

Procedure for Designing Superelevation Transition

- 1. Determine **e**_{max}: **6% or 8%** from design criteria
- 2. Determine proposed design speed: V_d
- 3. Determine radius: R, of curve under consideration
- 4. Identify constraints which may impact the design
- 5. Determine required superelevation rate: e
- 6. Determine required Superelevation runoff, L_r
- 7. Determine required Tangent runout, L_t
- 8. Determine stations where L_t and L_r begin and end.

Interface Calculated Maximum Calculated Maxim
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
80 6.0 0.14 0.20 252.0 252 45 6.0 0.15 0.21 642.9 64 50 6.0 0.13 0.19 335.7 336 50 6.0 0.14 0.20 83.3 83 50 6.0 0.12 0.18 437.4 437 55 6.0 0.13 0.19 10614 133 50 6.0 0.11 0.17 560.4 560 60 6.0 0.12 0.19 10614 133 50 6.0 0.09 0.15 755.9 756 65 6.0 0.12 0.19 133.3 133 50 6.0 0.09 0.15 755.9 756 65 60 0.00 0.16 1656.7 133 50 6.0 0.09 0.15 755.9 756 65 60 0.00 0.16 1656.7 133 50 6.0 0.09 0.15 755.9 756 60 0.00 0.16 1656.7 133 50 6.0 0.09 0.15 755.9 756 60 0.00 0.16 1656.7 133 50 6.0 0.09 0.14 350.7 6.0 0.00 0.15 2500.0 2500 50 6.0 0.08 0.14 350.7 6 0.0 0.08 0.14 350.7 6 0.0 0.00 0.15 2500.0 2500

Superelevation Transition

Prevent abrupt edge-of-pavement profiles

Minimum Runoff Lengths

- 1. Two- and Four-Lane Highways with 12 ft. lanes ... See Exhibit 3-32.
- 2. Three-Lanes Highway: 1.2 times length for two-lane pavements
- 3. Six-Lane Undivided: 2.0 times length for two-lane pavements

Example 1 Given: $e_{max} = 6\%$ Design Speed, $V_d = 25$ mph Two 12-foot lanes; $R = 200$ ft Find: 1. Required Rate of Superelevation (e_{req}) 2. Length of Superelevation Runoff (L_r) 3. Length of Tangent Runout (L_t)
Given: $e_{max} = 6\%$ Design Speed, $V_d = 25$ mph Two 12-foot lanes; $R = 200$ ft Find: 1. Required Rate of Superelevation (e_{req}) 2. Length of Superelevation Runoff (L_r) 3. Length of Tangent Runout (L_t)
e _{max} = 6% Design Speed, V _d = 25 mph Two 12-foot lanes; R = 200 ft Find: 1. Required Rate of Superelevation (e _{req}) 2. Length of Superelevation Runoff (L _r) 3. Length of Tangent Runout (L _t)
Design Speed, $V_d = 25 \text{ mph}$ Two 12-foot lanes; $R = 200 \text{ ft}$ Find: 1. Required Rate of Superelevation (e_{req}) 2. Length of Superelevation Runoff (L_r) 3. Length of Tangent Runout (L_t)
Two 12-foot lanes; R = 200 ft Find: 1. Required Rate of Superelevation (e _{req}) 2. Length of Superelevation Runoff (L _r) 3. Length of Tangent Runout (L _t)
 Required Rate of Superelevation (e_{req}) Length of Superelevation Runoff (L_r) Length of Tangent Runout (L_t)
 Required Rate of Superelevation (e_{req}) Length of Superelevation Runoff (L_r) Length of Tangent Runout (L_t)
 Length of Superelevation Runoff (L_r) Length of Tangent Runout (L_t)
Length of Tangent Runout (L_t)
4. Length of Superelevation Transition (T)

Example 1 Solution

Having determined the Superelvation Runoff, $L_r = 99$ ft, Calculate Tangent Runout, L_t

$$L_t = \frac{e_{NC}}{e_d} L_r = \frac{2.0}{5.8} (99) = 34.138 \sim 34 \, ft$$

Therefore Superelevation Transition,

$$T = L_r + L_t = 99 + 34 = \frac{133 \text{ ft}}{133 \text{ ft}}$$