BURGESS & NIPLE

Waseem Khalifa, Ph.D., P.E. Project Manager Ohio Department of Transportation District 11 2201 Reiser Avenue New Philadelphia, OH 44663

Re: BEL-7-19.75 PID 106237 Final Project Memorandum

May 3, 2022

Dear Waseem,

Burgess & Niple, Inc. (B&N) has completed the authorized preliminary design work for the above referenced project. The purpose of this memorandum is to summarize the work completed to date to assist the Department in deciding on next steps for the project.

PROJECT OVERVIEW

This project pertains to the BEL-7-1975 bridge located in Bridgeport, OH. The project site is shown in Figure 1. Photos of the existing bridge are shown in Figure 2. The scope of the initial work performed by Burgess & Niple was as follows:

- Perform a study to explore bridge rehabilitation and replacement options.
- Prepare engineering plans to retrofit deficient pier caps.

The main driver of this project is deficient pier caps. Several of the T-type pier caps exhibit significant cracking that are consistent with structural deficiencies. Since work to replace the bridge or perform significant rehabilitation would take several years, B&N was asked to expedite the production of engineering plans for pier cap retrofits to allow time for planning a larger project for the bridge.

Subsequent to the initially scoped items, B&N was asked to investigate ideas to improve traffic operations at the Interstate 70 & Route 7 interchange at this location and prepared a traffic study to explore a possible interchange improvement.

The following is a summary of the above-described work.

Figure 1

Looking South

Figure 2

STRUCTURE TYPE STUDY

B&N commenced with exploring bridge rehabilitation and replacement options in September 2017. The existing bridges are "twin" separate northbound and southbound structures crossing over several highways, a creek and various other land use features. The twin bridges have separate T-type piers but share common abutments. The bridges are both 1628 feet long but have differing span lengths. Other than the differences between the first four span lengths on the north bound structure and the first three span lengths on the south bound structure, the structures are

similar. Forward of Pier 3 on each of the structures all detailing is identical with the north bound and south bound structures mirrored about the centerline. The structures are made up of five units (426', 182', 323', 374' and 323') with cantilevered hinges at the end of each unit.

B&N studied bridge rehabilitation and replacement options.

For the rehabilitation option, only the pier stems and foundations would be retained – all other bridge components would be replaced, more or less retaining the overall bridge spans and length. To facilitate construction in general, part-width construction, and because of significant tilting of the abutments, new abutments would be placed in front of the existing abutments. Additionally, Piers 9 and 10, the piers adjacent to Wheeling Creek, would be entirely replaced due to structural pier stem and cap deficiencies found by analysis that would not be practical to retrofit.

For the replacement option, two alternatives were studied. In Option A the existing twin bridges would be replaced by three shorter twin bridges. This option is feasible because much of the current land use under the bridge does not need to be retained (does not need to be "bridged"). More information about the specific land uses under the existing bridge is contained in the Structure Type Study. In general terms, the total length of the three shorter bridges is about half the length of the existing bridges. The space between the three bridges would consist of MSE wall "islands". Based on supplemental geotechnical information obtained during the study (via D11 geotechnical task order contract), it was determined that supplemental support (e.g. stone columns) would be needed to support the MSE islands. The determination of the exact type of geotechnical strengthening was beyond the scope of B&N's study, but an allocation for this supplemental support was included in construction cost estimates.

Replacement Option B would consist of full length "twin" bridges similar to the existing.

The structures study work comparing these rehabilitation and replacement option was put in the form of a Structure Type Study, which was submitted for ODOT review in March 2019. The Structure Type study was revised in accordance with ODOT review comments and the revised Structure Type Study is shown in **Attachment A**. A copy of the review comments and their disposition is included separate from this memorandum.

Comparative estimates of probable construction costs (bridge only) for the two options as presented in the 2019 Structure Type Study are:

Rehabilitation Option: \$21.7 million*

Replacement Option A

(3 bridges w/ MSE islands): \$ 20.7 million*

Replacement Option B

(full length bridge): \$ 25.2 million*

Note that these costs are for structure only and do not include any roadway costs. Estimates used Estimator 2017 cost information inflated to 2019 and include 20% contingency and no engineering costs.

The Bridge Replacement Option A (3 Bridges w/MSE Islands) is recommended for this project.

PIER CAP REPAIRS

Concurrent with the structure type study work, B&N prepared a study of pier cap strengthening and retrofit options. An external post-tensioning option was selected as the preferred option. B&N prepared engineering plans for that option and the construction project was awarded on September 27, 2018 and completed on May 31, 2019. The engineering plans for that work are included as **Attachment B**. A photo of one of the completed pier cap retrofits is show as Figure 3.

Figure 3

INTERCHANGE EVALUATION TECHNICAL MEMORANDUM

In August 2019, District 11 requested that B&N explore ideas to improve traffic operations in this Route 7 interchange with the thought that the reconstruction of the bridge would be a good time to make these improvements if they were warranted. The goal of the work was to determine if there was a feasible interchange modification that would significantly improve traffic operations while being consistent with the proposed bridge reconfiguration. On September 23, 2019, B&N was authorized to proceed with the study. Meetings with D11 and Central Office personnel were held in November 2019 and February 2020, and on April 22, 2020, B&N submitted the study to D11 as an Interchange Evaluation Technical Memorandum. A copy of that memorandum is shown in **Attachment C**.

Layouts for several interchange concepts were developed. A single roundabout at the Main Street (US40)/Lincoln Avenue intersection was identified as the best feasible alternative to improve traffic operations while best fitting within the constraints of the project area. (See Figure 4). This roundabout would necessitate changing the span arrangement and length of the middle bridge of the bridge replacement option. Additionally, it would require that two of the piers be straddle bents with pier columns located in the roundabout islands, and additionally, two other pier columns located close to the edge of the proposed roadway.

The additional construction cost to incorporate the roundabout into the project is estimated to be \$ 4.8 million (2019 costs).

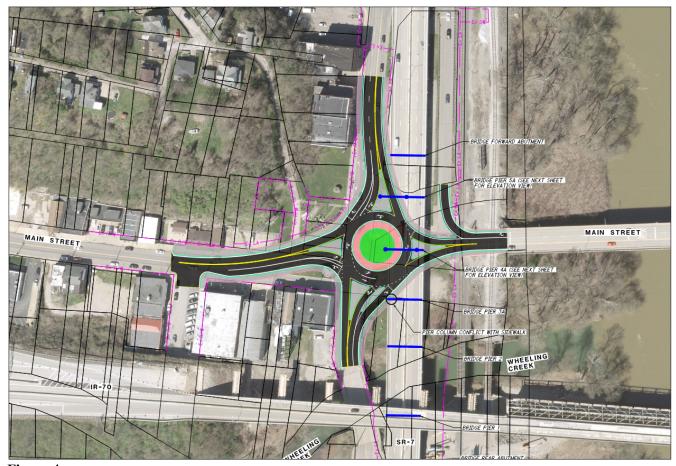


Figure 4

ROUNDABOUT TRAFFIC STUDY

The interchange evaluation described above was prepared based on existing and available traffic data. Subsequent to the preparation of the interchange evaluation, ODOT requested that B&N prepare Certified Traffic for the interchange and confirm that the roundabout alternative met the traffic operational performance metrics using the Certified Traffic data. B&N prepared a traffic study report and submitted to ODOT on November 11, 2021. The primary conclusion from the study was that the proposed roundabout improved the traffic operations at the Main Street (US 40) & Lincoln Avenue intersection from LOS E in the existing condition to LOS B. The study also described potential improvements to other intersections to improve traffic operations.

This traffic study is shown in **Attachment D**.

ROUNDABOUT IMPACTS MEETING

On January 27, 2022, a virtual meeting was held with B&N and D11 to discuss in more detail the advantages, disadvantages, and impacts to the project if the roundabout improvement was done as part of the project. Items discussed were clear zone and sight distance for substructures adjacent to the roundabout, experience by other states in constructing similar facilities (roundabouts under bridges), pier column/cap risk assessment issues, maintenance of traffic, and property impacts.

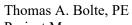
A copy of the information presented at that meeting is shown in **Attachment E**.

REVISED ESTIMATES OF PROJECT COSTS

As stated earlier, construction cost estimates were based on 2017 Estimator data inflated to 2019. Assuming that the construction midpoint is now in 2025, the following are new total project construction cost estimates (Note: Costs include a 20% contingency but do not include right-of-way or engineering).

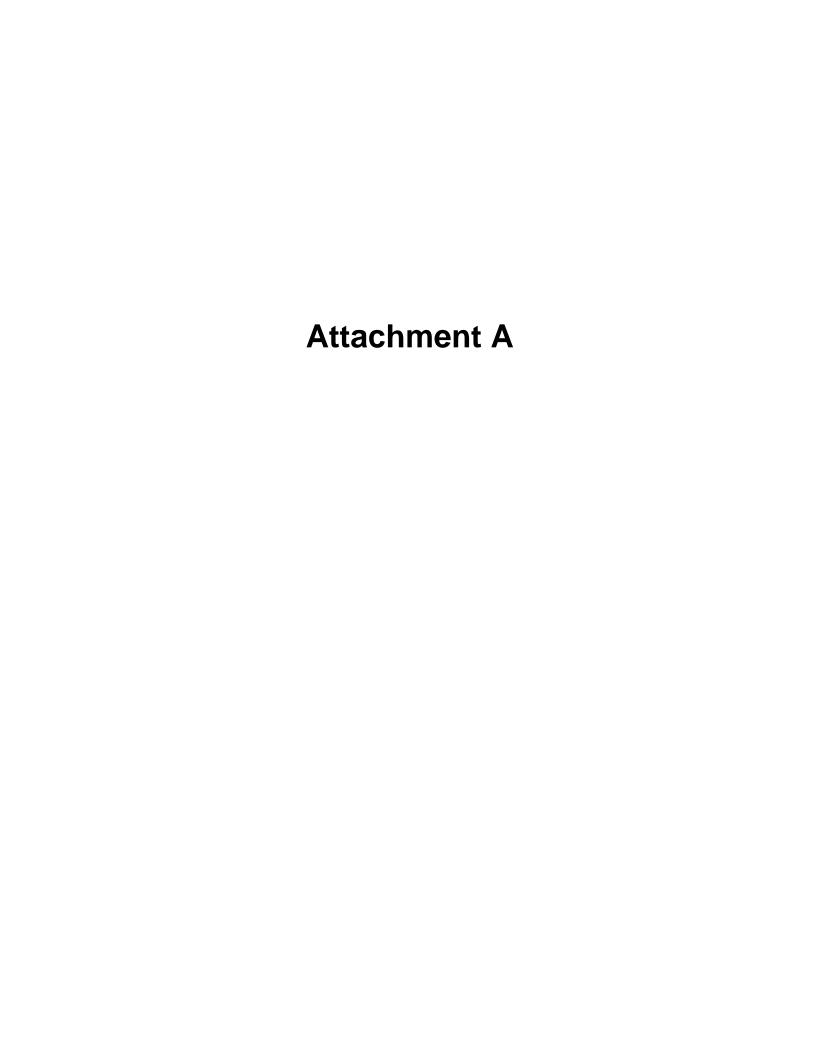
Item	Cost					
Comparative Bridge Costs (Bridge Only)	2017	2025				
Bridge Rehabilitation	\$ 21.7 M	\$ 27.6 M				
Bridge Replacement Option A (3 bridges w/ MSE Islands)	\$ 20.7 M	\$ 26.3 M				
Bridge Replacement Option B (Single Full Length Bridge)	\$ 25.2 M	\$ 32.0 M				
Bridge Replacement Option A Full Project (no roundabout)	\$ 24.9 M	\$ 31.6 M				
Bridge Replacement Option A Full Project (with roundabout)	\$ 29.7 M	\$ 37.7 M				

Information showing how these construction costs were calculated is shown in Attachment F.


The Bridge Replacement Option A (3 Bridges w/MSE Islands) is recommended for this project. Although the traffic analysis indicated a roundabout would improve traffic flow, the required bridge pier columns would obstruct stopping sight distance entering the roundabout. Additionally, the bridge pier cap over the roundabout would be non-redundant, which BDM section 1001.2 states should be avoided. These concerns, along with the additional project cost, lead to this recommendation.

CONCLUSION

We appreciate the opportunity to serve ODOT and supply this information in support of making decisions about how to proceed with improvements. If you have any questions or need any additional information, please do not hesitate to contact me.


Respectfully,

Thomas A. Baltl

Project Manager

STRUCTURE TYPE STUDY -

BEL-7-1975 OVER RAMP B, WHEELING CREEK, US40/US250 AND ACCESS TO RAMP D

Bridgeport, Ohio

PID No: 106237

Prepared for:
Waseem Khalifa, Ph.D., P.E., Project Manager
ODOT District 11
2201 Reiser Avenue
New Philadelphia, Ohio 44663
March 13, 2019
Revised April 2022

Table of Contents

	1
INTRODUCTION	2
Project Description	2
Design References	2
DESIGN CONSIDERATIONS	2
Existing Structure	2
Design Criteria for SR7	4
Proposed Bridge Alternatives	4
Bridge and Roadway Alignment and Profile	4
Maintenance of Traffic	6
Existing Features Under Bridge	6
Removal Considerations	7
Transverse Section	7
Vertical Clearance	7
Horizontal Clearance	7
Abutments	7
Piers	8
Superstructure Details	9
Deck Drainage	9
Aesthetic Considerations	9
Utilities	10
Access Drive to Sewage Pump Stations	10
Traffic Signal	10
Right of Way	10
Temporary Sheeting	10
Railroads	10
Hydraulic Considerations	10
Lighting	10
Geotechnical Considerations	11
Environmental Considerations	11
Special Signing for US250 to SR7 NB	12
ESTIMATE OF PROBABLE COSTS	12
APPENDIX A – SUMMARY OF EXISTING PIER ANALYSIS	

APPENDIX B – REHABILITATION OPTION SITE PLAN AND DETAILS

APPENDIX C – REPLACEMENT OPTION SITE PLAN AND DETAILS

APPENDIX D – COST ESTIMATES

APPENDIX E – EXISTING BRIDGE PLANS (ORIGINAL AND REHABILITATION)

APPENDIX F - 1958 AND 2018 SOIL BORINGS

APPENDIX G – EXISTING BRIDGE PHOTOGRAPHS

GENERAL VIEW OF STRUCTURE LOOKING NORTHWEST

INTRODUCTION

PROJECT DESCRIPTION

This Structure Type Study has been prepared by Burgess & Niple (B&N) for the Ohio Department of Transportation (ODOT), District 11, to compare alternatives between rehabilitating or replacing the BEL-7-1975 structure carrying SR7 over Ramp B (ramp from SR7 North Bound to South Lincoln Avenue), Wheeling Creek, US Route 40/US Route 250 and access to Ramp D (ramp to SR7 North Bound) in Bridgeport, Ohio. Two options were investigated. The **Rehabilitation Option** includes removing most of the existing structure except for pier stems and footings, replacing the two piers adjacent to Wheeling Creek, replacing the remaining pier caps, replacing the abutments and replacing the superstructures. The **Replacement Option** includes removing the existing structures and replacing with three twin bridges combined with two areas of MSE fill. It is anticipated that traffic will be maintained during construction by utilizing crossovers, for either the replacement or rehabilitation option.

Terminology: For inventory purposes, ODOT classifies this structure as a single bridge, with one Structure File Number. The superstructures and piers for the northbound structure and the southbound structure are separate. The abutments are shared. For the purpose of this Structure Type Study, the terminology "bridges", "bridge", "structures", and "structure" may be used interchangeably to more clearly define the physical element being described.

DESIGN REFERENCES

For the **Rehabilitation Option**, all preliminary design calculations for the new superstructure conform to the 2007 ODOT LRFD Bridge Design Manual (BDM) and AASHTO LRFD Bridge Design Specifications. All preliminary design calculations for the existing substructures conform to the 2004 ODOT LFD BDM and the AASHTO Bridge Design Standard Specification (LFD). For the **Replacement Option**, all preliminary design calculations for the new structure conform to the 2007 ODOT LRFD BDM and AASHTO LRFD Bridge Design Specifications.

DESIGN CONSIDERATIONS

EXISTING STRUCTURE

The existing bridge crosses over several highways, a creek and various existing features. See **Exhibit 1** for an aerial view of the project site, and **Exhibit 2** for representative bridge photographs. The north bound bridge has twenty-two spans. The south bound bridge has twenty-one spans. Both superstructures are approximately 1628 feet long. Other than the differences between the first four span lengths on the north bound structure and the first three span lengths on the south bound structure, the structures are similar. Forward of Pier 3 on each of the structures all detailing is identical with the north bound and south bound structures mirrored about the centerline. The structures are made up of five units (426', 182', 323', 374' and 323') with cantilevered hinges at the end of each unit. Elastomeric strip seal type expansion joints are located in the deck above each of the hinges and at the abutments. The superstructure for Units 1,

2, 4 and 5 is non-composite ASTM A36 Steel beams and Unit 3 is non-composite ASTM A36 haunched girders. The existing bearings are ODOT standard rocker and bolster type.

All piers are reinforced concrete T-type. All piers, except Piers 9E, 9W, 10E and 10W (piers adjacent to Wheeling Creek), are supported on piles. Piers 9E, 9W, 10E and 10W are supported on spread footings. The deck width of each structure is 35 foot-1 inch with a 2 inch gap between the north bound and south bound structures. The existing abutments are reinforced concrete wall type supported on piles. The original design loading was CF 2000 (57). The bridge was originally constructed in 1968 and underwent a rehabilitation in 1998. See **Appendix E** for the original and rehabilitation plans. Behind the abutments, cast in place reinforced concrete retaining walls supported on piles make up the approach ramps to allow the roadway to rise up to the viaduct type structures at 4.0% grades. The approach ramp behind the Rear Abutment is approximately 300-foot-long and the approach ramp forward of the Forward Abutment is approximately 400-foot long. In addition to several highways and Wheeling Creek, various existing features are located under the structures, including a towing company's office and yard, a basketball court, access to community recycling dumpsters, an access road to a sewage pump station, a public park, and public parking with meters. Interstate Route 70 passes over the bridge. Norfolk Southern Railroad and Wheeling and Lake Erie Railway are located east and parallel of the bridge by approximately 100 feet and 200 feet, respectively.

EXHIBIT 1: PROJECT LOCATION AND PRIMARY FEATURES

BEL-7-1975 - Structure Type Study - March 13, 2019; Revised April 2022

Looking North

Looking South

EXHIBIT 2: EXISTING BRIDGE PHOTOS

DESIGN CRITERIA FOR SR7

Road Classification: Other, Freeway or Expressway

Roadway and Bridge width: 2 – 12-foot lanes, 5-foot outside shoulders, 2-foot 2 inch inside shoulders

Design and posted speed: 50 MPH

Rehabilitation Option Loading: Superstructure - HL-93

Substructure – HS20-44 or Alternate Military Loading

Replacement Option Loading: HL-93

Future Wearing Surface: 60 PSF

PROPOSED BRIDGE ALTERNATIVES

Rehabilitation Option

The Rehabilitation Option work includes removing portions of the existing structures and replacing the two piers adjacent to Wheeling Creek, replacing the remaining pier caps, replacing the abutments in front of the existing abutments and replacing the superstructures utilizing part width construction. The rehabilitated structure will consist of five units, similar to the existing structure. Existing pier points of fixity and expansion will be retained.

Cantilevered beams with hinges and deck expansion joints offset from the centerlines of the piers will not be replicated. New two gland modular type deck expansion joints will be located over the centerline of piers 5, 8, 11 and 16. Strip seal type deck expansion joints will be located at the abutments. Elastomeric type bearings are proposed. The deck will require scuppers. The existing ramps at both ends of the project will remain in place. See **Appendix B** for the Rehabilitation Option Site Plan and miscellaneous details.

Replacement Option

The Replacement Option work includes removing the existing structures and replacing with three twin bridges combined with two areas of MSE fill. Work will be performed utilizing part width construction. Existing soils under the MSE fill areas are not suitable to support MSE walls without ground improvement (see Geotechnical Considerations). Removal and replacement of 10 feet of soil in these areas has been assumed for the purposes of this study. Starting at the Rear Abutment of the existing bridge, new MSE walls and stub type abutments behind MSE walls will be constructed in front of the existing abutments. Progressing up station, Bridge Number 1 will consist of two-span concrete I-beam type structures on cap and column type piers and semi-integral type abutments behind MSE walls. The north bound and south bound structures will be offset to allow Ramp B to pass diagonally below the structures. Concrete I-beams are proposed for economy and durability since sufficient depth is available and required under clearance can be provided. Up station of Bridge Number 1 will be MSE Island Number 1. The north bound island will be approximately 394 feet in length and the south bound will be approximately 361 feet in length. Next will be Bridge Number 2, a four-span steel plate girder structure supported on cap and column type piers on drilled shafts with stub type semi-integral type abutments behind MSE walls. The length of the bridge exceeds the ODOT BDM maximum limit for semi-integral type structures, however, ODOT OSE was contacted and indicated that the maximum could be exceeded if one of the substructures were fixed and earth pressures were limited on the back walls. Pier 2 will be fixed and the backwall wall pressures will need to be investigated at the next stages of design. Up station of Bridge Number 2 is MSE Island Number 2 with a length of approximately 373 feet. Next will be Bridge Number 3, a three-span cast-in-place concrete slab bridge utilizing ODOT standard drawing details. A cast-in-place slab bridge is proposed to provide a shallow superstructure to allow the required under clearance for the Access Road to Ramp D. At the north end of the project, up station of Bridge Number 3, new MSE walls and stub type abutments behind MSE walls will be constructed in front of the existing abutments. Scuppers will be required in the bridge decks and inlets will be necessary in the MSE islands. The existing ramps at both ends of the project will remain in place. See Appendix C for the Replacement Option Site Plan and miscellaneous details.

BRIDGE AND ROADWAY ALIGNMENT AND PROFILE

The existing SR7 centerline alignment has a 1273.24-foot radius as the roadway approaches the structure from the south. A spiral connecting the curve to a tangent section extends 59.63' onto the bridge north of the Rear Abutment. As the roadway extends across the structures to the north the alignment is tangent. The point of curvature for a 4583.66' radius curve is located 78.99' north of the Forward Abutment. The proposed alignment will match the existing alignment.

The existing S	R7 profile consis	ts of the following	ng in the vicinity of the bridges:			70′	
<u>Station</u>	<u>Grade</u>	<u>Length</u>	Vertical Curve Type	164+80	-3.15%		
157+14.5	+4.00%					280' VC	Sag
		140.5′		167+60	+2.00%		
158+55	+4.00%					270′	
		650' VC	Crest	170+30	+2.00%		
165+05	-3.80%					510′ VC	Crest
		30'		175+54	-4.38%		
165+35	-3.80%						
		450' VC	Sag	Centerline Bea	arings: Rear Ab	utment = Station	159+26, Forward Abutment = 175+32
169+85	+2.50%						
		16′		The proposed	SR7 profile con	sists of the follow	ring in the vicinity of the Replacement Option:
170+01	+2.50%			<u>Station</u>	<u>Grade</u>	<u>Length</u>	Vertical Curve Type
		550' VC	Crest	159+10	+2.70%		
175+51	-4.00%					500' VC	Crest
		99'		164+10	-3.25%		
176+50	-4.00%					50′	
Centerline Bea	arings: Rear Abu	utment = Station	159+15, Forward Abutment = 175+43	164+60	-3.25%		
						310′ VC	Sag
The proposed	SR7 profile cons	sists of the follov	wing in the vicinity of the Rehabilitation Option :	167+70	+2.50%		
<u>Station</u>	<u>Grade</u>	<u>Length</u>	Vertical Curve Type			160′	
159+10	+2.70%			169+30	+2.50%		
		500' VC	Crest			550' VC	Crest
164+10	-3.15%			175+80	-3.70%		

Centerline Bearings: Rear Abutment (NB) = Station 159+54, Rear Abutment (SB) = Station 159+66,

Forward Abutment = 175+17

The Rehabilitation Option and Replacement Option have different profiles due to different superstructure depths over US Route 40/250 and the need to provide the required 16-foot 6 inch under clearance.

MAINTENANCE OF TRAFFIC

To maintain one lane of traffic in each direction along SR7, the proposed structures will need to be built using part width construction. Traffic will need to be routed from two lanes to one lane in each direction via the use of crossovers. Portable concrete barrier will be used along the centerline of each structure to separate the opposing directions of traffic. Portions of removed approach median barrier will be reconstructed after crossovers are no longer necessary.

For the **Rehabilitation Option**, temporary closures will be required at Ramp B, US40/US250 and Access Road to Ramp D during existing beam removal and erection of new beams. For the **Replacement Option**, similar temporary closures will be required at Ramp B and US40/US250, but a longer duration temporary closure will be necessary at the Access Road to Ramp D due to the falsework necessary to construct the cast-in-place slab bridge.

EXISTING FEATURES UNDER BRIDGE

Various existing features are located under the bridge. From the Rear Abutment to the Forward Abutment (south to north), the following are encountered:

Ramp B – Ramp B is the SR7 north bound exit ramp to South Lincoln Avenue in Bridgeport, Ohio. The ramp exits the east side of SR7 and passes under Span 2 of the north bound and south bound BEL-7-1975 structure. A stop sign is located at South Lincoln Avenue.

A-1 Towing – A-1 Towing has a trailer type office and a fenced in storage yard under the structure that occupies what appears to be an old B&O Railroad right of way under Spans 3 and 4 of the south bound structure and under Spans 3 through 5 of the north bound structure. Several vehicles that appear to be associated with the towing company are parked outside the fenced area. For the **Replacement Option**, since MSE Island Number 2 will be constructed at the same location currently occupied by A-1 Towing offices and vehicle storage areas, the facility will need to be relocated.

Sewage Pump Station Access Drive – A gravel access drive which continues to a sewage pump station access drive occupies the area under Span 5 of the south bound structure and Span 6 of the north bound structure. For the **Replacement Option**, since MSE Island Number 2 will cut off access from Lincoln Avenue to the Sewage Pump Station, a new relocated access drive will need to be constructed. The new access drive will be located

under Span 2 of Bridge Number 1 and will tie into the existing access drive west of the existing at grade crossing with the Norfolk Southern Railroad.

Paved Parking – An asphalt parking lot occupies the area under Span 6 of the south bound structure and Span 7 of the north bound structure. The lot does not have parking meters. The paved parking was not previously permitted by ODOT and the use will need to be terminated prior to a bridge project.

Basketball Court – A fenced asphalt basketball court occupies the area under Span 7 of the south bound structure and Span 8 of the north bound structure. For the **Replacement Option**, since MSE Island Number 2 will be constructed at the same location currently occupied by a fenced asphalt basketball court, the court will need to be removed. For either option, the basketball court was not previously permitted by ODOT and will need to be removed prior to a bridge project. As it was not previously permitted by ODOT, the basketball courts are not a 4(f) resource.

Paved Access to Recycling Dumpsters – An asphalt access road to six recycling dumpsters and a parking area with signs indicating permit parking occupies the area under Span 8 of the south bound structure and Span 9 of the north bound structure. For either option, this use was not previously permitted by ODOT and will need to be removed prior to a bridge project.

Grass and Gravel Creek Bank – A sloping grass and gravel creek bank occupies the area under Span 9 of the south bound structure and Span 10 of the north bound structure.

Wheeling Creek – Wheeling Creek is located under Span 10 of the south bound structure and Span 11 of the north bound structure.

Lincoln Avenue Park – A park with a perimeter fence, picnic pavilion, picnic tables and park benches is located under Span 11 of the south bound structure and Span 12 of the south bound structure. This use was not previously permitted by ODOT and will need to be removed prior to a bridge project. The park is not a 4(f) resource since it was not permitted.

Paved/Gravel Metered Parking – An asphalt and gravel parking lot with parking meters occupies the area under Span 12 of the south bound structure and Span 13 of the north bound structure. The parking was not previously permitted by ODOT and the use will need to be terminated prior to a bridge project.

US Route 40 and US Route 250 – US Route 40 and US Route 250 combine to form three lanes that pass under Span 13 of the south bound structure and Span 14 of the north bound structure. Under deck lighting is attached to the US Route 40/250 side of the pier caps. A traffic signal for west bound traffic is attached to north side of Pier 12W.

Paved/Gravel Metered/Non-Metered Parking – Asphalt and gravel parking lots, some with meters and some are non-metered occupy the areas under Spans 14 through 19 of the south bound structure and Spans 15 through 20 of the north bound structure. Under deck lighting is attached to the north side of Pier 17 E/W and the south side

of Pier 18 E/W. The parking was not previously permitted by ODOT and the use will need to be terminated prior to a bridge project.

Access to Ramp D – An access road from the intersection of South Lincoln Avenue and US 250 to the ramp to north bound SR7 (Ramp D) is located under Span 20 of the south bound structure and Span 21 of the north bound structure.

REMOVAL CONSIDERATIONS

The existing bridge will need to be removed part width, coordinated with the maintenance of traffic phasing. As noted above, various existing features are located under the bridges and will need to be temporarily closed, relocated or permanently removed as necessary. For the **Replacement Option**, at locations where MSE fill is proposed, foundations from buildings at the site prior to the original bridge construction may be present along with the possibility of old tanks and other underground structures. These structures will need to be removed prior to soil stabilization and MSE construction. In addition, the existing pier concrete footings at locations where MSE fill is proposed will need to be completely removed to eliminate rigid areas under the MSE fill. The existing pier footing piles can remain.

TRANSVERSE SECTION

The proposed bridge decks will be slightly narrower than the existing bridge decks. Single slope barrier 1'-6" wide by 3'-6" tall on the outside faces (ODOT Standard Drawing SBR-1-13) and 1'-10" wide by 4'-9" tall at the medians (ODOT Standard Drawing SBR-2-13) are proposed. Two 12-foot lanes with 5 foot outside shoulders and 2'-2" inside shoulders are proposed. The bridge lane and shoulder widths will match the existing approach lane and shoulder widths. The existing shoulder widths are substandard per ODOT L&D Volume 1 figure 301-3 which requires 10 foot outside shoulders and 4 foot inside shoulders. A design exception for shoulder widths will be required per ODOT L&D Volume 1 Section 105.2. If wider structures were to be constructed, the wider shoulders would require the bridge deck widths to increase by 6'-10" for an out-to-out widths of 41'-6". Wider structures would require the approach ramps (including retaining walls) to be reconstructed. Temporary and permanent vandal protection fencing will not be necessary due to the current requirements of Section 305.2 of the 2007 ODOT BDM (effective 07-20-18).

VERTICAL CLEARANCE

Existing and proposed vertical clearances are indicated below:

Under Clearance

<u>Location</u>	<u>Existing</u>	<u>Preferred</u>	Proposed (Rehabi	litation)	Proposed (Replace	ment)
Ramp B	22.82′	16.50′	22.60′		21.72′	
SR7 (IR70 above)	15.59′	16.50' (see No t	e 1) 16.87'		16.84'	
US 40/US 250	14.49'	16.50′	16.86'		16.66′	

Access to Ramp D 15.04' 16.50' (see **Note 2**) 15.78' 16.99'

Note 1 = Past ODOT projects have allowed 16' instead of 16.5' since the underlying roadway surface is a bridge deck and the probability of a 6" thick overlay is unlikely.

Note 2 = ODOT L&D Volume 1 Table 302-1E indicates that a 15.5' minimum clearance may be used in highly developed urban areas if attainment of 16.5' clearance would be unreasonably costly and if there is an alternate route or bypass which provides a minimum 16.5' vertical clearance. Obtaining 16.5' of clearance would require the grade to be raised on the forward approach, increasing the height of the existing retaining walls and adding considerable cost to the project. Since east bound US 250 vehicles over 15.5' in height could access SR7 north bound by turning south on South Lincoln Avenue, then east of US 40/US250 which provides 16.5' of vertical clearance, then north on Ramp D. This alternate route satisfies the bypass requirement and would allow for a 15.5' vertical clearance under the structures for access to Ramp D. Special signs would be required directing vehicles over 15.5' along the bypass route.

HORIZONTAL CLEARANCE

Horizontal clearance is not a concern for the proposed structure. The nearest railroad is Norfolk Southern, located approximately 100 feet east and parallel to the SR7 centerline.

ABUTMENTS

The existing abutments are reinforced concrete wall type supported on 12-inch diameter cast in place reinforced concrete piles at the Rear Abutment and 10BP42 steel H-piles at the Forward Abutment.

Both abutments exhibit the following deficiencies:

Abutment breastwalls and backwalls have tilted towards the adjacent piers (Rear Abutment tilt varies from approximately 3/16 inch to 7/8 inch in 3 feet, Forward Abutment tilt varies from approximately 1/4 inch to 5/8 inch in 3 feet).

Joints between the turn back wing wall portions of abutments and approach retaining walls are tight at the bottom of the walls (approximately 1 1/2-inch gap) and the gaps increase with elevation as the joint progressives up the walls (approximately 5-inch gap). Backfill material has spilled out of the joint openings and has accumulated in piles at the base of the walls. See **Appendix G** for photographs.

Horizontal cracks are present in the abutment wingwalls. The cracks start at the joint between the turn back wingwalls and the approach retaining walls, are located approximately 2 to 3 feet above ground and progress towards the front face of the breastwalls. See **Appendix G** for photographs.

The existing abutments were analyzed to determine their current structural capacity. A summary of the findings for design equivalent fluid pressures of 30 pounds per cubic foot (1959 design criteria) and 40 pounds per cubic foot (current design requirement) are shown below.

Structural Capacity using 30 pounds per cubic foot equivalent fluid pressure

	Description	RA (S	outh)	FA (North)		
	Description	Value	Status	Value	Status	
erabilita.	Overturning F.S.	3.16	OK	3.64	OK	
Stability	Sliding F.S.	2.69	OK	4.32	OK	
	Design Pile Capacity (kips)	8	0	70		
Pile Load	Max. Actual Pile Load (kips)	88.59		71.3		
	% of overload	11%		2%		
	Uplift Force?	N	lo	No		
Breast Wall Reinf.	Req'd #6 spa. @ bot. wall (in)	3.	81	6.43		
(Vertical, Far Face @ Base of Wall)	Act. #6 spa. @ bot. wall (in)	6		12		
	Perf. (Act/Req'd) Ratio *	64	1%	54%		

* = if < 100%, existing reinforcing steel is inadequate.

Structural Capacity using 40 pounds per cubic foot equivalent fluid pressure

_	6	RA (S	outh)	FA (North)		
	Description	Value	Status	Value	Status	
Challille.	Overturning F.S.	2.37	OK	2.80	OK	
Stability	Sliding F.S.	1.62	OK	2.29	OK	
	Design Pile Capacity (kips)	8	0	70		
Pile Load	Max. Actual Pile Load (kips)	90	.83	79.77		
	% of overload	14%		14%		
	Uplift Force?	N	0	No		
Breast Wall Reinf.	Req'd #6 spa. @ bot. wall (in)	2.	93	4.97		
(Vertical, Far Face @ Base of Wall)	Act. #6 spa. @ bot. wall (in)	6		12		
	Perf. (Act/Req'd) Ratio *	49	1%	41%		

* = if < 100%, existing reinforcing steel is inadequate.

The findings indicate that the pile loads exceed the allowable design capacity and that the far face reinforcing steel at the base of the wall is inadequate.

ODOT District 11 engineers were consulted and indicated that due to the noted structural deficiencies, the existing abutments should be removed and new abutments should be constructed in front of the existing abutments. The new abutment design and detailing for the **Rehabilitation Option** will be similar to the existing abutments. Superstructure movements will be handled with strip seal type expansion joints. New cast-in-place concrete wing walls will be constructed between the existing approach ramp retaining walls and the new abutments. New abutments for the **Replacement Option** will be semi-integral stub type supported on two rows of piles behind MSE walls. New MSE walls will be constructed between the existing approach ramp retaining walls and the new MSE walls in front of the new abutments.

PIERS

Due to numerous variables (beam reactions due to various span lengths, various stem heights, various footing sizes, various number and arrangement of piles, etc.), representative piers were selected to verify their structural capacity. Existing Piers 6, 9, 10 and 16 were investigated. See **Appendix A** for a summary of the results.

The summary of analysis results is shown in **Appendix A.** After discussion of the results with District 11, it was concluded that the overstressed piles and minor overstressed stems (<16%) at Piers 6 and 16 were acceptable but that the supplementing the reinforcing in the river pier stems (Piers 9 and 10) would be cost prohibitive and should not be carried forward.

The **Rehabilitation Option** assumes Piers 9 and 10 are replaced with new cap and column type piers supported on drilled shafts on the bank side of the existing piers. At all the remaining piers, the pier caps are removed and replaced. B&N performed a separate study of the pier caps and confirmed that shear reinforcement in the caps was insufficient. Pier caps at Piers 8E, 8W, 11E, 11W, 16E and 16W were strengthened with external post tensioning in a separate project.

For the three new structures proposed for the **Replacement Option**, all new piers will be constructed. Cap and column type piers on piles are proposed at Bridge Number 1 and 3. At Bridge Number 2, cap and column type piers on drilled shafts with rock sockets are proposed at the river piers and cap and column type on piles for the pier adjacent to US Route 40/250.

SUPERSTRUCTURE DETAILS

For the **Rehabilitation Option**, new steel beams and girders supported on new pier caps at locations of the existing piers for all locations except for the new river piers are proposed in a similar five-unit configuration. Five lines of beams or girders spaced at 7 feet 11 inches on centers for each superstructure are proposed. Points of fixity will be similar as the existing. Locations of deck joints will also be similar to the existing, however, the cantilevered hinges adjacent to Piers 5, 8, 11 and 16 will not be replicated. New deck expansion joints at these locations will be positioned at the centerline of the piers. Composite, 50 ksi, weathering steel beams and girders are proposed. 30-inch deep wide flange beams are proposed at Units 1, 2, 4 and 5. Plate girders with 50-inch deep webs are proposed for Unit 3. Composite 8 ½ inch thick reinforced concrete decks with ODOT Standard Drawing SBR-1-13 type barrier on the exterior and ODOT Standard Drawing SBR-2-13 type barrier on the interior are proposed. Bearings will be laminated elastomeric type bearing pads.

For the **Replacement Option**, the proposed three bridges will consist of three different superstructure types:

Bridge Number 1 will be two span structures composed of five lines of AASHTO Type 3 prestressed concrete I beams spaced at 7 feet 10 inches on centers. Composite 8 ½ inch thick reinforced concrete decks with ODOT Standard Drawing SBR-1-13 type barrier on the exterior and ODOT Standard Drawing SBR-2-13 type barrier on the interior are proposed. Bearings will be laminated elastomeric type bearing pads.

Bridge Number 2 will be four span structures composed of five lines of composite, continuous, 50 ksi, weathering steel girders spaced at 7 feet 11 inches on centers with 50-inch deep webs. Composite 8 ½ inch thick reinforced concrete decks with ODOT Standard Drawing SBR-1-13 type barrier on the exterior and ODOT Standard Drawing SBR-2-13 type barrier on the interior are proposed. Bearings will be laminated elastomeric type bearing pads.

Bridge Number 3 will be three span cast-in-place structures similar to ODOT Standard Drawing CS-1-08. A 27-inch thick reinforced concrete superstructure with ODOT Standard Drawing SBR-1-13 type barrier on the exterior and ODOT Standard Drawing SBR-2-13 type barrier on the interior are proposed.

Fill sections contained by MSE walls are proposed between the existing Rear Abutment and Bridge Number 1, Bridge Number 1 and Bridge Number 2, Bridge Number 2 and Bridge Number 3 and Bridge Number 3 and the existing Forward Abutment.

Reducing the number of beam lines from five to four was investigated, however, four beam lines would increase the superstructure depth which would reduce the under clearance to below the minimum requirements. The profiles would have to be revised to allow overhead clearance below Interstate 70 and under clearance over US 40. In addition, for the **Rehabilitation Option** the grade would have to be raised at the forward approach, possibly creating alterations or replacement of the retaining walls at the forward approach ramp.

DECK DRAINAGE

The existing north bound and south bound structures currently have a total of approximately 34 scuppers.

Rehabilitation Option

Scuppers will be required on the new bridge decks to ensure deck drainage remains on the outside shoulders and does not encroach into the lanes. Scupper type will be as shown on ODOT Standard Bridge drawing GSD-1-96. Scupper locations have been adjusted to keep the downspouts close to the piers to eliminate long horizontal runs of drain pipe. Additional scuppers have been added at the sag points as required by ODOT L&D Section 1103.5. Approximately 25 scuppers will be necessary on each bridge for a total of 50.

Replacement Option

Scuppers will be required on the three new bridge decks and inlets on the MSE fill sections to ensure deck drainage remains on the outside shoulders and does not encroach into the lanes. Inlets and associated drainage pipes will need to be detailed and constructed properly to reduce the possibility of leakage and wash out of MSE granular fill. Scupper type will be as shown on ODOT Standard Bridge drawing GSD-1-96 and inlets will be as shown on ODOT Standard Drawing I-2.3 (Inlet No. 3 for Single Slope Barrier Type D). Scupper locations have been adjusted to keep the downspouts close to the piers to eliminate long horizontal runs of drain pipe. Additional scuppers have been added at the sag points as required by ODOT L&D Section 1103.5. Approximately 16 scuppers on the bridges and 6 inlets in the MSE fill areas will be necessary on each structure for a total of 32 scuppers and 12 inlets.

AESTHETIC CONSIDERATIONS

There are currently no aesthetic requirements for this structure beyond standard ODOT policy, so aesthetic considerations were not included in the assessment of alternatives.

UTILITIES

Utilities located during the field survey include storm sewers, sanitary sewers, water, high pressure natural gas, overhead telecommunications, underground telecommunications, overhead electric, underground electric and underground fiber optic. For the **Rehabilitation Option**, since for the majority of the piers the existing pier footings and stems will be reused, no excavation will be required and no underground utilities should be disturbed. Some overhead utilities may need to be temporarily relocated during removal of existing beams/girders and erection of new beams/girders. No utilities should be disturbed at the new abutments if they are positioned in front of the existing abutments. For the **Replacement Option**, the following will need to be relocated due to the requirements of ODOT BDM Section 301.7 which states "Placing utilities through or underneath MSE walls should be avoided when possible":

30-inch diameter sewer crossing the SR7 centerline at approximately Station 161+50.

Water line crossing the SR7 centerline at approximately Station 162+00.

Overhead telecommunications connected to the A-1 Towing office.

12-inch diameter high pressure natural gas line crossing the SR7 centerline at approximately Station 165+13.

Unknown diameter storm sewers at approximately Stations 168+75 and 170+00.

Others may be necessary.

See **Appendix C**, Rehabilitation Site Plan – Utility Disposition, Sheet 3 of 5 for highlighted utilities requiring relocation.

TRAFFIC SIGNAL

A traffic signal is attached to the north side of the cap at Pier 12W. For the **Rehabilitation Option**, the traffic signal will need to be removed, temporarily relocated and re-installed on the new pier cap. For the **Replacement Option**, the traffic signal will need to be removed and re-installed on a new ground mounted pole, since the new pier will be located 30 feet south of existing Pier 12W.

RIGHT OF WAY

The majority of the foot print of the existing bridge is located within Limited Access Easement (EX LA indicated on the Site Plan) type right of way. However, in the vicinity of Piers 2E(A), 3E and 3W, Aerial Easement (EX A indicated on the Site Plan) type right of way is present at the location of the removed B&O Railroad tracks. The Site Plan indicates a general easement was acquired for right of way at the location of the existing footings for Piers 2E(A), 3E and 3W. For the **Rehabilitation Option**, no additional right of way should be necessary. For the **Replacement Option**, since the area currently identified as Aerial Easements will be occupied with new substructures, retaining walls or fill, right of way will need to be acquired.

A-1 Towing has a trailer type office and a fenced in storage yard under the structure that occupies what appears to be an old B&O Railroad right of way under Spans 3 and 4 of the south bound structure and under Spans 3 through 5 of the north bound structure. A-1 Towing will need to be relocated prior to a bridge project.

TEMPORARY SHEETING

For the **Rehabilitation Option**, temporary sheeting and temporary wire faced MSE walls will be required along the centerline of SR7 to maintain traffic with part width construction during the removal of the existing abutments and construction of the new cast-in-place abutments. See "Plan View at Rear Abutment" in **Appendix B** for details. For the **Replacement Option**, the new abutments at the existing abutments will be stub type behind MSE walls with similar sheeting details. In additions, temporary wire faced MSE walls will be necessary along the centerline of SR7 to construct the MSE fill sections. See "Typical MSE Wall Section" in **Appendix C** for details. Temporary sheeting due to the undercut is not anticipated along the west side (Lincoln Avenue) and the east side (Norfolk Southern Railroad) of the proposed MSE fill sections. Sufficient clearance is available in these areas to allow 1:1 open cut slopes. The cost of temporary sheeting has been included in the construction cost estimates.

RAILROADS

Norfolk Southern Railroad and Wheeling and Lake Erie Railway are located east and parallel of the existing north bound SR7 structure by approximately 100 feet and 200 feet, respectively. Both railroads have bridges that cross Wheeling Creek and at grade crossings at US40/US250. A gravel access road to a sewage pump station crosses the Norfolk Southern Railroad tracks at grade southeast of the Rear Abutment. Previously two B&O Railroad tracks passed under Unit 1 of the SR7 structure. The rails and ties have been removed, but the right of way is occupied by A-1 Towing.

HYDRAULIC CONSIDERATIONS

The Federal Emergency Management Agency Flood Insurance Study for Belmont County, Ohio dated April 5, 2006 indicates the 100-year flood water elevation due to backwater from the Ohio River at SR7 crossing over the Wheeling Creek to be approximately elevation 658.5 (page 13P and 18P). The original bridge plans for the State Route 7 Viaduct dated 1959 agree with that study and indicate a high-water elevation of 659.0 (backwater from assumed maximum Ohio River Flood). The bottom of the lowest girder from the existing structure is approximately elevation 665.0 +/-. The **Rehabilitation Option** and **Replacement Option** will have low girder elevations above elevation 659.0. In addition, both options will provide water way openings larger than the existing upstream structure (Lincoln Avenue over Wheeler Creek Bridge) and the existing downstream structures (Norfolk Southern Railroad over Wheeling Creek Bridge and the Wheeling & Lake Erie Railway over the Wheeling Creek Bridge).

LIGHTING

Existing two arm light poles are located on top of the median barrier on the structure at approximately 200 feet on centers. Re-using the existing lights or new lighting is proposed on the new structures.

Under bridge lighting is currently located between Piers 12/13 and 18/19. New under bridge lighting should be added at the span over US Route 40/250 for both options. Under bridge lighting between Piers 18/19 can be removed and should not be replaced. Under bridge lighting may need to be considered at the spans over Ramp B and the Access Road to Ramp D for both options.

GEOTECHNICAL CONSIDERATIONS

A preliminary geotechnical assessment was made based on the review of historical information including records of subsurface investigations that were obtained as part of the original bridge construction initiated in the late 1950's. Fifteen existing boring logs were obtained from the ODOT TIMS system and reviewed. See **Appendix F** for 1958 boring logs. These fifteen borings provided a general indication of what could be expected when a final subsurface exploration is performed. The existing borings showed that the site is underlain by generally cohesive type soils with some interbedded granular layers overlying relatively shallow bedrock. The bedrock depth is generally about 60 feet below surface grades near the Rear Abutment and the first few bridge piers. The bedrock depth is then generally 30-40 feet below surface grades for the remainder of the bridge project generally sloping upwards from south to north. The soil strength conditions are generally relatively weak near the ground surface and become more competent with depth. The bedrock encountered was comprised of shales and sandstones.

During the review of the subsurface conditions it was noted that there were significant depths of unsuitable fill materials that were initially encountered in many of the borings that were obtained in the late 1950's. This site had many existing structures (including three gas stations) within the footprint of the bridge that were demolished as part of the existing bridge construction. Because of this there was a concern expressed that it was likely that even more unsuitable fills could be expected within the footprint of this project. As a result of this concern ODOT obtained eight additional shallow borings in the vicinity of the proposed MSE walls to explore for the existence of unsuitable fill. See **Appendix F** for boring logs obtained in 2018. These borings confirmed there are significant amounts of unsuitable fill (some including hydrocarbon contamination) present at this site.

The **Replacement Option** will reduce the total bridge length by eliminating some of the existing bridge spans. This would be accomplished by using back-to-back MSE walls at two locations with embankment fill placed between the walls. Because of the existence of the near surface unsuitable fills this option would require ground improvement. The ground improvement could consist of undercut and replacement, stone columns, rammed aggregate piers, or other ground improvement methods. The feasibility of these options will require additional subsurface investigation to determine their viability from a strength and settlement standpoint. Deeper borings with additional laboratory testing will be required to explore the soil materials beneath the surface fills. Based on review of the existing borings taken in 1958 that are in the general vicinity of the two proposed MSE walls, the soils generally appear to become more competent with depth below the surface fill soils. Therefore, we believe the assumed 10 feet of soil undercut and replacement to be feasible. However, we recommend that the subsurface conditions within the footprints of the proposed MSE wall locations be further explored prior to making a final determination.

Regardless of whether it is possible or not to eliminate some of the bridge spans, all new bridge foundations will require deep foundation support. Based on our review of the existing subsurface conditions the use of H-piles driven to refusal on

the underlying bedrock appear to be the most economical foundation choice for the majority of the piers and the two abutments. At the piers which are adjacent to Wheeling Creek the use of drilled shafts to avoid the construction of cofferdams is a viable alternate.

H-piles driven to refusal on the underlying bedrock can be designed for their full structural capacity. Boulders were noted in the existing boring logs overlying the bedrock surface and the use of pile points are anticipated. Based on the significant amounts of fill encountered and the reported composition of the fill soils we recommend the soils be tested for corrosion potential relative to steel and concrete foundations. Drilled shafts adjacent to Wheeling Creek would appear to derive their support from the underlying sandstone or shale bedrock. Any new borings in this area should be extended deep enough to ascertain the bedrock conditions for design and construction of the drilled shaft bedrock sockets.

ENVIRONMENTAL CONSIDERATIONS

Reviewing the SR7 Bridge Replacement/Rehabilitation project limits from Howard Street on the south to US250 ramps on the north and between Lincoln Street on the west and the Norfolk Southern railroad tracks on the east, the following were identified from a search of secondary literature sources:

Ecological Resources

Within the project limits there are no habitats present for Threatened and Endangered Species. The area around the bridge includes gravel areas, maintained grass lawns and roadways. The area along Wheeling Creek that passes under SR7 where Interstate 70 passes over SR7 has some scrubs and small trees growing along the bank. The stream bank is mostly exposed soil with some vegetation. The US Fish and Wildlife Service Wetland Mapping Website has identified Wheeling Creek as Riverine. No other mapped wetlands were identified within the project limits.

Floodplains

Wheeling Creek and the Ohio River have mapped floodplains within the project area. Two sets of piers for the SR7 Bridge are located within the Floodway of Wheeling Creek. The section of the SR7 Bridge between Howard Street on the south to 1075 feet north of Main Street is in the 100-year floodplain with an elevation of 658 feet above mean sea level (AMSL). Most of the piers for the SR7 Bridge are located within the floodplain.

Lincoln Street Park

The Lincoln Street Park is located under the SR7 Bridge at the Main Street and Lincoln Street intersection and the north side of Wheeling Creek. The park is identified by a sign and includes a shelter house and picnic tables surrounded by a maintained grass lawn. On the south side of Wheeling Creek is a basketball court under SR7. This court is surrounded by a chain link fence. Conversations between ODOT and Bridgeport indicate that these facilities were constructed without ODOT permission. As such, the park is not considered a 4(f) resource.

Cultural Resources

A review of the Ohio Historic Preservation Office online Web service indicated a total of 7 historic properties located adjacent to or within a half mile radius of the project. The closest historic site is the US Post Office Building located at the southwest corner of Lincoln and Howard Streets. No archaeological sites were identified within the project area.

Section 4(f) Resources

A park and a basketball court currently exist under the bridge as described earlier. These land uses were placed without prior permission from ODOT and are not considered 4(f) resources.

Regulated Materials Review

A review of the ODOT-Office of Environmental Services (OES) Regulated Materials Review (RMR) website identified two sites adjacent to the project limits. At Howard Street and South Lincoln Street (206 S. Lincoln Street) a reported Leaking Underground Storage Tank (LUST) site was identified at Working Mans Used Cars. The Bureau of Underground Storage Tanks Regulations (BUSTR) issued a No Further Action (NFA) letter that the site was cleaned up to State requirements. No additional investigation was required. A second RMR site was identified at the SR7 and US250 ramps at the north end of the project. In 2017 a diesel fuel spill of 75 gallons occurred at this location. The site was cleaned and no further investigation was required by the Ohio EPA. No other sites were identified within or adjacent to the project limits.

Eight supplemental soil borings were taken in 2018 at various locations along the length of the bridge for the purpose of identifying soil strength parameters. The borings were taken to a depth of approximately 15 feet. During the drilling, a relatively strong hydrocarbon-type odor was encountered in Boring B-007-0-18. This boring was sealed with bentonite, and no laboratory testing was performed on any of the samples recovered from this boring. A slight hydrocarbon odor was also noted at roughly 8-foot depth in Boring B-004-0-18.

SPECIAL SIGNING FOR US 250 TO RAMP TO SR7 NB

For the **Rehabilitation Option**, vehicles over 15.5 feet in height traveling east bound on US250 wishing to continue north bound on SR7 will have to be re-routed since the proposed under clearance for the access road to north bound SR7 under BEL-7-1975 (north end of the structure between Piers 18 and 19) will be 15.78 feet. Signs for the detour will need to direct east bound vehicles from the intersection of US250 and Lincoln Avenue south bound on Lincoln Avenue, then east bound on US40/US250 (clearance under BEL-7-1795 will be 16.86 feet) and north bound on Ramp D. Vehicles will then continue past the access road under BEL-7-1975 and onto the on ramp to north bound SR7. The bypass route will be approximately 1/8 mile in length.

ESTIMATE OF PROBABLE COSTS

Two primary options for this bridge have been investigated, a **Rehabilitation Option** and a **Replacement Option**. The assumptions and characteristics of these options are described earlier in the report.

The **Replacement Option** identified in the Scope of Services consisted of replacing the existing bridge with three shorter length bridges and two MSE islands. After it became apparent that soil conditions would require soil improvement (deep undercuts, stone columns or rammed aggregate piers) for the MSE islands, an additional study was undertaken to determine if constructing all new bridge (full length bridge without MSE islands, **Replacement Option B**) would be cost competitive to constructing MSE islands with soil improvement. The results of that study indicated that the construction cost of a full-length bridge option would be more expensive than the replacement option with MSE islands with assumed 10' undercuts and that consideration of life cycle costs would further favor the MSE islands option.

The comparative construction costs of the options are as follows:

Option	Initial Construction Cost (Millions)	Future Maintenance Cost (Millions)	Life Cycle Cost (Millions)
Rehabilitation	\$21.7	\$9.4	\$31.1
Replacement A: Three Bridges with MSE Islands	\$20.7	\$4.8	\$25.5
Replacement B: Full Length Bridge	\$25.2	\$9.4	\$34.6

See **Appendix D** for additional cost estimate information.

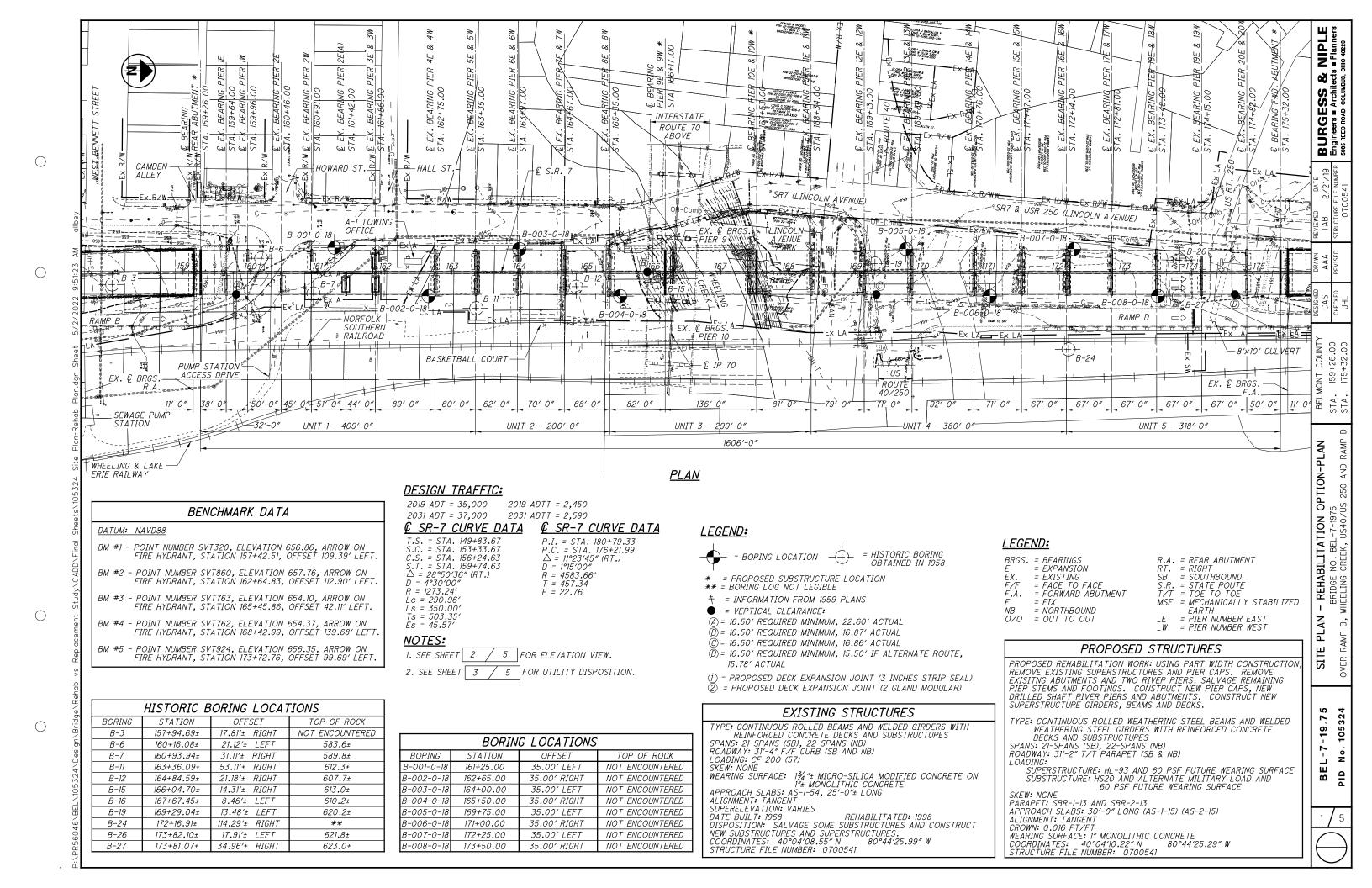
APPENDIX A – SUMMARY OF EXISTING PIER ANALYSIS (1 OF 2)

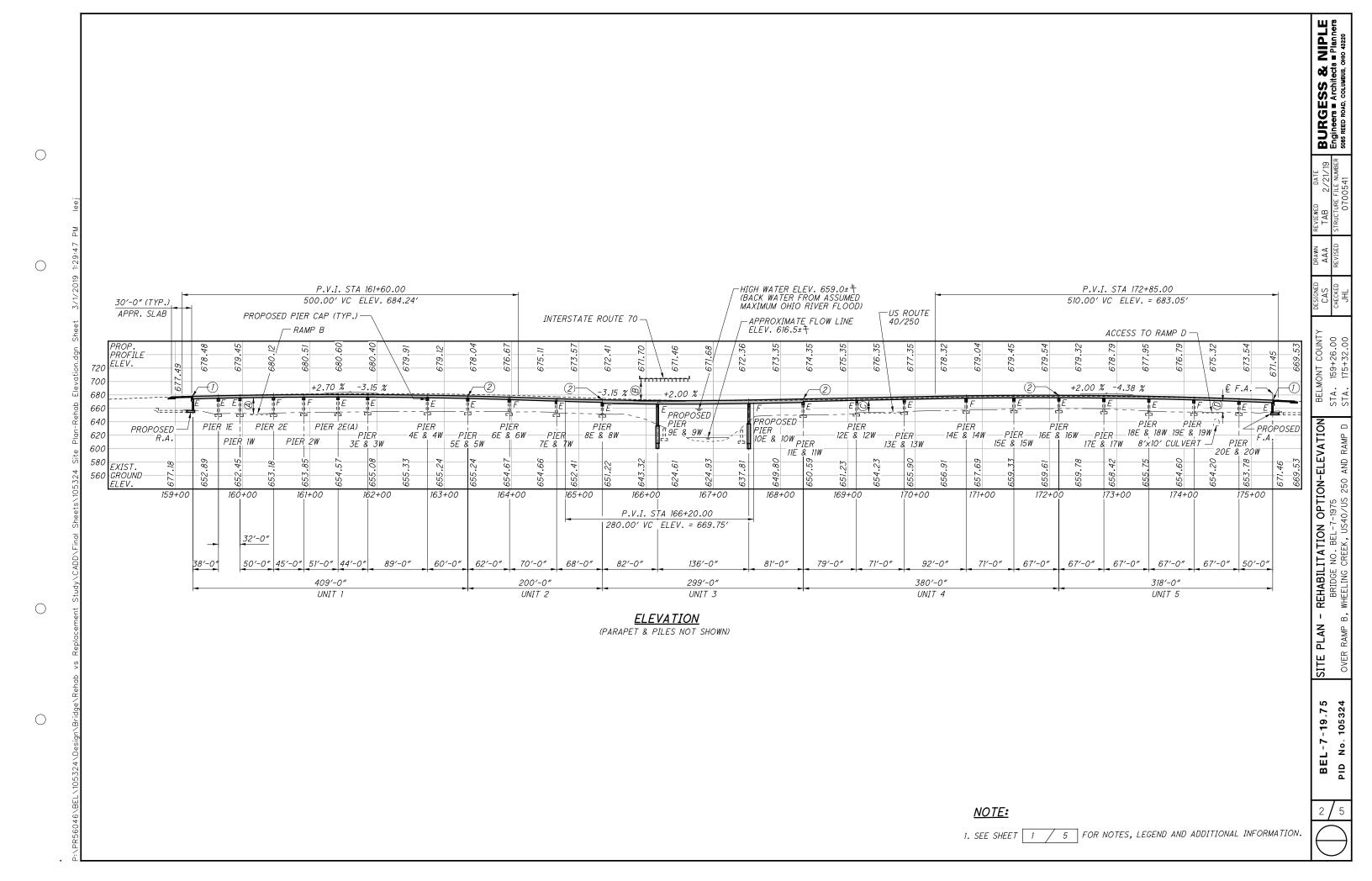
 Bridge Number:
 BEL-7-1975
 Calc'd:
 JHL
 Date:
 5/3/2018

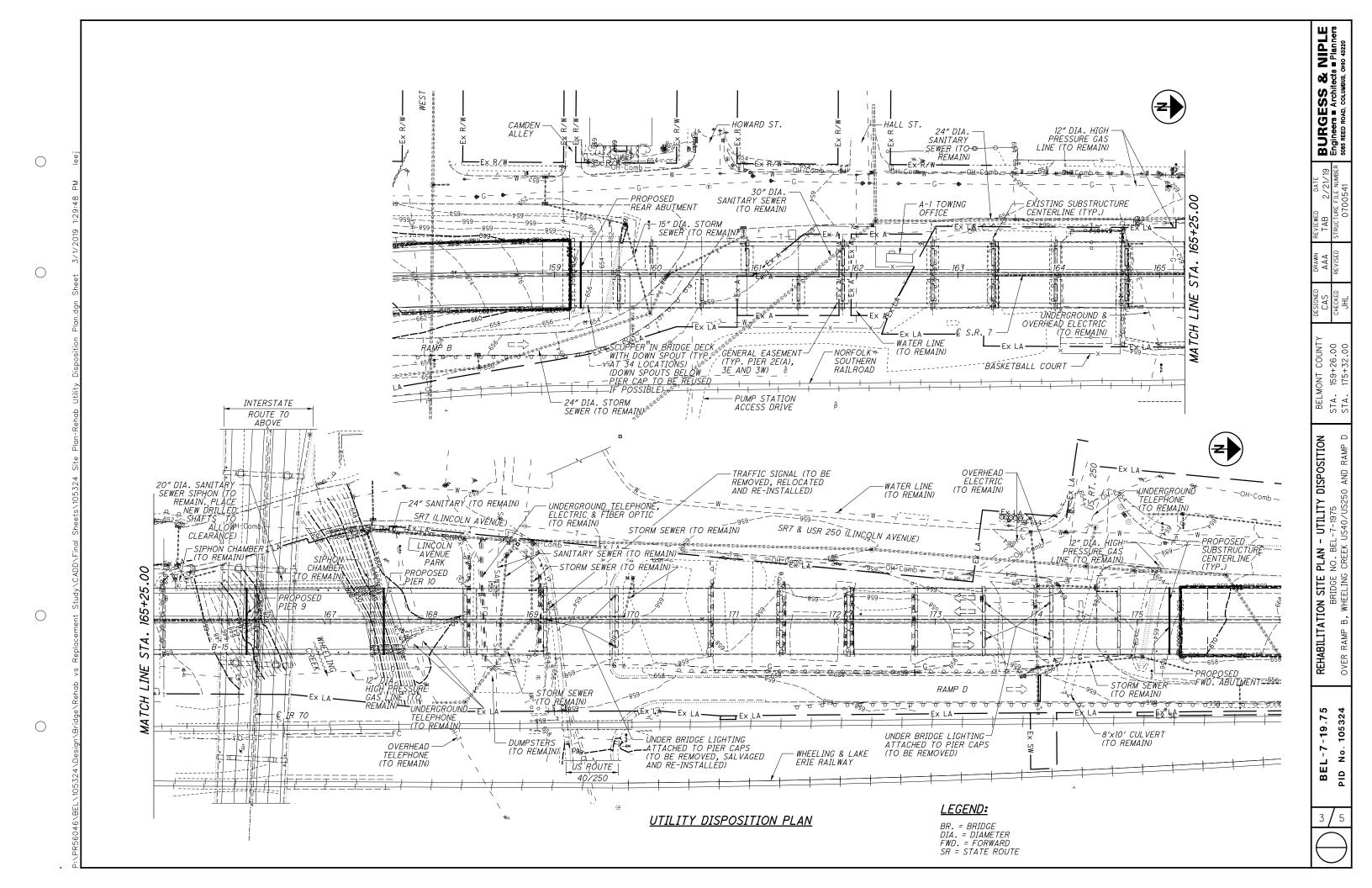
 Chl'd:
 RMK
 Date:
 5/4/2018

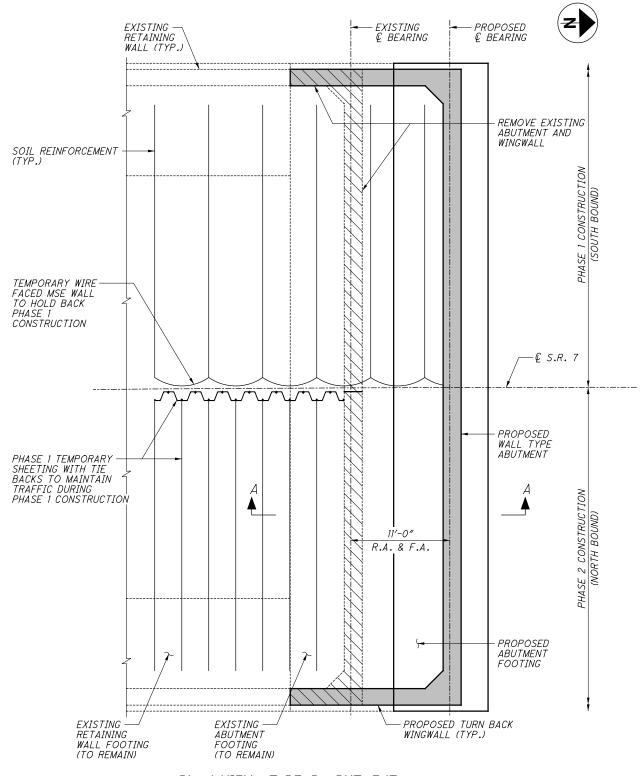
Rehab Pier Design Check Summary

		Soil fill	depth on top	of footing (ft.):	2	Soil fi	Soil fill depth on top of footing (ft.): 24			Soil fi	II depth on top	of footing (ft.):	28	Soil fill	depth on top	of footing (ft.):	2
		<u>l</u>	F	ooting W (ft.):	20.5]	F	ooting W (ft.):	24	Footing W (ft.): 24						20.5	
		_		Footing L (ft.):	11.0]		Footing L (ft.):	12	Footing L (ft.): 14			14			Footing L (ft.):	9.0
				No. of Piles:	15							No. of Piles: 15				15	
			Pie	r 6			Pie	r 9			Pier 10			Pier 16			
9	Brg. Type		Fix	ed			Expar	nsion		Fixed			Expansion				
Pier Type	Foundation		Pile Su (HP1: (41 ft. pi	2x53)			Spread Footing Spread Footing (24' x 12') (24' x 14')			Pile Support (HP10x42) (38 ft. pile Length)							
		Columi	n Strength Des	sign (P-M Diagr	ram)	Colu	mn Strength De	sign (P-M Diag	ram)	Colu	mn Strength De	sign (P-M Diagr	ram)	Colum	n Strength Des	sign (P-M Diagr	am)
		Bottom			(k ft)		m (k ft)	2.25' from			m (k ft)	26' from		Bottom		Top (
		Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	фМп
		1230.04	1521.20	2051.68	8063.9	3979.37	4343.5	3799.24	2930.3	5150.42	9894.5	2636.62	2918.6	1237.23	1393.4	1943.29	7780.1
	_	Mu/фMn	81%	Mu/фMn	25%	Mu/φMn	92%	Mu/фMn	130%	Mu/φMn	52%	Mu/φMn	90%	Mu/φMn	89%	Mu/φMn	25%
Stem	Strength		Stem dimens	ions as built			Stem dimens	ensions as built Stem dimension			sions as built			Stem dimensions as built			
Pier S	n St	Column	Strength Des	ign (P-M Diagr	am) *	Colur	mn Strength Des	ign (P-M Diagr	ram) *	Colui	mn Strength Des	ign (P-M Diagr	am) *	Column Strength Design (P-M Diagram) *			am) *
, E	Stem	Bottom	(k ft)	Тор	(k ft)	Botto	m (k ft)	2.25' from	n Bot. (k ft)	Botto	m (k ft)	26' from	Bot. (k ft)	Bottom (k ft) Top (k ft)		k ft)	
	S	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn	Mu	φMn
		1838.47	1628.70	2011.82	1838.1	3979.24	3189	3933.92	1577.7	5150.42	8298.6	2949.87	1977.5	1805.41	1552	1945.69	1779.7
		Mu/φMn	113%	Mu/фMn	109%	Mu/φMn	125%	Mu/фMn	249%	Mu/φMn	62%	Mu/фMn	149%	Mu/фMn	116%	Mu/φMn	109%
		Adjus	ted stem dime	ensions to effec	ctive	Adju	usted stem dime	ensions to effec	ctive	Adjusted stem dimensions to effective			tive	Adjusted stem dimensions to effective			tive
		w	ith 1% reinfor	cing steel ratio			with 1% reinfor			with 1% reinforcing steel ratio				with 1% reinforcing steel ratio			
	Footing Reinf. Steel	Flexu		She			(k ft) **	Shear			e (k ft) **	Shear	(k) **	Flex		She	ar
	otin f. St	As req'd (in²)		Vu	φVn		As prov. (in ²)	Vu	φVn		As prov. (in ²)	Vu	φVn	As req'd (in ²)		Vu	φVn
	Σ į	25.00	24.00	1569.7	2624.8	26.92	27.31	1637.3	4598	38.69	53.34	2757.9	4597.7	15.57	18.96	1541.7	2634
Footing & Pile	<u>~</u>	104		60		99	9%	36	5%	7:	73% 60%		%	82%		59%	
ತ ಟ	ess	Service		Factored										Service		factored (
i i	Pie Pie	Design	Max.	Design	Max.	NA NA		Α	NA		NA		Design	Max.	Design	Max.	
	Pile overstress	80	86	112	135	1							70	76	98	132	
Per	_	108	70	12	1%	Camila	(ksf) **			Camileo	e (ksf) **			109	76	135	0%
	<u> </u>					Design	Max.			Design	Max.						
	Bearing Pressure	NA		N	Α	20	13.33	N	Α	20	15.91	N/	A	N/		N/	A
	æ 5					l	7%			1	0%						
						0.											


APPENDIX A – SUMMARY OF EXISTING PIER ANALYSIS (2 OF 2)

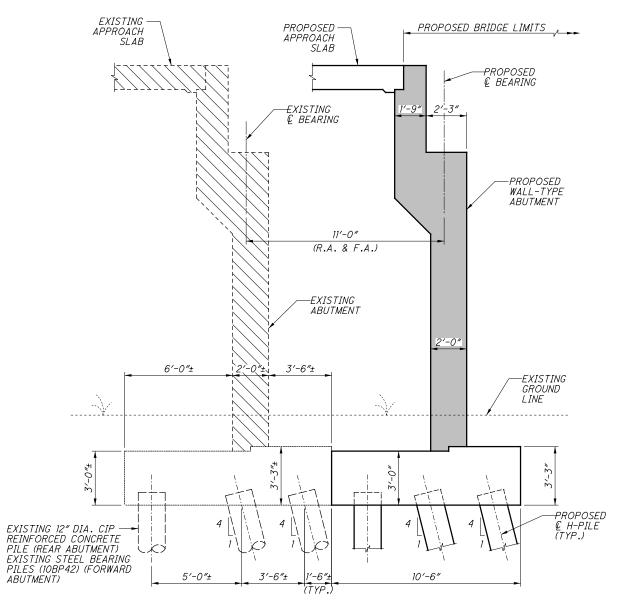

- * = Modified (reduced) pier stem width to satisfy min. steel ratio (1% rebar area of gross stem concrete area). P-M Diagram = Interaction diagram for combined bending and axial load.
- ** = Reduced Footing Size to 21.5'x12'(Pier 9) & 21'x14'(Pier 10) for analysis purpose.
 - Analyze the footing using a reduced length such that the reinforcing in the long direction is adequate. If the bearing pressure and reinforcing in the reduced effective footing area are adequate, then say OK.
- *** = Assumed Factored pile capacity has been calculated 0.7xUltimate capacity, which is 2 times of unfactored pile capacity
 - Assume the installed ultimate bearing value of each pile is 2 x design load given in the plans (35 or 40 tons). Then, the factored bearing resistance is approximately 0.7 x 2 x (35 or 40 tons). The 0.7 φ factor is what is currently used for piles that were dynamically load tested.


Design Check Assumptions and Remarks


	Description	Proposed Piers	Comments
Deck	Deck width	34'-8"	2' and 5' shoulder
DL	Deck thickness	8 1/2"	
DL	FWS	60 psf	
LL	Design Loading	HS20	
	Pier Cap & Stem Concrete	4.0 ksi	Per original plans (1962),
	Strength (f'c)	4.0 KSI	used Class "C" concrete (4.0 ksi)
	Pier Footing Concrete	3.4 ksi	Per original plans (1962),
Material	Strength (f'c)	3.4 KSI	used Class "E" concrete (3.4 ksi)
	Cap steel Strength (fy)	60 ksi	
	Column & Footing Steel		Per original plans (1962),
	Strength (fy)	40 ksi	used basic unit stress 20,000psi (40 ksi)

APPENDIX B – REHABILITATION OPTION SITE PLAN AND DETAILS

 \bigcirc


 \bigcirc

 \bigcirc

 \bigcirc

PLAN VIEW AT REAR ABUTMENT

(FINAL CONDITION SHOWN)
(EXISTING AND PROPOSED PILES NOT SHOWN)
(FORWARD ABUTMENT MIRRORED)

SECTION A-A

<u>LEGEND:</u>

= LIMITS OF ABUTMENT REMOVAL

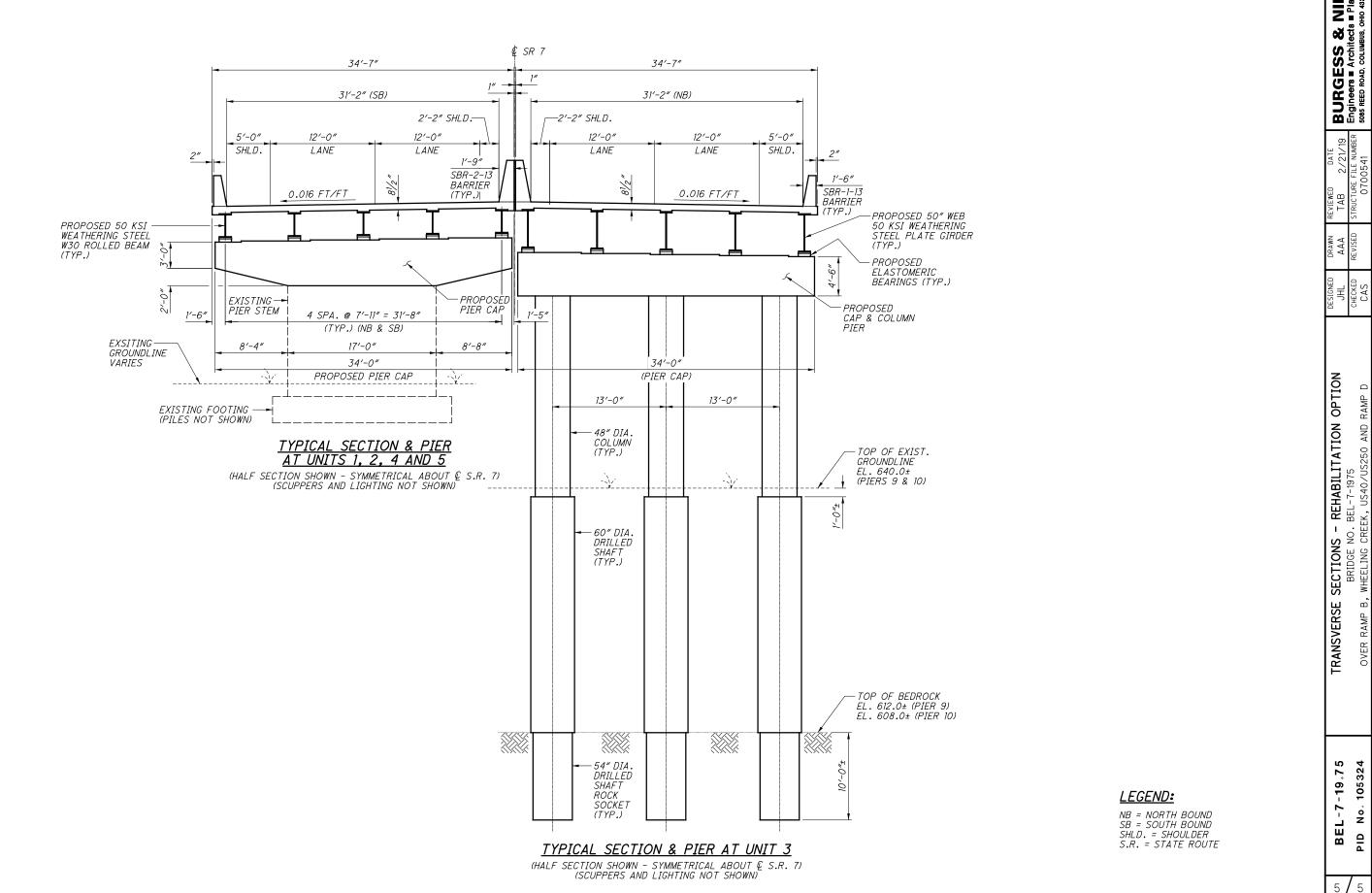
= LIMITS OF PROPOSED ABUTMENT

CIP = CAST-IN-PLACE F.A. = FORWARD ABUTMENT R.A. = REAR ABUTMENT 4/5

BEL-7-19.75

105324

° N


ΒD

BURGESS & NIPLE Engineers = Architects = Planners soss REED ROAD, COLUMBUS, OHIO 43220

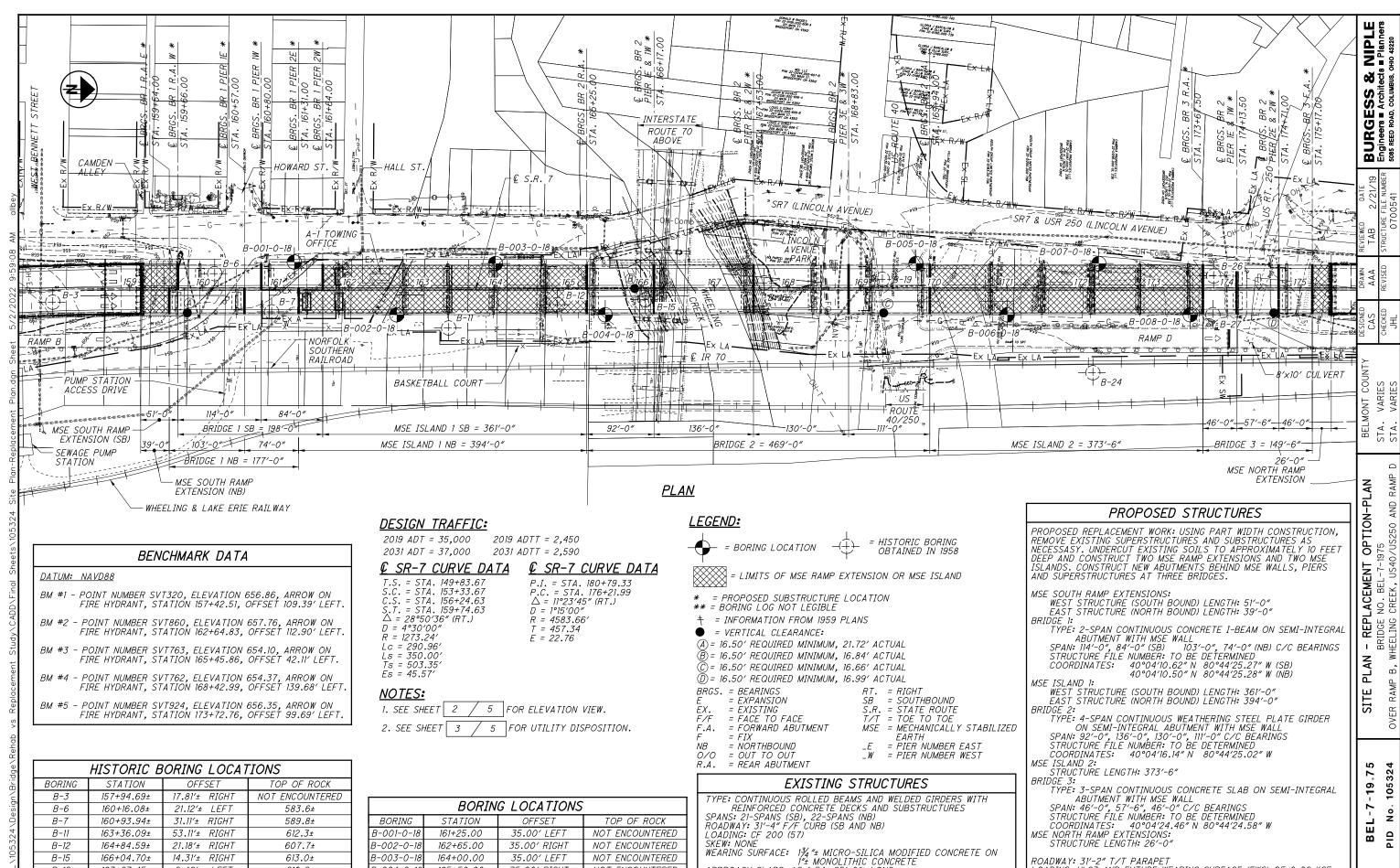
- REHABILITATION OPTION NO. BEL-7-1975 CREEK, US40/US250 AND RAMP D

ABUTMENT BRIDGE NO. B, WHEELING

TYPICAL

 \bigcirc

 \bigcirc


 \bigcirc

 \bigcirc

BURGESS & NIPLE Engineers = Architects = Planners soss REED ROAD, COLUMBUS, OHIO 43220

105324 Š

APPENDIX C - REPLACEMENT OPTION SITE PLAN AND DETAILS

ROADWAY: 31'-2" T/T PARAPET

ALIGNMENT: TANGENT

CROWN: 0.016 FT/F

PARAPET: SBR-1-13 AND SBR-2-13

APPROACH SLABS: 30'-0" LONG (AS-1-15) (AS-2-15)

WEARING SURFACE: 1" MONOLITHIC CONCRETE

OADING: HL93 AND FUTURE WEARING SURFACE (FWS) OF 0.06 KSF

3-003-0-18

3-004-0-18

8-005-0-18

1-006-0-18

3-007-0-1

B-008-0-18

164+00.00

165+50.00

169+75.00

171+00.00

172+25.00

173+50.00

35.00' LEFT

35.00' RIGHT

35.00' LEFT

35.00' RIGHT

35.00' LEFT

35.00' RIGHT

NOT ENCOUNTERED

NOT ENCOUNTERED

NOT ENCOUNTERED

NOT ENCOUNTERED

NOT ENCOUNTERED

NOT ENCOUNTERED

APPROACH SLABS: AS-1-54, 25'-0"± LONG ALIGNMENT: TANGENT

REHABILITATED: 1998

80°44′25.99″ W

SUPERELEVATION: VARIES

DISPOSITION: TO BE REMOVED COORDINATES: 40°04'08.55" N

STRUCTURE FILE NUMBER: 0700541

613.0±

610.2±

620.2±

**

621.8±

623.0±

B-15

B-16

R-19

B-24

B-26

B-27

166+04.70±

167+67.45±

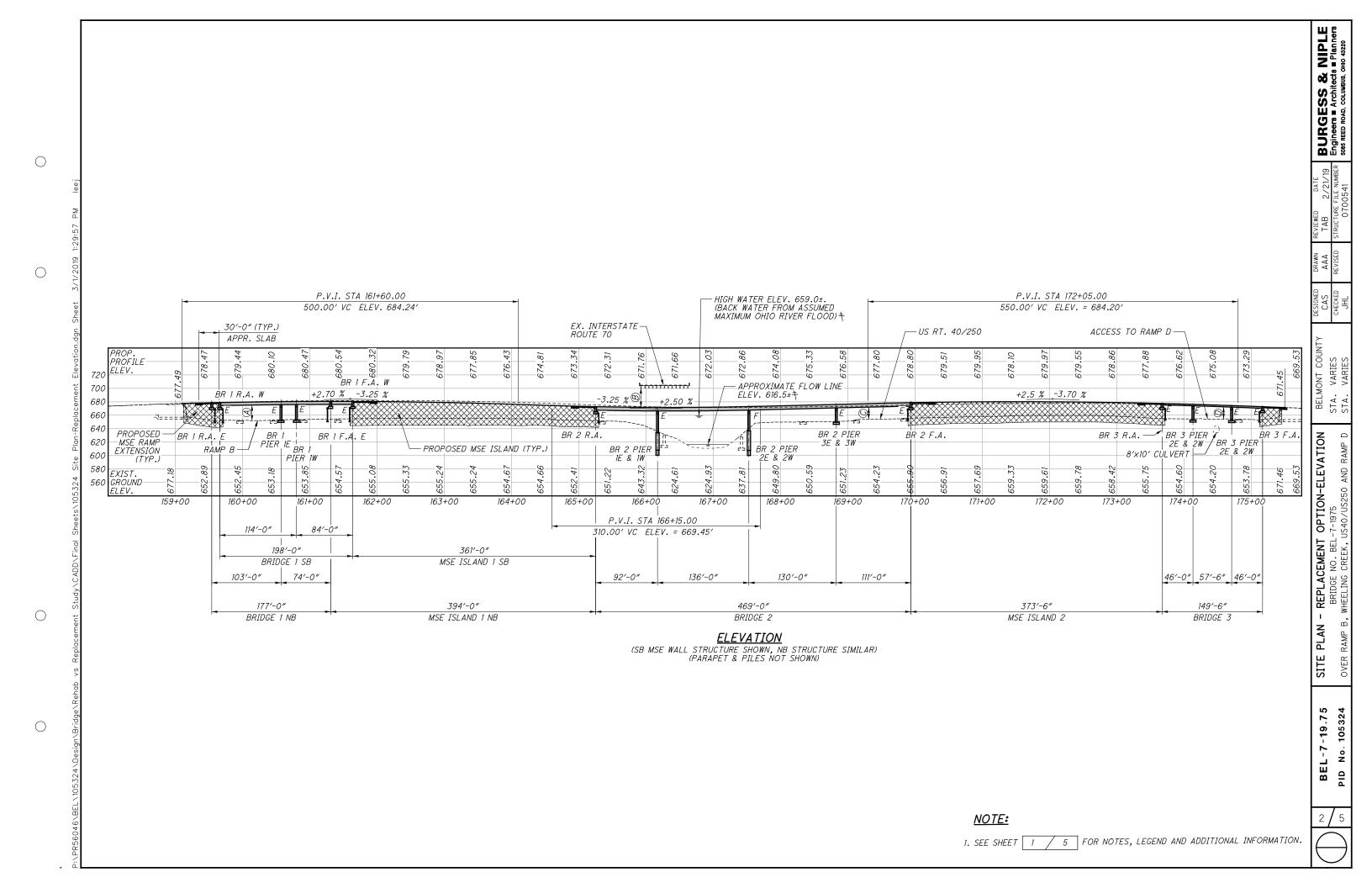
169+29.04±

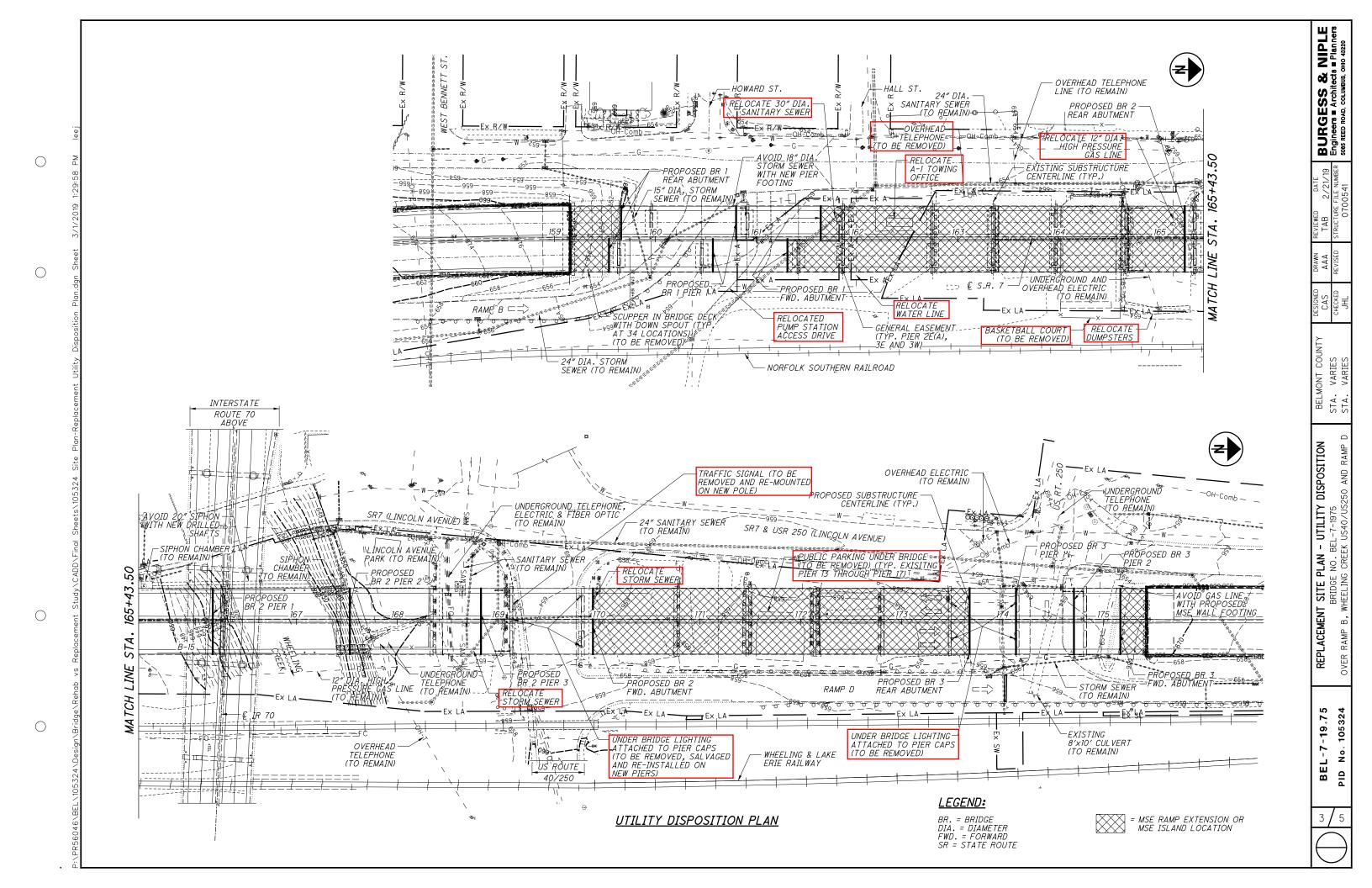
172+16.91±

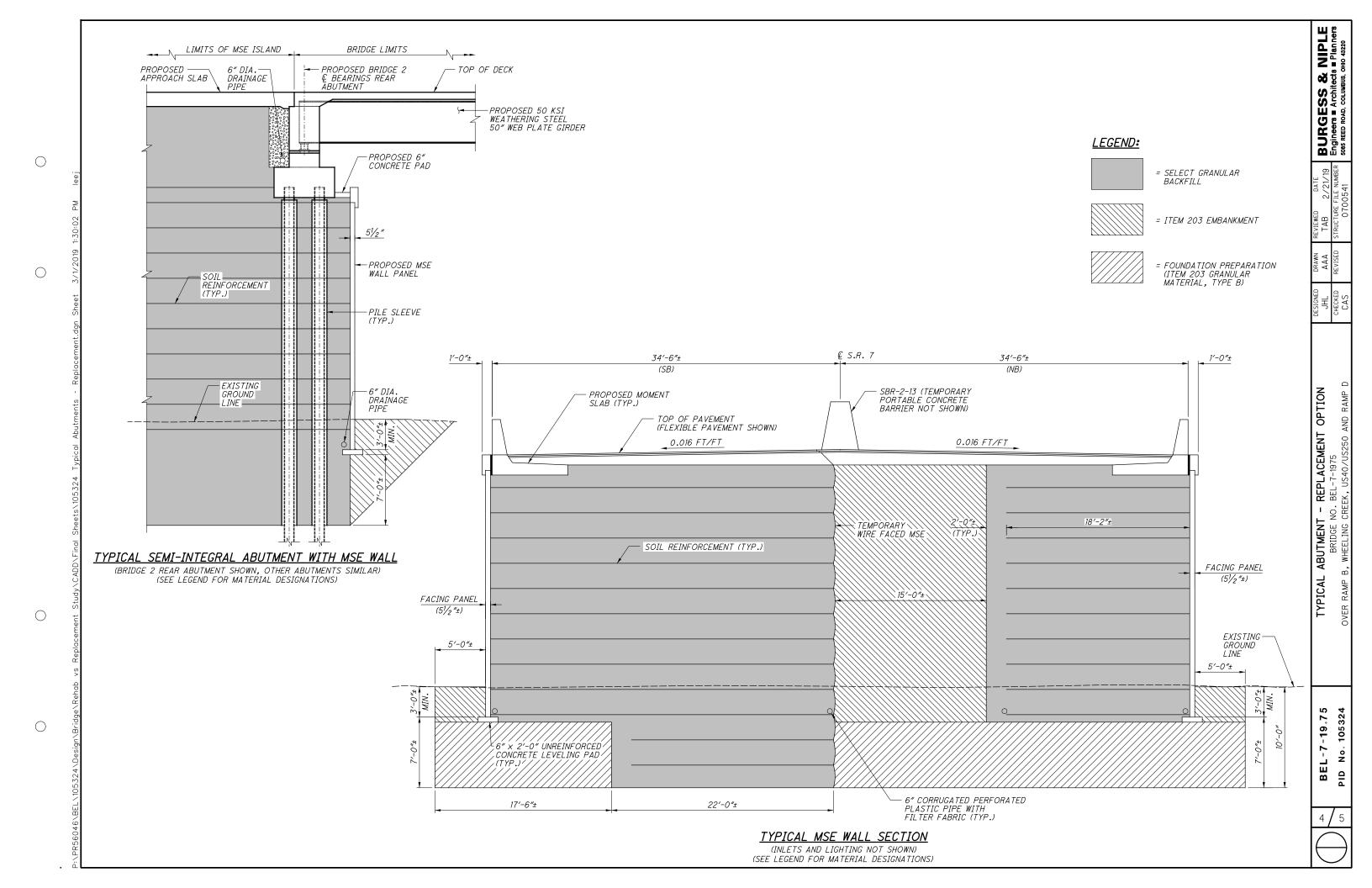
173+82.10±

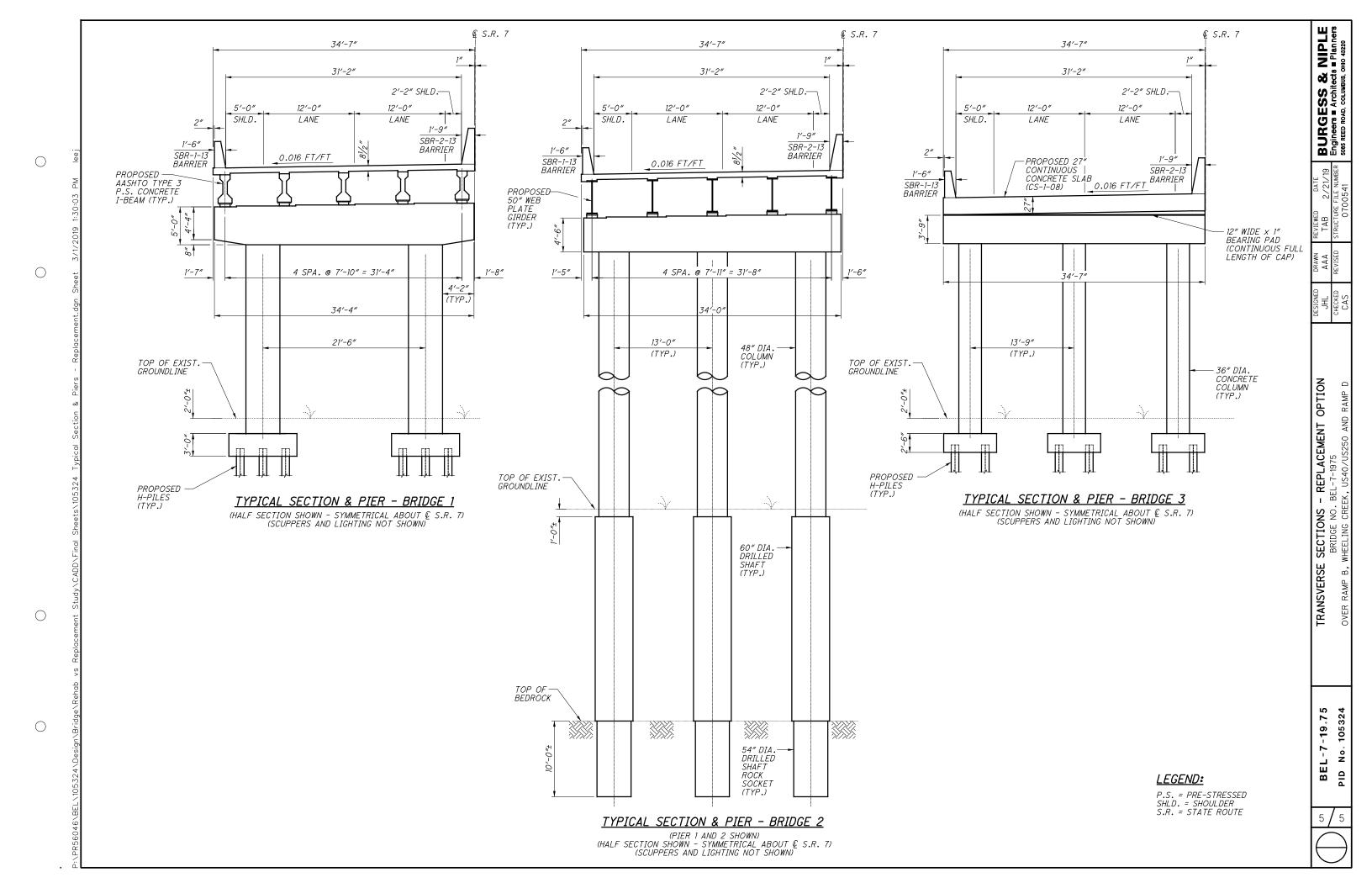
173+81.07±

14.31'± RIGHT


8.46'± LEFT


13.48'± LEFT


114.29'± RIGHT


17.91'± LEFT

34.96'± RIGHT

APPENDIX D - COST ESTIMATES

BEL-7-1975

BEL-7-1975 over Ramp B, Wheeling Creek, US40/US250 and Ramp D PRELIMINARY STRUCTURE CONSTRUCTION COST ESTIMATE

Rehabilitation Option

ITEM DESCRIPTION	TOTAL QUANTITY	UNIT	2019 UNIT PRICE	TOTAL 2019 CONSTRUCTION COST
PORTIONS OF STRUCTURE REMOVED, AS PER PLAN	1	LUMP	\$3,160,000.00	\$3,160,000
APPROACH SLAB REMOVED	378	SQ YD	\$34.08	\$12,882
COFFERDAMS, CRIBS AND SHEETING	1	LUMP	\$5,000.00	\$5,000
UNCLASSIFIED EXCAVATION	357	CU YD	\$39.11	\$13,962
PILE DRIVING EQUIPMENT MOBILIZATION	1	LUMP	\$21,486.80	\$21,487
STEEL PILES HP10X42, FURNISHED	3,489	FT	\$19.63	\$68,489
STEEL PILES HP10X42, DRIVEN	3,184	FT	\$16.06	\$51,135
STEEL POINTS OR SHOES	61	EACH	\$93.14	\$5,682
EPOXY COATED REINFORCING STEEL	1,179,080	POUND	\$1.02	\$1,202,662
CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK	3,406	CU YD	\$633.41	\$2,157,394
CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN	1,219	CU YD	\$728.43	\$887,956
CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS	998	CU YD	\$853.78	\$852,072
CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING	279	CU YD	\$573.10	\$159,895
CLASS QC1 CONCRETE WITH QC/QA, FOOTING	171	CU YD	\$341.02	\$58,314
SEALING OF CONCRETE SURFACES (NON-EPOXY)	10,380	SQ YD	\$9.60	\$99,648
STRUCTURAL STEEL MEMBERS, LEVEL 2, STEEL ROLLED BEAM	4,438,400	POUND	\$1.44	\$6,391,296
STRUCTURAL STEEL MEMBERS, LEVEL 4, STEEL PLATE GIRDER	1,014,100	POUND	\$1.58	\$1,602,278
STRUCTURAL STEEL MEMBERS, MODULAR EXPANSION JOINT, LEVEL UF, AS PER PLAN	277	FT	\$1,200.00	\$332,400
WELDED STUD SHEAR CONNECTORS	32,200	EACH	\$3.18	\$102,396
FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT	20,261	SQ FT	\$2.87	\$58,149
FIELD PAINTING STRUCTURAL STEEL, FINISH COAT	20,261	SQ FT	\$2.57	\$52,071
STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL	139	FT	\$423.41	\$58,854
ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPRENE)	225	EACH	\$1,232.71	\$277,360
SCUPPERS, INCLUDING SUPPORTS	50	EACH	\$1,129.32	\$56,466
DRILLED SHAFTS, 54" DIAMETER, INTO BEDROCK	120	FT	\$839.10	\$100,692
DRILLED SHAFTS, 60" DIAMETER, ABOVE BEDROCK	348	FT	\$425.83	\$148,189
REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=17")	454	SQ YD	\$263.84	\$119,783
SPECIAL - RETAINING WALL MISC.: WIRE FACED MSE WALL	859	SQ FT	\$17.90	\$15,376
REMOVE AND REERECT EXISTING LIGHT POLE	26	EACH	\$668.74	\$17,387
	Со	ntingency %:	Subtotal: 20%	\$18,089,276 \$3,617,855
			TOTAL COST:	\$21,707,131
		TOTAL	COST PER SF:	\$195

STRUCTURE DESCRIPTION:

- 1. 21-span (NB) & 22-span (SB), 5-unit structures, Total bridge length = 1606 ft (c/c Bearings).
- 2. 2 lanes traffic with 2'-2" & 5' shoulders, (34'-7" deck width), 2-Ext. parapet (SBR-1-13) & 2-Int. parapet (SBR-2-13).
- 3. 5-steel rolled beams (unit 1, 2, 4 & 5) and 5-steel plate girders (unit 3) @ each structure.
- 4. Salvage ex. pier stems and footings and rebuild the new pier caps (typical piers), 2 new river piers supported on drilled shafts.
- 5. Existing abutments (RA & FA) were removed and construct new proposed abutments (RA & FA).
- 6. MOT costs are not included.

Assumed Annual Inflation (%)	1.5%
Unit Price Basis Year:	2017
Assumed Construction Year:	2019

BEL-7-1975

BEL-7-1975 over Ramp B, Wheeling Creek, US40/US250 and Ramp D PRELIMINARY STRUCTURE CONSTRUCTION COST ESTIMATE

Replacement with Bridges/MSE Islands Option (Sheet 1 of 2)

PORTIONS OF STRUCTURE REMOVED, AS PER PLAN APPROACH SLAB REMOVED COFFERDAMS, CRIBS AND SHEETING UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	TOTAL PUANTITY 1 378 1 447 1 12,276 11,106 234 670,160 159 2,334 612 557 162 450	UNIT LUMP SQ YD LUMP CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD CU YD	2019 UNIT PRICE \$3,460,000.00 \$34.08 \$5,000.00 \$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	TOTAL 2019 CONSTRUCTION COS \$3,460,000 \$12,882 \$5,000 \$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379 \$445,799
PORTIONS OF STRUCTURE REMOVED, AS PER PLAN APPROACH SLAB REMOVED COFFERDAMS, CRIBS AND SHEETING UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, FURNISHED STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 378 1 447 1 12,276 11,106 234 670,160 159 2,334 612 557 162	LUMP SQ YD LUMP CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$3,460,000.00 \$34.08 \$5,000.00 \$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$3,460,000 \$12,882 \$5,000 \$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
PORTIONS OF STRUCTURE REMOVED, AS PER PLAN APPROACH SLAB REMOVED COFFERDAMS, CRIBS AND SHEETING UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 378 1 447 1 12,276 11,106 234 670,160 159 2,334 612 557 162	LUMP SQ YD LUMP CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$3,460,000.00 \$34.08 \$5,000.00 \$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$3,460,000 \$12,882 \$5,000 \$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
APPROACH SLAB REMOVED COFFERDAMS, CRIBS AND SHEETING UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC1 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 447 1 12,276 11,106 234 670,160 159 2,334 612 557 162	SQ YD LUMP CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$34.08 \$5,000.00 \$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$12,882 \$5,000 \$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
APPROACH SLAB REMOVED COFFERDAMS, CRIBS AND SHEETING UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 447 1 12,276 11,106 234 670,160 159 2,334 612 557 162	SQ YD LUMP CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$34.08 \$5,000.00 \$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$12,882 \$5,000 \$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
COFFERDAMS, CRIBS AND SHEETING UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 447 1 12,276 11,106 234 670,160 159 2,334 612 557 162	LUMP CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$5,000.00 \$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$5,000 \$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
UNCLASSIFIED EXCAVATION PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 12,276 11,106 234 670,160 159 2,334 612 557 162	CU YD LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$39.11 \$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$17,482 \$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
PILE DRIVING EQUIPMENT MOBILIZATION STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	1 12,276 11,106 234 670,160 159 2,334 612 557 162	LUMP FT FT EACH POUND CU YD CU YD CU YD CU YD	\$21,486.80 \$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$21,487 \$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
STEEL PILES HP10X42, FURNISHED STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC1 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	11,106 234 670,160 159 2,334 612 557 162	FT FT EACH POUND CU YD CU YD CU YD CU YD	\$19.63 \$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$240,978 \$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
STEEL PILES HP10X42, DRIVEN STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	11,106 234 670,160 159 2,334 612 557 162	EACH POUND CU YD CU YD CU YD CU YD	\$16.06 \$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$178,362 \$21,795 \$683,563 \$119,220 \$1,478,379
STEEL POINTS OR SHOES EPOXY COATED REINFORCING STEEL CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	670,160 159 2,334 612 557 162	POUND CU YD CU YD CU YD CU YD	\$93.14 \$1.02 \$749.81 \$633.41 \$728.43	\$21,795 \$683,563 \$119,220 \$1,478,379
CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	159 2,334 612 557 162	CU YD CU YD CU YD CU YD	\$749.81 \$633.41 \$728.43	\$119,220 \$1,478,379
CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	2,334 612 557 162	CU YD CU YD CU YD	\$633.41 \$728.43	\$1,478,379
CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	612 557 162	CU YD CU YD	\$728.43	
CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	557 162	CU YD		\$445 700
CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)	162		#050.70	ΨΤΤΟ, 1 Ο Ο
CLASS QC1 CONCRETE WITH QC/QA, FOOTING SEALING OF CONCRETE SURFACES (NON-EPOXY)		CU YD	\$853.78	\$475,555
SEALING OF CONCRETE SURFACES (NON-EPOXY)	450		\$573.10	\$92,842
		CU YD	\$341.02	\$153,459
	6,742	SQ YD	\$9.60	\$64,723
	1,650,500	POUND	\$1.58	\$2,607,790
	9,400	EACH	\$3.18	\$29,892
,	5,067	SQ FT	\$2.87	\$14,542
· ·	5,067	SQ FT	\$2.57	\$13,022
DRAPED STRAND PRESTRESSED CONCRETE BRIDGE I-BEAM MEMBERS, LEVEL 3, TYPE 3	20	EACH	\$18,562.50	\$371,250
1" ELASTOMERIC BEARING PAD	133	SQ FT	\$250.00	\$33,250
ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPRENE)	100	EACH	\$1,232.71	\$123,271
SCUPPERS, INCLUDING SUPPORTS	32	EACH	\$1,129.32	\$36,138
DRILLED SHAFTS, 54" DIAMETER, INTO BEDROCK	120	FT	\$839.10	\$100,692
DRILLED SHAFTS, 60" DIAMETER, ABOVE BEDROCK	271	FT	\$425.83	\$115,400
	1,360	SQ YD	\$263.84	\$358,822
REMOVE AND REERECT EXISTING LIGHT POLE	26	EACH	\$668.74	\$17,387
MSE ISLANDS AND MSE RAMP EXTENSION COST (SEE SHEET 2 OF 2))			\$5,979,197	\$5,979,197
			Subtotal:	. , ,
	Cor	ntingency %:	20%	\$3,454,436
			TOTAL COST:	\$20,726,618
	COS	ST PER SQ.	. FT. (BRIDGE):	\$243
STRUCTURE DESCRIPTION:		COST PER	R SQ. FT. (MSE):	\$126
1. 2 - MSE Wall Ramp Extensions, 3 - Bridges and 2 - MSE Wall Islands, Total bridge length = 799.5 ft(East), 816.5 ft(West) 2. 2 lanes traffic with 2'-2" & 5' shoulders, (34'-7" deck width), 2-Ext. parapet (SBR-1-13) & 2-Int. parapet (SBR-2-13).		Assumed A	Annual Inflation (%)	1.5%
3. 5-PS concrete I-beams(bridge 1), 5-steel plate girders(bridge 2) and concrete slab bridge(bridge 3)	L		, ,	
4. MSE Island 1 Length = 394 ft(East), 361 ft(West) and MSE Island 2 length = 373.5 ft (East & West) 5. Remove all ex. substructures and construct new piers and abutments on MSE walls, 2 new river piers supported on drilled shafts.		Unit Prid	ce Basis Year:	2017
 Kernove all ex. substructures and construct new piers and abutments on MSE walls, 2 new river piers supported on drilled snarts. MOT costs are not included. 	ſ	Assumed C	Construction Year:	2019

BEL-7-1975

BEL-7-1975 over Ramp B, Wheeling Creek, US40/US250 and Ramp D Preliminary Structure Construction Cost Estimate

Replacement with Bridges/MSE Islands Option (Sheet 2 of 2)

· · · · · · · · · · · · · · · · · · ·	<u> </u>			
ITEM DESCRIPTION (MSE)	TOTAL QUANTITY	UNIT	2019 UNIT PRICE	TOTAL 2019 CONSTRUCTION COST
REMOVAL MISC.: RELOCATE PUMP STATION ACCESS ROAD	1	LUMP	\$16.440.00	\$16,440
REMOVAL MISC.: RELOCATE PUMP STATION ACCESS ROAD REMOVAL MISC.: REMOVE AND RELOCATE 30" DIAMETER SANITARY SEWER	1	LUMP	\$16,440.00 \$82,200.00	\$82,200
REMOVAL MISC.: REMOVE AND RELOCATE 30 DIAMETER SANITART SEWER REMOVAL MISC.: REMOVE AND RELOCATE 12" DIAMETER HIGH PRESSURE NATURAL GAS LINE	1	LUMP	\$55,074.00	\$55,074
REMOVAL MISC.: REMOVE AND RELOCATE 12 DIAMETER HIGH PRESSURE NATURAL GAS LINE REMOVAL MISC.: REMOVE AND RELOCATE WATER LINE	1	LUMP	\$41,100.00	\$41,100
EMBANKMENT	12,558	CU YD	\$7.74	\$97,199
ASPHALT CONCRETE BASE, PG64-22	1,360	CU YD	\$90.52	\$123,107
AGGREGATE BASE	1,614	CU YD	\$43.94	\$70,919
ASPHALT CONCRETE SURFACE COURSE, 12.5MM, TYPE A (446)	85	CU YD	\$144.05	\$12,244
ASPHALT CONCRETE SURFACE COURSE, 12.5MM, 11FE A (446) ASPHALT CONCRETE INTERMEDIATE COURSE, 19MM, TYPE A (446)	127	CU YD	\$144.05	\$12,244
EPOXY COATED REINFORCING STEEL	43,566	POUND	\$1.02	\$44,437
CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE (PARAPET)	259	CU YD	\$650.71	\$168,534
CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE (MOMENT SLAB)	609	CU YD	\$520.00	\$316,680
SPECIAL - RETAINING WALL MISC.: WIRE FACED MSE WALL	27,126	SQ FT	\$18.14	\$492,066
12" CONDUIT, TYPE B	140	FT	\$66.51	\$9,311
18" CONDUIT, TYPE B	822	FT	\$84.96	\$69,837
CATCH BASIN, NO. 3	12	EACH	\$2,854.30	\$34,252
CATCH BASIN, NO. 3 CATCH BASIN FRAME AND GRATE	12	EACH	\$790.16	\$9,482
MANHOLE, NO. 3	6	EACH	\$3,250.49	\$19,503
MANHOLE, NO. 3 MANHOLE FRAME AND COVER	6	EACH	\$289.11	\$1,735
CONCRETE BARRIER, SINGLE SLOPE, TYPE B1	822	FT	\$88.41	\$72,673
MECHANICALLY STABILIZED EARTH WALL	49,966	SQ FT	\$24.18	\$1,208,178
WALL EXCAVATION (UNDERCUT)	26,028	CU YD	\$14.46	\$376,365
FOUNDATION PREPARATION (GRANULAR MATERIAL, TYPE B)	13,561	CU YD	\$44.67	\$605,770
SELECT GRANULAR BACKFILL (WITHIN MSE REGIONS)	45,024	CU YD	\$38.67	\$1,741,078
6" DRAINAGE PIPE, PERFORATED	3,288	FT	\$14.63	\$48,103
CONCRETE COPING	1,644	FT	\$96.27	\$158,268
AESTHETIC SURFACE TREATMENT	33,702	SQ FT	\$1.39	\$46,846
SGB INSPECTION AND COMPACTION TESTING	1	LUMP	\$43,189.10	\$43,189
COD INC. CONCINING COMITACTION TECHNO	,	LOWI	ψπο, 100.10	ψπο, 100
			Subtotal:	\$5,979,197
	Co	ntingency %:	0%	\$0
	COST MS	SE ISLAND	S/RAMP EXT.:	\$5,979,197
			WILLIAM ENTER	Ψ0,010,101

STRUCTURE DESCRIPTION:

Assumptions

- 1. All items on this sheet are for the MSE portion of the new structures
- 2. 2 lanes traffic with 2' & 5' shoulders
- 3. Roadway consisting of asphalt pavement, moment slabs with exterior barrier, median barrier
- 4. Based on MSE islands with 23 foot average height
- 5. Assumed 10.55 feet of undercut and backfill under MSE walls

Assumed Annual Inflation (%)	1.5%
Unit Price Basis Year:	2017
Assumed Construction Year:	2019

LIFE CYCLE COST ANALYSIS (Rehabilitation Option)

BEL-7-1975 SFN: 0700541

REHABILITATION OPTION: Replaces superstructures and pier caps, salvage some substructures

75-YEAR LIFE ESTIMATE: **\$31,094,000**

1968 : Year of Original Construction

Date	Year	Repair Work	Est. Cost	PWF	PWF x Cost
2019	0	Rehabilitate Bridge	\$21,707,131	1.0000	\$21,707,131
2024	5			0.9657	\$0
2029	10	Patching & maintenance of decks	\$133,297	0.9326	\$124,315
2034	15			0.9007	\$0
2039	20	Deck overlay and patching of concrete substructures	\$732,650	0.8698	\$637,246
2044	25			0.8400	\$0
2049	30	Superstructure painting and patching & maintenance of deck	\$3,460,460	0.8112	\$2,807,048
2054	35			0.7834	\$0
2059	40	Rehabilitate Bridge - New deck, parapets & joints and patching of concrete substructures	\$3,697,274	0.7565	\$2,797,067
2064	45			0.7306	\$0
2069	50	Patching & maintenance of decks	\$133,297	0.7055	\$94,047
2074	55			0.6814	\$0
2079	60	Superstructure painting, deck overlay and patching of concrete substructures	\$4,323,814	0.6580	\$2,845,108
2084	65			0.6355	\$0
2089	70	Patching & maintenance of decks	\$133,297	0.6137	\$81,801
2094	75			0.5926	\$0

Real Discount Rate*:

\$0 0.5926

TOTAL COST:

0.7%

\$31,094,000

\$0

Legend:

SALVAGE VALUE (based on 0-year remaining life of bridge)

^{* =} Based on Office of Management and Budget, *Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs, Appendix C,* OMB Circular A-94, Washington, D.C., Revised December, 2016.

LIFE CYCLE COST ANALYSIS (Replacement Option A - Three Bridges with MSE Islands) BEL-7-1975 SFN: 0700541

REPLACEMENT OPTION A: Replace existing bridges with three bridges and MSE islands

75-YEAR LIFE ESTIMATE: **\$25,520,000**

1968 : Year of Original Construction

Date	Year	Repair Work	Est. Cost	PWF	PWF x Cost
2019	0	Replace Bridge	\$20,726,618	1.0000	\$20,726,618
2024	5			0.9657	\$0
2029	10	Patching & maintenance of bridge decks/patching and maintanance of pavement at MSE islands	\$71,515	0.9326	\$66,696
2034	15			0.9007	\$0
2039	20	Deck overlay, patching of concrete substructures, mill and resurface pavement at MSE islands	\$615,851	0.8698	\$535,656
2044	25			0.8400	\$0
2049	30	Superstructure painting, patching & maintenance of bridge deck/patching and maintanance of pavement at MSE islands	\$1,290,985	0.8112	\$1,047,218
2054	35			0.7834	\$0
2059	40	Rehabilitate Bridge - New decks, parapets, patching of concrete substructures and new pavement at MSE islands	\$2,308,793	0.7565	\$1,746,651
2064	45			0.7306	\$0
2069	50	Patching & maintenance of bridge decks/patching and maintanance of pavement at MSE islands	\$71,515	0.7055	\$50,457
2074	55			0.6814	\$0
2079	60	Superstructure painting, deck overlay, patching of concrete substructures, mill and resurface pavement at MSE islands	\$1,979,321	0.6580	\$1,302,411
2084	65			0.6355	\$0
2089	70	Patching & maintenance of bridge deck/patching and maintanance of pavement at MSE islands	\$71,515	0.6137	\$43,887
2094	75			0.5926	\$0

SALVAGE VALUE (based on 0-year remaining life of bridge)

\$0 0.5926

\$0

TOTAL COST:

\$25,520,000

0.7%

Legend:

PWF = Present Worth Factor

Real Discount Rate*:

^{* =} Based on Office of Management and Budget, *Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs, Appendix C,* OMB Circular A-94, Washington, D.C., Revised December, 2016.

LIFE CYCLE COST ANALYSIS (Replacement Option B - Full Length Bridges)

BEL-7-1975 SFN: 0700541

REPLACEMENT OPTION B: Replace existing bridges with new full length bridges

75-YEAR LIFE ESTIMATE: **\$34,646,000**

1968 : Year of Original Construction

Date	Year	Repair Work	Est. Cost	PWF	PWF x Cost
2019	0	Replace Bridge	\$25,259,206	1.0000	\$25,259,206
2024	5			0.9657	\$0
2029	10	Patching & maintenance of decks	\$133,297	0.9326	\$124,315
2034	15			0.9007	\$0
2039	20	Deck overlay and patching of concrete substructures	\$732,650	0.8698	\$637,246
2044	25			0.8400	\$0
2049	30	Superstructure painting and patching & maintenance of deck	\$3,460,460	0.8112	\$2,807,048
2054	35			0.7834	\$0
2059	40	Rehabilitate Bridge - New deck, parapets & joints and patching of concrete substructures	\$3,697,274	0.7565	\$2,797,067
2064	45			0.7306	\$0
2069	50	Patching & maintenance of decks	\$133,297	0.7055	\$94,047
2074	55			0.6814	\$0
2079	60	Superstructure painting, deck overlay and patching of concrete substructures	\$4,323,814	0.6580	\$2,845,108
2084	65			0.6355	\$0
2089	70	Patching & maintenance of decks	\$133,297	0.6137	\$81,801
2094	75			0.5926	\$0

SALVAGE VALUE (based on 0-year remaining life of bridge)

\$0 0.5926

\$0

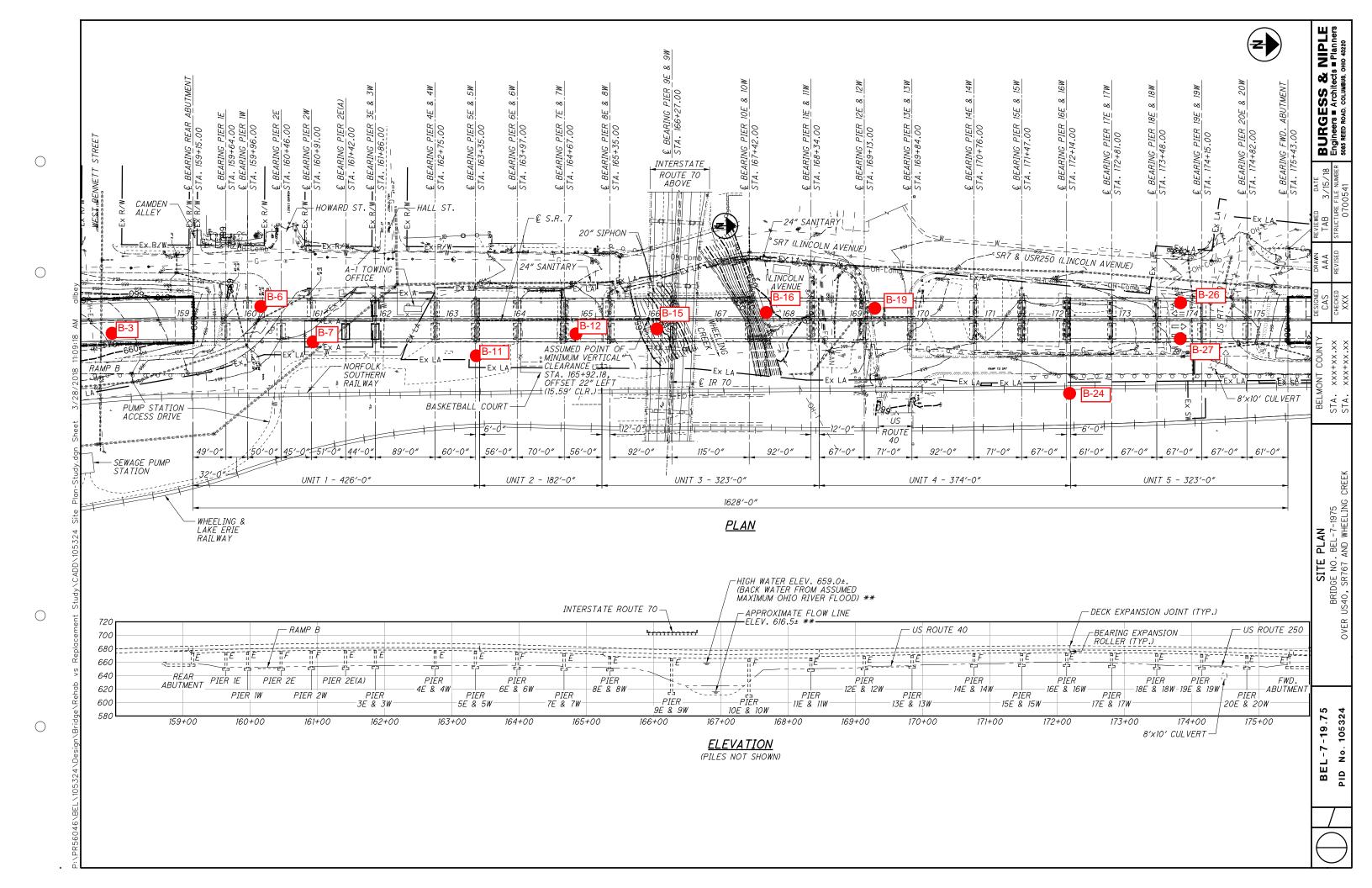
TOTAL COST:

\$34,646,000

0.7%

Legend:

PWF = Present Worth Factor


Real Discount Rate*:

^{* =} Based on Office of Management and Budget, *Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs, Appendix C,* OMB Circular A-94, Washington, D.C., Revised December, 2016.

APPENDIX E – EXISTING BRIDGE PLANS (ORIGINAL AND REHABILITATION)

Existing Plans on File With ODOT and Not Included

APPENDIX F – 1958 AND 2018 SOIL BORINGS

STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

OO.,RT.NO.,SEC. BEL-7-19.80

OCATION	: т.нВ	STA.	851492	OFFSET 12" LT (B.L. FED. NO.
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
101 -	0			
	2			Cinder Fill
	4		* * *	
55%	6	5	81530	Brown Silty Sandy Gravel
*	. 6		¥	
545.2	10			
V4.76"	12	12	81531	Brown Gravelly Sandy Clay
*				
640.2	14			
	NS.	_12_	81532	. Gray Cravelly Sile
:	18			
635.2	20			***************************************
	22	12	81533	Gray & Brown Silty Clay
	24			
530.2		-:	77.57	
	26	19	81534	Brown Sandy Gravelly Clay
	20			
625.2	30	22	07.52.5	P C 6176
*	38	4.4	81535	Brown Gravelly Silt
	84			
- 620.2	9.5	24	RYCAL	Gray Silter Brayes

LOG OF BORING (CONTINUED)

ELEV.	DEPTH	and the same of th		DESCRIPTION
ELEA.	DEPIN	BLOWS	NO.	OBSSITE VISIT
	-			and the second s
	38			
				\
	40	23	81537	Gray Dist
	42	1	17777	1
	76			
	44		8 8	
61.1.2		1		
	. 46	31	81538	Gray Silt & Clay
	- 48			
105 ck	50		43.500	01
		22	81233	Cray Silty Clay
	52_			
1	54			
	-			* 2.41.44
· · · · · · · · · · · · · · · · · · ·	56	- 43	\$1540	Gray Gravelly Clay
		1		
	58			
705.	60	ł .:		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	-	. 50	18.20	Gray Clay & Shale Fragments
	62			
	64	1		
6.0.2			81541	Sandstone Fragments & Clay
	66			BOTTOM OF BORING
	68			
•	_	4		
	70	1 .		
	-			
	72	1		
	74	1		
	14	1. "	.*	
i	76	1	1	1 1/2000
] , .	1. 7.	
	70]		
]	de la	
	80		1.163	
(91)	, .	MA HA	L.	
-1070	1	14 . A. A. S. S. S.		

SHEET 10

STATE OF ONIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

BEL-7-3R 7 Viadio CO., RT. NO., SEC. __REL _7-19.90

1.	LOCATION:	T.H. 33	STA.	91+05	OFFSET 179'LT(B.L) FED. NO.
	ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
-	1 ميازن	0	· 33 .		
-		. 2			
	100			1.	
	449.1	-		42160	Duratus (#2au Garda) Duratus
		6	.3	M2400	Brown Silty Sandy Gravel
	i.	8			
	544.1	10			
		13	- 5	82461	Gray Silty Sandy Gravel
	639.1	14		47.50	
		. 16	22	82462	Brown Clayey Gravel
		18			
	634-1	20			
		55	23 :	\$21.63	
		(4)			
	629.1	. 24			×
		26	20		Brown Silt & Boulders
		28			
	624.1	30			
		32	10	.82464	Brown Silt
			2		
	619.1		2.15	4	
1		341		102165	

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
7 3 4	38		•	Y .
Hillon	40	1		
	42	14	82460	Gray Jilt
	44			
Parent	46	30	£2467	Gray Sandy Silt
			., 2407	Gray Sandy Sile
	48	,		
601.0	50	14	82468	Gray Silt
	52	14		Gray Stite
	54			
119.1	56	18	82469	Gray & Green Silt
			,,,,,,	3.3, - 4.60.
100 mm m m m m m m m m m m m m m m m m m	50	, 5		
594.1	60	45	82470	Red Silty Sandy Gravel
1 1.9	62	•		
1.	64			
589.1	66		a	Red Calcareous Clay-Bouldery
	68			
537.3	70			
534.1	-	120	82471	Red Silt & Clay Bouldery
	72		. , .	
574.1	74		6.000	FOP OF ROCK
577.3	76		Firm, T	one, Cray, Sine to Medium-grained, Micaccoustin - ted led, With O.4 Shale at Top. Core Loss: 9%
	78	***		
	80	1	Shalle	Gray, Siliceous, Firm. Core Loss (4%)

CO., RT. NO., SEC. __ BEL-7-19.80_____

1. W. .

*** 345

1100 Specific ..

> transplanter.

38

101

34

er fede an

1 A PRINT

20429 120

1400

规制的

14 is

DEPARTMENT OF HIGHMAN TESTING LABORATORY

LOG OF BORING

SOUTH WALLS .

LOCATION	T.H. <u>13</u>	STA.	91+67	OFFSET_F2'LT(B_L_)FED.NO
ELEV.	DEPTH	NO. BLOWS	Sample No.	DESCRIPTION
652	0			
.	2			Sinder Fill
		1		
647-4	4	1		
	6	9	82005	Brown Gravelly Clay 15
]		
	8	+ /		
642.4	01	1 .		
*** ** * * *		25	82006	Brown Silt & Clay
	13	1		
	14	1		
637.4	16	9	82007	Br.Sandy Robles & Franches of
		1 .		Gravelly I francisms & Sandatone
	18	10.		Clay (Both Coarge grained, fri-
632.4	20		. '	Clay (Both Coarse-grained, fri- able S.S. and Medium to Fine-grained Calcareous S.S.) With Red Parrugin-
0)2.4		.8	82008	I LIX A DIMININ PARKET L. EDITOR A. F. EDITO
	55			Gravelly Clay
	24	1.		
527.4				
	26	6	82009	Brown Sandy Silt
	28	1		
688.4	30	19	82010	Brown Jilt
	32	1. 7		
1.914-1787	1	1.05		
632	-	The table of	Special S	
4-140	36	17:A. X		

LOG OF BORING (CONTINUED) BEL-7-SR 7 Viedust DESCRIPTION ELEV. DEPTH BLOWS Shale, Gray, Siliceous, Firm. Core, Loss: 84 1100 B 86 BOTTOM OF BORING * * *

6

. ...

110

The state

10 m

Č.

4

LOG OF BORING (CONTINUED)

B3

ELEV.	DEPTH	NO. BLOWS	Sample No.	DESCRIPTION
	38			
V .	- 50			
fag.	40			
1179	_	22	82012	Brown Sandy Silt
	42	,		
(A)	44			
607	-			
	46	. 30	82013	Gray & Brown Sandy Silt
	_	1000		
	48		.)	Boulders & Fragments of Limestone & Sandstone (Both
				Coarse-grained Friable 3.3
A32.1	50	35	82014	Br.Silt Calcargous S.S. With Red
· · · · · · · · · · · · · · · · · · ·	52	17.		Coarse-grained, Friable 3.3 and Medium to Fine-grained Br. Silt Calcareous 5.8. With Red Ferruginous Clay.
		1		
	54		4 - 15	
727.04	70	-	4000	The same of the sa
	56	.22.	82015	Brown Silt
	58		• • •	
592.4	60			
		200	82016	Brown Sandy Gravel
200	62			
	64			
	946		ľ	Tod Class Wich Pouldand
525.44			1	Red Clay With Boulders
	68			BOTTOM OF BORING
	70	1 .	*: .	
		1	1	M. Carlotte and the car
	72			
	-			
	74	4		
	76	1 .		
	10	1		Mary Control of the C
The state of the s	70	1. :		
1.32]	1.5	The state of the s
100	80	1.0	18V	
The state of the s	1	The same	1	

STATE OF CHIE DEPARTMENT OF HISHWAYS TESTING LABORATORY

LOG OF BORING

CO.,RT.NO.,SEC. BEL-7-19.80 OVER BAO RR (AB & WB) (MIT)

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
553.6	0		• 10	Allera Allera
	_			
	- 2	1 14		(FILL)
				3.4. 44.6
648.5	4			
	. 6	3	82832	Silty Gravelly Sand (Brown)
Miles i		1		
	8			
643.6	10			
044,2.00		11 -	82833	Brown Silt & Clay
	12			
ja e				
	14			
638.6	16	19	42411	0.1.
en e		73	72034	Brown Silty Glay
	18	17.74	300	
		,		
593.6	50		dadae	
	- 22	41	82835	Brown Silt & Clay
	68	7 7 5		
· i./ i	24			
628:6				
	26	10	82836	Brown Sandy Silt
	28		- du	
			1.	
623.6	30		n e film n e fil	
		12.	82837	Brown Sandy 3112
	. 5%		0 -	
	34	- 14.	(1) 有力	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
618.6		1		

7. Y X . *

7.1781

3-14-68

LOG OF BORING (CONTINUED)

1947	ERIDGE	NO	510	ALTERNA TO THE REAL PROPERTY.	1/2 T.H. 1/2
11.42	ELEV.	CEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
1	1.5	70			
- Andrew		38			
	Post of the second	40	•		in (br m)
		42			
1		44		. [
		-			Person (200 andy Gravel
		46	ii is	in the state of th	prove (lin andy Gravel
		48			
	1	50			
. 1		52		13041	reaction process of the reaction of
		54		-'	
		56	1 .4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	dance on . Dravelly Bilt
	; y	58	1		· · · · · · · · · · · · · · · · · · ·
		60	} :		
- 1			1 .,	12823	are united and
		62	1		* **
		64.	1 .		
,		6-6	1,2	\$28Lh	Brown Sparel
10	12 4	68	-		
		_	1		
		70	Ja. 11	andst	one, green tob- tray, fine-grained, argill- in wast fire. No core loss.
	***	72	1	Juecus	in war fire. No core Ioss.
	x !	74	-		
			7		All and the second seco
		76	1		and eyerry, silkenous, firm. Jore log.
		78	-		
		80		1	
	- Jacob	82	-	Care T	ROTTON OF BORING

STATE OF ONO DEPARTMENT OF HIGHWAYS

LOG OF BORING

18

CO., RT NO., SEC. BEL-7- 19.80 BRIDGE NO. BEL-7-SR 7 VI DECK

LOCATION: TH. B7 STA94+70 (B.L. OFFSET \$2' LT. (B. LIFED NO.

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION	
554.5	0				1
					7: 417
		" "			
	4	,,			1 T
49.8		1			
	6	6	81510	CINDER PILL	1 11
	_				
		1			2
4401	10				7.17
	9 -	12	81511	CINDERS WITH SANDY SILT	151
	13				
7	14	4,7			11.
30,1					
	16	17	81512	BRCWN CLAY	
	18]				2.10
		1.			14
14.5	20				12.5
. ±7.	- ~		81513	BROWN CLAY	41.4
	22	42			7/6) (
	24				(2) of (2)
8,68				and the same of th	2
	26	11	81514	BROWN SILT & CLAT	
	28	1			
	•				
4.2	30	= = 1	1		A
	-	11	81515	BROWN SANDY SILT	
	32				15-14 15-14
	. 34		. 11		, i
9.8					
20 P. C.	36	16	81516	BROWN STILT	*

1

THE SA

Manager 1

CASTAL.

注. 郭

i di li

LOG OF BORING

DO., RT. NO., SEC. BEL-7-19.80

BRIDGE NO. BEL-7-SR 7 VIADULE OVER B&O RR (EB & WB) (19.11)

ELEV.	DEPTH	NO. BLOWS	Sample No.	DESCRIPTION
655.5	0			A CONTRACTOR OF THE STATE OF TH
4.	2			
, , , , ,		7.		
650.3	4_	.2		
0.50.5	6	44	81522	BROWN SILTY SANDY GRAVEL
	-			
e de	8			
645.	10			
* *	12	24	81523	BROWN GRAVELLY SILT
		,		
640.3	14		ta e e da a	
	NS	. 22	81524	BROWN SILT & CLAY
	18			
	*			
635.3	20	24	81525	BROWN SILT & CLAY
	22	N 123		
	24	5		
630.3	.]			
	26	19	81526	BROWN SILT & CLAY
	26			
625 2	30			
8		21.	81527	BROWN SANDY SILT
	35			
	34			
620.3				And the second s

ELEV.	DEPTH	NO. BLOWS	SAMPLE		DESCRIPTION	
	38					
	40				* * * *	•. : .
	_	23	01517	BRC IN CAA	WILLY BANDY SI	LT
	42					
600 a	44			• .		
	46	507	R13187	L BUCAMALETI	TY JANDY GRAVE	r
	. 48					
601 ."	50					
	52	-62	81519	BRCWN SAN	IDY SILT WITH D	DAL FRAGME
						*
\$ 99.	54		81.520_	pacine on	TW CANDY ADAMS	
	56	3'2 -	81341	- 23 33 34 32 32 42	TY BANDY GRAVE	-
	56	,				
MAGL T	60					
, m	62	160	H1521	H ROWN, GIT	TY SANDY GRAVE	L
	64					•
530.0	-			' SANDOTORE	HOULDERS.	77.7
	6/6			** .	BOTTOM OF BO	RING
	68					•
	770					
	72			* ** ,		
. /	74			٠.		
· · · · ·	76	*				
	. 50	•				
	78				1	
1	80				410.4	

1.1

LEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION	
÷		BLOWS	100		
1 - ·	- 38			8. 8	
ρ;	40				1962
	42	7,370	81520	BRC TE SILTY SANDY GRAVEL	
				BACKEL WEATHERED SANDSTONE TOP OF BOO	1
	44			STATE OF THE TRAY & BROWN, MEDIUM TO FINE OF STATE OF THE	1
.) 6	46			ULAMLY BEDDED, WITH THIN SHALE SEATOR NO CCRE LOSS.	
	40				
	_		ι,	THALF, GRAY, STATCHOUS, FIRM JOINT S IN THE TOP HALF WITH CLAY SEAMS. CORE LOSS: 2276	
22.	50		*.		1. 1
*	52			NAME OF TAXABLE PARTY.	
	54			SHALE, GRAY, SLICHTLY SILICEOUS, FIRE. NO CORE LOSS.	
<u> </u>	_	, ,			40,704
	56			BUTTOM OF BORING	14
	58				
	60				
	62				
. t.	64				
	66				Φ,
	68				7
1 4	300				
•	70				
	72				
	74				
*	710	•	9 9 *		
٠.	. 19				
					3.

STATE OF OMO DEPARTMENT OF HISHMAYS TESTING LABORATORY

.....

LOG OF BORING

CO., RT. NO., SEC. (127.-7-19.00)

ELEV. DEPTH BLOWS NO. SAMPLE NO. DESCRIPTION 10	OCATION	: T.H. 🖽			OFFSET STILT. (B.L) FED. NO.
2 (FILL) 517.7 6 Fill Stone & Concrete Wigh Grave 8	ELEV.	DEPTH	NO. BLOWS		DESCRIPTION
517.7 6 Fill Stone & Concrete With Grave 8 10 19 82447 Brown Silt & Clay 18 23 82448 Brown Silty Clay 18 20 22 82449 Brown Silt 22 24 23 82450 Brown Silt & Clay 28 29 20 21 82450 Brown Silt & Clay 28 29 20 21 82450 Brown Silt & Clay 28 29 20 21 82451 Brown Sandy Silt 88 30 30 31 88451 Brown Sandy Silt	567.5	.0			
517.7 6 Fill Stone & Concrete With Grave 8 10 19 82447 Brown Silt & Clay 18 23 82448 Brown Silty Clay 18 20 22 82449 Brown Silt 22 24 23 82450 Brown Silt & Clay 28 29 20 21 82450 Brown Silt & Clay 28 29 20 21 82450 Brown Silt & Clay 28 29 20 21 82451 Brown Sandy Silt 88 30 30 31 88451 Brown Sandy Silt		2			
6 Fill Stone & Concrete With Grave 8					(FILL)
6 Fill Stone & Concrete With Grave 8		4			
8 10 19 82447 Brown Silt & Clay 14 23 82448 Brown Silty Clay 16 20 22 82449 Brown Silt & Clay 22 24 25 82450 Brown Silt & Clay 23 82450 Brown Silt & Clay 24 25 26 27 82451 Brown Sandy Silt & Clay	547.07	6			Fill Stone & Concrete With Grave
19 82447 Brown Silt & Clay 18 23 82448 Brown Silty Clay 18 20 22 82449 Brown Silt 22 24 23 82450 Brown Silt & Clay 25 30 13 82451 Brown Sandy Silt 28 30 13 82451 Brown Sandy Silt			1		
19 82447 Brown Silt & Clay 14 23 82448 Brown Silty Clay 18 20 22 82449 Brown Silt 22 24 24 23 82450 Brown Silt & Clay 28 28 28 30 13 82451 Brown Sandy Silt		8	•	-	
19 82447 Brown Silt & Clay 18 23 82448 Brown Silty Clay 18 20 22 82449 Brown Silt 20 22 82449 Brown Silt 22 24 23 82450 Brown Silt & Clay 28 29 30 13 82451 Brown Sandy Silt	6k2.7	10			
14 18 23 24 22 24 27.7 26 23 82450 Brown Silty Clay 22 24 27.7 26 23 82450 Brown Silt & Clay 28 30 13. 82451 Brown Sandy Silt 38			19	82447	Brown Silt & Clay
18 23 82448 Brown Silty Clay 18 20 22 82449 Brown Silt 22 24 24 25 23 82450 Brown Silt & Clay 28 30 13 88451 Brown Sandy Silt		18	·		
16 23 82448 Brown Silty Clay	14	14			
20 22 82449 Brown Silt 22 24 23 82450 Brown Silt Clay 28 30 13 82451 Brown Sandy Silt 32 32 32 32 32 32 32 32 32 32 32 32 32	437.7	16	23	会21.1.章	Brown Silty Clay
22 82449 Brown Silt 22 24 23 82450 Brown Silt & Clay 28 30 13 88451 Brown Sandy Silt:			1	, 2440	
22 82449 Brown Jilt 22 82449 Brown Jilt 23 82450 Brown Jilt & Clay 28 30 13 88451 Brown Sandy Silt		16	1 :		
22 24 24 28 23 82450 Brown Filt Clay 28 30 13 88451 Brown Sandy Sile:	532.7	20			
26 23 82450 Brown Silt Clay 28 30 13 88A51 Brown Sandy Silt:		200	22	82449	Brown Bilt
26 23 82450 Brown Silt Clay 28 30 13 82451 Brown Sandy Silt 38 38	•	- 66			
26 23 82450 Brown Silt & Clay 28 30 13 82451 Brown Sandy Silt:	14 F	. 24			
28 30 13. 88A51 Brown Sandy Sile	R	26	23	82450	Brown Silt & Clay
30 13. 88A51 Brown Sandy Sile:	and the same				100
13. 88A51 Brown Sandy Sile	# ,	. 25		4 . 4.4	
	622.7	30			
	F.	30	13.	82451	Brown Sandy Sile
1977年、1987年 1987年 1987					

BORING (CONTINUED)

1.0

NO. DESCRIPTION DEPTH ELEV. NO. BLOWS 40 Brown Bouldery Gravelly Silty Sent 42 44 FTCP OF ROCK Sandatone, Gray & Brown, Medium Gratte Firm, Medium Bedded. No Core Loss Mille. . . . 50 Shale, Gray, Siliceous, Firm. Gore Lossis 54 56 BOTTOM OF BORING 58 60 62 64 68 70 72 74 76 79

DEPARTMENT OF HIGHWAYS

\$31 \$31

LOG OF BORING

						ITMENT OF HIGH ITMS LABORATO		
r alda						HING ENGORATO	W.V	
	cubeta. A c			,	100	OF BORIN	B-1	5
	73.4 78.4 19.5					Or BORIN	40	
		- 00., RT. NO).,SEC₽	<u> 1557-</u>	13-60		BRIDGE NO. BEL-	Z-SR 7 VIAN
ly Gilty James		LOCATION	TH 305.	STA	39+73	OFFERT 10	2'LT(B.L)FED.NO.	IT3 2 &
			The state of the s		SAMPLE	OFFSET_AS	TANKE OF THE PARTY	
		ELEV.	DEPTH B	LOWS	NO.	. •	DESCRIPTION	
CK	2 5	652.00	0	.]		***		
n,Medium Granus . o Cora Loss			-	1				
o cora coss				- 1		(F	(11)	
		45,0	4		s			
		17. 14.0 a()	6	-5	. 92453	Brown Silt	y Gravelly Sand	-,
Firm.Gore Less:			-		٠. ٠			
			8					A M
: '		641.0	0			, ,		į.
F BCRING			12	18	82454	Brown Silt	y Sandy Gravel	
				1	: .	•	91.	7.
		136.0	14					
			16	33	82455	Brown Grav	elly Clay	
			18				10	g ·
			- 10					fen 187 fa
		£31.0	20	40	021.56	`` P		
			22	60.	02450	Drown Silt	y Sandy Gravel	Steel Control
	3.1	526.0	. 24					
			26	11	82457	Brown Sand	y Clay	
			28	ľ				it
				ŀ		****	Care Transfer	20° . j
	17	621.0	30	33	R2458	Brown Silt	u Clau	(6)
			32	ti a		A. DIOND SILE	7 (3.4)	***
	0.64 (0) 0.74 (1)							
100	2015 Maria 1 100 Maria 1 100 Maria	616.0		1	100	1411	APPROXIMENT	
CAN CHAPTER AND CO.	A SHOW A		36 8	no L		A CONTRACTOR		1

	ELEV.	DEPTH	THE RESERVE THE PARTY OF THE PA	SAMPLE NO.	
***		38			FTOP OF ROCK
		40			
		42			Sandstone, Gray, Medium to Coarse-
		44	*		Sandstone, Gray, Medium to Coarse- Frained in Bottom Quarter, Medium- movined in demainder, Calcarecus 45.04 46.51, Firm. Core Loss: 13,6
W.		46			
	%G	48			
		50			. Stay Made Gray Firm, No Core boss
		52	r		THOTTOM OF BORING
		54			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. . .	56			
		58			
32		60	*		
		62			
		64			
	1, 1	66	•		
		68			
		70			
		72			
		74			William Control
3.7		76			
10 h 2 h		70			
		60	The state of		
	in providing to the second	-	77.984	No.	

DEPARTMENT OF HIGHWAYS

LOG OF BORING

30

製造

BRIDGE NO. HEL-7-SR 7 VIALUE CO.,RT.NO.,SEC.BEL-7-19.80 UNITS 2 AND 3

LOCATION: T.H. B16 STALO1+31 OFFSET 122'LT(B.L.)FED. NO.

ELEV.	DEPTH	NO. BLOWS	Sample No.	DESCRIPTION
620.2	0			and the second second
	2			
	4			
545.2	6	3	92017	Cinder Fill 2
	8			
64)	10		2001.0	Brown Sandy Gravelly Clay
	12	-2-	85018	PLOME STUCK OFFI
7.	14	1		
635.2	16	21	#2019	Brown Gravelly Clay
	18			
630.2	20	1		
6,30.2	22	14	82020	Brown Gravelly Clay
	24			
625.2	26		4000	
	28	27	82021	Brown Silt & Clay
		1		
620.2	30	16	82022	Brown Gravelly Clay & SIL
	32			
615.2	34			

3-14-58

20

No. 1

分数数 400

1

1.4.11

1. 1. 2031

, 111.

34

. 0 STATE OF ONO

00.,RT.NO.,SEC. 11.2-19.80

DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

_,9

TOCATION: THE ...

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
· · · · · · · · · · · · · · · · · · ·	0		1	
	_		- **	
	3			
	4		7	
1.63				
	6	18	83867	Brown Silt
	8			,
-64.2.5	10			
	1	19	83868	Brown Silt
	13			
1.00	14		``	70° 30' 10' 10' 10' 10' 10' 10' 10' 10' 10' 1
336.8				
	16	18	83869	Brown Silt
	18			
4.1			•	
634.0	20	19		
11	22	19	83870	Brown Silt
		1		
4.	24			
026.0	26	22	83871	P
		. ~~	030/1	Brown Sandy Silt
	28			
	30			
621.6	30	12	83872	Brown & Gray Silty Sandy Gravel.
62012	32	and a	CTA D	TOP OF ROCK
627.3	1	Janus L	Shale F	Gr. Ned to Fine-Grained Firm Thin-Bedde
616.6	34	Sende	one Bul	Srown & Brownish-Gray, Siliceous, Firm, Wit Sandstone Stringers, No. Core Loss. & Gr., Fine-Grained, Firm, Thin Medded. No.

	the state of the state of			20 7 Y	and the first of the contraction
	ELEV.	DEPTH	The state of the s	SAMPLE	DESCRIPTION
		38			DANNSTONN BEHLDERS
	6	40	46	32026	Brut ar. andy Gravel, TOP OF BULL
4	e Contract	42	shale Slay in To	Bray & Eule in Ealf	brown, stlineous in top half-gradit. 1 Remainder, neutium firm to Goft, Brosen int O. C. Sindstone at Al.O. No Gorenican
		44			Sandat no Re & Co Medium Chaire
		46			Gillaceous in lower Third, Firm, Medical Hedded (with Irregular, Sloping Heading Surfaces), With Thin Seams of Clay & Shale. Core Loss: 3%
for	4	48			Shale. Core Loso:3%
	200.	50			chale, Gray, diliceous, Firm. Core woss -
		52	•		BOTTOM OF BORING
22.2		54	*		
	1	56			
	γ γ ÷		1 in	. :	
		58	,		
15 abs		60		•	
	*	62			
		_			
	k ekimir Kara	· \$6			
55 130 130		68			
		70			
		-	2.		
	14	12			
		74			
		76	·		
		78	1.	1 1 1	
17		80	13 July		
. 12 V			4	1.21	

1 100

.

. 12

2 XI) ... 20 AI

RC

LOG OF BORING (CONTINUED)

NO. SAMPLE BLOWS NO. ELEV. DEPTH 38 Chale, Gray, Siliceous, Firm, with Clay to come. Core Loss: 276 Firm Nov eacs ECTTOM OF BORING 72 74

STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

LOCATION TH. STA ... OFFSET ... JFED.NO.

	ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
	*, * a :	. 0			- oratating .i. researt .r.
100		2			
2011	•	6	,	10.050	v vivelly land
		10		· 82 [4 g	istiv is twel.
		12			
		16	. "	r: 321	arewn andy 311t
	•	20		21.14	The west of the territory
		22			
		28	υ.	5. 98	11.07.22 - 30.07 - 12.21
	,	30 32	10	37 72 0	rewo Jandy Silt
		34	•	£2830	

A-14.5

3-14-50

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
	38			
	40	127	· ^3;	com Vicampents
	42			
	44	ii		hecover-1 aberial consists of mand- shoot(themsers) with 0.6 gray of the os chare at base-the shale is flat bring and may be bedrock.
		,		flat bring and may be bedrock.
	48			
				TOTAL OF BOALING
	52		ļ. 1	
	54			
1.	56			
:	58			
	60			
.	62			
	64			
	66		•	
	68	*		
-3	70			
, [72	••		
	74			
	76			

STATE OF ONIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

AND THE

CO., RT.NO., SEC. REL-7-19.95 BRIDGE NO. BEL-7-SR 7 VI. DUOT

LOCATIONS THE TUNE OF 107+00 APPROX =721 PI TI D' 1 1--- -/-

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
651.3	0			
	2	1.		
		1 .	l	
	4			
646.0	6	1.	83223	1974-1 0-1-17 01-17 01-17
7			03223	Black Gravelly Sandy Silt
	8		1.	
617 4	10			
541.6		. 8	83224	Black Clay & Stone Fragments.
	12			
te .	14	- A		
-636.8	- 14			
	16	14	83225,	Brown Silty Grayel
**************************************	ia			
	10			
631.0	20			
. i	22	6	83226	Clevey Sandy Gravel
	24		•	
626.4	26	171		Sand & Boulders
		-1-		Sand & Boulders
2 .	28	A 1/		
621.8	30			TOP OF ROOM
:				
1.1.	32			Shale, Gray, Siliseous, Generally Firm,
	34			Poorly Fissile, Jointed in Top 3.57. Broken at Top With Clay Semandore
		13.0		Loss:37%.
	901	1-2-2-1		
		18 800 1	obneral service	

e i

LOG OF BORING (CONTINUED)

ELEV,	DEPTH	BLOW'S	SAMPLE NO.	DESCRIPTION
	38	7	'	Shale, Fray. Siliceous Firm, Grading in Part to Argillaceous Sandstone. No Core Loss.
ener Ogsan	40		•	Core Loss.
	70	7 7 1		BOTTOM OF BORING
	42		1	Section of Bonane
1.90		19		
	44			
	. 46			
2.7	40			
* .	_			
	50	100,00		
	52			4 9 9
		N. 200	1	
	54			
	36			
	- 99		17.20	· Daniel Barrier Sales Sales Sales
	58			
117	-	. "		
	.60			
44	62	1		
		1		
	64]		
i i i i i i i i i i i i i i i i i i i				
11.4.		1	1	
	. 66	1 .		
	70		1 .	
	72			
i ka		1		
	79	1	1	
			1	
	78	1 .		
	78	1	1 _ `	
Q2.4		1		A CONTRACTOR OF THE CONTRACTOR
A CONTRACTOR OF THE PARTY OF TH	. 80	AC CONTRACT	The Party	The state of the s

STATTE OF OHRO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

LOCATION: TH. B27 STA 107485 OFFSET P1117 B. L. LPED: NO.

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION.
648.0	. 0	`		
	2			
(13.6	4	•		Cinders & Bouldary Full
643.0		28		Boulder
	-			
638.C	10	8	424.5	
٠	<u>e</u>		82845	Gray Clayer Sandy Gravel
633.0	14		# 1 1 · · · ·	
0,7,80	16	25	P2846	Stone Fragments
	18			
•		,		M. M.
628.0.	20	48	82847	Stone Fragments
	52		35.0051	- Journe Francisco
	24			
623.0		270	82848	Brown Silt & Clay TOP OF BROKEN R
	26	ZAU	02.040	DAOWI STIEL VILLE TO BROKEN R
•	28	*****	1.	Shale, brown & gray silicoous, medium
	30	A. 11.		Shale, brown & gray, silicoous, medium firm to firm, broken in top half. Corploss: 30%
616.9	39			
010.9	38			
	30	7	4.	Shale, gray, sild come firm, grading to argillacoous another busy much of
613.0				the intervals to all local

LOG OF BORING

CO., RT. NO., SEC. 18EL-7-17.98 BRIDGE: NO. BEL-7-SR 7 VIABLE MORTH WALLS

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
	0			
	2	. 2 . 10 3		
i i	4	. 6.,		
653.3	6	33.	83873	Brown Silty Sand & Stone Fragts.
· ; ,} , <u>·</u> .	10			
	12	12	23874	Brown & Gray Clay
	14			
m43.3	16	49,	83875	Brown & Gray Sandy Clay & Silt
		49,		brown a Gray Sandy Clay & Silt
.*	18			
638.3	20	64	83876	Reddish-Brown Silt
•	22			
433.3	24			
•	26	100	83877.	Reddish-Brown Silt & Clay
	28			
the market	30	1200	13878	Gr. Grav. Clay & Sile AND TOP OF ROCK
	32	7,1	ł	Shale, Gray, Siliceous, Rirm in Lower
**	34			Half Nedium Firm but with Extensive Soft Zones & Clay Seams in Top Half, Jointed in Top Quarter 36 Core Loss.

DAIDG	E NO			
ELEV.	DEPTH	NO BLOWS	SAMPLE NO.	DESCRIPTION
	38			Shale, Gray, Siliceous, Firm in Lower
	40			Shale, Gray, Siliceous, Firm in Lower Helf, Nedium Firm but with Extensive Soft Zones & Clay Seams in Top Helf, Jointed in Top Quarter. No Core Loss.
			1.	HOTTOM OF BORING
	42	9		
	44	. ,		
	40		1.	
, ,				
	48			
	60			
	52	1		The series
		1.0	• • • • •	
	54			
	56			
	58			
	.]		2.4	
	60		8.	
* 4	62		***	
	64			
	- 66			
	68			0.00
4	70			African Committee Committee
	72			
	74			
	76	•		
			•	
	78		1.	
	80	٠.		
	- m	\		4.5.11

LOG OF BORING

<u>V. A.</u> BRIDGE NO. BEL-7-SR 7 VIA. 00 ,RT NO ,SEC. ________

CONTRACT V

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
······································	0			
	4	1 .		
1.51 . 11	6	25	83217_	Brown Cravelly Clay
	8			
().*. :	10	13 .	33214	Br wmish-Red Gravelly Clay
	18_	1		
· with c ~	14	1		
	16	111	83219	Brownish-Red Gravelly Clay
	18			
636.4	50	23	#3220	Brownish-ted Silt & Clay
	55			
631	24			
	26	21 .	73221	Brownish ded Gravelly Clay
	28			
4.5 (r. A	30	31	83222	Gray Gravelly Silt
623 A	32			FTOP OF BROKEN ROCK
	34	1 5 1		Shale, Gray, Siliceous, Firm, Broken in Top 1.5°, with Thin Stringers of Cal- careous Sandstone, Core Leas 20%

LOG OF BORING (CONTINUED)

SHOW! 38

15

7 2-14-58

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.		DESCRIPTION		
	-	1		1. 1.1	, · · · · · · ·		12
	38				., '		1375
							1
	40			105-1-	Constitution	Pinn Anakar	1 1
				Top 1	.5' With Thin St	ringers of	lai-
	42	1		careo	Gray, Siliceous, .5', With Thin St	re Loss: 20,	
	44			N 11		r , , ,	
	-				DOMESTIC OF D	0.28.00	
Salara _	46	1		,	BOTTUM OF B	CHING	
A TOTAL DE	48	1				ar ist	. 1
	700	1					
	50	3					
		1	i.			:1	
1.1	52]			I		
]		5,			4.8
P. Vert	54	1		-1	1		٠.
							. 41
2.	56	4		* *			41
	1	٦,			- 1000		
	58	-					. "17
	60	-					: - :
			1				
	62	7	1.				
Actor II (Ab Actor III (B) Art III		7	1	1			
	64	7		1 .			1
1				W. Water			
		4					1.17
AND MARKET	68	니 .		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in the .	
	1 -						14
	770	4 .					
	72	-	1		<u> </u>	1	
	70	4					
	74	7			1. 1. A. A.		
					. it proves the		
54	70] []		1	* * * * * * * * * * * * * * * * * * * *		
	1]	1		The second second		
## 1 . 12 S	70	L .				4 1. 1	e. N
]			A WEST		1
		4		· Practio			
							9

December 4, 2018

ODOT District 11 2201 Reiser Ave. New Philadelphia, OH 44663

Attention: Mr. Cody Notz, P.E.

Reference: District 11 Geotechnical Engineering Services Agreement

PID 97216

Agreement No. 31109 Task Order Number 11-S

BEL-7-19.75 - Soil Boring Logs

PID 105324

S&ME Project No. 1179-18-026L

Mr. Notz:

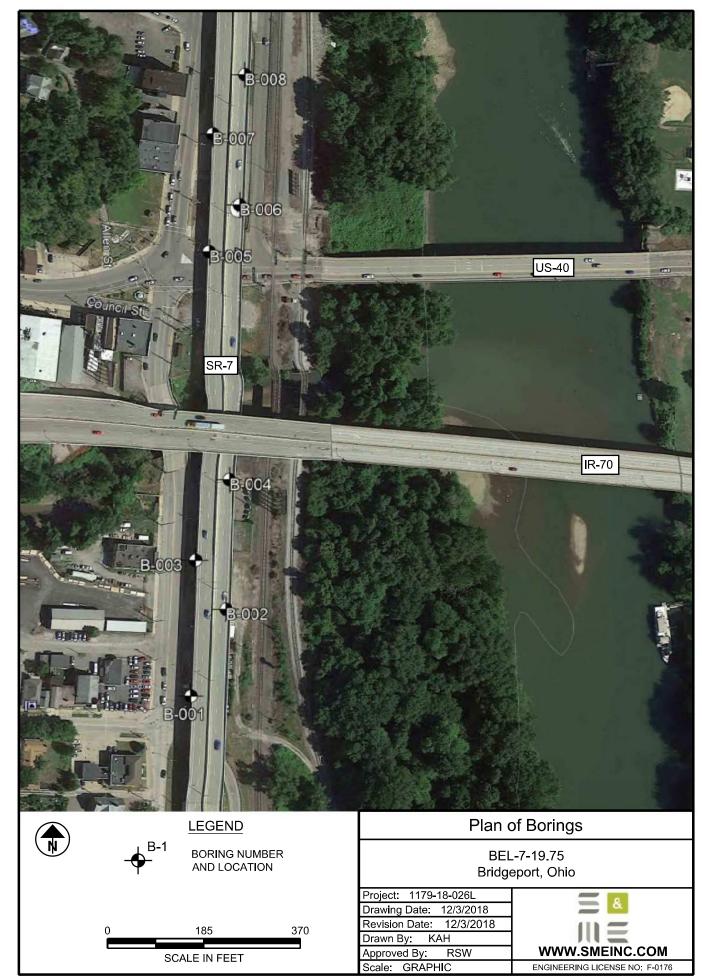
S&ME has completed the drilling and laboratory testing for the soil borings requested for an MSE wall replacement study at the SR 7 viaduct bridge in Bridgeport, Ohio. The eight (8) requested borings were performed at the locations marked in the field by District 11 (see Plate 1). The surveyed latitude, longitude, and ground surface elevation at each boring were also provided by District 11 and are provided on each boring log.

During the field drilling program, a relatively strong hydrocarbon-type odor was encountered in Boring B-007-0-18. This boring was sealed with bentonite, and no laboratory testing was performed on any of the samples recovered from this boring. A slight hydrocarbon odor was also noted at roughly 8 feet in Boring B-004-0-18.

We appreciate the opportunity to be of continued service. Please don't hesitate to contact us if you have any questions.

Respectfully,

S&ME, Inc.


Nathan D. Abele, P.E. Project Engineer

Richard S. Weigand, P.E. Senior Engineer/Senior Reviewer

Attachments: Boring Logs (9 sheets)

natury D. alea

Submitted: Email Copy (cody.notz@dot.ohio.gov)

S&ME JOB:

	-					7	^ ^	L V 1	V 7	1 1 N	1 N .	7 ^	Γ,	V 7 V	, 1 _V	7 7 7	16 1
INOIL	-0-18	PAGE	1 OF 1	BACK	FILL	× 17 ×	^7\/ ^V >'V	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 > 7	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	34	\r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	531
EXPLORATION	B-001-0-18	15.0 ft.	1 W	TOGO	CLASS (GI)	A-1-b (V)		Visual (V)	Visual (V)	Visual (V)	Visual (V)	Visual (V)	A-2-6 (V)	A-6a (8)	A-6b (V)	A-6b (11)	A-6b (V)
		15	40 070004 N, 80 740611 W		WC	10		12	4	7	13	14	09	23	32	25	26
161+25, 35'		EOB:	ا, 80	∃RG	Ы	1		1	1	1	-	ı	ı	15	21	17	1
161+2	SR 7	1	0004	ATTERBERG	PL	-		ı	1	1	ı	-	-	24	29	22	1
		ELEVATION: 653,4 (MSL)	0.070	ATT	П	-		ı	ı	ı	ı	٠	ı	39	20	39	1
STATION / OFFSET:		653	4	(%	CL	1			ı	ı	ı	ı	1	23	ı	42	1
j	ENT:	 0	NG:	GRADATION (%)	SI	1		ı	ı	1	ı	ı	1	43	ı	53	'
ATION TO	ALIGNMENT	EVAT	LAT / LONG:	DATI	FS	1		ı	ı	1	ı	1	1	21	ı	5	1
STA	AL		FA	GRA	SO	1		1	1	1	1	1	1	9	ı	0	- '
١٥	<u>ပ</u>	18		_	.) GR	-		1	- 1	1	1	-	1	5-7	712	5-0	_rc
D D2	MAT	11/2/18	87.4	∃ HP	(tst)	1		1	1	1	1	1	1	0.75 1.25	1.25	1.25 2.25	2.0-
OTB SKID D25	CME AUTOMATIC		(%):	REC SAMPLE	D	SS-1		SS-2	SS-3	SS-4	SS-5	SS-6A	SS-6B	SS-7	SS-8	8S-9	SS-10
	[ပ	ON D	ATIO	REC	(%)	78		89	83	89	89	;	/9	88	89	67	72
RIG	MER:	RAT	GY R	2	N ₆₀	1		13	9	က	3	,	3	3	7	6	12
DRILL RIG	HAMMER:	CALIBRATION DATE:	ENERGY RATIO (%):	SPT/	RQD	4.50-3"		5 5 4	2 2 2		2 1 1	_	1		1 2 3	1 3 3	2 3 5
OTB / ALEX	S&ME / C. WEST	2.25" HSA	SPT	OLTGI	CELIE		<u> </u>	2 8) 4) 4	ינט מ	2	~) 0	10 -	1	13 1	— 14 — — 14 — — — — — — — — — — — — — —
TOR:		``		ELEV.	653.4		651.8					645.3	644.4	642.9			638.4
PERA	990		ا ت			ء د ک (<u> </u>	>1 × × × × × × × × × × × × × × × × × × ×	, L J ^ L	1 / 2 /	2 V V V	7/ /					
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:	DRILLING METHOD:	SAMPLING METHOD:	TION		ick GRAVEL	and concrete		, , ,		, ,	,	,	D CLAY, some oal and brick	ttle fine to coarse		
PROJECT: BEL-7-19.75	TYPE: BRIDGE REHABILITATION	PID: 105324 BR ID:	START: 11/12/18 END: 11/12/18	MATERIAL DESCRIPTION	AND NOTES	Fill: Loose to medium-dense brown and black GRAVE	WITH SAND, little silt, trace clay, tew coal and concrete fragments. drv.	Fill: Very-lose to loose coal fragments, few brick fragments below 7.5', dry to damp.					Fill: Very-loose brown and black GRAVEL WITH SAND,	Fill: Medium-stiff to stiff dark-gray SILT AND CLAY , some fine to coarse sand, trace fine gravel, few coal and brick	/fragments, damp to moist. Stiff to very-stiff gray SILT CLAY , trace to little fine to coarse	sand.	- Becoming brown mottled with gray at 13.5'.

- No groundwater noted. - Boring caved at 10.9' after

Ω	П			V		₩.	1	V 7 V	, V	L 1 V 7	7 V 7 7	, V - 7 \	1 V Z	1 V V	л ^Л Л	\ \ \
VIION	-0-18	PAGE	1 OF 1	BACK	Ⅱ		\r >1 \r	2 × × × × × × × × × × × × × × × × × × ×	7 V F 7 V	1 × × × × × × × × × × × × × × × × × × ×	7 > 1 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 >	>/ >/ >/ >/ >/ >/ >/ >/ >/ >/ >/ >/ >/ >	\r\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 × × × × × × × × × × × × × × × × × × ×	, V V V V V V V V V V V V V V V V V V V	7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
EXPLORATION ID	B-002-0-18	15.0 ft.	5 W	ODOT	CLASS (GI)			A-6b (V)	A-4b (8)	A-6b (V)	A-6b (V)	A-6b (V)	A-6b (V)	A-7-6 (12)	A-7-6 (V)	A-7-6 (V)
R		15	40.070472 N, 80.740365 W		WC			28	20	24	22	25	27	23	24	24
162+65, 35' RT		EOB:	, 80	ERG	₫			1	2	ı	ı	ı	ı	19	ı	ı
62+6	SR 7	1 1	472 N	ATTERBERG	Ч			1	19	i	ı	ı	1	23	1	ı
			0.070	ATT	Ⅎ			1	24	ı	ı	ı	1	42	1	ı
FSE			4	(%)	귕			1	20	ı	1	,	1	4	1	ı
STATION / OFFSET:	Ë.	NO.	NG:	GRADATION (%)	<u>8</u>			,	53	1	1	'	1	52	1	ı
NOL	ALIGNMENT	ELEVATION:	LAT / LONG:	DATIC	S.				24	ı	ı	'	ı	7	ı	ı
STA	ALIC	ELE	LAT	GRAI	S			1	_	1	ı	1	1	0	1	'
	ပ	8			R.			'	2	1	1	1 10	1	0	1	
D D25	MATI	11/5/18	87.4	HP:	(tst)			10	0.75	2.5 3.0	3.0	0 75	04 0	2.0-25	2.5 3.5	300
OTB SKID D25	CME AUTOMATIC		. (%):	REC SAMPLE	□			SS-1	SS-2	SS-3	SS-4	SS-5	9-88	SS-7	SS-8	88-9
		CALIBRATION DATE:		REC	%)			72	78	22	61	61	96	78	89	78
DRILL RIG:	DRILL RIG: HAMMER:		RGY I	12	9 Z			7	^	9	6	9	7	15	17	13
DRIL	HAM	CAL	ENERGY RATIO (%):	SPT/	RQD			2 2	3 3 3	1 2 2	3 3 3	1 2 2	2 2 3	3 4 6	5 7	8 4 م
OTB / ALEX	S&ME / C. WEST	2.25" HSA	SPT	OLLOSO	DEPLHS	1		- 5 -			- 2 -	* * * * * * * * * * * * * * * * * * *	9 - 10 -	11 - 11 - 1	- 13 -	_ 14 _
PERATOR:		l	OD: ELEV.	ELEV.	655.1	××× 654.7	654.3	, d	650.6				644.6			7
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:	DRILLING METHOD:	SAMPLING METHOD:	NO			SE	e fine to coarse	some clay, e gravel, damp.	eddish-brown nd, trace to little	ıragınenıs, damp			o coarse sand,		
BEL-7-19.75 D	BRIDGE REHABILITATION S	BR ID:	11/12/18 END: 11/13/18 S	MATERIAL DESCRIPTION	AND NOTES	ASPHALT - 5 INCHES	GRANULAR BASE - 4 INCHES	Fill: Stiff brown and black SILTY CLAY , some fine to coarse sand, trace to little fine to coarse gravel, damp.	FILL: Medium-stiff to stiff brown SILT , little to some clay, some fine sand, trace coarse sand, trace fine gravel, damp.	Fill: Stiff to very-stiff brown, light-brown and reddish-brown SILTY CLAY, little to some fine to coarse sand, trace to little	ine to coarse grave, rew coarand red snale rragments, damp to moist.			Very-stiff brown CLAY , "and" silt, trace fine to coarse sand, trace fine gravel, damp.		
PROJECT:	TYPE: BRII	PID: 105324	START: 11/					Stiff brovid, trace t	L: Mediur	Stiff to v	ine to coarse to moist.			y-stiff bro		

A-7-6 (V)

24

300 300

SS-9

- On 11/12/18, rig broke down after encountering construction debris at approximately 2.0. Boring completed on 11/13/18 in offset boring drilled immediately adjacent to original location.

- No groundwater noted.

- Boring caved at 11.4' after augers pulled.

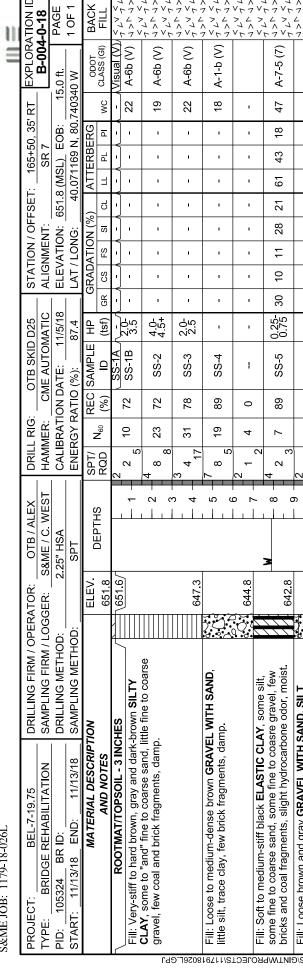
E STAJ SWME ODOT LOG (8.5X11) - SGE 07/2018 - OH DOT GDT - 12/4/18 11:22 - T:/RESOURCES/CS/GINTWPROJECTS/117918026L.GPJ

S&ME JOB:

2 STATA SEME ODOT LOG (8.5X11) - SGE 07/2018 - OH DOT.GDT - 12/4/18 11:22 - T:/RESOURCES/CS/GINTWPROJECTS/117918026L.GPJ

ଉଷ

III =



ON ID	8	PAGE	1 OF 1	BACK			7 7 7	^ / \ / \ / \ / \ / \ / \ / \ / \ / \ /	1 1 1 1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 × × × 1 × × × × × × × × × × × × × × ×	V V V V V V V V V V V V V V V V V V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
₹	읾	<u>~</u>	_	┢	_	<u>``</u>	14.		7 V		<u> </u>		l I		-7 V		
EXPLORATION	B-003-0-18	15.0 ft.	30 W	ODOT	CLASS (G			A-7-6 (V)		A-7-6 (V)	A-7-6 (8)	A-2-6 (V)	A-6b (V)	A-6b (V)	A-6b (10)	A-6b (V)	A-6b (V)
, LT		1	40.070732 N, 80.740580 W		WC			23		53	25	23	20	29	23	24	22
164+00, 35' LT		EOB:	N, 80.	ERG	Ы			1		ı	18	ı	1	ı	16	ı	ı
164+(SR 7	SL) E	3732	ATTERBERG	김			1		1	25	1	1	1	77	ı	1
		3 (M	0.07(ΤA	Ⅎ			1	L	ı	43	1	,	1	37	1	,
STATION / OFFSET:		655.3 (MSL)	4	(%)	占			1		1	30	1	1	ı	39	ı	'
/ OF	Ä		ؙؾؗ	%) NC	<u>8</u>					ı	29	ı	ı	ı	54	ı	1
NOL	ALIGNMENT	ATIC	LAT / LONG:	ATIC	FS					i	4	ı	,	1	7	1	ı
STA	ALIG	ELEVATION :	H	GRADATION (%)	S			,		ı	13	ı	ı	ı	0	ı	1
		<u>_</u>		Ľ	R			ı		1	4	1	1	1	0	ı	ı
) D25	MATIC	11/5/18	87.4	노	(tst)			1.5		2.25	1.25-2.0	ı	1.5	1.0-	1.25 1.75	3.0	1 3 0
OTB SKID D25	CME AUTOMATIC		(%):	REC SAMPLE	₽			SS-1		SS-2	SS-3	SS-4	SS-5	9-88	SS-7	8-88	8S-9
	<u>්</u>	OND	ATIO	REC	%)			29		29	22	78	61	72	100	100	100
. RIG:	JER :	3RAT	GY R	2	09 Z			6		4	4	10	9	7	12	20	16
DRILL RIG	HAMMER:	CALIBRATION DATE:	ENERGY RATIO (%):	SPT/	RQD			9	7	2	1	د 4	2 2	2	3	5	4 7
OTB / ALEX	S&ME / C. WEST	2.25" HSA	SPT	SHEELE	DEP INS			2	წ 	4	22	2	ω σ	10 -	1	7 - 13	— EOB——15—
OR:		2.		ELEV.	655.3	654.9	654.1				649.3	647.8	646.3	644.8	643.3		640.3
ERAT	399C			F	_	¥	X										
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:	DRILLING METHOD:	SAMPLING METHOD:	TION			HES TES	LAY, some to				ITH SAND, SILT 存	some fine to avel, few coal	le fine to coarse np.	LAY, trace fine to	LTY CLAY, little	
PROJECT: BEL-7-19.75	TYPE: BRIDGE REHABILITATION	PID: 105324 BR ID:	START: 11/13/18 END: 11/13/18	MATERIAL DESCRIPTION	AND NOTES	ASPHALT - 5 INCHES	GRANULAR BASE - 9 INCHES	Fill: Stiff to very-stiff brown and dark-gray CLAY , some to "and" silt, some fine to coarse sand, little fine to coarse gravel.	rew brick and coal fragments, damp.			Fill: Loose dark-gray and black GRAVEL WITH SAND, SILT AND CLAY , few coal fragments, damp.	Possible Fill: Stiff dark-gray SILTY CLAY , some fine to coarse sand, trace to little fine to coarse gravel, few coal fragments, damp.	Stiff dark-brown and black SILTY CLAY , little fine to coarse sand, trace fine gravel, slightly organic, damp.	Stiff brown mottled with dark-gray SILTY CLAY , trace fine to coarse sand, damp.	Stiff to very-stiff brown mottled with gray SILTY CLAY , little fine to coarse sand, trace fine gravel, damp.	

augers pulled. Encountered sight seepage at 5.5'. Boring "dry" at completion. Boring caved at 10.3' after augers p

1179-18-026L

S&ME JOB:

647.3 Loose to medium-dense brown **GRAVEL WITH SAND**, silt, trace clay, few brick fragments, damp. Fill: L

Fill: Soft to medium-stiff black **ELASTIC CLAY**, some silt, some fine to coarse sand, some fine to coarse gravel, few bricks and coal fragments, slight hydrocarbone odor, moist.

Fill: Loose brown and gray **GRAVEL WITH SAND, SILT AND CLAY**, few brick fragments, damp.

Fill: Medium-stiff gray **SILTY CLAY**, little fine to coarse sand, trace fine to coarse gravel, few roots and wood fragments, few brick fragments, moist.

Stiff greenish-gray and dark-gray **SILTY CLAY**, little fine sand, trace coarse sand, trace fine gravel, slightly organic, damp.

A-2-6 (V)

26

A-6b (V)

43

A-6b (V)

26

.

.

1.25 1.5

SS-8

29

10

က

13 4

0.5

SS-7

26

4

A-7-5 (7)

47

9

43

61

21

28

7 10

30

 $0.25 \\ 0.75$

SS-5

89

7

7

642.8

1

0

4

644.8

9-SS

99

9

7

10 7

641.3

639.8

A-6b (V)

22

A-1-b (V)

18

.

.

SS-4

88

19

 ∞

2.0 2.5

SS-3

78

31

4

A-6b (11)

24

9

20

38

40

49

7

0

0

10 00 00

88-9

29

10

3

augers pulled.

4 **TLATE** 28/WE ODOT LOG (8.5X11) - SGE 07/2018 - OH DOT GDT - 12/4/18 11:22 - T:/RESOURCES/CS/GINTWPPROJECTS/117918026L.GPJ

C 3TAJ9 88WE ODOT LOG (8.5X11) - SGE 07/2018 - OH DOT GDT - 12/4/18 11:22 - T:/RESOURCES/CS/GINTWPROJECTS/117918026L.GPJ

Encountered slight seepage at 7.9'. Boring "dry" at completion. Boring caved at 11.9' after augers p

PROJECT: BEL-7-19.75 SAMPLING FIRM OPERATOR: OTB ALEX CME AUITATION SAMPLING METHOD: 2.25 HBA. CME AUITATION CME AUITATION	OTB SKID D25 STATION / OFFSET: 169+75, 35' LT EXPLORATION ID CME AUTOMATIC ALIGNMENT: SR 7 B-005-0-18 J DATE: 11/5/18 ELEVATION: 655.4 (MSL) EOB: 15.0 ft. PAGE 10 (%): 87.4 LAT / LONG: 40.072398 N. 80.740481 W 1 OF 1	IPLE HP GRADATION (%) ATTERBERG D (tsf) GR CS FS SI CL LL PL PI	FO 21 11 4-1-b (NIS) NID NID NID 15 A 1 B 1	- 30 21 11 10 0 INF	10.	6 2.0 25 A-6a (SS-7 $\frac{1.25}{1.5}$ 0 0 12 51 37 36 21 15 22 A-6a (10) $\frac{3.5 \times 3.5}{3.5 \times 3.5}$	SS-8 0.75 23 A-6a (V) 42 42 42 42 42 42 42 42 42 42 42 42 42	SS-9 1.75 23 A-6a (V) 42742	SS-10 3.25 21 A-6a (V) (4.5 \cdot 4.5)		
	SPT CALIBRATION: OTB / ALEX OGGER: S&ME / C. WEST 2.25" HSA CALIBRATION ENERGY RAT	ELEV. DEPTHS SPT/ N ₆₀ REC (%)	wn 655.2	3 6 9 20	649.4 6 5 4.6 7.8 7.8 7.0 1.8	647.9	10 3 4 10 89	1 3 4 10 72	3 4 15 78	- 14 - 3 4 15 89	FOB 15	

S&ME JOB: 1179-18-026L

OI NOIL	-18 18	PAGE	1 OF 1	BACK	FILL		1171	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 V Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	, V , V	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , , , , , , , , , , , , , , , , ,	7 L 7 L V Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	1/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	-7 Vr	× × × × × × × × × × × × × × × × × × ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
EXPLORATION ID	B-006-0-18	15.0 ft	7 W	ODOT	CLASS (GI)			A-6a (V)	Δ-6a (//)		A-7-6 (12)	$\overline{}$	A - 7 - 6(V)	A-6b (V)	A-6b (V)	A-6a (V)	A-6a (10)	A-6a (V)	
RT		7	40.072649 N, 80.740267 W		WC			20	34	-	23	20	20	31	37	20	22	21	
171+00, 35' RT	_	EOB:	N, 80.	ERG	Ы			ı	ı		19	j	j	1	ı	ı	15	ı	
171+0	SR 7	- 1	2649	ATTERBERG	Ъ			ı	<u> </u>		22	ı	-	1	ı	1	18	ı	
		658.0 (MSL)	40.07;	AT	П			ı	<u>'</u>		41	ı	-	1	1	1	33	ı	
STATION / OFFSET:		658	,	(%	CL			1	1		. 45	ı	• 	1	ı	ı	36	1	
0/2	ENT:	ELEVATION:	NG:	GRADATION (%)	S			ı			34	į	• -	1	ı	Ī	20	İ	
VIIO	ALIGNMENT	VAT	LAT / LONG:	DATI	FS			1	1		7	ı	<u> </u>	Ī	ı	ı	12	1	
STA	<u>A</u>	出	LA_	GRA	CS			ı	1		4	ı	• *	1	ı	1	1	1	
	ပ	8			GR			1	ļ '		10		اِ		1	1	1	1 1	
) D25	MATI	11/5/18	87.4	HP:	(tsf)			1.5	, -, -, -, -, -, -, -, -, -, -, -, -, -,	ر ر	2.0	10 25	715	20 200	0.00	2.25	3.0	1.25- 2.5	
OTB SKID D25	CME AUTOMATIC		(%):	REC SAMPLE				SS-1	2-55 5-55 5-55 5-55 5-55 5-55 5-55 5-55)	SS-3	SS-4	SS-5A	SS-5B	9-88	SS-7	8-SS	6-SS	
	S		ATIO	REC	(%)			56	5	-	56	29		26	78	72	78	100	
DRILL RIG:	HAMMER:	CALIBRATION DATE:	ENERGY RATIO (%):	Z	09			6	4	-	7	7		7	4	0	10	13	
DRIL	HAM	CAL	ENE	SPT/	RQD			33	L		2 3	2	_	2	1	2	3 4	4 5	
	ΣŢ						T	2	ю ·	4	20 0	`\	0	0 0	10	+	13	4 4	
\sim	(1)				_		ì			1	4, 9	, ,			, <u> </u>	_ ,		7 7	ī
A.	W			I I	_	ш		щ			шш							\sqcup	١
OTB / ALEX	S&ME / C. WE	.25" HSA	SPT	חבסדער	טבר וו ג				1 1			1 1						a C	
	ER: S&ME / C. WEST	2.25" HSA	SPT			7 /8729	- 656.8			653.5			2.000		647.5	646.0	1 1		
		2.25" HSA		ELEV. DEDTHS	658.0	7 /8 /29				653.5		, , , , , , , , , , , , , , , , , , ,			647.5	646.0		643.0 FOR	
							4 656.8	io orick		653.5	to arse	, C	2:020		647.5	646.0			
								', little to		653.5	; some to	C Sign		Sicing Institution	647.5		, few		
				ELEV.				CLAY, little to gravel, few brick		653.5	CLAY, some to	or o		nack SIL! T vel, slightly	647.5		AND CLAY, Iravel, few		
DRILLING FIRM / OPERATOR: OTB / ALE	SAMPLING FIRM / LOGGER: S&ME / C. WE	DRILLING METHOD: 2.25" HSA	SAMPLING METHOD:	ELEV.	658.0	N. A.		AND CLAY, little to parse gravel, few brick		653.5	own CLAY , some to	, , , , , , , , , , , , , , , , , , ,		and black SIL! T le gravel, slightly	647.5		SILT AND CLAY, fine gravel, few		
	SAMPLING FIRM / LOGGER:		SAMPLING METHOD:	ELEV.	658.0	N. A.		o SILT AND CLAY, little to e to coarse gravel, few brick		653.5	dish-brown CLAY , some to trace to little fine to coarse			k-gray and black SIL! T ace fine gravel, slightly	647.5		th gray SILT AND CLAY , trace fine gravel, few	643.0	
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:			ELEV.	658.0	N. A.		brown SILT AND CLAY, little to the fine to coarse gravel, few brick		653.5	If reddish-brown CLAY , some to sand, trace to little fine to coarse			in dark-gray and black Str. r and, trace fine gravel, slightly	647.5		ed with gray SILT AND CLAY , sand, trace fine gravel, few	643.0	
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:	DRILLING METHOD:	11/14/18 SAMPLING METHOD:	ELEV.		N. A.		ldish-brown SILT AND CLAY , little to nd, little fine to coarse gravel, few brick		653.5	oarse sand, trace to little fine to coarse			to stiff dark-gray and black str. r se sand, trace fine gravel, slightly	647.5		mottled with gray SILT AND CLAY , sarse sand, trace fine gravel, few	643.0	
	SAMPLING FIRM / LOGGER:	DRILLING METHOD:	11/14/18 SAMPLING METHOD:		658.0			Id reddish-brown SILT AND CLAY , little to se sand, little fine to coarse gravel, few brick		653.5	to very-stiff reddish-brown CLAY, some to be coarse sand, trace to little fine to coarse framents damp			-sort to still dark-gray and black ShL I I coarse sand, trace fine gravel, slightly	647.5		rown mottled with gray SILT AND CLAY , ce coarse sand, trace fine gravel, few	643.0	
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:	BR ID: DRILLING METHOD:	11/14/18 SAMPLING METHOD:	ELEV.	658.0	N. A.		wn and reddish-brown SILT AND CLAY , little to coarse sand, little fine to coarse gravel, few brick	amp.	653.5	: Stiff to very-stiff reddish-brown CLAY, some to le fine to coarse sand, trace to little fine to coarse			very-sort to suit dark-gray and black Stell 1 ine to coarse sand, trace fine gravel, slightly			d, trace coarse sand, trace fine gravel, few	643.0	
BEL-7-19.75 DRILLING FIRM / OPERATOR:		BR ID: DRILLING METHOD:	11/14/18 END: 11/14/18 SAMPLING METHOD:	ELEV.	658.0	N. A.		If brown and reddish-brown SILT AND CLAY , little to ne to coarse sand, little fine to coarse gravel, few brick	nts, damp.	653.5	le Fill: Stiff to very-stiff reddish-brown CLAY, some to lit, little fine to coarse sand, trace to little fine to coarse four chalc framents damp			e FIII. Very-son to still dark-gray and black SIL I I little fine to coarse sand, trace fine gravel, slightly			very-stiff brown mottled with gray SILT AND CLAY, e sand, trace coarse sand, trace fine gravel, few	643.0	
DRILLING FIRM / OPERATOR:	SAMPLING FIRM / LOGGER:	DRILLING METHOD:	11/14/18 SAMPLING METHOD:	ELEV.	658.0	N. A.		Fill: Stiff brown and reddish-brown SILT AND CLAY , little to some fine to coarse sand, little fine to coarse gravel, few brick	fragments, damp.	653.5	Probable Fill: Stiff to very-stiff reddish-brown CLAY, some to "and" silt, little fine to coarse sand, trace to little fine to coarse			CLAY, little fine to coarse sand, trace fine gravel, slightly	organic, damp.	Stiff dark-gray SILT AND CLAY , little fine to coarse sand, trace fine gravel, damp.	Stiff to very-stiff brown mottled with gray SILT AND CLAY, little fine sand, trace coarse sand, trace fine gravel, few		

2 3 PLATE 2 SIME ODOT LOG (8.5X11) - 5GE 07/2018 - OH DOT.GDT - 12/4/18 11:22 - T:/RESOURCES/CS/GINTWPROJECTS/117918026L.GPJ

B-007-0-18	川	_												
	PAGE	1 OF 1	HOLE SEALED											
B-007-0-18	ij.	N	ODOT CLASS (GI)		A-6a (V)	A-2-6 (V)	A-2-6 (V)	A-6b (V)	A-6b (V)	A-6b (V)	A-6b (V)	A-6b (V)	A-6b (V)	
	15.0 ft	40.073031 N, 80.740456 W	MC CI		۷ -	4	<u> </u>	< -	< -	∢ .	۷ .	∢ .	-	
SR 7	EOB:	80.74			1	1	1	ı	1	ı	1		1	
SR 7		031 N	ATTERBERG		1	1	1	1	1	1	1	ı	1	
ALIGNMENT:	2 (MSL)	0.073	ATT		ı	ı	-	ı	ı	ı	ı	ı	ı	
	657		CF (%)		1	1	1	1	1	1	1	1	1	
ALIGNMENT:	ELEVATION:	:SNC	GRADATION (%)		1	1	1	'	1	1	1	ı	1	
NSI-	-EVA	LAT / LONG:	RADATI cs FS		1	'	1	'	1	'	1	'	'	
<u>₹</u>	<u> </u>	<u> </u>	GR GR C		ı	ı	ı		1		1	ı	1	
ATIC	11/5/18	87.4	HP (tsf)		1.5	ı	ı	1-0 0-0 10	0.5	0.0	1.0 2.0	3.0	2.0-	
UTOM			MPLE ID		SS-1	SS-2	SS-3	SS-4	SS-5	9-88	SS-7	8-8-	6-SS	
CME AUTOMATIC	CALIBRATION DATE:	ENERGY RATIO (%):	SA											
1	NOL	RATI			61	56	61	72	68	26	94	78	67	
HAMMER:	-IBRA	ERGY	N ₆₀		15	ნ წ	7 2	13	4	9	6	13	15	
Ŧ	8	Ë	SPT/ RQD		9	4 Ծ	2 3	2 3	- -	7	3	က က	3 4	
EST			(0	-	2 6	1	1	9 -	1	9	<u>+</u> ;	13 - 13		1 2 2
ME / C. WES	Ϋ́		DEPTHS						-					
S&ME / C. WEST	2.25" HSA	SPT	DE						3				Č	
,	2		ELEV. 657.2	656.4	654.2		651.2	649.7		646.7	645.2		642.2	
SAMPLING FIRM / LOGGER:			EI 64	36 G				1		& 	& 		& 	
1/L0	OD:	HOD:		Δ.Δ			141	<u>:</u>						
SAMPLING FIRM / LOGGER:	DRILLING METHOD:	SAMPLING METHOD:			*			se	e ay		ınd,	۵		5
ZING ZING	ING	2LING			fine to	, SILT		coar	and gr ice fin		rse sa p.	oarse 7, dam		out of
SAMI	DRIL	SAM	NOI		some ivel, fe	SAND		fine to	gray and, tre		to coa , damı	e to c		or to bo
		8	MATERIAL DESCRIPTION AND NOTES	HES HES	LAY, s	MTH :		, little	f dark- se sal	JSL.	fine t σdor	ttle fin carbor		r stem er reve
TION		11/14/18	RIAL DESCRI AND NOTES	ASPHALT - 10 INCHES	ND C	VEL /		CLAY amp.	m-stiff o coar	5	r , little	AY, lit hydro		augel
ZEHABILITA		1	RIAL AND	LT.	SILT A	ր GR⁄ ments		SILTY vel, d	mediu fine t		CLA hydro	TY CL		in rough at ded a
ËHA	ا <u>ن</u>	END:	NATE	SPHA	lack Some	browr s fragi)	lack S	off to r some	0.Ca 0.	SILTY tains	n SIL .		seepa pletion ips th ps add
BRIDGE REHABILITATION	BR ID:		1	اً ا	and b	k and v glast)	and b	ery-so	i ya	rown I, con	f brow grave		slight t com nite ch nal chi
	105324	11/14/18			orown and, lit	e blac		orown ce to li	AY , :: <		and b grave	ry-stif te fine		fered (dry'a pentor dditior
TYPE:	19	l l			Fill: Stiff brown and black SILT AND CLAY , some fine to coarse sand, little to some fine to coarse gravel, few brick framents, damp	ingilieries, dailip. Fill: Loose black and brown GRAVEL WITH SAND, SILT AND CLAY, few glass fragments, damp.		Fill: Stiff brown and black SILTY CLAY , little fine to coarse sand, trace to little fine gravel, damp.	Probable Fill: Very-soft to medium-stiff dark-gray and gray SILTY CLAY, little to some fine to coarse sand, trace fine	graver, corrains riyarocarbon babi, moist.	Stiff gray and brown SILTY CLAY , little fine to coarse sand, trace fine gravel, contains hydrocarbon odor, damp.	Stiff to very-stiff brown SILTY CLAY , little fine to coarse sand, trace fine gravel, contains hydrocarbon odor, damp.		- Encountered slight seepage at 8.5' Boring "dy" at completion Placed bentonite chips through auger stem to bottom of boring. Additional chips added as auger reversed out of boring.
TYPE	PID:	START:			Fill:			Fill:	Pro	<u>g</u>	Stiff	Stiff		P P E F

EXPLORATION ID B-008-0-18 E.0 ft. PAGE 1 OF 1 III = STATION / OFFSET: 173+50, 35' RT EXPALIGNMENT: SR 7
ELEVATION: 656.9 (MSL) EOB: 15.0 ft.
LAT / LONG: 40.073349 N, 80.740231 W DRILL RIG: OTB SKID D25
HAMMER: CME AUTOMATIC
CALIBRATION DATE: 11/5/18
ENERGY RATIO (%): 87.4 OTB / ALEX S&ME / C. WEST 2.25" HSA DRILLING FIRM / OPERATOR:

SAMPLING FIRM / LOGGER:

DRILLING METHOD:

SAMPLING METHOD: PROJECT: BEL-7-19.75

TYPE: BRIDGE REHABILITATION
PID: 105324 BR ID: 11/14/18
START: 11/14/18 END: 11/14/14

5	BACK		7 > 7 > 7 >	^7 \ ^7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , , , , , , , , , , , , , , , , ,	V V V V V V V V V V V V V V V V V V V	^7 \ ^7 \ ^7 \ ^7 \ ^7 \ ^7 \ ^7 \ ^7 \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		1 × × × × × × × × × × × × × × × × × × ×	7	43	
	ODOT	CLASS (GI)	Visual (V),	A-2-6 (V)	A-2-6 (V)	, ,	A-6b (6)	A-1-b (V)	A-1-b (V)	A-1-b (V)	A-1-b (V)	A-7-6 (7)	A-7-6 (V) A-7-6 (V)	
40.073349 N, 80.740231 W		WC		4	16	ı	18	12	9	6	ω		22	
, 80.7	RG	<u>-</u>		1	1	1	17	1		1	ı	21		
349 N	ATTERBERG	PL	·	1	ı	ı	21	ı	ı	-	ı	29	·	
0.073	ATTI	∃	·]	1	ı	ı	38	ı	ı	ı	į	92	·) ·	
4	(9)	2	·]	1	ı	ı	29	ı	ı	ı	ı	26		
.; [6) NC	S	ŀ	ı	1	ı	22	ı	1	ı	ı	23	,	
LAI / LONG:	GRADATION (%	FS	ŀ	1	ı	ı	=======================================	ı	1	1	ı	16		
4	GRAI	SS		1	ı	ı	12	1	1	1	ı	4		
		GR GR	<u> </u>	ı	1	ı	56	1	1	'	1	5 31		
8/4	HP:	(tsf)	Ļ	1	ı	1	1.0-	İ	ı	ı	j	0.5	1 5 0 5 0 5	
(%):	SAMPLE	₽	SS-1A	SS-1B	SS-2	ł	SS-3	SS-4	SS-5	9-88	SS-7	8-88	SS-9A SS-9B	
A I C	REC	(%)		75	61	0	100	56	61	29	28	28	61	
GY R		 9 Z	,	16	15	7	9	10	15	10	7	3	9	
ENERGY RAIIO (%):	SPT/	O O		9	5	3	2 2	8 4	5	4 8	3	1	2 2	
	0)	<u></u>	2		Ω	4	2	2	4	2	1 + 2	3 = 2	4 + 2	
	OLITO	טרודייי			7 .) 4	. 2	0	ω c	» 6	<u> </u>	- 	4	Ī
SPI	2	5												
	ELEV.	626.9	656.67			652.9	620.9	649.4			644.9	7 070	641.9	
	_	<u> </u>	4		AFI				5 <u>6</u> 7					
НОП			4	1.₽/ ``	F0.4.1.1	17g)		6 · ^ \	o.•∆	Q -0 -0/	<u> </u>		++++	\
SIARI: 11/14/18 END: 11/14/18 SAMPLING METHOD:				Fill: Loose to medium-dense brown GRAVEL WITH SAND	SILT AND CLAY, tew roots, tew brick and coal tragments, few pockets of silty clay, damp.		FIII: Stiff brown and black SILIY CLAY , some fine to coarse sand, some fine to coarse gravel, few brick fragments, damp.	Fill: Loose brown GRAVEL WITH SAND , little silt, trace clay, few brick fragments, damp.	ÆL			Possible Fill: Medium-stiff to stiff brown and reddish-brown CLAY, some silt, some fine to coarse gravel, some fine to	Medium-stiff gray and brownish-gray CLAY , some silt, little fine to coarse sand, trace fine gravel, damp.	
SAME	NC		ES	MT.	al frag		agme	silt, tı	GRA			eddis some	оше	
	MATERIAL DESCRIPTION	(۸	ROOTIMAT/TOPSOIL - 4 INCHES	VEL.	p D		some rick fr	, little	rown			and r avel,	AY, s	-
14/18	ESCF	AND NOTES	IL - 4	GR	<u>ਨ</u> ਬ		ew b	SAND	inse b Iry.			rown rse gr	ay CI	
11/	AL D	NDV	PSO	brow	ew br np.	ĺ	ave . .	/ITH	ım-de ilay, c			stiff b o coa	sh-gr e grav	
ا ا	TER	◂	AT/TC	euse	ots, t , darr	i	Se gr	/EL M mp.	nedir ace c			tiff to fine t	rowni Se fine	
Z E	ИA		OTM/	p-uni	ew ro y clay		d blac coar	GRAV ts, da	se to l silt, tr			um-s some	and b d, trad	
14/18			윊	med	- AY , i		vn an fine tc	own (: Loo			Medi silt, s	gray sand	
11				ose to	ND C Xets	;	r brov	ose bi ok fraç	le Fill			le Fill: some	Salid n-stiff coarse	
AKI:				III: Loc	SILT AND CLAY , few roots, few few pockets of silty clay, damp.		and, s	Fill: Loose brown GRAVEL few brick fragments, damp.	Probable Fill: Loose to medium-dense brown GRAVEL WITH SAND , little silt, trace clay, dry.			ossibl	Medium-stiff gray and brownish-gray CLAY, fine to coarse sand, trace fine gravel, damp.	
์ก				ј ш (816711/2	TOJECT 	q/WTNI; ارت ≥	E2/C2/G	SOURC	3Я/:Т - S Т О 9	Z:11 81/t	<u> </u>

⁻ No seepage noted. - Boring caved at 10.4' after augers pulled.

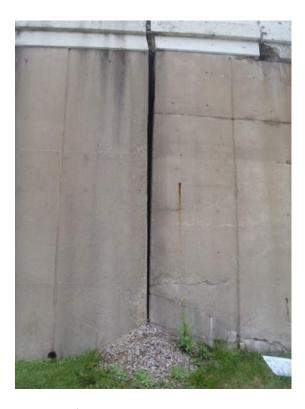
S&ME JOB: 1179-18-026L

<sup>Encountered slight seepage at 8.5'.
Boring "dry" at completion.
Placed bentonite chips through auger stem to bottom of boring. Additional chips added as auger reversed out of boring.</sup>

APPENDIX G – EXISTING BRIDGE PHOTOGRAPHS (1 of 3)

Lincoln Avenue and BEL-7-1975 looking north

Piers 6E & 6W (other piers similar) with basketball court in the foreground looking south



US40/US250 intersection with Lincoln Avenue looking south (BEL-7-1975 on left and I-70 Bridge in background)

Joint between Rear Right Abutment and approach retaining wall looking west

APPENDIX G – EXISTING BRIDGE PHOTOGRAPHS (2 of 3)

Joint between Forward Left Abutment and approach retaining wall looking east

Lincoln Avenue Park looking northeast

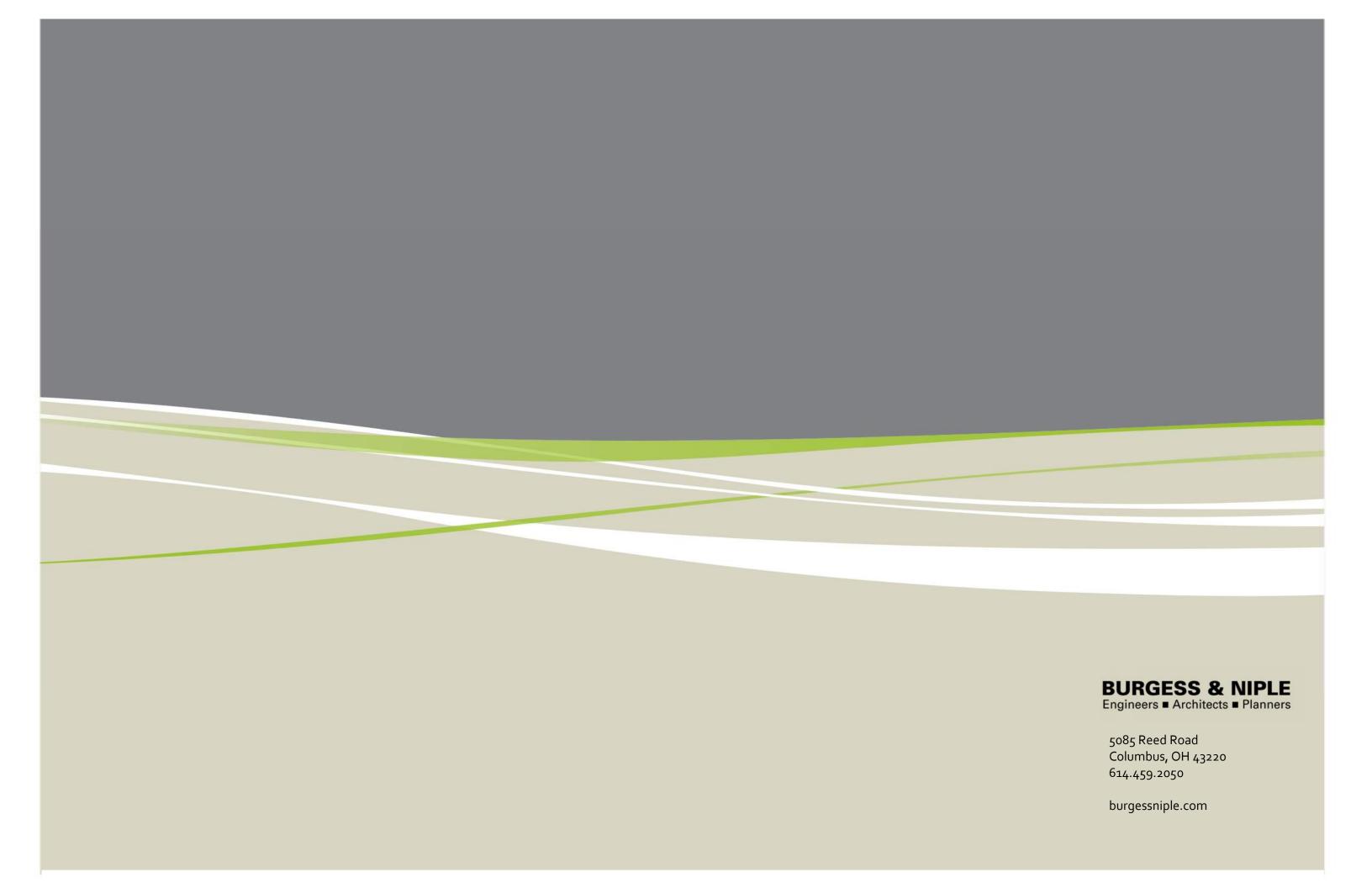
Joint between Forward Right Abutment and approach retaining wall looking west

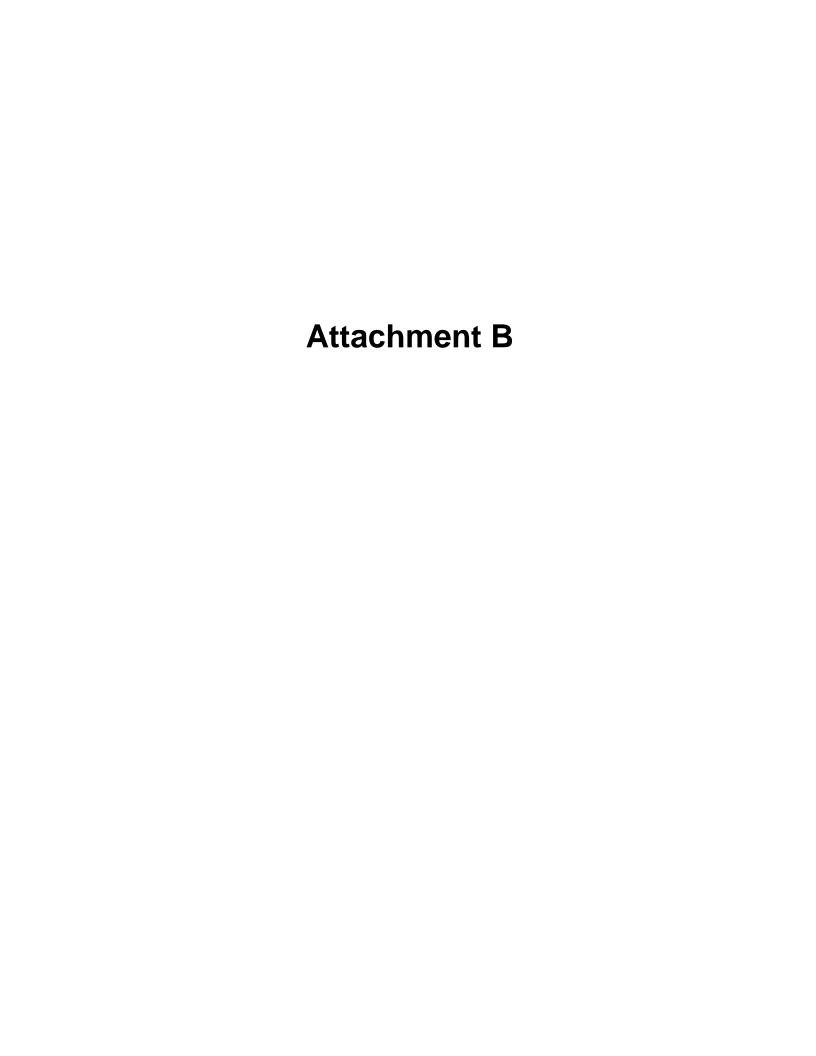
A-1 Towing office, fenced yard and storage area looking east

APPENDIX G – EXISTING BRIDGE PHOTOGRAPHS (3 of 3)

At grade Norfolk Southern Railroad crossing for Sewage Pump Station access road looking east

BEL-7-1975, I-70 Bridge and Norfolk Southern Railroad Bridge over Wheeling


Creek looking east from the Lincoln Avenue Bridge



I-70 Bridge, BEL-7-1975 and Lincoln Avenue Bridge over Wheeling Creek looking west

Wheeling & Lake Erie Railway Bridge over Wheeling Creek looking northeast

BELMONT COUNTY

VILLAGE OF BRIDGEPORT

INDEX OF SHEETS:

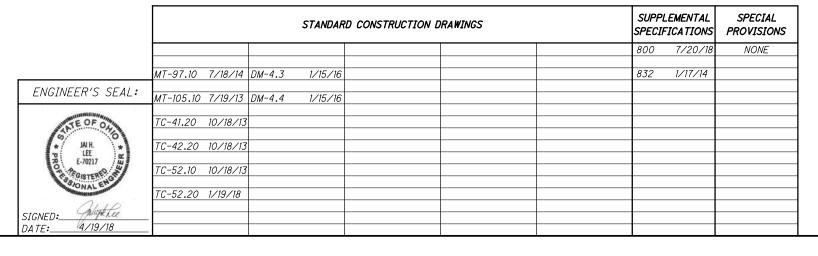
TITLE SHEET	1
GENERAL NOTES	2-3
GENERAL SUMMARY	4
SITE PLAN	5
PIER 8, 11 & 16 PLAN AND ELEVATION	6
EXTERNAL POST-TENSIONING DETAILS - 1 & 2	7-8
PIER CAP 8 PATCHING DETAILS	9
PIER CAP 11 PATCHING DETAILS	10
PIER CAP 16 PATCHING DETAILS	11
PIER CAP REPAIR DETAILS	12

DESIGN EXCEPTIONS

DESIGN FUNCTIONAL CLASSIFICATION -

NONE REQUIRED

 \bigcirc



DIRECTIONAL DISTRIBUTION _____ 56%

URBAN PRINCIPAL ARTERIAL/EXPRESSWAY

LEGAL SPEED 50 MPH

PLAN PREPARED BY: BURGESS & NIPLE 5085 REED ROAD COLUMBUS, OH 43220

PROJECT DESCRIPTION

PROJECT INCLUDES EXTERNAL POST-TENSIONING
INSTALLATION FOR PIER STRENGTHENING AT PIER
8E, 8W, 11E, 11W, 16E AND 16W ON BEL-7-1975 BRIDGE.

PROJECT EARTH DISTURBED AREA: N/A* ACRES
ESTIMATED CONTRACTOR EARTH DISTURBED AREA: N/A* ACRES
NOTICE OF INTENT EARTH DISTURBED AREA: N/A* ACRES

* = MAINTENANCE PROJECT

2016 SPECIFICATIONS

THE STANDARD SPECIFICATIONS OF THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, INCLUDING SUPPLEMENTAL SPECIFICATIONS LISTED IN THE PLANS AND CHANGES LISTED IN THE PROPOSAL SHALL GOVERN THIS IMPROVEMENT.

I HEREBY APPROVED THESE PLANS AND DECLARE THAT THE MAKING OF THIS IMPROVEMENT WILL NOT REQUIRE THE CLOSING TO TRAFFIC OF THE HIGHWAY AND THAT PROVISIONS FOR THE MAINTENANCE AND SAFETY OF TRAFFIC WILL BE AS SET FORTH ON THE PLANS AND ESTIMATES.

APPROVED	
DATE	DISTRICT DEPUTY DIRECTOR

3

34

.-7-19.75

Ш

 $\mathbf{\omega}$

1 12

GENERAL NOTES:

DESIGN SPECIFICATIONS: THIS STRUCTURE CONFORMS TO "STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES" ADOPTED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, 17th EDITION 2002, AND THE ODOT BRIDGE DESIGN MANUAL, 2004.

DESIGN LOADING: HS20

DESIGN DATA:

STRUCTURAL STEEL: ASTM A709 50W OR A709 GRADE 50 - YIELD STRENGTH 50,000 PSI

CLASS QC5 CONCRETE: COMPRESSIVE STRENGTH 4.5 KSI

POST TENSIONING ALL-THREAD BAR: ASTM A722 YIELD STRESS 120 KSI ULTIMATE STRESS 150 KSI

EXISTING STRUCTURE VERIFICATION: DETAILS AND DIMENSIONS SHOWN ON THESE PLANS PERTAINING TO THE EXISTING STRUCTURE HAVE BEEN OBTAINED FROM PLANS OF THE EXISTING STRUCTURE AND FROM FIELD OBSERVATIONS AND MEASUREMENTS. CONSEQUENTLY, THEY ARE INDICATIVE OF THE EXISTING STRUCTURE AND THE PROPOSED WORK BUT THEY SHALL BE CONSIDERED TENTATIVE AND APPROXIMATE. THE CONTRACTOR IS REFERRED TO C&MS SECTIONS 102.05, 105.02 AND 513.04.

BASE CONTRACT BID PRICES UPON RECOGNITION OF THE UNCERTAINTIES DESCRIBED ABOVE AND UPON A PREBID EXAMINATION OF THE EXISTING STRUCTURE. HOWEVER, THE DEPARTMENT WILL PAY FOR ALL PROJECT WORK BASED UPON ACTUAL DETAILS AND DIMENSIONS WHICH HAVE BEEN VERIFIED IN THE FIELD.

EXISTING BRIDGE PLANS MAY BE INSPECTED AT THE ODOT DISTRICT 11 OFFICE, 2201 REISER AVENUE, NEW PHILADELPHIA, OHIO 44663. PHONE: 330-339-6633.

ORIGINAL CONSTRUCTION: BEL-7-19.86 (1966) BACKWALL REPAIR AND PARAPET REFACING (1988 METRIC)

THESE EXISTING PLANS CAN ALSO BE DOWNLOADED FROM THE FOLLOWING WEBSITE:

http://www.dot.state.oh.us/Divisions/ContractAdmin/Contracts/ Paģes/designfiles.aspx

UTILITIES:

LISTED BELOW ARE ALL THE UTILITIES LOCATED WITHIN THE PROJECT CONSTRUCTION LIMITS TOGETHER WITH THEIR RESPECTIVE

SOUTH CENTRAL POWER CO. 37801 BARNESVILLE-BETHESDA ROAD BARNSESVILLE, OH 43713 OFFICE: 740-425-4018

COLUMBIA GAS OF OHIO P.O. BOX 2318 COLUMBUS, OH 43216-2318 OFFICE: 1-800-344-4077

THE LOCATION OF THE UNDERGROUND UTILITIES SHOWN ON THE PLANS ARE AS OBTAINED FROM THE OWNERS AS REQUIRED BY SECTION 153.64 O.R.C.

THE CONTRACTOR SHALL GIVE A 48-HOUR NOTICE TO THE OHIO THE CONTRACTOR SHALL GIVE A 48-HOUR NOTICE TO THE OHIO UTILITIES PROTECTION SERVICE (OUPS) BY CALLING (800) 362-2764. 48-HOUR NOTICE SHALL BE GIVEN TO THE OWNERS OF UNDERGROUND UTILITIES SHOWN ON THE PLANS WHO ARE NOT MEMBERS OF A REGISTERED UNDERGROUND PROTECTION SERVICE IN ACCORDANCE WITH SECTION 153.64 OF THE OHIO REVISED CODE. THE ABOVEMENTIONED NOTICE SHALL BE GIVEN AT LEAST TWO WORKING DAYS BRIDE TO THE START OF CONSTRUCTION. PRIOR TO THE START OF CONSTRUCTION.

THE UTILITY(IES) SHALL BEAR ALL EXPENSES INVOLVED IN RELOCATING (INSTALLING THE AFFECTED UTILITY LINES. THE CONTRACTOR AND UTILITY(IES) ARE TO COOPERATE BY ARRANGING THEIR WORK IN SUCH A MANNER THAT INCONVENIENCE TO EITHER WILL BE HELD TO A MINIMUM.

ASBESTOS NOTIFICATION: AN ASBESTOS SURVEY OF THE BRIDGE STRUCTURE SCHEDULED FOR REHABILITATION WAS CONDUCTED BY A CERTIFIED ASBESTOS HAZARD EVALUATION SPECIALIST. THE SURVEY DETERMINED THAT NO ASBESTOS IS PRESENT ON THE BRIDGE

A COPY OF THE OHIO ENVIRONMENTAL PROTECTION AGENCY (OEPA) NOTIFICATION OF DEMOLITION AND RENOVATION FORMS, PARTIALLY COMPLETED AND SIGNED BY THE BRIDGE OWNER, WILL BE PROVIDED TO THE SUCCESSFUL BIDDER. THE CONTRACTOR SHALL COMPLETE AND SUBMIT THE FORMS VIA OHIO EPA'S WEBSITE OR MAIL HARD COPIES TO THE ADDRESS BELOW AT LEAST TEN WORKING DAYS PRIOR TO THE START OF ANY DEMOLITION AND/OR RENOVATIONS.

OHIO EPA, DAPC P 0 BOX 1049 COLUMBUS, OH 43216-1049 THE CONTRACTOR SHALL PROVIDE A COPY OF THE COMPLETED FORM TO THE ENGINEER. INFORMATION ON THE FORM WILL INCLUDE: 1) THE CONTRACTOR'S NAME AND ADDRESS, 2) THE SCHEDULED DATES FOR THE START AND COMPLETION OF THE BRIDGE REMOVAL AND 3) A DESCRIPTION OF THE PLANNED DEMOLITION WORK AND METHOD(S) TO BE USED. COPIES OF THE OPEA FORM AND BRIDGE INSPECTION REPORTS ARE AVAILABLE FOR REVIEW AT THE ODOT DISTRICT 11 OFFICE, 2201 REISER AVENUE, NEW PHILADELPHIA, OHIO 44663.

BASIS FOR PAYMENT - THE CONTRACTOR SHALL FURNISH ALL FEES, LABOR AND MATERIAL NECESSARY TO COMPLETE AND SUBMIT THE OEPA NOTIFICATION FORM. PAYMENT FOR THIS WORK SHALL BE INCLUDED IN ITEM 519 - PATCHING CONCRETE STRUCTURE, AS PER PLAN.

WATERS OF THE UNITED STATES: WATERS OF THE UNITED STATES HAVE BEEN IDENTIFIED WITHIN THE PROJECT AREA. THE CONTRACTOR SHALL EXERCISE CAUTION TO ENSURE THAT NO IMPACTS OCCUR TO WATERS OF THE UNITED STATES. NO TEMPORARY OR PERMANENT FILL OF ANY TYPE MAY BE PLACED IN ANY STREAM OR WETLAND AS PART OF THIS PROJECT. ANY ACTIVITIES OCCURRING IN STREAMS OR WETLANDS WOULD REQUIRE PERMITS FROM THE US ARMY CORPS OF ENGINEERS AND/OR THE OHIO EPA.

ANY OTHER SITE PROPOSED BY THE CONTRACTOR FOR OFF PROJECT ANCILLARY CONSTRUCTION (STAGING AREAS, WASTE LOCATIONS, AND/OR BORROW LOCATIONS) MUST MEET THE REQUIREMENTS OF C&MS 105.16.

ITEM 202 - REMOVAL MISC.: REMOVE AND REINSTALL MISCELLANEOUS ITEMS: VARIOUS EXISTING ITEMS ARE LOCATED ADJACENT TO THE EXISTING PIERS THAT REQUIRE EXTERNAL POST TENSIONING. THE CONTRACTOR SHALL REMOVE ONLY THE ITEMS REQUIRED TO PROVIDE ACCESS TO ADEQUATELY PERFORM THE WORK. AFTER THE EXTERNAL POST TENSIONING IS ACCEPTED, THE CONTRACTOR SHALL REERECT OR REPLACE THE ITEMS IN THEIR ORIGINAL

BASED ON DESIGN PHASE FIELD VISITS, THE FOLLOWING QUANTITIES HAVE BEEN PROVIDED FOR ESTIMATING PURPOSES ONLY.

202, GUARDRAIL REMOVED FOR REUSE 606, GUARDRAIL REBUILT 202, REMOVAL MISC.: WOOD GUARD POST REMOVAL AND	310 FT 310 FT
RE-ERECTION	2 EACH
606, GUARDRAIL POST 607, FENCE REMOVED AND REBUILT	23 EACH 80 FT
202, REMOVAL MISC.: PARKING METER REMOVAL AND RE-ERECTION 202, REMOVAL MISC.: LIGHT POLE REMOVAL AND RE-ERECTION	14 EACH 1 EACH
630, REMOVAL OF GROUND MOUNTED SIGN AND RE-ERECTION	<i>3 EACH</i>

THE ITEM OF WORK SHALL INCLUDE THE REMOVAL OF, AND SUBSEQUENT REPLACEMENT OR RE-ERECTION OF, ONLY THE ITEMS THAT DIRECTLY INHIBIT THE CONTRACTOR'S ACCESS TO PERFORM THE NÉCESSARY WORK.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR RECORDING THE LOCATION OF EACH ITEM PRIOR ITS REMOVAL.

PARKING METERS ARE ASSUMED TO BE OWNED BY:

THE VILLAGE OF BRIDGEPORT 301 MAIN STREET BRIDGEPORT. OH 43912 OFFICE: 740-635-2424

VILLAGE REPRESENTATIVES SHOULD BE CONTACTED PRIOR TO REMOVAL AND MAY REQUIRE SECURE STORAGE OF METERS AFTER REMOVAL AND PRIOR TO RE-INSTALLATION. INSTALL METER POSTS IN 2'-0" DEEP BY 10" DIAMETER HOLES FILLED WITH CONCRETE. THE HEIGHT OF THE POSTS ABOVE GROUND LINE TO THE BOTTOM OF THE METER HEAD SHOULD BE APPROXIMATELY 3'-4". VERIFY INSTALLATION REQUIREMENTS WITH VILLAGE REPRESENTATIVES PRIOR TO RE-INSTALLATION.

THE CONTRACTOR AND ENGINEER SHALL MEET ON SITE A MINIMUM OF 14 DAYS BEFORE ANY REMOVALS AND MUTUALLY AGREE UPON THE REQUIRED REMOVALS BEFORE WORK BEGINS.

THE DEPARTMENT WILL INCLUDE ALL MATERIALS, TOOLS, LABOR, EQUIPMENT AND INCIDENTALS NECESSARY TO COMPLETE THE ABOVE WORK FOR PAYMENT WITH ITEM 202, REMOVAL MISC: REMOVE AND REINSTALL MISCELLANEOUS ITEMS: LUMP SUM.

ITEM 513 - STRUCTURAL STEEL, MISC: LEVEL UF, PIER CAP STRENGTHENING BY EXTERNAL POST TENSIONING: THIS ITEM CONSISTS OF FURNISHING ALL MATERIAL, LABOR AND EQUIPMENT NECESSARY TO FURNISH AND INSTALL EXTERNAL POST TENSIONING ASSEMBLIES TO STRENGTHEN THE PIER CAPS AT PIERS 8E, 8W, 11E, 11W, 16E AND 16W.

WELDING TO EXISTING STRUCTURAL STEEL IS PROHIBITED. ANY DAMAGE CAUSED TO THE PAINT SYSTEM DURING CONSTRUCTION SHALL BE REPAIRED PER C&MS ITEM 514.

THE 1 INCH DIAMETER (NOMINAL) ALL-THREAD BARS WITH A CROSS SECTIONAL AREA OF 0.85 SQUARE INCHES AND A MODULUS OF ELASTICITY OF 29,700 KSI SHALL BE ASTM A722 (TYPE II) GRADE 150 MANUFACTURED IN THE UNITED STATES. BAR COUPLERS WILL NOT BE PERMITTED. THE ANCHOR (SPHERICAL HEX) NUTS SHALL BE ASTM A536. ANCHOR (DISHED) PLATES SHALL BE ASTM A572 GRADE 50.

GALVANIZED DISHED ANCHOR PLATES AND GALVANIZED SPHERICAL HEX NUTS SHALL BE COMPATIBLE WITH THE GALVANIZED ALL-THREAD BARS AND SHALL MEET THE REQUIREMENTS OF THE ALL-THREAD BAR MANUFACTURER'S POST TENSIONING SYSTEM. DISHED ANCHOR PLATES, SPHERICAL HEX NUTS AND ALL-THREAD BARS SHALL BE HOT DIP GALVANIZED IN ACCORDANCE WITH ASTM A-153. ALL-THREAD BARS SHALL BE MECHANICALLY CLEANED (NOT ACID WASHED) TO AVOID PROBLEMS ASSOCIATED WITH HYDROGEN EMBRITTLEMENT.

END PLATE ASSEMBLIES SHALL BE HOT DIP GALVANIZED ACCORDING TO C&MS 711.02.

FABRIC PADS SHALL MEET THE REQUIREMENTS OF C&MS 711.21, PREFORMED BEARING PADS.

BAR CLAMPS SHALL BE 11/8 INCH INSIDE DIAMETER VIBRATION-DAMPING ROUTING CLAMPS MADE FROM 304 STAINLESS STEEL WITH SBR (STYRENE-BUTADIENE) RUBBER CUSHIONS. PART NUMBER 8981T36 FROM MCMASTER-CARR. SEE https://www.mcmaster.com FOR ADDITIONAL INFORMATION. 1/4 INCH DIAMETER HOLES IN CLIPS SHALL BE MODIFIED/GROUND OUT TO ACCEPT 3/8 INCH DIAMETER EXPANSION ANCHORS. ENGINEER APPROVED EQUALS MAY BE CONSIDERED IF ALL REQUIREMENTS ARE SATISFIED.

EXPANSION ANCHORS SHALL BE 3/4 INCH DIAMETER BY 3 INCH LONG 304 STAINLESS STEEL WEDGE ANCHORS FOR CRACKED CONCRETE, KB-TZ PART NUMBER 387523 FROM HILTI. SEE https://www.hilti.com for additional information. EXPANSION ANCHORS WITH EQUAL SPECIFICATIONS SUPPLIED BY OTHER MANUFACTURERS MAY BE CONSIDERED PENDING APPROVAL BY THE ENGINEER.

ALL-THREAD BARS SHALL BE TENSIONED BY HYDRAULIC JACKS SO AS TO PRODUCE THE

EACH JACK USED TO TENSION THE BARS SHALL BE EQUIPPED WITH A PRESSURE GAUGE HAVING AN ACCURATE READING DIAL AT LEAST SIX INCHES IN DIAMETER FOR DETERMINING JACK PRESSURE. WITHIN 30 DAYS PRIOR TO USE FOR TENSIONING ON THE PROJECT, EACH JACK AND ITS GAUGE SHALL BE CALIBRATED AS A UNIT BY A TESTING LABORATORY APPROVED BY THE ENGINEER. CALIBRATION SHALL BE DONE WITH THE CYLINDER EXTENSION APPROXIMATELY IN THE POSITION THAT IT WILL BE WHEN APPLYING THE FINAL JACKING FORCE AND WITH THE JACK ASSEMBLY IN AN IDENTICAL CONFIGURATION TO THAT WHICH WILL BE USED AT THE JOB SITE (I.E. SAME LENGTH HYDRAULIC LINES). PERFORM THE CALIBRATION WITH THE JACK APPLYING LOAD TO THE TESTING MACHINE OR LOAD CELLS CALIBRATED WITHIN THE PAST 12 MONTHS. FURNISH CERTIFIED CALIBRATION CALCULATIONS AND CALIBRATION CHART. BOTH IN ENGLISH CERTIFIED CALIBRATION CALCULATIONS AND CALIBRATION CHART, BOTH IN ENGLISH UNITS OF MEASURE, TO THE ENGINEER FOR EACH JACK. THESE CERTIFICATIONS SHALL STATE THAT THE CALIBRATION TESTING WAS PERFORMED IN ACCORDANCE WITH THE SPECIFICATIONS FOR THE PROJECT. PRESSURE GAUGE READINGS ARE TO BE WITHIN THREE PERCENT OF THE ACTUAL APPLIED FORCE DURING CALIBRATION. IF PRESSURE GAUGE READINGS ARE NOT WITHIN THREE PERCENT OF THE APPLIED FORCE, THE SOURCE OF ERROR IS TO BE DETERMINED AND CORRECTED AND THE GAUGE RECALIBRATED.

RECALIBRATION OF EACH JACK SHALL BE DONE AS REQUESTED BY THE ENGINEER (SIX MONTH MINIMUM INTERVAL). AT THE OPTION OF THE CONTRACTOR, CALIBRATIONS SUBSEQUENT TO THE INITIAL LABORATORY CALIBRATION MAY BE ACCOMPLISHED BY USE OF A MASTER GAUGE. THE MASTER GAUGE SHALL BE SUPPLIED BY THE CONTRACTOR IN A PROTECTIVE WATERPROOF CONTAINER CAPABLE OF PROTECTING THE CALIBRATION OF THE MASTER GAUGE DURING SHIPMENT TO A LABORATORY. THE CONTRACTOR SHALL PROVIDE A QUICK-ATTACH COUPLER NEXT TO THE PERMANENT GAUGE IN THE HYDRAULIC LINES, WHICH ENABLES THE QUICK AND EASY INSTALLATION OF THE MASTER GAUGE TO VERIFY WHICH ENABLES THE QUICK AND EASY INSTALLATION OF THE MASTER GAUGE TO VERIFY
THE PERMANENT GAUGE READINGS. THE MASTER GAUGE SHALL REMAIN IN THE
POSSESSION OF AND BE CALIBRATED BY THE ENGINEER FOR THE DURATION OF THE
PROJECT. IF ANY REPAIR TO OR MODIFICATION OF A JACK IS ACCOMPLISHED, SUCH AS
REPLACING THE SEALS OR CHANGING THE LENGTH OF HYDRAULIC LINES, THE JACK SHALL
BE RECALIBRATED BY THE APPROVED TESTING LABORATORY. JACKS AND GAUGES SHALL
NOT BE INTERCHANGED WITHOUT RECALIBRATION OR PROOF LOADING USING LOAD CELLS, MASTER GAUGES OR OTHER METHODS APPROVED BY THE ENGINEER. NO EXTRA COMPENSATION WILL BE ALLOWED FOR THE INITIAL OR SUBSEQUENT JACK CALIBRATIONS OR FOR USE AND REQUIRED CALIBRATION OF A MASTER GAUGE.

A QUALIFIED REPRESENTATIVE OF THE BAR POST TENSIONING SYSTEM MANUFACTURER WHO IS SKILLED AND EXPERIENCED IN THE PROPOSED WORK SHALL BE PHYSICALLY ON SITE DURING BAR TENSIONING OPERATIONS FOR INSTALLATION OF THE FIRST TWELVE INDIVIDUAL BARS TENSIONED. THE REPRESENTATIVE SHALL HAVE A CURRENT LEVEL 2 CERTIFICATION UNDER THE POST-TENSIONING INSTITUTE'S (PTI) TRAINING AND CERTIFICATION OF FIELD PERSONNEL FOR BONDED POST-TENSIONING PROGRAM, HAS THERE YEARS VERSION TO STANDARD TO STANDARD OF TENSIONING TENSIONING THREE YEARS VERIFIABLE JOB-SITE EXPERIENCE IN BRIDGE RELATED POST-TENSIONING OPERATIONS AND HAS EXPERIENCE ON AT LEAST FOUR PREVIOUS AND SATISFACTORILY COMPLETED PROJECTS OF A SIMILAR SIZE AND SCOPE IN THE SAME CAPACITY. FURNISH THE NAME OF THE REPRESENTATIVE, EXPERIENCE, AND CERTIFICATION ALONG WITH A DETAILED DESCRIPTION OF PROJECTS WORKED ON, ROLE IN THESE PROJECTS, AND OWNER REFERENCES WHICH CAN BE VERIFIED FOR APPROVAL BY THE ENGINEER THREE WEEKS REFERENCES WHICH CAN BE VERIFIED FOR APPROVAL BY THE ENGINEER THREE WEEKS
PRIOR TO ANY POST TENSIONING STRESSING. THE REPRESENTATIVE SHALL PROVIDE
CLOSE OBSERVATION (IMMEDIATE SUPERVISION), SHALL EXERCISE RIGID CONTROL OF
THE OPERATION AS NECESSARY, BE EMPOWERED TO CONTROL ALL BAR TENSIONING
OPERATIONS AS NECESSARY FOR FULL COMPLIANCE WITH THE SPECIFICATIONS AND TRAIN
CONTRACTOR PERSONNEL TO OPERATE EQUIPMENT IN REPRESENTATIVE'S ABSENCE. THE
REPRESENTATIVE SHALL FULLY FAMILIARIZE THE CONTRACTOR AND ENGINEER WITH ALL
COMPONENTS AND THEIR PROPERTY INSTALLATION. COMPONENTS AND THEIR PROPER INSTALLATION.

INITIALLY TIGHTEN ANCHOR NUTS TO A SNUG TIGHT CONDITION. THEN TENSION BARS BY JACKING USING TWO INCREMENTS. FIRST JACK EACH BAR TO 15 KIPS. FINISH BY JACKING EACH BAR TO 60 KIPS. USE A PATTERN AS DESCRIBED IN THE PROPOSED WORK/CONSTRUCTION SEQUENCE ON SHEET 3 OF 12 TO EQUALLY ENGAGE ALL ANCHOR NUTS AT EACH INCREMENTAL JACKING.

THE FOLLOWING VALUES WERE CALCULATED:

ELONGATION AT 15 KIP JACKING TENSION = 0.242 INCHES

FINAL JACKING TENSION = 60 KIPS ELONGATION = 1.05 INCHES ANCHOR SET = 0.07 INCHES LONG TERM RELAXATION = 0.02% SERVICE TENSION AFTER ALL LOSSES = 55 KIPS

 $\mathbf{\omega}$

GENERAL NOTES (CONTINUED):

MEASURE AND RECORD THE GAUGE PRESSURES AND ACTUAL BAR ELONGATION FOR EACH BAR MEASURE AND RECORD THE GAUGE PRESSURES AND ACTUAL BAR ELONGATION FOR EACH BAR AT EACH STAGE OF STRESSING. ELONGATIONS WILL BE MEASURED TO THE NEAREST 1/16 INCH USING A RIGID RULE. FLEXIBLE TAPES ARE NOT ALLOWED. COMPARE THE ACTUAL ELONGATION WITH THE PREDICTED ELONGATION SHOWN IN THE PLANS. A SIGNIFICANT DIFFERENCE IN ACTUAL ELONGATION VERSES PREDICTED ELONGATION COULD INDICATE IMPROPER JACKING OR TORQUEING TECHNIQUES, IMPROPER MATERIAL, FAULTY JACK, OR IMPROPER CALIBRATED JACK. IF THE DIFFERENCE IS MORE THAN 15% THE JACK WILL BE RECALIBRATED AND THE JACKING TECHNIQUES EVALUATED. IF, AFTER RECALIBRATION OF THE JACK AND ASSURANCES THE JACKING TECHNIQUES ARE SATISFACTORY, THE ELONGATION DIFFERENCE IS MORE THAN 10% FROM THE PREDICTED ELONGATION ALL WORK SHALL CEASE AND THE ENGINEER SHALL BE NOTIFIED. NO WORK SHALL BE RESUMED UNTIL THE ENGINEER HAS REVIEW THE SITUATION AND APPROVED THE CONTRACTORS

AFTER ALL STRESSING, A STRESSING REPORT SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL. THE STRESSING REPORT SHALL INCLUDE A RECORD OF THE FOLLOWING POST-TENSIONING OPERATIONS FOR EACH INSTALLATION:

- PROJECT NAME, STATE PROJECT NUMBER;
- CONTRACTOR AND/OR SUBCONTRACTOR; BAR LOCATION, SIZE AND TYPE; DATE BAR WAS FIRST INSTALLED;

- HEAT NUMBER OF BARS; TENDON CROSS-SECTIONAL AREA (ASSUMED AND ACTUAL);
- MODULUS OF ELASTICITY (ASSUMED AND ACTUAL);
- JACK AND GAUGE NUMBERS WITH BAR TENSIONED;
- 10. REQUIRED JACKING FORCE; GAUGE PRESSURES;
- 11. 12. 13.
- ELONGATIONS (THEORETICAL AND ACTUAL); ANCHOR SETS (ANTICIPATED AND ACTUAL);
- STRESSING SEQUENCE:
- STRESSING MODE;
- WITNESS TO STRESSING OPERATION (CONTRACTOR AND INSPECTOR);
- DATE OF APPROVED ELONGATIONS;
- RECORD OF ANY OTHER RELEVANT INFORMATION

AFTER THE BARS HAVE BEEN TENSIONED. ANY DAMAGED GALVANIZING ON THE BARS OR ASSOCIATED HARDWARE SHALL BE REPAIRED IN ACCORDANCE WITH C&MS 711.02.

BASIS OF PAYMENT: THE WORK SHALL BE PAID FOR BY LUMP SUM FOR STRUCTURAL STEEL, MISC.: LEVEL UF, PIER CAP STRENGTHENING BY EXTERNAL POST TENSIONING. THE LUMP SUM UNIT SHALL INCLUDE ALL WORK NECESSARY TO STRENGTHEN THE PIER CAPS BY EXTERNAL POST TENSIONING, INCLUDING BUT NOT LIMITED TO THE FOLLOWING: ALL-THREAD BARS, DISHED ANCHOR PLATES, SPHERICAL HEX NUTS, END PLATE ASSEMBLIES, FABRIC PADS, GALVANIZING, BAR CLAMPS, EXPANSION ANCHORS, JACKING EQUIPMENT, CALIBRATING AND CERTIFYING JACKS, ON SITE MANUFACTURER REPRESENTATIVE SUPERVISION AND TRAINING AND ALL OTHER WORK NECESSARY TO PERFORM THE WORK AS SHOWN ON THE PLANS AND SPECIFIED HEREIN.

ITEM 519 - PATCHING CONCRETE STRUCTURE. AS PER PLAN: IN ADDITION TO THE PROVISIONS OF ITEM 519, SAW CUTS SHALL BE PROVIDED AROUND THE PERIMETER OF THE REMOVAL LIMITS AS INDICATED ON THE PLANS. ALSO, AT THE PIER CAP END REPAIRS THE DELAMINATED CONCRETE SHALL BE REMOVED TO PROVIDE UNDERCUT SHOULDERS AS SHOWN ON THE PLANS.

THIS ITEM SHALL ALSO INCLUDE FIELD VERIFICATION THAT THE CONCRETE SURFACES UNDER THE PROPOSED END PLATES ARE FLAT AND SMOOTH. IF GAPS GREATER THAN 1/16 INCH EXIST BETWEEN FLAT VERTICAL AND HORIZONTAL SURFACES BETWEEN THE LOCATION OF THE END PLATE AND THE CONCRETE SURFACE, THE CONCRETE SHALL BE GROUND TO PROVIDE A SMOOTH, FLAT SURFACE.

SEE ASBESTOS NOTIFICATION NOTE ON SHEET 2 OF 12 FOR ADDITIONAL WORK INCLUDED

PRIOR TO THE SURFACE CLEANING SPECIFIED IN C&MS 519.04 AND WITHIN 24 HOURS OF PLACING PATCHING MATERIAL, BLAST CLEAN ALL SURFACES TO BE PATCHED INCLUDING THE EXPOSED REINFORCING STEEL. ACCEPTABLE METHODS INCLUDE HIGH-PRESSURE WATER BLASTING WITH OR WITHOUT ABRASIVES IN THE WATER, ABRASIVE BLASTING WITH CONTAINMENT, OR VACUUM ABRASIVE BLASTING.

ITEM 607 - FENCE. MISC.: TEMPORARY WORK ZONE FENCE: THIS ITEM CONSISTS OF FURNISHING ALL MATERIALS, LABOR AND EQUIPMENT NECESSARY TO FURNISH, INSTALL AND REMOVE TEMPORARY FENCING AROUND THE PERIMETER OF THE WORK ZONE. PUBLIC PARKING AND A PUBLIC PARK ARE LOCATED UNDER THE STRUCTURE ADJACENT TO THE

TEMPORARY FENCING SHALL BE CONSTRUCTED AROUND THE WORK ZONE TO DETER THE PUBLIC FROM ENTERING THE WORK AREA. TEMPORARY FENCING SHALL CONSIST OF 6'-0" HIGH (MINIMUM) CHAIN LINK FENCING. THE CONTRACTOR AND THE ENGINEER SHALL DETERMINE THE LIMITS OF THE WORK ZONE AREA. THE WORK ZONE AREA SHALL BE CLOSED OFF BY GATES OR OTHER MEANS WHEN THE CONTRACTOR IS NOT WORKING. TEMPORARY FENCING MAY BE ERECTED WITHOUT CONCRETE FOOTINGS, PULL POSTS, CORNER POSTS, ETC. REMOVE THE TEMPORARY FENCING AND APPURTENANCES FROM THE PROJECT SITE, WHEN DIRECTED BY THE ENGINEER. TEMPORARY FENCING MATERIALS WILL REMAIN THE PROPERTY OF THE CONTRACTOR. POST HOLES SHALL BE FILLED WITH SIMILAR MATERIAL THAT WAS DISTURBED (I.E. ASPHALT, CONCRETE, SOIL) AFTER CONSTRUCTION IS COMPLETED.

TRAFFIC CONTROL DEVICES (ORANGE REFLECTIVE CONES, BARRELS, ETC. AS APPROVED BY THE ENGINEER) SHALL BE PLACED AROUND THE PERIMETER OF THE FENCING AT LOCATIONS WHERE PARKING LOT TRAFFIC WILL BE ADJACENT TO THE FENCE.

BASIS OF PAYMENT: THE WORK SHALL BE PAID FOR BY LUMP SUM FOR FENCE, MISC: TEMPORARY WORK ZONE FENCE. THE LUMP SUM UNIT SHALL INCLUDE ALL WORK NECESSARY TO FURNISH, INSTALL AND REMOVE TEMPORARY FENCING, TO THE

ITEM 614 - MAINTAINING TRAFFIC: THE BEL-7-1975 BRIDGES CAN REMAIN OPEN TO NORTH BOUND AND SOUTH BOUND S.R. 7 TRAFFIC DURING THE PIER CAP STRENGTHENING

LOCAL STREETS SHOULD NOT REQUIRE ANY CLOSURES, HOWEVER, IF NECESSARY DUE TO CONTRACTORS WORK ZONE REQUIREMENTS, ITEM 614 - MAINTENANCE OF TRAFFIC HAS BEEN PROVIDED. LANE CLOSURES AND SIGNING, IF NECESSARY, SHALL BE PERFORMED AS REQUIRED BY THE MIT AND TC STANDARD DRAWINGS LISTED ON THE TITLE SHEET. IF ANY LOCAL STREETS ARE TO BE CLOSED, THE CONTRACTOR MUST PROVIDE NOTIFICATION TO THE ODOT DISTRICT OR PROJECT ENGINEER A MINIMUM OF FOURTEEN(14) DAYS PRIOR TO ANY LANE RESTRICTIONS. ALSO, THE CONTRACTOR SHALL NOTIFY TO THE VILLAGE OF BRIDGEPORT REPRESENTATIVES.

ALL WORK AND TRAFFIC CONTROL DEVICES SHALL BE IN ACCORDANCE WITH C&MS 614 AND OTHER APPLICABLE PORTIONS OF THE SPECIFICATIONS, AS WELL AS THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES. PAYMENT FOR ALL LABOR, EQUIPMENT AND MATERIALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT PRICE FOR ITEM 614 - MAINTAINING TRAFFIC, UNLESS SEPARATELY ITEMIZED IN THE PLANS.

ITEM 642 - NOTIFICATION OF TRAFFIC RESTRICTIONS:

THROUGHOUT THE DURATION OF THE PROJECT, THE CONTRACTOR SHALL NOTIFY THE PROJECT ENGINEER IN WRITING OF ALL TRAFFIC RESTRICTIONS AND UPCOMING MAINTENANCE OF TRAFFIC CHANGES. THE CONTRACTOR SHALL ENSURE THE WRITTEN NOTIFICATION IS SUBMITTED IN A TIMELY MANNER TO ALLOW THE PROJECT ENGINEER TO MEET THE REQUIRED TIME FRAMES SET FORTH IN THE TABLE BELOW TO INFORM THE SPECIAL HAULING PERMITS SECTION (Hauling.Permits@dot.ohio.gov) AND THE DISTRICT PUBLIC INFORMATION OFFICE (PIO). THIS NOTIFICATION SHALL BE RECEIVED BY THE PROJECT ENGINEER PRIOR TO THE PHYSICAL SETUP OF ANY APPLICABLE SIGNS OR MESSAGE BOARDS.

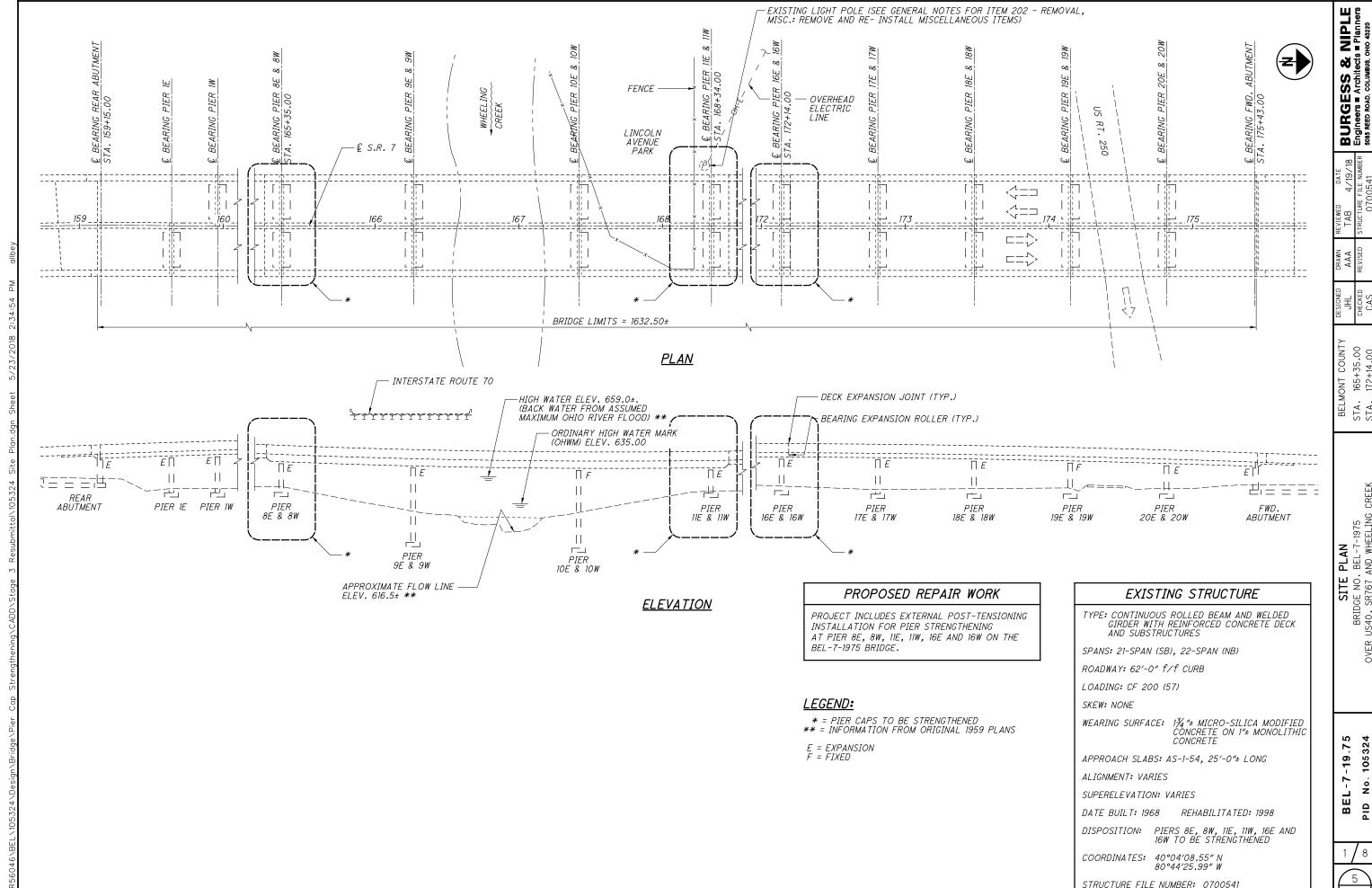
INFORMATION SHOULD INCLUDE, BUT IS NOT LIMITED TO, ALL CONSTRUCTION ACTIVITIES THAT IMPACT OR INTERFERE WITH TRAFFIC AND SHALL LIST THE SPECIFIC LOCATION, TYPE OF WORK, ROAD STATUS, DATE AND TIME OF RESTRICTION, DURATION OF RESTRICTION, NUMBER OF LANES MAINTAINED NUMBER OF LANES CLOSED, MINIMUM VERTICAL CLEARANCE, MINIMUM WIDTH OF DRIVABLE PAVEMENT, DETOUR ROUTES, IF APPLICABLE, AND ANY OTHER INFORMATION REQUESTED BY THE PROJECT ENGINEER.

NOTIFICATION TIME TABLE

ITEM DURATION OF CLOSURE NOTICE DUE TO PERMITS & PIO 21 CALENDAR DAYS PRIOR TO CLOSURE 14 CALENDAR DAYS PRIOR TO CLOSURE 4 BUSINESS DAYS PRIOR TO CLOSURE RAMP & >= 2 WEEKS ROAD> 12 HOURS & < 2 WEEKS CLOSURES < 12 HOURS LANE >= 2 WEEKS 14 CALENDAR DAYS PRIOR TO CLOSURE CLOSURE & < 2 WEEKS 5 BUSINESS DAYS PRIOR TO CLOSURE RESTRICTIONS

START OF N/A CONSTRUCTION & TRAFFIC PATTERN CHANGES

14 CALENDAR DAYS PRIOR TO IMPLEMENTATION


ANY UNFORESEEN CONDITIONS NOT SPECIFIED IN THE PLANS REQUIRING TRAFFIC RESTRICTIONS SHALL ALSO BE REPORTED TO THE PROJECT ENGINEER USING THE NOTIFICATION TIME TABLE.

PROPOSED WORK/CONSTRUCTION SEQUENCE:

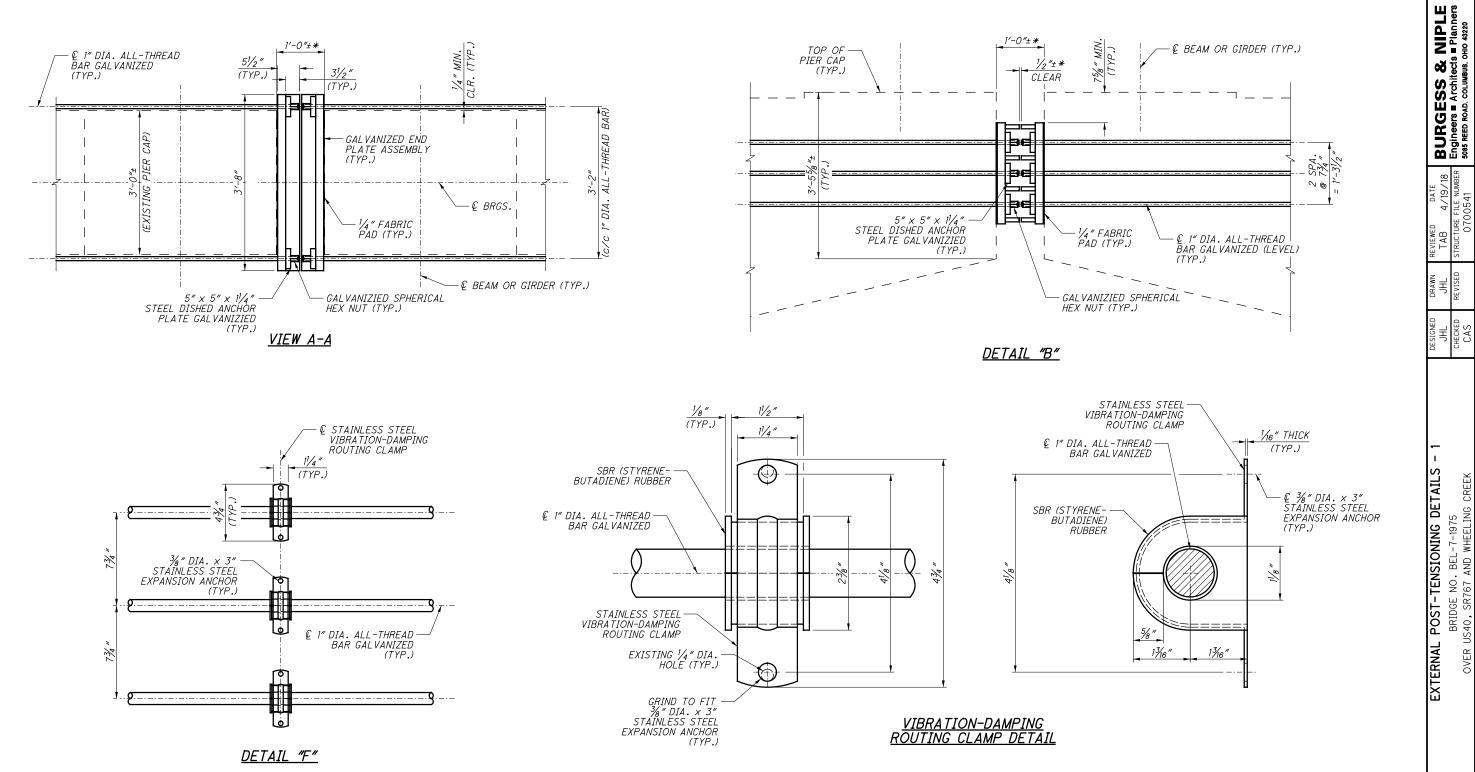
WORK SHALL CONSIST OF BUT NOT BE LIMITED TO THE FOLLOWING AT PIERS 8E, 8W, 11E, 11W, 16E AND 16W:

- 1. CONSTRUCT TEMPORARY FENCING AND TRAFFIC CONTROL DEVICES AROUND WORK AREAS TO PROTECT PUBLIC FROM CONSTRUCTION ACTIVITIES (PUBLIC PARKING IS ADJACENT TO ALL PIERS AND LINCOLN AVENUE PARK IS UNDER THE BRIDGE ADJACENT TO PIERS 11E AND 11W). INSTALL EROSION
- 2. REMOVE MISCELLANEOUS ITEMS AS NECESSARY (I.E. STEEL BEAM GUARD RAIL, LIGHT POLES, ETC.).
- 3. PATCH SPALLED AND DELAMINATED CONCRETE AT THE PIER ENDS TO PROVIDE SOUND CONCRETE UNDER THE PROPOSED END PLATES (SEE DETAILS ON SHEET | 8 / 8 |). ALSO PATCH SPALLED AND DELAMINATED CONCRETE ON NORTH AND SOUTH FACES OF PIER CAPS (SEE DETAILS ON SHEETS 5 - 7 / 8). CONCRETE PATCHES MUST OBTAIN DESIGN STRENGTH (4500 PSI) PRIOR TO TENSIONING IN STEP 10.
- 4. SEAL AREAS THAT HAVE BEEN PATCHED IN STEP 3 WITH EPOXY-URETHANE SEALER.
- 5. FIELD VERIFY THAT SURFACES UNDER PROPOSED END PLATES ARE FLAT AND SMOOTH. NO GAPS GREATER THAN 1/16 INCH MEASURED BETWEEN FLAT VERTICAL AND HORIZONTAL SURFACES BETWEEN THE END PLATES AND THE CONCRETE
 WILL BE PERMITTED. HIGH LOCATIONS SHALL BE GROUND
 TO PROVIDE A FLAT SURFACE.
- 6. PREPARE SHOP DRAWINGS ACCORDING TO THE REQUIREMENTS OF C&MS 513.06 AND 501.04.
- 7. ASSEMBLE THE ALL-THREAD BARS AND THE END PLATE ASSEMBLIES ON THE GROUND AROUND THE PIER. INSTALL ANCHOR PLATES AND NUTS. CAREFULLY LIFT AND HOLD THE ENTIRE ASSEMBLY TO THE REQUIRED, LEVEL POSITION ON THE PIER CAP.
- 8. INSTALL THE FABRIC PADS. SNUG TIGHTEN NUTS (AT THE WEST END OF THE WEST PIERS AND AT THE EAST END OF THE EAST PIERS) IN AN ALTERNATING PATTERN (TOP LEFT, BOTTOM RIGHT, BOTTOM LEFT, TOP RIGHT, MIDDLE LEFT AND MIDDLE RIGHT) TO FIRMLY HOLD ASSEMBLY ON THE PIER CAP. REMOVE TEMPORARY LIFTING AND HOLDING DEVICES.
- 9. REPEAT STEPS 7 AND 8 AT OTHER REQUIRED PIER CAPS.
- 10. AT THE OUTER END PLATE ASSEMBLIES (AT THE WEST END OF THE WEST PIERS AND AT THE EAST END OF THE EAST PIERS), INITIALLY TENSION THE BARS TO 15 KIPS IN AN ALTERNATING PATTERN (AS DESCRIBED IN STEP 8). THEN, TENSION TO A FINAL TENSION OF 60 KIPS IN AN ALTERNATING PATTERN.
- 11. INSTALL VIBRATION-DAMPING ROUTING CLAMPS.
- 12. REINSTALL ITEMS PREVIOUSLY REMOVED IN STEP 2.
- 13. REMOVE TEMPORARY WORK ZONE FENCE.

 	SHE	ET NUMB	ER		PARTICIPATION	ITEM	ITEM	GRAND TOTAL	UNIT	DESCRIPTION	S SH N
2	3	9	10	11	01/NHS/BF		EXT.	TOTAL	01111	DECOMM TION	N
-					1000	832	30000	1000	EACH	EROSION CONTROL EROSION CONTROL	
					7000	032	30000	1000	EAUH	EROSION CONTROL	
1.6					16	200	00000	1.6		STRUCTURES OVER 20 FOOT SPAN (SFN: 0700541)	
LS		23	20	5	LS 48	202 512	98000 10100	LS 48	SY	REMOVAL MISC.: REMOVE AND REINSTALL MISCELLANEOUS ITEMS SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)	
	LS				LS	513	95020	LS		STRUCTURAL STEEL, MISC: LEVEL UF, PIER CAP STRENGTHENING BY EXTERNAL POST TENSIONING	2,
		205	176	45	426	519	11101	426	SF	PATCHING CONCRETE STRUCTURE, AS PER PLAN	,
										MAINTENANCE OF TRAFFIC	
	LS				LS	607	98200	LS		FENCE, MISC.: TEMPORARY WORK ZONE FENCE	,
										INCIDENTALS	
	LS				LS	614	11000	LS		MAINTAINING TRAFFIC	
					3	619	16000	3	MNTH	FIELD OFFICE TYPE A	
					LS	624	10000	LS		MOBILIZATION	
+											
1											
						1					

 \bigcirc


JONT COUNT 165+35.00 172+14.00


1975 FI ING PLAN BEL-7-AND WHE

SITE BRIDGE NO. S40, SR767 A

105324 Š

12

 \bigcirc

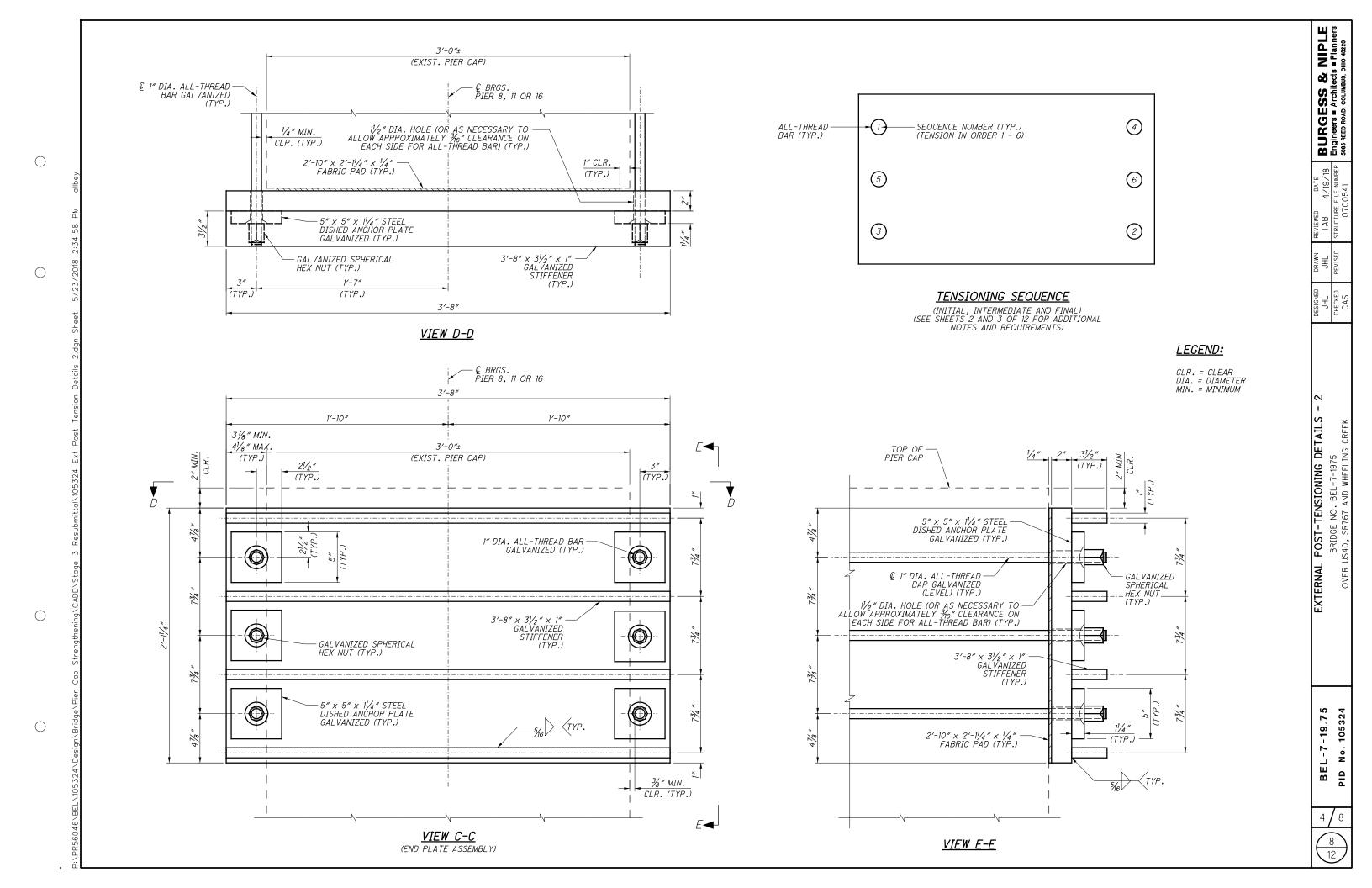
LEGEND:

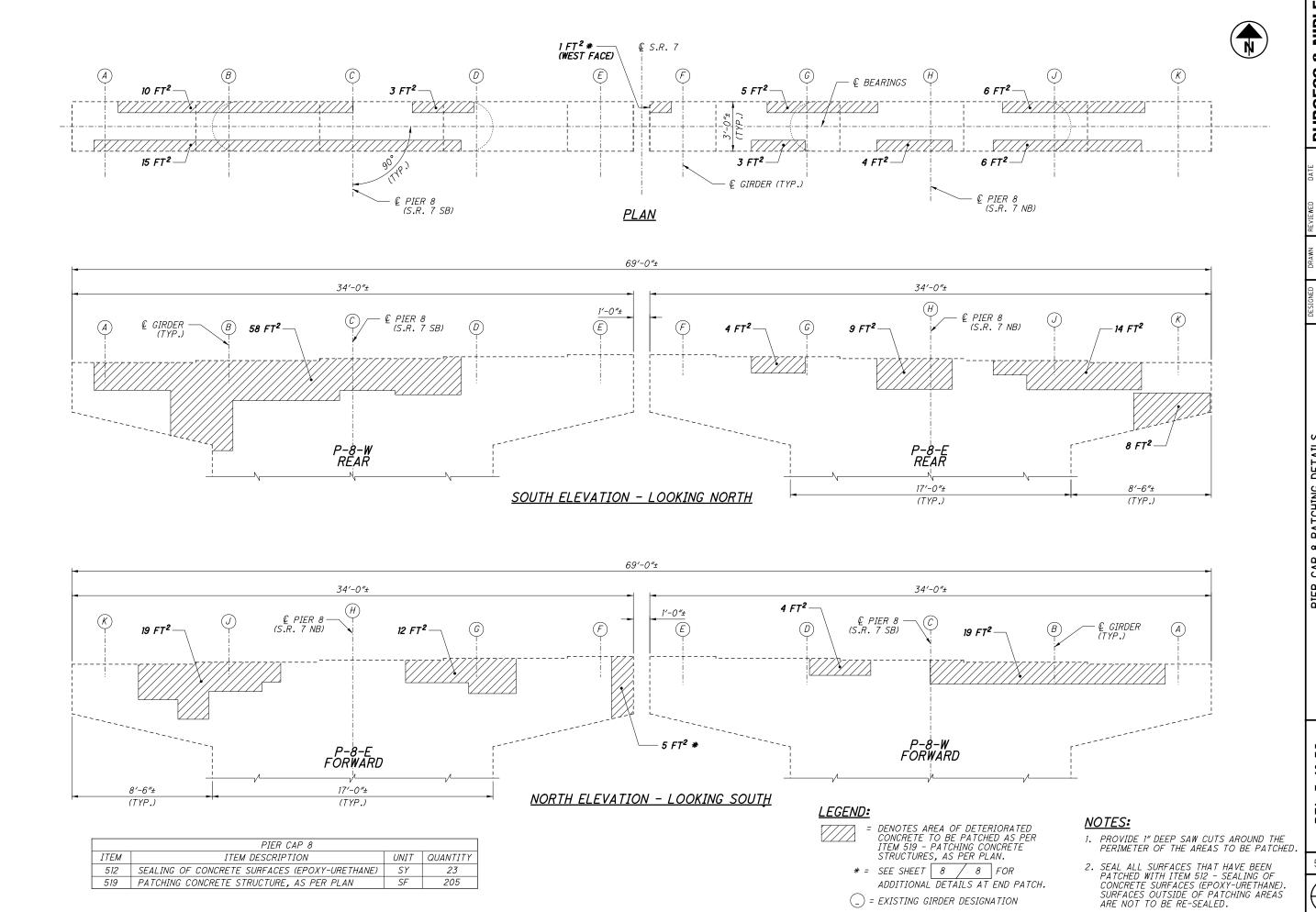
* = FIELD VERIFY

CLR. = CLEAR DIA. = DIAMETER MIN. = MINIMUM

NOTES:

- 1. VIBRATION-DAMPING ROUTING CLAMPS SHALL BE INSTALLED AFTER THE ALL-THREAD BARS HAVE BEEN TENSIONED. SEE PROPOSED WORK/CONSTRUCTION SEQUENCE NOTE ON SHEET 3 OF 12. CARE SHALL BE TAKEN NOT TO DAMAGE THE ALL-THREAD BAR WHEN INSTALLING CLAMPS.
- 2. VIBRATION-DAMPING ROUTING CLAMP (PART NUMBER 8981T36) SHOWN HAS AN INSIDE RUBBER DIAMETER OF 11/8". IF THIS OPENING IS NOT COMPATIBLE WITH THE ALL-THEAD BARS USED BY THE CONTRACTOR, OTHER DIAMETERS ARE AVAILABLE (11/6", 11/4", 13/6", 13/6", ETC.) AND CAN BE SUBSTITUTED FOR BETTER FITMENT.

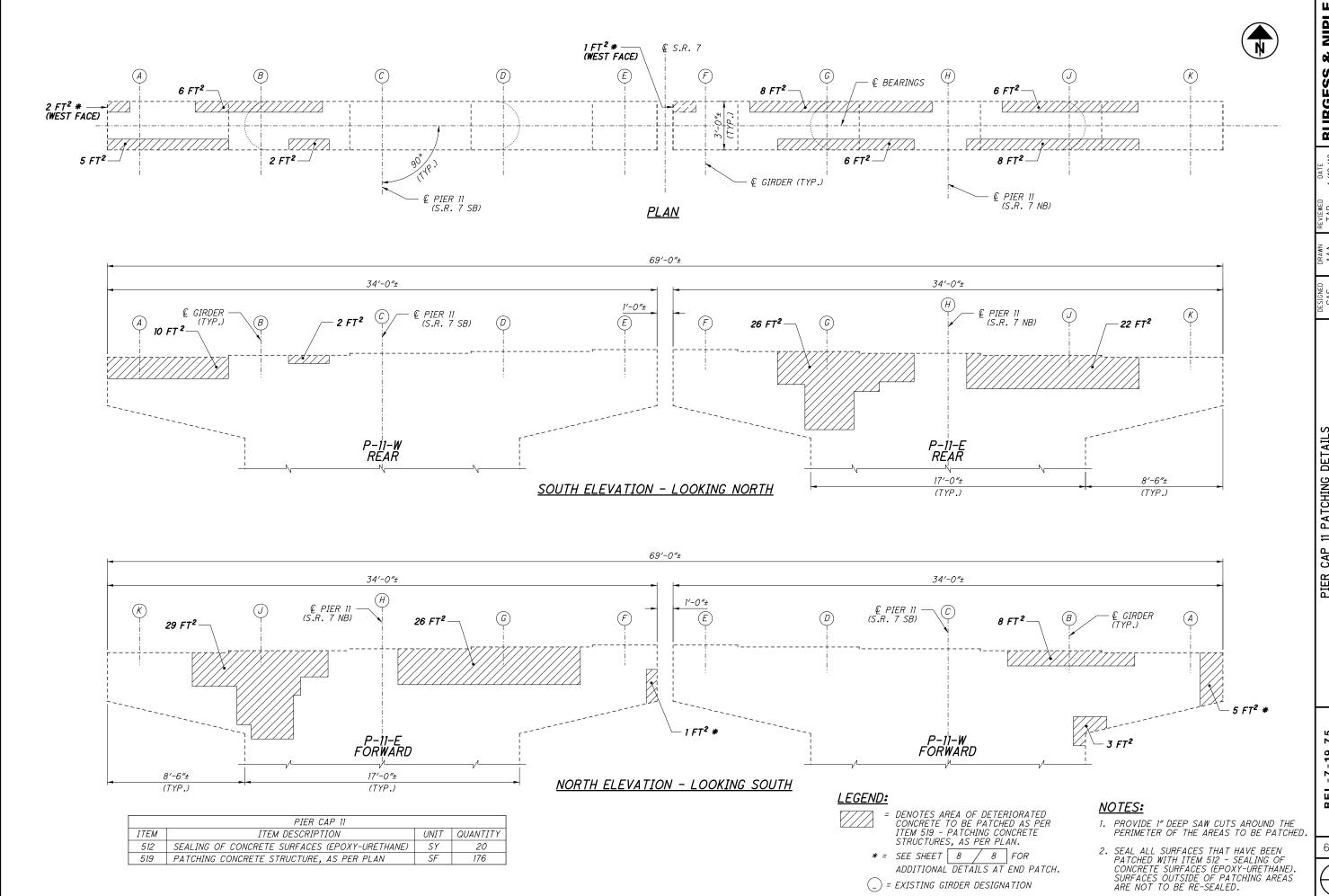

3/8


105324

° N

PID

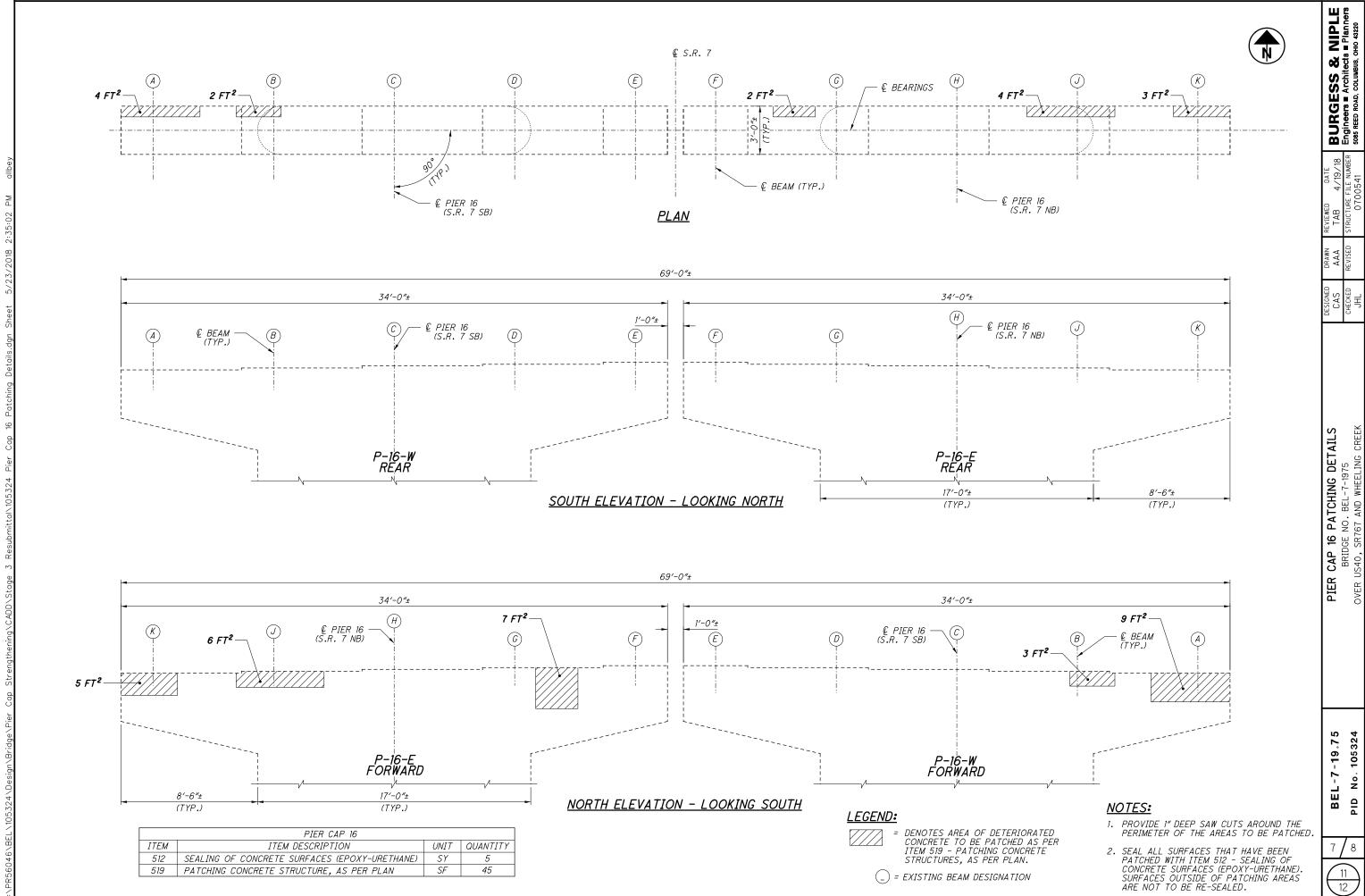
BEL-7-19



BURGESS & NIPLE Engineers = Architects = Planners 5085 REED ROAD, COLUMBUS, OHIO 43220

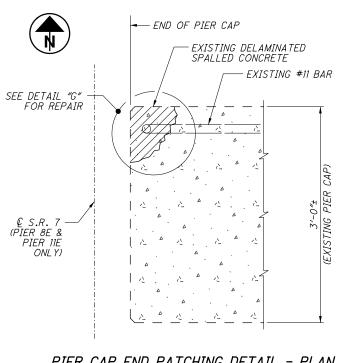
R CAP 8 PATCHING DETAILS
BRIDGE NO. BEL-7-1975
US40, SR767 AND WHEELING CREEK PIER

> BEL-7-19.75 No. 105324 PID

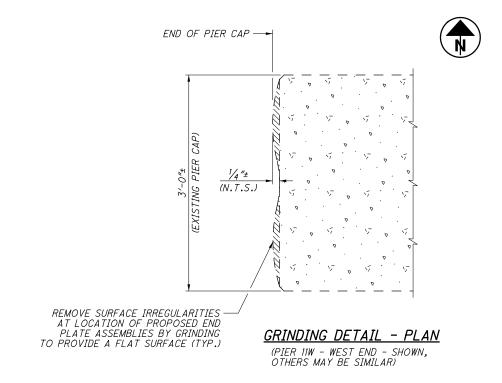

 \bigcirc

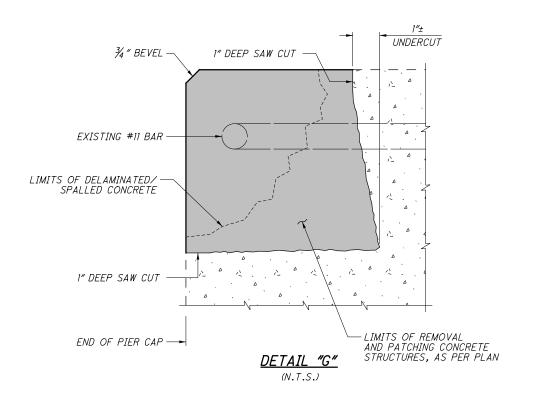
BURGESS & NIPLE Engineers = Architects = Planners soss REED ROAD, COLUMBUS, OHIO 43220

PIER CAP 11 PATCHING DETAILS BRIDGE NO. BEL-7-1975 OVER US40, SR767 AND WHEELING CREEK


BEL-7-19.75 No. 105324 PID

10 12


BURGESS & NIPLE Engineers = Architects = Planners soss REED ROAD, COLUMBUS, OHIO 43220


BEL-7-19.75 No. 105324 PID

PIER CAP END PATCHING DETAIL - PLAN

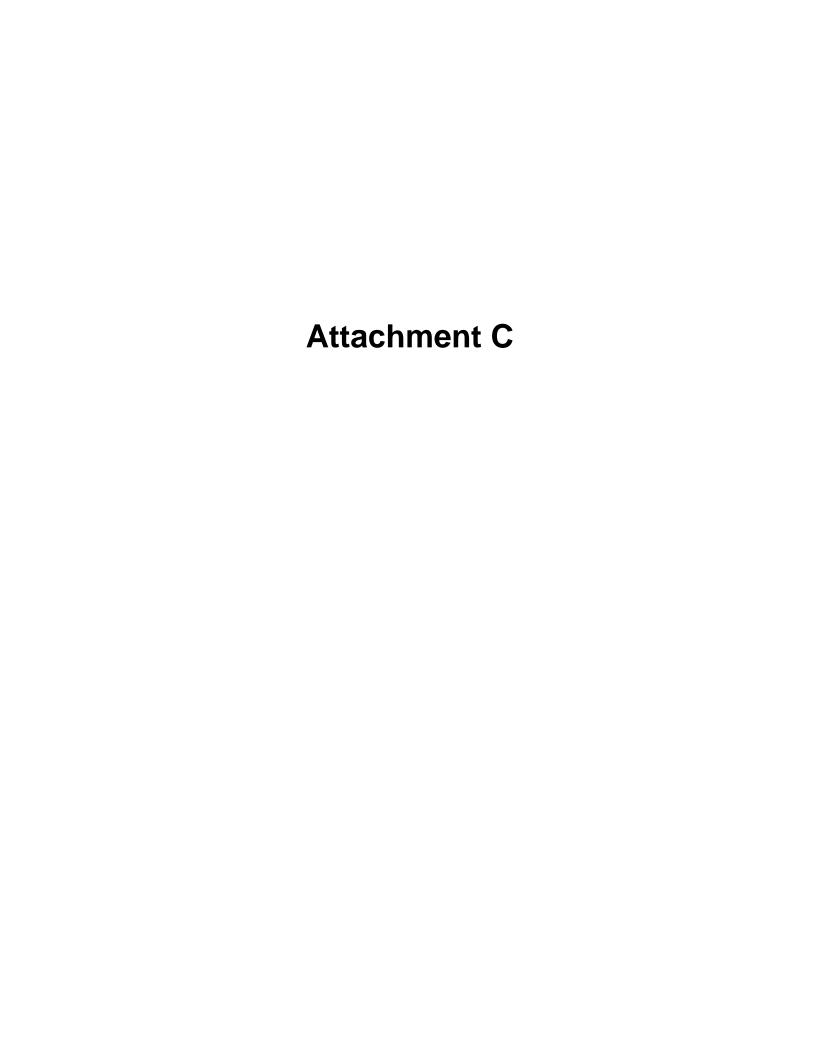
(PIER 11W - FORWARD - WEST END - SHOWN, PIER 11E - FORWARD - WEST END - SIMILAR PIER 8E - FORWARD - WEST END - SIMILAR)

LEGEND:

N.T.S. = NOT TO SCALE

 \bigcirc

 \bigcirc


 \bigcirc

BEL-7-19.75 No. 105324

PID

PIER CAP REPAIR DETAILS
BRIDGE NO. BEL-7-1975
IR US40, SR767 AND WHEELING CRI

BURGESS & NIPLE Engineers = Architects = Planners 5085 REED ROAD, COLUMBUS, OHIO 43220

BURGESS & NIPLE

5085 Reed Rd. | Columbus, OH 43220 | 614.459.2050

Mr. Waseem Khalifa, Ph.D., P.E. Project Manager Ohio Department of Transportation District 11 2201 Reiser Avenue New Philadelphia, OH 44663 Re: BEL-7-19.75 (PID 106237) SR 7 & US 40/250 Interchange Evaluation Technical Memo

April 22, 2020

Dear Waseem,

B&N has completed a preliminary interchange evaluation study at SR 7 & US 40/US 250 in Bridgeport, Ohio. The goal of this study was to determine if a feasible interchange configuration exists that improved traffic operations and was consistent with the structure type study completed in March 2019. If an interchange configuration was determined to be feasible, this study also was to identify the impacts and potential construction cost of this improvement.

PROJECT OVERVIEW

The existing bridge carrying northbound and southbound SR 7 are viaduct-type structures crossing over several highways, Wheeling Creek, and various existing features. The SR 7 NB bridge is a twenty-two-span structure with a total length of 1,628 feet. The SR 7 SB bridge is a twenty-one-span structure with a total length of 1,628 feet. Nestled under these two bridges is an existing interchange between SR 7 and US 250 (Main Street) and US 250 (Cadiz Pike). This existing interchange is an unusual configuration where the northbound exit from SR 7 travels under the SR 7 bridge and intersects Main Street on the west side of the bridge. US 250 is split from Main Street in this interchange, and access to it from the interchange is made via a two-way roadway on the west side of SR 7 through a bi-directional ramp that also includes the SR 7 southbound exit to Main Street. Finally, a roadway connecting US 250 to the ramp to SR 7 northbound extends underneath the SR 7 bridges at the north end of its limits. The Ohio River parallels SR 7 east of the bridge. Two existing railroad lines are sandwiched between the SR 7 bridges and the Ohio River, immediately adjacent to the interchange. West of SR 7 are local businesses along Main Street and Lincoln Street, the north-south roadway south of Main Street that accommodates the northbound exit ramp. See *Figure 1* for an aerial view of the project site.

Figure 1 – Project Location

This study was initiated to evaluate if a different interchange configuration could be proposed that would reduce the overall structure length and improve the traffic operations without creating significant impact to the adjacent properties or infrastructure adjacent to the interchange. This memorandum is to summarize the assumptions, the anticipated traffic operations and geometric features of various interchange configurations that were evaluated, potential structure impacts, and preliminary construction costs for the viable ramp configurations.

Appendix A shows the conceptual schematic plan of the two interchange configurations that performed the best from a traffic operations perspective. Appendix B shows existing traffic counts. Appendix C shows a draft bridge pier layout for the single (circular) roundabout alternative since this was the only alternative that was feasible considering constructability and other factors. Finally, Appendix D shows the preliminary construction cost estimate for the bridge replacement project including the single roundabout interchange configuration as compared to the bridge replacement without any traffic improvements.

ASSUMPTIONS

The following items were assumed during the development of the interchange configurations for this study:

- The existing SR 7 bridges will be replaced, and pier locations could be shifted as necessary to accommodate a new interchange configuration.
- Full access between SR 7, Main Street, and US 250 would be provided at this location.
- The existing Main Street bridge over the Ohio River would not be impacted with the alternatives.
- Traffic analysis was conducted using existing traffic volumes based on existing traffic counts taken in 2019.
- Preliminary construction cost estimate for the new SR 7 bridge was based on the square foot of bridge deck
 costs used in the March 2019 Structure Type Study developed by B&N and inflated to account for the
 complexity of the new portion of the structure over the roundabout.

DESCRIPTION OF ALTERNATIVES

Initial interchange configurations were developed with three primary objectives. The first was to eliminate one or both of the following mainline SR 7 bridges:

- SR 7 over the northbound exit ramp to Main Street/US 250 (southern edge of the existing bridge)
- SR 7 over US 250 (northern edge of the existing bridge)

The second objective was to minimize additional widening outside of the existing interchange, especially Main Street through downtown Bridgeport and the Main Street bridge over the Ohio River. The third objective was to achieve traffic operations for the new interchange configurations that meet Level of Service (LOS) D or better and volume-to-capacity (v/c) ratios less than 0.90.

Existing Condition Capacity Analysis

The following intersections were included in the traffic analysis:

- US 250 & Main Street/Lincoln Avenue
- US 250/Main Street and NB SR 7

12-hour (6am to 6pm) turning movement traffic counts were collected at the study intersections on October 3, 2019. The AM peak hour for the study was identified as 7:15am to 8:15am and the PM peak hour was identified as 4:45pm to 5:45pm. Copies of the traffic counts and exhibits showing the existing traffic counts are included in **Appendix B**. Reviewing the existing traffic volumes showed that the PM peak hour volumes are equal or higher than the AM peak hour for all movements; therefore, capacity analysis was only conducted for the 2019 PM peak hour. Capacity analysis was conducted using Synchro software. **Table 1** shows the results of the capacity analysis for the study intersections for the 2019 Existing condition.

		2019 PM Existing	
	LOS	Delay (sec/veh)	V/C
US 250 & Main Stre	et/Linco	oln Avenue	
NB Approach	Е	64.2	0.80
SB Approach	D	42.9	0.95
EB Approach	Е	56.1	0.96
WB Approach	Е	63.1	0.80
Overall Intersection	D	52.5	
US 250/Main Street &		7 On-Ramp	
(unsigns	alized)		
EB Approach	A	0.0	0.46
WB Approach	A	0.0	0.31

Table 1 - 2019 Existing Intersection Capacity Analysis

The existing condition for the intersection at US 250 & Main Street/Lincoln Avenue is operating at capacity. Level of service for three of the four approaches to the intersection are at LOS E and volume-to-capacity ratios are nearly 1.0. The intersection of US 250/Main Street & NB SR 7 is an unsignalized intersection and no vehicles traveling through the intersection are required to stop or yield to other vehicles. The delay for this intersection is essentially zero and the intersection operates very well.

This information became the starting point for developing various proposed interchange configurations. This study began with the assumption that the geometrics would drive the solution. What was determined very early in the process was that the traffic operations drove the solution away from most of the simple configurations developed and that geometrics and the resulting impacts were the defining criteria for later configurations developed that solved the traffic operation concern. These configurations were categorized into three basic groups based on the order they were developed to tell the story of how we arrived at the final configuration that could be advanced to further development.

Group 1 – Diamond Alternatives

This group of alternatives relocated the SR 7 NB exit ramp to Lincoln Avenue to the existing intersection of Main Street and the SR 7 NB entrance ramp. Three options were evaluated:

- Tight Diamond
- Tight Diamond with U-turn
- Paraflow Interchange

All these options placed an intersection between the SR 7 bridge and the existing railroad and Main Street bridge over the Ohio River. The **Tight Diamond** created two short bridges along SR 7 and brought a diamond ramp adjacent to the railroad right-of-way on the east side of SR 7, providing access from SR 7 NB to Main Street. The Main Street to SR 7 SB entrance ramp diverged from Lincoln Avenue north of the existing diverge and tied into the existing ramp prior to accessing SR 7. North of Main Street, the ramp to SR 7 NB maintained the existing diamond ramp configuration. The ramp from SR 7 SB to Main Street followed the existing ramp alignment that met the existing intersection with US 250 before continuing to SR 7 NB. US 250 traffic wishing to access SR 7 NB would pass under SR 7 via a short bridge and turn left at the adjacent intersection. Traffic from SR 7 NB or Main Street wishing to

access US 250 would utilize the roadway east of SR 7, then turn left and travel under that same short bridge. This maintained a one-way couplet on each side of SR 7. See *Figure 2* for a conceptual schematic of this interchange configuration.

Figure 2 - Conceptual Schematic of the Tight Diamond Interchange Configuration

To further reduce the number of proposed bridges along SR 7, a **Tight Diamond with U-Turn** configuration was developed. This alternative consolidated to a single bridge that spanned the creek, Main Street, and a U-turn maneuver that maintained connection to US 250. South of Main Street, the ramp configuration matched what was included in the Tight Diamond alternative. North of Main Street, the ramp to SR 7 NB maintained the existing diamond ramp configuration. The ramp from SR 7 SB to Main Street followed the existing ramp alignment that met the existing intersection with US 250, which was revised to a simple two-phase signal operation that only allowed for right turns from US 250 to travel southbound on Main Street. US 250 traffic wishing to access SR 7 NB would turn right and travel through the U-turn maneuver to loop around to access the existing ramp to SR 7 NB. See *Figure 3* for a conceptual schematic of this interchange configuration.

Figure 3 - Conceptual Schematic of the Tight Diamond with U-turn Interchange Configuration

The additional approach added to the intersection along Main Street east of SR 7 required it to be signalized. In addition, by bringing the SR 7 NB exit ramp to Main Street, traffic that uses the exit ramp and Howard Street to access Bridgeport in the existing condition would now use Main Street to access Bridgeport. This creates additional traffic at the already congested intersection of US 250 & Main Street/Lincoln Avenue. While the overall operation varies between alternatives, all alternatives in this group operate at LOS F with v/c ratios greater than 1.0. The cause of this poor operation is the short spacing between the intersections on either side of SR 7 and the new traffic signal at the NB SR 7 ramp terminal intersection. The spacing between the intersections can only accommodate three or four vehicles. Once this is full, no additional vehicles can enter from the upstream intersection. The intersection of US 250 & Main Street/Lincoln Avenue has a very heavy southbound left turn volume and eastbound through volume. This creates a steady stream of traffic leaving the intersection in the eastbound direction. However, it is not possible to provide a continuous eastbound green signal indication at the NB SR 7 ramp terminal intersection. This results in queues at the Main Street/Lincoln Avenue intersection that continually build during the PM peak hour. Likewise, the northbound left and westbound through movements at the NB SR 7 ramp terminal intersection create a steady stream of traffic leaving the intersection in the westbound direction and it is not possible to provide a continuous westbound green signal at the Main Street/Lincoln Avenue intersection. This creates queues at the NB SR 7 intersection that continually build during the PM peak hour. An innovative Paraflow Interchange concept, which crosses the left turns west of SR 7 similar to a Diverging Diamond Interchange (DDI) crossover intersection to the opposite side of the westbound through movement, was also evaluated. This would allow the Main Street eastbound traffic wishing to access SR 7 NB to cross over and then slip onto the NB entrance ramp without conflicting with the westbound through movement at the eastern intersection. Even in this scenario, there isn't enough green time we can allocate to the westbound through to make this a viable solution. Figure 4 shows a screenshot of the SimTraffic analysis for the Tight Diamond alternative. Similar queues will develop for the Tight Diamond with U-turn and the Paraflow Interchange alternatives.

Figure 4 - Tight Diamond Queues

Group 2 – Innovative Alternatives

Given the traffic operational issues observed with the Group 1 alternatives, additional options were evaluated. These were intended to be innovative alternatives designed to accommodate higher traffic volumes by reducing the number of intersections or eliminating specific movements at intersections to simplify their operation. Three options were evaluated:

- Diverging Diamond Interchange (DDI)
- Single Point Urban Interchange (SPUI)
- Counterclockwise Rotary

All these options required greater footprint to implement, which resulted in significant impacts to the adjacent properties, railroad, and Main Street bridge over the Ohio River. See *Figure 5* and *Figure 6* for images of a typical DDI and SPUI configuration.

Figure 5 – Image of a typical DDI

Figure 6 – Image of a typical SPUI

The **DDI** followed the same general changes made in the Group 1 alternatives but converted the intersections of US 250 & Main Street/Lincoln Avenue and US 250/Main Street & NB SR 7 to a DDI. For this location, the DDI is slightly different than a typical one because northbound and southbound through movements need to be provided through the crossover intersections. This creates a third signal phase compared to the two phases at a traditional DDI. Operationally, the DDI performs similar to the Tight Diamond alternatives. It's not possible to provide enough green time at the downstream intersection to avoid queues at the upstream intersection. The intersections are over capacity and queues will build on the approaches to the intersections during the PM peak hour.

By combining the two intersections with SR 7 into a single intersection, the **SPUI** alternative eliminates the closely spaced signals that are causing problems with the traditional diamond interchange options. In order to achieve v/c ratios less than 1.0, a significant amount of widening is required at the interchange. Dual left turn lanes will be required for the eastbound and westbound approaches resulting in five lanes on Main Street under SR 7. In addition, the bridge over the Ohio River will need widened as will Main Street through downtown Bridgeport. With this widening, the interchange will operate at LOS E with v/c ratios of 0.91. This is equivalent to the operation of the existing condition. The expense of the SPUI will provide little benefit over the existing condition.

The final option in this group that was evaluated looked to utilize the existing infrastructure but create one-way roadways that form a circle around the interchange. This concept, the **Counterclockwise Rotary**, converted Main Street to one-way eastbound under SR 7, then utilized the roadway connecting US 250 to the east side of SR 7 as a one-way westbound movement. The two ramps on each side of SR 7 acted as one-way couplets, with the eastern roadway becoming one-way northbound and the western roadway becoming one-way southbound. This alternative attempts to eliminate some of the issues created with two closely spaced traffic signals. Eliminating the westbound movement between the intersections reduces the queues from the traditional diamond alternatives. However, there are still some queues related to the two signals. The intersections will operate at LOS E with v/c ratios approaching 1.0. While this is close to meeting the operational goals, it is essentially the same operation as the existing condition. It will operate at capacity using 2019 traffic volumes. See *Figure 7* for anticipated lane usage for the Counterclockwise Rotary alternative.

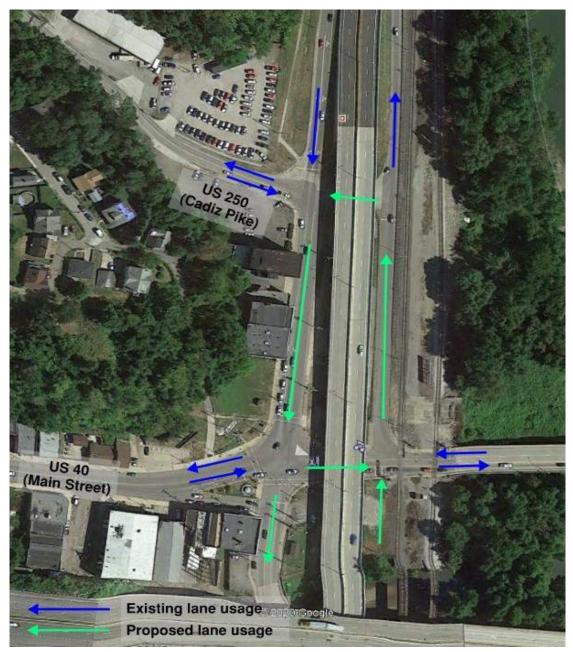


Figure 7 – Proposed lane usage for the Counterclockwise Rotary alternative

Group 3 – Roundabout Alternatives

This final group of alternatives was developed to identify low-impact options that could have latent capacity by modifying the intersection control to roundabouts instead of signalized intersections. Two options were evaluated:

- Teardrop Interchange
- Single Roundabout

Refer to *Appendix A* for a conceptual plan exhibit of the two Roundabout Alternatives. The **Teardrop Interchange** followed the same general changes made in the Group 1 alternatives but converted the traffic signals at the US 250 & Main Street/Lincoln Avenue and the US 250/Main Street & SR 7 NB ramp terminal intersections to roundabouts. The teardrop configuration eliminates the storage issues between the two intersections since traffic on these approaches does not have to yield to anyone and can enter the roundabouts as free-flowing movements. The capacity results for the Teardrop alternative are shown in **Table 2**. Both intersections will operate at LOS B and the highest v/c ratio is 0.90 with most approaches less than 0.75. However, this alternative showed significant impacts to the existing bridge over the river, the railroad crossings, and the land use on the west side of SR 7. This option also complicated the proposed SR 7 structures over Main Street due to the proximity of the roundabouts to the bridge. To avoid the impacts to the bridge over the Ohio River, the eastern roundabout had to be shifted west and would sit underneath the SR 7 bridge structures. This introduced challenges with pier placement, use of straddle bents, and vertical clearance concerns due to the long spans necessary to get over the roundabout.

While it was determined that this option functioned well operationally, it required too many impacts and introduced a vertical clearance safety concern that made this option infeasible to advance. Here is a summary of the concerns that this option has that made it infeasible to advance; Refer to Figure 8.

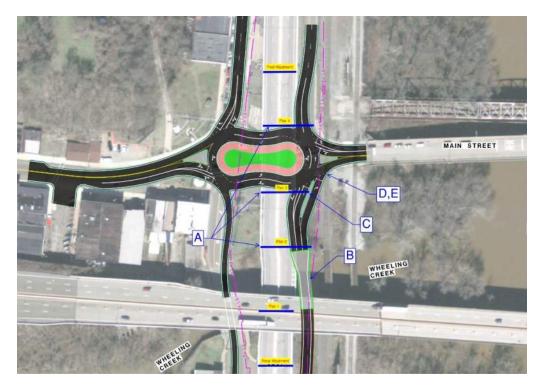


Figure 8 – Deficiencies of Teardrop Layout

- A. The structure depth, especially at Pier 2, and likely at Pier 3, considering the needed profiles, bridge spans, and straddle bent pier cap depth, would not permit enough vertical clearance over the ramp; current estimate shows this proposed vertical clearance to be less than 12 feet.
- B. This solution requires a variable width and likely expensive bridge over Wheeling Creek, with an added pier in the creek
- C. A straddle bent pier column at Pier 2 would need to be placed in an undesirable location in the ramp banana island, obscuring visibility and introducing a safety concern
- D. This alternative requires encroachment onto the railroad property
- E. The feasibility of providing suitable railroad crossing gates looks questionable

For these reasons, the Teardrop interchange was eliminated from further consideration.

The **Single Roundabout** alternative retains the existing ramp configuration but changes the signalized intersection at US 250 & Main Street/Lincoln Avenue to a roundabout. The capacity results for the Single Roundabout alternative are shown in **Table 2**. For the 2019 PM peak, the intersection of US 250 & Main Street/Lincoln Avenue is expected to operate at LOS A with a maximum v/c ratio of 0.54. This is a significant improvement over the existing condition. To test the roundabouts ability to accommodate additional traffic, the existing traffic volumes were increased by 40%. Even with this increase, the intersection will operate at LOS C and the maximum v/c ratio would be 0.97. Should this occur, the lane use for the eastbound approach can be adjusted to accommodate dual left turn lanes. This would allow the intersection to perform well with an additional 15% increase in volumes.

		2019 PM Teardrop		Sing	2019 PM gle Roundal	out	Single	2019 PM Roundabou	t +40%
	LOS	Delay (sec/veh)	V/C	LOS	Delay (sec/veh)	V/C	LOS	Delay (sec/veh)	V/C
	ι	JS 250 & Ma	ain Stre	et/Linc	oln Avenue				
NB Approach	N/A	N/A	N/A	В	11.5	0.37	С	31.1	0.72
SB Approach	В	16.9	0.69	A	8.4	0.49	В	16.1	0.76
EB Approach	В	10.4	0.43	В	11.1	0.54	D	43.0	0.97
WB Approach	A	5.5	0.38	A	9.0	0.39	В	19.1	0.68
Overall Intersection	В	12.0		A	9.7		C	25.5	
	US	5 250/Main S	Street &	NB SF	R 7 On-Ram	p			
NB Approach	С	21.7	0.75	N/A	N/A	N/A	N/A	N/A	N/A
EB Approach	A	6.3	0.45	A	0.0	0.46	A	0.0	0.65
WB Approach	С	34.4	0.90	A	0.0	0.31	A	0.0	0.44
Overall Intersection	В	18.9							

Table 2 – 2019 Roundabout Alternatives Capacity Analysis

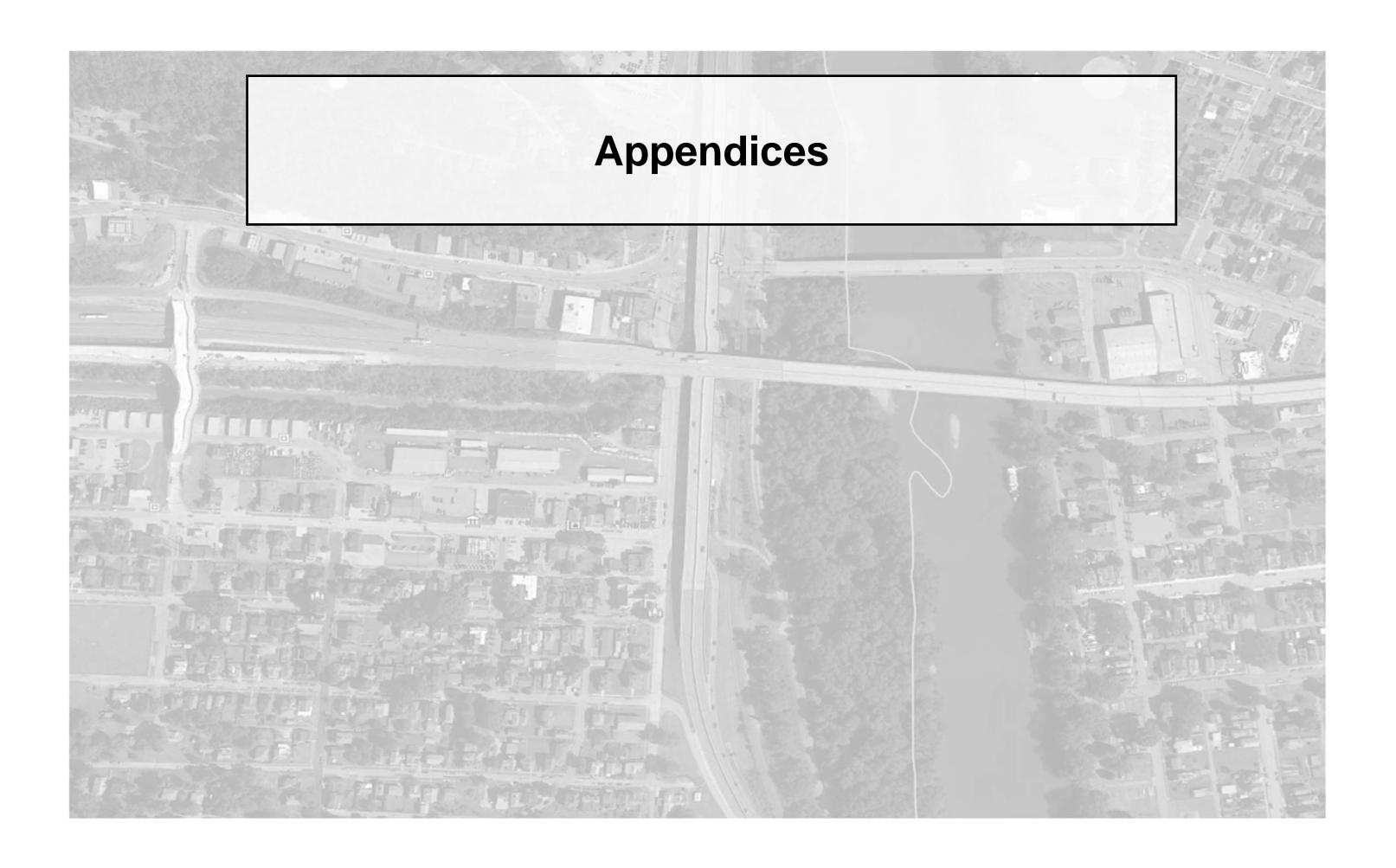
This option not only performs well operationally but shows considerably less impacts than the Teardrop option. By utilizing the existing intersection on the east side of SR 7, the interaction with the railroad, including the placement of gates, is unchanged from the existing. When a train event occurs, only the eastbound departure and the westbound approach to the roundabout are impacted, similar to what is the case today. This roundabout is more appropriately sized, using an Inscribed Circle Diameter (ICD) of 160 feet, rather than the 130 feet that was proposed for the Teardrop. Like the Teardrop, this places some of the roundabout under the proposed SR 7 bridges, but with more room on the west side, the roundabout can be shifted out from under the bridge more so than in the teardrop alternative. The result is a bridge design and pier location that should better accommodate the concept and obtain the required vertical clearances. This concept would utilize straddle bents with pier columns, but the pier columns can be placed in more favorable locations within the roundabout footprint, either in the center island or the splitter islands, where there is more room to protect them and allow for visibility for the key traffic movements. Refer to *Appendix C* for the conceptual bridge pier locations for this interchange configuration.

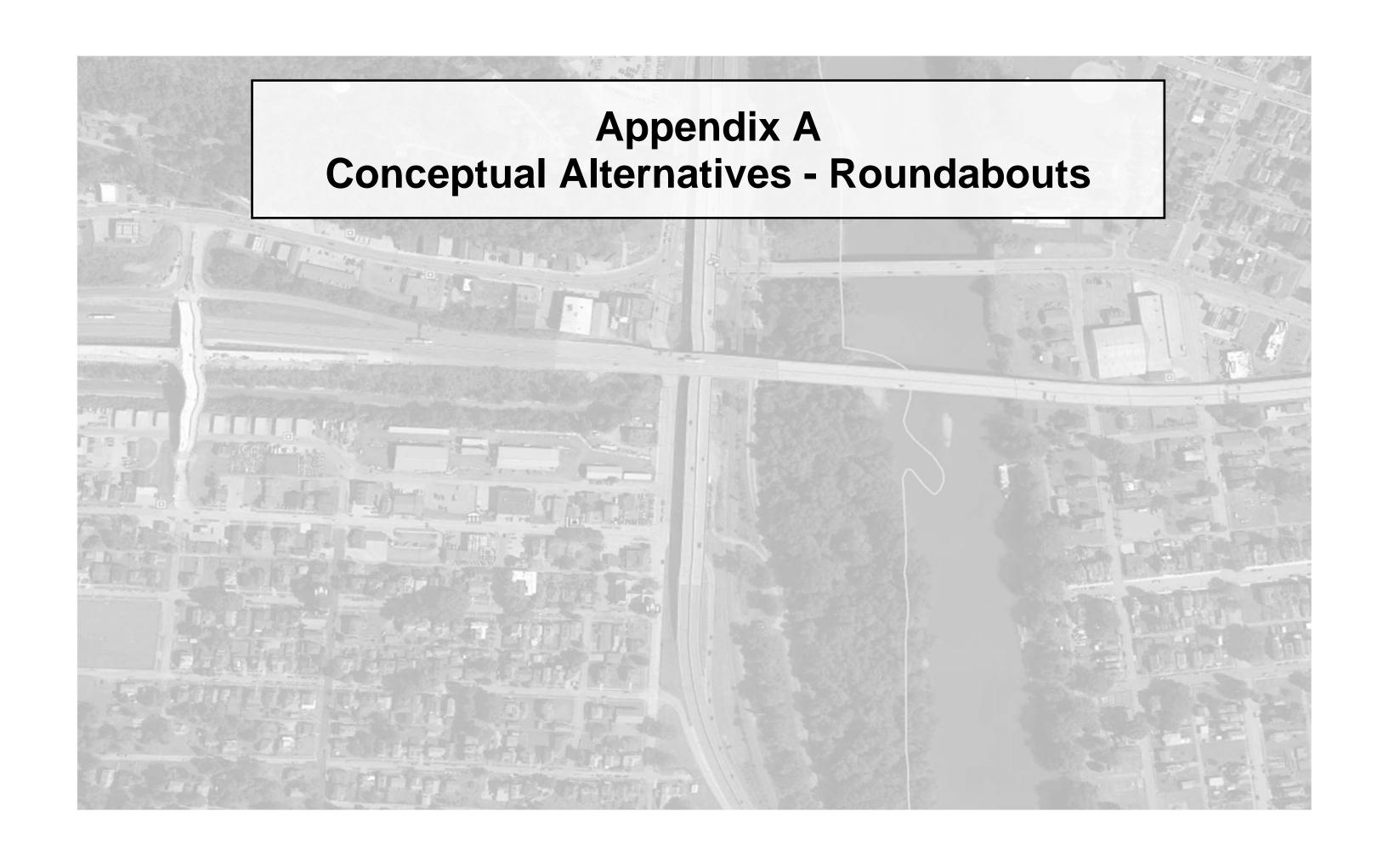
PRELIMINARY CONSTRUCTION COST ESTIMATE

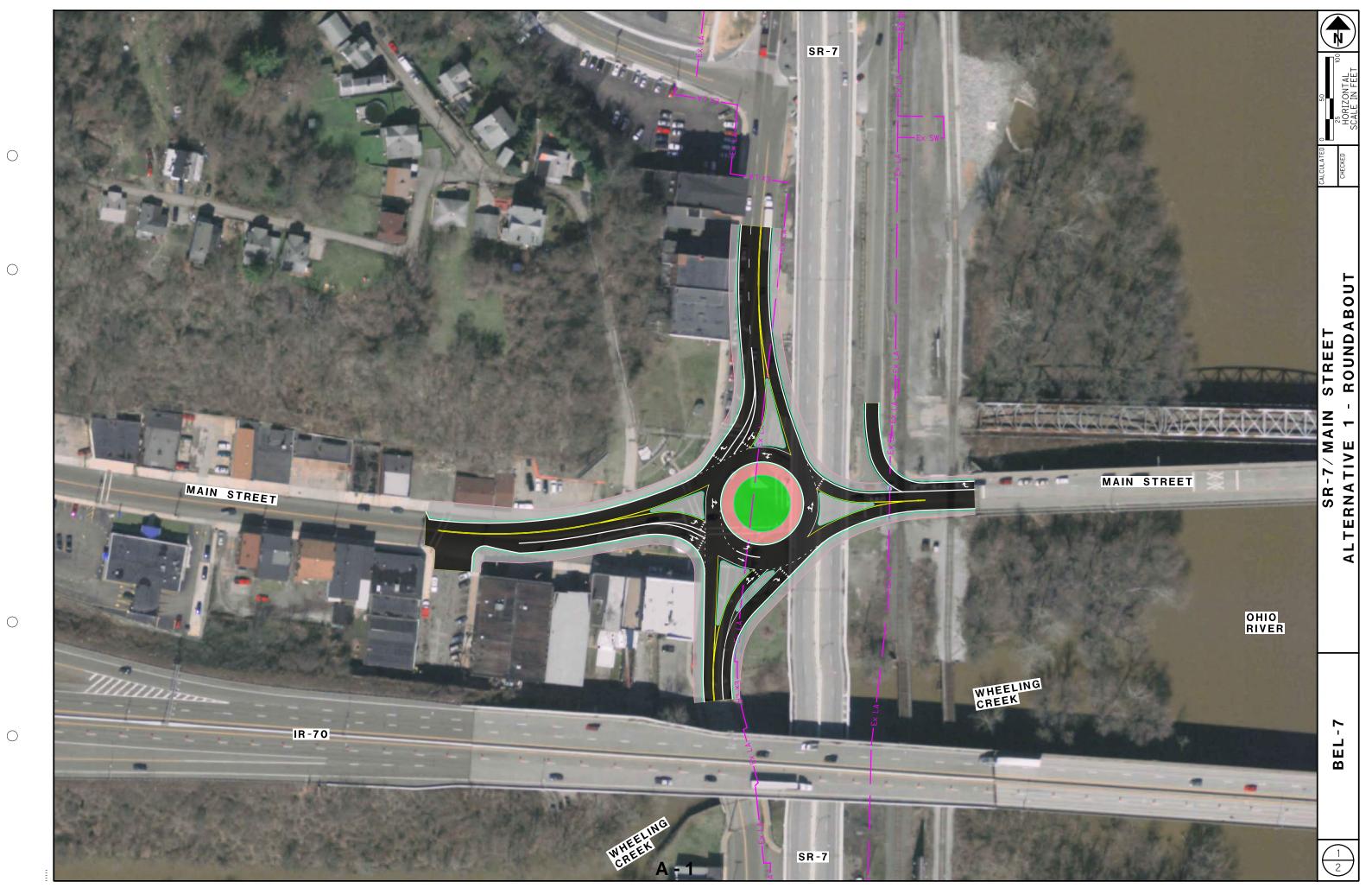
Given that through this study, only one option, the Single Roundabout, appeared to be a viable solution that met the goals of the study, a preliminary construction cost estimate was developed only for that option. The big-ticket items, such as pavement areas and bridge areas were quantified using CADD areas. Other items, such as drainage, earthwork, and MOT, were reported as a raw percentage of the total construction cost due to the lack of detailed design completed at this time. The cost estimate utilized 2019 bid tabs for unit costs, and no inflation was applied to the final cost estimate number, leaving the costs in 2019 dollars. A 20% contingency was applied to the construction cost subtotal due to the level of uncertainty that still exists with the design. See *Appendix D* for the preliminary construction cost estimate for the single roundabout option as compared to the cost estimate for just the SR 7 bridge replacement that was studied back in March 2019.

CONCLUSIONS AND NEXT STEPS

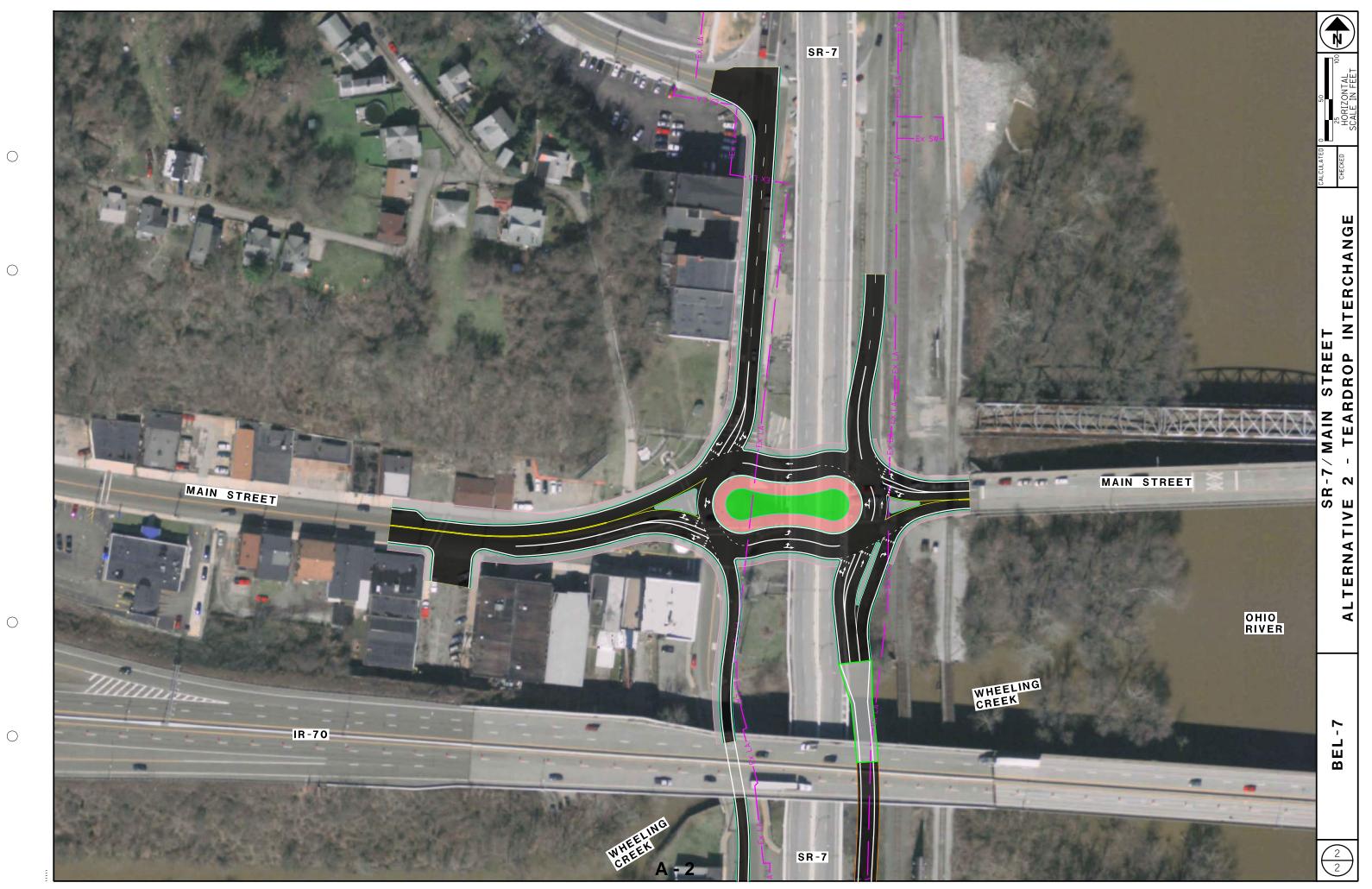
In summary, this study has shown that it could be feasible to implement a roundabout at the west ramp terminal intersection to improve traffic operations at the SR 7 & Main Street/US 250 interchange. Further investigation appending this study may be necessary to confirm the concept and determine if the impacts are palatable. Here are our recommendations for next steps:

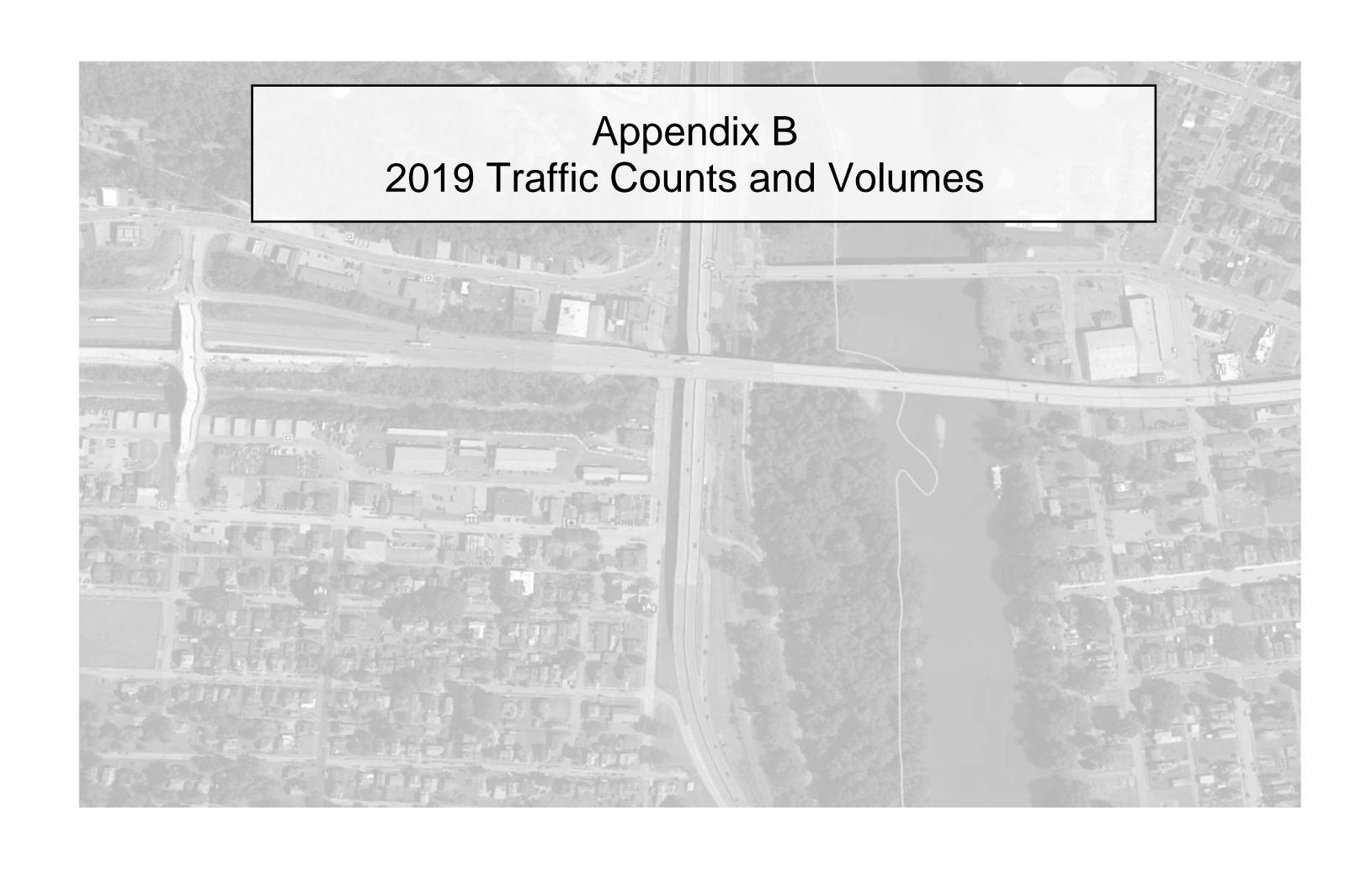

- 1. Obtain Certified Traffic and complete the analysis to confirm the single roundabout option using the appropriate traffic growth projections.
- 2. Revise the Type Study that was completed in March 2019 to include the changes to the ramp configuration and inclusion of the roundabout.
- 3. Obtain detailed survey to determine existing and proposed vertical geometry of the SR 7 bridges and the roundabout to confirm the required vertical clearance can be achieved.
- 4. Confirm utilities in the project area to ensure no additional utilities beyond a couple of fire hydrants needs to be relocated.

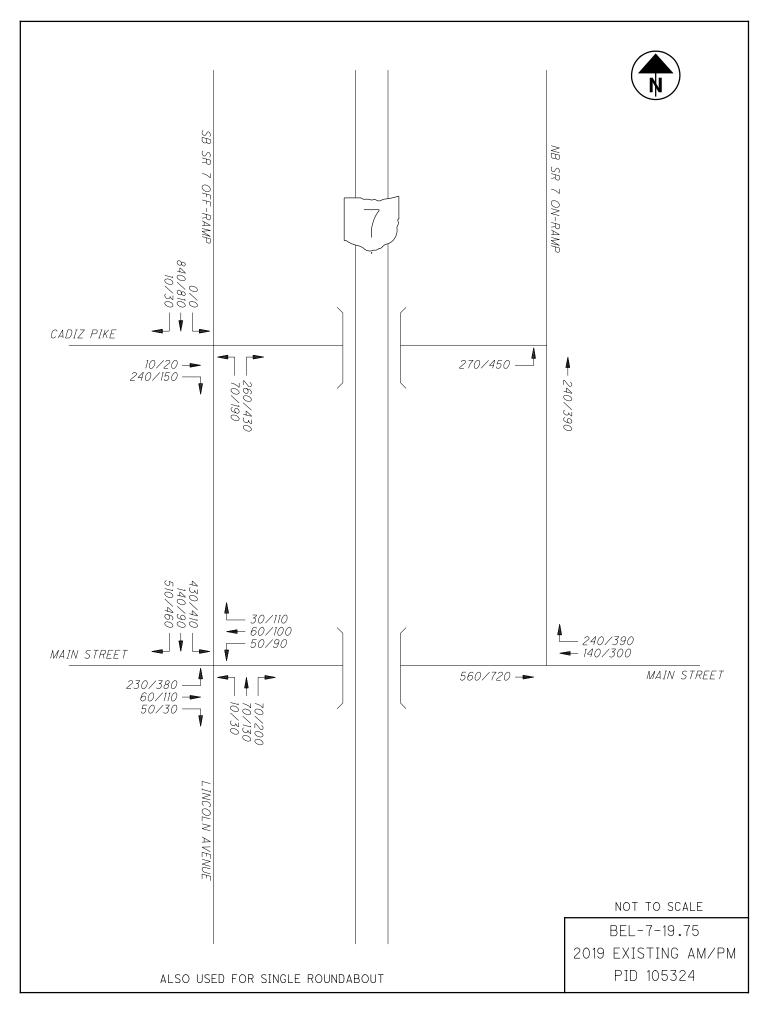

If you have any questions or need additional information related to our analysis, please do not hesitate to contact us.

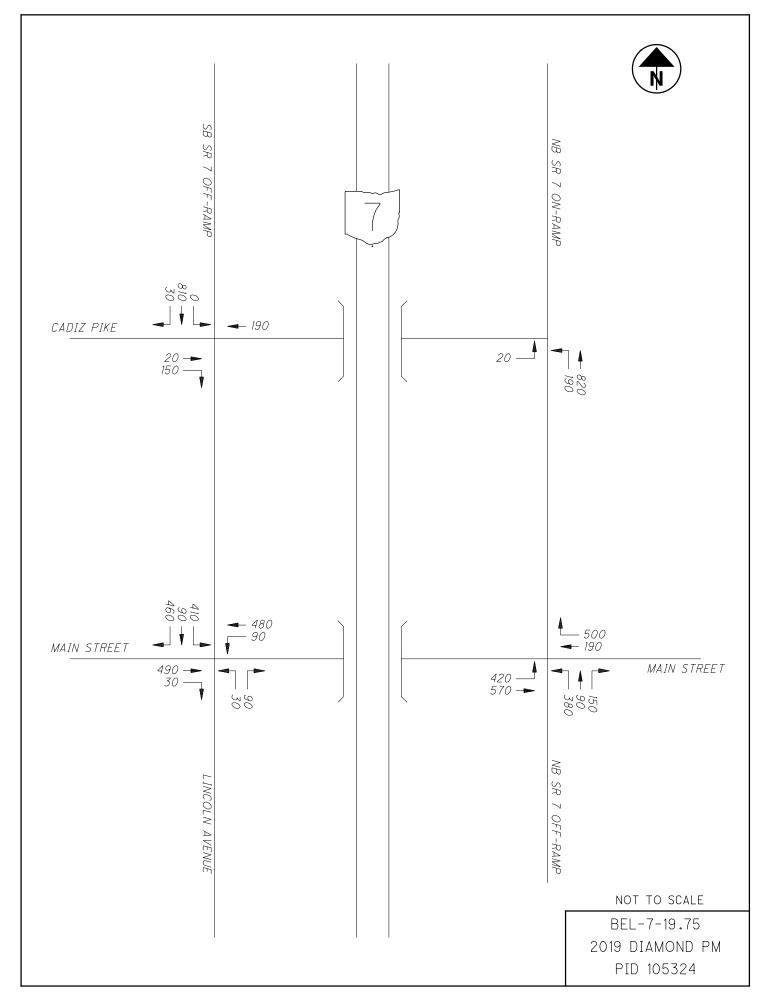

Sincerely,

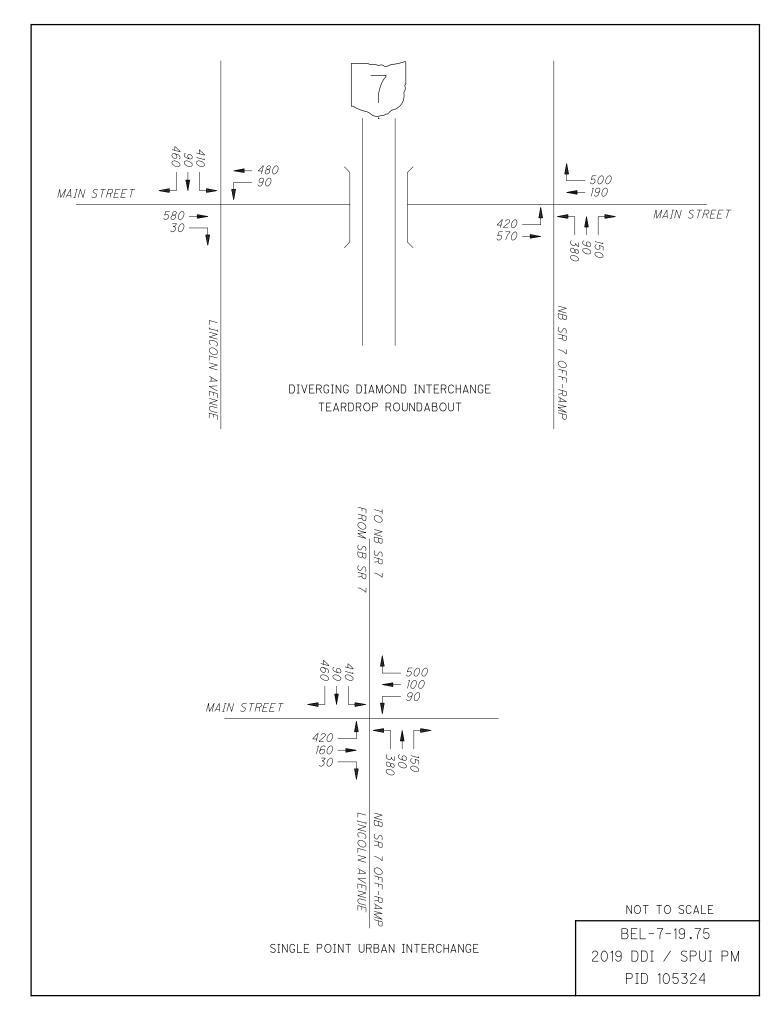
Brian Toombs, PE Project Manager

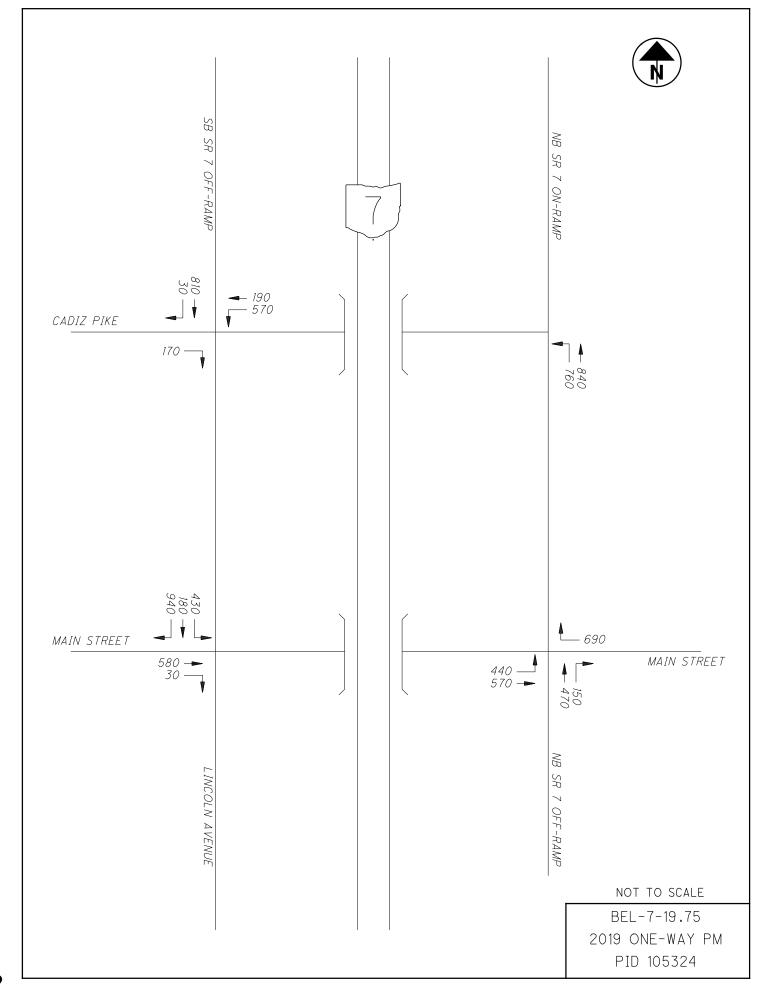

> B&N burgessniple.com






 \bigcirc


 \bigcirc



B - 1

B-2

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

80 Degrees - Sunny Schools in Session

File Name: Main_Street_at_Lincoln_Street_705073_10-03-2019

Site Code: Site 1 - Thursday

Start Date : 10/3/2019

Page No : 1

Groups Printed- Cars - Buses - Trucks

										ed- Cars	s - Bus										
		_	SR7					ain Sti					coln St					lain Str			
			rom No					rom E					om So					rom We			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right		Left	U-Turn		Right	Thru	Left	U-Turn	App. Total	Int. Total
06:00 AM	59	13	95	0	167	5	5	10	0	20	6	4	1	0	11	2	9	57	0	68	266
06:15 AM	64	24	96	0	184	5	4	8	0	17	15	14	2	0	31	7	4	66	0	77	309
06:30 AM	100	30	109	0	239	11	11	10	0	32	16	15	1	0	32	3	8	61	0	72	375
06:45 AM	96	20	121	0	237	12	7	9	0	28	14	11	0	0	25	8	6	59	0	73	363
Total	319	87	421	0	827	33	27	37	0	97	51	44	4	0	99	20	27	243	0	290	1313
07:00 AM	96	29	111	0	236	4	6	14	0	24	13	13	5	0	31	3	10	48	0	61	352
07:15 AM	131	28	136	0	295	7	11	6	0	24	19	12	1	0	32	7	18	46	0	71	422
07:30 AM	137	37	95	0	269	6	16	13	0	35	15	19	2	0	36	19	11	45	0	75	415
07:45 AM	125	46	94	0	265	12	18	16	0	46	19	22	5	0	46	13	16	69	0	98	455
Total	489	140	436	0	1065	29	51	49	0	129	66	66	13	0	145	42	55	208	0	305	1644
·																					
08:00 AM	118	26	105	0	249	9	9	18	0	36	17	16	3	0	36	7	13	65	0	85	406
08:15 AM	101	16	107	Ō	224	8	11	17	0	36	12	3	3	Ō	18	6	8	76	Ō	90	368
08:30 AM	97	13	121	Ō	231	5	23	17	Ō	45	15	19	7	Ō	41	12	12	64	Ō	88	405
08:45 AM	108	33	107	Ö	248	7	15	13	Ö	35	12	14	3	Ö	29	4	16	60	Ö	80	392
Total	424	88	440	0	952	29	58	65	0	152	56	52	16	0	124	29	49	265	0	343	1571
Total	727	00	1-10	Ü	502	20	00	00	J	102	00	02	10	Ū	12-		70	200	Ü	0-10	1071
09:00 AM	70	16	84	0	170	8	9	13	0	30	21	14	2	0	37	8	16	54	0	78	315
09:15 AM	87	17	98	Ö	202	8	11	14	0	33	14	12	4	Õ	30	10	16	68	0	94	359
09:30 AM	111	21	99	0	231	11	21	11	0	43	18	16	10	0	44	7	18	55	0	80	398
09:45 AM	93	11	87	Ö	191	9	22	21	0	52	21	14	1	Ö	36	8	18	65	0	91	370
Total	361	65	368	0	794	36	63	59	0	158	74	56	17	0	147	33	68	242	0	343	1442
i Otal	301	65	300	U	794	30	03	59	U	136	/4	56	17	U	147	33	00	242	U	343	1442
10:00 AM	109	16	80	1	206	11	19	10	0	40	23	8	5	0	36	11	21	78	0	110	392
10:00 AM	114	13	68	0	195	9	18	19	0	46	34	22	5	0	61	10	23	76 74	0	107	409
10:13 AM	120	10	91	0	221		19	21		50	29	9	9	0		8	28 28	58		94	412
						10			0				5	0	47				0		
10:45 AM	115	14	87	0	216	13	32	22 72	0	67	20	21		0	46	14	23	71	0	108	437
Total	458	53	326	1	838	43	88	12	U	203	106	60	24	U	190	43	95	281	0	419	1650
44.00 414	00	10	00	^	400	40	00	4.4	_	4.4	1 00	40	_	^	47		00	00	_	440	070
11:00 AM	90	10	69	0	169	10	20	14	0	44	29	13	5	0	47	3	30	83	0	116	376
11:15 AM	95	14	64	0	173	14	38	18	0	70	30	20	7	0	57	10	25	76	0	111	411
11:30 AM	127	20	86	0	233	10	35	16	0	61	24	12	7	0	43	7	36	90	0	133	470
11:45 AM	86	15	72	0_	173	6	22	22	0	50	31	18	1_	0	50	13	29	81	0_	123	396
Total	398	59	291	0	748	40	115	70	0	225	114	63	20	0	197	33	120	330	0	483	1653
40.00 Dt4		4-	00	^	407	_	67	-00	^			40	_	^	00	1 40	00	70	^	440	
12:00 PM	94	17	86	0	197	8	27	23	0	58	20	13	5	0	38	12	28	78	0	118	411
12:15 PM	78	19	67	0	164	8	23	16	0	47	27	15	4	0	46	13	34	81	0	128	385
12:30 PM	94	23	96	0	213	14	28	10	0	52	20	24	5	0	49	8	41	78	0	127	441
12:45 PM	96	18	87	0	201	16	28	18	0	62	22	16	6	0	44	14	21	94	0	129	436
Total	362	77	336	0	775	46	106	67	0	219	89	68	20	0	177	47	124	331	0	502	1673
04.00 511			76	_	40-1	_	0.5	4.0	_	4-	۱ ۵-		_	_		۱	0.5	4.40	_		
01:00 PM	94	21	72	0	187	7	22	19	0	48	27	26	5	0	58	10	25	113	0	148	441
01:15 PM	103	23	86	0	212	10	26	28	0	64	36	26	7	0	69	12	31	81	0	124	469
01:30 PM	104	16	88	0	208	13	25	18	0	56	25	11	5	0	41	10	30	84	0	124	429
01:45 PM	108	9	87	0_	204	13	18	13	0	44	36	14	9	0	59	6	29	76	0	111	418
Total	409	69	333	0	811	43	91	78	0	212	124	77	26	0	227	38	115	354	0	507	1757
											ı					ı					
02:00 PM	111	14	87	0	212	10	34	25	0	69	27	21	5	0	53	12	45	80	0	137	471
02:15 PM	113	17	82	0	212	17	26	21	0	64	21	18	5	0	44	11	30	86	0	127	447
02:30 PM	111	22	93	0	226	22	20	10	0	52	30	19	7	0	56	12	26	101	0	139	473
02:45 PM	109	12	91	0	212	19	21	19	0	59	27	19	6	0	52	4	18	96	0	118	441
Total	444	65	353	0	862	68	101	75	0	244	105	77	23	0	205	39	119	363	0	521	1832

Cummins Consulting Services, PLLC

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Main_Street_at_Lincoln_Street_705073_10-03-2019

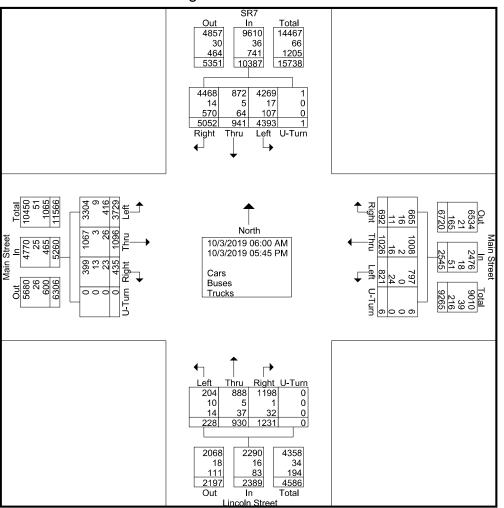
Site Code: Site 1 - Thursday

Start Date : 10/3/2019

Page No : 2 Groups Printed- Cars - Buses - Trucks

										ea- Car	5 - Dus										1
			SR7				М	ain Str	eet			Lin	coln S	treet			М	ain Str	eet		
		Fı	om No	orth			F	rom E	ast			Fr	<u>om So</u>	uth			F	<u>rom W</u>	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
03:00 PM	105	21	94	0	220	23	36	20	0	79	25	27	3	0	55	9	26	105	0	140	494
03:15 PM	120	11	66	0	197	26	22	26	0	74	23	30	2	0	55	14	31	107	0	152	478
03:30 PM	119	20	100	0	239	26	31	19	0	76	33	32	7	0	72	4	29	90	0	123	510
03:45 PM	128	14	88	0	230	29	23	16	0	68	33	25	4	0	62	15	23	84	0	122	482
Total	472	66	348	0	886	104	112	81	0	297	114	114	16	0	244	42	109	386	0	537	1964
04:00 PM	90	23	63	0	176	24	25	14	6	69	25	33	2	0	60	10	31	93	0	134	439
04:15 PM	121	17	99	0	237	39	28	21	0	88	38	26	6	0	70	15	14	80	0	109	504
04:30 PM	119	22	97	0	238	25	29	26	0	80	27	29	2	0	58	10	28	87	0	125	501
04:45 PM	132	20	109	0	261	26	23	25	0	74	41	13	5	0	59	7	21	100	0	128	522
Total	462	82	368	0	912	114	105	86	6	311	131	101	15	0	247	42	94	360	0	496	1966
05:00 PM	117	20	104	0	241	33	25	25	0	83	55	38	5	0	98	10	31	84	0	125	547
05:15 PM	100	29	99	0	228	27	21	17	0	65	59	39	10	0	108	6	29	96	0	131	532
05:30 PM	116	26	100	0	242	25	27	17	0	69	45	39	9	0	93	6	29	99	0	134	538
05:45 PM	121	15	70	0	206	22	36	23	0	81	42	36	10	0	88	5	32	87	0	124	499
Total	454	90	373	0	917	107	109	82	0	298	201	152	34	0	387	27	121	366	0	514	2116
Grand Total	5052	941	4393	1	10387	692	1026	821	6	2545	1231	930	228	0	2389	435	1096	3729	0	5260	20581
Apprch %	48.6	9.1	42.3	0		27.2	40.3	32.3	0.2		51.5	38.9	9.5	0		8.3	20.8	70.9	0		
Total %	24.5	4.6	21.3	0	50.5	3.4	5	4	0	12.4	6	4.5	1.1	0	11.6	2.1	5.3	18.1	0	25.6	
Cars	4468	872	4269	1	9610	665	1008	797	6	2476	1198	888	204	0	2290	399	1067	3304	0	4770	19146
% Cars	88.4	92.7	97.2	100	92.5	96.1	98.2	97.1	100	97.3	97.3	95.5	89.5	0	95.9	91.7	97.4	88.6	0	90.7	93
Buses	14	5	17	0	36	16	2	0	0	18	1	5	10	0	16	13	3	9	0	25	95
% Buses	0.3	0.5	0.4	0	0.3	2.3	0.2	0	0	0.7	0.1	0.5	4.4	0	0.7	3	0.3	0.2	0	0.5	0.5
Trucks	570	64	107	0	741	11	16	24	0	51	32	37	14	0	83	23	26	416	0	465	1340
% Trucks	11.3	6.8	2.4	Ō	7.1	1.6	1.6	2.9	Ō	2	2.6	4	6.1	Ō	3.5	5.3	2.4	11.2	Ō	8.8	6.5
				-	-		-	-	-				-	-					-		

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Main_Street_at_Lincoln_Street_705073_10-03-2019

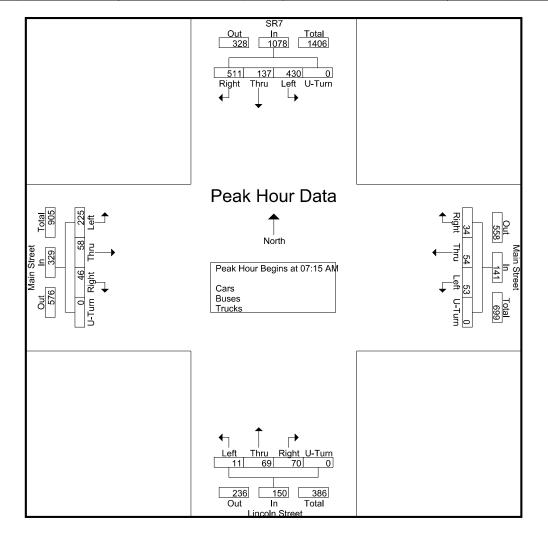
Site Code : Site 1 - Thursday

Start Date : 10/3/2019

Page No : 3

Cummins Consulting Services, PLLC

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Main_Street_at_Lincoln_Street_705073_10-03-2019

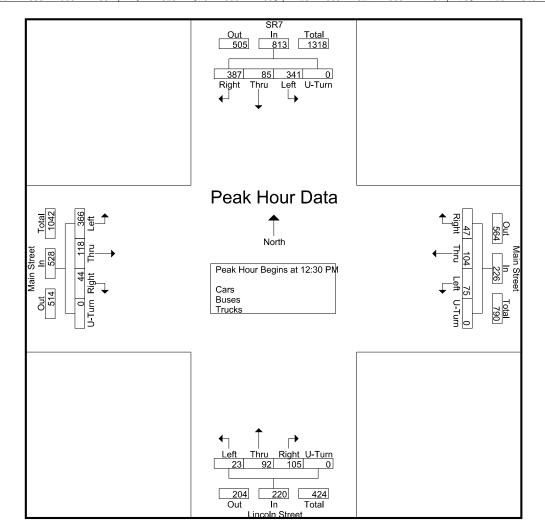
Site Code : Site 1 - Thursday

Start Date : 10/3/2019

Page No : 4

			SR7				M	ain Str	eet			Lin	coln S	treet				ain Str			
		Fr	om No	orth			F	rom Ea	ast			Fr	om So	uth			Fi	rom W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From (06:00 A	AM to C	9:45 AN	1 - Pea	k 1 of 1														
Peak Hour fo	r Entire	Inters	ection	Begins	at 07:1	5 AM															
07:15 AM	131	28	136	0	295	7	11	6	0	24	19	12	1	0	32	7	18	46	0	71	422
07:30 AM	137	37	95	0	269	6	16	13	0	35	15	19	2	0	36	19	11	45	0	75	415
07:45 AM	125	46	94	0	265	12	18	16	0	46	19	22	5	0	46	13	16	69	0	98	455
08:00 AM	118	26	105	0	249	9	9	18	0	36	17	16	3	0	36	7	13	65	0	85	406
Total Volume	511	137	430	0	1078	34	54	53	0	141	70	69	11	0	150	46	58	225	0	329	1698
% App. Total	47.4	12.7	39.9	0		24.1	38.3	37.6	0		46.7	46	7.3	0		14	17.6	68.4	0		
PHF	.932	.745	.790	.000	.914	.708	.750	.736	.000	.766	.921	.784	.550	.000	.815	.605	.806	.815	.000	.839	.933

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Main_Street_at_Lincoln_Street_705073_10-03-2019

Site Code: Site 1 - Thursday

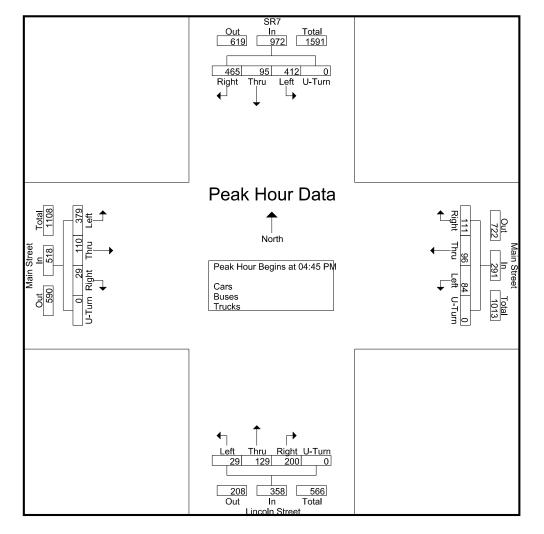
Start Date : 10/3/2019

Page No : 5

			SR7	orth				ain Str					coln S					ain Str			
			OHITING	וווו				IOIII L	<u> 151</u>				UIII SU	ulli				OIII VV	6 51		$\overline{}$
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From	10:00 Å	AM to 0	1:45 PM	1 - Peal	k 1 of 1										'				
Peak Hour fo	r Entire	Inters	ection	Begins	at 12:3	0 PM															
12:30 PM	94	23	96	0	213	14	28	10	0	52	20	24	5	0	49	8	41	78	0	127	441
12:45 PM	96	18	87	0	201	16	28	18	0	62	22	16	6	0	44	14	21	94	0	129	436
01:00 PM	94	21	72	0	187	7	22	19	0	48	27	26	5	0	58	10	25	113	0	148	441
01:15 PM	103	23	86	0	212	10	26	28	0	64	36	26	7	0	69	12	31	81	0	124	469
Total Volume	387	85	341	0	813	47	104	75	0	226	105	92	23	0	220	44	118	366	0	528	1787
% App. Total	47.6	10.5	41.9	0		20.8	46	33.2	0		47.7	41.8	10.5	0		8.3	22.3	69.3	0		
PHF	.939	.924	.888	.000	.954	.734	.929	.670	.000	.883	.729	.885	.821	.000	.797	.786	.720	.810	.000	.892	.953

Cummins Consulting Services, PLLC

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Main_Street_at_Lincoln_Street_705073_10-03-2019

Site Code: Site 1 - Thursday

Start Date : 10/3/2019

Page No : 6

		Fr	SR7	orth				ain Str					coln S					ain St			
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From (02:00 F	PM to 0	5:45 PM	1 - Pea	k 1 of													•	
Peak Hour fo	r Entire	Inters	ection	Begins	at 04:4	5 PM															
04:45 PM	132	20	109	0	261	26	23	25	0	74	41	13	5	0	59	7	21	100	0	128	522
05:00 PM	117	20	104	0	241	33	25	25	0	83	55	38	5	0	98	10	31	84	0	125	547
05:15 PM	100	29	99	0	228	27	21	17	0	65	59	39	10	0	108	6	29	96	0	131	532
05:30 PM	116	26	100	0	242	25	27	17	0	69	45	39	9	0	93	6	29	99	0	134	538
Total Volume	465	95	412	0	972	111	96	84	0	291	200	129	29	0	358	29	110	379	0	518	2139
% App. Total	47.8	9.8	42.4	0		38.1	33	28.9	0		55.9	36	8.1	0		5.6	21.2	73.2	0		
PHF	.881	.819	.945	.000	.931	.841	.889	.840	.000	.877	.847	.827	.725	.000	.829	.725	.887	.948	.000	.966	.978

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

80 Degrees - Sunny Schools in Session

SR7

File Name: Main_Street_at_SR7_704681_10-03-2019

Main Street

Site Code: Site 3 - Thursday

Start Date : 10/3/2019

Page No : 1

Groups Printed- Cars - Buses - Trucks Main Street

Start Time				From	North				ı East				West		
06:00 AM		Start Time	Right			n Total	Right			App. Total	Thru			n Total	Int Total
06:15 AM	L_														
06:30 AM					-	- 1						1	-		
O6.45 AM												ò			
Total				-	-				-						
07:00 AM	_														
07:15 AM		Total	Ŭ	· ·	Ü	0 1		00	Ū	207	100	_	Ü	100	,
07:15 AM		07:00 AM	0	0	0	0	56	26	0	82	132	2	0	134	216
07:30 AM						1									
07.45 AM 0 0 0 61 43 0 104 124 4 0 128 232 Total 0 0 0 232 130 0 362 563 8 0 571 933 08:00 AM 0 0 0 60 38 0 98 137 1 0 138 236 08:15 AM 0 0 0 60 38 0 98 137 1 0 138 236 08:36 AM 0 0 0 0 60 34 0 84 126 1 0 127 211 Total 0 0 0 0 60 34 0 84 130 2 0 132 226 0 132 226 0 132 226 0 132 226 0 132 226 0 0 0 0						- 1									
Total 0 0 0 0 59 40 0 99 134 2 0 136 236 8 0 571 933 08:00 AM 0 0 0 0 0 59 40 0 99 134 2 0 136 235 08:15 AM 0 0 0 0 0 60 38 0 98 137 1 0 138 236 08:30 AM 0 0 0 0 0 61 47 0 108 127 4 0 131 239 08:45 AM 0 0 0 0 0 0 59 34 0 84 126 1 0 127 211 Total 0 0 0 0 0 60 34 0 94 130 2 0 132 226 09:15 AM 0 0 0 0 0 60 34 0 94 130 2 0 132 226 09:15 AM 0 0 0 0 0 60 34 0 94 130 2 0 132 226 09:15 AM 0 0 0 0 0 66 34 0 94 130 2 0 132 226 09:15 AM 0 0 0 0 0 66 43 0 89 1426 1 0 121 214 29:30 AM 0 0 0 0 0 66 43 0 89 1426 1 0 143 232 236 236 AM 0 0 0 0 0 66 1 51 0 112 125 0 143 232 236 236 AM 0 0 0 0 0 0 66 1 51 0 112 125 0 143 232 236 236 AM 0 0 0 0 0 0 61 51 0 112 125 0 0 128 237 Total 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:15 AM 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 49 41 0 90 133 1 0 148 226 10:30 AM 0 0 0 0 0 64 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 64 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 64 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 0 88 65 0 153 134 1 0 136 288 11:30 AM 0 0 0 0 0 0 88 65 0 153 134 1 0 132 239 11:45 AM 0 0 0 0 0 0 88 65 0 153 134 1 0 133 248 Total 0 0 0 0 0 0 88 56 0 151 130 1 10 133 255 11:45 AM 0 0 0 0 0 0 66 3 52 0 115 132 1 0 133 248 Total 0 0 0 0 0 0 88 65 0 159 158 3 0 0 521 1040 122 124 1245 AM 0 0 0 0 0 0 88 65 0 159 158 3 0 0 521 1040 122 125 AM 0 0 0 0 0 0 126 230 1155 136 2 0 133 248 Total 0 0 0 0 0 0 88 65 0 157 142 0 0 132 248 Total 0 0 0 0 0 133 224 12:20 PM 0 0 0 0 0 65 68 0 117 150 150 150 150 150 150 150 150 150 150		07:45 AM	0		0	0				104		4	0		
08:00 AM					0		232			362	563	8		571	
08:15 AM 0 0 0 0 0 60 38 0 98 137 1 0 138 236 08:30 AM 0 0 0 0 0 61 47 0 108 127 4 0 131 239 08:45 AM 0 0 0 0 0 0 50 34 0 84 126 1 0 127 211 Total 0 0 0 0 0 0 50 34 0 84 126 1 0 127 211 09:00 AM 0 0 0 0 0 55 34 0 94 130 2 0 132 226 09:15 AM 0 0 0 0 0 55 38 0 93 120 1 0 121 214 09:30 AM 0 0 0 0 0 65 38 0 93 120 1 0 121 214 09:30 AM 0 0 0 0 0 66 43 0 89 142 1 0 143 232 09:45 AM 0 0 0 0 0 61 51 0 112 125 0 0 125 237 Total 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:35 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 49 41 0 90 133 1 0 134 224 10:30 AM 0 0 0 0 0 0 64 61 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 237 210 0 447 544 5 0 549 996 11:00 AM 0 0 0 0 0 0 88 65 0 145 134 1 0 135 288 11:30 AM 0 0 0 0 0 0 88 65 50 155 133 134 1 0 135 288 11:30 AM 0 0 0 0 0 0 88 65 50 155 126 0 0 133 246 11:30 PM 0 0 0 0 0 0 88 59 20 115 132 1 0 133 248 11:30 PM 0 0 0 0 0 0 88 44 0 124 130 0 0 130 254 12:30 PM 0 0 0 0 0 88 59 20 115 132 1 0 133 248 11:30 PM 0 0 0 0 0 0 88 59 20 115 136 2 0 158 279 12:45 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 59 60 0 119 152 271 Total 0 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 59 60 0 119 152 20 544 1101 70 144 279 11:45 PM 0 0 0 0 0 0 65 68 0 133 166 1 0 167 300 22:55 PM 0 0 0 0 0 0 65 68 0 133 166 1 0 167 300 22:55 PM 0 0 0 0 0 0 99 69 0 168 124 177 4 0 151 225 230 22:55 PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		,												,	
08:15 AM 0 0 0 0 0 60 38 0 98 137 1 0 138 236 08:30 AM 0 0 0 0 0 61 47 0 108 127 4 0 131 239 08:45 AM 0 0 0 0 0 0 50 34 0 84 126 1 0 127 211 Total 0 0 0 0 0 0 50 34 0 84 126 1 0 127 211 09:00 AM 0 0 0 0 0 55 34 0 94 130 2 0 132 226 09:15 AM 0 0 0 0 0 55 38 0 93 120 1 0 121 214 09:30 AM 0 0 0 0 0 65 38 0 93 120 1 0 121 214 09:30 AM 0 0 0 0 0 66 43 0 89 142 1 0 143 232 09:45 AM 0 0 0 0 0 61 51 0 112 125 0 0 125 237 Total 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:35 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 49 41 0 90 133 1 0 134 224 10:30 AM 0 0 0 0 0 0 64 61 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 237 210 0 447 544 5 0 549 996 11:00 AM 0 0 0 0 0 0 88 65 0 145 134 1 0 135 288 11:30 AM 0 0 0 0 0 0 88 65 50 155 133 134 1 0 135 288 11:30 AM 0 0 0 0 0 0 88 65 50 155 126 0 0 133 246 11:30 PM 0 0 0 0 0 0 88 59 20 115 132 1 0 133 248 11:30 PM 0 0 0 0 0 0 88 44 0 124 130 0 0 130 254 12:30 PM 0 0 0 0 0 88 59 20 115 132 1 0 133 248 11:30 PM 0 0 0 0 0 0 88 59 20 115 136 2 0 158 279 12:45 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 59 60 0 119 152 271 Total 0 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 59 60 0 119 152 20 544 1101 70 144 279 11:45 PM 0 0 0 0 0 0 65 68 0 133 166 1 0 167 300 22:55 PM 0 0 0 0 0 0 65 68 0 133 166 1 0 167 300 22:55 PM 0 0 0 0 0 0 99 69 0 168 124 177 4 0 151 225 230 22:55 PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		08:00 AM	0	0	0	0	59	40	0	99	134	2	0	136	235
08:30 AM 0 0 0 0 0 61 47 0 108 127 4 0 131 239 08:45 AM 0 0 0 0 0 0 50 34 0 84 126 1 0 127 211 Total 0 0 0 0 0 0 0 230 159 0 389 524 8 0 532 921 09:00 AM 0 0 0 0 0 0 0 55 38 0 93 120 1 0 121 214 09:30 AM 0 0 0 0 0 0 46 43 0 89 142 1 0 143 232 09:45 AM 0 0 0 0 0 0 66 51 0 112 125 0 0 125 237 Total 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:15 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:15 AM 0 0 0 0 0 0 45 50 0 95 128 1 0 129 224 10:30 AM 0 0 0 0 0 0 46 61 0 0 90 133 1 0 134 224 10:30 AM 0 0 0 0 0 0 49 41 0 90 133 1 0 134 224 10:30 AM 0 0 0 0 0 0 49 41 0 90 133 1 0 134 224 10:30 AM 0 0 0 0 0 0 49 41 0 90 133 1 0 134 224 10:30 AM 0 0 0 0 0 0 64 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 0 64 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 0 64 61 0 125 136 2 0 138 263 Total 0 0 0 0 0 0 88 65 0 153 134 1 0 134 225 11:15 AM 0 0 0 0 0 0 66 48 0 114 110 1 0 111 225 11:15 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 134 225 11:15 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 134 225 11:15 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 134 225 11:15 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 134 225 11:15 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 134 225 11:15 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 135 288 11:30 AM 0 0 0 0 0 0 88 65 0 153 130 1 0 132 288 11:30 AM 0 0 0 0 0 0 66 40 1 0 125 130 0 0 142 279 11:45 AM 0 0 0 0 0 0 65 66 0 121 158 2 0 0 132 248 Total 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 88 59 0 147 130 0 0 130 254 12:30 PM 0 0 0 0 0 0 77 2 50 0 122 132 1 0 133 255 01:5 PM 0 0 0 0 0 0 78 50 0 147 130 0 0 150 277 Total 0 0 0 0 0 78 50 0 147 130 0 0 150 277 Total 0 0 0 0 0 0 78 50 0 147 130 0 0 150 277 Total 0 0 0 0 0 0 65 68 0 137 168 124 10 0 133 255 01:5 PM 0 0 0 0 0 0 65 68 0 138 124 1 0 133 255 01:5 PM 0 0 0 0 0 0 65 68 0 133 166 1 0 0 167 300 22:5 PM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0	0	0	60	38	0	98		1	0		
Total 0		08:30 AM	0	0	0	0	61		0	108		4	0	131	
Total 0		08:45 AM	0	0	0	0	50	34	0	84	126	1	0	127	211
09:15 AM			0	0	0	0	230		0	389		8	0	532	921
09:15 AM															
O9:30 AM		09:00 AM	0	0	0	0	60	34	0	94	130	2	0	132	226
Total O O O O O O O O O O O O O O O O O O		09:15 AM	0	0	0	0	55	38	0	93	120	1	0	121	214
Total 0		09:30 AM	0	0	0	0	46	43	0	89	142	1	0	143	232
10:00 AM		09:45 AM	0	0	0	0	61	51	0	112	125	0	0	125	237
10:15 AM		Total	0	0	0	0	222	166	0	388	517	4	0	521	909
10:15 AM															
10:30 AM		10:00 AM	0	0	0	0	45	50	0	95	128	1	0	129	224
10:45 AM		10:15 AM	0	0	0	0	49	41	0	90	133	1	0	134	224
Total 0 0 0 237 210 0 447 544 5 0 549 996 11:00 AM 0 0 0 0 66 48 0 114 110 1 0 111 225 11:15 AM 0 0 0 0 88 65 0 153 134 1 0 135 288 11:30 AM 0 0 0 0 72 65 0 137 142 0 0 142 279 11:45 AM 0 0 0 0 63 52 0 115 132 1 0 133 248 Total 0 0 0 0 289 230 0 519 518 3 0 521 1040 12:00 PM 0 0 0 0 65 0 165 126 0 0 126		10:30 AM	0	0	0	0	79	58	0	137	147	1	0	148	285
11:00 AM	_		0	0	0				0				0		263
11:15 AM		Total	0	0	0	0	237	210	0	447	544	5	0	549	996
11:15 AM		1												1	
11:30 AM												1			
11:45 AM			_	-	-	- 1						1			
Total 0 0 0 289 230 0 519 518 3 0 521 1040 12:00 PM 0 0 0 0 100 65 0 165 126 0 0 126 291 12:15 PM 0 0 0 0 88 44 0 124 130 0 0 130 254 12:30 PM 0 0 0 0 65 56 0 121 156 2 0 158 279 12:45 PM 0 0 0 0 88 59 0 147 130 0 0 130 277 Total 0 0 0 0 333 224 0 557 542 2 0 544 1101 01:00 PM 0 0 0 0 72 50 0 122 132 1 0															
12:00 PM	_														
12:15 PM		Total	0	0	0	0	289	230	0	519	518	3	0	521	1040
12:15 PM			_	_	_				_	1		_	_		
12:30 PM															
12:45 PM			_		-										
Total 0 0 0 333 224 0 557 542 2 0 544 1101 01:00 PM 0 0 0 0 72 50 0 122 132 1 0 133 255 01:15 PM 0 0 0 0 59 60 0 119 152 0 0 152 271 01:30 PM 0 0 0 0 78 57 0 135 143 1 0 144 279 01:45 PM 0 0 0 0 77 47 0 124 157 0 0 157 281 Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 0 65 68 0 133 166 1 0															
01:00 PM 0 0 0 72 50 0 122 132 1 0 133 255 01:15 PM 0 0 0 0 59 60 0 119 152 0 0 152 271 01:30 PM 0 0 0 0 78 57 0 135 143 1 0 144 279 01:45 PM 0 0 0 0 77 47 0 124 157 0 0 157 281 Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 0 65 68 0 133 166 1 0 167 300 02:00 PM 0 0 0 99 69 0 168 124 1 0 125	_														
01:15 PM 0 0 0 59 60 0 119 152 0 0 152 271 01:30 PM 0 0 0 0 78 57 0 135 143 1 0 144 279 01:45 PM 0 0 0 0 77 47 0 124 157 0 0 157 281 Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 0 65 68 0 133 166 1 0 167 300 02:15 PM 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 90 54 0 144 147 4 0 151 295 <td></td> <td>I otal </td> <td>0</td> <td>0</td> <td>0</td> <td>0 </td> <td>333</td> <td>224</td> <td>0</td> <td>557</td> <td>542</td> <td>2</td> <td>Ü</td> <td>544 </td> <td>1101</td>		I otal	0	0	0	0	333	224	0	557	542	2	Ü	544	1101
01:15 PM 0 0 0 59 60 0 119 152 0 0 152 271 01:30 PM 0 0 0 0 78 57 0 135 143 1 0 144 279 01:45 PM 0 0 0 0 77 47 0 124 157 0 0 157 281 Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 0 65 68 0 133 166 1 0 167 300 02:15 PM 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 90 54 0 144 147 4 0 151 295 <td></td> <td>04.00 DM</td> <td>0</td> <td>•</td> <td>0</td> <td>ا م</td> <td>70</td> <td></td> <td>0</td> <td>400</td> <td>100</td> <td>4</td> <td>0</td> <td>100</td> <td>055</td>		04.00 DM	0	•	0	ا م	70		0	400	100	4	0	100	055
01:30 PM 0 0 0 0 78 57 0 135 143 1 0 144 279 01:45 PM 0 0 0 0 77 47 0 124 157 0 0 157 281 Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 65 68 0 133 166 1 0 167 300 02:15 PM 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 90 54 0 144 147 4 0 151 295 02:45 PM 0 0 0 80 65 0 145 148 1 0 149 294 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>															
01:45 PM 0 0 0 0 77 47 0 124 157 0 0 157 281 Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 0 65 68 0 133 166 1 0 167 300 02:15 PM 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 90 54 0 144 147 4 0 151 295 02:45 PM 0 0 0 80 65 0 145 148 1 0 149 294															
Total 0 0 0 0 286 214 0 500 584 2 0 586 1086 02:00 PM 0 0 0 0 65 68 0 133 166 1 0 167 300 02:15 PM 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 90 54 0 144 147 4 0 151 295 02:45 PM 0 0 0 80 65 0 145 148 1 0 149 294		01:30 PM	•	_	-	- 1			-			•	-		2/9
02:00 PM 0 0 0 0 65 68 0 133 166 1 0 167 300 02:15 PM 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 90 54 0 144 147 4 0 151 295 02:45 PM 0 0 0 80 65 0 145 148 1 0 149 294	_														
02:15 PM 0 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 0 90 54 0 144 147 4 0 151 295 02:45 PM 0 0 0 0 80 65 0 145 148 1 0 149 294		ı otal	U	U	U	U	∠86	∠14	U	500	584	2	U	286	1086
02:15 PM 0 0 0 0 99 69 0 168 124 1 0 125 293 02:30 PM 0 0 0 0 90 54 0 144 147 4 0 151 295 02:45 PM 0 0 0 0 80 65 0 145 148 1 0 149 294		02:00 DM	0	Δ	^	0	GE.	60	0	100	166	4	^	167	200
02:30 PM						1									
02:45 PM												-			
			_	_											
Total	_														
		i Olai	U	J	U	O	007	230	U	J30	303	,	J	332	1102

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

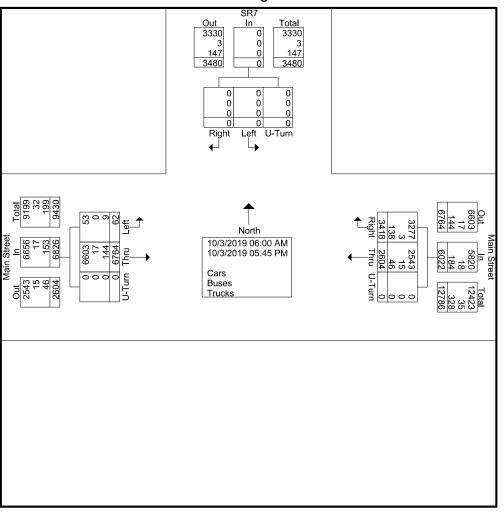
File Name: Main_Street_at_SR7_704681_10-03-2019

Site Code: Site 3 - Thursday

Start Date : 10/3/2019

Page No : 2
Groups Printed- Cars - Buses - Trucks

					roups Print			TTUCKS					
			R7				Street				Street		
		From	North			Fron	n East			Fron	า West		
Start Time	Right	Left	U-Turn A	op. Total	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
03:00 PM	0	0	0	0	80	77	0	157	149	1	0	150	307
03:15 PM	0	0	0	0	102	75	0	177	125	1	0	126	303
03:30 PM	0	0	0	0	87	74	0	161	164	1	0	165	326
03:45 PM	0	0	0	0	96	73	0	169	146	3	0	149	318
Total	0	0	0	0	365	299	0	664	584	6	0	590	1254
04:00 PM	0	0	0	0	73	67	0	140	117	3	0	120	260
04:15 PM	0	0	0	0	93	93	0	186	156	4	0	160	346
04:30 PM	0	0	0	0	88	79	0	167	173	2	0	175	342
04:45 PM	0	0	0	0	96	79	0_	175	174	1_	0	175	350
Total	0	0	0	0	350	318	0	668	620	10	0	630	1298
05:00 PM	0	0	0	0	106	85	0	191	175	1	0	176	367
05:15 PM	0	0	0	0	101	70	0	171	192	0	0	192	363
05:30 PM	0	0	0	0	92	70	0	162	179	2	0	181	343
05:45 PM	0	0	0	0	80	77	0	157	149	2	0	151	308
Total	0	0	0	0	379	302	0	681	695	5	0	700	1381
Grand Total	0	0	0	0	3418	2604	0	6022	6764	62	0	6826	12848
Apprch %	0	0	0		56.8	43.2	0		99.1	0.9	0		
Total %	0	0	0	0	26.6	20.3	0	46.9	52.6	0.5	0	53.1	
Cars	0	0	0	0	3277	2543	0	5820	6603	53	0	6656	12476
% Cars	0	0	0	0	95.9	97.7	0	96.6	97.6	85.5	0	97.5	97.1
Buses	0	0	0	0	3	15	0	18	17	0	0	17	35
% Buses	0	0	0	0	0.1	0.6	0	0.3	0.3	00	0	0.2	0.3
Trucks	0	0	0	0	138	46	0	184	144	9	0	153	337
% Trucks	0	0	0	0	4	1.8	0	3.1	2.1	14.5	0	2.2	2.6

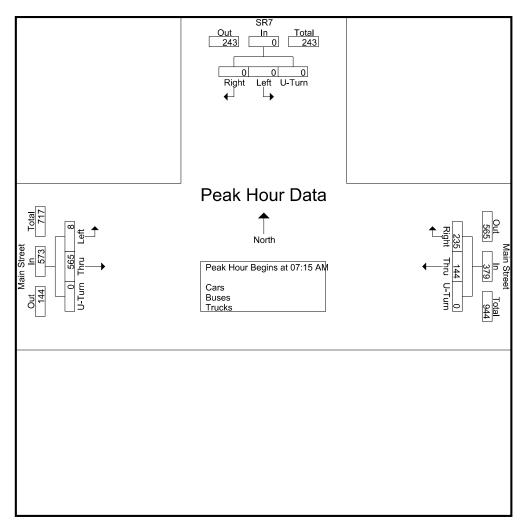

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Main_Street_at_SR7_704681_10-03-2019

Site Code: Site 3 - Thursday

Start Date : 10/3/2019

Page No : 3


Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

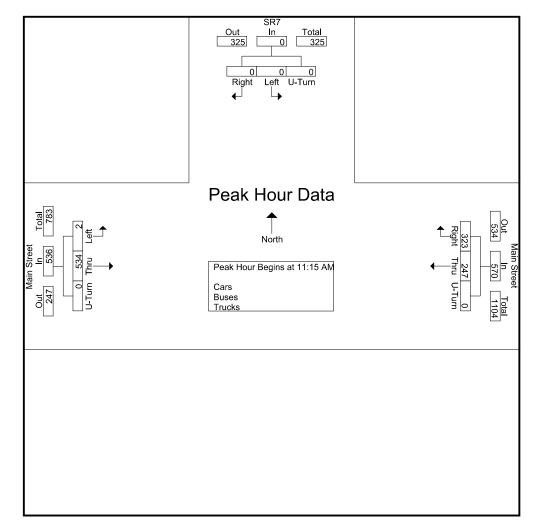
File Name: Main_Street_at_SR7_704681_10-03-2019

Site Code: Site 3 - Thursday

Start Date : 10/3/2019

		_	R7				Street				Street		
		From	North			Fron	n East			Fron	า West		
Start Time	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 06:0	0 AM to 0	09:45 AM	- Peak 1 of	1							•	
Peak Hour for Entire	e Intersection	on Begins	s at 07:15	AM									
07:15 AM	0	0	0	0	52	25	0	77	174	2	0	176	253
07:30 AM	0	0	0	0	63	36	0	99	133	0	0	133	232
07:45 AM	0	0	0	0	61	43	0	104	124	4	0	128	232
08:00 AM	0	0	0	0	59	40	0	99	134	2	0	136	235
Total Volume	0	0	0	0	235	144	0	379	565	8	0	573	952
% App. Total	0	0	0		62	38	0		98.6	1.4	0		
PHF	.000	.000	.000	.000	.933	837	.000	.911	<u>.</u> 812	.500	.000	.814	.941

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

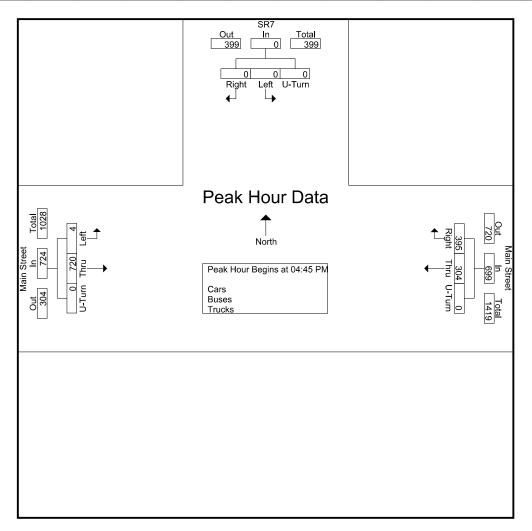

File Name: Main_Street_at_SR7_704681_10-03-2019

Site Code: Site 3 - Thursday

Start Date : 10/3/2019

Page No : 5

		_	R7				Street				Street		
		From	North			Fror	n East			From	n West		
Start Time	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 10:	00 AM to (1:45 PM	- Peak 1 of	1								
Peak Hour for Entire	e Intersect	tion Begins	s at 11:15	5 AM									
11:15 AM	0	0	0	0	88	65	0	153	134	1	0	135	288
11:30 AM	0	0	0	0	72	65	0	137	142	0	0	142	279
11:45 AM	0	0	0	0	63	52	0	115	132	1	0	133	248
12:00 PM	0	0	0	0	100	65	0	165	126	0	0	126	291
Total Volume	0	0	0	0	323	247	0	570	534	2	0	536	1106
% App. Total	0	0	0		56.7	43.3	0		99.6	0.4	0		
PHF	.000	.000	.000	.000	.808	.950	.000	.864	.940	.500	.000	.944	.950


Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Main_Street_at_SR7_704681_10-03-2019

Site Code: Site 3 - Thursday

Start Date : 10/3/2019

		S	R7			Main	Street			Mair	Street		
		From	North			Fror	n East			Fror	n West		
Start Time	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 02:0	0 PM to (05:45 PM	- Peak 1 of	1								
Peak Hour for Entire	e Intersection	on Begin:	s at 04:45	5 PM									
04:45 PM	0	0	0	0	96	79	0	175	174	1	0	175	350
05:00 PM	0	0	0	0	106	85	0	191	175	1	0	176	367
05:15 PM	0	0	0	0	101	70	0	171	192	0	0	192	363
05:30 PM	0	0	0	0	92	70	0	162	179	2	0	181	343
Total Volume	0	0	0	0	395	304	0	699	720	4	0	724	1423
% App. Total	0	0	0		56.5	43.5	0		99.4	0.6	0		
PHF	.000	.000	.000	.000	.932	.894	.000	.915	.938	.500	.000	.943	.969

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

80 Degrees - Sunny Schools in Session

SR7

File Name: Cadiz_Pike_at_SR7_704684_10-03-2019

Cadiz Pike

Site Code: Site 6 - Thursday

Start Date : 10/3/2019

Page No : 1

Groups Printed- Cars - Buses - Trucks

Cadiz Pike

			Er	om Nor	th				rom E				Er	om So	uth				om We			
	Start Time	Right	Thru		U-Turn	App. Total	Right	Thru	Left	U-Turn	A T I	Right	Thru	Left	U-Turn	App. Total	Right	Thru		U-Turn	App. Total	Int. Total
L	06:00 AM	3	114	0	<u>0-1um </u>	117	0	0	0	0-1um <u> </u>	App. Total	59	0	9	0-14m	App. 16tal	58	6	0	0-1um _[App. 10tal 64	249
	06:00 AM	2	129	1	0	132	0	0	0	0	0	67	0	15	0	82	57	3	0	0	60	274
	06:30 AM	3	171	Ó	0	174	0	0	0	0	0	65	0	23	0	88	65	2	0	0	67	329
	06:45 AM	1	175	1	0	177	0	0	0	0	0	60	0	21	0	81	60	7	0	0	67	325
-	Total	9	589	2	0	600	0	0	0	0	0	251	0	68	0	319	240	18	0	0	258	1177
	TOTAL	9	369	2	U	600	0	U	U	U	U	231	U	00	U	319	240	10	U	U	236	11//
	07:00 AM	0	189	0	0	189	0	0	0	0	0	55	0	7	0	62	58	3	0	0	61	312
	07:00 AM 07:15 AM	5	233	0	0	238	0	0	0	0	0	56	0	17	0	73	64	2	0	0	66	377
	07.15 AM 07:30 AM	1	233 213	0	0	236	0	0	0	0	0	53	0	15	0	73 68	71	3	0	0	74	356
			199	-	-		0				- 1		_	21	-	98		ა 1	-	-	59	
-	07:45 AM	2		0	0_	201	0	<u>0</u>	0 0	<u>0</u>	0	77	0 0		0 0		58	9	<u> </u>	0 0		358
	Total	8	834	0	0	842	0	U	U	U	0	241	U	60	U	301	251	9	U	U	260	1403
	08:00 AM	2	201	0	^	205		0	0	0	ا م	75	^	4.4	^	89	51	4	^	^	52	346
		0		2	0		0	_	_	_	0		0	14	0		_	1	0 0	0	_	
	08:15 AM	•	183	0	0	183	0	0	0	0	0	77	0	10	0	87	47	2	-	0	49	319
	08:30 AM	2	179	0	0	181	0	0	0	0	0	88	0	18	0	106	34	6	0	0	40	327
-	08:45 AM	9	187	0	0	196	0	0	0	0	0	70	0	12	0	82	44	2	0	0	46	324
	Total	13	750	2	0	765	0	0	0	0	0	310	0	54	0	364	176	11	0	0	187	1316
				_	_				_	_	. 1		_		_			_	_	_		
	09:00 AM	11	152	0	0	163	0	1	0	0	1	60	0	15	0	75	33	3	0	0	36	275
	09:15 AM	12	148	0	0	160	0	0	0	0	0	68	0	19	0	87	40	7	0	0	47	294
	09:30 AM	1	178	1	0	180	0	0	0	0	0	57	0	28	0	85	45	2	0	0	47	312
	09:45 AM	5	158	0	0	163	0	0	0	0	0	69	0	18	0	87	29	6	0	0	35	285
	Total	29	636	1	0	666	0	1	0	0	1	254	0	80	0	334	147	18	0	0	165	1166
	,															ı						
	10:00 AM	4	185	1	0	190	0	0	0	0	0	81	0	20	0	101	43	3	0	0	46	337
	10:15 AM	5	160	1	0	166	0	0	0	0	0	80	0	29	0	109	37	2	0	0	39	314
	10:30 AM	6	191	0	0	197	0	0	0	0	0	61	0	20	0	81	34	2	0	0	36	314
	10:45 AM	2	186	11	0	189	0	0	0	0	0	79	0	24	0	103	27	2	0	0	29	321
	Total	17	722	3	0	742	0	0	0	0	0	301	0	93	0	394	141	9	0	0	150	1286
	11:00 AM	5	145	0	0	150	0	0	0	0	0	94	0	15	0	109	14	2	0	0	16	275
	11:15 AM	6	153	1	0	160	0	0	0	0	0	77	0	32	0	109	29	6	0	0	35	304
	11:30 AM	8	185	1	0	194	0	0	0	0	0	93	0	19	0	112	36	2	0	0	38	344
	11:45 AM	10	152	0	0	162	0	0	0	0	0	86	0	13	0	99	32	3	0	0	35	296
	Total	29	635	2	0	666	0	0	0	0	0	350	0	79	0	429	111	13	0	0	124	1219
	12:00 PM	8	152	0	0	160	0	0	0	0	0	88	0	20	0	108	30	3	0	0	33	301
	12:15 PM	5	150	0	0	155	0	0	0	0	0	86	0	19	0	105	23	1	0	0	24	284
	12:30 PM	5	181	1	0	187	0	0	0	0	0	90	0	28	0	118	22	4	0	0	26	331
	12:45 PM	6	176	0	0	182	0	0	0	0	0	99	0	28	0	127	22	4	0	0	26	335
	Total	24	659	1	0	684	0	0	0	0	0	363	0	95	0	458	97	12	0	0	109	1251
	·															•						
	01:00 PM	8	171	3	0	182	0	0	0	0	0	121	0	26	0	147	22	7	0	0	29	358
	01:15 PM	8	177	0	0	185	0	0	0	0	0	91	0	27	0	118	40	2	0	0	42	345
	01:30 PM	6	177	0	0	183	0	0	0	0	0	83	0	27	0	110	31	4	0	0	35	328
	01:45 PM	5	186	1	Ö	192	Ö	Ö	Ō	Ö	ŏ	81	Ö	27	Ö	108	22	1	Ö	Ö	23	323
-	Total	27	711	4	0	742	0	0	0	0	0	376	0	107	0	483	115	14	0	0	129	1354
	· Star			•	Ü		, ,	3	J	,	J	0.0	Ŭ		J	.00		• •	ŭ	Ū	0	
	02:00 PM	9	185	0	0	194	0	0	0	0	0	89	0	19	0	108	26	4	0	0	30	332
	02:00 FM	7	183	1	ő	191	ő	0	Ö	ő	0	92	ő	31	Ö	123	32	5	Ö	Ö	37	351
	02:30 PM	6	189	2	ő	197	ő	0	0	Ö	0	104	ő	37	Ö	141	34	Ő	Ö	Ö	34	372
	02:45 PM	7	171	0	ő	178	Ô	0	0	0	0	97	0	38	0	135	36	3	Ö	Ö	39	352
-	Total	29	728	3	0	760	0	0	0	0	0	382	0	125	0	507	128	12	0	0	140	1407
	iolai	23	120	J	U	700		U	U	U	U	002	U	120	U	301	120	14	U	U	1-10	1707

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

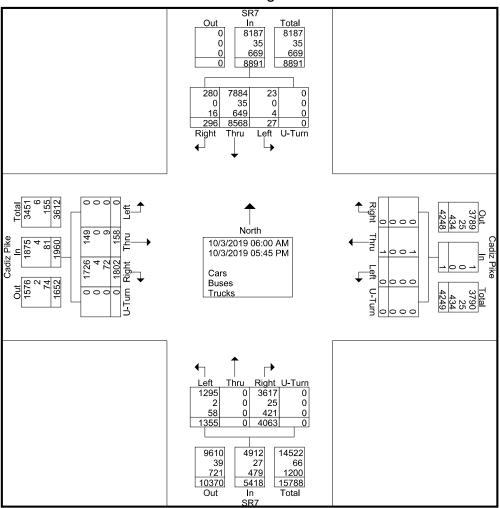
File Name: Cadiz_Pike_at_SR7_704684_10-03-2019

Site Code: Site 6 - Thursday

Start Date : 10/3/2019

Page No : 2
Groups Printed- Cars - Buses - Trucks

03:00 PM 12 191 0 0 203 0 0 0 0 0 117 0 41 0 158 28 2 0 0 30 30 3 3 0 3:15 PM 6 172 1 0 179 0 0 0 0 0 0 110 0 54 0 164 38 4 0 0 42 3 03:30 PM 4 210 0 0 214 0 0 0 0 0 0 84 0 59 0 143 29 3 0 0 32 3 03:45 PM 12 200 2 0 214 0 0 0 0 0 0 0 93 0 46 0 139 30 3 0 0 32 3 03:45 PM 12 200 2 0 214 0 0 0 0 0 0 0 0 404 0 200 0 604 125 12 0 0 137 15 04:00 PM 16 153 1 0 170 0 0 0 0 0 0 103 0 50 0 153 27 1 0 0 28 3 04:15 PM 16 198 0 0 214 0 0 0 0 0 0 100 0 57 0 157 33 6 0 0 39 4 04:30 PM 8 198 1 0 207 0 0 0 0 0 102 0 49 0 151 33 4 0 0 37 04:45 PM 9 209 1 0 219 0 0 0 0 0 102 0 49 0 151 33 4 0 0 37 04:45 PM 9 209 1 0 219 0 0 0 0 0 0 102 0 49 0 151 33 4 0 0 37 04:45 PM 9 209 1 0 219 0 0 0 0 0 0 102 0 38 0 140 34 6 0 0 40 3 Total 49 758 3 0 810 0 0 0 0 0 0 0 101 0 50 0 151 42 1 0 0 43 4 0 05:15 PM 3 186 0 0 189 0 0 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	
Start Time Right Thru Left U-Turn App. Total App. Total App. Total Right Thru Left U-Turn App. Total Right Thru Left U-Turn App. Total App. Total App. Total Right Thru Left U-Turn App. Total App. Total App. Total Right Thru Left U-Turn App. Total App. Total App. Total App. Total Right Thru Left U-Turn App. Total Right Thru Left U-Turn App. Total Right Thru Left U-Turn App. Total Right Thru Left U-Turn App. Total Right	
03:00 PM 12 191 0 0 203 0 0 0 0 117 0 41 0 158 28 2 0 0 30 3 3 3 3 3 3 3 3 3 3 3 3 4 0 0 44 0 0 0 0 110 0 54 0 164 38 4 0 0 42 3 0 33 0 0 42 3 0 0 42 3 0 0 42 3 0 0 3 0 0 32 3 0 0 32 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 33 3 0	
03:15 PM 6 172 1 0 179 0 0 0 0 0 110 0 54 0 164 38 4 0 0 42 3 3 3 0 0 0 0 0 0 110 0 54 0 164 38 4 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 3 0 0 32 3 0 0 32 3 0 0 32 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 33 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. Total
03:30 PM	391
03:45 PM 12 200 2 0 214 0 0 0 0 93 0 46 0 139 30 3 0 0 33 3 Total 34 773 3 0 810 0 0 0 0 0 404 0 200 0 604 125 12 0 0 137 15 04:00 PM 16 153 1 0 170 0 0 0 0 103 0 50 0 153 27 1 0 0 28 3 0 0 151 33 6 0 0 28 3 0 0 157 33 6 0 0 39 4 0 0 0 0 100 0 57 0 157 33 6 0 0 33 2 2 0 0 0	385
Total 34 773 3 0 810 0 0 0 0 404 0 200 0 604 125 12 0 0 137 15 04:00 PM 16 153 1 0 170 0 0 0 0 103 0 50 0 153 27 1 0 0 28 3 04:15 PM 16 198 0 0 214 0 0 0 0 100 0 57 0 157 33 6 0 0 39 4 04:30 PM 8 198 1 0 207 0 0 0 0 102 0 49 0 151 33 4 0 0 37 3 04:45 PM 9 209 1 0 219 0 0 0 0 102 0 38 0	389
04:00 PM	386
04:15 PM 16 198 0 0 214 0 0 0 0 100 0 57 0 157 33 6 0 0 39 4 04:30 PM 8 198 1 0 207 0 0 0 0 102 0 49 0 151 33 4 0 0 37 3 04:45 PM 9 209 1 0 219 0 0 0 0 102 0 38 0 140 34 6 0 0 40 3 Total 49 758 3 0 810 0 0 0 0 407 0 194 0 601 127 17 0 0 144 15 05:00 PM 12 204 3 0 219 0 0 0 0 101 0 50 0	1551
04:15 PM	
04:30 PM 8 198 1 0 207 0 0 0 0 0 102 0 49 0 151 33 4 0 0 37 3 0 04:45 PM 9 209 1 0 219 0 0 0 0 0 102 0 38 0 140 34 6 0 0 40 3 Total 49 758 3 0 810 0 0 0 0 0 0 101 0 194 0 601 127 17 0 0 144 15 05:00 PM 12 204 3 0 219 0 0 0 0 0 0 101 0 50 0 151 42 1 0 0 43 4 0 05:15 PM 3 186 0 0 189 0 0 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	351
04:45 PM 9 209 1 0 219 0 0 0 0 102 0 38 0 140 34 6 0 0 40 3 Total 49 758 3 0 810 0 0 0 0 407 0 194 0 601 127 17 0 0 144 15 05:00 PM 12 204 3 0 219 0 0 0 0 101 0 50 0 151 42 1 0 0 43 4 05:15 PM 3 186 0 0 189 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	410
Total 49 758 3 0 810 0 0 0 0 0 407 0 194 0 601 127 17 0 0 144 15 05:00 PM 12 204 3 0 219 0 0 0 0 0 101 0 50 0 151 42 1 0 0 43 4 05:15 PM 3 186 0 0 189 0 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	395
05:00 PM 12 204 3 0 219 0 0 0 0 0 101 0 50 0 151 42 1 0 0 43 4 05:15 PM 3 186 0 0 189 0 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	399
05:15 PM 3 186 0 0 189 0 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	1555
05:15 PM 3 186 0 0 189 0 0 0 0 0 114 0 50 0 164 46 6 0 0 52 4	
	413
05:30 PM 9 206 0 0 215 0 0 0 0 0 113 0 49 0 162 30 1 0 0 31 4	405
	408
05:45 PM 4 177	359
Total 28 773 3 0 804 0 0 0 0 0 424 0 200 0 624 144 13 0 0 157 15	1585
Grand Total 296 8568 27 0 8891 0 1 0 0 1 4063 0 1355 0 5418 1802 158 0 0 1960 162	6270
Apprch % 3.3 96.4 0.3 0 0 100 0 0 75 0 25 0 91.9 8.1 0 0	
Total % 1.8 52.7 0.2 0 54.6 0 0 0 0 0 25 0 8.3 0 33.3 11.1 1 0 0 12	
Cars 280 7884 23 0 8187 0 1 0 0 1 3617 0 1295 0 4912 1726 149 0 0 1875 149	1975
% Cars 94.6 92 85.2 0 92.1 0 100 0 100 89 0 95.6 0 90.7 95.8 94.3 0 0 95.7	92
Buses 0 35 0 0 35 0 0 0 0 0 0 25 0 2 0 27 4 0 0 0 4	66
% Buses 0 0.4 0 0 0.4 0 0 0 0 0 0 0.6 0 0.1 0 0.5 0.2 0 0 0 0.2	0.4
	1229
	7.6


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

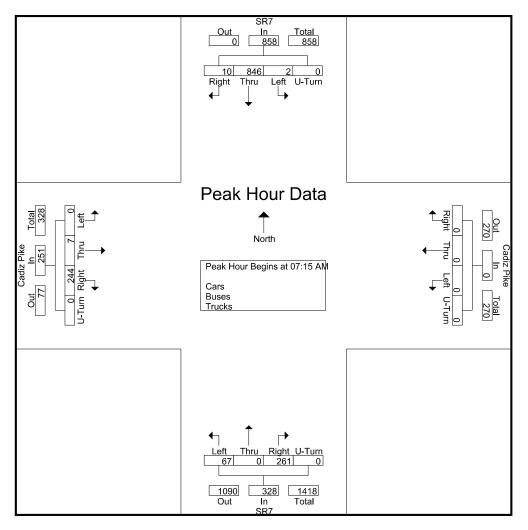
File Name: Cadiz_Pike_at_SR7_704684_10-03-2019

Site Code: Site 6 - Thursday

Start Date : 10/3/2019

Page No : 3

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

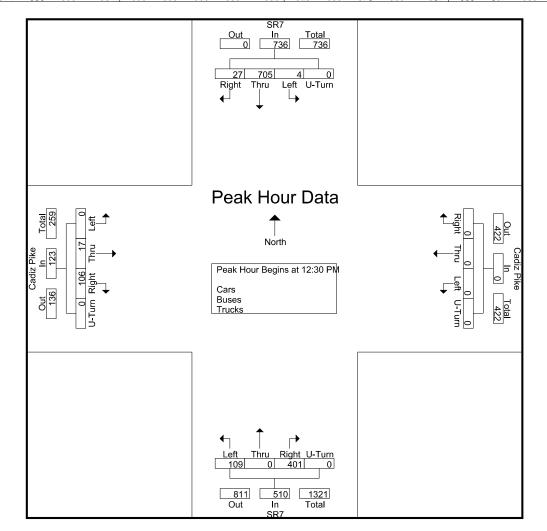
File Name: Cadiz_Pike_at_SR7_704684_10-03-2019

Site Code : Site 6 - Thursday

Start Date : 10/3/2019

			SR7				С	adiz P	ike				SR7				С	adiz P	ike		
		Fr	om No	orth			F	rom Ea	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From 0	6:00 A	AM to C	9:45 AN	1 - Peal	k 1 of 1														
Peak Hour fo	eak Hour for Entire Intersection Begins at 07:15 AM																				
07:15 AM	5	233	0	0	238	0	0	0	0	0	56	0	17	0	73	64	2	0	0	66	377
07:30 AM	1	213	0	0	214	0	0	0	0	0	53	0	15	0	68	71	3	0	0	74	356
07:45 AM	2	199	0	0	201	0	0	0	0	0	77	0	21	0	98	58	1	0	0	59	358
08:00 AM	2	201	2	0	205	0	0	0	0	0	75	0	14	0	89	51	1	0	0	52	346
Total Volume	10	846	2	0	858	0	0	0	0	0	261	0	67	0	328	244	7	0	0	251	1437
% App. Total	1.2	98.6	0.2	0		0	0	0	0		79.6	0	20.4	0		97.2	2.8	0	0		
PHF	.500	.908	.250	.000	.901	.000	.000	.000	.000	.000	.847	.000	.798	.000	.837	.859	.583	.000	.000	.848	.953

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Cadiz_Pike_at_SR7_704684_10-03-2019

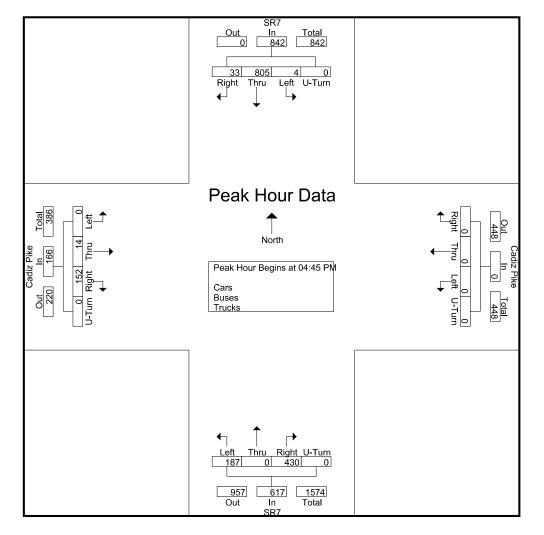
Site Code: Site 6 - Thursday

Start Date : 10/3/2019

Page No : 5

		Г.	SR7	. # 4 b				adiz P				Г.	SR7	tha			_	adiz P			
			OIII INC	ortri				rom E	ası				om Sc	um				OHI VV	esi		
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis From 10:00 AM to 01:45 PM - Peak 1 of 1																					
Peak Hour fo	Peak Hour for Entire Intersection Begins at 12:30 PM																				
12:30 PM	5	181	1	0	187	0	0	0	0	0	90	0	28	0	118	22	4	0	0	26	331
12:45 PM	6	176	0	0	182	0	0	0	0	0	99	0	28	0	127	22	4	0	0	26	335
01:00 PM	8	171	3	0	182	0	0	0	0	0	121	0	26	0	147	22	7	0	0	29	358
01:15 PM	8	177	0	0	185	0	0	0	0	0	91	0	27	0	118	40	2	0	0	42	345
Total Volume	27	705	4	0	736	0	0	0	0	0	401	0	109	0	510	106	17	0	0	123	1369
% App. Total	3.7	95.8	0.5	0		0	0	0	0		78.6	0	21.4	0		86.2	13.8	0	0		
PHF	.844	.974	.333	.000	.984	.000	.000	.000	.000	.000	.829	.000	.973	.000	.867	.663	.607	.000	.000	.732	.956

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Cadiz_Pike_at_SR7_704684_10-03-2019

Site Code: Site 6 - Thursday

Start Date : 10/3/2019

			SR7				С	adiz P	ike				SR7				_	adiz P			1
		Fı	om No	orth			F	rom E	ast			<u>Fr</u>	om Sc	uth			F	rom W	est		
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar			02:00 F	M to 0	5:45 PN	/I - Pea											-				
Peak Hour fo	r Entire	Inters	ection	Begins	at 04:4	5 PM															
04:45 PM	9	209	1	0	219	0	0	0	0	0	102	0	38	0	140	34	6	0	0	40	399
05:00 PM	12	204	3	0	219	0	0	0	0	0	101	0	50	0	151	42	1	0	0	43	413
05:15 PM	3	186	0	0	189	0	0	0	0	0	114	0	50	0	164	46	6	0	0	52	405
05:30 PM	9	206	0	0	215	0	0	0	0	0	113	0	49	0	162	30	1	0	0	31	408
Total Volume	33	805	4	0	842	0	0	0	0	0	430	0	187	0	617	152	14	0	0	166	1625
% App. Total	3.9	95.6	0.5	0		0	0	0	0		69.7	0	30.3	0		91.6	8.4	0	0		
PHF	.688	.963	.333	.000	.961	.000	.000	.000	.000	.000	.943	.000	.935	.000	.941	.826	.583	.000	.000	.798	.984

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

80 Degrees - Sunny Schools in Session

File Name: Cadiz_Pike_at_SR7_2__704685_10-03-2019

Cadiz Pike

Site Code: Site 7 - Thursday

Start Date : 10/3/2019

Page No : 1

Groups Printed- Cars - Buses - Trucks

		_ SH				_ SF					PIKE		
O	5	From N				From	South		5	From			=
Start Time	Right		U-Turn Ap		Thru			App. Total	Right		U-Turn A		Int. Total
06:00 AM	0	0	0	0	46	0	0	46	0	65	0	65	111
06:15 AM	0	0	0	0	35	0	0	35	0	72	0	72	107
06:30 AM	0	0	0	0	47	0	0	47	0	67	0	67	114
06:45 AM	0	0	0	0	31	0	0	31	0	70	0	70	101
Total	0	0	0	0	159	0	0	159	0	274	0	274	433
				·									
07:00 AM	0	0	0	0	61	0	0	61	0	58	0	58	119
07:15 AM	0	0	0	0	55	0	0	55	0	54	0	54	109
07:30 AM	Ö	Ö	Ö	o l	61	Ö	Ö	61	Ö	55	Ö	55	116
07:45 AM	ő	Ő	Ö	ő	67	Ő	Ö	67	ő	85	Õ	85	152
 Total	0	0	0	0	244	0	0	244	0	252	0	252	496
Total	Ü	Ü	O	0	277	Ü	O	2-1-1	Ū	LUL	O	202	430
08:00 AM	0	0	0	0	60	0	0	60	0	75	0	75	135
08:15 AM	0	0	0	0	66	0	0	66	0	80	0	80	146
	=			I							=		
08:30 AM	0	0	0	0	63	0	0	63	0	90	0	90	153
 08:45 AM	0	0	0	0	55	0	0	55	0	72	0	72	127
Total	0	0	0	0	244	0	0	244	0	317	0	317	561
			_						_		_	1	
09:00 AM	0	0	0	0	60	1	0	61	0	63	0	63	124
09:15 AM	0	0	0	0	57	0	0	57	0	74	0	74	131
09:30 AM	0	0	0	0	43	0	0	43	0	63	0	63	106
 09:45 AM	0	0	0	0	62	0	0	62	0	76	0	76	138
Total	0	0	0	0	222	1	0	223	0	276	0	276	499
10:00 AM	0	0	0	0	45	0	0	45	0	86	0	86	131
10:15 AM	0	0	0	0	50	0	0	50	0	88	0	88	138
10:30 AM	0	0	0	0	81	0	0	81	0	60	0	60	141
10:45 AM	0	0	0	0	64	0	0	64	0	91	0	91	155
Total	0	0	0	0	240	0	0	240	0	325	0	325	565
				- '									
11:00 AM	0	0	0	0	67	0	0	67	0	95	0	95	162
11:15 AM	Ō	0	Ö	ō	90	Ö	Ö	90	Ō	84	Ö	84	174
11:30 AM	Ö	Ö	Ö	ŏ	77	1	Ö	78	Ö	98	Ö	98	176
11:45 AM	0	Ö	0	ő	57	Ö	0	57	0	84	Ö	84	141
 Total	0	0	0	0	291	1	0	292	0	361	0	361	653
Total	Ü	O	O	0	231	'	U	232	Ū	301	O	3011	000
12:00 PM	0	0	0	0	106	0	0	106	0	91	0	91	197
12:15 PM	0	0	0	0	73	0	0	73	0	92	0	92	165
	_	-	0	- 1	73 70	-	-	73 70	-	92	-	91	
12:30 PM	0	0		0		0	0		0		0	1	161
 12:45 PM	0	0	0	0	90	0	0	90	0	105	0	105	<u>195</u>
Total	0	0	0	0	339	0	0	339	0	379	0	379	718
01:00 PM	^	^	^	o	75	^	^	75	^	101	0	404	006
	0	0	0	0	75 50	0	0		0	131	0	131	206
01:15 PM	0	0	0	0	59	0	0	59	0	94	0	94	153
01:30 PM	0	0	0	0	75	0	0	75	0	87	0	87	162
 01:45 PM	0	0	0	0	79	0	0	79	0	80	0	80	159
Total	0	0	0	0	288	0	0	288	0	392	0	392	680
02:00 PM	0	0	0	0	70	0	0	70	0	96	0	96	166
02:15 PM	0	0	0	ő	96	0	0	96	0	99	0	99	195
02:30 PM	0	0	0	I .	95	0	0	95		107	0	107	202
02:45 PM				0					0			I	
	0	0	0	0	81	0	0	81	0	99	0	99	<u>180</u>
Total	0	0	0	U	342	0	0	342	0	401	0	401	743

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

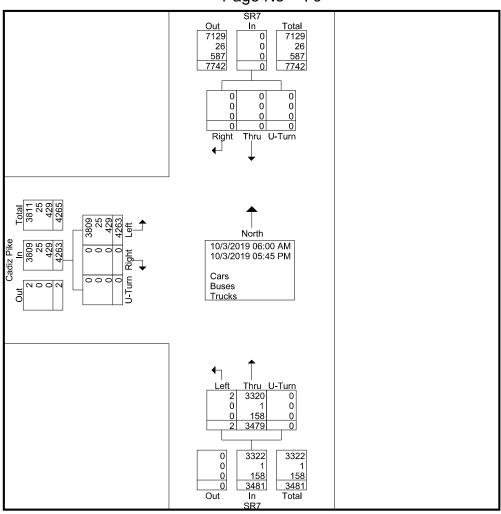
File Name: Cadiz_Pike_at_SR7_2__704685_10-03-2019

Site Code: Site 7 - Thursday

Start Date : 10/3/2019

Page No : 2
Groups Printed- Cars - Buses - Trucks

		S	R7		oups Printe		<u>- buses -</u> R7	TIUCNS		Cadi	z Pike		
			North				South				n West		
Start Time	Right	Thru		p. Total	Thru		U-Turn	App. Total	Right	Left		App. Total	Int. Total
03:00 PM	0	0	0	0	85	0	0	85	0	119	0	119	204
03:15 PM	0	0	0	0	95	0	0	95	0	111	0	111	206
03:30 PM	0	0	0	0	93	0	0	93	0	92	0	92	185
03:45 PM	0	0	0	0	93	0	0	93	0	97	0	97	190
Total	0	0	0	0	366	0	0	366	0	419	0	419	785
04:00 PM	0	0	0	0	79	0	0	79	0	104	0	104	183
04:15 PM	0	0	0	0	96	0	0	96	0	104	0	104	200
04:30 PM	0	0	0	0	97	0	0	97	0	104	0	104	201
04:45 PM	0	00	0	0	90	0	0	90	0	115	0_	115	205
Total	0	0	0	0	362	0	0	362	0	427	0	427	789
05:00 PM	0	0	0	0	110	0	0	110	0	108	0	108	218
05:15 PM	0	0	0	0	99	0	0	99	0	116	0	116	215
05:30 PM	0	0	0	0	90	0	0	90	0	114	0	114	204
05:45 PM	0	00	0	0	83	0	0	83	0	102	0_	102	185
Total	0	0	0	0	382	0	0	382	0	440	0	440	822
Grand Total	0	0	0	0	3479	2	0	3481	0	4263	0	4263	7744
Apprch %	0	0	0		99.9	0.1	0		0	100	0		
Total %	0	0	0	0	44.9	0	0	45	0	55	0	55	
Cars	0	0	0	0	3320	2	0	3322	0	3809	0	3809	7131
% Cars	0	0	0	0	95.4	100	0	95.4	0	89.4	0	89.4	92.1
Buses	0	0	0	0	1	0	0	1	0	25	0	25	26
% Buses	0	0	0	0	0	0	0	0	0	0.6	0_	0.6	0.3
Trucks	0	0	0	0	158	0	0	158	0	429	0	429	587
% Trucks	0	0	0	0	4.5	0	0	4.5	0	10.1	0	10.1	7.6


Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

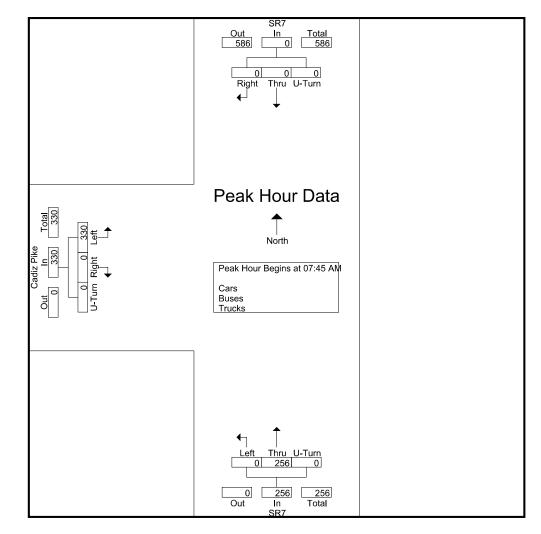
File Name: Cadiz_Pike_at_SR7_2__704685_10-03-2019

Site Code: Site 7 - Thursday

Start Date : 10/3/2019

Page No : 3

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

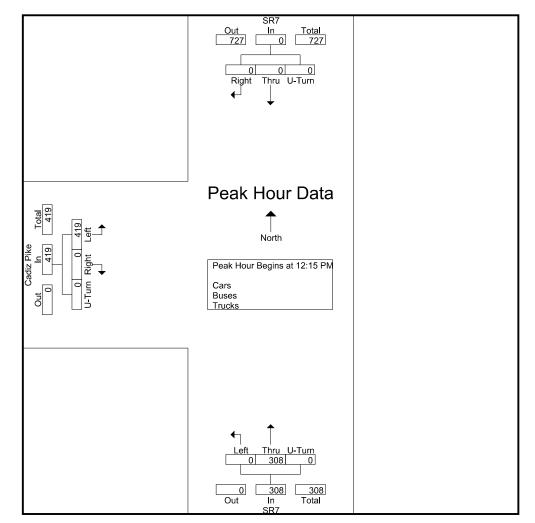
File Name: Cadiz_Pike_at_SR7_2__704685_10-03-2019

Site Code: Site 7 - Thursday

Start Date : 10/3/2019

		S	R7			S	R7			Cadi	z Pike			
		From	North			From	South			From	n West			
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total	
Peak Hour Analysis	From 06:0	0 AM to 0	09:45 AM	- Peak 1 of	1				<u>-</u>			• •		
Peak Hour for Entire Intersection Begins at 07:45 AM														
07:45 AM	0	0	0	0	67	0	0	67	0	85	0	85	152	
08:00 AM	0	0	0	0	60	0	0	60	0	75	0	75	135	
08:15 AM	0	0	0	0	66	0	0	66	0	80	0	80	146	
08:30 AM	0	0	0	0	63	0	0	63	0	90	0	90	153	
Total Volume	0	0	0	0	256	0	0	256	0	330	0	330	586	
% App. Total	0	0	0		100	0	0		0	100	0			
PHF	.000	.000	.000	.000	.955	.000	.000	.955	.000	.917	.000	.917	.958	

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Cadiz_Pike_at_SR7_2__704685_10-03-2019

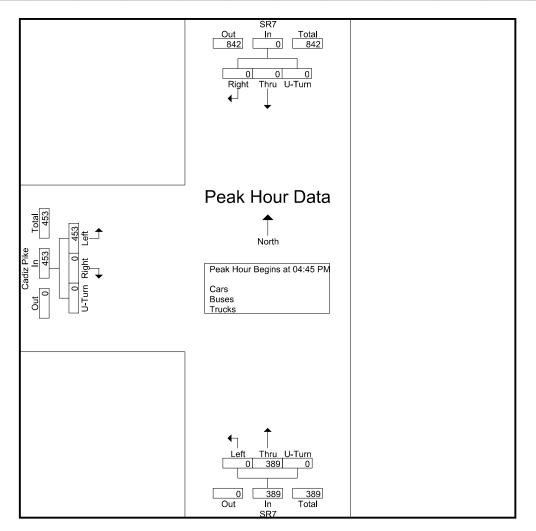
Site Code: Site 7 - Thursday

Start Date : 10/3/2019

Page No : 5

		S	R7			SI	R7			Cadi	z Pike			
		From	North			From	South			From	n West			
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total	
Peak Hour Analysis	From 10:0	0 AM to 0	1:45 PM	- Peak 1 of	1							•		
Peak Hour for Entire Intersection Begins at 12:15 PM														
12:15 PM	0	Ō	0	0	73	0	0	73	0	92	0	92	165	
12:30 PM	0	0	0	0	70	0	0	70	0	91	0	91	161	
12:45 PM	0	0	0	0	90	0	0	90	0	105	0	105	195	
01:00 PM	0	0	0	0	75	0	0	75	0	131	0	131	206	
Total Volume	0	0	0	0	308	0	0	308	0	419	0	419	727	
% App. Total	0	0	0		100	0	0		0	100	0			
PHF	.000	.000	.000	.000	.856	.000	.000	.856	.000	.800	.000	.800	.882	

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Cadiz_Pike_at_SR7_2__704685_10-03-2019

Site Code: Site 7 - Thursday

Start Date : 10/3/2019

		S	R7			S	R7			Cad	iz Pike		
		From	North			From	South			Fron	n West		
Start Time	Right	Thru	U-Turn	App. Total	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Int. Total
Peak Hour Analysis	From 02:0	00 PM to 0	05:45 PM	- Peak 1 of	1				_				
Peak Hour for Entire	e Intersecti	on Begins	s at 04:45	5 PM									
04:45 PM	0	0	0	0	90	0	0	90	0	115	0	115	205
05:00 PM	0	0	0	0	110	0	0	110	0	108	0	108	218
05:15 PM	0	0	0	0	99	0	0	99	0	116	0	116	215
05:30 PM	0	0	0	0	90	0	0	90	0	114	0	114	204
Total Volume	0	0	0	0	389	0	0	389	0	453	0	453	842
% App. Total	0	0	0		100	0	0		0	100	0		
PHF	.000	.000	.000	.000	.884	.000	.000	.884	.000	.976	.000	.976	966

Schools in Session

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Lincoln_Street_at_Howard_Street_704683_10-03-2019 Site Code: Site 5 - Thursday 80 Degrees - Sunny

Start Date : 10/3/2019

Page No : 1

Groups Printed- Cars - Buses - Trucks

			coln S				Hov	vard S	treet	Ju Jui	, <u>Du</u> o		coln S					vard S			
			om No					rom E					om So					om W			
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	-	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
06:00 AM	2	23	0	0	25	11	16	1	0	28	0	0	0	0	0	19	0	2	0	21	74
06:15 AM	1	31	0	0	32	28	26	0	0	54	0	1	1	0	2	13	0	3	0	16	104
06:30 AM 06:45 AM	4 5	32 24	0	0	36	23	24 37	1	0	48	0	6 3	0	0	6 4	17	0	2 2	0	19	109
Total	12	110	0	0	29 122	23 85	103	0 2	0	60 190	0	<u></u> 10	1 2	0	12	15 64	0	9	0	17 73	110 397
Total	12	110	U	U	122	03	103	_	U	130	0	10	_	U	12	04	U	3	U	75	337
07:00 AM	8	35	0	0	43	17	32	0	0	49	0	6	0	0	6	20	0	7	0	27	125
07:15 AM	12	26	0	Ö	38	22	45	Ō	Ö	67	Ō	3	2	Ö	5	28	Ö	6	Ō	34	144
07:30 AM	29	45	0	0	74	21	38	1	0	60	0	6	1	0	7	15	0	7	0	22	163
07:45 AM	26	43	0	0	69	30	49	0	0	79	0	3	2	0	5	29	0	18	0	47	200
Total	75	149	0	0	224	90	164	1	0	255	0	18	5	0	23	92	0	38	0	130	632
				_					_			_	_	_	_		_	_			
08:00 AM	15	39	0	0	54	15	20	1	0	36	0	2	0	0	2	29	0	8	0	37	129
08:15 AM	8	32	0	0	40	18	33	2	0	53	0	3	0	0	3	26	0	4	0	30	126
08:30 AM 08:45 AM	14	33 26	0	0	42 40	28 16	30 35	2	0	60 51	0	5 3	2	0	7 6	21 30	0	7 10	0	28 40	137 137
Total	46	130	0	0	176	77	118	5	0	200	0	13	<u></u>	0	18	106	0	29	0	135	529
Total	1 40	100	Ü	Ü	170	, ,,	110	Ü	Ū	200		10	Ū	Ū	10	100	Ü	20	Ü	100	020
09:00 AM	14	31	0	0	45	28	30	0	0	58	0	3	2	0	5	25	0	4	0	29	137
09:15 AM	9	31	0	0	40	17	24	2	0	43	0	1	1	0	2	20	0	10	0	30	115
09:30 AM	10	30	0	0	40	23	33	2	0	58	0	13	3	0	16	13	0	6	0	19	133
09:45_AM	6	21	0	0_	27	25	30	0	0_	55	0	2		0	3	25	0	10	0	35	120
Total	39	113	0	0	152	93	117	4	0	214	0	19	7	0	26	83	0	30	0	113	505
10:00 AM	11	36	0	0	47	26	22	0	0	48	0	3	1	0	4	24	0	3	0	27	126
10:15 AM	12	26	Ö	ő	38	42	38	1	0	81	ő	4	i	0	5	23	0	11	0	34	158
10:30 AM	8	32	Ö	Ö	40	34	27	0	Ö	61	ő	6	3	Ö	9	27	Ö	9	Ö	36	146
10:45 AM	9	30	0	0	39	27	40	1	0	68	0	7	0	0	7	17	0	8	0	25	139
Total	40	124	0	0	164	129	127	2	0	258	0	20	5	0	25	91	0	31	0	122	569
				_		۱						_	_		_			_			
11:00 AM	9	22	0	0	31	28	19	1	0	48	0	5	0	0	5	23	0	6	0	29	113
11:15 AM	9	26	0	0	35	34	30	2	0	66	0	5	0	0	5	26	0	18	0	44	150
11:30 AM 11:45 AM	7 18	31 38	0	0	38 56	28 27	30 31	1	0	59 58	0	4 5	1	0	5 6	23 14	0	8 14	0	31 28	133 148
Total	43	117	0	0	160	117	110	4	0	231	0	19	2	0	21	86	0	46	0	132	544
Total	10	,	Ŭ	Ŭ	100			-	J	201			_	J		, 00	Ū	70	Ŭ	102	0-1-1
12:00 PM	20	36	0	0	56	29	22	5	0	56	0	4	0	0	4	30	0	3	0	33	149
12:15 PM	17	23	0	0	40	33	37	3	0	73	0	3	4	0	7	18	0	5	0	23	143
12:30 PM	14	20	0	0	34	28	31	2	0	61	0	2	2	0	4	21	0	12	0	33	132
12:45 PM	13	30	0	0	43	26	33	5	0	64	0	5	1	0	6	23	0	7	0	30	143
Total	64	109	0	0	173	116	123	15	0	254	0	14	7	0	21	92	0	27	0	119	567
01:00 PM	13	35	0	0	48	30	29	2	0	61	0	8	3	0	11	25	0	15	0	40	160
01:15 PM	9	41	0	0	50	36	24	3	0	63	0	4	2	0	6	26	0	18	0	44	163
01:30 PM	5	34	0	Ö	39	37	35	2	0	74	0	ō	1	0	1	31	0	7	0	38	152
01:45 PM	10	19	Ö	Ö	29	45	40	1	0	86	Ö	3	2	0	5	25	0	10	Ö	35	155
Total	37	129	0	0	166	148	128	8	0	284	0	15	8	0	23	107	0	50	0	157	630
	ı					I					1					II.				·	
02:00 PM	13	36	0	0	49	35	37	0	0	72	0	10	2	0	12	32	0	7	0	39	172
02:15 PM	15	36	0	0	51 51	30	41	3	0	74	0	4	1	0	5	31	0	10	0	41	171
02:30 PM 02:45 PM	18 7	33 24	0	0	51 31	40 38	43 55	0 3	0	83 96	0	7 2	1 2	0	8 4	23 43	0	9 13	0	32 56	174 187
Total	53	129	0	0	182	143	<u>55_</u> 176	<u></u>	0	325	0	23	<u> </u>	0	29	129	0	39	0	168	704
ioiai	1 33	123	U	U	102	1 170	170	U	U	525		20	U	U	23	123	U	33	U	100	, , , ,

Cummins Consulting Services, PLLC 2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

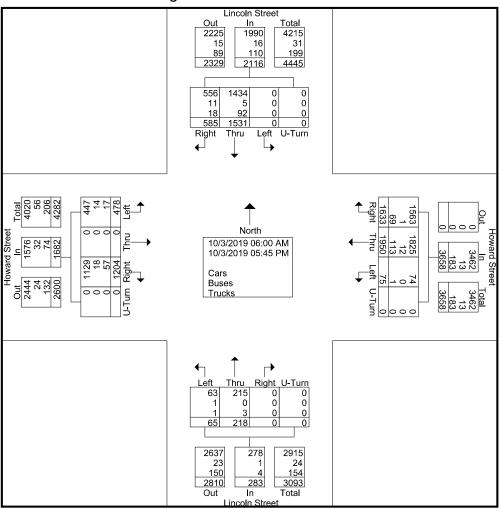
File Name: Lincoln_Street_at_Howard_Street_704683_10-03-2019

Site Code : Site 5 - Thursday

Start Date : 10/3/2019

Page No : 2
Groups Printed- Cars - Buses - Trucks
Lincoln Street

		Lin	coln S	treet			Но۱	ward S	Street			Lin	coln S	treet			Hov	ward S	treet		
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fi	om W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
03:00 PM	11	44	0	0	55	41	33	1	0	75	0	4	0	0	4	28	0	13	0	41	175
03:15 PM	15	32	0	0	47	40	40	1	0	81	0	5	2	0	7	37	0	9	0	46	181
03:30 PM	17	31	0	0	48	63	53	3	0	119	0	5	3	0	8	32	0	8	0	40	215
03:45 PM	12	29	0	0	41	48	51	4	0	103	0	2	1	0	3	26	0	12	0	38	185
Total	55	136	0	0	191	192	177	9	0	378	0	16	6	0	22	123	0	42	0	165	756
04:00 PM	19	33	0	0	52	53	46	2	0	101	0	10	0	0	10	19	0	15	0	34	197
04:15 PM	10	33	0	0	43	51	42	6	0	99	0	2	0	0	2	27	0	10	0	37	181
04:30 PM	20	41	0	0	61	42	79	2	0	123	0	9	1	0	10	34	0	8	0	42	236
04:45 PM	17	29	0	0	46	52	117	0	0	169	0	3	2	0	5	19	0	21	0	40	260
Total	66	136	0	0	202	198	284	10	0	492	0	24	3	0	27	99	0	54	0	153	874
05:00 PM	9	49	0	0	58	60	103	1	0	164	0	7	3	0	10	41	0	19	0	60	292
05:15 PM	15	38	0	0	53	72	107	4	0	183	0	12	0	0	12	34	0	30	0	64	312
05:30 PM	19	33	0	0	52	52	46	1	0	99	0	4	3	0	7	27	0	22	0	49	207
05:45 PM	12	29	0	0	41	61	67	3	0	131	0	4	3	0	7	30	0	12	0	42	221
Total	55	149	0	0	204	245	323	9	0	577	0	27	9	0	36	132	0	83	0	215	1032
Grand Total	585	1531	0	0	2116	1633	1950	75	0	3658	0	218	65	0	283	1204	0	478	0	1682	7739
Apprch %	27.6	72.4	0	0		44.6	53.3	2.1	0		0	77	23	0		71.6	0	28.4	0		
Total %	7.6	19.8	0	0	27.3	21.1	25.2	1	0	47.3	0	2.8	0.8	0	3.7	15.6	0	6.2	0	21.7	
Cars	556	1434	0	0	1990	1563	1825	74	0	3462	0	215	63	0	278	1129	0	447	0	1576	7306
% Cars	95	93.7	0	0	94	95.7	93.6	98.7	0	94.6	0	98.6	96.9	0	98.2	93.8	0	93.5	0	93.7	94.4
Buses	11	5	0	0	16	1	12	0	0	13	0	0	1	0	1	18	0	14	0	32	62
% Buses	1.9	0.3	0	0	0.8	0.1	0.6	0	0	0.4	0	0	1.5	0	0.4	1.5	0	2.9	0	1.9	0.8
Trucks	18	92	0	0	110	69	113	1	0	183	0	3	1	0	4	57	0	17	0	74	371
% Trucks	3.1	6	0	0	5.2	4.2	5.8	1.3	0	5	0	1.4	1.5	0	1.4	4.7	0	3.6	0	4.4	4.8


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

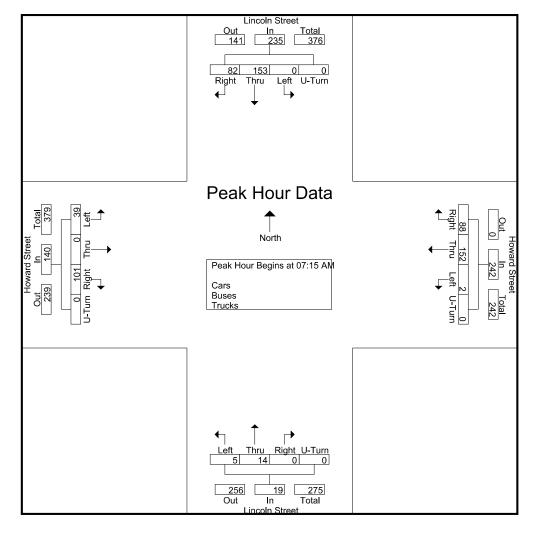
File Name: Lincoln_Street_at_Howard_Street_704683_10-03-2019

Site Code : Site 5 - Thursday

Start Date : 10/3/2019

Page No : 3

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Lincoln_Street_at_Howard_Street_704683_10-03-2019

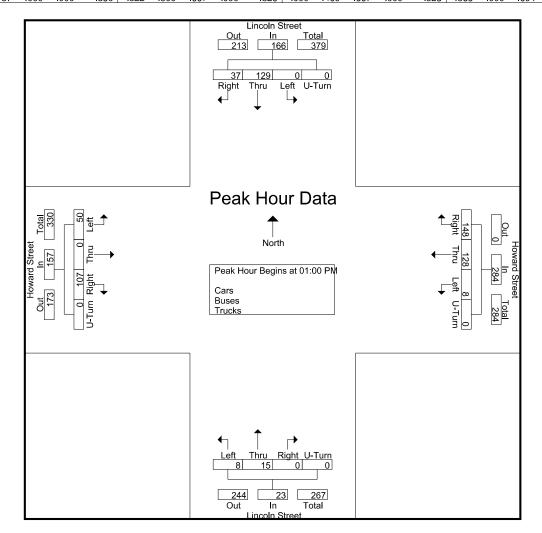
Site Code: Site 5 - Thursday

Start Date : 10/3/2019

		Lin	coln S	treet			Hov	vard S	treet			Lin	coln S	treet			Hov	ward S	Street		
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fi	om W	'est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	From 0	06:00 A	AM to C	9:45 AM	1 - Pea	k 1 of 1														
Peak Hour fo	r Entire	Inters	ection	Begins	at 07:1	5 AM															
07:15 AM	12	26	0	0	38	22	45	0	0	67	0	3	2	0	5	28	0	6	0	34	144
07:30 AM	29	45	0	0	74	21	38	1	0	60	0	6	1	0	7	15	0	7	0	22	163
07:45 AM	26	43	0	0	69	30	49	0	0	79	0	3	2	0	5	29	0	18	0	47	200
08:00 AM	15	39	0	0	54	15	20	1	0	36	0	2	0	0	2	29	0	8	0	37	129
Total Volume	82	153	0	0	235	88	152	2	0	242	0	14	5	0	19	101	0	39	0	140	636
% App. Total	34.9	65.1	0	0		36.4	62.8	8.0	0		0	73.7	26.3	0		72.1	0	27.9	0		
PHF	.707	.850	.000	.000	.794	.733	.776	.500	.000	.766	.000	.583	.625	.000	.679	.871	.000	.542	.000	.745	.795

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

10 Touro III and othir Godining


File Name: Lincoln_Street_at_Howard_Street_704683_10-03-2019

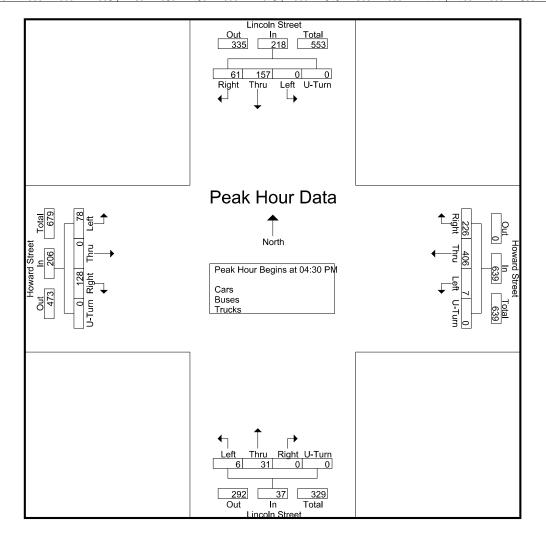
Site Code : Site 5 - Thursday

Start Date : 10/3/2019

Page No : 5

			coln St					ward S					coln S					ward S rom W			
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	From	10:00 Å	AM to C	1:45 PN	1 - Peal	k 1 of 1										•				
Peak Hour fo	r Entire	Inters	ection	Begins	at 01:0	0 PM															
01:00 PM	13	35	0	0	48	30	29	2	0	61	0	8	3	0	11	25	0	15	0	40	160
01:15 PM	9	41	0	0	50	36	24	3	0	63	0	4	2	0	6	26	0	18	0	44	163
01:30 PM	5	34	0	0	39	37	35	2	0	74	0	0	1	0	1	31	0	7	0	38	152
01:45 PM	10	19	0	0	29	45	40	1	0	86	0	3	2	0	5	25	0	10	0	35	155
Total Volume	37	129	0	0	166	148	128	8	0	284	0	15	8	0	23	107	0	50	0	157	630
% App. Total	22.3	77.7	0	0		52.1	45.1	2.8	0		0	65.2	34.8	0		68.2	0	31.8	0		
PHF	.712	.787	.000	.000	.830	.822	.800	.667	.000	.826	.000	.469	.667	.000	.523	.863	.000	.694	.000	.892	.966

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

File Name: Lincoln_Street_at_Howard_Street_704683_10-03-2019

Site Code: Site 5 - Thursday

Start Date : 10/3/2019

			coln S					vard S					coln S					ward S			
		⊢r	om No	ortn			<u>_</u>	rom E	ast			<u> </u>	om So	utn				rom W	<u>est</u>		
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From (02:00 F	PM to 0	5:45 PM	1 - Pea	k 1 of 1														
Peak Hour for	r Entire	Inters	ection	Begins	at 04:3	0 PM															
04:30 PM	20	41	0	0	61	42	79	2	0	123	0	9	1	0	10	34	0	8	0	42	236
04:45 PM	17	29	0	0	46	52	117	0	0	169	0	3	2	0	5	19	0	21	0	40	260
05:00 PM	9	49	0	0	58	60	103	1	0	164	0	7	3	0	10	41	0	19	0	60	292
05:15 PM	15	38	0	0	53	72	107	4	0	183	0	12	0	0	12	34	0	30	0	64	312
Total Volume	61	157	0	0	218	226	406	7	0	639	0	31	6	0	37	128	0	78	0	206	1100
% App. Total	28	72	0	0		35.4	63.5	1.1	0		0	83.8	16.2	0		62.1	0	37.9	0		
PHF	.763	.801	.000	.000	.893	.785	.868	.438	.000	.873	.000	.646	.500	.000	.771	.780	.000	.650	.000	.805	.881

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

80 Degrees - Sunny Schools in Session

Lincoln Street

File Name: Lincoln_Street_at_Whitley_Street_704682_10-03-2019

Whitely Street

Site Code : Site 4 - Thursday

Start Date : 10/3/2019

Page No : 1

Groups Printed- Cars - Buses - Trucks

			coln S					itely S				Line	coln S	treet			Wh	itely S	treet		
		Fr	om No				<u> </u>	rom E				Fr	om Sc	outh				rom W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
06:00 AM	2	1	42	0	45	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	47
06:15 AM	1	1	44	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	46
06:30 AM	1	0	53	0	54	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	55
06:45 AM	1	2	34	0	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37_
Total	5	4	173	0	182	Ö	0	0	0	0	1	1	1	0	3	0	0	0	0	0	185
i otai į	J		.,,	Ū	102	, 0	Ŭ	Ŭ	Ŭ	·		•		Ů	·	, ,	J	Ŭ	Ŭ	·	100
07:00 AM	1	1	59	0	61	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	63
07:15 AM	3	4	52	0	59	ő	0	0	0	Ő	ő	1	Ö	Ő	1	0	Ö	Ö	Ő	0	60
07:30 AM	1	1	60	0	62	ő	0	0	0	0	ő	Ó	1	0	i	0	0	0	0	0	63
07:45 AM	Ö	4	74	0	78	ő	Ö	0	Ö	0	ő	1	Ö	0	i	0	Ö	Ö	0	0	79
Total	5	10	245	0	260	0	0	0	0	0	0	4	1	0	5	0	0	0	0	0	265
i Otai	5	10	243	U	200	, 0	U	U	U	U	0	-	ı	U	3	, 0	U	U	U	U	203
08:00 AM	2	4	64	0	70	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	71
08:15 AM	7	1	53	0	61	0	0	0	0	0	0	Ó	0	0	Ö	0	0	0	0	0	61
08:30 AM	5	i	48	0	54	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	56
08:45 AM	1	1	57	0	59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	7	222	0	244	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	<u>59</u> 247
Total	15	7	222	U	244	0	U	U	U	U	0	3	U	U	3	1 0	U	U	U	U	247
09:00 AM	3	0	49	0	52	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	52
09:15 AM	6	0	44	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50
09:30 AM	0	3	42	0	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45
09:45 AM	3	0	54	0	57	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	57
Total	12	3	189	0	204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	204
·						•					•					•					
10:00 AM	4	2	43	0	49	0	0	0	0	0	1	1	1	0	3	0	0	0	0	0	52
10:15 AM	2	0	48	0	50	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	51
10:30 AM	3	1	54	0	58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	58
10:45 AM	1	1	45	0	47	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	49_
Total	10	4	190	0	204	0	0	0	0	0	3	2	1	0	6	0	0	0	0	0	210
11:00 AM	4	3	41	0	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48
11:15 AM	2	1	51	0	54	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	55
11:30 AM	1	6	45	0	52	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	54
11:45 AM	2	0	48	0	50	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	51
Total	9	10	185	0	204	0	0	0	0	0	2	2	0	0	4	0	0	0	0	0	208
12:00 PM	7	1	63	0	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71
12:15 PM	2	3	41	0	46	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	47
12:30 PM	3	2	40	0	45	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	46
12:45 PM	9	2	47	0	58	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	59
Total	21	8	191	0	220	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	223
01:00 PM	7	1	57	0	65	0	0	0	0	0	1	2	0	0	3	0	0	0	0	0	68
01:15 PM	8	3	66	0	77	0	0	0	0	0	0	2	1	0	3	0	0	0	0	0	80
01:30 PM	3	1	65	0	69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	69
01:45 PM	2	1	37	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40
Total	20	6	225	0	251	0	0	0	0	0	1	4	1	0	6	0	0	0	0	0	257
00:00 044		^	^-	_	7.		^	^	_	^		^	_	^	_		^	^	^	^	l 70
02:00 PM	4	0	67	0	71	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	73
02:15 PM	8	1	60	0	69	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	70
02:30 PM	3	3	45	0	51	0	0	0	0	0	1	3	0	0	4	0	0	0	0	0	55
02:45 PM	4	0	74	0	78	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	79
Total	19	4	246	0	269	0	0	0	0	0	1	4	3	0	8	0	0	0	0	0	277

Cummins Consulting Services, PLLC

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

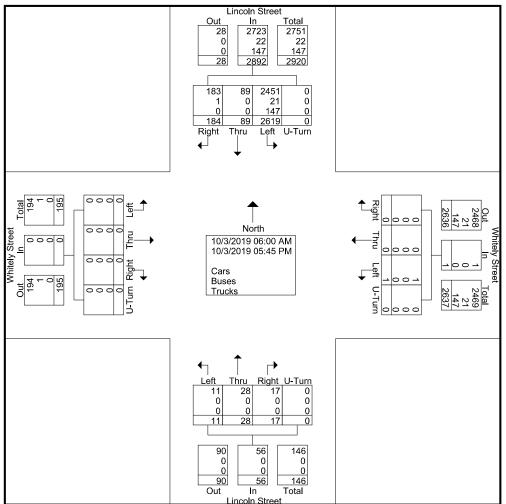
File Name: Lincoln_Street_at_Whitley_Street_704682_10-03-2019

Site Code: Site 4 - Thursday

Start Date : 10/3/2019

Page No : 2
Groups Printed- Cars - Buses - Trucks

		Lin	coln S	troot				itely S		su- Car	Dus		coln S	troot			\/\/h	itely S	troot		
			om No					rom E					om Sc					rom W			
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
03:00 PM	5	4	58	0-14111	App. 10tal	0	0	0	0-14111	App. 10tal	1 1	0	2	0-14111	дрр. тоtа і	0	0	0	0-14111	App. 10tal	70
03:15 PM	5	2	71	0	78	0	0	0	0	0	;	0	2	Õ	3	0	0	0	Ô	0	81
03:30 PM	6	0	61	Ö	67	0	0	0	0	0		1	0	Õ	1	o o	0	0	0	0	68
03:45 PM	4	5	53	Õ	62	Ö	0	0	Ö	0	0	Ö	0	ő	Ö	ő	Ö	0	0	0	62
Total	20	11	243	0	274	0	0	0	0	0	2	1	4	0	7	0	0	0	0	0	281
			0	Ū			ŭ	ŭ	Ū	·	_	•	•	·	•	, ,	Ū	ŭ	ŭ	•	_0.
04:00 PM	8	1	48	0	57	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	58
04:15 PM	3	6	59	0	68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68
04:30 PM	5	4	64	0	73	0	0	0	0	0	2	1	0	0	3	0	0	0	0	0	76
04:45 PM	5	1_	59	0	65	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	69
Total	21	12	230	0	263	0	0	1	0	1	6	1	0	0	7	0	0	0	0	0	271
	1 -															1 -					
05:00 PM	8	2	90	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
05:15 PM	8	0	76	0	84	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	85
05:30 PM	4	4	56	0	64	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	66
05:45_PM	7	4_	58	0	69	0_	0	0_	0	0	0	1_	0	0	1_	0	0	0	0	0	70
Total	27	10	280	0	317	0	0	0	0	0	1	3	0	0	4	0	0	0	0	0	321
Grand Total	184	89	2619	0	2892	l 0	0	1	0	1	17	28	11	0	56	0	0	0	0	0	2949
Apprch %	6.4	3.1	90.6	Ö	2002	Ô	0	100	ő		30.4	50	19.6	Ő	00	n	Ö	0	0	J	2010
Total %	6.2	3	88.8	Õ	98.1	Ö	Ő	0	ő	0	0.6	0.9	0.4	ő	1.9	Ö	Ö	Ö	Õ	0	
Cars	183	89	2451	0	2723	0	0	1	0	1	17	28	11	0	56	0	0	0	0	0	2780
% Cars	99.5	100	93.6	Ö	94.2	0	0	100	0	100	100	100	100	ő	100	ő	Ö	0	Ö	0	94.3
Buses	1	0	21	0	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22
% Buses	0.5	Ö	0.8	Ö	0.8	Ô	Ö	Ö	Ö	0	0	Ö	Ö	Ö	Ô	ő	Ö	Ö	Ö	0	0.7
Trucks	0.0	0	147	0	147	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	147
% Trucks	ő	Ö	5.6	Ö	5.1	ő	Ö	Õ	Ö	Ö	ŏ	Ŏ	Õ	Ö	Ŏ	ő	Ŏ	Ŏ	Ö	ő	5
	,	-		-			•	-	-	-		-	-	-	-	, -	_	-	-	- 1	-


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

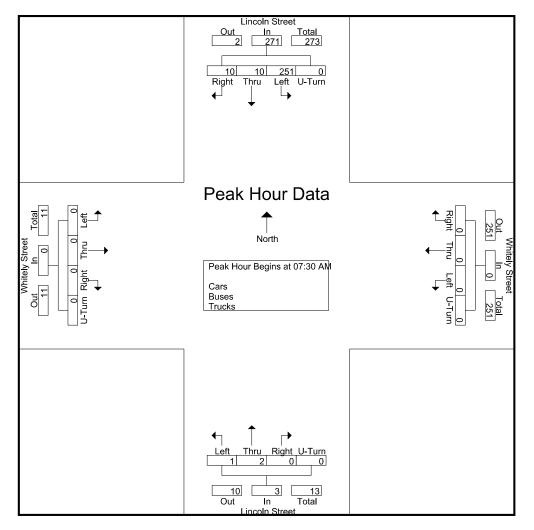
File Name: Lincoln_Street_at_Whitley_Street_704682_10-03-2019

Site Code: Site 4 - Thursday

Start Date : 10/3/2019

Page No : 3

Cummins Consulting Services, PLLC


2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"

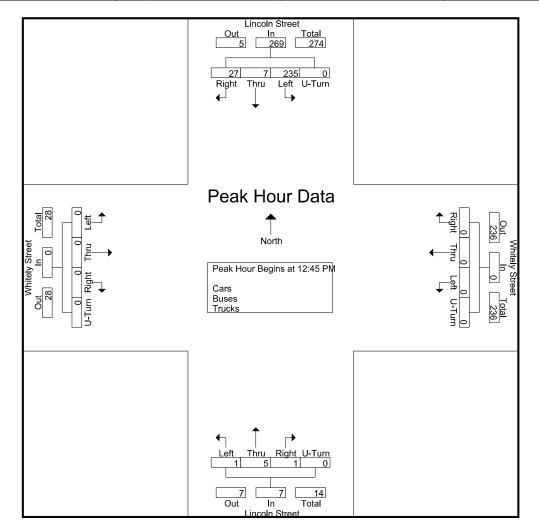
File Name: Lincoln_Street_at_Whitley_Street_704682_10-03-2019

Site Code: Site 4 - Thursday

Start Date : 10/3/2019

		Lin	coln S	treet			Wh	itely S	treet			Lin	coln S	treet			Wh	itely S	treet		
		Fr	om No	orth			F	rom Ea	ast			Fr	om So	uth			Fr	rom W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour A	nalysis	From 0	06:00 A	AM to C	9:45 AN	/I - Peal	k 1 of 1														
Peak Hour fo	r Entire	Inters	ection	Begins	at 07:3	0 AM															
07:30 AM	1	1	60	0	62	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	63
07:45 AM	0	4	74	0	78	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	79
08:00 AM	2	4	64	0	70	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	71
08:15 AM	7	1	53	0	61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61
Total Volume	10	10	251	0	271	0	0	0	0	0	0	2	1	0	3	0	0	0	0	0	274
% App. Total	3.7	3.7	92.6	0		0	0	0	0		0	66.7	33.3	0		0	0	0	0		
PHF	.357	.625	.848	.000	.869	.000	.000	.000	.000	.000	.000	.500	.250	.000	.750	.000	.000	.000	.000	.000	.867

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Lincoln_Street_at_Whitley_Street_704682_10-03-2019

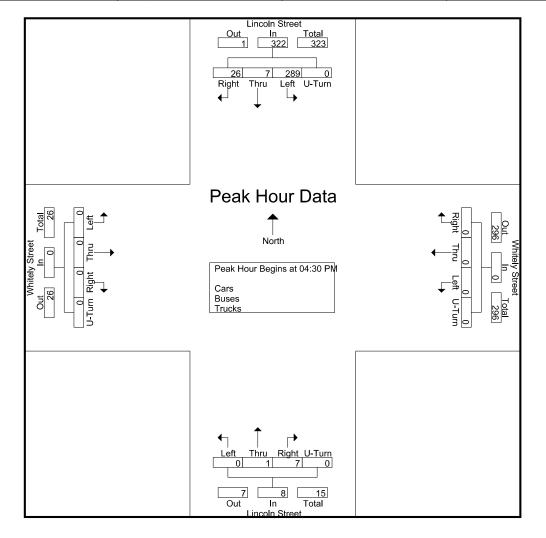
Site Code : Site 4 - Thursday

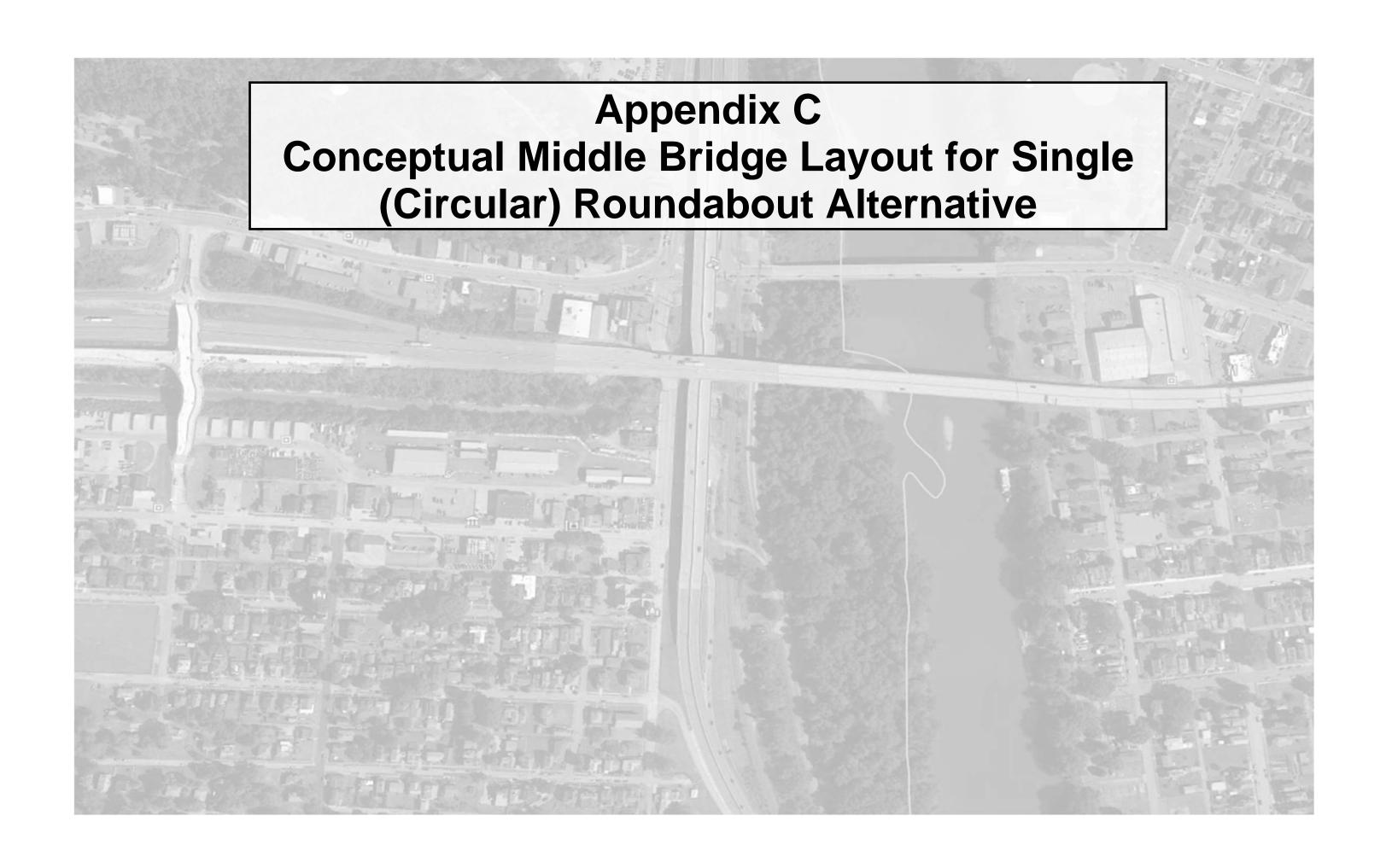
Start Date : 10/3/2019

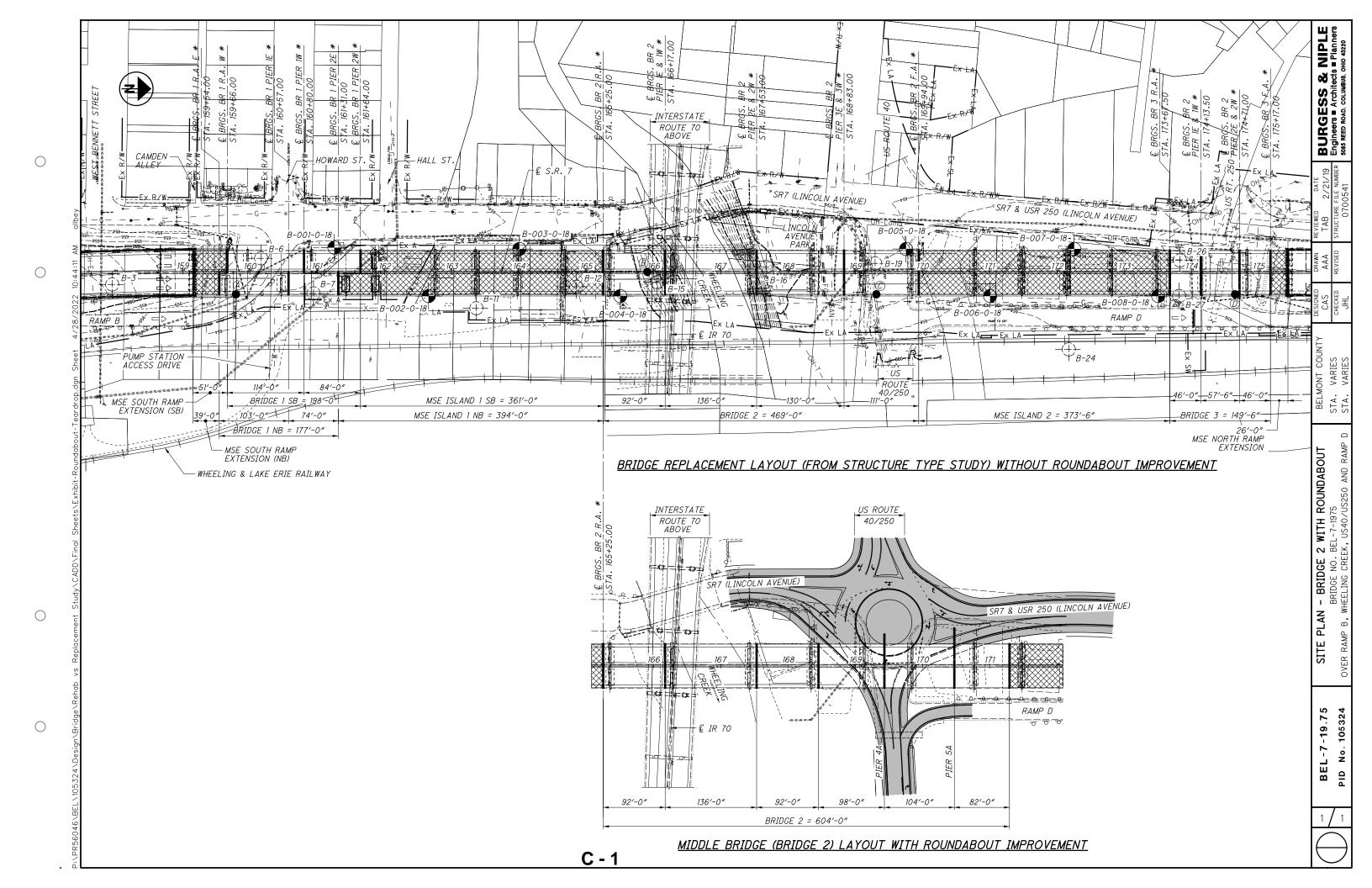
Page No : 5

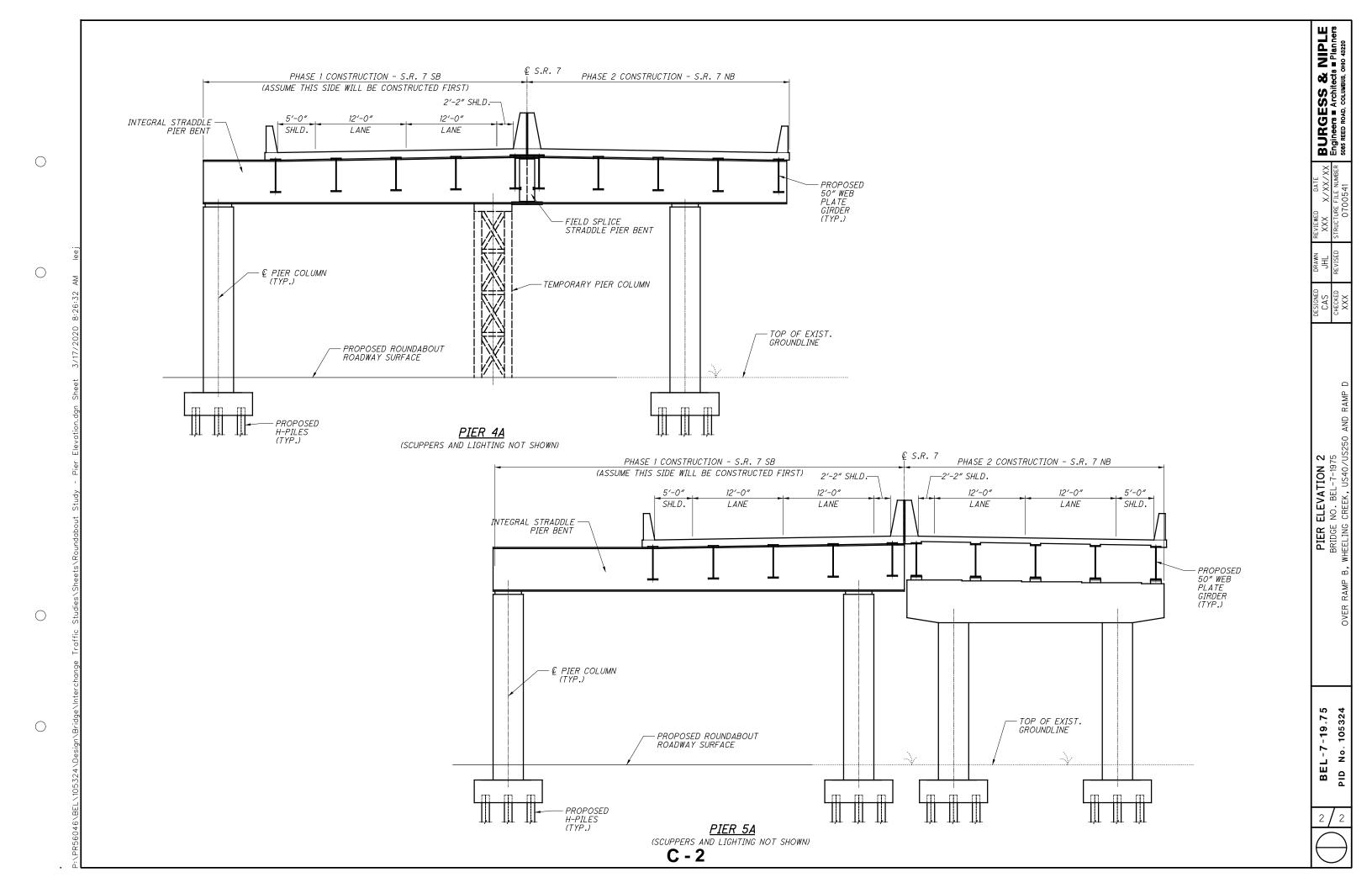
			coln St					itely S					coln S om Sc					itely S			
Start Time	Rig ht	Thr		U-Turn	App. Total	Right	Thr	Left	U-Turn	App. Total	Right	Thr	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From 1	10:00 A	M to 0	1:45 PN	1 - Peal	k 1 of 1										'				
Peak Hour for	r Entire	Inters	ection	Begins	at 12:4	5 PM															
12:45 PM	9	2	47	0	58	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	59
01:00 PM	7	1	57	0	65	0	0	0	0	0	1	2	0	0	3	0	0	0	0	0	68
01:15 PM	8	3	66	0	77	0	0	0	0	0	0	2	1	0	3	0	0	0	0	0	80
01:30 PM	3	1	65	0	69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	69_
Total Volume	27	7	235	0	269	0	0	0	0	0	1	5	1	0	7	0	0	0	0	0	276
% App. Total	10	2.6	87.4	0		0	0	0	0		14.3	71.4	14.3	0		0	0	0	0		
PHF	.750	.583	.890	.000	.873	.000	.000	.000	.000	.000	.250	.625	.250	.000	.583	.000	.000	.000	.000	.000	.863

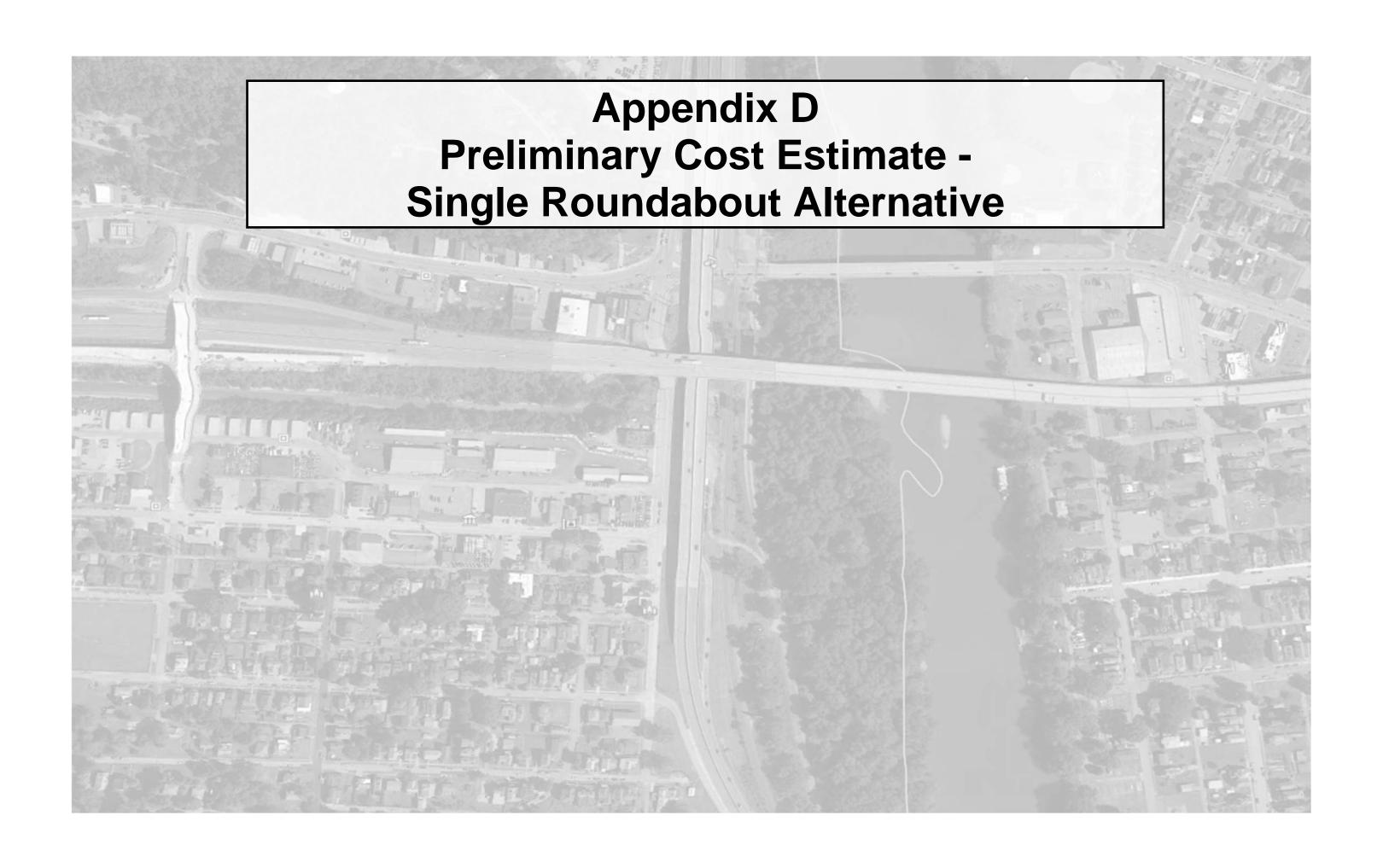
Cummins Consulting Services, PLLC

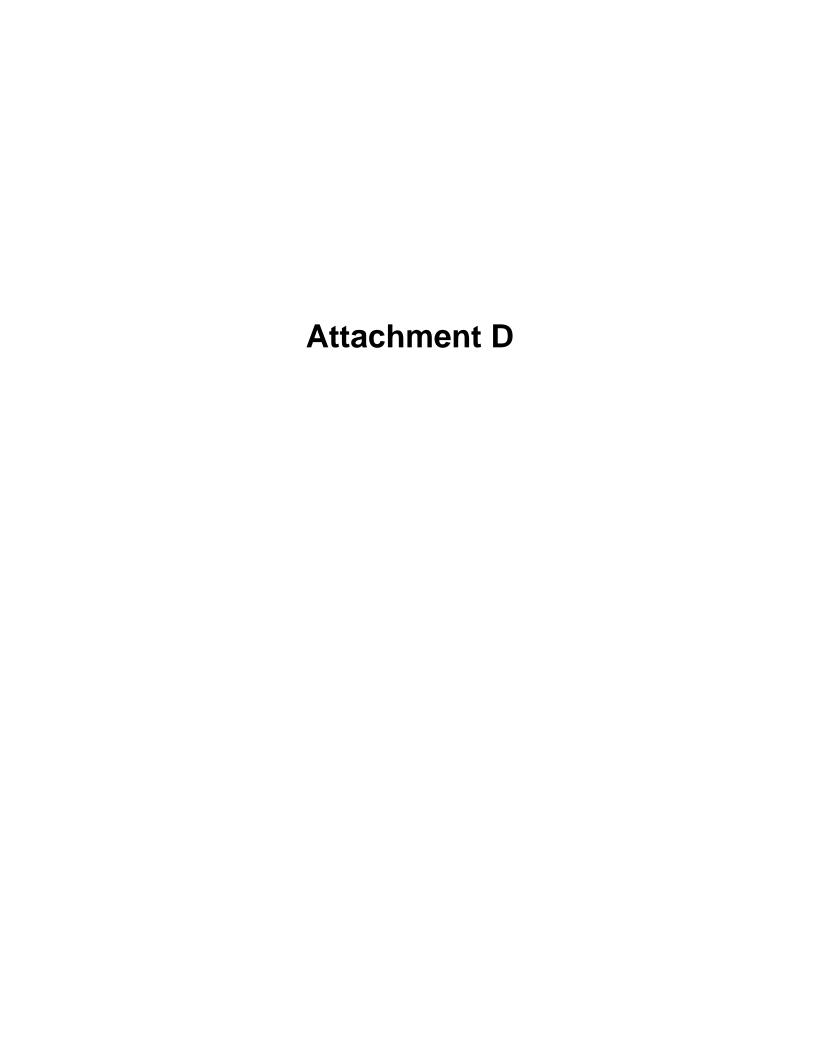

2216 Young Drive, Suite 1 Lexington, Kentucky 40505 Office: (859) 785-1500 www.ccsdata.com "15 Years ... and still Counting"


File Name: Lincoln_Street_at_Whitley_Street_704682_10-03-2019


Site Code: Site 4 - Thursday


Start Date : 10/3/2019


		Lin	coln S	treet			Wh	itely S	treet			Lin	coln S	treet			Wh	nitely S	treet		
		Fr	om No	orth			F	rom Ea	ast			Fr	om Sc	uth			F	rom W	<u>est</u>		
Start Time	Rig ht	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Right	Thr u	Left	U-Turn	App. Total	Int. Total
Peak Hour Ar	nalysis	From (02:00 F	PM to 0	5:45 PM	1 - Peal	k 1 of 1	l													
Peak Hour for	r Entire	Inters	ection	Begins	at 04:3	0 PM															
04:30 PM	5	4	64	0	73	0	0	0	0	0	2	1	0	0	3	0	0	0	0	0	76
04:45 PM	5	1	59	0	65	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	69
05:00 PM	8	2	90	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
05:15 PM	8	0	76	0	84	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	85
Total Volume	26	7	289	0	322	0	0	0	0	0	7	1	0	0	8	0	0	0	0	0	330
% App. Total	8.1	2.2	89.8	0		0	0	0	0		87.5	12.5	0	0		0	0	0	0		
PHF	.813	.438	.803	.000	.805	.000	.000	.000	.000	.000	.438	.250	.000	.000	.500	.000	.000	.000	.000	.000	.825



ITEM	DESCRIPTION	TOTAL QUANTITY	UNIT	UNIT PRICE	TOTAL PRICE (2019 dollars
	ROADWAY				
201	CLEARING AND GRUBBING	1	LUMP	\$10,000.00	\$10,000
202	MISC. REMOVAL: BASKETBALL COURT REMOVED	1	EA	\$7,500.00	\$7,500
202	MISC. REMOVAL: PARKING METER REMOVED	44	EA	\$100.00 ROADWAY SUBTOTAL	\$4,400 \$21,900
	DRAINAGE			ROADWAT CODICTAL	\$21,000
	DRAINAGE	1	LUMP	\$100,000.00	\$100,000
	BMP ELEMENTS (WATER QUALITY BASINS, DETENTION)	1	LUMP	\$80,000.00	\$80,000
				DRAINAGE SUBTOTAL	\$180,000
	PAVEMENT				
	PUMP STATION DRIVE RELOCATION				
442	ASPHALT CONCRETE SURFACE COURSE	6	CU YD	\$155.00	\$958
442	ASPHALT CONCRETE INTERMEDIATE COURSE	9	CU YD	\$150.00	\$1,298
302	ASPHALT CONCRETE BASE	45	CU YD	\$160.00	\$7,120
304	AGGREGATE BASE	30	CU YD	\$60.00	\$1,780
204	SUBGRADE COMPACTION	178	SQ YD	\$4.00 PAVEMENT SUBTOTAL	\$712
	MAINTENTANCE OF TRAFFIC			PAVEMENT SUBTUTAL	\$11,900
	MAINTENTANCE OF TRAFFIC	1	LUMP	\$2,100,000,00	\$2,100,000
	WAINTENTANCE OF TRAFFIC			F TRAFFIC SUBTOTAL	\$2,100,000
	TRAFFIC CONTROL				
	SIGNING/PAVEMENT MARKINGS	1	EACH	\$12,000.00	\$12,000
			TRAFFIC	CONTROL SUBTOTAL	\$12,000
	STRUCTURES				
	3 BRIDGES AND 2 MSE ISLANDS	1	LUMP	\$17,272,182.00 RUCTURES SUBTOTAL	\$17,272,182 \$17,272,20 0
	LIGHTING		51	RUCTURES SUBTUTAL	\$17,272,200
	LIGHTING	1	LUMP	\$220,000.00	\$220,000
	Listrino		LOWII	LIGHTING SUBTOTAL	\$220,000
	UTILITIES				, ,,,,,,,
	30" SANITARY SEWER RELOCATION	1	LUMP	\$70,000.00	\$70,000
	2" WATER LINE RELOCATION	1	LUMP	\$35,000.00	\$35,000
	12" HIGH PRESSURE GAS RELOCATION	1	LUMP	\$450,000.00	\$450,000
				UTILITIES SUBTOTAL	\$555,000
	CONSTRUCTION MISC.		1		* + + • • • • • • • • • • • • • • • • •
040	PERMANENT R/W	1	LUMP	\$128,000.00	\$128,000
619	FIELD OFFICE, TYPE B	18	MONTH	\$1,662.52	\$29,925
	MOBILIZATION	1	LUMP	\$100,000.00	\$100,000
	CONSTRUCTION LAYOUT STAKES	1	LUMP	\$156,000.00	\$156,000
			CONSTRUC	TION MISC. SUBTOTAL	\$414,000
			CONSTRUCT	ON COST SUBTOTOAL	\$20,787,000
	CONSTRUCTION COST CONTINGENCY - 20%				\$4,157,400
	TOTAL COST, 2019 DOLLARS				\$24.950.00

	BEL-7-19.75 ALTERNATE 1 COST ESTIMATE: BR	IDGE REPLACEMENT	WITH ROUND	ABOUT	
		TOTAL		UNIT	TOTAL
ITEM	DESCRIPTION	QUANTITY	UNIT	PRICE	PRICE (2019 dollars)
	ROADWAY				(2019 dollars)
201	CLEARING AND GRUBBING	1	LUMP	\$10,000.00	\$10,000
202	PAVEMENT REMOVED	7,405	SQ YD	\$10.14	\$75,089
202 202	CURB AND GUTTER REMOVED WALK REMOVED	5,800 17,250	FT SQ FT	\$4.81 \$2.00	\$27,898 \$34,500
202	MISC. REMOVAL: PARKING METER REMOVED	51	EA	\$100.00	\$5,100
202	MISC. REMOVAL: FOUNTAIN REMOVED	1	EA	\$2,500.00	\$2,500
202	MISC. REMOVAL: BASKETBALL COURT REMOVED	1	EA	\$7,500.00	\$7,500
203 203	EXCAVATION EMBANKMENT	3,000 3,000	CU YD CU YD	\$12.50 \$11.87	\$37,500 \$35,610
608	6" CONCRETE WALK	21,175	SQ FT	\$8.92	\$188,881
609	CURB, TYPE 6	220	FT	\$22.16	\$4,875
609	CURB & GUTTER, TYPE 2	2,350	FT	\$24.55	\$57,693
609 609	CURB & GUTTER, TYPE 9 6" CONCRETE TRAFFIC ISLAND	320 587	FT SQ YD	\$25.00 \$88.01	\$8,000 \$51,633
659	SEEDING & MULCHING	18,000	SQ FT	\$1.25	\$22,500
690	PARKING METER REPLACED	15	EA	\$250.00	\$3,750
690	PAVILION REMOVED AND RELOCATED	1	EA	\$20,000.00	\$20,000
	DD 4D/4 CE			ROADWAY SUBTOTAL	\$593,100
	DRAINAGE DRAINAGE	1	LUMP	\$260,000.00	\$260,000
	BMP ELEMENTS (WATER QUALITY BASINS, DETENTION)	1	LUMP	\$120,000.00	\$120,000
832	EROSION CONTROL	1	LUMP	\$30,000.00	\$30,000
				DRAINAGE SUBTOTAL	\$410,000
	PAVEMENT				
442	FULL-DEPTH FLEXIBLE BUILDUP ASPHALT CONCRETE SURFACE COURSE	205	CU YD	\$155.00	\$31,737
442	ASPHALT CONCRETE INTERMEDIATE COURSE	287	CU YD	\$150.00	\$42,999
302	ASPHALT CONCRETE BASE	1,621	CU YD	\$160.00	\$259,347
304	AGGREGATE BASE	1,081	CU YD	\$60.00	\$64,837
204	SUBGRADE COMPACTION	8,836	SQ YD	\$4.00	\$35,346
	FULL-DEPTH CONCRETE BUILDUP (FOR ROUNDABOUT TRUCK APRON)				
452	12" NON-REINFORCED CONCRETE	435	SQ YD	\$90.00	\$39,110
304	AGGREGATE BASE	72	CU YD	\$60.00	\$4,346
204	SUBGRADE COMPACTION	435	SQ YD	\$4.00	\$1,738
	PUMP STATION DRIVE RELOCATION				
442	ASPHALT CONCRETE SURFACE COURSE	6	CU YD	\$155.00	\$958
442	ASPHALT CONCRETE INTERMEDIATE COURSE	9	CU YD	\$150.00	\$1,298
302	ASPHALT CONCRETE BASE	45	CU YD	\$160.00	\$7,120
304 204	AGGREGATE BASE SUBGRADE COMPACTION	30 178	CU YD SQ YD	\$60.00 \$4.00	\$1,780 \$712
204	SUBGRADE CONFACTION	170		PAVEMENT SUBTOTAL	\$491,400
	MAINTENTANCE OF TRAFFIC				
	MAINTENTANCE OF TRAFFIC	1	LUMP	\$2,500,000.00	\$2,500,000
	TRAFFIC CONTROL		MAINTENANCE C	F TRAFFIC SUBTOTAL	\$2,500,000
	TRAFFIC CONTROL REMOVE EXISTING TRAFFIC SIGNAL	1 1	EACH	\$15,000.00	\$15,000
	SIGNING/PAVEMENT MARKINGS	1	EACH	\$135,000.00	\$135,000
	·		TRAFFIC	CONTROL SUBTOTAL	\$150,000
	STRUCTURES		111110	\$40,000,000,00	#40.000.000
	3 BRIDGES AND 2 MSE ISLANDS	1	LUMP	\$19,200,000.00 RUCTURES SUBTOTAL	\$19,200,000 \$19,200,000
	LIGHTING				\$10,200,000
	LIGHTING	1	LUMP	\$340,000.00	\$340,000
				LIGHTING SUBTOTAL	\$340,000
	UTILITIES 2011 CANUTARY CENTER RELOCATION		111145	Φ70 000 °°	A70.000
	30" SANITARY SEWER RELOCATION 2" WATER LINE RELOCATION	1	LUMP LUMP	\$70,000.00 \$35,000.00	\$70,000 \$35,000
	12" HIGH PRESSURE GAS RELOCATION	1	LUMP	\$450,000.00	\$450,000
	FIRE HYDRANT REMOVED AND RELOCATED	3	EA	\$4,000.00	\$12,000
				UTILITIES SUBTOTAL	\$567,000
	LANDSCAPING ILANDSCAPING		LUMB	¢20,000,00	¢20.000
	LANDSCAPING	1	LUMP LANI	\$30,000.00 DSCAPING SUBTOTAL	\$30,000 \$30,000
	CONSTRUCTION MISC.		2311		7,000
	TEMPORARY R/W	1	LUMP	\$6,000.00	\$6,000
0.10	PERMANENT R/W	1	LUMP	\$128,000.00	\$128,000
619	FIELD OFFICE, TYPE B MOBILIZATION	18 1	MONTH LUMP	\$1,662.52 \$100,000.00	\$29,925 \$100,000
	CONSTRUCTION LAYOUT STAKES	1	LUMP	\$100,000.00	\$100,000 \$186,000
				TION MISC. SUBTOTAL	\$450,000
	CONSTRUCTION COST CONTINUENCE:		CONSTRUCTION	ON COST SUBTOTOAL	\$24,731,500
	CONSTRUCTION COST CONTINGENCY - 20%				\$4,946,300
	TOTAL COST, 2019 DOLLARS				\$29,680,000

D - 1

BURGESS & NIPLE

5085 Reed Rd. | Columbus, OH 43220 | 614.459.2050

Mr. Waseem Khalifa, Ph.D., P.E. Project Manager Ohio Department of Transportation District 11 2201 Reiser Avenue New Philadelphia, OH 44663 Re: BEL-7-19.75 (PID 105324) Main Street (US 40) & Lincoln Avenue Traffic Operations Study

November 18, 2021

Dear Waseem,

B&N has completed a traffic operations study at the Main Street (US 40) & Lincoln Avenue intersection in Bridgeport, Ohio. The goal of this study was to evaluate the conversion of the intersection from traffic signal control to a roundabout.

PROJECT OVERVIEW

The existing northbound and southbound SR 7 bridges at the SR 7 & US 40/250 interchange are 1,628 feet in length and are scheduled for replacement. In April 2020, Burgess & Niple completed the SR 7 & US 40/250 Interchange Evaluation Technical Memorandum. This memo evaluated several interchange concepts for the existing interchange to identify feasible interchange improvements and associated impacts to the design of the SR 7 bridges. The conclusion from this memo was that the existing interchange configuration was the best fit for the interchange given the various physical and geometric constraints in the area. However, the memo did identify that the intersection of Main Street (US 40) & Lincoln Avenue is at capacity and improvements are necessary. A roundabout was identified as the feasible alternative for this intersection.

This traffic operations study further expands the evaluation of the roundabout alternative by developing certified traffic and expanding the study area to confirm that the roundabout will not impact adjacent signalized intersections. See *Figure 1* for an aerial view of the project site. *Figure 2* shows the recommended roundabout alternative at the intersection.

Figure 1 – Project Location

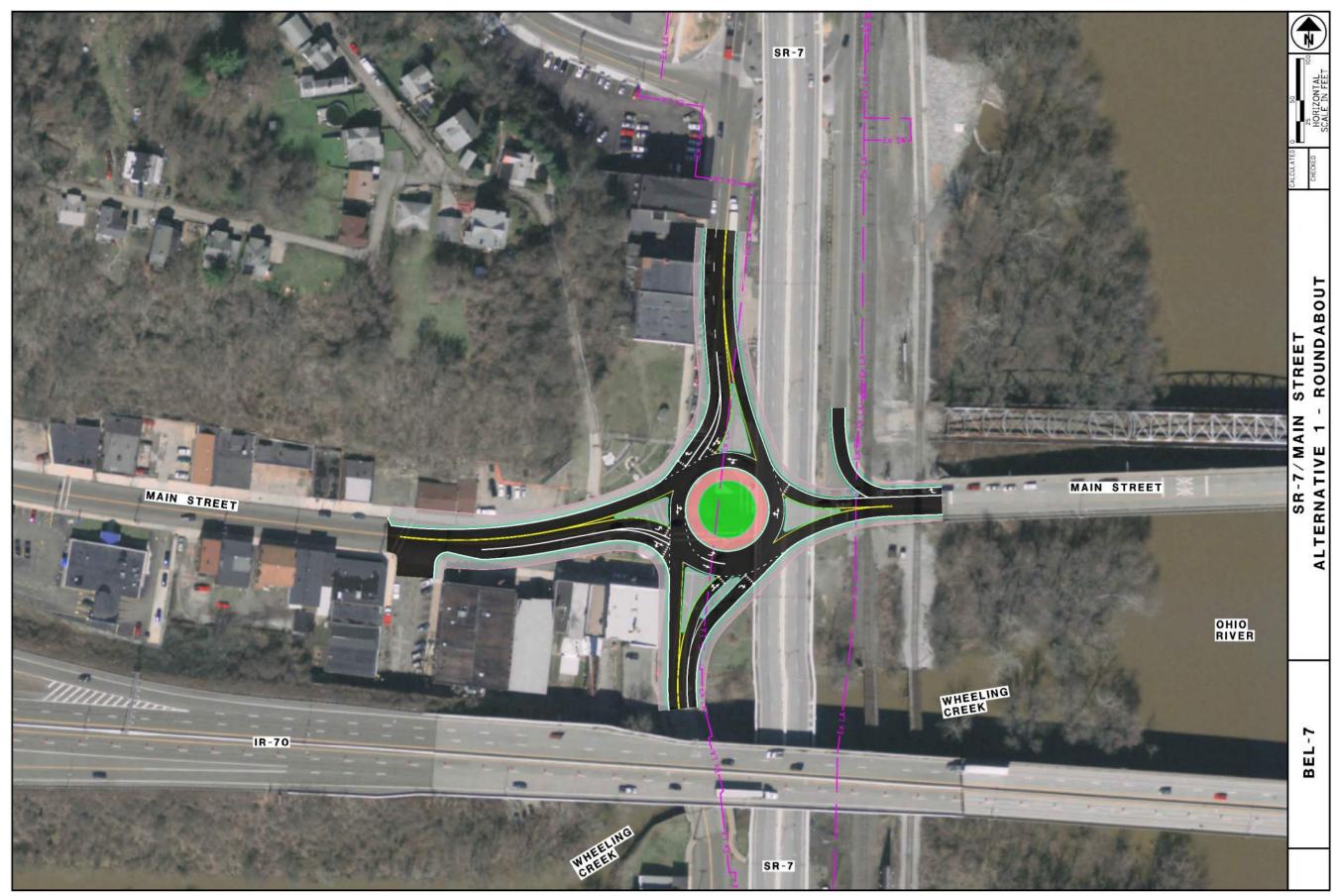


Figure 2 – Roundabout Alternative

STUDY INTERSECTIONS

The traffic analysis study area includes the following 6 intersections:

- Main Street & Marion Street
- Main Street/Council Street & Lincoln Avenue
- Zane Street & Huron Street (in West Virginia)
- Lincoln Avenue & Howard Street
- Cadiz Pike & SR 7 NB On-ramp
- Cadiz Pike & SR 7 SB Off-ramp

CERTIFIED TRAFFIC VOLUMES

Certified traffic was developed by Burgess & Niple, Inc. and submitted to the ODOT Office of Statewide Planning and Research, Modeling and Forecasting Section for review and approval. Because the roundabout increases the capacity at this intersection, additional traffic was drawn to the corridor in the travel demand model. Therefore, separate No-Build and Build future year traffic forecasts were developed for the corridor. Opening Year is 2025 and Design Year is 2045 certified traffic volumes can be found in *Appendix A*.

CAPACITY ANALYSIS

Capacity analyses for the No-Build and Build conditions were conducted for the 2045 design year. All design year traffic analyses are based on the procedures outlined in the *Highway Capacity Manual* 6th Edition (HCM).

Per the ODOT OATS Manual, peak hour factors (PHF) for intersection analysis should be calculated using traffic counts. For the analysis in this memo, existing turning movement counts that were collected for the SR 7 & US 40/250 Interchange Evaluation Technical Memorandum were used to calculate PHFs. *Table 1* shows the calculated PHF at the study intersections.

Table 1: Intersection Peak Hour Factors

INTERSECTION	AM PHF	PM PHF
Main Street & Marion Street	0.92	0.92
Main Street & Lincoln Street	0.93	0.97
Zane Street & Huron Street (WV)	0.92	0.92
Lincoln Avenue & Howard Street	0.80	0.86
Cadiz Pike & SR 7 NB On-Ramp	0.84	0.96
Cadiz Pike & SR 7 SB Off-Ramp	0.95	0.98

Signalized intersection, unsignalized intersection and roundabout capacity analysis was conducted for the 2045 No-Build and Build condition using the *Highway Capacity Software version 7.9.5 (HCS)*. *Table 2* shows the results of the capacity analysis for the study intersections during the AM peak hour and *Table 3* shows the intersection capacity results during the PM peak hour. The operational goals for the traffic analysis are that the overall intersection operates with a Level of Service (LOS) of D or better and with each movement at LOS E or better. Capacity results are discussed below, and detailed capacity analysis outputs are contained in *Appendix B*.

Table 2 – AM Peak Hour Intersection Operational Results

2 – AM Peak I			5 AM No			2045 AM Build					
	LOS	Delay sec/veh	v/c	QSR	95 th %ile	LOS	Delay Sec/veh	v/c	QSR	95 th %ile	
			Main St	treet & Mar	ion Street	(Signali	zed)				
EBT	С	33.3	0.29	0.07	179′	С	31.4	0.29	0.08	186′	
EBR	С	23.5	0.47	0.57	298'	С	21.0	0.43	0.52	275′	
EB Approach	С	26.6				С	24.6				
WBL	D	44.3	0.94	0.45	542'	D	47.8	0.95	0.54	654'	
WBT	Α	2.3	0.22	0.03	38'	Α	5.6	0.21	0.09	102'	
WB Approach	С	30.7				С	34.3				
NBL	D	49.3	0.78	1.68	293'	D	49.2	0.78	1.67	293'	
NBR	В	16.5	0.44	1.54	269'	В	18.0	0.45	1.56	273′	
NB approach	С	29.1				С	30.2				
Intersection	С	29.2				С	30.6				
	Ma	ain Street 8	Lincoln	Street (Sig	nalized No	-Build, I	Roundabou	t Build)			
EBL	F	122.0	1.11	2.56	639'	С	20.8	0.65		118′	
EBT/ <mark>EBTR</mark>	С	31.0	0.11	0.08	97'	Α	9.5	0.23		23'	
EBR	С	24.6	0.11	0.67	67'						
EB Approach	F	95.4				С	17.8				
WBL/WBLTR	D	43.7	0.54	0.17	206′	Α	6.9	0.22		20'	
WBTR	F	83.3	0.98	0.41	495'						
WB Approach	E	70.1				Α	6.9				
NBL/NBLT	E	60.5	0.18	0.05	16′	В	11.1	0.23		23'	
NBTR/NBR	D	47.3	0.60	0.29	234'	Α	8.6	0.14		13'	
NB approach	D	48.0				В	10.1				
SBL/SBLT	С	32.7	0.86	1.27	478'	В	12.3	0.66		135′	
SBTR/SBR	F	93.7	1.10	3.41	1278′	В	11.1	0.62		113'	
SB approach	E	70.6				В	11.7				
Intersection	E	73.6				В	12.5				

XXX – No-Build Condition Lane Use XXX – Build Condition Lane Use

Table 2 – AM Peak Hour Intersection Operational Results (continued)

2 – AM Peak H			5 AM No		2045 AM Build					
	LOS	Delay sec/veh	v/c	QSR	95 th %ile	LOS	Delay Sec/veh	v/c	QSR	95 th %ile
			Zane S	treet & Hur	on Street	(Signaliz	ed)			
EBTR	В	15.1	0.52	0.36	438'	Α	8.9	0.45	0.23	275'
EB Approach	В	15.1				Α	8.9			
WBLT	Α	7.4	0.34	0.58	202'	Α	7.8	0.35	0.61	212'
WB Approach	Α	7.4				Α	7.8			
NBL	D	54.6	0.22	0.59	29'	D	54.6	0.22	0.59	29'
NBR	D	54.2	0.12	0.03	15'	D	54.2	0.12	0.03	15'
NB approach	D	54.5				D	54.5			
SBL	Е	56.9	0.78	1.34	168′	Е	56.6	0.79	1.46	183'
SBT	D	51.3	0.20	0.15	42'	D	50.6	0.19	0.15	42'
SBR	D	53.3	0.48	0.70	87'	D	52.4	0.45	0.67	87'
SB Approach	D	55.0				D	54.5			
Intersection	В	19.9				В	17.6			
		Li	incoln A	venue & Ho	ward Stre	et (Sign	alized)			
EBLR	В	18.8	0.48	0.14	115′	В	20.0	0.50	0.14	120'
EB Approach	В	18.8				В	20.0			
WBLTR	С	21.4	0.74	0.37	220'	С	22.0	0.72	0.34	205'
WB Approach	С	21.4				С	22.0			
NBLT	Α	6.9	0.04	0.02	11'	Α	6.3	0.04	0.04	10'
NB approach	Α	6.9				Α	6.3			
SBT	Α	7.8	0.22	0.08	66'	Α	7.6	0.25	0.09	75'
SBR	Α	7.7	0.16	0.08	38'	Α	7.0	0.15	0.08	35'
SB Approach	Α	7.9				Α	7.4			
Intersection	В	15.6				В	15.3			
			Cadiz Pik	ce & SR 7 N	B On-Ram	p (Signa	lized)			
EBL	Α	3.5	0.48	0.54	54'	Α	3.0	0.48	0.45	45'
EB Approach	Α	3.5				Α	3.0			
NBT	С	27.5	0.87	0.67	270′	С	27.5	0.87	0.67	270'
NB approach	С	27.5				С	27.5			
Intersection	В	15.1				В	14.8			
			Cadiz P <u>i</u> l	ce & SR 7 SI	3 Off-Ram	p (Signa	lized)			
EBTR	С	27.2	0.62	0.14	216′	С	31.2	0.67	0.15	223'
EB Approach	С	27.2				С	31.2			
NBLR	В	18.7	0.80	0.80	301'	В	18.6	0.82	0.83	312'
NB approach	В	18.7				В	18.6			
SBLTR	В	11.4	0.58	0.31	222'	В	10.5	0.60	0.33	231'
SB Approach	В	11.4				В	10.5			
Intersection	В	15.7				В	15.5			

Table 3 – PM Peak Hour Intersection Operational Results

e 5 – PM Peak II	110		5 PM No			2045 PM Build					
	LOS	Delay sec/veh	v/c	QSR	95 th %ile	LOS	Delay Sec/veh	v/c	QSR	95 th %ile	
			Main St	treet & Mar	ion Street	(Signali	zed)				
EBT	D	39.8	0.55	0.13	328'	D	40.1	0.55	0.13	329'	
EBR	В	17.4	0.37	0.44	233'	В	17.5	0.37	0.44	233'	
EB Approach	С	28.4				С	28.6				
WBL	D	46.1	0.93	0.38	455'	D	48.2	0.94	0.49	587'	
WBT	Α	1.8	0.30	0.03	32'	Α	9.5	0.30	0.16	195'	
WB Approach	С	27.8				С	32.2				
NBL	D	50.0	0.89	2.56	448'	D	49.8	0.89	2.56	447'	
NBR	В	17.0	0.53	1.87	327'	В	17.4	0.57	2.03	355'	
NB approach	С	31.9				С	31.5				
Intersection	С	29.4				С	31.0				
	Ma	ain Street 8	Lincoln	Street (Sig	nalized No	-Build, I	Roundabou	t Build)			
EBL	F	242.1	1.41	4.71	1178′	С	23.2	0.75		173′	
EBT/EBTR	В	19.8	0.18	0.13	155′	Α	9.0	0.30		33'	
EBR	В	12.7	0.05	0.25	25'						
EB Approach	F	174.3				С	19.2				
WBL/WBLTR	D	48.7	0.60	0.25	305'	С	17.5	0.62		108′	
WBTR	F	220.9	1.37	1.27	1526′						
WB Approach	F	175.6				С	17.5				
NBL/NBLT	F	126.3	0.86	0.41	123'	С	19.6	0.51		70'	
NBTR/NBR	F	178.1	1.24	1.02	819′	С	16.0	0.47		60'	
NB approach	F	172.3				С	17.8				
SBL/SBLT	F	306.9	1.57	3.24	1214′	В	12.2	0.62		113′	
SBTR/SBR	F	100.8	1.09	2.74	1028′	В	11.9	0.61		110′	
SB approach	F	187.3				В	12.1				
Intersection	F	178.9				С	15.5				

XXX – No-Build Condition Lane Use XXX – Build Condition Lane Use

Table 3 – PM Peak Hour Intersection Operational Results (continued)

lour Int				lts (contu	nued)						
						2045 PM Build					
LOS	Delay sec/veh	v/c	QSR	95 th %ile	LOS	Delay Sec/veh	v/c	QSR	95 th %ile		
		Zane S	treet & Hur	on Street	(Signaliz	ed)					
В	13.0	0.53	0.26	317'	В	14.0	0.67	0.41	488'		
В	13.0				В	14.0					
В	12.5	0.60	1.22	426'	В	13.3	0.63	1.32	463'		
В	12.5				В	13.3					
Е	56.5	0.74	3.03	152'	Е	56.5	0.76	3.03	152'		
D	51.5	0.17	0.07	28'	D	51.5	0.17	0.07	28'		
E	55.6				E	55.6					
E	56.3	0.76	1.33	167'	E	56.3	0.76	1.33	167'		
D	50.6	0.13	0.10	28'	D	50.6	0.13	0.10	28'		
Е	57.0	0.78	1.22	153′	Е	57.0	0.78	1.22	153'		
E	56.1				Е	56.1					
С	21.8				С	21.6					
	Li	ncoln A	venue & Ho	ward Stre	et (Signa	alized)					
С	26.2	0.78	0.31	260'	С	24.2	0.76	0.29	249'		
С	26.2				С	24.2					
В	19.6	0.83	0.85	510′	В	19.0	0.81	0.79	472'		
В	19.6				В	19.0					
С	22.6	0.11	0.08	40'	С	21.2	0.10	0.08	38'		
С	22.6				С	21.2					
С	26.6	0.42	0.20	161'	С	24.4	0.36	0.18	144'		
С	23.6	0.19	0.13	58'	С	22.4	0.20	0.14	65'		
С	25.8				С	23.7					
С	22.2				С	21.1					
		Cadiz Pil	ke & SR 7 N	B On-Ram	p (Signa	lized)					
С	23.5	0.61	4.50	450'	С	21.8	0.51	3.61	361'		
С	23.5				С	21.8					
D	39.9	0.94	1.33	533'	D	38.7	0.94	1.41	564'		
D	39.9				D	38.7					
С	31.7				С	31.4					
		Cadiz Pil	ke & SR 7 <u>SI</u>	3 Off-Ram	p (Sign <u>a</u>	lized)					
Е	65.7	0.78	0.18	278′		78.2	0.85	0.19	287'		
Е	65.7				E	78.2					
Е	63.5	1.04	2.53	948'	F	129.3	1.21	3.74	1402'		
Е	63.5				F	129.3					
		0.40	0.25	181'			0.41	0.25	179′		
Α		-	-		Α	4.9		-	-		
	1										
	LOS	LOS Delay sec/veh B 13.0 B 13.0 B 13.0 B 12.5 B 12.5 E 56.5 D 51.5 E 56.6 E 56.3 D 50.6 E 57.0 E 56.1 C 21.8 C 26.2 C 26.2 B 19.6 B 19.6 C 22.6 C 22.6 C 23.6 C 23.6 C 23.6 C 23.5 C 23.5 D 39.9 D 39.9 C 31.7 E 65.7 E 65.7 E 63.5 A 5.5	Column	Cost Cost	LOS	LOS	LOS	LOS	LIOS		

November 18, 2021 Page 9

At Main Street (US 40) & Lincoln Avenue intersection, the No-Build condition is expected to operate at LOS E in the AM peak and LOS F in the PM peak with volume-to-capacity (v/c) ratios exceeding 1.50 and queue lengths greater than 1500 feet. With the addition of a roundabout, the intersection is expected to operate at LOS B in the AM peak and LOS C in the PM peak. All v/c ratios in the Build condition are expected to be 0.75 or lower. In addition, all queue lengths are expected to be less than 175 feet. **The roundabout alternative is a significant improvement compared to the No-Build condition**.

At the remaining intersections in the study area, no capacity improvements are proposed and the No-Build and Build volumes are almost the same. For this reason, the intersections generally operate almost the same in both the No-Build and Build conditions. The intersections of Cadiz Pike at the NB and SB SR 7 ramps are currently unsignalized. Initial analysis showed that these intersections will experience very long delays for the stop-controlled approaches in 2045. Therefore, it was assumed that traffic signals would be installed prior to 2045. As shown in *Table 2*, the intersections will operate well in the AM peak with the addition of signals. However, Table 3 shows that the intersections will operate at capacity with very long queues during the PM peak hour in both the No-Build and Build conditions. This poor operation is caused by the single northbound lane at the SR 7 SB ramp intersection. Northbound left turning vehicles block the right turning vehicles at the intersection, causing long queues. This creates the need to increase the cycle length, which in turn, increases the delays and queues at the SR 7 NB intersection. To improve the operation during the PM peak, it is recommended that a northbound right turn lane is added at the SR 7 SB ramp intersection when the traffic signals are installed. This additional lane will reduce the delay and queues for the SR 7 SB intersection and allow a shorter cycle length, which will benefit the SR 7 NB intersection. Table 4 shows results of the capacity analysis for the Cadiz Pike & SR 7 intersections during the PM peak hour with the addition of a northbound right turn lane. There is one movement where the QSR is greater than 1.0, however, the queue length for this movement is only 64 feet longer than the available storage length. It is anticipated that aggressive signal coordination between the northbound right turning vehicles at the SR 7 SB intersection and the eastbound left turning vehicles at the SR 7 NB intersection would reduce the queue length.

Table 4 - PM Peak Hour Intersection Operational Results With a Northbound Right Turn Lane

	2045 PM No-Build						2045 PM Build						
	LOS	Delay sec/veh	v/c	QSR	95 th %ile	LOS	Delay Sec/veh	v/c	QSR	95 th %ile			
Cadiz Pike & SR 7 NB On-Ramp (Signalized)													
EBL B 10.2 0.71 1.51 151' B 11.2 070 1.64 164'													
EB Approach	В	10.2				В	11.2						
NBT	С	24.7	0.90	0.84	336'	С	23.9	0.91	0.88	354'			
NB approach	С	24.7				С	23.9						
Intersection	В	17.0				В	17.6						
			Cadiz Pil	ce & SR 7 SE	3 Off-Ram	p (Signa	lized)						
EBTR	С	31.1	0.56	0.10	154'	D	39.8	0.68	0.11	170'			
EB Approach	С	31.1				D	39.8						
NBL	В	18.1	0.60	0.32	118'	С	24.6	0.73	0.50	186'			
NBR	Α	8.3	0.58	0.48	179'	Α	6.6	0.53	0.38	143'			
NB approach	В	10.9				В	12.3						
SBLTR	Α	7.5	0.48	0.20	148'	Α	6.1	0.48	0.18	133'			
SB Approach	Α	7.5				Α	6.1						
Intersection	В	11.0				В	11.4						

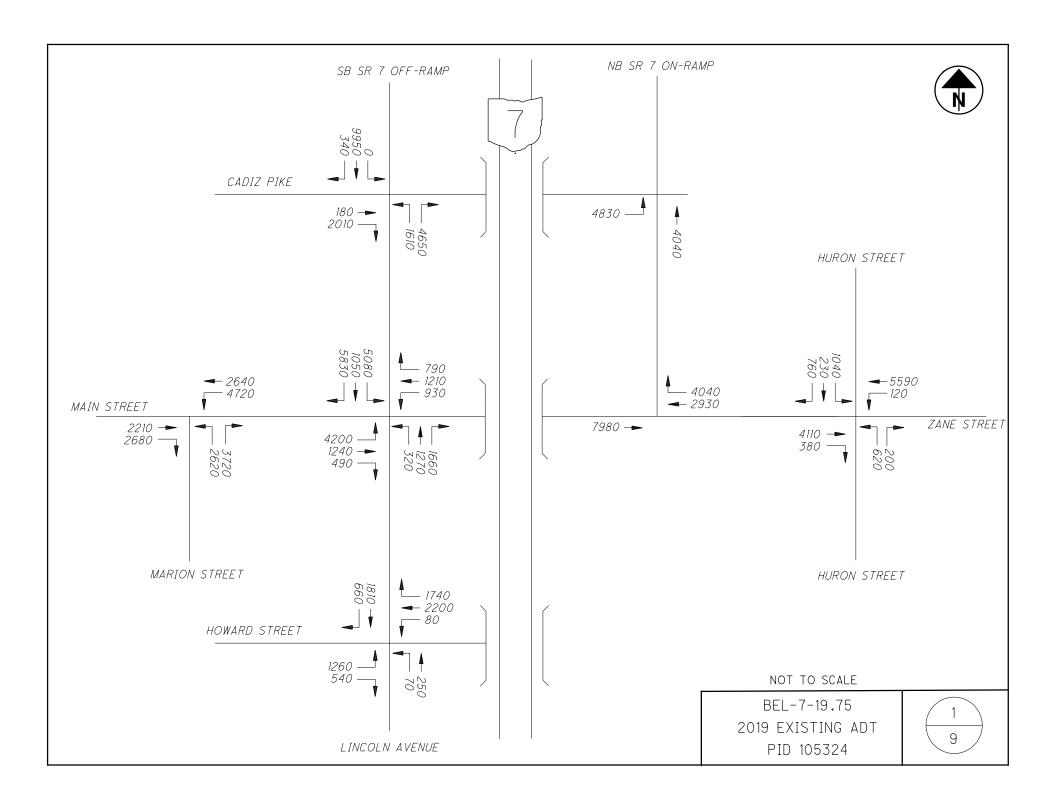
CONCLUSIONS

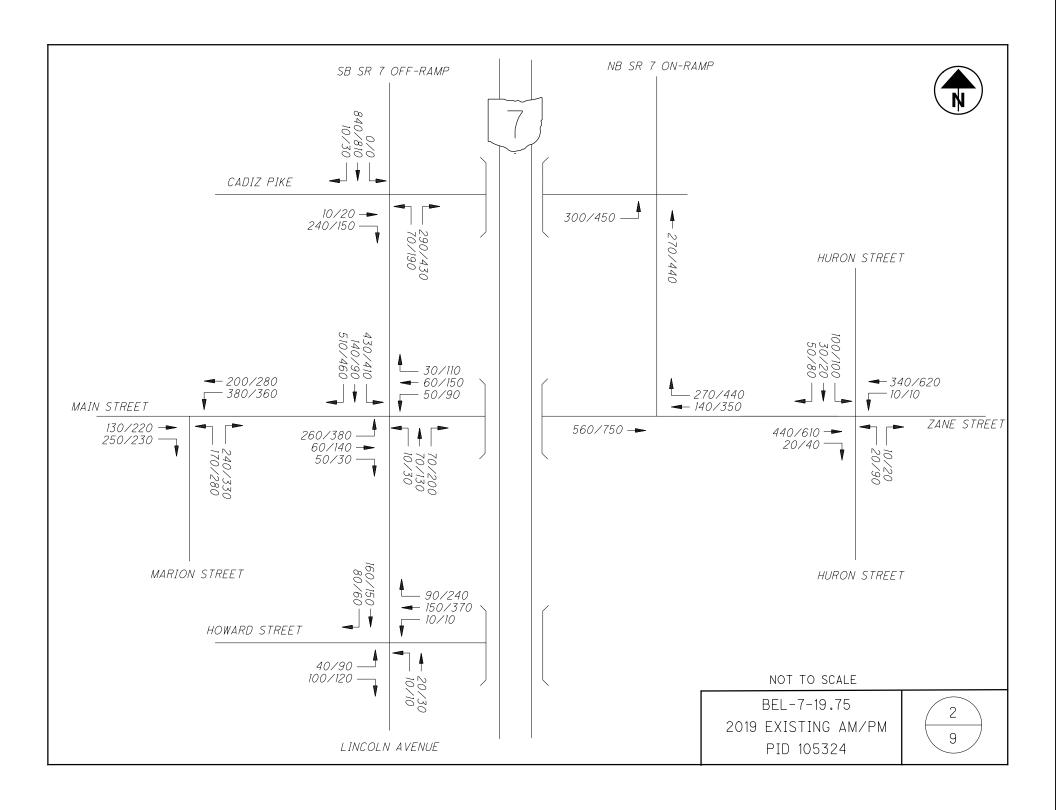
In summary, this traffic operations study has shown that converting the Main Street (US 40) & Lincoln Avenue intersection from a traffic signal to a roundabout would be a significant improvement at the intersection. Because, the adjacent intersections will operate with very similar delays and queues, the roundabout will not have a significant impact to the traffic operations on SR 7.

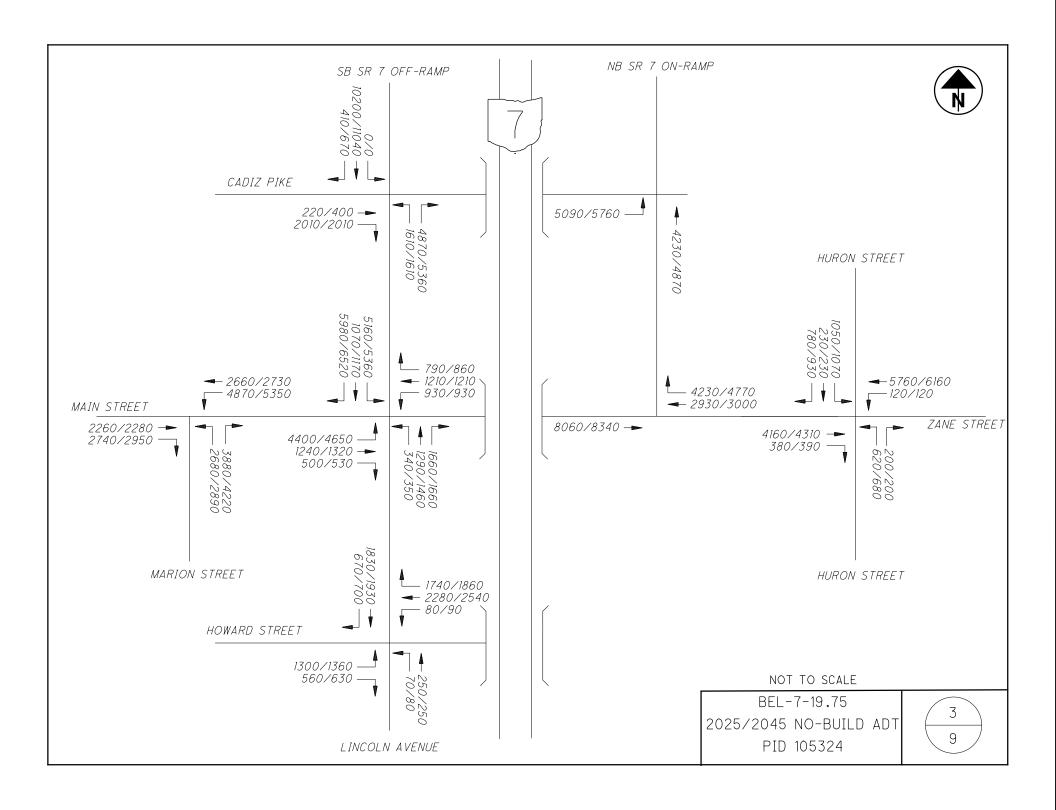
If you have any questions or need additional information related to our analysis, please do not hesitate to contact us.

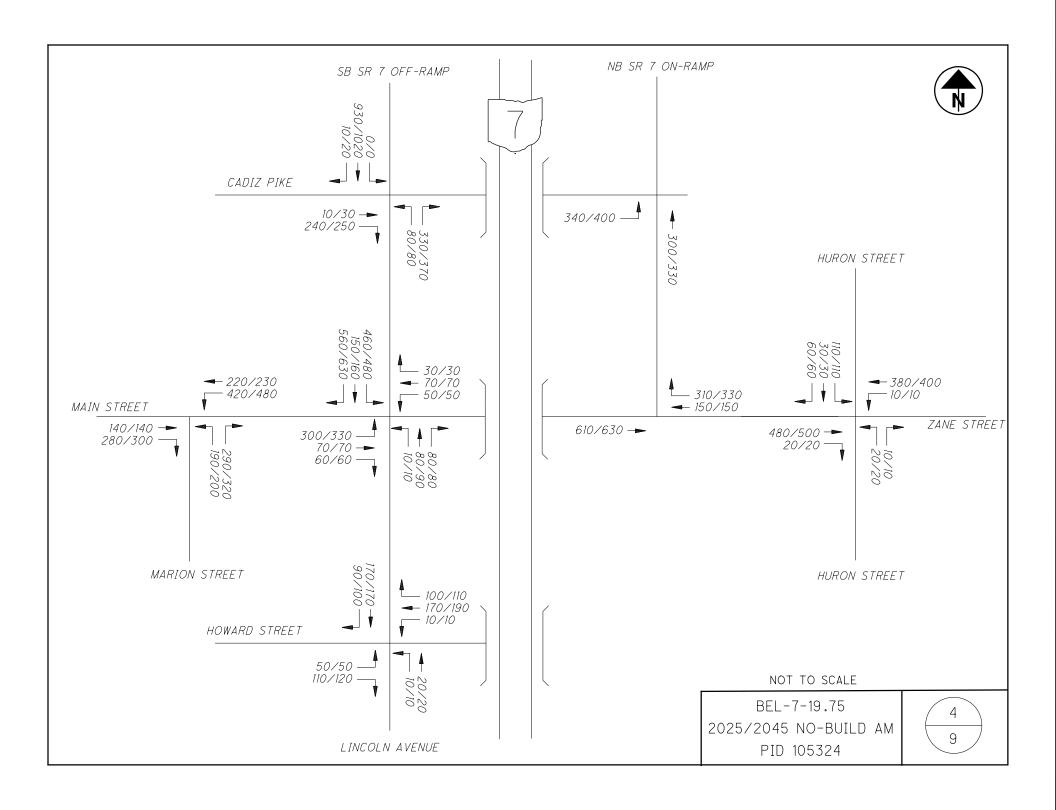
Sincerely,

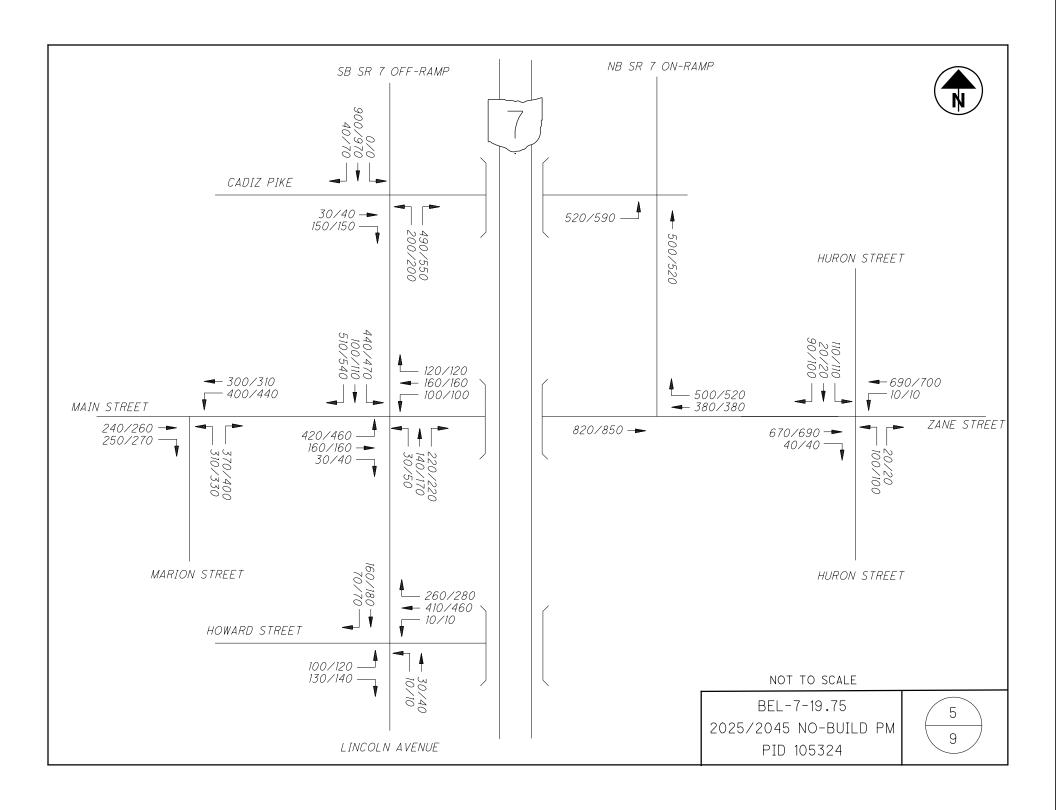
Randy Kill, PE, PTOE Senior Traffic Engineer

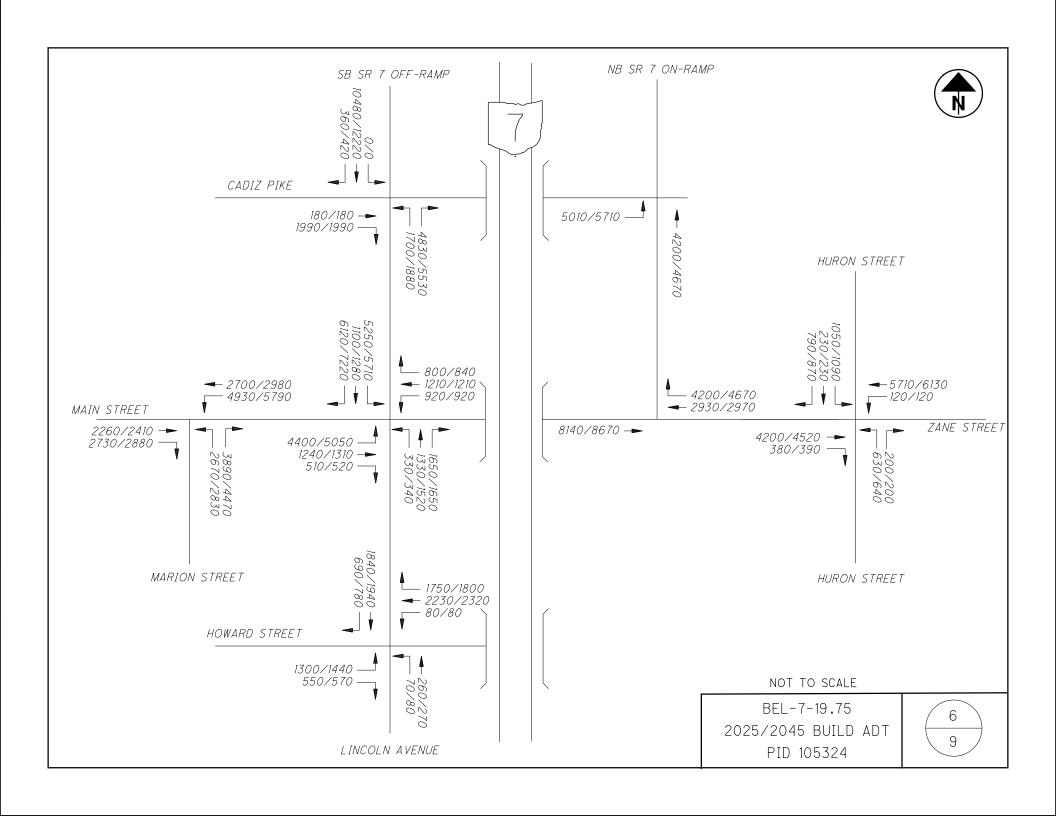

Randy Kill

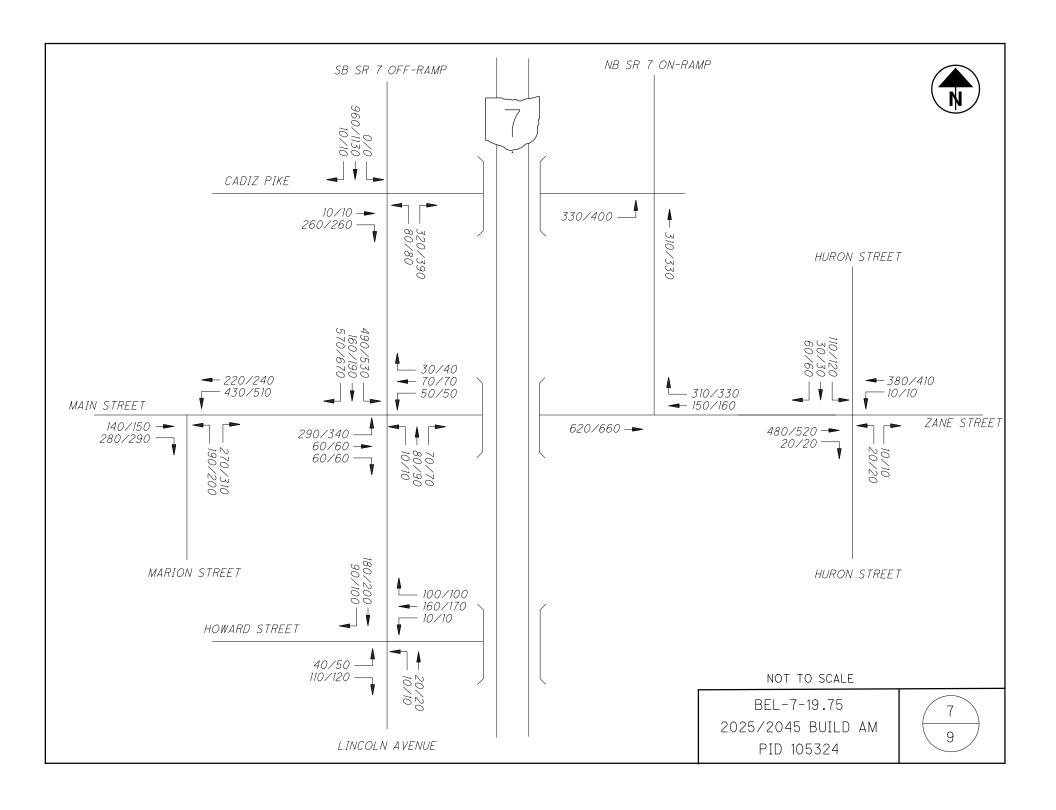


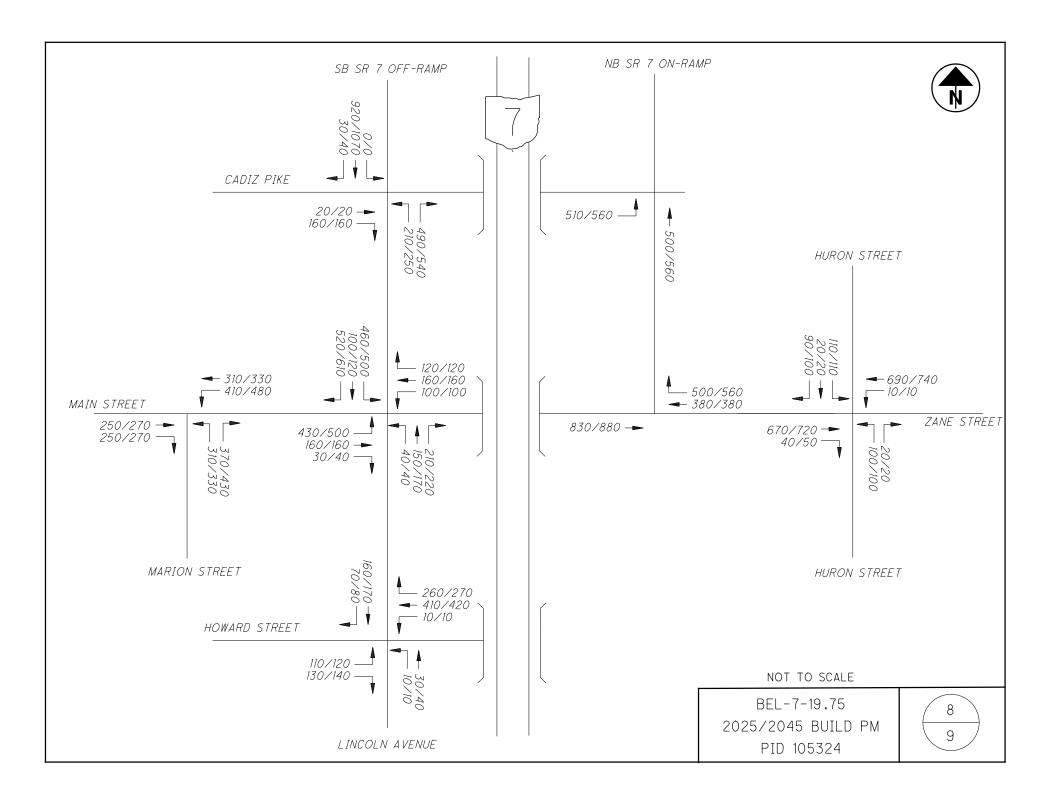

Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

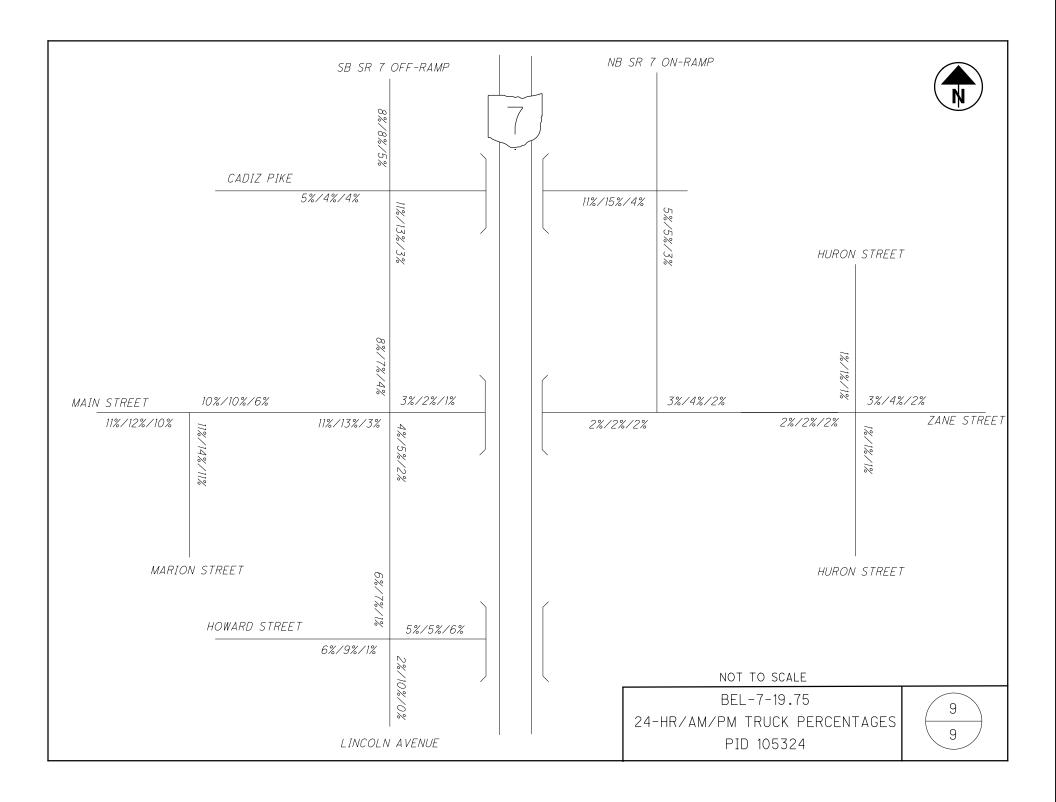

APPENDIX A


CERTIFIED TRAFFIC









Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

APPENDIX B CAPACITY ANALYSIS

Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

No-Build Intersection Analysis

AM Peak

HCS7 Signalized Intersection Input Data General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build AM PHF 0.92 Jurisdiction Time Period **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 7:00 Marion Street File Name Main Street Intersections - No-Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 300 480 200 320 Demand (v), veh/h 140 230 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 44.8 36.5 20.7 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Traffic Information** EΒ WB NB SB Approach Movement L Т R L Τ R R L Τ R L Т Demand (v), veh/h 140 300 480 230 200 320 Initial Queue (Qb), veh/h 0 0 0 0 0 0 Base Saturation Flow Rate (s₀), veh/h 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None Heavy Vehicles (PHV), % 12 12 10 10 14 14 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 Arrival Type (AT) Upstream Filtering (I) 1.00 1.00 0.09 0.09 1.00 1.00 12.0 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 Turn Bay Length, ft 2450 525 1200 1200 175 175 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 **Phase Information** EBL WBT SBL **EBT WBL NBL NBT** SBT 20.0 79.0 Maximum Green (Gmax) or Phase Split, s 59.0 41.0 41.0 4.0 4.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 Red Clearance Interval (Rc), s 2.0 2.0 2.0 2.0 2.0 Minimum Green (Gmin), s 10 10 7 10 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 2.0 Recall Mode Min Off Min Off Off **Dual Entry** Yes No Yes No Yes Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 25 0 25 0 25 No No No 9.0 0 9.0 12 0 9.0 Walkway / Crosswalk Width / Length, ft 12 12 0 0 Street Width / Island / Curb 0 No 0 0 0 No No 0 5.0 Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 2.0 12 5.0 2.0 0.50 Pedestrian Signal / Occupied Parking No 0.50 0.50 No No

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build AM PHF 0.92 Jurisdiction Time Period Urban Street Main Street Analysis Year 2045 Analysis Period 1>7:00 Marion Street File Name Main Street Intersections - No-Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 300 480 200 320 Demand (v), veh/h 140 230 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 44.8 36.5 20.7 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT Assigned Phase 6 2 1 8 Case Number 7.3 2.0 4.0 9.0 Phase Duration, s 42.5 50.8 93.3 26.7 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 3.3 0.0 3.4 Queue Clearance Time (g s), s 43.5 19.4 Green Extension Time (g e), s 0.0 1.4 0.0 1.2 Phase Call Probability 1.00 1.00 0.00 0.00 Max Out Probability WB NB **Movement Group Results** EΒ SB Approach Movement Т R L Т R Т R Т R L L L Assigned Movement 2 12 6 3 18 1 Adjusted Flow Rate (v), veh/h 152 326 588 282 217 348 1722 1668 1752 1612 1434 Adjusted Saturation Flow Rate (s), veh/h/ln 1459 3.1 17.4 Queue Service Time (g_s), s 8.1 18.1 41.5 15.5 Cycle Queue Clearance Time (g c), s 8.1 18.1 41.5 3.1 15.5 17.4 0.55 Green Ratio (g/C) 0.30 0.48 0.37 0.73 0.17 278 Capacity (c), veh/h 523 695 623 1275 783 Volume-to-Capacity Ratio (X) 0.291 0.469 0.943 0.221 0.783 0.444 Back of Queue (Q), ft/ln (95 th percentile) 179.1 298 542 37.9 293.4 269.1 Back of Queue (Q), veh/ln (95 th percentile) 6.5 10.9 20.1 1.4 10.6 9.7 Queue Storage Ratio (RQ) (95 th percentile) 0.07 0.57 0.45 0.03 1.68 1.54 47.5 Uniform Delay (d 1), s/veh 31.9 21.2 43.0 2.3 16.3 Incremental Delay (d 2), s/veh 1.4 2.3 1.3 0.0 1.8 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 33.3 23.5 44.3 2.3 49.3 16.5 Level of Service (LOS) С С D Α D В 26.6 С 30.7 С 29.1 С 0.0 Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 29.2 С **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.93 В 0.66 1.97 В Α В 1.96 Bicycle LOS Score / LOS 1.28 Α 1.76

HCS7 Signalized Intersection Intermediate Values General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period No-Build AM Urban Street Main Street Analysis Year 2045 Analysis Period 1>7:00 Marion Street File Name Main Street Intersections - No-Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 300 480 200 320 Demand (v), veh/h 140 230 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 44.8 36.5 20.7 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay Т R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.906 0.906 0.922 0.922 1.000 0.891 1.000 0.891 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 1.000 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 1.000 1.000 0.000 0.847 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1722 1459 1752 0 1612 0 1434 0 1668 Proportion of Vehicles Arriving on Green (P) 0.00 0.30 0.30 0.26 0.87 0.00 0.17 0.00 0.17 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.50 0.16 0.50 0.04 0.04 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.30 0.37 0.73 0.17 Permitted Saturation Flow Rate (sp), veh/h/ln 1115 0 0 1612 Shared Saturation Flow Rate (ssh), veh/h/ln 0 Permitted Effective Green Time (g_p) , s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s Time to First Blockage (gf), s 36.5 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 1459 1434 Protected Right Effective Green Time (g_R) , s 20.7 44.8 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 0.000 0.000 1.198 0.000 1.198 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.060 0.000 0.169 0.000 0.135 0.167 Pedestrian Mcorner / Mcw Bicycle cb / db 607.89 29.07 1455.30 4.45 67.20 -83.33 65.10

-3.64

0.79

Bicycle Fw / Fv

1.27

-3.64

-3.64

-3.64

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period No-Build AM **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 7:00 Marion Street File Name Main Street Intersections - No-Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EΒ **WB** NB SB Т Approach Movement L Τ R L L R R 300 480 200 320 Demand (v), veh/h 140 230 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 44.8 36.5 20.7 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Τ Back of Queue (Q), ft/ln (95 th percentile) 179.1 298 542 37.9 293.4 269.1 Back of Queue (Q), veh/ln (95 th percentile) 6.5 10.9 20.1 1.4 10.6 9.7 Queue Storage Ratio (RQ) (95 th percentile) 0.07 0.45 0.03 1.54 0.57 1.68 Control Delay (d), s/veh 33.3 23.5 44.3 2.3 49.3 16.5 Level of Service (LOS) С С D Α D В Approach Delay, s/veh / LOS 26.6 С 30.7 С 29.1 С 0.0 Intersection Delay, s/veh / LOS 29.2 С 2.3 _ 1.4 LOS B LOS C Queue Storage Ratio < 1 LOSD LOS E Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: According to input data, upstream feeding volume is equal to 121% of downstream exit volume during time period #1, for thru movement #6.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:28:07 PM

	Н	CS7	Signa	alized	Inter	section	on In	put Da	ata					
							1			41		T 3	ere e sa c	121312
General Information	0.00						\rightarrow	Intersec		v		- 1	4 (56 SE
Agency	Burgess & Niple, Inc							Duration		0.250				A.
Analyst	MEL		-	is Date	_			Area Typ	е	Other		_		
Jurisdiction			Time F			ild AM		PHF		0.93			w i t	<u>_</u>
Urban Street	Main Street		-	is Year	_			Analysis		1> 7:0				
Intersection	Lincoln Avenue		File Na	ame	Main	Street Ir	ntersec	tions - N	o-Build	2045 A	M.xus		7 1	
Project Description	BEL-7-19.75	_	_	_	_	_	_	_	_	_	_	15		持續
Demand Information				EB			WE	3		NB		T	SB	
Approach Movement			L	Т	R		Т	R		ΤT	R	L	Т	R
Demand (v), veh/h			330	70	60	50	70		10	90	80	480	160	630
Signal Information	D (D)		4	La	1.5	1211/2		n n				,		人
Cycle, s 120.0	Reference Phase	2		R			12	12			1	♦ 2	3	4
Offset, s 36	Reference Point	End	Green	19.0	24.0	31.2	21.	8 0.0	0.0			<u>-</u>		
Uncoordinated No	Simult. Gap E/W	On	Yellow		4.0	4.0	4.0	0.0	0.0		/	7	\	V
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	2.0	0.0	0.0		5	6	7	8
Traffic Information				EB		<u> </u>	WB	T =	<u> </u>	NB			SB	
Approach Movement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h			330	70	60	50	70	30	10	90	80	480	160	630
Initial Queue (Q _b), veh/h				0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Rate (s₀), veh/h				1900	1900	1900	1900		1900	1900	1900	1900	1900	1900
Parking (N _m), man/h				None		\vdash	None	:		None			None	
Heavy Vehicles (Phv), %			13	13	13	2	2		5	5		7	7	
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (I)			0.96	0.96	0.96	0.94	0.94	0.94	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft			12.0	12.0	12.0	12.0	12.0		12.0	12.0		12.0	12.0	
Turn Bay Length, ft			250	1200	100	1200	1200		300	800		375	375	
Grade (<i>Pg</i>), %				0			0			0			0	
Speed Limit, mi/h			25	25	25	25	25	25	25	25	25	25	25	25
Phase Information			EBL		EBT	WBI	_	WBT	NBL	_	NBT	SBL		SBT
Maximum Green (Gmax	x) or Phase Split, s		25.0		55.0			30.0		_	14.0	51.0		65.0
Yellow Change Interva	,		4.0		4.0			4.0			4.0	4.0		4.0
Red Clearance Interva	· ,		2.0		2.0		\neg	2.0			2.0	2.0		2.0
Minimum Green (Gmin			7		7			7			7	7		7
Start-Up Lost Time (If	, .		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective	, .		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s	- (-),		2.0		2.0			2.0			2.0	2.0		2.0
Recall Mode			Off		Min			Min			Off	Off	_	Off
Dual Entry			No		Yes			Yes			Yes	No		Yes
Walk (<i>Walk</i>), s					0.0			0.0			0.0			0.0
Pedestrian Clearance				0.0			0.0			0.0			0.0	
Multimedal Informati	Multimodal Information			F.C.			\A/D			NID			CD	
			0	EB	25	0	WB	25	0	NB	25	0	SB	25
85th % Speed / Rest in Walk / Corner Radius Walkway / Crosswalk Width / Length ft			No 12	25	0	No 12		_	No 12	25		No 12	25 0	
Walkway / Crosswalk Width / Length, ft		9.0	12	0 No	9.0	12	0 No	9.0	12	0	9.0	12	-	
Street Width / Island / Curb			12	0	No	0	0	No	12	0	No	12	0	No
	Width Outside / Bike Lane / Shoulder, ft			5.0	2.0	12	5.0	2.0	12	5.0	2.0	12 No.	5.0	2.0
Pedestrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No		0.50

HCS7 Signalized Intersection Results Summary																	
General Informati	ion							1	Intorcoc	ction Information							
	- W	Burgess & Niple, Inc						_	Duration		0.250		- 1	41			
Agency		MEL	U.	Analys	io Doto	11/16/	/2024								A		
Analyst Jurisdiction	r	VICL		Time F	sis Date	_	uild AM		Area Typ PHF	JE	Other 0.93			w ^N t			
		Main Street					IIIQ AIVI			Dorind		20					
Urban Street	-	Main Street		<u> </u>	sis Year		04 4 1		Analysis		1> 7:0						
Intersection	_	Lincoln Avenue		File Na	ame	Iviain :	Street ir	ntersec	tions - N	io-Bulla	2045 A	W.XUS	- 4	11	HKU		
Project Description	ח נ	BEL-7-19.75											155	多种的特別的			
Demand Informat	tion			EB WB							NB			SB			
Approach Movement					Т	R		Т	R	L	ΤT	R	LTR				
Demand (v), veh/				330	70	60	50	70	_	10	90	80	480	160	630		
Signal Information	n								د						1		
Cycle, s 12	20.0	Reference Phase	2		K	<u> </u>		6					$\boldsymbol{\alpha}$		4		
Offset, s	36	Reference Point	End	Green	19.0	24.0	31.2	21.8		0.0		1	2	3	4		
Uncoordinated N	No	Simult. Gap E/W	On	Yellow		4.0	4.0	4.0	0.0	0.0		7	}		ĸtz		
Force Mode Fix	ixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	2.0	0.0	0.0		5	6	7	8		
Timer Results				EBI	-	EBT	WB	L L	WBT	NBI	_	NBT	SBI		SBT		
Assigned Phase				5		2			6			8	7		4		
Case Number				1.0		3.0			6.3			6.3	1.0		4.0		
Phase Duration, s				25.0)	55.0			30.0			27.8 37.2		2	65.0		
Change Period, ()	Y+R c), s		6.0		6.0			6.0			6.0	6.0		6.0		
Max Allow Headway (<i>MAH</i>), s				3.3		0.0			0.0			3.4	3.3		3.4		
Queue Clearance Time (g s), s				21.0)							23.8	30.1	1	61.0		
Green Extension Time (g e), s				0.0		0.0			0.0			0.0	1.1		0.0		
Phase Call Probability				1.00)							1.00	1.00)	1.00		
Max Out Probabilit	ty			1.00)							1.00	0.00)	1.00		
Movement Group		ults			EB	I -		WB			NB	I -		SB			
Approach Moveme				L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Assigned Moveme				5	2	12	1	6	16	3	8	18	7	4	14		
Adjusted Flow Rate				359	76	65	174	348		11	183		516	849			
		w Rate (s), veh/h/l	n	1626	1707	1447	1323	1775		634	1683		1711	1571			
Queue Service Tim				19.0	4.4	3.7	13.7	23.3		0.0	12.0		28.1	59.0			
Cycle Queue Clear		Time (<i>g</i> ε), s		19.0	4.4	3.7	13.7	23.3	_	21.8	12.0		28.1	59.0			
Green Ratio (g/C)				0.38	0.41	0.41	0.20	0.20		0.18	0.18		0.46	0.49			
Capacity (c), veh/				323	697	591	325	355		60	306		599	772			
Volume-to-Capacit	•			1.111	0.109	0.110	0.536	0.980		0.179	0.597		0.861	1.100			
		n (95 th percentile)		639.3	97.3	66.9	205.7	494.6		15.8	233.5		477.9	1277.7			
		h/ln (95 th percenti		23.2	3.5	2.4	8.1	19.5		0.6	9.0		18.1	48.4			
		RQ) (95 th percent	ile)	2.56	0.08	0.67	0.17	0.41		0.05	0.29		1.27	3.41			
Uniform Delay (d :				39.6	30.7	24.3	37.9	41.6		60.0	45.0		26.7	30.5			
Incremental Delay (d 2), s/veh			82.4	0.3	0.4	5.9	41.7		0.5	2.2		6.0	63.2				
Initial Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0			
Control Delay (d), s/veh				122.0	31.0	24.6	43.7	83.3		60.5	47.3		32.7	93.7			
Level of Service (L		F	С	С	D	F		E	D		С	F					
Approach Delay, s/veh / LOS				95.4		F	70.1	1	E	48.0)	D	70.6	3	Е		
Intersection Delay,				73	3.6						E						
Multimodal Results				1.92	EB			WB			NB		SB				
	Pedestrian LOS Score / LOS					В	1.94	_	В	1.95		В	2.10		В		
Bicycle LOS Score	e / LOS	S		1.30)	Α	0.75)	Α	0.81		Α	2.74	1	С		

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.93 Jurisdiction Time Period No-Build AM Urban Street Main Street Analysis Year 2045 Analysis Period 1>7:00 File Name Main Street Intersections - No-Build 2045 AM.xus Intersection Lincoln Avenue **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Т Approach Movement L R L R L R L R 330 30 Demand (v), veh/h 70 60 50 70 10 90 80 480 160 630 Signal Information Ж, Cycle, s 120.0 Reference Phase 2 542 Offset, s 36 Reference Point End 0.0 Green 19.0 24.0 31.2 21.8 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 2.0 0.0 0.0 Saturation Flow / Delay R R R Lane Width Adjustment Factor (f_w) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.899 0.899 0.899 0.984 0.984 1.000 0.961 0.961 1.000 0.945 0.945 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.952 0.000 0.696 0.000 0.333 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 0.949 0.949 0.922 0.922 0.874 0.874 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) 1.000 Movement Saturation Flow Rate (s), veh/h 1626 1707 1447 1323 1242 532 634 891 792 1711 318 1253 Proportion of Vehicles Arriving on Green (P) 0.06 0.19 0.35 0.31 0.29 0.33 0.18 0.18 0.18 0.26 0.49 0.49 Incremental Delay Factor (k) 0.50 0.50 0.50 0.50 0.50 0.04 0.13 0.18 0.50 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 6.0 Lost Time (t_L) 6.0 Green Ratio (g/C) 0.38 0.41 0.20 0.18 0.46 0.49 Permitted Saturation Flow Rate (sp), veh/h/ln 943 0 1323 634 1153 0 Shared Saturation Flow Rate (ssh), veh/h/ln Permitted Effective Green Time (g_p) , s 24.0 26.0 0.0 21.8 23.8 0.0 24.0 0.7 0.0 0.0 9.9 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 12.3 0.0 9.9 0.7 Time to First Blockage (gf), s 0.0 0.0 0.0 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 EB Multimodal WB NB SB Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 1.198 0.000 1.389 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.146 0.000 0.000 0.122 0.148 0.110 Pedestrian Mcorner / Mcw Bicycle cb / db 816.67 21.00 400.00 38.40 364.04 40.15 983.33 15.50 Bicycle Fw / Fv -3.64 0.82 -3.640.27 -3.64 0.32 -3.64 2.25

HCS7 Signalized Intersection Results Graphical Summary 建建选路准备差 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.93 Jurisdiction Time Period No-Build AM **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 7:00 File Name Main Street Intersections - No-Build 2045 AM.xus Intersection Lincoln Avenue **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Т Т Т Approach Movement L R L R L R L R 330 Demand (v), veh/h 70 60 50 70 30 10 90 80 480 160 630 Signal Information <u>يال.</u> Cycle, s 120.0 Reference Phase 2 517 Offset, s 36 Reference Point End Green 19.0 0.0 0.0 24.0 31.2 21.8 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 2.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т Т R L Τ R L R L R L Τ Back of Queue (Q), ft/ln (95 th percentile) 639.3 97.3 66.9 205.7 494.6 15.8 233.5 477.9 1277.7 Back of Queue (Q), veh/ln (95 th percentile) 23.2 3.5 2.4 19.5 9.0 18.1 48.4 8.1 0.6 3.41 Queue Storage Ratio (RQ) (95 th percentile) 2.56 0.08 0.41 0.05 0.29 1.27 0.67 0.17 Control Delay (d), s/veh 122.0 31.0 24.6 43.7 83.3 60.5 47.3 32.7 93.7 Level of Service (LOS) F С С D F Ε D С F Approach Delay, s/veh / LOS 95.4 F 70.1 Ε 48.0 D 70.6 Ε Intersection Delay, s/veh / LOS 73.6 Ε 2.3 _ 1.4 6.5 ______ 33.3 LOS B LOS C Queue Storage Ratio < 1 LOSD LOS E Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: According to input data, upstream feeding volume is equal to 323% of downstream exit volume during time period #1, for thru movement #6.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:28:07 PM

	H	ICS7	Signa	lized	Inter	section	on In	put Da	ıta					
0 11 6 2								1 1				1 21	H 24.5 (14.	USB
General Information							-	Intersect		v		- 1	JĮĮ	9 32
	Burgess & Niple, Ind	;.			1			Duration,		0.250				A A
<u> </u>	1EL		Analys		+			Area Typ	e	Other				
Jurisdiction			Time P		No-Bu	ild AM		PHF		0.92			W I L	→
Urban Street Main Street				is Year				Analysis		1> 7:0				**************************************
	luron Street		File Na	ıme	Main S	Street Ir	ntersec	ctions - N	o-Build	2045 A	M.xus		ጎ ሰ	
Project Description B	BEL-7-19.75	_	_	_	_	_	_		_	_	_	1		音 級
Demand Information				EB			WE	 3		NB			SB	
Approach Movement			L	Т	R	L	Т		L	Т	R	L	Т	R
Demand (v), veh/h				500	20	10	40	_	20		10	110	30	60
Signal Information				l +	2115									\mathbf{A}
	Reference Phase	2		≒ "	152	7					1	♥ 2	3	4
	Reference Point	End	Green	85.1	10.3	6.6	0.0	0.0	0.0					
	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0			7		V
Force Mode Fixed S	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
												1		
Traffic Information				EB			WB	_		NB			SB	
Approach Movement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h				500	20	10	400		20		10	110	30	60
Initial Queue (Qb), veh/h				0	0	0	0		0		0	0	0	0
Base Saturation Flow Rate (s _o), veh/h				1900	1900	1900	1900		1900		1900	1900	1900	1900
Parking (N _m), man/h				None			None)		None			None	
Heavy Vehicles (PHV), %				2			4	+	1		1	1	1	1
Ped / Bike / RTOR, /h			0	0	0	0	0		0	0		0	0	0
Buses (N _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)				3	3	3	3	+	3		3	3	3	3
Upstream Filtering (/)				0.59	0.59	1.00	1.00		1.00		1.00	1.00	1.00	1.00
Lane Width (W), ft				12.0		_	12.0		12.0		12.0	12.0	12.0	12.0
Turn Bay Length, ft				1200			350		50		425	125	275	125
Grade (Pg), %				0			0			0			0	
Speed Limit, mi/h				25	25	25	25		25		25	25	25	25
Phase Information			EBL		EBT	WBI	_	WBT	NBL		NBT	SBL		SBT
Maximum Green (Gmax) o	or Phase Split, s			- ;	39.0			39.0			17.0			64.0
Yellow Change Interval ()	Y), s				4.0			4.0			4.0			4.0
Red Clearance Interval (<i>Rc</i>), s				2.0			2.0			2.0			2.0
Minimum Green (Gmin), s	3				10			10			10			10
Start-Up Lost Time (It), s	3				2.0	2.0		2.0	2.0			2.0		2.0
Extension of Effective Gre	een (e), s				2.0	2.0		2.0	2.0			2.0		2.0
Passage (<i>PT</i>), s					2.0			2.0			2.0			2.0
Recall Mode					Min			Min			Off			Off
Dual Entry					Yes			Yes			Yes			Yes
Walk (<i>Walk</i>), s					0.0			0.0			0.0			0.0
Pedestrian Clearance Time (PC), s					0.0			0.0			0.0			0.0
Multimodal Information				EB			WB			NB			SB	
85th % Speed / Rest in Walk / Corner Radius			0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Crosswalk Width / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0	
Street Width / Island / Curb			0	0	No	0	0	No	0	0	No	0	0	No
	Width Outside / Bike Lane / Shoulder, ft			5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occu			12 No		0.50	No		0.50	No		0.50	No		0.50

Commonstation	HCS7 Signalized Intersection Results Summary																
Agency	General Inform	nation								Intersec	tion Info	ormatic	on	2	11 2 5 (1)		
Analysis			Burgess & Niple, In	C.					\rightarrow			v			111		
Unconditate					Analys	sis Date	11/16/	2021	_		<i>'</i>						
Unitan Street	-				-				_	• •	,,,		·		w]t	÷ #	
Intersection			Main Street					iiu / tivi			Period		00				
Project Description BEL-7-19,75 Bell		ļ		—			Stroot Ir							K 7			
Pemand Information		tion	ļ		I lie ive	anic	Iviaiii	ou eet ii	itersec	10113 - 10	io-Duila i	20 4 3 A	IVI.AUS	- 5		810	
Approach Movement	Project Descrip	lion	DEL-7-19.73											[124	NINTERAL PACIFICACION	22 180	
Signal Information	Demand Inform	nation				EB		T	WE	3	Т	NB			SB		
Signal Information	Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R	
Cycle, s 120,0 Reference Phase 2 2 6 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7	Demand (v), v	eh/h				500	20	10	400)	20		10	110	30	60	
Cycle, s 120,0 Reference Phase 2 2 6 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7					111												
Offsets 83 Reference Point End Uncoordinated No Simult Gap EW On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Value			,			•	_245									\mathbf{A}	
Discoordinated No Simult. Gap EW On Yellow 4.0 4.0 4.0 6.0 0.0						\	5 2	7					1	₹ 2	3	4	
Force Mode					Green	85.1	10.3	6.6	0.0	0.0	0.0						
Bell Bell Well			On		-			-					7		V		
Assigned Phase	Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8	
Assigned Phase	T D 14				EDI		EDT	\\/\(\(\bar{D}\)		WDT	NIDI	_	NDT	0.01	_	ODT	
Case Number 8.0 8.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 1.0 1.0 9.1 1.1 9.1 1.2.6 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.0 1.6.3 1.6.3 3.3					FRI	-		WB	L		NBL	-		SBI	-		
Phase Duration, s 91.1 91.1 91.1 12.6 3 16.3 Change Period, (Y+R c), s 6.0 6.0 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.3 3.3 9.8 Gueue Clearance Time (g s), s 0.0 0.0 0.0 0.1 0.5 Phase Call Probability 0.0		е												_			
Change Period, (Y+R c), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 9.8 Green Extension Time (g ∗), s 0.0 0.0 0.0 0.1 0.0 <						_			-			-		-	_		
Max Allow Headway (MAH), s 0.0 0.0 3.3 3.3 9.8 Green Extension Time (g s), s 0.0<		·	\ -				_		_			_		_		_	
Queue Clearance Time (g s), s 0.00 0.00						_			-			-		_	-		
Green Extension Time (g ∘), s 0.0 0.0 0.0 0.1 0.5 Phase Call Probability B W 0.66 0.00 1.00 Max Out Probability B W S N 0.00 0.00 Movement Group Results EB W T R L X					_		0.0		_	0.0		_		_	_		
Phase Call Probability	, <u> </u>					_			-						_		
Movement Group Results EB WB NB NB SB B B NB SB B B NB NB <td colspan="4"></td> <td></td> <td>_</td> <td>0.0</td> <td></td> <td>_</td> <td>0.0</td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td>						_	0.0		_	0.0		_			_		
Movement Group Results						_			_			_					
Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L 14 Adjusted Flow Rate (v), veh/h 678 C 446 C 22 11 120 33 65 Adjusted Saturation Flow Rate (s), veh/h/nh 1858 27.8 C 1816 1795 1598 1795 1885 1598 Queue Service Time (gs), s 27.8 27.8 C 11.1 1.4 0.8 7.8 1.9 4.7	Max Out Proba	bility							_	_			0.00			0.00	
Approach Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L 14 Adjusted Flow Rate (v), veh/h 678 C 446 C 22 11 120 33 65 Adjusted Saturation Flow Rate (s), veh/h/nh 1858 27.8 C 1816 1795 1598 1795 1885 1598 Queue Service Time (gs), s 27.8 27.8 C 11.1 1.4 0.8 7.8 1.9 4.7	Movement Gro	un Res	sults			FB			WB			NB			SB		
Assigned Movement 2 12 1 6 3 18 7 4 14 Adjusted Flow Rate (v), veh/h 678 446 22 11 120 33 65 Adjusted Saturation Flow Rate (s), veh/h/ln 1858 1816 1795 1598 1795 1885 1598 Queue Service Time (g s), s 27.8 0.0 1.4 0.8 7.8 1.9 4.7 Cycle Queue Clearance Time (g c), s 27.8 11.1 1.4 0.8 7.8 1.9 4.7 Green Ratio (g/C) 0.71 0.71 0.06 0.06 0.09 0.09 0.09 0.09 Capacity (c), veh/h 1317 1317 1319 99 88 154 161 137 Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.78 0.202 0.47 Back of Queue (Q), ft/ln (95 th percentile) 437.9 0.338 0.219 0.123 0.78 0.202 0.47 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03<			74110			ir .	R		r	□ R			R		ı	R	
Adjusted Flow Rate (v), veh/h 678 446 22 11 120 33 65 Adjusted Saturation Flow Rate (s), veh/h/ln 1858 1816 1795 1598 1795 1885 1598 Queue Service Time (g s), s 27.8 0.0 1.4 0.8 7.8 1.9 4.7 Cycle Queue Clearance Time (g c), s 27.8 11.1 1.4 0.8 7.8 1.9 4.7 Green Ratio (g/C) 0.71 0.71 0.06 0.06 0.09 0.09 0.09 Capacity (c), veh/h 1317 1319 99 88 154 161 137 Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.778 0.202 0.477 Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 16.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 <							-	1	-	 ``		•	_			_	
Adjusted Saturation Flow Rate (s), veh/h/ln 1858 1816 1795 1598 1795 1885 1598 Queue Service Time (g s), s 27.8 0.0 1.4 0.8 7.8 1.9 4.7 Cycle Queue Clearance Time (g c), s 27.8 11.1 1.4 0.8 7.8 1.9 4.7 Green Ratio (g /C) 0.71 0.71 0.06 0.06 0.09 0.09 0.09 Capacity (c), veh/h 1317 1319 99 88 154 161 137 Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.778 0.202 0.477 Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.7 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9) veh/h						-	_	_						
Queue Service Time (gs), s 27.8 0.0 1.4 0.8 7.8 1.9 4.7 Cycle Queue Clearance Time (gc), s 27.8 11.1 1.4 0.8 7.8 1.9 4.7 Green Ratio (gC) 0.71 0.71 0.06 0.06 0.09 0.09 0.09 Capacity (c), veh/h 1317 1319 99 88 154 161 137 Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.778 0.202 0.477 Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2	_		,-	n							-		_				
Cycle Queue Clearance Time (g c), s 27.8 11.1 1.4 0.8 7.8 1.9 4.7 Green Ratio (g/C) 0.71 0.71 0.06 0.06 0.09 0.00 0.77 0.20 0.21 0.778 0.20 0.477 0.477 0.20 0.78 0.20 0.00 0.0			· , , ,	•						+							
Green Ratio (g/C) 0.71 0.71 0.06 0.06 0.09 0.09 0.09 Capacity (c), veh/h 1317 1319 99 88 154 161 137 Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.778 0.202 0.477 Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d 3), s/veh 15.1 7.4 54.6 54.2 56.9 51.3 53.3 Level of Service (LOS) 8 7.4 A 54.5 D 55.0 D </td <td></td> <td></td> <td>- ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>			- ,						_				_				
Capacity (c), veh/h 1317 1319 99 88 154 161 137 Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.778 0.202 0.477 Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d 3), s/veh 0.0 <td></td> <td></td> <td>0 mmo (g v), 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>			0 mmo (g v), 0							+						_	
Volume-to-Capacity Ratio (X) 0.515 0.338 0.219 0.123 0.778 0.202 0.477 Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d 3), s/veh 0.0										+							
Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d 3), s/veh 0.0	3 ().		atio (X)							_			-			_	
Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d ₁), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d ₂), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d ₃), s/veh 0.0										_							
Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.58 0.59 0.03 1.34 0.15 0.70 Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d 3), s/veh 0.0													-				
Uniform Delay (d 1), s/veh 14.3 6.7 54.2 53.9 53.7 51.0 52.3 Incremental Delay (d 2), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d 3), s/veh 0.0<			· · · · · · · · · · · · · · · · · · ·	,					_				_				
Incremental Delay (d ₂), s/veh 0.9 0.7 0.4 0.2 3.2 0.2 1.0 Initial Queue Delay (d ₃), s/veh 0.0		· · · · · · · · · · · · · · · · · · ·								+							
Initial Queue Delay (d ₃), s/veh 0.0		• • •							_		_		-			_	
Control Delay (d), s/veh 15.1 7.4 54.6 54.2 56.9 51.3 53.3 Level of Service (LOS) B A D D D E D D Approach Delay, s/veh / LOS 15.1 B 7.4 A 54.5 D 55.0 D Intersection Delay, s/veh / LOS 19.9 B B NB SB Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B																	
Level of Service (LOS) B A D D E D D Approach Delay, s/veh / LOS 15.1 B 7.4 A 54.5 D 55.0 D Intersection Delay, s/veh / LOS 19.9 B Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B													_				
Approach Delay, s/veh / LOS 15.1 B 7.4 A 54.5 D 55.0 D Intersection Delay, s/veh / LOS 19.9 B Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B									_				+			_	
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B	` '			15.1		В	7 /		Δ								
Multimodal Results EB WB NB SB Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B				13.					A	J -1 .J					<i>D</i>		
Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B	microcolion Dolay, 9/Ven / LOO					18											
Pedestrian LOS Score / LOS 1.86 B 1.86 B 1.74 B 1.73 B	Multimodal Re	Multimodal Results			EB			WB		NB			SB				
					1.86		В	1.86		В	1.74		В			В	
	Bicycle LOS Sc	ore / LC	OS		1.42	2		1.22	2	Α			F	0.85	5	Α	

Generated: 11/18/2021 4:28:07 PM

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period No-Build AM **Urban Street** Main Street Analysis Year 2045 Analysis Period 1>7:00 Huron Street File Name Main Street Intersections - No-Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 500 20 10 400 20 10 110 30 60 Signal Information 셌 Cycle, s 120.0 Reference Phase 2 Offset, s 83 Reference Point End 0.0 0.0 Green 85.1 10.3 6.6 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (f_w) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.984 1.000 1.000 0.969 0.984 0.992 1.000 0.992 0.992 0.992 0.992 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.993 0.987 0.987 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.993 0.000 0.987 0.000 0.847 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) 1.000 Movement Saturation Flow Rate (s), veh/h 0 1786 71 44 1772 0 1795 0 1598 1795 1885 1598 Proportion of Vehicles Arriving on Green (P) 0.00 0.54 0.62 0.71 0.71 0.00 0.06 0.00 0.06 0.09 0.09 0.09 Incremental Delay Factor (k) 0.50 0.50 0.04 0.04 0.04 0.04 0.04 Signal Timing / Movement Groups EBL EBT/R **WBL** WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 4.0 Lost Time (t_L) Green Ratio (g/C) 0.71 0.71 0.06 0.09 Permitted Saturation Flow Rate (sp), veh/h/ln 969 773 1795 1795 Shared Saturation Flow Rate (ssh), veh/h/ln 1870 0 Permitted Effective Green Time (g_p) , s 0.0 85.1 0.0 0.0 0.0 57.3 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 0.0 Time to First Blockage (gf), s 85.1 52.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s 11.1 Protected Right Saturation Flow (SR), veh/h/ln 0 0 Protected Right Effective Green Time (g_R) , s 0.0 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.065 0.000 0.065 0.000 0.169 0.000 0.160 Pedestrian Mcorner / Mcw Bicycle cb / db 1418.30 5.08 1418.30 5.08 67.20 110.46 53.56 Bicycle Fw / Fv -3.640.93 -3.640.74 -3.64 -3.64 0.36

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period No-Build AM **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 7:00 Huron Street File Name Main Street Intersections - No-Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Т Approach Movement L Τ R L L R L R Demand (v), veh/h 500 20 10 400 20 10 110 30 60 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 83 Reference Point End 0.0 0.0 Green 85.1 10.3 6.6 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т Τ R L Τ R L R L Т R L Back of Queue (Q), ft/ln (95 th percentile) 437.9 202.3 29.3 14.6 167.8 42.3 87.4 Back of Queue (Q), veh/ln (95 th percentile) 17.2 7.8 1.2 0.6 6.7 1.7 3.5 Queue Storage Ratio (RQ) (95 th percentile) 0.36 0.58 0.59 0.03 1.34 0.15 0.70 54.2 56.9 Control Delay (d), s/veh 15.1 7.4 54.6 51.3 53.3 Level of Service (LOS) В Α D D Ε D D Approach Delay, s/veh / LOS 15.1 В 7.4 Α 54.5 D 55.0 D Intersection Delay, s/veh / LOS 19.9 В 2.3 _ 1.4 LOS B LOS C Queue Storage Ratio < 1 LOSD LOSE Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: According to input data, upstream feeding volume is equal to 120% of downstream exit volume during time period #1, for thru movement #2.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:28:07 PM

	ŀ	ICS7	Signa	alized	Inter	section	on In	put Da	ata					
										4.		1 3	H P P S N S	USA .
General Information	0.111.1						_	Intersec		v		- 1	J	9 52
Agency	Burgess & Niple, Inc				1		_	Duration.		0.250				A A
Analyst	MEL		-	is Date				Area Typ	е	Other				
Jurisdiction			Time F			ild AM		PHF		0.80		# * +	w t	→ 44
Urban Street	Lincoln Avenue		-	is Year				Analysis		1> 7:0	00			**************************************
Intersection	Howard Street		File Na	ame	Lincol	n & Hov	vard 20	045 No-b	uild AM	.xus			4	
Project Description	BEL-7-19.75	_	_	_	_	_	_	_	_	_	_	15		计 源
Demand Information				EB			WE	3		NB		T	SB	
Approach Movement			L	Т	R	L	Т	R		Т	R	L	Т	R
Demand (v), veh/h			50	0	120	10	190	_	10	20			170	100
Signal Information	Y Y			11	3 5	#								_
Cycle, s 60.0	Reference Phase	2		R#	R						1	Y 2	3	←
Offset, s 0	Reference Point	End	Green	31.7	16.3	0.0	0.0	0.0	0.0					K
Uncoordinated No	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0		0.0					7
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
- (0) 1 ()			1				14/5		1	ND		1		
Traffic Information Approach Movement			L	EB T	D	-	WB T	R	L	NB T	R	L	SB T	R
			50	0	120	10	190	110	10	20	K		170	100
Demand (v), veh/h				0	0	0	0	0	0	0			0	0
Initial Queue (Qb), veh/h				1900	1900	1900	1900		1900	1900			1900	1900
Base Saturation Flow Rate (s ₀), veh/h					1900	1900		_	1900			-	_	1900
Parking (N _m), man/h Heavy Vehicles (P _{HV}), %				None		-	None	;	_	None		_	None	7
				9	0		5			10			7	7
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0		0	0	0
Buses (Nb), buses/h			3	3	3	3	3	3	3	3	0	0	3	3
Arrival Type (AT) Upstream Filtering (I)			1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Lane Width (W), ft			1.00	12.0	1.00	1.00	12.0		1.00	12.0			12.0	12.0
Turn Bay Length, ft				850		-	600			475			800	450
Grade (<i>Pg</i>), %				0		_	0			0			0	430
Speed Limit, mi/h			25	25	25	25	25	25	25	25			25	25
Speed Lillit, Illi/II			23	23	20	25	25	20	25	23			23	23
Phase Information			EBL	-	EBT	WBI	-	WBT	NBL	-	NBT	SBL	-	SBT
Maximum Green (Gmax	· · · · · · · · · · · · · · · · · · ·				44.0			44.0			16.0			16.0
Yellow Change Interva					4.0			4.0			4.0			4.0
Red Clearance Interva					2.0			2.0			2.0			2.0
Minimum Green (Gmin	, .				7			7			7			7
Start-Up Lost Time (It)	, .		2.0		2.0	2.0		2.0	2.0		2.0			2.0
Extension of Effective	Green (e), s		2.0		2.0	2.0	_	2.0	2.0		2.0			2.0
Passage (PT), s					2.0	_	_	2.0			2.0	_		2.0
Recall Mode			_	_	Off	-	+	Off	_	_	Min	_	_	Min
Dual Entry Walk (<i>Walk</i>), s					Yes	_	_	Yes			Yes	_		Yes
Pedestrian Clearance Time (<i>PC</i>), s					0.0		+	0.0			0.0			0.0
1 edesitian Clearance Time (FC), 8					0.0			0.0			0.0			0.0
Multimodal Information				EB			WB			NB			SB	
85th % Speed / Rest in Walk / Corner Radius			0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Crosswalk \	Valkway / Crosswalk Width / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island /	Street Width / Island / Curb			0	No	0	0	No	0	0	No	0	0	No
Width Outside / Bike L	Width Outside / Bike Lane / Shoulder, ft			5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No		0.50

HCS7 Sig	nalize	ed Int	ersect	tion F	Resu	lts Sur	nmar	у							
General Information						Intersec	tion Inf	ormatic	n n		III II ST	19			
Agency Burgess & Niple, Inc						Duration		0.250			Jţ				
Analyst MEL	Analys	sis Date	e 11/17/	2021		Area Typ		Other				A.			
Jurisdiction MEL	Time I		No-Bu		_	PHF		0.80			w i t	÷			
Urban Street Lincoln Avenue		sis Yea		IIIU AIVI		Analysis	Doriod	1> 7:0	00						
Intersection Howard Street	File N			n 9 Hay		045 No-b			00						
Project Description BEL-7-19.75	File IV	ame	Lincon	Παπον	waru z	045 NO-L	oulia Aivi	ı.xus		- 4		NEW N			
Project Description BEL-7-19.75	-		-			-	-		-	120	selfs senter const colin colin const				
Demand Information	Т	EB			WE	3		NB			SB				
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L					
Demand (v), veh/h	50	0	120	10	19	0 110	10	20			170	100			
Signal Information		14	_ 2												
Cycle, s 60.0 Reference Phase 2		_R ↑	H P							\mathbf{V}_{\perp}	_	-⇔ .			
Offset, s 0 Reference Point End	Green	31.7	16.3	0.0	0.0	0.0	0.0		1	1 2	3	¥ 4			
Uncoordinated No Simult. Gap E/W On	Yellow		4.0	0.0	0.0		0.0					→			
Force Mode Fixed Simult. Gap N/S On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8			
Timer Results	EB	L	EBT	WB	L	WBT	NBI	L	NBT	SBI	L L	SBT			
Assigned Phase			4			8			2			6			
Case Number			8.0			8.0			8.0			7.0			
Phase Duration, s			22.3			22.3			37.7			37.7			
Change Period, (Y+Rc), s			6.0			6.0			6.0			6.0			
Max Allow Headway (MAH), s			3.4			3.4			0.0			0.0			
Queue Clearance Time (g s), s			9.5			14.8									
Green Extension Time (g e), s			1.5			1.5			0.0			0.0			
Phase Call Probability			1.00			1.00									
Max Out Probability			0.00			0.00		\neg			\neg				
Movement Group Results		EB			WB			NB			SB				
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R			
Assigned Movement	7	4	14	3	8	18	5	2			6	16			
Adjusted Flow Rate (v), veh/h		213			388			38			213	125			
Adjusted Saturation Flow Rate (s), veh/h/ln		1365			1706			1497			1796	1522			
Queue Service Time (g s), s		0.0			3.0			0.0			3.8	2.5			
Cycle Queue Clearance Time (g c), s		7.5			12.8			0.6			3.8	2.5			
Green Ratio (g/C)		0.27			0.27			0.53			0.53	0.53			
Capacity (c), veh/h		448			524			872			950	805			
Volume-to-Capacity Ratio (X)		0.475			0.739	9		0.043			0.224	0.155			
Back of Queue (Q), ft/ln (95 th percentile)		114.8			220.4	1		10.8			66.3	37.9			
Back of Queue (Q), veh/ln (95 th percentile)		4.3			8.5			0.4			2.5	1.4			
Queue Storage Ratio (RQ) (95 th percentile)		0.14			0.37	Ì		0.02			0.08	0.08			
Uniform Delay (d 1), s/veh		18.5			20.6			6.8			7.6	7.3			
Incremental Delay (d 2), s/veh		0.3			0.8	Ì		0.1			0.5	0.4			
Initial Queue Delay (d 3), s/veh		0.0			0.0			0.0			0.0	0.0			
Control Delay (d), s/veh		18.8			21.4			6.9			8.1	7.7			
Level of Service (LOS)		В			С			Α			Α	Α			
Approach Delay, s/veh / LOS	18.8		В	21.4		С	6.9 A			7.9		Α			
Intersection Delay, s/veh / LOS				5.6						В					
Multimodal Results		EB			WB			NB			SB				
Pedestrian LOS Score / LOS	1.68	3	В	1.91	1	В	1.65	5	В	1.65	5	В			
Bicycle LOS Score / LOS	0.84	1	Α	1.13	3	Α	0.55	5	Α	1.04	1	Α			

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/17/2021 Area Type Other PHF 0.80 Jurisdiction Time Period No-Build AM **Urban Street** Lincoln Avenue Analysis Year 2045 Analysis Period 1> 7:00 Howard Street File Name Lincoln & Howard 2045 No-build AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 50 0 120 10 190 110 10 20 170 100 Signal Information Щ Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 31.7 0.0 0.0 16.3 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (f_w) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.930 1.000 1.000 0.961 1.000 1.000 0.922 1.000 1.000 0.945 0.945 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.820 0.773 0.994 0.934 0.854 0.854 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.773 0.000 0.934 0.000 0.854 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) 964 Movement Saturation Flow Rate (s), veh/h 402 55 1046 605 499 998 0 0 1796 1522 Proportion of Vehicles Arriving on Green (P) 0.27 0.00 0.27 0.27 0.27 0.27 0.53 0.53 0.00 0.00 0.53 0.53 0.04 Incremental Delay Factor (k) 0.04 0.50 0.50 0.50 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.27 0.27 0.53 0.53 Permitted Saturation Flow Rate (sp), veh/h/ln 1024 1257 1188 1408 Shared Saturation Flow Rate (ssh), veh/h/ln 1290 1796 0 1796 Permitted Effective Green Time (g_p) , s 16.3 16.3 31.7 0.0 3.5 8.8 27.9 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 0.0 3.0 0.0 Time to First Blockage (gf), s 4.5 4.0 31.7 9.8 2.3 6.2 Queue Service Time Before Blockage (gfs), s 0.6 Protected Right Saturation Flow (SR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 0.972 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.000 0.076 0.000 0.076 0.111 0.111 Pedestrian Mcorner / Mcw Bicycle cb / db 542.13 15.94 542.13 15.94 1057.87 6.66 1057.87 6.66 Bicycle Fw / Fv -3.640.35 -3.640.64 -3.64 0.06 -3.64 0.56

HCS7 Signalized Intersection Results Graphical Summary 建建基础建筑 **General Information Intersection Information** Agency Burgess & Niple, Inc Duration, h 0.250 Analyst MEL Analysis Date 11/17/2021 Area Type Other No-Build AM PHF 0.80 Jurisdiction Time Period **Urban Street** Lincoln Avenue Analysis Year 2045 Analysis Period 1> 7:00 Howard Street File Name Lincoln & Howard 2045 No-build AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Т Approach Movement L R L R L R Τ R 120 110 100 Demand (v), veh/h 50 0 10 190 10 20 170 Signal Information Щ Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 31.7 0.0 0.0 16.3 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 0.0 On Red 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R Т Τ R L Τ R L L R L Back of Queue (Q), ft/ln (95 th percentile) 114.8 220.4 10.8 66.3 37.9 Back of Queue (Q), veh/ln (95 th percentile) 4.3 8.5 0.4 2.5 1.4 Queue Storage Ratio (RQ) (95 th percentile) 0.14 0.37 0.02 80.0 80.0 Control Delay (d), s/veh 18.8 21.4 6.9 8.1 7.7 Level of Service (LOS) В С Α Α Α Approach Delay, s/veh / LOS 18.8 В 21.4 С 6.9 Α 7.9 Α Intersection Delay, s/veh / LOS 15.6 В LOS B LOS C LOSD LOS E LOS F

	Messages	
--	----------	--

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:49:34 PM

HCS7 Signalized Intersection Input Data 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.84 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals No-Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 400 0 0 0 Demand (v), veh/h 0 0 330 **Signal Information** Reference Phase Cycle, s 70.0 66 Offset, s Reference Point End Green 42.8 17.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 0.0 2.0 0.0 0.0 0.0 0.0 On WB NB SB **Traffic Information** EB Approach Movement L Т R ı Т R ı R R Demand (v), veh/h 400 0 0 0 0 0 330 0 0 Initial Queue (Qb), veh/h 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h Parking (Nm), man/h None None None Heavy Vehicles (PHV), % 15 0 5 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 Arrival Type (AT) 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) Lane Width (W), ft 12.0 12.0 12.0 100 400 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 **WBL** SBL **Phase Information EBL EBT WBT NBL NBT SBT** Maximum Green (Gmax) or Phase Split, s 13.0 13.0 57.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 Red Clearance Interval (Rc), s 0.0 0.0 2.0 7 6 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 Off Recall Mode Min Min Yes **Dual Entry** Yes No Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** WB NB SB EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 No No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 No 0 No 0 No 0 0

Width Outside / Bike Lane / Shoulder, ft

Pedestrian Signal / Occupied Parking

12

5.0

2.0

0.50

12

No

5.0

2.0

No Generated: 11/18/2021 11:13:04 PM

0.50

12

No

5.0

2.0

0.50

		HCS	7 Sig	nalize	d In	tersec	tion F	Resu	lts Sur	nmar	y				
													_		
General Inform	nation	Γ						_	Intersec					4 사하	1 1/2 1/2
Agency		Burgess & Niple, In	C.	1		1			Duration,		0.250		_		L
Analyst		MEL		+		e Nov 1			Area Typ	е	Other		<i>Z</i> ₂ →		<u> </u>
Jurisdiction				Time F			ild AM		PHF		0.84		-<	w‡ı	*
Urban Street		Cadiz Pike		Analys	is Yea	r 2045			Analysis	Period	1> 7:	00	7		₩
Intersection		NB SR 7		File Na	ame	Cadiz	Pike Si	gnals l	No-Build	2045 AI	M.xus			1	
Project Descrip	tion	BEL-7-19.75											1	1414	747
Demand Inform	nation				EB		T	WE	3	T	NB		T	SE	}
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				400	0	0	0	0			330				
							"								
Signal Informa	_	T			T	_							_		
Cycle, s	70.0	Reference Phase	2		Ħ,	1						1	€ 』	3	3 4
Offset, s	66	Reference Point	End	Green	42.8	17.2	0.0	0.0	0.0	0.0			ĸ		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0		0.0		1 2	∀		1
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Time on December				EDI		EDT	WD		WDT	ND	_	NDT	ODI		ODT
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT
Assigned Phase	<u>e</u>			_		2	_		6		_	8	_		
Case Number				_	-	8.0		-	8.0			12.0	-		
Phase Duration		\ -		_	+	46.8			46.8		_	23.2	_	_	
Change Period, (Y+Rc), s				_	-	4.0			4.0		-	6.0	_	-	
Max Allow Headway (MAH), s				_	+	0.0		_	0.0		_	3.2	_	_	
Queue Clearance Time (g s), s				_	_			_			_	16.5	-	-	
Green Extension Time (g e), s				\perp	0.0		_	0.0		_	8.0	_	_		
Phase Call Pro				_	_			_				1.00	_	_	
Max Out Proba	bility				_			_				0.00			
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16		8				
Adjusted Flow F) veh/h			421		, i	0	10		393				
		ow Rate (s), veh/h/l	ln .		1271			0			1826				
Queue Service					4.7	+		0.0			14.5				_
Cycle Queue C		•			4.7			0.0			14.5				
Green Ratio (g		5 (g c), 3			0.61			0.0			0.25				+
Capacity (c), v					879						450				
Volume-to-Capa		itio (X)			0.479			0.000			0.873				
		/In (95 th percentile))		53.5	_		0.000			269.7				
		eh/ln (95 th percenti			1.9			0.0			10.4				
		·	•		0.54			0.00			0.67				
	Queue Storage Ratio (RQ) (95 th percentile) Uniform Delay (d 1), s/veh				1.7			1.00			25.3				
	cremental Delay (d 2), s/veh				1.9			0.0			2.1				
	nitial Queue Delay (d 3), s/veh				0.0			0.0			0.0				
	Control Delay (d), s/veh				3.5			0.0			27.5				
Level of Service (LOS)					A						C				_
Approach Delay, s/veh / LOS				3.5		A	0.0			27.5		С	0.0		_
Intersection Delay, s/veh / LOS				3.5			5.1						В		
Multimodal Re	sults				EB			WB			NB			SB	,
Pedestrian LOS	Score	/ LOS		1.35	5	Α	1.35	5	Α	1.72	2	В	1.72	2	В
Diavala LOC Ca				4.0=											

Bicycle LOS Score / LOS

0.49

1.14

Generated: 11/18/2021 11:13:04 PM

1.27

HCS7 Signalized Intersection Intermediate Values باطلعاء المالية ل Intersection Information **General Information** Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.84 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals No-Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 400 0 0 0 Demand (v), veh/h 0 0 330 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 66 Reference Point End Green 42.8 17.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Red 0.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R Т R L L L 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.883 0.883 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.758 0.758 1.000 1.000 1.000 1.000 0.000 0.758 0.000 0.000 0.000 Right-Turn Adjustment Factor (fRT) 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1271 0 0 1900 0 1826 0 0 0 Proportion of Vehicles Arriving on Green (P) 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.04 **Signal Timing / Movement Groups** SBL **EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBT/R Lost Time (t_L) 4.0 4.0 4.0 0.61 0.25 Green Ratio (g/C) 0.61 Permitted Saturation Flow Rate (s_p) , veh/h/ln 1440 1440 0 Shared Saturation Flow Rate (ssh), veh/h/ln 0 1900 Permitted Effective Green Time (q_p) , s 42.8 0.0 0.0 Permitted Service Time (gu), s 42.7 0.0 0.0 Permitted Queue Service Time (g_{ps}) , s 4.7 Time to First Blockage (gf), s 0.0 42.8 0.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB 0.972 Pedestrian Fw / Fv 0.681 0.000 0.681 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.067 0.000 0.067 0.000 0.150 0.000 0.148 Pedestrian Mcorner / Mcw

1221.51

-3.64

5.30

0.79

Bicycle cb / db

Bicycle Fw / Fv

5.30

0.00

-200.00

-3.64

42.35

0.65

-3.64

Generated: 11/18/2021 11:13:04 PM

40.18

1221.51

-3.64

HCS7 Signalized Intersection Results Graphical Summary 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.84 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals No-Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Τ R L Т R L R Demand (v), veh/h 400 0 0 330 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 66 Reference Point End Green 42.8 17.2 0.0 0.0 0.0 0.0 Uncoordinated Simult. Gap E/W No On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 0.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S On **Movement Group Results** WB SB EΒ NB Approach Movement L Τ R L Т R L Т R R Back of Queue (Q), ft/ln (95 th percentile) 53.5 0 269.7 Back of Queue (Q), veh/ln (95 th percentile) 1.9 0.0 10.4 Queue Storage Ratio (RQ) (95 th percentile) 0.54 0.00 0.67 Control Delay (d), s/veh 3.5 27.5 Level of Service (LOS) Α С Approach Delay, s/veh / LOS 3.5 Α 0.0 27.5 С 0.0 15.1 Intersection Delay, s/veh / LOS В 0 LOSA LOS B LOS D LOSE LOS F

--- Messages ---

WARNING: According to input data, upstream feeding volume is equal to 88% of downstream exit volume during time period #1, for thru movement #2.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:13:04 PM

HCS7 Signalized Intersection Input Data General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals No-Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Т R L R 250 80 0 370 1020 Demand (v), veh/h 30 0 0 0 20 **Signal Information** ٦. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 21.1 36.9 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed Simult. Gap N/S On WB NB **Traffic Information** EB SB Approach Movement L Т R ı Τ R ı R R 30 250 0 0 80 0 370 1020 20 Demand (v), veh/h 0 0 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 4 0 13 8 Ped / Bike / RTOR, /h 0 Buses (Nb), buses/h 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 1500 375 750 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 25 25 25 **WBL WBT Phase Information EBL EBT NBL NBT** SBL **SBT** Maximum Green (Gmax) or Phase Split, s 18.0 18.0 52.0 52.0 4.0 4.0 Yellow Change Interval (Y), s 4.0 4.0 Red Clearance Interval (Rc), s 2.0 0.0 2.0 2.0 7 7 7 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 Off Off Recall Mode Min Min Yes **Dual Entry** Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 WB NB SB **Multimodal Information** EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 0 No No 25 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 0 0 0 0 No No 0 No 0 No

Width Outside / Bike Lane / Shoulder, ft

Pedestrian Signal / Occupied Parking

12

5.0

2.0

0.50

12

No

5.0

2.0

0.50

12

No

Generated: 11/18/2021 11:13:04 PM

5.0

2.0

0.50

12

No

5.0

2.0

0.50

HCS7 Signalized Intersection Results Summary General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals No-Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 250 80 0 370 1020 Demand (v), veh/h 30 0 0 0 20 **Signal Information** ٦. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 21.1 0.0 0.0 0.0 36.9 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 2.0 2.0 0.0 0.0 0.0 0.0 On **Timer Results EBL WBL WBT** NBL **NBT** SBL SBT **EBT Assigned Phase** 2 6 8 4 Case Number 8.0 8.0 8.0 8.0 27.1 42.9 42.9 Phase Duration, s 27.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.5 3.5 Queue Clearance Time (g s), s 32.6 16.7 Green Extension Time (q e), s 0.0 0.0 4.1 4.8 Phase Call Probability 1.00 1.00 Max Out Probability 0.22 0.02 **Movement Group Results** EB **WB** NB SB Approach Movement L Т R L Т R L Т R L Т R Assigned Movement 2 12 6 18 4 1 3 8 7 14 Adjusted Flow Rate (v), veh/h 295 0 474 0 546 Adjusted Saturation Flow Rate (s), veh/h/ln 1586 0 997 0 1769 Queue Service Time (g_s), s 11.2 0.0 15.8 0.0 14.7 Cycle Queue Clearance Time (g c), s 11.2 0.0 30.6 0.0 14.7 Green Ratio (g/C) 0.30 0.53 0.53 Capacity (c), veh/h 473 589 938 Volume-to-Capacity Ratio (X) 0.623 0.000 0.000 0.582 0.804 Back of Queue (Q), ft/ln (95 th percentile) 215.7 0 300.8 0 221.7 Back of Queue (Q), veh/ln (95 th percentile) 0.0 8.4 10.9 0.0 8.9 Queue Storage Ratio (RQ) (95 th percentile) 0.14 0.00 0.80 0.00 0.31 21.2 Uniform Delay (d 1), s/veh 14.3 11.2 Incremental Delay (d 2), s/veh 6.1 0.0 4.4 0.0 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 27.2 18.7 11.4 Level of Service (LOS) С В В Approach Delay, s/veh / LOS 27.2 18.7 С 0.0 В 11.4 В Intersection Delay, s/veh / LOS 15.7 В **Multimodal Results** NB ΕB WB SB Pedestrian LOS Score / LOS 1.91 В 1.91 1.65 1.65 В В В

Bicycle LOS Score / LOS

1.27

Α

1.39

Generated: 11/18/2021 11:13:04 PM

A

0.97

Α

HCS7 Signalized Intersection Intermediate Values باط الطبله ل Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 AM.xus Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L R 250 80 0 370 1020 Demand (v), veh/h 30 0 0 0 20 **Signal Information** ٦. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 21.1 36.9 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R L Т R L L 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.899 0.899 1.000 0.938 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.862 1.000 1.000 0.653 0.584 1.000 1.000 0.000 0.862 0.000 0.993 Right-Turn Adjustment Factor (fRT) 0.000 1.000 0.584 0.993 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 0 1416 1900 0 0 3482 170 0 177 0 819 68 Proportion of Vehicles Arriving on Green (P) 0.00 0.30 0.30 0.30 0.30 0.30 0.53 0.00 0.53 0.00 0.53 0.53 Incremental Delay Factor (k) 0.50 0.18 0.04 **Signal Timing / Movement Groups EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBL SBT/R Lost Time (t_L) 6.0 6.0 6.0 6.0 Green Ratio (g/C) 0.30 0.30 0.53 0.53 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1102 523 1010 Shared Saturation Flow Rate (ssh), veh/h/ln 0 0 0 1781 Permitted Effective Green Time (q_p) , s 0.0 0.0 37.1 0.0 Permitted Service Time (gu), s 0.0 0.0 22.3 0.0 Permitted Queue Service Time (g_{ps}) , s 15.8 Time to First Blockage (gf), s 20.9 20.9 9.0 37.1 Queue Service Time Before Blockage (gfs), s 2.2 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB SB 0.972 Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.000 0.110 0.000 0.083 0.000 0.083 0.114 Pedestrian Mcorner / Mcw

603.93

-3.64

17.05

0.49

Bicycle cb / db

Bicycle Fw / Fv

15.69

0.00

661.07

-3.64

7.84

0.78

1053.21

-3.64

Generated: 11/18/2021 11:13:04 PM

7.84

0.90

1053.21

-3.64

HCS7 Signalized Intersection Results Graphical Summary General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period No-Build AM PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 AM.xus SB SR 7 Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Т R L Τ R L R 250 0 370 1020 Demand (v), veh/h 30 0 80 0 20 **Signal Information** ٦. 70.0 Reference Phase Cycle, s Offset, s 0 Reference Point End Green 21.1 0.0 0.0 0.0 36.9 0.0 Uncoordinated Simult. Gap E/W No On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S On **Movement Group Results** WB NB SB EΒ Approach Movement L Τ R L Т R L Т R Т R Back of Queue (Q), ft/ln (95 th percentile) 215.7 0 300.8 0 221.7 Back of Queue (Q), veh/ln (95 th percentile) 8.4 0.0 10.9 0.0 8.9 Queue Storage Ratio (RQ) (95 th percentile) 0.14 0.00 0.80 0.00 0.31 Control Delay (d), s/veh 27.2 18.7 11.4 Level of Service (LOS) С В В Approach Delay, s/veh / LOS 27.2 С 0.0 18.7 В 11.4 В 15.7 Intersection Delay, s/veh / LOS В 0 LOSA LOS B LOS D LOSE LOS F

Messages -	
------------	--

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:13:04 PM

Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

No-Build Intersection Analysis

PM Peak

HCS7 Signalized Intersection Input Data General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.92 Jurisdiction Time Period **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.6 35.3 29.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 0.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Traffic Information** EΒ WB NB SB Approach Movement L Т R R L Т R R L Τ L Т Demand (v), veh/h 260 270 440 310 330 400 Initial Queue (Qb), veh/h 0 0 0 0 0 0 Base Saturation Flow Rate (s₀), veh/h 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None Heavy Vehicles (PHV), % 10 10 6 6 11 11 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 Arrival Type (AT) Upstream Filtering (I) 1.00 1.00 0.09 0.09 1.00 1.00 12.0 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 Turn Bay Length, ft 2450 525 1200 1200 175 175 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 **Phase Information** EBL WBT SBL **EBT WBL NBL NBT** SBT Maximum Green (Gmax) or Phase Split, s 16.0 51.0 67.0 53.0 53.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 4.0 4.0 Red Clearance Interval (Rc), s 2.0 2.0 2.0 2.0 2.0 Minimum Green (Gmin), s 10 10 7 10 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 2.0 Recall Mode Min Off Min Off Off **Dual Entry** Yes No Yes No Yes Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 25 0 25 0 25 No No No 9.0 0 9.0 12 0 9.0 Walkway / Crosswalk Width / Length, ft 12 12 0 0 Street Width / Island / Curb 0 No 0 0 0 No No 0 Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 0.50 Pedestrian Signal / Occupied Parking No 0.50 0.50 No No

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.92 Jurisdiction Time Period Urban Street Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.6 35.3 29.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT Assigned Phase 6 8 2 1 Case Number 7.3 2.0 4.0 9.0 Phase Duration, s 41.3 43.6 84.9 35.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 3.3 0.0 3.4 Queue Clearance Time (g s), s 36.5 27.2 Green Extension Time (g e), s 0.0 1.1 0.0 1.9 Phase Call Probability 1.00 1.00 0.00 0.00 Max Out Probability WB NB **Movement Group Results** EΒ SB Approach Movement Т R L Т R Т R Т R L L L Assigned Movement 2 12 6 3 18 1 Adjusted Flow Rate (v), veh/h 283 293 505 356 359 435 1752 1725 1811 1654 1472 Adjusted Saturation Flow Rate (s), veh/h/ln 1485 16.3 2.6 25.2 22.3 Queue Service Time (g_s), s 13.7 34.5 Cycle Queue Clearance Time (g c), s 16.3 13.7 34.5 2.6 25.2 22.3 0.29 Green Ratio (g/C) 0.54 0.31 0.66 0.24 0.56 Capacity (c), veh/h 515 796 541 1191 401 819 Volume-to-Capacity Ratio (X) 0.549 0.369 0.934 0.299 0.895 0.531 Back of Queue (Q), ft/ln (95 th percentile) 328.3 232.7 454.9 32.3 448 327.2 Back of Queue (Q), veh/ln (95 th percentile) 12.2 8.6 17.4 1.2 16.5 12.0 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.44 0.38 0.03 2.56 1.87 Uniform Delay (d 1), s/veh 35.7 16.1 45.3 1.8 44.0 16.8 Incremental Delay (d 2), s/veh 4.2 1.3 8.0 0.1 6.1 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 39.8 17.4 46.1 1.8 50.0 17.0 Level of Service (LOS) D В D Α В D 28.4 С 27.8 С С 0.0 Approach Delay, s/veh / LOS 31.9 Intersection Delay, s/veh / LOS 29.4 С **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.93 В 0.68 1.97 В Α В 1.96 Bicycle LOS Score / LOS 1.44 Α 1.83

Generated: 11/18/2021 4:31:52 PM

HCS7 Signalized Intersection Intermediate Values General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.92 Jurisdiction Time Period Urban Street Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.6 35.3 29.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.922 0.922 0.953 0.953 1.000 0.914 1.000 0.914 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 1.000 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 1.000 1.000 0.000 0.847 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1752 1485 1725 1654 0 1472 0 1811 0 Proportion of Vehicles Arriving on Green (P) 0.00 0.29 0.29 0.22 0.92 0.00 0.24 0.00 0.24 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.50 0.09 0.50 0.09 0.04 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.29 0.31 0.66 0.24 Permitted Saturation Flow Rate (sp), veh/h/ln 1041 0 0 1654 Shared Saturation Flow Rate (ssh), veh/h/ln 0 Permitted Effective Green Time (g_p) , s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 35.3 Time to First Blockage (gf), s 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 1485 1472 Protected Right Effective Green Time (g_R) , s 29.1 37.6 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 0.000 0.000 1.198 0.000 1.198 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.078 0.000 0.169 0.000 0.167 0.136 Pedestrian Mcorner / Mcw Bicycle cb / db 587.91 29.91 1315.34 7.03 67.20 -83.33 65.10

-3.64

0.95

Bicycle Fw / Fv

1.35

-3.64

-3.64

-3.64

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period No-Build PM **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Т Approach Movement L Τ R L L R R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 29.1 0.0 0.0 Green 37.6 35.3 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Τ Back of Queue (Q), ft/ln (95 th percentile) 328.3 232.7 454.9 32.3 448 327.2 Back of Queue (Q), veh/ln (95 th percentile) 12.2 17.4 1.2 16.5 12.0 8.6 Queue Storage Ratio (RQ) (95 th percentile) 0.03 1.87 0.13 0.44 0.38 2.56 Control Delay (d), s/veh 39.8 17.4 46.1 1.8 50.0 17.0 Level of Service (LOS) D В D Α D В Approach Delay, s/veh / LOS 28.4 С 27.8 С 31.9 С 0.0 Intersection Delay, s/veh / LOS 29.4 С 1.8 📥 1.2 46.1 LOS B LOS C Queue Storage Ratio < 1 LOSD LOS E Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:31:52 PM

HCS7 Signalized Intersection Input Data														
										4.		I 24	ere este	CEUREA
General Information	1						-	Intersec		v		- 🖺	1	200
Agency	Burgess & Niple, Inc	D						Duration		0.250				N.
Analyst	MEL		Analys					Area Typ	е	Other				
Jurisdiction			Time F			ild PM		1			0.97		w∓t s	
Urban Street	Main Street		Analys		2045			Analysis	Period	1> 16	:45			
Intersection	Lincoln Avenue BEL-7-19.75		File Na	ame	Main 9	Street Ir	nterse	ctions - N	o-Build	2045 P	M.xus		7 7	
Project Description														
Demand Information				EB			WI	 3		NB		SB		
Approach Movement			L	Т	R		Т	1		ΤT	R	L	Т	R
Demand (v), veh/h	460	160	40	100	16	_	50	170	220	470	110	540		
		1												
Signal Information				La	1.9 🕃	# 2112		20				,		人
Cycle, s 120.0	Reference Phase	2	-	R	₹ •		(5)	171			1	♦ 2	3	4
Offset, s 44	Reference Point	End	Green		36.0	17.0	23.		0.0			<u> </u>		
Uncoordinated No	Simult. Gap E/W	On	Yellow		4.0	4.0	4.0		0.0		~	7	>	V
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	2.0	0.0	0.0	_	5	6	7	8
			1			1			1					
Traffic Information				EB		-	WB	-		NB			SB	
Approach Movement	L 400	T	R	L 100	T	R	L	T	R	170	T	R		
Demand (v), veh/h	<u> </u>		460	160	40	100	160	120	50	170	220	470	110	540
Initial Queue (Q _b), veh/			0 1900	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Rate (s₀), veh/h				1900	1900	1900	1900		1900	1900	1900	1900	1900	1900
Parking (N _m), man/h				None			None	9		None			None	
Heavy Vehicles (PHV), %				3	3	1	1		2	2		4	4	
Ped / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (<i>AT</i>)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (/)			0.89	0.89	0.89	0.73	0.73		1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft			12.0	12.0	12.0	12.0	12.0		12.0	12.0		12.0	12.0	
Turn Bay Length, ft			250	1200	100	1200	1200)	300	800		375	375	
Grade (<i>Pg</i>), %				0			0			0			0	
Speed Limit, mi/h			25	25	25	25	25	25	25	25	25	25	25	25
Phase Information			EBL		EBT	WBI		WBT	NBL	_	NBT	SBL		SBT
Maximum Green (Gmax)) or Phase Split, s		26.0		68.0			42.0			29.0	23.0		52.0
Yellow Change Interval	(Y), s		4.0		4.0			4.0			4.0	4.0		4.0
Red Clearance Interval	(<i>Rc</i>), s		2.0		2.0			2.0			2.0	2.0		2.0
Minimum Green (Gmin)	, S		7		7			7			7	7		7
Start-Up Lost Time (It).	, s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective (Green (e), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>), s			2.0		2.0			2.0			2.0	2.0		2.0
Recall Mode			Off	_	Min		_	Min			Off	Off	_	Off
Dual Entry		No		Yes		_	Yes			Yes	No		Yes	
Walk (<i>Walk</i>), s			0.0			0.0			0.0			0.0		
Pedestrian Clearance			0.0			0.0			0.0			0.0		
Multimodal Information				EB			WB			NB			SB	
85th % Speed / Rest in Walk / Corner Radius			0	No	25	0	No	25	0	No	25	0	No	25
·	Valkway / Crosswalk Width / Length, ft			12	0	9.0	12	0	9.0	12	0	9.0	12	0
	Street Width / Island / Curb			0	No	0	0	No	0	0	No	0	0	No
	Vidth Outside / Bike Lane / Shoulder, ft			5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occ			12 No		0.50	No		0.50	No		0.50	No		0.50

HCS7 Signalized Intersection Results Summary																	
General Inforn	nation								Intersec	tion Inf	ormatio	on					
Agency		Burgess & Niple, In	C.						Duration	, h	0.250	1	100	7 4	A.		
Analyst		MEL		Analys	is Date	11/16	2021		Area Typ	е	Other				. 6		
Jurisdiction				Time F			uild PM	_	PHF		0.97			w∳t			
Urban Street		Main Street		Analys	is Year				Analysis		1> 16				***************************************		
Intersection		Lincoln Avenue		File Na	ame	Main	Street Ir	ntersec	tions - N	lo-Build	2045 P	M.xus	7 7 7				
Project Descrip	tion	BEL-7-19.75															
Demand Inform					EB			WE			NB			SB			
Approach Move	ement			L	T	R	L	Т	R	L	Т	R	L	T	R		
Demand (v), v	eh/h			460	160	40	100	160	120	50	170	220	470	110	540		
Cianal Inform	tion							П	_								
Signal Informa	ır	Deference Dhace	_		La .	1	320	- 243	29				,		人		
Cycle, s Offset, s	120.0 44	Reference Phase Reference Point	2 End	-	R	 		6	171			1	2	3	4		
Uncoordinated	No	Simult. Gap E/W		Green		36.0	17.0	23.0		0.0		_	<u> </u>				
Force Mode		Simult. Gap E/W	On	Yellow Red	2.0	4.0 2.0	2.0	2.0	0.0	0.0				> -	Ψ.		
Force Mode	Fixed	Simuit. Gap N/S	On	Reu	2.0	2.0	2.0	2.0	0.0	0.0		5	6	1	8		
Timer Results				EBI		EBT	WB	L	WBT	NBI		NBT	SBI		SBT		
Assigned Phase					\neg	2			6			8	7		4		
Case Number						3.0			6.3			6.3	1.0		4.0		
Phase Duration	1, S			26.0		68.0		\neg	42.0			29.0	23.0		52.0		
Change Period	, (Y+R	c), S		6.0 6.		6.0			6.0			6.0	6.0		6.0		
	Max Allow Headway (<i>MAH</i>), s					0.0			0.0			3.5			3.5		
Queue Clearance Time (g s), s				22.0								25.0) .	48.0		
Green Extension Time ($g \in \mathcal{F}$), s				0.0	\neg	0.0			0.0			0.0	0.0		0.0		
Phase Call Pro	Phase Call Probability											1.00	1.00)	1.00		
Max Out Proba	bility			1.00)							1.00	1.00)	1.00		
Movement Gro	oup Res	sults			EB			WB			NB			SB			
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R		
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14		
Adjusted Flow	Rate (v), veh/h		500	174	43	257	721		52	402		485	670			
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1767	1856	1572	1220	1750		767	1698		1753	1601			
Queue Service		· ,		20.0	7.2	1.4	23.7	36.0		0.0	23.0		17.0	46.0			
Cycle Queue C	learance	e Time (<i>g c</i>), s		20.0	7.2	1.4	23.7	36.0		23.0	23.0		17.0	46.0			
Green Ratio (g	/C)			0.48	0.52	0.52	0.30	0.30		0.19	0.19		0.35	0.38			
Capacity (c), \	/eh/h			355	959	812	426	525		60	325		308	614			
Volume-to-Cap	acity Ra	itio (X)		1.410	0.181	0.054	0.604	1.373	3	0.859	1.235		1.571	1.092			
Back of Queue	(Q), ft/	In (95 th percentile)		1178. 3	154.7	25.2	304.7	1525 6		122.7	819.3		1213.9	1027.7			
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	46.0	6.0	1.0	12.1	60.5		4.8	32.3		47.1	39.8			
Queue Storage	Ratio (RQ) (95 th percent	ile)	4.71	0.13	0.25	0.25	1.27		0.41	1.02		3.24	2.74			
Uniform Delay	. ,			43.1	19.4	12.5	44.1	44.4	_	60.0	48.5		34.7	37.0			
Incremental De		·		199.1	0.4	0.1	4.6	176.5	5	66.3	129.6		272.3	63.8			
Initial Queue D	Initial Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0			
Control Delay (d), s/veh					19.8	12.7	48.7	220.9)	126.3	178.1		306.9	100.8			
Level of Service	F 174.	В	В	D	F		F	F		F	F						
	Approach Delay, s/veh / LOS					F	175.	6	F	172.	3	F	187.	3	F		
Intersection De	Intersection Delay, s/veh / LOS					17	8.9						F				
Multimodal Da	Multimodal Results							\A/D		ND			CD				
					EB	В	1.93	WB		1.94 B		2.11	SB	В			
	edestrian LOS Score / LOS				,	В	1.13		B A	1.94		A	2.11		В		
Dicycle LOS SC	licycle LOS Score / LOS					D	1.13	_	Α	1.24	T	А	2.38	,	D		

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.97 Jurisdiction Time Period Urban Street Main Street Analysis Year 2045 Analysis Period 1> 16:45 File Name Main Street Intersections - No-Build 2045 PM.xus Intersection Lincoln Avenue **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 460 220 540 Demand (v), veh/h 160 40 100 160 120 50 170 470 110 Signal Information Ж, Cycle, s 120.0 Reference Phase 2 542 Offset, s 44 Reference Point End Green 20.0 0.0 36.0 17.0 23.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 2.0 0.0 0.0 Saturation Flow / Delay R R R Lane Width Adjustment Factor (f_w) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.977 0.977 0.977 0.992 0.992 1.000 0.984 0.984 1.000 0.969 0.969 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.952 0.000 0.642 0.000 0.404 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 0.928 0.928 0.908 0.908 0.870 0.870 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) 1.000 Movement Saturation Flow Rate (s), veh/h 1767 1572 1220 1000 750 767 740 1753 271 1330 1856 958 Proportion of Vehicles Arriving on Green (P) 80.0 0.40 0.58 0.18 0.33 0.16 0.19 0.19 0.19 0.14 0.38 0.38 0.37 Incremental Delay Factor (k) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 Signal Timing / Movement Groups EBL EBT/R **WBL** WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) 6.0 6.0 Green Ratio (g/C) 0.48 0.52 0.30 0.19 0.35 0.38 Permitted Saturation Flow Rate (sp), veh/h/ln 726 0 1220 767 967 0 Shared Saturation Flow Rate (ssh), veh/h/ln Permitted Effective Green Time (g_p) , s 38.0 0.0 36.0 23.0 25.0 0.0 36.0 0.0 0.0 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 27.5 0.0 0.0 0.0 Time to First Blockage (gf), s 0.0 0.0 0.0 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 EB Multimodal WB NB SB Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 1.198 0.000 1.389 0.000 Pedestrian Fs / Fdelay 0.000 0.106 0.000 0.136 0.000 0.000 0.125 0.147 Pedestrian Mcorner / Mcw Bicycle cb / db 1033.33 14.02 600.00 29.40 383.33 39.20 766.67 22.82 Bicycle Fw / Fv -3.64 1.12 -3.640.65 -3.64 0.75 -3.64 1.91

HCS7 Signalized Intersection Results Graphical Summary 建建选路准备差 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF Jurisdiction Time Period No-Build PM 0.97 **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 16:45 File Name Main Street Intersections - No-Build 2045 PM.xus Intersection Lincoln Avenue **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Τ Т Т Approach Movement L R L Τ R L R L R 220 540 Demand (v), veh/h 460 160 40 100 160 120 50 170 470 110 Signal Information <u>يال.</u> Cycle, s 120.0 Reference Phase 2 **"17** Offset, s 44 Reference Point End Green 20.0 0.0 36.0 17.0 23.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 2.0 0.0 **Movement Group Results** EΒ WB NB SB Т R Approach Movement L Τ R L R L Τ R L Τ Back of Queue (Q), ft/ln (95 th percentile) 1178. 154.7 25.2 304.7 1525. 122.7 819.3 1213.9 1027.7 3 6 Back of Queue (Q), veh/ln (95 th percentile) 46.0 12.1 60.5 32.3 47.1 39.8 6.0 1.0 4.8 Queue Storage Ratio (RQ) (95 th percentile) 4.71 0.25 0.41 3.24 0.13 0.25 1.27 1.02 2.74 242.1 220.9 100.8 Control Delay (d), s/veh 19.8 12.7 48.7 126.3 178.1 306.9 Level of Service (LOS) F В В D F F F F F Approach Delay, s/veh / LOS 174.3 F 175.6 F 172.3 187.3 F Intersection Delay, s/veh / LOS 178.9 F 12.2 1.8 📥 1.2 8.6 46 1 17.0 LOS A LOS B LOS C Queue Storage Ratio < 1 LOSD LOSE Queue Storage Ratio > 1 16.5 LOS F

Generated: 11/18/2021 4:31:52 PM

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: If demand exceeds capacity, a multiple-period analysis should be conducted.

WARNING: According to input data, upstream feeding volume is equal to 250% of downstream exit volume during time period #1, for thru movement #6.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:31:52 PM

HCS7 Signalized Intersection Input Data General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.92 Jurisdiction Time Period **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.6 35.3 29.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 0.0 4.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Traffic Information** EΒ WB NB SB Approach Movement L Т R R L Т R R L Τ L Т Demand (v), veh/h 260 270 440 310 330 400 Initial Queue (Qb), veh/h 0 0 0 0 0 0 Base Saturation Flow Rate (s₀), veh/h 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None Heavy Vehicles (PHV), % 10 10 6 6 11 11 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 Arrival Type (AT) Upstream Filtering (I) 1.00 1.00 0.09 0.09 1.00 1.00 12.0 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 Turn Bay Length, ft 2450 525 1200 1200 175 175 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 **Phase Information** EBL WBT SBL **EBT WBL NBL NBT** SBT Maximum Green (Gmax) or Phase Split, s 16.0 51.0 67.0 53.0 53.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 4.0 4.0 Red Clearance Interval (Rc), s 2.0 2.0 2.0 2.0 2.0 Minimum Green (Gmin), s 10 10 7 10 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 2.0 Recall Mode Min Off Min Off Off **Dual Entry** Yes No Yes No Yes Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 25 0 25 0 25 No No No 9.0 0 9.0 12 0 9.0 Walkway / Crosswalk Width / Length, ft 12 12 0 0 Street Width / Island / Curb 0 No 0 0 0 No No 0 Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 0.50 Pedestrian Signal / Occupied Parking No 0.50 0.50 No No

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.92 Jurisdiction Time Period Urban Street Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.6 35.3 29.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT Assigned Phase 6 8 2 1 Case Number 7.3 2.0 4.0 9.0 Phase Duration, s 41.3 43.6 84.9 35.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 3.3 0.0 3.4 Queue Clearance Time (g s), s 36.5 27.2 Green Extension Time (g e), s 0.0 1.1 0.0 1.9 Phase Call Probability 1.00 1.00 0.00 0.00 Max Out Probability WB NB **Movement Group Results** EΒ SB Approach Movement Т R L Т R Т R Т R L L L Assigned Movement 2 12 6 3 18 1 Adjusted Flow Rate (v), veh/h 283 293 505 356 359 435 1752 1725 1811 1654 1472 Adjusted Saturation Flow Rate (s), veh/h/ln 1485 16.3 2.6 25.2 22.3 Queue Service Time (g_s), s 13.7 34.5 Cycle Queue Clearance Time (g c), s 16.3 13.7 34.5 2.6 25.2 22.3 0.29 Green Ratio (g/C) 0.54 0.31 0.66 0.24 0.56 Capacity (c), veh/h 515 796 541 1191 401 819 Volume-to-Capacity Ratio (X) 0.549 0.369 0.934 0.299 0.895 0.531 Back of Queue (Q), ft/ln (95 th percentile) 328.3 232.7 454.9 32.3 448 327.2 Back of Queue (Q), veh/ln (95 th percentile) 12.2 8.6 17.4 1.2 16.5 12.0 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.44 0.38 0.03 2.56 1.87 Uniform Delay (d 1), s/veh 35.7 16.1 45.3 1.8 44.0 16.8 Incremental Delay (d 2), s/veh 4.2 1.3 8.0 0.1 6.1 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 39.8 17.4 46.1 1.8 50.0 17.0 Level of Service (LOS) D В D Α В D 28.4 С 27.8 С С 0.0 Approach Delay, s/veh / LOS 31.9 Intersection Delay, s/veh / LOS 29.4 С **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.93 В 0.68 1.97 В Α В 1.96 Bicycle LOS Score / LOS 1.44 Α 1.83

HCS7 Signalized Intersection Intermediate Values General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other No-Build PM PHF 0.92 Jurisdiction Time Period Urban Street Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.6 35.3 29.1 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.922 0.922 0.953 0.953 1.000 0.914 1.000 0.914 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 1.000 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 1.000 1.000 0.000 0.847 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1752 1485 1725 1654 0 1472 0 1811 0 Proportion of Vehicles Arriving on Green (P) 0.00 0.29 0.29 0.22 0.92 0.00 0.24 0.00 0.24 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.50 0.09 0.50 0.09 0.04 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.29 0.31 0.66 0.24 Permitted Saturation Flow Rate (sp), veh/h/ln 1041 0 0 1654 Shared Saturation Flow Rate (ssh), veh/h/ln 0 Permitted Effective Green Time (g_p) , s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 35.3 Time to First Blockage (gf), s 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 1485 1472 Protected Right Effective Green Time (g_R) , s 29.1 37.6 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 0.000 0.000 1.198 0.000 1.198 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.078 0.000 0.169 0.000 0.136 0.167 Pedestrian Mcorner / Mcw Bicycle cb / db 587.91 29.91 1315.34 7.03 67.20 -83.33 65.10

-3.64

0.95

Bicycle Fw / Fv

1.35

-3.64

-3.64

-3.64

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period No-Build PM **Urban Street** Main Street Analysis Year 2045 Analysis Period 1> 16:45 Marion Street File Name Main Street Intersections - No-Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Т Approach Movement L Τ R L L R R 440 330 400 Demand (v), veh/h 260 270 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 29.1 0.0 0.0 Green 37.6 35.3 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Τ Back of Queue (Q), ft/ln (95 th percentile) 328.3 232.7 454.9 32.3 448 327.2 Back of Queue (Q), veh/ln (95 th percentile) 12.2 17.4 1.2 16.5 12.0 8.6 Queue Storage Ratio (RQ) (95 th percentile) 0.03 1.87 0.13 0.44 0.38 2.56 Control Delay (d), s/veh 39.8 17.4 46.1 1.8 50.0 17.0 Level of Service (LOS) D В D Α D В Approach Delay, s/veh / LOS 28.4 С 27.8 С 31.9 С 0.0 Intersection Delay, s/veh / LOS 29.4 С 1.8 📥 1.2 46.1 LOS B LOS C Queue Storage Ratio < 1 LOSD LOS E Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 5:29:23 PM

HCS7 Signalized Intersection Input Data														
								• 4					P 24:571	una
General Information	1						\rightarrow	Intersect		v		- 1		90 (SAE)
Agency	Burgess & Niple, Inc	:					_	Duration,		0.250				## ## ## ## ## ## ## ## ## ## ## ## ##
Analyst	MEL			is Date				Area Typ	Other					
Jurisdiction			Time F			ild PM		PHF 0.86				##- -	w∓t	→ 24
Urban Street	Lincoln Avenue			nalysis Year 2045 Analysis Period 1> 7:00									70 27	
Intersection	Howard Street BEL-7-19.75		File Na	ile Name Lincoln & Howard 2045 No-Build PM.xus								4		
Project Description										5		16		
Demand Information				EB			WE	3		NB		T	SB	
Approach Movement	L	Т	R		Т	R	L	Т	R	L	Т	R		
Demand (v), veh/h	140	0	120	10	460	_	10	40			180	70		
Signal Information				11	2 5	=								_
Cycle, s 80.0	Reference Phase	2		内	R	"					4	Y.	2	↔ .
Offset, s 0	Reference Point	End	Green	21.4	46.6	0.0	0.0	0.0	0.0		'	2	3	X "
Uncoordinated No	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0					→
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Traffic Information				EB			WB			NB			SB	
Approach Movement	L	T	R	L	Т	R	L	Т	R	L	Т	R		
Demand (v), veh/h			140	0	120	10	460	280	10	40			180	70
Initial Queue (Qb), veh			0	0	0	0	0	0	0	0		$\overline{}$	0	0
Base Saturation Flow	1900	1900	1900	1900	1900	_	1900	1900			1900	1900		
Parking (N _m), man/h		None			None	:		None			None			
Heavy Vehicles (PHV), %				1			6			1			1	1
Ped / Bike / RTOR, /h				0	0	0	0	0	0	0		0	0	0
Buses (N _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)			3	3	3	3	3	3	3	3			3	3
Upstream Filtering (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Lane Width (W), ft				12.0			12.0			12.0			12.0	12.0
Turn Bay Length, ft				850			600			475			800	450
Grade (<i>Pg</i>), %				0			0			0			0	
Speed Limit, mi/h			25	25	25	25	25	25	25	25			25	25
Phase Information			EBL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
Maximum Green (Gmax	a) or Phase Split s			_	53.0	1,15.		53.0	1402	_	27.0	022	_	27.0
Yellow Change Interva	· · · · · · · · · · · · · · · · · · ·				4.0			4.0			4.0			4.0
Red Clearance Interva	· ,				2.0			2.0			2.0			2.0
Minimum Green (Gmin					7			7			7			7
Start-Up Lost Time (It)	, .		2.0	_	2.0	2.0		2.0	2.0		2.0			2.0
Extension of Effective	, .		2.0		2.0	2.0	_	2.0	2.0		2.0			2.0
Passage (PT), s	0,00,0		2.0		2.0	2.0		2.0	2.0		2.0			2.0
Recall Mode					Off		+	Off			Min			Min
Dual Entry				_	Yes			Yes		_	Yes		_	Yes
Walk (<i>Walk</i>), s				0.0			0.0			0.0			0.0	
Pedestrian Clearance			0.0			0.0			0.0			0.0		
Multimodal Information				EB			WB			NB			SB	
85th % Speed / Rest in Walk / Corner Radius			9.0	No	25	0	No	25	0	No	25	0	No	25
	Valkway / Crosswalk Width / Length, ft			12	0	9.0	12	0	9.0	12	0	9.0	12	0
	treet Width / Island / Curb			0	No	0	0	No	0	0	No	0	0	No
	/idth Outside / Bike Lane / Shoulder, ft				2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No		0.50

		HCS	7 Sig	nalize	d Int	ersect	tion R	Resul	ts Sun	nmary	y						
								Ι.					l P	Haracan Recognic	TUREA		
General Inform	nation	T						_	ntersect		V .	-					
Agency		Burgess & Niple, In	С	1					Duration,		0.250				A¥		
Analyst		MEL		<u> </u>		11/17/		_	Area Typ	e	Other	•					
Jurisdiction				Time F		No-Bu	ild PM		PHF		0.86		## *	w∳t	→ #		
Urban Street		Lincoln Avenue			sis Year				Analysis		1> 7:0	00					
Intersection		Howard Street		File Na	ame	Lincol	n & Hov	vard 20)45 No-B	uild PM	.xus		\perp	4			
Project Descrip	tion	BEL-7-19.75															
Demand Inform	nation				EB			WB	}		NB			SB			
Approach Move	ment			L	Т	R	L	Т	R	L	T	R	L	Т	R		
Demand (v), v	eh/h			140	0	120	10	460	280	10	40			180	70		
Signal Informa	tion				ΙĮ	1 8											
Cycle, s	80.0	Reference Phase	2		K+		≅						KT				
Offset, s	00.0	Reference Point	End		<u> </u>							1	2	3	4		
Uncoordinated	No	Simult. Gap E/W	On	Green		46.6	0.0	0.0	0.0	0.0			1		A		
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.0	4.0 2.0	0.0	0.0	0.0	0.0	_	5	↓	7	.		
Force Mode	rixed	Simult. Gap N/S	On	Reu	2.0	2.0	10.0	0.0	0.0	10.0		5	б	1	8		
Timer Results				EBI	L	EBT	WB	L	WBT	NBL	_	NBT	SB	L	SBT		
Assigned Phase						4			8			2			6		
Case Number						8.0			8.0			8.0			7.0		
Phase Duration	, s				\neg	52.6		\neg	52.6			27.4			27.4		
Change Period,		c). S				6.0			6.0			6.0			6.0		
		·				3.7			3.7		_	0.0			0.0		
Max Allow Headway (<i>MAH</i>), s Queue Clearance Time (<i>g</i> _s), s						46.2			36.8			0.0			0.0		
Green Extensio		,				0.4			3.2			0.0			0.0		
Phase Call Prof		(90),0				1.00			1.00			0.0			0.0		
Max Out Probal						1.00		_	0.30								
Movement Gro	up Res	sults			EB			WB			NB			SB			
Approach Move	ment			L	Т	R	L	T	R	L	Т	R	L	Т	R		
Assigned Move	ment			7	4	14	3	8	18	5	2			6	16		
Adjusted Flow F	Rate(<i>v</i>), veh/h			302			872			58			209	81		
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		549			1725			1750			1885	1598		
Queue Service	Time (g	g s), S			9.4			0.0			0.0			7.3	3.1		
Cycle Queue C	learance	e Time (<i>g c</i>), s			44.2			34.8			7.3			7.3	3.1		
Green Ratio (g	/C)				0.58			0.58			0.27			0.27	0.27		
Capacity (c), v	eh/h				389			1050			522			505	428		
Volume-to-Capa					0.777			0.830			0.111			0.415	0.190		
	<u> </u>	/In (95 th percentile)			260.1			509.7			39.8			161.2	58.2		
	• •	eh/ln (95 th percent			10.3			19.5	\vdash		1.6			6.4	2.3		
		RQ) (95 th percent	ille)		0.31			0.85	-		0.08			0.20	0.13		
Uniform Delay (17.7			14.3			22.1			24.1	22.6		
Incremental De	- 1	,			8.5			5.3			0.4			2.5	1.0		
Initial Queue De Control Delay (0.0 26.2			0.0			0.0 22.6			0.0 26.6	23.6				
Level of Service					26.2 C			19.6 B			22.6 C			26.6 C	23.6 C		
		26.2		С	19.6		В	22.6		С	25.		C				
	Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS					22			J	22.0		<u> </u>	C 23.0				
Multimodal Re					EB			WB			NB		SB				
	Pedestrian LOS Score / LOS					В	1.88		В	1.70		В	1.7		В		
Bicycle LOS Sc	ore / LC	os		0.99	9	Α	1.93	3	В	0.58	3	Α	0.9	7	Α		

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/17/2021 Area Type Other No-Build PM PHF 0.86 Jurisdiction Time Period **Urban Street** Lincoln Avenue Analysis Year 2045 **Analysis Period** 1> 7:00 Howard Street File Name Lincoln & Howard 2045 No-Build PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 140 280 Demand (v), veh/h 0 120 10 460 10 40 180 70 Signal Information Щ Cycle, s 0.08 Reference Phase 2 **R**,4 Offset, s 0 Reference Point End Green 21.4 0.0 0.0 46.6 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (f_w) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.992 1.000 1.000 0.953 1.000 1.000 0.992 1.000 1.000 0.992 0.992 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.299 0.291 0.997 0.952 0.928 0.928 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.291 0.000 0.952 0.000 0.928 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) Movement Saturation Flow Rate (s), veh/h 296 253 23 1058 644 350 1400 0 0 1885 1598 Proportion of Vehicles Arriving on Green (P) 0.58 0.00 0.58 0.58 0.58 0.58 0.27 0.27 0.00 0.00 0.27 0.27 0.29 Incremental Delay Factor (k) 0.34 0.50 0.50 0.50 Signal Timing / Movement Groups EBL EBT/R **WBL** WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.58 0.58 0.27 0.27 Permitted Saturation Flow Rate (sp), veh/h/ln 652 1269 1191 1381 Shared Saturation Flow Rate (ssh), veh/h/ln 366 1793 0 1885 Permitted Effective Green Time (g_p) , s 46.6 46.6 21.4 0.0 2.5 11.8 14.1 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 9.4 0.0 0.0 Time to First Blockage (gf), s 1.7 7.3 21.4 30.3 Queue Service Time Before Blockage (gfs), s 1.7 12.3 1.9 Protected Right Saturation Flow (SR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 0.972 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.078 0.000 0.078 0.000 0.123 0.123 0.000 Pedestrian Mcorner / Mcw Bicycle cb / db 1165.29 6.97 1165.29 6.97 534.71 21.47 534.71 21.47 Bicycle Fw / Fv -3.640.50 -3.641.44 -3.64 0.10 -3.64 0.48

HCS7 Signalized Intersection Results Graphical Summary 建建基础建筑 **General Information Intersection Information** Agency Burgess & Niple, Inc Duration, h 0.250 Analyst MEL Analysis Date 11/17/2021 Area Type Other No-Build PM PHF 0.86 Jurisdiction Time Period **Urban Street** Lincoln Avenue Analysis Year 2045 **Analysis Period** 1> 7:00 Howard Street File Name Lincoln & Howard 2045 No-Build PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R R 140 120 280 Demand (v), veh/h 0 10 460 10 40 180 70 Signal Information Щ Cycle, s 0.08 Reference Phase 2 Offset, s 0 Reference Point End Green 21.4 0.0 0.0 46.6 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 0.0 On Red 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R Т Т R L Τ R L L R L Back of Queue (Q), ft/ln (95 th percentile) 260.1 509.7 39.8 161.2 58.2 Back of Queue (Q), veh/ln (95 th percentile) 10.3 19.5 1.6 6.4 2.3 Queue Storage Ratio (RQ) (95 th percentile) 0.31 0.85 0.08 0.20 0.13 22.6 Control Delay (d), s/veh 26.2 19.6 26.6 23.6 Level of Service (LOS) С В С С С Approach Delay, s/veh / LOS 26.2 С 19.6 В 22.6 С 25.8 С Intersection Delay, s/veh / LOS 22.2 С LOS B LOS C LOSD LOS E LOS F

	Messages	s
--	----------	---

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:51:03 PM

HCS7 Signalized Intersection Input Data 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM PHF 0.96 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals No-Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 590 0 0 0 Demand (v), veh/h 0 0 520 **Signal Information** 110.0 Reference Phase Cycle, s Offset, s 25 Reference Point End Green 65.6 34.4 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 0.0 2.0 0.0 0.0 0.0 0.0 On WB NB SB **Traffic Information** EB Approach Movement Т Т R ı Т R ı R R Demand (v), veh/h 590 0 0 0 0 0 520 0 0 Initial Queue (Qb), veh/h 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h Parking (Nm), man/h None None None Heavy Vehicles (PHV), % 4 0 3 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 Arrival Type (AT) 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) Lane Width (W), ft 12.0 12.0 12.0 100 400 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 **WBL** SBL **Phase Information EBL EBT WBT NBL NBT SBT** Maximum Green (Gmax) or Phase Split, s 12.0 12.0 98.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 Red Clearance Interval (Rc), s 0.0 0.0 2.0 7 6 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 Off Recall Mode Min Min Yes **Dual Entry** Yes No Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** WB NB SB EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 No No 25 0 No 25 12 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 0 Street Width / Island / Curb 0 0 No 0 No 0 No 0 0 Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0

Pedestrian Signal / Occupied Parking

0.50

No

0.50

No Generated: 11/18/2021 11:38:19 PM

No

0.50

		нсѕ	7 Sig	nalize	d Int	tersec	tion F	Resu	ılts Sı	ımma	ary						
									-								
General Inform	nation								Interse				n	- 1	1474	***	,
Agency		Burgess & Niple, In	С.	1					Duratio		_	.250		_			
Analyst		MEL		<u> </u>		e Nov 1			Area Type			Other		<i>∆</i>			<u>^</u>
Jurisdiction				Time F			ild PM		PHF		_	.96		- ÷		ÎE *	*
Urban Street		Cadiz Pike		Analys	is Yea	r 2045						Period 1> 7:00					To the second
Intersection		NB SR 7		File Na	ame	Cadiz	Pike Si	gnals	No-Buil	d 2045	PM.x	(us				†	
Project Descrip	tion	BEL-7-19.75												1	ነቀተ	474	ď
Demand Inform	nation				EB		T	W	В			NB		T	S	SB	
Approach Move	ement			L	Т	R	L	T	R		L	Т	R	L	Τ	T	R
Demand (v), v	eh/h			590	0	0	0	С) 0			520					
Signal Informa	ition				- Li	<u> </u>		_						- i			
Cycle, s	110.0	Reference Phase	2	1	7									Z			
Offset, s	25	Reference Point	End	<u> </u>	-	7							1	Y 2		3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		34.4	0.0	0.0			.0			4 -			_
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	0.0	4.0 2.0	0.0	0.0			.0	-	5	6		7	8
1 orce mode	1 IXEU	Simult. Gap 14/5	Oli	Titou	10.0	12.0	10.0	0.0	, 0.0	, 10	.0		Ü				0
Timer Results				EBL	-	EBT	WB	L	WBT	l N	\BL		NBT	SB	L	5	SBT
Assigned Phase			2			6	Т			8							
Case Number						8.0			8.0			1	12.0				
Phase Duration	ı, S					69.6			69.6				10.4				
Change Period				4.0			4.0				6.0						
Max Allow Headway (<i>MAH</i>), s					\neg	0.0		\neg	0.0				3.2				
Queue Clearan									-	33.2							
Green Extension Time ($g \circ j$), s					\neg	0.0		\neg	0.0				1.2				
Phase Call Pro		(9 -), -			\neg			\neg				+	1.00	1			
Max Out Proba					\neg					1		_	0.00				
Mayamant Cra	Daa	14-			EB			١٨/٦	,	-		NB				BB	
Movement Gro		Suits		-	Т	R	-	WE	R	٠.		T	R			Г	R
Approach Move				L			L	_		L	_		K	<u> </u>			K
Assigned Move		\ 1 /I		5	2	12	1	6	16	+	_	8		_	-	\rightarrow	
Adjusted Flow I		, .		\vdash	550			0	+	+	_	542		_		\rightarrow	
		ow Rate (s), veh/h/l	n	\vdash	1395			0	+	-		856		-	-	\rightarrow	
Queue Service		· /·		\vdash	33.2			0.0		-	_	1.2				\dashv	
Cycle Queue C		e I Ime (<i>g ε</i>), s			33.2			0.0		-	_	1.2		_	-	\rightarrow	
Green Ratio (g				\vdash	0.60			_		-	_	.31		_	_	-	
Capacity (c), v		tio (V)			898			0.00			_	035				\dashv	
Volume-to-Capa		itio(X) 'In(95 th percentile)			0.613 449.5			0.00	U			935 32.8				\rightarrow	
	, ,	· · · ·		-						-	_			-	-	\dashv	
	· /·	eh/ln (95 th percenti		\vdash	17.4			0.0		+		8.0		_	-	\rightarrow	
		RQ) (95 th percent	ue)		4.50			0.00	J		_	.33				\dashv	
Uniform Delay	<u> </u>				20.4			0.5		-	_	6.7					
Incremental De	• (,			3.1			0.0			_	3.2				\rightarrow	
	itial Queue Delay (d 3), s/veh				0.0			0.0		-	_	0.0				_	
	Control Delay (d), s/veh				23.5						_	9.9					
	Level of Service (LOS)				С							D					
	Approach Delay, s/veh / LOS				5	С	0.0			3	9.9		D	0.0			
Intersection De	lay, s/ve	eh / LOS				31	.7							С			
Multimodal Re	eulte				EB			\//=	3			NB			0	B B	
	destrian LOS Score / LOS					Α	1.37		WB A		1.74						В
Piovolo I OS So			1.37	-	D	0.40	_		_	20	+	•	1.7	*			

Bicycle LOS Score / LOS

1.50

1.38

Generated: 11/18/2021 11:38:19 PM

HCS7 Signalized Intersection Intermediate Values باطلعاء المالية ل Intersection Information **General Information** Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM PHF 0.96 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals No-Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 0 0 0 Demand (v), veh/h 590 0 0 520 **Signal Information** Reference Phase Cycle, s 110.0 Offset, s 25 Reference Point End Green 65.6 34.4 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Red 0.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R Т R L L L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.883 0.969 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.758 0.758 1.000 1.000 1.000 1.000 0.000 0.758 0.000 0.000 0.000 Right-Turn Adjustment Factor (fRT) 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1395 0 0 1900 0 1856 0 0 0 Proportion of Vehicles Arriving on Green (P) 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.04 **Signal Timing / Movement Groups** SBL **EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBT/R Lost Time (t_L) 4.0 4.0 4.0 0.60 Green Ratio (g/C) 0.60 0.31 Permitted Saturation Flow Rate (s_p) , veh/h/ln 1440 1440 0 Shared Saturation Flow Rate (ssh), veh/h/ln 0 1900 Permitted Effective Green Time (q_p) , s 65.6 0.0 0.0 Permitted Service Time (gu), s 65.6 0.0 0.0 Permitted Queue Service Time (g_{ps}) , s 33.2 Time to First Blockage (gf), s 0.0 65.6 0.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB SB 0.972 Pedestrian Fw / Fv 0.681 0.000 0.681 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.088 0.000 0.088 0.000 0.166 0.000 0.164 Pedestrian Mcorner / Mcw

1193.54

-3.64

8.94

1.01

Bicycle cb / db

Bicycle Fw / Fv

8.94

0.00

62.22

0.89

-3.64

-90.91

-3.64

Generated: 11/18/2021 11:38:19 PM

60.11

1193.54

-3.64

HCS7 Signalized Intersection Results Graphical Summary 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM PHF 0.96 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals No-Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Τ R L Т R L R Demand (v), veh/h 590 0 0 0 520 **Signal Information** 110.0 Reference Phase Cycle, s Offset, s 25 Reference Point End Green 65.6 34.4 0.0 0.0 0.0 0.0 Uncoordinated Simult. Gap E/W No On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode 0.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S Red On **Movement Group Results** WB SB EΒ NB Approach Movement L Τ R L Т R L Т R R Back of Queue (Q), ft/ln (95 th percentile) 449.5 0 532.8 Back of Queue (Q), veh/ln (95 th percentile) 17.4 0.0 20.8 Queue Storage Ratio (RQ) (95 th percentile) 4.50 0.00 1.33 Control Delay (d), s/veh 23.5 39.9 Level of Service (LOS) С D Approach Delay, s/veh / LOS 23.5 С 0.0 39.9 D 0.0 Intersection Delay, s/veh / LOS 31.7 11.1_____78.2 0 129.3 LOSA LOS B LOS D Queue Storage Ratio < 1 LOSE Queue Storage Ratio > 1 LOS F

Generated: 11/18/2021 11:38:19 PM

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:38:19 PM

HCS7 Signalized Intersection Input Data General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM PHF 0.98 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals No-Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 40 150 200 0 550 970 Demand (v), veh/h 0 0 0 70 **Signal Information** ٦. Reference Phase Cycle, s 110.0 Offset, s 0 Reference Point End Green 17.0 81.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Red 2.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On WB NB **Traffic Information** EB SB Approach Movement L Т R ı Τ R ı R R Demand (v), veh/h 40 150 0 0 200 0 550 970 70 0 0 0 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 4 0 3 5 Ped / Bike / RTOR, /h 0 Buses (Nb), buses/h 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 1500 375 750 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 25 25 25 **WBL WBT Phase Information EBL EBT NBL NBT** SBL **SBT** Maximum Green (Gmax) or Phase Split, s 23.0 23.0 87.0 87.0 4.0 4.0 Yellow Change Interval (Y), s 4.0 4.0 Red Clearance Interval (Rc), s 2.0 0.0 2.0 2.0 7 7 7 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 Off Off Recall Mode Min Min Yes **Dual Entry** Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 WB NB SB **Multimodal Information** EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 0 No No 25 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 0 0 0 0 No No 0 No 0 No

Width Outside / Bike Lane / Shoulder, ft

Pedestrian Signal / Occupied Parking

12

5.0

2.0

0.50

12

No

5.0

2.0

0.50

12

No

Generated: 11/18/2021 11:38:19 PM

5.0

2.0

0.50

12

No

5.0

2.0

0.50

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Su	mmar	у				
General Inforn	nation	T							Interse					4 7 4 1	\$4 L
Agency		Burgess & Niple, In	C.	1					Duration		0.250		_		-
Analyst		MEL		+		e Nov 1			Area Ty	ре	Other		<i>≛</i>		<u>A</u> }-
Jurisdiction				Time F			ild PM	_	PHF			0.98		W∳E	* -
Urban Street		Cadiz Pike		Analys	is Yea	r 2045			Analysis	Period	1> 7:	00	7		T C
Intersection		SB SR 7		File Na	ame	Cadiz	Pike Si	gnals	No-Build	1 2045 F	M.xus			*	
Project Descrip	tion	BEL-7-19.75											ħ	4 1 4 4	1 17
Demand Inform	nation				EB		T	WI	3 3	T	NB		T	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v					40	150	0	0		200	_	550	0	970	70
				"											
Signal Informa	_		Г	-		21/3									人
Cycle, s	110.0	Reference Phase	2		=	15.40	7					1	₹ 2	3	4
Offset, s	0	Reference Point	End	Green	17.0	81.0	0.0	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0			3	7		**
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
T				EBI		EDT	\A/D		WDT	L ND		NDT	ODI	-	ODT
Timer Results					-	EBT	WB	L	WBT	NB	L	NBT	SBL	-	SBT
Assigned Phase					_	2			6	-		8		\rightarrow	4
Case Number						8.0			8.0	-	_	8.0	_	+	8.0
Phase Duration, s					_	23.0		_	23.0	-	_	87.0	_	+	87.0
Change Period, (Y+Rc), s					-	6.0		-	6.0	-	-	6.0	_	+	6.0
Max Allow Headway (MAH), s					_	0.0		_	0.0	-	_	3.8	_	+	3.8
Queue Clearance Time (g s), s					-		_	_		-		83.0	_	+	14.1
Green Extension Time (g e), s					_	0.0		\rightarrow	0.0	-		0.0	_	\rightarrow	8.2
Phase Call Pro					_			_		-		1.00	_	+	1.00
Max Out Proba	bility							_				1.00		_	0.00
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move					2	12	1	6		3	8	18	7	4	14
Adjusted Flow I), veh/h			194			0	1	+	765		0		524
		ow Rate (s), veh/h/l	ln		1612			0			943		0		1782
Queue Service		· · ·			12.7			0.0			68.9		0.0		12.1
Cycle Queue C		• /·			12.7			0.0			81.0		0.0		12.1
Green Ratio (g		- ·····• (y ∘ /, 0			0.15			0.0			0.74		0.0		0.74
Capacity (c), v					249						736				1312
Volume-to-Cap		atio (X)			0.778			0.000)		1.040		0.000		0.399
		In (95 th percentile))		277.5			0.00			947.8		0		180.8
	, ,	eh/ln (95 th percenti			10.8			0.0	1		37.0		0.0		7.2
	. ,	RQ) (95 th percent			0.18			0.00			2.53		0.00		0.25
Uniform Delay			,		44.7						19.5				5.4
	cremental Delay (<i>d</i> ₂), s/veh				21.0			0.0			44.0		0.0		0.1
	itial Queue Delay (d 3), s/veh				0.0			0.0			0.0		0.0		0.0
Control Delay (d), s/veh					65.7						63.5				5.5
Level of Service (LOS)					E						F				A
	Approach Delay, s/veh / LOS			65.7		E	0.0								A
Intersection Delay, s/veh / LOS						3.2						С			
Multimodal Re	Multimodal Results						WB			NB				SB	
Pedestrian LOS				1.94	-	В	1.9	4	В	1.6	3	В	1.63	<u>; </u>	В
	a LOS Saara / LOS										_	_			

Bicycle LOS Score / LOS

0.49

1.75

В

1.36

Generated: 11/18/2021 11:38:19 PM

0.81

HCS7 Signalized Intersection Intermediate Values باط الطبله ل Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM PHF 0.98 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 PM.xus Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 40 150 200 0 550 970 Demand (v), veh/h 0 0 0 70 **Signal Information** ٦. Reference Phase Cycle, s 110.0 Offset, s 0 Reference Point End Green 17.0 81.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Red 2.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R Т R L L L 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.977 0.977 1.000 0.961 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.876 1.000 1.000 0.550 0.508 1.000 1.000 0.000 0.876 Right-Turn Adjustment Factor (fRT) 0.000 1.000 0.000 0.508 0.976 0.976 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 0 1272 1900 0 692 0 339 0 251 0 3365 243 Proportion of Vehicles Arriving on Green (P) 0.00 0.15 0.15 0.15 0.15 0.15 0.74 0.00 0.74 0.00 0.74 0.74 Incremental Delay Factor (k) 0.50 0.50 0.04 **Signal Timing / Movement Groups EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBL SBT/R Lost Time (t_L) 6.0 6.0 6.0 6.0 Green Ratio (g/C) 0.15 0.15 0.74 0.74 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1208 540 862 Shared Saturation Flow Rate (ssh), veh/h/ln 0 0 0 1826 Permitted Effective Green Time (q_p) , s 0.0 0.0 81.0 0.0 Permitted Service Time (gu), s 0.0 0.0 68.9 0.0 Permitted Queue Service Time (g_{ps}) , s 68.9 Time to First Blockage (gf), s 17.0 17.0 3.3 81.0 Queue Service Time Before Blockage (gfs), s 1.6 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB SB 0.972 Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.147 0.000 0.145 0.000 0.054 0.000 0.054 Pedestrian Mcorner / Mcw

309.09

-3.64

39.31

0.32

Bicycle cb / db

Bicycle Fw / Fv

37.64

0.00

1472.73

-3.64

3.82

1.26

1472.73

-3.64

Generated: 11/18/2021 11:38:19 PM

3.82

0.88

345.45

-3.64

HCS7 Signalized Intersection Results Graphical Summary General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM PHF 0.98 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 PM.xus SB SR 7 Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Т R L Τ R L Т R 550 Demand (v), veh/h 40 150 0 200 0 0 970 70 **Signal Information** ٦. 110.0 Reference Phase Cycle, s Offset, s 0 Reference Point End Green 17.0 81.0 0.0 0.0 0.0 0.0 Uncoordinated Simult. Gap E/W No On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S On WB SB **Movement Group Results** EΒ NB Approach Movement L Τ R L Т R L Т R R Back of Queue (Q), ft/ln (95 th percentile) 277.5 0 947.8 0 180.8 Back of Queue (Q), veh/ln (95 th percentile) 10.8 0.0 37.0 0.0 7.2 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.25 0.18 2.53 Control Delay (d), s/veh 65.7 63.5 5.5 Level of Service (LOS) Ε Α Approach Delay, s/veh / LOS 65.7 Ε 0.0 63.5 Ε 5.5 Α 33.2 Intersection Delay, s/veh / LOS 11.1_____78.2 0 129.3 LOSA LOS B LOS D Queue Storage Ratio < 1 LOSE Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:38:19 PM

Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

Build Intersection Analysis

AM Peak

HCS7 Signalized Intersection Input Data														
								1 1				1 21	n e sa	USB
General Information	D 0.11: 1 1							Intersec		v		- 1	2. 9.	9 32
Agency	Burgess & Niple, Inc	D			1			Duration	·	0.250				A
Analyst	MEL		_	is Date	_			Area Typ	Other					
Jurisdiction			Time F		Build /	AM		PHF		0.92			w t	<u> </u>
Urban Street	Main Street			is Year	_			Analysis		1> 7:0	00			**************************************
Intersection	Marion Street BEL-7-19.75		File Na	ame	Main 8	& Mario	n Buil	d 2045 Al	M.xus				ጎተ	
Project Description	_	_	_	_			_	_	_	20 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Demand Information				EB			W	В		NB		SB		
Approach Movement	L	Т	R	L	T	R	L	Т	R	L	Т	R		
Demand (v), veh/h		150	290	510	24	_	200		310					
Signal Information	Y Y			←		_							R.	
Cycle, s 120.0	-	2		2	≒	25	2					₹ 2	1] 3	4
Offset, s 0	Reference Point	End	Green	42.1	39.2	20.8	0.0	0.0	0.0		•			
Uncoordinated No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0			←		V
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
							100			NID		1		
Traffic Information Approach Movement			L	EB T	R		WE	R		NB T	R	L	SB T	R
Demand (v), veh/h				150	290	510	240	_	200	<u> </u>	310		ı	K
Initial Queue (Q_b) , veh	./h			0	0	0	0	'	0		0			
<u> </u>			\vdash	1900	1900	1900	190	2	1900		1900			
Base Saturation Flow				1900	1900	_		1900	Mana	1900	_			
Parking (N _m), man/h				None	40	40	Non	e	44	None	4.4			
Heavy Vehicles (PHV), %				12	12	10	10	+	14		14	_		
Ped / Bike / RTOR, /h			0	0	0	0	0		0	0	0	0	0	
Buses (N _b), buses/h			0	3	3	3	3	0	3	0	3			
Arrival Type (AT) Upstream Filtering (I)				1.00	1.00	1.00	1.00		1.00		1.00			
Lane Width (W), ft				12.0	12.0	12.0	12.0		12.0		12.0			
Turn Bay Length, ft				2450	525	1200	120	_	175		175			
Grade (<i>Pg</i>), %				0	323	1200	0	3	173	0	173		0	
Speed Limit, mi/h				25	25	25	25		25		25		0	
Opeca Emili, mini				25	23	20	23		20		20			
Phase Information			EBL		EBT	WBI		WBT	NBL	-	NBT	SBL		SBT
Maximum Green (Gmax					20.0	59.0	_	79.0	41.0)	41.0			
Yellow Change Interva	, ,				4.0	4.0	_	4.0	4.0		4.0			
Red Clearance Interva					2.0	2.0	_	2.0	2.0		2.0			
Minimum Green (Gmin	· · · · · · · · · · · · · · · · · · ·				10	7	_	10	7		10			
Start-Up Lost Time (It	, .			_	2.0	2.0	_	2.0	2.0	_				
Extension of Effective	Green (e), s			_	2.0	2.0		2.0	2.0	-	0.0	_		
Passage (PT), s				_	2.0	2.0	_	2.0	2.0		2.0			
Recall Mode Dual Entry				_	Min Yes	Off No	_	Min Yes	Off No		Off Yes	-		
Walk (<i>Walk</i>), s				0.0	INO	-	162	INO		0.0	_		0.0	
			0.0						0.0			0.0		
r cucsulan oleanance	edestrian Clearance Time (PC), s				0.0						0.0			0.0
Multimodal Informati	Multimodal Information			EB			WB			NB			SB	
85th % Speed / Rest in	85th % Speed / Rest in Walk / Corner Radius			No	25				0	No	25	0	No	25
Walkway / Crosswalk \	Valkway / Crosswalk Width / Length, ft		9.0	12	0				9.0	12	0	9.0	12	0
Street Width / Island /	Street Width / Island / Curb			0	No	0		No	0	0	No		0	
Width Outside / Bike L	/idth Outside / Bike Lane / Shoulder, ft			5.0	2.0	12	5.0	2.0	12	5.0	2.0			
Pedestrian Signal / Occupied Parking					0.50			0.50	No		0.50	No		

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period **Build AM** Urban Street Main Street Analysis Year 2045 Analysis Period 1> 7:00 Marion Street File Name Main & Marion Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 200 Demand (v), veh/h 150 290 510 240 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 42.1 39.2 20.8 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT Assigned Phase 6 2 1 8 Case Number 7.3 2.0 4.0 9.0 Phase Duration, s 45.2 48.1 93.2 26.8 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 3.3 0.0 3.4 Queue Clearance Time (g s), s 40.8 19.6 Green Extension Time (g e), s 0.0 1.3 0.0 1.2 Phase Call Probability 1.00 1.00 0.00 0.00 Max Out Probability WB NB **Movement Group Results** EΒ SB Approach Movement Т R L Т R Т R Т R L L L Assigned Movement 2 12 6 3 18 1 Adjusted Flow Rate (v), veh/h 163 315 554 261 217 337 1722 1668 1752 1612 1434 Adjusted Saturation Flow Rate (s), veh/h/ln 1459 38.8 5.7 17.6 Queue Service Time (g_s), s 8.5 16.5 15.5 Cycle Queue Clearance Time (g c), s 8.5 16.5 38.8 5.7 15.5 17.6 Green Ratio (g/C) 0.33 0.50 0.35 0.73 0.17 0.52 Capacity (c), veh/h 562 729 585 1273 279 751 Volume-to-Capacity Ratio (X) 0.290 0.432 0.948 0.205 0.779 0.449 Back of Queue (Q), ft/ln (95 th percentile) 185.8 275 653.7 102 293.1 273 Back of Queue (Q), veh/ln (95 th percentile) 6.8 10.0 24.2 3.8 10.5 9.8 Queue Storage Ratio (RQ) (95 th percentile) 80.0 0.52 0.54 0.09 1.67 1.56 47.4 17.8 Uniform Delay (d 1), s/veh 30.1 19.2 37.9 5.3 Incremental Delay (d 2), s/veh 1.3 1.9 9.9 0.4 1.8 0.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 31.4 21.0 47.8 5.6 49.2 18.0 Level of Service (LOS) С С D Α D В 24.6 С 34.3 С 30.2 С 0.0 Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 30.6 С **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.93 В 0.66 1.97 В Α В 1.96 Bicycle LOS Score / LOS 1.28 Α 1.83

Generated: 11/18/2021 4:43:06 PM

HCS7 Signalized Intersection Intermediate Values General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build AM Urban Street Main Street Analysis Year 2045 **Analysis Period** 1> 7:00 Marion Street File Name Main & Marion Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 200 Demand (v), veh/h 150 290 510 240 310 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 42.1 39.2 20.8 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay Т R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.906 0.906 0.922 0.922 1.000 0.891 1.000 0.891 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 1.000 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 1.000 1.000 0.000 0.847 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1722 1459 1752 1612 0 1434 0 1668 0 Proportion of Vehicles Arriving on Green (P) 0.00 0.33 0.33 0.35 0.73 0.00 0.17 0.00 0.17 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.50 0.13 0.50 0.04 0.04 Signal Timing / Movement Groups EBL EBT/R **WBL** WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.33 0.35 0.73 0.17 Permitted Saturation Flow Rate (sp), veh/h/ln 1136 0 0 1612 Shared Saturation Flow Rate (ssh), veh/h/ln 0 Permitted Effective Green Time (g_p) , s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s Time to First Blockage (gf), s 39.2 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 1459 1434 Protected Right Effective Green Time (g_R) , s 20.8 42.1 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 0.000 0.000 1.198 0.000 1.198 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.060 0.000 0.169 0.000 0.132 0.167 Pedestrian Mcorner / Mcw Bicycle cb / db 652.87 27.22 1453.91 4.47 67.20 -83.33 65.10 Bicycle Fw / Fv -3.64 0.79 -3.641.35 -3.64 -3.64

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build AM **Urban Street** Main Street Analysis Year 2045 **Analysis Period** 1> 7:00 Marion Street File Name Main & Marion Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L Τ R L L R R 200 310 Demand (v), veh/h 150 290 510 240 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 42.1 39.2 20.8 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Τ Back of Queue (Q), ft/ln (95 th percentile) 185.8 275 653.7 102 293.1 273 Back of Queue (Q), veh/ln (95 th percentile) 6.8 24.2 3.8 10.5 9.8 10.0 Queue Storage Ratio (RQ) (95 th percentile) 80.0 0.09 1.56 0.52 0.54 1.67 Control Delay (d), s/veh 31.4 21.0 47.8 5.6 49.2 18.0 Level of Service (LOS) С С D Α D В Approach Delay, s/veh / LOS 24.6 С 34.3 С 30.2 С 0.0 Intersection Delay, s/veh / LOS 30.6 С 47.8 LOS B LOS C Queue Storage Ratio < 1 LOSD LOS E Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:43:06 PM

				HCS	7 Ro	undal	οοι	ıts Re	eport							
General Information						9	ite	Infor	matio	n						
Analyst	RMK			\neg		J F			Inter	section			Main St	treet 8	k Lincolr	1 Ave
Agency or Co.	Burge	ess & Ni	ple			←			E/W	Street Na	me		Main St	treet (l	US 40)	
Date Performed	11/13	3/2021						\ \	N/S	Street Nar	ne		Lincoln	Avenu	ue	
Analysis Year	2045				∮ ↓	w ∓ E S		1 >	Anal	ysis Time I	Period (hr	rs)	0.25			
Time Analyzed	АМ В	uild			7				Peak	Hour Fact	tor		0.93			
Project Description	BEL-7	7-19.25					1		Juris	diction						
Volume Adjustments	and	Site C	haract	teristic	s											
Approach			EB	$\neg \neg$		WB			Т	N	В			:	SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	1
Lane Assignment		L	Т	R			L	_TR		LT	R		LT			R
Volume (V), veh/h	0	340	60	60	0	50	70	40	0	10	90	70	0	530	190	670
Percent Heavy Vehicles, %	13	13	13	13	2	2	2	2	5	5	5	5	7	7	7	7
Flow Rate (VPCE), pc/h	0	413	73	73	0	55	77	44	0	11	102	79	0	610	219	771
Right-Turn Bypass		N	one			None	9			No	ne			N	one	
Conflicting Lanes			1			1				2	<u>.</u>				1	
Pedestrians Crossing, p/h			0				C)				0				
Critical and Follow-U	р Не	adwa	y Adju	stmen	t											
Approach				EB		T		WB			NB				SB	
Lane			Left	Right	Bypass	Left		Right	Bypass	Left	Right	Bypass	Lef	t	Right	Bypass
Critical Headway (s)			4.5436	4.5436			4	1.9763		4.6453	4.3276		4.54	36	4.5436	
Follow-Up Headway (s)			2.5352	2.5352			2	2.6087		2.6667	2.5352		2.53	52 2	2.5352	
Flow Computations,	Capa	city a	nd v/c	Ratios	;											
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Left		Right	Bypass	Left	Right	Bypass	Lef	t	Right	Bypass
Entry Flow (v _e), pc/h			413	146				176		113	79		82	9	771	
Entry Volume, veh/h			365	129			Т	173		108	75		77	5	721	
Circulating Flow (v _c), pc/h				884				526			1096				143	
Exiting Flow (vex), pc/h				762				859			559				347	
Capacity (c _{pce}), pc/h			635	635				807		493	559		124	7	1247	
Capacity (c), veh/h			562	562				791		469	533		116	55	1165	
v/c Ratio (x)			0.65	0.23				0.22		0.23	0.14		0.6	6	0.62	
Delay and Level of So	ervice)														
Approach				EB				WB			NB				SB	
Lane		Left	Right	Bypass	Left		Right	Bypass	Left	Right	Bypass	Lef	t	Right	Bypass	
Lane Control Delay (d), s/veh	Lane Control Delay (d), s/veh							6.9		11.1	8.6		12.	3	11.1	
Lane LOS	Lane LOS						\perp	А		В	А		В		В	
95% Queue, veh			4.7	0.9			\prod	0.8		0.9	0.5		5.4	1	4.5	
Approach Delay, s/veh				17.8				6.9			10.1				11.7	
Approach LOS	Approach LOS							Α			В				В	
Intersection Delay, s/veh LO	S					12.5							В		2021 11	

						put Da						
						1.4		4*		1 2	H 24.5 (14	USB
General Information					-	Intersect		v		- 1	JĮĮ	9 32
Agency Burgess & Niple, Inc.	1		1			Duration,		0.250		-		A A
Analyst MEL		is Date			-	Area Typ	e	Other				
Jurisdiction	Time F		Build A	AM		PHF		0.92		_	W I L	→
Urban Street Main Street		is Year	_			Analysis		1> 7:0	00			**************************************
Intersection Huron Street	File Na	ame	Zane 8	& Huron	n Build	2045 AM	l.xus				ጎ ሰ	
Project Description BEL-7-19.75	_	_	_	_	_		_	_	_	1		音 級
Demand Information		EB		T	WI	В		NB		T	SB	
Approach Movement	L	Т	R	L	Т	1	L	Т	R	L	Т	R
Demand (v), veh/h		520	20	10	41	_	20		10	120	30	60
	1											
Signal Information	4	←	W.								,	\mathbf{A}
Cycle, s 120.0 Reference Phase 2	_	≒ "	5.2	7						₹ 2	3	т .
Offset, s 83 Reference Point End	Green	84.4	11.0	6.6	0.0	0.0	0.0			3 -		7
Uncoordinated No Simult. Gap E/W On	Yellow		4.0	4.0	0.0		0.0			7		大之
Force Mode Fixed Simult. Gap N/S On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
Traffic Information		EB			WB			NB		<u> </u>	SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h		520	20	10	410		20		10	120	30	60
Initial Queue (Q _b), veh/h	_	0	0	0	0	\perp	0		0	0	0	0
Base Saturation Flow Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900		1900		1900	1900	1900	1900
Parking (N _m), man/h		None			None	9		None			None	
Heavy Vehicles (Рнv), %		2			4		1		1	1	1	1
Ped / Bike / RTOR, /h	0	0	0	0	0	\perp	0	0		0	0	0
Buses (N _b), buses/h	0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)		3	3	3	3	\perp	3		3	3	3	3
Upstream Filtering (/)		1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00
Lane Width (<i>W</i>), ft		12.0			12.0		12.0		12.0	12.0	12.0	12.0
Turn Bay Length, ft		1200			350		50		425	125	275	125
Grade (Pg), %		0			0			0			0	
Speed Limit, mi/h		25	25	25	25		25		25	25	25	25
Phase Information	EBL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
Maximum Green (<i>G_{max}</i>) or Phase Split, s		_	39.0			39.0			17.0			64.0
Yellow Change Interval (Y), s			4.0			4.0			4.0			4.0
Red Clearance Interval (Rc), s			2.0			2.0			2.0			2.0
Minimum Green (<i>Gmin</i>), s			10			10			10			10
Start-Up Lost Time (/t), s			2.0	2.0	_	2.0	2.0	_		2.0		2.0
Extension of Effective Green (e), s			2.0	2.0		2.0	2.0			2.0		2.0
Passage (<i>PT</i>), s			2.0			2.0		\neg	2.0			2.0
Recall Mode			Min			Min			Off			Off
Dual Entry			Yes			Yes			Yes			Yes
Walk (Walk), s			0.0			0.0			0.0			0.0
Pedestrian Clearance Time (PC), s			0.0			0.0			0.0			0.0
Multimodal Information		EB			WB			NB			SB	
85th % Speed / Rest in Walk / Corner Radius	0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Crosswalk Width / Length, ft	9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island / Curb	0	0	No	0	0	No	0	0	No	0	0	No
Width Outside / Bike Lane / Shoulder, ft	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking	No		0.50	No		0.50	No		0.50	No		0.50

		HCS	7 Sig	nalize	d Int	ersect	ion F	Resu	lts Su	mmary	y				
General Inform	nation								Intersec	tion Info	ormatic	on	2	44.50	<u> </u>
Agency		Burgess & Niple, In	n.					_	Duration		0.250			111	
Analyst		MEL		Analys	sis Date	11/16/2	2021	_	Area Tyr	<u> </u>	Othe				
Jurisdiction		IVIEE		Time F		Build A		-	PHF		0.92			w\1	÷
Urban Street		Main Street			sis Yea		VIVI		Analysis	Period	1> 7:	00	- P. P. P. P. P. P. P. P. P. P. P. P. P.		
Intersection		Huron Street		File Na			R. Huror		2045 AN		1, 1,			K 7	
Project Descrip	tion	BEL-7-19.75		I lie ive	anic	Zane	x i iuioi	Dulla	2043 AI	vi.Aus					360
Project Descrip	lion	DEL-7-19.73											[124	NINTERAL PACIFICACION	2/190
Demand Inform	nation				EB		T	WE	3		NB			SB	
Approach Move	ment			L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), v	eh/h				520	20	10	410	0	20		10	120	30	60
							,								
Signal Informa					•	<u> </u>									\mathbf{A}
Cycle, s	120.0	Reference Phase	2		\	5.2	7					1	₹ 2	3	4
Offset, s	83	Reference Point	End	Green	84.4	11.0	6.6	0.0	0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0			7		K Z
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT
Assigned Phase	9				_	2		_	6	_	_	8	_	_	4
Case Number					_	8.0		_	8.0		_	9.0			9.0
Phase Duration	·				_	90.4		_	90.4		_	12.6		-	17.0
	ge Period, (Y+R c), s llow Headway (<i>MAH</i>), s				_	6.0		_	6.0		_	6.0			6.0
		· · · · · · · · · · · · · · · · · · ·				0.0		_	0.0		_	3.3			3.3
Queue Clearan		· - /										3.4			10.5
Green Extensio		(g e), s				0.0			0.0			0.1			0.5
Phase Call Prol												0.66			1.00
Max Out Proba	bility											0.00			0.00
Movement Gro	un Boo	aulto			EB			WB			NB			SB	
Approach Move		buits		L	Т	R		T	R		T	R		T	R
Assigned Move					2	12	1	6	K	1 L 3	ı	18	7	4	14
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			587	12	'	457		22			130		
Adjusted Flow F		,-	_			\vdash			_	_		11		33	65
Queue Service		ow Rate (s), veh/h/l	n	_	1858	\vdash		1820	'	1795		1598 0.8	1795 8.5	1885 1.9	1598
		- ,			16.5	\vdash		0.0		1.4		_			4.6
Cycle Queue C		e rime (g c), s			16.5			11.8		1.4		0.8	8.5	1.9	4.6
Green Ratio (g					0.70	\vdash		0.70		0.06		0.06	0.09	0.09	0.09
Capacity (c), v		4: - / V			1306	_		1310	_	99		88	165	173	147
Volume-to-Capa					0.449			0.348	_	0.219		0.123	0.792	0.189	0.445
		/In (95 th percentile)			275.3			211.8)	29.3		14.6	182.7	42	86.6
	• ,	eh/In (95 th percenti	,		10.8			8.2		1.2		0.6	7.3	1.7	3.4
		RQ) (95 th percent	iie)		0.23			0.61		0.59		0.03	1.46	0.15	0.69
Uniform Delay (7.7			7.0		54.2		53.9	53.4	50.4	51.6
Incremental De		,			1.1			0.7	+	0.4		0.2	3.2	0.2	0.8
Initial Queue De					0.0			0.0		0.0		0.0	0.0	0.0	0.0
Control Delay (,				8.9			7.8		54.6		54.2	56.6	50.6	52.4
Level of Service					A			A		D 545		D	E	D	D
	Approach Delay, s/veh / LOS			8.9		Α	7.8		Α	54.5		D	54.5		D
Intersection De	ntersection Delay, s/veh / LOS					17	.ნ						В		
Multimodal Po	Multimodal Results				EB			WB			NB			SB	
Pedestrian LOS		/1 OS		1.86		В	1.86		В	1.74	-	В	1.73		В
Bicycle LOS Sc				1.46	_	A	1.24	_	A	1.74		F	0.86		A
Dicycle LOS SC	OIG / LC	<i>7</i> 0		1.40	,	Λ	1.24	T				ı	0.00	,	^

Generated: 11/18/2021 4:45:03 PM

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build AM **Urban Street** Main Street Analysis Year 2045 **Analysis Period** 1> 7:00 Huron Street File Name Zane & Huron Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 520 20 10 410 20 10 120 30 60 Signal Information 셌 Cycle, s 120.0 Reference Phase 2 Offset, s 83 Reference Point End 0.0 0.0 Green 84.4 11.0 6.6 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 4.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.984 1.000 1.000 0.969 0.984 0.992 1.000 0.992 0.992 0.992 0.992 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.993 0.989 0.989 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.993 0.000 0.989 0.000 0.847 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) 1.000 Movement Saturation Flow Rate (s), veh/h 0 1789 43 1777 0 1795 0 1598 1795 1885 1598 69 Proportion of Vehicles Arriving on Green (P) 0.00 0.70 0.70 0.70 0.70 0.00 0.06 0.00 0.06 0.09 0.09 0.09 Incremental Delay Factor (k) 0.50 0.50 0.04 0.04 0.04 0.04 0.04 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 4.0 Lost Time (t_L) Green Ratio (g/C) 0.70 0.70 0.06 0.09 Permitted Saturation Flow Rate (sp), veh/h/ln 959 842 1795 1795 Shared Saturation Flow Rate (ssh), veh/h/ln 1870 0 Permitted Effective Green Time (g_p) , s 0.0 84.4 0.0 0.0 67.9 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 0.0 Time to First Blockage (gf), s 84.4 51.6 0.0 0.0 Queue Service Time Before Blockage (gfs), s 11.8 Protected Right Saturation Flow (SR), veh/h/ln 0 0 Protected Right Effective Green Time (g_R) , s 0.0 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.067 0.000 0.067 0.000 0.169 0.000 0.160 Pedestrian Mcorner / Mcw Bicycle cb / db 1406.06 5.29 1406.06 5.29 67.20 110.46 53.56 Bicycle Fw / Fv -3.640.97 -3.640.75 -3.64 -3.64 0.38

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build AM **Urban Street** Main Street Analysis Year 2045 **Analysis Period** 1> 7:00 Huron Street File Name Zane & Huron Build 2045 AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Т Approach Movement L Τ R L L R L R Demand (v), veh/h 520 20 10 410 20 10 120 30 60 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 83 Reference Point End 0.0 0.0 Green 84.4 11.0 6.6 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Т Back of Queue (Q), ft/ln (95 th percentile) 275.3 211.8 29.3 14.6 182.7 42 86.6 Back of Queue (Q), veh/ln (95 th percentile) 10.8 8.2 1.2 0.6 7.3 1.7 3.4 Queue Storage Ratio (RQ) (95 th percentile) 0.23 0.61 0.59 0.03 1.46 0.15 0.69 54.2 56.6 Control Delay (d), s/veh 8.9 7.8 54.6 50.6 52.4 Level of Service (LOS) Α Α D D Ε D D Approach Delay, s/veh / LOS 8.9 Α 7.8 Α 54.5 D 54.5 D Intersection Delay, s/veh / LOS 17.6 В 50.6 LOS B LOS C Queue Storage Ratio < 1 LOSD LOSE Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:45:03 PM

	H	CS7	Signa	alized	Inter	section	on In	put Da	ata					
												1 21	42464	
General Information	0.111.1						-	Intersect		v		- 1		9 52
Agency	Burgess & Niple, Inc				1			Duration,		0.250				A A
Analyst	MEL		-	is Date	_		-	Area Typ	e	Other				
Jurisdiction			Time F		Build A	4M		PHF		0.80		# *	w+t	→ 33
Urban Street	Lincoln Avenue		-	is Year				Analysis		1> 7:0	00			**************************************
Intersection	Howard Street		File Na	ame	Lincol	n & Hov	vard 2	045 Build	AM.xus	3			4	
Project Description	BEL-7-19.75	_	_	_	_	_	_		_	_	_	1		計 復
Demand Information				EB			WI	3	T	NB		T	SB	
Approach Movement				Т	R		Т	R	L	Т	R	L	Т	R
Demand (v), veh/h			50	0	120	10	17	_	10	20			200	100
Signal Information	1			17	1 a 2	=						-+		_
Cycle, s 60.0	Reference Phase	2		K∱	R						1	Y 2	3	←
Offset, s 0	Reference Point	End	Green	33.0	15.0	0.0	0.0	0.0	0.0					K
Uncoordinated No	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0		0.0					7
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
-							14/5							
Traffic Information Approach Movement				EB T	D		WB T	R	L	NB T	R	L	SB T	R
Demand (v), veh/h			50	0	R 120	10	170	100	10	20	K		200	100
Initial Queue (Q _b), veh	/h		0	0	0	0	0	0	0	0			0	0
<u> </u>			1900	1900	1900	1900	1900		1900	1900			1900	1900
Base Saturation Flow I	Rate (So), ven/n		1900		1900	1900			1900			_		1900
Parking (N _m), man/h	0/			None			None)		None		_	None	7
Heavy Vehicles (PHV),	%			9			5		_	10			7	7
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0		0	0	0
Buses (Nb), buses/h			3	3	3	3	3	3	3	3	0	0	3	3
Arrival Type (<i>AT</i>) Upstream Filtering (<i>I</i>)			1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Lane Width (W), ft			1.00	12.0	1.00	1.00	12.0		1.00	12.0			12.0	12.0
Turn Bay Length, ft				850			600			475			800	450
Grade (<i>Pg</i>), %				0			000			0			0	430
Speed Limit, mi/h			25	25	25	25	25	25	25	25			25	25
Speed Littit, IIII/II			23	23	23	25	23	20	23	23			23	23
Phase Information			EBL		EBT	WBI		WBT	NBL	-	NBT	SBL		SBT
Maximum Green (Gmax	<u> </u>				44.0			44.0			16.0			16.0
Yellow Change Interva	· ·				4.0			4.0			4.0			4.0
Red Clearance Interva					2.0			2.0			2.0			2.0
Minimum Green (Gmin)					7			7			7			7
Start-Up Lost Time (It)			2.0		2.0	2.0		2.0	2.0		2.0		\perp	2.0
Extension of Effective	Green (e), s		2.0		2.0	2.0	_	2.0	2.0		2.0			2.0
Passage (PT), s				_	2.0			2.0			2.0	_		2.0
Recall Mode				_	Off	_	-	Off		_	Min	_	_	Min
Dual Entry					Yes			Yes			Yes	_		Yes
Walk (<i>Walk</i>), s	Time (DC)				0.0			0.0			0.0			0.0
Pedestrian Clearance	IIme (<i>PC</i>), s				0.0			0.0			0.0			0.0
Multimodal Information	on			EB			WB			NB			SB	
85th % Speed / Rest in	n Walk / Corner Radius	3	0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Crosswalk \	Width / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island /			0	0	No	0	0	No	0	0	No	0	0	No
Width Outside / Bike La	ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Oc	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

HCS7	Sigr	nalize	d Int	ersect	ion R	Resul	lts Su	mmar	у				
General Information							Intersec	tion Inf	ormatic	on .	2		
Agency Burgess & Niple, Inc						_	Duration		0.250			11	
Analyst MEL		Analys	is Date	11/17/	2021	_	Area Typ	,	Other				
Jurisdiction		Time F		Build A		_	PHF		0.80			w\u00e4t	→
Urban Street Lincoln Avenue	$\overline{}$	Analys			MVI		Analysis	Period	1> 7:0	20			
Intersection Howard Street		File Na			2. Hov		045 Build						
Project Description BEL-7-19.75		I IIC INC	arric	Lilloon	1 & 1101	waru zi	O+O Duik	a Aivi.Au	<u> </u>		- 5		新 爾
,													
Demand Information			EB			WE	3		NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), veh/h		50	0	120	10	170	0 100	10	20			200	100
Signal Information				F.									
	2		17	12 }							KŤ		\mathbf{z}
1 , , , , , , , , , , , , , , , , , , ,	End		51	R'						1	2	3	4
		Green		15.0	0.0	0.0		0.0					<u> </u>
Uncoordinated No Simult. Gap E/W Force Mode Fixed Simult. Gap N/S	On On	Yellow Red	2.0	4.0 2.0	0.0	0.0		0.0		5	6	7	V .
Force Mode Fixed Sillidit. Gap N/S	OII	Reu	2.0	2.0	0.0	0.0	0.0	0.0		9	6	1	٥
Timer Results		EBL	_	EBT	WB	L	WBT	NBI	L	NBT	SBI	L	SBT
Assigned Phase				4			8			2		\neg	6
Case Number				8.0			8.0			8.0			7.0
Phase Duration, s			\neg	21.0		\neg	21.0			39.0		\neg	39.0
Change Period, (Y+Rc), s				6.0			6.0			6.0			6.0
Max Allow Headway (MAH), s				3.4			3.4			0.0		\neg	0.0
Queue Clearance Time (g s), s				9.6			13.6			-			-
Green Extension Time (g e), s			_	1.4			1.3			0.0			0.0
Phase Call Probability				1.00			1.00						
Max Out Probability	\neg		\neg	0.00			0.00					\neg	
Movement Group Results			EB			WB			NB			SB	
Approach Movement		L	Т	R	L	T	R	L	Т	R	L	Т	R
Assigned Movement		7	4	14	3	8	18	5	2			6	16
Adjusted Flow Rate (v), veh/h			213			350			38			250	125
Adjusted Saturation Flow Rate (s), veh/h/ln			1404			1704			1460			1796	1522
Queue Service Time (g s), s			0.0			2.8			0.0			4.4	2.4
Cycle Queue Clearance Time (g c), s			7.6			11.6			4.4			4.4	2.4
Green Ratio (g/C)			0.25	\perp		0.25			0.55			0.55	0.55
Capacity (c), veh/h			427			487			884			989	838
Volume-to-Capacity Ratio (X)			0.497			0.719			0.042			0.253	0.149
Back of Queue (Q), ft/ln (95 th percentile)			119.5			205.2	2		10			74.7	35.3
Back of Queue (Q), veh/ln (95 th percentile)	_		4.5	\vdash		7.9	-		0.4			2.8	1.3
Queue Storage Ratio (RQ) (95 th percentile)		0.14			0.34		-	0.02			0.09	0.08
Uniform Delay (d 1), s/veh			19.6			21.3		_	6.2			7.0	6.6
Incremental Delay (d 2), s/veh			0.3			0.8		-	0.1			0.6	0.4
Initial Queue Delay (d 3), s/veh			0.0			0.0			0.0			0.0	0.0
Control Delay (d), s/veh			20.0 B			22.0 C			6.3 A			7.6 A	7.0
Level of Service (LOS) Approach Delay, s/veh / LOS		20.0		В	22.0		С	6.3		A	7.4		A
Intersection Delay, s/veh / LOS		20.0		15		,	U	0.3			7. 4 В		
Intersection belay, siven / LOS				10							<u>ر</u>		
Multimodal Results			EB			WB			NB			SB	
Pedestrian LOS Score / LOS		1.69		В	1.91		В	1.64		В	1.64		В
Bicycle LOS Score / LOS		0.84		Α	1.07	7	Α	0.55	5	Α	1.11	1	Α

Generated: 11/18/2021 4:59:58 PM

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/17/2021 Area Type Other PHF 0.80 Jurisdiction Time Period **Build AM Urban Street** Lincoln Avenue Analysis Year 2045 Analysis Period 1> 7:00 Howard Street File Name Lincoln & Howard 2045 Build AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 100 Demand (v), veh/h 50 0 120 10 170 10 20 200 100 Signal Information Щ Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 33.0 0.0 0.0 15.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.930 1.000 1.000 0.961 1.000 1.000 0.922 1.000 1.000 0.945 0.945 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.843 0.794 0.993 0.933 0.833 0.833 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.794 0.000 0.933 0.000 0.833 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) Movement Saturation Flow Rate (s), veh/h 413 991 61 1034 608 487 973 0 0 1796 1522 Proportion of Vehicles Arriving on Green (P) 0.25 0.00 0.25 0.25 0.25 0.25 0.55 0.55 0.00 0.00 0.55 0.55 0.04 Incremental Delay Factor (k) 0.04 0.50 0.50 0.50 Signal Timing / Movement Groups EBL EBT/R **WBL** WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.25 0.25 0.55 0.55 Permitted Saturation Flow Rate (sp), veh/h/ln 1059 1257 1148 1408 Shared Saturation Flow Rate (ssh), veh/h/ln 1358 1793 0 1796 Permitted Effective Green Time (g_p) , s 15.0 15.0 33.0 0.0 7.4 28.7 3.4 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 0.0 2.8 0.0 Time to First Blockage (gf), s 4.2 4.0 33.0 8.8 Queue Service Time Before Blockage (gfs), s 2.2 5.6 0.6 Protected Right Saturation Flow (SR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 0.972 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.113 0.000 0.072 0.000 0.072 0.113 Pedestrian Mcorner / Mcw Bicycle cb / db 498.37 16.91 498.37 16.91 1101.63 6.05 1101.63 6.05 Bicycle Fw / Fv -3.64 0.35 -3.640.58 -3.64 0.06 -3.64 0.62

HCS7 Signalized Intersection Results Graphical Summary 建建基础建筑 **General Information Intersection Information** Agency Burgess & Niple, Inc Duration, h 0.250 Analyst MEL Analysis Date 11/17/2021 Area Type Other PHF 0.80 Jurisdiction Time Period Build AM **Urban Street** Lincoln Avenue Analysis Year 2045 Analysis Period 1> 7:00 Howard Street File Name Lincoln & Howard 2045 Build AM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Т Approach Movement L R L R L R R 100 100 Demand (v), veh/h 50 0 120 10 170 10 20 200 Signal Information 北 Cycle, s 60.0 Reference Phase 2 Offset, s 0 Reference Point End Green 33.0 0.0 0.0 15.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 0.0 On Red 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R Т Τ R L Τ R L L R L Back of Queue (Q), ft/ln (95 th percentile) 119.5 205.2 10 74.7 35.3 Back of Queue (Q), veh/ln (95 th percentile) 4.5 7.9 0.4 2.8 1.3 Queue Storage Ratio (RQ) (95 th percentile) 0.14 0.34 0.02 0.09 80.0 Control Delay (d), s/veh 20.0 22.0 6.3 7.6 7.0 Level of Service (LOS) В С Α Α Α Approach Delay, s/veh / LOS 20.0 В 22.0 С 6.3 Α 7.4 Α Intersection Delay, s/veh / LOS 15.3 В 22.0 LOS B LOS C LOSD LOSE LOS F

	Messages	
--	----------	--

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:59:58 PM

HCS7 Signalized Intersection Input Data 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period Build AM PHF 0.84 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 400 0 0 0 330 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 66 Offset, s Reference Point End Green 42.8 17.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 0.0 2.0 0.0 0.0 0.0 0.0 On WB NB SB **Traffic Information** EB Approach Movement L Т R ı Т R ı R R Demand (v), veh/h 400 0 0 0 0 0 330 0 0 Initial Queue (Qb), veh/h 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h Parking (Nm), man/h None None None Heavy Vehicles (PHV), % 15 0 5 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) Lane Width (W), ft 12.0 12.0 12.0 100 400 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 **WBL** SBL **Phase Information EBL EBT WBT NBL NBT SBT** Maximum Green (Gmax) or Phase Split, s 13.0 13.0 57.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 Red Clearance Interval (Rc), s 0.0 0.0 2.0 7 6 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 Off Recall Mode Min Min Yes **Dual Entry** Yes No Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** WB NB SB EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 No No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 No 0 No 0 No 0 0

Width Outside / Bike Lane / Shoulder, ft

Pedestrian Signal / Occupied Parking

12

5.0

2.0

0.50

12

No

5.0

2.0

No Generated: 11/18/2021 11:15:26 PM

0.50

12

No

5.0

2.0

0.50

		HCS	7 Sig	nalize	d In	tersec	tion F	Resul	lts Sur	nmar	y				
General Inforn	nation								Intersect	tion Inf	ormatio	on	2	4 7.4	1 12 1
Agency		Burgess & Niple, In	c.						Duration,	h	0.250		7		
Analyst		MEL		Analys	sis Da	te Nov 1	5, 2021		Area Typ	е	Other		<i>z</i> , →		<u>.</u>
Jurisdiction				Time F	Period	Build	AΜ		PHF		0.84			w .	→
Urban Street		Cadiz Pike		Analys	sis Yea	ar 2045			Analysis	Period	1> 7:0	00	7		¥
Intersection		NB SR 7		File Na	ame	Cadiz	Pike Si	gnals E	Build 204	5 AM.xı	JS			+	
Project Descrip	tion	BEL-7-19.75											ħ	4 1 4	747
							,						, 		
Demand Inforr					EB		-	WE		-	NB		+	SB	
Approach Move				<u> </u>	Т	R	1-	Т	R	<u> </u>	T	R	<u> </u>	Т	R
Demand (v), v	eh/h		_	400	0	0	0	0	0		330			_	
Signal Informa	tion				1							9			
Cycle, s	70.0	Reference Phase	2	1	7	Ħ							л		
Offset, s	66	Reference Point	End	1	-3	1						1	₹ 2	3	4
Uncoordinated	No			Green			0.0	0.0	0.0	0.0					
		Simult. Gap E/W	On	Yellow	_	4.0	0.0	0.0	0.0	0.0	-			_	T.
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	0.0	0.0	0.0	0.0		5	6		8
Timer Results				EBL	т	EBT	WB		WBT	NBI		NBT	SBL	Т	SBT
Assigned Phase				200	-	2	****	_	6	145		8	OBL		051
Case Number						8.0			8.0			12.0			
Phase Duration				-	-	46.8		_	46.8		_	23.2		-	
Change Period		-) c				4.0		_	4.0			6.0	_		
Max Allow Hea				_	-	0.0		-	0.0	_		3.2	_		
Queue Clearan		· · · · · · · · · · · · · · · · · · ·		_	-	0.0		_	0.0			16.5	_		
		, = ,		-	-	0.0	_	-	0.0	_		0.8	_	-	
Green Extension		(<i>g</i> e), S		_		0.0			0.0						
Phase Call Pro				_	-		_	-				1.00		-	
Max Out Proba	Dility							_				0.00			
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16		8				+
Adjusted Flow I), veh/h			421			0	1		393				+
		ow Rate (s), veh/h/l	n		1271			0			1826				+
Queue Service		. ,			3.6			0.0			14.5				+
Cycle Queue C		- /			3.6			0.0			14.5				+
Green Ratio (g		(30),0			0.61			0.0			0.25				
Capacity (c), v					879						450				
Volume-to-Cap		atio (X)			0.479			0.000			0.873				
		/In (95 th percentile))		44.7			0.000			269.7				
		eh/ln (95 th percenti			1.6			0.0			10.4				_
		RQ) (95 th percent			0.45			0.00			0.67				
Uniform Delay			0)		1.2			0.00			25.3				+
Incremental De	<u> </u>				1.9			0.0			2.1				
Initial Queue Do	- 1	•			0.0			0.0			0.0				
Control Delay (3.0			0.0			27.5				+
Level of Service					A						C C				
Approach Dela				3.0		A	0.0			27.5		С	0.0		
Intersection De				3.0			1.8			21.0	,		B		
microection De	iay, 5/VE	лі / LOO				12	r.U						<u>ن</u>		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS		/ LOS		1.35	_	Α	1.35		Α	1.72		В	1.72		В
Disvala LOC Ca										L				_	

Bicycle LOS Score / LOS

0.49

1.14

Generated: 11/18/2021 11:15:26 PM

1.27

HCS7 Signalized Intersection Intermediate Values باطلعاء المالية ل Intersection Information **General Information** Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period **Build AM** PHF 0.84 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 400 0 0 0 Demand (v), veh/h 0 0 330 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 66 Reference Point End Green 42.8 17.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Red 0.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R Т R L L L 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.883 0.883 1.000 1.000 1.000 1.000 1.000 0.961 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.758 0.758 1.000 1.000 1.000 1.000 0.000 0.758 0.000 0.000 0.000 Right-Turn Adjustment Factor (fRT) 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1271 0 0 1900 0 1826 0 0 0 Proportion of Vehicles Arriving on Green (P) 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.04 **Signal Timing / Movement Groups** SBL **EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBT/R Lost Time (t_L) 4.0 4.0 4.0 0.61 0.25 Green Ratio (g/C) 0.61 Permitted Saturation Flow Rate (s_p) , veh/h/ln 1440 1440 0 Shared Saturation Flow Rate (ssh), veh/h/ln 0 1900 Permitted Effective Green Time (q_p) , s 42.8 0.0 0.0 Permitted Service Time (gu), s 42.7 0.0 0.0 Permitted Queue Service Time (g_{ps}) , s 3.6 Time to First Blockage (gf), s 0.0 42.8 0.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (s_R), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB Pedestrian Fw / Fv 0.972 0.681 0.000 0.681 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.067 0.000 0.067 0.000 0.150 0.000 0.148 Pedestrian Mcorner / Mcw

1221.51

-3.64

5.30

0.79

Bicycle cb / db

Bicycle Fw / Fv

5.30

0.00

-200.00

-3.64

42.35

0.65

-3.64

Generated: 11/18/2021 11:15:26 PM

40.18

1221.51

-3.64

HCS7 Signalized Intersection Results Graphical Summary 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period Build AM PHF 0.84 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Τ R L Т R L R Demand (v), veh/h 400 0 0 330 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 66 Reference Point End Green 42.8 17.2 0.0 0.0 0.0 0.0 Uncoordinated Simult. Gap E/W No On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 0.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S On **Movement Group Results** WB SB EΒ NB Approach Movement L Τ R L Т R L Т R R Back of Queue (Q), ft/ln (95 th percentile) 44.7 0 269.7 Back of Queue (Q), veh/ln (95 th percentile) 1.6 0.0 10.4 Queue Storage Ratio (RQ) (95 th percentile) 0.45 0.00 0.67 Control Delay (d), s/veh 3.0 27.5 Level of Service (LOS) Α С Approach Delay, s/veh / LOS 3.0 Α 0.0 27.5 С 0.0 14.8 Intersection Delay, s/veh / LOS В 0 LOSA LOS B LOS D LOSE LOS F

--- Messages ---

WARNING: According to input data, upstream feeding volume is equal to 88% of downstream exit volume during time period #1, for thru movement #2.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:15:26 PM

HCS7 Signalized Intersection Input Data General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period **Build AM** PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 260 80 0 390 1130 Demand (v), veh/h 10 0 0 0 10 **Signal Information** ٦. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 19.1 38.9 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed Simult. Gap N/S On WB NB SB **Traffic Information** EB R Approach Movement L Т R ı Τ ı R R Demand (v), veh/h 10 260 0 0 80 0 390 1130 10 0 0 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 4 0 13 8 Ped / Bike / RTOR, /h 0 Buses (Nb), buses/h 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 1500 375 750 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 25 25 25 **WBL WBT Phase Information EBL EBT NBL NBT** SBL **SBT** Maximum Green (Gmax) or Phase Split, s 18.0 18.0 52.0 52.0 4.0 4.0 Yellow Change Interval (Y), s 4.0 4.0 Red Clearance Interval (Rc), s 2.0 0.0 2.0 2.0 7 7 6 7 Minimum Green (Gmin), s Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 Off Off Recall Mode Min Min Yes **Dual Entry** Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 WB NB SB **Multimodal Information** EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 0 No No 25 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 0 0 0 0 No No 0 No 0 No

Width Outside / Bike Lane / Shoulder, ft

Pedestrian Signal / Occupied Parking

12

5.0

2.0

0.50

12

No

5.0

2.0

0.50

12

No

Generated: 11/18/2021 11:15:26 PM

5.0

2.0

0.50

12

No

5.0

2.0

0.50

		HCS	7 Sig	nalize	ed In	tersec	tion I	Resu	Its Sur	nmar	у				
General Inforn	nation								Intersec	tion Inf	ormatio	on	ل	4 사사	, da (<u>,</u>
Agency		Burgess & Niple, In	c.						Duration	, h	0.250)	4	4 1	
Analyst		MEL		Analys	sis Da	te Nov 1	5, 2021		Area Typ	е	Other	-	<i>≛</i> ,		<u>.</u>
Jurisdiction				Time F	Period	Build	AM		PHF		0.95		- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	w∓E	→
Urban Street		Cadiz Pike		Analys	sis Yea	ar 2045			Analysis	Period	1> 7:	00	*		tr.
Intersection		SB SR 7		File Na	ame	Cadiz	Pike S	ignals l	Build 204	5 AM.x	us			4	
Project Descrip	tion	BEL-7-19.75											ħ	4 1 4 4	777
		•													
Demand Inforr					EB			WE			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), v	eh/h				10	260	0	0		80	0	390	0	1130	10
Cianal Informa	tion				_	1 11:		T	_			4			
Signal Informa		Deference Dhase		1		والك									本
Cycle, s	70.0	Reference Phase	2	1	3	15.40	25					1	₹ 2	3	4
Offset, s	0	Reference Point	End	Green			0.0	0.0		0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0		0.0	_		7		₩
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8
Timer Results				EBI		EBT	WE	21	WBT	NB		NBT	SBL	_	SBT
Assigned Phase				ЕВІ	-	2	VVL)L	6	IND	<u> </u>	8	SBL	-	4
Case Number	U					8.0			8.0	_		8.0	_		
	uration, s			-	-			-		-	_		-	-	8.0
				_	+	25.1 6.0		_	25.1 6.0	\vdash		44.9 6.0	_		44.9
	Period, (Y+R c), s w Headway (MAH), s			-	-					-			_		6.0
		· · · · · · · · · · · · · · · · · · ·		_	+	0.0			0.0	_		3.5	_		3.5
Queue Clearan		, = ,		_	-			-	2.2	_	_	34.4	_	_	17.7
Green Extension		(<i>g</i> _e), S		_	_	0.0		_	0.0	_	_	4.3	_	_	5.5
Phase Call Pro				_	_			_		_	_	1.00		_	1.00
Max Out Proba	bility				_			_	_			0.34		_	0.04
Movement Gro	nun Res	sults			EB			WB			NB			SB	
Approach Move	•	74110		L	T	R	L	T	R	L	T	R		T	R
Assigned Move					2	12	1	6	1	3	8	18	7	4	14
Adjusted Flow I) veh/h			284		<u> </u>	0			495	10	0		599
-		ow Rate (s), veh/h/l	ln.		1569			0		-	977		0		1776
Queue Service		. ,			11.3			0.0		-	16.7		0.0		15.7
		e Time(g c), s			11.3			0.0		_	32.4		0.0		15.7
Green Ratio (g		C Time (y c), S			0.27			0.0			0.56		0.0		0.56
Capacity (c), v					422						607				994
Volume-to-Cap		atio (Y)			0.67			0.000			0.815		0.000		0.603
		. ,	\		223.	_		+	,		312				231
		/In (95 th percentile) eh/In (95 th percenti						0			_		0		
	, ,	<u> </u>			8.6			0.0			11.3		0.0		9.2
		RQ) (95 th percent	uie)		0.15			0.00			0.83		0.00		0.33
Uniform Delay	·				22.8			0.0			13.1		0.0		10.2
Incremental De	- '	•			8.3	-		0.0			5.5		0.0		0.3
Initial Queue Do					0.0			0.0			0.0		0.0		0.0
Control Delay (31.2						18.6				10.5
Level of Service					С						В	<u> </u>			В
Approach Delay	•			31.2	2	С	0.0)		18.6	6	В	10.5		В
Intersection Delay, s/veh / LOS						1:	5.5						В		
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/LOS		1.91	1	В	1.9	1	В	1.6	5	В	1.65		В
Diavala LOC Ca								_							

Bicycle LOS Score / LOS

0.49

1.30

1.48

Generated: 11/18/2021 11:15:26 PM

0.96

HCS7 Signalized Intersection Intermediate Values باط الطبله ل Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period **Build AM** PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals Build 2045 AM.xus Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Т R L R 260 80 0 390 1130 Demand (v), veh/h 10 0 0 0 10 **Signal Information** ٦. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 19.1 38.9 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R L Т R L L 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.899 0.899 1.000 0.938 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.852 1.000 1.000 0.639 0.572 1.000 1.000 0.000 0.852 0.997 Right-Turn Adjustment Factor (fRT) 0.000 1.000 0.000 0.572 0.997 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 0 1511 1900 0 0 3526 58 0 166 0 811 31 Proportion of Vehicles Arriving on Green (P) 0.00 0.27 0.27 0.27 0.27 0.27 0.56 0.00 0.56 0.00 0.56 0.56 Incremental Delay Factor (k) 0.50 0.22 0.05 **Signal Timing / Movement Groups EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBL SBT/R Lost Time (t_L) 6.0 6.0 6.0 6.0 0.27 Green Ratio (g/C) 0.27 0.56 0.56 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1112 474 991 Shared Saturation Flow Rate (ssh), veh/h/ln 0 0 0 1781 Permitted Effective Green Time (q_p) , s 0.0 0.0 39.2 0.0 Permitted Service Time (gu), s 0.0 0.0 23.5 0.0 Permitted Queue Service Time (g_{ps}) , s 16.7 Time to First Blockage (gf), s 18.8 18.8 9.5 39.2 Queue Service Time Before Blockage (gfs), s 1.7 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB SB 0.972 Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.000 0.000 0.078 0.000 0.078 0.117 0.114 Pedestrian Mcorner / Mcw

546.10

-3.64

18.50

0.47

Bicycle cb / db

Bicycle Fw / Fv

17.07

0.00

1111.05

-3.64

6.91

0.82

1111.05

-3.64

Generated: 11/18/2021 11:15:26 PM

6.91

0.99

603.24

-3.64

HCS7 Signalized Intersection Results Graphical Summary General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 15, 2021 Area Type Other Jurisdiction Time Period Build AM PHF 0.95 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals Build 2045 AM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Т R L Τ R L Т R 260 0 390 1130 Demand (v), veh/h 10 0 80 0 10 **Signal Information** ٦. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 19.1 38.9 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Red 2.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S On **Movement Group Results** WB NB SB EΒ Approach Movement L Τ R L Т R L Т R R Back of Queue (Q), ft/ln (95 th percentile) 223.1 0 312 0 231 Back of Queue (Q), veh/ln (95 th percentile) 8.6 0.0 11.3 0.0 9.2 Queue Storage Ratio (RQ) (95 th percentile) 0.15 0.00 0.83 0.00 0.33 Control Delay (d), s/veh 31.2 18.6 10.5 Level of Service (LOS) С В В Approach Delay, s/veh / LOS 31.2 С 0.0 18.6 В 10.5 В 15.5 Intersection Delay, s/veh / LOS В 0 LOSA LOS B LOS D LOSE LOS F

Generated: 11/18/2021 11:15:26 PM

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:15:26 PM

Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

Build Intersection Analysis

PM Peak

	H	ICS7	Signa	lized	Inter	section	on lı	nput D	ata					
								1.4		4.		1 21	H PEST	EUSE
General Information	0.111.1							Intersec		v		- 1		99 SSE
Agency	Burgess & Niple, In	C.						Duration	•	0.250				A
Analyst	MEL		Analys		_			Area Typ	e	Other				
Jurisdiction			Time F		Build	PM		PHF		0.92			W I L	<u> </u>
Urban Street	Main Street		Analys					Analysis		1> 16	:45			
Intersection	Marion Street		File Na	ame	Main a	& Mario	n Buil	d 2045 P	M.xus				ጎ ሶ	
Project Description	BEL-7-19.75			_	_	_					_	1		新 源
Demand Information				EB			W	В		NB			SB	
Approach Movement			L	Т	R		Тт		L	Т	R	L	Т	R
Demand (v), veh/h				260	270	470	33	_	330		430			
Signal Information	1			←	╛	_							K	
Cycle, s 120.0	Reference Phase	2			∖	25	2					₹ 2	1] 3	4
Offset, s 0	Reference Point	End	Green	37.8	35.1	29.2	0.0	0.0	0.0		•			
Uncoordinated No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.0		0.0					V
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
- (f) 1 6 (1)			1			1	\ A (F			NID.		1		
Traffic Information Approach Movement			L	EB T	R	L	WE	R	L	NB T	R	L	SB T	R
Demand (v), veh/h				260	270	470	330		330	ı	430	_ L	ı	K
Initial Queue (Q _b), veh	/h			0	0	0	0	'	0		0			
<u> </u>			\vdash	1900	1900	1900	190	2	1900		1900			
Base Saturation Flow	Rate (So), ven/n				1900	1900	_		1900	Mana	1900			
Parking (<i>N_m</i>), man/h	0/			None	10	-	Non	e	44	None	11			
Heavy Vehicles (<i>Phv</i>),	7 0			10	10	6	6	+	11		11		0	
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0	0	0	0	
Buses (<i>N_b</i>), buses/h Arrival Type (<i>AT</i>)			0	3	3	3	3	0	3	0	3			
Upstream Filtering (/)				1.00	1.00	1.00	1.00)	1.00		1.00			
Lane Width (W), ft				12.0	12.0	12.0	12.0		12.0		12.0			
Turn Bay Length, ft				2450	525	1200	120	_	175		175			
Grade (<i>Pg</i>), %				0	323	1200	0	J	173	0	173		0	
Speed Limit, mi/h				25	25	25	25		25	0	25		U	
Speed Limit, mi/m				23	23	23	23		23		23			
Phase Information			EBL		EBT	WBI		WBT	NBL	-	NBT	SBL		SBT
Maximum Green (Gmax	,				16.0	51.0		67.0	53.0		53.0			
Yellow Change Interva	· ,				4.0	4.0	_	4.0	4.0		4.0			
Red Clearance Interva	l (<i>Rc</i>), s				2.0	2.0		2.0	2.0		2.0			
Minimum Green (Gmin	, .				10	7		10	7		10			
Start-Up Lost Time (It)					2.0	2.0	_	2.0	2.0					
Extension of Effective	Green (e), s				2.0	2.0		2.0	2.0					
Passage (PT), s				_	2.0	2.0	_	2.0	2.0		2.0		_	
Recall Mode				_	Min	Off	_	Min	Off	_	Off		-	
Dual Entry					Yes	No	-	Yes	No		Yes			0.0
Walk (Walk), s	Time (DO) -				0.0						0.0			0.0
Pedestrian Clearance	ilme (PC), s				0.0						0.0			0.0
Multimodal Informati	on			EB			WB			NB			SB	
85th % Speed / Rest in	n Walk / Corner Radii	JS	0	No	25				0	No	25	0	No	25
Walkway / Crosswalk \	Width / Length, ft		9.0	12	0				9.0	12	0	9.0	12	0
Street Width / Island /	Curb		0	0	No	0		No	0	0	No		0	
Width Outside / Bike L	ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0			
Pedestrian Signal / Oc	cupied Parking		No		0.50			0.50	No		0.50	No		

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	Its Su	mmar	У				
	11								1.4				1 3		(BTAIN 20
General Inform	nation	J						-		ction Info	11		- 1	V NET THE PARTY SEC	300 352
Agency		Burgess & Niple, In	C.			1			Duratio	·	0.250				
Analyst		MEL		-		e 11/16/		_	Area Ty	ре	Othe	r			- 4
Jurisdiction				Time F		Build	PM	_	PHF		0.92			w∯t	~
Urban Street		Main Street		Analys						s Period	1> 16	3:45			200 200 200
Intersection		Marion Street		File Na	ame	Main	& Mario	n Build	d 2045 F	M.xus			_ 7	17	
Project Descrip	tion	BEL-7-19.75	_	_	_	_	_		_	_	_	_			新 爾
Demand Inform	nation				EB			W	В		NB		Т	SB	
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	T	R
Demand (v), v	eh/h				260	270	470	33	0	330		430			
Signal Informa	tion				1										
1	120.0	Reference Phase	2	1	5	╡、⁴	-					<u> </u>		~	
Cycle, s Offset, s	0	Reference Point		ł	1 2	a 🔁	20	7					2	3	4
· ·			End	Green		35.1	29.2	0.0					_		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0					`		Y
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	1	8
Timer Results				EBL	-	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT
Assigned Phase	e					2	1		6			8			
Case Number						7.3	2.0		4.0			9.0			
Phase Duration	ı, s					41.1	43.8	3	84.8			35.2		\neg	
Change Period,	ge Period, (Y+R c), s					6.0	6.0		6.0			6.0			
	Allow Headway (<i>MAH</i>), s					0.0	3.3		0.0		\neg	3.4		\neg	
	Allow Headway (<i>MAH</i>), s ue Clearance Time (<i>g</i> _s), s						36.6	3				27.1			
Green Extensio		, = ,				0.0	1.2		0.0	1	\neg	2.0		\top	
Phase Call Prol		(3 //					1.00	-				1.00			
Max Out Proba							0.00)				0.00		\top	
Manager and One	D							\A/D			ND			O.D.	
Movement Gro		SUITS			EB	T 5		WB	1	.	NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	Т	R
Assigned Move		\ 1.11			2	12	1	6	-	3		18			-
Adjusted Flow F		,·			283	293	511	359	_	359		467			
		ow Rate (s), veh/h/l	n	\vdash	1752		1725	1811		1654		1472			-
Queue Service		- ,			16.3	13.7	34.6	10.2	_	25.1		24.7	_		_
Cycle Queue C		e Time (g ε), s		\vdash	16.3	13.7	34.6	10.2		25.1		24.7			+
Green Ratio (g				\vdash	0.29	0.54	0.31	0.66		0.24		0.56	_		+
Capacity (c), v		4: - / V /			512	795	543	1190		402		821			
Volume-to-Capa					0.552		0.941	0.30	_	0.892		0.569			1
	· ,	In (95 th percentile)			329.4		587.1	195.		447.2		355			
		eh/ln (95 th percenti	-		12.2	8.6	22.4	7.5	_	16.4		13.1			
		RQ) (95 th percent	ue)		0.13	0.44	0.49	0.16	_	2.56		2.03			
Uniform Delay (` '				35.8	16.1	40.0	8.8		43.9		17.2			
Incremental De	- '	•			4.2	1.3	8.2	0.7		5.9		0.2			
	itial Queue Delay (d 3), s/veh				0.0	0.0	0.0	0.0		0.0		0.0			
	control Delay (d), s/veh				40.1	17.5	48.2	9.5		49.8		17.4			
	evel of Service (LOS)			20.0	D	C	D 22.0	A		D 21.5		В	0.0		1
	Approach Delay, s/veh / LOS ntersection Delay, s/veh / LOS			28.6			32.2 1.0		С	31.5)	С	0.0 C		
	ntersection Delay, s/ven / LOS														
Multimodal Re	sults				EB			WB			NB			SB	
Pedestrian LOS	Score	/ LOS		1.93		В	0.68	3	Α	1.97	·	В	1.96	3	В
Bicycle LOS Sc	ore / LC)S		1.44		Α	1.92	2	В			F			

Generated: 11/18/2021 4:44:00 PM

HCS7 Signalized Intersection Intermediate Values General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build PM Urban Street Main Street Analysis Year 2045 **Analysis Period** 1> 16:45 Marion Street File Name Main & Marion Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 470 430 Demand (v), veh/h 260 270 330 330 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.8 35.1 29.2 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.922 0.922 0.953 0.953 1.000 0.914 1.000 0.914 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 1.000 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.847 1.000 1.000 0.000 0.847 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1752 1485 1725 1654 0 1472 0 1811 0 Proportion of Vehicles Arriving on Green (P) 0.00 0.29 0.29 0.31 0.66 0.00 0.24 0.00 0.24 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.50 0.10 0.50 0.09 0.04 Signal Timing / Movement Groups EBL EBT/R **WBL** WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.29 0.31 0.66 0.24 Permitted Saturation Flow Rate (sp), veh/h/ln 1039 0 0 1654 Shared Saturation Flow Rate (ssh), veh/h/ln 0 Permitted Effective Green Time (g_p) , s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s Time to First Blockage (gf), s 35.1 0.0 0.0 0.0 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 1485 1472 29.2 Protected Right Effective Green Time (g_R) , s 37.8 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 0.000 0.000 1.198 0.000 1.198 0.000 Pedestrian Fs / Fdelay 0.000 0.000 0.078 0.000 0.169 0.000 0.136 0.167 Pedestrian Mcorner / Mcw Bicycle cb / db 584.58 30.05 1313.96 7.06 67.20 -83.33 65.10 Bicycle Fw / Fv -3.640.95 -3.641.43 -3.64 -3.64

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build PM **Urban Street** Main Street Analysis Year 2045 **Analysis Period** 1> 16:45 Marion Street File Name Main & Marion Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Т Approach Movement L Τ R L L R R 470 330 430 Demand (v), veh/h 260 270 330 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End 0.0 0.0 Green 37.8 35.1 29.2 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Τ Back of Queue (Q), ft/ln (95 th percentile) 329.4 233.1 587.1 195.3 447.2 355 Back of Queue (Q), veh/ln (95 th percentile) 12.2 22.4 7.5 16.4 13.1 8.6 Queue Storage Ratio (RQ) (95 th percentile) 0.49 0.16 2.56 2.03 0.13 0.44 Control Delay (d), s/veh 40.1 17.5 48.2 9.5 49.8 17.4 Level of Service (LOS) D В D Α D В Approach Delay, s/veh / LOS 28.6 С 32.2 С 31.5 С 0.0 Intersection Delay, s/veh / LOS 31.0 С 48.2 l LOS B LOS C Queue Storage Ratio < 1 LOSD 16.4 LOSE Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:44:00 PM

				HCS	57 Ro	unda	bοι	uts Re	eport							
General Information	1						Site	Infor	matio	n						
Analyst	RMK					J F			Inte	rsection		Т	Main S	Street	& Lincoli	า Ave
Agency or Co.	Burge	ess & Ni	ple			←			E/W	Street Na	me		Main S	Street	(US 40)	
Date Performed	11/13	3/2021						14	N/S	Street Nar	ne		Lincol	n Aver	nue	
Analysis Year	2045				∮ ↓	w ‡	E	1	Ana	ysis Time	Period (hı	rs)	0.25			
Time Analyzed	PM B	uild			<u> </u>				Peak	Hour Fac	tor		0.97			
Project Description	BEL-7	7-19.25					4 CI		Juris	diction						
Volume Adjustment	s and	Site C	haract	teristic	s											
Approach		ı	EB			WE	3		Т	N	В	П			SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	1	1	0	0	0	1	0	0	0	1	1	0	0	1	1
Lane Assignment		L	Т	R				LTR		LT	R		Ľ	Т		R
Volume (V), veh/h	0	500	160	40	0	100	160	120	0	40	170	220	0	500	120	610
Percent Heavy Vehicles, %	3	3	3	3	1	1	1	1	2	2	2	2	4	4	4	4
Flow Rate (VPCE), pc/h	0	531	170	42	0	104	167	125	0	42	179	231	0	536	129	654
Right-Turn Bypass		N	one			Non	ne			No	ne			١	None	
Conflicting Lanes			1			1				2					1	
Pedestrians Crossing, p/h			0				C)				0				
Critical and Follow-U	Jp He	adwa	y Adju	stmen	t											
Approach				EB		\top		WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Left	t	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass
Critical Headway (s)			4.5436	4.5436			4	4.9763		4.6453	4.3276		4.5	436	4.5436	
Follow-Up Headway (s)			2.5352	2.5352			2	2.6087		2.6667	2.5352		2.5	352	2.5352	
Flow Computations,	Capa	city a	nd v/c	Ratios	;											
Approach				EB		T		WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Left	t	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass
Entry Flow (v _e), pc/h			531	212				396		221	231		66	65	654	
Entry Volume, veh/h			516	206				392		217	226		63	39	629	
Circulating Flow (v _c), pc/h				769		\top		752			1237				313	
Exiting Flow (vex), pc/h				937				863			835				275	
Capacity (c _{pce}), pc/h			705	705				641		433	496		10	68	1068	
Capacity (c), veh/h			685	685				635		424	486		10	27	1027	
v/c Ratio (x)			0.75	0.30				0.62		0.51	0.47		0.	62	0.61	
Delay and Level of S	ervice	•														
Approach				EB		\top		WB			NB				SB	
Lane		Left	Right	Bypas	s Left	t	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass	
Lane Control Delay (d), s/veh		23.2	9.0				17.5		19.6	16.0		12	2.2	11.9		
Lane LOS	Lane LOS							С		С	С		i i	В	В	
95% Queue, veh			6.9	1.3				4.3		2.8	2.4		4	.5	4.4	
Approach Delay, s/veh				19.2				17.5			17.8				12.1	
Approach LOS				С				С			С				В	
Intersection Delay, s/veh LC	S					15.5							С			

	Н	CS7	Signa	alized	Inter	sectio	on In	put Da	ıta					
								1 1		4.		1 21	H 24.5 (14	USB
General Information							\rightarrow	Intersect	- 1	JĮĮ	9 32			
Agency Burgess & Niple, Inc.			T					Duration,		0.250				A
Analyst MEL			-	is Date			_	Area Typ PHF						
Jurisdiction		Time F			Build PM				0.92			W I L	→	
Urban Street Main Street				is Year		2045 Analysis				1> 16	:45			**************************************
Intersection	Huron Street		File Na	ame	Zane 8	& Huror	n Build	2045 PM	l.xus				ጎ ሰ	
Project Description	BEL-7-19.75	_	_		_									
Demand Information				EB		WB				NB		SB		
Approach Movement			L	Т	R	L	Т		L	Т	R	L	Т	R
Demand (v), veh/h			_	720	50	10	74		100		20	110	20	100
Signal Information				+ ا	W.								,	\mathbf{A}
Cycle, s 120.0	Reference Phase	2		⊨ "	5 2	7						₹ 2	3	т .
Offset, s 108	Reference Point	End	Green	81.6	10.5	9.9	0.0	0.0	0.0			3 -		7
Uncoordinated No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0			7		大之
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8
Traffic Information				EB			WB			NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	T	R	L	T	R
Demand (v), veh/h				720	50	10	740		100		20	110	20	100
Initial Queue (Q _b), veh/h				0	0	0	0		0		0	0	0	0
Base Saturation Flow	Base Saturation Flow Rate (s₀), veh/h			1900	1900	1900	1900		1900		1900	1900	1900	1900
Parking (N _m), man/h				None			None	•		None			None	
Heavy Vehicles (PHV), %				2			2		1		1	1	1	1
Ped / Bike / RTOR, /h			0	0	0	0	0		0	0		0	0	0
Buses (N _b), buses/h		0	0	0	0	0	0	0	0	0	0	0	0	
Arrival Type (AT)				3	3	3	3		3		3	3	3	3
Upstream Filtering (I)				1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00
Lane Width (W), ft				12.0			12.0		12.0		12.0	12.0	12.0	12.0
Turn Bay Length, ft				1200			350		50		425	125	275	125
Grade (<i>Pg</i>), %				0			0			0			0	
Speed Limit, mi/h				25	25	25	25		25		25	25	25	25
Phase Information			EBL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
	a) or Phase Split s		LDL	_	34.0	VVDI	-	34.0	NDL	_	16.0	SDL	_	70.0
Maximum Green (<i>G_{max}</i>) or Phase Split, s Yellow Change Interval (Y), s					4.0			4.0			4.0			4.0
Red Clearance Interval (<i>R</i> _c), s				_	2.0		-	2.0		_	2.0			2.0
Minimum Green (<i>Gmin</i>), s				_	10		_	10			10			10
Start-Up Lost Time (It), s					2.0	2.0	-	2.0	2.0		10	2.0		2.0
	Extension of Effective Green (e), s				2.0	2.0	_	2.0	2.0			2.0		2.0
Passage (PT), s	GIEGII (<i>E)</i> , 5				2.0	2.0		2.0	2.0		2.0	2.0		2.0
Recall Mode					Min		-	Min			Off			Off
Dual Entry				_	Yes			Yes			Yes			Yes
Walk (<i>Walk</i>), s					0.0			0.0			0.0			0.0
Pedestrian Clearance Time (<i>PC</i>), s					0.0			0.0		_	0.0			0.0
Multimodal Information				EB			WB		. "	NB			SB	
85th % Speed / Rest in Walk / Corner Radius		0	No	25	0	No	25	0	No	25	0	No	25	
Walkway / Crosswalk Width / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0	
Street Width / Island / Curb			0	0	No	0	0	No	0	0	No	0	0	No
Width Outside / Bike L			12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking			No		0.50	No		0.50	No		0.50	No		0.50

HCS7 Signalized Intersection Results Summary																
General Information									Intersec	tion Info	2	4 2 8 (
Agency Burgess & Niple, Inc.									Duration		0.250			111		
Analyst MEL				Analysis Date 11/16/2021					Area Typ	<u>, </u>	Other					
Jurisdiction			Time F		Build F			PHF	0.92				wļi	-		
Urban Street Main Street			sis Year					Period		1> 16:45						
Intersection Huron Street			File Na			R. Huron		2045 PN		17 10	7.40					
Project Descrip	tion	BEL-7-19.75		I lie ive	airie	Zane	x i iuioi	Dulla	204311	/I.XUS			- 5		216	
Project Descrip	lion	DEL-1-19.73											192	a issue som led a sol also	22 180	
Demand Information				EB			WE	3		NB		SB				
Approach Movement			L T		R	L		R	L T		R	L T		R		
Demand (v), v	eh/h				720	50	10	740)	100		20	110	20	100	
					,										_	
Signal Information				١.,	_2115									人		
Cycle, s	120.0	Reference Phase	2		岗 "	T 5.2	7					1	₹ ,	3	«↓»	
Offset, s	108	Reference Point	End	Green	81.6	10.5	9.9	0.0	0.0	0.0					-	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0	0.0			7		V	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0	0.0	0.0		5	6	7	8	
					_			_								
Timer Results				EBI	-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT	
Assigned Phase	9				_	2		_	6		_	8			4	
	Case Number					8.0		_	8.0			9.0			9.0	
Phase Duration, s					87.6			87.6			15.9			16.5		
Change Period,		<u>, </u>				6.0			6.0			6.0			6.0	
Max Allow Head						0.0			0.0			3.3			3.3	
Queue Clearance Time (g s), s										9.1			10.0			
Green Extension Time (g e), s				0.0			0.0			0.3			0.5			
Phase Call Probability										0.99			1.00			
Max Out Probal	Max Out Probability											0.00			0.00	
								\4/D			NID			SB		
Movement Gro		SUITS			EB			WB	T 5		NB			ı		
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Move		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			2	12	1	6	-	3		18	7	4	14	
Adjusted Flow F		,·			837			815	-	109		22	120	22	109	
Adjusted Saturation Flow Rate (s), veh/h/ln		_	1849			1853	-	1795		1598	1795	1885	1598			
Queue Service		- ,			31.8			0.0	-	7.1		1.5	7.8	1.3	8.0	
Cycle Queue C		e Time (<i>g ε</i>), s			31.8			29.7	-	7.1		1.5	7.8	1.3	8.0	
Green Ratio (g/C)			0.68			0.68		0.08		0.08	0.09	0.09	0.09			
Capacity (c), w					1257			1290		148		131	158	165	140	
Volume-to-Capacity Ratio (X)			0.666			0.632		0.736		0.165	0.759	0.131	0.775			
Back of Queue (Q), ft/ln (95 th percentile)				488.3			462.9		151.5		28.3	166.8	27.9	152.8		
	Back of Queue (Q), veh/ln (95 th percentile)			19.2			18.2	+	6.0		1.1	6.6	1.1	6.1		
Queue Storage Ratio (RQ) (95 th percentile)			0.41			1.32		3.03		0.07	1.33	0.10	1.22			
Uniform Delay (d 1), s/veh			11.2			10.9		53.8		51.2	53.5	50.5	53.6			
Incremental Delay (d 2), s/veh			2.8			2.4		2.7		0.2	2.8	0.1	3.4			
Initial Queue Delay (d 3), s/veh			0.0			0.0		0.0		0.0	0.0	0.0	0.0			
Control Delay (d), s/veh				14.0			13.3		56.5		51.5	56.3	50.6	57.0		
Level of Service (LOS)				В			В		Е		D	Е	D	E		
Approach Delay, s/veh / LOS			14.0)	В	13.3	3	В	55.6		Е	56.1		Е		
Intersection Del	ay, s/ve	eh / LOS				21	.6						С			
								,								
Multimodal Re		// 00		4.0-	EB		WE			NB			_		SB	
Pedestrian LOS				1.87		В	1.87	_	В	1.74		В	1.73	-	В	
Bicycle LOS Score / LOS			1.87		В	1.83	3	В			F	0.90)	Α		

Generated: 11/18/2021 4:46:30 PM

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build PM **Urban Street** Main Street Analysis Year 2045 **Analysis Period** 1> 16:45 Huron Street File Name Zane & Huron Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 720 50 10 740 100 20 110 20 100 Signal Information 셌 Cycle, s 120.0 Reference Phase 2 Offset, s 108 Reference Point End 0.0 0.0 Green 81.6 10.5 9.9 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (fw) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.984 1.000 1.000 0.984 0.984 0.992 1.000 0.992 0.992 0.992 0.992 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.988 0.991 0.991 0.952 0.000 0.952 0.000 Right-Turn Adjustment Factor (fRT) 0.000 0.988 0.000 0.991 0.000 0.847 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) 1.000 Movement Saturation Flow Rate (s), veh/h 0 1729 120 25 1828 0 1795 0 1598 1795 1885 1598 Proportion of Vehicles Arriving on Green (P) 0.00 0.68 0.68 0.68 0.68 0.00 80.0 0.00 80.0 0.09 0.09 0.09 Incremental Delay Factor (k) 0.50 0.50 0.04 0.04 0.04 0.04 0.04 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 4.0 Lost Time (t_L) Green Ratio (g/C) 0.68 0.68 80.0 0.09 Permitted Saturation Flow Rate (sp), veh/h/ln 688 667 1795 1795 Shared Saturation Flow Rate (ssh), veh/h/ln 1870 0 Permitted Effective Green Time (g_p) , s 0.0 81.6 0.0 0.0 49.8 0.0 0.0 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 0.0 Time to First Blockage (gf), s 81.6 49.8 0.0 0.0 29.7 Queue Service Time Before Blockage (gfs), s Protected Right Saturation Flow (SR), veh/h/ln 0 0 Protected Right Effective Green Time (g_R) , s 0.0 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.073 0.000 0.073 0.000 0.169 0.000 0.157 Pedestrian Mcorner / Mcw Bicycle cb / db 1360.00 6.14 1360.00 6.14 67.20 164.51 50.54 Bicycle Fw / Fv -3.641.38 -3.641.35 -3.64 -3.64 0.41

HCS7 Signalized Intersection Results Graphical Summary 建建选额建设施 **General Information Intersection Information** Agency Burgess & Niple, Inc. Duration, h 0.250 Analyst MEL Analysis Date 11/16/2021 Area Type Other PHF 0.92 Jurisdiction Time Period Build PM **Urban Street** Main Street Analysis Year 2045 **Analysis Period** 1> 16:45 Huron Street File Name Zane & Huron Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Т Т Approach Movement L Τ L L R L R 100 Demand (v), veh/h 720 50 10 740 20 110 20 100 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 108 Reference Point End 0.0 0.0 Green 81.6 10.5 9.9 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 On Red 2.0 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ R L Т Back of Queue (Q), ft/ln (95 th percentile) 488.3 462.9 151.5 28.3 166.8 27.9 152.8 Back of Queue (Q), veh/ln (95 th percentile) 19.2 18.2 6.0 6.6 1.1 1.1 6.1 3.03 Queue Storage Ratio (RQ) (95 th percentile) 0.41 0.07 1.33 0.10 1.32 1.22 56.3 Control Delay (d), s/veh 14.0 13.3 56.5 51.5 50.6 57.0 Level of Service (LOS) В В D Ε D Ε Ε Approach Delay, s/veh / LOS 14.0 В 13.3 В 55.6 Ε 56.1 Е Intersection Delay, s/veh / LOS 21.6 С 50.6 LOS B LOS C Queue Storage Ratio < 1 LOSD LOS E Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 4:46:30 PM

	H	ICS7	Signa	lized	Inter	section	on In	put Da	ata						
General Information							T ₁	ntersec	tion Info		an at some	y e			
Agency Burgess & Niple, Inc							-	Ouration,	0.250	v		11			
Analyst MEL			Analysis Date 11/17						·					A.	
Jurisdiction MEE			Time F		_	Build PM				0.86			w T t	→	
Urban Street Lincoln Avenue				is Year	2045				Period	1> 7:00					
Intersection Howard Street			File Na			n & Hov		45 Build			00				
Project Description			I lie ive	anne	LillColl	II & I IOV	valu 20	45 Build	I WI.AU	<u> </u>			1 1	316	
						NA/P			7	ND					
Demand Information			EB				WB			NB		SB			
Approach Movement			L	T	R	L	T	R	L	T	R	<u> </u>	T 170	R	
Demand (v), veh/h	1		140	0	120	10	420	270	10	40		_	170	80	
Signal Information	1			ΔŢ				_							
Cycle, s 80	T T	2	1		<u>-3</u> 5							1			
Offset, s		End][3						1	2	3	4	
Uncoordinated N		On	Green Yellow	23.2	44.8	0.0	0.0	0.0	0.0					> -	
Force Mode Fix		On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8	
Traffic Information	1			EB			WB			NB			SB		
Approach Moveme	nt		L	T	R	L	Т	R	L	T	R	L	Т	R	
Demand (v), veh/h			140	0	120	10	420	270	10	40			170	80	
Initial Queue (Qb), \	veh/h		0	0	0	0	0	0	0	0			0	0	
Base Saturation Flo	Base Saturation Flow Rate (s₀), veh/h			1900	1900	1900	1900	1900	1900	1900			1900	1900	
Parking (N _m), man/h				None			None			None			None		
Heavy Vehicles (PH	ıv), %			1			6			1			1	1	
Ped / Bike / RTOR,	Ped / Bike / RTOR, /h			0	0	0	0	0	0	0		0	0	0	
Buses (N _b), buses/h	h		0	0	0	0	0	0	0	0	0	0	0	0	
Arrival Type (<i>AT</i>)			3	3	3	3	3	3	3	3			3	3	
Upstream Filtering	(1)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	
Lane Width (W), ft				12.0			12.0			12.0			12.0	12.0	
Turn Bay Length, ft				850			600			475			800	450	
Grade (Pg), %				0			0			0			0		
Speed Limit, mi/h			25	25	25	25	25	25	25	25			25	25	
Phase Information		EBL E		EBT	BT WBL		WBT	NBL	.	NBT	SBL		SBT		
Maximum Green (G	G _{max}) or Phase Split, s		Į		53.0	3.0		53.0			27.0			27.0	
Yellow Change Inte	erval (Y), s				4.0			4.0			4.0			4.0	
Red Clearance Inte	erval (Rc), s				2.0			2.0			2.0			2.0	
Minimum Green (Gmin), s					7			7			7			7	
Start-Up Lost Time (It), s			2.0		2.0	2.0		2.0	2.0		2.0			2.0	
Extension of Effective Green (e), s			2.0	2.0		2.0		2.0	2.0		2.0			2.0	
Passage (<i>PT</i>), s					2.0			2.0			2.0			2.0	
Recall Mode					Off			Off			Min			Min	
Dual Entry					Yes			Yes			Yes			Yes	
Walk (<i>Walk</i>), s					0.0			0.0			0.0			0.0	
Pedestrian Clearan	ce Time (PC), s				0.0			0.0			0.0			0.0	
Multimodal Information				EB			WB			NB			SB		
85th % Speed / Rest in Walk / Corner Radius			0	No	25	0	No	25	0	No	25	0	No	25	
Walkway / Crosswalk Width / Length, ft			9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0	
Street Width / Island / Curb			0	0	No	0	0	No	0	0	No	0	0	No	
Width Outside / Bike Lane / Shoulder, ft			12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	
Pedestrian Signal / Occupied Parking			No		0.50	No		0.50	No		0.50	No		0.50	

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resul	ts Sur	nmar	у					
General Informat	tion						14244	li ili								
Agency		Burgess & Niple, In	<u> </u>						Intersect Duration,			Jļ				
				Analysis Date 11/17/2021					Area Typ		0.250 Other					
				Time F		Build I			PHF	U	0.86			w\text{1}t	÷	
Jurisdiction		Lincoln Avenue					PIVI			Dariad		20				
Urban Street		Lincoln Avenue		Analys		_	- 0 11		Analysis 045 Build		1> 7:0	JU				
Intersection		Howard Street		File Na	ame	Lincol	n & Hov	vard 20	J45 Bullo	PIVI.XU	s		- 4	***************************************	NKO	
Project Description	n	BEL-7-19.75													17 (30)	
Demand Informat	tion				EB			WE	3		NB		SB			
Approach Moveme	ent				Т	R		Т	R	L	Т	R	L	Т	R	
Demand (v), veh				140	0	120	10	420		10	40			170	80	
Signal Information	on				1	_ 2				\top						
Cycle, s 8	30.0	Reference Phase	2		_{K↑}								\mathbf{V}		~	
Offset, s	0	Reference Point	End	Green	1 :1	44.8	0.0	0.0	0.0	0.0		1	2	3	¥ 4	
Uncoordinated I	No	Simult. Gap E/W	On	Yellow		4.0	0.0	0.0	0.0	0.0					→	
Force Mode Fi	ixed	Simult. Gap N/S	On	Red	2.0	2.0	0.0	0.0	0.0	0.0		5	6	7	8	
Timer Results				EBI	-	EBT	WB	L L	WBT	NBI	-	NBT	SB	L	SBT	
Assigned Phase						4			8			2			6	
Case Number						8.0			8.0			8.0			7.0	
Phase Duration, s	i			!		50.8			50.8			29.2			29.2	
Change Period, (Y+R c	:), s		(6.0			6.0			6.0			6.0	
Max Allow Headwa	ay (N	<i>ИАН</i>), s		3		3.7			3.7			0.0			0.0	
Queue Clearance	Time	(gs), s				43.2			34.2							
Green Extension 7	Time ((g e), s		1.6		1.6	3.3		0.0				0.0			
Phase Call Probab	Phase Call Probability					1.00			1.00							
Max Out Probabili	ity					0.96			0.16							
Movement Group		ults			EB		<u> </u>	WB			NB	T _		SB		
Approach Moveme				L	T	R	L	Т	R	L	T	R	<u> </u>	T	R	
Assigned Moveme				7	4	14	3	8	18	5	2			6	16	
Adjusted Flow Rat		,			302	\vdash		814	\perp		58			198	93	
		w Rate (s), veh/h/l	n		591			1720	-		1752			1885	1598	
Queue Service Tir		· ·			8.7			0.0	\perp		0.0			6.7	3.5	
Cycle Queue Clea		e Time (<i>g c</i>), s			41.2			32.2	_		1.8			6.7	3.5	
Green Ratio (g/C					0.56			0.56	_		0.29			0.29	0.29	
Capacity (c), veh					400			1009			562			547	463	
Volume-to-Capaci					0.756	_		0.807	-		0.103			0.362	0.201	
		In (95 th percentile)			248.5			472.3			38.4			144.3	64.5	
Back of Queue (Q), veh/ln (95 th percentile)				9.9			18.0	_		1.5			5.7	2.6		
Queue Storage Ratio (RQ) (95 th percentile)				0.29			0.79			0.08			0.18	0.14		
Uniform Delay (d 1), s/veh				18.1			14.9			20.8			22.5	21.4		
Incremental Delay (d 2), s/veh				6.2			4.1			0.4			1.9	1.0		
Initial Queue Delay (d 3), s/veh				0.0			0.0			0.0			0.0	0.0		
Control Delay (d), s/veh				24.2			19.0			21.2			24.4	22.4		
Level of Service (LOS)				С			В			С			С	С		
Approach Delay, s/veh / LOS			24.2	2	С	19.0)	В	21.2	2	С	23.	7	С		
Intersection Delay	, s/ve	h / LOS				21	1.1						С			
Multimodal Resu					EB			WB			NB			SB	_	
Pedestrian LOS S				1.65		В	1.88	_	В	1.69	_	В		1.69 B		
Bicycle LOS Score / LOS				0.99)	Α	1.83	3	В	0.58	3	Α	0.9	/	Α	

HCS7 Signalized Intersection Intermediate Values 建建建物工程 General Information Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date 11/17/2021 Area Type Other PHF 0.86 Jurisdiction Time Period Build PM **Urban Street** Lincoln Avenue Analysis Year 2045 Analysis Period 1> 7:00 Howard Street File Name Lincoln & Howard 2045 Build PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 140 Demand (v), veh/h 0 120 10 420 270 10 40 170 80 Signal Information Щ Cycle, s 0.08 Reference Phase 2 Offset, s 0 Reference Point End Green 23.2 0.0 0.0 44.8 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 0.0 0.0 0.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay R R R R Lane Width Adjustment Factor (f_w) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.992 1.000 1.000 0.953 1.000 1.000 0.992 1.000 1.000 0.992 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.322 0.313 0.997 0.950 0.929 0.929 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.313 0.000 0.950 0.000 0.929 0.000 0.847 1.000 1.000 1.000 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 | 1.000 DDI Factor (fdd) Movement Saturation Flow Rate (s), veh/h 318 273 25 1032 663 350 1402 0 0 1885 1598 Proportion of Vehicles Arriving on Green (P) 0.56 0.00 0.56 0.56 0.56 0.56 0.29 0.29 0.00 0.00 0.29 0.29 0.23 Incremental Delay Factor (k) 0.29 0.50 0.50 0.50 Signal Timing / Movement Groups EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 6.0 6.0 6.0 Lost Time (t_L) Green Ratio (g/C) 0.56 0.56 0.29 0.29 1204 Permitted Saturation Flow Rate (sp), veh/h/ln 689 1269 1381 Shared Saturation Flow Rate (ssh), veh/h/ln 391 1793 0 1885 Permitted Effective Green Time (g_p) , s 44.8 44.8 23.2 0.0 12.3 3.5 16.7 0.0 Permitted Service Time (gu), s Permitted Queue Service Time (q_{ps}) , s 8.7 0.0 0.0 7.4 Time to First Blockage (gf), s 29.0 23.2 1.7 Queue Service Time Before Blockage (gfs), s 1.7 11.4 1.8 Protected Right Saturation Flow (SR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 Multimodal EΒ WB NB SB Pedestrian Fw / Fv 0.972 0.000 1.198 0.000 0.972 0.000 0.972 0.000 Pedestrian Fs / Fdelay 0.000 0.082 0.000 0.082 0.000 0.120 0.120 0.000 Pedestrian Mcorner / Mcw 7.75 7.75 Bicycle cb / db 1119.63 1119.63 580.37 20.15 580.37 20.15 Bicycle Fw / Fv -3.640.50 -3.641.34 -3.64 0.10 -3.64 0.48

HCS7 Signalized Intersection Results Graphical Summary 建建基础建筑 **General Information Intersection Information** Agency Burgess & Niple, Inc Duration, h 0.250 Analyst MEL Analysis Date 11/17/2021 Area Type Other PHF 0.86 Jurisdiction Time Period Build PM **Urban Street** Lincoln Avenue Analysis Year 2045 Analysis Period 1> 7:00 Howard Street File Name Lincoln & Howard 2045 Build PM.xus Intersection **Project Description** BEL-7-19.75 WB **Demand Information** EB NB SB Approach Movement L R L R L R Τ R 140 120 Demand (v), veh/h 0 10 420 270 10 40 170 80 Signal Information Щ Cycle, s 0.08 Reference Phase 2 Offset, s 0 Reference Point End Green 23.2 0.0 0.0 44.8 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S 0.0 0.0 On Red 2.0 2.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т Т Τ R L Т R L R L R L Back of Queue (Q), ft/ln (95 th percentile) 248.5 472.3 38.4 144.3 64.5 Back of Queue (Q), veh/ln (95 th percentile) 9.9 18.0 1.5 5.7 2.6 Queue Storage Ratio (RQ) (95 th percentile) 0.29 0.79 80.0 0.18 0.14 Control Delay (d), s/veh 24.2 19.0 21.2 24.4 22.4 Level of Service (LOS) С В С С С Approach Delay, s/veh / LOS 24.2 С 19.0 В 21.2 С 23.7 С Intersection Delay, s/veh / LOS 21.1 С LOS B LOS C LOSD LOS E LOS F

	Messages	s
--	----------	---

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 5:01:18 PM

HCS7 Signalized Intersection Input Data 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.96 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 0 0 0 Demand (v), veh/h 560 0 0 560 **Signal Information** 110.0 Reference Phase Cycle, s Offset, s 21 Reference Point End Green 63.2 36.8 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 0.0 2.0 0.0 0.0 0.0 0.0 On WB NB SB **Traffic Information** EB Approach Movement Т Т R ı Т R ı R R Demand (v), veh/h 560 0 0 0 0 0 560 0 0 Initial Queue (Qb), veh/h 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h None Parking (Nm), man/h None None Heavy Vehicles (PHV), % 4 0 3 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) Lane Width (W), ft 12.0 12.0 12.0 100 400 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 **WBL** SBL **Phase Information EBL EBT WBT NBL NBT SBT** Maximum Green (Gmax) or Phase Split, s 11.0 11.0 99.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 Red Clearance Interval (Rc), s 0.0 0.0 2.0 7 6 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 Off Recall Mode Min Min Yes **Dual Entry** Yes No Walk (Walk), s 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 **Multimodal Information** WB NB SB EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 No No 25 0 No 25 12 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 0 Street Width / Island / Curb 0 0 No 0 No 0 No 0 0 Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0

Pedestrian Signal / Occupied Parking

0.50

No

0.50

No Generated: 11/18/2021 11:38:19 PM

No

		нсѕ	7 Sig	nalize	d Int	tersec	tion F	Resu	lts Su	mmar	у				
General Information									Intersec			4 가	1 12 17		
Agency Burgess & Niple, Inc.									Duration		0.250		_		<u> </u>
Analyst MEL			<u> </u>		e Nov 1			Area Ty	ре	Other	-	<i>Z</i> ₂ →		<u>~</u> }-	
Jurisdiction				Time F		Build I	PM		PHF		0.96			₩Ĵ	ŧ * -
Urban Street		Cadiz Pike		Analys		r 2045			Analysis	Period	1> 7:	00	7		Tr.
Intersection		NB SR 7		File Na	ame	Cadiz	Pike Si	gnals	Build 20	45 PM.x	us			†	
Project Descrip	tion	BEL-7-19.75											1	4 1 4	7 4 77
Demand Inform	nation				EB		T	W	В	1	NB		Т	SE	3
Approach Move	ement			L	Т	R	L	T	R	L	Т	R	L	T	R
Demand (v), v	eh/h			560	0	0	0	С	0		560				
Signal Informa	ation				- J	<u> </u>									
Cycle, s	110.0	Reference Phase	2	1	7	Ħ .							Z		
Offset, s	21	Reference Point	End	1	-	T						1	Y 2		3 4
Uncoordinated	No	Simult. Gap E/W	On	Green		36.8	0.0	0.0		0.0	_		4 -		_
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	0.0	4.0 2.0	0.0	0.0		0.0	-	5	6		7 8
1 orce mode	Tixeu	Simult. Gap 14/5	OII	Ticu	10.0	12.0	10.0	10.0	0.0	0.0		Ü	ŭ l		,
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	- T	SBT
Assigned Phase	e					2			6			8			
Case Number						8.0			8.0			12.0			
Phase Duration	1, S					67.2			67.2			42.8			
Change Period		c), S				4.0			4.0			6.0			
Max Allow Head		<u> </u>			\neg	0.0		\neg	0.0			3.2			
Queue Clearan								\neg				35.5			
Green Extension Time ($g e$), s					\neg	0.0		\neg	0.0			1.3			
Phase Call Pro		(3 - //										1.00			
Max Out Proba					\neg							0.00		\neg	
Mayamant Cra	Daa				EB			١٨/٦	,		NB			SE	,
Movement Gro		Suits			Т	R	-	WE T	R		T	R		T	R
				L			L		_	L		K			K
Assigned Move		\ 1./I		5	2	12	1	6	16	-	8		_	-	
Adjusted Flow I		,		\vdash	445			0	+	-	583		_		
		ow Rate (s), veh/h/l	ın	-	1395			0	+	-	1856		-		
Queue Service		• /·		\vdash	25.5	_		0.0		₩	33.5			_	+
Cycle Queue C		e I ime (<i>g ε</i>), s			25.5			0.0	+	-	33.5		_		
Green Ratio (g				-	0.57			_	+	-	0.33		_	_	
Capacity (c), v		tio (V)			866 0.514			0.00	0		621				
Volume-to-Capacity Ratio (X)			\		361.2			0.00	0	-	0.939			_	
Back of Queue (Q), ft/ln (95 th percentile)				-		_	_	0.0	+	-	22.0		_		
Back of Queue (Q), veh/ln (95 th percentile)			\vdash	14.0			_		-			-			
Queue Storage Ratio (RQ) (95 th percentile)				3.61			0.00	,		1.41					
Uniform Delay (d 1), s/veh				19.6			0.0			35.5					
	cremental Delay (d 2), s/veh			2.2			0.0			3.2					
Initial Queue Delay (d 3), s/veh				0.0			0.0			0.0					
Control Delay (d), s/veh				21.8 C						38.7					
Level of Service (LOS) Approach Delay, s/veh / LOS				24.0		С	0.0			20	D 7	D	0.0		
				21.8			0.0		38.7 D 0.0						
Intersection De	iay, S/VE	en / LUS				31	.4		C						
Multimodal Re	sults				EB			WE	3		NB			SE	3
Pedestrian LOS		/LOS		1.37		Α	1.37		A	1.74		В	1.74		В
Piovola I OS Sa				1.07	-	^ \	0.40	_	,,	1.7	-		1.1-		

Bicycle LOS Score / LOS

1.45

1.45

Generated: 11/18/2021 11:38:19 PM

HCS7 Signalized Intersection Intermediate Values باطلعاء المالية ل Intersection Information **General Information** Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.96 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 0 0 0 Demand (v), veh/h 560 0 0 560 **Signal Information** Reference Phase Cycle, s 110.0 Offset, s 21 Reference Point End Green 63.2 36.8 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Red 0.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R Т R L L L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.883 0.969 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.758 0.758 1.000 1.000 1.000 1.000 0.000 0.758 0.000 0.000 0.000 Right-Turn Adjustment Factor (fRT) 1.000 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 Movement Saturation Flow Rate (s), veh/h 1395 0 0 1900 0 1856 0 0 0 Proportion of Vehicles Arriving on Green (P) 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 Incremental Delay Factor (k) 0.50 0.04 **Signal Timing / Movement Groups** SBL **EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBT/R Lost Time (t_L) 4.0 4.0 4.0 0.57 Green Ratio (g/C) 0.57 0.33 Permitted Saturation Flow Rate (s_p) , veh/h/ln 1440 1440 0 Shared Saturation Flow Rate (ssh), veh/h/ln 0 1900 Permitted Effective Green Time (q_p) , s 63.2 0.0 0.0 Permitted Service Time (gu), s 63.2 0.0 0.0 Permitted Queue Service Time (g_{ps}) , s 25.5 Time to First Blockage (gf), s 0.0 63.2 0.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NR SB Pedestrian Fw / Fv 0.972 0.681 0.000 0.681 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.092 0.000 0.092 0.000 0.166 0.000 0.164 Pedestrian Mcorner / Mcw

1148.50

-3.64

9.97

0.96

Bicycle cb / db

Bicycle Fw / Fv

9.97

0.00

62.22

0.96

-3.64

-90.91

-3.64

Generated: 11/18/2021 11:38:19 PM

60.11

1148.50

-3.64

HCS7 Signalized Intersection Results Graphical Summary 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.96 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Τ R L Т R L R Demand (v), veh/h 560 0 0 0 560 **Signal Information** 110.0 Reference Phase Cycle, s Offset, s 21 Reference Point End Green 63.2 36.8 0.0 0.0 0.0 0.0 Uncoordinated Simult. Gap E/W No On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode 0.0 2.0 0.0 0.0 0.0 0.0 Fixed | Simult. Gap N/S Red On **Movement Group Results** WB SB EΒ NB Approach Movement L Τ R L Т R L Т R R Back of Queue (Q), ft/ln (95 th percentile) 361.2 0 564.3 Back of Queue (Q), veh/ln (95 th percentile) 22.0 14.0 0.0 Queue Storage Ratio (RQ) (95 th percentile) 3.61 0.00 1.41 Control Delay (d), s/veh 21.8 38.7 Level of Service (LOS) С D Approach Delay, s/veh / LOS 21.8 С 0.0 38.7 D 0.0 Intersection Delay, s/veh / LOS 31.4 11.1_____78.2 0 129.3 LOSA LOS B LOS D Queue Storage Ratio < 1 LOSE Queue Storage Ratio > 1 LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:38:19 PM

HCS7 Signalized Intersection Input Data General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.98 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 160 250 0 540 1070 40 Demand (v), veh/h 20 0 0 0 **Signal Information** ٦. Reference Phase Cycle, s 110.0 Offset, s 0 Reference Point End Green 15.0 83.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 4.0 0.0 Force Mode Fixed Red 2.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On WB NB SB **Traffic Information** EB Approach Movement L Т R ı Τ R ı R R Demand (v), veh/h 20 160 0 0 250 0 540 1070 40 0 0 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 1900 1900 1900 1900 1900 1900 1900 1900 1900 Base Saturation Flow Rate (so), veh/h 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 4 0 3 5 Ped / Bike / RTOR, /h 0 Buses (Nb), buses/h 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 1500 375 750 Turn Bay Length, ft 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 25 25 25 25 25 25 25 **WBL WBT Phase Information EBL EBT NBL NBT** SBL **SBT** Maximum Green (Gmax) or Phase Split, s 21.0 21.0 89.0 89.0 4.0 4.0 Yellow Change Interval (Y), s 4.0 4.0 Red Clearance Interval (Rc), s 2.0 0.0 2.0 2.0 7 7 7 Minimum Green (Gmin), s 6 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 Off Off Recall Mode Min Min Yes **Dual Entry** Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 WB NB SB **Multimodal Information** EΒ 85th % Speed / Rest in Walk / Corner Radius 0 25 0 0 No No 25 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 0 0 0 0 No No 0 No 0 No

Width Outside / Bike Lane / Shoulder, ft

Pedestrian Signal / Occupied Parking

12

5.0

2.0

0.50

12

No

5.0

2.0

0.50

12

No

Generated: 11/18/2021 11:38:19 PM

5.0

2.0

0.50

12

No

5.0

2.0

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.98 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals Build 2045 PM.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 160 0 540 1070 40 Demand (v), veh/h 20 0 0 250 0 **Signal Information** ٦. Reference Phase Cycle, s 110.0 Offset, s 0 Reference Point End Green 15.0 83.0 0.0 0.0 0.0 0.0 Uncoordinated Simult. Gap E/W On No Yellow 4.0 0.0 0.0 0.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S Red 2.0 2.0 0.0 0.0 0.0 0.0 On **Timer Results EBL WBL WBT** NBL SBL SBT **EBT NBT Assigned Phase** 2 6 8 4 Case Number 8.0 8.0 8.0 8.0 21.0 Phase Duration, s 21.0 89.0 89.0 6.0 6.0 6.0 Change Period, (Y+Rc), s 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.9 3.9 Queue Clearance Time (g s), s 85.0 14.3 Green Extension Time (g_e), s 0.0 0.0 0.0 10.3 Phase Call Probability 1.00 1.00 Max Out Probability 1.00 0.01 **Movement Group Results** EB **WB** NB SB Approach Movement L Т R L Т R L Т R L R 12 18 4 **Assigned Movement** 2 1 6 3 8 14 7 Adjusted Flow Rate (v), veh/h 184 0 806 0 563 Adjusted Saturation Flow Rate (s), veh/h/ln 1587 0 824 0 1802 12.4 Queue Service Time (g_s), s 0.0 70.7 0.0 12.3 Cycle Queue Clearance Time (g c), s 12.4 0.0 0.0 12.3 83.0 Green Ratio (g/C) 0.14 0.75 0.75 Capacity (c), veh/h 216 665 1360 Volume-to-Capacity Ratio (X) 0.000 0.000 0.414 0.849 1.212 Back of Queue (Q), ft/ln (95 th percentile) 287 0 1401. 0 178.5 5 Back of Queue (Q), veh/ln (95 th percentile) 11.1 0.0 54.7 0.0 7.1 0.19 0.00 0.25 Queue Storage Ratio (RQ) (95 th percentile) 0.00 3.74 Uniform Delay (d 1), s/veh 46.4 20.2 4.8 Incremental Delay (d 2), s/veh 31.8 0.0 109.1 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 78.2 Control Delay (d), s/veh 129.3 4.9 Level of Service (LOS) F Ε Α Approach Delay, s/veh / LOS 78.2 129.3 Ε 0.0 4.9 Α Intersection Delay, s/veh / LOS 58.5 F **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.62 1.95 В 1.94 В В 1.62 В

Bicycle LOS Score / LOS

Α

1.82

В

0.79

Α

Α

HCS7 Signalized Intersection Intermediate Values باط الطبله ل Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.98 Urban Street Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals Build 2045 PM.xus Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NΒ SB Approach Movement L Т R L Т R L Τ R L R 160 0 540 1070 40 Demand (v), veh/h 20 0 0 250 0 **Signal Information** ٦. Reference Phase Cycle, s 110.0 Offset, s 0 Reference Point End Green 15.0 83.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 0.0 4.0 0.0 Force Mode Fixed Red 2.0 2.0 0.0 0.0 0.0 0.0 Simult. Gap N/S On Saturation Flow / Delay Т R L Т R Т R L Т R L L 1.000 1.000 1.000 1.000 1.000 1.000 Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.977 0.977 1.000 0.961 1.000 1.000 Parking Activity Adjustment Factor (f_p) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.862 1.000 1.000 0.474 0.444 1.000 1.000 0.000 0.862 0.000 0.987 Right-Turn Adjustment Factor (fRT) 0.000 1.000 0.444 0.987 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (f_{Rpb}) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 DDI Factor (fdd) 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 0 1411 1900 0 563 0 3498 176 0 261 0 131 Proportion of Vehicles Arriving on Green (P) 0.00 0.14 0.14 0.14 0.14 0.14 0.75 0.00 0.75 0.00 0.75 0.75 Incremental Delay Factor (k) 0.50 0.50 0.04 **Signal Timing / Movement Groups EBL** EBT/R **WBL** WBT/R **NBL** NBT/R SBL SBT/R Lost Time (t_L) 6.0 6.0 6.0 6.0 0.14 Green Ratio (g/C) 0.14 0.75 0.75 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1219 505 870 Shared Saturation Flow Rate (ssh), veh/h/ln 0 0 0 1826 Permitted Effective Green Time (q_p) , s 0.0 0.0 83.0 0.0 Permitted Service Time (gu), s 0.0 0.0 70.7 0.0 Permitted Queue Service Time (g_{ps}) , s 70.7 Time to First Blockage (gf), s 15.0 15.0 1.6 83.0 Queue Service Time Before Blockage (gfs), s 1.6 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R), s Multimodal ΕB WB NB SB 0.972 Pedestrian Fw / Fv 1.198 0.000 1.198 0.000 0.000 0.972 0.000 Pedestrian Fs / Fdelav 0.000 0.149 0.000 0.147 0.000 0.048 0.000 0.048 Pedestrian Mcorner / Mcw

272.73

-3.64

41.02

0.30

Bicycle cb / db

Bicycle Fw / Fv

39.31

0.00

1509.09

-3.64

3.31

1.33

1509.09

-3.64

Generated: 11/18/2021 11:38:19 PM

3.31

0.93

309.09

-3.64

HCS7 Signalized Intersection Results Graphical Summary General Information 144441 Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency MEL Analyst Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM PHF 0.98 Cadiz Pike Urban Street Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 File Name Cadiz Pike Signals Build 2045 PM.xus Intersection **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L Т R L Т R L Τ R L R 160 250 0 540 1070 Demand (v), veh/h 20 0 0 0 40 Signal Information ٦. Cycle, s 110.0 Reference Phase Offset, s Reference Point 0 End Green 15.0 83.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 0.0 4.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 2.0 2.0 0.0 0.0 0.0 0.0 On **Movement Group Results** WB NB SB EΒ Approach Movement L Т R L R ı Т R Т R Back of Queue (Q), ft/ln (95 th percentile) 287 0 1401. 0 178.5 5 Back of Queue (Q), veh/ln (95 th percentile) 0.0 54.7 0.0 7.1 11.1 Queue Storage Ratio (RQ) (95 th percentile) 0.19 0.00 3.74 0.00 0.25 Control Delay (d), s/veh 78.2 129.3 4.9 Level of Service (LOS) Ε Α Approach Delay, s/veh / LOS 78.2 Ε 0.0 129.3 F 4.9 Α Intersection Delay, s/veh / LOS 58.5 F 11.1 78.2 129.3 LOSA Delay LOS B LOS C Queue Storage Ratio < 1 LOSD __ LOS E Queue Storage Ratio > 1 LOS F

Generated: 11/18/2021 11:38:19 PM

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: If demand exceeds capacity, a multiple-period analysis should be conducted.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/18/2021 11:38:19 PM

Traffic Operations Study BEL-7-19.25 Main Street (US 40) & Lincoln Avenue PID 105324

Cadiz Pike
Intersection
Analysis
With NB Right

PM Peak

HCS7 Signalized Intersection Input Data 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.96 NB Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 PM - With NBR... Intersection NB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т L R L R 590 0 0 0 520 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 52 Reference Point End Green 37.3 22.7 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 2.0 0.0 0.0 0.0 0.0 **Traffic Information** ΕB WB NB SB Approach Movement L Т R L Τ R L R Demand (v), veh/h 590 0 0 0 0 0 520 0 0 0 0 0 0 0 Initial Queue (Qb), veh/h Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 L+R None Parking (Nm), man/h 0 0 None Heavy Vehicles (PHV), % 4 0 3 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 Arrival Type (AT) 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) Lane Width (W), ft 12.0 12.0 12.0 Turn Bay Length, ft 100 400 0 Grade (Pg), % 0 0 0 0 25 Speed Limit, mi/h 25 25 25 25 25 25 **Phase Information EBL EBT WBL WBT NBL NBT** SBL **SBT** Maximum Green (Gmax) or Phase Split, s 11.0 11.0 59.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 Red Clearance Interval (Rc), s 0.0 0.0 2.0 Minimum Green (Gmin), s 6 6 7 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 Recall Mode Min Min Off **Dual Entry** Yes Yes No Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 No 0 No 0 0 No 0 Width Outside / Bike Lane / Shoulder, ft 5.0 12 5.0 2.0 12 5.0 2.0 12 2.0

Pedestrian Signal / Occupied Parking

0.50

No

0.50

No

Generated: 11/19/2021 12:13:45 AM

No

		HCS	7 Sig	nalize	d In	tersec	tion	Resu	ılts	Sun	nmary	У					
			Intersection Information														
General Inforn	nation	Υ							_				4 744 1	to it			
Agency		Burgess & Niple, In	c.	1						ation,		-		L			
Analyst	nalyst MEL			+		te Nov			_	а Тур	-	Other	•	<u></u>		<u> </u>	
Jurisdiction				Time F	Period	No-B NB F	uild PM light	l with	PHF C			0.96		& -₹	w∓E 8	* 7 -4- ← *-	
Urban Street		Cadiz Pike		Analys	sis Yea	ar 2045			Ana	alysis I	Period	1> 7:0	00		+		
Intersection		NB SR 7		File Na	ame	Cadi	z Pike S	Signals	No-E	Build 2	2045 PI	M - With	n NBR		4 1 4 Y	1 17	
Project Descrip	tion	BEL-7-19.75	_	_		_	_				_	_	_	_			
Demand Inforr	nation				EE	3	\top	W	/B		Т	NB		T	SB		
Approach Move	ement			L	Т	R	L	7	Г	R	L	Т	R	L	Т	R	
Demand (v), v	eh/h			590	0	0	0	()	0		520					
Signal Informa	ation				- J	R.	Т	T									
Cycle, s	70.0	Reference Phase	2	1	<u></u> 7		,							4			
Offset, s	52	Reference Point	End		37.3	22.7	0.0			0.0			1	2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		22.7 4.0	0.0	0.0		0.0	0.0			→		•	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	0.0	0.0		0.0	0.0		5	6	7	8	
				II .										·			
Timer Results				EBL	-	EBT	W	BL	WE	ВТ	NBL	-	NBT	SBL		SBT	
Assigned Phase	е					2			6	5			8				
Case Number						8.0			8.0	0			12.0				
Phase Duration	1, S					41.3				1.3			28.7				
Change Period		,				4.0				0			6.0				
Max Allow Hea		·				0.0				0			3.2				
Queue Clearan		, - ,			_							21.5					
Green Extension		(g e), s			_	0.0	_		0.0	0			1.2		\bot		
Phase Call Pro					_								1.00				
Max Out Proba	bility									_			0.00				
Movement Gro	oun Res	sults			EB			WE	3			NB			SB		
Approach Move				L	T	R	L	T	-	R	L	T	R		T	R	
Assigned Move				5	2	12	1	6	_	16		8				+	
Adjusted Flow I), veh/h			602			0	\top			542				$\overline{}$	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1395	5		0				1856					
Queue Service		· · ·			17.4			0.0	,			19.5					
Cycle Queue C		- ,			17.4			0.0				19.5					
Green Ratio (g	ı/C)				0.53			T	\sqcap			0.32					
Capacity (c), v	/eh/h				847							601					
Volume-to-Capacity Ratio (X)					0.71	1		0.00	00			0.901					
Back of Queue (Q), ft/ln (95 th percentile)				151.:	2		0	\perp			335.7						
Back of Queue (Q), veh/ln (95 th percentile)			\perp	5.9		_	0.0	_	_		13.1		\square		\perp		
Queue Storage Ratio (RQ) (95 th percentile)				1.51		_	0.00	0	_		0.84						
Uniform Delay (d 1), s/veh				5.1		_	4	_	_		22.6		\Box		\perp		
Incremental Delay (d 2), s/veh				5.0			0.0	_			2.1						
Initial Queue Delay (d 3), s/veh				0.0			0.0)	\blacksquare		0.0		\vdash		+		
Control Delay (d), s/veh				10.2			-	+			24.7						
Level of Service (LOS) Approach Delay, s/veh / LOS			40.0	В	D	0	0			247	С		0.0				
				10.2		В	0.	U	24.7 C					0.0			
Intersection De	ıay, S/V€	:II / LUS				1	7.0							В			
Multimodal Re	sults				EB			WE	3			NB			SB		
Pedestrian LOS		/ LOS		1.36	<u> </u>	Α	1.3	36	A	\	1.72		В	1.72		В	
Ricyclo I OS Sc	/ / (26		1.50	_	D	0.4		^		1 20		Λ				

Bicycle LOS Score / LOS

Α

1.38

Generated: 11/19/2021 12:13:45 AM

1.50

В

HCS7 Signalized Intersection Intermediate Values باطلعاء المالية ل Intersection Information **General Information** Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.96 NB Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 PM - With NBR... Intersection NB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 590 0 0 0 520 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 52 Reference Point End Green 37.3 22.7 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay L Т R L Т R L Т R ı Т R Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.883 0.969 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 0.000 0.000 Parking Activity Adjustment Factor (fp) 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000 0.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 Area Type Adjustment Factor (fa) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.758 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.758 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.758 0.000 1.000 0.000 0.000 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1395 1900 0 1856 0 0 0 0 0 Proportion of Vehicles Arriving on Green (P) 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.32 Incremental Delay Factor (k) 0.50 0.04 **Signal Timing / Movement Groups** EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R Lost Time (t_L) 4.0 4.0 4.0 Green Ratio (g/C) 0.53 0.53 0.32 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1440 0 1900 Shared Saturation Flow Rate (ssh), veh/h/ln 0 37.3 0.0 Permitted Effective Green Time (g_p) , s 0.0 Permitted Service Time (gu), s 37.3 0.0 0.0 Permitted Queue Service Time (q_{ps}) , s 17.4 Time to First Blockage (gf), s 0.0 37.3 0.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R) , s Multimodal EΒ WB NB SB Pedestrian Fw / Fv 0.681 0.000 0.681 0.000 0.972 0.000 0.972 0.000 0.000 0.081 0.000 0.000 Pedestrian Fs / Fdelay 0.081 0.000 0.150 0.148 Pedestrian Mcorner / Mcw Bicycle cb / db 1066.48 7.63 1066.48 7.63 -200.00 40.18 42.35

-3.64

1.01

Bicycle Fw / Fv

0.00

-3.64

0.89

-3.64

Generated: 11/19/2021 12:13:45 AM

-3.64

HCS7 Signalized Intersection Results Graphical Summary 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.96 NB Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Intersection NB SR 7 Cadiz Pike Signals No-Build 2045 PM - With NBR... File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т L R L R 590 0 0 0 520 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 52 Reference Point End Green 37.3 22.7 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S Red 0.0 2.0 0.0 0.0 0.0 0.0 **Movement Group Results** ΕB WB NB SB Approach Movement Τ L R L Τ R L R Back of Queue (Q), ft/ln (95 th percentile) 151.2 0 335.7 Back of Queue (Q), veh/ln (95 th percentile) 5.9 0.0 13.1 Queue Storage Ratio (RQ) (95 th percentile) 1.51 0.00 0.84 Control Delay (d), s/veh 10.2 24.7 Level of Service (LOS) В Approach Delay, s/veh / LOS 24.7 10.2 В 0.0 С 0.0 Intersection Delay, s/veh / LOS 17.0 В 31.1 LOSA LOS B LOS C LOSD __ LOS E LOS F

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/19/2021 12:13:45 AM

HCS7 Signalized Intersection Input Data General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.98 NB Right **Urban Street** Cadiz Pike Analysis Year Analysis Period 2045 1> 7:00 Cadiz Pike Signals No-Build 2045 PM - With NBR... Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 40 150 200 0 550 970 Demand (v), veh/h 0 0 0 70 **Signal Information** 21:5 Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 15.0 43.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 **Traffic Information** ΕB WB NB SB Approach Movement L Т R L Τ R L R L Τ R 550 Demand (v), veh/h 40 150 0 0 200 0 0 970 70 0 0 0 0 0 0 0 0 Initial Queue (Qb), veh/h 0 n Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 None None Parking (Nm), man/h None None Heavy Vehicles (PHV), % 4 0 3 3 5 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 0 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) 1.00 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 Turn Bay Length, ft 1500 375 0 375 750 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 35 35 35 35 35 35 35 35 35 35 **Phase Information EBL EBT WBL WBT NBL NBT** SBL **SBT** 13.0 Maximum Green (Gmax) or Phase Split, s 13.0 57.0 57.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 4.0 Red Clearance Interval (Rc), s 2.0 0.0 2.0 2.0 Minimum Green (Gmin), s 7 6 7 7 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 Recall Mode Min Min Off Off **Dual Entry** Yes Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 0 No 25 9.0 9.0 Walkway / Crosswalk Width / Length, ft 12 0 9.0 12 0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 No 0 0 No 0 0 No 0 0 No Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0

Pedestrian Signal / Occupied Parking

0.50

No

0.50

No

Generated: 11/19/2021 12:13:45 AM

No

0.50

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.98 NB Right **Urban Street** Cadiz Pike Analysis Year Analysis Period 2045 1> 7:00 Cadiz Pike Signals No-Build 2045 PM - With NBR... Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 40 150 200 0 550 970 Demand (v), veh/h 0 0 0 70 **Signal Information** د الح Cycle, s Reference Phase 70.0 Offset, s n Reference Point End Green 15.0 43.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 6 2 8 4 Case Number 8.0 8.0 7.0 8.0 21.0 21.0 49.0 49.0 Phase Duration, s Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.6 3.6 Queue Clearance Time (g_s), s 38.0 13.2 Green Extension Time (g_e), s 0.0 0.0 5.0 6.5 Phase Call Probability 1.00 1.00 Max Out Probability 0.35 0.02 **Movement Group Results** WB NB SB EB Approach Movement L Т R L Т R L Т R L Т R 7 **Assigned Movement** 2 12 1 6 3 8 18 4 14 Adjusted Flow Rate (v), veh/h 194 0 204 561 0 524 1612 0 385 Adjusted Saturation Flow Rate (s), veh/h/ln 1572 0 1782 Queue Service Time (g s), s 7.5 0.0 24.4 15.0 0.0 11.2 Cycle Queue Clearance Time (g c), s 7.5 0.0 36.0 15.0 0.0 11.2 0.21 Green Ratio (q/C) 0.61 0.61 0.61 345 340 967 1096 Capacity (c), veh/h Volume-to-Capacity Ratio (X) 0.562 0.000 0.601 0.581 0.000 0.479 Back of Queue (Q), ft/ln (95 th percentile) 153.7 0 118.4 178.6 0 147.8 Back of Queue (Q), veh/ln (95 th percentile) 6.0 0.0 4.6 7.0 0.0 5.9 0.10 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.32 0.48 0.00 0.20 Uniform Delay (d 1), s/veh 24.6 17.4 8.1 7.4 Incremental Delay (d 2), s/veh 6.5 0.0 8.0 0.2 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 31.1 8.3 Control Delay (d), s/veh 18.1 7.5 Level of Service (LOS) С Α Α 31.1 10.9 7.5 Approach Delay, s/veh / LOS С 0.0 В Α Intersection Delay, s/veh / LOS 11.0 В **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.64 2.11 В 1.92 В В 1.64 В

Bicycle LOS Score / LOS

Α

1.75

В

1.36

Generated: 11/19/2021 12:13:45 AM

Α

0.81

Α

HCS7 Signalized Intersection Intermediate Values باط الطبله ل Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.98 NB Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Cadiz Pike Signals No-Build 2045 PM - With NBR... Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 40 150 200 0 550 970 Demand (v), veh/h 0 0 0 70 **Signal Information** رال Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 15.0 43.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay L Т R L Т R L Т R L Т R Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.977 0.977 1.000 0.961 1.000 1.000 | 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (fp) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 1.000 0.207 0.207 1.000 0.876 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.876 0.000 1.000 0.000 0.847 0.976 0.976 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 339 1272 1900 0 385 1572 3365 0 0 0 0 243 Proportion of Vehicles Arriving on Green (P) 0.21 0.00 0.00 0.21 0.21 0.21 0.21 0.61 0.61 0.00 0.61 0.61 Incremental Delay Factor (k) 0.50 0.05 0.04 0.04 **Signal Timing / Movement Groups** EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R Lost Time (t_L) 6.0 6.0 6.0 6.0 Green Ratio (g/C) 0.21 0.21 0.61 0.61 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1208 540 1440 1826 Shared Saturation Flow Rate (ssh), veh/h/ln 0 0 0 0.0 0.0 43.0 Permitted Effective Green Time (g_p) , s 0.0 Permitted Service Time (gu), s 0.0 0.0 31.4 0.0 Permitted Queue Service Time (q_{ps}) , s 24.4 Time to First Blockage (gf), s 15.0 15.0 0.0 43.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 Multimodal EΒ NB SB Pedestrian Fw / Fv 1.389 0.000 1.198 0.000 0.972 0.000 0.972 0.000 0.000 0.000 0.066 0.000 0.066 Pedestrian Fs / Fdelay 0.123 0.000 0.120 Pedestrian Mcorner / Mcw Bicycle cb / db 428.60 21.61 485.74 20.06 1228.55 1228.55 5.21 5.21

-3.64

0.32

Bicycle Fw / Fv

0.00

-3.64

1.26

-3.64

Generated: 11/19/2021 12:13:45 AM

0.88

-3.64

HCS7 Signalized Intersection Results Graphical Summary General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period No-Build PM with PHF 0.98 NB Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 Intersection SB SR 7 Cadiz Pike Signals No-Build 2045 PM - With NBR... File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т L R L R 40 150 200 0 550 970 Demand (v), veh/h 0 0 0 70 **Signal Information** يال. Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 15.0 43.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т L R L Τ R L R R Back of Queue (Q), ft/ln (95 th percentile) 153.7 0 118.4 178.6 0 147.8 6.0 Back of Queue (Q), veh/ln (95 th percentile) 0.0 4.6 7.0 0.0 5.9 Queue Storage Ratio (RQ) (95 th percentile) 0.10 0.00 0.32 0.48 0.00 0.20 Control Delay (d), s/veh 31.1 18.1 8.3 7.5 Level of Service (LOS) С Α Α Approach Delay, s/veh / LOS 10.9 31.1 С 0.0 В 7.5 Α Intersection Delay, s/veh / LOS 11.0 В 31.1 LOSA LOS B LOS C LOSD __ LOS E LOS F

Generated: 11/19/2021 12:13:45 AM

	Messages
--	-----------------

No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/19/2021 12:13:45 AM

HCS7 Signalized Intersection Input Data 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.96 Right 2045 **Urban Street** Cadiz Pike Analysis Year Analysis Period 1> 7:00 Cadiz Pike Signals Build 2045 PM - With NBR.xus Intersection NB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т L R L R 560 0 0 0 560 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 52 Reference Point End Green 35.8 24.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 2.0 0.0 0.0 0.0 0.0 **Traffic Information** ΕB WB NB SB Approach Movement L Т R L Τ R L R Demand (v), veh/h 560 0 0 0 0 0 560 0 0 0 0 0 0 0 Initial Queue (Qb), veh/h Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 L+R None Parking (Nm), man/h 0 0 None Heavy Vehicles (PHV), % 4 0 3 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 Arrival Type (AT) 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) Lane Width (W), ft 12.0 12.0 12.0 Turn Bay Length, ft 100 400 0 Grade (Pg), % 0 0 0 0 25 Speed Limit, mi/h 25 25 25 25 25 25 **Phase Information EBL EBT WBL WBT NBL NBT** SBL **SBT** Maximum Green (Gmax) or Phase Split, s 13.0 13.0 57.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 0.0 0.0 2.0 Red Clearance Interval (Rc), s Minimum Green (Gmin), s 6 6 7 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 Recall Mode Min Min Off **Dual Entry** Yes Yes No Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 No 0 No 0 0 No 0 Width Outside / Bike Lane / Shoulder, ft 5.0 12 5.0 2.0 12 5.0 2.0 12 2.0

Pedestrian Signal / Occupied Parking

0.50

No

0.50

No

Generated: 11/19/2021 12:04:46 AM

No

	HCS7 Signalized Intersection Results Summary																
	4.			Intersection Information													
General Inform	nation	Γ							_			5 4 5 4 1 1 1					
Agency Burgess & Niple, Inc.									_	uration,		0.250	_		-		
Analyst MEL					te Nov				rea Typ	e	Other	·	<i>z</i> , →		, E		
Jurisdiction				Time F	Period	Build Righ		ith NE	3 P	HF		0.96		4 14 14 14 14 14 14 14 14 14 14 14 14 14		7 ⊕	
Urban Street		Cadiz Pike		Analys	is Yea	ar 2045			Α	nalysis	Period	1> 7:0	00		•		
Intersection		NB SR 7		File Na	ame	Cadi	z Pike	Signa	als B	uild 204	5 PM -	With NE	3R.xus	ħ	4 1 4 4	1 1	
Project Descrip	tion	BEL-7-19.75															
Demand Inform	nation				EB		7		WB		7	NB		7	SB		
Approach Move				L	T	R	+		T	R	L	T	R	L	T	R	
Demand (v), v				560	0	0	_)	0	0		560	11	+-		+ 1	
Bomana (v), v	011/11			000			-		Ŭ			000					
Signal Informa	ition				29//	<u></u>		П						1			
Cycle, s	70.0	Reference Phase	2			4	s:							4 .			
Offset, s	52	Reference Point	End	Green	35.8	24.2	0.0) (0.0	0.0	0.0		1	X Z	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	0.0		0.0	0.0	0.0		- 13	♦		1	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	2.0	0.0) (0.0	0.0	0.0		5	6	7	8	
				1													
Timer Results				EBL	-	EBT	V	/BL	<u> </u>	WBT	NBI	-	NBT	SBL	-	SBT	
Assigned Phase	е				-	2	▙		\vdash	6		_	8				
Case Number						8.0	-		-	8.0		_	12.0	-	-		
Phase Duration	·	\ -				39.8	·		39.8				30.2				
Change Period					-	0.0	-		+	0.0		_	3.2				
Queue Clearan		· · · · · · · · · · · · · · · · · · ·			_	0.0	\vdash		\vdash	0.0		_	23.0	_			
		, - ,			-	0.0	-		\vdash	0.0		_	1.3				
	Green Extension Time (<i>g</i> _e), s Phase Call Probability				+	0.0			\vdash	0.0			1.00				
Max Out Proba													0.00				
Movement Gro	up Res	sults		EB				٧	ΝB			NB			SB		
Approach Move				L	Т	R	L		Т	R	L	Т	R	L	Т	R	
Assigned Move	ment			5	2	12	1		6	16		8					
Adjusted Flow I	Rate (v), veh/h			571		\top		0			583					
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1395	5			0			1856					
Queue Service	Time (g	g s), s			17.7			C	0.0			21.0					
Cycle Queue C	learance	e Time (<i>g c</i>), s			17.7			C	0.0			21.0					
Green Ratio (g				Щ	0.51		╙	_				0.35				\perp	
Capacity (c), v					815		-	_				643					
Volume-to-Capa				\perp	0.70		┺	_	000			0.908				+	
Back of Queue (Q), ft/ln (95 th percentile)					164	+	-	_	0			353.6				+	
	Back of Queue (Q), veh/ln (95 th percentile)				6.4 1.64			\rightarrow	0.0			13.8 0.88				+	
Queue Storage Ratio (RQ) (95 th percentile)					6.3		-	0.	.00			21.8		-		+	
Uniform Delay (d 1), s/veh				5.0	_	\vdash	+	0.0			2.1				+		
Incremental Delay (d 2), s/veh Initial Queue Delay (d 3), s/veh				0.0	+	-	_	0.0			0.0				-		
Control Delay (d), s/veh					11.2			-	,.0			23.9					
Level of Service (LOS)					B							C C				$\overline{}$	
Approach Delay, s/veh / LOS				11.2		В).0			23.9		С	0.0		_	
Intersection De							7.6							В			
Multimodal Re	eulte				EB			V	ΝB			NB			SB		
Pedestrian LOS		/LOS		1.37	_	A	1	.37	T	Α	1.72		В	1.72		В	
Bicycle LOS So				1.45	_	A	-	.49		A	1.45		A	1.12			

Generated: 11/19/2021 12:04:46 AM

HCS7 Signalized Intersection Intermediate Values باطلعاء المالية ل **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.96 Right **Urban Street** Cadiz Pike Analysis Year Analysis Period 2045 1> 7:00 Intersection NB SR 7 File Name Cadiz Pike Signals Build 2045 PM - With NBR.xus **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 560 0 0 0 560 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 52 Reference Point End Green 35.8 24.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay L Т R L Т R L Т R ı Т R Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 0.883 0.969 1.000 1.000 1.000 1.000 1.000 0.977 1.000 1.000 0.000 0.000 Parking Activity Adjustment Factor (fp) 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000 0.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 Area Type Adjustment Factor (fa) 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.758 1.000 1.000 Left-Turn Adjustment Factor (fLT) 0.758 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.758 0.000 1.000 0.000 0.000 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 1395 1900 0 1856 0 0 0 0 0 Proportion of Vehicles Arriving on Green (P) 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.35 Incremental Delay Factor (k) 0.50 0.04 **Signal Timing / Movement Groups** EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R Lost Time (t_L) 4.0 4.0 4.0 Green Ratio (g/C) 0.51 0.51 0.35 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1440 0 1900 Shared Saturation Flow Rate (ssh), veh/h/ln 0 35.8 0.0 Permitted Effective Green Time (g_p) , s 0.0 Permitted Service Time (gu), s 35.7 0.0 0.0 Permitted Queue Service Time (g_{ps}) , s 17.7 Time to First Blockage (gf), s 0.0 35.8 0.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln Protected Right Effective Green Time (g_R) , s Multimodal EΒ WB NB SB Pedestrian Fw / Fv 0.681 0.000 0.681 0.000 0.972 0.000 0.972 0.000 0.000 0.085 0.085 0.000 0.000 Pedestrian Fs / Fdelay 0.000 0.150 0.148 Pedestrian Mcorner / Mcw Bicycle c_b / d_b 1021.47 8.38 1021.47 8.38 -200.00 42.35 40.18

-3.64

0.96

Bicycle Fw / Fv

0.00

-3.64

0.96

-3.64

Generated: 11/19/2021 12:04:46 AM

-3.64

HCS7 Signalized Intersection Results Graphical Summary 144444 **General Information** Intersection Information Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.96 Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 NB SR 7 Cadiz Pike Signals Build 2045 PM - With NBR.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т L R L R 560 0 0 0 560 Demand (v), veh/h 0 0 **Signal Information** Reference Phase Cycle, s 70.0 Offset, s 52 Reference Point End Green 35.8 24.2 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 2.0 0.0 0.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Τ R L R Back of Queue (Q), ft/ln (95 th percentile) 164 0 353.6 Back of Queue (Q), veh/ln (95 th percentile) 6.4 0.0 13.8 Queue Storage Ratio (RQ) (95 th percentile) 1.64 0.00 0.88 Control Delay (d), s/veh 11.2 23.9 Level of Service (LOS) В Approach Delay, s/veh / LOS 23.9 11.2 В 0.0 С 0.0 Intersection Delay, s/veh / LOS 17.6 В 39.8 LOSA LOS B LOS C LOSD __ LOS E LOS F

Generated: 11/19/2021 12:04:46 AM

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/19/2021 12:04:46 AM

HCS7 Signalized Intersection Input Data Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.98 Right 2045 **Urban Street** Cadiz Pike Analysis Year Analysis Period 1> 7:00 Cadiz Pike Signals Build 2045 PM - With NBR.xus Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 160 250 0 540 1070 40 Demand (v), veh/h 20 0 0 0 **Signal Information** د الح Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 12.0 46.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 **Traffic Information** ΕB WB NB SB Approach Movement L Τ R L Τ R L R L R 540 Demand (v), veh/h 20 160 0 0 250 0 0 1070 40 0 0 0 0 0 0 0 0 Initial Queue (Qb), veh/h 0 n Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 None None Parking (Nm), man/h None None Heavy Vehicles (PHV), % 4 0 3 3 5 Ped / Bike / RTOR, /h 0 0 0 0 0 0 0 0 0 0 0 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 0 0 0 Arrival Type (AT) 3 3 3 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filtering (I) 1.00 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 Turn Bay Length, ft 1500 375 0 375 750 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 35 35 35 35 35 35 35 35 35 35 **Phase Information EBL EBT WBL WBT NBL NBT** SBL **SBT** 18.0 Maximum Green (Gmax) or Phase Split, s 18.0 52.0 52.0 Yellow Change Interval (Y), s 4.0 4.0 4.0 4.0 2.0 0.0 2.0 2.0 Red Clearance Interval (Rc), s Minimum Green (Gmin), s 7 6 7 7 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 2.0 2.0 2.0 2.0 Recall Mode Min Min Off Off **Dual Entry** Yes Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 0 No 25 9.0 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 12 0 9.0 12 0 Street Width / Island / Curb 0 0 No 0 0 No 0 0 No 0 0 No Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0

Pedestrian Signal / Occupied Parking

No

0.50

No

0.50

No

Generated: 11/19/2021 12:04:46 AM

No

0.50

HCS7 Signalized Intersection Results Summary Intersection Information **General Information** 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.98 Right **Urban Street** Cadiz Pike Analysis Year Analysis Period 2045 1> 7:00 Cadiz Pike Signals Build 2045 PM - With NBR.xus Intersection SB SR 7 File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 160 250 0 540 1070 40 Demand (v), veh/h 20 0 0 0 **Signal Information** د الح Cycle, s Reference Phase 70.0 Offset, s n Reference Point End Green 12.0 46.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL **SBT Assigned Phase** 6 2 8 4 Case Number 8.0 8.0 7.0 8.0 18.0 52.0 52.0 Phase Duration, s 18.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 0.0 0.0 3.7 3.7 Queue Clearance Time (g_s), s 48.0 12.9 Green Extension Time (g_e), s 0.0 0.0 0.0 7.7 Phase Call Probability 1.00 1.00 Max Out Probability 1.00 0.07 **Movement Group Results** WB NB SB EB Approach Movement L Т R L Т R L Т R L Т R 7 **Assigned Movement** 2 12 1 6 3 8 18 4 14 Adjusted Flow Rate (v), veh/h 184 0 255 551 0 563 1587 0 Adjusted Saturation Flow Rate (s), veh/h/ln 376 1572 0 1802 Queue Service Time (g s), s 7.6 0.0 35.1 12.9 0.0 10.9 Cycle Queue Clearance Time (g c), s 7.6 0.0 46.0 12.9 0.0 10.9 Green Ratio (q/C) 0.17 0.66 0.66 0.66 272 350 1033 Capacity (c), veh/h 1184 Volume-to-Capacity Ratio (X) 0.675 0.000 0.729 0.533 0.000 0.475 Back of Queue (Q), ft/ln (95 th percentile) 169.8 0 185.8 142.7 0 132.5 Back of Queue (Q), veh/ln (95 th percentile) 6.6 0.0 7.3 5.6 0.0 5.3 Queue Storage Ratio (RQ) (95 th percentile) 0.11 0.00 0.50 0.38 0.00 0.18 Uniform Delay (d 1), s/veh 27.2 18.0 6.3 6.0 Incremental Delay (d 2), s/veh 12.7 0.0 6.6 0.3 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 39.8 24.6 6.6 Control Delay (d), s/veh 6.1 Level of Service (LOS) D CΑ Α 12.3 Approach Delay, s/veh / LOS 39.8 D 0.0 В 6.1 Α Intersection Delay, s/veh / LOS 11.4 В **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 2.12 1.63 В 1.92 В В 1.63 В

Bicycle LOS Score / LOS

Α

1.82

В

0.79

Α

Α

HCS7 Signalized Intersection Intermediate Values باط الطبله ل **General Information** Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.98 Right **Urban Street** Cadiz Pike Analysis Year Analysis Period 2045 1> 7:00 Intersection SB SR 7 File Name Cadiz Pike Signals Build 2045 PM - With NBR.xus **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т R L R L R 20 160 250 0 540 1070 40 Demand (v), veh/h 0 0 0 **Signal Information** رال Reference Phase Cycle, s 70.0 Offset, s 0 Reference Point End Green 12.0 46.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 Saturation Flow / Delay L Т R L Т R L Т R L Т R Lane Width Adjustment Factor (fw) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Heavy Vehicles and Grade Factor (fHVg) 1.000 0.969 1.000 1.000 1.000 1.000 1.000 0.977 0.977 1.000 0.961 1.000 1.000 | 1.000 1.000 1.000 1.000 Parking Activity Adjustment Factor (fp) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Bus Blockage Adjustment Factor (fbb) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Area Type Adjustment Factor (fa) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Lane Utilization Adjustment Factor (fLU) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Left-Turn Adjustment Factor (fLT) 1.000 0.862 1.000 0.203 0.203 1.000 1.000 1.000 Right-Turn Adjustment Factor (fRT) 0.000 0.862 0.000 1.000 0.000 0.847 0.987 0.987 Left-Turn Pedestrian Adjustment Factor (fLpb) 1.000 1.000 1.000 1.000 Right-Turn Ped-Bike Adjustment Factor (fRpb) 1.000 1.000 1.000 1.000 Work Zone Adjustment Factor (fwz) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 DDI Factor (fdd) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Movement Saturation Flow Rate (s), veh/h 176 1411 1900 376 1572 3498 0 0 0 0 0 131 Proportion of Vehicles Arriving on Green (P) 0.00 0.17 0.17 0.17 0.17 0.17 0.66 0.00 0.66 0.00 0.66 0.66 Incremental Delay Factor (k) 0.50 0.25 0.07 0.04 **Signal Timing / Movement Groups** EBL EBT/R WBL WBT/R NBL NBT/R SBL SBT/R 6.0 Lost Time (t_L) 6.0 6.0 6.0 Green Ratio (g/C) 0.17 0.17 0.66 0.66 Permitted Saturation Flow Rate (sp), veh/h/ln 1440 1219 505 1440 1826 Shared Saturation Flow Rate (ssh), veh/h/ln 0 0 0 0.0 0.0 46.0 Permitted Effective Green Time (g_p) , s 0.0 Permitted Service Time (gu), s 0.0 0.0 35.1 0.0 Permitted Queue Service Time (q_{ps}) , s 35.1 Time to First Blockage (gf), s 12.0 12.0 0.0 46.0 Queue Service Time Before Blockage (gfs), s 0.0 Protected Right Saturation Flow (sR), veh/h/ln 0 Protected Right Effective Green Time (g_R) , s 0.0 Multimodal EΒ NB SB Pedestrian Fw / Fv 1.389 0.000 1.198 0.000 0.972 0.000 0.972 0.000 0.000 0.000 0.057 0.057 Pedestrian Fs / Fdelay 0.127 0.000 0.125 0.000 Pedestrian Mcorner / Mcw

342.86

-3.64

24.03

0.30

Bicycle cb / db

Bicycle Fw / Fv

22.40

0.00

1314.29

-3.64

4.11

1.33

1314.29

-3.64

Generated: 11/19/2021 12:04:46 AM

4.11

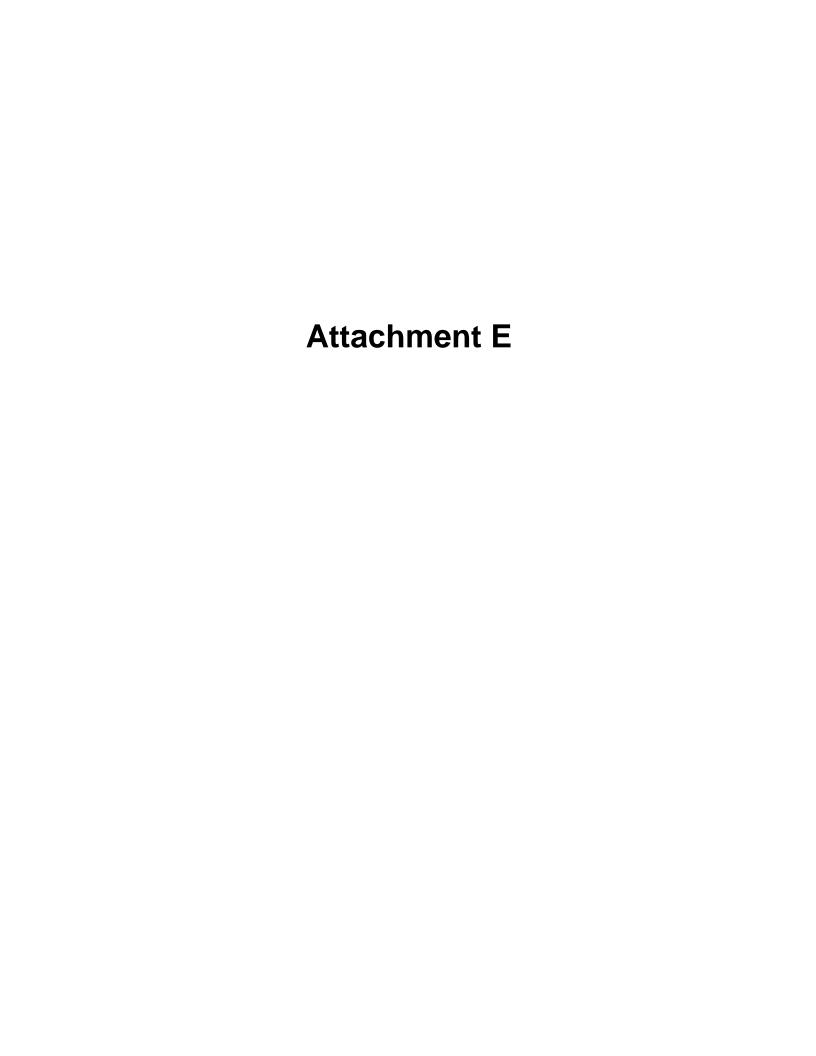
0.93

400.00

-3.64

HCS7 Signalized Intersection Results Graphical Summary General Information Intersection Information 4 1 Burgess & Niple, Inc. Duration, h 0.250 Agency Analyst MEL Analysis Date Nov 16, 2021 Area Type Other Jurisdiction Time Period Build PM with NB PHF 0.98 Right **Urban Street** Cadiz Pike Analysis Year 2045 Analysis Period 1> 7:00 SB SR 7 Cadiz Pike Signals Build 2045 PM - With NBR.xus Intersection File Name **Project Description** BEL-7-19.75 **Demand Information** EΒ WB NB SB Approach Movement L R L Т L R L R 540 20 160 250 0 1070 40 Demand (v), veh/h 0 0 0 **Signal Information** يال. Cycle, s 70.0 Reference Phase Offset, s 0 Reference Point End Green 12.0 46.0 0.0 0.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 0.0 0.0 0.0 0.0 **Movement Group Results** EΒ WB NB SB Approach Movement Т L R L Τ R L R R Back of Queue (Q), ft/ln (95 th percentile) 169.8 0 185.8 142.7 0 132.5 Back of Queue (Q), veh/ln (95 th percentile) 6.6 0.0 7.3 5.6 0.0 5.3 Queue Storage Ratio (RQ) (95 th percentile) 0.11 0.00 0.50 0.38 0.00 0.18 Control Delay (d), s/veh 39.8 24.6 6.6 6.1 Level of Service (LOS) D Α Α Approach Delay, s/veh / LOS 12.3 39.8 D 0.0 В 6.1 Α Intersection Delay, s/veh / LOS 11.4 В 39.8 LOSA LOS B LOS C LOSD __ LOS E LOS F

	Messages
--	-----------------


No errors or warnings exist.

--- Comments ---

Copyright © 2021 University of Florida, All Rights Reserved.

HCS™ Streets Version 7.9.5

Generated: 11/19/2021 12:04:46 AM

BEL-7-19.75 PID 105324

Teams Meeting January 27, 2022

Burgess & Niple, ODOT D11, ODOT. C.O.

Meeting Purpose

In this meeting Burgess & Niple presented various exhibits related to a proposed alternative that would construct a roundabout that would be built partially underneath the reconstructed Route 7 bridge. The roundabout concept resulted from traffic study work B&N performed at ODOT's request to see if traffic operations and capacity could be improved as part of the bridge reconstruction project. District 11 requested that B&N look further into other various "non-traffic" aspects of this roundabout alternative. The purpose of this meeting was to describe the status of B&N's examination into these items. The roundabout alternative is shown in Attachment A (note Attachment A is a layered PDF where the proposed work can be turned on or off).

Clear Zone/Sight Distance

<u>Investigation:</u> What are the clear zone requirement and sight distance issues for the proposed piers adjacent to the roundabout?

<u>Response:</u> In this roundabout alternative the reconstructed Route 7 bridge will be partially built over the roundabout with one pier column inside the center roundabout circle, one column in each of two splitter islands, and two other pier columns close to the roadways. The required clear zone for this application is 4 feet. B&N believe that with some minor adjustments to what is indicated on Attachment A, all of the pier columns can be placed outside of the clear zone.

A sight distance analysis was performed which is shown in Attachment B (This attachment is also a layered PDF). Zones needed to be unobstructed for sight distance (i.e., low or no obstructions) are shown in a cyan shade. Sight lines that would be obstructed by pier columns for vehicle approaching the roundabout (50 feet back of stop lines per L&D Vol. 1) are show in a reddish color. As can be seen by this analysis, sight distance is not an issue except for minor sight interruption intervals for 2 pier columns.

Experience in Other States

<u>Investigation:</u> What have other states done with regard to constructing bridges over roundabouts or otherwise place obstructions in proximity to roundabouts?

<u>Response:</u> B&N reached out to other B&N offices and also posted a question on the TRB roundabout ListServe, https://trbroundabouts.com/listserv/ asking for input. Examples of other projects around the country that resulted from this inquiry are shown in Attachment C. Links to these locations are shown below where available.

Location	Map Link	
Albany, NY	https://www.google.com/maps/@42.6926959,-	
	73.8308741,3a,75y,28.57h,90.2t/data=!3m7!1e1!3m5!1spbqvf7lax45PxlSYGb	
	kJGQ!2e0!6s%2F%2Fgeo2.ggpht.com%2Fcbk%3Fpanoid%3Dpbqvf7lax45PxlS	
	YGbkJGQ%26output%3Dthumbnail%26cb_client%3Dmaps_sv.tactile.gps%26t	
	humb%3D2%26w%3D203%26h%3D100%26yaw%3D45.081917%26pitch%3D	
	<u>0!7i13312!8i6656</u>	
Madison, WI	https://www.google.com/maps/@43.0336633,-	
	89.457558,3a,75y,156.74h,91.71t/data=!3m7!1e1!3m5!1sPsz31KGWVAgpoE	
	7bipTP5Q!2e0!6shttps:%2F%2Fstreetviewpixels-	
	pa.googleapis.com%2Fv1%2Fthumbnail%3Fpanoid%3DPsz31KGWVAgpoE7bi	
	pTP5Q%26cb_client%3Dmaps_sv.tactile.gps%26w%3D203%26h%3D100%26y	
	<u>aw%3D138.13138%26pitch%3D0%26thumbfov%3D100!7i16384!8i8192?hl=e</u>	
	n&authuser=0	
Bloomington, MN	https://www.google.com/maps/@44.8580727,-	
	93.3931378,82m/data=!3m1!1e3	
Emporia, KS	https://goo.gl/maps/S78TQU3hVkZaEQ54A	
Lincoln, NE	https://www.google.com/maps/@40.8224729,-	
	96.7073406,3a,75y,229.47h,85.82t/data=!3m7!1e1!3m5!1shxBwt6kMawjGq	
	EU6-M-	
	pBA!2e0!6s%2F%2Fgeo3.ggpht.com%2Fcbk%3Fpanoid%3DhxBwt6kMawjGqE	
	<u>U6-M-</u>	
	pBA%26output%3Dthumbnail%26cb_client%3Dmaps_sv.tactile.gps%26thum	
	b%3D2%26w%3D203%26h%3D100%26yaw%3D261.08533%26pitch%3D0!7i1	
	<u>3312!8i6656?hl=en</u>	
Racine, WI	Not supplied	
Green Bay, WI	https://www.google.com/maps/@44.5402329,-	
	88.0796666,3a,75y,340.63h,87t/data=!3m7!1e1!3m5!1soskT3M3p5QGJitHDs	
	4zYAg!2e0!6shttps:%2F%2Fstreetviewpixels-	
	pa.googleapis.com%2Fv1%2Fthumbnail%3Fpanoid%3DoskT3M3p5QGJitHDs4	
	zYAg%26cb_client%3Dmaps_sv.tactile.gps%26w%3D203%26h%3D100%26ya	
	w%3D8.993994%26pitch%3D0%26thumbfov%3D100!7i16384!8i8192?hl=en	
	<u>&authuser=0</u>	
Shawnee, KS	https://goo.gl/maps/i9JeWn4WC9cs2f2L9	
Locations unknown	Two images of crashes in roundabout supplied by responders on the	
	ListServe	

As can be seen from these exhibits, other states have built bridges over roundabouts with substructures near the roundabout circle and approaching roadways.

Pier Cap Vulnerabilities

<u>Investigation:</u> How vulnerable would the steel pier caps shown be to vehicular collision, i.e., what amount of vertical clearance under the steel pier caps can be achieved? Is it feasible to use concrete pier caps in lieu of steel?

<u>Response:</u> B&N examined the Route 7 bridge profile to see if the grade could be raised and made preliminary estimates of pier cap depths and associate vertical clearances for concrete and steel pier caps.

In the roundabout alternative, there would be two straddle bent piers at Piers 4A and 5A (See Attachment A, Page 1 for pier locations and Page 2 for pier elevation views (steel pier caps shown). See also Attachment D.

The profile of the Route 7 bridge was previously established by getting under the I-70 bridge and additionally touching down near the existing North Abutment to facilitate maintenance of traffic on Route 7 during the bridge reconstruction. The established grade would require a design exception for sag vertical curve. A revised profile was explored and shown in Attachment D (Page 2) to gain more vertical clearance for the pier caps. This revised profile would also require a design exception. The minimum vertical clearance that we believe could be achieved for steel pier caps at Piers 4A and 5A is at least 16.5 feet.

We performed a preliminary analyses for feasibility of concrete pier caps for Pier 4A and 5A which resulted in pier caps approximately 6' wide and 6.2' high with the use of 6 ksi concrete to meet strength and stress criteria. The vertical clearance of such a cap would be at least 16.5 feet. Providing adequate room beneath the girders for anchorages may require the use of haunched girders to minimize girder depth at the integral caps. One significant issue appears to be constructability, specifically allocating room for splicing of tendons. Alternatively, a combination of full length tendons and tendons that end at phase joint may require wider cap to fit additional tendons. A concrete pier cap would require reduced clearances during construction.

Maintenance of Traffic

<u>Investigation:</u> How could the roundabout alternative be built in phases and what would temporary traffic consequences be?

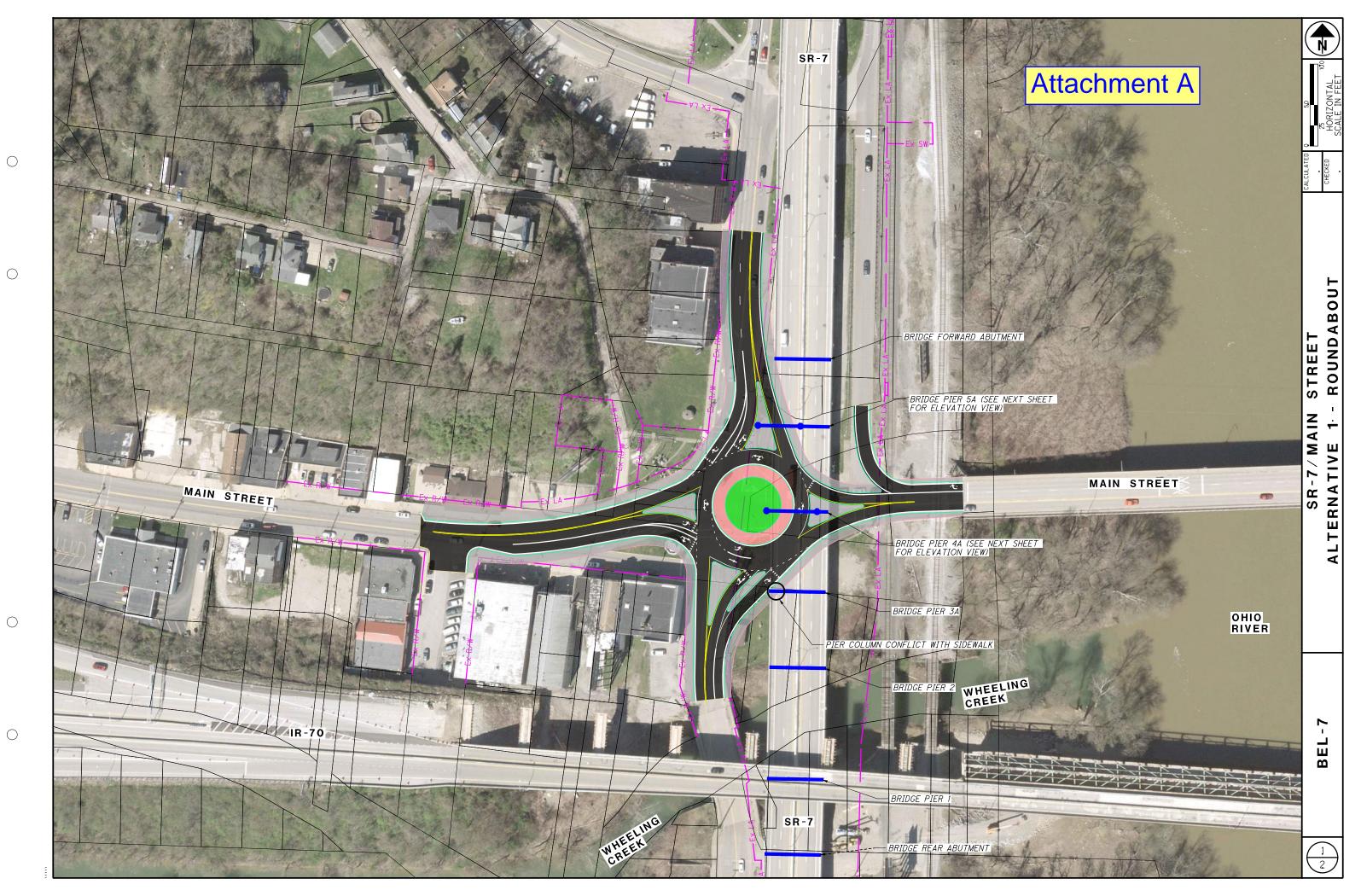
<u>Response:</u> B&N developed the following conceptual construction sequence as shown in Attachment E, which is a layered PDF showing each phase of construction as a layer (other sequences could be possible also).

MOT Phase 1

- Maintain 2 lanes (1 lane each way) on Lincoln Avenue. The south end will need to be further
 evaluated to ensure adequate width can be provided due to the pinch point of the bridge. This
 will depend on the final roadway limits.
- Close the east leg of Main Street from Lincoln to the Main Street bridge.
 - Detour Main Street to I-70 Zane Street eastbound to I-70 EB, exit at Main Street, reenter I-70 WB from Market Street to Marion Street.
 - Could be an opportunity for an incentive/disincentive clause for the contractor
- Construct the east half of the roundabout; possible duration of this construction along Main Street could be one to two months
- Construct the bridge above.
- Install temporary pavement for use in MOT Phase 2 (shown in blue in Attachment E)

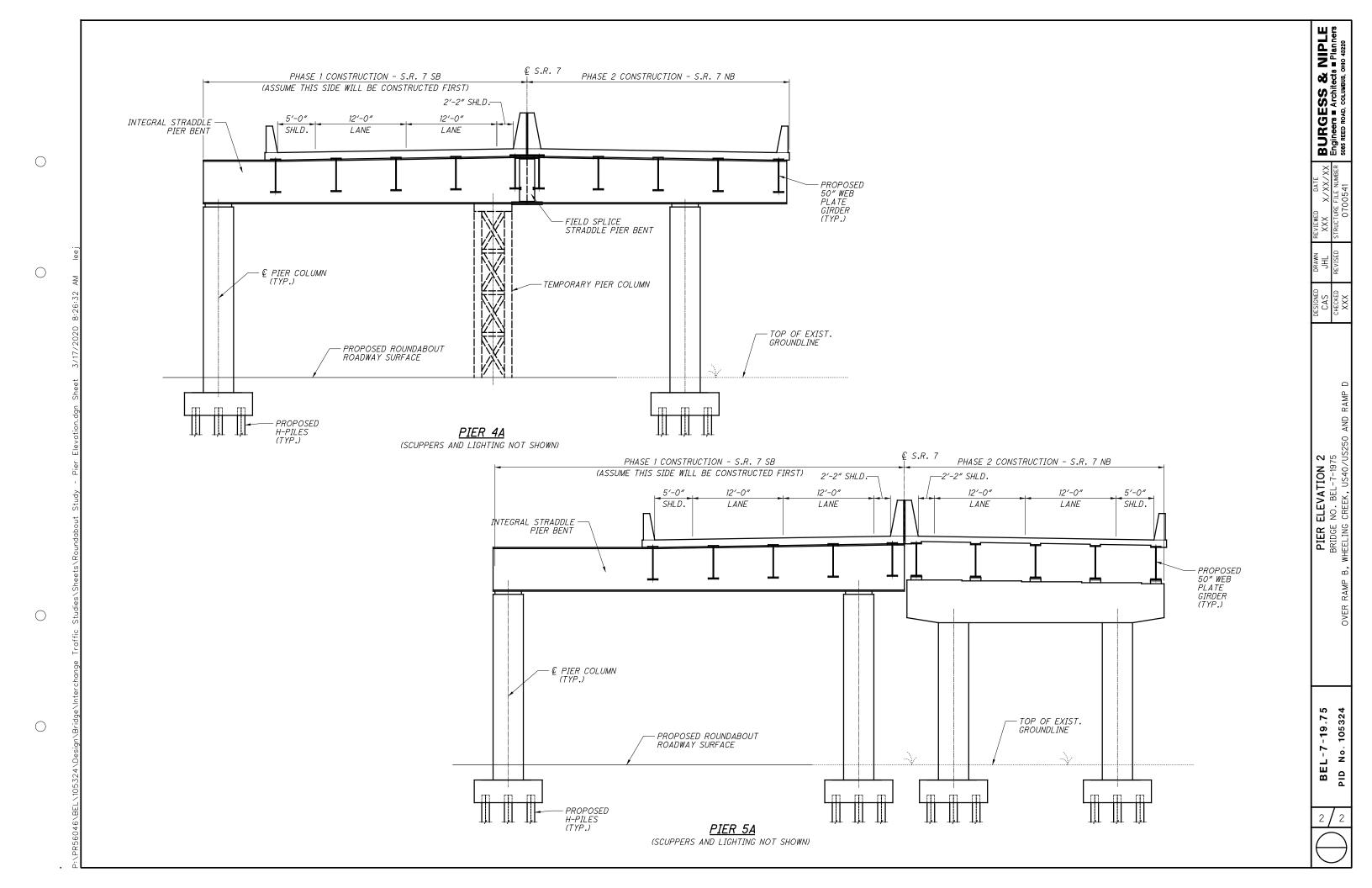
MOT Phase 2

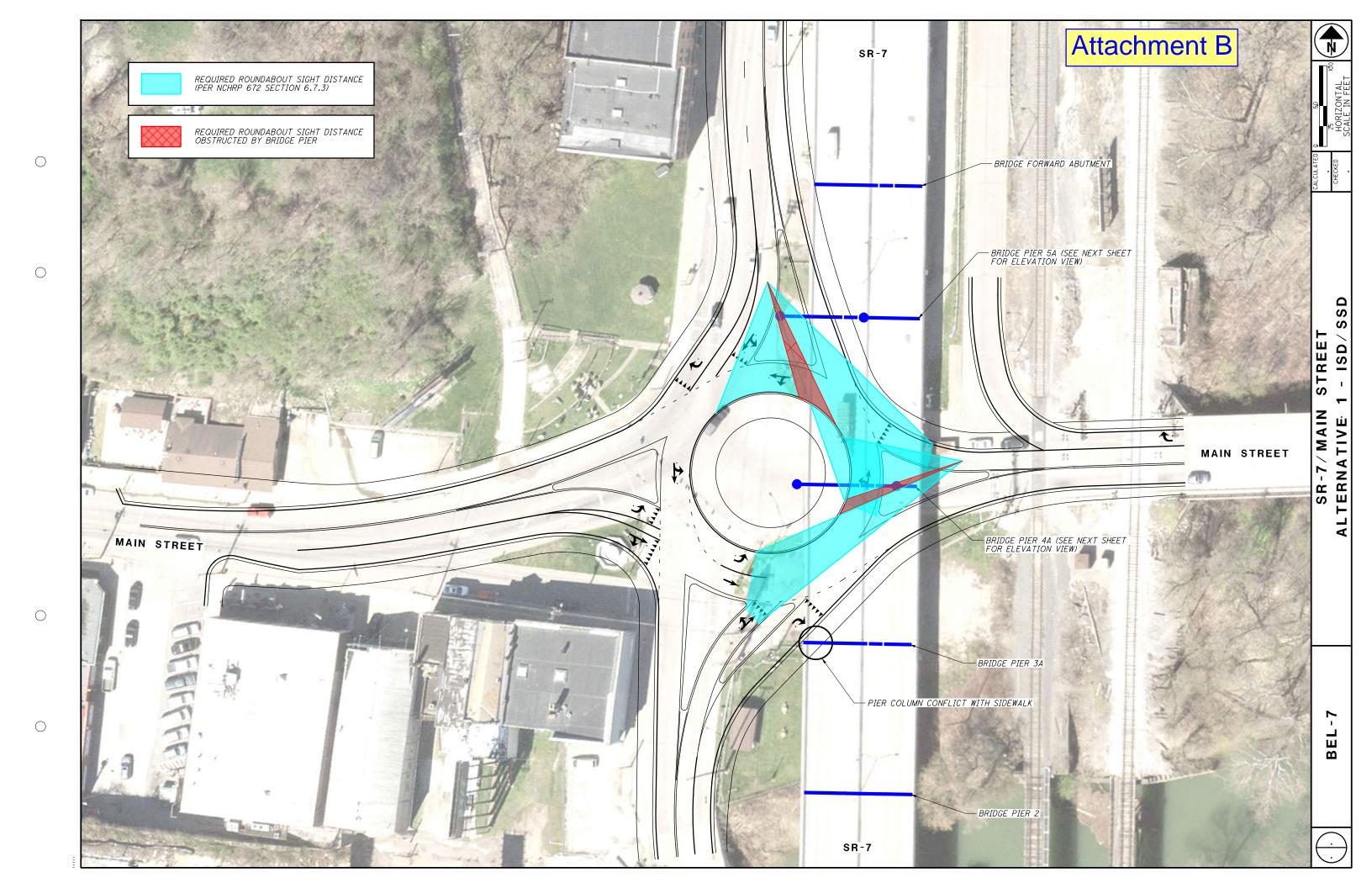
- Maintain 2 lanes (1 lane each way) on Lincoln Avenue on proposed and temporary pavement.
- Close the west leg of Main Street.
 - O Detour Main Street to I-70 Same route as above.
 - Could be an opportunity for an incentive/disincentive clause for the contractor
- Construct the west half of the roundabout; possible duration of this construction along Main Street could be one to two months


MOT Phase 3

- Open the roundabout to traffic.
- Remove the temporary pavement installed in MOT Phase 1.

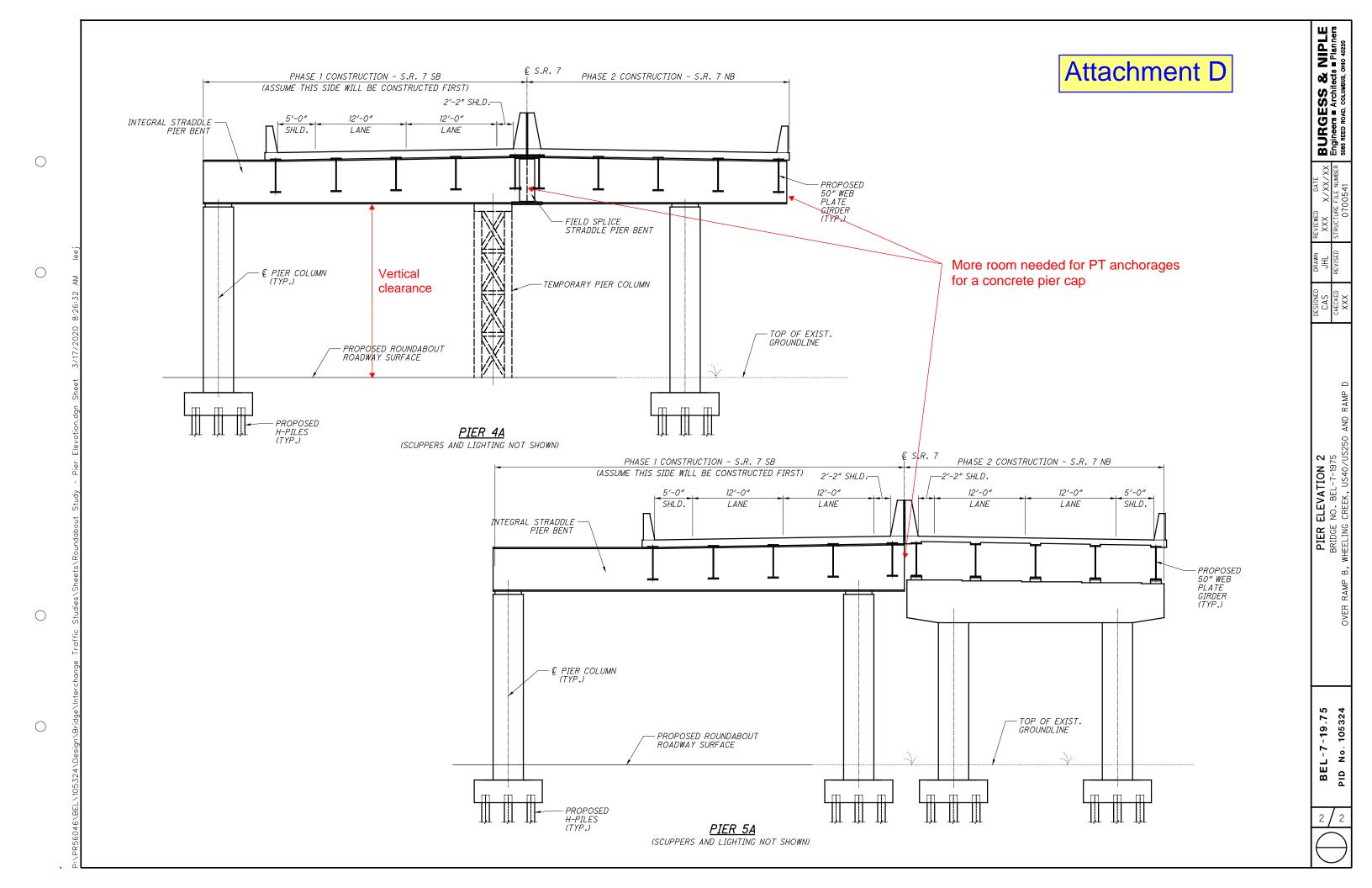
Property

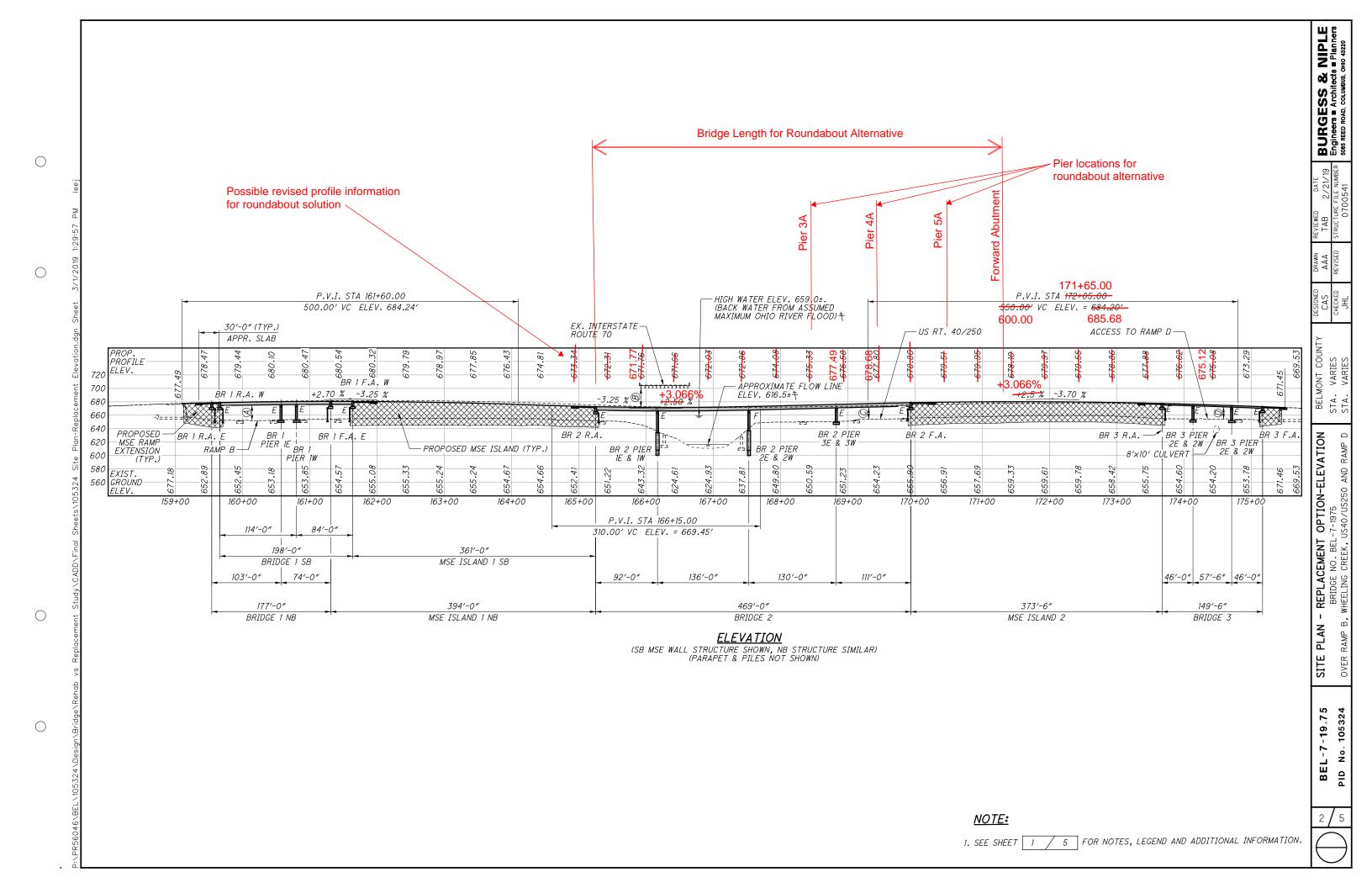

Investigation: What are property impacts associated with the proposed roundabout alternative?

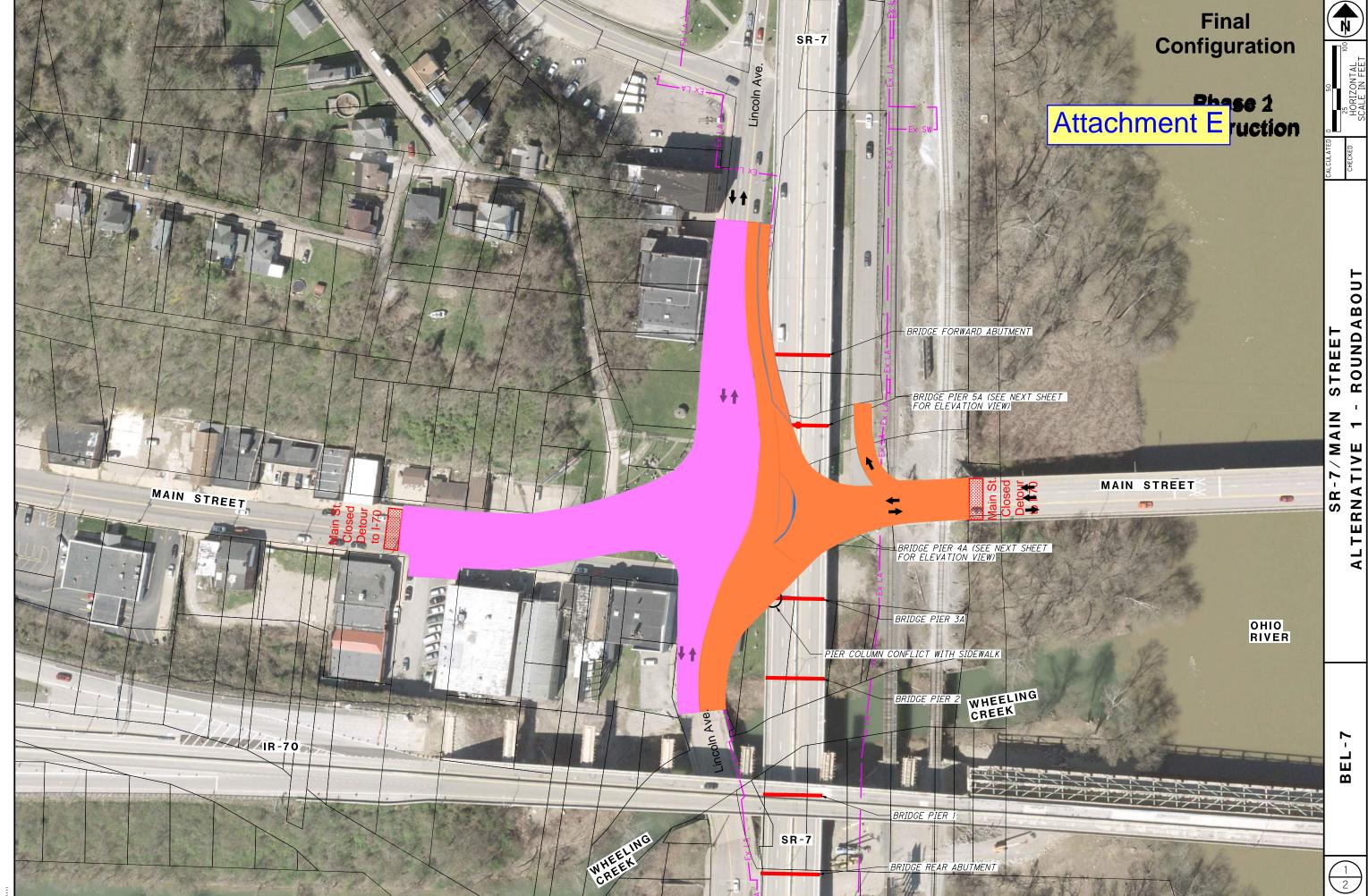

Response: B&N performed a preliminary investigation of property impacts by obtaining and examining prior construction and right-of-way plans and the Belmont County GIS site. The only area of concern appears to be at the northwest quadrant of the roundabout alternative (Attachment E, Page 1). In this location, the GIS shows some non-ODOT or City owned parcels which overlap the proposed work. However, construction plans form the 1950's (Attachment E, Page 2) show that this area was acquired and that the proposed permanent work would be likely inside the R/W L/A line, except possibly for minor grading. It was pointed out that adjacent parcels with indication of "SL" like have slope easements that would permit such minor grading.

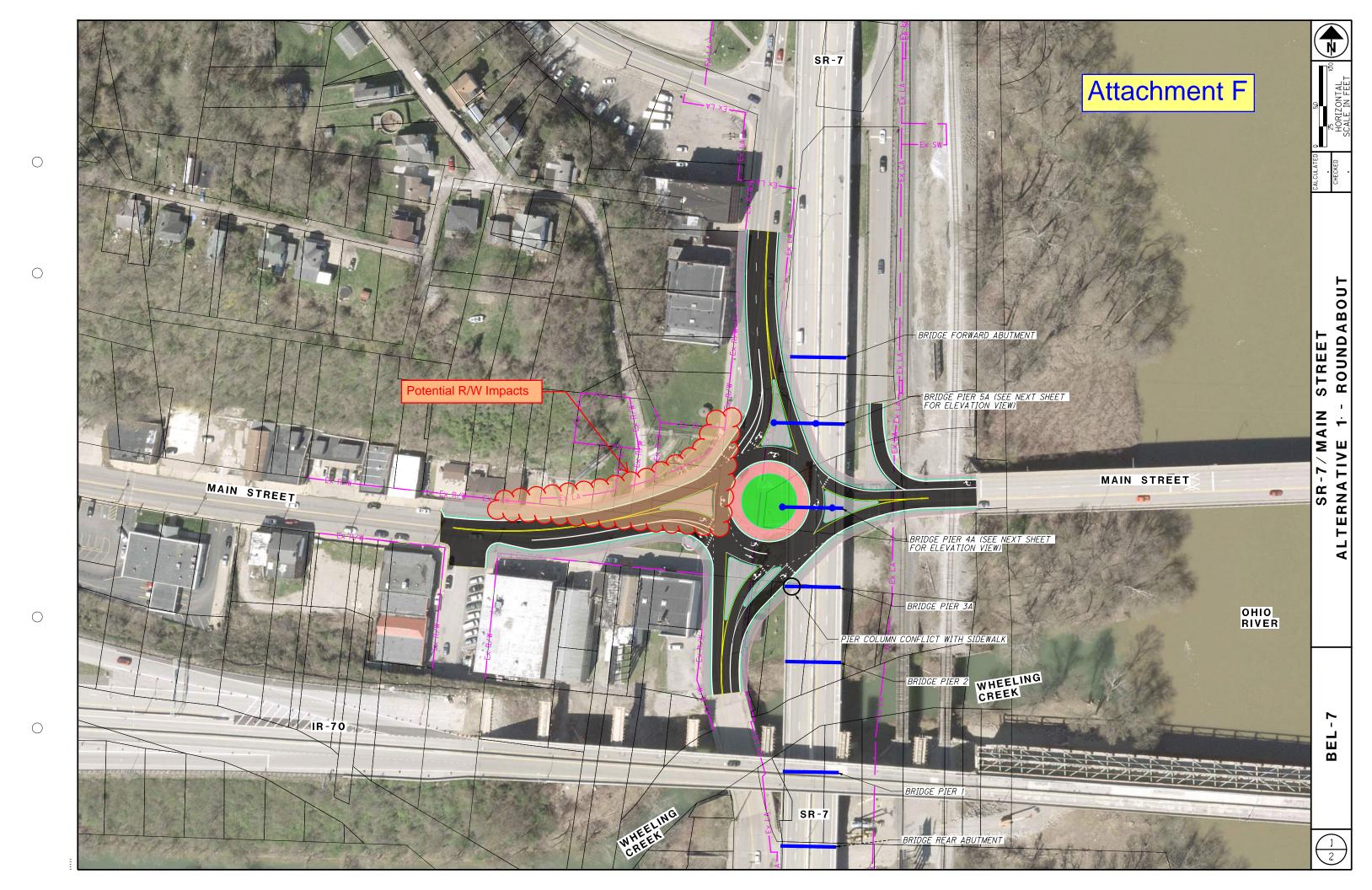
 \bigcirc

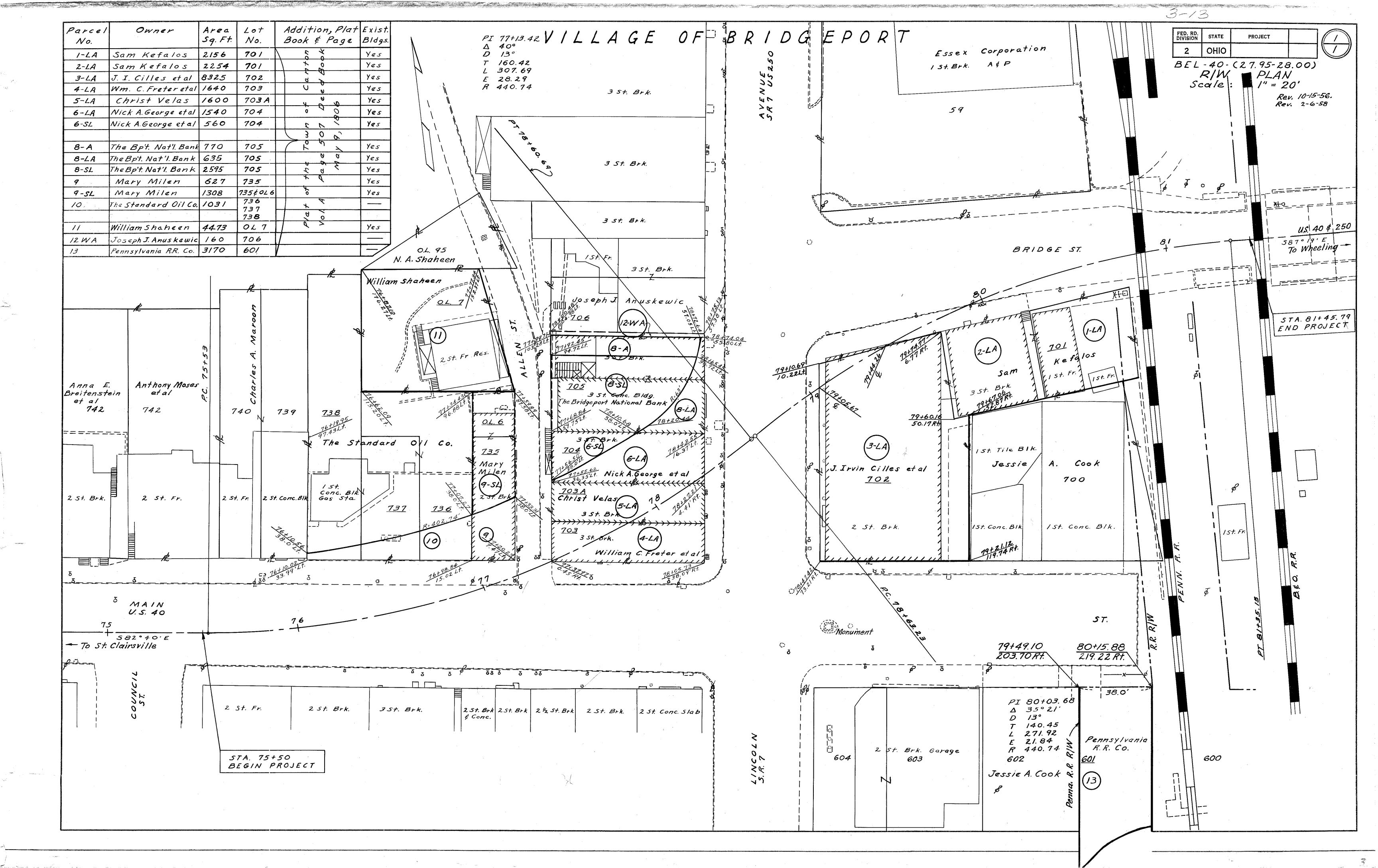
 \bigcirc


Historic Districts








 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

BEL-7-19.75 PID 106237

Construction Cost Estimates

Original estimates were prepared using 2017 ODOT prices

Construction Cost Information from Ellis Start Construction April 2025 End Construction November 2026 Inflate costs from 2017 to mid 2025.

Actual inflation from 2017 to 2021 (see attached "January 2022 Construction Cost Outlook and Forecast")

Year	Index		
2017	107		
2021	114.6		

Percent Increase = ((114.6-107)/107) x 100 = 7.1%

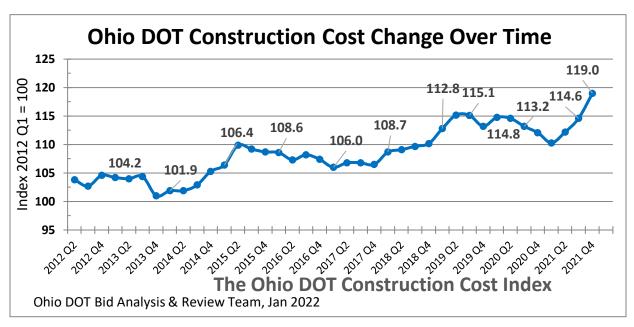
Inflation Estimates for 2022-2026 (see attached)

Year	Percent		
2022	8.0		
2023	3.7		
2024	2.5		
2025	3.2		

Inflation Multiplier 2017 to 2025 = $1.071 \times 1.08 \times 1.037 \times 1.025 \times 1.032 = 1.27$

Construction Cost Estimates

Include 20% contingency, do not include engineering or ROW costs)


ltem	Cost		
Comparative Bridge Costs (Bridge Only)	2017	2025	
Bridge Rehabilitation	\$ 21.1 M	\$ 26.8 M	
Bridge Replacement Option A (3 bridges w/ MSE Islands)	\$ 20.1 M	\$ 25.5 M	
Bridge Replacement Option B (Single Full Length Bridge)	\$ 24.5 M	\$ 31.1 M	
Bridge Replacement Option A Full Project (no roundabout)	\$ 24.2 M	\$ 30.7 M	
Bridge Replacement Option A Full Project (with roundabout)	\$ 28.8 M	\$ 36.6 M	

January 2022 Construction Cost Outlook and Forecast

January-2021 POST-FORECAST REVIEW:

The Ohio DOT Construction Cost Index measured inflation for CY2021 at 6.2%¹. In January 2021, we forecast Ohio DOT's CY2021 construction cost inflation would be 2.0%. Consequentially, actual inflation was 4.2% higher than predicted. Figure 1 illustrates the construction inflation trend that began to rise in 2021. Year-over-year increases in asphalt, steel, and structures are the most significant factors that raised overall inflation in CY2021. The COVID-19 pandemic affected all aspects of construction in 2021. We expect the pandemic to continue affecting construction through 2022 as well.

Figure 1

January-2022 FORECAST OVERVIEW:

The Ohio DOT Construction Cost Inflation Forecast is presented in Table 1. We predict construction cost inflation to be 8% in CY2022, double the January 2021 forecast of 4.0%. Inflation is expected to be 3.7% in CY2023; 2.5% in CY2024; 3.2% in CY2025; and 3.5% in CY2026. From CY2027 through CY2031 inflation is forecast to be 3.0%, based upon average rates over 30 to 60 years as measured by the GDP deflator and the Consumer Price Index (CPI). The long-term forecast beyond CY2031 is 2.0%, based on the Federal Reserve's long run inflation target rate.

Table 1: January 2022—5-YEAR CONSTRUCTION COST INFLATION FORECAST

	CY2022	CY2023	CY2024	CY2025	CY2026
High	12.0	8.0	7.0	5.0	6.0
Most Likely	8.0	3.7	2.5	3.2	3.5
Low	5.0	1.4	0.5	0.5	1.0

The following is a narrative of major factors that will have an influence on construction costs through the forecast period: (1) economic activities globally, nationally, and throughout the state and (2) regional construction costs for labor, oil and diesel, liquid asphalt, and steel, among others.