesionless	3667.87 psf	30.00	14.24 Kips	14.24 Kips
60.01 ft	Cohesionless	3669.08 psf	30.00	14.24 Kips	14.24 Kips
69.01 ft	Cohesionless	4187.48 psf	30.00	14.24 Kips	14.24 Kips
74.99 ft	Cohesionless	4531.92 psf	30.00	14.24 Kips	14.24 Kips
75.01 ft	Cohesionless	4533.13 psf	40.40	35.28 Kips	35.28 Kips
84.01 ft	Cohesionless	5096,53 psf	40.40	35.28 Kips	35.28 Kips
93.01 ft	Cohesionless	5659.93 psf	40.40	35.28 Kips	35.28 Kips
102.01 ft	Cohesionless	6223.33 psf	40.40	35.28 Kips	35.28 Kips
104.99 ft	Cohesionless	6409.87 psf	40.40	35.28 Kips	35.28 Kips
105.01 ft	Cohesionless	6411.13 psf	55.60	78.59 Kips	78.59 Kips
114.01 ft	Cohesionless	6974.53 psf	55.60	78.59 Kips	78.59 Kips
123.01 ft	Cohesionless	7537.93 psf	55.60	78.59 Kips	78.59 Kips
128.49 ft	Cohesionless	7880.97 psf	55.60	78.59 Kips	78.59 Kips

ULTIMATE - SUMMARY OF CAPACITIES

1

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.01 Kips	0.01 Kips
9.01 ft	3.17 Kips	10.49 Kips	13.66 Kips
12.49 ft	6.10 Kips	14.24 Kips	20.34 Kips
12.51 ft	6.11 Kips	5.18 Kips	11.29 Kips
21.51 ft	13.40 Kips	8.61 Kips	22.01 Kips
29.99 ft	23.58 Kips	10.52 Kips	34.10 Kips
30.01 ft	23.61 Kips	14.24 Kips	37.85 Kips
39.01 ft	46.91 Kips	14.24 Kips	61.15 Kips
48.01 ft	76.53 Kips	14.24 Kips	90.77 Kips
57.01 ft	112.49 Kips	14.24 Kips	126.73 Kips
59.99 ft	125.79 Kips	14.24 Kips	140.03 Kips
60.01 ft	125.88 Kips	14.24 Kips	140.12 Kips
69.01 ft	170.03 Kips	14.24 Kips	184.27 Kips
74.99 ft	202.59 Kips	14.24 Kips	216.82 Kips
75.01 ft	202.71 Kips	35.28 Kips	237.99 Kips
84.01 ft	270.74 Kips	35.28 Kips	306.02 Kips
93.01 ft	346.73 Kips	35.28 Kips	382.01 Kips
102.01 ft	430.68 Kips	35.28 Kips	465.95 Kips
104.99 ft	460.23 Kips	35.28 Kips	495.50 Kips
105.01 ft	460.45 Kips	78.59 Kips	539.04 Kips
114.01 ft	575.21 Kips	78.59 Kips	653.81 Kips
123.01 ft	699.64 Kips	78.59 Kips	778.23 Kips
128.49 ft	780.13 Kips	78.59 Kips	858.72 Kips

.

,

ţ

15-Dec-2010 GRLWEAP(TM) Version 1998-1

HC Nutting Company BSB : 12/07/2010 : DWW

Ulitmate	Maximum Compression	Maximum Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Eneray
kips	ksi	ksi	bl/ft	feet	kips-ft
100.0	20.136	0.410	5.4	5.47	33.14
150.0	22.006	0.876	9.0	5.99	29.75
200.0	23.564	1.922	13.9	6.49	28.02
250.0	24.484	0.000	18.2	6.74	26.27
300.0	25.544	0.000	23.8	7.14	26.77
350.0	26.142	0.000	32.7	7.34	26.70
400.0	26.985	0.696	45.3	7.70	27.50
450.0	27.470	0.993	69.5	7.88	27.71
500.0	28.112	1.060	117.1	8.16	28.32
550.0	28.483	1.087	306.8	8.30	28.46

Parsons Brinckerhoff
Brent Spence Bridge Replacement
Cincinnati, Ohio
March 11, 2011
HCN/Terracon Project No. N1105070

Exhibit C-3

DRIVEN 1.2 GENERAL PROJECT INFORMATION

i.

Filename: N:\PROJECTS\2010\N1105070\DRIVEN\L2A_16.DVN Project Name: BSB Project Date: 12/07/2010 Project Client: PB Computed By: DWW Project Manager: AJM

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Diameter of Pile: 16.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	0.00 ft
	- Driving/Restrike	0.00 ft
	- Ultimate:	0.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	12.50 ft	0.00%	125,00 pcf	30.0/30.0	Nordlund
2	Cohesionless	17.50 ft	0.00%	120.00 pcf	24.0/24.0	Nordlund
3	Cohesionless	30.00 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
4	Cohesionless	15.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
5	Cohesionless	30.00 ft	0.00%	125.00 pcf	32.0/32.0	Nordlund
6	Cohesionless	23.50 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.31 psf	21.97	N/A	0.00 Kips
9.01 ft	Cohesionless	282.01 psf	21.97	N/A	4.27 Kips
12.49 ft	Cohesionless	390.94 psf	21.97	N/A	8.21 Kips
12.51 ft	Cohesionless	782,79 psf	17.58	N/A	8.24 Kips
21,51 ft	Cohesionless	1041.99 psf	17.58	N/A	17.85 Kips
29.99 ft	Cohesionless	1286.21 psf	17.58	N/A	31.29 Kips
30.01 ft	Cohesionless	1790.81 psf	21.97	N/A	31.34 Kips
39.01 ft	Cohesionless	2072.51 psf	21.97	N/A	62.72 Kips
48.01 ft	Cohesionless	2354.21 psf	21.97	N/A	102.64 Kips
57.01 ft	Cohesionless	2635.91 psf	21.97	N/A	151.09 Kips
59.99 ft	Cohesionless	2729.19 psf	21.97	N/A	169.01 Kips
60.01 ft	Cohesionless	3668.79 psf	21.97	N/A	169.13 Kips
69.01 ft	Cohesionless	3927.99 psf	21.97	N/A	228.61 Kips
74.99 ft	Cohesionless	4100.21 psf	21.97	N/A	272.47 Kips
75.01 ft	Cohesionless	4532.81 psf	23.44	N/A	272.65 Kips
84.01 ft	Cohesionless	4814.51 psf	23.44	N/A	365.28 Kips
93.01 ft	Cohesionless	5096.21 psf	23.44	N/A	468.76 Kips
102.01 ft	Cohesionless	5377.91 psf	23.44	N/A	583.07 Kips
104.99 ft	Cohesionless	5471.19 psf	23.44	N/A	623.31 Kips
105.01 ft	Cohesionless	6410.81 psf	24.90	N/A	623.62 Kips
114.01 ft	Cohesionless	6692.51 psf	24,90	N/A	781.38 Kips
123.01 ft	Cohesionless	6974.21 psf	24.90	N/A	952.43 Kips
128.49 ft	Cohesionless	7145.74 psf	24.90	N/A	1063.09 Kips

Î

ULTIMATE - END BEARING

Depth	epth Soil Type Effective Stres At Tip		Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft	Cohesionless	0.63 psf	30.00	18.60 Kips	0.02 Kips
9.01 ft	Cohesionless	564.03 psf	30.00	18.60 Kips	13.70 Kips
12.49 ft	Cohesionless	781.87 psf	30.00	18.60 Kips	18.60 Kips
12.51 ft	Cohesionless	783.08 psf	13.80	18.60 Kips	6.77 Kips
21.51 ft	Cohesionless	1301.48 psf	13.80	18.60 Kips	11.24 Kips
29.99 ft	Cohesionless	1789.92 psf	13.80	18.60 Kips	14.71 Kips
30.01 ft	Cohesionless	1791.13 psf	30.00	18.60 Kips	18.60 Kips
39.01 ft	Cohesionless	2354.53 psf	30.00	18.60 Kips	18.60 Kips
48.01 ft	Cohesionless	2917.93 psf	30.00	18.60 Kips	18.60 Kips
57.01 ft	Cohesionless	3481.33 psf	30.00	18.60 Kips	18.60 Kips
59.99 ft	Cohesionless	3667.87 psf	30.00	18.60 Kips	18.60 Kips
60.01 ft	Cohesionless	3669.08 psf	30.00	18.60 Kips	18.60 Kips
69.01 ft	Cohesionless	4187.48 psf	30.00	18.60 Kips	18.60 Kips
74.99 ft	Cohesionless	4531.92 psf	30.00	18.60 Kips	18.60 Kips
75.01 ft	Cohesionless	4533.13 psf	40.40	46.08 Kips	46.08 Kips
84.01 ft	Cohesionless	5096.53 psf	40.40	46.08 Kips	46.08 Kips
93.01 ft	Cohesionless	5659.93 psf	40.40	46.08 Kips	46.08 Kips
102.01 ft	Cohesionless	6223.33 psf	40.40	46.08 Kips	46.08 Kips
104.99 ft	Cohesionless	6409.87 psf	40.40	46.08 Kips	46.08 Kips
105.01 ft	Cohesionless	6411.13 psf	55.60	102.65 Kips	102.65 Kips
114.01 ft	Cohesionless	6974.53 psf	55.60	102.65 Kips	102.65 Kips
123.01 ft	Cohesionless	7537.93 psf	55.60	102.65 Kips	102.65 Kips
128.49 ft	Cohesionless	7880.97 psf	55.60	102,65 Kips	102.65 Kips

1

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.02 Kips	0.02 Kips
9.01 ft	4.27 Kips	13.70 Kips	17.98 Kips
12.49 ft	8.21 Kips	18.60 Kips	26.81 Kips
12.51 ft	8.24 Kips	6.77 Kips	15.00 Kips
21.51 ft	17.85 Kips	11.24 Kips	29.10 Kips
29.99 ft	31.29 Kips	14.71 Kips	46.00 Kips
30.01 ft	31.34 Kips	18.60 Kips	49.94 Kips
39.01 ft	62.72 Kips	18.60 Kips	81.32 Kips
48.01 ft	102.64 Kips	18.60 Kips	121.24 Kips
57.01 ft	151.09 Kips	18.60 Kips	169.69 Kips
59.99 ft	169.01 Kips	18.60 Kips	187.61 Kips
60.01 ft	169.13 Kips	18.60 Kips	187.73 Kips
69.01 ft	228.61 Kips	18.60 Kips	247.21 Kips
74.99 ft	272.47 Kips	18.60 Kips	291.07 Kips
75.01 ft	272.65 Kips	46.08 Kips	318.72 Kips
84.01 ft	365.28 Kips	46.08 Kips	411.36 Kips
93.01 ft	468.76 Kips	46.08 Kips	514.83 Kips
102.01 ft	583.07 Kips	46.08 Kips	629.15 Kips
104.99 ft	623.31 Kips	46.08 Kips	669.39 Kips
105.01 ft	623.62 Kips	102.65 Kips	726.27 Kips
114.01 ft	781.38 Kips	102.65 Kips	884.04 Kips
123.01 ft	952.43 Kips	102.65 Kips	1055.09 Kips
128.49 ft	1063.09 Kips	102.65 Kips	1165.74 Kips

HC Nutting Company BSB : 12/07/2010 : DWW

1

15-Dec-2010 GRLWEAP(TM) Version 1998-1

	Maximum	Maximum			
Ulitmate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	bl/ft	feet	kips-ft
100.0	18.971	2.373	5.4	5.60	31.98
150.0	20.757	1.547	9.0	6.13	28.44
200.0	22.149	2.042	13.8	6.59	26.85
250.0	22.914	2.081	19.7	6.82	24.83
300.0	24.034	0.274	24.5	7.26	24.30
350.0	24.628	0.000	31.5	7.48	24.19
400.0	24.980	0.414	41.9	7.59	24.09
450.0	25.712	0.637	54.7	7.91	24.79
500.0	26.105	0.834	76.7	8.08	25.01
550.0	26.330	0.835	116.4	8.16	25.02

Parsons Brinckerhoff
Brent Spence Bridge Replacement
Cincinnati, Ohio March 11, 2011
HCN/Terracon Project No. N1105070

Depth (ft.)

HP 14x73 Pile Ultimate Capacity Ohio-Land

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: N:\PROJECTS\2010\N1105070\DRIVEN\HPILES\L214X73.DVN Project Name: BSB Project Date: 12/07/2010 Project Client: PB Computed By: DWW Project Manager: AJM

PILE INFORMATION

Pile Type: H Pile - HP14X73 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	0.00 ft
	- Driving/Restrike	0.00 ft
	- Ultimate:	0.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	12.50 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
2	Cohesionless	17.50 ft	0.00%	120.00 pcf	24.0/24.0	Nordlund
3	Cohesionless	30.00 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
4	Cohesionless	15.00 ft	0.00%	120.00 pcf	30.0/30.0	Nordlund
5	Cohesionless	30.00 ft	0.00%	125.00 pcf	32.0/32.0	Nordlund
6	Cohesionless	23.50 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.31 psf	23.58	N/A	0.00 Kips
9.01 ft	Cohesionless	282.01 psf	23.58	N/A	4.01 Kips
12.49 ft	Cohesionless	390.94 psf	23.58	N/A	7.71 Kips
12.51 ft	Cohesionless	782.79 psf	18.86	N/A	7.73 Kips
21.51 ft	Cohesionless	1041.99 psf	18.86	N/A	17.59 Kips
29.99 ft	Cohesionless	1286.21 psf	18.86	N/A	31.37 Kips
30.01 ft	Cohesionless	1790.81 psf	23.58	N/A	31.42 Kips
39.01 ft	Cohesionless	2072.51 psf	23.58	N/A	60.87 Kips
48.01 ft	Cohesionless	2354.21 psf	23.58	N/A	98.33 Kips
57.01 ft	Cohesionless	2635.91 psf	23.58	N/A	143.78 Kips
59.99 ft	Cohesionless	2729.19 psf	23.58	N/A	160.60 Kips
60.01 ft	Cohesionless	3668.79 psf	23.58	N/A	160.72 Kips
69.01 ft	Cohesionless	3927.99 psf	23.58	N/A	216.53 Kips
74.99 ft	Cohesionless	4100.21 psf	23.58	N/A	257.68 Kips
75.01 ft	Cohesionless	4532.81 psf	25.15	N/A	257.84 Kips
84.01 ft	Cohesionless	4814.51 psf	25.15	N/A	340.86 Kips
93.01 ft	Cohesionless	5096.21 psf	25.15	N/A	433.60 Kips
102.01 ft	Cohesionless	5377.91 psf	25.15	N/A	536.05 Kips
104.99 ft	Cohesionless	5471.19 psf	25.15	N/A	572.11 Kips
105.01 ft	Cohesionless	6410.81 psf	26.72	N/A	572.38 Kips
114.01 ft	Cohesionless	6692.51 psf	26.72	N/A	709.29 Kips
123.01 ft	Cohesionless	6974.21 psf	26.72	N/A	857.73 Kips
128.49 ft	Cohesionless	7145.74 psf	26.72	N/A	953.76 Kips

ULTIMATE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft	Cohesionless	0.63 psf	30.00	1.98 Kips	0.00 Kips
9.01 ft	Cohesionless	564.03 psf	30.00	1.98 Kips	1.46 Kips
12.49 ft	Cohesionless	781.87 psf	30.00	1.98 Kips	1.98 Kips
12.51 ft	Cohesionless	783.08 psf	13.80	1.98 Kips	0.72 Kips
21.51 ft	Cohesionless	1301.48 psf	13.80	1.98 Kips	1.20 Kips
29.99 ft	Cohesionless	1789.92 psf	13.80	1.98 Kips	1.50 Kips
30.01 ft	Cohesionless	1791.13 psf	30.00	1.98 Kips	1.98 Kips
39.01 ft	Cohesionless	2354.53 psf	30.00	1.98 Kips	1.98 Kips
48.01 ft	Cohesionless	2917.93 psf	30.00	1.98 Kips	1.98 Kips
57.01 ft	Cohesionless	3481.33 psf	30.00	1.98 Kips	1.98 Kips
59.99 ft	Cohesionless	3667.87 psf	30.00	1.98 Kips	1.98 Kips
60.01 ft	Cohesionless	3669.08 psf	30.00	1.98 Kips	1.98 Kips
69.01 ft	Cohesionless	4187.48 psf	30.00	1.98 Kips	1.98 Kips
74.99 ft	Cohesionless	4531.92 psf	30.00	1.98 Kips	1.98 Kips
75.01 ft	Cohesionless	4533.13 psf	40.40	4.90 Kips	4.90 Kips
84.01 ft	Cohesionless	5096.53 psf	40.40	4.90 Kips	4.90 Kips
93.01 ft	Cohesionless	5659.93 psf	40.40	4.90 Kips	4.90 Kips
102.01 ft	Cohesionless	6223.33 psf	40.40	4.90 Kips	4.90 Kips
104.99 ft	Cohesionless	6409.87 psf	40.40	4.90 Kips	4.90 Kips
105.01 ft	Cohesionless	6411.13 psf	55.60	10.93 Kips	10.93 Kips
114.01 ft	Cohesionless	6974.53 psf	55.60	10.93 Kips	10.93 Kips
123.01 ft	Cohesionless	7537.93 psf	55.60	10.93 Kips	10.93 Kips
128.49 ft	Cohesionless	7880.97 psf	55.60	10.93 Kips	10.93 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.01 ft	4.01 Kips	1.46 Kips	5.47 Kips
12.49 ft	7.71 Kips	1.98 Kips	9.69 Kips
12.51 ft	7.73 Kips	0.72 Kips	8.45 Kips
21.51 ft	17.59 Kips	1.20 Kips	18.79 Kips
29.99 ft	31.37 Kips	1.50 Kips	32.87 Kips
30.01 ft	31.42 Kips	1.98 Kips	33.40 Kips
39.01 ft	60.87 Kips	1.98 Kips	62.85 Kips
48.01 ft	98.33 Kips	1.98 Kips	100.30 Kips
57.01 ft	143.78 Kips	1.98 Kips	145.76 Kips
59.99 ft	160.60 Kips	1.98 Kips	162.58 Kips
60.01 ft	160.72 Kips	1.98 Kips	162.70 Kips
69.01 ft	216.53 Kips	1.98 Kips	218.51 Kips
74.99 ft	257.68 Kips	1.98 Kips	259.66 Kips
75.01 ft	257.84 Kips	4.90 Kips	262.74 Kips
84.01 ft	340.86 Kips	4.90 Kips	345.77 Kips
93.01 ft	433.60 Kips	4.90 Kips	438.50 Kips
102.01 ft	536.05 Kips	4.90 Kips	540.95 Kips
104.99 ft	572.11 Kips	4.90 Kips	577.01 Kips
105.01 ft	572.38 Kips	10.93 Kips	583.30 Kips
114.01 ft	709.29 Kips	10.93 Kips	720.22 Kips
123.01 ft	857.73 Kips	10.93 Kips	868.66 Kips
128.49 ft	953.76 Kips	10.93 Kips	964.68 Kips

HC Nutting Company BSB: 12/07/2010: DWW

28-Feb-2011 GRLWEAP(TM) Version 1998-1

HC Nutting Company BSB : 12/07/2010 : DWW

	Maximum	Maximum			
Ulitmate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	bl/ft	feet	kips-ft
200.0	25.972	2.839	12.6	6.48	31.75
250.0	26.994	1.716	16.5	6.75	30.34
300.0	28.318	0.000	20.2	7.17	30.80
350.0	29.040	0.741	25.5	7.39	31.28
400.0	29.842	1.606	32.0	7.66	32.27
450.0	30.250	1.739	42.0	7.79	32.48
500.0	31.039	1.481	54.1	8.08	33.71
550.0	31.468	1.185	75.2	8.22	34.10
600.0	31.727	1.306	114.7	8.29	34.21
650.0	32.421	1.308	183.7	8.58	35.22

Exhibit C-3

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: N:\PROJECTS\2010\N1105070\DRIVEN\L5_14.DVN Project Name: BSB Project Date: 12/09/2010 Project Client: PB Computed By: DWW Project Manager: AJM

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	0.00 ft
	- Driving/Restrike	0.00 ft
	- Ultimate:	0.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	35.00 ft	0.00%	120.00 pcf	1500.00 psf	T-80 Clav
2	Cohesive	10.00 ft	0.00%	120.00 pcf	2000.00 psf	T-80 Clay
3	Cohesionless	30.00 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
4	Cohesionless	32.00 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

ULTIMATE - SKIN FRICTION

.

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	500.59 psf	0.02 Kips
9.01 ft	Cohesive	N/A	N/A	500.59 psf	16.53 Kips
18.01 ft	Cohesive	N/A	N/A	794.62 psf	52.45 Kips
27.01 ft	Cohesive	N/A	N/A	1041.36 psf	103.09 Kips
34.99 ft	Cohesive	N/A	N/A	1041.36 psf	133.55 Kips
35.01 ft	Cohesive	N/A	N/A	595.08 psf	133.61 Kips
44.01 ft	Cohesive	N/A	N/A	595.08 psf	153.24 Kips
44.99 ft	Cohesive	N/A	N/A	595.08 psf	155.38 Kips
45.01 ft	Cohesionless	2592.31 psf	19.99	N/A	155.43 Kips
54.01 ft	Cohesionless	2874.01 psf	19.99	N/A	187.73 Kips
63.01 ft	Cohesionless	3155.71 psf	19.99	N/A	226.37 Kips
72.01 ft	Cohesionless	3437.41 psf	19.99	N/A	271.33 Kips
74.99 ft	Cohesionless	3530.69 psf	19.99	N/A	287.62 Kips
75.01 ft	Cohesionless	4470.31 psf	22.66	N/A	287.76 Kips
84.01 ft	Cohesionless	4752.01 psf	22.66	N/A	369.25 Kips
93.01 ft	Cohesionless	5033.71 psf	22.66	N/A	460,40 Kips
102.01 ft	Cohesionless	5315.41 psf	22.66	N/A	561.21 Kips
106.99 ft	Cohesionless	5471.29 psf	22.66	N/A	621.14 Kips
		ULTIMATE - EN	ND BEARING		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		At Tip	Factor	Bearing	Bearing
0.01 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
9.01 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
18.01 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
27.01 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
34.99 ft	Cohesive	N/A	N/A	N/A	14.43 Kips
35.01 ft	Cohesive	N/A	N/A	N/A	19.24 Kips
44.01 ft	Cohesive	N/A	N/A	N/A	19.24 Kips
44.99 ft	Cohesive	N/A	N/A	N/A	19.24 Kips
45.01 ft	Cohesionless	2592.63 psf	30.00	14.24 Kips	14.24 Kips
54.01 ft	Cohesionless	3156.03 psf	30.00	14.24 Kips	14.24 Kips
63.01 ft	Cohesionless	3719.43 psf	30.00	14.24 Kips	14.24 Kips
72.01 ft	Cohesionless	4282.83 psf	30.00	14.24 Kips	14.24 Kips
74.99 ft	Cohesionless	4469.37 psf	30.00	14.24 Kips	14.24 Kips
75.01 ft	Cohesionless	4470.63 psf	55.60	78.59 Kips	78.59 Kips
84.01 ft	Cohesionless	5034.03 psf	55.60	78.59 Kips	78.59 Kips
93.01 ft	Cohesionless	5597.43 psf	55.60	78.59 Kips	78.59 Kips
102.01 ft	Cohesionless	6160.83 psf	55.60	78.59 Kips	78.59 Kips
106.99 ft	Cohesionless	6472.57 psf	55.60	78.59 Kips	78.59 Kips

Ţ

11

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.02 Kips	14.43 Kips	14.45 Kips
9.01 ft	16.53 Kips	14.43 Kips	30.96 Kips
18.01 ft	52.45 Kips	14.43 Kips	66.88 Kips
27.01 ft	103.09 Kips	14.43 Kips	117.52 Kips
34.99 ft	133.55 Kips	14.43 Kips	147.98 Kips
35.01 ft	133.61 Kips	19.24 Kips	152,85 Kips
44.01 ft	153.24 Kips	19.24 Kips	172.48 Kips
44.99 ft	155.38 Kips	19.24 Kips	174.62 Kips
45.01 ft	155.43 Kips	14.24 Kips	169.67 Kips
54.01 ft	187.73 Kips	14.24 Kips	201.97 Kips
63.01 ft	226.37 Kips	14.24 Kips	240.61 Kips
72.01 ft	271.33 Kips	14.24 Kips	285.57 Kips
74.99 ft	287.62 Kips	14.24 Kips	301.86 Kips
75.01 ft	287.76 Kips	78.59 Kips	366.35 Kips
84.01 ft	369.25 Kips	78.59 Kips	447.84 Kips
93.01 ft	460.40 Kips	78.59 Kips	538.99 Kips
102.01 ft	561.21 Kips	78.59 Kips	639.80 Kips
106.99 ft	621.14 Kips	78.59 Kips	699.73 Kips

÷

15-Dec-2010 GRLWEAP(TM) Version 1998-1

Ē

HC Nutting Company BSB : 12/09/2010 : DWW

ï

Ulitmate Capacity kips	Maximum Compression Stress ksi	Maximum Tension Stress ksi	Blow Count bl/ft	Stroke feet	Energy kips-ft
100.0	23.235	1.202	5.1	5.49	35.71
150.0	25.375	1.069	8.5	5.86	31.89
200.0	27.872	0.690	12.8	6.55	31.69
250.0	29.104	0.012	16.8	6.90	30.45
300.0	29.711	0.000	21.4	7.07	29.48
350.0	30.999	0.000	26.8	7.44	30.21
400.0	31.714	0.000	34.9	7.63	30.41
450.0	32.650	0.000	45.8	7.88	31.11
500.0	33.182	0.000	63.4	8.01	31.30
550.0	33.458	0.000	97.4	8.07	30.98
Parsons Brinckerhoff Brent Spence Bridge Replacement Cincinnati, Ohio March 11, 2011 HCN/Terracon Project No. N1105070

Kentucky-Land 16" Diameter CIP Pile Ultimate Capacity Exhibit C-3

DRIVEN 1.2

GENERAL PROJECT INFORMATION

Filename: N:\PROJECTS\2010\N1105070\DRIVEN\L5_16.DVN
Project Name: BSB
Project Date: 12/09/2010
Project Client: PB
Computed By: DWW
Project Manager: AJM

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 0.00 ft Diameter of Pile: 16.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	0.00 ft
	- Driving/Restrike	0.00 ft
	- Ultimate:	0.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	35.00 ft	0.00%	120.00 pcf	1500.00 psf	T-80 Clay
2	Cohesive	10.00 ft	0.00%	120.00 pcf	2000.00 psf	T-80 Clay
3	Cohesionless	30.00 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
4	Cohesionless	32.00 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 9.01 ft 18.01 ft 27.01 ft 34.99 ft 35.01 ft 44.01 ft 44.99 ft 45.01 ft 54.01 ft 63.01 ft 72.01 ft 74.99 ft 75.01 ft 84.01 ft 93.01 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A N/A N/A N/A N/A 2592.31 psf 2874.01 psf 3155.71 psf 3437.41 psf 3530.69 psf 4470.31 psf 4752.01 psf 5033.71 psf	N/A N/A N/A N/A N/A N/A N/A N/A 21.97 21.97 21.97 21.97 21.97 21.97 21.97 24.90 24.90 24.90	500.59 psf 500.59 psf 690.27 psf 1041.36 psf 1041.36 psf 595.08 psf 595.08 psf 595.08 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.02 Kips 18.89 Kips 52.07 Kips 117.82 Kips 152.63 Kips 152.70 Kips 175.13 Kips 177.57 Kips 177.64 Kips 221.16 Kips 273.22 Kips 333.80 Kips 355.74 Kips 355.93 Kips 467.96 Kips 593.26 Kips
102.01 ft 106.99 ft	Cohesionless Cohesionless	5315.41 psf 5471.29 psf <u>ULTIMATE - EN</u>	24.90 24.90 ID BEARING	N/A N/A	731.85 Kips 814.24 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 9.01 ft 18.01 ft 27.01 ft 34.99 ft 35.01 ft 44.01 ft 44.99 ft 45.01 ft 54.01 ft 63.01 ft 72.01 ft 74.99 ft 75.01 ft 84.01 ft 93.01 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A N/A N/A N/A 2592.63 psf 3156.03 psf 3156.03 psf 3719.43 psf 4282.83 psf 4469.37 psf 4469.37 psf 5034.03 psf 5597.43 psf 6160.83 psf	N/A N/A N/A N/A N/A N/A N/A 30.00 30.00 30.00 30.00 30.00 30.00 55.60 55.60 55.60 55.60	N/A N/A N/A N/A N/A N/A N/A N/A 18.60 Kips 18.60 Kips 18.60 Kips 18.60 Kips 18.60 Kips 18.60 Kips 102.65 Kips 102.65 Kips 102.65 Kips	18.85 Kips 18.85 Kips 18.85 Kips 18.85 Kips 18.85 Kips 25.13 Kips 25.13 Kips 25.13 Kips 18.60 Kips 18.60 Kips 18.60 Kips 18.60 Kips 18.60 Kips 18.60 Kips 102.65 Kips 102.65 Kips
102.01 ft	Cohesionless	6472.57 psf	55.60	102.65 Kips 102.65 Kips	102.65 Kips 102.65 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.02 Kips	18.85 Kips	18.87 Kips
9.01 ft	18.89 Kips	18.85 Kips	37.74 Kips
18.01 ft	52.07 Kips	18.85 Kips	70.92 Kips
27.01 ft	117.82 Kips	18.85 Kips	136.67 Kips
34.99 ft	152.63 Kips	18.85 Kips	171.48 Kips
35.01 ft	152.70 Kips	25.13 Kips	177.83 Kips
44.01 ft	175.13 Kips	25.13 Kips	200.26 Kips
44.99 ft	177.57 Kips	25.13 Kips	202.71 Kips
45.01 ft	177.64 Kips	18.60 Kips	196.24 Kips
54.01 ft	221.16 Kips	18.60 Kips	239.76 Kips
63.01 ft	273.22 Kips	18.60 Kips	291.81 Kips
72.01 ft	333.80 Kips	18.60 Kips	352.40 Kips
74.99 ft	355.74 Kips	18.60 Kips	374,34 Kips
75.01 ft	355.93 Kips	102.65 Kips	458.59 Kips
84.01 ft	467.96 Kips	102.65 Kips	570.61 Kips
93.01 ft	593.26 Kips	102.65 Kips	695.92 Kips
102.01 ft	731.85 Kips	102.65 Kips	834.50 Kips
106.99 ft	814.24 Kips	102.65 Kips	916.89 Kips

;

•

HC Nutting Company BSB : 12/09/2010 : DWW

15-Dec-2010 GRLWEAP(TM) Version 1998-1

	Maximum	Maximum			
Ulitmate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	bl/ft	feet	kips-ft
100.0	19.231	1.880	5.1	5.69	33.88
150.0	21.000	1.265	8.6	6.15	30.06
200.0	22.845	1.102	12.3	6.81	29.25
250.0	23.751	0.632	17.9	7.14	27.80
300.0	24.887	0.000	22.2	7.59	27.20
350.0	25.401	0.000	27.4	7.82	26.29
400.0	25.708	0.000	34.3	7.93	25.98
450.0	26.531	0.000	42.2	8.26	26.76
500.0	26.947	0.000	54.0	8.43	26.96
550.0	27.261	0.000	71.9	8.51	26.93

Parsons Brinckerhoff
Brent Spence Bridge Replacement
Cincinnati, Ohio
March 11, 2011
HCN/Terracon Project No. N1105070

Exhibit C-3

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: N:\PROJECTS\2010\N1105070\DRIVEN\HPILES\L514X73.DVN Project Name: BSB Project Date: 12/09/2010 Project Client: PB Computed By: DWW Project Manager: AJM

PILE INFORMATION

Pile Type: H Pile - HP14X73 Top of Pile: 0.00 ft Perimeter Analysis: Box Tip Analysis: Pile Area

ULTIMATE CONSIDERATIONS

- Drilling:	0.00 ft
- Driving/Restrike	0.00 ft
- Ultimate:	0.00 ft
- Local Scour:	0.00 ft
- Long Term Scour:	0.00 ft
- Soft Soil:	0.00 ft
	- Drilling: - Driving/Restrike - Ultimate: - Local Scour: - Long Term Scour: - Soft Soil:

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	35.00 ft	0.00%	120.00 pcf	1500.00 psf	T-80 Clay
2	Cohesive	10.00 ft	0.00%	120.00 pcf	2000.00 psf	T-80 Clay
3	Cohesionless	30.00 ft	0.00%	125.00 pcf	30.0/30.0	Nordlund
4	Cohesionless	32.00 ft	0.00%	125.00 pcf	34.0/34.0	Nordlund

ULTIMATE - SKIN FRICTION

		OF THIATE - ON			
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesive	N/A	N/A	500.59 psf	0.02 Kips
9.01 ft	Cohesive	N/A	N/A	500.59 psf	21.19 Kips
18.01 ft	Cohesive	N/A	N/A	761.13 psf	64.42 Kips
27.01 ft	Cohesive	N/A	N/A	1041.36 psf	132.17 Kips
34.99 ft	Cohesive	N/A	N/A	1041.36 psf	171.22 Kips
35.01 ft	Cohesive	N/A	N/A	595.08 psf	171.30 Kips
44.01 ft	Cohesive	N/A	N/A	595.08 psf	196.47 Kips
44.99 ft	Cohesive	N/A	N/A	595.08 psf	199.21 Kips
45.01 ft	Cohesionless	2592.31 psf	23.58	N/A	199.28 Kips
54.01 ft	Cohesionless	2874.01 psf	23.58	N/A	240.12 Kips
63.01 ft	Cohesionless	3155.71 psf	23.58	N/A	288.96 Kips
72.01 ft	Cohesionless	3437.41 psf	23.58	N/A	345.80 Kips
74.99 ft	Cohesionless	3530.69 psf	23.58	N/A	366.39 Kips
75.01 ft	Cohesionless	4470.31 psf	26.72	N/A	366.56 Kips
84.01 ft	Cohesionless	4752.01 psf	26.72	N/A	463.78 Kips
93.01 ft	Cohesionless	5033.71 psf	26.72	N/A	572.52 Kips
102.01 ft	Cohesionless	5315.41 psf	26.72	N/A	692.79 Kips
106.99 ft	Cohesionless	5471.29 psf	26.72	N/A	764.29 Kips
		ULTIMATE - EN	D BEARING		a contract of the
Depth	Soil Type	Effective Stress	Bearing Cap.	Limiting End	End
		At Tip	Factor	Bearing	Bearing
0.01 ft	Cohesive	N/A	N/A	N/A	2.01 Kips
9.01 ft	Cohesive	N/A	N/A	N/A	2.01 Kips
18.01 ft	Cohesive	N/A	N/A	N/A	2.01 Kips
27.01 ft	Cohesive	N/A	N/A	N/A	2.01 Kips
34.99 ft	Cohesive	N/A	N/A	N/A	2.01 Kips
35.01 ft	Cohesive	N/A	N/A	N/A	2.67 Kips
44.01 ft	Cohesive	N/A	N/A	N/A	2.67 Kips
44.99 ft	Cohesive	N/A	N/A	N/A	2.67 Kips
45.01 ft	Cohesionless	2592.63 psf	30.00	1.98 Kips	1.98 Kips
54.01 ft	Cohesionless	3156.03 psf	30.00	1.98 Kips	1.98 Kips
63.01 ft	Cohesionless	3719.43 psf	30.00	1.98 Kips	1.98 Kips
72.01 ft	Cohesionless	4282.83 psf	30.00	1.98 Kips	1.98 Kips
74.99 ft	Cohesionless	4469.37 psf	30.00	1.98 Kips	1.98 Kips
75.01 ft	Cohesionless	4470.63 psf	55.60	10.93 Kips	10.93 Kips
84.01 ft	Cohesionless	5034.03 psf	55.60	10.93 Kips	10.93 Kips
93.01 ft	Cohesionless	5597.43 psf	55.60	10.93 Kips	10.93 Kips
102.01 ft	Cohesionless	6160.83 psf	55.60	10.93 Kips	10.93 Kips
106.99 ft	Cohesionless	6472.57 psf	55.60	10.93 Kips	10.93 Kips
		and the second second second		Artistic and the second	

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.02 Kips	2.01 Kips	2.03 Kips
9.01 ft	21.19 Kips	2.01 Kips	23.20 Kips
18.01 ft	64.42 Kips	2.01 Kips	66.42 Kips
27.01 ft	132.17 Kips	2.01 Kips	134.18 Kips
34.99 ft	171.22 Kips	2.01 Kips	173 23 Kips
35.01 ft	171.30 Kips	2.67 Kips	173.98 Kips
44.01 ft	196.47 Kips	2.67 Kips	199.14 Kips
44.99 ft	199.21 Kips	2.67 Kips	201.88 Kips
45.01 ft	199.28 Kips	1.98 Kips	201.26 Kips
54.01 ft	240.12 Kips	1.98 Kips	242.09 Kips
63.01 ft	288.96 Kips	1.98 Kips	290.94 Kips
72.01 ft	345.80 Kips	1.98 Kips	347.78 Kips
74.99 ft	366.39 Kips	1.98 Kips	368.37 Kips
75.01 ft	366.56 Kips	10.93 Kips	377.49 Kips
84.01 ft	463.78 Kips	10.93 Kips	474.70 Kips
93.01 ft	572.52 Kips	10.93 Kips	583.45 Kips
102.01 ft	692.79 Kips	10.93 Kips	703.71 Kips
106.99 ft	764.29 Kips	10.93 Kips	775.22 Kips

28-Feb-2011 GRLWEAP (TM) Version 1998-1 2.70 kips 109975 kips/in 0.100 in 0.100 in 0.100 sec/ft 0.150 sec/ft Skin Friction Distribution 81.00 ft 21.40 in2 0.800 -1st Pile-2nd Pile Res. Shaft = 95 % (Proportional) DELMAG D 30-32 **Pile Model** Helmet Hammer Cushion Skin Quake Toe Quake Skin Damping Toe Damping Pile Length Pile Top Area Efficiency Tension Stress (ksi) Stroke (feet) 10.00 50.0 10.0 2.00 40.0 20.0 240 30.0 8.00 6.00 00.4 0.0 200 . 160 Blow Count (bl/ft) 120 ٥ 80 HC Nutting Company BSB: 12/09/2010: DWW 40 ¥.,, they . 5 60 50.0⁻ 40.0-1000 L 30.0 20.0 10.0 0.0 600 200 800 400 Compressive Stress (ksi) -Ultimate Capacity (kips)

HC Nutting Company BSB : 12/09/2010 : DWW

28-Feb-2011 GRLWEAP(TM) Version 1998-1

Ulitmate	Maximum Compression	Maximum Tension	Blow	0.1	-
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	bl/ft	feet	kips-ft
200.0	26.492	0.629	12.7	6.52	31.00
250.0	27.794	1.298	17.3	6.89	30.19
300.0	28.999	0.000	21.2	7.26	29.64
350.0	29.559	0.000	26.6	7.44	29.34
400.0	29.865	0.000	33.9	7.54	29.43
450.0	30.931	0.000	42.1	7.88	30.44
500.0	31.484	0.000	54.6	8.05	30.74
550.0	31.825	0.000	74.9	8.14	30.74
600.0	32.044	0.000	110.6	8.18	30.73
650.0	32.834	0.000	170.3	8.41	31.47

OhioRiver HP14×73 to rock

HC Nutting Company

28-Feb-2011 GRLWEAP(TM) Version 1998-1

BSB : 12/09/2010 : DWW Onio River HP14273 to rock

	Maximum	Maximum			
Ulitmate	Compression	Tension	Blow		
Capacity	Stress	Stress	Count	Stroke	Energy
kips	ksi	ksi	bl/ft	feet	kips-ft
200.0	25.032	0.215	17.7	5.22	24.51
250.0	28.832	0.344	22.9	5.52	24.55
300.0	32.532	1.001	27.8	5.90	25.71
350.0	35.052	1.543	34.6	6.09	26.05
400.0	38.483	2.929	40.9	6.58	27.81
450.0	40.642	3.482	50.9	6.83	28.55
500.0	43.390	4.238	61.3	7.29	30.25
550.0	44.975	4.779	78.5	7.52	30.93
600.0	47.248	5.149	97.4	7.93	32.37
650.0	48.492	5.524	128.2	8.14	33.25

RR Max = 530 Kips

CompMax= 44,3 ksi

Ten = 4.56 Lesi

Blow Count= 71.6 61