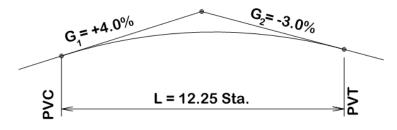
Transportation Depth Topics

Refresher Gc`i hjcbs

Code: CITER-D

Spring 2015

This copy is given to the following student as part of School of PE course. Not allowed to distribute to others. Brianne Hetzel (bree.millard@gmail.com)


A +4.0% grade intersects a -3.0% percent grade at PVI Sta. 222+00 and Elev. 300.00 on a two-lane highway with a design speed of 45 mph. What is the turning point elevation for the curve that is designed to meet passing sight distance using K-value method?

SOLUTION 27

STEP 1: Compute the length of the curve based on Passing Sight Distance using K-value method?

Using AASHTO Table 3-35 included in this chapter in the previous pages, for V=45 mph K = 175; L = K(A) = 175(7) = 1225' = 12.25 sta

> PVI STA 222+00 EL. 300.00

STEP 2: Calculate the highpoint elevation

L=1225' PVC Sta.= 22200 - 1225'/2 = 215+87.50 R = -7/12.25 = -0.571 Elev_{PVC} = 300.00 - 12.25/2(4) = 275.50 ft $x_{max} = -G_1/R = -4/-0.571 = \underline{7.005 \text{ sta.}}$ Elev_{HP} = (R/2) (x^2_{max}) + $x_{max}(G_1)$ + Elev_{PVC} Elev_{HP} = (-0.571/2)(7.005²) + 7.005(4) + 275.50' Elev_{HP} = - 14.01' + 28.02' + 275.50' = 289.51 <u>ft</u>

SOLUTION TABLE									
			Com	ponents of tim	Total				
Turn	Design Vehicle	1.47V _g	Basic t _g	Adjustment for additional	Adjustment for approach	ISD (ft)	Reference		
				lanes crossed	grade				
1 Right	Passenger Car	88.2[6.5 +	0 +	0.1(3.4)] =	603	AASHTO		
	Single Unit Truck	88.2[8.5 +	0 +	0.1(3.4)] =	780	pg 664		
	Combination Truck	88.2[10.5 +	0 +	0.1(3.4)] =	956			
	Passenger Car	88.2[7.5 +	0.5(2.42) +	0.2(3.4)] =	828	AASHTO		
2 Jeft	Single Unit Truck	88.2[9.5 +	0.7(2.42) +	0.2(3.4)] =	1047	pg 660		
I	Combination Truck	88.2[11.5 +	0.7(2.42) +	0.2(3.4)] =	1224			
3 Thru	Passenger Car	88.2[6.5 +	0.5(2.42) +	0.1(3.4)] =	754	AASHTO		
	Single Unit Truck	88.2[8.5 +	0.7(3.42) +	0.1(3.4)] =	991	pg 664		
	Combination Truck	88.2[10.5 +	0.7(3.42) +	0.1(3.4)] =	1167			

10.2.1 Fratar Method

This is based on the following assumptions:

- 1. The distribution of future trips from an origin is proportional to the present trip distribution
- 2. The future distribution is modified by the growth factor of the zone to which these trips are attached.

This model has been used extensively in several metropolitan areas, particularly for estimating external trips coming from outside the study areas to zones located within the study area.

$$t_{ij}^{f} = t_{ij}^{b} \frac{O_{i}^{f}}{O_{i}^{b}} \frac{D_{j}^{f}}{D_{j}^{b}} \frac{\sum\limits_{k=1}^{n} t_{ik}^{b}}{\sum\limits_{k=1}^{n} D_{k}^{f}}$$

Where :

 O_i^f and O_i^b = future and base year origin trips from zone i

 D_{i}^{f} and D_{i}^{b} = future and base year destination trips to zone j

 t_{ij}^{f} and t_{ij}^{b} = future and base year trips from zone i to zone j

PROBLEM 44

An origin zone *i* with 20 base-year trips going to *j*, *k*, and *l* numbering 4, 6, and 10, respectively. Growth rates for *i*, *j*, *k*, and *l* are 2, 3, 4, and 6 respectively in 25 years. Determine the future trips from i to *j*, *k*, and *l* in the future year.

SOLUTION 44

$$t_{ij}^{b} = 4; t_{ik}^{b} = 6; t_{il}^{b} = 10$$

$$O_{i}^{b} = 20; O_{i}^{f} = 20 \times 2 = 40$$

$$D_{j}^{b} = 4; D_{k}^{b} = 6; D_{l}^{b} = 10$$

$$D_{j}^{f} = 4 \times 3 = 12$$

$$D_{k}^{f} = 6 \times 4 = 24$$

$$D_{l}^{f} = 10 \times 6 = 60$$

$$\sum D^{f} = 96$$

60

$$t_{ij}^{f} = \left(4 \times \frac{40}{20} \times \frac{12}{4}\right) \left(\frac{4+6+10}{96}\right) = 24 \times \frac{20}{96} = 5$$
$$t_{ik}^{f} = \left(6 \times \frac{40}{20} \times \frac{24}{6}\right) \left(\frac{4+6+10}{96}\right) = 48 \times \frac{20}{96} = 10$$
$$t_{il}^{f} = \left(10 \times \frac{40}{20} \times \frac{60}{10}\right) \left(\frac{4+6+10}{96}\right) = 120 \times \frac{20}{96} = 25$$
$$Total = 40$$

61

A 6-lane (3 lanes in each direction) freeway passes through level terrain in an urban area. The freeway is constructed with 11 ft lanes and concrete barriers 3 ft from the outer pavement edges of both outer lanes. The one-direction peak hourly volume during the weekday commute is 2200 vph. Traffic includes 4% buses, 6% trucks, and 2% recreational vehicles (RVs). There is one ramp per mile on average. The peak hour factor is 0.92. The posted speed limit is 55 mph.

- (a) What is the passenger car equivalent flow rate per lane?
- (b) What is the free flow speed?
- (c) What is the density?
- (d) What is the weekday peak-hour level of service?

SOLUTION 45

(a)
$$v_p = \frac{V}{PHF \times N \times f_{HV} \times f_p}$$

Where: V=2200 vph; PHF=0.92; N = 3; f_{HV} = ?; f_p = ?

Trucks and buses have the same passenger car equivalents, so the "truck" fraction is 10% (4% + 6%). The traffic includes 2% RVs. From Exhibit 11-10 of HCM, for level terrain, $E_T = 1.5$, and $E_R = 1.2$; Using Eq. 11-3 The commuter population knows the route, so $f_P = 1.0$ $f_{HV} = \frac{1}{1+P_T(E_T-1)+P_R(E_R-1)} = \frac{1}{1+0.10(1.5-1)+0.02(1.2-1)} = 0.9488$ $v_n = \frac{V}{1+P_T(E_T-1)+P_R(E_R-1)} = \frac{2200}{1+0.10(1.5-1)+0.02(1.2-1)} = 839$ pcphpl

$$v_{p} = \frac{1}{PHF \times N \times f_{HV} \times f_{p}} = \frac{2200}{0.92 \times 3 \times 0.95 \times 1.0} = \frac{2200}{2.622} = 83$$

(b)

FFS =
$$75.4 - f_{LW} - f_{LC} - 3.22 \text{ TRD}^{0.84} = 75.4 - 1.9 - 1.2 - 3.22(1)^{0.84}$$

= 69.08 mph

(c) Density

$$D = \frac{v_p}{S} = \frac{839 \ veh/h}{69.08} = 12.15 \ pcpmpl$$

(d) Using LOS Criteria table, 11 < 12.15 < 18; Therefore the roadway is operating at LOS B

 $W_E = 14.0 - 1.5 - 2.0 = 10.50$ ft

$$v_p = \frac{v_{15}}{15 * W_E} = \frac{1250}{15 * 10.5} = 7.9 \ p/min/ft$$

LOS for Average Flow (using Exhibit 23-1) = C

LOS for Platoon Adjusted Flow (using Exhibit 23-2) = D

11.4 Signalized Intersections

Cycle length – the time required for one complete sequence of all signal indications

Phase – the right-of-way (green), change (yellow), and clearance (all red) intervals in a cycle that are assigned to an independent traffic movement or combination of movements

Green interval – the right-of-way interval during which the signal indication is green

Yellow Change interval – the first interval following the green interval or which the signal indication is yellow

Clearance interval – an interval that follows a yellow change interval and precedes the next conflicting green interval

11.4.1 Change Interval

Reference – Any Traffic Engineering Book

• Also known as "Yellow Interval"

$$y = t + \frac{v}{2a + 2Gg}$$

Where:

y =length of yellow interval (sec)

t = driver perception/reaction time (1.0 sec generally used)

v = velocity of approaching vehicle (fps)

a = deceleration rate (10 fps^2 generally used)

Estimate change intervals for grades -2%, 0%, and +2% for an approach speed of 30 mph.

SOLUTION 51

• For -2% grade,

$$y = 1.0 + \frac{30 \text{ miles/hour} * \frac{5280 \text{ ft/mile}}{3600 \text{ sec/hour}}}{2 * 10 + 2 * 32.2(-2/100)} = 3.4 \text{ sec}$$

- For 0% grade, y = 3.2 sec
- For +2% grade, y = 3.1 sec

11.4.3 Cycle Length, Phases, Green Interval

Reference - Chapter 18 of HCM

Using Equation 18-17 (modified) from HCM, required Cycle Length for an intersection can be computed as follows:

$$C = \frac{L * X_c}{X_c - \sum y_i}$$

Where,

$$\sum y_{i} = (v/s)_{1} + (v/s)_{2} + (v/s)_{3} + \dots (v/s)_{n}$$

PROBLEM 52

The traffic volumes for a two phase signal at the intersection of High Street and Broad Street are summarized below.

Street Flow Rate		Max Saturation Flow			
High St.	500 vph	1500 vph			
Broad St.	600 vph	1200 vph			

Given the following facts, answer parts 'a' through 'e'

• lost time/ phase: 4 sec; desired intersection v/c $(X_c) = 0.90$

- a.) What is the <u>actual volume-to-saturation flow ratio</u> for High St.? v/s = 500/1500 =<u>0.33</u>
- b.) What is the <u>actual volume-to-saturation flow ratio</u> for Broad St.? v/s = 600/1200 = 0.50
- c.) What cycle length, C, should be used? Total Lost time: $L = 2 \times 4 = 8 \text{ sec/cycle.}$

$$C = \frac{L \times X_c}{[X_c - (v/s)_1 - (v/s)_2]} = \frac{8 \times 0.90}{[0.90 - 0.33 - 0.50]} = 103 \ sec$$

d.) What is the <u>optimum (effective) green time</u> that will maintain the optimum v/c ratio on each street?

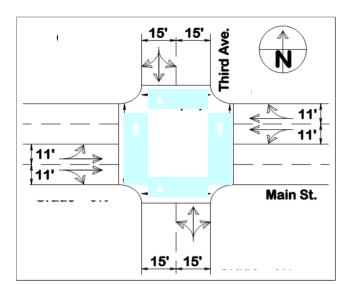
$$g_{High St} = \left(\frac{\nu}{s}\right) \left(\frac{C}{X_i}\right) = 0.33 \left(\frac{103}{0.9}\right) = 38 \text{ sec}$$
$$g_{Broad St} = \left(\frac{\nu}{s}\right) \left(\frac{C}{X_i}\right) = 0.50 \left(\frac{103}{0.9}\right) = 57 \text{ sec}$$

e.) What is the <u>phase length</u> for each street?

Phase length = Effective Green Time of the Phase + Lost Time of the Phase

Phase length for High Street = $38 \sec + 4 \sec = 42 \sec$ Phase length for Broad Street = $57 \sec + 4 \sec = 61 \sec$

Clue: When we add all phase lengths, it should equal to Cycle length. In this example, $42 \sec plus 61 \sec = 103 \sec which is the Cycle Length.$


f.) What is the minimum cycle length, C, should be used? (Use $X_c = 1.00$)

$$C = \frac{L \times X_c}{[X_c - (\nu/s)_1 - (\nu/s)_2]} = \frac{8 \times 1.0}{[1.0 - 0.33 - 0.50]} = 47 \text{ sec}$$

The intersection of Third Avenue (NB/SB) and Main Street (EB/WB) is located in the Central Business District (CBD) of a small urban area. Intersection geometry is shown. What is the minimum green time required for pedestrian crossings?

The Facts:

- Cycle Length = 60 sec
- Two phase signal
- Crosswalk width = 10'; Pedestrian
 Volume = 120 p/h at each approach

SOLUTION 54

Minimum effective green time required for pedestrians can be calculated using the

following equation (Equation 18-66 of HCM): $3.2 + \frac{L}{S_p} + 0.27N_{ped}$

Using Eqn 18-54,

Pedestrians per cycle
$$(N_{ped}) = \frac{v}{3600} \times C = \frac{120}{3600} \times 60 = 2 \text{ ped/cycle}$$

to cross Third Ave. =
$$3.2 + \frac{L}{S_p} + 0.27N_{ped}$$

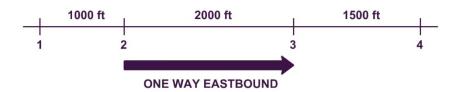
= $3.2 + \frac{30}{4.0} + 0.27 \times 2$ = 11.24 sec

• to cross Main Street =
$$3.2 + \frac{L}{S_p} + 0.27N_{ped}$$

= $3.2 + \frac{44}{4.0} + 0.27 \times 2 = 14.74$ sec

PROBLEM 55

Given the following information by approach, what is the intersection LOS?


- EB Flow rate 800 veh/h; Approach Control Delay 59.4 sec/veh
- WB Flow rate 833 veh/h; Approach Control Delay 31 sec/veh
- NB Flow rate 466 veh/h; Approach Control Delay 14.4 sec/veh
- SB Flow rate 667 veh/h; Approach Control Delay 21.9 sec/veh

Intersection Delay as per equation 18-48 of HCM,

$$d_{I} = \frac{\sum d_{A}v_{A}}{\sum v_{A}} = \frac{59.4 \times 800 + 31 \times 833 + 14.4 \times 466 + 21.9 \times 667}{800 + 833 + 466 + 667} = 34.2 \text{ sec/veh}$$

From Exhibit 18-4 of HCM, LOS = C

Consider a one-way arterial as shown in the following figure with the indicated spacing between four signals. Assuming there are no vehicles queued at the signals, determine the offsets between the signals if the desired platoon speed is 50 fps and cycle length 60 seconds.

SOLUTION 56

Signal (Downstream)	Relative to Signal (Upstream)	Ideal Offset
2	1	1000/50 = 20 sec
3	2	2000/50 = 40 sec
4	3	1500/50 = 30 sec

PROBLEM 57

Consider a one-way arterial as shown in the following figure with the indicated spacing between five signals. Assuming there are no vehicles queued at the signals, at what speed a vehicle should be travelling to avoid stopping at signal 2 after leaving signal 3. Given the following parameters:

Offset between Signals 3 and 2 = 60 sec Cycle length = 90 sec

SOLUTION 57

Desired speed = Spacing/Offset = 1800 ft/ 60 sec = 30 fps

Minimum Vehicle Warrant Criteria							
Major Street		Minor Street					
• At least 500 vph	And	• At least 150 vph					
Both directions Combined		• Either direction					
• 8 of the hours in the day		• 8 of the hours in day					
• Same 8 hours for major and minor street							

Major Street Volumes									
Hour Begins	Iour Begins EB WB		Total Hour		EB	WB	Total		
					Begins				
6: a.m	390	100	490		12:pm	500	500	1000	
7: a.m	400	90	490		1:pm	345	400	745	
8: a.m	600	400	1000		2:pm	300	350	650	
9: a.m	500	350	850		3:pm	350	600	950	
10: a.m	400	400	800		4:pm	400	700	1100	
11: a.m	450	500	950		5:pm	300	600	900	
The major street meets the criteria during 10 hours ; $10>8$, therefore									
the major street meets the signal warrant criteria.									

Minor Street Volumes									
Hour Begins	NB	SB		Hour Begins	NB	SB			
6: a.m	35	60		12:pm	175	150	◄		
7: a.m	100	170	▼	1:pm	125	160	◄		
8: a.m	100	190	▼	2:pm	80	140			
9: a.m	80	90		3:pm	135	105			
10: a.m	90	110		4:pm	200	175	◄		
11: a.m	80	120		5:pm	180	195	◄		
The minor road has 150 vph in only 6 hours, 6 < 8,									
Therefore it does not meet the minor road criteria, and a signal									
is NOT warranted at this intersection (based on traffic data)									

Hours met for both Major and Minor Streets – 5 hours (8 am; 12 pm, 1 pm, 4 pm, and 5 pm)